Hospital clinical documents are rich sources of information for various applications such as patient recruitment for clinical research, epidemiological surveillance, medical coding, and decision support tools. However, being primarily written in natural language, these documents are not easily amenable to large-scale computer processing and must first be structured. We aim to extract entities mentioned in these documents, whether simple or structured, i.e., containing several labels or parts, and normalize them with concept bases. We contribute to several natural language processing (NLP) tasks, namely named entity recognition (NER), medical entity normalization, and structured entity extraction. In particular, we investigate training deep learning models in low data settings, for languages other than English and in the clinical domain. We structure our approach in three steps: tag, normalize, and compose. We first propose two methods to tag simple entities, especially when they overlap in texts. We then develop a large-scale multilingual model to normalize them in several languages. Finally, to compose simple entities into structured entities, we propose a new method based on mention cliques and scope relations. We evaluate it to a new annotated dataset of breast imaging reports.
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Ręsumę

Les documents cliniques hospitaliers constituent de riches sources d'information pour diverses applications telles que le recrutement de patients pour la recherche clinique, la surveillance ępidęmiologique, le codage mędical et les outils d'aide à la dęcision. Cependant, ętant essentiellement rędigęs en langue naturelle, ces documents ne se prêtent pas aisęment à des traitements informatiques à grande ęchelle et doivent d'abord être structuręs. Nous visons à extraire les entitęs mentionnęes dans ces documents, qu'elles soient simples ou structuręes, c'est-à-dire contenant plusieurs ętiquettes ou parties, et à les normaliser selon des bases de concepts. Nous contribuons à plusieurs tâches de traitement du langage naturel (TAL), à savoir la reconnaissance des entitęs nommęes, la normalisation des entitęs mędicales et l'extraction d'entitęs structuręes. Nous nous intęressons notamment à l'entraînement de moděles par apprentissage profond (deep learning) dans des conditions de donnęes limitęes, pour des langues autres que l'anglais et dans le domaine clinique. Nous structurons notre approche en trois ętapes : surligner, normaliser et composer. Nous proposons d'abord plusieurs męthodes pour surligner des entitęs simples, notamment lorsqu'elles se chevauchent dans les textes. Nous dęveloppons ensuite une approche multilingue à grande ęchelle pour les normaliser dans plusieurs langues. Enfin, pour composer ces entitęs simples en entitęs structuręes, nous proposons une nouvelle męthode basęe sur les cliques de mentions et les relations de portęe. Nous l'ęvaluons sur un nouveau corpus annotę de comptes rendus cliniques de mammographies.
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Introduction

Hospital clinical documents (e.g., hospitalization or consultation reports, nursing transmissions, discharge letters and prescriptions, or physicians' letters) constitute rich sources of information for various applications such as patient recruitment for clinical research, epidemiological surveillance, medical coding, and decision support tools (Wang et al., 2018c). These documents are primarily written in natural language, which helps to ensure completeness and accuracy of the information, accommodate special cases, and facilitate data entry. Indeed, it is estimated that more than 80% of hospital data are collected in the form of texts [START_REF] Raghavan | How essential are unstructured clinical narratives and information fusion to clinical trial recruitment? AMIA Joint Summits on Translational Science proceedings[END_REF]. Unfortunately, the free text format is not easily amenable to the use of standard computer processing programs. In contrast, structured representations increase the quality and reuse of patient data for clinical care (including decision support), clinical audit and research, medical coding for resource allocation, and health service planning. In health care facilities, efforts have been made to replace manual reports with forms that ensure structured representations. However, the descriptive needs of clinicians change over time, and it has been shown that the "additional remarks" fields tend to contain more and more information, reflecting a lack of flexibility in the forms [START_REF] Steichen | Maintenance of a computerized medical record form[END_REF]. Another approach, which is the one we are interested in in this thesis, is the automatic structuring of text documents. One of its main advantages is the possibility to modify the algorithm a posteriori without disrupting the activity of hospital practitioners. This discipline, commonly referred to as information extraction (IE) in natural language processing (NLP), encompasses many research areas.

Structuring Structuring is the process of transforming a free text sample into an organized view of the information it contains. The sample text can be a single sentence, a paragraph, an entire report, or even a patient record containing multiple reports. These structured representations can take different forms, as illustrated in Figure 1.1. In the case of classification, we can assign each sample a unique label from a predefined list, such as the type of report or the gender of a patient, or a yes/no answer to a question. Multi-label classification allows samples to be classified with multiple labels, such as the report type and a cancer risk score and biomedical domains. The advent of machine learning, especially deep learning, has come with the promise of describing a task with examples from which to generalize rather than building hand-crafted domain-and language-specific rules. These methods have gained an immense popularity and demonstrated their superiority in a wide range of domains. However, with the possibilities of these methods has come a ravenous appetite for annotated data: many modern learning methods fall into the category of fully supervised learning, i.e. they require the creation of an annotated dataset (by human experts) to allow the training of a model that can then be applied on new data. The time cost of annotating documents and the high annotation requirements of deep learning approaches represent a barrier to automating information extraction. However, in many cases, there exist auxiliary medical knowledge resources, such as terminologies, that are not in the form of annotated examples. Efficiently injecting this knowledge into learning models is still under active research. The annotation process itself is also far from trivial, as designing a scheme that reconciles simplicity, expressiveness and consistency is a challenge in itself.

French clinical language processing

The difficulties related NLP are numerous. Indeed, natural language is subject to semantic and syntactic ambiguities. As any written document, a clinical report may contain spelling mistakes, grammatical errors, or even contradictions. In addition, the computerization of these reports and their conversion from and to PDF can introduce artifacts that are difficult for computers to handle. Apart from these "errors," understanding the natural language in clinical reports requires common sense and background medical knowledge. It is common to encounter terms that are not part of the resources provided to the machine, despite the considerable number of synonyms in many terminologies. When developing models, especially in the clinical domain, specific formulations such as elliptical conjunctions and hierarchical segmentation of relationships must also be taken into account. Despite recent improvements in natural language models, machine understanding of language, let alone of clinical documents in French, is still far from being solved. English has many more processing tools and terminology resources than other languages, and not all English approaches are directly transposable to French. Moreover, although there is much work in French on general domain texts, the biomedical domain is still lagging behind [START_REF] Nęvęol | Clinical Natural Language Processing in languages other than English: opportunities and challenges[END_REF]. As an example, despite being the 5th most represented language in the 2019 version in the UMLS terminology, French has synonyms for only 3.5% of its concepts. Therefore, an important aspect of this work is the development of methods for clinical NLP in French.

A case study

In this thesis, we will address the task of structuring radiology reports (Chapter 5). Solving this task involves the various research topics mentioned above. This study, approved by the institutional review board at APHP (CSE 190022), is part of the EZMammo project, which main objective is to optimize the clinical data-warehouse of the Assistance Publique des Hopitaux de Paris (APHP) and validate the predictions of a deep learning imaging algorithm on mammograms. A preliminary task of this evaluation is to build a dataset of mammograms labelled with the cancer diagnosis and the lesions found in the corresponding reports. In the case of suspicious lesions, the radiological examination is followed by a cytological analysis. We must then match the findings of both reports to label the original mammogram with the definitive diagnosis. This processing entails the ability to extract medical entities (procedures, scores, lesions) and spatial, temporal, and morphological features. Using these extractions, we can filter and align the results between radiological images, mammography reports, and anatomo-pathology reports. The target entities are composed of multiple labels and multiple textual parts. Thus, they fall into the category of structured entities. This structured entity extraction task involves multiple subtasks, namely named entity extraction to locate object mentions and their characteristics, normalization to finely label them, and composition of these mentions to construct structured entities.

Research questions

A first line of questioning arises from the problems related to structured representations. Simple entity extraction and normalization may not be sufficient to adequately represent the information present in a clinical report. Therefore, which structure is better suited to the extraction of information in the clinical domain? In the case of structured entities, how do we model a system to group the different parts of the same entity? More generally, in the case of both simple and structured entities, what challenges are encountered when these entities overlap, and what methods can be used to overcome them?

Our second series of questions comes from the language domain itself. Since English is the predominant language of NLP research, can we build NLP for languages other than English, such as French? A subsidiary question arises: when few resources are available in languages other than English, as in the case of normalization, is it still possible to apply learning models to these languages?

Finally, our last question comes from the requirement of annotated data in deep learning. Since the cost of annotating medical documents is high, what techniques can be implemented to train deep learning algorithms in the low-data regime?

Contributions

To answer the previous research questions, we present the following contributions related to steps 1 , 2 and 3 in Figure 1.1. Our works on named entity recognition and structured entity recognition introduce multiple methods to handle the extraction of overlapping entities. In the case of simple entity recognition, we show that sequence labelling methods are better suited for the extraction of long and ambiguously annotated entities. In the case of structured 1.3 Outline entities, we introduce the concept of mention cliques to compose structured overlapping entities, as well as a new mechanism of relation prediction with mention scopes.

We also address the issue of training models in languages other than English. We evaluate all of our models on French datasets and develop a new annotated corpus of clinical radiology reports. We also demonstrate the benefit of training with multiple languages jointly in the case of medical concept normalization.

Finally, in the low-data regime, we showcase multiple techniques to inject external medical knowledge into the training of learning-based algorithms, while alleviating the need for language or domain specific pre-processing methods. In the context of radiological entity extraction, we show that the hybridization of a set of output constraints, a terminology and a learning-based method enables our method to be effective with few annotated reports.

Outline

We structure our work in four main chapters and our work can be summarized by these three verbs: tag, normalize and compose.

-The first chapter contextualizes our objectives by focusing on computer text representation, which is transversal to most NLP tasks.

-In the second chapter, we propose two methods to extract simple overlapping named entities (tag 1 ) and evaluate our method on medical-and general-domain datasets, in English and French.

-In the third chapter, we address the problem of normalization (normalize 2 ) of medical terms in languages with low terminology coverage, and propose a normalization algorithm using supervised or distantly supervised learning.

-In the fourth chapter, we focus on the issue of extracting structured entities (compose 3 ) in clinical reports. In particular, we design an annotation scheme and present a new structured entity dataset of annotated clinical radiology reports. We also propose a method to extract these structured entities and evaluate it on the dataset.

Finally, we close this thesis with several research perspectives in the last chapter.

Published work

The material presented in Chapter 3 is based on three publications, one at the 2021 AIME conference [START_REF] Wajsbürt | Effect of Depth Order on Iterative Nested Named Entity Recognition Models[END_REF] and two as part of the TALN-DEFT challenge, dedicated to the analysis of clinical cases in French in 2019 [START_REF] Wajsbürt | Participation de l'ęquipe du LIMICS à DEFT 2020[END_REF] and 2021 [START_REF] Gęrardin | Classification multilabel de concepts mędicaux pour l'identification du profil clinique du patient (Multilabel classification of medical concepts for patient's clinical profile identification[END_REF]. The material presented in Chapter 4 is based on a journal article in JBI (Wajsbürt et al., 2021a). The material presented in Chapter 5 has not been published yet.

Chapter 2

Background

Contents

To introduce the objectives of extraction and normalization of simple or structured entities, we must first introduce the recent developments in computer representation of text, which are transversal to many NLP tasks.

We will then discuss the work that has been done on simple entity extraction in texts, and the issues that remain. This task is an essential sub-task of text processing for many information retrieval applications, and as such constitutes a preliminary step for both the normalization of medical entities and the composition of structured entities.

Once these simple entities have been extracted, we will address the issue of their normalization, a topic that aims at improving the interoperability of systems that use these extractions.

Finally, we will consider the specific issue of structured entities, focusing on the case of breast imaging reports. We will make the connection between our objective and various existing NLP tasks studied in order to better define it.

Computer representations of text

Semantic representations of text in computing have been the subject of several decades of studies. This line of research aims at producing representations of words or characters that are globally "useful" for downstream NLP tasks. This encompasses several topics such as text segmentation, robustness to spelling errors or application to new contexts, domains or languages in order to improve the generalizability and robustness of downstream NLP models.

We will focus on some aspects of these developments, which are transversal to all NLP disciplines, and thus to the topics addressed in this thesis.

Textual units

In order to be processed by computers, texts must first be broken down into small units called tokens. This splitting affects the generalizability of a system, since a never-beforeseen sample can be treated as a composition of several previously observed subsamples. For example, if a model has learned to detect "breast cancer", and "lung melanoma", it could be able to generalize to "breast melanoma" by splitting the phrase into words.

Words

The granularity of the splitting is thus often set intuitively by splitting the sentences word by word. This splitting also affects the outputs produced by the system. Indeed, a named entity recognition system will not be able to predict an entity stopping in the middle of a word if the splitting is done around the words.

Characters It is also possible to segment the text into character n-grams. For example, the word "melanoma" could be split into multiple sub-strings of arbitrary size "mel", "ela", "ano", etc. Some efforts have also been made to represent the text character by character. These systems lend themselves well to morpho-syntactically rich languages and enable the representation of rarer words. For "breast melanoma", this segmentation would produce the sequence "b r e a s t _ m e l a n o m a" Subwords More recent works [START_REF] Kudo | Subword regularization: Improving neural network translation models with multiple subword candidates[END_REF][START_REF] Sennrich | Neural machine translation of rare words with subword units[END_REF][START_REF] Wu | Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation[END_REF] have introduced sub-words as the main processing units. These segmentation techniques split words such that every generated subword is part of a given limited vocabulary (between 30,000 and 100,000 words most of the time). They solve the problem of rare and unseen words, while keeping a balance between the size of the vocabulary and the size of the tokenized sequence. An example of subwords sequence would be "breast mela_ noma".

Terminologies and hand-engineered features

Hand-engineered features

After segmenting the text into units, each of these units is commonly mapped to a set of features. Features can be described as numerical characteristics associated with each textual unit, and can be integer, boolean or real.

Early NLP methods relied on word case, punctuation, presence of digits, morphological properties such as affixes or suffixes, or Part Of Speech (POS) labeling, among others. For example, the word "Apple" has an uppercase feature of 1, a POS verb feature of 0, and a contains-digit feature of 0, and could therefore be represented by the vector [1,[START_REF] Jain | RadGraph: Extracting Clinical Entities and Relations from Radiology Reports[END_REF][START_REF] Jain | RadGraph: Extracting Clinical Entities and Relations from Radiology Reports[END_REF]. Interested readers can refer to [START_REF] Nadeau | A survey of named entity recognition and classification[END_REF] for a more detailled review of such features.

Terminologies and term lists

Early NLP systems made extensive use of terminologies. These terminologies can be described as dictionaries in which a variety of expressions are represented according to different characteristics. The expression "breast melanoma" can thus be associated with an identifier (ex: CUI C0346787 in the UMLS) a label (Disease) or other features useful to a downstream system. The search for these entities in the texts was then mainly done by exact match, or distance calculation between pieces of text and terminological entries at the word or character level. In particular, this step was commonly part of the preprocessing stage of early systems, rather than an objective itself. The matched entries could then either be used as inputs to decision systems, or be converted into features for further processing of the text sample. Other features could be derived from the word themselves. 

Modern input features

Word embeddings

A word embedding is a set of real features associated to a word and computed by machine learning on a set of tasks. This term is also used to denote embeddings of sub-words embeddings when a different tokenization algorithm is used, as mentioned in Section 2.1.1. Word embeddings were introduced to the NLP community by [START_REF] Collobert | A unified architecture for natural language processing[END_REF] and have become the de facto standard for analyzing text with machine learning. It is not clear what the exact meaning of any of these features is, but it is commonly assumed that they capture the implicit semantics of words. Word embeddings can be learned from scratch, or computed from morphological features using character embeddings for instance [START_REF] Akbik | Contextual string embeddings for sequence labeling[END_REF][START_REF] Bojanowski | Enriching Word Vectors with Subword Information[END_REF][START_REF] El Boukkouri | CharacterBERT: Reconciling ELMo and BERT for Word-Level Open-Vocabulary Representations From Characters[END_REF][START_REF] Klein | Named entity recognition with character-level models[END_REF][START_REF] Peters | Deep contextualized word representations[END_REF].

This term is typically used in the context of neural networks. However, in modern NLP systems, it is often not clear which part of a model is responsible of text representation and which one is responsible for the specific task that is being addressed. We will assume that a word embedding refer to any representation that we can map to the original tokenized sequence. A model can therefore produce multiple word embeddings for the same word, for example by focusing on different characteristics. For instance, in the BERT model, the multiple embeddings are assumed to represent increasingly refined versions of the initial embedding and some studies have shown that word embeddings of lower layers in a language model encode more local syntax while higher layers capture more complex semantics [START_REF] Tenney | BERT Rediscovers the Classical NLP Pipeline[END_REF].

These features are then combined through a set of operations that compose the different layers of a neural network. An exhaustive review of the different types of layers is beyond the scope of this thesis but we will list a few standard components of these systems. Most of these transformations are built upon feed forward networks that allow non-linear transformations in the feature space.

Convolutional neural networks

Convolutional neural networks [START_REF] Krizhevsky | ImageNet Classification with Deep Convolutional Neural Networks[END_REF] operate as transformations on small sliding windows of words (or images). They are best suited for local pattern detection. They have been used for text classification [START_REF] Kim | Convolutional neural networks for sentence classification[END_REF], NER [START_REF] Collobert | Natural language processing (almost) from scratch[END_REF], normalization [START_REF] Li | CNN-based ranking for biomedical entity normalization[END_REF][START_REF] Limsopatham | Normalising medical concepts in social media texts by learning semantic representation[END_REF], as well as character-level pattern extraction [START_REF] Klein | Named entity recognition with character-level models[END_REF].
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Recurrent neural networks

Recurrent neural networks, in particular Long Short Term Memory networks (LSTM) [START_REF] Hochreiter | Long Short-Term Memory[END_REF], work as continuous state machines that process each word of a text successively by updating an internal memory. The LSTM cell uses a forget gate and an input gate to store, retrieve and overwrite a memory state which allows it to better "remember" the previously processed tokens on longer ranges. There also exists other variants like Gated Recurrent Units [START_REF] Dey | Gate-variants of Gated Recurrent Unit (GRU) neural networks[END_REF]. These networks are generally slower than CNNs but are well suited to sequences and the detection of patterns involving a particular ordering of words or interactions over a longer distance.

Attention

The attention mecanism [START_REF] Bahdanau | Learning to Compute Word Embeddings On the Fly[END_REF][START_REF] Vaswani | Attention is all you need[END_REF] operates as a fuzzy search mechanism in a list of embeddings. Each word in the text computes two "key" and "value" vectors, and a "query" can be performed by computing a weighted sum of the word values and a similarity score between their key and the query vector. This mechanism is useful for modelling long-distance interactions, or for samples without a specific order (like graphs) and is nowadays at the core of many deep learning models.

Pretrained representations

The idea of learning textual representations before specializing them on a specific task has acquired a considerable popularity since the last decade. These representations have in common that they are the result of optimizations of a representation model on large corpora of texts. However, they differ in the architecture of the pre-trained models, the granularity of the textual units and the learning objectives of the pre-training.

Static word embeddings

Training the input word embeddings through auxiliary tasks such as language modelling has been a crucial step to enable their use in neural networks [START_REF] Collobert | A unified architecture for natural language processing[END_REF][START_REF] Collobert | Natural language processing (almost) from scratch[END_REF][START_REF] Mikolov | Efficient estimation of word representations in vector space[END_REF][START_REF] Turian | Word representations: A simple and general method for semi-supervised learning[END_REF]. The specific pre-training task of language modelling on a large corpus was introduced as Word2Vec by [START_REF] Mikolov | Efficient estimation of word representations in vector space[END_REF], followed by GLOVE [START_REF] Pennington | GloVe: Global Vectors for Word Representation[END_REF]. The language modelling objective builds on the idea that "a word is characterized by the company it keeps" [START_REF] Firth | A synopsis of linguistic theory 1930-55[END_REF][START_REF] Harris | Distributional Structure. Distributional Structure[END_REF]. This was pinned as the distributional Hypothesis by [START_REF] Sahlgren | The distributional hypothesis[END_REF] and more thoroughly studied as distributional semantics [START_REF] Baroni | Distributional memory: A general framework for corpus-based semantics[END_REF][START_REF] Turney | From frequency to meaning: Vector space models of semantics[END_REF]. Other variants such as FastText [START_REF] Bojanowski | Enriching Word Vectors with Subword Information[END_REF] build their word representations from character n-grams and have become a popular solution for representing previously unseen words.

However, these embeddings do not take into account the context of the word when used in a new sentence. This can severely limit their usefulness in some cases, such as representing homonyms (does "bear" refer to the animal or the verb?), or referent words like pronouns.

Contextualized word embeddings

The ELMO contextualized word embeddings [START_REF] Peters | Deep contextualized word representations[END_REF] improved static word embeddings by pretraining a full deep recurrent language model and using the hidden representations as features for downstream tasks. It was followed by the BERT model [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF] with the masked language modelling objective. Many variants have since been designed, either modifying the model and its training [START_REF] Clark | ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators[END_REF][START_REF] Dong | Unified language model pre-training for natural language understanding and generation[END_REF][START_REF] Kong | A Mutual Information Maximization Perspective of Language Representation Learning[END_REF][START_REF] Liu | RoBERTa: A Robustly Optimized BERT Pretraining Approach[END_REF][START_REF] Yang | XLNet: Generalized autoregressive pretraining for language understanding[END_REF], or the pre-training corpus domain (Beltagy et al., 2020a;[START_REF] Lee | BioBERT: A pretrained biomedical language representation model for biomedical text mining[END_REF][START_REF] Martin | CamemBERT: a Tasty French Language Model[END_REF][START_REF] Ruder | Unsupervised Cross-Lingual Representation Learning[END_REF]. A comprehensive review of this research field can be found in [START_REF] Qiu | Pre-trained models for natural language processing: A survey[END_REF]. It is worth mentioning that the HuggingFace library [START_REF] Wolf | Transformers: State-of-the-Art Natural Language Processing[END_REF] contributed to the popularity of these models by simplifying their implementation and sharing.

Large language models

Recently, a paradigm shift has been brought by deep autoregressive language models. Several information extraction tasks can in some cases be written in text format through a question and an expected answer. The answer can then be binary, multiple choices or open. For example, a classification task sample could be represented as "Is the following text about NLP? Image classification has known many successes since CNNs. Answer: no". Similarly, a NER task sample could be written as "Extract the different locations mentioned in this text: I moved to London in 2000 before returning to Paris a year later. Answer: London, Paris". It has been shown that language models pre-trained on large amounts of text can correctly complete these questions with the most likely answers [START_REF] Lewis | BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension[END_REF][START_REF] Radford | Improving Language Understanding by Generative Pre-Training[END_REF][START_REF] Radford | Language Models are Unsupervised Multitask Learners[END_REF][START_REF] Raffel | Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer[END_REF], sometimes with relatively few task-specific examples [START_REF] Brown | Language models are few-shot learners[END_REF]. Thus, the entire pre-trained model serves as a common backbone for various tasks, without the necessity of redesigning a specific architecture for each. Although these models hold much hope and promise, their enormous size, the biases associated with their training, and the potential abuses surrounding their use raise many ethical questions [START_REF] Bender | On the dangers of stochastic parrots: Can language models be too big?[END_REF].

Named entity recognition

The term "named entity" emerged during the MUC program in the early 1990s. Formally, a named entity is characterized by a textual beginning and end, and a possible type. While earlier efforts focused mainly on entities in the form of noun phrases, the task of entity recognition has evolved and now aims at extracting any entities, sometimes long and comprising several noun phrases or verbs. This task constitutes a cornerstone of information extraction tasks, as it allows the decomposition of a text into semantic units that can be more easily processed by a computer, and interpreted by a human [START_REF] Ehrmann | Les Entitęes Nommęes, de la linguistique au TAL : Statut thęorique et męthodes de dęsambiguïsation[END_REF].

To a lesser extent, variants of the task also allow disjoint entities (with gaps) and have been addressed by several works but we will not focus on this case in this section.

A notable difference between the different NER methods is their ability to extract overlapping entities. The overlapping NER problem is commonly referred to as "nested NER" or "overlapping NER". In contrast, the non-overlapping NER problem is referred to as "flat NER". The overlapping entities may be of different types, suggesting the use of several specialized models for each type. However, they can also be of the same type, which makes their extraction more difficult.

