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Abstract

In the present thesis, we are interested in the description of the dynamics of flows on large scales, like the
atmospheric and ocean currents on the Earth. In this context, the fluids are governed by rotational, weak
compressibility and stratification effects, whose importance is “measured” by adimensional numbers: the
Rossby, Mach and Froude numbers respectively. More those three physical parameters are small, more
the relative effects are strong.

The first part of the thesis is dedicated to the analysis of a 3-D multi-scale problem called the full
Navier-Stokes-Fourier system where variations in density and temperature are taken into account and
in addition the dynamics is influenced by the action of Coriolis, centrifugal and gravitational forces.
We study, in the framework of weak solutions, the combined incompressible and fast rotation limits
in the regime of small Mach, Froude and Rossby numbers (Ma, F'r, Ro respectively) and for general
ill-prepared initial data. In the so-called multi-scale regime where some effect is predominant in the
motion, precisely when the Mach number is of higher order than the Rossby number, we prove that the
limit dynamics is described by an incompressible Oberbeck-Boussinesq type system. It is worth noticing
that the velocity field is purely horizontal at the limit (according to the so-renowned Taylor-Proudman
theorem in geophysics), but surprisingly vertical effects on the temperature equation appear. These
stratification effects are completely absent when Fr exceeds v/Ma, whereas they suddenly come into
play as soon as one reaches the endpoint scaling Fr = v/Ma.

Conversely, when the Mach and Rossby numbers have the same order of magnitude (the isotropic
scaling), and in absence of the centrifugal force, we show convergence towards a quasi-geostrophic type
equation for a stream-function of the limit velocity field, coupled with a transport-diffusion equation for
a quantity that mixes the target density and temperature profiles.

Following “le fil rouge” of the asymptotic analysis, in the second part of the thesis, we examine
the effects of high rotation (small Rossby number) for the 2-D incompressible density-dependent Euler
system. With respect to the previous problem, now we deal with an incompressible system with a
hyperbolic structure, where the viscosity effects are neglected. More precisely, the main goal is to
perform the singular limit in the fast rotation regime, showing the convergence of the Euler equations to
a quasi-homogeneous type system. The limit system is a coupled system of a transport equation for the
density and a momentum equation for the velocity with a non-linear term of lower order, which combines
the effects of fluctuations of the density and the velocity field. For the convergence process, a core point
is to develop uniform (with respect to Ro) estimates in high regularity norms not to deteriorate the
lifespan of solutions. Moreover, as a sub-product of the local well-posedness analysis (recall that the
global existence of solutions is an open problem even in 2-D), we find an “asymptotically global” well-
posedness result: for small densities, the lifespan of solutions to the primitive and limiting systems tend
to infinity.

The proof of convergence of the two primitive problems (the Navier-Stokes-Fourier system and the
Euler system, respectively) towards the reduced models is based on a compensated compactness argu-
ment. The key point is to use the structure of the underlying system of Poincaré waves in order to
identify some compactness properties for suitable quantities. Compared to previous results, our method
enables to treat the whole range of parameters in the multi-scale problem, and also to reach and go
beyond the “critical” choice F'r = vV Ma.

Keywords: Navier-Stokes-Fourier system; barotropic Navier-Stokes-Coriolis system; density-dependent incompressible
Euler system; Coriolis force; gravity; stratification effects; singular perturbation problem; multi-scale limit; low Mach,

Froude and Rossby numbers; compensated compactness.
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Résumé

Dans cette these, nous nous intéressons a la description de la dynamique des fluides a grande échelle,
comme les courants atmosphériques et océaniques sur la planete Terre. Dans ce contexte, les fluides
sont dirigés par des effets de rotation, de faible compressibilité et de stratification, dont 'importance
est “mesurée” par des nombres adimensionnels: respectivement les nombres de Rossby, Mach et Froude.
Plus ces trois parametres physiques sont petits, plus les relatifs effets sont importants.

La premiere partie de la these est ensuite consacrée a ’analyse d’un probleme multi-échelle 3-D appelé
le systeme de Navier-Stokes-Fourier complet ou les variations de densité et de température sont prises en
compte et en plus la dynamique est influencée par I'action de la force de Coriolis et des forces centrifuge et
gravitationnelle. Nous étudions, dans le cadre des solutions faibles, la limite incompressible et a rotation
rapide dans le régime des petits nombres de Mach, Froude et Rossby (Ma, F'r, Ro respectivement) et
pour des données initiales générales mal préparées. Dans le régime appelé multi-échelles ou un effet est
prédominant dans le mouvement, précisément lorsque le nombre de Mach est d’ordre supérieur au nombre
de Rossby, nous montrons que la dynamique limite est décrite par un systeme incompressible de type
Oberbeck-Boussinesq. Il est a noter que le champ de vitesse est purement horizontal & la limite (selon
le théoreme si renommé de Taylor-Proudman en géophysique), mais étonnamment des effets verticaux
apparaissent dans l’équation de la température. Ces effets de stratification sont totalement absents
lorsque Fr dépasse v/ Ma, alors qu’ils entrent en jeu immédiatement quand on considere Iéchelle critique
Fr=+vMa.

A Dinverse, lorsque les nombres de Mach et Rossby ont le méme ordre de grandeur (’échelle appelée
isotrope), et en absence de la force centrifuge, on montre la convergence vers une équation de type
quasi-géostrophique pour une fonction de flux liée au champ de vitesse limite, couplée a une équation de
transport-diffusion pour une quantité qui mélange les profils limites de densité et de température.

En suivant le fil rouge de I'analyse asymptotique, dans la deuxieéme partie de la thése, nous examinons
les effets de la rotation rapide (petit nombre de Rossby) pour le systeme d’Euler incompressible 2-D
dépendant de la densité. Par rapport au probleme précédent, maintenant nous sommes en présence
d’un systéme incompressible et avec une structure hyperbolique ou les effets de viscosité sont négligés.
Plus précisément, I'objectif principal est d’effectuer la limite singuliere dans le régime de rotation rapide,
montrant la convergence des équations d’Euler vers un systeme de type quasi-homogene. Le systeme
limite est un systeme couplé d’'une équation de transport pour la densité et d'une équation de quantité
de mouvement pour la vitesse avec un terme non linéaire d’ordre inférieur, qui combine les effets des
fluctuations de la densité avec le champ de vitesse. Pour atteindre ce but, un point central est de
développer des estimations uniformes (par rapport a Ro) dans des normes de haute régularité, pour ne
pas détériorer la durée de vie des solutions. De plus, en tant que sous-produit de I’analyse du caractere
bien posé local (rappelons que l’existence globale de solutions est un probléme ouvert méme en 2-D),
nous trouvons un résultat de caractere bien posé “asymptotiquement globale”: pour des petites densités,
la durée de vie des solutions des systemes primitif et limite tend vers I'infini.

La preuve de la convergence des deux problemes primitifs (respectivement le systeme de Navier-
Stokes-Fourier et le systéme d’Euler) vers les modeles réduits est basée sur un argument de compacité par
compensation. Le point clé est d’utiliser la structure du systeme sous-jacent, appelé systeme d’ondes de
Poincaré, afin d’identifier certaines propriétés de compacité pour des quantités appropriées. Par rapport
aux résultats précédents, notre méthode permet de traiter I’ensemble des parametres du probleme multi-
échelles, et aussi pour atteindre et dépasser le choix “critique” Fr = v/Ma.

Mot clés: systeme de Navier-Stokes-Fourier; systéme barotrope de Navier-Stokes-Coriolis; systéme d’Euler incompressible
dépendant de la densité; force de Coriolis; gravité; effets de stratification; probleme de perturbation singuliére ; limite multi-

échelles; faibles nombres de Mach, Froude et Rossby; compacité par compensation.
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Notation and conventions

Let B ¢ R? with d > 2. Throughout the whole thesis, the symbol 15 denotes the characteristic function
of B. The notation C2°(B) stands for the space of co-times continuously differentiable functions on RY
and having compact support in B. The dual space D’'(B) is the space of distributions on B. We use also
the notation C9 ([0, 7]; X), with X a Banach space, to refer to the space of continuous in time functions
with values in X endowed with its weak topology.

Given p € [1,400], by LP(B) we mean the classical space of Lebesgue measurable functions g, where |g|P
is integrable over the set B (with the usual modifications for the case p = +00). We use also the notation
L7.(L9) to indicate the space Lp([O,T];Lq(B)), with 7' > 0. Given k > 0, we denote by W*?(B) the
Sobolev space of functions which belongs to LP(B) together with all their derivatives up to order k. When
p = 2, we alternately use the notation W*2(B) and H*(B). We denote by W#P?(B) the corresponding
homogeneous Sobolev spaces, i.e. W¢P(B) = {g € LL (B) : D% € LP(B), |a| = k}. Recall that Wk
is the completion of C°(B) with respect to the LP norm of the k-th order derivatives. Moreover, the
notation B;y,,([)’) stands for the Besov spaces on B that are interpolation spaces between the Sobolev
ones.

The symbol M™(B) denotes the cone of non-negative Borel measures on B. For the sake of simplicity,
we will omit from the notation the set B, that we will explicitly point out if needed.

In the whole thesis, the symbols ¢ and C will denote generic multiplicative constants, which may
change from line to line, and which do not depend on the small parameter €. Sometimes, we will
explicitly point out the quantities which these constants depend on, by putting them inside brackets.
In addition, we agree to write f ~ g whenever we have cg < f < Cg, and f < g if f < Cg.

Let ( fE)o <c<1 Pe a family of functions in a normed space Y. If this family of functions is bounded in

Y, we use the notation (fg)e cY.

As we will see in the sequel (we refer in particular to Chapters 2 and 3), one of the main features
of our asymptotic analysis is that the limit-flow will be two-dimensional and horizontal along the plane
orthogonal to the rotation axis. Then, let us introduce some notation to describe better this phenomenon.

Let Q be a domain in R?. We decompose x € Q into x = (2, 23), with 2" € R? denoting its
horizontal component. Analogously, for a vector-field v = (v',v?,v3) € R?, we set v" = (v!,v?) and we
define the differential operators V;, and divy, as the usual operators, but acting just with respect to z".
In addition, we define the operator Vﬁ = (—82 ) 81).

Finally, we introduce the Helmholtz projection H[wv] of a vector field v € LP(2;R?) on the subspace

of divergence-free vector fields. It is defined by the decomposition
v =Hv|+ V, U,

where ¥ € W'» () is the unique solution of
/ V¥ - Vypdr = / v-Vepdr forall p € CX(Q),
Q Q

which formally means: AV = dive and v - n|sq = 0.
The symbol Hj, denotes instead the Helmholtz projection on R2. Observe that, in the sense of Fourier
multipliers, one has Hy, f = —Vﬁ(—Ah)_lcurlhf.
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Moreover, since we will deal with a periodic problem in the a3-variable, we also introduce the following
decomposition: for a vector-field X, we write

~ 1
X(z) = (X)(z") + X (x) with (X)) (z") := T X (z", 23) da?, (0OSC)
'H‘l
where T! := [—1,1]/ ~ is the one-dimensional flat torus (here ~ denotes the equivalence relation which
q

identifies —1 and 1) and "]I'l‘ denotes its Lebesgue measure. Notice that X has zero vertical average,

and therefore we can write X (z) = d3Z(z) with Z having zero vertical average as well.



Contributions of the thesis

The Navier-Stokes-Fourier problem: some physical insight

In this thesis, we devote ourselves to the study of the behaviour of fluid flows characterized by large time
and space scales. Typical examples of those flows are currents in the atmosphere and the ocean, but of
course there are many other cases where such fluids occur out of the Earth, like flows on stars or other
celestial bodies. At those scales, the effects of rotation of the ambient space (which in the case of oceans
or atmosphere is the Earth) are not negligible, and the fluid motion is influenced by the action of a strong
Coriolis force. There are two other features that characterize the dynamics of these flows, usually called
geophysical flows (see [19], [62] and [69], for instance): the compressibility or incompressibility of the fluid
and the stratification effects (i.e. density variations, essentially due to the gravity). The relevance of the
previous attributes is “measured” by introducing, in the mathematical model, three positive adimensional
parameters which, for the geophysical flows, are assumed to be small. Those parameters are:

e the Mach number Ma, which sets the size of isentropic departures from incompressible flows: the
more Ma is small, the more compressibility effects are low;

e the Froude number F'r, which measures the importance of the stratification effects in the dynamics:
the more F'r is small, the more gravitational effects are strong;

e the Rossby number Ro, that is related to the rotation of the ambient system: when Ro is very
small, the effects of the fast rotation are predominant in the dynamics.

We adopt a simplistic assumption (often assumed in physical and mathematical studies) which consists
in restricting the attention to flows at mid-latitudes, i.e. flows which take place far enough from the
poles and the equatorial zone. In this context, the variations of rotational effects due to the latitude are
negligible.

Denote by o, ¥ > 0 the density and the absolute temperature of the fluid, respectively, and by u € R3
its velocity field: the full 3-D Navier-Stokes-Fourier system in its non-dimensional form, can be written
(see e.g. [39]) as

0o+ div (ou) =0

X
Dy(ou) + div (ou @ u) + 222 4 v, p(o,0)

Ro Ma 0 . (NSF)

= divS(0, Vou) + 55 Vol + 2 5 Vel
9, V0
815(@5(@719)) + div (gs(g, 19)u) + div (M) =0,
which is setted in the infinite straight 3-D strip:
Q = R*x]0,1]. (DOM)

X
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In system (NSF) above, the functions s,q,o are the specific entropy, the heat flux and the entropy
production rate respectively, and S is the viscous stress tensor, which satisfies Newton’s rheological law
(see Subsections 2.1.1.1 and 2.1.1.2 for the more precise formulation).

The Coriolis force is represented by

Clo,u) = % es X ou, (COR)
where e3 = (0,0,1) and the symbol x stands for the classical external product of vectors in R3. In
particular, the previous definition implies that the rotation takes place around the vertical axis, and
its strength does not depend on the latitude (see e.g. [19] and [62] for details). We point out that,
despite all those simplifications, the obtained model is already able to capture several physically relevant
phenomena occurring in the dynamics of geophysical flows: the so-called Taylor-Proudman theorem, the
formation of Ekman layers and the propagation of Poincaré waves. We refer to [15] for a more in-depth
discussion. In the present thesis, we avoid boundary layer effects, i.e. the issue linked to the Ekman
layers, by imposing complete-slip boundary conditions.

As established by the Taylor-Proudman theorem in geophysics, the fast rotation imposes a certain
rigidity /stability, forcing the motion to take place on planes orthogonal to the rotation axis. Therefore,
the dynamics becomes purely two-dimensional and horizontal, and the fluid tends to move in vertical
columns.

However, such an ideal configuration is hindered by another fundamental force acting at geophysical
scales, the gravity, which works to restore vertical stratification of the density. The gravitational force is
described in system (NSF) by the term

where in our case G(r) = G(z%) = —2°. Moreover, the gravitational effects are weakened by the
presence of the centrifugal force
1

= — =,

with F(x) = |2"|?. Such force is an inertial force that, at mid-latitude, slightly shifts the direction of the
gravity.

Thus, the competition between the stabilisation consequences, due to the rotational effects, and the
vertical stratification (due to gravity), is translated in the model into the competition between the orders
of magnitude of Ro and F'r.

Actually, it turns out that the gravity G acts in combination with the pressure force:

1
B2, 9) = 773 Var(2,9),
where p is a known smooth function of the density and the temperature of the fluid (see Subsection
2.1.1.2).

We notice the fact that the terms €, G, B and § enter into play in the model with a large prefactor,

therefore our aim is to study the systems when Ma, Fr and Ro are small in different regimes.

The multi-scale analysis

At the mathematical level, in the last 30 years there has been a huge amount of works devoted to the
rigorous justification, in various functional frameworks, of the reduced models considered in geophysics.

Reviewing the whole literature about this topic goes far beyond the scopes of this introductory part,
therefore we make the choice of reporting only the works which deal with the presence of the Coriolis
force (COR). We also decide to postpone, to the next part, the discussion about the incompressible
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models, because less pertinent for multi-scale analysis, due to the rigidity imposed by the divergence-free
constraint on the velocity field of the fluid.

The framework of compressible fluid models, instead, provides a much richer setting for the multi-
scale analysis of geophysical flows. In addition, we choose to focus our attention mostly on works dealing
with viscous fluids and which perform the asymptotic study for general ill-prepared initial data.

Previous results

First results in the above direction were obtained by Feireisl, Gallagher and Novotny in [35] and together
with Gérard-Varet in [34], for the barotropic Navier-Stokes system (see also [11] for a preliminary study
and [46] for the analysis of equatorial waves). There, the authors investigated the combined low Rossby
number regime (fast rotation effects) with low Mach number regime (weak compressibility of the fluid)
under the scaling

Ro = ¢ (LOW RO)
Ma = ™ with  m >0, (LOW MA)

where ¢ €]0,1] is a small parameter, which one lets go to 0 in order to derive the reduced model. In
the case when m = 1 in (LOW MA), the system presents an isotropic scaling, since Ro and Ma act at
the same order of magnitude and the pressure and rotation terms keep in balance (the so-called quasi-
geostrophic balance) at the limit. The limit system is identified as the so-called quasi-geostrophic equation
for a stream-function of the target velocity field. In [34] when m > 1 and with in addition the centrifugal
force, instead, the pressure term predominates (over the Coriolis force) in the dynamics of the fluid. In
this case, the limit system is described by a 2-D incompressible Navier-Stokes system and the difficulties
generated by the anisotropy of scaling are overcome by using dispersive estimates.

Afterwards, Feireisl and Novotny continued the multi-scale analysis for the same system without
the centrifugal force term yet, by considering the effects of a low stratification, i.e. Ma/Fr — 0 when
e — 01 (see [41], [40]). We refer to [29] for a similar study in the context of capillary models, where
the choice m = 1 was made, but the anisotropy was given by the scaling fixed for the internal forces
term (the so-called Korteweg stress tensor). In addition, we have to mention [30] for the case of large
Mach numbers with respect to the Rossby parameter, namely 0 < m < 1 in (LOW MA). Since, in that
instance, the pressure gradient is not strong enough to compensate the Coriolis force, in order to find
some relevant limit dynamics one has to penalise the bulk viscosity coefficient.

The analysis for models presenting also heat transfer is much more recent, and has begun with the
work [52] by Kwon, Maltese and Novotny. In that paper, the authors considered a multi-scale problem
for the full Navier-Stokes-Fourier system with Coriolis and gravitational forces (F' = 0 therein), taking
the scaling

Fr =¢&", with 1 <n < (LOW FR)
In particular, in that paper, the choice (LOW FR) implied that m > 2 and the case n = m/2 was
left open. Similar restrictions on the parameters can be found in [40] for the barotropic model. Such
restrictions has to be ascribed to the techniques used for proving convergence, which are based on a
combination of relative energy /relative entropy method with dispersive estimates derived from oscillatory
integrals (notice that an even larger restriction, m > 10, appears in [34]). On the other hand, it is worth
underlying that the relative energy methods allow to get a precise rate of convergence and to consider
also inviscid and non-diffusive limits (in those cases, one does not dispose of a uniform bound for V9
and on V,u). The case when m = 1 was handled in the subsequent work [53] by Kwon and Novotny,
resorting to similar techniques (however, the gravitational term is not penalised at all).
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Novelties

The first part of this thesis is devoted to the analysis of multi-scale problems, by focusing on the full
Navier-Stokes-Fourier system introduced in (NSF). In a first instance, we improve the choice of scaling
(LOW FR) taking the endpoint case n = m/2 with m > 1 (this is the scaling adopted throughout the
Chapter 2). Of course, we are still in a regime of low stratification, since Ma/Fr — 0, but having
Fr = v/Ma allows us to capture some additional qualitative properties on the limit dynamics. In
addition, we add to the system the centrifugal force term V,F' (in the spirit of [34]), which is a source
of technical troubles, due to its unboundedness. Let us now comment all these issues in detail.

First of all, in absence of the centrifugal force, namely when F' = 0, we are able to perform incompress-
ible, mild stratification and fast rotation limits for the whole range of values of m > 1, in the framework
of finite energy weak solutions to the Navier-Stokes-Fourier system (NSF) and for general ill-prepared
initial data. In the case m > 1, the incompressibility and stratification effects are predominant with
respect to the Coriolis force: then we prove convergence to the well-known Oberbeck-Boussinesq system
(see for instance Paragraph 1.6.2 of [72] for physical insights about that system), giving a rigorous justi-
fication to this approximate model in the context of fast rotating fluids. Thus, we can state the following
theorem (see Theorem 2.1.10 for the accurate statement).

Theorem 1 Consider system (NSF). Let Q = R?x]0,1[. Let F = |2"? and G = —23. Take n = m,/2
and either m > 2, orm > 1 and F = 0. Then,

0. — 1
1
R=% -~ *~R
€
u. =~ U
Ve — 0
65'— Em 46,
€

where in accordance to the Taylor-Proudman theorem, one has
U = (U",0), U =U"t, 2", div,U" = 0.

Moreover, <Uh, R, @) solves, in the sense of distributions, the incompressible Oberbeck-Boussinesq type
system

U" + divy, <Uh ® Uh) Vil — u(@)ARU" = 83(m)(RYV, F
90 + div,(OU") — k(9)A® = IU"-V,G
Vz (8op(1,9) R + 9yp(1,9) ©) = V,G + 62(m) V. F,

where G is the sum of external force G + 6o(m)F, T € D' and 53(m) = 1 if m = 2, da(m) = 0 otherwise.

We point out that the target velocity field is 2-dimensional, according to the celebrated Taylor-
Proudman theorem in geophysics: in the limit of high rotation, the fluid motion tends to have a planar
behaviour, it takes place on planes orthogonal to the rotation axis (i.e. horizontal planes in our model)
and is essentially constant along the vertical direction. We refer to [19], [62] and [69] for more details
on the physical side. Notice however that, although the limit dynamics is purely horizontal, the limit
density and temperature variations, R and © respectively, appear to be stratified: this is the main effect
of taking n = m/2 for the Froude number in (LOW FR). This is also the main qualitative property
which is new here, with respect to the previous studies, and justifies the epithet of “critical” scaling.

When m = 1, instead, all the forces act at the same scale, and then they balance each other asymp-
totically for e — 0. As a result, the limit motion is described by the so-called quasi-geostrophic equation
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for a suitable function ¢, which is linked to R and © (respectively, the target density and temperature
variations) and to the gravity, and which plays the role of a stream-function for the limit velocity field.
This quasi-geostrophic equation is coupled with a scalar transport-diffusion equation for a new quantity
T, mixing R and ©. The precise statement of the following theorem can be found in Paragraph 2.1.2.

Theorem 2 Consider system (NSF). Let Q = R?>x]0,1[. Let F =0 and G = —23. Take m =1 and
n = 1/2. Then, one has the same convergences found in Theorem 1 and U satisfies the Taylor-Proudman
theorem.
We define
Y := 9,s(1,9)R + dys(1,9) ©

then q = q(t,xh) and UM = Vﬁq. Moreover, the couple (q, T) satisfies, in the sense of distributions,
0 (¢ — Ang) = Virg - Vi (Ang) + p(0)Afg = (X)

Y +Virq- VY — k(0)AY = k(9) Apq,
where (X) is a suitable “external” force.

This is in the spirit of the result in [53], but once again, here we capture also gravitational effects in the
limit, so that we cannot say anymore that R and © (and then Y) are horizontal; on the contrary, and
somehow surprisingly, ¢ and the target velocity U are purely horizontal.

At this point, let us make a couple of remarks. First of all, we mention that, as announced above,
we are able to add to the system the effects of the centrifugal force V,F. Unfortunately, in this case the
restriction m > 2 appears (which is still less severe than the ones imposed in [34], [40] and [52]). However,
we show that such a restriction is not of technical nature, but it is hidden in the structure of the wave
system (see Proposition 2.1.7 and Remark 2.2.6). The result for F' # 0 is analogous to the one presented
above for the case F' = 0 and m > 1: when m > 2, the anisotropy of scaling is too large in order to
see any effect due to F' in the limit, and no qualitative differences appear with respect to the instance
when F' = 0; when m = 2, instead, additional terms, related to F', appear in the Oberbeck-Boussinesq
system (see Theorem 1). In any case, the analysis will be considerably more complicated, since F' is
not bounded in € (defined in (DOM) above) and this will demand an additional localisation procedure
(already employed in [34]).

We also point out that the classical existence theory of finite energy weak solutions for (NSF') requires
the physical domain to be a smooth bounded subset of R3 (see [39] for a comprehensive study). The
theory was later extended in [50] to cover the case of unbounded domains, and this might appear suitable
for us in view of (DOM). Nonetheless, the notion of weak solutions developed in [50] is somehow milder
than the classical one (the authors speak in fact of very weak solutions), inasmuch as the usual weak
formulation of the entropy balance, i.e. the third equation in (NSF), has to be replaced by an inequality
in the sense of distributions. Now, such a formulation is not convenient for us, because, when deriving the
system of acoustic-Poincaré waves, we need to combine the mass conservation and the entropy balance
equations together. In particular, this requires to have true equalities, satisfied in the (classical) weak
sense. In order to overcome this problem, we resort to the technique of invading domains (see e.g.
Chapter 8 of [39], [44] and [71]): namely, for each € €]0, 1], we solve system (NSF), with the choice
n = m/2 for the Froude number, in a smooth bounded domain €., where (Qa)a converges (in a suitable
sense) to Q when ¢ — 0T, with a rate higher than the wave propagation speed (which is proportional to
£~™). Such an “approximation procedure” will need some extra work.

In order to prove our results, and get the improvement on the values of the different parameters,
we propose a unified approach, which actually works both for the case m > 1 (allowing us to treat the
anisotropy of scaling quite easily) and for the case m = 1 (allowing us to treat the more complicate
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singular perturbation operator). This approach is based on compensated compactness arguments, firstly
employed by Lions and Masmoudi in [57] for dealing with the incompressible limit of the barotropic
Navier-Stokes equations, and later adapted by Gallagher and Saint-Raymond in [47] to the case of fast
rotating (incompressible homogeneous) fluids. More recent applications of that method in the context of
geophysical flows can be found in [34], [28], [31] and [30].

The quoted method does not give a quantitative convergence at all, but only qualitative. The tech-
nique is purely based on the algebraic structure of the system, which allows to find smallness (and
vanishing to the limit) of suitable non-linear quantities, and fundamental compactness properties for
other quantities. These strong convergence properties are by no means evident, because the singular
terms are responsible for strong oscillations in time (the so-called acoustic-Poincaré waves) of the solu-
tions, which may finally prevent the convergence of the non-linearities. Nonetheless, a fine study of the
system for acoustic-Poincaré waves actually reveals compactness (for any m > 1 if F' = 0, for m > 2 if
F +#0) of a special quantity 7., which combines (roughly speaking) the vertical averages of the momen-
tum V. = p.u. (of its vorticity, in fact) and of another function Z., obtained as a linear combination of
density and temperature variations (see Subsections 2.3.2.1 and 2.4.2 for more details in this respect).
Similar compactness properties have been highlighted in [31] for incompressible density-dependent fluids
in 2-D, and in [30] for treating a multi-scale problem at “large” Mach numbers. In the end, the strong
convergence of (’yg)s turns out to be enough to take the limit in the convective term, and to complete
the proof of our results.

To conclude this part, let us mention that we expect the same technique to enable us to treat also
the case m = 1 and F' # 0 (this was the case in [34], for barotropic flows). Nonetheless, the presence of
heat transfer deeply complicates the wave system, and new technical difficulties arise in the analysis of
the convective term (the approach of [34], in the case of constant temperature, does not work here). For
that reason, here we are not able to handle that case, which still remains open.

Another feature that remains uncovered in our analysis is the strong stratification regime, namely
when the ratio Ma/Fr is of order O(1). This regime is particularly delicate for fast rotating fluids. This
is in stark contrast with the results available about the derivation of the anelastic approximation, where
rotation is neglected: we refer e.g. to [59], [12], [37] and, more recently, [32] (see also [39] and references
therein for a more detailed account of previous works). The reason for that has to be ascribed exactly
to the competition between vertical stratification (due to gravity) and horizontal stability (which the
Coriolis force tends to impose): in the strong stratification regime, vertical oscillations of the solution
(seem to) persist in the limit, and the available techniques do not allow at present to deal with this
problem in its full generality. Nonetheless, partial results have been obtained in the case of well-prepared
initial data, by means of a relative entropy method: we refer to [38] for the first result, where the mean
motion is derived, and to [7] for an analysis of Ekman boundary layers in that framework.

Going beyond the critical scaling F'r = v Ma

At this point, we are interested in going beyond the critical choice F'r = v/Ma considered in the previous
paragraph and we would investigate other regimes where the stratification has an even more important
effect.

For clarity of exposition, we neglect the centrifugal effects and the heat transfer process in the fluid,
focusing on the classical barotropic Navier-Stokes system:

Oro + div (ou) =0

(NSC)
. e3 X pu 1 L 0
O(ou) + div (ou @ u) + o + o V.p(o) = divS(V,u) + T2 V.G.

The more general system presented in (NSF) can be handled at the price of additional technicalities
already discussed above (remember, in particular, the restriction on the Mach number due to the presence
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of the centrifugal force). The goal now is to perform the asymptotic limit for system (NSC) in the regimes
when we assume
Ma =™, Ro=c¢ and Fr=¢"

with
. 1
either m>1 and m < 2n < m+1, or m =1 and §<n<1.

The restriction n < 1 when m = 1 is imposed in order to avoid a strong stratification regime: as already
mentioned before, it is not clear at present how to deal with this case for general ill-prepared initial
data, as all the available techniques seem to break down in that case. On the other hand, the restriction
2n <m+1 (for m > 1) looks to be of technical nature. However, it comes out naturally in at least two
points of our analysis (see e.g. Subsections 3.2.2 and 3.3.2.2), and it is not clear to us if, and how, it
is possible to bypass it and consider the remaining range of values (m + 1)/2 < n < m. Let us point
out that, in our considerations, the relation n < m holds always true, so we will always work in a low
stratification regime.

At the qualitative level, our main results will be quite similar to the ones presented in the previous
part. In particular the limit dynamics will be the same, after distinguishing the two cases m > 1 and
m = 1 (see Theorems 3.1.5 and 3.1.6). The main point, we put the accent on now, is how using in a fine
way not only the structure of the system, but also the precise structure of each term in order to pass to
the limit. To be more precise, the fact of considering values of n going above the threshold 2n = m is
made possible thanks to special algebraic cancellations involving the gravity term in the system of wave
equations. Such cancellations owe to the peculiar form of the gravitational force, which depends on the
vertical variable only, and they do not appear, in general, if one wants to consider the action of different
forces on the system. As one may easily guess, the case 2n = m + 1 is more involved: indeed, this choice
of the scaling implies the presence of an additional bilinear term of order O(1) in the computations; in
turn, this term might not vanish in the limit, differently to what happens in the case 2n < m + 1. In
order to see that this does not occur, and that this term indeed disappears in the limit process, one has
to use more thoroughly the structure of the system to control the oscillations (see equation (3.3.21) and
computations below).

The Euler system: the incompressible case

In the second part of this thesis, we change our focus dealing with an incompressible and inviscid system
with a hyperbolic structure. More precisely, we are interested in describing the 2-D evolution of a fluid
that takes places far enough from the physical boundaries. Therefore, in €2 := R?, the Euler type system
reads

Oro + div (pu) =0

1
O(ou) + div (ou @ u) + EguJ- +V.p=0 (E)
divu =0,
where ut := (—u?,u') is the rotation of angle 7/2 of the velocity field u = (u',u?). The pressure term

V.p represents the Lagrangian multiplier associated to the divergence-free constraint on the velocity
field.

The main scope of that analysis will be to study the asymptotic behaviour of the system (E) when
Ro=¢—0".

Known results

We will limit ourselves to give a short exposition on known results dealing with density-dependent fluids.
We refer instead to [15] for an overview of the broad literature in the context of homogeneous rotating
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fluids (see also [2] and [3] for the pioneering studies, concerning the homogeneous 3-D Euler and Navier-
Stokes equations).

In the compressible cases discussed above, the fact that the pressure is a given function of the density
implies a double advantage in the analysis: on the one hand, one can recover good uniform bounds for
the oscillations (from the reference state) of the density; on the other hand, at the limit, one disposes of
a stream-function relation between the densities and the velocities.

On the contrary, although the incompressibility condition is physically well-justified for the geophysi-
cal fluids, only few studies tackle this case. We refer to [31], in which Fanelli and Gallagher have studied
the fast rotation limit for viscous incompressible fluids with variable density. In the case when the initial
density is a small perturbation of a constant state (the so-called slightly non-homogeneous case), they
proved convergence to a quasi-homogeneous type system. Instead, for general non-homogeneous fluids
(the so-called fully non-homogeneous case), they have shown that the limit dynamics is described in
terms of the vorticity and the density oscillation function, since they lack enough regularity to prove
convergence on the momentum equation itself (see more details below).

We have also to mention [18], where the authors rigorously prove the convergence of the ideal mag-
netohydrodynamics (MHD) equations towards a quasi-homogeneous type system (see also [17] where the
compensated compactness argument is adopted). Their method relies on a relative entropy inequality for
the primitive system that allows to treat also the inviscid limit but requires well-prepared initial data.

New results

In Chapter 4, we tackle the asymptotic analysis (for e — 07) in the case of density-dependent Euler
system in the slightly non-homogeneous context, i.e. when the initial density is a small perturbation of
order ¢ of a constant profile (say g = 1). These small perturbations around a constant reference state are
physically justified by the so-called Boussinesq approzimation (see e.g. Chapter 3 of [19] or Chapter 1 of
[58] in this respect). As a matter of fact, since the constant state @ = 1 is transported by a divergence-free
vector field, the density can be written as . = 1 + eR. at any time (provided this is true at ¢ = 0),
where one can state good uniform bounds on R.. We also point out that in the momentum equation of
(E), with the scaling Ro = ¢, the Coriolis term can be rewritten as

1 1
Zocul = ut + Roul. (2D COR)
£ €

We notice that, thanks to the incompressibility condition, the former term on the right-hand side of
(2D COR) is actually a gradient: it can be “absorbed” into the pressure term, which must scale as 1/¢.
In fact, the only force that can compensate the effect of fast rotation in system (E) is, at geophysical
scale, the pressure term: i.e. we can write V,p. = (1/¢e) V,II..

Let us point out that the fully non-homogeneous case (where the initial density is a perturbation
of an arbitrary state) is out of our study. This case is more involved and new technical troubles arise
in the well-posedness analysis and in the asymptotic inspection. Indeed, as already highlighted in [31]
for the Navier-Stokes-Coriolis system, the limit dynamics is described by an underdetermined system
which mixes the vorticity and the density fluctuations. In order to depict the full limit dynamics (where
the limit density variations and the limit velocities are decoupled), one had to assume stronger a priori
bounds than the ones which could be obtained by classical energy estimates. Nonetheless, the higher
regularity involved is not propagated uniformly in € in general, due to the presence of the Coriolis term.
In particular, the structure of the Coriolis term is more complicated than the one in (2D COR) above,
since one has p. = 0+ €0, (with o, the fluctuation), if at the initial time we assume g = 0+ ¢cRp . with
0 the arbitrary reference state. At this point, if one plugs the previous decomposition of g. in (2D COR),
a term of the form (1/¢) guZ appears: this term is a source of troubles in order to propagate the higher
regularity estimates needed.

Equivalently, if one tries to divide the momentum equation in (E) by the density o, then the previous
issue is only translated on the analysis of the pressure term, which becomes 1/(egp.) V,1l..
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In light of all the foregoing discussion, let us now point out the main difficulties arising in our problem.

First of all, our model is an inviscid system with a hyperbolic type structure for which we can expect
no smoothing effects and no gain of regularity. For that reason, it is natural to look at equations in
(E) in a regular framework like the H*® spaces with s > 2. The Sobolev spaces H*(R?), for s > 2, are
in fact embedded in the space W1 of globally Lipschitz functions: this is a minimal requirement to
preserve the initial regularity (see e.g. Chapter 3 of [5] and also [21], [22] for a broad discussion on this
topic). Actually, all the Besov spaces B;J(Rd) which are embedded in W1 (R?), a fact that occurs for
(s,p,7) € R x [1,40cc]? such that

d d
s>1+]; or 3:1—1—5 and r=1, (LIP)

are good candidates for the well-posedness analysis (see Appendix A for more details). However, the
choice of working in H® = B3, is dictated by the presence of the Coriolis force: we will deeply exploit
the antisymmetry of this singular term.

Moreover, the fluid is assumed to be incompressible, so that the pressure term is just a Lagrangian
multiplier and does not give any information on the density, unlike in the compressible case. In addition,
due to the non-homogeneity, the analysis of the gradient of the pressure term is much more involved
since we have to deal with an elliptic equation with non-constant coefficients, namely

1
—div(AVgp) =divF where divF :=div <u -Veu + R'lf‘) and A:=1/p. (ELL)
0

The main difficulty is to get appropriate uniform bounds (with respect to the rotation parameter) for
the pressure term in the regular framework we will consider. We refer to [21] and [22] for more details
concerning the issues which arise in the analysis of the elliptic equation (ELL) in B . spaces.

Once we have analysed the pressure term, we show that system (E) is locally well-posed in the
H? setting. It is worth to notice that, in the local well-posedness theorem, all the estimates will be
uniform with respect to the rotation parameter and, in addition, we will have that the time of existence
is independent of e.

Theorem 3 Let s > 2. For any e > 0, there exists a time T > 0 such that the system (E) has a unique
solution (0e,ue, Vo1I1.) where

e 0. belongs to the space CY([0, T¥] x R?) with V0. € C°([0, TX]; H*~*(R?));
e u. and VI, belong to the space C°([0,T7]; H*(R?)).

Moreover,
inf 77 > 0.
e>0

With the local well-posedness result at the hand, we perform the fast rotation limit for general ill-
prepared initial data. We show the convergence of system (E) towards what we call quasi-homogeneous
incompressible Euler system

O R + div (Ru) = 0
Ou +div (u®@u) + Rut + V,I1 =0 (QHE)

divu = 0,

where R represents the limit of fluctuations R.. We also point out that in the momentum equation of
(QHE) a non-linear term of lower order (i.e. Ru') appears: it is a sort of remainder in the convergence
for the Coriolis term, recasted as in (2D COR).

Passing to the limit in the momentum equation of (E) is no more evident, although we are in the H*
framework: the Coriolis term is responsible for strong oscillations in time of solutions (the already quoted
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Poincaré waves) which may prevent the convergence of the convective term towards the one of (QHE).
To overcome this issue, we employ the same approach mentioned above: the compensated compactness
technique.

Now, once the limit system is rigorously depicted, one could address its well-posedness issue: it is
worth noticing that the global well-posedness of system (QHE) remains an open problem. However,
roughly speaking, for Ry small enough, the system (QHE) is “close” to the 2-D homogeneous and in-
compressible Fuler system, for which it is well-known the global well-posedness. Thus, it is natural
to wonder if there exists an “asymptotically global” well-posedness result in the spirit of [22] and [16]:
for small initial fluctuations Ry, the quasi-homogeneous system (QHE) behaves like the standard Euler
equations and the lifespan of its solutions tends to infinity. In particular, as already shown in [16] for
the quasi-homogeneous ideal MHD system (see also references therein), we prove that the lifespan of
solutions to (QHE) goes as

1
T5 ~ loglog 5 (LIFE)

where § > 0 is the size of the initial fluctuations.

This result for the time of existence of solutions to (QHE) pushes our attention to the study of
the lifespan of solutions to the primitive system (E). For the 3-D homogeneous Euler system with the
Coriolis force, Dutrifoy in [26] has proved that the lifespan of solutions tends to infinity in the fast rotation
regime (see also [45], [14] and [66], where the authors inspected the lifespan of solutions in the context of
viscous homogeneous fluids). For system (E) it is not clear to us how to find similar stabilization effects
(due to the Coriolis term), in order to improve the lifespan of the solutions: for instance to show that
TF — 400 when € — 0. Nevertheless, independently of the rotational effects, we are able to state an
“asymptotically global” well-posedness result in the regime of small oscillations, in the sense of (LIFE):
namely, when the size of the initial fluctuation R, is small enough, of size § > 0, the lifespan T of the
corresponding solution to system (E) can be bounded from below by T > T*(¢), with T%(§) — +oo
when 6 — 07 (see also [22] for a density-depend fluid in the absence of Coriolis force). More precisely,
one has the following result.

Proposition 4 The lifespan T of the solution to the two-dimensional density-dependent incompressible
Euler equations (E) with the Coriolis force is bounded from below by

C C||woe| s ) >
7 log(lo ’ F1) 1), BOUND
Taoele 8 < g (max{Asm), = A(0) [uoc ) ( )

where A (0) := ||VoRo el ggs—1 + € vaRgﬁHj‘;;fl, for some suitable X > 1.

As an immediate corollary of the previous lower bound, if we consider the initial densities of the form
00 =1+ Ry, with a > 0, then we get T ~ loglog(1/e).

At this point, let us sketch the main steps to show (BOUND) for the primitive system (E).

The key point in the proof of (BOUND) is to study the lifespan of solutions in critical Besov spaces.
In those spaces, we can take advantage of the fact that, when s = 0, the BSJ, norm of solutions can
be bounded linearly with respect to the Lipschitz norm of the velocity, rather than exponentially (see
the works [70] by Vishik and [49] by Hmidi and Keraani). Since the triplet (s,p,r) has to satisfy
(LIP), the lowest regularity Besov space we can reach is Béql. Then if u belongs to Béql, the vorticity
w := —0yu' + O1u? has the desired regularity to apply the quoted improved estimates by Hmidi-Keraani
and Vishik (see Theorem A.16 in this respect).

Analysing the vorticity formulation of the system, we discover that the curl operator cancels the
singular effects produced by the Coriolis force: that cancellation is not apparent, since the skew-symmetric
property of the Coriolis term is out of use in the critical framework considered.

Finally, we need a continuation criterion (in the spirit of Baele-Kato-Majda criterion, see [6]) which

guarantees that we can “measure” the lifespan of solutions in the space of lowest regularity index, namely
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s =r=1and p = +o0o. That criterion is valid under the assumptions that

T
/ [Vou(t)|| o dt < +00  with T < +oo.
0

The previous criterion ensures that the lifespan of solutions found in the critical Besov spaces is the same
as in the sought Sobolev functional framework, allowing us to conclude the proof (see considerations in
Subsection 4.5.1).

Overview of the contents of this thesis

Before moving on, we give a brief overview of the structure of the present thesis.

The Chapter 1 has the goal to “dip” the reader in the discipline of the geophysical fluid dynamics,
giving a brief physical justification of the mathematical models we will consider in the next chapters. In
Chapter 2 we address the study of the singular perturbation problem, given by the Navier-Stokes-Fourier
equations, in the scaling which we call “critical”. The next Chapter 3 is devoted to the improvement
of the previous scaling: we will go beyond the “critical” threshold. Finally, in the last Chapter 4 we
change a bit the model, dedicating ourselves to the asymptotic analysis for the density-dependent Euler
equations. In addition, we will focus on the lifespan of its solutions, proving an “asymptotically global”
well-posedness result.

At the end of this thesis, there are two more sections dedicated to the future perspectives and an
appendix containing some tools and well-known results employed throughout the manuscript.
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Le probleme de Navier-Stokes-Fourier: un apercu physique

Dans cette these, nous nous consacrons a I’étude du comportement des fluides caractérisés par de grandes
échelles de temps et d’espace. Des exemples typiques sont les courants dans I’atmosphere et ’océan, mais
bien sur il y a de nombreux autres phénomenes liés aux fluides hors de la Terre, comme les écoulements
sur une étoiles ou sur d’autres corps célestes. A ces échelles, les effets de la rotation de environnement
(qui dans le cas de atmosphere ou de 'océan est la Terre) ne sont pas négligeables, et le mouvement du
fluide est influencé par ’action d’une forte force de Coriolis. Il y a deux autres éléments qui caractérisent
la dynamique de ce type de fluides, appelés géophysiques (voir [19], [62] et [69], par exemple): la faible
compressibilité du fluide et les effets de la stratification (les variations de densité, essentiellement & cause
de la gravité). L’importance des attributs précédents est “mesurée” en introduisant, dans le modele
mathématique, trois parametres adimensionnels positifs qui, pour les fluides géophysiques, sont supposés
faibles. Ces parametres sont:

e le nombre de Mach Ma, qui fixe la taille des écarts isentropiques par rapport aux fluides incom-
pressibles: plus Ma est petit, plus les effets de compressibilité sont faibles;

e le nombre de Froude F'r, qui mesure 'importance des effets de la stratification dans la dynamique:
plus F'r est petit, plus les effets gravitationnels sont forts;

e le nombre de Rossby Ro, qui est lié a la rotation du systeme: lorsque Ro est tres petit, les effets
de la rotation rapide sont prédominants dans la dynamique.

Dans notre contexte, nous adoptons une hypothese simpliste (souvent supposée dans les études
physiques et mathématiques) qui consiste a restreindre 1’étude du fluide aux latitudes moyennes, c’est-
a-dire aux écoulements qui se déroulent assez loin des poles et de la zone équatoriale. Dans ce cas, les
variations des effets de rotation dues a la latitude sont négligeables.

Notons par p, ¥ > 0 respectivement la densité et la température absolue du fluide, et par u € R? son
champ de vitesse: le systeme de Navier-Stokes-Fourier 3-D dans sa forme adimensionnelle peut étre écrit
(voir par exemple [39]) comme

(0,0 + div (ou) = 0
O(ou) + div (ou ® u) + € x ou + Vap(o,9)
Ro Ma? 0 0 (NSF)
9, V0
8t(gs(g,19)) + div (gs(g, ﬁ)u) + div (M) =0,
dans la bande 3-D infinie:
Q = R*x]0,1]. (DOM)

xx1
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Dans le systeme (NSF) ci-dessus, les fonctions s, g, o sont respectivement ’entropie spécifique, le flux de

chaleur et le taux de production d’entropie, et S est le tenseur des contraintes visqueuses, qui satisfait la

loi rhéologique de Newton (voir les sous-sections 2.1.1.1 and 2.1.1.2 pour une formulation plus précise).
La force de Coriolis est représentée par

Clo,u) = % es X ou, (COR)
ot e3 = (0,0, 1) et le symbole x représente le produit extérieur usuel des vecteurs dans R3. En particulier,
la définition précédente implique que la rotation a lieu autour de ’axe vertical, et sa force ne dépend pas
de la latitude (voir par exemple [19] et [62] pour plus de détails). Nous soulignons que, malgré toutes
ces simplifications, le modele obtenu est déja capable de capturer plusieurs phénomenes physiquement
typiques dans la dynamique des écoulements géophysiques: le fameux théoreme de Taylor-Proudman, la
formation des couches d’Ekman et la propagation des ondes de Poincaré. Nous renvoyons a [15] pour
une discussion plus approfondie. Dans la présente these, nous évitons les effets de couche limite, i.e.
le probleme lié aux couches d’Ekman, en imposant des conditions aux limites appelées conditions de
glissement complet.

Comme établi par le théoréeme de Taylor-Proudman en géophysique, la rotation rapide impose une
certaine rigidité/stabilité, forgant le mouvement a se dérouler sur des plans orthogonaux a l'axe de
rotation. Par conséquent, la dynamique devient purement bidimensionnelle et horizontale, et le fluide a
tendance a se déplacer long de colonnes verticales.

Cependant, une telle configuration idéale est entravée par une autre force fondamentale agissant aux
échelles géophysiques, la gravité, qui travaille a restaurer la stratification verticale de la densité. La force
gravitationnelle est décrite dans le systeme (NSF') par le terme

1
g(@) = ﬁ oV.G,

ot1 dans notre cas G(x) = G(2%) = — 3. De plus, les effets gravitationnels sont affaiblis par la présence
de la force centrifuge

S(o) = Ro?

avec F'(z) = |2"|*. Une telle force est une force d’inertie qui, aux latitudes moyennes, décale légerement
la direction de la gravité.
Ainsi, la compétition entre les effets de stabilisation, dus a la rotation, et la stratification verticale
(due a la gravité), se traduit dans le modele par la compétition entre les ordres de grandeur de Ro et F'r.
De plus, il apparait que la gravité G agit en combinaison avec la force de pression:

oV.F,

h’2

1
B2, 9) = 773 Var(2,9),
ou p est une fonction lisse connue de la densité et de la température du fluide (voir sous-section 2.1.1.2).
Nous remarquons que les termes €, G, ‘B et § entrent en jeu dans le modele avec un grand pré-facteur,
en conséquence notre but est d’étudier les systemes quand Ma, F'r et Ro sont petits dans différents

régimes.

L’analyse multi-échelle

Au niveau mathématique, au cours des 30 dernieres années, un nombre considérable de travaux a été
consacré a la justification rigoureuse, dans divers cadres fonctionnels, des modeles réduits considérés en
géophysique.

L’examen de l'ensemble de la littérature sur ce sujet dépasse largement le cadre de cette partie
introductive, ¢’est pourquoi nous faisons le choix de ne rapporter que les travaux qui abordent la présence
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de la force de Coriolis (COR). Nous décidons également de reporter, a la partie suivante, la discussion
sur les modeles incompressibles, car moins pertinents pour ’analyse multi-échelle, en raison de la rigidité
imposée par la contrainte de divergence nulle sur le champ de vitesse du fluide.

Les modeles de fluides compressibles, au contraire, fournit un cadre beaucoup plus riche pour ’analyse
multi-échelle des écoulements géophysiques. De plus, nous avons choisi de nous concentrer principalement
sur les travaux traitant des fluides visqueux et qui effectuent 1’étude asymptotique pour des données
initiales mal préparées.

Résultats précédents

Les premiers résultats, dans le sens mentionné ci-dessus, ont été obtenus par Feireisl, Gallagher et Novotny
dans [35] et avec Gérard-Varet dans [34], pour le systéme barotrope de Navier-Stokes (voir aussi [11] pour
une étude préliminaire et [46] pour l'analyse des ondes équatoriales). Dans ces travaux, les auteurs ont
étudié le régime combiné du faible nombre de Rossby (effets de rotation rapide) avec un régime de faible
nombre de Mach (faible compressibilité du fluide) sous 1’échelle

Ro = ¢ (LOW RO)
Ma = ™ avec m >0, (LOW MA)

ou € €10,1] est un petit parametre, qu’on aimerait faire tendre vers 0 afin de dériver le modele réduit.
Dans le cas ot m = 1 dans (LOW MA), le systéeme présente une échelle isotrope, puisque Ro et Ma
agissent au méme ordre de grandeur et les termes de pression et de rotation restent en équilibre (I’ équilibre
quasi-géostrophique) a la limite. Le systeme limite est identifié par ’équation quasi-géostrophique pour
une fonction de flux du champ de vitesse. Au contraire, dans [34] lorsque m > 1 et avec en plus la force
centrifuge, le terme de pression prédomine (sur la force de Coriolis) dans la dynamique du fluide. Dans ce
cas, le systeme limite est décrit par un systeme de Navier-Stokes incompressible en 2-D et les difficultés
générées par ’anisotropie d’échelle ont été surmontées en utilisant des estimations de dispersion.

