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Abstract

Hospital clinical documents are rich sources of information for various applications such

as patient recruitment for clinical research, epidemiological surveillance, medical coding, and

decision support tools. However, being primarily written in natural language, these documents

are not easily amenable to large-scale computer processing and must first be structured. We

aim to extract entities mentioned in these documents, whether simple or structured, i.e.,

containing several labels or parts, and normalize them with concept bases. We contribute to

several natural language processing (NLP) tasks, namely named entity recognition (NER),

medical entity normalization, and structured entity extraction. In particular, we investigate

training deep learning models in low data settings, for languages other than English and in

the clinical domain. We structure our approach in three steps: tag, normalize, and compose.

We first propose two methods to tag simple entities, especially when they overlap in texts.

We then develop a large-scale multilingual model to normalize them in several languages.

Finally, to compose simple entities into structured entities, we propose a new method based

on mention cliques and scope relations. We evaluate it to a new annotated dataset of breast

imaging reports.



Ręsumę

Les documents cliniques hospitaliers constituent de riches sources d’information pour

diverses applications telles que le recrutement de patients pour la recherche clinique, la

surveillance ępidęmiologique, le codage mędical et les outils d’aide à la dęcision. Cependant,

ętant essentiellement rędigęs en langue naturelle, ces documents ne se prêtent pas aisęment à

des traitements informatiques à grande ęchelle et doivent d’abord être structuręs. Nous visons

à extraire les entitęs mentionnęes dans ces documents, qu’elles soient simples ou structuręes,

c’est-à-dire contenant plusieurs ętiquettes ou parties, et à les normaliser selon des bases de

concepts. Nous contribuons à plusieurs tâches de traitement du langage naturel (TAL), à savoir

la reconnaissance des entitęs nommęes, la normalisation des entitęs mędicales et l’extraction

d’entitęs structuręes. Nous nous intęressons notamment à l’entraînement de moděles par

apprentissage profond (deep learning) dans des conditions de donnęes limitęes, pour des

langues autres que l’anglais et dans le domaine clinique. Nous structurons notre approche en

trois ętapes : surligner, normaliser et composer. Nous proposons d’abord plusieurs męthodes

pour surligner des entitęs simples, notamment lorsqu’elles se chevauchent dans les textes.

Nous dęveloppons ensuite une approche multilingue à grande ęchelle pour les normaliser

dans plusieurs langues. Enfin, pour composer ces entitęs simples en entitęs structuręes, nous

proposons une nouvelle męthode basęe sur les cliques de mentions et les relations de portęe.

Nous l’ęvaluons sur un nouveau corpus annotę de comptes rendus cliniques de mammographies.
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Chapter 1

Introduction

Hospital clinical documents (e.g., hospitalization or consultation reports, nursing trans-

missions, discharge letters and prescriptions, or physicians’ letters) constitute rich sources of

information for various applications such as patient recruitment for clinical research, epidemi-

ological surveillance, medical coding, and decision support tools (Wang et al., 2018c). These

documents are primarily written in natural language, which helps to ensure completeness and

accuracy of the information, accommodate special cases, and facilitate data entry. Indeed, it

is estimated that more than 80% of hospital data are collected in the form of texts (Raghavan

et al., 2014). Unfortunately, the free text format is not easily amenable to the use of standard

computer processing programs. In contrast, structured representations increase the quality

and reuse of patient data for clinical care (including decision support), clinical audit and

research, medical coding for resource allocation, and health service planning. In health care

facilities, efforts have been made to replace manual reports with forms that ensure structured

representations. However, the descriptive needs of clinicians change over time, and it has

been shown that the "additional remarks" fields tend to contain more and more information,

reflecting a lack of flexibility in the forms (Steichen et al., 2007). Another approach, which is

the one we are interested in in this thesis, is the automatic structuring of text documents. One

of its main advantages is the possibility to modify the algorithm a posteriori without disrupting

the activity of hospital practitioners. This discipline, commonly referred to as information

extraction (IE) in natural language processing (NLP), encompasses many research areas.

Structuring Structuring is the process of transforming a free text sample into an organized

view of the information it contains. The sample text can be a single sentence, a paragraph,

an entire report, or even a patient record containing multiple reports. These structured

representations can take different forms, as illustrated in Figure 1.1. In the case of classification,

we can assign each sample a unique label from a predefined list, such as the type of report

or the gender of a patient, or a yes/no answer to a question. Multi-label classification allows

samples to be classified with multiple labels, such as the report type and a cancer risk score
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and biomedical domains. The advent of machine learning, especially deep learning, has come

with the promise of describing a task with examples from which to generalize rather than

building hand-crafted domain- and language-specific rules. These methods have gained an

immense popularity and demonstrated their superiority in a wide range of domains. However,

with the possibilities of these methods has come a ravenous appetite for annotated data:

many modern learning methods fall into the category of fully supervised learning, i.e. they

require the creation of an annotated dataset (by human experts) to allow the training of

a model that can then be applied on new data. The time cost of annotating documents

and the high annotation requirements of deep learning approaches represent a barrier to

automating information extraction. However, in many cases, there exist auxiliary medical

knowledge resources, such as terminologies, that are not in the form of annotated examples.

Efficiently injecting this knowledge into learning models is still under active research. The

annotation process itself is also far from trivial, as designing a scheme that reconciles simplicity,

expressiveness and consistency is a challenge in itself.

French clinical language processing The difficulties related NLP are numerous. Indeed,

natural language is subject to semantic and syntactic ambiguities. As any written document,

a clinical report may contain spelling mistakes, grammatical errors, or even contradictions.

In addition, the computerization of these reports and their conversion from and to PDF

can introduce artifacts that are difficult for computers to handle. Apart from these "errors,"

understanding the natural language in clinical reports requires common sense and background

medical knowledge. It is common to encounter terms that are not part of the resources provided

to the machine, despite the considerable number of synonyms in many terminologies. When

developing models, especially in the clinical domain, specific formulations such as elliptical

conjunctions and hierarchical segmentation of relationships must also be taken into account.

Despite recent improvements in natural language models, machine understanding of language,

let alone of clinical documents in French, is still far from being solved. English has many

more processing tools and terminology resources than other languages, and not all English

approaches are directly transposable to French. Moreover, although there is much work in

French on general domain texts, the biomedical domain is still lagging behind (Nęvęol et al.,

2018). As an example, despite being the 5th most represented language in the 2019 version

in the UMLS terminology, French has synonyms for only 3.5% of its concepts. Therefore, an

important aspect of this work is the development of methods for clinical NLP in French.

A case study In this thesis, we will address the task of structuring radiology reports (Chap-

ter 5). Solving this task involves the various research topics mentioned above. This study,

approved by the institutional review board at APHP (CSE 190022), is part of the EZMammo

project, which main objective is to optimize the clinical data-warehouse of the Assistance

Publique des Hopitaux de Paris (APHP) and validate the predictions of a deep learning imaging
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algorithm on mammograms. A preliminary task of this evaluation is to build a dataset of mam-

mograms labelled with the cancer diagnosis and the lesions found in the corresponding reports.

In the case of suspicious lesions, the radiological examination is followed by a cytological

analysis. We must then match the findings of both reports to label the original mammogram

with the definitive diagnosis. This processing entails the ability to extract medical entities

(procedures, scores, lesions) and spatial, temporal, and morphological features. Using these

extractions, we can filter and align the results between radiological images, mammography re-

ports, and anatomo-pathology reports. The target entities are composed of multiple labels and

multiple textual parts. Thus, they fall into the category of structured entities. This structured

entity extraction task involves multiple subtasks, namely named entity extraction to locate

object mentions and their characteristics, normalization to finely label them, and composition

of these mentions to construct structured entities.

1.1 Research questions

A first line of questioning arises from the problems related to structured representations.

Simple entity extraction and normalization may not be sufficient to adequately represent the

information present in a clinical report. Therefore, which structure is better suited to the

extraction of information in the clinical domain? In the case of structured entities, how

do we model a system to group the different parts of the same entity? More generally, in

the case of both simple and structured entities, what challenges are encountered when

these entities overlap, and what methods can be used to overcome them?

Our second series of questions comes from the language domain itself. Since English is

the predominant language of NLP research, can we build NLP for languages other than

English, such as French? A subsidiary question arises: when few resources are available

in languages other than English, as in the case of normalization, is it still possible to

apply learning models to these languages?

Finally, our last question comes from the requirement of annotated data in deep learning.

Since the cost of annotating medical documents is high, what techniques can be imple-

mented to train deep learning algorithms in the low-data regime?

1.2 Contributions

To answer the previous research questions, we present the following contributions related

to steps 1 , 2 and 3 in Figure 1.1. Our works on named entity recognition and structured

entity recognition introduce multiple methods to handle the extraction of overlapping entities.

In the case of simple entity recognition, we show that sequence labelling methods are better

suited for the extraction of long and ambiguously annotated entities. In the case of structured
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entities, we introduce the concept of mention cliques to compose structured overlapping

entities, as well as a new mechanism of relation prediction with mention scopes.

We also address the issue of training models in languages other than English. We evaluate

all of our models on French datasets and develop a new annotated corpus of clinical radiology

reports. We also demonstrate the benefit of training with multiple languages jointly in the

case of medical concept normalization.

Finally, in the low-data regime, we showcase multiple techniques to inject external medical

knowledge into the training of learning-based algorithms, while alleviating the need for

language or domain specific pre-processing methods. In the context of radiological entity

extraction, we show that the hybridization of a set of output constraints, a terminology and a

learning-based method enables our method to be effective with few annotated reports.

1.3 Outline

We structure our work in four main chapters and our work can be summarized by these

three verbs: tag, normalize and compose.

— The first chapter contextualizes our objectives by focusing on computer text representa-

tion, which is transversal to most NLP tasks.

— In the second chapter, we propose two methods to extract simple overlapping named

entities (tag 1 ) and evaluate our method on medical- and general-domain datasets, in

English and French.

— In the third chapter, we address the problem of normalization (normalize 2 ) of med-

ical terms in languages with low terminology coverage, and propose a normalization

algorithm using supervised or distantly supervised learning.

— In the fourth chapter, we focus on the issue of extracting structured entities (compose 3 )

in clinical reports. In particular, we design an annotation scheme and present a new

structured entity dataset of annotated clinical radiology reports. We also propose a

method to extract these structured entities and evaluate it on the dataset.

Finally, we close this thesis with several research perspectives in the last chapter.

1.4 Published work

The material presented in Chapter 3 is based on three publications, one at the 2021 AIME

conference (Wajsbürt et al., 2021b) and two as part of the TALN-DEFT challenge, dedicated to

the analysis of clinical cases in French in 2019 (Wajsbürt et al., 2020) and 2021 (Gęrardin

et al., 2021). The material presented in Chapter 4 is based on a journal article in JBI (Wajsbürt

et al., 2021a). The material presented in Chapter 5 has not been published yet.



Chapter 2

Background

Contents

2.1 Computer representations of text . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Textual units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Terminologies and hand-engineered features . . . . . . . . . . . . . . 8

2.1.3 Modern input features . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.4 Pretrained representations . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.5 Large language models . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Named entity recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Proposed methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 A word about object detection . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Annotated corpora . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.4 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Medical entities normalization . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Terminologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Proposed methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.3 A word about person identification . . . . . . . . . . . . . . . . . . . 23

2.3.4 Annotated corpora . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.5 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Structured entities extraction . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Breast imaging reports: a case study . . . . . . . . . . . . . . . . . . 25

2.4.2 Structured entities representation . . . . . . . . . . . . . . . . . . . . 27

2.4.3 NLP for cancer and radiology . . . . . . . . . . . . . . . . . . . . . . 29

2.4.4 Related tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.5 Public annotated corpora . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



2.1 Computer representations of text 7

To introduce the objectives of extraction and normalization of simple or structured entities,

we must first introduce the recent developments in computer representation of text, which

are transversal to many NLP tasks.

We will then discuss the work that has been done on simple entity extraction in texts,

and the issues that remain. This task is an essential sub-task of text processing for many

information retrieval applications, and as such constitutes a preliminary step for both the

normalization of medical entities and the composition of structured entities.

Once these simple entities have been extracted, we will address the issue of their nor-

malization, a topic that aims at improving the interoperability of systems that use these

extractions.

Finally, we will consider the specific issue of structured entities, focusing on the case of

breast imaging reports. We will make the connection between our objective and various

existing NLP tasks studied in order to better define it.

2.1 Computer representations of text

Semantic representations of text in computing have been the subject of several decades

of studies. This line of research aims at producing representations of words or characters

that are globally "useful" for downstream NLP tasks. This encompasses several topics such as

text segmentation, robustness to spelling errors or application to new contexts, domains or

languages in order to improve the generalizability and robustness of downstream NLP models.

We will focus on some aspects of these developments, which are transversal to all NLP

disciplines, and thus to the topics addressed in this thesis.

2.1.1 Textual units

In order to be processed by computers, texts must first be broken down into small units

called tokens. This splitting affects the generalizability of a system, since a never-before-

seen sample can be treated as a composition of several previously observed subsamples. For

example, if a model has learned to detect "breast cancer", and "lung melanoma", it could be

able to generalize to "breast melanoma" by splitting the phrase into words.

Words The granularity of the splitting is thus often set intuitively by splitting the sentences

word by word. This splitting also affects the outputs produced by the system. Indeed, a named

entity recognition system will not be able to predict an entity stopping in the middle of a word

if the splitting is done around the words.
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Characters It is also possible to segment the text into character n-grams. For example,

the word "melanoma" could be split into multiple sub-strings of arbitrary size "mel", "ela",

"ano", etc. Some efforts have also been made to represent the text character by character.

These systems lend themselves well to morpho-syntactically rich languages and enable the

representation of rarer words. For "breast melanoma", this segmentation would produce the

sequence "b r e a s t _ m e l a n o m a"

Subwords More recent works (Kudo, 2018; Sennrich et al., 2016; Wu et al., 2016) have

introduced sub-words as the main processing units. These segmentation techniques split words

such that every generated subword is part of a given limited vocabulary (between 30,000 and

100,000 words most of the time). They solve the problem of rare and unseen words, while

keeping a balance between the size of the vocabulary and the size of the tokenized sequence.

An example of subwords sequence would be "breast mela_ noma".

2.1.2 Terminologies and hand-engineered features

2.1.2.1 Hand-engineered features

After segmenting the text into units, each of these units is commonly mapped to a set of

features. Features can be described as numerical characteristics associated with each textual

unit, and can be integer, boolean or real.

Early NLP methods relied on word case, punctuation, presence of digits, morphological

properties such as affixes or suffixes, or Part Of Speech (POS) labeling, among others. For

example, the word "Apple" has an uppercase feature of 1, a POS verb feature of 0, and

a contains-digit feature of 0, and could therefore be represented by the vector [1, 0, 0].

Interested readers can refer to Nadeau and Sekine (2007) for a more detailled review of such

features.

2.1.2.2 Terminologies and term lists

Early NLP systems made extensive use of terminologies. These terminologies can be

described as dictionaries in which a variety of expressions are represented according to

different characteristics. The expression "breast melanoma" can thus be associated with an

identifier (ex: CUI C0346787 in the UMLS) a label (Disease) or other features useful to a

downstream system. The search for these entities in the texts was then mainly done by exact

match, or distance calculation between pieces of text and terminological entries at the word

or character level. In particular, this step was commonly part of the preprocessing stage of

early systems, rather than an objective itself. The matched entries could then either be used

as inputs to decision systems, or be converted into features for further processing of the text

sample. Other features could be derived from the word themselves.
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2.1.3 Modern input features

2.1.3.1 Word embeddings

A word embedding is a set of real features associated to a word and computed by ma-

chine learning on a set of tasks. This term is also used to denote embeddings of sub-words

embeddings when a different tokenization algorithm is used, as mentioned in Section 2.1.1.

Word embeddings were introduced to the NLP community by Collobert and Weston (2008)

and have become the de facto standard for analyzing text with machine learning. It is not

clear what the exact meaning of any of these features is, but it is commonly assumed that

they capture the implicit semantics of words. Word embeddings can be learned from scratch,

or computed from morphological features using character embeddings for instance (Akbik

et al., 2018; Bojanowski et al., 2017; El Boukkouri et al., 2020; Klein et al., 2003; Peters et al.,

2018).

This term is typically used in the context of neural networks. However, in modern NLP

systems, it is often not clear which part of a model is responsible of text representation and

which one is responsible for the specific task that is being addressed. We will assume that

a word embedding refer to any representation that we can map to the original tokenized

sequence. A model can therefore produce multiple word embeddings for the same word, for

example by focusing on different characteristics. For instance, in the BERT model, the multiple

embeddings are assumed to represent increasingly refined versions of the initial embedding

and some studies have shown that word embeddings of lower layers in a language model

encode more local syntax while higher layers capture more complex semantics (Tenney et al.,

2019).

These features are then combined through a set of operations that compose the different

layers of a neural network. An exhaustive review of the different types of layers is beyond the

scope of this thesis but we will list a few standard components of these systems. Most of these

transformations are built upon feed forward networks that allow non-linear transformations

in the feature space.

2.1.3.2 Convolutional neural networks

Convolutional neural networks (Krizhevsky et al., 2012) operate as transformations on

small sliding windows of words (or images). They are best suited for local pattern detection.

They have been used for text classification (Kim, 2014), NER (Collobert et al., 2011), normal-

ization (Li et al., 2017; Limsopatham and Collier, 2016), as well as character-level pattern

extraction (Klein et al., 2003).



2.1 Computer representations of text 10

2.1.3.3 Recurrent neural networks

Recurrent neural networks, in particular Long Short Term Memory networks (LSTM)

(Hochreiter and Schmidhuber, 1997), work as continuous state machines that process each

word of a text successively by updating an internal memory. The LSTM cell uses a forget gate

and an input gate to store, retrieve and overwrite a memory state which allows it to better

"remember" the previously processed tokens on longer ranges. There also exists other variants

like Gated Recurrent Units (Dey and Salemt, 2017). These networks are generally slower than

CNNs but are well suited to sequences and the detection of patterns involving a particular

ordering of words or interactions over a longer distance.

2.1.3.4 Attention

The attention mecanism (Bahdanau et al., 2017; Vaswani et al., 2017) operates as a fuzzy

search mechanism in a list of embeddings. Each word in the text computes two "key" and

"value" vectors, and a "query" can be performed by computing a weighted sum of the word

values and a similarity score between their key and the query vector. This mechanism is useful

for modelling long-distance interactions, or for samples without a specific order (like graphs)

and is nowadays at the core of many deep learning models.

2.1.4 Pretrained representations

The idea of learning textual representations before specializing them on a specific task

has acquired a considerable popularity since the last decade. These representations have in

common that they are the result of optimizations of a representation model on large corpora

of texts. However, they differ in the architecture of the pre-trained models, the granularity of

the textual units and the learning objectives of the pre-training.

2.1.4.1 Static word embeddings

Training the input word embeddings through auxiliary tasks such as language modelling

has been a crucial step to enable their use in neural networks (Collobert and Weston, 2008;

Collobert et al., 2011; Mikolov et al., 2013; Turian et al., 2010). The specific pre-training task

of language modelling on a large corpus was introduced as Word2Vec by Mikolov et al. (2013),

followed by GLOVE (Pennington et al., 2014). The language modelling objective builds on the

idea that "a word is characterized by the company it keeps" (Firth, 1957; Harris, 1954). This

was pinned as the distributional Hypothesis by (Sahlgren, 2008) and more thoroughly studied

as distributional semantics (Baroni and Lenci, 2010; Turney and Pantel, 2010). Other variants

such as FastText (Bojanowski et al., 2017) build their word representations from character

n-grams and have become a popular solution for representing previously unseen words.
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However, these embeddings do not take into account the context of the word when used

in a new sentence. This can severely limit their usefulness in some cases, such as representing

homonyms (does "bear" refer to the animal or the verb?), or referent words like pronouns.

2.1.4.2 Contextualized word embeddings

The ELMO contextualized word embeddings (Peters et al., 2018) improved static word

embeddings by pretraining a full deep recurrent language model and using the hidden

representations as features for downstream tasks. It was followed by the BERT model (Devlin

et al., 2019) with the masked language modelling objective. Many variants have since been

designed, either modifying the model and its training (Clark et al., 2020; Dong et al., 2019;

Kong et al., 2020; Liu et al., 2019; Yang et al., 2019), or the pre-training corpus domain (Beltagy

et al., 2020a; Lee et al., 2020; Martin et al., 2020; Ruder et al., 2019). A comprehensive

review of this research field can be found in Qiu et al. (2020). It is worth mentioning that

the HuggingFace library (Wolf et al., 2020) contributed to the popularity of these models by

simplifying their implementation and sharing.

2.1.5 Large language models

Recently, a paradigm shift has been brought by deep autoregressive language models.

Several information extraction tasks can in some cases be written in text format through a

question and an expected answer. The answer can then be binary, multiple choices or open.

For example, a classification task sample could be represented as "Is the following text about

NLP? Image classification has known many successes since CNNs. Answer: no". Similarly, a

NER task sample could be written as "Extract the different locations mentioned in this text: I

moved to London in 2000 before returning to Paris a year later. Answer: London, Paris". It has

been shown that language models pre-trained on large amounts of text can correctly complete

these questions with the most likely answers (Lewis et al., 2020; Radford et al., 2018, 2020;

Raffel et al., 2019), sometimes with relatively few task-specific examples (Brown et al., 2020).

Thus, the entire pre-trained model serves as a common backbone for various tasks, without

the necessity of redesigning a specific architecture for each. Although these models hold much

hope and promise, their enormous size, the biases associated with their training, and the

potential abuses surrounding their use raise many ethical questions (Bender et al., 2021).

2.2 Named entity recognition

The term "named entity" emerged during the MUC program in the early 1990s. Formally, a

named entity is characterized by a textual beginning and end, and a possible type. While earlier

efforts focused mainly on entities in the form of noun phrases, the task of entity recognition
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has evolved and now aims at extracting any entities, sometimes long and comprising several

noun phrases or verbs. This task constitutes a cornerstone of information extraction tasks, as

it allows the decomposition of a text into semantic units that can be more easily processed by

a computer, and interpreted by a human (Ehrmann, 2008).

To a lesser extent, variants of the task also allow disjoint entities (with gaps) and have

been addressed by several works but we will not focus on this case in this section.

A notable difference between the different NER methods is their ability to extract over-

lapping entities. The overlapping NER problem is commonly referred to as "nested NER" or

"overlapping NER". In contrast, the non-overlapping NER problem is referred to as "flat NER".

The overlapping entities may be of different types, suggesting the use of several specialized

models for each type. However, they can also be of the same type, which makes their extraction

more difficult.

2.2.1 Proposed methods

2.2.1.1 Earlier works

The first published work that addressed the task of detecting entities in a text was the one

of Rau (1990). The first NER systems relied heavily on handcrafted rules and various heuristics.

As described in Section 2.1.2.1, these rules and heuristics used lexical functions, gazetteer

lists, POS labels, and other handcrafted features. To address the ambiguity of the language

and the need for annotation for similar terms, multiple methods performed an augmentation

of the initially annotated data by building a set of context from their entities and building a set

of candidate entities from their context. These gathered entities and contexts are turned into a

set of heuristics and handcrafted rules to allow generalization. Brin (1999) applies lexical rules

to detect movie names in websites and complete the initial rules. Collins and Singer (1999)

gather entities rules and context rules iteratively to recognize general domain entities, starting

with a set of entities rules. Riloff and Jones (1999) apply Mutual Bootstraping and perform

these steps automatically, starting from a set of candidates. The formal work of Lin (1998) on

language distributionality is used by Paşca et al. (2006) to produce a set of similar words to

further augment the entity rules and context rules. Alfonseca and Manandhar (2002) use the

WordNet graph (Miller et al., 1990) to define seeds by listing the most frequent co-occurrences

between the nodes and the target entity class. They subsequently use the graph children

to generate candidates entities. Etzioni et al. (2005) use web queries similarity defined as

Pointwise Mutual Information and Information Retrieval (PMI-IR) by Turney (2001) to define

the similarity between candidates and contexts.
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2.2.1.2 Sequence labelling systems

Ramshaw and Marcus (1999) have formally cast the NER task as a word classification

problem. Until recently, most machine learning systems have approached the problem using

this formulation. In sequence labelling NER, each word is assigned a single tag (or label)

describing its relative position in an noun phrase and the produced tag sequence can be parsed

to recover noun phrase entities. The first tag schemes were IOB or IOE variants in which each

word is classified as being (I)nside an entity, (O)utside an entity, at the (B)eginning of an

entity or at the (E)nd of an entity. When dealing with multiple entity types, these scheme

use specific tags for each entity. The (O)utside tag is shared and represent the absence of

any entity of any type at a given position. The IBES tags are declined as I-A, B-A, E-A, S-A

where A refers to a given entity type. This prevent the system from producing multiple non O

tags at a given position, and therefore impose the flatness of the produced solution. Ratinov

and Roth (2009) further study the BIOUL (or equivalently IOBES) tag scheme and find that it

obtains the best performance of the CoNLL dataset. This scheme encodes the end of entities

and single words entities with specific tags E and S 1.

