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Introduction

The discovery of the structure of the DNA molecule (Franklin & Gosling, 1953; Watson & Crick,
1953; Wilkins, Stokes, & Wilson, 1953) and the formulation of the central dogma of molecular bi-
ology (F. Crick, 1970; F. H. Crick, 1958) marked the beginning of a new era in Biology. It laid the
foundation for Biology to become a quantitative science, in which large amounts of molecular data
would be integrated into a detailed description of living systems. At that point, we are in reach
of understanding how information in a cell is stored, accessed, read and processed in an unprece-
dented and comprehensive manner (National Research Council, 2005). This transformation can be
attributed to a steady technological improvement –through miniaturization and parallelisation, of
the devices that measure and probe the molecular content of the cell (Metzker, 2010).

The central dogma (Cobb, 2017; F. Crick, 1970) states what characterises the flow of genetic
information: it is stored in genomes, composed of DNA, then transcribed into RNA, which can
have enzymatic/catalytic activity on its own, or be translated into protein. Proteins are the main
biochemical protagonists of the cells, they can form protein interaction complexes, and bind to DNA
or RNA as well (see Fig. 1 below). High Throughput DNA Sequencing (HTS) provides means of
collecting molecular data that informs on each step of this flow: It informs on the regulatory mech-
anisms by providing readouts of the raw genetic material; It describes the functioning of the cell at
a particular timepoint and scale by sampling the population of RNAs; It highlights the interactions
of proteins to DNA or RNA by sequencing bound fragments; finally, it hints at chromosomal archi-
tecture through DNA-DNA interactions sites –see magnifying glasses in Figure 1. As a result, each
of those assays yields a snapshot of the cell at the molecular level.

Cells are complex systems, depending on the condition the same genotype can give rise to dif-
ferent phenotypes or tissue types. Even though all those dimensions of the cells (species, tissues,
temporal state, disease) cannot be assessed and compared at once, high throughput assays broaden
our measuring capacity. For more than two decades, as the prices of DNA sequencing plummeted
(Metzker, 2010), we have been taking more and more of those molecular pictures of biological sys-
tems. Nowadays, the genotype of a dozen individuals can be obtained in just a few days and for less
than a thousand euros1, whereas the first human genome took more than a decade and 10 billions
dollars to be completed (Lander et al., 2001; Venter et al., 2001). For this reason, it is not sur-
prising that pathogens detection and epidemiological surveillance can now be made at a molecular
level (Oude Munnink et al., 2021) and on-the-fly (Gardy, Loman, & Rambaut, 2015; Quick et al.,
2016).

The data in its rawest form consists of short readouts of DNA sequences in large quantities
(millions to billions of reads). It cannot be used per se to describe the biological system. For
best results, we have to integrate our current understanding of molecular biology while considering

1As part of a black Friday offer, I got my genome sequenced last year at 30X coverage for less that 200 euros
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Figure 1: Schematic representation of the different layers of molecular information together with the flow of
genomic information DNA→RNA→protein→interaction. The DNA molecule is simplified as a string with
no consideration for its spatial organization. Nowadays high throughput assays can measure those systems
at various levels, in this case represented by magnifying lenses. Thanks to Anish MS Shrestha for coming up
with the idea of this figure.

the limitations of the experimental assay in order to reduce the raw sequences to a set of relevant
compiled measures (or summary statistics). Compiling those summary statistics raises a number
of methodological questions, which requires collaboration between different disciplines: molecular
biology obviously, as well as statistical modelling, computer science and mathematics or physics.
The scale of data, involving large quantities (Terabytes of sequences), spread among billions of po-
sitions, implies that algorithmic complexity and efficiency are an important part of the design. In
the past years, I have been mainly working on proposing efficient statistical methods to reduce the
raw measurements into a set of relevant summary statistics.

In the spirit of an habilitation thesis, the purpose of this document is twofold. First, I wanted to
take the opportunity to give a general view on a set of common methodological problems emerging
from the analysis of raw data (chapter 1) and highlight my different contributions in this context.
Second, I wanted to construct a more personal opinion on the effective promises and limitations of
omics data in the life science (chapter 2).

Within the first chapter, after a brief summary of the different sequencing platforms, I will
detail the experimental steps for the preparation of sequencing libraries (the so called protocol).
The specifics of library preparation are important, as it determines how we should analyse the
sequences afterward. Protocols have multiple variations, depending mainly on the type of assay (e.g.
sequencing of genome, transcriptome or protein-DNA interaction) and on the underlying questions
(e.g. genotyping, functional analysis, mutant/WT comparison), but overall the principal steps
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remain the same. I thus decided to present all types of assays side by side, in order to give the
reader the possibility to summarise any experiment according to a set of core properties.

Due to those shared attributes, there is a common denominator to all computational workflows
analysing the sequencing results: sequence comparison, feature counting/sequence census, data vi-
sualisation, summary statistics, determination of significance and functional analysis. The data
produced at this stage can then potentially lead to the validation of a biological hypothesis and/or
the generation of a new one. Side by side, I will describe the steps of any computational analysis of
HTS data (section 1.3).

Like most data intensive applications, the analysis of HTS data requires to a good balance
between three aspects: modelling, genericity, and algorithmic complexity. In other words, the model
should account for the specificities of the sequencing protocol, while keeping a formulation general
enough to be transferred among variations, and enables an algorithmic formulation which can scale
up with data size. I will present a selection of general methodological problems associated to HTS
data analysis, especially for sequence comparison and summary statistics (section 1.4). They will
provide a rationale for the probabilistic models detailed afterward (section 1.5). My contributions
will be used as illustrations of models used or developed along this text.

I will then shift from methodological questions to an exemplary case of biological data analysis
by presenting a work in collaboration with the Diatom Genomics team at LCQB (section 1.6). This
work was more directed toward quantitative biology and concerned the analysis of the sequenced
small RNAs fragments from the diatom Phaeodactylum tricornutum in various conditions. Small
RNAs were completely uncharacterized in diatoms and we ultimately wanted to determine their
characteristics as well as in which regulatory processes they participate. We managed to categorise
virtually all the sequences present in the sample and validate their presence experimentally. But there
was no significant effect between conditions, and our conclusions remained mainly observational.

This personal experience was an eye opener about the limitations of HTS based analysis. Genome-
wide assays surely accelerate the pace of new discoveries, but they have shifted some of the research
focus in biology from hypothesis-driven to resource based summaries and diagrams (Stern, 2019).
Descriptive science (generation of new hypothesis by measurement of a system) and proper valida-
tion of a hypothesis through a carefully though experimental setup are common antagonists when
thinking of the proper way of doing science and as expected, this raised debate in the decade after
the publication of the draft human genome (Golub, 2010; Weinberg, 2010). In the second chapter, I
will start by discussing those questions and continue afterward by commenting on the epistemology
of big data and data intensive science in biology.
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Chapter 1

High Throughput Sequencing Assays: an
Overview for the Analyst

1.1 Sequencing Platforms

Ever since the determination of the first full genomic sequence of an organism almost three decades
ago with H. hinfluenza (Fleischmann et al., 1995), and the landmark publication of the human
genome at a “finished grade” ten years later (International Human Genome Sequencing Consor-
tium, 2004), there has been a significant shift. Automated sequencing by chain termination (e.g.
Sanger sequencing (Sanger, Nicklen, & Coulson, 1977)), is replaced by a set of technologies whose
throughput is increasing exponentially fast, putting sequencing assays/experiments within reach of
a very large audience (small research labs to citizen scientists). In theory, anyone is now in reach
of generating sequences that could disrupt medicine, health, and ancestry (Chiu & Miller, 2019;
Esplin, Oei, & Snyder, 2014), but also to impact previously unexpected areas of research (Miller,
2010). These technologies, commonly termed High Throughput Sequencing (HTS) technologies, all
rely on miniaturisation and parallelisation of clonal template generation, which allow to sequence
millions to billions of DNA fragments at the same time. The first generation of HTS consists in a
variety of techniques that mainly fall into two broad categories: sequencing by ligation (SBL) and
sequencing by synthesis (SBS). Briefly, SBS is a DNA-polymerase dependent method for sequencing
(used by the Solid and Roche sequencers and is now phased out), and SBL involves a probe sequence
bound to a fluorophore (mainly Illumina). I refer to the following reviews for more details on those
technologies (Glenn, 2011; Metzker, 2010).

Each of the sequencing platform has its advantages and drawbacks, and offer various tradeoffs
depending on throughput, cost and read lengths. These need to be taken into account depending on
the primary biological question that is to be addressed. A large majority of the sequences produced
nowadays are sequenced on one of the Illumina sequencing platforms, in part due to its reduced
cost per bp (Kodama, Shumway, & Leinonen, 2012). Illumina proposes a large range of sequencing
platforms, and has on average the most cost effective technology 1. This puts the expected price of
a human genome sequenced at 30X coverage (the norm) between 900$ and 8000$.

Last generation of HTS technologies are based on single molecules sequencing and allow to
sequence longer reads (up to a few hundred thousands of bp). The two most common are SMRT

1as of December 2018 the cost was between 10$ and 60$ per Gbp, depending on the machine. More info are
compiled on this online spreadsheet
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by Pacific Bioscience (Eid et al., 2009), or Minion by Oxford Nanopore Technology (“The long view
on sequencing”, 2018; van Dijk, Jaszczyszyn, Naquin, & Thermes, 2018). Other companies, such as
10x genomics, use microfluidics to barcode sequences from the same fragment, leading to synthetic
long reads after attribution. Longer reads are crucial for some application such as whole genome
sequencing, because genomes are inherently straddled with repeats (Berlin et al., 2015; Jain et al.,
2018). It also makes it possible to sequence full transcript mRNA isoforms directly (Workman et al.,
2018). Nevertheless, the throughput of the long read technologies is still much lower than Illumina
sequencers.

Figure 1.1 summarises the relation between read length and throughput for most of the sequenc-
ing platforms (Nederbragt, 2016). A large proportion of the platforms operate in the region of [1-10
Gbp throughput] and [100-300bp read length] range.

Even though each platform developed its own proprietary technology to carry out the nucleotidic
readouts, the steps preceding sequencing –e.g. the preparation of the raw sequence templates,
remains nearly the same. Apart from the specifics of the sequences targeted for enrichment, most of
the protocols share a common backbone for library preparation: starting from the biological material
(a population of cells in a particular condition or from a given tissue type), cells are lysed, and then
DNA or RNA molecules are purified, extracted, sheared into fragments, and possibly enriched. Then
adapters are ligated and the fragments are sequenced.

In the next two sections, we will compile the steps of a typical workflow of library preparation,
mentioning the different types of assays in parallel. A sequencing experiment consists of two parts:
the first step is the preparation of a library of sequences which will be loaded onto the sequencer,
the second step is the computational analysis of the resulting sequences.

1.2 Canonical Steps of Library Preparation

Three of the most common assays are genome sequencing, transcriptome sequencing and sequencing
of DNA/RNA bound to proteins (Plocik & Graveley, 2013). We will limit our presentation in the
following to “bulk” sequence analysis (on a population of cells). A large number of single cell assays
have been developed in the last decade (Stegle, Teichmann, & Marioni, 2015), but this is beyond
the scope of this presentation.

1.2.1 Library Preparation

Each type of sequencing assay is designed to enrich for a particular category of sequences (see
Figure 1):

A. Genomes: The term Genomes refers either to the whole genome sequence (WGS) of a clonal
population of cells, a targeted sequencing of specific regions (e.g. the set of exons: the exome),
the genome of a single cell, or an heterogeneous population of cells (e.g. tumoral samples, or
bacterial communities – metagenomes).

B. Transcriptomes: the population of messenger RNAs, mature or all. They can be selected
in a particular size range (short RNAs (Ghildiyal & Zamore, 2009)), and/or according to the
post-transcriptional modification of mature RNAs (poly-A tail (Sultan et al., 2008), capped
RNA (Carninci et al., 2006), all messenger RNAs), or based on their subcellular localisation
(cytosol, nucleus, ribosome associated).
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Figure 1.1: from (Nederbragt, 2016), comparison of throughput and read length for most platforms on a
log-log scale. The value reported for throughput is meant for one run on the platform and does not take
into account the time needed to complete it (which can range from a few hours to several days). Some
technologies, like GS FLX and GS Junior from Roche or Solid have been discontinued and are therefore not
mentioned in the main text.

9



C. Sequences involved in to protein-DNA or protein-RNA interaction. That can be frag-
ments of DNA binding to a given protein (for instance transcription factors or enhancers) or
to histone having a given modification (epigenome), or an RNA Binding Protein (RBP).

In the following, when a given assay uses a specific protocol step, I will reference it with the corre-
sponding letter: A, B or C (see figure 1.2)

Clonal population of cells, microbes...

S1 Extraction

TAGCGCTCTTCACG
ACGGGAGCGGT
TAGTGATAAATGTC
AGTGAACCTAA

ChIP (DNA)

Sequence complementary probes Protein antibody

CLIP (RNA)

A - DNA B - RNA

S2 Fragmentation

C - Immunoprecitation

S3 Amplification
S4 Adapter ligation

S5 Sequencing

(S2' Enrichment)

Figure 1.2: A summary of the canonical steps of library preparation. Three different sequencing assays are
presented side by side in order to highlight their common step (A- genome isolates (Metzker, 2010), B-
transcriptome sequencing (Ozsolak & Milos, 2010), C-protein bound fragments (Furey, 2012; Lee & Ule,
2018)). Details about each step of the protocol can be found in the text.

Here are the main protocol steps before getting sequence reads from the sequencer:

S1 - Sequence preparation and extraction/purification

A. After breaking cell membranes, genomic sequences are precipitated (using for instance ethanol)
and purified from other cellular content.

B. To obtain RNA sequences RNA purification is performed: RNA degradation is stopped and the
molecules are separated followed by the removal of possible DNA-contaminant with a DNase.
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Ribosomal RNAs can make up more than 80% of the RNA content of the cell. In order to
avoid using an unwanted amount of the sequencing capacity on it, they thus either have to
be removed using ribosome specific hybridisation probes2, or the mature mRNAs must be
enriched afterwards (using poly-dT pulling, or capping). In eukaryotic cells, RNA purification
can target only the cytoplasmic fraction (mature mRNA) or other fractions (nuclear, whole
cell, mitochondria bound).

The extraction of RNAs is directly followed by a step of reverse transcription into cDNA using
either random primers or poly-dT primers, having each their positional preference (poly-dT
tend to enrich the 3’-end, while random primer have some preferred motifs see section 1.2.3).
When the assay targets the population of small-RNAs, a size selection step is also performed.

C. Sequences bound to a protein are crosslinked, i.e. contact and proximity points are trans-
formed into strong covalent bonds by chemical means for DNA (formaldehyde) (Furey, 2012)
or by radiation for RNA (UV-light, to specifically crosslink direct protein-RNA interaction)
(Lee & Ule, 2018). In the context of DNA-binding, transcription factors or enhancers are
commonly assayed. Let’s note also that specific antibodies are available for multiple histone
marks, making it possible to assess also the state of the epigenome, by means of the histone
modification imprinted along the chromosomes (Furey, 2012).
In the case of RNA bound protein, a step of reverse transcription is performed (as in B). In
this case, the reverse transcriptase is expected to be interrupted by the peptides bound at the
cross link site. The 5’ end of the fragments are thus enriched in the exact cross linking site.

S2 - Fragmentation Sequences are then sheared into smaller fragments, usually by sonication or
chemical means with a restriction enzyme. For genome and transcriptome sequencing, this step is
performed to ensure that the fragments size will be compatible with the capacity of the sequencing
platform (see Figure1.1). For immunoprecipitation based assays, the fragmentation step will enrich
fragment on the protein-bound regions. In some cases (B and C), some variations are common:

B. Fragmentation can precede the first reverse transcription (mentioned in S1) and be performed
directly on the population of RNAs. Obviously, no fragmentation is done for small non coding
RNAs.

C. For protein-DNA interaction, sequence fragmentation with ChIP-Seq can be done by sonica-
tion, resulting in approx. 200bp fragments around the binding site, or with restriction enzymes
such as MNase (Barski et al., 2007) or exonuclease (Rhee & Pugh, 2011), with fragments more
precisely delineating the binding region. For protein-RNA interaction, an RNase is used in
order to obtain an optimal RNA fragment size distribution (typically between 30 and 200bp).
The most used CLIP techniques (HITS-CLIP, eCLIP, iCLIP, CLIP stands for Cross-Linking
ImmunoPrecipitation (Lee & Ule, 2018)) perform this fragmentation before immunoprecipita-
tion (step 2’).

The fragments are then selected in a given size range (sequences are deposed on a gel and cut out
after electrophoresis). In the case of CLIP techniques, the specificity of the antibody (step 2’) can
be assessed by running an SDS PAGE3 gel and verifying that the band has a size compatible with

2such as the Ribominus kit from Thermo Fisher for instance
3SDS page is an electrophoresis method that allows protein separation by mass (from wikipedia https://en.

wikipedia.org/wiki/SDS-PAGE).
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the target protein, when bound to DNA. Additional bands indicate contamination with background
proteins.

For genome sequences, longer fragments have more potential for resolving repeats induced am-
biguities, thus leading to more accurate reconstructions of the whole genomic sequence. Mate-pair
libraries, by ligating fragment ends and then shearing sequences around this ligation points, provide
an alternative to obtain sequences coming from the end of longer fragments (a few Kbp long).

S2’ - Enrichment of Sequences This step can occur at different points within the protocol, but
is commonly performed after fragmentation. The goal is to enrich the sample in sequences with
some properties such as genomic localisation, or by means of their sequence characteristics (A, B).
For protein binding assays (C), an antibody for the protein is used to filter by immunoprecipitation
(IP) of the fragments. The specificity of the antibody used is crucial, as it determines the amount
of resulting bona fide sequencing material and the quality of the library.

A,B. A set of sequence probes pulls down fragments coming from predefined regions. This allows for
instance to reduce a WGS library to the set of sequences covering the exons (exome sequencing).
Note in some protocols the pull down is done after the whole library preparation (e.g. just
before S5). An alternative technique for enrichment is to perform PCRs in solution.

C. The target protein or the targeted histone modification is immunoprecipitated with an anti-
body specific of the protein. The specificity of the antibody is of prime importance, as DNA
contamination and unspecific enrichment or indirect binding can create cross hybridisation and
unwanted readout (Meyer & Liu, 2014). Various experimental techniques perform in parallel a
control experiment –called Input- to give an indication about non specific binding, in order to
mitigate such biases. This experiment can consist in performing directly a fragmentation on
the DNA, or using the non specific antibody Immunoglobulin G (IgG) for ChIP, or to generate
a size-matched input cut of a SDS page gel without IP (eCLIP protocol) (Lee & Ule, 2018).
Owing to their broader distribution, those Input controls need to be sequenced at greater
depth. We detail a little more this bias below (see section 1.2.3).

S3,S4 - Amplification of the material (optional) and ligation of sequence adapters Some
assays need a large number of cells (as much as ≈ 10 million for ChIP-Seq) to start with. Depending
on the amount of starting material, some variations on PCR can be recommended to optimize
the amplification (Furey, 2012). Optimization of the fragmentation step are also possible. After
amplification, sequence adapters are added to the end of the fragments in order to fix them on the
flow cell.

S5 - Sequencing Reads, usually shorter than the fragments, are sequenced (usually 50 bp to
300 bp long reads for Illumina). Note that reads can be sequenced either on one side of the fragment
(single end) or on both sides (paired-end) after doing template switching. The resulting data is a
set of sequences obtained in form of a text file (two files for paired-end) containing the sequences,
and for each base pair, the quality of the readout (the probability to contain an error).
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1.2.2 Other Assays

Many variations of the protocols mentioned above have been developped4. For instance it allows to
concentrate the sequencing power on other specific categories of molecules. Let us mention a few
other popular protocols for the sake of completeness.

Chromatin free regions: DNase-footprinting (Hesselberth et al., 2009) or ATAC-Seq (Buen-
rostro, Giresi, Zaba, Chang, & Greenleaf, 2013) experiments use respectively a DNase or a trans-
posase which are preferentially active in unbound DNA regions. The resulting sequence fragments
are thus enriched in open chromatin regions, regions that have gene-regulatory functions, such as
promoters, enhancers, silencers, insulators, and locus control regions. This allows to simultaneously
identify all types of regulatory regions in a genome-wide manner (Gusmao, Allhoff, Zenke, & Costa,
2016).