Par la suite, Feireisl et Novotny ont poursuivi l’analyse multi-échelle pour le méme systeéme, encore
une fois sans le terme de force centrifuge, en considérant les effets d’une faible stratification, c¢’est-a-dire
Ma/Fr — 0 lorsque € — 0T (voir [41], [40]). Nous renvoyons & [29] pour une étude similaire dans le
cadre des modeles capillaires, ou le choix m = 1 a été fait, mais 'anisotropie a été donnée par 1’échelle
fixée pour le terme de forces internes (appelé tenseur des contraintes de Korteweg). De plus, il faut
mentionner [30] pour le cas des grands nombres de Mach par rapport au parametre de Rossby, & savoir
0 <m < 1 dans (LOW MA). Dans ce cas, le gradient de pression n’est pas assez fort pour compenser
la force de Coriolis, et afin de trouver une dynamique limite pertinente, il faut pénaliser le coefficient de
viscosité.

L’analyse des modeles présentant aussi des transferts de chaleur est beaucoup plus récente, et a été
commencé avec le papier [52] de Kwon, Maltese et Novotny. Dans cet article, les auteurs ont considéré
une approche multi-échelle pour le systeme de Navier-Stokes-Fourier complet avec Coriolis et la force
gravitationnelle (et F' = 0), en prenant I’échelle

Fr =¢", avec 1 <n < (LOW FR)
En particulier, dans cet article, le choix (LOW FR) impliquait que m > 2 et le cas n = m/2 était laissé
ouvert. Des restrictions similaires sur les parametres peuvent étre trouvées dans [40] pour le modele
barotrope. Ces restrictions doivent étre attribuées aux techniques utilisées pour prouver la convergence,
qui sont basées sur une combinaison de méthode d’énergie relative/entropie relative avec des estimations
dispersives (on note qu’une restriction encore plus grande, m > 10 , apparait dans [34]). D’autre part,
on souligne que les méthodes d’énergie relative permettent d’obtenir un taux de convergence précis et de
considérer également des limites non visqueuses et non diffusives (dans ces cas, on ne dispose pas d’une
borne uniforme pour V.9 et sur V,u). Le cas ot m = 1 a été traité postérieurement dans l’article [53]



xxiv CONTRIBUTIONS DE LA THESE

de Kwon et Novotny, en recourant a des techniques similaires (cependant, le terme gravitationnel n’est
pas pénalisé).

Nouveautés

La premiere partie de cette these est consacrée a 1’étude des problemes multi-échelle, en se concentrant
sur le systéeme de Navier-Stokes-Fourier complet introduit dans (NSF). Dans un premier temps, nous
améliorons le choix de I’échelle (LOW FR) en prenant le cas limite n = m/2 avec m > 1 (c’est ’échelle
adoptée dans le chapitre 2). Bien siir, nous sommes toujours dans un régime de faible stratification,
puisque Ma/Fr — 0, mais le choix F'r = v/ Ma nous permet de capturer quelques propriétés qualitatives
supplémentaires sur la dynamique limite. De plus, nous ajoutons au systeme le terme de force centrifuge
V.F (dans lesprit de [34]), qui est source des problémes techniques dus & son caractére non borné.
Commentons maintenant toutes ces questions en détail.

Tout d’abord, en absence de la force centrifuge, c’est-a-dire F' = 0, nous sommes capables d’effectuer
la limite incompressible, avec une faible stratification et une rotation rapide pour toute la gamme de
valeurs m > 1, dans le cadre des solutions faibles d’énergie finie de le systeme de Navier-Stokes-Fourier
(NSF) et pour des données initiales mal préparées. Dans le cas m > 1, les effets d’incompressibilité et
de stratification sont prédominants par rapport a la force de Coriolis: on prouve alors la convergence
vers le bien connu systéme d’Oberbeck-Boussinesq (voir par exemple le paragraphe 1.6.2 de [72] pour
des explications physiques sur ce systeme), donnant une justification rigoureuse & ce modele approché
dans le contexte des fluides en rotation rapide. Ainsi, nous pouvons énoncer le théoreme suivant (voir le
Théoréeme 2.1.10 pour I’énoncé précis).

Théoréme 1 On considére le systeme (NSF). Soit Q = R?x]0,1[. Soit F' = |2"? et G = —23. On
prenne n =m/2 et ou bien m > 2, ou m > 1 et F = 0. Alors, on a les convergences suivantes:

0: — 1
1 .
R=% -~ *~R
13
u. =~ U
Y. — 0
0. = Em O,
3

ot en accord avec le théoréme de Taylor-Proudman, on a
U = (U"0), U =U"t, 2", div,U" = 0.

De plus, (Uh, R, @) résout, au sens des distributions, le systéme incompressible de type Oberbeck-
Boussinesq

AU + div ), (Uh ® Uh> VAL — u(9) AU = 85(m)(R)V, F
20 + div,(0U") — k(W) A® = JU" - V,;,G
Vo (0,p(1,9) R 4+ 09p(1,9) ©) = VG + a(m) V,F,

ot G est la somme de forces externes G + do(m)F , T € D' et §3(m) =1 sim =2, §3(m) = 0 sinon.

Nous soulignons qu’a la limite le champ de vitesse est de dimension 2, selon le célebre théoreme de
Taylor-Proudman en géophysique: a la limite en rotation rapide, le mouvement du fluide a un com-
portement planaire, il se déroule sur des plans orthogonaux a I'axe de rotation (c’est-a-dire des plans
horizontaux dans notre modele) et il est essentiellement constant dans la direction verticale. On se réfere
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a [19], [62] et [69] pour plus de détails sur la formulation physique. Notez cependant que, bien que la
dynamique limite soit purement horizontale, la densité limite et les variations de température, R et ©
respectivement, sont stratifiées: c’est l'effet principal du choix n = m/2 pour le nombre de Froude dans
(LOW FR). C’est aussi la principale propriété qualitative qui est nouvelle dans notre travail par rapport
aux études précédentes et qui justifie I’épithete d’échelle “critique”.

Lorsque m = 1, au contraire, toutes les forces agissent a la méme échelle, puis s’équilibrent asympto-
tiquement pour € — 0.

En conséquence, le mouvement limite est décrit par une équation quasi-géostrophique pour une fonc-
tion ¢, qui est liée & R et © (respectivement, la densité et les variations de température a la limite)
et a la gravité, et qui joue le role de fonction de flux pour le champ de vitesse limite. Cette équation
quasi-géostrophique est couplée a une équation de transport-diffusion scalaire pour une nouvelle grandeur
T, qui mélange R et ©. L’énoncé précis du théoreme suivant se trouve dans le paragraphe 2.1.2.

Théoréme 2 On considére le systéme (NSF). Soit Q@ = R2x]0,1[. Soit F =0 et G = —x3. On prenne
m=1etn=1/2. Alors, on a les mémes convergences trouvées dans le Théoréme 1 et U satisfait le
théoréme de Taylor-Proudman. Par ailleurs définissons

Y := 9,s(1,9)R + dys(1,9) ©

et
q= 8@]9(11@)]% + aﬁp(LE)@ -G.

Alors q = q(t,z") et U = Vﬁq. De plus, le couple <q, T) satisfait, au sens des distributions,
0 (¢ — Ang) = Virg - Vi (Ang) + p(0)Afg = (X)

XY +Virq- VY — k(0)AY = k(D) Angq,
ot (X) est une force “externe” appropriée.

Ce théoreme est dans l'esprit du résultat de [53], mais ici encore sont captés a la limite les effets gravita-
tionnels, de sorte qu’il n’est plus possible d’affirmer que R et © (donc T) sont horizontaux. En revanche,
et de fagon surprenante, g et la vitesse limite U sont purement horizontales.

A ce stade, faisons quelques remarques. Tout d’abord, mentionnons que, comme déja annoncé, nous
sommes capables d’ajouter au systeme les effets de la force centrifuge V,F. Malheureusement, dans ce
cas apparait la restriction m > 2 (qui est quand méme moins sévere que celles imposées dans [34], [40] et
[52]). Cependant, nous montrons qu’une telle restriction n’est pas de nature technique, mais qu’elle est
cachée dans la structure du systéme d’ondes (voir proposition 2.1.7 et remarque 2.2.6). Le résultat pour
F # 0 est analogue a celui présenté ci-dessus pour le cas F' = 0 et m > 1: quand m > 2, I’anisotropie
de I’échelle est trop grande pour voir les effets dus a F' a la limite, et aucune différence qualitative
n’apparait par rapport a l'instance ou F' = 0; lorsque m = 2, en revanche, des termes supplémentaires
liés a F' apparaissent dans le systéme de Oberbeck-Boussinesq (voir théoreme 1). Dans tous les cas,
Panalyse sera considérablement plus compliquée, puisque F' n’est pas bornée dans le domaine  (défini
dans (DOM) ci-dessus) et cela demandera une procédure de localisation supplémentaire (déja employée
dans [34]).

Soulignons en outre que la théorie classique de existence des solutions faibles d’énergie finie pour
(NSF) exige que le domaine physique soit un sous-ensemble borné et lisse de R? (voir [39] pour une étude
complete). La théorie a ensuite été étendue dans [50] pour couvrir le cas des domaines non bornés, et
cela pourrait nous sembler approprié a notre cas.

Néanmoins, la notion de solutions faibles développée dans [50] est en quelque sorte plus faible que
la notion usuel (les auteurs parlent en fait de solutions trés faibles), dans la mesure ou la formulation
faible habituelle du bilan d’entropie, c’est-a-dire la troisieme équation de (NSF), doit étre remplacée
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par une inégalité au sens des distributions. Une telle formulation ne nous convient pas, car, lors de
la dérivation du systeme d’ondes acoustiques de Poincaré, nous devons combiner la conservation de la
masse et ’équation de ’entropie. En particulier, cela nécessite d’avoir de vraies égalités, satisfaites au
sens faible (usuel). Afin de pallier & ce probleme, on recourt a la technique des domaines envahissants
(voir par exemple le chapitre 8 de [39], [44] et [71]): pour chaque € €]0, 1], on résout le systéme (NSF),
avec le choix n = m/2 pour le nombre de Froude, dans un domaine lisse €2, ou (QE)8 converge (dans
un sens approprié) vers €2, lorsque ¢ — 0, plus vite que la vitesse de propagation des ondes (qui est
proportionnelle a e~™). Une telle “procédure d’approximation” nécessitera un travail supplémentaire.

Afin de prouver nos résultats, et d’obtenir ’amélioration sur les valeurs des différents parameétres,
nous proposons une approche unifiée, qui fonctionne en fait a la fois pour le cas m > 1 (permettant de
traiter assez facilement I’anisotropie de ’échelle) et pour le cas m = 1 (permettant de traiter I'opérateur
de perturbation singulier plus compliqué). Cette approche est basée sur les arguments de compacité par
compensation, d’abord employés par Lions et Masmoudi dans [57] pour traiter la limite incompressible
du systeéme barotrope de Navier-Stokes, et plus tard adaptées par Gallagher et Saint-Raymond dans [47]
au cas des fluides en rotation rapide (incompressibles et homogenes). Des applications plus récentes de
cette méthode dans le cadre des écoulements géophysiques se trouvent dans [34], [28], [31] et [30].

La méthode citée ne donne pas du tout une convergence quantitative, mais seulement qualitative. La
technique est purement basée sur la structure algébrique du systeme, qui permet de trouver la petitesse
(et disparaissant a la limite) de quantités non linéaires appropriées, et des propriétés de compacité pour
d’autres quantités. Ces propriétés de convergence forte ne sont en aucun cas évidentes, car les termes
singuliers sont responsables de fortes oscillations en temps des solutions (les ondes dites acoustiques
de Poincaré), qui peuvent empécher la convergence des non-linéarités. Néanmoins, une étude fine du
systeme des ondes acoustiques de Poincaré révele en fait la compacité (pour tout m > 1 si F' = 0, pour
m > 2 si F' # 0) d'une quantité spéciale 7., qui combine (grossiérement) les moyennes verticales de la
quantité de mouvement V. = p.u. (de son tourbillon, en fait) et d’une autre fonction Z., obtenu comme
une combinaison linéaire des variations de densité et de température (voir les sous-sections 2.3.2.1 et
2.4.2 pour plus de détails sur ce sujet). Des propriétés de compacité similaires ont été mises en évidence
dans [31] pour les fluides incompressibles dépendant de la densité en 2-D, et dans [30] pour traiter un
probleme multi-échelles aux “grands” nombres de Mach. Ala fin, la convergence forte de ('yg)a s’avere
suffisante pour prendre la limite dans le terme convectif, et pour compléter la preuve de nos résultats.

Pour conclure cette partie, on remarque que nous nous attendons a ce que la méme technique puisse
aussi marcher dans le cas m = 1 et F' # 0 (ce fut le cas dans [34], pour des écoulements barotropes).
Néanmoins, la présence de transfert de chaleur complique profondément le systeme des ondes, et de
nouvelles difficultés techniques surviennent dans l’analyse du terme convectif (I’approche de [34], dans le
cas de température constante, ne fonctionne pas ici). Pour cette raison, nous ne sommes pas capables de
traiter ici cette condition, qui reste toujours une question ouverte.

Une autre caractéristique, qui n’est pas traitée dans notre analyse, est le régime de forte stratification,
c’est-a-dire que le rapport Ma/Fr est d’ordre O(1). Ce régime est particulierement délicat pour les
fluides en rotation rapide. Cela contraste fortement avec les résultats disponibles sur la dérivation de
Papproximation anélastique, ou la rotation est négligée: nous renvoyons pour exemple a [59], [12], [37]
et, plus récemment, [32] (voir aussi [39] et ses références pour un compte rendu plus détaillé des travaux
antérieurs). La raison est précisément a attribuer a la compétition entre la stratification verticale (due
a la gravité) et la stabilité horizontale (que la force de Coriolis tend & imposer): dans le régime de forte
stratification, les oscillations verticales de la solution (semblent) persister a la limite, et les techniques
disponibles ne permettent pas actuellement de traiter ce probleme dans toute sa généralité. Néanmoins,
des résultats partiels ont été obtenus dans le cas de données initiales bien préparées, au moyen d’une
méthode d’entropie relative: nous nous référons a [38] pour le premier résultat, ou le mouvement moyen
est dérivé, et a [7] pour une analyse des couches limites d’Ekman dans ce cadre.
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Aller au-dela de I’échelle critique Fr =+ Ma

A ce stade, nous sommes intéressés par 'étude des valeurs Fr supérieures a la valeur critique Fr = v Ma
considéré dans le paragraphe précédente et nous étudierons d’autres régimes ou la stratification a un effet
encore plus important.

Pour la clarté d’exposition, nous négligeons les effets de la force centrifuge et le processus de transfert
de chaleur dans le fluide, en nous concentrant sur le systeme barotrope classique de Navier-Stokes:

0o+ div (ou) =0

es X ou 1 (NSC)

Ro Ma?

8y (ou) + div (ou ® u) + Vap(o) = divS(Veu) + Fiﬂvxa.
Le systeme plus général présenté dans (NSF) peut étre manipulé au prix de technicités supplémentaires
déja évoquées plus en haut (rappelons en particulier la restriction sur le nombre de Mach due a la présence
de la force centrifuge). Le but est maintenant d’effectuer la limite asymptotique pour le systeme (NSC)

dans les régimes quand on suppose
Ma =™, Ro=c¢ et Fr=¢"
avec

bien ou m>1 e m<2n < m+1, ou m=1 et %<n<1.

La restriction n < 1 lorsque m = 1 est imposée afin d’éviter un régime de stratification forte: comme déja
mentionné précédemment, il n’est pas clair, a I’heure actuelle, comment traiter ce cas pour des données
initiales générales mal préparés, car toutes les techniques disponibles semblent échouer dans ce cas-la.
En revanche, la restriction 2n < m + 1 (pour m > 1) semble étre de nature technique. Cependant, elle
sort naturellement dans au moins deux points de notre analyse (voir par exemple les sous-sections 3.2.2
et 3.3.2.2), et il n’est pas clair si, et comment, il est possible de la contourner et de considérer la gamme
de valeurs restante (m + 1)/2 < n < m. Précisons que, dans nos considérations, la relation n < m est
toujours vraie, donc nous travaillerons dans un régime de faible stratification.

Au niveau qualitatif, nos principaux résultats seront assez similaires a ceux présentés dans la partie
précédente. En particulier la dynamique limite sera la méme, apres avoir distingué les deux cas m > 1
et m = 1 (voir théoremes 3.1.5 et 3.1.6). L’essentiel, sur lequel nous mettons 'accent maintenant,
est de savoir comment utiliser de maniere fine non seulement la structure du systeme, mais aussi la
structure précise de chaque terme pour passer a la limite. Pour étre plus précis, le fait de considérer les
valeurs de n dépassant le seuil 2n = m est rendu possible grace a des annulations algébriques spéciales
faisant intervenir le terme de gravité dans le systeme des ondes. Telles annulations sont dues a la forme
particuliere de la force gravitationnelle, qui ne dépend que de la variable verticale, et elles n’apparaissent
pas, en général, si on veut considérer 'action de différentes forces sur le systéeme. Comme on peut
facilement le deviner, le cas 2n = m+1 est plus complexe: en effet, ce choix d’échelle implique la présence
dans les calculs d’un terme bilinéaire supplémentaire d’ordre O(1); & son tour, ce terme pourrait ne pas
disparaitre a la limite, contrairement & ce qui se passe dans le cas 2n < m+ 1. Afin de voir que cela ne se
produit pas, et que ce terme disparait bien dans le processus limite, il faut utiliser plus minutieusement
la structure du systeme pour controler les oscillations (voir I’équation (3.3.21) et les calculs la-dessous).

Le systéme d’Euler: le cas incompressible

Dans la deuxieme partie de cette these, nous changeons d’orientation en traitant un systeme incompress-
ible, non visqueux et avec une structure hyperbolique. Plus précisément, nous nous intéressons a décrire



xxviii CONTRIBUTIONS DE LA THESE

I’évolution 2-D d’un fluide qui se déroule suffisamment loin des frontieres physiques. Par conséquent, le
systeme de type Euler, dans 2 := R?, est

Oro + div (ou) =0

. 1
O(ou) + div (pu ® u) + EguL +Vup=0 (E)
divu =0,
oit ut := (—u?,u') est la rotation d’angle 7/2 du champ de vitesse u = (u',u?) . Le terme de pression

V.p représente le multiplicateur de Lagrange associé a la contrainte de divergence nulle sur le champ de
vitesse.

La portée principale de cette analyse sera d’étudier le comportement asymptotique du systeme (E)
lorsque Ro =¢ — 0%,

Résultats connus

Nous nous limiterons a donner un bref exposé sur les résultats connus concernant les fluides dépendant de
la densité. Nous nous référons plutot a [15] pour un apercu de la littérature dans le contexte des fluides
homogenes en rotation rapide (voir aussi [2] et [3] pour les études pionnieres, concernant les équations
homogenes d’Euler et de Navier-Stokes en 3-D).

Dans les cas compressibles évoqués au-dessus, le fait que la pression soit une fonction donnée de la
densité, implique un double avantage dans ’analyse: d’une part, on peut récupérer de bonnes bornes
uniformes pour les oscillations (a partir de I'état de référence) de la densité; de plus, a la limite, on
dispose d’une relation flux-fonction entre les densités et les vitesses.

En revanche, bien que la condition d’incompressibilité soit physiquement bien justifiée pour les fluides
géophysiques, peu d’études abordent ce cas. Nous nous référons a [31], dans lequel Fanelli et Gallagher
ont étudié la limite en rotation rapide pour des fluides incompressibles, visqueux et a densité variable.
Dans le cas ou la densité initiale est une petite perturbation d’un état constant (le cas dit légérement non-
homogéne), les auteurs ont prouvé la convergence vers un systeme de type quasi-homogene. Par contre,
pour les fluides non-homogenes généraux (le cas dit totalement non-homogéne), Fanelli et Gallagher ont
montré que la dynamique limite est décrite en termes du tourbillon et des fonctions d’oscillation de
densité, car il n’y avait pas de régularité suffisante pour prouver la convergence sur I’équation de la
quantité de mouvement elle-méme (voir plus de détails ci-dessous).

Il faut aussi mentionner [18], ou les auteurs prouvent rigoureusement la convergence des équations
idéales de la magnétohydrodynamique (MHD) vers un systéme de type quasi-homogene (voir aussi [17]
ou 'argument de compacité par compensation est adopté). Leur méthode repose sur des inégalités
d’entropie relative pour le systéme primitif qui permettent de traiter également la limite non visqueuse
mais nécessite des données initiales bien préparées.

Nouveaux résultats

Dans le chapitre 4, nous abordons 'analyse asymptotique (pour € — 0) dans le cas d’un systéme d’Euler
dépendant de la densité dans le contexte [égérement non-homogéne, c¢’est-a-dire lorsque la densité initiale
est une petite perturbation d’ordre e d’un profil constant (disons g = 1). Ces petites perturbations
autour d’'un état de référence constant sont physiquement justifiées par 1’approzimation de Boussinesq
(voir par exemple le chapitre 3 de [19] ou le chapitre 1 de [58] & cet égard). En effet, puisque ’état
constant ¢ = 1 est transporté par un champ vectoriel a divergence nulle, la densité peut s’écrire comme
0: = 1+eR. pour tous les temps (a condition que cela soit vrai a ¢t = 0 ), ou I'on peut énoncer de bonnes
bornes uniformes sur R.. Nous soulignons aussi que dans ’équation de quantité de mouvement de (E),
avec I'échelle Ro = ¢, le terme de Coriolis peut étre réécrit comme

1 1
Zocul = Zut + Roult. (2D COR)
£ 5
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On remarque que, grace a la condition d’incompressibilité, le premier terme du membre de droite de
(2D COR) est en fait un gradient: il peut étre “absorbé” dans le terme de pression, qui doit s’échelonner
comme 1/e. En fait, la seule force qui peut compenser l'effet de la rotation rapide dans le systeme (E)
est, a I’échelle géophysique, le terme de pression: c’est-a-dire qu’on peut écrire V,p. = (1/¢) V,IL.

Précisons que le cas totalement non-homogéne (ou la densité initiale est une perturbation d’un état
arbitraire) est hors de notre étude. Ce cas est plus complexe et de nouveaux problémes techniques
surviennent dans l’analyse du caractere bien posé et dans l'inspection asymptotique. En effet, comme
déja souligné dans [31] pour le systéme de Navier-Stokes-Coriolis, la dynamique limite est décrite par
un systeme sous-déterminé qui mélange le tourbillon et les fluctuations de densité. Afin de décrire la
dynamique limite complete (ot les variations de densité limite et les vitesses limites sont découplées), il
fallait supposer des bornes a priori plus fortes que celles qui pourraient étre obtenues par des estimations
d’énergie classiques. Néanmoins, la haute régularité impliquée n’est pas propagée uniformément en € en
général, a cause de la présence du terme de Coriolis. En particulier, la structure du terme de Coriolis
est plus compliquée que celle montrée en (2D COR), puisqu’on a g. = ¢ + €0 (avec o, la fluctuation),
si au départ on suppose og. = 0 + eRo . avec o I'état de référence arbitraire. A ce stade, si on insere la
décomposition précédente de g. dans (2D COR), un terme de la forme (1/¢) gu’ apparait: ce terme est
source de difficultés pour propager les estimations de haute régularité nécessaires.

De maniere équivalente, si on essaie de diviser ’équation de quantité de mouvement dans (E) par la
densité p., alors le probleme précédent ne se traduit que sur ’analyse du terme de pression, qui devient
1/(5\&) V. 1le.

A la lumiere de toute la discussion qui précede, signalons maintenant les principales difficultés qui se
posent dans notre probleme.

Tout d’abord, notre modele est un systéme non visqueux et de type hyperbolique pour lequel nous ne
pouvons pas nous attendre a des effets de lissage et de gain de régularité. Pour cette raison, il est naturel
de regarder les équations (E) dans un cadre régulier comme les espaces H® avec s > 2. Les espaces
de Sobolev H*(R?), pour s > 2, sont en fait plongés dans I'espace W des fonctions globalement
Lipschitziennes: c’est une exigence minimale pour préserver la régularité initiale (voir par exemple le
chapitre 3 de [5] et aussi [21], [22] pour une large discussion sur ce sujet). En fait, tous les espaces de
Besov B;’,T,(Rd) qui sont inclus dans W1°°(R9), un fait qui se produit pour (s,p,r) € R x [1,+0c]? tels
que

d d
s>1+— ou s=1+— et r=1, (LIP)
p p

sont de bons candidats pour I'analyse du caractere bien posé (reportez-vous a l'annexe A pour plus de
détails). Cependant, le choix de travailler dans H® = B3 , est dicté par la présence de la force de Coriolis:
nous exploiterons en profondeur ’antisymétrie de ce terme singulier.

Par ailleurs, le fluide est supposé incompressible, de sorte que le terme de pression n’est qu'un multi-
plicateur de Lagrange et ne donne pas d’informations sur la densité, contrairement au cas compressible.
De plus, a cause de la non-homogénéité, 'analyse du gradient de pression est beaucoup plus complexe
puisqu’on doit étudier une équation elliptique a coefficients non constants, c’est-a-dire

—div(AV,p) =divF ou divF :=div (u -Veu + };O’U,J‘> et A:=1/p. (ELL)
La principale difficulté est d’obtenir des bornes uniformes appropriées (par rapport au parametre de
rotation) pour le terme de pression dans le cadre régulier que nous considérerons. Nous renvoyons & [21]
et [22] pour plus de détails concernant les problémes qui se posent dans I’analyse de 1’équation elliptique
(ELL) dans les espaces B, ,..

Apres avoir analysé le terme de pression, nous montrons que le systeme (E) est localement bien posé
dans le cadre H*. On note que, dans le théoréme pour le caractére bien posé local (ci-dessous), toutes les
estimations sont uniformes par rapport au parametre de rotation et, en plus, nous avons que le temps
d’existence est indépendant de e.
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Théoreme 3 Soit s > 2. Pour tout € > 0, il existe un temps T > 0 tel que le systéme (E) a une
solution unique (0e, ue, Vi I1) ot

e 0. appartient a lespace C°([0,T*] x R?) avec V0. € CO([0, TY]; H*1(R?));
e u. et V,II. appartiennent & lespace C°([0,TF]; H*(R?)).

Par ailleurs,
inf 77 > 0.
e>0

Une fois que nous avons énoncé le résultat du caractere bien posé local dans le théoreme 3, on passe
a la limite en rotation rapide pour des données initiales générales mal préparées. Nous prouvons la
convergence du systeme (E) vers ce que nous appelons systéme d’Euler incompressible quasi-homogéne

R+ div(Ru) =0
Ou+ div (u @ u) + Rut + V,I1 =0 (QHE)

divu = 0,

ou R représente la limite des fluctuations R.. Signalons aussi que dans I’équation de quantité de mou-
vement de (QHE) apparait un terme non linéaire d’ordre inférieur (i.e. Rul): c’est une sorte de reste
dans la convergence pour le terme de Coriolis, défini dans (2D COR).

Le passage a la limite dans ’équation de la quantité de mouvement (E) n’est plus évident, bien que
nous soyons dans le cadre H?®: le terme de Coriolis est responsable de fortes oscillations en temps des
solutions (les ondes de Poincaré) qui peuvent empécher la convergence du terme convectif vers celui
de (QHE). Pour surmonter ce probleme, nous utilisons la méme approche mentionnée au-dessus: la
technique de compacité par compensation.

Par ailleurs, il est intéressant de noter que le caractére bien posé global du systeme (QHE) reste
un probleme ouvert. Cependant, grosso modo, pour Ry assez petit, le systeme (QHE) est “proche”
du systeme 2-D d’Euler homogene et incompressible, pour lequel il est bien connu le caractére bien
posé global. Ainsi, il est naturel de se demander s’il existe un résultat de caractere bien posé “asymp-
totiquement global” dans D'esprit de [22] et [16]: pour de petites fluctuations initiales Ry, le systéme
quasi-homogene (QHE) se comporte comme les équations d’Euler standards et la durée de vie de ses
solutions tend vers l'infini. En particulier, comme déja montré dans [16] pour le systeme MHD idéal
et quasi-homogene (voir aussi la bibliographie de [16]), on prouve que la durée de vie des solutions de
(QHE) satisfait

1
Tj ~loglog 5. (LIFE)

ou ¢ > 0 est la taille des fluctuations initiales.

Ce résultat pour le temps d’existence des solutions de (QHE) pousse notre attention vers 1’étude de la
durée de vie des solutions du systeme primitif (E). Pour le systéme d’Euler en 3-D homogéne avec la force
de Coriolis, Dutrifoy dans [26] a prouvé que la durée de vie des solutions tend vers I'infini dans le régime de
la rotation rapide (voir aussi [45], [14] et [66], ol les auteurs ont inspecté la durée de vie des solutions dans
le contexte de fluides homogenes et visqueux). Pour le systeme (E) il n’est pas clair comment trouver des
effets de stabilisation similaires (dus au terme de Coriolis), afin d’améliorer la durée de vie des solutions:
c’est-a-dire montrer que T* — +o00 quand € — 0*. Néanmoins, indépendamment des effets rotationnels,
nous sommes en mesure d’énoncer un résultat de caractere bien posé “asymptotiquement global” dans
le régime d’oscillations petites, au sens de (LIFE): & savoir, quand la taille de la fluctuation initiale Ry .
est assez petite, de taille § > 0, la durée de vie T de la solution correspondante du systeme (E) est
bornée inférieurement par T > T*(4), avec T*(6) — +oo quand § — 0T (voir aussi [22] pour un fluide
dépendant de la densité mais en absence de la force de Coriolis). Plus précisément, on a le résultat
suivant.
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Proposition 5 La durée de vie T} de la solution des équations d’Euler incompressibles dépendant de la
densité en deuz dimensions (E) avec la force de Coriolis est bornée inférieurement par

C C ||lwoc o ) >
—— log(lo ’ +1)+1), BOUND
luoclm ( ® (maX{As(O% e A<(0) luoellms} ( )

ot A(0) := [|[VaRoc|lgs—1 + ¢ HV;CR(),gH?ItL, pour un X > 1 approprié.

Comme corollaire immédiat de la minoration précédente, si on considere des densités initiales de la forme
00e =1+eTRy . avec a > 0, alors on obtient T ~ loglog(1/e).

De suite, on va illustrer schématiquement les principales étapes pour montrer (BOUND) pour le
systeme primitif (E).

Le point clé de la preuve de (BOUND) est d’étudier la durée de vie des solutions dans des es-
paces critiques de Besov. Dans ces espaces, on peut profiter du fait que, lorsque s = 0, la norme BZ?’T
des solutions peut étre bornée linéairement par rapport a la norme de Lipschitz de la vitesse, plutot
qu’exponentiellement (voir les travaux [70] de Vishik et [49] de Hmidi et Keraani). Puisque le triplet
(s,p,r) doit satisfaire (LIP), I'espace de Besov de régularité la plus basse que nous puissions atteindre
est Béql. Par conséquent, si u appartient a Béo’l, le tourbillon w := —Gu! + O1u? a la régularité désirée
pour appliquer les estimations améliorées de Hmidi-Keraani et Vishik (voir le théoreme A.16 a cet égard).

En analysant la formulation en tourbillon du systeme, on découvre que l'opérateur curl annule les
effets singuliers produits par la force de Coriolis: cette annulation n’est pas apparente, parce que la
propriété antisymétrique du terme de Coriolis est hors d’usage dans le cadre critique considéré.

Enfin, nous avons besoin d’un critére de continuation (dans I'esprit du critere de Baele-Kato-Majda,
voir [6]) qui garantit qu’on puisse “mesurer” la durée de vie des solutions dans l'espace d’indice de
régularité plus faible, s =7 =1 et p = +o00. Ce critere est valable sous ’hypothese que

T
/ Hvxu(t)HLoo dt < +o0 avec T < +o0.
0

Le critere précédent assure que la durée de vie des solutions trouvées dans les espaces critiques de Besov
est la méme que dans le cadre fonctionnel de Sobolev recherché: ce qui nous permet de conclure la preuve
(voir les considérations dans la sous-section 4.5.1).

Apercu du contenu de cette these

Avant de poursuivre, nous donnons un bref apercu de la structure de la présente these.

Le chapitre 1 a pour objectif de “plonger” le lecteur dans la discipline de la dynamique géophysique
des fluides, en donnant une justification physique succincte des modeles mathématiques que nous con-
sidérerons dans les prochains chapitres. Dans le chapitre 2 nous abordons I’étude du probleme de per-
turbation singuliere, donné par les équations de Navier-Stokes-Fourier, dans 1’échelle que nous appelons
“critique”. Le chapitre 3 est consacré a I’amélioration de 1’échelle précédente: nous dépasserons le seuil
“critique”. Enfin, dans le dernier chapitre 4 nous modifions un peu le modele et nous allons travailler
sur I'analyse asymptotique des équations d’Euler dépendant de la densité. De plus, nous nous con-
centrerons sur ’étude de la durée de vie de ses solutions, prouvant un résultat de caractere bien posé
“asymptotiquement global”.

A la fin de cette thése, se trouvent deux autres sections consacrées aux perspectives d’avenir et une
annexe contenant quelques outils et des résultats célebres utilisés dans le manuscrit.






Chapter 1

Some geophysical considerations

The scope of this chapter is to introduce the mathematical features of geophysical flows.
The main reference is the book [19] (see also [51], [62], [69], [72]). We will briefly discuss
the physical motivations of the mathematical models we will consider in the next chapters.
The equations presented in the following paragraphs will be derived mainly from physical
considerations. For this reason, the functions which will appear in the sequel have to be
considered smooth.

Let us give an overview of the chapter. First of all, after a brief introduction (see Section
1.1), we present the two main characters which influence the dynamics of the geophysical
fluids: the rotation (see Section 1.2) and the stratification (we refer to Section 1.3). In
Section 1.4 we show how to derive, from the physical point of view, the budget equations
and Section 1.5 is instead devoted to the Boussinesq approximation. Next, in Section 1.6, we
perform a scale analysis and we define some important dimensionless numbers. Section 1.7
is dedicated to the celebrated Taylor-Proudman theorem. We conclude this chapter talking
about stratified and quasi-incompressible fluids (see Section 1.8), and rewriting the Navier-
Stokes system in its dimensionless form (Section 1.9).

1.1 The geophysical fluid flows

The geophysical fluid dynamics (GFD) studies the naturally occurring flows on large scales that mostly
take place on Earth but also on other planets or stars. The discipline encompasses the motion of both
fluid phases: liquids (e.g. waters in the ocean) and gases (e.g. air in the Earth’s atmosphere or in other
planets). In addition, it is on large scales that the common features of atmospheric and oceanic dynamics
come to light. In most of the problems concerning GFD, either the ambient rotation (of Earth, planets,
stars) or density differences (warm and cold air masses, fresh and saline water) or both assume a relevant
importance. Typical problems arising in geophysical fluid dynamics are, for example, the variability of
the atmosphere (weather and climate dynamics), of the ocean (waves, vortices and currents) and vortices
on other planet (Jupiter’s Great Red Spot, see Figure 1.1), and convection in stars. The effects of rotation
and those of stratification distinguish the GFD from the traditional fluid mechanics. The fact that the
ambient is rotating (e.g. the Earth’s rotation around its axis) introduces in the equations the presence of
two acceleration terms that, in view of the Newton’s second law of motion, can be interpreted as forces:
the Coriolis force and the centrifugal force. On the one hand, although the centrifugal effects are more
palpable (on a planetary scale), they play a negligible role in the dynamics. On the other hand, the
less intuitive Coriolis force turns out to be a crucial character in describing the behaviour of geophysical
motions. The major effect of the Coriolis force is to impose certain vertical rigidity to the fluid: if the
Coriolis effect is strong enough, we could observe that the homogeneous flow displaces itself in vertical
columns: the particle along the same vertical move together and retain their alignment over long periods

1
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of time (e.g. currents in the Western North Atlantic). This property is known as Taylor-Proudman
theorem. That result was firstly derived by S. S. Hough in 1897, but was named after the works (in
1916-1917) of G. I. Taylor and J. Proudman. Five years later, G. I. Taylor verified experimentally such
a property.

Figure 1.1: Jupiter’s Great Red Spot (1979)

In the large scale atmospheric and oceanic flows, the previous state of perfect vertical rigidity is
not realized due to the fact that the rotation is not sufficiently fast and due to the appearance of
stratification, i.e. density variations. The cause of those vertical effects is attributable to the presence
of the gravitational force, which tends to lower the regions of the fluid with heavier density and to raise
the lightest. Under equilibrium conditions, the fluid is stably stratified in stacked horizontal layers of
decreasing density. However, the fluid motions disturb this equilibrium that gravity tends to restore.

We conclude this part pointing out that the advances in GFD touch considerably our real life. The
progress in the ability to predict with some confidence the paths of hurricanes has led the creation of
warning systems that have saved and will save numerous lives in sea and coastal areas (e.g. we can think
to the Hurricane Frances in 2004, see Figure 1.2).

Figure 1.2: Hurricane Frances (2004)

Another fundamental aspect is that the combined dynamics of atmosphere and oceans contribute to
the global climate. The behaviour of the atmosphere modulates, for example, the agricultural success
and the ocean currents affect navigation, fisheries and disposal of pollution. Thus, understanding and
reliably predicting of geophysical events and trends are scientific, economic, humanitarian and political
priorities.
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1.2 First character: the rotation

We are now interested in which scales the ambient rotation is no more negligible in the fluid dynamics.
For that reason, we introduce the following criterion considering the velocity U and length L scales of
motion. If a particle at speed U covers the distance L in a time larger than or comparable to a rotation
period (of the Earth, for example), we can imagine that the trajectory is influenced by the ambient
rotation. Therefore, we write

B time of one revolution 2r/Q 27U
g:= — _
time taken by a particle to cover L at U~ L/U QL

Y

A 2 : . .
where Q 1= - is the ambient rotation rate.

If £ < 1, then we can conclude that the rotation is important. In geophysical flows the previous
inequality holds, since e.g. an ocean current usually flows at 10 cm/s over a distance of 10 km or a wind

blows at 10 m/s in an anticyclonic formation 1000 km wide.

1.2.1 The Coriolis force

In this paragraph, we give a short mathematical inspection about the rotating framework of reference.
To simplify the exposition, we focus on the two-dimensional case. Let X' and X? be the axes of the
inertial framework of reference and x!, 22 be those of the rotating framework with angular velocity .
We denote by I, J and %, j the corresponding unit vectors (see Figure 1.3 below).

y i Jt

Figure 1.3: Inertial framework versus rotating framework

Then, it follows that

and the position vector is defined as

1.2.1
=xt+27]. ( )

Thus, it is easy to find that
zt = X' cos(Qt) + X% sin(Qt)
22 = —X1sin(Qt) + X2 cos(Q).

At this point, taking the first derivative in time yields:

1 Xl X2
ddit = ddt cos(Qt) + d ; sin(Qt) + Qa?
dx? ax?t dx?

@ in(Qt) + —— cos(Qt) — Qat.
g o sin(Qt) + o cos(Qt) — Qu
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The previous expressions are the components of the relative velocity:

dm1,+dx2, Ui
U= —=1 —_— =Uu 1 u .
dt dat J J

Similarly the absolute velocity is defined as

Rewriting the absolute velocity in terms of the rotating framework, we get

dx? dXx? dx? dXx?
U= ( cos(2t) + 7 sin(Qt)) 1+ (— 7 sin(Qt) + dtCOS(Qt)> J

dt
=Uti+U?j.
Then, comparing the absolute and relative velocities, one has
Ul = ! — Qa?
U? =u? + Q'

This means that the absolute velocity is the relative velocity with in addition the entrainment speed
caused by the ambient rotation. In a similar manner, we can deduce that

CZZI = <d2§ cos(§2t) + djlif sin(Qt)) +20U? — |92
wnd d? 2 d2x! A2 X2
a2 <_dt2 sin(Qt) + TR cos(Qt)> — 20Ut — |Q\2x2 .
In terms of acceleration, we have
d?zt | &Pt L. .
a=—gttoyi=aitay

and so
Al _ CLl . QQU2 o |Q’2IL’1
A? = a® + 200" — |92

Now, we notice that the absolute acceleration differs from the relative acceleration for two contributions:
the term proportional to £ and the relative velocity, which is called Coriolis acceleration; the term
proportional to || and the relative coordinates, i.e. the centrifugal acceleration. The centrifugal force
acts as an outward pull, whereas the Coriolis force depends on the relative speed.

In three-dimensions, one can repeat the above computations deriving

U=u+Qxr
A=a+2Qxu+2x (2 x7),

where the symbol x stands for the external products by vectors in R® and = Qk (with k the unit
vector in the third dimension). This means that if we would to take a derivative in time in the inertial

framework, we have to apply

d
L0
a T

in the rotating framework of reference.
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1.2.2 The centrifugal force

Unlike the Coriolis force which is proportional to the velocity (as we have seen above), the centrifugal
force depends on the rotation rate and the distance of the particle to the rotation axis. The centrifugal
force is responsible for the slightly flattened shape of the planets.

-2

$

&
£
S

s
g Ty ~/ .
_— : ) _ Centrifugal
! &
7
/ y Net

Figure 1.4: The effects of the centrifugal force

For example, due to the centrifugal effects, the terrestrial equatorial radius is 6378 km, slightly greater
than its polar radius of 6357 km. Moreover, the centrifugal effects cause an outward pull to particles,
that in any case they don’t fly out to space thanks to the gravity. However, the centrifugal force affects
the gravity: it shifts the direction of the gravity away from the Earth’s center, thus weakening the
gravitational effects.

1.3 Second character: the stratification effects

As mentioned above, geophysical fluids consist of fluid masses of different densities, that the gravitational
action tends to arrange in horizontal layers. On the contrary, the motion disturbs this equilibrium raising
the dense zones and lowering the lighter ones. In this way, the potential energy increase at the cost of
decreasing the kinetic energy and thus the flow slows down. Therefore, the importance of stratification can
be evaluated in terms of potential and kinetic energies. We denote by Ap the scale of density variations
and H is its height scale. We perturb the stratification, raising a fluid particle of density o9 + Ag over
the height H and lowering a fluid element of density gy over the same H. The corresponding change in
potential energy, per unit of volume, is

(00 + Ao)gH — pogH = gH Ap.

Now, we define
300U
gH Ao’
which is the comparative energy ratio between the kinetic energy (per unit of volume) 300|U|? and the
potential energy. Therefore, if @ < 1 the stratification effects cannot be ignored in the dynamics of the
fluid.

In geophysical flows, an interesting situation is when rotation and stratification effects are both
important, i.e. € ~ 1 and @ ~ 1. This implies that

o=

A
LN% and U~ —QgH.

In this way, we have a fundamental length scale

LN

2] —
=)
S
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On the Earth, the typical length and velocity scales for the atmosphere and oceans are, respectively,

Latm ~ 500 km and Uatm ~ 30 m/s
Lo ~ 60 km and Use ~4m/s.

We point out that, in general, the oceanic motions are slower and slightly more confined than the
atmospheric flows.

1.4 Mass, momentum, energy and entropy budgets

The object of this section is to establish, via physical considerations, the equations governing the move-
ment of geophysical flows.

1.4.1 The continuity equation

We consider an infinitesimal cube with volume AV = Az!Az?Az3 that is fixed in space.

|
T il
—:> —_— <Qu] + %’);)A;H) AzZAz3
___ _7 )

zt ! + Azt

Figure 1.5: Mass conservation in an infinitesimal cube

The fluid crosses the cube in the x!-direction, passing through the faces in the x?-2 plane of area
AA = Az?Az?. The accumulation of the fluid in-out, in the z!'-direction, is:

1
Ar?A® [(eud) (22, 2%) — (out) (2! + Axt,a?,2%)] = —855“1)@1,#, ) Azt Ar?Aa®
X

where ¢ is the density of the fluid (in kg/m?) and u! (in m/s) is the first component of the flow velocity

u = (u',u?,u3). Similarly for the 22 and z3-directions, we have

3(QU2) 8(9u3) 1A 2A.3
| o2 + 93 Ax Az Az’ .

This net accumulation of the fluid must be accompanied by an increase of fluid mass within the volume,
represented by

@ AxtAz? A3 .
ot

Since the mass is conserved, one has

1 2 3

ot ozl 0x2 o3 | 0

and, therefore,
0o+ div (pu) = 0. (1.4.1)

The previous equation (1.4.1) is the so-called mass continuity equation. Sturm in [68] reports that
Leonardo da Vinci had already derived a simplified form of the statement of mass conservation in the
15th century. However, the three-dimensional form had to be accredited to Leonhard Euler (1707-1783).
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1.4.2 The momentum budget

At this point, we are interested in performing budgets on momentum and energy. We sketch the approach
on the momentum in 3-D.

We consider pu' the momentum which can be changed by forces and by in-out flow of momentum.
The budget momentum fluxes can be calculated as in the case of masses except that g is now replaced
by ou'. Instead, the forces applied to the infinitesimal cube in the z!-direction are:

—p(zt, 2%, 2 A2 A + plat + Azt 22, 23) Ax? A

+s7'e? (21, 22, 23) Azt Axd — s’ (zt, 22 + Az? 23 Azt AgB
+ st (21, 22, 23) Az’ Axd — S"’lxl(:ﬁl + Azl 2?2 Azl Ax?
+ s’ (21, 22, 23) Azt Ax? — s’ (zt, 22, 23 + Az Azt Az?

where the viscous stresses S depend on the nature of the matter. We have also assumed that selat = getal
(with j # k): if these stresses had not the same intensity, the cube would be subjected to an unbalanced

torque.
§o*e (a1, 2% + Aa?)

se'e® (21,22 + Az?)

ey

o(fur, £2)| | ST (@' + Aat,a?)

p(z! + Azl 2?)
§7'7 (2 + Axt,2?)

zi(Az'lA 2?%)

Figure 1.6: Two-dimensional situation with forces acting on the fluid parcel

Therefore, with these forces and the in-out flow of momentum, we derive (for the x!-direction):

B) ) ) op osT'el gsEle’ pgsEle’
1 1,1 1,2 1,3 — _
(eu’) + Oxl (eu'u) + Ox? (eu'u) + 8:133(Qu w) Oxl + Oxl + Ox? + ox3

ot
Similarly to the 22 and z3-directions (taking into account the gravitational force pgx®k), we obtain the

momentum equation:
d(ou) + div (ou @ u) = —Vp + divS — gg2°k, (1.4.2)

where k = e = (0,0,1) is the unit vector directed along the vertical axis.
Since we are interested in fluids which are heavily subjected to the rotational effects of the ambient,
we have to make use of the relation

0 0
—u =—u+22xu+Qx (Lxr).
ot inertial ot

In the previous relation one can recognize:

e the Coriolis force Q2 x wu;

e the centrifugal force @ x (2 x r) =1V (]Q X r|2), where 7 is the position defined in (1.2.1).
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Then, at the end recalling (1.4.2), we get the momentum equation in the rotational framework:
1
Or(ou) + div (ou ® u) + 29 x pu + Vp = divS — ggz’k + §QV (\Q X r]2)
and in general

O(ou) +div (pu @ u) +2Q X pu + Vp =divS + of , (1.4.3)
where of is called body force.

1.4.3 The energy budget

The energy density £ can be written as
1
g = §Q‘U|2 + Qea

where the function e denotes the specific internal energy.
Taking 2 = Qk and multiplying the momentum equation (1.4.3) on u, we deduce the kinetic energy
balance:

1 1
Oy <2,Q]u|2) + div <29\u]2u> =div(Tu) —T:Vu+of -u,
where we have defined A : B := Z?,k:l Ak Bk and the stress tensor
T:=S—-pld

via the Stokes’ law. We recall that Id represents the identity matrix.
On the other hand, by virtue of the First law of thermodynamics, the energy changes of system are
due only to external sources, i.e.

O(oe) + div (geu) +divg =S : Vu — pdivu + 0@, (1.4.4)

where @) represents the volumetric rate of the internal energy production, and q is the internal energy
flux.
Therefore, the energy balance reads:

& + div (Eu) + div (g — Su + pu) = of + 0Q .

1.4.4 The entropy budget

In accordance with the Second law of thermodynamics, the quantities p, e and s are linked trough the
Gibbs’ relation

1
Q9Dgﬂ98 = DQ7796 +pDQ’19 (Q) s

where D, y stands for the differential with respect to the density ¢ and the temperature ¥, and s is the
specific entropy. Accordingly, the internal energy balance equation (1.4.4) can be rewritten in the form
of entropy balance

O¢(0s) + div (psu) + div (%) =0+ §Q7
with the entropy production rate

U::1<S:Vu—q.V19>.

Y Y

Moreover, the Second law of thermodynamics postulates that ¢ must be non-negative for any admissible
thermodynamic process.
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1.5 Boussinesq approximation

In most geophysical flows, the density of the fluid has “small” oscillations around a mean value. Indeed,
variations in density within one ocean basin rarely exceed 0.3% (instead, in the atmosphere, density
variations due to the winds are usually no more than 5%). So, it appears physically justifiable to assume
that the fluid density ¢ does not depart much from a reference state g, i.e.

o=0+d a2 2%)  with  |J| <3,
Therefore, the continuity equation (1.4.1) becomes
out  ou?  oud L[ Out Ou? Oud 00 1 00 5 00 3 00
o — + 2 4 bt STl e e 2L £ ) —o.
Q(@xl + dz? + (91:3> te (8x1 * ox? * 8:c3> * <8t T ozt T 0z T 83:3)
Since |¢'| < @, only the first group of terms has to be retained so that

ot oo
ozl = 0x2  Ox3

Physically, the statement means that we are dealing with an incompressible fluid.

=0.

1.6 Scales of motion and dimensionless numbers

We perform in this section an analysis of scales characterizing the geophysical flows. First of all, we
compare the time, length and velocity scales with respect to the ambient rotation rate . Typically, one

has I
and — <.