Proposed methods

Earlier works

The first published work that addressed the task of detecting entities in a text was the one of [START_REF] Rau | Extracting company names from text[END_REF]. The first NER systems relied heavily on handcrafted rules and various heuristics. As described in Section 2.1.2.1, these rules and heuristics used lexical functions, gazetteer lists, POS labels, and other handcrafted features. To address the ambiguity of the language and the need for annotation for similar terms, multiple methods performed an augmentation of the initially annotated data by building a set of context from their entities and building a set of candidate entities from their context. These gathered entities and contexts are turned into a set of heuristics and handcrafted rules to allow generalization. [START_REF] Brin | Extracting patterns and relations from the world wide web[END_REF] applies lexical rules to detect movie names in websites and complete the initial rules. [START_REF] Collins | Unsupervised Models for Named Entity Classification[END_REF] gather entities rules and context rules iteratively to recognize general domain entities, starting with a set of entities rules. [START_REF] Riloff | Learning dictionaries for information extraction by multi-level bootstrapping[END_REF] apply Mutual Bootstraping and perform these steps automatically, starting from a set of candidates. The formal work of [START_REF] Lin | Automatic retrieval and clustering of similar words[END_REF] on language distributionality is used by [START_REF] Paşca | Organizing and searching the World Wide Web of facts -Step one: The que-million fact extraction challenge[END_REF] to produce a set of similar words to further augment the entity rules and context rules. [START_REF] Alfonseca | An Unsupervised Method for General Named Entity Recognition and Automated Concept Discovery[END_REF] use the WordNet graph [START_REF] Miller | Introduction to wordnet: An on-line lexical database[END_REF] to define seeds by listing the most frequent co-occurrences between the nodes and the target entity class. They subsequently use the graph children to generate candidates entities. [START_REF] Etzioni | Unsupervised named-entity extraction from the Web: An experimental study[END_REF] use web queries similarity defined as Pointwise Mutual Information and Information Retrieval (PMI-IR) by [START_REF] Turney | Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL[END_REF] to define the similarity between candidates and contexts. [START_REF] Ramshaw | Text Chunking Using Transformation-Based Learning[END_REF] have formally cast the NER task as a word classification problem. Until recently, most machine learning systems have approached the problem using this formulation. In sequence labelling NER, each word is assigned a single tag (or label) describing its relative position in an noun phrase and the produced tag sequence can be parsed to recover noun phrase entities. The first tag schemes were IOB or IOE variants in which each word is classified as being (I)nside an entity, (O)utside an entity, at the (B)eginning of an entity or at the (E)nd of an entity. When dealing with multiple entity types, these scheme use specific tags for each entity. The (O)utside tag is shared and represent the absence of any entity of any type at a given position. The IBES tags are declined as I-A, B-A, E-A, S-A where A refers to a given entity type. This prevent the system from producing multiple non O tags at a given position, and therefore impose the flatness of the produced solution. [START_REF] Ratinov | Design challenges and misconceptions in named entity recognition[END_REF] further study the BIOUL (or equivalently IOBES) tag scheme and find that it obtains the best performance of the CoNLL dataset. This scheme encodes the end of entities and single words entities with specific tags E and S1 .

Sequence labelling systems

Supervised methods such as Random Forest and chain graphs became an topic of growing interest in NER since 1997. These models were often given a list of handcrafted features about each word of a sequence, and learned to predict if a word was part of an entity as well as the entity type: Hidden Markov Models (HMM) [START_REF] Bikel | Nymble[END_REF], Decision Trees [START_REF] Sekine | NYU: Description of the Japanese NE system used for MET-2[END_REF], Maximum Entropy Models (ME) [START_REF] Borthwick | Exploiting Diverse Knowledge Sources via Maximum Entropy in Named Entity Recognition[END_REF], Support Vector Machines (SVM) [START_REF] Asahara | Japanese Named Entity extraction with redundant morphological analysis[END_REF], and linear chain Conditional Random Fields (CRF) [START_REF] Mccallum | Early results for named entity recognition with conditional random fields, feature induction and web-enhanced lexicons[END_REF]. The latter model was introduced by [START_REF] Lafferty | Conditional random fields: Probabilistic models for segmenting and labeling sequence data[END_REF] and is still used as a building block of modern systems. Deep neural networks were introduced to the NER task by [START_REF] Collobert | A unified architecture for natural language processing[END_REF], as they developed a deep neural network to jointly learn NER and other tasks such as language modelling. Since then, sequence labeling NER systems have essentially evolved with advances in deep learning representations. [START_REF] Huang | Bidirectional LSTM-CRF Models for Sequence Tagging[END_REF] incorporated LSTMs in the design of their system. [START_REF] Klein | Named entity recognition with character-level models[END_REF] proposed a character CNN encoding of the words. [START_REF] Lample | Neural Architectures for Named Entity Recognition[END_REF] improved their system in various ways and propsosed a LSTM based character word embedding. As [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF]; [START_REF] Peters | Deep contextualized word representations[END_REF] proposed contextualized embeddings, they improved the performance of NER systems significantly as a result. However, these systems only focused on flat NER.

Nested NER via iterative sequence labelling

The GENIA corpus [START_REF] Kim | GENIA corpus -A semantically annotated corpus for bio-textmining[END_REF] led to the first work focusing on nested NER [START_REF] Gu | Recognizing nested named entities in GENIA corpus[END_REF][START_REF] Shen | Effective adaptation of a Hidden Markov Model-based named entity recognizer for biomedical domain[END_REF][START_REF] Zhang | Enhancing HMM-based biomedical named entity recognition by studying special phenomena[END_REF][START_REF] Zhou | Recognizing names in biomedical texts: a machine learning approach[END_REF][START_REF] Zhou | Recognizing names in biomedical texts using mutual information independence model and SVM plus sigmoid[END_REF], mainly involving focusing on either the outermost or innermost entities in a sentence, or specific entity types.

Since 2018, nested named entity recognition has been the subject of renewed attention in the biomedical NLP community, leading to many different approaches. [START_REF] Alex | Recognising nested named entities in biomedical text[END_REF] study multiple problem transformations to frame the nested NER task as cascaded flat NER tasks, each focusing on either a specific nesting level, or a specific label. However, their approach did not model overlapping entities of the same type. [START_REF] Ju | A Neural Layered Model for Nested Named Entity Recognition[END_REF] designs a layered architecture that predicts entities at each layer and merges the word representations before applying the next layer. [START_REF] Fisher | Merge and Label: A Novel Neural Network Architecture for Nested NER[END_REF] uses a fixed number of layers and updates spans representations using a novel neural architecture. Shibuya and Hovy (2020) compute tag scores for each word and decode the spans by applying the Viterbi algorithm multiple times on a previously extracted subsequence, starting from the full sentence.

Nested NER via non linear tag sequences

Another approach is to create a hypergraph of the words in the sentence, such that it captures the structure of the overlapping entities. [START_REF] Finkel | Nested named entity recognition[END_REF] model the nested NER task as a constituency parsing graph extraction. Their approach could extract nested entities of the same type, at the cost of expensive computations and the need for Part-of-Speech (POS) features. Some methods model the span detection with hypergraphs to account for the non-linear structure of the tag sequences. Lu and Roth (2015) design a CRF hyper-graph with various node types to model entity types and boundaries. However, cycles in the graphs of some samples required that the CRF normalization term had to be approximated, leading to a decreased performance [START_REF] Muis | Labeling Gaps Between Words: Recognizing Overlapping Mentions with Mention Separators[END_REF]. [START_REF] Muis | Labeling Gaps Between Words: Recognizing Overlapping Mentions with Mention Separators[END_REF] model the mention edges and transitions instead of solely modeling token tags. Their method, however, requires multiple graphs when there are more than one entity type. Alternatively, [START_REF] Katiyar | Nested Named Entity Recognition Revisited[END_REF] only model mention tags and not their transitions, but allows a multi-label prediction for each token. They modify an LSTM layer to represent multiple tags for a single word and perform decoding during the recurrent neural network execution.

Exhaustive NER systems

Another class of methods addresses the problem by enumerating all possible spans of the input sequence and classify each one with its label, including a "no entity" class. [START_REF] Sohrab | Deep Exhaustive Model for Nested Named Entity Recognition[END_REF] compute a representation for each span from its word embeddings and classify each entity. [START_REF] Xu | A local detection approach for named entity recognition and mention detection[END_REF] propose a similar model but consider the left and right context when classifying the spans. [START_REF] Wang | Pyramid: A Layered Model for Nested Named Entity Recognition[END_REF] use an LSTM cell [START_REF] Hochreiter | Long Short-Term Memory[END_REF] to model dependencies between spans that differ by one token. [START_REF] Zheng | A Boundary-aware Neural Model for Nested Named Entity Recognition[END_REF] first filters candidate mentions by predicting all possible start and end tokens and then predicting a label for every mention that starts or end at one of the boundaries. [START_REF] Luan | A general framework for information extraction using dynamic span graphs[END_REF] also enumerate and classify spans but allow them to communicate through a graph attention mechanism.

Recent works

There are several other formulations of the NER task that do not involve sequence labelling or exhaustive enumeration of entities. [START_REF] Tan | A Sequence-to-Set Network for Nested Named Entity Recognition[END_REF] redefine the task as a sequence-to-set problem and use a fixed number of entity slots where each slot fills in its start position, end position and label, or is classified as empty. Their method allows the prediction of any type of overlapping entities. [START_REF] Li | A Survey on Deep Learning for Named Entity Recognition[END_REF]; [START_REF] Mengge | Coarse-to-Fine Pretraining for Named Entity Recognition[END_REF] conceptualize the problem as a machine reading comprehension task. In their work, a pre-trained language model is prompted with a query such as "Find the organizations in this sentence: ", followed by the sentence. The start and end boundaries of the relevant entities are then extracted by classifying each representation in the sequence. Combined with transfer learning, these methods show promising results in predicting new entities types without having to annotate these types. De Cao et al. ( 2020) use a pretrained deep language model to rewrite the input sequence with markup tags indicating the beginning, end and label of the entities. However, they do not adapt their method to overlapping entities. Finally, [START_REF] Yan | A Unified Generative Framework for Various NER Subtasks[END_REF] propose the combination of the BART [START_REF] Lewis | BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension[END_REF] Seq2Seq model with a pointer mechanism to extract flat, nested and overlapping entities.

A word about object detection

The field of research aiming at segmenting and labeling objects in images has developed in parallel with the research on entity recognition in texts. It is hard not to see some similarities between these two tasks. An exhaustive review of the proposed systems is beyond the scope of this thesis, but we will quickly describe the convergences between these domains. Readers interested in object detection can refer to [START_REF] Guo | A review of semantic segmentation using deep neural networks[END_REF]; [START_REF] Zhao | Object Detection With Deep Learning: A Review[END_REF].

Image object segmentation aims at classifying the pixels of an image according to different types, and thus at reconstructing the objects from the labels associated with the image. Some earlier works of object segmentation were based on the notion of superpixels [START_REF] Felzenszwalb | Efficient Graph-Based Image Segmentation[END_REF], and the classification of each superpixel according to a label. Although it is much more complex, the initial superpixels segmentation is akin to the initial tokenization step in word processing, which consists of breaking down the sample to be processed into simpler units. Each superpixel is then represented by several features such as its size, color or relative position in the image, and then labeled by models such as HMM, CRF in order to take advantage of local interactions between the labels (a piece of grass is likely to be close to another piece of grass).

Another similar task aims at predicting the bounding box of different features in an image. An analogy to NER would be to think of the begin-end span as the bounding box of an entity.

Most models perform prediction in two steps: a first selection of possible regions of interest of an entity is performed, and then for each candidate a second model labels whether the entity is.

Some NER works have drawn inspiration from advances in object detection: Li (2021) employ a two-stage decoder similar to [START_REF] Ren | Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[END_REF]. They extracts region proposals and classify each region to either obtain a label or to choose not to predict it. The work of [START_REF] Tan | A Sequence-to-Set Network for Nested Named Entity Recognition[END_REF] builds on the system of [START_REF] Carion | Endto-End Object Detection with Transformers[END_REF] to transform the problem into a sequence-to-set prediction.

Annotated corpora

There are many NER corpora that vary according to different aspects such as the domain, the language, the overlap of the entities, their size or their type. We will use the GENIA [START_REF] Kim | GENIA corpus -A semantically annotated corpus for bio-textmining[END_REF], DEFT [START_REF] Cardon | Presentation of the DEFT 2020 Challenge : open domain textual similarity and precise information extraction from clinical cases. In Actes de la 6e confęrence conjointe Journęes d'Ętudes sur la Parole (JEP, 33e ędition)[END_REF]CONLL 2003 (English) [START_REF] Sang | Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition[END_REF] datasets for the experiments in this thesis. Statistics about these datasets can be found in Table 2.1

DEFT

The DEFT corpus contains 167 texts describing french clinical cases, including 67 for testing. The different types of entities are, on the one hand, pathologies and signs or symptoms (DEFT task 3.1), and on the other hand, anatomy, anatomy examinations, substances, doses, administration methods, treatments (surgical or medical), values, time (DEFT task 3.2). Named entities can nest up to 3 levels deep and two distinct entities of the same type can overlap. We used the provided train and test splits.

GENIA

The GENIA corpus contains 2000 MEDLINE abstracts, or 18546 sentences, including 1855 for testing. The annotations focus on transcription factors in human blood cells, and were named entities. Most evaluations follow [START_REF] Finkel | Nested named entity recognition[END_REF] and [START_REF] Liu | RoBERTa: A Robustly Optimized BERT Pretraining Approach[END_REF] and collapse all DNA subtypes into DNA, RNA subtypes into RNA, all protein subtypes into protein and kept cell line and cell type. Named entities can nest up to 4 levels and two distinct entities of the same type can overlap. We perform splits following [START_REF] Finkel | Nested named entity recognition[END_REF]: the last 10% of the sentences are used to test the model, the remaining 90% are the training set.

CONLL 2003

The shared task of CoNLL-2003 

Evaluation metrics 2.2.4.1 Precision and recall

The information retrieval systems are classically evaluated using three metrics: precision, recall and F1 measure. A system with a good recall but a low precision might be useful as a pre-filtering step of a larger sequential model. A system with a worse recall but a better precision might be useful when combined in parallel with other models.

What counts as a true positive ?

The outputs of a NER systems are triplets (begin, end, label). A common choice is to apply the precision, recall and F1-score measure metric on these triplets directly.

There are multiple options for what should be considered a correct prediction, or "true positive". The most common one is the "exact match" criteria: a predicted entity must share the exact same bounds and label as a gold entity to be counted as a true positive. Another useful criteria is the "approximate match" criteria: a predicted entity must share a certain fraction of words in common with a gold entity. Indeed, even when the bounds are not perfectly predicted, such as determinants, an entity might have enough words in common with a target entity to still be useful in downstream tasks.

We synthesize all the possible metrics with α, the minimum Dice coefficient between the words of the entities, or intuitively the fraction of words that two entities must have in common to be matched. In our experiments, we will use the "Exact" match metric, with α = 1 (bounds must batch exactly), the "Half" match metric with α = 0.5 (the number of correct words must be at least half the number of words in the target and predicted entity) and the "Any" match metric with α = ϵ+ > 0 (the target and predicted entity must have at least one word 

Medical entities normalization

Entity normalization (also called entity disambiguation, or entity linking) allows named entities to be linked to concept identifiers. The primary objective of this task is to represent key entities in a text (people, places, diseases, anatomical locations, etc.) by unique references, independent of variations in the form of these entities. This standardization improves the interoperability of the data and of the systems built to process these references.

The normalization problem is better known in the general domain as entity linking [START_REF] Sevgili | Neural Entity Linking: A Survey of Models based on Deep Learning[END_REF][START_REF] Shen | Entity linking with a knowledge base: Issues, techniques, and solutions[END_REF], but differs by the fact that the general domain annotated corpora can leverage larger annotated corpora such as Wikipedia. These make it possible to perform a single supervised training and rely on entity frequencies. However, in most cases, medical terminologies do not provide context nor accurate medical concept frequencies. As such, we will not cover entity linking in the general domain but rather the research done in the clinical and biomedical domain.

Terminologies

Concepts can be described by definitions, or most often a set of lexical variants called synonyms. These concept-synonym associations are collected in terminologies, which act as dictionaries and serve as bridges between medical document annotations and knowledge intensive applications. Terminologies can also be described as "oriented artifacts that relate the various senses or meanings of linguistic entities with each other" [START_REF] Freitas | Survey of current terminologies and ontologies in biology and medicine[END_REF]. Theses terminologies can additionally provide semantic information about hyperonymy (broader meaning), hyponymy (narrower meaning).

Many terminologies have been designed to normalize entities in various domains such as diseases [START_REF] Bramer | International statistical classification of diseases and related health problems -Tenth revision[END_REF][START_REF] Organization | International classification of diseases : [9th] ninth revision, basic tabulation list with alphabetic index[END_REF], genes [START_REF] Ashburner | Gene Ontology: tool for the unification of biology[END_REF] or general medical concepts [START_REF] Lipscomb | Medical Subject Headings (MeSH)[END_REF][START_REF] Spackman | SNOMED RT: a reference terminology for health care[END_REF] to name a few. Some unification efforts have been made to merge these different terminologies together and provide a unique and large resource for the bioinformatic community. Among them, the Unified Medical Language System [START_REF] Bodenreider | The Unified Medical Language System (UMLS): Integrating biomedical terminology[END_REF] is the most noteworthy. Therefore, most target vocabularies can nowadays be referred to as subsets of the UMLS. We will use the UMLS and Mantra terminologies to evaluate our normalization models, so we will describe them now.

UMLS

The Unified Medical Language System (UMLS) is a large terminology that unifies concepts from several dozen terminologies in the biomedical domain. Each concept in the UMLS is 2.3 Medical entities normalization 20 assigned a Concept Unique Identifier (CUI), a set of terms (or synonyms), possibly in multiple languages, and a semantic type. UMLS semantic types are grouped in 15 semantic groups and each concept is associated with one semantic group, with very few exceptions [START_REF] Mccray | Aggregating UMLS semantic types for reducing conceptual complexity[END_REF]. For example, "Eicosapentanoic acid" (concept C0000545) is in the chemical (CHEM) group, while "Accountant" (concept C0000937) is in the living beings (LIVB) group. The UMLS 2014AB version contained 5,772,518 synonyms for 2,528,878 concepts, while the 2019AB version contained 9,187,793 synonyms for 4,258,236 concepts.

Mantra

The Mantra terminology was developed at the same time as the MantraGSC dataset [START_REF] Kors | A multilingual gold-standard corpus for biomedical concept recognition: The Mantra GSC[END_REF] and contains a subset of the UMLS, consisting of all concepts from three terminologies: MeSH, SNOMED-CT, and the Medical Dictionary for Regulatory Activities (MedDRA). There are 3,164,910 synonyms for 591,918 concepts in five languages (English, Spanish, French, German and Dutch). The concepts were filtrered to only keep those that belong to one of the ten semantic groups Anatomy, Chemicals and drugs, Devices, Disorders, Geographic areas, Living beings, Objects, Phenomena, Physiology, and Procedures.

Non English terminologies

The UMLS terms are mostly in English. For all other languages, such as Japanese, Dutch or French, the number of terms was less than 5% of what is available for English in 2014. French is the 2nd (resp. 5th) most represented language in the 2014 (resp. 2019) version in the UMLS, but only 3.5% (resp. 3.6%) of the concepts have terms in French. Efforts have been made to improve this coverage by manual or automatic translation, or by mapping local terminologies, leading to more complete resources out of the official UMLS [START_REF] Delęger | A twofold strategy for translating a medical terminology into French[END_REF][START_REF] Grosjean | Health multi-terminology portal: a semantic added-value for patient safety[END_REF][START_REF] Marko | Towards a multilingual medical lexicon[END_REF][START_REF] Nęvęol | The Quaero French medical corpus: A ressource for medical entity recognition and normalization[END_REF][START_REF] Zweigenbaum | UMLF: a Unified Medical Lexicon for French[END_REF]. However, the gap is still significant, and this represents a real pitfall for the NLP systems in French, and more generally, in all languages other than English [START_REF] Nęvęol | Clinical Natural Language Processing in languages other than English: opportunities and challenges[END_REF].

Ontologies

Terminologies often complement ontologies. Ontologies express the semantic relations between different concepts through description logics. They allow decision systems to reason about individuals and their attributes, classes or relationships. The commonly accepted definition is that of [START_REF] Gruber | A translation approach to portable ontology specifications[END_REF] "An ontology is an explicit specification of a conceptualization. [...] A conceptualization is an abstract, simplified view of the world that we wish to represent for some purpose".

Reasoning from facts defined in ontologies can be done by different reasoners like Protege [START_REF] Musen | The Protęgę Project: A Look Back and a Look Forward[END_REF], using first-order formal logics. Reasoners and machine learning techniques are not exclusive. Efforts to integrate propositional logics into machine learning models have been made to improve predictions [START_REF] Deng | Large-scale object classification using label relation graphs[END_REF], and Markov Logic Networks have proven successful in making first-order logic reasoning more flexible [START_REF] Domingos | Markov logic: An interface layer for artificial intelligence[END_REF].

Proposed methods

Earlier works

Many earlier works are rule-based methods. These methods revolve around matching the entity to be normalized with one of the entries in the target dictionary, by comparing the form of the entities using a set of handcrafted rules, and make use of several common techniques.

A popular technique consists in expanding the lexical forms taken by a given entity or synonym [START_REF] Aubin | Improving Term Extraction with Terminological Resources[END_REF][START_REF] D'souza | Sieve-based entity linking for the biomedical domain[END_REF][START_REF] Golik | Improving term extraction with linguistic analysis in the biomedical domain[END_REF][START_REF] Hanisch | ProMiner: Rulebased protein and gene entity recognition[END_REF][START_REF] Jonnagaddala | Improving the dictionary lookup approach for disease normalization using enhanced dictionary and query expansion[END_REF][START_REF] Schuemie | Peregrine: Lightweight gene name normalization by dictionary lookup[END_REF]. For example, a disease with many terms can be transformed into an acronym. Nouns can be made plural, or singular, or lemmatized, i.e. stripped of any grammatical variation as in [START_REF] Schuemie | Peregrine: Lightweight gene name normalization by dictionary lookup[END_REF]. For example, "painful" can be converted to "pain". These term augmentations can be applied on both entities and dictionary synonyms. There has also been efforts toward automatizing these term augmentations [START_REF] Ghiasvand | UWM: Disorder Mention Extraction from Clinical Text Using CRFs and Normalization Using Learned Edit Distance Patterns[END_REF][START_REF] Tsuruoka | Learning string similarity measures for gene/protein name dictionary look-up using logistic regression[END_REF].

Another common technique consists in combining different synonyms from the same or other terminologies to augment the target terminology [START_REF] Aronson | Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program[END_REF][START_REF] Aubin | Improving Term Extraction with Terminological Resources[END_REF][START_REF] Hanisch | ProMiner: Rulebased protein and gene entity recognition[END_REF][START_REF] Jonnagaddala | Improving the dictionary lookup approach for disease normalization using enhanced dictionary and query expansion[END_REF][START_REF] Kuo | BIOADI: A machine learning approach to identifying abbreviations and definitions in biological literature[END_REF]. For exemple, the word "eye" can be replaced by "occular" in many synonyms.

Once the entities and dictionary entries have been expanded, the matching step occurs. An entity and a synonym can be matched if they have the same form or only differ by a few words or characters. For example, the MetaMap system [START_REF] Aronson | Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program[END_REF] allows a synonym to become a candidate if is within a character distance of two of the entity. In the case where several synonyms can be matched to the entity, several filtering decisions can be made, based for example on the confirmed presence of one of the entities in the document as in D'Souza and Ng (2015); [START_REF] Hanisch | ProMiner: Rulebased protein and gene entity recognition[END_REF] or other features such as the reliability of the entry source [START_REF] Lee | An enhanced CRF-based system for disease name entity recognition and normalization on BioCreative V DNER Task[END_REF], or the semantic group of the annotated entity. These filtering steps can be cascaded until only one candidate is left as in the work of D'Souza and Ng (2015).

