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Abstract

Innovation in the physical layer of communication systems has traditionally been achieved
by breaking down the transceivers into sets of processing blocks, each optimized independently
based on mathematical models. This approach is now challenged by the ever-growing demand
for wireless connectivity and the increasingly diverse set of devices and use-cases. Conversely,
deep learning (DL)-based systems are able to handle increasingly complex tasks for which no
tractable models are available. By learning from the data, these systems could be trained to
embrace the undesired effects of practical hardware and channels instead of trying to cancel
them. This thesis aims at comparing different approaches to unlock the full potential of DL in
the physical layer.

First, we describe a neural network (NN)-based block strategy, where an NN is optimized
to replace one or multiple block(s) in a communication system. We apply this strategy to
introduce a multi-user multiple-input multiple-output (MU-MIMO) detector that builds on
top of an existing DL-based architecture. The key motivation is to replace the need for
retraining on each new channel realization by a hypernetwork that generates optimized sets
of parameters for the underlying DL detector. Second, we detail an end-to-end strategy, in
which the transmitter and receiver are modeled as NNs that are jointly trained to maximize an
achievable information rate. This approach allows for deeper optimizations, as illustrated with
the design of waveforms that achieve high throughputs while satisfying peak-to-average power
ratio (PAPR) and adjacent channel leakage ratio (ACLR) constraints. Lastly, we propose a
hybrid strategy, where multiple DL components are inserted into a traditional architecture
but trained to optimize the end-to-end performance. To demonstrate its benefits, we propose
a DL-enhanced MU-MIMO receiver that both enable lower bit error rates (BERs) compared
to a conventional receiver and remains scalable to any number of users.

Each approach has its own strengths and shortcomings. While the first one is the easiest to
implement, its individual block optimization does not ensure the overall system optimality.
On the other hand, systems designed with the second approach are computationally complex
and do not comply with current standards, but allow the emergence of new opportunities such
as high-dimensional constellations and pilotless transmissions. Finally, even if the block-based
architecture of the third approach prevents deeper optimizations, the combined flexibility and
end-to-end performance gains motivate its use for short-term practical implementations.
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Résumé

L’innovation dans la couche physique des systémes de communications a traditionnellement
été réalisée en modélisant les émetteurs-récepteurs comme une suite de blocs, chacun étant
optimisé indépendamment sur la base de modeéles mathématiques. Cette approche est aujour-
d’hui remise en question par la demande croissante de connectivité et la diversité des cas
d’utilisation. A Pinverse, les systémes basés sur 'apprentissage profond (deep learning, DL)
sont capables de traiter des taches de plus en plus complexes en apprenant a partir de données.
Cette these vise donc a comparer différentes approches pour exploiter le plein potentiel du DL
dans la couche physique.

Tout d’abord, nous décrivons une stratégie basée sur un réseau neuronal (neural network,
NN) qui est optimisé pour remplacer un ou plusieurs blocs consécutifs dans un systéme de
communication. Nous appliquons cette stratégie pour introduire un détecteur multi-utilisateurs
a entrées et sorties multiples (multi-user multiple-intput multiple-output, MU-MIMO) qui
s’appuie sur un détecteur existant basé sur du DL. L’idée est d’utiliser un hyper-réseau de
neurones pour générer des parémetres optimisés pour le détecteur DL sous-jacent. Deuxie-
mement, nous détaillons la stratégie de bout en bout, dans laquelle les émetteurs-récepteurs
sont modélisés comme des NNs qui sont entralnés conjointement pour maximiser un taux
d’information réalisable. Cette approche permet des optimisations plus profondes, comme
I'illustre la conception de formes d’onde qui atteignent des débits élevés tout en satisfaisant
des contraintes sur le signal et son spectre. Enfin, nous proposons une stratégie hybride, ou
plusieurs composants DL sont insérés dans une architecture traditionnelle mais entrainés pour
optimiser les performances de bout en bout. Pour démontrer ses avantages, nous proposons
un récepteur MU-MIMO amélioré par DL qui permet a la fois de réduire les taux d’erreur
binaire (bit error rate, BER) par rapport a un récepteur classique et de rester adaptable & un
nombre variable d’utilisateurs.

Chaque approche a ses propres forces et faiblesses. Si la premiere est la plus facile a
implémenter, 'optimisation individuelle de chaque bloc ne garantit pas ’optimalité du systeme
entier. En revanche, les systémes concus selon la seconde approche sont souvent trop complexes
et ne sont pas conformes aux standards actuels, mais ils permettent I’émergence de nouvelles
possibilités telles que des constellations de grande dimension et des transmissions sans pilote.
Enfin, méme si 'architecture par blocs de la troisieme approche empéche des optimisations
plus poussées, la combinaison de sa flexibilité et de son optimisation de bout en bout motive

son utilisation pour des implémentations a court terme.

Un résumé de la thése en francais est disponible dans I’Appendiz B de ce manuscript.
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Intfroduction

1.1 When Machine Learning Meets Signal Processing

The first neural network (NN) model was introduced in 1943 [1], but sixty years of research
and of processing power increase were required to enable a major adoption of machine learning
(ML) by the industry [2]. In particular, the 2010s have seen significant improvements in parallel
computing, leading to the advent of deep learning (DL) and to breakthroughs in computer
vision [3], speech recognition [4], and many other domains [5]-[7]. DL is especially useful when
the task at hand is difficult to formalize mathematically or when the mathematical models
are untractable. By shifting from model-driven to data-driven algorithms, DL techniques are
able to circumvent this problem as long as a sufficient dataset is available. Typically, massive
progresses have been possible in the field of image recognition thanks to the publication of the
ImageNet dataset in 2009 [8], containing more than 3 millions labelled images.

Transmitter Channel Recelver
— O 1=
1 1
—

Figure 1.1: A traditional block-based communication system.

In the meantime, new generations of cellular communication systems have emerged every
ten years, starting from 1979 [9]. Each generation brings multiple connectivity improvements,
such as faster and more reliable communications, in part thanks to a better modeling of
the wireless channel. These mathematical models allowed the design of algorithms that can
take advantage of the available knowledge in information theory and signal processing. As
the transmitters and receivers became more and more complex, tractability was achieved by

splitting the transmit and receive processing chains into small components, usually referred to



1 Introduction

as processing blocks and illustrated in Fig. 1.1. Such bloc-based communication systems suffer
from multiple drawbacks. On the one hand, simplistic channel models fails at capturing all the
specificities of the underlying hardware and propagation phenomenons. On the other hand,
the joint optimization of the transmitter and receiver quickly becomes intractable when more
realistic channels models are derived, and therefore the optimization of each block is typically
performed independently. This does not ensure the optimality of the resulting system, as it
can be shown for the channel coding and modulation blocks [10]. Finally, signalling is often
required between the transmitter and the receiver, which introduces an overhead that reduces
the system throughput.

Transmitter Channel Receiver

L — J
Optimization

(a) NN-based block optimization: an NN is optimized to replace one or multiple block(s) in a
communication system.

Transmitter Channel Receiver

NN NN

Optimization

(b) End-to-end optimization: NN-based transceivers are optimized to maximize the end-to-end perfor-
mance of a system.

Figure 1.2: Different level of NN integrations into communication systems.

DL for the physical layer was already studied in the nineties [11], but a renewed interest
started in 2016-1017 thanks to the publication of multiple promising papers. One of them
was published in 2016 by Be’ery et al., who represented the channel decoding algorithm as an
NN to improve the bit error rates (BERs) of systems using various codes [12]. This approach
corresponds to an NN-based block optimization strategy as shown in Fig. 1.2a, in which one or
multiple consecutive processing blocks are replaced by an NN. To handle such NN-based blocks,
the next generation of communication system needs to be designed for DL, in a way that
allows for practical training and testing of these components. Although this idea is interesting,
the true DL revolution started when O’Shea and Hoydis introduced end-to-end learning for
communication systems in their seminal paper from 2017 [13]. Such approach is often referred
to the end-to-end optimization strategy, as depicted in Fig. 1.2b, and experimental gains were
quickly shown by Hoydis, Dorner, Cammerer et al. with over-the-air transmissions [14]. This
strategy allows the systems to be entirely optimized from real-world data, therefore enabling
efficient handling of hardware impairments and other channel distortions without requiring any

mathematical model [15]. Moreover, they can contribute to reducing the signaling overhead,



1.2 Current Challenges and Contributions of this Work

either by removing the pilots required for channel estimation at the receiver [16] or by learning
optimal medium access control (MAC) protocols [17]. For these reasons, end-to-end systems
are often seen as the next big step in the evolution of the physical layer, as the transmit and
receive processing would be designed by DL [18].

The study of the two strategies presented in Fig. 1.2 have lead to the discovery of deep
connections between the fields of DL, information theory, and of signal processing in com-
munication systems [19]. For example, the transmitter-receiver pair can be modeled as an
autoencoder, in which the estimation of the transmitted bits becomes a binary classification
problem [20]. Moreover, an achievable rate of a communication system can be expressed in
terms of cross entropy [21], which is a well-known metric in information theory and DL. These
connections, along with performance improvements demonstrated on multiple systems and
environments, indicate that DL will play an important role in future generations of communi-
cation systems [22]-[24]. However, each strategy has its shortcomings: the block-based NNs
(Fig. 1.2a) are not trained to maximize the overall performance of the system, and the fully
learned transceivers (Fig. 1.2b) lack interpretability and scalability. This thesis therefore aims
at providing some answers to the question of the optimal integration of DL components into

wireless communication systems.

1.2 Current Challenges and Contributions of this Work

The next generation of cellular networks will need to support a growing number of different
services and devices [25]. To that aim, the available resources need to be more efficiently
shared among users. One key technique is the use of multi-user multiple-input multiple-output
(MU-MIMO) systems, where spatial multiplexing is exploited to increase both the channel
capacity and the number of users that can be served simultaneously [26]. One of the main
challenges related to the deployment of such systems is the complexity of the symbol detection
algorithm, which grows with the number of antennas and users. For example, maximum a
posteriori (MAP) detection is optimal but known to be NP-hard, and sphere decoders have
exponential worst-case complexity [27]. The conventional solution to tackle this problem
is to use linear detectors that are computationally tractable, but suffer from performance
degradation on ill-conditioned channels. In the past years, several approaches tried to address
those challenges by implementing the detector as an NN, which corresponds to the NN-based
block optimization strategy. However, they either still achieve unsatisfying performance on
spatially correlated channels, or are computationally demanding since they require retraining
for each channel realization. In this work, we address both issues by training an additional
NN, referred to as the hypernetwork, which takes as input the channel matrix and generates
the weights of the NN-based detector. Results show that the proposed approach achieves near
state-of-the-art performance without the need for re-training.

Another key research direction is the improvement of the orthogonal frequency-division

multiplexing (OFDM) waveform, used in most modern communication systems such as 4G,
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5G, and Wi-Fi. Indeed, conventional OFDM suffers from multiple drawbacks, such as a high
peak-to-average power ratio (PAPR) and adjacent channel leakage ratio (ACLR). To tackle
these problems, we leverage the end-to-end optimization strategy and model the transmitter
and receiver as NNs that respectively implement a high-dimensional modulation scheme and
estimate the transmitted bits. We then propose a learning-based approach to design OFDM
waveforms that satisfy selected constraints while maximizing an achievable information rate,
with the additional advantage that no pilots are needed during transmissions. Evaluated with
ACLR and PAPR targets, the trainable system is able to satisfy the constraints while enabling
significant throughput gains compared to a tone reservation (TR) baseline.

Transmitter Channel Recelver
— o[ | =
1 —/1
—1

Optimization

Figure 1.3: A hybrid training strategy.

As mentioned in Section 1.1, such end-to-end systems lack interpretability, as the black-
box design prevents the capture of intermediate data such as channel estimates. They also
lack scalability, which is especially important in MU-MIMO transmissions since the receive
algorithm must allow for easy adaptation to a varying number of users. It is therefore still
unclear if this strategy is competitive with respect to conventional MU-MIMO receivers
in realistic scenarios and under practical constraints. For this reason, we propose a DL-
enhanced MU-MIMO receiver that builds on top of a conventional architecture to preserve
its interpretability and scalability, but is trained to maximize an achievable transmission
rate. This approach can be seen as a hybrid strategy, in which multiple DL-based components
are inserted in a traditional block-based architecture but are optimized to maximize the
end-to-end system performance (Fig. 1.3). The resulting system can be used in the up- and
downlink and does not require hard-to-get perfect channel state information (CSI) during
training, which contrasts with existing works. Simulation results demonstrate consistent
performance improvements over a linear minimum mean squared error (LMMSE) baseline

which are especially pronounced in high mobility scenarios.

1.3 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 provides a background on DL,
on the physical layer, and on the interconnection between the two fields. OFDM is presented
first, with a derivation of the channel models corresponding to both single-input single-output
(SISO) and MU-MIMO transmissions. We then detail the concept of backpropagation, NN,
and of stochastic gradient descent (SGD), and describe the optimization of DL-enhanced
systems. Chapter 3 introduces the hypernetwork-based MIMO detector, which is an example
of the block-based optimization strategy depicted in Fig. 1.2a. The traditional iterative
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detection framework and the concept of hypernetworks are presented, followed by a description
of the HyperMIMO system and of evaluations on spatially correlated channels. The fully
NN-based transceiver strategy of Fig. 1.2b is discussed in Chapter 4, where we design OFDM
waveforms that both maximize an achievable rate and satisfy PAPR and ACLR constraints.
The system model and the baseline are described, and both the NN architectures and the
learning-based approach used for waveform design are detailed. Finally, simulation results
and insights are provided. Chapter 5 is dedicated to the presentation of the hybrid strategy
(Fig. 1.3) for DL-enhanced MU-MIMO receivers. First, we develop the traditional architectures
corresponding to uplink and downlink transmissions. Second, we highlight two limitations
of these architectures and detail how we address them using convolutional neural networks
(CNNs). Third, we provide simulation results to compare the DL-enhanced receiver to the
baseline. Finally, Chapter 6 concludes this manuscript.

1.4 Notations

R (C) denotes the set of real (complex) numbers. Tensors and matrices are denoted by
bold upper-case letters and vectors are denoted by bold lower-case letters. We respectively
denote by m, and m, the vector and scalar formed by slicing the matrix M along its first
and second dimensions. Note that the notation [M], and [M], is also used in Section 2.2.2
for clarity. Similarly, we denote by T,y € CNe*Na (t,, . € CVe, t,} .4 € C) the matrix
(vector, scalar) formed by slicing the tensor T € CNaXNoXNexNa glong the first two (three,
four) dimensions. The notation T®*) indicates that the quantity at hand is only considered for
the kM user, and v_, corresponds to the vector v from which the a'" element was removed.
||[M||r denotes the Frobenius norm of M. Card(S) denotes the number of elements in a set
S, vec (+) the vectorization operator, and ® and @ the element-wise product and division,
respectively. ()T, ()Y, and (-)* respectively denote the transpose, conjugate transpose, and
element-wise conjugate operator. I(x;y) and P(x,y) represent the mutual information and
joint conditional probability of x and y, respectively. Iy is the N x N identity matrix and
Tnxpr is the N x M matrix where all elements are set to 1. Finally, the imaginary unit is j,
such that j2 = —1.






Background on the
Physical Layer and
Deep Learning

2.1 OFDM Systems

A digital communication system aims at transmitting bits from a transmitter to a receiver
by modulating an electromagnetic wave that is transmitted through a channel (Fig. 2.1).
Multiple waveforms can be used to carry the information, and the waveform choice is usually
dictated by the channel distortions that need to be dealt with. In the following, we present
orthogonal frequency-division multiplexing (OFDM), a transmission technique used in most
modern communication systems thanks to its ability to handle difficult channel conditions

such as selective fading.

Bits > Transmitter —>  Channel > Receiver = Estimated bits

Figure 2.1: A digital communication system.

2.1.1 Transmit Processing

The first operation that is performed by the transmitter is the bit mapping, in which vectors
of @ bits b € {0,1}9 are mapped to 2% different symbols x € C, where C is referred to as
the constellation. Quadrature amplitude modulations (QAMSs) are among the most used

constellations, and are identified by the number of different symbols that can be transmitted.



2 Background on the Physical Layer and Deep Learning
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Figure 2.2: Constellation diagram corresponding to a 16-QAM constellation.

As an example, Fig. 2.2 shows the symbols and associated bits for a 24-QAM where the 4 bits
are arranged according to a Gray labeling. After modulation, the symbols are converted into
an electromagnetic wave that is transmitted through the channel.

In OFDM, the available bandwidth is divided into a set of N sub-band referred to as
subcarriers. Orthogonality is achieved in the frequency domain by selecting a subcarrier spacing
of Ay and applying a matching sinc-shaped pulse. The resulting spectrum is represented in
Fig. 2.3, where it can be seen that each subcarrier is null at the frequencies corresponding to
other subcarriers. In the time-domain, the duration of the corresponding signal is denoted by
T = A%u and is referred to as the duration of an OFDM symbol. The entire time-frequency
grid, formed by N subcarriers and M OFDM symbols, is referred to as the resource grid (RG),
while a single element in that grid is referred to as a resource element (RE) (Fig. 2.4).

Transmission over the RG is achieved by grouping the flow of symbols x to be transmitted
into vectors of symbols x,, € CV,m € {1,--+, M} that are transmitted in parallel over all
N subcarriers, effectively mapping each z, , € C to the RE (m,n). To avoid any confusion
between an OFDM symbol designating a column in the RG and a symbol that indicates a
point in a constellation, the latter will also be referred to as a frequency baseband symbol
(FBS), as the symbol mapping is carried out at the baseband over the available subcarriers.

2.1.2 The Wireless Channel

The channel model is the relation between the transmitted FBS z and the received FBS y,

and can be expressed as
y = ch(x), (2.1)

where ch(-) represents the distortions caused by the channel or the transceivers imperfections.

In the following, we propose a derivation of the OFDM channel model inspired by [28].
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Figure 2.3: Representation of the amplitude of an OFDM spectrum S(f) with N = 5 subcarriers

centered around 0. Each subcarrier is null at the frequencies corresponding to other subcarriers,
ensuring orthogonality.

Transmit filtering

The time-domain signal s,,(¢) corresponding to an OFDM symbol x,, is obtained by
modulating each x,,, with a different transmit filer ¢,. During this modulation, a cyclic
prefiz (CP) is prepended to the symbol, and contains a copy of the last part of that symbol
(Fig. 2.5). The length of the CP is denoted by T°CF, and total length is Tt = TCP + T,

If we denote by N the set of available subcarriers, the transmitted signal corresponding to
the m'" OFDM symbol is

Sm(t) = Z Ty On (t — mTtOt) (2.2)
neN

Slot
prmmm—\—

Element

Frequency

OFDM Resource
Symbol

Time

Figure 2.4: An OFDM resource grid.
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el

cp OFDM Symbol

7P T

Figure 2.5: An OFDM symbol with its cyclic prefix appended.

where the filters ¢,, are chosen such that ¢x(t) = ¢r(t +T) when ¢ is within the duration of
the CP, i.e., when t € [0, TCF]:

L 2mtE g g e [0, T
Pn(t) = ¢ VI ’ (2.3)
0 otherwise
1 t 1\ gp,eTCP
:wmfw<Wm—Qé%”?- (2.4)

Note that we choose the transmit filters so that the average energy per OFDM symbol and
per subcarrier is one. The transmitted signal corresponding to an OFDM slot is

M—-1 M—-1
SO=Y sml)= 3 3 Zmntnlt — mTH). (2.5)
m=0 m=0 neN

Without CPs (TCF = 0), the spectrum of each filter ¢, () corresponds to a subcarrier as shown
in Fig. 2.3. The removal of the CPs at the receiver-side therefore ensures the preservation of

the orthogonality between subcarriers.