L~
It is generally not required to discriminate between the two horizontal directions and velocities, respec-
tively: we assign indeed the same length scale L and velocity scale U for the horizontal components
(respectively). The same, however, cannot be said of the vertical direction. Geophysical flows are in fact
confined in domain, which are wider than they are thick: H/L is small. If we assume the Boussinesq

approximation, the terms in the continuity equation (in its reduced form) have orders of magnitude

Tz

2] —

U U w
L’ L’ H
By geophysical considerations, the vertical velocity scale must by constrained by
H
W< —=U
~ L
and by virtue of H <« L, one has W <« U. In other words, large-scale geophysical flows are shallow
(H < L) and nearly two-dimensional (W < U).
At this point, we consider the momentum equation (1.4.3) under the Boussinesq approximation, in
which (only for clarity of exposition) we take divS = vAu, f = gk and @ = Qcospj + Qsin p k where
¢ is the latitude. Then, the equation reads

u' 19u! 4, 20u! | 30u! 3_ 42 = _10p ul dul 2l

o T U ger TU Gz Ul + fu’ — fut = =551+ Grger T 5.20:7 T Bas008

du? 19u? 2 9u? 3 9u? 1_ _19p %u? d%u? 2u?

ot +u Ozl +u Ox2 tu O3 + fu — 00x2 +v Ozxloz! + 0z20z2 + 0x30x3 (161)
aud 10u® 29u® 30u* _ p 1 _ _10p _ go 9%u? 9%u? *u?

ot +u Ozt +u 0z? +u o3 f*u - 00x3 ° +v Oxloz?t + 0x20x2 + 0x30x3 )

with f:=2Qsinp and f, := 28 cos .
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Let us consider the z'-momentum: the terms scale sequentially as

U U? U? wuU P U U U

— — — — Qw QU — — — — . 1.6.2

T ) L ) L ) H ) == ) == 9y @L 9 Z/Lz ) VL2 ) I/H2 ( )

Due to the fact that W < U, the term QW is always smaller than QU and can be safely neglected.
Moreover, since the rotation has a fundamental importance in the geophysical fluid dynamics, the

pressure term will scale as the Coriolis force, i.e.

P
— = QU.
or -

For physical considerations also the last three terms in (1.6.2) are small:

U U
2~

Similar arguments apply to the z?-momentum equation. Now, let us analyse the vertical momentum in
(1.6.1), which scales as

W Uw Uw e p gAo 1% 1% 1%

- — QU — g=e - - —.
T’ L ) L b _H ) = ) EH, E 7 VL27 I/L2? VHQ

Regarding the first term W/T one has

Analogously, for the next three terms. Now,

w K,
2o

5
oH
The previous relation establishes the smallness of the fifth term. As already seen before:

w W

2 <

At the end only two terms remain, leading to the so-called hydrostatic balance

0=—-L _
00z

1dp go
@ )
and we observe that, in absence of stratification, p is nearly x*-independent.
At this point, our main goal is to introduce some important dimensionless numbers. In the previous
scale analysis the term QU was central. A division of (1.6.2) by QU, allows us to compare the importance
of the other terms with respect to the Coriolis force, yielding (for the z!-momentum):

1 v v WL U P v v v
QT ’ QL ’ QL ’ UH QL ’ ’ 0Q LU ’ QLQ ’ QL2 ’ QH2 '

The first ratio

is called temporal Rossby number.
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The next one, is the so-called Rossby number

which compare advection to Coriolis force: it is at most on the order of unity.
In addition, the last ratio measures the importance of vertical friction and it is called Ekman number

14

Fk = .
k Vg

If now we focus our attention on the z3-momentum equation, we have also

P gAo
oH’ o

Taking the ratio between these two quantities, we obtain

gHAp  gHAp R gHAp
P ooLu Y U

This leads to another adimensional number: the Richardson number

. gHAp
Ri = 207

1.7 The Taylor-Proudman theorem

Let us now focus on rapidly rotating fluids, ignoring the frictional and density-variation effects, i.e.
Ror <« 1, Ro<k 1, Pk <1.

Therefore, we get

(1.7.1)

If now we take the vertical derivative in the first and second equations of (1.7.1), then we infer that
ou? 10 0
—f o = =433 P =0
ox3 0 0x3 \ Ox!

ou! 10 dp
faﬂ_gaxf‘<aaﬂ>_0‘

and

The previous relations mean dsu' = dsu? = 0.
This is the so-celebrated Taylor-Proudman theorem. Physically, it states that the horizontal velocity
field has no vertical shear and the particles on the same vertical move together (the Taylor columns).
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Figure 1.7: Side view of a Taylor columns experiment

1.8 Stratified and quasi-incompressible fluids

1.8.1 The Brunt-Vaisiala frequency

Until now, we have devoted our attention to the effects of rotation, and stratification was avoided.
Therefore, we introduce in a first instance a basic measure of stratification called Brunt-Vdisdld frequency
and later the accompanying dimensionless ratio, the Froude number.

We consider a fluid in static equilibrium. We take a fluid parcel (of volume V') at height 23 above a
reference level with density o(2?) and we displace it to the higher level 23 4+ h where the ambient density
is o(a® + h), see Figure 1.8 below. If the fluid is incompressible, by Archimede buoyancy principle, the
particle is subject to the force

g (o(z®) = o(@® + 1)) V.
Thus, the Newton’s law yields

% =g (o(a®) —o(z* + h)) V.

Using a Taylor expansion for the term on the right-hand side and under the Boussinesq approximation,
one gets

o(z*)V

d’h
an gﬂ h=0.
dt?2  odx3
If the density is decreasing with the height (do/dz3 < 0), we can define the Brunt-Viisdli frequency as
g do
NZ.= %
odx3

Figure 1.8: Fluid parcel in a stratified environment

Physically this means that, when we displace upward the parcel, its weight is heavier than the
ambient: then, it is subjected to a downward force. The particle, going down, acquires a vertical velocity
and when it reaches the original level, goes further downward (due to the inertia). At this point, the
particle is surrounded by an heavier ambient so that it is recalled upward and oscillations persist around
the equilibrium level.
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1.8.2 The measurement of stratification: the Froude number

In this paragraph, we illustrate how to derive the physical Froude number.

=

Figure 1.9: Deep oceanic currents over an irregular bottom

We consider a stratified fluid of thickness H and frequency N. We suppose its speed equal to U over
an obstacle of length L and height Az? (see Figure 1.9 above). We can think about deep oceanic currents
over an irregular seabed.

The obstacle forces the fluid to displace itself also vertically and hence requires some additional
gravitational energy. Stratification will act to minimize such vertical displacement, forcing the flow to
get around the block. To climb the impediment the fluid needs a vertical velocity

Ax3 UAx3
W=—F="7"

At this point, the vertical displacement produces a density variation

— A2
Ap = ‘dg A:U?’:&Ax?’.

dz3 g

As a consequence, one has also a pressure disturbance that, due to the hydrostatic balance, is
AP = gHAp = gN?HAz?,
which in turn causes a change in the fluid velocity

U? AP
- = 1.8.1
L oL (1.8.1)

Therefore, the last relation (1.8.1) tells us that U? = N2HAz3.
If now we take the ratio %, we obtain that

W/H Az®  U?

U/L H  N2H?’

We note if U is less than NH, W/H is less than U/L. This implies that the variation in the vertical
direction cannot fully meet the horizontal displacement: the fluid is then deflected horizontally.

In addition, the stronger the stratification, the smaller is U compared to NH and thus W/H with
respect to U/L. For that reason, to measure the stratification, we define the Froude number

U
Fro——_.
" NH
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1.8.3 The Mach number

To define the Mach number, we consider a flow in which the density-changes induced by the pressure are
isentropic, i.e.
op 500 :
D :CQ&xi for i =1,2,3,
where ¢ is the sound speed. Therefore, the continuity equation reads:
1 Do 1 Dp

d' = —-—— = - —
v o Dt oc? Dt’

with D/Dt = 0/0t + w - V the material derivative.
Using the following dimensionless variables (for i,j = 1,2, 3)

;o Ut u’ P 0
x*_Lv t*_fv u*_Ua p*_ﬁv Q*_§7
where 0 is a reference density, we obtain
di U? 1 Dp,
WV, = —— — ,
o @ 0. Dt,
with div, = Ldiv.
Then, we can define the Mach number as
U
Ma := -,
c

which sets the size of isentropic departures from incompressible flow: the flows are considered incom-
pressible when Ma < 0.3.

1.9 The dimensionless Navier-Stokes equations

We start now from the Navier-Stokes momentum equation for incompressible flows (divu = 0) of the
following form

D
0 <u> = —Vp+ 09 +vAu. (1.9.1)
Dt inertial

Remembering the connection between the inertial and the rotational frameworks, one has

<Du> :Du+2ﬂ><u—|—ﬂ><(ﬂ><r):Du—i—QQXu—i—V(l\erQ),
Dt inertial Dt Dt 2
where © = Qk (€2 is the scalar magnitude associated) and we will call F := § |Q x r?

Moreover, we recall that the effects of compressibility can be recasted from the continuity equation
(see the previous Subsection 1.8.3).

So, relation (1.9.1) can be rendered dimensionless by defining (for 4,j = 1,2, 3)

4 = — t — Qt J = — « = /& s ‘3( _ — s
Ly L ’ * 22V Uy U ) p QU2 g g
where g is the acceleration of gravity.
Therefore, we get
Ou, 2 1 1 1
St o Vil + —e3 X Uy = —Vupe + =50« + — Asu, + =5 V. F, 1.9.2
ot +u Us + o3 X u Prt gt o Baths g ( )
where V, = LV.

In the previous equation the symbols St and Re stay for the Strouhal and Reynolds numbers (see
[51] for more details).
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The Navier-Stokes-Coriolis equations
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Chapter 2

A multi-scale limit

In this chapter we address the singular perturbation problem given by the full Navier-
Stokes-Fourier system, which (for the reader’s convenience) we remember to be

(atQ + div (pu) =0
1
Orlou) +div (ou @ u) + P2 4 = Tp(0,9)
Ro Ma 0 . (2.0.1)
9, V0
Oy (QS(& 19)) + div (Qs(g, ﬁ)u) + div <(M> =0,

with St =1 and Re =1 (see also system (1.9.2) in Section 1.9).
The contents of this chapter are included in the article [24].

Let us now give an outline of the chapter.

In Section 2.1 we collect our assumptions and we state our main results. In Section
2.2 we study the singular perturbation problem, stating uniform bounds on our family of
weak solutions and establishing constraints that the limit points have to satisfy. Section
2.3 is devoted to the proof of the convergence result for m > 2 and F # 0, employing the
compensated compactness technique. In the last Section 2.4, with the same approach, we
prove the convergence result for m = 1 and F' = 0; actually, in absence of the centrifugal
force, the same argument shows convergence for any m > 1.

2.1 The Navier-Stokes-Fourier system

In this section, we formulate our working hypotheses (see Subsection 2.1.1) and we state our main results
(in Subsection 2.1.2).

2.1.1 Setting of the problem

In this subsection, we present the rescaled Navier-Stokes-Fourier system with Coriolis, centrifugal and
gravitational forces, which we are going to consider in our study, and we formulate the main working
hypotheses. The material of this part is mostly classical: unless otherwise specified, we refer to [39] for
details. Paragraph 2.1.1.3 contains some original contributions, concerning the analysis of the equilibrium
states under our hypotheses on the specific form of the centrifugal and gravitational forces.

17
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2.1.1.1 Primitive system

To begin with, let us introduce the “primitive system”, i.e. the rescaled compressible Navier-Stokes-
Fourier system (2.0.1), supplemented with the scaling

Ro=¢, Ma=¢" and Fr=¢"?, for some m>1, (2.1.1)

where € €]0, 1] is a small parameter. Thus, the system consists of the continuity equation (conservation
of mass), the momentum equation, the entropy balance and the total energy balance: respectively,

Oro- + div (0-ue) =0 (NSF})

I (0=ue) + div (0eu: ® ue) + % e3 X 0:U: + gémvmp(ge, Je) = (NSF2)
= divS(J., Voue) + %VxF + f—;vmc

Oy (0:5(02,9:)) + div (0:5(0z, 9= )uc) + div (W) = 0. (NSF2)

d 527m 2 _.m _ 2(m—1) — 4

it Jo, < 5 Oelucl” + oeeoe, Ve) — ™ 0:G — ¢ 95F> dr=0. (NSF;)

The unknowns are the fluid mass density 0. = 0.(t,2) > 0 of the fluid, its velocity field u. = u.(t,z) € R3
and its absolute temperature 9. = ¥.(t,z) > 0, t € |0,T[ , x € Q. which fills, for ¢ € |0, 1] fixed, the

bounded domain .

Q. := Br_(0)x]0,1], where L. = s

Lo (2.1.2)

for § > 0 and for some Ly > 0 fixed. Here above, we have denoted by B;(xg) the Euclidean ball of center
xo and radius [ in R%. Notice that, roughly speaking, we have the property

Q. — Q:=R?x]0,1[ ase—0".

Remark 2.1.1 We explicitly point out that, throughout all the chapter, we tacitly assume rounded cor-
ners in (2.1.2). In this way, we can apply the standard weak solutions existence theory developed in [39],
which requires C%V regularity, with v € (0,1), on the space domain.

The pressure p, the specific internal energy e and the specific entropy s are given scalar valued functions
of o and ¥ which are related through Gibbs’ equation

1
UDygs = Dgge +pDop <Q> , (2.1.3)

where the symbol D, y stands for the differential with respect to the variables p and ¥ (see also Subsection
1.4.4). The viscous stress tensor in (NSF2) is given by Newton’s rheological law

2
S(¥e, Vaue) = p(9e) <qus + 'Vou, — gdivug Id) + n(¥:)divuId , (2.1.4)

for two suitable coefficients p and n (we refer to Paragraph 2.1.1.2 below for the precise hypotheses), and
here the apex ¢ stands for the transpose operator.
Moreover, the entropy production rate o. in (NSF2) satisfies

1
0. > 7 <52m8(195,vmu5) : Veue — a(

€

796; Vacﬁe) . vx'l9€> (2 1 5)

Ve
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The heat flux q in (NSF2) is determined by Fourier’s law
q(Ve, Vo) = —k(0:) Ve, (2.1.6)

where k > 0 is the heat-conduction coefficient. The term es x g.u. takes into account the (strong)
Coriolis force acting on the fluid. Next, we turn our attention to centrifugal and gravitational forces, F
and G respectively. We assume that they are of the form

F(z)= ‘mh‘ and G(z) = —a>. (2.1.7)

The precise expression of F' and G will be useful in Paragraph 2.1.1.3 below (and even more in Chapter
3), but the previous assumptions are certainly not optimal from the point of view of the weak solutions
theory.

Remark 2.1.2 For the existence theory of weak solutions to our system, it would be enough to assume
F e W5 (R2x]0,1[) to satisfy

loc
F(x) >0, F(zy,z9,—13) = F(z1,20,23), |VoF(z) <c(l+|z") forall z=eR?x]0,1|
and G € W (R?x]0,1[).
The system is supplemented with complete slip boundary conditions, namely

(uE . na)\BQg =0, and ([8(195, Ve )ng| x ne) 0, (2.1.8)

0Q. —
where n. denotes the outer normal to the boundary 0f).. We also suppose that the boundary of physical
space is thermally isolated, i.e. one has

(4-72) g, =0 (2.1.9)

Remark 2.1.3 Notice that, as 6 > 0 in (2.1.2) and the speed of sound is proportional to e~™, hypothesis
(2.1.2) guarantees that OBr,_(0)x |0, 1[ of the boundary 9 of Q. becomes irrelevant when one considers
the behaviour of acoustic waves on some compact set of the physical space. We refer to Subsections 2.3.1
and 2.4.1 for details about this point.

2.1.1.2 Structural restrictions

Now we need to impose structural restrictions on the thermodynamical functions p, e, s as well as on
the diffusion coefficients u, 1, k. We start by setting, for some real number a > 0,

plo.9) = par(e.9) + 50" where  par(e,d) = 972P (7). (2.1.10)
The first component pys in relation (2.1.10) corresponds to the standard molecular pressure of a general
monoatomic gas (see Section 1.4 of [39]), while the second one represents the thermal radiation. Here

above,
PcC'0,00)NC%*0,00), P(0)=0, P(Z)>0 forall Z>0, (2.1.11)

which in particular implies the positive compressibility condition
0pp(0,7) > 0. (2.1.12)

Additionally, we assume that dyge(p, 1) is positive and bounded (see below): this translates into the

condition ; ,

sP(Z)—-P(Z)Z
Z

0< <c forall Z>0. (2.1.13)
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In view of (2.1.13), we have that Z — P(Z)/Z°%/3 is a decreasing function and in addition we assume

. P(2)
Am e = Poc > 0. (2.1.14)

Accordingly to Gibbs’ relation (2.1.3), the specific internal energy and the specific entropy can be
written in the following forms:

e(0,9) = en(0,9) + a s(0,9) = 8 (W) Fga
where we have set

319°/2 0 ) 33P(Z)—ZP'(Z)
em(o,0) = §7P (W> and SN(Z) = —3 73 forall Z>0. (2.1.15)

The diffusion coefficients p (shear viscosity), n (bulk viscosity) and x (heat conductivity) are assumed
to be continuously differentiable functions of the temperature ¥ € [0, oo[, satisfying the following growth
conditions for all ¥ > 0:

0<p(l+9) <p@) <m(l+9), 0<n() <p(l+9), 0<xs(l+9?)<k@) <DL+, (2.1.16)

where p, @, 77, k and K are positive constants. Let us remark that the above assumptions may be not
optimal from the point of view of the existence theory.

Remark 2.1.4 We point out that the choice in taking the pressure as above (which formulation describes
the pressure for a monoatomic gas) is dictated by the fact that we follow the “solid” existence theory
developed by Feireisl and Novotny in the book [39]. Any other formulation for the pressure, for which
one possesses an existence theory, is allowed in our analysis (see e.g. [10] for the polytropic gas case,
and references therein): as we will see in the next chapter, if 9 is constant, one can take in (2.1.14) any
v > d/2 as exponent (where d is the dimension). We refer to [56], [42] and references therein, in this
respect (see also [55] for a first result in that context).

2.1.1.3 Analysis of the equilibrium states

For each scaled system (NSF}) to (NSF?), the so-called equilibrium states consist of static density g. and
constant temperature distribution ¢ > 0 satisfying

Vap(0:,0) = 2 V.V F + £m5.V,G  in Q. (2.1.17)

For later use, it is convenient to state (2.1.17) on whole set 2. Notice that, a priori, it is not known
that the target temperature has to be constant: this follows from the fact that V9. needs to vanish as
e — 0 (see Section 4.2 of [39] for more comments about this).

Equation (2.1.17) identifies g, up to an additive constant: normalizing it to 0, and taking the target
density to be 1, we get

~ 4 9
(g.) = F. := XM VF 4@, where  TI(o) :/ 9ep(9) 4, (2.1.18)
1

z
From this relation, we immediately get the following properties:
(i) when m > 1, or m =1 and F = 0, for any z € Q one has g.(z) — 1 in the limit € — 0T;
(ii) for m =1 and F' # 0, (55)5 converges pointwise to o, where
0 is a solution of the problem II(o(z)) = F(z), with z€Q.

In particular, ¢ is non-constant, of class C?(f2) (keep in mind assumptions (2.1.11) and (2.1.12)
above) and it depends just on the horizontal variables due to (2.1.7).
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We are now going to study more in detail the equilibrium densities g.. In order to keep the discussion
as general as possible, we are going to consider both cases (i) and (ii) listed above, even though our
results will concern only case (i).

The first problem we have to face is that the right-hand side of (2.1.18) may be negative: this means
that 9. can go below the value 1 in some regions of ). Nonetheless, the next statement excludes the
presence of vacuum.

Lemma 2.1.5 Let the centrifugal force F' and the gravitational force G be given by (2.1.7). Let (EE)
be a family of static solutions to equation (2.1.18) on .
Then, there exist an 9 > 0 and a 0 < p, < 1 such that 0: > ps for all € €]0,20] and all z € Q.

0<e<1

Proof: Let us consider the case m > 1 (hence F' # 0) first. Suppose, by contradiction, that
there exists a sequence (sn, xn)n such that 0 < o, (z,) < 1/n, and we will observe that the sequence
(mn)n cannot be bounded. Indeed, relation (2.1.18), computed on g, (x,), would immediately imply
that g, (z,,) should rather converge to 1. In any case, since 1/n < 1 for n > 2 and 23 € ]0, 1[, we deduce
that

— (&)™ < Fey(2n) = (22)?" 7V (@) P — (e0)™ (20)” < 0,

which in particular implies that F., (z,) has to go to 0 for e — 07. As a consequence, since II(1) = 0,
by the mean value theorem (see e.g. Chapter 5 of [64]) and (2.1.18) we get

~ ~ - _ agp(zn,@) (

Fan(xn) = H(Qan(l‘n)) = H/(Zn) (Qan(xn) - 1) Een(xn) - 1) — 0,

Zn

for some z, €], (vn),1[C]0,1[, for all n € N. In turn, this relation, combined with (2.1.12), implies
that o, (z,) — 1, which is in contradiction with the fact that it has to be < 1/n for any n € N.

The case m = 1 and F' = 0 can be treated in a similar way. Let us now assume that m = 1 and
F # 0: relation (2.1.18) in this case becomes

II(0-(z)) = |zh |2 — ea®. (2.1.19)

We observe that the right-hand side of this identity is negative on the set {0 < Jzh|? < 5x3}. By
definition (2.1.18), this is equivalent to having g-(z) < 1.

In particular, the smallest value of g.(z) is attained for z = 2% = (0,0, 1), for which II(g.(2°)) =
On the other hand, fixed a z¥ such that | (22)" |? = ¢ and (22)% = 1, we have II(0-(z2)) = 0, and then
0-(z2) = 1. Therefore, by mean value theorem again we get

agp(gs (ys) ) E)
Oc (ya)

8910(55 (ys)v 5)

~ .0y _ =~ JZO —
(95(1: ) QE( E)) ga(yg)

e = M(E(Y) - (@) = (&%) - 1)

for some suitable point y. = ((xg)h, 1) lying on the line connecting ° = (0,0, 1) with 22.
From this equality and the structural hypothesis (2.1.12), since g-(2°) — 1 < 0 (due to the fact that
II(0-(2")) < 0), we deduce that g-(y:) > 0 for all £ > 0. On the other hand, (2.1.19) says that, for 2*

fixed, the function IT o g. is radially increasing on R?: then, in particular g.(y.) < 0-(z2) = 1.
Finally, thanks to these relations and the regularity properties (2.1.10) and (2.1.11), we see that

¢ (Ye)

0-(2%) =1 — e — 0
eea) =1 Dop(0=(ye), V)

remains strictly positive, at least for ¢ small enough. [
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For simplicity, and without loss of any generality, we assume from now on that eg = 1 in Lemma
2.1.5.

Next, denoted as above B;(0) the ball in the horizontal variables 2" € R? of center 0 and radius [ > 0,
we define the cylinder with smoothed corners

By = {m € |2 < L} = BL(0)x]0,1[.
We can now state the next boundedness property for the family (55)6.
Lemma 2.1.6 Let m > 1. Let F and G satisfy (2.1.7). Then, for any l > 0, there exists a constant
C(l) > 1 such that for all e €]0,1] one has

0 < C(I) on B; . (2.1.20)
If F =0, then there exists C > 1 such that, for all e €]0,1] and all x € 2, one has |0:(z)| < C.

Proof: Let us focus on the case m > 1 and F' # 0 for a while. In order to see (2.1.20), we proceed
in two steps. First of all, we fix £ and we show that g. is bounded in the previous set. Assume it is not:
there exists a sequence (xn)n C B; such that p.(x,) > n. But then, thanks to hypothesis (2.1.13), we

can write e
_ " Dpp(z, D) (M7 P(2)
(3 () 2/1 et 4 > 0@) /1/193/2 Pz,

and, by use of (2.1.14), it is easy to see that the last integral diverges to +o00 for n — +00. On the other
hand, on the set B;, the function F.is uniformly bounded by the constant {? + 1, and, recalling formula
(2.1.18), these two facts are in contradiction one with other.

So, we have proved that, g. < C(g,l) on the set B;. But, thanks to point (i) below (2.1.18), the
pointwise convergence of 9. to 1 becomes uniform in the previous set, so that the constant C(e,l) can
be dominated by a new constant C(l), just depending on the fixed .

Let us now take m = 1 and F' # 0. We start by observing that, again, the following property holds
true: for any € and any [ > 0 fixed, one has g. < C(e,[) in B;. Furthermore, by point (ii) below (2.1.18)
we have that g € C%(Q), and then g is locally bounded: for any I > 0 fixed, we have g < C(I) on the set
B;. On the other hand, the pointwise convergence of (55)5 towards ¢ becomes uniform on the compact
set B;: gluing these facts together, we infer that, in the previous bound for g., we can replace C(e, 1) by
a constant C'(!) which is uniform in €.

Consider now the case F' = 0, and any value m > 1. In this case, relation (2.1.18) becomes

H(@) = "G, which implies !H(@:)‘ < C in Q.

At this point, as a consequence of the structural assumptions (2.1.10), (2.1.13) and (2.1.14), we observe
that I1(z) — +oo for z — +00. Then, g. must be uniformly bounded in €.
This completes the proof of the lemma. |

We conclude this paragraph by showing some additional bounds, which will be relevant in the sequel.
Proposition 2.1.7 Let F # 0. For any | > 0, on the cylinder B; one has, for any € €]0,1]:
(1) [oe(x) — 1] < C(1)e™ if m > 2;
(2) [o=(x) — 1] < CW ™D if1<m <2
(3) loe(z) — o(z)] < C(l)e if m=1.

When F =0 and m > 1, instead, one has |o:(x) — 1| < Ce™, for a constant C > 0 which is uniform
inx € and in e €]0,1].
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Proof: Assume F' # 0 for a while. Let m > 2. Thanks to the Lemma 2.1.6, the estimate on

|0<(x) — 1] easily follows applying the mean value theorem (see again e.g. Chapter 5 of [64]) to equation
(2.1.18), and noticing that
z
sup | ———| < 400,
2€lp..C()] | 0pp(2, ) ‘

on B, for any fixed [ > 0. According to the hypothesis m > 2, we have 2(m — 1) > m. The claimed bound
then follows. The proof of the inequality for 1 < m < 2 is analogous, using this time that 2(m — 1) < m.
In order to prove the inequality for m = 1, we consider the equations satisfied by g. and p: we have

(o:(z)) = |a"* — ea?® and I(o(x)) = |a" .
Now, we take the difference and we apply again the mean value theorem, finding

I (ze(2) (2:(x) — o()) = —ea®,

for some z.(x) €]oz(x), 0(x)[ (or with exchanged extreme points, depending on z). By Lemma 2.1.6, we
have uniform (in ) bounds on the set B;, depending on [, for p-(z) and p(x): then, from the previous
identity, on this cylinder we find
|0:(2) — e(z)] < C(D)e.
The bounds in the case F' = 0 can be shown in an analogous way. The proposition is now completely
proved. [

From now on, we will focus on the following cases:
either m > 2, or m>1 and F =0. (2.1.21)

Notice that in all those cases, the target density profile ¢ is constant, namely g = 1.

2.1.1.4 Initial data and finite energy weak solutions

We address the singular perturbation problem described in Paragraph 2.1.1.1 for general ill prepared
initial data, in the framework of finite energy weak solutions, whose theory was developed in [39]. Since
we work with weak solutions based on dissipation estimates and control oj entropy production rate, we

need to assume that the initial data are close to the equilibrium states (oe, ¥) that we have just identified.
Namely, we consider initial densities and temperatures of the following form:

(1)

00, = 0c + Emgo?e and Joe = 9+ Em@of . (2.1.22)
For later use, let us introduce also the following decomposition of the initial densities:
. 1 ~ - 0: — 1
00e =1+ " Roe with Roe = 98,5) + 7, Te 1= Egm : (2.1.23)

Notice that 7. is in fact a datum of the system, since it only depends on p, F' and G.
We suppose 985) and Og . to be bounded measurable functions satisfying the controls

sup <ec, sup (H@o,gﬂLw(Qs) + HV@ O, L2(QE)> < e, (2.1.24)

£€10,1] Hgélg H(LQQL‘X’)(QE) £€10,1]

together with the mean-free conditions

/ Q[()lg dz =0 and / Op,dr =0.
Q. Qe

As for the initial velocity fields, we will assume instead the following uniform bounds:

. (|[Vaw.

€€10,1]

LQ(QE) + ||’U;(],5|

Lm(ﬂs)> < ec. (2.1.25)
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Remark 2.1.8 In view of Lemma 2.1.5, the conditions in (2.1.24) and (2.1.25) imply in particular that
sup (H@O,&‘HLQ(QE) + Hu075HL2(§25)> < c.

e€10,1]

Thanks to the previous uniform estimates, up to extraction, we can assume that

D . i oW — 1 — 1 — 1
Oy = ;13% ,_0075 s RO = llg% R075 y @0 = ;lir(l) @0,5 s Uy = ;13% UQ.e , (2126)
where we agree that the previous limits are taken in the weak-* topology of L2 (Q) N L2 ().

Let us specify better what we mean for finite energy weak solution (see [39] for details). First of all,
the equations have to be satisfied in a distributional sense:

T
— / /Q (0e0vp + 0:ue - Vi) dxdt = /Q 00,:9(0,-) dz, (2.1.27)
0 e €

for any ¢ € C°([0, T xQ.);
T 1 1 .
/ / <Qs’u5 O — Qs[us b2y ua] :Vaep + g €3 x (quf) - Eﬂimp(gs’ﬁs)dlv 'l'b> dzdt (2128)
0 e

T 1 1
= / / <—S(19€a Vzus) : Vx,lpb + ((C:QQEV:EF + Em,QEV‘TG> : 11b> dzdt +/ 00,eU0,e * Il'b(07 ) da:’
0 e

€

for any test function ¢ € C°([0, T[ x; R?) such that (¢ - nf)\(‘ms = 0;

T
/ / <_st(987796)8t90 - QsS(Qz-:’ﬂs)ue : vx‘P) dzdt (2-1'29)
0 JQ.

T Ve, V10
- /0 / Q(aﬁa) - Vepdrdt — <Ua§ 90>[M;CO]([07T]><55) = /Q 90,63(90,8; 790,5)90(07 ) dz,
- €

€

for any ¢ € C°([0, T[ xQ.), with 0. € M™T([0,T] x Q). In addition, we require that the energy identity
1 , 1 1 1
/QE <2Q€|u€’ + Egimgee(g&ﬁs) - ?QSF - é_szG> (t) d (2.1.30)

= /QE <;QO,£|UO,6|2 + 62%@0,86(@0,87190,5) - e%QO,EF - 6ipLQO,EG> dx
holds true for almost every ¢ €]0,7[. Notice that this is the integrated version of (NSF2).

Under the previous assumptions (collected in Paragraphs 2.1.1.1 and 2.1.1.2 and here above), at
any fized value of the parameter £ €10, 1], the existence of a global in time finite energy weak solution
(0c, ue, Ve) to system (NSFL) to (NSF2), related to the initial datum (oo, uo ¢, Jo.), has been proved in
e.g. [39] (see Theorems 3.1 and 3.2 therein). Moreover, the following regularity of solutions (o, ue, V:)
can be obtained, which justifies all the integrals appearing in (2.1.27) to (2.1.30): for any 7" > 0 fixed,
one has

5
0 € C’g([O,T];LWg(QE)), 0c € Lq((O,T) X QE) for some ¢ > 3 U € LQ([O,T}; Wl’Z(QE;Rg)) .

In addition, the mapping ¢ — (0-uc)(t, -) is weakly continuous, and one has (g¢);—o = 0o,c together with
(0cte)ji—0 = 00.cU0e. Finally, the absolute temperature 9. is a measurable function, J. > 0 a.e. in
R4 x Qg, and given any 7" > 0, one has

¥ € L*([0,T); Wh3(Q.)) N L= ([0, T]; L*(2:)), log¥. € L*([0,T); WH*(9.)) .
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Notice that, in view of (NSF!), the total mass is conserved in time, in the following sense: for almost
every t € [0, +oo][, one has

/ (0e(t) — o) dz = 0. (2.1.31)

€

Let us now remark that, since the entropy production rate is a non-negative measure, and in particular
it may possess jumps, the total entropy g-s(oz, ) may not be weakly continuous in time. To avoid this
problem, we introduce a time lifting 3. of the measure 0. (see Paragraph 5.4.7 in [39] for details) by the
following formula:

t
(3e, @) = (o, I[p]), where I[p](t,z) = /0 o(r,x)dr  for any ¢ € LI(O,T; Co(ﬁg)). (2.1.32)

The time lifting . can be identified with an abstract function X, € LS(0,T; MT(€2)), where LS stands
for “weakly measurable”, and 3. is defined by the relation

0 for t € [0,7),
(3e(7), ) = lim (oc,¥sp), with  s(t) = %(t —71) forte (r,7+9),
6—0t
1 fort > 71+96.

In particular, the measure Y. is well-defined for any 7 € [0,7], and the mapping 7 — X.(7) is non-
increasing in the sense of measures.
Then, the weak formulation of the entropy balance can be equivalently rewritten as

/ 02502, 92) (7)o (T) = 00.25(00.2, V0.0)p(0)] dz + (Ec(7), (7)) — (£:(0), £(0))

' ' 9., V)
= / (X, Opp) dt + / /Q (QSS(Qsa Ve )01 + 0:5(0e, Ve )ue - Vo + (1(6195)
0 0 - 5

for any ¢ € C°([0,T] x Q.), and the mapping t — 0-5(0z,9¢)(t,-) + Ze(t) is continuous with values in

MT(Q.), provided that M™ is endowed with the weak-* topology.

. Vﬂp) dxdt,

Remark 2.1.9 We explicitly point out that the previous properties are not uniform in the small param-
eter . In order to deduce uniform properties on our family of weak solutions (ge, U, 195)57 we “measure”
the energy of the solutions with respect to the energy at the equilibrium states (@, 0,5).

To conclude this part, we introduce the ballistic free energy function
Hyg(0,9) := o(e(0,9) —Is(0,9)),

and we define the relative entropy functional (for details, see in particular Chapters 1, 2 and 4 of [39])

E(p.010:,0) = Hylp,0) — (p— 0:) pHy(0:,9) — Hy(02,9).
First of all, we notice that, by (2.1.18) and Gibbs’ relation (2.1.3), equation (2.1.17) can be rewritten as
0,Hy(0:,9) = " VF + "G

in . (up to some constant, that we have normalized to 0).
Then, combining the total energy balance (2.1.30), the entropy equation (2.1.29) and the mass con-
servation (2.1.31), we obtain the following total dissipation balance, for any ¢ > 0 fixed:

1 1 = 9 _
/ ~o|uc2(t) dz + 2/ & (0e,Vc | 0,9) da + ——0. [[0,1] x Q] (2.1.33)
Q. 2 e Ja. gem

1 1 ]
< /QE 59075‘U0,8|2d$ + €2m/QEg (9078’190,8 | Qg’ﬁ) dz.

Inequality (2.1.33) will be the only tool to derive uniform estimates for the family of weak solutions
we consider. As a matter of fact, we will establish in Lemma 2.2.2 below that, under the previous
assumptions on the initial data, the quantity on the right-hand side of (2.1.33) is uniformly bounded for
any € €10, 1].
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2.1.2 Main results

We can now state our main results. The first statement concerns the case when low Mach number effects
are predominant with respect to the fast rotation, i.e. m > 1. For technical reasons which will appear
clear in the course of the proof, when F' # 0 we need to take m > 2.

We also underline that the limit dynamics of U is purely horizontal (see (2.1.34) below) on the plane
R? x {0} accordingly to the celebrated Taylor-Proudman theorem. Nonetheless the equations that involve
R and © (see (2.1.35) and (2.1.36) below) depend also on the vertical variable.

Theorem 2.1.10 For any € €]0,1], let Q. be the domain defined by (2.1.2) and Q = R%2x]0,1[. Let
p, e, s satisfy Gibbs’ relation (2.1.3) and structural hypotheses from (2.1.10) to (2.1.15), and suppose
that the diffusion coefficients u, 0, k enjoy growth conditions (2.1.16). Let G € W1>(Q) be given as in
(2.1.7). Take either m > 2 and F € lefo(Q) as in (2.1.7), orm >1 and F = 0.

For any fized value of € € 10, 1], let initial data (goe, U0, Vo) verify the hypotheses fized in Paragraph
2.1.1.4, and let (o-,u-, V) be a corresponding weak solution to system (NSF!) to (NSF%), supplemented
with structural hypotheses from (2.1.4) to (2.1.6) and with boundary conditions (2.1.8) and (2.1.9). As-
sume that the total dissipation balance (2.1.33) is satisfied. Let (Rp,wug,©p) be defined as in (2.1.26).

Then, for any T > 0, one has the following convergence properties:

0. — 1 in L>([0,T7; Lfo/f’(Q))
_ 1 «
R. = @aam AR weakly-+ in - L=([0,T]; L/*())
0. : 295*64@ d —~U Ely i L2([0,T): W2 (0
e 1= o an Ue wearty ([ ) ]7 loc( )) !

where U = (U",0), with U" = UMt,2") such that div,U" = 0. In addition, the triplet <Uh, R, @) 18

a weak solution to the incompressible Oberbeck-Boussinesq system in Ry x €):

U + divy, (UM @ U) + VI’ = p() ApU™ = 85(m) (R) V) F (2.1.34)
cp(1,9) (at@ + divy, (6 Uh)) — k(@) AO = Ta(1,0) U Vi (G + 5y(m)F) (2.1.35)
Vs (agpu,@)R + 9ep(1,9) @) = V,G + 83(m) V. F, (2.1.36)
supplemented with the initial conditions
U\o = Hy, (<ug>) and O = c(%) (395(1,6) Ry + 99s(1,9) 00 + o(1,7) (G + 52(m)F))
o(1,

and the boundary condition V.0 -mn5q = 0, where n is the outer normal to 92 = {z3 =0} U {x3 = 1}.
In (2.1.34), T is a distribution in D' (R, x R?) and we have set do(m) = 1 if m = 2, §3(m) = 0 otherwise.
In (2.1.35), we have defined

B 9 . 1 9p(e.9)
cp(0,9) == Oye(0,9) + afo,) . d9p(0,V), a(0,9) = 0 Opp(0,9)

Remark 2.1.11 We notice that, after defining
Y = 9,5(1,9)R + 9ys(1,9) © and Yo := 9,5(1,9) Ry + d9s(1,9) O,
from equation (NSF2) one would get, in the limit ¢ — 0%, the equation
9
&Y + divy, (TUh> . '?AG) —0, Ty—o = Yo, (2.1.37)

which is closer to the formulation of the target system given in [52] and [53]. From (2.1.37) one easily
recovers (2.1.35) by using (2.1.36). Formulation (2.1.35) is in the spirit of Chapters 4 and 5 of [39].
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The case m = 1 realizes the quasi-geostrophic balance in the limit. Namely the Mach and Rossby
numbers have the same order of magnitude, and they keep in balance in the whole asymptotic process.
The next statement is devoted to this case. Due to technical reasons, in this instance we have to assume
F = 0. Indeed, when F' # 0, the coexistence of the centrifugal effects and the heat transfer deeply
complicates the wave system and new technical troubles arise.

Theorem 2.1.12 For any € €]0,1], let Q. be the domain defined by (2.1.2) and Q = R?x]0,1[. Let p,
e, s satisfy (2.1.3) and the structural hypotheses from (2.1.10) to (2.1.15), and suppose that the diffusion
coefficients u, 1, k enjoy (2.1.16). Let F =0 and G € WH*°(Q) be as in (2.1.7). Take m = 1.
For any fized value of €, let initial data (0o, Wo.e,V0,) verify the hypotheses fized in Paragraph 2.1.1.4,
and let (0e,uc,9:) be a corresponding weak solution to system (NSF!) to (NSF2), supplemented with
structural hypotheses from (2.1.4) to (2.1.6) and with boundary conditions (2.1.8) and (2.1.9). Assume
that the total dissipation balance (2.1.33) is satisfied. Let (Rg,ug,©¢) be defined as in (2.1.26).

Then, for any T > 0, the convergence properties stated in the previous theorem still hold true: namely,
one has

0- =1 in - L=([0,T]; L))
R, = QEE_ LA R weakly- in LOO([O,T];L?O/C?’(Q))
Je — 0
0, == . — 0 and u: =~ U weakly in LQ([O,T]; VVli)Cz(Q)) ,

where U = (U",0), with U" = U"t,2") such that div,U" = 0. Moreover, let us introduce the real
number A > 0 by the formula

A = 9,p(1,9) + —— =", (2.1.38)
and define
Y = 9,5(1,9)R + Dys(1,9) © and q = O,p(1,9)R + dyp(1,9)0 — G — 1/2.
Then we have

q = q(t,2") = 9,p(1,9)(R) + dyp(1,9)(O) and  U"=Vjq.

Moreover, the couple <q, T) satisfies (in the weak sense) the quasi-geostrophic type system

o (;q - Ah(]) — Virq- Vi (Ang) + p(0)AZg = %<X> (2.1.39)
cp(1,0) (atr +Vikg- th) — k(@AY = k(D) a(1,9) Ang, (2.1.40)

supplemented with the initial conditions
1 1 h — —
Zq — Apg = <R0> + ﬂ - Curlh<u0> , T\t:O = 893(1,19)R0 + 8198(1,19)@0
|t=0

and the boundary condition

Ve(T + a(1,9)G) -mjpgq = 0, (2.1.41)
where m is the outer normal to the boundary 02 = {x3 =0} U{xs =1}. In (2.1.39), we have defined
xR0 (AT b a(l,9) Ang — ——Viq. v,nr) with  Bi= 2PLY) g 4
cp(1,7) k(1) 09s(1,9)
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Remark 2.1.13 Observe that q and T can be equivalently chosen for describing the target problem.
Indeed, straightforward computations show that

R—— /13 (0op(1,9) T — Bys(1,9) q — Bps(1,9) G)
1

0 = B (ng(l,ﬁ)'r - 895(1,5)q - 895(1,@) G),
where we have set B = 9yp(1,0) Bys(1,9) — Byp(1,7) 8,s(1,9). In particular, equation (2.1.40) can be
deduced from (2.1.37), which is valid also when m = 1, using the expression of © and the fact that
89]7(1,5)

B = cp(1,9) 5

Here we have chosen to formulate the target entropy balance equation in terms of Y (as in [53]) rather
than © (as in Theorem 2.1.10 above), because the equation for Y looks simpler (indeed, the equation
for © would make a term in 0;q appear). The price to pay is the non-homogeneous boundary condition
(2.1.41), which may look a bit unpleasant.

As pointed out for Theorem 2.1.10, we notice that, despite the function ¢ is defined in terms of G,
the dynamics described by (2.1.39) is purely horizontal. On the contrary, dependence on 2% and vertical
derivatives appear in (2.1.40).

Remark 2.1.14 We have not investigated here the well-posedness of the target problems, formulated in
Theorems 2.1.10 and 2.1.12. Very likely, when F = 0, by standard energy methods (see e.g. [15], [35],
[28]) it is possible to prove that those systems are well-posed in the energy space, globally in time.

Yet, it is not clear for us that the solutions identified in the previous theorems are (the unique) finite
energy weak solutions to the target problems.

2.2 Analysis of the singular perturbation

The purpose of this section is twofold. First of all, in Subsection 2.2.1 we establish uniform bounds and
further properties for our family of weak solutions. Then, we study the singular operator underlying to
the primitive equations (NSF.) to (NSF%), and determine constraints that the limit points of our family
of weak solutions have to satisfy (see Subsection 2.2.2).

2.2.1 Uniform bounds

This section is devoted to establish uniform bounds on the sequence (QE, Ue, 195)6. Since the Coriolis term
does not contribute to the total energy balance of the system, most of the bounds can be proven as in the
case without rotation; we refer to [39] for details. First of all, let us introduce some preliminary material.

2.2.1.1 Preliminaries

Let us recall here some basic notations and results, which we need in proving our convergence results.
We refer to Sections 4, 5 and 6 of [39] for more details.

Let us introduce the so-called “essential” and “residual” sets. Recall that the positive constant p,
has been defined in Lemma 2.1.5. Following the approach of [39], we define

Oess = [2p4/3, 2] x [0/2,20] , Ores =10, 400[ %\ Opss -

Then, we fix a smooth function b € C£°(]0,400[ x |0, +oc[ ) such that 0 < b <1, b =1 on the set Oegg,
and we introduce the decomposition on essential and residual part of a measurable function h as follows:

h = [h]ess + [h]re57 with [h]ess = b(@aa ﬁe)hv [h]res = (1 - b(QaUQs))h .
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We also introduce the sets M¢

ess

M = {(t,x) €10, T[x Qe : (Qg(t,a:),ﬁg(t,a;)) € (’)ess} and M= (]O,T[ X Qg) \ My,

and M:, defined as

and their version at fixed time ¢t > 0, i.e.
Mzss[t] = {l‘ € QE : (t,ﬂ?) € MZSS} and Mfes[t] = Q8 \ Mgss[t] .

The next result, which will be useful in the next subsection, is the analogous of Lemma 5.1 in [39]
in our context. Here we need to pay attention to the fact that, when F # 0, the estimates for the
equilibrium states (recall Proposition 2.1.7) are not uniform on the whole Q..

Lemma 2.2.1 Fiz m > 1 and let 9. and ¥ be the static states identified in Paragraph 2.1.1.3. Under
the previous assumptions, and with the notations introduced above, we have the following properties.

Let F # 0. For all | > 0, there exist £(1) and positive constants c; = c¢;(p«,9,1), with j = 1,2,3,
such that, for all 0 < e < (1), the next properties hold true, for all x € By:

(a) for all (p,0) € Oess, one has
e (Ip= @) + [0-9) < €(p.012:().9) < & (Ip— @) + [0 -9]) ;

(b) for all (p,0) € Ores, one has B
E(p,0]0:(x),0) > c3.

When F' =0, the previous constants (cj) can be chosen to be independent of [ > 0.

j=1,2,3
Proof: Let us start by considering the case F' # 0. Fix m > 1. In view of Lemma 2.1.5 and Proposition
2.1.7, for all I > 0 fixed, there exists £(1) such that, for all ¢ < g(1), we have o-(z) € [p«,3/2] C Oess
for all z € B;. With this inclusion at hand, the first inequality is an immediate consequence of the
decomposition

E(p012:9) = (Hglp.0) = Hylp.0)) + (Hylp,9) = Hy(2:,9) = (p = &) 0, Hy(2:.))

— 1 — ~
= 819H5<p, n) (19 — 19) + §8§QH5(357 ) (p - 96)2 )

for some suitable 1 belonging to the interval connecting # and ¥, and z. belonging to the interval
connecting p and g.. Indeed, it is enough to use formulas (2.49) and (2.50) of [39], together with the fact
that we are in the essential set.

Next, thanks again to the property o-(z) € [p«,3/2] C Oess, we can conclude, exactly as in relation
(6.69) of [39], that

inf & (p,0]0.,9) > inf  &£(p,0|0:,9) >c>0.
(p,0)€0res (0,012:,9) = (p,0) €005 (0,01 2:,9) 2

The case F' = 0 follows by similar arguments, using that the various constants in Lemma 2.1.6 and
Proposition 2.1.7 are uniform in 2. This completes the proof of the lemma. |

2.2.1.2 Uniform estimates for the family of weak solutions

With the total dissipation balance (2.1.33) and Lemma 2.2.1 at hand, we can derive uniform bounds for
our family of weak solutions. Since this derivation is somehow classical, we limit ourselves to recall the
main inequalities and sketch the proofs; we refer the reader to Chapters 5, 6 and 8 of [39] for details.

To begin with, we remark that, owing to the assumptions fixed in Paragraph 2.1.1.4 on the initial
data and to the structural hypotheses of Paragraphs 2.1.1.1 and 2.1.1.2, the right-hand side of (2.1.33)
is uniformly bounded for all £ €10, 1].
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Lemma 2.2.2 Under the assumptions fized in Paragraphs 2.1.1.1, 2.1.1.2 and 2.1.1.4, there exists an
absolute constant C' > 0 such that, for all € €]0,1], one has

1 1 -
/ §QO,E|UO,€|2 dx + 62m/ & (90,57190,6 | Qeﬂ?) de < C.
€ QE

Proof: The boundedness of the first term in the left-hand side is an obvious consequence of (2.1.25)
and (2.1.24) for the density. So, let us show how to control the term containing £ (g075,19075 56,19).
Owing to Taylor formula, one has

~ = — 1 — -
& (QO,aaﬂO,a ‘ Qe 79) = aﬁHE(QO,mnO,e) (790,5 - 19) + B angE(ZO,avﬁ) (QO,& - Q6)27

where we can write o () = U + €™ A\(2) O and 20 = 0- + €™ ((z) Q(()}g, with both the families
()‘5)5 and (Cf)s belonging to L>(£2.), uniformly in € (in fact, A:(x) and (. (x) belong to the interval |0, 1]
for all z € Q). Notice that (170,5)5 C L*(€) and that n9 > ¢ > 0 and 29 > ¢2 > 0 (at least for €
small enough). By the structural hypotheses fixed in Paragraph 2.1.1.2 (and in particular Gibbs’ law),

we get (see also formula (2.50) in [39])

_ 00, _
d9Hz(00.,m0,) = dang. (e —9) + p— = (o — 9) dvent(poe,mo.z) - (2.2.1)
£
In view of condition (2.1.13), we gather that |0gens| < ¢; therefore, from hypotheses (2.1.24) and Remark

2.1.8 it is easy to deduce that
1 _
EQm/Q Dy Hg(00e,m0,) (o — V) dz < C.
Moreover, by (2.1.10) we get (keep in mind formula (2.49) of [39])
Oupri(a0s,T) = —= o P'(Zo.2)
20,e5 = = E)
oPM(20,e \/{9 Zo- 0,e

)

9 _
6QQHE(ZO,E>19) = 0w

—=—3/2 . . .
where we have set Zp. = 2.V / . Now, thanks to (2.1.13) again and to the fact that zo. is strictly
positive, we can estimate, for some positive constants which depend also on ¥,

1 P(Zy.) P(Zy.) P(Zy.)
P(Z < C = < C 1 + —>=1 < C,
Zo- ( 0,5) ZaE Z&E {0<Zp <1} Zg’/gg {Zo>1}

where we have used also (2.1.14).
Hence, we can check that

1 a ~
2e2m /Q 02,Hy(20,9) (00 — 3:)° du < C.

