
HAL Id: tel-03636882
https://hal.science/tel-03636882

Submitted on 11 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling and Verification of Systems with Uncertainties
Benoit Delahaye

To cite this version:
Benoit Delahaye. Modeling and Verification of Systems with Uncertainties. Formal Languages and
Automata Theory [cs.FL]. Université de Nantes, 2020. �tel-03636882�

https://hal.science/tel-03636882
https://hal.archives-ouvertes.fr


HABILITATION À DIRIGER DES RECHERCHES DE

L’UNIVERSITÉ DE NANTES
COMUE UNIVERSITÉ BRETAGNE LOIRE

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Benoît DELAHAYE

Modeling and Verification of Systems with Uncertainties

Habilitation présentée et soutenue à Nantes, le 10 décembre 2020
Unité de recherche : LS2N CNRS UMR 6004

Rapporteurs avant soutenance :

Béatrice Bérard Professeur émérite, Université Pierre et Marie Curie
Pedro R. D’Argenio Professeur, Nacional Universidad de Córdoba
Holger Hermanns Professeur, Saarland University

Composition du Jury :
Attention, en cas d’absence d’un des membres du Jury le jour de la soutenance, la composition du jury doit être revue pour s’assurer
qu’elle est conforme et devra être répercutée sur la couverture de thèse

Président : Colin De La Higuera Professeur, Université de Nantes
Examinateurs : Christel Baier Professeur, Technische Universität Dresden

Béatrice Bérard Professeur émérite, Université Pierre et Marie Curie
Patricia Bouyer-Decitre Directrice de Recherche, CNRS, Ecole Normale Paris Saclay
Pedro R. D’Argenio Professeur, Nacional Universidad de Córdoba
Holger Hermanns Professeur, Saarland University





"I, at any rate, am convinced that [God] does not throw dice".
Albert Einstein

3





ACKNOWLEDGEMENT

First, I would like to thank my reviewers and Jury. I am truly honoured that scientists whom I
admire and respect, both for their scientific contributions and for their personality, have accepted
to review my work and listen to my presentation. I could not have dreamt of a better jury.

I would also like to thank all my co-authors, without whom this document would be much shorter.
In particular, I would like to thank my former Ph.D. students and postdocs: Amine, Eva, Dimitri,
Hadrien and Paulin. It has been an honour working with you, and although none of you have (yet)
pursued in Academia, it would be my pleasure to work again at your side. Thank you Anicet for
the great work we did together. Although you were not officially my Ph.D. student, I would have
been proud to consider you as such. There are of course too many names to cite here, but I will
insist on a few names: Thank you Etienne for making me part of the ANR PACS crew, and also
for the time spent on PIPTAS (what a name...). Thank you Didier for always being available for
scientific (or non-scientific) discussions and also for the prank you played at QEST’17 – I will
remember. Thank you Kim for taking me as a postdoc and spending a lot of your precious time
working with me.

Thank you to all my colleagues at LS2N and beyond (who also might be co-authors, but I hope
they can forgive me for thanking them twice). I spend more than half of my days at work and
I could not do so without you. In particular, thank you to the AeLoS team for taking me in,
thank you to Christian for being the best team leader ever, thank you to Arnaud and Charlotte
for being the best officemates ever, thank you to Pascal for so many great discussions (and
also for proof-reading this manuscript), and of course thank you to Claude for pushing me
to apply in Nantes and supporting me since: best idea ever. Thank you Colin for making me
welcome in Nantes (I will remember the first words you ever said to me: “Toi, c’est les automates
probabilistes”). Thank you to the ComBi team for giving me so many occasions to drink beers:
Audrey, Géraldine, Guillaume (who also proof-read this manuscript), Jérémie, Samuel. A special
thank you to Damien E. for so many trips, beers, discussions, coffee-breaks, and often all of
them at once. Thank you for your enthusiasm and for convincing me that model-checking and
verification can be interesting to others than computer-scientists. I know we don’t agree on the
nature of probabilities, but it will be my pleasure to try to convince you again over our next beer.

5



Merci à mes collègues du département informatique, en particulier à ceux qui se sacrifient pour
prendre les responsabilités dont personne ne veut : Emmanuel, Eric, Laura, Salima. . .
Je tiens aussi à remercier les nombreux et nombreuses collègues qui font en sorte que nous puis-
sions faire notre travail dans les meilleures conditions, qui nous simplifient la vie au maximum et
réparent nos bêtises : Anne-Françoise, Annie, Elodie, Caroline, Charlery, Christine, Damien V.,
Jean-Yves, Karine, Marion, Sophie, Virginie, Vivian et j’en oublie probablement. . .

Finalement, un grand merci à mes amis et à ma famille, qui me supportent et me soutiennent en
permanence depuis toujours.

6



TABLE OF CONTENTS

List of Tables and Figures 10

Introduction 13
Modeling with uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Automated verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Contributions in the past 10 years . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Outline of the document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1 Parametric interval Markov chains 23
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3 Markov chain abstractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.3.1 Existing MC abstraction models . . . . . . . . . . . . . . . . . . . . . 30

1.3.2 Abstraction model comparisons . . . . . . . . . . . . . . . . . . . . . 36

1.4 Qualitative properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.4.1 Existential consistency . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.4.2 Qualitative reachability . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.5 Quantitative properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.5.1 Equivalence of all semantics w.r.t quantitative reachability . . . . . . . 42

1.5.2 Constraint encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.6 Prototype implementation and experiments . . . . . . . . . . . . . . . . . . . 46

1.6.1 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.6.2 Constraint modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

1.6.3 Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1.8 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2 A Probabilistic Extension for Event-B 57
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7



TABLE OF CONTENTS

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.2.1 Transition systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.2.2 Event-B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.2.3 Refinement in Event-B . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.3 Running example: Simple peer-to-peer protocol . . . . . . . . . . . . . . . . . 66

2.4 Fully probabilistic Event-B . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.4.1 Introducing probabilistic choices . . . . . . . . . . . . . . . . . . . . . 71

2.4.2 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.4.3 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.5 Introducing probabilities in event-B models through refinement . . . . . . . . . 81

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.7 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3 Statistical Model Checking for Parametric Systems 93
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.2.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.2.2 Parametric Markov chains . . . . . . . . . . . . . . . . . . . . . . . . 97

3.3 Approximation in parametric Markov chains . . . . . . . . . . . . . . . . . . . 98

3.3.1 Standard Monte-Carlo analysis . . . . . . . . . . . . . . . . . . . . . . 99

3.3.2 Parametric estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.3.3 Parametric confidence intervals . . . . . . . . . . . . . . . . . . . . . 102

3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.4.1 Toy example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.4.2 Zeroconf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.4.3 The crowds protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.5 Application to UAV flight plan analysis . . . . . . . . . . . . . . . . . . . . . 107

3.5.1 Context of the case-study . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.5.2 Building a formal model of a UAV . . . . . . . . . . . . . . . . . . . . 109

3.5.3 Safety zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.5.4 Drone components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.5.5 Implementation, experimentations and results . . . . . . . . . . . . . . 113

3.6 Potential improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.6.1 Choice of normalization function . . . . . . . . . . . . . . . . . . . . 116

8



TABLE OF CONTENTS

3.6.2 Modification of the structure . . . . . . . . . . . . . . . . . . . . . . . 117
3.6.3 Complement of the property . . . . . . . . . . . . . . . . . . . . . . . 118

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.8 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4 Learning and Verification of Graphical Event Models 121
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.2.1 Statistical model checking . . . . . . . . . . . . . . . . . . . . . . . . 123
4.2.2 Graphical event models . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.3 Learning, sampling and comparing RTGEMs . . . . . . . . . . . . . . . . . . 134
4.3.1 Learning RTGEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.3.2 Sampling RTGEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.3.3 Distance between RTGEMs . . . . . . . . . . . . . . . . . . . . . . . 137

4.4 Experimentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.4.1 RTGEM learning performance . . . . . . . . . . . . . . . . . . . . . . 140
4.4.2 Statistical model checking RTGEM . . . . . . . . . . . . . . . . . . . 142
4.4.3 Testing the proposed strategy . . . . . . . . . . . . . . . . . . . . . . . 145

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
4.6 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Perspectives 155

Bibliography 159

A Résumé en Français 175

B Main definitions and notations 177

9



LIST OF TABLES AND FIGURES

1.1 MC example: M1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.2 pMC example: I ′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.3 IMC example: I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.4 Illustration of |=d
I using MC M2 . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.5 Illustration of |=a
I using MC M3 . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.6 Illustration of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.7 pIMC example: P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.8 IMC I with three pMCs P1, P2, and Pn. . . . . . . . . . . . . . . . . . . . . . 37

1.9 MCs satisfying the IMC and/or one of the pMCs of Figure 1.8. . . . . . . . . . 37

1.10 Variables of the CSP encoding for existential consistency . . . . . . . . . . . . 40

1.11 Example of solution to the CSP encoding for existential consistency . . . . . . 40

1.12 Non-equivalence of the semantics for other properties than reachability . . . . . 43

1.13 Constraint encodings for quantitative reachability . . . . . . . . . . . . . . . . 47

1.14 Qualitative properties verification benchmark . . . . . . . . . . . . . . . . . . 48

1.15 Quantitative properties verification benchmark . . . . . . . . . . . . . . . . . . 49

1.16 Characteristics of the four CSP encodings SotA, C∃c, C∃r, and C∃r̄. . . . . . . 49

1.17 Comparison of sizes, encoding, and solving times for three approaches . . . . . 50

1.18 Comparing encoding time for the existential consistency problem . . . . . . . . 51

1.19 Comparing solving time for the existential consistency problem . . . . . . . . . 52

1.20 Comparing solving time between SMT and MILP formulations . . . . . . . . . . 53

1.21 Comparison of solving times between qualitative and quantitative encodings. . 53

2.1 How to introduce probabilities within Event-B . . . . . . . . . . . . . . . . . . 59

2.2 Initial Event-B model of the simple P2P protocol . . . . . . . . . . . . . . . . 67

2.3 First refinement of the simple P2P protocol . . . . . . . . . . . . . . . . . . . 68

2.4 Extract of the transition system of the first refinement of the simple P2P protocol 69

2.5 Second refinement of the simple P2P protocol . . . . . . . . . . . . . . . . . . 70

2.6 Extract of the transition system of the second refinement of the simple P2P protocol 70

2.7 Probabilistic version of the simple P2P protocol . . . . . . . . . . . . . . . . . 74

10



TABLE OF CONTENTS

2.8 Detailed construction of the MC of the simple P2P protocol . . . . . . . . . . . 79

2.9 Extract of the MC of the simple P2P protocol . . . . . . . . . . . . . . . . . . 81

2.10 Illustration of the necessity of bounding event weights . . . . . . . . . . . . . 85

2.11 Illustration of the necessity of bounding event parameter values . . . . . . . . . 86

2.12 Decrease of the variant in the MC of the simple P2P protocol . . . . . . . . . . 88

3.1 pMC example: M1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.2 MC M v
1 resulting from the valuation of M v

1 . . . . . . . . . . . . . . . . . . . 99

3.3 Probability of reaching State 4 in pMC M1 . . . . . . . . . . . . . . . . . . . . 104

3.4 Graphical representation of the memory consumption . . . . . . . . . . . . . . 104

3.5 Extension of M1 with 101 parameters . . . . . . . . . . . . . . . . . . . . . . 105

3.6 Comparison of our implementation and PARAM for the zeroconf model . . . . 106

3.7 Comparison of our implementation and PARAM for the Crowds protocol model 107

3.8 Safety zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.9 Attitude coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.10 Flight Control overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.11 Issue on drone location and misleading positions . . . . . . . . . . . . . . . . 111

3.12 Global behaviour of the FCS . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.13 Results of the experiments on the UAV flight plan analysis . . . . . . . . . . . 114

3.14 A simple pMC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.15 Impact of the normalization function on the size of confidence intervals . . . . 116

4.1 Example showing the decomposition of a timeline into marked point processes 126

4.2 Example of a 4 labels GEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.3 Example of a 4 labels TGEM . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.4 Illustration of elementary sampling techniques for RTGEMs . . . . . . . . . . 136

4.5 Illustration of SCCs and Topological order for sampling RTGEMs . . . . . . . 136

4.6 Influence of sample size and model complexity on leraning time . . . . . . . . 141

4.7 Comparison of the quality of learning RTGEMs with different complexities . . 142

4.8 The RTGEM M1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.9 Quantitative SMC of query ϕ1 on M1 . . . . . . . . . . . . . . . . . . . . . . . 144

4.10 Qualitative SMC of query ϕ1 on M1 . . . . . . . . . . . . . . . . . . . . . . . 144

4.11 Illustration of the experimental protocol . . . . . . . . . . . . . . . . . . . . . 146

4.12 Calibration of the SMC techniques . . . . . . . . . . . . . . . . . . . . . . . . 147

4.13 The learned model Mo
OK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

11



TABLE OF CONTENTS

4.14 Results of the first test on Mo
OK . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.15 The learned model Mo
KO1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.16 The proximal secure model M∗KO1

. . . . . . . . . . . . . . . . . . . . . . . . 149
4.17 Performances of the algorithm applied on the set of data KO1 . . . . . . . . . . 149
4.18 Results of the second test on Mo

KO1
. . . . . . . . . . . . . . . . . . . . . . . . 149

4.19 The learned model Mo
KO2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
4.20 The first proximal secure model M∗KO21

. . . . . . . . . . . . . . . . . . . . . . 151
4.21 The second proximal secure model M∗KO22

. . . . . . . . . . . . . . . . . . . . 151
4.22 Performances of the algorithm applied on the set of data KO2 . . . . . . . . . . 151
4.23 Results of the third test on Mo

KO2
. . . . . . . . . . . . . . . . . . . . . . . . . 151

12



INTRODUCTION

Science is a systematic enterprise that builds and organizes knowledge in
the form of testable explanations and predictions about the universe. [. . .]
Modern science is typically divided into three major branches that con-
sist of the natural sciences (e.g., biology, chemistry, and physics), which
study nature in the broadest sense; the social sciences (e.g., economics,
psychology, and sociology), which study individuals and societies; and
the formal sciences (e.g., logic, mathematics, and theoretical computer
science), which study abstract concepts. [. . .]

Science1

As one can see from the above definition, the aim of Science, in general, is to gather and organize
knowledge about given objects of study (which we will call systems in the rest of the document).
As varied as these systems can be, a common concept is used across all modern science branches
in order to represent our understanding of these systems: the concept of model. A model is in fact
the abstract representation that is carefully built from the gathered knowledge on the system and
then used instead of the system itself in order to perform analyses or prediction. When a scientist
studies a system through its model, his/her goal is to draw conclusions/predictions about the
system itself that are as little biased as possible by the abstraction performed to obtain the model
from the “real” system or the perception of it. Although a model is by definition necessarily
imperfect, as it is an abstraction that only reflects our understanding (or point of view) of the
system, the aim of scientists is to make it as accurate (i.e., faithful to the system) as possible
while preserving our ability to use it in our studies. Unfortunately, these two goals are usually
antinomic: the more precise the model is, the more difficult it is to use for prediction and analysis
for computational reasons.

While natural and social sciences mostly use models as a tool for representing and analyzing
given systems, some branches of formal sciences consider the models themselves as their objects
of study. For instance, some branches of theoretical computer science are dedicated to developing

1. Taken from https://en.wikipedia.org/wiki/Science
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Introduction

languages, formalisms, theories, techniques and tools to build and analyze models, with a priori

no restriction on the systems these models represent. This is the broad context in which the
contributions presented in this document lie.

Modeling with uncertainties

As explained above, the point of modeling a given system is to represent the knowledge we have
of this system and use the model for analysis or prediction. Most of the time, the knowledge we
have is incomplete, which is the reason why analysis is required in the first place. There are then
two ways to account for this incomplete knowledge: (1) Deterministic modeling and (2) Modeling

with uncertainties. Deterministic modeling amounts to only including in the models what is
known about the systems, while abstracting away all that is unknown. In this case, the model is
an imperfect abstraction of the system and the modeler knows that the results obtained through its
analysis might be imperfect themselves, without specific information about these imperfections.
On the other hand, modeling with uncertainties amounts to including the uncertainties we have
about the system inside of the model. In this case, the model is an abstraction of the imperfect
system perception and its analysis yields information not only about the system itself but also
about the approximations that have been performed during abstraction in order to obtain the
model.

Example 1. As an illustration, assume that one wants to study the time that a train takes to go
from Paris to Nantes. If we deliberately oversimplify the problem, we know that this duration
can be computed as the ratio between the distance from Paris to Nantes and the speed of the train.
While the distance from Paris to Nantes is perfectly known (342 km), we do not know the exact
speed of the train. Indeed, depending on the type of train and the weather conditions, this speed
can vary.
Deterministic modeling, in this case, would amount to measuring the average speed of trains
going from Paris to Nantes (150 km/h) and then using this value in the model. In this case,
the model would allow us to conclude that the time taken by a train from Paris to Nantes is
approximately 2h16.
On the other hand, modeling with uncertainties would require to take into account in the
model that the speed is not perfectly known. This could be done in several ways (the following
description is not exhaustive):

• The first way could be to include in the model a choice between high-speed and low-speed

14
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trains, thus leading to a non-deterministic model that will yield different outputs depending
on the choice of the train.

• Another way of taking this uncertainty into account could be to measure the probability
distribution of train speeds and include this probability distribution in the model, leading
to a stochastic model. The outputs of such a model would provide detailed information on
the resulting probability distribution on possible durations.

• Finally, the speed could be taken into account as a symbolic parameter of the model. The
result would be a parametric model, that would then yield a symbolic answer: the duration
as a function of the speed of the train.

As one can see in Example 1, modeling with uncertainties can be done in several ways, the most
general of which is the use of non-determinism. Indeed, non-determinism allows to represent
complete lack of knowledge (but also lack of control) on a given system. Using non-determinism
allows to incorporate a notion of choice inside the model, while having no information on how
this choice is resolved. On the other hand, probabilities 1 represent some knowledge on the
underlying choice: using probabilities allows to specify that there is a choice, and while we do
not know what the outcome of this choice is, we have some information on how this outcome
is chosen. Finally, the use of parameters allows to perform symbolic analysis, i.e., producing
results that are a function of those parameters, despite the uncertainty about their value. In this
document, we will propose and study modeling formalisms that account for uncertainties in all
these ways.
Although modeling with uncertainties yields more informative results than deterministic mod-
eling (as can be seen from the example above), deterministic models are still widespread in
most natural and social sciences. The main reasons for this fact are the lack of communication
between formal sciences, which have been working on models with uncertainties for a long
time, and those who might benefit from such models (see [DEB17] for an argumentation in the
context of microbial modeling), but also the lack of efficient methods for analyzing large models
with uncertainties. Indeed, since the aim of modeling is to pursue the analysis of the underlying
system, some techniques and tools are necessary for performing such analysis.
The most common analysis method used in natural and social sciences is simulation, which
consists in running a given model and observing its outputs. Simulation can be used both in
the modeling and in the analysis phases: during modeling, simulation is used on intermediate
models, and the outputs are compared to existing knowledge on the system (either in the form of

1. My personal belief – which might be debated, but this is out of the scope of this document – is that probabilities
are just a mathematical concept that allows to abstract deterministic, but unknown, phenomena.
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expertise or in the form of experimental data) in order to help the modeler refine its model. In
the analysis phase, simulation is used on the final model in order to obtain predictions. In the
case of deterministic systems, simulation is an appropriate technique as long as the outputs can
be analyzed easily. However, when considering models with uncertainties, simulations need to
be performed countless times in order to be able to observe a sufficient portion of the model’s
potential outputs. In this context, other alternative automated techniques are necessary. A sub-
stantial research effort – in particular in theoretical computer science – has been gathered during
the last decades in order to develop such techniques. Among them lie automated verification.

Automated verification

Automated verification encompasses a multitude of techniques dedicated to analyzing models.
The common ground between all those techniques is the need of having as inputs a formal model,
i.e., a model described in an unambiguous language with a well-defined semantics, and a set
of formal properties, i.e., queries that are also described in an unambiguous language and that
the model/system must (or must not) satisfy. Model verification then consists in an automated
(or semi-automated) analysis of the model to determine whether the given property is satisfied.
Some verification techniques such as testing [MSB11] or statistical model checking [LDB10]
are based on extensive simulation; Others, such as model checking [CJGK+18] instead rely
on an exhaustive exploration of the model. Finally, automated theorem-proving [Fit12] uses
proof-theory along with the formal semantics of the model to prove (or disprove) that the
model satisfies the given property. Whether they rely on simulation, exploration or proof-theory,
automated verification techniques always provide more information than simple simulation.
Indeed, a simple simulation only represents a single example of what the model can output. In
the case of models with uncertainties, the potential outputs are numerous and therefore observing
that a single output satisfies (or dissatisfies) the given property is not sufficient to conclude
anything about the complete model. Instead, all automated verification techniques offer some
guarantees about the obtained results: from percentage of covered test-cases in the context of
testing to mathematical proofs for theorem-proving and model checking through error-rate and
guaranteed precision for statistical model checking. Moreover, automated verification techniques
also provide feedback on the results, mostly in terms of counter-examples when the property is
not satisfied.

The unambiguity of the languages used to describe the model and the properties are require-
ments made necessary by the need for automation. Indeed, in order to develop tools that can
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automatically analyze models, one needs to assume that the languages used to describe the
model and the properties are well-defined, and can be automatically interpreted by a machine.
A plethora of such languages (also called formalisms) have been developed over the years,
from programming languages [KR+88, AGHH00, S+99, RV98] to more abstract specification
formalisms [HMU01, Mil99, Abr05, Spi88], each of them dedicated to the description of cer-
tain types of systems 2. Unfortunately as formalisms become more and more expressive (i.e.,
capable of representing more and more detailed features of the systems), the accompanying
verification techniques also raise more and more complexity, to the point that the automated
verification of models expressed in some types of formalisms has been shown to be undecid-
able [ACD90, Esp94]. More research effort is therefore necessary to propose and study novel
modeling formalisms and develop dedicated automated verification techniques. In this document,
I will present some such contributions dedicated to the analysis of the behavior of discrete and
continuous systems with uncertainty.

Contributions in the past 10 years

Since my Ph.D. thesis in 2010 [Del10], I have been interested in the complete scope of formal
modeling and analysis of systems with uncertainties: from the theoretical study of modeling
formalisms and verification techniques to the application of those theories to the analysis of
concrete systems. Two main lines of works could in particular be observed in my thesis: (1) the
study of a compositional specification theory for probabilistic systems called Constraint Markov
Chains [CDL+11]; and (2) the development and use of a statistical verification technique – called
statistical model checking – on concrete complex systems [BBB+10a].

2010-2013: Postdoctoral positions

During my years as a postdoctoral student, I have pursued these two lines of work. In the context
of specification theories, I have enhanced the theory of Constraint Markov Chains to take into
account non-determinism and modalities, yielding the formalism called Abstract Probabilistic
Automata (APA) [DKL+11a, DKL+13]. This formalism has then been studied under all angles,
yielding algebraic compositional results [DKL+11b, DLL13, DFLL13a, DLL14, DFLL14a] and
a prototype tool for their verification [DLL+11a]. In the same line, I have also investigated other
abstract formalisms for describing non-deterministic [BDF+13] and timed [DFH+12, DFLL13b,

2. The list is not exhaustive, the survey of all existing modeling formalisms is beyond the scope of this document.
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DFLL14b, FLDL18] systems.

On the other hand, I have also pursued my work on statistical model checking, using this
technique to verify different types of systems [BBB+12] and contributing to the development of
a tool [BBD+12, NBB+15].

2013-present: Associate professor position

My main interests have not changed since I arrived in Nantes in 2013: my contributions can
still be classified in the two lines presented above, i.e., (1) the theoretical study of abstract
modeling formalisms and analysis techniques, and (2) the development of practical verification
techniques and tools and their application to concrete systems. However, the type of concrete
systems I consider has slightly shifted. Indeed, interactions with several colleagues in the context
of the ANR project PACS 3 have convinced me that parameters play an important role when
modeling complex systems as they allow, in particular, symbolic analysis and robust synthesis.
My main contributions since then have therefore been aimed at modeling and verifying (timed)
probabilistic and parametric systems.

In the theoretical context, I have investigated several formalisms and techniques allowing to
describe and analyze parametric systems. In particular, I have participated to the following
contributions:

Probabilistic Event-B. From 2014 to 2017, I have contributed to the supervision of Mohamed
Amine AOUADHI on the topic of Probabilistic Event-B. During this thesis, we have extended
the Event-B formalism, which allows for the specification of parametric systems in a refinement-
based fashion, to take into account probabilistic information [ADL17, ADL19b]. Besides en-
hancing the Event-B language and semantics to take into account probabilistic choice, we have
also investigated the probabilistic refinement of probabilistic Event-B models as well as the
automatic proving of some probabilistic properties.

Probabilistic time Petri nets. In 2016, we have proposed in [EDLR16] a new probabilistic
syntax and semantics for Petri Nets, where, instead of using the standard stochastic semantics
(i.e., where probabilistic choice is resolved using races between concurrent transitions), we offer
a discrete probabilistic choice that is independent of the timing information on transitions. Our
aim with this formalism was to extend our results to the parametric context, where parameters can
range both on the timing information on transitions and on the discrete probabilities. However,
meaningful results in the parametric context still elude us.

3. https://anr.fr/Projet-ANR-14-CE28-0002
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Parametric interval Markov chains. In 2015, I have proposed a first version of Interval Markov
Chains where the interval endpoints can be replaced with parametric functions, along with first
attempts to verifying meaningful properties such as consistency [Del15]. This line of work
has been pursued with many co-authors, first yielding algorithms for parameter synthesis and
verification of reachability properties [DLP16]. Between 2016 and 2017, I have then contributed
to the supervision of Anicet BART on the adaptation of constraint programming techniques
to this context in order to make the verification more efficient [BDL+17, BDF+18]. Notably,
[BDL+17] has been awarded the best paper award at the QEST conference in 2017.
In 2016, we have also extended the Parametric Interval Markov Chains formalism to take
into account timing information, which has yielded Parametric Interval Probabilistic Timed
Automata [AD16, ADF20]. In this context, we have shown that problems such as consistency
and reachability are undecidable. Nevertheless, we have also provided semi-algorithms that allow
to solve those problems under certain conditions. In these papers, parameters can only range on
the timing information. Again, our intent was to have parameters ranging both on the timing
information and probabilities, but the work is still ongoing.

On the other hand, I have have also pursued my work on the verification of concrete systems, by
using (parametric) statistical techniques.
Parametric statistical model checking. Statistical model checking is a technique that has for
a long time been limited to purely probabilistic systems. Indeed, because it relies on statistical
sampling, it could not previously be used on systems where the transition probabilities were
underspecified. In 2017, during the postdoctoral position of Paulin FOURNIER, we have used
an adaptation of a technique called importance sampling in order to extend statistical model
checking to parametric systems [DFL19]. This new technique has been implemented in a
prototype tool and applied to a concrete industrial case study targeting the analysis of the flight
plan of a UAV 4 [BAD+19] during the thesis of Ran BAO, which I have contributed to supervise
from 2017 to 2020.
Statistical model checking for parameter synthesis. Since 2016, I have developed a close
collaboration with researchers in Oceanography (Lionel Guidy, LoV, Villefranche – Olivier
Aumont, LOCEAN, Paris – Chris Bowler, IBENS, Paris) and Microbiology (Nicholas Bouskill,
LBL, Berkeley), where I believe that some of the techniques I develop could be particularly
useful. However, the first observation that we made was that those natural sciences mostly use
deterministic modeling, despite of the benefits that would be gained by taking uncertainties
into account. In 2017, we have therefore proposed an argument in favor of modeling with

4. Unmanned Aerial Vehicle
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uncertainties in the context of Microbiology [DEB17]. We have also adapted a model taken
from Oceanography in order to include uncertainties and used statistical model checking for
synthesizing the optimal parameter values with respect to experimental data. This result, which
has been published in 2020 in Scientific Reports [REG+20], a reknown generalist journal, has
received praises from the Biology community, which is, to my opinion, a major achievement.

Automated learning. Finally, I have also considered the problem of automated modeling. Indeed,
we would be very interested in some cases in using automated techniques for building models
representing the statistical characteristics of some data sets while not necessarily building on
the current knowledge of the underlying systems. To this purpose, I have contributed to the
supervision of the thesis of Dimitri ANTAKLY from 2017-2020 on the development of automated
learning and verification techniques for security assessment. During his thesis, we have developed
learning techniques for a recent formalism called Recursive Timescale Graphical Event Models

along with verification techniques allowing to select a model that is the most representative
of the input data while satisfying some given properties [ADL19a]. This new method has for
now only been applied to security assessment of software data, but our intent is to port it to the
Oceanography context in the near future.

Outline of the document

This document relates four of the contributions presented above. Each of them was obtained
during the Ph.D. thesis / postdoc of some of my students. In order to be representative of my
research axes, I have chosen to present two contributions on the theoretical side (Chapters 1
and 2) and two contributions on the practical side (Chapters 3 and 4).

— Chapter 1 introduces and studies parametric Interval Markov chains and presents our
adaptation of constraint programming methods for the synthesis of parameters values
ensuring properties such as consistency or reachability.

— In Chapter 2, I present our extension of the Event-B method in order to replace some of
the non-deterministic or parametric choices with probabilities.

— Chapter 3 details our adaptation of the statistical model checking technique to the paramet-
ric context, then introduces our prototype tool and presents its application to an industrial
case study.

— Chapter 4 presents our study of the Recursive Timed Graphical Event Model formalism
along with automated learning and verification techniques.
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— Finally, the last Chapter presents perspectives for my future research topics.

In addition to the chapters presented above, this document contains appendices. In particular,
Appendix B gathers the main notations and definitions introduced in each chapter. It is aimed
to be detached from the manuscript so the reader can use it while reading the main part of the
document.
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CHAPTER 1

PARAMETRIC INTERVAL MARKOV CHAINS

The work we present in this chapter was mostly achieved during Anicet Bart’s thesis, although
it follows a line of work initiated more than 10 years ago on specification theories for proba-
bilistic systems, which has yielded numerous publications on several types of models: Modal
Transition Systems [BDF+13], Interval Markov Chains [DLL+11b, DLL+12a], Constraint
Markov Chains [CDL+10, CDL+11, DLL+12b] or Abstract Probabilistic Automata [DKL+11a,
DKL+11b, DLL+11a, DLL13, DFLL13a, DKL+13, DLL14, DFLL14a]. The work on paramet-
ric models was initiated in 2015, motivated by the start of the ANR PACS project, and has also
yielded several publications [Del15, DLP16, BDL+17, BDF+18] leading to results presented
here. It is worth noting that the results presented in this chapter have been awarded the best paper
award at the QEST conference in 2017.

This chapter focuses on systems where uncertainty comes from several sources. The first source
is the probabilistic nature of the systems themselves (Markov Chains). The second source is the
underspecification of those systems: instead of considering probabilistic transitions as usually
done in Markov Chains, we consider here intervals of probabilities on the transitions, therefore
leading to a specification formalism. In other word, each Interval Markov Chain we analyze is an
abstract representation of a familly of systems. Finally, the last source of uncertainty is a second
level of underspecification: the endpoints of the probabilistic intervals might not be known
precisely, and are therefore replaced with symbolic parameters. While we had already studied
parametric Interval Markov Chains in [Del15, DLP16], this chapter presents an alternative
and more efficient solution to several problems of interest already solved in [DLP16], using
techniques that are adapted from Constraint Programming. For the sake of conciseness, most
of the proofs of the results presented in this chapter have been left out of this document. The
interested reader can find them in [BDF+18].
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Chapter 1 – Parametric interval Markov chains

1.1 Introduction

Discrete time Markov chains (MCs for short) are a standard probabilistic modeling formalism
that has been extensively used in the litterature to reason about software [WT94] and real-life
systems [HDR10]. However, when modeling real-life systems, the exact value of transition
probabilities may not be known precisely. Several formalisms abstracting MCs have therefore
been developed. Parametric Markov chains [AHV93] (pMCs for short) extend MCs by allowing
parameters to appear in transition probabilities. In this formalism, parameters are variables
and transition probabilities may be expressed as polynomials or rational functions over these
variables. A given pMC represents a potentially infinite set of MCs, obtained by replacing each
parameter by a given value. pMCs are particularly useful to represent systems where dependencies
between transition probabilities are required. Indeed, a given parameter may appear in several
distinct transition probabilities, which requires that the same value is given to all its occurences.
Interval Markov chains [JL91] (IMCs for short) extend MCs by allowing precise transition
probabilities to be replaced by intervals, but cannot represent dependencies between distinct
transitions. IMCs have mainly been studied with three distinct semantics interpretations. Under
the once-and-for-all semantics, a given IMC represents a potentially infinite number of MCs
where transition probabilities are chosen inside the specified intervals while keeping the same
underlying graph structure. The interval-Markov-decision-process semantics (IMDP for short),
such as presented in [CSH08, SVA06], does not require MCs to preserve the underlying graph
structure of the original IMC but instead allows a finite “unfolding” of the original graph structure:
new probability values inside the intervals can be chosen each time a state is visited. Finally, the
at-every-step semantics, which was the original semantics given to IMCs in [JL91], does not
preserve the underlying graph structure too while allowing to “aggregate” and “split” states of
the original IMC in the manner of probabilistic simulation.

Model checking algorithms and tools have been developed in the context of pMCs [DJJ+15,
HHWZ10, KNP11] and IMCs with the once-and-for-all and the IMDP semantics [CK15,
BLW13]. State of the art tools [DJJ+15] for pMC verification compute a rational function
on the parameters that characterizes the probability of satisfying a given property, and then use
external tools such as SMT solving [DJJ+15] for computing the satisfying parameter values.
For these methods to be viable in practice, the allowed number of parameters is quite limited.
On the other hand, the model checking procedure for IMCs presented in [BLW13] is adapted
from machine learning and builds successive refinements of the original IMCs that optimize
the probability of satisfying the given property. This algorithm converges, but not necessarily
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to a global optimum. It is worth noticing that existing model checking procedures for pMCs
and IMCs strongly rely on their underlying graph structure (i.e., respect the once-and-for-all
semantics). However, in [CSH08] the authors perform model checking of ω-PCTL formulas
on IMCs w.r.t. the IMDP semantics and they show that model checking of LTL formulas can
be solved for the IMDP semantics by reduction to the model checking problem of ω-PCTL on
IMCs with the IMDP semantics. For all that, to the best of our knowledge, no solutions for model
checking IMCs with the at-every-step semantics have been proposed yet.

In this chapter, we focus on Parametric interval Markov chains [DLP16] (pIMCs for short), that
generalize both IMCs and pMCs by allowing parameters to appear in the endpoints of the intervals
specifying transition probabilities, and summarize the contributions obtained during Anicet Bart’s
thesis. Details and proofs of these contributions can be found in [BDF+18, BDL+17]. The main
results are the following.

First, we formally compare abstraction formalisms for MCs in terms of succinctness: we show in
particular in Proposition 2 that pIMCs are (strictly) more succinct than both pMCs and IMCs
when equipped with the right semantics. In other words, everything that can be expressed using
pMCs or IMCs can also be expressed using pIMCs while the reverse does not always hold.

Second, we prove in Theorem 1 that the once-and-for-all, the IMDP, and the at-every-step
semantics are equivalent w.r.t. reachability properties, both in the IMC and in the pIMC settings.
Notably, this result gives theoretical backing to the generalization of existing works on the
verification of IMCs to the at-every-step semantics.

Third, we study the parametric verification of fundamental properties at the pIMC level: consis-
tency, qualitative reachability, and quantitative reachability. Given the expressivity of the pIMC
formalism, the risk of producing a pIMC specification that is incoherent and therefore does not
model any concrete MC is high. Consistency is therefore of paramount importance. In order
to provide solutions to consistency and reachability, we model these problems using constraint
encodings and use state of the art constraint solvers for solving them. Constraints are first order
logic predicates used for modeling and solving combinatorial problems [RBW06]. A problem is
described with a list of variables, each in a given domain of possible values, together with a list
of constraints over these variables. Such problems are then sent to solvers which decide whether
the problem is satisfiable, i.e., if there exists a valuation of the variables satisfying all constraints,
and in this case computes a solution. We therefore propose, in Section 1.4.1 and Proposition 3,
constraint encodings for deciding whether a given pIMC is consistent and, if so, synthesizing
parameter values ensuring consistency. We then extend, in Section 1.4.2 and Proposition 4, these
encodings to qualitative reachability, i.e., ensuring that given state labels are reachable in all
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(resp. none) of the MCs modeled by a given pIMC. Finally, in Section 1.5.2 and Theorem 2,
we focus on the quantitative reachability problem, i.e., synthesizing parameter values such that
the probability of reaching given state labels satisfies fixed bounds in at least one (resp. all)
MCs modeled by a given pIMC. While consistency and qualitative reachability for pIMCs have
already been studied in [DLP16], the constraint encodings we propose are significantly smaller
(linear instead of exponential). To the best of our knowledge, our results have provided the first
solution to the quantitative reachability problem for pIMCs.

The last contribution, presented in Section 1.6, is the implementation of all our verification
algorithms in a prototype tool that generates the required constraint encodings and can be
plugged to any SMT solver for their resolution.

1.2 Background

We start by introducing notions and notations that will be used throughout this chapter. Given a
finite set of variables X = {x1, . . . ,xk } we call domain a set of values associated to a variable in
X . We write Dx for the domain associated to the variable x ∈ X and DX for the set of domains
associated to the variables in X . A valuation v over X is a set v = {(x,d) | x ∈ X ,d ∈ Dx } of
elementary valuations (x,d) where for each x ∈ X there exists a unique pair of the form (x,d) in
v. When clear from the context, we write v(x) = d for the value given to variable x according to
valuation v. A rational function f over X is a division of two (multivariate) polynomials g1 and
g2 over X with rational coefficients, i.e., f = g1/g2. We write Q for the set of rational numbers
and QX for the set of rational functions over X . The evaluation v(g) of a polynomial g under the
valuation v replaces each variable x ∈ X by its value v(x).

An atomic constraint over X is a Boolean expression of the form f (X) ./ g(X), with ./ ∈
{≤,≥,<,>,=} and f and g two functions over variables in X . An atomic constraint is linear

if the functions f and g are linear. A constraint over X is a Boolean combination of atomic
constraints over X .

Given a finite set of states S, we write Dist(S) for the set of probability distributions over S, i.e.,
the set of functions µ : S→ [0,1] such that ∑s∈S µ(s) = 1. We write I for the set containing all
interval subsets of [0,1]. In the following, we consider a universal set of symbols A that we use
for labelling the states of our structures. We call these symbols atomic propositions. We will use
Latin alphabet in state context and Greek alphabet in atomic proposition context.

Constraints. Constraints are first order logic predicates over a given set of variables. Informally,
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a Constraint Satisfaction Problem (CSP) consists of a set of variables associated to given domains
and subject to a set of constraints. A CSP is satisfiable if there exists a valuation of the variables
that satisfies all constraints. Checking satisfiability of constraint problems is difficult in general,
as the space of all possible valuations has a size exponential in the number of variables.

Definition 1 (Constraint Satisfaction Problem). A Constraint Satisfaction Problem (CSP) is
a tuple Ω = (X ,D,C) where X is a finite set of variables, D = DX is the set of all domains
associated to the variables from X , and C is a set of constraints over X .

We say that a valuation over X satisfies Ω if and only if it satisfies all constraints in C. We write
v(C) for the satisfaction result of the valuation of the constraints C according to v (i.e., true or
false). In the following we call CSP encoding a scheme for formulating a given problem into a
CSP. The size of a CSP corresponds to the number of variables and atomic constraints appearing
in the problem. Note that, in constraint programming, having less variables or less constraints
during the encoding does not necessarily imply faster solving time of the problems.

Discrete Time Markov Chains.

Definition 2 (Discrete Time Markov Chain). A Discrete Time Markov Chain (MC for short) is a
tuple M = (S,s0, p,L), where S is a finite set of states containing the initial state s0, L : S→ 2A

is a labelling function, and p : S×S→ [0,1] is a probabilistic transition function such that for all
s ∈ S, the function p(s, .) is a distribution (i.e., s′ 7→ p(s,s′) ∈ Dist(S)).

The labelling function L of a MC M = (S,s0, p,L) associates to each state s ∈ S a set of atomic
propositions. Given a state s ∈ S, L(s) is called the label of s. We write MC for the set containing
all discrete time Markov chains.
A Markov Chain can be represented as a directed graph where the nodes correspond to the states
of the MC and the edges are labelled with the probabilities given by the transition function of
the MC. In this representation, a missing transition between two states represents a transition
probability of zero. As usual, given a MC M , we call a run of M a sequence of states obtained
from executing M , i.e., a sequence w = s1,s2, . . . such that the probability of taking the transition
from si to si+1 is strictly positive: p(si,si+1) > 0, for all i. A run w is finite if and only if it
belongs to S∗, i.e., it represents a finite sequence of transitions from M .

Example 2. Figure 1.1 illustrates the MC M1 = (S,s0, p,L) ∈ MC where the set of states S is
given by {s0,s1,s2,s3,s4 }, the atomic propositions are restricted to {α,β}, the initial state is s0,
and the labelling function L is as follows: {(s0,∅),(s1,{α}),(s2,{β}),(s3,{α,β}),(s4,{α})}.
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Figure 1.1 – MC M1

The sequences of states w = s0,s1,s2, w′ = s0,s2, and w′′ = s0,s2,s2,s2 are three (finite) runs
from the initial state s0 to the state s2.

In order to prove some of our results, we need a notion of bisimulation between Markov chains.
We therefore use the classical notion of probabilistic bisimulation.

Definition 3 (Probabilistic bisimulation for Markov chains [BK08]). Let M = (S,s0, p,L) be a
Markov chain. A probabilistic bisimulation on M is an equivalence relation R on S such that
for all pair of states (s1,s2) ∈ R , we have

— L(s1) = L(s2), and

— p(s1,T ) = p(s2,T ) for each equivalence class T ∈ S/R .

Given two MCs M1 and M2, we say that M1 and M2 are bisimilar if and only if there exists a
probabilistic bisimulation R on M1∪M2 with (s1

0,s
2
0) ∈ R , where M1∪M2 is a MC consisting

of all states, transitions and labels of M1 and M2
1.

Reachability. A Markov chain M defines a unique probability measure µM over the set of infinite
sequences s0,s1, . . .∈ Sω (see [BK08] for details). According to this measure, the probability of a
finite sequence of states w = s0,s1, . . . ,sn, written PM (w) is the product of the probabilities of the
transitions transitions involved in this sequence, i.e., PM (w)= p(s0,s1) · p(s1,s2) · . . . · p(sn−1,sn).
Naturally, if w is not a run of M , we have PM (w) = 0.
Given a MC M , the overall probability of reaching a given state s from the initial state s0

is called the reachability probability and written Ps0
M (♦s) or PM (♦s) when clear from the

context. This probability is computed as the sum of the probabilities of all finite runs start-
ing in the initial state and reaching the state s for the first time. Formally, let reachs0(s) =

1. The initial state is not important here, so it could be either s1
0 or s2

0 w.l.o.g.
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{w ∈ S∗ | w = s0, . . .sn with sn = s and si 6= s ∀0≤ i < n} be the set of such runs. We then de-
fine PM (♦s) = ∑w∈reachs0(s)

PM (w) if s 6= s0 and 1 otherwise. This notation naturally extends
to the reachability probability of a state s from a state t that is not s0, written Pt

M (♦s) and to
the probability of reaching a state label Γ⊆ A written Ps0

M (♦Γ). One could also extend it to the
reachability probability of an atomic proposition α by considering all state labels containing α.
In the following, we say that a state s (resp. a label Γ⊆ A) is reachable in M if and only if the
reachability probability of this state (resp. label) from the initial state is strictly positive.

Example 3 (Example 2 continued). In Figure 1.1 the probability of the run w = s0, s2, s1,

s1, s3 is 0.3 · 0.5 · 0.5 · 0.5 = 0.0375 and the probability of reaching the state s1 from s0 is
Ps0

M1
(♦s1) = p(s0,s1)+Σ

+∞

i=0 p(s0,s2)·p(s2,s2)
i·p(s2,s1) = p(s0,s1)+ p(s0,s2)·p(s2,s1)· (1/(1−

p(s2,s2))) = 1. Furthermore, the probability of reaching {β} corresponds to the probability of
reaching the state s2, which is 0.3 here.

1.3 Markov chain abstractions

Modeling an application as a Markov Chain requires knowing the exact probability for each
possible transition of the system. However, this can be difficult to compute or to measure in the
case of a real-life application (e.g., because of precision errors or limited knowledge). In this
section, we start with a generic definition of Markov chain abstraction models. Then we recall
three abstraction models from the literature, respectively pMC, IMC, and pIMC, and finally we
present a comparison of these existing models in terms of succinctness.

Definition 4 (Markov chain Abstraction Model). A Markov chain abstraction model (an ab-
straction model for short) is a pair (L, |=) where L is a nonempty set of models and |= is a
relation between MC and L. Let P be in L and M be in MC. We say that M implements P if and
only if (M ,P ) belongs to |= (i.e., M |= P ). When the context is clear, we do not mention the
satisfaction relation |= and only use L to refer to the abstraction model (L, |=).

A Markov chain abstraction model is a specification theory for MCs. It consists of a set of
abstract models, called specifications, each of which representing a (potentially infinite) set
of MCs – implementations – together with a satisfaction relation defining the link between
implementations and specifications. As an example, consider the powerset of MC (i.e., the set
containing all possible sets of Markov chains). Clearly, (2MC,∈) is a Markov chain abstraction
model, which we call the canonical abstraction model. This abstraction model has the advantage
of representing all possible sets of Markov chains but it also has the disadvantage that some
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Markov chain abstractions are only representable by an infinite extension representation. Indeed,
recall that there exist subsets of [0,1]⊆ R which cannot be represented in a finite space (e.g., the
Cantor set [Can83]). We now present existing MC abstraction models from the literature.

