
HAL Id: tel-03624928
https://hal.science/tel-03624928v1

Submitted on 30 Mar 2022 (v1), last revised 25 Oct 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extraction and normalization of simple and structured
entities in medical documents

Perceval Wajsbürt

To cite this version:
Perceval Wajsbürt. Extraction and normalization of simple and structured entities in medical doc-
uments. Document and Text Processing. Sorbonne Université, 2021. English. �NNT : �. �tel-
03624928v1�

https://hal.science/tel-03624928v1
https://hal.archives-ouvertes.fr


THESE DE DOCTORAT DE  
SORBONNE UNIVERSITE 

Spécialité « Science des données » 

 
ECOLE DOCTORALE PIERRE LOUIS DE SANTE PUBLIQUE A PARIS :  
EPIDEMIOLOGIE ET SCIENCES DE L'INFORMATION BIOMEDICALE 

Présentée par 

 Perceval Wajsbürt 

Pour obtenir le grade de 

DOCTEUR de SORBONNE UNIVERSITE 

Sujet de la thèse :  

Extraction et normalisation d'entités simples et structurées dans les documents médicaux 
 
(Extraction and normalization of simple and structured entities in medical documents) 
                                        
soutenue le 14/12/2021 
 

devant le jury composé de : 

 

Directeur de thèse Xavier Tannier, Sorbonne Université, LIMICS
Co-encadrante de thèse Christel Daniel, Assistance Publiques des Hôpitaux de Paris, LIMICS
Rapporteurs Vincent Claveau, CNRS, IRISA

Tim Miller, Harvard University, Boston Children's Hospital
Examinatrices Sandra Bringay, Université de Montpellier, LIRMM

Anita Burgun, Hôpital Européen Georges Pompidou, Centre de 
Recherche des Cordeliers

Membre invité Dongfang Xu, Harvard University, Boston Children's Hospital

Sorbonne Université 
Bureau d’accueil, inscription des doctorants et base de données 
Esc G, 2ème étage 
15 rue de l’école de médecine 
75270-PARIS CEDEX 06 

Tél. Secrétariat : 01 42 34 68 35 
Fax : 01 42 34 68 40 

Tél. pour les étudiants de A à EL : 01 42 34 69 54 
Tél. pour les étudiants de EM à MON : 01 42 34 68 41 

Tél. pour les étudiants de MOO à Z : 01 42 34 68 51  
E-mail : scolarite.doctorat@upmc.fr



Abstract

Hospital clinical documents are rich sources of information for various applications such
as patient recruitment for clinical research, epidemiological surveillance, medical coding, and
decision support tools. However, being primarily written in natural language, these documents
are not easily amenable to large-scale computer processing and must first be structured. We
aim to extract entities mentioned in these documents, whether simple or structured, i.e.,
containing several labels or parts, and normalize them with concept bases. We contribute to
several natural language processing (NLP) tasks, namely named entity recognition (NER),
medical entity normalization, and structured entity extraction. In particular, we investigate
training deep learning models in low data settings, for languages other than English and in
the clinical domain. We structure our approach in three steps: tag, normalize, and compose.
We first propose two methods to tag simple entities, especially when they overlap in texts.
We then develop a large-scale multilingual model to normalize them in several languages.
Finally, to compose simple entities into structured entities, we propose a new method based
on mention cliques and scope relations. We evaluate it to a new annotated dataset of breast
imaging reports.



Résumé

Les documents cliniques hospitaliers constituent de riches sources d’information pour
diverses applications telles que le recrutement de patients pour la recherche clinique, la
surveillance épidémiologique, le codage médical et les outils d’aide à la décision. Cependant,
étant essentiellement rédigés en langue naturelle, ces documents ne se prêtent pas aisément à
des traitements informatiques à grande échelle et doivent d’abord être structurés. Nous visons
à extraire les entités mentionnées dans ces documents, qu’elles soient simples ou structurées,
c’est-à-dire contenant plusieurs étiquettes ou parties, et à les normaliser selon des bases de
concepts. Nous contribuons à plusieurs tâches de traitement du langage naturel (TAL), à savoir
la reconnaissance des entités nommées, la normalisation des entités médicales et l’extraction
d’entités structurées. Nous nous intéressons notamment à l’entraînement de modèles par
apprentissage profond (deep learning) dans des conditions de données limitées, pour des
langues autres que l’anglais et dans le domaine clinique. Nous structurons notre approche en
trois étapes : surligner, normaliser et composer. Nous proposons d’abord plusieurs méthodes
pour surligner des entités simples, notamment lorsqu’elles se chevauchent dans les textes.
Nous développons ensuite une approche multilingue à grande échelle pour les normaliser
dans plusieurs langues. Enfin, pour composer ces entités simples en entités structurées, nous
proposons une nouvelle méthode basée sur les cliques de mentions et les relations de portée.
Nous l’évaluons sur un nouveau corpus annoté de comptes rendus cliniques de mammographies.
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system like "ACR 1" meaning "Grade 1 in the BI-RADS system of the ACR". 25

APHP Assistance Publique des Hopitaux de Paris (Paris public Hospitals). 3, 76

Attention The attention mechanism is a pooling mechanism that acts on sets of elements,
where every element has a key and a value. A query is used to build an attention score
for each element by computing a similarity score with its key, and using that score to
weight the value of the element in the final pooled result. 88–91, 97, 100, 101, 107, 108

Autoregressive model An autoregressive model predicts a given output at a given step using
past predictions from the same model as inputs. 35, 43, 45, 46

Batch A subset of samples that is used to compute gradients to optimize the parameters of a
model. 36, 60, 95, 96

Batch normalization A process used to normalize the input or output of the activation
functions inside a neural network. 60

BERT Bidirectional Encoder Representations from Transformers is a transformer-based ma-
chine learning technique for natural language processing pre-training. 9, 11, 22, 37, 71,
85

BIRADS Breast Imaging Reporting and Database System score. It’s a scoring system radiolo-
gists use to describe mammogram results. 25, 29, 77

Breast quadrant A single breast can be divided into four quadrants: UO, upper inner (UI),
lower outer (LO), and lower inner (LI) by two perpendicular planes intersected at the
nipple. 25, 27, 29, 95

Clique A clique is a subset of vertices of an undirected graph such that every two distinct
vertices in the clique are connected by an edge. The clique is maximal if no new vertice
can be added to the clique without it not being a clique anymore. 5, 88, 103

CLS Classification token used in BERT to represent to full text sample. 60

Comité Scientifique et Éthique Comité Scientifique et Éthique (CSE): Scientific and Ethics
Comity. 3, 76
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Concept Unique Identifier Concept Unique Identifier (CUI) are identifiers used in the UMLS
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Conditional Random Fields Conditional Random Fields (CRFs) are a class of discriminative
probabilistic models that encode conditional dependencies between variables, like word
labels in a sentence, by exploiting local neighbourhood information. 13–15, 38–43, 91,
93, 94, 100

Convolutional Neural Network A Convolutional Neural Network (CNN) is a class of neural
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sliding windows. 9–11, 13, 22, 37, 38, 44, 46

Coreference A coreference occurs when two or more expressions in a text refer to the same
person, thing or event. 76, 81, 82, 95, 103

Cosine similarity The cosine similarity is a measure of similarity between two non-zero
vectors of an inner product space. It is defined to equal the cosine of the angle between
them, which is also the same as the inner product of the same vectors normalized to
both have length 1. 60, 64

Cross-entropy A quantification of the difference between to probability distributions (usually
a computed one and a target distribution), often as an objective to minimize to train a
neural network. 22, 42

Data augmentation A process to artificially boost the number of training samples by produc-
ing many variants of a same sample (such a splitting a document in multiple samples,
replacing some words, etc). 63, 94, 95, 101

Decoder A part of a neural network that converts internal representations to the desired
output. viii, 16, 35, 38, 39, 41, 42, 44–46, 85–87, 94

Distant supervision Distant supervision is a learning scheme in which a model is learned
given a weakly labeled training set (training data is labeled automatically based on
heuristics / rules). By contrast, conventional supervised learning uses training samples
from a gold-standard dataset. 63, 65, 66

Dropout A technique to disable a subset of hidden connections a each step in order to prevent
overfitting. 64

Embedding A categorical feature represented as a set of continuous-valued features (a point
in a high-dimensional space). 9–11, 13, 14, 22, 35–38, 42, 44–46, 51–53, 56, 59–65,
71–73, 85, 87, 93

Encoder A part of a neural network that converts a input sample to internal representations.
36, 44, 59, 60, 62, 63, 70

Ensemble A model that merges the output predictions of multiple models. 35, 43–47, 50,
104
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Epoch A full training pass over the entire dataset. 44, 64, 66

F1 F1 measure, the harmonic mean between Precision and Recall. 17, 24, 44, 63, 109

Fine-tuning The process of optimizing an already optimized model to adjust its weights to fit
a new task. 36, 37, 44–50, 52, 53, 60, 62, 71