Channel

Let us denote by ¢(7,t) the response of the channel at time ¢ when excited with a impulse

transmitted at time ¢ — 7. For a multipath channel, we have

P-1

g(rt) = Y ap()3 (r = 7p(t)) (2.6)

p=0

where P is the number of different paths, a,(t) and 7,(t) respectively denote the complex
amplitude and time delay associated with the p*® path at time ¢, and §(-) is the Dirac function.
The length of the CP is chosen to be at least equal to the longest delay, such as the impulse
response of the channel is restricted to the interval [0,7°F]. The received signal can be

expressed as

r(t) = [ O:O g, D)s(t — 7)dr + 7i(t) (2.7)
TCP

_ /0 g(r,t)s(t — T)dr + 7i(t) (2.8)

10
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where 7n(t) is a complex additive white Gaussian noise (AWGN) process with power spectral
density (PSD) Ny satisfying

E [n(t)n* (t + 7)] = Nod(t — 7). (2.9)

As ay(t) and 7,(t) typically vary slowly, it is common to assume that the channel is pseudo-
stationnary, i.e., that it is constant over the duration of an OFDM symbol. On the m™ OFDM
symbol, we therefore have g(7,t) = g(7,t,) with t,, = mT**, and (2.8) can be written as

TCP

r(t) = /O 9, t)s(t — 7)dr + (1) (2.10)

Receive filtering

At the receiver, the signal corresponding to the k"' subcarrier is obtained by filtering the
received signal r(t) with

STt gy if ¢ e [0,T
ilt) = { i 0 ) i)tfleerv[vise} (2.11)
— rect (; - ;) GE(T — 1), (2.12)

This receive filter, of duration 7', is matched to the part of the transmit filter carrying the
OFDM symbol, thus removing the CP. Since the channel impulse response was shorter than
the CP, the filtered signal contains no intersymbol interference (ISI), and therefore we can
focus on a single OFDM symbol. The output of the receive filter on the 0 OFDM symbol

and k" subcarrier is
Ttot
wi = [ rOuT —nde= [ s (2.13)
T
Ttot TCP Ttot
= o </0 g(7,t0) [Z To.nPn t—T)] m) ok (t dt+/ (t)pr(t)dt  (2.14)

- (]

neN

TCP

Ttot
9 t0)gnlt T>d7> G+ [ aWd@d (215)

The inner integral can be expressed as

J

TCP TCP

1
go(rto)ou(t=r)dr = [ g(rt) 7
632#%(1& TCP T7C
- (t,t0)e 92" T7dr, TCF <t < T (2.17)
o 0

e 2mipt=r=T% g (2.16)

hO,n

11
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where h,, is the frequency response of the channel at the n'® subcarrier. The filtered signal

(2.15) can now be written as

Ttot j2mi (t—TCF)

Ttot
wi= Y won [ it [ ameima (@18)

neN
no,n
Ttot
=Y zonhon / On ()P (t)dt + ng 1. (2.19)
TCP
neN

The transmit filters are chosen to be orthogonal, i.e.,

JRECEIORE (2.20

TCP 0 otherwise

and therefore the FBS corresponding to the n'® subcarrier is

Yo,n = honTon + non (2.21)

where ng 5, is an AWGN. The same derivation can be carried out for all subcarriers and OFDM
symbols m € {0,--- , M — 1}, resulting in

where the vectors y,,, hy,, X, and n,, respectively contain the values of yp, n, Am.n, Tm.n, and
N, for all subcarriers n € N.
A discrete-time model can be derived by replacing the transmit and receive filters by the

inverse discrete Fourier transform (IDFT) and discrete Fourier transform (DFT) operators:

Ym = DFT (IDFT (%) ® g + i) (2.23)
= DFT (IDFT (Xm) ® &) + N, (2.24)

where the ® operator denotes a cyclic convolution, n,, = DFT (n,,) is a vector of uncorrelated
Gaussian noise, and g, corresponds to the channel impulse response, i.e., g,, = IDFT(h,,).
2.1.3 Receive Processing

The main benefit of OFDM systems is the simplified receiving process. If Ay, ,, is known at
the receiver, the transmitted symbols can be estimated from the received symbols:

B = 200 (2.25)
hm,n
= T + (2.26)
hm,n
~——

12



2.1 OFDM Systems

This process is referred to as the equalization, and n/ . is the post-equalization received

m,mn
noise with variance pm’n. The next step is the demapping, in which the transmitted bits are
estimated from #,, . Hard demapping finds the symbol Z,, ,, € C that is the closest to Zy, p,

i.e.,

Tmn = argmin|c — &y, |2 (2.27)
ceC

and recovers the corresponding bits from the used constellation (as shown in Fig. 2.2 for
16-QAM). Soft demapping aims at providing probabilities over the transmitted bits in the
form of log-likelihood ratios (LLRs). The LLR corresponding to the ¢*® bit on the RE (m,n)
is given by

Plbmng =1)

LLRpn(g) = In <P(> (2.28)

0)
A 2
s 0 (2 lima —cf)

_ c|2)

where Cy ¢ (Cp1) is the subset of C which contains all symbols with the ¢'! bit set to 0 (1).

=1In

: (2.29)

ZCEC%O exp (_ 2

Note on channel estimation: Although is it sometimes assumed that the channel coefficients
hmn n are known to the reciever, in practice only channel estimates fbmn are available. Such
estimations are usually obtained by transmitting pre-determined pilot signals py,, on a set of
fixed REs. The receiver can then estimate the channel on the REs (m,n) carrying pilots with

~
Ym,n

homn = - , and extrapolate these channel estimates to the all remaining REs. To alleviate

the overhead associated with pilot transmissions, end-to-end systems are able to perform
pilotless communication by learning constellation that are not circularly symmetrical. More

details on the channel estimation process will be presented in Chapter 4 and 5.

2.1.4 Uplink Multiple-Input Multiple-Output Systems

In multi-user multiple-input multiple-output (MU-MIMO) systems, K single antenna users
communicate with a base station (BS) equipped with L antennas. In uplink transmissions,
the vectors of transmitted and received symbols on each RE (m,n) are respectively denoted
by Xm.n € CK and Ymn € CL. The channel model between all users and the BS antennas is

Ymmn = Hm,nxm,n + Nmn (230)

where the noise vector is denoted by ny, , ~ CN (O, 021 L) and Hy, ,, € CL*K ig the matrix of
channel coefficients. Although the transmit process is unchanged for each user, the detection of
K users per RE by the BS requires a new equalization algorithm. Assuming that the channel

matrix H,, , is known, the optimal hard detection algorithm to minimize the probability of

13



2 Background on the Physical Layer and Deep Learning

symbol error is the maximum likelihood detector:

ﬁm,n = argminuym,n - Hm,nxm,nH2- (2.31)
Xm,n€CK

However, its complexity being exponential in K often prevents any practical implementations.
A simple soft-detection algorithm is zero forcing, in which the constellation constraint on x,,

is removed:
A _ . 2
Xm,n = argmin ||Ym,n - Hm,nxm,nH (232)
xm,ne(CK
—1
= (ng,nHm,n) ng,7nYm,n (233)
-1
=Xmn t (HgL,nHm,n> H;iz,nnmm (234)

resulting in estimated symbols X,,, with zero intersymbol interferences. Note that the
notations ~ and ° respectively denote the outputs obtained through hard and soft detection.
The main drawback of this detector is that the noise can be significantly amplified on ill-
conditionned channels, resulting in poor performances. To understand the cause of this
effect, let us factorize the channel matrix H,, , into its singular value decomposition (SVD)
decomposition: H,, , = UAVH where U € CE*L and V € CEXK are unitary matrices, and
A € REXE g a rectangular diagonal matrix with element [\, --- , Ax] on the diagonal. The
symbol estimate can be re-written as

Kmn = Xmn + VA U D, , (2.35)
where A™! has elements [)\%, e ,i] on the diagonal. On ill-conditionned channels, some
singular values A, 1 € {1,---, L} are very small, resulting in a matrix A~! containing large

entries that amplify the noise accordingly. To reduce the sensitivity of the detector to the
sigular values of the channel, a regularization term o2||%,, »||?> can be added to the objective
function (2.32):

2. (2.36)

Ky = argmin ||[yom.n — Hp X n| \2 + O'QHXmm
Xm,ne(CK

The linear solution is equivalent to a Wiener filter and is referred to as the LMMSE detector.
It will be discussed in more details in Chapters 3 and 5.

After equalization, the LLR on the transmitted bit ¢ can be estimated for an OFDM symbol
m, subcarrier n, and user k independently:

~ 2
Sty b (57 limons — ol

m,n,k

A 2
ZCGC(I,O eXp (_ P2 ! |xm7n7k - C‘ )

m,n,k

LLR . k(q) = In (2.37)

14



2.1 OFDM Systems

where p?nm’ . denotes the post-equalization noise variance corresponding to the user k on the
RE (m,n). The transmission by K users of the bits corresponding an FBS (m,n) is depicted
in Fig. 2.6, where the superscript (k) indicates that the quantity at hand is only considered for
user k. Note that channel coding (decoding) blocs can be used at the transmitter (receiver) to
detect and correct errors on the estimated bits.

15
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Figure 2.6: An uplink MU-MIMO system.
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Artificial
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Machine
Learning

Figure 2.7: Deep Learning is a subset of Machine Learning, itself a subset of Artificial
Intelligence.

2.2 Deep Learning for the Physical Layer

2.2.1 A General Introduction to Deep Learning

The concept of artificial intelligence (AI) can be traced back to 1842, when Ada Lovelace
and other mathematicians started wondering whether machine could become intelligent. The
notion of a computer "intelligence" is typically related to its ability to perform tasks commonly
associated with intelligent beings. For example, one of the first successes of Al is the victory
of IBM’s Deep Blue computer against the chess world champion Garry Kasparov in 1997.
The term of machine learning (ML) refers to Al systems capable of extracting patterns from
raw data, and can be therefore considered as a subset of Al [29]. The performance of an
ML-based algorithm typically depends on the quality of the information given, also known as
the features. For example, whereas the height, age, or weight of a medical patient are numbers
that represent relevant information, the pixel values of a scan are more difficult to interpret.
A subset of ML algorithms therefore focuses on learning useful representations from raw input
data. Among other solutions, deep learning (DL) systems use a suite of simple mathematical
functions to learn as many intermediate representations of the input data. These simple
functions are usually referred to as layers, and contain parameters that needs to be optimized.
The relation between DL, ML, and Al is illustrated in Fig. 2.7.

The concept of gradient descent

The vast majority of DL-based systems use gradient-based algorithms to optimize the
parameters of every layer. Such optimization problems involve a loss function that needs to
be minimized, and that is related to the performance of the system. Let us define a simple
loss function

l=Lx)=z2*, z€R (2.38)
that needs to be minimized, i.e. we want to find the optimal x* such that z* = argmin L(z).

To that aim, we often use the derivative function, which gives the slope of the function L(z)

17
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Figure 2.8: A visual representation of a gradient descent.

at any point z. The derivative of L(z) = %1‘2 is simply given by

L'(z) =x. (2.39)

L(z) and L'(z) are both represented in Fig. 2.8, where one can see that L(z) is decreasing
for negative values of =, and therefore the associated derivatives are negative. By opposition,
L(z) is increasing for positive values of z, and therefore the derivatives are positive.

It is clear that one should update x in the direction opposite to the derivative in order to
minimize L(x). From this observation, the following optimization step can be derived

20D — 20 _pp/ (x(i)) (2.40)

where the superscript (i) denote the i*" iteration of the algorithm and 7 is a hyperparameter
that defines the size of the optimization step, also known as the learning rate. For the first
iteration, z(©) is usually chosen randomly. To better grasp the intuition behind the algorithm,
let us perform some iteration steps, starting with 20 = —4 and using n = % These steps are
illustrated in Fig. 2.8, where (9 is represented by a red circle.

0. We begin with 2(0 = —4.

1. At the first iteration, we start by computing L’ (33(0)) = L'(—4) = —4. Then, one

optimization step can be performed: () = z(0) — %L’ (x(o)) =—4+ % X 4 =2.

18
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Figure 2.9: A DL system with J layers.

2. At the second iteration, we have z(1) = 2, I/(2) = 2, and we can compute z(2) =
zM — %L’ (:p(l)) =2-3=-1.

3. At the third iteration, 2 = —1,1/(~1) = ~1, and 2® = 2 — 31/ (2®@) = 0.5.

Through these three iterations, L(x) evolved from L (:U(O)> =8to L (x(3)> = 0.125, thus
becoming closer to the minimum value L (z*) = 0 attainable with z* = 0. Please note that the
value n = % is only used here to visualize the different optimization steps, as practical values
are usually in the range [10~°,1072]. Finally, the derivative L'(z), also denoted by 4, can be
extended to a gradient if multiple parameters are optimized. Such gradient is denoted by

ol a1’
Vil = | —,- -+, — 2.41
d= g ] (2.41)
and is a vector containing the partial derivative of [ with respect to (w.r.t.) the K parameters
to be optimized [z1, - - - ,xK]T = x. The algorithm performing (2.40), where x is updated in
the direction opposite to the gradient, is therefore known as a gradient descent algorithm.

Gradient backpropagation

As defined previously, DL systems use a suite of simple mathematical functions, referred to
as layers, to learn different representations of the input data. The first layer, to which the
input data is fed, is the input layer, and the last layer, which outputs the estimated quantities,
is the output layer. In between them, "deep" systems typically use multiple hidden layers. All
these layers have trainable parameters that needs to be optimized so that the DL system can
perform the desired task. Fig. 2.9 gives a visual representation of a DL system with J layers,
each layer implementing a function f () (-) with trainable parameters 6.

For example, let us consider a DL system that learns to predict the time of flight ¢ of a
projectile thrown with an initial velocity v, and angle of launch «, and being thrown at a
height h from the ground. For simplicity, the system is only composed of one input layer
Y= fﬁ(&)(x) and one output layer z = f(gf) (y), where 81 = [01,1,01 2, 9173]1— € R? and #y € R are
the parameters that needs to be optimized. The system input is denoted by x = [v, a, h]T € R3,
and y € R, z € R are the output of the first and second layers, respectively. The loss function
calculates an error between the estimated time z and the true time of flight ¢ and is defined

by L(z,t). Please note that we now aim at minimizing L(z,t) w.r.t. the parameters 6, and 65,
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in comparison with the minimization illustrated in Fig. 2.8 that was carried out w.r.t. . The

time of flight estimated by the NN is given by

2= 132 ) = 13 (£, () (2.42)
and the associated loss is
1
l=L(zt)=L (féf) (fe(?(x)) ; 2mv2) : (2.43)

We focus here on minimizing L(z,t) w.r.t. the parameter of the input layer 6; ;, as the
minimization w.r.t. other parameters would be similar. To apply the gradient descent algorithm
on 01 1, the chain rule of derivation is a useful tool:

ol _ﬂ 0z _g% y
0611 0z 0011 0z 0y 0011

(2.44)

From here, it can be seen that to compute the derivative of the loss w.r.t. a parameter in
the first layer, gradients on the loss function and on the second layer needs to be computed
as well. In the following, we show that it is preferable to start by computing the gradient
of the loss function %, then of the last layer %, and finally of the first layer aéﬂ' This
Y 1,1
process, consisting in computing gradient from the loss function to the desired layer, is known

as gradient backpropagation.

Performing backpropagation through a neural network

The core elements of NNs are neurons, each neuron j performing (Fig. 2.10)

K
0j = p(nj) = ¢ (Z 0 kijx + bj> (2.45)
k=1

where 7 € R is the k™™ input to the neuron (out of K), 0;j € R is the unique neuron output,
©(+) is an activation function, n; is the neuron output prior to the activation function, 6, is
the trainable weight corresponding to the k*® input of the j* neuron, and b; is a trainable
bias. In a neuron, the trainable parameters refer to the set comprising all the trainable weights
and biases. For a neuron in the input layer, the vector i; = [ij1,--- ,1;, K]T corresponds to the
input vector x, whereas o; = z for a neuron in the output layer (assuming a single output for
simplicity). Without activation function, every neuron would perform a linear transformation,
and an NN would simply be a composition of linear transformations, resulting in one large
linear transformation. The aim of the activation function is to add non-linearities to the NN
processing, and therefore to enable the handling of tasks that are more complex than linear
regression problems.

Let us consider an NN with one input and one output layer, comprising one neuron each

without bias (b; = by = 0). The first layer takes an input vector of dimension three x € R3
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Figure 2.10: Representation of an artificial neuron.

and outputs a scalar y, while both the input y and the output z of the second layer are
scalars. This NN can be expressed similarly to (2.42), with the first and second neurons being
respectively implemented by féi) and fg(f):

2= 12 )
= 152 (16 () (2.46)

)

In this example, the activation function is chosen to be the sigmoid function, defined as:

1
R 2.47
o) = Trowra (247
for which the derivative is
do(a
) _ (@)1 - ola)) (2.48)
a
Finally, the loss in (2.43) is chosen to be the half of the squared error:
1 2
l=L(z,t) = 5(2 —t) (2.49)
for which the derivative w.r.t. z is
ol
— =z —1t. 2.50
5, = * (2.50)

First, let us compute the derivative of [ w.r.t. to the parameter of the output layer 0s:

0z 0l 9z Ol 0z Ony
90, ~ 9290, 92 9y 00y (2.51)

Each element of the right-hand side equation can be easily computed:

. % = z —t as per (2.50).
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22 = 92lm) — p(ng)(1 — p(na)) = 2(1 - 2).

Ong __ O0bay __
90, — 90 Y

Substituting each element in (2.51), we obtain

0z

pTR =(z—1t)z(1 — 2)y = by (2.52)
with
ol 0z

We can now compute the derivative of | w.r.t. the parameter of the first layer 01 1:

ol 0l 0z Ony Jy Ony

= — — 2.54
89171 0z 8712 8y anl 891,1 ( )
e The first two elements have been computed above: %68—;2 =0
o 00
. Oma O g,
0 0
o gL= ) —y(1—y)
gy = agtan
which leads to
ol
= d202y(1 — y)z1 = 171 (2.55)
0011
with
01 = b26by(1 —y). (2.56)

As one can see, the derivative needs to be computed starting from the last layer. For an NN
with J layers, the backpropagation algorithm successively computes §7,05_1,---,0d1. Using
the notation of (2.45), i.e., respectively denoting by o; and 4, the output and inputs of a
neuron j and 6¢;; the parameter corresponding to the k™ input of this same neuron, the
backpropagation to any layer j is given by:

ol (0j —t)o;(1 —05) if j is an output neuron,
—— =i 10;, with §; = 2.57
00, 1 Gk J { (Z%zl Qm,jém) 0j(1 —o0j) otherwise ( )
where M denotes the number of neurons in the (j 4+ 1) layer, and the summation accounts
for the fact that each layer can have multiple neurons, which was not considered in the

example above for clarity. Please note that the expression (2.57) is only valid for an NN that
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Figure 2.11: Representation of a neural network.

does not have any biases, uses logistic activation functions, and is evaluated using the loss

L(z,t) = 3(z — t).

One of the most used type of NNs is the fully connected neural network (FCNN). In such
NNs, each layer is dense, i.e., composed of neurons for which the inputs are the outputs of
all the neurons from the preceding layer. A representation of an FCNN with 4 dense layers
respectively containing three, four, four, and one neuron is presented in Fig. 2.11. Note that
the NN output dimension corresponds to the number of neuron in the output layer, and can
be greater than one.

The stochastic gradient descent algorithm

To train an NN such as the one defined in (2.46), a dataset comprising features and labels is
needed. Let us denote by Dg the size of this dataset, which typically contains thousands or
millions of such samples. In the example of a system that learns to predict the time of flight
of a projectile, the features are vectors x* = [U[S}, alsl, h[‘ﬂT ,s €{1,---,Dg} and the labels
are the associated measured time of flights thsl s e {1,--+,Dg}. If we denote by 0 the set
containing all the trainable parameters and biases of the NN, a gradient descent iteration on
the dataset is

Dgs

plitl) — g(i) _ ' Z VoL(z!, ¢ (2.58)
DS s=1

where z¥l is the output of the NN corresponding to the input x!*!, and therefore depends on
the parameters 8. However, such iteration would be of prohibitive complexity due to the large
amount of samples in the dataset. The stochastic gradient descent (SGD) algorithm therefore
randomly select batches of Bg samples from the dataset, and at each iteration performs a
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gradient descent on a single batch only:
00D — 9 — LS g2l 1), (2.59)
BS s=1

After each iteration, another random batch of samples is selected. The algorithm can be
stopped by multiple factors, including when the loss reaches a given threshold or after a fixed
number of iterations have been performed. Multiple enhancements of the SGD algorithm have
been proposed, an example of which being the Adam optimizer [30] which sets individual
learning rates for each parameter and computes a moving average of the gradient magnitude.
A standard SGD algorithm that is stopped after I iteration is presented in algorithm 1.

Algorithm 1: A standard SGD algorithm

Initialize 6(*) randomly

fori=0,---,I—1do
>Select a random batch of Bg sample from the dataset
>Compute one NN inference to obtain zI¥, s € {1,---,Bg}
pEvaluate the losses L(z[*,t1¥), s € {1,--- , Bg}
>Perform one gradient descent iteration on the batch:
gli+1) — g(i) _ o S Bs Vo Lzl tls))

end

2.2.2 Layers and Activation Functions

To simplify the notations in section, we recall that the vector m, and scalar m, formed by
slicing the matrix M along its first and second dimensions can also be denoted by [M], and

[M],p, respectively.

Dense layer

A dense layer, as presented previously, is composed of K neurons for which the inputs are
the outputs of all J neurons from the preceding layer. If we respectively denote by x € R’ and
y € R¥ its input and output vectors of dimension J and K, a dense layer can be expressed by

y = f(x) = ¢ (Ox+Db) (2.60)

where b € RX and ® € R¥*7 and are respectively the vector of trainable biases and the

matrix of trainable weights, and ¢(-) is the activation function. One can see that each output

]{:th

Y = @ ([@]g X+ bk) corresponds to the processing done by the neuron in the layer.
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2.2 Deep Learning for the Physical Layer

Convolutional layer

While dense layers are useful to process one-dimensional data, two- or three-dimensional
inputs are usually processed by convolutional layers. Let us denote by X € RV*H*C the
3D input of a convolutional layer. This could correspond to an image, where V and H are
respectively the vertical and horizontal dimensions of the image, and the last dimension C' = 3
corresponds to the red, green, and blue channels. Such convolutional layers have trainable
kernels K € REvKuxC with which the input is convoluted. (Ky, Kp) is referred to as the
kernel size, and for simplicity let us assume that Ky and Ky are odd, i.e., Ky = 2K{, + 1
and Ky = 2K} + 1. The output of the convolution at any position (z,y) is given by

Ky—-1Kyg—-1C-1

[COHV(XvK)]Ly: Z Z Z[K]U,h,c[X]x—K(/-‘rv,y—K’H-i-h,C' (2'61)
v=0 h=0 c=0

For positions z (y) lower than K{, (KJ) or greater than V — K{, (H — K};), the indexes
z — K{, +v (y — K}y + h) are outside the dimension of X. This problem can be dealt with by
assuming that [X],_ Kl 4v,y—Kly+he = 0 at these indexes, which corresponds to a convolution
with zero-padding. Multiple kernels are usually defined for a given convolutional layer. Let us
denote by F' the number of kernels, also known as number of filters, and by Ky the f kernel,
with f € {0,---,F — 1}. The convolution with each filter defines a new output layer f, such
as the convolution can be written as

Ky—-1Kg—-1C-1

[COHV(X’K)]x,yyf: Z Z Z[Kf]v,h,C[X]:chK{/+v,y7K}{+h,c- (2.62)
v=0 h=0 c=0

Such a convolution is depicted in Fig. 2.12, where the input has C' = 3 channels of dimension
10 x 10 (possibly corresponding to the RGB values of an image), the kernels have dimension
5 x 5x 3, and the first output layer (out of F' = 6) is represented. To obtain the final outputs of

the convolutional layer, biases by € R are added for each convolution layer, and an activation

function is applied:
(Yley,r = ¢ ([conv(X, K)]y, 5 + br) (2.63)

val KHfl -1
= Z Z Z [Kf]’U,hyc[X]:c—K(/—i-v,y—K’H—i-h,c + bf (264)

v=0 h=0 c=0

with Y € RV*H*F being the output matrix.