Chromosomal conformation ("C"-technologies): Chromosome organisation in eukaryotic cells
can be studied by sequencing pairs of genomic loci in physical interaction. The technique combines
protein crosslinking (like ChIP) with proximity ligation of DNA. Briefly cells nuclei are isolated, and
then formaldehyde is used to crosslink the chromatin proteins with DNA (Schmitt, Hu, & Ren, 2016).
Cross-linked DNA is then fragmented using restriction enzymes. The ends of the fragments are re-
ligated in conditions that favour juxtaposed DNA fragments. Multiple variations of this protocol
exist (3C, Hi-C, etc.).

DNA/RNA modifications: The most common DNA chemical modification is 5-methylcytosine
(5mC). 5mC methylation for instance can be assessed using bisulfite treatment, a biochemical process
which deaminates every unmethylated cytosine residues turning them into uracil while keeping the
5mC residues unaffected. A subsequent PCR finishes the transformation by turning the uracils
(e.g. the unmethylated bases) into thymines.5 Stretches of positions with A to T mutation thus
correspond to non methylated regions and the other way round.

1.2.3 Biases and Artifacts

Preparing a sequencing library involves multiple experimental steps, each having its own effect on
the population of fragments. The protocol can induce biases in favouring or avoiding some sequence
fragments that are not related to the aim of the assay. Let us review the biases that have been
identified so far at each stage. As technology improves, some of those effects can be mitigated, but
most of the points listed below remain important sources of noise that should be accounted for when
analysing the sequence data.

Fragmentation technique: While fragmentation by sonication is generally reported to be uni-
form, restriction enzymes notoriously preferentially cut the DNA at particular sites (Chung et al.,
2010; Meyer & Liu, 2014), therefore affecting fragment ends placement for ChIP or CLIP protocols.
Furthermore, even if the fragmentation is theoretically uniform on DNA in vitro, the chromatin

4as of May 2018, Illumina website lists more than 40 variations of the protocols for genome sequencing, and above
50 for RNA content characterisation. The DNA or RNA protein interactions protocols exists in at least 30 variations
as well. See https://www.illumina.com/techniques/sequencing/ngs-library-prep/library-prep-methods.html

5Use of those types of assays could be decreasing, as single molecule sequencers can theoretically measure the
various modifications of a base directly.
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structure of the genome will have an influence on the location of sequence cuts in vivo. Certain cuts
have more chance to occur in the open chromatin regions (Meyer & Liu, 2014). Likewise, the RNA
secondary structure, consisting of loops and stem regions, can have an influence on fragmentation or
priming efficiency and thus influence the relative abundances of different reads along the sequence
(J. Li, Jiang, & Wong, 2010; Zheng, Chung, & Zhao, 2011).

Fragment size selection: Selecting a fragment size obviously impacts the physical coverage of
the sequences in the sample, and limits the size of the events which can be observed within one
fragment. Additionally, when the sample consists in a collection of relatively short sequences, as it
is the case for mRNAs, size selection will create a bias next to the transcript ends (Griebel et al.,
2012).

PCR biases: At each PCR cycle, the differences in composition and length within the population
of DNA fragments result in uneven amplification efficiency. A common way to summarise this
effect is to consider GC-bias, because GC composition plays a direct role in annealing temperature
(Benjamini & Speed, 2012). Apart from the GC content of the fragment, the genomic sequence
surrounding the 5’ end of the reads may affect the uniformity of read distribution (K. D. Hansen,
Brenner, & Dudoit, 2010; J. Li et al., 2010). This bias may be due to PCR as well. In the case of
RNA sequencing, it could also be mediated by the formation of structures limiting primer binding
during the reverse transcription step (J. Li et al., 2010). Note that the PCR amplification effects
can be mitigated by adding short (6-10nt) random sequence barcodes (so called Unique Molecular
Identifier (UMI)) prior to the amplification (S3) step. Each original fragments can be deduplicated
using the fact that the combination of the UMI and read sequence is unique.

Probe based enrichment: Enrichment based methods can be used to select specific populations
of RNAs, such as polyA RNAs with poly-dT pulling. This can have an impact on the fragments that
are retrieved, as there can be breaks near to transcripts 3’-end which will result in an increase of
fragment coming from there. Enrichment can also target specific regions, like for exome sequencing.
In this case the enrichment probes are targeting a set of sequences designed according to a refer-
ence. Probes annealing depends on its GC-content, with a natural impact on the relative sequences
representativity.

Antibody based enrichment: This bias is related to the efficiency and the specificity of the
antibody used to perform immunoprecipitation. As mentioned previously, non specific enrichment,
as well as cross enrichment of non direct binding can occur. These effects can be reproducible across
conditions and were reported as Hyper-ChIPpable regions for ChIP (Teytelman, Thurtle, Rine, &
van Oudenaarden, 2013) or background regions (Friedersdorf & Keene, 2014; Reyes-Herrera, Speck-
Hernandez, Sierra, & Herrera, 2015) and cross link motifs (CL-motifs) (Haberman et al., 2017) in the
case of CLIP. Theses biases can be mitigated by designing different controls, or input experiments
as I mentioned previously.

DNA contamination: When purifying the population of RNA (RNA-Seq and CLIP-Seq), great
care has to be applied, as some DNA from the sample can still be present. We and others quanti-
fied this noise for the first RNA-Seq experiments, which were doing selection using poly-dT pulling
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(Sultan et al., 2008; E. T. Wang et al., 2008a). The DNA contamination noise was observed to be
relatively low, at expression levels 100 folds lower on average than expressed regions. Different vari-
ants of the protocol or improper use of DNAse can however have dramatic impact on the background
expression levels observed.

Sequencing errors: Illumina platform is mainly reported to have substitution errors (Dohm, Lot-
taz, Borodina, & Himmelbauer, 2008). There can also be biases from the base caller or induced by
amplification, which will favour certain types of errors next to specific sequence content (Allhoff
et al., 2013; Saad et al., 2018).

In the last decade, the expectation from those assays would follow a typical "Gartner hype cycle"
phenomenon6: after the high expectation brought by the new technology settles down, thorough
studies report alarming results and low reproducibility. The systematic effects that were discovered
guide in turn the development of improved experimental protocols. It also leads consortia responsible
of large datasets production to publish guidelines and sets of best practices, such as the one proposed
by ENCODE for ChIP-seq (Landt et al., 2012) or by GEUVADIS for RNA-Seq (’t Hoen et al., 2013).
Nowadays, we can consider that the assays presented before have attained a good level of maturity.
In any case, any new protocol appearing could in theory be analysed for systematic biases. Due to
the randomness inherent to the preparation of fragments and the sample size (millions of reads),
a thorough statistical analysis can identify systematic library preparation effects. I will detail in
section 1.5 how simple model assumptions enable to account for those biases. We should however
note that it is in practice a daunting task to design those models.

1.3 Analysis of the Sequence Reads

The collection of reads produced by the sequencer, basically a text file, cannot be interpreted by
simple examination. The raw sequences need to be compared, combined, aggregated and counted to
build numerical and visual representations. Constructing those representations (I call them summary
statistics7), relies on internal rules derived from our knowledge in molecular biology. Their final
form is determined by the questions at the origin of the experiment. A summary statistics can for
instance be the genotype of an individual after having done DNA sequencing, a table summarising
the abundance levels of all transcripts in an RNA-Seq assay, or even the gene model annotation. To
obtain those summary statistics, every sequencing data analysis pipeline has to follows a few common
steps: quality control, sequence comparison, feature counting/sequence census, data visualisation,
generation of summary statistics. After the summary statistics are produced an additional step of
functional analysis and biological interpretation is usually done. Each step in this pipeline motivates
the methodological questions and the corresponding computational methods that I will present in
the following sections.

Let’s have first a bird’s eye view of the typical steps of a traditional data analysis (see Fig-
ure 1.3A):

1. Quality control (read/library properties)
First of all, the set of sequences is analysed to confirm that the quality of the library is suf-

6https://en.wikipedia.org/wiki/Hype_cycle
7they are not necessarily limited to statistics, and can also consist in processed sequence data, such as assembly.
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 ATTCCCA   CCATTCCC GTCGGAAC
CAATAT  CAATAT  CTAAA  CCATTCCC
  TGTCGGAA  GCAATAT   TAAA  CATTCCCA
 TCGGACCG  TATCTA   TTCCAT  CCCATT 
CGGAACGC  TCCTAAA CCATTCC  TGTCGGAA
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1. Quality control

3. feature counting4. visualisation5. summary
statistics

2. Sequence comparison
 

Sequences
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B

C

6. functional
analysis

Read depth/read count/pileup
over

positions/features (exons, genes)

Figure 1.3: A - Typical steps of a sequence data analysis pipeline. B - Example of a visualisation obtain
with the IGV genome browser/ The aligned reads are represented from two genome sequencing experiment,
together with the computed read depth. Genomic coordinates are reported on the top. C - Genome browser
view of of three RNA-seq experiments. The read depth from the experiment is reported on the top, with the
genes and and transcript annotation below.
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ficient and that the sequencing run went as expected. Quality plot will include summary
information from the PHRED quality scores of the reads, as well as enrichment statistics on
the reads compositional properties. This can highlight possible biases related to adapter se-
quences enrichment within the reads, or unexpected variations in sequence composition within
the population of reads (for instance PCR or base caller artifacts) (Andrews, n.d.; Ewels,
Magnusson, Lundin, & Kaller, 2016).

2. Sequence comparison - Alignments, Assembly, Error Correction.
Then, sequences have to be compared, e.g. either by pairwise comparisons (sequence assembly),
or by aligning them to a set of reference sequences (sequence alignment). This step is crucial,
it gives a first structure on the set of reads by arranging them with respect to each other.
The data structure describing the results of the comparisons can range from a tiling over
the reference genome (sequence alignment), to sequence graphs summarising pairwise overlaps
between the reads (Overlap Layout Consensus, de Bruijn graph). The technique to derive
sequence alignments is based on finding stretches of sequences that are more similar to each
other than it would be expected by chance, given the genomic content. An implicit probabilistic
modelling of sequence content, accounting for possible biases (sequencing errors, genetics of
the species...) is implicitly specified to find the most probable alignment. Since the amount of
sequences is very large, we need to align them as fast as possible. The computational cost for
exact alignment -quadratic in sequence length- is prohibitive given the scale of the data. Thus
efficient indexing structures and approximations are usually used to reduce the search space (H.
Li & Homer, 2010). As a note, sequence comparison can also be used to automatically correct
sequencing errors before alignment or assembly (I mention this problem below in section 1.5.5).

3. Feature Counting - Extraction of raw statistics (read counts, coverage profiles)
The first basic information extracted from sequence alignment is the list of reads and their
starting position. Practical summaries can be computed, first at a bp precision, such as read
depth (the number of reads overlapping each position) or read count (the number of reads
5’ ends starts). Often more general raw statistics are computed and quantify the amount of
reads sharing the same feature, over a range of properties. The first obvious statistic aggregates
and counts reads according to their localisation (let it be an exon, a gene, an upstream region,
or simply equally spaced bins). Those raw counts inform on the amount of evidence retrieved
per location. They are obviously proportional to sequencing power (the more we sequence,
the more evidence we will get), but they are also estimates on the amount of molecules in
the sample. Obtaining abundance estimate is one of the main aim in sequencing experiments
(clearly for RNA-Seq assays, see Figure 1.3C). Another statistic, mostly used in a genome
sequencing framework, merges all reads per position in a pile up of each of the nucleotides
aligned. This is a simple summary from a sequence alignement (information about consecutive
positions of a read are lost) but it can be used as an input by genotyping tools.

To facilitate exchange, traceability, and reproducibility, a few data formats that report informa-
tion about sequence alignment and raw statistics have been developped (W J Kent, Zweig, Barber,
Hinrichs, & Karolchik, 2010; H. Li et al., 2009). These standardised formats usually serve as an
entry point for the analyses that follow: data visualisation, extraction of summary statistics or func-
tional analysis. Quite often these raw statistics will also be a matrix containing count values for
each feature as rows, and the different conditions or individuals as columns. As most classical data
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analysis techniques operate on numerical matrices, exploratory data analysis usually can take place
at this point.

4. Visualisation (genome browser)
Owing to the sheer amount of data and the recent advances in interactive environment for
data visualisation and analysis, data visualisation has become a staple of NGS data analysis.
Traditional summary plots are produced on the fly by interactive genome browser (W James
Kent et al., 2002; J. T. Robinson et al., 2011) and display the set of all reads alignments on a
genomic interval, jointly with raw statistics and sequence annotation. The visualisation can go
down to the level of single reads (see Figure 1.3B/C) up to chromosome wide view. This allows
data analyst and experimentalist to inspect visually the various properties of the dataset and
guides the formulation of hypothesis based on the data. Other representations make use of
graph layouts and can be used to represent sequence assembly data (Wick, Schultz, Zobel, &
Holt, 2015), summarise genome rearrangements (Krzywinski et al., 2009), or visualise tran-
scripts isoforms (Rogers, Thomas, Reddy, & Ben-Hur, 2012).

5. Inference of Summary Statistics (list of variants, genome sequence, species abundance,
expression level of exons/genes/isoforms, haplotyping)
The specifics of the experiment’s design defines the summary statistics which are required. For
genome sequencing, the ultimate goal is simply to uncover the underlying genotype. When
there is heterogeneity in the population (tumoral samples or metagenomes for instance), it
will be the set of somatic variants. When a reference sequence is available, it breaks down
into sub-questions such as haplotyping or variants annotation. For RNA-Seq data, the first
goal is to detect and quantify the expression level (transcripts abundance) for each annotated
transcript, usually starting from counts on regions and the reads spanning exon-exon junctions.
For protein with specific DNA/RNA binding (Transcription Factor, RNA Binding Proteins),
a set of intervals, detected by accumulation of reads at certain locations, describe the protein
binding landscape. In the case of histone modifications, binding signal can be more spread
and the summary will consist in profiles of regions characteristic of a certain type of binding.
In all cases, the estimates will have to account for the different sources of variability (sampling
variability, experimental variability, and biological variability).

6. Functional analysis
After summary statistics are produced, an additional series of bioinformatics analysis are
needed to enable the user to infer more information about the functions of the different bio-
logical entities. Quite often, this functional analysis starts from a set of summary statistics
reported in a traditional tabular format –running over features and conditions. They can for
instance be analysed using conventional data analysis and statistics, or serve for heterogeneous
data integration and joint analysis across different assays (ENCODE Project, 2012; Kundaje
et al., 2015). However, functional analysis has a broad meaning, as a large variety of analysis
scenarios can exist from this point. I will describe only some case studies more closely related
to my personal experience.

With genomic experiments, beyond making genotypes, together with metadata available as
a server (for instance for upcoming evolutionary studies), phenotype/genotype relationship is
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first investigated using statistical techniques. This concerns for instance using Genome Wide
Association Studies (GWAS), QTL mapping, rare variant analysis, positive selection, or in
depth functional annotation of protein domains.

For transcriptomics studies, the first question usually is to extend the summary statistics to a
complete characterisation of the population of transcripts (Alamancos, Agirre, & Eyras, 2014;
Beretta, Bonizzoni, Vedova, Pirola, & Rizzi, 2014; Conesa et al., 2016; Steijger et al., 2013).
Importantly, sequence reads provide an global picture of the transcribed fraction, and allow to
catalogue and improve the annotation of all species of transcripts (Consortium et al., 2014; de
Rie et al., 2017; Djebali et al., 2012; Tran, Souiai, Romero-Barrios, Crespi, & Gautheret, 2016),
including protein encoding mRNAs as well as non-coding regulatory, structural or catalytic
RNAs. New populations of RNAs can be singled-out through the analysis of read depth
profiles and their localisation, combined with read sequence properties (Morillon & Gautheret,
2019). This had a dramatic impact in enlarging the bestiary of known non coding RNAs
such as miRNA, but also circRNAs (T. B. Hansen et al., 2013; Memczak et al., 2013) or
lincRNA (Hon et al., 2017). I was involved in a project for the in depth characterisation
of the population of small RNAs in diatoms (Rogato et al., 2014), that I will detail later in
section 1.6. An associated question is to detect and quantify changes in gene and transcripts
abundance between conditions (Steijger et al., 2013), while accounting for variations due to
technical as well as biological effects.

For ChIP-Seq and CLIP-Seq data, one of the main question is to estimate the sequence mo-
tif(s) associated with the binding regions, a classical problem in the analysis of biological
sequences (Santana-Garcia et al., 2019; Tompa et al., 2005). In the case of ChIP/CLIP, it is
coupled with sequencing data from enriched regions, in order to summarise the protein binding
characteristics (Thomas-Chollier, Herrmann, et al., 2012; Zambelli, Pesole, & Pavesi, 2013)

This functional analysis step is also about data integration, where the information from the
different assays is combined to provide a more global view. For instance, ChIP-Seq is often
combined with RNA-Seq assays on the same experimental type, in order to link predicted
bound regions to the expression values of the downstream genes (Thormann et al., 2018).
Similarly variation in gene expression data are probed for differences in the genome content
when combining DNA and RNA assays on a population of multiple individuals (eQTL analysis)
(Heinig et al., 2010; Pickrell et al., 2010) This step of data integration is also very important
when studying the determinants of the epigenome “code” (Ernst et al., 2011; Karlić, Chung,
Lasserre, Vlahoviček, & Vingron, 2010; Mammana & Chung, 2015).

I chose to describe a generic pipeline in order to motivate some of the main methodological
questions emerging for the computational analysis of sequence reads and that I will detail now.

1.4 Methodological Problems Emerging from Sequence Data

A series of fundamental methodological questions emerge during the analysis of high throughput
sequencing data. I will present specifically the basic problems behind the tasks of sequence com-
parison, of summary statistics computation, and of functional analysis. Feature counting or data
visualisation, which present their own algorithmic and statistical challenges, are not mentioned here.
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This selection of general methodological problems is influenced from my own experience and is nat-
urally not comprehensive. It still covers a variety of use cases. I will show afterwards (section 1.5)
how to tackle most of those problems within the statistical framework of hierarchical models, using
some of my contributions as an illustration.

1.4.1 Sequence Comparison

In the context of HTS, when a reference sequence is available, the alignment problem can be stated
as:

Given a set of query sequence reads, align them to their most likely originating position
onto a set of reference sequences.

Solving this question was first framed as an optimisation problem. Given an alignment scoring
function, usually evaluated as the sum of the contributions from each pair of aligned nucleotides,
find the alignment with the highest score. Positions not aligning between the two sequences (creating
gaps) are given penalties depending on their length (see below 1.5.3 for a formal definition).
Pairwise alignment was first used for detecting homologies between related sequences, using global
(Needleman & Wunsch, 1970) and then local alignment (Gotoh, 1982; Smith & Waterman, 1981).
Specific cases, such as spliced alignment necessitate specific score functions (van Nimwegen, Paul,
Sheridan, & Zavolan, 2006). Traditional pairwise alignment can be solved exactly using dynamic
programming with a cost in O(`n), where `, n are the length of the query and the reference. For
HTS reads the problem is slightly different, as a very large number of reads need to be aligned to
the reference in a limited amount of time (H. Li & Homer, 2010). An added complication is the size
of the reference (106 to 1010 bp) and its highly repetitive content (Treangen & Salzberg, 2012).

This triggered the development of efficient indexing techniques to efficiently elicit good candidate
seeds (David Weese & Siragusa, 2017). Those seeds are are selected and extended using powerful
heuristics (to control the tradeoff between the sensitive start from all candidates and the complexity
caused by repetitive regions). The index is constructed from the reference genome (but it needs to
be compressed to fit in memory) (H. Li & Durbin, 2009), or the reads (when they are expected to
be overlapping a lot) (D. Weese, Emde, Rausch, Döring, & Reinert, 2009), or both (for alignment
on multi-organisms reference databases, e.g. (Buchfink, Xie, & Huson, 2014; Siragusa, Weese, &
Reinert, 2013). Data structure considered for indexing are hash tables, or suffix trees/suffix arrays
and Burrows-Wheeler transform/FM-index. Suffix trees can summarise the set of all subsequences
of the reference genome and allow to compute maximal overlapping regions once this data structure
is built (A. M. S. Shrestha, Frith, & Horton, 2014).

There are multiple variations to the classical scoring scheme (Durbin, Eddy, Krogh, & Mitchison,
1998). One consists of allowing reads to have gaps of arbitrary length in their alignment, by extending
the scoring scheme with a constant gap penalty. This type of alignment is practical to find reads
identifying structural variants between the query and the reference, or when performing cDNA to
genome alignments. However, if the cost for exact alignment with gap affine penalty is in O(`·n), the
cost for split alignment is in O(` · n2), which requires again appropriate data structures to balance
the accuracy/speed tradeoff.