Supervised methods such as Random Forest and chain graphs became an topic of growing

interest in NER since 1997. These models were often given a list of handcrafted features about

each word of a sequence, and learned to predict if a word was part of an entity as well as

the entity type: Hidden Markov Models (HMM) (Bikel et al., 1997), Decision Trees (Sekine,

1998), Maximum Entropy Models (ME) (Borthwick et al., 1998), Support Vector Machines

(SVM) (Asahara and Matsumoto, 2003), and linear chain Conditional Random Fields (CRF)

(McCallum and Li, 2003). The latter model was introduced by Lafferty et al. (2001) and is

still used as a building block of modern systems. Deep neural networks were introduced to

the NER task by Collobert and Weston (2008), as they developed a deep neural network to

jointly learn NER and other tasks such as language modelling. Since then, sequence labeling

NER systems have essentially evolved with advances in deep learning representations. Huang

et al. (2015) incorporated LSTMs in the design of their system. Klein et al. (2003) proposed a

character CNN encoding of the words. Lample et al. (2016) improved their system in various

ways and propsosed a LSTM based character word embedding. As Devlin et al. (2019); Peters

et al. (2018) proposed contextualized embeddings, they improved the performance of NER

systems significantly as a result. However, these systems only focused on flat NER.

2.2.1.3 Nested NER via iterative sequence labelling

The GENIA corpus (Kim et al., 2003) led to the first work focusing on nested NER (Gu,

2006; Shen et al., 2003; Zhang et al., 2004; Zhou et al., 2004; Zhou, 2006), mainly involving

focusing on either the outermost or innermost entities in a sentence, or specific entity types.

1. The (E)nd tag is also commonly referred as the (L)ast tag, and (S)ingle tag as (U)nary tag, hence the BIOUL
scheme.
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Since 2018, nested named entity recognition has been the subject of renewed attention in the

biomedical NLP community, leading to many different approaches.

Alex et al. (2007) study multiple problem transformations to frame the nested NER task

as cascaded flat NER tasks, each focusing on either a specific nesting level, or a specific

label. However, their approach did not model overlapping entities of the same type. Ju et al.

(2018) designs a layered architecture that predicts entities at each layer and merges the

word representations before applying the next layer. Fisher and Vlachos (2019) uses a fixed

number of layers and updates spans representations using a novel neural architecture. Shibuya

and Hovy (2020) compute tag scores for each word and decode the spans by applying the

Viterbi algorithm multiple times on a previously extracted subsequence, starting from the full

sentence.

2.2.1.4 Nested NER via non linear tag sequences

Another approach is to create a hypergraph of the words in the sentence, such that it

captures the structure of the overlapping entities. Finkel and Manning (2009) model the

nested NER task as a constituency parsing graph extraction. Their approach could extract

nested entities of the same type, at the cost of expensive computations and the need for

Part-of-Speech (POS) features. Some methods model the span detection with hypergraphs

to account for the non-linear structure of the tag sequences. Lu and Roth (2015) design a

CRF hyper-graph with various node types to model entity types and boundaries. However,

cycles in the graphs of some samples required that the CRF normalization term had to be

approximated, leading to a decreased performance (Muis and Lu, 2017). Muis and Lu (2017)

model the mention edges and transitions instead of solely modeling token tags. Their method,

however, requires multiple graphs when there are more than one entity type. Alternatively,

Katiyar and Cardie (2018) only model mention tags and not their transitions, but allows a

multi-label prediction for each token. They modify an LSTM layer to represent multiple tags

for a single word and perform decoding during the recurrent neural network execution.

2.2.1.5 Exhaustive NER systems

Another class of methods addresses the problem by enumerating all possible spans of the

input sequence and classify each one with its label, including a "no entity" class. Sohrab

and Miwa (2018) compute a representation for each span from its word embeddings and

classify each entity. Xu et al. (2017) propose a similar model but consider the left and right

context when classifying the spans. Wang et al. (2020) use an LSTM cell (Hochreiter and

Schmidhuber, 1997) to model dependencies between spans that differ by one token. Zheng

et al. (2019) first filters candidate mentions by predicting all possible start and end tokens

and then predicting a label for every mention that starts or end at one of the boundaries. Luan
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et al. (2019) also enumerate and classify spans but allow them to communicate through a

graph attention mechanism.

2.2.1.6 Recent works

There are several other formulations of the NER task that do not involve sequence labelling

or exhaustive enumeration of entities. Tan et al. (2021) redefine the task as a sequence-to-set

problem and use a fixed number of entity slots where each slot fills in its start position, end

position and label, or is classified as empty. Their method allows the prediction of any type

of overlapping entities. Li et al. (2020); Mengge et al. (2020) conceptualize the problem

as a machine reading comprehension task. In their work, a pre-trained language model is

prompted with a query such as "Find the organizations in this sentence: ", followed by the

sentence. The start and end boundaries of the relevant entities are then extracted by classifying

each representation in the sequence. Combined with transfer learning, these methods show

promising results in predicting new entities types without having to annotate these types.

De Cao et al. (2020) use a pretrained deep language model to rewrite the input sequence

with markup tags indicating the beginning, end and label of the entities. However, they do not

adapt their method to overlapping entities. Finally, Yan et al. (2021) propose the combination

of the BART (Lewis et al., 2020) Seq2Seq model with a pointer mechanism to extract flat,

nested and overlapping entities.

2.2.2 A word about object detection

The field of research aiming at segmenting and labeling objects in images has developed in

parallel with the research on entity recognition in texts. It is hard not to see some similarities

between these two tasks. An exhaustive review of the proposed systems is beyond the scope

of this thesis, but we will quickly describe the convergences between these domains. Readers

interested in object detection can refer to Guo et al. (2018); Zhao et al. (2019).

Image object segmentation aims at classifying the pixels of an image according to different

types, and thus at reconstructing the objects from the labels associated with the image. Some

earlier works of object segmentation were based on the notion of superpixels (Felzenszwalb and

Huttenlocher, 2004), and the classification of each superpixel according to a label. Although

it is much more complex, the initial superpixels segmentation is akin to the initial tokenization

step in word processing, which consists of breaking down the sample to be processed into

simpler units. Each superpixel is then represented by several features such as its size, color

or relative position in the image, and then labeled by models such as HMM, CRF in order to

take advantage of local interactions between the labels (a piece of grass is likely to be close to

another piece of grass).

Another similar task aims at predicting the bounding box of different features in an image.

An analogy to NER would be to think of the begin-end span as the bounding box of an entity.
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Most models perform prediction in two steps: a first selection of possible regions of interest of

an entity is performed, and then for each candidate a second model labels whether the entity

is.

Some NER works have drawn inspiration from advances in object detection: Li (2021)

employ a two-stage decoder similar to Ren et al. (2015). They extracts region proposals and

classify each region to either obtain a label or to choose not to predict it. The work of Tan

et al. (2021) builds on the system of Carion et al. (2020) to transform the problem into a

sequence-to-set prediction.

2.2.3 Annotated corpora

There are many NER corpora that vary according to different aspects such as the domain,

the language, the overlap of the entities, their size or their type. We will use the GENIA (Kim

et al., 2003), DEFT (Cardon et al., 2020) and CONLL 2003 (English) (Sang and De Meulder,

2003) datasets for the experiments in this thesis. Statistics about these datasets can be found

in Table 2.1

2.2.3.1 DEFT

The DEFT corpus contains 167 texts describing french clinical cases, including 67 for

testing. The different types of entities are, on the one hand, pathologies and signs or symptoms

(DEFT task 3.1), and on the other hand, anatomy, anatomy examinations, substances, doses,

administration methods, treatments (surgical or medical), values, time (DEFT task 3.2). Named

entities can nest up to 3 levels deep and two distinct entities of the same type can overlap. We

used the provided train and test splits.

2.2.3.2 GENIA

The GENIA corpus contains 2000 MEDLINE abstracts, or 18546 sentences, including 1855

for testing. The annotations focus on transcription factors in human blood cells, and were

named entities. Most evaluations follow Finkel and Manning (2009) and Lu and Roth (2015)

and collapse all DNA subtypes into DNA, RNA subtypes into RNA, all protein subtypes into

protein and kept cell line and cell type. Named entities can nest up to 4 levels and two distinct

entities of the same type can overlap. We perform splits following Finkel and Manning (2009):

the last 10% of the sentences are used to test the model, the remaining 90% are the training

set.

2.2.3.3 CONLL 2003

The shared task of CoNLL-2003 concerns general domain NER in four languages: English,

German, Dutch and Spanish. It annotates four types of named entities: persons, locations,
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organizations and names of miscellaneous entities that do not belong to the previous three

groups. The English data were taken from Reuters news articles published between August

1996 and August 1997. It contains 1393 articles, or 22,137 sentences, including 216 articles for

development and 231 for testing. There are no overlapping entities in this dataset. Although

this corpus does not contain biomedical nor nested entities, it is a classical open comparison

point with other NER models.

2.2.4 Evaluation metrics

2.2.4.1 Precision and recall

The information retrieval systems are classically evaluated using three metrics: precision,

recall and F1 measure.

precision =
number of true positives

number of predicted entities
(2.1)

recall =
number of true positives
number of gold entities

(2.2)

f1 =
2

1
precision + 1

recall

(2.3)

A system with a good recall but a low precision might be useful as a pre-filtering step of a

larger sequential model. A system with a worse recall but a better precision might be useful

when combined in parallel with other models.

2.2.4.2 What counts as a true positive ?

The outputs of a NER systems are triplets (begin, end, label). A common choice is to apply

the precision, recall and F1-score measure metric on these triplets directly.

There are multiple options for what should be considered a correct prediction, or "true

positive". The most common one is the "exact match" criteria: a predicted entity must share the

exact same bounds and label as a gold entity to be counted as a true positive. Another useful

criteria is the "approximate match" criteria: a predicted entity must share a certain fraction

of words in common with a gold entity. Indeed, even when the bounds are not perfectly

predicted, such as determinants, an entity might have enough words in common with a target

entity to still be useful in downstream tasks.

We synthesize all the possible metrics with α, the minimum Dice coefficient between the

words of the entities, or intuitively the fraction of words that two entities must have in common

to be matched. In our experiments, we will use the "Exact" match metric, with α = 1 (bounds

must batch exactly), the "Half" match metric with α = 0.5 (the number of correct words

must be at least half the number of words in the target and predicted entity) and the "Any"

match metric with α = ϵ+ > 0 (the target and predicted entity must have at least one word
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DEFT 3.1 DEFT 3.2 GENIA CONLL EN 2003
train test train test train val test train val test

Language FR FR EN EN
Domain Clinical Clinical Biomedical General
# docs 100 67 100 67 1599 190 213 946 216 231
# entities 5677 2167 1445 46185 4379 5515 23499 5942 5648
avg length 1.94 2.03 4.55 4.74 1.90 2.11 2.05 1.45 1.45 1.44
# unique labels 8 8 2 2 5 5 5 4 4 4
# unique texts 3449 2179 1878 1320 15441 2141 2681 8082 2809 2637
# nestings 475 422 14 4 4524 436 658 0 0 0
# same label nestings 8 2 2 1 2430 234 331 0 0 0
# crossing overlaps 1 0 0 0 0 0 0 0 0 0
# same label crossing 0 0 0 0 0 0 0 0 0 0
# superpositions 0 1 0 0 43 12 9 0 0 0

Table 2.1 Main statistics of the named entity recognition datasets used in this thesis
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in common). Finally, a gold entity should not be matched twice, nor should a predicted entity,

so we need a procedure to perform matching iteratively.

2.3 Medical entities normalization

Entity normalization (also called entity disambiguation, or entity linking) allows named

entities to be linked to concept identifiers. The primary objective of this task is to represent key

entities in a text (people, places, diseases, anatomical locations, etc.) by unique references,

independent of variations in the form of these entities. This standardization improves the

interoperability of the data and of the systems built to process these references.

The normalization problem is better known in the general domain as entity linking (Sevgili

et al., 2020; Shen et al., 2015), but differs by the fact that the general domain annotated

corpora can leverage larger annotated corpora such as Wikipedia. These make it possible to

perform a single supervised training and rely on entity frequencies. However, in most cases,

medical terminologies do not provide context nor accurate medical concept frequencies. As

such, we will not cover entity linking in the general domain but rather the research done in

the clinical and biomedical domain.

2.3.1 Terminologies

Concepts can be described by definitions, or most often a set of lexical variants called

synonyms. These concept-synonym associations are collected in terminologies, which act as

dictionaries and serve as bridges between medical document annotations and knowledge

intensive applications. Terminologies can also be described as "oriented artifacts that relate the

various senses or meanings of linguistic entities with each other" (Freitas et al., 2009). Theses

terminologies can additionally provide semantic information about hyperonymy (broader

meaning), hyponymy (narrower meaning).

Many terminologies have been designed to normalize entities in various domains such as

diseases (Bramer, 1988; Organization, 1978), genes (Ashburner et al., 2000) or general medi-

cal concepts (Lipscomb, 2000; Spackman et al., 1997) to name a few. Some unification efforts

have been made to merge these different terminologies together and provide a unique and

large resource for the bioinformatic community. Among them, the Unified Medical Language

System (Bodenreider, 2004) is the most noteworthy. Therefore, most target vocabularies

can nowadays be referred to as subsets of the UMLS. We will use the UMLS and Mantra

terminologies to evaluate our normalization models, so we will describe them now.

2.3.1.1 UMLS

The Unified Medical Language System (UMLS) is a large terminology that unifies concepts

from several dozen terminologies in the biomedical domain. Each concept in the UMLS is
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assigned a Concept Unique Identifier (CUI), a set of terms (or synonyms), possibly in multiple

languages, and a semantic type. UMLS semantic types are grouped in 15 semantic groups

and each concept is associated with one semantic group, with very few exceptions (McCray

et al., 2001). For example, "Eicosapentanoic acid" (concept C0000545) is in the chemical

(CHEM) group, while "Accountant" (concept C0000937) is in the living beings (LIVB) group.

The UMLS 2014AB version contained 5,772,518 synonyms for 2,528,878 concepts, while the

2019AB version contained 9,187,793 synonyms for 4,258,236 concepts.

2.3.1.2 Mantra

The Mantra terminology was developed at the same time as the MantraGSC dataset

(Kors et al., 2015) and contains a subset of the UMLS, consisting of all concepts from three

terminologies: MeSH, SNOMED-CT, and the Medical Dictionary for Regulatory Activities

(MedDRA). There are 3,164,910 synonyms for 591,918 concepts in five languages (English,

Spanish, French, German and Dutch). The concepts were filtrered to only keep those that

belong to one of the ten semantic groups Anatomy, Chemicals and drugs, Devices, Disorders,

Geographic areas, Living beings, Objects, Phenomena, Physiology, and Procedures.

2.3.1.3 Non English terminologies

The UMLS terms are mostly in English. For all other languages, such as Japanese, Dutch

or French, the number of terms was less than 5% of what is available for English in 2014.

French is the 2nd (resp. 5th) most represented language in the 2014 (resp. 2019) version

in the UMLS, but only 3.5% (resp. 3.6%) of the concepts have terms in French. Efforts have

been made to improve this coverage by manual or automatic translation, or by mapping local

terminologies, leading to more complete resources out of the official UMLS (Delęger et al.,

2010; Grosjean et al., 2011; Marko et al., 2006; Nęvęol et al., 2014; Zweigenbaum et al.,

2003). However, the gap is still significant, and this represents a real pitfall for the NLP systems

in French, and more generally, in all languages other than English (Nęvęol et al., 2018).

2.3.1.4 Ontologies

Terminologies often complement ontologies. Ontologies express the semantic relations

between different concepts through description logics. They allow decision systems to reason

about individuals and their attributes, classes or relationships. The commonly accepted defini-

tion is that of Gruber (1993) "An ontology is an explicit specification of a conceptualization.

[...] A conceptualization is an abstract, simplified view of the world that we wish to represent

for some purpose".

Reasoning from facts defined in ontologies can be done by different reasoners like Protege

(Musen and Team, 2015), using first-order formal logics. Reasoners and machine learning
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techniques are not exclusive. Efforts to integrate propositional logics into machine learning

models have beenmade to improve predictions (Deng et al., 2014), andMarkov Logic Networks

have proven successful in making first-order logic reasoning more flexible (Domingos and

Lowd, 2009).

2.3.2 Proposed methods

2.3.2.1 Earlier works

Many earlier works are rule-based methods. These methods revolve around matching the

entity to be normalized with one of the entries in the target dictionary, by comparing the form

of the entities using a set of handcrafted rules, and make use of several common techniques.

A popular technique consists in expanding the lexical forms taken by a given entity or

synonym (Aubin and Hamon, 2006; D’Souza and Ng, 2015; Golik et al., 2013; Hanisch

et al., 2005; Jonnagaddala et al., 2016; Schuemie et al., 2007). For example, a disease with

many terms can be transformed into an acronym. Nouns can be made plural, or singular,

or lemmatized, i.e. stripped of any grammatical variation as in Schuemie et al. (2007). For

example, "painful" can be converted to "pain". These term augmentations can be applied on

both entities and dictionary synonyms. There has also been efforts toward automatizing these

term augmentations (Ghiasvand and Kate, 2014; Tsuruoka et al., 2007).

Another common technique consists in combining different synonyms from the same or

other terminologies to augment the target terminology (Aronson, 2001; Aubin and Hamon,

2006; Hanisch et al., 2005; Jonnagaddala et al., 2016; Kuo et al., 2009). For exemple, the

word "eye" can be replaced by "occular" in many synonyms.

Once the entities and dictionary entries have been expanded, the matching step occurs.

An entity and a synonym can be matched if they have the same form or only differ by a few

words or characters. For example, the MetaMap system (Aronson, 2001) allows a synonym to

become a candidate if is within a character distance of two of the entity. In the case where

several synonyms can be matched to the entity, several filtering decisions can be made, based

for example on the confirmed presence of one of the entities in the document as in D’Souza

and Ng (2015); Hanisch et al. (2005) or other features such as the reliability of the entry

source (Lee et al., 2015), or the semantic group of the annotated entity. These filtering steps

can be cascaded until only one candidate is left as in the work of D’Souza and Ng (2015).

2.3.2.2 Machine learning approaches

Although many rules are still used in modern normalization systems, machine learning

approaches have become increasingly important in the design of these models. Most of the

proposed solutions generate a set of candidate synonyms (synonyms or concepts), and rank

these candidates using a scoring model.
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To represent entities and synonyms, some previous systems relied on TFIDF-like approaches

at the word level (Leaman et al., 2013; Leaman and Lu, 2016) or by taking a larger number

of textual features (Castano et al., 2016). Simple word embedding sum approaches have been

used successfully (Castano et al., 2016). Other recent systems use LSTMs (Liu and Xu, 2018;

Phan et al., 2020; Tutubalina et al., 2018), CNNs (Arbabi et al., 2019; Deng et al., 2019; Li

et al., 2016; Luo et al., 2018; Mondal et al., 2019), or BERT-like pre-trained Transformers

(Ji et al., 2020; Sung et al., 2020). The comparison between the produced representations is

often either computed from their a scalar product, cosine similarity or the Euclidean distance.

The proposed approaches fall into two categories: learning can be carried out on the

similarity between the entity to be normalized and the synonyms in the dictionary, or on the

similarity between the entity and the concepts directly.

Synonym similarity methods The training objective of systems comparing entities and

synonyms is not trivial. Indeed, multiple correct synonyms may exist for a given entity, and a

multi-class classification style approach accepting only one solution is not appropriate. Most

systems therefore rely on a ranking mechanism such as pair-wise learning to rank (PLTR)

(Huang et al., 2011; Leaman et al., 2013; Liu and Xu, 2018) in which a correct synonym

should be given a higher score than a wrong one. Similarly, Mondal et al. (2019) use Triplet

Networks (Hoffer and Ailon, 2015) to rank candidate synonyms and Fakhraei et al. (2020)

uses Siamese Networks combined with contrastive loss. Tutubalina et al. (2018) propose

a method consisting in keeping only the highest similarity score among the synonyms of a

concept, and training the model with the cross-entropy classification loss. Finally, Sung et al.

(2020) propose to marginalize the positive synonyms, i.e. by maximizing the sum of the

probabilities of the correct candidates using a cross-entropy classification loss.

Concept similarity methods Methods in the second category compare entities and concept

representations. It is then necessary to generate a representation for each concept, which can

be done in a more or less explicit fashion. Tutubalina et al. (2018) suggests representing a

concept as a concatenation of its synonyms, then performing a standard classification. Wright

et al. (2019) obtains concept embeddings through simple optimization of a classification

objective. Hierarchical links between concepts have also been used to improve concept

representations (Arbabi et al., 2019; Ferrę et al., 2019, 2017). Finally, some efforts toward

learning the interactions of concepts in a given sentence have been made by Wright et al.

(2019).

However, these learning methods were only evaluated on medium sized terminologies

containing between 2000 and 160000 concepts, and to our knowledge no machine learning

only method has been applied on larger terminologies.
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2.3.2.3 Non English approaches

The normalization of medical entities in languages other than English has so far relied

mainly on the translation of English synonyms into the target language (Afzal et al., 2015;

Cabot et al., 2016), or conversely, the translation of entities into English (Chiaramello et al.,

2016; Perez et al., 2020; Roller et al., 2018). These systems use processing existing rule based

indexers like MetaMap (Aronson, 2001) to perform the synonym search, and web-service

or local based translation systems (Jiang et al., 2015). In constrast, we chose to design and

evaluate an auto-sufficient deep neural network classifier with few to no preprocessing of the

input named entities.

2.3.3 A word about person identification

Similarly to how some analogies can be drawn between NER and object detection in

images, medical entity normalization can be related to person identification. Indeed, person

identification (or face identification) is similar to medical normalization in terms of the very

large number of target identities (concepts) and the small number of examples (synonyms)

per identity.

Another similarity is the two types of approaches, aimed at either comparing pictures

to each other (synonym similarity) (Hermans et al., 2017), or the sample picture and a

representation of the person’s identity (concept similarity) (Zhai et al., 2019). It is worth

noting that since images are less amenable to rule-based processing, these methods cannot

benefit from pre-filtering as commonly used in normalization and therefore rely essentially on

machine learning models.

For instance, Mondal et al. (2019) used the same triplet networks architecture as Hoffer

and Ailon (2015) to learn a distance between the entity (image sample) and possible synonyms

(reference images) to match.

2.3.4 Annotated corpora

There exists multiple datasets in medical English and other languages that normalize

different types of entities using different terminologies (Dogan and Lu, 2012; Kors et al., 2015;

Li et al., 2016). We review the Quaero and Mantra corpus that have been used to evaluate

the method proposed in Chapter 4.

Quaero The Quaero FrenchMed corpus (Nęvęol et al., 2014) consists of two sets of textual

documents in French, annotated with concept CUIs from the 2014AB version of the UMLS:

— Titles of research articles indexed in the MEDLINE database

— Information on marketed drugs from the European Medicines Agency (EMEA)
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Unlike other normalization corpora such as NCBI Doǧan et al. (2014) or BC5CDR Li et al.

(2016), the annotated concepts were not limited to vocabularies such as MeSH or MEDIC.

However, they were limited to 10 of the 15 UMLS semantic groups. There are two different

versions of these corpora. The first version, that we call EMEA 2015 and Medline 2015,

was used for the CLEF eHealth evaluation lab in 2015, a challenge for NER and concept

normalization. The organizers proposed a training set and a test set for this task. In 2016, a

new challenge was organized; the 2015 test set was released as a development set, and a new

test set was annotated, leading to a larger corpus containing the previous one.

Mantra The Mantra corpus (Kors et al., 2015) consists of 1450 sentences, annotated with

concepts from the Mantra terminology. The annotated documents are in English, Spanish,

French, German and Dutch, and consists of

— Titles of research articles indexed in the MEDLINE database

— Information on marketed drugs from the European Medicines Agency (EMEA)

— EPO patents

Many of the texts are translations from each others, so the corpus actually contains 550 unique

sentences regardless of the language. Unlike the Quaero corpus, entities were not annotated

with their semantic group. Most importantly, there are no training documents as the corpus

only contains evaluation samples.

2.3.5 Evaluation metrics

The normalization tasks is commonly evaluated using the standard retrieval metrics,

namely precision, recall and F1-score, at the entity level. Some studies (Leaman et al., 2013)

also evaluate the performance of the normalization system at the document level: the predicted

concepts for all entities are aggregated and evaluated by precision/recall/F1-score for each

document, and the resulting scores are finally averaged for all documents to obtain the

performance at the corpus level.

These two metrics can be identified by the prefix "micro-averaging" for the entity-level

evaluation, and "macro-averaging" for the document-level evaluation. Micro-averaging treats

every entity as a unit, regardless of the length of the document in which it occurs. In this

work, we will only evaluate our methods using the micro-averaging metrics.
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2.4 Structured entities extraction

We define here structured entities as pieces of related information composed of several

fields. Each of the fields should, when possible, be justified by a textual mention in order

to ensure the transparency of the model and to allow the traceability of predictions in the

original document. As we will see, the extraction of information from breast imaging reports

lends itself well to this concept. In the rest of this section, we will mostly focus on radiological

entities, and relate our task to existing information extraction tasks.

2.4.1 Breast imaging reports: a case study

Breast imaging reports consist of unstructured text written or dictated by a physician. The

reports contain multiple measurements, observations, and remarks regarding the patient’s

condition, including history, potential lesions and their progression, diagnostic procedures

performed, such as mammography or ultrasound, and an assessment of the need for further

testing in case of suspicious findings. Figure 2.1 shows the English translation of a fictitious

but plausible report.