The receptive field of an NN is defined as the dimension of the set of inputs that affects a
single output. To increase the receptive field of a CNN; it is common to use dilated convolutions,

in which the kernels are spread on the inputs:

Ky—-1Kyg—-1C-1

[dilated convp (X, K)layr= >, Y, Z[Kf]v,h,c[X]x—DK(,+Dv,y—DK}{+Dh,c (2.65)
v=0 h=0 c=0
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Figure 2.12: A convolution producing the first output layer (out of 6) at position (z,y) = (3, 3).

[ |
Dilated kernel
Input Convolution

Figure 2.13: A dilated convolution at position (z,y) = (5,5), where C =1, F =1, D = 2.

where D is the dilation parameter. A dilated convolution with D = 2 is represented in Fig. 2.13.

Separable convolutional layer

A separable convolutional layer is composed of a depthwise convolution followed by a
pointwise convolution. In depthwise convolutions, each kernel Kj(fd) € REv>Kn hag only two
dimensions, and the number of kernels is the same as the number of input channels, i.e.,
F = C. Each kernel therefore acts separately on each input channel, resulting in

Ky—1Ky—1
Ygf’l'é)lyc = Z [Kgd)]vyh[X]x—K(/—i—v,y—K’H+h,c + b,(;d) (266)
v=0 h=0
where Yéf‘;,c € RV*HXC ig the output matrix and b(?) € R® is the vector of trainable biases.

Then, the pointwise convolution uses F' kernels Kgcp) e RIx1xC.

resulting in an output of dimension of V' x H x F. Finally, the output of the separable

convolution is given by

Y= (Y<P>) . (2.68)
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2.2 Deep Learning for the Physical Layer

It has been shown that performing a separable convolution instead of a traditional convolution
drastically reduces the number of computations and of trainable parameters while maintaining
a similar level of performance [31].

Batch normalization layer

During training, the distribution of the outputs corresponding to each layer evolves as the
trainable parameters are optimized. Therefore, each hidden layer needs to constantly readjust
its parameters to follow the changes in its input distribution. This problem is amplified on
deep NNs, as a change in the output distribution of the first layer can have a significant
effect on the input distribution of the last layers. To tackle this problem, batch normalization
layers normalize their inputs so that the corresponding distributions have optimized means
and variances. Let us denote by xI*l € R/, s € {1,---,Bg} the input vectors of a batch
normalization layer, where Bg is the batch size. The mean and variance of each element x;
can be estimated on the batch:

1s [s] 2 1 & [s] 2
5 2 _ Ay
pj = Bs ;:1 z;", and o; Be ;:1 (:E] ,u]) . (2.69)

FEach dimension is then normalized separately to have zero-mean and unit variance:

RO et
,/0]2- +e€

where € is a small constant that is added to ensure numerical stability. The means and

(2.70)

variances of each dimension j are then typically controlled by trainable parameters v; and (;,

respectively:
=) 5 e

This reparametrization of the input distribution enables faster training and improves both the
performance and the generalization properties of the NN [29].

Residual connections

NNs composed of many layers can be affected by the vanishing gradient problem, where
the gradients that are backpropagated to the first layers become increasingly small, thus
restraining the optimization of their parameters. Residual connections alleviate this effect by
allowing the gradients to skip one or more layers. A simple implementation consists in adding
the input of a (suite of) layer(s) to its output, as depicted in Fig. 2.14. NNs that contain

residual connections are referred to residual networks, or resnets.
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Figure 2.14: A residual connection.
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Figure 2.15: ReLU and ELU activation functions

The RelLU activation function

One of the most used activation function is the rectified linear unit (ReLU), depicted in
Fig. 2.15:

0 ifxz<0

= 0). 2.72
x ifxz>0 max(z, 0) ( )

y = ReLU(z) = {
The main advantage of the ReLLU is its simplicity, which allows for very efficient implementations.
But NNs using this activation function might face the dying ReLLU problem, where some
neurons cannot output anything other than 0. Once a neuron is "dead", the gradient of its

trainable parameters stays null as %ZU(LE) = 0 when z < 0, thus preventing further training.

The ELU activation function

To prevent the "dead" neuron problem, multiple variants of the ReLLU have been proposed.
One of them is the exponential linear unit (ELU) (Fig. 2.15), which mimics the ReLU function

for positive z, but maintains a non-constant output for z < 0:

exp(x)—1 ifz<0

. 2.73
T ifz>0 ( )

y =ELU(z) = {

ELU has been shown to outperform many other ReLU variants [32], but the use of the

exponential function leads to longer computation times.
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Figure 2.16: A communication system modeled as an autoencoder. The dark gray elements
contain trainable parameters.

2.2.3 Optimizing Communication Systems through SGD
Modeling a communication system as an autoencoder

An autoencoder is a type of NN that aims to reconstruct its input at its output. Such NNs
have one "bottleneck" layer of reduced dimensionality compared to its inputs and outputs,
which means that an efficient, lower-dimensionality representation of the input data needs
to be learned prior to this layer to enable a correct data reconstruction at the output. The
first half of the NN is therefore usually referred to the encoder part, while the second half
is the decoder part. A communication system can be seen as an autoencoder, as recovering
the transmitted bits involve implementing a bit mapping at the transmitter (encoder) and
demapping at the receiver (decoder) that is robust the channel distortions (bottleneck layer).
A simple autoencoder-based communication system with simple AWGN channel is detailed in
the following (Fig. 2.16).

At the transmitter, the first layer is a one-hot layer. This layer converts the vector of Q) bits
b € {0, 1}(°2 into a vector of dimension 2¢ containing only zeros except a one at the position
corresponding to the decimal representation of b. For example, if @ = 2, [0, O]T is converted
to [1,0,0,0]T, [0,1]T to [0,1,0,0]T, [1,0]T to [0,0,1,0]T, and [1,1]T is converted to [0,0,0,1]T.
The next layer is a normalized embedding layer, which implements

V29

1@ = gy,

®a = Wa (2.74)

where ® € R2%2? is a matrix of trainable coefficients, and W € R2%2? ig normalized such
that its column vectors have average energy of one. Finally, the R2C layers converts 2 real
numbers into a single complex number. The combination of the one-hot encoding, normalized
embedding and R2C layers outputs symbol z that have unit average energy, i.e., E [||z]|3] = 1.

The AWGN channel is implemented as a channel layer that performs
y=x+n (2.75)

where n ~ CN(0,02) is a complex AWGN with variance 0. Such channel is differentiable
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2 Background on the Physical Layer and Deep Learning

and therefore allows the gradient to be backpropagated from the receiver to the transmitter.

The first receiver layer is a C2R layer, which converts a complex number into two real
numbers. Then, the demapping is performed by multiple dense layers with trainable parameters
denoted by ®, the last layer being of dimension 2% and using the sigmoid activation function
as defined in (2.47). The sigmoid has two advantages. First, its outputs are in the range [0, 1],
and thus can be interpreted as a probability vector p = [po, - -, ﬁQ_l]T, where each entry p,
corresponds to an estimated probability that a ¢! bit equals one given y:

~

by =D (by = 1]y). (2.76)

Second, if we denote by logits the output of the last layers before the sigmoid activation

function, we have

ﬁ(bq = Hy) =

P(by=1
<= logits = In M . (2.77)
P (b

1 + exp (—logits) g =0Jy)

These logits can thus be used as LLRs by a channel decoder, as illustrated in fig. 2.6.

For a perfect transmission, the vector of estimated probabilities p matches the transmitted
bit vector b, i.e., p = b, and therefore the communication system can truly be seen as an
autoencoder. Finally, for each bit ¢, the threshold layer outputs

(2.78)

771 0 otherwise

; { 1 if py > 0.5

From NN-based systems to DL-enhanced systems

Estimating the bits that were transmitted is a binary classification problem, as for each bit
the label is either 0 or 1. The loss function associated with such problem is the total binary

cross-entropy, defined as

Q-1

l=Ey [L(b,p)] = Ey |- Z by - 108y (ﬁq) + (1 - bq) ~logy (1 — ﬁq) (2.79)
q=0

where the expected value reflects the fact that the metric should be independent of the noise
realization n, and can be estimated through Monte-Carlo sampling with batches of size Bgs:

1 3Bs

752 (b[S] A[S) (2.80)

Training such NN-based communication systems does not require any dataset, as two identical
infinite sequences of bits can be obtained at the transmitter and at the receiver by initializing

a random number generator with the same seed. These two sequences can be grouped into
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Figure 2.17: A learned constellation Figure 2.18: Constellation correspond-
with @ = 6. ing to a 64-QAM.
batches of bit vectors b, enabling an SGD-based optimization:
N
9“*”::0“f—2?—§:VgL(bM,ﬁM) (2.81)
S s=1

where 6 denotes the set of trainable parameters of the entire NN, i.e., 8 = {@,®}. The
constellation learned for a system trained with @ = 6 is depicted in Fig. 2.17 and can be
compared to a 64-QAM modulation shown in Fig. 2.18. Performance evaluations will be
carried out in Chapters 3, 4, and 5 for different DL-enhanced communication systems.

The differentiability of every layer in the communication system is key to achieve SGD-based
optimization of every trainable parameters !. For example the loss function can not be applied
to the estimated bits f), as the threshold layer (2.78) is not differentiable and therefore prevent
the gradient to be backpropagated. Moreover, the trainable communication system presented
in Fig. 2.16 is mostly composed of non-trainable layers, and the normalized embedding layer
does not use any neurons. That explains why such systems are usually referred to as ML or
DL-enhanced communication systems, instead of NN-based systems. Overall, this paradigm
shift is increasingly visible, as the difference between training NNs to perform communication
tasks and performing SGD on trainable communication systems has never been so thin.

An information theory perspective

Let us denote by b, the random variable associated with the bit ¢. To simplify the notations,
we denote by P(bg,y) and f’(bq, y) the true and estimated probability that the ¢ bit was

transmitted, i.e.

P(b,=1ly) ifby=1

2.82
P(6,=0ly) ifby=0 (282)

P(bg,y) = {

"When no channel model is available, resulting in a non-differentiable channel layer, one can leverage deep
reinforcement learning techniques to train the transmitter and the receiver in an alternating fashion [15],
[33] or use generative adversarial networks to learn a channel model from available data [34], [35].
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and

P(6,=1ly) ifb, =1

~ . 2.83
P(6,=0ly) ifb,=0 (2.83)

ﬂ%MZ{

The cross-entropy (CE) defined in (2.79) can be seen as an approximation through Monte
Carlo sampling of the true CE, defined as

= Z Ey [H (P(bly), P(byly))] (2.84)
.y / Ply) Y Plbgly)oss (Plbly)) dy (2.85)
q=0"Y be€{0,1}
o o P(byly) P(y)
_ j{:jg:h/n y)log, (13(b Py ) (2.86)
“ P(byly) P(y)
- _ qzo ;/yP 9> Y)logy (P(bg)) dy — 2 %:/ y)log, <P(y)P(bq)> dy (2.87)
2 Hb)
&= “ P(byly) P(y) ﬁ(bq\m)
= 2 ) - %%LP“‘I’W()g?( Ply)P(by) Pligly) ) ™ (2:58)
! P(bqu) ! ﬁ(bq‘y)
=Q - 2 %: yP(bqw)logQ <P<y)P(bq)> dy — 2 %:/y (y)P(bgly)log, (P(bqy)> dy
o 1(bgw)
(2.89)
“ = P(b ry>)
=0 — bq, q o 1 .
Q ;)H y) + qZO /y P<y>§P(b 1y)log, ( ) (2.90)
& By [Dxcr (P(bly) | P(bly) |
Q-1
- (Z I(bgy) Z E, [Dkr, (P(bgly)|[ P (b, rw)}) (2.91)
q=0

C

The first term of C' is mutual information between all b, and y, and corresponds to the
maximum information rate that can be achieved assuming an ideal bit-metric decoding (BMD)
receiver [36] This term both depends on the transmitter and on the channel model. The
second term of C' is the sum of the expected values of the KL-divergence between the true
posterior probability P(by|y) and the one estimated by the proposed receiver, and corresponds
to a rate loss due to a suboptimal receiver. It can be seen as a measure of distance between
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the probabilities that would be computed by an ideal receiver and the ones estimated by our
NN-based implementation. Minimizing [ therefore jointly optimizes the transmitter and the
receiver to both maximize the information rate of the transmission and refine the estimated
bit probabilities. Finally, C' is an achievable rate assuming a mismatched BMD receiver [16]
meaning that improvements in C' directly translate to an improved BER performance.
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HyperMIMO: a Deep
HyperNetwork-Based
MIMO Detector

3.1 Motivation

As introduced in Section 1.2, MU-MIMO is seen as a key technology to unlock the gains
envisioned for beyond-5G systems. But optimal detection in such MIMO systems is known to
be NP-hard [37], and less complex approaches usually suffer from unsatisfying performance on
correlated channels or become impractical with large number of receive antennas. Examples of
such approaches include the LMMSE detector [38], the approximate message passing (AMP)
algorithm [39], and its extension to correlated channels [40]. Recently, advances in MIMO
detection have been made using DL to improve the equalization block, detailed in Section 2.1,
and which corresponds to a block-based optimization as depicted in Fig. 1.2a. One technique
consists in using an NN to select a traditional detection algorithm from a predefined set [41].
According to available CSI, the algorithm with lowest complexity that enables a block error
rate (BLER) lower than a predefined threshold is chosen. Another technique is to design an
NN that directly performs the detection. One example is DetNet [42], which can be viewed
as an unfolded recurrent neural network (RNN) where each iteration is made of three dense
layers. Although it achieves encouraging results on Rayleigh channels, DetNet’s performance
on correlated channels is not satisfactory and it suffers from a prohibitive complexity. In [43],
Mohammad et al. partially addressed this drawback by weights pruning. A third promising
approach is known as deep unfolding, and consists in infusing existing iterative algorithms

with DL components [44]. One possibility is to add trainable parameters to such algorithms
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parameters
H Hypernetwork
y 4)[ NN-based detector ]—) X

Figure 3.1: HyperMIMO: A hypernetwork generates the parameters of an NN-based detector.

and interpret the whole structure as an NN [45], [46], but most approaches still suffer from a
performance drop on correlated channels. This was mitigated by the MMNet detector [47],
which effectively achieves state-of-the-art performance on such channels. However, the need of
retraining for each channel realization makes its practical implementation challenging.

In the following, we alleviate this issue using the emerging idea of hypernetworks [48], [49].
Applied to our setup, it consists in having a secondary NN, referred to as the hypernetwork, that
generates for a given channel matrix an optimized set of weights for an NN-based detector. This
scheme, which we referred to as HyperMIMO in our introductory paper [50], is illustrated in
Fig. 3.1. Used with the MMNet detector from [47], HyperMIMO replaces the training procedure
that would be required for each channel realization by a single inference of the hypernetwork.
We have evaluated the proposed approach using simulations on spatially correlated channels.
Our results show that HyperMIMO achieves performance close to that of MMNet trained for
each channel realization, and outperforms the recently proposed OAMPNet [46]. They also
reveal that HyperMIMO is robust to user mobility up to a certain point, which is encouraging
for practical use. However, HyperMIMO still suffers from performance drops when evaluated
with channels that vary significantly from the ones it has been trained with, and is only able
to handle a fixed number of users. More recent works [51], [52] proposed to address these
shortcomings and will be discussed in the closing section of this chapter.

Related literature

Although most of the published literature regarding NN-based block optimization focuses
exclusively on the equalization step [45]-[47], [50]-[52], another line of research targets improved
channel estimation. In [53], an NN architecture derived from a conventional LMMSE estimator
is able to provide estimation gains on a wide range of channels with reduced complexity. Two
CNN-based channel estimators are proposed in [54] for Massive MIMO mmWave transmissions,
and either target lower computational complexity or reduced pilot overhead. Pilot overhead
reduction is also studied in [55], where the pilot insertion and channel estimation blocks
are jointly optimized to reduce the number of pilots required to achieve satisfactory channel
estimation. However, these approaches require ground-truth of the channel realizations during
training, which can only be approximated with costly measurement campaigns in practice.
Finally, it has been proposed to improve the estimation of the bit probabilities by replacing the
demapper with an NN, but this solution has only been studied for SISO setups [16], [56]-[58].
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3.2 Framework

3.2.1 Problem Formulation and LMMSE Baseline

We consider a conventional MIMO uplink channel as presented in (2.30). In this section, a
single RE (m,n) is considered, such that the channel transfer function can be simplified to

y=Hx-+n (3.1)

where x € C¥ is the vector of transmitted symbols, y € CF is the vector of received distorted
symbols, H € CF*K is the channel matrix, and n ~ CN(0,0°Iy) is the independent and

2 in each complex dimension.

identically distributed (i.i.d.) complex Gaussian noise with power o
It is assumed that H and o are perfectly known to the receiver. In the following, the problem
of hard symbol detection is considered, in which the estimated symbol X must belong to the

used constellation, i.e., x € CX.

The optimal maximum likelihood detector, as defined in (2.31), is known to be too complex
for any practical implementation [37]. On the other hand, the zero-forcing equalizer (2.33) is
known to perform poorly on ill-conditionned channels. To tackle both issues, one well-known
scheme is the LMMSE estimator which aims to minimize the mean squared error (MSE)

x=arg | min o Fn (11— x'|13] (3.2)

by restricting to linear estimators, i.e., by left-multiplying y with a matrix W € CK*E A
derivation can be obtained by finding the matrix W that nulls the gradient

VwExn [Hx — Wyug} —Exn [-2xy” i 2Wyy“] ) (3.3)
— W =Ex, [xyH} (Ex,n {yyHD_1 (3.4)
= W =H" (HH" + U2IK)71 . (3.5)

This allows for a closed-form expression of the solution to (3.2)
% = (H'H + o%1x)'Hy. (3.6)

Because the transmitted symbols are known to belong to the finite alphabet C, the closest

symbol is typically selected for each user:
f:k:argmigHa%k—xH%, Vke{l,-- K} (3.7)
HAS

Although sub-optimal, this approach has the benefit of being computationally tractable.
Multiple schemes have been proposed to achieve a better performance-complexity trade-off

among which DL-based algorithms form a particularly promising lead.
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3.2.2 Deep Learning-based MIMO Detectors

As discussed previously, an interesting approach to design enhanced detectors is to add
trainable parameters to existing schemes, and is often referred to as deep unfolding [44].
Traditional iterative algorithms are particularly suitable since they can be viewed as NN once
unfolded. Typically, each iteration aims to further reduce the MSE and comprises a linear
step followed by a non-linear denoising step. The estimate x(+1) at the (i 4+ 1) iteration is

K0 = 0 4 AD (y ~ HEO) 4 )

£+ — ) (,41’)7 T(z‘)) (3:8)
where the superscript (i) is used to refer to the i*® iteration and %(©) is set to 0. 7(Y denotes
the estimated variance of the components of the noise vector k(¥ — x(? at the input of the
denoiser, which is assumed to be i.i.d.. Iterative algorithms differ by their choices of matrices
A®) ¢ CE*L bias vectors ¢ € CK, and denoising functions x(V(:). A limitation of most
detection schemes is their poor performance on correlated channels. OAMP [40] mitigates
this issue by constraining both the linear step and the denoiser. OAMPNet [46] improves the
performance of OAMP by adding two trainable parameters per iteration, which respectively
scales the matrix A(®) and the channel noise variance o2. MMNet [47] goes one step further by
making all matrices A(® trainable and by relaxing the constraint on &9 —x( being identically
distributed. Although MMNet achieves state-of-the-art performance on spatially-correlated
channels, it needs to be re-trained for each channel matrix, which makes it unpractical.

3.2.3 Hypernetworks

Hypernetworks were introduced in [59] as NNs that generate the parameters of other NNs.
The concept was first used in [48] in the context of image recognition. The goal was to predict
the parameters of an NN given a new sample so that it could recognize other objects of the
same class without the need for training. This same idea was also leveraged to generate images
of talking heads [49]. In this later work, a picture of a person is fed to a hypernetwork that
computes the weights of a second NN. This second NN then generates realistic images of the
same person with different facial expressions. Motivated by these achievements, we propose to
alleviate the need of MMNet to be retrained for each channel realization using hypernetworks.
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3.3 HyperMIMO

The key idea of our approach is to replace the training process required by MMNet for
each channel realization by a single inference through a trained hypernetwork. We first
present a variation of MMNet which reduces its number of parameters, and then introduce
the architecture of the hypernetwork, where a relaxed form of weight sharing is used to
decrease its output dimension. Both reducing the number of parameters of MMNet and using
weight sharing in the hypernetwork are crucial to obtain a system of reasonable complexity.
The combination of the hypernetwork together with MMNet form the HyperMIMO system,
schematically shown in Fig. 3.1.

