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Optimal resource allocation in bacterial growth: theoretical study
and applications to metabolite production

Agust́ın Gabriel Yabo
Institut National de Recherche en Sciences et Technologies du Numérique (Inria)
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Julio R. Banga, Professeur, Instituto de Investigaciones
Marinas, CSIC
Jean-Baptiste Caillau, Professeur, Université Côte d’Azur
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Allocation optimale de ressources en croissance

bactérienne : étude théorique et application à la

production de métabolite

Agust́ın Gabriel Yabo

Résumé

Les micro-organismes évoluent sous la pression de la sélection naturelle, améliorant leur capacité à
proliférer dans leur environnement en développant des réseaux métaboliques optimisés. Des études
ont montré que les populations bactériennes peuvent atteindre un taux de croissance presque
maximal dans certaines conditions, ce qui leur permet de supplanter les espèces concurrentes.
Considérer l’auto-réplication microbienne comme un problème d’allocation de ressources est une
nouvelle approche qui a répondu avec succès à certaines des questions sous-jacentes dans le do-
maine. Dans cette approche, les ressources cellulaires disponibles sont affectées dynamiquement
à différentes fonctions comme le métabolisme ou la synthèse des protéines. Ce cadre a également
motivé de nombreuses applications à la production artificielle de métabolites d’intérêt ; l’objectif
principal est alors de détourner les ressources cellulaires des voies natives vers une voie hétérologue
dans le but de synthétiser efficacement un composé spécifique (par exemple des agents antitu-
moraux, des antibiotiques, de l’insuline, des agents immunosuppresseurs, etc.) À cette fin, des
techniques biotechnologiques récentes permettent de contrôler de manière externe la croissance
bactérienne en interrompant l’expression de l’ARN polymérase. Cette thèse se concentre sur les
aspects mathématiques d’une certaine classe de modèles d’auto-réplicateurs basés sur les principes
d’allocation des ressources susmentionnés. Ces modèles, basés sur des hypothèses minimales, sont
étonnamment efficaces pour rendre compte des lois de croissance empiriques bien étudiées des cul-
tures microbiennes. Tout au long du manuscrit, nous revisitons certains des cadres industriels les
plus pertinents pour la croissance bactérienne parmi lesquels la culture par lots et les bioréacteurs
continus, ainsi que d’autres modèles simplifiés où la concentration en nutriments reste constante.
L’idée est de comparer les stratégies d’allocation des ressources évoluant naturellement, où l’objectif
est de maximiser la biomasse de la population bactérienne, avec les stratégies artificielles visant à
maximiser la production d’un métabolite voulu. L’étude implique une analyse dynamique et une
optimisation des modèles proposés, et nous avons recours à la théorie du contrôle optimal pour
déterminer les stratégies d’allocation conformes à ces objectifs, tant d’un point de vue analytique
que numérique. Ces stratégies optimales constituent des références de choix pour le développement
de stratégies de rétroaction basées sur la mesure en temps réel des processus industriels.

Mots clés : biologie des systèmes, croissance bactérienne, contrôle optimal, biotechnologie, systèmes

dynamiques non linéaires.
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Optimal resource allocation in bacterial growth:

theoretical study and applications to metabolite

production

Agust́ın Gabriel Yabo

Abstract

Microorganisms have evolved under the pressure of natural selection, improving their capacity to
proliferate in the environment by developing highly optimized metabolic networks. Studies showed
that bacterial populations can achieve nearly maximal growth rate under certain conditions, al-
lowing them to outgrow competing species. Considering microbial self replication as a resource
allocation problem is a novel approach that successfully answered some of the underlying ques-
tions in the field. This perspective considers the problem of dynamically assigning the available
cellular resources to different cellular functions, such as metabolism and protein synthesis. The
framework has also motivated numerous application to the artificial production of metabolites of
interest, where the main objective is to divert the cellular resources from the native pathways into
a heterologous pathway in order to efficiently synthesize a specific compound (e.g. antitumour
agents, antibiotics, insulin, immunosuppressive agents, etc.). To this end, recent biotechnologi-
cal techniques allow to externally control bacterial growth by shutting off the expression of RNA
polymerase. This thesis focuses on the mathematical aspects of a certain class of self-replicator
models based on the aforementioned resource allocation principles. These models, based on min-
imal assumptions, are surprisingly effective in accounting for well-studied empirical growth laws
of microbial cultures. Throughout the manuscript, we revisit some of the most relevant industrial
frameworks for bacterial growth, such as batch cultivation and continuous bioreactors, and other
simplifying approximations where the nutrient concentration remains constant. The objective is
to compare the naturally-evolved resource allocation strategies, where the objective is to maxi-
mize the biomass of the bacterial population, with the artificial strategies aiming to maximize the
production of the metabolite of interest. The study involves dynamical analysis and optimization
of the proposed models, and we resort to Optimal Control theory to find the allocation strategies
complying with these objectives, both from analytical and numerical points of view. Ultimately,
such optimal strategies may provide guidance for developing feedback strategies based on real-time
measuring of industrial processes.

Keywords: systems biology, bacterial growth, optimal control, biotechnology, nonlinear dynamical

systems.
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Chapter 1

Introduction

Microbiological research, while recent in comparison with the study of other living

creatures, has been the main task of many scientists across the globe, even when

the available technological means were scarce. There is a vast number of compelling

reasons that explain this fact. For instance, understanding bacteria is a first step

towards understanding—and potentially controlling—the diseases caused by them.

In addition, most of the antibiotics manufactured by the pharmaceutical industry

are produced by bacteria as a secondary metabolite, so named for not being involved

in the growth and reproduction of these organisms. Numerous compounds essential

in medical practices are also synthesized by bacteria, such as antitumor agents,

immunosuppresive agents and insulin. The latter is also the case in the food industry,

for products such as yogurt, cheese and pickles [7].

Whereas investigating such microorganisms usually starts with an experimental

phase in a laboratory, a fundamental part of the discipline involves the exploitation

of the obtained data, and the challenge of drawing knowledge from it. Due to

its complexity, this task brings together scientists from very different backgrounds,

such as mathematicians, biologists, statisticians and computer scientists. While

the theoretical and practical approaches used in each discipline are quite diverse,

scientists agree on a very common, interdisciplinary tool: mathematical models,

widely used in the domain—and in science in general—for their capacity to capture

and predict key behaviours of these living systems.
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1.1 Mathematical modelling

A powerful approach used to study bacterial growth is mathematical modelling, for

its proved success in representing complex networks of biochemical reactions behind

internal cellular processes such as metabolism and gene expression [8]. Due to the

complexity of even the smallest living organisms, simple features such as the growth

rate of a bacterial population is usually governed by a large number of internal

reactions forming these complex networks, and thus it is not expected to be explained

by simple deterministic laws. However, through continuous experimental analysis

of growing microbial culture in controlled environments, it is possible to observe

certain recurring phenomena, and to describe them through empirical mathematical

expressions. For instance, during the exponential growth phase of a bacterial culture,

the rate of growth is constant, and thus it is reasonable—and customary—to consider

all relative concentrations in the cell as constants [9]. At this stage, the number of

cells in the population can be modelled using a simple dynamical equation

Ṅ = µN, (1.1)

where N is the number of cells, and µ the constant population growth rate. Thus,

the amount of cells at time t is given by

N(t) = N0 e
µt.

In the same line, a major milestone in microbiology is the work of Monod [10], for

successfully being able to describe the relation between microbial growth and its

medium. The main contribution was the concept of limiting nutrient: an empirical

relationship between the exponential steady-state growth rate µ of a growing culture

of Escherichia coli and the concentration s of available substrate in the medium.

The latter can be represented by an hyperbolic function

µ(s) = µmax
s

Ks + s
,
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where µmax is the maximal possible bacterial growth rate, and Ks a constant. Then,

equation (1.1) can be written as

Ṅ = µmax
s

Ks + s
N

The latter can be related to classical Michaelis-Menten dynamics [11], an equa-

tion proposed more than a hundred years ago predicting a proportionality relation

between the rate of an enzyme-catalyzed reaction and the concentration of the sub-

strate consumed in the reaction.

Almost ten years after Monod’s work, experimental studies found that the con-

centration of RNA (ribonucleic acid) in microbial cells was directly linked to the

growth rate [12]. More precisely, the results showed an empirical linear relation be-

tween the RNA/total protein ratio and the growth rate at steady state in bacteria

[1], as illustrated in Figure 1.1. This study was one of the first relating growth

rate and the cell macromolecular composition, and motivated further investigation

on these empirical laws, currently known in the literature as growth laws. These

Figure 1.1: The relation between steady-state growth rate and RNA content of A.
aerogenes, strain 5-P14 [1].

results have been instrumental in the way we understand microorganisms, and are
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still valid nowadays [2], as seen in Figure 1.2.

amounts of chloramphenicol (Fig. 1B, light blue
circles) were consistent with data obtained for the
isogenic translational mutants grown in medium
with the same nutrient but no antibiotic (light
blue triangles). Surprisingly, these data revealed
another linear correlation between r and l (Fig.
1B, dashed line), given by

r ¼ rmax −
l
kn

ð2Þ

where rmax is the vertical intercept and kn is the
inverse slope. Such a linear correlation was ob-
tained for cells grown with each of the six nu-
trient sources studied (Fig. 2A and table S3). The
correlation described by Eq. 2 has been observed
in cells subjected to numerous other means of
imposing translational limitation (fig. S2).

From Fig. 2A and the best-fit values of the
parameters rmax and kn (table S4), we observed
that the parameter kn exhibited a strong, positive
correlation with the growth rate of cells in drug-
free medium (fig. S3A). Thus, kn reflects the nu-
trient quality and is referred to as the “nutritional
capacity” of the organism in a medium [see eq.
S18 in (13) for a molecular interpretation of kn].
In contrast, the vertical intercept rmax depended
only weakly on the composition of the growth
medium (fig. S3B). Qualitatively, the increase of
the RNA/protein ratio r with increasing degree
of translational inhibition can be seen as a com-
pensation for the reduced translational capacity,
implemented possibly through the relief of re-
pression of rRNA synthesis by the alarmone
ppGpp (15), in response to the buildup of intra-
cellular amino acid pools resulting from slow
translation. Because rmax is the (extrapolated) max-
imal RNA/protein ratio as translation capacity is
reduced toward zero, its weak dependence on
the quality of the nutrients suggests a common

µ

µ
µ

λ

µ
µ

φ

λ

µ
β

µ
φ

µ
µ

φ

(hour-1)

(hour-1)

(doublings/hour)

(doublings/hour)

Fig. 2. Effect of translational inhibition. (A) RNA/protein ratio for strain EQ2 grown in different media,
each with various levels of chloramphenicol (see key at lower right) (table S3). Solid lines were obtained
from fitting data of the same color to Eq. 2. The black line describes the data in the absence of
chloramphenicol (as in Fig. 1A). (B) Translational inhibition results in an increased synthesis of R-class
proteins (cyan), effectively decreasing the fraction allocable to the P-class (magenta). (C) Mass fraction of
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Figure 1.2: Correlation of the RNA/protein ratio r with growth rate λ for various
strains of E. coli. The growth rate is modulated by changing the quality of nutrients
[2].

An essential machinery of bacteria is the metabolism, defined as the ensemble of

internal chemical reactions responsible for the production of energy from nutrients,

growth and replication. There has been numerous works focusing on the prediction of

metabolic networks during exponential growth (i.e. steady-state conditions) aiming

to better understand the internal resources distribution [13, 14]. These studies aim

to understand and predict how bacteria adapt to different mediums, such as acetate,

glucose, and glycerol. The obtained results support an assumption that has been

adopted in many previous works: under certain conditions, bacteria adapt the way

they distribute their internal resources so as to maximize their growth rate.

1.2 Optimality in nature

A common hypothesis when studying bacterial growth is that bacteria seek to max-

imize their growth rate [15, 2, 16, 17]. From an evolutionary perspective, the latter

can be viewed as a result of the pressure of natural selection: in environments with

scarce nutrient, a higher growth rate represents an evolutionary advantage allowing
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species to outgrow competitors. This concept is known as fitness, and is usually

represented in mathematical models as optimality with respect to a specific crite-

ria (i.e. growth rate, growth yield, ...) [18]. Different modelling techniques have

been employed to predict the optimality principles behind bacterial growth. A clas-

sical example is FBA (Flux Balance Analysis), an approach that aims to predict

metabolic flux distributions in a quantitative way based on certain optimization

criteria, while complying with a number of physical and chemical constraints such

as mass balance and energy balance [19]. As a result, this technique is able to pre-

dict (sometimes multiple) steady-state solutions of internal fluxes inside a cell based

solely on the stoichiometry of the metabolic networks. However, in certain cases,

this technique can require imposing very strong simplifying assumptions in order

to predict maximal growth rate, as the approach tends to exclude some important

biomass constituents from the model [8]. Other similar approaches such as RBA

(Resource Balance Analysis) consider the optimization problem together with the

production of proteins and enzyme-related cost functions [20].

More recent studies focus on the problem of adapting to changing environments

from a resource allocation perspective. The approach is based on the idea that

the mechanisms behind the allocation of internal resources to different cellular func-

tions have been optimized through evolution to maximize the population growth rate

[21]. The advantage of this framework is the capacity to yield models encompassing

mechanistic trade-offs related to physical and biochemical limitations. An example

can be seen in [16], where the model is constructed taking into account constraints

such as the limited size of the pools of energy and ribosomes in a cell. Intuitively,

producing proteins to tackle a specific task implies diverting resources from other

tasks, which creates numerous inherent trade-offs between cellular functions. There

are well-studied examples in the literature, such as the trade-off between nutrient

uptake and protein synthesis [2], or growth and stress response [22]. Through this

methodology, it has been possible to link the optimal regulation of ribosome synthe-

sis in the cell to a well-known natural regulation mechanism based on the presence

of guanosine tetraphosphate (also known as the ppGpp alarmone) [23]. Recent ex-

perimental results were able to confirm such theoretical predictions by showing how

the artificial increase or reduction of the concentration of the ppGpp molecule in E.

coli leads to non-optimal resource allocation strategies [24].

A natural way of representing bacterial growth is through self-replicator models,
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which are becoming increasingly popular for their simplicity and their potential to

predict the empirical growth laws above mentioned. In this context, the impact of

simple natural trade-offs in bacterial growth can be studied through the question:

what is the resource allocation strategy that maximizes the rate of replication of a

self-replicating system?.

1.3 Self-replicator models

The study of self-replicator systems is a domain that has drawn the attention of

scientists for more than 70 years. The questions of whether a system is able to

self replicate, and how, have been of interest even before the discovery of the DNA

and the current available knowledge in biological research. Its interest does not

only come from living beings, but also from its applications to space exploration,

nanotechnology, and computer science in general [25]. However, cellular replication

has been a major driver in the study of self replication, for its potential to understand

the biological mechanisms behind it, to transfer this knowledge to artificial systems,

and to optimize the existing biological processes.

Bacterial growth is not strictly a replication process, as each new individual in

the culture is subject to a strong genetic variability, producing mutations from one

generation to another. However, representing microbial growth as a process of self

replication has proven surprisingly helpful in elucidating multiple natural mecha-

nisms of unicellular organisms [26]. A very simple example of a real self-replicating

biological system consists of an RNA enzyme that synthesises itself from a precur-

sor [27]. As briefly explained in previous sections, if the substrate in the medium is

constant, the population is expected to undergo exponential growth. Self-replicator

models have also been useful in studying fundamental biological mechanisms as

homeostasis and circadian rhythms [28]. Other examples were able to reproduce a

metabolic strategy adopted by unicellular organisms known as overflow metabolism,

which consists of an energetic inefficiency in bacteria growing at a high growth rate

[26].

Most of these models consider the process of self replication in a steady-state

setting, which is rarely a condition attained by bacteria in nature. While these works

can be useful to study phenomena that occur in reduced timescales, or in controlled

environments such as a laboratory, some questions regarding the adaptation of living
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systems to changing environments require an explicit formulation of such dynamism,

which entail a different mathematical approach to the problem.

1.4 A dynamical perspective

The changing nature of the environments in which bacteria inhabit motivates a dy-

namical perspective of the resource allocation problem [29]. A recent paper has

focused in the dynamical allocation of cellular resources facing nutrient upshifts

[30], where the bacterial cell is represented through a coarse-grained self-replicator

dynamical model described by a system of ODEs. The approach considers a sim-

plified proteome (i.e. the entire set of proteins in a cell) divided into metabolic

enzymes (responsible for nutrient uptake) and ribosomal proteins (responsible for

the synthesis of macromolecules) and tackles the question of how to allocate re-

sources between these two cellular functions so as to optimally transition between

two different environments. The main hypothesis behind the study is that the re-

source allocation strategy has been optimized by natural selection to maximize the

bacterial growth rate. In a system of ODEs, the mathematical problem of finding

the time-varying function that maximizes a certain criterion is called an OCP (Op-

timal Control Problem), and it can be solved through PMP (Pontrjagin’s Maximum

Principle) [31]. Results show that the optimal allocation strategy consists of a tran-

sient period followed by a steady-state phase matching previous static results [26].

The transient is composed of oscillations between the two limit allocations: maximal

enzyme synthesis and maximal ribosomal production. Surprisingly, the natural reg-

ulatory mechanism behind the ppGpp molecule produces a similar control structure

to that of the optimal allocation found through the optimal control approach.

The approach of Giordano et al. is a prime example of how simple natural

trade-offs can be studied through abstract mathematical models. A similar work

investigates the trade-off between storage and enzymatic compounds in cells [32].

By hypothesis, the natural objective is to cumulate biomass, which is described by

both compounds, but the metabolic capacity of the bacterial cell is supposed to be

affected only by enzymes. The paper also tackles the dynamical optimization prob-

lem using a PMP approach. A quantitative model of dynamical resource allocation

describing transitions between different nutrients has been proposed in [33], which is

independent of the kinetic parameters behind each reaction, thus providing robust-
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ness of the results to parametric uncertainty. A resource allocation model was used

to describe bacterial growth during nutritional upshifts [34], suggesting that, in un-

stable environments, ribosomal sub-saturation can represent a selective advantage

for allowing faster growth rate increases after nutrient upshifts. A more recent work

proposed a minimalistic whole-cell coarse-grained dynamical model representing the

proteome composition, growth rate and size of the cell, that takes into account a

class of proteins dedicated to cell division [35]. While the model considers that the

growth rate is affected by environmental conditions such as changes in the nutrient

quality or over-expression of growth rate-independent proteins, it is not based on the

maximal growth rate principle, in contrast with most of the studies in the literature.

Dynamical approaches based on minimal models have been key in understanding

the regulation mechanisms behind natural trade-offs, but it have also proved fruitful

in analyzing trade-offs between natural and artificially engineered resource pathways

as, for instance, those targeting the synthesis of value-added compounds.

1.5 Metabolite production

A classic strategy for producing value-added metabolites and other chemical com-

pounds is to artificially engineer the production of an heterologous enzyme into a

cell host, which will thus synthesize the targeted metabolite. For instance, E. coli

can be modified to produce glucuronic and glucaric acid (used in the production of

detergents) from glucose by reenginering a synthetic pathway into the microbial cell

[36]. However, the limitation of cellular resources yields a competition between the

native pathways of the cell (dedicated to growth) and the synthetic circuits (dedi-

cated to metabolite synthesis). Numerous works have studied this trade-off, aiming

to improve the current industrial bioprocesses. Bacterial growth can be inhibited

through growth inhibitors, thus increasing the yield of metabolites, as shown in re-

cent experimental results [37]. While this is an effective technique, it can also be

expensive, and can produce toxicity to the host cell [38]. A less costly, innovative

tool is the optogenetic regulation of gene expression, which has been successfully

implemented in a real-time feedback loop in continuous liquid cultures [39].

A promising alternative is the engineering of synthetic gene circuits. An example

can be seen in [40], where a synthetic control circuit is able to compensate for the

demand of resources from both the native and engineered pathways by regulating
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the expression of enzymes. A method for engineering metabolic control circuits is

proposed in [41], which tackles the burden of deviating resources from growth into

the heterologous pathway through a multiobjective optimization problem, towards

a framework for automated design of genetic circuits. Other approaches, based on

coarse-grained models of the proteome, focuses on the loss of fitness of individuals

in the population produced by the burden of the heterologous pathway, and on how

to overcome such effect [42].

The capacity to externally affect gene expression through external real-time con-

trollers, combined with the increasing understanding of natural resource allocation

strategies, has motivated approaches based on self-replicator models [43]. The latter

focuses on how to regulate the expression of RNA polymerase through a synthetic

growth switch [44] in order to maximize the production of a metabolite of interest.

The model represents the trade-off biomass/compound synthesis through a resource

allocation problem similar to the one studied in Giordano et al., and the results em-

phasizes the differences between the control strategies depending on the particular

objective.

Based on these works, we propose a series of coarse-grained self-replicator dy-

namical models representing the proteome of a bacterial cell, and we study the

trade-offs arising from inherent natural allocation compromises, as well as those re-

lated to the artificial production of compounds of interest. The mathematical tools

employed for this task range from dynamic systems analysis of the given models,

to optimization and optimal control theory for studying the associated static and

dynamical maximization objectives.

1.6 Studied problems

In this section, a brief description of the nature of the models used in this manuscript

is given, all devised from a resource allocation perspective, that consider some of

the most relevant industrial production frameworks. Each chapter is written in a

self-contained manner, as they are based on (already published or in production)

scientific papers, and thus there are substantial differences in the biological hypothe-

ses and the overall notation. However, some common definitions can be provided to

describe the organization of the manuscript.

The time-varying quantities represented in the models are divided into the extra-
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Figure 1.3: Schema of the system.

cellular concentrations (i.e. with respect to a bioreactor of volume Vext) and intracel-

lular concentrations (i.e. with respect to the bacterial volume V). The extracellular
variables are s and x, corresponding to the substrate and metabolite concentrations

with respect to the external volume, respectively. The intracellular variables are

p, r and m, which correspond to the concentrations of precursor metabolites, pro-

teins of the gene expression machinery, and proteins of the metabolic machinery,

respectively. The main reaction rates are vM , vR and vX , and are functions of the

concentrations. The precursor synthesis rate vM(s,m) is increasing with respect to

the concentration of substrate in the medium s and catalyzed by m. The macro-

molecule synthesis rate vR(p, r) is increasing with respect to the concentration of

precursors p and catalyzed by r. Finally, vX(p,m) is the metabolite synthesis rate,

also increasing with respect to the concentration of precursors p, and catalyzed by

m. A schema of the system is depicted in Figure 1.3. While the derivations of

each particular model are detailed in each chapter throughout the manuscript, and

thus they are omitted in this introduction, we describe here the obtained differential

equations governing the time evolution of the defined quantities. The dynamics of

the pool of precursors is described by the differential equation

ṗ = vM(s,m)− vX(p,m)− vR(p, r)(p+ 1).

The dynamics of the concentrations of macromolecules in the cell, described by
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ribosomal and enzymatic proteins, are given by

ṙ = (u− r)vR(p, r),

ṁ = (1− u−m)vR(p, r),

where u ∈ [0, 1] is the time-varying allocation strategy, which can represent either the

natural allocation or an artificial human-driven allocation resulting from the effect

of an external control, depending on the objective to be studied. The dynamics of

the bacterial volume and the metabolite concentration are

V̇ = vR(p, r)V ,

ẋ = vX(p,m)
V
Vext

.

The simplified case, where the dynamics of s are omitted—representing the case

where the substrate concentration is constant for the system—was first studied in [3],

and is further investigated in Chapter 2. In this work, s is assumed to be constant,

and so the dynamics of p becomes

ṗ = vM(m)− vX(p,m)− vR(p, r)(p+ 1),

where vM only depends on m. Intuitively, this case is expected to undergo ex-

ponential bacterial growth after a certain transient. An extension of this work is

presented in Chapter 5, where a hierarchical MPC (Model-Predictive Control) loop

is proposed, based on the studied open-loop optimal control.

The case where an initial amount of substrate s0 in the bioreactor is gradually

consumed represents a batch process, and is studied in Chapter 3. The latter is

modelled through the dynamics of s given by the equation

ṡ = −vM(s,m)
V
Vext

,

and is expected to eventually reach a steady state when all the available substrate

in the bioreactor is depleted. A scheme of metabolite production in continuous

bioreactors is studied in Chapter 4. In this case, there is a continuous constant

inflow of substrate of concentration sin to the bioreactor, as well as an outflow (of

the same volumetric flow rate) of substrate, biomass and metabolites. This flow is
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characterized by the constant D denoted as the dilution rate. Thus, the dynamics

are modified with additional terms

ṡ = Dsin − vM(s,m)
V
Vext

−Ds,

V̇ = vR(p, r)V −DV ,

ẋ = vX(p,m)
V
Vext

−Dx.

The latter system is also expected to reach a steady state, depending on the dilu-

tion rate D and on the allocation variable u. An experimental stage of this project,

consisting of E. coli cultures in continuous bioreactors, was conducted in collabora-

tion with Ibis team (Inria Grenoble - Rhône-Alpes). However, it was not possible

to perform the required amount of experiments due to the pandemic, and so these

results were not included in the manuscript.

Chapter 6 describes a self-replicator model that considers growth rate-independent

proteins in the proteome. The latter aims to model a wild-type bacteria with

no metabolite production, and so the synthesis rate of metabolites vX(p,m) = 0.

Growth rate-independent proteins are divided into ribosomal proteins and house-

keeping proteins. The fact that there are proteins of the gene expression machinery

that do not contribute to growth produces a minimal ribosomal concentration rmin

required to have bacterial growth. Thus, the synthesis rate of macromolecules be-

comes vR(p, r − rmin). Additionally, since a part of the proteome is dedicated to

housekeeping proteins q, there is a maximal ribosomal concentration rmax. The

equations for the intracellular concentrations in the proteome are then given by

ṙ = (rmaxu− r)vR(p, r − rmin),

ṁ = (rmax(1− u)−m)vR(p, r − rmin),

q̇ = ((1− rmax)− q)vR(p, r − rmin).

Finally, an additional section in Appendix A describes supplementary work carried

out on gene-regulatory networks, produced as part of a collaborative work during

my PhD. The results fall within the realm of Systems Biology, but they have been

excluded from the main body of the manuscript for being out of the specific scope

of the thesis.
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Chapter 2

Constant substrate inflow

This chapter reproduces [AYT5], published in the 58th Conference on Decision and

Control (IEEE CDC 2019), and some unpublished results on the stability of the

system of interest and the uniqueness of the solution of the static optimization

problem.

2.1 Introduction

In nature, microorganisms are continuously facing nutrient availability changes in

the environment, and thus they have evolved to dynamically adapt their physiology

to cope with this phenomenon. This is achieved through reorganization of the gene

expression machinery, by dynamically allocating resources to different cellular func-

tions. Among all possible allocation strategies, only few will guarantee survival when

competing for nutrients, leading to complex and highly optimized organisms. In the

specific case of Escherichia coli, studies have shown that, under certain conditions,

bacterial populations achieve nearly maximal growth-rate, suggesting that this fea-

ture is indeed a design objective resulting from evolutionary processes [14]. These

experimental results have triggered a large number of studies where the growth-rate

maximization strategy is a central assumption when approaching resource allocation

problems [21]. However, most of these works consider the resource allocation prob-

lem in steady-state conditions, which do not represent the natural environment of

bacterial populations, thus motivating a dynamical approach to the problem. Such

dynamical behaviours can be modeled through the so-called self-replicator models,

widely used in bacterial growth representations for its simplicity and its capacity to
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reproduce observed experimental behaviours [45].

The starting point for this line of research is [30], where the authors addressed

the problem of dynamical allocation of cellular resources, showing that maximizing

the steady-state growth is a sub-optimal strategy under changing environments. The

dynamical growth-rate maximization can be interpreted as a biomass maximization

problem during a fixed time period. Thus, it is possible to reformulate the question

as an OCP (Optimal Control Problem), to be solved by means of the PMP (Pon-

tryagin’s Maximum Principle). This theoretical approach can provide gold standard

allocation strategies, that can be then compared to feasible growth control imple-

mentations in bacterial cells. These results have provided a baseline understanding

upon which it is possible to re-engineer the naturally-evolved behaviors of the cell

in order to improve certain productivity measures. In particular, we consider the

problem of producing a certain metabolite of interest, as considered in [43], for

its relevance in biotechnological processes. In this regard, Optimal Control theory

can not only shed light on the natural bacterial intracellular behaviours, but also

help enhance industrial processes, as well as provide guidance in biotechnological

research.

In this work, we present a general coarse-grained model for a self-replicating

system extended with the metabolite production pathway based on [30, 43]. We

start, in Section 2.2, by considering the case of the CSTR (Continuous Stirred-

Tank Reactor) Bioreactor scheme as our baseline, and we show that is it possible

to derive the models previously analyzed in the field (fed-batch, constant substrate,

no production of metabolites) as an initial step towards a full analysis of the new

system. Then, in Section 2.4, we focus on two dynamical problems: 1) biomass

maximization when there is no production of metabolites, a feature assumed to be

achieved by living organisms through evolution; and 2) product maximization under

constant environmental conditions (corresponding to the fed-batch bioreactor), an

artificial objective stated purely for biotechnological purposes. Ultimately, the com-

parison between this two problems should help to understand how to dynamically

disrupt the natural allocation process in order to prioritize the metabolite produc-

tion pathway instead of the population’s growth rate, which is the natural behavior

of bacteria. From the biological point of view, our results show that in order to opti-

mally produce the artificial compound, the dynamical allocation of resources should

be progressively altered to allocate more resources to the metabolic machinery of
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the cell population. Both problems are tackled through Optimal Control theory,

and then solved using PMP. The solutions of both OCPs turn out to be singular

controls, characterized by the existence of a singular arc along the solution. Conse-

quently, we proceed in Section 2.5 to characterize the singular trajectories in both

cases, detailing the computations required to obtain the second order singular arc,

and providing a numerical check of the suitable Legendre-Clebsch condition.

2.2 Self-replicator models

2.2.1 CSTR Bioreactor model with metabolite production

As previously stated, the problem of resource allocation in bacteria can be studied

through the so-called self-replicator models. We consider a self-replicating system

in a CSTR Bioreactor of volume Vext. The cell is composed of the gene expression

machinery (R) and the metabolic machinery (M), as seen in Figure 2.1a. Based

on the extension introduced in [43], a metabolic pathway for the production of a

certain metabolite of interest X is included (Figure 2.1b).

S P

R

M

VM

(1-α) VR

αVR

(a) Original scheme [30].

S P

R

M

X I

VM

(1-α) VR

αVR

VX

(b) Extended scheme [43].

Figure 2.1: Self-replicator models of bacterial growth.

The system is described by three chemical macroreactions

S
VM−−→ P,

P
VR−−→ αR+ (1-α)M,

P
VX−−→ X.
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The first reaction transforms an external substrate (S) into precursor metabolites

(P ) and is catalyzed byM . The second one converts precursors into macromolecules,

and is catalyzed by R. Finally, a third reaction transforms precursors into the

product X, and is also catalyzed by M . The parameter α ∈ [0, 1] represents the

resource allocation choice, and determines for each time instant the proportion of

precursor allocated to the gene expression machinery, while 1 − α indicates the

proportion allocated to the metabolic machinery. The rates at which these reactions

occur are VM , VR and VX [g h−1]. The system is subject to a constant volumetric

flow rate F [L h−1] which generates both an inflow of fresh medium rich in substrate,

and an outflow of biomass and metabolites [46]. Moreover, the scheme is extended

with the growth switch described in [44] that allows to shut off the production of

ribosomes and other components of the gene expression machinery. Then, the new

resource allocation variable becomes

u(t) = I(t)α(t), u ∈ [0, 1], (2.1)

where I is the external control and α the natural allocation mechanism used in

[30]. While these two control functions are supposed to act independently, we are

interested in obtaining the optimal combination of them. Thus, in this work, we

restrict the analysis to calculate optimal control u, without decoupling the individual

controls. Then, the time evolution of the mass of each component can be written as

Ṡ = VSin
− VM − VSout ,

Ṗ = VM − VR − VX − VPout ,

Ṁ = (1− u)VR − VMout ,

Ṙ = uVR − VRout ,

Ẋ = VX − VXout ,

(2.2)

where the inflow/outflow rates are defined as VSout = DS, VPout = DP , VMout = DM ,

VRout = DR, VXout = DX, VSin
= Fsin, sin [g L−1] being the concentration of the

nutrient input, and D [h−1] the dilution rate given by the relation F/Vext. Under

the assumption that the cytoplasmic density of the cells is constant throughout the
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population, we define the volume of the cell population V [L] as

V .
= β(M +R), (2.3)

where β [L g−1] corresponds to the inverse of the cytoplasmic density. The definition

(2.3) is based on the experimental fact that macromolecules explain most of the

biomass in microbial cells [6]. Then, for the sake of convenience, quantities of the

system are expressed as concentrations,

p
.
=

P

V
, r

.
=

R

V
, m

.
=

M

V
, s

.
=

S

Vext

, x =
X

V

where p, r and m [g L−1] are intracellular concentrations of precursor metobolites,

ribosomes (and other components of the gene expression machinery) and metabolic

enzymes respectively (with respect to the cell population volume), s [g L−1] is the

extracellular concentration of substrate with respect to a constant external volume

Vext [L]; and x [g L−1] a concentration without a precise biological interpretation

(since the metabolite is excreted from the cell population). As a result, it is possible

to exclude the dynamics of m from the analysis since, by construction, r+m = 1/β.

Replacing with concentrations leads to the following system,

ṡ = D(sin − s)− vM(s,m)
V
Vext

,

ṗ = vM(s,m)− vR(p, r)− vX(p,m)− µ(t)p,

ṙ = uvR(p, r)− µ(t)r,

ṁ = (1− u) vR(p, r)− µ(t)m,

ẋ = vX(p,m)− µ(t)x

V̇ = (µ(t)−D)V ,

(2.4)

where vM , vR and vX [g L−1 h−1] are the mass fluxes per unit volume obtained from

dividing the rates VM , VR and VX by V ; and µ(t) [h−1] is the growth rate of the

self-replicator system that, using (2.2), is defined as

V̇
V

=
Ṁ + Ṙ

M +R
= βvR(p, r)−D → µ(t)

.
=

V̇
V

∣∣∣∣∣
F=0

= βvR(p, r). (2.5)
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The latter basically means that the growth rate is defined as the relative variation

of cell volume (V̇/V) when there is no volumetric flow rate. The synthesis rates are

modeled as Michaelis-Menten kinetics

vM(s,m)
.
= kM m

s

KM + s
,

vR(p, r)
.
= kR r

p

KR + p
,

vX(p,m)
.
= kX m

p

KX + p
,

(2.6)

with rate constants kM , kR, kX [h−1] and half-saturation constants KM , KR, KX

[g L−1]. Moreover, quantities and time-scale are nondimensionalized in order to

simplify the analysis, by defining appropriate new variables and constants

t̂
.
= kR t, p̂

.
= β p, r̂

.
= β r, x̂

.
= β x X̂

.
= β X,

K
.
= β KR, K1

.
= βKX , K2

.
= βKM

k1
.
= kX

kR
, k2

.
= kM

kR
.

By replacing all variables and dropping all hats, system (2.4) becomes

ṡ = D(sin − s)− k2
(1− r)s

(K2 + s)

V
Vext

,

ṗ = k2
s (1− r)

K2 + s
− k1

p(1− r)

K1 + p
− (p+ 1)

pr

K + p
,

ṙ = (u− r)
pr

K + p
,

ẋ = k1
p(1− r)

K1 + p
− pr

K + p
x,

V̇ =

(
pr

K + p
−D

)
V .

(2.7)

where the dynamical expression of m has been removed since m = 1 − r. The

analysis of model (2.7) is part of a more recent work [AYT2], which is described in

this thesis in Chapter 4. In the next section, we present the particular case where

D = 0, meaning that there is no substrate inflow, and no biomass output.
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2.2.2 Substrate depletion

In this case, the substrate is not replenished from the outside, a situation that can

describe batch cultivation. The dynamical equation for s becomes

ṡ = −k2
s(1− r)

K2 + s

V
Vext

. (2.8)

The optimal product maximization problem was partly analyzed for this particular

case in [43] where, due to the complexity of the computations in the PMP, most of the

analysis was performed through a numerical approach. In Chapter 3, a more detailed

study of this model and its associated optimal control problems is performed. To

allow an analytical study, we simplify the system by assuming there is substrate in

excess and the depletion occurs slowly enough (if, for example, V ≪ Vext). Thus, it

is possible to exclude the dynamics of s from the analysis, which yields the model

of interest in this paper.

2.2.3 Constant environmental conditions

The environmental conditions can be modeled as constant over time as a result of s

being constant due some external regulation of the variable, but it can also describe

an environment with abundant substrate, where s ≫ KM in (2.6). A constant value

EM
.
= k2

s

K2 + s

is defined, such that model (2.8) becomes

ṗ = EM(1− r)− k1
p(1− r)

K1 + p
− (p+ 1)

pr

K + p
,

ṙ = (u− r)
pr

K + p
,

ẋ = k1
p(1− r)

K1 + p
− pr

K + p
x,

V̇ =
pr

K + p
V .