This inequality completes the proof of the lemma. |

Owing to the previous lemma, from (2.1.33) we gather, for any 7" > 0, the estimates

sup ||\/0suel| 2.3y < ¢ (2.2.2)
t€[0,T]

2m

H‘7€HM+([07T]X§E) e le. (2.2.3)

Fix now any [ > 0. Employing Lemma 2.2.1 (and keeping track of the dependence of constants only on

l), we deduce
0: — 0: 0 — 10
t t
|: em } €ess ( ) [ em :|6SS ( )

< ¢e(l). (2.2.4)
L2(By)

sup
te[0,7]

+ sup
L2(B))  t€[0.T]
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In addition, we infer also that the measure of the “residual set” is small: more precisely, we have

sup / Lpge dr < e2m (1) (2.2.5)
te(0,7] /B,

Remark 2.2.3 When F = 0, thanks to Lemma 2.1.6 and Proposition 2.1.7, one can see that estimates
(2.2.4) and (2.2.5) hold on the whole Q)., without any need of taking the localisation on the cylinders B.
From this observation, it is easy to see that, when F' = 0, we can replace B; with the whole Q. in all the
following estimates.

Now, we fix [ > 0. We estimate

: |[0= 10g 0c],os| dz = /B |0¢ log 0c| Tj0<p.<2p./3) dT + /B |0 log 0c| 14,0y d.
1 1 L

Thanks to (2.2.5), the former term in the right-hand side is easily controlled by 2™, up to a suitable
multiplicative constant also depending on [. As for the latter term, we have to argue in a different way.
Owing to inequalities (2.1.11), (2.1.12), (2.1.13) and (2.1.14), we get that 02Hy(o, ) > C/p; therefore,
by direct integration we find

C o: logo. — C(Qs - 1) < HE(QaE) - HE(L@) - 8QHE(L5>(Q€ - 1)
< E(0:9:18:,0) + (6,01 1,9) + (0,H(2:.0) — 9,H(1,9)) (0 — 0)

since an expansion analogous to (2.2.1) allows to gather that Hy(o-,vY) — Hy(0-,9:) < 0. On the one
hand, using (2.1.33), Proposition 2.1.7 and (2.2.5) one deduces

< Ce?m.

/ (& (0002 1 8,9) + € (6,91 1,0) + (9,H(2:,0) ~ 9,H(1,8)) (0 . ) d
IBlm(/)res

On the other hand, g:logo. — (0- —1) > 0. (logo- — 1) > (1/2) - log o- whenever g. > e?. Hence,
since we have

/ |Q5 IOg QE’ ﬂ{zggegeZ} dx < CEZm
B,

owing to (2.2.5) again, we finally infer that, for any fix [ > 0,

sup [0- 10g 0c),o. ()] dz < c(l) ™. (2.2.6)
te[0,7] /B,

Owing to inequality (2.2.6), we deduce (exactly as in [39], see estimates (6.72) and (6.73) therein)
that

sup / (lose(0e, 9))res + [0e5(2e, 9oV es]) da < €27 (1), (2.2.7)
tel0,7] /By

which in particular implies (again, we refer to Section 6.4.1 of [39] for details) the following bounds:

sup / 0. 7/3(t) dz + sup / WL (t) dz < &2 (1) (2.2.8)
tel0,T] /B, te€l0,T] /B,

Let us move further. In view of (2.1.4), (2.1.5), (2.1.6) and (2.1.16), relation (2.2.3) implies

r

2

dt < ¢ (2.2.9)

2
Vaoue + 'Vou. — =divu Id <
3 LQ(QE;RSX?))
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2

T _ 3 T
I 17 G N e 2
0 € L2(Q:;R3) 0

Thanks to the previous inequalities and (2.2.5), we can argue as in Subsection 8.2 of [39]: by gener-
alizations of respectively Poincaré and Korn-Poincaré inequalities (see Propositions B.7 and B.8), for all
[ > 0 we gather also

/T 9. — 9|
0

T
dt + /
W2 (B;R3) 0

2

ACCETY

gm

dt < c. (2.2.10)
L2(Q<;R3)

dt < () (2.2.11)

log (V) — log(¥) H

Em

Em
W1.2(B;;R3)

T
/0 el At < c(l) (2.2.12)
Finally, we discover that
T 2 2
/ {Qas(@,fl’ﬁa)] dt + [ e, b ] u. dt < ¢(l) (2.2.13)
0 = res || 30/23 () es L30/29(R,)
Tl [r(9:) 2
/ — [] Ve (t) dt < (). (2.2.14)
0 em Ve res L1(B))

The argument for proving (2.2.13) and (2.2.14) is similar to one employed in the proof of Proposition 5.1
of [39], but here it is important to get bounds for the L? norm in time (see also Remark 2.2.4 below).
Indeed, we have that

[0 $(02,92)] 0 < C [0 + 0- | log 0c| + 0c |log ¥ — log J| + U2 ] (2.2.15)

res

and thanks to the previous uniform bounds (2.2.8) and (2.2.11), one has that ([oc],e ). C LOTO(L5/3),

loc

([Qa 1108 0| ] o5 )E C LP(LL,) forall 1 < g < 5/3 (see relation (5.60) in [39]), ( [Qg |log Y. — log ¥ Les )5 C
L2T(L30/ 23) and finally ( [ﬁg’]res )(E C Ly (L4/ 3). Let us recall that the inclusion symbol means that the

loc loc
sequences are uniformly bounded in the respective spaces. Then, it follows that the first term in (2.2.13)

is in L%(LSO/%). Next, taking (2.2.15) we obtain

loc

[QE 5(Q6> Qgs)us]res <C [qus + 0c | log Qs| Ue + 0c | log Ve — 10g§| Ue + ﬁgus]

res

and using the uniform bounds (2.2.8) and (2.2.12), we have that ( [0-uc] . )8 C L%(L?fc/zg). Now, we look
at the second term. We know that ([o: [1og 0:|], ). C LF (L) for all 1 < ¢ < 5/3 and u. € L7(Lg),)
(thanks to Sobolev embeddings, see Theorem B.1). Then, we take ¢ such that 1/p:=1/¢+1/6 <1 and
SO

( [0 | log 0| u. ]res )g - LT(Lfoc) :

Keeping (2.2.8), (2.2.11) and (2.2.2) in mind and using that

[QE |log 9. — log | ug]res = [\/Q?Hog'ﬁg — log V| @ue]res ,

we obtain that the third term is uniformly bounded in LQT(L?C?C/ 29). Using again the uniform bounds, we
see that the last term is in L%"(Lu/11

oo ) Thus, we obtain (2.2.13).
To get (2.2.14), we use instead the following estimate (see Proposition 5.1 of [39]):

[kz(ﬁg)] V0. <C<’Vx(logi9a) 9 vxﬂg>
798 res — m €lres :

gm € gm
Owing to the previous uniform bounds, the former term is uniformly bounded in L2.(LZ ) and the latter
one is uniformly bounded in L%(L{ ). So, we obtain the estimate (2.2.14).

Remark 2.2.4 Differently from [39], here we have made the integrability indices in (2.2.13) and (2.2.14)
explicit. In particular, having the L? norm in time will reveal to be fundamental for the compensated
compactness argument, see Lemma 2.5.2 below.
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2.2.2 Constraints on the limit dynamics

In this subsection, we establish some properties that the limit points of the family (ge, U, 195)5 have to
satisfy. These are static relations, which do not characterise the limit dynamics yet.

2.2.2.1 Preliminary considerations

To begin with, we propose an extension of Proposition 5.2 of [39], which will be heavily used in the
sequel. Two are the novelties here: firstly, for the sake of generality we will consider a non-constant
density profile g in the limit (although this property is not used in our analysis); in addition, due to the
centrifugal force, when F' # 0 our result needs a localization procedure on compact sets.

Proposition 2.2.5 Let m > 1 be fized. Let p. and U be the static solutions identified and studied in

Paragraph 2.1.1.3, and take p to be the pointwise limit of the family (oc). (in particular, p =1 if m > 1

orm=1and F =0). Let (p:): and (9.). be sequences of non-negative measurable functions, and define
-0 Ve — 0

=0 and 0, = = )

em em

R. =

Suppose that, in the limit ¢ — 0%, one has the convergence properties

*

AR and O], > O in the weak-* topology of L°([0,T]; L*(K)),  (2.2.16)

€ess

[R]

€ess

for any compact K C €, and that, for any L > 0, one has

sup / Lpge gdz < (L) gim (2.2.17)
te[0,7] /B

Then, for any given function G € C'(Oess), one has the convergence

[G(QE, ﬂs)]ess - G(E, 5)

8m

|

9,G(0,9) R + 9yG(0,9)© in the weak-+ topology of L>([0,T7; LQ(K)) ,

for any compact K C €.

Proof: The case g = 1 follows by a straightforward adaptation of the proof of Proposition 5.2 of [39].
So, let us immediately focus on the case m = 1 and F' # 0, so that the target profile ¢ is non-constant.
We start by observing that, by virtue of (2.2.17) and Lemma 2.1.6, the estimates

< C(L)e and - H[

g H[ o ]resHLl (Br) — < C(L)

o ]resHL2 (Br) —

hold true, for any L > 0 fixed. Combining those bounds with hypothesis (2.2.16), after taking L > 0 so
large that K C By, we see that it is enough to prove the convergence

/ [G(ge,ﬁa) -G(@,7) 9,G(3,9) Re — 99G(3,9) @6} v dr —s 0 (2.2.18)
K g

€ss

for any compact K fixed and any ¢ € L! ([O z] L (K))
Next, we remark that, whenever G € C?(Oess), we have

< (2.2.19)

‘ |:G(Qs, Vo) = G(2,9) _ 0,G(2,9) Re — 99G(2,9) @E}

9

ess

é 05 HHeSS(G)||L°°(6esS) ([Rs]zss + [@5]555) )



34 CHAPTER 2. A MULTI-SCALE LIMIT

where we have denoted by Hess(G) the Hessian matrix of the function G with respect to its variables
(0,7). In particular, (2.2.19) implies the estimate

H [G(@aﬂ?e) — G(0,9) 3 3 LSS

- — 0,G(3.9) R. — 99G(3,0) O, < Ce. (2.2.20)

L (LY(K))

Property (2.2.18) then follows from (2.2.20), after noticing that both terms [G(e.,?:) — G(2,9)] . /e
and [0,G(0,7) R: + 0yG(0,7) O] ogs are uniformly bounded in L7 (L*(K)).

Finally, when G is just C!'(Oess), we approximate it by a family of smooth functions (G”)n N’
uniformly in C!(Oegs). Obviously, for each n, convergence (2.2.18) holds true for G,,. Moreover, we have

‘ [G(Qa,ﬁg) el 19)} B [Gn@e,ﬁa) — Gnl(g, 19)}

c c < C HG - GnHCl(éess) ([Re}ess + [@E]ess> )

and a similar bound holds for the terms presenting partial derivatives of G. In particular, these controls
entail that the remainders, created replacing G by G,, in (2.2.18), are uniformly small in e, whenever n
is sufficiently large. This completes the proof of the proposition. ]

From now on, we will focus on the two cases (2.1.21): either m > 2 and possibly F # 0, or m > 1
and F' = 0. We explain this in the next remark.

Remark 2.2.6 If1 <m < 2 and F # 0, the structure of the wave system (see Paragraph 4.1.1) is much
more complicated, since the centrifugal force term becomes singular; in turn, this prevents us from proving
that the quantity . (see details below) is compact, a fact which is a key point in the convergence step. On
the other hand, the idea of combining the centrifugal force term with ~., in order to gain compactness of
a new quantity, does not seem to work either, because, owing to temperature variations (and differently
from [15] where the temperature was constant), there is no direct relation between the centrifugal force
and the pressure term.

Recall that, in both cases presented in (2.1.21), the limit density profile is always constant, say o = 1.
Let us fix an arbitrary positive time T' > 0, which we keep fixed until the end of this paragraph. Thanks
to (2.2.4), (2.2.8) and Proposition 2.1.7, we get

o — 1||L%0(L2+L5/3(K)) < eMe(K) forall K C Q compact. (2.2.21)
In particular, keeping in mind the notations introduced in (2.1.22) and (2.1.23), we can define

0- — 1 - 0: — 0 . 0 — 1
R, = Egm = oM 4 7, where oM (¢, z) = % and 7.(x) = ZT (2.2.22)

Thanks to (2.2.4), (2.2.8) and Proposition 2.1.7, the previous quantities verify the following bounds:

<ec and su 72|l oo < c. 2.2.23
L L+ L3 (B) 2o I7ellemi@ (2:223)

sup {|of?)]
e€10,1]

As usual, here above the radius [ > 0 is fixed (and the constants ¢ depend on it). In addition, in the case
F =0, there is no need of localising in B;, and one gets instead

(1)

ol and sup H?gHLoo(QE) < sup ||7A;8HL°°(Q) < c.

|
L (L2+L5/3(Qe)) e€10,1] £€10,1]

sup ‘
€€10,1]

In view of the previous properties, there exist o!) € LE (L5/3) and 7 € L2 such that (up to the extraction

loc loc
of a suitable subsequence)
* o~

le) SACY and Te =T, (2.2.24)
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where we understand that limits are taken in the weak-* topology of the respective spaces. Therefore,
R. 5 R:= oM 47 weakly-x in  L*([0,T]; L/(2)) . (2.2.25)

Observe that 7 can be interpreted as a datum of our problem. Moreover, owing to Proposition 2.1.7 and
(2.2.4), we also get

*

=R weakly-x in  L>([0,T]; L}, () .

loc

[R]

ess

In a pretty similar way, we also find that

.-

O =7 =0 in L([0, T Wil () (2.2.26)
ue = U in - L2([0, T Wil () (2.2.27)

Let us infer now some properties that these weak limits have to satisfy, starting with the case of
anisotropic scaling, namely, in view of (2.1.21), either m > 2, or m > 1 and F = 0.

2.2.2.2 The case of anisotropic scaling

When m > 2, or m > 1 and F' = 0, the system presents multiple scales, which act and interact at the
same time; however, the low Mach number limit has a predominant effect. As established in the next
proposition, this fact imposes some rigid constraints on the target profiles.

Proposition 2.2.7 Let m >2, orm > 1 and F = 0 in (NSF!) to (NSF2). Let (0, uc,9:). be a family
of weak solutions, related to initial data (0o, U0, Vo). verifying the hypotheses of Paragraph 2.1.1.4.
Let (R,U,©) be a limit point of the sequence (Re,ue,©c)_, as identified in Subsection 2.2.2.1. Then,

e’

U = (Uh, 0), with — U" = U'(t,2")  and  div, U" = 0 (2.2.28)

Vs (agp(m)R + 9yp(1,9) @) = V.G + 62(m)V,F ae in Ry xQ (2.2.29)
. h K(E) . — _

8T +divy, (TU )- A0 =0, with T = d,s(1,0)R + 9ys(1,9)0,  (2.2.30)

where the last equation is supplemented with the initial condition Y)_y = 0,5(1,9) Ry + 9ys(1,9) Oq.

Proof: Let us focus here on the case m > 2 and F' # 0. A similar analysis yields the result also in
the case m > 1, provided we take F' = 0.

First of all, let us consider the weak formulation of the mass equation (NSF!): for any test function
peCxr (]R+ X Q), denoting [0,7] x K = Supp ¢, with ¢(T,-) = 0, we have

T T
—/ / (QE — 1) Opp dadt — / / 0-ue - Vypdxdt = / (9075 - 1) (0, - )dx.
0 JK 0o JK K

We can easily pass to the limit in this equation, thanks to the strong convergence po. — 1 provided by
(2.2.21) and the weak convergence of u. in L3 (L ) (by (2.2.27) and Sobolev embeddings): we find

T
—/ /U-chpdz:dtzo,
0 K

for any test function ¢ € CZ° ([0, T] XQ), which in particular implies

divU =0 a.e. in Ry x Q. (2.2.31)
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Let us now consider the momentum equation (NSF?), in its weak formulation (2.1.28). First of all,
we test the momentum equation on €™ ¢, for a smooth compactly supported ¢. By use of the uniform
bounds we got in Subsection 2.2.1, it is easy to see that the only terms which do not converge to 0 are
the ones involving the pressure and the gravitational force; in the endpoint case m = 2, we also have the
contribution of the centrifugal force. Hence, let us focus on them, and more precisely on the quantity

= . Vmpiii:,ﬂa) _gm—2 0:-VoF — 0.V.G (2.2.32)
1 = — - -
= Eimvx (p(gaa'ﬂa) - p(@av'ﬁ)) — em? (QE - Qa) V. F — (Qa - Qs) V.G,

where we have used relation (2.1.17). By uniform bounds and (2.2.25), the second and third terms in
the right-hand side of (2.2.32) converge to 0, when tested against any smooth compactly supported ¢;
notice that this is true actually for any m > 1. On the other hand, for the first item we can use the
decomposition

gimva: (p(Qaaﬂs) - p(@aﬁ)) = Eimvx (p(Qsaﬁe) - p(l,@)) - Eimvx (p(§€75> - p(l,@)) .

Due to the smallness of the residual set (2.2.5) and to estimate (2.2.8), decomposing p into essential
and residual part and then applying Proposition 2.2.5, we get the convergence

é_im Va (ploe,9e) — p(1,9)) = Vi (9,p(1,9) R + 9gp(1,9) O)

in L%O(Hfl), for any T > 0. On the other hand, a Taylor expansion of p(-,%) up to the second order

loc
around 1 gives, together with Proposition 2.1.7, the bound
1 ~ a a\ ~
— (P(2:,0) = p(1,9)) — Opp(1,9) 7% < C(K)e™,
< L*=(K)

for any compact set K C €. From the previous estimate we deduce that (p(@,ﬁ) - p(l,@)) [em —
9,p(1,9)7 in e.g. D' (Ry x Q).

Putting all these facts together and keeping in mind relation (2.2.25), thanks to (2.2.32) we finally
find the celebrated Boussinesq relation

v, (agp(l,ﬁ) oV + 9yp(1,9) @) —0 ae. in Ry x Q. (2.2.33)
Remark 2.2.8 Notice that, dividing (2.1.17) by €™ and passing to the limit in it, one gets the identity
8&7(1,5) Va.r = VoG + d2(m)V,F,

where we have set Jo(m) = 1 if m = 2, d2(m) = 0 otherwise. Hence, relation (2.2.33) is equivalent to
equality (2.2.29), which might be more familiar to the reader (see formula (5.10) in Chapter 5 of [39]).

Up to now, the contribution of the fast rotation in the limit has not been seen: this is due to
the fact that the incompressible limit takes place faster than the high rotation limit, because m > 1.
Roughly speaking, the rotation term enters into the singular perturbation operator as a “lower order”
part; nonetheless, being singular, it does impose some conditions on the limit dynamics.

To make this rigorous, we test (NSF2) on ¢ ¢, where this time we take ¢ = curl, for some smooth
compactly supported ¥ € Cé’o([O,T [ ><Q). Once again, by uniform bounds we infer that the 0; term,
the convective term and the viscosity term all converge to 0 when ¢ — 0. As for the pressure and the
external forces, we repeat the same manipulations as before: making use of relation (2.1.17) again, we
are reconducted to work on

T 1 o o~ o~
0 K

9
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where the compact set K C  is such that Supp ¢ C [0, 7] x K, and £ > 0 is small enough. According to
(2.2.21), the two forcing terms converge to 0, in the limit for ¢ — 0%; on the other hand, the first term
(which has no chance to be bounded uniformly in ¢) simply vanishes, due to the fact that ¢ = curlap.

Finally, using a priori bounds and properties (2.2.25) and (2.2.27), it is easy to see that the rotation
term converges to fOT Jxe3x U - ¢. In the end, passing to the limit for £ — 07 we find

H(es xU) =0 and so esxU =V,

for some potential function ®. From this relation, which in components reads

~U? 01 ®
Ul — 82(1) , (2234)
0 03P

we deduce that ® = ®(t,2"), i.e. ® does not depend on x>, and that the same property is inherited by
U" = (Ul, UZ), ie. U" = U"(t,z"). Furthermore, from (2.2.34), it is also easy to see that the 2-D flow
given by U" is incompressible, namely div, U" = 0. Combining this fact with (2.2.31), we infer that
03U3 = 0; on the other hand, thanks to the boundary condition (2.1.8) we must have (U . n)|6Q = 0.
Keeping in mind that 9Q = (R? x {0}) U (R? x {1}), we finally get U® = 0, whence (2.2.28) finally
follows.

Next, we observe that we can by now pass to the limit in the weak formulation (2.1.29) of (NSF2).
The argument being analogous to the one used in [39] (see Paragraph 5.3.2), we only sketch it. First of
all, testing (NSF2) on ¢ /™, for some ¢ € C2°([0,T[ %), and using (NSF?), for £ > 0 small enough we

get
_/T/ . (8(&,19 s(1,9) >8tg0 / / Qa( 0,V = 5(1719)> PR v (2.2.35)

S
o Vale - Vop — =0 <Ua,s@>w+ COU(0,TIxK) = /KQO’8< S

To begin with, let us decompose

~ oo (P2 ) [ (st = 09) + | 2502

Thanks to (2.2.8), we discover that the second term in the right-hand side strongly converges to 0 in

LOO(L5/3) Also the third term converges to 0 in the space L2 (L?OOC/%), as a consequence of (2.2.5) and
(2.2.13). Notice that these terms converge to 0 even when multiplied by w.: to see this, it is enough to
put (2.2.5), (2.2.13), (2.2.12) and the previous properties together.

As for the first term in the right-hand side of (2.2.36), Propositions 2.2.5 and 2.1.7 and estimate
(2.2.21) imply that it weakly converges to 9,s(1,9) R + 9gs(1,9) ©, where R and © are defined respec-
tively in (2.2.25) and (2.2.26). On the other hand, an application of the Div-Curl Lemma (see Theorem

B.14) gives

Em

[0=ess <[S(Q5’§E)]ess _8(1’19)) e = (0,5(1,9) R + 095(1,9)0) U

in the space L?F(L?’/f). In addition, from (2.2.3) we deduce that

lo

1
— (0=, ) M+ 00)([0,T)x k) — 0
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when ¢ — 0. Finally, a separation into essential and residual part of the coefficient x(1.)/9., together
with (2.1.16), (2.2.4), (2.2.8), (2.2.11) and (2.2.14) gives

(
'%5;96) Eim vmﬁs N HE’?) v:r@ in L2([Oa T]7 Llloc(Q)) .

In the end, we have proved that equation (2.2.35) converges, for ¢ — 0, to equation
T
- / / (9,5(1.9)R + 05(1,) ©) (9 + U - Vo) dadt + (2.2.37)
0o Jo

T r k() — _
+ —=V,0 - -V,ypdadt = (895(1,19) Ry + 0ys(1,9) @0> »(0)dx,
o Ja v Q

for all p € C°([0, T[xQ), with T' > 0 any arbitrary time. Relation (2.2.37) means that the quantity T,
defined in (2.2.30), is a weak solution of that equation, related to the initial datum Yo := d,5(1,79) Ry +
09s(1,19) ©g. Equation (2.2.30) is in fact an equation for © only, keep in mind Remark 2.1.11. |

2.2.2.3 The case of isotropic scaling

We focus now on the case of isotropic scaling, namely m = 1. Recall that, in this instance, we also set
F = 0. In this case, the fast rotation and weak compressibility effects are of the same order; in turn, this
allows to reach the so-called quasi-geostrophic balance in the limit (see equation (2.2.38) below).

Proposition 2.2.9 Take m =1 and F = 0 in system (NSF!) to (NSF2). Let (0z,uc, V:). be a family of
weak solutions to (NSFL) to (NSF2), associated with initial data (0o, w0, V0.c) verifying the hypotheses
fized in Paragraph 2.1.1.4. Let (R,U,©) be a limit point of the sequence (Re,uc,0.)_, as identified in
Subsection 2.2.2.1. Then,

e’

U = <Uh, 0), with U = UMt,2")  and  div, U™ = 0

U" = Vitq a.e. in 0,T[xQ,  with (2.2.38)
q = q(t,z") := dpp(1,9)R + dgp(1,9)0 — G — 1/2 (2.2.39)
&Y + divy, (TUh) . ’””Ef)A@ —0, with Yo = Yo,

where T and Yo are the same quantities defined in Proposition 2.2.7.

Proof: Arguing as in the proof of Proposition 2.2.7, it is easy to pass to the limit in the continuity
equation and in the entropy balance. In particular, we obtain again equations (2.2.31) and (2.2.37).

The only changes concern the analysis of the momentum equation, written in its weak formulation
(2.1.28). We start by testing it on € ¢, for a smooth compactly supported ¢. Similarly to what done
above, the uniform bounds of Subsection 2.2.1 allow us to say that the only quantity which does not
vanish in the limit is the sum of the terms involving the Coriolis force, the pressure and the gravitational

force: v 9 <
63 % QE'U,E + :E(p(@E? E)s_p(g€7 E)) - (QE—@JE) va — 0(5)
From this relation, following the same computations performed in the proof of Proposition 2.2.7, in the

limit € — 01 we obtain that

esxU+V, ((%p(l,@) oM + Byp(1,9) @) =0 a.e. in Ry x Q.
After defining ¢ as in (2.2.39), i.e.

q = an(L@)R + 8191)(176)6 -G - 1/2
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and keeping Remark 2.2.8 in mind, this equality can be equivalently written as
esxU+Vyqg =0 a.e. in Ry x Q.

As done in the proof to Proposition 2.2.7, from this relation we immediately deduce that ¢ = q(t,xh)
and U" = U"(t,z"). In addition, we get U" = Vﬁq, whence we gather that ¢ can be viewed as a stream
function for U". Using (2.2.31), we infer that 93U% = 0, which in turn implies that U3 = 0, thanks to
(2.1.8). The proposition is thus proved. |

Remark 2.2.10 Notice that q is defined up to an additive constant. We fix it to be —1/2, in order to
compensate the vertical mean of G and have a cleaner expression for (q) (see Theorem 2.1.12). As a
matter of fact, it is (q) the natural quantity to look at, see also Subsection 2.4.3 in this respect.

2.3 Convergence in presence of the centrifugal force

In this section we complete the proof of Theorem 2.1.10, in the case when m > 2 and F' # 0. In the case
m > 1 and F = 0, some arguments of the proof slightly change, due to the absence of the (unbounded)
centrifugal force: we refer to Section 2.4 below for more details.

The uniform bounds of Subsection 2.2.1 allow us to pass to the limit in the mass and entropy equations,
but they are not enough for proving convergence in the weak formulation of the momentum equation:
the main problem relies on identifying the weak limit of the convective term p. u. ® u.. For this, we
need to control the strong oscillations in time of the solutions: this is the aim of Subsection 2.3.1. In
Subsection 2.3.2, by using a compensated compactness argument together with Aubin-Lions Theorem
(see Theorem B.13), we establish strong convergence of suitable quantities related to the velocity fields.
This property, which deeply relies on the structure of the wave system, allows us to pass to the limit in
our equations (see Subsection 2.3.3).

2.3.1 Analysis of the acoustic waves

The goal of the present subsection is to describe oscillations of solutions. First of all, we recast our
equations into a wave system; there we also implement a localisation procedure, due to the presence
of the centrifugal force. Then, we establish uniform bounds for the quantities appearing in the wave
system. Finally, we apply a regularisation in space for all the quantities, which is preparatory in view of
the computations of Subsection 2.3.2.

2.3.1.1 Formulation of the acoustic equation

Let us define
V. = p-u..

We start by writing the continuity equation in the form

e 8oV + divV, = 0. (2.3.1)
Of course, this relation, as well as the other ones which will follow, has to be read in the weak form.

Using continuity equation and resorting to the time lifting (2.1.32) of the measure o, straightforward
computations lead us to the following form of the entropy balance:

9. —s(3.0) 1 o R(0:) Va0 o _
5mat<gss(gf c) = s(ee )_Emzf> — ¢ le('M 8>—i—s(gg,19)d1v(ggus)—dlv(ggs(‘ge,195)u€),

gm Y. em
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where, with a little abuse of notation, we use the identification st Yepdr = (B, @)+ o). Next, since
0e is smooth (recall relation (2.1.18) above), the previous equation can be finally written as

— s(p. 1
Em at <Q€ 8(967 ﬁf)gm S(Q&‘a 19) _ ng) — (232)
. - -
=g <div <E(196) Vmﬂg) — 0cUue - — Vgs(0e,9) — div <Q5 5(0e, V) — 5(2c,¥) u€>> .
Y, em gm gm

Now, we turn our attention to the momentum equation. By (2.1.17) we find

V:) — p(oe, ¥ — 0
57’T‘L atV5 + vz <p(g€7 E) p(QE7 )) + 6'm,—l es X Vs — 52(m_1)uvxF+ (233)

gm em

+ ™ (div S(We, Viue) — div (0su: ® ue) + QEE;QE V$G> .
At this point, let us introduce two real numbers A and B, such that the following relations are
satisfied:
A + B,s(1,9) = 9,p(1,9) and Bdys(1,9) = dgp(1,9). (2.3.4)

Due to Gibbs’ law (2.1.3) and the structural hypotheses of Paragraph 2.1.1.2 (see also Chapter 8 of [39]
and [44]), we notice that A is given by formula (2.1.38), and A > 0.

Taking a linear combination of (2.3.1) and (2.3.2), with coefficients respectively A and B, and keeping
in mind equation (2.3.3), we finally get the wave system

em 0 Z. + AdivV, = ™ (div X! + X2)
2.3.5
EMOV,. + VolZe + e lesx V. =™ (divYé + Yg + Vstg) , (V5 . n)wﬂ6 =0, ( )
where we have defined the quantities
Z: = AV + B <Q5 oloeve) —o(0 ) fnz)
€ €
X; — B (H(ﬁs) V.U — o 5(987796) - 8(55,5) ug)
Y. em gm
1 o
X? .= —Bo.u. - g—mvxs(gg,ﬂ)
Y; = S(ﬁeavue) — 0eUe @ U
Y2 = EEV.G 4 BT
Y€3 .: Eim (.A Qse;gs +Bo. S(Qsaﬂe)g; 8(567@) B Bgimza B p(@saﬁs)e;p(gaﬁ)) .

We remark that system (2.3.5) has to be read in the weak sense: for any ¢ € C°([0,7[ x.), one

as
T T T

—Em/ / Zgﬁtgo—A/ / VS-V$Q0:Em/ Zovg¢(0)+5m/ / (- X1 Vep + X20),
0 JQ. 0 JQ. Qe 0 JQ.

and also, for any 1 € C’go([(),T[ xﬁE;R3) such that (1,b . ne)

h

00, = 0, one has

T T T
—sm/ / VE-(?t't/J—/ / stiv¢+5m_1/ / esx V.-
0 5 0 & 0 &
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T
. -m . m _wl. 2 _ v3
_ /QEVO,S ¥(0) + ¢ /O/Q( YV + Y2 — Y3divep)

where we have set

S(QO,Ea 190,5) - 5(5&7 19))

sm

Zoe = «4982 + B (Qo,g and Voe = 00:Uoe- (2.3.6)

At this point, analogously to [34], for any fixed [ > 0, let us introduce a smooth cut-off

xi1 € C°(R?)  radially decreasing, with 0<y; <1, (2.3.7)
such that x; =1 on B;, x; =0 outof By, ’Vth(:zh)‘ < C(1) for any " e R?.

Then we define

(0¢,Vc) — 5(0¢, V)

67’7’7,

S 1
Acp =12 = XzAQél) + xi B <Q5 — 6m§]5> and W, :=x V.. (2.3.8)

For notational convenience, in what follows we keep using the notation A, and W instead of A.; and
W ., tacitly meaning the dependence on [. So system (2.3.5) becomes

eMoA: + AdivW, = ™ f.
{ EMOW . + VoA + e les x W, = e"G;, (Wa'n)wﬂs =0, (2.3.9)
where we have defined f. := divF! + F? and G. := divG! + G? + V,G2, with
F: =X, and F2 = xiX2 = X2 -Voxi + AV Vax
G:=xYe, GI=xYI+ (f;—@) Voxi — Y1-Vexg  and  GE = V2

2.3.1.2 Uniform bounds

Here we use estimates of Subsection 2.2.1 in order to show uniform bounds for the solutions and the data
in the wave equation (2.3.9). We start by dealing with the “unknowns” A. and W_.

Lemma 2.3.1 Let (Ag)8 and (T/Vs)E be defined as above. Then, for any T > 0 and all € €10, 1], one has
1Al poo 2y 2o/ L1y pary < (D) IWell 2 (124 psorzsy < (1)
Proof: We start by writing W. = W' + W2 where

W; = Xl [Qe]ess Ue and Wg =Xl [QE]N%S Ue .

Since the density and temperature are uniformly bounded on the essential set, by (2.2.12) we infer that

W is uniformly bounded in L2(L?). On the other hand, by (2.2.8) and (2.2.12) again, we easily deduce

that W2 is uniformly bounded in L2 (LP), where 3/5+1/6 = 1/p. The claim about W_ is hence proved.
Let us now consider A, defined in (2.3.8), i.e.

s(0e,9:) — s(0e, 0 1
AEZAa,l — XlZg:Xl.AQS)‘FXlB(Qg (Qs 6) (Qa )_ Es)-

gm em
First of all, owing to the bounds ||EEHL%O(M+) <C HO'EHM:r and (2.2.3), we have that

1
827le Ye <c(l),

LEMT)
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uniformly in € > 0. Next, we can write the following decomposition:

$(0s,9:) — s(0s, 0 1 JUR g
0- X1 (0e,Ve) — 5(2e,9) _ o Xt (02 5(0,9e) — 8o 5(22,9)) — i oM 5(2:,7),

Em

where the latter term in the right-hand side is bounded in L3¥(L? + L5/3) in view of (2.2.23) and
Proposition 2.1.7. Concerning the former term, we can write it as

1 o 1 o 1
i (0e5(02,02) — 0e5(0:,9)) = X [0:5(02, V) — 0:5(0=, )] ., + i [0:5(02,92)] > (2.3.10)

since the support of x;0-5(0z, 1) is contained in the essential set by Proposition 2.1.7, for small enough &
(depending on the fixed [ > 0). By (2.2.7), the last term on the right-hand side of (2.3.10) is uniformly
bounded in L%O(Ll); as for the first term, a Taylor expansion at the first order, together with inequality
(2.2.4) and the structural restrictions on s, immediately yields its uniform boundedness in L (L?).
The lemma is hence completely proved. [

In the next lemma, we establish bounds for the source terms in the system of acoustic waves (2.3.9).

Lemma 2.3.2 For any T > 0 fized, let us define the following spaces:
o A= L2([0,T]; (L2 4 LM 4 D32 4 L3/ 4 L3979 () )
o« Xy = L2<[0,T]; (L2 + L' + L4/3)(Q)>;
o Xy = Xy + Lw([o,T]; (L2 + 15/3 +L1)(Q)),~
o Xy i— LOO([O,T]; (L2 + 53 + L' + M+)(Q)).
Then, for any | > 0 fized, one has the following bounds, uniformly in € €10, 1]:
1l + 120, + G2, + G2, + 1G24, < CO).

In particular, the sequences (ff)a and (GE)E, defined in system (2.3.9), are uniformly bounded in the
space L ([0, T}; W—11(Q)), thus in L*([0,T]); H*(Q)), for all s > 5/2.

Proof: We start by dealing with F'l. By relations (2.2.10) and (2.2.14), it is easy to see that

1 U
Hm ) 0,0, < ell).
€ Ve L2,(L2+LY)
On the other hand, the analysis of the term
0 X 3(067796> — 5(0,7) ue

Em

is based on an analogous decomposition as used in the proof of Lemma 2.3.1 and on uniform bounds of
Paragraph 2.2.1.2: these facts allow us to bound it in L2.(L3/2 4 L30/23 4 [30/29),

The bounds for F? easily follow from the previous ones and Lemma 2.3.1 (indeed, the analysis for
W . applies also to the terms of the form g.u. which appear in the definition of ), provided we show
that

1 ~
om Xt Vaoe| < C(1).
The previous bound immediately follows from the equation

~ 0= 2(m—1) m
Vx@ = T = = \¢€ VZ‘F + € V:BG ’
T 0pp(2:,0) ( )
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which derives from (2.1.17). Hence, by Proposition 2.1.7 and the definitions given in (2.1.7), we get
1 ~
= haVai| < 0) (24 1) < 0().

The bound on G! is an immediate consequence of (2.2.9) and (2.2.2).
Let us focus now on the term G2 The control of the term tYl VX is the same as above. The
control of XlY instead, gives rise to a bound in LOO(L2 + L5/ 3): this is easily seen once we write

x1Y?2 = xi oM V.G + e 2y oY VL F

and we use (2.2.23) and (2.1.7). Finally, we have the equality

Z€ 87196 B ~€7E
Vo, (_Y;;»,) RV <p(9 ) —p(o ))

B [p(ga, Je) imp(ﬁs, 19)]

= val om om

)
L Vaxg [p(ge, s)] '
res

ess

The second term in the last line is uniformly bounded in L (L), in view of (2.2.8). For the first term,
instead, we can proceed as in (2.3.10).

At this point, we switch our attention to the term G2, whose analysis is more involved. By definition,
we have

1 — 0. Ve) — 5(0e, 9 1 — (3.7
Y= — <A 0e =0 |, 5(0e0e) —5(@0) Lo pleede) —p(C, ))
em em em em om
— LX AQ€_£~)E +BS<QE’79€) —S(EE,E) _p(gaﬁs)_p(a&E)
1 o —1 5(9&7195) — 5(5&35)
- B— x>
B i E+BXZ< -~ ) - |

with A and B (see definition (2.3.4) above) such that
A + B,s(1,9) = 9,p(1,9) and Boys(1,9) = dyp(1,7).
Next, we use a Taylor expansion to write
5(9&7195) - 5(5575) = 5(987795) - 5(175) + 3(175) - 5(5575)
= 0,5(1,7) (0= — 1) + By s(1.7) (9 — ) + 3 Hess()ewm] (2~ 5) - (&2
= 0p s, Qe 9 SUL, € 9 €S5(S)[S1, T 196_9 795_5

4 0,(1,T) (1- ) + & 38, o(60.9) (2 — 11
:098(1,9) (95_56)4‘6195(17@) (195_@)

+ % <Hess(s)[§1,m] (gz :é) (gs B 119> + 02, 5(62.9) (2= — 1)2> :

where &1, &, 1 are suitable points between 1 and o., 1 and g., ¥ and ¥, respectively, and we have denoted
by Hess(s)[¢, n] the Hessian matrix of the function s with respect to its variables (g, 19), computed at the
point (£,7n). Analogously, for the pressure term we have

p(Qaﬁs) - P(Esﬁ) = 6gp(1,5) ( - Qs) + 819]9 1 79 19)

5 (Hestoigns) (5 23) ( §) + e @ - 17) |
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where &3,&4,7m2 are still between 1 and ., 1 and g, ¥ and 9. respectively. Using now (2.3.4), we find
that the first order terms cancel out, and we are left with

B - _ -
X1 }/53 = 2€2m X1 (Hess(s)[é-l)nl] (gz o ’l19> : (5; _ 119> + agg 8(€25 29) (QE - 1)2>

- 25% Xi (Hess(m (€5, 2] <§ :é) : (f; :;) +02,p(4,9) (22 — 1)2>

5 (e) et oleed)

em gem

Thanks to the uniform bounds established in Paragraph 2.2.1.2 and the decomposition into essential and
residual parts, the claimed control in the space X follows. [

2.3.1.3 Regularization and description of the oscillations

Following [41] and [40] (see also [27]), it is convenient to reformulate our problem (NSF!) to (NSF2),
supplemented with complete slip boundary conditions (2.1.8) and (2.1.9), in a completely equivalent way,
in the domain

Q. := Br_(0) x T, with — T! = [-1,1]/ ~,

where ~ denotes the equivalence relation which identifies —1 and 1. For this, it is enough to extend o,
Y., and u? as even functions with respect to 2, ug’ and G as odd functions.

Correspondingly, we consider also the wave system (2.3.9) to be satisfied in the new domain §~25. It
goes without saying that the uniform bounds established above hold true also when replacing €2 with SN),
where we have set

Q:=R?>xT!.

Notice that the wave speed in (2.3.9) is proportional to e~ while, in view of assumption (2.1.2), the

domains ﬁa are expanding at speed proportional to e~ 9, for some § > 0. Therefore, no interactions of
the acoustic-Poincaré waves with the boundary of Q. take place (see also Remark 2.1.3 in this respect),
for any finite time T > 0 and sufficiently small ¢ > 0. Thanks to this fact and the spatial localisation
given by the cut-off function x;, we can assume that (2.3.9) is satisfied (still in a weak sense) on the
whole Q.

Now, for any M € N let us consider the low-frequency cut-off operator Sy, of a Littlewood-Paley
decomposition, as introduced in (A.1.1). We define

Acvr = SurAe and Wen =SuWe.

The following result holds true. Recall that we are omitting from the notation the dependence of all
quantities on [ > 0, due to multiplication by the cut-off function y; fixed above.

Proposition 2.3.3 For any T > 0, we have the following convergence properties, in the limit M — 400:

sup ||A€ - A€7M||L°°([O,T};HS) —0 Vs < —3/2 — 5
0<e<1

sup ||W€ - W€7M”L°°([O7T];HS) — 0 Vs < —4/5 — (5,
0<e<1

(2.3.11)

for any 6 > 0. Moreover, for any M > 0, the couple (Ae i, We ) satisfies the approzimate wave
equations

{ MM + AdivWe oy = €™ four (2312)

g™ 6tW57M + gm—1 ez X W&M + VQJA&M = gm Ga,M;
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where (fzar)e and (Genr)e are families of smooth (in the space variables) functions satisfying, for any
s >0, the uniform bounds

OiuP ||fe MHL2 ([0,T);H?) + SUP ||G5 MHL2 ([0,T);H) < C(l,s,M), (2.3.13)
e<

where the constant C(l,s, M) depends on the fized values of I > 0, s > 0 and M > 0, but not on € > 0.

Proof: Thanks to Lemma A.5, properties (2.3.11) are straightforward consequences of the uniform
bounds establish in Subsection 2.3.1.2.
Next, applying the operator Sy; to (2.3.9) immediately gives us system (2.3.12), where we have set

fer = Sur (div FL + F2) and G = Su (divGl + G2 + V,G2) .
Thanks to Lemma 2.3.2 and (A.1.2) (and also Lemma A.5), it is easy to verify inequality (2.3.13). m
We also have an important decomposition for the approximated velocity fields and their curl.
Proposition 2.3.4 For any M > 0 and any € €]0,1], the following decompositions hold true:
W.u = EmtéM + tiM and curl Wy = EmTl Mt T
where, for any T >0 and s > 0, one has
ety + 1T e < €.
Ht MHL2(0T] HY) + HT MHL2 ([0,T);L2) = <),
for suitable positive constants C(l,s, M) and C(l), which are uniform with respect to € €0, 1].

Proof: We start by defining

—1
t;,M = Sy (Xl <Q€€m )’U,E> and t?,M = Sy (XluE) . (2.3.14)

Then, it is apparent that W,y = 5mt;7 M T tg’ - The decomposition of curl W j is also easy to get,
if we set T? ,, = curlt! ,,, for j = 1,2. We have to prove uniform bounds for all those terms. But

this is an easy verification, thanks to the L%O(Lfo/ 3 ) bound on R. and the L4 (H,. ) bound on u., for any
fixed time 7' > 0 (recall the estimates obtained in Subsection 2.2.1 above).
On the one hand, for the estimate

Ht MHL2 HS +HT MHL2 Hs) —C(l787M))

it is sufficient to employ relation (A.1.2) and Lemma A.5.
On the other hand, we have

M—1
1Sar o) |3 < €S 2% 1Ay () |22
j=—1
M-—1
< ClaualZe + C S 14,V (aua)l2 < C0),
=0

and the estimate for Ta s follows from analogous computations. This completes the proof. ]
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2.3.2 Convergence of the non-linear convective term

In this subsection we show convergence of the convective term, by using a compensated compactness
argument. Namely, we manipulate this term, by performing algebraic computations on the wave system
formulated above. As a consequence, we derive two key pieces of information: on the one hand, we see
that some non-linear terms are small remainders (in the sense specified by relations (2.3.15) and (2.3.17)
below); on the other hand, we derive a compactness property for a new quantity, called 7. .

The first step is to reduce the study to the case of smooth vector fields W »;.

Lemma 2.3.5 LetT' > 0. For any ¢ € C’Coo([(),T[ XQ;R?’), we have

lim limsup
M—+oo o+

T
| 0:Ue @ Ue 2 Vp dadt —/ /~W€,M QWen: Vap da:dt‘ =
Q 0 Q

Proof: Let ¢ € CF° (R+ X Q;R?’), with Supp v C [0,7] x K, for some compact set K C Q. Then,
we take [ > 0 in (2.3.7) so large that K C B; := B;(0) x T!. Therefore, using (2.2.22), we get

T T T
/ ﬁ@eu€®ussz¢:/ /(Xlu€)®u€:vx'¢ +€m/ /Rsu€®u6:vz¢-
0 Q 0 K 0 K

As a consequence of the uniform bounds (ue)8 cL? (Llﬁoc) and (RE) C LOO(LIO/S’) (recall (2.2.23) above),

the second integral in the right-hand side is of order ™. As for the ﬁrst one, using (2.3.14), we can write

//xlu6 Rue : Vyp = // M®u€.V¢+//Id—SM)(Xlu5)®u5.V¢

Observe that, in view of characterisation (A.1.2), one has the property (see also Lemma A.5)
1(1d = Sar) O el gz 12y < C277 Vel ue)llpz 2y < C(1)27Y

Therefore, it is enough to consider the first term in the right-hand side of the last relation: we have
[ tweuva= [ [ 2yoty:va s [ [ o0 st v,
where, for the same reason as before, we gather that

lim limsup
M—+o00 0+

M® Id - SM)(Xlus . z'lpb‘ =0.
It remains us to consider the integral

// SO Vet = //W5M®teM Vatp —e™ // YRR R VRA LV

where we notice that, owing to Proposition 2.3.4, the latter term in the right-hand side is of order ™
so it vanishes at the limit. As a last step, we write

T T T
/ / Won @123 Vatp = / / W @Weonr:Vap — am/ / Weon @ty Vo,
0 K 0 K 0 K

Using Lemma 2.3.1 together with Bernstein’s inequalities of Lemma A.2; we see that the latter integral
in the right-hand side is of order €”. This concludes the proof of the lemma. ]
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From now on, in order to avoid the appearance of (irrelevant) multiplicative constants everywhere,
we suppose that the torus T! has been normalised so that its Lebesgue measure is equal to 1.
In view of the previous lemma and of Proposition 2.2.7, for any test-function

P € C2([0, T xQ; R?) such that ~ divep =0 and 839 =0, (2.3.15)

we have to pass to the limit in the term

T T
—/ /~W57M®WE7M Ve = / /Ndiv Wenr @Wen) 4.
0 Q 0 Q

Notice that the integration by parts above is well-justified, since all the quantities inside the integrals are
smooth. At this point, we observe that, resorting to the notation in (OSC) presented in the introductory
part, we can write

T T
/ [div Wen @Wen) ¢ = / / (I:{M + 7;?M) Y,
0o Jo 0 JR?

where we have defined the terms

Ty = divy, ((WQM> ® (WQM)) and T2y = div, ((W?,M ®I7VQM)) . (23.16)

So, it is enough to focus on each of them separately. For notational convenience, from now on we will
generically denote by R. y any remainder term, that is any term satisfying the property

lim limsup
M—+oco oo+

/OT/QRE’M"p dxdt| =0, (2.3.17)

for all test functions ¥ € C°([0,T'] XQ;R?’) as in (2.3.15).

2.3.2.1 The analysis of the 7;1M term

We start by dealing with 7;1M Standard computations give
Thar = divy (Whyp) @ (WEy)) = divi(WEy) (WEy) + (WEy) - Wu(Why) (23.18)
. 1 2
= leh<W?,M> <W?,M> + B Vi, <’<W?M>‘ ) + Curlh<W?,M> <"V?,M>L :

Notice that we can forget about the second term, because it is a perfect gradient and we are testing against
divergence-free test functions. For the first term, we take advantage of system (2.3.12): averaging the
first equation with respect to 2% and multiplying it by (W? M), We arrive at

gm h
A I <A6,M>at<W5,M> + Re,M :
We remark that the term presenting the total derivative in time is in fact a remainder. We use now the
horizontal part of (2.3.12), where we take the vertical average and then multiply by (A; ar): we gather

. g™ g™
leh<W?,M> <WQ,M> = _78t<A€,M><W’;M> + j<f£M><W?,M> =

gm 1 em gm—1
“Aean W) = =B VilAear) + T (Aean)(Glar) = = (Rean) (W)
gm—1 1
= = AW = =V (1)) + R
Em—l
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where we repeatedly exploited the properties proved in Proposition 2.3.3 and we included in the remainder
term also the perfect gradient. Inserting this relation into (2.3.18), we find

5mfl

Tont = Yer (WEN)T + Rt with e = curly (W) — g Bem)

We observe that, for passing to the limit in 7:M, there is no other way than finding some strong
convergence property for W js. Such a property is in fact hidden in the structure of the wave system
(2.3.12): in order to exploit it, some work on the term ~. ps is needed. We start by rewriting the vertical

average of the first equation in (2.3.12) as

2m—1 €2m71

13 _ .
Or(Aeps) + €™ 1d1Vh<W?,M> = <f£M>-

A
On the other hand, taking the vertical average of the horizontal components of (2.3.12) and then applying
curly, we obtain the relation

cm 8tcurlh<W?7M> + gm1 dth<Wg7M> = Emcurlh<G?,M> :

Summing up the last two equations, we discover that

8mfl

et = ewrly(GEng) = — = (fa) - (2.3.19)

Thanks to estimate (2.3.13) in Proposition 2.3.3, we discover that (for any M > 0 fixed) the family
(O¢ Ve, ), is uniformly bounded (with respect to €) in e.g. L7.(L?). On the other hand, thanks to Lemma
2.3.1 and Sobolev embeddings, we have that (for any M > 0 fixed) the sequence (7. ar). is uniformly
bounded (with respect to €) in the space LZ(H'). Since the embedding H,._ < L2 is compact, the
Aubin-Lions Theorem (see again the Appendix B) implies that, for any M > 0 fixed, the family (v- )
is compact in L%(L%OC). Then, it converges strongly (up to extracting a subsequence) to a tempered
distribution ~, in the same space. Of course, by definition of 7. s (and whenever m > 1), this tells us
that also (curlh<W?7 w)). is compact in L3(L{, ).

Now, we have that .y converges strongly to yas in LA(L2 ) and <W?,M) converges weakly to (W")
in L2.(L?

i) (owing to Proposition 2.3.4, for instance). Then, we deduce that
Vet (Wt — (W)t in D/(Rp xR?).