Machine learning approaches

Although many rules are still used in modern normalization systems, machine learning approaches have become increasingly important in the design of these models. Most of the proposed solutions generate a set of candidate synonyms (synonyms or concepts), and rank these candidates using a scoring model.

To represent entities and synonyms, some previous systems relied on TFIDF-like approaches at the word level [START_REF] Leaman | DNorm: Disease name normalization with pairwise learning to rank[END_REF][START_REF] Leaman | TaggerOne: Joint named entity recognition and normalization with semi-Markov Models[END_REF] or by taking a larger number of textual features [START_REF] Castano | A Machine Learning Approach to Clinical Terms Normalization[END_REF]. Simple word embedding sum approaches have been used successfully [START_REF] Castano | A Machine Learning Approach to Clinical Terms Normalization[END_REF]. Other recent systems use LSTMs [START_REF] Liu | A deep learning way for disease name representation and normalization[END_REF][START_REF] Phan | Robust representation learning of biomedical names[END_REF][START_REF] Tutubalina | Medical concept normalization in social media posts with recurrent neural networks[END_REF], CNNs [START_REF] Arbabi | Identifying clinical terms in medical text using ontology-guided machine learning[END_REF][START_REF] Deng | An ensemble CNN method for biomedical entity normalization[END_REF][START_REF] Li | BioCreative V CDR task corpus: a resource for chemical disease relation extraction[END_REF][START_REF] Luo | Multi-task medical concept normalization using multi-view convolutional neural network[END_REF][START_REF] Mondal | Medical Entity Linking using Triplet Network[END_REF], or BERT-like pre-trained Transformers [START_REF] Ji | BERT-based Ranking for Biomedical Entity Normalization[END_REF][START_REF] Sung | Biomedical Entity Representations with Synonym Marginalization[END_REF]. The comparison between the produced representations is often either computed from their a scalar product, cosine similarity or the Euclidean distance.

The proposed approaches fall into two categories: learning can be carried out on the similarity between the entity to be normalized and the synonyms in the dictionary, or on the similarity between the entity and the concepts directly.

Synonym similarity methods

The training objective of systems comparing entities and synonyms is not trivial. Indeed, multiple correct synonyms may exist for a given entity, and a multi-class classification style approach accepting only one solution is not appropriate. Most systems therefore rely on a ranking mechanism such as pair-wise learning to rank (PLTR) [START_REF] Huang | Recommending MeSH terms for annotating biomedical articles[END_REF][START_REF] Leaman | DNorm: Disease name normalization with pairwise learning to rank[END_REF][START_REF] Liu | A deep learning way for disease name representation and normalization[END_REF] in which a correct synonym should be given a higher score than a wrong one. Similarly, [START_REF] Mondal | Medical Entity Linking using Triplet Network[END_REF] use Triplet Networks [START_REF] Hoffer | Deep Metric Learning Using Triplet Network[END_REF] to rank candidate synonyms and [START_REF] Fakhraei | NSEEN: Neural Semantic Embedding for Entity Normalization[END_REF] uses Siamese Networks combined with contrastive loss. [START_REF] Tutubalina | Medical concept normalization in social media posts with recurrent neural networks[END_REF] propose a method consisting in keeping only the highest similarity score among the synonyms of a concept, and training the model with the cross-entropy classification loss. Finally, [START_REF] Sung | Biomedical Entity Representations with Synonym Marginalization[END_REF] propose to marginalize the positive synonyms, i.e. by maximizing the sum of the probabilities of the correct candidates using a cross-entropy classification loss.

Concept similarity methods Methods in the second category compare entities and concept representations. It is then necessary to generate a representation for each concept, which can be done in a more or less explicit fashion. [START_REF] Tutubalina | Medical concept normalization in social media posts with recurrent neural networks[END_REF] suggests representing a concept as a concatenation of its synonyms, then performing a standard classification. [START_REF] Wright | NormCo: Deep Disease Normalization for Biomedical Knowledge Base Construction[END_REF] obtains concept embeddings through simple optimization of a classification objective. Hierarchical links between concepts have also been used to improve concept representations [START_REF] Arbabi | Identifying clinical terms in medical text using ontology-guided machine learning[END_REF][START_REF] Ferrę | Combining rule-based and embedding-based approaches to normalize textual entities with an ontology[END_REF][START_REF] Ferrę | Representation of complex terms in a vector space structured by an ontology for a normalization task[END_REF]. Finally, some efforts toward learning the interactions of concepts in a given sentence have been made by [START_REF] Wright | NormCo: Deep Disease Normalization for Biomedical Knowledge Base Construction[END_REF].

However, these learning methods were only evaluated on medium sized terminologies containing between 2000 and 160000 concepts, and to our knowledge no machine learning only method has been applied on larger terminologies.

Non English approaches

The normalization of medical entities in languages other than English has so far relied mainly on the translation of English synonyms into the target language [START_REF] Afzal | Biomedical concept recognition in French text using automatic translation of English terms[END_REF][START_REF] Cabot | Retrieving Clinical and Omic Data from Electronic Health Records[END_REF], or conversely, the translation of entities into English [START_REF] Chiaramello | Use of "offthe-shelf " information extraction algorithms in clinical informatics: A feasibility study of MetaMap annotation of Italian medical notes[END_REF][START_REF] Perez | Cross-lingual semantic annotation of biomedical literature: Experiments in Spanish and English[END_REF][START_REF] Roller | Cross-lingual candidate search for biomedical concept normalization[END_REF]. These systems use processing existing rule based indexers like MetaMap [START_REF] Aronson | Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program[END_REF] to perform the synonym search, and web-service or local based translation systems [START_REF] Jiang | WI-ENRE in CLEF eHealth Evaluation Lab 2015: Clinical named entity recognition based on CRF[END_REF]. In constrast, we chose to design and evaluate an auto-sufficient deep neural network classifier with few to no preprocessing of the input named entities.

A word about person identification

Similarly to how some analogies can be drawn between NER and object detection in images, medical entity normalization can be related to person identification. Indeed, person identification (or face identification) is similar to medical normalization in terms of the very large number of target identities (concepts) and the small number of examples (synonyms) per identity.

Another similarity is the two types of approaches, aimed at either comparing pictures to each other (synonym similarity) [START_REF] Hermans | In Defense of the Triplet Loss for Person Re-Identification[END_REF], or the sample picture and a representation of the person's identity (concept similarity) [START_REF] Zhai | In defense of the classification loss for person re-identification[END_REF]. It is worth noting that since images are less amenable to rule-based processing, these methods cannot benefit from pre-filtering as commonly used in normalization and therefore rely essentially on machine learning models.

For instance, [START_REF] Mondal | Medical Entity Linking using Triplet Network[END_REF] used the same triplet networks architecture as [START_REF] Hoffer | Deep Metric Learning Using Triplet Network[END_REF] to learn a distance between the entity (image sample) and possible synonyms (reference images) to match.

Annotated corpora

There exists multiple datasets in medical English and other languages that normalize different types of entities using different terminologies [START_REF] Dogan | An inference method for disease name normalization[END_REF][START_REF] Kors | A multilingual gold-standard corpus for biomedical concept recognition: The Mantra GSC[END_REF][START_REF] Li | BioCreative V CDR task corpus: a resource for chemical disease relation extraction[END_REF]. We review the Quaero and Mantra corpus that have been used to evaluate the method proposed in Chapter 4.

Quaero

The Quaero FrenchMed corpus [START_REF] Nęvęol | The Quaero French medical corpus: A ressource for medical entity recognition and normalization[END_REF] consists of two sets of textual documents in French, annotated with concept CUIs from the 2014AB version of the UMLS:

-Titles of research articles indexed in the MEDLINE database -Information on marketed drugs from the European Medicines Agency (EMEA) Unlike other normalization corpora such as NCBI [START_REF] Doǧan | NCBI disease corpus: A resource for disease name recognition and concept normalization[END_REF] or BC5CDR Li et al. (2016), the annotated concepts were not limited to vocabularies such as MeSH or MEDIC. However, they were limited to 10 of the 15 UMLS semantic groups. There are two different versions of these corpora. The first version, that we call EMEA 2015 and Medline 2015, was used for the CLEF eHealth evaluation lab in 2015, a challenge for NER and concept normalization. The organizers proposed a training set and a test set for this task. In 2016, a new challenge was organized; the 2015 test set was released as a development set, and a new test set was annotated, leading to a larger corpus containing the previous one.

Mantra

The Mantra corpus [START_REF] Kors | A multilingual gold-standard corpus for biomedical concept recognition: The Mantra GSC[END_REF] consists of 1450 sentences, annotated with concepts from the Mantra terminology. The annotated documents are in English, Spanish, French, German and Dutch, and consists of -Titles of research articles indexed in the MEDLINE database -Information on marketed drugs from the European Medicines Agency (EMEA) -EPO patents Many of the texts are translations from each others, so the corpus actually contains 550 unique sentences regardless of the language. Unlike the Quaero corpus, entities were not annotated with their semantic group. Most importantly, there are no training documents as the corpus only contains evaluation samples.

Evaluation metrics

The normalization tasks is commonly evaluated using the standard retrieval metrics, namely precision, recall and F1-score, at the entity level. Some studies [START_REF] Leaman | DNorm: Disease name normalization with pairwise learning to rank[END_REF] also evaluate the performance of the normalization system at the document level: the predicted concepts for all entities are aggregated and evaluated by precision/recall/F1-score for each document, and the resulting scores are finally averaged for all documents to obtain the performance at the corpus level.

These two metrics can be identified by the prefix "micro-averaging" for the entity-level evaluation, and "macro-averaging" for the document-level evaluation. Micro-averaging treats every entity as a unit, regardless of the length of the document in which it occurs. In this work, we will only evaluate our methods using the micro-averaging metrics.

Structured entities extraction
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Structured entities extraction

We define here structured entities as pieces of related information composed of several fields. Each of the fields should, when possible, be justified by a textual mention in order to ensure the transparency of the model and to allow the traceability of predictions in the original document. As we will see, the extraction of information from breast imaging reports lends itself well to this concept. In the rest of this section, we will mostly focus on radiological entities, and relate our task to existing information extraction tasks.

Breast imaging reports: a case study

Breast imaging reports consist of unstructured text written or dictated by a physician. The reports contain multiple measurements, observations, and remarks regarding the patient's condition, including history, potential lesions and their progression, diagnostic procedures performed, such as mammography or ultrasound, and an assessment of the need for further testing in case of suspicious findings. Figure 2.1 shows the English translation of a fictitious but plausible report.

Entities

As in other radiology disciplines, the American College of Radiography (ACR) has proposed a set of guidelines to facilitate research and clinical follow-up of patients. The ACR BIRADS [START_REF] Liberman | Breast imaging reporting and data system (BI-RADS)[END_REF] proposes a standardized lexicon and classification system for breast mammography, ultrasound and MRI. It also recommends a certain organization of reports and the structure of the evaluation. This set of guidelines allows radiologists to communicate results to the referring physician in a clear and consistent manner.

The reported lesions can be described with multiple attributes such as:

-their shape, density and margin The composition of the breast is graded from 1 to 4 according to the percentage of glandular tissue in the breast:

-type 1: the breast is almost entirely fatty -type 2: there are scattered areas of fibroglandular density -type 3: the breasts have a heterogeneous density, which can mask small masses -type 4: the breasts are extremely dense (homogeneous density).

There are also references to diagnostic or therapeutic procedures, which can be past, future or at the time of the visit. These procedures can be characterized by:

-their type: mammography, ultrasound, surgery, chemotherapy, etc -their anatomical location (breast or other) -their laterality -the possible quadrant -their temporality

Report structure

The reports usually include a brief history of the patient's condition, personal or family history of cancer, and previous visits, followed by observations and findings. Noteworthy findings are often summarized in a conclusion. These reports are often organized in a semistructured manner, with nested sections. However, due in part to conversions between text reports and their PDF edition, this structure is not consistently applied and can be modified throughout the text. This makes the division into sentences and sections far from trivial. Finally, for the sake of brevity, physicians sometimes factorize their findings. These linguistic forms, also known as elliptic coordinations or elliptic enumerations, result in overlapping structured entities:

-There are small millimeter-sized microcalcifications in the right and left breast -Two lesions are observed in the right breast, measuring 6mm in the UIQ at 3cm from the nipple and 5mm in the LIQ at 2cm. -The left upper inner quadrant contains multiple cysts measuring 6mm and 5mm.

Structured entities representation

Our objective is to extract different types of entities, as well as attributes qualifying them. These entities should be easily storable and searchable in a database, but also interpretable by locating the zones of a report that mentions them. A certain structure can be found in the elements listed in Section 2.4.1, namely the presence of a mention indicating the existence of a procedure, a lesion or a grade, and different attributes specifying each object, such as its nature, location or temporality. A useful representation is the one of frames. Frame semantics were introduced by [START_REF] Fillmore | Frame semantics[END_REF], and popularized by the FrameNet project [START_REF] Baker | The Berkeley FrameNet Project[END_REF]. A frame is a schematic representation of a situation involving various participants, or conceptual roles. A frame is structured around a "lexical-unit" (or trigger), and composed of "attributes" (or arguments or roles). Each piece of information about a particular frame is held in a slot. As such, the frames are comparable to slices in our representation. As such, we can see frames as key/value tables, on which we add justifications of each field when possible. However, in the example "Right breast: a small nodule of 8mm that was previously measured at 1cm" the object ("nodule") is described at several points in its existence and is characterized by a change in its size. A simple key/value list as in the table 2.2 which would list each feature would not be able to properly capture this attribute change over time, and each field would require to be specified (e.g. size → size_now and size_before) to be disambiguated. The process of adding new attributes to better match the representation, known as reification, adds to the complexity of the schema and thus may hinder its generalizability.

field value justification organ breast "breast" clock position ∅ ∅ quadrant ∅ ∅ size 8mm "8cm" size 10mm
"1cm" temp during exam ∅ temp before exam "previously" Table 2.2 Example of a flattened key/value representation of a structured entity Another ontological formalism has been studied by [START_REF] Burek | Ontology patterns for the representation of quality changes of cells in time[END_REF]; [START_REF] Sider | Four-Dimensionalism[END_REF] and suggests introducing another dimension to the representation to represent "slices". We could draw inspiration from these works and model objects by a set of slices as in Table 2 This representation dilemma arises frequently and is intrinsically linked to the granularity of representations. Thus, it can also be found when describing spatial extensions, for example in the case of a tumor covering several quadrants: "Breast tumor extending on the upper-outer and lower-outer right quadrants" which could be described using two spatial slices as in Table 2 

NLP for cancer and radiology

The extraction of structured information from medical reports has been the subject of many studies. Likewise, many methods have been developed to automatically extract one or more radiological features from clinical reports. Most of these works are not specific to breast imaging reports. Moreover, the extraction objectives vary greatly, in terms of their scope, granularity and form. We will start by focusing on the existing research on radiology reports. Interested readers can refer to existing surveys on the state of NLP in radiology reports [START_REF] Bitterman | Clinical Natural Language Processing for Radiation Oncology: A Review and Practical Primer[END_REF][START_REF] Miwa | Comparable study of event extraction in newswire and biomedical domains[END_REF].

Several works are only concerned with the extraction of a few report-level attributes, and therefore view the task as a classification or term extraction task in EHR for items such as BIRADS scores, histological grade or primary site of lesions [START_REF] Alawad | Coarse-to-fine multi-task training of convolutional neural networks for automated information extraction from cancer pathology reports[END_REF][START_REF] Castro | Automated annotation and classification of BI-RADS assessment from radiology reports[END_REF][START_REF] He | Deep learning analytics for diagnostic support of breast cancer disease management[END_REF][START_REF] Moore | Using Natural Language Processing to Extract Abnormal Results from Cancer Screening Reports[END_REF][START_REF] Qiu | Deep Learning for Automated Extraction of Primary Sites from Cancer Pathology Reports[END_REF]. Other features have also been the subject of specialized systems such as locations (Datta et al., 2020a). An extensive survey of the different systems proposed for different features was conducted by [START_REF] Datta | A frame semantic overview of NLP-based information extraction for cancer-related EHR notes[END_REF].

Other works have sought to produce a more detailed and global extraction, and to detect several types of entities at the same time. The earliest work was the one of [START_REF] Taira | Automatic structuring of radiology free-text reports[END_REF], who proposed a frame based representation and method for annotating abnormal findings, anatomy, and medical procedures frames in radiology reports. [START_REF] Lacson | Evaluation of an Automated Information Extraction Tool for Imaging Data Elements to Populate a Breast Cancer Screening Registry[END_REF] used a rule-based system and terminologies to extract abnormal findings and BIRADS scores. The DeepPhe system was proposed by [START_REF] Savova | DeepPhe: A natural language processing system for extracting cancer phenotypes from clinical records[END_REF] as a fully integrated software built on cTakes [START_REF] Savova | Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications[END_REF] to extracts document and patient level cancer summaries (akin to frames) in clinical reports. [START_REF] Steinkamp | Toward Complete Structured Information Extraction from Radiology Reports Using Machine Learning[END_REF] proposed a fact-based scheme, in which each fact is structured around an anchor (such as "cyst") and may contain modifiers (its size, laterality). However, their model is limited by the assumption that all the elements that characterize an entity need to be adjacent inside the fact span. [START_REF] Sugimoto | Extracting clinical terms from radiology reports with deep learning[END_REF] annotated multiple types of named entities and relations in Japanese chest CT reports but only trained a NER system on their dataset. The facts, anchors and modifiers are then detected by a NER system.

Several methods decompose the problem into two subtasks: named entity detection and relation detection. Unlike [START_REF] Steinkamp | Toward Complete Structured Information Extraction from Radiology Reports Using Machine Learning[END_REF], the relation detection step allows arguments to be distant. [START_REF] Roberts | A framenet for cancer information in clinical narratives: Schema and annotation[END_REF] proposed a frame based scheme for annotating cancer information in clinical reports and a method to perform the prediction [START_REF] Si | A Frame-Based NLP System for Cancer-Related Information Extraction[END_REF]. Their method first extracts triggers and modifiers with a NER system, and predicts their relations to form frames. However, their method make the assumption that there is no overlap between the different entities in a text sample, and therefore does not address the problem of factorizations. Recently, a more complex scheme has been proposed by [START_REF] Jain | RadGraph: Extracting Clinical Entities and Relations from Radiology Reports[END_REF] to annotate nested relationships between different entities. However, these work do not specifically address the case of complex or distant relations between entities.

Related tasks

Our objective of extracting structured entities can be related to four other tasks in different fields of NLP namely slot filling, event extraction, attribute prediction and discontinuous NER.

Slot filling

Structured entity extraction can be related to the intent detection and slot filling tasks, also know as semantic role labeling. This task is closely related to the frame semantics formalism. Most often, it is paired with the intent detection task, which consists in detecting the nature of a textual request made by a user. The slot filling task it-self is concerned with detecting the different relevant attributes that compose this request. For example in the query: "What are the flights from London to Paris this Saturday?" the system must detect that the intent is "flight information" if not provided already, and fill the different slots:

-TO: London -FROM: Paris -DAY: this Saturday -TIME: ∅ Most systems turn the task into a named entity extraction, and fill the appropriate slots with the extractions. A comprehensive review of the proposed approaches has been done recently by [START_REF] Weld | A survey of joint intent detection and slot-filling models in natural language understanding[END_REF]. Most often, however, it is assumed that each utterance contains only one intent, which is often not the case [START_REF] Gangadharaiah | Joint multiple intent detection and slot labeling for goal-oriented dialog[END_REF]. There has been relatively limited research on slot filling and multiple intent detection Gangadharaiah and Narayanaswamy (2019); [START_REF] Qin | AGIF: An Adaptive Graph-Interactive Framework for Joint Multiple Intent Detection and Slot Filling[END_REF]. Moreover, among these works, it is assumed that the different intents are of different types. This can be a concern if the user requests information about several flights at the same time for example:

"What are the flights from London to Paris this Saturday, and from Paris to London the following Saturday?"

Only one intent type would be detected (flight info), and several slots (London, Paris, Paris, London, Saturday, next Saturday) would conflict in the composition of the entities to extract.

Event extraction

Another similar task is the extraction of events in texts. Events in linguistics are most often understood as actions, or situations whose existence is marked by a "trigger" expression (e.g. a verb), and specified by several arguments.

While the ACE event extraction task is focuses on action-like events, the BioNLP shared task datasets are more concerned with interactions between different biomedical entities, where the notion of action is less prominent. As an example: "The translocation of the b67 induced by ..."

We can then identify:

-the "regulation" trigger: "induced" -the "cause" argument: ... -the "theme" argument: b67 Event extraction tasks are divided into two categories: closed world event extraction and open world event extraction. Closed-world event extraction assumes that one already has knowledge of the event pattern (e.g. the "attack" pattern in ACE) while open-world event extraction assumes no predefined pattern as in TDT. Thus, the notion of entity in our problem matches a closed world event extraction problem.

Many efforts have been made to address the problem and there are several reviews of the proposed solutions in the general and biomedical domains [START_REF] Miwa | Comparable study of event extraction in newswire and biomedical domains[END_REF][START_REF] Xiang | A Survey of Event Extraction from Text[END_REF]. A common approach to this task is to first detect the trigger and argument entities, then to predict the relations between them, and finally to detect event modifiers (e.g. negation) and optionally to filter the predicted events. Most works make the assumption that the named entities are already extracted, but the integration of the entire pipeline into a single architecture combined with multi-task learning has shown promising results in recent works [START_REF] Nguyen | One for all: Neural joint modeling of entities and events[END_REF][START_REF] Trieu | Deep-EventMine: End-to-end neural nested event extraction from biomedical texts[END_REF].

Discontinous named entity recognition

The task of recognizing discontinuous named entities can be interesting as well, as it aims at extracting named entities composed of several segments (or holes in an equivalent way). Several methods have been proposed. [START_REF] Metke | Concept Identification and Normalisation for Adverse Drug Event Discovery in Medical Forums[END_REF]; [START_REF] Tang | Recognizing Continuous and Discontinuous Adverse Drug Reaction Mentions from Social Media Using LSTM-CRF[END_REF][START_REF] Tang | Recognizing and encoding disorder concepts in clinical text using machine learning and vector space model[END_REF] propose augmenting sequence tagging techniques with new tags. Lu and Roth (2015); Muis and Lu (2017) construct a complex hypergraph of words. [START_REF] Dai | An Effective Transition-based Model for Discontinuous NER[END_REF] address the problem using transition model. [START_REF] Wang | Combining Spans into Entities: A Neural Two-Stage Approach for Recognizing Discontiguous Entities[END_REF] transform the problem into a two stages detection: the first one aims at extracting the fragments (or spans) that will compose the entities, and the second one aims at filtering by a classifier among all the possible combinations of these spans which are valid. More recently [START_REF] Li | A Span-Based Model for Joint Overlapped and Discontinuous Named Entity Recognition[END_REF] has also proposed a two stages approach, but detects the combinations of entities by generating a tree between the different segments.

However, this task makes the assumption that all segments of a discontinuous entity are of the same type, which is not our case, and focuses essentially on segments that are close to each other. Moreover, the number of segments is usually limited, e.g., 3 in SemEval 2014 [START_REF] Pradhan | SemEval-2014 Task 7: Analysis of Clinical Text[END_REF], which allows enumeration of possible combinations unlike our case.

Public annotated corpora

Several datasets have been developed and made publicly available for information extraction from radiology reports. RadCore [START_REF] Hassanpour | Information extraction from multi-institutional radiology reports[END_REF]) is a multi-institutional database of radiology reports that contains named entity annotations. However, it does not relate these named entities together. PadChest [START_REF] Bustos | PadChest: A large chest x-ray image dataset with multi-label annotated reports[END_REF] contains chest radiographs associated with reports labeled according to different radiographic findings, diagnoses, and anatomical locations. [START_REF] Datta | Rad-SpatialNet: A Frame-based Resource for Fine-Grained Spatial Relations in Radiology Reports[END_REF] annotated 2000 chest radiology reports with named entities of spatial location, observation, and several relationships linking them. Recently [START_REF] Jain | RadGraph: Extracting Clinical Entities and Relations from Radiology Reports[END_REF] released RadGraph which consists of 600 annotated chest radiology reports with spatial location and observation entities following a finer grained scheme than [START_REF] Datta | Rad-SpatialNet: A Frame-based Resource for Fine-Grained Spatial Relations in Radiology Reports[END_REF].