1.3.1 Existing MC abstraction models

Parametric Markov Chain is a MC abstraction model from [AHV93] where a transition can
be annotated by a rational function over parameters. We write pMC for the set containing all
parametric Markov chains.

Definition 5 (Parametric Markov Chain). A Parametric Markov Chain (pMC for short) is a tuple
I = (S,s0,P,L,X) where S, s0, and L are defined as for MCs, X is a set of variables (parameters)
ranging over [0,1], and P : S×S→QX associates with each potential transition a parameterized
probability.

Let M = (S,s0, p,L) be a MC and I = (S′,s′0,P,L
′,X) be a pMC. The satisfaction relation |=p

between MC and pMC is defined by M |=p I if and only if S = S′, s0 = s′0, L = L′, and there exists
a valuation v of X such that p(s,s′) equals v(P(s,s′)) for all s,s′ in S.

Example 4. Figure 1.2 shows a pMC I ′ = (S,s0,P,L,X) where S, s0, and L are identical to
those of the MC M from Figure 1.1, the set X contains only one variable p, and the parametric
transitions in P are given by the edge labelling (e.g., P(s0,s1)= 0.7, P(s1,s3)= p, and P(s2,s2)=

1− p). Note that the pMC I ′ is a specification containing the MC M1 from Figure 1.1 (using the
valuation v such that v(p) = 0.5).

Interval Markov Chains extend MCs by allowing to label transitions with intervals of possible
probabilities instead of precise probabilities. We write IMC for the set containing all interval
Markov chains.
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1.3. Markov chain abstractions

Definition 6 (Interval Markov Chain [JL91]). An Interval Markov Chain (IMC for short) is a
tuple I = (S,s0,P,L), where S, s0, and L are defined as for MCs, and P : S×S→ I associates
with each potential transition an interval of probabilities.

Example 5. Figure 1.3 illustrates an IMC I = (S,s0,P,L) where S, s0, and L are similar to
the MC given in Figure 1.1. By observing the edge labelling we see that P(s0,s1) = [0,1],
P(s1,s1) = [0.5,1], and P(s3,s3) = [1,1]. On the other hand, the intervals of probability for
missing transitions are reduced to [0,0], e.g., P(s0,s0) = [0,0], P(s0,s3) = [0,0], P(s1,s4) = [0,0].

In the literature, IMCs have been mainly used with three distinct semantics: at-every-step,
interval-Markov-decision-process, and once-and-for-all. All these semantics are associated with
distinct satisfaction relations which we now introduce.
The once-and-for-all IMC semantics [DJJ+15, WTO+11, PLSVS13] is alike to the semantics
for pMC, as introduced above. The associated satisfaction relation |=o

I is defined as follows.

Definition 7 (Once-and-for-all satisfaction). A MC M = (T, t0, p,LM) satisfies an IMC I =

(S,s0,P,LI) with the once-and-for-all semantics, written M |=o
I I , if and only if (T, t0,LM) =

(S,s0,LI) and for all reachable states s in M and all state s′ ∈ S, p(s,s′) ∈ P(s,s′).

In this sense, we say that MC implementations using the once-and-for-all semantics need to have
the same structure as the IMC specification. Remark that this definition only targets reachable

states in the MC. Indeed, some states of the IMC could have inconsistent outgoing transitions.
While these states cannot be “satisfied” in MC implementations, satisfaction should still be
possible if they are unreachable.
Next, the interval-Markov-decision-process IMC semantics (IMDP for short) [CSH08, SVA06]
operates as an “unfolding” of the original IMC by picking each time a state is visited a possibly
new probability distribution which respects the intervals of probabilities. Thus, this semantics
allows one to produce MCs satisfying IMCs with a different structure. Formally, the associated
satisfaction relation |=d

I is defined as follows.

Definition 8 (Interval-Markov-decision-process satisfaction). A MC M = (T, t0, p,LM) satisfies
an IMC I = (S,s0,P,LI) with the IMDP semantics, written M |=d

I I , if and only if there exists a
mapping π from T to S such that

1. π(t0) = s0,

2. LI(π(t)) = LM(t) for all states t ∈ T , and

3. p(t, t ′) ∈ P(π(t),π(t ′)) for all pairs of states t, t ′ in T , where t is reachable in M .
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Thus, we have that |=d
I is more general than |=o

I (i.e., whenever M |=o
I I we also have M |=d

I I
for the identity mapping π). Note that in [CSH08, SVA06] the authors allow the Markov chains
satisfying the IMCs w.r.t. |=d

I to have an infinite state space. In this work we consider Markov
chains with a finite state space only, therefore MC implementations with respect to the IMDP
semantics consist in a finite unfolding of the specification IMC, which corresponds to a transient
IMDP semantics followed by a once-and-for-all semantics.
Finally, the at-every-step IMC semantics, first introduced in [JL91], operates as a simulation
relation based on the transition probabilities and state labels, and therefore allows MC imple-
mentations to have a different structure than the IMC specification. Compared to the previous
semantics, in addition to the unfoldings this one allows to “aggregate” and “split” states from the
original IMC. Formally, the associated satisfaction relation |=a

I is defined as follows.

Definition 9 (At-every-step satisfaction). A MC M = (T, t0, p,LM) satisfies an IMC I =

(S,s0,P,LI) with the at-every-step semantics, written M |=a
I I if and only if there exists a

relation R ⊆ T ×S such that (t0,s0) ∈ R , and whenever (t,s) ∈ R , we have

1. the labels of s and t correspond: LM(t) = LI(s),

2. there exists a correspondence function δ(t,s) : T → (S→ [0,1]) such that

(a) ∀t ′ ∈ T if p(t, t ′)> 0 then δ(t,s)(t ′) is a distribution on S

(b) For all s′ ∈ S, (Σt ′∈T p(t, t ′) ·δ(t,s)(t ′)(s′)) ∈ P(s,s′), and

(c) For all (t ′,s′) ∈ T ×S, if δ(t,s)(t ′)(s′)> 0, then (t ′,s′) ∈ R .

Remark that reachability of the states from M is not required for the at-every-step satisfaction
relation. Indeed, in this case, states that are not reachable in M can be absent from the satisfaction
relation, and therefore do not impact at-every-step satisfaction.
Example 6 illustrates the three IMC semantics and Proposition 1 compares them. We say that an
IMC semantics |=1 is more general than another IMC semantics |=2 if and only if for all IMCs I
and for all MCs M if M |=2 I then M |=1 I . Also, |=1 is strictly more general than |=2 if and
only if |=1 is more general than |=2 and |=2 is not more general than |=1.

Example 6 (Example 5 continued). Consider the IMC I from Figure 1.3, the MC M1 from
Figure 1.1, the MC M2 from Figure 1.4, and the MC M3 from Figure 1.5. We have that M1

satisfies I w.r.t. |=o
I and we say that M1 has the same structure as I . Trivially, we also have that

M1 satisfies I w.r.t. |=d
I and |=a

I.
Regarding M2, note that two probability distributions have been chosen for the state s1 from I .
This produces two states t1 and t ′1 in M2 and changes the structure of the graph. Thus, M2 6|=o

I I .
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On the other hand, we have that M2 satisfies I w.r.t. |=d
I with the mapping π(ti) = si for all ti and

π(t ′1) = s1. Remark that there is no state t4 here, but having an unreachable state t4 and defining
π(t4) = s4 would not prevent satisfaction. Trivially, we also have M2 |=a

I I with the relation
R2 = {(t,s) | π(t) = s}.
Finally, in the MC M3 with state space T the state s3 from I has been “split” into two states t3 and
t ′3 and the state t14 “aggregates” the states s1 and s4 from I . The relation R3 ⊆ T ×S containing
the pairs (t0,s0), (t14,s1), (t14,s4), (t2,s2), (t3,s3), and (t ′3,s3) is a satisfaction relation between
M3 and I such as defined by |=a

I. For instance, consider the pair (t2,s2) ∈ R . For this pair,
define the correspondence function δ(t2,s2) such that δ(t2,s2)(t2)(s2) = 1, δ(t2,s2)(t14)(s1) = 0.5,
δ(t2,s2)(t14)(s4) = 0.5, and δ(t2,s2)(t

′)(s′) = 0 otherwise. We can verify the following:

1. For all t ′ such that p2(t2, t ′)> 0, δ(t2,s2)(t
′) is a distribution on S. This is the case for t2 and

t14.

2. For all s′ ∈ S, (Σt ′∈T2 p2(t2, t ′) ·δ(t2,s2)(t
′)(s′)) ∈ P(s2,s′):

[s1] : (Σt ′∈T2 p2(t2, t ′) ·δ(t2,s2)(t
′)(s1)) = 0.8∗0.5 = 0.4 ∈ [0,0.6] = P(s2,s1)

[s2] : (Σt ′∈T2 p2(t2, t ′) ·δ(t2,s2)(t
′)(s2)) = 0.2∗1 = 0.2 ∈ [0.2,0.6] = P(s2,s2)

[s4] : (Σt ′∈T2 p2(t2, t ′) ·δ(t2,s2)(t
′)(s4)) = 0.8∗0.5 = 0.4 ∈ [0,0.5] = P(s2,s4)

3. For all (t ′,s′) ∈ T2×S, if δ(t2,s2)(t
′)(s′)> 0, then (t ′,s′) ∈ R2. This is the case for (t2,s2),

(t14,s1), and (t14,s4).

For all other pairs (t ′,s′) ∈ R2, the correspondence functions can be defined trivially as Dirac
distributions where δ(t ′,s′)(t14) is either a Dirac on s1, for (t ′,s′) = (t0,s0) and (t14,s1), or a Dirac
on s4 for (t ′,s′) = (t14,s4).

Thus, M3 |=a
I I . On the other hand, M3 6|=d

I I since there exist probabilities on transitions that
cannot belong to their respective interval of probabilities on the IMC (e.g., p(t2, t14) = 0.8 6∈
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2 |=d
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and M ′
2 6|=o
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3 |=a

I I and M ′
3 6|=d

I I .

[0,0.6] = P(s2,s1)).

Proposition 1. The at-every-step satisfaction relation is (strictly) more general than the interval-
Markov-decision-process satisfaction relation which is (strictly) more general than the once-and-
for-all satisfaction relation.

Examples illustrating this result are given in Figure 1.6 and a complete proof is provided
in [BDF+18].

Parametric Interval Markov Chains, as introduced in [DLP16], abstract IMCs by allowing
(combinations of) parameters to be used as interval endpoints in IMCs. Under a given parameter
valuation the pIMC yields an IMC as introduced above. pIMCs therefore allow the representation,
in a compact way and with a finite structure, of a potentially infinite number of IMCs. Note
that one parameter can appear in several transitions at once, requiring the associated transition
probabilities to depend on one another. Let X be a finite set of parameters and v be a valuation
over X. By combining notations used for IMCs and pMCs the set I(QX) contains all parametrized
intervals over [0,1], and for all J = [ f1, f2] ∈ I(QX), v(J) denotes the interval [v( f1),v( f2)] if
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0≤ v( f1)≤ v( f2)≤ 1 and the empty set otherwise 2. We write pIMC for the set containing all
parametric interval Markov chains.

Definition 10 (Parametric Interval Markov Chain [DLP16]). A Parametric Interval Markov
Chain (pIMC for short) is a tuple P = (S,s0,P,L,X), where S, s0, L, and X are defined as for
pMCs, and P : S×S→ I(QX) associates with each potential transition a (parametric) interval.

In [DLP16], we introduced pIMCs where parametric interval endpoints are limited to linear
combination of parameters. In this chapter, we extend the pIMC model by allowing rational
functions over parameters as endpoints of parametric intervals. Given a pIMC P = (S,s0,P,L,X)
and a valuation v, we write v(P ) for the IMC (S,s0,Pv,L) obtained by replacing the transition
function P from P with the function Pv : S×S→ I defined by Pv(s,s′) = v(P(s,s′)) for all
s,s′ ∈ S. The IMC v(P ) is called an instance of pIMC P . Finally, depending on the semantics
chosen for IMCs, three satisfaction relations can be defined between MCs and pIMCs. They are
written |=a

pI, |=d
pI, and |=o

pI and defined as follows: M |=a
pI P (resp. |=d

pI, |=o
pI) if and only if

there exists at least one IMC I instance of P such that M |=a
I I (resp. |=d

I, |=o
I).

Example 7. Consider the pIMC P = (S,s0,P,L,X) given in Figure 1.7. The set of states S and
the labelling function are the same as in the MC and the IMC presented in Figures 1.1 and 1.3
respectively. The set of parameters X has two elements p and q. Finally, the parametric intervals
from the transition function P are given by the edge labelling (e.g., P(s1,s3) = [0.3,q], P(s2,s4) =

[0,0.5], and P(s3,s3) = [1,1]). Note that the IMC I from Figure 1.3 is an instance of P (by
assigning the value 0.6 to the parameter p and 0.5 to q). Furthermore, as said in Example 6, the
Markov chains M1 and M2 (from Figures 1.1 and 1.4 respectively) satisfy I w.r.t. |=a

I, therefore
M1 and M2 satisfy P w.r.t. |=a

pI.

2. Indeed, when 0≤ v( f1)≤ v( f2)≤ 1 is not respected, the interval is inconsistent and therefore empty.
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In the following, we consider that the size of a pMC, IMC, or pIMC L , written |L |, corresponds
to its number of states plus its number of transitions not reduced to 0, [0,0] or ∅. We will also
often need to consider the predecessors (Pred), and the successors (Succ) of some given states.
Given a pIMC with a set of states S, a state s in S, and a subset S′ of S, we write:

— Pred(s) = {s′ ∈ S | P(s′,s) /∈ {∅, [0,0]}}

— Succ(s) = {s′ ∈ S | P(s,s′) /∈ {∅, [0,0]}}

— Pred(S′) =
⋃

s′∈S′ Pred(s′)

— Succ(S′) =
⋃

s′∈S′ Succ(s′)

1.3.2 Abstraction model comparisons

IMC, pMC, and pIMC are three Markov chain abstraction models. In order to compare their
expressiveness and compactness, we introduce the comparison operators v and ≡. Let (L1, |=1)

and (L2, |=2) be two Markov chain abstraction models containing respectively L1 and L2. We
say that L1 is entailed by L2, written L1 v L2, if and only if all MCs satisfying L1 satisfy L2

modulo bisimilarity. (i.e., ∀M |=1 L1,∃M ′ |=2 L2 such that M is bisimilar to M ′). We say that
L1 is (semantically) equivalent to L2, written L1 ≡ L2, if and only if L1 v L2 and L2 v L1.
Definition 11 introduces succinctness based on the sizes of the abstractions.

Definition 11 (Succinctness). Let (L1, |=1) and (L2, |=2) be two Markov chain abstraction models.
L1 is at least as succinct as L2, written L1 ≤ L2, if and only if there exists a polynomial p such
that for every L2 ∈ L2, there exists L1 ∈ L1 such that L1 ≡ L2 and |L1| ≤ p(|L2|). Moreover, L1

is strictly more succinct than L2, written L1 < L2, if and only if L1 ≤ L2 and L2 6≤ L1.

We start with a comparison of the succinctness of the pMC and IMC abstractions. Since pMCs
allow the expression of dependencies between the probabilities assigned to distinct transitions
while IMCs allow all transitions to be independent, it is clear that there are pMCs without
any equivalent IMCs (regardless of the IMC semantics used), therefore (IMC, |=o

I) 6≤ (pMC, |=p),
(IMC, |=d

I) 6≤ (pMC, |=p), and (IMC, |=a
I) 6≤ (pMC, |=p). On the other hand, IMCs with the IMDP and

at-every-step semantics allow unbounded unfolding of the state space with different probabilistic
choices, which implies that pMCs would need infinitely many states to represent the same set of
MC implementations. Finally, we show that the set of MC implementations of an IMC with the
once-and-for-all semantics can also be represented with a pMC of the same size as the original
IMC. As a consequence, pMCs are strictly more succinct than IMCs with the once-and-for-all
semantics. This is formalized in the following lemma.
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Lemma 1. pMC and IMC abstraction models are mostly not comparable in terms of succinctness:

(1) (pMC, |=p) 6≤ (IMC, |=a
I), (2) (pMC, |=p) 6≤ (IMC, |=d

I), (3) (IMC, |=a
I) 6≤ (pMC, |=p), and (4)

(IMC, |=d
I) 6≤ (pMC, |=p). However, pMCs are striclty more succinct than IMCs with the once-and-

for-all semantics: (5) (pMC, |=p)< (IMC, |=o
I).

This result is illustrated in Figures 1.8 and 1.9. For the sake of conciseness, we only give
some a proof-sketch. A complete proof is provided in [BDF+18]. Let (L1, |=1) and (L2, |=2) be
two Markov chain abstraction models. Recall that according to the succinctness definition (cf.
Definition 11) L1 6≤ L2 if there exists L2 ∈ L2 such that either L1 6≡ L2 for all L1 ∈ L1, or the only
way to have L1 ≡ L2 is with L1 exponentially larger than L2.

(1-2) It is easy to see that all of the MCs given in Figure 1.9 satisfy I , given in Figure 1.8 with
|=a

I and |=d
I. Because State s1 can be “unfolded” as many times as we want, with different

output probabilities, we would need pMCs such as Pn from Figure 1.8 with infinitely many
states to represent the same set of MC implementations.

(3-4) pMC P2 from Figure 1.8 enforces the transitions from s1 to s0 and the transition from s2

to s0 to have the same probability. Since IMCs do not allow such dependencies between
transitions, the set of MCs satisfying P2 cannot be matched by any IMC semantics.
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(5) For the same argument as above, we have (IMC, |=o
I) 6≤ (pMC, |=p). On the other hand,

any transition equipped with an interval of the form [l,u] (IMC), with 0≤ l ≤ u≤ 1 can
be matched with a transition with probability l +(u− l) · p (pMC), where p is a fresh
parameter. Since this transformation preserves the size of the original IMC, we have
(pMC, |=p)< IMC, |=o

I.

We now compare pMCs and IMCs to pIMCs. We show that (pIMC, |=o
pI) is equivalent to

(pMC, |=p) and pIMC is strictly more succinct than IMC for the three semantics.
Our comparison results are presented in the following proposition.

Proposition 2. The Markov chain abstraction models can be ordered as follows w.r.t. succinct-

ness: (1) (pIMC, |=o
pI)< (IMC, |=o

I), (2) (pIMC, |=d
pI)< (IMC, |=d

I), (3) (pIMC, |=a
pI)< (IMC, |=a

I),

(4) (pIMC, |=d
pI)< (pMC, |=p), (5) (pIMC, |=a

pI)< (pMC, |=p), and (6) (pIMC, |=o
pI)≡ (pMC, |=p).

The proofs of items (1-5) are straightforward. Item 6 is more involved but can be obtained using
a construction that derives, from any given pIMC P , a pMC I that represents the same set of MC
implementations up to bisimilarity. The intuition of this construction is to use fresh parameters
and several copies of the transitions in P to encode the constraints on the interval endpoints.
Details of this construction are provided in [BDF+18].

1.4 Qualitative properties

As seen above, pIMCs are a succinct abstraction formalism for MCs. The aim of this section is
to investigate qualitative properties for pIMCs, i.e., properties that can be evaluated at the specifi-
cation (pIMC) level, but that entail properties on its MC implementations. pIMC specifications
are very expressive as they allow the abstraction of transition probabilities using both intervals
and parameters. Unfortunately, as it is the case for IMCs, this allows the expression of incorrect
specifications. In the IMC setting, this is the case either when some intervals are ill-formed
or when there is no probability distribution matching the interval constraints of the outgoing
transitions of some reachable state. In this case, no MC implementation exists that satisfies the
IMC specification. Deciding whether an implementation that satisfies a given specification exists
is called the consistency problem. In the pIMC setting, the consistency problem is made more
complex because of the parameters which can also induce inconsistencies in some cases. One
could also be interested in verifying whether there exists an implementation that reaches some
target states/labels, and if so, propose a parameter valuation ensuring this property. This problem
is called the consistent reachability problem.
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1.4.1 Existential consistency

A pIMC P is existentially consistent if and only if there exists a MC M satisfying P (i.e., there
exists a MC M satisfying an IMC I instance of P ). As seen in Section 1.3, pIMCs are equipped
with three semantics: once-and-for-all (|=o

pI), IMDP (|=d
pI), and at-every-step (|=a

pI). Recall that
|=o

pI imposes that implementations need to have the same graph structure as (or a substructure of)
the corresponding specification, up to renaming. In contrast, |=d

pI and |=a
pI allow implementations

to have a different graph structure. It therefore seems that some pIMCs could be inconsistent
w.r.t |=o

pI while being consistent w.r.t |=a
pI. On the other hand, checking the consistency w.r.t

|=o
pI seems easier because of the fixed graph structure.

In [Del15], I proved that |=a
pI and |=o

pI semantics are equivalent w.r.t. existential consistency.
Together with Proposition 1, this result ensures that the three semantics |=d

pI, |=a
pI, and |=o

pI are
equivalent w.r.t. existential consistency. Based on this result of semantics equivalence we propose
a CSP encoding, written C∃c, for verifying the existential consistency property for pIMCs.
Let P = (S,s0,P,L,X) be a pIMC, we write C∃c(P ) for the CSP produced by C∃c according to P .
Any solution of C∃c(P ) will correspond to a MC satisfying P . In C∃c(P ) = (Xc,Dc,Cc), the sets
of variables Xc and domains Dc are as follows: we use one variable πp with domain [0,1] per
parameter p in X; one variable θs′

s with domain [0,1] per transition (s,s′) in {{s}×Succ(s) |
s ∈ S}; and one Boolean variable ρs per state s in S. These Boolean variables will indicate for
each state whether it appears in the MC solution of the CSP (i.e., in the MC satisfying the pIMC
P ). Finally, we use the following constraints, for each state s ∈ S:

(1) ρs0 , (only for s0)

(2) ¬ρs⇔ Σs′∈Pred(s)\{s}θ
s
s′ = 0, (only for s 6= s0)

(3) ¬ρs⇔ Σs′∈Succ(s)θ
s′
s = 0

(4) ρs⇔ Σs′∈Succ(s)θ
s′
s = 1

(5) ρs⇒ θs′
s ∈ P(s,s′), for all s′ ∈ Succ(s)

Recall that given a pIMC P the objective of the CSP C∃c(P ) is to construct a MC M satisfying
P . Constraint (1) states that the initial state s0 appears in M . Constraint (2) ensures that for
each non-initial state s, variable ρs is set to false if and only if s is not reachable from its
predecessors. Constraint (4) ensures that if a state s appears in M , then its outgoing transitions
form a probability distribution. On the contrary, constraint (3) propagates non-appearing states
(i.e., if a state s does not appear in M then all its outgoing transitions are set to zero). Finally,
constraint (5) states that, for all appearing states, the outgoing transition probabilities must be
selected inside the specified intervals.
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Figure 1.10 – Variables in the CSP produced
by C∃c for the pIMC P from Fig. 1.7
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Figure 1.11 – A solution to the CSP C∃c(P )
for the pIMC P from Fig. 1.7

Example 8. Consider the pIMC P given in Figure 1.7. Figure 1.10 describes the variables in
C∃c(P ): one variable per transition (e.g., θ1

0, θ2
0, θ1

1,. . . ), one Boolean variable per state (e.g., ρ0,
ρ1,. . . ), and one variable per parameter (πp and πq). The following constraints correspond to the
constraints (2), (3), (4), and (5) generated by our encoding C∃c for the state 2 of P :

¬ρ2⇔ θ2
0 = 0

¬ρ2⇔ θ1
2 +θ2

2 +θ4
2 = 0

ρ2⇔ θ1
2 +θ2

2 +θ4
2 = 1

ρ2⇒ 0≤ θ1
2 ≤ πp

ρ2⇒ 0.2≤ θ2
2 ≤ πp

ρ2⇒ 0≤ θ4
2 ≤ 0.5

Finally, Figure 1.11 describes a solution for the CSP C∃c(P ). Note that given a solution of a
pIMC encoded by C∃c, one can construct a MC satisfying the given pIMC w.r.t. |=o

I by keeping
all states s such that ρs is equal to true and considering the transition function given by the
probabilities in the θs′

s variables. The following proposition shows that our encoding works as
expected. The proof is provided in [BDF+18].

Proposition 3. A pIMC P is existentially consistent if and only if C∃c(P ) is satisfiable.

We note that this existential consistency encoding is linear in the size of the pIMC, which is
better than the exponential encoding we proposed in [DLP16], which enumerates the powerset
of the states in the pIMC resulting in deep nesting of conjunctions and disjunctions.

1.4.2 Qualitative reachability

Let P = (S,s0,P,L,X) be a pIMC and Γ ⊆ A be a state label. We say that Γ is existentially

reachable in P if and only if there exists an implementation M of P where Γ is reachable
(i.e., PM (♦Γ) > 0). In a dual way, we say that Γ is universally reachable in P if and only if
Γ is reachable in any implementation M of P . As for existential consistency, we use a result
from [Del15] that states that the |=a

I and the |=o
I pIMC semantics are equivalent w.r.t. existential
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(and universal) reachability. As for the consistency problem, we get by Proposition 1 that the
three IMC semantics are equivalent w.r.t. existential (and universal) reachability. Note first that
in our C∃c encoding each ρs variable indicates if the state s appears in the constructed Markov
chain. However, the ρs variable does not indicate if the state s is reachable from the initial state,
but only if it is reachable from at least one other state (i.e., possibly different from s0). Indeed, if
the graph representation of the constructed Markov chain has strongly connected components
(SCCs for short), then all ρs variables in one SCC may be set to true while this SCC may be
unreachable from the initial state. This is not an issue in the case of the consistency problem.
Indeed, if a Markov chain containing an unreachable SCC is proved consistent, then it is also
consistent without this unreachable SCC. However, in the case of the reachability problem,
these SCCs are an issue. The following encoding therefore takes into account these isolated
SCCs such that ρs variables are set to true if and only if they are all reachable from the initial
state. This encoding will solve the qualitative reachability problems (i.e., checking qualitative
reachability from the initial state). We propose a new CSP encoding, written C∃r, that extends
C∃c, for verifying these properties. Formally, CSP C∃r(P ) = (Xc∪X ′,Dc∪D′,Cc∪C′) is such
that (Xc,Dc,Cc) = C∃c(P ), X ′ contains one integer variable ωs with domain [0, |S|] per state s in
S, D′ contains the domains of these variables, and C′ is composed of the following constraints
for each state s ∈ S:

(6) ωs0 = 1, (only for s0)

(7) ωs 6= 1, (only for s 6= s0)

(8) ρs⇔ (ωs 6= 0)

(9) ωs > 1⇒
∨

s′∈Pred(s)\{s}(ωs = ωs′+1)∧ (θs
s′ > 0), (only for s 6= s0)

(10) ωs = 0⇔
∧

s′∈Pred(s)\{s}(ωs′ = 0)∨ (θs
s′ = 0), (only for s 6= s0)

Recall first that CSP C∃c(P) constructs a Markov chain M satisfying P w.r.t. |=o
I. Informally,

for each state s in M the constraints (6), (7), (9), and (10) in C∃r ensure that ωs = k if and only
if there exists in M a run from the initial state to s of length k−1 with non zero probability;
and state s is not reachable in M from the initial state s0 if and only if ωs equals to 0. Finally,
constraint (8) enforces the Boolean reachability indicator variable ρs to be set to true if and only
if there exists a run with non zero probability in M from the initial state s0 to s (i.e., ωs 6= 0).

Let SΓ be the set of states from P labeled with Γ. Recall that C∃r(P ) produces a Markov chain
satisfying P where reachable states s are such that ρs = true. As a consequence, Γ is existentially
reachable in P if and only if C∃r(P ) admits a solution such that

∨
s∈SΓ

ρs; and Γ is universally
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Chapter 1 – Parametric interval Markov chains

reachable in P if and only if C∃r(P ) admits no solution such that
∧

s∈SΓ
¬ρs. This is formalised

in the following proposition, whose proof is provided in [BDF+18].

Proposition 4. Let P = (S,s0,P,L,X) be a pIMC, Γ⊆ A be a state label, SΓ = {s | L(s) = Γ},
and (Xr,Dr,Cr) be the CSP C∃r(P ).

— CSP (Xr,Dr,Cr∪
∨

s∈SΓ
ρs) is satisfiable if and only if Γ is existentially reachable in P

— CSP (Xr,Dr,Cr∪
∧

s∈SΓ
¬ρs) is unsatisfiable if and only if Γ is universally reachable in P

As for the existential consistency problem, we have an exponential gain in terms of size of the
encoding compared to the one we proposed in [DLP16]: the number of constraints and variables
in C∃r is linear in terms of the size of the encoded pIMC.

Remark. In C∃r constraints (2) inherited from C∃c are entailed by constraints (8) and (10) added
to C∃r. Thus, in a practical approach one may ignore constraints (2) from C∃c if they do not
improve the solver performance.

1.5 Quantitative properties

We now move to the verification of quantitative reachability properties in pIMCs. Quantitative
reachability has already been investigated in the context of pMCs and IMCs with the once-
and-for-all semantics. In this section, we propose a major theoretical contribution: a theorem
showing that the three IMC semantics are equivalent with respect to quantitative reachability,
which allows the extension of all results from [WTO+11, BLW13] to the at-every-step semantics.
Based on this result, we also extend the CSP encodings introduced in Section 1.4 in order to
solve quantitative reachability properties on pIMCs regardless of their semantics.

1.5.1 Equivalence of all semantics w.r.t quantitative reachability

Given an IMC I = (S,s0,P,L) and a state label Γ⊆ A, a quantitative reachability property on I
is a property of the type PI (♦Γ)∼ p, where 0≤ p≤ 1 and ∼ ∈ {≤,<,>,≥}. Such a property
is verified if and only if there exists a MC M satisfying I (with the chosen semantics) such that
PM (♦Γ)∼ p. While the techniques we propose here work for all values of p, the techniques for
qualitative reachability properties are usually more efficient when p = 0 or 1.
As explained above, existing techniques and tools for verifying quantitative reachability prop-
erties on IMCs only focus on the once-and-for-all and the IMDP semantics. However, to the
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Figure 1.12 – IMC I , MC M1, and MC M2 such that property P=1( X (Γ∧P=1(♦Λ))) holds
for M2, does not hold for M1, holds for I w.r.t. |=a

I, and does not hold for I w.r.t. |=o
I.

best of our knowledge, there are no works addressing the same problem with the at-every-step
semantics or showing that addressing the problem in the once-and-for-all and IMDP setting is
sufficiently general. The following theorem fills this theoretical gap by proving that the three
IMC semantics are equivalent w.r.t quantitative reachability. In other words, for all MCs M
such that M |=a

I I or M |=d
I I and for all state labels Γ, there exist MCs M≤ and M≥ such that

M≤ |=o
I I , M≥ |=o

I I , and PM≤(♦Γ)≤ PM (♦Γ)≤ PM≥(♦Γ). Informally, MC implementations
for the at-every-step semantics may contain several copies of the original IMC states, each
with a different probability of eventually reaching Γ. We therefore build M≤ (resp. M≥) by
choosing as sole representative of a given IMC state the one from M that has the lowest (resp.
highest) probability of eventually reaching Γ. This way we ensure that M≤ (resp. M≥) satisfies
the original IMC with the once-and-for-all semantics and has a lower (resp. higher) probability
of eventually reaching Γ than M . This is formalised in the following theorem. The proof, which
is particularly intricate, can be found in [BDF+18].

Theorem 1. Let I = (S,s0,P,L) be an IMC, Γ ⊆ A be a state label, ∼ ∈ {≤,<,>,≥}, and

0 < p < 1. I satisfies PI (♦Γ)∼ p with the once-and-for-all semantics if and only if I satisfies

PI (♦Γ)∼ p with the IMDP semantics if and only if I satisfies PI (♦Γ)∼ p with the at-every-step

semantics.

Thus, the three semantics |=o
I, |=d

I, and |=a
I are equivalent with respect to the minimal and the

maximal quantitative reachability properties. However, note that the equivalence for reachability
properties does not trivially extend to more general properties. For instance, consider the formula
P=1( X (Γ∧ P=1(♦Λ))), where Γ and Λ are two state labels. This property states that the
probability of visiting a state labeled with Γ in the next step and almost certainly reaching a
state labeled with Λ afterwards is 1. Figure 1.12 contains an IMC I such that this property does
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not hold w.r.t. |=o
I while it holds w.r.t. |=a

I. Indeed, under the |=o
I semantics, enforcing that the

probability of visiting a state labeled with Γ as the next state is 1 imposes that the branch leading
to Λ is given a probability 0, hence preventing from almost certainly visiting a state labeled with
Λ afterwards (cf. the MC M1 in Figure 1.12). On the contrary, the |=a

I semantics allows one to
unfold the structure, therefore to first assign a probability 1 to the transition leading to Γ and
then give a probability 1 to the transition leading to Λ (cf. the MC M2 in Figure 1.12). Note that
the same would be possible under the |=d

I semantics.

1.5.2 Constraint encodings

Note that the result from Theorem 1 naturally extends to pIMCs. We therefore exploit this result
to construct a CSP encoding for verifying quantitative reachability properties in pIMCs. As in
Section 1.4, we extend the CSP C∃c, that produces a correct MC implementation for the given
pIMC, by imposing that this MC implementation satisfies the given quantitative reachability
property. In order to compute the probability of reaching state label Γ at the MC level, we use
standard techniques from [BK08] that require the partitioning of the state space into three sets
S=1, S=0, and S? that correspond to a subset of states reaching Γ with probability 1, a subset of
states from which Γ cannot be reached, and the remaining states, respectively. Once this partition
is chosen, the reachability probabilities of all states in S? are computed as the unique solution of
a linear equation system (see [BK08], Theorem 10.19, p.766). We now explain how we identify
states from S=0,S=1 and S?, and how we encode the linear equation system, which leads to the
resolution of quantitative reachability.
Let P = (S,s0,P,L,X) be a pIMC and Γ ⊆ A be a state label. We start by setting S=1 = {s |
L(s) = Γ}. We then extend C∃r(P ) in order to identify the set S=0. Let C′∃r(P ,Γ) = (Xr ∪
X ′,Dr ∪D′,Cr ∪C′) be such that (Xr,Dr,Cr) = C∃r(P ), X ′ contains one Boolean variable λs

and one integer variable αs with domain [0, |S|] per state s in S, D′ contains the domains of these
variables, and C′ is composed of the following constraints for each state s ∈ S:

(11) αs = 1, if Γ = L(s)

(12) αs 6= 1, if Γ 6= L(s)

(13) λs⇔ (ρs∧ (αs 6= 0))

(14) αs > 1⇒
∨

s′∈Succ(s)\{s}(αs = αs′+1)∧ (θs′
s > 0), if Γ 6= L(s)

(15) αs = 0⇔
∧

s′∈Succ(s)\{s}(αs′ = 0)∨ (θs′
s = 0), if Γ 6= L(s)

Note that variables αs play a symmetric role to variables ωs from C∃r: instead of indicating the
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existence of a run from s0 to s, they characterize the existence of a run from s to a state labeled
with Γ. In addition, due to constraint (13), variables λs are set to true if and only if there exists a
run with non zero probability from the initial state s0 to a state labeled with Γ visiting s. Thus, Γ

cannot be reached from states such that λs = false. Therefore, S=0 = {s | λs = false}, which is
formalised in Proposition 5.

Proposition 5. Let P = (S,s0,P,L,X) be a pIMC and Γ⊆ A be a state label. There exists a MC
M |=a

pI P if and only if there exists a valuation v solution of the CSP C′∃r(P ,Γ) such that for

each state s ∈ S: v(λs) is equal to true if and only if Ps
M (♦Γ) 6= 0 and s is reachable from s0.

Finally, we encode the equation system from [BK08] in a last CSP encoding that extends C′∃r.
Let C∃r̄(P ,Γ) = (X ′r∪X ′,D′r∪D′,C′r∪C′) be such that (X ′r,D

′
r,C
′
r) = C′∃r(P ,Γ), X ′ contains

one variable γs with domain [0,1] per state s in S, D′ contains the domains of these variables, and
C′ is composed of the following constraints for each state s ∈ S:

(16) ¬λs⇒ γs = 0

(17) λs⇒ γs = 1, if Γ = L(s)

(18) λs⇒ γs = Σs′∈Succ(s)γs′θ
s′
s , if Γ 6= L(s)

As a consequence, variables γs encode the probability with which state s eventually reaches Γ

when s is reachable from the initial state and, 0 otherwise.

Proposition 6. Let P = (S,s0,P,L,X) be a pIMC and Γ⊆ A be a state label. There exists a MC
M |=a

pI P if and only if there exists a valuation v solution of the CSP C∃r̄(P ,Γ) such that v(γs)

is equal to Ps
M (♦Γ) if s is reachable from the initial state s0 in M , and is equal to 0 otherwise.

Let p ∈ [0,1] ⊆ R be a probability bound. Adding the constraint γs0 ∼ p to the previous C∃r̄
encoding allows one to determine if there exists a MC M |=a

pI P such that PM (♦Γ) ∼ p.
Formally, let ∼ ∈ {≤,<,≥,>} be a comparison operator, we write 6∼ for its negation (e.g., 6≤ is
>). This leads to the following theorem.

Theorem 2. Let P = (S,s0,P,L,X) be a pIMC, Γ⊆ A be a label, p ∈ [0,1], ∼ ∈ {≤,<,≥,>}
be a comparison operator, and (Xr,Dr,Cr) be C∃r̄(P ,Γ):

— CSP (Xr,Dr,Cr∪ (γs0 ∼ p)) is satisfiable if and only if ∃M |=a
pI P such that PM (♦Γ)∼ p

— CSP (Xr,Dr,Cr∪ (γs0 6∼ p)) is unsatisfiable if and only if ∀M |=a
pI P : PM (♦Γ)∼ p

The full proof, which is quite straightforward, is provided in [BDF+18].
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Example 9. Due to the number of constraints in C∃r̄, we illustrate our approach on a very small
pIMC P given in the top left of Figure 1.13. In this example, we are interested in two properties:
“Does there exist an implementation such that P(♦{α})≥ 0.5?” and “Are all implementations
such that P(♦{α}) ≤ 0.5?”. These properties are not trivial because the parameter q appears
both on the right side of the interval leading to 1 and on the left side of the interval leading to 2.
In the bottom of Figure 1.13, we report the constraints obtained in C∃r̄(P ,{α}). Some of the
most trivial constraints have been removed for readability.

We first consider the CSP obtained by adding the constraint ensuring the first quantitative
reachability property: (QR1) : γ0 ≥ 0.5. Solving this CSP yields a solution that allows to build a
MC M , given in the top right of Figure 1.13, satisfying the quantitative reachability property.
The valuations obtained by solving the given CSP are such that πp = 0,πq = 0.5,θ1

0 = θ2
0 = 0.5,

and, more importantly, γ0 = 0.5.

We now consider the CSP obtained by adding the constraint checking the second quantitative
reachability property: (QR2) : γ0 > 0.5. In this case, the CSP is unsatisfiable, which proves that
all implementations are such that P(♦{α})≤ 0.5. This is not really surprising as the probability
of going to 2 is necessarily greater than the probability of going to 1.

1.6 Prototype implementation and experiments

Our results have been implemented in a prototype tool 3 which generates the above CSP encod-
ings, and CSP encodings from [DLP16] as well. In this section, we first present our benchmark,
then we evaluate our tool for the qualitative properties, and we conclude with the quantitative
properties.

1.6.1 Benchmark

MCs have been used for many decades to model real-life applications. PRISM [KNP11] 4

is a reference for the verification of probabilistic systems. In particular, it is able to verify
properties for MCs. As said in Section 1.2, pIMCs correspond to abstractions of MCs. PRISM
references several benchmarks based on MCs 5. Note first that we only consider in this section
pIMCs with linear parametric expressions. In this context all CSPs encodings for verifying the

3. All resources, benchmarks, and source code are available online as a Python library at https://github.
com/anicet-bart/pimc_pylib

4. http://www.prismmodelchecker.org/
5. See the category discrete-time Markov chains on the PRISM website

46

https://github.com/anicet-bart/pimc_pylib
https://github.com/anicet-bart/pimc_pylib
http://www.prismmodelchecker.org/


1.6. Prototype implementation and experiments

0 ∅

1α 2 β

[0,1]

[p,q] [q,1]

[1,1] [1,1]

pIMC P

0 ∅

1α 2 β

πp = 0

πq = 0.5

0

0.5 0.5

1 1

MC M satisfying P(♦{α})≥ 0.5

(1) ρ0
(2) (¬ρ1⇔ (θ1

0 = 0))∧ (¬ρ2⇔ (θ2
0 = 0))

(3) (¬ρ1⇔ (θ1
1 = 0))∧ (¬ρ2⇔ (θ2

2 = 0))
(4) (ρ0⇔ (θ0

0 +θ1
0 +θ2

0 = 1))
∧(ρ1⇔ (θ1

1 = 1))∧ (ρ2⇔ (θ2
2 = 1))

(5) (ρ0⇒ (0≤ θ0
0 ≤ 1))∧ (ρ0⇒ (πp ≤ θ1

0 ≤ πq))∧ (ρ0⇒ (πq ≤ θ2
0 ≤ 1))

(6) ω0 = 1
(7) (ω1 6= 1)∧ (ω2 6= 1)
(8) (ρ1⇔ ω1 6= 0)∧ (ρ2⇔ ω2 6= 0)
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0)
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Figure 1.13 – Constraint encodings for quantitative reachability
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Set of benchmarks #pIMCs #nodes #edges #intervals #paramInBounds #parametersmin avg max min avg max

HERMAN N=3 27 8 28 0 7 18 0 3 11 {2,5,10}
HERMAN N=5 27 32 244 19 50 87 0 12 38 {2,5,10}
HERMAN N=7 27 128 2 188 37 131 236 3 31 74 {5,15,30}
EGL L=2; N=2 27 238 253 16 67 134 0 15 57 {2,5,10}
EGL L=2; N=4 27 6 910 7 165 696 1 897 3 619 55 444 1 405 {2,5,10}
EGL L=4; N=2 27 494 509 47 136 276 3 32 115 {2,5,10}
EGL L=4; N=4 27 15 102 15 357 1448 4 068 7 772 156 951 3 048 {2,5,10}
BRP M=3; N=16 27 886 1 155 16 64 135 1 15 45 {2,5,10}
BRP M=3; N=32 27 1 766 2 307 40 128 275 3 32 129 {2,5,10}
BRP M=4; N=16 27 1 095 1 443 22 80 171 0 20 62 {2,5,10}
BRP M=4; N=32 27 2 183 2 883 49 164 323 3 39 139 {2,5,10}
CROWDS CS=10; TR=3 27 6 563 15 143 1 466 3 036 4 598 57 235 535 {5,15,30}
CROWDS CS=5; TR=3 27 1 198 2 038 190 410 652 8 31 76 {5,15,30}
NAND K=1; N=10 27 7 392 11 207 497 980 1 416 109 466 1 126 {50,100,250}
NAND K=1; N=5 27 930 1371 60 121 183 9 58 159 {50,100,250}
NAND K=2; N=10 27 14 322 21 567 992 1 863 2 652 197 866 2 061 {50,100,250}
NAND K=2; N=5 27 1 728 2 505 114 217 329 23 101 263 {50,100,250}

Table 1.14 – Benchmarks composed of 459 pIMCs over 5 families used for verifying qualitative
properties

qualitative properties only use linear constraints while the CSPs encodings for verifying the
quantitative properties produce quadratic constraints (i.e., non-linear constraints). This produces
an order of magnitude between the time complexity for solving the qualitative properties vs
the quantitative properties w.r.t. our encodings. Thus, we consider two different benchmarks
presented in Table 1.14 and 1.15. In both cases, pIMCs are automatically generated from the
PRISM model in a text format inspired from [WTO+11].

For the first benchmark used for verifying qualitative properties, we constructed the pIMCs from
existing MCs by randomly replacing some exact probabilities on transitions by (parametric)
intervals of probabilities. Our pIMC generator takes 4 arguments: the MC transition function;
the number of parameters for the generated pIMC; the ratio of the number of intervals over the
number of transitions in the generated pIMC; the ratio of the number of parameters over the
number of interval endpoints for the generated pIMC. The benchmarks used are presented in
Table 1.14. We selected 5 applications from PRISM [KNP11]: HERMAN - the self-stabilisation
protocol of Herman from [KNP12]; EGL - the contract signing protocol of Even, Goldreich &
Lempel from [NS06]; BRP - the bounded retransmission protocol from [DJJL01]; CROWDS -
the crowds protocol from [Shm04]; and NAND - the nand multiplexing from [NPKS05]. Each
one is instantiated by setting global constants (e.g., N for the application HERMAN, L and N
for the application EGL) leading to more or less complex MCs. We used our pIMC generator
to generate a heterogeneous set of benchmarks: 459 pIMCs with 8 to 15 102 states, and 28 to
21 567 transitions not reduced to [0,0]. The pIMCs contain from 2 to 250 parameters over 0 to
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Benchmarks #nodes #edges #paramInBounds #parameters

NAND K=1; N=2 104 147 82 4
NAND K=1; N=3 252 364 200 5
NAND K=1; N=5 930 1 371 726 7
NAND K=1; N=10 7 392 11 207 5 698 12

Table 1.15 – Benchmarks composed of 4 pIMCs used for verifying quantitative properties

Size of the Boolean Integer Real-number Boolean Linear Quadratic
Encoding produced CSPs var. var. var. constr. constr. constr.

SotA exponential no no yes yes yes no
C∃c linear yes no yes yes yes no
C∃r linear yes yes yes yes yes no
C∃r̄ linear yes yes yes yes yes yes

Table 1.16 – Characteristics of the four CSP encodings SotA, C∃c, C∃r, and C∃r̄.

7 772 intervals.