Observe that, by definition of 7. as, we must have yyr = curlh(W}]m. On the other hand, by Proposition
2.3.4 and (2.3.14), we know that (W) = (Sp;(xqU™)).

In the end, we have proved that, for any 7' > 0 and any test-function % as in (2.3.15), one has the
convergence (at any M € N fixed, when ¢ — 07)

T T
/ / Ty " dadt —>/ / curl, (Sar (i U™) (S (o (U™) 1)) - " da™dt. (2.3.20)
0 JR? 0 JRr2

2.3.2.2 Dealing with the term 7;2M

Let us now consider the term 7;?M, defined in (2.3.16). By the same computation as above, we infer that

. ~ ~ 1 ~ =~ ~ J_
T2y = (diva(WEy) WEy)+ 5 (ValWE ) + carl Wy (WEy)). (2.3.21)

)

Let us now introduce now the quantities

Th . Xrhoo\L —1olyxs3 ~3 Trh
Ol = (W) =05 Vi We y and Wz gy = curl,WE iy,
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Then we can write
<cur1 W,S,M) = 039 ), and (curl W87M> = W -
In addition, from the momentum equation in (2.3.12), where we take the mean-free part and then the

curl, we deduce the equations

h

emOPh |, — sm_lng =™ (83flcurl G&M)

! Ny (2.3.22)
5m8t5§7M + EmfldithZM =gem curth’;M .

Making use of the relations above and of Propositions 2.3.3 and 2.3.4, we get

4

~ &~ L ~ 1L 1 N ~ h
curl, W, (Wg M) S (W’; M) = 20, (cbg M) 530 — ey ((aglcurl G57M) )
=n \' a3 =n \1 oo Yk
_ (<I>5,M) Oy + Renr = (<1>57M) divy W 3 + R -
Hence, including also the gradient term into the remainders, from (2.3.21) we arrive at
2 o Yarh Frh =n \*
Tom = (diviW iy Wiy + (@,M) )+ Rem
R b ~h 1 ~ g = h = 1L
= (divWen <W5,M + (cbe,M) >> —(OsW2 (Ws,M + (q)s,M) >> +Rem -

The second term on the right-hand side of the last line is actually another remainder. Indeed, using the

3

definition of the function 5? s and the fact that the test function 1) does not depend on z°, one has

oy (Whar o (8r) ) =0 (Woar (Whay + (820) ) ) = Whason (Whag + (320) )
1 ~ 3 2
= Rear = Vi )W&M‘ = Rer.
As for the first term, instead, we use the first equation in (2.3.12) to obtain
div WE,M WE,M + <¢E,M> = —ZatA&M WE,M + <@E,M> + R{;,M
= jAE’M Oy WE,M + (‘I)a,M) + RE,M .

Now, equations (2.3.12) and (2.3.22) immediately yield that

gm ~ ~ ~ 1 1= ~ 1 ~ 2
jAe,M Oy <WQM + (@QM) ) =Rem — ZAs,M Vi (Aa,M> =Rem — ﬂvh Aa,M’ =Rem -
This relation finally implies that 72, = R. s is a remainder, in the sense of relation (2.3.17): for

any T > 0 and any test-function 1 as in (2.3.15), one has the convergence (at any M € N fixed, when
e—0")

T
/ T2y " daldt — 0. (2.3.23)
0 R2

Remark 2.3.6 Due to the presence of the term Yg in (2.3.5), the choice m > 2 is fundamental. How-
ever, as soon as F' =0, our analysis applies also in the case when 1 < m < 2.
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2.3.3 The limit dynamics

With the convergences established in (2.2.25) to (2.2.27) and in Subsection 2.3.2, we can pass to the
limit in equation (2.1.28). Since all the integrals will be made on R? (in view of the choice of the test
functions in (2.3.15) above), we can safely come back to the notation on € instead of €.

To begin with, we take a test-function 9 as in (2.3.15), specifically

¥ = (Vi ,0), with ¢ € C([0,T[xR?), ¢ =o(t,z").

For such a v, all the gradient terms vanish identically, as well as all the contributions due to the vertical
component of the equation. Hence, after using also (2.1.17), equation (2.1.28) becomes

T
1
/ /Q (—geu? . &g't/)h — qu? ® u? : Vm/)h + ggg (u?)L . ¢h> dzdt (2.3.24)
0

T 1 .
— [ (50 Vet V4 S0~ 2V ) ottt [ v (0. o
0

Making use of the uniform bounds of Subsection 2.2.1, we can pass to the limit in the 0; term, in the
viscosity term and in the centrifugal force. Moreover, our assumptions imply that gp.uo. — ug in L120c-
Let us consider now the Coriolis term. We can write

/OT/Q 2@6("?)*“ N /OT/R §<qu?> Ve =~ /OT/RARJ&W —em! /RQ<R0,6> $(0,),

which of course converges to 0 when ¢ — 0F. Notice that the second equality derives from the mass
equation (2.1.27), tested against ¢: namely,

_5mATAQ<QE€;1>at¢ — /OT/RQ@Eu?yvm = sm/RQ<Q°’;:1>¢(0w)-

It remains to deal with the convective term p.u” ® u”. For this, we take advantage of Lemma 2.3.5
and relations (2.3.20) and (2.3.23). Next, we remark that, since U" € LZ(HL ) by (2.2.27), from (A.1.3)
we gather the strong convergence Sy;(x;U") — x;U" in L%(HS) for any s < 1 and any [ > 0 fixed,
in the limit for M — +oo. Therefore, in the term on the right-hand side of (2.3.20), we can perform
equalities (2.3.18) backwards, and then pass to the limit also for M — +o0o. Using that x; = 1 on Supp ¢
by construction, we finally get the convergence (for ¢ — 01)

T T
/ / o-ul @ ul: vyl — / U'oU" . V.
0o Ja 0 Jr2

In the end, letting ¢ — 07 in (2.3.24), we may infer that
T
/ / (Uh Ot + UM o UM vhwh) dah dt
0 Jr2

= /T/ (M(g)vhUh : Vhwh — 52(m)<g(1)>th . wh) dl’h dt — / <U6L> . ,¢h(07 ) dxh,
0 JR2

]RQ
where d2(m) = 1 if m = 2, d3(m) = 0 otherwise. At this point, Remark 2.2.8 applied to the case m = 2
yields the equality 9,p(1,9) V,(F) = Vj,F. Therefore, keeping in mind that R = o(!) + 7, we get
0,p(1,9
o (2 ) Vh |<m ’2 .

Of course, the perfect gradient disappears from the weak formulation. Using this observation in the target
momentum equation written above, we finally deduce (2.1.34). This completes the proof of Theorem
2.1.10, in the case when m > 2 and F' # 0.

When m > 1 and F' = 0, most of the arguments above still apply. We refer to the next section for
more details.

(0W)V,F = (R)V4F — (F)VpF = (R)V,F —
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2.4 Proof of the convergence in the case when F' =0

In the present section we prove the convergence result in the case F' = 0. For the sake of brevity, we
focus on the case m = 1, completing in this way the proof to Theorem 2.1.12. The case m > 1 follows
by a similar analysis, using at the end the compensated compactness argument depicted in Subsection
2.3.2 (recall also Remark 2.3.6 above).

2.4.1 Analysis of the acoustic-Poincaré waves

We start by remarking that system (NSF!) to (NSF2) can be recasted in the form (2.3.5), with m = 1:
with the same notation introduced in Paragraph 2.3.1.1, and after setting X, := div X; + X2 and
Y. = divY! + Y? + V,Y?, we have

{ e . + AdivV, = ¢ X,

(2.4.1)

eOVe+ Vs + e3xV, =¢cY,, (Va‘n) =0,

|62

where (ZE)8 and (Vf)s are defined as in Paragraph 2.3.1.1. This system is supplemented with the initial
datum (ngg, Vo,g), where these two functions are defined as in relation (2.3.6) above.

2.4.1.1 Uniform bounds and regularisation

In the next lemma, we establish uniform bounds for Z. and V.. Its proof is an easy adaptation of the
one given in Lemma 2.3.1, hence omitted. One has to use the fact that, since F' = 0, all the bounds
obtained in the previous sections hold now on the whole 2., with constants which are uniform in € €10, 1];
therefore, one can abstain from using the cut-off functions y;.

Lemma 2.4.1 For any T > 0 and all € €]0, 1], we have

sup HZ H O (([24L5/3 41 + <c, sup HV H 2 (([,24.1,30/23 <c.
cel0.1] WL ((L2HLA/ 34 LI+ MT)(Q2)) ce o] ellLg ((L24-L )(Q))

Now, we state the analogous of Lemma 2.3.2 for m = 1 and F' = 0.

Lemma 2.4.2 For e €]0,1], let us introduce the following spaces:

(i) X5 = L2, <R+; (L2 4 LY+ L3/ 4 [30/5 4 L30/29)(Q£)> ;
(i) X5 = L2 <R+; (L2 + L' + L4/3)(QE)>;

(iii) X5

loc

Lis (R (L2 4 293)(02) )

loc

(iv) Xf = L <R+; (L2 + 153 + L' + M+)(QE)).
Then, one has the following uniform bound, for a constant C > 0 independent of € €]0,1]:
| x 2] <C.

x + X2

x + Y

v+ Y]

v+ 72

Xi

In particular, one has that the sequences (X.). and (Y .)., defined in system (2.4.1), verify!
||X5HL2T(H—L5J—1(QE)) + ”YEHL%(H—LSJ—l(QE)) < C,

for all s > 5/2 and for a constant C > 0 independent of € €0, 1].

Proof: The proof follows the main lines of the proof of Lemma 2.3.2. Here, we limit ourselves to

point out that we have a slightly better control on Yg = ggl) V.G, whose boundedness in X5 follows
from (2.1.7) and the estimate analogous to (2.2.23) for the case F' = 0. |

'For any s € R, we denote by |s| the entire part of s, i.e. the greatest integer smaller than or equal to s.
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The next step consists in regularising all the terms appearing in (2.4.1). Here we have to pay attention:
since the domains 2. are bounded, we cannot use the Littlewood-Paley operators Sj; directly. Rather
than multiplying by a cut-off function x; as done in the previous section (a procedure which would create
more complicated forcing terms in the wave system), we use here the arguments of Chapter 8 of [39] (see
also [44], [71]), based on finite propagation speed properties for (2.4.1).

First of all, similarly to Paragraph 2.3.1.3 above, we extend our domains €2, and 2 by periodicity in
the third variable and denote

Q. := B_(0) x T* and Q:=R>xT'.

Thanks to the complete slip boundary conditions (2.1.8) and (2.1.9), system (NSF!) to (NSF2) can

be equivalently reformulated in Q.. Analogously, the wave system (2.4.1) can be recasted in 525 in a

completely equivalent way. From now on, we will focus on the equations satisfied on the domain €)..
Next, we fix a smooth radially decreasing function w € C°(R?), such that 0 < w < 1, w(z) = 0 for

|z] > 1 and [ps w(2) dz = 1. Next, we define the mollifying kernel (WM)MEN by the formula

wy(z) = 23M w(2M:U) for any M € N and any z € R3.
Then, for any tempered distribution & = &(¢,z) on Ry X Q and any M € N, we define
Sy = wy *x 6,

where the convolution is taken only with respect to the space variables. Applying the mollifier wy; to
(2.4.1), we deduce that Z. py = wpy * Z. and V. py 1= wpy * V. satisfy the regularised wave system

€0 Ze.y + AdivVoy = eXey (2.42)

58t“/s,M + vach,M + e3 X VE,M = 51/5,M o
in the domain R x SNI& M, where we have defined

Qens = {x e« dist(z,80.) > Q—M} . (2.4.3)

Since the mollification commutes with standard derivatives, we notice that X, s = div. X ; v+ X 52 M
and Y. = div YéM + YE,M + VijM. Moreover, system (2.4.2) is supplemented with the initial
data

ZO,S,M = W)k ZO,s and VO,e,M = WH ok VO,s .

In accordance with Lemmas 2.4.1 and 2.4.2, by standard properties of mollifying kernels (see Theorem
B.3), we get the following properties: for all £ € N, one has
1Zeatll e a1t @,y + IVertlliz @, vy < €0 M)
IXenllzz re@oney + 1Y emlliz @,y < €0 M),
for some positive constants C'(k, M), only depending on the fixed k& and M. Of course, the constants
blow up when M — +o0, but they are uniform for € €0, 1].
We have the following statement, analogous to Proposition 2.3.4 above. Its proof is also similar,

hence omitted. In addition, we notice that the strong convergence follows from standard properties of
the mollifying kernel.

Proposition 2.4.3 For any M > 0 and any € €10, 1], we have
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together with the following bounds: for any T > 0, any compact set K C Q and any s € N, one has (for
e > 0 small enough, depending only on K )

for suitable positive constants C(K, s, M) and C(K) depending only on the quantities in the brackets, but
uniform with respect to ¢ €10, 1].

1
et

< C(K,s,M) and }'v

2

< C(K),

L2([0,T|;H*(K)) L([0,T];HY (K))

In particular, we deduce the following fact: for any 7" > 0 and any compact K C S~2, there exist
ex > 0 and Mg € N such that, for all € €]0,ex] and all M > Mp, there are positive constants C'(K)
and C(K, M) for which

Ve = Vemrllz oy < CK, M)e + C(K) oM (2.4.4)

2.4.1.2 Finite propagation speed and consequences

In this paragraph we show that, for the scopes of our study, we can safely assume that system (2.4.2) is
set in the whole 2 and it is supplemented with compactly supported initial data and external forces.
Take smooth initial data Zy and Vg and forces X and Y. Consider, in Ry x €2, the wave system

(2.4.5)

ehZ + AdivyY = X
eV + Ve Z + e3xV =¢e),

supplemented with initial data Z;—q = Zp and V;—g = Vo.

System (2.4.5) is a symmetrizable (in the sense of Friedrichs) first-order hyperbolic system with
a skew-symmetric 0-th order term. Therefore, classical arguments based on energy methods (see e.g.
Chapter 3 of [60] and Chapter 7 of [1]) allow to establish the properties of finite propagation speed and
domain of dependence for solutions to (2.4.5).

Namely, set A := V/A/e to be the propagation speed of acoustic-Poincaré waves. Let B8 be a cylinder
included in €2. Then one has the following two properties.

(i) Domain of dependence: assume that
Supp Zy, SuppVo C B, Supp X(t), SuppY(t) € B for a.a. t €[0,7T];

then the corresponding solution (Z ) V) to (2.4.5) is identically zero outside the cone
{(t,:v) G]O,T[xﬁ : dist(x,%) < )\t}.

(ii) Finite propagation speed: define the set
Brr = {a:ESN) : dist(m,iB) < )\T}
and assume that
Supp Zo, SuppVo C Bir., Supp X(t), SuppY(t) € By fora.a. t€[0,7T];
then the solution (Z , V) is uniquely determined by the data inside the cone
Car = {(t,x) €0, T[xByry ¢ dist(x,0Brr) > )\t},

and in particular in the space-time cylinder 0,7 x B.
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Next, fix any test-function ¢ € C° (]R+ X ﬁ; ]RS), and let T' > 0 and the compact set K C Q be such

that Suppt C [0,7[xK. Take a cylindrical neighborhood B of K in Q. It goes without saying that
there exist an ey = £9(B) €]0,1] and a My = Mp(B) € N such that

B CC QE,M for all 0<e<e and M > My, (2.4.6)

where the set ?257 A has been defined in (2.4.3) above. Take now a cut-off function h € C2°() such that
h=1onB (and hence on K), and solve problem (2.4.5) with compactly supported data

Z0 = bZoem s Vo = bVoen, X=bXcnm, Y =bY.n.

We point out that all the data are now localised around the compact set K. Owing to assumption
(2.1.2), the domains 657 M are expanding at speed proportional to e~ (1+9)  wwhereas, in view of finite
propagation speed, the support of the solution is expanding at speed proportional to e~! (keep in mind
also Remark 2.1.3). Thus, thanks to the inclusion (2.4.6), the previous discussion implies that, up to
take a smaller gy, for any ¢ < g¢ the corresponding solution (Z,V) of (2.4.5) has support inside a
cylinder By, := B(0) x T! C Q., for some L = L(T, K, ) > 0, and it must coincide with the solution
(Zevs Venr) of (2.4.2) on the set ]0,T[x B, for all 0 < & < g9 and all M > M. In particular, for all
0<e<eggand all M > My we have

Z=Z.n and YV =V_y on Supp ¥ .

The previous argument shows that, without loss of generality, we can assume that the regularised
wave system (2.4.2) is verified on the whole €2, with compactly supported initial data and forces, and
with solutions supported on some cylinder By. In particular, we can safely work with system (2.4.2) and
its smooth solutions (ZE,M) V&M) in the computations below.

2.4.2 Convergence of the convective term

Here we tackle the convergence of the convective term, employing again a compensated compactness
argument. The first step is to reduce the study to the case of smooth vector fields V. 5. Arguing as
in Lemma 2.3.5, and using Proposition 2.4.3 and property (2.4.4), one can easily prove the following
approximation result. Again, the proof is omitted.

Lemma 2.4.4 Let T > 0. For any v € C2°([0,T] XQ;R?’), we have

lim limsup
M—+oco oo+

T T
/ /~geu5®ugzvm¢ da:dt—/ /~VE7M®V5’M:VI1,D dazdt‘ =0.
0 Q 0 Q

Assume now ¢ € C([0,T] ><§~2;]R3) such that divep = 0 and 939 = 0. Thanks to the previous
lemma, it is enough to pass to the limit in the smooth term

T T T
/ /~VE,M®V€,M LV = / /~div (Ve ®@Ven) - = / / (T + T2) - ",
0 Q 0 Q 0 R2

where, for simplicity, we agree that the torus T' has been normalised so that its Lebesgue measure is
equal to 1 and, analogously to (2.3.16), we have introduced the quantities

Thy o= diva (Ve @ (VE))  and T2y = diva ((VEy @ V) -
We notice that the analysis of 72M is similar to the one performed in Paragraph 2.3.2.2, up to taking

m = 1 and replacing W, yy and A; y by V. and Z; s respectively. Indeed, it deeply relies on system
(2.3.22), which remains unchanged when m = 1. Also in this case, we find (2.3.23).
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Therefore, we can focus on the term 7;1M only. Its study presents some differences with respect to
Paragraph 2.3.2.1, so let us give the full details. To begin with, like in (2.3.18), we have

. 1 2
T = (Vi) (VEagh+ 5 9 (|20 ) + eV 200

Of course, we can forget about the second term, because it is a perfect gradient. For the first term,
we use system (2.4.2): averaging the first equation with respect to 2® and multiplying it by (V? M), We
get

. € € €
diva(Ven) (V) = = 7002l {VEn) + 7 (Xean)(VEnr) = Z(Zea)OlVEn) + Renr -

We now use the horizontal part of (2.4.2), multiplied by (Z: ps), and we gather
1

1 €
]<Z€,M><VQ7M>L + ]<Z&M><YQ,M>

(Zeat)(VE )T+ Reur -

(Zep)O(VE ) = —=—(Ze ) Vi Zer) —

£
A

NN N

This latter relation yields that

1
T = (cut (V) = 5 (Zean) ) (V) + Rer.

Now we use the horizontal part of (2.4.2): averaging it with respect to the vertical variable and
applying the operator curly, we find

€5tCUT1h<V?,M> + dth<V?,M> = 5cur1h<Y?,M>-

Taking the difference of this equation with the first one in (2.4.2), we discover that

1

Xen), with e i= eurly (V2 ) = —(Ze ).

1
Ovem = curly (Yl ) — 1 (
An argument analogous to the one used after (2.3.19) above, based on Aubin-Lions Theorem, shows also
in this case that (ve, /). is compact in L2.(L2 ). Then, this sequence converges strongly (up to extraction
of a suitable subsequence) to a tempered distribution s in the same space.

Since . p — Y strongly in L2,(L2 ) and (V?7M> — (V) weakly in LZ(L3

loc loc

), we deduce that
Ve, M <V?,M>L — y (Vip)* in D' (R4 x R?),

where (VR)) = (wp « UM) and vy = curly(wy * U") — (1/A)(Zyr). Notice that, in view of (2.2.24),
(2.2.26), (2.2.3), Proposition 2.2.5 and the definitions given in (2.3.4), we have

Iy = 8Qp(1,§)wM*g(1) + Ogp(1,9) wps O = wyr *q,

where ¢ is the quantity defined in (2.2.39). Owing to the regularity of the target velocity U h we can
pass to the limit also for M — 400, thus finding that

T T
//~ggu€®u5:vx¢ dedt — // (UroU": vy + %q(Uh)lwph)dxhdt, (2.4.7)
0JQ 0 JR2

for all test functions 7 such that divep = 0 and 931 = 0. Recall the convention |T!| = 1. Notice that,
since U = Vﬁq, the last term in the integral on the right-hand side is actually zero.
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2.4.3 End of the proof

Thanks to the previous analysis, we are now ready to pass to the limit in equation (2.1.28). As done
above, we take a test-function 1 such that

¥ = (Vi $,0), with ¢ € C2([0,T[xR?), ¢ =o(t,z").

Notice that divey = 0 and 932 = 0. Then, all the gradient terms and all the contributions coming from
the vertical component of the momentum equation vanish identically, when tested against such a ). In

particular, we have
T
1
/ / —0:V:G-pdadt =0.
0 Ja¢

So, equation (2.1.28) reduces to?

// < OcUe - Oph — 0cUe D ue 1 VY + — Qs( ) ¢h+5(195,v Ue) x¢> = /QQO,E'U'O,E -(0,-).

As done in Subsection 2.3.3, we can limit ourselves to consider the rotation and convective terms
only. As for the former term, we start by using the mass equation in (NSF!) tested against ¢: we get

(recalling also (2.2.22))
-/ / (RS )00+ * {o-ul) w) [ Ro000..
R2 R2
whence we deduce that

[ [ ety wt = [ Loty wis
_ _/0/R2<Re>at¢— /RQ<R0,5>¢(0 )

Letting now ¢ — 0T, thanks to the previous relation and (2.4.7), we finally gather
T
— / Uh O Vip+ U@ UM : Vi, (Vi-¢) + (R) 8tq§) dz" dt

R2
//]R2 (VLU . V,(Vikp) dah dt—i—/ ((U{D S VEG(0,4) + (Ro) ¢(0’.)) dah

Now, keeping in mind the relation for R in Remark 2.1.13, we have

R=—_ ; (99p(1,T) T — Bys(1,9) q — Bys(1,) C)

1

where we have also employed the definitions of A and B in (2.3.4).
Thus, we can write

[fmacacac [ (om-oet)acans
A//R2 —q O Az dt_/RzQ.Agb( ) dz

2Remark that, in view of our choice of the test-functions, we can safely come back to the notation on € instead of Q.
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At the end, noticing that T solves (in the sense of distributions) the transport-diffusion equation
(2.1.40), we get

T
—// <Uh-8tvﬁ¢+Uh®Uh:Vh(vﬁ¢)+}4q8t¢> dz" dt
0 JR2
T B 1 T
:—// w()V,U" - V1,(Vikg) dah dt+/ /(X)qbdxhdt
0 JR2 ./4 0 R2

+/R2 <<US‘> Vi (0,) + <<Ro> + 2;) ¢(07.)> ",

where we have defined X as in (2.1.42).
Theorem 2.1.12 is finally proved.



Chapter 3

On the influence of gravity

In this chapter, we continue the investigation we began in Chapter 2, regarding the multi-
scale analysis of mathematical models for geophysical flows. Our focus here is on the effect
of gravity in regimes of low stratification, but which go beyond the choice of the scaling
that, in light of previous results, we call “critical”. For clarity of exposition, we consider the
barotropic Navier-Stokes system with the Coriolis force, i.e.

0o+ div (ou) =0
(3.0.1)

. e3 X pu 1 .

O(ou) + div (ou @ u) + 3R0Q + o V.p(o) = divS(V,u) + Fiﬂvxa,

where we will take Ro = ¢, Ma = €™ and Fr = ¢" with m and n in suitable ranges (see
(3.1.1) below in this respect).

The results presented in this chapter are contained in [25].

Before moving on, let us give a recapitulation of the contents of chapter.

In Section 3.1 we collect our assumptions and we state the main theorems. In Section 3.2
we show the main consequences of the finite energy condition on the family of weak solutions
we are going to consider. Namely, we derive uniform bounds in suitable norms, which allow us
to extract weak-limit points, and we explore the constraints those limit points have to satisfy.
In Sections 3.3 and 3.4, we complete the proof of our main results, showing convergence in
the weak formulation of the equations in the cases m > 1 and m = 1, respectively.

3.1 Setting of the problem and main results

In this section, we introduce the primitive system and formulate our working framework (see Subsection
3.1.1), then we state our main results (in Subsection 3.1.2).

3.1.1 The barotropic Navier-Stokes-Coriolis system

As already said in the introductory part, in this chapter we assumed that the motion of the fluid is
described by system (2.0.1) with constant density and without the centrifugal force.

Thus, given a small parameter € €]0,1], the barotropic Navier-Stokes system with Coriolis and
gravitational forces (see system (3.0.1) in this respect) reads as follows:

Opoe + div (0eue) =0 (NSC})

: 1 1 :
O(0sue) + div (0cu: @ u) + €3 X 0cUe + %Vmp(ga) =divS(V,u:) + EQT;VIG, (NSC?)

58
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where we recall that m and n are taken

1
either m>1 and m <2n < m+1, or m =1 and §<n<1.(3.1.1)

As in the previous Chapter 2, here the unknowns in equations (NSC)-(NSC2) are the density o. =
0-(t,z) > 0 of the fluid and its velocity field u. = u.(t,z) € R3, where ¢t € Ry but now z € Q :=
R%x ]0,1[. The viscous stress tensor in (NSC?) is given by Newton’s rheological law, that we recall here,

2
S(Veue) = p (Vmug + 'Vou. — gdiv Uge Id> +ndivu:Id | (3.1.2)

where 1 > 0 and n > 0 now don’t depend on the temperature variations. As for the gravitational force,
we recall its formulation (see (2.1.7) in this regard):

G(z) = —x3. (3.1.3)

The precise expression of G will be useful in some computations below, although some generalisations
are certainly possible.

As done in the previous Chapter 2, the system is supplemented with complete slip boundary conditions,
namely

(ue - n)|(99 =0 and ([S(Viuc)n] x n) 0, (3.1.4)

o —
where n denotes the outer normal to the boundary 02 = {z3 = 0} U {3 = 1}. Notice that this is a
true simplification, because it avoids complications due to the presence of Ekman boundary layers, when
passing to the limit ¢ — 0.

Remark 3.1.1 As it is well-known (see e.g. Subsection 2.3.1.8 and [27]), the equations (NSCL)-(NSC?),
supplemented by the complete slip boundary boundary conditions (3.1.4), can be recasted as a periodic
problem with respect to the vertical variable, in the new domain

Q=R? x T, with T! := [-1,1]/ ~,

where ~ denotes the equivalence relation which identifies —1 and 1. Indeed, the equations are invariant
if we extend o and u" as even functions with respect to x3, and u3 as an odd function.

In what follows, we will always assume that such modifications have been performed on the initial
data, and that the respective solutions keep the same symmetry properties.

Now we need to impose structural restrictions on the pressure function p. We assume that
p € C0,00) N C%0, 0), p(0) =0, p'(0) >0 forall p>0. (3.1.5)

Additionally to (3.1.5), we require that (remember also Remark 2.1.4)

/

3
there exists v > 5 such that ggr_&o Z’Y(i) = Poo > 0. (3.1.6)

Without loss of generality, we can suppose that p has been renormalised so that p/(1) = 1.

Remark 3.1.2 For a more detailed discussion about the choice v > 7 := 3/2, which is fundamental for
the existence theory, we address the reader to [42] by Feireisl, Novotny and Petzeltovd, and references
therein. In particular, we remark that in two space dimensions ¥ can be improved up to 1.
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3.1.1.1 Equilibrium states

Next, we focus our attention on the so-called equilibrium states. For each value of ¢ €10, 1] fixed, the
equilibria of system (NSC})-(NSC?) consist of static densities g. satisfying

VxP(Es) = 62(m—n)§€va in Q. (3.1.7)

Equation (3.1.7) identifies g. up to an additive constant: taking the target density to be 1, we get

s 2(m— ! ¢ p(z)
H'(3.) = 2™ ™G+ H'(1), where H(p) = Q/ —5-dz. (3.1.8)
1 z
Notice that relation (3.1.8) implies that

P'(0)
0

H"(9) = and H"(1)=1.

Therefore, we infer that, whenever m > 1 and m > n as in the present chapter, for any x € (2 one has
0-(z) — 1 in the limit ¢ — 0. More precisely, the next statement collects all the necessary properties
of the static states. It corresponds to Lemma 2.1.5 and Proposition 2.1.7 of Chapter 2.

Proposition 3.1.3 Let the gravitational force G be given by (3.1.3). Let (55)

solutions to equation (3.1.7) in Q.
Then, there ezist an g9 > 0 and a 0 < p, < 1 such that g. > ps for all € €]0,e0] and all x € Q. In
addition, for any € €]0,¢e0], one has:

0<e<1 be a family of static

0=(x) — 1] < C2mm,
for a constant C' > 0 which is uniform in x € Q and in € €10, 1].

Without loss of any generality, we can assume that €5 = 1 in Proposition 3.1.3.
In light of this analysis, it is natural to try to solve system (NSC)-(NSC2) in 2, supplemented with
the far field conditions

0 — 0 and u: — 0 as |x| = 4o0. (3.1.9)

3.1.1.2 Initial data and finite energy weak solutions

In view of the boundary conditions (3.1.9) “at infinity”, we assume that the initial data are close (in
a suitable sense) to the equilibrium states g. that we have just identified. Namely, we consider initial
densities of the following form:
~ 1
00 = 0= + ™03 (3.1.10)

For later use, let us introduce also the following decomposition of the initial densities:

B a1
00 =1+ 2Ry, with  Roe =7+ Mol Fi= Goh. (3111)

where again 7. is a datum of the system.

We suppose the density perturbations 982 to be measurable functions and satisfy the control

< e, (3.1.12)
(L2NL>)(£2)

(1)
sup ||0p .z
€€]0,1]

together with the “mean-free condition”

/g((fs)dx:().
Q
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As for the initial velocity fields, we assume the following uniform bound

sup Ve

€€10,1]

< ¢ which also implies  sup ||ug.

< c. 3.1.13
12(Q) e 2@ = ( )

Thanks to the previous uniform estimates, up to extraction, we can identify the limit points

gél) = liH(l) g[()lg weakly-* in L®NL? (3.1.14)
E— ’
ug = limug . weakly in L?. (3.1.15)
e—0

At this point, let us specify better what we mean by finite energy weak solution (see [39] for details).

Definition 3.1.4 Let Q = R2x]0,1[. Fix T >0 and e > 0. Let (00, uo.) be an initial datum satisfying
(3.1.10) to (3.1.13). We say that the couple (oz,u.) is a finite energy weak solution of the system
(NSCL)-(NSC2) in 10, T[ xQ, supplemented with the boundary conditions (3.1.4) and far field conditions
(3.1.9), related to the initial datum (0o, o), if the following conditions hold:

(i) the functions o. and u. belong to the class

0: >0, ¢-—0: € L*(]0,T[ L+ L7(Q), we € L*(J0,T[; H'()), (ue-n),, =0;
(ii) the equations have to be satisfied in a distributional sense:
T
- / /Q(QsatQO +0:uz - Vo) dadt = /Q 20,£¢(0,-) dz (3.1.16)
0

for any ¢ € C°([0,T[xQ) and
T 1 1
[ (o0 = e s T Lea x (o) plodive ) dade (3147
0JQ

T 1
= / / (—S(Vzua) Vo + 8%QSVQCG . 7,b> dxdt + / 00,:u0.¢ - P(0,-)dx
0JQ Q

for any test function ¢ € C([0, T[ x4 R?) such that (¢ - n)IaQ =0;

(iii) the energy inequality holds for almost every t € (0,T):
1 1 . t
/ —o|uc2(t) dz + 2m/ E (0, 06) (1) dl‘+/ /S(qug) : Veue dadr (3.1.18)
Q2 e Ja 0 Ja

1
< / 5 00,e ’uo,e
Q

where € (p,0:) = H(p) — (p — 0=) H'(0:) — H(p-) is the relative internal energy of the fluid.

1 ~
2 dff + 2m / 5 (90,67 ‘QS) d{II,
€ Q

The solution is global if the previous conditions hold for all T > 0.

Under the assumptions fixed above, for any fized value of the parameter ¢ € )0, 1], the existence of a
global in time finite energy weak solution (g.,u.) to system (NSC!)-(NSC?2), related to the initial datum
(00,5 u0,c), in the sense of the previous definition, can be proved as in the classical case, see e.g. [56],
[33]. Notice that the mapping ¢ +— (0-u.)(t,-) is weakly continuous, and one has (¢:);—o = 00, together
with (qu€)|t:0 = 00,eU0e-

We remark also that, in view of (NSCL), the total mass is conserved in time: for almost every
t € [0, +00[, one has

/(Qe(t) - 55) dz = 0.
Q

To conclude, as already highlighted in Chapter 2, in our framework of finite energy weak solutions,
inequality (3.1.18) will be the only tool to derive uniform estimates for the family of weak solutions we
are going to consider.
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3.1.2 Main theorems

We can now state our main results. We point out that, due to the scaling (3.1.1), the relation m > n is
always true, so we will always be in a low stratification regime.

The first statement concerns the case when the effects linked to the pressure term are predominant
in the dynamics (with respect to the fast rotation), i.e. m > 1.

Theorem 3.1.5 Let Q = R%x 0,1 and G € WH(Q) be as in (3.1.3). Takem > 1 and m+1 > 2n > m.
For any fized value of € € ]0,1], let initial data (goe,wo:) verify the hypotheses fized in Paragraph
3.1.1.2, and let (o, uc) be a corresponding weak solution to system (NSCL)-(NSC2), supplemented with
the structural hypotheses (3.1.2) on S(V,u.) and with boundary conditions (3.1.4) and far field conditions
(3.1.9). Let ug be defined as in (3.1.15).

Then, for any T > 0, one has that

0e — 1 strongly in L>([0,T; Lilln{Q’V}(Q))
u. ~U weakly in L2([0, TY; Hl(Q)) ,

where U = (U",0), with U" = U"(t,2") such that div,U" = 0. In addition, the vector field U" is a

weak solution to the following homogeneous incompressible Navier-Stokes system in Ry x R?,
aU" + div, <Uh ® Uh) + VD — uA U =0, (3.1.19)
for a suitable pressure function I' € D'(Ry x R?) and related to the initial condition
U= = Hp (<u8>) :

When m = 1, the Mach and Rossby numbers have the same order of magnitude, and they keep in the
so-called quasi-geostrophic balance at the limit. Namely, the next statement is devoted to this isotropic
case.

Theorem 3.1.6 Let Q = R?x]0,1[ and G € WH>(Q) be as in (3.1.3). Take m =1 and 1/2 < n < 1.
For any fized value of € € ]0,1], let initial data (goe,uo:) verify the hypotheses fixed in Paragraph
3.1.1.2, and let (o-,u.) be a corresponding weak solution to system (NSCL)-(NSC?2), supplemented with
the structural hypotheses (3.1.2) on S(Vyue) and with boundary conditions (3.1.4) and far field conditions

(3.1.9). Let (g(()l),uo> be defined as in (3.1.14) and (3.1.15).

Then, for any T > 0, one has the following convergence properties:

0: — 1 strongly in Loo([()7 TY; LEiH{Q’W}(Q))
o) = % 2 o) weakly-+ in L([0,T]; L* + L7 ()
u. =~ U weakly in Lz([O,T]; Hl(Q)) ,

where, as above, U = (U",0), with U = U"(t,z") such that div,U" = 0. Moreover, one has the balance
U" = Vﬁg(l), and oY) satisfies (in the weak sense) the quasi-geostrophic equation

3} (g“) - AhQ(1)> — VoV v, (Ah@“)) +uAjo =0, (3.1.20)
supplemented with the initial condition

< oD A, Q<1)>|t:0 = (o\") — curly (ul) .
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3.2 Consequences of the energy inequality

In Definition 3.1.4, we have postulated that the family of weak solutions (Qg, us)E considered in Theorems
3.1.5 and 3.1.6 satisfies the energy inequality (3.1.18).

In this section, we take advantage of the energy inequality to infer uniform bounds for (QE, us)sz this
will be done in Subsection 3.2.1. Thanks to those bounds, we can extract (in Subsection 3.2.2) weak-limit
points of the sequence of solutions and deduce some properties these limit points have to satisfy.

3.2.1 Uniform bounds and weak limits

This subsection is devoted to establish uniform bounds on the sequence (QE, uE)E. This can be done as
in the classical case (see e.g. [39] for details), since again the Coriolis term does not contribute to the
total energy balance of the system. However, for the reader’s convenience, let us present some details.

To begin with, let us recall the partition of the space domain ) into the so-called “essential” and
“residual” sets. For this, for ¢ > 0 and for all € €]0, 1], we define the sets

D) = {2 € Q] e(t2) €[1/2p., 2]}, Qult) = Q\ Q(8),

where the positive constant p, > 0 has been defined in Proposition 3.1.3.
Next, we observe that

E(pt2).0@)| ~lp-E@k and  [E(pta)a@)] = O+ [pta)],) .
where g, is the static density state identified in Paragraph 3.1.1.1. Here above, the multiplicative con-
stants are all strictly positive and may depend on p,, and we agree to write A ~ B whenever there exists
a “universal” constant ¢ > 0 such that (1/¢)B < A <c¢B.

Thanks to the previous observations, we easily see that, under the assumptions fixed in Section 3.1
on the initial data, the right-hand side of (3.1.18) is uniformly bounded for all £ €0, 1]: specifically, we
have

1 , 1 _
[ secluo do+ 5 [ e do < C

Owing to the previous inequalities and the finite energy condition (3.1.18) on the family of weak
solutions, it is quite standard to derive, for any time 7' > 0 fixed and any ¢ €]0,1], the following
estimates, that we recall here for the reader’s convenience:

sup |[v/0euel[L2;r3) < € (3.2.1)
te[0,77]
sup [Qe_mgﬂ (t) <c (3.2.2)
t€[0,7] € ess L2(Q)
sup /]IME ndzr < ce?m (3.2.3)
tefor)Jo "7
sup / [0)3es(t) daz < ce™™ (3.2.4)
te0,7] JQ
T 9 2
/ Vot + 'Veue — Sdivau. Id dt < c. (3.2.5)
0 3 L2(Q; R3%3)

We refer to [39] (see also [35], [34], [30]) for the details of the computations.
Owing to (3.2.5) and a generalisation of the Korn-Poincaré inequality (see Proposition B.8 in the
Appendix), we gather that (Vug)6 C L%(L*). On the other hand, by arguing as in [35], we can use
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3.2.1), (3.2.3) and (3.2.4) to deduce that also (u.)_ C L2(L?). Putting those bounds together, we
c T
finally infer that

T
/ e[ sy dE < e (3.2.6)
0

In particular, there exist U € L? (]R+; HY(%; ]R3)) such that, up to a suitable extraction (not relabelled

loc
here), we have

u. = U in L (Ry; HY(OR?)). (3.2.7)
Let us move further and consider the density functions. The previous estimates on the density tell us
that we must find a finer decomposition for the densities. As a matter of fact, for any time 7" > 0 fixed,

we have
lloe = Ulzge(r24prsre) < ce?tmm). (3.2.8)

In order to see (3.2.8), to begin with, we write
loe = 1| < Joe — 0| + |0 — 1]. (3.2.9)

From (3.2.2), we infer that [0 — 0] o 18 Of order O(e™) in L (L?). For the residual part of the same
term, we can use (3.2.4) to discover that it is of order O(£2™/7). Observe that, if 1 < v < 2, the higher
order is O(e™), whereas, in the case 7 > 2, by use of (3.2.4) and (3.2.3) again, it is easy to get

llos = Gelresllzoe 2y < C*™. (3.2.10)

Finally, we apply Proposition 3.1.3 to control the last term in the right-hand side of (3.2.9). In the end,
estimate (3.2.8) is proved.

This having been established, and keeping in mind the notation introduced in (3.1.10) and (3.1.11),
we can introduce the density oscillation functions

-1 2n-m (1)
R, = () e + ¢ os’,
where we have defined
(1) O — Oc - L 0 — 1
o0/ (t,x) == o and Te(x) = r— (3.2.11)

Thanks again to (3.2.2), (3.2.4) and Proposition 3.1.3, we see that the previous quantities verify the
following uniform bounds, for any time 7" > 0 fixed:

<c and sup |[|Tell ooy < € (3.2.12)

(1)
© g2+ () £€]0,1]

e€10,1]
In view of the previous properties, there exist o) € L¥(L* + L7) and 7 € L™ such that (up to the
extraction of a new suitable subsequence)
o) = o) and Fe BT (3.2.13)
in the weak-* topology of the respective spaces. In particular, we get

ko~

R. —7r weakly-* in L>([0,T7; Lmin{%Q}(Q)) .

loc

Remark 3.2.1 Observe that, owing to (3.2.10), when v > 2 we get

(1)
swp [l .y <
e€10,1] ° llog )

Therefore, in that case we actually have that o) € L%O(LQ) and le) = oW in that space.
Analogously, when v > 2 we also get

loe = Ulpge(r24noey < ce?mm),
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3.2.2 Constraints on the limit

In this subsection, we establish some properties that the limit points of the family (ge, ua)a, which have
been identified here above, have to satisfy.

We first need a preliminary result about the decomposition of the pressure function, which will be
useful in the following computations.

Lemma 3.2.2 Let (m,n) € R? verify the condition m +1 > 2n > m > 1. Let p be the pressure term
satisfying the structural hypotheses (3.1.5) and (3.1.6). Then, for any ¢ €]0, 1], one has

1 N 1 1
E?mvx@o(ge) - p(@a)) = ;Vx(p’(lmé”) + o Valle, (3.2.14)

m

where the functions ggl) have been introduced in (3.2.11) and for all T > 0 the family (HE)a verifies the
uniform bound
||H€||L%°(L1+L2+L“/) <C. (3.2.15)

When v > 2, one can dispense of the space L7 in the previous control of (HE)E.

Proof: First of all, we write

o Val(plo) — 9(@)) = 5 Vo (ple) — (@) ~ P (@) 0~ 22))

1 1 (3.2.16)

+ = Ve ((0(@) — P(0) &) + Ve (W)

We start by analysing the first term on the right-hand side of (3.2.16). For the essential part, we can
employ a Taylor expansion to write

[p(Qz-:) —p(0e) — p/(EE)(QE - Ez—:)} ess [p”(zs)(gs - 56)2] oss

where z. is a suitable point between g. and g.. Thanks to the uniform bound (3.2.2), we have that this
term is of order O(¢?™) in L3°(L'), for any T > 0 fixed. For the residual part, we can use (3.2.3) and
(3.2.4), together with the boundedness of the profiles g. (keep in mind Proposition 3.1.3), to deduce that

I[p(ee) = (@) = P'(22) (0= = @) s e 1) < O 2m

We refer to e.g. Lemma 4.1 of [30] for details.
In a similar way, a Taylor expansion for the second term on the right-hand side of (3.2.16) gives

(¥'(2:) — P'(1) M) = p"(n:)(2- — 1)V,

where 7. is a suitable point between g, and 1. Owing to Proposition 3.1.3 again and to bound (3.2.12),
we infer that this term is of order O(e2(™~)) in L$°(L? 4 L"), for any time T > 0 fixed.
Then, defining
1 p(QE) B p@a)

- o (1)
e = —m= o (1ot (3.2.17)

we have the control (3.2.15).
The final statement concerning the case v > 2 easily follows from Remark 3.2.1. This completes the
proof of the lemma. [

Notice that the last term appearing in (3.2.14) is singular in . This is in stark contrast with the
situation considered in previous works, see e.g. [35], [34], [40] and [30]. However, its gradient structure
will play a fundamental role in the computations below.

This having been pointed out, we can now analyse the constraints on the weak-limit points (Q(l), U ),
identified in relations (3.2.7) and (3.2.13) above.



66 CHAPTER 3. ON THE INFLUENCE OF GRAVITY

3.2.2.1 The case of large values of the Mach number: m > 1

We start by considering the case of anisotropic scaling, namely m > 1 and m+1 > 2n > m. Notice that,
in particular, one has m > n.

Proposition 3.2.3 Letm > 1 and m+1 > 2n > m in (NSCL)-(NSC2). Let (0c,u.). be a family of weak
solutions, related to initial data (0o, woc), verifying the hypotheses of Paragraph 3.1.1.2. Let (oM, U)

be a limit point of the sequence (ggl),ua) , as identified in Subsection 3.2.1. Then,
>

&€

U = (Uh, o), with U = UMt,2")  and  divaU" = 0, (3.2.18)
V.o =0 in D'(Ry x Q). (3.2.19)

Proof: First of all, let us consider the weak formulation of the mass equation (NSCL): for any test
function ¢ € C2°(Ry x ), denoting [0,T] x K := Supp ¢, with ¢(T,-) = 0, we have

T T
—/ / (Qe — 1) Opp dadt — / / 0c e - Vypdadt = / (9075 — 1) (0, - ) dx.
0 JK 0 JK K

We can easily pass to the limit in this equation, thanks to the strong convergence o. — 1, provided
by (3.2.8), and the weak convergence of u. in L3.(L{ ), provided by (3.2.7) and Sobolev embeddings.

loc

Notice that one always has 1/vy + 1/6 < 1. In this way, we find

T
—/ /U-chpdxdt:(),
0 K

for any test function ¢ € C° (R+ X Q) taken as above. The previous relation in particular implies
divU =0 a.e. in Ry x Q. (3.2.20)

Next, we test the momentum equation (NSC2) on €™ ¢, for a smooth compactly supported ¢. Using
the uniform bounds established in Subsection 3.2.1, it is easy to see that the term presenting the derivative
in time, the viscosity term and the convective term converge to 0, in the limit € — 0. Since m > 1, also
the Coriolis term vanishes when € — 07. It remains us to consider the pressure and gravity terms in the
weak formulation (3.1.17) of the momentum equation: using relation (3.1.7), we see that we can couple
them to write

1 1 1 ~ om
Zom VaP(0e) = 55 0:VaG = 50V (p(gs) - p(&)) — e v,G. (3.2.21)

By (3.2.12) and the fact that m > n, we readily see that the last term in the right-hand side of (3.2.21)
converges to 0, when tested against any smooth compactly supported €™ ¢. At this point, we use Lemma
3.2.2 to treat the first term on the right-hand side of (3.2.21). So, taking ¢ € C°([0,7[ %) (for some
T > 0), we test the momentum equation against € ¢ and using (2.2.24), in the limit € — 0% we find

that .
/ / p'(1)eMdiv g dedt =0.
0 Q

Recalling that p/(1) = 1, the previous relation implies (2.2.29) for o,

In particular, that relation implies that o™ (¢,2) = ¢(t) for almost all (t,z) € Ry x €, for a suitable
function ¢ = ¢(t) depending only on time.

Now, in order to see effects due to the fast rotation in the limit, we need to “filter out” the contribution
coming from the low Mach number. To this end, we test (NSC?) on e ¢, where this time we take
¢ = curley, for some smooth compactly supported ¥ € Cé’o([(),T[ XQ), with T > 0. Once again, by
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uniform bounds we infer that the d; term, the convective term and the viscosity term all converge to 0
when € — 0%, As for the pressure and the gravitational force, we argue as in (3.2.21): since the structure
of ¢ kills any gradient term, we are left with the convergence of the integral

T T
/0 /Qem_Q"HQS)VzG - ¢ dedt — do(m —2n 4+ 1) /0 /QQ(I)VQUG - ¢ dxdt,

where 69(() = 1if ( =0, 69({) = 0 otherwise. Finally, arguing as done for the mass equation, we see
that the Coriolis term converges to the integral fOT Joes xU - o.
Consider the case m+1 > 2n for a while. Passing to the limit for e — 07, we find that H (e x U) = 0,

which implies that e3 x U = V,®, for some potential function ®. From this relation, one easily
deduces that & = @(t,xh), i.e. ® does not depend on z3, and that the same property is inherited
by U" = (Ul,Uz), i.e. one has U" = U"(t,z"). Furthermore, since U" = —Vi®, we get that

div, U" = 0. At this point, we combine this fact with (3.2.20) to infer that d3U° = 0; but, thanks to

the boundary condition (3.1.4), we must have (U . n)| s = 0, which implies that U 3 has to vanish at

the boundary of 2. Thus, we finally deduce that U? = 0, whence (3.2.18) follows (see also the proof of
Proposition 2.2.7 in this regard).
Now, let us focus on the case when m+1 = 2n. The previous computations show that, when ¢ — 07,
we get
esx U+ oVV,G = v, in D'(Ry xQ), (3.2.22)

for a new suitable function ®. However, owing to (3.2.19), we can say that Q(l)va = Vz(g(l) G);

hence, the previous relations can be recasted as e3 x U = V,®, for a new scalar function ®. Therefore,
the same analysis as above applies, allowing us to gather (3.2.18) also in the case m + 1 = 2n. |

3.2.2.2 The case m =1

Now we focus on the case m = 1. In this case, the fast rotation and weak compressibility effects are of
the same order: this allows to reach the so-called quasi-geostrophic balance in the limit.

Proposition 3.2.4 Tuke m =1 and 1/2 < n < 1 in system (NSCL)-(NSC2). Let (0-,uc). be a family
of weak solutions to (NSCL)-(NSC?), associated with initial data (0o, wo.c) verifying the hypotheses fized

in Paragraph 3.1.1.2. Let (Q(l), U) be a limit point of the sequence (le), ug) , as identified in Subsection
3
3.2.1. Then,

oM = g(l)(t,:):h) and U = (Uh, 0), with U™ = Vﬁg(l) ae. in Ry x R2. (3.2.23)
In particular, one has U" = U"(t,2") and div,U" = 0.

Proof: Arguing as in the proof of Proposition 3.2.3, it is easy to pass to the limit in the continuity
equation. In particular, we obtain again relation (3.2.20) for U.

Only the analysis of the momentum equation changes a bit with respect to the previous case m > 1.
Now, since the most singular terms are of order ¢! (keep in mind Lemma 3.2.2), we test the weak
formulation (3.1.17) of the momentum equation against € ¢, where ¢ is a smooth compactly supported
function. Similarly to what done above, the uniform bounds of Subsection 3.2.1 allow us to infer that
the only quantity which does not vanish in the limit is the sum of the terms involving the Coriolis force,
the pressure and the gravitational force: more precisely, using also Lemma 3.2.2, we have

. Vx(p(es)—p(ge)> _2(1-n) (1) =
3 X 0:Ues + e = Qe Vil = 0(6)7
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in the sense of D'(R; x ). Following the same computations performed in the proof of Proposition
3.2.3, in the limit ¢ — 07 it is easy to get that

es x U+, (¢(1)eV) =0 in ' (Ry x Q).
After recalling that p/(1) = 1, this equality can be equivalently written as
e;;XU-i-va(l) =0 a.e. in Ry x Q.