Freezing Freezing is the process of preventing the weights of a neural network layer from
being modified during the backward pass of training: frozen weights cannot be modified.
37, 44, 45, 53, 62, 70

Gating A gating mechanism allow a neural network to combine different embeddings to
iteratively build a representation, instead of computing it from scratch. The simplest
gating mechanism is the residual mechanism that adds an "update" embedding to the
last produced embedding in a multi-layer network. 86, 97, 100

Gazeteer A gazetteer consists of a set of lists containing names of entities such as cities,
organisations, days of the week, etc. These lists are used to find occurrences of these
names in text, e.g. for the task of named entity recognition. 12

GPU Graphical Processing Unit, a hardware accelator that is intensively used for deep-learning.
64

Heuristic A simple and quickly implemented solution to a problem or a sub-problem. 12, 93,
100

Hyperparameter A value that is not directly optimized by gradient optimization, but instead
chosen manually or automatically changing its value over multiple experimennts. 44,
60, 64, 96

Inductive bias The inductive bias of a learning algorithm is the set of assumptions that the
learner uses to predict outputs of given inputs that it has not encountered. For example,
a recurrent neural network assumes that modelling texts as sequences is beneficial to
the target task, whereas a Transformer assumes that modelling them as a set is better.
101, 107

Interpretability The ability to explain or to present an ML model’s reasoning in understand-
able terms to a human. 12, 27

Logits Non normalized scores assigned to each class of a classification problem. Applying a
softmax function to a set of logits transforms it into a probability distribution. 43

Loss A measure of the error that the model makes that can be optimized. It is usually
diffentiable and optimizable by gradient descent. 22, 40, 42, 94, 95

LSTM Long Short Term Memory networks: improved recurrent neural network, introduced
by Hochreiter and Schmidhuber (1997). 10, 13, 14, 22, 36, 38, 85, 86, 101
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Machine Translation Machine Translation (MT) is a sub-field of computational linguistics
that investigates the use of software to translate text or speech from one language to
another. 65

Negative A process to only use a subset of the incorrect possible classification candidates to
optimize a classification model, instead of all the negative samples. 61

NER Named Entity Recognition, an standard NLP task that aims a automatically highlight
spans of text. 2, 4, 9, 11–17, 23, 24, 30, 33, 35, 36, 56, 83, 87, 94, 104, 106, 109, 113

NLP Natural Langage Processing. 1–5, 7–9, 14, 20, 29, 30, 113

PDF Portable Document Format. 3

Pooling Reducing a set of values to a single one, for example by taking the minimum, the
maximum or the mean. 46, 53

Precision The fraction of correctly retrieved items over all the predictions items. 17, 24, 44,
63, 66, 70

Recall The fraction of correctly retrieved items over all the target items. 17, 24, 44, 63, 70

Scope Annotations of text zones on which a named entity referred to as a "cue" applies its
meaning. ix, 5, 76, 90–94, 97, 99, 100, 103

SEP Separation token used in BERT to represent the end of a text sample part. 60

Softmax A function that rescale a set of scores to obtain a probability distribution. 45, 60–62,
65

Synset A synset is the set of synonyms that share a same concept. 59, 63

Transformer A transformer is a deep learning model that adopts the mechanism of self-
attention to iteratively refine its internal representations of the input (a sequence of text
tokens in NLP). 22, 37, 44, 46, 59, 62, 64, 70, 85

True positive A correct match between predicted item and a target item. 17, 109

UMLS The Unified Medical Language System (UMLS) is a compendium of many controlled
vocabularies in the biomedical sciences. 3, 8, 19, 20, 23, 24, 56, 57, 63–66, 70–72

Wordpiece WordPiece is a subword-based tokenization algorithm. The algorithm split sen-
tences into lists of tokens from a fixed-size vocabulary, where a word might be split into
multiple subwords or "wordpieces". 36, 37, 45, 46, 53, 59, 64, 71, 72, 85



Chapter 1

Introduction

Hospital clinical documents (e.g., hospitalization or consultation reports, nursing trans-
missions, discharge letters and prescriptions, or physicians’ letters) constitute rich sources of
information for various applications such as patient recruitment for clinical research, epidemi-
ological surveillance, medical coding, and decision support tools (Wang et al., 2018c). These
documents are primarily written in natural language, which helps to ensure completeness and
accuracy of the information, accommodate special cases, and facilitate data entry. Indeed, it
is estimated that more than 80% of hospital data are collected in the form of texts (Raghavan
et al., 2014). Unfortunately, the free text format is not easily amenable to the use of standard
computer processing programs. In contrast, structured representations increase the quality
and reuse of patient data for clinical care (including decision support), clinical audit and
research, medical coding for resource allocation, and health service planning. In health care
facilities, efforts have been made to replace manual reports with forms that ensure structured
representations. However, the descriptive needs of clinicians change over time, and it has
been shown that the "additional remarks" fields tend to contain more and more information,
reflecting a lack of flexibility in the forms (Steichen et al., 2007). Another approach, which is
the one we are interested in in this thesis, is the automatic structuring of text documents. One
of its main advantages is the possibility to modify the algorithm a posteriori without disrupting
the activity of hospital practitioners. This discipline, commonly referred to as information
extraction (IE) in natural language processing (NLP), encompasses many research areas.

Structuring Structuring is the process of transforming a free text sample into an organized
view of the information it contains. The sample text can be a single sentence, a paragraph,
an entire report, or even a patient record containing multiple reports. These structured
representations can take different forms, as illustrated in Figure 1.1. In the case of classification,
we can assign each sample a unique label from a predefined list, such as the type of report
or the gender of a patient, or a yes/no answer to a question. Multi-label classification allows
samples to be classified with multiple labels, such as the report type and a cancer risk score
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if it is a mammogram. Another kind of structure focuses on the notion of entities. Entity
recognition aims at extracting a variable number of objects from the text sample, such as the
observed lesions in a radiology report. The different entities are usually mentioned explicitly
in the text by a keyword or a keyphrase but can also be composed of several parts or be
implicit. As in classification tasks, each entity can be characterized by one or more labels.
Entity extraction has been studied for several decades and many solutions have been proposed.
The well-known Named Entity Recognition (NER) task ( 1 in Figure 1.1) corresponds to the
extraction, or tagging, of simple entity mentions with a beginning, an end and a single label.
Yet, the task of extracting overlapping mentions in documents is still under active research.
Furthermore, the extraction of more exotic entities containing multiple labels and/or parts
( 3 in Figure 1.1) is still far from being solved, despite the relevance of these entities in areas
such as clinical information extraction. In this work, we will refer to entities characterized by
multiple labels or parts as structured entities, as opposed to the classic simple named entities.
The labels themselves can be defined specifically for the task at hand or drawn from existing
databases of medical concepts. The process of mapping entities to these concepts is known as
normalization ( 2 in Figure 1.1). These databases have been built over time by the biomedical
informatics community and are rich in information: ontologies provide relations between
concepts, and terminologies provide synonyms to define these concepts and identify them
in text. In addition, their use promotes interoperability between upstream and downstream
systems through concept standardization.

Figure 1.1 Overview of different structuration objectives, with concept normalization

Supervision challenges Over the past few decades, the need for medical document analysis,
coupled with the rapid growth of health data warehouses and the increasing number of
biomedical scientific publications, has led to the development of NLP approaches in the general
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and biomedical domains. The advent of machine learning, especially deep learning, has come
with the promise of describing a task with examples from which to generalize rather than
building hand-crafted domain- and language-specific rules. These methods have gained an
immense popularity and demonstrated their superiority in a wide range of domains. However,
with the possibilities of these methods has come a ravenous appetite for annotated data:
many modern learning methods fall into the category of fully supervised learning, i.e. they
require the creation of an annotated dataset (by human experts) to allow the training of
a model that can then be applied on new data. The time cost of annotating documents
and the high annotation requirements of deep learning approaches represent a barrier to
automating information extraction. However, in many cases, there exist auxiliary medical
knowledge resources, such as terminologies, that are not in the form of annotated examples.
Efficiently injecting this knowledge into learning models is still under active research. The
annotation process itself is also far from trivial, as designing a scheme that reconciles simplicity,
expressiveness and consistency is a challenge in itself.

French clinical language processing The difficulties related NLP are numerous. Indeed,
natural language is subject to semantic and syntactic ambiguities. As any written document,
a clinical report may contain spelling mistakes, grammatical errors, or even contradictions.
In addition, the computerization of these reports and their conversion from and to PDF
can introduce artifacts that are difficult for computers to handle. Apart from these "errors,"
understanding the natural language in clinical reports requires common sense and background
medical knowledge. It is common to encounter terms that are not part of the resources provided
to the machine, despite the considerable number of synonyms in many terminologies. When
developing models, especially in the clinical domain, specific formulations such as elliptical
conjunctions and hierarchical segmentation of relationships must also be taken into account.
Despite recent improvements in natural language models, machine understanding of language,
let alone of clinical documents in French, is still far from being solved. English has many
more processing tools and terminology resources than other languages, and not all English
approaches are directly transposable to French. Moreover, although there is much work in
French on general domain texts, the biomedical domain is still lagging behind (Névéol et al.,
2018). As an example, despite being the 5th most represented language in the 2019 version
in the UMLS terminology, French has synonyms for only 3.5% of its concepts. Therefore, an
important aspect of this work is the development of methods for clinical NLP in French.