However, clinical reports in these datasets are relatively short and straightforward, with no deep imbrication in their structure. As a result, relations between named entities are mostly found at the sentence level, and not at the document level. Moreover, to our knowledge, there are no datasets consisting of French radiography reports, let alone breast radiography.

Conclusion

In this chapter, we have discussed the background regarding the three levels of retrieval that interest us in this thesis, namely NER, entity normalization, and structured entities. The following chapters present our work in these three areas. In this chapter, we study the named entity recognition task, and more precisely, the nested named entity recognition task. As we will see in this chapter, tagging-based NER methods, i.e., based on token classification, have attractive properties for pipeline systems and noisy data sets. However, it remains a challenge to adapt these models to overlapping entities. To this end, we propose two supervised approaches using neural networks. The first approach uses an auto-regressive tagging model, which iteratively predicts non-overlapping entities in a sentence. The second method is based on a tagging model combined with an exhaustive scoring model.

We will study the impact of input word features on the model's performance and whether a broader context can improve prediction performance when using pretrained contextualized embeddings. We will also study whether the order of the entities impacts the performance of the auto-regressive model. We study the contribution of tagging prediction for the combined model and the gain over an exhaustive scoring model alone. Finally, we will describe a method to improve the performance of each model by ensembling.

The remainder of this chapter is organized as follows. In Section 3.1, we will describe the datasets that we use in our experiments. In Section 3.2, we will describe the preprocessing of the inputs and the features used by our models. We will present a first model, the autoregressive decoder, in Section 3.3, and a second model, the biaffine tagger decoder, in Section 3.4. We present the experiments n Section 3.6, and the discuss the results in Section 3.7. Finally, we close this chapter by a conclusion 3.8.

The source code for the models described in this Chapter is available at the following URL: https://github. com/percevalw/nlstruct.

Data

In this chapter, we conduct experiments on the two medical named entity datasets DEFT [START_REF] Cardon | Presentation of the DEFT 2020 Challenge : open domain textual similarity and precise information extraction from clinical cases. In Actes de la 6e confęrence conjointe Journęes d'Ętudes sur la Parole (JEP, 33e ędition)[END_REF] and GENIA [START_REF] Kim | GENIA corpus -A semantically annotated corpus for bio-textmining[END_REF] and the English subset of the a general named entity dataset CoNLL 2003 [START_REF] Sang | Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition[END_REF]. These datasets have been presented in more detail in Section 2.2.3.

In each cases, we split the training data into 80% for training the model and 20% for the development (validation) set, and train the final model on both the training and development sets.

Text encoding
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We have noticed that different versions of the GENIA dataset have been used to evaluate the NER systems. In particular, one of the versions used by [START_REF] Yu | Named Entity Recognition as Dependency Parsing[END_REF], [START_REF] Shen | Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition[END_REF] and [START_REF] Tan | A Sequence-to-Set Network for Nested Named Entity Recognition[END_REF] is pre-tokenized in a way that benefit the performance of NER systems (some words are sometimes merged with neighboring punctuations like "-induced," but this is not consistent across samples).

Text encoding

We start by describing the model used to generate features for each word of the input sequence. These features will then be used by different decoders to produce named entities.

Preprocessing

Sentence segmentation For long documents, it is common first to perform a sentence segmentation. This step has three objectives. The first is to reduce the size of the samples provided to the model in order to reduce the memory impact and speed up the prediction.These effects are all the more important as the models involve operations of quadratic complexity in the size of the sentences.

The second objective is to improve the gradients computed by the model. Indeed, once the corpus is divided into sentences and mixed, each batch can contain more varied samples and lead to less biased gradients. Finally, the presence or absence of an entity in a sentence is generally considered not to depend on the content of the other sentences, or only to a small extent. This hypothesized invariance suggests that we first segment and shuffle the corpus.

Tokenization Our models use two tokenization methods. The first one is the most intuitive and extracts each word from the sentence. We also consider each punctuation as a token in itself. The second tokenization method is the one used by BERT and splits each previously extracted word into subwords [START_REF] Wu | Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation[END_REF]. In the rest of this chapter, we will refer to these subwords as "wordpieces." For each sample, we align the words and wordpieces to jointly use models that operate with each of these tokenization methods.

Features

In our models, the text is encoded as words embeddings in two steps. In the first step, we gather embeddings from various models that we either learn, finetune or leave intact. These word embeddings are then concatenated and forwarded through a multi-layer highway bidirectional LSTM. We describe the overall architecture of the text encoder in Figure 3.1.

Auto-regressive decoder
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Recurrent contextualization

All of the previously mentioned representations are concatenated and fed to a bidirectional multi-layer LSTM. The LSTM cell can model local interactions well, which fits our problem since entities often span a few words, and words relevant to the type or boundaries of an entity are often found inside or close to the expression. The output of each layer passes through a sigmoid residual gate, and the output of the last layer composes the word features used by our decoders.

Auto-regressive decoder

We detail here a first model that handles nested named entity recognition through an autoregressive mechanism. The prediction occurs in multiple steps. At each step, the bidirectional multi-layer LSTM receives the contextualized embeddings and a list of previously predicted entities (empty list at the first iteration) and produces a list of new entities. The entities predicted at each iteration do not overlap, but all the entities predicted at the end may overlap. This model can be seen as similar to the earlier cascaded model of [START_REF] Alex | Recognising nested named entities in biomedical text[END_REF], but uses a single decoder applied iteratively on the sentence, and is able to recognize overlapping entities of the same label. Figure 3.2 illustrates the architecture of this decoder.

Architecture

The main component of the decoder is a CRF [START_REF] Lafferty | Conditional random fields: Probabilistic models for segmenting and labeling sequence data[END_REF] layer that predicts entities through a multi-type tag scheme (BIOUL or BIO 1 ). This multi-type tag scheme can only represent flat entities, which means that the decoder only predicts non overlapping entities at each step. The decoder starts from an empty sequence, in the sense that no entity has already been predicted, and tags each word according to the tag scheme. The sequence of tags is converted into a list of (begin, end, label) entities and added to the set of predicted entities. The decoder repeats this process until no more entities are predicted.

At each step, we need to encode the information about the previously predicted entities to prevent the model from predicting these entities again. We choose to encode each entity as a list of tags on the words that it spans. These tags are embedded into a multidimensional vector space and concatenated with the input features for a given word. In this model, each word is therefore represented by its BERT, FastText and char CNN embeddings, as well as a tag embedding that encodes the entities that were already predicted at the position. This allows the model to reason about what parts of the sentence may still contain other entities.

When multiple previous entities cover the same words, we reduce the tag embeddings at a given position by summing them together. We encode these previous entities in the form of 1. BIO stands for Begin, Inside, Outside and BIOUL for Begin, Inside, Outside, Unary and Last 3.6 Experiments 44

Experiments

We evaluate our models on the DEFT, GENIA and CoNLL datasets. We also perform additional experiments through ablations for the encoder and decoder components on the DEFT and GENIA corpora.

Experimental setup

We run each experiment with 6 different seeds (except for the Ensemble model) and present the average scores. By default, we report the precision, recall and F1 score of the exact metric, and the relaxed half metric corresponds to the retrieval metric where two entities are counted as matching when their word Dice overlap score exceeds 0.5 (see Appendix A). For each model, we optimize the parameters with the Adam optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] without weight decay., over 4000 steps when finetuning BERT and 20000 steps when BERT is frozen. We use two learning rates: the first learning rate, that applies to the pretrained Transformer weights, is initialized at 5 × 10 -5 and follows a linear schedule with a 10% warmup, while the second learning rate, for the other parameters, is initialized at 1 × 10 -3 and follows a linear decay schedule with no warmup. We selected the hyperparameters by grid search on the development set and trained on both the training and development splits for the GENIA and DEFT datasets. The main hyperparameters are summarized in Table 3.1.

Word features

We initialize the Transformer with CamemBERT [START_REF] Martin | CamemBERT: a Tasty French Language Model[END_REF] weights for DEFT and BioBERT [START_REF] Lee | BioBERT: A pretrained biomedical language representation model for biomedical text mining[END_REF] for GENIA and English BERT [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF] for CoNLL. We used large (1024) cased versions of these models for our experiments on the test set, and base (768) cased versions of these models for other experiments on the validation set. When finetuning the BERT encoder, we apply Dropout [START_REF] Srivastava | Dropout: A simple way to prevent neural networks from overfitting[END_REF] with a probability of 0.1 in the Transformer layers. Conversely, when the BERT encoder is frozen, no dropout is applied on it. Training is much faster in this setup because the generated embeddings can be cached and reused between epochs. The character embeddings of the character CNN have a size of 50, and are fed to 3 kernels of size 3, 4 and 5. The FastText embeddings are the standard English FastText version for the models trained on CoNLL and GENIA, and the French version for DEFT. The BiLSTM is composed of 3 layers and Dropout is applied on each layer output with a rate of 0.4.

Biaffine tagger

The BiTag model bound embeddings size is either 64 for DEFT and 150 for the other models. This distinction was made because of the number of labels that is higher in DEFT (10 labels) than in the other datasets.

Autoregressive model

We set the initial observation rate at 0.1. This means that during training, around 10% of the entities are already labelled as predicted, regardless of the autoregressive training order. Following the experiments on the DEFT and GENIA validation sets, we used the short-to-large strategy for the DEFT dataset and the large-to-short strategy for the GENIA dataset. For datasets, such as CoNLL, that does not contain any overlapping features, these three strategies are equivalent.

Ensemble models

We evaluate the performance of our ensembling method for each decoder, by training 3 instance of the same model with different seeds, and ensembling these three models using the procedure of Section 3. 

Baselines and ablations

We provide the reported results for several published models in each dataset. Some recent models [START_REF] Shen | Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition[END_REF][START_REF] Tan | A Sequence-to-Set Network for Nested Named Entity Recognition[END_REF][START_REF] Yu | Named Entity Recognition as Dependency Parsing[END_REF] were not included in the GENIA comparison (Table 3.2) as they use a non-standard version of the dataset. We compare our methods against the reported results of these works in Table 3.3, on the modified GENIA dataset. We also provide a close re-implementation of the method of [START_REF] Yu | Named Entity Recognition as Dependency Parsing[END_REF] by removing the sequence labelling component from our model, under the name "Biaffine-only". The main differences between the two implementations are that we finetune the pretrained BERT while they freeze it, and that they perform "document contextualization" by re-running a full BERT model for each word of the sentence with a sliding window of size 512, instead of running BERT once for each sentence in our case.

Finally, we provide the performance of the Hugging Face NER re-implementation of [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF] (BERT followed by a softmax layer) under the name "BERT + softmax" for each dataset. This model was trained for 4000 steps with the same pretrained weights as our models on a CoNLL formatted (one label per word with the BIO tag scheme) version of each dataset, as preprocessed by the ann2conll.py script of the Github BRAT tools, and the results were exported to the BRAT standoff format for the evaluation.

Input features

We perform several feature ablations on the BiTag model.

We study the effect of the BERT document context. More specifically, we only compute the BERT embeddings by running the Transformer on the tokens in the sentence. In contrast, when using Document Context, the neighboring words of a sentence are added as context to the input sequence when running the Transformer.

We also ablate the character CNN representations and the FastText embeddings to estimate the contribution of these features.

Finally, we change the word pooling strategy with the BiTag decoder. Specifically, we evaluate three modes: the "first" mode uses the embedding of the first wordpiece of a word as the word embedding, the "last" mode uses the embedding of the last wordpiece, and the "mean" mode computes the unweighted average of the wordpiece embeddings for each word.

Autoregressive model

We study the effect of the autoregressive order on the model performance. We compare three modes: top to bottom, bottom to top, and greedy decoding. These modes differ when choosing between two overlapping entities as to which one the model should first predict.

In the top to bottom mode, we always choose the larger entity first. After learning with this mode, the model should first focus on the large entities and detect smaller ones later.

In bottom to top mode, between two overlapping entities, we always choose the smaller entity first. After learning with this mode, the model should output the small entities first and detect larger entities later.

Finally, we let the model choose the mentions in greedy decoding mode by first selecting the mention with the highest model confidence score. In this setup, the model should output the easiest entities first and the more complex entities later.

Biaffine tagger model

We remove the tagger decoder while keeping the biaffine module, such that our decoder is only composed of the biaffine module. This model should be equivalent to the one of [START_REF] Yu | Named Entity Recognition as Dependency Parsing[END_REF].

Results and discussion

Main results

The results of our systems and the baselines are presented in Tables 3.2, 3.4 and 3.5. On the GENIA dataset (see Table 3.2), the proposed BiTag model (with finetuning) obtains the exact F1 score of 78.4 and the ensemble model obtains the F1 score of 79.1. The Autoregressive model obtains a score of 78.3 and its ensemble version reaches 79.0. This is slightly below the reported state-of-the-art results.

An interesting finding comes from the relaxed half metrics, as we observe that exact metric is not always adequate to discriminate between two models. Indeed, for the GENIA dataset, the biaffine tagger and Biaffine-only models obtain very close exact F1 scores (78.4 vs 78.5). However, the BiTag model performs better the biaffine model by +0.5 pt on the relaxed half F1 score. We will expand further on this aspect in Section 3.7.3. Finetuning also shows a greater effect on the half F1 metric (+1.1 pt) than on the exact metric (+0.3 pt 3.2 GENIA test performance. ˙indicates that the method also uses Flair embeddings [START_REF] Akbik | Contextual string embeddings for sequence labeling[END_REF]. Some recent models [START_REF] Shen | Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition[END_REF][START_REF] Tan | A Sequence-to-Set Network for Nested Named Entity Recognition[END_REF][START_REF] Yu | Named Entity Recognition as Dependency Parsing[END_REF] were not included in this table, as they use a non-standard version of the dataset.

On the CoNLL English dataset (see Table 3.4), the BiTag model obtains a F1 score of 93.1, and the Autoregressive model obtains a score of 93.0, slightly below the reported state of the art models with the same features. The ensemble versions of each model obtain 93.6 and 93.4 F1 respectively, gaining respectively +0.5 pt for the Autoregressive model, and +0.3 pt for the BiTag model in comparison. The differences between half and exact metrics are much smaller, and all of our models perform broadly on par with each other.

The results of our systems and the baselines are presented in Tables 3.2, 3.4 and 3.5.

On the GENIA dataset (see Table 3.2), the proposed BiTag model (with finetuning) obtains the exact F1 score of 78.4 and the ensemble model obtains the F1 score of 79.1. The Autoregressive model obtains a score of 78.3 and its ensemble version reaches 79.0. This is slightly below the reported state-of-the-art results.
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An interesting finding comes from the relaxed half metrics, as we observe that exact metric is not always adequate to discriminate between two models. Indeed, for the GENIA dataset, the biaffine tagger and Biaffine-only models obtain very close exact F1 scores (78.4 vs 78.5). However, the BiTag model performs better the biaffine model by +0.5 pt on the relaxed half F1 score. We will expand further on this aspect in Section 3.7.3. Finetuning also shows a greater effect on the half F1 metric (+1.1 pt) than on the exact metric (+0.3 pt For reference, we also provide the results of our model on the modified GENIA dataset in Table 3.3. Regarding the Exact F1 performance, the models seem to perform on par with each other and the recent models of [START_REF] Shen | Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition[END_REF]; [START_REF] Tan | A Sequence-to-Set Network for Nested Named Entity Recognition[END_REF]; [START_REF] Yu | Named Entity Recognition as Dependency Parsing[END_REF]. However, regarding the relaxed Half F1 measure, both BiTag models (with and without finetuning) outperform the Biaffine-only model by an average of 0 
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The ensemble BiTag model reaches 78.5 on the 3.1 task and 68.6 on the 3.2 task. We observe that the different models have a large variance on the strict F1 score, and a lower one on the relaxed half F1 score, and that the relaxed score is almost 10 pt higher than the strict one. This could be explained by a high noise in the entities boundaries annotation. The discrepancy between the exact F1 score and the half F1 score is even stronger in this case: the BiTag model gains "only" +0.8 pt on the exact metric, but +2.2 pt on the half metric in comparison to the Biaffine-only model.

For each data set, we observe that the BERT + softmax model performs worse. On the CoNLL dataset, it reaches a score of 91.1 Exact F1, below the reported results of (Devlin et al., 2019) (92.8). This difference might be caused by a difference between the hyperparameters selections (we used the default hyperparameters of the Hugging Face run_ner.py script), or the fact that we did not set a maximum sequence size that can affect the outputs of the commonly used seqeval tool. The performance gap with this baseline much larger on the other datasets containing nested entities, between 15 and 25pt on GENIA and DEFT, which is due to the impossibility of predicting overlapping entities using a multi-class BIO tag scheme.

The better results of the ensemble models on each dataset confirm the common idea that ensembling is an effective way to boost the performance of a model. Similarly, finetuning the BERT model seems to improve the performance of the models to varying degrees depending on the domain and language. Overall, the gaps in performance between the two proposed models (BiTag and Autoregressive) are slim, despite the differences in design between each. This could be explained by the fact that each model is based on a sequence-labelling mechanism, and this suggests that features have a more important role, since they are the same in both our proposed models.

Auto-regressive model ablations

Tag scheme

We analyze the performance of two common tag schemes: BIO (Begin, Inside, Outside) and BIOUL (BIO with Unary and Last tags) to encode observed (i.e. previously predicted) entities. Results can be found in Table 3.6. As a decoding scheme, the BIOUL tag scheme shows better overall results than the BIO scheme. This conclusion is similar to what others [START_REF] Lample | Neural Architectures for Named Entity Recognition[END_REF][START_REF] Ratinov | Design challenges and misconceptions in named entity recognition[END_REF] have observed for flat named entity recognition. Moreover, as an encoding scheme, that is to encode previously predicted entities as features to the subsquent prediction steps, the BIOUL "encoding" tag scheme's also shows better results. Overall, we conclude that a linear representation of entities as a tag sequence benefits from the added expressiveness of the BIOUL scheme.
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BIO encoding BIOUL encoding BIO decoding 70.1 71.3 BIOUL decoding 70.5 71.6 Table 3.6 Performance of the BIO and BIOUL reading and writing tag schemes on the DEFT validation dataset.

Autoregressive learning order

From Table 3.7 we can observe that the short-to-large training order obtains the highest performance on the DEFT validation splits, but the large-to-short depth training order obtains the highest performance on the GENIA dataset. We did not reach the same conclusion in a previous work [START_REF] Wajsbürt | Effect of Depth Order on Iterative Nested Named Entity Recognition Models[END_REF] using a variant of the model architecture for which we observed that the short-to-large strategy obtained the best result on both datasets. On the DEFT dataset, where entities can be quite long, we hypothesize that learning to detect the smallest, and often easier, entities first leads the model to learn how to compose new entities from small entities. On the other hand, learning to predict large, and often more difficult, mentions first, must lead the model to overfit on these large mentions and fail to recover smaller nested mentions when the largest ones are wrongly predicted. On the GENIA dataset, the large-to-short strategy might perform better due to the different average size of entities. These inconsistent observations between the two datasets could therefore indicate differences in entities distribution between each of them and/or highlight an excessive sensitivity of the autoregressive model to these differences 

Biaffine-tagger model ablation

We remove the tagger component of the biaffine tagger model and only rely on the biaffine scorer to extract spans. We evaluate the effect of this ablation on the DEFT and GENIA validation datasets. In this setup, the model is similar to the one of [START_REF] Yu | Named Entity Recognition as Dependency Parsing[END_REF], with the exception of the BERT embedding computation, for which we did not replicate their expensive sliding window mechanism with a stride of 1. On the DEFT validation dataset, the strict performance is not significantly affected and increases by +0. 73.3 (+1.9) 82.4 (+1.5) 78.9 (+0.0) 84.5 (+0.0) Table 3.8 F1 score of the ablation experiments on the DEFT and GENIA validation datasets for the Biaffine Tagger. Every experiment was averaged on 6 different seeds on the GENIA validation dataset. However, the effect on half performance is significant as the model loses -1.7 pt on the DEFT dataset and -1.0 pt on the GENIA dataset.

This type of discrepancy can be explained by the presence of entities with ill-defined bounds. The tagger model confidently labels words inside an entity where there is little ambiguity and hesitates on entity boundaries for such entities. On the contrary, the Biaffineonly model is likely to give too low a score to each pair of start/end bounds and predict no entity. Both models fail to predict the entity exactly, but the tagger model predicts some of its words. It may be more valuable for downstream tasks (like the model of Chapter 5) to predict imperfect entities sometimes than perfect entities or nothing.

Features ablations

Document context

We remove the "Document Context" described in Section 3.2.2 and evaluate the model on the GENIA and DEFT validation sets. From Table 3.8, we can see that the document context contributes a lot to the performance of the model and removing it leads to -0.7 pt loss on the DEFT exact metric and -0.3 pt loss on the GENIA exact metric. In this setup, each sentence is contextualized on both sides. We hypothesize that this contextualization benefits the model because BERT has been pre-trained with large sentences (between 128 and 512 tokens), and therefore should have a better representation power for tokens in long sentences.

Character embeddings

We ablate the character embeddings features and observe from Table 3.8 that these features have a positive effect on the performance for exact and half metrics, and contribute to up to +0.4 pt of the exact performance on the DEFT dataset and +0.1 pt on the GENIA dataset. Sub-word embeddings have been shown to perform poorly on tasks that require a reasoning on the character level [START_REF] Wallace | Do NLP Models Know Numbers? Probing Numeracy in Embeddings[END_REF]. Such ability can be necessary for tasks that involve accurate number representations or acronym detection, and could therefore benefit named entity recognition. Likewise, the pretrained FastText embeddings for English and French were trained with a n-gram size of 5 and are fixed during training. Thus, they may not offer a representation that enables the model to reason on shorter n-grams. GENIA contains a lot of DNA and RNA related acronyms, which could explain that it gains more from the character embeddings than the DEFT dataset. We conclude that character embeddings offer a useful representation for named entity recognition.

FastText embeddings

We remove English FastText embeddings for the GENIA dataset and French FastText embeddings for the DEFT dataset. On the GENIA dataset, these features have a positive contribution of 0.1 pt of the model exact performance, and on the DEFT dataset, these features have a negative contribution of -0.4 pt of the model exact performance. Overall, these differences are slim, and this mixed effect could be explained by the differences of language, domain or size between the two corpora.

Wordpiece pooling Table 3.9 shows that the "mean" wordpiece pooling obtains a better performance than the "first" and "last" pooling strategies. This suggests that every wordpiece of a word contains information that is relevant to the NER task, rather than only a specific word such as the first or the last one. This superiority of the mean pooling also holds when BERT is fine-tuned. However, it is less significant, which suggests that BERT is able to learn to gather the required information of all the wordpieces of a word in the embedding of the first or the last. 

Conclusion

In this chapter, we addressed the task of nested named entity recognition and proposed two approaches. We have compared these models with each other and with state-of-the-art models. We have highlighted a divergence between the strict and relaxed metrics, which should not be overlooked when choosing NER models. Indeed, this difference seems to be all the more important when the dataset is small and contains entities with ambiguous start/end bounds. We have also provided insight into the behavior of the decoders and the contribution of the input features. We have shown that finetuning BERT improves model performance, but more importantly, preserving the context of sentences before running BERT improves
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the performance significantly. We also observed that the autoregressive order impacts the performance of the layered named entity recognition model and that predicting short entities first and large ones later gives the best results. Finally, we show that the simpler biaffine tagger model achieves the best overall results and that its Biaffine-only counterpart performs worse on relaxed metrics.

In the next chapter, we will focus on the task of normalizing named medical entities.