Notice that U is in fact in LIQOC(RJF;LQ), therefore so is V,0(1); hence the previous relation is in fact
satisfied almost everywhere in Ry x .

At this point, we can repeat the same argument used in the proof of Proposition 3.2.3 to deduce
(3.2.23). The proposition is thus proved. ]

3.3 Convergence in the case m > 1

In this section, we complete the proof of Theorem 3.1.5. Namely, we show convergence in the weak
formulation of the primitive system, in the case when m > 1 and m + 1 > 2n > m.

In Proposition 3.2.3, we have already seen how passing to the limit in the mass equation. However,
problems arise when tackling the convergence in the momentum equation. Indeed, the analysis carried
out so far is not enough to identify the weak limit of the convective term g, u. ® u., which is highly
non-linear. For proving that this term converges to the expected limit U ® U, the key point is to control
the fast oscillations in time of the solutions, generated by the singular terms in the momentum equation.
For this, we will use a compensated compactness argument and we exploit the algebraic structure of the
wave system underlying the primitive equations (NSC})-(NSC?).

In Subsection 3.3.1, we start by giving a quite accurate description of those fast oscillations. Then,
using that description, we are able, in Subsection 3.3.2, to establish two fundamental properties: on the
one hand, strong convergence of a suitable quantity related to the velocity fields; on the other hand, the
other terms, which do not involve that quantity, tend to vanish when € — 0%. In turn, this allows us to
complete, in Subsection 3.3.3, the proof of the convergence.

3.3.1 Analysis of the strong oscillations

The goal of the present subsection is to describe the fast oscillations in time of the solutions. First of
all, we recast our equations into a wave system. Then, we establish uniform bounds for the quantities
appearing in the wave system. Finally, we apply a regularisation in space procedure for all the quantities,
which is preparatory in view of the computations of Subsection 3.3.2.

3.3.1.1 Formulation of the acoustic wave system

We introduce the quantity
V. := o-u..

Then, straightforward computations show that we can recast the continuity equation in the form
™ Pt + divV, = 0, (3.3.1)

where le) is defined in (3.2.11). Next, thanks to Lemma 3.2.2 and the static relation (3.1.7), we can
derive the following form of the momentum equation:

EMQV. + ™ lesx V. +p'(1) V0

&g &

(1) — 2(m—n) (Qu)va _ VxHa) (3.3.2)

+em <divS(quE) — div (oeue @ug)) .
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Then, if we define

feo=div (S(Vaus) — o-u: @ u.) and g. = 0VV,G — V,II., (3.3.3)

recalling that we have normalised the pressure function so that p’(1) = 1, we can rewrite the primitive

system (NSCL)-(NSC2) in the following form:

m g (1) :
g™ +divV, =0
{ 1 : (3.3.4)

emoVe + vx@zgl) + em—1 e3x V. =¢e"f + 52(m_n)ga'

We remark that system (3.3.4) has to be read in the weak sense: for any ¢ € C2° ([O, T[ xﬁ), one has

T T
—6’"/ /9&1) Drp —/ /VE-VM = 6’”/ 982 ©(0) ,
0 Q 0 Q Q

and also, for any 1 € C’SO([O, T[x€; R3) such that (¢ - n)jsq = 0, one has

T T T
—5’”/ /Vg-atd)—/ /g§1>div¢+am1/ /63><V6~¢
0 Q 0 Q 0 Q
T T
—Em/Qo,auo,a'iﬁ(O)-i-«Em/ /fa'¢+ EQ(mn)/ /95'¢~
Q 0 Q 0 Q

Here we use estimates of Subsection 3.2.1 in order to show uniform bounds for the solutions and the
data in the wave equation (3.3.4). We start by dealing with the “unknown” V.. Splitting the term into
essential and residual parts, one can obtain for all 7" > 0,

HVEHL%O(LQ_;-L?“//(W-&-I)) <c. (3.3.5)

In the next lemma, we establish bounds for the source terms in the system of acoustic waves (3.3.4).

Lemma 3.3.1 Write f, = div ?5 and g. = gL — V.Il., where we have defined the quantities }E =
S(Veue) — 0:u: @ ue, gt = ggl) V.G and the functions I1. have been introduced in (3.2.17) of Lemma
For any T > 0 fixed, one has the uniform embedding properties

(f.). € LA(L*+LY)  and  (g}). C LE(L*+L").

In the case v > 2, we may get rid of the space L7 in the control of (g;)a.

In particular, the sequences (fe)E and (95)57 defined in system (3.3.4), are uniformly bounded in the
space L2 ([0,T); H*()), for all s > 5/2.

Proof: From (3.2.1), (3.2.5) and (3.2.6), we immediately infer the uniform bound for the family
(ﬂfs)8 in L2(L' 4+ L?), from which we deduce also the uniform boundedness of ( fe)e in L2.(H™*), for any
s > 5/2 (see Theorem B.2 in this respect).

Next, for bounding (gé)s we simply use (3.2.12), together with Remark 3.2.1 when v > 2. Keeping
in mind the bounds established in Lemma 3.2.2, the uniform estimate for (gg)a follows. |
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3.3.1.2 Regularization and description of the oscillations

As already mentioned in Remark 3.1.1, in order to apply the Littlewood-Paley theory, it is convenient
to reformulate problem (NSC!)-(NSC?) in the new domain (which we keep calling Q, with a little abuse
of notation)

Q:=R*xT!  with T!:=[-1,1]/~.

In addition, to avoid the appearing of the (irrelevant) multiplicative constants on the computations,
we suppose that the torus T! has been renormalised so that its Lebesgue measure is equal to 1.

Now, for any M € N we consider the low-frequency cut-off operator Sy, of a Littlewood-Paley
decomposition, as introduced in (A.1.1) of Section A.1. Then, we define

1
ng)w = SMQS) and Verm =SuVe. (3.3.6)
The previous regularised quantities satisfy the following properties.

Proposition 3.3.2 For any T > 0, we have the following convergence properties, in the limit M — +400:

) _ M H { 11
sup ‘Q 0 —0 Vs> max<0,3
e e A CARTES v 2
3 (3.3.7)
sup |[|V.—-V,, . sy — 0 Vs> —.
0<e<1 Ive 6MHL (0.7} H=*) 2y
Moreover, for any M > 0, the couple (QS])VI, V..m) satisfies the approximate wave equations
gm 8t.9£1])\4 +divV .y =0
’ (3.3.8)

em 8t‘/a,M + Em_l €3 X Va,M + VJ:QS])\/[ =™ fs,M + 62(m_n)ga,M7

where (f.ar)e and (ge vr)e are families of smooth (in the space variables) functions satisfying, for any
s > 0, the uniform bounds

0221 Hfs,MHH([o,T};HS) + 0221 HQ&MHLOO([O,T];HS) < C(s, M), (3.3.9)

where the constant C(s, M) depends on the fized values of s > 0 and M > 0, but not on & > 0.

Proof: Thanks to characterization (A.1.2) of H®, properties (3.3.7) are straightforward consequences
of the uniform bounds establish in Subsection 3.2.1. For instance, let us consider the functions gg): when
v > 2, owing to Remark 3.2.1 one has (le))e C L (L?), and then we use estimate (A.1.3) from Section
A.1. When 1 < v < 2, instead, we first apply the dual Sobolev embedding (see Theorem B.2) to infer
that (gél))g C LP(H7), with o = o(y) = 3(1/y —1/2), and then we use (A.1.3) again. The bounds
for the momentum (V5)€ can be deduced by a similar argument, after observing that 2v/(y 4+ 1) < 2
always.

Next, applying the operator Sy; to (3.3.4) immediately gives us system (3.3.8), where we have set

fE,M = SMfs and 9e M = SMgs :

Thanks to Lemma 3.3.1 and (A.1.2), it is easy to verify inequality (3.3.9). |

At this point, we will need also the following important decomposition for the momentum vector
fields V. pr and their curl.
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Proposition 3.3.3 For any M > 0 and any € €]0,1], the following decompositions hold true:
Veu =€ 2(m— ”)th + t and curl Vo =¢ 2(m— ”)TlM + T

where, for any T > 0 and s > 0, one has

<C(s,M)

Ht MHL2 ([0,T];H1) + HTgyMH[?([QT] iL2) <C,

el oo,y ey + 1 Teint | 2oy,

for suitable positive constants C(s, M) and C, which are uniform with respect to ¢ €10, 1].

Proof: We decompose V. = 52(m_”)t;’M + th, where we define

o — 1
t;,M = SM <€2?7n_n) Ug> and tiM = SMUg. (3310)
The decomposition of curl V. 5s follows after setting Tg, v = curl tg, o for j=1,2.

We have to prove uniform bounds for all those terms, by using the estimates established in Subsection
3.2.1 above. First of all, we have that (u )6 C LZ.(H"'), for any T > 0 fixed. Then, we immediately

gather the sought bounds for the vector fields ¢ M and TE M-

For the families of ¢! s and TE A instead, we have to use the bounds provided by (3.2.8) and (when
v > 2) Remark 3.2.1. In turn, we see that for any 7' > 0,

0e — 1 Y
<82§m—n) u5> - L%(Ll + L’ + L6’Y/(7+6)> — L%“(H ) >

for some o > 0 large enough. Therefore, the claimed bounds follow thanks to the regularising effect of
the operators Sy;. The proof of the proposition is thus completed. [
3.3.2 Analysis of the convection

In this subsection we show the convergence of the convective term. The first step is to reduce its analysis
to the case of smooth vector fields V. /.

Lemma 3.3.4 Let T > 0. For any ¥ € Cgo([O,T[ XQ;R3), we have

lim limsup
M —+o00 e—0t+

T
0 Ue @ U 2 V1 dadt —/ / Ve @ Ve : Vetp dadt| =
Q 0 Q

Proof: The proof is very similar to the one of Lemma 2.3.5 from Chapter 2, for this reason we just
outline it.
One starts by using the decomposition o = 1 4+ 2™~ R, to reduce (owing to the uniform bounds

of Subsection 3.2.1) the convective term to the “homogeneous counterpart”: for any test function @ €
cr (IR{+ X Q;R3), one has

T T
/ /geuE@)uE:Vx'l/J d:vdt—/ /u€®ugzvx1,b dzdt| = 0
0 Ja 0 JQ

Notice that, here, one has to use that v > 3/2.

After that, we write u. = Spu: + (Id — SM)uE = t2 . + (Id = Sar)u.. Using Proposition 3.3.3 and
the fact that ||(Id — Sy) uEHLQT(Lg) < C2” HvzueHLzT 2 < C27 M which holds in view of estimate
(A.1.3) from Section A.1 and the uniform bound (3.2.6), one can conclude. |

lim
e—0t
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From now on, for notational convenience, we generically denote by R. p/ any remainder term, that
again is any term satisfying the property

lim limsup
M—+oo o o+

/OT/Qm,M-qp dxdt‘ =0, (3.3.11)

for all test functions v € C’go([O,T [ XQ;]R3) lying in the kernel of the singular perturbation operator,
namely (in view of Proposition 3.2.3) such that

Y € C([0, T x % R?) with divep =0 and 031 =0. (3.3.12)

Notice that, in order to pass to the limit in the weak formulation of the momentum equation and derive
the limit system, it is enough to use test functions @ as above.
Thus, for ¥ as in (3.3.12), we have to pass to the limit in the term

T T
- / / Vort ® Vo : Vath = / / div (Verr @ Vers) - 3.
0 Q 0 Q

Notice that the integration by parts above is well-justified, since all the quantities inside the integrals
are now smooth with respect to the space variable. Owing to the structure of the test function, and
resorting to the notation (OSC) setted in the introductory part, we remark that we can write

T T
/ / div (Vort @ Vers) -t / / (T + T20p) - 9"
0 Q 0 R2

where we have defined the terms

Ty = div, ((V?7M> ® <V?7M>) and T2, = div, (<17§7M ® VQ,M>) . (3.3.13)

)

In the next two paragraphs, we will deal with each one of those terms separately. We borrow most of
the arguments from Chapter 2 (see also [34], [30] for a similar approach). However, the special structure
of the gravity force will play a key role here, in order (loosely speaking) to compensate the stronger
singularity due to our scaling 2n > m. Finally, we point out that, in what follows, all the equalities
(which will involve the derivative in time) will hold in the sense of distributions.

3.3.2.1 Convergence of the vertical averages

We start by dealing with 7;1 - It is standard to write
72M = divp, <<V?,M> ® <V?,M>> = dth<V?,M> <V?,M> + <VZ,M> : Vh<V?,M> (3.3.14)
) 1 2
= leh<V?,M> <V?,M> + B Vi, <‘<V?,M>‘ ) + Curlh<V?,M> (V?,M>L :

Notice that the second term is a perfect gradient, so it vanishes when tested against divergence-free test
functions. Hence, we can treat it as a remainder, in the sense of (3.3.11).

For the first term in the second line of (3.3.14), instead, we take advantage of system (3.3.8): averaging
the first equation with respect to 2% and multiplying it by (V? ), We arrive at

divi (V2 ) (VE) = =00 ) (V) = ™) )0V 1) + Rear

We remark that the term presenting the total derivative in time is in fact a remainder, thanks to the
factor €™ in front of it. Now, we use the horizontal part of (3.3.8), where we first take the vertical average

and then multiply by (QS])w): since m > 1, we gather

e (0O ar)
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= (0" )Valelh) — ™ U VI + e ar) + 2 (o) Y (gl 0
—em Y VR + R

where we have repeatedly exploited the properties proved in Proposition 3.3.2 and we have included in
the remainder term also the perfect gradient. Inserting this relation into (3.3.14) yields

Tom = (Cur1h<V?,M> - 5m71<0§711)\4>> (VI + R -

Observe that the first addendum appearing in the right-hand side of the previous relation is bilinear.
Thus, in order to pass to the limit in it, one needs some strong convergence properties. As a matter
of fact, in the next computations we will work on the regularised wave system (3.3.8) to show that the
quantity

m71< (1) >

Fey = curlh(V?7M> — ¢ Oc

is compact in some suitable space. In particular, as m > 1, also curlh<V?7 ) is compact.
In order to see this, we write the vertical average of the first equation in (3.3.8) as

e L9, (o)) + e div (VP ) = 0.
Next, we take the vertical average of the horizontal components of (3.3.8) and then we apply curly: one
obtains

g™ &gcurlh(V(};M} 4 gm1 divh<VQ7M> = e™ecurly( ?M> + 52(m7”)curlh(g2M} :

At this point, we recall the definition (3.3.3) of g., and we see that curlh<g?7 u) = 0. This property is
absolutely fundamental, since it allows to erase the last term in the previous relation, which otherwise
would have represented an obstacle to get compactness for I'; ps. Indeed, thanks to this observation, we
can sum up the last two equations to get

OTear = curl, (F2 ). (3.3.15)

Using estimate (3.3.9) in Proposition 3.3.2, we discover that, for any M > 0 fixed, the family (9; FS»M)E
is uniformly bounded (with respect to €) in e.g. the space L2(L?). On the other hand, we have that,
again for any M > 0 fixed, the sequence (I'c ar)e is uniformly bounded (with respect to ¢) e.g. in the
space L%(H D). Since the embedding Hﬁ)c — leoc is compact, the Aubin-Lions Theorem implies that,
for any M > 0 fixed, the family (I'c ). is compact in L2(L2 ). Then, up to extraction of a suitable
subsequence (not relabelled here), that family converges strongly to a tempered distribution I'j; in the
same space.

Now, we have that I'. 5 converges strongly to 'y in L3.(L2 ) and <V7;M> converges weakly to (V)
in L2.(L2 ) (owing to Proposition 3.3.3, for instance). Then, we deduce

Tea(VE) "t — T (Vi) *E in D' (R} x R?).
Observe that, by definition of I'; 37, we must have I'yy = curlh<V§(4>. On the other hand, owing to

Proposition 3.3.3 and (3.3.10), we know that (V%) = (SyU"). Therefore, in the end we have proved
that, for m > 1 and m + 1 > 2n > m, one has the convergence (at any M € N fixed, when ¢ — 07)

T T
/ / Ty 9" da” dt —>/ / curly, (S U™ (Sy (UML) - 4p™ dzl dt (3.3.16)
0 R2 0 R2

for any 7" > 0 and for any test-function % as in (3.3.12).
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3.3.2.2 Vanishing of the oscillations

We now focus on the term 72, defined in (3.3.13). Recall that m > 1. In what follows, we consider
separately the two cases m + 1> 2n and m+1 = 2n. As a matter of fact, in the case when m + 1 = 2n,
a bilinear term involving g, 5, has no power of ¢ in front of it, so it is not clear that it converges to
0 and, in fact, it might persist in the limit, giving rise to an additional term in the target system. To
overcome this issue and show that this actually does not happen, we deeply exploit the structure of the
wave system to recover a quantitative smallness for that term (namely, in terms of positive powers of ¢).

The case m+1 > 2n

Starting from the definition of 7'EQM, the same computations as above yield

T = (diva(VE ) VE) + 5 (ValVEul?) + carla V2 (V) ). (3.3.17)

)

Let us now introduce the quantities

‘5?7M = (‘N/'?M)l — 83_1Vﬁ‘7§’7M and W = curlh‘N/QM.
Then we can write
~ h = ~ 3 ~3
(curl VE,M> = 039 ), and (curl V51M> = W2 -

In addition, from the momentum equation in (3.3.8), where we take the mean-free part and then the
curl, we deduce the equations

=~ ~ = h P
€matq)?,M _ 8m—lng =M <8§10ur1 f&M) + g2(m=n) (a:’s_lcurlga,M)h (3.3.18)

~3 —1 3o xrh Th
€m(9tw57M + M div Vi = e eurly f 2y -

Making use of the relations above, recalling the definitions in (3.3.3), and thanks to Propositions 3.3.2
and 3.3.3, we can write

~ ~ 1 -~ =~ 1
Curth?’M (V?,M) = (:)?’M (V?,M>

Zh \ a3 ~3 -1 7 m
=¢e0 (I)E,M) We pp — EWE 0y (83 cur1f57M)

_ gm+l-2n 5?,]\4 <(83_10ur1§€7M)h)

. (3319)

_ (I)h L8%3 _ (Zh Y ‘rh
= —& e, M th,M +R57M = (D&M dlthE,M+R£,M'

We point out that, thanks to the scaling m + 1 > 2n, we could include in the remainder also the last
term appearing in the second equality, which was of order O(¢m*1=2n),
Hence, putting the gradient term into R. a7, from (3.3.17) we arrive at

~ ~ ~ 1
72M = <dithQ,M (V?,M + ((I)?,M) >> + Rem

= (div ‘Z,M (‘??M + (‘f)?M)L>> - <83‘7§,M (‘??M + (E’?,M)L) +Rem -
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At this point, the computations mainly follow the same lines of [34] (see also [30]). First of all, we

notice that, in the last line, the second term on the right-hand side is another remainder. Indeed, using
the definition of the function &)? o and the fact that the test-function 1 does not depend on x3, one has

~ ~ ~ 1 ~ ~h ~ 1 ~ ~ ~ 1
83V§,M (V?,M + (‘I)?,M) ) =03 <V§,M <V€,M + ((I)?,M> >> - V?,M 03 <V?,M + ((I)?,M) >
1 ~ 3 2
= Rear = 5V ‘V&M‘ = Rer.
Next, in order to deal with the first term, we use the first equation in (3.3.8) to obtain
LR ~ =~ 1 ma ~(1) ~ = 1
div Vo (VEy + (cba, M) =m0, (VEy + (<1>57M) +Res
~ ~ ~ 1
=5, o <VQ,M + (@Q,M) ) + R -
Now, equations (3.3.8) and (3.3.18) immediately yield that

- ~ ~ L ~ ~ Lo =) |2
Smgg,lz)w O <V?,M + (‘I’Q,M) > = Rem — QSJ)W VhQSJ)M =Rem = 5Va QSJ)\/[‘ =Ren -

This relation finally implies that 7;?M = Rem is a remainder, in the sense of relation (3.3.11): for
any T > 0 and any test-function ¢ as in (3.3.12), one has the convergence (at any M € N fixed, when
e—07")

T
/0 8 T2y ¢ da"dt — 0. (3.3.20)

The case m+ 1= 2n

In the case m + 1 = 2n, most of the previous computations may be reproduced exactly in the same way.
The only (fundamental) change concerns relation (3.3.19): since now m+1—2n = 0, that equation reads

~ ~ 1 ~ 1 ~ - " 1
curthZM (VZM) = (@?7M> dithgM —QS,M ((83_1(:ur1§5’M)h) +Re M s (3.3.21)

and, repeating the same computations performed for 7;2M in the previous paragraph, we have

~ ~ L
7;?]\4 = RE,M - <(Dg,M ((83_1Cu1“1§€7M)h> > :

Hence, the main difference with respect to the previous case is that we have to take care of the term
- - SN O : : : o :
wg’ M <(63 Leurl g., M) > , which is non-linear and of order O(1), so it may potentially give rise to oscil-
lations which persist in the limit.

In order to show that this does not happen, we make use of definition (3.3.3) of g, to compute

i = (o (3270 ))

. h,L
~3t), "
= 315211)\4 == Vo -

0

From this relation, in turn we get

T2 = R + (@20, 05V50),) (3.3.22)

€,
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Now, we have to employ the potential part of the momentum equation in (3.3.8), which has not been
used so far. Taking the oscillating component of the solutions, we obtain

th(lj)w =" atV?,M - f?mfl(f/?,M)l +e™ }?M + 52(m7n)§?,M =—c" atV?,M +Ren -

&,

Inserting this relation into (3.3.22) and using (3.3.18), we finally gather
T =~ (G20 005 VL) + Rer = (02 0 05 V) + Rt = R

because we have taken m > 1.
This relation finally implies that, also in the case when m + 1 = 2n, 7?M is a remainder: for any
T > 0 and any test-function % as in (3.3.12), one has the convergence (3.3.20).

3.3.3 The limit system

Thanks to the computations of the previous subsections, we can now pass to the limit in equation (3.1.17).
Recall that m > 1 and m + 1 > 2n > m here.
To begin with, we take a test-function 9 as in (3.3.12), specifically

¥ = (Vi $,0), with ¢ € C([0,T[xR?), ¢=o(ta"). (3.3.23)

We point out that since all the integrals will be made on R? (in view of the choice of the test functions
in (3.3.23) above), we can work on the domain Q = R?x]0,1].

In addition, for such % as in (3.3.23), all the gradient terms vanish identically, as well as all the
contributions due to the vertical component of the equation. In particular, we do not see any contribution
of the pressure and gravity terms: equation (3.1.17) becomes

T 1
/ / <qu? SOl — poul @ ul : Vbt 4 ~o: (ug)i - ¢h> dxdt (3.3.24)
0JQ

T
= / / S(vxue) : vx";b dadt +/ 00,6U0 ¢ * 1,5(07 ) dx.
0JQ Q

Making use of the uniform bounds of Subsection 3.2.1, we can pass to the limit in the J, term and in
the viscosity term. Moreover, our assumptions imply that gp.uo. — up in e.g. leoc. Next, the Coriolis
term can be arranged in a standard way: using the structure of 1 and the mass equation (3.1.16), we

can write

/OT/QiQE(“?)l Yt = /OT/]R? é@eU?) Vo = =™} /OT/RQ(QQ)M - €m_1/R2<Q(()%a)>¢(O, ),

which of course converges to 0 when ¢ — 0.

It remains us to tackle the convective term p.u” ® . For it, we take advantage of Lemma 3.3.4 and
relations (3.3.16) and (3.3.20), but we still have to take care of the convergence for M — +o0 in (3.3.16).
We start by performing equalities (3.3.14) backwards in the term on the right-hand side of (3.3.16): thus,
we have to pass to the limit for M — 400 in

T
/ Ut oUt, Vi dah dt.
0o Jr2
Now, we remark that, since U" € L2.(H") by (3.2.7), from (A.1.3) we gather the strong convergence

SyU" — U™ in LZ(H?) for any s < 1, in the limit for M — 4o0o. Then, passing to the limit for
M — 400 in the previous relation is an easy task: we finally get, for ¢ — 07,

T T
/ /qu?@)ugzvhd;h —>/ Uhreo Ut vt
0 Q 0 R2
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In the end, we have shown that, letting e — 0" in (3.3.24), one obtains

T T
// (Uh~at¢h+Uh®Uh:vh¢h> dxhdt:// puN UM - vyt dxhdt—/ (ul) - "0, ) dz",
0 JR2 0 JIR2 R2

for any test-function % as in (3.3.12). This implies (3.1.19), concluding the proof of Theorem 3.1.5.

3.4 Proof of the convergence for m =1

In the present section, we complete the proof of the convergence in the case m =1 and 1/2 <n < 1. We
will use again the compensated compactness argument depicted in Subsection 3.3.2, and in fact most of
the computations apply also in this case.

3.4.1 The acoustic-Poincaré waves system

When m = 1, the wave system (3.3.4) takes the form

(1) :
edos’ +divV, =0
{ @ (3.4.1)

eV + nggl) + e3xV.=c¢f. _|_52(1—n)g67

where (gél))e and (Vg)a are defined as in Paragraph 3.3.1.1. This system is supplemented with the initial

1
datum (Q((),ga QO,EUO,E)-
Next, we regularise all the quantities, by applying the Littlewood-Paley cut-off operator Sys to (3.4.1):
we deduce that QSJ)W and V. p, defined as in (3.3.6), satisfy the regularised wave system

53tQS])\/[ +divVoy =0 (3.4.2)
enVens + Vaolly + esx Verr = e fopr +20 g,y

in the domain Ry x €, where we recall that f_,; := Sy f. and g, p; := Syg.. It goes without saying
that a result similar to Proposition 3.3.2 holds true also in this case.

As it is apparent from the wave system (3.4.1) and its regularised version, when m = 1 the pressure
term and the Coriolis term are in balance, since they are of the same order. This represents the main
change with respect to the case m > 1, and it comes into play in the compensated compactness argument.
Therefore, despite most of the computations may be repeated identical as in the previous section, let us
present the main points of the argument.

3.4.2 Handling the convective term when m =1

Let us take care of the convergence of the convective term when m = 1.
First of all, it is easy to see that Lemma 3.3.4 still holds true. Therefore, given a test-function
(RS Cgo([O, T %8 R3) such that divap = 0 and 93¢ = 0, we have to pass to the limit in the term

T T T
—/ /VE,M®VE,M:vx¢=/ /div (Veri ® Vorr) - =/ / (T + T2 - 9",
0 Q 0 Q 0 R2

where we agree again that the torus T! has been normalised so that its Lebesgue measure is equal to 1
and we have adopted the same notation as in (3.3.13).

At this point, we notice that the analysis of 7;2M can be performed as in Paragraph 3.3.2.2, because
we have m 4+ 1 > 2n, i.e. n < 1. Mutatis mutandis, we find relation (3.3.20) also in the case m = 1.
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Let us now deal with the term 7;1M. Arguing as in Paragraph 3.3.2.1, we may write it as

T = <CU1"1h<Va M)~ (QS])\/ﬁ) (VIEu) "+ Renr.

Now we use the horizontal part of (3.4.2): averaging it with respect to the vertical variable and applying
the operator curly,, we find

e dpeurly (VI ) + divi (VI ) = ecurl, (F25) .
Taking the difference of this equation with the first one in (3.4.2), we discover that
('3tf5,M = cur1h<ng>, where I‘E M= curlh<VE M) = (gélj)\/ﬁ

An argument analogous to the one used after (3.3.15) above, based on Aubin-Lions Theorem, shows

that (fs,M)E is compact in e.g. L2 (leoc) Then, this sequence converges strongly (up to extraction of a

suitable subsequence, not relabelled here) to a tempered distribution r M in the same space.
Using the previous property, we may deduce that

Con (VEA)E — T (Vipt in D'(Ry xR?),

where we have (V) = (S U") and T'y; = curly, (SyU™) — (Spro™M).
Owing to the regularity of the target velocity U", we can pass to the limit also for M — +oo, as
detailed in Subsection 3.3.3 above. Thus, we find

//Q5u5®ug. 2 dadt —>/ U U": V" — oW (UM - ") da" dt, (3.4.3)
RQ

for all test functions 1 such that divey = 0 and 939 = 0. Recall the convention |T!'| = 1. Notice that,
since U" = V;-o") when m = 1 (keep in mind Proposition 3.2.4), the last term in the integral on the
right-hand s1de is actually zero.

3.4.3 End of the study

Thanks to the previous analysis, we are now ready to pass to the limit in equation (3.1.17) also in the
case when m = 1. For this, we take a test-function 1 as in (3.3.23); notice in particular that divep = 0
and 031 = 0. Then, once again all the gradient terms and all the contributions coming from the vertical
component of the momentum equation vanish identically, when tested against such a ). Recall that all
the integrals will be performed on R?. So, equation (3.1.17) reduces to

// ( OcUs - at";b OcUe @ Uy : V’l,b+ Qa( ) ¢h+S(v ue) : ;,;’lp) :/QQO,E'U/O@ 1/)(07)

For the rotation term, we can test the first equation in (3.4.1) against ¢ to get

-/ / < )06+~ (ool - w) [ e ot0.).
R2 R2
whence we deduce that

[ ot = [, bty = [ e [

In addition, the convergence of the convective term has been performed in (3.4.3), and for the other
terms, we can argue as in Subsection 3.3.3. Hence, letting ¢ — 07 in the equation above, we get

T
— / 2 (Uh Vit + U @ UM : Vi (Vikg) 4 oM 8td>) dz" dt
R

T
[ [ nvatt vt astar s [ (wh) - iow.) + (6)60.)) dit
0 JR2 R2

which is the weak formulation of equation (3.1.20). In the end, also Theorem 3.1.6 is proved.
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Chapter 4

The fast rotation limit for Euler

We conclude this thesis describing the behaviour of a fluid which, in contrast with Chapters
2 and 3, evolves far from the physical boundaries. An example of such fluid flows is represented
by currents in the middle of the oceans, i.e. far enough from the surface and the bottom. In
this context, we can assume the following physical approximations:

e the fluid is incompressible;
e the density is a small perturbation of a constant profile (the Boussinesq approximation);

e the domain is the R? plane: the motion of a 3-D highly rotating fluid is, in a first
approximation, planar (the Taylor-Proudman theorem).

Then, the system reads:

Oro + div (ou) =0

1
O(ou) + div (ou @ u) + EQ’U,L +Vp=0 (4.0.1)

divu =0

in the domain Q = R?. Since in this chapter there will be no more competition between the
horizontal and vertical scales, for notational convenience, we will drop everywhere (in the
differential operators) the subscript x.

With respect to the previous systems (see (2.0.1) and (3.0.1) in this respect), the Euler
equations (4.0.1) is an incompressible system without the viscosity effects and with a hyper-
bolic structure. For that reason, we will need different analysis techniques (see Appendix A)
and in addition the functional framework will change (now we will be in regular spaces) in
order to preserve the initial regularity.

The topics presented here are part of the pre-print [65].

Let us now give a summary of the chapter.

In Section 4.1, we collect our assumptions and we state our main results. In Section 4.2,
we investigate the well-posedness issues in the Sobolev spaces H® for any s > 2. In Section
4.3, we study the singular perturbation problem, establishing constraints that the limit points
have to satisfy and proving the convergence to the quasi-homogeneous Euler system thanks to
a compensated compactness technique. In Section 4.4 we review, for the quasi-homogeneous
limiting system, the results presented in [18] and [16], and we explicitly derive the lifespan of
solutions to the limit equations (see relation (4.4.34) in this regard).

In the last section, we deal with the lifespan analysis for system (4.0.1) and we point
out some consequences of the continuation criterion we have established (see in particular
Subsection 4.5.1).
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4.1 The density-dependent Euler problem

In this section, we formulate our working setting (Subsection 4.1.1) and we state the main results (Sub-
section 4.1.2).

4.1.1 Formulation

In this subsection, we present the rescaled density-dependent Euler equations with the Coriolis force,
which we are going to consider in our study, and we formulate the main working hypotheses.

To begin with, let us introduce the “primitive system”, that is the rescaled incompressible Euler
system (4.0.1), supplemented with the scaling Ro = e, where ¢ €]0,1] is a small parameter. Thus,
the system consists of continuity equation (conservation of mass), the momentum equation and the
divergence-free condition: respectively

Oro- + div (Qaue) =0
1 1
Or(0eus) + div (peu: ® u,) + EQE’U,EL + EVHa =0 (4.1.1)
divu, =0.
We point out that, here above in (4.1.1), the domain € is the plane R? and the unknowns are o. € R
and u. € R2.
In (4.1.1), the pressure term has to scale like 1 /e, since it is the only force that allows to compensate

the effect of fast rotation, at the geophysical scale.
From now on, in order to make the Lipschitz condition (A.3.1) holds, we fix

s> 2.

We assume that the initial density is a small perturbation of a constant profile. Namely, we consider
initial densities of the following form:

00 =1+¢eRoe, (4.1.2)
where we suppose Ry, to be a bounded measurable function satisfying the controls
sup HRO,aHLw(Rg) <C (4.1.3)
€€10,1]
Sup |IVR075HH5*1(R2) S C (414)
€€10,1]

and the initial mass density is bounded and bounded away from zero, i.e. for all € € ]0,1]:
0<g<oe(z) <o, zeR’ (4.1.5)

where 9,0 > 0 are positive constants.
As for the initial velocity fields, due to framework needed for the well-posedness issues, we require
the following uniform bound

sup HUO,aHHs(Rz) <C. (4.1.6)
€€10,1]

Thanks to the previous uniform estimates, we can assume (up to passing to subsequences) that there
exist Ry € WH°(R?), with VRy € H*"}(R?), and ug € H*(R?) such that

Ro:=lim Ry. in L*(R?)
e—0
— i : s—1 2
VR := ;1_1% VRy. in H* (R (4.1.7)
ug = lim ’l,l,g7g in HS(R2)7
e—0

where we agree that the previous limits are taken in the corresponding weak-* topology.
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4.1.2 Main statements

We can now state our main results. We recall the notation ( fg)8 C X to denote that the family ( fg)a is
uniformly (in €) bounded in X.

The following theorem establishes the local well-posedness of system (4.1.1) in the Sobolev spaces
B3, = H? (see Section 4.2) and gives a lower bound for the lifespan of solutions (see Section 4.5).

Theorem 4.1.1 For any e €0, 1], let initial densities oo be as in (4.1.2) and satisfy the controls (4.1.3)
to (4.1.5). Let ug. be divergence-free vector fields such that ug. € H*(R?) for s > 2.

Then, for any € > 0, there exists a time T, > 0 such that the system (4.1.1) has a unique solution
(0e, ue, VII) where

e 0. belongs to the space CV([0,T*] x R?) with Vo. € C°([0,T¢]; H*~1(R?));
e u. belongs to the space C°([0,TY]; H*(R?));
e VII. belongs to the space CO([0, TY]; H*(R?)).

Moreover, the lifespan T of the solution to the two-dimensional density-dependent incompressible Euler
equations with the Coriolis force is bounded from below by

¢ CHqu Hs ) >
— 7 log (1o : T1) 1), 4.1.8
Tl g( g<max{Ae<o>,eA€<o> Taoellae) (4.1.8)

where A.(0) := ||VRo || ggs—1 + € HVRQEH}\;L, for some suitable A > 1.
In particular, one has

inf 77 > 0.
e>0

Looking at (4.1.8), we stress the fact that the fast rotational effects are not enough to state a global
well-posedness result for system (4.1.1), in the sense that 7 does not tend to +o0o when ¢ — 0T,

Now, once we have stated the local in time well-posedness for system (4.1.1) in the Sobolev spaces
H?, in Section 4.3 we address the singular perturbation problem describing, in a rigorous way, the limit
dynamics depicted by the quasi-homogeneous incompressible Euler system (4.1.9) below.

Theorem 4.1.2 Let s > 2. For any fized value of ¢ € ]0,1], let initial data (goe,uo:) verify the
hypotheses fixed in Paragraph 4.1.1, and let (g, ue) be a corresponding solution to system (4.1.1). Let
(Ro,uo) be defined as in (4.1.7).

Then, one has the following convergence properties:

0. — 1 in L= ([0, T*]; L>(R?)),
e ]- * .
Ro=%""*R in L0, T%); L°(R?))

VR. >~ VR in L>([0,T*]; H*1(R?)) ,

0,7); H*(R?)).

™
~—~~ I~ —~

U > u mn L™
In addition, (R, u) is a solution to the quasi-homogeneous incompressible Euler system in [0, T*] x R2:

Oru +div (u @ u) + Rut + VII =0 (4.1.9)

divu = 0,

where V11 is a suitable pressure term belonging to L“([O,T*]; HS(]RQ)).
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Remark 4.1.3 Due to the fact that the system (4.1.9) is well-posed in the previous functional setting
(see Theorem 4.1.4 below), we get the convergence of the whole sequence of weak solutions to the solutions
of the target equations on the large time interval where the weak solutions to the primitive equations exist.

Then, at the limit, we have found that the dynamics is prescribed by the quasi-homogeneous incom-
pressible Euler system (4.1.9), for which we state the local well-posedness in H® (see Section 4.4). It is
worth to remark that the global well-posedness issue for this system is still an open problem.

Theorem 4.1.4 Take s > 2. Let (Rg,uo) be initial data such that Ry € L™(R?) and ug € H*(R?),
with VRy € H5"Y(R?) and divug = 0.

Then, there exists a time T* > 0 such that, on [0,T*] x R?, problem (4.1.9) has a unique solution
(R, u, VII) with the following properties:

e ReC([0,T%] x R?) and VR € C°([0,T*]; H*"1(R2));
e u belongs to C°([0,T*]; H5(R?));
e the pressure term VII is in C°([0,T*]; H*(R?)).

In addition, the lifespan T* > 0 of the solution (R, w, VII) to the 2-D quasi-homogeneous Euler system
(4.1.9) enjoys the following lower bound:

C l|lwol| s
T > ———log (log (C’ +1)+1), 4.1.10)
Taolla IRollz= + |V Rollyos (

where C' > 0 is a “universal” constant, independent of the initial datum.

The proof of the previous “asymptotically global” well-posedness result is presented in Subsection 4.4.3.

4.2 Well-posedness for the original problem

This section is devoted to the well-posedness issue in the H?® spaces stated in Theorem 4.1.1. We recall
that, due to the Littlewood-Paley theory, we have the equivalence between H* and Bj , spaces.

We also underline that in this section we keep £ € |0, 1] fixed. However, we will take care of it,
explicitly pointing out the dependence to the Rossby number in all the computations in order to get
controls that are uniform with respect to the e-parameter. The choice in keeping explicit the dependence
on the rotational parameter is motivated by the fact that we will perform the fast rotation limit (see
Section 4.3 below).

First of all, since o, is a small perturbation of a constant profile, we set

1

;= — —1=ca. with a;.:=—R./o0-. (4.2.1)
Oe

The choice of looking at a. is dictated by the fact that we will extensively exploit the elliptic equation
1

—div (a.VIL) = ediv <u5 - Vu, + ug) . (4.2.2)
€

Now, using the divergence-free condition, we can rewrite the system (4.1.1) in the following way (see also
Lemma 3 in [22]):
Oa- + u. - Va. =0
1 1
Oue + ue - Vue + guj +(1+ 80,5)EVH6 =0 (4.2.3)

divu:. =0,
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with the initial condition (ac, ue)ji—g = (a0, o)

We start by presenting the proof of existence of solutions at the claimed regularity. For that scope,
we follow a standard procedure: first, we construct a sequence of smooth approximate solutions. Next,
we deduce uniform bounds (with respect to the approximation parameter and also to ) for those regular
solutions. Finally, by use of those uniform bounds and an energy method, together with an interpolation
argument, we are able to take the limit in the approximation parameter and gather the existence of a
solution to the original problem.

We end this Section 4.2, proving uniqueness of solutions in the claimed functional setting, by using
a relative entropy method.

4.2.1 Construction of smooth approximate solutions

For any n € N, let us define
(ag,sa ug,s) = (SnCLO,Ea Snuo,s) )

where S, is the low frequency cut-off operator introduced in (A.1.1) in Section A.1. We stress also the
fact that ag. € CI%C, since ap,. and Vag, are in L™,

Then, for any n € N, we have the density functions af. € L. Moreover, one has that Vag . and
ug . belong to H* := 1), cp H? which is embedded (for a suitable topology on H*°) in the space Cp° of
C*° functions which are globally bounded together with all their derivatives.

In addition, by standard properties of mollifiers (see Section B.2 of the Appendix B), one has the
following strong convergences

ape — Gpe in CIOOC
Vag. — Vage in H! (4.2.4)

ug. — uge in H”.

This having been established, we are going to define a sequence of approximate solutions to system
(4.2.3) by induction. First of all, we set (a2, u?, VII?) = (a875, ugys, 0). Then, for all o € R, we have that
Val,u? € H° and a? € L* with divu! = 0. Next, assume that the couple (a”,u”) is given such that,
for all o € R,

a € C°(Ry; L) Val,u? € C°(R,; H) and divul =0.

n+1

n7T% as the unique solution to the linear transport equation

First of all, we define a

Ol ol -Vt =0 with (), = aft. (425)

Since, by inductive hypothesis and embeddings, u! is divergence-free, smooth and uniformly bounded

with all its derivatives, we can deduce that a?*! € L>(R,; L>). Moreover, from

O 0ia” ™ U -V 9al ™t = —9ul - Valtt with (aia?+1)|t:0 = 8iag;1 fori=1,2

and thanks to the Theorem A.15, we can propagate all the H? norms of the initial datum. We deduce
that a?* € CO°(Ry; L>®) and Va?*! € CY(R,; H?) for any o € R. Next, we consider the approximate
linear iteration . .

dul ! 4yl V! 4 gué’"“ + (1 +ealt)-VIIH =0

divu™t =0 (4.2.6)
1
(U?H)u:o = u(}i .
At this point, one can solve the previous linear problem finding a unique solution w2 € CO(R; H?)
for any o € R and the pressure term VII?*! can be uniquely determined (we refer to [20] for details in
this respect).
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4.2.2 Uniform estimates for the approximate solutions

We now have to show (by induction) uniform bounds for the sequence (al,u?, VII?),en we have con-
structed above.

We start by finding uniform estimates for a?*!. Thanks to equation (4.2.5) and the divergence-free
condition on u, we can propagate the L> norm for any ¢ > 0:

laZ* ()| oo < llag |z < Cllagel|ze - (4.2.7)
At this point we want to estimate Va2"! in H*~1. We have for i = 1,2:
0: 0; a”+1 +ul-Vo a”H —ouy Va”“
Taking the non-homogeneous dyadic blocks A, we obtain
A 0l +ul VA 9;al T = [ul -V, Aj] 0ial T — A (Qjul - Valtt) .

Multiplying the previous relation by A; 9;a"*1, we have
1200 Oz < 13, g e +.0 [ (- 9.8] 0002+ 18, (02 Va2 ™) 12) b

We apply now the second commutator estimate stated in Lemma A.13 to the former term in the integral
on the right-hand side, getting

PO [l -V, 85) 002t 1o < C () (VLo 002 ot + IV | ot Gial [ e )

where (c;(t));>-1 is a sequence in the unit ball of ¢2.
Instead, the latter term can be bounded in the following way:

PODA; (pul - Varth) [z < O () IVul | gt | Val T e

Then, due to the embedding H°(R?) < L*>°(R?) for o > 1, one has
t
26| A; Val (1) 2 < 2767V (1A Vag T +/ Ccj(7) (|[u | m= [ VaZ™ || o) d7.
0

At this point, after summing on indices j > —1, thanks to the Minkowski inequality (for which we refer
to Proposition B.6) combined with a Gronwall type argument (see Section B.6), we finally obtain

sup [|[Valt ()| gs < HVag Y et exp </ C|ul(t)|| s dt> (4.2.8)

0<t<T

Now, we have to estimate the velocity field u?*! and for that purpose we start with the L? estimate.
We take the momentum equation in the original form:

1
o (Bt 4wl vt + Qn+1 Lint1 4 VH"“ 0, (4.2.9)

where we construct 2! := 1/(1 + ea?"!) starting from a?*!. Notice that ¢"*! satisfies the transport
equation
Qo™ + - Vit = 0.

At this point, we test equation (4.2.9) against u?*!. We integrate by parts on R?, deriving the
following estimate:

[tz P [ ortur vz <o,
R R2
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which implies (making use of the transport equation for g?*1)
Wertmwso| < |\aa
L2

From the previous bound, due to the assumption (4.1.5), we can deduce the preservation of the L? norm
for the velocity field u?*1:

n+1

Juz @)l < € |lug

|, < Clluocll -
Taking now the operator A; in the momentum equation in (4.2.6), we obtain
1 1
O Ajultt +ul VAU = [l VA ul T — S AT - A | (1 ealtt) —vITT
€ £

n+1

nTh, we have cancellations so that

and multiplying again by Aju

|zt @) < || gt

t
| +C /0 (lfa - 9. A + Ay (@2 VI L) dr. (4.2.10)

As done before, we employ here the commutator estimates of Lemma A.13 in order to have
2% |[[u? - V, Ajlul | o < C oy (IIVallpoe Jul ™ s + Va2 [ ulla)

< Coj (lullmsllul™ ) -

For the latter term on the right-hand side of (4.2.10), we take advantage of the Bony decomposition (see
Paragraph A.2) and we apply Proposition A.10. We may infer that

Jaf VI < C (a2 + IVaZ ™| ) VI |1z

To finish with, we have to find a uniform bound for the pressure term. For that, we apply the div
operator in (4.2.6). Thus, we aim at solving the elliptic problem

—div ((1+eal™) VIIZT) = ediv (u? - Vult!) — curlul ™! (4.2.11)

€ € °

Thanks to the assumption (4.1.5) and Lemma B.10, we can obtain

VI g2 < C (= ul - Va2 e + 1)
1 1 (4.2.12)
< O (el ralug s + llu™ ) -
Now, we apply the spectral cut-off operator A; to (4.2.11). We get
—div (A.A;VIIZHY) = div ([Aj, A] VIIZT) + div A F,

for all j > 0 and where we have defined A. := (1 +ea?™!) and F. := eul - Vult!t + uz"™. Hence
multiplying both sides by Ajﬂ’g“ and integrating over R?, we have

— [ AJIZMiv (AAVIEZHY) do = [ A2V ([A), A] VIIZH da:—{—/ AT div A F. da.
R2 R2 R2

Since for j > 0 we have ||A;VII?H| 2 ~ 27||A; 12|12 (according to Lemma A.2) and using Holder’s
inequality (see Proposition B.5) for the right-hand side, we obtain for all j > 0:

20| A VI 72 < ClIAVIET 2 (div [Ag, A VI 2 + [|div Ay Fe2) -
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To deal with the former term on the right-hand side, we take advantage of the following commutator
estimate (see Lemma A.12):

ldiv [Ay, Ae] VIZH| 2 < C e 27907V [ VA ot [ VI o1

for a suitable sequence (c;); belonging to the unit sphere of £2.
After multiplying by 2/6~1 | we get

25| A VIIZH 12 < © (Cj IV Ae| s [| VI | pro—r + 2767 D[ div AJFE||L2) :

Taking the ¢2 norm of both sides and summing up the low frequency blocks related to A_; VII®*! we
may have

IV g0 < C (VA o [ VI gy + [[div Bl o s+ A VI )
We observe that ||A_1VII?H |2 < C||VII? |2 and
VI groms < O VI VI
Therefore,
IVIZ* s < C (IV Al oo [ VI [ VTG 4 v P e+ VT2 2)
Then applying Young’s inequality (see Proposition B.4) we finally infer that
VI e < C (L4 || VAL gro—1)* IVIIZF | 12 + || div FL| gre—1) - (4.2.13)

It remains to analyse the term div F. where F := eu” - Vut! + uz"*!. Due to the divergence-free

conditions, we can write
div (u? - Vu) = Vu” : Vult!

and as H*"! is an algebra, the term div (u? - VuZ*!) is in H*~!, with
Idiv (u - V) | gromr < Cllul e[l s - (4.2.14)
Putting (4.2.12) and (4.2.14) into (4.2.13), we find that
VI g7 < € (1 e Va2t o) (sl ol s + )
+C (elullpeut e + fud e ) (4.2.15)
< C(+e|Var ™ ge)” (lulllme + 1) Jul*a
which implies the L3 (H?) estimate for the pressure term:
S
IV g < C (142 Va2 e ) (el lugems +1) e (4.2.16)

Combining all the previous estimates together with a Gronwall type inequality (again we refer to Section
B.6), we finally obtain an estimate for the velocity field:

T
sup [ (8) s < [l e exp ( | a0 dt) , (12.17)
0<t<T 0

where

An(t) = C (flaZ T ()l|zoe + Va2 () rs1) (1+ el VaZ (@) o) (ellu () s + 1) + Cllul ()| 7= -
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We point out that the above constants C' do not depend on n nor on €.
The scope in what follows is to obtain uniform estimates by induction. Thanks to the assumptions
stated in Paragraph 4.1.1, we can suppose that the initial data satisfy

Gy ¢,

Co
5 |Vao el gs—1 < 5 and [

|H5§?7

laoellzee <

for some Cj, Cy,Co > 0. Due to the relation (4.2.7) we immediately infer that, for all n > 0,
||a?+1||L?OLoo < Cllage|lpe <CCp forallt € Ry.
At this point, the aim is to show (by induction) that the following uniform bounds hold for all n > 0:

HVQ?HHL;&H#1 <Ci
[ | e, s < Co (4.2.18)
IV | oo, s < Cs,

provided that T is sufficiently small.

The previous estimates in (4.2.18) obviously hold for n = 0. At this point, we will prove them for
n+ 1, supposing that the controls in (4.2.18) are true for n. From (4.2.8), (4.2.17) and (4.2.16) we obtain

C
Va2 g < < exp (CTC’2>

C )
e < 2 exp (CT(Co + Cr) (14 2C1)* (G + 1)
VI | peo s < C(eCo + 1) (14 €C1)° lul ™| oo -

So we can choose T™ such that exp (max{Co +C1, 1} CT (14 C1)° (1 + C9) Cg) < 2. Notice that 7™

does not depend on e¢.
Thus, by induction, (4.2.18) holds for the step n + 1, and therefore it is true for any n € N.