A case study In this thesis, we will address the task of structuring radiology reports (Chap-
ter 5). Solving this task involves the various research topics mentioned above. This study,
approved by the institutional review board at APHP (CSE 190022), is part of the EZMammo
project, which main objective is to optimize the clinical data-warehouse of the Assistance
Publique des Hopitaux de Paris (APHP) and validate the predictions of a deep learning imaging
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algorithm on mammograms. A preliminary task of this evaluation is to build a dataset of mam-
mograms labelled with the cancer diagnosis and the lesions found in the corresponding reports.
In the case of suspicious lesions, the radiological examination is followed by a cytological
analysis. We must then match the findings of both reports to label the original mammogram
with the definitive diagnosis. This processing entails the ability to extract medical entities
(procedures, scores, lesions) and spatial, temporal, and morphological features. Using these
extractions, we can filter and align the results between radiological images, mammography re-
ports, and anatomo-pathology reports. The target entities are composed of multiple labels and
multiple textual parts. Thus, they fall into the category of structured entities. This structured
entity extraction task involves multiple subtasks, namely named entity extraction to locate
object mentions and their characteristics, normalization to finely label them, and composition
of these mentions to construct structured entities.

1.1 Research questions

A first line of questioning arises from the problems related to structured representations.
Simple entity extraction and normalization may not be sufficient to adequately represent the
information present in a clinical report. Therefore, which structure is better suited to the
extraction of information in the clinical domain? In the case of structured entities, how
do we model a system to group the different parts of the same entity? More generally, in
the case of both simple and structured entities, what challenges are encountered when
these entities overlap, and what methods can be used to overcome them?

Our second series of questions comes from the language domain itself. Since English is
the predominant language of NLP research, can we build NLP for languages other than
English, such as French? A subsidiary question arises: when few resources are available
in languages other than English, as in the case of normalization, is it still possible to
apply learning models to these languages?

Finally, our last question comes from the requirement of annotated data in deep learning.
Since the cost of annotating medical documents is high, what techniques can be imple-
mented to train deep learning algorithms in the low-data regime?

1.2 Contributions

To answer the previous research questions, we present the following contributions related
to steps 1 , 2 and 3 in Figure 1.1. Our works on named entity recognition and structured
entity recognition introduce multiple methods to handle the extraction of overlapping entities.
In the case of simple entity recognition, we show that sequence labelling methods are better
suited for the extraction of long and ambiguously annotated entities. In the case of structured
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entities, we introduce the concept of mention cliques to compose structured overlapping
entities, as well as a new mechanism of relation prediction with mention scopes.

We also address the issue of training models in languages other than English. We evaluate
all of our models on French datasets and develop a new annotated corpus of clinical radiology
reports. We also demonstrate the benefit of training with multiple languages jointly in the
case of medical concept normalization.

Finally, in the low-data regime, we showcase multiple techniques to inject external medical
knowledge into the training of learning-based algorithms, while alleviating the need for
language or domain specific pre-processing methods. In the context of radiological entity
extraction, we show that the hybridization of a set of output constraints, a terminology and a
learning-based method enables our method to be effective with few annotated reports.

1.3 Outline

We structure our work in four main chapters and our work can be summarized by these
three verbs: tag, normalize and compose.

— The first chapter contextualizes our objectives by focusing on computer text representa-
tion, which is transversal to most NLP tasks.

— In the second chapter, we propose two methods to extract simple overlapping named
entities (tag 1 ) and evaluate our method on medical- and general-domain datasets, in
English and French.

— In the third chapter, we address the problem of normalization (normalize 2 ) of med-
ical terms in languages with low terminology coverage, and propose a normalization
algorithm using supervised or distantly supervised learning.

— In the fourth chapter, we focus on the issue of extracting structured entities (compose 3 )
in clinical reports. In particular, we design an annotation scheme and present a new
structured entity dataset of annotated clinical radiology reports. We also propose a
method to extract these structured entities and evaluate it on the dataset.

Finally, we close this thesis with several research perspectives in the last chapter.

1.4 Published work

The material presented in Chapter 3 is based on three publications, one at the 2021 AIME
conference (Wajsbürt et al., 2021b) and two as part of the TALN-DEFT challenge, dedicated to
the analysis of clinical cases in French in 2019 (Wajsbürt et al., 2020) and 2021 (Gérardin
et al., 2021). The material presented in Chapter 4 is based on a journal article in JBI (Wajsbürt
et al., 2021a). The material presented in Chapter 5 has not been published yet.
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To introduce the objectives of extraction and normalization of simple or structured entities,
we must first introduce the recent developments in computer representation of text, which
are transversal to many NLP tasks.

We will then discuss the work that has been done on simple entity extraction in texts,
and the issues that remain. This task is an essential sub-task of text processing for many
information retrieval applications, and as such constitutes a preliminary step for both the
normalization of medical entities and the composition of structured entities.

Once these simple entities have been extracted, we will address the issue of their nor-
malization, a topic that aims at improving the interoperability of systems that use these
extractions.

Finally, we will consider the specific issue of structured entities, focusing on the case of
breast imaging reports. We will make the connection between our objective and various
existing NLP tasks studied in order to better define it.

2.1 Computer representations of text

Semantic representations of text in computing have been the subject of several decades
of studies. This line of research aims at producing representations of words or characters
that are globally "useful" for downstream NLP tasks. This encompasses several topics such as
text segmentation, robustness to spelling errors or application to new contexts, domains or
languages in order to improve the generalizability and robustness of downstream NLP models.

We will focus on some aspects of these developments, which are transversal to all NLP
disciplines, and thus to the topics addressed in this thesis.

2.1.1 Textual units

In order to be processed by computers, texts must first be broken down into small units
called tokens. This splitting affects the generalizability of a system, since a never-before-
seen sample can be treated as a composition of several previously observed subsamples. For
example, if a model has learned to detect "breast cancer", and "lung melanoma", it could be
able to generalize to "breast melanoma" by splitting the phrase into words.

Words The granularity of the splitting is thus often set intuitively by splitting the sentences
word by word. This splitting also affects the outputs produced by the system. Indeed, a named
entity recognition system will not be able to predict an entity stopping in the middle of a word
if the splitting is done around the words.
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Characters It is also possible to segment the text into character n-grams. For example,
the word "melanoma" could be split into multiple sub-strings of arbitrary size "mel", "ela",
"ano", etc. Some efforts have also been made to represent the text character by character.
These systems lend themselves well to morpho-syntactically rich languages and enable the
representation of rarer words. For "breast melanoma", this segmentation would produce the
sequence "b r e a s t _ m e l a n o m a"

Subwords More recent works (Kudo, 2018; Sennrich et al., 2016; Wu et al., 2016) have
introduced sub-words as the main processing units. These segmentation techniques split words
such that every generated subword is part of a given limited vocabulary (between 30,000 and
100,000 words most of the time). They solve the problem of rare and unseen words, while
keeping a balance between the size of the vocabulary and the size of the tokenized sequence.
An example of subwords sequence would be "breast mela_ noma".

2.1.2 Terminologies and hand-engineered features

2.1.2.1 Hand-engineered features

After segmenting the text into units, each of these units is commonly mapped to a set of
features. Features can be described as numerical characteristics associated with each textual
unit, and can be integer, boolean or real.

Early NLP methods relied on word case, punctuation, presence of digits, morphological
properties such as affixes or suffixes, or Part Of Speech (POS) labeling, among others. For
example, the word "Apple" has an uppercase feature of 1, a POS verb feature of 0, and
a contains-digit feature of 0, and could therefore be represented by the vector [1, 0, 0].
Interested readers can refer to Nadeau and Sekine (2007) for a more detailled review of such
features.

2.1.2.2 Terminologies and term lists

Early NLP systems made extensive use of terminologies. These terminologies can be
described as dictionaries in which a variety of expressions are represented according to
different characteristics. The expression "breast melanoma" can thus be associated with an
identifier (ex: CUI C0346787 in the UMLS) a label (Disease) or other features useful to a
downstream system. The search for these entities in the texts was then mainly done by exact
match, or distance calculation between pieces of text and terminological entries at the word
or character level. In particular, this step was commonly part of the preprocessing stage of
early systems, rather than an objective itself. The matched entries could then either be used
as inputs to decision systems, or be converted into features for further processing of the text
sample. Other features could be derived from the word themselves.
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2.1.3 Modern input features

2.1.3.1 Word embeddings

A word embedding is a set of real features associated to a word and computed by ma-
chine learning on a set of tasks. This term is also used to denote embeddings of sub-words
embeddings when a different tokenization algorithm is used, as mentioned in Section 2.1.1.
Word embeddings were introduced to the NLP community by Collobert and Weston (2008)
and have become the de facto standard for analyzing text with machine learning. It is not
clear what the exact meaning of any of these features is, but it is commonly assumed that
they capture the implicit semantics of words. Word embeddings can be learned from scratch,
or computed from morphological features using character embeddings for instance (Akbik
et al., 2018; Bojanowski et al., 2017; El Boukkouri et al., 2020; Klein et al., 2003; Peters et al.,
2018).