2.4.1.1 Entities

As in other radiology disciplines, the American College of Radiography (ACR) has proposed

a set of guidelines to facilitate research and clinical follow-up of patients. The ACR BIRADS

(Liberman and Menell, 2002) proposes a standardized lexicon and classification system for

breast mammography, ultrasound and MRI. It also recommends a certain organization of

reports and the structure of the evaluation. This set of guidelines allows radiologists to

communicate results to the referring physician in a clear and consistent manner.

The reported lesions can be described with multiple attributes such as:

— their shape, density and margin

— their laterality: left or right breast

— their relative position in the breast, by a quadrant

— their clock position, e.g. "8 o’clock position"

— a size, indicating either their diameter or their volume (3 dimensions)

— their radial distance to the center of the breast

— the temporality of these lesions, that is their observation was made before or during the

exam

The final evaluation grade (or also BIRADS assessment or ACR) ranges from 0 to 6:

— Category 0: incomplete exam

— Category 1: negative

— Category 2: benign
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— Category 6: known malignancy confirmed by biopsy

The composition of the breast is graded from 1 to 4 according to the percentage of glandular

tissue in the breast:

— type 1: the breast is almost entirely fatty

— type 2: there are scattered areas of fibroglandular density

— type 3: the breasts have a heterogeneous density, which can mask small masses

— type 4: the breasts are extremely dense (homogeneous density).

There are also references to diagnostic or therapeutic procedures, which can be past, future

or at the time of the visit. These procedures can be characterized by:

— their type: mammography, ultrasound, surgery, chemotherapy, etc

— their anatomical location (breast or other)

— their laterality

— the possible quadrant

— their temporality

2.4.1.2 Report structure

The reports usually include a brief history of the patient’s condition, personal or family

history of cancer, and previous visits, followed by observations and findings. Noteworthy

findings are often summarized in a conclusion. These reports are often organized in a semi-

structured manner, with nested sections. However, due in part to conversions between text

reports and their PDF edition, this structure is not consistently applied and can be modified

throughout the text. This makes the division into sentences and sections far from trivial.

Finally, for the sake of brevity, physicians sometimes factorize their findings. These linguistic

forms, also known as elliptic coordinations or elliptic enumerations, result in overlapping

structured entities:

— There are small millimeter-sized microcalcifications in the right and left breast

— Two lesions are observed in the right breast, measuring 6mm in the UIQ at 3cm from the

nipple and 5mm in the LIQ at 2cm.

— The left upper inner quadrant contains multiple cysts measuring 6mm and 5mm.

2.4.2 Structured entities representation

Our objective is to extract different types of entities, as well as attributes qualifying them.

These entities should be easily storable and searchable in a database, but also interpretable by

locating the zones of a report that mentions them. A certain structure can be found in the

elements listed in Section 2.4.1, namely the presence of a mention indicating the existence of

a procedure, a lesion or a grade, and different attributes specifying each object, such as its
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nature, location or temporality. A useful representation is the one of frames. Frame semantics

were introduced by Fillmore (1982), and popularized by the FrameNet project (Baker et al.,

1998). A frame is a schematic representation of a situation involving various participants, or

conceptual roles. A frame is structured around a "lexical-unit" (or trigger), and composed of

"attributes" (or arguments or roles). Each piece of information about a particular frame is held

in a slot. As such, the frames are comparable to slices in our representation. As such, we can

see frames as key/value tables, on which we add justifications of each field when possible.

However, in the example

"Right breast: a small nodule of 8mm that was previously measured at 1cm"

the object ("nodule") is described at several points in its existence and is characterized by a

change in its size. A simple key/value list as in the table 2.2 which would list each feature

would not be able to properly capture this attribute change over time, and each field would

require to be specified (e.g. size → size_now and size_before) to be disambiguated. The

process of adding new attributes to better match the representation, known as reification,

adds to the complexity of the schema and thus may hinder its generalizability.

field value justification

organ breast "breast"
clock position ∅ ∅

quadrant ∅ ∅

size 8mm "8cm"
size 10mm "1cm"

temp during exam ∅

temp before exam "previously"
Table 2.2 Example of a flattened key/value representation of a structured entity

Another ontological formalism has been studied by Burek et al. (2019); Sider (2001) and

suggests introducing another dimension to the representation to represent "slices". We could

draw inspiration from these works and model objects by a set of slices as in Table 2.3.

Slice 1 Slice 2
field value justification value justification

organ breast "breast" breast "breast"
clock position ∅ ∅ ∅ ∅

quadrant ∅ ∅ ∅ ∅

size 8mm "8mm" 10mm "1cm"
temporality before exam "previously" during exam ∅

Table 2.3 Example of a temporaly sliced representation of an object
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This representation dilemma arises frequently and is intrinsically linked to the granularity

of representations. Thus, it can also be found when describing spatial extensions, for example

in the case of a tumor covering several quadrants:

"Breast tumor extending on the upper-outer and lower-outer right quadrants"

which could be described using two spatial slices as in Table 2.4.

Slice 1 Slice 2
field value justification value justification

organ breast "breast" breast "breast"
clock position ∅ ∅ ∅ ∅

quadrant upper-outer "upper outer" lower-inner "lower inner"
size ∅ ∅ ∅ ∅

temporality during exam ∅ during exam ∅

Table 2.4 Example of a spatially sliced representation of an object

2.4.3 NLP for cancer and radiology

The extraction of structured information from medical reports has been the subject of

many studies. Likewise, many methods have been developed to automatically extract one

or more radiological features from clinical reports. Most of these works are not specific to

breast imaging reports. Moreover, the extraction objectives vary greatly, in terms of their

scope, granularity and form. We will start by focusing on the existing research on radiology

reports. Interested readers can refer to existing surveys on the state of NLP in radiology reports

(Bitterman et al., 2021; Miwa et al., 2014).

Several works are only concerned with the extraction of a few report-level attributes, and

therefore view the task as a classification or term extraction task in EHR for items such as

BIRADS scores, histological grade or primary site of lesions (Alawad et al., 2018; Castro et al.,

2017; He et al., 2017; Moore et al., 2017; Qiu et al., 2018). Other features have also been the

subject of specialized systems such as locations (Datta et al., 2020a). An extensive survey of

the different systems proposed for different features was conducted by Datta et al. (2019).

Other works have sought to produce a more detailed and global extraction, and to detect

several types of entities at the same time. The earliest work was the one of Taira et al. (2001),

who proposed a frame based representation and method for annotating abnormal findings,

anatomy, and medical procedures frames in radiology reports. Lacson et al. (2015) used a

rule-based system and terminologies to extract abnormal findings and BIRADS scores. The

DeepPhe system was proposed by Savova et al. (2017) as a fully integrated software built

on cTakes (Savova et al., 2010) to extracts document and patient level cancer summaries

(akin to frames) in clinical reports. Steinkamp et al. (2019) proposed a fact-based scheme, in
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which each fact is structured around an anchor (such as "cyst") and may contain modifiers

(its size, laterality). However, their model is limited by the assumption that all the elements

that characterize an entity need to be adjacent inside the fact span. Sugimoto et al. (2021)

annotated multiple types of named entities and relations in Japanese chest CT reports but only

trained a NER system on their dataset. The facts, anchors and modifiers are then detected by

a NER system.

Several methods decompose the problem into two subtasks: named entity detection

and relation detection. Unlike (Steinkamp et al., 2019), the relation detection step allows

arguments to be distant. Roberts et al. (2019) proposed a frame based scheme for annotating

cancer information in clinical reports and a method to perform the prediction (Si and Roberts,

2018). Their method first extracts triggers and modifiers with a NER system, and predicts

their relations to form frames. However, their method make the assumption that there is no

overlap between the different entities in a text sample, and therefore does not address the

problem of factorizations. Recently, a more complex scheme has been proposed by Jain et al.

(2021) to annotate nested relationships between different entities. However, these work do

not specifically address the case of complex or distant relations between entities.

2.4.4 Related tasks

Our objective of extracting structured entities can be related to four other tasks in different

fields of NLP namely slot filling, event extraction, attribute prediction and discontinuous NER.

2.4.4.1 Slot filling

Structured entity extraction can be related to the intent detection and slot filling tasks, also

know as semantic role labeling. This task is closely related to the frame semantics formalism.

Most often, it is paired with the intent detection task, which consists in detecting the nature

of a textual request made by a user. The slot filling task it-self is concerned with detecting the

different relevant attributes that compose this request. For example in the query:

"What are the flights from London to Paris this Saturday?"

the system must detect that the intent is "flight information" if not provided already, and fill

the different slots:

— TO: London

— FROM: Paris

— DAY: this Saturday

— TIME: ∅

Most systems turn the task into a named entity extraction, and fill the appropriate slots with

the extractions. A comprehensive review of the proposed approaches has been done recently
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by Weld et al. (2021). Most often, however, it is assumed that each utterance contains only

one intent, which is often not the case (Gangadharaiah and Narayanaswamy, 2019). There

has been relatively limited research on slot filling and multiple intent detection Gangadharaiah

and Narayanaswamy (2019); Qin et al. (2020). Moreover, among these works, it is assumed

that the different intents are of different types. This can be a concern if the user requests

information about several flights at the same time for example:

"What are the flights from London to Paris this Saturday, and from Paris to London the following

Saturday?"

Only one intent type would be detected (flight info), and several slots (London, Paris, Paris,

London, Saturday, next Saturday) would conflict in the composition of the entities to extract.

2.4.4.2 Event extraction

Another similar task is the extraction of events in texts. Events in linguistics are most often

understood as actions, or situations whose existence is marked by a "trigger" expression (e.g.

a verb), and specified by several arguments.

While the ACE event extraction task is focuses on action-like events, the BioNLP shared

task datasets are more concerned with interactions between different biomedical entities,

where the notion of action is less prominent. As an example:

"The translocation of the b67 induced by ..."

We can then identify:

— the "regulation" trigger: "induced"

— the "cause" argument: ...

— the "theme" argument: b67

Event extraction tasks are divided into two categories: closed world event extraction and

open world event extraction. Closed-world event extraction assumes that one already has

knowledge of the event pattern (e.g. the "attack" pattern in ACE) while open-world event

extraction assumes no predefined pattern as in TDT. Thus, the notion of entity in our problem

matches a closed world event extraction problem.

Many efforts have been made to address the problem and there are several reviews of

the proposed solutions in the general and biomedical domains (Miwa et al., 2014; Xiang and

Wang, 2019). A common approach to this task is to first detect the trigger and argument

entities, then to predict the relations between them, and finally to detect event modifiers (e.g.

negation) and optionally to filter the predicted events. Most works make the assumption that

the named entities are already extracted, but the integration of the entire pipeline into a single

architecture combined with multi-task learning has shown promising results in recent works

(Nguyen and Nguyen, 2019; Trieu et al., 2020).
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2.4.4.4 Discontinous named entity recognition

The task of recognizing discontinuous named entities can be interesting as well, as it

aims at extracting named entities composed of several segments (or holes in an equivalent

way). Several methods have been proposed. Metke and Karimi (2016); Tang et al. (2018,

2013) propose augmenting sequence tagging techniques with new tags. Lu and Roth (2015);

Muis and Lu (2017) construct a complex hypergraph of words. Dai et al. (2020) address the

problem using transition model. Wang and Lu (2019) transform the problem into a two stages

detection: the first one aims at extracting the fragments (or spans) that will compose the

entities, and the second one aims at filtering by a classifier among all the possible combinations

of these spans which are valid. More recently Li et al. (2021) has also proposed a two stages

approach, but detects the combinations of entities by generating a tree between the different

segments.

However, this task makes the assumption that all segments of a discontinuous entity are

of the same type, which is not our case, and focuses essentially on segments that are close

to each other. Moreover, the number of segments is usually limited, e.g., 3 in SemEval 2014

(Pradhan et al., 2014), which allows enumeration of possible combinations unlike our case.

2.4.5 Public annotated corpora

Several datasets have been developed and made publicly available for information extrac-

tion from radiology reports. RadCore (Hassanpour and Langlotz, 2016) is a multi-institutional

database of radiology reports that contains named entity annotations. However, it does not

relate these named entities together. PadChest (Bustos et al., 2020) contains chest radiographs

associated with reports labeled according to different radiographic findings, diagnoses, and

anatomical locations. Datta et al. (2020b) annotated 2000 chest radiology reports with named

entities of spatial location, observation, and several relationships linking them. Recently Jain

et al. (2021) released RadGraph which consists of 600 annotated chest radiology reports with

spatial location and observation entities following a finer grained scheme than Datta et al.

(2020b).

However, clinical reports in these datasets are relatively short and straightforward, with no

deep imbrication in their structure. As a result, relations between named entities are mostly

found at the sentence level, and not at the document level. Moreover, to our knowledge, there

are no datasets consisting of French radiography reports, let alone breast radiography.

2.5 Conclusion

In this chapter, we have discussed the background regarding the three levels of retrieval

that interest us in this thesis, namely NER, entity normalization, and structured entities. The

following chapters present our work in these three areas.
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In this chapter, we study the named entity recognition task, and more precisely, the nested

named entity recognition task. As we will see in this chapter, tagging-based NER methods,

i.e., based on token classification, have attractive properties for pipeline systems and noisy

data sets. However, it remains a challenge to adapt these models to overlapping entities. To

this end, we propose two supervised approaches using neural networks. The first approach

uses an auto-regressive tagging model, which iteratively predicts non-overlapping entities in

a sentence. The second method is based on a tagging model combined with an exhaustive

scoring model.

We will study the impact of input word features on the model’s performance and whether

a broader context can improve prediction performance when using pretrained contextualized

embeddings. We will also study whether the order of the entities impacts the performance of

the auto-regressive model. We study the contribution of tagging prediction for the combined

model and the gain over an exhaustive scoring model alone. Finally, we will describe a method

to improve the performance of each model by ensembling.

The remainder of this chapter is organized as follows. In Section 3.1, we will describe the

datasets that we use in our experiments. In Section 3.2, we will describe the preprocessing of

the inputs and the features used by our models. Wewill present a first model, the autoregressive

decoder, in Section 3.3, and a second model, the biaffine tagger decoder, in Section 3.4. We

present the experiments n Section 3.6, and the discuss the results in Section 3.7. Finally, we

close this chapter by a conclusion 3.8.

The source code for the models described in this Chapter is available at the following URL:

https://github. com/percevalw/nlstruct.

3.1 Data

In this chapter, we conduct experiments on the two medical named entity datasets DEFT

(Cardon et al., 2020) and GENIA (Kim et al., 2003) and the English subset of the a general

named entity dataset CoNLL 2003 (Sang and De Meulder, 2003). These datasets have been

presented in more detail in Section 2.2.3.

In each cases, we split the training data into 80% for training the model and 20% for the

development (validation) set, and train the final model on both the training and development

sets.
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We have noticed that different versions of the GENIA dataset have been used to evaluate

the NER systems. In particular, one of the versions used by Yu et al. (2020), Shen et al. (2021)

and Tan et al. (2021) is pre-tokenized in a way that benefit the performance of NER systems

(some words are sometimes merged with neighboring punctuations like "-induced," but this is

not consistent across samples).

3.2 Text encoding

We start by describing the model used to generate features for each word of the input

sequence. These features will then be used by different decoders to produce named entities.

3.2.1 Preprocessing

Sentence segmentation For long documents, it is common first to perform a sentence

segmentation. This step has three objectives. The first is to reduce the size of the samples

provided to the model in order to reduce the memory impact and speed up the prediction.These

effects are all the more important as the models involve operations of quadratic complexity in

the size of the sentences.

The second objective is to improve the gradients computed by the model. Indeed, once

the corpus is divided into sentences and mixed, each batch can contain more varied samples

and lead to less biased gradients. Finally, the presence or absence of an entity in a sentence is

generally considered not to depend on the content of the other sentences, or only to a small

extent. This hypothesized invariance suggests that we first segment and shuffle the corpus.

Tokenization Our models use two tokenization methods. The first one is the most intuitive

and extracts each word from the sentence. We also consider each punctuation as a token in

itself. The second tokenization method is the one used by BERT and splits each previously

extracted word into subwords (Wu et al., 2016). In the rest of this chapter, we will refer to

these subwords as "wordpieces." For each sample, we align the words and wordpieces to jointly

use models that operate with each of these tokenization methods.

3.2.2 Features

In our models, the text is encoded as words embeddings in two steps. In the first step,

we gather embeddings from various models that we either learn, finetune or leave intact.

These word embeddings are then concatenated and forwarded through a multi-layer highway

bidirectional LSTM. We describe the overall architecture of the text encoder in Figure 3.1.
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3.2.3 Recurrent contextualization

All of the previously mentioned representations are concatenated and fed to a bidirectional

multi-layer LSTM. The LSTM cell can model local interactions well, which fits our problem

since entities often span a few words, and words relevant to the type or boundaries of an entity

are often found inside or close to the expression. The output of each layer passes through a

sigmoid residual gate, and the output of the last layer composes the word features used by

our decoders.

3.3 Auto-regressive decoder

We detail here a first model that handles nested named entity recognition through an auto-

regressive mechanism. The prediction occurs in multiple steps. At each step, the bidirectional

multi-layer LSTM receives the contextualized embeddings and a list of previously predicted

entities (empty list at the first iteration) and produces a list of new entities. The entities

predicted at each iteration do not overlap, but all the entities predicted at the end may overlap.

This model can be seen as similar to the earlier cascaded model of Alex et al. (2007), but

uses a single decoder applied iteratively on the sentence, and is able to recognize overlapping

entities of the same label. Figure 3.2 illustrates the architecture of this decoder.

3.3.1 Architecture

The main component of the decoder is a CRF (Lafferty et al., 2001) layer that predicts

entities through a multi-type tag scheme (BIOUL or BIO 1). This multi-type tag scheme can

only represent flat entities, which means that the decoder only predicts non overlapping

entities at each step. The decoder starts from an empty sequence, in the sense that no entity

has already been predicted, and tags each word according to the tag scheme. The sequence of

tags is converted into a list of (begin, end, label) entities and added to the set of predicted

entities. The decoder repeats this process until no more entities are predicted.

At each step, we need to encode the information about the previously predicted entities to

prevent the model from predicting these entities again. We choose to encode each entity as

a list of tags on the words that it spans. These tags are embedded into a multidimensional

vector space and concatenated with the input features for a given word. In this model, each

word is therefore represented by its BERT, FastText and char CNN embeddings, as well as

a tag embedding that encodes the entities that were already predicted at the position. This

allows the model to reason about what parts of the sentence may still contain other entities.

When multiple previous entities cover the same words, we reduce the tag embeddings at a

given position by summing them together. We encode these previous entities in the form of

1. BIO stands for Begin, Inside, Outside and BIOUL for Begin, Inside, Outside, Unary and Last
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3.6 Experiments

We evaluate our models on the DEFT, GENIA and CoNLL datasets. We also perform

additional experiments through ablations for the encoder and decoder components on the

DEFT and GENIA corpora.

3.6.1 Experimental setup

We run each experiment with 6 different seeds (except for the Ensemble model) and

present the average scores. By default, we report the precision, recall and F1 score of the exact

metric, and the relaxed half metric corresponds to the retrieval metric where two entities are

counted as matching when their word Dice overlap score exceeds 0.5 (see Appendix A). For

each model, we optimize the parameters with the Adam optimizer (Kingma and Ba, 2015)

without weight decay., over 4000 steps when finetuning BERT and 20000 steps when BERT

is frozen. We use two learning rates: the first learning rate, that applies to the pretrained

Transformer weights, is initialized at 5 × 10−5 and follows a linear schedule with a 10%

warmup, while the second learning rate, for the other parameters, is initialized at 1× 10−3

and follows a linear decay schedule with no warmup. We selected the hyperparameters by

grid search on the development set and trained on both the training and development splits

for the GENIA and DEFT datasets. The main hyperparameters are summarized in Table 3.1.

Word features We initialize the Transformer with CamemBERT (Martin et al., 2020) weights

for DEFT and BioBERT (Lee et al., 2020) for GENIA and English BERT (Devlin et al., 2019)

for CoNLL. We used large (1024) cased versions of these models for our experiments on

the test set, and base (768) cased versions of these models for other experiments on the

validation set. When finetuning the BERT encoder, we apply Dropout (Srivastava et al., 2014)

with a probability of 0.1 in the Transformer layers. Conversely, when the BERT encoder is

frozen, no dropout is applied on it. Training is much faster in this setup because the generated

embeddings can be cached and reused between epochs. The character embeddings of the

character CNN have a size of 50, and are fed to 3 kernels of size 3, 4 and 5. The FastText

embeddings are the standard English FastText version for the models trained on CoNLL and

GENIA, and the French version for DEFT. The BiLSTM is composed of 3 layers and Dropout is

applied on each layer output with a rate of 0.4.

Biaffine tagger The BiTag model bound embeddings size is either 64 for DEFT and 150 for

the other models. This distinction was made because of the number of labels that is higher in

DEFT (10 labels) than in the other datasets.
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Autoregressive model We set the initial observation rate at 0.1. This means that during

training, around 10% of the entities are already labelled as predicted, regardless of the

autoregressive training order. Following the experiments on the DEFT and GENIA validation

sets, we used the short-to-large strategy for the DEFT dataset and the large-to-short strategy

for the GENIA dataset. For datasets, such as CoNLL, that does not contain any overlapping

features, these three strategies are equivalent.

Ensemble models We evaluate the performance of our ensembling method for each decoder,

by training 3 instance of the same model with different seeds, and ensembling these three

models using the procedure of Section 3.5.

Maximum sentence/context size 256 wordpieces
Char CNN kernel size (3, 4, 5)
Char embedding size 8
Char CNN output size 50
FastText size 300
Decoders dropout 0.1
BiLSTM layers 3
BiLSTM dropout 0.4
Biaffine hidden size 64 or 150
Autoregressive pre-observation rate 0.1
Number of steps 20000 if frozen BERT else 4000
Table 3.1 Hyperparameters of the autoregressive and BiTag models

3.6.2 Baselines and ablations

We provide the reported results for several published models in each dataset. Some recent

models (Shen et al., 2021; Tan et al., 2021; Yu et al., 2020) were not included in the GENIA

comparison (Table 3.2) as they use a non-standard version of the dataset. We compare our

methods against the reported results of these works in Table 3.3, on the modified GENIA

dataset. We also provide a close re-implementation of the method of Yu et al. (2020) by

removing the sequence labelling component from our model, under the name "Biaffine-only".

The main differences between the two implementations are that we finetune the pretrained

BERT while they freeze it, and that they perform "document contextualization" by re-running

a full BERT model for each word of the sentence with a sliding window of size 512, instead of

running BERT once for each sentence in our case.

Finally, we provide the performance of the Hugging Face NER re-implementation of (Devlin

et al., 2019) (BERT followed by a softmax layer) under the name "BERT + softmax" for each

dataset. This model was trained for 4000 steps with the same pretrained weights as our

models on a CoNLL formatted (one label per word with the BIO tag scheme) version of each
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dataset, as preprocessed by the ann2conll.py script of the Github BRAT tools, and the results

were exported to the BRAT standoff format for the evaluation.

Input features We perform several feature ablations on the BiTag model.

We study the effect of the BERT document context. More specifically, we only compute

the BERT embeddings by running the Transformer on the tokens in the sentence. In contrast,

when using Document Context, the neighboring words of a sentence are added as context to

the input sequence when running the Transformer.

We also ablate the character CNN representations and the FastText embeddings to estimate

the contribution of these features.

Finally, we change the word pooling strategy with the BiTag decoder. Specifically, we

evaluate three modes: the "first" mode uses the embedding of the first wordpiece of a word

as the word embedding, the "last" mode uses the embedding of the last wordpiece, and the

"mean" mode computes the unweighted average of the wordpiece embeddings for each word.

Autoregressive model We study the effect of the autoregressive order on the model perfor-

mance. We compare three modes: top to bottom, bottom to top, and greedy decoding. These

modes differ when choosing between two overlapping entities as to which one the model

should first predict.

In the top to bottom mode, we always choose the larger entity first. After learning with

this mode, the model should first focus on the large entities and detect smaller ones later.

In bottom to top mode, between two overlapping entities, we always choose the smaller

entity first. After learning with this mode, the model should output the small entities first and

detect larger entities later.

Finally, we let the model choose the mentions in greedy decoding mode by first selecting

the mention with the highest model confidence score. In this setup, the model should output

the easiest entities first and the more complex entities later.

Biaffine tagger model We remove the tagger decoder while keeping the biaffine module,

such that our decoder is only composed of the biaffine module. This model should be equivalent

to the one of Yu et al. (2020).

3.7 Results and discussion

3.7.1 Main results

The results of our systems and the baselines are presented in Tables 3.2, 3.4 and 3.5.

On the GENIA dataset (see Table 3.2), the proposed BiTag model (with finetuning) ob-

tains the exact F1 score of 78.4 and the ensemble model obtains the F1 score of 79.1. The



3.7 Results and discussion 47

Autoregressive model obtains a score of 78.3 and its ensemble version reaches 79.0. This is

slightly below the reported state-of-the-art results.

An interesting finding comes from the relaxed half metrics, as we observe that exact metric

is not always adequate to discriminate between two models. Indeed, for the GENIA dataset,

the biaffine tagger and Biaffine-only models obtain very close exact F1 scores (78.4 vs 78.5).

However, the BiTag model performs better the biaffine model by +0.5 pt on the relaxed half

F1 score. We will expand further on this aspect in Section 3.7.3. Finetuning also shows a

greater effect on the half F1 metric (+1.1 pt) than on the exact metric (+0.3 pt).