Repeats, combined with sequencing errors, create uncertainties for read placement. As a result,
several alignments can possess almost the same score although result in placing the read at completely
different locations. We thus always need to quantify the confidence of each reported alignments, given
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the scoring scheme and the reference sequence. Fortunately, as we will see in next section (1.5) the
alignment problem can be methodologically reduced into an estimation problem with Hidden Markov
models (Durbin et al., 1998).

Finally, let’s mention genome assembly, which is an important methodological problem based on
sequence comparison, in fact one of the oldest problem in bioinformatics related to the sequencing
revolution. There is no reference sequence available, so one possible strategy is to construct a
graph summarising all pairwise similarities between reads with an overlap graph (called Overlap
Layout Consensus Graph) (Nagarajan & Pop, 2013). In order to find the overlaps between the
reads, it is necessary to compute all read pairwise alignments. This is not feasible with current
read quantity, so associated data structure that can index the reads have been developed to perform
the overlap in place (Simpson & Durbin, 2012). Within Laurent David PhD project (co-supervised
with Alessandra Carbone), he developed a method based on Overlap Layout Consensus Graph
for the targeted assembly of genes from metagenomics samples (David, Vicedomini, Richard, &
Carbone, 2020). Presenting assembly would be a detour from the main methodological presentation
on alignment, so I will not provide additional details.

1.4.2 Summary Statistics in genomics

A set of variant calls is the first summary needed from a genomic assay. Let’s consider to simplify
that we sequenced a query genome from a clonal population of cell. A call is the information
describing a location from the query which is different from the reference. If a combination of
multiple genomes would be considered, an estimate of the proportions of each of these could be also
reported. According to the number of basepairs involved in the variation of sequence, two general
types of variants are usually defined:

• Single Nucleotide Variants (SNV) or short insertions/deletions (indels). They are annotated
using the set of aligned sequences around the variant location. The most common methods use
Bayesian model, integrating local estimate of basepair errors, mapping errors, together with
global estimates of sampling variability and polymorphism, and calls the genotypes which
are the most likely a posteriori (Garrison & Marth, 2012)). Most current versions perform
haplotyping as well in the case of polyploid genomes (Rimmer et al., 2014). More straight-
forward tools call SNV and indels by applying filters on read coverage using the reads pileup
file (Danecek et al., 2011). The filters are set up to control the global false discovery rate.
Recently, leveraging on the wealth of human ground-truth data available, Machine (Deep)
Learning methods have been applied to the problem of SNV and short indels calling with
unprecedented success (Poplin et al., 2018).

• Structural Variants (SVs) are defined as differences involving more than a few dozen bp (com-
monly above 50bp). SVs can be detected according to different strategies:

– Direct evidence from the split-alignment of multiple reads. In this case, most of the
methodological problems come from the alignment step. With collaborators at the Uni-
versity of Tokyo (co-contributor: A. MS Shrestha, helped by M. Frith and K. Asai), we
designed a new framework that aligns a group of reads identifying a SV (A. M. Shrestha,
Asai, Frith, & Richard, 2018). I will provide more detail in section 1.5.3.
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– Mate-Pair or Paired-end data. When a fragment surrounds an SV, the alignment of the se-
quences at its ends can be used as an indirect evidence. Depending on the kind of variant,
it will break some of the properties expected from the read pair (deletions lead to longer
insert size, duplication to inverse read pair orientation). Alexandre Gillet developed such
a kind of strategy during his PhD thesis (supervisors G. Fischer and I. Lafontaine) and
I contributed the statistical analysis for detecting unexpected pairs (Gillet-Markowska,
Richard, Fischer, & Lafontaine, 2015).

– From Read Depth (RD) data. For clonal populations, the distribution of read depth re-
volves around a mean coverage value with a variability resulting from fragments sampling
and other steps of library preparation. Significant changes in the observed read depth
coverage are an indirect indication of a deletion (drop in RD) or change in the Copy
Number Variant (CNV, fold change in RD) (Ye, Schulz, Long, Apweiler, & Ning, 2009).

– From local assembly of the non aligned reads followed by a split alignment of the resulting
contigs.

These different lines of evidence can also be combined to produce consolidated calls. Various
tools follow this strategy now (Cameron et al., 2017; English et al., 2015; Layer, Chiang,
Quinlan, & Hall, 2014; Rausch et al., 2012; Rimmer et al., 2014).

One could wonder why a set of variant calls is preferred to a complete assembly of the genome
from the reads. One simple reason is that most of the existing data structures were developed with
only one reference genome in mind. Furthermore, in the case of ploidy or mixture of genomes, there
is an identifiability issue: given a set of variants they can be phased in multiple equivalent ways.
There are multiple reasons for that. First, owing to limited read length combined with genomic
repetitions and ploidy, most genome cannot be accurately assembled. Likewise mixture of genomes
will present specific challenges 8. Second, data structures that allow to treat collections of genomes
(e.g. pangenomes) comprehensively have their own implementation challenges and emerged recently
(Computational Pan-Genomics, 2018). Most of those considerations are now limited to the problem
of haplotype construction, which consists of disentangling variants on the same chromosomal copy
for a polyploid organism, or determining quasispecies for a population of viruses.

1.4.3 Summary Statistics and Functional Analysis in Transcriptomics

The central aim of RNA sequencing is to report the set of transcripts present, estimate their abun-
dance, and update the gene models. As seen previously (section 1.2.1), transcriptomic assays are
quantitative: the number of reads originating from a genomic region is related to the quantity of
transcripts issued from that region. Given a model of reads sampling, we can obtain a first summary
statistics for genes and transcripts by estimating their abundance using existing gene annotation,
(see below in section 1.5.4 and (Pachter, 2011; Richard et al., 2010)).

RNA-seq precisely collects sequences from the expressed transcripts as well. Thus, functional
analysis deals with refining the list of expressed RNAs, and understanding their possible disregulation
between conditions. This can be summarized as the following methodological problems: annotation
of transcripts (sequences and boundaries), differential expression, and discovery of new populations
of RNAs and of their properties.

8this problem is methodologically similar to transcript quantification, which is presented in the next section
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Quantification

Transcript quantification means to estimate the number of transcribed molecules for each transcript
expressed in the cell population (Mäder, Nicolas, Richard, Bessières, & Aymerich, 2011; Ozsolak
& Milos, 2010), given the set of read sequences. The usual problem is stated as: given sequence
alignments, a reference annotation of exons boundaries, and an annotation of transcript isoforms,
estimates the amount of reads within each isoform, normalized by sequencing depth and isoform
length. However to facilitate the analysis, statistics are often combined at various levels of granu-
larity. The most practical would be to pool expression level per gene (Mortazavi, Williams, McCue,
Schaeffer, & Wold, 2008; Sultan et al., 2008), per exon (Anders & Huber, 2010; M. D. Robinson,
McCarthy, & Smyth, 2010), per transcript isoform (Richard et al., 2010; Trapnell et al., 2012), or at
the level of individual alternative splicing events (Katz, Wang, Airoldi, & Burge, 2010; Shen et al.,
2014; Tran et al., 2016; E. T. Wang et al., 2008b). Global gene expression level can be decomposed
respectively as the expression level of each exon, each transcript or each alternative splicing event.
Note that this methodological question, which we could call source estimation, appears quite often in
other contexts. Some examples are for instance the proportion estimation from mixture of genomes
that I mentioned previously, or the quantification of metagenomes as a mixture of source samples.

In all cases, the reads are de facto sampled randomly according to the abundance of the molecule
(the number of molecules in the library), and various factors influence the results. Thus inference
made for obtaining abundance statistics needs to account for this randomness (reads are sampled
according to their abundance/the number of molecules in the library), and possible biases coming
from the different steps during library preparation (biological and experimental variability).

In a more general form, annotation is unknown or only partially known, and the set of isoforms
that are compatible with sequence evidence is enumerated as quantification proceeds (see annotation
below).

Transcripts Annotation

Complete transcript annotation has proven to be a complex task (Steijger et al., 2013), and can be
divided into subproblems.

Annotation of transcript boundaries It first means describing the list of all transcription start
site (TSS) and transcription end site (TES), as well as the structure of exons. TSS and TES can be
detected by searching for significant changes in expression level (Mirauta, Nicolas, & Richard, 2014;
Tran et al., 2016; Trapnell et al., 2010) (see section 1.5.4) or by analysing specific assays enriching
reads around the transcript ends(Kanamori-Katayama et al., 2011). The exon boundaries can be
also identified using split-alignment of reads that overlap exon-exon junctions, usually taking into
account sequence signals next to acceptor/donor sites (Dobin et al., 2013; Iwata & Gotoh, 2012;
Jean, Kahles, Sreedharan, De Bona, & Ratsch, 2010; Philippe, Salson, Commes, & Rivals, 2013;
K. Wang et al., 2010). “Calling” the junctions implies then to be able to correct some artifacts
that can impair proper annotation, such as junction coming from transcriptional noise (inaccurate
cutting by the splicing machinery) or ambiguous boundaries (micro-homologies next to the splice
donor and acceptor sites) (van Nimwegen et al., 2006). Alignment can also be done directly on the
splice graph (Denti et al., 2018).
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Transcript Isoform reconstruction Given the set of existing transcript boundaries, multiple
transcript isoforms can overlap on the same genomic region. One following task is then to reconstruct
the set of isoforms that best explain aligned sequences and boundaries (Bernard, Jacob, Mairal,
& Vert, 2014; B. Li & Dewey, 2011; Richard et al., 2010; Trapnell et al., 2010) given existing
databases (Koscielny et al., 2009) or de novo (Haas et al., 2013; Robertson et al., 2010; Schulz,
Zerbino, Vingron, & Birney, 2012). Transcript isoform reconstruction is a complex task that has
strong identification issues, as the limited length of the reads will imply that the number of possible
isoforms will increase exponentially with the number of exons and the enumeration of all isoforms is
not possible. Usually this task is combined with the estimation of transcripts’ abundance, by adding
a regularisation constraint on the lowly expressed transcripts. In this case it can be rewritten under
a convex optimisation framework where the set of isoforms does not need to be enumerated explicitly
(Bernard et al., 2014).

Differential Analysis

When multiple conditions or cellular states are assayed, the most pressing question is to detect
transcripts whose concentrations changed significantly according to the conditions. In other words,
the question is to find RNAs whose abundance changed, after having disentangled biological effect
from experimental variability. After having aggregated the read evidence per feature (gene, exons,
isoforms) and normalised the expression signal between conditions –accounting for sequencing depth,
this problem can be efficiently tackled within a linear model framework. One particularity here is
that the data is essentially digital and thus values are accounted for with count models (Anders &
Huber, 2010; Love, Huber, & Anders, 2014; M. D. Robinson et al., 2010). I worked on methods for
differential expression in two contexts: differential exons usage between conditions (Richard et al.,
2010), de-novo detection of regions that are differentially expressed between conditions (Mirauta,
Nicolas, & Richard, 2013).

1.4.4 Summary Statistics and Functional Analysis for ChIP/CLIP-seq

ChIP-Seq or CLIP-Seq reads inform on the binding of a target protein to DNA or RNA, respectively.
After fragmentation, read pair ends are expected to accumulate around the bound target protein.
Thus, the summary statistic will combine read locations to deduce the set genomic intervals bound
to the target protein. It is obtained by detecting so called peaks, regions where the read depth of
the bound fragments is higher than expected from the background. Background read depth can be
estimated using the input experiment (see 1.2.1) or using read depth genome wide distribution when
no input was produced. This analysis is done by integrating two lines of evidence: first defining
candidate peaks where the reads accumulate using longitudinal clustering methods, and then decide
for each cluster if its read depth is significantly higher than expected (e.g. given the depth on the
input region). Ideally, the number of reads binding to a location is proportional to the binding affinity
of the protein to the region and this value can be reported. Peaks detection can also integrate a step
of peak classification, where the profile of read placement is used to to separate different proteins
(for instance broad for histones, and narrow for Transcription Factor Binding Sites). In the case of
truncation based CLIP experiments, 5’ ends of fragments are enriched in cross link locations. Thus
read starts are additionally used as diagnostic events to infer cross link sites.

Once the peaks have been identified, it is usually followed by functional analysis, where the

24



question is to find the set of sequence motifs that the best explain the peaks location (Thomas-
Chollier, Darbo, et al., 2012; Thomas-Chollier, Herrmann, et al., 2012). It is meant to detail a
posteriori the sequence determinant of binding for the protein. The problem of motifs detection is
almost as old as sequence alignment (Durbin et al., 1998).

1.5 Probabilistic Models for Sequencing Assays

As I detailed previously, each step of library preparation comes with its own artifacts and biases
(section 1.2.3). Furthermore, randomness is at the heart of all sequencing protocols: random sam-
pling by sequencing. Probabilistic models provide a principled way to integrate those sources of
uncertainties while adjusting to the type of biases present in each library.

A natural class of models in this context are hierarchical models, where the observations (the
sequences, or their abundance) can be explained by the value of one or multiple latent (hidden) vari-
ables (e.g. the similarity between sequences, the original amount of an RNA molecule). Conditional
probabilities are specified to link the variables of the model, whose general structure is summarised
with a dependency graph (Figure 1.4 left). By specifying the graph structure and the conditional
distributions we explicit the relationship between latent variables and observations. When the struc-
ture of the dependency graph has good properties (for instance is a Directed Acyclic Graph (Bishop,
2006)) we can infer, given the observation, the more likely values of the latent variables.

State-space models (SSM), are a subclass of models that account for the dependencies between
neighbouring position in a sequence of observations. They make the assumption that the distribu-
tion of the latent variable at a position, depends only on the values at the previous positions (see
Figure 1.4 right). As genomic data is indeed sequential, SSM are a very common modelling choice in
computational biology. SSM also provide a good cost/reward balance by allowing to devise versatile
models which are still tractable for exact solutions or give fast answers with good approximations.

In the following, I will first provide a general introduction to hierarchical and state-space models,
by recalling the main statistical questions related to inference and estimation, and I will illustrate
the use of these models on two problems I worked on: sequence alignment and estimation from read
counts. In the latter case, an important part of the problem consists in modelling the observations
correctly (i.e. not under/overestimating the different factors of dispersion). I will provide in sec-
tion 1.5.5 a compilation of the common models that have been proposed to account for variability
in sequence counts and detail some model we developed.

1.5.1 State-space Models and Hidden Markov Models

We consider sequences of size T , with observations (yt)t=1,...,T (or y1:T ) and a corresponding process
on hidden states (xt)t=1,...,T (or x1:T ). State space models are aiming at the reconstruction of the
sequence x1:T , which is not directly available, from the observed measurements y1:T . To do so,
it uses two components: a probabilistic model that link observations to the latent space states,
and a description of the latent space dynamics. We will use in the following SSM with emission
densities: π(yt | xt) =: e(yt;xt) and a Markov model on the latent variable xt with values in Ωx,
π(xt | xt−1) =: k(xt | xt−1). The model on the latent variable k is also refered to as the transition
kernel. When Ωx is a discrete space, we usually call the SSM a Hidden Markov Model (HMM).
HMM are one of the most common probabilistic model in computational biology (Durbin et al.,
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Figure 1.4: Examples of probability diagram for two hierarchical models. Left: a model explaining the
letters piling up at one position in a diploid genome (see 1.3 and 1.4.2), given the genotype G, the expected
coverage λ and the error rate µ. Fragments are first sampled according to a Poisson distribution for instance:
Y | G = (A,G) ∼ (P(λ/2), 0,P(λ/2), 0) (more on the Poisson distribution in section 1.5.5). The observations
are the read counts R. They can be subject to possible error rates according to a binomial distribution. For
instance RA | Y = y ∼ B(yA, (1 − ε)) + B(yC + yG + yT , ε/3). Right: Example of a traditional state space
model, where the observations are the (yt)t=1,...,T and the hidden variables are the (xt)t=1,...,T . The xt are
distributed according to a Markov chain. This model can be used for instance in the estimation of expression
levels from read counts (see 1.5.4). Note that in both models, most information about the model come from
the edges that are absent from the graph as they are the one implying conditional independency relationships.

1998). This model can be extended by allowing dependency of the observations yt on more hidden
states (π(yt | xt−k:t)), or on previous observations (π(yt | xt−k:t, yt−`:t−1)).

In the context of sequence data analysis, we are interested in reconstructing the path with
highest posterior probability arg maxx1:T π(x1:T | y1:T ) and the marginal posterior probabilities of
hidden states π(xt | y1:T ) as well as characterising differences between experiments with estimated
parameters. We design such models to be able to get simple and meaningful statistics where model
complexity (capturing the sources of variability in the data) and its computational tractability (for
parameter estimation) are well balanced.

A naive approach to evaluate those quantities would require to enumerate all states combinations
(of size |Ωx|T for discrete spaces). However, by using the recurrences embedded in the model
structure, those quantities can be obtained efficiently through an iterative sequence of updates
(Rabiner & Juang, 1986):

• π(xt | y1:t−1) - prediction. The distribution of xt conditioned by the sequence of previous
observations –y1:t−1, can be obtained by integrating over all possible xt−1 values (markovian
property on the xt).

π(xt | y1:t−1) ∝
∫
π(xt−1 | y1:t−1) · k(xt | xt−1) dxt−1

• π(xt | y1:t) - filtering. The distribution of xt conditioned by the sequence of observations up
to the current one y1:t, is deduced from the prediction density updated with the likelihood of
the observed data at t,

π(xt | y1:t) ∝ π(xt | y1:t−1) · e(yt | xt)

• π(xt | y1:T ) - smoothing. The posterior distribution of xt accounting for the complete sequence
of observations y1:T can be written in terms of filtering and prediction, after integrating over
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all possible upcoming state values xt+1.

π(xt | y1:T ) ∝ π(xt | y1:t) ·
∫
π(xt+1 | y1:T ) · k(xt+1 | xt)

π(xt+1 | y1:t)
dxt+1

The likelihood of the observed sequence can also be obtained by carrying out similar recurrences
on π(yt | yt−1).

When Ωx is discrete, reconstructing the path of hidden variables allocation with the highest pos-
terior probability arg maxx1:T π(x1:T | y1:T ) can also be obtained with similar recurrences (Rabiner
& Juang, 1986).

φt(j) := log max
x1,...,xt

π(x1:t−1, xt = j | y1:t)

φt(j) = max
i∈Ωx

[φt−1(i) + log k(j | i)] + log e(yt | j)

The quantity maxi φT (i) returns the highest log probability for the sequence and a corresponding
path can then be reconstructed by backtracking.

I am exploiting this class of models at two different steps of the sequence analysis pipeline
(section 1.3), sequence comparison and production of summary statistics. The first step uses raw
sequences as input, and the questions are then related to comparing a set of reads to a reference
sequence (such as a genome or a transcriptome). In this case we consider ordered pairs of observations
for (y) = (r, q) where r = r1 . . . rT and q = q1 . . . qS are both sequences of letters taken from the
DNA alphabet Σ = {a, c, g, t}. r is the reference sequence and q the read sequence (the query) that
we want to align. In the other case, we are working with summary statistics consisting of aggregated
counts (per position or per feature) and want to consider directly abundances of certain molecules
or coverage of regions in the genome. In this case, the observations yt are integer count data.

I will first present a straightforward hierarchical model that estimates transcript isoforms pro-
portions, given the read counts within exonic regions (Richard et al., 2010). The next subsection
deals with the general formulation in the case of sequence alignment, and introduces one of my
contribution for joint split alignment of reads (A. M. Shrestha et al., 2018) . The section after
introduces two transition kernels we developed for transcriptional profiling (Mirauta et al., 2014)
and the analysis of protein RNA binding (Krakau, Richard, & Marsico, 2017).

1.5.2 Isoform Abundance Estimation

We look as the problem of estimating transcript abundance from RNA sequencing data. I will
present a simple version of the model that I proposed at the dawn of the technology. This problem
has since received a good amount of methodological development, jointly with consortium efforts
towards proper benchmarking of the methods (Steijger et al., 2013).

Contribution: Estimating transcript proportions from exonic read counts We consider
a gene with n exons, and the observations are the number of reads aligning within each exon
y = (y1, . . . , yn).