This term is typically used in the context of neural networks. However, in modern NLP
systems, it is often not clear which part of a model is responsible of text representation and
which one is responsible for the specific task that is being addressed. We will assume that
a word embedding refer to any representation that we can map to the original tokenized
sequence. A model can therefore produce multiple word embeddings for the same word, for
example by focusing on different characteristics. For instance, in the BERT model, the multiple
embeddings are assumed to represent increasingly refined versions of the initial embedding
and some studies have shown that word embeddings of lower layers in a language model
encode more local syntax while higher layers capture more complex semantics (Tenney et al.,
2019).

These features are then combined through a set of operations that compose the different
layers of a neural network. An exhaustive review of the different types of layers is beyond the
scope of this thesis but we will list a few standard components of these systems. Most of these
transformations are built upon feed forward networks that allow non-linear transformations
in the feature space.

2.1.3.2 Convolutional neural networks

Convolutional neural networks (Krizhevsky et al., 2012) operate as transformations on
small sliding windows of words (or images). They are best suited for local pattern detection.
They have been used for text classification (Kim, 2014), NER (Collobert et al., 2011), normal-
ization (Li et al., 2017; Limsopatham and Collier, 2016), as well as character-level pattern
extraction (Klein et al., 2003).
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2.1.3.3 Recurrent neural networks

Recurrent neural networks, in particular Long Short Term Memory networks (LSTM)
(Hochreiter and Schmidhuber, 1997), work as continuous state machines that process each
word of a text successively by updating an internal memory. The LSTM cell uses a forget gate
and an input gate to store, retrieve and overwrite a memory state which allows it to better
"remember" the previously processed tokens on longer ranges. There also exists other variants
like Gated Recurrent Units (Dey and Salemt, 2017). These networks are generally slower than
CNNs but are well suited to sequences and the detection of patterns involving a particular
ordering of words or interactions over a longer distance.

2.1.3.4 Attention

The attention mecanism (Bahdanau et al., 2017; Vaswani et al., 2017) operates as a fuzzy
search mechanism in a list of embeddings. Each word in the text computes two "key" and
"value" vectors, and a "query" can be performed by computing a weighted sum of the word
values and a similarity score between their key and the query vector. This mechanism is useful
for modelling long-distance interactions, or for samples without a specific order (like graphs)
and is nowadays at the core of many deep learning models.

2.1.4 Pretrained representations

The idea of learning textual representations before specializing them on a specific task
has acquired a considerable popularity since the last decade. These representations have in
common that they are the result of optimizations of a representation model on large corpora
of texts. However, they differ in the architecture of the pre-trained models, the granularity of
the textual units and the learning objectives of the pre-training.

2.1.4.1 Static word embeddings

Training the input word embeddings through auxiliary tasks such as language modelling
has been a crucial step to enable their use in neural networks (Collobert and Weston, 2008;
Collobert et al., 2011; Mikolov et al., 2013; Turian et al., 2010). The specific pre-training task
of language modelling on a large corpus was introduced as Word2Vec by Mikolov et al. (2013),
followed by GLOVE (Pennington et al., 2014). The language modelling objective builds on the
idea that "a word is characterized by the company it keeps" (Firth, 1957; Harris, 1954). This
was pinned as the distributional Hypothesis by (Sahlgren, 2008) and more thoroughly studied
as distributional semantics (Baroni and Lenci, 2010; Turney and Pantel, 2010). Other variants
such as FastText (Bojanowski et al., 2017) build their word representations from character
n-grams and have become a popular solution for representing previously unseen words.
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However, these embeddings do not take into account the context of the word when used
in a new sentence. This can severely limit their usefulness in some cases, such as representing
homonyms (does "bear" refer to the animal or the verb?), or referent words like pronouns.

2.1.4.2 Contextualized word embeddings

The ELMO contextualized word embeddings (Peters et al., 2018) improved static word
embeddings by pretraining a full deep recurrent language model and using the hidden
representations as features for downstream tasks. It was followed by the BERT model (Devlin
et al., 2019) with the masked language modelling objective. Many variants have since been
designed, either modifying the model and its training (Clark et al., 2020; Dong et al., 2019;
Kong et al., 2020; Liu et al., 2019; Yang et al., 2019), or the pre-training corpus domain (Beltagy
et al., 2020a; Lee et al., 2020; Martin et al., 2020; Ruder et al., 2019). A comprehensive
review of this research field can be found in Qiu et al. (2020). It is worth mentioning that
the HuggingFace library (Wolf et al., 2020) contributed to the popularity of these models by
simplifying their implementation and sharing.

2.1.5 Large language models

Recently, a paradigm shift has been brought by deep autoregressive language models.
Several information extraction tasks can in some cases be written in text format through a
question and an expected answer. The answer can then be binary, multiple choices or open.
For example, a classification task sample could be represented as "Is the following text about
NLP? Image classification has known many successes since CNNs. Answer: no". Similarly, a
NER task sample could be written as "Extract the different locations mentioned in this text: I
moved to London in 2000 before returning to Paris a year later. Answer: London, Paris". It has
been shown that language models pre-trained on large amounts of text can correctly complete
these questions with the most likely answers (Lewis et al., 2020; Radford et al., 2018, 2020;
Raffel et al., 2019), sometimes with relatively few task-specific examples (Brown et al., 2020).
Thus, the entire pre-trained model serves as a common backbone for various tasks, without
the necessity of redesigning a specific architecture for each. Although these models hold much
hope and promise, their enormous size, the biases associated with their training, and the
potential abuses surrounding their use raise many ethical questions (Bender et al., 2021).

2.2 Named entity recognition

The term "named entity" emerged during the MUC program in the early 1990s. Formally, a
named entity is characterized by a textual beginning and end, and a possible type. While earlier
efforts focused mainly on entities in the form of noun phrases, the task of entity recognition
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has evolved and now aims at extracting any entities, sometimes long and comprising several
noun phrases or verbs. This task constitutes a cornerstone of information extraction tasks, as
it allows the decomposition of a text into semantic units that can be more easily processed by
a computer, and interpreted by a human (Ehrmann, 2008).

To a lesser extent, variants of the task also allow disjoint entities (with gaps) and have
been addressed by several works but we will not focus on this case in this section.

A notable difference between the different NER methods is their ability to extract over-
lapping entities. The overlapping NER problem is commonly referred to as "nested NER" or
"overlapping NER". In contrast, the non-overlapping NER problem is referred to as "flat NER".
The overlapping entities may be of different types, suggesting the use of several specialized
models for each type. However, they can also be of the same type, which makes their extraction
more difficult.

2.2.1 Proposed methods

2.2.1.1 Earlier works

The first published work that addressed the task of detecting entities in a text was the one
of Rau (1990). The first NER systems relied heavily on handcrafted rules and various heuristics.
As described in Section 2.1.2.1, these rules and heuristics used lexical functions, gazetteer
lists, POS labels, and other handcrafted features. To address the ambiguity of the language
and the need for annotation for similar terms, multiple methods performed an augmentation
of the initially annotated data by building a set of context from their entities and building a set
of candidate entities from their context. These gathered entities and contexts are turned into a
set of heuristics and handcrafted rules to allow generalization. Brin (1999) applies lexical rules
to detect movie names in websites and complete the initial rules. Collins and Singer (1999)
gather entities rules and context rules iteratively to recognize general domain entities, starting
with a set of entities rules. Riloff and Jones (1999) apply Mutual Bootstraping and perform
these steps automatically, starting from a set of candidates. The formal work of Lin (1998) on
language distributionality is used by Paşca et al. (2006) to produce a set of similar words to
further augment the entity rules and context rules. Alfonseca and Manandhar (2002) use the
WordNet graph (Miller et al., 1990) to define seeds by listing the most frequent co-occurrences
between the nodes and the target entity class. They subsequently use the graph children
to generate candidates entities. Etzioni et al. (2005) use web queries similarity defined as
Pointwise Mutual Information and Information Retrieval (PMI-IR) by Turney (2001) to define
the similarity between candidates and contexts.
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2.2.1.2 Sequence labelling systems

Ramshaw and Marcus (1999) have formally cast the NER task as a word classification
problem. Until recently, most machine learning systems have approached the problem using
this formulation. In sequence labelling NER, each word is assigned a single tag (or label)
describing its relative position in an noun phrase and the produced tag sequence can be parsed
to recover noun phrase entities. The first tag schemes were IOB or IOE variants in which each
word is classified as being (I)nside an entity, (O)utside an entity, at the (B)eginning of an
entity or at the (E)nd of an entity. When dealing with multiple entity types, these scheme
use specific tags for each entity. The (O)utside tag is shared and represent the absence of
any entity of any type at a given position. The IBES tags are declined as I-A, B-A, E-A, S-A
where A refers to a given entity type. This prevent the system from producing multiple non O
tags at a given position, and therefore impose the flatness of the produced solution. Ratinov
and Roth (2009) further study the BIOUL (or equivalently IOBES) tag scheme and find that it
obtains the best performance of the CoNLL dataset. This scheme encodes the end of entities
and single words entities with specific tags E and S 1.