(S)

This assumption can also represent fed-batch cultivation where the nutrient con-

centration is maintained high enough in order to achieve exponential growth rate.
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For this particular case study, we state the problem of product maximization as an

OCP, and characterize the singular arcs of the solution.

2.2.4 Allocation problem with no metabolite production

By overriding the production of the compound X, the model becomes the coarse-

grained self-replicator depicted in Figure 2.1a. This is a particular case of the model

(S), when k1 = 0, and the external control I(t) introduced in (2.1) is overridden (so

that u(t) = α(t)), 
ṗ = EM(1− r)− (p+ 1)

pr

K + p
,

ṙ = (α− r)
pr

K + p
.

(2.9)

The problem of biomass maximization by natural mechanisms has been extensively

analyzed for this model in [30], so in this paper we merely recall its dynamics and

the OCP associated, in order to compare the solution with that of the metabolite

production problem.

2.3 Dynamical analysis of model (S)

In this section, we perform a local and global analysis of model (S). Given the

nullcline p that satisfies the equation

0 = EM(1− r)− wX(p)(1− r)− wR(p)(p+ 1)r,

with

wR(p) =
p

K + p
, wX(p) =

k1p

K1 + p
,

we can define the function

rn(p)
.
=

EM − wX(p)

EM − wX(p) + wR(p)(p+ 1)
∈ (0, 1], (2.10)
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which is monotonically decreasing w.r.t. p, such that the equation for p can be

rewritten as

dp

dt
= (rn(p)− r)[EM − wX(p) + wR(p)(p+ 1)],

leading to the system

dp

dt
= (rn(p)− r)[EM − wX(p) + wR(p)(p+ 1)],

dr

dt
= (u− r)wR(p)r,

dx

dt
= wX(p)(1− r)− wR(p)rx,

dV
dt

= wR(p)rV .

(S1)

2.3.1 Global behavior

Given that the volume V admits no steady state except the trivial V = 0, we

will study the dynamical behavior of the system without considering this variable.

Additionally, since the dynamics of variables (p, r) do not depend on x, we will resort

to well-known decomposition techniques presented in [47] to study the stability

properties of S1 through its subsystems. More precisely, we will separate the system

into two subsystems arranged in a hierarchical form

z1 =

[
p

r

]
,

dz1
dt

= f1(z1),

z2 =
[
x
]
,

dz2
dt

= f2(z1, z2),

where f1 depends only on z1. Therefore, in the present section, we will study the

stability of the subsystem given by variables (p, r)
dp

dt
= (rn(p)− r)[EM − wX(p) + wR(p)(p+ 1)]

dr

dt
= (u− r)wR(p)r

(S′
1)
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to conclude, towards the end of the section, on the stability of the global system

(S1).

Lemma 2.3.1. The set,

Γ
.
=
{
(p, r) ∈ R2 : p ≥ 0, 1 ≥ r ≥ 0

}
,

is positively invariant in (S′
1) for the initial value problem.

Proof. Let us analyze the boundaries of Γ,

ṗ|p=0 = EM(1− r) ≥ 0 ⇒ p = 0 is repulsive or invariant.

ṙ|r=0 = 0 ⇒ r = 0 is invariant.

ṙ|r=1 = (u− 1)wR(p) ≤ 0 ⇒ r = 1 is repulsive or invariant.

In order to study the steady-state behavior of the system, we fix u(t) = ū ∈ (0, 1).

Lemma 2.3.2. The system admits two equilibria:

• The interior equilibrium: Ei = (pi, ū)

• The no-growth equilibrium: Ew = (0, 1)

with pi solution of the equation

EM(1− ū)− (p+ 1)wR(p)ū− wX(p)(1− ū) = 0 (2.11)

Proof. To prove uniqueness of Ei, it is sufficient to prove that the value of pi is

unique in (2.11). We define the constant value,

c1
.
= EM(1− ū) ≥ 0,

replace them in (2.11) and define the function f as

f(p)
.
= wX(p)(1− ū) + (p+ 1)wR(p)ū,
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with the following properties

f(0) = 0, lim
p→∞

f(p) = ∞,
∂f(p)

∂p
> 0.

Therefore, f(p) = c1 has a unique solution pi, which also leads to a unique value xi

and thus the equilibrium Ei is unique.

2.3.2 Local stability of equilibria

We first write the Jacobian matrix

J =

[
−(p+ 1)w′

R(p)r − wR(p)r − w′
X(p)(1− r) −EM − wR(p)(p+ 1) + wX(p)

w′
R(p)r(ū− r) −wR(p)r + (ū− r)wR(p)

]
,

(2.12)

where

w′
X(p)

.
=

∂wX(p)

∂p
, w′

R(p)
.
=

∂wR(p)

∂p
.

Equilibrium Ei

Replacing the values of Ei in (2.12)

Ji =

[
−(p+ 1)w′

R(p)ū− wR(p)ū− w′
X(p)(1− ū) −EM − wR(p)(p+ 1)− wX(p)

0 −wR(p)ū

]
,

with eigenvalues

λ = (−(p+ 1)w′
R(p)ū− wR(p)ū− w′

X(p)(1− ū),−wR(p)ū),

and so the equilibrium is locally stable.
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Equilibrium Ew

In Ew, one has wR(p) = wX(p) = 0 and w′
R(p)r = 1

K
, and so the Jacobian matrix

becomes

Jw =

[
− 1

K
−EM

− 1
K
(1− ū) 0

]
,

with characteristic polynomial

P (λ) =

(
λ+

1

K

)
λ− EM

1

K
(1− ū) = λ2 + λ

1

K
− EM

1

K
(1− ū).

Then, the eigenvalues are given by

λ1 =
− 1

K
− c1

2
< 0, λ2 =

− 1
K
+ c1

2
> 0, with c1 =

√
1

K

2

+ 4EM
1

K
(1− ū)

showing that the equilibrium is a saddle point. Now, let us find the eigenvector

v1 = [p1, r1]
T associated to the stable eigenvalue λ1 < 0,[

λ1 +
1
K

EM

1
K
(1− ū) λ1

][
p1

r1

]
= 0, ⇒

{
(λ1 + w′

R(p)r)p1 + EMr1 = 0

w′
R(p)r(1− ū)p1 + λ1r1 = 0

Solving the system yields the relations

p1 = −r1
EM

λ1 + w′
R(p)r

, p1 = −r1
λ1

w′
R(p)r(1− ū)

,

where it can be seen that both equations are equivalent

EM
1
K
(1− ū)

(λ1 +
1
K
)λ1

=
4EM

1
K
(1− ū)

−( 1
K
− c1)(

1
K
+ c1)

=
4EM

1
K
(1− ū)(

1
K

)2
+ 4EM

1
K
(1− ū)−

(
1
K

)2 = 1,

and so, since λ1 < 0, p1 and r1 have the same sign, which means that the eigenvector

associated to the stable eigenvalue points to the first and third quadrants, which is

outside the invariant set Γ.
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2.3.3 Global analysis of S ′
1

The analysis of the global behavior consists on dividing Γ in four regions delimited by

the system nullclines (as seen in Figure A.2) and studying how the system behaves

in each region separately. We start by stating what has been showed in Section 2.3.2:

Lemma 2.3.3. A trajectory originating in Γ \ {Ew} can’t converge to the unstable

equilibria Ew.

Proof. As shown in Section 2.3.2, Ew is a saddle point, and the eigenvector associated

to the stable eigenvalue points to the first and third quadrant w.r.t. Ew = (0, 1). As

this is the only possible direction through which the saddle point can be attained,

the equilibrium is not an attractor in Γ, except for trajectories starting in Ew.

0 pi
p

u

1

r

Nullcline p
Nullcline r
Ei

Ew

(a) Trajectories of S′
1.

0 pi
p

u

1
r A B

CD

rn (p) = r

Nullcline p
Nullcline r
Ei

Ew

(b) Division of Γ in 4 regions.

Figure 2.2: Phase plane of system S ′
1.

Lemma 2.3.4. Every solution of the initial value problem starting in the sets,

ΓA
.
=
{
(p, r) ∈ R2 : pi ≥ p > 0, rn(p) ≥ r ≥ ū

}
,

ΓC
.
=
{
(p, r) ∈ R2 : p ≥ pi, ū ≥ r ≥ rn(p)

}
,

converges asymptotically to the equilibrium Ei.
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Proof. First, let us show that ΓA is positively invariant to the system

ṗ|p=0 = EM(1− r) > 0, ∀r ∈ (ū, 1) ⇒ p = 0 is repulsive.

ṙ|r=rn(p) = (ū− rn(p))wR(p)rn(p) < 0, ∀p ∈ (0, pi) ⇒ r = rn(p) is repulsive.

ṙ|r=ū = 0 ⇒ r = ū is invariant.

as well as ΓC

ṙ|r=rn(p) = (ū− rn(p))wR(p)rn(p) > 0, ∀p > pi ⇒ r = rn(p) is repulsive.

ṙ|r=ū = 0 ⇒ r = ū is invariant.

Then, asymptotic stability of Ei can be proved using the following simple quadratic

Lyapunov function

VA,C(t)
.
=

1

2
(pi − p)2 +

1

2
(ū− r)2 > 0, ∀(p, r) ∈ (ΓA ∪ ΓC) \ {Ei},

such that

d

dt
VA,C(t) = −(pi − p)ṗ− (ū− r)2wR(p) < 0, ∀(p, r) ∈ (ΓA ∪ ΓC) \ {Ei},

which verifies the inequality given that in ΓA, pi > p and ṗ > 0, and in ΓC , pi < p

and ṗ < 0. The equilibrium Ei is the only point where the derivative d
dt
VA,C(t) = 0,

as well as the largest invariant set, which confirms through LaSalle theorem [48]

that every solution starting in ΓA and ΓC approaches Ei as t → ∞.

Lemma 2.3.5. Every solution of the initial value problem starting in the sets,

ΓB
.
=
{
(p, r) ∈ R2 : p > 0, 1 ≥ r > max {ū, rn(p)}

}
,

ΓD
.
=
{
(p, r) ∈ R2 : p > 0, min {ū, rn(p)} > r > 0

}
,

converges asymptotically to the equilibrium Ei.

Proof. Every point in ΓB meets rn(p) < r and r > ū, meaning that the vector field

have signs ṗ < 0, ṙ < 0. Analogously, every point in ΓD meets rn(p) > r and

r < ū, so the vector field has signs ṗ > 0, ṙ > 0. As stated in Lemma 2.3.3, no

trajectory can converge towards Ew, so it can go whether towards the equilibrium

Ei, or towards any of both nullclines, where eventually it will converge to Ei as
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proven in Lemma 2.3.4.

Lemmas 2.3.4 and 2.3.5 lead us to the following theorem.

Theorem 2.3.1. Every solution of the initial value problem with initial conditions

p(0) > 0 and r(0) ∈ (0, 1) converges asymptotically to the equilibrium Ei as t → ∞.

Connection with the original system

As the global stability of the equilibrium Ei in subsystem S ′
1 has been established,

we can conclude on the global behavior of the original system S1. For that, we will

state a simplified version of the theorem presented in [47] that relates the stability

of a hierarchical system

Sz :


dz1
dt

= f1(z1)

dz2
dt

= f2(z1, z2)

with equilibrium z̄
.
= [z̄1, z̄2], with the stability of its so-called isolated subsystems

Sz1 :
dz1
dt

= f1(z1), Sz2 :
dz2
dt

= f2(z̄1, z2),

where, in the second system Sz2 , z1 is set to z̄1.

Theorem 2.3.2. [47] Given f1 and f2 continuous, autonomous and continuously

differentiable with respect to all variables, satisfying

sup
t>0

sup
z1

||∇z1f1(z1)|| < ∞,

sup
t>0

sup
(z1,z2)

||∇(z1,z2)f2(z1, z2)|| < ∞,

and f1(z̄) = f2(z̄) = 0, then z = z̄ is a globally asymptotically stable equilibrium

point of Sz if and only if z1 = z̄1 and z2 = z̄2 are globally asymptotically stable

equilibrium points of isolated subsystems Sz1 and Sz2 respectively.

In the present case, as the asymptotic stability of the equilibrium Ei in S ′
1 has

been already proven, and given that all terms in the Jacobian matrix (2.12) are
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bounded for every value of Γ, we proceed to evaluate the dynamical expression of x

in (p, r) = Ei

dx

dt
= wX(pi)(1− ū)− wR(pi)ūx,

showing that the x = xi is globally asymptotically stable, with

xi
.
=

wX(pi)(1− ū)

wR(pi)ū
.

The latter is formalized in the following theorem.

Theorem 2.3.3. In every solution of the initial value problem in system S1 starting

in p(0) > 0, r(0) ∈ (0, 1), x(0) ≥ 0 and V(0) > 0, when t → ∞,

• (p, r) converge asymptotically to the equilibrium Ei.

• The biomass volume V grows exponentially with rate

µ(pi, ū) = wR(p)ū =
piū

K + pi

• The quantity x converges asymptotically to

xi =
wX(pi)(1− ū)

wR(pi)ū

as the total mass of metabolite X also grows exponentially.

2.4 Optimal control problem

2.4.1 Dynamical biomass maximization in Model (2.9)

In model (2.9), the control input is the natural allocation α(t). Let U be the set of

admissible controllers, which are Lebesgue measurable real-valued functions defined

on the interval [0, T ] and satisfying the constraint α ∈ [0, 1]. The maximization of
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the biomass can be formulated as an OCP

maximize Jµ(α) =

∫ T

0

µ(p, r) dt

subject to α(·) ∈ U

with

µ(p, r) =
pr

K + p

being the growth rate defined in (2.5). Given the state φ = (p, r), and according to

Pontryagin Maximum Principle, the Hamiltonian is defined as

HA(φ, λ, α)
.
= λ0µ+ ⟨λ, F (φ, α)⟩, (2.13)

where F denotes the right-hand side of (2.9) and where λ = (λp, λr) is the adjoint

state. We assume that the process (α, φ, λ) satisfying PMP conditions is a normal

extremal and set λ0 = −1, which yields

HA =λpEM(1− r)− pr2

K + p
[λp(1 + p) + λr(r − α)− 1].

Since the Hamiltonian depends linearly on the control α, the optimal solution is

αopt(t) =

{
0, if ϕ(·) < 0,

1, if ϕ(·) > 0.
(2.14)

being

ϕ(·) = λr
pr

K + p

the switching function.

2.4.2 Product maximization in Model (S)

The problem can be formulated as

maximize JX(u) = X(T )−X0

subject to u(·) ∈ U ,
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where X0
.
= X(0) is the initial mass of metabolite. Using the dynamical equation

for X in (S), the criterion can be written as

JX(u) =

∫ T

0

k1
p(1− r)

K1 + p
V dt.

It can be proved that, if X0 > 0, the cost function can be equivalently reformulated

as

JX(u) =

∫ T

0

k1
x

p(1− r)

K1 + p
dt. (2.15)

Static problem

We are interested in the steady state that maximizes the metabolite production in

terms of the constant allocation ū. The latter is represented by the integrand of the

cost function (2.15). The problem can be stated as

maximize J(ū, pi(ū)) =
wX(p)(1− ū)

xi

,

subject to ū ∈ (0, 1).
(2.16)

While an explicit calculation of the solution of the latter problem is rather hard

to obtain, we will focus on showing the existence and uniqueness of such solution.

First, we notice that the cost can be equivalently rewritten as

J(ū, pi(ū)) = wR(p)ū =
pi(ū)ū

K + pi(ū)
,

which shows that maximizing the metabolite production at steady state is equivalent

to maximizing the biomass production. Recalling the function rn(p) defined in

(2.10), we can express ū in terms of p and maximize J(p, ū(p)) with respect to p (as

the steady-state value pi(ū) is strictly decreasing w.r.t. ū). Moreover, for the sake

of simplicity, rather than maximizing the growth rate wR(p), we will minimize its

inverse, which yields the optimization problem

minimize Ĵ(p, ū(p))
.
=

1

J(p, ū(p))
=

K + p

p ū(p)
,

subject to p ∈ (0,∞).
(2.17)
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The objective can be further developed by replacing ū(p) by its expression, which

yields

Ĵ(p) =
K

p
+ 1 +

(p+ 1)(K1 + p)

EMK1 + p(EM − k1)
.

The following assumption is required to ensure the well-posedness of the problem:

Assumption 2.4.1. EM > k1.

The latter assumption implies that the maximal substrate intake is strictly

greater than the maximal metabolite production. Note that this assumption also

includes model (2.9), where k1 = 0, as a particular case of the current analysis. For

notation purposes, we define the constants

c1
.
=

EMK1

EM − k1
> 0, c2

.
=

(1− c1)(K1 − c1)

EM − k1
, (2.18)

such that

K1 − c1 = K1

(
1− EM

EM − k1

)
< 0.

Then, the objective function becomes

Ĵ(p) =
K

p
+ 1 +

p+ 1

EM − k1
+

K1 − c1
EM − k1

+
c2

p+ c1
. (2.19)

It can be seen from (2.19) that, at the boundaries, the function Ĵ(p) verifies

lim
p→0

Ĵ(p) = ∞, lim
p→∞

Ĵ(p) = ∞,

which is coherent with the fact that the growth rate µ(p, r) = 0 at the boundaries.

The latter, and the continuity of Ĵ(p), implies the existence of, at least, one solution.

Additionally, it means that the optimal value p is interior, so in order to prove

uniqueness of the solution, it suffices to show that the derivative is cancelled in only

one value of p by solving

∂

∂p
Ĵ(p) = −K

p2
+

1

EM − k1
− c2

(p+ c1)2
= 0. (2.20)

For that, there are two possible cases to explore in terms of the sign of c2.
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Case c2 ≥ 0

It can be seen from (2.18) that if 1 − c1 ≤ 0, then c2 ≥ 0 and so we can rewrite

(2.20) as

1

EM − k1
=

K

p2
+

c2
(p+ c1)2︸ ︷︷ ︸
f1(p)

where

lim
p→0

f1(p) = ∞, lim
p→∞

f1(p) = 0,
∂

∂p
f1(p) = −2K

p3
− 2c2

(p+ c1)3
< 0,

which means that the equation f1(p) =
1

EM−k1
has a unique solution. Then, there is

a single value of p that cancels (2.20), and so the minimization problem (2.17) has

a unique solution.

Case c2 < 0

In the case where c2 < 0 due to 1− c1 > 0, we can rewrite the equality (2.20) as

K =
p2

EM − k1
− c2

(
p

p+ c1

)2

︸ ︷︷ ︸
f2(p)

where

f2(0) = 0, lim
p→∞

f2(p) = ∞,
∂

∂p
f2(p) =

2p

EM − k1
− 2c2 p

(p+ c1)2

(
1− p

p+ c1

)
> 0,

showing that the equation f2(p) = K has a unique solution, which again means that

the minimization problem (2.17) has a unique solution. The latter can be formalized

in the following theorem:

Theorem 2.4.1. Under assumption 2.4.1, there exists a unique constant allocation

ū ∈ (0, 1) that maximizes the steady-state metabolite production of Problem (2.16)

(equivalent to the steady-state biomass production).
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Dynamic problem

For the sake of convenience, we perform a change of variables y
.
= lnx, so that the

criterion becomes

JX(u) =

∫ T

0

k1e
−y p(1− r)

K1 + p
dt,

with new initial condition y(0) = y0 = lnx(0). Given the state φ = (p, r, y) and

adjoint state λ = (λp, λr, λy), we again assume that the extremal triple (φ, u, λ)

satisfies PMP in normal form, and set λ0 = −1. The Hamiltonian becomes

HB =EMλp(1− r)− ((λy + 1)e−y + λp)k1p(1− r)

K1 + p
− (λp(p+ 1) + λr(r − u) + λy)pr

K + p
,

(2.21)

and the adjoint system λ̇ = −∂HB

∂φ
writes



λ̇p =

((λy + 1)e−y − λp)k1(1− r)

(
p

K1 + p
− 1

)
K1 + p

+
λppr

K + p

−
(λp(p+ 1) + λr(r − u) + λy)r

(
p

K + p
− 1

)
K + p

,

λ̇r = Emλp +
((λy + 1)e−y − λp)k1p

K1 + p

+
(λp(p+ 1) + λr(2 r − u) + λy)p

K + p
,

λ̇y = −k1(λy + 1)p(r − 1)e−y

K1 + p
.

As in the previous model, the Hamiltonian for this OCP still depends linearly on u

and so the solution is again as (2.14), with the same switching function ϕ(·) = λr
pr

K+p
.

2.4.3 Characterization of singular regimes

Singular trajectories play a major role in optimal control theory [49, 50], and their

characterization is a necessary step towards a complete description of the optimal

solution. In both explored OCPs, and as expected in linear optimization problems,
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maximization of the Hamiltonian gives no information when the switching function

vanishes during a whole interval of time. In this case, the OCP has a singular arc,

that can be obtained by computing the successive time derivatives of the switching

function until it is possible to obtain an explicit expression of the control. In the case

of the simple resource allocation problem solved in 2.4.1, vanishing of the switching

function implies than λr = 0, so λ̇r = 0 along the singular arc. Since the Hamiltonian

is preserved along an extremal trajectory, λp is constant along a singular arc, which

means that such arc corresponds to a steady state of the system. Moreover, it has

been shown in [30] that the singular arc is in fact the optimal steady state solution

of the static problem, and so the optimal control is α(t) = αopt. Additionally, the

arc is of order two, which implies that it has to be entered and exited through a

chattering arc [51], i.e. an arc with an infinite number of switchings. We now focus

on the model (S) and provide a detailed computation of the corresponding singular

arcs. The Hamiltonian (2.21) can be expressed as

HB = H0 + uH1

where

H0 =Emλp(1− r) +
((λy + 1)e−y − λp)k1p(1− r)

K1 + p

− (λp(p+ 1) + λrr + λy)pr

K + p
,

H1 =ϕ(t) =
λrpr

K + p
·

Assume H1 vanishes on a whole sub-interval I = [t1, t2] ⊂ [0, T ]. The switching

surface is the set (here n = 3)

Σ
.
=
{
(φ, λ) ∈ R2n |H1 = 0

}
.

The time derivative ofH1 along the extremal is equal to the Poisson bracket {H0, H1},
denoted as H01, since

Ḣ1 =
∂H1

∂φ
φ̇+

∂H1

∂λ
λ̇ =

n∑
i=1

(
∂HB

∂λi

∂H1

∂φi

− ∂HB

∂φi

∂H1

∂λi

)
= {HB, H1} = {H0 + uH1, H1} = {H0, H1} = H01.
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Using the latter, we proceed to compute the subsequent derivatives of H1 with

respect to time, which should also vanish along the singular arc, until it is possible

to compute the singular control u:

0 = H01 = − pr2

(K+p)2
λrp+

λrp2r2

(K+p)2

−
(
Em(r − 1)− k1p(r−1)

K1+p
+ (p+1)pr

K+p

)(
1− pr

K+p

)
λrr
K+p

+

(
Emλp +

((λy+1)e−y−λp)k1p
K1+p

+ (λp(p+1)+λrr+λy)p

K+p

)
pr

K+p
,

(2.22)

and evaluating (2.22) for z ∈ Σ (which, in this case, is just setting λr = 0) yields

0 = H01(z) =

(
Emλp +

((λy + 1)e−y − λp)k1p

K1 + p
+

(λp(p+ 1) + λy)p

K + p

)
pr

K + p
·

(2.23)

From (2.23) we have the following new condition:

Emλp +
((λy + 1)e−y − λp)k1p

K1 + p
+

(λp(p+ 1) + λy)p

K + p
= 0,

which defines a subset of the switching surface Σ given by

Σ′ .
=
{
(φ, λ) ∈ R2n |H01 = 0

}
∩ Σ.

Similarly, the second derivative can be computed as

Ḧ1 = Ḣ01 = {HB, H01} = {H0, H01}+ u{H1, H01} = H001 + uH101,

and so one has

H101 = −prϕ7
λrr

(K + p)2
−

ϕ3r

(
p

K + p
− 1

)
(K + p)2

λrp+

(
Emλp +

k1pϕ2

K1 + p
+

pϕ1

K + p

)
(K + p)2

p2r

+λrp
p2r2

(K + p)3
+ prϕ7

λrpr

(K + p)3
+

λrϕ3

(
p

K+p
− 1
)

(K + p)2
pr +

λrϕ7

(
p

K + p
− 1

)
(K + p)2

pr2
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where

ϕ1 = λp(p+ 1) + 2λrr + λy,

ϕ2 = (λy + 1)e−y − λp,

ϕ3 = Em(r − 1)− k1p(r − 1)

K1 + p
+

(p+ 1)pr

K + p
,

ϕ7 =

ϕ3 + Em − k1p

K1 + p

r
·

Evaluating in z ∈ Σ′ yields

H101(z) =

(
Emλp +

((λy + 1)e−y − λp)k1p

K1 + p
+

(λp(p+ 1) + λy)p

K + p

)
p2r

(K + p)2

= H01(z)
p

K + p
= 0

on Σ′, entailing that singular arcs must be at least of order two. Since Ḧ1 should

vanish along the singular arc, we calculate H001 and evaluate it in z ∈ Σ′:

0 = H001(z) =

k1pϕ2ϕ7

(
p

K1 + p
− 1

)
(K + p)(K1 + p)

+
k1(λy + 1)p3e−y

(K + p)2(K1 + p)

−

k1ϕ2

(
p

K1 + p
− 1

)
K1 + p

− λpp

K + p
+

ϕ1

(
p

K + p
− 1

)
K + p

(Em − k1p

K1 + p

)
p

K + p
,

which defines the set

Σ′′ .
=
{
(φ, λ) ∈ R2n |H001 = 0

}
∩ Σ′.

As previously stated, the procedure should be repeated until u appears explicitly.

For this problem, going up to the fourth derivative of H1, one is able to retrieve the

control using Poisson brackets of length five,

0 = H00001 + uH10001,
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provided H10001 is not zero. This turns out to be the case, and one has to check the

Kelley (or generalized Legendre-Clebsch) condition (here for k = 2)

(−1)k
∂

∂u

[
d2k

dt2k

(
∂HB

∂u

)]
< 0, t ∈ I,

along the singular arc. This condition is necessary for optimality and we devise a

numerical check in next section. Having a singular control of intrinsic order two

(that is such that H101 vanishes identically on the whole cotangent space) implies

that singular arcs can only be entered and exited through chattering (Fuller phe-

nomenon); see [69]. Although the singular is only of local order two in our case

(H101 vanishes when H1 and H01 do, not identically), the numerical simulations be-

low show that there is indeed chattering in and out to enter and exit the singular

arc.

2.5 Numerical solution

The numerical verifications were performed with Bocop [52], using the following

parameters: β = 0.003 L g−1, EM = 1, kR = 1.6 h−1, KR = 1 h−1, kX = 1 h−1,

KX = 1 h−1 and Vext = 8 L. The number of time steps was fixed to 5000, and the

tolerance to 1e − 14. The discretization method used was the sixth-order Lobatto

III C1. In both cases, initial conditions were set to p(0) = 0.024, r(0) = 0.18 and

V(0) = 1; and in the product maximization problem y(0) = 0. As expected, both

optimal control solutions are characterized by a singular arc of order two that is

entered and exited through chattering (Figure 2.3). Moreover, the solution for the

biomass maximization problem αopt matches the optimal steady-state input α∗
opt

along the circular arc (Figure 2.3a), as predicted in the computations. However, it

is not the case for the product maximization problem, where the singular solution

moves away from the optimal steady-state over time (Figure 2.3b) showing that

a constant input is a sub-optimal control strategy. This result suggests that, in

order to maximize the production of the metabolite X, it is necessary to induce

the microbial population to increasingly allocate more resources to the metabolic

machinery as time passes by. Thus, the external control I should act on the natural

allocation α(t) along the singular arc to match the lower value u(t) depicted in Figure

1Bocop definition files are available from the authors on request.
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(a) Biomass maximization
(2.4.1)
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(b) Product maximization
(2.4.2)

Figure 2.3: Solutions of the OCPs computed using Bocop.

2.3b. In both cases, the optimal steady-state inputs α∗
opt and u∗

opt were computed

numerically by selecting the steady-state input that maximizes the integrand of

each criterion, which corresponds to the solution of the static problem, already

shown to exist and to be unique in previous section. The fact that, for the product

maximization problem, the singular arc is of order two, can be verified by evaluating

the derivatives of H1 over the optimal trajectories (Figure 2.4). In this figure, all

subsequent derivatives vanish along the sub-interval I, except for the fourth one. We

eventually provide a numerical check of the generalized Legendre-Clebsch condition.

2.6 Conclusions

Self-replicator models of bacterial growth are capable of reproducing the growth

laws of certain organisms at steady state. However, in [30], it has been shown that

these models can also account for dynamical environments. In this context, natural

biomass maximization was achieved through a bang-singular strategy. In [43], au-

thors showed that the same kind of strategy is necessary in order to maximize the

synthetic production of a metabolite. In line with this work, we have proposed a

metabolite production scheme in a CSTR Bioreactor, with the particularity that it

encompasses previously studied models in the field. We have focused on the most

relevant particular cases to emphasize the importance of singular regimes and chat-

tering arcs on optimal control solutions. We have provided an analytical derivation

of the results, as well as a numerical characterization of the singular regimes. Con-
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Figure 2.4: Simulation of the OCP 2.4.2 (Product maximization) with Bocop. The
intervals where the functions vanish are highlighted in light red. All functions vanish

along the singular arc but ∂
∂u

[
d4

dt4

(
∂
∂u
HB

)]
, highlighted in green, which is negative

as expected.

trary to the natural biomass maximization process, maximizing the production of a

metabolite is accomplished by a singular solution that does not contain any steady

state, showing that a time-varying action is indeed required to achieve maximiza-

tion. For this particular problem, an optimal external control should increasingly

allocate more resources to the metabolic machinery, while reducing the allocation to

the gene expression machinery. Results raise interesting questions from the optimal

control point of view as it can provide ideal control scenarios, but also about how

to implement these open-loop strategies in real environments. Indeed, in order to

do so, further analysis is required for the newly presented CSTR Bioreactor model,
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which is our current objective.
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Chapter 3

Substrate depletion

This chapter describes unpublished work in progress.

3.1 Introduction

The study of living microorganisms through resource allocation models has increas-

ingly become relevant for its capacity to elucidate natural behaviors of microbia

through very simple dynamical models. The core idea is to represent the distribution

of internal resources through optimal control strategies, based on the assumption

that evolutionary processes have tuned these endogenous allocation strategies to

attain nearly-optimal levels. Numerous problems arise in this context, one of them

being the optimal production of metabolites regulated by an external control capa-

ble of arresting the bacterial growth. To this end, a resource allocation approach

can help understand how to modify the naturally-evolved allocation strategies so as

to efficiently produce such metabolite.

This is the subject of this paper, which tackles the problem of batch processing

from a resource allocation perspective. A simple coarse-grained self-replicator model

is introduced, based on [3] and [AYT5], with minimal biological assumptions. Using

mass conservation laws, it is possible to analyse the asymptotic behavior and stabil-

ity of the dynamical system, showing that for every possible allocation strategy, all

component of the system are transformed either into proteins or into metabolites, a

condition later defined as Full depletion. Then, two main studies are performed: the

biomass maximization case, representing the natural objective of wild-type micro-

bial cultures; and the metabolite maximization case, using a bacterial model that
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includes a pathway for metabolite synthesis for industrial purposes. Both problems

are analyzed in infinite time and in finite time, the latter stated as an Optimal

Control Problem (OCP) which is solved through the application of the Pontryagin’s

Maximum Principle (PMP). The problem presented here is similar to the one stud-

ied in [3], but approached from an analytical perspective, and including the case

with no metabolite synthesis as a starting point.

3.2 Model definition

3.2.1 Self-replicator model

We define a self-replicator model describing the dynamics of a microbial population

growing inside a closed bioreactor of fixed volume Vext > 0 liters. At the beginning

of the experience, there is an initial mass of substrate S inside the bioreactor, that

is gradually consumed by the bacterial population, transforming it into precursor

metabolites P. Precursors are transformed into components of the gene expression

machinery R, into enzymes that makes up the metabolic machinery M, and into

a metabolite of interest X that is excreted from the cell. While the production of

proteins M and R is catalyzed by the enzymes R, the absorption of S and synthesis

of X are both catalyzed by M (dashed arrows in Figure 3.1). The proportion of

P

S

M

R

(1
-u
) RV

u
R
V

MV

I

XVX

Figure 3.1: Self-replicator model
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precursors dedicated to the production of M and R is decided by the allocation

control u(t) ∈ [0, 1]: u = 0 means no production of R, while u = 1 means no

production of M. The control u can represent the natural allocation used by bacteria,

as modelled in [30], as well as the artificially modified allocation modelled in [3],

depending on the objective to be analyzed. The dynamics of the system are described

by 

Ṡ = −VM ,

Ṗ = VM − VX − VR,

Ṁ = (1− u)VR,

Ṙ = uVR,

Ẋ = VX ,

where the variables S(t), P (t), M(t), R(t) and X(t) represent the masses (in grams)

of substrate, precursors metabolites, the metabolic machinery, the gene expression

machinery and the metabolites of interest at time t, respectively; VM [g/h], VR [g/h]

and VX [g/h] are the reaction rates of the system, and u(t) is the allocation control

previously defined. We define the structural volume of the bacterial population

inside the bioreactor VL(t) measured in liters as

VL
.
= β(M +R), (3.1)

where β is a constant relating density and volume. This allows us to define concen-

trations with respect to this volume

pV
.
=

P

VL

[ g
L

]
, mV

.
=

M

VL

[ g
L

]
, rV

.
=

R

VL

[ g
L

]
, (3.2)

and define relative rates involved in the processes as

vM(sV ,mV)
.
=

VM

VL

[ g

Lh

]
, vR(pV , rV)

.
=

VR

VL

[ g

Lh

]
, vX(pV ,mV)

.
=

VX

VL

[ g

Lh

]
.

Likewise, we define the concentrations related to the external volume

sV =
S

Vext

[ g
L

]
, xV =

X

Vext

[ g
L

]
.
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From (3.1) and (3.2) we have that

mV + rV =
M +R

VL

=
1

β
. (3.3)

We define the growth rate µ = µ(t) as

µ
.
=

V̇L

VL

= βvR(pV , rV).

and that the dynamical system can be expressed in terms of the concentrations as

ṡV = −vM(sV ,mV)
VL

Vext

,

ṗV = vM(sV ,mV)− vX(pV ,mV)− vR(pV , rV)(βpV + 1),

ṙV = (u− βrV)vR(pV , rV),

ṁV = (1− u− βmV)vR(pV , rV),

V̇L = βvR(pV , rV)VL,

ẋV = vX(pV ,mV)
VL

Vext

.

3.2.2 Kinetics definition

We model the kinetics of the system by supposing they are linear in mV and rV [2].

Thus, they can be expressed as

vM(sV ,mV) = wM(sV)mV ,

vR(pV , rV) = wR(pV)rV ,

vX(pV ,mV) = γwR(pV)mV ,

where γ > 0 is a proportionality constant, under the assumption that vX(pV ,mV)/vR(pV , rV)

does not depend on pV but on the ratio mV/rV . The functions wi are assumed to

have the following behaviour:

Assumption 3.2.1. Function wi(x) : R+ → R+ is
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• Continuously differentiable w.r.t. x,

• Null at the origin: wi(0) = 0,

• Strictly monotonically increasing: w′
i(x) > 0,∀x ≥ 0,

• Strictly concave downwards: w′′
i (x) < 0,∀x ≥ 0,

• Upper bounded: limx→∞ wi(x) = ki > 0.

For numerical simulations, we will resort to the particular case where the func-

tions follow Michalis-Menten kinetics. For that case, we define

wR(pV)
.
= kR

pV
KR + pV

, wM(sV)
.
= kM

sV
KM + sV

,

where the values of the constants kR, KR, kM and KM are based on the literature

[30]. For the general case introduced in Hypothesis 3.2.1 we will define

kR
.
= lim

pV→∞
wR(pV), kM

.
= lim

sV→∞
wM(sV).

3.2.3 Mass fraction formulation and non-dimensionalization

We define mass fractions of the total bacterial mass as

p
.
= βpV , r

.
= βrV , m

.
= βmV , s

.
= βsV , x

.
= βxV ,

and the biomass fraction of the bioreactor

V .
=

VL

Vext

,

which, replacing in (3.3), yields

m+ r = 1. (3.4)

We define the non-dimensional time t̂
.
= kRt and the non-dimensional functions

ŵR(p) =
wR(pV)

kR
, ŵM(s) =

wM(sV)

kR
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so that limp→∞ŵR(p) = 1. Using (3.4), m can be expressed in terms of r, and

so the dynamical equation of m can be removed from the system. For the sake of

simplicity, let us drop all hats from the current notation. Thus, system becomes

ṡ = −wM(s)(1− r)V ,

ṗ = wM(s)(1− r)− γwR(p)(1− r)− wR(p)r(p+ 1),

ṙ = (u− r)wR(p)r,

V̇ = wR(p)rV ,

ẋ = γwR(p)(1− r)V .