P R F1 Half F1
Katiyar and Cardie (2018) 78.6 68.2 73.6
Ju et al. (2018) 78.5 71.3 74.7
Wang et al. (2018a) 73.9
Wang and Lu (2018) 77.0 73.3 75.1
Sohrab and Miwa (2018) 93.2 64.0 77.1
Lin et al. (2019) 75.8 73.9 74.8
Shibuya and Hovy (2020) 76.3 74.7 75.5
Luan et al. (2019) 76.2
Straková et al. (2019)˙ 78.3
Wang et al. (2020)˙ 80.3 78.3 79.3
BERT + softmax 77.5 70.4 73.8 (±0.3) 81.7 (±0.1)
Autoregressive large→short 78.9 77.8 78.3 (±0.1) 84.3 (±0.1)
BiTag w/o finetuning 79.3 76.9 78.1 (±0.1) 83.4 (±0.1)
Biaffine-only 78.0 79.0 78.5 (±0.2) 83.8 (±0.1)
BiTag 78.9 77.9 78.4 (±0.1) 84.3 (±0.1)
Autoregressive large→short (ensemble) 80.0 78.0 79.0 85.1
BiTag (ensemble) 80.3 77.9 79.1 85.1

Table 3.2 GENIA test performance. ˙ indicates that the method also uses Flair embeddings
(Akbik et al., 2018). Some recent models (Shen et al., 2021; Tan et al., 2021; Yu et al., 2020)
were not included in this table, as they use a non-standard version of the dataset.

On the CoNLL English dataset (see Table 3.4), the BiTag model obtains a F1 score of 93.1,

and the Autoregressive model obtains a score of 93.0, slightly below the reported state of the

art models with the same features. The ensemble versions of each model obtain 93.6 and 93.4

F1 respectively, gaining respectively +0.5 pt for the Autoregressive model, and +0.3 pt for the

BiTag model in comparison. The differences between half and exact metrics are much smaller,

and all of our models perform broadly on par with each other.

The results of our systems and the baselines are presented in Tables 3.2, 3.4 and 3.5.

On the GENIA dataset (see Table 3.2), the proposed BiTag model (with finetuning) ob-

tains the exact F1 score of 78.4 and the ensemble model obtains the F1 score of 79.1. The

Autoregressive model obtains a score of 78.3 and its ensemble version reaches 79.0. This is

slightly below the reported state-of-the-art results.
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An interesting finding comes from the relaxed half metrics, as we observe that exact metric

is not always adequate to discriminate between two models. Indeed, for the GENIA dataset,

the biaffine tagger and Biaffine-only models obtain very close exact F1 scores (78.4 vs 78.5).

However, the BiTag model performs better the biaffine model by +0.5 pt on the relaxed half

F1 score. We will expand further on this aspect in Section 3.7.3. Finetuning also shows a

greater effect on the half F1 metric (+1.1 pt) than on the exact metric (+0.3 pt).

P R F1 Half F1
Tan et al. (2021) 82.3 78.7 80.4
Yu et al. (2020) 81.8 79.3 80.5
Shen et al. (2021) 80.2 80.9 80.5
BERT + softmax 79.2 71.1 74.9 (±0.3) 81.8 (±0.3)
Autoregressive large→short 81.4 79.3 80.3 (±0.1) 85.6 (±0.1)
BiTag w/o finetuning 81.6 79.6 80.6 (±0.2) 85.5 (±0.2)
Biaffine-only 80.1 80.5 80.3 (±0.3) 84.8 (±0.3)
BiTag 81.0 79.8 80.4 (±0.3) 85.5 (±0.1)

Table 3.3 Non-standard GENIA test performance, as used by Shen et al. (2021); Tan et al.
(2021); Yu et al. (2020)

For reference, we also provide the results of our model on the modified GENIA dataset in

Table 3.3. Regarding the Exact F1 performance, the models seem to perform on par with each

other and the recent models of Shen et al. (2021); Tan et al. (2021); Yu et al. (2020). However,

regarding the relaxed Half F1 measure, both BiTag models (with and without finetuning)

outperform the Biaffine-only model by an average of 0.7 pt.

P R F1 Half F1
Klein et al. (2003) 91.4 91.9 91.6
Lample et al. (2016) 90.9
Strubell et al. (2017) 90.7
Devlin et al. (2019) 92.8
Straková et al. (2019) 93.4
Yu et al. (2020) 93.7 93.3 93.5
BERT + softmax 90.2 92.0 91.1 (±0.2) 92.8 (±0.2)
Autoregressive 92.9 93.1 93.0 (±0.2) 94.2 (±0.2)
BiTag w/o finetuning 92.6 93.1 92.8 (±0.1) 94.1 (±0.1)
Biaffine-only 92.9 92.8 92.8 (±0.2) 94.0 (±0.1)
BiTag 93.0 93.2 93.1 (±0.2) 94.3 (±0.2)
Autoregressive (ensemble) 93.7 93.5 93.6 94.5
BiTag (ensemble) 93.3 93.6 93.4 94.7

Table 3.4 CoNLL English test performance

On the DEFT task 3.1 (see Table 3.5), the BiTag model obtains the best F1 result of 77.2

(with the exact delimitation of mentions), and a F1 measure of 67.6 on the DEFT task 3.2.
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DEFT 3.1 (exact) DEFT 3.2 (exact) Overall (F1)
P R F1 P R F1 Exact Half

Copara et al. (2020) 74.4 62.3 70.7
Copara et al. (2020) (ensemble) 75.5 66.0 72.6
BERT + softmax 67.8 31.2 42.7 (±0.6) 62.2 63.9 63.0 (±0.9) 50.4 (±0.5) 60.5 (±0.3)
Autoregressive short→large 78.7 75.9 77.3 (±0.2) 66.8 67.1 66.9 (±0.8) 74.1 (±0.3) 84.5 (±0.1)
BiTag w/o finetuning 78.8 75.7 77.2 (±0.5) 66.7 66.5 66.6 (±0.6) 73.9 (±0.3) 83.6 (±0.2)
Biaffine only 76.2 76.4 76.3 (±0.4) 66.6 67.7 67.1 (±1.4) 73.5 (±0.6) 82.1 (±0.3)
BiTag 78.7 75.9 77.2 (±0.4) 67.5 67.6 67.6 (±1.2) 74.3 (±0.4) 84.3 (±0.1)
Autoregressive short→large (ensemble) 80.3 75.9 78.5 70.0 68.9 69.4 75.4 85.2
BiTag (ensemble) 80.0 76.7 78.3 68.5 68.7 68.6 75.3 85.4

Table 3.5 DEFT test performance
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The ensemble BiTag model reaches 78.5 on the 3.1 task and 68.6 on the 3.2 task. We observe

that the different models have a large variance on the strict F1 score, and a lower one on the

relaxed half F1 score, and that the relaxed score is almost 10 pt higher than the strict one.

This could be explained by a high noise in the entities boundaries annotation. The discrepancy

between the exact F1 score and the half F1 score is even stronger in this case: the BiTag model

gains "only" +0.8 pt on the exact metric, but +2.2 pt on the half metric in comparison to the

Biaffine-only model.

For each data set, we observe that the BERT + softmax model performs worse. On the

CoNLL dataset, it reaches a score of 91.1 Exact F1, below the reported results of (Devlin et al.,

2019) (92.8). This difference might be caused by a difference between the hyperparameters

selections (we used the default hyperparameters of the Hugging Face run_ner.py script),

or the fact that we did not set a maximum sequence size that can affect the outputs of the

commonly used seqeval tool. The performance gap with this baseline much larger on the

other datasets containing nested entities, between 15 and 25pt on GENIA and DEFT, which is

due to the impossibility of predicting overlapping entities using a multi-class BIO tag scheme.

The better results of the ensemble models on each dataset confirm the common idea that

ensembling is an effective way to boost the performance of a model. Similarly, finetuning the

BERT model seems to improve the performance of the models to varying degrees depending on

the domain and language. Overall, the gaps in performance between the two proposed models

(BiTag and Autoregressive) are slim, despite the differences in design between each. This

could be explained by the fact that each model is based on a sequence-labelling mechanism,

and this suggests that features have a more important role, since they are the same in both

our proposed models.

3.7.2 Auto-regressive model ablations

3.7.2.1 Tag scheme

We analyze the performance of two common tag schemes: BIO (Begin, Inside, Outside)

and BIOUL (BIO with Unary and Last tags) to encode observed (i.e. previously predicted)

entities. Results can be found in Table 3.6. As a decoding scheme, the BIOUL tag scheme

shows better overall results than the BIO scheme. This conclusion is similar to what others

(Lample et al., 2016; Ratinov and Roth, 2009) have observed for flat named entity recognition.

Moreover, as an encoding scheme, that is to encode previously predicted entities as features to

the subsquent prediction steps, the BIOUL "encoding" tag scheme’s also shows better results.

Overall, we conclude that a linear representation of entities as a tag sequence benefits from

the added expressiveness of the BIOUL scheme.
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BIO encoding BIOUL encoding
BIO decoding 70.1 71.3
BIOUL decoding 70.5 71.6

Table 3.6 Performance of the BIO and BIOUL reading and writing tag schemes on the DEFT
validation dataset.

3.7.2.2 Autoregressive learning order

From Table 3.7 we can observe that the short-to-large training order obtains the highest

performance on the DEFT validation splits, but the large-to-short depth training order obtains

the highest performance on the GENIA dataset. We did not reach the same conclusion in a

previous work (Wajsbürt et al., 2021b) using a variant of the model architecture for which we

observed that the short-to-large strategy obtained the best result on both datasets. On the

DEFT dataset, where entities can be quite long, we hypothesize that learning to detect the

smallest, and often easier, entities first leads the model to learn how to compose new entities

from small entities. On the other hand, learning to predict large, and often more difficult,

mentions first, must lead the model to overfit on these large mentions and fail to recover

smaller nested mentions when the largest ones are wrongly predicted. On the GENIA dataset,

the large-to-short strategy might perform better due to the different average size of entities.

These inconsistent observations between the two datasets could therefore indicate differences

in entities distribution between each of them and/or highlight an excessive sensitivity of the

autoregressive model to these differences

DEFT GENIA
Exact Half Exact Half

large→ short 70.5 79.7 79.5 85.2
greedy 71.1 80.3 79.2 85.2
short→ large 71.6 80.6 78.7 85.0

Table 3.7 F1 score of the autoregressive ordering strategies experiments on the DEFT and
GENIA validation datasets

3.7.3 Biaffine-tagger model ablation

We remove the tagger component of the biaffine tagger model and only rely on the biaffine

scorer to extract spans. We evaluate the effect of this ablation on the DEFT and GENIA

validation datasets. In this setup, the model is similar to the one of Yu et al. (2020), with the

exception of the BERT embedding computation, for which we did not replicate their expensive

sliding window mechanism with a stride of 1. On the DEFT validation dataset, the strict

performance is not significantly affected and increases by +0.2 pt and decreases by −0.1 pt
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DEFT GENIA
Exact Half Exact Half

base 71.4 80.9 78.9 84.5
− Tagging 71.2 (+0.2) 79.2 (−1.7) 78.8 (−0.1) 83.5 (−1.0)
− Doc context 70.6 (−0.8) 80.2 (−0.7) 78.6 (−0.3) 85.0 (−0.2)
− Char CNN 71.0 (−0.4) 80.2 (−0.7) 78.8 (−0.1) 84.4 (−0.1)
− FastText 71.8 (+0.4) 81.1 (+0.2) 78.8 (−0.1) 84.4 (−0.1)
+ Finetuning 73.3 (+1.9) 82.4 (+1.5) 78.9 (+0.0) 84.5 (+0.0)

Table 3.8 F1 score of the ablation experiments on the DEFT and GENIA validation datasets for
the Biaffine Tagger. Every experiment was averaged on 6 different seeds

on the GENIA validation dataset. However, the effect on half performance is significant as the

model loses −1.7 pt on the DEFT dataset and −1.0 pt on the GENIA dataset.

This type of discrepancy can be explained by the presence of entities with ill-defined

bounds. The tagger model confidently labels words inside an entity where there is little

ambiguity and hesitates on entity boundaries for such entities. On the contrary, the Biaffine-

only model is likely to give too low a score to each pair of start/end bounds and predict no

entity. Both models fail to predict the entity exactly, but the tagger model predicts some of its

words. It may be more valuable for downstream tasks (like the model of Chapter 5) to predict

imperfect entities sometimes than perfect entities or nothing.

3.7.4 Features ablations

Document context We remove the "Document Context" described in Section 3.2.2 and

evaluate the model on the GENIA and DEFT validation sets. From Table 3.8, we can see

that the document context contributes a lot to the performance of the model and removing

it leads to −0.7 pt loss on the DEFT exact metric and −0.3 pt loss on the GENIA exact

metric. In this setup, each sentence is contextualized on both sides. We hypothesize that this

contextualization benefits the model because BERT has been pre-trained with large sentences

(between 128 and 512 tokens), and therefore should have a better representation power for

tokens in long sentences.

Character embeddings We ablate the character embeddings features and observe from

Table 3.8 that these features have a positive effect on the performance for exact and half

metrics, and contribute to up to +0.4 pt of the exact performance on the DEFT dataset and

+0.1 pt on the GENIA dataset. Sub-word embeddings have been shown to perform poorly on

tasks that require a reasoning on the character level (Wallace et al., 2019). Such ability can

be necessary for tasks that involve accurate number representations or acronym detection,

and could therefore benefit named entity recognition. Likewise, the pretrained FastText

embeddings for English and French were trained with a n-gram size of 5 and are fixed during
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training. Thus, they may not offer a representation that enables the model to reason on shorter

n-grams. GENIA contains a lot of DNA and RNA related acronyms, which could explain that it

gains more from the character embeddings than the DEFT dataset. We conclude that character

embeddings offer a useful representation for named entity recognition.

FastText embeddings We remove English FastText embeddings for the GENIA dataset and

French FastText embeddings for the DEFT dataset. On the GENIA dataset, these features have

a positive contribution of 0.1 pt of the model exact performance, and on the DEFT dataset,

these features have a negative contribution of −0.4 pt of the model exact performance. Overall,

these differences are slim, and this mixed effect could be explained by the differences of

language, domain or size between the two corpora.

Wordpiece pooling Table 3.9 shows that the "mean" wordpiece pooling obtains a better

performance than the "first" and "last" pooling strategies. This suggests that every wordpiece

of a word contains information that is relevant to the NER task, rather than only a specific

word such as the first or the last one. This superiority of the mean pooling also holds when

BERT is fine-tuned. However, it is less significant, which suggests that BERT is able to learn to

gather the required information of all the wordpieces of a word in the embedding of the first

or the last.

DEFT GENIA

Frozen BERT
first 71.7 80.0
last 72.0 80.1
mean 73.0 80.5

Finetuned BERT
first 74.4 80.6
last 74.2 80.6
mean 74.6 80.7

Table 3.9 Wordpiece pooling ablation

3.8 Conclusion

In this chapter, we addressed the task of nested named entity recognition and proposed

two approaches. We have compared these models with each other and with state-of-the-art

models. We have highlighted a divergence between the strict and relaxed metrics, which

should not be overlooked when choosing NER models. Indeed, this difference seems to be all

the more important when the dataset is small and contains entities with ambiguous start/end

bounds. We have also provided insight into the behavior of the decoders and the contribution

of the input features. We have shown that finetuning BERT improves model performance,

but more importantly, preserving the context of sentences before running BERT improves
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the performance significantly. We also observed that the autoregressive order impacts the

performance of the layered named entity recognition model and that predicting short entities

first and large ones later gives the best results. Finally, we show that the simpler biaffine

tagger model achieves the best overall results and that its Biaffine-only counterpart performs

worse on relaxed metrics.

In the next chapter, we will focus on the task of normalizing named medical entities.
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Corpus Mentions Unique mentions CUIs French CUI %

EMEA 2015
train˙ 2695 923 650 67
test˙˙ 2260 756 525 70

Medline 2015
train˙ 2994 2296 1860 77
test˙˙ 2977 2288 1847 76

EMEA 2016
train˙ 2695 923 650 67
dev˙˙ 2260 756 525 70
test 2204 658 474 62

Medline 2016
train˙ 2994 2296 1860 77
dev˙˙ 2977 2288 1847 76
test 3103 2390 1909 79

Table 4.1 Statistics of the Quaero corpus. In each EMEA and Medline split, ˙ and ˙˙ denote
identical sets of documents between the 2015 and 2016 versions of the corpus

4.1.1 Quaero

The Quaero FrenchMed corpus contains two sets of documents, Medline article search

titles and EMEA drug records, annotated with concepts from the 2014AB version of UMLS in

10 semantic types. Since two versions of this dataset were proposed in 2015 and then 2016

(the latter version proposing a new test set), we will evaluate our method on each version.

Also, in order to ensure a fair comparison with the other systems published on this benchmark,

we use the 2014AB version of UMLS, unless otherwise mentioned. Each annotated entity has

an associated semantic type that can be used to improve normalization predictions. Table 4.1

presents general corpus statistics including the number of annotated mentions (i.e., text spans

linked to UMLS concepts within the documents), the number of unique mentions, the number

of unique concept CUIs, as well as the rate of mentions in each corpus that are linked to a

concept with at least one synonym in French in the terminology. Note that very few mentions

are annotated with more than one CUI in the corpora.

We have described the UMLS in Section 2.3.1. We will call the UMLS Bilingual subset the

set of concepts that have a synonym in both French and English. We built a subset, that we

will call "English 5 sources", of the UMLS with terms from five CHV, SNOMEDCT_US, MTH,

NCI, or MeSH terminologies. We chose these terminologies because they cover 96% of the

labels in the annotated training corpus, without exceeding a million labels. Table 4.3 shows

statistics on the number of concepts and synonyms in English and French, for the versions

2014AB and 2019AB, both used in this work.

4.1.2 Mantra

As mentioned in Section 2.3.1, the Mantra corpus (Kors et al., 2015) consists of 1450

annotated with concepts of the Mantra terminology, in five different languages: English,

Spanish, French, German and Dutch. While the English language has synonyms for every
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Language Docs Mentions Unique mentions Unique CUI Language coverage %
English 550 1963 1366 1301 100.0
Spanish 200 756 522 550 93.9
French 250 1052 729 710 68.5
German 250 1082 751 729 68.4
Dutch 200 677 481 490 64.3

Table 4.2 Statistics of the Mantra corpus

Terminology Subset #synonyms #concepts #synonyms/#concept

UMLS
2014AB

English 5,772,518 2,528,878 2.28
English 5 sources 2,298,600 766,548 3.00
French 179,992 88,985 2.02
Bilingual 544,383 88,911 6.12

UMLS
2019AB

English 9,187,793 4,258,236 2.16
English 5 sources 3,055,453 968,467 3.15
French 374,144 154,362 2.42
Bilingual 903,098 154,307 5.85

Mantra

English 2,030,891 591,665 3.43
Spanish 750,740 309,600 2.42
French 138,990 67,743 2.05
German 116,338 65,974 1.76
Dutch 127,951 60,241 2.12
Overall 3,164,910 591,918 5.35

Table 4.3 UMLS and Mantra terminologies statistics. The UMLS Bilingual subset is the set of
concepts having synonyms in both English and French.

concept that appears in the terminology, other languages do not and coverage drops as low as

64.3% for the Dutch entities, as illustrated in Table 4.2. Most importantly, being much smaller

than the Quaero corpus, the Mantra corpus does not contain a training set and only consists

of test samples. It is therefore not possible to perform any supervised learning on this dataset.

Moreover, unlike the Quaero dataset, the entities are not labeled with a semantic group: only

the text can be used to identify the concept of an entity. Table 4.2 shows statistics on the

number of concepts and entities, as well as the percentage of concepts in each language split

that have at least one synonym of the same language in the Mantra terminology.

4.2 Model overview

We cast the normalization problem as a classification task. C = {c} is the set of all concepts
c (i.e., concepts to predict) identified by their CUI. Each concept is associated with one semantic

group Gc, with very few exceptions (Bodenreider, 2004). We denote the set of all concepts in

a semantic group g as Cg. An entity m is a phrase in a textual document referring to a concept.
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These contextualized token representations are then averaged across each mention as tm,

without the first [CLS] and last [SEP] special tokens

tm =
1

l − 2

∑

i∈[1,l−1]

ti (4.3)

We then perform a projection into a lower dimension embedding to reduce the model size,

apply a ReLU function and normalize the result with batch normalization. This leads to a

mention embedding hm.

hm = BNµ,σ [ReLU(W · tm + b)] (4.4)

where BNµ,σ is the batch normalization layer with mean µ and variance σ, and W and b are

the projection weights and bias respectively. Finally, we classify each mention by computing

the cosine similarity between its representation and the embedding of the concepts in the

semantic group of the mention. Following Wang et al. (2018b) we multiply the similarity by a

hyperparameter s. We obtain concept probabilities by applying the softmax function on these

scores.

P (c|m; θ;H) =
es·cosine(hm,Hc)

∑

k∈Cg
es·cosine(hm,Hk)

(4.5)

where

cosine(hm, Hc) =
hm
||hm||

Hc

||Hc||
Hc is the embedding of the gold concept

Hk is the embedding of a concept in the semantic group Cg of c

θ = {µ, σ,W, b,BERT}

4.3 Model training and inference

We now describe the procedure to train this model and perform predictions with it.

Training our model can be done by learning/finetuning the parameters of the encoder,

and all the concepts at the same time, as a standard classification model. In this setup, we

iterate through mini-batches of synonyms and classify each synonym against the set of all

possible concepts. However, the number of concepts can be very large (up to almost a million

in our experiments), and affect both the required computational time required and available

memory for training. We discuss two procedures to reduce this computational burden.
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the synonyms stay the same during the second step, and we can efficiently compute the indices

of the top candidates before starting the optimization. For each concept, we re-initialize its

embedding as the sum of its synset’s representations:

Hmean
c =

∑

m ∈ synset(c)hm (4.7)

and use these representations to compute and store the k top candidates for each synonym.

4.3.3 Prediction

At inference time, a mention is tokenized and passed into the encoder and the classifier.

We subset the candidate concepts to only keep those that are in the semantic group of the

mention if given (only for Quaero entities in our experiments). Finally, we apply a threshold

to remove all the predictions that have a low probability. This filtering is required because

not all mentions can be mapped to a concept: in our experiments, 4% of the concepts that

occurred in the training set where dropped as described in Section 4.1.1. We expect that the

filtering will leave out the entities with missing concepts.

4.4 Experiments

We now present and discuss the results obtained by the system on the Quaero and Mantra

datasets.

We report our main results on the test datasets from the Quaero FrenchMed 2015 and

2016 challenges, on the Mantra dataset and the results of our additional experiments, using

the traditional metrics precision, recall and F1-measure. We also give some predictions of the

distantly supervised (trained without the Quaero training set) model in Table 4.6.

The method was evaluated through two main sets of experiments that we call "distantly

supervised" and "supervised." In the "distantly supervised" setup, we used only distant super-

vision from the UMLS, and no direct concept supervision from the available, labeled samples

from Quaero. Since the Mantra corpus does not contain a training set, the models that we

evaluate on this dataset also fall in the "distantly supervised" category and were only trained

with the (synonym, concept) pairs from the Mantra terminology. These systems do not suffer

from any potential bias related to the specificities of the corpus and do not benefit from the

redundancy of mentions in labeled data sets.

In the "supervised" setup, we augment the training (synonym, concept) pairs with mentions

and labels from the Quaero Medline and Quaero EMEA training sets, thus enabling comparison

with state-of-the-art supervised approaches on the Quaero dataset. Despite being annotated

with concepts from all the UMLS 2014 AB version, we restricted the concepts used in our
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Quaero experiments to the EN5 subset (see Table 4.3), because of its good coverage of the

corpus and reasonable size.

4.4.1 Experimental setup

We chose the hyperparameters by selecting the best-performing values on the training set

of Quaero in the distant supervision setting. We kept the same hyperparameters to train the

Mantra models. We run our models on a 20 Go Tesla P40 GPU, except the 1-step experiment

which required a 30Go Tesla V100 GPU.

As a result from the hyperparameter search described above, the token embeddings space

of size 768 is projected into a space of size 350, the cosine similarity scaling parameter s is of

20, both dropout rates for the transformer and the projection layer are set to 0.2. We set the

batch size to 128 and the maximum synonym wordpiece count to 100. We used two different

learning rates, lrBERT for the pretrained transformer, lrmain for the concept embeddings and

projection layer. During the training, we vary the learning rates using two schedules. Following

Sun et al. (2019), we used a slanted triangular learning rate lrBERT for BERT with a warm-up

phase of 10% of the total number of training steps. We keep the learning rate lrmain constant

during the warm-up phase and linearly decay it for the rest of the training. We set the

maximum learning rates to lrBERT=2e-5 and lrmain = 8e-3. We used Adam with parameters

β1 = 0.9 and β2 = 0.999. During the second step of the two-steps training, we preselect

the k = 100 highest scoring concepts for each synonym. Unless mentionned otherwise, we

perform the step 1 training for 15 epochs and the step 2 for 5 epochs in the 2-step setup, the

probability threshold is set to 0.1 and the pretrained Transformer is the multilingual BERT

(bert-base-multilingual-uncased in the Huggingface library) (Devlin et al., 2019).