Chapter 4

A large scale neuronal classification approach for multilingual medical entity normalization 

Quaero

The Quaero FrenchMed corpus contains two sets of documents, Medline article search titles and EMEA drug records, annotated with concepts from the 2014AB version of UMLS in 10 semantic types. Since two versions of this dataset were proposed in 2015 and then 2016 (the latter version proposing a new test set), we will evaluate our method on each version. Also, in order to ensure a fair comparison with the other systems published on this benchmark, we use the 2014AB version of UMLS, unless otherwise mentioned. Each annotated entity has an associated semantic type that can be used to improve normalization predictions. Table 4.1 presents general corpus statistics including the number of annotated mentions (i.e., text spans linked to UMLS concepts within the documents), the number of unique mentions, the number of unique concept CUIs, as well as the rate of mentions in each corpus that are linked to a concept with at least one synonym in French in the terminology. Note that very few mentions are annotated with more than one CUI in the corpora.

We have described the UMLS in Section 2.3.1. We will call the UMLS Bilingual subset the set of concepts that have a synonym in both French and English. We built a subset, that we will call "English 5 sources", of the UMLS with terms from five CHV, SNOMEDCT_US, MTH, NCI, or MeSH terminologies. We chose these terminologies because they cover 96% of the labels in the annotated training corpus, without exceeding a million labels. Table 4.3 shows statistics on the number of concepts and synonyms in English and French, for the versions 2014AB and 2019AB, both used in this work.

Mantra

As mentioned in Section 2.3.1, the Mantra corpus [START_REF] Kors | A multilingual gold-standard corpus for biomedical concept recognition: The Mantra GSC[END_REF] concept that appears in the terminology, other languages do not and coverage drops as low as 64.3% for the Dutch entities, as illustrated in Table 4.2. Most importantly, being much smaller than the Quaero corpus, the Mantra corpus does not contain a training set and only consists of test samples. It is therefore not possible to perform any supervised learning on this dataset. Moreover, unlike the Quaero dataset, the entities are not labeled with a semantic group: only the text can be used to identify the concept of an entity. Table 4.2 shows statistics on the number of concepts and entities, as well as the percentage of concepts in each language split that have at least one synonym of the same language in the Mantra terminology.

Model overview

We cast the normalization problem as a classification task. C = {c} is the set of all concepts c (i.e., concepts to predict) identified by their CUI. Each concept is associated with one semantic group G c , with very few exceptions [START_REF] Bodenreider | The Unified Medical Language System (UMLS): Integrating biomedical terminology[END_REF]. We denote the set of all concepts in a semantic group g as C g . An entity m is a phrase in a textual document referring to a concept.

Model training and inference
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These contextualized token representations are then averaged across each mention as t m , without the first [CLS] and last [SEP] special tokens

t m = 1 l -2 i∈[1,l-1] t i (4.3)
We then perform a projection into a lower dimension embedding to reduce the model size, apply a ReLU function and normalize the result with batch normalization. This leads to a mention embedding h m .

h m = BN µ,σ [ReLU(W • t m + b)] (4.4)
where BN µ,σ is the batch normalization layer with mean µ and variance σ, and W and b are the projection weights and bias respectively. Finally, we classify each mention by computing the cosine similarity between its representation and the embedding of the concepts in the semantic group of the mention. Following [START_REF] Wang | CosFace: Large Margin Cosine Loss for Deep Face Recognition[END_REF] we multiply the similarity by a hyperparameter s. We obtain concept probabilities by applying the softmax function on these scores. 

P (c|m; θ; H) = e s•cosine(hm,Hc) k∈Cg e s•cosine(hm,H k ) (4.

Model training and inference

We now describe the procedure to train this model and perform predictions with it. Training our model can be done by learning/finetuning the parameters of the encoder, and all the concepts at the same time, as a standard classification model. In this setup, we iterate through mini-batches of synonyms and classify each synonym against the set of all possible concepts. However, the number of concepts can be very large (up to almost a million in our experiments), and affect both the required computational time required and available memory for training. We discuss two procedures to reduce this computational burden. the synonyms stay the same during the second step, and we can efficiently compute the indices of the top candidates before starting the optimization. For each concept, we re-initialize its embedding as the sum of its synset's representations:

H mean c = m ∈ synset(c)h m (4.7)
and use these representations to compute and store the k top candidates for each synonym.

Prediction

At inference time, a mention is tokenized and passed into the encoder and the classifier. We subset the candidate concepts to only keep those that are in the semantic group of the mention if given (only for Quaero entities in our experiments). Finally, we apply a threshold to remove all the predictions that have a low probability. This filtering is required because not all mentions can be mapped to a concept: in our experiments, 4% of the concepts that occurred in the training set where dropped as described in Section 4.1.1. We expect that the filtering will leave out the entities with missing concepts.

Experiments

We now present and discuss the results obtained by the system on the Quaero and Mantra datasets.

We report our main results on the test datasets from the Quaero FrenchMed 2015 and 2016 challenges, on the Mantra dataset and the results of our additional experiments, using the traditional metrics precision, recall and F1-measure. We also give some predictions of the distantly supervised (trained without the Quaero training set) model in Table 4.6.

The method was evaluated through two main sets of experiments that we call "distantly supervised" and "supervised." In the "distantly supervised" setup, we used only distant supervision from the UMLS, and no direct concept supervision from the available, labeled samples from Quaero. Since the Mantra corpus does not contain a training set, the models that we evaluate on this dataset also fall in the "distantly supervised" category and were only trained with the (synonym, concept) pairs from the Mantra terminology. These systems do not suffer from any potential bias related to the specificities of the corpus and do not benefit from the redundancy of mentions in labeled data sets.

In the "supervised" setup, we augment the training (synonym, concept) pairs with mentions and labels from the Quaero Medline and Quaero EMEA training sets, thus enabling comparison with state-of-the-art supervised approaches on the Quaero dataset. Despite being annotated with concepts from all the UMLS 2014 AB version, we restricted the concepts used in our Quaero experiments to the EN5 subset (see Table 4.3), because of its good coverage of the corpus and reasonable size.

Experimental setup

We chose the hyperparameters by selecting the best-performing values on the training set of Quaero in the distant supervision setting. We kept the same hyperparameters to train the Mantra models. We run our models on a 20 Go Tesla P40 GPU, except the 1-step experiment which required a 30Go Tesla V100 GPU.

As a result from the hyperparameter search described above, the token embeddings space of size 768 is projected into a space of size 350, the cosine similarity scaling parameter s is of 20, both dropout rates for the transformer and the projection layer are set to 0.2. We set the batch size to 128 and the maximum synonym wordpiece count to 100. We used two different learning rates, lr BERT for the pretrained transformer, lr main for the concept embeddings and projection layer. During the training, we vary the learning rates using two schedules. Following [START_REF] Sun | How to Fine-Tune BERT for Text Classification?[END_REF], we used a slanted triangular learning rate lr BERT for BERT with a warm-up phase of 10% of the total number of training steps. We keep the learning rate lr main constant during the warm-up phase and linearly decay it for the rest of the training. We set the maximum learning rates to lr BERT =2e-5 and lr main = 8e-3. We used Adam with parameters β 1 = 0.9 and β 2 = 0.999. During the second step of the two-steps training, we preselect the k = 100 highest scoring concepts for each synonym. Unless mentionned otherwise, we perform the step 1 training for 15 epochs and the step 2 for 5 epochs in the 2-step setup, the probability threshold is set to 0.1 and the pretrained Transformer is the multilingual BERT (bert-base-multilingual-uncased in the Huggingface library) [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF].

Baselines and ablations

Baselines We compare our system against the following baselines:

-the top ranked systems of respectively CLEF 2015 [START_REF] Afzal | Biomedical concept recognition in French text using automatic translation of English terms[END_REF] and CLEF 2016 [START_REF] Cabot | Retrieving Clinical and Omic Data from Electronic Health Records[END_REF], on the same exact task of normalization from gold-standard mentions. The CLEF 2015 winning team [START_REF] Afzal | Biomedical concept recognition in French text using automatic translation of English terms[END_REF] first augments the French UMLS by translating a subset of the English UMLS concepts encountered in Medline abstracts, using Google Translate. This terminology is then queried by a rule-based text indexer.

The CLEF 2016 winning team [START_REF] Cabot | Retrieving Clinical and Omic Data from Electronic Health Records[END_REF] relies on their ECMT indexer which performs bag of words concept matching at the sentence level and integrates up to 13 terminologies partially or totally translated into French.

-the best-performing system, to the best of our knowledge [START_REF] Roller | Cross-lingual candidate search for biomedical concept normalization[END_REF] on Quaero and Mantra. In this work, the authors first train a local LSTM-based French to English translator on synonym pairs from the UMLS and other general domain sources. The French and English terminologies are then indexed and searched using Apache Solr through exact and fuzzy matching rules.

We also performed a range of ablation studies and additional experiments on the distantly supervised setup, in order to estimate the impact of our different choices.

Impact of the two-step procedure We trained our system in one step with full softmax instead of two steps, using all the synonyms (French and English from EN5), and evaluated the model on the Quaero 2015 dataset. This is a much more time-and memory-consuming experiment that will allow us to estimate the trade-off between cost and quality.

Impact of the pretrained embeddings

We compare the performance on Quaero, using different BERT embeddings either trained on French data only (CamemBERT [START_REF] Martin | CamemBERT: a Tasty French Language Model[END_REF], model camembert-base-uncased) or English-only (model bert-base-uncased), or multiple languages (bert-base-multilingual-uncased), in order to evaluate the contribution of the multilingual embeddings.

Impact of translating entities Since the system from [START_REF] Roller | Cross-lingual candidate search for biomedical concept normalization[END_REF], based on machine translation + English-only normalization, is quite different from our own system, we also experimented on the Quaero dataset with a machine translation approach combined with our classifier. This allows a fairer comparison between our multilingual learning approach and a translation-based approach. For this purpose, we translated all UMLS French terms with a state-of-the-art pretrained (opus-mt-fr-en) translation system [START_REF] Tiedemann | OPUS-MT -Building open translation services for the World[END_REF] built with MarianMT (Junczys-Dowmunt et al., 2015) and trained on the OPUS bitext repository corpus [START_REF] Tiedemann | Parallel data, tools and interfaces in OPUS[END_REF]. We then trained our model with all original-English and translated-English terms. We called this strong baseline BERT-MT (using the English BERT) and mBERT-MT (using the multilingual BERT).

Impact of more French terms (UMLS2014AB vs. UMLS2019AB)

We present an experiment using the 2019AB version of the UMLS, containing 154k concepts with French synonyms instead of 89k in the 2014AB version. With this system (UMLS2019), we aim at showing the impact of adding new French synonyms to the terminology used for distant supervision.

Impact of the training language

We evaluated the impact that the training data language has on the performance of our system. To do so, we only trained our distantly supervised system on the bilingual UMLS concepts (French and English) and evaluated it on the Quaero 2015 corpus. This filtering was done to train our experiments with the same number of concepts, and mitigate the errors that occur due to missing concepts in the training data. Because the number of synonyms is lower, we trained FR-only model, EN-only model and
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FR+EN model longer for 30, 20 and 20 epochs respectively. We use a probability threshold of 0.5 since more entities have concepts that are not seen during training. Moreover, due to the small number of concepts in this configuration, the two-step training was not necessary.

-FR/EN: trained with synonyms of bilingual UMLS concepts -FR-only: only the French synonyms of these bilingual concepts -EN-only: only the English synonyms of these bilingual concepts On the Mantra dataset, we evaluated the effect of training the system with various languages combinations. More specifically, we trained 6 systems with subsets of the Mantra terminology, containing either:

-the synonyms in all languages (Multilingual) -only the English synonyms (ENG) -the English and the French synonyms (ENG + FRE) -the English and the Spanish synonyms (ENG + SPA) -the English and the German synonyms (ENG + GER) -the English and the Dutch synonyms (ENG + DUT)

We report the performance on each language in the Mantra dataset for all of these models.

Results and discussion

Main results

On the Quaero corpus, our distantly supervised system obtains very good results without concept-labeled training data (Table 4.4). It even reaches a slightly higher performance than the best system published so far [START_REF] Roller | Cross-lingual candidate search for biomedical concept normalization[END_REF] on the corpus MEDLINE 2015 (F1=73.7 vs. 73.6) that used the Quaero training set. It also outperforms all participants of the 2016 edition. Note that CLEF campaigns provide scores on both end-to-end task (named entity + normalization) and normalization-only task; similarly to [START_REF] Roller | Cross-lingual candidate search for biomedical concept normalization[END_REF], we compare to the latter. The much higher term redundancy can explain the better score of supervised systems on EMEA corpus (e.g., F1=83.5 and 73.4 on 2015 and 2016 for [START_REF] Roller | Cross-lingual candidate search for biomedical concept normalization[END_REF] vs. resp. 76.5 and 72.7 for our system) between training and test set (see Table 4.1), which gives a free boost to supervised systems but is not very representative of a real world scenario where no annotated document is available. Training our system with corpus data leads to an F1 improvement of +5.3 pt, +8.6 pt, +4.1 pt and +1.6 pt on resp. MEDLINE 2015and EMEA 2015, MEDLINE 2016and EMEA 2016. It outperforms other systems by a large margin on MEDLINE. It also outperforms [START_REF] Roller | Cross-lingual candidate search for biomedical concept normalization[END_REF] on EMEA 2015 and 2016, but not [START_REF] Afzal | Biomedical concept recognition in French text using automatic translation of English terms[END_REF] 

C0007634 -[EN] cell -[EN] cell structure -[EN] cells set -[EN] cellular -[EN] normal cell -[MT] cells (from "cellules")

be careful (translated from the French "attention") -[EN] my thinking is usually careful and purposeful Table 4.6 Some predictions from our system. The last two columns contain the synonyms seen during training for the target concept and the predicted one, if different. Some long or similar synonyms have been removed to improve readability.

C0004268 -[EN] attention -[EN] attentions

C3257858

We can also see that the system using only French synonyms (FR-only in Table 4.11) performs much worse, with almost 20 points less in recall than the model trained with all the terminology, which we can attribute to the missing concepts in the French UMLS.

On the Mantra Medline titles (Table 4.5), the F1 score of our system outperforms the reported results of [START_REF] Roller | Cross-lingual candidate search for biomedical concept normalization[END_REF] by a large margin in all languages, namely Spanish (+ 5.8 pt), French (+ 2.9 pt), Dutch (+ 5.2 pt) and German (+ 8.1 pt), as illustated in Table 4.5. However, it is worth mentioning that their method obtains a higher precision in all languages except German. Besides our use of a pretrained Transformer to compute rich representations of entities, we believe that this gap is also explained by their only bilingual translation, since they train a system for each language to translate entities into English. In contrast, we take advantage of all the languages to train a single multi-lingual system. We will expand further on this aspect in Section 4.5.6.

We will now discuss the experiments described in Section 4.4.2

Impact of the two steps training

Our experiment with one-step training procedure showed no improvement over the twostep training (Table 4.7, "1-step"), and took approximately 15 hours instead of 7 hours (5 hours for the first step and 2 hours for the second step with one million synonyms). Our two-step method can therefore effectively reduce training time without reducing accuracy by choosing an appropriate partition of the training data. Our results even show a slight loss in performance for the one-step model. This could be explained by the regularization that occurs in the two-step training when we freeze the encoder during Step 2. Indeed, since most of the data seen during Step 2 is English, unfreezing the encoder may encourage the model to forget its inner translation abilities. 

Impact of translating entities

Our experiments with translated French terms (Table 4.8) show that even a good machine translation model can lower the accuracy of the final model. We experimented with both English BERT and multilingual BERT to account for the impact of the transformer pre-training language. We could argue that the off-the-shelf translation model could be improved by 4.8 Comparison of our system with a comparable machine translation approach, using our classifier. fine-tuning on UMLS synonyms like [START_REF] Roller | Cross-lingual candidate search for biomedical concept normalization[END_REF]. However, we think that those results hint at the fact that translation and indexer pipeline may suffer from error cascade: being trained in an end-to-end fashion, our system does not suffer from this behavior. Table 4.6 shows that the ambiguity of some terms ("cave" can mean both "cellar" and "cava" in English) is lost during translation. 4.9 Comparison on Quaero 2015 of two models using differently pretrained BERT models Our experiments with French-only embeddings CamemBERT and English-only embeddings BERT, reported in Table 4.9, show that our hypothesis that multilingual embeddings improve the system's performance is not verified, with almost no difference between these three embeddings. French wordpieces and embeddings can handle medical terms in English, and vice versa. Even if this can be again explained in part by the proximity of the two languages concerned, the low results of EN-only in Table 4.11, yet benefiting from much more training data, suggest that it is not that obvious; besides, other papers in the literature suggest that multilingual embeddings are helpful even for such pairs of languages [START_REF] Pires | How multilingual is multilingual BERT?[END_REF][START_REF] Wu | Are All Languages Created Equal in Multilingual BERT[END_REF]. This observation may also be due to the fact that medical synonym normalization data (short word sequences) is quite different from BERT pretraining data (full sentences), so it is harder for the model to re-use its multilingual knowledge. This aspect deserves more experiments, notably on other, non-European languages. Note that biomedicalspecific embeddings such as Clinical BERT [START_REF] Alsentzer | Publicly Available Clinical[END_REF] are not yet available in French, which is why we did not consider them. Moreover, as illustrated in Table 4.6, we can see that the model correctly predicts concepts, even when no common wordpieces exist between the entity and the training synonyms of the target concept. Therefore, the proximity between French and English cannot be the only explanation to the model performance. To correctly classify the mention "cinquiěme mętacarpien" (fifth metacarpal bone) to its concept, without having the numeral "cinquiěme" in any of the training synonyms, the model must have learned to generalize from other concepts that contained both French "cinquiěme" and English "fifth" in their training synonyms. We can also note that despite addressing out-of-vocabulary errors with wordpiece vocabularies, such errors still exist. For example in Table 4.6, "robusta" (single wordpiece "##robusta") and "rubusta" (two wordpieces, "##rubus" and "ta") are tokenized differently despite having almost identical characters. Recent models [START_REF] El Boukkouri | CharacterBERT: Reconciling ELMo and BERT for Word-Level Open-Vocabulary Representations From Characters[END_REF] that compute wordpieces embeddings from their characters are a promising approach to reduce such errors. 4.10) leads to slightly lower results than the model trained with the 2014AB version, despite the much higher number of concepts with French synonyms. The system has more French terms to train on, but the coverage in the Quaero corpora is not much better. In addition, this could be explained by the higher number of concepts, i.e. choices, for each model prediction. Since Quaero annotations are based on a different version of UMLS, it is possible that some entities would have been annotated differently if the 2019 version of UMLS had been used, possibly leading to some prediction errors. In Table 4.11, we compare the same model trained with either only the French synonyms of bilingual concepts, only the English synonyms, or with both (FR + EN synonyms). FR + EN achieves an 7.8 pt improvement over FR-only, despite having the same concepts coverage and the same pretrained embeddings. This indicates that a larger training set, even in a different language can help improve the system's performance by a significant margin. This improvement could be attributed to the lexical similarities between French and English languages. For example in Table 4.6, the only training French synonym of "vaccination par le b.c.g" is "immunisation contre la tuberculose" and shares no common word. The system can therefore benefit from the addition of similar terms, such as "bcg vaccination" even though they are in English. 4.12 F1-score of the system on the Mantra corpus when trained with different language combinations The F1 scores from our experiment with different language combinations on the Mantra dataset are presented in Table 4.12. Not surprisingly, looking at the diagonal of the table, the model performs better for a given language when that language was part of the training combination, and conversely performs worse when that language was not seen during training. However, we also observe that the multilingual training configuration improves the performance for all non-English languages compared to the bilingual training. In particular, the Dutch and German scores increase by more than 2 points with the multilingual model compared to the bilingual model. The different models seem to achieve similar scores for English, but we note that the the Spanish-English combination seems slightly better.

Impact of the pretrained embeddings

Impact of more French data

Impact of the training languages

Another interesting way to read the results is to look at the interactions between different languages (other than English). We can see that the Dutch language benefits the most from training in German, and vice versa, and that the French language benefits the most from training in Spanish, and vice versa. This can be explained by the etymological similarity between the languages in these two pairs. Both these experiments on Quaero and Mantra demonstrate the transfer that operates between languages, and the importance of training on multiple languages when possible.

Conclusion
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Conclusion

In this chapter, we have presented a method for medical entity normalization. Our method is able to handle a large number of concepts and predict entities in French, despite the low number of French synonyms in international terminologies. We obtained state of the art results on the Quaero and Mantra corpora. We demonstrated the importance of training with French and English data jointly, and even the benefit of training a single multilingual model, instead of several bilingual models.

Our system can therefore be used to normalize simple entities on medical documents, and does not require manually annotated concepts to obtain good results. These structured predictions can then be used directly to query reports, or as inputs to more complex systems. In the next chapter we will focus on the task of extracting structured entities from breast imaging reports.

In this chapter, we focus on the problem of extracting structured entities from breast radiology reports, as described in the introduction to this thesis. These reports contain rich and useful information about a patient's physical condition, clinical history, and physician assessments and recommendations.

As discussed in the Chapter 2 Section 2.4.1, the task of structured entity extraction can be approached from a frame semantic perspective. We describe a frame-based annotation scheme for extracting radiological entities, procedures, and assessments from these reports. Using this scheme, we describe a new corpus of 120 annotated documents from the APHP clinical data warehouse. Next, we consider the task of automatically generating these annotations. While many methods exist for related topics such as event extraction, slot filling, or discontinuous entity recognition, a challenge in our study resides in the fact that clinical reports typically contain overlapping frames that span multiple sentences or paragraphs. We propose a new method that addresses these difficulties and evaluate it on the new annotated corpus. Despite the small number of annotated documents, we will see that the hybridization between 1/ a system of constraints on the outputs of the system, 2/ a terminology and a 3/ learning-based system allows us to quickly obtain proper results. We will also introduce the concept of scope relations and show that it both improves the performance of our system, and provides a visual explanation of the predicted relations. In this study, we will focus only on the extraction and classification of frames, and leave the task of object extraction, i.e. frame coreferences, for future work.

In order to avoid confusion, we will call simple entities "mentions", the conjunction of several mentions and labels "frames" and the union of several frames "objects". Examples of mentions will be denoted by the form [the mention].

This chapter is organized as follows. We first describe the annotation scheme and the resulting corpus in Section 5.1. In Section 5.2, we describe the architecture of the proposed model. We will detail the different components that will allows us to extract and normalize the named entities and compose them as frames. We present several experiments in order to study the contribution of the various components of the model and the choices regarding its training in Section 5.3, and the discuss the results in Section 5.4. Finally, we close this chapter with a conclusion.

This study was approved by the institutional review board at APHP (CSE 190022) as part of the EZMammo project. Only previously pseudonimized documents were used in this study [START_REF] Paris | Dęsidentification de comptes-rendus hospitaliers dans une base de donnęes OMOP[END_REF]. The source code for the model described in this Chapter is available at the following URL: https://github.com/percevalw/breast-imaging-frame-extraction.

Annotation scheme

We first detail the annotation scheme and the resulting dataset. We focus on entities related to therapeutic (e.g. surgery) or diagnostic (e.g. mammography) procedures, radiological observations (e.g. cysts or masses), and breast density or BIRADS scores. The relevant entities to extract were the result of discussions with a physician expert in the field. The annotation scheme itself was the result of many iterations between annotations and scheme revision. The document-level statistics are detailed in Table 5 Our annotations focus on three types of elements: mentions, frames and objects. Mentions are simple named entities that consist of a begin, an end, a type and optionally a value. We have seen in Chapter 3 how to extract entities and in Chapter 4 how to label them using a fine-grained terminology. Frames are conjunction of mentions, that is entities in which every mention applies its meaning. Finally, objects are unions of frames that define the same real world elements.

As an example, we seek to structure the following report excerpt. The extracted mentions, frames and objects are presented in Figure 5.2.

Breast ultrasound:

Left: Two cysts located on the 8 o'clock radius at 3 cm, and at 2cm on the 6 o'clock radius. These nodules are millimetric.

Right:

No abnormal masses to report.