Supervised methods such as Random Forest and chain graphs became an topic of growing
interest in NER since 1997. These models were often given a list of handcrafted features about
each word of a sequence, and learned to predict if a word was part of an entity as well as
the entity type: Hidden Markov Models (HMM) (Bikel et al., 1997), Decision Trees (Sekine,
1998), Maximum Entropy Models (ME) (Borthwick et al., 1998), Support Vector Machines
(SVM) (Asahara and Matsumoto, 2003), and linear chain Conditional Random Fields (CRF)
(McCallum and Li, 2003). The latter model was introduced by Lafferty et al. (2001) and is
still used as a building block of modern systems. Deep neural networks were introduced to
the NER task by Collobert and Weston (2008), as they developed a deep neural network to
jointly learn NER and other tasks such as language modelling. Since then, sequence labeling
NER systems have essentially evolved with advances in deep learning representations. Huang
et al. (2015) incorporated LSTMs in the design of their system. Klein et al. (2003) proposed a
character CNN encoding of the words. Lample et al. (2016) improved their system in various
ways and propsosed a LSTM based character word embedding. As Devlin et al. (2019); Peters
et al. (2018) proposed contextualized embeddings, they improved the performance of NER
systems significantly as a result. However, these systems only focused on flat NER.

2.2.1.3 Nested NER via iterative sequence labelling

The GENIA corpus (Kim et al., 2003) led to the first work focusing on nested NER (Gu,
2006; Shen et al., 2003; Zhang et al., 2004; Zhou et al., 2004; Zhou, 2006), mainly involving
focusing on either the outermost or innermost entities in a sentence, or specific entity types.

1. The (E)nd tag is also commonly referred as the (L)ast tag, and (S)ingle tag as (U)nary tag, hence the BIOUL
scheme.
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Since 2018, nested named entity recognition has been the subject of renewed attention in the
biomedical NLP community, leading to many different approaches.

Alex et al. (2007) study multiple problem transformations to frame the nested NER task
as cascaded flat NER tasks, each focusing on either a specific nesting level, or a specific
label. However, their approach did not model overlapping entities of the same type. Ju et al.
(2018) designs a layered architecture that predicts entities at each layer and merges the
word representations before applying the next layer. Fisher and Vlachos (2019) uses a fixed
number of layers and updates spans representations using a novel neural architecture. Shibuya
and Hovy (2020) compute tag scores for each word and decode the spans by applying the
Viterbi algorithm multiple times on a previously extracted subsequence, starting from the full
sentence.

2.2.1.4 Nested NER via non linear tag sequences

Another approach is to create a hypergraph of the words in the sentence, such that it
captures the structure of the overlapping entities. Finkel and Manning (2009) model the
nested NER task as a constituency parsing graph extraction. Their approach could extract
nested entities of the same type, at the cost of expensive computations and the need for
Part-of-Speech (POS) features. Some methods model the span detection with hypergraphs
to account for the non-linear structure of the tag sequences. Lu and Roth (2015) design a
CRF hyper-graph with various node types to model entity types and boundaries. However,
cycles in the graphs of some samples required that the CRF normalization term had to be
approximated, leading to a decreased performance (Muis and Lu, 2017). Muis and Lu (2017)
model the mention edges and transitions instead of solely modeling token tags. Their method,
however, requires multiple graphs when there are more than one entity type. Alternatively,
Katiyar and Cardie (2018) only model mention tags and not their transitions, but allows a
multi-label prediction for each token. They modify an LSTM layer to represent multiple tags
for a single word and perform decoding during the recurrent neural network execution.

2.2.1.5 Exhaustive NER systems

Another class of methods addresses the problem by enumerating all possible spans of the
input sequence and classify each one with its label, including a "no entity" class. Sohrab
and Miwa (2018) compute a representation for each span from its word embeddings and
classify each entity. Xu et al. (2017) propose a similar model but consider the left and right
context when classifying the spans. Wang et al. (2020) use an LSTM cell (Hochreiter and
Schmidhuber, 1997) to model dependencies between spans that differ by one token. Zheng
et al. (2019) first filters candidate mentions by predicting all possible start and end tokens
and then predicting a label for every mention that starts or end at one of the boundaries. Luan
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et al. (2019) also enumerate and classify spans but allow them to communicate through a
graph attention mechanism.

2.2.1.6 Recent works

There are several other formulations of the NER task that do not involve sequence labelling
or exhaustive enumeration of entities. Tan et al. (2021) redefine the task as a sequence-to-set
problem and use a fixed number of entity slots where each slot fills in its start position, end
position and label, or is classified as empty. Their method allows the prediction of any type
of overlapping entities. Li et al. (2020); Mengge et al. (2020) conceptualize the problem
as a machine reading comprehension task. In their work, a pre-trained language model is
prompted with a query such as "Find the organizations in this sentence: ", followed by the
sentence. The start and end boundaries of the relevant entities are then extracted by classifying
each representation in the sequence. Combined with transfer learning, these methods show
promising results in predicting new entities types without having to annotate these types.
De Cao et al. (2020) use a pretrained deep language model to rewrite the input sequence
with markup tags indicating the beginning, end and label of the entities. However, they do not
adapt their method to overlapping entities. Finally, Yan et al. (2021) propose the combination
of the BART (Lewis et al., 2020) Seq2Seq model with a pointer mechanism to extract flat,
nested and overlapping entities.

2.2.2 A word about object detection

The field of research aiming at segmenting and labeling objects in images has developed in
parallel with the research on entity recognition in texts. It is hard not to see some similarities
between these two tasks. An exhaustive review of the proposed systems is beyond the scope
of this thesis, but we will quickly describe the convergences between these domains. Readers
interested in object detection can refer to Guo et al. (2018); Zhao et al. (2019).

Image object segmentation aims at classifying the pixels of an image according to different
types, and thus at reconstructing the objects from the labels associated with the image. Some
earlier works of object segmentation were based on the notion of superpixels (Felzenszwalb and
Huttenlocher, 2004), and the classification of each superpixel according to a label. Although
it is much more complex, the initial superpixels segmentation is akin to the initial tokenization
step in word processing, which consists of breaking down the sample to be processed into
simpler units. Each superpixel is then represented by several features such as its size, color
or relative position in the image, and then labeled by models such as HMM, CRF in order to
take advantage of local interactions between the labels (a piece of grass is likely to be close to
another piece of grass).

Another similar task aims at predicting the bounding box of different features in an image.
An analogy to NER would be to think of the begin-end span as the bounding box of an entity.
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Most models perform prediction in two steps: a first selection of possible regions of interest of
an entity is performed, and then for each candidate a second model labels whether the entity
is.

Some NER works have drawn inspiration from advances in object detection: Li (2021)
employ a two-stage decoder similar to Ren et al. (2015). They extracts region proposals and
classify each region to either obtain a label or to choose not to predict it. The work of Tan
et al. (2021) builds on the system of Carion et al. (2020) to transform the problem into a
sequence-to-set prediction.

2.2.3 Annotated corpora

There are many NER corpora that vary according to different aspects such as the domain,
the language, the overlap of the entities, their size or their type. We will use the GENIA (Kim
et al., 2003), DEFT (Cardon et al., 2020) and CONLL 2003 (English) (Sang and De Meulder,
2003) datasets for the experiments in this thesis. Statistics about these datasets can be found
in Table 2.1

2.2.3.1 DEFT

The DEFT corpus contains 167 texts describing french clinical cases, including 67 for
testing. The different types of entities are, on the one hand, pathologies and signs or symptoms
(DEFT task 3.1), and on the other hand, anatomy, anatomy examinations, substances, doses,
administration methods, treatments (surgical or medical), values, time (DEFT task 3.2). Named
entities can nest up to 3 levels deep and two distinct entities of the same type can overlap. We
used the provided train and test splits.

2.2.3.2 GENIA

The GENIA corpus contains 2000 MEDLINE abstracts, or 18546 sentences, including 1855
for testing. The annotations focus on transcription factors in human blood cells, and were
named entities. Most evaluations follow Finkel and Manning (2009) and Lu and Roth (2015)
and collapse all DNA subtypes into DNA, RNA subtypes into RNA, all protein subtypes into
protein and kept cell line and cell type. Named entities can nest up to 4 levels and two distinct
entities of the same type can overlap. We perform splits following Finkel and Manning (2009):
the last 10% of the sentences are used to test the model, the remaining 90% are the training
set.