3.3.1 MMNet with Less Parameters

To reduce the number of parameters of MMNet, we perform the QR-decomposition of the
channel matrix, H = QR, where Q is an L x L orthogonal matrix and R an L x K upper

R
triangular matrix. It is assumed that L > K, and therefore R = [ OA] where R is of size

K x K, and Q = [QaQp] where Q4 has size L x K. We define y := Qaf'y and n := Q" n,
and rewrite (3.1) as
y = Rax +n. (3.9)

Note that fi ~ CA(0,02Ix). MMNet sets ¢ to 0 for all i and uses the same denoiser for all
iterations, which are defined by

£ =20 4 00 (5 - Rax)

R 2 (50, 7) (8.10)
where @ isa K x K complex matrix whose components need to be optimized for each channel
realization. The main benefit of leveraging the QR-decomposition is that the dimension of
the matrices O to be optimized is K x K instead of K x L, which is the dimension of A
in (3.8). This is significant since the number of active users K is typically much smaller than
the number of antennas L of the BS.

The noise at the input of the denoiser k(9 — x(® is assumed to be independent but not
identically distributed in MMNet. The vector of estimated variances at the i*! iteration is
denoted by 7V € RX and computed by

@ _ ¥ (HIK ~ORA|3
K Ral

Iy~ Rax |3~ Lo?| " + H@“NW) (3.11)

where [z]* = max(0,z), and %) € R® needs to be optimized for each channel realization.
Further details on the origin of this equation can be found in [40]. The denoising function in
MMNet is the same for all iterations, and is chosen to minimize the MSE Ey [ch([) - xH%}
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Figure 3.2: Detailed architecture of HyperMIMO

assuming the noise is independent and Gaussian distributed. This is achieved by applying

element-wisely to (k) 7))

X(Kv T) =

1 |k — x|?
Z x exp <— ) . (3.12)

k—x|?
> zec €XP (—7| — | ) zeC T

MMNet consists of I layers performing (3.10), and a hard decision as in (3.7) to predict the
final estimate X. One could also use %) to predict bit-wise LLRs.

3.3.2 HyperMIMO Architecture

Fig. 3.2 shows in details the architecture of HyperMIMO. As our variant of MMNet operates
on y, the hypernetwork is fed with Ra and the channel noise standard deviation o. Note
that because R is upper triangular, only K (K + 1)/2 non-zero elements need to be fed to
the hypernetwork. Moreover, using this matrix as input instead of H has been to found to
be critical to achieve high performance. As detailed previously, the number of parameters
that need to be optimized in MMNet was reduced by leveraging the QR-decomposition. To
further decrease the number of outputs of the hypernetwork, we adopt a relaxed form of weight
sharing inspired by [48]. Instead of computing the elements of each el ;= {1,...,1}, the
hypernetwork outputs a single matrix @ as well as I vectors 0" € RX. For each iteration 1,
0 is computed by

0 = @ (I + diag (61)) . (3.13)

The idea is that all matrices ©® differ by a per-column scaling different for each iteration.
We have experimentally observed that scaling of the rows leads to worse performance.
Because Rz is complex-valued, a C2R layer maps the complex elements of R to real ones,

by concatenating the real and imaginary parts of the complex scalar elements. To generate a
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complex-valued matrix @, a R2C layer does the reverse operation of C2R. The hypernetwork
also needs to compute the values of the I vectors ’I/J(i). Because the elements of these vectors
must be positive, an absolute-value activation function is used in the last layer.

HyperMIMO, which comprises the hypernetwork and MMNet, is trained by minimizing the
MSE between the transmitted and estimated symbols, denoted by % = %(1):

L£=Bxmn[|[% - x|3] (3.14)

Finally, the expected value can be approximated through Monte-Carlo sampling, by sending
batches of Bg samples:

2
, (3.15)

S §S: sl —
BS s=1

Note that this loss differs from the one of [47], which is S ExHn {H)Ac(i) - xH%} When
training HyperMIMO, the hypernetwork and MMNet form a single NN, such that the output
of the hypernetwork are the weights of MMNet. The only trainable parameters are there-
fore the ones of the hypernetwork. When performing gradient descent, their gradients are
backpropagated through the parameters of MMNet.
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3.4 Experiments

HyperMIMO was evaluated by simulations. This section starts by introducing the considered
spatially correlated channel model. Next, details on the simulation setting and training process
are provided. Finally, the obtained results are presented and discussed.

3.4.1 Channel Model

The local scattering model with spatial correlation presented in [26, Ch. 2.6] and illustrated
in Fig. 3.3 is considered. The BS is assumed to be equipped with a uniform linear array
of L antennas, located at the center of a 120°-cell sector in which K single-antenna users
are dropped with random nominal angles ¢, k € {1, -+, K}. Perfect power allocation is
assumed, leading to all users appearing to be at the same distance r from the BS and an
average gain of one. The BS is assumed to be elevated enough to have no scatterers in its near

field, such that the scattering is only located around the users. Given a user k, the multipath
2
>
For small enough o0, a valid approximation of the channel covariance matrix is C;, € CLxL

components reach the BS with normally distributed angles with mean ¢, and variance o

with components
02
[Ck] y = eQﬂjd(a—b) sin(gok)e—Tw(Qﬂ'd(a—b) cos(pr))? (316)
a,
where d is the antenna spacing measured in multiples of the wavelength. For a given user k, a
random channel vector hy ~ CN (0, Cy) is sampled by computing

1
hy = LyA7Lie (3.17)

where e is sampled from CA(0,11) and LyAxL# is the eigenvalue decomposition of Cy. The
signal-to-noise ratio (SNR) of the transmission is defined by

E |+ y 2
SNR = M - (3.18)

o2 o2

3.4.2 Simulation Setting

The number of antennas that equip the BS was set to L = 12, and the number of users to
K = 6. Quadrature phase-shift keying (QPSK) modulation was used. The standard deviation
of the multipath angle distribution o, was set to 10°, which results in highly correlated channel
matrices. The number of layers of MMNet in the HyperMIMO detector was set to I = 5. The
hypernetwork was made of 3 dense layers (see Fig. 3.2). The first layer had a number of units
matching the number of inputs, the second layer 75 units, and the last layer a number of units
matching the number of parameters of the detector. The first two dense layers used ELU

activation functions, and the last dense layer had no activation functions.
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Figure 3.3: Considered channel model. The BS has no scatters in its near field, and scattering
is only located near users.

10 + ) ) ) ) o‘ o
= 9 ° ) ° o0 —
2 8t ° o o ® ° |
g T+ o oo oo ° —
S 6 e e ° ° ° -
= 5+ e ®o 00 —
%« 4 - o o o0 o o |
= 3F ° ® eoo o
A 2 - ) o o o0 0 -

Lr | °e | ¢ ¢ ° L

|
—60 —40 —-20 O 20 40 60
o for k= {1,...,6} (degrees)

Figure 3.4: Ten randomly generated user drops

Our simulations revealed that training with randomly sampled user drops leads to suboptimal
results. Therefore, HyperMIMO was trained with fixed channel statistics, i.e., fixed user
positions. If this might seem unpromising, our results show that HyperMIMO is still robust
to user mobility (see Section 3.4.3). Moreover, our scheme only has 10x more parameters
than MMNet as proposed in [47], which allows it to be quickly re-trained in the background
when the channel statistics change significantly. Note that this is different from MMNet
that needs to be retrained every time the channel matrix changes, which is considerably
more computationally demanding. Moreover, it is possible that further investigations on the

hypernetwork architecture may alleviate this issue.

Given a user drop, HyperMIMO was trained by randomly sampling channel matrices H,
SNRs from the range [0,10]dB, and symbols from a QPSK constellation for each user. Training
was performed using the Adam [30] optimizer with a batch size of 500 and a learning rate

decaying from 1073 to 1074,
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Figure 3.5: symbol error rate (SER) achieved by different schemes

3.4.3 Simulation Results

All presented results were obtained by averaging over 10 randomly generated drops of 6 users,
shown in Fig. 3.4. Fig. 3.5 shows the SER achieved by HyperMIMO, LMMSE, OAMPNet
with 10 iteration, MMNet with 10 iterations and trained for each channel realization, and the
maximum likelihood detector. As expected, MMNet when trained for each channel realization
achieves a performance close to that of maximum likelihood. One can see that the performance
of OAMPNet are close to that of LMMSE on these highly correlated channels. HyperMIMO
achieves SER slightly worse than MMNet, but outperforms OAMPNet and LMMSE. More
precisely, to achieve a SER of 1072, HyperMIMO exhibits a loss of 0.65dB compared to
MMNet, but a gain of 1.85dB over OAMPNet and 2.85dB over LMMSE.

The robustness of HyperMIMO to user mobility was tested by evaluating the achieved SER
when users undergo angular mobility (Fig. 3.6a) or move in random 2D directions (Fig. 3.6b)
from the positions for which the system was trained. Fig. 3.6a was generated by moving
all users by a given angle, and evaluating HyperMIMO for these new users positions (and
therefore new channel spatial correlation matrices) without retraining. Note that averaging
was done over the two possible directions (clockwise or counterclockwise) for each user. One
can see that the SER achieved by HyperMIMO gracefully degrades as the angular displacement
increases, and never get worse than LMMSE nor OAMPNet.

Fig. 3.6b was generated by randomly moving the users in random 2D directions. Users
were located at an initial distance of r = 250m. The SER was computed by averaging over
100 randomly generated displacements. As in Fig. 3.6a, the SER achieved by HyperMIMO
gracefully degrades as the displacement distance increases. These results show that, despite
having being trained for a particular set of user positions, HyperMIMO remains relatively
robust to mobility.
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Figure 3.6: SER achieved by the compared approaches under mobility
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Figure 3.7: Performance comparison for different detectors, as can be found in [51]

3.5 New Perspectives and Concluding Thoughts

In order to enable performances that remain consistent across a wider set of channels, the
authors in [51] proposed a variation of our HyperMIMO architecture, referred to HyperMIMO
with learned regularizers, or HyperMIMO-LR. The key idea is to regularize the hypernetwork
outputs with a set of MMNet parameters optimized on a single channel realization. Let us
denote by Wy the set of MMNet parameters estimated by the hypernetwork for a given channel
H,, ie, W, = {@, {0(1),--- ,0(1)} , {1#(1), e ,1/)(1)” when the decomposition presented
in Section 3.3.1 is performed. Prior to the hypernetwork training, multiple standalone
MMNet detectors are trained on a set of S channels H = {Hj,--- ,Hg}, resulting in a set of
close-to-optimal parameters {W7,--- , W%} that entail good detection performance for their
corresponding channels. Then, the hypernetwork is trained to both minimize the MSE, as
in (3.14), and penalize the distance between parameters estimated for the set of channel H

and the close-to-optimal ones:

S
£=Exmn [[[&—x|3] + 83 W, - Wil (3.19)
s=1
The parameter 8 allows choosing a trade-off between optimizing for a given distribution of
channels and achieving high performance on a set of pre-specified channels. Moreover, the [y
norm is leveraged in the right-hand term of (3.19) to promote sparse differences between Wy
and W7 so that some of their entries coincide.

HyperMIMO-LR is evaluated on channels generated following a more realistic Jakes
model [60] with time sequences of lengh 4, but the number of user and receive antennas
were reduced to K = 2 and L = 4, respectively. The trade-off parameter was set to f = 1 and
the dataset H contained 561 channels. Simulation results, as reported in Fig. 3.7, indicate that
HyperMIMO-LG is able to provide gains compared to a standard HyperMIMO detector. One
can notice that the varying channels generated from the Jakes model pose significant difficulties
to all other DL-based methods, as the LMMSE detector slightly outperforms HyperMIMO,
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which itself outperforms DetNet trained with varying channels (DetNet VC), MMNet, and
DetNet trained with fixed channels (DetNet FC).

Although HyperMIMO-LG is reasonably close to the performance of the maximum likelihood
equalizer (ML in Fig. 3.7), the fact that the detector only handles a specific number of users
hinders its implementation on beyond-5G systems. To tackle this problem, a recurrent
equivariant MIMO (RE-MIMO) detector has been proposed in [52]. This detector capitalizes
on the recent advances in transformer networks [61] and recurrent inference networks [62]
to handle a variable number of users with a single NN. An additional advantage is that the
RE-MIMO detector is permutation invariant, which means that the ordering of signals received
from the users has no impact on the detection performance. RE-MIMO can also be seen as an
unfolded RNN, where each iterative unit consists of a module that computes the gradient of a
likelihood model P(y|x) and of an encoder and predictor modules that output an updated
hidden state and an estimation of the transmitted signal. Evaluations performed on correlated
channels with K = 16 users and L = 64 receive antennas show tangible performance gains
compared to the OAMPNet algorithm, indicating that RE-MIMO should be able to match
the performance of HyperMIMO-based algorithms. However, this performance and scalability
come at a complexity cost, since the attention layers used at every iteration of the unfolded
RNN each contains multiple large trainable matrices.

Overall, this chapter has introduced a body of work dealing with NN-based optimization of
the equalization block. More specifically, we proposed to leverage the idea of hypernetworks
to alleviate the need for retraining an MMNet detector for each channel realization, while still
achieving competitive performance. To reduce the complexity of the hypernetwork, MMNet
was modified to decrease its number of trainable parameters, and a form of weights sharing
was used. Simulations revealed that the resulting HyperMIMO architecture achieves near
state-of-the-art performance under highly correlated channels when trained and evaluated
with the same number of users and with fixed channel statistics. These weaknesses were
subsequently addressed in more recent work, with the HyperMIMO-LR, variant providing gains
on a wider variety of channels, and more complex schemes such as the RE-MIMO detector
being able to handle a varying number of users. However, while these NN-based detectors
represent promising improvements compared to traditional algorithms, their block-based
optimization still provides no guaranties on the overall receiver optimality. An additional
drawback is that all the presented NN-based detectors require perfect channel estimates at
training, which are usually not available in practice. For these reason, we focus in the next
chapter on transceiver-based optimization, albeit for SISO systems only.
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Learning OFDM
Waveforms with PAPR
and ACLR Constraints

4.1 Motivation

As discussed in Chapter 3, MU-MIMO is an efficient technique to improve the spectral
efficiency when the BS is equipped with multiple antennas. However, spatial multiplexing
cannot be exploited on SISO systems, and therefore other approaches must be considered.
One of them is the design of new waveforms that satisfy stronger requirements on the signal
characteristics. For example, a higher number of connected devices suggests that the available
spectrum should be more efficiently shared among users, challenging the need for guard bands.
Moreover, the power amplifier (PA) nonlinearities lead to the use of large power back-offs
that decrease its efficiency, and therefore the probability of high-amplitude signals should be
reduced. Among possible candidates, OFDM is already used in most modern communication
systems thanks to a very efficient hardware implementation and a single-tap equalization at
the receiver. However, conventional OFDM suffers from multiple drawbacks, including the
need for pilots, a high sensitivity to Doppler spread, and both a high PAPR and ACLR, which
might hinder its use in beyond-5G systems.

Future base stations and user equipments are expected to be equipped with dedicated DL
accelerators [63], which should be eventually be able to support fully NN-based transceivers.
In this chapter, we take advantage of such capabilities and review the learning-based approach
to OFDM waveform design that we proposed in [64]. More specifically, this approach is based
on a CNN transmitter that implements a high-dimension modulation scheme and a CNN-based
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receiver that computes LLRs on the transmitted bits. Both transceivers operate on top of
OFDM to benefit from its efficient hardware implementation and process OFDM symbols
instead of individual REs. We derive a training procedure which allows to both maximize an
achievable information rate and to offset OFDM drawbacks by defining specific optimization
constraints. The end-to-end system training is performed through SGD, and therefore the
achievable rate and the constraints need to be expressed as functions that can be evaluated
and differentiated during training.

In the following, we focus on designing OFDM-based waveforms that enable pilotless trans-
missions and satisfy PAPR and ACLR constraints. The end-to-end system is benchmarked
against a close to ideal implementation of a TR baseline, in which a number of subcarriers
are used to generate peak-reduction signals. Both systems are evaluated on a 3rd Gener-
ation Partnership Project (3GPP)-compliant channel model, and the baseline uses a pilot
configuration supported by the 5G new radio (NR) specifications. The end-to-end system, on
the contrary, does not use any pilots and learns a high-dimensional modulation that enables
accurate detection at the receiver. Evaluation results show that the learning-based system
allows meeting PAPR and ACLR targets and enables throughput gains ranging from 3% to
30% compared to a baseline with similar characteristics. To get insight into how the proposed
system reduces the PAPR and ACLR while maintaining high rates, we have carried out a
detailed study of the learned high-dimensional modulation scheme. We have found out that the
ACLR and PAPR reductions are achieved through a combination of spectral filtering, uneven
energy allocation across subcarriers, and positional adjustments of constellation symbols. To
the best of our knowledge, this method is the first DL-based approach that jointly maximizes
an information rate of OFDM transmissions and allows setting PAPR and ACLR targets.

Related literature

To counteract the drawbacks of OFDM-based waveforms, previous works suggested to filter
the analog signal, to modify the constellation used for modulation, or to inject custom signals
on reserved subcarriers. The first approach is known as iterative clipping and filtering, and
iterates between clipping in the time-domain and filtering in the frequency domain to constrain
the signal amplitude and possibly the spectral leakage [65]. The second scheme, named active
constellation extension, extends the outer symbols of a constellation to reduce the signal PAPR
at the cost of an increased power consumption [66]. Finally, the third technique reserves a
subset of available subcarriers to create a peak-cancelling signal, and is referred to as tone
reservation (TR) [67].

Motivated by the success of DL in other physical layer tasks, multiple works suggested
replacing existing PAPR reduction algorithms with DL components. For example, an NN was
used to generate the constellation extension vectors in [68]. Similarly, a TR algorithm was
unfolded as NN layers in [69]-[71]. It has also been proposed to model the communication
system as an autoencoder that is trained to both minimize the PAPR and symbol error rate [72].

Although closer to our approach, the proposed scheme operates on symbols, meaning that the
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bit mapping and demapping have to be implemented separately, and has only been evaluated
on a simple Rayleigh fading channel. Moreover, the time-domain signal is not oversampled,
which is required to obtain an accurate representation of the underlying waveform for PAPR
calculations [73]. Finally, none of these works allow setting precise PAPR and ACLR targets,
which means that the trade-off between the PAPR, ACLR, and spectral efficiency can not be
accurately controlled.

Regarding the end-to-end training of communication systems, numerous works proposed
to use this technique to design transceivers aimed at different channels. For example, the
learning of constellation geometries to achieve pilotless and CP-less communication over
OFDM channels was done in [16], and the design of NN-based systems for multicarrier fading
channels and optical fiber communications were respectively studied in [74] and [75]. Finally,
the design of transmit and receive filters for single-carrier systems under spectral and PAPR

constraints was presented in [76].
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4.2 Problem Statement

A SISO system using OFDM is considered (K = L = 1). In this section, the OFDM channel
model and the expressions of the signal waveform and spectrum are recalled. The ACLR and
PAPR metrics typically used to characterize the analogue signal are then detailed. Finally, a
close to ideal implementation of a TR baseline is introduced, where a subset of subcarriers are
reserved to minimize the signal PAPR and pilots are transmitted to estimate the channel.

4.2.1 System Model
Channel model

The OFDM channel model as derived in Section 2.1.2 is considered, with N subcarriers
and one time slot, which consists of M = 14 OFDM symbols. In this chapter, the subcarriers
N—-1 N-1

are indexed by the set N' = {_T7 cee T}? with N assumed odd for convenience. When

considering the entire RG, the OFDM channel of (2.22) can be expressed as
Y=HOoX+N (4.1)

where X € CM*N and Y € CM*N respectively represent the matrix of transmitted and received
FBSs, H € CM*N is the matrix of channel coefficients, and N € CM*¥ is the additive
Gaussian noise matrix such that each element has a variance o2. We consider a slow-varying
environment so that the channel can be assumed constant over the duration of a slot. The
matrix of bits to be transmitted on the OFDM symbol m is denoted B, = [by, 1, - ,bm,N]T
where by, € {0,1}9,m € {1,--- ,M},n € N, is a vector of bits to be transmitted and Q
is the number of bits per channel use. The transmitter modulates each B,, onto the FBSs

)

X € CV, which are mapped on the orthogonal subcarriers to form the spectrum

= T Lsimc i—n .
Sm(f)—neZN m,n\/xf (Af ) (4.2)

where A is the subcarrier spacing. When CPs on duration TCP are prepended to the OFDM
symbols of duration T, the signal spectrum becomes

SSP(H =Y f=ndy ) (4.3)

1. (
Tmmn sinc P
neN \/ A](;P Af

where AJQP = ﬁ. We recall from (2.5) that the corresponding signal is expressed as

M-1 M-1
s(t) = Z Sm(t) = Z Z Ty (t — mT*) (4.4)
m=0 m=0 n;nN\
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where T%% = T+ TP and the transmit filters ¢, (t),n € N are defined as

1 t 1 j27rnt_TCP
qﬁn(t):\/mrect Teot "5 )€ T . (4.5)

Relevant metrics

OFDM waveforms have, inter alia, two major drawbacks. The first one is their high
amplitude peaks, which create distortions in the output signal due to the saturation of the
PA. Such distortions are usually reduced by operating the PA with a large power back-off or
by leveraging complex digital pre-distortion, thus reducing the power efficiency. Let us denote
by v(t) = % the ratio between the instantaneous and average power of a signal. We
define the PAPR, as the smallest e > 0, such that the probability of v(t) being larger than e
is smaller than a threshold € € (0,1):

PAPR, :=mine, s. t. P(v(t) >e) <e (4.6)

Setting ¢ = 0 leads to the more conventional PAPR definition %‘;52%2. However, the

maximum signal power occurs with very low probability, and therefore such a definition of
the PAPR only has a limited practical interest. Relaxing € to values greater than 0 allows
considering more frequent, and therefore more practically relevant, power peaks.