CONCLUSION :

Multiple cysts on the left. 5.2 Mention, frames and objects extracted from the example 5.1

Mention annotation

First, we annotate several types of mentions, each justifying the value of a field in a frame. In our scheme, each mention has an effect that can be combined with other effects to describe an entity. Some mentions have the effect of justifying the existence of a frame: we will refer to these mentions as "triggers". Other mentions have the effect of specifying an attribute of an object: we will refer to them as "attribute" mentions. No frame is created if there is no trigger, even if several attributes are present. In the example 5.1, the trigger [Ultrasound] mention has the effect of creating at least one "Diagnostic procedure" frame, whereas the [millimetric] attribute has the effect of giving a size to the frames that it is part of.

The trigger mention types are BIRADS score, Breast density, Diagnostic procedure, Therapeutic procedure and Radiological lesion. The additional attribute mention types are Diagnostic procedure type, Therapeutic procedure type, Breast density type, BIRADS score type, Organ, Laterality, Temporality, Size, Distance, Angle and Breast quadrant.

We have chosen to annotate mentions describing attributes (such as laterality or size) even if they are not part of any frame. On the other hand, trigger mentions are not annotated if they do not justify the presence of an object. In the sentence "No suspicious mass on the right", only [right] is annotated as potentially justifying the laterality of an object, but not [mass] since it is preceded by a negation, and therefore does not justify the creation of any radiological lesion object.

Finally, each mention is classified, or normalized, according to a predetermined set of values. For example, a trigger mention "Breast density" may be labeled exclusively "type 1", "type 2", "type 3", "type 4". A laterality can take the values "left", "right", or "left + right".

The annotation statistics for mentions and their type are described in Table 5.3.

Frame annotation

Frames describe semantic slices of an object, or conjunction of triggers and attributes that share their effect (or concept) on a given entity. In the above example, [8 o'clock radius] (applying an angle), [3cm] (applying a distance), [Left] (applying a laterality), [Breast] (applying an organ) and the trigger [cysts] (applying the effect of existing) share their respective effect on a same slice of an object. These mentions may be located in different sentences or paragraphs, and a field in a given frame may be justified by several mentions. On the other hand, if an object is described in several places in the text, we annotate it with several distinct frames. The notion of "several places" and the choice to split a same object into multiple frames is sometimes ambiguous. We choose to annotate a single frame for an object if it is described on several juxtaposed sentences, and split it into multiple frames otherwise. For instance, the [cysts] trigger is combined with the [nodules] trigger because they are found in juxtaposed sentences, and [nodules] is clearly referring to the previously mentioned [cysts].

All frames follow a specific scheme that constraints the set of labels and mentions (or effects) combinations. A summary of the frame schemes is shown in Figure 5.4. In practice, these constraints take the form of a list of 2502 label tuples that enumerates every possible mention / label combination. For example, a Cancer Risk type 0 on the right breast at the time of the exam is described by the following tuple: (score_trigger, score_type_0, temp_overlap, organ_breast, lat_right) As shown in the structured output 5.2 of example 5.1, five frames are annotated:

-the ultrasound "Diagnostic procedure" frame for its left location, composed of the [Breast],

[ultrasound] and [left] mentions on lines 1 and 2 Since the mass negation on line 8 is not an indication of the presence of an object, we do not annotate it. The temporality of each frame overlaps the exam, although no explicit mention can support this fact, so we fill the temporality field of the frames with the value "overlap" and leave the justification empty.

Object annotation

Finally, the different frames are grouped into objects. Objects are union of frames. For a given set of concepts, multiple frames might be required to describe a same object. In the context of of growing lesions, a union of multiple (temporality, size) conjunctions can represent the evolution. In an other setting with moving objects, a union of (temporality, localisation) labels could be used. In our case, as we represent lateralities with two exclusive "left" and "right" concepts, bilateral objects are described with two co-referent frames.

In the previous example, three objects are annotated, grouping two frames for the ultrasound procedure and two frames for each cyst. The last nodule frame in the conclusion is a case of plural coreference, since it its attributes apply to both objects. In this case, the frame describing several objects is added to each one. The statistics of objects in the annotated documents are described in Table 5.5. This step amounts to annotating coreferences between frames.

Annotation process

Clinical documents were de-identified automatically beforehand and the manual annotation was performed with Brat [START_REF] Stenetorp | BRAT: A Web-based tool for NLP-Assisted text annotation[END_REF] by two annotators. 120 clinical reports were sampled from a from of query the APHP clinical data warehouse that combined the substrings "mamm" (to obtain breast related reports), "ACR" and "BI-?RADS" (to obtain BIRADS scores). Some sampled reports were not breast radiology reports, yet we kept them as negative samples. Since Brat was not originally designed to annotate long multi-line relations, using the "Event" or "Relation" annotations turned out to be impractical and made the annotated documents 5.5 Frame and object statistics in the annotated corpus hard to read. We choose instead to annotate frames using a mix of identifier attributes (frame1, frame2, ...) on mentions, and relations on close-by mentions. Coreferences, i.e. object annotation, were annotated using identifier attributes (objectA, objectB, ...) for the same reason. The BRAT annotations of Example 5.1 are shown in Figure 5.2. The direction of We encode each documents as word embeddings and share them with the downstream decoding components. Like most relation and event extraction models, our model operates as a pipeline. As illustrated by Figure 5.3, the first two mention-level decoders extract the named entities (step 1 ), or mentions, that are likely to be used in the composition of structured entities, and normalize them (step 2 ) to obtain the value of the field they apply to. The next two decoders focus on frame-level extractions. The frame extraction decoder (step 3 ) detects the relations between these mentions, or more specifically, extracts groups of mentions to form frames. The last frame classification decoder (step 4 ) predicts for each frame the values of the fields for which no mention was found, such as the temporality.

Text encoder

Word embeddings

Like the models of the previous chapters 3 and 4, we use a pre-trained BERT Transformer. Our documents are written in French, therefore a good candidate is the CamemBERT model [START_REF] Martin | CamemBERT: a Tasty French Language Model[END_REF] pre-trained on a general French corpus. A specifically pre-trained clinical French BERT would most likely perform better. However no such model has been trained to our knowledge. Following our experiments in Chapter 3 Section 3.7.4, we also average the wordpieces embeddings of a word to obtain its embedding, and add the left and right contexts (document context) of a sentence before running it through BERT.

Document-wide contextualization

As in the models of Chapter 3, we apply an LSTM layer on BERT embeddings. A notable difference with the previously addressed tasks is the longer size of the documents: BERT can only encode sequences of up to 512 wordpieces and more than half of our reports exceed 512 wordpieces. Several works on encoding long sequences by Transformers have emerged since 2019 [START_REF] Beltagy | Longformer: The Long-Document Transformer[END_REF][START_REF] Zaheer | Big bird: Transformers for longer sequences[END_REF] but no pre-training has been applied to French to our knowledge. One strategy is to split these reports into sentences, apply BERT on each sentence and then re-contextualize these sentences by applying the LSTM on the concatenated sentence word embeddings. Additionally, the preliminary sentence splitting reduces the length of the processed sequences and thereby makes the processing of each document faster. This process is illustrated in Figure 5.4.

Moreover, because BERT models focus on sentences, the "line break" character is missing from their vocabulary and replaced by a single space during preprocessing. However, clinical documents typically contain multiple line breaks and this separation information would normally be lost. To prevent this, we replace all line breaks with the rarely used "_" character so that this information is kept in the generated embedding sequences. matching of start and end boundaries is unambiguous from the tags predicted by the BIOUL decoder and the biaffine module is not needed.

Mention normalization

Each mention is then classified, or normalized to obtain the values of the fields to which it applies. Unlike the system proposed in Chapter 4 which allowed only one concept per mention, each mention can accept several values. For example, "bilateral" is normalized as both "left" and "right". However, most mentions map to only one value. The mapping between NER labels and the legal multi-label combinations is part of the annotation scheme. Another difference is that we run the normalizer on embeddings of mentions in which the words carry contextual information from outside the mention. In contrast, the model of Chapter 4 processed each mention as a text sample on its own.

We compute a max-pooled representation for each mention m and project it against to obtain one score per label score label (m) = V mention label • maxpool 

Mention embedding

Each mention is represented by a single embedding in order to be processed by the next decoders. This embedding E(m) is computed as the average embedding of the words of the mention.

Frame extraction

We now seek to extract the frames. Given that we have extracted entities in a previous step, we need a strategy to group mentions of a same frame together. The approach of most Event Extraction models is to extract one frame (event) per trigger mention, and look for related mentions that might be part of the same frame (event). However, many trigger mentions belong to several distinct frames that can only be distinguished by considering interactions between their attribute mentions. Indeed, in a sentence containing an elliptic conjunction: "Nodules of 2cm on the right and 3cm on the left", the trigger mention To address this issue, an approach consists in listing all the possible combinations of mentions, then filtering them with a classifier [START_REF] Björne | Generalizing Biomedical Event Extraction[END_REF], 2013, 2015;[START_REF] Heimonen | Reconstruction of semantic relationships from their projections in biomolecular domain[END_REF]Liu et al., 2015;[START_REF] Miwa | Event extraction with complex event classification using rich features[END_REF][START_REF] Trieu | Deep-EventMine: End-to-end neural nested event extraction from biomedical texts[END_REF]. However, this solution does not seem satisfactory from a computational point of view. Indeed, a frame can contain up to 8 mentions (and more if there are several mentions for the same field), which quickly leads to a combinatorial explosion of possible frames.

We will now describe a method to overcome the previously discussed issues. The overall frame extraction component and its training are described in Figure 5.6.

Clique extraction

Our approach consists in examining relations between every mention of a document. The binary relation between two mentions answers the question: "are these two mentions part of the same frames ?". We can then extract maximal groups of entities such that in each group, all the mentions agree with each other on belonging to the same entity. In graph theory, this type of subgraph is known as a clique. To extract maximal cliques, i.e. cliques that cannot be extended by including one more mention, we use the NetworkX implementation based on the works of [START_REF] Bron | Algorithm 457: finding all cliques of an undirected graph[END_REF] and [START_REF] Tomita | The worst-case time complexity for generating all maximal cliques and computational experiments[END_REF], and only keep the cliques that contain at least one trigger mention.

Each mention u computes its agreement scores r(u, v) with the other mentions v of a document. For two mentions u and v, we obtain two scores: the one computed by u on its agreement with v (r(u, v)), and the one computed by v on its agreement with u (r(v, u)). We define the final agreement score between the two mentions as the maximum score

R(u, v) = max T r = max(r(u, v), r(v, u))
Intuitively, this means that one of the two mentions can be uncertain about the relationship.

Biaffine relation scores

A simple approach to compute r(u, v) is to use a biaffine model. In our case, we compute this score as an attention score between the mentions. Additionally, we inject the relative distances between mentions inside the attention mechanism using a similar mechanism to [START_REF] He | DeBERTa: Decoding-enhanced BERT with Disentangled Attention[END_REF]. This attention is the sum of a content-content attention (the original dot

r biaffine (u, v) = (W c 1 u) • (W c 2 v) T √ 3d content to content + (W p 1 p u-→v ) • (W c 2 v) T √ 3d
content to position (5.4)

+ (W c 1 u) • (W p 2 p v-→u ) T √ 3d position to content with W c 1 , W c 1 , W p 1 , W p
2 four projection matrices and p x-→y the embedding of the relative position of y w.r.t. x

To get a better intuition about these different types of attention, we formulate them as fictitious search samples from a given mention in the document:

content-content : "my content is 'ultrasound' so I'm looking for other mentions whose content contains information about temporality" content-position: "my content is 'ultrasound' so I'm looking for mentions that are 3 positions after of me" position-content : "regardless of my content, I will attend to the mention one word away from me if it contains information about temporality, two words way next word if it contains information about laterality, etc."

Scope relation scores

We propose another approach for the same relation extraction task, based on the concept of scopes. Scopes are annotations of contiguous text zones on which a named entity referred to as a "cue" applies its meaning. Scopes have been mostly studied in the context of negation and uncertainty detection [START_REF] Dalloux | Supervised learning for the detection of negation and of its scope in French and Brazilian Portuguese biomedical corpora[END_REF][START_REF] Khandelwal | NegBERT: A transfer learning approach for negation detection and scope resolution[END_REF][START_REF] Li | Learning with structured representations for negation scope extraction[END_REF][START_REF] Vincze | The BioScope corpus: Biomedical texts annotated for uncertainty, negation and their scopes[END_REF]. For example in the sentence: "There is no sign of cancer", the scope of the negation entity [no] is "sign of cancer". We propose to extend this concept to all types of named entities and make it the primary mode of relation extraction in our problem. Indeed, it may be simpler for the model to detect where the scope of a mention starts and stops, and to retrieve all entities between these boundaries, rather than inferring the value of the relation for each pair of mentions. In the example of Section 5.1.2, the scope of laterality [Left] covers all the section and therefore applies its effect to all frames composed of these mentions, and the scope of one of the two mentions [2cm] and [8'oclock position] contains the other mention.

For the mathematical details of our formulation, we will call u and v two mentions, and t a token (or word) of the document. Each scope is represented with the BIOUL format. We compute two attention matrices A B (u, t) and A L (u, t) between the mentions and words, using the relative attention mechanism described in Section 5.2.3.2, to obtain start (B) and end (L) scope scores for each word. We prevent the start of a scope from being after the first word of a mention, and the end of a scope from being before the last word of a mention, which means that we impose that mention is contained within its scope. The score of the tag U (scope that only contains one word) can be computed as the sum of the start and end scores. To know if a word is in the scope of a mention, we compute the marginalized probabilities of a CRF (hereafter referred to as Scope CRF) with the forward-backward algorithm that we apply to the scope of each mention. The Scope CRF is parameter-less but illicit transitions (such as I -→ B or L -→ I) between tags are prevented (i.e. the transition is set to -∞). A word is in a scope if it is labeled I, B, L or U but not O. The score r scope (u, t) of each word t being in the scope of u is therefore: ( 5.11) and, the relation score between two mentions u and v is computed as the score of v being in the scope of u, i.e. the average of the scores of each word of v of being in the scope of u:

S B (u, t) =    -∞ if t is
r scope (u, v) = 1 |words(v)| t∈words(v)
r scope (u, t)

(5.12)

Using a CRF allow us to never explicitly compute the score for a word to be in the scope of a given mention. Instead, we let the network predict the start and end of scope for each mention via the mention-word attention matrices, and use the CRF Scope to "paint" the inside and outside of the scopes in a differentiable way.

normalizing over all legal combinations: score L frame (f ) = label∈L frame score label (f )

P(L frame |f ) = 1 Z score L frame (f ) (5.13) with Z = legal L frame score L frame (f )
During prediction, the label combinations are filtered to keep only those that contain at least all the supported labels predicted by the frame extraction decoder.

Optimization

Every component, namely the named entity recognition and normalization modules (5.2.2), the frame extraction module (5.2.3) and the frame classification module (5.2.4) are trained jointly. The encoder is shared and each decoder receives the prediction of the previous decoders.

The NER model uses the CRF Forward algorithm to compute the NER loss L NER , the normalization loss L norm is the cross entropy loss. The frame extraction decoder relation loss L relation is the sum of binary cross entropy for every valid supervised mention-mention pair and the CRF Forward algorithm to compute the Scope CRF loss L scope . Finally, the frame classification decoder loss is L frame_classification the cross entropy loss for every extracted frame.

The losses are combined through a weighted average:

L =α NER L NER +α normalization L normalization
+α relation L relation (5.14) +α WSS L WSS +α frame_classification L frame_classification

Knowledge injection via data augmentation and constraints

We now discuss several techniques to inject knowledge via data augmentation and output constraints.

Data augmentation

Given the small number of annotated documents, we augment our training data in two ways. First, we randomly extract parts of documents such that no frame is cut, and add them as new documents to the dataset. This augmentation assumes that there is little dependence between distant frames, and since we do not address the task of coreference in this work, splitting documents is not an issue. This augmentation also has the effect of reducing the training time (by around half in our experiments), as the average size of the training samples becomes smaller.

Second, we build synthetic sentences from a manually pre-defined lexicon of mentions, and add these sentences to the dataset. Because these sentences contain no frame annotations, the frame related losses are masked for these samples. The sentence creation process is the following: we randomly pick a synonym from the lexicon such as [ACR 6] and insert it in a randomly picked context from a predefined list such as "There is {} ." to generate "There is [ACR 6]." This sentence is then added to the list of training samples. Although this may seem very simple, we will see that this allows us to easily inject knowledge into our model and improve its performance. This method is closely related to the training of the Chapter 4, in which we built a training set from a terminology. As we mentioned in Section 5.2.2.2, however, our model deals with mentions that are part of a context, which is why we add an artificial context around each of our synonyms to avoid having too large a distribution gap between our real and synthetic samples.

The documents generated from these augmentations are mixed with the original documents such that every batch approximately contains 1 3 of each (original, doc parts and lexicon sentences).

Output constraints

As stated in the section 5.1.2, the set of "legal" frame label combinations is known in advance. These label tuples supplement the manual annotations. Some background knowledge can be injected this way by constructing rules such as the fact that "left" and "right" are exclusive, or the fact that a mammogram is always performed on the breasts.

During the frame extraction step, relations between mentions that cannot be part of the same frame are filtered out during learning and prediction. We derive the allowed and forbidden relations from the list of label tuples mentioned earlier. For example, due to the spatial division of objects, two mentions [left] and [right] are incompatible and the relation r([left], [right]) is set to -∞. This filtering reduces the number of possibilities that the model must evaluate. In addition, sometimes a procedure is explicitly located on a quadrant in the text. However, we chose not to extract the "quadrant" field for diagnostic or therapeutic procedures during annotation in order to simplify the schema. Preventing the model from learning that "procedure" and "quadrant" are incompatible in our schema improves the consistency of the supervision information.

During the frame classification step, instead of classifying each label independently, we score each combination of allowed labels, as described in equation 5.13 

Experiments

We evaluate our proposed approach on the test set of the new annotated dataset, using the mention metric, the Frame Support metric and Frame Label metrics described in Section 5.1.5.

We also evaluate different document-level queries on the predicted frames. Each query extracts a deduplicated list of tuples for each document, and standard precision and recall metrics are computed on the predictions. As an example, the query "Lateralized current breast density" extracts tuples (laterality, density score) from frames with document overlap temporality, while the query "Current breast density" does not extract laterality.

Experimental setup

Hyperparameters were manually selected by trial and error on 20 documents from the training dataset. Many of them are the same as the model from Chapter 3. We optimize the parameters with the Adam optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] without weight decay and use two learning rates: the first learning rate lr BERT , that applies to the pretrained CamemBERT [START_REF] Martin | CamemBERT: a Tasty French Language Model[END_REF] base weights, is initialized at 5 × 10 -5 and follows a linear schedule with a 10% warmup, while the second learning rate lr main , for the other parameters, is initialized at 5 × 10 -4 and follows a linear decay schedule with no warmup. The models were trained with a batch size of 16 samples. Due to the large size of model and documents, we used the gradient accumulation method to fit the available GPU memory (32Go). All experiments were averaged by training 3 differently seeded models. The main hyper-parameters are described in Table 5.6.
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Ablations

Additionally, we perform several ablation experiments to investigate the design choices of our model:

-we look at the effect of the gating mechanism and the relative positional attention mechanism on our model we evaluate the contribution of scope relations and the effect of different types of supervision, i.e., we drop the word-level scope supervision and also change the supervision of the relation mechanism from asymmetric supervision of r(u, v) to symmetric supervision of R(u, v).

We also perform experiments on the training data. In particular, we investigate the contribution of the augmented samples, and the evolution of the performance with the amount of annotated data.

Results and discussion

Main results

Table 5.7 shows the performance on the different types of frames. The model performs better for frames with fewer fields such as Cancer or Breast densities. It is worth mentioning that matching all frame of a document is not necessary to answer most queries, since multiple frames can be co-referent.

The query metrics are shown in Table 5.8. Similarly the model performs better for queries that require less frame fields. The model low performance on the passed surgery query can be explained by the few number of annotated therapeutic procedures, and the difficulty to extract the temporality, that sometimes requires complex contextual and global reasoning.

We visualize the predicted scopes of the proposed model on the right side of Figure 5.7. We observe that the scopes coarsely follow the structure of the document, i.e. that the predicted boundaries are located at the beginning or the end of the different sections. It is worth keeping in mind that these scopes have only been supervised with the requirement that they contain or exclude certain mentions, and that no information regarding the precise location of their boundaries has been given.

Moreover we notice that the reading of these scopes gives a partial explanation of why some relations were predicted or not, whereas the outputs of relation prediction model are usually hardly explainable.

Frame support

Frame 5.9 shows the effect of ablating the model scopes. In this configuration, the model can only predict the relations through the biaffine model. We can observe that ablating scopes results in an overall loss of 5.3 pt for the Frame Label metric and 4.9 pt for the Frame Support metric. We believe that this is due to the inability of other neural components to reason with intervals, i.e., to answer queries such as "what word is between these two words". Scopes allow the model to focus on section or enumeration boundaries and leave interval logic reasoning to the scope CRF.

Given that scopes improve the quality of predictions, the question arises as to what kind of supervision is needed for to learn them. As shown in Table 5.9, when the scopes are learned directly using word-level partial annotations, the model performs better than with distant supervision on the r(u, v) matrix. This suggests that finer manual annotation of scopes may benefit the system. If we directly supervise the symmetric matrix R(u, v) instead of the asymmetric matrix r(u, v), the performance collapses and we lose between 10 and 15 pt for the Frame metrics. This can be seen in the visualization of Figure 5.7: the scopes overlap several unrelated sections, which leads to the prediction of erroneous frames. The learning of scopes must be hindered by the uncertainty related to the supervision of this matrix alone and the small amount of data.

Interestingly, if we remove the relation supervision heuristic and let the model explore different configurations on its own, the performance remains on par with the proposed approach. Since these heuristics aim at injecting information about the hierarchy of mentions and the structure of the text, this suggests that the model is able to infer this information itself from "flat" annotations. This is a valuable finding because it suggests that complex, hierarchical, directed annotations for other tasks could be alleviated when it is easier to annotate groups of mentions than directed graph structures between mentions.

Impact of the gating mechanism

Table 5.4.2 shows the effect of the different gating mechanisms on the performance of the model. We can observe that the "input-residual" gating mode leads to a performance gain of 1.4 pt in Frame Support and 2.9 pt in Frame labels. Although this variant performed well in our experiments, more research is required to evaluate the reason behind this apparent better performance, and we did not investigate this mechanism further in this work.

Impact of the relative attention mechanism

We evaluated the effect of the added information on the relative position of the wordmention and mention-mention attention mechanisms. From the table 5.4.2, we can observe that this added information leads to a performance gain of 1.3 pt of F1 frame support and 1.8 pt of F1 frame label. Without it, a mention is "positionally blind" and must rely on the inductive bias of the LSTM to find its neighboring words or mentions. Therefore, we expected a larger drop in performance, especially in the context of long documents. This suggests that the chain structure of the LSTM is capable of encoding relative position information at both the word and mention level. Nevertheless, relative attention proves to be an effective way to improve retrieval performance.

Data ablations

Impact of the size of the training data

Figure 5.8 shows the overall performance of the model when trained with different numbers of annotated samples. We can observe that the first 10 documents are critical, and expectedly that the added value of additional documents becomes lower as their number increases. On one hand, we can note that our system requires only a small amount of documents to achieve "correct" accuracy, i.e., it can be used to pre-annotate more documents. This "data efficiency" is important when tackling new domains in order to allow quick feedback and possible changes regarding the annotation scheme. However, given the complexity of the task and the evolution of performance with the training set size, we also note that a larger number of annotated documents might be needed to approach a perfect score.

Impact of the augmented samples

We remove the augmented samples from the training data and show the effect on performance in Table 5.9 and Figure 5.8. We observe that adding synthetic sentences only slightly helps improving the model mention detection performance (+0.3 pt). However, this improved performance has a larger effect of 1.5 pt on the Frame Label metric. This is typical of the phenomenon of error propagation. Indeed, a missing or mislabelled mention can have an effect on multiple frames. This shows the importance of focusing efforts on the first steps of pipeline models such as ours.