4.4.2 Baselines and ablations

Baselines We compare our system against the following baselines:

— the top ranked systems of respectively CLEF 2015 (Afzal et al., 2015) and CLEF 2016

(Cabot et al., 2016), on the same exact task of normalization from gold-standard men-

tions. The CLEF 2015 winning team (Afzal et al., 2015) first augments the French UMLS

by translating a subset of the English UMLS concepts encountered in Medline abstracts,

using Google Translate. This terminology is then queried by a rule-based text indexer.

The CLEF 2016 winning team (Cabot et al., 2016) relies on their ECMT indexer which

performs bag of words concept matching at the sentence level and integrates up to 13

terminologies partially or totally translated into French.

— the best-performing system, to the best of our knowledge (Roller et al., 2018) on Quaero

and Mantra. In this work, the authors first train a local LSTM-based French to English

translator on synonym pairs from the UMLS and other general domain sources. The
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French and English terminologies are then indexed and searched using Apache Solr

through exact and fuzzy matching rules.

We also performed a range of ablation studies and additional experiments on the distantly

supervised setup, in order to estimate the impact of our different choices.

Impact of the two-step procedure We trained our system in one step with full softmax

instead of two steps, using all the synonyms (French and English from EN5), and evaluated

the model on the Quaero 2015 dataset. This is a much more time- and memory-consuming

experiment that will allow us to estimate the trade-off between cost and quality.

Impact of the pretrained embeddings We compare the performance on Quaero, using

different BERT embeddings either trained on French data only (CamemBERT (Martin et al.,

2020), model camembert-base-uncased) or English-only (model bert-base-uncased), or multi-

ple languages (bert-base-multilingual-uncased), in order to evaluate the contribution of the

multilingual embeddings.

Impact of translating entities Since the system from Roller et al. (2018), based on machine

translation + English-only normalization, is quite different from our own system, we also

experimented on the Quaero dataset with a machine translation approach combined with our

classifier. This allows a fairer comparison between our multilingual learning approach and

a translation-based approach. For this purpose, we translated all UMLS French terms with

a state-of-the-art pretrained (opus-mt-fr-en) translation system (Tiedemann and Thottingal,

2020) built with MarianMT (Junczys-Dowmunt et al., 2015) and trained on the OPUS bitext

repository corpus (Tiedemann, 2012). We then trained our model with all original-English

and translated-English terms. We called this strong baseline BERT-MT (using the English

BERT) and mBERT-MT (using the multilingual BERT).

Impact of more French terms (UMLS2014AB vs. UMLS2019AB) We present an experi-

ment using the 2019AB version of the UMLS, containing 154k concepts with French synonyms

instead of 89k in the 2014AB version. With this system (UMLS2019), we aim at showing the

impact of adding new French synonyms to the terminology used for distant supervision.

Impact of the training language We evaluated the impact that the training data language

has on the performance of our system. To do so, we only trained our distantly supervised

system on the bilingual UMLS concepts (French and English) and evaluated it on the Quaero

2015 corpus. This filtering was done to train our experiments with the same number of

concepts, and mitigate the errors that occur due to missing concepts in the training data.

Because the number of synonyms is lower, we trained FR-only model, EN-only model and
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FR+EN model longer for 30, 20 and 20 epochs respectively. We use a probability threshold of

0.5 since more entities have concepts that are not seen during training. Moreover, due to the

small number of concepts in this configuration, the two-step training was not necessary.

— FR/EN: trained with synonyms of bilingual UMLS concepts

— FR-only: only the French synonyms of these bilingual concepts

— EN-only: only the English synonyms of these bilingual concepts

On the Mantra dataset, we evaluated the effect of training the system with various lan-

guages combinations. More specifically, we trained 6 systems with subsets of the Mantra

terminology, containing either:

— the synonyms in all languages (Multilingual)

— only the English synonyms (ENG)

— the English and the French synonyms (ENG + FRE)

— the English and the Spanish synonyms (ENG + SPA)

— the English and the German synonyms (ENG + GER)

— the English and the Dutch synonyms (ENG + DUT)

We report the performance on each language in the Mantra dataset for all of these models.

4.5 Results and discussion

4.5.1 Main results

On the Quaero corpus, our distantly supervised system obtains very good results without

concept-labeled training data (Table 4.4). It even reaches a slightly higher performance than

the best system published so far (Roller et al., 2018) on the corpus MEDLINE 2015 (F1=73.7

vs. 73.6) that used the Quaero training set. It also outperforms all participants of the 2016

edition. Note that CLEF campaigns provide scores on both end-to-end task (named entity +

normalization) and normalization-only task; similarly to Roller et al. (2018), we compare

to the latter. The much higher term redundancy can explain the better score of supervised

systems on EMEA corpus (e.g., F1=83.5 and 73.4 on 2015 and 2016 for Roller et al. (2018)

vs. resp. 76.5 and 72.7 for our system) between training and test set (see Table 4.1), which

gives a free boost to supervised systems but is not very representative of a real world scenario

where no annotated document is available. Training our system with corpus data leads to an

F1 improvement of +5.3 pt, +8.6 pt, +4.1 pt and +1.6 pt on resp. MEDLINE 2015 and EMEA

2015, MEDLINE 2016 and EMEA 2016. It outperforms other systems by a large margin on

MEDLINE. It also outperforms (Roller et al., 2018) on EMEA 2015 and 2016, but not (Afzal

et al., 2015) that obtained a perfect precision on EMEA 2015, at the cost of many handcrafted

rules and extra labeled data.
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MEDLINE 2015 EMEA 2015
Prec. Rec. F1 Prec. Rec. F1

Others
2015

(Afzal et al., 2015) 80.5 57.5 67.1 100 77.4 87.2
(Roller et al., 2018) 83.1 66.1 73.6 90.9 77.2 83.5

MLNorm
dist. supervised 75.6 71.9 73.7 79.7 73.6 76.5
supervised 80.6 77.5 79.0 87.5 82.7 85.1

MEDLINE 2016 EMEA 2016
Prec. Rec. F1 Prec. Rec. F1

Others
2016

(Cabot et al., 2016) 59.4 51.5 55.2 60.4 46.3 52.4
(Roller et al., 2018) 77.1 66.3 71.3 78.1 69.2 73.4

MLNorm
dist. supervised 77.5 73.4 75.4 74.6 70.9 72.7
supervised 86.0 74.0 79.5 83.2 67.0 74.3

Table 4.4 Main results for our system on the 2015 and 2016 Quaero datasets, and comparison
with existing systems.
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English Spanish French Dutch German
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

(Roller et al., 2018) (Medline) — — — 79.0 60.7 68.7 79.4 60.4 68.6 76.7 56.0 64.8 80.4 58.8 67.9
MLNorm (Medline) 82.7 80.7 81.7 76.5 72.5 74.5 75.6 67.7 71.5 75.4 65.4 70.0 80.7 71.8 76.0
MLNorm (all) 82.5 79.6 81.0 75.7 71.3 73.4 78.2 70.4 74.1 74.7 64.0 68.9 77.9 68.6 73.0

Table 4.5 Comparison between our system and Roller et al. (2018) on the Mantra dataset. Roller et al. (2018) only evaluate their
method on Medline titles. We also provide the results for all documents in the Mantra corpus (all).
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System Example mention Expected concept + synonyms Predicted concept + synonyms

MLNorm(S2)

greffon renal

C1261317
— [EN] transplanted kidney
— [EN] kidney transplant
— [EN] structure of transplanted kidney

X

cinquiěme mętacarpien

C0730166
— [EN] bone structure of fifth metacarpal
— [EN] fifth metacarpal bone
— [EN] fifth metacarpal

X

vaccination par le b.c.g

C0199804
— [FR] immunisation contre la tuberculose
— [EN] bcg vaccination
— [EN] tuberculosis vaccination
— [EN] tuberculosis immunization
— [EN] administration of bcg vaccine. . .
— (other similar English synonyms)

X

in vitro

C0681828
— [EN] in vitro study
— [EN] studies vitro
— [EN] study vitro

C3850137
— [EN] in vitro techniques
— [EN] technique in vitro
— [EN] in vitro as topic

coffea robusta
C0678439
— [EN] coffea rubusta (food)

C1138610
— [EN] coffea arabica

mBERT-MT
cellar (translated from the
French “cave”)

C0042460
— [EN] vena cava structure
— [EN] venae cavae
— [EN] vena cava
— [EN] vein
— [MT] veins cellars (from “veines caves”
— [MT] vein cellar (from “veine cave”)

C0007634
— [EN] cell
— [EN] cell structure
— [EN] cells set
— [EN] cellular
— [EN] normal cell
— [MT] cells (from “cellules”)

be careful (translated from
the French “attention”)

C0004268
— [EN] attention
— [EN] attentions

C3257858
— [EN] my thinking is usually
careful and purposeful

Table 4.6 Some predictions from our system. The last two columns contain the synonyms seen during training for the target concept
and the predicted one, if different. Some long or similar synonyms have been removed to improve readability.
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We can also see that the system using only French synonyms (FR-only in Table 4.11)

performs much worse, with almost 20 points less in recall than the model trained with all the

terminology, which we can attribute to the missing concepts in the French UMLS.

On the Mantra Medline titles (Table 4.5), the F1 score of our system outperforms the

reported results of Roller et al. (2018) by a large margin in all languages, namely Spanish (+

5.8 pt), French (+ 2.9 pt), Dutch (+ 5.2 pt) and German (+ 8.1 pt), as illustated in Table 4.5.

However, it is worth mentioning that their method obtains a higher precision in all languages

except German. Besides our use of a pretrained Transformer to compute rich representations

of entities, we believe that this gap is also explained by their only bilingual translation, since

they train a system for each language to translate entities into English. In contrast, we take

advantage of all the languages to train a single multi-lingual system. We will expand further

on this aspect in Section 4.5.6.

We will now discuss the experiments described in Section 4.4.2

4.5.2 Impact of the two steps training

Our experiment with one-step training procedure showed no improvement over the two-

step training (Table 4.7, "1-step"), and took approximately 15 hours instead of 7 hours (5

hours for the first step and 2 hours for the second step with one million synonyms). Our

two-step method can therefore effectively reduce training time without reducing accuracy by

choosing an appropriate partition of the training data. Our results even show a slight loss in

performance for the one-step model. This could be explained by the regularization that occurs

in the two-step training when we freeze the encoder during Step 2. Indeed, since most of the

data seen during Step 2 is English, unfreezing the encoder may encourage the model to forget

its inner translation abilities.

MEDLINE 2015 EMEA 2015
Prec. Rec. F1 Prec. Rec. F1

2 steps 75.6 71.9 73.7 79.7 73.6 76.5
1 step 78.5 69.2 73.6 81.6 71.4 76.2

Table 4.7 Comparison on Quaero 2015 of two models trained with the one step procedure or
the two steps procedure

4.5.3 Impact of translating entities

Our experiments with translated French terms (Table 4.8) show that even a good machine

translation model can lower the accuracy of the final model. We experimented with both

English BERT and multilingual BERT to account for the impact of the transformer pre-training

language. We could argue that the off-the-shelf translation model could be improved by
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MEDLINE 2015 EMEA 2015
Prec. Rec. F1 Prec. Rec. F1

MLNorm (dist. supervision) 75.6 71.9 73.7 79.7 73.6 76.5
w/ mBERT-MT 73.5 70.2 71.8 78.4 74.6 76.5
w/ BERT-MT 75.1 69.8 72.4 77.4 73.7 75.5

Table 4.8 Comparison of our system with a comparable machine translation approach, using
our classifier.

fine-tuning on UMLS synonyms like Roller et al. (2018). However, we think that those results

hint at the fact that translation and indexer pipeline may suffer from error cascade: being

trained in an end-to-end fashion, our system does not suffer from this behavior. Table 4.6

shows that the ambiguity of some terms ("cave" can mean both "cellar" and "cava" in English)

is lost during translation.

4.5.4 Impact of the pretrained embeddings

MEDLINE 2015 EMEA 2015
Prec. Rec. F1 Prec. Rec. F1

mBERT (mulilingual) 75.6 71.9 73.7 79.7 73.6 76.5
camemBERT (FR) 76.9 70.4 73.5 82.1 69.9 75.5
BERT (FR) 75.9 71.6 73.7 80.5 73.4 76.8

Table 4.9 Comparison on Quaero 2015 of two models using differently pretrained BERT models

Our experiments with French-only embeddings CamemBERT and English-only embeddings

BERT, reported in Table 4.9, show that our hypothesis that multilingual embeddings improve

the system’s performance is not verified, with almost no difference between these three

embeddings. French wordpieces and embeddings can handle medical terms in English, and

vice versa. Even if this can be again explained in part by the proximity of the two languages

concerned, the low results of EN-only in Table 4.11, yet benefiting from much more training

data, suggest that it is not that obvious; besides, other papers in the literature suggest that

multilingual embeddings are helpful even for such pairs of languages (Pires et al., 2020;

Wu and Dredze, 2020). This observation may also be due to the fact that medical synonym

normalization data (short word sequences) is quite different from BERT pretraining data (full

sentences), so it is harder for the model to re-use its multilingual knowledge. This aspect

deserves more experiments, notably on other, non-European languages. Note that biomedical-

specific embeddings such as Clinical BERT (Alsentzer et al., 2019) are not yet available in

French, which is why we did not consider them. Moreover, as illustrated in Table 4.6, we

can see that the model correctly predicts concepts, even when no common wordpieces exist

between the entity and the training synonyms of the target concept. Therefore, the proximity
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between French and English cannot be the only explanation to the model performance. To

correctly classify the mention "cinquiěme mętacarpien" (fifth metacarpal bone) to its concept,

without having the numeral "cinquiěme" in any of the training synonyms, the model must have

learned to generalize from other concepts that contained both French "cinquiěme" and English

"fifth" in their training synonyms. We can also note that despite addressing out-of-vocabulary

errors with wordpiece vocabularies, such errors still exist. For example in Table 4.6, "robusta"

(single wordpiece "##robusta") and "rubusta" (two wordpieces, "##rubus" and "ta") are

tokenized differently despite having almost identical characters. Recent models (El Boukkouri

et al., 2020) that compute wordpieces embeddings from their characters are a promising

approach to reduce such errors.

4.5.5 Impact of more French data

MEDLINE 2015 EMEA 2015
Prec. Rec. F1 Prec. Rec. F1

UMLS 2014AB 75.6 71.9 73.7 79.7 73.6 76.5
UMLS 2019AB 75.3 71.0 73.1 79.5 72.8 76.0

Table 4.10 Comparison on Quaero 2015 of two models trained with the synonyms of 2014AB
UMLS or those of the 2019AB UMLS

Our experiment with UMLS 2019AB (Table 4.10) leads to slightly lower results than the

model trained with the 2014AB version, despite the much higher number of concepts with

French synonyms. The system has more French terms to train on, but the coverage in the

Quaero corpora is not much better. In addition, this could be explained by the higher number

of concepts, i.e. choices, for each model prediction. Since Quaero annotations are based

on a different version of UMLS, it is possible that some entities would have been annotated

differently if the 2019 version of UMLS had been used, possibly leading to some prediction

errors.

4.5.6 Impact of the training languages

MEDLINE 2015 EMEA 2015
Prec. Rec. F1 Prec. Rec. F1

FR synonyms only 73.8 52.8 61.5 82.4 52.8 64.4
EN synonyms only 79.7 45.1 57.5 84.3 41.0 55.1
FR + EN synonyms 78.3 62.1 69.3 82.7 57.4 67.8

Table 4.11 Comparisons between monolingual training setups and bilingual training evaluated
on the Quaero dataset. Only concepts that have both French and English synonyms were kept.
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In Table 4.11, we compare the same model trained with either only the French synonyms

of bilingual concepts, only the English synonyms, or with both (FR + EN synonyms). FR +

EN achieves an 7.8 pt improvement over FR-only, despite having the same concepts coverage

and the same pretrained embeddings. This indicates that a larger training set, even in

a different language can help improve the system’s performance by a significant margin.

This improvement could be attributed to the lexical similarities between French and English

languages. For example in Table 4.6, the only training French synonym of "vaccination par le

b.c.g" is "immunisation contre la tuberculose" and shares no common word. The system can

therefore benefit from the addition of similar terms, such as "bcg vaccination" even though

they are in English.

English Spanish French German Dutch Overall
ENG 81.1 52.2 53.0 45.9 38.7 62.2
ENG+SPA 81.9 72.8 60.8 49.9 40.0 67.4
ENG+FRE 81.4 56.9 73.7 48.8 40.9 67.4
ENG+GER 81.8 55.5 56.6 70.9 45.2 68.3
ENG+DUT 81.4 55.7 55.1 51.7 66.1 66.6
Multilingual 81.0 73.4 74.1 72.9 68.8 75.7

Table 4.12 F1-score of the system on the Mantra corpus when trained with different language
combinations

The F1 scores from our experiment with different language combinations on the Mantra

dataset are presented in Table 4.12. Not surprisingly, looking at the diagonal of the table,

the model performs better for a given language when that language was part of the train-

ing combination, and conversely performs worse when that language was not seen during

training. However, we also observe that the multilingual training configuration improves the

performance for all non-English languages compared to the bilingual training. In particular,

the Dutch and German scores increase by more than 2 points with the multilingual model

compared to the bilingual model. The different models seem to achieve similar scores for

English, but we note that the the Spanish-English combination seems slightly better.

Another interesting way to read the results is to look at the interactions between different

languages (other than English). We can see that the Dutch language benefits the most from

training in German, and vice versa, and that the French language benefits the most from

training in Spanish, and vice versa. This can be explained by the etymological similarity

between the languages in these two pairs. Both these experiments on Quaero and Mantra

demonstrate the transfer that operates between languages, and the importance of training on

multiple languages when possible.
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4.6 Conclusion

In this chapter, we have presented a method for medical entity normalization. Our method

is able to handle a large number of concepts and predict entities in French, despite the low

number of French synonyms in international terminologies. We obtained state of the art

results on the Quaero and Mantra corpora. We demonstrated the importance of training with

French and English data jointly, and even the benefit of training a single multilingual model,

instead of several bilingual models.

Our system can therefore be used to normalize simple entities on medical documents,

and does not require manually annotated concepts to obtain good results. These structured

predictions can then be used directly to query reports, or as inputs to more complex systems.

In the next chapter we will focus on the task of extracting structured entities from breast

imaging reports.
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In this chapter, we focus on the problem of extracting structured entities from breast

radiology reports, as described in the introduction to this thesis. These reports contain rich

and useful information about a patient’s physical condition, clinical history, and physician

assessments and recommendations.

As discussed in the Chapter 2 Section 2.4.1, the task of structured entity extraction can be

approached from a frame semantic perspective. We describe a frame-based annotation scheme

for extracting radiological entities, procedures, and assessments from these reports. Using this

scheme, we describe a new corpus of 120 annotated documents from the APHP clinical data

warehouse. Next, we consider the task of automatically generating these annotations. While

many methods exist for related topics such as event extraction, slot filling, or discontinuous

entity recognition, a challenge in our study resides in the fact that clinical reports typically

contain overlapping frames that span multiple sentences or paragraphs. We propose a new

method that addresses these difficulties and evaluate it on the new annotated corpus. Despite

the small number of annotated documents, we will see that the hybridization between 1/ a

system of constraints on the outputs of the system, 2/ a terminology and a 3/ learning-based

system allows us to quickly obtain proper results. We will also introduce the concept of scope

relations and show that it both improves the performance of our system, and provides a visual

explanation of the predicted relations. In this study, we will focus only on the extraction and

classification of frames, and leave the task of object extraction, i.e. frame coreferences, for

future work.

In order to avoid confusion, we will call simple entities "mentions", the conjunction of

several mentions and labels "frames" and the union of several frames "objects". Examples of

mentions will be denoted by the form [the mention].

This chapter is organized as follows. We first describe the annotation scheme and the

resulting corpus in Section 5.1. In Section 5.2, we describe the architecture of the proposed

model. We will detail the different components that will allows us to extract and normalize

the named entities and compose them as frames. We present several experiments in order to

study the contribution of the various components of the model and the choices regarding its

training in Section 5.3, and the discuss the results in Section 5.4. Finally, we close this chapter

with a conclusion.

This study was approved by the institutional review board at APHP (CSE 190022) as part

of the EZMammo project. Only previously pseudonimized documents were used in this study

(Paris et al., 2019). The source code for the model described in this Chapter is available at the

following URL: https://github.com/percevalw/breast-imaging-frame-extraction.
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5.1 Annotation scheme

We first detail the annotation scheme and the resulting dataset. We focus on entities related

to therapeutic (e.g. surgery) or diagnostic (e.g. mammography) procedures, radiological

observations (e.g. cysts or masses), and breast density or BIRADS scores. The relevant entities

to extract were the result of discussions with a physician expert in the field. The annotation

scheme itself was the result of many iterations between annotations and scheme revision.

The document-level statistics are detailed in Table 5.1. The corpus consists of 120 annotated

clinical documents, 80 for the training set and 40 for the evaluation set.

train test
count 80 40
average words 361.0750 362.175
average lines 45.7375 45.475
average frames 19.4750 18.425
average objects 10.8125 10.475

Table 5.1 Document level statistics for the EZMammo NLP corpus

Our annotations focus on three types of elements: mentions, frames and objects. Mentions

are simple named entities that consist of a begin, an end, a type and optionally a value. We

have seen in Chapter 3 how to extract entities and in Chapter 4 how to label them using a

fine-grained terminology. Frames are conjunction of mentions, that is entities in which every

mention applies its meaning. Finally, objects are unions of frames that define the same real

world elements.

As an example, we seek to structure the following report excerpt. The extracted mentions,

frames and objects are presented in Figure 5.2.

Breast ultrasound:
Left:
Two cysts located on the 8 o’clock radius at
3 cm, and at 2cm on the 6 o’clock radius.
These nodules are millimetric.

Right:
No abnormal masses to report.

CONCLUSION :
Multiple cysts on the left.

1

2

3

4

5

6

7

8

9

10

11

Figure 5.1 Fictitious radiology report except
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Diag. procedure object 1 Frame 1 Frame 2
field value justification value justification

trigger [Ultrasound] [Ultrasound]
type ultrasound [Ultrasound] ultrasound [Ultrasound]
organ breast [Breast] breast
laterality left [Left]: right [Right]:
temporality overlap overlap

Finding object 1 Frame 3 Frame 5
field value justification value justification

trigger [cysts], [nodules] Multiple [cysts]
organ breast [Breast] breast
laterality left [Left]: left on the [left]
temporality overlap overlap
quadrant
size [millimetric]
distance 30mm [3 cm]
angle 8 [8 o’clock radius]

Finding object 2 Frame 4 Frame 5
field value justification value justification

trigger [cysts], [nodules] Multiple [cysts]
organ breast [Breast] breast
laterality left [Left]: left on the [left]
temporality overlap overlap
quadrant
size [millimetric]
distance 20mm [2 cm]
angle 6 [6 o’clock radius]

Table 5.2 Mention, frames and objects extracted from the example 5.1

5.1.1 Mention annotation

First, we annotate several types of mentions, each justifying the value of a field in a frame.

In our scheme, each mention has an effect that can be combined with other effects to describe

an entity. Some mentions have the effect of justifying the existence of a frame: we will refer

to these mentions as "triggers". Other mentions have the effect of specifying an attribute of an

object: we will refer to them as "attribute" mentions. No frame is created if there is no trigger,

even if several attributes are present. In the example 5.1, the trigger [Ultrasound] mention

has the effect of creating at least one "Diagnostic procedure" frame, whereas the [millimetric]

attribute has the effect of giving a size to the frames that it is part of.
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The trigger mention types are BIRADS score, Breast density, Diagnostic procedure, Thera-

peutic procedure and Radiological lesion. The additional attribute mention types are Diagnostic

procedure type, Therapeutic procedure type, Breast density type, BIRADS score type, Organ,

Laterality, Temporality, Size, Distance, Angle and Breast quadrant.

We have chosen to annotate mentions describing attributes (such as laterality or size)

even if they are not part of any frame. On the other hand, trigger mentions are not annotated

if they do not justify the presence of an object. In the sentence "No suspicious mass on the

right", only [right] is annotated as potentially justifying the laterality of an object, but not

[mass] since it is preceded by a negation, and therefore does not justify the creation of any

radiological lesion object.

Finally, each mention is classified, or normalized, according to a predetermined set of

values. For example, a trigger mention "Breast density" may be labeled exclusively "type 1",

"type 2", "type 3", "type 4". A laterality can take the values "left", "right", or "left + right".

The annotation statistics for mentions and their type are described in Table 5.3.

5.1.2 Frame annotation

Frames describe semantic slices of an object, or conjunction of triggers and attributes that

share their effect (or concept) on a given entity. In the above example, [8 o’clock radius]

(applying an angle), [3cm] (applying a distance), [Left] (applying a laterality), [Breast]

(applying an organ) and the trigger [cysts] (applying the effect of existing) share their respective

effect on a same slice of an object. These mentions may be located in different sentences or

paragraphs, and a field in a given frame may be justified by several mentions. On the other

hand, if an object is described in several places in the text, we annotate it with several distinct

frames. The notion of "several places" and the choice to split a same object into multiple

frames is sometimes ambiguous. We choose to annotate a single frame for an object if it is

described on several juxtaposed sentences, and split it into multiple frames otherwise. For

instance, the [cysts] trigger is combined with the [nodules] trigger because they are found in

juxtaposed sentences, and [nodules] is clearly referring to the previously mentioned [cysts].