The second drawback of OFDM is its low spectral containment. This characteristic is
typically measured with the ACLR, which is the ratio between the expected out-of-band
energy Ex [Fo, | and the expected in-band energy Ex,  [E}, |:

Ex,. [EOm] Ex,, [EAm]

ACLR = = -1 4.7

where Eo,., Er,,., and Ea,, = Fo,, + Er,, are respectively the out-of-band, in-band, and total
energy of the OFDM symbol m. The in-band energy Ej, is given by

NAf
Br, = [ s, 1Sm(E d&f = xl13%, (15)
T2
where each element j,; of the matrix J € RVXN g
—— f—aA f—bA
. T —aly) —bAy
Jab = T](;P /—fo sinc (A?’) sinc <A]§P> df, a,beN. (4.9)

The effect on the CP length on the in-band energy is shown in Fig.4.1, which have been
obtained by sending 10° random FBSs x,, ~ CN(0, %I) on N = 25 subcarriers with CP
lengths of TCF € [0,0.17]. It can be seen that the in-band energy increases with the CP
length, which is to be expected as increasing TP amounts to modulating the subcarriers

with sinc for which the ripples are brought closer together, thus containing more energy in
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Figure 4.1: Effect of the CP length on the in-band energy.

{A f (n — %) WA (n + %)} . This in-band energy increase can be directly mapped to an ACLR
decrease, as the total energy does not depend on CP length. In the following, we therefore
consider that 7¢P = 0 when computing the time-domain representation and spectrum of the
signal, as it corresponds to the worst-case scenario in terms of spectral energy leakage.
Finally, the total energy can be more conveniently computed in the time domain:
T

Ea = /ET 1s(t)[2 dt = x2Kx,m (4.10)

2

where K € RY*N has elements

_ 1 i2n(a—b)t/T
Fap = T/g ¢ dt, abeN. (4.11)

4.2.2 Baseline

One technique to reduce the PAPR of OFDM signal is TR, in which a subset of R tones
(subcarriers) is used to create peak-reduction signals. These subcarriers are referred to as
peak reduction tones (PRTS), and the remaining D subcarriers are used for data and pilot

transmission. The sets containing the PRTs and the data-carrying subcarriers are respectively
denoted by R and D, and are such that RUD = N.

Transmitter

The TR-based transmitter sends three types of signals: data signals, peak reduction signals,
and pilot signals which are used by the receiver to estimate the channel. Such pilots are
inserted in the RG following the 5G NR pattern illustrated in Fig. 4.2, i.e., every two REs
on the second OFDM symbol, and the value of each pilot is chosen randomly on the unit
circle. For clarity, only data and peak-reduction signals are considered when describing the

transmitter, as transmitting pilots is achieved by simply replacing some REs carrying data by
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Pilots
Figure 4.2: Pilot pattern used by the baseline.

reference signals. We denote by d,;, nep and 7y, ner the FBSs carrying data and peak-reduction
signals, respectively. An FBS d,, ,ep corresponds to the mapping of a vector of bits by, ,ep
following a 29-QAM, the constellation of which is denoted by C € C2°. The vector of FBSs
d,, € CV is composed of all dm nep and of zeros at positions that correspond to PRTs, i.e.,
dmner = 0. The reduction vector r,, € CV is formed by the signals Tm.ner Mapped to the
PRTs, and is conversely such that 7, ,ep = 0. As an example, if three subcarriers are used
and only the last one is used as a PRT, these vectors are expressed as dy, = [dpm,—1,dm 0, O]T
and r,,, = [O,O,rmjl]T. The vector of discrete baseband signals to be transmitted and the
corresponding continuous-time waveform are finally denoted by x,, = d,, + ry, and s,,(¢),
respectively. TR aims at finding r,, that minimizes the maximum squared signal amplitude:

arg r%lnn max |5 (£)]2. (4.12)
As minimization over the time-continuous signal leads to intractable calculations, s, (t) is
first discretized. Many previous studies considered a discrete vector z,, € CV, sampled with a
period %, as a substitute for the underlying signal [70]-[72]. However, it has been shown that
using a vector z,, € CVOs | oversampled by a factor Og, is necessary to correctly represent
the analog waveform [73]. The difference between the two discretized vectors are visible in
Fig. 4.3, where the squared amplitude of z,, and z,, are plotted for an arbitrary OFDM
symbol, with N = 75 subcarriers and an oversampling factor of Og = 5. It can be seen that
the oversampled signal exhibits a different maximum peak with a higher amplitude as well as
numerous secondary peaks that are not present in the non-oversampled signal. These peaks

might lie in the PA saturation region, causing distortions of the transmitted waveform. Let us
j2mab

define the IDFT matrix FH € CNOs*N where each element is expressed as fap = \/Nl 5-¢ NOs |
S
The oversampled vector can be obtained with
z,, = Flx,, =F (d,, + 1n). (4.13)
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Figure 4.3: OFDM signal generated from N = 75 subcarriers.

The value of r,, that minimizes the PAPR can now be approximately found by minimizing
the oversampled signal:

arg min Hg (FH(dm + rm)) H (4.14)
Cm o0
where g(-) denotes the element-wise squared magnitude | - | and [|-|| ., denotes the infinity

norm. The convexity of ||g (F(dy, + rm))||,, theoretically allows to find the optimal value of

oo
Iy, but the associated complexity leads to the development of algorithms that approximate
this value in a limited number of iterations [67]. In this thesis, however, we use a convex
solver [77] to find the exact solution of (4.14) for each symbol x,,. Although such a scheme
would be prohibitively complex in practice, it is considered here to provide a close to ideal
implementation of a TR-based baseline. Moreover, for fairness with conventional QAM systems,
we add the convex constraint r'r,, < R so that the average energy per OFDM symbol equals
at most V. We experimentally verified that the average energy of the peak reduction signals
E

placing the PRTs at random locations at every transmission leads to the lowest PAPR among

e {r,’ﬂnrm} was always close to R, leading to Ex, , [xﬂlxm} ~ N. Finally, it was shown that
other placement techniques [78]. The baseline therefore implements such a random positioning
scheme for all OFDM symbols, except for the one carrying pilots for which peak-reduction
signals cannot be inserted on pilot-carrying subcarriers. On this specific OFDM symbol, the
number of PRTs is also reduced to g in order to always maintain a significant number of

subcarriers carrying data.

Receiver

On the receiver side, channel estimation is performed first, using the pilot signals received in

. . . . . N4+1
the pilot-carrying OFDM symbol m) € M. The pattern depicted in Fig. 4.2 allocates ==
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4.2 Problem Statement

REs to pilot transmissions. Let us denote by p,,,»» € C™3 the vector of received pilot signals,
extracted from y, . The channel covariance matrix, providing the spectral correlations
between all REs carrying pilots, is denoted by X € C™5*™3" . This matrix can be empirically
estimated by constructing a large dataset of received pilot signals and computing the statistics
over the entire dataset. The channel coefficients at REs carrying pilots are estimated using an
LMMSE channel estimator:

N+1

=~ 1
hgszp) =X (Z + O'QIM) pm(p) S C=. (415)
2

Channel estimation at the remaining N REs of the OFDM symbol m® is achieved through
linear interpolation. As the channel is assumed to be invariant over the duration of a slot, the
so obtained vector flm@) € CV is also used for all other OFDM symbols, forming the channel
estimate matrix H € CM*Y where all columns are equal. On fast changing channels, pilots
could be inserted in other OFDM symbols to better track the evolution of the channel.

The transmitted FBSs are estimated through equalization:

X =YoH. (4.16)

Finally, the LLR of the ¢'" bit corresponding to the RE (m, n) is computed with a conventional
AWGN demapper:

B |2 | A
D oceCy, €XP <_| Tgénl |Zmn — CF)

Bomon|? | 4
Zcecq,o exp <—|”;2n|‘q;mn — c]2>

LLR,»(¢) =1In (4.17)

where C,1 (Cy0) is the subset of C containing the symbols that have the ¢'" bit set to 1 (0),

B2 C . .
and “7772’” is the post-equalization noise variance.

o7



4 Learning OFDM Waveforms with PAPR and ACLR Constraints
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Figure 4.4: Trainable system, where grayed blocks represent trainable components.

4.3 Learning a High Dimensional Modulation

In the following, we train an NN-based transmitter and receiver to maximize an achievable
rate under ACLR and PAPR constraints. This end-to-end system is referred to as "E2E'
system for brevity, and is schematically shown in Fig. 4.4. An optimization procedure is
derived to handle the constrained optimization problem, in which the loss function is expressed
as a differentiable augmented Lagrangian. Next, we detail the transmitter and receiver

architectures, both implemented as CNNs.

4.3.1 Optimization Procedure
Problem formulation

We aim at finding a high-dimensional modulation and associated detector that both maximize
an information rate for the OFDM transmission and satisfy constraints on the signal PAPR
and ACLR. The transmitter and receiver of the E2E system operate on top of OFDM, i.e.,
IDFT (DFT) is performed and a cyclic prefix is added (removed) before (after) transmission
(see Fig. 4.4). The considered rate [16] is an extension of the one derived in (2.91) for an entire
RG, and depends on the transmitter and receiver trainable parameters respectively denoted
by 6 and :

C(O bm LG5 Ym‘ 0) (4.18)

%

Hng

1
~ MN
1

2
emM

N2 2 S By, [Dit (POmnalsn|PoCmnalyn)]-
meMneN q=

0

As the E2E system outputs LLRs, the estimated posterior probabilities can be obtained from

-f) bm ng = 1ym
LLRy.n(q) = In < Py Omng = 1y )> . (4.19)
P¢(bm,n,q = O‘ym)

To ensure a unit average energy per RE, a normalization layer is added to the transmitter
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4.3 Learning a High Dimensional Modulation

(see Fig. 4.4). Perfect normalization would perform

* Xm
lnorm (Xm> - 1 (420)

(FExn[Ban])’

but the 2MN€ different combinations of bits would make the computation of the expected value
too complex for any practical system. Batch normalization is therefore preferred, ensuring
that the average energy per RE in the batch is one:

v

1
B i i\ 2
(WBS et L2 xin KXH) ’

lnorm (X,[#L] ) =

(4.21)

where the superscript [j] denotes the j*" element in the batch and By is the batch size. This
expression is slightly different from the one typically used in related works, since it accounts for
the correlation that can appear between the FBSs generated by the transmitter. Conventional
bit-interleaved modulation systems produces i.i.d. symbols, and therefore does not need to
take such correlation into account.

We can now formulate the constrained optimization problem we aim to solve:

maximize c(0,) (4.22a)
subject to PAPR(6) = Ypeak (4.22b)
ACLR(@) < ﬁleak (4.220)

where ypeak and Bieak respectively denote the target PAPR and ACLR. Note that the PAPR
and ACLR depend on the transmitter parameters 6.

System training

One of the main advantages of implementing the transmitter-receiver pair as an E2E
system is that it enables optimization of the trainable parameters through SGD. As seen in
Chapter 2, this requires a differentiable loss function so that the gradients can be computed
and backpropagated through the E2E system. In the following, the augmented Lagrangian
method is leveraged to convert the problem (4.22) into its augmented Lagrangian, which acts
a differentiable loss function that can be minimized with respect to 8 and ¥ [79]. The key idea
is to relax the constrained optimization problem into a sequence of unconstrained problems
that are solved iteratively. This method is known to be more effective than the quadratic
penalty method, enabling a faster and more stable convergence [80]. In the following, we
express the objective (4.22a) and the constraints (4.22b) and (4.22c¢) as differentiable functions
that can be evaluated during training and minimized with SGD.

First, the achievable rate (4.22a) can be equivalently expressed using the system binary
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4 Learning OFDM Waveforms with PAPR and ACLR Constraints

cross-entropy (BCE) [21], which is widely used in binary classification problems:

Q-1
1 ~
Lo@¥) =375 3 3 3 Ev, logy (Py(bm.nq

=Q—C(0,9). (4.24)

ym))] (4.23)

To overcome the complexity associated with the computation of the expected value, an
approximation is typically obtained through Monte Carlo sampling:

Q-1Bg—1

> 32 X log (Py (b)) (4.25)

meMneN ¢g=0 i=0

1
MN Bg

Lco(0,v¢) ~ —

Second, evaluating the constraint (4.22b) requires the computation of the probability

P(]E|[‘|SS(8)||22} > ¢), where e is the energy threshold defined in (4.6). However, computing such
probability would be prohibitively complex due to the sheer amount of possible OFDM symbols.
During training, we therefore enforce the constraint by setting ¢ = 0 and penalizing all signals
whose squared amplitude exceed vpeak. With € = 0, the constraint (4.22b) is equivalent to
enforcing L., (6) = 0, with

Lpen(0) = Eny [/_ET (ysm(t)P - ypeak)+ dt] (4.26)

where ()" denotes the positive part of z, i.e., ()" = max(0,z). To evaluate L, _, (@) during
training, the value of the expectation can be obtained through Monte Carlo sampling, and the

integral can be approximated using a Riemann sum:

NOS 1
£ il |2 !
L 0) (é - ea) 4.27
'Ypeak( BSNOS ; B ;S ) t ’YP k ( )

where z,, = F'x,, € CV9s is the vector of the oversampled time signal corresponding to the

neural transmitter output x,,.

Third, the inequality constraint (4.22c) can be converted to the equality constraint
ACLR(0) — Bieak = —v, where v € R is a positive slack variable. This equality constraint is
then enforced by minimizing Lg,_, (0) + v, with

E [E4]

LBleak (9) = ]E [E[] - 1 - ﬁleak (428)
Bs Doy X Wl

%

—1 — Bleak. 4.29
B s XtV o (4:29)
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4.3 Learning a High Dimensional Modulation

Finally, for € = 0, the problem (4.22) can be reformulated as

mirbirqzlize Lc(6,) (4.30a)
subject to Ly ...(0)=0 (4.30b)
L3 (0) +v =0 (4.30c)

where the objective and the constraints are differentiable and can be estimated at training. The
augmented Lagrangian method introduces two types of hyperparameters that are iteratively
updated during training. The first one corresponds to the penalty parameters which are slowly
increased to penalize the constraint with increasing severity. The second one corresponds to
estimates of the Lagrange multipliers, as defined in [79]. Let us denote by p, > 0 and p; > 0
the penalty parameters and by A, and \; the Lagrange multipliers for the constraint functions
L, ....(8) and Lg,_ ., (8), respectively. The corresponding augmented Lagrangian is [79]

f*(97 ¢a >‘p) )\luupu M, Q) = LC(G, ¢)

1
+ )\pL’Ypeak (0) + iup’L'Ypeak (0)‘2 (431)
1
+ AN (LB (0) +v) + DI |Lp,... (8) + v]*.

As derived in [79], the minimization of (4.31) with respect to v can be carried out explicitly
for each fixed pair of {0, } so that the augmented Lagrangian can be expressed as

Z(oa 'l,b, )‘pu >\l7/~’LP7 Ml) = LC(H, Q/J)

1
+ )\pL'Ypeak(e) + §#p|L'Ypeak (0)|2 (432)

1
— (max(0, A Lg  (0))% = )?).
+ g (max(0, 0+ L, (8)° = X7)
Each training iteration comprises multiples steps of SGD on the augmented Lagrangian (4.32)
followed by an update of the hyperparameters. The optimization procedure is detailed in
Algorithm 2, where 7 € R™ controls the evolution of the penalty parameters and the superscript
uw€O0,.., U — 1 refers to the u'" iteration of the algorithm.

4.3.2 System Architecture

The neural transmitter and receiver are based on similar architectures, schematically shown
in Fig. 4.5. The core element is a ResNet block, which was introduced in the physical layer to
implement a fully NN-based radio receiver [81], and whose effectiveness has been demonstrated
in other related works [16], [82], [83]. A ResNet block is made of two identical sequences of
layers followed by the addition of the input, as depicted in Fig. 4.5¢. In the original ResNet
block [84], each sequence was composed of a batch normalization layer, a rectified linear unit

(ReLU) activation function, and a convolution. Our architecture differs from the original one in
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Algorithm 2: Training procedure

Initialize 0,1, )\1(;0), )\l(o), ,u;(jo) ) /ll(o)

for u=0,---,U do

> Perform multiple steps of SGD

on L(0,4, A\, \j, pip, p1y) w.r.t. 6 and 1

> Update optimization hyperparameters:

A =2 b, (6)

u+1 u u
N = mac (0,0 + 11" L., (6))
(ut+l) _ (u)
M}Ez 3 =(1 +T)N€> )
u+ u
127 =1+ 7'),“1
end
Y
s Y A
4 Neural Transmitter ) CP Removal BatchNorm
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(a) Neural Transmitter. (b) Neural Receiver. (c) ResNet block.

Figure 4.5: Different parts of the end-to-end system, where grayed blocks are trainable
components.
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4.3 Learning a High Dimensional Modulation

that ReLUs are replaced by exponential linear units (ELUs) to alleviate the vanishing gradient
problem [32] and separable convolutions are used since they enable similar performance than
conventional ones but at a fraction of the computational cost [31]. Finally, we use zero-padding
on all 1D (2D) convolutions to maintain constant the size of the first (and possibly second)
dimension(s). In the following, the architectures of the neural transmitter and receiver are
detailed, although the exact numbers of parameters for each layer are given in Section 4.4.1.
The transmitter processes all OFDM symbols in parallel (see Fig. 4.5a). Each instance of the
CNN implemented at the transmitter takes as input the matrix of bits B,,, corresponding to
the OFDM symbol m, and outputs the OFDM symbol x,,. The vector of bits is first converted
into its one hot representation, i.e., into vectors of {0, 1}2Q where all elements but one are set
to zero. Then, a CNN comprises one 1D separable convolution, multiple 1D ResNet blocks,
and another 1D separable convolution. This CNN is fed with the one-hot matrix of dimension
N x 29, were N corresponds to the dimension of the 1D convolution and 29 to different
convolution channels, and outputs N x 2 elements. The next layers convert these N x 2 real
numbers into N complex symbols and normalize them, as in (4.21), to have a unit average
energy per RE. Finally, an IDFT is performed on the symbols and a CP is added before
transmission. We experimentally verified that independent processing of all OFDM symbols,
resulting in the use of 1D convolutions, leads to better performance than 2D convolutions
that would process all OFDM symbols at once. This could be explained by the 1D nature of
PAPR and ACLR measurements, which are computed for all OFDM symbols separately.
The neural receiver, on the contrary, performs a 2D processing on all OFDM symbols since
it enables more accurate channel estimation and equalization [16], [83]. At reception, the CP
is first removed and an DFT is applied to the received signals Y. The M x N symbols are
then converted into M x N x 2 real numbers that are fed, along with the transmission SNR, of
size M x N x 1, into a 2D CNN. The architecture of the receiver CNN is similar to the one of
the transmitter, except that 2D separable convolutions are used. The last 2D separable layer
outputs M x N x @ real numbers that correspond to the LLRs of all transmitted symbols,
as shown in Fig. 4.5b. Note that no pilots are used as it was shown in [16] that pilotless

communication is possible over OFDM channels when neural receivers are used.
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ng (S]ODI;V' ResNet blocks 1D (2D) ng' (SBI)W
Kseil;;el 1(1,1) | 332 | 9(94) |15(156) | 9(94) | 3(3.2) | 1(11)
Diizzieon 1(1,0) | 11 | 221 | 441 | 221 | 1) | 1(L1)
Filters 128 2(Q)

Table 4.1: Parameters for the neural transmitter (receiver).

4.4 Simulations Results and Insights

In this section, the E2E system is benchmarked against the TR baseline. We first describe

the training and evaluation setup, followed by rate, BER, and goodput comparisons.

4.4.1 Evaluations
Training and evaluation setup

Separate datasets were used for training and testing, both generated using a mixture of
3GPP-compliant urban microcell (UMi) line-of-sight (LOS) and non-LOS models. The channel
responses were generated using QuaDRiGa 2.4.0 [85], and perfect power control was assumed
such that the average channel energy per RE was one, i.e., E [|hmn]2] = 1. N = 75 subcarriers
were considered with M = 14 OFDM symbols using CPs of sufficient lengths so that the
channel can be represented by (4.1) in the frequency domain. The center carrier frequency
and subcarrier spacing were respectively set to 3.5 GHz and 30 kHz, the number of bits per
channel use was set to Q = 4, and 16-QAM modulation was used by the baseline. Coded BER
comparisons were performed using a standard 5G-compliant low-density parity-check (LDPC)
code with length 1024 and rate n = % The baseline was evaluated for R € {0,2,4,8, 16,32}
PRTs and the E2E system was trained to achieve ACLR targets of fjeax € {—20, —30, —40} dB
and PAPR targets of vpeak € {4,5,6,7,8,9} dB.