As we reduce the number of annotated documents in the training set, the effect of augmentation becomes more important, and with only 4 annotated documents we obtain an average performance of 89.4 F1 in mention extraction versus 81.1 F1 without, and an average performance of 45.7 F1 in Frame Label F1 versus 34.7 without. Finally, we can see that a model trained with synthetic sentences only retrieves most of the annotated mentions, which is valuable when tackling a new domain. The non-zero Frame metrics can be explained by the presence of singleton frames that contain only one mention, and by the Frame classification constraints that prevent the system from predicting impossible label combinations.

the model such that it obtains a correct performance on the annotated data, but might not generalize as well on other tasks.

Scheme granularity Second, we did not annotate the radiological lesions using a finegrained scheme and left that disambiguation task for future works. This again might overestimate the performance of the model on these radiological lesions, since we do not distinguish between tumors and cancer diagnosis. Moreover, we did not annotate other relevant aspect of tumors such as their size trend, morphology, or margin.

Coreferences Third, we did not address the issue of coreferences, which are nevertheless important in the extraction of information from clinical documents, since they allow us to obtain a deduplicated list of entities, to fill in possible missing fields, and to perform a final evaluation of the extraction independently of the intermediate annotation choices. This step will be the focus of future work, together with the problem of cross-document coreference to link objects across multiple reports.

Conclusion

In this chapter, we proposed an annotation scheme and a system for extracting structured entities from clinical breast radiology reports. We trained and evaluated our method on a new dataset of 120 annotated documents. Although these documents are not made public for medical privacy concerns, this dataset can be used to evaluate the performance of future systems and developments in the field of clinical NLP. In particular, the pre-training of specific encoders for the French clinical domain and for long documents should greatly benefit our system. We have shown that the addition of synthetic sentences can improve the performance in the context of a small amount of data. This information is valuable for the annotation and development of new information retrieval systems in other domains, where key words or phrases are known in advance. The method we described introduces the notion of frame extraction in the form of mention cliques, and we have shown that a formulation of the relation extraction task via scopes improves the performance of our system. Future work will evaluate this approach on other structured entity extraction tasks such as event extraction.

Chapter 6 Structuring medical documents is a complex task that is related to several NLP research topics. This thesis presented several contributions to the extraction and normalization of simple and structured entities. This chapter makes a brief summary of the thesis (Section 6.1) and discusses future research directions (Section 6.2).

Conclusion and perspectives

Summary

In our work on nested named entity recognition, we introduced two methods to handle the extraction of overlapping entities. In particular, we showed that sequence labelling methods are better suited for the extraction of long and ambiguously annotated entities when exact boundaries are not required, and we discussed several aspects of the design of these systems. We also showed how ensembling can improve the performance of a NER model.

We also addressed the issue of training models in languages other than English. More specifically, in Chapter 4, we demonstrated the importance of training French and English jointly in the case of medical concept normalization, and even the benefit of training a single multilingual model, instead of several bilingual models. We evaluated all the models proposed in this thesis on French datasets, and annotated a new corpus of French clinical radiology reports in Chapter 5.
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In the case of structured entities in Chapter 5, we proposed a new frame-based annotation scheme, and designed a method to automatically extract these entities from unlabelled reports. We also introduced the concept of mention cliques to overcome the issue overlapping structured entities, as well as a new mechanism of relation prediction with mention scopes. We showed how these "scope-relations" both improve the performance of our system on clinical documents, and provide partial explanation of the predicted relations between mentions.

Finally, we also developed multiple techniques to inject external medical knowledge into the training of learning algorithms, while alleviating the need for language or domain specific pre-processing methods and reducing the requirement for annotated data. In Chapter 4, our proposed model obtained good results without any annotated normalization sample. In the context of radiological entity extraction in Chapter 5, we showed that the hybridization of a set of output constraints, a terminology and a learning based method enabled our method to be effective with a small number of training documents.

Future research directions

Starting from the work presented in this thesis, several research directions arise.

Deeper hybridization between learning and symbolic models

In Chapter 5, we saw how a structured entity extraction task could be represented by an enumeration of compatible concepts. However, the number of legal combinations (2502) remained tractable and could be baked into the model without becoming an issue. More complex schemes could lead to a larger number of combinations, making their enumeration infeasible. One solution to overcome this problem is to directly represent the allowed outputs by logical propositional formulas and model them with a CRF [START_REF] Lafferty | Conditional random fields: Probabilistic models for segmenting and labeling sequence data[END_REF]. For example, [START_REF] Deng | Large-scale object classification using label relation graphs[END_REF] used a CRF to model subsumption and exclusion relations between labels to improve image classification.

Further along this path, the integration of first-order logic into retrieval models is an exciting perspective. Indeed, when relations are added to the retrieval scheme, modeling the logical interactions between objects could improve performance. Markov logic networks [START_REF] Domingos | Markov logic: An interface layer for artificial intelligence[END_REF] unify symbolic and learning-based methods, and are a promising avenue for integrating symbolic reasoning into information extraction models. For example, we saw how implicit attributes could be inferred from other attributes, such as the organ in the case of a mammogram. However, all these entities require the presence of a trigger and implicit entities are out of scope of the proposed model. One could therefore imagine conditioning the existence of a current lesion on the presence of a (possibly implicit) current diagnostic procedure by modeling the following formula: ∃Lesion s.t. lesion_frame(Lesion, temp:overlap_exam, ...) (6.1) =⇒ ∃Diag s.t. diag_proc_frame(Diag, temp:overlap_exam, ...)

Multilingual and multitask training

We saw in chapter 4 how joint training on multiple languages benefits a normalization system. Recent work has shown how a unified training on multiple named entity datasets improves the performance of a NER system. Since resources for medical entity normalization are scarce, a promising approach is to train a normalization system on multiple datasets and multiple languages to achieve a robust, multilingual normalization system. To go further, we can also consider a multi-task training of normalization, NER and structured entity extraction systems. Moreover, we have shown how a pre-trained system can handle more concepts by being partially re-trained in a second phase. The reverse direction can also be considered, i.e., pre-training a normalization model on a large amount of concepts, and fine-tuning it on a smaller number to better fit the target domain.

Interactively programmable annotation software

As mentioned in Chapter 5 Section 5.1.4, the choice of annotation software must be taken into account in the design of the annotation scheme. For example, it is difficult to annotate implicit entities in Brat or to annotate relations on multiple lines, and impossible to handle multiple documents at once. There are many annotation tools available [START_REF] Neves | An extensive review of tools for manual annotation of documents[END_REF], but most of them are either proprietary, poorly adapted to document or patient annotation, require a complex installation that is not compatible with existing remote work environments, or are difficult to customize. Finally, the standardization of annotation levels (mention / relation / event) is an obstacle to the development of new tasks. Given these limitations, we started to develop Metanno (illustrated in Figure 6.1), a dynamically programmable annotation software integrated to the popular Jupyter IDE.

We list here some of its features:

-ease of installation as a Jupyter extension -joint annotation of multiple reports (cross-document co-referencing)

-visualization of annotations at the level of a document, patient or corpus in Excel-style dynamic tables -bidirectional communication between the Python kernel and the front-end to facilitate the integration of active learning algorithms simple Python API to modify the behavior of the software when clicking a button, selecting annotations, highlighting table rows 6.2 Future research directions 108 broader range of query types that the model can rely on to compute its representations. To the best of our knowledge, no current attentional mechanism can formulate an attentional query of the type "what are the words/mentions after me and before the next line break?" Another avenue for improvement is the development of pre-training that promotes the representation of simple entities. Several studies have been conducted on the improvement of pre-training objectives to better take into account the entities in the text representation models [START_REF] Joshi | SpanBERT: Improving Pre-training by Representing and Predicting Spans[END_REF][START_REF] Lin | EntityBERT: Entity-centric Masking Strategy for Model Pretraining for the Clinical Domain[END_REF][START_REF] Yamada | LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention[END_REF] and most pre-trained models focus on whole sentence representations. In particular, to the best of our knowledge, entity-centered pre-trainers that handle both contextualized and context-free entity representations have not yet been studied. As an example, a key aspect of taking context into account in medical entity normalization is the distributional shift between contextualized entity representations and non-contextualized entity representations such as those present in terminologies. To overcome this problem, our approach in Chapter 4 was to "cut out" the entities in the medical texts, while we chose to augment the synonyms with an artificial context in Chapter 5. Nevertheless, these are not elegant solutions. Just as the pre-training of models like BERT or ELMO have improved the performance of many NLP tasks, the pre-training of a model that also takes entity representations into account should benefit the improvement of information extraction systems.

Algorithm 1 Procedure to compute the maximum sum of greedily matched items between two sets of predicted and gold items 1: ◃ greedily matches elements between two sets P and G to maximize the sum of the bipartite matching according to the match_score function ◃ return 1 if p and g have the same boundaries and label, 0 otherwise ◃ return the retrieval metrics, where true positives between P and G are computed with exact_ner_match_score 6:

tp ← match_sum(P, G, exact_ner_score) ◃ return 1 if p and g have a word dice overlap ≥ 0.5 and the same label, 0 otherwise ◃ return the retrieval metrics, where true positives between P and G are computed with half_ner_match_score 6:

tp ← match_sum(P, G, half_ner_score) ◃ return the Dice overlap between p mentions and g mentions which is 0 if there is no overlap and 1 if all mentions of p and g match 6:

tp ← match_sum(p.mentions, g.mentions, same_type_overlap) ◃ return 1 if all labels of g are in p, all labels of p are in g or a non conflicting frame of the same object and the triggers overlap, 0 otherwise ◃ return the retrieval metrics, where true positives between P and G are computed with frame_label_match_score 6:

tp ← match_sum(P, G, frame_label_match_score) Annotation tools are essential to the development of new information retrieval tasks and models and have been the focus of many development efforts for several years [START_REF] Neves | An extensive review of tools for manual annotation of documents[END_REF]. We considered three NLP tasks in this thesis: the first, named entity recognition, benefits from many existing annotation tools. The second task is the normalization of medical entities, and requires specialization of tools to speed up labeling and pre-filter the list of candidate concepts. Such specializations can be found in some of the softwares like BRAT, Webanno, prodigy and others. However, the third task of frame extraction did not fit well into the BRAT framework, mostly due to the long-range relationships between named entities. Other tools, such as GATE or the XConc Suite, allow for long relationships through tables and are customizable to some extent, but with minimal to no web support, and these customizations require a substantial amount of work. Overall, we could find no free web-based software with sufficient customization and support for long range dependencies.

B.1 Rationale

Our first observation is that complex custom tasks require specific annotation tools, and no existing software provides sufficient customization features. This may lead to either modifying the ideal annotation scheme to fit existing software and forgoing some annotations, or making the scheme more complex. There are many annotation tools available, but most of them are either proprietary or ill-suited to annotating documents or multi-documents, require complex installation that is not compatible with existing remote working environments, or are difficult to customize.

A second observation is the gain in popularity of the Python language, its simplicity for scripting and its integration into collaborative web IDEs like Jupyter. As a result, the integration of Python into an annotation tool to more fully control its behavior and interact with its inputs B.3 Workflow 115 Fast software response time Software response times should less than 100ms to allow a "fluid" user experience, without noticeable delay [START_REF] Card | The Psychology of Human-Computer Interaction[END_REF]. This should also be the case for unreliable connections, with which web-based annotators like BRAT are not robust.

One programming language Most data science programs are done in Python, and this language has been taught to students for some time. This makes it a candidate of choice to interact with the software.

Completeness Structured data can be easily represented in relational databases with a set of tables. For example, text classification requires only one table for documents. Named entity annotation requires two tables for documents and entities. Frame annotation requires three tables (documents, entities, frame) for example. The example in Figure screenshot shows a possible structure for a named entity annotator with an additional column per entity for relationships. Since most data scientists are used to working with tabular data such as Excel, support for tabular views seemed both natural and necessary to meet most data annotation requirements.

Interactivity Finally, the software should be interactive, both for developing the annotator and for manipulating the input and output data. The Jupyter notebook scheme is ideal for this, and customizations (what happens if the user clicks on an entity, or hovers over it) should be taken into account immediately, without the need to recompile Jupyter, or restart the Python core.

B.3 Workflow

All the app is controlled by a single class instance and all the displayed data is gathered as a single json-like state, replicated on both the client and the Python kernel. Each view rendered in Jupyter, either a text view or a tabular view, uses a derivation of this state (view_data = fn(app_data)) and calls functions in the app class whenever an event occurs. An overview of the software workflow can be found in Immutable state Every state mutation is recorded by proxying the state, which enables undo/redo operations. This also allows to send patches instead of the full state when the client or the kernel produces a mutation to keep client and kernel states replicas in sync. This immutable paradigm has been popularized by Javascript libraries like Redux and Immer. Python to Javascript transpilation This app class is written in Python by the user and automatically translated into Javascript using the Transcrypt software. This javascript code is sent to the front-end such that every action taken by the user is answered immediately whenever possible. If an action must be executed in the kernel (like file saving) or the client (like scrolling a view to a given annotation), the user can wrap a given function with a specific Python decorator (@frontend_only or @kernel_only).

Client-kernel communication

Two kinds of views On the client side, the widgets are built in React with state selectors written in Python (and transpiled with Transcrypt). A first widget is the text view renderer, which allows to visualize and annotate multi-line and/or nested text spans on a given text. The second widget is the table widget, based on react-data-grid. Different types of data types are supported like text, hyperlinks, lists of text and list of hyperlinks, which suffice to annotate named entities, relations, events or frames. Custom input suggestions can be provided using the app shared state for each column.

B.4 Perspectives

A first version of the software is available at https://github.com/percevalw/metanno. Much work remains to be done, including providing documentation and examples, more traditional Excel-like functionality for tabular views, visualization of relationships in text, and support for more data types, such as images or PDFs.

Ręsumę ętendu

Extended French summary

Les documents cliniques hospitaliers (comme les rapports d'hospitalisation ou de consultation, les comptes rendus, les rapports de radiologie, les rapports d'anatomo-pathologie, les transmissions infirmiěres, les lettres de sortie et les prescriptions, ou encore les lettres des mędecins) constituent des documents riches en informations pour diverses applications telles que le recrutement de patients pour la recherche clinique, la surveillance ępidęmiologique, le codage mędical et les outils d'aide à la dęcision (Wang et al., 2018c). Ces documents sont essentiellement rędigęs en langage naturel, qui se prête bien à une description exhaustive et exacte des informations, permet de dętailler les cas particuliers et facilite la saisie des informations. On estime ainsi que plus de 80 % des donnęes hospitaliěres sont collectęes sous forme textuelle [START_REF] Raghavan | How essential are unstructured clinical narratives and information fusion to clinical trial recruitment? AMIA Joint Summits on Translational Science proceedings[END_REF]. Malheureusement, le texte libre ne se prête pas facilement aux traitements informatiques standard. En revanche, les repręsentations structuręes amęliorent la qualitę et la ręutilisation des donnęes des patients pour les soins cliniques (y compris l'aide à la dęcision), l'audit et la recherche cliniques, le codage mędical pour l'allocation des ressources et la gestion des services de santę. Nous nous intęressons à la structuration automatique de documents textuels. Cette discipline, communęment appelęe extraction d'information (IE) dans le traitement automatique du langage (TAL), englobe de nombreux domaines de recherche.

Structuration La structuration est le processus de transformation d'un ęchantillon de texte libre en une vue organisęe des informations qu'il contient. L'ęchantillon de texte peut être une seule phrase, un paragraphe, un rapport entier ou même un dossier de patient contenant plusieurs rapports. Ces repręsentations structuręes peuvent prendre diffęrentes formes, comme l'illustre la Figure B.3. Dans le cas de d'une classification, nous pouvons attribuer à chaque ęchantillon une ętiquette unique à partir d'une liste prędęfinie, telle que le type de rapport, le sexe d'un patient, ou une ręponse oui/non à une question. La classification multi-ętiquette permet de classer les ęchantillons avec plusieurs ętiquettes, comme le type de rapport et un score de risque de cancer s'il s'agit d'une mammographie. Un autre type de structure de santę et au nombre croissant de publications scientifiques biomędicales, a conduit au dęveloppement d'approches de TAL dans les domaines gęnęral et biomędical. L'avěnement de l'apprentissage automatique, en particulier l'apprentissage profond, s'est accompagnę de la promesse de dęcrire une tâche à l'aide d'exemples à partir desquels gęnęraliser, plutôt que de construire des rěgles spęcifiques à un domaine et à une langue. Ces męthodes sont devenues trěs populaires et ont dęmontrę leur supęrioritę dans un grand nombre de domaines. Toutefois, les possibilitęs offertes par ces męthodes se sont ęgalement accompagnęes d'un besoin critique de donnęes annotęes: de nombreuses męthodes d'apprentissage modernes entrent dans la catęgorie de l'apprentissage supervisę, c'est-à-dire qu'elles nęcessitent la cręation d'un ensemble de donnęes annotęes (par des experts humains) pour permettre l'apprentissage d'un moděle qui peut ensuite être appliquę à de nouvelles donnęes. Le coût temporel de l'annotation des documents et les besoins ęlevęes en annotations des approches par apprentissage profond repręsentent un obstacle à l'automatisation de l'extraction d'informations. Cependant, dans de nombreux cas, il existe des ressources de connaissances mędicales auxiliaires, telles que des terminologies, qui ne se pręsentent pas sous la forme d'exemples annotęs. L'injection de ces connaissances dans les moděles d'apprentissage fait encore l'objet de recherches actives. De plus, le processus d'annotation lui-même est loin d'être trivial. En effet, la conception d'un schęma qui concilie simplicitę, expressivitę et cohęrence est un dęfi en soi.

Traitement du langage clinique français Les difficultęs lięes au traitement du langage naturel sont nombreuses. En effet, le langage naturel est sujet à des ambiguïtęs sęmantiques et syntaxiques. Comme tout document ęcrit, un rapport clinique peut contenir des fautes d'orthographe, des erreurs grammaticales, voire des contradictions. De plus, l'informatisation de ces rapports et leur conversion vers/depuis des formats portables (par exemple PDF) peuvent introduire des artefacts difficiles à traiter informatiquement. Outre ces "erreurs", la compręhension du langage naturel des rapports cliniques nęcessite un certain sens commun, ainsi que de connaissances mędicales. Il est fręquent de rencontrer des termes qui ne font pas partie d'aucune des ressources fournies à la machine, et ce malgrę le nombre considęrable de synonymes pręsents dans les terminologies ęvoquęes pręcędemment. Lors du dęveloppement de moděles, en particulier dans le domaine clinique, il faut ęgalement tenir compte de structures linguistiques spęcifiques telles que les conjonctions elliptiques, ou la segmentation hięrarchique des relations. Malgrę les amęliorations ręcentes des moděles de langage naturel, la compręhension automatique du langage, et, a fortiori, des documents cliniques en français, est encore loin d'être ręsolue. L'anglais dispose de beaucoup plus d'outils de traitement et de ressources terminologiques que les autres langues, et les approches anglaises ne sont pas toutes directement transposables au français par exemple. De plus, bien qu'il existe de nombreux travaux en français sur le TAL dans le domaine gęnęral, mais bien moins dans le domaine biomędical [START_REF] Nęvęol | Clinical Natural Language Processing in languages other than English: opportunities and challenges[END_REF]. À titre d'exemple, bien qu'ętant la cinquiěme langue la plus repręsentęe dans la version 2019 de la terminologie UMLS, le français ne dispose de Ręsumę ętendu synonymes que pour 3,5% des concepts pręsents. Par consęquent, un aspect important de ce travail est le dęveloppement de męthodes pour le TAL clinique en français.

Une ętude de cas Nous abordons la tâche de structuration de rapports de radiologie. Cette ętude s'inscrit dans le cadre du projet EZMammo, dont l'objectif principal est d'optimiser l'entrepôt de donnęes cliniques de l'Assistance Publique des Hôpitaux de Paris (APHP) et de valider les prędictions d'un algorithme d'analyse de mammographies par apprentissage profond. Une tâche pręliminaire de cette ęvaluation consiste à construire un jeu de donnęes de mammographies ętiquetęes avec le diagnostic de cancer et les lęsions trouvęes dans les rapports correspondants. Dans le cas de lęsions suspectes, l'examen radiologique est suivi d'une analyse cytologique. Il faut alors faire correspondre les ręsultats des deux rapports pour ętiqueter la mammographie originale avec le diagnostic dęfinitif. Ce traitement implique qu'il soit possible d'extraire des comptes rendus plusieurs entitęs mędicales (comme des procędures, scores ou lęsions) et leur caractęristiques spatiales, temporelles et morphologiques. Ces extractions peuvent ensuite être utilisęes pour filtrer et aligner les ręsultats entre les images radiologiques, les rapports de mammographie et les rapports d'anatomo-pathologie. Comme nous le verrons, les entitęs à extraire se composent de plusieurs ętiquettes et de plusieurs parties textuelles, et entrent donc dans la catęgorie des entitęs structuręes. Cette tâche d'extraction d'entitęs structuręes se compose de plusieurs sous-tâches, à savoir l'extraction d'entitęs nommęes pour localiser les mentions d'objets et leurs caractęristiques, la normalisation pour les ętiqueter finement, et la composition de ces mentions pour aboutir à des entitęs structuręes. En ęvaluant notre systěme sur le nouveau jeu de donnęes annotęes, nous montrons que l'ajout d'informations auxiliaires peut amęliorer les performances du moděle dans le contexte d'une petite quantitę de donnęes. Cette information est pręcieuse pour l'annotation et le dęveloppement de nouveaux systěmes de recherche d'information dans d'autres domaines, oű les mots ou phrases clęs sont connus à l'avance. Dans ce contexte, notre systěme commence à obtenir des ręsultats avec presque aucun document annotę. Notre męthode de dętection de relations par portęes amęliore significativement les prędictions, et il en va de même pour plusieurs astuces de modęlisation que nous implęmentons, à savoir l'attention relative et une modification du męcanisme de connexion ręsiduelle standard. Nous montrons ęgalement que les portęes peuvent être apprises sans aucune heuristique, ou annotation spęcifique, et qu'elles fournissent un moyen interprętable de visualiser les prędictions du moděle, comme l'illustre la figure B.8b.

Questions de recherche

Ces diffęrentes contributions, concernant l'extraction et la normalisation d'entitęs simples et structuręes dans les rapports mędicaux, montrent que le traitement automatique du langage clinique français est un sujet complexe qui męrite des approches spęcifiques, tant du point de vue de la modęlisation du systěme que du point de vue de la collecte des donnęes et de leur injection dans les moděles.
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 51 Figure 5.1 Fictitious radiology report except

5. 1

 1 Annotation scheme 81 -the ultrasound "Diagnostic procedure" frame for its right location, composed of the [Breast], [ultrasound] and [right] mentions on lines 1 and 7 -the first "Finding" frame of the first nodule, with two trigger mentions: [cysts] and [nodules] and attribute mentions [8 o'clock position], [3cm] and [millimetric] on lines 1, 2, 3, 4 and 5 -the first "Finding" frame of the second nodule, with two trigger mentions: [cysts] and [nodules] and attribute mentions [6 o'clock position], [2cm] and [millimetric] on lines 1, 2, 4 and 5 -the second "Finding" frame of both nodules in the conclusion: composed of the trigger [cysts] and the laterality [left] on line 11

  Finally the score of each possible legal label combination L mention is computed as the score of the labels present in the combination. The probability of a combination is computed by normalizing over all legal combinations L mention score L mention (m) =

  [Nodules] belongs to two different frames, and the knowledge alone of trigger-attribute relations [2cm]⇐⇒[Nodule], [3cm]⇐⇒[Nodule], [right]⇐⇒[Nodule] and [left]⇐⇒[Nodule] is not sufficient to reconstruct the two frames.