4.2.3 Convergence

To prove the convergence, we will estimate the difference between two iterations at different steps. First
of all, let us define

n n
- aO,s )

that satisfies the transport equation

dal +ult-var = —ul' - Vag
a?\t:O =0.

Hence, since the right-hand side is definitely uniformly bounded (with respect to n) in L] (R.; L?), from

classical results for transport equations we get that (a%),ey is uniformly bounded in C°([0, T]; L?). Now,

we want to prove that the sequence (a2, u”, VII?),cn is a Cauchy sequence in C°([0,T]; L?). So, let us

define, for (n,1) € N2, the following quantities,

5a?’l = a?'” —al
~n, .__ ~n+l  ~n __ n,l n,l nl . n+l n
dal” :==al"" —al =d6a" —day., where dagl :=ay —ag,
dul! = utl — (4.2.19)

B CUEES | (A | L
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Of course, we have that divdu' = 0 for any (n,[) € N2,
The previous quantities defined in (4.2.19) solve the system

(gp6al! + w1 Vel = —gul ™ VapP — w1l Vgt
opou + L Vou! = —sul -Vul
—é(éu?’l)L —(1+ sagﬂ)évan’;’l — a'vIIn (4.2.20)
div su =0
(daz!, 6ul)—o = (0, dug?).

We perform an energy estimate for the first equation in (4.2.20), getting
! 1
622 < C [ (Va2 lmllout =gz + 2ol Vg ) dr

Moreover, from the momentum equation multiplied by 6u?’l, integrating by parts over R?, we obtain

1
/]R2 §8t ’5“5

which implies

2= - / (bul b V) - su™! + / (a™T oI - Sul + / (6a™! VII?) - su™!
RQ RZ RZ

6w (1) 12 < C|l6ug; HL2+C/ Va2 (7) oo 160l (7) |2 + a2 (7) ]| oe | VT (7)]| 2 d7

+0 [ (105 llse + 1803 IV g

where we have also employed the fact that sat = st + 5ag7’i
Finally, for the pressure term we take the div operator in the momentum equation of system (4.2.20),
obtaining

1 1
—div ((1 + 5a?+l)V(5H?’l) = div (—5u?’l VT 4 su B Yl (St (5a?’lVH?> ,
£ g

so that we have

(1w 2 Ve + (102! VI 2 )

+ C¢||du P oo + Ol (6ul) | 2

< Ce (Jouz™ ) 2l VuZ oo + 102 2 | VIIZ | oo + 18]l poe | VIIZ | 2)
Va2 + Cloul

(4.2.21)

+ Celldul

At this point, applying Gronwall lemma (see Lemma B.15) and using the bounds established in Paragraph
4.2.2, we thus argue that for ¢t € [0, T*]:

103282 + 1002 (1) 12 < Cr- (IV0agE e + 1005 o + 100 12)
o / (164 2+ JFur= () 2)

where the constant C7+ depends on 1™ and on the initial data.
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After setting
1 1 1
F = sup (Va5 o +[10a5 o + 100 12

and

G () = supsup (1632 (7) | 2 + |5 (7)] 12
1>0 [0,4

by induction we may conclude that, for all ¢ € [0, 7],

n—1

(Cr-T*)* i, (Cr-T¥)"
GM(t) < Cp- Y R G0,
k=0
Now, bearing (4.2.4) in mind, we have
lim Fj =0.
n——+o0o
Hence, we may infer that
lim sup sup (Hé&'?’l(t)HLz + Héug’l(t)HLz) ~0. (4.2.22)
=400 >0 t€[0,7%]

Property (4.2.22) implies that both (a?),en and (u”),en are Cauchy sequences in CO([0, T*]; L?):
therefore, such sequences converge to some functions a. and w. in the same space. Taking advan-
tage of previous computations in (4.2.21), we have also that (VII?),en converge to a function VIL in
CO([0,7); L2).

Now, we define a. := ag. + a.. Hence, a. — ag. is in C%([0,T*]; L?). Moreover, as (Va’),en
is uniformly bounded in L*°([0,7*]; H*~!) and Sobolev spaces have the Fatou property (we refer to
Proposition A.4 in this respect), we deduce that Va, belongs to the same space. Moreover, since (a2)nen
is uniformly bounded in L*>([0,7*] x R?), we also have that a. € L>®([0,T*] x R?). Analogously, as
(u)nen and (VIIZ),en are uniformly bounded in L*°([0,T*]; H®), we deduce that u. and VII. belong
to L>([0,T*]; H®).

Due to an interpolation argument, we see that the above sequences converge strongly in every inter-
mediate C°([0, T*]; HY) for all o < s. This is enough to pass to the limit in the equations satisfied by
(aZ,ul, VII?),en. Hence, (ae, ue, VII.) satisfies the original problem (4.2.3).

This having been established, we look at the time continuity of a.. We exploit the transport equation:

Orae = —u, - Vae,

noticing that the term on the right-hand side belongs to L% (L>). Thus, we can deduce that dia. €
L. (L*°). Moreover, by embeddings, we already know that Va. € L3 (L>). The previous two relations
imply that a. € W%;OO (L) N L. (W), That give us the desired regularity property a. € C°([0,T*] x
R?). In addition, looking at the momentum equation in (4.2.3) and employing Theorem A.15, one obtains
the claimed time regularity property for u.. At this point, the time regularity for the pressure term VIl
is recovered from the elliptic problem (4.2.2).

4.2.4 Uniqueness

We conclude this section showing the uniqueness of solutions in our framework.

We start by stating a uniqueness result, that is a consequence of a standard stability result based on
energy methods. Since the proof is similar to the convergence argument of the previous paragraph, we
will omit it (see e.g. [21] for details). We recall that, in what follows, the parameter € > 0 is fixed.

Theorem 4.2.1 Let (ggl),ugl),VHgl)) and <g£2),u§2),VH§2)> be two solutions to the FEuler system

4.1.1) associated with the initial data Q(l),u(l) and 9(2),u(2) . Assume that, for some T > 0, one
0,67 70,e 0,67 %0,
has the following properties:
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(i) the densities gg) and 99) are bounded and bounded away from zero;
(ii) the quantities dp. := ggz) — le) and du, := ug) — uél) belong to the space Cl([O,T]; L2(R2));
(ii1) vul, volV and viit) belong to L*([0,T]; L*°(R?)).

Then, for all t € [0,T], we have the stability inequality:

o2l + [Vl 5u00)| < (1onclie + /o uo.
L L

for a universal constant C' > 0, where we have defined

> eCAW (4.2.23)
2

t (1) (1)
a0 = [ |1FE -] 17 | ar.
0

ol et Vel

It is worth to notice that, adapting the relative entropy arguments presented in Subsection 4.3 of
[18], we can replace (in the statement above) the C1.(L?) requirement for do. and du. with the C(L?)
regularity. However, one needs to pay an additional L? assumption on the densities. In this way, we will
have a weak-strong uniqueness type result and we will prove it in the next theorem.

Concerning weak-strong results for density-dependent fluids, we refer to [48], where Germain exhibited
a weak-strong uniqueness property within a class of (weak) solutions to the compressible Navier-Stokes
system satisfying a relative entropy inequality with respect to a (hypothetical) strong solution of the
same problem (see also the work [43] by Feireisl, Novotny and Sun). Moreover, in [36], the authors
established the weak-strong uniqueness property in the class of finite energy weak solutions, extending
thus the classical results of Prodi [63] and Serrin [67] to the class of compressible flows.

Before presenting the proof of the weak-strong uniqueness result, we state the definition of a finite
energy weak solution to system (2.1), such that go. — 1 € L?(R?). We also recall that our densities have
the form o. = 1+ eR..

Definition 4.2.2 Let T > 0 and ¢ € |0,1] be fized. Let (0oe,wo,e) be an initial datum fulfilling the
assumptions in Paragraph 4.1.1. We say that (0-,uc) is a finite energy weak solution to system (4.1.1)
in [0, T] x R2, related to the previous initial datum, if:

e 0. € L=([0,T] x R?) and 0. — 1 € C°([0, T]; L*(R?));
o u. € L=([0,T); L*(R?)) N CR([0, T]; L*(R?));
e the mass equation is satisfied in the weak sense:

T
/ / (QE o S T Vgp) dzdt + / 00,e%(0,-)dz = / 0-(T)(T,-)dx ,
0 JRr2 R2 R2

for all ¢ € C([0,T] x R%;R);
e the divergence-free condition divu. = 0 is satisfied in D'(]0, T xR?);

e the momentum equation is satisfied in the weak sense:
T 1
| ] (o0 4 lowewud s Vo= Lot ) dadt + [ oncuoe (0)ds
0 JR? € R2
= [, ey da.

for any ¥ € C°([0,T] x R?;R?) such that div = 0;
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e for almost every t € [0,T], the two following energy balances hold true:
/ 0-(t)Ju-(t)]? dz < / 00c|uoc|*dz  and / (0-(t) — 1)*dz < / (00 —1)?dz.
R2 R2 R2 R2

Theorem 4.2.3 Lete €]0, 1] be fized. Let (gg ), ué )) and (gg ), ug)) be two finite energy weak solutions

to the Euler system (4.1.1) as in Definition 4.2.2 with initial data (leg,uE)lg) and (Qg2g,u(()22> Assume
that, for some T > 0, one has the following properties:

(i) vul’ and Vggl) belong to L*([0,T]; L°(R?));
(ii) VI s in LL([0, T]; L°°(R2) N L2(R2)).
Then, for all t € [0,T], we have the stability inequality (4.2.23).

Proof: We start by defining, for ¢ = 1, 2:

(i) , (9 _ 1
I and R((f’)g = QO’Z ,

and we notice that, owing to the continuity equation in (4.1.1) and the divergence-free conditions
div ug) = 0, one has
8,RY +div (ROu?) =0 with RY(0) = Ry (4.2.24)
For simplicity of notation, we fix € = 1 throughout this proof and let us assume for a while the couple
(RM M) be a pair of smooth functions such that R, u() € C2(R, x R?) and divul) = 0, with the
support of R® and «® included in [0, 7] x R2. First of all, we use u) as a test function in the weak
formulation of the momentum equation, finding that

/ o (TP (T) - uM (T )da?—/ gé)uo uo dx—i—/ / ). 9uM) dzdt (4.2.25)
R2 R2 R2

T
+/ / (0Pu® @ u?) : V) dedt —|—/ / 0Pu@ . (M)t dzdt,
0o Jr2 0o Jr2

where we have also noted that (u®)* . u(M) = —u® . (uM)+,
Next, testing the mass equation against |u(")|?/2, we obtain

L / o (1) (T2 dw = / 2|2 dz + / / @y . 9™ dadt
2 RQ 2 RQ
/ / u? . Va2 dzdt
: R (4.2.26)
:/ || dx—i—/ / @M. 9V dadt
2 R2
/ / @ u) : Vu) dzdt.
R2

Recall also that the energy inequality reads

1 1
2/ Q(2)(T)|u(2)(T)|2d$§2/ P dz.
R2 R2
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Now, we take care of the density oscillations R(Y). We test the transport equation (4.2.24) for R® against
R, getting

/R2R(2)( T)RW(T /RO r\Vd (4.2.27)

/ / 29,RY dzdt + / / ). VRW dgdt.
R2 R2

Recalling Definition 4.2.2, we have the following energy balance:
RO ()2 dz < / ROP da.
R2 R2

At this point, testing d;1 4 div (1 u?) = 0 against |[R(M)|2/2, we may infer that

1
/ |[RW(T))? da / IRV da +/ / RWy,RY) da:dt—i—/ RWu@ . TRW dzdt. (4.2.28)
2 R2 2 R2
Now, for notational convenience, let us define
6R:=R® —RY and du:=u? —ul).

Putting all the previous relations together, we obtain

1 1 T
5 / (82 (DIou(T)P + PRT)P) do < 5 / (o7 16uof + |60 ) da — / / oPu® - (u)* dzdt
R2 R2 0 R2
/ / Dou - oyuV) 4+ 9,RW 53) dzdt (4.2.29)
R2
— / / (Q(Q)’U,(Q) @ ou) : Vul) + sRu? . VR(1)> dzdt.
]RQ

Next, we remark that we can write

and that we have u(® - (uM)+ = du - (uM)* by orthogonality.
Therefore, relation (4.2.29) can be recasted as

5 [ (2@iouP + 6RT)P) dr < 5 [ (of 1wl + oRol?) da

2 Jr
/ / atu(l +u® . vul) + (u (1))L) 0w dzdt
R2
— / 8tR(1) +u®. VR<1>) SR dxdt.
R2

At this point, we add and subtract the quantities :I:(Q(Q)u(l) . Vu(l)) . du £ o (1)VH(1) du and
+(uM) . VRW) §R, yielding

1 1
2/ (2T 6u(T) P + |5R(T)?) der < 2/ (7 16uof? + 670 ?) da
R2

/ / Do - vdﬂm%vﬁ”) 0w dazdt  (4.2.30)
R2 0

- / (6u - VRW)§Rdzdt
R2
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where we have used the fact that (R, u(})) is solution to the Euler system and Jxe v . fu dz = 0.
Therefore, setting £(T) := ||\/0o@(T)0u(T)||7, + [[0R(T)||3,, from relation (4.2.30) we can deduce
that
1
02 (1)

iv}g(l)
02

v+

T
E(T) < £(0)+C / (HWUHW +
0 1,50

) E(t)dt.
oo
An application of Gronwall lemma (we refer to Section B.6) yields the desired stability inequality (4.2.23).

In order to get the result, having the regularity stated in the theorem, we argue by density.

Thanks to the regularity (stated in Definition 4.2.2) of weak solutions to the Euler equations (4.1.1)
and assumption (7) of the theorem, all the terms appearing in relations (4.2.25) and (4.2.26) are well-
defined, if in addition we have dyu(!) € LY(L?). However, this condition on the time derivative of the
velocity field u(") comes for free from the momentum equation

oV = - <u<1> Va4 (@) Q(ll)vrﬂl)) . (12.31)
Since uY) € L3°(L?) with Vu(V) € LL(L>®) and o(V) € L$°(L>), condition (ii) implies that the right-hand
side of (4.2.31) is in L}.(L?). Recalling the regularity in Definition 4.2.2 of u(!), one gets ul!) € W%’I(LZ)
and hence u") € C9.(L?).

Analogously in order to justify computations in (4.2.27) and (4.2.28), besides the previous regularity
conditions, one needs the additional assumption 9,R™M) e L%F(LQ). Once again, one can take advantage
of the continuity equation (4.2.24) to obtain the required regularity for ; R™"). Finally, condition (i) is
necessary to make sense of relation (4.2.30).

This concludes the proof of the theorem.

4.3 Asymptotic analysis

The main goal of this section is to show the convergence when ¢ — 07: we achieve it employing a
compensated compactness technique. We point out that, in the sequel, the time 7" > 0 is fixed by the
existence theory developed in Section 4.2.

We will show that (4.0.1) converges towards a limit system, represented by the quasi-homogeneous
incompressible Euler equations:

OR+u-VR=0
ou+u-Vu+ Rut + VI =0 (4.3.1)

divu =0.

The previous system consists of a transport equation for the quantity R (that can be interpreted as the
deviation with respect to the constant density profile) and an Euler type equation for the limit velocity
field w.

In Section 4.2, we have proved that the sequence (g., u., VIL ). is uniformly bounded (with respect
to €) in suitable spaces. Next, thanks to the uniform bounds, we extract weak limit points, for which
one has to find some constraints: the singular terms have to vanish at the limit (see Subsection 4.3.1).

Finally, after performing the compensated compactness arguments, we describe the limit dynamics
(see Paragraph 4.3.2 below).

The choice of using this technique derives from the fact that the oscillations in time of the solutions
are out of control (see Subsection 4.3.2). To overcome this issue, rather than employing the standard
H? estimates, we take advantage of the weak formulation of the problem. We test the equations against
divergence-free test functions: this will lead to useful cancellations. In particular, we avoid to study the
pressure term. At the end, we close the argument by noticing that the weak limit solutions are actually
regular solutions.
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4.3.1 Preliminaries and constraint at the limit

We start this subsection by recalling the uniform bounds developed in Section 4.2. The fluctuations R,
satisfy the controls

sup ||R |[oo [oo) < C
€€]0,1] ’ 6‘ 7 (L)

sup CR |[oo Hs— < C,
e€]0,1] VI T

where R, := (p. — 1)/ as above.
As for the velocity fields, we have obtained the following uniform bound:

sup ||tel|foo(gysy < C.
e€10,1] “ILE(H?)

Thanks to the previous uniform estimates, we can assume (up to passing to subsequences) that there
exist R € L (WH), with VR € L¥(H*™ 1), and w € L(H*) such that

R:= lim R. in LF(L*>)

e—0t
VR := lim VR. in L¥(H*) (4.3.2)
e—0T
= 1 £ i LOO HS )
u EE(I)LU m T( )

where we agree that the previous limits are taken in the corresponding weak-* topology.

Remark 4.3.1 It is evident that o — 1 = O(e) in LT (L) and therefore that p-u. weakly-+ converge
tow e.g. in the space L (L?).

Next, we notice that the solutions stated in Theorem 4.1.1 are strong solutions. In particular, they
satisfy in a weak sense the mass equation and the momentum equation, respectively:

T
—/ / (0010 + 0cue - Vo) dxdt—/ 00,9(0,-)dz, (4.3.3)
0 R2 R2

for any ¢ € C°([0, T[ xR?; R);

4 1
/ /R? <_qu5 - Op — Qe[ue ® us] Vo + g qué . ¢> dxdt = /R2 00:Up ¢ - ¢(07 ) dz, (4.3_4)
0

for any test function 1 € C°([0, T xR?; R?) such that div = 0;
Moreover, the divergence-free condition on u. is satisfied in D’(]0, T[xR?).
Before going on, in the following lemma, we characterize the limit for the quantity R.u.. We recall
that R, satisfies
O R. = —div (Reue), (Re)jt=0 = Roe- (4.3.5)

Lemma 4.3.2 Let (R.). be uniformly bounded in L (L>®(R?)) with (VR.). C L (H*"1(R?)), and let
the wvelocity fields (uz)e be uniformly bounded in L°°(H*(R?)). Moreover, for any e € ]0,1], assume that
the couple (R, u:) solves the transport equation (4.3.5). Let (R, w) be the limit point identified in (4.3.2).
Then, up to an extraction:

(i) Re = R in Cp(Cp (R?));
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(i) the product R.u. converges to Ru in the distributional sense.

Proof: We look at the transport equation (4.3.5) for R.. We employ Proposition A.10 on the term
in the right-hand side, obtaining

[Reue| s < C([|RellLoe el ms + |V Re|[ rs—1[[uel| o) -

By embeddings, this implies that the sequence (0;R.). is uniformly bounded e.g. in L (L>) and so
(R:): is bounded in W%’OO(LOO) uniformly in . On the other hand, we know that (VR.). is bounded
in LY(L*°). Then, by Ascoli-Arzela theorem (see Theorem B.12), we gather that the family (R.). is
compact in e.g. C%(C’l%c) and hence we deduce the strong convergence property, up to passing to a
suitable subsequence (not relabelled here),

R. -+ R in C°0,7];C,).

Finally, since (u.). is weakly-+ convergent e.g. in L% (L?) to u, we get R.u. — Ru in the space LP(LE).
|

Now, as anticipated in the introduction of this section, we have to highlight the constraint that the
limit points have to satisfy. We have to point out that this condition does not fully characterize the limit
dynamics (see Subsection 4.3.2 below).

The only singular term (of order e~!) appearing in the equations is the Coriolis force. Then, we test
the momentum equation in (4.3.4) against e with 1 € C°([0, T[ xR?; R?) such that div = 0. Keeping
in mind the assumptions on the initial data and due to the fact that (g-u.)c is uniformly bounded in e.g.
LP(L?) and so is (o-u: ® ue)e in L(LY), it follows that all the terms in equation (4.3.4), apart from
the Coriolis operator, go to 0 in the limit for ¢ — 0.

Therefore, we infer that, for any v € C°([0, T[ xR?;R?) such that divp = 0,

T T
lim/ / ggug-zpdxdt—/ / ut - pdedt=0.
e—=0t Jo JR2 0 JR?

This property tells us that u = V, for some suitable function =.
However, this relation does not add more information on the limit dynamics, since we already know
that the divergence-free condition divu, = 0 is satisfied for all € > 0.

4.3.2 Wave system and convergence

The goal of the present subsection is to describe oscillations of solutions in order to show convergence
to the limit system. The Coriolis term is responsible for strong oscillations in time of solutions, which
may prevent the convergence. To overcome this issue we implement a strategy based on compensated
compactness arguments. Namely, we perform algebraic manipulations on the wave system (see (4.3.10)
below), in order to derive compactness properties for the quantity 7. := curl (o-u.). This will be enough
to pass to the limit in the momentum equation (and, in particular, in the convective term).
Let us define
V.= ocue,

that is uniformly bounded in L3°(H?), due to Proposition A.10.
Now, using the fact that o. = 1 + e R., we recast the continuity equation in the following way:

eOR. + divV.=0. (4.3.6)

In light of the uniform bounds and convergence properties stated in Lemma 4.3.2, we can easily pass to
the limit in the previous formulation (or rather in (4.3.5)) finding

O:R + div (Ru) = 0. (4.3.7)
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We decompose
0-ur = ur + e Rouf

and from the momentum equation one can deduce
eV + VI + uj =cf., (4.3.8)

where we have defined
feo = —div (0-u: @ u.) — Roul . (4.3.9)

In this way, we can rewrite system (4.1.1) in the wave form

A (4.3.10)
eV + VI +u; =¢f..

{eé?tRE +divV. =0

Applying again Proposition A.10, one can show that the terms p.u. ® u. and RgugL are uniformly
bounded in L (H?). Thus, it follows that (f.). C L(H*™1).

However, the uniform bounds in Section 4.2 are not enough for proving convergence in the weak
formulation of the momentum equation. Indeed, on the one hand, those controls allow to pass to the
limit in the 0; term and in the initial datum; on the other hand, the non-linear term and the Coriolis
force are out of control. We postpone the convergence analysis of the Coriolis force in the next Paragraph
4.3.3 and now we focus on the the convective term div (g.u: ® u.) in (4.3.4). We proceed as follows:
first of all, we reduce our study to the constant density case (see Lemma 4.3.3 below); next, we apply
the compensated compactness argument.

Lemma 4.3.3 Let T > 0. For any test function v € C2°([0, T[xR?;R?), we get

lim sup
e—0t

T T
/ / 0:Ue @ ue : Vp dadt —/ / U R Uz : VY dxdt‘ =0. (4.3.11)
0 Jr2 0o Jr2

Proof: Let ¢ € C2°([0, T[xR?;R?) with Supp ) C [0,T] x K for some compact set K C R2. Therefore,
we can write

T T T
/ / 0:U: @ e VY dxdt:/ / U: @ ue : Vo da:dt+€/ / R.u:. ® u. : Vi dadt.
0 JK 0 JK 0 JK

As a consequence of the uniform bounds e.g. (u.). C L¥(H?®) and (R.). C LF(L>), the second integral
in the right-hand side is of order ¢. [
Thanks to Lemma 4.3.3, we are reduced to study the convergence (with respect to €) of the integral

T T
—/ / u€®uE:V1,bd:Udt:/ div (u: @ ue) - ¢ dzdt.
0 JR2 0 JRr2
Owing to the divergence-free condition we can write:

div (ue ® uz) = u. - Vu, = %V!uEP + we uj , (4.3.12)
where we have denoted w, := curlu. = —dsul + d1u?.

Notice that the former term, since it is a perfect gradient, vanishes identically when tested against 1)
such that divepy = 0. As for the latter term we take advantage of equation (4.3.8). Taking the curl, we
get

O = curl f. | (4.3.13)

where we have set 7. := curl V. with V_ := g.u.. We recall also that f. defined in (4.3.9) is uniformly
bounded in the space L (H*™!). Then, relation (4.3.13) implies that the family (9;7:). is uniformly
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bounded in L(H*72). As a result, we get (3:): C W%’OO(HS_z). On the other hand, the sequence
(VAe)e is also uniformly bounded in L5°(H* 2). At this point, the Ascoli-Arzela theorem (we refer to

Theorem B.12 in this regard) gives compactness of (7). in e.g. C’%(Hﬁj). Then, it converges (up to

extracting a subsequence) to a tempered distribution 7 in the same space. Thus, it follows that
=~ ~ 0/ rys—2
Ve — 7 in Cp(Hp.").

loc

But since we already know the convergence V. := p.u. — u in e.g. L%"(Iﬂ), it follows that 7. :=
curl V., — w := curlu in D', hence 7 = curlu = w.
Finally, writing 0. = 1 + e R., we obtain

Ve := curl (g-ue) = we + ecurl (Reu,)

where the family (curl (R.u.)). is uniformly bounded in L (H*"!). From this relation and the previous
analysis, we deduce the strong convergence (up to an extraction) for e — 0%:

We — w in LF(HE?).

In the end, we have proved the following convergence result for the convective term div (u. ® u.).

Lemma 4.3.4 Let T > 0. Up to passing to a suitable subsequence, one has the following convergence

fore —0":
T T
//u5®uezv¢dxdt—>/ / wut - dedt,
0 R2 0 R2

for any test function ¥ € C°(]0, T[xR%;R?) such that divp = 0.

As a consequence of the previous lemma, performing equalities (4.3.12) backwards, for the convective
term p-u: ® u. we find that

T T
/ / 0:Us @ ue : Vp dedt — / / u@u: Vi dedt (4.3.14)
0 R2 0 R2
for ¢ — 07 and for all smooth divergence-free test functions 1.

4.3.3 Description of the limit system

With the convergence established in Paragraph 4.3.2, we can pass to the limit in the momentum equation.
To begin with, we take a test-function ¥ such that

W =Vty  with e C®(0,T[xR%:R). (4.3.15)

For such a 1, all the gradient terms vanish identically. First of all, we recall the momentum equation
in its weak formulation:

T 1
/ /2 (—ggua O — oe[us @ ue] : Vap + - ggugL . ¢> dzdt = /2 00,:u0. - P (0,-)dx. (4.3.16)
0 Jr R

Making use of the uniform bounds, we can pass to the limit in the J; term and thanks to our assumptions
and embeddings we have gp .ug. — ug in e.g. L120C.
Let us consider now the Coriolis term. We can write:

T 1 T T 1
/ / gsug-wdxdt:/ / Rsug-wdxdw/ / “ut -4 dadt.
0o Jr2E€ 0 JRr2 0o JRr2E€
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Since wu. is divergence-free, the latter term vanishes when tested against such 1) defined as in (4.3.15).
On the other hand, again thanks to Lemma 4.3.2, one can get

T T
/ Rout -4 dzdt — / Ru't - dadt.
0 R2 0 R2

In the end, letting e — 0T in (4.3.16), we gather (remembering also (4.3.14))

/OT/]R2 <_u.8t'qb—u®uzvﬁ'¢+ Rul.¢) d:ndt:/RQUO.1/,(0’.)01%7

for any test function 1 defined as in (4.3.15).
From this relation, we immediately obtain that

dyu + div (u @ u) + Rut + VII =0,

for a suitable pressure term VII. This term appears as a result of the weak formulation of the problem.
It can be viewed as a Lagrangian multiplier associated to the to the divergence-free constraint on wu.
Finally, the quantity R satisfies the transport equation found in (4.3.7).

We conclude this paragraph, devoting our attention to the analysis of the regularity of VII. We apply
the div operator to the momentum equation in (4.3.1), deducing that II satisfies

—All =divG where G:=u-Vu+ Ru". (4.3.17)
On the one hand, Lemma B.10 gives
IVI[| 2 < Cl|Gl2 < C([Jull2[Vulle + [ Rl Lo [Jull2) -

This implies that VII € L (L?).
On the other hand, owing to the divergence-free condition on w, we have

IATH e < C (lullzrs + IRz lull s + | VRl st llullz)

where we have also used Proposition A.10.

In the end, we deduce that AIl € L (H*™!). Thus, we conclude that VII € L (H?).

At this point, employing classical results on solutions to transport equations in Sobolev spaces, we
may infer the claimed C° time regularity of w and R. Moreover, thanks to the fact that R and w are
both continuous in time, from the elliptic equation (4.3.17), we get that also VII € C%(HS).

4.4 Well-posedness for the quasi-homogeneous system

In this section, for the reader’s convenience, we review the well-posedness theory of the quasi-homogeneous
Euler system (4.1.9), in particular, the “asymptotically global” well-posedness result presented in [16].
In the first Subsection 4.4.1, we sketch the local well-posedness theorem for system (4.1.9) in the H*®
framework. Actually, equations (4.1.9) are locally well-posedness in all B, , Besov spaces, under the
condition (A.3.1). We refer to [18] where the authors apply the standard Littlewood-Paley machinery
to the quasi-homogeneous ideal MHD system to recover local in time well-posedness in spaces B . for
any 1 < p < 4o0o. The case p = +oo was reached in [16] with a different approach based on the
vorticity formulation of the momentum equation (see also Subsection 4.4.2 for more details concerning
the “critical” case p = 4+00).

In Subsection 4.4.3, we explicitly derive the lower bound for the lifespan of solutions to system (4.1.9).
The reason in detailing the derivation of (4.4.34) for 7% is due to the fact that it is much simpler than the
one presented in [16], where (due to the presence of the magnetic field) the lifespan behaves like the fifth
iterated logarithm of the norms of the initial oscillation Ry and the initial magnetic field. In addition,
that lower bound (see (4.4.34) below) improves the standard lower bound coming from the hyperbolic
theory, where the lifespan is bounded from below by the inverse of the norm of the initial data.
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4.4.1 Local well-posedness in H® spaces

In this subsection, we state the well-posedness result for system (4.1.9) in the H* functional framework
with s > 2, in which we have analysed the well-posedness issue for system (4.1.1). We limit ourselves
to present the proof, by energy methods, of uniqueness of solutions (see Subsection 4.4.1.1) and the
implications of the continuation criterion (see Subsection 4.4.1.3): in order to show that, we need some
preparatory material, stated in Subsection 4.4.1.2.

Theorem 4.4.1 Take s > 2. Let (Ro,uo) be initial data such that Ry € L™, with VRy € H*™', and
the divergence-free vector field ug € H®.

Then, there exists a time T* > 0 such that, on [0,T*] x R?, problem (4.1.9) has a unique solution
(R, w, VII) with:

e Re CY[0,T%] x R?) and VR € CY..(H*"1(R?));
e u and VII belong to C%..(H*(R?)).

Moreover, if (R, w, VII) is a solution to (4.1.9) on [0, T*[ xR? (T* < 400 ) with the properties described
above, and

T*
/ V()| - dt < +o0,
0
then the triplet (R, u, VII) can be continued beyond T™ into a solution of system (4.1.9) with the same
reqularity.
4.4.1.1 Uniqueness by an energy argument

Uniqueness in our functional framework is a consequence of the following stability result, whose proof is
based on an energy method for the difference of two solutions to the quasi-homogeneous Euler system
(4.1.9). We present here the classical proof with the C}. regularity assumption on the time variable (see
condition (7) in the theorem below). In order to relax this requirement, one has to argue as done in
Theorem 4.2.3, with the additional L? integrability condition on densities.

Theorem 4.4.2 Let (Ry,u1) and (Ra,u2) be two solutions to the quasi-homogeneous Euler system
(4.1.9). Assume that, for some T > 0, one has the following properties:

(i) the two quantities 0R := Ry — Ry and du := wy — uy belong to the space C*([0,T7]; L*(R?));
(it) uy € L'([0,T); WH*(R?)) and VRy € L'([0,T]; L>(R?)).
Then, for all t € [0,T], we have the stability inequality:
SR()|172 + 16u(t)[|72 < C (I9Ro]172 + [|6uol|72) e“PY, (4.4.1)
| L L L L

for a universal constant C' > 0, where we have defined
¢
B(t) ::/0 (IVR1(7)|| oo + ||lw1(7)|[yy1.e0) dT. (4.4.2)

Proof: First of all, we take the difference of the two systems (4.1.9) solved by the triplets (R, w1, VII;)
and (Rg,ug, VIIy), obtaining

O 0R + ug - VOR = —6u - VR,
Odu + us - Vou + Ry dut + VoIl = —du - Vuq — (5Ruf- (4.4.3)
divéu =0,
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where 611 := II; — II5.
We start by testing the first equation of (4.4.3) against R and we get
1d

1
S ||I6R)%, = —/ (0u-VR1)6R < Z||VR1| = (|6R]%2 + [|du]22) .
th R2 2

Next, testing the second equation on du, due to the divergence-free conditions divu; = divus = 0, we
gather

1d 1
L su)z, = - / (6u-Vur)- u— / (OR ul)-6u < [[Vur |l |50l + = s (I5RIZe + [5ull2)
2dt ]R2 ]R2 2

Putting the previous inequalities together, we finally infer

|

- (R|Z2 + [6ullz2) < C(IVRlpe + [[uallwroe) (19RI7 + [1u]72) -

N |
IS

An application of Gronwall’s lemma gives us the stability estimate (4.4.1), i.e.
[SRMI7: + [0u()[[72 < C (I0Rol2 + [duoll72) e“H,

for a universal constant C' > 0 and B(t) defined as in (4.4.2). ]

At this point, the uniqueness in the claimed framework (see Theorem 4.4.1) follows from the previous
statement. Let us sketch the proof.

We take an initial datum (Rg,up) satisfying the assumptions in Theorem 4.4.1. We consider two
solutions (R, u1) and (R2,us) of system (4.1.9), related to the initial datum (Rp, uo). Moreover, those
solutions have to fulfill the regularity properties stated in the quoted theorem.

Now, due to embeddings, we have only to detail how the previous solutions match the condition (7)
in Theorem 4.4.2. We focus on the regularity of d R, since similar arguments apply to du.

We look at the first equation in (4.4.3): 0R is transported by the divergence-free vector field uy, with
in addition the presence of an “external force” ¢ := —du - VR;. Thanks to the regularity properties
presented in Theorem 4.4.1 and embeddings, we know that du € C*(L?) and Ry € CO(Wh*). Thus,
one can deduce that g € C%(L?). Therefore, from classical results for transport equations, we get that
6R € CH(L?), as claimed.

In the end, recalling that at the initial time (§R,0u);;—o = 0, we can apply Theorem 4.4.2 to infer
that [|(0R, éw)| zee(r2) = 0. This implies the desired uniqueness.

4.4.1.2 A priori estimates

We start by bounding the LP norms of the solutions. First, since R is transported by w we have, for any
t>0,

[R(®)[| L = [|Rollz> -
In addition, an energy estimate for the momentum equation in (4.1.9) yields
lu(®)||r2 < lluollz2 - (4.4.4)

Making use of the dyadic blocks Aj, for ¢ = 1,2 we find

(4.4.5)

8tAju +u- VAJU + AjVH = [u -V, A]]u — A](R’U,J‘) .
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Following the same lines performed in Subsection 4.2.2, we can write
2V AVRD 2 + 2B )2 < € (20D AV Rl12 + 271 Aol 2)
+0 [ & (Ml | R

+0/ ) (le(m) |z VR o1 + u() 1) dr,

for suitable sequences (c;(t))j>—1 belonging to the unit sphere of ¢2.
Now, we define for all ¢ > 0:

B(t) = |RO)llz= + VR | os + @)l (4.4.6)

Thanks to the previous bounds, employing Minkowski’s inequality (see Section B.3), we gather
o~ ~ t ~
E(t) < CE(0) + C/ E(r)* dr.
0

At this point, the goal is to close the estimate, bounding the integral on the right-hand side in a small
time.
To this purpose, we define the time 7™ > 0 such that

t ~ ~
T* := sup {t >0: / E(r)*dr < E(O)} : (4.4.7)
0
Then, we deduce E(t) < C E(0) for all times ¢ € [0,T*] and for some positive constant C' = C(s).

4.4.1.3 The continuation criterion

This subsection is devoted to the implications of the continuation result (Proposition 4.4.3 below) for
solutions to system (4.1.9). The proof is omitted, since it is an easy adaptation of the more complex case
we will present in Subsection 4.4.2.5.

Proposition 4.4.3 Let T > 0 and let (R,u) be a solution to system (4.1.9) on [0, T[ xR?, enjoying the
properties described in the previous Theorem 4.1.4 for allt <T. Assume that

T
/ [Vu(t)|| - dt < +o0. (4.4.8)
0

Then,
sup ([|Rl|zoe + [|[VR| rs—1 + ||l s) < +o00.
0<t<T

As an immediate corollary we have that if 7' < +o0, then the couple (R, u) can be continued beyond
T into a solution of system (4.1.9) with the same regularity.

As a matter of fact, Proposition 4.4.3 ensures that ||R|ps (o), [VR| Lge(ms-1) and [Juf[pse(srs) are
finite. From the previous Subsection 4.4.1.2, we know that there exists a time 7 depending on s,
IRl zse (o), VR Lo (rrs-1)s |l Lse(mrs) and on the norm of the data such that for all 7' < T, the
quasi-homogeneous system with data (R(T),u(T )) has a unique solution until time 7. Now, taking
T =T —7/2, we get a continuation of (R,w) up to time T + 7/2.
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4.4.2 Well-posedness in Besov spaces

The main goal of this subsection is to review the lifespan estimate presented in [16] (for the MHD system )
in order to get (4.1.10) (we refer also to Subsection 4.4.3 for the details of the proof). To show that, one
has to work in critical Besov spaces where one can take advantage of the improved estimates for linear
transport equations a la Hmidi-Keraani-Vishik. In order to ensure that the condition (A.3.1) is satisfied,
the lowest regularity space we can reach is B;o,l' In addition, since u € Béo,l? we have that the Bgo,l
norm of the curlu can be bounded linearly with respect to ||[Vull L}(Le), instead of exponentially as in
classical By, estimates (see Theorem A.16).

Finally, we construct a “bridge” between H?® and Bcl,q1 Besov spaces establishing a continuation
criterion, in the spirit of the one by Beale-Kato-Majda in [6] (see Subsection 4.4.2.5).

We start by proving the local well-posedness result for system (4.1.9) in B, ,. and, in particular, in the
end-point space B},O,l. In this regard, Subsection 4.4.2.1 is devoted to the a priori estimates, presenting
also the standard lower bound (coming from the hyperbolic theory) for the lifespan of solutions. Next, we
construct the smooth approximate solutions (in Subsection 4.4.2.2) showing the uniform bounds for those
regular solutions in Subsection 4.4.2.3, and sketching the convergence (in the regularisation parameter
n) argument in Subsection 4.4.2.4.

Theorem 4.4.4 Let (s,r) € R x [1,+00] such that s > 1 or s = r = 1. Let (Ro,uo) be an initial
datum such that Ry € BS, (R?) and the divergence-free vector field ug € L*(R*)NBS, ,.(R?). Then, there
exists a time T* > 0 such that system (4.1.9) has a unique solution (R,w) with the following regularity
properties, if r < +00:

o ReC%((0,T%); B, .(R*) N CY([0,T%); B »(R?));

e u and VII belong to C°([0,T*]; BS, .(R?)) N C*([0,T7]; L*(R?) N B, (R?)).
In the case when r = +o00, we need to replace CV([0,T*]; BS, .(R?)) by the space C([0,T*]; B, . (R?)).
We highlight that the physically relevant L? condition on u, in the previous theorem, is necessary to

control the low frequency part of the solution, so as to reconstruct the velocity from its curl (see Lemma
4.4.5 below).

4.4.2.1 A priori estimate in B ,

To begin with, we prove a general relation between a function and its curl that will be useful in the
sequel.

Lemma 4.4.5 Assume f € (L?N ng)(]l@) to be divergence-free. Denote by curl f := —0o f1 + 01 f? its
curl in R2. Then, we have

Ifllz2nms,, ~ [IfllL2 + lewrl fll gaor - (4.4.9)

Proof: Using the divergence-free condition div f = 0, we can write the Biot-Savart law:
fr=(=2)"oycurl f and fA=—(=A)"'o; curl f.

From that, we deduce

2

A (=AY (1) curl f

=1

2
Loy 27 Ap(—=A) 1) “(=1)'0; curl f]| o

i=1

_|_
Lo

IfllBs,., ~

o
On the one hand, if ¥ > 0 we know that A,curl f is spectrally supported in an annulus, on which the
symbol of (—A)~19; is smooth. Hence by employing Bernstein inequalities of Lemma A.2, we gather

2
27| Ay (—A)"1> " B curl f| e ~ 207DV A curl f| e -
=1
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On the other hand, using the fact that the symbol of (—A)~!Vcurl is homogeneous of degree zero and
bounded on the unit sphere, Bernstein inequalities yield

2
A (—=A)! Zai curl f||ze < C|A_1(=A) Veurl £z < C|f|l 12 -

i=1
Therefore,
1fllse., < C (I llze + el fll et )
This completes the proof of the lemma. [

In the sequel of this subsection, we will show a priori estimates for smooth solutions in the relevant
norms.
We start by recalling that the L? norm of the velocity field is preserved. In other words, we have:

[w(®)|[z2 = o2 - (4.4.10)

Thanks to Lemma 4.4.5, in order to bound w in BS, ,, it will be enough to focus on estimates for

curlw in B3 L. Hence, we apply the curl operator to the second equation in system (4.1.9) to get

OR+u-VR=0 (4.4.11)
0w +u - Vw = —div (Ru) , o
where we recall w := curlu = —dyu! + 9yu?.
Now, since R is transported by w we have, for any ¢ > 0,
[R(@®)]|zee = [[Rollz= < |[Rolls,, -

At this point we apply the dyadic blocks A; to the system (4.4.11) and we find
BtAjR—I-U'VAjR:[’U,'V,A]‘]R <4412)
OAjw+u-VAjw=[u-V,Ajlw—Ajdiv (Ru) . o

For the term div (Ru), we have

ldiv (Rl peos < C | Rullpy, < C (|BIz=lullpg, + luli<|Rlsg,) - (4413)
Next, employing the commutator estimates (see Lemma A.13), we get
2w V. ARl < Cei®) (IVullm|Blos,, + Vulpg IVRI=)
< Cci(t) [lullsg, , Rl Bs, ,
and
2wV, Al < Cei(t) (IIVallpe ol pser + V0l g o]l i)

2
< Cot) fullb .
for suitable sequences (c;(t));>—1 belonging to the unit sphere of .

Remark 4.4.6 We point out that we need the second estimate in Lemma A.13 to deal with (4.4.15) in
the cases s < 2, and s = 2 and r # 1. In those cases, the Besov space ng} 18 not contained in the
Lipschitz space W,
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Summing up estimates (4.4.13), (4.4.14) and (4.4.15), one may derive
25| A R(1) ]| oo + 270 Aguo(t) |1 < € (2]'SHA-RoHLoo + 297D Ao o< )

+C / &) () lm, IRl s, + (Dl ) dr
(4.4.16)

At this point, we define for all ¢ > 0:
B(t) = RO 5, + lul®)]z2 + |0l o1 -

Thanks to the L? estimate (4.4.10) and the bound (4.4.16), employing the Minkowski inequality, one
may infer that

E(t) < C E(0) /E

We define now T > 0 such that

T* :sup{t>0 : /OtE(T)2 dr < E(O)} :

Then, we deduce E(t) < C E(0) for all times ¢ € [0,7%] and for some positive constant C' = C(s,,d).
Therefore, for all ¢ € [0,7%], we gather

/tE(T)Z dr < CtE(0)?.
0

By using the definition of 7% and Lemma 4.4.5, we finally argue that

T > ¢ . (4.4.17)
[ RollBs, , + llwoll2nps,

In other words, we have shown that one can close the estimates for a small time 7™, which is bounded
from below by (4.4.17).

4.4.2.2 Construction of approximate solutions

Since the material in this subsection is standard and already presented in Subsection 4.2.1 for system
(4.1.1), we will only sketch it.
For any n € N, let
( g7u8> = (SnROu Snu0)7

where S, is the low frequency cut-off operator as in (A.1.1). By the assumption ug € L?, we have
ug € H* and similarly R € C;°. Moreover, one has
Ry — Ry in B3,

" ) 5 s (4.4.18)
uy —ug in L°NBS,.

Now, we will define the sequence of approximate solutions. First of all, we take (R%,u") = (RJ,uQ).
Then, for all ¢ € R we get R® € C°(Ry; B, ) and u® € CO(Ry; H?) with divu® = 0. Next, we assume
that (R”, u™) is given such that, for all o € ]R

R" € C°(Ry;BZ,,), u"€C’(Ry;HY) and divu™ =0.
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We start by defining R"*! as the unique solution to the linear transport equation

QR 4w VR =0
{ v (4.4.19)

n+1 _ pn+l
RS = Ry,

and we deduce that R"** € CO(Ry;BZ,,) for all o € R.
Next, we solve the linear transport equation with the divergence-free condition:

at,unJrl L. vunJrl 4 VHn+1 — _Rn+1uJ_,n
divu™tl =0 (4.4.20)

n+l _ _n+l
w,hy=uy

We point out that the right-hand side term belongs to L{ (R4; H?) for any o € R. At this point, one
can solve the previous linear problem by energy methods (see Propositions 3.2 and 3.4 in [20]) to find an
unique solution w1 € CO(Ry; HY).

4.4.2.3 TUniform bounds

We show now uniform bounds for the sequence (R", u"),cn constructed in the previous Paragraph 4.4.2.2.
We argue by induction and prove that there exists a time 7% > 0 such that, for all n € N and

t € [0,7%], one has
|R" ()|l < C||Ro| 1 (4.4.21)
IR (#)llBs,, + " (8) | 2 < CHoeCke, (4.4.22)
where the constant C' > 0 does not depend on the data neither on the solutions, and where we have

defined
Ko = IRl s, , + luglc2nse, , -

It is clear that the couple (R°,u’) satisfies the previous bounds. Assume now that (R™, u") verifies
(4.4.21) and (4.4.22) on some interval [0,7*]. Then, we have to prove the same properties for the step
n+ 1.

We start by bounding R"*!. We deduce that, for any ¢ > 0,

HRnJrl(t)”Loo _ HR8+1HL°° < C||Ro|lz < CHROHBSO,T .

Next, employing an energy estimate for the velocity field, one can get
t
[ (@)l 2 < g™ 2 +C/ IR ()" (1) 2 dr
0

t
< Clluol|z2 + CHRo!Bgo,r/O [ ()]l > d7 .

At this point, to get uniform bounds for the Besov norms, we resort the vorticity formulation:
Q™ ¢ ™ VW = £(Vu™, Va4 div (R ™),

where

2
L(Vu", Vu'th) =" dhup Opuy™ — Oyuf Opus ™ (4.4.23)
k=1

Since the bound for div (R"*1u™) is analogous to the one performed in (4.4.13), it remains to bound
L(Vu", Vu"th) in B 1.
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Lemma 4.4.7 Let (v,w) be a couple of divergence-free vector fields in B3, .. Then, one has

1£(V0, Vo)l gy < € (IV0lliewlls,, + [ Vellielo]se, ) -
Proof: The estimate easily follows from Corollary A.8 if s > 1. Then, we have to show the bound

when Vv and Vw are in ngl which is not an algebra.
Due to the fact that v and w are divergence-free, we can write

[\

L(Vv,Vw) =Y dp(w' 9y0") — 9 (w? d10*) . (4.4.24)
k=1

Now, making use of Bony decomposition (we refer to Section A.2 for more details), we have
L(Vv,Vw) = L7 (Vv,Vw) + Lr(Vv,Vw),

where

2
LT(Vo,Vw) i= Y Ty, 1 (020%) + Topr (Okw0") = Topu2 (010%) = To, o (Ow?)
k=1

and

2
Lr(Vv,Vw) = ZR(@kwl, Dov®) — R(Opw?, 010").
k=1

On the one hand, thanks to Proposition A.7, we can estimate the paraproducts in the following way:
IToo(Vw)lss, + [Tow(T0)ls , < C (190l Vwlpo , +[Vwlze|Volp ) -
On the other hand, due to relation (4.4.24) we may write
2
Lr(Vo,Vw) =) OR(w', dv*) — O R(w?, d10").
k=1

Now, again thanks to Proposition A.7 we have
10xR(w?, 810°)| g0 < CIR(w?, 010")l| e | < ClIVwlipo,_lIvllp1 , < ClIVwllze ol

since L < BY, . Similar argumentations apply to [0y R(w', Dov*) | go -

Then, one has

1£(Vv, V), < C (HVUHL“HWHB&W + HVwHLoollvllng) -

o,

This concludes the proof in the case s = 1. [

Therefore, applying Lemma 4.4.7 with v = " and w = u"+!

, one can get
Hﬁ(VuﬁVun—s-l)Hng} <C (HVu””LooHun—i-lHng + ||Vu71+1”Loo||unHng) .
Reached this point, one can exactly proceed as in the proof for the a priori estimates, finding that

25| A R () oo + 2707 A L @) e < C (27 AGRE e + 277D | g 100 )

t
+C /0 &i(r) (Il lms,, + 1B Iy, ) llu"lps, , dr,
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where the sequence (c;(t));>—1 belongs to the unit sphere of .
Now, we define for all ¢ > 0:

E" (1) = [|IR (Ol + " (Ol z2nms,, -

Thus, recalling Lemma 4.4.5, from the previous inequalities we obtain

t
E < cE"N0)+C / E"MN ) (1) p2nps, . AT
0 :
An application of Gronwall arguments and the fact that En+1(0) < CKy, give

¢
En+1(t) < CKyexp (C/ Hu”(r)HmngdT) ,
0 ,

where Ko := ||Rg By, , + [ugllr2nps, -
Next, from the inductive assumption (4.4.22), we get

t
JACRCIP R
0 T

and we notice that for 0 < x < 1 one has e* — 1 < z + 2% < 2z. So, if we choose T* > 0 such that
CKyT™* <1, we have

—=n+1

E"(t) < CKyexp(e“50t — 1) < CKyexp(CKot) for ¢t € [0,77].

In this way we have completed the proof of the uniform bounds.

4.4.2.4 Convergence

We show now convergence of the sequence (R", u"),ecn towards a solution (R, w) of the original problem.
The proof follows the arguments already performed in Subsection 4.2.3: we limit ourselves to highlight
only the main steps.

We define

R":=R"— R}

which satisfies

Rl — 0.