2.2.3.3 CONLL 2003

The shared task of CoNLL-2003 concerns general domain NER in four languages: English,
German, Dutch and Spanish. It annotates four types of named entities: persons, locations,
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organizations and names of miscellaneous entities that do not belong to the previous three
groups. The English data were taken from Reuters news articles published between August
1996 and August 1997. It contains 1393 articles, or 22,137 sentences, including 216 articles for
development and 231 for testing. There are no overlapping entities in this dataset. Although
this corpus does not contain biomedical nor nested entities, it is a classical open comparison
point with other NER models.

2.2.4 Evaluation metrics

2.2.4.1 Precision and recall

The information retrieval systems are classically evaluated using three metrics: precision,
recall and F1 measure.

precision =
number of true positives

number of predicted entities
(2.1)

recall = number of true positives
number of gold entities

(2.2)

f1 =
2

1
precision + 1

recall
(2.3)

A system with a good recall but a low precision might be useful as a pre-filtering step of a
larger sequential model. A system with a worse recall but a better precision might be useful
when combined in parallel with other models.

2.2.4.2 What counts as a true positive ?

The outputs of a NER systems are triplets (begin, end, label). A common choice is to apply
the precision, recall and F1-score measure metric on these triplets directly.

There are multiple options for what should be considered a correct prediction, or "true
positive". The most common one is the "exact match" criteria: a predicted entity must share the
exact same bounds and label as a gold entity to be counted as a true positive. Another useful
criteria is the "approximate match" criteria: a predicted entity must share a certain fraction
of words in common with a gold entity. Indeed, even when the bounds are not perfectly
predicted, such as determinants, an entity might have enough words in common with a target
entity to still be useful in downstream tasks.

We synthesize all the possible metrics with α, the minimum Dice coefficient between the
words of the entities, or intuitively the fraction of words that two entities must have in common
to be matched. In our experiments, we will use the "Exact" match metric, with α = 1 (bounds
must batch exactly), the "Half" match metric with α = 0.5 (the number of correct words
must be at least half the number of words in the target and predicted entity) and the "Any"
match metric with α = ϵ+ > 0 (the target and predicted entity must have at least one word
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DEFT 3.1 DEFT 3.2 GENIA CONLL EN 2003
train test train test train val test train val test

Language FR FR EN EN
Domain Clinical Clinical Biomedical General
# docs 100 67 100 67 1599 190 213 946 216 231
# entities 5677 2167 1445 46185 4379 5515 23499 5942 5648
avg length 1.94 2.03 4.55 4.74 1.90 2.11 2.05 1.45 1.45 1.44
# unique labels 8 8 2 2 5 5 5 4 4 4
# unique texts 3449 2179 1878 1320 15441 2141 2681 8082 2809 2637
# nestings 475 422 14 4 4524 436 658 0 0 0
# same label nestings 8 2 2 1 2430 234 331 0 0 0
# crossing overlaps 1 0 0 0 0 0 0 0 0 0
# same label crossing 0 0 0 0 0 0 0 0 0 0
# superpositions 0 1 0 0 43 12 9 0 0 0

Table 2.1 Main statistics of the named entity recognition datasets used in this thesis
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in common). Finally, a gold entity should not be matched twice, nor should a predicted entity,
so we need a procedure to perform matching iteratively.

2.3 Medical entities normalization

Entity normalization (also called entity disambiguation, or entity linking) allows named
entities to be linked to concept identifiers. The primary objective of this task is to represent key
entities in a text (people, places, diseases, anatomical locations, etc.) by unique references,
independent of variations in the form of these entities. This standardization improves the
interoperability of the data and of the systems built to process these references.

The normalization problem is better known in the general domain as entity linking (Sevgili
et al., 2020; Shen et al., 2015), but differs by the fact that the general domain annotated
corpora can leverage larger annotated corpora such as Wikipedia. These make it possible to
perform a single supervised training and rely on entity frequencies. However, in most cases,
medical terminologies do not provide context nor accurate medical concept frequencies. As
such, we will not cover entity linking in the general domain but rather the research done in
the clinical and biomedical domain.

2.3.1 Terminologies

Concepts can be described by definitions, or most often a set of lexical variants called
synonyms. These concept-synonym associations are collected in terminologies, which act as
dictionaries and serve as bridges between medical document annotations and knowledge
intensive applications. Terminologies can also be described as "oriented artifacts that relate the
various senses or meanings of linguistic entities with each other" (Freitas et al., 2009). Theses
terminologies can additionally provide semantic information about hyperonymy (broader
meaning), hyponymy (narrower meaning).

Many terminologies have been designed to normalize entities in various domains such as
diseases (Bramer, 1988; Organization, 1978), genes (Ashburner et al., 2000) or general medi-
cal concepts (Lipscomb, 2000; Spackman et al., 1997) to name a few. Some unification efforts
have been made to merge these different terminologies together and provide a unique and
large resource for the bioinformatic community. Among them, the Unified Medical Language
System (Bodenreider, 2004) is the most noteworthy. Therefore, most target vocabularies
can nowadays be referred to as subsets of the UMLS. We will use the UMLS and Mantra
terminologies to evaluate our normalization models, so we will describe them now.

2.3.1.1 UMLS

The Unified Medical Language System (UMLS) is a large terminology that unifies concepts
from several dozen terminologies in the biomedical domain. Each concept in the UMLS is
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assigned a Concept Unique Identifier (CUI), a set of terms (or synonyms), possibly in multiple
languages, and a semantic type. UMLS semantic types are grouped in 15 semantic groups
and each concept is associated with one semantic group, with very few exceptions (McCray
et al., 2001). For example, "Eicosapentanoic acid" (concept C0000545) is in the chemical
(CHEM) group, while "Accountant" (concept C0000937) is in the living beings (LIVB) group.
The UMLS 2014AB version contained 5,772,518 synonyms for 2,528,878 concepts, while the
2019AB version contained 9,187,793 synonyms for 4,258,236 concepts.

2.3.1.2 Mantra

The Mantra terminology was developed at the same time as the MantraGSC dataset
(Kors et al., 2015) and contains a subset of the UMLS, consisting of all concepts from three
terminologies: MeSH, SNOMED-CT, and the Medical Dictionary for Regulatory Activities
(MedDRA). There are 3,164,910 synonyms for 591,918 concepts in five languages (English,
Spanish, French, German and Dutch). The concepts were filtrered to only keep those that
belong to one of the ten semantic groups Anatomy, Chemicals and drugs, Devices, Disorders,
Geographic areas, Living beings, Objects, Phenomena, Physiology, and Procedures.

2.3.1.3 Non English terminologies

The UMLS terms are mostly in English. For all other languages, such as Japanese, Dutch
or French, the number of terms was less than 5% of what is available for English in 2014.
French is the 2nd (resp. 5th) most represented language in the 2014 (resp. 2019) version
in the UMLS, but only 3.5% (resp. 3.6%) of the concepts have terms in French. Efforts have
been made to improve this coverage by manual or automatic translation, or by mapping local
terminologies, leading to more complete resources out of the official UMLS (Deléger et al.,
2010; Grosjean et al., 2011; Marko et al., 2006; Névéol et al., 2014; Zweigenbaum et al.,
2003). However, the gap is still significant, and this represents a real pitfall for the NLP systems
in French, and more generally, in all languages other than English (Névéol et al., 2018).

2.3.1.4 Ontologies

Terminologies often complement ontologies. Ontologies express the semantic relations
between different concepts through description logics. They allow decision systems to reason
about individuals and their attributes, classes or relationships. The commonly accepted defini-
tion is that of Gruber (1993) "An ontology is an explicit specification of a conceptualization.
[...] A conceptualization is an abstract, simplified view of the world that we wish to represent
for some purpose".

Reasoning from facts defined in ontologies can be done by different reasoners like Protege
(Musen and Team, 2015), using first-order formal logics. Reasoners and machine learning
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techniques are not exclusive. Efforts to integrate propositional logics into machine learning
models have beenmade to improve predictions (Deng et al., 2014), andMarkov Logic Networks
have proven successful in making first-order logic reasoning more flexible (Domingos and
Lowd, 2009).

2.3.2 Proposed methods

2.3.2.1 Earlier works

Many earlier works are rule-based methods. These methods revolve around matching the
entity to be normalized with one of the entries in the target dictionary, by comparing the form
of the entities using a set of handcrafted rules, and make use of several common techniques.