(S)

3.3 Model analysis

Lemma 3.3.1. The set,

Γ =
{
(s, p, r,V , x) ∈ R5 : s ≥ 0, p ≥ 0, 1 ≥ r ≥ 0, V ≥ 0, x ≥ 0}

is positively invariant for the initial value problem.

Thus, we fix initial conditions

s(0) = s0 > 0, p(0) = p0 > 0, r(0) = r0 ∈ (0, 1), V(0) = V0 > 0, x(0) = 0.

(IC)

Some relations are immediate from the dynamics: as ṡ ≤ 0 and V̇ ≥ 0 for all t, we

have

s(t) ≤ s0, V(t) ≥ V0, (3.5)

representing the fact that the substrate can only be consumed (and not replenished),

and the biomass can only grow.

3.3.1 Total available mass

As typically occurs in batch processes, there is neither inflow nor outflow of mass

in the bioreactor, which is reflected in the dynamics of the system though a mass
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conservation law. We define the constant

Σ
.
= s0 + (p0 + 1)V0,

representing the initial mass concentration in the system. It can be seen that the

total mass concentration

z
.
= s+ (p+ 1)V + x

is constant for all t (as ż = 0). This means that

s(t) + (p(t) + 1)V(t) + x(t) = Σ, (First integral 1)

for all t. Variables V and x are maximal when the remaining variables are equal to

0, and so they are upper bounded. In particular, both V(t) and x(t) are decreasing

w.r.t. s(t) and p(t). As neither s nor p can be negative, we have that

V(t) + x(t) = Σ (3.6)

when s(t) = p(t) = 0. This condition means that all the available substrate and

precursor metabolites have been depleted and transformed into biomass and metabo-

lites, which is intuitively what one would expect from system (S) for t sufficiently

large. Additionally, using (3.5) and (First integral 1), we can obtain the following

result.

Proposition 3.3.2. V(t) ∈ [V0,Σ], x(t) ∈ [0,Σ− V0] and p(t) ∈ [0, pmax] for all t,

with pmax = Σ/V0 − 1.

3.3.2 Infinite-time full depletion

Dynamics (S) shows that, under initial conditions (IC), s(t) and p(t) can only vanish

asymptotically, that is, when t → ∞. The latter can be proved by seeing that the

dynamical equations of s and p can be bounded to

ṡ ≥ −wM(s)Σ, ṗ ≥ −wR(p)pmax(pmax + 1 + γ),

which means that, at worst, s and p decay exponentially (as functions wi(x) can be

upper bounded by linear functions wi(x) ≤ cix), and thus s(t) = p(t) = 0 cannot be
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attained in finite time. Thus, we define the depletion of s and p in an infinite time

horizon.

Definition 3.3.3. System (S) achieves Full depletion when all the substrate and

the precursors are asymptotically depleted, i.e.

lim
t→∞

s(t) = lim
t→∞

p(t) = 0, (Full depletion)

3.3.3 Asymptotic behaviour

Now, we will study the system dynamics for an infinite time t → ∞.

Constant allocation u∗

Theorem 3.3.1. For any trajectory of system (S) with initial conditions (IC) and

constant allocation u(t) = u∗, it follows that

r(t) = u∗ − (u∗ − r0)
V0

V(t)
. (First integral 2)

Proof. Under a constant allocation u(t) = u∗, the dynamics of r becomes

ṙ = (u∗ − r)µ(p)r.

Using dynamics (S), it is possible to see that the quantity Ru = (u∗−r)V is constant

(as Ṙu = 0), meaning that (u∗ − r(t))V(t) = (u∗ − r0)V0 for all t, which yields

(First integral 2).

General allocation u(t)

Due to the boundedness of V stated in Lemma 3.3.2, and the relation between V
and r shown in (First integral 1), we can see that any constant control u∗ yields a

bounded ribosomal concentration r. We will extend this notion to any function u(t).

Lemma 3.3.4. For any trajectory of system (S) with initial conditions (IC) and

any control u(t), the ribosomal concentration has bounds r(t) ∈ [rmin, rmax] for all t,

with

rmin
.
= r0

V0

Σ
> 0, rmax

.
= 1− (1− r0)

V0

Σ
< 1.
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Proof. Let us extend system (S) by defining variables rlow(t) and rup(t) with dy-

namics

ṙlow = −rlowwR(p)r ≤ 0, ṙup = (1− rup)wR(p)r ≥ 0,

rlow(0) = r0, rup(0) = r0,

which correspond to the dynamics of r with u = 0 and u = 1 respectively, and which

satisfy

rlow(t) ≤ r(t) ≤ rup(t)

for all t. The latter can be easily proved by showing that the time-varying differences

∆low(t) = r(t)− rlow(t), ∆up(t) = rup(t)− r(t)

with dynamics

∆̇low = (u−∆low)wR(p)r, ∆̇up = (1− u−∆up)wR(p)r

are always non-negative: they satisfy ∆low(0) = ∆up(0) = 0 and are repulsive

or (at worst) invariant at 0. Then, based on the same principle used to obtain

(First integral 2), we define the quantities Rlow = rlowV and Rup = (1− rup)V which

are constant (as Ṙlow = Ṙup = 0), and so

rlow(t) = r0
V0

V(t)
, rup(t) = 1− (1− r0)

V0

V(t)
,

for all t. As V0 ≤ V(t) ≤ Σ for all t, we have

rlow(t) ∈
[
r0
V0

Σ
, r0

]
, rup(t) ∈

[
r0, 1− (1− r0)

V0

Σ

]
which shows that rmin ≤ r(t) ≤ rmax for all t.

Lemma 3.3.4 states that, for any control u(t), the ribosomal concentration never

reaches the bounds r = 0 and r = 1, and thus neither the substrate intake nor the

protein synthesis is arrested. We will see that this feature produces (Full depletion)

in the following theorem.

Theorem 3.3.2. Any trajectory of system (S) with initial conditions (IC) and any

control u(t) achieves (Full depletion).
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Proof. Using Lemma 3.3.4, it is easy to see that

ṡ ≤ −wM(s)(1− rmax)V0,

which means that s(t) converges to 0 as t → ∞. Then, this means that

ṗ ≤ −γwR(p)(1− rmax)− wR(p)rmin,

and so p(t) also converges to 0 as t → ∞.

3.4 The biomass maximization case

For this section, we will write the problem of maximizing the biomass for both

infinite time and finite time. The latter is a mathematical representation of the

naturally-evolved resource allocation strategy used by bacteria in nature. For that,

we will assume that no metabolite is produced, as the pathway responsible for its

production is artificially engineered, and thus not present in wild-type bacteria. This

is simply modeled through γ = 0. The resulting system is

ṡ = −wM(s)(1− r)V ,

ṗ = wM(s)(1− r)− wR(p)r(p+ 1),

ṙ = (u− r)wR(p)r,

V̇ = wR(p)rV ,

(SV)

3.4.1 Infinite-time problem

Problem formulation

We first write the biomass maximization problem for an infinite time horizon. The

problem can be expressed as

max
u(t)

lim
t→∞

V(t).
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Since V ∈ [V0,Σ], applying (Full depletion) in (First integral 1) yields the condition

lim
t→∞

V(t) = Σ.

meaning that, in infinite time, the biomass is maximized for every control u(t).

As a consequence, using Lemma 3.3.1, we have the following result for constant

allocations.

Corollary 3.4.1. For any trajectory of system (SV) with initial conditions (IC) and

constant control u(t) = u∗,

lim
t→∞

r(t) = u∗ − (u∗ − r0)
V0

Σ

Numerical simulations

Examples of trajectories confirming the analytical results are shown in Figure 3.2

and Figure 3.3, where we see that the system approaches (Full depletion) asymp-

totically in every case, thus approaching the maximal biomass value V(t) = Σ.

Figure 3.2 shows the resulting trajectories associated to the same initial conditions,

when varying the allocation parameter u. On the other hand, Figure 3.3 illustrates

the trajectories for different values of r0.

3.4.2 Finite-time problem

Problem formulation

Let us fix a final time tf > 0, and write the OCP maximizing the final bacterial

volume V(tf ) with initial conditions (IC). The latter writes

maximize V(tf ),

subject to dynamics of (SV),

initial conditions (IC),

u(·) ∈ U .

(OCPV)

For this class of optimal control problem, where there are no terminal constraints,

there is no controllability issues. Additionally, the dynamics is affine in the control,
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Figure 3.2: Simulation of (SV) with s0 = 0.3, p0 = 0.001, r0 = 0.8, V0 = 0.003 and
different allocation functions u.

with the latter included in a compact and convex set (a closed interval), and it can

be checked that every finite-time trajectory remains bounded. Thus, existence of

a solution is guaranteed by Filippov’s theorem [53]. Then, for a problem (OCPV)

with state φ ∈ Rn, PMP ensures that there exist λ0 ≤ 0 and a piecewise absolutely

continuous mapping λ(·) : [0, tf ] → Rn, with (λ(·), λ0) ̸= (0, 0), such that the

extremal (φ, λ, λ0, u) satisfies the generalized Hamiltonian system

φ̇ =
∂

∂λ
H(φ, λ, λ0, u),

λ̇ = − ∂

∂φ
H(φ, λ, λ0, u),

H(φ, λ, λ0, u) = maxu∈[0,1]H(φ, λ, λ0, u),

(PMP)
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Figure 3.3: Simulation of (SV) with s0 = 0.3, p0 = 0.001, V0 = 0.003, u = 0.5 and
different values of r0.

for almost every t ∈ [0, tf ]. We define the adjoint states for this particular case as

λ = (λs, λp, λr, λV), and we write the Hamiltonian

H =− wM(s)(1− r)Vλs +
(
wM(s)(1− r)− wR(p)r(p+ 1)

)
λp + wR(p)rVλV

+ (u− r)wR(p)rλr,

and the adjoint system as

dλs

dt
= w′

M(s)(1− r) (Vλs − λp) ,

dλp

dt
=
(
w′

R(p)r(p+ 1) + wR(p)r
)
λp − w′

R(p)rVλV − (u− r)w′
R(p)rλr,

dλr

dt
= −wM(s)(Vλs − λp) + wR(p)(p+ 1)λp − wR(p)VλV − (u− 2r)wR(p)λr,

dλV

dt
= wM(s)(1− r)λs − wR(p)rλV .
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Given that there are no terminal conditions on the state, the transversality condi-

tions for the adjoint state are λ(tf ) = (0, 0, 0, λ0), where the presence of λ0 is due to

the cost function being V(tf ). Since the Hamiltonian is linear in the control u, we

rewrite it in the input-affine form H = H0 + uH1 with

H0 =− wM(s)(1− r)Vλs +
(
wM(s)(1− r)− wR(p)r(p+ 1)

)
λp

+ wR(p)rVλV − wR(p)r
2λr,

H1 =wR(p)rλr.

The constrained optimal control u should maximize the Hamiltonian, so the solution

of (OCPV) is

u(t) =


0 if H1 < 0,

1 if H1 > 0,

using(t) if H1 = 0,

(3.7)

where using(t) is called a singular control, showing that any optimal control is a

concatenation of bangs (u = 0 and u = 1) and singular arcs, depending on the sign

of the switching function H1.

Singular arcs

The singular arc is produced when H1 vanished (as well as its successive derivatives

w.r.t. time) on a whole sub-interval [t1, t2] ⊂ [0, tf ]. As r is bounded and p cannot

vanish in finite time, along the singular arc one has

ϕ0 = 0, with ϕ0 = λr, (C1 )

and thus, along a singular arc, the Hamiltonian becomes

H = −wM(s)(1− r)Vλs +
(
wM(s)(1− r)− wR(p)r(p+ 1)

)
λp + wR(p)rVλV .

We differentiate (C1 ) and we get

ϕ1 = 0, with ϕ1 = −wM(s)(Vλs − λp) + wR(p)(p+ 1)λp − wR(p)VλV . (C2 )
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Then, the Hamiltonian can be expressed as

H = −wM(s)(Vλs − λp)− rϕ1 + (u− r)H1 = c

and so ϕ1 becomes

ϕ1 = c+ wR(p)
(
(p+ 1)λp − VλV

)
.

We differentiate (C2 ) and we get

ϕ2 = 0, with ϕ2 =
w2

R(p)

wM(s)w′
R(p)

− 1. (C3 )

Given that u does not appear in (C3 ), we have the following result.

Lemma 3.4.2. Any singular arc is of order two and, along it, s can be expressed in

terms of p (provided that wM(s) is invertible) through the equation wM(s) = x(p),

where x(p) : R+ → R+ is defined as x(p)
.
= w2

R(p)/w
′
R(p).

We differentiate (C3 ) and we get

ϕ3 = 0, with ϕ3 = w′
M(s)wM(s)(1− r)V + x′(p)

(
wM(s)(1− r)− wR(p)r(p+ 1)

)
,

(C4 )

which shows another relation between states. The latter implies:

Lemma 3.4.3. Along the singular arc, r can be expressed in terms of p and V as

r = ϕ(p,V) with ϕ(p,V) : R+ × R+ → (0, 1) defined as

ϕ(p,V) .
=

x(p)
(
w′

M(s)V + x′(p)
)

x(p)
(
w′

M(s)V + x′(p)
)
+ x′(p)wR(p)(p+ 1)

Now we have:

Theorem 3.4.1. The singular optimal control u(t) = u(p,V) (i.e. is in feedback

form).

Proof. Derivating the expression r = ϕ(p,V) and solving for u yields

u =
1

wR(p)r

dϕ(p,V)
dt

+ r.
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As ϕ only depends on p and V , its derivative will only depend on the state. Then,

since s and r can be expressed in terms of p and V , the control u becomes a function

of these variables.

Numerical simulations

The optimal trajectories were computed with Bocop [4], which solves the OCP

through a direct method. The time discretization algorithm used is Lobato IIIC

(implicit, 4-stage, order 6) with 2000 time steps. Figures 3.4 and 3.5 show optimal

trajectories for the same set of initial conditions and different values of tf . Using

the mass conservation law (First integral 1), the quantities are represented in the

plots as fractions of the total mass in the bioreactor Σ. The optimal control is

characterized by the presence of the chattering phenomenon after and before the

singular arc, as expected in singular arcs of order two. From a biological point of

view, both allocation strategies prioritize the synthesis of proteins of the metabolic

machinery M (red in both Figures): the singular arc takes rather small values, and,

depending on the choice of tf , a large proportion of the optimal control at the end

of the trajectory is composed of a bang arc u = 0. The latter strategy promotes

nutrient uptake, which results in a faster depletion of the substrate. By assumption,

the concentration of precursor metabolites in the bioreactor remains negligible in

comparison with the other quantities. Figure 3.6 illustrates the trajectory repre-

sented in Figure 3.4 in the sp−plane, showing that the trajectory approaches the

curve ϕ2(p, s) = 0 obtained from the singular surface, slides along it, and then fol-

lows a trajectory obtained from the u = 0 arc that goes towards (Full depletion).

3.5 The product maximization case

As done in the previous section, we approach the product maximization objective

in infinite time and finite time using the full model (S) where γ ∈ R+.
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Figure 3.4: Simulation with s0 = 0.1, p0 = 0.003, r0 = 0.1, V0 = 0.003 and tf = 30.
The final volume V(tf ) is at 95% of Σ (knowing that mV + rV = V).
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Figure 3.5: Simulation with s0 = 0.1, p0 = 0.003, r0 = 0.1, V0 = 0.003 and tf = 40.
The final volume V(tf ) is at 99.8% of Σ.
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Figure 3.6: Same trajectory as Figure 3.4, in the sp-plane. The state approaches
the curve ϕ2 = 0 and slides along it.

3.5.1 Infinite-time problem

The problem of maximizing the product concentration at infinite time is given by

the expression

max
u∗

lim
t→∞

x(t),

which, using (3.6), can be rewritten as

min
u∗

lim
t→∞

V(t)

indicating that maximizing the metabolite concentration at infinite time equates to

minimizing the biomass. While, in the previous section, the conditions (Full depletion)

and (First integral 1) were sufficient to determine the asymptotic behavior of the sys-

tem, the presence of x in this particular problem does not allow a similar resolution.

Thus, we write a relaxed version of the problem in terms of a constant ribosomal

concentration r∗, which can provide an insight into the optimization problem.
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Constant ribosomal concentration

The system with constant ribosomal concentration r∗ writes
ṡ = −wM(s)(1− r∗)V ,

ṗ = wM(s)(1− r∗)− γwR(p)(1− r∗)− wR(p)r
∗(p+ 1),

V̇ = wR(p)r
∗V .

(Sr)

It can be seen that the study of the asymptotic behavior of system (S) applies to (Sr)

as the latter is a particular case of the original one (S) where r(0) = u∗ = r∗. We

then maximize the final product x∗ in terms of the constant ribosomal concentration

r∗ ∈ [rmin, rmax]. We can see that the quantity

z = s+ (p+ 1)V + γ
1− r∗

r∗
V

is constant. Thus,

V∗ + γ
1− r∗

r∗
(V∗ − V0) = Σ

which, using (3.6), yields

x∗ = γ
1− r∗

r∗
(V∗ − V0).

Using the fact that V∗ + x∗ = Σ from (3.6), we see that x∗ is monotone decreasing

w.r.t. r∗, and so the value maximizing the product is r∗ = rmin. This is what one

would expect intuitively in an infinite time horizon, as r∗ = rmin favours the produc-

tion of M, which catalyzes the production of X without arresting the production of

biomass (given by the case r∗ = 0, which cannot be attained in trajectories start-

ing in Γ). However, in a finite horizon, a first phase dedicated to bacterial growth

could also foster the production of X, which depends directly on the concentration

of bacteria in the bioreactor.
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3.5.2 Finite-time problem

Problem formulation

In current section, we study the metabolite production objective, in which the final

concentration of metabolite in the bioreactor x(tf ) is maximized. Maximizing the

final biomass V(tf ) was already done for model (SV) representing a wild-type bacte-

ria. However, it is likely that the presence of the heterologous pathway responsible

for the production of x might affect the results already obtained. Thus, the two

objectives will be compared in model (S) from a numerical perspective. Given a

fixed final time tf > 0, the OCP maximizing cV(tf ) + (1 − c)x(tf ) (with c = 0 or

c = 1 depending on the objective) with initial conditions (IC) writes
maximize cV(tf ) + (1− c)x(tf ),

subject to dynamics of (S),

and u(·) ∈ U ,

(OCPx)

One can easily see that, given the dynamics of the system, applying PMP would

yield a Hamiltonian linear in the control for both values of c, which means that

the solution of (OCPx) is similar to that of (OCPV), given by expression (3.7). A

numerical analysis of this results is provided in next section.

Numerical simulations

The optimal trajectories were obtained following the same procedure as in the

biomass maximization case. Figures 3.7 and 3.8 illustrate optimal trajectories for

the same set of initial conditions and same final time tf . Figure 3.7 is the solution of

(OCPx) where the objective is the product maximization x(tf ). As expected, and

similar to the results obtained for (OCPV), the optimal control takes the value u = 0

for most of the interval, which promotes the synthesis of proteins of the metabolic

machinery M, catalyzing the production of x. Additionally, according to our sim-

ulations, these results do not depend on the final time tf : the final bang u = 0 of

the optimal control is always predominant in the control strategy. The finite-time

numerical results match the results obtained for the infinite-time case, in which the

ribosomal sector of the cell should be minimized to maximize the production of x.

Figure 3.8 shows an optimal trajectory solution of (OCPx) with cost function V(tf ).
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In this case, the allocation strategy is described by an initial bang u = 1 followed

by a singular arc that takes up most of the optimal solution, with values near to an

intermediate strategy u = 0.5; and a small bang u = 0 at the end. Such strategy

leads to a bacterial composition much more balanced between ribosomal and enzy-

matic proteins, in opposition to the metabolite production case, where most of the

bacterial proteins were dedicated to the metabolic machinery. The latter behavior

illustrates a natural trade-off between two opposed strategies: maximizing the num-

ber of ribosomes to prioritize the synthesis of macromolecules over the production

of x and, at the same time, maximizing the enzymatic activity in order to consume

the substrate in the medium as fast as possible.
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Figure 3.7: Solution of (OCPx) for the metabolite maximization case x(tf ), with
s0 = 0.1, p0 = 0.001, r0 = 0.1, V0 = 0.003 and tf = 60. The final product
concentration x(tf ) is at 62% of Σ, while the final volume V(tf ) is only at 23% of
Σ.

3.6 Discussion

This chapter described a preliminary study of resource allocation in bacteria for

batch processing. A model considering the production of a value-added chemical

compound is proposed, and a dynamical study of the system based on mass con-
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Figure 3.8: Solution of (OCPx) for the biomass maximization case V(tf ), with
s0 = 0.1, p0 = 0.001, r0 = 0.1, V0 = 0.003 and tf = 60. The final product
concentration x(tf ) is at 27% of Σ, while the final volume V(tf ) is at 56% of Σ.

servation laws shows that, under all possible resource allocation strategies, all the

substrate in the medium is consumed. Then, the particular case of a wild-type

bacteria with no metabolite production is analyzed, showing that the optimal al-

location propitious for biomass production should yield a very high m/r ratio in

the cell. Paradoxically, for the metabolite production case, these kind of strategies

would rather maximize the production of x, while for maximizing the biomass under

the presence of the heterologous pathway, a more balanced allocation is required.

This work will be readily completed with a more detailed analysis of the impact of

the final time in the allocation decision.
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Chapter 4

Continuous bioreactor

This chapter reproduces [AYT4] and [AYT2], published in the 21th IFAC World

Congress and the Mathematical Biosciences and Engineering journal respectively.

4.1 Introduction

Microorganisms continuously have to contend with environmental changes in nature,

and so they have evolved to accordingly adapt their physiology to cope with this

unsteadiness. This is done by reorganizing the gene expression machinery, which

is accomplished by dynamically allocating resources to different cellular functions.

Microorganisms like bacteria exhibit great genetic variability, which is the main

driver of natural selection, a phenomenon that depends on the continuous mutations

in living populations. For this reason, they have achieved highly optimized resource

management strategies. Such is the case of E. Coli : For specific environmental

conditions, they seek to maximize their growth rate, which is a naturally evolved

characteristic of this bacterium, and well known in the scientific community [14].

In this regard, optimality of bacterial organisms has been a central hypothesis in

several research allocation studies [21].

Nevertheless, most of previous works in the literature consider the resource allo-

cation problem in steady-state, without taking into account the changing conditions

of natural environments [54]. This motivated a series of works with a dynamical-

oriented approach to the problem [30, 8], that aimed to shed light on how bacteria

tune their allocation mechanisms when facing changes on the nutrient concentration

of the medium. Using Optimal Control theory, they investigate how their inter-



69

nal pathways can be dynamically readjusted so as to maximize their growth rate,

obtaining different strategies that can be related to well known natural regulation

mechanisms (such as the ppGpp-mediated sensing of the pool of aminoacids). The

approach is based on a widely used modeling technique in systems biology: The so-

called coarse-grained self-replicator models, used in bacterial growth representations

for their simplicity and their capacity to reproduce observed experimental behaviors

[45]. Although this kind of single-cell models are somewhat limited when predicting

complex phenomena, they can accurately account for bacterial culture growth laws

under the right assumptions (e.g., homogeneity of the culture) [55].

From an industry point of view, a natural question triggered by these studies is:

How can we divert the natural allocation strategies of bacteria to improve current

biotechnological production schemes? Such is the case of the artificial synthesis of

metabolites or proteins of interest. The synthesis of such compounds is highly rel-

evant for its wide range of applications: Production of antitumor agents, insulin,

antibiotics, immunosuppressive agents and insecticides, among others [56, 7]. Mo-

tivated by the increasing understanding of the biosynthetic properties of certain

microorganisms, research on this area can potentially lead to more efficient and sus-

tainable production schemes. This is the matter addressed in recent work using a

strain of Escherichia coli that includes an artificially engineered heterologous path-

way for the production of a certain metabolite of interest [3, 74, AYT5]. In this

approach, a control loop is developed through a bacterial growth switch that allows

to externally modify the natural resource allocation decision [44]. The mechanism is

implemented by re-engineering the transcriptional control of the expression of RNA

polymerase, a key component of the gene expression machinery. This way, it is

possible to optimize the productivity of the bioprocess by channeling resources into

this new heterologous pathway.

At the same time, the synthesis of these metabolites draws resources from the

native pathways used for producing biomass in bacteria, thus leading to an inherent

compromise between these two objectives. One possible approach to this trade-off

is to model it through different cost functions, thus obtaining multi-objective opti-

mization problems. This is the case of [41], where the authors aim to maximize the

production of a metabolite while minimizing the genetic burden caused by pathway

expression. In contrast to this method, the work of [3] models the main trade-offs

behind the process through a single decision parameter, which considerably reduces
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the complexity of the optimization problem.

In a similar vein, we address a classic production scheme: the Continuous Stirred-

Tank Reactor (CSTR), also known as chemostat [57]. While resource allocation in

bacteria has been vastly studied in constant environments (e.g., under the assump-

tion that there is always enough substrate in the medium), how this goes in contin-

uous bioreactors is not trivial, since a feedback occurs from the physiology of the

cell to the environmental conditions given by the interaction bacteria-medium [26].

Examples of self-replicator models in continuous bioreactors can be found in some

recent works: In [58], authors use a coarse-grained self-replicator kinetic model of

Saccharomyces cerevisiae’s in a continuous bioreactor to investigate the trade-off be-

tween respiratory and fermentative metabolism, showing that optimal strategies are

‘pure’ metabolic strategies (e.g., either respiration of fermentation, but not respiro-

fermentation). Likewise, it is rather classical in the continuous bioreactor scheme to

maximize a certain performance measure (i.e., biomass production) in terms of the

operational parameters related to the setup, such as dilution rate and/or concen-

tration of the substrate inflow [59, 60, 61, 62, 63]. An example can be seen in [64],

where the infinite-time optimal control problem of maximizing the average biogas

production in terms of the dilution rate is studied. However, incorporating the afore-

mentioned external control—that can disrupt the natural allocation process of the

whole culture—provides an extra degree of freedom, which can, in turn, contribute

to further improve the classical production scheme.

Based on the presented works, we show novel results addressing the problem

of bacterial resource allocation in the CSTR framework. Our approach is based

on a coarse-grained self-replicator dynamical model that accounts for the micro-

bial culture growth inside the continuous bioreactor, and incorporates the external

allocation control previously described. The novelty of the approach lies in the

combination of the resource allocation control scheme, and the capacity to regulate

the bacterial growth rate through the dilution rate of the continuous bioreactor.

Further on, we study its asymptotic behavior using dynamical systems theory, and

we provide conditions for the persistence of the bacterial population. The analysis

is carried out by studying the local and global behavior of its limiting system, and

relating its convergence to the original model through the theory of asymptotically

autonomous systems [65]. Then, we pose the problem of maximizing the synthesis

of the metabolite of interest during a fixed interval of time in terms of the resource
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allocation decision. The latter is expressed as an OCP (Optimal Control Problem)

which is then explored using PMP (Pontryagin’s Maximum Principle) [31]. We an-

alyze the solution of the problem and propose a sub-optimal control strategy given

by a constant allocation decision, which eventually takes the system to the opti-

mal steady-state production regime. On this basis, we study and compare the two

most significant steady-state production objectives in CSTRs: Biomass production

and metabolite production. For this last purpose, and in addition to the allocation

parameter, we control the constant volumetric flow of the bioreactor (or dilution

rate), and we analyze the results through a numerical approach. The resulting two-

dimensional optimization problem is defined in terms of Michaelis-Menten kinetics

with the parameter values of [30], and taking into account the constraints for the

existence of the equilibrium of interest.

4.2 Model definition

4.2.1 Self-replicator model

In this section, we define the coarse-grained self-replicator model including the con-

tinuous bioreactor scheme and the allocation parameter. We consider a growing

bacterial population in a CSTR bioreactor of constant volume Vext [L]. The self-

replicating system that models the culture is composed of the metabolic machinery

M (transporters, enzymes...) and the gene expression machinery R (RNA poly-

merase, ribosomes...), both responsible of the cell growth. The validity of this

single-cell model as a representation of a growing bacterial culture depends on a

number of simplifying assumptions, one of them being that individual cells share

the same macromolecular composition. For the production of the metabolite of in-

terest X, we consider the artificially engineered pathway introduced in [3] (Figure

4.1).

The model represents three chemical macroreactions,

S
VM−−→ P

P
VR−−→ αR+ (1-α)M

P
VX−−→ X
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VM

(1-α) VR

α VR
VX

I

M

R

P

X

S

Figure 4.1: Extended coarse-grained self replicator model introduced in [3]. The
substrate in the bioreactor (S1) is consumed by the bacterial culture and trans-
formed into precursors P through the action of the metabolic machinery M . Then,
precursors are used to make macromolecules of the gene expression machinery R
and the metabolic machinery M , with proportions α and 1 − α respectively; and
to synthesize the metabolite X, which is excreted from the cell to the bioreactor.
The external control I affects how the precursors P are distributed between both
cellular functions M and R.

The first reaction is catalyzed by M and describes the transformation of external

substrate S into precursor metabolites P at a rate VM . The second one represents

the conversion of precursors into macromolecules R and M and is catalyzed by R,

at a rate VR. Finally, the third reaction describes the transformation of precursors

P into product X at a rate VX , and catalyzed by M . The natural resource allo-

cation parameter is modeled through the dimensionless parameter α ∈ [0, 1], that

represents the proportion of precursors allocated to the gene expression machinery

R, while 1− α indicates that of the metabolic machinery M . The model describes

all mass quantities S, P , M , R and X in grams, and the rates in grams per hour.

A constant volumetric flow rate F [L h−1] produces an inflow of fresh medium rich

in substrate, and an outflow of bacterial culture and metabolites [46]. As already

stated, we include in our scheme the growth switch described in [44] to externally

affect the allocation decision α by varying the inducer concentration in the medium.

The mechanism is modeled as

u(t) = I(t)α(t), u ∈ [0, 1] (4.1)
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where I is the external signal, which acts independently from the allocation pa-

rameter α. The aggregated form of equation (4.1) accounts for the fact that the

synthetic switch is capable of adjusting bacterial growth between zero (by setting

I = 0, which yields u = 0) and the maximal growth rate supported by the medium

(given by I = 1, which yields u = α). In this work, we limit the analysis to calculat-

ing the control input u, without decoupling both individual controls I and α (refer

to Section 5 in [3] for more details on the implementation of this external controller).

Then, we write the system of differential equations describing the evolution of the

mass of each component, 

Ṡ = VSin
− VM − VSout ,

Ṗ = VM − VR − VX − VPout ,

Ṁ = (1− u)VR − VMout ,

Ṙ = uVR − VRout ,

Ẋ = VX − VXout .

The inflow/outflow rates are defined as

VSout = DS, VPout = DP, VMout = DM, VRout = DR, VXout = DX, VSin
= Fsin,

where sin [g L−1] is the nutrient concentration of the inflow of fresh medium, and D

[h−1] the dilution rate defined as

D
.
=

F

Vext

.

We define the volume of the cell population V [L] as

V .
= β(M +R), (4.2)

where β [L g−1] is the inverse of the cytoplasmic density. The above definition is

based on the assumption that the cytoplasmic density of the cells is constant for the

whole culture, and it also takes into account the experimental results showing that

macromolecules are responsible for most of the biomass in microbial cells [6]. Thus,

the mass of precursors P is excluded from the volume V as a simplifying assumption.
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Then, we express the quantities of the system as concentrations with respect to the

volumes,

p
.
=

P

V
, r

.
=

R

V
, m

.
=

M

V
, s

.
=

S

Vext

, x
.
=

X

Vext

, (4.3)

where p, r and m [g L−1] are intracellular concentrations of precursor metabolites,

components of the gene expression machinery and metabolic enzymes respectively;

and s and x [g L−1] the extracellular concentrations of substrate and metabolite. It

is worth stressing that intracellular concentrations are defined with respect to the

bacterial volume V , while extracellular concentrations with respect to the volume of

the bioreactor Vext. Then, using definition (4.2), we obtain that m + r = 1/β. We

define the growth rate of the bacterial population µ [h−1] as the relative variation of

cell volume V̇/V without considering the effect of the outflowing biomass. Replacing

with concentrations leads to the system

ṡ = D(sin − s)− vM(s,m)
V
Vext

,

ṗ = vM(s,m)− vR(p, r)− vX(p,m)− µ(p, r)p,

ṙ = u vR(p, r)− µ(p, r)r,

ṁ = (1− u) vR(p, r)− µ(p, r)m,

ẋ = vX(p,m)
V
Vext

−Dx,

V̇ = (µ(p, r)−D)V ,

(S)

where vM(s,m), vR(p, r) and vX(p,m) [g L−1 h−1] are the mass fluxes per unit

volume obtained from dividing the rates VM , VR and VX by V , function of the

concentrations of system (S1). In this new system, the growth rate becomes

µ(p, r)
.
=

V̇
V

∣∣∣∣∣
F=0

=
Ṁ + Ṙ

M +R

∣∣∣∣∣
F=0

= βvR(p, r)

showing that the bacterial growth rate is proportional to the macromolecule syn-

thesis rate. We propose a change of variables that simplifies the expressions of the
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system

ŝ = βs, p̂ = βp, r̂ = βr, m̂ = βm, x̂ = βx, V̂ =
V
Vext

,

which yields the relation

r̂ + m̂ = 1, (4.4)

and we define the non-dimensional synthesis rates

v̂M(ŝ, m̂) = βvM(s,m), v̂R(p̂, r̂) = βvR(p, r), v̂X(p̂, m̂) = βvX(p,m), (4.5)

and the non-dimensional substrate concentration ŝin = βsin. Then, dropping all

hats yields the following system

ṡ = D(sin − s)− vM(s, 1− r)V ,

ṗ = vM(s, 1− r)− vX(p, 1− r)− µ(p, r)(p+ 1),

ṙ = (u− r)µ(p, r),

ẋ = vX(p, 1− r)V −Dx,

V̇ = (µ(p, r)−D)V ,

(S1)

where the dynamical expression of m has been omitted since it can be computed

from r, as shown in equation (4.4). It can also be seen that both concentrations m

and r are limited to the interval [0, 1] due to physical constraints from the relation in

equation (4.4). For this latter, and due to the nature of the reactions involved in the

studied problem, we will make some assumptions on the synthesis rates vM(s,m),

vR(p, r) and vX(p,m):

Assumption 1. Functions vM(s,m), vR(p, r) and vX(p,m) meet

• vi(y, z) : R+ × [0, 1] → R+

• vi(y, z) continuously differentiable w.r.t. both variables
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• vi(0, z) = vi(y, 0) = 0

• vi(·) strictly monotonically increasing:

∂vi
∂y

(y, z) > 0,∀(y, z) ∈ R>0 × (0, 1],
∂vi
∂z

(y, z) > 0,∀(y, z) ∈ R>0 × (0, 1]

• vi(·) bounded w.r.t. y: limy→∞ vi(y, z) = vi,max(z).

Assumption 1 encompasses all general monotone increasing kinetics models used

in biological models, such as Michaelis-Menten or Hill equation-based kinetics [66].

In this first work, we will focus on a particular kind of systems where the synthesis

rate related to the metabolite production depends on the growth rate:

Assumption 2. For r ∈ (0, 1), the metabolite synthesis rate vX(p, 1 − r) can be

expressed in terms of the macromolecule synthesis rate vR(p, r) (i.e., the growth

rate)

vX(p, 1− r) = c(r) vR(p, r),

where c(r) : (0, 1) → R+ is a positive continuously differentiable function.

As previously described, the reaction vX(p,m) is catalyzed bym, and the reaction

vR(p, r) is catalyzed by r, meaning that the ratio between M and R in the microbial

culture determines whether the resources are being allocated to the production of

biomass or metabolite. This represents the trade-off described in the introduction

of this paper, which is here modeled through the function c(r). The fact that c

does not depend on the concentration of precursors implies that the host cell has

the same affinity to synthesize both biomass and metabolite from the precursors,

even when the reactions are not expected to consume the precursors in the same

proportion. For the particular case of Michaelis-Menten kinetics, this phenomenon

is captured by the half-saturation constant [67]. Notably, for fixed values of r, both
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synthesis rates are simply proportional. This assumption reduces (S1) to

ṡ = D(sin − s)− vM(s, 1− r)V ,

ṗ = vM(s, 1− r)− µ(p, r)(p+ c(r) + 1),

ṙ = (u− r)µ(p, r),

ẋ = c(r)µ(p, r)V −Dx,

V̇ = (µ(p, r)−D)V .