The absolute transcript proportion is not directly accessible so we aim to reconstruct the expected
number of reads contributing to each of the k isoforms x = (x1, . . . , xk). We hypothesise that
we know the exon composition of each isoform, which is encoded using a binary matrix Ie,j such
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that Ie,j = 1 if exon e is part of isoform j. The expected read count in an exon ye is the sum
of all transcripts contributions (pe is a normalisation factor related to the length of each exon :
pe = le∑n

i=1 li
):

ye =
k∑

j=1

pe∑
i pi · Ii,j

· Ie,j · xk

For a transcript j we can specify a hierarchical model for the distribution of counts of isoform j

in exon e.
First, the count for each isoform follows a Poisson distribution

Xj ∼ P(λj) with λj = λ · 1∑
i pi · Ii,j

· qj

and the conditional distribution for Y j
e given xj reads in the transcripts is a multinomial

(Y j
1 , . . . , Y

j
n ) | Xj = xj ∼M

((
pe∑

i pi · Ii,j
· Ie,j

)

e=1,...,n

, xj

)

λ is a normalisation factor depending on the depth of sequencing of the library and on the relative
proportion of the isoform. This model is fully parameterised and the estimation of the parameters
can be solved directly with an EM algorithm.

I designed the model and implemented estimation and inference with this model as part of a set
of tools we developed for the analysis of alternative splicing in RNA-Seq data. The methodological
parts were done with Marcel Schulz and with Marc Sultan, we performed experimental validations
using a large panel of quantitative RT-PCR experiments. This work took place during my postdoc
at the Max Planck Institute for Molecular Genetics in Berlin (Richard et al., 2010).

State of the art now: The problem of transcript quantification evolved a lot since to account for
most systematics biases. The first extension of the model was to consider the contribution of each
fragment to the transcript abundance as a hidden variable (B. Li & Dewey, 2011). This way, it is
possible to jointly estimate longitudinal effects of fragments placements, fragment length, as well as
sequence composition effects when looking for transcript abundance (introduced in section 1.5.5). In
(Pachter, 2011), a general review of hierarchical models that can be considered for isoform abundance
quantification was detailed. However, those model formulations are linear in the number of read
alignments for each iteration of the EM algorithm, and cannot scale up as sequencing throughput
increases. The problem thus shifted to exploiting an approximate factorisation of the likelihood
function (Nicolae, Mangul, Măndoiu, & Zelikovsky, 2011; Zakeri, Srivastava, Almodaresi, & Patro,
2017) together with quasi-matching of the reads to be able to perform reasonable quantification in
a short amount of time (Bray, Pimentel, Melsted, & Pachter, 2016; Patro, Duggal, Love, Irizarry, &
Kingsford, 2017). As I mentioned previously, the same methodological question was also framed in
other contexts, such as metagenomics profiling or mixture of samples estimation, and can be treated
within this formal framework.
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1.5.3 Sequence Alignment

In the case of pairwise alignment, the question can be stated as, starting from two sequences of
letters, r (a reference) and q (a query), find the best way to align one to the other. There are
broadly two type of alignment: global (end to end) and local (best scoring). In practice, when
globally aligning two sequences, we rewrite them as r̃ and q̃ by inserting gap characters "-" such
that |q̃| = |r̃|, as represented below on an example.

r = tatcgtacgggagcaaatgt r̃ = tatcgtacgggagcaaatgt
q = tatcgtgcgcatgt q̃ = tatcgtgc----gc--atgt

As we already mentioned in 1.4.1, the traditional formulation for finding an alignment between
two sequences involves a score function that rewards matches, and penalises mismatches and non
aligned segments. A corresponding probabilistic model uses a HMM that is defined with a sequence
of observations as a pair of sequences (r1:T , q1:S) with values in {a, c, g, t}, and a hidden process x
that informs on the state of the two emitted letters (are they aligned or not). This process takes
values in A = {M, I, D, B, E} and emits pairs of letters (columns of the alignment), given the type of
aligned bases with the following emission probabilities:

e(rt, qs; M) = σ(rt, qs) (a Match of letters rt and qs).

e(−, qs; D) = φ(qs) (a Deletion in front of qs)

e(rt,−; I) = ψ(rt) (an Insertion of rt)

States B and E are not emitting observations ("silent") and anchor the alignment at the beginning
and the end (see Figure 1.5).

The corresponding transition kernel k considers different types of successions of alignments,
according to how we consider the alignment of the query to the reference should be. The two most
common cases are global and local alignments. For instance, in the case of aligning reads to genome,
the query is much shorter and a local alignment kernel, where match states are surrounded by
insertions and deletions around the query, is most appropriate (Durbin et al., 1998).

As an example, let’s consider the simple case of a gapless alignment and write down its likelihood.
The c first letters of R and the d letters of Q are unaligned, the next e letters of R and Q are aligned,
and the final f letters of R and g letters of Q are unaligned (c+ e+ f = T and d+ e+ g = S) . The
probability of the alignment is (Frith, 2019):

π(r1:T , q1:S ,x) =

(
c∏

t=1

k(D, D)ψrt

)
(1− k(D, D)) ·

(
d∏

s=1

k(I, I)φqs

)
(1− k(I, I))

(
e∏

t=1

k(M, M)σ(rc+t, qd+t)

)
(1− k(M, M))

(
f∏

t=1

k(D, D)ψrc+e+t

)
(1− k(D, D)) ·

(
g∏

s=1

k(I, I)φqd+e+s

)
(1− k(I, I)).
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Figure 1.5: Top: examples of transition kernels used for pairwise global alignment (left) and ungapped local
alignment (right). Bottom: A global alignment of the sequences q and r with the corresponding sequence of
states x underneath. Note that an other alignment of r with the same score and probability exists.

We can factor this probability with a constant K defined as9:

K =

(
T∏

t=1

k(D, D)φrt

)(
S∏

s=1

k(I, I)φqs

)
(1− k(D, D))2(1− k(I, I))2(1− k(M, M))

and taking the logarithm of the normalized term, we are left with maximizing:

ln

(
1

C
π(r1:T , q1:S ,x)

)
=

e∑

t=1

ln

(
k(M, M)

k(D, D)k(I, I)

σ(rc+t, qd+t)

φrc+tψsd+t

)

With this formulation finding the most probable alignment path is equivalent to finding the
alignment of maximal local score, where the score can be defined as the sum of the contributions
from the individual matching bases, reweighted according to their expected background occurrence
distributions, φ and ψ. We could thus define a substitution score matrix S in the following way:

S(a, b) = λ · ln
(

k(M, M)

k(D, D)k(I, I)

σ(a, b)

φaψb

)
a, b ∈ Σ2

This highlights the link between score based and model based alignments (λ is a rescaling constant).
The computation carry out in a similar way for alignments with gaps affine costs (Frith, 2019).

Probabilistic treatment of the alignment problem is extremely important due to the large amount
of repeats that are present in most genomes and the necessity to identify regions in the target
sequence that will be difficult to align or sequences that cannot be placed reliably. In the case of the
alignments of sequencing reads this quantity is referred to as the mapping quality, e.g. the PHRED
scaled probability that the read is misaligned. This was introduced for the first time for HTS reads
with the MAQ aligner (H. Li, Ruan, & Durbin, 2008) and it is now a fixture of most aligners.

9Note that is very similar to considering a likelihood ratio with a model where r and q are not aligned.
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Contribution: a principled framework for joint split alignment With collaborators at the
University of Tokyo (A. MS Shrestha, M. Frith, K. Asai), we designed a new framework that aligns
a group of reads identifying a SV. I designed the first draft of the method during a research stay
at the CBRC in Tokyo and the core implementation and evaluation was then done with Anish MS
Shrestha. We are considering here split-alignments, alignments where two different portions of a
read align to disjoint genomic locations on the reference. We proposed a new principled framework
that exploits the probabilistic set-up of the pair-HMM, in order to score a set of sequences that are
identifying conjointly a structural variant. The need for a probabilistic treatment is apparent when
one considers the ambiguities stemming from repeated regions. Indeed, even under ideal conditions of
no sequencing errors and very high coverage, we estimated that 40% of deletions cannot be identified
with certainty by pairwise alignments of 100bp reads(A. M. Shrestha et al., 2018).

To solve this problem, we first reformulate the joint split-alignment problem as a profile-to-
sequence alignment problem. We consider that given the reference genome G and a set R of reads
originating from a region H in the assessed genome and that contains an SV. Our aim is to find the
split-alignment of H to G which determines the position of the SV. Note as well that the sequence
of H in the SV locus is not observed. We are scoring a split alignment A according to two types
of scores: (1) Sgenome(A;H,G) accounts for the evolutionary divergence between G and H; and (2)
Ssequencer which weights the agreement of each read to H. We also consider that a profile matrix C
can be constructed from the multiple sequence alignment of the reads to H. We can now score H
and an alignment A of the matrix C to G as:

S(H, A;G,R) =Sgenome(A;H,G)

+
∑̀

i=1

∑

x∈D
Cxi × Ssequencer(Hi, x),

The parameters used in the scoring schemes are shown in Figure 1.6a. Sgenome consists of a
substitution matrix, affine gap penalties for small indels, and a constant penalty for large splits,
and Ssequencer consists of a substitution matrix and linear gap penalties. The values in both scoring
schemes can be adjusted to reflect the relative importance of the reference genome and of the read
sequences. We show an application of our scoring model on a toy example in Figure 1.6b. Note that
the choice of linear gap penalties allows us to express the alignment score equivalently as the score
of C-to-G alignment, with each column of C treated independently.

This extended model reconstruct the implicitly sequenced genome around breakpoints by doing
profile to sequence alignment. I order to be able to compute those profile-to-sequence split alignments
in a reasonable running time, we developed an approximate solution to the problem using as seed
alignments pairwise local alignments of the reads to the reference. Our method follows multiple
steps, as depicted in Figure 1.7.

In developing the method, we made extensive use of the underlying probabilistic model to be able
to balance the running time constraints with the accuracy of the results. This proved to be efficient.
Our method, despite being implemented in a scripting langage, has in practice running time on
par with more optimised tools to which we compared us: Seghemel, Deli, Lumpy and Splazers and
Platypus (detailed in (A. M. Shrestha et al., 2018)). There were already different split alignment
strategies proposed previously, but none until now was considering the problem of joint alignments
nor giving it a probabilistic treatment.
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Figure 1.6: Scoring a joint split-alignment, from (A. M. Shrestha, Asai, Frith, & Richard, 2018). (a) Param-
eters of the scoring scheme. (b) Toy example with an alignment A of three reads identifying two deletions
(dashed boxes). Computation of the score is indicated on some columns of the alignment – highlighted in
gray, with contributions from Sgenome and Ssequencer at the top and at the bottom, respectively. (c) The
profile matrix for the example (a 15bp count profile). The choice of linear gap penalties in Ssequencer allows
us to express the joint split-alignment as the alignment of C to G, with columns of C treated independently.
The gray columns match the ones in (b).

Figure 1.7: The main steps of our Joint Read Alignment strategy. First, we perform local pairwise alignment
of each read to G (Step 1). Next, we extract reads that are likely to have originated from SV sites by
enumerating candidate SVs that can be inferred from their local alignments (Step 2). We group these reads
according to the candidate variant site they point to. Each group along with G forms an instance of the joint
split-alignment problem described previously. We solve each instance by constructing a profile matrix of the
reads (Step 3), and finding its maximum-scoring alignment to G (Step 4). Finally we compute a confidence
value for the joint split-alignments (Step 5).
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We demonstrated the advantages of our method, over other split-aligners, by applying it to the
problem of identifying medium and large deletions (≥ 20bp) from typical human genome resequenc-
ing datasets.

State of the art now: The specific problem of split alignment has not received much attention
lately. This can be attributed to the fact that the attention of the community moved towards long
reads and the renewed need for efficient and accurate alignment techniques. The construction of
sequence profiles on the other end experienced a renewed interest, with many publications aiming at
constructing the sequence profile in form of a Partial Order Graph for error correction (polishing)
in long reads (Gao et al., 2020; Vaser, Sović, Nagarajan, & Šikić, 2017).

1.5.4 HMM Models using Count Observations

HMM are a natural choice for segmenting longitudinal data into a set of coherent groups. They
provide at the same time the group delineation and estimates on the properties of each group.
HMM are one of the most successful models in bioinformatics, they are used since the dawn of
sequencing for annotation (Burge & Karlin, 1997; Nicolas et al., 2002). With the HTS revolution,
those methods started to be used for clustering the signal coming from the depth of aligned reads
along the genomic sequence.

First contribution: Parseq

After I integrated the LCQB, I wanted to consider the problem of transcript abundance estimation
in a more general framework. Starting from a work of Pierre Nicolas (researcher, INRAE) on tiling
array data (Nicolas et al., 2009), we supervised Bogdan Mirauta’s PhD. The subject was to develop
a method to reconstruct the expression levels at each genomic location, given the RNA-Seq read
counts.

Without considering prior annotation, one way is to use the fact that neighbouring bases likely
come from the same transcript and thus that their expression level should marginally change. The
observations yt are here the counts from the 5’ end of reads. A Hidden Markov Model can integrate
this information about neighbouring positions, by reconstructing the unobserved expression levels xt
given the counts yt. We use a transition kernel that can detail the different events occurring along
the sequence with an impact on the expression level. A position can be either expressed (I{xt>0})
or non-expressed (I{xt=0}). Within expressed regions there can be changes in xt, either due to
overlapping transcripts, or to other effects (summarised with the function g below). The transition
kernel can then simply write as:

k(xt, xt−1) = I{xt−1=0}[(1− η)δ0(xt) + ηf(xt)] + I{xt−1>0}[(1− β0)g(xt;xt−1) + β0δ0(xt)]

η and β0 give the probabilities of stopping and starting transcription, while f and g are generic
densities for expressed positions. Following a the preliminary work of Pierre Nicolas on tiling array
data (Nicolas et al., 2009), the g density is as well a mixture, with three components: (1) unchanged
transcription level, or for changes that differ by their amplitudes and are referred as (2) shifts (large
amplitude) and (3) drifts (small amplitude). Figure 1.8 represent the different possible movements
on the transitions kernel along a sequence.
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Figure 1.8: Illustration of the different changes in the expression level xt that are taken into account with the
model. Genes are represented with orange arrows below. The distribution g(xt;xt−1) can be decomposed in
a term of change of expression (shifts, probability β) and a term for proportional changes (drifts, probability
γ).

Applying such model gives a rich and detailed description of the transcriptional landscape along
the genome: breakpoints in expression level, indicative of starts and end of transcription, or the
probability that a given region is expressed. Integrating the information about xt estimates addi-
tionally enables annotating transcribed regions in the sequence as well and transcription starts and
end (see Figure 1.9) The main challenge in this context was twofold. First the hidden process is
in a continuous state space. Estimation and inference is not amenable by the classical methods
presented previously (section 1.5.1) and need to be substituted by particle filtering algorithms build
on sequential Monte Carlo principles (Doucet & Johansen, 2009). The sequence length, ranging in
millions of bp increases the difficulty as well. Then, the sequence counts within transcribed regions
exhibited much more variability that what could be expected with traditional models. This trig-
gered the development a new distribution for read counts with extra variance which I describe in
section 1.5.5.

As an estimate on expression level is derived with confidence interval for each position, this
information can also be used in a multiple conditions setup to detect differentially expressed regions,
and we proposed a prototype for this question in (Mirauta et al., 2013).

Second contribution: PureCLIP

During her PhD with Analisa Marsico (main supervisor, Max-Planck institute for Molecular Genet-
ics) and myself, Sabrina Krakau worked on the analysis of CLIP-Seq data. When we assay CLIP-seq
data, we aim at reconstructing both the bound regions and the exact positions where there was a
crosslink between the protein and the RNA (1.4.4). The raw observations are the reads aligned to the
genome, from which surrogate statistics are constructed: read start counts kt and fragment density
ct (see Figure1.10a and b). Starting from those two tracks we thus want infer two complimentary
information:

• which regions are enriched in bound sequences (process S(1)
t , described by two states, enriched

or non enriched). The enrichment state influences directly fragment density.

• On which positions had crosslink taken place (process S(2)
t with two states, crosslinked or not

crosslinked). In those regions, the amount of reads’ 5’ end is higher than expected, given the
fragment density.

We thus start with observations that are the read start counts (kt ∈ N) and the pulled down fragment
density (ct ∈ R+) (Figure 1.10b). Note that conceptually, ct is very similar to the expression level xt

34



Figure 1.9: Transcriptional landscape reconstruction with Parseq, from (Mirauta, Nicolas, & Richard, 2014).
Example of results on a 10 kbp region of the first strand of S. cerevisiae chromosome V (dataset SRR121907).
From top to bottom: read counts (dots) and the estimated expression profile (blue line) with its 95% credibility
interval (light blue area); annotated CDSs (arrows) complemented with specific data sets of 5’-ends and 3’-
ends (brown); probability of transcription with a cut-off on expression level set to 0+ (light orange) or
0.1 reads/bp (orange); Local score in high scoring segments for the detection of breakpoints associated with
up-shifts and down-shifts (red). This example illustrates the detection of overlapping transcription units (up-
shifts before YER140W and YER141W) and incomplete termination sites (down-shift after YER138W-A).

estimated with Parseq. However, to avoid overcomplicating the model this part was simplified and
the values for ct where estimated using kernel density estimation of the read counts. Indeed, the
end goal of PureCLIP is to provide a binary annotation on the enriched/non enriched states and, as
we will see below, to integrate other covariates for the detection of crosslink sites so that fragment
density could be estimated with this method without significant loss.

We consider thus a two dimensional hidden process xt = (S
(1)
t , S

(2)
t ) with a total of 4 possible

states and which tracks the joint state of enrichment and crosslinking with a Markov model of order
1.

Ct | S(1)
t = i ∼ ΓLT(τ)(µi, δi)

Kt | Ct = ct, S
(2)
t = j ∼ BLT(0)(n̂t, pj)

Where i ∈ {0, 1} (resp j ∈ {0, 1}) is the subscript for enriched and non enriched (resp. cross-linked
and not cross-linked). n̂t is the expected number of fragment starts and is deduced from the fragment
density ct using a simple linear regression. ΓLT(τ) and BLT(0) are the truncated Gamma and Binomial
distribution.

The HMM thus infers regions where the fragments are enriched (e.g. fragment density is higher
than expected), and within those positions the crosslink sites where the reads start accumulate.
By HMM standards, the model constructed is relatively simple, but its strength comes from the
fact that we can integrate additional covariates, such as the presence of motifs or information on
background binding (as described previously in section 1.2.3).

In the two models that were presented, the dispersion expected from read counts is an important
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5.4. PureCLIP hidden Markov model
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Figure 5.2.: Summary of the basic HMM modelling framework. a) Starting from
the mapped reads (bottom), two signals that serve as observations in the HMM are de-
rived for all nucleotide positions: individual read start counts and pulled-down frag-
ment densities, obtained from smoothed read start counts. The model aims to recon-
struct the most likely sequence of hidden states (top) from these signals. b) A graphical
representation of the corresponding HMM.

and S
(2)
t = z

(2)
j represents the crosslink state with

z
(2)
j =

(
non-crosslink, j = 0

crosslink, j = 1.
(5.2)

Observations

In order to detect enriched + crosslinked sites, PureCLIP uses two signals derived from
the mapped reads: (1) the pulled-down fragment density Ct, which is a smoothed sig-
nal derived from the read start counts and holds information about the enrichment
within the current region, and (2) the read start counts Kt themselves, which hold in-
formation about potential truncation events. Consequently, the HMM has two layers
of observations: C = c1, . . . , cT and K = k1, . . . , kT (see Figure 5.2).

To estimate the pulled-down fragment density we do not use position-wise read
counts, since for truncation based CLIP data these are strongly in�uenced by crosslink-
ing events in the neighbourhood. On the other hand, using counts within larger bins
would not be accurate in estimating the position-wise signal of the pulled-down frag-
ments. To address this problem, we apply a smoothing on the read start counts k to
estimate the density of pulled-down fragments at each position. This is done using
a kernel density estimation (KDE) [28] with a Gaussian kernel function K. The latter
assigns a higher weight to nearby read starts, while still considering read starts which
are further away, thereby providing a better estimate for the underlying pulled-down
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Figure 1.10: Summary of the modeling framework for analyzing RNA-protein interaction landscape. a)
From (Krakau, Richard, & Marsico, 2017). Starting from the mapped reads (bottom), two signals that serve
as observations in the HMM are derived for all nucleotide positions: individual read start counts and pulled-
down fragment densities, obtained from smoothed read start counts. The model aims to reconstruct the most
likely sequence of hidden states (top) from these signals. b) A graphical representation of the corresponding
HMM.

factor in being able to make inference about the unobserved variables. Multiple distributions of
counts can be proposed to account for overdispersion, and we provide a detailed presentation in the
following section. Those models are also instrumental in estimating the terms of biological variance
when testing for differential expression between conditions (I will not detail further on this part).