For the second benchmark used for verifying quantitative properties we extended the NAND

model from [NPKS05]. The original MC NAND model has already been extended as a pMC
in [DJJ+15], where the authors consider a single parameter p for the probability that each of the
N nand gates fails during the multiplexing. We extend this model to pIMC by considering one
parameter for the probability that the initial inputs are stimulated, and we have one parameter per
nand gate to represent the probability that it fails. We consider 4 pIMCs with 104 to 7 392 states,
and 147 to 11 207 transitions not reduced to [0,0]. The pIMCs contain from 4 to 12 parameters
appearing over 82 to 5 698 transitions.

1.6.2 Constraint modeling

Given a pIMC in a text format our tool produces the desired CSP according to the selected
encoding (i.e., one from [DLP16], C∃c, C∃r, or C∃r̄). Recall that our benchmark only consider
linear parametric expressions on transitions. The choice of the contraint programming language
for implementing a CSP encoding depends on its nature (e.g., the type of the variables: integer vs.
continuous, the kind of the contraints: linear vs. non-linear). Table 1.16 summarizes the nature
of the encodings where SotA stands for the encoding from [DLP16] answering the existential
consistency problem. Thus, SotA, C∃c, and C∃r can be implemented as Mixed Integer Linear
Programs (MILP) [Vie15] and as Satisfiability Modulo Theory (SMT) programs [BSST09] with
QF_LRA logic (Quantifier Free Linear Real-number Arithmetic). This logic deals with Boolean
combinations of inequations between linear polynomials over real variables. Note that, QF_LRA
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Set of benchmarks avg(#variables) avg(#constraints) avg(encod. time) avg(solv. time)
(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

HERMAN N=3 71 42 42 1258 272 238 0.10 0.07 0.07 0.01 0.01 0.01
HERMAN N=5 1 031 282 282 51 064 2 000 1 750 1.52 0.08 0.08 0.24 0.03 0.01
HERMAN N=7 16 402 2 333 2 333 1 293 907 16 483 14 278 50.47 0.13 0.13 5.92 0.28 0.04
EGL L=2; N=2 462 497 497 4 609 3 917 3 658 0.21 0.08 0.08 0.02 0.04 0.01
EGL L=2; N=4 13 786 14 081 14 081 138 596 112 349 105 178 5.66 0.44 0.44 0.54 2.15 0.36
EGL L=4; N=2 958 1 009 1 009 9 560 8 013 7 498 0.36 0.10 0.10 0.04 0.08 0.02
EGL L=4; N=4 30 138 30 465 30 465 301 866 243 421 228 058 13.03 0.87 0.87 1.26 11.31 0.97
BRP MAX=3; N=16 68 995 2 047 2 047 738 580 16 063 14 902 32.29 0.12 0.12 3.54 0.21 0.06
BRP MAX=3; N=32 OM 4 079 4 079 OM 32 047 29 734 OM 0.18 0.18 OM 0.47 0.13
BRP MAX=4; N=16 103 105 2 544 2 544 1 114 774 19 960 18 511 46.54 0.13 0.13 5.42 0.27 0.08
BRP MAX=4; N=32 OM 5 072 5 072 OM 39 832 36 943 OM 0.21 0.21 OM 0.63 0.17
CROWDS CS=10; TR=3 OM 21 723 21 723 OM 165 083 149 923 OM 0.67 0.66 OM 11.48 0.79
CROWDS CS=5; TR=3 OM 3 253 3 253 OM 25 063 23 008 OM 0.16 0.15 OM 0.39 0.09
NAND K=1; N=10 87 506 18 732 18 732 888 733 145 108 133 768 152.06 0.56 0.56 3.72 6.21 0.79
NAND K=1; N=5 6 277 2 434 2 434 62 987 18 098 16 594 10.26 0.12 0.12 0.24 0.25 0.07
NAND K=2; N=10 169 786 36 022 36 022 1 722 970 279 998 258 298 298.93 1.04 1.04 7.75 31.81 2.06
NAND K=2; N=5 11 623 4 366 4 366 117 814 33 218 30 580 19.24 0.17 0.17 0.44 0.48 0.13

Table 1.17 – Comparison of sizes, encoding, and solving times for three approaches: (1) SotA
encoding implemented in SMT, (2) C∃c encoding implemented in SMT, and (3) C∃c encoding
implemented in MILP (times are given in seconds).

does not deal with integer variables. Indeed logics mixing integers and reals are harder than those
over reals only. However, all integer variables in our encodings can be replaced by real-number
variables 6. Each integer variable x can be declared as a real variable whose real domain bounds
are its original integer domain bounds; we also add the constraint x < 1⇒ x = 0. Since we only
perform incrementation of x this preserves the same set of solutions (i.e., ensures integer integrity
constraints). Finally, due to the non-linear constraints in C∃r̄, these encodings are implemented
as SMT programs [BSST09] with the QF_NRA logic (Quantifier Free Non linear Real-number
Arithmetic). We use the same technique as for C∃c and C∃r for replacing integer variables by
real-number variables. We chose the programming language Python for implementing our CSP
modeler. We do not evaluate any arithmetic expression while generating CSPs, and numbers in
the interval endpoints of the pIMCs are read as strings and no trivial simplification is performed
while modeling. We do so to avoid any rounding of the interval endpoints when using floating
point numbers.

Experiments have been realized on a 2.4 GHz Intel Core i5 processor. Time out has been set
to 10 minutes. Memory out has been set to 2Gb. Table 1.17 presents the average size (i.e., the
number of variables and the number of constraints) of the instances considered for each set of
benchmarks introduced in Table 1.14, as well as the average encoding and solving time for the
existential consistency problem using (1) SMT SotA encoding, (2) SMT C∃c encoding, and (3)

6. Note that obtaining integer integrity constraints over real-numbers can be costly.
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Figure 1.18 – Comparing encoding time for the existential consistency problem

MILP C∃c encoding. First, note that all pIMCs are successfully compiled when using our C∃c
encoding while the SotA encoding produces out of memory errors for 4 sets of benchmarks:
more than 20% of the instances (see OM cells in Table 1.17). We recall that the SotA encoding
is defined inductively, and that it iterates over the power set of the states. In practice, this implies
deep recursions joined with enumeration over the power set of the states. The exponential gain
exposed in Section 1.4 is visible in terms of number of variables and constraints in Table 1.17, and
in terms of encoding time in Figure 1.18. Each dot in Figure 1.18 corresponds to one instance of
our benchmark. While the encoding time ranges between 0 and 1s when using the C∃c encoding,
it varies between 0 and 500s when using the SotA encoding (if it does not run out of memory).

MILP formulation of logical constraints (e.g., conjunction, disjunction, implication, equivalence)
implies the introduction of binary variables called indicator variables [BBF+16]. Each indicator
variable is associated to one or more constraints. The valuation of the indicator variable activates
or deactivates its associated constraints. We tried to formulate the SotA encoding into MILP.
Unfortunately, the nested conjunctions and disjunctions imply the introduction of a huge number
of indicator variables, leading to giant instances giving bad encoding and solving time. However,
since the Boolean variables in C∃c exactly correspond to indicator variables, the MILP formulation
of the C∃c encoding does not introduce additional variables or constraints. The difference between
C∃c in SMT and C∃c in MILP comes from the encoding of the domains of the continuous variables:
in SMT, it requires the use of inequality constraints, e.g., 0 ≤ x ≤ 1. The encoding time is the

51



Chapter 1 – Parametric interval Markov chains

So
tA

en
co

di
ng

in
SM

T
(t

im
e

in
se

c)

 0.01

 0.1

 1

 10

 100

 0.01  0.1  1  10  100

brp
egl

crowds
herman

nand

C∃c encoding in SMT (time in sec)

Figure 1.19 – Comparing solving time for the existential consistency problem

same for SMT and MILP C∃c encoding.

1.6.3 Solving

We chose Z3 [DMB08] in its last version (v. 4.4.2) as SMT solver. We chose CPLEX [cpl10] in
its last version (v. 12.6.3.0) as MILP solver. Both solvers have not been tuned and we use their
default strategies. Experiments have been realized on a 2.4 GHz Intel Core i5 processor. Time
out has been set to 10 minutes. Memory out has been set to 2Gb.

Table 1.17 presents the resolution time for the existential consistency problem on our first
benchmark using (1) SMT SotA encoding, (2) SMT C∃c encoding, and (3) MILP C∃c encoding.
While the SotA CSPs are larger than the C∃c CSPs, the solving time for the SotA CSPs appears
to be competitive compared to the solving time for the C∃c CSPs. The scatter plot in Figure 1.19
(logarithmic scale) compares solving times for the SMT SotA encoding and SMT C∃c encoding.
However when considering the resolution time of the problem (i.e., the encoding time plus
the solving time) the C∃c encoding clearly answers faster than the SotA encoding. Finally,
the comparison between the solving time using SMT C∃c encoding and MILP C∃c encoding is
illustrated in Figure 1.20. It shows that Both the loss of safety (passing from real numbers with
Z3 SMT resolution to floating point numbers with CPLEX MILP resolution) and the fact that
CPLEX is highly optimized for MILP problems whereas Z3 is a "generic" solver lead to a non
negligible gain in terms of resolution time (near to an exponential gain in our benchmark). Indeed
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Figure 1.20 – Comparing solving time between SMT and MILP formulations

pIMC C∃c C∃r C∃r̄
Benchmark #states #trans. #par. #var. #cstr. time #var. #cstr. time #var. #cstr. time

NAND K=1; N=2 104 147 4 255 1 526 0.17s 170 1 497 0.19s 296 2 457 69.57s
NAND K=1; N=3 252 364 5 621 3 727 0.24s 406 3 557 0.30s 703 5 828 31.69s
NAND K=1; N=5 930 1 371 7 2 308 13 859 0.57s 1 378 12 305 0.51s 2 404 20 165 T.O.
NAND K=1; N=10 7 392 11 207 12 18 611 111 366 9.46s 9 978 89 705 13.44s 17 454 147 015 T.O.

Table 1.21 – Comparison of solving times between qualitative and quantitative encodings.

the SMT C∃c encoding requires 50 seconds to complete the solving process while the MILP C∃c
encoding needs less than 5 seconds for the same instances.

Table 1.21 summarizes the results w.r.t. our second benchmark: the pIMC sizes (in terms of states,
transitions, and parameters), the CSP sizes (in terms of number of variables and constraints),
and the resolution time using the Z3 solver. Note first that we perform pre-processing when
verifying reachability properties: using a simple graph analysis, we eliminate some states that
cannot, trivially, reach the goal states. This explains why C∃r has less variables and constraints
than C∃c. Finally, note the order of magnitude between the resolution time required for solving
the qualitative properties vs. the quantitative properties w.r.t. our encodings. Indeed, we did
not succeed in solving pIMCs with more than 300 states and 400 transitions for quantitative
properties while we verified pIMCs with more than 10 000 states and 20 000 transitions in the
qualitative context.
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1.7 Conclusion

In this chapter, we have compared several Markov Chain abstractions in terms of succinctness
and we have shown that Parametric Interval Markov Chain is a strictly more succinct abstraction
formalism than other existing formalisms such as Parametric Markov Chains and Interval Markov
Chains. In addition, we have proposed constraint encodings for checking several properties over
pIMC. In the context of qualitative properties such as existential consistency or consistent
reachability, the size of our encodings is significantly smaller than other existing solutions.
In the quantitative setting, we have compared the three semantics for IMCs and pIMCs and
showed that the semantics are equivalent with respect to quantitative reachability properties.
As a side effect, this result ensures that all existing tools and algorithms solving reachability
problems in IMCs under the once-and-for-all semantics can safely be extended to the IMDP
and at-every-step semantics with no changes. Based on this result, we have then proposed CSP
encodings addressing quantitative reachability in the context of pIMCs regardless of the chosen
semantics. Finally, we have developed a prototype tool that automatically generates our CSP
encodings and that can be plugged to any constraint solver accepting the SMT-LIB format as
input.

1.8 Perspectives

The results presented in this chapter could be extended in several manners. First, our tool
for pIMC verification could be extended in order to manage other, more complex, properties
(e.g., supporting the LTL language in the spirit of what Tulip [WTO+11] does). However, as
shown in Section 1.5.1, the techniques we use, based on the equivalence of the three IMC
semantics for reachability properties, cannot be easily extended to more general properties. Some
work is therefore needed to find alternative techniques when considering other properties than
reachability.

In this line of work, we have investigated the reward-bounded reachability problem in the context
of Parametric Markov Reward Models (i.e., pIMC where each state is associated to a reward).
We have shown that in the context of model checking rPCTL, an extension of PCTL where
each path formula is equipped with a specification of a bound on the accumulated reward, the
three semantics (once-and-for-all, IMDP and at-every-step) are not equivalent. However, we
have also shown that the at-every-step and IMDP semantics are equivalent when restricted to
reward-bounded reachability properties. Although this does not provide the same simplification
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as if they were equivalent to the once-and-for-all semantics (allowing to preserve the structure),
we have still proposed an algorithm for the verification of reward-bounded reachability properties
using a reduction to the model checking problem for parametric Markov Chains. These results
have been presented in a paper that is under evaluation at the moment.
The consistency and reachability problems could also be extended to other type of interval-based
specifications. In particular, we have also studied these problems in the context of parametric
Interval Probabilistic Timed Automata. In this context, parameters can range both on timing
constraints (as is the case in parametric Timed Automata) or on interval endpoints (as is the case
here). In [AD16, ADF20], we have restricted ourselves to parameters only appearing in timing
constraints, leaving the intervals free of parameters. With this restriction, we used the results
presented in this chapter to propose an algorithm solving the problem in the non-parametric case.
We have shown that the problem is undecidable in the parametric setting, but we have proposed
a syntactic condition on the use of parameters that ensures decidability along with a construction
that solves the problem in this case. Considering the full class where parameters can range both
on timing parameters and interval endpoints remains to be done.
Another line of extension could be to consider a parametric extension of a more expressive
formalism than Interval Markov Chains. For instance, it would be natural to consider a parametric
extension of Constraint Markov Chains [CDL+11]. Our intuition is that the results presented
here would naturally extend to this setting. The only difficulty would be to make sure that the
equivalence result on the three semantics is still valid in this context.
Finally, we have only focused until now on existential problems, i.e., determining whether
there exists parameter values ensuring certain properties. We have also proposed algorithms and
techniques for synthesizing solutions to these problems. However, a technique for representing
and analyzing the set of all solutions to these problems still eludes us, and would be of particular
importance in the context of understanding or optimizing the systems under study.
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CHAPTER 2

A PROBABILISTIC EXTENSION FOR EVENT-B

The work we present in this chapter was achieved during Mohamed Amine Aouadhi’s the-
sis. This work was initiated from the observation that many software systems are developed
using specification and refinement techniques using proof-based modeling formalisms such as
B [Abr05], Event-B [Abr10], Z [Spi88] and their associated toolsets. Although uncertainty can be
taken into account in such models, the only way of expressing it is through non-determinism. As
explained in the previous chapter, uncertainty is a very important notion when modeling complex
systems and needs to be taken into account inside the models in order to make verification and
analysis of those systems more accurate. As also explained before, uncertainty can be expressed
in other, more informative ways, than non-determinism. In particular, the use of probabilities
inside the modeling formalism is a way of being more precise when modeling certain kinds of
uncertainties than limiting ourselves to non-determinism.

To the best of our knowledge, few attempts had been made at extending the Event-B formalism
with probabilities when we started this line of work. In particular, the existing attempts had been
limited in the manner in which probabilistic information could be included in Event-B models. In
this work, we instead propose a probabilistic extension of Event-B where probabilities can appear
in any place where choices are available, and can be introduced in the models in a progressive
manner through probabilistic refinement. This chapter is mostly based on [ADL17, ADL19b].
For the sake of conciseness, some of the results obtained in [ADL19b] as well as detailed proofs
have been left out of this document. However, the interested reader can refer to [ADL19b] for
details.

2.1 Introduction

As systems become more and more complex, with randomised algorithms [MR10], probabilistic
protocols [ACM03] or failing components, it is necessary to add new modeling features in
order to take into account complex system properties such as reliability [Vil92], responsive-
ness [CS88, TRF03], continuous evolution, energy consumption etc. One of these features is
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probabilistic reasoning to introduce uncertainty in a model or to mimic randomised behaviour.
Probabilistic modeling formalisms have therefore been developed in the past, mainly extending
automata-based formalisms [Sto02, Put14]. One such probabilistic modeling formalism has been
presented in Chapter 1. Abstraction [Kat07, DGVJ12], refinement [JL91] and model checking
algorithms [BDA95, BK08] have been successfully studied in this context. However, the intro-
duction of probabilistic reasoning in proof-based modeling formalisms has been, to the best of
our knowledge, quite limited [HA12, ST96, Hoa05, Gol98, BFG+14, HMM05, APM09, Hur03].
Translations from proof-based models are always possible. However, the use of automata-based
verification in this context is inconvenient due to the state-space explosion in the translation.

Event-B [Abr10] is a proof-based formal method used for discrete systems modeling. It is
equipped with Rodin [ABH+10], an open toolset for modeling and proving systems. This toolset
can easily be extended, which makes of Event-B a good candidate for introducing probabilistic
reasoning in a proof-based modeling formalism. The development process in Event-B is based
on stepwise refinement: systems are typically developed progressively using an ordered sequence
of models, where each model contains more details than its predecessor. Refinement allows a
step-by-step description of the behaviour of systems, providing an efficient way to give a detailed
description of their behaviour.

So far, several research works have focused on the extension of Event-B to allow the expression
of probabilistic information in Event-B models. In [MHA05], Abrial et al. have summarised
the difficulties of embedding probabilities into Event-B. This paper suggests that probabilities
need to be introduced as a refinement of non-determinism. In Event-B, non-determinism occurs
in several places such as the choice between enabled events in a given state, the choice of the
parameter values in a given event, and the choice of the value given to a variable through some
non-deterministic assignments. To the best of our knowledge, the existing works on extending
Event-B with probabilities have mostly focused on refining non-deterministic assignments into
probabilistic ones while other sources of non-determinism have been left untouched. In [HH07],
Hallerstede et al. focus on a qualitative aspect of probability. They refine non-deterministic
assignments into qualitative probabilistic assignments where the actual probability values are not
specified, and adapt the Event-B semantics and proof obligations to this new setting. In [Yil10],
the same authors study the refinement of qualitative probabilistic Event-B models and propose a
tool support inside Rodin. Other works [TTL09, TTL15, TTL10] have extended this approach by
refining non-deterministic assignments into quantitative probabilistic assignments where, unlike
in [HH07], the actual probability values are specified. This new proposition is then exploited in
order to assess several system properties such as reliability and responsiveness.
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Unfortunately, other sources of non-determinism than assignments have been left untouched,
although the authors argue that probabilistic choice between events or parameter values can
be achieved by transformations of the models that embed these choices inside probabilistic
assignments. While this is unarguably true, such transformations are not trivial and greatly
impede the understanding of Event-B models. Moreover, these transformations would need to
be included in the refinement chain when designers need it, which would certainly be counter-
intuitive to engineers.
In this chapter, we extend these works by proposing a probabilistic extension of Event-B and
presenting some ways of introducing probabilistic reasoning within Event-B. As the design
process within Event-B is based on refinement, we propose to provide a standard description
of a system by a set of models related by refinement. According to this modeling process,
probabilities can be introduced in several manners that are illustrated in Figure 2.1.
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Figure 2.1 – How to introduce probabilities within Event-B

In this figure, the vertical axis represents the introduction of more details in the model while the
horizontal axis represents the introduction of probabilistic information. Several types of models
stand out:

— Models on the left side of the picture are standard Event-B models that only contain
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non-deterministic choices but no probabilistic information;

— Models on the right side of the picture are fully probabilistic Event-B models where all
choices are probabilistic;

— Models in the centre of the picture are mixed Event-B models, where both non-deterministic
and probabilistic choices are present.

Depending on the system that is being developed, the development process could always stay on
the left side (when the system does not have any probabilistic aspect), and therefore end in the
bottom left of the picture; or the development process could move to the right side and either
end in the bottom right when the system is fully probabilistic or in the middle when the system
contains both probabilistic and non-deterministic aspects.
In any case, there are many ways both to add standard (non-deterministic) details in the model
and to add probabilistic information. Fig. 2.1 provides three generic development processes
(green, red and blue), which we detail below.
Assuming the model under development is fully probabilistic, one could consider starting with
an abstract non-deterministic version of the model, then progressively refining it in a standard
way until a satisfying level of details is achieved. Once enough details have been introduced, all
non-deterministic choices can be refined into probabilistic choices in one shot (this last step is
called probabilisation). This whole process is depicted in blue in Fig. 2.1.
Obviously, one could also consider starting with the probabilisation step, therefore obtaining
an abstract fully probabilistic model. From this model, details can then be introduced through
probabilistic refinement. This whole process is depicted in red in Fig. 2.1. While the fully
probabilistic counterpart of the standard Event-B refinement still eludes us at this point, we
nevertheless propose some restricted refinement steps for fully probabilistic systems through
context refinement and the introduction of new probabilistic events.
Finally, the designer could decide to interleave the introduction of new details in the model
with the introduction of probabilistic information. In this context, intermediate models are
mixed models and one has to consider the standard refinement of mixed models, the partial

probabilisation operation (that only turns some of the non-deterministic choices into probabilistic
choices), the introduction of probabilistic events in a standard (non-deterministic) model and the
introduction of standard (non-deterministic) events in a probabilistic or mixed model. That last
development process is depicted in green in Fig. 2.1.
This chapter summarizes the results obtained during Mohamed Amine Aouadhi’s thesis and is
based on [ADL17, ADL19b]. In these papers, we have provided the scientific foundations in
order to allow all the design possibilities presented above in the Event-B framework. In particular,
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we have proposed some new syntactic elements for writing probabilistic and mixed Event-B
models in the Event-B framework. The consistency of such models is then expressed, as in
standard Event-B, in terms of proof obligations. In order to prove the correctness of our approach,
we have shown that the operational semantics of such models can be expressed in terms of
(potentially infinite-state) Markov Chains – for fully probabilistic models – and (potentially
infinite-state) Markov Decision Processes – for mixed Event-B models – therefore resembling
the LTS operational semantics of standard Event-B models.

In this chapter, we propose several operations for introducing details and probabilistic aspects in
probabilistic Event-B models. 1 In particular, we focus on the introduction of new probabilistic
events in a given model. In the standard Event-B setting, convergence is a required property
for proving a refinement steps as soon as new events are introduced in the model. The coun-
terpart property in the probabilistic setting is almost-certain convergence, which has already
been studied in [MM06, Hoa05] in the context of probabilistic programs and the standard B
method, and in [Hoa14, HH07] in the context of non-deterministic Event-B models with only
probabilistic assignments. While the authors of [MM06, Hoa05] propose hypotheses under
which probabilistic while loops almost-certainly converge, these hypotheses cannot be directly
applied to our setting as they would require a translation from the probabilistic Event-B setting
to the standard probabilistic B setting which is not trivial. In addition, some new conditions
would need to be exhibited in the probabilistic Event-B setting that ensure that the hypotheses
on the standard probabilistic B setting are met. Instead, have chosen to exhibit conditions at
the probabilistic Event-B level and we show that these conditions ensure almost-certain conver-
gence of the operational semantics of the model. On the other hand, [Hoa14, HH07] focus on
almost-certain convergence at the probabilistic Event-B level for probabilistic Event-B models
where probabilities only appear inside probabilistic assignments, but cannot appear in the choice
between enabled events or in the choice of parameter values. However, we show that the proof
obligations developed in this context are not sufficient for our models. We therefore propose new
sufficient conditions, expressed in terms of proof obligations, for the almost-certain convergence
of a set of fully probabilistic events. While the conditions we exhibit are more constrained than
those from [HH07] concerning events and parameters, they are also less restrictive concerning
probabilistic assignments.

Finally, some of the results presented in this chapter have been implemented in a prototype
plugin for Rodin, which we briefly present at the end of the chapter.

1. Some aspects such as the probabilisation of standard Event-B models or the study of mixed Event-B models
are deliberately left out in order to keep this document to a manageable size. Nevertheless, these topics have also
been studied and are detailed in [ADL19b].
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2.2 Background

We start by introducing notations for (probabilistic) transition systems and basic elements of the
Event-B method that will be used throughout the chapter.

2.2.1 Transition systems

In the following, recall that Dist(S) denotes the set of distributions over a given set S, i.e., the
set of functions δ : S→ [0,1] such that ∑s∈S δ(s) = 1. Remark that the definitions we give here
are slightly different from the definitions given in Chapter 1. Indeed, in the context of Event-B,
the set of atomic propositions that label states in our probabilistic models may depend on the
corresponding Event-B model and therefore have to be included in the following definitions.
Moreover, probabilistic transition systems in this context (such as Markov Chains), need to take
into account action names that label transitions.

Labelled Transition System [BK08] A labelled transition system (LTS for short) is a tuple
M =(S, Acts, s0,→, AP, L) where S is a set of states, s0 ⊆ S is the initial state, Acts is a set of
actions,→⊆ S × Acts × S is a transition relation AP is a set of atomic propositions, and L : S

→ 2AP is a labelling function.

Probabilistic Labelled Transition System [BK08] A Probabilistic Labelled Transition Sys-
tem (PLTS for short) is a tuple M =(S, s0, Acts, P, AP, L) where S is a set of states, s0 ∈ S is the
initial state, Acts is a set of actions, AP is a set of atomic propositions, L: S→ AP is a labelling
function, and P: S × Acts × S→ [0,1] is the transition probability function. If for each state
s ∈ S we have ∑s′∈S,a∈Acts P(s,a,s′) = 1, then the PLTS is a Discrete Time Markov Chain (as
introduced in Chapter 1).

2.2.2 Event-B

Event-B [Abr10] is a formal method used for the development of complex discrete systems.
Systems are described in Event-B by means of models. For the sake of simplicity, we assume in
the rest of the chapter that an Event-B model is expressed by a tuple M=(v̄,I(v̄ ),V(v̄),Evts, Init )

where v̄= {v1 . . . vn} is a set of variables, I (v̄) is an invariant, V(v̄) is an (optional) variant used for
proving the convergence of the model, Evts is a set of events and Init ∈ Evts is the initialisation
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2.2. Background

event. The invariant I (v̄) is a conjunction of predicates over the variables of the system specifying
properties that must always hold.

ei =̂
any t̄ where
Gi(t̄ , v̄)

then
Si( t̄ , v̄)

end

Events An event has the following structure (see Figure on the side), where
ei is the name of the event, t̄ = {t1 . . . tn} represents the (optional) set of
parameters of the event, Gi(t̄ , v̄) is the (optional) guard of the event and
Si( t̄ , v̄) is the action of the event. An event is enabled in a given valuation
of the variables (also called a configuration) if and only if there exists a
parameter valuation such that its guard Gi(t̄ , v̄) is satisfied in this context. The action Si( t̄ , v̄) of
an event may contain several assignments that are executed in parallel. An assignment can be
expressed in one of the following forms:

— Deterministic assignment: x:= E(t̄, v̄) means that the expression E(t̄ , v̄) is assigned to the
variable x.

— Predicate (non-deterministic) assignment: x :| Q(t̄ ,v̄,x,x ’) means that the variable x is
assigned a new value x’ such that the predicate Q(t̄ ,v̄,x,x ’) is satisfied.

— Enumerated (non-deterministic) assignment: x :∈ {E1(t̄ ,v̄) . . . En(t̄ , v̄)} means that the
variable x is assigned a new value taken from the set {E1(t̄ ,v̄) . . . En(t̄ , v̄)}, where Ei are
expressions.

Before-after predicate and semantics The formal semantics of an assignment is described by
means of a before-after predicate (BA) Q(t̄ ,v̄,x,x ’) . This BA describes the relationship between
the values of the variable before (x) and after (x’) the execution of an assignment. Before-after
predicates are as follows:

— the BA of a deterministic assignment is x’= E(t̄ , v̄),

— the BA of a predicate assignment is Q(t̄ ,v̄,x,x ’) , and

— the BA of an enumerated assignment is x’∈{E1(t̄,v̄) . . . En(t̄ , v̄)}.

Recall that the action S j(t̄ , v̄) of a given event e j may contain several assignments that are
executed in parallel. Assume that v1 . . . vi are the variables assigned in S j(t̄ , v̄) – variables
vi+1 . . . vn are thus not modified – and let Q(t̄ ,v̄,v1 ,v’1) . . . Q(t̄ ,v̄,vi ,v’ i ) be their corresponding
BA. Then the BA S j(t̄ , v̄,v̄ ’) of the event action S j(t̄ , v̄) is:

S j(t̄ , v̄,v̄ ’) =̂ Q(t̄,v̄,v1,v’1) ∧ . . . ∧ Q(t̄,v̄,vi,v’i ) ∧ (v’ i+1=vi+1) ∧ . . . (v’n=vn)
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Chapter 2 – A Probabilistic Extension for Event-B

Proof obligations The consistency of a standard Event-B model is characterized by means of
proof obligations (POs) which must be discharged. Discharging all the necessary POs allows to
prove that the model is sound with respect to some behavioural semantics. Formal definitions of
standard Event-B POs are given in [Abr10]. In the following, we only recall the most important
of them: (event/INV) for invariant preservation, which states that the invariant still holds after
the execution of each event in the Event-B model M. Given an event ei with guard Gi(t̄ , v̄) and
action Si( t̄ , v̄), this PO is expressed as follows:

I (v̄) ∧ Gi(t̄ ,v̄) ∧ Si(t̄ , v̄,v̄ ’) ` I (v̄ ’) (event/INV)

Operational semantics As established in [BC00], the semantics of an Event-B model
M=(v̄,I(v̄ ),V(v̄),Evts, Init ) is expressed in terms of a labelled transition system (LTS) M =(S,
s0, Acts, T , AP, L) where S is a set of states, each state in S being uniquely identified by its label;
s0 ∈ S is the initial state obtained by executing the Init event; Acts is the set of actions (event
names); AP is the set of atomic propositions: a set of predicates that correspond to the valuations
of v̄ and satisfy the invariant I (v̄); L: S→ AP is a labelling function that provides the valuations
of the variables v̄ in a given state; and T ⊆ S × Acts × S is the transition relation corresponding
to the actions of the events of M.

2.2.3 Refinement in Event-B

In Event-B, the process of modeling systems is based on the theory of refinement. Many research
work have focused in the development of the theory of refinement [BvW89, Bac89, MM06]: it
appears from the literature that refinement is used in two related concepts in computer science.
The first one considers refinement as a top-down program development methodology when
the system is firstly described by an abstract specification and progressively refined by other
ones. Each abstract specification will be more detailed and new details can be introduced during
refinement. The second concept concerns the preservation of correctness between abstract and
refined specifications.

Event-B refinement supports both concepts: it is a mechanism for introducing details about
the static and dynamic properties of a model while preserving correctness. For the static part,
refinement in Event-B allows a detailed description of the state space by the introduction of new
variables (i.e., data/context refinement [HHS86, DREB98]). Concerning the dynamic aspects,
refinement in Event-B also allows a more detailed description of the execution of the system
by adding new events processing the new introduced variables or by giving more details on the
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events of an abstract model. For more details on the theory of refinement in Event-B, we refer the
reader to the Action Systems formalism [Bac89] which has inspired the development of Event-B.
In Event-B, under a number of conditions expressed as proof obligations, a concrete model
N=(w̄, J(v̄,w̄),Evtsc, Init c ) may refine an abstract model M=(v̄,I(v̄ ),V(v̄),Evtsa, Init ). In this case,
w̄ is a set of variables containing some (preserved) variables of the abstract model and some new
variables introduced by refinement, J(v̄,w̄) is an invariant that must provide a relation between the
(removed) abstract variables (v̄) and the new concrete variables (w̄), Evtsc is the set of concrete
events that contains both the refined events (Evtsc ∩ Evtsa) and the new events introduced by
refinement (Evtsc \ Evtsa), and Init c is the concrete initialisation event.

Events Each abstract event from the set Evtsa can be refined by one or more concrete events.
Moreover, several events from the abstract set Evtsa can be refined a single one. The first case is
called splitting while the second one is called merging.

ea =̂
any t̄ where
Ga(t̄ ,v̄)

then
Sa(t̄ , v̄)

end

ec =̂
refines ea
any ū where
Gc(ū,w̄)
with
Wic(t̄ ,ū,v̄,v̄ ’, w̄,w̄’)

then
Sc(ū,w̄)

end

In this chapter, we do not address the cases of event
splitting and merging, we only consider the refinement
of an abstract event ea by only one concrete event ec

as follows. We remark that the event ec may contain
one more component Wic(t̄ ,ū,v̄,v̄ ’, w̄,w̄’) which denotes
a witness. A witness links the abstract parameters t̄ and
the abstract variables v̄ ’ to concrete parameters ū and concrete variables w̄’.
As the Event-B refinement process allows a more detailed description of the execution of the
system, it is necessary to introduce new events (Evtsc \ Evtsa) which characterize the evolution
of the new added variables during refinement.

Proof obligations In Event-B refinement, the behaviour of the concrete model must be com-
patible with the behaviour of the abstract one. This constraint is verified and maintained by some
proofs obligations dedicated to refinement. All the refinement POs are presented in [Abr10]. In
the following, we recall only the most important ones.
For the refinement of an abstract event ea by a concrete event ec, the two following POs must be
satisfied:

(1) Guard strengthening. The guard of ec is as least as strong as the guard of ea:
I (v̄) ∧ J(v̄,w̄) ∧ Gc(ū,w̄) ∧Wic(t̄,ū,v̄,v̄ ’, w̄,w̄’) ` Ga(t̄ ,v̄) (grd/STRENGTH)

(2) Simulation. The action of ec simulates the action of ea:
I (v̄) ∧ J(v̄,w̄) ∧ Gc(ū,w̄) ∧ Sc(ū,w̄,w̄’) ` Sa(t̄ , v̄,v̄ ’) (act/SIM)
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The last ensures that when a concrete event is executed, what it does is not contradictory with
what the abstract event does.

When introducing new events during refinement, it is then necessary to show that their introduc-
tion cannot prevent the system from behaving as specified in the abstract model. In particular,
it is necessary to show that such new events are convergent, in the sense that they cannot keep
control indefinitely: at some point the system has to stop executing new events in order to follow
the behaviour specified in its abstract model.

In order to prove that a set of events is convergent in Event-B, we have to introduce a natural
number expression V(v̄), called a variant, and show that all convergent events strictly decrease
the value of this variant. As a consequence, when the variant hits zero, it is guaranteed that no
convergent event can be performed. That leads to two POs to be discharged:

(1) Numeric variant. Under the guard Gi(t̄ , v̄) of each convergent event ei, the variant V(v̄) is
greater or equal to 0.

I (v̄) ∧ Gi(t̄ ,v̄) ` V(v̄)∈NAT (event/var/NAT)

(2) Convergence. The action Si( t̄ , v̄) of each convergent event ei must always decrease the
variant V(v̄).
I (v̄) ∧ Gi(t̄ ,v̄) ` ∀ v̄ ’. Si( t̄ , v̄,v̄ ’)⇒V(v̄’)<V(v̄) (event/VAR)

2.3 Running example: Simple peer-to-peer protocol

We now introduce a running example, based on a simplified scenario of a peer-to-peer protocol
inspired from Bittorent [bit]. The description of the complete case study can be found in [pri].
The model considers a set of N clients trying to download a file that has been partitioned into K

blocks. Initially, no block has been downloaded by any client. The protocol ends when all the
clients have successfully downloaded all the blocks.

Initial protocol model The model P2P1 given in Fig 2.2 presents an abstract Event-B spec-
ification of the protocol. It represents a general abstraction of the behaviour of the protocol
with no details included. At this level, the state of the protocol is described by means of one
variable DB. This variable contains a matrix which indicates for each client c∈1..N and each
block b∈1..K whether the client has already downloaded the block (DB(c 7→b)=finished) or not
(DB(c 7→bc=empty). Initially, no block has been downloaded by any client.
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MODEL
P2P1

VARIABLES
DB

INVARIANTS
DB∈ 1..N × 1..K→ {empty,finished}

EVENTS
Init =̂
begin
DB:=(1..N × 1..K) × {empty}

end

AllDL =̂
any magicDB where
DB=(1..N × 1..K) × {empty} ∧
magicDB ∈ 1..N × 1..K→ {empty,finished} ∧
magicDB=(1..N × 1..K) × {finished}

then
DB:=magicDB

end

END

Figure 2.2 – Initial Event-B model of the simple P2P protocol

At this level of abstraction, we only consider one event (AllDL) describing in one statement
the whole execution of the protocol. magicDB is a parameter chosen in such a way that for
all client c ∈ 1..N and block b ∈ 1..K, we have magicDB(c 7→b)=finished. The substitution
DB := magicDB corresponds to the (somehow magical) download of all the blocks by all the
clients in one shot. Notice that in reality, the download of all the blocks of the file by all the
clients is not done in one shot. It is instead made gradually by successive attempts. Introducing
these attempts is the purpose of the first refinement, which we present hereafter.

Step-by-step download We now present a first refinement of the protocol. For this purpose,
we enlarge the set of variables and events. The resulting model is presented in Fig 2.3. We
introduce a new variable DBin that contains a matrix which represents the state of download of
each block at each iteration of the model. For each client and each block, the corresponding state
could be finished – indicating that the client has successfully downloaded the block; incoming –
indicating that the client is currently trying to download the block; or empty – indicating that the
download of the block has not yet started. Initially, as in the abstract model, no block has been
downloaded by any client, therefore DBin:= ( 1..N × 1..K) × {empty}. Furthermore, we impose
that each client c is not currently trying to download more than one block c, as indicated in the
invariant in Fig. 2.3.

To model the download process in a step by step manner, we introduce two new events: Start1DL

and Finish1DL. In the event Start1DL, a client c and a block b are chosen in a non-deterministic
manner in such a way that the download of the block b by client c has not yet started; furthermore,
the considered client c is not currently trying to download another block k; then, the client starts
to download the block (DBin(c 7→b):=incoming). The event Finish1DL models that a client c

terminates the downloading of a block b in a similar manner. The events Start1DL and Finish1DL
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MODEL
P2P2

REFINES
P2P1

VARIABLES
DB
DBin

INVARIANTS
DBin ∈ 1..N × 1..K→ {empty,incoming,finished} ∧
∀ c . (c ∈ 1..N⇒

card({b | b ∈ 1..K ∧ DBin(c 7→b)=incoming}) ≤ 1)

VARIANT
2 × N*K
− 2 × card({c7→b |n∈1..N ∧ b ∈ 1..K ∧ DBin(c 7→b) = finished})
− card({c 7→b |n∈1..N ∧ b ∈ 1..K ∧ DBin(c7→b) = incoming})

EVENTS

Init =̂
begin
DB:=(1..N × 1..K) × {empty} ‖
DBin:=(1..N × 1..K) × {empty}

end

DLFinished =̂
refines AllDL
when
DB=(1..N × 1..K) × {empty} ∧
DBin=(1..N × 1..K) × {finished}

then
DB:=DBin

end

Start1DL =̂
any c, b where
c ∈ 1..N ∧ b ∈ 1..K ∧
DBin(c 7→b)=empty ∧
card({k | k ∈ 1..K ∧ DBin(c 7→k)=incoming})=0

then
DBin(c 7→b):=incoming

end

Finish1DL =̂
any c, b where
c ∈ 1..N ∧ b ∈ 1..K ∧
DBin(c 7→b)=incoming

then
DBin(c 7→b):=finished

end
END

Figure 2.3 – First refinement of the simple P2P protocol: step-by-step download

are activated until we cannot find any pair (c,b) such that DBin(c7→b)=empty.

The event DLFinished refines the event AllDL. It is now enabled when
DBin= ( 1..N × 1..K) × {finished}, i.e, when all the clients have successfully downloaded all
the blocks. Then, it just substitutes the value of DBin to DB to realise the abstract attempted
substitution from AllDL.

As we introduce two new events, we have to show their convergence by introducing the variant
given in Fig. 2.3. Each time Start1DL and Finish1DL are activated, their actions increase the
numbers of incoming or finished in DBin, therefore the variant clearly decreases.

Figure 2.4 gives an extract of the operational semantics of this first refinement in terms of
transition system, with N=2 and K=2. In this figure, a small dot in the matrix indicates that the
block has not been downloaded yet, while an empty (resp. filled) bullet represents that the block
is incoming (resp. successfully downloaded). For readability purposes, transitions in this TS
have been annotated with the corresponding parameter values. The indicated v corresponds to
the value of the variant in the corresponding state. As expected, the value of v decreases each
time a new event is performed.

Remark that, at this point, any download attempt is ultimately successful. The purpose of the
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Figure 2.4 – Extract of the transition system of the first refinement of the simple P2P protocol,
with N=2 and K=2

next refinement step is therefore to introduce failures in the block download process.

Introducing failures In this refinement P2P3, we want to take into consideration some possible
failures during the download process. More precisely, two possible failures can occur when a
download is incoming: a failure can be critical (in this case, the download must be aborted) or
not (in this case, the download continues). We therefore simply add to the previous Event-B
model a new event FailureDL, given in Fig 2.5. Its action non-deterministically chooses a value
from {empty, incoming}: empty is chosen when the failure aborts the download and incoming is
chosen otherwise. This new event has the same guard as the event FinishDB. As a consequence,
both events are enabled at the same time and the choice between them is non-deterministic,
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FailureDL =̂
any c, b where
c ∈ 1..N ∧ b ∈ 1..K ∧
DBin(c 7→b)=incoming

then
DBin(c 7→b):∈{empty,incoming}

end

Figure 2.5 – New event introduced in the second refinement step

which models the uncontrolled occurrence of failures. An extract of the operational semantics of
this new model is provided in Figure 2.6.
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Figure 2.6 – Extract of the transition system of the second refinement of the simple P2P protocol,
with N=2 and K=2

As we have introduced a new event, we need to prove its convergence. Unfortunately, due to the
non-deterministic nature of the assignment in the event FailureDL, it is impossible to provide a
variant that decreases regardless of its outcome. The refinement between this new model and the
previous one is therefore not correct.

We will address the same problem in the probabilistic setting and prove that, in this case, the
probabilistic version of FailureDL almost-certainly converges. As a consequence, unlike here,
the refinement is correct in the probabilistic setting.
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2.4 Fully probabilistic Event-B

We recall that our goal is to introduce probabilistic reasoning within Event-B. In this section, we
present the basic elements of syntax and semantics for fully probabilistic Event-B models. We
begin by presenting the sources of non-determinism in Event-B and explaining how they can be
replaced by probabilistic choices in the context of fully probabilistic models. We then present
the syntax of such fully probabilistic Event-B models. In order to ensure the consistency of these
models, we present the set of new POs specific to the introduced elements and how standard POs
can be adapted in this context. Finally, in order to prove the correctness of our approach, we
propose operational semantics of such models in terms of Markov chains.

2.4.1 Introducing probabilistic choices

In Event-B, non-determinism can appear in three places: the choice of the enabled event to be
executed, the choice of the parameter value to be taken and the choice of the value to be assigned
to a given variable in a non-deterministic assignment. To obtain a fully probabilistic Event-B

model, we propose to replace all these non-deterministic choices with probabilistic ones. In the
following, we go through these three sources of non-determinism and explain how to turn them
into probabilistic choices.

Choice of the enabled event In standard Event-B, when several events are enabled in a given
configuration, the event to be executed is chosen non-deterministically. In order to resolve
this non-deterministic choice, we propose to equip each probabilistic event with a weight. In
configurations where several probabilistic events are enabled, the probability of choosing one of
them will therefore be computed as the ratio of its weight against the total value of the weights of
all enabled events in this state. Using weights instead of actual probability values is convenient
as the set of enabled events evolves with the configuration of the system. Using probability
values instead would require to normalise them in all configurations. Moreover, for the sake of
expressivity, we propose to express the weight Wi(v̄) of a probabilistic event ei as an expression
over the variables v̄ of the fully probabilistic Event-B model. The probability of executing a
given event can therefore evolve as the system progresses. A probabilistic event is therefore
allowed to be executed only if i) its guards is fulfilled and ii) its weight is strictly positive.

Choice of the parameter values In standard Event-B, events can be equipped with parameters.
In each configuration where this is possible, a valuation of the parameters is chosen such that the
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guard Gi(t̄ , v̄) of the event is satisfied. When there are several such parameter valuations, one of
them is selected non-deterministically. We therefore propose to replace this non-deterministic
choice by a uniform choice over all parameter valuations ensuring that the guard of the event is
satisfied. The uniform distribution is a default choice but our results can be extended to any other
discrete distribution.

Non-deterministic assignments Recall that non-deterministic assignments in Event-B are ex-
pressed in two forms: predicate non-deterministic assignments and enumerated
non-deterministic assignments.

We propose to replace predicate non-deterministic assignments by predicate probabilistic assign-

ments written

x:⊕Qx(t̄,v̄,x’)

Instead of choosing non-deterministically among the values of x’ such that the predicate
Qx(t̄ ,v̄,x ’) is true as in standard predicate non-deterministic assignments, we propose to choose
this new value using an uniform distribution. For simplicity reasons, we enforce that this uniform
distribution must be discrete, and therefore that the set of values x’ such that Qx(t̄ ,v̄,x ’) is true
must always be finite. As above, the uniform distribution we propose by default could be replaced
by any other discrete distribution.

We propose to replace enumerated non-deterministic assignments by enumerated probabilistic

assignments written

x:= E1(t̄,v̄) @ p1 ⊕ . . . ⊕ Em(t̄,v̄) @ pm

In this structure, the variable x is assigned the expression Ei with probability pi
2. In order to

define a correct probability distribution, each pi must be strictly positive and smaller or equal
to 1, and they must sum up to 1. Although rational numbers are not natively handled in Event-
B, we assume that the context of the model allows the use of rational numbers. In practice,
that can be done by defining a "Rational" theory in Rodin using the theory plug-in providing
capabilities to define and use mathematical extensions to the Event-B language and the proving
infrastructure [BM13].

Remark that standard deterministic assignments are retained, but can also be considered as
enumerated probabilistic assignments where m=1.