(S1)

We note that both Assumptions 1 and 2 are formulated for the non-dimensional

synthesis rates given in definition (4.5), but they also hold for the original functions

vM , vR and vX (taking into account that, for these functions, the domain is defined

as R+ × [0, 1
β
] → R+).

4.2.2 Asymptotic behavior

The asymptotic behavior of system (S1) describes the “open-loop” operation mode

of the continuous bioreactor, where the resource allocation control u(t) is fixed to

ū ∈ (0, 1). In the present section we propose a series of mass conservation laws

that allow to reduce (S1) to a 3-dimensional limiting system. Then, we study the

local stability of their equilibria, and we show, using the theory of asymptotically

autonomous systems, that the full system (S1) converges to the equilibria of its lim-

iting system. Let us start the analysis of system (S1) by defining its invariant region

in the following lemma.

Lemma 1. The set

Γ =
{
(s, p, r, x,V) ∈ R5 : sin ≥ s > 0, p ≥ 0, x ≥ 0, 1 ≥ r ≥ 0, V ≥ 0}

is positively invariant for the initial value problem.
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Proof. Let us analyze the boundaries of Γ,

ṡ|s=0 = Dsin > 0 ⇒ s = 0 is repulsive.

ṡ|s=sin = −vM(s, 1− r)V ≤ 0 ⇒ s = sin is repulsive/invariant.

ṗ|p=0 = vM(s, 1− r) ≥ 0 ⇒ p = 0 is repulsive/invariant.

ṙ|r=0 = 0 ⇒ r = 0 is invariant.

ṙ|r=1 = (u− 1)µ(p, 1) < 0 ⇒ r = 1 is repulsive.

ẋ|x=0 = vX(p,m)V ≥ 0 ⇒ x = 0 is repulsive/invariant.

V̇|V=0 = 0 ⇒ V = 0 is invariant.

We will study the initial value problem of system (S1) with initial conditions

sin ≥ s(0) ≥ 0, p(0) ≥ 0, 1 ≥ r(0) > 0, x(0) ≥ 0, V(0) > 0, (4.6)

where two cases have been excluded for being trivial to the analysis: V(0) = 0, since

it is necessary to have an initial amount of biomass to have bacterial growth; and

r(0) = 0, since an empty gene expression machinery pool implies null growth rate

µ(p, 0) = 0, and therefore it is not possible to self-replicate from that point.

Mass conservation

System (S1) can be rewritten as φ̇ = D (sinv⃗in − ⃗vout) +Nv⃗i − v⃗µ µ(p, r),

V̇ = (µ(p, r)−D)V ,

where

• φ
.
= [s, p, r,m, x]T is the state vector of concentrations in the bioreactor.

• N is the stoichiometry matrix of the macroreactions.

• vi is the vector of internal synthesis rates.

• vin and vout are the vectors of inflows and outflows respectively, associated to

the continuous bioreactor setup.
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• vµ is the vector modeling the dilution effect due to variation of the bacterial

volume.

which are defined as

N
.
=


−V 0 0

1 −1 −1

0 u 0

0 1− u 0

0 0 V

 , v⃗i
.
=

vM(s, 1− r)

vR(p, r)

vX(p, 1− r)

 ,

v⃗in
.
= [1, 0, 0, 0, 0]T ,

⃗vout
.
= diag(φ) [1, 0, 0, 0, 1]T ,

v⃗µ
.
= diag(φ) [0, 1, 1, 1, 0]T .

By analyzing the left null space of N , it can be seen that there are two mass con-

servation laws related to the total mass inside the bioreactor.

Definition 1. We define the quantities

w1
.
= s+ (p+m+ r)V + x = s+ (p+ 1)V + x,

w2
.
= s+

(
p+

r

ū

)
V + x.

The first quantity tends asymptotically to w1 = sin as t → ∞ for every input

u(t), as it obeys the dynamical equation

ẇ1 = D (sin − w1) . (4.7)

Moreover, when fixing u(t) to ū ∈ (0, 1), the quantity w2 also obeys the same equa-

tion (4.7), meaning that this second quantity also converges to sin, which greatly

simplifies the analysis of the asymptotic behavior of the system.

Lemma 2. The ω-limit set of any solution of system (S1) lies in the hyperplane

Ω1
.
=
{
(s, p, r, x,V) ∈ R5 : s+ (p+ 1)V + x = sin

}
.

Moreover, under constant input u(t) = ū, this is also true for the hyperplane

Ω2
.
=
{
(s, p, r, x,V) ∈ R5 : s+

(
p+

r

ū

)
V + x = sin

}
.
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Further on, we will use Lemma 2 to analyze system (S1) through its limiting

system.

Limiting systems

Lemma 2 presents two mass conservation laws that can be used to reduce subsystem

(S1) by two dimensions. We will first analyze the asymptotic behavior of concentra-

tion r: when t → ∞, quantities w1 = w2 = sin, so

s+ (p+ 1)V + x = s+
(
p+

r

ū

)
V + x ⇒ r = ū

meaning that, as t → ∞, r will converge to the value ū. We can also express

x = sin − s− (p+ 1)V , so that the limiting system of (S1) becomes
ṡ = D(sin − s)− v̄M(s)V ,

ṗ = v̄M(s)− µ̄(p)(p+ c̄+ 1),

V̇ = (µ̄(p)−D)V ,

(S′
1)

where

v̄M(s)
.
= vM(s, 1− ū), v̄R(p)

.
= vR(p, ū), v̄X(p)

.
= vX(p, 1− ū),

µ̄(p)
.
= µ(p, ū), c̄

.
= c(ū).

Details on the convergence of the limiting system (S′
1) to the original one (S1) will be

addressed later in the article. In next section, we will fully describe the asymptotic

behavior of (S′
1).

Local stability

In the interest of simplifying the notation, we define the following function.

Definition 2. We define the function

f̄(p)
.
= v̄R(p) + v̄X(p) + µ̄(p)p = µ̄(p)(p+ c̄+ 1),

Function f meets f̄(p) > 0, f̄ ′(p) > 0,∀p ∈ Γ (positive and monotonically in-



81

creasing).

The main result of local stability study is summarized in Theorem 1.

Theorem 1. The local stability of equilibria is given by the following criterion.

• If µ̄(pw) ≥ D:

– The interior equilibrium Ei exists, is unique and locally stable.

– The washout equilibrium Ew exists, is unique and locally unstable.

• If µ̄(pw) < D:

– The interior equilibrium Ei does not exist.

– The washout equilibrium Ew exists, is unique and locally stable.

In the above criterion, the equilibria are defined as follows:

• The interior equilibrium Ei
.
= (si, pi,Vi), with

pi :
{
p ∈ R+ : µ̄(p) = D

}
, (4.8)

si :
{
s ∈ R+ : v̄M(s) = f̄(pi)

}
, (4.9)

Vi
.
=

D(sin − si)

v̄M(si)
. (4.10)

• The washout equilibrium Ew
.
= (sin, pw, 0), with

pw :
{
p ∈ R+ : f̄(p) = v̄M(sin)

}
. (4.11)

Proof. First, we will prove the boundedness of p. Using definition (4.11), it is

possible to define a constant upper-bound on p by analyzing the time-varying upper

bound pup(t) with dynamical equation

ṗup
.
= v̄M(sin)− f̄(pup). (4.12)

In equation (4.12), pup converges to the value pw satisfying equation (4.11). Addi-

tionally, the vector field at p = pw is always negative (or null when s = sin)

ṗ|p=pw = v̄M(s)− f̄(pw) ≤ 0
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meaning that p = pw is either repulsive or invariant, so a new invariant set Γ′ ⊂ Γ

can be defined,

Γ′ .
=
{
(s, p,V) ∈ R3 : sin ≥ s > 0, pw ≥ p > 0, V ≥ 0

}
. (4.13)

Equilibrium Ei The existence of the interior equilibrium Ei is given by the bound-

edness of the flows,

max µ̄(p) ≥ D, (4.14)

max v̄M(s) ≥ f̄(pi), (4.15)

and its uniqueness can be proved through monotonicity arguments: In µ̄(p) = D,

µ̄(p) is strictly monotonically increasing w.r.t. p so, if inequality (4.14) is met, pi

should be unique. Similarly, in v̄M(s) = f̄(pi), v̄M(s) is again strictly monotonically

increasing so, if inequality (4.15) is met, si should be unique. As is standard in

continuous bioreactors, inequality (4.14) implies that the maximal growth rate of

the bacterial population should be bigger than the dilution rateD. At the same time,

the inequality (4.15) requires the maximal uptake flow to be bigger than the flows

responsible for bacterial growth and metabolite production. In Γ′, these conditions

become

µ̄(pw) ≥ D, (4.16)

where the second condition (4.15) is included in the inequality (4.16), asmax v̄M(s) =

v̄M(sin) = f̄(pw), and the condition f̄(pw) ≥ f̄(pi) is true if and only if µ(pw) ≥ D.

The Jacobian matrix is given by

Ji =

−D − v̄′M(s)Vi 0 −v̄M(s)

v̄′M(s) f̄ ′(p) 0

0 µ̄′(p)Vi 0

 ,

and the characteristic polynomial is

Pi(λ) = (λ+D + v̄′M(s)Vi)(λ+ f̄ ′(p))λ+ v̄M(s)v̄′M(s)µ̄′(p)Vi (4.17)

= λ3 + λ2(D + v̄′M(s)Vi + f̄ ′(p)) + λ(D + v̄′M(s)Vi)f̄
′(p) + v̄M(s)v̄′M(s)µ̄′(p)Vi.
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Using Definition 2, it can be seen that −D is an eigenvalue by replacing in expression

4.17

Pi(−D) = −Dv̄′M(s)Vi (p+ c̄+ 1) µ̄′(p) + v̄M(s)v̄′M(s)µ̄′(p)Vi = v̄′M(s)Viµ̄
′(p)ṗ = 0.

Then, dividing Pi(λ) by λ+D yields

Pi(λ)
1

λ+D
=λ2 + λ (D + v̄′M(s)Vi + (p+ c̄+ 1) µ̄′(p))︸ ︷︷ ︸

>0

+ v̄′M(s)Vi (p+ c̄+ 1) µ̄′(p)︸ ︷︷ ︸
>0

,

which, by Routh-Hurwitz criteria, implies that all eigenvalues have negative real

part. Then, if it exists, the equilibrium is always stable.

Equilibrium Ew The washout equilibrium Ew exists for all values of Γ′, since the

only condition for existence is given by

max f̄(p) ≥ v̄M(sin),

which is always true in Γ′ since v̄M(sin) = f̄(pw) and so the inequality becomes

f̄(pw) ≥ f̄(pw). Again, as f̄(p) is strictly monotonically increasing, there is a unique

solution pw. Its stability is given by

Jw =

 −D 0 −c̄

v̄′M(s) −f̄ ′(p) 0

0 0 µ̄(pw)−D


with characteristic polynomial

Pw(λ) = (λ+D)(λ+ f̄ ′(p))(λ− µ̄(pw) +D).

Eigenvalues λ = −D and λ = −f̄ ′(p) are always real and negative, and so the

stability criterion becomes

Ew stable if and only if µ̄(pw) < D.
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Global analysis

In the current section, we show how the limiting system (S′
1) can be further reduced

using another mass conservation law given by the fact that c̄ is constant. This is

formalized in the following lemma.

Lemma 3. The ω-limit set of any solution of the limiting system (S′
1) lies in the

hyperplane

Ω3
.
=
{
(s, p,V) ∈ R3 : s+ (p+ c̄+ 1)V = sin

}
Proof. The quantity

w3
.
= s+ (p+ c̄+ 1)V (4.18)

obeys the dynamical equations ẇ3 = D(sin − w3), which means that the system

converges asymptotically to the limit set Ω3.

Using Lemma 2, we can further reduce system (S′
1) by expressing

s = sin − V(p+ c̄+ 1), (4.19)

for the values (p,V) that meet sin−V(p+ c̄+1) > 0, and so the new limiting system

becomes  ṗ = v̄M (s(·))− µ̄(p)(p+ c̄+ 1),

V̇ = (µ̄(p)−D)V .
(S′′

1)

Since (S′′
1) is a 2-dimensional continuous system, its global behavior (illustrated in

Figure 4.2) can be studied through the Poincaré-Bendixson trichotomy.

Lemma 4. Every solution of the limiting system (S′′
1) with initial conditions (4.6)

converges to

• E∗
i
.
= (pi,Vi) if µ̄(pw) ≥ D

• E∗
w

.
= (pw, 0) if µ̄(pw) < D
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Proof. The Poincaré-Bendixson trichotomy ensures that every non-empty compact

ω-limit set of (S′′
1) is either a fixed point, a periodic orbit or a cycle of equilibria.

Then, by applying Poincaré-Bendixson theorem through the Dulac criterion, we can

discard periodic orbits and cycles of equilibria:

∂

∂p
ṗ+

∂

∂V
V̇ =

∂

∂p
v̄M (s(·))− µ̄(p)− µ̄′(p) (p+ c̄+ 1) + µ̄(p)−D

=v̄′M (s(·)) ∂s(·)
∂p

− µ̄′(p) (p+ c̄+ 1)−D < 0, (4.20)

as ∂s(·)/∂p = −V from equation (4.19). This ensures that the new limiting sys-

tem should converge to one of the stable equilibria as t → ∞ which, according to

Theorem 1, is known to be unique.

0 pi pw
p

0

i

(p+ c̄+ 1) = sin

p=
p
w

0 pw
p

Nullcline p
E *
i

E *
w

Figure 4.2: Phase plane of the limiting system S ′′
1 showing: The case where µ̄(pw) ≥

D (left), so that the equilibrium E∗
i exists and attracts all solutions; and the case

where µ̄(pw) < D (right) and E∗
w attracts all solutions.

Through the theory of asymptotically autonomous systems [65], we can relate the

asymptotic behavior of the 2-dimensional limiting system S ′′
1 to that of the full 5-

dimensional system (S1). The main result is established in Theorem 2.

Theorem 2. Every solution of system (S1) with initial conditions (4.6) converges

to,

• The extended interior equilibrium Êi
.
= (si, pi, ū, xi,Vi) if it exists, with xi

.
=

c̄Vi.
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• The extended washout equilibrium Êw
.
= (sin, pw, ū, 0, 0) if Êi does not exist.

where the condition for the existence of the extended interior equilibrium is µ̄(pw) ≥
D.

Proof. We resort to a more particular case of the general theory of asymptotically

autonomous systems (introduced in Appendix F of [46]), that requires a certain

number of hypotheses to be met related to the limiting system S ′′
1 , its equilibria and

the mass conservation equations defined in Lemma 2:

(A1) The dynamical equations (4.7) and (4.18) of quantities w1, w2 and w3 are

stable.

(A2) S ′′
1 has 2 rest points E∗

i and E∗
w, which are hyperbolic.

(A3) If E∗
i exists, dim(M+(E∗

i )) = 2 and dim(M+(E∗
w)) = 1. If E∗

i does not exist,

dim(M+(E∗
w)) = 2.

(A4) S ′′
1 has no cycles of rest points, as shown in equation (4.20).

(A5) S ′′
1 has no periodic orbits, as shown in equation (4.20).

Then, almost all trajectories of the original system (S1) converge to one of the

asymptotically stable equilibria of the limiting system, which is always unique.

4.3 Metabolite production

In this section, we aim to maximize the production of the metabolite of interest X.

We start by modeling the synthesis rates as explicit functions of the concentrations

of the system. While this latter is not required for most of the results, it enables

the numerical simulations both for the dynamical and for the static optimization

problems. In particular, we resort to the Michaelis-Menten kinetics defined in pre-

vious works [30] and the same biological constants. Then, we pose the problem of

maximizing the production of X over a fixed period of time, and we approximate

the optimal solution with a constant allocation strategy. This finally motivates the

static optimization approach, that is solved in terms of the tuple (D, ū).
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4.3.1 Kinetic’s definition

Michaelis-Menten kinetics are defined as

vM(s,m)
.
= kM m

s

KM + s
= kM (1− r)

s

KM + s
,

vR(p, r)
.
= kR r

p

KR + p
,

vX(p,m)
.
= kX m

p

KX + p
= kX (1− r)

p

KX + p
,

where the biological constants and their values [30, 3] are described in Table 4.1.

Table 4.1: Relevant biological system variables. RT and HSC stand for ”Rate
constant” and ”Half-saturation constant” respectively.

Parameter Description Unit Value
β Inverse of the cytoplasmic density Lg−1 0.003
kM RT of the metabolic macroreaction h−1 4.32
KM HSC of the metabolic macroreaction g L−1 33.33
kR RT of the protein synthesis reaction h−1 3.6
KR HSC of the protein synthesis reaction g L−1 1
kX RT of the metabolite synthesis reaction h−1 0.5
KX HSC of the metabolite synthesis reaction g L−1 1

Assumption 2 is implemented by setting the half-saturation constant KX = KR,

such that the function c(r) becomes

c(r) =
vX(p, 1− r)

vR(p, r)
=

kX
kR

1− r

r
.

The substrate concentration of the inflow sin is set to 0.4 g/L.

4.3.2 Dynamic optimization problem

The problem of maximizing the production of the metabolite X during a fixed

interval of time T is explored in this section. As it is classical in the continuous

bioreactor framework, the instantaneous production of metabolite is described by

the quantity

DX [g h−1] (4.21)
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which, using definitions (4.3), can be expressed as DVextx. Then, the total metabo-

lite production over an interval T amounts to∫ T

0

D Vext x dt [g]. (4.22)

We will be first interested in dynamically adjusting the aggregated control u(t) so as

to maximize the quantity (4.22) for a fixed dilution rate D. The problem is tackled

through an optimal control approach, formulated as
maximize Jx(u) = D Vext

∫ T

0

x(t) dt

subject to dynamics of (S1),

u(·) ∈ U .

(OCP)

with U the set of admissible controllers, which are Lebesgue measurable real-valued

functions defined on the interval [0, T ] and satisfying the constraint u(t) ∈ [0, 1]. We

first note that, since D and Vext are constants, the problem reduces to maximizing

the integral of the concentration x. Thus, the nature of the OCP allows us to obtain

a first result on the existence of the solutions.

Proposition 4.3.1. The dynamic maximization problem has at least one solution.

Proof. Since there are no terminal conditions, the set of admissible controls is

not empty (any constant control within the prescribed bounds is admissible). For

bounded controls (u(t) belongs to [0, 1]) and for a fixed final time T > 0, the dynam-

ics (S1) cannot blow up in finite time so all trajectories remain in a fixed compact.

Indeed, all state variables but V are bounded (as set (4.13) is invariant), and since

V̇ = (µ(p, r)−D)V

with µ(p, r) bounded, the volume has at worst an exponential rate and is also

bounded. As the dynamics is affine in the control, the set of velocities is convex and

existence holds by Filippov’s theorem [68].

In order to further explore the solution of (OCP), we define the adjoint state

vector λ
.
= (λs, λp, λr, λx, λV) associated to the state vector φ

.
= (s, p, r, x,V), and
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we write the Hamiltonian

H(φ, δ, u) = λ0x+ ⟨λ, F (φ, u)⟩,

where F represents the right-hand side of system (S1) given by equations (S1).

Developing the expression we obtain

H =λs (D(sin − s)− vM(s, 1− r)V) + λp

(
vM(s, 1− r)− vX(p, 1− r)− µ(p, r)(p+ 1)

)
+ λr (u− r)µ(p, r) + λx

(
vX(p, 1− r)V −Dx

)
+ λV(µ(p, r)−D)V − λ0x,

which shows that the Hamiltonian is linear in the control u, so it can be rewritten

in the affine form

H = H0 + uH1,

where

H0 =λs (D(sin − s)− vM(s, 1− r)V) + λp

(
vM(s, 1− r)− vX(p, 1− r)− µ(p, r)(p+ 1)

)
− rλrµ(p, r) + λx(vX(p, 1− r)V −Dx) + λV(µ(p, r)−D)V − λ0x,

H1 =λrµ(p, r).

In the absence of terminal constraints, there are no abnormal extremals and λ0

can be set to −1. Since the constrained optimal control u should maximize the

Hamiltonian, one has

uOCP (t) =


0 if H1 < 0,

1 if H1 > 0,

us(t) if H1 = 0.

These alternatives account for the possibility of bang and singular arcs, an extremal

being in general an arbitrary concatenation of these. Bang controls correspond to

pure allocation strategies u = 0 and u = 1 (i.e., purely geared towards either the

metabolic machinery M or the gene expression machinery R respectively), while

singular control us(t) occurs when the function H1 identically vanishes over some

subinterval. Such singular arcs can be further described by successively differentiat-
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ing the switching functionH1 until the singular control u can be explicitly computed.

For the present case, this occurs when differentiating four times (“order two” sin-

gular arc). More precisely, the singular arc is of local (not intrinsic) order two (see

[69]). In this case, although chattering (a.k.a. Fuller phenomenon) in and out is not

necessary to enter and exit the singular arc, it is indeed what will be observed on

the numerical simulations.

Theorem 3. Any singular arc us(t) of a normal extremal process solution of (OCP)

is at least of order two.

Proof. We assume that the process (φ, u, λ) that satisfies PMP is a normal extremal,

and we set λ0 = −1. In order to further describe the singular arc, we assume H1

vanishes on a whole sub-interval τ = [t1, t2] ⊂ [0, T ]. Then, the switching surface is

the set

Σ =
{
(φ, λ) ∈ R2n |H1 = 0

}
,

where, for this case, n = 5. The first derivative is

Ḣ1 = λ̇rµ(p, r) + λr

(
µr(p, r)ṙ + µp(p, r)ṗ

)
, (4.23)

where

µr(p, r) =
∂µ(p, r)

∂r
, µp(p, r) =

∂µ(p, r)

∂p
.

Along the singular arc H1 is identically zero, so expression (4.23) also vanishes. In

order to compute the successive derivatives of H1, we will resort to the Poisson

bracket operator [70],

{f, g} =
n∑

i=1

(
∂f

∂λi

∂g

∂φi

− ∂f

∂φi

∂g

∂λi

)
.

Applying the latter definition to the derivative of H1 we obtain

Ḣ1 =
∂H1

∂φ
φ̇+

∂H1

∂λ
λ̇ =

n∑
i=1

(
∂H

∂λi

∂H1

∂φi

− ∂H

∂φi

∂H1

∂λi

)
= {H,H1} = {H0 + uH1, H1} = {H0, H1}
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as {uH1, H1} = u {H1, H1} = 0. In this context, we will use the notation H01 to

refer to {H0, H1}, and so forth. The second derivative of H1 is

Ḧ1 = Ḣ01 = {H,H01} = {H0, H01}+ u{H1, H01} = H001 + uH101.

Showing that H101 = 0 along the switching surface Σ ensures that the singular arc

is at least of order 2 (otherwise, a singular arc of order 1 could be computed as

u = −H001/H101). Since H1 depends only on λr, p and r, the computation of the

Poisson bracket reduces to

H101 = {H1, H01} =
∂H1

∂λr

∂H01

∂r
− ∂H1

∂r

∂H01

∂λr

+
∂H1

∂λp

∂H01

∂p
− ∂H1

∂p

∂H01

∂λp

= µ(p, r)
∂H01

∂r
− λrµr(p, r)

∂H01

∂λr

− λrµp(p, r)
∂H01

∂λp

(4.24)

where

∂H01

∂r
= λ̇rµr(p, r) + λr

∂

∂r

(
µr(p, r)ṙ + µp(p, r)ṗ

)
. (4.25)

Replacing the expression (4.25) in equation (4.24) yields

H101 =µ(p, r)

[
λ̇rµr(p, r) + λr

∂

∂r

(
µr(p, r)ṙ + µp(p, r)ṗ

)]
− λrµr(p, r)

∂H01

∂λr

− λrµp(p, r)
∂H01

∂λp

which is also equal to 0 along the switching surface since every term is multiplied

either by λr or λ̇r, both identically zero along a singular arc (see H1 expression),

showing that the singular arc is at least of order 2.

It is noteworthy that the above proof holds for all general flows vM(s, 1 − r),

vX(p, 1 − r) and vR(p, r) considered in Assumption 1, with no need to use the

defined Michaelis-Menten kinetics. Numerical results shown in Figure 4.3 confirm

that, when the conditions for the existence of the interior equilibrium Ei are met,

the optimal control strategy consists on a series of bang-bang arcs, and a singular

arc that is entered and left through the chattering phenomenon. While, as already

mentioned, it is compulsory to enter and leave order two singular arcs through chat-

tering, a more precise description of the structure of the extremal would require a
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deeper analysis (for instance to prove that there is only one singular arc). Moreover,

when the simulation time is long enough, we observe that the singular control us(t)

converges to a constant value, eventually taking the system to steady-state. This

is related to the so-called turnpike phenomenon [71] that relates the singular arc of

the dynamic optimization problem with the solution of the static one. See, e.g., [72]

for a preliminary analysis on a similar case.
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Figure 4.3: Results of the numerical simulations using BOCOP [4], showing the
optimal control input u and the state variables. The simulation has been done in
a time horizon T = 80, with 5000 time steps and Midpoint discretization method.
The Ipopt (interior point nonlinear optimizer) arguments are: max iter = 1000, tol
= 1.0e− 14, The initial conditions are fixed to: s(0) = 0.1, p(0) = 0.024, r(0) = 0.1,
x(0) = 0, V(0) = 0.2.

Additionally, we observe that the steady-state approached by the system during

the singular regime maximizes the integrand of the cost function, which is in fact the

instantaneous production of metabolite described in expression (4.21) (otherwise, it

would not be the optimal strategy). Therefore, the static optimal control to which

the dynamic one converges along the singular arc is the solution of the optimization
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problem 
maximize Jx(ū)

.
= x

subject to dynamics of (S1),

φ̇ = 0,

0 ≤ ū ≤ 1.

(SP)

The dynamical optimal solution acts as the gold-standard in terms of what can

be achieved through control techniques. However, implementing such strategy is,

in practice, unfeasible. Consequently, it is possible to design a static suboptimal

strategy consisting of a constant allocation usp that takes the system to the same

steady-state which maximizes the integrand of the cost function. Numerical sim-

ulations of such strategy are shown in Figure 4.4, where it can be seen that the

area below curves xsp and x in OCP only differ slightly (< 1% for this particular

simulation). The constant control usp basically disregards the initial and final bang

arcs, as well as the chattering phenomena, which constitutes a small fraction of the

complete time horizon T . Moreover, this fraction gets smaller as T becomes large,

which is a typical feature of the turnpike effect for a specific class of optimal con-

trol problems [71]. This way, the difference between strategies becomes marginal in

long-term production schemes.

Additionally, we provide a numerical computation of the successive derivatives

of the switching function H1 in Figure 4.5. It can be seen that the fourth derivative

H10001 ̸= 0 over the interval where H1 = 0, which shows that the singular arc is

of order 2. Furthermore, we verify that the Kelley (or generalized Legendre-Clebsch

[73]) condition

(−1)k
∂

∂u

[
d2k

dt2k

(
∂H

∂u

)]
< 0, ∀t ∈ I (4.26)

is met along the singular arc, which in this case is equivalent to H10001 < 0, ∀t ∈ I.
A check of this condition, necessary for optimality, is also shown in Figure 4.5. Al-

though there is no available sufficient condition to test local optimality of extremals

with Fuller arcs, verifying the Legendre-Clebsch condition along the singular arc

only ensures that we do not compute a too crude local minimizer. Besides, numeri-

cally only a small finite number of bang arcs are retrieved by the optimizer for the

chattering parts before and after the singular arc. This is usually sufficient to give
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Figure 4.4: Results of the numerical simulations using BOCOP, comparing the con-
trol u solution of the OCP to the solution of the static optimization problem usp

(both with same initial conditions). The parameters for the numerical simulation
match the ones used in Figure 4.3. The last plot emphasizes the area below the
curves xsp and x in OCP, as they are proportional to the total mass of metabolite
produced, which is the quantity to be maximized.

a very good approximation of the solution.

4.3.3 Static optimization problem

We have shown that a constant allocation decision ū represents a simplified alterna-

tive to the optimal control solution, a strategy composed of bang arcs, a time-varying

singular arc and the chattering artifact. In this section, we will further explore the

static optimization problem by adding a second degree of freedom to the problem:

the dilution rate D. In addition to that, we investigate two objectives: the produc-

tion of biomass V and of metabolite X. The static biomass maximization problem
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Figure 4.5: Successive derivatives of H1 obtained with BOCOP. The intervals where
the functions vanish are highlighted in light red. All functions vanish along the
singular arc except for H10001, highlighted in green, which is negative as required by
Kelley condition (4.26).

(SPV) can be written as

maximize JV(ū, D)
.
= DV

subject to dynamics of (S1),

φ̇ = 0,

0 ≤ ū ≤ 1.

(SPV)

Analogously, the product maximization problem can be defined as

maximize JX(ū, D)
.
= DX = DVextx

subject to dynamics of (S1),

φ̇ = 0,

0 ≤ ū ≤ 1.

(SPX)

Since we look for the steady-states that maximize each objective, the washout

equilibrium Ew can be excluded from the analysis since, as shown in Theorem 2, the
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equilibrium corresponds to the steady-state values V = 0 and x = 0. Therefore, the

static problems are reduced to finding the equilibria Ei in terms of the pair (D, ū)

that maximize each objective function. Moreover, it can be shown that the optimal

solution cannot belong to the boundary of the equilibrium Ei

Θ
.
=
{
(ū, D) ∈ R2 : µ̄(pw) = D

}
.

Indeed, using the definitions (4.8), (4.9) and (4.10), it can be seen that on Θ there

is no bacterial population, as si = sin, which means that Vi = xi = 0. We formalize

the latter reasoning in the following proposition.

Proposition 4. Every solution (D, ū) of the static optimization problems (SPV)

and (SPX) is in the region of existence of Ei given by the condition µ̄(pw) > D.

When considering the same self-replicator scheme under constant environmental

conditions (which could describe fed-batch cultivation) the solution for both static

problems corresponds to the steady-state with maximal growth rate [3]. Proposition

4 shows that this is not the case in continuous bioreactors, where maximal growth

rate is attained at the boundary set of existence of the equilibrium Ei. Two inter-

esting particular cases within Θ are the pure static allocation strategies ū = 0 and

ū = 1: A pure metabolic strategy ū = 0 will lead to a bacterial population with no

RNA polymerase (i.e., r = 0), which will eventually stop the production of biomass

(as vR(p, 0) = 0), leading to washout in the bioreactor. Analogously, allocating all

resources to the gene expression machinery will finally empty the metabolic machin-

ery m, halting the absorption of substrate from the environment (as vM(p, 0) = 0)

and depleting the bacteria from precursors, which will also lead to washout. From

this analysis, we can conclude that any optimal steady-state allocation ū should

belong to (0, 1).

We recall that, in continuous bioreactors, the growth rate µ̄(pi) is fixed by the

dilution rate D, as shown in equation (4.8). Figure 4.6 illustrates a numerical

analysis of the static problems. It is interesting to notice in both subfigures 4.6a

and 4.6b that the model accounts for the classical quasi-linear relation between

the maximal growth rate (that lies on the boundary Θ), and the control ū which

regulates the RNA/protein mass ratio of the bacterial population [2]. The latter

is a phenomenon which has been first observed experimentally, and later used to

develop dynamical self-replicator models for natural and biotechnological purposes
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[30, 3, 74]. However, in the present case, the growth rate is fixed through D, so

it is not a result of the nutrient quality in the environment, which enables the

multivariate approach.

Biomass maximization objective Results for this problem are shown in Figure

4.6a. For this case, the curve ūopt remains over 0.6 for all values of the growth rate,

tending to ūopt = 1 as the growth rate goes to 0. This shows that, in order to maxi-

mize V , the allocation strategy should prioritize the synthesis of macromolecules of

the gene expression machinery R over the metabolic machinery M , which catalyzes

the production of biomass and not the synthesis of metabolites. Moreover, the max-

imum DVi is attained through a fairly high growth rate (≈ 85% of the maximal

growth rate).
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(a) Results associated to (SPV) with JV =
DV.
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(b) Results associated to (SPX) with JX =
DX.

Figure 4.6: Numerical results for both static problems. The values for the objective
functions JV and JX are represented through a qualitative colormap. The set Θ of
maximum growth rate delimits the region of existence of the interior equilibrium Ei.
Additionally, curves ūopt(D) show the optimal allocation ū in terms of the dilution
rate D.

Product maximization objective Results for this case are shown in Figure

4.6b. We can see that, in opposition to the first case, the optimal solution requires

allocating as much precursors as possible into the metabolic machinery M , no mat-

ter the value of the dilution rate. In other words, the allocation control ū should

be as low as possible within the region of existence of the equilibrium Ei (but not
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in Θ). This result is consistent with the fact that the metabolic machinery M cat-

alyzes the synthesis of metabolite X. It is noteworthy that the optimal point DXi is

accomplished through a rather lower dilution rate D in comparison to the biomass

production case, resulting in a continuous production at a rate of about 35% of

the maximal growth rate. The latter might appear counter-intuitive, as it is well

established in the literature that high dilution rates in continuous bioreactors imply

high production rates. This characteristic can be attributed to the compromise be-

tween allocating resources to the metabolic machineryM and increasing the dilution

rate, linked to the maximum value of the function c(r). In other words, the lower

the dilution rate of operation, the wider the interval of existence of the equilibrium

(umin, umax), which enables the possibility of further promoting the synthesis of com-

pounds of the metabolic machinery (by artificially lowering the allocation parameter

ū) without going to washout. Figure 4.7a illustrates the resulting synthesis rates for

each solution. In (SPX), the synthesis rate of the metabolite vX is increased at the

expense of reducing both precursor and biomass synthesis rates vM and vR, which is

in large part due to the reduction of the dilution rate D. This difference in the flux

distribution impacts directly on the mass quantities inside the bioreactor at steady-

state—depicted in Figure 4.7b—for each problem: for the (SPX) case, there is a

reduction in the biomass V of only 20% w.r.t. the (SPV) case. However, we can see

an increase on the amount of metabolite X of about 5 times that of the (SPV) case.

As already said, the allocation parameter ū becomes quite lower in the metabolite

synthesis objective. In turn, this inhibits the synthesis of macromolecules, which

translates into a decrease of the bacterial population’s growth rate. To compensate

this effect, the steady-state pool of precursors P required for producing the metabo-

lite X becomes considerably bigger than that of the biomass production objective

(about 10 times), therefore increasing the rate of fabrication of biomass vR(p, r).

4.4 Discussion

The objective in this paper was to synthesize a certain metabolite of interest by

re-adjusting the natural allocation of resources in bacteria. This is done by drawing

resources from the native pathways of the cell originally used for producing biomass,

and allocating them into the production of the compound X. We addressed the

problem in the continuous bioreactor framework, which allows a steady-state pro-
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Figure 4.7: Numerical results for both static problems.

duction regime. Based on previous dynamical systems approaches [30, 3, AYT5],

we proposed a coarse-grained self-replicator model capable of accounting for well-

studied bacterial growth laws in a simplified way, and we studied its asymptotic

behavior. We tackled two different production objectives: Biomass maximization

V and metabolite maximization X, and we compared results in order to better un-

derstand the potential control strategies required to that effect. We rely on novel

bio-engineering techniques capable of delivering groundbreaking control schemes: A

synthetic growth switch that allows to control the transcription of RNA polymerase

through an inducible promoter. In addition to this regulation mechanism, we in-

clude the dilution rate as a control input, which yields a multi-variable optimization

problem. We concluded by showing very contrasting results, but in accordance with

our previous understanding of microbial resource allocation. The biomass-oriented

strategy involves an almost maximal dilution rate, and prioritizes investing resources

into the gene expression machinery. Conversely, producing the compound of interest

requires a rather low value of the dilution rate, which allows an allocation strategy

more geared towards the synthesis of components of the metabolic machinery (i.e., a

lower value of ū). The latter shows there exist a compromise between augmenting the

dilution rate and artificially boosting the production of enzymes and transporters.

The capacity to interfere with the natural bacterial behaviors at molecular level

represents a promising tool to improve biotechnological processes. We are interested

in further exploring the details of the implementation of such control schemes, by

considering different models of the external growth switch. A next step in this regard
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would involve taking into account the nature of the external signal I and its physical

constraints, in order to adapt our current results towards a more implementable con-

trol loop. Additionally, our approach is based on very simplified representations of

bacterial growth. Such biological processes usually involve numerous reactions and

variables. In our case, we clustered all macromolecules into only 2 different classes,

and we purposely omitted a number of known phenomena in bacteria, such as cell

division, protein degradation and the influence of temperature. However, some of

these effects have been proven to affect only marginally the results regarding the al-

location problem [75]. Thus, in our case, a simplified representation becomes useful

to emphasize the effects of optimally dealing with the internal resource distribution

of bacteria in industrial frameworks. Eventually, such optimal strategies could pro-

vide guidance for developing online feedback solutions based on real-time measuring

of the process.
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Chapter 5

Model-predictive control schemes

This chapter reproduces [AYT3], accepted for publication in the 60th Conference

on Decision and Control (IEEE CDC 2021).