1.5.5 Count Models for Sequence Abundance

Most of the models presented in the last section relate to sequence counts for the observations. They
thus need to specify an explicit emission distribution that will correspond to the count statistics (read
depth, or read counts). These models are also at the core of other functional analysis problems, such
as differential expression.

Simplest count model

To first explicitly account for the randomness coming from the sampling-by-sequencing process, we
can start by hypothesizing that sampling across positions is uniform. Then the count Yt obtained
from the reads starting at any location t simply follows a binomial distribution B(n, pt) (n being the
total number of reads sampled):

π(yt) =

(
n

yt

)
pytt (1− pt)n−yt

pt being the frequency at which we expect this position to be sampled (its proportion over all
possible positions under an ideal scenario). We just mentioned in previous section a use of the
binomial distribution in its truncated version for the detection of crosslink sites.
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Often, the events considered are relatively rare (e.g. p� 10−3) and n is at least 105 to 106, and
the binomial can be safely approximated by a Poisson distribution P(λ) with rate λ = n · pt.

π(yt) = e−λ · λ
yt

yt!

Poisson assumption alleviates the shortcomings of considering a Gaussian approximation for yt,
which has sometimes been proposed as an easy choice. Gaussian approximation is not justified
by the digital type of the data, and it will fail to model low counts accurately (Audic & Claverie,
1997; Cai et al., 2004). However, the hypothesis of uniform sampling, which is at the heart of the
Poisson distribution is too strict in most cases, as it implies that the variance of the count is equal
to its rate λ. Multiples factors, such as biological variability, protocol related biases, or non uniform
longitudinal sampling induce an implicit heterogeneity on the rate, such that the counts usually
exhibit extra-variability (Anders & Huber, 2010).

Finite mixture models

Heterogeneity can be easily be integrated by means of mixture models. They can consist in finite
mixture or in the continuous Gamma mixture model, also called Negative Binomial.

One example of finite mixture models arise naturally when considering the counts of k-mers Y ,
e.g. the substrings of the reads of a given length k. Under an ideal scenario where each k-mer
is unique in the genome, and due to uniform sampling, the k-mer would ideally follow a Poisson
distribution with expected count λ = n·p

`−k+1 . However, sequencing errors are common and decrease
the observed count of bona-fide k-mers, while creating artefactual ones. If we hypothesise a uniform
error rate of ε at each base (thus a probability of ε/3 for each substitution), a k-mer with exactly i
errors is distributed according to a Poisson distribution with an expectation µi = λ · (ε/3)i(1− ε)k−i
(we neglect cases where an other k-mer, at a short hamming distance, would contribute to the read
depth). The distribution of Y is obtained by summing over the possible number of errors, which
results in a mixture of Poisson distributions with rates µi, where the proportions are given by a
binomial distribution B(ε, k). The mixture writes simply as:

π(y) =
k∑

i=0

B(i; ε, k) · P(y;µi)

Note that repeats in the genome, which we did not account for here, can also be considered as having
an expected count that will increase in proportion of the number of copies that are present (e.g. 2µi

for 2 copies, etc.).

Contribution: detection of sequencing errors I utilised these mixture models in the problem
of detecting reads possessing sequencing errors. Together with colleagues at the Free University in
Berlin (David Weese, Manuel Holtgrewe) and at Carnegie Melon University in Pittsburgh (Mar-
cel Schulz) we developed Fiona, an automatic tool for the correction of sequencing errors in HTS
libraries (Schulz et al., 2014). Briefly, a suffix array data structure is constructed from the reads
and cutoffs are tabulated from the genome properties to decide which k-mers will be identified as
potential errors. The reads possessing errors are then processed sequentially for error correction (see
Figure 1.11)
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Figure 1.11: The Fiona strategy illustrated on a toy example from (Schulz et al., 2014). A set of partial suffix
arrays are built from the set of reads and their reverse complement. The trees are traversed in parallel to detect and
correct errors. Potential errors in the reads are identified as nodes in the tree according to their coverage (e.g. the
substring GGAC, covered by only one read). The correction with the highest support is chosen to correct the read at
that position. Due to the parallel traversal of the tree, all possible corrections on a read are recorded in a linked list,
which reports the positions of corrections as well as their current maximal support. After traversal, the reads are
updated by applying all non conflicting corrections in order of decreasing support. Once all reads have been corrected,
the algorithm repeats the procedure until the number of corrections have been achieved.
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The strategy implemented in Fiona combines the detection of candidate sequencing errors with
a thoughtful implementation based on suffix arrays and banded alignment. I only mention the
link to k-mer abundance distributions. Statistical error detection consists in determining a k-mer
abundance value under which a string is deemed erroneous. This strategy was first proposed in the
correction module of the EULER assembler, where least abundant substrings (usually singletons)
were selected. More general methods, using alignment on the paths of a de Bruijn graph, were also
developed (Salmela & Rivals, 2014). In a classical general modelling framework (David Weese,
Schulz, & Richard, 2017), we aim to classify a k-mer has having either no-error (z = 0) or at least
one error (z > 0). With Fiona, we used a log-odds ratio to classify k-mers:

log
P (Yk = c | z > 0)

P (Yk = c | z = 0)
+ w

The constant w impacts the proportion of erroneous reads detected. We can match the setup
of a naive Bayes classifier and set it according to the prior probability of each category: w =

log(1− (1− ε)k)/(1− ε)k. With Fiona, we first used the previous mixture model to get the explicit
distribution of Yk | z. Then, under a model of uniform read placement, the only parameters needed
to determine the threshold value are the genome length n and the average error rate ε.

Contribution: Species abundance estimates using NPMLE Finite mixtures are also com-
monly used in ecology for answering general questions about species diversity. In a traditional
ecology experiment, the species are sampled at a location and their abundance xj –the number of
times species j is observed, is recorded. However, as time and resource are limited, an exhaustive
characterization of the biotope is not possible. The statistical questions are thus to estimate the
species diversity. How many new species do we expect to discover if we sample twice as much?
three times as much? What is the total number of species in the biotope? When did a species got
extinct (D. L. Roberts & Solow, 2003)?

When I started my postdoc at the Max Planck for Molecular Genetics under Martin Vingron
supervision, he asked me to look at the species diversity problem and adapt it to the analysis of
HTS libraries. For whole genome sequencing (clonal population), the problem is relatively easy
as one can fix upfront the amount of sequencing needed to reach a given coverage. In the case
of transcriptomes or metagenomes, we are in the framework described for ecology: the species are
replaced by the expressed genes or the microbial species, and we do not know how many are present in
total –e.g. how complex the library is (Daley & Smith, 2013). When the first RNA-Seq experiments
were made at the institute, one of the question was then to know whether the sequencing capacity
was sufficient to detect most of the expressed genes (Sultan et al., 2008).

We consider that mapped reads are sampled independently and with replacement from the whole
population of transcripts. The count xj of gene j follows a Poisson distribution of parameter λ.
The distribution of gene abundance can be summarised by describing the distribution over genes
frequencies (the number of genes with count k):

yk =
∑

genes j

I{xj=k}

S is the total number of different genes expressed obtained after sequencing (S =
∑

k>0 yk).
We see that the yk are realisations of a finite mixture of Poisson distributions, whose rates depend
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on the frequencies of all genes. We need to estimate the components of the mixture in order to
predict y0, the number of expressed gene that are still not sequenced. However, this problem can be
impossible to solve, as there may be an arbitrary number of undetected species whose detection rate
is lower than the sampling effort. The total number of species that can exist has to be constrained in
some way, using regularization techniques such as the penalized likelihood (J.-P. Z. Wang & Lindsay,
2005).

Estimation of gene diversity is the same as estimating y0 conditionally on S. Let us denote as f
the marginal distribution over read counts, which can be written as:

f(c,Q) = π(Xj = k) =

∫
e−λ

λk

k!
dQ(λ)

Where Q denotes the distribution of Poisson rates amongst the set of genes. We thus estimate
the distribution over read counts Q̂ using a Non Parametric Maximum Likelihood (NPMLE) ap-
proach (J.-P. Z. Wang & Lindsay, 2005). An estimator to y0 can then be written as

y0 = S · f(0, Q̂)

1− f(0, Q̂)

In the context of the RNA-Seq experiment, we could show that the extrapolation on single li-
braries was in line with the results obtained by pooling, and that the increase in sequencing power
made possible by RNA-seq was able to recover most of the expressed genes (see Figure 1.12)

Figure 1.12: Dynamic range of RNA-Seq, from (Sultan et al., 2008). Rank abundance curves (RACs)
showing the total number of mapped reads (x-axis) versus the total number of identified genes (y-axis).
Data points show the observed values on individual (crosses) and merged (dots) experiments. Curves were
extrapolated as follows: for values smaller or equal than the sample size, the number of expected genes was
obtained by sub-sampling. For values greater than the sample size, the number of expected new genes was
computed from the statistical analysis by Poisson mixtures.
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The Gamma-Poisson mixture model

A more general extension of the Poisson distribution to account for overdispersion is the negative
binomial model, that can be defined as a continuous mixture of Poisson distributions, where rates
are distributed according to a Gamma distribution.

λ ∼ Γ(a, 1/κ)

Y ∼ P(n · λ)

resulting in a general distribution for the Negative Binomial as:

P(Y = y) = π(y ; κ, n) =
Γ(a+ y)

k! Γ(a)
py (1− p)a

where p is a function of κ and n:

n

κ
=

1− p
p

and the mean and variance can be expressed as:

m = a · κ
n

σ2 = m+
1

a
·m2.

We note the model NB(m,κ) for a mean m and an overdispersion κ.
In practice this model establishes a quadratic relationship between the mean counts and their vari-
ance, while using only one more free parameter than the Poisson distribution. It remains quite
flexible on the types of distribution for the rates. It has thus been a common choice for count
distribution when extra variance is expected and that a finite mixture is not a realistic option.
It was shown to provide a reasonable adjustment when looking at the distribution of read depth
in genome sequencing (Bentley et al., 2008). It is also commonly used to model the variability
in count between biological replicates for instance for detection differential expression in RNA-Seq
experiments (Anders & Huber, 2010; Love et al., 2014; M. D. Robinson et al., 2010).

In the case of the PureCLIP Tool, we used a truncated version of the gamma function for the
parameters describing the expression level et:

kemission(et | s(1)
t ) ∼ truncΓ(α

s
(1)
t
, β
s
(1)
t

)

the other observation, the count of reads 5’ end, is then conditionally drawn according to a binomial
distribution

kcrosslink(ct | et, s(1)
t , s

(2)
t ) ∼ B(n̂(et), ps(2)t

)

Note that in this model, the observations are two dimensional, they combine a coverage term et, and
a crosslinking term ct. The coverage et is estimated using a smoothing window over the read depth.
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Contribution: A hierarchical model with extra-variance

For the analysis of longitudinal RNA-Seq data, at the core of the Parseq tool, the Negative Binomial
failed to account for the relationship between mean and variance, as well as the proportion of regions
with no counts. We thus proposed a more general hierarchical model that mimics mechanistically
the different steps of the library preparation (Mirauta et al., 2014).

Figure 1.13: left: canonical steps of the RNA-Seq protocol, including: i) RNA fragmentation and Reverse
Transcription; ii) cDNA amplification and iii) final read sampling by sequencing. On the right, alongside the
protocol steps, variables that model quantities are represented.

We aim to explicitly account for three steps of the protocols (see also 1.2.1): (i) initial molecule
sampling and fragmentation, (ii) amplification, and (iii) final sampling by sequencing. To do so, we
introduce auxiliary variables corresponding to the number of fragments sampled by the experiment
ft, and to an amplification term at. Given an expression level xt for a region (which would be n · pt
in the uniform case), we have:

ft | xt ∼ P(
xt
a

)

The amplification is hypothesized to take place with global rate

at ∼ Γ(a, κ)

the number of reads aligned at t are then sampled according to a Poisson distribution at a rate given
by the number of amplified fragments

yt | ft, at ∼ P(ft · at)
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Figure 1.14: Distribution of read counts inside regions of homogeneous expression, from (Mirauta, Nicolas, &
Richard, 2014). Saccharomyces cerevisiae data-set SRR121907 (left); Escherichia coli data-set SRR794838
(right). Each long open-reading frame (ORF, region without in-frame stop codon) identified on the genome
is represented by a dot. Dashed lines show the fit of the negative binomial model with overdispersion
parameter estimated via variance (reads2/bp2) versus mean (reads/bp) regression; plain lines show the fit
with the Parseq model.

we can write the distribution of yt given xt as a mixture of negative binomials, whose constributions
are poisson distributed:

yt | xt ∼
∞∑

ft=0

P(ft;
xt
a

) · NB(yt; ft · a, κ)

In practice we also add a term accounting for local bias st and that occurs prior to fragment selection
(e.g. ft ∼ P(xt/a · st))

When controlling the adjustment of this model on preliminary RNA-Seq data we see that the
negative binomial fails to account for extra variability when the read counts are low (Figure 1.14,
insets). Furthermore the fraction of positions with no read starts is as well better captured by the
mechanistic model.

Use of covariates to explain read count

In addition to the estimation of a broad library-wide variance term, it is possible to inspect specific
factors that are responsible for the skew in read counts. Indeed, various steps of library preparation
induce biases (section 1.2.3), that can be caused by sequence content or other biological properties.
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By making some assumption on the shape of the data –within a single isoform gene, the transcript
abundance is expected to be constant- one can tabulate the observed read counts with other sources
of information, such as sequence content, or position in the gene. Then, linear models are used to
explain the part of the variability of the counts within the gene bodies that can be explained by
those covariates. Multiples methods have been developped, for instance (J. Li et al., 2010) proposed
a linear model to estimate the effect of position specific sequence content around the position where
the sequence is mapping:

log ygt = log yg +
∑

k∈−`,...,`

∑

σ∈{A,C,G}

ξkσ I{σt+k=σ}

Here, the observed read count at position t, ygt can deviate from the gene baseline yg, according to
the nucleotide composition ` bp around the 5’ end of the read. The variables ξkσ weight the contribu-
tion of the nucleotide σ k bp apart from the 5’ of the read (with ξkT set to 0). Those covariates can
act on the values of the parameters through various link function. This was proposed for correction
of abundance based on the GC-content of the fragment (Benjamini & Speed, 2012) or also in the
case of RNA-Seq data for accounting for different sequence contexts (J. Li et al., 2010; Love et al.,
2014; A. Roberts, Trapnell, Donaghey, Rinn, & Pachter, 2011).

Contribution: integration of input data and motifs for CLIP data For the PureCLIP
model, Sabrina Krakau integrated two types of informations as covariates in the model: the signal
from the input experiment and non specific binding motifs (called CL motifs, see section 1.2.3). The
relationships in both cases are learned using generalized linear models (GLM) that link either the
expected coverage ct to the observed value of the input with a Gamma-GLM, or the probability of
cross linking pj,t to the occurence of specific sequence motifs.

At each position t, the expected mean µi,t is supposed to be multiplicatively proportional to the
background signal bt (the shape parameter of each Gamma distribution is supposed to be constant):

ln(µi,t) = αi,0 + αi,1bt.

This way, we can make use of the input data to account for regions highly transcribed or bound by
highly abundant background proteins.

The probability of cross-linking is adjusted using a (zero-truncated) binomial logistic regression
on a set of learned motifs:

ln
pj,t

1− pj,t
= βj,0 + βj,mtxmt,t,

where mt is the best scoring motif observed at position t. The set of motifs are learned calling
crosslink site on the input data using the basic version of PureCLIP (without covariates). Motifs
are then detected around the detected position. The resulting set of motifs provides a picture of the
fragments that are commonly crosslinked to RNA background proteins.

1.6 Analysing the small RNAs populations in P. tricornutum

This project, where I put into practice each and every steps of the sequence analysis workflow by
myself, provides a good last section for this chapter. Although I was working on sequence analysis for
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a while, my main concern before this project was the development of methods and their validation,
and were taking place as part of a large working group. Until then I never had performed all the
analysis by myself.

The project was initiated by the Diatom Genomics group of Angela Falciatore at LCQB (group
now at IBPC) and we tag teamed with Alessandra Rogato (postdoc in Angela’s lab, then researcher
at Stazione Dohm, Naples). I would do the data analysis and Alessandra would design and perform
experimental validations (verifying that the elements identified were present, as well as functional
characterisations). Until now, I presented a subdiscipline that we could call bioinformatics-as-a-
method : the aim is to provide a new general solution to a particular analysis problem. Here, no
new methods had to be developed, but I rather carefully selected, validated and reiterated classical
bioinformatics and data analysis in order to propose new biological hypotheses: bioinformatics-as-a-
result, or quantitative biology (to mention the lab’s name). It is also different from the development
of an analysis workflow (bioinformatics-as-a-process), as the new object were uncharacterized in this
species and each analysis was truly exploratory.

The goal was to follow up on a first discovery by the group about silencing in Phaeodactylum
tricornutum, a marine diatom. Diatoms are unicellular eukaryotes and present a valuable model
system to address questions about the evolution and diversification of gene regulatory mechanisms
in eukaryotes. The Diatom genomics group had already shown that the expression of anti-sense or
inverted repeat sequences of selected target genes can trigger efficient gene silencing in P. tricor-
nutum and they described as well the presence of genes encoding a predicted Dicer-like protein, an
Argonaute-like protein and a potential RNA-dependent RNA polymerase (RdRP) (De Riso et al.,
2009), which are all proteins involved in the RNA silencing pathways.

To gain insight into the population of small RNAs in diatoms, library of short RNA fragments
were sequenced in different light and iron conditions. We then assessed which types of small RNAs
populations could be present by first looking at size distribution (see Figure 1.15 top) and the small
RNA localisation. We observed 3 characteristic lengths that corresponded to:

1. a very abundant RNA population of 24-25 nt in length originating from intergenic regions and,
in particular, from a unique 80 bp region on chromosome 2 (Figure 1.15A, “Others” inset),

2. tRNA fragments mainly enriched in the 19-20 nt fraction and, to a minor extent, in the 30-33 nt
fraction (Figure 1.15A, “Known ncRNAs” inset),

3. repeat and coding regions enriched in 25-30 nt fragments (Figure 1.15B).
We then analysed the aligned reads and observed two types of behaviours. On the one hand,
some reads match very specific genome locations and form, after alignment, characteristic piles of
thousands of copies of the same sequence, accumulated on a single strand (panel A). On the other
hand, there are regions, of a few thousand bases in length, that are covered by overlapping reads,
accumulated on both strands and, at times, forming several piles distributed with a periodic pattern
(panel B).

For the first distribution type, after a strict filtering step eliminating possible artifacts, we charac-
terised 50 candidate regions that appeared to be specific to sRNAs lying in tRNAs and in intergenic
regions. These are organised in three groups. Thirty regions correspond to already annotated non-
coding RNA structures, including a highly abundant candidate (representing 0.4% of all aligned
reads) that overlaps the U2 snRNA gene located on chromosome 5, and the 5S ribosomal RNA on
chromosome 3. The majority of the candidate regions overlap with 28 different tRNA sequences (cor-
responding to 22 different codons), suggesting that they may represent tRNA-related small RNAs
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Figure 1.15: Workflow of the small RNAs analysis in P. tricornutum, from (Rogato et al., 2014). Top.
Fragment lengths distribution of reads (histogram, center) is reported in a grey color scale distinguishing
the five experimental conditions (LL, HL, NL, -Fe, D). The distribution of fragment location is also reported
(pie chart, right) with a color scale indicating genes, intergenic regions, repeat regions, tRNA genes, ncRNAs
and other loci. We distinguish two workflows described in boxes A and B, characterized by different local
loci distributions of reads along the genome. (A) Sequence specific distribution of fragment lengths that is
systematically observed for tRNA genes and intergenic regions. Reads were filtered in five steps, described in
the 5 grey boxes. We obtained three main groups of results, indicated by squared boxes (number of predicted
sRNAs is reported in parenthesis). The number of predicted sRNAs that were experimentally validated is
also indicated, together with the experimental technique (NB, Northern Blot; PCR, Stem Loop PCR; H,
sequencing data from (Huang, He, & Wang, 2011)). (B) Distribution of fragment lengths that covers loci
with overlapping reads and accumulated on both strands. This distribution pattern has been observed to
either Tranposable Elements (TEs) or coding genes, associated to methylation. Examples of the periodic
placement of sRNAs on three Codi LTR-retrotransposons on chromosome 31 and on a protein coding gene on
chromosome 12 are reported. Color palette for TEs and genes is the same as above, and Highly Methylated
regions are represented in purple
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(tRFs). The remaining 20 candidates do not overlap with regions related to non coding RNAs.
Two of them resemble miRNA-like molecules, supported by a stable precursor structure, and 18 of
them have no particular associated structure. These predictions were well supported across different
libraries (28 regions detected in at least two libraries) and on an independent sequencing experiment
published by Huang and coworkers (Huang, He, & Wang, 2011) that we integrated in our pipeline
(24 regions are also detected). We were able to experimentaly validate the presence of a few of those
candidates regions by Northern Blot or Stem Loop PCR (see annotationss in Figure 1.15, panel A).