A popular technique consists in expanding the lexical forms taken by a given entity or
synonym (Aubin and Hamon, 2006; D’Souza and Ng, 2015; Golik et al., 2013; Hanisch
et al., 2005; Jonnagaddala et al., 2016; Schuemie et al., 2007). For example, a disease with
many terms can be transformed into an acronym. Nouns can be made plural, or singular,
or lemmatized, i.e. stripped of any grammatical variation as in Schuemie et al. (2007). For
example, "painful" can be converted to "pain". These term augmentations can be applied on
both entities and dictionary synonyms. There has also been efforts toward automatizing these
term augmentations (Ghiasvand and Kate, 2014; Tsuruoka et al., 2007).

Another common technique consists in combining different synonyms from the same or
other terminologies to augment the target terminology (Aronson, 2001; Aubin and Hamon,
2006; Hanisch et al., 2005; Jonnagaddala et al., 2016; Kuo et al., 2009). For exemple, the
word "eye" can be replaced by "occular" in many synonyms.

Once the entities and dictionary entries have been expanded, the matching step occurs.
An entity and a synonym can be matched if they have the same form or only differ by a few
words or characters. For example, the MetaMap system (Aronson, 2001) allows a synonym to
become a candidate if is within a character distance of two of the entity. In the case where
several synonyms can be matched to the entity, several filtering decisions can be made, based
for example on the confirmed presence of one of the entities in the document as in D’Souza
and Ng (2015); Hanisch et al. (2005) or other features such as the reliability of the entry
source (Lee et al., 2015), or the semantic group of the annotated entity. These filtering steps
can be cascaded until only one candidate is left as in the work of D’Souza and Ng (2015).

2.3.2.2 Machine learning approaches

Although many rules are still used in modern normalization systems, machine learning
approaches have become increasingly important in the design of these models. Most of the
proposed solutions generate a set of candidate synonyms (synonyms or concepts), and rank
these candidates using a scoring model.
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To represent entities and synonyms, some previous systems relied on TFIDF-like approaches
at the word level (Leaman et al., 2013; Leaman and Lu, 2016) or by taking a larger number
of textual features (Castano et al., 2016). Simple word embedding sum approaches have been
used successfully (Castano et al., 2016). Other recent systems use LSTMs (Liu and Xu, 2018;
Phan et al., 2020; Tutubalina et al., 2018), CNNs (Arbabi et al., 2019; Deng et al., 2019; Li
et al., 2016; Luo et al., 2018; Mondal et al., 2019), or BERT-like pre-trained Transformers
(Ji et al., 2020; Sung et al., 2020). The comparison between the produced representations is
often either computed from their a scalar product, cosine similarity or the Euclidean distance.

The proposed approaches fall into two categories: learning can be carried out on the
similarity between the entity to be normalized and the synonyms in the dictionary, or on the
similarity between the entity and the concepts directly.

Synonym similarity methods The training objective of systems comparing entities and
synonyms is not trivial. Indeed, multiple correct synonyms may exist for a given entity, and a
multi-class classification style approach accepting only one solution is not appropriate. Most
systems therefore rely on a ranking mechanism such as pair-wise learning to rank (PLTR)
(Huang et al., 2011; Leaman et al., 2013; Liu and Xu, 2018) in which a correct synonym
should be given a higher score than a wrong one. Similarly, Mondal et al. (2019) use Triplet
Networks (Hoffer and Ailon, 2015) to rank candidate synonyms and Fakhraei et al. (2020)
uses Siamese Networks combined with contrastive loss. Tutubalina et al. (2018) propose
a method consisting in keeping only the highest similarity score among the synonyms of a
concept, and training the model with the cross-entropy classification loss. Finally, Sung et al.
(2020) propose to marginalize the positive synonyms, i.e. by maximizing the sum of the
probabilities of the correct candidates using a cross-entropy classification loss.

Concept similarity methods Methods in the second category compare entities and concept
representations. It is then necessary to generate a representation for each concept, which can
be done in a more or less explicit fashion. Tutubalina et al. (2018) suggests representing a
concept as a concatenation of its synonyms, then performing a standard classification. Wright
et al. (2019) obtains concept embeddings through simple optimization of a classification
objective. Hierarchical links between concepts have also been used to improve concept
representations (Arbabi et al., 2019; Ferré et al., 2019, 2017). Finally, some efforts toward
learning the interactions of concepts in a given sentence have been made by Wright et al.
(2019).

However, these learning methods were only evaluated on medium sized terminologies
containing between 2000 and 160000 concepts, and to our knowledge no machine learning
only method has been applied on larger terminologies.



2.3 Medical entities normalization 23

2.3.2.3 Non English approaches

The normalization of medical entities in languages other than English has so far relied
mainly on the translation of English synonyms into the target language (Afzal et al., 2015;
Cabot et al., 2016), or conversely, the translation of entities into English (Chiaramello et al.,
2016; Perez et al., 2020; Roller et al., 2018). These systems use processing existing rule based
indexers like MetaMap (Aronson, 2001) to perform the synonym search, and web-service
or local based translation systems (Jiang et al., 2015). In constrast, we chose to design and
evaluate an auto-sufficient deep neural network classifier with few to no preprocessing of the
input named entities.

2.3.3 A word about person identification

Similarly to how some analogies can be drawn between NER and object detection in
images, medical entity normalization can be related to person identification. Indeed, person
identification (or face identification) is similar to medical normalization in terms of the very
large number of target identities (concepts) and the small number of examples (synonyms)
per identity.

Another similarity is the two types of approaches, aimed at either comparing pictures
to each other (synonym similarity) (Hermans et al., 2017), or the sample picture and a
representation of the person’s identity (concept similarity) (Zhai et al., 2019). It is worth
noting that since images are less amenable to rule-based processing, these methods cannot
benefit from pre-filtering as commonly used in normalization and therefore rely essentially on
machine learning models.

For instance, Mondal et al. (2019) used the same triplet networks architecture as Hoffer
and Ailon (2015) to learn a distance between the entity (image sample) and possible synonyms
(reference images) to match.

2.3.4 Annotated corpora

There exists multiple datasets in medical English and other languages that normalize
different types of entities using different terminologies (Dogan and Lu, 2012; Kors et al., 2015;
Li et al., 2016). We review the Quaero and Mantra corpus that have been used to evaluate
the method proposed in Chapter 4.

Quaero The Quaero FrenchMed corpus (Névéol et al., 2014) consists of two sets of textual
documents in French, annotated with concept CUIs from the 2014AB version of the UMLS:

— Titles of research articles indexed in the MEDLINE database
— Information on marketed drugs from the European Medicines Agency (EMEA)
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Unlike other normalization corpora such as NCBI Doǧan et al. (2014) or BC5CDR Li et al.
(2016), the annotated concepts were not limited to vocabularies such as MeSH or MEDIC.
However, they were limited to 10 of the 15 UMLS semantic groups. There are two different
versions of these corpora. The first version, that we call EMEA 2015 and Medline 2015,
was used for the CLEF eHealth evaluation lab in 2015, a challenge for NER and concept
normalization. The organizers proposed a training set and a test set for this task. In 2016, a
new challenge was organized; the 2015 test set was released as a development set, and a new
test set was annotated, leading to a larger corpus containing the previous one.

Mantra The Mantra corpus (Kors et al., 2015) consists of 1450 sentences, annotated with
concepts from the Mantra terminology. The annotated documents are in English, Spanish,
French, German and Dutch, and consists of

— Titles of research articles indexed in the MEDLINE database
— Information on marketed drugs from the European Medicines Agency (EMEA)
— EPO patents

Many of the texts are translations from each others, so the corpus actually contains 550 unique
sentences regardless of the language. Unlike the Quaero corpus, entities were not annotated
with their semantic group. Most importantly, there are no training documents as the corpus
only contains evaluation samples.

2.3.5 Evaluation metrics

The normalization tasks is commonly evaluated using the standard retrieval metrics,
namely precision, recall and F1-score, at the entity level. Some studies (Leaman et al., 2013)
also evaluate the performance of the normalization system at the document level: the predicted
concepts for all entities are aggregated and evaluated by precision/recall/F1-score for each
document, and the resulting scores are finally averaged for all documents to obtain the
performance at the corpus level.

These two metrics can be identified by the prefix "micro-averaging" for the entity-level
evaluation, and "macro-averaging" for the document-level evaluation. Micro-averaging treats
every entity as a unit, regardless of the length of the document in which it occurs. In this
work, we will only evaluate our methods using the micro-averaging metrics.
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2.4 Structured entities extraction

We define here structured entities as pieces of related information composed of several
fields. Each of the fields should, when possible, be justified by a textual mention in order
to ensure the transparency of the model and to allow the traceability of predictions in the
original document. As we will see, the extraction of information from breast imaging reports
lends itself well to this concept. In the rest of this section, we will mostly focus on radiological
entities, and relate our task to existing information extraction tasks.

2.4.1 Breast imaging reports: a case study

Breast imaging reports consist of unstructured text written or dictated by a physician. The
reports contain multiple measurements, observations, and remarks regarding the patient’s
condition, including history, potential lesions and their progression, diagnostic procedures
performed, such as mammography or ultrasound, and an assessment of the need for further
testing in case of suspicious findings. Figure 2.1 shows the English translation of a fictitious
but plausible report.