5.1 Introduction

Microorganisms have evolved over millions of years under natural selection, submit-

ted to a continuous optimisation process that has improved their capacity to prolifer-

ate in nature. Thus, they have developed highly optimized distribution mechanisms

of their internal resources to cellular functions enabling them to face changing envi-

ronments. Unraveling these internal mechanisms has always been of great interest

for the scientific community, not only from a pure biological point of view, but also

for biotechnological purposes. In this context, being able to understand and control

the growth process is key for several industrial applications, such as in combating

antibiotics resistance, food preservation, and biofuel production [7].

Considering the microbial self-replication process as a resource allocation prob-

lem is a novel approach that has successfully answered some of the underlying ques-

tion in the field [30]. The latter has also motivated numerous applications to the

artificial production of metabolites of interest [3, AYT5, AYT4, AYT2]. These stud-

ies aim to find how to divert the cell internal resources into a heterologous pathway

in order to efficiently synthesize a specific protein. This is done through an external

control that is able to disrupt the cellular allocation process of a growing culture by

reengineering the transcriptional control of the expression of RNA polymerase [44].

In a dynamical systems framework, the problem can be posed as an Optimal Con-
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trol Problem (OCP), which can be approached through the well-known Pontrjagin’s

Maximum Principle (PMP).

Model-based optimal control studies are essential in understanding the overall

allocation process, as they are able to provide the gold-standard strategies, i.e. the

best that can be achieved from a theoretical point of view. However, in most cases, it

is impossible to obtain a closed-loop control strategy: the obtained optimal control

often depends on the so-called adjoint state, which hinders its implementation (as

it is the case in [3]). Additionally, such approaches depend on the accuracy of

the model and the precision of its parameters, which often tend to be limited for

most biochemical and biological processes. At the same time, the existing industrial

applications that allow a closed-loop implementation are mainly based on general

schemes such as non-linear Model Predictive Controllers (NMPC), which tend to

disregard the structure of each particular problem [76].

Motivated by the lack of synergy between pure theoretical approaches and very

general implementations, in this work we revisit the metabolite production prob-

lem. We summarize the open-loop optimal allocation strategies found in the litera-

ture, which are characterized by sharing the same simple structure and a common

parametrisation. Then, we propose a hierarchical NMPC scheme designed on the

basis of these open-loop optimal controllers. In particular, we resort to the shrinking

horizon NMPC (sh-NMPC) [77], an approach targeted to control processes of known

time duration, such as batch processes [78]. In contrast to typical receding horizon

approaches, in the sh-NMPC, the final time of the process is fixed, and so the time

window considered in the optimisation problem (i.e. the prediction horizon) shrinks

at each step.

Our approach uses an optimal control-based input parametrisation that takes

into account the structure of the open-loop natural allocation strategy of the cell.

Thus, we first implement an MPC loop which creates a closed-loop natural alloca-

tion, followed by a second MPC that computes the external control maximising the

production of a metabolite of interest. Similar approaches have been proposed to

control batch and semi-batch processes through the manipulation of the feedrate

[77, 79], which is a standard scheme in the bioreactor framework. The novelty of

this work resides in a hierarchical control scheme that aims to affect the internal

pathways of the cells in a bacterial growing culture by affecting the expression of

RNA polymerase.
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Figure 5.1: Coarse-grained self-replicator model. The external substrate S is con-
sumed by bacteria and transformed into precursor metabolites P through the ac-
tion of the metabolic machinery M. These precursors are used to produce macro-
molecules of the gene expression machinery R, the metabolic machinery M, the
housekeeping machinery Q, and metabolites X. The external control I is able to
externally affect the natural allocation parameter α in order to channel resources
into the production of metabolites of interest.

We start the paper by defining the model, and the naturally-evolved resource

allocation strategy used by the bacteria. Then, we propose a suboptimal parametri-

sation intended to emulate the open-loop strategy. In Section 5.3, we introduce

the open-loop metabolite maximisation problem, and the closed-loop hierarchical

scheme. Finally, we provide a numerical simulation of the approach and a compari-

son with the optimal case, followed by a conclusion.

5.2 Model definition

5.2.1 Self-replicator system

Based on [30], we define the self-replicator system composed of the mass (in grams)

of: precursor metabolites P, the gene expression machinery R, the metabolic machin-

ery M, the housekeeping machinery Q, and a metabolite of interest X. As illustrated
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in Figure 5.1, substrate S is taken from the environment and transformed into P

at rate VM through a reaction catalyzed by M. Then, the precursors P are trans-

formed into M, Q, R and X at rates rmax(1−α)VR, (1− rmax)VR, rmaxαVR, and VX ,

respectively. While the reactions that produce M, Q and R are catalyzed by R, the

reaction synthesizing X is catalyzed by M. In short, the ribosomal proteins R are

responsible of producing new proteins, and the metabolic proteins M are responsible

for the uptake of nutrients into the cell, and the production of metabolites X. The

latter represents a classical trade off in synthetic biology, and is modeled through the

parameter α, defined as a time function with bounds α(t) ∈ [0, 1]. The dynamical

system is 

Ṡ = Vin − VM

Ṗ = VM − VX − VR,

Ṙ = rmaxαVR,

Ṁ = rmax(1− α)VR,

Q̇ = (1− rmax)VR,

Ẋ = VX .

where the time variable t is measured in hours. The bacterial volume is defined

as V .
= β(R + M + Q), and the growth rate given by µ

.
= V̇/V . We define the

intracellular concentrations

p =
P

V
, r =

R

V
, m =

M

V
, q =

Q

V

and the extracellular concentration of substrate s. Using the definition of bacterial

volume, we obtain the relation β(r +m + q) = 1. Then, following [16], we assume

the transcription of proteins Q to be internally autoregulated to a constant value,

such that

β(r +m) = rmax, βq = qmax
.
= 1− rmax. (5.1)

We define the rates of mass flow per unit volume, which we assume to be functions

of the concentrations s, m and r, as vM(s,m)
.
= VM/V and vR(p, r)

.
= VR/V . In this

new system, the growth rate becomes µ = βVR/V = βvR(p, r). Taking into account

that a minimal concentration of ribosomes rmin is required in order for bacteria

to self replicate, we define the kinetics of the problem as vM (s,m)
.
= wM(s)m,
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vR(p, r)
.
= wR(p) (r − rmin) and vX (p,m)

.
= wX(p)m, with wR(p)

.
= kR p/(KR + p),

wM(s)
.
= kMs/(KS + s) and wX(p)

.
= kXp/(KX + p). We will model a production

process in which the substrate remains constant. This could be the result of an

external control regulating through an inflow of fresh medium to the bioreactor, or

due to high availability in the medium. Thus, we replace wM(s) = eM , with eM > 0

constant. We define the non-dimensional timescale t̂ = kRt, as well as the mass

fractions of the total volume V : p̂ .
= βp, r̂

.
= βr, r̂min

.
= βrmin, m̂

.
= βm = rmax − r,

q̂
.
= βq = 1− rmax. Additionally, we define non-dimensional synthesis rates ŵR(p) =

wR(p)/kR, ŵX(p) = wX(p)/kR, and parameter EM
.
= eM/kR. Then, dropping all

hats, the model becomes

ṗ = EM (rmax − r)− wX(p)(rmax − r)

−(p+ 1)wR(p)(r − rmin),

ṙ = (rmaxα− r)wR(p)(r − rmin),

Ẋ = wX(p)(rmax − r)V ,

V̇ = wR(p)(r − rmin)V ,

(5.2)

where q and m have been removed using equations (5.1). The parameter values

of the kinetics and of bounds rmin and rmax are fixed based on previous studies

[30, 3, 23].

5.2.2 Naturally-evolved resource allocation strategy

A common assumption in biology is that microorganisms have evolved resource

allocation strategies that maximise their growth rate, which allow them to outgrow

competing organisms. Such assumption can be represented by an OCP, in which

the objective is to maximise the synthesis of biomass in an interval of time T given

by ∆V(T ) = V(T )− V(0). This defines the cost function

JN(α) =

∫ T

0

wR(p)(r − rmin)V dt.
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Thus, as neither the states nor the cost function depend on variable X, we will

define the OCP for the reduced state (p, r,V) with dynamics
ṗ = EM (rmax − r)− wX(p)(rmax − r)− (p+ 1)wR(p)(r − rmin),

ṙ = (rmaxα− r)wR(p)(r − rmin),

V̇ = wR(p)(r − rmin)V ,

(SN)

and initial conditions

p(0) = p0, r(0) = r0 V(0) = V0. (IC)

with p0 > 0, r0 ∈ (rmin, rmax) and V0 > 0. The OCP is then defined as

maximise
α

biomass production JN(α),

subject to dynamics (SN),

initial conditions (IC),

α(·) ∈ U ,
t ∈ [0, T ].

(OCPN)

where U is the set of admissible controllers, which are Lebesgue measurable real-

valued functions defined on the time interval [0, T ] and satisfying α(t) ∈ [0, 1]. In

[30], the particular case where wX(p) = 0, rmax = 1 and rmin = 0 has been studied,

and similar analyses have been carried out in [3, AYT5]. By application of the

PMP, it is possible to show that the optimal control that solves OCPN has bang and

singular arcs, where the singular arc corresponds to the solution of the static optimal

control problem obtained through the addition of the constraint (ṗ, ṙ, V̇) = 0. The

solution is characterized by the presence of the Fuller phenomenon before and after

the constant singular arc, which produces an infinite number of bangs (also known

as chattering), a feature that, due to obvious physical limitations, is not possible

to implement (nor expected to be found in nature). An example of this kind of

structure is shown in Figure 5.2.

Remark 5.2.1. Problem OCPN can be further simplified by considering the cost

function lnV(T ) instead of V(T ). Then, neither the dynamics nor the cost function

depend on V, so the problem can be rewritten in terms of the state (p, r) [30].
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Figure 5.2: Optimal control α obtained with Bocop [4]. Simulation in a rich medium
with eM = kR, meaning the medium enables the maximum growth rate. Initial
conditions are p0 = 0.024, r0 = 0.2, and V0 = 0.003, and the simulation time is set
to T = 15.

5.2.3 MPC parametrisation of the natural allocation

In order to incorporate the natural allocation strategy of the cell into the MPC loop,

we propose a sub-optimal parametric form of α given by

αso(θ, t) =


b1 if t < t1,

α∗ if t1 ≤ t ≤ t2,

b2 if t > t2,

with the set of parameters θ
.
= (b1, b2, t1, t2, α

∗) subject to

b1 ∈ {0, 1}, b2 ∈ {0, 1},
tf ≥ t2 ≥ t1 ≥ 0, 1 ≥ α∗ ≥ 0,

(5.3)

where b1 and b2 are Boolean parameters. The suboptimal parametric allocation αso

deliberately neglects the chattering artifact from the optimal control α, replacing it

by pure bang controls during the intervals [0, t1) and (t2, T ]. In order to compare

the performance of the proposed controller, we write an optimisation problem with

the same biomass production objective JN . At each time instant of the control loop,

the algorithm finds the vector of parameters θ that maximises the final volume of

biomass V(T ). The latter amount to solving four optimisation problems in terms of

(t1, t2, α
∗) given by all possible combinations of Boolean parameters (b1, b2). At each
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iteration k, the control loop starts by measuring the system and getting an estima-

tion (p̃k, r̃k, Ṽk) of the system state. Thus, the optimisation problem at iteration k

is formulated with initial conditions

(p(kτ), r(kτ),V(kτ)) = (p̃k, r̃k, Ṽk). (5.4)

This defines the optimisation problem

maximise
θ

biomass production JN(θ)

subject to dynamics (SN),

initial conditions (5.4)

α(·) = αso(θ, t),

input constraints (5.3)

t ∈ [kτ, T ]

(OPk)

which is solved at each instant kτ . The scheme proposes a closed-loop form of the

open-loop optimal control found in Subsection 5.2.2, with the purpose of implement-

ing it in the hierarchical MPC loop.

5.2.4 Numerical example

Figure 5.3 shows a comparison of the optimal control α and the proposed suboptimal

control αso. The initial and final Fuller arcs are approximated by pure bang arcs

(which are α = 1 for this particular case), and the parameter α∗ of the suboptimal

control takes exactly the same value of the static optimal control α∗
opt. The difference

between both control functions is minor, which translates into an imperceptible

difference in the trajectories.

5.3 Artificial metabolite production

The artificial metabolite production problem is to maximise the synthesis of X over

a fixed interval of time [0, T ], which is equal to ∆X(T ) = X(T )−X(0), and can be

expressed as

JX(u) =

∫ T

0

wX(p)(rmax − r)V dt.
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Figure 5.3: Comparison of the optimal control α(t) solution of OCPN and the MPC
scheme parametrized with the suboptimal control αso(θ, t). Initial conditions are set
to p0 = 0.024, r0 = 0.2, and V0 = 0.003. The scheme is executed with time step
τ = 0.3. The quantity ∆X amounts to X(T )−X(0).

As neither the states nor the cost function depend on variable X, the reduced system

(SN) can be used.

5.3.1 Optimal Control Problem

In the original approach [3], the naturally-evolved resource allocation parameter α

is overridden by the external control u, and so the dynamical equation of r becomes

ṙ = (rmaxu− r)wR(p)(r − rmin).
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Then, the optimal control problem is defined as

maximise
u

metabolite production JX(u)

subject to dynamics (SN)

initial conditions (IC)

u(·) ∈ U ,
t ∈ [0, T ].

(OCPX)

5.3.2 On the solution of the OCP

Applying PMP, we see that the Hamiltonian is affine in the control, so it has the

form H = H0 + uH1, meaning that the solution is bang-singular-bang, given by

u(t) =


0 if H1 < 0,

1 if H1 > 0,

using(t) if H1 = 0.

Examples of optimal trajectories are shown in Figure 5.4 and Figure 5.5, where both

problems OCPN and OCPX are compared for different environmental conditions

representing rich and poor qualities of the nutrient in the medium. While the

structures of the optimal control for both problems are similar, the optimal strategy

maximizing the production of X is characterized by a non-constant singular arc,

which is close to the solution u∗
opt of the static OCP, but deviates from it towards

the end. Additionally, the times at which the junctions between bang and singular

arc are produced differ, as well as the values of the bangs. In particular, in both

Figures, the final bang of the natural control is α = 1, while that of the artificial

control is u = 0. More detailed calculations of the PMP approach can be found in

[3].

5.3.3 Product maximisation including naturally-evolved al-

location

The comparison between OCPN and OCPX proves useful to observe that the natural

behavior of microbes does not necessarily match the artificial objective of producing

a certain metabolite. However, the assumption made in OCPX is a pure theoretical

one, as α cannot be completely substituted by the external control. We then propose
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Figure 5.4: Optimal control obtained with Bocop. Simulation in a rich medium
with eM = kR, meaning that the substrate enables the maximum growth rate.
Initial conditions are p0 = 0.024, r0 = 0.1 and the simulation time is set to T = 30.
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Figure 5.5: Optimal control obtained with Bocop. Simulation in a poor medium
with eM = 0.5kR. Initial conditions are p0 = 0.024, r0 = 0.3 and the simulation
time is set to T = 30.

an approach that takes into account two distinct processes: (i) the ability of bacteria

to maximise their biomass through the optimal allocation described by the internal

control problem OCPN, (ii) the external action of an operator intending to maximise

the production of the metabolite of interest X. In practice, the new pathway associ-

ated to the dynamics of X in (5.2) is obtained by optogenetic engineering of a strain

of bacteria: a light-induced control I is able to externally modulate the natural allo-

cation process. This is modeled by replacing the control u of OCPX by u = α(p, r)I,

so that the external control affects in a multiplicative way the internal allocation

strategy. The crucial difference with the previous formulation [3] is that the internal
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control α of the bacteria now appears in feedback form (thus depending on the two

states of OCPN; see Remark 5.2.1), and is modulated by the external light-induced

control I. It is noteworthy that no competition occur between the two objectives

(biomass vs. metabolite production maximisation). The approach considers the in-

ternal control in feedback form, which is mitigated by an external control in relation

with a global process that includes the new pathway to produce the metabolite. In

this context, the proposed hierarchical approach proves to be more relevant from

a biological point of view than a multicriterion one. Additionally, we assume that

the feedback α(p, r) is known and smooth. While the latter seems to be a strong

assumption from the control point of view (as the solution of OCPN comprises bang

and singular arcs), it is a reasonable assumption in our biological setting, where the

kinetics of the involved biochemical reactions prescribe continuous behaviours (see

[30] for biologically relevant approximations of the feedback). Thus, the dynamical

equation of r becomes

ṙ = (rmaxα(p, r)I − r)wR(p)(r − rmin), (5.5)

where the new control I(t) is subject to bound constraints 0 ≤ I(t) ≤ Imax, and the

cost JX remains unchanged. This defines problem OCPX .

5.3.4 Hierarchical MPC for metabolite production

In this approach, we approximate the allocation feedback α(p, r) through the sh-

MPC loop described in 5.2.3. At each iteration k, solving on [kτ, T ] (where T is,

as before, the fixed horizon) yields an approximation of α(pk, rk) (based on the

suboptimal parametric form αso), and of α evaluated at further steps. Then, this

suboptimal feedback is injected in the dynamics (5.5) of OCPXso as to find the

optimal external control I maximizing X(T ). Thus, a second MPC is used ”above”

the first one. There is a quite large literature on such approaches combining several

MPC loops (see, e.g., [80, 81] and references therein). Other relevant matters such

as using different time grids for each MPC loop or, more generally, synchronisation

issues, are not discussed here (see also the recent paper [82] on convergence of MPC

methods in finite horizon). Instead, we focus on the biological application. We note,

in particular, that when the feedback α(p, r) is zero (which would be expected for

the genuine—though biologically unrealistic—feedback of OCPN as zero bang arcs



113

can occur), the external control I is not active. In practice, when the allocation is

close to zero, the MPC loop would compensate through I for this discrepancy. As

the external control I is bounded, the latter can induce certain performance loss

between the results of the ideal model OCPX and the more realistic problem OCPX .

Such comparisons are provided in the next paragraph.

5.4 Numerical results

Figure 5.6 shows a comparison between the optimal trajectory solution of OCPX and

the hierarchical MPC proposed in this paper. Differences between both trajectories

are marginal, mainly given by the approximation of the singular arc by a constant

control u. In Figure 5.7 we see how, in order to match the optimal control u

solution of OCPX, the external signal I completely arrests the natural allocation α

(around t = 12), which implies allocating all the cellular resources to the metabolic

machinery M, thus catalyzing the synthesis of X. The latter produces the suboptimal

control αso to increasingly compensate until it reaches the value 1. This result shows

the difference between the simulated closed-loop behavior of the natural allocation

strategy αso(p, r), and the open-loop one (which remains constant almost over the

whole interval [0, T ]).

5.5 Conclusion

In this paper, we presented a hierarchical sh-NMPC approach to the problem of

optimally producing a metabolite of interest in bacteria. The scheme is based on a

parametric version of the naturally-evolved research allocation strategy proposed in

[30], which represents a closed-loop alternative to these existing open-loop studies.

A second sh-NMPC loop is applied in a hierarchical manner, in order to achieve the

metabolite maximisation objective while taking into account the closed-loop natural

control. Despite the approach being at an early stage, with no experimental results,

it represents a step towards plausible biosynthetic real-time implementations. In

future works, we are interested in comparing the natural MPC approximation with

alternatives proposed in the literature, such as ppGpp regulation [30]. Other ex-

tensions include the possibility of estimating the real value of the natural allocation

through online identification techniques.
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Final time is set to T = 30, the scheme is executed with time step τ = 1 and the
environmental constant eM = 0.5kR.
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Chapter 6

A generalized resource allocation

model of microbial growth

This chapter reproduces [AYT1], accepted for publication in the SIAM Journal on

Applied Dynamical Systems.

6.1 Introduction

The growth of microorganisms is a paradigm example of self-replication in Nature.

Microbial cells are capable of transforming nutrients from the environment into new

microbial cells astonishingly fast and in a highly reproducible manner [83]. The

biochemical reaction network underlying microbial growth has evolved under the

pressure of natural selection, a process that has retained changes in the network

structure and dynamics increasing fitness, i.e., favoring the ability of the cells to

proliferate in their environment. Gaining a better comprehension of the growth of

microorganisms in the context of evolution is a major scientific challenge [84], and

the ability to externally control growth is critical for a wide range of applications,

such as in combating antibiotics resistance, food preservation, and biofuel production

[85, 86, 87].

A fruitful perspective on microbial growth is to view it as a resource alloca-

tion problem [2]. Microorganisms must assign their available resources to different

cellular functions, including the uptake and conversion of nutrients into molecular

building blocks of proteins and other macromolecules (metabolism), the synthesis

of proteins and other macromolecules from these building blocks (gene expression),
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and the detection of changes in the environment and the preparation of adequate

responses (signalling and regulation). It is often assumed that microorganisms have

evolved resource allocation strategies so as to maximize their growth rate, as this

would allow them to outgrow competing species.

Simple mathematical models based on resource allocation principles have been

surprisingly effective in accounting for experimental observations of the growth and

physiology of microorganisms [2, 88, 26, 16, 30, 33, 89]. Instead of providing a de-

tailed description of the entire biochemical reaction network, these models include a

limited number of macroreactions responsible for the main growth-related functions

of the cell. The models usually take the form of nonlinear ODE systems, typically 3-

10 equations with parameters obtained from the experimental literature or estimated

from published data. The models have been instrumental in explaining a number

of steady-state relations between the growth rate and the cellular composition, in

particular the concentration of ribosomes, protein complexes that are responsible

for the synthesis of new proteins [26, 2, 23, 30, 90]. Moreover, they have brought

out a trade-off between the rate and yield of alternative metabolic pathways that

produce energy-carrying molecules, necessary for driving forward many cellular re-

actions, such as those involved in the synthesis of proteins and other macromolecules

[26, 91, 92].

In previous work, using a three-variable resource allocation model, it was possible

to predict an optimal resource allocation scheme for the response of microbial cells

to a sudden nutrient change in the environment [30]. The prediction was based on

the Infinite Horizon Maximum Principle, a generalization of the well-known PMP

(Pontrjagin Maximum Principle) [93, 43]. A feedback control strategy inspired by a

known regulatory mechanism for growth control in the bacterial cell was shown to

give a quasi-optimal approximation of the optimal solution. Strategies for optimal

control were also explored for an extension of the model, inspired by recent exper-

imental work [94], which comprises a pathway for the production of a metabolite

of biotechnical interest as well as an external signal allowing growth to be switched

off [3, AYT5, AYT4, AYT2]. We showed by a combination of analytical and com-

putational means that the optimal solution for the targeted metabolite production

problem consists of a phase of growth maximization followed by a phase of prod-

uct maximization, in agreement with strategies proposed in metabolic engineering.

Optimal control approaches have also been used for studying other dynamic op-
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timization problems in biology (see [95] for a review). A classical example is the

determination of optimal activation patterns of metabolic pathways, such as to min-

imize the transition time of metabolites or minimize enzyme costs [96, 97].

The resource allocation model that lies at the basis of the above-mentioned work

[30] has a number of limitations. First, the biomass of the cell was assumed to consist

of two classes of proteins, enzymes catalyzing metabolic reactions and ribosomes

responsible for protein synthesis, whose relative proportions vary with the growth

rate. However, experimental data show that a large fraction of the total protein

contents of the cell is growth rate-independent [98]. This suggests the introduction

of a third protein category, dedicated mainly to basic housekeeping functions of the

cell. The proportion of these proteins is independent of the growth rate and thus

constrains the variations in the other two, growth rate-dependent categories [2, 23].

Second, the concentration of ribosomes and enzymes, the two protein categories

included in the original model, have both a growth rate-dependent and a growth

rate-independent component [2, 98]. This implies that the protein synthesis rate,

and thus the growth rate, does not depend on the total ribosome concentration, as

in the original model, but only on its growth rate-dependent fraction [23].

In the present manuscript, we revise the above modeling assumptions and study

their impact on predicted optimal strategies for resource allocation following changes

in the environment of different nature (i.e., changes in the nutrient concentration

or stress responses). This leads to a number of interesting problems in mathemat-

ical analysis and control, which are addressed using tools from dynamical systems

analysis and optimal control theory. A full dynamical analysis of the system shows

there is a single globally attractive equilibrium, which can be related to steady-state

growth conditions of bacteria observed in experiments. In spite of the simplicity of

the presented model, the solutions of the associated biomass maximization problems

exhibit quite interesting features. Notably, the second-order singular arc is charac-

terized by a) the Fuller’s phenomenon at its junctions, yielding an infinite set of

switching points in a finite-time window, and b) the turnpike effect, which produces

very particular asymptotic behaviors towards the solution of the static optimization

problem. We provide a full description of the singular arc in terms of the state, as

well as an explicit proof of the presence of the turnpike effect. While the predicted

(optimal) control dynamics does not change much qualitatively in comparison with

the previous model, the more realistic modeling assumptions offer a more general
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perspective of the biological problem. For example, in contrast with the previous

model where the absence of growth-rate independent protein yields a constant sin-

gular arc equal to the solution of the static optimization problem, the singular arc

of the new model is not constant, but governed by a turnpike phenomenon.

In Section 2, we describe the model used in this study, followed by a global

dynamical analysis of the model in Section 3. In Section 4, we calibrate the model

from literature data using the equilibrium of interest for an optimal steady-state

allocation parameter, and in Section 5 we formulate an optimal control problem and

prove properties of the optimal solutions. In Section 6, we show that the general

analysis can be applied to two different cases of environmental changes related to

nutrient shifts and stress responses.

6.2 Model definition

We define a self-replicator system composed of the mass of precursor metabolites

P, the gene expression machinery R (ribosomes, RNA polymerase, ...) and the

metabolic machinery M (enzymes, transporters, ...), as shown in Figure 6.1. Essen-

tially, the ribosomal proteins R are responsible for the fabrication of new proteins,

and the metabolic proteins M are in charge of the uptake of nutrients for building

precursor metabolites P. Following Scott et al. [2], we also introduce a class Q of

proteins whose functions fall outside the range of tasks performed by M and R. This

sector comprises mainly growth rate-independent proteins such as housekeeping pro-

teins responsible for the maintenance of certain basic cellular functions. Needless to

say, the synthesis of Q proteins draws resources away from the pathways to M and R,

and consequently imposes an upper bound on the fraction of resources dedicated to

self-replication and nutrient uptake. This constraint appears in the model through

a constant γ ∈ [0, 1], and it indicates the maximum fraction of the protein synthesis

rate available for making ribosomes and metabolic enzymes. The overall allocation

process can be represented by the biochemical macroreactions

S
VM−−→ P,

P
VR−−→ γαR+ γ(1−α)M + (1−γ)Q.

The first reaction describes the transformation of external substrate S into precur-
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Figure 6.1: Coarse-grained self-replicator model. The external substrate S is con-
sumed by bacteria and transformed into precursor metabolites P by the metabolic
machinery M. The precursors are used to produce macromolecules of classes R, M
and Q, with proportions γα, γ(1 − α), and 1 − γ, respectively. Solid lines indicate
the macroreactions with their respective synthesis rates, and dashed lines denote a
catalytic effect.

sor metabolites P at a rate VM . The second reaction represents the conversion of

precursors into macromolecules R, M, and Q at a rate VR. The roles of the enzymes

M in the uptake and metabolization of nutrients and the ribosomal proteins R in

the production of proteins are represented through catalytic effects, indicated with

dotted arrows in Figure 6.1. In this context, protein A catalyzes reaction B means

that the rate of reaction B is proportional to the cellular concentration of A, but

the reaction itself does not consume A. The natural resource allocation strategy is

modeled through the time-varying function α(t) ∈ [0, 1]. Thus, the proportion of the

total synthesis rate of proteins dedicated to the gene expression machinery R is γα,

while that of the metabolic machinery M is γ(1 − α). In particular, the allocation

parameter does not influence the synthesis rate of Q, with constant proportion 1−γ,

as the synthesis of proteins in this class is auto-regulated through mechanisms not

relevant in this study. From a biological perspective, the function α(t) represents

the naturally-evolved allocation strategy of the cell which is, a priori, unknown. In

the context of control theory, and throughout this paper, α is treated as the control

input of the system.
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6.2.1 Self-replicator system

Generalizing upon Giordano et al. [30], a mass balance analysis yields the dynamical

system 

Ṗ = VM − VR,

Ṙ = γαVR,

Ṁ = γ(1− α)VR,

Q̇ = (1− γ)VR.

where mass quantities P , M , R and Q are described in grams (g), the synthesis rates

VM and VR in grams per hour, and α is the dimensionless allocation parameter. In

what follows, we will assume that the proteins of classes R, M and Q are responsible

for most of the bacterial mass [83], and so we define the bacterial volume V measured

in liter units (L) as

V = β(R +M +Q), (6.1)

where β corresponds to a density constant relating mass and bacterial volume [99],

such that the total biomass in grams is given by V/β. The above assumption implies

that the mass of precursor metabolites represents a negligible fraction of the total

biomass, (in other words, P ≪ V/β). We define the intracellular concentrations in

grams per liter as

pV
.
=

P

V
, rV

.
=

R

V
, mV

.
=

M

V
, qV

.
=

Q

V
. (6.2)

Using (6.1) and (6.2), we to obtain the relation

rV +mV + qV =
1

β
. (6.3)

We also define the rates of mass flow per unit volume, which we assume to be

functions of the available concentrations, as

vM(s,mV)
.
=

VM

V
, vR(pV , rV)

.
=

VR

V
,
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where s corresponds to the extracellular concentration of substrate measured in

grams per liter. The growth rate of the bacterial population is defined as the relative

change of the bacterial volume

µ
.
=

V̇
V

=
βVR

V
= βvR(pV , rV).

We write the system in terms of the concentrations as

ṗV = vM(s,mV)− (1 + βpV)vR(pV , rV),

ṙV = (γα− βrV)vR(pV , rV),

ṁV = (γ(1− α)− βmV)vR(pV , rV),

q̇V = ((1− γ)− βqV)vR(pV , rV),

V̇ = βvR(pV , rV)V .

6.2.2 Kinetic definition

We define the kinetics of the reaction system by taking into account that a minimal

concentration of ribosomal proteins rV,min ∈ (0, γ/β) is required for protein synthesis

to take place. In other words, a part of the bacterial volume is occupied by ribosomal

proteins which do not directly contribute to growth [23]. Such behavior can be

modeled as

vR(pV , rV)
.
= wR(pV) (rV − rV,min)

+, with (rV − rmin)
+ =

{
rV − rV,min if rV ≥ rV,min,

0 if rV < rV,min.

Later on, we will see that there is no need to define vR(pV , rV) for rV < rV,min if the

initial conditions lie in a particular region of the state space. The rate of nutrient

uptake is defined as

vM(s,mV)
.
= wM(s)mV .

We will make the following assumption for functions wR(pV) and wM(s).

Hypothesis 6.2.1. Function wi(x) : R+ → R+ is

• Continuously differentiable w.r.t. x,
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• Null at the origin: wi(0) = 0,

• Strictly increasing: w′
i(x) > 0,∀x ≥ 0,

• Strictly concave: w′′
i (x) < 0, ∀x ≥ 0,

• Upper bounded: limx→∞ wi(x) = ki > 0.

The classical Michaelis-Menten kinetics satisfies Hypothesis 6.2.1. While most

of the mathematical results are based on this general definition, for the calibration

of the model and numerical simulations, we will resort to the particular case where

the functions are defined as

wR(pV)
.
= kR

pV
KR + pV

, wM(s)
.
= kM

s

KS + s
, (6.4)

where kR and kM are the maximal reaction rates in h−1, and KM and KR are

the half-saturation constants of the synthesis rates in g L−1. For the general case

introduced in Hypothesis 6.2.1 we will define

kR
.
= lim

pV→∞
wR(pV).

6.2.3 Constant environmental conditions

We assume that the availability of the substrate in the medium is constant over the

time-window analyzed. The latter can be modeled by setting s constant, and thus

removing the dynamics of s from the system.

Hypothesis 6.2.2. The flow of substrate can be expressed as wM(s) = eM with

eM > 0 constant.

Using this assumption, the dynamical equation of pV becomes

ṗV = eMmV − (1 + βpV)wR(pV)(rV − rV,min)
+.

The constant eM models the substrate availability of the medium, but it is also

related to the quality of the nutrient and the efficiency of the macroreaction that

produces precursor metabolites.
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6.2.4 Mass fraction formulation and non-dimensionalization

We define mass fractions of the total bacterial mass as

p
.
= βpV , r

.
= βrV , rmin

.
= βrV,min, m

.
= βmV , q

.
= βqV ,

which, replacing in (6.3), yields the relation

r +m+ q = 1. (6.5)

We also define the non-dimensional time variable t̂
.
= kRt, and the non-dimensional

growth rate

µ̂(p, r)
.
=

µ(pV , rV)

kR
= ŵR(p)(r − rmin), (6.6)

with ŵR(p) : R+ → [0, 1) defined as ŵR(p)
.
= wR(pV)/kR, and EM

.
= eM/kR. For the

sake of simplicity, let us drop all hats from the current notation. Then, the model

becomes 

ṗ = EM m− (p+ 1)wR(p)(r − rmin)
+,

ṙ = (γα− r)wR(p)(r − rmin)
+,

ṁ = (γ(1− α)−m)wR(p)(r − rmin)
+,

V̇ = wR(p)(r − rmin)
+V ,

m+ r ≤ 1,

(S)

where q has been removed since it can be expressed in terms of the other concentra-

tions through (6.5); and the constraint m+ r ≤ 1 is required to comply with q ≥ 0.

The model differs from that of Giordano et al. by the addition of the category

of housekeeping proteins (q) and a minimum concentration of ribosomes for pro-

tein synthesis (rmin). In what follows, we will systematically investigate how these

differences affect the asymptotic behavior and optimal resource allocation strategies.
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6.3 Asymptotic behavior

In the present section, we will study the asymptotic behavior of the reduced system

representing the intracellular dynamics

ṗ = EM m− (p+ 1)wR(p)(r − rmin)
+,

ṙ = (γα− r)wR(p)(r − rmin)
+,

ṁ = (γ(1− α)−m)wR(p)(r − rmin)
+,

m+ r ≤ 1,

(6.7)

where V has been removed since none of the remaining states explicitly depends on

it, and it only reaches a steady state when there is no bacterial growth (otherwise,

V̇ > 0). We will start by stating the invariant set of interest.

Lemma 6.3.1. The set

Γ =
{
(p, r,m) ∈ R3 : p ≥ 0, γ ≥ r ≥ rmin, γ ≥ m ≥ 0, m+ r ≤ 1}

is positively invariant by (6.7).

Proof. This can be easily verified by evaluating the differential equations of system

(6.7) over the boundaries of Γ. As for the condition m + r ≤ 1, we can define a

variable z
.
= m+ r that obeys the dynamics

ż = (γ − z)wR(p)(r − rmin)
+

which, when evaluated at z = 1 yields ż ≤ 0, as rmax < 1, which proves its invariance.

This Lemma states that γ ≥ r ≥ rmin for any trajectory with initial conditions

in Γ. As a consequence, there is no need to define the flow vR(p, r) for values of

r under rmin. The same thing can be said for the constraint m + r ≤ 1, which is

valid for every trajectory starting in Γ. Additionally, since γ represents the maximal

ribosomal mass fraction, we will define the following parameter.

Definition 6.3.2. The maximal ribosomal mass fraction is rmax
.
= γ.
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Then, we will reduce the study of the system to this set and so, using Defini-

tion 6.3.2, we redefine (6.7) as
ṗ = EM m− (p+ 1)wR(p)(r − rmin)

ṙ = (rmaxα− r)wR(p)(r − rmin)

ṁ = (rmax(1− α)−m)wR(p)(r − rmin)

(S’)

where (r − rmin)
+ has been replaced by r − rmin, and the constraint m + r ≤ 1

has been removed. Furthermore, we will define the minimum constant allocation

parameter α∗
min necessary to allow steady-state self-replication, given by

α∗
min

.
=

rmin

rmax

·

Its importance will be analyzed throughout the current section.

6.3.1 Local stability

Theorem 6.3.1. System (S’) has the equilibria

• E1
.
= (p∗, r∗,m∗), locally stable if α∗ > α∗

min.

• E2
.
= (p, rmin, 0), locally unstable if α∗ > α∗

min.

• E3
.
= (0, r, 0), locally unstable if r ̸= rmin.

with

p∗
.
=

{
p ∈ R+ : (p+ 1)wR(p) =

EMm∗

r∗ − rmin

}
, (6.8)

r∗
.
= rmaxα

∗,

m∗ .
= rmax(1− α∗).
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Proof. The general Jacobian matrix of the system (S’) is
−
(
wR(p) + (p+ 1)w′

R(p)
)
(r − rmin) −(p+ 1)wR(p) EM

(rmaxα− r)w′
R(p)(r − rmin) (rmaxα− 2r + rmin)wR(p) 0(

rmax(1− α)−m
)
w′

R(p)(r − rmin)
(
rmax(1− α)−m

)
wR(p) −wR(p)(r − rmin)

 .