The transmitter and receiver architectures that were used are detailed in Table 4.1. Inspired
by [81], the receptive fields of the CNNs were increased using dilations, and the kernel sizes
had an increasing, then decreasing number of parameters. The Lagrange multipliers were
initialized to )\1(,0) = )\l(o) = 0 and 7 was set to 0.004. The penalty parameters were initialized
to ,u,()o) =10"! and ,ul(o) = 1073, which mirrors the fact that L., () is usually two orders of
magnitude lower than Lg_, (0). The optimization procedure was composed of 2500 iterations
in which 20 SGD steps were performed with a learning rate of 1072 and a batch size of

Bg = 100. The oversampling factor used to compute z in (4.27) was set to Og = 5, as it was
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shown to be sufficient to correctly represent the analog signal [67]. Finally, the SNR

Ehpn [hmnl?] 1

o2 o2

SNR

was chosen randomly in the interval [10,30] dB for each RG in the batch during training. The
simulations parameters are listed in Table 4.2.

Parameters Symbol (if any) Value
Number of OFDM symbols M 14

Number subcarriers N 75

Number of bits per channel use Q 4

PAPR targets Ypeak {4,5,6,7,8,9} dB
ACLR targets Bleak {—20,-30,—-40} dB
PRTs used by the baseline R {0,2,4,8,16,32}
Batch size Bg 100 RGs
Oversampling factor Os 5

Code rate n %

Code length - 1024 bit
Center frequency (subcarrier - 3.5 GHz (30kHz)
spacing)

Scenario - 3GPP 38.901 UMi LOS 4+ NLOS
SNR - [10,30] dB
Learning rate - 1073

Table 4.2: Training and evaluation parameters.

Evaluation results

In the following evaluations, the PAPR probability threshold was set to ¢ = 1073, Note
that setting e = 0 would only take into account the maximum signal peak, which is achieved
by a single possible waveform that has probability QNLQ ~ 107, The average rates per RE
achieved by the baseline and the E2E systems are shown in Fig. 4.6, where the numbers next
to the data points are the corresponding ACLRs. First, it can be seen that at the maximum
PAPR of approximately 8.5 dB, the E2E system trained with S, = —20 dB achieves a
3% higher throughput than the baseline with no PRT. This can be explained by the rate
loss due to the presence of pilots in the baseline, which do not carry data and account for
approximately 4% of the total number of REs. Second, at lower PAPRs, the rates achieved
by the E2E system trained with S € {—20, —30} are significantly higher than the ones
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Figure 4.6: Rates achieved by the compared systems. Numbers near scatter plots indicate the
ACLRs.

achieved by the baseline. For example, the E2E system trained with Sieak = —20 and Ypeax = 5
achieves an average rate 22% higher than the baseline for the same PAPR. Finally, the E2E
systems are able to meet their respective PAPR and ACLR targets.

The coded BERs of the baseline and of the three E2E systems are shown in the left column
of Fig. 4.7. As the baseline transmits pilots and reduction signals in addition to data signals,
the energy per transmitted bit is higher than that of the of E2E systems. To reflect this
characteristic, we define the energy-per-bit-to-noise-spectral-density ratio as

& . Ewm,n me’nlz] 1

o2 pKo? - pQao?

(4.34)

where p is the ratio of REs carrying data signals over the total number of REs in the RG.
Fig. 4.7a, 4.7¢c, and 4.7e correspond to systems achieving PAPRs of approximately 8.5, 6.8, and
5.2 dB, respectively. Such PAPRs were obtained using R = {0,4,16} PRT for the baseline,
and Ypeak = {9,7,5} dB for the trained systems. Note that evaluation results corresponding
to systems trained with S = {—30,—40} dB are provided for completeness, but a fair
comparison is only possible between the baseline and the system trained with Sjeac = —20 dB as
this value corresponds to the baseline ACLR. Overall, one can see that the baseline consistently
achieves slightly lower BER than the E2E systems. However, the baseline also transmits fewer
bits per RG, due to some REs being used to transmit pilots or reduction signals.

To understand the benefits provided by the E2E approach, the second column of Fig. 4.7
presents the goodputs achieved by each compared system. The goodput is defined as the
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average number of information bits that have been successfully received in a RE; i.e.,
Goodput = npQ(1 — BER), (4.35)

and is plotted with respect to the SNR as it already accounts for the different number of
REs transmitting information bits through the parameter p. Evaluation results show that
the goodputs achieved by all trained systems, including those trained for lower ACLRs, are
significantly higher than the ones of the baseline. Indeed, at an SNR of 30 dB, all E2E systems
are able to successfully transmit close to two bits per RE, while the baseline saturates at 1.93,
1.82, and 1.53 bits for PAPRs of 8.5, 6.8, and 5.2 dB, respectively. The BER improvements
range from a 3% increase at low SNR with PAPR, = 8.5 dB to a 30% increase at high SNR
with PAPR, ~ 5.2 dB, indicating that the E2E approach is particularly effective when the
PAPR reduction is high. These gains are jointly enabled by the pilotless nature of the E2E
transmission, the effective ACLR reduction scheme learned through the proposed optimization
procedure, and the fact that every REs can be used to transmit data.

4.4.2 Insights on the Learned ACLR and PAPR Reduction Techniques
Interpreting the ACLR minimization process

In order to get insight into the processing done by the neural transmitter, we first study
the ACLR reduction technique learned by the E2E systems. Three covariance matrices
Ex,, {xmx'ﬂn} are shown in Fig. 4.8 for systems trained with vpeax = 9. The first covariance
matrix is from a system trained with an ACLR target of Sieac = —20 dB, while the second and
third matrices were respectively obtained with Sjcax = —30 dB and Bjeax = —40 dB. It can be
observed that the correlation between the elements close to the diagonal increase inversely to
the ACLR target. Moreover, the correlation increases at subcarriers located near the edges
of the spectrum, indicating that a subcarrier-dependent filtering is learned. Fig. 4.9 depicts
the distribution of the energy across the subcarriers. On the one hand, the system trained
with a lax ACLR constraint (fSjeax = —20 dB) equally distributes the available energy on all
subcarriers, which can be shown to maximize the information rate of the transmission. On the
other hand, the systems trained with lower ACLR targets learn to reduce the energy of the
subcarriers located at the RG edges, also contributing the out-of-band emissions reduction.
The joint effect of the filtering and of the uneven energy distribution across subcarriers is
visible in Fig. 4.10, where the PSDs of the compared systems are shown. One can see that the
system trained with Sie,x = —20 dB and the baseline have similar PSDs, while the PSDs of
the systems trained with lower ACLR targets present significantly lower out-of-band emissions.
It therefore appears that the improved ACLR allowed by the E2E system is the result of
both reducing the power of the subcarriers located near the RG edges and the introduction of

correlations between the transmitted symbols.
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Figure 4.7: BER and goodput achieved by the different schemes.
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Figure 4.8: Covariance matrices [, [xmxfn} for systems trained with different target ACLRs.
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Figure 4.11: Transmitted signals on six subcarriers for E2E systems trained with different
PAPR targets but a lax ACLR constraint. The purple dots represent the center of each cluster.

Interpreting the PAPR minimization process

To understand how the neural transmitter and the optimization procedure enable significant
PAPR reduction, it is insightful to look at the symbols transmitted for different PAPR targets,
as illustrated in Fig. 4.11. The three rows represent E2E systems trained for PAPR targets
of Ypeak € {4,6,9} dB, and the six columns show the signals transmitted on the subcarri-
ers n € {—37,—23,-8,8,23,37}. All systems where trained with a lax ACLR constraint
(Breax = —20dB). This figure was obtained by sending 25 RGs, and each green point represents
one signal transmitted on the corresponding subcarrier. One can see that the signals are
gathered into 2% groups, that will be referred to as clusters in the following. It can be observed
that for low PAPR targets (Ypeak = 4dB), the clusters at the subcarriers located at the center
of the RG exhibit more dispersion than the ones located near the RG edges. Moreover, the
average energy of the transmitted signals also appears higher on the central subcarriers. On
the contrary, for high PAPR targets (Ypeak = 9dB), the clusters seem equally dispersed and
the energy is evenly spread across the subcarriers. Finally, it can be noted that the positions
of the clusters are not rotationally symmetrical, which should help the neural receiver in
estimating and equalizing the channel.

To better understand the neural transmitter behavior, we index each cluster by a tuple
(n, k), where n is the subcarrier index and k € {1,---,29} is the index of the cluster for the
n'® subcarrier. Let us denote by {b(k)}1<k<2Q the set of all possible vectors of bits indexed by
their decimal representation, i.e., b©® =[0,0]T,b® =[0,1]7,b® = [1,0]T, and b® = [1,1]T
for Q = 2. We verified that each cluster corresponds to a unique vector of bits b(®) and the
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center of these clusters are represented by purple dots in Fig. 4.11. For each E2E system,

CN*29 that comprises the centers of the

we define a new high-dimensional constellation C €
2@ clusters on all N subcarriers. We denote by C(n, k) = Ex,, [:z:,(ﬁ)n} the k' constellation

point in the n'" subcarrier, where a:gf)n denotes the output of the neural transmitter for
the RE (m,n) when b®) was given as input. Similarly, we define V € CV XQQ, such that
V(k) = Ey,, [x,(ﬁ)nmgf)n*} represents the variance of the cluster (n, k).

Fig. 4.12 shows the mean energy of the constellation on each subcarrier for E2E systems
trained with ypeak € {4,6,9} dB and a lax ACLR constraint, corresponding to the three rows
of Fig. 4.11. We can verify that when the PAPR constraint is lax (ypeak = 9dB), the energy is
evenly distributed across the subcarriers. On the contrary, the border subcarriers are given
less energy when a harsh constraint is applied (Vpeak = 4dB). One explanation could be
that the center subcarriers have longer wavelength, and therefore contribute less than their
counterparts with shorter wavelengths. By focusing the available energy on these subcarriers,
the neural transmitter jointly minimizes the probability of peaks in the analog waveform and
decreases the number of FBSs that have a significant impact on them. Note that since the
carrier frequency is typically much higher than the bandwidth of each subcarrier, the average
power of the passband and baseband signals differs by a factor two but their maximum are
approximately equal, which amounts to a roughly 3 dB difference between the passband and
baseband PAPR [86]. Finally, the mean variance of the clusters on each subcarrier are plotted
in Fig. 4.13 for the same three systems. One can observe that the clusters exhibit almost no
variance with ypeak = 9dB, but a high variance in the center frequencies with vpeax = 4dB.
These high variances observed with harsh PAPR constraints tend to indicate that the neural
transmitter is able to slightly relocate the relevant FBSs in order to minimize the waveform
PAPR. Overall, the transmitter seems to focus its energy on central subcarriers to reduce the
probability of peaks and the number of relevant FBSs, and to adjust the positions of these
FBSs to minimize the peak amplitudes.

In order to verify this claim, the complementary cumulative distribution function (CCDF)
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of the ratio between the instantaneous and average power of the transmitted signal is

2

gm,t

CCDF |, (y2(€) = P (\y(t)\z > e) ~ P m

> e (4.36)

and is approximated by sending 10000 batches of 1000 RGs, each RG ¢ being composed of
N = 75 subcarriers and M = 14 OFDM symbols ;[Tﬂi oversampled with a factor Og = 5. The
CCDF of two systems are presented in Fig. 4.14, the first one corresponds to the first row
of Fig. 4.11, i.e., it is trained with the harshest PAPR constraint (Ypeak = 9dB) and a lax
ACLR constraint (fieax = —20dB). The second one is a conventional system that uses the
constellation C extracted from the aforementioned E2E system (and represented by purple
dots in the first row of Fig. 4.11). The goal of this comparison is to evaluate the effect of
the adjustment of the FBSs positions from the clusters centers operated by the transmitter.
It can be seen that the CCDF of the E2E system is drastically lower than the one of the
conventional system using the extracted constellation, indicating that the PAPR reduction is
indeed performed through the FBSs position adjustments.

Finally, the CCDFs of the E2E system trained with ypeax = 6dB (and a lax ACLR constraint)
and of a conventional QAM system are compared in Fig. 4.15. The E2E system corresponds
to the second row of Fig. 4.11, and the two compared systems are respectively highlighted by
a black circle and a black square in Fig. 4.6. On can see that the PAPR minimization process
operated by the neural transmitter is particularly effective, as the CCDF of the E2E system is
significantly lower despite the two systems enabling similar rates. Finally, it is also interesting
to note that the CCDF of the system using the extracted constellation in Fig. 4.14 is higher
than the one of the 16-QAM system in Fig. 4.15. This indicates that the underlying learned
constellation alone has worse PAPR characteristics than a standard QAM, demonstrating the
efficiency of the positional adjustments enabled by the neural transmitter.
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4.5 Concluding Thoughts

In this chapter, we proposed a learning approach to design OFDM waveforms that meet
specific constrains on the envelope and spectral characteristics. We leveraged the end-to-end
strategy to model the transmitter and receiver as two CNNs that perform high-dimensional
modulation and demodulation, respectively. The associated training procedure first requires
all optimization constraints to be expressed as differentiable functions that can be minimized
through SGD. Then, a constrained optimization problem is formulated and solved using the
augmented Lagrangian method. We evaluated the proposed approach on the learning of
OFDM waveforms that maximize an information rate of the transmission while satisfying
PAPR and ACLR constraints. Simulations were performed using 3GPP-compliant channel
models, and results show that the optimization procedure is able to design waveforms that
satisfy the PAPR and ACLR constraints. Moreover, the end-to-end system enables up to
30% higher throughput than a close to optimal implementation of a TR baseline with similar
ACLR and PAPR.

Evaluation insights revealed that the neural transmitter achieves PAPR and ACLR reduction
through a subcarrier-dependent filtering, an uneven energy distribution across subcarrier,
and a positional readjustment of each constellation point. On the other side, the neural
receiver is able to equalize the channel without any pilot transmitted thanks to the learned
asymmetrical constellations. This directly translates into throughput gains as the associated
overhead is removed. It is interesting to note that all these improvements are possible because
the communication system is entirely designed by DL. Current standards however require the
use of well-known modulations and pilot patterns to ensure compatibility across a wide range
of hardware. Moreover, commercially available devices are not yet optimized to perform NN
inferences at speeds that coincide with the processing time of physical layer tasks. Short-term
implementations of end-to-end systems are therefore unlikely, and more practical solutions
must be derived to unlock the potential of DL in the near future.
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DL-enhanced
Receive Processing
for MU-MIMO Systems

5.1 Motivations

Both the block-based and end-to-end optimization strategies present advantages and draw-
backs that were respectively discussed in Chapter 3 and 4. On the one hand, the block-based
strategy for MU-MIMO detection has the advantages of remaining interpretable and scalable
to any number of users, but is not trained to optimize the end-to-end performance and requires
perfect CSI that is not available in practice. On the other hand, the end-to-end strategy
allows the emergence of new waveforms that can be tailored for specific needs, but NN-based
transceivers are computationally expensive and acts as black-boxes that are not suited for MU-
MIMO transmissions. The quest for practical, standard-compliant, and reasonably complex
designs for DL-based MU-MIMO systems therefore remains an active research topic.

In this context, we introduced a new hybrid approach in [83], in which multiple DL
components are trained in an end-to-end manner to enhance a conventional MU-MIMO
receiver. The goal is to combine the interpretability of the first strategy, the efficiency of
the second one, and the flexibility of traditional receivers. The resulting architecture is
easily scalable to any number of users and is composed of components that are individually
interpretable and of reasonable complexity. Moreover, the end-to-end training alleviates the
need for perfect channel estimates. Our solution exploits the OFDM structure to counteract
two known drawbacks of conventional receivers that are overlooked in the current literature.

First, it improves the prediction of the channel estimation error statistics, that can only be
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obtained for the pilot signals in a standard receiver, resulting in largely sub-optimal detection
accuracy. Motivated by the recent successes of CNNs in physical layer tasks [54], [81], we
use CNNs to predict such error statistics for every RE in the OFDM grid. In contrast to
the traditional approach that is based on mathematical models, the proposed CNNs learn
these statistics from the data during training. The second improvement is a CNN-based
demapper that operates on the entire OFDM grid, unlike traditional demappers that operate on
individual REs. In doing so, our demapper is able to better cope with the residual distortions
of the equalized signal. The resulting DL-enhanced receiver is optimized such that all DL
components are jointly trained to maximize the information rate of the transmission [21].

The proposed architecture is evaluated on 3GPP-compliant channel models with two different
pilot configurations supported by the 5G NR specifications. Both uplink and downlink
transmissions are studied using time-division duplexing (TDD). We compare the coded BER
achieved by different schemes for user speeds ranging from 0 to 130kmh~'. Two baselines
were implemented, the first one being a traditional receiver implementing a LMMSE channel
estimation and an LMMSE equalizer. The second baseline also uses LMMSE equalization,
but is provided with perfect channel knowledge at pilot positions and the exact second order
statistics of the channel estimation errors. Our results show that the gains provided by the
DL-enhanced receiver increase with the user speed, with small BER improvements at low
speeds and significant ones at high speeds. We have also observed that the gains in the uplink
are more pronounced than in the downlink, due to channel aging which significantly penalizes
the downlink precoding scheme.

Related literature

Multiple recent papers proposed to use one large NN to jointly perform multiple processing
steps. This idea has first been proposed in [87] to perform joint channel estimation and
equalization in a SISO setup. This work has then been extended by additionally learning the
demapper and operating directly on time-domain samples [82], [88]. The DeepRX architecture
presented in [81] shows impressive results on single-input multiple-output (SIMO) channels
while being 5G compliant. Another standard-compliant receiver has been proposed for
Wi-Fi communications using both synthetic and real-world data [89]. Regarding MIMO
transmissions, a special form of RNN called reservoir computing has been leveraged in [90]
to process time-domain OFDM signals. The DeepRX receiver has also been extended with a
so-called transformation layer to handle MIMO transmissions [82]. Their CNN-based solution is
fed with frequency-domain signals and outputs LLRs for the transmitted bits. DeepRX MIMO
shows important gains on single-user (SU)-MIMO channels, but remains very computationally
expensive. Compared to our solution, the main disadvantages of these NN-based MIMO
receivers are their lack of scalability and interpretability. They are tailored for a specific
number of users or transmit antennas, and the CSI needed for downlink precoding can not be

easily extracted.
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(a) Resource grid. (b) 1P pilot pattern. (c) 2P pilot pattern.

Figure 5.1: Pilots are arranged on the RG according to two different patterns, where each
number corresponds to a different transmitter.

5.2 System Model

We consider a MU-MIMO system, as presented in Section 2.1.4, in which K single-antenna
users communicate with a BS equipped with L antennas in the uplink and downlink. OFDM
transmissions are considered, and the RG is divided into resource blocks consisting of twelve
adjacent subcarriers (Fig. 5.1a). 29-QAM modulations are used to transmit data. This
section introduces the channel model and the baselines against which the proposed approach

is benchmarked.

5.2.1 Channel Model

Following the notations of Section 2.1.4, the channel coefficients form a 4-dimensional tensor
denoted by H € C?MXNXLXK "gych that H,y,,, € CE*K is the channel matrix at RE (m,n),
and h,, 1 € CF is the channel vector at RE (m,n) and for user k. Duplexing is achieved
through TDD, such that a slot is either assigned to the uplink or downlink in an alternating
fashion, as illustrated in Fig. 5.1a. More precisely, the first slot is assigned to the uplink and
the second slot is assigned to the downlink. It is assumed that channel reciprocity holds, i.e.,
H,, , refers as well to the uplink or the downlink channel. To enable channel estimation, a
transmitter sends pilot signals on dedicated REs according to a predefined pilot pattern. We
assume, without loss of generality, that all pilots are equal to one. Two different pilot patterns
are considered, referred to as the 1P and 2P pilot patterns, which respectively contain pilots
on two or four symbols within a slot. Fig. 5.1b and 5.1c respectively show the 1P and 2P
pilot patterns over a resource block assuming 4 users. The set of REs carrying pilots for a
user k € {1,..., K} is denoted by P®) and the numbers of symbols and subcarrier carrying
pilots are respectively denoted by |Py| and |Py|. As an example, if the 1P pattern shown in
Fig. 5.1b is used with N = 12, the positions (symbol, subcarrier) of all REs carrying pilots for
user 1 are denoted by P = {(3,1),(3,3),(3,5), (3,73), (3,93), (3,11)}, resulting in |Pys| = 1
and |Py| = 6. Note that when a RE is allocated to a user for the transmission of a pilot,
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Figure 5.2: Architecture of the uplink communication system.
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=

other users do not transmit any signal (data nor pilot) on that RE. As a consequence, pilots
do not experience any interference. The noise power is denoted by ¢? and assumed equal
for all users and all REs. In the following, perfect power control is assumed over the RG
such that the mean energy corresponding to a single BS antenna and a single user is one, i.e.,
E [|hmnikl?] = 1. The SNR of the transmission is defined as

o2

2
SNR = 10log (EUhm"““”> =10log (012) [dB]. (5.1)

5.2.2 Uplink Baseline

In uplink, the BS aims to recover the bits transmitted simultaneously by the K users on the
REs carrying data. The tensors of transmitted and received signals of all users are respectively
denoted by X € C?MXNXK and Y € C?2M*NXL " and the transfer function on the uplink is
Ymn = HpnXmn + Ny, where ny,,, ~ CN (0,021I}) is the noise vector. In this scenario,
only the uplink slot is used and therefore all signals with indices m > M are ignored, i.e., the
corresponding values are set to 0. The architecture of the uplink system is shown in Fig. 5.2,
where the IDFT (DFT) operation and the addition (removal) of the cyclic prefix before (after)
the channel are not shown for clarity. The channel estimation, equalization, and demapping
stages of the baseline will be explained in the following.