The second kind of sRNAs distribution appeared to be specific to transposable elements and to
coding genes (Figure 1.15B). Three major observations were made: 1. reads overlap over relatively
long regions that are typically methylated, 2. the sRNAs accumulation correlates with repression of
transcription, and 3. the sRNA profile displays periodic patterns at a distance varying within the
180-200 nt interval.

The characterization of the sRNA transcriptomes revealed a small ncRNA landscape in diatoms
that is much more complex than anticipated. We identified and characterized different functional
categories of small RNAs with different sizes, suggesting the presence of distinct biosynthetic path-
ways. Based on the sequence data available, my analysis highlighted that 93.5% of sequence specific
reads can be explained by their accumulation in well classified loci covering 8% of the whole genome.

Even though this first analysis provided a very comprehensive characterisation of the P. tricor-
nutum small RNAs, we did not validated or showed a functional effect. It is unfortunately often
the case with such kind of analyses (Hul et al., 2020). I recently had the opportunity to participate
in a follow up project analysing the small RNAs and the transcriptional response in different Dicer
Knockout lines. Generating the KO lines was a work done by Emilya Gripioti during her PhD thesis,
under the supervision Frederic Verret (Hellenic Center for Marine Research, Heraklion) and Kriton
Katanlidis (Institute of Molecular Biology and Biotechnology, Heraklion). The main results from
this analysis were submitted as an article and are now in revision.
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Chapter 2

Perspectives on Omics and Big Data in
Biology

2.1 Promises and limitations of Omics data

2.1.1 Context

Signal processing has been my main scientific interest in the last decade. Raw sequence data are com-
putationally processed into a few meaningful statistical digests. This strategy of producing precise
molecular descriptions is usually considered the de facto path towards scientific discoveries, owing
to the large amount of sequencing data generated. Accordingly, when we analysed the population
of small RNAs in diatoms (section 1.6), we were more ambitious. We extended our goal beyond a
set of summary tables and aimed to uncover the mechanisms of non coding RNA mediated silencing
in diatoms. Final objective was a biological question: How are small RNAs produced and what is
their potential regulatory role? We presumed to generate a load of biological hypotheses from the
data, and test those hypothesis experimentally afterward.

Alas, I realised soon enough that, bewitched by the promises of High Throughput Sequencing,
my expectations were exaggerated. We could detail or catalog the population of short sequences to
unprecedented depths, but without additional experiments the biology of those RNAs would remain
elusive.1 This experience was quite surprising. I started my PhD a few years after the sequencing
of the human genome, and I always implicitly assumed that by describing cells with more and
more data –sequencing or whatsoever, we would be left mainly with statistical and modelling issues.
Indeed, the stream of technological revolutions taking place in the Life Sciences was turning upside
down our way of doing research. A common belief at the turn of the century was: we just go on
and mine the data, and the biological discoveries will unfold (Anderson, 2008; Kell & Oliver, 2004).
Obviously, thing are a bit more complicated. More data does not necessarily mean more biological
knowledge (Allen, 2001a), and it does not always translate into a mechanistic understanding or an
explanation (Allen, 2001b). The stark contrast, between the merely descriptive aspect of sequencing
assays, and the promises from the postgenomic era led me to a critical examination of the prospects
and limitations of the use of omics data for scientific discovery.

The technological revolution brought first by HTS disrupted all disciplines in molecular biology,
moving from a narrow view of a few elements to genome-wide measures of the molecular activity.

1We indeed performed additional experiments, but they were mainly validation of HTS based observations.
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Global discoveries were made possible (Brown & Botstein, 1999) and disrupted many common
assumptions in molecular biology, starting for instance with the surprising low number of genes
in multicellular organisms (Lander et al., 2001), followed by the multiple layers of transcriptional
regulations in eukaryotic organism, including miRNAs (Bartel, 2009), the unexpected prevalence of
alternative splicing (Wang et al., 2008) or the existence of pervasive tranlation (Ingolia, Lareau, &
Weissman, 2011). At the same time, the modern promise of omics took form as new kind of biology,
where large-scale data production would be expected to bring new scientific knowledge (Golub,
2010). Those results were not produced by "simply looking at the data", but by directing it towards
a particular scientific question (Allen, 2001b). A debate already started around the danger of large
scale projects to simply produce catalogue without a specific question in mind (R. Weinberg, 2010).
Woese (Woese, 2004) advocated the imperious need for a working plan: "without a guiding vision,
there is no road ahead; ... [life] science becomes an engineering discipline, concerned with temporal
practical problems".

There is a gap in perception on the use of omics and its gain to biology. How can we accom-
modate the aim of cataloguing the molecular basis of living organisms and "let the data speak for
itself" (Anderson, 2008), with the traditional scientific method, which is rooted into the formulation
of alternative hypothesis and their experimental test? What is the impact on our scientific prac-
tice? And what will define a good scientific practice in our Data-Rich world (Elliott, Cheruvelil,
Montgomery, & Soranno, 2016)?

More generally, what is the role of “Big Data” in biology? How does it interface with computa-
tionally intensive analyses? Can automated methods (e.g. Machine Learning) transform data into
knowledge, and scientific discovery be carried out directly by machines (Anderson, 2008; Nickles,
2018)? The large quantities of data produced, and the methods proposed for their processing, are
not explicit. Will it make biology not intelligible for human? (Anonymous, 2000; Nickles, 2018)

Understanding possibilities and limits has important implications: it provides a panorama of
the scientific practice nowadays, and helps me to understand which stand a bioinformatician should
take if he wants to move aside from signal processing and engineering. It also has a direct impact
on clarifying how different practices or projects are evaluated by funding agencies, and how a grant
application is judged.

Those questions will be considered from different angles, first recalling how it started with the
reductionistic/holistic debate. High throughput assays, by enabling a holistic view of the cellular
processes, were historically cast in the 2000s as a remedy to the limitations of reductionistic ap-
proaches, which de facto relied on the hypothetico-deductive scientific method. I will detail how
reductionism and holism2 are defined in the life science, in order to clarify how this dichotomy was
established, and wether or not they should be seen as opposite practices. Additionally, Omics meth-
ods are mainly descriptive, which is at odds with hypothesis-driven science and this raise additional
questions on the various dimensions of scientific practice.

More recent accounts of the scientific method in biology show that, rather than entrenching
reductionist methods and holistic schools, current practice combines different approaches. They
alternates between them to narrow our knowledge gap: investigation/discovery, experimental tests
of hypothesis, computational modelling and methods/technology development. I will summarise
some of the descriptions proposed in the last decade by philosophers of science. Following (Calle-
baut, 2012), we will see that Scientific perspectivism, an empiricist thesis proposed by Giere (Giere,

2sometimes referred to as System biology as well
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2006), which shares themes with van Fraassen (van Fraassen, 2008), is a compelling framework to
understand current practices making sense of omics data.

Finally, omics data is an emanation/product of a much larger revolution impacting all areas of
science: Big Data Driven Research. Big data applied to biology is not new, it already existed three
centuries ago during Linnaeus taxonomical effort (Müller-Wille & Charmantier, 2012), and is more
general than only the generation of omics data, englobing as well Database creation and curation.
We can still ask how omics data creation interfaces with resource building? What is the interest of
generating those resources? Again, shouldn’t the scientific question be put first (R. Weinberg, 2010)?
Will Big Data in Biology, combined with the formidable computing power and the recent revolution
we observe in the areas of machine learning, allow us to create automatically new knowledge? What
are the short and mid term challenges?

2.1.2 Reductionistic and Holistic science

Let us recall the dichotomy between holism and reductionism in molecular biology. I will concentrate
the discussion on omics data, our main theme. Each omics experiment provides a global and unbiased
molecular view on a biological system –it literally is a digital molecular footprint: counting all
transcribed molecules, characterising the whole genome.
For this reason, already in its infancy (first complete chromosomes sequenced, microarray analyses),
omics data was hailed as a new mode of exploration which would describe the entire system down
from its molecular parts, so called holistic approach.

"Exploration means looking around, observing, describing and mapping undiscovered
territory, not testing theories or models. The goal is to discover things we neither knew
nor expected, and to see relationships and connections among the elements, whether
previously suspected or not. It follows that this process is not driven by hypothesis and
should be as model-independent as possible. We should use the unprecedented experi-
mental opportunities that the genome sequences provide to take a fresh, comprehensive
and openminded look at every question in biology. If we succeed, we can expect that
many of the new models that emerge will defy conventional wisdom" (Brown & Botstein,
1999)

During exploratory analysis, the scientist starts by detecting patterns or regularities from the molec-
ular observations, and then proceeds upwards by proposing a biological phenomena to explain them:
inductive reasoning at its best. To be more general, holistic science recognises that all molecular
constituent are interconnected and aims to study biological systems in their global complexity (whole
organisms or populations of organisms). This practice was also called systems biology3: “There is
now a golden opportunity for system-level analysis to be grounded in molecular-level understanding,
resulting in a continuous spectrum of knowledge” (Kitano, 2002).

With the massive accumulation of molecular data started in the beginning of the century, Systems
Biology rose to prominence and was hailed as the long needed "move away from reductionism" (Re-
genmortel, 2004). The advent of a new kind of modelling in biology was taking place (Mazzocchi,
2008). What do we really understand by reductionism? Put loosely, reductionism describes a system
by dividing it into a set of core parts to study them separately. Nevertheless, a precise definition
is often lacking. As Richard Dawkins once wrote: "Reductionism is one of those things, like sin,

3Systems biology englobe slightly more than that, for instance bottom up modelling.
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that is only mentioned by people who are against it" (Dawkins, 1986). In fact, reductionism can
have different acceptations and therefore be seen from different points of view. Either ontological,
epistemological or methodological (Brigandt & Love, 2017) (see figure 2.1). We need to know exactly
which type is relevant when we criticise reductionism in the life sciences.

Ontological reductionism is an assertion made about the entities in the world. To the question:
Is there anything more than physical objects, properties, events, etc?, The answer of ontological
reductionism is no. For instance there are no vital forces or souls. This is not of particular interest
for us in the debate.

The two remaining types of reductionism are often confused and it is important to clarify in
which aspect they differ.

Epistemological reductionism follows the idea that "the knowledge about one scientific domain
can be reduced to another body of scientific knowledge" (Brigandt & Love, 2017). This claim -of
epistemic reduction between disciplines, is a very general claim, as when Crick famously said: “the
ultimate aim of the modern movement in biology is to explain all biology in terms of physics and
chemistry” (Crick, 1966). One could also qualify this opinion as a reductionism of “fundamental-
ists” (Woese, 2004). It has strongly shaped research in the life science, especially in molecular biology
from the 1960s on, when research moved on from the structure of the DNA, to the search for the
“code” and culminating with the pursuit the Human Genome Project (Richardson & Stevens, 2015).
Woese already noted that this vision of biology remained stucked in an influence from pre-XXth cen-
tury physics, where all phenomena would derive from theories and models, and all explanations would
be based on chemistry and physics (Mazzocchi, 2008; Woese, 2004). This epistemological reduction-
ism creates a hierarchy designating some disciplines to be more "fundamental" (physics, chemistry),
and others resulting in mere consequence of the “laws of the universe“ (S. Weinberg, 1987) 4. It
also lends the idea of the existence of an ultimate level of truth where knowledge would “bottom
out” 5. The nefarious implications of this principle had already been criticised by many when they re-
jected epistemic reductionism (Mayr, 1988; Woese, 2004). Indeed, even if there have been successes,
such as the epistemic reduction of thermodynamics to statistical physics, this is an other challenge
across disciplines. For instance, how can particle physics explain biological phenomenons such as
self replication or evolution? At a molecular level, Anfinsen’s hypothesis postulates that the global
free energy minimum of a protein sequence determines its folding. From this hypothesis it should
be possible to reduce the problem of protein folding to solving a set of physical equations. Recent
results from protein structure prediction have clearly shown that this goal is unattainable (Jumper
et al., 2021). A general argument is that Physics and Biology are epistemologically discontinuous.
Even modern physics with concepts such as entanglement or the incertitude principle does not agree
anymore with epistemological reduction between discipline6. This type of reductionism was referred
to by some of its critics, but if “exploring the epistemic relationships between different disciplines
might be grist in the mill for a philosopher of science” (Fang & Casadevall, 2011), it does not reflect
the scientific practice in the life science. We can put it aside for our purpose, but let’s emphasise
that epistemic reduction was often referred to in the critics of reductionism in the Life Sciences and
sometimes mixed up with experimental reduction presented below (Regenmortel, 2004).

4starting around those arguments, “the unreasonable effectiveness of mathematics” also pops up in the conversation
5I will treat this point more in detail in the next section
6Woese wrote “in a metaphysical sense Molecular Biology was outdated from the onset!” (Woese, 2004)
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Reductionism

Ontological Epistemological 

Individual explanations

Each biological system/process is 
identical to a physico/chemical 
process. 

Knowledge in one domain can be reduced to an other

Methodological
Biological systems can be understood by the analysis of their simpler components.

Limitations
Decomposing a system into its parts

Focussing on factors internal to the system
while simplifying the environment

Studying the parts of a system in isolation

Chemistry Molecular
Biology

Particle
Physics

Figure 2.1: Illustration of the different kinds of reductionisms and their limitations. Reductionism can make
different claim about the relation between scientific domains. Top left: Ontological reductionism implies
that there is no vitalism or no soul. Top right: Epistemological reductionism (also called fundamentalist
reductionism). Bottom: Methodological reductionism is a specific case of epistemological reductionism ap-
plied to individual explanation (it is also called experimental reductionism). We are mainly interested in
understanding the limitations of this later type as described in (Kaiser, 2011))
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Explanatory reductionism is a specific type of epistemic reduction, when applied to individ-
ual explanation. This technique aims to transform a higher-level explanation (for example a cellular
one) into a lower level one (for instance a molecular one) of the same phenomenon (Kaiser, 2011).
Explanatory reduction relates the explanandum (the phenomenon to be explained) to the explanans
(the explanatory relevant factors). More specifically the relation of reduction holds between a rep-
resentation (or description or model) of the phenomenon (or behaviour of a system) to be explained
and the representation of the causal factors referred to in the explanation. The most relevant and
used type of reductionism is a subtype of explanatory reductionism.

Methodological (or experimental) reductionism claims that biological phenomena and sys-
tems can be understood by the analysis of their smaller components. This strategy traces back to
Descartes and his clockwork model ("divide each difficulty into as many parts as possible and as
might be necessary for its adequate solution" (Descartes, 1637/1850, p. 61) . This is one of the most
common technique used in biology to prove scientific facts. What are the characteristics of this type
of reductionism in the life science? Let us take a a simple example from molecular biology with cell
lines. Cell lines are applied as a model systems to decipher the sequence determinant mechanisms of
gene expression. By using a combination of ChIP-Seq, RNA-Seq and mutagenesis experiments one
can link transcription to the presence of sequence motifs and the binding of a transcription factor
in the promoter region (section 1.1). Gene expression is reduced to the combined effect of sequence
content and transcription factor binding. We started from a broad definition of reductionism, but
this example illustrates that we are interested in considering the limitations of methodological
reductionism. Now, what are the main limitations that are mentioned by its practitioners? Marie
Kaiser (Kaiser, 2011) identifies three key ingredients that are criticised for the reductive explanations
in the life science (see Figure 2.1 bottom).

The first limitation is the decomposition of a system into its parts. This characteristic is common
to all reductive methods: the system is decomposed into components and those components are used
to explain it as a whole. In the case of molecular biology, the components are objects such as genes
and mutations, or transcript molecules.7 For omics data, the objects considered "bottom out" at a
molecular level. This first point is what people usually think about for reductive explanation, but
there are two other important characteristics commonly observed.

The second limitation is focussing on factor internal to the system while simplifying the environ-
ment. An example given by Kaiser is the case of protein folding. One describes the fold (internal
factor) while fixing a set of "background conditions" (temperature, pH-value, salt concentration)
necessary for the folding to occur. The external factors are considered as a fixed input.

The third limitation is studying the parts of a system in isolation. Note that this is conceptually
different from the first limitation (decomposition of the system into parts). Also the parts are never
studied in complete isolation (it is rarely experimentally possible). One can understand that the
parts are not investigated in situ –in the context of the system they are part of, but detached from
it (e.g., in vitro). In the context of molecular biology, one example would be the study of Knock-Out
lines, in which genes are inactivated sequentially.

We can now address the limitations of the reductionist explanations when applied to biologi-
7Note that the lower level objects do not have to be molecular parts to be components used in a reductive

explanation.
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cal systems. Living cells are complex systems (Mazzocchi, 2008): cellular activity is the result of
combining multiple layers of regulation and molecular interactions, tuned by evolution over multiple
generations. To understand regulation, it is important to take into account multiple elements, rang-
ing over up to 6 orders of magnitude (from the single gene or transcript, to the global organisation of
a group of cells). Sequential perturbation of the system components (studying the parts in isolation),
and monitoring of its impact on the system (decomposition), will rapidly face a combinatorial wall.
Also, because we simplify the environment when studying cell lines, we are not always capable of
generalizing molecular results to other tissues or complete organisms.

“To summarize, it can be said that the more complex the organisation of a system is,
and the more its parts are integrated and interdependent on each other, the more limited
are the insights into the system one can achieve by utilising the two reductive methods:
decomposition and investigation of parts in isolation.” (Kaiser, 2011).

In the past, the reductionist technique depicted showed a few limitations when studying cellular
systems. A common problem was related to the definition of genes, originally described as elementary
functional building blocks (parts). This kind of simplification fails to describe how the same genotype
can give rise to different cell types. In particular, mechanisms such as pleiotropy (multiple fonctions
for one gene) or epistasis (higher level interactions between genetic elements) are not amenable to
such reductionist view. Although not necessarily reductionist in itself, it also propelled simplifying
popular views about genes a single explanatory variables of traits or placeholder for essences (Heine,
2017) A second limitation is the existence of emergent properties: properties of a system can emerge
at a higher level than predicted from the properties of its parts. For instance the virulence of a
microbe cannot be attributed solely to the microbe or to the host, but is the result of the interaction
between them and with the environment (Casadevall, Fang, & Pirofski, 2011)

Omics and the holistic/reductionist debate As we understand the different limitations of a
reductionist approach applied in the life science. But what does omics data add to the search for a
holistic explanation? Is it by itself sufficient to “move away from reductionism”?

First there is a temporal effect. What we see as holistic is not definitive, it is also motivated by
shifts in technology. What we perceived as a limitation of reductionism can change in a decade as the
technology improves. The omen from (Brown & Botstein, 1999) reported previously was motivated,
20 years ago, by the advances of microarray technology, which was later represented as ripe with
limitations by RNA-Seq. RNA-Seq is now being replaced by single cells and spatial transcriptomics.
So in a few decades, we moved from the characterisation of a few genes, to the whole populations
of expressed transcripts, to their intercellular resolution, and we are now aiming at an even more
global picture. Is that being holistic?