(6.9)

We first see that, if α∗ > α∗
min, the value p∗ is unique since (p + 1)wR(p) is a

monotone increasing function satisfying wR(0) = 0 and limp→∞(p + 1)wR(p) = ∞
(as stated in Hypothesis 6.2.1), and EMm∗/(r∗ − rmin) > 0, so the set (6.8) yields a

unique solution. For α∗ < α∗
min, the equation for p∗ in (6.8) has no valid solution as

EMm∗/(r∗ − rmin) becomes negative, and therefore the equilibrium does not exist.

The Jacobian (6.9) for E1 becomes

J1 =


−
(
wR(p

∗) + (p∗ + 1)w′
R(p

∗)
)
(r∗ − rmin) −(p∗ + 1)wR(p

∗) EM

0 −(r∗ − rmin)wR(p
∗) 0

0 0 −wR(p
∗)(r∗ − rmin)


and so the local stability of the equilibrium is given by the signs of the roots of the

characteristic polynomial, which are λ = −
(
wR(p

∗) + (p∗ + 1)w′
R(p

∗)
)
(r∗ − rmin),

λ = −(p∗ + 1)wR(p
∗), and λ = −wR(p

∗)(r∗ − rmin). As the three roots are negative,

we conclude that, if the equilibrium exists, it is locally stable. For the second

equilibrium E2, the Jacobian is

J2 =

0 −wR(p) EM

0 (r∗ − rmin)wR(p) 0

0 rmax(1− α∗)wR(p) 0


with characteristic polynomial

P2(λ) = λ2
(
λ− (r∗ − rmin)wR(p)

)
.

If α∗ > α∗
min, then J2 has one positive eigenvalue and E2 becomes locally unstable.
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As for E3, the Jacobian is

J3 =

 −w′
R(0)(r − rmin) 0 EM

(rmaxα− r)w′
R(0)(r − rmin) 0 0

rmax(1− α)w′
R(0)(r − rmin) 0 0


with characteristic polynomial

P3(λ) = λ2
(
λ+ w′

R(0)(r − rmin)
)
− EMrmax(1− α)w′

R(0)(r − rmin)λ.

One root is λ = 0, and the two remaining roots can be found by solving the equation

λ2 + λw′
R(0)(r − rmin)− EMrmax(1− α)w′

R(0)(r − rmin) = 0.

By the Routh-Hurwitz criterion, the two remaining roots are in the open left half

plane if and only if w′
R(0)(r − rmin) > 0 and EMrmax(1 − α)w′

R(0)(r − rmin) < 0,

which is never true. Consequently, for r ̸= rmin, there is at least one positive root,

and so the equilibrium is unstable.

6.3.2 Global behavior

We will study the global behavior of system (S’) for the initial conditions

p(0) > 0, r(0) ∈ (rmin, rmax), m(0) ∈ (0, rmax), r(0) +m(0) ≤ 1. (IC)

and for a given constant allocation parameter

α(t) = α∗ ∈ (α∗
min, 1) .

Under this constraint, we see that the dynamics of r and m become

ṙ = (r∗ − r)wR(p)(r − rmin), ṁ = (m∗ −m)wR(p)(r − rmin),

which means that, if p > 0 and r > rmin, the signs of ṙ and ṁ are given by the signs

of r∗ − r and m∗ −m, respectively (and both ṙ and ṁ are zero if p = 0 or r = rmin).
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Then, let us divide Γ into the subsets

R− .
= {(p, r,m) ∈ Γ : r ∈ (rmin, r

∗)} , M− .
= {(p, r,m) ∈ Γ : m ∈ (0,m∗)} ,

R+ .
= {(p, r,m) ∈ Γ : r ∈ (r∗, rmax)} , M+ .

= {(p, r,m) ∈ Γ : m ∈ (m∗, rmax)} ,

such that Γ = R− ∪R+
= M− ∪M+

. In these sets, the following holds.

Lemma 6.3.3. For α(t) = α∗ ∈ (α∗
min, 1), the closed sets R−

, R+
, M−

and M+

are invariant by (S’), and{
ṙ ≥ 0 if (p, r,m) ∈ R−,

ṙ ≤ 0 if (p, r,m) ∈ R+,

{
ṁ ≥ 0 if (p, r,m) ∈ M−,

ṁ ≤ 0 if (p, r,m) ∈ M+.

Again, the invariance of the sets can be checked by evaluating the vector field

over the boundaries of the sets. Now we state a first result.

Proposition 6.3.4. For α(t) = α∗ ∈ (α∗
min, 1) and initial conditions (IC), system

(S’) has a lower bound

(p, r,m) ≥ (plow, rlow,mlow) for all t ≥ 0,

with

rlow
.
= min(r(0), r∗), mlow

.
= min(m(0),m∗),

plow
.
=

{
p ∈ R+ : (p+ 1)wR(p) =

EMmlow

rmax − rmin

}
.

(6.10)

Proof. For a trajectory emanating from R− (respectively, R+), it follows that ṙ ≥ 0

(respectively, ṙ ≤ 0) for all t (according to Lemma 6.3.3), and so r ≥ r(0) (re-

spectively, r ≥ r∗) for all t. This proves that r ≥ min(r(0), r∗) > rmin for all t

(depending on whether the trajectory starts in R− or R+). Similarly, a trajec-

tory starting in M− (respectively, M+) meets ṁ ≥ 0 (respectively, ṁ ≤ 0) for

all t, and so m ≥ m(0) (respectively, m ≥ m∗) for all t. Then, it follows that

m ≥ min(m(0),m∗) for all t ≥ 0. The equation for p can thus be lower-bounded to

ṗ ≥ EMmlow − (p+ 1)wR(p)(rmax − rmin),

which means p ≥ plow for all t ≥ 0, with plow the solution of (6.10), which is unique
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by the same arguments as those used in Theorem 6.3.1.

A lower bound on system (S’) is a stronger condition than the classical persistence

for biological populations, as the bound is imposed not only for t → ∞ but for the

whole trajectory. As a consequence, the growth rate never vanishes, as it meets

µ(p, r) ≥ wR(plow)(rlow − rmin) > 0 for all t ≥ 0. Then, the global stability of the

system is straightforward.

Theorem 6.3.2. For α(t) = α∗ ∈ (α∗
min, 1) and initial conditions (IC), every solu-

tion of (S’) converges to the equilibrium E1.

Proof. Since p ≥ plow > 0 and r ≥ rlow > rmin for all t ≥ 0, we have that

sign(ṙ) = sign(r∗ − r) and sign(ṁ) = sign(m∗ −m), showing that r and m converge

asymptotically to r∗ and m∗, respectively. Consequently, the dynamical equation of

p becomes ṗ = EMm∗− (p+1)wR(p)(r
∗− rmin) and so sign(ṗ) = sign(p∗− p), which

means that p converges asymptotically to the steady-state value p∗.

Remark 6.3.5. For the case over the invariant plane given by r(0) = rmin and

m(0) > 0, concentrations m and r are constant along the whole trajectory, and

p increases linearly with time (as ṗ = EMm(0)). This is a degenerate case that

contradicts the assumption p ≪ 1, and lacks biological relevance.

6.3.3 Maximum steady-state growth rate

A classical hypothesis in the literature is to suppose bacterial populations in steady-

state regimes maximize their growth rate ([30] and references therein). We are

interested in finding the static allocation strategy α∗ that produces this situation.

Since the only equilibrium that admits bacterial growth is E1, we will express the

static optimization problem as

max
α∗∈[α∗

min,1]
µ(p∗, r∗),

which can be rewritten as µ(p∗, r∗) = wR(p
∗)(r∗ − rmin). It is possible to express α∗

in terms of p∗ through the relation

α∗(p∗) =
EM + (p∗ + 1)wR(p

∗)α∗
min

EM + (p∗ + 1)wR(p∗)
. (6.11)
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Moreover, since the above function α∗(p∗) : R+ → (α∗
min, 1] is monotone decreasing,

it is possible to write the optimization problem in terms of p∗ instead of α∗. The

growth rate in terms of p∗ writes

wR(p
∗)(r∗ − rmin) = (rmax − rmin)

(
EMwR(p

∗)

EM + (p∗ + 1)wR(p∗)

)
. (6.12)

We differentiate w.r.t. p∗ and we get the relation wR(p
∗)2 = EMw′

R(p
∗), which

has a unique solution since, according to Hypothesis 6.2.1, wR(p)
2 is a monotone

increasing function satisfying w2
R(0) = 0 and limp→∞w2

R(p) = 1, and w′
R(p) is a

monotone decreasing function satisfying w′
R(0) > 0 and limp→∞w′

R(p) = 0 (as wR(p)

is a strictly increasing upper-bounded function). Then, the condition for optimality

can be expressed as

wR(p
∗
opt)

2

EMw′
R(p

∗
opt)

= 1. (6.13)

Thus, the optimal allocation parameter α∗ is obtained by replacing p∗opt in (6.11), and

the maximal static growth rate can be calculated using (6.12). From (6.13), it can

be seen that p∗opt depends neither on rmin nor on rmax, suggesting that the steady-

state precursor concentration is independent of the housekeeping protein fraction

q and of the growth rate-independent ribosomal fraction. Conversely, the precur-

sor concentration is rather determined by the environmental conditions and by the

nature of the function wR(p). It can be proven that the latter result is not a con-

sequence of assumption (6.1): when considering a definition of the bacterial volume

as β(P +R+M +Q), which takes into account the mass P , the optimal precursor

concentration amounts to p∗opt/(1 + p∗opt).

In addition, from ṗ = 0 in (S’), we get:

r∗ − rmin

m∗ =
EM

(p∗ + 1)wR(p∗)
.

This shows that, for the optimal steady state, the concentration ratio of the active

gene expression machinery over the metabolic machinery does not depend on rmax

either. Thus, a cellular strategy regulating the precursor concentration and the bal-

ance between gene expression and metabolism could lead to the optimal equilibrium,

regardless of the demand for Q.
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6.4 Model calibration

Whereas the parameter values do not affect the results above and the optimal control

analysis in the next section, they are nevertheless important for simulations illustrat-

ing the dynamics and optimal allocation strategies of system (S’). Below, we derive

such parameters for the model bacterium Escherichia coli, using published sources.

The β constant used in the definition of the bacterial volume (6.1) corresponds to the

inverse of the protein density, which is set to 0.003 [L g−1] based on [30]. According

to [2], the ribosomal fraction of the proteome1 can vary between 6% and 55%. In

more recent studies [98], this sector is divided into growth-rate dependent and in-

dependent fractions. The maximal growth-rate dependent ribosomal fraction of the

proteome is estimated to be 41%, and the growth rate-independent fraction is 9%.

Based on these experimental estimations, we set rmax = 0.41 + 0.09 = 0.5. We per-

formed further calibrations using data sets from [5, 6, 2, 98] containing measurements

of various strains of E. coli growing in different media. The data sets are composed

essentially of data points (growth rate,RNA/protein mass ratio) measured at steady

state. Most RNA is ribosomal RNA found overwhelmingly in ribosomes, the main

constituent of the gene expression machinery. In order to adjust the measurements

to model (S’), the observed RNA/protein ratios can be converted to mass fractions

r through multiplication with a conversion factor ρ = 0.76 µg of protein/µg of RNA

[2]. As a result, we have n measurements of form (µ̃k, r̃k) which are assumed to

follow a linear relation [2], as seen in Figure 6.2a. From the vertical intercept of the

linear regression performed using the data points, we obtain rmin = 0.07, in agree-

ment with previous studies [2, 23, 98]. Each data point, composed of an observed

growth rate and its associated ribosomal mass fraction, can be related to an optimal

steady state of system (S’) for a certain environmental condition eM . Thus, each kth

pair (µ̃k, r̃k) of the n measurements should yield a constant environmental condition

eM,k, and all pairs should simultaneously adjust the rate constant kR. Such fitting

can be done by resorting to the Michaelis-Menten kinetic form introduced in (6.4).

Based on [30], we fix the half-saturation constant of protein synthesis KR = 1 g

L−1. We then define the parameter vector θ = (kR, eM,1, . . . , eM,n) which is com-

puted by solving a least-squares regression problem. Using the relation (6.6), the

1The proteome is the total amount of protein in the cell
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Figure 6.2: Experimental data from [2, 5, 6] plotted in (a) shows a linearity of
r2 = 0.9739 (dashed line, fitted to data) with a vertical intersect rmin = 0.07 and
slope kR = 6.23 h−1. In (b), steady-state growth rate curves µ∗ are shown in terms
of the mass fraction r∗ ∈ (rmin, rmax) for different fitted values of eM . Each optimal
pair (µ∗

opt, r
∗
opt) marked with color circles corresponds to a sample from the data set

of Scott et al. denoted in (a) with circles of matching colors.

cost function to minimize is

min
θ∈Rn+1

+

n∑
k=1

(µ̃k − µ∗
opt(kR, eM,k))

2 + (r̃k − r∗opt(kR, eM,k))
2,

where the non-dimensional growth rate µ∗
opt is calculated using (6.12), and the opti-

mal steady state (r∗opt, p
∗
opt,m

∗
opt) is expressed in terms of α∗

opt (using Theorem 6.3.1)

which is, at the same time, a function of kR and eM,k. The numerical solution yields

kR = 6.23 h−1, and different values of eM matching different nutrients from the

dataset (see Figure 6.2b). We can validate these results by computing the maximal

growth rate kR(rmax − rmin) = 2.68 h−1 based on the adjusted parameters, which is

a value that corresponds well with literature values of the maximal growth rate of

E. coli in rich media [6].
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6.5 Optimal resource allocation

6.5.1 Problem definition

In this section we formulate the dynamic optimization problem under the hypothesis

that microbial populations have evolved resource allocation strategies enabling them

to maximize their biomass [13, 100]. This is represented by an OCP (Optimal

Control Problem) where the objective is to maximize the final volume at time T

given by V(T ). For the sake of convenience, we propose to maximize the quantity

logV(T ) (since log is an increasing function) given by

logV(T ) =
∫ T

0

µ(p, r) dt+ logV(0).

As the initial condition V(0) is fixed, we define the cost function

J(u)
.
=

∫ T

0

µ(p, r) dt =

∫ T

0

wR(p)(r − rmin) dt.

Since V appears neither in the dynamics nor in the cost function, the optimal prob-

lem will be written considering the reduced system introduced in (S’) with initial

conditions given by (IC). We write the optimal control problem

maximize J(u) =

∫ T

0

wR(p)(r − rmin) dt

subject to dynamics (S’),

initial conditions (IC),

α(·) ∈ U ,

(OCP)

with U the set of admissible controllers, which are Lebesgue measurable real-valued

functions defined on the interval [0, T ] and satisfying the constraint α(t) ∈ [0, 1].

Problem (OCP) has neither final state constraints nor path constraints. In the

context of dynamical optimization, the use of path constraints can be useful to

restrict the solutions to those meeting certain physical and biological limitations,

especially when dealing with more complex models. While enforcing additional

constraints on the OCP increases the dimension of the problem, standard optimal

control solvers are able to handle such formulations. In this work, imposing initial
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conditions (IC) guarantees that every trajectory of the system stays within the set

Γ defined in Lemma 6.3.1, which ensures that the solutions are consistent with

the biological assumptions. In principle, this formulation of the problem resembles

the optimal control problem proposed in [30]: the objective is to maximize the

accumulation of a certain quantity within the system during a fixed time interval

[0, T ]. The main difference lies in the dynamics of the system, as the introduction of

the protein Q increases the system dimension by one, which yields a more relevant

(and more complex) associated OCP. We will see in following sections that the

problem raised in this work can be solved by a generalization of Giordano et al.’s

approach.

6.5.2 Pontrjagin Maximum Principle

Existence of a solution for this class of OCPs is rather trivial. Given that there

are no terminal constraints, there is no controllability issue. Moreover, the dynam-

ics is affine in the control with the latter included in a compact and convex set (a

closed interval), and one can easily check that every finite-time trajectory remains

bounded. So existence is guaranteed by Filippov’s theorem [53]. Then, for an op-

timal control problem (OCP) with state φ ∈ Rn, Pontrjagin maximum principle

(PMP) ensures that there exist λ0 ≤ 0 and a piecewise absolutely continuous map-

ping λ(·) : [0, T ] → Rn, with (λ(·), λ0) ̸= (0, 0), such that the extremal (φ, λ, λ0, α)

satisfies the generalized Hamiltonian system
φ̇ = ∂

∂λ
H(φ, λ, λ0, α),

λ̇ = − ∂
∂φ
H(φ, λ, λ0, α),

H(φ, λ, λ0, α) = maxα∈[0,1]H(φ, λ, λ0, α),

(PMP)

for almost every t ∈ [0, T ]. For our particular case, we have the state vector φ
.
=

(p, r,m) and adjoint vector λ
.
= (λp, λr, λm) and the Hamiltonian given by

H(φ, λ, λ0, α) = λ0wR(p)(r − rmin) + ⟨λ, F (φ, u)⟩, (6.14)

where F represents the right-hand side of system (S’). Given that in (OCP) there is

no terminal condition on the state φ(T ), the transversality condition for the adjoint
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state is λ(T ) = 0, and we can discard abnormal extremals from the analysis. In other

words, any extremal (φ, λ, λ0, α) satisfying PMP is normal, so λ0 ̸= 0. Developing

(6.14) yields the Hamiltonian

H =
(
EM m− (p+ 1)wR(p)(r − rmin)

)
λp + (rmaxα− r)wR(p)(r − rmin)λr

+ (rmax(1− α)−m)wR(p)(r − rmin)λm − λ0wR(p)(r − rmin),

and the adjoint system is

λ̇p = wR(p)(r − rmin)λp + (p+ 1)w′
R(p)(r − rmin)λp − (rmaxα− r)w′

R(p)(r − rmin)λr

−(rmax(1− α)−m)w′
R(p)(r − rmin)λm + λ0w′

R(p)(r − rmin),

λ̇r = (p+ 1)wR(p)λp + wR(p)(r − rmin)λr − (rmaxα− r)wR(p)λr

−(rmax(1− α)−m)wR(p)λm + λ0wR(p),

λ̇m = −EMλp + wR(p)(r − rmin)λm.

(6.15)

Since the Hamiltonian is linear in the control α, we rewrite it in the input-affine

form H = H0 + αH1 with

H0 =
(
EM m− (p+ 1)wR(p)(r − rmin)

)
λp − rwR(p)(r − rmin)λr

+
(
rmax −m

)
wR(p)(r − rmin)λm − λ0wR(p)(r − rmin),

H1 = rmaxwR(p)(r − rmin)(λr − λm). (6.16)

The constrained optimal control α should maximize the Hamiltonian, so the solution

is

α(t) =


0 if H1 < 0,

1 if H1 > 0,

αsing(t) if H1 = 0,

where αsing(t) is called a singular control, showing that any optimal control is a

concatenation of bangs (α = ±1) and singular arcs, depending on the sign of the

switching function H1. As obtained in [AYT5, AYT2], a bang arc α = 0 (respec-
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tively α = 1) corresponds to a pure allocation strategy where the production of R

(respectively M) is completely switched off. While a full description of the optimal

control is often difficult to obtain through PMP, there are certain analyses that can

be performed to help understand its structure. We will first see that the final bang

of the optimal control is an upper bang α = 1.

Lemma 6.5.1. There exists ϵ such that the optimal control solution of (OCP) is

α(t) = 1 for the interval of time [T − ϵ, T ].

Proof. We define λz = λr − λm, where its dynamics can be obtained from (6.15). It

can be seen that, when evaluating its dynamics at final time, we get

λ̇z(T ) = λ0wR(p(T )) < 0,

due to the whole adjoint state being null at final time except for λ0. As λz(T ) also

vanishes due to the transversality conditions, we have λz(T − ϵ) > 0 for a certain ϵ.

Then, H1 > 0 for the interval [T − ϵ, T ], which corresponds to a bang arc α = 1.

A control α = 1 implies a strategy in which all resources are allocated to ribo-

some synthesis, thus favoring the synthesis of proteins. An intuitive interpretation of

Lemma 6.5.1 is that, when approaching the final time T , the most efficient strategy

is to exploit as much as possible the available precursors. This is achieved by maxi-

mizing the proteins catalyzing vR, at the expense of arresting the uptake of nutrients

vM from the environment. In order to further describe the optimal control, we can

analyze the singular extremals. A singular arc occurs when the switching function

H1 vanishes over a subinterval of time. A detailed description of the singular arcs

can be done by differentiating succesively the switching function H1 until the singu-

lar control αsing can be obtained as a function of the state φ and the adjoint state

λ.

6.5.3 Study of the singular arcs

Introduction

We assume H1 vanishes on a whole sub-interval [t1, t2] ⊂ [0, T ], so the extremal

belongs to the singular surface

Σ
.
=
{
(φ, λ) ∈ R6 : H1(φ, λ) = 0

}
.
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Since H1 vanishes identically, so does its derivative with respect to time. Differ-

entiating along an extremal (φ, λ) amounts to taking a Poisson bracket2 with the

Hamiltonian H [53]. Indeed, along the singular arc,

0 = Ḣ1 =
∂H1

∂φ
φ̇+

∂H1

∂λ
λ̇ =

n∑
i=1

(
∂H

∂λi

∂H1

∂φi

− ∂H

∂φi

∂H1

∂λi

)
= {H,H1} = {H0, H1}.

The first derivative Ḣ1 = H01
.
= {H0, H1} is equal to ⟨λ, F01⟩, where F01 corresponds

to the Lie bracket of the vector fields F0 and F1. Differentiating again we obtain

0 = Ḣ01 = H001 + αH101.

Again, H001
.
= ⟨λ, F001⟩ where, with the same notation as before, F001 is the Lie

bracket of F0 with F01. If, on the set

Σ′ .
=
{
(φ, λ) ∈ R6 : H1(φ, λ) = H01(φ, λ) = 0

}
,

the bracket H101 is also zero, the control disappears from the previous equality, and

one has to differentiate at least two more times to retrieve the control: H0001 is also

zero, and

0 = H00001 + αH10001. (6.17)

If the length-five bracket H10001 is not zero, the singular arc is of order two. When

H101 vanishes not only on Σ′ but on all R6, the order is said to be intrinsic and con-

nections between bang and singular arcs can only occur through an infinite number

of switchings [69], the so-called Fuller phenomenon. Otherwise, the order is termed

local, and Fuller phenomenon may or may not occur. Using (6.17), the singular

control us is obtained as a function of both the state φ and the adjoint state λ as

αs(φ, λ)
.
= −H00001

H10001

·

In our low-dimensional situation, there exists the possibility that the singular control

2The Poisson bracket {f, g} of two functions f and g along an extremal (φ, λ) is defined as

{f, g} =

n∑
i=1

(
∂f

∂λi

∂g

∂φi
− ∂f

∂φi

∂g

∂λi

)
.
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is in feedback form, that is, as a function of the state only. The latter can be verified

by rewriting the system in dimension four (Mayer optimal control formulation where

the final volume is maximized), in terms of φ̃
.
= (p, r,m,V) and its adjoint λ̃

.
=

(λp, λr, λm, λV). The dynamics is affine in the control,

˙̃φ = F̃0(φ̃) + αF̃1(φ̃),

and so is the Hamiltonian:

H̃(φ̃, λ̃, α) = H̃0 + αH̃1,

with H̃i = ⟨λ̃, F̃i⟩, i = 0, 1. The same computation as before leads to the following

relations along a singular arc of order two:

0 =
˙̃
H1 =

˙̃
H01 =

˙̃
H001 =

˙̃
H0001,

and

0 = H̃00001 + αH̃10001.

Proposition 6.5.2. Assume that, for all φ, F̃1, F̃01, and F̃001 are independent.

Then, an order two singular control depends only on the state φ̃, and can be expressed

as

αs(φ̃) = −
det
(
F̃1, F̃01, F̃001, F̃00001

)
det
(
F̃1, F̃01, F̃001, F̃10001

) ·
Proof. The previous relations imply that λ̃ is orthogonal to F̃1, F̃01, F̃001, and also

to F̃00001 +αF̃10001. If these four vector fields were independent at some point along

the singular arc, λ̃ ∈ R4 would vanish: for a problem in Mayer form, this would

contradict the maximum principle. So their determinant must vanish everywhere

along the arc and

det
(
F̃1, F̃01, F̃001, F̃00001

)
+ α det

(
F̃1, F̃01, F̃001, F̃10001

)
= 0.

If the second determinant was zero, given the rank assumption on the first three

vector fields, F10001 would belong to their span; but this is impossible since it would

imply H10001 = 0, contradicting the fact that the singular is of order two.
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Going back to the three-dimensional formulation, one can explicit the computa-

tions by successively differentiating the expression (6.16).

Singular arc in feedback form

The condition H1 = 0 could be a consequence of the growth rate wR(p)(r − rmin)

vanishing over the whole interval [t1, t2]. We will see this is not possible given the

dynamics of the system.

Proposition 6.5.3. The growth rate µ(p, r) = wR(p)(r− rmin) cannot vanish along

the optimal solution of (OCP).

Proof. For any trajectory of (S’) with initial conditions (IC), control α(·) ∈ U and

t ∈ [0, T ], we have ṗ ≤ EMrmax, which means p ≤ pTmax
.
= EMrmaxT+p(0). Then, ṙ ≥

−rmaxwR(p
T
max)(r − rmin). Additionally, since wR(p) is continuously differentiable,

there exists c such that cp ≥ wR(p), which means that ṗ ≥ −cp(pTmax+1)(rmax−rmin).

Then, at worst, the state p (respectively, r) decays exponentially towards the value

0 (respectively, rmin), which cannot be attained in finite time.

As a consequence of Proposition 6.5.3, the condition H1 = 0 becomes

λr − λm = 0. (Condition 1)

We define the quantity ϕ(φ, λ)
.
= (rmax−m− r)λr − (p+1)λp−λ0, so that the time

derivative of (Condition 1) is

ϕ(φ, λ)wR(p)− EMλp = 0. (Condition 2)

Along a singular arc, the Hamiltonian can be rewritten as

H = EMmλp + ϕ(φ, λ)wR(p)(r − rmin), (6.18)

and, using (Condition 1) and (Condition 2), the adjoint system becomes
dλp

dt
= wR(p)(r − rmin)λp − ϕ(φ, λ)w′

R(p)(r − rmin),

dλr

dt
= wR(p)(r − rmin)λr − ϕ(φ, λ)wR(p).
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Proposition 6.5.4. Neither ϕ(φ, λ) nor λp can vanish along a singular arc.

Proof. According to (Condition 2), if either ϕ(φ, λ) or λp are null, then both of

them are null. Then, if ϕ(φ, λ) = λp = 0, equation (6.18) would imply that the

Hamiltonian vanishes in Σ, and therefore it would vanish for the whole interval

[0, T ] (as it is constant along the solution). However, one can see in (6.14) that the

Hamiltonian evaluated at final time is −λ0wR(p(T ))(r(T ) − rmin) which cannot be

0 due to Proposition 6.5.3 and λ0 ̸= 0.

We differentiate (Condition 2) w.r.t. time and we get ϕ̇(φ, λ)wR(p)+ϕ(φ, λ)w′
R(p)ṗ−

EM λ̇p = 0. Replacing the latter and using Proposition 6.5.4 allows us to reduce the

expression to

−(rmax − rmin)wR(p)
2 + EM(m+ r − rmin)w

′
R(p) = 0, (Condition 3)

which allows us to express m+ r in terms of p.

Lemma 6.5.5. Along a singular arc over the interval [t1, t2],

m+ r = x(p)

with x(p) : R+ → [rmin,∞) defined as

x(p)
.
= (rmax − rmin)

wR(p)
2

EMw′
R(p)

+ rmin,

which, using (6.13), yields x(p∗opt) = rmax.

The fact that the control does not show up in (Condition 3)—which is obtained

by differentiating (Condition 1) twice—means that the singular arc is at least of

order two. We differentiate (Condition 3) and we get(
rmax − x(p) + (p+ 1)x′(p)

)
wR(p)(r − rmin)− EMmx′(p) = 0. (Condition 4)

We define the function

y(p)
.
= wR(p)

(
rmax − x(p) + (p+ 1)x′(p)

)
. (6.19)
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Using (Condition 3) and (6.19) in (Condition 4) yields

(x(p)− rmin)y(p)−
(
EMx′(p) + y(p)

)
m = 0,

which means we can express m and r in terms of p along the singular arc.

Lemma 6.5.6. Along a singular arc over the interval [t1, t2],

m = (x(p)− rmin)
y(p)

EMx′(p) + y(p)
, (6.20)

r = x(p)− (x(p)− rmin)
y(p)

EMx′(p) + y(p)
. (6.21)

We differentiate (Condition 4) and we get

−(rmax(1− α)−m)wR(p)(r − rmin) + x′(p)
y(p)

EMx′(p) + y(p)
ṗ

+(x(p)− rmin)

(
y′(p)

EMx′(p) + y(p)
− y(p)

(EMx′(p) + y(p))2
(EMx′′(p) + y′(p))

)
ṗ = 0,

(6.22)

meaning that we can express

αsing(p) = 1− m

rmax

((
x′(p)

x(p)− rmin

+
y′(p)

y′(p)
− EMx′′(p) + y′(p)

EMx′(p) + y(p)

)
ṗ

wR(p)(r − rmin)
+ 1

)
.

While (Condition 3) showed that the order of the singular arc is at least two, the

latter relation proves that it is exactly two. Indeed, the coefficient before α in (6.22)

is −rmaxwR(p)(r − rmin), which cannot vanish as proven in Proposition 6.5.3. The

singular arc is said to be locally of order two, as the coefficient of α in (Condition 3)

is zero along the singular arc, but not everywhere on the cotangent bundle [69]. In

this case, the presence of the Fuller phenomenon (i.e., the junctions between bang

and singular arcs constituting an infinite number of switchings) is not guaranteed.

However, this turns out to be the case as it will be shown in the numerical computa-

tions. Besides, in accordance with Proposition 6.5.2, the order two singular control

can be expressed in feedback form, i.e., as a function of the state only. We performed

a numerical rank test using Singular Value Decomposition, which confirmed that the

rank condition is fulfilled. More precisely, the actual computation proves that the

singular control can be expressed as a function of p only (Lemma 6.5.6 entails that
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r, m and therefore ṗ can be expressed in terms of p), which allows to retrieve the

turnpike behaviour as described in the following section.

The turnpike phenomenon

Using (6.20) and (6.21), we see that, along a singular arc, the dynamical equation

of p becomes

ṗ = EMwR(p)
x(p)− rmin

EMx′(p) + y(p)

(
rmax − x(p)

)
,

which is only equal to 0 when rmax = x(p). This is only true at p = p∗opt, and so

sign (ṗ) = sign
(
p∗opt − p

)
,

meaning that, in a singular arc over the interval [t1, t2], the concentration p converges

asymptotically to the optimal value p∗opt. This means that m and r would also

converge to the optimal values m∗
opt and r∗opt, respectively, and the singular control

αsing to α∗
opt. We formalize this in the following theorem.

Theorem 6.5.1. On a singular arc, the system states and singular control tend

asymptotically to

(p, r,m) = (p∗opt, r
∗
opt,m

∗
opt),

αsing(t) = α∗
opt.

The above theorem is an explicit proof of the presence of the turnpike property:

an optimal control characterized by a singular arc that stays exponentially close

to the steady-state solution of the static optimal control problem [71]. This phe-

nomenon has been considerably studied in econometry [101], and more recently in

biology [102, 30, 3]. It has been shown that, for large final times, the trajectory

of the system spends most of the time near the optimal steady state, and that in

infinite horizon problems, it converges to this state.

6.5.4 Numerical results

The computations of the optimal trajectories were performed with Bocop [4], which

solves the optimal control problem through a direct method. An online version of
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the numerical computations can be visualized and executed on the gallery of the

ct (Control Toolbox) project3. The time discretization algorithm used is Lobato

IIIC (implicit, 4-stage, order 6) with 2000 time steps. Figure 6.3 shows an optimal

trajectory with r(0) +m(0) < rmax, where most of the bacterial mass corresponds

to class Q proteins. The obtained optimal control confirms the conclusions of the

latter section: a large part of the time, the optimal control remains near the optimal

steady-state allocation α∗
opt, according to the turnpike theory (Theorem 6.5.1). The

solution presents chattering after and before the singular arc, as expected in the

presence of Fuller’s phenomenon (even if only a finite number of bangs is computed

by the numerical method), and the final bang corresponds to α = 1 (Lemma 6.5.1).

In order to verify the optimality of the singular arc, we performed a numerical
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Figure 6.3: Numerical simulation of (OCP) obtained with Bocop, for the parameter
values derived in Section 4. Initial state is p(0) = 0.03, r(0) = 0.1, m(0) = 0.2
with EM = 0.6. As predicted, the optimal control α involves chattering after and
before the singular arc. The mass fraction q converges to 1−rmax and m+r to rmax.
Moreover, along the singular arc, the states (p∗, r∗,m∗) converge asymptotically to
(p∗opt, r

∗
opt,m

∗
opt).

3https://ct.gitlabpages.inria.fr/gallery/bacteria/bacteria.html

https://ct.gitlabpages.inria.fr/gallery/bacteria/bacteria.html
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computation of the derivatives of H1, which is shown in Figure 6.4. The fact that

the factor of α in the fourth derivative is different from 0 confirms that the singular

arc is of order 2. Moreover, its negativity complies with the generalized Legendre-

Clebsch condition given by

(−1)k
∂

∂α

(
d2k

dt2k
H1

)
< 0, (6.23)

along the singular arc, which is a necessary condition for optimality. As we state in

[AYT2], even if there exist no available sufficient condition to verify local optimality

of extremals with Fuller arcs, a check of the Legendre-Clebsch condition along the

singular arc can ensure that the extremal obtained is not a too crude local mini-

mizer. For the second-order singular arc case, the condition corresponds to the case

k = 2. The initial conditions used in Figure 6.3 were only chosen to confirm the

theoretical results found throughout this section, by emphasizing the main features

of the solution. However, from a biological perspective, a situation where r + m

is significantly different from its steady-state value rmax is not to be expected: a

common assumption in these classes of coarse-grained models is that the transcrip-

tion of Q proteins is autoregulated around stable levels [103], which translates into

a constant q = 1 − rmax (and therefore m + r = rmax) for the whole interval [0, T ].

We will see in next section that this hypothesis produces a very particular structure

of the optimal control solution.

6.6 Biologically relevant scenarios

Despite their simplicity, self-replicator models have been capable of accounting for

a number of observable phenomena during steady-state microbial growth, under

the assumption that bacteria allocate their resources in such a way as to maximize

growth. Here, we apply the general optimal allocation strategy derived in the pre-

vious section to predict the bacterial response to certain environmental changes.

We consider two situations that commonly affect bacteria: changes in the nutrient

concentration in the medium, and changes in the environment submitting the cell

to a particular stress.
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Figure 6.4: Factors of α in the derivatives of H1 evaluated over the trajectory
plotted in Figure 6.3. The intervals where the functions vanish are marked in red.
As expected, all functions vanish along the singular arc except for the factor in the
fourth derivative (highlighted in green) which is negative according to the Legendre-
Clebsch condition (6.23).

6.6.1 Nutrient shift

Bacteria are known to traverse different habitats throughout their lifetime, experi-

encing fluctuating nutrient concentrations in the medium. In [30], we explored how

bacteria dynamically adjust their allocation strategy when facing a nutrient upshift.

In this work, we show that considering a class of growth rate-independent proteins

in the model refines these previous results. We consider the optimal control problem

with the initial state being the optimal steady state for a low value of EM , and we

set a higher EM for the time interval [0, T ], representing a richer medium. Setting

initial conditions at steady state has an impact on the singular arc of the optimal

control: it holds that m+ r = rmax and q = 1− rmax for the whole trajectory, which

yields a constant singular arc.

Theorem 6.6.1. If r(0) + m(0) = rmax (i.e., q starts from a steady-state value),
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then any singular arc over the interval [t1, t2] of the optimal control corresponds to

the optimal steady state.

Proof. The dynamical equation for q is q̇ = ((1− rmax) − q)wR(p)(r − rmin), where

it can be seen that the set q = 1 − rmax is invariant. This means that, for any

trajectory emanating from a steady state, q remains constant even under changes

of the nutrient quality EM . Then, by using the relation (6.5), we obtain

m+ r = rmax. (6.24)

Along the singular arc, it holds that m + r = x(p), which, using (6.24), implies

that p = p∗opt, meaning that the precursor concentration along the singular arc is

constant and optimal. Then, αsing = α∗
opt, m = m∗

opt and r = r∗opt for the whole

singular arc.