All frames follow a specific scheme that constraints the set of labels and mentions (or

effects) combinations. A summary of the frame schemes is shown in Figure 5.4. In practice,

these constraints take the form of a list of 2502 label tuples that enumerates every possible

mention / label combination. For example, a Cancer Risk type 0 on the right breast at the

time of the exam is described by the following tuple:

(score_trigger, score_type_0, temp_overlap, organ_breast, lat_right)

As shown in the structured output 5.2 of example 5.1, five frames are annotated:

— the ultrasound "Diagnostic procedure" frame for its left location, composed of the [Breast],

[ultrasound] and [left] mentions on lines 1 and 2
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Mention type Mention value (if any) Train Test Examples
Trigger mentions

Finding 491 228 [nodules], [mass]
Diagnostic proc. 468 227 [mammography]
Therapeutic proc. 80 32 [surgery], [chemo]
BIRADS score 132 64 [ACR 3]
Breast Density 55 27 [type 2 density]

Attribute mentions

Diagnostic
proc. type

biopsy procedure 123 49 [micro-biopsy]
ultra sound procedure 128 81 [ultrasound]
MRI procedure 32 17 [MRI]
mammography 137 74 [mammography]
other 17 11 [PET scan]
palpation 19 4 [palpation]

Therapeutic
proc. type

surgery 32 13 [tumorectomy]
other 19 7 [radiotherapy]

BIRADS score
type

Type 0 BIRADS score 1 0 [ACR0]
Type 1 BIRADS score 20 7 [ACR 1]
Type 2 BIRADS score 48 30 [score BIRADS 2]
Type 3 BIRADS score 19 9 [ACR 3]
Type 4 BIRADS score 18 8 [ACR 4]
Type 4a BIRADS score 6 1 [ACR4a]
Type 4b BIRADS score 2 1 [ACR 4 b]
Type 4c BIRADS score 2 5 [ACR 4c]
Type 5 BIRADS score 8 4 [ACR 5]
Type 6 BIRADS score 2 1 [ACR 6]

Density type

Type 1 breast density 10 3 [type A density]
Type 2 breast density 24 15 [type 2 density]
Type 3 breast density 18 7 [type III density]
Type 4 breast density 2 2 [type D density]

Angle 51 19 [8 o’clock position]
Radial distance 63 30 at [1cm from the nipple]
Size 130 70 measured at [1cm]

Temporality
future temporality 35 20 [in 6 months]
current temporality 101 47 exam date if any
passed temporality 212 106 [last time]

Organ
breast organ 461 235 [breast]
other organ 78 8 [kidney], [hepatic], ...

Laterality
left laterality 345 188 [left]
right laterality 349 183 [right]

Breast quadrant

areolar region 42 28 [para areolar region]
axillary region 110 55 [axillary areas]
lower outer quadrant 21 7 [lower outer quadrant]
lower inner quadrant 12 6 [lower inner quadrant]
upper outer quadrant 60 37 [upper outer quadrant]
upper inner quadrant 10 9 [upper inner quadrant]
outer quad. junction 27 12 [outer quadrants junction]
lower quad. junction 19 7 [lower quadrants junction]
inner quad. junction 6 5 [inner quadrants junction]
upper quad. junction 25 3 [upper quadrants junction]

Table 5.3 Mention annotation statistics
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— the ultrasound "Diagnostic procedure" frame for its right location, composed of the

[Breast], [ultrasound] and [right] mentions on lines 1 and 7

— the first "Finding" frame of the first nodule, with two trigger mentions: [cysts] and

[nodules] and attribute mentions [8 o’clock position], [3cm] and [millimetric] on lines

1, 2, 3, 4 and 5

— the first "Finding" frame of the second nodule, with two trigger mentions: [cysts] and

[nodules] and attribute mentions [6 o’clock position], [2cm] and [millimetric] on lines

1, 2, 4 and 5

— the second "Finding" frame of both nodules in the conclusion: composed of the trigger

[cysts] and the laterality [left] on line 11

Since the mass negation on line 8 is not an indication of the presence of an object, we do not

annotate it. The temporality of each frame overlaps the exam, although no explicit mention

can support this fact, so we fill the temporality field of the frames with the value "overlap"

and leave the justification empty.

5.1.3 Object annotation

Finally, the different frames are grouped into objects. Objects are union of frames. For

a given set of concepts, multiple frames might be required to describe a same object. In

the context of of growing lesions, a union of multiple (temporality, size) conjunctions can

represent the evolution. In an other setting with moving objects, a union of (temporality,

localisation) labels could be used. In our case, as we represent lateralities with two exclusive

"left" and "right" concepts, bilateral objects are described with two co-referent frames.

In the previous example, three objects are annotated, grouping two frames for the ultra-

sound procedure and two frames for each cyst. The last nodule frame in the conclusion is a

case of plural coreference, since it its attributes apply to both objects. In this case, the frame

describing several objects is added to each one. The statistics of objects in the annotated

documents are described in Table 5.5. This step amounts to annotating coreferences between

frames.

5.1.4 Annotation process

Clinical documents were de-identified automatically beforehand and themanual annotation

was performed with Brat (Stenetorp et al., 2012) by two annotators. 120 clinical reports were

sampled from a from of query the APHP clinical data warehouse that combined the substrings

"mamm" (to obtain breast related reports), "ACR" and "BI-?RADS" (to obtain BIRADS scores).

Some sampled reports were not breast radiology reports, yet we kept them as negative samples.

Since Brat was not originally designed to annotate long multi-line relations, using the "Event"

or "Relation" annotations turned out to be impractical and made the annotated documents
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Frame type Field Field value

Cancer Risk

score trigger
score type type 0 / type 1 / ... type 6
laterality left / right
temporality overlap / before doc time

Breast density

density trigger
density type type 1 / type 2 / type 3 / type 4
laterality left / right
temporality overlap / before doc time

Diagnostic procedure

diag. trigger
diag. type mammography / ultrasound / ...
organ breast / other
laterality left / right
temporality overlap / before / after doc time

Therapeutic procedure

ther. trigger
ther. type surgery / other
organ breast / other
laterality left / right
temporality overlap / before / after doc time

Radiological lesion

lesion trigger
organ breast / other
laterality left / right
temporality overlap / before doc time
quadrant lower inner / axillary region / ...
size
distance
angle

Table 5.4 Schemes of the extracted frames. Each frame is composed of multiple fields that can
take a value.

train val
object frame object frame

radiological lesion 279 449 122 210
diagnostic procedure 285 795 141 379
therapeutic procedure 51 83 22 29
BIRADS score 152 152 82 82
breast density 98 98 52 52

Table 5.5 Frame and object statistics in the annotated corpus

hard to read. We choose instead to annotate frames using a mix of identifier attributes

(frame1, frame2, ...) on mentions, and relations on close-by mentions. Coreferences, i.e.

object annotation, were annotated using identifier attributes (objectA, objectB, ...) for the

same reason. The BRAT annotations of Example 5.1 are shown in Figure 5.2. The direction of
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We encode each documents as word embeddings and share them with the downstream

decoding components. Like most relation and event extraction models, our model operates as

a pipeline. As illustrated by Figure 5.3, the first two mention-level decoders extract the named

entities (step 1 ), or mentions, that are likely to be used in the composition of structured

entities, and normalize them (step 2 ) to obtain the value of the field they apply to. The next

two decoders focus on frame-level extractions. The frame extraction decoder (step 3 ) detects

the relations between these mentions, or more specifically, extracts groups of mentions to

form frames. The last frame classification decoder (step 4 ) predicts for each frame the values

of the fields for which no mention was found, such as the temporality.

5.2.1 Text encoder

5.2.1.1 Word embeddings

Like the models of the previous chapters 3 and 4, we use a pre-trained BERT Transformer.

Our documents are written in French, therefore a good candidate is the CamemBERT model

(Martin et al., 2020) pre-trained on a general French corpus. A specifically pre-trained clinical

French BERT would most likely perform better. However no such model has been trained to

our knowledge. Following our experiments in Chapter 3 Section 3.7.4, we also average the

wordpieces embeddings of a word to obtain its embedding, and add the left and right contexts

(document context) of a sentence before running it through BERT.

5.2.1.2 Document-wide contextualization

As in the models of Chapter 3, we apply an LSTM layer on BERT embeddings. A notable

difference with the previously addressed tasks is the longer size of the documents: BERT can

only encode sequences of up to 512 wordpieces and more than half of our reports exceed

512 wordpieces. Several works on encoding long sequences by Transformers have emerged

since 2019 (Beltagy et al., 2020b; Zaheer et al., 2020) but no pre-training has been applied to

French to our knowledge. One strategy is to split these reports into sentences, apply BERT

on each sentence and then re-contextualize these sentences by applying the LSTM on the

concatenated sentence word embeddings. Additionally, the preliminary sentence splitting

reduces the length of the processed sequences and thereby makes the processing of each

document faster. This process is illustrated in Figure 5.4.

Moreover, because BERT models focus on sentences, the "line break" character is missing

from their vocabulary and replaced by a single space during preprocessing. However, clinical

documents typically contain multiple line breaks and this separation information would

normally be lost. To prevent this, we replace all line breaks with the rarely used "_" character

so that this information is kept in the generated embedding sequences.
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matching of start and end boundaries is unambiguous from the tags predicted by the BIOUL

decoder and the biaffine module is not needed.

5.2.2.2 Mention normalization

Each mention is then classified, or normalized to obtain the values of the fields to which it

applies. Unlike the system proposed in Chapter 4 which allowed only one concept per mention,

each mention can accept several values. For example, "bilateral" is normalized as both "left"

and "right". However, most mentions map to only one value. The mapping between NER labels

and the legal multi-label combinations is part of the annotation scheme. Another difference is

that we run the normalizer on embeddings of mentions in which the words carry contextual

information from outside the mention. In contrast, the model of Chapter 4 processed each

mention as a text sample on its own.

We compute a max-pooled representation for each mention m and project it against to

obtain one score per label

scorelabel(m) = V mention label · maxpool
w∈words(m)

E(w)

Finally the score of each possible legal label combination Lmention is computed as the score

of the labels present in the combination. The probability of a combination is computed by

normalizing over all legal combinations Lmention

scoreLmention(m) =
∑

label∈Lmention

scorelabel(m) (5.1)

P(Lmention|m) =
1

Z
scoreLmention(m) (5.2)

with Z =
∑

legal Lmention

scoreLmention(m) (5.3)

5.2.2.3 Mention embedding

Each mention is represented by a single embedding in order to be processed by the next

decoders. This embedding E(m) is computed as the average embedding of the words of the

mention.

5.2.3 Frame extraction

We now seek to extract the frames. Given that we have extracted entities in a previous step,

we need a strategy to group mentions of a same frame together. The approach of most Event

Extraction models is to extract one frame (event) per trigger mention, and look for related

mentions that might be part of the same frame (event). However, many trigger mentions
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belong to several distinct frames that can only be distinguished by considering interactions

between their attribute mentions. Indeed, in a sentence containing an elliptic conjunction:

"Nodules of 2cm on the right and 3cm on the left", the trigger mention [Nodules] belongs to two

different frames, and the knowledge alone of trigger-attribute relations [2cm]⇐⇒[Nodule],

[3cm]⇐⇒[Nodule], [right]⇐⇒[Nodule] and [left]⇐⇒[Nodule] is not sufficient to reconstruct

the two frames.

To address this issue, an approach consists in listing all the possible combinations of

mentions, then filtering them with a classifier (Björne and Salakoski, 2011, 2013, 2015;

Heimonen et al., 2010; Liu et al., 2015; Miwa et al., 2010; Trieu et al., 2020). However, this

solution does not seem satisfactory from a computational point of view. Indeed, a frame can

contain up to 8 mentions (and more if there are several mentions for the same field), which

quickly leads to a combinatorial explosion of possible frames.

We will now describe a method to overcome the previously discussed issues. The overall

frame extraction component and its training are described in Figure 5.6.

5.2.3.1 Clique extraction

Our approach consists in examining relations between every mention of a document. The

binary relation between two mentions answers the question: "are these two mentions part of

the same frames ?". We can then extract maximal groups of entities such that in each group,

all the mentions agree with each other on belonging to the same entity. In graph theory, this

type of subgraph is known as a clique. To extract maximal cliques, i.e. cliques that cannot be

extended by including one more mention, we use the NetworkX implementation based on the

works of Bron and Kerbosch (1973) and Tomita et al. (2006), and only keep the cliques that

contain at least one trigger mention.

Each mention u computes its agreement scores r(u, v) with the other mentions v of a

document. For two mentions u and v, we obtain two scores: the one computed by u on its

agreement with v (r(u, v)), and the one computed by v on its agreement with u (r(v, u)). We

define the final agreement score between the two mentions as the maximum score

R(u, v) = max T r = max(r(u, v), r(v, u))

Intuitively, this means that one of the two mentions can be uncertain about the relationship.

5.2.3.2 Biaffine relation scores

A simple approach to compute r(u, v) is to use a biaffine model. In our case, we compute

this score as an attention score between the mentions. Additionally, we inject the relative

distances between mentions inside the attention mechanism using a similar mechanism to

He et al. (2020). This attention is the sum of a content-content attention (the original dot
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rbiaffine(u, v) =
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p
2 four projection matrices

and px−→y the embedding of the relative position of y w.r.t. x

To get a better intuition about these different types of attention, we formulate them as

fictitious search samples from a given mention in the document:

— content-content : "my content is ’ultrasound’ so I’m looking for other mentions whose

content contains information about temporality"

— content-position: "my content is ’ultrasound’ so I’m looking for mentions that are 3

positions after of me"

— position-content : "regardless of my content, I will attend to the mention one word away

from me if it contains information about temporality, two words way next word if it

contains information about laterality, etc."

5.2.3.3 Scope relation scores

We propose another approach for the same relation extraction task, based on the concept

of scopes. Scopes are annotations of contiguous text zones on which a named entity referred

to as a "cue" applies its meaning. Scopes have been mostly studied in the context of negation

and uncertainty detection (Dalloux et al., 2020; Khandelwal and Sawant, 2020; Li and Lu,

2018; Vincze et al., 2008). For example in the sentence: "There is no sign of cancer", the scope

of the negation entity [no] is "sign of cancer". We propose to extend this concept to all types of

named entities and make it the primary mode of relation extraction in our problem. Indeed, it

may be simpler for the model to detect where the scope of a mention starts and stops, and to

retrieve all entities between these boundaries, rather than inferring the value of the relation for

each pair of mentions. In the example of Section 5.1.2, the scope of laterality [Left] covers all

the section and therefore applies its effect to all frames composed of these mentions, and the

scope of one of the two mentions [2cm] and [8’oclock position] contains the other mention.

For the mathematical details of our formulation, we will call u and v two mentions, and t

a token (or word) of the document. Each scope is represented with the BIOUL format. We

compute two attention matrices AB(u, t) and AL(u, t) between the mentions and words, using

the relative attention mechanism described in Section 5.2.3.2, to obtain start (B) and end (L)
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scope scores for each word. We prevent the start of a scope from being after the first word of

a mention, and the end of a scope from being before the last word of a mention, which means

that we impose that mention is contained within its scope. The score of the tag U (scope that

only contains one word) can be computed as the sum of the start and end scores.

SB(u, t) =







−∞ if t is after the first word of the mention

AB(u, t) otherwise
(5.5)

SL(u, t) =







−∞ if t is before the last word of the mention

AL(u, t) otherwise
(5.6)

SU(u, t) = SB + SL (5.7)

SI(u, t) = 0 (5.8)

SO(u, t) = 0 (5.9)

To know if a word is in the scope of a mention, we compute the marginalized probabilities

of a CRF (hereafter referred to as Scope CRF) with the forward-backward algorithm that we

apply to the scope of each mention. The Scope CRF is parameter-less but illicit transitions

(such as I −→ B or L −→ I) between tags are prevented (i.e. the transition is set to −∞). A

word is in a scope if it is labeled I, B, L or U but not O. The score rscope(u, t) of each word t

being in the scope of u is therefore:

rscope(u, t) = S
marg
B + S

marg
L + S

marg
U + S

marg
I − S

marg
O (5.10)

with S
marg
BIOUL(u) = ForwardBackwardCRF(SBIOUL(u)) (5.11)

and, the relation score between two mentions u and v is computed as the score of v being

in the scope of u, i.e. the average of the scores of each word of v of being in the scope of u:

rscope(u, v) =
1

|words(v)|
∑

t∈words(v)

rscope(u, t) (5.12)

Using a CRF allow us to never explicitly compute the score for a word to be in the scope

of a given mention. Instead, we let the network predict the start and end of scope for each

mention via the mention-word attention matrices, and use the CRF Scope to "paint" the inside

and outside of the scopes in a differentiable way.
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5.2.3.4 Score combination

The scope relation and biaffine relation scores are combined together. Because we defined

scopes as continuous spans of text, it is possible that a mention falls in the scope of another

mention and yet does not belong to its frame. In the following example

"Mammography: we find the left mass biopsied in 2010. Nothing else in the right breast."

the scope of [Mammography] contains the temporality [2010] but the two mentions are

not part of a same frame. Therefore, a relationship between two mentions is only predicted

if both components (biaffine-based and scope-based) predict this relation. A mathematical

formulation reflecting this constraint consists in returning the minimum of the two scores.

r(u, v) = min(rscope(u, v), rbiaffine(u, v))

5.2.3.5 Frame relation supervision

Asymmetric supervision Training the frame extraction module raises several difficulties.

For two compatible mentions u and v, we require that R(u, v) is positive if u and v are part of

the same frames, and negative otherwise. The symmetric matrix R(u, v) is the result of the

maximum of a matrix r(u, v) and its transpose, which, from a scope perspective, means that

one mention can be within the scope of another without the reverse being true. One problem

with supervising this non-differentiable maximum alone, is that the network might initially

choose the wrong direction (e.g., decide that [Breast] belongs to the scope of [2cm], when it

is the opposite), and get stuck in this wrong configuration for the rest of the training.

We propose instead to supervise one of the two direction scores specifically, instead of

the maximum, through the asymmetric matrix r(u, v). The difference between these two

supervision modes is illustrated at the top of the figure 5.6. If two mentions u and v are not

part of the same frames, then both direction should have a negative score. However, if the two

mentions share the same frames, the question becomes: what do we ask the model to learn?

We do not know a priori the direction of the relation u—v, only that one of the directions

must have a positive score. One solution is to "explore" the different possibilities. To do this,

we perform stochastic sampling of the supervised direction rtarget(u, v) by weighting each

direction with its probability as estimated by the model:

[rtarget(u, v), rtarget(v, u)] ∼ Cat(softmax([r(u, v), r(v, u)]))

The idea is that the model explores a few configurations at the beginning of the training when

the probabilities are close to 0.5, and sticks to a given strategy that leads to stable solutions as

learning progresses and its confidence in either direction increases.
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Relation supervision heuristics We also propose to incorporate heuristics in the supervision

matrix rtarget(u, v). If u belongs to strictly more frames than v, we maximize r(u, v). If both

belong to the same number of frames, we choose the direction that leads to the smallest

number of wrong scope memberships. For example, in the example section 5.1.2, if we chose

[Breast] to be in the scope of [2cm], then [8 o’clock radius] would also be in the scope of

[2cm] due to the continuity of the scope. Conversely, if we choose [2cm] to be in the scope of

[Breast], no erroneous scope assignment is generated. Finally, if no heuristic can be applied,

we sample a direction as previously described.

Word-level scope supervision (WSS) We also propose to supervise the scopes at the word-

level using partial word-level annotation generated from the rtarget matrix, as illustated on the

left side of Figure 5.6. Using this supervision matrix, for a given mention u, we can determine

which words t of other mentions should be contained in its scope, which words of other

mentions should not, and which words are not supervised. Because scopes are contiguous, if a

mention v that is not part of the frame of u is contained within its partially supervised scope,

i.e. if it is between two mentions that belong to the scope of u, we do not supervise its words

and leave the biaffine component handle the non-relation detection. Thus, we generate a

partial supervision matrix rWSS with which we supervise the Scope CRF outputs. An example

of this matrix is shown on the left of Figure 5.6.

5.2.4 Frame classification

Some labels of a frame such as its temporality or laterality may not be explicitly supported

by the text. Each frame is therefore fed through a multi-label classifier. The possible field-

value combinations and incompatibilities in a frame are known in advance. For example, a

mammogram is necessarily located on the breasts. The "legal" label combinations are the

same 2502 label tuples mentioned in Section 5.1.2.

We represent each frame by an embedding computed as a projection of the max-pooling

output of its mentions’ embeddings.

E(f) = Wframe · maxpool
m∈mentions(f)

E(m)

This embedding is then projected to give a score per label.

scorelabel(f) = V label · E(f)

Finally the score of each possible legal combination Lframe is computed as the score of

the labels present in the combination. The probability of a combination is computed by
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normalizing over all legal combinations:

scoreLframe(f) =
∑

label∈Lframe

scorelabel(f)

P(Lframe|f) =
1

Z
scoreLframe(f) (5.13)

with Z =
∑

legal Lframe

scoreLframe(f)

During prediction, the label combinations are filtered to keep only those that contain at

least all the supported labels predicted by the frame extraction decoder.

5.2.5 Optimization

Every component, namely the named entity recognition and normalization modules (5.2.2),

the frame extraction module (5.2.3) and the frame classification module (5.2.4) are trained

jointly. The encoder is shared and each decoder receives the prediction of the previous

decoders.

The NER model uses the CRF Forward algorithm to compute the NER loss LNER, the
normalization loss Lnorm is the cross entropy loss. The frame extraction decoder relation loss

Lrelation is the sum of binary cross entropy for every valid supervised mention-mention pair

and the CRF Forward algorithm to compute the Scope CRF loss Lscope. Finally, the frame

classification decoder loss is Lframe_classification the cross entropy loss for every extracted frame.

The losses are combined through a weighted average:

L =αNERLNER
+αnormalizationLnormalization

+αrelationLrelation (5.14)

+αWSSLWSS

+αframe_classificationLframe_classification

5.2.6 Knowledge injection via data augmentation and constraints

We now discuss several techniques to inject knowledge via data augmentation and output

constraints.

5.2.6.1 Data augmentation

Given the small number of annotated documents, we augment our training data in two

ways. First, we randomly extract parts of documents such that no frame is cut, and add them

as new documents to the dataset. This augmentation assumes that there is little dependence
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between distant frames, and since we do not address the task of coreference in this work,

splitting documents is not an issue. This augmentation also has the effect of reducing the

training time (by around half in our experiments), as the average size of the training samples

becomes smaller.

Second, we build synthetic sentences from a manually pre-defined lexicon of mentions,

and add these sentences to the dataset. Because these sentences contain no frame annotations,

the frame related losses are masked for these samples. The sentence creation process is the

following: we randomly pick a synonym from the lexicon such as [ACR 6] and insert it in a

randomly picked context from a predefined list such as "There is {} ." to generate "There is

[ACR 6]." This sentence is then added to the list of training samples. Although this may seem

very simple, we will see that this allows us to easily inject knowledge into our model and

improve its performance. This method is closely related to the training of the Chapter 4, in

which we built a training set from a terminology. As we mentioned in Section 5.2.2.2, however,

our model deals with mentions that are part of a context, which is why we add an artificial

context around each of our synonyms to avoid having too large a distribution gap between

our real and synthetic samples.

The documents generated from these augmentations aremixedwith the original documents

such that every batch approximately contains 1
3 of each (original, doc parts and lexicon

sentences).

5.2.6.2 Output constraints

As stated in the section 5.1.2, the set of "legal" frame label combinations is known in

advance. These label tuples supplement the manual annotations. Some background knowledge

can be injected this way by constructing rules such as the fact that "left" and "right" are exclusive,

or the fact that a mammogram is always performed on the breasts.

During the frame extraction step, relations between mentions that cannot be part of

the same frame are filtered out during learning and prediction. We derive the allowed and

forbidden relations from the list of label tuples mentioned earlier. For example, due to the

spatial division of objects, two mentions [left] and [right] are incompatible and the relation

r([left], [right]) is set to −∞. This filtering reduces the number of possibilities that the model

must evaluate. In addition, sometimes a procedure is explicitly located on a quadrant in the text.

However, we chose not to extract the "quadrant" field for diagnostic or therapeutic procedures

during annotation in order to simplify the schema. Preventing the model from learning that

"procedure" and "quadrant" are incompatible in our schema improves the consistency of the

supervision information.

During the frame classification step, instead of classifying each label independently, we

score each combination of allowed labels, as described in equation 5.13. Conversely, scoring

each label independently is equivalent to allowing all label combinations.
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Maximum BERT sequence size 192 wordpieces
Post-encoder dropout 0.5
Decoder dropout 0.2
BiLSTM layers 3
BiLSTM hidden size 200
Number of steps 2000
Batch size 16
lrBERT 5e−5

lrmain 4e−5

αNER 2
αnormalization 1
αrelation 1
αWSS 1
αframe_classification 0.5

Table 5.6 Hyperparameters

5.3 Experiments

We evaluate our proposed approach on the test set of the new annotated dataset, using the

mention metric, the Frame Support metric and Frame Label metrics described in Section 5.1.5.

We also evaluate different document-level queries on the predicted frames. Each query

extracts a deduplicated list of tuples for each document, and standard precision and recall

metrics are computed on the predictions. As an example, the query "Lateralized current

breast density" extracts tuples (laterality, density score) from frames with document overlap

temporality, while the query "Current breast density" does not extract laterality.