2. In this version, we only consider constant values for the probabilities in enumerated probabilistic assignments,
but this could be extended to expressions with a few adaptations.
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ei =̂
weight Wi(v̄)
any t̄ where
Gi(t̄ , v̄)
then
SPi(t̄ ,v̄)

end

Refining all non-deterministic choices into probabilistic choices has side
effects on the syntax of events and models. In probabilistic Event-B, we
therefore propose to use the syntax on the side for a probabilistic event ei

where Wi(v̄) is the weight of the event, Gi(t̄ , v̄) is the guard of the event and
SPi(t̄ ,v̄) is a probabilistic action, i.e., an action consisting only of determinis-
tic and probabilistic assignments which are executed in parallel. Remark that the Before-after
predicate SPi(t̄ ,v̄,v̄ ’) of such a probabilistic event will be identical to the BA of its standard
(non-deterministic) counterpart.

For simplicity reasons we impose, as in standard Event-B, that the initialisation event must be
deterministic. The results we present in the rest of the chapter can nevertheless easily be extended
to probabilistic initialisation events.

Definition 12 (Fully Probabilistic Event-B Model). A Fully probabilistic Event-B model is a
tuple M=(v̄,I(v̄ ),PEvts, Init ) where v̄= {v1 . . . vn} is a set of variables, I (v̄) is the invariant, PEvts

is a set of probabilistic events and Init is the initialisation event.

Running Example A probabilistic version of the P2P model from Section 2.3 is given in
Fig. 2.7. This model has the same variables, the same invariants and the same events as the
Event-B model from Figs. 2.3 and 2.5.

The events of the model P2PP are annotated with specific weights. The risk of download
failures decreases with the number of successful downloads: each time a block is successfully
downloaded, the weight of Finish1DL increases whereas the weight of FailureDL decreases. The
weight of Start1DL models that the probability of starting a new download decreases with the
number of blocks being currently downloaded.

In case of failure, we fix the probability of aborting the download to 40%. This probability is
introduced in the event FailureDL by using an enumerated probabilistic assignment instead of a
non-deterministic one: the variable DBin(c7→b) is assigned the value empty with a probability 4

10

(the download aborts) and the value incoming with a probability 6
10 (the download continues).

2.4.2 Consistency

As in standard Event-B, the consistency of a fully probabilistic Event-B model is defined by
means of proof obligations (POs). In this section, we therefore introduce new POs specific to
fully probabilistic Event-B and explain how we adapt standard Event-B POs in order to prove
the consistency of fully probabilistic Event-B models.
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MODEL
P2PP

VARIABLES
DB
DBin

INVARIANTS
DB∈ 1..N × 1..K→ {empty,finished} ∧
DBin ∈ 1..N × 1..K→ {empty,incoming,finished} ∧
∀ c . (c ∈ 1..N
⇒ card({b | b ∈ 1..K ∧ DBin(c7→b)=incoming}) ≤ 1)

VARIANT
2 × N*K
− 2 × card({c7→b |n∈1..N ∧ b ∈ 1..K ∧ DBin(c 7→b) = finished})
− card({c 7→b |n∈1..N ∧ b ∈ 1..K ∧ DBin(c7→b) = incoming})

EVENTS

Init =̂
begin
DB:=(1..N × 1..K) × {empty} ‖
DBin:=(1..N × 1..K) × {empty}

end

DLFinished =̂
weight N*K
when
DB=(1..N × 1..K) × {empty} ∧
DBin=(1..N × 1..K) × {finished}

then
DB:=DBin

end

Start1DL =̂
weight
N*K
− card({c7→b |n∈1..N ∧ b ∈ 1..K ∧ DBin(c 7→b)=incoming})

any c, b where
c ∈ 1..N ∧ b ∈ 1..K ∧
DBin(c 7→b)=empty ∧
card({k | k ∈ 1..K ∧ DBin(c 7→k)=incoming})=0

then
DBin(c 7→b):=incoming

end

Finish1DL =̂
weight
card({c7→b |n∈1..N ∧ b ∈ 1..K ∧ DBin(c 7→b)=finished}) +1

any c, b where
c ∈ 1..N ∧ b ∈ 1..K ∧
DBin(c 7→b)=incoming

then
DBin(c 7→b):=finished

end

FailureDL =̂
weight
N*K
− card({c7→b |n∈1..N ∧ b ∈ 1..K ∧ DBin(c 7→b)=finished})

any c, b where
c ∈ 1..N ∧ b ∈ 1..K ∧
DBin(c 7→b)=incoming

then
DBin(c 7→b):=empty @4/10 ⊕ incoming @6/10

end

END

Figure 2.7 – Probabilistic version of the simple P2P protocol

Specific POs for fully probabilistic Event-B

We start by presenting new POs specific to fully Probabilistic Event-B.

Numeric weight For simplicity reasons, we impose that the expression Wi(v̄) representing the
weight of a given probabilistic event must evaluate to natural numbers.

I (v̄) ∧ Gi(t̄ ,v̄) ` Wi(v̄) ∈ NAT (event/WGHT/NAT)

Parameter values finiteness In order to be able to use a discrete uniform distribution over the
set of parameter valuations ensuring that the guard of a probabilistic event is satisfied, we impose
that this set must be finite.

I (v̄) ` finite ({t̄ | Gi(t̄ , v̄)}) (event/param/pWD)
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Enumerated probabilistic assignments well-definedness and feasibility In all enumerated
probabilistic assignments, it is necessary to ensure that the discrete probability values p1 . . . pn

define a correct probability distribution. Formally, this leads to two POs:

(1) Probability values pi in enumerated probabilistic assignments are strictly positive and
smaller or equal to 1.
` 0 < pi ≤ 1 (event/assign/pWD1)

(2) The sum of the probability values p1 . . . pn in enumerated probabilistic assignments must
be equal to 1.
` p1 + . . .+ pn = 1 (event/assign/pWD2)

Feasibility of enumerated probabilistic assignments is trivial: as soon as at least one expression
Ei( t̄ , v̄) is present and well-defined, it always returns a value.

Predicate probabilistic assignment well-definedness and feasibility In order to define a
discrete uniform distribution over the set of values of a variable x making the predicate Qx(t̄ ,v̄,x ’)

of the corresponding assignment satisfied, we impose that this set must be finite.
I (v̄) ∧ Gi(t̄ ,v̄) ∧Wi(v̄)>0 ` finite ({x’ | Qx(t̄ ,v̄,x ’)}) (event/assign/pWD3)

Feasibility of predicate probabilistic assignments is ensured by the standard feasibility PO [Abr10]
inherited from Event-B. It ensures that the set {x’ | Qx(t̄ ,v̄,x ’)} is not empty.

Modifications to standard POs

In standard Event-B, if we want to prove that an event is enabled, we need to prove that its guard
is satisfied. However, in fully probabilistic Event-B, we additionally need to prove that its weight
is strictly positive. We therefore modify standard and optional Event-B POs as follows.

Invariant preservation The invariant must be preserved by all enabled probabilistic events.
I (v̄) ∧ Gi(t̄ ,v̄) ∧Wi(v̄) > 0 ∧ SPi(t̄,v̄,v̄ ’) ` I (v̄ ’) (event/pINV)

Deadlock freedom In all acceptable configurations, there must exist at least one enabled
probabilistic event.

I (v̄) ` (G1(t̄ ,v̄) ∧W1(v̄) > 0) ∨ . . .∨ (Gn(t̄ ,v̄) ∧Wn(v̄) > 0 ) (model/pDLF)

For the sake of understanding, we hereby insist on the separation between the guard of an event,
which reflects the classical notion of enabledness, and the fact that its weight must be strictly
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positive. Obviously, one could also automatically re-write the guard of all probabilistic events in
order to include the condition on its weight. This solution would allow conserving most of the
standard Event-B consistency POs without modifications in the probabilistic setting.

Running example

Consider the fully probabilistic Event-B model P2PP given in Fig. 2.7: all the weight expressions
are natural numbers (event/WGHT/NAT) and, for each event, the number of acceptable parameter
valuations is finite (event/param/pWD). For the probabilistic enumerated assignment on the event
FailureDL, each given probability is a rational p such that 0 < p ≤ 1 (event/assign/pWD1) and
their sum is clearly equal to 1 (event/assign/pWD2). The invariant is always preserved by each
probabilistic version of the events (event/pINV). The model P2PP is therefore consistent.

2.4.3 Semantics

As explained in Section 2.2.2, the operational semantics of standard Event-B models is expressed
in terms of Labelled Transition Systems. In the following, we extend this work by presenting the
operational semantics of fully probabilistic Event-B models in terms of Discrete Time Markov
Chains (MC).

Remark that our goal, unlike in [TTL09, TTL15] is not to translate our models into MCs and
use standard model checking techniques to verify them. Instead, we aim at reasoning directly on
fully probabilistic Event-B models and benefiting from the symbolic proof mechanism that is the
signature of the Event-B approach. The following MC semantics are nevertheless introduced as
a demonstration of the correctness of our approach and results.

Notations

Let M=(v̄, I (v̄ ), PEvts, Init ) be a fully probabilistic Event-B model and σ be a valuation of its
variables. Given a variable x ∈ v̄, we write [σ]x for the value of x in σ. Given an expression E(v̄)

over variables in v̄, we write [σ]E(v̄) (or [σ]E when clear from the context) for the evaluation of
E(v̄) in the context of σ. Given an expression E(t̄, v̄) over variables and parameters, we write
[σ,θ]E(t̄, v̄) for the evaluation of E(t̄, v̄) under parameter valuation θ and variable valuation σ.

Given a probabilistic event ei with a set of parameters t̄ and a valuation σ of the variables, we
write T ei

σ for the set of parameter valuations θ such that the guard of ei evaluates to true in the
context of σ and θ. Formally, T ei

σ = {θ | [σ,θ]Gi(t̄, v̄) = true}. Recall that parameter valuations
are chosen uniformly on this set. We write PT ei

σ
for the uniform distribution on the set T ei

σ .
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Given a valuation σ of the variables and a probabilistic event ei, we say that ei is enabled in σ iff
(a) the weight of ei evaluates to a strictly positive value in σ and (b) either ei has no parameter
and its guard evaluates to true in σ or there exists at least one parameter valuation θ such that the
guard of ei evaluates to true in the context of σ and θ, i.e., T ei

σ 6=∅.

Let ei be a probabilistic event in PEvts and let x be a variable modified by ei. Recall that x can
be modified only by one assignment within the action of ei. If x is modified by an enumerated
probabilistic assignment (x := E1(t̄, v̄)@p1⊕ . . .⊕Em(t̄, v̄)@pm (m≥ 1)), then we write Eei(x)

for the set of all expressions that can be assigned to the variable x by this assignment.

Eei(x) = {E1(t̄, v̄), ...,Em(t̄, v̄)}

The probability of choosing an expression Ei among all others expressions is written Pei
x (Ei) = pi.

Given a probabilistic event ei, we write Var(ei) for the set of variables in v̄ that are modified by
the action of ei, i.e., the variables that appear on the left side of an assignment in SPi(t̄, v̄). Recall
that a variable x ∈Var(ei) must be on the left side of either a predicate probabilistic assignment
or an enumerated probabilistic assignment. Let ei ∈ PEvts be a probabilistic event, x ∈Var(ei)

be a variable, σ,σ′ two valuations of the variables v̄ and θ a valuation of the parameter values
associated to the event ei such that ei is enabled in the context of σ and θ, and leads the system
to σ′.

If x is modified by an enumerated probabilistic assignment of ei, then we write Eei(x)|σ
′

σ,θ for the
set of expressions in Eei(x) such that their evaluation in the context of σ and θ returns the value
of x in the valuation σ′.

Formally,
Eei(x)|σ

′
σ,θ = {E ∈ Eei(x) | [σ,θ](E(t̄, v̄)) = [σ′]x}

If ei is not equipped with parameters, then this subset is written Eei(x)|σ
′

σ .

If x is modified by a predicate probabilistic assignment (x :⊕Qx(t̄, v̄,x′)), then we write V ei
θ,σ(x)

for the set of values x′ that make the predicate Qx(t̄, v̄,x′) true when evaluated in σ and θ.

V ei
θ,σ(x) = {x

′ | [σ,θ]Qx(t̄, v̄,x′) = true}

If ei is not equipped with parameters, then this subset is written V ei
σ (x).

Let ei be a probabilistic event and let x be a variable in Var(ei), given an original valuation σ

of the variables, a valuation θ of the parameters of ei and a target valuation σ′ of the variables,
we write Pei

σ,θ(x,σ
′) for the probability that x is assigned the new value [σ′]x when executing ei

from the valuation σ and with parameter valuation θ. If ei is not equipped with parameters, this
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is written Pei
σ (x,σ′). In the following, we always use the more general notation and assume that

it is replaced with the specific one when there are no parameters. Formally, this probability is
given by:

(1) if x is modified by an enumerated probabilistic assignment, then:

Pei
σ,θ(x,σ

′) = ∑
E∈Eei(x)|

σ′
σ,θ

Pei
x (E)

(2) if x is modified by a predicate probabilistic assignment, then:

Pei
σ,θ(x,σ

′) = 1
card(V ei

θ,σ(x))
if [σ′]x ∈ V ei

θ,σ(x) and 0 otherwise.

MC operational semantics

Informally, the operational semantics of a fully probabilistic Event-B model
M=(v̄, I (v̄ ), PEvts, Init ) is a Probabilistic LTS [[M]] = (S,Acts,P,s0,AP,L) where the states,
labels, actions, atomic propositions and initial state are similarly obtained as for the standard LTS
semantics of Event-B. The only difference with the standard LTS semantics is that the transitions
are equipped with probabilities, which we explain below. In the following, we identify the states
with the valuations of the variables defined in their labels.

Intuitively, the transition probabilities are obtained as follows: Let ei ∈ PEvts be a probabilistic
event, x ∈ v̄ be a variable and s,s′ be two states of [[M]] such that (s,ei,s′) is a transition in the
standard LTS semantics, i.e., where ei is enabled in s and there exists a parameter valuation
θ ∈ T ei

s , if any, such that the action of ei may take the system from s to s′. The probability
assigned to transition (s,ei,s′) is then equal to the product of (1) the probability that the event ei

is chosen from the set of enabled events in state s, (2) the probability of choosing each parameter
valuation θ, and (3) the overall probability that each modified variable is assigned the value given
in s′ under parameter valuation θ.

Definition 13 (Fully Probabilistic Event-B operational Semantics). The operational semantics
of a fully probabilistic Event-B model M=(v̄, I (v̄ ), PEvts, Init ) is a PLTS [[M]] = (S,Acts,P,s0,

AP,L) where S,Acts,s0,AP, and L are defined as in the standard LTS semantics of Event-B
models (see Section 2.2.2), and P : S×Acts×S→ [0,1] is the transition probability function
such that for a given state s, for all ei,s′ ∈ Acts× S, we have P(s,ei,s′) = 0 if ei /∈ Acts(s) or
∃x ∈ X\{Var(ei)} st [s]x 6= [s′]x and otherwise
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P(s,ei,s′) =
[s]Wi(v̄)

∑e j∈Acts(s)[s]Wj(v̄)︸ ︷︷ ︸
(1)

× ∑
θ∈T ei

s

(
PT ei

s
(θ)︸ ︷︷ ︸

(2)

× ∏
x∈Var(ei)

Pei
s,θ(x,s

′)︸ ︷︷ ︸
(3)

)

As expected, the following proposition shows that the semantics of a fully probabilistic Event-B
model as defined above is indeed a MC. The proof is available in [ADL19b].

Proposition 7. The operational semantics of a fully probabilistic Event-B model M satisfying

the POs given in Section 2.4.2 is a MC.
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Figure 2.8 – Extract of the Detailed construction of the MC of the simple P2P protocol, with
N=2 and K=2
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Running example

Fig. 2.8 presents the first steps of the detailed construction of the MC corresponding to the fully
probabilistic Event-B model given in Fig. 2.7, with the number of clients N and the numbers
of blocks K fixed to 2. We only present this detailed construction to illustrate the operational
semantics of our model as defined above. This MC will not be used within the design process in
probabilistic Event-B.

We now explain how some of the probability values in the MC from Fig. 2.8 are computed. We
only focus on interesting (and complex) examples and leave out the rest of the computation to
the reader. From the state referenced (s1) on Fig. 2.8, three events are enabled:

— FailureDL with a weight value of 4. The probability of choosing this event is therefore
4

4+3+1 = 1
2 ;

— Start1DL with a weight value of 3. The probability of choosing this event is therefore
3

4+3+1 = 3
8 ;

— Finish1DL with a weight value of 1. The probability of choosing this event is therefore
1

4+3+1 = 1
8 .

When choosing the event Finish1DL, only one valuation for the parameters is possible with
a probability of 1. The corresponding action is deterministic, and therefore executed with
probability 1. The global probability of leaving the state (s1) using the event Finish1DL is
therefore 1

8 ×1×1 = 1
8 .

When choosing the event Start1DL, two possible valuations for the parameters are possible, with
a probability 1

2 for each of them. The action corresponding to event Start1DL is deterministic, and
the parameter valuation (2,1) allows to reach state (s2). As a consequence, the global probability
of reaching (s2) from (s1) using the event Start1DL is 3

8 ×
1
2 ×1 = 3

16 .

When choosing the event FailureDL, only one valuation for the parameters is possible. The
corresponding action is probabilistic, leading to two different states (with probabilities 6

10 of
going back to (s1) and 6

10 of going to another state). As a consequence, the global probability of
looping on (s1) using the event FailureDL is 1

2 ×1× 6
10 = 3

10 .

From the state referenced as (s2) on Fig. 2.8, we only focus on one interesting transition. Among
the two events that can be enabled, we consider the event FailureDL: the probability of choosing
this event is 4

5 . Two possible valuations for the parameters are then possible, with a probability of
1
2 for each of them. Then, for each parameter valuation, the corresponding action is probabilistic,
leading to different states. What makes this transition interesting is that for different parameter
valuations, some actions lead to the same state:

80



2.5. Introducing probabilities in event-B models through refinement

— the global probability of returning to (s1) is 4
5 ×

1
2 ×

4
10 = 4

25 ,

— the global probability of reaching (s3) is 4
5 ×

1
2 ×

4
10 = 4

25 ,

— the global probability of looping on (s2) is 4
5 × (1

2 ×
6

10︸ ︷︷ ︸
(2,1)

+ 1
2 ×

6
10︸ ︷︷ ︸

(1,2)

) = 12
25 , where (2,1) and

(1,2) are the parameter valuations leading to these probabilistic choices.

After reduction (removal of the intermediate � states), we obtain the MC given Fig.2.9.
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Figure 2.9 – Extract of the MC of the simple P2P protocol, with N=2 and K=2

2.5 Introducing probabilities in event-B models through re-
finement

Our main goal is to enable modeling probabilistic behaviours within Event-B. As explained
earlier (and illustrated in Fig. 2.1), this can be done in several ways while preserving the
refinement-based approach inherent to Event-B. The first way is to transform a standard (group
of) event(s) into a probabilistic (group of) event(s) in a refinement step. This transformation
therefore allows to turn a standard or mixed Event-B model into a mixed or fully probabilistic
Event-B models. This transformation is straightforward but subject to certain conditions that
we call probabilisation feasibility POs. These conditions ensures that the resulting model will
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be consistent, e.g., that the set of parameter values such that the guard of an event subject to
probabilisation is finite. The study of this transformation has been left out of this document for
the sake of conciseness, but can be found in [ADL19b].

A second way of introducing probabilistic information in the design process is by introducing
new probabilistic events through (probabilistic) refinement. One principal aspect of refinement
in Event-B is the addition within a refinement step of new variables and new events acting
on those variables. In this section, we explain how to introduce new probabilistic events in
a given (abstract) model. Regardless of the type of model (non-deterministic, mixed or fully
probabilistic), it is necessary to show that the introduction of these new events cannot prevent
the system from behaving as specified in the abstract model. Recall that this is usually done by
proving that the set of new events introduced in the refinement step converges, i.e., that events
from this set cannot keep control indefinitely. As a consequence, at some point, the system must
stop the execution of new events in order to execute the behaviour proposed in the abstract model.

We therefore propose a solution in order to prove that a given set of probabilistic events almost-
certainly converges. In the following, we only focus on fully probabilistic Event-B models, but
all the presented results can be generalised to standard or mixed Event-B models (see [ADL19b]
for details).

In standard Event-B refinement, it is required to show that a given set of events always converges.
On the contrary, in probabilistic Event-B, it is only required to prove that a given set of proba-
bilistic events almost-certainly converges. In other words, we are interested in showing that, in
all states of the system where convergent probabilistic events can be executed, the probability
of eventually taking a non-convergent event or reaching a deadlock is 1 (i.e., the probability of
infinitely executing convergent events is 0).

This property has already been investigated in [HH07] and [Hoa14], in the context of events
having probabilistic actions but where non-determinism is still present between events. In this
context, Hallerstede and Hoang propose in [HH07] sufficient conditions for a set of events
to almost-certainly converge. These conditions can be summarised as follows: As in standard
Event-B, one needs to exhibit a natural number expression V(v̄) called a variant. Unlike in the
standard setting, only one resulting valuation of the execution of each convergent event needs
to decrease this variant. Indeed, in this case, the probability of decreasing the variant is strictly
positive. Unfortunately, using such a permissive condition is not sufficient in our context: there
might also be a strictly positive probability of increasing the variant. Therefore, Hallerstede and
Hoang require the introduction of another natural number expression U(v̄) which must maximise
the variant V(v̄) and never increase. The proposition from [HH07] is refined in [Hoa14], where
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Hoang requires in addition that the probabilities considered in probabilistic assignments are
bounded away from 0. This is ensured by requiring that the set of values that can be returned by
a probabilistic assignment is finite.

Adaptation to probabilistic events

We now show how to adapt the results proposed in [HH07] and [Hoa14] to new probabilistic
events introduced in a fully probabilistic Event-B model. Since there are no non-deterministic
choices between enabled events, it is not anymore necessary to require that all enabled events
in a given configuration may decrease the variant. We therefore start by relaxing the condition
proposed in [HH07]: we only require that, in all configurations where a convergent event is
enabled, there is at least one convergent event for which at least one resulting valuation decreases
the variant.

(1) Almost-certain convergence. In all configurations where at least one convergent event is
enabled, there must exist at least one valuation v̄ ’ obtained after the execution of one of
these enabled events which decreases the variant.
I (v̄) ∧ ((Gi(t̄ , v̄) ∧Wi(v̄) > 0)∨ . . .∨(Gn(t̄ ,v̄) ∧Wn(v̄) > 0)) ` (model/pVar)

(∃ v̄ ’. Gi(t̄ , v̄) ∧Wi(v̄)>0∧ SPi(t̄,v̄,v̄’) ∧ V(v̄’)<V(v̄)) ∨ . . .∨
(∃ v̄ ’. Gn(t̄ ,v̄) ∧Wn(v̄)>0∧ SPn(t̄,v̄,v̄’) ∧ V(v̄’)<V(v̄))

As in [HH07], we also require that convergent events can only be enabled when the variant is
positive and that the variant is bounded above. In order to simplify the reasoning, we propose to
use a constant bound U, as in [Hoa14].

(2) Numeric variant. Convergent events can only be enabled when the variant is greater or
equal to 0.

I (v̄) ∧ Gi(t̄ ,v̄) ∧Wi(v̄)>0 ` V(v̄)∈NAT (event/var/pNAT)

(3) Bounded variant. Convergent events can only be enabled when the variant is less or equal
to U.

I (v̄) ∧ Gi(t̄ ,v̄) ∧Wi(v̄)>0 ` V(v̄)≤ U (event/pBOUND)

Finally, the finiteness of the set of values that can be returned by a probabilistic assignment is
already ensured by the syntax for enumerated probabilistic assignments and by PO (event/as-

sign/pWD3) for predicate probabilistic assignments and their non-emptyness is ensured by the
standard feasibility POs.

83



Chapter 2 – A Probabilistic Extension for Event-B

Inadequacy of adapted POs Unfortunately, as we deal with potentially infinite-state systems,
POs 1–3 presented above are not anymore sufficient for proving that the probability of eventually
executing a non-convergent event or reaching a deadlock is 1. Indeed, although the probability
of decreasing the variant is always strictly positive because of PO (model/pVar) and although the
number of values that can be returned by a given probabilistic assignment is always finite, the
combination of event weights and parameter choice can make this value infinitely small in some
cases. In this case, it is well known that almost-certain reachability/convergence is not ensured.
This problem is a direct consequence of the unboundedness of the weights of convergent events
as well as of the number of acceptable parameter values, which, by getting arbitrarily big, cause
the probability of decreasing the variant to get arbitrarily small. Two examples illustrating this
fact are given below.

Example 10 (Necessity of bounding event weights). In this example, we show by means of
an example of a probabilistic Event-B model the necessity of bounding the weights of new
probabilistic events in order to ensure almost-certain convergence.

Consider the probabilistic Event-B model M1 and the corresponding MC semantics given in
Fig. 2.10. This model has two variables: x and y and three events evt1, evt2 and evt3, two of
which (evt1 and evt2) are convergent. The variant of this model is x and the bound on the variant
is clearly U = 2.

In states where x = 1, only convergent events evt1 and evt2 are enabled and the local probability
of choosing evt1 is 1

y while the local probability of choosing evt2 is y−1
y . In states where x = 2,

only evt1 can be chosen with probability 1. In states where x = 0, the only enabled event is the
(non-convergent) event evt3.

Clearly, the model M1 satisfies proof obligations (model/pVar), (event/var/pNAT) and (event/pBOUND).
However, as we show below, the probability of eventually taking a non-convergent event is strictly
smaller than 1 from all states where x > 0 because the probability of decreasing the variant,
although strictly positive in all states, gets infinitely small from states where x = 1 as y increases.

Without loss of generality, we compute the probability of eventually taking evt3 from the initial
state where x = 1 and y = 2. The reasoning starting from other states is similar. This probability
is equal to the sum of

(1) the probability of directly taking evt1 from (1,2),

(2) the probability of reaching (1,4) and taking evt1 from (1,4),

(3) the probability of reaching (1,8) and taking evt1 from (1,8), . . .

Clearly, (1) is equal to 1
2 , (2) is equal to 1

2 ·
1
4 = 1

8 , (3) is equal to 1
2 ·

3
4 ·

1
8 < 1

16 and in general, the
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MODEL
M1

VARIABLES
x
y

INVARIANTS
x∈ INT ∧
y∈ INT

VARIANT
x

EVENTS

Init =̂
begin
x:=1 ‖ y:=2

end

evt1 =̂
convergent
weight 1
when 0<x≤2 then
x:=x−1 ‖ y:=2*y

end

evt2 =̂
convergent
weight y−1
when 0 <x ≤ 1
then
x:=x+1

end

evt3 =̂
weight 1
when x=0
then
x:=−1 ‖ y:=−1

end

1,2

2,2

0,4

1,4

2,4

−1,−1

0,8

1,8

2,8

0,16

1,16

2,16

0,32

1,32

2,32

1
2 |evt1

1
2 |evt2

1|evt1

1
4 |evt1

3
4 |evt2

1|evt1

1
8 |evt1

7
8 |evt2

1|evt1

1
16 |evt1

15
16 |evt2

1|evt3

1|evt3

1|evt3 1|evt3

1|evt1

31
32 |evt2

Figure 2.10 – Probabilistic Event-B model and MC semantics illustrating the necessity of
bounding event weights to ensure almost-certain convergence

probability of reaching state (1,2i) with i > 2 and taking evt1 from this state is strictly smaller
than 1

2i+1 .

As a consequence, the probability of eventually taking evt3 from the initial state is strictly smaller
than

1
2
+

∞

∑
i=2

1
2i+1 =

3
4

Therefore, M1 does not almost-certainly converge.

The behaviour we expose here is a direct consequence of the unboundedness of the weights
of convergent events, which, by getting arbitrarily big, cause the probability of decreasing the
variant to get arbitrarily small.

Example 11 (Necessity of bounding event parameter values). We now use a similar example to
show the necessity of bounding the number of admissible parameter values in new probabilistic
events in order to prove their almost-certain convergence. The probabilistic Event-B model M2

and its corresponding MC semantics, given in Fig. 2.11 are similar to the ones presented in
Fig. 2.10.

In this case also, we observe that the probability of eventually executing non-convergent event
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MODEL
M2

VARIABLES
x
y

INVARIANTS
x∈ INT ∧
y∈ INT

VARIANT
x

EVENTS

Init =̂
begin
x:=1
‖ y:=1

end

evt1 =̂
convergent
weight 1
any t where

t ∈ {1.. 2y} ∧ 0<x≤1
then
x:⊕((t=1 ∧ x’−x+t=0) or

(2≤t≤2y ∧ x’−x−1=0))
‖ y:=y+1

end

evt2 =̂
convergent
weight 1
when x=2
then
x:=x−1

end

evt3 =̂
weight 1
when x=0
then
x:=−1 ‖ y:=−1

end

1,1

2,2

0,2

1,2

2,3

−1,−1

0,3

1,3

2,4

0,4

1,4

2,5

0,5

1,5

2,6

1
2 |evt1

1
2 |evt1

1|evt2

1
4 |evt1

3
4 |evt1

1|evt2

1
8 |evt1

7
8 |evt1

1|evt2

1
16 |evt1

15
16 |evt1

1|evt3

1|evt3

1|evt3 1|evt3

1|evt2

31
32 |evt1

Figure 2.11 – Probabilistic Event-B model and MC semantics illustrating the necessity of
bounding event parameter values to ensure almost-certain convergence

evt3 from the initial state is strictly smaller than 3/4. The main difference is that, in M2, only the
choice of parameter values is responsible for infinitely decreasing the probabilities of decreasing
the variant.

Additional Proof Obligations. We therefore adapt classical results from infinite-state MC to
our setting and propose sufficient conditions in terms of proof obligations to prove the almost-
certain convergence of the set of new introduced events. Informally, the following POs ensure
that the probability of decreasing the variant cannot get infinitely small by requiring that both
the weights of convergent events and the number of potential values given to parameters in
convergent events are bounded.

(4) Bounded weight. The weight of all convergent events must be bounded above by a
constant upper bound BW.

I (v̄) ∧ Gi(t̄ ,v̄) ` Wi(v̄) ≤ BW (event/wght/BOUND)

(5) Bounded parameters. The number of potential values for parameters in convergent events
must be bounded above by a constant upper bound BP.
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I (v̄) ` card({t̄ | Gi(t̄ , v̄)}) ≤ BP (event/param/BOUND)

The following theorem shows that the conditions presented above are sufficient for guaranteeing
the almost-certain convergence of a given set of events in a probabilistic Event-B model.

Theorem 3. Let M=(v̄, I (v̄ ), V(v̄), PEvts, Init ) be a probabilistic Event-B model and PEvtsc

⊆ PEvts a set of convergent events. If M satisfies the above POs (1-5), then the set PEvtsc

almost-certainly converges.

The full proof of this theorem is particularly intricate and therefore left out of this document,
but a detailed proof can be found in [ADL19b]. In the following, we provide the intuition of the
proof.

Proof Sketch
Almost certain convergence of the Event-B model is proven using its operational semantics, i.e.,
showing the following convergence property: the probability measure of the set of runs that

eventually reach a deadlock or use a non-convergent event is 1. In order to take into account

the difference between convergent and non-convergent events, we start by defining a slightly

extended version of the MC semantics of M. In this version, all the states are replicated in order

to “remember” the last event executed.

We observe that the MC semantics of M has a potentially infinite set of states. Therefore, showing

the convergence property is not trivial. In order to prove it, we use the global coarseness property

introduced in [MHA07], which is a sufficient condition for the “decisiveness” of infinite-state

Markov Chains. Formally, given a Markov Chain M = (S ,s0,P ) and a target set of states F ⊆ S ,

we say that M is globally coarse w.r.t. F iff there exists some minimal bound α > 0 such that for

all state s ∈ S , the probability of eventually reaching F from s is either 0 or greater or equal to

α. It is then shown in [MHA07] that whenever a Markov Chain M is globally coarse w.r.t. the

set F , the probability of eventually reaching either F or a set of states F̃ from which F cannot

be reached is 1 from any state of M .

We therefore use this result on the semantics of M using a “clever” partition of the state space.

Remark. The additionnal POs imposing boundedness of weights and event parameters are
therefore sufficient (in addition to the adaptation of standard convergence POs presented earlier)
for proving the convergence of a given set of events. While these POs are certainly restrictive,
they are easily provable and seem consistent with the requirement on the boundedness of the
variant. Identifying less restrictive conditions in general is still an open question.
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Running example

Recall that, as explained at the end of Sec. 2.3, we cannot prove that the peer-to-peer proto-
col (with failures) always terminates, because we cannot prove the convergence of the non-
deterministic Event-B model P2P3. Indeed, the event FailureDL fails to decrease the correspond-
ing variant, therefore preventing convergence.
Now consider the fully probabilistic Event-B model P2PP given in Fig. 2.7 from Sec. 2.4. To
show that the protocol always terminates we have to show that the set of events {Start1DL,
Finish1DL, FailureDL} almost-certainly converges (i.e., converges with probability 1).

— The variant is numeric (event/var/pNAT) and we can take the expression 2 × N × K as a
possible upper bound for the variant (event/pBOUND);

— The weights of the convergent events are bounded by N × K + 1 (event/wght/BOUND);

— The possible parameter values are bounded by N × K (event/param/BOUND);

— Finally, in each possible configuration, the event Finish1DL decreases the variant with a
positive probability (model/pVar).

Since the model P2PP satisfies all the required POs, Theorem 3 ensures that the set {Start1DL,
Finish1DL, FailureDL} almost-certainly converges.
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)
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)
,DBin =

(
. •
. .

)
DB =

(
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1
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)
DB =
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)
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)
1
10 |Finish1DL 1

10 |Finish1DL

4
25 |FailureDL

4
25 |FailureDL

12
25 |FailureDL

v = 8

v = 7

v = 7 v = 7

v = 7

v = 6 v = 6

v = 6

v = 5 v = 5

Figure 2.12 – Extract of the MC of the simple P2P protocol, with N=2 and K=2, illustrating the
decrease of the variant
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In order to illustrate that the variant indeed decreases with a positive probability from all states
using probabilistic event Finish1DL, we provide in Fig. 2.12 an extract of the MC semantics of
P2PP (for N=2 and K=2), where all states are labelled with the value of the variant.

2.6 Conclusion

In this chapter, we have presented an extension to the Event-B formalism that allows describing
models with probabilistic aspects. We have focused on fully probabilistic models but the complete
theory including also mixed Event-B models has been developped and can be found in [ADL19b].
In this context, we have provided proof obligations for the consistency of fully probabilistic
models and expressed their operational semantics in terms of probabilistic transition systems.
Moreover, we have also explained how the addition of probabilistic information can be done
either as a standalone artefact (probabilisation of a standard model) or as a part of the design
process that can be interleaved with standard refinement steps. In particular, we have focused on
the addition of new probabilistic events in fully probabilistic models and developed sufficient
conditions in terms of proof obligations in order to show that a given set of probabilistic events
is almost-certainly convergent, which is a required property in this context in standard Event-B.

Most of our results have been implemented in a probabilistic plugin for the Rodin Platform. The
Rodin tool [ABH+10] is an Eclipse-based IDE for designing models in Event-B. It allows the
creation of Event-B models, the automatic generation of POs and it incorporates some provers
for discharging the necessary POs. Rodin is based on a set of plugins, that facilitate its extension
to support new functionalities.

Our plugin is still under development, but it already supports the specification of fully proba-
bilistic Event-B models and the generation of some dedicated POs presented in this chapter. The
plugin also allows the probabilisation of a non-deterministic Event-B model: it automatically
generates the corresponding probabilistic Event-B model. Once this latter is generated, the
developer must complete the weight of each probabilistic event and probability values for each
quantitative probabilistic assignment.

2.7 Perspectives

This line of work has been dormant since the end of Mohamed Amine Aouadhi’s thesis. In
particular, our implementation of the probabilistic Even-B plugin for Rodin has been left at a
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standstill and is still missing some essential features. We plan on taking over this implementation
in the future.

On the theoretical side, although we have considered the addition of new probabilistic events in
a probabilistic model, a complete counterpart to standard refinement for the probabilistic setting
still eludes us. The problem mainly lies in two operations that are allowed in standard Event-B
refinement: the split and merge operations.

— The split operation allows, in one refinement step, to transform one abstract event into
multiple concrete events, while allowing the guards of these concrete events to be more
restrictive than the guard of the abstract event. In the probabilistic setting, the problem
mainly lies in the repartition of the weights of concrete events w.r.t the weight of the
abstract event depending on which of the guards are satisfied. We have not found yet a
satisfying solution that does not restrict in a too strict way the original split operation.
Indeed, a simple but restrictive solution is to impose that the guards of the concrete events
must be identical to the guard of the original abstract event. In this case, we only have to
impose that the sum of the weights of the concrete events is equal to the weight of the
abstract event.

— The merge operation, on the contrary, allows for a single concrete event to refine several
abstract events at once. The same problem regarding the repartition of the weights of the
original events arises in this setting, which has prevented us from finding a satisfying
solution yet.

The verification of probabilistic properties has also been left aside for the moment, as their
expression and meaning in the Event-B formalism is not trivial. The only way of proving
probabilistic properties on a probabilistic Event-B model at the moment is to use its MC/MDP
operational semantics, which is far from ideal. In the future, we plan on studying those two
aspects (expression and verification of probabilistic properties) while limiting ourselves to the
Event-B syntax and proof mechanism.

Finally, we have not yet taken advantage of the parametric information present in (probabilistic)
Event-B models. The main reason is that parameters in Event-B are used as state and/or transition
variables. As a consequence, the expertise we have in the probabilistic parametric domain (as
presentend in Chapters 1 and 3 for example) cannot be transfered in a trivial manner to the
Event-B setting. However, two lines of future work seem promising.

— Although this would slightly restrict the expressive power of probabilistic Event-B, using
distinct sets of variables for parameters used in event weights and parameters only used
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in state variable assignments would allow expressing the operational semantics of proba-
bilistic Event-B models as parametric Markov chains, therefore enabling their verification
using standard techniques in this context. The next step will be to adapt those techniques
to the Event-B syntax and proof mechanism.

— Parametric statistical model checking, as will be presented in Chapter 3, is a verification
technique that can be applied to any parametric system that can be simulated or sampled.
In particular, this could be used directly on systems expressed in the Event-B formalism,
or on the translation of such systems to a programming language. Although Automated
techniques to translate an Event-B specification to a C program already exist, they have
not yet been extended to the probabilistic setting.
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CHAPTER 3

STATISTICAL MODEL CHECKING FOR

PARAMETRIC SYSTEMS

The work we present in this chapter was achieved during Paulin Fournier’s postdoc and Ran
Bao’s thesis. The contributions we present here follow up on a long series of works on statistical
model checking [LDB10, BBB+10a, BBB+10b, BBD+12, BBB+12, NBB+15] initiated more
than 10 years ago. This line of work was initiated with the observation that, in many cases,
standard probabilistic model checking techniques fail to scale up to the size of industrial systems
and are inadequate when automata-based models of the systems are not easily available. As a
consequence, more efficient and flexible alternative techniques have been developed. Statistical
Model Checking (SMC) in particular is a simulation-based technique that offers many advantages
in this context. Indeed, while its aim is not to compute the exact probabilities with which a
system satisfies a given property, SMC allows to estimate this probability (or compare it with a
fixed threshold) with a formally guaranteed precision and error-rate. Since it is simulation-based,
SMC is not limited to automata-based models: it can be used on any executable model regardless
of the formalism used to describe it. Moreover, because of its simulation-based nature, SMC
is more dependant on the complexity of the property it verifies than on the complexity of the
system itself. As a consequence, SMC can easily scale up to industrial-systems’ size as long as
they can be simulated efficiently.

However, SMC also suffers from limitations: in particular, it is mostly restricted to purely
probabilistic systems, which prevents its use in the context of non-deterministic and/or parametric
systems as considered in Chapters 1 and 2. In this chapter, we try to solve this problem by
developing a version of SMC for parametric systems. In this context, instead of yielding a numeric
approximation of the probability that a purely probabilistic system satisfies a property, pSMC
yields a polynomial function, whose variables are the parameters of the system, that adequately
approximates the probability that a parametric system satisfies the given property for all values

of the parameters. Along with this probability, we provide parametric confidence intervals that
formally guarantee a parametric precision. The technique is implemented in a prototype tool with
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two versions: one that allows the parametric verification of automata-based systems described in
a standard language, and a second version that allows to verify parametric Python models. While
the first version is mainly used for comparison to state-of-the-art parametric probabilistic model
checkers such as PRISM [KNP09], PROPhESY [DJJ+15] and Storm [DJKV17], the second one
has been used on a concrete case-study where we analyze the security of a UAV flight plan while
taking into account the parametric precision of its sensors and parametric wind force. For the
sake of conciseness some details of the case-study and some proofs of the theoretical results have
been left out of the document, but the interested reader can find them in [DFL19, BAD+19].

3.1 Introduction

Nowadays, modeling and abstracting are widely accepted as crucial steps in the understanding
and study of real-life systems. In many cases, it is necessary to incorporate probabilities in the
models to cope with uncertainty, to abstract complex behaviour, or to introduce randomness.
Markov chains and Markov decision processes, in particular, have been widely studied as shown
in Chapters 1 and 2.

Statistical model checking. Though exact verification methods are known for such models
they usually require solving huge equation systems [BK08], and therefore have scalability issues
with the biggest models. A way to avoid this complexity is to consider approximation techniques
through simulation. In particular, Monte-Carlo simulation techniques used in the context of
statistical model cheking [LDB10] allow to infer the real behaviour of the system via independent
simulations up to a computable precision.

Parametric Markov Chains. The values given to probabilistic transitions can have a huge
impact on the behaviour of the system. In the early stages of development, it may therefore
be useful to have an insight on how the values of transition probabilities affect the system
in order to be able to set the best value in terms of convergence speed for example. To this
purpose, parametric Markov chains have been introduced in [AHV93]. They allow to replace the
probability values given to transitions by parameter variables, and therefore to be able to give
guarantees on the system for all possible values of the parameters.

Results. The aim of this chapter is extend the application of Monte-Carlo simulation to para-
metric Markov chains in order to approximate the probability of the considered property as a
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polynomial function of the parameters. In addition, we also derive a confidence interval on the
obtained probabilities as a polynomial function of the parameters. Aside from using parame-
terized models, which comes in particular with better flexibility in the modeling, robustness of
the results, and usability at the earliest stages of conception, the expected benefits of our new
approach are largely those of such simulation techniques for non-parameterized Markov chains:
better scalability through a reduced memory footprint, a complexity that is largely independent
of the model complexity (be it in terms of size of the state-space, or of used features as long
as they are executable). More specific to our approach, since we derive polynomial function
approximations, where exact methods lead to rational functions, these results should be easier to
post-process. Finally the complexity of our approach is largely independent of the number of
parameters.

In order to experimentally confirm the interest of our approach we have implemented it in a
(fairly crude) prototype in Python, and we report very encouraging results on case-studies from
the literature as well as a complete analysis of a case-study provided by our industrial partner
PIXIEL GROUP 1.

Related work. Model checking and parameter synthesis for parametric Markov chains have
been widely studied in the last decade [DJJ+15, HHWZ10, BDL+17, DLP16], as previously
mentioned in Chapter 1. To the best of our knowledge, all existing works on this topic focus on
exact techniques which either produce constraints on the parameter values [BDL+17, DLP16,
BDF+18] (as presented in Chapter 1) or compute the probability of satisfying a given property
as a rational function of the parameters [DJJ+15, HHWZ10]. While these techniques have the
advantage of precision, they only scale to models having few parameters. We conjecture that
the approximation technique we propose in this chapter will be advantageous in the context on
models with a larger number of parameters because it allows to produce polynomial instead of
rational functions.

On the other hand, statistical model checking [LDB10] has, to the best of our knowledge, never
been applied to parametric models as such. The closer existing techniques are reinforcement learn-
ing algorithms combined with statistical model checking, which have been applied in the context
of non-deterministic and probabilistic models such as Markov decision processes [HMZ+12]
(where non-determinism could be replaced with parameters). While these techniques allow
to compute the best (or worst) probability of satisfying a given property, they do not provide
error precision or confidence intervals. Moreover, since they only compute an approximation

1. https://www.pixiel-group.com/
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of the best (or worst) probability value, they do not provide a complete analysis of the effect
of non-deterministic choice (or parametric transitions) on the satisfaction of the given property.
This is something which is easily provided using our technique.

Section 3.2 presents our extension of statistical model checking to parametric systems. It starts
with a reminder and an adaptation of some definitions from previous chapters, and an introduction
of basic definitions concerning statistical model checking. Our main theoretical contribution, the
adaptation of Monte-Carlo simulation to the parametric setting, is then presented in Section 3.3.
In Section 3.4, we report on our prototype implementation and its use on automata-based models,
and provide some comparison to other parametric model checking tools. Our main case-study
is then introduced in Section 3.5, as well as its resolution using the version of our prototype
tool for Python models. In Section 3.6, we give some leads for improvement of the techniques
implemented in our prototype tool. Finally, Section 3.7 concludes the chapter and Section 3.8
presents perspectives for future work.

3.2 Background

We start by recalling some basic definitions, most of them already given in Chapter 1.

3.2.1 Basic definitions

As usual, the set of real numbers and the set of natural numbers are respectively written R and N.
Given two real numbers a < b, the closed, semi-open and open intervals representing all real
values between a and b are respectively written [a,b], (a,b], [a,b) and (a,b).

In this chapter, we consider Markov Chains with no labels on states (although all our results
could be extended to this setting in a straightforward manner). Here, a Markov chain is a tuple
M = (S,s0,P) where S is a denumerable set of states, s0 ∈ S is the initial state and P : S×S→
[0,1] is the transition probability function such that for all state s ∈ S, ∑s′∈S P(s,s′) = 1.