A numerical simulation of this scenario is shown in Figure 6.5. As expected, the

increase in EM produces a higher ribosomal mass fraction r, which translates into

an increase of the growth rate, stabilizing at the maximal steady-state growth rate

µ∗
opt through an oscillatory phase. It is noteworthy that, in comparison to Giordano

et al.’s model, the relative changes in mass fractions r and m are much lower,

which corresponds well with the relative changes observed in [2]. Additionally, while

the presence of rmin does not noticeably affect the solution of the optimal control

problem, it contributes to a model that more accurately reproduces the experimental

data (Figure 6.2a), representing a significant improvement from the modeling point

of view.

6.6.2 Bacterial response to stress

The other scenario of interest is an environmental change imposing a certain stress

on the microbial population, which is counteracted through the synthesis of a stress

response protein W. This protein is also growth rate-independent like Q, and its pro-

duction can be triggered by many different situations. For instance, when subject

to extreme temperatures, the production of so-called molecular chaperones helps

bacteria counter the effect of protein unfolding [104, 90]. Likewise, the production

of other proteins is known to protect bacteria like E. coli against acid stress [105].

Another possible scenario is the response to metabolic load imposed by the induced
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Figure 6.5: Numerical simulation of the optimal control problem starting from a
steady state. The initial state corresponds to the optimal steady state for EM =
0.3 (poor medium), and the new environmental constant is fixed to EM = 0.7
(rich medium). As predicted, m + r (= 1 − q) remains constant, even if they vary
individually, in opposition to the previous case. Naturally, an increase in the nutrient
quality produces a higher steady-state ribosomal mass fraction r∗, which yields an
increased steady-state growth rate µ∗

opt with respect to the growth rate before the
upshift.

overexpression of a heterologous protein [106]. All of these situations are known

to reduce the resources available for growth-associated proteins (Figure 6.6), conse-

quently decreasing the maximal growth rate attainable. Here, we model a general

stress response through the production of the W protein that takes up a fraction w

of the proteome, thus reducing rmax to a certain rwmax < rmax.

As before, we assume q takes up a constant fraction 1−rmax of the proteome, but

the proportions of resources allocated to M and R are now rwmaxα and rwmax(1 − α)

respectively. By construction, we have w = rmax − m − r, which means we can

express

ẇ = (rmax − rwmax − w)wR(p)(r − rmin),
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Figure 6.6: Left: original case. Right: new proposed case, where q remains un-
changed, but the maximal allocation m+ r is restricted to a rwmax < rmax.

showing that the mass fraction w converges asymptotically to the difference rmax −
rwmax. The remaining mass fractions p, r and m obey the dynamics of system (S’),

so the application of the optimal solution found in last section is straightforward.

An example is shown in Figure 6.7. As predicted, m + r converges to the reduced

rwmax, q remains constant at 1− rmax and w converges to rwmax − rmax. The reduction

of resources available for growth-associated proteins (M and R) causes the growth

rate to drop, as was shown experimentally [2].

6.7 Conclusion

In this work, we proposed a dynamical self-replicator model of bacterial growth based

on the work of [30], which introduces a growth rate-independent class of protein. As

a consequence, the proteome of the bacterial cell can be divided into the metabolic

machinery M, the gene expression machinery R, and the housekeeping machinery

Q. While Q is growth rate-independent, this is also the case for a fraction of R re-

quired for cell replication to occur. As a consequence of this hypothesis, a maximum

ribosomal concentration rmax appears in the model kinetics, limiting the allocation

of resources to M and R. We studied the asymptotic behavior of the system, show-

ing that, under certain conditions, all solutions converge towards the only globally

attractive equilibrium. We then explored the optimal dynamic allocation strategies

that consider maximizing the bacterial population volume in terms of the resource

allocation parameter α. This involved a study of the static and dynamic aspects of

optimal strategies. For the first one, we showed there is a unique optimal steady

state, which corresponds to experimental observations of growing cultures of E. coli

[5, 6, 2, 98]. The dynamic problem is approached through optimal control theory, by
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Figure 6.7: Numerical simulation of an optimal trajectory where the initial condi-
tions are the optimal steady state for EM = 0.7 and rmax = 0.5. A certain stress
is induced at t = 0, which triggers the synthesis of the growth rate-independent
protein w, reducing the fraction rmax to rwmax = 0.3. As a result, the steady-state
growth rate is significantly reduced.

application of the Pontrjagin’s Maximum Principle. The obtained optimal control

has a Fuller-singular-Fuller structure with a non-constant singular arc, in contrast

to the constant singular arc obtained in Giordano et al.’s approach. We performed

a detailed analysis of the OCP in both analytic and numerical ways. In particular,

the singular arc of the optimal solution is characterized by i) its feedback form (i.e.,

being expressed as a function of the state only), ii) being exactly of order 2, and iii)

the turnpike phenomenon (where the state trajectory and optimal control converge

asymptotically towards the optimal steady state and control). Moreover, we showed

that, when the mass fraction of class Q proteins is at steady state, the singular arc

of the optimal solution corresponds to the optimal steady state. Additionally, we

showed that the dynamical approach can be used to predict the behavior of the

system when subject to stress. The latter is modeled through a reduction of the

fraction of growth rate-dependent protein synthesis as the production of a w protein
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that reduces rmax.

While the main features of Giordano et al.’s work are present in this approach,

our generalization shows a better agreement with the experimental data given by

the introduction of the parameters rmax and rmin in the model. Additionally, the

proposed partitioning of the proteome in a dynamic setting can account for certain

natural phenomena known to reduce the fraction of growth rate-dependent proteins

in the cell. These modifications yield interesting optimal control problems, which

could potentially help understand the internal decision-making mechanisms evolved

by bacteria.

Our approach was built on the joint exploitation of theoretical and numerical

results. When tackling more complex problems as proposed, e.g., in Tsiantis &

Banga [107], a PMP perspective tends to yield very complicated mathematical for-

mulations. Using direct methods has the advantage of avoiding these issues, but it

often requires some knowledge to initialize the optimization algorithm or to check

the validity of the solutions. In order to investigate complex biological systems, we

advocate the development and theoretical analysis of simple models, in line with the

question to be investigated, coupled with numerical exploration of optimal solutions

(using larger models if necessary).
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Chapter 7

Conclusion

In this manuscript, we explored a series of problems related to the allocation of

resources in mathematical models of bacterial growth, and its applications to the

production of compounds of interest.

Chapter 2, 3 and 4 have been dedicated to the production of metabolites in

the most relevant cost-effective operating modes used in industry for commercial

production. The main difference in these approaches lies in how the rich medium is

supplied to the bioreactor and how the end product is extracted, which greatly affects

the way the bacterial culture interacts with the environment. In every case, we

studied the dynamical behavior of a self-replicator system representing the resource

allocation problem in bacteria. An ideal case with constant substrate is analyzed

in Chapter 2, representing an environment where bacteria sense no changes in the

medium. In Chapter 3, the nutrient is assumed to be consumed by the culture until

there is no available substrate in the bioreactor, which represents a batch process.

Finally, the continuous bioreactor case is analyzed in Chapter 4, where there are

both an inflow and an outflow producing—under certain conditions—a steady-state

of the system, which is a well-studied behavior in this framework. The main trade-

off intervening in these production schemes arise from the competition between the

natural objective of the bacteria that aims to maximize the growth rate, and the

biotechnological challenge of maximizing the synthesis of the compound of interest.

The optimal control problems arising from these works are tackled analytically

and numerically, and can be considerably instructive in how to cope with such

trade-offs in order to accomplish the proposed biosynthetic objectives. However,

they frequently yield open-loop allocation strategies, which are often difficult to
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implement. This issue is dealt with in Chapter 5, where a model-predictive control

loop is proposed. The closed-loop implementation is based on the optimal open-loop

strategies found in previous works, and offers a potential alternative to be explored.

Finally, a resource allocation model that considers growth rate-independent pro-

teins is presented in Chapter 6. The latter represents a generalization of the model

introduced in [30], and aims to study how bacteria can adapt to changing environ-

ments (such as nutrient upshifts and stress) from a dynamical perspective.

The models introduced here are simplified representations of very complex bi-

ological systems, which take into account two main cellular processes: metabolism

and gene expression. The simplicity of the models allows a qualitative analysis of

specific biological and biotechnological problems, and of the trade-offs arising from

each objective. By design, several phenomena are not considered in the models, such

as protein degradation and cell division. Additionally, the self-replicator systems are

intended to represent an average composition of the cells forming the culture, but,

in practice, resource distribution in individual cells is not necessarily homogeneous

across the population. A major advantage of this methodology is that it allows

to obtain analytical results to the proposed mathematical problems, in contrast

to other more comprehensive approaches that aim to integrate numerous cellular

mechanisms in a single system, yielding rather complex models.

There are numerous aspects to be explored in the future. All of the models are

calibrated using data of previous steady-state experiments (or parameters in the lit-

erature obtained under the same principle). However, there is a lack of experimental

results linking the trajectories of the dynamical models to the real-life bacterial be-

haviors. As explained in the introduction of this manuscript, a series of experiments

with the E. coli bacteria were conducted throughout my PhD, with the objective of

validating the theoretical results. The experiments were carried out in the context

of the ANR Maximic project1 with the Ibis team (Inria Grenoble - Rhône-Alpes)

with H. de Jong, J. Geiselmann and E. Cinquemani. However, experimentation in

the microbiological framework requires multiple iterations in order to consider the

obtained data as representative of the studied phenomenon, which was not possible

to accomplish due to lack of time. Yet, it remains an important follow-up of this

project.

Another potential extension of these works is the inclusion of additional bio-

1https://project.inria.fr/maximic/

https://project.inria.fr/maximic/
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logical mechanisms and constraints into the bacterial models, and the study of the

impact of such modifications in the resulting optimal allocation strategies. This was

the objective of the work described in Chapter 6, where the presence of growth rate-

independent proteins (representing, for example, stress response proteins) imposes

an upper bound on the ribosomal mass fraction of the cell. An important mech-

anism to contemplate in such models could be the energy metabolism, known to

play an important limiting role in protein synthesis, which could refine the results

previously obtained. Similarly, changing the optimization criteria can yield very

different results in the distribution of resources to different cellular functions. The

hypothesis of growth-gate maximization has been validated in many experiments of

E. coli, and proven to be a selective advantage in certain environments. However,

such assumptions are context-dependent, and could loose validity under different

environmental conditions.

A modelling assumption that can be reviewed is the action of the external control

I, modelled in (2.1) (and in the rest of the manuscript) through a multiplicative term

affecting directly the natural allocation process. The idea behind this modelling

choice is that the external control can arrest the production of RNA polymerase.

However, an equally valid hypothesis is that the control can stall general protein

synthesis, including enzymes, which would drastically change the control problem.

In fact, the latter is part of an ongoing project extending the work on MPC loops

presented in this manuscript. The approach is also complemented by a stage of

state and parameter estimation, towards an implementation of a real-time bacterial

resource allocation controller.

Finally, we recall that the work presented in Chapter 4 relies on a simplifying

assumption linking metabolite production and protein synthesis through a certain

function of the ribosomal concentration. This hypothesis provides an additional

mass conservation law allowing to study the original dynamical system through a

lower dimensional limiting system. However, the general case remains unstudied, as

even the analysis of the local equilibria through the Routh-Hurwitz stability criterion

represents a challenge for such system. This motivated an alternative approach to

the problem, in which the stability of the local equilibria is examined by means

of real algebraic tools, in collaboration with M. Safey El Din (PolSys team, LIP6,

Sorbonne Université).

Manipulation of bacterial cultures for the production of added-value compounds
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remains a complex endeavour. Hopefully, theoretical research on the field, boosted

by our growing understanding of microorganisms, will progressively improve the

existing biotechnological techniques towards more efficient and sustainable industrial

schemes.
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Appendix A

Time-optimal control of piecewise

affine bistable gene-regulatory

networks

This chapter reproduces [AYO1] and [AYO2], written in collaboration with Nicolas

Augier, and accepted for publication in the International Journal of Robust and

Nonlinear Control and the 7th IFAC Conference on Analysis and Design of Hybrid

Systems respectively. While these works are not in line with the topic of resource

allocation in bacterial growth, they have been included in the Appendix as they

were produced during my PhD as a result of a joint work. In accordance with the

usages in the mathematics field, the authors of this publications are in alphabetical

order, regardless of the fact that we equally contributed to the works.

A.1 Introduction

Understanding complex biological phenomena has become of great interest in the

last decades for the scientific community. In the context of synthetic biology, nu-

merous fields of study have been employed to better comprehend and re-engineer

the interactions within biological systems [108]. Such is the case of control theory,

widely used to explain regulatory mechanisms in nature [30, 109], but also to ar-

tificially act upon them for biotechnological purposes [AYT5, AYT2]. A classical

example is the metabolism of cells, described by multiple regulatory mechanisms

forming complex networks. In this framework, the interaction between genes is a
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crucial subject of study [110], whose typical behaviors can be described by positive

and negative feedback loops [111, 112, 113, 114, 115]. The dynamics of these loops

have been extensively analyzed, both from experimental and theoretical perspec-

tives, and are known to present either multistability or oscillatory behaviors. From

a mathematical modeling perspective, such a systems can be modeled through dy-

namical systems of several variables, where the positivity or negativity is given by

the parity of negative interactions forming the loop.

Among all existing patterns, the simplest positive feedback loop is the two-

dimensional bistable system, which is commonly used to represent the so-called

genetic toggle switch. The latter is a synthetic flip-flop device first implemented

experimentally in E. coli through the genes lacI and tetR mutually repressing each

other [116]. The state of the device is determined by the concentration of the genes

in the boolean form (low, high) and (high, low). This allows genetic toggle switches

to act as biological memory units capable of storing 1 bit of information, by sus-

taining one of the two possible states through time [117], which offers a biosynthetic

alternative to the classical electronic flip-flop. Since its creation, understanding how

to regulate bistable systems in a reliable manner (e.g. by suppressing undesirable

oscillations [118] or achieving transitions between states [AYO2] [119, 120]) has be-

come highly relevant for their vast implications in biotechnology and biocomputing.

In practice, the state of a genetic toggle switch can be controlled by externally

catalyzing or inhibiting the synthesis rate of the genes. This is done by introduc-

tion of a plasmid, which are essentially small circular DNA molecules that can be

constructed to include an inducible promoter of the studied gene, thus affecting the

synthesis rate of messenger RNA. Thus, the transcription rate can be directly mod-

ified by aggregation of an inducer. In E. coli, this is done by externally adding the

diffusible molecules IPTG1 and aTc2, which are known to repress the lacI and tetR

genes, respectively [116].

Motivated by this experimental scheme, some authors proposed exact control

strategies based on a piecewise affine model of the bistable system [120]. As discussed

in the work, the importance of studying the phenomenon through qualitative models

arises from the constraints related to the experimental setup, both in measuring the

state and in acting on the system. The proposed model is characterized by the

1isopropyl-β-D-thiogalactopyranoside
2anhydrotetracycline
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existence of an ”undifferentiated state”, where no gene is predominant, and from

which the system can evolve towards one of the two attractors. Mathematically,

the unstability of this state appears as a Filippov non-smooth ”saddle” singularity

[121]. From a biological point of view, such a state plays a key role in cell decision

making and cell fate differentiation [122]. Its role in fate commitment has also

motivated experimental studies aiming at stabilizing genetic toggle switches around

this undifferentiated point [123, 124].

Whereas most of the theoretical work in the subject has been dedicated to ex-

ternally producing state transfers [125], the time efficiency of state switches has

received little or no attention from the community. Indeed, one of the key issues in

these genetic devices is the time needed to induce a transfer between its two stable

states, due to its importance when studying more complex networks of systems in-

volving different time scales. In particular, the latter becomes a major constraint in

the framework of biological signal processing [126]. Genetic toggle switches operate

at the level of gene transcription and translation, whose duration and timescales

are the main factor delaying the availability of the proteins when facing a switch

between steady states. In this context, the minimization of a state switch, which is

directly linked to the production of the non-expressed protein, becomes highly rel-

evant. Recent works [127] showed the importance of accelerating transitions times

(and minimizing inducer usage) in artificially engineered bistable systems in order

to obtain less costly (and therefore, more sustainable) chemical production schemes.

Thus, in this paper, we investigate the time-optimal control strategies for the afore-

mentioned bistable system. Our aim is to induce transitions between the two stable

steady states in minimal time. Many complex systems are known to involve bistable

processes [128, 129]. Hence, the reduction of the time needed for such transfers could

allow experimentalists to speed up certain chemical reactions or to artificially in-

crease bacterial growth rate, thus improving yield in biotechnological processes. In

a different setting [130, 131], the time efficiency of bistable systems switches in two-

level quantum systems was studied, so as to induce efficient transitions between two

quantum states.

In addition to the biological relevancy of the subject, the resulting OCP (Optimal

Control Problem) yields very interesting results in the framework of Hybrid Optimal

Control. The steady states of the piecewise linear system cannot be reached in finite

time due to the lack of controllability in certain regions, and so one has to consider
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a relaxed OCP with ”partial targets”, that is, driving a given protein to a certain

fixed value larger than its corresponding threshold. In this regard, we show that

time-optimal strategies for such a problem have a very specific geometric description.

When the initial state is far enough from the target, that is below a curve called

separatrix, we show by an adaptation of the HMP (Hybrid Maximum Principle) to

our setting that the optimal control consists in a concatenation of two bang arcs,

and the optimal trajectories follow:

• a first phase in which the system reaches the separatrix;

• a second phase where the system slides along this curve, until reaching the

”undifferentiated” point of the biological system in finite time;

• a third phase, where the system leaves this curve, slides along a second fixed

curve and reaches its target.

These two curves correspond to the stable and unstable manifolds of the undifferen-

tiated saddle-type singularity, and the point where the dynamics achieves its transfer

is nothing but the corresponding Filippov equilibrium. The latter behavior can be

compared to the turnpike phenomenon [71], where the optimal trajectory for a given

OCP for large final times is shown to remain close to a steady-state trajectory solu-

tion of the associated static OCP. Besides its specific interest, we expect our method

to open new prospects in the study of optimal control of higher dimensional genetic

regulatory networks. In particular, it often occurs that trajectories belonging to a

given domain may bifurcate into different domains, similarly to what happens in the

toggle switch case, and some similar turnpike-like properties may hold in this case.

The paper is organized as follows: in Section A.2, we present both the non-

controlled system and the studied controlled system, and we provide some technical

results. In Section A.3, we introduce the time-optimal control problem and we adapt

the HMP to our setting. In Section A.4, we present the main results, that prove the

qualitative features of the optimal trajectories mentioned above. In Section A.6, we

give a lower bound for the minimal time, then characterizing the minimal transfer

time between the two states of the toggle switch model. In Section A.7, we provide

numerical results implemented with Bocop [4], an open-source toolbox for solving

OCPs. Additionally, we perform a numerical comparison between the trajectories

of the relaxed OCP and the original OCP, that suggests that the results also hold

for the original one.
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A.2 Bistable-switch model

A.2.1 Free dynamics

Consider two variables x1 and x2 which represent two genes mutually inhibiting each

other. The individual dynamics, defined in Filippov sense, is the following{
ẋ1 = −γ1x1 + k1s

−(x2, θ2),

ẋ2 = −γ2x2 + k2s
−(x1, θ1),

(A.1)

where for j ∈ {1, 2}, xj ∈ R+, and for θ ∈ R, s−(·, θ) : R → R is such that

s−(x, θ) =

{
1 if x < θ,

0 if x > θ.

It is assumed that s−(x) ∈ [0, 1] for x = θ. The positive constants (γj)j∈{1,2},

(kj)j∈{1,2} correspond, respectively, to the degradation and the production rates of

each variable. It is classical [120] that the domain K = [0, k1/γ1] × [0, k2/γ2] is

forward invariant by the dynamics of Equation (A.1). From now on, we consider

only solutions evolving in K. Define the regular domains

B00 = {(x1, x2) ∈ R2 | 0 < x1 < θ1, 0 < x2 < θ2} ,
B01 =

{
(x1, x2) ∈ R2 | 0 < x1 < θ1, θ2 < x2 <

k2
γ2

}
,

B10 =
{
(x1, x2) ∈ R2 | θ1 < x1 <

k1
γ1
, 0 < x2 < θ2

}
,

B11 =
{
(x1, x2) ∈ R2 | θ1 < x1 <

k1
γ1
, θ2 < x2 <

k2
γ2

}
,

which are defined as open sets in accordance with the HMP approach to be applied

in Section A.3.3. Equation (A.1) restricted to a regular domain Bij is an affine

dynamical system on R2 having an asymptotically stable equilibrium, called focal

point for system (A.1). Each region Bij for i, j ∈ {0, 1} has a focal point

ϕij = (x̄i, x̄j)

corresponding to

x̄i =
ki
γi
s−(x̄j, θj).
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Thus, system (A.1) has two locally asymptotically stable steady states

ϕ10 =

(
k1
γ1

, 0

)
∈ B̄10,

ϕ01 =

(
0,

k2
γ2

)
∈ B̄01,

and an unstable Filippov equilibrium point at (θ1, θ2). Figure A.1 illustrates the

dynamics of the system for a given set of parameters.

0 θ1 k1
γ1

x1

0

θ2

k2
γ2

x 2

B01 B11

B00 B10

(S1)
ϕ10
ϕ01

Figure A.1: Stream plot with free dynamics given by Equation (A.1). System
parameters are γ1 = 1.1, γ2 = 1.7, θ1 = 0.6, θ2 = 0.4, k1 = k2 = 1.

A.2.2 Controlled dynamics and some related properties

We write the controlled dynamics assuming that the synthesis rates of each gene

can be externally catalyzed or inhibited (e.g. through the introduction of inducible

promoters of a given gene), as indicated in the previous section. Mathematically,

this is represented by the control input u acting directly on the synthesis rate of

each gene, in a multiplicative form. Then, the controlled system, defined in Filippov
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sense, is {
ẋ1 = −γ1x1 + u(t)k1s

−(x2, θ2),

ẋ2 = −γ2x2 + u(t)k2s
−(x1, θ1),

(S)

where the control u(·) ∈ L∞([0, tf ], [umin, umax]), with 0 < umin < 1 ≤ umax. This

system is motivated by the one introduced in [120], which assumed the same control

input u for the two variables. The latter aims to model a simple qualitative control,

easier to implement in a molecular biology setting than the case with two distinct

control variables. We make the following assumptions on the parameters of the

system (for more details, see [120]).

Assumption A.2.1. The parameters (γj)j and (kj)j satisfy

θj <
kj
γj
, j ∈ {1, 2}; θ2

θ1
>

k2
k1

γ1
γ2

;
θ2
θ1

<
k2
k1

.

This assumption is based on intrinsic conditions of the parameters of the non-

controlled system, and allows to find a control strategy driving the solution of Equa-

tion (S) from B10 to B01, as well as from B01 to B10. Note that it implies γ1 < γ2,

and that the case where θ2
θ1

> k2
k1

γ1
γ2

and θ2
θ1

< k2
k1

can be treated analogously by

permutation of x1 and x2.

Separatrix

Now define the separatrix, which is a curve playing a fundamental role in in the

global dynamics of both the open-loop system (A.1) and the controlled system (S).

For a fixed value of u(t) ≡ u ∈ [umin, umax], the separatrix (Su) is defined as the

stable manifold of the Filippov equilibrium (θ1, θ2) for Equation (S) restricted to

B00. In the coordinates (x1, x2) ∈ B00, for u ≥ 1, the separatrix (Su) can be written

as the curve of equation

x2 = α(x1, u) =
k2u

γ2
−
(
k2u

γ2
− θ2

)
k1u

γ1
− x1

k1u

γ1
− θ1


γ2
γ1

.
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Using the latter, we define the regions

(Su)
+ =

{
(x1, x2) ∈ R2 | 0 < x1 < θ1, α(x1, u) < x2 <

k2
γ2

}
,

(Su)
− =

{
(x1, x2) ∈ R2 | 0 < x2 < θ2, α(x1, u) > x2, x1 <

k1
γ1

}
,

such that the domain K is divided into

K = (Su)+ ∪ (Su)− ∪B11, (A.2)

as shown in Figure A.2. The solutions of Equation (S) having initial conditions in

0 θ1 k1
γ1

x1

0

θ2

k2
γ2

x 2

(Su)+ B11

(Su)−

(Su)

Figure A.2: Division of the domain K as defined in (A.2), with a vector field defined
by a constant control u < 1.

(Su)
− (respectively, (Su)

+) reach B10 (respectively, B01) in finite time. Moreover,

B10 (respectively, B10) is included in the bassin of attraction of ϕ10 (respectively,

ϕ01). Notice that, for a fixed value of u(t) ≡ u ∈ [umin, umax], the solutions of

Equation (S) having initial conditions in (Su) reach the Filippov point (θ1, θ2) in

finite time. Once having reached this point, the solution of Equation (S) is then

defined by differential inclusion in the Filippov sense. Roughly speaking, there exist
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several solutions that will reach either B01 or B10 (see [120, Appendix] for more

precise informations about Filippov solutions of such a system).

Lower separatrix

Now we define the lower separatrix, which will be useful in Section A.6.

Definition A.2.2. For (γj)j∈{1,2} and (kj)j∈{1,2} satisfying Assumption A.2.1, define

the lower separatrix (S̃u) as the straight line of equation

x2 = β(x1, u) =
k2u

γ1
−
(
k2u

γ1
− θ2

)
k1u

γ1
− x1

k1u

γ1
− θ1

 .

Lemma A.2.3. Let (γj)j∈{1,2} and (kj)j∈{1,2} satisfy Assumption A.2.1 and u ≥ 1,

and let x̄1 be the unique x1 ∈ [0, θ1] such that β(x1, u) = 0. Then for every x1 ∈
[x̄1, θ1] and u ≥ 1, we have β(x1, u) ≤ α(x1, u), that is, (S̃u) is below (Su) for every

x1 ∈ [x̄1, θ1].

Proof. For every x1 ∈ [0, θ1] and u ≥ 1, define X(x1) =
k1u
γ1

−x1

k1u
γ1

−θ1
. We have easily that

β(x1, u) = 0 if and only if x1 = x̄1, where x̄1 ∈ [0, θ1] is such that X(x̄1) =
k2u/γ1

k2u/γ1−θ2
.

Evaluating in the expression of α at x1 = x̄1, we have

α(x̄1, u) =
k2u

γ2
−
(
k2u

γ2
− θ2

)(
k2u/γ1

k2u/γ1 − θ2

) γ2
γ1

Using the fact that γ2 > γ1 under Assumption A.2.2, one can prove by a direct

differentiation that the function

x 7→

(
k2u
γ1

− x
) γ2

γ1

k2u
γ2

− x

is non-decreasing on [0, θ2], and that x1 7→ α(x1, u) is concave for x1 ∈ [0, θ1]. Hence,

we have (
k2u
γ1

k2u
γ1

− θ2

) γ2
γ1

≤
k2u
γ2

k2u
γ2

− θ2
,
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and we can deduce α(x̄1, u) ≥ 0. Provided that α(θ1, u) = β(θ1, u) = θ2, we deduce

that α(x1, u) ≥ β(x1, u), for every x1 ∈ [x̄1, θ1].

A.3 Time-optimal transfer

A.3.1 Problem formulation

The state of a genetic toggle switch is determined by gene expression in the boolean

form (low, high) and (high, low), and so the objective in this work is to achieve

a transition from one boolean state to the other in minimal time. In the mathe-

matical context, the latter translates into finding trajectories that drive the solution

(x1(t), x2(t)) of Equation (S) towards the steady states ϕ01 and ϕ10 of Equation (A.1)

in minimum time (where these states correspond to the differentiated states afore-

mentioned). However, due to the lack of controllability in direction x1 (respectively,

x2) of Equation (S) restricted to B01 (respectively, B10), one has to relax the prob-

lem. More precisely, the steady state ϕ01 (respectively, ϕ10) cannot be reached in

finite time, because u does not act on x1 in the domain B01 (respectively, x2 in

the domain B10). Thus, we will be first interested in driving x2(t) towards an ar-

bitrary value x2(tf ) = xf
2 > θ2 (for instance, the value xf

2 = k2/γ2 corresponding

to the x2-component of the steady state ϕ01), with the constraint that at the final

time, x1(tf ) belongs to the interval [0, θ1). This target choice ensures that, at the

final time, the gene x2 is strongly expressed while the gene x1 is weakly expressed.

The symmetric problem, which is equivalent, consists in driving x1(t) towards an

arbitrary value x1(tf ) = xf
1 > θ1, with the constraint that at the final time, x2(tf )

belongs to the interval [0, θ2). Fix x0
1 ≥ θ1, x

0
2 ≤ θ2, x

f
2 ≥ θ2, and consider the

minimization problem

minimize tf ≥ 0,

x(t) = (x1(t), x2(t)) is subject to (S),

x(0) = (x0
1, x

0
2),

x2(tf ) = xf
2 ,

x1(tf ) ∈ [0, θ1),

u(·) ∈ [umin, umax].

(OCP )
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A.3.2 Reachability of the terminal state

A fundamental aspect of OCPs with fixed terminal state is the existence of a solution.

Such a matter is directly linked to the reachability and controllability analysis of

the dynamical system, which are often hard to conduct analytically. In this work,

we provide sufficient conditions for the feasibility of the proposed trajectory, and we

show that a simple piecewise constant control strategy [120] achieves the objective,

serving as a candidate to (OCP ). This strategy drives asymptotically the system

from an initial state in B01 to ϕ10 (or B10 to ϕ01 for the symmetric problem). One

can show that, under Assumption A.2.1, there exist umin < θ1γ1/k1 and umax ≥ 1

such that

Φ∗(umin) ∈ (Sumax)
+,

with

Φ∗(umin)
.
=

(
umink1
γ1

,
umink2
γ2

)
. (A.3)

In previous works [120, Section 3], authors proved the existence of ūmin, ūmax such

that for every umin, umax such that 0 ≤ umin ≤ ūmin ≤ ūmax ≤ umax, we have

Φ∗(umin) ∈ (Sumax)
+. The latter condition is satisfied for ūmin, ūmax when there

exists δ < θ1k2
θ2k1

− 1 and ϵ > 0 small enough such that

ūmax > max

1,
(1 + δ)γ2

θ2
k2

− γ1
θ1
k1

δ

 ,

and

0 < ūmin < min

{
γ1
k1

θ1,
γ2
k2

θ2, (1− ϵ)x∗
1

γ1
k1

}
,

where x⋆
1 ∈ (0, θ1) is the unique solution of α(x⋆

1, umax) = 0. Concerning the sym-

metric problem, one can show the existence of another choice of umin < θ1γ1/k1 and

umax ≥ 1 such that Φ∗(umin) ∈ (Sumax)
−. Due to the symmetry of both problems,

we will focus on the first case, and state the following assumption.

Assumption A.3.1. Bounds umin and umax are chosen such that 0 ≤ umin ≤ ūmin ≤
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ūmax ≤ umax, so that Φ∗(umin) ∈ (Sumax)
+.

Based on the solution developed in previous works [120], we first propose an

input control constrained to two possible values {umin, umax} corresponding to the

low and high synthesis control. The control law is expressed in terms of the state

and time as

u(x, t) =


umin if x ∈ B10,

umin if t ∈ [0, ts), x ∈ B00,

umax if t ∈ [ts,∞), x ∈ B00,

umax if x ∈ B01.

(A.4)

for ts > 0 sufficiently large. During the first phase with u ≡ umin, every focal point of

the system belongs to B00, hence the solution x(t) of Equation (S) converges towards

the point Φ∗(umin) ∈ B00 when t → ∞. During the second phase with u ≡ umax,

state x(t) reaches B01 in finite time, and x2(t) converges towards x
f
2 in finite time.

From that point, an open-loop control u ≡ 1 drives x(t) to ϕ01 when t → ∞.

An example illustrating this trajectory is shown in Figure A.3, where xf
2 = k2/γ2,

matching the coordinate x2 of the point ϕ01. Indeed, under Assumptions A.2.1 and

A.3.1, and by choosing ts sufficiently large, the control strategy (A.4) ensures that

any trajectory starting from (x0
1, x

0
2) reaches a final point meeting x1 ∈ [0, θ1) and

x2 = xf
2 in finite time, which shows that the set of admissible controllers for problem

(OCP ) is non empty.

Notice that, while the latter strategy serves as a candidate, the set of possible

controllers is not limited to bang-bang solutions. One could consider, for instance,

non bang-bang strategies based on A.4 with intermediate control values (e.g. replac-

ing umax by ũmax < umax) which also achieve the transfer. This implies that there

exist several trajectories reaching the target of Problem OCP , which motivates a

study from a Pontryagin’s Maximum Principle perspective.

A.3.3 Hybrid optimal control problem with a fixed domain

sequence

Consider two compact subsets M0 and M1 of R2, and assume M1 is reachable from

M0 for system (S), that is, such that there exists a time tf > 0, a control u(·) ∈
L∞([0, tf ],Ω) and x0 ∈ M0 such that the solution x(t) of Equation (S), defined in
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0 θ1
x1

0

θ2

xf2

x 2

x0

(Sumax)
Φ * (umin)

0 ts tf
t

umin

1

umax

B10 B00 B01

u

Figure A.3: Optimal trajectory with x0
1 = 0.8, x0

2 = 0.3 and xf
2 = k2/γ2. System

parameters are γ1 = 1.1, γ2 = 1.7, θ1 = 0.6, θ2 = 0.4, and k1 = k2 = 1. Control
bounds are set to umin = 0.4 and umax = 1.1. The control switches from u ≡ umin to
u ≡ umax at time ts (= 3 in this case), after the state x(t) has crossed the separatrix
(Sumax).

the Filippov sense with initial condition x(0) = x0 satisfies x(tf ) ∈ M1. Consider

the problem of steering the system (S) from M0 to M1 in minimal time tf . In

order to properly define the problem, one has to choose a sequence B in the set

{B00, B01, B10, B11} of regular domains, and consider B-admissible trajectories of

Equation (S), defined as follows.

Definition A.3.2. Let B = (Bj)j∈{1,...,k} be a sequence of regular domains. We say

that a solution x(t) of Equation (S) is B-admissible if there exists a time T > 0, a

control u(·) ∈ L∞([0, tf ],Ω), and times t0 = 0 < t1 < · · · < tk such that x(t) ∈ Bj

for every t ∈ ∆j, where ∆j = (tj, tj+1).

In particular, the previous definition excludes sliding modes along the frontier

between two successive regular domains. Additionally, we require two more assump-

tions related to the reachability of B-admissible solutions for the general case.

Assumption A.3.3. M0 (respectively, M1) is included in the adherence B̄jk (re-

spectively, B̄qi) of a regular domain, for j, k, q, i ∈ {0, 1}.

Assumption A.3.4. Assume that there exists a time T > 0 and a B-admissible

solution (x(t), u(t)) such that x(0) ∈ M0 and x(T ) ∈ M1.
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Notice that for given sets M0,M1, the choice of the sequence B is not unique

in general. Assume that M0,M1, B satisfy the assumptions A.3.3 and A.3.4. For

a fixed sequence B = (Bj)j∈{1,...,k}, we can consider Problem (A.4.1) restricted to

B-admissible trajectories. Necessary conditions of optimality for this problem can

be directly derived from the HMP, which we will state in Theorem A.3.1 of the

following subsection.

A.3.4 Hybrid Maximum Principle for time optimal control

In this section, we provide an adaptation of the Hybrid Maximum Principle given by

Dmitruk and Kaganovich [132] to the time optimal setting. Let t0 < t1 < · · · < tν

be real numbers. Denote by ∆k the time interval [tk−1, tk]. For continuous functions

xk : [t0, tν ] → Rn, k ∈ {1, . . . , ν}, define the vector

p =
(
t0, (t1, x

1(t0), x
1(t1)), . . . , (tν , x

ν(tν−1), x
ν(tν))

)
∈ Rd,

where d = 1 + (2n + 1)ν. Let (fk)k∈{1,...,ν} be smooth vector fields on Rn, and

(ϕi)i∈{1,...,m}, (ηj)i∈{1,...,q} be two families of smooth functions defined on R(ν+1)(n+1).

For t ∈ [t0, tν ] and a collection (Uk)k∈{1,...,ν} of subsets of Rq, q ≥ 1, consider the

autonomous hybrid OCP 

minimize tν − t0,

ẋk(t) = fk(x
k(t), uk(t)),

uk(t) ∈ Uk,

t ∈ ∆k,

k ∈ {1, . . . , ν},

ηj(p) = 0, j = 1, . . . , q,

ϕi(p) ≤ 0, i = 1, . . . ,m.

(HOCP)

Definition A.3.5. For a tuple w = (t0; tk, x
k(t), uk(t), k = 1, . . . , ν) which is ex-

tremal for Problem (HOCP), define:

• the trajectory (x(t))t∈[t0,tν ] which is equal to xk(t) for every t ∈ ∆k \ {tk} and

k ∈ {1, . . . , ν};
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• the adjoint trajectory (λ(t))t∈[t0,tν ] which is equal to λk(t) for every t ∈ ∆k\{tk}
and k ∈ {1, . . . , ν};

• the control (u(t))t∈[t0,tν ] which is equal to uk(t) for every t ∈ ∆k \ {tk−1} and

k ∈ {1, . . . , ν}.