{aténﬂ = —u”" - VR"!
|t=0

Thus, one can check that (éf)neN is uniformly bounded in C°(]0,T7]; L?).
Now, we will prove that (R™, u"),cy is a Cauchy sequence in C°([0, T]; L?). For any couple (n,1) € N2,
we introduce
SR™ = Rt — R
SR™ = " — R"
Su™ = u" T — "
ST =11 — 11"

and we have that divdu™! = 0 for any (n,l) € N2.
Taking the difference between the (n + [)-iterate and the n-iterate, we may find

(4.4.25)

8t6§n,l + wanrti=1. V(SE”J — —sur L. YR + =1, V(;Rg’l
8,5511,”’1 4 un+l—1 . Vdu”’l 4 V(SH”’I — _6un—1,l .Vu — Rn—&—l((guj_)n—l,l o 5Rn,luJ_,n—1 ,
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supplemented with the initial data (5§"J, 5u”7l)|t:0 = (0, 5ug’l).
An energy estimate for the first equation of (4.4.25) yields

B t
ISR™ (1)l > < C/O 160" 2 [ VR oo + ™ 2| VRG [ dr,

and similarly from the second equation we obtain

t
[su™ (1)) < Clloug |2+ C / (i P A P e P T S P I
0

t ~
0 [ (10R o + 167 =) [ 1z -

Employing the uniform bounds established in Paragraph 4.4.2.3 and the embeddings, we note that

*

sup, (IVR" ()= + 190" = + IR Olli) + /0 Jw = e + ™ g2 dt < Crey
te|0, T

for a constant Cp, which depends only on T* and on the initial data.
Therefore, thanks to the Gronwall lemma, we get

~ t
IOR™(t) ]| 2 + [|6w™ (t)]| 2 < O <||5Rg’l|!w1,oo + [[dug 2 +/0 161 (7) | 2 dT) )

for all ¢t € [0,T7].
As already done in Subsection 4.2.3, after setting

Fg' == sup <H5Rg’l||w1,oo + H&ug”lHLz) and G"(t) := supsup <||5§"’ZHL2 + ||ou™!
1>0 1>0 [0,¢]

|L2) )

we may infer that, for all ¢ € [0, T"],

n—1
n (CrT g | (CreTH)"
G"(t) < Cre > e T ARG GL
k=0
and, bearing in mind (4.4.18), we have
lim F=0.
n—+00

Hence,

lim sup sup (ISR (8)] 2 + u™(8)] ) = 0.
n—=+00 >0 ¢e[0,7+]

This property implies that (E”)%N and (u"),ecn are Cauchy sequences in C%. (L?). Hence, converge
to some function R and w in the same space.

Define R := R+ Ry. We notice that, owing to the embedding L? < B;}Q, and thanks to the uniform
bounds and to an interpolation argument, the sequence (u"),en strongly cbnverges in any intermediate
space L% (BZ, ) with o < s and in particular in L*°([0, 7] x R?). Moreover, we have that R" = §"+R6L
strongly converges to R in L%‘;(L%OC). This is enough to pass to the limit in the weak formulation of
(4.4.19) and (4.4.20) finding that (R,u) is a weak solution to the original problem for a suitable pressure
term VII. The regularity for (R, u) in B3, , follows by the uniform bounds and Fatou’s property in Besov
spaces.

Moreover, an argument similar to the one performed in Subsection 4.2.3 apply here to show the
desired regularity for the pressure term, after noticing that

VIl L2, ~ (VL[| 2 + [[ATT]| g -

Finally, employing classical results for transport equations in Besov spaces (remember Theorem A.15),
we can get the claimed time continuity of R with values in BS, ,, of u with values in L*N B3, and of

VII with values in L? N B3, ;- In addition, the sought regularity properties for the time derivatives 0;R
and Oyu follow from an analysis of system (4.1.9).
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4.4.2.5 Continuation criterion in Besov spaces

We conclude this section showing the following continuation criterion for solutions of system (4.1.9) in
B ., where the couple (s, ) satisfies the Lipschitz condition (A.3.1).

00,1

Proposition 4.4.8 Let (Ro,w) € B, x (L* N B, ) with divug = 0. Given a time T > 0, let (R, w)

co,r
be a solution of (4.1.9) on [0, T that belongs to L®(BS, ) x Lg°(L* N BS,,.) for any t € [0,T[. If we
assume that

T
/ IVul|pee dt < 400, (4.4.26)
0

then (R,u) can be continued beyond T into a solution of (4.1.9) with the same regularity.
Moreover, the lifespan of a solution (R,u) to system (4.1.9) does not depend on (s,r) and, in partic-
ular, the lifespan of solutions in Theorem 4.1.4 is the same as the lifespan in Béql X (L2 N Béo,l)'

Proof: It is enough to show that, under condition (4.4.26), the solution (R, u) remains bounded in the
space LT (B3, ) x L¥(L* N B, ). Recalling the a priori estimates for the non-linear terms in system
(4.4.12), we have

2°|[[w -V, Aj]R|| e < C¢j(t) (VL + VR L) (IIRHB&,T + HUIlBgo,T)
and
2767 [w- V, AjJwl|ze < Cej(t) |V e |ulpg. ,

where we have used the fact that [[w[|ree < C|[Vu| e and |lw| gs-1 < Cl|uf/ps, . Moreover, from relation
(4.4.13), we obtain

Idiv (Ru) | pecs < C (IRlIzoe + ) (lellps, , + IR]5e,.,) -

Summing the previous bounds, for all 0 < ¢ < T, we get
IR®lzs,, + 0 g1 < C (I1Rollzs,, + llwoll gy s)
t
+C /0 IVl + | Rllwrs + Jullze) (1Rlps,, + llullps,, ) dr.

At this point, we have to find estimates for ||ul/p~ and [|R]/j1,00. To deal with ||u| z, we separate
low and hight frequencies deducing

lullzee < 1A-1ullze + Y Al < Clluollze + ) 1A ul|z
>0 >0

where we have also employed the Bernstein inequalities (see Lemma A.2).
For the high frequency terms, we can write

D lIAjulre < CY 277 A; VLo < OVl .
j=0 Jj=0

Therefore,
[ullze < C(uollpz + [[Vul[ze) - (4.4.27)

Now, we focus on the bound for ||R||y1,00. On the one hand, ||R(t)|r~ = ||Ro||ze, for all £ > 0. On the
other hand, differentiating the continuity equation, we obtain

T
IVR(t) | 5o (1<) < IV Rol| = exp (C/o |V o dt) . (4.4.28)



112 CHAPTER 4. THE FAST ROTATION LIMIT FOR EULER

Thus, using the previous relations and recalling equation (4.4.9), we finally have
IR®) 5., + lw®llonse,, < C (IRollps,, + luollzzoms,, )
+C /0 (Il + [Rollwros + uoll2) (1 Rlse,, + ullzess,, ) dr
In the end, employing Gronwall’s type inequalities, we may conclude that, under the assumption (4.4.26),

sup (IR, + [u®llzzrs,, ) < +00.
te[0,T] '

4.4.3 The asymptotically global well-posedness result

In this paragraph we focus on finding an asymptotic behaviour (in the regime of small oscillations for
the densities) for the lifespan of solutions to system (4.1.9). Namely, for small fluctuations Ry of size
§ > 0, the lifespan of solutions to this system tends to infinity when § — 0. To show that, we have to
take advantage of the linear estimate in Theorem A.16 for the transport equations in Besov spaces with
zero regularity index. For that reason, it is important to work with the vorticity formulation of (4.1.9),
since w € Bgo’l. Thanks to the continuation criterion presented in Proposition 4.4.8, it is enough to find
the bound of the lifespan in the lowest regularity space Béo,l'
To begin with, we recall relation (4.4.9), i.e.

1fllz2mms,, ~ fllL2 + lewrl fll gaor -
Therefore, due to the previous relation, we can define (for ¢ > 0)

£(t) = [u®llze + lw(®)llpo_, ~ lau®)l 2, (4.4.29)

1
00,1

Since the L? norm of the velocity field is preserved, to control w in B it will be enough to find

estimates for curlw in Bgo,l. Hence, we apply again the curl operator to the second equation in system
(4.1.9) to get the system (4.4.11), i.e.

OR+u-VR=0
Ow +u - Vw = —div (Ru) .

Making use of Theorem A.16, we obtain

t t
e, <€ (ool + [ v (Rl ar) (14 [ I9uliear)
Now, we look at the bound for div (Ru), finding that
Jdiv (Re)lpo_, < € (IRl ull ., + ulli~ | B2, ) < CIRIp EG).
Then, we deduce
t t
Et)y<C <5(O) +/ EMIR(T)pL | d7-> (1 +/ E(r) d7'> . (4.4.30)
0 ~ 0

At this point, Theorem A.15 implies that

t
1ROl < IRl exv (€ [ £ ar)
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Plugging this bound into (4.4.30) gives

£ty < C <1+/0t5(7) d7> <5(0)+ 1ol /Otg(f) exp </075<s) ds) d7> |

We now define
T* := sup {t >0: ||R0||B<1>o,1 /OtS(T) exp </0T5(s) ds> dr < 5(0)} . (4.4.31)
Then, for all t € [0,7*], we deduce
£y < C <1 + /Otg(f) dT> £(0)
and thanks to the Gronwall’s lemma we infer

E(t) < CE(0) e (4.4.32)

for a suitable constant C' > 0.
It remains to find a control on the integral of £(¢). We have

t
/ E(r) dr < eC€O0F
0
and, due to the previous bound (4.4.32), we get
t T t
IRoll g1, / E(T)exp (/ E(s) ds> dr < C||Rollp1_, / £(0) YO exp (605<O>T — 1) dr
= Jo 0 s Jo

< Cl|Rollp_, (exp (eCS(O)t - 1) - 1) :
Finally, by definition (4.4.31) of 7%, we can argue that

£(0) < CllRogr_, (exp (75O 1) —1) ,

(4.4.33)

which gives the following lower bound for the lifespan of solutions:

C £(0)
T > ——log|log | C-———+1]|+1].
£0) ( ( MRolls | ) )

From there, recalling the definition (4.4.29) for £(0), we have

C ol L2qp
75> og|log [P 1) 1), (4.4.34)
ol ol

for a suitable constant C' > 0. This is the claimed lower bound stated in Theorem 4.1.4.

4.5 The lifespan of solutions to the primitive problem

The main goal of this section is to present an “asymptotically global” well-posedness result for system
(4.2.3), when the size of fluctuations of the densities goes to zero, in the spirit of Subsection 4.4.3. We
start by showing a continuation type criterion for system (4.2.3) and discussing the related consequences
(see Subsection 4.5.1 below for details). We conclude this section presenting the asymptotic behaviour of
the lifespan of solutions to system (4.2.3): the lifespan may be very large, if the size of non-homogeneities
ap e defined in (4.2.1) is small (see relation (4.5.14) below). We point out that it is not clear at all that
the global existence holds in a fast rotation regime without any assumption of smallness on the size of
the densities.
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4.5.1 The continuation criterion and consequences

In this paragraph, we start by presenting a continuation type result in Sobolev spaces for system (4.2.3),
in the spirit of the Beale-Kato-Majda continuation criterion [6]. The proof is an adaptation of the
arguments in [4] by Bae, Lee and Shin.

Proposition 4.5.1 Take ¢ € )0, 1] fived. Let (age,uoe) € L™ x H® with Vag. € HS™! and divug = 0.
Given a time T > 0, let (ae,us, VIL) be a solution of (4.2.3) on [0,T] that belongs to L7°(L>) x
L& (H®) x L (H?®) and Vae € L (H*™1) for any t € [0, T[. If we assume that

T
/ [Vt || oo dt < 400, (4.5.1)
0

then (ae, ue, VII;) can be continued beyond T into a solution of (4.2.3) with the same regularity.

Proof: As already pointed out in the proof of Proposition 4.4.8, it would be enough to show that

sup (|luel|mgs + [|[Vae|| gs—1) < +oo.
<t<T

Since € €]0, 1] is fixed and does not play any role in the following proof, for notational convenience, we
set it equal to 1.
We start by recalling that, from the continuity equation of (4.2.3), one gets

0:0;a+u-Vda=—0;u-Va fori=1,2. (4.5.2)

So, applying the operator A; to the above relation and using the divergence-free condition divu = 0,

one has
8,5Aj8,~a +u- VAjaia = —Aj (@u . Va) + [u -V, A]]&a

Therefore, thanks to the commutator estimates (see Lemma A.13), one may argue that
267 V|- V, 5105 2 < Cej(t) (V]| o + [[Val o) (IVal ot + [|ae] )
where (c;j(t));>_1 is a sequence in the unit ball of ¢*, and due to Corollary A.8 one has
10w - Val| -1 < C([[Vul = [[Val a1 + [[Vull g1 [[Val| L) -

At this point, we recall the bounds for the momentum equation in system (4.2.3). First of all, we apply
the non-homogeneous dyadic blocks A, getting

A ju+u-VAju+ Ajut + VAT + A; (aVID) = [u -V, Ajlu.

Then, we obtain '
2°([w- V, Ajlullrz < Cei()[|Vul oo |[ul g

with (c;(t))j>—1 a sequence in the unit ball of ¢?, and in addition we have
eV s < C([lalle [V s + [[VI]| Lo [[Val| gra-1) -

Summing up the previous inequalities, for all ¢ € [0, 7| we may infer that

t
IVa(®) |l gs—1 + [lu(@)[[ms < (IVaol gsr + lluollas) + C/O lall Lo [[VIL]| s d7

t
+C/0 (IVallzee + Vel + VI Le<) ([ Val g1 + [lullgs) d7.
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To close the proof, under the hypothesis of the theorem, we have to find the bounds HV(LHUT(LOO),
HVHHLlT(Loo) and HVH”LIT(Hs)-
From the continuity equation (4.5.2), we obtain

T
Va5 (2 < CllVaollzos exp ( | 1vuli dT> |

Now, we focus on the estimate ||VII||zs. We recall again the elliptic equation
—div (AVI) = divF where F:=u -Vu-+u" and A:=1/p. (4.5.3)
From the previous relation, it is a standard matter to deduce that (see also Proposition B.11):
VI s < C (IVul ollullms + [Jullmzs + [[Valze [ VI o1 + | VI < [[Val| gs-1) -
Using an interpolation argument, one has
el 2 [ 2t [

and due to the Young’s inequality we end up with
1
IVl 912 < € (I¥al VI + (1 3 ) 19101 )

In addition, we already know that
VIl 2 < O ([lull 2l Vul e + [[ullL2) < C (luoll2[Velze + luoll2) < C ([Vullze +1) .

As it is apparent the constant term on the right-hand side will be irrelevant in the next computations:
hence, it will be omitted supposing e.g. that ||Vu| e > 1.

At this point, we have only to take care of the L° bound for the pressure term. Thanks to an
application of Gagliardo-Nirenberg (see Theorem B.9) and Young inequalities, we get

IV e < CIIATR| VIS < C (JAT| s + [ VTT| 2) < C (JA s + ||Vl o<) -

Again from the elliptic equation (4.5.3), one can find
All = —pVa - VII — pdiv (u - Vu) — odivut
and then
AL < C (llollzee [Vall Lo [V a + [lol[ Lo |Vl Lo [Vl o + llof Lo [ V]| £4)
< C(IVal o< [V L4 + [V Lo [V s + [Vl )

where we have employed the fact that the densities are bounded from above.
Once again, due to the Gagliardo-Nirenberg’s inequality, we obtain

1/3 2/3
VI s < C AT w1122

So,
|AL e < € ([IVal e AT VI + [Vl e [ Vall o+ |Vl 1)

Therefore, Young inequality implies that
3/2
Jan e < € (IValf 21V 2 + [Vl oo [ Ve o + Va1 )

3/2
< C (IVallZ2 1 Vullz= + [ Vul [Vl s + [ Vullps) -
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At the end, we ensure that
IV < € (IVallZ2 1 Vallze + [Vl [Vl s+ [ Vull s + 1 Val ) -
Now, we have to estimate |Vu| r4: to do so, we take advantage of the vorticity formulation
Oiw+u-Vw=—-VaAVIIL,

where Va A VII := 01a 011 — dya 0111
From that formulation, we get the following bound for all ¢t € [0, 77 :

t
lw(®)llzs < lwollzs + € /0 IVall o || VT]| s dr .
As done in the previous computations, we can deduce that
1/3 2/3
lw(®)l|zs < lwollzs + € / |Val| oo | AT | V]| 722
3/2 2/3
< lwoll s + € ||Vaum (IValZ2 IVl + [ Vul e [l s + uwm) |Vl
3/2 1/3 2/3 1/3
< flwoll s + € / IVallZ2 1V ullz + [ Val o [Vl oo |l + [ Val oo [Tl 72 ] 157 -

At this point, we apply the Young’s inequality to infer:
3/2
(@) IVal 2 [Vule < C (| Vallz|Vul L + [ Vall3 o [ Vull )
. 1/3
(i) IVallz= |Vl =l < C (IVall o |Vl Lo lwl pa + [|Val 2o | V] o):

2/3 1/3
(ii1) [[Valp | Vel 72 w15 < C (IVal| o [ Vaul 1o + 1| Vel oo ]l ).
In the end, for all t € [0, 77,
¢
lw(®) L+ < [lwoll 4 +C/0 (IVal o< [VulLellwll s + IVal oo [lw] 4) dT
t
+C/O (IVal[iVul e + [IVall e |[Vul 1) dr
Hence, thanks to the Gronwall’s lemma, we get
t t
lw(t)][ s < exp [C/O IVallze ([[Vu]ze + 1)} [Ilwollm + C/O IVallze [Vl L ([Vallze +1)

Recalling condition (4.5.1), the theorem is thus proved. |

At this point, we discuss some consequences of the previous result.

In particular, it would be enough to control u. in LS (L% N B;o,l) in order to have the existence of
the solution until the time 7'. Indeed, if we are able to control the norm [[uc||zec(z2np1 ), then we are
able to bound ||[Vuc| zee(r). This will imply (4.5.1) and, therefore, the solution will exist until time 7.

Let us give some details. First of all, we have

Vel Lge (o) < C H%HL;@(B;OJ) .
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As already pointed out in Lemma 4.4.5, to control the Béo,l norm of w, it is enough to have a L2

estimate for u. and a ngl estimate for its curl. Those estimates are the topic of the next Subsection
4.5.2, provided that the time 7" > 0 is defined as in (4.5.13) below.
Therefore, |[Vue| s (1<) < +00 and so

T
/ |IVue||pe < +o00,
0

for such T > 0.

Finally, we note that we have already shown the existence and uniqueness of solutions to system
(4.2.3) in the Sobolev spaces H® with s > 2 (see Section 4.2) and, thanks to Proposition A.6, those
spaces are continuously embedded in the space Béo,l‘ Thus, the solution will exist until 7.

4.5.2 The asymptotic lifespan

In this paragraph we focus our attention on the lifespan T of solutions (g, u., VII;) to the primitive
system (4.2.3). We point out that if we consider the initial densities as in (4.1.2), i.e. gor = 1+ R,
it is not clear to us how to show that 7 — +00 when ¢ — 07. Nevertheless, on the one hand, as soon
as the densities are of the form go. = 1 +e!T®Ry . (with a > 0), we obtain that 7 ~ loglog (1/¢). On
the other hand, independently of the rotational effects, we can state an “asymptotically global” well-
posedness result in the regime of small oscillations: namely, we get 7 > T%(0), with T%(0) — +o0,
when the size § > 0 of Ry, goes to 07 (this is coherent with the result in [22] for a density-depend fluid
in the absence of Coriolis force).

Therefore, the main goal of this subsection is to prove estimate (4.1.8) of Theorem 4.1.1.

First of all, we have to take advantage of the vorticity formulation of system (4.2.3). To do so, we
apply the curl operator to the momentum equation, obtaining

Oiwe + ug - Vwe + Vas A VII, =0, (4.5.4)

where we recall w, := curlu. and Va. A VI, := 01a. 0511, — Ora.0111;.

We notice that the vorticity formulation is the key point to bypass the issues coming from the Coriolis
force, whose singular effects disappear in (4.5.4).

Next, we make use of Theorem A.16 and we deduce that

t t
Jwrllge < C (HWO,aHBg“ +/ V. A vnguBgﬂdT) <1+/ 1Vt | oo dT) . (4.5.5)
’ ’ 0 ’ 0

We start by bounding the BSQ1 norm of Va. A VII.. We observe that

O1a: 0ol — Ooa. 0111, = Tp, 4,011 — To,a 0111 + To,n1. 010 — T 11. 020
+ 817?,((18 — A_la/g, 821_[5) - 827?,((18 — A_la/g, 811_[5) (4.5.6)
+ R(alA_lag, (‘92115) + 'R,(agA_chg, 61]_[5) .

Applying Proposition A.7 directly to the terms involving the paraproduct 7, we have

1790 VILllpo, | + 1 Tom. Val gy, < C (I Vac | VT g, + [ Vacllpo, 19T 12 ) -

Next, we have to deal with the remainders R. We start by bounding the ngl norm of 01R(a. —
A_jag, ObIl.). One has:

HalR(aE — A_la/g, 621_[5)“320 L § CHR(aE — A_la/a, 62H6)HBéo L
J1d = A ap )

< C (IVIL=IVacli ., ) »

< C (V1L 5y

00,00
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where we have employed the localization properties of the Littlewood-Paley decomposition. In a similar
way, one can argue for daR(a. — A_ja., 0111;).

It remains to bound R(91A_ja., d211.), and analogously one can treat the term R(02A_1a., O111;)
in (4.5.6). We obtain that

IR 1A 1ac, 11| g, | < CIR@A 1ac, Iy, < C (VL= |01 A a1 ) -
Employing the spectral properties of operator A_1, one has that
|]81A_1a5HBéO L S C||A_1Va5|]Loo .

Then,
IR(OA 1ae, BTl po, | < C (IIVTL]|pe | Vae g ) -

Finally, we get

IVa: A VTLlgy | < C (IVacllie | VIl gy, + [Vaclipo, IVTL] 1< ) -

So plugging the previous estimate in (4.5.5), one gets

t t
ol < € (el + [ I9allsy 19110, 07 (14 [ [Fuclimar)
’ ! 0 ’ ’ 0

At this point, we define
Bet) = Ju:®)lpznp, and  A(t) = [ Vae(®)]po - (45.7)

In this way, we have

t ¢
E.(t)<C <Eg(0) +/ A(7) VI (7)) go_| d7'> (1 +/ E.(7) d7'> . (4.5.8)
0 o 0
Next, we recall that, for i = 1, 2:
Oy O;ae +ue -V 0ia. = —0;u,. - Va,

and, due to the divergence-free condition on u., we can write

ue - Va. =Y Ol djac =y (&(ug 9;a.) — ;(u? aiaa)) .
J J
So, using Proposition A.7 and the fact that
|0R (k. dj0) | < C Rk, dya) [ | < C[Vaclpo el |-

we may finally get
|90se - Vel g, < ClVasllpnuclp -

Thus,
t
IVac®)llps . < IVaocllpe  exp (c / uuauB;oldT) .

Therefore, recalling (4.5.7), one has

A() < A(0) exp <c /0 "B dT> . (4.5.9)
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The next goal is to bound the pressure term in Bgo,l' Actually, we shall bound its Béo’l norm. Similarly
to the analysis performed in Subsection 4.2.2 for the H® norm (see e.g. inequality (4.2.13) in this respect),
there exists some exponent A\ > 1 such that

IVILlg:, < C (14l Vacl by ) IVIL ]2+ loe div (e - Vo)l o, + o divad g ) -

The L? estimate for the pressure term follows in a similar way to one performed in (4.2.12), i.e.
IVIL||r2 < Ce|luel| 2] Ve[ Lo + [luellL: - (4.5.10)

Next, as showed above in the bound for [[0;ue - Vae[|go , combining Bony’s decomposition with the

fact that div (ue - Vu.) = Vu, : Vu, we may infer:

ldiv (e - Vo)l | < C ey

Now, our scope is to estimate the Béoi norm of the density. To do so, we make use of the following
proposition, whose proof can be found in [21].

Proposition 4.5.2 Let I be an open interval of R and F : I — R a smooth function. Then, for any
compact subset J C I, s > 0 and (p,r) € [1,+00]?, there exists a constant C such that for any function

g valued in J and with gradient in B;;l, we have V(F(g)) € B;;l and

IV (F(9)]

Byt < CHVQHB;;l :

Then, from the definition of B;OJ and the previous proposition, the Bcl>071 estimate for p. reads:

loclipe,, <€ (g+2Vaelp, ) -
Finally, plugging the L? estimate (4.5.10) and all the above inequalities in (4.5.2), one may conclude that
IVIL g1, <€ (e lVaclho ) (= el el Vel g, + e )

+C(1+eVaclp, ) (e lucllly | +luclis )

<C(l+eAN(eE2+E)+C(1+¢eA)(e B2+ E.) (4.5.11)
<CEE*+E)(1+eA. +eAD)
<CEE*+E)(1+eAD).
We insert now in (4.5.8) the estimates found in (4.5.11) and in (4.5.9), deducing that
t T
E.(t)<C (EE(O) + BE(O)/ exp <C/ E.(s) ds> (5 Eg(T) + EE(T)) d7'>
0 0 . (4.5.12)
X <1 + [ E.(7) d7'> ,
0

where we have set B-(0) := A.(0) + ¢ A (0) 1.
At this point, we define 7 > 0 such that

T* := sup {t >0: B.(0) /Ot exp (C’ /OT E.(s) ds> (e E2(7) 4+ B.(1)) dr < EE(O)} . (4.5.13)

So, from (4.5.12) and using Gronwall’s inequality, we obtain that

E.(t) < C E-(0)eCF=(0)
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for all ¢t € [0, T/].
The previous estimate implies that, for all ¢ € [0,7.], one has

t
/ E.(r)dr < Ot _ 1
0

Analogously to inequality (4.4.33) in Subsection 4.4.3, we can argue that

B:(0) /Ot exp (C’ /OT E.(s) ds) E.(r) dr < CB.(0) (exp (eCtES(O) - 1) — 1) .

Then, it remains to control

eB.(0) /0 t exp <C /0 ’ E(s) ds> E%(r) dr.

For this term, we may infer that

t T t
EBE(O)/ exp <C/ E.(s) ds> FE%(r) dr < CeBg(O)/ E2(0)e¢7E= ) exp (eCTEE(O) - 1) dr
0 0 0

< CeB.(0)E.(0) <exp (eCtES(O) - 1) - 1) :

In the end, by definition (4.5.13) of T, we deduce

> EC<o> o (lOg (max{&((ﬁ Esog)m)Ee(O)} ' 1> ! 1> ’

for a suitable constant C' > 0. This concludes the proof of Theorem 4.1.1.

(4.5.14)



Future perspectives

We conclude this manuscript pointing out some possible upcoming goals.
First of all, we would like to continue the studies started in Chapter 2 and Chapter 3 in two different
directions:

e on the one hand, we will investigate the regimes not covered yet, i.e. either m = 1 with the
centrifugal effects or (m +1)/2 <n <m;

e on the other hand, we would focus on the well-posedness analysis for the Oberbeck-Boussinesq
limiting system.

In a second instance, we would like to dedicate ourselves to the analysis of a different system that
describes the evolution of temperature on the ocean surface: the so-called surface quasi-geostrophic
system. Specifically, we are interested in the asymptotic analysis in regimes of fast rotational effects and
we would like to inspect the well-posedness of such system on manifolds, like the sphere.

To conclude, we highlight that we would like to spend more time regarding the lifespan of solutions
to Euler equations in order to study more deeply the stabilization effects due to the rotation.
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Perspectives d’avenir

Nous concluons ce manuscrit en soulignant quelque but possible a venir.
Tout d’abord, nous continuerons les études commencées dans le chapitre 2 et dans le chapitre 3 vers
deux directions différentes :

e d’une part, nous étudierons les régimes pas encore couverts dans nos études précédentes, soit m = 1
avec les effets centrifuges soit (m +1)/2 <n < m;

e d’autre part, nous nous dédierons a I’analyse du caractere bien posé pour le systeme limite du type
Oberbeck-Boussinesq.

Dans un second temps, nous nous consacrerons a l’analyse d’'un autre systéeme décrivant ’évolution de
la température a la surface de I'océan, qu’on appelle le systéeme quasi-géostrophique a la surface. Plus
précisément, nous nous intéressons a l'analyse asymptotique des régimes en rotation rapide et nous
aimerions examiner le caractére bien posé d'un tel systeme sur des variétés, comme la sphere.

En conclusion, nous soulignons qu’on aimerait consacrer plus de temps a 1’étude de la durée de vie
des solutions des équations d’Euler afin de comprendre plus en profondeur les effets de stabilisation dus
a la rotation.
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Appendix A

Tools

The goal of this appendix is to present the tools, which have been useful in our analysis. Unless otherwise
specified, we refer to Chapter 2 of [5] for details.

A.1 Littlewood-Paley theory: introduction

We start by exhibiting some tools from Littlewood-Paley theory.

For simplicity of exposition, we deal with the R? case, with d > 1; however, the whole construction
can be adapted also to the d-dimensional torus T¢, and to the “hybrid” case R% x Tdz,

First of all, we introduce the Littlewood-Paley decomposition. For this we fix a smooth radial function
x such that it satisfies the following properties:

(i) Supp x € B(0,2);
(ii) x =1 in a neighborhood of the ball B(0,1);
(iii) the map r ~— x(re) is non-increasing over R for all unitary vectors e € R%.

Set now _
P (&) :==x(§) —x(26) and (&) :==p(277¢) forall j=>0.
The dyadic blocks (A;) ez are defined by?
Aj =0 if j<-2,  A_;:=x(D) and Aj = p(279D) if j>0.

For any j > 0 fixed, we also introduce the low frequency cut-off operator

Sj = x(277D) = > A (A.1.1)

k<j—1
Note that S; is a convolution operator. More precisely, after defining
Ky = Fly and Kj(z) := FUx(277)(z) = 279Ky (2x),

for all j € N and all tempered distributions v € &’ we have that Sju = K; % u. Thus the L' norm of
Kj; is independent of j > 0, hence S; maps continuously L? into itself, for any 1 < p < +o0.
Moreover, the following property states the usefulness of such a decomposition.

Lemma A.1 For any u € §', then one has the equality u =3, Aju in the sense of S'.

'We agree that f(D) stands for the pseudo-differential operator u +— F~'[f(€) u(€)].
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Let us also recall the so-called Bernstein inequalities, which describe the way derivatives take effect on
the spectrally localized functions.

Lemma A.2 Let 0 < r < R. A constant C exists so that, for any non-negative integer k, any couple
(p,q) in [1,4+o0)?, with p < q, and any function u € LP, we have, for all X > 0,

1.1
(i) if Supp @ C B(0,AR), then |VF*u|L. < CF Ara(i=3) || o
(i) if SuppacC{EeR: A <[¢|<AR}, then CTF Nl < [VFullpe < CFFENF|u 10 -
By use of Littlewood-Paley decomposition, we can define the class of Besov spaces.
Definition A.3 Let s € R and 1 < p,7 < +oc0. The non-homogeneous Besov space By . is defined as
the subset of tempered distributions u for which
HUHB;,T = H(2j8||Aju||Lp)j271H” < +00.
The spaces just defined have the following important topological properties (which have been broadly
employed in Chapter 4).

Proposition A.4 Let the triplet (s,p,r) be in Rx [1,40c]®. The set Bj . is a Banach space and satisfies
the Fatou property, namely, if (fn)nen is a bounded sequence of By ., then an element f of B, , and a
subsequence fy ) exist such that

lim fz/’(”) = f inS' and HfHB;S;,r < C%glig Hflll(n)HB;,T .

n—-+00

In addition, Besov spaces are interpolation spaces between Sobolev spaces. In fact, for any k € N
and p € [1,4o00] we have the chain of continuous embeddings

B, s wWkr— BN .
In the case when 1 < p < 400, the previous chain of embeddings can be refined to
k k, k
Bp,min(p,2) = WP — Bp7max(p,2) :
In particular, for all s € R we deduce that B, = H*®, with equivalence of norms:

1/2

Flls ~ | D 25 1Af117= | (A.1.2)

j>-1
Observe that, from that equivalence, we easily get the following property:
Lemma A.5 For any f € H® and any j € N, one has
|(0d = S) fll o < CUVFllrs—1 2797 forall — o<s, (A.1.3)
where C' > 0 is a “universal” constant, independent of f, j, s and o.

Proof: We make use of the characterization (A.1.2) of H? and we write

||(Id _ S])f”i[o‘ < 0222ka HAka%Q 92ks 9—2ks < CZ2—2]€(S—U) 92ks ”Akaig

k>j k2j
< O3 2 ko) 9D A T2, < 0 27 v 3L
k>j k>j

< C2 |V

for all o <'s. Then, we obtain (A.1.3), concluding the proof of the lemma. [
As an immediate consequence of the first Bernstein inequality (see Lemma A.2), one gets the following
embedding result, which generalises the Sobolev embeddings.
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Proposition A.6 The space B, . is continuously embedded in the space B,? ., for all indices satisfying

p1 < p9 and either so < s1 — d(l/p1 — 1/p2), or 85 = 81 — d(l/p1 — l/pg) and r < r9.
In particular, we get the following chain of continuous embeddings:
BS, < B WP BY | — L™,

whenever the triplet (s,p,r) € R x [1,4+00]? satisfies
d
5> — or s=— and r=1.
p p
This last chain of embeddings has been fundamental and of constant use in Chapter 4.

In the sequel, we recall some definitions and properties of paradifferential calculus. Moreover, using
those notions, we will focus on the study of transport equations in Besov spaces.

A.2 Paradifferential calculus

Let us introduce the Bony decomposition (see [8]). Formally, the product of two tempered distributions
u and v can be decomposed into
uv = Tyv + Tou + R(u,v),

where the paraproduct T and the remainder R are defined as follows:
Tov = Z Si—julAjv and R(u,v):= Z Z AjulApv.
J J o lk—jl<1

The paraproduct and remainder operators have nice continuity properties. The following ones have been
of constant throughout the manuscript.

Proposition A.7 For any (s,p,r) € R x [1,+00]? and t > 0, the paraproduct operator T maps contin-

uously L> x B, , into B, , and Bgot,oo X By . into B;;t. Moreover, we have the following estimates

ITellsy, < CllullelVollgss and [ Tavll gs-e < Cllull gos_ [0l s

p,r

\T

For any (s1,p1,7m1) and (s2,p2,72) in R x [1,4+00]? such that sy +s3 >0, 1/p :=1/p1 +1/ps < 1 and
1/r:=1/r1 +1/ry <1, the remainder operator R maps continuously B3, x B52  into B;}T“?. In the

p1,r1 p2,72
— — ; ; s1 s2 0
case when s + sy =0 and 1/r1 + 1/rg = 1, the operator R is continuous from By, X B2 . to By .

As a consequence of the Proposition A.7, the spaces By . are Banach algebras, provided that condition

d d
5> — or s=— and r=1 (A.2.1)
p p

holds for s > 0 and (p, q) € [1,+0oc]?. Moreover, in that case, we have the so-called tame estimates.

Corollary A.8 Let (s,p,r) € ]0, +oo[ x[1, +00]? satisfy (A.2.1). Then, for every f,g € L= N By, one
has

1£glls;, <€ (Il llimg, + 17155, lglle) -

p,r

Remark A.9 The space Bgo’l is not an algebra. If f,g € B ., applying Proposition A.7, one can bound

00,17

the paraproducts T;g and Tyf but not the remainder R(f,g).

To end this paragraph, we present a fine estimate for products in which one of the two functions is
only bounded in L* but its gradient belongs to the Besov space B;;l.
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Proposition A.10 Let (s,p,7) € |0, 4+o00[ x [1,+00]? satisfy condition (A.2.1). Assume that g € L™ N

Bj . and f is a bounded function such that Vf € B;;l. Then, the product fg belongs to L N B, , and

one has the following estimate:

1£gllz;, < C (IFl=lgllsg, + IS gy llgllex) -

p,r —

Proof: Taking advantage of Bony decomposition, one can write

f9="Trg+Tof +R(f.9)
and employing Proposition A.7, we get
175918y, < Cllfllze<llgll By,
17g fllBs,. < CllgllellV Il gs-1

IR(f, 9llBs,, < Cllflisy, N9lBg, < Cllfllz=llgllss, -

p,r T p,r T

This completes the proof of the proposition. [

A.3 Commutator estimates

In this paragraph, we recall the main commutator estimates widely employed throughout the chapter 4.
Definition A.11 We say that the triplet (s,p,r) € R x [1,+00]? satisfies the Lipschitz condition if
s>1+d/p and 7€ l,+o0] or s=1+d/p and r=1. (A.3.1)
The proof of the following Lemma A.12 can be found in [21] by Danchin.

Lemma A.12 Let (s,p,r) € R x [1,+00]? satisfy condition (A.3.1) and o be in ] —1, s —1]. Assume
that w € By, and A is a bounded function on R such that VA € B;;l. Then, there exists a constant
C =C(s,p,r,0,d) such that for all i € {1,...,d}, we have:

||BZ[A, Aj]wHLp S CC]' 2_jUHVA||B;;1HwHB§,r fO’I” a”j Z —17
with [|(¢j)j>-1lle = 1.

The next statement concerns a standard commutator estimate between the transport operator and
the frequency localisation operator.

Lemma A.13 Assume that v € B, with (s,p,r) satisfying the Lipschitz condition (A.3.1). Denote by
[v-V,Ajlf = (v-V)A;f —Aj(v-V)f the commutator between the transport operator v -V and the
frequency localisation operator A;. Then, for every f € By .,

|@l- v, a5181) |, < € (IVell=flls;, + V0l gt 1V £l

and also, for every f € B;;l,

H(Qj(s—l)ﬂ[v VoAl |

< C (IVollzellfll gz + 190l g I llaee )

for some constant C = C(s,p,d) > 0.

Finally, the next result deals with commutators between paraproduct operators and Fourier multi-
pliers.

Lemma A.14 Let k be a smooth function on R?, which is homogeneous of degree m away from a
neighborhood of 0. Take (s,p,7) € R x [1,+0c0]? and v a vector field such that Vv € L*. Then, for every
I € B, ., one has

| o, £(D)1 1| gg-mis < O d) [Vl e 1 135,
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A.4 Transport equations

In this paragraph, we deal with the transport equations in non-homogeneous Besov spaces. We refer to
Chapter 3 of [5] for additional details. We study, in R x R?, the initial value problem

{8tf+”‘vf_g (A1)

fii=0 = fo-

We always assume the velocity field v = v(t,z) to be a Lipschitz divergence-free function. In the case
when the Lipschitz condition (A.3.1) is satisfied, we have the embedding B, , — Whee,

We state now the main well-posedness result concerning problem (A.4.1) in Besov spaces. We point
out also that the notation C2([0,T]; X), with X a Banach space, refers to the space of functions which
are continuous in time with values in X endowed with its weak topology.

Theorem A.15 Let (s,p,7) € R x [1,+00]? satisfy the Lipschitz condition (A.3.1). Given T > 0, take
g € Ly(B;,). Assume that v € Ly(B5,) and that there exist two real numbers ¢ > 1 and o > 0 such
that v € L},(By ). Finally, let fo € By, be the initial datum. Then, the transport equation (A.4.1) has
a unique solution f in:

e the space C° ([O,T]; B;T), if r < 400;

* the space (ﬂ c ([07T];B;foo)> NGy (0.7} By o). if 7 = +o0.

s'<s

Moreover, the unique solution satisfies the following estimate:

T T t
Il < exo (€ [ 190l ar) (Wl + [ exp (<€ [ 1900 ar) ol ).

for some constant C = C(s,p,r,d) > 0.

To conclude this paragraph, we show a refinement of Theorem A.15, proved by Vishik in [70] and in a
different way by Hmidi and Keraani (see [49]). It states that, if dive = 0 and the Besov regularity index
is s = 0, the estimate in Theorem A.15 can be replaced by an inequality which is linear with respect to

HVU”LIT(Looy

Theorem A.16 Given T > 0, assume that v is a divergence-free vector field such that Vv € LlT(LOO)
and let g € Ly.(BY, ). Take r € [1,4+00] and fo € Ly:(BY, ). Then, there exists a constant C = C(d)
such, that, for any solution f to problem (A.4.1) in C°([0,T]; BY,,.) (or with the usual modification of C°
into CO if r = +00), we have

T
Iz, < € (1ol + lolyqon, ) (1 [ 190 ar)



Appendix B

Some well-known results

This appendix is thought for the reader’s convenience in order to quickly check the statement of some
famous theorems. For that reason, we limit ourself to state such results, used throughout the whole
thesis. Unless indicated otherwise, we refer to the introductory part of book [39] for details (see also
Chapter 10) and to Chapter 1 of [5].

B.1 Embedding theorems

We start by recalling the Rellich-Kondrachov embedding theorem.
Theorem B.1 Let Q C R? be a bounded Lipschitz domain.

(i) If kp < d and p > 1, then the space W*P(Q) is continuously embedded in LI(Q) for any 1 < q <

p* = (dp)/(d — kp).
Moreover, the embedding is compact if k > 0 and g < p*.

(ii) If kp = d, the space W*P(Q) is compactly embedded in L4(Q) for any q € [1,+00).

(iii) If kp > d, then WH5P(Q) is continuously embedded in' C*~\/PI=1v(Q), where either v = |d/p]| +
1—d/pif (d/p) € Z or v is an arbitrary positive number in (0,1) if (d/p) € Z.
Moreover, the embedding is compact if 0 < v < |d/p| +1—d/p.

As a direct consequence of the previous theorem we have the embedding theorem for dual Sobolev spaces.
Theorem B.2 Let Q C R? be a bounded domain. Let k > 0 and ¢ < +oo satisfy

e q¢>p*/(p* — 1) where p* := (dp)/(d — kp), if kp < d;

e g>1,ifkp=d;

e g>1,1if kp>d.

Then, the space L1(Q) is compactly embedded into the space W*k’p/(Q), with 1/p+1/p' = 1.

B.2 Mollifiers

Here we recall the main properties of the mollifiers. Such properties are widely employed in Section 2.4
of Chapter 2.

'The symbol |z] denotes the integer part of z.
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We start by fixing a smooth, radial and radially decreasing function y € C°(R%), such that
0<x<1, x(z) =0 for |z| > 1 and / x(z)dz = 1.
R4
Next, we define the mollifying kernel (XE)5>O by the formula

1
Xe(z) = - X(%) for any e >0 and x € R?.

Then, for any tempered distribution & on R? and any & > 0, we introduce

G == x. x 6.

Theorem B.3 Let X a Banach space. If & € Li (R% X), then we have &, € C®(R%; X). In addition,
we have the following properties:
(i) if & € L} (R% X) with 1 <p < +oo, then &, € L (R% X) and

loc

G.— 6 in IP RLX) as e—0F;

loc
(ii) if & € LP(RY X) with 1 < p < +o00, then & € LP(R?; X),

[Gellrra;x) < 161 Lo (ra,x)

and
G.— 6 in LPRLX) as e— 07,

(iii) if & € L®(R%; X), then &. € L®°(R% X) and
16|l oo (re;x) < [IS]] oo (e, x) 5

(iv) if & € CF(Q; X) where k is a non-negative integer and Q C R? is a ball, then (0°6).(z) = 0°S.(x)
for all z € Q, € € (0,dist[z,dQ]) and for any multi-index o such that || < k. Moreover,

1Geller@.x) < 116llerwix)
for any ¢ € (0,dist[0B, dV]), where B and V are balls in R? such that BCV CV C Q. Finally,
6. —6 in CHB;X) as e—0".

B.3 Some assorted inequalities

We start this section by mentioning some classical inequalities: Young’s inequality (see Chapter 4 of [13]
in this respect), Holder’s inequality and Minkowski’s inequality.

Proposition B.4 (Young’s inequality) Ifa > 0 and b > 0 are non-negative real numbers and if p > 1
and q > 1 are real numbers such that

,_i_,:l’
p q
then?
alP b
ab < — 4 —.
p q

2It is sometimes convenient to use the formulation ab < ea? + &~/ ®~Dp? with € > 0.
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Proposition B.5 (Holder’s inequality) Let (X,p) be a measure space and (p,q,r) in [1,+0c]® be

such that
1 1 1

p g r
If the couple (f,g) belongs to LP(X, u) x L1(X, u), then the product fg belongs to L™ (X, u) and

19l < I fllzellglize -

Proposition B.6 (Minkowski’s inequality) Let (X1, 1) and (Xa, u2) be two measure spaces and f
a non-negative measurable function over X1 x Xs. For all 1 <p < g < +o00, we have

H||f('7x2)HLP(X17M1)HLq(X%uQ) < HHf(xl? ')HL‘J(XQ,M2)HLP(X1,HI) :

The next two results are fundamental to give uniform bounds in Sobolev norms for the velocity fields
and the temperatures. Such propositions are the so-called generalized Poincaré inequality and generalized
Korn-Poincaré inequality respectively.

Proposition B.7 Let 1 < p < 400, 0 < 7 < 400, Vy > 0 and let Q C R? be a bounded Lipschitz
domain. Then, there exists a positive constant ¢ = c(p,r, V) such that

1/r
IVl e @i ray + </V|Urd33> ] :

for any measurable V. C Q with |V| > Vo and any v € WHP(Q).

[vllwre) < c

Proposition B.8 Let Q C R?, with d > 2, be a bounded Lipschitz domain, and let 1 < p < o0,
My >0, K >0, a > 1. Then, there exists a positive constant ¢ = c(p, My, K, «) such that the inequality

2 .
H’U”Wl,p(Q;Rd) <c (HVU + Vo — p diveId ”LP(Q;Rd) + / flvl dx)
Q
holds for any v € WP(Q;R?) and any non-negative function f such that

O<M0§/fdx and /fadng for a certain o > 1.
Q Q

We conclude this paragraph, by stating a classical result in the theory of Sobolev spaces that relates the
LP norms of the weak derivatives of a function: the so-called Gagliardo—Nirenberg inequality (see [61] for
details of the proof).

Theorem B.9 Let f be a function belonging to LY(R?) and its derivatives of order m, denoted by D™f,
belong to L (RY) with 1 < q,7 < 4o00. For the derivatives DI f, where 0 < j < m, the following inequality
holds

1D fllee < CID™ FlIE- e (B.3.1)
where .
;z‘;—koz(?ln—i;) +(1—a)(11,
for all o in the interval .
J<a< L,
m

with the following exceptional cases:

(i) if j =0, rm < d and q = +oo, then we make the additional assumption that either f tends to zero
at infinity or f € LY(R?) for some b > 0;

(ii) if 1 <r < 400 and m — j — d/r is a non-negative integer, then (B.3.1) holds only for o satisfying
j/m<a<l.
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B.4 Elliptic estimates

This part of the appendix is devoted to a classical result pertaining L? solutions of the following elliptic
equation:
—div (AVII) =divF in RY, (B.4.1)

where A = A(z) is a given suitably smooth bounded function satisfying

A, = inf A(z) > 0. (B.4.2)
zERY

Lemma B.10 For all vector fields F in L*(RY), there exists a tempered distribution I (unique up to
constant functions) such that VII € L?(R?), and equation (B.4.1) is satisfied. Moreover, we have

ALV 2 < P e (B.4.3)

We refer to [21] for details of the proof.
Let us now state higher order estimates for the pressure term in Besov spaces (we refer again to [21]
for details).

Proposition B.11 Let 1 < p < 400 and 1 < r < +o0. Let A be a bounded function satisfying (B.4.2)
such that VA € B;fl for some s >1+4+d/p ors>1+d/pifr=1.

T

(i) If o € |1,5] and VII € BY,. satisfies (B.4.1) for some function F such that div F € BJ,t, then we

b, p,ro 2
have for some constant C' = C(s,o,p,d) that

AV g, < C (Jldiv Fllygr + Au(L+ AT VA o) [ VI 10 )

(ii) If 2 < p < 400 and F is in L? and satisfies div F € Bg;l for some o € |14+ d/p —d/2, s|, then
(B.4.1) has a unique solution I1 (up to constant functions) such that VII € L* N Bg,.. Furthermore,
inequality (B.4.3) is satisfied and there exist a positive exponent v = ~(o,p,d) and a positive
constant C = C(s,0,p,d) such that

AT gg, < C (Idiv Fll ggos + (14 ATV A] )7 [ VI 2)
(iii) If o > 1 and 1 < p < 400, then the following inequality holds:

AT g, < C (11div Fll g + VAN VI g + IV o< [V All - )

B.5 Compactness theorems

Next, a “milestone” in our analysis is the compactness of special quantities in order to perform the
asymptotic process. In this sense, the Ascoli-Arzela and Aubin-Lions theorems come in our “rescue”.

Theorem B.12 (Ascoli-Arzela Theorem) Let ) C R? be compact and X be a compact topological
metric space endowed with a metric dx. Let (vy)r be a sequence of functions in CO(Q; X) that is equi-
continuous, i.e. for any e > 0 there exists § > 0 such that

dx (Uk‘(y)a Uk(z)> <e,

provided |y — z| < § independently of k.
Then, (vi)i is precompact in C°(Q; X), meaning that there exists a subsequence (not relabelled) and
a function v € C°(Q; X) such that

sup dx (Uk(y), v(y)) — 0 as k— 4o00.
yel
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The proof of the next statement can be found in Section 5.3 of Chapter 2 of [9] (see also Section 5 of
Chapter 1 in [54]).

Theorem B.13 (Aubin-Lions Theorem) Let Xy C X; C Xy be three Banach spaces. We assume
that the embedding of X1 in Xo is continuous and that the embedding of Xo in X1 is compact. Let (p,r)
such that 1 < p,r < 4o0. ForT > 0, we define

d
E,, = {U € LP(0,T;Xo) and dit) e L"(0,T; Xz)} .

Then,
(i) if p < 400, the embedding of E,, in LP(0,T;Xy) is compact;
(i3) if p= +oo and r > 1, the embedding of E,, in C°(0,T; X1) is compact.

Now, we present the celebrated Div-Curl Lemma which, roughly speaking, ensures that the product of
two functions weakly converge, if each function weakly converges and in addition one has information on
the div of one and the curl of the other.

Theorem B.14 Let Q C R? be an open set. Assume that
Un — u  weakly in LP(Q; RY)
v, = v  weakly in LY(Q;RY)

where
1 1

1
S+ =C<1.
p oq r

In addition, let divu, be precompact in W~=55(Q) and curlv, be precompact in W*LS(Q;RdXd), for a
certain s > 1. Then,
Up - Uy = u-v  weakly in L"(Q) .

B.6 Gronwall’s lemma

To conclude this appendix, we mention a Gronwall estimate which has been of constant use in Chapter
4.

Lemma B.15 Leta € L'(0,T), a >0, B € L*(0,T), by € R and

b(T) = by +/ B(t)dt
0
be given. Let f € L>(0,T) satisfy

f(r) <b(r)+ /OT a(t) f(t)dt  for a.a. 7 €1[0,T).

f(7) <bgexp (/OT a(t) dt) + /OTﬁ(t) exp </tT a(s) ds) dt

Then, one has

for a.a. 7 €10,T].
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