Recall from Chapter 1 that a run of a Markov chain is a sequence of states s0,s1 . . . such that
for all i, P(si,si+1)> 0. Given a finite run ω = s0,s1, . . .sn, its length, written |ω| represents the
number of transitions it goes through (including repetitions). Here |ω|= n. We write ΓM (l) (or
simply Γ(l) when M is clear from the context) for the set of all finite runs of length l, and ΓM
for the set of all finite runs i.e., ΓM = ∪l∈NΓM (l). As in Chapter 1, we use the probability
measure on runs based on the sigma-algebra of cylinders (see e.g. [BK08]). This probability
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measure is written PM in this chapter. This gives us that for any finite run ω = s0,s1, . . .sn,
PM (ω) = Πn

i=1P(si−1,si). In the rest of the chapter, we only consider finite runs.

Example 12 (Examples of properties). In this chapter, we consider properties on bounded runs
and we aim at computing approximations for the following values:

Reachability PM (♦≤ls). Recall from Chapter 1 that a run ω = s0,s1, . . . is said to reach a state
s in less than l steps, written ω |= ♦≤ls, if there exists i≤ l such that si = s.

Safety PM (�=lE). A run ω = s0,s1, . . . is said to be safe for a set of states E ⊆ S during l steps,
written ω |=�=lE, if for all i≤ l, si ∈ E.

Expected reward El
M (r). Given a reward function r : Γ(l) → R we write El

M (r) =

∑ω∈Γ(l)PM (ω)r(ω) for the expected value of r on the runs of length l.

Notice that for any property ϕ⊆ Γ(l), PM (ϕ) = El
M (1ϕ) where 1ϕ is the reward function such

that 1ϕ(ω) = 1 if ω ∈ ϕ and 0 otherwise. In the following of the chapter we will thus focus on
properties of the form El

M (r).

Given two Markov chains M 1 = (S1,s1
0,P

1) and M 2 = (S2,s2
0,P

2) we say that M 1 and M 2

have the same structure if (S1,s1
0) = (S2,s2

0) and for all state s,s′ ∈ S1, P1(s,s′)> 0 if and only if
P2(s,s′)> 0.

3.2.2 Parametric Markov chains

We now recall the context of Parametric Markov Chains, in a slightly modified version of the
one given in Chapter 1.

Given a finite set of parameters X we write Poly(X) for the set of all real (multivariate) polyno-
mials on X. Given a parameter valuation v ∈ RX and a polynomial f ∈ Poly(X), the evaluation
of f under valuation v is written v( f ).

As for Markov Chains, we omit in this chapter the labeling function of Parametric Markov Chains.
In the following, a Parametric Markov chain is a tuple M = (S,s0,P,X) such that S is a finite set
of states, s0 ∈ S is the initial state, X is a finite set of parameters, and P : S×S→ Poly(X) is a
parametric transition probability function.

Remark (Rational function). Notice that in the definition of pMC given above, in contrast to the
one given in Chapter 1, we restrict ourselves to real (multivariate) polynomials on X. However,
all our results could naturally be extended to rational functions instead, i.e., functions of the
form d/q where d,q ∈ Poly(X).
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Let M be a pMC and v ∈ RX be a valuation of the parameters of M . Let Pv be the transition
probability function obtained under valuation v, i.e., Pv(s,s′) = v(P(s,s′)) for all s,s′ ∈ S. We say
that v is a valid parameter valuation with respect to M if the tuple (S,s0,Pv) is a Markov chain,
i.e., v defines valid probability distributions for the transitions of M . If v is a valid parameter
valuation w.r.t M , the resulting Markov chain is written M v.

Remark (Consistency). Notice that one can obtain the set of all valid parameter valuations as
the result of a set of constraints stating that each transition has a probability between 0 and 1 and
that the sum of outgoing transition probabilities is 1 for all states. The problem asking whether a
pMC admits valid parameter valuations, and computing them is called the consistency problem

(see Chapter 1). In this chapter, we do not address the consistency problem further.

Given a pMC M , a run ω of M is a sequence of states s0,s1, . . . such that for all i ≥ 0,
P(si,si+1) 6= 0 (i.e., the probability is either a strictly positive real constant or a function
of the parameters). As for Markov chains we write ΓM (l) for the set of all finite runs of length l

and ΓM for the set of all finite runs.

Observe that for any valid parameter valuation v, ΓM v(l)⊆ ΓM (l) since v may assign 0 to some
transition probabilities.

Example 13. A pMC M1 = (S,s0,P,X) is given as an example in Figure 3.1. In this figure, we
have S = {0 . . .4}, s0 = 0, and X= { p,q,r}. As depicted, some of the transitions are parametric.
For instance, P(1,0) = p. Let v be the parameter valuation such that v(p) = v(q) = 0.5 and
v(r) = 0. According to the definition above, v is a valid parameter valuation for M1. Indeed, under
this parameter valuation, all the transitions have values between 0 and 1 and the probabilities of
the outgoing transitions of all states sum up to 1. The resulting Markov chain M v

1 is given in
Figure 3.2.

An example of run in M1 is ω = 0,1,2,2. The length of ω is |ω|= 3. As explained above, remark
that ω is not a run of M v

1 because the probability of the transition going from 1 to 2 has been set
to 0 due to the parameter valuation v. On the other hand, all runs of M v

1 are also runs of M .

3.3 Approximation in parametric Markov chains

We now move to the main result of this chapter: a simulation-based method for approximate
verification of parametric Markov chains based on Monte-Carlo. We start by recalling the central
limit theorem, which is at the heart of our approach.

98



3.3. Approximation in parametric Markov chains

0

1 2

3 4

0.5

0.5

q

rp

1

r

q

p
1
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v such that v(p) = v(q) = 0.5 and v(r) = 0

Theorem 4 (The central limit theorem (see e.g. [Ros09])). Let X1,X2, . . . be a sequence of

independent and identically distributed random variables, each having mean γ and variance σ2.

Then the distribution of
X1 + · · ·+Xn−nγ

σ
√

n

tends to the standard normal distribution as n→ ∞. That is, for −∞ < a < ∞,

lim
n→∞

P
(

X1 + · · ·+Xn−nγ

σ
√

n
≤ a
)
=

1√
2π

∫ a

−∞

e−x2/2dx.

We now recall standard Monte-Carlo before presenting our contribution.

3.3.1 Standard Monte-Carlo analysis

The aim of this chapter is to propose a statistical verification method, based on Monte-Carlo, for
approximating the expected value of a given reward function r on the runs Γ(l) of a given pMC
M . In order to provide some intuition, we briefly recall how standard Monte-Carlo analysis
works in the context of statistical model checking of Markov chains. In this context, a set of
n samples of the runs of the MC is produced. Each of these samples is evaluated, yielding a
value 1 if it satisfies the desired property and 0 otherwise. According to the central limit theorem,
the mean value of the samples provides a good estimator of the probability that a random run
satisfies the desired property. Moreover, the central limit theorem provides a confidence interval
that only depends on the number of samples (provided this number is large enough).

Unfortunately, as the transition probabilities are not known a priori in the context of pMCs,
this technique cannot be applied directly (since we cannot produce samples according to the
parametric transition probabilities). The method we propose in the following is in line with
a technique called importance sampling (see [RK16] for a description). The purpose of this
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technique is to sample a stochastic system using a chosen probability distribution (which is not
the original distribution present in this system) and “compensate” the results using a likelihood

ratio in order to estimate a measure according to the original distribution. In the context of
SMC, importance sampling has mainly been used in order to estimate the probability of rare
events [BHP12] and/or to reduce the number of required samples in order to obtain a given
level of guarantee [JLS12]. It has also been used in the context of parametric continuous-
time Markov chains in order to estimate the value of a given objective function on the whole
parameter space while using a reduced number of samples [BMS16]. However, to the best of our
knowledge, importance sampling has never been used in order to produce symbolic functions of
the parameters as we do here.
The intuition of this method is to fix the transition probabilities to an arbitrary function f , which
we call normalization function, and to use these transition probabilities in order to produce
samples of the pMC M . However, instead of evaluating the obtained runs by directly using
the desired reward function r, we define a new (parametric) reward function r′ that takes into
account the parametric transition probabilities. We show that, under any parameter valuation v,
the evaluation of the mean value of r′ on the set of samples is a good estimator for the expected
value of the reward r on M v. The central limit theorem also allows to produce parametric
confidence intervals. Contrary to standard Monte-Carlo applied to Markov chains, the precision
of the obtained approximation not only depends on the size of the sample, but also on the choice
of parameter valuation as well as on the chosen normalization function. These issues are further
discussed in Section 3.6.

3.3.2 Parametric estimation

In the following, we introduce some notations, then move to the random variable corresponding
to our new parametric reward function, and finally show the correctness of our approach. Along
the rest of the section, we consider a pMC M = (S,s0,P,X) and a reward function r : ΓM → R.
Given a function f : S×S→ [0,1] we say that f is valid w.r.t M if for all states s, ∑s′∈S f (s,s′)= 1.
Given a valid function w.r.t M , let M f be the MC obtained from M by replacing P by f .
Examples of such valid functions include the evaluation of the parametric transition probability
by a valid valuation, or the function uM such that, for each state, the distribution on its successors
is uniform for all successors allowed in M (it respects the structure of M ). In the following,
f is called a normalization function and, in particular, uM is called the uniform normalization
function. The choice of a good normalization function is discussed in Section 3.6.
Let Pa : ΓM → Poly(X) be a parametric reward function defined inductively as follows: Pa(s0) =
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1 and for all run ω · s · s′ ∈ ΓM , Pa(ω · s · s′) = Pa(ω · s)P(s,s′). Note that Pa can be seen as the
counterpart of P for parametric Markov chains. Indeed for any valid valuation v and any run
ω ∈ ΓM v we have

PM v(ω) = v(Pa(ω)). (3.1)

We now define the parametric reward function r′ that will allow us to estimate the expectation of
r. Given any valid normalization function f and any run ω ∈ ΓM , let r′ be such that

r′(ω) =
Pa(ω)
PM f (ω)

r(ω).

We now prove our main result. Let ω ∈ ΓM f (l) be a random sample of M f and let Y be the
random variable defined as follows Y = r′(ω) = Pa(ω)

PM f (ω)
r(ω).

The following computation shows that, under any valid parameter valuation v such that M f and
M v have the same structure, we have v(E(Y )) = El

M v(r).

v(E(Y )) = v

 ∑
ω∈ΓM f (l)

PM f (ω)Y

 (3.2)

= v

 ∑
ω∈ΓM f (l)

PM f (ω)
Pa(ω)
PM f (ω)

r(ω)

 (3.3)

= ∑
ω∈ΓM f (l)

v(Pa(ω))r(ω) (3.4)

= ∑
ω∈ΓM f (l)

PM v(ω)r(ω) (3.5)

= ∑
ω∈ΓM v(l)

PM v(ω)r(ω) (3.6)

= El
M v(r) (3.7)

(3.2) is obtained by definition of the expected value and of the distribution of Y ; (3.3) is obtained
by definition of the random variable Y ; (3.4) is direct because we only consider runs ω such that
PM f (ω) 6= 0; (3.5) is a consequence of (3.1); and finally, since ΓM v(l) = ΓM f (l) because M v

has the same structure as M f we obtain (3.6).

Our adaptation of the Monte-Carlo technique for pMC is thus to estimate the expected value of
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Y in order to obtain a good estimator for the expectation of r.

Let ω1, . . . ,ωn be a set of n runs of length l of M f . Let Yi be the random variable with values in
Poly(X) such that Yi = r′(ωi). Notice that the Yi are independent copies of the random variable
Y . The random variables Yi are therefore independent and identically distributed. Let γ be the
parametric function giving their mean value and σ2 be the parametric function giving their
variance.

By the results above, for all valid parameter valuation v such that M v and M f have the same
structure, El

M v(r) = v(E(Y )) = v(E(∑n
i=1Yi/n)) = v(γ). Our parametric approximation of the

expected value is therefore

γ̂ =
n

∑
i=1

Yi/n.

3.3.3 Parametric confidence intervals

We now use the central limit theorem in order to compute the confidence intervals associated to
this estimation. As for the estimation γ̂ itself, the obtained confidence intervals will be given by
parametric functions.

Since the random variables (Yi) are independent and identically distributed, each having mean
γ and variance σ2, the expected value and variance of their sum Y1 + · · ·+Yn is as follows:
E(Y1 + · · ·+Yn) = nγ and Var(Y1 + · · ·+Yn) = nσ2. Recall that both γ and σ are parametric
functions. Let Z be the (parametric) random variable such that

Z =
(Y1 + · · ·+Yn−nγ)√

nσ2
.

By the central limit theorem, v(Z) tends toward the standard normal distribution N (0,1), for all
valid parameter valuation v such that M v and M f have the same structure, as n→ ∞. Therefore,
for all valid parameter valuation v such that M v and M f have the same structure, assuming that
n is large enough, we obtain that

P(−z≤ v(Z)≤ z)≈ϕϕϕ(z)−ϕϕϕ(−z) = 2ϕϕϕ(z)−1,

where ϕϕϕ(z) =
∫ z
−∞

exp(−x2/2)dx/(
√

2π) is the cumulative distribution function of the standard
normal distribution N (0,1). As a consequence, by definition of Z, we obtain that for all valid
parameter valuation v such that M v and M f have the same structure, and for n large enough,
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2ϕϕϕ(z)−1≈ P
(

v(γ)− z
v(σ)√

n
≤ v(̂γ)≤ v(γ)+ z

v(σ)√
n

)
.

The (parametric) random interval I = (̂γ− zσ/
√

n, γ̂+ zσ/
√

n) is called a confidence interval

for γ with level 2ϕϕϕ(z)−1. Typically we use z = 1.96 since 2ϕϕϕ(1.96)−1 = 0.95 (or z = 2.56 for
which the level is 0.99). According to our hypothesis, this (parametric) confidence interval is
only valid for valid parameter valuations v such that M v and M f have the same structure.

At this point, it is important to recall that the size of the confidence interval for γ̂ is also parametric:
it is equal to 2 · z σ√

n . Indeed, the value of σ depends both on the valuation of the parameters
and on the choice of the normalization function. We now explain how to compute a parametric
estimation of σ. From classical probability theory, we know that an unbiased estimator for the
variance σ2 is:

σ̂2 =
1

(n−1)

n

∑
i=1

Y 2
i −

n
(n−1)

γ̂
2.

For n large enough, the (parametric) confidence interval associated to our estimation γ̂ of γ can
therefore be estimated by the (parametric) interval I = (̂γ−zσ̂/

√
n, γ̂+zσ̂/

√
n). The (parametric)

size of this interval is therefore given by 2zσ̂/
√

n. Thus, for an estimation of γ with a confidence
interval of level 0.95 (for a large enough value of n), the (parametric) size of the confidence
interval for the estimation of the variance is 3.92σ̂/

√
n. Recall that σ̂ is a parametric function

that also depends on the choice of the normalization function.

3.4 Implementation

We implemented our technique in Python to validate the approach. All the following exper-
iments have been realized on a 2,5 GHz Intel Core i7 processor. The prototype is still in
the early development stages, thus we only experimented with the uniform normalization
function as well as with valid valuation normalization functions. Moreover, the size of the
samples is set manually. This implementation aims at validating our approach and not at com-
peting with tools such as PARAM [HHWZ10], PROPhESY [DJJ+15] or Storm [DJKV17].
No optimizations have been implemented and we believe that this prototype could obtain
much better results with simple optimizations. The code (still in development) is available at
https://github.com/paulinfournier/MCpMC.
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(a) With 10 000 simulations and uniform
normalization (b) Theoretical probability

Figure 3.3 – Results on pMC M1

Figure 3.4 – Graphical representation of the memory consumption

3.4.1 Toy example

We first tested our program on the pMC M1 given in example 13. The considered property is
the probability of reaching state 4. The results of our program on this example are presented in
Figure 3.3a. The number of simulations was set to 10 000 and the length of the run bounded to
100. The normalization function used is the uniform normalization. We also give in Figure 3.3b
the graphical representation of the theoretical probability of reaching state 4. The parsing of the
model took around 3ms and the simulations took around 17 seconds. The memory consumption
of the program is depicted in Figure 3.4. Note that even if the program uses around 80MB of
memory, most of it is due to the loading of python libraries. A careful analysis of the memory
consumption shows that the actual model only uses 0.7MB, the simulations use 6.5MB and the
figure uses around 4MB. The memory consumption could thus be easily reduced by using a
lighter programming language with a better handling of memory such as C.

To show that our method is transparent with regard to the number of parameters we extended this
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model with 100 parameters {p0, ..., p99}. Since q remains the same and r is always 1− (pi +q),
this new model is equipped with a total of 101 parameters. We therefore consider an unfolding
of the pMC given in Figure 3.1 of depth 101. Each time we enter a copy of state 1 or 3, new
parameters are used. For example, the nth copy of states 1 and 3 use parameter qn mod 100 instead
of q. The result of the experiment is shown in Figure 3.5. Since there are too many dimensions
to plot in 2D, we only plot the result with respect to parameter q for random valuations of the
parameters in (pi). The number of simulations and simulation length are set as before. Note that
the size and shade of the confidence intervals are not what one could expect but this is due to
the fact that each point is evaluated for a different random valuation of the parameters in (pi).
The important point of this experiment is that the results were obtained in 21 seconds, which is
approximately the same as with only 2 parameters. Note that this increase in time is due to a
slight increase in the complexity of the model (the states are not really duplicated but we have to
keep track of the current depth in order to consider the right parameters in each simulation).

Figure 3.5 – Extension of M1 with 101 parameters

3.4.2 Zeroconf

The Zeroconf model, taken from the PARAM website 2, models the management of a network.
When a new host joins the network, it randomly selects an address among K potential candidates.
If there are already m hosts in the network the probability of collision is q = m/K, which is a
parameter of the model. In order to detect collisions, the new host asks the others whether the
address is free. If he receives a positive answer, then the new hosts considers that his address is

2. See https://depend.cs.uni-saarland.de/tools/param/casestudies/
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valid. The second parameter of the model is the probability p that the new hosts do not receive
an answer. In this case, the new host retries at most n times (here n = 140). In case the new host
does not receive an answer after n attempts, it decides that its address is valid. We consider the
expected number of attempts until the address is considered valid (either because of positive
answer or because of the absence of answers after n attempts). In Figure 3.6 we present the
results of our approach for 10 000 simulations, the uniform normalization function and for a
simulation length of 500. Using our prototype, the experiment took around 60s. In Figure 3.6,
we present as well the result obtained with PARAM (taken from their website). Remark that the
shape of the distribution we obtain is similar to the one obtained with PARAM. The size of the
confidence intervals are given as the color of the points.

Figure 3.6 – Results for the zeroconf model obtained with our implementation (left) and taken
from the PARAM website (right)

3.4.3 The crowds protocol

The Crowds protocol [RR98] aims at preserving anonymity of Internet users. To do so, each
message is sent via random routes, with the assumption that a corrupted router can only see the
local sender of a message. This protocol guarantees that the probability of a corrupted router
observing the real sender (and not just routing another user’s message) is small. A model of
this protocol as been proposed in Prism [Shm04] and later extended with two parameters in
[HHWZ10]. One parameter PF represents the probability of forwarding a message to a random
selected member (and therefore the probability of delivering the message directly to the receiver
is 1−PF). The other parameter badC represents the probability of a router being corrupted. The
reward function we are interested in corresponds to the probability of dishonest router observing
the real sender more than other crowd members.
Figure 3.7 represents the output of our approach on this model for 10 000 simulations, using
the uniform normalization function. This experiment was done with the same values as used on
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Figure 3.7 – Results on the Crowds protocol model for our implementation (left) and from the
PARAM website (right)

the PARAM website, that is 5 honest crowd members and 7 different path reformulates 3. The
simulation time took around 6 minute and used around 80MB (again most of it due to loading of
python libraries). Again, one can observe that the shape of the obtained distribution is similar to
the one obtained with PARAM. The only zones where the two distributions are slightly different
are those where the confidence intervals we produced are the largest.

3.5 Application to UAV flight plan analysis

One of the advantages of SMC is that the model under study does not need to be represented
in a fully detailed manner as a MC or pMC: any symbolic representation that allows runs to
be sampled is sufficient. As a consequence, the model does not have to be written in the prism
language for instance, which has limitations on the use of real-valued variables and constants.

We have therefore developed a version of the prototype tool presented in the previous section
that can take as an input any program written in Python that follows conditions ensuring that
the underlying model is a pMC. In particular, this allows taking advantage of all the algorithmic
power of python libraries in the description of a model, which is not easily done in standard
model checking tools such as PRISM [KNP09], PARAM [HHWZ10], Prophesy [DJJ+15] or
Storm [DJKV17].

In this section, we describe the application of the parametric statistical model checking technique
presented in the previous sections to a complete case-study targeting the analysis of the trajectory
of a UAV while taking into account parameters representing the precision of some of its sensors
as well as some environment conditions.

3. See https://depend.cs.uni-saarland.de/tools/param/casestudies/ for details
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In the following, we start with a presentation of the context of the case-study. We then move to a
description of the process we followed in order to build the model describing the UAV in this
context. Finally, we present experimental results obtained using the Python version of the tool
presented in the previous section.

3.5.1 Context of the case-study

Unmanned Aerial Vehicles (UAV) are more and more present in our lives through entertainment
or industrial activities. They can be dangerous for their environment, for instance in case of a
failure when an UAV (aka a drone) is flying above a crowd. Unfortunately until today, there does
not exist any kind of UAV regulation around the world. Only some recommendations are used;
for instance in order to avoid accidents in case of malfunctioning, a drone should never fly above
a crowd.
Guaranteeing that a drone never flies above a crowd requires to pay close attention to the drone
trajectory computation as well as to the accuracy of the measurements concerning its immediate
position in space and its movements. However, a rigorous study is necessary to ensure reliability
of the drone control system, for instance by decreasing the risks of failure using the appropriate
tuning of the drone flying parameters which impact the computation of its trajectory. Accordingly,
the questions are how to prove that the UAV failure probability is low and which parameters

have to be taken into account to ensure human safety during performances including UAVs.

High-quality aircrafts such as Hexarotors can easily avoid the majority of minor failures related
to hardware because they can fly with only five motors and the probability of concurrent failure
of more than two motors is in general insignificant. In the same way, in case of battery failure, the
UAV is able to land down on a specified area without any safety issue for the environment as long
as it is situated in a safe zone where humans are not endangered. However, software failure may
be a lot more problematic and complex to study. In this case, the UAV behavior might become
unpredictable. One critical issue in this context is the potential inaccuracy of position estimation
in drone systems, either as a result of inaccurate sensor measurements or of misinterpretation of
data coming from those sensors. Moreover, besides aircraft system failure consideration, there is
also a far more critical aspect to take into account: the weather environment. Therefore, a general
approach to improve UAV safety is to study the impact of inaccuracy in position measurements
on the resulting flight path compared to a given, fixed, flight plan while taking into account
weather conditions.
The purpose of this case-study is therefore to provide means to study the reliability of UAVs in
the context of a given flight plan. In order to do that, we have to build a formal model which
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will allow us (1) to analyze the drone system and detect the most important parameters, and
(2) to tune those parameters in order to reduce the system failure probability. To this intent,
we thoroughly study the UAV system, formalize it and analyze it using parametric statistical
model checking. Among the components of a drone system, we particularly focus on the Flight

Controller (FC), which is responsible for computing estimations of the UAV position during its
flight in order to adapt its trajectory to a given predefined flight plan. We therefore build a formal
model of the flight controller in terms of parametric probabilistic models that takes into account
the potential inaccuracy of the position estimation. Since UAVs are particularly sensitive to the
weather environment (and in particular to wind conditions), we also enhance our model in order
to take into account potential wind perturbations. Since wind force can drastically vary from one
point of a given flight plan to another, we also use parameters to encode the wind force and allow
our model to adapt to particular weather conditions.

3.5.2 Building a formal model of a UAV

We now present our method to build the UAV model. Recall that we are interested in studying
human safety w.r.t. UAV flights. In order to do so, we use inputs such as the intended flight plan
of the UAV in order to partition the spatial environment into zones that can either be safe or
unsafe for the public. The aim of our model is then to evaluate the probability for a UAV to enter
a "forbidden" (i.e., unsafe) zone.

We start by explaining how the zones are computed with respect to the given flight plan. We
then show how the UAV software can be decomposed into components and focus on the most
important ones. Finally, we detail how the formal models for the important components are built
and present the resulting global model.

3.5.3 Safety zones

Figure 3.8 – Safety zones

In the context of software, considerations in airborne
systems and equipment certification (named DO-
178C) defined five levels of safety zones. We there-
fore chose to adapt this definition to our context
and also partitioned the spatial environment of our
drones into five zones, the most secure being Zone 1
and the most dangerous being Zone 5. These zones
are characterized by their distance from the intended flight plan, as shown in Figure 3.8.
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Figure 3.9 – Attitude coordinates Figure 3.10 – Flight Control overview

The size of each safety zone is not definitely fixed; it can be defined for a specific requirement
or for a given application. In practice the safety zones are specifically defined for a flight
environment and for a given flight plan. The main principle is that no human should be present in
Zones 1 to 3, while a few people can be present in Zone 4 and most people can be present in Zone
5. As a consequence, the probability that the UAV endangers humans is directly proportional
to the probability that it enters Zones 4 or 5. In the following of this section, our target will
therefore be to estimate this probability.

3.5.4 Drone components

We now move to the decomposition of the UAV hardware and UAV software into components
and introduce the most important component in the UAV system: the flight controller (FC). The
FC is responsible for collecting data from various sensors, using this data to compute the precise
position and attitude of the drone and adjust the attitude in order to follow the given flight plan
to the best of its ability.

Notice the difference between position and attitude: while the position of the UAV is defined
by 3-dimensional coordinates x, y and z, its attitude is the collection of yaw, pitch and roll

measurements for the UAV compared to the vertical (see Figure 3.9). The attitude allows to
control the movement of the UAV: by controlling the speed of each motor, one can control which
motor will be the highest, and hence control the direction the UAV will fly to.

Flight controller. As explained above, the FC is the central component in any UAV as it is
responsible for collecting data from sensors and translating them to the UAV attitude. An
overview of the FC of an UAV is given in Figure 3.10. Remark that the FC can be linked to
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components responsible for communicating with a remote control. While these components are
necessary in order to allow a pilot to take over when the automatic flight mode of the UAV fails,
we will consider in the following that this is not the case and that the UAV we study are always
in automatic flight mode (i.e., following the pre-defined flight plan).
As one can see from Figure 3.10, the intuitive behavior of the FC is as follows. The filter uses
sensors measurements in order to compute the current drone position and attitude. Since the
data can be noisy and inaccurate, the filter uses complex algorithms in order to clean the noises
in the measurements and compute a realistic position and attitude. Remark that in some cases,
the filter can itself introduce inaccuracy in the computed position and attitude, which can be
problematic. Once the estimated current position and attitude are computed, the Proportional
Integral Derivative (PID) uses this information to compute the local trajectory that the drone has
to follow in order to be as close as possible to its intended flight plan. This local trajectory is then
transformed into a new value for the attitude of the drone. Finally, Modulation transforms this
attitude into signal to the Electronic Speed Controller (ESC) which is responsible for controlling
each motor’s speed.

Figure 3.11 – Issue on drone location and misleading positions

Recall that we are interested in computing the probability that a UAV enters a forbidden zone
while following its flight plan. By construction, as long as the position and attitude measurements
are perfect, there is no reason why the UAV should deviate from its intended trajectory, and
therefore the probability that it enters a forbidden zone is null. However, as explained above, the
data gathered from sensors can be noisy and inaccuracy can sometimes be introduced through
filtering. In this case, the estimated position and attitude of the UAV can be faulty, resulting
in a deviation from the intended flight plan and potentially leading to a forbidden zone. It is
therefore of paramount importance to study how the filters work and to take into account in our
formal model the potential inaccuracy of position and attitude measurement. This is illustrated in
Figure 3.11, where we assume that the effective position of the drone is in A, but the estimated
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position that takes into account sensor and filter noise is in A′. In this case, the role of the FC
is to ensure that the drone goes to B despite the current deviation from its flight plan. As a
consequence, the orders sent to the ESC aim at following the trajectory from A′ to B. However,
since the effective position of the drone is in A, this will lead the drone to follow the trajectory
from A to B′ instead, therefore leading to an effective deviation from the flight plan.
For the sake of conciseness, we skip the details of the trajectory computation (they can be found
in [BAD+19]), but the frequency and the accuracy of the position estimation together with details
of the given flight plan (position and schedule of intermediate points) allows us to compute the
effective trajectory of the drone. These computations have been taken into consideration in a
global model which we now describe.

Figure 3.12 – Global behaviour of
the FCS

Resulting global model. The global model of the UAV
flight control system is depicted in Figure 3.12. The pur-
pose of this model is to represent the computations taking
place in the FCS in order to adapt the UAV trajectory to
the intended flight plan according to inaccurate position
and attitude estimations as well as wind perturbations. In
this model, the exact position of the UAV is encoded using
3-d coordinates. These coordinates are then compared to
the intended flight plan in order to decide to which safety
zone they belong. As soon as the UAV reaches one of the
forbidden zones (4 or 5), the computation stops.
The model uses several probabilistic parameters. Parame-
ters FilterProba1, FilterProba2, FilterProba3, FilterProba4
and FilterProba5 represent the accuracy of the position
and attitude estimation by both the filter and the sensors.
The resulting probabilistic choice depicted in the box la-
belled Filter Computation therefore dictates the distance
between the exact and estimated position of the UAV. This
choice is followed by a computation in the box labelled
Safety Zone Computation that computes the exact co-
ordinates of the next position of the drone and allows
to decide the safety zone to which this position belongs.

When the wind is not taken into account, the result of this computation is enough to decide
whether the model should pursue its execution. When the wind is taken into account, another step
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follows, depicted in the box labelled Wind Computation, where other probabilistic parameters
are used in order to decide the wind strength (we assume that the direction is constant) and a
new position taking into account these perturbations is computed. Finally, the zone to which this
last position belongs is computed and, depending on whether this zone is safe, the model goes
on to another position estimation.
Remark that the position estimation frequency and the position and distance of checkpoints in
the flight plan are given as inputs to the model. The position of checkpoints in the flight plan
allows to compute the required UAV speed, while the frequency of the position estimation allows
to fix the number of position estimations that will happen in a given flight plan (i.e. the number
of loops the model goes through, at most).

3.5.5 Implementation, experimentations and results

The model presented above has been implemented in a Python program, and takes into account
deviations on axes x and y, potential change of intermediate checkpoints in case of delay along a
complex (more than 2 points) trajectory as well as wind perturbations. For the sake of simplicity,
we assumed here that the wind direction was constant with respect to the trajectory (i.e., wind
angle is constant in the local Cartesian system associated to the drone), but the generalisation to
a varying wind direction is straightforward.

Remark. Preliminary versions of our model (that do not take all details into account) have been
implemented in the Prism input format and run on Prism and PARAM. In all cases but the most
simplistic versions (discretized position with only 5 possible values), this has resulted in Out of

Memory or Timeout errors.

As in the previous section, running our prototype tool on this model returns polynomials repre-
senting (1) the estimations of the probability that the drone enters an unsafe region during its
flight and (2) the associated confidence interval.
Instead of reporting the resulting polynomials, which consist in thousands of terms, we will
only present the evaluation of these polynomials using realistic values for the parameters. We
defined two scenarios (Scenario 1, Scenario 2) with one set of values of parameters for each
scenario. For these two scenarios, ProbaF0 (resp F1, F2, F3, F4) models the probability that the
estimated position is from 0 to 2m (resp. 2−4m, 4−6m, 6−8m, 8−10m) from the real position.
In the first (resp. second) scenario, we have set these values to 0.15/0.3/0.4/0.1/0.05 (resp.
0.1/0.25/0.35/0.2/0.1). According to field experiments, the first scenario is more realistic than
the second one. Similarly, the wind parameters correspond to the probability of having a wind
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Table 3.13 – Results of the experiments

Model #p 10k 20k 50k

V1 V2 V1 V2 V1 V2

Running time M1 28s 51-54s 142-143s

Scenario 1 M1 5 4.99% 5.09% 4.74% 5.10% 4.91% 4.98%

Conf. interv. M1 5 ±0.85% ±0.82% ±0.55% ±0.56% ±0.36% ±0.37%

Scenario 2 M1 5 10.38% 10.04% 9.82% 10.05% 9.95% 9.81%

Conf. interv. M1 5 ±1.15% ±1.12% ±0.79% ±0.80% ±0.51% ±0.51%

Running time M2 28s 53-54s 149-155s

Scenario 1 M2 5 5.44% 5.31% 5.61% 5.21% 5.59% 5.47%

Conf. interv. M2 5 ±0.98% ±0.86% ±0.69% ±0.64% ±0.42% ±0.43%

Scenario 2 M2 5 10.8% 10.9% 10.8% 10.8% 10.9% 10.7%

Conf. interv. M2 5 ±1.35% ±1.32% ±0.91% ±0.92% ±0.57% ±0.57%

Running time M3 185-190s 311-314s 612-621s

Scenario 1 M3 9 4.95% 5.97% 5.28% 6.62% 4.16% 5.61%

Conf. interv. M3 9 ±5.22% ±5.71% ±4.71% ±6.25% ±1.86% ±4.38%

Scenario 2 M3 9 9.55% 9.87% 10.3% 11.3% 9.57% 10.7%

Conf. interv. M3 9 ±8.40% ±7.86% ±7.04% ±7.89% ±5.29% ±3.99%

force of 0−20km/h,20−30km/h, 30−50km/h and 50−70km/h respectively and have been
set to 0.55/0.43/0.01/0.01 (which corresponds to typical weather conditions in Nantes, France)
for the numerical evaluation. In both scenarios, Zone 4 (resp. 5) is situated 8m (resp. 50m) from
the flight plan.

Remark. Although we only provide the evaluation of the polynomials for two scenarios, the
advantage of our technique is that we could evaluate the polynomials for any given parameter
valuation. Indeed, once the polynomials are obtained, their evaluation with a given parameter
value is very efficient: no further simulations of the model are given. On the contrary, using
standard SMC techniques would require performing again the whole set of simulations every
time a new parameter valuation is chosen.

In Table 3.13, we gather the results for running the simulation for the two considered scenarios;
the simulation with pSMC is performed with 10k, 20k and 50k samples. Each time, the two
polynomials are computed and then evaluated using the parameter values given above. In order
to illustrate the stability of our results despite their statistical nature, each complete scenario was
performed two times (labelled V1 and V2 in the table). The value reported in the table represents
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the probability of the UAV eventually reaching Zones 4 or 5 during its flight. Experiments were
performed using three different versions of the model. M1 is a simple version that does not take
wind perturbations into account. M2 is an intermediate version where wind force is probabilistic
but not parametric (the values are set to the scenario given above). Finally, M3 is the complete
version where wind force is parametric. For each model, the number of parameters involved is
reported in the column #p. The flight plan consists of only 3 points, resembling the one shown in
Figure 3.8, with a total flight duration of 5s and a position estimation frequency of 1Hz. Remark
that the probabilities of entering the forbidden zones are quite high. This is not surprising as
Zone 4 is situated 8m from the intended trajectory and the precision of position estimation can
be up to 10m. These values have been made deliberately high for the purpose of this study but
can be chosen more realistically when verifying the real model.

Although the analysis of the obtained polynomial is not an easy task, the user can use those
polynomials to get an estimation of the probability that the drone enters the forbidden zones
for any chosen parameter values without having to run the model again. More than that, this
case-study has confirmed the potential of parametric statistical model checking and shown that
our prototype tool, even in its current crude form, can scale up to systems well out of reach of
state-of-the-art (parametric) model checkers.

However, there are still many open questions on how to analyze and take advantage of the
results offered above (besides the evaluation of the polynomials). Moreover, many choices in our
technique have been made by default, but could have been made otherwise. In the next section,
we discuss some promising lines of work to enhance the parametric statistical model checking
technique itself.

3.6 Potential improvements

In this section we explore some variants of our technique in order to tackle some of its inherent
problems. As a reminder of the notations and definitions given in Section 3.3, the random variable
representing the binary output of each of simulations is written Y and the normalization function
f is the one that assigns values to transition probabilities in order to sample the considered pMC
M .
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init

fail

win
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1− p

Figure 3.14 – A simple pMC.
Figure 3.15 – Impact of the choice of the normalization
function f on the size of confidence intervals

3.6.1 Choice of normalization function

The choice of the normalization function f has a huge impact on the convergence speed of
our method. Figure 3.15 illustrates this on a simple example where the property tested is the
reachability of state win in the three state pMC given Figure 3.14. In Figure 3.15, where the
number of simulations is set to 500, we can see that with a normalization function assigning
0.99 to p the confidence intervals are much larger (in particular for small values of p) than with
a normalization function assigning 0.01 to p.

This can be explained by the following computation that bounds the variance of Y .

v(Var(Y )) = v
(
El

M f (Y 2)−El
M f (Y )2

)
(3.8)

= v

 ∑
ω∈ΓM f (l)

PM f (ω)y(ω)2

−El
M v(r)2 (3.9)

= ∑
ω∈ΓM f (l)

(v(Pa(ω)))2r(ω)2/PM f (ω)−El
M v(r)2 (3.10)

= ∑
ω∈ΓM f (l)

PM v(ω)r(ω)2PM v(ω)/PM f (ω)−El
M v(r)2 (3.11)

≤ m ∑
ω∈ΓM f (l)

PM v(ω)r(ω)2−El
M v(r)2 (3.12)

= mEl
M v(r2)−El

M v(r)2 (3.13)
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= (m−1)El
M v(r2)+Varl

M v(r) (3.14)

Where m = maxω∈ΓM f (l),r(ω)6=0PM v(ω)/PM f (ω).

In the example, with the normalization function assigning 0.99 to p we have m = (1− p)/0.01 =

100−100p, thus for small values of p the obtained variance is great. On the contrary, considering
the normalization function assigning 0.01 to p, we have m = (1− p)/0.99, which is always quite
small.

Following this remark, a good direction to improve the implemented prototype would be to
automatically choose the normalization function minimizing m. Note that such a normalization
function can be hard to compute, but one could first use the uniform normalization function then
find which valid valuation maximizes the size of the confidence interval and restart an evaluation
for this valid valuation. This technique may produce good results since the size of the confidence
intervals decreases only with the square root of the number of runs. Thus decreasing m may be
faster than increasing the number of simulations.

3.6.2 Modification of the structure

Notice that our technique is valid only for valuations such that M f and M v have the same
structure. Indeed, to obtain the approximation of the parametric expected value we divide by
the number of runs. However, when evaluating this parametric expected value on valuations
modifying the structure of the MC M f , it may be the case that some of the runs are impossible
for this valuation. For example, any run that takes a transition with a parametric probability
p is impossible to obtain for a valuation v such that v(p) = 0, although it may appear in the
simulations of M f if f (p) 6= 0.

To address this problem, instead of dividing by the total number of runs obtained when simulating
under the normalization function f , we can divide by the number of runs that are possible for the
considered valuation v. Formally, instead of the estimator (∑n

i=1Yi)/n, we can use (∑n
i=1Yi)/N

where N is the function of v defined by:

N(v) = |{i|PM v(ωi)> 0}|

This can be computed on-the-fly. Defining the estimated variance and the random confidence
interval with the same technique would give us a parametric approximation technique which is
valid for any valid valuation (regardless of structure preservation). Note however that this is valid
only if the structure of M f allows more runs than the structure of M v i.e., if ΓM v(l)⊆ ΓM f (l).
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Otherwise, this technique only gives an approximation of El
M v(r(ω)|ω ∈ ΓM f (l)).

Notice also that this is useful only if N(v) is large enough. Indeed if N(v)<< n it may be more
relevant to estimate Y for a normalization function giving the same structure as M v.

3.6.3 Complement of the property

In classic Monte-Carlo, there is no need to consider the complement of the property. Indeed,
when one approaches both the probability of ϕ and that of ¬ϕ by γ̂ and γ̂¬ respectively, it is
always the case that γ̂ = 1− γ̂¬. In our approach however, since the probabilities of the runs are
normalized, this does not always hold. Consider for example the pMC given figure 3.14 with a
normalization function such that p = 1− ε with ε close to 0. With high probability, our approach
would give that the probability of reaching win is γ̂ = 0 since it would miss the run reaching win

which has a really low probability for this normalization function (note that this problem only
appears if the number of simulations is not big enough). However, if we estimate the negation
as well, we have γ̂¬ = (n∗ p/(1− ε))/n = p/(1− ε), which is much closer to the truth for any
valuation with p 6≈ 1.

It is thus relevant to consider both the property and its negation when considering a parametric
approximation of a probability. Note that this holds only for the approximation of a probability
and not for the general expected value of a reward. Note also that this is a good example of the
importance of a good normalization function.

To implement this in practice, one could approach both the probabilities of ϕ and ¬ϕ and
whenever v(γ̂¬) 6≈ 1− v(γ̂) one could either increase the number of simulations or restart the
approximation for the normalization function v.

3.7 Conclusion

In this chapter, we have presented a new technique for statistical model checking of parametric
Markov chains. This technique is based on a parametric adaptation of the standard Monte-Carlo
analysis. We have shown that our technique allows to estimate the expected value associated
to any reward function by a polynomial function of the parameters, and proposed as well a
parametric confidence interval for the estimation. Compared to exact model checking techniques,
the technique we have proposed here offers the same benefits as standard simulation techniques
for non-parametric models: better scalability and a complexity which is largely independent
of the model complexity (be it in the size of the state space, in the type of used features, or

118



3.8. Perspectives

in the number of parameters). Contrary to existing statistical model checking techniques for
non-deterministic systems (such as the one presented in [HMZ+12]), the one we have proposed
in this chapter allows to compute parametric confidence intervals. Finally, our technique has
been implemented in a prototype tool using the Python language. This prototype tool accepts
inputs both in the PRISM language and in the form of Python programs. It has been tested on a
set of benchmarks and on an industrial case-study with encouraging results.

3.8 Perspectives

As we have shown in this chapter, parametric statistical model checking is a technique that offers
a lot of promises, but is, in its current state, far from being used at its full potential. Besides
the potential improvements presented in Section 3.6, a lot of work remains in order to compare
this technique (and our prototype tool) to state-of-the-art tools such as PARAM [HHWZ10],
Prophesy [DJJ+15] or Storm [DJKV17]. In particular, as soon as our tool is in a more optimized
state, we plan on running a set of benchmark to compare its scalability in terms of model size
with the one of Storm [DJKV17]. We conjecture that such an optimized tool as Storm will be
orders of magnitude more efficient than our tool on small models. However, we expect that the
resources needed by Storm will grow linearly with the model size, while those needed by our
tool should remain fairly constant. On the other hand, the resources needed by our tool should
grow linearly with the size of the property that we verify, whereas those needed by Storm should
not. Still, when considering the results presented in Section 3.5, we are confident that regardless
of the property, our tool should be able to handle models that Storm cannot.

The parametric statistical model checking technique we have presented can also be adapted
to verify models with non-determinism, such as Markov Decision Processes. Indeed, the non-
deterministic choices in this context could be replaced by parametric choices and our technique
could then be used in order to study optimal schedulers. Moreover, we could also envision
using the version of our tool that takes as input a Python program to study the optimization
of controllers: by considering a non-deterministic/probabilistic/parametric program, one could
build a parametric controller that could then be analyzed and optimized in an automated manner
by using our technique (i.e., executing the controller in parallel with the system in order to be
able to analyze its effect on the system). This could be done for instance on programs generated
using the probabilistic Event-B formalism presented in Chapter 2.

Finally, the most exciting perspective, to our point of view, is the ability of this technique and
the associated tools to analyze models and systems that are described in any programming
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language. In the past years, we have indeed been in contact with researchers from other domains,
such as Oceanography and we have learnt from those interactions that, although the verification
techniques and the modeling formalisms we develop in our domain are very powerful and could
be very useful to them, the effort that needs to be done in order to master both the modeling
formalisms and the techniques is too important for potential users out of our domain. However,
because of its simplicity and because it can be used on existing models written in any language
without much effort, we have been able to convince some of them that statistical model checking
can be integrated in the parameterization process of some of their models. Notably, we have
developed a technique, called the Statistical Model Checking Engine (SMCE), that can be used
almost automatically on any probabilistic and parametric model in order to tune the model to
make it fit with experimental data. Compared to other existing parameterization techniques, the
SMCE not only yields the set of optimal parameter values, but also provides the user with a
detailed correlation analysis of the whole set of parameters – which is outside the scope of any
other parameterization technique used in this context, to the best of our knowledge. This work
has been published in a famous broad-audience scientific journal [REG+20], which is, to our
opinion, a major achievement.
Our aim now is therefore to pursue the development of both sides of our tool, in order to propose
state-of-the-art automated parametric analyses that could be both used by researchers from our
domain but also by any modeler able to write an executable program representing their system.
Finally, we also aim in the long term at linking the analysis we do here with automated abstraction
techniques based on (deep-)learning in order to reduce the cost of sampling very complex models.
Succeeding in this challenge would then allow us to use our techniques to verify large-scale
models such as those developed for the analysis of climate change.
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CHAPTER 4

LEARNING AND VERIFICATION OF

GRAPHICAL EVENT MODELS

The work we report in this chapter was achieved during Dimitri Antakly’s thesis, in collaboration
with GFI informatique group 1. GFI is an international group that mainly proposes computer
science solutions and expertise, touching a wide variety of domains (banking, road safety,
supervision, cloud, AI solutions and many more). The main expectations of GFI about this thesis
were to explore behavior analytics including how it can be applied in security or supervision,
and to use innovative techniques in order to be distinguished from the available market solutions.

In this chapter, we tackle uncertain systems in a different form and context than those previously
considered. Instead of analyzing a given model of the system of interest, we here assume that the
only information we have on the system is a precomputed set of data and a security property.
We therefore focus on a formalism dedicated to learning, along with its learning algorithm, and
develop techniques for verifying the learned model and analyzing its security w.r.t. the given
property.