Define, for every k ∈ {1, . . . , ν}, t ∈ ∆k,

Hk(xk, λk, λ0, u
k) = ⟨λk, fk(x

k, uk)⟩ − λ0.

Theorem A.3.1. Assume that (x̃(·), ũ(·), p̃) is an optimal solution of Problem (HOCP).

Then there exists

(α, β, λ(·), λ0),

where α = (α1, . . . , αm) ∈ Rm, β = (β1, . . . , βq) ∈ Rq, λ = (λ1, . . . , λν), all λk :

∆k → Rn for k ∈ {1, . . . , ν} being Lipschitz functions, and a constant λ0 ≥ 0 such

that:

• (λ0, α, β) ̸= 0;

• For every i ∈ {1, . . . ,m}, αi ≥ 0;

• For every i ∈ {1, . . . ,m}, αiϕi(p̃) = 0;

• For almost every t ∈ ∆k,

ẋk =
∂Hk

∂λ
(xk, λk, λ0, ũ),

λ̇k = −∂Hk

∂xk
(xk, λk, λ0, ũ), (E)

Hk(xk, λk, λ0, ũ) = max
u∈Ω

Hk(xk, λk, λ0, u) = 0.

Moreover, if we define L(p) = λ0(tν − t0) +
∑m

i=1 αiϕi(p) +
∑q

j=1 βjηj(p), then we

have the following transversality and discontinuity conditions at times t = t0, . . . , tν:

• At the initial and final times t0 and tν, we have

λ1(t0) =
∂L

∂x1(t0)
(p̃),

λν(tν) =
∂L

∂xν(tν)
(p̃).
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• At the crossing times (tk)k∈{1,...,ν−1}, we have, for every k ∈ {1, . . . , ν − 1},

λk(tk−1) =
∂L

∂xk(tk−1)
(p̃),

λk(tk) = − ∂L

∂xk(tk)
(p̃).

A.4 Main results

We are interested in solving (OCP ) among continuous B-admissible trajectories, as

defined in Section A.3.3. We first observe that the regular domain B11 is repulsive,

and so any B-admissible trajectory with x(0) ∈ B10 and x(tf ) ∈ B01 should pass

through B00, as the point (θ1, θ2) cannot be reached from B10. Thus, we fix the

sequence of regular domains B = (B10, B00, B01), with M0 restricted to a point in K,

andM1 = {(x1, x2) ∈ K | x1 ∈ [0, θ1), x2 = xf
2} which has already been proven to be

reachable in finite time, verifying assumptions A.3.3 and A.3.4. As previously said,

the problem can be further analyzed by applying HMP. The Maximum Principle in

the Hybrid framework requires to define functions (ϕi)i and (ηj)j that guarantee the

continuity of the trajectories and the changes of dynamics at the frontiers x1 = θ1

and x2 = θ2 [132]. Through its application, we obtain that (OCP ) admits an optimal

control which can be defined as a very simple feedback.

Theorem A.4.1. The optimal strategy u(x) solution of (OCP ) for B-admissible

trajectories is the feedback control

u(x) =

{
umin if x ∈ (Sumax)

−,

umax if x ∈ (Sumax)
+ ∪ (Sumax).

Note that u(x) is not defined in B11 due to the lack of control in the region.

Figure A.4 illustrates the resulting vector field of (S) with the latter time-optimal

control law. As a consequence of the latter theorem, the solutions of (OCP ) for

B-admissible trajectories are such that:

• the optimal control consists of two bang arcs u ≡ umin and u ≡ umax, similar

to the suboptimal control (A.4), with the switching between them occurring

at the time when the trajectory reaches the separatrix (Sumax);

• the optimal trajectories passes by the unstable Filippov equilibrium (θ1, θ2),
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0 θ1 k1
γ1

x1

0

θ2

k2
γ2

x 2 u≡ umax

No control

u≡ umin

(Sumax)

Figure A.4: Stream plot of the controlled dynamics (S) with the feedback control
of Theorem A.4.1. System parameters are γ1 = 1.1, γ2 = 1.7, θ1 = 0.6, θ2 = 0.4,
k1 = k2 = 1. Control bounds are set to umin = 0.5 and umax = 1.5.

which is reached by its stable manifold corresponding to dynamics of Equa-

tion (S) with u ≡ umax. Then, the Filippov equilibrium is left by its unstable

manifold corresponding to the dynamics of Equation (S) with u ≡ umax.

The proof of this result involves showing there are no singular arcs in the optimal

control, and thus u(t) can only be a concatenation of bang arcs. Additionally,

because of the two-dimensional affine structure in each regular domain, the sign of

the switching function in the Hamiltonian can switch at most once throughout the

whole interval [0, tf ]. Consequently, the optimal control consists of at most two bang

arcs (umin or umax), and the problem is reduced to finding the optimal switching

time between the two arcs. An example of this trajectory and optimal control is

shown in Figure A.5.

A.5 Proof of the main results

In this section, we provide the proof for Theorem A.4.1, which is organized as follows:
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0 θ1
x1

0

θ2

xf2

x 2

x0

(Sumax)
Φ * (umin)

0 t1 ts t2 tf
t

umin

1

umax

B10 B00 B01

u

Figure A.5: Optimal trajectory with x0
1 = 0.8, x0

2 = 0.3 and xf
2 = 0.7. System

parameters are γ1 = 1.2, γ2 = 1.8, θ1 = 0.6, θ2 = 0.4, and k1 = k2 = 1. Control
bounds are set to umin = 0.5 and umax = 1.5. Times t1 and t2 are the transition
times at which the state meets x1(t1) = θ1 and x(t2) = (θ1, θ2).

• In Section A.5.1, we reduce the problem to B = (B00, B01)-admissible trajec-

tories;

• In Section A.5.2, we prove that any optimal control admits no singular arcs in

B00;

• In Section A.5.3, we show that the optimal control in B00 consists of two bang

arcs with a switching time ts such that x(ts) ∈ (Sumax), and we conclude the

proof of Theorem A.4.1 showing that there are no singular arcs in B10.

A.5.1 Reduction of the problem

Let x(t) be the solution of Equation (S) such that x(0) = x0 associated with an

arbitrary control u(t), and define the time at which the system crosses the frontier

between B10 and B00 (respectively, between B00 and B01) as t1 (respectively, t2). We

notice that the time needed to achieve a transfer between the point (x1(t2), x2(t2)) =

(x′
1, θ2) for x′

1 < θ1, and the set {(x1, x2) ∈ K | x2 = xf
2 , 0 ≤ x1 ≤ θ1} does not

depend on x′
1 ≤ θ1, and by a direct property of Equation (S) restricted to B01, we

can easily prove that the optimal control strategy for Problem (OCP ) is obtained

when u(t) = umax for t ≥ t2. Moreover, if u(t) ∈ [umin, umax] is another optimal
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control, then we obtain ∫ tf

t2

e−γ2s(u(s)− umax)ds = 0,

hence u(t) = umax for almost every t ∈ [t2, tf ]. As a consequence, we can reduce

the problem to solving (OCP ) with xf
2 = θ2 among B = (B10, B00)-admissible

trajectories.

A.5.2 Absence of singular arcs in B00

In order to apply Theorem A.3.1, given the choice B = {B10, B00}, we set ν = 2,

and we define the vector fields, for x = (x1, x2) ∈ R2, u ∈ [umin, umax], by

f1(x1, x2, u) =

(
−γ1x1 + uk1

−γ2x2

)
, f2(x1, x2, u) =

(
−γ1x1 + uk1

−γ2x2 + uk2

)
.

The times where changes of regular domains occur for the dynamics are denoted

by t0 = 0 < t1, and the final time is t2 = tf . Notice that t0 = 0 is assumed to

be fixed while t1, tf are not fixed quantities a priori. We introduce the following

functions (ηj)j∈{1,...,7}, which will guarantee the B-admissibility of the trajectories

x(t), which are solutions of Equation (S). In accordance with Definition A.3.5 of

Section A.3.4, for a trajectory x(t) which is solution of Equation (S), we define p =

(t0, (t1, x
1(t0), x

1(t1)), (tf , x
2(t1), x

2(tf ))). In order to guarantee the B-admissibility

and the continuity of the trajectory x(t) at t = t1, we define the functions

η1(p) = t0,

η2(p) = x1
1(t0)− x0

1,

η3(p) = x1
2(t0)− x0

2,

η4(p) = x1
1(t1)− θ1,

η5(p) = x2
1(t1)− θ1,

η6(p) = x1
2(t1)− x2

2(t1),

η7(p) = x2
2(tf )− θ2.
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As in Theorem A.3.1, for p = (t0, (t1, x
1(t0), x

1(t1)), (tf , x
2(t1), x

2(tf ))), α ∈ R, and
β = (β1, . . . , β7) ∈ R7, define the Lagrangian

L(p) = αtf +
7∑

j=1

βjηj(p).

For k ∈ {1, 2}, the Hamiltonian Hk defined in Theorem A.3.1 can be written as

Hk = H0 + ukHk
1 , with uk ∈ [umin, umax] where, for every xk = (xk

1, x
k
2) ∈ R2 and

λk = (λk
1, λ

k
2),

H0(x
k, λk, λ0) = −γ1x

k
1λ

k
1 − γ2x

k
2λ

k
2 − λ0,

Hk
1 (x

k, λk) = ξk1k1λ
k
1 + ξk2k2λ

k
2,

with ξ11 = 0, ξ21 = 1, ξ12 = 1, and ξ22 = 1. In this setting, the Adjoint State

Equation (E) of Theorem A.3.1 writes{
λ̇k
1 = γ1λ

k
1,

λ̇k
2 = γ2λ

k
2,

(AD)

which is independent of k ∈ {1, 2}. Then, we can derive conditions from Theo-

rem A.3.1 concerning singular arcs of Equation (OCP ) along B-admissible trajecto-

ries, as defined in Section A.3.3. For k ∈ {1, 2}, extremal singular arcs occur when

the variables (xk(t), λk(t), λ0, u
k(t)) are extremal and satisfy

Hk
1 (x

k(t), λk(t)) = 0, (Sing)

for every t ∈ [T1, T2], where t1 ≤ T1 < T2 ≤ tf . Along such trajectories, the

vanishing condition of the k-th Hamiltonian Hk becomes

−γ1x
k
1(t)λ

k
1(t)− γ2x

k
2(t)λ

k
2(t)− λ0 = 0, (V)

for every t ∈ [T1, T2]. Define the B00 switching function as ϕ(t) = sign(k1λ
2
1(t) +

k2λ
2
2(t)) for t ∈ [0, tf ]. As a direct consequence of Theorem A.3.1, we have the

following result.

Lemma A.5.1. At times t0 = 0, t1 and tf , we have the following transversality and
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discontinuity conditions: 

β1 = −α = λ0,

λ1
1(0) = β2,

λ1
2(0) = β3,

λ1
1(t1) = −β4,

λ2
1(t1) = β5,

λ1
2(t1) = λ2

2(t1) = β6,

λ2
1(tf ) = 0,

λ2
2(tf ) = −β7.

(TD)

We can deduce the following property of extremal trajectories of Problem (OCP ).

Lemma A.5.2. Extremal trajectories of Problem (OCP ) along B-admissible tra-

jectories admit no singular arcs in B00, that is, for t ∈ [t1, t2].

Proof. In this case, Condition (Sing) becomes

k1λ
2
1(t) + k2λ

2
2(t) = 0,

for t ∈ [T1, T2]. Differentiating this equality, we obtain

k1γ1λ
2
1(t) + k2γ2λ

2
2(t) = 0,

for t ∈ [T1, T2]. Then we get, for t ∈ [T1, T2]

λ2
1(t)(γ1 − γ2) = 0.

Knowing that γ1 ̸= γ2 by Assumption A.2.1, we obtain λ2
1(t) = 0 for t ∈ [T1, T2],

and Condition (V) implies

λ2
1(t) = λ2

2(t) = λ0 = 0.

Hence, by Equation (AD), we have λ2
1(t) = λ2

2(t) = λ0 = 0 for every t ∈ [t1, tf ].

Applying Theorem A.3.1 with the functions (ηj)j∈{1,...,7}, and the Lagrangian L

as defined as above, we see easily that the transversality and discontinuity con-

ditions (TD) at times t0 = 0, t1 and tf provide that α = βj = 0, for every

j ∈ {1, . . . , 7}. Indeed, the condition λ2
1(t) = λ2

2(t) = λ0 = 0 for every t ∈ [t1, tf ]
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implies that α = β1 = β5 = β6 = β7 = 0. By Equation (AD), we get that

λ1
2(t) = λ2

2(t) = 0 for every t ∈ [0, tf ], so that we can deduce β3 = β6 = 0. The

null Hamiltonian condition (V) then implies λ1
1(t) = 0 for t ∈ [0, t1]. It follows that

β2 = β4 = 0, so that the nontriviality condition (α, β) ̸= 0 of Theorem A.3.1 is

violated.

A.5.3 Optimality of the two bang arcs trajectory for Prob-

lem (OCP )

Because of the two-dimensional affine structure in each regular domain, the switch-

ing function ϕ can switch at most once throughout the whole interval [0, tf ]. By

reachability considerations, we can deduce the following result.

Proposition A.5.3. Extremal trajectories of Problem (OCP ) along B-admissible

trajectories are made of two bang arcs in the domain B00, that is, there exists ts ≥ t1

such that u(t) = umin for t1 ≤ t ≤ ts, and u(t) = umax for t > ts.

Proof. By Equation (AD) and Lemma A.5.2, the switching function ϕ switches at

most once for t ∈ [t1, tf ]. Moreover, in order to achieve a transfer between the lines

x2
1(t1) = θ1 and x2

2(tf ) = θ2, at least one switch is needed. Indeed, a constant control

strategy u ≡ umin is such that the associated solution x(t) of Equation (S) converges

towards Φ∗(umin) when t → ∞, where Φ∗(umin) is defined as in Equation (A.3), so

that x(t) < θ2 for every t ≥ t1. Moreover, a constant control strategy u ≡ umax is

such that x(t) ∈ B10 for t ≥ t1, so that x(t) is not B-admissible.

Now we prove that that the switching time ts defined in Proposition A.5.3 for

optimal trajectories of Problem (OCP ) along B-admissible trajectories is such that

(x2
1(ts), x

2
2(ts)) ∈ (Sumax). First notice that, by a direct study of Equation (S) re-

stricted to the domain B00, we can define t⋆ > 0 as the unique time at which

the solution (y1(t), y2(t)) of Equation (S) with u ≡ umin and y1(0) = θ1 and

y2(0) = x2
2(t1) satisfies (y1(t

⋆), y2(t
⋆)) ∈ (Sumax). In order to guarantee the con-

ditions x2
1(tf ) ∈ [0, θ1] and x2

2(tf ) = θ2, the time ts defined in Proposition A.5.3 has

to satisfy ts ≥ t1 + t⋆. We have the following result.

Lemma A.5.4. Optimal trajectories of Problem (OCP ) along B-admissible trajec-

tories are such that ts = t1 + t⋆ and x2
1(tf ) = θ1.
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Proof. We have for t1 ≤ t ≤ ts,

x2
1(t) = (θ1 − k1umin

γ1
)e−γ1(t−t1) + k1umin

γ1
,

x2
2(t) = (x2(t1)− k2umin

γ2
)e−γ2(t−t1) + k2umin

γ2
,

and for t ≥ ts we have

x2
1(t) = (x2

1(ts)− k1umax

γ1
)e−γ1(t−ts) + k1umax

γ1
,

x2
2(t) = (x2

2(ts)− k2umax

γ2
)e−γ2(t−ts) + k2umax

γ2
.

Notice that the condition x2
2(t1) < θ2 implies x2

2(ts) < θ2 and x2
1(ts) < θ1. By direct

computations, a time T ≥ ts satisfies x
2
2(T ) = θ2 if and only if

T = T (ts) ≡ ts +
1

γ2
ln

(
−x2

2(ts) + k2umax/γ2
−θ2 + k2umax/γ2

)
.

Notice that the condition θ2 < umax

γ2
implies we can define a positive function T :

ts 7→ T (ts). Moreover, one can prove that, for every ts > 0,

T ′(ts) =
k2(umax − umin)

−γ2x2
2(ts) + k2umax

.

Using the fact that (x2
1(ts), x

2
2(ts)) belongs to B00, we obtain that T is increasing on

R+, and reaches its minimum in the interval [t1+ t⋆,+∞) at ts = t1+ t⋆. The result

follows from the definitions of t⋆ and (Sumax) (see Section A.2.2).

There remains to understand the structure of an optimal trajectory in the regular

domain B10, that is, when t ≤ t1. In the next proposition, we eliminate the possibil-

ity of having singular arcs in B10 by a direct study of the dynamics of Equation (S)

associated with the application of Lemma A.5.4.

Proposition A.5.5. Optimal trajectories of Problem (OCP ) along B-admissible

trajectories admit no singular arc in B10.

Proof. Consider the solution x̄(t) = (x̄1(t), x̄2(t)) of Equation (S) such that u ≡ umin

while x̄(t) ∈ B10, u ≡ umin while x̄(t) ∈ B00∩(Sumax)
−, u ≡ umax while x̄(t) ∈ (Sumax),

and the solution x̃(t) = (x̃1(t), x̃2(t)) of Equation (S) such that u ≡ ũ(t) while

x̃(t) ∈ B10 for an arbitrary control t 7→ ũ(t) ∈ [umin, umax], u ≡ umin while x̃(t) ∈
B00 ∩ (Sumax)

−, u ≡ umax while x̃(t) ∈ (Sumax), with same initial conditions. Hence
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we can define the time T̄ > 0 (respectively, T̃ ) at which we have x̄(T̄ ) = (θ1, θ2)

(respectively, x̃(T̃ ) = (θ1, θ2)).In order to prove that T̃ ≥ T̄ , let us first consider the

time t̃1 > 0 (respectively, t̄1 > 0) at which x̃(t) (respectively,x̄(t)) reaches the frontier

between B10 and B00. By a direct property of Equation (S) restricted to the domain

B10, we have x̃1(t) ≥ x̄1(t) and x̃2(t) = x̄2(t) for every t ≤ min(t̃1, t̄1). It follows

that t̄1 ≤ t̃1 and x̃2(t̃1) ≤ x̄2(t̄1). Now consider a solution ỹ(t) = (ỹ1(t), ỹ2(t))

(respectively, ȳ(t) = (ȳ1(t), ȳ2(t))) of Equation (S) with u ≡ umin and such that

ỹ1(0) = ȳ1(0) = θ1, ỹ2(0) = x̃2(t̃1) and ȳ2(0) = x̄2(t̄1). By a direct property of

Equation (S), the times s̃1 (respectively, s̄1) at which ỹ(t) (respectively,ȳ(t)) reaches

(Sumax) are such that s̃1 ≥ s̄1. Hence we can deduce T̃ = t̃1 + s̃1 ≥ T̄ = t̄1 + s̄1,

and the structure of optimal trajectories in B00 given by Lemma A.5.4 allows to

prove that an optimal trajectory for Problem (OCP ) is such that u(t) = umin for

almost every t ∈ [0, t1]. In particular, optimal trajectories for Problem (OCP ) have

no singular arcs in B10.

The latter proposition concludes the proof of Theorem A.4.1. Additionally, as a

direct consequence of the previous results, we obtain that for t ∈ [0, tf ], the optimal

control is made of a first bang arc with u ≡ umin towards (Sumax) for t ∈ [0, ts], then

a second bang arc with u ≡ umax for t ∈ [ts, tf ] so that the system follows (Sumax)

until reaching (θ1, θ2).

Remark A.5.6. By a direct analysis of the dynamics of Equation (S) in the regular

domain B00, one can show that the time t⋆ = ts − t1 > 0 is the unique non-negative

solution of the equation(
k2umin

γ2
− x2

2(t1)

)
e−γ2t + k2

umax − umin

γ2
(EQ)

=

(
k2umax

γ2
− θ2

)
(

k1umax

γ1
− θ1

)γ2/γ1
((

k1umin

γ1
− θ1

)
e−γ1t + k1

umax − umin

γ1

)γ2/γ1

.

The latter can be obtained by solving y2(t
⋆) = α(y1(t

⋆), umax), with y1(t
⋆) = x2

1(t1+t⋆)

and y2(t
⋆) = x2

2(t1 + t⋆). Equation (EQ) is hard to solve explicitly in the general

case where Assumption A.2.1 is satisfied, especially because the latter assumption

implies γ1 ̸= γ2.
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A.6 Lower bound on the minimal time

The time required to perform a transition can be minimized to a certain extent,

which is imposed by the dynamics of the system and the choice of control bounds,

as shown in previous sections. In this section, we show there exist a lower bound

to the minimal time. However, an explicit computation requires to solve Equa-

tion (EQ) analytically, which is a challenging task. In this section, we give a lower

bound on the minimal time of Problem (OCP ) in Proposition A.6.3, which is uni-

form w.r.t. [umin, umax) ⊂ [0,+∞) and is a function of the parameters (γj)j∈{1,2},

(kj)j∈{1,2}, (θj)j∈{1,2} satisfying Assumption A.2.1. In this purpose, we introduce

an additional system which provides a lower bound for Problem (OCP ). Let

[umin, umax) ⊂ [0,+∞) be such that Assumption A.3.1 is satisfied. Then, for every

umin, umax ≥ 0 such that [ūmin, ūmax] ⊂ [umin, umax], we have Φ⋆(umin) ∈ (Sumax)
−.

Hence, the optimal control strategy for Problem (OCP ) associated with such values

of umin, umax is given by Theorem A.4.1.

Definition A.6.1. Define the lower trajectories as the solutions of

ż1 = −γ1z1 + k1u(t)s
−(z2, θ2)

ż2 = −γ1z2 + k2u(t)s
−(z1, θ1),

(S̃)

with u(t) ≡ umin for z(t) ∈ (S̃umax)
−, and u(t) ≡ umax for z(t) ∈ (S̃umax)

+ ∪ S̃umax,

where (S̃umax) is defined as in Definition A.2.3.

A direct application of Lemma A.2.3 proves that if a lower trajectory z(t) is

such that z(0) ∈ (S̃umax)
−, then z(t) reaches (S̃umax) in finite time Tlow(umin, umax).

Moreover, as a consequence of the condition γ2 > γ1, we obtain the following lemma.

Lemma A.6.2. Consider the solution x(t) of Equation (S) such that x(0) = x0 ∈
(Sumax)

−, where u is defined as in Theorem A.4.1, and the solution z(t) of Equa-

tion (S̃) such that z(0) = x0. Then we have x1(t) ≤ z1(t) and x2(t) ≤ z2(t), for

every t ∈ [0, Tlow(umin, umax)].

As a direct consequence, we get that the time ts needed by x(t) in order to reach

(Sumax) (defined as in Proposition A.5.3) is such that ts ≥ Tlow(umin, umax).

Hence, if we denote the minimal time for Problem (OCP ) by Tf (umin, umax),

then we have Tf (umin, umax) ≥ Tlow(umin, umax), for every umin, umax be such that 0 ≤
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θ1
x1

0

θ2

x 2

(Sumax) for system (S)
Trajectories of  (S)
(Sumax) for system (S̃)
Trajectories of  (S̃)

Figure A.6: Different trajectories starting from x1 = θ1 with fixed control. System
parameters are γ1 = 1.4, γ2 = 2, θ1 = 0.6, θ2 = 0.4, and k1 = k2 = 1. Control is set
to u ≡ umin with umin = 0.5. Trajectories of (S̃) reach its associated separatrix at
the lower-bound time Tlow. Vertical lines at the interception indicate x1(Tlow).

umin ≤ umax. Furthermore, by definition of Problem (OCP ), we have Tf (umin, umax) ≥
Tf (ũmin, ũmax), for every umin, umax, ũmin, ũmax such that 0 ≤ ũmin ≤ umin ≤ umax ≤
ũmax. It follows that for such a choice of umin, umax, ũmin, ũmax, we have

Tf (umin, umax) ≥ Tlow(ũmin, ũmax). (A.5)

Proposition A.6.3. Set x0 = (x0
1, x

0
2) ∈ B̄10 such that x0

2 < θ2, and consider

umin, umax such that 0 ≤ umin ≤ umax. Let x(t) be the solution of Equation (S)

such that x(0) = x0, where u is defined as in Theorem A.4.1. Then we have

Tf (umin, umax) ≥ − 1
γ1
ln
(

θ1k2−θ2k1
θ1k2−x0

2k1

)
> 0.

Proof. First assume that x0
1 = θ1. Then by an adaptation of the formula given in

Remark A.5.6, replacing γ2 by γ1, the time Tlow(umin, umax) needed by the lower

trajectory z(t) to reach (S̃umax) is

Tlow(umin, umax) = − 1

γ1
ln

 (A(umax)k1 − k2)(umax − umin)

γ1

((
k2umin

γ1
− x0

2

)
− A(umax)

(
k1umin

γ1
− θ1

))
 ,
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where A(umax) =
k2umax

γ1
−θ2

k1umax
γ1

−θ1
. For every umin, umax, ũmax such that 0 ≤ umin ≤ umax ≤

ũmax, Inequality (A.5) provides

Tf (umin, umax) ≥ Tlow(0, ũmax) = − 1

γ1
ln

(
(A(ũmax)k1 − k2)ũmax

γ1 (−x0
2 + A(ũmax)θ1)

)
.

Noticing that Tlow(0, ũmax) → − 1
γ1
ln
(

θ1k2−θ2k1
θ1k2−x0

2k1

)
when ũmax → +∞, we deduce

that Tf (umin, umax) ≥ − 1
γ1
ln
(

θ1k2−θ2k1
θ1k2−x0

2k1

)
, for every umin, umax such that 0 ≤ umin ≤

umax. Moreover, Assumption A.2.1 and the condition x0
2 < θ2 guarantee that

− 1
γ1
ln
(

θ1k2−θ2k1
θ1k2−x0

2k1

)
> 0. We deduce the general case x0

1 ≥ θ1 noticing that we have

in this case x2(t1) ≤ x0
2, where t1 ≥ 0 is the time where x(t) changes regular domain

from B10 to B00, then applying the case x0
1 = θ1.

A.7 Numerical results

We illustrate our results with numerical simulations performed with Bocop [4], an

open-source toolbox for solving OCPs. In order to guarantee the reproducibility of

the numerical results, the computations can be executed through an online version

of Bocop3. The original problem (OCP ) is solved through a direct method, by

approximating it by a finite dimensional optimization problem, using a Lobato time

discretization method. As the algorithm requires s− to be regularized to a smooth

function, we define, for x ∈ R and k ∈ N, the Hill function

δ(xi, θi, k) =
θki

xk
i + θki

, (A.6)

which can approximate s− for large values of k and, when k → ∞, it verifies

lim
k→∞

δ(xi, θi, k) =


1 xi < θi,

0 xi > θi,

1/2 xi = θi.

3https://ct.gitlabpages.inria.fr/gallery/bistable/bistable.html

https://ct.gitlabpages.inria.fr/gallery/bistable/bistable.html
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Replacing s− by Hill functions (A.6) in system (S) yields the non-hybrid system{
ẋ1 = −γ1x1 + uk1δ(x2, θ2, k),

ẋ2 = −γ2x2 + uk2δ(x1, θ1, k).

System parameters are fixed to γ1 = 1.2, γ2 = 2, θ1 = 0.6, θ2 = 0.4 and k1 = k2 = 1,

which verify Assumption A.2.1; and control bounds are set to umin = 0.5 and

umax = 1.5 satisfying Assumption A.3.1. The parameter k of the Hill function

is set to k = 500, which proved an acceptable approximation of the s− function.

Figure A.5 shows an optimal trajectory representing the transition (high, low) to

(low, high). In accorance with the analytical results, the optimal control is a bang-

bang control: it consists of a first phase [0, ts] of low synthesis control umin until x

reaches the separatrix (Sumax), followed by a phase [t2, tf ] of high synthesis control

umax until x2 reaches x
f
2 . As it is customary when solving OCPs with direct methods,

the algorithm does not count on any a priori information of the structure of the opti-

mal control. Yet, the obtained trajectory is in agreement with Theorem A.4.1, which

confirms our theoretical results. Moreover, the solver is not restricted to consider

only B-admissible trajectories, which suggests that the solution found in this work

is optimal not only for Problem (OCP ) along B-admissible trajectories but also for

the general (OCP ), without imposing the domain sequences. Figure A.7 shows dif-

ferent trajectories starting from (Sumax)
+ and (Sumax)

−. The streamplot represents

the closed-loop dynamics for the optimal control defined in Theorem A.4.1. All tra-

jectories starting in (Sumax)
− approach asymptotically the point Φ∗(umin) (denoted

by a cross) until they reach the separatrix, point at which the state slides over it

towards the Filippov equilibrium (θ1, θ2). The optimal control for trajectories start-

ing in (Sumax)
+ consists in u ≡ umax for the whole interval [0, tf ], and do not pass

by the Filippov equilibrium.

Remark A.7.1. As already mentioned in the introduction, the dynamics is not

uniquely defined at the undifferentiated point (θ1, θ2), and the proposed solution is

obtained by making a choice of dynamics at this point. Hence, concerning a biolog-

ical implementation of our time-optimal strategy, it seems more reasonable to apply

u(t) ≡ umin during a slightly longer time t̃s = ts + ϵ with a small ϵ > 0.

In accordance with Remark A.7.1, one can be interested in comparing the sub-

optimal control strategy given in Equation (A.4) with the optimal control given by
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0 θ1
x1

0

θ2

xf2

x 2

(Sumax)
Φ *

Figure A.7: Optimal trajectories starting from different initial points, with xf
2 = 0.7

and k = 500. The streamplot represents the vector field resulting from applying the
optimal bang-bang strategy from Theorem A.4.1.

Theorem A.4.1. To this purpose, one can evaluate the time loss when delaying the

switch by a time δt > 0, as ts = t1 + t⋆ + δt, where t1 and t⋆ are defined as in

Section A.5.3 and depend on the parameters of the system. One can show by simple

computations that the difference between the times needed to reach the target xf
2

for the modified trajectory w.r.t. the optimal trajectory is equal to

1

γ2
ln
(
1 + eγ2(t̃−t∗)

(
eγ2δt − 1

))
,

where

t̃ =
1

γ2
ln

(
k2(umin − umax)

γ2θ2 − k2umax

)
.

A.7.1 Comparison with the smooth case

In order to explore the differences between the hybrid model studied in this paper

and the smooth case, we obtained optimal trajectories for the continuous dynamical

model given by (A.6) with lower Hill coefficients. Figure A.8 illustrates the impact

of the Hill coefficient k in the functions δ(x, θ, k), and how high values of k represent
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a suitable approximation of the discrete case. Figure A.9 shows optimal transitions

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x

0.0

0.2

0.4

0.6

0.8

1.0

δ(x, 1, 3)
δ(x, 1, 10)
δ(x, 1, 500)

Figure A.8: Different Hill functions with different values of the Hill coefficient.

for k = 3 compared to the streamplot obtained from the optimal bang-bang strategy.

We can observe that, even for lower values of k, the optimal control strategy remains

bang-bang, with the switches being produced after the trajectories reach a certain

region not necessarily delimited by (Sumax). Finally, an important difference is that

the bang-bang control does not yield trajectories passing by the unstable point

(θ1, θ2) in the continuous case. In Figure A.10, three trajectories starting from the

same initial conditions are compared for different values of k. We observe that, as k

is reduced, the trajectory gets closer to the separatrix, and therefore, to the unstable

point (θ1, θ2). Additionally, both the final time and the switching time are reduced

as k increases towards the idealized hybrid case.

A.7.2 Supplementary condition x1(tf) < xmax
1

In bistable systems, a binary switch implies taking the state towards the equilibria

ϕ10 and ϕ01. However, as stated in Section A.3, (OCP ) represents a relaxed version

of this problem where x1(tf ) > 0, as it is not possible to control concentration x1 in

B01. In order to compare the relaxed version with the original one, we investigate
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x1
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θ2
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(Sumax)
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0 1 2 3 4
t

umin

1

umax

Figure A.9: Optimal trajectories starting from different initial points, with xf
2 = 0.7

and k = 3. The streamplot represents the vector field resulting from applying the
optimal bang-bang strategy from Theorem A.4.1.

0 θ1
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0
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xf2
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(Sumax)
k=3
k=10
k=500
Φ *

0 1 2 3 4
t
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1

umax

Figure A.10: Optimal trajectories starting from the initial point (0.8, 0.3), with
xf
2 = 0.7 and for different values of k. The streamplot represents the vector field

resulting from applying the optimal bang-bang strategy from Theorem A.4.1.

numerically the following problem:

minimize tf ≥ 0

x(t) = (x1(t), x2(t)) is subject to (S),

x(0) = (x0
1, x

0
2),

x2(tf ) = xf
2 ,

x1(tf ) ∈ [0, xmax
1 ),

u(·) ∈ [umin, umax].

(OCP2)
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In the particular case xf
2 = k2/γ2, solving Problem (OCP2) allows to ensure that

the state x(t) is close enough to the steady state ϕ01 at time t = tf . The main

difference with (OCP ) is that x1(tf ) is now constrained to the interval [0, xmax
1 ] with

xmax
1 < θ1. For initial conditions in B01 given by x0

1 ∈ (xmax
1 , θ1] and x0

2 = θ2, we

notice that the time it takes for x1(t) to reach xmax
1 does not depend on the control u

(as there is no term depending on the control u in the dynamics of x1(t)). Therefore,

the final time tf does not depend on the control, and so any control driving x2(t)

from x2(0) = θ2 to xf
2 in a time t′ ≤ tf is optimal for Problem (OCP2). Thus, the

problem has infinite solutions. Figure A.11 shows different trajectories for different

values of xmax
1 . Among all infinite solutions, the ones found by Bocop depend on

the initialization of the optimization algorithm, and have no particular meaning in

the regular domain B01. However, we verify that, as in (OCP ), the switch in the

control u occurs at the separatrix (Sumax), and then they follow the separatrix until

the point (θ1, θ2). Thus, the simplest bang-bang strategy solution of (OCP2) is

u1(x) =


umin if x ∈ (Sumax)

−,

umax if x ∈ (Sumax)
+ ∪ (Sumax) and x2 < xf

2 ,

γ2
k2
xf
2 if x2 = xf

2 .

where the control u ≡ xf
2γ2/k2 is chosen so that ẋ2 = 0 in the last phase. In

the particular case where the final state is such that xf
2 = k2/γ2 (corresponding

to the x2-coordinate of the steady state ϕ01), the optimal control in the last phase

corresponds to the open loop system u ≡ 1.

A.8 Conclusion

This paper addressed the time-optimal control problem of a bistable gene-regulatory

network. Through the application of HMP, we showed that any optimal control

achieving state transition is a bang-bang control, where its value is a function of

the state of the system (i.e. a feedback control). While in previous works [120], the

bang-bang nature of the control is imposed as a constraint, we showed that such

a characteristic is necessary to produce minimum-time transitions. Results also

indicate that optimal trajectories should pass by the Filippov equilibrium (θ1, θ2),

which represents the undifferentiated state, highly relevant from the biological point
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Figure A.11: Optimal trajectories obtained with Bocop starting from the same
initial point (0.8, 0.3), with xf

2 = 0.7 and for different values of xmax
1 . The streamplot

represents the vector field resulting from applying the optimal bang-bang strategy
from Theorem A.4.1. The first case (with xmax

1 = θ1) is the solution of (OCP ).

of view. We showed the existence of a lower bound to the minimal time, by introduc-

ing the concept of lower trajectories. The numerical simulations obtained through

direct methods confirm our analytical results, even when no prior knowledge of the

structure of the optimal trajectories is specified. The latter are obtained by approx-

imating the piecewise behavior of the systems with Hill functions, thus simulating a

non-hybrid system. Additionally, the numerical results indicate that the trajectories

found are optimal not only among B-admissible trajectories, but for all solutions of

the hybrid system (S). Finally, we performed a numerical comparison of the trajec-

tories obtained for the relaxed problem (i.e. with a constraint xf
1 ≤ θ1) and those

of the original one (i.e. with a constraint xf
1 ≤ xmax

1 < θ1), which suggests that our

results are also applicable to the original problem. Our work can be related to other

results in the literature. For instance, in [127], an irreversible bistable switch in

E. coli between the genes FadR and TetR is artificially engineered by replacing an

endogenous negative autoregulation loop into a positive one. The control strategy is

the feed-in of fatty acid, which is chosen to be bang-bang for simplicity. Our results

supports such choice by proving it is not only simple, but also time optimal from

a mathematical point of view. We expect that our result could be generalized to

higher dimensional genetic regulatory networks, where it often occurs that trajec-
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tories belonging to a given domain may bifurcate in different domains, similarly to

what happens in the toggle switch case.
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