Channel estimation

As the pilots are assumed to be orthogonal, LMMSE channel estimation can be carried out for
each user independently. The channel covariance matrix providing the spatial, temporal, and
spectral correlations between all REs carrying pilots is denoted by X € CIPml PN I-LX[Pm[[Pnl-L
In the following, it is assumed that the precise local statistics of the receivers are not available.
The channel and receiver statistics are therefore averaged over the entire cell, resulting in a
zero-mean channel, and a discussion on how these statistics can be obtained is provided in
Section 5.2.4. For a user k € {1,..., K}, the LMMSE channel estimate at REs carrying pilots

is denoted by ﬁgi()k) e CIPulxIPNIXL anqd given by

vec (I/‘\Igf()k)> =X (2 + 0-2I|'PM||'PN\L)_1 vec (Y,(,f()k)) (5.2)
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where Ygfgk) € CIPulxIPNIXL g the tensor of received pilots for user k. Channel estimation

could also be performed at REs carrying data [16], but this would require knowledge of the
channel statistics at those REs, which are typically not available in practice.

Inspired by the 3GPP guidelines [91], the channel estimates for all REs are computed by
first linearly interpolating the estimates from REs carrying pilots in the frequency dimension
and then using the estimate at the nearest interpolated resource element (NIRE) on the
neighboring REs. It is also possible to leverage temporal linear interpolation between the
OFDM symbols carrying pilots when the 2P pilot pattern is used. The so-obtained tensor of
channel estimates is denoted by H®) e C2MxN*L_The overall channel estimation for all users
H € C2MXNxLxK ig ohtained by stacking the channel estimates of all users. Since only the
uplink slot is considered here, the channel estimates for the last M symbols (downlink slot)
are set to be null. The channel estimation error is denoted by H and is such that H = H + H.
For a RE (m,n), we define

Eyp = E [Hy H (5.3)

as the sum of the spatial channel estimation error covariance matrices from all users.

Equalization

The LMMSE equalizer derived in Chapter 3 is used, except that perfect channel estimation
is not assumed anymore. Moreover, as computing a dedicated LMMSE operator for each RE is
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infeasible in practice due to prohibitive complexity, we resort to a grouped-LMMSE equalizer,
i.e., a single LMMSE operator is applied to a group of adjacent REs spanning multiple symbols
m € {My,..., M} and subcarriers n € {N,..., N.}. Under this assumption, the LMMSE
operator for the group of REs spanning { My, ..., Mc} X {Np, ..., N} is

m’:Mb TL/:Nb m’:Mb TL’:Nb

M, Ne M.  Ne R -
Wm,n:( Z Z le—in’,n’) ( Z Z Hm’,n’Hrl;iz’,n’_‘_Em’,n’+UZIL) (54)

where W, ,, € CE*L is constant over {M,..., M.} x {Ny,..., N} (see Appendix A).

The post-equalization channel is expected to be an additive noise channel. More precisely,
for any RE (m,n), the demapper expects the output of the equalizer Xy, ,, € CX to be such
that X, n = Xmn + 10y, ,, where n;, ,, is an additive noise term. However, this decomposition is
not achieved by the LMMSE equalizer (see Section 1.6.1 of [92] for a more detailed discussion).
To obtain such a post-equalized channel, the following diagonal matrix is applied to the output
of the LMMSE equalizer

Dy = (W nFinp) © IK)_1 (5.5)

which re-scales the equalizer output so that the post-equalization SNR remains maximized.
For a RE (m,n) € {My,..., Mc} x {Ny, ..., N}, the equalized vector X,, 5 is computed by

)A(m,n = Dm,nwm,nym,n- (56)

c (CM><N

The equalized symbols of user k are denoted by X *) , as shown in Fig. 5.2.

Demapping

For a RE (m,n), let us denote by wy, ,,  the column vector made of the k'™ line of the
matrix Wy, , and by H,, ,, _; the tensor made of the channel coefficients of all users except
user k. After equalization, the uplink channel can be viewed as M N K parallel additive noise
channels that can be demodulated independently for every RE and every user. For a RE

(m,n) and user k, the post-equalization channel is expressed as

~

T ~
A Wi n,k (Hm,n,—kxm,n,—k =+ Hm,nxm,n + nm,n)
Tmnk = Tmnk T = (57)

T
Wm,n,khmyn:k

Cm,n,k
where the noise (, 1 includes both the interference and the noise experienced by user k.

Its variance is given by

P = E |GG k] (5.8)

H & iyH 2
w (Hm,n,—ka’n’_k + Em,n +o IL) Wim,n,k

m,n,k

H n hH
Wm,n,khmvnakhm,n,kwm,nvk
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Figure 5.5: Architecture of the downlink communication system.

We denote by Cy0 (Cp,1) the subset of C which contains all symbols with the ¢ bit set to
0 (1). Assuming that the noise (;, n  is Gaussian!, the LLRs of the ¢'" bit transmitted by
user k on the RE (m,n) is given by

A 2
Sy o0~z [ — ol

LLR,.k(¢) = In et 5 (5.9)
ZCEC%O €xp <_ 02 . |l'm,n,k - C| >

The equalization and demapping process is schematically shown in Fig. 5.4.

5.2.3 Downlink Baseline

The BS aims to simultaneously transmit to K users on all REs of the downlink slot. The
signal transmitted by the BS is precoded to mitigate interference. We remind that downlink
transmissions occur after the uplink slot, as shown in Fig. 5.1a. Let us denote by S € C2M*NxK
and by T € C2M*NXL the tensors of unprecoded and precoded symbols, respectively. We
denote by U € C2M*N*K the tensor of symbols received by the K users. Those quantities are
only relevant on the downlink slot and therefore are considered null on the first M symbols,
ie, Smm =tmn =uUpn, =0 VY(m,n) e {l,...,M} x{1,...,N}. The downlink transfer

function of the channel for a RE (m,n) is
W = H;‘%ntm,n + dm.n (5.10)

where qy,., ~ CN(0,0%1k) is the noise vector, considered null in the first M symbols. For

2 is assumed to be the same as in the uplink. Fig. 5.5 shows

convenience, the noise variance o
the architecture of the downlink system, where the IFFT (FFT) operation and the addition

(removal) of the cyclic prefix before (after) the channel are again not shown for clarity. In the

'This is not true in general as the interference and channel estimation errors are not Gaussian distributed.
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rest of this section, we detail the downlink precoding, channel estimation and equalization,

and demapping steps.

Precoding

Precoding requires estimation of the downlink channel. As TDD is used, we can exploit
channel reciprocity so that the downlink channel can be estimated using the nearest-pilot
approach, i.e., IA{MHSmgng = IA{M,n. Precoding is achieved by exploiting the uplink-
downlink duality [93], which results in using W,'jm as precoding matrix that can be computed
using (5.4). Normalization is performed to ensure that the average energy per transmitted
symbol equals one, by applying the diagonal matrix

Cp = (Wina Wi, © IK)_% (5.11)
leading to the precoded signal
tmn = Cm,an,'l’nsm,n. (5.12)
The channel transfer function (5.10) can be rewritten as

Unn = HE ton + dinn (5.13)
= H:jllw,ncm,nwyn,n Sm,n + qm,n

Gm,n

where Gy, , € CE*E is referred to as the equivalent downlink channel for the RE (m,n). Each

user k receives its signal u,(n)n and the corresponding channel, i.e., the k" row of G, is

T
denoted by ggi)n € CK. Finally, the equivalent channel experienced by user k for the entire

RG is denoted by G € C2M*xNxK,

Channel estimation and equalization

To enable estimation of the equivalent downlink channel by the users, pilot signals are

transmitted by the BS using the same pilot patterns as in the uplink (Fig. 5.1). Each

user k estimates its equivalent channel Gk ¢ C2MxNxK

(k)

m,n,k
correspond to the interference channel coefficients. As in the uplink, LMMSE estimation,

, where for a given RE (m,n), the

corresponds to the main channel coefficient, whereas the elements g(’“) 1 £k

element g MR

followed by spectral and possibly temporal interpolation, is used, but it is assumed that the
elements of gﬁfi)n are uncorrelated. Therefore, channel estimation is performed independently
for the main channel and each interference channel, enabling easy scalability to any number
of interferers. The covariance matrices used to estimate the main channel and one of the
interfering channels of a given user are denoted by Q € CPuIPNIXIPulPn] and by ¥ €

CIPulIPNIx[Pul PNl respectively, and are equal for all users and interfering channels. The
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c (CQM><N><K

tensor of the equivalent channel estimation error for user k is denoted by G®) ,

and is such that G®*) = G + G®). The estimation error variances for the main and

2
the i*" interfering channel of user k are respectively denoted by vﬁf) =E { 5 ‘ ] and
vgf)n ;, =E U T } Similarly, we denote by V(¥) € RN:*MxK the tensor of estimated error

variances for user k, as shown in Fig. 5.5. An estimation of the transmitted unprecoded symbol

for user k is computed by equalizing the received signal as follows

Sgn,)n = A(k)7 . (5.14)
gm,n,k

Demapping

The post-equalization downlink channel can be seen as M x N x K parallel additive noise
channels. More precisely, for a user k € {1,..., K} and RE (m,n),

g(k) ksmnk+g(k) TS k+ank

~ m,n, 3Ty k m,mn,— 3T

St = Smank + ) (5.15)
gm n,k
ém,n,k

where &, ,, » comprises the channel noise and interference and has variance

TTQn,n,k =FE é;knm,kgm,n,k} (516)

k NOBLAER k
_ Ur(n,)n,k + gf’m) gin)n —k + ZZ 1,i#k vgn)n )i + o?

(k) ’2

Assuming &, , 1 is Gaussian distributed?, the LLR for the ¢ bit transmitted to user k on
RE (m,n) is given by

1 a 2
ZcGCqJ exXp <_72 |8m.n.k — | )
m,n,k

LLRm n, (@) =1n
ZCEquo CeXp <_7-2 ! . |§m7n7k - C|2>

(5.17)

5.2.4 Estimation of the Required Statistics

The baselines described above require the knowledge of the covariance matrices 32, €2, and
W which provide the spatial, time, and spectral correlations between the REs carrying pilots.
These matrices can be set based on models or can be empirically estimated by constructing
large datasets of uplink, downlink, and interfering pilot signals, as was done in this Chapter.
The channel estimation error covariances E,, ,,, defined in (5.3), also need to be estimated to

2Similarly to the uplink scenario, this is not true in general.
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compute both the uplink equalization matrices W, , and the downlink precoding matrices

WH . Focusing on REs carrying pilots, the estimation error covariance for a user k is
9

ng()k) —E [vec (ﬁgﬁ)@) vee (I:Igf()k))H]

(5.18)
:2—2<2+02)*12

rr(%)
where H,,

interested in the spatial channel estimation error correlations, whereas (5.18) provides the

y is the channel estimation error at REs carrying pilots. However, we are only

correlations of channel estimation errors between all the receive antennas, subcarriers, and

symbols. For a single pilot position (m,n) € P*) | this spatial correlation matrix is defined by

(k) _ (k) (k) H LxL
E(m,n)e'P(k) =E [(h(m,n)ép(k)> (h(m,n)ep(k)) :| eC ) (519)

(k)
pk) -

approach is used, which sets the value E,, ,, for a RE carrying a data signal to the one of the

and can be extracted from E To estimate E,, ,, for REs carrying data, a nearest-pilot
nearest RE carrying a pilot signal. The so-obtained estimation is denoted by E%’i)n for a RE
(m,n). The overall spatial estimation error covariance matrix for any RE (m,n) is obtained
by summing the estimations for all users:

K
Enn=Y E® ech (5.20)
k=1

The uplink channel and error covariance estimations are depicted in Fig. 5.3.
(k) (k)

m,n,k and Um,n,i’

In the downlink, the estimation error variances v 1 # k for user k are
estimated following a similar procedure, but with only one receive antenna and using the
downlink covariances matrices 2 and W. The resulting quantity is denoted by \A/(k), as shown

in Fig. 5.5.
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Figure 5.6: DL-enhanced receiver architecture. The dotted elements are only present in
the uplink, where the BS jointly processes all users. The dark gray elements are trainable
components.

5.3 DL-enhanced Receiver Architecture

The baselines presented in the previous section have several limitations. Especially, the
NIRE approximation leads to high channel estimation errors for REs that are far from pilots.
Similarly, the grouped equalization can be inaccurate at those REs. This section details the
architecture of a receiver that builds on the presented baseline and uses multiple CNNs to

improve its performance.

5.3.1 Receiver Training

The DL-enhanced receiver architecture is shown in Fig. 5.6, where the trainable components
are represented in dark gray. In the downlink, each user k only performs the channel estimation,
equalization, and demapping of its own signal, and the corresponding components are illustrated
with continuous outlines. However, in the uplink, the BS processes all users in parallel, and
the additional components are delimited with dotted lines. Although the internal processing
of the trainable components might not be interpretable, using multiple DL-based blocks to
perform precise and relatively simple signal processing tasks allows to precisely control which
parts of the receiver are enhanced. Moreover, this approach makes the output of each DL

components easier to interpret, as discussed in Section 5.4.3 for the error statistics E.

Scalability is achieved by using different copies of the same DL components for every user,
where all copies share the same set of trainable parameters. We propose to jointly optimize all
these components based only on the estimated bit probabilities, and not by training each of
them individually. This approach is practical as it does not assume knowledge of the channel
coefficients at training, that can only be estimated through extensive measurement campaigns
for practical channels. Let’s denote by 8 the set of trainable parameters of the DL-enhanced

receiver, and by by, n 14 the transmitted bit (m,n, k, ¢). In the uplink, those parameters are
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Figure 5.7: Example of amplitude and phase for Egi)n

optimized to minimize the total BCE:

K Q-1 R
£2-3 Y Yhuy (1085 (P (b n k] Y))] (5.21)

1 (m,n)€D ¢=0

where D denotes the set of REs carrying data and Py (-|Y) is the receiver estimate of the
posterior distribution on the bits given Y. In the downlink, the receiver parameters are
optimized in a similar manner, except that the signal received by the users is R. The
expectation in (5.21) is estimated through Monte Carlo sampling using batches of Bg samples:

_ L f’; SO S (tom (B (47, YY) (5.22)

i=1 k=1 (m,n)eD q=0

where the superscript [¢] refers to the sth sample in the batch. Following a derivation similar
0 (2.91), the loss (5.21) can be redefined as

3 (Card(D)Q — Cy) (5.23)
£=2

where Card(D) is the number of REs carrying data, Card(D)Q is the total number of bits
transmitted by one user, and C% is an achievable rate for user k:

Q-1
> 2 I bmnpgY) (5.24)

(m,n)eD ¢=0
Q-1 _
- Z Z IEY [DKL (P (bm,n,k,q|Y) ||P0 (bm,n,k,q|Y)>] .
(m,n)eD ¢=0

Minimizing £ therefore maximizes C}, which directly translates to improved BER performances.
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Figure 5.8: DL-enhanced uplink channel estimation.
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Figure 5.9: Detailed view of the downlink Channel Estimation component of user 1 out of
K = 3, as depicted in Fig 5.5.

5.3.2 DL-enhanced Channel Estimator

As seen in Section 5.2.4, the channel estimation error statistics can only be obtained for REs
carrying pilots. However, the estimation accuracy decreases as we move away from them. In
the following, we present CNNs that estimate the channel estimation error covariance matrices

in the uplink and the estimation error variances in the downlink.

Uplink scenario

The DL-enhanced uplink channel estimation architecture is depicted in Fig. 5.8. In this
scenario, the spatial channel estimation error covariance matrices E,, , is needed to compute
both the equalized symbols (5.4) and the uplink post-equalization noise variance (5.8). An
example of the amplitude and phase of an estimate of a covariance matrix Eﬁ is shown
in Fig. 5.7 for a uniform linear array (ULA) of antennas at the BS. One can see that the
amplitude of the coefficients of Eﬁ decays rapidly when moving away from the diagonal.

The phase, on the other hand, exhibits a more surprising pattern, with a phase difference
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of roughly 7 between two adjacent antennas. To predict every element of E® for user k, a
naively designed CNN would need to output M N L? complex parameters. This would be of
prohibitive complexity for any large number of subcarriers, symbols, or receiving antennas.
For this reason, we propose to approximate every element (z,y) of ngb)n with a complex power
decay model:

5 (k)

emnab_amnﬁ

'l exp (j(b - a)) (5.25)

where b — a is the horizontal position difference between that element and the diagonal, and
Qmon, Bmon, and 7y are parameters of this model. For a planar array, one could use such a
model for each dimension, and take their Kronecker product to obtain the spatial channel
estimation error covariance matrices. A constant phase offset between two adjacent REs
is assumed, which matches our experimental observations. The parameters o, ,, and By,
respectively control the scale and the decay of the model, and depend on the RE (m,n).

To estimate those two parameters for each RE, we use a CNN, denoted by CNNg, which
takes four inputs, each of size M x N, for a total input dimension of M x N x 4. CNNg
outputs o, n and B, for every REs, resulting in an output dimension of M x N x 2. The first
two inputs provide the location of every REs in the RG. More precisely, the first input matrix

has all columns equal to [—%, =11 AT ] whereas the second one has all rows equal
to [—%, N T PO %] The thlrd input prov1des the SNR of the transmission and is given

as a matrix SNR - 17«n. Finally, the fourth input is a feature {(¥) € R provided by another
CNN, denoted by CNN;, which was designed with the intuition to predict the time-variability
of the channel experienced by user k. To do so, CNN; uses the channel estimates at REs
carrying pilots to estimate the Doppler and delay spread. Although we cannot be certain that
CNN; effectively learns to extract such information, the evaluations presented in Section 5.4.3

tend to support this hypothesis. CNN; takes an input of dimension |Pys| X |Py| x 2L, which
0y (k)
Pk
It outputs the scalar (), which is fed to CNNg as the matrix [*) - 15,5 n.

corresponds to the stacking of the real and imaginary parts of Hj/, ) along the last dimension.

Downlink scenario

In the downlink, the equivalent channel estimation error variances V*) are needed to
compute Tf,w, i in (5.16). To estimate those variances, we take inspiration from the architecture
presented in Section 5.2 which uses two different downlink covariance matrices {2 and ¥ to
estimate the error variances of the main and interfering channels. Similarly, we use two separate
CNNs, denoted by CNN,, and by CNN,,,, to respectively predict the estimation error variances

of the main channel vﬁn )n 1 and of an interfering channel vfn n.i»t 7 k. Both CNNs take the same

inputs as CNNg but their outputs are of dimension M x N as variances are predicted for all

REs (m,n). To preserve the scalability of the conventional architecture, K —1 copies of CNN,,
~ (k)

R of all K — 1 1nterferers The downlink channel

estimation is schematically shown in Fig. 5.9, where V = {@#fna (m,n)e{0,....M}x{0,...,.N}

are used to estimate the error variances 9

denotes the estimation error variances seen by user k& on ltb main or interfering channel a.
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Figure 5.10: Mismatch between the transmitted signals (orange) and the equalized received
ones (blue) for a single user out of four and using 16-QAM modulation.

5.3.3 DL-enhanced Demapper

A consequence of unperfect channel estimation and equalization is channel aging, which
leads to residual distortion on the equalized signals, as illustrated in Fig. 5.10. The signals
transmitted by a single user out of four are represented in orange, while the corresponding
equalized received signals are shown in blue, assuming spectral channel interpolation only.
This figure has been obtained by sending a large batch of signals using a fixed realization of a
fast-varying channel, and only displays the first two subcarriers of the uplink slot. Moreover,
an infinite SNR is assumed so that only the effects of channel aging and interference are visible.
One can see that the equalized symbols suffer from little distortion and interference at REs
close to the pilots, but these unwanted effects become increasingly stronger at REs that are
away from them.

A traditional demapper, as presented in Section 5.2.2, operates independently on each RE
and therefore only sees one equalized symbol at a time. In contrast, we propose to use a CNN,
called CNNpy,p, to perform a joint demapping of the entire RG. By jointly processing all
equalized symbols, the CNN can estimate and correct the effects of channel aging to compute

Y - : s B\
User 1 Demapping ResNet Layer
Indices —-13m ~ CNNDmp B =
2 |, AP g g £ ]
gl "ol 3 HIE 3
2 F > Z || 5 = || 2 LLRsW 2 =[] 8
N |T1aa 3 Z z. 3 > | = = < raI K
= v - © 3 g © 1 8 & = [ Y[
= > & = z g
5 "i}\[d\‘fl O - g .78;
i (K)
4>[ User K Demapping ]—»LLRS $ )
Figure 5.11: CNN-based uplink demapper. Figure 5.12: ResNet layer.
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CNNg/CNN,, , CNN; CNNpmp
Input size M x K x4 prXNthQL Mx K x6
Parameters || filt. | kern. | dilat. | act. filt. | kern. | dilat. || filt. | kern. | dilat.
Conv2D 32 (5,3) | (1,1) | ReLU || 32 | (1,1) | (1,1) || 128 | (1,1) | (1,1)
ResNet - 32 | (3,2) | (1,1) || 128 | (3,3) | (1,1)
Layer
ResNet - 32 | (5,2) | (2,1) || 128 | (5,3) | (2,1)
Layer
ResNet - 32 | (7,2) | (3,1) || 128 | (7,3) | (3,2)
Layer
ResNet - 32 | (5,2) | (2,1) || 128 | (9,3) | (4,3)
Layer
ResNet - 32 | (3,2) | (1,1) || 128 | (7,3) | (3,2)
Layer
ResNet - - 128 | (5,3) | (2,1)
Layer
ResNet - - 128 | (3,3) | (1,1)
Layer
Conv2D 32 (5,3) | (1,1) | ReLU 1 (3,2) | (1,1) Q | (1,1) | (1,1)
Conv2D 2/1|(1,1) | (1,1) | Sigm. - -
Output - Dense, units = 1 -
Layer
Output Mx K x2/Mx K x1 1 Mx K xQ
size

Table 5.1: Parameters of the different CNNs.

better LLRs. The input of CNNpy,, is of dimension M x N x 6 and carries the subcarriers and
symbol indices for each RE, the SNR, the real and imaginary parts of the equalized symbols,
and the post-equalization channel noise variances. The output of CNNp,,, has dimensions
M x N x @ and corresponds to the predicted LLRs® over the RG for a user k. As with a
conventional receiver, the demapping is performed independently for each user to make the
architecture easily scalable. The CNNp,,, demapper is shown in Fig. 5.11, which depicts the
uplink demapping process.