5.3.1 Experimental setup

Hyperparameters were manually selected by trial and error on 20 documents from the

training dataset. Many of them are the same as the model from Chapter 3. We optimize the

parameters with the Adam optimizer (Kingma and Ba, 2015) without weight decay and use

two learning rates: the first learning rate lrBERT, that applies to the pretrained CamemBERT

(Martin et al., 2020) base weights, is initialized at 5× 10−5 and follows a linear schedule with

a 10% warmup, while the second learning rate lrmain, for the other parameters, is initialized

at 5× 10−4 and follows a linear decay schedule with no warmup. The models were trained

with a batch size of 16 samples. Due to the large size of model and documents, we used the

gradient accumulation method to fit the available GPU memory (32Go). All experiments were

averaged by training 3 differently seeded models. The main hyper-parameters are described

in Table 5.6.
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5.3.2 Ablations

Additionally, we perform several ablation experiments to investigate the design choices of

our model:

— we look at the effect of the gating mechanism and the relative positional attention

mechanism on our model

— we evaluate the contribution of scope relations and the effect of different types of super-

vision, i.e., we drop the word-level scope supervision and also change the supervision of

the relation mechanism from asymmetric supervision of r(u, v) to symmetric supervision

of R(u, v).

We also perform experiments on the training data. In particular, we investigate the contribution

of the augmented samples, and the evolution of the performance with the amount of annotated

data.

5.4 Results and discussion

5.4.1 Main results

Table 5.7 shows the performance on the different types of frames. The model performs

better for frames with fewer fields such as Cancer or Breast densities. It is worth mentioning

that matching all frame of a document is not necessary to answer most queries, since multiple

frames can be co-referent.

The query metrics are shown in Table 5.8. Similarly the model performs better for queries

that require less frame fields. The model low performance on the passed surgery query can

be explained by the few number of annotated therapeutic procedures, and the difficulty to

extract the temporality, that sometimes requires complex contextual and global reasoning.

We visualize the predicted scopes of the proposed model on the right side of Figure 5.7. We

observe that the scopes coarsely follow the structure of the document, i.e. that the predicted

boundaries are located at the beginning or the end of the different sections. It is worth keeping

in mind that these scopes have only been supervised with the requirement that they contain

or exclude certain mentions, and that no information regarding the precise location of their

boundaries has been given.

Moreover we notice that the reading of these scopes gives a partial explanation of why

some relations were predicted or not, whereas the outputs of relation prediction model are

usually hardly explainable.
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Frame support Frame label
Frame type P R F1 P R F1
BIRADS score 89.6 95.7 92.5 80.6 86.1 83.3
Breast density 84.9 96.9 90.5 82.6 94.3 88.1
Diagnostic procedure 82.1 91.7 86.6 74.0 82.7 78.1
Therapeutic procedure 86.2 87.1 86.6 68.3 69.0 68.6
Finding 74.0 82.4 78.0 59.6 66.5 62.9
Overall 81.1 90.0 85.3 68.7 76.2 72.2

Table 5.7 Performance of the model at the frame level

P R F1
Is mammography ? 88.5 100.0 93.9
Has passed surgery ? 63.6 87.5 73.7
Current BIRADS score 94.3 100.0 97.1
Current lateralized BIRADS score 92.0 92.0 92.0
Current breast density 89.3 96.2 92.6
Current lateralized breast density 86.4 95.0 90.5
Current lesion with quadrant 85.2 81.2 83.2
Current lesion with quadrant or radial position 77.9 77.9 77.9
Current lesion with quadrant or radial position & size 76.7 78.4 77.5

Table 5.8 Performance of the model against various queries

Mention Frame support Frame label
Base 96.2 85.3 72.2

Neural
net tricks

− input-residual 95.2 (−0.9) 83.9 (−1.4) 69.3 (−2.9)
− relative attention 95.6 (−0.5) 84.0 (−1.3) 70.5 (−1.8)

Frame
extraction

− relation heuristics 96.1 (−0.1) 85.4 (+0.1) 71.8 (−0.4)
− WSS 96.1 (−0.1) 82.1 (−3.2) 69.5 (−2.7)
− WSS − asymmetric 95.9 (−0.3) 74.4 (−10.9) 57.5 (−14.8)
− scopes (only biaffine) 96.2 (+0.0) 80.4 (−4.9) 66.9 (−5.3)

Knowledge
injection

− doc splitting (1) 96.1 (−0.0) 85.3 (+0.1) 71.5 (−0.7)
− lexicon sentences (2) 95.4 (−0.8) 85.0 (−0.3) 70.8 (−1.5)
− data augmentations (1+2) 95.4 (−0.8) 85.0 (−0.3) 69.9 (−2.3)
− constraints 96.2 (−0.0) 84.0 (−1.3) 69.4 (−2.8)

Table 5.9 Ablation experiments on the model and training data. WSS stands for Word-level
Scope Supervision. All reported metrics are F1-scores.
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5.4.2 Model ablations

5.4.2.1 Impact of scopes

Table 5.9 shows the effect of ablating the model scopes. In this configuration, the model

can only predict the relations through the biaffine model. We can observe that ablating scopes

results in an overall loss of 5.3 pt for the Frame Label metric and 4.9 pt for the Frame Support

metric. We believe that this is due to the inability of other neural components to reason with

intervals, i.e., to answer queries such as "what word is between these two words". Scopes allow

the model to focus on section or enumeration boundaries and leave interval logic reasoning to

the scope CRF.

Given that scopes improve the quality of predictions, the question arises as to what kind

of supervision is needed for to learn them. As shown in Table 5.9, when the scopes are

learned directly using word-level partial annotations, the model performs better than with

distant supervision on the r(u, v) matrix. This suggests that finer manual annotation of scopes

may benefit the system. If we directly supervise the symmetric matrix R(u, v) instead of the

asymmetric matrix r(u, v), the performance collapses and we lose between 10 and 15 pt for

the Frame metrics. This can be seen in the visualization of Figure 5.7: the scopes overlap

several unrelated sections, which leads to the prediction of erroneous frames. The learning of

scopes must be hindered by the uncertainty related to the supervision of this matrix alone

and the small amount of data.

Interestingly, if we remove the relation supervision heuristic and let the model explore

different configurations on its own, the performance remains on par with the proposed

approach. Since these heuristics aim at injecting information about the hierarchy of mentions

and the structure of the text, this suggests that the model is able to infer this information itself

from "flat" annotations. This is a valuable finding because it suggests that complex, hierarchical,

directed annotations for other tasks could be alleviated when it is easier to annotate groups of

mentions than directed graph structures between mentions.

5.4.2.2 Impact of the gating mechanism

Table 5.4.2 shows the effect of the different gating mechanisms on the performance of the

model. We can observe that the "input-residual" gating mode leads to a performance gain of

1.4 pt in Frame Support and 2.9 pt in Frame labels. Although this variant performed well in

our experiments, more research is required to evaluate the reason behind this apparent better

performance, and we did not investigate this mechanism further in this work.

5.4.2.3 Impact of the relative attention mechanism

We evaluated the effect of the added information on the relative position of the word-

mention and mention-mention attention mechanisms. From the table 5.4.2, we can observe
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that this added information leads to a performance gain of 1.3 pt of F1 frame support and

1.8 pt of F1 frame label. Without it, a mention is "positionally blind" and must rely on the

inductive bias of the LSTM to find its neighboring words or mentions. Therefore, we expected

a larger drop in performance, especially in the context of long documents. This suggests that

the chain structure of the LSTM is capable of encoding relative position information at both

the word and mention level. Nevertheless, relative attention proves to be an effective way to

improve retrieval performance.

5.4.3 Data ablations

5.4.3.1 Impact of the size of the training data

Figure 5.8 shows the overall performance of the model when trained with different numbers

of annotated samples. We can observe that the first 10 documents are critical, and expectedly

that the added value of additional documents becomes lower as their number increases. On

one hand, we can note that our system requires only a small amount of documents to achieve

"correct" accuracy, i.e., it can be used to pre-annotate more documents. This "data efficiency" is

important when tackling new domains in order to allow quick feedback and possible changes

regarding the annotation scheme. However, given the complexity of the task and the evolution

of performance with the training set size, we also note that a larger number of annotated

documents might be needed to approach a perfect score.

5.4.3.2 Impact of the augmented samples

We remove the augmented samples from the training data and show the effect on perfor-

mance in Table 5.9 and Figure 5.8. We observe that adding synthetic sentences only slightly

helps improving the model mention detection performance (+0.3 pt). However, this improved

performance has a larger effect of 1.5 pt on the Frame Label metric. This is typical of the

phenomenon of error propagation. Indeed, a missing or mislabelled mention can have an

effect on multiple frames. This shows the importance of focusing efforts on the first steps of

pipeline models such as ours.

As we reduce the number of annotated documents in the training set, the effect of aug-

mentation becomes more important, and with only 4 annotated documents we obtain an

average performance of 89.4 F1 in mention extraction versus 81.1 F1 without, and an average

performance of 45.7 F1 in Frame Label F1 versus 34.7 without. Finally, we can see that a

model trained with synthetic sentences only retrieves most of the annotated mentions, which

is valuable when tackling a new domain. The non-zero Frame metrics can be explained by the

presence of singleton frames that contain only one mention, and by the Frame classification

constraints that prevent the system from predicting impossible label combinations.
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the model such that it obtains a correct performance on the annotated data, but might not

generalize as well on other tasks.

Scheme granularity Second, we did not annotate the radiological lesions using a fine-

grained scheme and left that disambiguation task for future works. This again might overesti-

mate the performance of the model on these radiological lesions, since we do not distinguish

between tumors and cancer diagnosis. Moreover, we did not annotate other relevant aspect of

tumors such as their size trend, morphology, or margin.

Coreferences Third, we did not address the issue of coreferences, which are nevertheless

important in the extraction of information from clinical documents, since they allow us to

obtain a deduplicated list of entities, to fill in possible missing fields, and to perform a final

evaluation of the extraction independently of the intermediate annotation choices. This step

will be the focus of future work, together with the problem of cross-document coreference to

link objects across multiple reports.

5.6 Conclusion

In this chapter, we proposed an annotation scheme and a system for extracting structured

entities from clinical breast radiology reports. We trained and evaluated our method on a

new dataset of 120 annotated documents. Although these documents are not made public

for medical privacy concerns, this dataset can be used to evaluate the performance of future

systems and developments in the field of clinical NLP. In particular, the pre-training of specific

encoders for the French clinical domain and for long documents should greatly benefit our

system. We have shown that the addition of synthetic sentences can improve the performance

in the context of a small amount of data. This information is valuable for the annotation

and development of new information retrieval systems in other domains, where key words

or phrases are known in advance. The method we described introduces the notion of frame

extraction in the form of mention cliques, and we have shown that a formulation of the relation

extraction task via scopes improves the performance of our system. Future work will evaluate

this approach on other structured entity extraction tasks such as event extraction.
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Conclusion and perspectives
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Structuring medical documents is a complex task that is related to several NLP research

topics. This thesis presented several contributions to the extraction and normalization of

simple and structured entities. This chapter makes a brief summary of the thesis (Section 6.1)

and discusses future research directions (Section 6.2).

6.1 Summary

In our work on nested named entity recognition, we introduced two methods to handle the

extraction of overlapping entities. In particular, we showed that sequence labelling methods

are better suited for the extraction of long and ambiguously annotated entities when exact

boundaries are not required, and we discussed several aspects of the design of these systems.

We also showed how ensembling can improve the performance of a NER model.

We also addressed the issue of training models in languages other than English. More

specifically, in Chapter 4, we demonstrated the importance of training French and English

jointly in the case of medical concept normalization, and even the benefit of training a single

multilingual model, instead of several bilingual models. We evaluated all the models proposed

in this thesis on French datasets, and annotated a new corpus of French clinical radiology

reports in Chapter 5.
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In the case of structured entities in Chapter 5, we proposed a new frame-based annotation

scheme, and designed a method to automatically extract these entities from unlabelled reports.

We also introduced the concept of mention cliques to overcome the issue overlapping structured

entities, as well as a new mechanism of relation prediction with mention scopes. We showed

how these "scope-relations" both improve the performance of our system on clinical documents,

and provide partial explanation of the predicted relations between mentions.

Finally, we also developed multiple techniques to inject external medical knowledge into

the training of learning algorithms, while alleviating the need for language or domain specific

pre-processing methods and reducing the requirement for annotated data. In Chapter 4, our

proposed model obtained good results without any annotated normalization sample. In the

context of radiological entity extraction in Chapter 5, we showed that the hybridization of a

set of output constraints, a terminology and a learning based method enabled our method to

be effective with a small number of training documents.

6.2 Future research directions

Starting from the work presented in this thesis, several research directions arise.

6.2.1 Deeper hybridization between learning and symbolic models

In Chapter 5, we saw how a structured entity extraction task could be represented by

an enumeration of compatible concepts. However, the number of legal combinations (2502)

remained tractable and could be baked into the model without becoming an issue. More

complex schemes could lead to a larger number of combinations, making their enumeration

infeasible. One solution to overcome this problem is to directly represent the allowed outputs

by logical propositional formulas and model them with a CRF (Lafferty et al., 2001). For

example, Deng et al. (2014) used a CRF to model subsumption and exclusion relations between

labels to improve image classification.

Further along this path, the integration of first-order logic into retrieval models is an

exciting perspective. Indeed, when relations are added to the retrieval scheme, modeling

the logical interactions between objects could improve performance. Markov logic networks

(Domingos and Lowd, 2009) unify symbolic and learning-based methods, and are a promising

avenue for integrating symbolic reasoning into information extraction models. For example,

we saw how implicit attributes could be inferred from other attributes, such as the organ

in the case of a mammogram. However, all these entities require the presence of a trigger

and implicit entities are out of scope of the proposed model. One could therefore imagine

conditioning the existence of a current lesion on the presence of a (possibly implicit) current
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diagnostic procedure by modeling the following formula:

∃Lesion s.t. lesion_frame(Lesion, temp:overlap_exam, ...) (6.1)

=⇒ ∃Diag s.t. diag_proc_frame(Diag, temp:overlap_exam, ...)

6.2.2 Multilingual and multitask training

We saw in chapter 4 how joint training on multiple languages benefits a normalization

system. Recent work has shown how a unified training on multiple named entity datasets

improves the performance of a NER system. Since resources for medical entity normalization

are scarce, a promising approach is to train a normalization system on multiple datasets and

multiple languages to achieve a robust, multilingual normalization system. To go further, we

can also consider a multi-task training of normalization, NER and structured entity extraction

systems. Moreover, we have shown how a pre-trained system can handle more concepts by

being partially re-trained in a second phase. The reverse direction can also be considered, i.e.,

pre-training a normalization model on a large amount of concepts, and fine-tuning it on a

smaller number to better fit the target domain.

6.2.3 Interactively programmable annotation software

As mentioned in Chapter 5 Section 5.1.4, the choice of annotation software must be

taken into account in the design of the annotation scheme. For example, it is difficult to

annotate implicit entities in Brat or to annotate relations on multiple lines, and impossible

to handle multiple documents at once. There are many annotation tools available (Neves

and Ševa, 2021), but most of them are either proprietary, poorly adapted to document or

patient annotation, require a complex installation that is not compatible with existing remote

work environments, or are difficult to customize. Finally, the standardization of annotation

levels (mention / relation / event) is an obstacle to the development of new tasks. Given

these limitations, we started to develop Metanno (illustrated in Figure 6.1), a dynamically

programmable annotation software integrated to the popular Jupyter IDE.

We list here some of its features:

— ease of installation as a Jupyter extension

— joint annotation of multiple reports (cross-document co-referencing)

— visualization of annotations at the level of a document, patient or corpus in Excel-style

dynamic tables

— bidirectional communication between the Python kernel and the front-end to facilitate

the integration of active learning algorithms

— simple Python API to modify the behavior of the software when clicking a button,

selecting annotations, highlighting table rows
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broader range of query types that the model can rely on to compute its representations. To

the best of our knowledge, no current attentional mechanism can formulate an attentional

query of the type "what are the words/mentions after me and before the next line break?"

Another avenue for improvement is the development of pre-training that promotes the

representation of simple entities. Several studies have been conducted on the improvement of

pre-training objectives to better take into account the entities in the text representation models

(Joshi et al., 2019; Lin et al., 2021; Yamada et al., 2020) and most pre-trained models focus on

whole sentence representations. In particular, to the best of our knowledge, entity-centered

pre-trainers that handle both contextualized and context-free entity representations have not

yet been studied. As an example, a key aspect of taking context into account in medical entity

normalization is the distributional shift between contextualized entity representations and

non-contextualized entity representations such as those present in terminologies. To overcome

this problem, our approach in Chapter 4 was to "cut out" the entities in the medical texts,

while we chose to augment the synonyms with an artificial context in Chapter 5. Nevertheless,

these are not elegant solutions. Just as the pre-training of models like BERT or ELMO have

improved the performance of many NLP tasks, the pre-training of a model that also takes

entity representations into account should benefit the improvement of information extraction

systems.
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Relaxed retrieval metrics

Unlike the exact match NER metric for which a true positive is unambiguously counted

when two elements of the predicted and gold entities match, defining and computing relevant

metrics between more complex sets of objects becomes more difficult as the number of element

attributes increases. One option is to lower the minimum similarity threshold required between

predicted and gold features to account for small errors such as mismatch between mention

boundaries. However, this leads to ambiguities in the metric computation, since several

predicted elements may match a single gold element, and vice versa. We explicitly formulate

a greedy matching procedure to compute a maximum bipartite greedy match between the

elements of two sets, in the algorithm 1 to avoid double counting true positives.

For reference, the exact match metric NER is written using this matching procedure in the

Algorithm 2.

The NER metric for the section 3 uses a score function that returns 1 if the Dice overlap of

words in two mentions is higher than 0.5. The procedure is described in the Algorithm 3.

The matching procedure is used in the computation of the frame support metric in Chapter

5 (Algorithm 4), where two frames have a non-zero match score if some of their mentions

overlap, and a perfect score if all their mentions overlap, and 0 otherwise. This score between

0 and 1 is the Dice/F1 overlap between the mentions of the two frames. It is used as a "relaxed"

true positive when computing the retrieval metrics.

The matching procedure is used in the calculation of the frame label metric in Chapter

5 (Algorithm 5), where two frames have a matching score of 1 if their labels match and

their trigger mentions overlap, and 0 otherwise. This score is used as a true positive when

computing retrieval metrics.
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Algorithm 1 Procedure to compute the maximum sum of greedily matched items between
two sets of predicted and gold items

1: ◃ greedily matches elements between two sets P and G to maximize the sum of the bipartite
matching according to the match_score function

2: function match_sum(P, G, match_score)
3: scores← empty matrix ◃ match scores between P and G
4: matched← {} ◃ matched predicted and gold entities
5: result← 0 ◃ the aggregated score
6: for each predicted item p ∈ P do
7: for each gold item g ∈ G do
8: scores[p, g]← match_score(p, g)

9: while there remains both gold and predicted entities not matched do
10: Take the first remaining predicted entity p ∈ P\matched
11: g← argmax(scores[p]) ◃ find the best matching g ∈ G
12: if scores[p, g] > 0 then
13: result← result + scores[p, g]
14: matched← matched

⋃

{p, g}

15: return result

Algorithm 2 Procedure to compute the Exact NER metric

1: function exact_ner_match_score(p, g)
2: ◃ return 1 if p and g have the same boundaries and label, 0 otherwise

3: return p.begin = g.begin and p.end = g.end and p.label = g.label

4: function exact_ner(P, G)
5: ◃ return the retrieval metrics, where true positives between P and G are computed with

exact_ner_match_score

6: tp← match_sum(P, G, exact_ner_score)
7: precision← tp/|P|
8: recall← tp/|G|
9: f1← 2 · tp/(|G|+|P|)

10: return (precision, recall, f1)
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Algorithm 3 Procedure to compute the Half NER metric

1: function half_ner_match_score(p, g)
2: ◃ return 1 if p and g have a word dice overlap ≥ 0.5 and the same label, 0 otherwise

3: return 2·|p.words
⋂

g.words| / (|p.words| + |g.words|) > 0.5 and p.label = g.label

4: function half_ner(P, G)
5: ◃ return the retrieval metrics, where true positives between P and G are computed with

half_ner_match_score

6: tp← match_sum(P, G, half_ner_score)
7: precision← tp/|P|
8: recall← tp/|G|
9: f1← 2 · tp/(|G|+|P|)

10: return (precision, recall, f1)

Algorithm 4 Procedure to compute the Frame Support retrieval metrics

1: function same_type_overlap(a, b)
2: ◃ return 1 if a and b share ≥ 1 word and have the same label, 0 otherwise

3: return |a.words
⋂

b.words| > 0 and a.label = b.label

4: function frame_support_match_score(p, g)
5: ◃ return the Dice overlap between p mentions and g mentions which is 0 if there is no

overlap and 1 if all mentions of p and g match

6: tp← match_sum(p.mentions, g.mentions, same_type_overlap)
7: return 2 · tp/(|g.mentions|+ |p.mentions|)

8: function frame_support(P, G)
9: ◃ return the retrieval metrics, where (relaxed) true positives between P and G are computed

with frame_support_match_score

10: relaxed_tp← match_sum(P, G, frame_support_match_score)
11: precision← relaxed_tp/|P|
12: recall← relaxed_tp/|G|
13: f1← 2·relaxed_tp/(|G|+|P|)
14: return (precision, recall, f1)
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Algorithm 5 Procedure to compute the Frame Label retrieval metrics

1: function frame_label_match_score(p, g)
2: ◃ return 1 if all labels of g are in p, all labels of p are in g or a non conflicting frame of the

same object and the triggers overlap, 0 otherwise

3: return p.labels ⊆ g.object.shared_labels and p.labels ⊇ g.labels
and |p.triggers.words

⋂

g.triggers.words| > 0

4: function frame_label(P, G)
5: ◃ return the retrieval metrics, where true positives between P and G are computed with

frame_label_match_score

6: tp← match_sum(P, G, frame_label_match_score)
7: precision← tp/|P|
8: recall← tp/|G|
9: f1← 2 · tp/(|G|+|P|)

10: return (precision, recall, f1)
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Metanno: a programmable and
modular annotation software

Annotation tools are essential to the development of new information retrieval tasks and

models and have been the focus of many development efforts for several years (Neves and

Ševa, 2021). We considered three NLP tasks in this thesis: the first, named entity recognition,

benefits from many existing annotation tools. The second task is the normalization of medical

entities, and requires specialization of tools to speed up labeling and pre-filter the list of

candidate concepts. Such specializations can be found in some of the softwares like BRAT,

Webanno, prodigy and others. However, the third task of frame extraction did not fit well

into the BRAT framework, mostly due to the long-range relationships between named entities.

Other tools, such as GATE or the XConc Suite, allow for long relationships through tables and

are customizable to some extent, but with minimal to no web support, and these customizations

require a substantial amount of work. Overall, we could find no free web-based software with

sufficient customization and support for long range dependencies.

B.1 Rationale

Our first observation is that complex custom tasks require specific annotation tools, and no

existing software provides sufficient customization features. This may lead to either modifying

the ideal annotation scheme to fit existing software and forgoing some annotations, or making

the scheme more complex. There are many annotation tools available, but most of them are

either proprietary or ill-suited to annotating documents or multi-documents, require complex

installation that is not compatible with existing remote working environments, or are difficult

to customize.

A second observation is the gain in popularity of the Python language, its simplicity for

scripting and its integration into collaborative web IDEs like Jupyter. As a result, the integration

of Python into an annotation tool to more fully control its behavior and interact with its inputs
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Fast software response time Software response times should less than 100ms to allow a

"fluid" user experience, without noticeable delay (Card et al., 1983). This should also be the

case for unreliable connections, with which web-based annotators like BRAT are not robust.

One programming language Most data science programs are done in Python, and this

language has been taught to students for some time. This makes it a candidate of choice to

interact with the software.

Completeness Structured data can be easily represented in relational databases with a set

of tables. For example, text classification requires only one table for documents. Named entity

annotation requires two tables for documents and entities. Frame annotation requires three

tables (documents, entities, frame) for example. The example in Figure screenshot shows

a possible structure for a named entity annotator with an additional column per entity for

relationships. Since most data scientists are used to working with tabular data such as Excel,

support for tabular views seemed both natural and necessary to meet most data annotation

requirements.

Interactivity Finally, the software should be interactive, both for developing the annotator

and for manipulating the input and output data. The Jupyter notebook scheme is ideal for this,

and customizations (what happens if the user clicks on an entity, or hovers over it) should be

taken into account immediately, without the need to recompile Jupyter, or restart the Python

core.

B.3 Workflow

All the app is controlled by a single class instance and all the displayed data is gathered as a

single json-like state, replicated on both the client and the Python kernel. Each view rendered

in Jupyter, either a text view or a tabular view, uses a derivation of this state (view_data =

fn(app_data)) and calls functions in the app class whenever an event occurs. An overview of

the software workflow can be found in Figure B.2.

Immutable state Every state mutation is recorded by proxying the state, which enables

undo/redo operations. This also allows to send patches instead of the full state when the

client or the kernel produces a mutation to keep client and kernel states replicas in sync. This

immutable paradigm has been popularized by Javascript libraries like Redux and Immer.

Client-kernel communication To avoid having to open a new port, which can slow down

the integration if the user does not have the Jupyter environment, all communication between
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the client and the kernel is done using the Jupyter web-socket. This web-socket is used to

transmit remote function calls, state patches and the transpiled app class code.