4.1 Introduction

In most of nowadays real life jobs or applications, employees, workers, consumers and users are
using connected devices. Hence, they are prone to not only external exploits but also internal
misuse that can become dangerous. Consequently, it is important to monitor the behavior of
users and workers in their environment to ensure a "secure" work flow. For instance, monitoring
the behavior of truck drivers can allow the supervisor to verify if they are getting enough rest
time while on route. Computer scientists have been putting a lot of effort in researches in order
to build a safe perimeter in which connected devices can be used [WHA+16, A+15]. Contrarily
to previous chapters, we consider here that a precise model of the systems under study is not

1. http://www.gfi.world
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available. More than that, we also consider that the systems can only be analyzed through a given
set of observations that cannot be extended. The uncertainty here therefore comes from the lack
of information we have on the behavior of the system/user.

In this chapter, we use behavior analytics in order to classify behaviors, from “standard” to
“dangerous”, by rating their level of dangerousness. The key to establishing an adequate behavior
analytic is a set of faithful data recorded from the concerned system. In 2020 we generate
in ten minutes more data than the entire data that is recorded throughout history until 2003.
Thus, clearly we have no real problems with generating data nor storing it, hence the problem
is our capability of extracting useful information from this data. This is where data mining
techniques [VDA14] come into play.

In order to build a secure access to data in a real world system and to ensure its safeness
from any upcoming potential threat, one should learn the dependencies and behaviors of the
different components of the system. One must then identify malicious behaviors and act at the
right moment to intercept them. This is where model-based Machine Learning, that allows to
build a model of the concerned system/user based on observed data, comes into play. Many types
of modeling formalisms exist in the literature, each developed for its own purpose. The ones that
were considered in the previous chapters, such as Event-B or (parametric) (Interval) Markov
Chains, are better tailored to the verification of systems whose models are available. Other
families of modeling formalisms, such as Hidden Markov models [RVVDA08, KA98, VM98] or
(Dynamic) Bayesian Networks [MR02], are better tailored to the learning of uncertain discrete
probabilistic models. In this work, we insist on the importance of timing information in the
dependencies between variables of the system, and therefore focus on continuous-time graphical
probabilistic models. Several such famillies of models exist, e.g., continuous time Bayesian
networks [NSK02], Markov jump processes [RT13], Poisson networks [RGH05] and Graphical
Event Models (GEMs) [GMX11]. In this work, we chose to use Recursive Timescale Graphical

Models (RTGEMs) [GM16] a sub-family of GEMs, that present advantages compared to the
other formalisms. In particular, they are designed to universally approximate any smooth, non-
explosive, stationary, multivariate temporal marked point process [DVJ07].

In this chapter, we therefore propose a strategy for analyzing the level of dangerousness of a
given system only observed through pre-generated data by using RTGEM models. The strategy
unfolds as follows:
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(1) We start by learning an RTGEM model that is representative of the given data;

(2) We analyze this model and decide whether it satisfies given security properties;

(3) When it does not, we explore the neighborhood of this model to find an RTGEM that does
satisfy the property and, if one is found, measure the distance between this safe model and
the original one. This distance gives us the level of dangerousness of the original data.

The chapter is dedicated to developping and experimenting the necessary techniques to achieve
the above strategy. In Section 4.2, we start with properly introducing the formalism and methods
used later on. In particular, we recall statistical model checking (already introduced in Chapter 3),
which will be used in the verification process of RTGEM, and provide a progressive definition of
the RTGEM formalism. Section 4.3 introduces the main techniques required for our strategy,
such as the learning and sampling algorithms for RTGEM, and defines the notion of distance
used for determining the level of dangerousness of a given RTGEM. Finally, Section 4.4 details
the experiments performed to evaluate our strategy and Sections 4.5 and 4.6 conclude the chapter.

4.2 Background

We start with some background definitions that will then be used in the rest of the chapter. As
seen in the previous chapters, model checking suffers from the state explosion problem when the
models are large. In the context of this Chapter, our aim is to build models that represent complex
statistical dependencies between several variables. As a consequence, the models we will build
might be large. Moreover, standard models used for representing statistical dependencies (e.g.,
Bayesian models [CHM97, MR02] or probabilistic graphical models [TEF+05, GM16]) are not
adapted to standard model checking techniques. As a consequence, we have chosen to build our
strategy on statistical model checking [LDB10], which we now recall.

4.2.1 Statistical model checking

As intoduced in Chapter 3, SMC is a simulation-based technique that allows estimating the
probability that a model satisfies a given linear property while giving formal guarantees on the
precision and the error-rate of this estimation. Moreover, one of the advantages of SMC is that it
can be applied to any type of stochastic model that can be executed.
SMC comes in two flavors: (1) quantitative SMC that allows to verify quantitative properties
(i.e., compute the probability with which the model satisfies a property); and (2) qualitative
SMC that allows to verify qualitative property (i.e., check whether the probability with which a
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model satisfies a property is greater than a given threshold). Quantitative SMC, and in particular
Monte-Carlo estimation, has been presented in details in Section 3.3.1. We now briefly present
the qualitative version of SMC.

In the following, we consider a stochastic system S and a linear property ϕ. As previously
mentioned, SMC is based on simulations, and each simulation is represented by a trace that has
a binary outcome for satisfying the property. Therefore, we consider a discrete random variable
Bi following a Bernoulli distribution of parameter p, that is associated to each trace and can
take two values: 0 (if the property is not satisfied) or 1 (if the property is satisfied). Assume
that Pr[Bi = 1] = p is the probability of satisfying the property and Pr[Bi = 0] = 1− p is the
probability of rejecting the property. Qualitative SMC allows to decide if p is greater (or smaller)
than a given threshold θ.

Qualitative approach. The original qualitative approaches are proposed in [You05, SVA04],
and are based on hypothesis testing. The idea is to test two hypothesis, H0 : p ≤ θ against
H1 : p > θ, while bounding the probability of making an error. A Type-I error is when we accept
H0 while H1 holds and a Type-II error is when we accept H1 while H0 holds. Therefore, we define
two parameters α and β, with (α,β) the "strength" of the test, being the pair of bounding errors.
An ideal performance of the test is when the Type-I error is equal to α and the Type-II error is
equal to β, and both α and β are small. However, in practice it is impossible to ensure a low α

and β simultaneously. In order to avoid this problem, an indifference region [p0, p1] is defined.
Let p = PS (ϕ) the probability of ϕ being satisfied on the system S . In order to determine whether
p > θ (qualitative property, θ being in [p0, p1]), one can test H ′0 : p≤ p0 (instead of H0 : p≤ θ)
against H ′1 : p > p1 (instead of H1 : p > θ. However, the tuning of the indifference region in
practice is constrained by the loss of precision (when the size of the region increases) and by
the fact that we cannot conclude about the result if p is inside [p0, p1]. We present two hypoth-
esis testing algorithms: Single Sampling Plan (SSP) and Sequential Probability Ratio Test (SPRT).

The Single Sampling Plan consists in specifying a constant c and a number of simulations
n to test whether ∑

n
i=1 bi > c, where bi is the outcome of the Bernoulli random variable, in

order to see which hypothesis is accepted. Thus, the hardest part in this algorithm is to compute
values for the pair (n,c) with respect to the pair (α,β) and the indifference region. The number n

increases when we minimize the size of the indifference region and the parameters α and β. An
optimization algorithm was proposed in [You05] in order to determine a pair (n,c) where n is
minimal.
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The Sequential Probability Ratio Test is an approach proposed by Wald [Wal45], consisting in
choosing two values A and B (A > B) ensuring the strength of the test and that are computed
using α, β and the indifference region. Unlike SSP, this approach does not fix a number of
simulations a priori but instead dynamically checks whether the number of simulations done so
far allows to conclude. As soon as a conclusion can be obtained, the algorithm stops. If m is the
number of already performed observations, the test is based on the following metric :

p1m

p0m
=

m

∏
i=1

P(Bi = bi | p = p1)

P(Bi = bi | p = p0)
=

pdm
1 (1− p1)

m−dm

pdm
0 (1− p0)m−dm

,

where dm = ∑
m
i=1 bi. It is shown in [You05] that we can accept H1 after m samples if p1m

p0m
≥ A,

whereas we can accept H0 if p1m
p0m
≤ B. Using this approach we can reduce the number of

simulations in certain scenarios compared to the Single Sampling Plan approach (where the
number of samples is fixed to n), and avoid doing n−m useless samples. However, it is also
demonstrated that convergence can be very slow when p is too close to θ. In this case, SSP might
be more advantageous.

We now progressively introduce the types of models that will be used in the rest of this chapter:
Recursive Timescale Graphical Event Models (RTGEM).

4.2.2 Graphical event models

We start with a formal definition of the structure we use to represent our input data.

Marked point processes

Let S be a totally ordered set. A point process is a set of points that are positioned (following the
order) in S. A marked point process is a point process that contains additional features at each
point. In other words, a marked point process (m.p.p.) is composed of a point process and marks
associated witch each point. If we consider a set of marks M, an m.p.p. can be expressed as the
pair:

{(si,mi) : i = 1, ...,n}

where si ∈ S, mi ∈M and si ≤ si+1 for all 1≤ i≤ n.
Henceforth, we assume that the space S that is used is the one-dimensional space of time, and
the marks are labels describing each point. Marked point processes are used for expressing
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event streams in this framework, i.e. random labeled (marked) events (points) that arrive at
different times {ti} (unidimensional space). The word point is used for describing events as being
instantaneous in the time dimension and for the sake of simplicity, the notation l for labels is
going to be used instead of m for marks.

In practice, we tend to use a timeline to represent data that arrive at irregular intervals. A
timeline can be defined as a sequence of pairs {time,event} capturing the relative frequency and
ordering of events [WP13]. In figure 4.1, an example is shown of how a timeline can be seen as
a multivariate marked point process.

Figure 4.1 – Example showing the decomposition of a timeline into marked point processes

In the following, we define event streams as well as stochastic models that are capable of repre-
senting such an evolutionary process.

If we take a step back, a point process can be described by unrolling a stochastic model that
defines inter arrival times between different events, i.e. defining the time of the next event based
on all the times of previous events. In the following, we will explore a family of stochastic
models based on conditional intensity functions, called Conditional Intensity Models (CIM). We
start by defining the data type that is generally used for learning these models.

Event streams. An event stream consists in a timed sequence of events with strictly increas-
ing timestamps. An event stream can be written as: (t1, l1), . . . ,(tn, ln), with 0 < ti < ti+1 < t∗

(t∗ = tn+1) for all 1≤ i≤ n−1 and where li are labels chosen from a finite set of labels L . Hence,
a single event is defined by the pair (ti, li) but for the sake of simplicity we sometimes refer to an
event only by its label l when the context is clear enough. We note that in the following, t0 = 0
and t∗ = tn+1 are used as conventions, as well as the fact that two events cannot occur at the
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exact same time. An event stream can be considered as an m.p.p. and the data that can be derived
from it can be written as xt∗ . We write |xt∗| for the size of our data xt∗ (the number of events in
the sequence, here it is n). The history at time t is the set of all the events that occurred before t:
hi denotes the ith history hi = (t1, l1), ...,(ti−1, li−1). With this in mind, we define a conditional

intensity function. In the following, and for the sake of simplicity, data will sometimes be written
as x, history as h and time as t, without indexing them explicitly at every instance, but providing
enough context to understand their use.

Definition 14. A conditional intensity function, defines the risk of observing a given event at
a certain time, depending on the observed history in some data x. We recall that E[X ] is the
expected value of a random variable X . Mathematically a conditional intensity function λ is
written as:

λ(t) = lim
∆t→0

E[N(t, t +∆t)|ht ]

∆t

where N(T ) denotes the number of points (events) occurring in a time interval T in x.

In other words, the conditional intensity function allows to specify the mean inter arrival times
between two events in a process. Furthermore, we recall an important assumption for the follow-
ing about this approach: there cannot be more than one event in an infinitesimal interval of time.

Before moving forward to the definition of a CIM, we start with an introductory example about a
common probability distribution based on an intensity function. Consider for instance the Poisson
distribution [Hai73], that is a probability distribution representing a number of events occurring
in a fixed interval of time under the assumption that any event is independent with regards to the
duration from the previous events. A Poisson distribution is used for modeling processes such as
the number of cars arriving to a garage between two given times. The probability function of a
random variable X that follows a Poisson distribution of parameter λ (where also the expectation
and the variance are equal to λ) is given by: P(X = k) = λke−λ

k! . We note that in order to sample
from such distribution, the inter arrival times between every two events should be computed. The
inter arrival time follows the exponential distribution in the case of a Poisson distribution, with a
mean of 1/λ, i.e. the mean time between every two events in a Poisson distribution is 1/λ.

A CIM that models a marked point process must treat each event individually, thus each label
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l ∈ L must be associated with its own conditional intensity function λl(t | h). The conditional
intensity function, describes the risk of having the event l at time t given a certain history h

of events (the totality of the events or a part of them depending on the CIM). For instance, in
a Markovian CIM where an event can be particularly dependent from a set of events (called
parents), the conditional intensity functions satisfy the following property:

λl(t | h) = λl(t | [h]Pa(l))

where Pa(l) is the set of parents of l and [h]Pa(l) is the history of the parents only.

Definition 15. [DVJ07] Formally, a CIM θ is a set of indexed conditional intensity functions
{λl(t | x)}l∈L . The data likelihood function is the joint density function of all the points in the
m.p.p. that can be factorized into a product of all conditional intensity functions and can be
written as:

p(x | θ) = ∏
l∈L

n

∏
i=1

λl(ti | hi;θ)1l(li)e−Λl(ti|hi;θ)

where Λl(t | h;θ) =
∫ t
−∞

λl(τ | x;θ)dτ for the data x and the indicator function 1l(l′) is one if
l′ = l and zero otherwise.

We now introduce Piecewise-Constant Conditional Intensity Models (PCIMs).

Piecewise-constant conditional intensity models

Piecewise-Constant Conditional Intensity Models (PCIMs) are based on the assumption that
intensity functions are constant in given time intervals. In other words, there is a mapping
associated with these models that assigns a parameter λ for every label in L according to an
active state. The active state is determined in function of the time t and the data x.
These models are important because they form the basis of graphical event models and they ensure
fast and efficient learning and inference. These models are related to Poisson networks [TEF+05],
since Poisson networks also contain piecewise constant parameters in their mapping (see more
detail in [GMX11]). However, it was experimentally shown in [GMX11] that they are, by orders
of magnitude, faster to train than Poisson networks.

Let L be a set of labels. Each label l ∈ L is associated to a set of discrete states Σl . For each label
l and each state s ∈ Σl we have a parameter λls. An active state s for each label (correspondingly
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the active parameter λls) has to be determined by a mapping σl : T ×X −→ Σl (with T the set of
all possible times and X the set of all possible data).

Definition 16. A PCIM is defined by local structures Sl = (Σl,σl(t,x)) and local piecewise
constant parameters λls. Let S = {Sl}l∈L be the set of all discrete states and θ = {λls}l∈L ,s∈Σl

be the set of associated parameters. The PCIM data likelihood knowing the structure and the
parameters in this case can be written as:

p(x | S,θ) = ∏
l∈L

∏
s∈Σl

λ
Mls(x)
ls e−λlsTls(x)

where Mls(x) is the number of occurrence of events of type l while s is active in the event
sequence x, and Tls(x) is the total duration while s was active for event type l.

In practice, the learning of a PCIM is divided into two processes: the local structure learning
process that could be done using a decision tree to alternate between active states and define
adequate mapping from the data to the states set similarly to [CHM97]; and the parameters

learning process that uses statistical estimates depending on the type of the model and knowing
the structure. Commonly, a greedy search is used where for a fixed structure (for instance a given
decision tree and a given mapping for states) the parameters are calculated, and the structure
is continuously modified until we cannot find a better model based on a selection criterion or a
certain "gain".

The theory of CIMs is a root to many continuous time formalisms. It is an expressive tool
that can help build graphical models such as Poisson networks and GEMs, that will be detailed
later on. Moreover, PCIMs favor the discretization of states instead of the discretization of time,
creating a set of constant parameters associated with each "scenario" in time and history of past
events in which an event can occur. In the following, we define a family of graphical models that
is directly used in the rest of the chapter.

Graphical event models

Definition 17. A Graphical Event Model (GEM) is a tupple G = ((L ,E),θ) where (L ,E) is a
directed graph and θ a set of parameters. A GEM can represent event streams of the type x as
defined previously, as well as the dependencies between the different labels (or events) in time.
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In this case, the likelihood of the data knowing the graph and its parameters is written as:

p(xt∗ | t∗) =
|xt∗ |

∏
i=1

λli(ti | hi)
|xt∗ |+1

∏
i=1

e−∑l∈L
∫ ti

ti−1 λl(τ|hi)dτ
, (4.1)

with h|xt∗ |+1 the entire history of the event stream, including xt∗ .

In figure 4.2, an example of a GEM is shown with four labels (nodes) A, B, C and D, each with
its corresponding parameter (conditional intensity function). The structure of a GEM (directed
graph) has no constraints over cycles or loops, giving it a superior degree of expressive power
compared to other graphical models based on DAGs, like Dynamic Bayesian Networks for
instance, that cannot directly allow cycles or loops in a single time-slice.

AλA(t | h) B

λB(t | h)

C

λC(t | h)

D λD(t | h)

Figure 4.2 – Example of a 4 labels GEM

In this formalism, one should note that the conditional intensity functions λl(t | h) are not
piecewise-constant, which means that they do not take constant values for a certain period of
time so the models are a family of CIMs and not PCIMs.

In this work we are only interested in Markov m.p.p.s with respect to a certain GEM. The
conditional intensity functions λl(t | h) in this case satisfy the following property for all t and h:

λl(t | h) = λl(t | [h]Pa(l))

where Pa(l) are the parents of l in G . This means that the conditional intensity of a certain label
l at time t only depends on the history of the parents of l and not the entire history of the process.

The dependencies between the events can be easily depicted on the graph of the GEM. In
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the graph of figure 4.2 for instance, one can identify that label B has two parents A and D, hence
λB(t | h) depends on the past history of A and D. However, label D does not have any parents
and subsequently has a constant rate λD(t | h) = λD of occurrence.
A fully connected GEM can represent any m.p.p. with labels in L [GM16].
We now introduce Timescale GEMs, a subfamily of GEMs that is more granular and can be
more easily used in practice.

Timescale graphical event models

A Timescale GEM (TGEM) is a GEM where each dependency between two events (edge in
the graph) is defined for a given finite timescale which specifies the temporal horizon and the
granularity of the dependency represented by that edge. Formally, a timescale is a set T of
half-open intervals (a,b] (with a≥ 0 and b > a) that form a partition of some interval (c, th] (with
c≥ 0), where th is the highest value of T and is called the horizon of the corresponding edge.

Definition 18. A TGEM M = (G ,T ) consists of a GEM G = ((L ,E),θ) and a set of timescales
T = Te(e∈E) corresponding to the edges E of the graph of G .

We write cl(h, t) as the parent count vector of bounded counts (of occurrences) over the intervals
in the timescales of the parents of l (in order to have bounded counts, a maximum threshold
should be fixed). We provide an example to explicitly show parent count vectors and parameters
(see Example 14).

The conditional intensity of a node (or a variable) labeled l in the GEM only depends on
the history of the number of occurrences of its parents within the corresponding timescale. As
a consequence, a given parent count vector yields a unique conditional intensity function for
the corresponding parameter. The global conditional intensity functions are therefore piecewise-
constant:

λl(t | h) = {λl,cl(h,t)}cl(h,t)∈Cl
.

We use Cl to denote the set of all possible parent count vectors of label l. For the following
example (Figure 4.3), we consider that all TGEMs are bounded by 1 (making the parent count
vectors binary), thus only the fact that a parent has occurred (or not) within the corresponding
timescale is important and not the number of times a parent occurs.
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AλA,cl(h,t) B

λB,cl(h,t)

C

λC,cl(h,t)

D

λD,cl(h,t)

(1,3](3,10]

(0,2]

(0,20]

(0
,5
]

Figure 4.3 – Example of a 4 labels TGEM

Example 14. Consider the TGEM illustrated in Figure 4.3. We have L = {A,B,C,D}, so
we can list the different parent count vectors in Cl associated with each label: CA = {0,1},
CB = {0,1}× {0,1}× {0,1}, CC = {0,1} and CD = ∅ . Thus, for the event B for example,
cB(h, t) = [0,1,1] means that there was no A in [t−3, t−1), there was an A in [t−10, t−3) and
there was a D in [t−5, t). Hence, the conditional intensity functions for the variable B are of the
form: λB,000, λB,001, λB,010, λB,011, λB,100 λB,101, λB,110 and λB,111. The same applies to the rest
of the variables, except the variable D that is independent of all other variables, so its conditional
intensity function is written as λD. All conditional intensity functions are equal to constants
making them piecewise-constant depending on the corresponding combination of parents.

In the case of TGEMs, the likelihood of the data in equation 4.1 is simplified and written as
follows:

p(xt∗ | t∗) = ∏
l∈L

∏
j∈Cl

λ
nt∗,l, j(xt∗)
l, j e−λl, jdt∗l, j(xt∗), (4.2)

where the sufficient statistics nt∗,l, j(xt∗) and dt∗l, j(xt∗) are the count of l-events and the durations,
respectively, when the parent count vector was equal to j (a certain combination of parents).
In [GM16], the sufficient statistics are formally written as:

nt∗,l, j(xt∗) =
|xt∗ |

∑
i=1

1(li = l)1(cl(hi, ti) = j)

dt∗,l, j(xt∗) =
|xt∗ |+1

∑
i=1

∫ ti

ti−1

1(cl(hi,τ) = j)dτ

where t|xt∗ |+1 represents the duration d between the last event occurence and the final time t∗ in
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the data.

Recursive timescale graphical event models

In practice, the learning process of GEMs is not an easy task, especially because they are not
piecewise-constant intensity models, thus the learning of the conditional intensity functions can
become hard (since they are not constants). The difficulty of learning GEMs, along with the
necessity of have a “universal” Graphical Event Model that is easy to learn and to handle, led
to the creation of a subclass of TGEMs called Recursive Timescale Graphical Event Models

(RTGEMs).

Definition 19. The family of RTGEMs is defined recursively to be the finite closure of the empty
model M0 = ((L ,{}),{}) under a set of allowed operators OF = {add,split,extend} (discussed
in the following).

RTGEMs as described in [GM16] can universally approximate any smooth multivariate temporal
point process. RTGEMs are learned recursively using the set of operators introduced above.
More details on the learning procedure are given in the following.

Furthermore, it is proven in the works of [GM16] that using a greedy search algorithm to learn
this class of models always shows structural and parametric consistency. In other words, the
learned model converges in probability to the optimal model when the learning data size is
increased, unlike the more general cases of TGEMs and GEMs for which, to the best of our
knowledge, consistency has not been proven.

A finite consistent RTGEM learning procedure [GM16] is to do a forward greedy search (for
model construction) followed by a backward greedy search (for model refinement), both based
on model selection, and using data that is faithful. Bayesian Information Criterion (BIC) [S+78]
is a very general model criterion that has been adapted to select the "best" (or a "better") RTGEM
when doing a greedy search, and is written as follows for a model M:

St∗(M) = log(p(xt∗ | t∗;M, λ̂t∗,l, j(xt∗)))−∑
l∈L
|Cl | ·log(t∗),

where the left term of the difference is the likelihood of the data knowing the history, the model
and the calculated maximum likelihood estimates of the λ functions (written λ̂). The right term
represents the complexity of the model, with Dim(M) = ∑l∈L | Cl | as the dimension of an
RTGEM, multiplied by the size of the sample used for learning to define the overall complexity.
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Given a model M, the maximum likelihood estimate λ̂ of the λ parameters for M (knowing its
structure) is as follows [GM16] :

λ̂t∗,l, j(xt∗) =
nt∗,l, j(xt∗)

dt∗l, j(xt∗)

Now that RTGEMs are introduced, we explain how such models can be learned, sampled and
compared.

4.3 Learning, sampling and comparing RTGEMs

The purpose of GEMs is to represent statistical dependencies between variables that one can
observe on a data stream. However, the process of building a GEM that faithfully represents
the statistical dependencies present in a given data stream can be arduous. RTGEMs have
been introduced in [GM16] in order to solve this problem. By restricting the forms that the
dependencies can take to timescales and the set of operations that can be done to build these
timescales, the authors have shown that the learning time is drastically reduced. In the following,
we present the set of operators that can be used in order to build an RTGEM and briefly explain
how the learning process is performed. Sampling the model is also very important in our context
in order to be able to perform SMC. We therefore explain next how RTGEMs can be sampled.
Finally, we introduce one of our contributions: the definition of a distance measure that allows to
compare two given RTGEMs.

4.3.1 Learning RTGEM

As explained in Sextion 4.2.2, the learning procedure defined in [GM16] consists of a forward
greedy search for model construction followed by a backward greedy search for model refine-
ment. Both the forward and the backward greedy search rely on a model selection criterion.
As explained in Section 4.2.2, we usually use the Bayesian Information Criterion adapted to
RTGEMs for this purpose.

The inital model consists of a graph with no edges whose vertices are the variables present in
the given data stream. During the forward greedy search, the edges of the model (representing
the dependencies between the variables) are progressively built by using a limited number
of forward elementary operators. The set of forward elementary operators is the following:
OF = {add,split,extend}. The "add" operator adds a non-existing edge to a model and its
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corresponding timescale T = (0,c], with c a constant (also called horizon). The "split" operator
splits one interval (a,b] in the timescale of a chosen edge into two intervals (a, a+b

2 ],(a+b
2 ,b].

The extend operator extends the horizon of a chosen edge by adding the interval (th,2th], with th
being the previous horizon.

After a number of forward operations (either a fixed number or when the improvement of
the model selection criterion is sufficiently low), the forward search ends and a backward search
starts. In this backward search, symmetric backward operators are used. For the sake of conve-
nience, and since there are no further information in the literature about these operators, one
can write O−1

F = {reverse_add,reverse_split,reverse_extend} for these symmetric backward
operators.

The "reverse_add" operator removes a chosen edge with only one interval in its timescale
(to make it the exact inverse of the "add" operator). The "reverse_split" operator is used for
merging two consecutive intervals in a timescale on a chosen edge that have been initially split.
The "reverse_extend" operator removes the highest (the last) interval in a timescale on a chosen
edge only if the upper bound of this interval was initially created by an extend.
Again, once a sufficient number of operators have been applied, or when the improvement of the
model selection criterion is sufficiently low, the backward search ends and a definitive model is
produced.

4.3.2 Sampling RTGEM

Once the model is learned, our aim is to verify if it satisfies given security properties. Since
we use SMC for this verification, we need to produce samples of the learned RTGEMs. The
sampling of such models is similar to the sampling of Poisson Networks [RGH05]. The needed
"elementary" sampling techniques are demonstrated using the example in Figure 4.4 where
different simple RTGEMs are shown. In Figure 4.4a the sampling is straightforward since there
is only a single constant rate λA. In Figure 4.4b, the sampling of A is straightforward but the
sampling of B will depend on the sampling of A. As a consequence, A must be sampled before
B, then the active λB should be chosen respectively in regards to the occurrences of A along the
timeline, and finally B can be sampled using the corresponding λB value in each section of the
timeline.
Finally, in Figure 4.4c, things become more complicated: none of the variables can be sampled
straightforwardly because of the cycle between A and B. Therefore, some sort of "competition" is
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A λA

(a)

A λA

B λB,0 λB,1

(0,5]

(b)

A λA,0 λA,1

B λB,0 λB,1

(0,5](0,4]

(c)

Figure 4.4 – Illustration of elementary sampling techniques for TGEMs

created between the variables and two time values τA and τB are sampled using the corresponding
rates λA,cl and λB,cl (cl is the corresponding parent configuration, cl = 0 initially). The highest
value (between τA and τB) is rejected because the one that comes before is supposed to change
the corresponding conditional intensity function of the other (making the latter one wrongly
sampled). Note that the corresponding rates are the conditional intensity functions that are active
(with regards to the parents configuration) at the moment of the sampling. Afterwards, the
lowest value (between τA and τB) is accepted if it is within the firing period. The firing period
is the lowest interval on the timescale of the edge entering the corresponding node (for A it is
between 0 and 5), because usually after that interval there is a switch of parents configuration
and subsequently a switch in the conditional intensity function.

Using these elementary techniques, sampling can be generalized to a larger number of nodes, but
two operations (illustrated in Figure 4.5) need to be performed beforehand.

A B

C

D

E

(a)

A B

C

D

E

(b)

A B

C’ E

(c)

A1 B 1′

C’2 E 3

(d)

Figure 4.5 – Example from (a) to (d) showing how an RTGEM (we omitted the timescales for a better representa-
tion) can be transformed into ordered SCCs

The first operation is based on the concept of Strongly Connected Components (SCCs). A
Strongly Connected Component (SCC) in graph theory [CLRS01] is a directed subgraph where
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there exists a path between every single pair of nodes. The first operation is illustrated in Figure
4.5b where strongly connected components (nodes of the same color) are brought together
forming a new "node" locally and the directed graph is transformed to a DAG at the end of the
operation. The second operation (illustrated in Figure 4.5d) is topological ordering [CLRS01],
and it defines an order that can be used for sampling the new nodes of the DAG using the three
elementary operations. Note that the topological order is not unique, for instance 1 and 1′ could
be sampled in random order. A detailed description of the sampling procedure introduced above
is given in [Ant20].

We now introduce one of our theoretical contributions: a notion of distance that allows to
compare two given RTGEMs.

4.3.3 Distance between RTGEMs

To the best of our knowledge, there is no existing metric between RTGEMs. The most intuitive
distance measure that comes to mind is the minimal number of operations needed to move from
one RTGEM to another since they are built using a recursive procedure. However, such a distance
is not accurate in our context because not all operators add (or remove) the same information
every time.

In the literature, the popular Hamming distance [Ham50] has been adapted for some prob-
abilistic graphical models such as Bayesian networks [TBA06]. In the following, we propose an
extension of the Structural Hamming Distance (SHD), adapted to RTGEMs, where we evaluate
the amount of differing information on two different edges.

A timescale in an RTGEM can be represented by a vector v = [0,a,b,c, . . .] containing the succes-
sive endpoints values. Given two RTGEMs with the same set of labels L , G1 = ((L ,E1),θ1) and
G2 = ((L ,E2),θ2) and an edge e ∈ E1∩E2, we write ve

1 and ve
2 for the values of the respective

timescales of e in G1 and G2. We then write ve
id = |v

e
1∩ve

2|, for the number of identical endpoints
in the two vectors; and ve

nid = |v
e
1\ve

2|+ |ve
2\ve

1|, for the number of endpoints that are not identical
in the two vectors. This allows to define an elementary distance between the two respective
timescales of the edge e as follows:

d(ve
1,v

e
2) =

ve
nid

ve
nid + ve

id
(4.3)
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Using these notations, we define the Structural Hamming Distance (SHD) between G1 and G2 as
follows:

SHD(G1,G2) = |(E1 \E2)∪ (E2 \E1)|+ ∑
e∈E1∩E2

d(ve
1,v

e
2) (4.4)

Each edge that is present in one RTGEM and not in the other therefore adds 1 to the SHD, while
each edge that is present in both adds the elementary distance between its respective timescales.
One can show that the SHD is indeed a distance metric (i.e., satisfies the distance axioms). A
proof is given in [Ant20].

While this distance allows to compare both the structure and the timescales of two RTGEMs
using the same labels, it suffers from a "scaling" disadvantage when it comes to comparing
quantitative information. For instance, consider three vectors ve

1 = [0,1,2], ve
2 = [0,1.01,1.98]

and ve
3 = [0,5,10], representing the endpoints of three different timescales to compare using

the distance measure. By computing the elementary distances between (ve
1,v

e
2) and (ve

1,v
e
3) with

respect to equation 4.3, we notice that they are equal although ve
1 and ve

2 cover almost the same
timescale compared to ve

3 that covers a different timescale. We have therefore proposed an
extension to this SHD where the relative quantitative differences inside the timescales are taken
into account in order to give a fairer distance measure.

The idea is to find matches (if existing) between the endpoints of the two timescales based on the
mutual minimal absolute difference. In other words, consider two vectors ve

1 with size l and ve
2

with size k. A match is a pair (ve
1i
,ve

2 j
) such that the closest element from ve

1i
∈ ve

1 in ve
2 is ve

2 j
,

and the closest element from ve
2 j
∈ ve

2 in ve
1 is the same ve

1i
. Formally, the closest element from

ve
1i
∈ ve

1 in ve
2 is written

cl(ve
1i
,ve

2) = argminve
2p
(|ve

1i
− ve

2p
|).

Using this notion, the set of matches for a given edge e ∈ E1∩E2 is written V e
id and defined as

follows:
V e

id = {(ve
1i
,ve

2 j
) ∈ ve

1× ve
2 : cl(ve

1i
,ve

2) = ve
2 j
∧ cl(ve

2 j
,ve

1) = ve
1i
}

We write V e
id,1 for the projection of V e

id on ve
1, i.e., V e

id,1 = {v
e
1,i,∃ j,(ve

1,i,v
e
2, j) ∈V e

id}. Similarly,
we write V e

id,2 for the projection of V e
id on ve

2. The set of unmatched endpoints can now be defined
as:

V e
nid = (ve

1 \V e
id,1)∪ (v

e
2 \V e

id,2).

Using these sets, we enlarge the set of endpoints that are considered identical in the elementary
distance between two timescales. We now write ve

id = |V
e
id| for the number of proximally matched
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endpoints and ve
nid = |V e

nid| for the number of unmatched enpoints. The elementary distance
between ve

1 and ve
2 can now be written

d∗(ve
1,v

e
2) =

1
ve

nid +ve
id

 ∑
(ve

1i
,ve

2 j
)∈V e

id\(0,0)

|ve
1i
− ve

2 j
|

min(ve
1i
,ve

2 j
)

+
ve

nid
ve

nid +ve
id
.

Remark that for each pair of matched endpoints, the relative difference (scaled by its minimum)
is taken into account in order to penalize the fact that they may not be perfectly identical.
Obviously, this factor is smaller than 1 (otherwise either ve

1i
or ve

2 j
would be closer to 0 than to

its counterpart, which would imply that (ve
1i
,ve

2 j
) /∈V e

id). As a consequence, pairs of imperfectly
matching endpoints are less penalized than endpoints that have no match, but still more penalized
than pairs of identical endpoints.

Finally, if there are no detected imperfect matches (i.e., V e
id = {(ve

1,i,v
e
2, j) : ve

1,i = ve
2, j}), then we

have d∗(ve
1,v

e
2) = d(ve

1,v
e
2).

The proximal distance measure, that will be used in the rest of the chapter, takes into account
this similarity between endpoints and is defined similarly to the SHD but using the elementary
distance d∗ defined above instead of d:

SHD∗(G1,G2) = |(E1 \E2)∪ (E2 \E1)|+ ∑
e∈E1∩E2

d∗(ve
1,v

e
2). (4.5)

Although this is not a problem in our context, we remark that the proximal distance defined
above is not, strictly speaking, a distance metric but only a semimetric (it does not satisfy the
triangular inequality). Counter examples are given in [Ant20]. Because it suits our purpose, we
will nevertheless call it a distance in the following, but this is an abuse of language.

4.4 Experimentations

As explained before, the aim of this work to measure how secure a system, which we can only
observe through pre-generated outputs, is w.r.t. a given qualitative security property of the form
P(ϕ |M)> c where ϕ is a linear property and c is a constant 2 To this aim, we have developped
a strategy that can be summed up by Algorithm 1.

The only inputs we have in this context are the query ϕ and some data D . The algorithm is in three

2. In the following, ϕ is called a query and the term security property refers to P(ϕ |M)> c.
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Algorithm 1 Proposed Strategy

input: D,ϕ
output: M∗,∆

1: Mo = argmax
M∈RTGEM

P(D |M)

2: If P(ϕ |Mo)> c Then
3: Return(Mo,0)
4: Else
5: M∗ = find{M ∈N (Mo),P(ϕ |M)> c}
6: ∆ = Distance(Mo,M∗)
7: Return(M∗,∆)

main steps. The first step (line 1) consists in learning a model Mo that best represents the data
D . This model is called the fittest model. The second step (line 2) consists in verifying whether
the obtained model Mo satisfies the security property. If this is the case, then the algorithm ends.
Otherwise, the third step (lines 5-6) consists in searching the neighbourhood of Mo for a model
M∗ that satisfies the security property and, if one is found, compute the distance between Mo and
M∗. If none is found then the empty model ⊥ is returned and the distance is considered infinite.

Remark that the algorithm presented above is generic, i.e., it does not depend on the choice of
the modeling formalism, verification technique or distance notion. In the following, we present
experiments performed for each step of this algorithm using the techniques and notions presented
in the previous sections, but other techniques and notions could be used instead.

To the best of our knowledge, there is no existing tool in the literature implementing the learning,
sampling or verification of RTGEM. We have therefore developed a branch of the PILGRIM
library 3 dedicated to the manipulation of RTGEM, which we use in the rest of the chapter. All
the experiments presented hereafter have been performed on a Windows 10 Enterprise i5 laptop,
with a 2.3 GHz CPU and 8GB of RAM.

4.4.1 RTGEM learning performance

We start with an experiment designed to evaluate the performance of the learning algorithm
for RTGEM presented in Section 4.3.1. To this purpose, we have considered a benchmark
consisting in several random RTGEM (which we call references) generated with a prefixed
complexity. From these RTGEM, we generate data samples of different length and use the
learning technique of Section 4.3.1 on those samples to learn new RTGEMs. We then measure

3. http://www.pilgrim.univ-nantes.fr/
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the proximal distance between the learned RTGEMs and their corresponding reference RTGEM
to evaluate the accuracy of the learning algorithm w.r.t. the size of the input data, and compute
the mean learning times to evaluate the performance of the learning algorithm.

For this experiment, we used RTGEMs of different complexity (number of vertices and timescales),
written |Cl|. For each RTGEM complexity, we generated 50 random models 4 from which we
sampled data of varying length, written t∗. We then use each sampled data to perform the RTGEM
learning algorithm.

The mean values of learning times are presented in Table 4.6, where we can see the variations
in learning duration depending on the size of the sample and the complexity of the RTGEM.
Note that we fix the same number of nodes (labels) for every batch of graphs for the sake of
convenience. In addition, the parameters λ are drawn randomly from a set of parameters, whose
values are fixed beforehand in a way not to bias the tests (not very small nor very large values).

HHH
HHHt∗

Dim(M) |Cl|= 8 |Cl|= 12 |Cl|= 32 |Cl|= 44 |Cl|= 80

500 t.u. 0.3 sec 0.54 sec 1.72 sec 2.24 sec 4.21 sec
1000 t.u. 0.62 sec 0.94 sec 4.27 sec 4.74 sec 8.57 sec

10 000 t.u. 1.72 sec 6 sec 42 sec 1 min 6 sec 1 min 58 sec
20 000 t.u. 5 sec 14.35 sec 1 min 25 sec 2 min 32 sec 4 min 40 sec
25 000 t.u. 7.23 sec 18.97 sec 2 min 41 sec 5 min 38 sec 11 min 20 sec
50 000 t.u. 41.67 sec 58.51 sec 6 min 38 sec 13 min 37 sec 24 min 11 sec

Table 4.6 – Variations in learning time depending on the size of the sample and the complexity
of the model

From these results we can conclude that the bigger the complexity and the sample size, the more
time consuming the learning is, which is not surprising. Still, we can see that learning of RTGEM
can be performed on a standard computer with acceptable performance even with large data
representing large RTGEM.

In Figure 4.7, we show plots representing the variation of the mean of the normalized distances
between the learned and original RTGEM in function of the size of the sample for different
complexities. The standard deviation is indicated by the shadowed curve around the plot for each
complexity. The normalized distance is the SHD∗(re f erence, learned) divided by the maximum
possible distance between two graphs of the given complexity, i.e., the square of the total number

4. Details on the random generation process are left out of this document but can be found in [Ant20].
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of nodes |L2|. We write D(re f erence, learned) = SHD∗(re f erence,learned)
|L2| .

 0

 0,05

 0,1

 0,15

 0,2

 0,25

 0  10000  20000  30000  40000  50000

D
(r

ef
er

en
ce

,le
ar

ne
d)

sample size t*

RTGEM complexity 8
RTGEM complexity 12
RTGEM complexity 32
RTGEM complexity 44
RTGEM complexity 80

Figure 4.7 – Mean normalized distances between learned RTGEMs with different complexities and their
corresponding references, in function of the sample size t∗

The main observations that can be made based on this plot is the common trend between all
graphs, from every complexity, to get closer to the reference model as the sample size increases.
Moreover, we can see that the more complex the reference model is the harder it is to learn
a model that is close to it (more data is needed). However, we can observe (mainly between
t∗ = 10000 and t∗ = 25000) some fluctuations that are due to the learning of inaccurate models.
We conjecture that this is happening when there is enough data to select an RTGEM that models
inaccurate behaviors, but still not enough data to learn the accurate dependencies. Some explana-
tions and more detailed experiments are given in [Ant20].

4.4.2 Statistical model checking RTGEM

We now move to an evaluation of the second step of Algorithm 1: verifying whether the fittest
model satisfies the given security property. Note that sampling performance is an important part
of SMC. In [Ant20], we discuss and evaluate an optimization of the sampling strategy that is
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A λA = 0.1
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Figure 4.8 – The RTGEM M1 on which we apply statistical model checking to verify the query ϕ1

used in the following experiments, which we call early stopping.
We start with the verification of a simple property in Example 15 by using a quantitative approach
(with Monte-Carlo simulations) and a qualitative approach using the Sequential Probability Ratio
Test (SPRT).

Example 15. Consider the graph of the RTGEM M1 in Figure 4.8 and the query ϕ1 =�100(B[0,5]),
meaning that event B must occur at least every 5 time units during a 100 time units period. We
want the model to satisfy the security property P(ϕ1 | M1) > 0.80. For the sake of coherence
we always use the name security query to refer to the linear property ϕ, and the name secu-
rity property for the qualitative inequality P(ϕ | M) > c with M the model and c a threshold
(c ∈ [0,1]).

The first experiments targets the quantitative approach based on Monte-Carlo simulations first
intoduced in Section 3.3.1. A precision (δ) and an error rate (ε) must be fixed beforehand. The
number of simulations (N) is also computed beforehand via the formula:

N =
ln(2)− ln(ε)

2δ2

This technique allows to compute an estimate p̂(ϕ1|M1) to P(ϕ1 |M1) with guaranteed precision.
Table 4.9 shows the results for this quantitative test. Unfortunately, to the best of our knowledge,
there are no exact techniques that are adapted to this kind of formalism in order to compute the
real probability P(ϕ1 |M1) and compare it with the obtained estimations.
Remark that although the property we are verifying is qualitative, it is also possible to apply
a quantitative approach, have a numerical estimate (with a certain precision) and afterwards
compare the estimate with the desired threshold.
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δ ε N Duration p̂(ϕ1|M1)

Test 1 0.02 0.01 6622 5 min 54 sec 0.9177 (> 0.80 property satisfied)
Test 2 0.008 0.005 46808 52 min 18 sec 0.92179 (> 0.80 property satisfied)
Test 3 0.005 0.003 130044 2 hr 8 min 0.92182 (> 0.80 property satisfied)

Table 4.9 – Results for quantitative statistical model checking of query ϕ1 on M1 with Monte-
Carlo simulations

The results for this approach confirm that, as expected, for a high precision (δ) and a low error
rate (ε) the number of simulations becomes high.

The second experiment targets the qualitative SPRT approach. In this context, we use a centered
indifference region of size δ, centered in 0.8 (the target value) and strength parameters (α,β)
(see Section 4.2.1). Contrary to the quantitative approach, the required number of simulations
is not fixed beforehand, but rather determined dynamically, depending on the outcome of each
simulation. This technique computes a decision about the security property P(ϕ1 | M1)> 0.8.
Table 4.10 shows the results for this qualitative test.

δ α β m Duration P(ϕ1 |M1)> 80%
Test 1 0.02 0.01 0.01 167 8.18 sec Property satisfied
Test 2 0.008 0.005 0.005 275 16.21 sec Property satisfied
Test 3 0.005 0.003 0.003 344 41.29 sec Property satisfied

Table 4.10 – Different results for qualitative statistical model checking of query ϕ1 on model M1
with Sequential Probability Ratio Test.

Remark that the comparison of the performance of the quantitative and qualitative approach
is situational 5. Their relative performance can vary depending on the model and the property,
although it is common knowledge that the qualitative approach is usually orders of magnitude
faster if the estimated probability is not too close to the fixed threshold. Since we do not know
beforehand whether this condition is satisfied, we will use both techniques in parallel in the
following experiments, allowing the quantitative technique to conclude when the qualitative
technique does not converge fast enough.

5. Further experiments can be found in [Ant20]
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4.4.3 Testing the proposed strategy

We now propose our main experiment, that applies our whole strategy (Algorithm 1 to three
different sets of synthetic data. We start with a description of the experimental context and then
present the results for each attempt.

Experimental protocol

The aim of this experiment is to perform a proof-of-concept for our proposed strategy (given
in Algorithm 1). We will therefore consider three cases: (1) when the learned model satisfies
the given security property (case OK), (2) when the learned model does not satisfy the security
property, but is close to satisfying it (case KO1), and (3) when the learned model is far from
satisfying the security property (case KO2).

Our pipeline is shown in Figure 4.11, where xxx ∈ {OK,KO1,KO2} and one can observe that
we follow the strategy proposed in Algorithm 1. In the OK case, we use data generated from an
RTGEM that satisfies the security property, while in KO1 and KO2, we use data generated from
models that do not satisfy the security property. The details of the models will be given further
on.

Remark. A part of our strategy relies on the exploration of the neighborhood of the fittest model
Mo. For this experiment, we have chosen a notion of neighborhood based on the number of
forward operators applied on an RTGEM. Moreover, we have chosen to perform a Random Walk
on this neighborhood. In other words, we apply a limited number of random forward operators
on the fittest model Mo in order to produce candidate models M∗. The maximum number of
forward operators varies for each case (irrelevant for (OK), 25 for (KO1) and 100 for (KO2))
and have been set according to preliminary experiments.