5.3.4 CNN Architectures

All CNNs presented above share the same building blocks: convolutional 2D layers, dense
layers, and custom ResNet layers. The custom ResNet layers, inspired by [84], consist of

a batch normalization layer, a ReLLU, a 2D separable convolutional layer, and finally the
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Figure 5.13: Architecture of CNNg. Figure 5.14: Architecture of CNN;.

addition of the input, as depicted in Fig. 5.12. Separable convolutions are less computationally
expensive while maintaining similar performance as regular convolutional layers [31]. CNNg,
CNN,,, and CNN,, are all made of three 2D convolutional layers, as shown in Fig. 5.13
for CNNg. The first two layers are followed by a ReLU activation function, while the last
layer is followed by a sigmoid activation function. CNNp,,, and CNN also share a similar
architecture, depicted in Fig. 5.11 and Fig 5.14, respectively. Both are composed of a 2D
convolutional layer, followed by multiple ResNet layers and a 2D convolutional layer. CNN ¢
outputs a single scalar, which is ensured by using a dense layer with a single unit and no
activation function as output layer. Inspired by [81], we used increasing followed by decreasing
kernel sizes and dilation rates to increase the receptive field of the CNN. All convolutional
and separable convolutional layers use zero-padding so that the output dimensions matches
the input dimensions. Details of the architectures of all CNNs are given in Table 5.1.
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Parameters Symbol (if any) Value

Number of users K 4 (2 in high speed downlink)
Number of antennas at the BS L 16

Number of subcarrier N 72 = 6 resource blocks
Number of OFDM symbols M 14 (uplink) + 14 (downlink)
Bit per channel use Q 4 bit (uplink), 2 bit(downlink)
Center frequency - 3.5 GHz
Subcarrier spacing - 15kHz

Scenario - 3GPP 38.901 UMi NLOS
Code length - 1296 bit

Code rate n 3 (uplink), & (downlink)
Learning rate - 1073

Batch size Bg 27 RGs

Table 5.2: Training and evaluation parameters.

5.4 Evaluations

In this section, the proposed DL-enhanced receiver is evaluated and compared against two
baselines: the one presented in Section 5.2 as well as a perfect CSI baseline that will be detailed
later on. The training and evaluation setups are first introduced, followed by evaluations of
the uplink and downlink performance for the 1P and 2P pilot patterns from Fig. 5.1.

5.4.1 Training and Evaluation Setup

For realistic training and evaluation, the channel realizations were generated with QuaDRiGa
version 2.0.0 [85]. It has been experimentally observed in [81] that a receiver trained on certain
scenarios was able to generalize to other channel models. For this reason, we only focus on
the 3GPP non-line of sight (NLOS) UMi scenario [94]. The number of users was set to K = 4,
except for the downlink at high speeds where it was reduced to K = 2, and the number of
antennas at the BS was set to L = 16. All users were randomly placed within a 120° cell
sector, with a minimum distance of 15m and a maximum distance of 150 m from the BS. The
user and BS heights were respectively set to 1.5 m and 10m. The RGs were composed of six
resource blocks for a total of N = 72 subarriers, with a center frequency of 3.5 GHz and a
subcarrier spacing of 15kHz. Both the uplink and downlink slots contained M = 14 OFDM
symbols. A Gray-labeled QAM was used with ) = 4 bits per channel use on the uplink and
() = 2 bits per channel use on the downlink. The receivers were trained and evaluated on users
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moving at independent random speeds. Three ranges of low speeds were considered with the
1P pilot pattern: 0 to 15kmh~", 15 to 30kmh~!, and 30 to 45km h~'. Similarly, three high
speed ranges were considered with the 2P pilot pattern: 50 to 70kmh~!, 80 to 100kmh~?!,
and 110 to 130kmh~!. We noticed that CNN ¢ was not able to extract useful information
when using the 1P pattern, and therefore was not used in the corresponding trainings and
evaluations. For equalization, the grouped-LMMSE equalizer operated on groups of 2 x 7 REs,
following the segmentation delimited by the thick black line of the 2P pattern in Fig. 5.1c.
The training and evaluation parameters are given in Table 5.2.

Separate training sets were constructed for the 1P and 2P pilot pattern, both made of
channel realizations corresponding to 1000 RGs of each respective user speed range, for a total
of 3000 RGs per training dataset. Evaluations were performed separately for each user speed
range with datasets containing 3000 RGs. A standard IEEE 802.11n low-density parity-check
(LDPC) code of length 1296 bit [95] was used, with code rates of = 1 and n = % for uplink
and downlink transmissions, respectively. Decoding was done with 40 iterations using a
conventional belief-propagation decoder. To satisfy the perfect power assumption in (5.1),

each RG was normalized to have an average energy of one per antenna and per user, i.e.,

2M N
S 3 ), 3 =2MNL. (5.26)
m=1n=1

Each training was carried out using batches of size Bg = 27 so that the total number of
bits transmitted for each user was a multiple of the code length. The trainable parameters
0 were all initialized randomly except for v in (5.25) that was initialized with 7. Training
was done through SGD using the Adam [30] optimizer and a learning rate of 1073. The best

performing random initialization out of ten was selected.

5.4.2 Uplink Simulation Results

Different schemes were benchmarked in the uplink simulations. The first one is the uplink
baseline presented in Sections 5.2.2 and 5.2.4. The second one, named ‘DL channel estimator’,
uses the DL-enhanced channel estimator presented in 5.3.2 but is trained and tested with a
standard demapper. The third one is the DL-enhanced receiver, leveraging both the enhanced
channel estimator and demapper. We refer to it as ‘DL receiver’. Evaluating the DL channel
estimator separately allows us to better understand the role both components play in the
observed gains. An ideal baseline with perfect knowledge of the channel at the REs carrying
pilots and of E is also considered, and referred to as ‘Perfect CSI’. All schemes used spectral
interpolation followed by NIRE approximation for channel estimation. Additional simulations
were conducted for the 2P pilot pattern using spectral and temporal interpolation for both
the baseline and the DL receiver. Finally, a DL receiver trained with only K = 2 users was
also evaluated to study the scalability of the system.

Simulation results for the 1P pattern are shown in the first column of Fig. 5.15 for the

three different speed ranges. At speeds ranging from 0 to 15kmh~', one can see that the DL
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Figure 5.15: Uplink BER achieved by the different receivers with the 1P and 2P pilot patterns.
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channel estimator does not bring any improvements, whereas the DL receiver achieves a 1dB
gain at a coded BER of 1073. The benefit of having a better estimation of E becomes more
significant as the speed increases. At the highest speed range (Fig. 5.15¢), the DL receiver
enables gains of 3dB over the baseline at a coded BER of 1072. It can be observed that the
DL receiver trained with only two users nearly matches the performance of the one trained
with four users on all considered speeds, demonstrating the scalability of the proposed scheme
with respect to the number of users.

Results for the 2P pilot pattern are shown in the second column of Fig. 5.15. The gains
provided by the DL channel estimator alone and by the entire DL receiver follow the same trend
as with the 1P pattern, with moderate gains at 50-70 km h~!, but significant improvements at
110-130km h~!. More precisely, the DL receiver provides a 1dB gain over the baseline at a
coded BER of 1073 in the 50-70 km h~! range, and is the only scheme that achieves a coded
BER of 1072 for the highest speeds with spectral interpolation only. Indeed, at high speeds,
the learned demapper is still able to mitigate the effects of channel aging, whereas even the
perfect CSI baseline suffers from strongly distorted equalized signals. Using both spectral and
temporal interpolations reduces the gains provided by the DL receiver, which can be explained
by the better channel estimates leading to less channel aging, but they still amount to a 2.2dB
gap at a BER of 1072 for the highest speeds. We have also experimentally verified that a DL
receiver trained with only K = 2 users was able to closely match the performance of the one
trained with K = 4, but decided not to include the corresponding curves for clarity reasons.
Overall, one can see that only the combination of a CNN-based estimation of the channel
estimation error statistics and CNN-based demapper enables gains for both pilot patterns and
all speed ranges.

5.4.3 Visualizing the Channel Estimation Error Statistics

In order to get insights into the DL channel estimator abilities, we visualize the channel
estimation error covariance matrices E for different user speeds. Two batches of uplink signals
were sent, with users respectively moving at 60 km h~! and 120 km h—!. All batches comprised
90 RGs, and used the 2P pilot pattern with an SNR of 5dB. The Frobenius norms ||E;, ,,||¢

~
[Em.n e —|[Em.n|le
[[Em,n|lr

corresponding to all REs are shown in Fig. 5.16, and the normalized errors

are shown in Fig. 5.17. The figures labeled as ‘Predicted’ refers to the estimations f}mn
produced by the DL channel estimator and averaged over the corresponding batches, using
spectral interpolation only. As expected, the Frobenius norms of the REs carrying data
strongly depend on their distance to their closest pilot, reflecting the distortions visible in
Fig. 5.10b. The figures labeled as ‘True’ are presented for reference, and are computed by
Monte Carlo simulations assuming knowledge of the true channel realizations. One can see that
the normalized errors are low on REs carrying data, confirming that CNNg is able to learn the
channel estimation error statistics from the data during training. The higher errors on REs
carrying pilots are due to the loss (5.22) taking solely into account the positions (m,n) € D,
giving no opportunities for CNNg to learn the statistics at pilot positions. Experiments

95



5 DL-enhanced Receive Processing for MU-MIMO Systems

Predicted True Predicted True
1.2
0.7
10 10 10
1 0.6
20 20 20
0.5
30 30 08 30
0.4
40 40 0.6 40
0.3
50 50 50
0.4 0.2
60 60 60
0.1
0.2
70 70 70 0
5 10 5 10 5 10 5 10
(a) 60kmh~1 (b) 120kmh~1 (a) 60kmh='  (b) 120kmh~!
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Figure 5.18: Amplitude and phase of E7736 and E7 3¢ for a single realization of the channel at
120kmh~1,
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conducted using both spectral and temporal interpolation yielded higher normalized errors,
probably because the increased accuracy of the channel estimates results in a more difficult
learning of the error statistics. Additionally, CNN; seems to correctly estimate the time-
variability of the channels since the Frobenius norms of the predicted covariances increase
with the user speed, matching the behavior of the true covariances.

It is also insightful to look at the predicted and true spatial covariance matrix for a single
RE. We chose to focus on the RE (7,36), positioned at the center of the OFDM grid, and
on the 120km h~! scenario (Fig. 5.16b). The amplitudes and phases of all elements of E7,36
and E7 36 are shown in Fig. 5.18a and 5.18b. One can see that the predicted amplitudes and
phases are close to the true ones, thus supporting the proposed power decay model.

5.4.4 Downlink Simulation Results

Four downlink schemes were evaluated on the considered speed ranges. The first one is the
baseline presented in Section 5.2. In the second one, referred to as ‘DL channel estimator’,
each user uses the enhanced channel estimator of Section 5.3.2 and is trained and tested with
a standard demapper. The third one is the DL-enhanced receiver using both the enhanced
channel estimator and DL demapper for each user, and is referred to as ‘DL receiver’. The
last scheme has perfect CSI, i.e., all users( ;))erfectly 1({1)1OW both the channel at REs carrying
k k

and v, . . everywhere. All schemes use the 2P

pilots and the estimation error variances Uk i

pilot pattern to perform the uplink channel estimation, but are evaluated on both patterns in
the downlink. Similarly to the uplink, all schemes leveraged spectral interpolation with NIRE
approximation for channel estimation, but additional simulations were performed with the
2P pilot pattern using spectral and temporal interpolation for both the baseline and the DL
receiver. A DL receiver trained with only K = 2 users was also evaluated on the three slowest
speed ranges to study the scalability of the system.

The 1P pilot pattern downlink evaluations are shown in the first row of Fig. 5.19. Between
0 and 15kmh~!, all schemes achieve good results but the DL receivers are the only ones to
not saturate at high SNRs. As expected, the gains allowed by the learned channel estimator
and demapper increase with the speed, and the DL receiver is the only scheme to reach a
BER of approximately 1073 in the 30-45 km h~! speed range. It can also be observed that the
DL receiver trained with only K = 2 users is able to closely match the performance of the DL
receiver trained with four users. The 2P pilot pattern evaluations are shown in the second row
of Fig. 5.19 for higher speeds. In this new setup, the DL receiver outperforms the baseline by
1.1dB at a BER of 1072 in the speed range 50-70 kmh~!, and is the only one with spectral
interpolation only to achieve a BER of 1073 in the speed range 70-90kmh~!. Using both
spectral and temporal interpolations, the DL receiver still provides significant gains at high
speeds, being the only one to achieve a BER of 1073 in the 110-130km h~! speed range.

In all downlink scenarios except for the slowest speed range, the DL channel estimator

outperforms the perfect CSI baseline. This can be surprising since this baseline uses the exact

®)  ond o®

noise variances vm,n,k mn

. while the DL schemes can only estimate them. We suppose
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Figure 5.19: Downlink BER achieved by the receivers with the 1P and 2P pilot patterns.
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that this is because the baselines assume that the post-equalization downlink noise &, , 1 in
(5.15) is Gaussian distributed and uncorrelated to the transmitted signal, which is typically
untrue. The DL channel estimator seems able to learn this model mismatch during training
and predict variances that counteract it.
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5.5 Concluding Thoughts

A new hybrid strategy to the design of DL-enhaced MU-MIMO receivers was proposed in
this chapter. Our architecture builds on top of a traditional MU-MIMO receiver and enhances
it with DL components that are trained to maximize the end-to-end performance of the system.
More precisely, CNNs are used to improve both the demapping and the computation of the
channel estimation error statistics. All components of the proposed architecture are jointly
optimized to refine the estimation of the LLRs. This approach does not require any knowledge
of the channel for training, is interpretable, and easily scalable to any number of users. Uplink
and downlink evaluations were performed with multiple user speeds and two different pilot
configurations on 3GPP-compliant channel models. The results reveal that the proposed
architecture effectively exploits the OFDM structure to achieve tangible gains at low speeds
and significant ones at high speeds compared to a traditional receiver. On the one hand, the
enhanced demapper jointly processes all REs of the OFDM grid to counteract the effects of
channel aging. On the other hand, we demonstrated that the enhanced channel estimator is
able to learn its error statistics during training. In order to get insights into the improvements
enabled by each of the trainable components, we also evaluated a conventional structure where
only the channel estimator was enhanced. The results indicate that the combined use of both
the DL channel estimator and demapper is key to achieve a substantial reduction of the coded
BERs across all scenarios.

We believe that such architectures, enabling performance improvements while remaining
standard-compliant and reasonably complex, could be deployed in BSs for the next generation
of wireless communication systems. However, it has be shown that additional gains can be
still be achieved with a fully NN-based receiver that jointly processes all users [82], in contrast
to our approach in which they are processed independently. Unlocking these gains while
preserving the flexibility and interpretability of conventional architectures remains a significant
challenge that is yet to be solved.
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Summary of contributions

Over the course of this manuscript, we studied three strategies that aim at bringing the
benefits of DL to the physical layer of communication systems. The first strategy, that we
referred to as the NN-based block optimization, was used to design an NN that could replace
current MU-MIMO detectors. Available works often exploit the deep unfolding approach,
in which a traditional iterative receiver algorithm is unfolded and trainable parameters are
inserted. Among these works, the MMNet detector showed impressive gains, but had to
be retrained for each new channel realization. We therefore proposed in Chapter 3 to use
a second NN, the hypernetwork, that takes as input a channel realization and generates a
set of optimized parameters for an MMNet-based detector. To reduce the complexity of
the system and the number of parameters that must be estimated, we both leveraged the
QR-decomposition of the channel matrix and adopted a relaxed form of weight sharing. The
hypernetwork training was carried out by backpropagating the gradients through the MMNet
detector up to the hypernetwork trainable parameters. Simulation result demonstrated that the
resulting architecture, referred to as HyperMIMO, achieves near state-of-the-art performance
as long as the channel statistics does not change significantly. Other works subsequently
reduced or eliminated some HyperMIMO downsides, for example by enabling scalability to
any number of users and performance improvements on a wider range of channels. But these
detectors are still trained to optimize their own performance only, which does not guaranty
any system-level optimality.

The second strategy, in which the system is optimized end-to-end by implementing the

transceivers as NNs, was discussed in Chapter 4. It allows for a deeper optimization of the
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transmit and receive processing since it does not have to comply with existing protocols. We
applied this approach to the design of OFDM waveforms tailored for specific needs. Specifically,
we derived an NN architecture and a corresponding training algorithm that maximize an
achievable rate while satisfying PAPR and ACLR constraints. This was achieved by expressing
the objective and the constraints as differentiable functions that can be minimized using
SGD. The constrained optimization problem was then solved using the augmented Lagrangian
method. Numerical results demonstrated the effectiveness of the proposed approach, with
trained systems that meet ACLR and PAPR targets, does not require pilot signals, and
achieve throughputs comparatively higher than a TR baseline. These gains are driven by the
emergence of new high-dimensional and asymmetrical constellations, in which the position and
the energy associated with each symbol is a function of the subcarrier index and of all other
symbols transmitted simultaneously. Although promising, the corresponding transmitter and
receiver are too complex for any short-term implementation, does not satisfy current standards,
and are limited to SISO transmissions. These limits pave the way for future research.
Finally, a third hybrid strategy was proposed in Chapter 5, and consists in inserting DL
components into a traditional architecture that is trained in an end-to-end manner. We
leveraged this strategy to enhance a conventional MO-MIMO receiver with three CNNs. The
first and second ones learn the channel estimation error statistics from the data, which improve
the symbol detection accuracy. The third one performs the bit demapping on the entire RG
so that it can estimate and correct the distortions present on the equalized symbols. The
end-to-end training also allows the system to be optimized on an achievable transmission
rate. Simulations were performed with 3GPP-compliant channels with different speed ranges
and two pilot patterns. The results indicate that our receiver achieves gains across all
scenarios, both in uplink and downlink, and especially at high speeds. More importantly,
it preserves the scalability of conventional architectures, and is composed of components
that are individually interpretable and of reasonable complexity. Such systems, trained to
handle multiple modulations and pilot patterns, could become standard-compliant as the DL
components are only inserted in the receiver. Finally, and in contrast to many comparable
works, perfect channel estimates are not needed during training. Overall, this strategy seems

more suitable for practical use in the near future.

Future directions

The deployment of DL in the physical layer will probably be conducted in several phases.
The first one corresponds to the integration of DL-based blocks into traditional BS receivers,
trained following either the block-based or the hybrid strategy. The success of this integration
is first tied to the availability of dedicated DL accelerators that can run at sufficient speeds.
Fortunately, such processing units are already being designed to be implemented on BSs, where
the constraints on the chip size and energy consumption are less stringent than on mobile
devices. But DL is first and foremost about data, so that the gains provided by its integration
are also tied to our capacity to build sufficient datasets. Indeed, most published works focus on
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off-line training using channel simulators, which might not be representative of every scenario
that will be encountered in real life. Collecting representative datasets from many diverse
environments is therefore essential to ensure the reliability of these DL components.

These challenges are exacerbated on mobile devices, in which the integration of DL might
correspond to a second deployment phase. To limit the amount of on-device computations,
DL components will probably be trained in a centralized manner. This both requires that
data be regularly collected from the devices and that updated parameters be transferred to
them. On the one hand, such periodic data transfers will generate energy and bandwidth
consumption, in addition to raising confidentiality and privacy concerns. On the other hand,
they will enable more flexible communications, as the transceivers could be adapted to any
specific hardware and environment. This should lead to improved gains since the DL models
will be able to embrace distortions and channel specificities that are not present in traditional
models. Such flexibility and adaptability are especially interesting for upcoming 6G networks,
which are expected to support a wide range of use-case such as vehicular communications or
small-scale sub-networks.

The increasing availability of DL accelerators at both ends of the transmission should
eventually allow the emergence of fully NN-based transceivers, trained using the end-to-end
strategy. Many predict that this third phase will simplify the set of different options and
parameters used in current standards, as each transmitter-receiver pair could be continuously
optimized to maximize its performance. However, the benefits provided by NN-based systems
are jointly tied to the chosen NN architectures, training procedures, and to the quality of the
available data. In industry sectors in which Al already plays an important role, such as voice
assistants or autonomous driving, companies are usually reluctant to give any details about
their specific NNs since they are at the core of their technical advances. The joint training of
transmitters and receivers designed by different manufacturers therefore represents another
major challenge for the telecommunication industry. Future standards need to shift from
regulating the behavior of communication algorithms to allowing the end-to-end optimization
of NN-based systems. Shared datasets and procedures will also be needed to enable proper
testing, as the black-box nature of NNs prevents the derivation of the performance guarantees
traditionally offered by model-based systems.

In its Ph.D.dissertation published in 2000, Joseph Mitola III described the concept of
cognitive radio as “the point in which wireless personal digital assistants (PDAs) and the
related networks are sufficient