Python to Javascript transpilation This app class is written in Python by the user and

automatically translated into Javascript using the Transcrypt software. This javascript code

is sent to the front-end such that every action taken by the user is answered immediately

whenever possible. If an action must be executed in the kernel (like file saving) or the client

(like scrolling a view to a given annotation), the user can wrap a given function with a specific

Python decorator (@frontend_only or @kernel_only).

Two kinds of views On the client side, the widgets are built in React with state selectors

written in Python (and transpiled with Transcrypt). A first widget is the text view renderer,

which allows to visualize and annotate multi-line and/or nested text spans on a given text.

The second widget is the table widget, based on react-data-grid. Different types of data types

are supported like text, hyperlinks, lists of text and list of hyperlinks, which suffice to annotate

named entities, relations, events or frames. Custom input suggestions can be provided using

the app shared state for each column.

B.4 Perspectives

A first version of the software is available at https://github.com/percevalw/metanno.

Much work remains to be done, including providing documentation and examples, more

traditional Excel-like functionality for tabular views, visualization of relationships in text, and

support for more data types, such as images or PDFs.
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Extended French summary

Les documents cliniques hospitaliers (comme les rapports d’hospitalisation ou de consulta-

tion, les comptes rendus, les rapports de radiologie, les rapports d’anatomo-pathologie, les

transmissions infirmiěres, les lettres de sortie et les prescriptions, ou encore les lettres des

mędecins) constituent des documents riches en informations pour diverses applications telles

que le recrutement de patients pour la recherche clinique, la surveillance ępidęmiologique, le

codage mędical et les outils d’aide à la dęcision (Wang et al., 2018c). Ces documents sont

essentiellement rędigęs en langage naturel, qui se prête bien à une description exhaustive

et exacte des informations, permet de dętailler les cas particuliers et facilite la saisie des

informations. On estime ainsi que plus de 80 % des donnęes hospitaliěres sont collectęes

sous forme textuelle (Raghavan et al., 2014). Malheureusement, le texte libre ne se prête

pas facilement aux traitements informatiques standard. En revanche, les repręsentations

structuręes amęliorent la qualitę et la ręutilisation des donnęes des patients pour les soins

cliniques (y compris l’aide à la dęcision), l’audit et la recherche cliniques, le codage mędical

pour l’allocation des ressources et la gestion des services de santę. Nous nous intęressons à la

structuration automatique de documents textuels. Cette discipline, communęment appelęe

extraction d’information (IE) dans le traitement automatique du langage (TAL), englobe de

nombreux domaines de recherche.

Structuration La structuration est le processus de transformation d’un ęchantillon de texte

libre en une vue organisęe des informations qu’il contient. L’ęchantillon de texte peut être

une seule phrase, un paragraphe, un rapport entier ou même un dossier de patient contenant

plusieurs rapports. Ces repręsentations structuręes peuvent prendre diffęrentes formes, comme

l’illustre la Figure B.3. Dans le cas de d’une classification, nous pouvons attribuer à chaque

ęchantillon une ętiquette unique à partir d’une liste prędęfinie, telle que le type de rapport, le

sexe d’un patient, ou une ręponse oui/non à une question. La classification multi-ętiquette

permet de classer les ęchantillons avec plusieurs ętiquettes, comme le type de rapport et

un score de risque de cancer s’il s’agit d’une mammographie. Un autre type de structure
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de santę et au nombre croissant de publications scientifiques biomędicales, a conduit au

dęveloppement d’approches de TAL dans les domaines gęnęral et biomędical. L’avěnement de

l’apprentissage automatique, en particulier l’apprentissage profond, s’est accompagnę de la

promesse de dęcrire une tâche à l’aide d’exemples à partir desquels gęnęraliser, plutôt que de

construire des rěgles spęcifiques à un domaine et à une langue. Ces męthodes sont devenues

trěs populaires et ont dęmontrę leur supęrioritę dans un grand nombre de domaines. Toutefois,

les possibilitęs offertes par ces męthodes se sont ęgalement accompagnęes d’un besoin critique

de donnęes annotęes: de nombreuses męthodes d’apprentissage modernes entrent dans

la catęgorie de l’apprentissage supervisę, c’est-à-dire qu’elles nęcessitent la cręation d’un

ensemble de donnęes annotęes (par des experts humains) pour permettre l’apprentissage d’un

moděle qui peut ensuite être appliquę à de nouvelles donnęes. Le coût temporel de l’annotation

des documents et les besoins ęlevęes en annotations des approches par apprentissage profond

repręsentent un obstacle à l’automatisation de l’extraction d’informations. Cependant, dans

de nombreux cas, il existe des ressources de connaissances mędicales auxiliaires, telles que

des terminologies, qui ne se pręsentent pas sous la forme d’exemples annotęs. L’injection de

ces connaissances dans les moděles d’apprentissage fait encore l’objet de recherches actives.

De plus, le processus d’annotation lui-même est loin d’être trivial. En effet, la conception d’un

schęma qui concilie simplicitę, expressivitę et cohęrence est un dęfi en soi.

Traitement du langage clinique français Les difficultęs lięes au traitement du langage

naturel sont nombreuses. En effet, le langage naturel est sujet à des ambiguïtęs sęmantiques

et syntaxiques. Comme tout document ęcrit, un rapport clinique peut contenir des fautes

d’orthographe, des erreurs grammaticales, voire des contradictions. De plus, l’informatisation

de ces rapports et leur conversion vers/depuis des formats portables (par exemple PDF)

peuvent introduire des artefacts difficiles à traiter informatiquement. Outre ces "erreurs", la

compręhension du langage naturel des rapports cliniques nęcessite un certain sens commun,

ainsi que de connaissances mędicales. Il est fręquent de rencontrer des termes qui ne font pas

partie d’aucune des ressources fournies à la machine, et ce malgrę le nombre considęrable de

synonymes pręsents dans les terminologies ęvoquęes pręcędemment. Lors du dęveloppement

de moděles, en particulier dans le domaine clinique, il faut ęgalement tenir compte de

structures linguistiques spęcifiques telles que les conjonctions elliptiques, ou la segmentation

hięrarchique des relations. Malgrę les amęliorations ręcentes des moděles de langage naturel,

la compręhension automatique du langage, et, a fortiori, des documents cliniques en français,

est encore loin d’être ręsolue. L’anglais dispose de beaucoup plus d’outils de traitement et de

ressources terminologiques que les autres langues, et les approches anglaises ne sont pas toutes

directement transposables au français par exemple. De plus, bien qu’il existe de nombreux

travaux en français sur le TAL dans le domaine gęnęral, mais bien moins dans le domaine

biomędical (Nęvęol et al., 2018). À titre d’exemple, bien qu’ętant la cinquiěme langue la

plus repręsentęe dans la version 2019 de la terminologie UMLS, le français ne dispose de
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synonymes que pour 3,5% des concepts pręsents. Par consęquent, un aspect important de ce

travail est le dęveloppement de męthodes pour le TAL clinique en français.

Une ętude de cas Nous abordons la tâche de structuration de rapports de radiologie. Cette

ętude s’inscrit dans le cadre du projet EZMammo, dont l’objectif principal est d’optimiser

l’entrepôt de donnęes cliniques de l’Assistance Publique des Hôpitaux de Paris (APHP) et

de valider les prędictions d’un algorithme d’analyse de mammographies par apprentissage

profond. Une tâche pręliminaire de cette ęvaluation consiste à construire un jeu de donnęes de

mammographies ętiquetęes avec le diagnostic de cancer et les lęsions trouvęes dans les rapports

correspondants. Dans le cas de lęsions suspectes, l’examen radiologique est suivi d’une analyse

cytologique. Il faut alors faire correspondre les ręsultats des deux rapports pour ętiqueter la

mammographie originale avec le diagnostic dęfinitif. Ce traitement implique qu’il soit possible

d’extraire des comptes rendus plusieurs entitęs mędicales (comme des procędures, scores ou

lęsions) et leur caractęristiques spatiales, temporelles et morphologiques. Ces extractions

peuvent ensuite être utilisęes pour filtrer et aligner les ręsultats entre les images radiologiques,

les rapports de mammographie et les rapports d’anatomo-pathologie. Comme nous le verrons,

les entitęs à extraire se composent de plusieurs ętiquettes et de plusieurs parties textuelles,

et entrent donc dans la catęgorie des entitęs structuręes. Cette tâche d’extraction d’entitęs

structuręes se compose de plusieurs sous-tâches, à savoir l’extraction d’entitęs nommęes pour

localiser les mentions d’objets et leurs caractęristiques, la normalisation pour les ętiqueter

finement, et la composition de ces mentions pour aboutir à des entitęs structuręes.

Questions de recherche

Une premiěre ligne de questionnement dęcoule des problěmes lięs aux repręsentations

structuręes. La simple extraction d’entitęs et la normalisation peuvent ne pas être suffisantes

pour repręsenter adęquatement les informations pręsentes dans un rapport clinique. Ainsi,

quelle structure est la mieux adaptęe à l’extraction d’informations dans le domaine

clinique ? Dans le cas d’entitęs structuręes, commentmodęliser un systěme pour regrouper

les diffęrentes parties d’une même entitę ? Plus gęnęralement, dans le cas d’entitęs

simples comme structuręes, quelles sont les difficultęs rencontręes lorsque ces entitęs

se chevauchent dans le texte, et quelles męthodes peuvent être utilisęes pour surmonter

ces difficultęs ?

Notre deuxiěme sęrie de questions relěve du langage lui-même. L’anglais ętant la langue

prędominante de la recherche en TAL, peut-on construire desmoděles de TAL pour d’autres

langues que l’anglais comme le français ?. Une question subsidiaire se pose : quand peu

de ressources sont disponibles dans les langues autres que l’anglais, comme dans le cas

de la normalisation, est-il encore possible d’appliquer des moděles d’apprentissage à

ces langues ?













Ręsumę ętendu

relations binaires entre les mentions, visant à savoir si les deux mentions appartiennent à la

même entitę. Pour chaque relation, nous calculons d’une part un score par produit scalaire

entre les repręsentations de chaque mention, et introduisons le męcanisme de relation par

portęe. Ces relations par portęes visent à dęterminer si une mention est situęe dans la zone

d’effet d’une autre mention, sans supervision spęcifique de ces zones. Ce module est illustrę

plus en dętail dans la Figure B.8a. Enfin, le dernier module 4 rempli dans chaque cadre

les champs qu’aucune mention n’a pu justifier explicitement. Nous proposons ęgalement

plusieurs techniques pour injecter des connaissances auxiliaires par le biais de contraintes,

d’augmentation du jeu de donnęes et d’une petite terminologie.

En ęvaluant notre systěme sur le nouveau jeu de donnęes annotęes, nous montrons que

l’ajout d’informations auxiliaires peut amęliorer les performances du moděle dans le contexte

d’une petite quantitę de donnęes. Cette information est pręcieuse pour l’annotation et le

dęveloppement de nouveaux systěmes de recherche d’information dans d’autres domaines, oű

les mots ou phrases clęs sont connus à l’avance. Dans ce contexte, notre systěme commence

à obtenir des ręsultats avec presque aucun document annotę. Notre męthode de dętection

de relations par portęes amęliore significativement les prędictions, et il en va de même pour

plusieurs astuces de modęlisation que nous implęmentons, à savoir l’attention relative et une

modification du męcanisme de connexion ręsiduelle standard. Nous montrons ęgalement que

les portęes peuvent être apprises sans aucune heuristique, ou annotation spęcifique, et qu’elles

fournissent un moyen interprętable de visualiser les prędictions du moděle, comme l’illustre

la figure B.8b.

Ces diffęrentes contributions, concernant l’extraction et la normalisation d’entitęs simples et

structuręes dans les rapports mędicaux, montrent que le traitement automatique du langage

clinique français est un sujet complexe qui męrite des approches spęcifiques, tant du point de

vue de la modęlisation du systěme que du point de vue de la collecte des donnęes et de leur

injection dans les moděles.
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Bahdanau, D., Bosc, T., Jastrzȩbski, S., Grefenstette, E., Vincent, P., and Bengio, Y. (2017).
Learning to Compute Word Embeddings On the Fly.

Baker, C. F., Fillmore, C. J., and Lowe, J. B. (1998). The Berkeley FrameNet Project. In Pro-
ceedings of the 36th annual meeting on Association for Computational Linguistics -, volume 1,
page 86, Morristown, NJ, USA. Association for Computational Linguistics.

Baroni, M. and Lenci, A. (2010). Distributional memory: A general framework for corpus-based
semantics. Computational Linguistics, 36(4):675–721.

Beltagy, I., Lo, K., and Cohan, A. (2020a). SCIBERT: A pretrained language model for scientific
text. EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language
Processing and 9th International Joint Conference on Natural Language Processing, Proceedings
of the Conference, pages 3615–3620.

Beltagy, I., Peters, M. E., and Cohan, A. (2020b). Longformer: The Long-Document Trans-
former.

Bender, E. M., Gebru, T., McMillan-Major, A., and Shmitchell, S. (2021). On the dangers of
stochastic parrots: Can language models be too big? FAccT 2021 - Proceedings of the 2021
ACM Conference on Fairness, Accountability, and Transparency, pages 610–623.

Bikel, D. M., Miller, S., Schwartz, R., and Weischedel, R. (1997). Nymble. In Proceedings of
the fifth conference on Applied natural language processing -, pages 194–201, Morristown,
NJ, USA. Association for Computational Linguistics.

Bitterman, D. S., Miller, T. A., Mak, R. H., and Savova, G. K. (2021). Clinical Natural Language
Processing for Radiation Oncology: A Review and Practical Primer. International Journal of
Radiation Oncology Biology Physics, 110(3):641–655.

Björne, J. and Salakoski, T. (2011). Generalizing Biomedical Event Extraction. Proceedings
of the BioNLP 2011 Workshop Companion Volume for Shared Task Portland Oregon June
Association for Computational Linguistics, page 183–191.

Björne, J. and Salakoski, T. (2013). TEES 2.1: Automated Annotation Scheme Learning in the
BioNLP 2013 Shared Task. BioNLP Shared Task 2013 Workshop, pages 16–25.

Björne, J. and Salakoski, T. (2015). TEES 2.2: Biomedical Event Extraction for Diverse Corpora.
BMC Bioinformatics, 16(16):1–20.

Bodenreider, O. (2004). The UnifiedMedical Language System (UMLS): Integrating biomedical
terminology. Nucleic Acids Research, 32(DATABASE ISS.):D267.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017). Enriching Word Vectors with
Subword Information. Transactions of the Association for Computational Linguistics, 5:135–
146.

Borthwick, A., Sterling, J., Agichtein, E., and Grishman, R. (1998). Exploiting Diverse
Knowledge Sources via Maximum Entropy in Named Entity Recognition. in Proceedings of
the Sixth Workshop on Very Large Corpora, pages 152–160.



BIBLIOGRAPHY BIBLIOGRAPHY

Bramer, G. R. (1988). International statistical classification of diseases and related health
problems - Tenth revision.

Brin, S. (1999). Extracting patterns and relations from the world wide web. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 1590:172–183.

Bron, C. and Kerbosch, J. (1973). Algorithm 457: finding all cliques of an undirected graph.
Communications of the ACM, 16(9):575–577.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T.,
Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E.,
Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever,
I., and Amodei, D. (2020). Language models are few-shot learners. Advances in Neural
Information Processing Systems, 2020-Decem.

Burek, P., Scherf, N., and Herre, H. (2019). Ontology patterns for the representation of quality
changes of cells in time. Journal of Biomedical Semantics, 10(1).

Bustos, A., Pertusa, A., Salinas, J. M., and de la Iglesia-Vayá, M. (2020). PadChest: A large chest
x-ray image dataset with multi-label annotated reports. Medical Image Analysis, 66:101797.

Cabot, C., Lelong, R., Grosjean, J., Soualmia, L. F., and Darmoni, S. J. (2016). Retrieving
Clinical and Omic Data from Electronic Health Records. Studies in health technology and
informatics, 221:115.

Card, S. K., Newell, A., and Moran, T. P. (1983). The Psychology of Human-Computer Interaction.
L. Erlbaum Associates Inc., USA.

Cardon, R., Grabar, N., Grouin, C., and Hamon, T. (2020). Presentation of the DEFT 2020
Challenge : open domain textual similarity and precise information extraction from clinical
cases. In Actes de la 6e confęrence conjointe Journęes d’Ętudes sur la Parole (JEP, 33e ędition),
Traitement Automatique des Langues Naturelles (TALN, 27e ędition), Rencontre des Ętudiants
Chercheurs en Informatique pour le Traitement Automatique des Langues (RĘCIT, pages 1–13.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., and Zagoruyko, S. (2020). End-
to-End Object Detection with Transformers. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12346
LNCS:213–229.

Castano, J., Gambarte, M. L., Park, H. J., Avila Williams, M. d. P., Perez, D., Campos, F., Luna,
D., Benitez, S., Berinsky, H., and Zanetti, S. (2016). A Machine Learning Approach to
Clinical Terms Normalization. In Proceedings of the 15th Workshop on Biomedical Natural
Language Processing, pages 1–11, Stroudsburg, PA, USA. Association for Computational
Linguistics.

Castro, S. M., Tseytlin, E., Medvedeva, O., Mitchell, K., Visweswaran, S., Bekhuis, T., and
Jacobson, R. S. (2017). Automated annotation and classification of BI-RADS assessment
from radiology reports. Journal of Biomedical Informatics, 69:177–187.

Chiaramello, E., Pinciroli, F., Bonalumi, A., Caroli, A., and Tognola, G. (2016). Use of “off-
the-shelf” information extraction algorithms in clinical informatics: A feasibility study of
MetaMap annotation of Italian medical notes. Journal of Biomedical Informatics, 63:22–32.



BIBLIOGRAPHY BIBLIOGRAPHY

Clark, K., Luong, M.-T., Le, Q. V., and Manning, C. D. (2020). ELECTRA: Pre-training Text
Encoders as Discriminators Rather Than Generators. In ICLR.

Collins, M. and Singer, Y. (1999). Unsupervised Models for Named Entity Classification.
Proceedings of EMNLP/VLC-99.

Collobert, R. and Weston, J. (2008). A unified architecture for natural language processing.
In Proceedings of the 25th international conference on Machine learning - ICML ’08, pages
160–167, New York, New York, USA. ACM Press.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. (2011).
Natural language processing (almost) from scratch. Journal of Machine Learning Research,
12:2493–2537.

Copara, J., Knafou, J., Naderi, N., Moro, C., Ruch, P., and Teodoro, D. (2020). Contextualized
{F}rench Language Models for Biomedical Named Entity Recognition. Actes de la 6e con-
fęrence conjointe Journęes d’Ętudes sur la Parole (JEP, 33e ędition), Traitement Automatique des
Langues Naturelles (TALN, 27e ędition), Rencontre des Ętudiants Chercheurs en Informatique
pour le Traitement Automatique des Langues (RĘCIT, pages 36–48.

Dai, H. J., Lai, P. T., Chang, Y. C., and Tsai, R. T. H. (2015). Enhancing of chemical compound
and drug name recognition using representative tag scheme and fine-grained tokenization.
Journal of Cheminformatics, 7(Suppl 1):S14.

Dai, X., Karimi, S., Hachey, B., and Paris, C. (2020). An Effective Transition-based Model for
Discontinuous NER. In Proceedings of the 58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5860–5870, Stroudsburg, PA, USA. Association for Computational
Linguistics.

Dalloux, C., Claveau, V., Grabar, N., Oliveira, L. E. S., Moro, C. M. C., Gumiel, Y. B., and
Carvalho, D. R. (2020). Supervised learning for the detection of negation and of its scope
in French and Brazilian Portuguese biomedical corpora. Natural Language Engineering,
27(2):181–201.

Datta, S., Bernstam, E. V., and Roberts, K. (2019). A frame semantic overview of NLP-based
information extraction for cancer-related EHR notes.

Datta, S., Si, Y., Rodriguez, L., Shooshan, S. E., Demner-Fushman, D., and Roberts, K. (2020a).
Understanding spatial language in radiology: Representation framework, annotation, and
spatial relation extraction from chest X-ray reports using deep learning. Journal of Biomedical
Informatics, 108(February):103473.

Datta, S., Ulinski, M., Godfrey-Stovall, J., Khanpara, S., Riascos-Castaneda, R. F., and Roberts,
K. (2020b). Rad-SpatialNet: A Frame-based Resource for Fine-Grained Spatial Relations in
Radiology Reports. LREC ... International Conference on Language Resources & Evaluation :
[proceedings]. International Conference on Language Resources and Evaluation, 2020:2251.

De Cao, N., Izacard, G., Riedel, S., and Petroni, F. (2020). Autoregressive Entity Retrieval.
9th International Conference on Learning Representations.

Delęger, L., Merabti, T., Lecrocq, T., Joubert, M., Zweigenbaum, P., and Darmoni, S. (2010).
A twofold strategy for translating a medical terminology into French. AMIA ... Annual
Symposium proceedings / AMIA Symposium. AMIA Symposium, 2010:152–156.



BIBLIOGRAPHY BIBLIOGRAPHY

Deng, J., Ding, N., Jia, Y., Frome, A., Murphy, K., Bengio, S., Li, Y., Neven, H., and Adam, H.
(2014). Large-scale object classification using label relation graphs. In Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), volume 8689 LNCS, pages 48–64.

Deng, P., Chen, H., Huang, M., Ruan, X., and Xu, L. (2019). An ensemble CNN method for
biomedical entity normalization. In Proceedings of The 5th Workshop on BioNLP Open Shared
Tasks, pages 143–149, Stroudsburg, PA, USA. Association for Computational Linguistics.

Devlin, J., Chang, M. W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep
bidirectional transformers for language understanding. NAACL HLT 2019 - 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies - Proceedings of the Conference, 1:4171–4186.

Dey, R. and Salemt, F. M. (2017). Gate-variants of Gated Recurrent Unit (GRU) neural
networks. Midwest Symposium on Circuits and Systems, 2017-Augus:1597–1600.

Dogan, R. I. and Lu, Z. (2012). An inference method for disease name normalization. AAAI
Fall Symposium - Technical Report, FS-12-05:8–13.

Domingos, P. and Lowd, D. (2009). Markov logic: An interface layer for artificial intelligence.
Synthesis Lectures on Artificial Intelligence and Machine Learning, 7(1):1–153.

Dong, L., Yang, N., Wang, W., Wei, F., Liu, X., Wang, Y., Gao, J., Zhou, M., and Hon, H.-W. W.
(2019). Unified language model pre-training for natural language understanding and
generation. Advances in Neural Information Processing Systems, 32.
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Abstract

Hospital clinical documents are rich sources of information for various applications such as

patient recruitment for clinical research, epidemiological surveillance, medical coding, and

decision support tools. However, being primarily written in natural language, these documents

are not easily amenable to large-scale computer processing and must first be structured. We

aim to extract entities mentioned in these documents, whether simple or structured, i.e.,

containing several labels or parts, and normalize them with concept bases. We contribute to

several natural language processing (NLP) tasks, namely named entity recognition (NER),

medical entity normalization, and structured entity extraction. In particular, we investigate

training deep learning models in low data settings, for languages other than English and in

the clinical domain. We structure our approach in three steps: tag, normalize, and compose.

We first propose two methods to tag simple entities, especially when they overlap in texts.

We then develop a large-scale multilingual model to normalize them in several languages.

Finally, to compose simple entities into structured entities, we propose a new method based

on mention cliques and scope relations. We evaluate it to a new annotated dataset of breast

imaging reports.

Keywords: [nlp, structure, extraction, tag, normalize, compose, clinical, multilingual]

Ręsumę

Les documents cliniques hospitaliers constituent de riches sources d’information pour diverses

applications telles que le recrutement de patients pour la recherche clinique, la surveillance

ępidęmiologique, le codage mędical et les outils d’aide à la dęcision. Cependant, ętant

essentiellement rędigęs en langue naturelle, ces documents ne se prêtent pas aisęment à des

traitements informatiques à grande ęchelle et doivent d’abord être structuręs. Nous visons à

extraire les entitęs mentionnęes dans ces documents, qu’elles soient simples ou structuręes,

c’est-à-dire contenant plusieurs ętiquettes ou parties, et à les normaliser selon des bases de

concepts. Nous contribuons à plusieurs tâches de traitement du langage naturel (TAL), à savoir

la reconnaissance des entitęs nommęes, la normalisation des entitęs mędicales et l’extraction

d’entitęs structuręes. Nous nous intęressons notamment à l’entraînement de moděles par

apprentissage profond (deep learning) dans des conditions de donnęes limitęes, pour des

langues autres que l’anglais et dans le domaine clinique. Nous structurons notre approche en

trois ętapes : surligner, normaliser et composer. Nous proposons d’abord plusieurs męthodes

pour surligner des entitęs simples, notamment lorsqu’elles se chevauchent dans les textes.

Nous dęveloppons ensuite une approche multilingue à grande ęchelle pour les normaliser

dans plusieurs langues. Enfin, pour composer ces entitęs simples en entitęs structuręes,

nous proposons une nouvelle męthode basęe sur les cliques de mentions et les relations

de portęe. Nous l’ęvaluons sur un nouveau corpus annotę de comptes rendus cliniques de

mammographies.

Mots clę: [tal, structure, extraction, surligner, normaliser, composer, clinique, multilingue]
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