In order to optimize the exploration procedure, we do not choose randomly from the whole set of
possible operators, but rather from a subset of those operators that might have a more significant
impact on the satisfaction of the property. For the sake of completeness, if no model is found
when the whole subset of operators has been sampled, we extend our search to the remaining
ones. This strategy is discussed in further details in [Ant20].

Experimental results for the proposed strategy

The synthetic data sets used for learning the models contain event streams with labels "Lo-
gin", "Logout", "Check account", "Recharge" and "Transfer money". These sets were gen-
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Learn Model Mo
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from data

Model Mo
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Check ϕ on Mo
xxx

Is ϕ satisfied?Stop

Model space exploration
via Random Walk

Model M∗xxx
found?
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NO
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SHD∗(M∗xxx,M
o
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Figure 4.11 – An illustration of the experimental protocol that is conducted in this section

erated from RTGEMs having different structures and parameters describing different behav-
iors on a prepaid card online service. The security query that we use in this experiment is:
ϕ = �1000(Transfer Money⇒ Recharge(0,20]∨Check account(0,5]), i.e. each time a transfer is
performed, the user must have either recharged his/her account in the previous 20 time units, or
checked his/her balance in the previous 5 time units. We want the model to satisfy the security
property: P(ϕ |M)> 0.8.

For the experiments, the statistical model checking techniques that we use are the qualitative
Sequential Probability Ratio test and the quantitative estimation based on Monte-Carlo simula-
tions. These techniques are used in parallel as previously explained. The SMC algorithms are
calibrated as shown in Table 4.12. Remark that the maximum number of simulations that we do
(for each model) is determined by the number of simulations corresponding to the quantitative
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technique, in the case where SPRT does not converge faster to a result.

α β δ ε Number of simulations
SPRT 0.05 0.05 0.01 - Unknown beforehand

Monte-Carlo simulations - - 0.01 0.05 18444

Table 4.12 – Calibration of the SMC techniques for the following experiments

First case: (OK). In the first test, we run our algorithm on the corresponding set of data to
learn the model Mo

OK . The obtained model is shown in Figure 4.13. For the sake of simplicity we
do not represent the parameters of the label "Logout" for all of the remaining figures, since it is
not a target node with regards to ϕ.

Log inλLogin = 0.801 Recharge

λRecharge,0 = 0.19
λRecharge,1 = 0.807

Transfer
money

λTrans f er,00 = 0.058
λTrans f er,01 = 0.543
λTrans f er,10 = 0.614
λTrans f er,11 = 0.887

Log out

Check
account

λCheck,0 = 0.213
λCheck,1 = 0.81

(0,5.01]

(0
,5
.1]

(0
,4
.9

8]

(0,4.99]

(0,5.02]

(0,5
]

(0,5.02]

Figure 4.13 – A representation of the learned model Mo
OK from the set of "secure behavior" data

In Table 4.14, we show the obtained results after the completion of the first test. The formal
verification with SMC is repeated twenty times in order to establish mean values for the required

147



Chapter 4 – Learning and Verification of Graphical Event Models

duration and number of simulations before acquiring a result. We write t̂ for the mean duration
and m̂ for the mean number of simulations over twenty executions for all remaining tests.

P(ϕ |M)> 0.8 t̂ m̂
Mo

OK Property satisfied 5 sec (±0.43 sec) 277 simulations (±49 simulations)
M∗OK - - -

Table 4.14 – Results of the first test on Mo
OK

The learned model Mo
OK , that best represents the data, verifies the security property in this case.

Hence, no further exploration is made and the test stops.

Second test: (KO1). For the second test, we run our algorithm on the corresponding set of
data to learn the model Mo

KO1
. The obtained model is shown in Figure 4.15. The model Mo

KO1

does not satisfy the security property. Hence, the space exploration technique is repeated twenty
separate times in this test, in order to check whether every time we find a model that satisfies the
property. Similarly, we check whether it is the same proximal secure model that is found every
time or if there are different possible ones.

The space exploration is executed on the learned model Mo
KO1

and only one proximal secure
model (M∗KO1

) is found in its neighborhood (see Figure 4.16). As previously mentioned, we use
the Random Walk technique to explore the neighborhood of the learned model. The maximum
number of allowed modifications (chosen operators) in this test is set to 25. Remark that the
proximal secure model does not make sense w.r.t. the real-life application. Indeed, our aim is
only to find a mathematical object, a combination of parameters, that are close to the fittest model
Mo

KO1
and provide samples of behaviors which are "secure" with regards to the property.

In Table 4.17, we show some results of the algorithm for this test. We write ô for the average
number of applied modifications before finding a proximal secure model, τ̂ for the average
duration of the space exploration process (including the formal verification at each step), and
n for the number of distinct proximal secure models found. The success rate is the number of
times we found a proximal secure model over the total number of executed Random Walks. We
use the same notations for the remaining test.
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Figure 4.15 – A representation of the learned model
Mo

KO1
from the corresponding set of "not secure" data
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Figure 4.16 – A representation of the proximal model
M∗KO1

which satisfies security property in the neighbor-
hood of Mo

KO1

ô τ̂ n Success Rate SHD∗(M∗KO1
,Mo

KO1
)

Mo
KO1

12 operators (±2 operators) 13 min 52 sec (±30 sec) 1 20/20 1

Table 4.17 – Performances of the algorithm applied on the set of data KO1

The last results for this test are shown in Table 4.18 after the completion of the experiment. The
formal verification with SMC is repeated twenty times for both Mo

KO1
and M∗KO1

in order to
establish mean values for the required duration and number of simulations before converging on
a result. Note that the SMC was executed only one time for all the intermediate models obtained
at each step of the exploration process while constructing M∗KO1

.

P(ϕ |M)> 0.8 t̂ m̂
Mo

KO1
Property NOT satisfied 1 min 2 sec (±11 sec) 4018 simulations (±101 simulations)

M∗KO1
Property satisfied 2 min 17 sec (±25 sec) 5512 simulations (±122 simulations)

Table 4.18 – Results of the second test on Mo
KO1
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Third case: (KO2). For the third and final test, we run our algorithm on the corresponding set
of data to learn the model Mo

KO2
. The obtained model is shown in Figure 4.19. The model Mo

KO2

does not satisfy the security property. Hence, the space exploration technique is repeated twenty
separate times in order to check whether every time we find a model that satisfies the property.
Again, we check whether it is the same proximal secure model that is found every time or if
there are different possible ones.
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money
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Figure 4.19 – A representation of the learned model Mo
KO2

from the corresponding set of "not secure" data

The space exploration is executed on the learned model Mo
KO2

and two proximal secure models
(M∗KO21

and M∗KO22
) are found in its neighborhood (see Figures 4.20 and 4.21). The maximum

number of allowed modifications in the Random Walk (chosen operators) in this test is set to
100.

In Table 4.22, we show some results of the algorithm for this test. We use the same notations as
in the previous case. The last column shows the distances for the two proximal models M∗KO1

and M∗KO2
in this order. Notice that the success rate is not perfect in this case: three times out of

twenty we did not find a proximal secure model (failure rate of 3/20). The proximal secure model
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Log in
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Figure 4.20 – A representation of M∗KO21
which satis-

fies the security property in the neighborhood of Mo
KO2
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Figure 4.21 – A representation M∗KO22
which satisfies

the security property in the neighborhood of Mo
KO2

M∗KO21
(Figure 4.20) is found twelve times and the proximal secure model M∗KO22

(Figure 4.21)
is found five times.

ô τ̂ n Success Rate SHD∗(M∗KO2
,Mo

KO2
)

Mo
KO2

88 operators (±8 operators) 1 hr 15 min (±9 min) 2 17/20 3 3.333

Table 4.22 – Performances of the algorithm applied on the set of data KO2

The last results for this test are shown in Table 4.23. The formal verification with SMC is repeated
twenty times for Mo

KO2
and both M∗KO21

and M∗KO22
in order to establish mean values for the

required duration and number of simulations before acquiring a result. Note that also in this test,
the SMC was executed only one time for all the intermediate models obtained at each step of the
exploration process.

P(ϕ |M)> 0.8 t̂ m̂
Mo

KO2
Property NOT satisfied 3 min 22 sec (±11 sec) 2155 simulations (±69 simulations)

M∗KO21
Property satisfied 11 min 31 sec (±25 sec) 7512 simulations (±136 simulations)

M∗KO22
Property satisfied 7 min 19 sec (±25 sec) 4286 simulations (±114 simulations)

Table 4.23 – Results of the third test on Mo
KO2
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Discussion

These experiments have confirmed that our strategy for evaluating the security of a dataset w.r.t.
a given security property is usable in practice for models of a medium complexity. However, we
also remark from the performance evaluation on the KO2 case that this strategy might not scale
for models of a higher complexity.

Nevertheless, this experiment has allowed us to confirm that the main bottleneck of our strategy
is the verification of the intermediate models, in particular due to the complexity of sampling data
from RTGEMs. Indeed, we can see in Table 4.23 that the mean duration for verifying a secure
model representative of the given data is around 10 minutes. Since an average of 88 operators
were necessary to obtain the secure model, we can conclude that a consequent part of the total
time (1h 15min) has been dedicated to running SMC on intermediate models.

Moreover, the experiment also confirms our intuition that finding a secure proximal model and
computing the distance to the fittest model is more efficient when the input data corresponds
to a model that is closest to satisfying the security property. Indeed, we can see that the whole
procedure was performed in an average of 14 min in the KO1 case while it took an average
of 1h15min for the KO2 case. In order to verify that KO1 and KO2 correspond to our intuition
(i.e., KO1 closest to verifying P(ϕ | Mo

KO1
)> 0.8, we have applied quantitative statistical model

checking to the models used for generating both datasets. We obtained the following estimations:
p̂(ϕ |Mo

KO1
) = 0.728 and p̂(ϕ |Mo

KO2
) = 0.585.

Of course, the above observations have to be taken lightly as they only reflect a few experiments,
and would need a lot more for confirmation.

4.5 Conclusion

In this chapter, we have presented a strategy for measuring the security of a model observable
through a given set of data w.r.t. a security property. To do that, we have used the RTGEM
formalism along with a learning algorithm based on a forward and backward greedy search.
Our models have been verified against the property using SMC techniques, and we have used a
random walk technique to explore the neighbourhood of the learned model to find a secure one
when this was needed.

Besides the immediate benefits of being able to rate the dangerousness of a given set of data,
this work is, to the best of our knowledge, one of the first attempts at putting together learning
and formal verification techniques without using automata-based models as an in-between (as is
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done in [Leu06, Nei14]). This confirms that SMC is an appropriate verification technique even
in the context of data-driven systems, where automata-based modeling formalisms are often
inconvenient. This confirmation opens the way to many interesting perspectives, which we now
present.

4.6 Perspectives

The technique presented in this chapter is a first attempt at verifying systems based on a given
set of observations. It mainly serves as a proof of concept showing that SMC verification and
RTGEM-based learning can be combined toward this end. However, there are many ways in
which this technique can be improved, and many other domains to which it can be applied.

Potential improvements. We have observed that the bottleneck of our strategy is related to
RTGEM sampling during the verification phase. In particular, we have observed that an improve-
ment to sampling performance can be obtained by limiting the sampling to nodes related to the
property under investigation (see [Ant20] for details). We conjecture that other techniques could
be used to drastically enhance the sampling/verification performance such as taking advantage
of partial samples drawn from unmodified parts of a previous RTGEM while exploring its
neighborhood.

Similarly, we have chosen a random walk technique for exploring the neighborhood of the fittest
model. While this technique has been slightly optimized by starting the random search with a
reduced number of operators, we conjecture that one could take a better advantage of the given
property in order to produce heuristics that would considerably reduce the required number of
intermediate models that are verified before finding a secure proximal model.

Another potential improvement concerns the notion of distance between RTGEMS. Indeed, the
notion of distance we have defined, which allows us to quantify the security level of a model, is
not directly related to security. Although it provides a measure of how far a given set of data is
from a secure model, this measure highly depends on the data itself and the complexity of the
learned model. As a consequence, the absolute value obtained as an output for one set of data is
difficult to compare to the one obtained for a different set. In the future, we plan to investigate
other notions of distance that will allow us to compare the security levels obtained for different
sets of data.

Other application domains. The technique developped in this chapter could be applied to other
goals than security. In particular, RTGEM are a formalism that could be very useful in other
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scientific domains, such as oceanography. In the context of the TARA Ocean community, in
particular, a profusion of heterogenous timed data is collected and studied through statistical
analysis. Using graphical models such as RTGEMs to represent this data would be particularly
interesting as it would allow analyzing timing dependencies between the observed variables
(which is mostly not done today). Moreover, the performances observed during the experiments
performed in this chapter makes us confident that RTGEMs would be able to handle sufficiently
large datasets to be usable in this context.
While we observed that sampling of RTGEMs is hard, it is nothing compared to the sampling of
complex natural system models (e.g., ocean biogeochemical models [AÉT+15]). While some
scientists have proposed using neural networks to simulate the outputs of climate models with
high speed and precision [Hut20], the lack of understanding that still lies behind neural networks
is a problem. An intermediate solution would be to use graphical models such as RTGEMs,
which are well understood and give precise insight on the phenomena they represent, to enhance
the speed of complex models sampling while preserving understandability of the model itself.
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PERSPECTIVES

As can be seen from this document, my contributions in the past 10 years have followed two
(somewhat separate) main lines of work. On the theoretical side, I have developed and studied
modeling formalisms and verification techniques dedicated to the analysis of discrete and
continuous parametric probabilistic systems. On the practical side, I have developed statistical
methods and tools, and applied them to the learning and verification of complex systems.
Unfortunately, in most cases, the modeling formalisms we develop on the theoretical side are not
the ones we use on the practical side. Three main reasons stand out for this gap between theory
and practice:

• The verification methods developed in the context of abstract modeling formalisms such
as the ones presented in Chapters 1 and 2 are computationally expensive and often fail to
scale up to models of industrial-size.

• The act of modeling a complex system requires deep expertise both on the system itself
and on the chosen modeling formalism. Unfortunately, those who develop modeling
formalisms and analysis techniques (who we will call model developers) rarely possess
the domain expertise required to use these formalisms on concrete complex systems. On
the other hand, those who use models in practice (who we will call modeling practitioners)
rarely possess the theoretical expertise required to use abstract modeling formalisms.

• The existing barrier between natural/social sciences and formal sciences is such, that
modeling formalisms are often not perfectly tailored to the use of modeling practitioners,
and modeling practitioners are even rarely aware of the existence of such modeling
formalisms.

While theoretical advances on modeling formalisms and verification techniques are without
doubt important, I believe that the long-term aim of such research should be to provide better
tools for the analysis of concrete systems. In order to do that, researchers in formal sciences
need to make verification techniques more efficient and lessen the effort required from concrete
modeling practitioners for using our modeling formalisms. During the past years, numerous
interactions with Biologists and Oceanographers, in particular in the context of the Tara Ocean
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GO-SEE research federation 6, have allowed me to refine the following research axes, which I
believe could contribute to work toward this aim.

Enhancing parametric modeling and analysis for natural sciences

From the practical point of view, (parametric) statistical model checking stands out as a very
promising technique for analyzing complex natural models. One of the main advantages of
SMC in this context is the limited number of requirements on the chosen modeling formalism.
Indeed, as we have shown in [REG+20], SMC can be applied with very light adaptations to any
stochastic system modeled as a computer program, which is common in natural sciences. More
requirements are needed in the context of parametric SMC, but the prototype tool we presented
in [BAD+19] shows that Python programs where parameters are expressed in a certain form (i.e.,
inheriting from predefined Python classes) can also be analyzed. Again, this can be generalized
to other programming languages.

However, the types of parameters that can be taken into account in these models is not completely
satisfactory. Indeed, the parametric SMC theory we developed is based on parametric Markov
chains, where parameters can only range over transition probabilities. On the other hand, models
of natural systems are often based on sets of parameterized differential equations, where the nature
of the parameters is substantially different. Even when the differential equations are discretized,
translating the equation parameters into transition probabilities is not an easy task. This is
the main reason why [REG+20] is based on standard and not parametric SMC. Nevertheless,
the only requirements about the applicability of (parametric) SMC are that (1) the model is
executable, and (2) once the parameter values are fixed, the resulting model is purely stochastic.
These requirements are met by models consisting of sets of parameterized differential equations,
therefore there is no theoretical reason why (parametric) SMC methods could not be adapted to
this context. In order to do so, we need to study: (i) new modeling formalisms where differential
equation parameters can be taken into account as such, (ii) the form of the probability distribution
on their traces, and (iii) how the results presented in Chapter 3 can be adapted to this new context.

6. The Tara Ocean GO-SEE (Global Oceans Systems Ecology & Evolution) research federation regroups 22
french and international research teams. In particular, the following organisms are involved in this federation:
CNRS, CEA, Tara Ocean Foundation, Sorbonne Université, PSL, Inserm, ENS Paris, IRD, EPHE, Université
d’Évry-Val-d’Essonne, Université Paris-Saclay, UPVD, AMU, Université de Toulon, École centrale de Nantes,
Université de Nantes, UGA, EMBL and the Physics and Mathematics faculty of the University of Chile.
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Developing new efficient abstraction techniques

Another limitation of (parametric) SMC is the number of simulations that are required in
order to produce accurate results. Indeed, in the context of complex natural systems, producing
simulations of a complete model can be computationally expensive. While a sufficient reduction
of the number of required simulations is out of the picture 7, we believe that the solution lies
in the development of abstraction methods that will reduce the computational complexity of
performing simulations. Several such abstraction techniques can be envisioned. In particular,
we plan to pursue the work initiated during my thesis on stochastic abstraction [BBB+12],
a technique that allows to drastically reduce the size of the model in order to perform fast
simulations. While the technique shows promise, the difficulty in this context is to be able to
link the formal precision guaranteed by SMC algorithms with the loss of details resulting of
the abstraction. Another lead, promoted in recent works [Hut20] is to use AI techniques based
on neural networks in order to build a new model of the system whose outputs are statistically
equivalent to those of the original one but that is orders of magnitude faster to simulate. However,
the lack of understanding that still lies behind neural networks is a problem. Instead, we plan
on developing such abstraction techniques based on other graphical probabilistic models such
as the ones presented in Chapter 4, which yield more understandable models. Beyond that, we
will use our expertise on compositional interface theories [Del10, CDL+10, CDL+11, DFH+12,
DFLL13b, BDF+13, DKL+13, FLDL18] to study compositional versions of this technique,
where only parts of the model are abstracted, in the spirit of what we did with stochastic
abstraction [BBB+10a, BBB+12].

Building a verification platform for practitioners

The echos we have received from the Biological community for the results presented in [REG+20]
have convinced us of the interest that a tool for automatic analysis and parameterization of natural
systems expressed in standard programming languages would raise. Our intent in the near future
is therefore to automatize the processes we have followed in [REG+20] in order to adapt the
original model for SMC analysis and to build a platform that could be used by any modeling
practitioner interested in such analysis, without further requirements. Our intent, as we did for
the prototype tool presented in [BAD+19] is to propose two front-ends for this platform: one
dedicated to the formal analysis of parametric “computer-science” models (i.e., for the use of
formal science researchers) where state-of-the-art verification techniques can be implemented

7. There exist statistical techniques for reducing this number of simulations, but they are limited and their effect
is not sufficient compared to the computational complexity of producing a meaningful number of simulations.
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and tested; and the second one dedicated to the concrete analysis/verification of models of natural
systems (i.e., for the use of modeling practitioners). Besides the development of new verification
techniques, this platform raises many scientific and technical challenges on several topics such
as parallelization, interpretation and rendering of dynamic partial results during a potentially
very long verification, or visualization of meaningful information on high-dimensional sets of
parameters.

These research axes are and will be the topics for multidisciplinary research projects (including
Ph.D proposals) that will last several years and require support fundings. They are in line with
the future priority research plan Océans of the CNRS that is at the moment being refined in the
context of the corresponding Task Force (to which I participated).

158



BIBLIOGRAPHY

[A+15] Mohamed Abomhara et al. Cyber security and the internet of things: vulnerabilities,
threats, intruders and attacks. Journal of Cyber Security and Mobility, 4(1):65–88,
2015.

[ABH+10] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang, Farhad
Mehta, and Laurent Voisin. Rodin: an open toolset for modelling and reasoning in
Event-B. International journal on software tools for technology transfer, 12(6):447–
466, 2010.

[Abr05] Jean-Raymond Abrial. The B-Book: Assigning programs to meanings. Cambridge
University Press, 2005.

[Abr10] Jean-Raymond Abrial. Modeling in Event-B: system and software engineering.
Cambridge University Press, 2010.

[ACD90] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking for real-
time systems. In Annual Symposium on Logic in Computer Science, LICS, 1990,

Proceedings, pages 414–425. IEEE Computer Society, 1990.

[ACM03] Jean-Raymond Abrial, Dominique Cansell, and Dominique Méry. A mechanically
proved and incremental development of ieee 1394 tree identify protocol. Formal

aspects of computing, 14(3):215–227, 2003.

[AD16] Étienne André and Benoît Delahaye. Consistency in parametric interval probabilis-
tic timed automata. In International Symposium on Temporal Representation and

Reasoning, TIME 2016, Proceedings, pages 110–119. IEEE Computer Society,
2016.

[ADF20] Étienne André, Benoît Delahaye, and Paulin Fournier. Consistency in parametric
interval probabilistic timed automata. J. Log. Algebr. Meth. Program., 110, 2020.

[ADL17] Mohamed Amine Aouadhi, Benoît Delahaye, and Arnaud Lanoix. Moving from
Event-B to probabilistic Event-B. In Annual ACM Symposium on Applied Com-

puting, 2017, Proceedings. ACM, 2017.

159



[ADL19a] Dimitri Antakly, Benoît Delahaye, and Philippe Leray. Graphical event model
learning and verification for security assessment. In International Conference on

Industrial, Engineering and Other Applications of Applied Intelligent Systems,

IEA/AIE 2019, Proceedings, volume 11606 of LNCS, pages 245–252. Springer,
2019.

[ADL19b] Mohamed Amine Aouadhi, Benoît Delahaye, and Arnaud Lanoix. Introduc-
ing probabilistic reasoning within Event-B. Software and Systems Modeling,
18(3):1953–1984, 2019.

[AÉT+15] Olivier Aumont, Christian Éthé, Alessandro Tagliabue, Laurent Bopp, and Marion
Gehlen. Pisces-v2: An ocean biogeochemical model for carbon and ecosystem
studies. Geoscientific Model Development Discussions, 8(2), 2015.

[AGHH00] Ken Arnold, James Gosling, David Holmes, and David Holmes. The Java pro-

gramming language, volume 2. Addison-Wesley Reading, 2000.

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric real-time
reasoning. In ACM Symposium on Theory of Computing, 1993, Proceedings, pages
592–601, 1993.

[Ant20] Dimitri Antakly. Apprentissage et Vérification Statistique pour la sécurité. PhD
thesis, Université de Nantes, France, 2020.

[APM09] Philippe Audebaud and Christine Paulin-Mohring. Proofs of randomized algo-
rithms in coq. Science of Computer Programming, 74(8):568–589, 2009.

[Bac89] Ralph-JR Back. Refinement calculus, part II: Parallel and reactive programs.
In Workshop/School/Symposium of the REX Project (Research and Education in

Concurrent Systems), 1989, Proceedings, pages 67–93. Springer, 1989.

[BAD+19] Ran Bao, J. Christian Attiogbé, Benoît Delahaye, Paulin Fournier, and Didier
Lime. Parametric statistical model checking of UAV flight plan. In International

Conference on Formal Techniques for Distributed Objects, Components, and

Systems, FORTE 2019, volume 11535 of LNCS, pages 57–74. Springer, 2019.

[BBB+10a] Ananda Basu, Saddek Bensalem, Marius Bozga, Benoît Caillaud, Benoît Delahaye,
and Axel Legay. Statistical abstraction and model-checking of large heterogeneous

160



systems. In International Conference on Formal Techniques for Distributed Sys-

tems, FORTE, 2010, Proceedings, volume 6117 of LNCS, pages 32–46. Springer,
2010.

[BBB+10b] Ananda Basu, Saddek Bensalem, Marius Bozga, Benoît Delahaye, Axel Legay,
and Emmanuel Sifakis. Verification of an afdx infrastructure using simulations
and probabilities. In International Conference on Runtime Verification, RV 2010,

Proceedings, volume 6418 of LNCS, pages 330–344. Springer, 2010.

[BBB+12] Ananda Basu, Saddek Bensalem, Marius Bozga, Benoît Delahaye, and Axel
Legay. Statistical abstraction and model-checking of large heterogeneous systems.
International Journal on Software Tools for Technology Transfer, 14(1):53–72,
2012.

[BBD+12] Saddek Bensalem, Marius Bozga, Benoît Delahaye, Cyrille Jégourel, Axel Legay,
and Ayoub Nouri. Statistical model checking qos properties of systems with
sbip. In International Symposium on Leveraging Applications of Formal Methods,

Verification and Validation, ISoLA, Proceedings, volume 7609 of LNCS, pages
327–341. Springer, 2012.

[BBF+16] Pietro Belotti, Pierre Bonami, Matteo Fischetti, Andrea Lodi, Michele Monaci,
Amaya Nogales-Gómez, and Domenico Salvagnin. On handling indicator con-
straints in mixed integer programming. Computational Optimization and Applica-

tions, pages 1–22, 2016.

[BC00] Didier Bert and Francis Cave. Construction of finite labelled transistion systems
from B abstract systems. In International Conference on Integrated Formal

Methods, IFM 2000, Proceedings, volume 1945 of LNCS, pages 235–254. Springer,
2000.

[BDA95] Andrea Bianco and Luca De Alfaro. Model checking of probabilistic and non-
deterministic systems. In International Conference on Foundations of Software

Technology and Theoretical Computer Science, FSTTCS, 1995, Proceedings, pages
499–513. Springer, 1995.

[BDF+13] Nikola Benes, Benoît Delahaye, Uli Fahrenberg, Jan Kretínský, and Axel Legay.
Hennessy-milner logic with greatest fixed points as a complete behavioural speci-

161



fication theory. In International Conference on Concurrency Theory, CONCUR,

2013, Proceedings, volume 8052 of LNCS, pages 76–90. Springer, 2013.

[BDF+18] Anicet Bart, Benoît Delahaye, Paulin Fournier, Didier Lime, Eric Monfroy, and
Charlotte Truchet. Reachability in parametric interval markov chains using con-
straints. Theor. Comput. Sci., 747:48–74, 2018.

[BDL+17] Anicet Bart, Benoît Delahaye, Didier Lime, Eric Monfroy, and Charlotte Truchet.
Reachability in parametric interval Markov chains using constraints. In Inter-

national Conference on Quantitative Evaluation of Systems, 2017, Proceedings,
volume 10503 of LNCS, pages 173–189. Springer, 2017.

[BFG+14] Gilles Barthe, Cédric Fournet, Benjamin Grégoire, Pierre-Yves Strub, Nikhil
Swamy, and Santiago Zanella Béguelin. Probabilistic relational verification for
cryptographic implementations. In Suresh Jagannathan and Peter Sewell, editors,
Symposium on Principles of Programming Languages, POPL, 2014, Proceedings,
pages 193–206. ACM, 2014.

[BHP12] Benoît Barbot, Serge Haddad, and Claudine Picaronny. Coupling and importance
sampling for statistical model checking. In International Conference on Tools

and Algorithms for the Construction and Analysis of Systems, TACAS, 2012,

Proceedings, pages 331–346. Springer, 2012.

[bit] Bittorent description. http://www.bittorrent.com/lang/fr/.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,
2008.

[BLW13] Michael Benedikt, Rastislav Lenhardt, and James Worrell. LTL model checking
of interval Markov chains. In International Conference on Tools and Algorithms

for the Construction and Analysis of Systems, TACAS, 2013, Proceedings, volume
7795 of LNCS, pages 32–46. Springer, 2013.

[BM13] Michael J. Butler and Issam Maamria. Practical theory extension in event-b. In
Theories of Programming and Formal Methods, 2013, Proceedings, volume 8051
of LNCS, pages 67–81. Springer, 2013.

162

http://www.bittorrent.com/lang/fr/


[BMS16] Luca Bortolussi, Dimitrios Milios, and Guido Sanguinetti. Smoothed model check-
ing for uncertain continuous-time markov chains. Information and Computation,
247:235–253, 2016.

[BSST09] Clark W Barrett, Roberto Sebastiani, Sanjit A Seshia, and Cesare Tinelli. Satisfia-
bility modulo theories. Handbook of satisfiability, 185:825–885, 2009.

[BvW89] Ralph JR Back and Joakim von Wright. Refinement calculus, part I: Sequential
nondeterministic programs. In Workshop/School/Symposium of the REX Project

(Research and Education in Concurrent Systems), 1989, Proceedings, pages 42–66.
Springer, 1989.

[Can83] Georg Cantor. Überunendliche, lineare punktmannig faltigkeiten v [on infinite,
linear point-manifolds (sets)]. Math. Ann, 21:545–591, 1883.

[CDL+10] Benoît Caillaud, Benoît Delahaye, Kim G. Larsen, Axel Legay, Mikkel L. Peder-
sen, and Andrzej Wasowski. Compositional design methodology with constraint
markov chains. In International Conference on the Quantitative Evaluation of

Systems, QEST, 2010, Proceedings, pages 123–132. IEEE Computer Society, 2010.

[CDL+11] Benoît Caillaud, Benoît Delahaye, Kim G. Larsen, Axel Legay, Mikkel L. Ped-
ersen, and Andrzej Wasowski. Constraint markov chains. Theor. Comput. Sci.,
412(34):4373–4404, 2011.

[CHM97] David Maxwell Chickering, David Heckerman, and Christopher Meek. A bayesian
approach to learning bayesian networks with local structure. In International

Conference on Uncertainty in artificial intelligence, 1997, Proceedings, pages
80–89. Morgan Kaufmann Publishers Inc., 1997.

[CJGK+18] Edmund M Clarke Jr, Orna Grumberg, Daniel Kroening, Doron Peled, and Helmut
Veith. Model checking. MIT press, 2018.

[CK15] Souymodip Chakraborty and Joost-Pieter Katoen. Model checking of open interval
Markov chains. In International Conference on Analytical and Stochastic Mod-

elling Techniques and Applications, 2015, Proceedings, volume 9081 of LNCS,
pages 30–42. Springer, 2015.

163



[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to algorithms second edition. The Knuth-Morris-Pratt Algorithm,
2001.

[cpl10] IBM ILOG CPLEX Optimizer, Last 2010.

[CS88] Wesley W Chu and Chi-Man Sit. Estimating task response time with contentions
for real-time distributed systems. In Real-Time Systems Symposium, 1988, Pro-

ceedings., pages 272–281. IEEE Computer Society, 1988.

[CSH08] Krishnendu Chatterjee, Koushik Sen, and Thomas A. Henzinger. Model-checking
omega-regular properties of interval Markov chains. In International Confer-

ence on Foundations of Software Science and Computational Structures, 2008,

Proceedings, volume 4962 of LNCS, pages 302–317. Springer, 2008.

[DEB17] Benoît Delahaye, Damien Eveillard, and Nicholas Bouskill. On the power of uncer-
tainties in microbial system modeling: No need to hide them anymore. MSystems,
2(6):e00169–17, 2017.

[Del10] Benoît Delahaye. Modular Specification and Compositional Analysis of Stochas-

tic Systems. (Spécification Modulaire et Analyse Compositionnelle de Systèmes

Stochastiques). PhD thesis, Université de Rennes 1, France, 2010.

[Del15] Benoît Delahaye. Consistency for parametric interval Markov chains. In In-

ternational Workshop on Synthesis of Complex Parameters, 2015, Proceedings,
volume 44 of OASICS, pages 17–32. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2015.

[DFH+12] Benoît Delahaye, Uli Fahrenberg, Thomas A. Henzinger, Axel Legay, and Dejan
Nickovic. Synchronous interface theories and time triggered scheduling. In
International Conference on Formal Techniques for Distributed Systems, FORTE

2012, Proceedings, volume 7273 of LNCS, pages 203–218. Springer, 2012.

[DFL19] Benoît Delahaye, Paulin Fournier, and Didier Lime. Statistical model checking for
parameterized models. working paper or preprint, February 2019.

[DFLL13a] Benoît Delahaye, Uli Fahrenberg, Kim Guldstrand Larsen, and Axel Legay. Re-
finement and difference for probabilistic automata. In International Conference

164



on Quantitative Evaluation of Systems, QEST, 2013, Proceedings, volume 8054 of
LNCS, pages 22–38. Springer, 2013.

[DFLL13b] Benoît Delahaye, José Luiz Fiadeiro, Axel Legay, and Antónia Lopes. A timed
component algebra for services. In International Conference on Formal Techniques

for Distributed Systems, FORTE, 2013, Proceedings, volume 7892 of LNCS, pages
242–257. Springer, 2013.

[DFLL14a] Benoît Delahaye, Uli Fahrenberg, Kim G. Larsen, and Axel Legay. Refinement
and difference for probabilistic automata. Logical Methods in Computer Science,
10(3), 2014.

[DFLL14b] Benoît Delahaye, José Luiz Fiadeiro, Axel Legay, and Antónia Lopes. Hetero-
geneous timed machines. In International Colloquium on Theoretical Aspects of

Computing, ICTAC, 2014, Proceedings, volume 8687 of LNCS, pages 115–132.
Springer, 2014.

[DGVJ12] Christian Dehnert, Daniel Gebler, Michele Volpato, and David N. Jansen. On
abstraction of probabilistic systems. In International Autumn School on Rigorous

Dependability Analysis Using Model Checking Techniques for Stochastic Systems,

ROCKS, 2012, Advanced Lectures, volume 8453 of LNCS, pages 87–116. Springer,
2012.

[DJJ+15] Christian Dehnert, Sebastian Junges, Nils Jansen, Florian Corzilius, Matthias
Volk, Harold Bruintjes, Joost-Pieter Katoen, and Erika Ábrahám. PROPhESY: A
probabilistic parameter synthesis tool. In International Conference on Computer

Aided Verification, CAV, 2015, Proceedings, volume 9207 of LNCS, pages 214–231.
Springer, 2015.

[DJJL01] P. D’Argenio, B. Jeannet, H. Jensen, and K. Larsen. Reachability analysis of
probabilistic systems by successive refinements. In Joint International Work-

shop on Process Algebra and Probabilistic Methods, Performance Modeling and

Verification, 2001, Proceedings, volume 2165 of LNCS, pages 39–56. Springer,
2001.

[DJKV17] Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk.
A storm is coming: A modern probabilistic model checker. In International

165



Conference on Computer Aided Verification, CAV, 2017, Proceedings, pages 592–
600. Springer, 2017.

[DKL+11a] Benoît Delahaye, Joost-Pieter Katoen, Kim G. Larsen, Axel Legay, Mikkel L.
Pedersen, Falak Sher, and Andrzej Wasowski. Abstract probabilistic automata.
In International Conference on Verification, Model Checking, and Abstract In-

terpretation, VMCAI, 2011, Proceedings, volume 6538 of LNCS, pages 324–339.
Springer, 2011.

[DKL+11b] Benoît Delahaye, Joost-Pieter Katoen, Kim G. Larsen, Axel Legay, Mikkel L.
Pedersen, Falak Sher, and Andrzej Wasowski. New results on abstract probabilistic
automata. In International Conference on Application of Concurrency to System

Design, ACSD, 2011, Proceedings, pages 118–127. IEEE Computer Society, 2011.

[DKL+13] Benoît Delahaye, Joost-Pieter Katoen, Kim G. Larsen, Axel Legay, Mikkel L.
Pedersen, Falak Sher, and Andrzej Wasowski. Abstract probabilistic automata. Inf.

Comput., 232:66–116, 2013.

[DLL+11a] Benoît Delahaye, Kim G. Larsen, Axel Legay, Mikkel L. Pedersen, and Andrzej
Wasowski. Apac: A tool for reasoning about abstract probabilistic automata. In
International Conference on Quantitative Evaluation of Systems, QEST 2011,

Proceedings, pages 151–152. IEEE Computer Society, 2011.

[DLL+11b] Benoît Delahaye, Kim G. Larsen, Axel Legay, Mikkel L. Pedersen, and An-
drzej Wasowski. Decision problems for interval markov chains. In International

Conference on Language and Automata Theory and Applications, LATA, 2011,

Proceedings, volume 6638 of LNCS, pages 274–285. Springer, 2011.

[DLL+12a] Benoît Delahaye, Kim G. Larsen, Axel Legay, Mikkel L. Pedersen, and Andrzej
Wasowski. Consistency and refinement for interval Markov chains. J. Log. Algebr.

Program., 81(3):209–226, 2012.

[DLL+12b] Benoît Delahaye, Kim G. Larsen, Axel Legay, Mikkel L. Pedersen, and Andrzej
Wasowski. New results for constraint markov chains. Perform. Eval., 69(7-8):379–
401, 2012.

[DLL13] Benoît Delahaye, Kim G. Larsen, and Axel Legay. Stuttering for abstract proba-
bilistic automata. In Logical Foundations of Computer Science, volume 7734 of
LNCS, pages 149–163. Springer, 2013.

166



[DLL14] Benoît Delahaye, Kim G. Larsen, and Axel Legay. Stuttering for abstract proba-
bilistic automata. J. Log. Algebr. Program., 83(1):1–19, 2014.

[DLP16] Benoît Delahaye, Didier Lime, and Laure Petrucci. Parameter synthesis for
parametric interval Markov chains. In International Conference on Verification,

Model Checking, and Abstract Interpretation, 2016, Proceedings, volume 9583 of
LNCS, pages 372–390. Springer, 2016.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Interna-

tional conference on Tools and Algorithms for the Construction and Analysis of

Systems, LNCS, pages 337–340. Springer, 2008.

[DREB98] Willem-Paul De Roever, Kai Engelhardt, and Karl-Heinz Buth. Data refinement:

model-oriented proof methods and their comparison, volume 47. Cambridge
University Press, 1998.

[DVJ07] Daryl J. Daley and David Vere-Jones. An introduction to the theory of point

processes: volume II: general theory and structure. Springer Science & Business
Media, 2007.

[EDLR16] Yrvann Emzivat, Benoît Delahaye, Didier Lime, and Olivier H. Roux. Probabilistic
time petri nets. In International Conference on Application and Theory of Petri

Nets and Concurrency, PETRI NETS, 2016, Proceedings, volume 9698 of LNCS,
pages 261–280. Springer, 2016.

[Esp94] Javier Esparza. On the decidability of model checking for several µ-calculi and petri
nets. In Colloquium on Trees in Algebra and Programming, 1994, Proceedings,
pages 115–129. Springer, 1994.

[Fit12] Melvin Fitting. First-order logic and automated theorem proving. Springer Science
& Business Media, 2012.

[FLDL18] José Luiz Fiadeiro, Antónia Lopes, Benoît Delahaye, and Axel Legay. Dynamic
networks of heterogeneous timed machines. Math. Struct. Comput. Sci., 28(6):800–
855, 2018.

[GM16] Asela Gunawardana and Christopher Meek. Universal models of multivariate
temporal point processes. In International Conference on Artificial Intelligence

and Statistics, 2016, Proceedings, pages 556–563, 2016.

167



[GMX11] Asela Gunawardana, Christopher Meek, and Puyang Xu. A model for temporal
dependencies in event streams. In Advances in Neural Information Processing

Systems, 2011, Proceedings, pages 1962–1970, 2011.

[Gol98] Oded Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandom-

ness, volume 17 of Algorithms and Combinatorics. Springer, 1998.

[HA12] Hassan Haghighi and Mahsa Afshar. A z-based formalism to specify markov
chains. Computer Science and Engineering, 2(3):24–31, 2012.

[Hai73] Frank A. Haight. Handbook of the Poisson Distribution. New York: Wiley, 1973.

[Ham50] Richard W Hamming. Error detecting and error correcting codes. Bell System

technical journal, 29(2):147–160, 1950.

[HDR10] Dirk Husmeier, Richard Dybowski, and Stephen Roberts. Probabilistic Modeling

in Bioinformatics and Medical Informatics. Springer, 2010.

[HH07] Stefan Hallerstede and Thai Son Hoang. Qualitative probabilistic modelling in
Event-B. In Integrated Formal Methods, 2007, Proceedings, pages 293–312.
Springer, 2007.

[HHS86] Jifeng He, C. A. R. Hoare, and Jeff W. Sanders. Data refinement refined. In
European Symposium on Programming, ESOP, 1986, Proceedings, volume 213 of
LNCS, pages 187–196. Springer, 1986.

[HHWZ10] Ernst Moritz Hahn, Holger Hermanns, Björn Wachter, and Lijun Zhang. PARAM:
A model checker for parametric Markov models. In International Conference on

Computer Aided Verification, CAV, 2010, Proceedings, volume 6174 of LNCS,
pages 660–664. Springer, 2010.

[HMM05] Joe Hurd, Annabelle McIver, and Carroll Morgan. Probabilistic guarded commands
mechanized in hol. Electronic Notes in Theoretical Computer Science, 112:95–111,
2005.

[HMU01] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to automata
theory, languages, and computation. ACM Sigact News, 32(1):60–65, 2001.

168



[HMZ+12] David Henriques, João Martins, Paolo Zuliani, André Platzer, and Edmund M.
Clarke. Statistical model checking for markov decision processes. In International

Conference on Quantitative Evaluation of Systems, QEST, 2012, Proceedings,
pages 84–93. IEEE Computer Society, 2012.

[Hoa05] Thai Son Hoang. The development of a probabilistic B-method and a supporting

toolkit. PhD thesis, The University of New South Wales, 2005.

[Hoa14] Thai Son Hoang. Reasoning about almost-certain convergence properties using
Event-B. Science of Computer Programming, 81:108–121, 2014.

[Hur03] Joe Hurd. Formal verification of probabilistic algorithms. PhD thesis, University
of Cambridge, Computer Laboratory, 2003.

[Hut20] M Hutson. Ai shortcuts speed up simulations by billions of times. Science,
367(6479):728, 2020.

[JL91] Bengt Jonsson and Kim Guldstrand Larsen. Specification and refinement of
probabilistic processes. In Symposium on Logic in Computer Science, LICS, 1991,

Proceedings, pages 266–277. IEEE Computer Society, 1991.

[JLS12] Cyrille Jegourel, Axel Legay, and Sean Sedwards. Cross-entropy optimisation of
importance sampling parameters for statistical model checking. In International

Conference on Computer Aided Verification, CAV, 2012, Proceedings, pages 327–
342. Springer, 2012.

[KA98] Nagendra Kumar and Andreas G. Andreou. Heteroscedastic discriminant analysis
and reduced rank hmms for improved speech recognition. Speech communication,
26(4):283–297, 1998.

[Kat07] Joost-Pieter Katoen. Abstraction of probabilistic systems. In International Con-

ference on Formal Modeling and Analysis of Timed Systems, FORMATS, 2007,

Proceedings, volume 4763 of LNCS, pages 1–3. Springer, 2007.

[KNP09] M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic Model Check-
ing for Performance and Reliability Analysis. ACM SIGMETRICS Performance

Evaluation Review, 36(4):40–45, 2009.

169



[KNP11] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilis-
tic real-time systems. In International Conference on Computer Aided Verification,

CAV, 2011, Proceedings, volume 6806 of LNCS, pages 585–591. Springer, 2011.

[KNP12] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic verification of herman’s
self-stabilisation algorithm. Formal Aspects of Computing, 24(4):661–670, 2012.

[KR+88] Brian W Kernighan, Dennis M Ritchie, et al. The C programming language,
volume 2. prentice-Hall Englewood Cliffs, NJ, 1988.

[LDB10] Axel Legay, Benoît Delahaye, and Saddek Bensalem. Statistical model checking:
An overview. In International Conference on Runtime Verification, RV, 2010,

Proceedings, volume 6418 of LNCS, pages 122–135. Springer, 2010.

[Leu06] Martin Leucker. Learning meets verification. In International Symposium on

Formal Methods for Components and Objects, FMCO, 2006, Proceedings, pages
127–151. Springer, 2006.

[MHA05] Carroll Morgan, Thai Son Hoang, and Jean-Raymond Abrial. The challenge of
probabilistic event b—extended abstract—. In Formal Specification and Develop-

ment in Z and B, ZB, 2005, Proceedings, pages 162–171. Springer, 2005.

[MHA07] Richard Mayr, Noomene Ben Henda, and Parosh Aziz Abdulla. Decisive markov
chains. Logical Methods in Computer Science, 3, 2007.

[Mil99] Robin Milner. Communicating and mobile systems: the pi calculus. Cambridge
university press, 1999.

[MM06] Annabelle McIver and Charles Carroll Morgan. Abstraction, refinement and proof

for probabilistic systems. Springer Science & Business Media, 2006.

[MR02] Kevin P. Murphy and Stuart Russell. Dynamic bayesian networks: representation,
inference and learning. University of California, Berkeley, 2002.

[MR10] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Chapman &
Hall/CRC, 2010.

[MSB11] Glenford J Myers, Corey Sandler, and Tom Badgett. The art of software testing.
John Wiley & Sons, 2011.

170



[NBB+15] Ayoub Nouri, Saddek Bensalem, Marius Bozga, Benoît Delahaye, Cyrille Jégourel,
and Axel Legay. Statistical model checking qos properties of systems with SBIP.
International Journal on Software Tools for Technology Transfer, 17(2):171–185,
2015.

[Nei14] Daniel Neider. Applications of automata learning in verification and synthe-

sis. PhD thesis, Hochschulbibliothek der Rheinisch-Westfälischen Technischen
Hochschule Aachen, 2014.

[NPKS05] G. Norman, D. Parker, M. Kwiatkowska, and S. Shukla. Evaluating the reliability
of NAND multiplexing with PRISM. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 24(10):1629–1637, 2005.