Let us consider a typical omics experiment. For instance an RNA-Seq assay can be performed
to explain the shifts in the transcriptional landscape in specific cell types or among cells with
different genetic backgrounds. Such a setup necessarily operates on a limited number of conditions
(it “simplifies the environment”), usually considering cell lines of fixing the cell type(s) (“studying
the parts of the system in isolation”). So, although those assays were at some point in the past
associated with holistic science, we understand that they present at least two of the characteristics
of experimental reductionism highlighted by Kaiser. One counter argument usually brought forward
here is that the system should be more integrated, that we should aim at a "more complete picture",
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by integrating other information, such as DNA conformation or epigenetic marks, to be considered
sufficiently holistic. But adding experimental assays, such as protein expression or genotype, or
the epigenome, does not change the fact we are still following a reductionist agenda by simplifying
the environment and studying the parts in isolation. Omics-Holism, the new biology for the XXIst

century, may have propelled systems approach, even though it provides reductionist explanations.
We just understood that, although omics data analysis is reductionist at its core, its ability

to exhaustively describe certain parts of a system have made it seem more holistic. But being
exhaustive is not enough: "feckless [..] systems biology may merely describe phenomena without
providing explanation or mechanistic insight" (Fang & Casadevall, 2011). This is manifest with
omics assays that are observational by design. Multiple conditions could be considered, but they
only work for one hypothesis at a time. This leads us to an other important axis of debate on the
generation of scientific knowledge: can we be satisfied with biology limited to being a descriptive
science or should we stick to the scientific method of testing hypothesis? We need to speak about
another dimension of the scientific practice on the place of omics assays, being mainly descriptive,
and their ability to generate scientific knowledge (see Figure 2.2).

A - Inductive/descriptive B - Hypothesis drivenReductionism

Holism

Top down
omics data Bottom up

modeling

Molecular
Biology

Patterns
Correlations

Hypothesis
Model

Observations

Tools
Technology

Exploration

Prediction

Hypothesis

Question

Test falsifies or
does not falsify hypothesis

Test prediction

Figure 2.2: The various dimensions of research inquiry . Different types of scientific experiments are repre-
sented by light orange shapes on a 2D plane separating the type of approach (Reductionism/Holism) on the
vertical axis and the scientific method (A - Inductive / B - Hypothesis driven) on the horizontal axis.

Descriptive and Hypothetico-deductive science As we mentioned earlier, the strong point of
omics assays is that they allow "exploration", and "looking around". Using molecular biology basic
principles and statistical models, we apply experimental reductionism to bring a rich description of
the system. We can then search for recurrent patterns (e.g. groups of genes co-regulated, segregating
mutations), and propose novel scientific hypotheses (figure 2.2A, left panel). It is not enough. We
collect precise observations, but we are in practice as clueless as a detective examining a crime scene.
The experiment only hints at clues, it is circumstantial evidence but not a direct proof.

In all scientific inquiries, accumulating empirical data is not sufficient per se to make scientific
claims. Even if I observe the same pattern multiple times, it can always be disproved by additional
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evidence –one has to be careful with hasty generalisations. In the case of omics assays, publication
pressure, combined with high sequencing costs, can provide a good ground for such tendency, and
to strong claims are made that do not necessarily lead to biological knowledge. For instance, under-
appreciated technological errors can rapidly get branded as biological knowledge 8. Another problem
can be the over-interpretation of simple facts. Most famously the ENCODE project reported that
80% of the human genome was assigned a biochemical “function” (ENCODE Project, 2012), meaning
that on those regions at least some biochemical reaction was occurring. It caused an uproar from
scientists which argued that those claims where inflated, likely to attract media coverage (Doolittle,
2013; Graur et al., 2013). It is an archetypical example of the problem of revamping observational
data as a scientific claim, without a model to support it.

The canonical way of proving hypothesis is to use the hypothetico-deductive (HD) methods (it
is coined as the scientific method in scientific textbooks). It works by proposing one or multiple
hypothesis to be tested by mean of an experiment. The prediction of the hypothesis leads to a clear
interpretation of the implication of different outcomes on the theory (figure 2.2B, right panel). This
implies that the scientific hypothesis needs to be clearly specified and tested to prove scientific facts.
Popper further clarified what can be done. Indeed, no theory can ever be proved directly (Popper,
1959), and a scientific theory has to be able to make predictions which can be disproved in some
way (falsifiable). As Popper writes, the hypothesis under scrutiny cannot be verified but has to be
falsifiable by the test in order to prove anything. Back to our crime scene analogy, this corresponds
to the strategy advocated by the fictional detective Sherlock Holmes: formulate rival hypothesis as
to the identity of the suspect and eliminate them until one hypothesis remains: “When you have
eliminated the impossible, whatever remains, however improbable, must be the truth” (Doyle, 1890).

Even though HD is considered the norm, we cannot disregard the gain of descriptive science
to various disciplines. Some important scientific disciplines, such as paleontology, astronomy or
the study of evolution are essentially descriptive (Casadevall & Fang, 2008). In all of those cases,
we cannot make interventions on the system. For instance, paleontology is mainly limited to the
observation of fossils. Laws of physics can also be considered descriptive, although we use them
everyday to make predictions. We remark that descriptive studies are usually a first attempt to
consider novel questions.

Conversely, one critic of HD methods is that they are too narrow-minded, they can only provide
post hoc confirmation. For instance, during RNA-Seq analysis, the typical summary statistics consist
in the list of differentially expressed genes between a normal or wild type condition and one or
multiple mutants. Those genes are then annotated, and functional enrichment is computed. We
then usually only confirm that the regulatory changes observed conform to the behaviour we expect
from our model. It was even advocated that the method of strong inference –the process of sequential
inductive inference- can provide a much more efficient technique for scientific thinking (Platt, 1964).
So, although we need a HD technique to prove facts, it will not generate hypothesis. Runs of
explanatory analysis are necessary to formulate hypothesis and lay out a research agenda.

To summarize, rather than an antagonism between holism and reductionism or descriptive and
HD, the scientific practice nowadays is often an iterative process that integrates those aspects of
scientific research.

8See for instance (Poon et al., 2016) where the authors reported a very high within host influenza diversity but
the thorough reanalysis from (Xue & Bloom, 2019) showed that this was only due to an experimental artifact related
to pooling of the samples.
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Figure 2.3: A sketch of the main steps of iterative research inquiry that characterise current scientific methods.

2.1.3 What is the scientific method anyway?

When describing modern scientific practice, authors give different accounts, by emphasizing on a
back and forth (Kell & Oliver, 2004), Iteration (Beard & Kushmerick, 2009; Elliott et al., 2016;
O’Malley, Elliott, & Burian, 2010) or even refer to a new dimension of the practice, where model
based hypothesis can be specified in order to test a theory (Voit, 2019). The very interesting account
of the different phases in miRNA research from (O’Malley et al., 2010) shows that researchers have
to alternate between different modes of investigation in order to leverage the tools at their disposal
(Casadevall & Fang, 2008; Fang & Casadevall, 2011). (Elliott et al., 2016) also describe an open-
ended, non-linear process:

“Scientist attempt to answer research questions with observations, field studies, or inte-
grated databases (Sabina Leonelli, 2014), they engage in exploratory inquiry or modelling
exercises to detect patterns in available data (...), or they create new tools, techniques
and methods (Beard & Kushmerick, 2009; O’Malley et al., 2010) – all of which enable
them to test hypothesis, answer questions or gather additional data more effectively.”

Some other authors show how current practice moves from hypothesis generation, translates them
into a model, and makes predictions that are amenable to a HsD method (Beard & Kushmerick,
2009). What is important is that we can extract different ingredients, common to all practices
(Callebaut, 2012) (see Figure 2.3): exploratory inquiry, technology oriented research, and question
driven investigation. Presented from this perspective, this alternance, this back and forth, seems
completely reasonable. Although we started this chapter guided by single methods and theories, we
appreciate now that scientific questions in the Life Sciences are complex and are not amenable to
understanding with a single strategy in mind.

Why did this whole debate emerges in the first place? In my opinion, this stems from an
implicit stance in Systems Biology which says that measuring everything will give us a complete
understanding of the biological system. This idea is commonly shared among scientists so far. A

68



complete understanding will eventually lead us to a core set of true rules that describe the universe.
In the end of the XXth century, Objectivists championed the idea that “there are truth out there
to be discovered, truths that once discovered will form a permanent part of human knowledge” (S.
Weinberg, 2001). Objectivism follows a long line of debates in philosophy of science about realism
and the notion of truth. It bears some familiarity with epistemological reductionism mentioned
earlier (if indeed some absolute truths exist, then they could be reduced into scientific disciplines (S.
Weinberg, 1987)). Although the debate was running for a few centuries among philosophers of
science, objectivism is often implicitly assumed by science practitioners. The question of whether
the theoretical claims of science possess an absolute truth value is not obvious and was already
addressed to by various philosophical schools 9. Among them, criticism came from constructivists,
mainly scientists coming from Humanities and social sciences, who argued that scientific knowledge
is a sort of “social construct”. There is no truth but a consensus that scientists attain regarding
what they say to have found. This lead in the nineties to the Science war between the two extreme
positions.

Figure 2.4: Blind monks examining an elephant, (ca 1814-1818) from Katsushika Hokusai (1760-1849)

Those ideas can be illustrated with an old parable. It is the one of the "Blind monks and
the Elephant" (See figure 2.4 for a reproduction from the Edo period). This story originated in
the ancient Indian subcontinent and a famous poem by John Godfrey Saxe in the 19th century
summarises it well:

It was six men of Indostan
To learning much inclined,

9Pragmatism is for instance a movement which has been criticising realism starting in the late nineteenth century
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Who went to see the Elephant
(Though all of them were blind),
That each by observation
Might satisfy his mind

The First approached the Elephant,
And happening to fall
Against his broad and sturdy side,
At once began to bawl:
“God bless me!—but the Elephant
Is very like a wall!”

And subsequently each blind man has a different interpretation on what the elephant is, a wall, a
snake, a spear, a tree, a fan or a rope. The poem concludes “And so these men of Indostan, disputed
loud and long [...] Though each was partly right, they were all in the wrong!”. The critic from
Saxe was aimed towards religious scholars and their interpretation of the divine, but the parable
can sustain many interesting interpretations. It can illustrate how scientists cope with empirical
evidences: each instrument provides a different measurement (one could say a different perspective),
and we obviously need to conciliate those to obtain a representation of the elephant. In other
words, empirical science has to work by integrating information coming from different perspectives
to understand a phenomenon.

If we now want to apply Weinberg’s objectivist stance, we should add that (1) there is indeed an
elephant in the room and (2) that the monks can ultimately reach a truthful understanding of it. On
the contrary, constructivists would argue that, no matter the number of monks, or how long they
study their part of the Elephant, they will always come up with a social construction explaining what
the animal truly is. Even though they can come to an agreement, the representation they advance
needs not to correspond to a scientific truth. They would add that given that "Reality seems capable
of sustaining more than one account given of it, depending upon the goals of those who engage with
it" (Shapin, 1982, p.194), the ultimate knowledge claims are contigent to the context, they are
shaped by multiple additional factors such as research process, or societal implications at play. In
the end, the constructivists mainly lost this Science wars, which does not mean that we should be
satisfied with objectivism.

Scientific perspectivism was proposed "to develop an understanding of scientific claims that
mediates between the strong objectivism of most scientist [...] and the constructivism found largely
among historians and sociologists of science" (Giere, 2006, p. 3). It substitutes the question of
model and representation in lieu and place of theories and truth. It first invalidates the question of
the existence of the Elephant by moving the center of the debate on our empirical approach to the
world, mediated by instruments measurements. Giere uses the example of Color vision. Color is
perceived as the combination of certain wavelengths that are then transcoded in the retinal system
by cone receptors. It cannot be explained from a complete objectivist point of view. Think for
instance of the color of a red car. It is not an inherent property, it can change with the ambient
lightning or the position of the viewer. One cannot say that it is completely subjective either, as
a color still corresponds to a certain wavelength. Rather, Color vision can be well described by
describing the asymmetrical interaction between the viewer and the object being observed, it is
perspectival. Giere then moves on by elaborating on scientific instruments, showing that they, as
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well "interact with only restricted aspects of the world" (p. 59) and that they "process input from
the environment in ways peculiar to their own makeup" (p. 59). Likewise, scientific theorising can
be seen as fundamentally perspectival. Giere compares scientific models to maps, they are designed
to represent certain aspects of the structure of the world. Like a map, this correspondance only
makes sense when we try to resolve it empirically, e.g. when we use the features represented on the
map to find our way in town. Models do not carry an inherent truth value. Thus, the claims we can
make about the world are always of a conditional form: "According to this highly confirmed theory
(or reliable instrument) the world seems to be such and such" (p. 5-6). We understand also that
if our monks would have had more of a perspectivist take, they would have not gotten into a fight
about the status of the Elephant.

Likely, Van Fraassen (Van Fraassen, 1980), although he has a slightly diverging view on scientific
theories, develops the concept of perspective in representations when he speaks about the theory
of images (the Bildtheorie). Perspective is associated with painting and is the way one projects a
3D scene on a 2D painting. It relates to the content of the representation, and how the elements
represented relate to it. Spatial perspective involves occlusion (revealing what things are like from
one angle is incompatible with simultaneously revealing other parameters), grain (texture-fading),
angle (limited range of depictions) and marginal distortions. Different perspectives can imply the
account for some properties, but using one obliges not accounting for the other (one can see the
interesting analogy with apparently contradicting experiments). That means that such perspectives
cannot be simply combined in a third one. Again, those examples based on images, highlight that
scientific work does not have to aim for an absolute explanation of reality. “Science aims to give us
theories which are empirically adequate; and acceptance of a theory involves as belief only that it
is empirically adequate. This is the statement of the anti-realist position I advocate; I shall call it
constructive empiricism”(Van Fraassen, 1980, p. 10), repeated in (van Fraassen, 2008, p. 317).

Current scientific practice, which involves iterating over various approaches and techniques, can
be well accounted for by perspectivism. This view moves away from the "flat-earth" take of system
biology (one big exhaustive network) and accounts for the complex, multilevel, multiscale character-
istics of biology (Callebaut, 2012). We understand that more data does not necessarily brings more
truth. By interacting with omics data, we may recognise that, according to our current knowledge
in molecular biology and our statistical analysis, "the world seems to be such and such". It helps
put into context the promises and the limitations of the scientific practice with omics data, which is
an empirical verification to validate model and hypothesis to fit with our measurements, based on
a proper integrative agenda. It trivialises cases where different experiments produces observations
that may not seem compatible, in fact according to our limited set of current perspectives. Further,
the notion of complexity mentioned earlier is encompassed in our interactions with the biological
system, and is part of the perspective too (it is only as complex as our instrument and knowledge
allows us to describe it at this point in time).

2.1.4 An intermediary conclusion... and a perspective

Which of the questions asked in the beginning did we answer so far? We saw that the omics data,
besides being an incredible technological revolution and operating at different scale, essentially brings
the scientific methods and techniques we already knew. Further, even though omics experiments
have the potential to provide new hypothesis and theories, those should not be overhyped until
they can really be put in practice and their significance is confirmed after modelling and model
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testing. We also showed that current feeling about Systems biology and the promises of omics data is
overestimated because of the implicit objectivist stance of most scientists. Scientific perspectivism is
a theory which allows to replace current promises and limitations with an empiricist take, where each
experiment and line of evidence are considered together, with data generation and the underlying
model. It is no surprise that current accounts of the vivid field of Data Science convey such a
perspectivist take (Bourne, 2021).

Looking at recent developments, various ways of using omics data are showing integrated research
agendas that are typically perspectivist. A first interesting technique is the use of randomisation (in
the sequence space) as a core experimental principle of the experiment. Thus, it is alleviating some
of the limitations related to descriptive assays. Among multiple examples, let us cite two recent ones
that proposed to uncover the logic of gene regulation by generating millions of random promoter
sequences and monitoring the resulting gene expression (de Boer et al., 2020), or probing mRNA
binding energy by monitoring changes in the protein bound fraction (Smyth et al., 2015)). Although
the assays are still heavily reductionist (the environment is simplified), it is possible, for instance
for the first assay, to build, directly from the data, interpretable models that accurately predict the
expression driven by the promoter sequences: empirical-omics at its best.
Another typical example is coined as multi omics data integration. It combines genome-scale
metabolomic models with omics measurements and constraints on enzymatic reactions derived from
the bibliography to generate and test hypotheses regarding typical reaction constants (Ebrahim et
al., 2016; King et al., 2015). These methods can be sometimes advertised as solving the “Big Data to
Knowledge” challenge. They are mainly providing a framework to integrate modelling with inductive
descriptive science (lower left corner in figure 2.2).

The last example calls for the more generic question of what Big Data in biology means? Would
it be different from omics data we already mentioned until now? Which type of knowledge is the
processing of Big Data creating? Does it justify the creation of large data ressources, rather than
pursuing a clear hypothesis driven agenda?

2.2 Is Big Data driven biology intelligible?

Until now, we considered the questions related to the accumulation, processing, and storage of
raw molecular data (e.g. omics data), but Big Data in Biology can be considered in a broader
epistemological framework. In fact, the very concept of Big Data emerged when digital data could
be accumulated in large quantities (a huge Volume) and at unprecedented pace (a high Velocity).
This pile of digital data can then be mined and interrogated using computational methods and
modelling. The nature of omics is one of the premisses of Big Data in Biology 10. However, the
interpretation of what makes a large Volume or a high Velocity is often contested: those attributes
cannot be defined on an absolute scale. They evolve constantly with technological advances: the
news of James Watson’s genome "sequenced at high speed" in 2008 (it took 4 months), sounds like a
long time in view of the 24h needed for Illumina’s Novaseq to sequence a handful of human genomes.

It is not only about having a lot of data rapidly, the integration of various sources of data (e.g. a
10If the term Big Data was coined in the nineties, let us remind that the accumulation of large quantities of data

was a common feat in science for a long time. Naturalists in the XIXth century already had cope with the storage
and organisation of large collections of data (Strasser, 2012).
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diverse Variety) is often mentioned as an important additional ingredient (Sabina Leonelli, 2020).
It is more about combining everything in a coherent framework and interrogating the resulting
ressources in order to make new claims outside of their original scope. This is clear in biological
research, where building databases/repository allows to access, store and analyse the large amount
of data generated benefits a lot to a diverse array of research communities. The creation of model
organisms databases, building on genome sequencing project, provides a good example. Typically,
the data would be decontextualised –taken out of their native experimental and naming produc-
tion territory, and then recontextualised –transported into a proper ontological framework together
with metadata information (Sabina Leonelli, 2017). The first produced data consisted mainly in
genomic sequences, associated to a significant curatorial work. The second wave of consortium ef-
forts was engaged to broaden our view according to other dimensions of molecular biology. Those
projects, financed in the last two decades, produced large Volume of raw data to deepen our un-
derstanding of model organisms through high throughput functional screens in normal and disease
cells (TAGC, ENCODE, FANTOM projects), to increase our knowledge about populations (1000 or
1001 genome project), to fill in the tree of life (10k genome project, European Reference Genome
Atlas), or to interrogate environmental and ecological data (Tara ocean, Metasub project). Data
from those projects concerns primarily genomic and functional sequencing but annotated images or
other molecular data can also be integrated. Model organism databases pose a challenging curato-
rial work: molecular data need to be linked and captured with an accurate representation of the
complexity and the dynamics of an always evolving organism (Sabina Leonelli, 2017). We can retain
the 3 following “V-words” to be associated with big-data: Volume, Velocity, and Variety 11.

It has to be stated that Big data is not only about generating a large amount of data and
processing it into summary statistics! Data production is the result of a deliberate preparation, it
goes beyond the choice of an instrument and the corresponding techniques needed to process the
raw data. (Big) Data is more than the resulting text files and database schemas. Leonelli pointed
out that data is curated and packaged before entering a database and used a metaphor of “data
journeys” (Sabina Leonelli, 2017). Thus, processing and summaries are a first step in the journey
that data is taking, in order to be further used for new purposes and by other research communities.
To ensure a safe trip –one which will not deform/damage the information carried over by the data-
this first step of data production, analysis and summary has to be circumscribed within a commonly
agreed set of norms and standards. It reminds previous large scale data efforts of the XIXth century,
which developed a common system of measures (the mètre étalon followed by the establishment of
metrology institutes across Europe12). Such enterprises marked the transition of data to be consid-
ered a reusable asset, a commodity in digital form (Sabina Leonelli, 2019).
It is thus important to define standards in experimental techniques for data production and repro-
ducible schemes for data processing. Likely, standardisation efforts emerged for high throughput
data in biology, such as MAQC and SEQC for microarrays and sequencing data (Su et al., 2014),
or the ChIP-Seq best practices within the ENCODE project (see chapter 1). It is still a challenging
enterprise with “biological data on modern organisms[, they] are heterogeneous both in their content
and in their format; [they] are curated and re-purposed to address the needs of highly disparate and

11other properties such as Veracity, Value, Volatility and Validity can also be considered, see (Sabina Leonelli,
2020), (Kitchin, 2014; Laney, 2001) or (Kitchin & McArdle, 2016) for a more in-depth definition

12the first Physikalische-Technische-Reichsanstalt was founded in Berlin in 1887, followed by Paris and London.
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fragmented epistemic communities” (Sabina Leonelli, 2014). The other important development is
about data naming: construct a common set of terms (e.g. an ontology).