  ) = ForwardBackwardCRF(S BIOUL (u))
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  begin = g.begin and p.end = g.end and p.label = g.label 4: function exact_ner(P, G) 5:

  |p.words g.words| / (|p.words| + |g.words|) > 0.5 and p.label = g.label 4: function half_ner(P, G) 5:

◃

  return 1 if a and b share ≥ 1 word and have the same label, 0 otherwise 3: return |a.words b.words| > 0 and a.label = b.label 4: function frame_support_match_score(p, g) 5:

return 2 • 5

 25 tp/(|g.mentions| + |p.mentions|) 8: function frame_support(P, G) 9:◃ return the retrieval metrics, where (relaxed) true positives between P and G are computed with frame_support_match_score Procedure to compute the Frame Label retrieval metrics 1: function frame_label_match_score(p, g) 2:

  labels ⊆ g.object.shared_labels and p.labels ⊇ g.labels and |p.triggers.words g.triggers.words| > 0 4: function frame_label(P, G) 5:

  Figure B.2.

  To avoid having to open a new port, which can slow down the integration if the user does not have the Jupyter environment, all communication between B.4 Perspectives 117 the client and the kernel is done using the Jupyter web-socket. This web-socket is used to transmit remote function calls, state patches and the transpiled app class code.

  Une premiěre ligne de questionnement dęcoule des problěmes lięs aux repręsentations structuręes. La simple extraction d'entitęs et la normalisation peuvent ne pas être suffisantes pour repręsenter adęquatement les informations pręsentes dans un rapport clinique. Ainsi, quelle structure est la mieux adaptęe à l'extraction d'informations dans le domaine clinique ? Dans le cas d'entitęs structuręes, comment modęliser un systěme pour regrouper les diffęrentes parties d'une même entitę ? Plus gęnęralement, dans le cas d'entitęs simples comme structuręes, quelles sont les difficultęs rencontręes lorsque ces entitęs se chevauchent dans le texte, et quelles męthodes peuvent être utilisęes pour surmonter ces difficultęs ? Notre deuxiěme sęrie de questions relěve du langage lui-même. L'anglais ętant la langue prędominante de la recherche en TAL, peut-on construire des moděles de TAL pour d'autres langues que l'anglais comme le français ?. Une question subsidiaire se pose : quand peu de ressources sont disponibles dans les langues autres que l'anglais, comme dans le cas de la normalisation, est-il encore possible d'appliquer des moděles d'apprentissage à ces langues ? relations binaires entre les mentions, visant à savoir si les deux mentions appartiennent à la même entitę. Pour chaque relation, nous calculons d'une part un score par produit scalaire entre les repręsentations de chaque mention, et introduisons le męcanisme de relation par portęe. Ces relations par portęes visent à dęterminer si une mention est situęe dans la zone d'effet d'une autre mention, sans supervision spęcifique de ces zones. Ce module est illustrę plus en dętail dans la Figure B.8a. Enfin, le dernier module 4 rempli dans chaque cadre les champs qu'aucune mention n'a pu justifier explicitement. Nous proposons ęgalement plusieurs techniques pour injecter des connaissances auxiliaires par le biais de contraintes, d'augmentation du jeu de donnęes et d'une petite terminologie.

  concerns general domain NER in four languages: English, German, Dutch and Spanish. It annotates four types of named entities: persons, locations, organizations and names of miscellaneous entities that do not belong to the previous three groups. The English data were taken from Reuters news articles published between August 1996 and August 1997. It contains 1393 articles, or 22,137 sentences, including 216 articles for development and 231 for testing. There are no overlapping entities in this dataset. Although this corpus does not contain biomedical nor nested entities, it is a classical open comparison point with other NER models.

Table 2 .

 2 1 Main statistics of the named entity recognition datasets used in this thesis in common). Finally, a gold entity should not be matched twice, nor should a predicted entity, so we need a procedure to perform matching iteratively.

		DEFT 3.1	DEFT 3.2		GENIA		CONLL EN 2003
		train	test train	test	train	val	test	train	val	test
	Language	FR		FR			EN			EN	
	Domain	Clinical	Clinical	Biomedical			General	
	# docs	100	67	100	67	1599	190	213	946	216	231
	# entities	5677		2167 1445 46185 4379 5515 23499 5942 5648
	avg length	1.94 2.03 4.55 4.74	1.90 2.11 2.05	1.45 1.45 1.44
	# unique labels	8	8	2	2	5	5	5	4	4	4
	# unique texts	3449 2179 1878 1320 15441 2141 2681	8082 2809 2637
	# nestings	475	422	14	4	4524	436	658	0	0	0
	# same label nestings	8	2	2	1	2430	234	331	0	0	0
	# crossing overlaps	1	0	0	0	0	0	0	0	0	0
	# same label crossing	0	0	0	0	0	0	0	0	0	0
	# superpositions	0	1	0	0	43	12	9	0	0	0
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	2.4 Structured entities extraction			29
			Slice 1		Slice 2
	field	value	justification	value	justification
	organ	breast	"breast"	breast	"breast"
	clock position ∅	∅	∅	∅
	quadrant	∅	∅	∅	∅
	size	8mm	"8mm"	10mm	"1cm"
	temporality	before exam "previously"	during exam ∅
	Table 2.3 Example of a temporaly sliced representation of an object

Table 2 .

 2 .4. 4 Example of a spatially sliced representation of an object

			Slice 1	Slice 2
	field	value	justification	value	justification
	organ	breast	"breast"	breast	"breast"
	clock position ∅	∅	∅	∅
	quadrant	upper-outer "upper outer" lower-inner	"lower inner"
	size	∅	∅	∅	∅
	temporality	during exam ∅	during exam ∅

  5. 

	Maximum sentence/context size	256 wordpieces
	Char CNN kernel size	(3, 4, 5)
	Char embedding size	8
	Char CNN output size	50
	FastText size	300
	Decoders dropout	0.1
	BiLSTM layers	3
	BiLSTM dropout	0.4
	Biaffine hidden size	64 or 150
	Autoregressive pre-observation rate 0.1
	Number of steps	20000 if frozen BERT else 4000
	Table 3.1 Hyperparameters of the autoregressive and BiTag models

  ).

		P	R	F1	Half F1
	Katiyar and Cardie (2018)	78.6 68.2 73.6	
	Ju et al. (2018)	78.5 71.3 74.7	
	Wang et al. (2018a)		73.9	
	Wang and Lu (2018)	77.0 73.3 75.1	
	Sohrab and Miwa (2018)	93.2 64.0 77.1	
	Lin et al. (2019)	75.8 73.9 74.8	
	Shibuya and Hovy (2020)	76.3 74.7 75.5	
	Luan et al. (2019)		76.2	
	Straková et al. (2019)˙78.3	
	Wang et al. (2020)˙80.3 78.3 79.3	
	BERT + softmax	77.5 70.4 73.8 (±0.3) 81.7 (±0.1)
	Autoregressive large→short	78.9 77.8 78.3 (±0.1) 84.3 (±0.1)
	BiTag w/o finetuning	79.3 76.9 78.1 (±0.1) 83.4 (±0.1)
	Biaffine-only	78.0 79.0 78.5 (±0.2) 83.8 (±0.1)
	BiTag	78.9 77.9 78.4 (±0.1) 84.3 (±0.1)
	Autoregressive large→short (ensemble) 80.0 78.0 79.0		85.1
	BiTag (ensemble)	80.3 77.9 79.1		85.1
	Table			

Table 3 .

 3 ). 3 Non-standard GENIA test performance, as used by[START_REF] Shen | Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition[END_REF];[START_REF] Tan | A Sequence-to-Set Network for Nested Named Entity Recognition[END_REF];[START_REF] Yu | Named Entity Recognition as Dependency Parsing[END_REF] 

		P	R	F1	Half F1
	Tan et al. (2021)	82.3 78.7 80.4	
	Yu et al. (2020)	81.8 79.3 80.5	
	Shen et al. (2021)	80.2 80.9 80.5	
	BERT + softmax	79.2 71.1 74.9 (±0.3) 81.8 (±0.3)
	Autoregressive large→short 81.4 79.3 80.3 (±0.1) 85.6 (±0.1)
	BiTag w/o finetuning	81.6 79.6 80.6 (±0.2) 85.5 (±0.2)
	Biaffine-only	80.1 80.5 80.3 (±0.3) 84.8 (±0.3)
	BiTag	81.0 79.8 80.4 (±0.3) 85.5 (±0.1)

  On the DEFT task 3.1 (see Table3.5), the BiTag model obtains the best F1 result of 77.2 (with the exact delimitation of mentions), and a F1 measure of 67.6 on the DEFT task 3.2.

	P 67.8 31.2 42.7 (±0.6) 62.2 63.9 63.0 (±0.9) 50.4 (±0.5) 60.5 (±0.3) R F1 P R F1 Exact Half 74.4 62.3 70.7 75.5 66.0 72.6 78.7 75.9 77.3 (±0.2) 66.8 67.1 66.9 (±0.8) 74.1 (±0.3) 84.5 (±0.1) 78.8 75.7 77.2 (±0.5) 66.7 66.5 66.6 (±0.6) 73.9 (±0.3) 83.6 (±0.2) 76.2 76.4 76.3 (±0.4) 66.6 67.7 67.1 (±1.4) 73.5 (±0.6) 82.1 (±0.3) 78.7 75.9 77.2 (±0.4) 67.5 67.6 67.6 (±1.2) 74.3 (±0.4) 84.3 (±0.1) Autoregressive short→large (ensemble) 80.3 75.9 78.5 Copara et al. (2020) Copara et al. (2020) (ensemble) BERT + softmax Autoregressive short→large BiTag w/o finetuning Biaffine only BiTag 70.0 68.9 69.4 75.4 85.2 DEFT 3.1 (exact) DEFT 3.2 (exact) Overall (F1) 3.7 Results and discussion	3.7 Results and discussion
	BiTag (ensemble)		80.0 76.7 78.3	68.5 68.7 68.6	75.3	85.4
			Table 3.5 DEFT test performance
			.7 pt.	
		P	R	F1	Half F1
	Klein et al. (2003)	91.4 91.9 91.6		
	Lample et al. (2016) Strubell et al. (2017)		90.9 90.7			49
	Devlin et al. (2019)		92.8		
	Straková et al. (2019)		93.4		
	Yu et al. (2020)	93.7 93.3 93.5		
	BERT + softmax	90.2 92.0 91.1 (±0.2) 92.8 (±0.2)
	Autoregressive	92.9 93.1 93.0 (±0.2) 94.2 (±0.2)
	BiTag w/o finetuning	92.6 93.1 92.8 (±0.1) 94.1 (±0.1)
	Biaffine-only	92.9 92.8 92.8 (±0.2) 94.0 (±0.1)
	BiTag	93.0 93.2 93.1 (±0.2) 94.3 (±0.2)
	Autoregressive (ensemble) 93.7 93.5 93.6		94.5
	BiTag (ensemble)	93.3 93.6 93.4		94.7
	Table 3.4 CoNLL English test performance	

  Statistics of the Quaero corpus. In each EMEA and Medline split, ˙and ˙˙denote identical sets of documents between the 2015 and 2016 versions of the corpus

	4.1 Data					57
	Corpus		Mentions Unique mentions CUIs French CUI %
	EMEA 2015	train˙2695 test˙˙2260	923 756	650 525	67 70
	Medline 2015	train˙2994 test˙˙2977	2296 1860 2288 1847	77 76
		train˙2695	923	650	67
	EMEA 2016	dev˙˙2260	756	525	70
		test	2204	658	474	62
		train˙2994	2296 1860	77
	Medline 2016	dev˙˙2977	2288 1847	76
		test	3103	2390 1909	79
	Table 4.1				

  consists of 1450 annotated with concepts of the Mantra terminology, in five different languages: English, Spanish, French, German and Dutch. While the English language has synonyms for every

	4.2 Model overview				58
	Language Docs Mentions Unique mentions Unique CUI Language coverage %
	English	550	1963	1366	1301	100.0
	Spanish	200	756	522	550	93.9
	French	250	1052	729	710	68.5
	German	250	1082	751	729	68.4
	Dutch	200	677	481	490	64.3
		Table 4.2 Statistics of the Mantra corpus	
	Terminology Subset		#synonyms #concepts #synonyms/#concept
		English	5,772,518 2,528,878	2.28
	UMLS	English 5 sources	2,298,600	766,548	3.00
	2014AB	French		179,992	88,985	2.02
		Bilingual	544,383	88,911	6.12
		English	9,187,793 4,258,236	2.16
	UMLS	English 5 sources	3,055,453	968,467	3.15
	2019AB	French		374,144	154,362	2.42
		Bilingual	903,098	154,307	5.85
		English	2,030,891	591,665	3.43
		Spanish	750,740	309,600	2.42
	Mantra	French German	138,990 116,338	67,743 65,974	2.05 1.76
		Dutch		127,951	60,241	2.12
		Overall		3,164,910	591,918	5.35
	Table 4.3 UMLS and Mantra terminologies statistics. The UMLS Bilingual subset is the set of
	concepts having synonyms in both English and French.		

Table 4 .

 4 that obtained a perfect precision on EMEA 2015, at the cost of many handcrafted rules and extra labeled data. Table4.4 Main results for our system on the 2015 and 2016 Quaero datasets, and comparison with existing systems. 5 Comparison between our system and[START_REF] Roller | Cross-lingual candidate search for biomedical concept normalization[END_REF] on the Mantra dataset.[START_REF] Roller | Cross-lingual candidate search for biomedical concept normalization[END_REF] only evaluate their method on Medline titles. We also provide the results for all documents in the Mantra corpus (all).

	MEDLINE 2015	EMEA 2015
	Prec. Rec.	F1	Prec. Rec.	F1

  Comparison on Quaero 2015 of two models trained with the one step procedure or the two steps procedure

		MEDLINE 2015	EMEA 2015
		Prec. Rec.	F1	Prec. Rec.	F1
	2 steps 75.6 71.9 73.7 79.7 73.6 76.5
	1 step	78.5 69.2 73.6 81.6 71.4 76.2
	Table 4.7			

.6 71.9 73.7 79.7 73.6 76.5

  UMLS 2019AB 75.3 71.0 73.1 79.5 72.8 76.0 Table 4.10 Comparison on Quaero 2015 of two models trained with the synonyms of 2014AB UMLS or those of the 2019AB UMLS Our experiment with UMLS 2019AB (Table

	MEDLINE 2015	EMEA 2015	
	Prec. Rec.	F1	Prec. Rec.	F1
	UMLS 2014AB 75			

  Table 4.11 Comparisons between monolingual training setups and bilingual training evaluated on the Quaero dataset. Only concepts that have both French and English synonyms were kept.

		MEDLINE 2015	EMEA 2015
		Prec. Rec.	F1	Prec. Rec.	F1
	FR synonyms only	73.8 52.8 61.5 82.4 52.8 64.4
	EN synonyms only	79.7 45.1 57.5 84.3 41.0 55.1
	FR + EN synonyms 78.3 62.1 69.3 82.7 57.4 67.8

Table 5 .

 5 .1. The corpus consists of 120 annotated clinical documents, 80 for the training set and 40 for the evaluation set. 1 Document level statistics for the EZMammo NLP corpus

		train	test
	count	80	40
	average words	361.0750 362.175
	average lines	45.7375	45.475
	average frames	19.4750	18.425
	average objects	10.8125	10.475

Table 5 .

 5 4 Schemes of the extracted frames. Each frame is composed of multiple fields that can take a value.

	5.1 Annotation scheme

  after the first word of the mention

	A B (u, t) otherwise	(5.5)
	S L (u, t) = S U (u, t) = S B + S L   -∞ A L (u, t) otherwise if t is before the last word of the mention 	(5.6) (5.7)
	S I (u, t) = 0	(5.8)
	S O (u, t) = 0	(5.9)

  . Conversely, scoring each label independently is equivalent to allowing all label combinations.

	Maximum BERT sequence size 192 wordpieces
	Post-encoder dropout	0.5
	Decoder dropout	0.2
	BiLSTM layers	3
	BiLSTM hidden size	200
	Number of steps	2000
	Batch size	16
	lr BERT lr main α NER α normalization α relation α WSS α frame_classification	5e -5 4e -5 2 1 1 1 0.5
	Table 5.6 Hyperparameters

Table 5 .

 5 9 Ablation experiments on the model and training data. WSS stands for Word-level Scope Supervision. All reported metrics are F1-scores.

	label

The (E)nd tag is also commonly referred as the (L)ast tag, and (S)ingle tag as (U)nary tag, hence the BIOUL scheme.
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Structured entity extraction from breast imaging reports Contents

Score combination

The scope relation and biaffine relation scores are combined together. Because we defined scopes as continuous spans of text, it is possible that a mention falls in the scope of another mention and yet does not belong to its frame. In the following example "Mammography: we find the left mass biopsied in 2010. Nothing else in the right breast." the scope of [Mammography] contains the temporality [2010] but the two mentions are not part of a same frame. Therefore, a relationship between two mentions is only predicted if both components (biaffine-based and scope-based) predict this relation. A mathematical formulation reflecting this constraint consists in returning the minimum of the two scores. r(u, v) = min(r scope (u, v), r biaffine (u, v))

Frame relation supervision

Asymmetric supervision

Training the frame extraction module raises several difficulties. For two compatible mentions u and v, we require that R(u, v) is positive if u and v are part of the same frames, and negative otherwise. The symmetric matrix R(u, v) is the result of the maximum of a matrix r(u, v) and its transpose, which, from a scope perspective, means that one mention can be within the scope of another without the reverse being true. One problem with supervising this non-differentiable maximum alone, is that the network might initially choose the wrong direction (e.g., decide that [Breast] belongs to the scope of [2cm], when it is the opposite), and get stuck in this wrong configuration for the rest of the training.

We propose instead to supervise one of the two direction scores specifically, instead of the maximum, through the asymmetric matrix r(u, v). The difference between these two supervision modes is illustrated at the top of the figure 5.6. If two mentions u and v are not part of the same frames, then both direction should have a negative score. However, if the two mentions share the same frames, the question becomes: what do we ask the model to learn? We do not know a priori the direction of the relation u-v, only that one of the directions must have a positive score. One solution is to "explore" the different possibilities. To do this, we perform stochastic sampling of the supervised direction r target (u, v) by weighting each direction with its probability as estimated by the model:

The idea is that the model explores a few configurations at the beginning of the training when the probabilities are close to 0.5, and sticks to a given strategy that leads to stable solutions as learning progresses and its confidence in either direction increases.

Proposed method

93

Relation supervision heuristics We also propose to incorporate heuristics in the supervision matrix r target (u, v). If u belongs to strictly more frames than v, we maximize r(u, v). If both belong to the same number of frames, we choose the direction that leads to the smallest number of wrong scope memberships. For example, in the example section 5.1.2, if we chose [Breast] to be in the scope of [2cm], then [8 o'clock radius] would also be in the scope of [2cm] due to the continuity of the scope. Conversely, if we choose [2cm] to be in the scope of [Breast], no erroneous scope assignment is generated. Finally, if no heuristic can be applied, we sample a direction as previously described.

Word-level scope supervision (WSS)

We also propose to supervise the scopes at the wordlevel using partial word-level annotation generated from the r target matrix, as illustated on the left side of Figure 5.6. Using this supervision matrix, for a given mention u, we can determine which words t of other mentions should be contained in its scope, which words of other mentions should not, and which words are not supervised. Because scopes are contiguous, if a mention v that is not part of the frame of u is contained within its partially supervised scope, i.e. if it is between two mentions that belong to the scope of u, we do not supervise its words and leave the biaffine component handle the non-relation detection. Thus, we generate a partial supervision matrix r WSS with which we supervise the Scope CRF outputs. An example of this matrix is shown on the left of Figure 5.6.

Frame classification

Some labels of a frame such as its temporality or laterality may not be explicitly supported by the text. Each frame is therefore fed through a multi-label classifier. The possible fieldvalue combinations and incompatibilities in a frame are known in advance. For example, a mammogram is necessarily located on the breasts. The "legal" label combinations are the same 2502 label tuples mentioned in Section 5.1.2.

We represent each frame by an embedding computed as a projection of the max-pooling output of its mentions' embeddings.

This embedding is then projected to give a score per label.

Finally the score of each possible legal combination L frame is computed as the score of the labels present in the combination. The probability of a combination is computed by Appendix A

Relaxed retrieval metrics

Unlike the exact match NER metric for which a true positive is unambiguously counted when two elements of the predicted and gold entities match, defining and computing relevant metrics between more complex sets of objects becomes more difficult as the number of element attributes increases. One option is to lower the minimum similarity threshold required between predicted and gold features to account for small errors such as mismatch between mention boundaries. However, this leads to ambiguities in the metric computation, since several predicted elements may match a single gold element, and vice versa. We explicitly formulate a greedy matching procedure to compute a maximum bipartite greedy match between the elements of two sets, in the algorithm 1 to avoid double counting true positives.

For reference, the exact match metric NER is written using this matching procedure in the Algorithm 2.

The NER metric for the section 3 uses a score function that returns 1 if the Dice overlap of words in two mentions is higher than 0.5. The procedure is described in the Algorithm 3.

The matching procedure is used in the computation of the frame support metric in Chapter 5 (Algorithm 4), where two frames have a non-zero match score if some of their mentions overlap, and a perfect score if all their mentions overlap, and 0 otherwise. This score between 0 and 1 is the Dice/F1 overlap between the mentions of the two frames. It is used as a "relaxed" true positive when computing the retrieval metrics.

The matching procedure is used in the calculation of the frame label metric in Chapter 5 (Algorithm 5), where two frames have a matching score of 1 if their labels match and their trigger mentions overlap, and 0 otherwise. This score is used as a true positive when computing retrieval metrics.

Abstract

Hospital clinical documents are rich sources of information for various applications such as patient recruitment for clinical research, epidemiological surveillance, medical coding, and decision support tools. However, being primarily written in natural language, these documents are not easily amenable to large-scale computer processing and must first be structured. We aim to extract entities mentioned in these documents, whether simple or structured, i.e., containing several labels or parts, and normalize them with concept bases. We contribute to several natural language processing (NLP) tasks, namely named entity recognition (NER), medical entity normalization, and structured entity extraction. In particular, we investigate training deep learning models in low data settings, for languages other than English and in the clinical domain. We structure our approach in three steps: tag, normalize, and compose. We first propose two methods to tag simple entities, especially when they overlap in texts. We then develop a large-scale multilingual model to normalize them in several languages. Finally, to compose simple entities into structured entities, we propose a new method based on mention cliques and scope relations. We evaluate it to a new annotated dataset of breast imaging reports. Keywords: [nlp, structure, extraction, tag, normalize, compose, clinical, multilingual] 

Ręsumę

Les documents cliniques hospitaliers constituent de riches sources d'information pour diverses applications telles que le recrutement de patients pour la recherche clinique, la surveillance ępidęmiologique, le codage mędical et les outils d'aide à la dęcision. Cependant, ętant essentiellement rędigęs en langue naturelle, ces documents ne se prêtent pas aisęment à des traitements informatiques à grande ęchelle et doivent d'abord être structuręs. Nous visons à extraire les entitęs mentionnęes dans ces documents, qu'elles soient simples ou structuręes, c'est-à-dire contenant plusieurs ętiquettes ou parties, et à les normaliser selon des bases de concepts. Nous contribuons à plusieurs tâches de traitement du langage naturel (TAL), à savoir la reconnaissance des entitęs nommęes, la normalisation des entitęs mędicales et l'extraction d'entitęs structuręes. Nous nous intęressons notamment à l'entraînement de moděles par apprentissage profond (deep learning) dans des conditions de donnęes limitęes, pour des langues autres que l'anglais et dans le domaine clinique. Nous structurons notre approche en trois ętapes : surligner, normaliser et composer. Nous proposons d'abord plusieurs męthodes pour surligner des entitęs simples, notamment lorsqu'elles se chevauchent dans les textes. Nous dęveloppons ensuite une approche multilingue à grande ęchelle pour les normaliser dans plusieurs langues. Enfin, pour composer ces entitęs simples en entitęs structuręes, nous proposons une nouvelle męthode basęe sur les cliques de mentions et les relations de portęe. Nous l'ęvaluons sur un nouveau corpus annotę de comptes rendus cliniques de mammographies. Mots clę: [tal, structure, extraction, surligner, normaliser, composer, clinique, multilingue]