[NS06] G. Norman and V. Shmatikov. Analysis of probabilistic contract signing. Journal

of Computer Security, 14(6):561–589, 2006.

[NSK02] Uri Nodelman, Christian R. Shelton, and Daphne Koller. Continuous time Bayesian
networks. In Proceedings of the Eighteenth conference on Uncertainty in artificial

intelligence, pages 378–387. Morgan Kaufmann Publishers Inc., 2002.

[PLSVS13] Alberto Puggelli, Wenchao Li, Alberto L. Sangiovanni-Vincentelli, and Sanjit A.
Seshia. Polynomial-time verification of pctl properties of mdps with convex
uncertainties. In International Conference on Computer Aided Verification, CAV,

2013, Proceedings, volume 8044 of LNCS, pages 527–542. Springer, 2013.

[pri] Prism modelchecker description. http://www.prismmodelchecker.org/.

[Put14] Martin L Puterman. Markov decision processes: discrete stochastic dynamic

programming. John Wiley & Sons, 2014.

[RBW06] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint

Programming (Foundations of Artificial Intelligence). Elsevier, 2006.

[REG+20] Simon Ramondenc, Damien Eveillard, Lionel Guidi, Fabien Lombard, and Benoît
Delahaye. Probabilistic modeling to estimate jellyfish ecophysiological properties
and size distributions. Scientific Reports, 10, 2020.

[RGH05] Shyamsundar Rajaram, Thore Graepel, and Ralf Herbrich. Poisson-networks:
A model for structured point processes. In International Workshop on artificial

intelligence and statistics, 2005, Proceedings, pages 277–284, 2005.

171

http://www.prismmodelchecker.org/


[RK16] Reuven Y Rubinstein and Dirk P Kroese. Simulation and the Monte Carlo method,
volume 10. John Wiley & Sons, 2016.

[Ros09] Sheldon M. Ross. A First Course In Probability. Pearson, 2009.

[RR98] Michael K Reiter and Aviel D Rubin. Crowds: Anonymity for web transactions.
ACM transactions on information and system security (TISSEC), 1(1):66–92, 1998.

[RT13] Vinayak Rao and Yee Whye Teh. Fast MCMC sampling for Markov jump processes
and extensions. The Journal of Machine Learning Research, 14(1):3295–3320,
2013.

[RV98] Didier Rémy and Jérôme Vouillon. Objective ml: An effective object-oriented
extension to ml. Theory and Practice of Object Systems, 4(1):27–50, 1998.

[RVVDA08] Anne Rozinat, Manuela Veloso, and Wil M.P. Van Der Aalst. Using hidden markov
models to evaluate the quality of discovered process models. Extended Version.

BPM Center Report BPM-08-10, 161:178–182, 2008.

[S+78] Gideon Schwarz et al. Estimating the dimension of a model. The annals of

statistics, 6(2):461–464, 1978.

[S+99] Michel F Sanner et al. Python: a programming language for software integration
and development. J. Mol. Graph Model, 17(1):57–61, 1999.

[Shm04] V. Shmatikov. Probabilistic model checking of an anonymity system. Journal of

Computer Security, 12(3/4):355–377, 2004.

[Spi88] J Michael Spivey. Understanding Z: a specification language and its formal

semantics, volume 3. Cambridge University Press, 1988.

[ST96] Kaisa Sere and Elena Troubitsyna. Probabilities in action systems. In Nordic

Workshop on Programming Theory, NWPT, 1996, Proceedings, pages 373–387,
1996.

[Sto02] Mariëlle Stoelinga. An introduction to probabilistic automata. Bulletin of the

EATCS, 78(176-198):2, 2002.

[SVA04] Koushik Sen, Mahesh Viswanathan, and Gul Agha. Statistical model checking of
black-box probabilistic systems. In International Conference on Computer Aided

Verification, CAV, 2004, Proceedings, pages 202–215. Springer, 2004.

172



[SVA06] Koushik Sen, Mahesh Viswanathan, and Gul Agha. Model-checking Markov
chains in the presence of uncertainties. In International Conference on Tools

and Algorithms for the Construction and Analysis of Systems, TACAS, 2006,

Proceedings, volume 3920 of LNCS, pages 394–410. Springer, 2006.

[TBA06] Ioannis Tsamardinos, Laura E. Brown, and Constantin F. Aliferis. The max-min
hill-climbing bayesian network structure learning algorithm. Machine learning,
65(1):31–78, 2006.

[TEF+05] Wilson Truccolo, Uri T Eden, Matthew R Fellows, John P Donoghue, and Emery N
Brown. A point process framework for relating neural spiking activity to spiking
history, neural ensemble, and extrinsic covariate effects. Journal of neurophysiol-

ogy, 93(2):1074–1089, 2005.

[TRF03] Kishor S Trivedi, Srinivasan Ramani, and Ricardo Fricks. Recent advances in
modeling response-time distributions in real-time systems. Proceedings of the

IEEE, 91(7):1023–1037, 2003.

[TTL09] Anton Tarasyuk, Elena Troubitsyna, and Linas Laibinis. Reliability assessment in
Event-B development. NODES, page 11, 2009.

[TTL10] Anton Tarasyuk, Elena Troubitsyna, and Linas Laibinis. Towards probabilistic
modelling in Event-B. In Integrated Formal Methods, IFM, 2010, Proceedings,
pages 275–289. Springer, 2010.

[TTL15] Anton Tarasyuk, Elena Troubitsyna, and Linas Laibinis. Integrating stochastic
reasoning into Event-B development. Formal Aspects of Computing, 27(1):53–77,
2015.

[VDA14] W. Van Der Aalst. Process Mining: Discovery, Conformance and Enhancement of

Business Processes. Springer, 2014.

[Vie15] Juan Pablo Vielma. Mixed integer linear programming formulation techniques.
SIAM Review, 57(1):3–57, 2015.

[Vil92] Alain Villemeur. Reliability, Availability, Maintainability and Safety Assessment,

Assessment, Hardware, Software and Human Factors, volume 2. Wiley, 1992.

173



[VM98] Christian Vogler and Dimitris Metaxas. Asl recognition based on a coupling
between hmms and 3d motion analysis. In International Conference on Computer

Vision, 1998, Proceedings, pages 363–369. IEEE Computer Society, 1998.

[Wal45] Abraham Wald. Sequential tests of statistical hypotheses. The annals of mathe-

matical statistics, 16(2):117–186, 1945.

[WHA+16] Jacob Wurm, Khoa Hoang, Orlando Arias, Ahmad-Reza Sadeghi, and Yier Jin.
Security analysis on consumer and industrial iot devices. In Asia and South Pacific

Design Automation Conference, ASP-DAC, 2016, Proceedings, pages 519–524.
IEEE Computer Society, 2016.

[WP13] Jeremy C Weiss and David Page. Forest-based point process for event prediction
from electronic health records. In Joint European Conference on Machine Learning

and Knowledge Discovery in Databases, 2013, Proceedings, pages 547–562.
Springer, 2013.

[WT94] James A Whittaker and Michael G Thomason. A Markov chain model for statistical
software testing. IEEE Transactions on Software engineering, 20(10):812–824,
1994.

[WTO+11] Tichakorn Wongpiromsarn, Ufuk Topcu, Necmiye Ozay, Huan Xu, and Richard M
Murray. Tulip: A software toolbox for receding horizon temporal logic planning.
In ACM International Conference on Hybrid Systems: Computation and Control,

2011, Proceedings, pages 313–314. ACM, 2011.

[Yil10] Emre Yilmaz. Tool support for qualitative reasoning in Event-B. PhD thesis,
Master Thesis ETH Zürich, 2010, 2010.

[You05] Hakan L Younes. Verification and planning for stochastic processes with asyn-
chronous events. Technical report, Carnegie-Mellon Univ Pittsburgh PA School of
Computer Science, 2005.

174



APPENDIX A

RÉSUMÉ EN FRANÇAIS

Le but des sciences en général est d’étudier le fonctionnement de systèmes complexes afin de
mieux les comprendre et, éventuellement, de pouvoir prédire leur comportement futur. Une
part importante de cette étude est la réalisation d’un modèle, objet abstrait qui représente
fidèlement les connaissances existantes à propos du système, et qui pourra alors être étudié et
simulé à la place du système lui-même. Malheureusement, il est fréquent que les connaissances
existantes à propos des systèmes soient incomplètes ou sujettes à incertitudes. Il est alors
important d’inclure ces incertitudes à l’intérieur des modèles et de développer des techniques afin
d’automatiser l’analyse de ces modèles. Ce document présente quatre contributions au domaine
de la modélisation et de l’analyse de tels systèmes.

La première contribution, d’orientation plutôt théorique, présente une extension de la théorie
des chaînes de Markov à intervalles dans le domaine paramétrique. Les chaînes de Markov à
intervalles (IMC) sont un formalisme de modélisation pour les systèmes probabilistes discrets
permettant de représenter une infinité de systèmes avec un objet abstrait fini. Dans une IMC, les
probabilités de transition entre états sont abstraites par des intervalles à bornes constantes perme-
ttant de spécifier l’ensemble des probabilités pouvant être associées à ces transitions dans les
systèmes concrets. Dans les chaînes de Markov paramétriques (pIMC), les bornes des intervalles
ne sont plus nécessairement constantes mais peuvent prendre la forme de fonctions rationnelles
d’un ensemble de paramètres. Dans ce cadre, nous étudions les différentes sémantiques pouvant
être associées aux pIMC, et étudions en particulier le problème de la cohérence, i.e., le fait qu’un
pIMC donné représente bien un ensemble non vide de systèmes concrets. Nous prouvons dans
un premier temps que ce problème est indépendant de la sémantique utilisée, puis proposons
une méthode de résolution à base de contraintes. Finalement, nous considérons et solvons des
problèmes plus complexes tels que l’accessibilité existentielle et universelle.

La deuxième contribution, d’orientation plutôt théorique elle aussi, concerne l’extension d’un
formalisme de modélisation et de preuve de systèmes à évènements discrets : le B évènementiel.
Jusqu’alors, le B évènementiel ne permettait d’introduire la notion de choix dans les systèmes
qu’en utilisant le non-déterminisme. Notre contribution étend ce formalisme pour permettre de
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prendre en compte, en plus du non-déterminisme, les choix probabilistes. Contrairement aux
travaux existants, dans lesquels des choix probabilistes pouvaient uniquement être introduits au
travers des affectations de variables, notre contribution permet d’introduire ces choix probabilistes
à la place de n’importe quel choix non-déterministe présent dans le système (par exemple, en plus
des affectations probabilistes, dans le choix entre les évènements ou encore dans la définition des
paramètres). De plus, notre théorie autorise l’introduction de ces choix probabilistes à n’importe
quelle étape du raffinement du système et s’intègre avec la théorie de preuves associée au B
évènementiel. Nous introduisons ainsi la notion de raffinement probabiliste et proposons une
étude de la notion de convergence presque certaine dans ce cadre.
La troisième contribution, d’orientation plus pratique, concerne la vérification de modèles ex-
primés dans le formalisme des chaînes de Markov à paramétrées (pMC). Pour cette contribution,
nous partons de l’observation que la plupart des méthodes de vérification pour les pMC sont
complexes et ne passent pas à l’échelle. C’est aussi le cas pour des formalismes de modélisation
moins abstraits, tels que les chaînes de Markov (MC), mais il existe dans ce cas une technique
statistique formelle permettant d’estimer la probabilité avec laquelle une MC satisfait une pro-
priété donnée de manière très efficace. Cette technique, la vérification de modèle statistique,
était jusqu’ici limitée aux modèles purement probabilistes et ne pouvait donc s’appliquer dans le
cadre des pMC. Dans notre contribution, nous étendons la vérification de modèle statistique au
cadre des pMC en s’inspirant de techniques statistiques telles que l’échantillonnage préférentiel.
Nous présentons de plus un prototype d’outil, développé pour l’occasion, qui fait la preuve de
concept que cette nouvelle technique est bien applicable en pratique et possède des propriétés
intéressantes en termes de performances. Afin de montrer que notre technique passe à l’échelle,
nous l’appliquons à un cas d’étude industriel : l’analyse du plan de vol d’un drone civil.
Finalement, la dernière contribution, d’orientation plutôt pratique elle aussi, s’attaque au prob-
lème de la modélisation automatisée. En effet le processus d’écriture d’un modèle est souvent
fastidieux et requiert de l’expertise humaine. Dans cette contribution, notre but est le développe-
ment de techniques automatiques permettant de créer un modèle reproduisant les caractéristiques
statistiques d’un ensemble de données. Nous présentons ainsi des techniques d’apprentissage
reposant sur un formalisme de modélisation à temps continu : les “Recursive Timescale Graphi-
cal Event Models” (RTGEM). Dans ce contexte, nous proposons un algorithme permettant de
générer automatiquement un modèle représentant le plus fidèlement possible les données en
entrée tout en satisfaisant un ensemble de propriétés de sécurité fixées. La comparaison de ce
modèle avec le modèle le plus représentatif des données permet ainsi d’évaluer, de manière
automatique, le degré de sécurité associé aux données en entrée.
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APPENDIX B

MAIN DEFINITIONS AND NOTATIONS

This appendix gathers the main notations and definitions introduced in the chapters of this
document. It is aimed to be detached from the manuscript so the reader can use it while
reading the main part of the document.

Due to the different topics treated in each chapter, remark that the definitions of some
objects (Markov chains for instance) may slightly differ from one chapter to another.

Chapter 1: Parametric Interval Markov Chains

Variables, numbers and associated notions

• X = {x1, . . . ,xk } is a set of variables and Dx,DX are their associated domains/set of
domains.

• A rational function f over X is a division of two (multivariate) polynomials g1 and
g2 over X with rational coefficients, i.e., f = g1/g2.

• Q is the set of rational numbers and QX is the set of rational functions over X .

• A valuation v over X is a set v = {(x,d) | x ∈ X ,d ∈ Dx } of elementary valuations.
Valuations are extended to polynomials and rational functions.

• If S is a finite (or discrete) set, we write Dist(S) for the set of probability distributions

over S, i.e., the set of functions µ : S→ [0,1] such that ∑s∈S µ(s) = 1.

• I is the set containing all interval subsets of [0,1].

• A is a set of atomic propositions (state labels), written in Greek alphabet.

Constraints

• An atomic constraint over X is a Boolean expression of the form f (X) ./ g(X), with
./ ∈ {≤,≥,<,>,=} and f and g two functions over variables in X . A constraint

over X is a Boolean combination of atomic constraints over X .

Definition 1 (Constraint Satisfaction Problem - see p.27). A Constraint Satisfaction
Problem (CSP) is a tuple Ω = (X ,D,C) where X is a finite set of variables, D = DX is the

set of all domains associated to the variables from X, and C is a set of constraints over X.
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Markov chains and associated notions

Definition 2 (Markov Chain - see p.27). A Discrete Time Markov Chain (MC for short)

is a tuple M = (S,s0, p,L), where S is a finite set of states containing the initial state s0,

L : S→ 2A is a labelling function, and p : S×S→ [0,1] is a probabilistic transition function

such that for all s ∈ S, the function p(s, .) is a distribution (i.e., s′ 7→ p(s,s′) ∈ Dist(S)).

• Given a state s ∈ S, L(s) is called the label of s.

• MC is the set containing all discrete time Markov chains.

• A run of M is a sequence w = s1,s2, . . . with p(si,si+1)> 0, for all i.

Definition 3 (Probabilistic Bisimulation - see p.28). Let M = (S,s0, p,L) be a Markov

chain. A probabilistic bisimulation on M is an equivalence relation R on S such that for

all pair of states (s1,s2) ∈ R , we have

– L(s1) = L(s2), and

– p(s1,T ) = p(s2,T ) for each equivalence class T ∈ S/R .

M1 and M2 are bisimilar if and only if there exists a probabilistic bisimulation R on

M1∪M2 with (s1
0,s

2
0) ∈ R .

• Given a Markov chain M , the probability of a finite sequence of states w =

s0,s1, . . . ,sn, written PM (w) is the product of the probabilities of the transitions tran-
sitions involved in this sequence, i.e., PM (w) = p(s0,s1) · p(s1,s2) · . . . · p(sn−1,sn).

• reachs0(s) = {w ∈ S∗ | w = s0, . . .sn with sn = s and si 6= s ∀0≤ i < n} is the set of
runs starting in s0 and ending in s (without going through s before the end).

• PM (♦s) = ∑w∈reachs0(s)
PM (w) is the overall probability of reaching state s in M

(if s 6= s0). This notation is extended to the probability of reaching a given state label
or a given atomic proposition (see p.29).

Markov chain abstractions

Definition 4 (Abstraction Model - see p.29). A Markov chain abstraction model (an

abstraction model for short) is a pair (L, |=) where L is a nonempty set of models and |= is

a relation between MC and L. Let P be in L and M be in MC. We say that M implements P
if and only if (M ,P ) belongs to |= (i.e., M |= P ).

Parametric Markov chains

Definition 5 (Parametric Markov Chain - see p.30). A Parametric Markov Chain (pMC
for short) is a tuple I = (S,s0,P,L,X) where S, s0, and L are defined as for MCs, X is a

set of variables (parameters) ranging over [0,1], and P : S×S→QX associates with each

potential transition a parameterized probability.
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• pMC is the set containing all parametric Markov chains.

• The satisfaction relation |=p between MC and pMC is defined by M |=p I if and only
if S = S′, s0 = s′0, L = L′, and there exists a valuation v of X such that p(s,s′) equals
v(P(s,s′)) for all s,s′ in S.

Interval Markov chains

Definition 6 (Interval Markov Chain - see p.31). An Interval Markov Chain (IMC
for short) is a tuple I = (S,s0,P,L), where S, s0, and L are defined as for MCs, and

P : S×S→ I associates with each potential transition an interval of probabilities.

Definition 7 (Once-and-for-all Semantics - see p.31). A MC M = (T, t0, p,LM) satisfies

an IMC I = (S,s0,P,LI) with the once-and-for-all semantics, written M |=o
I I , if and

only if (T, t0,LM) = (S,s0,LI) and for all reachable states s in M and all state s′ ∈ S,

p(s,s′) ∈ P(s,s′).

Definition 8 (IMDP Semantics - see p.31). A MC M = (T, t0, p,LM) satisfies an IMC
I = (S,s0,P,LI) with the IMDP semantics, written M |=d

I I , if and only if there exists a

mapping π from T to S such that

(1) π(t0) = s0,

(2) LI(π(t)) = LM(t) for all states t ∈ T , and

(3) p(t, t ′) ∈ P(π(t),π(t ′)) for all pairs of states t, t ′ in T , where t is reachable in M .

Definition 9 (At-every-step Semantics - see p.32). A MC M = (T, t0, p,LM) satisfies an

IMC I = (S,s0,P,LI) with the at-every-step semantics, written M |=a
I I if and only if there

exists a relation R ⊆ T ×S such that (t0,s0) ∈ R , and whenever (t,s) ∈ R , we have

(1) the labels of s and t correspond: LM(t) = LI(s),

(2) there exists a correspondence function δ(t,s) : T → (S→ [0,1]) such that

(a) ∀t ′ ∈ T if p(t, t ′)> 0 then δ(t,s)(t ′) is a distribution on S

(b) For all s′ ∈ S, (Σt ′∈T p(t, t ′) ·δ(t,s)(t ′)(s′)) ∈ P(s,s′), and

(c) For all (t ′,s′) ∈ T ×S, if δ(t,s)(t ′)(s′)> 0, then (t ′,s′) ∈ R .

Parametric interval Markov chains

• X is a finite set of parameters and v is a valuation over X.

• I(QX) is the set of all parametrized intervals over [0,1].

• For all J = [ f1, f2] ∈ I(QX), v(J) denotes the interval [v( f1),v( f2)] if 0 ≤ v( f1) ≤
v( f2)≤ 1 and the empty set otherwise.
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Definition 10 (Parametric Interval Markov Chain - see p.35). A Parametric Interval

Markov Chain (pIMC for short) is a tuple P = (S,s0,P,L,X), where S, s0, L, and X are

defined as for pMCs, and P : S×S→ I(QX) associates with each potential transition a

(parametric) interval.

• pIMC is the set containing all parametric interval Markov chains.

• Given a pIMC P = (S,s0,P,L,X) and a valuation v, we write v(P ) for the IMC
(S,s0,Pv,L) obtained by replacing the transition function P from P with the function
Pv : S×S→ I defined by Pv(s,s′) = v(P(s,s′)) for all s,s′ ∈ S.

• The IMC v(P ) is called an instance of pIMC P .

• |=a
pI, |=d

pI, and |=o
pI are three satisfaction relations for pIMCs.

— M |=a
pI P iff there exists at least one IMC I instance of P such that M |=a

I I .

— M |=d
pIP iff there exists at least one IMC I instance of P such that M |=d

II .

— M |=o
pIP iff there exists at least one IMC I instance of P such that M |=o

II .

• The size of a pMC, IMC, or pIMC L , written |L |, corresponds to its number of states
plus its number of transitions not reduced to 0, [0,0] or ∅.

• Pred(s) = {s′ ∈ S | P(s′,s) /∈ {∅, [0,0]}} are the predecessors of a given state s

(extends to sets of states).

• Succ(s) = {s′ ∈ S | P(s,s′) /∈ {∅, [0,0]}} are the successors of a given state s (ex-
tends to sets of states).

Model comparisons

Let (L1, |=1) and (L2, |=2) be two Markov chain abstraction models containing respectively
L1 and L2.

• L1 is entailed by L2, written L1 v L2, if and only if ∀M |=1 L1,∃M ′ |=2 L2 such
that M is bisimilar to M ′.

• L1 is (semantically) equivalent to L2, written L1 ≡ L2, if and only if L1 v L2 and
L2 v L1.

Definition 11 (Succinctness - see p.36). Let (L1, |=1) and (L2, |=2) be two Markov chain

abstraction models. L1 is at least as succinct as L2, written L1 ≤ L2, if and only if there

exists a polynomial p such that for every L2 ∈ L2, there exists L1 ∈ L1 such that L1 ≡ L2

and |L1| ≤ p(|L2|). Moreover, L1 is strictly more succinct than L2, written L1 < L2, if and

only if L1 ≤ L2 and L2 6≤ L1.
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Properties

Existential consistency

• A pIMC P = (S,s0,P,L,X) is existentially consistent if and only if there exists a
MC M satisfying P .

• C∃c(P ) is a CSP encoding for verifying the existential consistency of pIMC P , where
the variables are as follows:

— one variable πp with domain [0,1] per parameter p in X,

— one variable θs′
s with domain [0,1] per transition (s,s′) in {{s}×Succ(s) |

s ∈ S}, and

— one Boolean variable ρs per state s in S.

Qualitative reachability

• A state label Γ is existentially reachable in pIMC P = (S,s0,P,L,X) if and only if
there exists an implementation M of P where Γ is reachable (i.e., PM (♦Γ)> 0).

• Γ is universally reachable in P if and only if Γ is reachable in any implementation
M of P .

• C∃r(P ) is a CSP encoding, that extends C∃c(P ), for verifying these properties. In
addition to the variables of C∃c, C∃r contains:

— one integer variable ωs with domain [0, |S|] per state s in S.

Quantitative reachability

• C′∃r(P ,Γ) is a CSP that extends C∃r(P ,Γ) with the folowing variables:

— one Boolean variable λs per state s in S, and

— one integer variable αs with domain [0, |S|] per state s in S.

• C∃r̄(P ,Γ) is a CSP that extends C′∃r(P ,Γ) with the following variables:

— one variable γs with domain [0,1] per state s in S.
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Chapter 2: A Probabilistic Extension for Event-B

Transition Systems

• Dist(S) denotes the set of distributions over a given set S.

• A labelled transition system (LTS for short) is a tuple M =(S, Acts, s0,→, AP, L)
where S is a set of states, s0 ⊆ S is the initial state, Acts is a set of actions,→⊆ S ×
Acts × S is a transition relation AP is a set of atomic propositions, and L : S→ 2AP

is a labelling function.

• A Probabilistic Labelled Transition System (PLTS for short) is a tuple M =(S, s0,
Acts, P, AP, L) where S is a set of states, s0 ∈ S is the initial state, Acts is a set of
actions, AP is a set of atomic propositions, L: S→ AP is a labelling function, and P:
S × Acts × S→ [0,1] is the transition probability function.

• A PLTS where, for each state s ∈ S we have ∑s′∈S,a∈Acts P(s,a,s′) = 1 is a Discrete

Time Markov Chain.

Event-B

• An Event-B model is a tuple M=(v̄,I(v̄ ),V(v̄),Evts, Init ) where v̄= {v1 . . . vn} is a set
of variables, I (v̄) is an invariant, V(v̄) is an (optional) variant used for proving the
convergence of the model, Evts is a set of events and Init ∈ Evts is the initialisation
event.

• An event is written ei, with a set of parameters t̄ = {t1 . . . tn} (optional), a guard
Gi(t̄ , v̄) and an action Si( t̄ , v̄).

• Assignment can be written x:= E(t̄, v̄) (deterministic), x :| Q(t̄ ,v̄,x,x ’) (predicate),
or x :∈ {E1(t̄ ,v̄) . . . En(t̄ , v̄)} (non-deterministic).

• The action S j(t̄ , v̄) of a given event e j may contain several assignments that are
executed in parallel.

Probabilistic Event-B

• Probabilistic events are equipped with weights Wi(v̄).

• Predicate non-deterministic assignments are replaced with predicate probabilistic

assignments written x:⊕Qx(t̄,v̄,x’).

• Enumerated non-deterministic assignments are replaced with enumerated probabilis-

tic assignments written x:= E1(t̄,v̄) @ p1 ⊕ . . . ⊕ Em(t̄,v̄) @ pm.

Definition 12 (Fully Probabilistic Event-B Model - see p.73). A Fully probabilistic

Event-B model is a tuple M=(v̄,I(v̄ ),PEvts, Init ) where v̄= {v1 . . . vn} is a set of variables,
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I (v̄) is the invariant, PEvts is a set of probabilistic events and Init is the initialisation

event.

Semantics

Let M=(v̄, I (v̄ ), PEvts, Init ) be a fully probabilistic Event-B model and σ be a valuation
of its variables.

• Notation σ refers to variable valuations.

• Notation θ refers to parameter valuations when parameters are involved.

• Given a variable x ∈ v̄, we write [σ]x for the value of x in σ.

• Given an expression E(v̄), we write [σ]E(v̄) for the evaluation of E(v̄) in the context
of σ.

• Given an expression E(t̄, v̄) over variables and parameters, we write [σ,θ]E(t̄, v̄) for
the evaluation of E(t̄, v̄) under parameter valuation θ and variable valuation σ.

• Given a probabilistic event ei with a set of parameters t̄ and a valuation σ of the
variables, we write T ei

σ for the set of parameter valuations θ such that the guard of ei

evaluates to true in the context of σ and θ.

• PT ei
σ

is the uniform distribution on the set T ei
σ .

• Eei(x) is the set of all expressions that can be assigned to the variable x in the context
of an enumerated probabilistic assignment (x := E1(t̄, v̄)@p1 ⊕ . . .⊕Em(t̄, v̄)@pm

(m≥ 1)).

• The probability of choosing an expression Ei in the above set is written Pei
x (Ei) = pi.

• Given a probabilistic event ei, we write Var(ei) for the set of variables in v̄ that are
modified by the action of ei.

• If a variable x is modified by an enumerated probabilistic assignment of ei, then we
write Eei(x)|σ

′
σ,θ for the set of expressions in Eei(x) such that their evaluation in the

context of σ and θ returns the value of x in the valuation σ′.

• If a variable x is modified by a predicate probabilistic assignment (x :⊕Qx(t̄, v̄,x′)),
then we write V ei

θ,σ(x) for the set of values x′ that make the predicate Qx(t̄, v̄,x′) true
when evaluated in σ and θ.

• Pei
σ,θ(x,σ

′) is the probability that a variable x is assigned the new value [σ′]x when
executing probabilistic event ei from the valuation σ and with parameter valuation θ.

Definition 13 (Fully Probabilistic Event-B operational Semantics - see p.78). The op-

erational semantics of a fully probabilistic Event-B model M=(v̄, I (v̄ ), PEvts, Init ) is a

PLTS [[M]] = (S,Acts,P,s0,AP,L) where S,Acts,s0,AP, and L are defined as in the stan-

dard LTS semantics of Event-B models (see Section 2.2.2), and P : S×Acts×S→ [0,1] is
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the transition probability function such that for a given state s, for all ei,s′ ∈ Acts×S, we

have P(s,ei,s′) = 0 if ei /∈ Acts(s) or ∃x ∈ X\{Var(ei)} st [s]x 6= [s′]x and otherwise

P(s,ei,s′) =
[s]Wi(v̄)

∑e j∈Acts(s)[s]Wj(v̄)
× ∑

θ∈T ei
s

(
PT ei

s
(θ)× ∏

x∈Var(ei)

Pei
s,θ(x,s

′)
)
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Chapter 3: Statistical Model Checking for Parametric Sys-
tems

Background definitions

• The set of real numbers and the set of natural numbers are respectively written R
and N.

• Given two real numbers a < b, the closed, semi-open and open intervals representing
all real values between a and b are respectively written [a,b], (a,b], [a,b) and (a,b).

• A Markov chain is a tuple M = (S,s0,P) where S is a denumerable set of states,
s0 ∈ S is the initial state and P : S×S→ [0,1] is the transition probability function
such that for all state s ∈ S, ∑s′∈S P(s,s′) = 1.

• A run of a Markov chain is a sequence of states s0,s1 . . . such that for all i, P(si,si+1)>

0.

• The length of a run, written |ω| represents the number of transitions it goes through
(including repetitions).

• ΓM (l) is the set of all finite runs of length l in M , and ΓM for the set of all finite
runs in M .

• The probability measure on the finite runs of M is written PM .

• The probability of a finite run ω = s0,s1, . . .sn is PM (ω) = Πn
i=1P(si−1,si).

• Notation r is used for reward functions r : Γ(l)→ R.

• We use the notation ϕ for properties on runs (ϕ⊆ Γ(l)).

• Reachability properties are written PM (♦≤ls).

• Safety properties are written Safety PM (�=lE).

• Expected reward properties are written El
M (r) = ∑ω∈Γ(l)PM (ω)r(ω).

Parametric Markov chains

• X is a set of parameters (variables).

• Poly(X) is the set of all real (multivariate) polynomials on X.

• v ∈ RX stands for parameter valuations, and can be applied to polynomials by
extension.

• A Parametric Markov chain is a tuple M = (S,s0,P,X) such that S is a finite set of
states, s0 ∈ S is the initial state, X is a finite set of parameters, and P : S×S→Poly(X)
is a parametric transition probability function.
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• Given a pMC M and a parameter valuation v ∈ RX, we write Pv for the transition
probability function obtained under valuation v and M v for the resulting structure.

• If M v is a Markov chain (i.e., if Pv satisfies the conditions of a Markov chain
transition function), then we say that v is a valid parameter valuation w.r.t. M .

• A run ω of M is a sequence of states s0,s1, . . . such that for all i≥ 0, P(si,si+1) 6= 0
(i.e., the probability is either a strictly positive real constant or a function of the
parameters).

• ΓM (l) is the set of all finite runs of length l and ΓM is the set of all finite runs of a
pMC.

Monte Carlo analysis

• Given a pMC M , we use the notation r : ΓM → R for the reward function that we
want to estimate using Monte Carlo.

• We use the notation f for the normalization function used in importance sampling : f :
S×S→ [0,1]. We says that f is valid w.r.t. pMC M if for all states s, ∑s′∈S f (s,s′) =

1.

• Given a pMC M and a valid normalization function f , we write M f for the MC
obtained from M by replacing P by f .

• uM is the uniform normalization function, that yield uniform distributions on succes-
sor states following the original structure of M .

• Pa : ΓM → Poly(X) is a parametric reward function defined inductively as follows:
Pa(s0) = 1 and for all run ω,s,s′ ∈ ΓM , Pa(ω,s,s′) = Pa(ω,s)P(s,s′).

• r′ is the parametric reward function that we use for computing the expectation of
r and is defined as follows: Given any valid normalization function f and any run
ω ∈ ΓM , we define

r′(ω) =
Pa(ω)
PM f (ω)

r(ω).

• Y is a random variable, evaluated on runs of M f , such that Y = r′(ω) = Pa(ω)
PM f (ω)

r(ω).

• Given an experiment consisting of a set of runs {ω1, . . . ,ωn}, we write {Y1, . . .Yn}
for the set of corresponding random variables.

• γ and σ2 are the parametric functions giving, respectively, the mean value and
variance of the variable Yi.

• Given an unknown value/function such as γ, we write γ̂ for its estimation using our
statistical methods.

• ϕϕϕ(z) =
∫ z
−∞

exp(−x2/2)dx/(
√

2π) is the cumulative distribution function of the
standard normal distribution N (0,1).
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Chapter 4: Learning and Verification of Graphical Event
Models

Statistical model checking

• We write S for a generic stochastic system.

• We use the notation ϕ for linear properties on the traces of a system.

• The random variable corresponding to the outcome of each simulation is written Bi.

• The expected value of a given variable X is written E[X ].

• The probability that this random variable is 1 (i.e., that S satisfies the given property
ϕ) is written Pr[Bi = 1] = p.

• In qualitative SMC, the parameters are θ (threshold), α (Type-I error), β (Type-II
error), and [p0; p1], the indifference region. Usually, p0 = p−δ and p1 = p+δ, and
2δ is the size of the symmetrical indifference region.

• In hypothesis testing, the hypothesis are H0 : p≤ θ and H1 : p > θ.

• In quantitative SMC, the parameters are δ (precision) and ε (error rate).

• In all cases, the estimated value of an unknown variable p is written p̂.

Conditional intensity models

• We use the notation t ∈ R+ for timestamps and l ∈ L for labels.

• Given a totally ordered set S and a set of marks M, a marked point process (m.p.p)
can be expressed as a sequence {(si,mi) : i = 1, ...,n} where for all i, si ≤ si+1.

• An event is a pair (t, l) consisting of a timestamp and a label.

• An event stream is an m.p.p. where S = {ti} is a set of strictly increasing timestamps
and M = {li} is a set of event labels. It is written xt∗ = (t1, l1), . . . ,(tn, ln), with
0 < ti < ti+1 < t∗ (t∗ = tn+1) for all 1≤ i≤ n−1.

• t0 = 0 and t∗ = tn+1 are used as conventions for a stream consisting of n events
(ti, li),1≤ i≤ n.

• The length of an event stream is written |xt∗ | and corresponds to the number of events
(n in the above item).

• The history of the event streal at time t is the set of all the events that occurred before
t: hi denotes the ith history, with hi = hti = (t1, l1), ...,(ti−1, li−1).

• When clear from the context, we will use x to denote data (event streams), h for a
given history, and t for a givem timestamp.
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Definition 14 (Conditional intensity function - see p.127). Given an event stream x, a

conditional intensity function λ is written as:

λ(t | x) = lim
∆t→0

E[N(t, t +∆t)|ht ]

∆t

where N(T ) denotes the number of points (events) occurring in a time interval T in x.

Definition 15 (Conditional intensity model [DVJ07] - see p.128). Formally, a con-

ditional intensity model (CIM) θ is a set of indexed conditional intensity functions

{λl(t | x)}l∈L . The data likelihood function is the joint density function of all the points in

the m.p.p. that can be factorized into a product of all conditional intensity functions and

can be written as:

p(x | θ) = ∏
l∈L

n

∏
i=1

λl(ti | hi;θ)1l(li)e−Λl(ti|hi;θ)

where Λl(t | h;θ) =
∫ t
−∞

λl(τ | x;θ)dτ for the data x and the indicator function 1l(l′) is one

if l′ = l and zero otherwise.

• In Piecewise-Constant Conditional Intensity Models (PCIMs), intensity functions
are constant in given time intervals (finite number of states that depend in the time t

and the observed data x).

• For each label l ∈ L , we consider a set of discrete states Σl .

• For each label l and each state s ∈ Σl we consider a parameter λls.

• We consider a mapping σl : T ×X −→ Σl (with T the set of all possible times and
X the set of all possible data) that determines the active state as a function of the
chosen label and available data.

Definition 16 (Piecewise-constant conditional intensity models - see p.129). A PCIM

is defined by local structures Sl = (Σl,σl(t,x)) and local piecewise constant parameters λls.

Let S= {Sl}l∈L be the set of all discrete states and θ= {λls}l∈L ,s∈Σl be the set of associated

parameters. The PCIM data likelihood knowing the structure and the parameters in this

case can be written as:

p(x | S,θ) = ∏
l∈L

∏
s∈Σl

λ
Mls(x)
ls e−λlsTls(x)

where Mls(x) is the number of occurrence of events of type l while s is active in the event

sequence x, and Tls(x) is the total duration while s was active for event type l.
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Graphical event models

Definition 17 (Graphical event model - see p.129). A Graphical Event Model (GEM) is

a tupple G = ((L ,E),θ) where (L ,E) is a directed graph and θ a set of parameters. The

likelihood of the data g knowing the graph and its parameters is written as:

p(xt∗ | t∗) =
|xt∗ |

∏
i=1

λli(ti | hi)
|xt∗ |+1

∏
i=1

e−∑l∈L
∫ ti

ti−1 λl(τ|hi)dτ
,

with h|xt∗ |+1 the entire history of the event stream, including xt∗ .

• The conditional intensity functions λl(t | h) in GEMs are not piecewise-constant.

• The Markov property in the context of m.p.p.s. implies the following property on
conditional intensity functions: For all l, h and t, λl(t | h) = λl(t | [h]Pa(l)), where
Pa(l) are the parents of l in G .

• A timescale is a set T of half-open intervals (a,b] (with a≥ 0 and b > a) that form a
partition of some interval (c, th] (with c≥ 0), where th is the highest value of T .

• When an edge e is equiped with a timescale T , th is called the horizon of e.

Definition 18 (Timescale graphical event model - see p.131). A TGEM M = (G ,T )

consists of a GEM G = ((L ,E),θ) and a set of timescales T = Te(e∈E) corresponding to

the edges E of the graph of G .

• cl(h, t) is the parent count vector of bounded counts (of occurrences) over the
intervals in the timescales of the parents of l at time t.

• Cl is the set of all possible parent count vectors of label l.

• A given parent count vector yields a unique conditional intensity function for the
corresponding parameter. The global conditional intensity functions are therefore
piecewise-constant:

λl(t | h) = {λl,cl(h,t)}cl(h,t)∈Cl
.

• In the case of TGEMs, the likelihood of the data is written as follows:

p(xt∗ | t∗) = ∏
l∈L

∏
j∈Cl

λ
nt∗,l, j(xt∗)
l, j e−λl, jdt∗l, j(xt∗),

where the sufficient statistics nt∗,l, j(xt∗) and dt∗l, j(xt∗) are the count of l-events and
the durations, respectively, when the parent count vector was equal to j (a certain
combination of parents).
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• The sufficient statistics are formally written as:

nt∗,l, j(xt∗) =
|xt∗ |

∑
i=1

1(li = l)1(cl(hi, ti) = j)

dt∗,l, j(xt∗) =
|xt∗ |+1

∑
i=1

∫ ti

ti−1

1(cl(hi,τ) = j)dτ

where t|xt∗ |+1 represents the duration d between the last event occurence and the final
time t∗ in the data.

Definition 19 (Recursive timescale graphical event model - see p.133). The family

of RTGEMs is defined recursively to be the finite closure of the empty model M0 =

((L ,{}),{}) under a set of allowed operators OF = {add,split,extend}.

• The "add" operator adds a non-existing edge to a model and its corresponding
timescale T = (0,c], with c a constant (also called horizon).

• The "split" operator splits one interval (a,b] in the timescale of a chosen edge into
two intervals (a, a+b

2 ],(a+b
2 ,b].

• The extend operator extends the horizon of a chosen edge by adding the interval
(th,2th], with th being the previous horizon.

• The symmetric backward operators are O−1
F = {reverse_add,reverse_split,reverse_extend}.

• A finite consistent RTGEM learning procedure [GM16] is to do a forward greedy
search (for model construction) followed by a backward greedy search (for model
refinement), both based on model selection, and using data that is faithful.

• We choose to use the Bayesian Information Criterion (BIC) [S+78], written as
follows for a model M:

St∗(M) = log(p(xt∗ | t∗;M, λ̂t∗,l, j(xt∗)))−∑
l∈L
|Cl | ·log(t∗)

where λ̂ are the estimates of the λ parameters.

• Given a model M, the maximum likelihood estimate λ̂ of the λ parameters for M

(knowing its structure) is as follows [GM16] :

λ̂t∗,l, j(xt∗) =
nt∗,l, j(xt∗)

dt∗l, j(xt∗)
.

Distance between RTGEM

• A timescale in an RTGEM can be represented by a vector v = [0,a,b,c, . . .] contain-
ing the successive endpoints values.
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• Given two RTGEMs with the same set of labels L , G1 = ((L ,E1),θ1) and G2 =

((L ,E2),θ2) and an edge e ∈ E1 ∩E2, we write ve
1 and ve

2 for the values of the
respective timescales of e in G1 and G2.

• ve
id = |ve

1∩ ve
2| is the number of identical endpoints in the two vectors ve

1 and ve
2.

• ve
nid = |ve

1 \ ve
2|+ |ve

2 \ ve
1| is the number of endpoints that are not identical in the two

vectors ve
1 and ve

2.

• The elementary distance between the two respective timescales of the edge e is

d(ve
1,v

e
2) =

ve
nid

ve
nid + ve

id

• The Structural Hamming Distance (SHD) between G1 and G2 is defined as follows:

SHD(G1,G2) = |(E1 \E2)∪ (E2 \E1)|+ ∑
e∈E1∩E2

d(ve
1,v

e
2)

• Consider two vectors ve
1 with size l and ve

2 with size k. The closest element from
ve

1i
∈ ve

1 in ve
2 is written cl(ve

1i
,ve

2) = argminve
2p
(|ve

1i
− ve

2p
|).

• The set of matches for a given edge e ∈ E1∩E2 is written V e
id and defined as follows:

V e
id = {(ve

1i
,ve

2 j
) ∈ ve

1× ve
2 : cl(ve

1i
,ve

2) = ve
2 j
∧ cl(ve

2 j
,ve

1) = ve
1i
}

• We write V e
id,1 for the projection of V e

id on ve
1, i.e., V e

id,1 = {v
e
1,i,∃ j,(ve

1,i,v
e
2, j) ∈V e

id}.

• Similarly, we write V e
id,2 for the projection of V e

id on ve
2.

• The set of unmatched endpoints is V e
nid = (ve

1 \V e
id,1)∪ (v

e
2 \V e

id,2).

• We define ve
id = |V e

id| as the number of proximally matched endpoints and ve
nid =

|V e
nid| as the number of unmatched enpoints.

• The proximal elementary distance between ve
1 and ve

2 is

d∗(ve
1,v

e
2) =

1
ve

nid +ve
id

 ∑
(ve

1i
,ve

2 j
)∈V e

id\(0,0)

|ve
1i
− ve

2 j
|

min(ve
1i
,ve

2 j
)

+
ve

nid
ve

nid +ve
id

• The proximal distance measure between G1 and G2 is defined as follows:

SHD∗(G1,G2) = |(E1 \E2)∪ (E2 \E1)|+ ∑
e∈E1∩E2

d∗(ve
1,v

e
2).

Experimentations

• The qualitative security property is of the form P(ϕ | M) > c where ϕ is a linear
property (called a query) and c is a constant.
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• Our algorithm starts with data D , learns a first model Mo, then (if Mo does not satisfy
the qualitative security property) a proximal model M∗ satisfying the qualitative
security property.

• The empty model is written ⊥.
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Titre : Modélisation et Vérification de Systèmes Incertains

Mot clés : Modélisation, Vérification formelle, Systèmes probabilistes, Systèmes paramétrés

Résumé : Le but des sciences en général est d’étu-
dier le fonctionnement de systèmes complexes afin
de mieux les comprendre et, éventuellement, de
pouvoir prédire leur comportement futur. Une part
importante de cette étude est la réalisation d’un mo-
dèle, objet abstrait qui représente fidèlement les
connaissances existantes à propos du système, et
qui pourra alors être étudié et simulé à la place du
système lui-même. Malheureusement, il est fréquent
que les connaissances existantes à propos des sys-
tèmes soient incomplètes ou sujettes à incertitudes.
Il est alors important d’inclure ces incertitudes à
l’intérieur des modèles et de développer des tech-
niques afin d’automatiser l’analyse de ces modèles.

Ce document présente quatre contributions au do-
maine de la modélisation et de l’analyse de tels
systèmes. Deux de ces contributions sont à voca-
tion plutôt théorique et proposent des langages de
modélisation permettant d’inclure les incertitudes à
l’intérieur des modèles ainsi que des techniques de
vérification associées. Les deux autres contributions
sont plus pratiques, l’une proposant une technique
de vérification statistique et prouvant son efficacité
sur un cas d’étude industriel, et l’autre proposant
une technique de construction automatique de mo-
dèle à partir d’un ensemble de données ainsi qu’une
analyse de son niveau de sécurité.

Title: Modeling and Verification of Systems with Uncertainties

Keywords: Modeling, Formal verification, Probabilistic systems, Parametric Systems

Abstract: The goal of science in general is to study
the functioning of complex systems in order to bet-
ter understand them and potentially to be able to
predict their future behaviour. An important part of
this study is the realization of a model, an abstract
object that faithfully represents existing knowledge
about the system, and which can then be studied
and simulated instead of the system itself. Unfortu-
nately, existing knowledge about systems is often
incomplete or subject to uncertainties. It is then im-
portant to include these uncertainties in the models
and to develop techniques to automate the analy-

sis of these models. This document presents four
contributions to the field of modeling and analysis
of such systems. Two of these contributions are
somewhat theoreticaly-oriented, proposing model-
ing languages to include uncertainties in models
and associated verification techniques. The other
two contributions are more practical, one propos-
ing a statistical verification technique and proving
its efficiency on an industrial case study, and the
other proposing a technique for automatied model
construction from a data set and an analysis of its
security level.
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