Is it sufficient to produce those catalogues and maps, even though they are operating at an
unprecedented scale? Critics emerged with the sequencing of the human genome: such a project is
mainly descriptive and lacks a proper hypothesis to be tested. People argued that the amount of
funding required is too high in comparison to the biological insight that would be obtained with a
set of well designed HD experiments (R. Weinberg, 2010). The cartography efforts engulf a large
amount of funding and is not necessarily paying off in terms of our understanding. Accumulation of
omics experiments does not necessarily bring more than a large and very accurate list of molecular
components (Stern, 2019). What is the point, when no proper question was asked? Indeed large
scale projects bring a low amount of mechanistic insights. The debate around ENCODE come again
to mind. This was also shown by Lopez-Rubio and Ratti when they perform a meta-analysis of the
collection of articles from the TAGC project (López-Rubio & Ratti, 2021). Although justified to
some extent, the properties of large scale data projects postulated by its critics may be inaccurate
and too limiting. For instance a common perception is that the scope of such projects is limited
to the creation of data warehouses and the establishment of data production standards. However,
compiling experiments in a model organism database is a much more general task than simply
building up data repositories. One could say that there are simply no "raw" data in model organism
databases (Sabina Leonelli, 2017). Extending the scope to large scale projects generating omics data
(e.g. ENCODE or TAGC), we could argue that the work involved goes beyond something purely
descriptive. Each RNA-Seq experiment tests for instance thousands of –possibly weak- hypothesis
at the same time. The data represented for visual exploration on the webservers already compiles
results from those experiments, allowing the user to get his own opinion, but within the testing/data
analysis framework of the consortium. This data packaging lays the ground for the next iterations of
hypothesis and modelling from people interrogating the database with particular questions in mind,
and the data is reused outside of its creation ground.

The epithets given to such projects –too descriptive, concerned with the production of lists, a
mere fishing expedition- may also be too short sighted. The focus of the critics is more directed
towards the publications accompanying the original data release and does not consider the lasting
impact of the collection/taxonomic effort on Science. Let us remind that the first long lists of animals
and plants compiled by taxonomists in the modern period paved the way for the unveiling of the
theory of evolution and natural selection. The first technological advances in molecular biology led
us to the validation of synthetic evolution. We are now occupied with a greater task of quantifying
the organisation and the action of living systems at the molecular level and are therefore coping with
higher levels of complexity. Such projects highlighted the limits and the advantages of our current
biological models.

So it is not anymore really a question of knowing if it is "good" or "bad", it is already an im-
portant part of research and has motivated the construction of large data infrastructures such as
the European Bioinformatics Institute. It is however important to keep in mind that one cannot
generate a lot of data just for the sake of it. Those efforts should be done with different goals in
mind to realise large-scale project data as an asset. Again there must be a research agenda. Also
the FAIR principles for data sharing come to mind.

The question seems rather to be able to understand the relation that can be drawn between
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Big Data and knowledge. How far can Big Data be a mean to the automated generation of sci-
entific knowledge? In a very influential presentation in 2007, Jim Gray claimed that we entered a
fourth paradigm, in which we rely more and more heavily on data-intensive work and computational
ressources when doing scientific research. The Data-intensive science paradigm follows the three
first paradigms of experimental evidence, of theoretical science and of modelling/computation, and
can be summarised in two core properties (S. Leonelli, 2012): “One is the intuition that induction
from existing data is vindicated as a crucial form of scientific inference, which can guide and inform
experimental research, and the other is the central role of machines, and thus of automated reason-
ing, in extracting meaningful patterns from data”. Meaningful signal is thus detected by looking for
associations between the different dimensions in the data, e. g. by relying heavily on correlations
to draw conclusions (Mayer-Schönberger & Cukier, 2013). Although traditionally seen as a draw-
back in classical H-D method, correlation and induction were epitomised as an important feature
of intensive data-science, leading to extreme claims such as “correlation supersedes causation” and
a prophetized “end of the theory” (Anderson, 2008). Although this model agnostic view carries
a simplistic discourse on intensive data science, it raises interesting questions about the epistemic
scope of notions such as knowledge or understanding.

Machine Learning (ML) provides an environment for generalising predictions on a target variable
y (a class, a real value), given a set x of covariates that are observed. ML operates inductively by
starting from a training set to learn the machine parameters and evaluate its performance, and then
apply it to new data. The basic goal is to either provide answers on a specifically stated problem
by predicting a response, or to detect structures and patterns in the data –usually by means of
correlations. The application of ML to the Life Sciences has already shown successes, for instance
in image classification (CT-scans, tumor grading). Interestingly in the last decade the practice of
ML has shifted hands, from the development of optimisation techniques for specific problems, to
the generic design of machine architecture by the data practitioners (and the emergence of data
science). More recently, the use of ML went a step forward on the problem of predicting the fold
of a protein from its amino acid sequence. The deep learning machine AlphaFold2 could provide
predictions at an accuracy on par with experimental techniques (Jumper et al., 2021), making an
incredible leap forward to the whole protein structure field. It is interesting to note that the problem
was depicted as being “solved” in the press 13. However “Dramatic ability to predict is not the same
as explanatory understanding” (Nickles, 2018), and we could argue that the know-how to provide a
very accurate answer to a problem is not the same as to know-that a model can explain most of the
phenomenon under scrutiny. From the classical theory-centric view of science, we build knowledge
through claims we can make about the world. We publish those claims in books and journals and
this add it to the corpus of science. Conversely, machines only give very accurate answers, but
usually without justifications. If we are to rely more and more on those systems, "Generative insight
would be replaced by black box consequentialism." (Nickles, 2018).

This tension between knowledge as an ability to predict against knowledge as a way to describe the
world adds interesting questions for our everyday scientific practice (Weinberger, 2017): “We thought
knowledge was about finding the order hidden in the chaos. We thought it was about simplifying
the world. It looks like we were wrong. Knowing the world may require giving up on understanding

13for instance science magazine titled on 2020-11-30: ’The game has changed’. AI triumphs at solving protein
structures
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it”. Indeed expert AI models are mainly black-boxes, and it is simply not possible to comprehend
the model built derive principle by “looking at” the model (for instance the parameters of the fifteen
AF2 models necessitate around 3.5GB of disk space). Ironically, the more we "know-how" to tackle
complex problem with ML, the less we understand about those systems, or how they function as
black boxes. This issue was identified by the ML communities, and the concept of eXplainable AI
(systems which can describe features responsible for a prediction) became more and more prominent
in the last years and has seen multiple developments. Indeed, data-models developed have to be
accountable for their choice, in order to be used into the decision process in health or policy, and
to debunk possible hidden biases that could arise from the data. But XAI analysis are postmortem,
they are performed given a set of datapoints.

This polarity between knowing and understanding also brings back consideration on the va-
lidity of epistemological reductionism (see 2.1.2). Indeed, one exemplary reductionistic idea was
Anfinsen’s dogma/the thermodynamics hypothesis (the structure of a protein is determined by the
physical properties of its sequence alone). It is clear now that, although protein structure can be
accurately predicted from the amino acid sequence, physical models are not the solution, and only
ML managed to crush the problem (at least its first step). This shift in perspective has even been
more pregnant in the domain of Natural Language Processing, where translations based on syntac-
tic models showed their intrinsic limitations as soon as simple, word counts based system started
leveraging terascale corpus data (Nickles, 2018). In fact, there was a significant misunderstanding
hidden in the western science approach to knowledge. We thought that because models, e.g. simple
claims about the world were a beautiful and practical tool to describe it, knowledge should also be
like that. However, the models we build are just a representation of the world, and there is no reason
for reality to be simple nor beautiful. There may not even be any truth that is attainable (remember
the elephant in section 2.1.3). It does not have to worry us if we just want to obtain solutions to
each instance. Although it is alien to our understanding or cognition (Nickles, 2018; Weinberger,
2017) this "know-how" also counts as knowledge. But if we want to understand a problem from our
limited human perspective, a wrong simple model will still be more useful.

Even though the system constructed is not intelligible, it does not mean it is completely theory
free. Indeed, data-intensive science is in a sense agnostic to science, and the main problem is auto-
mated curve fitting. However, data accumulation is not theory free, but done with a set of implicit
questions in mind (even if this concerns a lot of Volume and at a high scale). As demonstrated previ-
ously, it needs to be repurposed to travel to other applications. The use of omics data, being usually
an application of experimental reductionism, is indeed loaded with theories about gene regulations.
Wolfgang Pietsch goes further in the analysis, and uses classificatory trees and non parametric re-
gression as examples to argue further that in those cases ML techniques are theory-laden in an
external sense (for the factors outside the phenomenon) but that the internal connection between
variables are largely theory-free (Pietsch, 2015). Although we do not think that this separation is
always so clear cut for ML (we presented multiple hierarchical models previously where the variables
where connected in a principled way).

Likewise, owing to the descriptive nature of Big Data, causal relationships are also commonly
thought to be unattainable. As written previously, Inductive reasoning is used recurrently. This
is based on the idea that data is present in such Volume and Variety, it can exhaustively covers
all the cases of interest (n = all). Roughly sketched, we see we can apply eliminative induction in
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use to deduce causal relationships (as when promoter activity is summarised using a mutagenesis
experiment, see 2.1.4). Although a very simple type of causality is inferred (the type of influence of a
variable on another is not specified, etc.), Pietsch gave a very detailed account, which demonstrated
that as soon as some properties of data intensive science are fulfilled, eliminative induction can be
used (Pietsch, 2016). AI model can extract some form of causal relationship, and are to some extent
theory-laden, but those same models are "flat" and do not describe a hierarchy, a more diagrammatic
understanding of the elements. In this case, simple intelligible human models are on the contrary
more practical. So AI can find links, even prove them, but those links are rough indication, and
they will never be “novel” (Ratti, 2020).

What is the progress we can envision, the effect of ML and data intensive science, if models
are ultra accurate but not intelligible? Are we abandon the classical goal of science, making claims
about the world? We can turn back to the perspectivist take on representations. We are already
using books, diagrams, or computer systems as cognitive extension devices to help and guide our
interpretation of phenomenon. In particular, advanced data visualisation techniques have proved
very useful. Beyond the success of AlphaFold2, end-to-end learning, where ML is trained to predict
a complex output, is an efficient way of returning representations. Is it foreseeable that instead
of providing intelligible models, we could teach machine to construct intelligible representations?
Attaining this goal, at least from a perspectivist point of view, could be enough: according to this
highly accurate and almost exhaustively trained machine, we can provide a representation of the
world as such and such.
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Fiona, automatic read error correction (Schulz* et al., 2014; David Weese,
Schulz, & Richard, 2017) for genome sequencing experiments
Allogenomics, prediction of chronic graft lost from exome sequencing data
L. Mesnard MD, PhD, Tenon Hospital, Paris

Transcriptomics Annotation of Gene model and structure (Mirauta, Nicolas*, & Richard*†,
2013, 2014; Warren* et al., 2010), of Alternative Splicing Events (Richard*
et al., 2010; Sultan* et al., 2008), and small RNAs analysis (Rogato* et al.,
2014). Analysis of iCLIP/eCLIP Seq data (Krakau, Richard†, & Marsico†,
2017).
P. Nicolas, INRA, Jouy-en-Josas.

MASSIV project: assessing the structural impact of alternative splicing during
evolution (Adelphylosofs; Zea, Laskina, Baudin, Richard†, & Laine†, 2021).
E. Laine and D. Zea, LCQB, J. Roux, Univ. Basel, Basel.

Metagenomics Metasub Consortium: Metagenomics and Metadesign of Subways and Urban
Biomes
Christopher E. Mason, Cornell University, New-York.

Native tongue, Fluent, Advanced, Beginner
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Research Areas:

• Statistical methods for high-throughput sequencing data:

– RNA-Seq and transcriptome analysis (Krakau et al., 2017; Mäder, Nicolas, Richard,
Bessières, & Aymerich, 2011; Mirauta et al., 2013, 2014; Richard* et al., 2010; T.
Steijger et al., 2013; Sultan* et al., 2008; Warren* et al., 2010),

– Non Coding RNA and gene model annotation (Rogato* et al., 2014; Warren* et al., 2010)
– Sequence alignment, detection of gene fusion or genomic variation (Gillet-Markowska et

al., 2015; Hao Hu et al., 2010; A. M. Shrestha et al., 2018).
– Automatic correction of sequencing errors (Schulz* et al., 2014; David Weese et al., 2017).

• Word statistics and Markov chains, Hidden Markov Models (Miele, Bourguignon, Robelin,
Nuel, & Richard, 2005; Richard & Nuel, 2003; Robelin, Richard, & Prum, 2003; Robin,
Daudin, Richard, Sagot, & Schbath, 2002)

• Classification, Protein annotation [31,32]

Software development:

• 9 software tools (Ait-hamlat et al., 2020; Gillet-Markowska et al., 2015; Krakau et al., 2017;
Mirauta et al., 2013, 2014; Schulz* et al., 2014; A. M. Shrestha et al., 2018; Warren* et al.,
2010; Zea et al., 2021) and 4 web services (Richard & Nuel, 2003; Robelin et al., 2003), Ases
webserver

• 1 processing pipeline (H. Hu et al., 2015; Hao Hu et al., 2010), 2 librairies (R and C++) (Miele
et al., 2005; Richard* et al., 2010).

Invited Presentations

[1] Keynote speaker, Polish Bioinformatics Society, 15-17 September 2021.
[2] Keynote speaker, Advanced Genome Science International Symposium, Tokyo University, 10-11
January 2017, http://pags2017.genome-sci.jp/program.html.
[3] Invited lecture, Analysis of Tumoral genome school, Seine-Port, 12-15 May 2014 – Methods for
the analysis of Transcriptome Sequencing Data.
[4] Invited speaker, RNA-Seq Europe, 2013, Basel, 3-5 December 2013, http://rnaseq-europe.com/
speakers – Beyond gene expression: estimate expression levels and detect transcript boundaries from
RNA-seq read counts.
[5] Invited speaker, 21st International Symposium on Mathematical Programming (ISMP2012),
Berlin, 19-24 August 2012 – Fiona: Automatic correction of sequencing errors in genome sequencing
experiments.
[6] Keynote speaker, Next Generation Sequencing Workshop, organized by IBBE-CNR and Bari
University, Bari, 6-8 October 2010, http://mi.caspur.it/workshop_NGS10/ – Methods for the anal-
ysis of RNA-seq data.
[7] Invited speaker, Workshop on Bioinformatics and High throughput sequencing, organized the
ReNaBi network, Paris, 24 March 2010 – Methods for the analysis of RNA-seq data.

Conferences with Proceedings (selection)

[8] Mirauta, B., Nicolas, P. Richard, H. A Sequential Monte Carlo method for estimating transcrip-
tional landscape at base pair level from RNA-Seq data, Journées Ouvertes en Biologie, Informatique
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et Mathématiques (JOBIM), Institut Pasteur, Paris, 28 June- 1st July 2011.
[9] Richard, H., Mucchielli M., Prum B., Képès F., Hidden Markov Models Hierarchical Classification
for Ab-Initio Prediction of Protein Subcellular Localization, ISMB’05, Detroit, June 2005, PLoS CB
poster.
[10] Richard, H., Mucchielli M., Prum B., Képès F. , Discrimination of the subcellular locations of the
yeast proteins by their biological sequence, JOBIM’04, Montréal, june 2004,n◦79.

Communications

[11] Shrestha, AMS, Asai K., Frith M., and Richard, H. A new framework for the identification
of genomic structural variant using joint alignment of reads, Statistical Methods for Post-Genomic
Data, (SMPGD), Lille, 11-12 february 2016.
[12] Richard, H., Weese, D., Holtgrewe, M., Schultz, M. Fiona: A tool for automatic correction of
sequencing errors in genome sequencing experiments, 22nd Annual Workshop on Mathematical and
Statistical Aspects of Molecular Biology, (MASAMB), Berlin, 10-11 april 2012.
[13] Mirauta, B., Nicolas, P., Richard, H. Sequential Monte Carlo - Particle Gibbs inference of
Transcriptional Landscape from RNA-Seq Data, Mathematical and Statistical Aspects of Molecular
Biology (MASAMB), Berlin, 10-11 april 2012.

Invited Seminars

• Tokyo University 05.26.2017, and Keio University 05.12.2017, Tokyo,

• Ho Chi Minh city University of Technology, Ho Chi Minh City, 07.14.2016,

• CriStaL laboratory, Lille University, Lille, 04.27.2016,

• Lake Arrowhead, Institute for Pure and Applied Mathematics, Los Angeles, 06.11.2014.

• Institute for Cell Biology, UnikKlinik, RWTH, Aachen, 08.04.2014.

• Computational Biology Research Center (CBRC), Tokyo, 02.23.2012.

• Génoscope, Evry, 03.26.2009 – Lab. d’Informatique, de Robotique et de Microélectronique de
Montpellier (LIRMM), Montpellier, 01.27.2009 – – Laboratoire Biométrie et Biologie Evolutive
(LBBE), Lyon, 01.22.2009. – University College Dublin (UCD), Dublin, 11.21.2008.

Service

• Referee for the international scientific journals: Genome Biology, Nucleic Acids Research,
Bioinformatics, BMC genomics, BMC bioinformatics, Plos One.

• Organization of conference: Statistical Methods for Post-Genomic Data (SMPGD), an
international conference which aims at gathering statisticians, computer scientists, and biol-
ogists to discuss new statistical methodologies for the analysis of high throughput biological
data (http://smpgd2014.sciencesconf.org/ tenth edition, with more than 100 participants)

• Program Commitee: ECCB 2016 (La Hague, Netherland), JOBIM2017 (Lille, France).

• Japan Society for the promotion of Science alumni (JSPS): Organization of informa-
tion meeting for promoting the JSPS program (2016).
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Students supervision

Graduate students

• (2017- 2021) Shared PhD supervision of L. David (Ministry of research fellowship), on the
functional annotation of large scale metagenomic data.

• (2014- 2018) Shared PhD supervision of S. Krakau, (International Max Planck research
School) on methods for predicting RNA-protein interaction from CLIP-Seq data.

• (2010- Dec. 2014) Shared PhD supervision of B. Mirauta (Ministry of research fellowship), on
the development of method estimating transcription rate from RNA-Seq data at the basepair
level.

• (2007 to 2010) Shared PhD supervision of M. H Schulz, (International Max Planck research
School) on a method for the detection and quantification of alternative splicing event on RNA-
Seq data.

Master Students

• (March-September 2021), joint with E. Laine: V. Lombard on alternative splicing inspired
protein design.

• (March-September 2020), joint with L. Mesnard: P. Delaugère on the genotyping of the MUC1
gene using k-mers.

• (January-July 2020), joint with L. Mesnard: A. Hamza on the analysis of structural variant
detection on triplets.

• (February-July 2019), joint with L. Mesnard: M. Sentucq on benchmarking of structural vari-
ant detection using

• (February-July 2017), joint with A. Carbone and R. Vicedomini: L. David on targeted assembly
of metagenomics data.

• (February-June 2017), joint with L. Mesnard: R. Clerc on the refinement of the allogenomics
score for the prediction of renal graft chronic failure.

• (April-September 2014), joint with E. Laine: A. Ait-Amlat on the phylogenetic reconstruction
of transcript isoforms evolution

• (April-September 2014), M. Bessoul on the analysis of the periodicity in the small RNA profiles
of the diatom P. tricornutum.

• (February-August 2013), M. Bessoul, on the development of a method for the inference of
methylation levels from bisulfite sequencing experiments.

• (April-September 2010), B. Mirauta which followed with a PhD thesis (see above)

• (Since 2010), I also supervised multiple research projects with 1st year master students. Below
is a selection of the subjects: Analysis of bisulfite sequencing data, Correcting sequencing errors
by a suffix tree approach, Annotating proteins with variable order markov chains, Evaluating
various segmentation methods for the analysis of transcriptome data.
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Teaching

I give below the broad themes corresponding for the various courses I taught in.

Bioinformatics: Next generation sequence data analysis bachelor & master
sequence analysis and word statistics. "
Microarray/RNA-Seq analysis. "
Phylogeny. "

Statistics: Multivariate data analysis and Hypothesis testing. bachelor
Classification and Pattern Matching. bachelor & master
Markovian models "

Computer Science: Algorithms. bachelor
Programming (C & C++). "
Discrete structures "
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