2.4.1.1 Entities

As in other radiology disciplines, the American College of Radiography (ACR) has proposed
a set of guidelines to facilitate research and clinical follow-up of patients. The ACR BIRADS
(Liberman and Menell, 2002) proposes a standardized lexicon and classification system for
breast mammography, ultrasound and MRI. It also recommends a certain organization of
reports and the structure of the evaluation. This set of guidelines allows radiologists to
communicate results to the referring physician in a clear and consistent manner.

The reported lesions can be described with multiple attributes such as:

— their shape, density and margin
— their laterality: left or right breast
— their relative position in the breast, by a quadrant
— their clock position, e.g. "8 o’clock position"
— a size, indicating either their diameter or their volume (3 dimensions)
— their radial distance to the center of the breast
— the temporality of these lesions, that is their observation was made before or during the

exam

The final evaluation grade (or also BIRADS assessment or ACR) ranges from 0 to 6:

— Category 0: incomplete exam
— Category 1: negative
— Category 2: benign
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Figure 2.1 Fictitious but plausible mammogram report

— Category 3: probably benign
— Category 4: suspicious mammogram and ultrasound
— Category 4A: low suspicion of malignancy
— Category 4B: Moderate suspicion of malignancy
— Category 4C: strong suspicion of malignancy
— Category 5: strong suspicion of malignancy
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— Category 6: known malignancy confirmed by biopsy

The composition of the breast is graded from 1 to 4 according to the percentage of glandular
tissue in the breast:

— type 1: the breast is almost entirely fatty
— type 2: there are scattered areas of fibroglandular density
— type 3: the breasts have a heterogeneous density, which can mask small masses
— type 4: the breasts are extremely dense (homogeneous density).

There are also references to diagnostic or therapeutic procedures, which can be past, future
or at the time of the visit. These procedures can be characterized by:

— their type: mammography, ultrasound, surgery, chemotherapy, etc
— their anatomical location (breast or other)
— their laterality
— the possible quadrant
— their temporality

2.4.1.2 Report structure

The reports usually include a brief history of the patient’s condition, personal or family
history of cancer, and previous visits, followed by observations and findings. Noteworthy
findings are often summarized in a conclusion. These reports are often organized in a semi-
structured manner, with nested sections. However, due in part to conversions between text
reports and their PDF edition, this structure is not consistently applied and can be modified
throughout the text. This makes the division into sentences and sections far from trivial.
Finally, for the sake of brevity, physicians sometimes factorize their findings. These linguistic
forms, also known as elliptic coordinations or elliptic enumerations, result in overlapping
structured entities:

— There are small millimeter-sized microcalcifications in the right and left breast
— Two lesions are observed in the right breast, measuring 6mm in the UIQ at 3cm from the

nipple and 5mm in the LIQ at 2cm.
— The left upper inner quadrant contains multiple cysts measuring 6mm and 5mm.

2.4.2 Structured entities representation

Our objective is to extract different types of entities, as well as attributes qualifying them.
These entities should be easily storable and searchable in a database, but also interpretable by
locating the zones of a report that mentions them. A certain structure can be found in the
elements listed in Section 2.4.1, namely the presence of a mention indicating the existence of
a procedure, a lesion or a grade, and different attributes specifying each object, such as its
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nature, location or temporality. A useful representation is the one of frames. Frame semantics
were introduced by Fillmore (1982), and popularized by the FrameNet project (Baker et al.,
1998). A frame is a schematic representation of a situation involving various participants, or
conceptual roles. A frame is structured around a "lexical-unit" (or trigger), and composed of
"attributes" (or arguments or roles). Each piece of information about a particular frame is held
in a slot. As such, the frames are comparable to slices in our representation. As such, we can
see frames as key/value tables, on which we add justifications of each field when possible.

However, in the example

"Right breast: a small nodule of 8mm that was previously measured at 1cm"

the object ("nodule") is described at several points in its existence and is characterized by a
change in its size. A simple key/value list as in the table 2.2 which would list each feature
would not be able to properly capture this attribute change over time, and each field would
require to be specified (e.g. size → size_now and size_before) to be disambiguated. The
process of adding new attributes to better match the representation, known as reification,
adds to the complexity of the schema and thus may hinder its generalizability.

field value justification
organ breast "breast"

clock position ∅ ∅
quadrant ∅ ∅

size 8mm "8cm"
size 10mm "1cm"

temp during exam ∅
temp before exam "previously"

Table 2.2 Example of a flattened key/value representation of a structured entity

Another ontological formalism has been studied by Burek et al. (2019); Sider (2001) and
suggests introducing another dimension to the representation to represent "slices". We could
draw inspiration from these works and model objects by a set of slices as in Table 2.3.

Slice 1 Slice 2
field value justification value justification
organ breast "breast" breast "breast"
clock position ∅ ∅ ∅ ∅
quadrant ∅ ∅ ∅ ∅
size 8mm "8mm" 10mm "1cm"
temporality before exam "previously" during exam ∅

Table 2.3 Example of a temporaly sliced representation of an object
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This representation dilemma arises frequently and is intrinsically linked to the granularity
of representations. Thus, it can also be found when describing spatial extensions, for example
in the case of a tumor covering several quadrants:

"Breast tumor extending on the upper-outer and lower-outer right quadrants"

which could be described using two spatial slices as in Table 2.4.

Slice 1 Slice 2
field value justification value justification
organ breast "breast" breast "breast"
clock position ∅ ∅ ∅ ∅
quadrant upper-outer "upper outer" lower-inner "lower inner"
size ∅ ∅ ∅ ∅
temporality during exam ∅ during exam ∅

Table 2.4 Example of a spatially sliced representation of an object

2.4.3 NLP for cancer and radiology

The extraction of structured information from medical reports has been the subject of
many studies. Likewise, many methods have been developed to automatically extract one
or more radiological features from clinical reports. Most of these works are not specific to
breast imaging reports. Moreover, the extraction objectives vary greatly, in terms of their
scope, granularity and form. We will start by focusing on the existing research on radiology
reports. Interested readers can refer to existing surveys on the state of NLP in radiology reports
(Bitterman et al., 2021; Miwa et al., 2014).

Several works are only concerned with the extraction of a few report-level attributes, and
therefore view the task as a classification or term extraction task in EHR for items such as
BIRADS scores, histological grade or primary site of lesions (Alawad et al., 2018; Castro et al.,
2017; He et al., 2017; Moore et al., 2017; Qiu et al., 2018). Other features have also been the
subject of specialized systems such as locations (Datta et al., 2020a). An extensive survey of
the different systems proposed for different features was conducted by Datta et al. (2019).

Other works have sought to produce a more detailed and global extraction, and to detect
several types of entities at the same time. The earliest work was the one of Taira et al. (2001),
who proposed a frame based representation and method for annotating abnormal findings,
anatomy, and medical procedures frames in radiology reports. Lacson et al. (2015) used a
rule-based system and terminologies to extract abnormal findings and BIRADS scores. The
DeepPhe system was proposed by Savova et al. (2017) as a fully integrated software built
on cTakes (Savova et al., 2010) to extracts document and patient level cancer summaries
(akin to frames) in clinical reports. Steinkamp et al. (2019) proposed a fact-based scheme, in
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which each fact is structured around an anchor (such as "cyst") and may contain modifiers
(its size, laterality). However, their model is limited by the assumption that all the elements
that characterize an entity need to be adjacent inside the fact span. Sugimoto et al. (2021)
annotated multiple types of named entities and relations in Japanese chest CT reports but only
trained a NER system on their dataset. The facts, anchors and modifiers are then detected by
a NER system.

Several methods decompose the problem into two subtasks: named entity detection
and relation detection. Unlike (Steinkamp et al., 2019), the relation detection step allows
arguments to be distant. Roberts et al. (2019) proposed a frame based scheme for annotating
cancer information in clinical reports and a method to perform the prediction (Si and Roberts,
2018). Their method first extracts triggers and modifiers with a NER system, and predicts
their relations to form frames. However, their method make the assumption that there is no
overlap between the different entities in a text sample, and therefore does not address the
problem of factorizations. Recently, a more complex scheme has been proposed by Jain et al.
(2021) to annotate nested relationships between different entities. However, these work do
not specifically address the case of complex or distant relations between entities.

2.4.4 Related tasks

Our objective of extracting structured entities can be related to four other tasks in different
fields of NLP namely slot filling, event extraction, attribute prediction and discontinuous NER.

2.4.4.1 Slot filling

Structured entity extraction can be related to the intent detection and slot filling tasks, also
know as semantic role labeling. This task is closely related to the frame semantics formalism.
Most often, it is paired with the intent detection task, which consists in detecting the nature
of a textual request made by a user. The slot filling task it-self is concerned with detecting the
different relevant attributes that compose this request. For example in the query:

"What are the flights from London to Paris this Saturday?"

the system must detect that the intent is "flight information" if not provided already, and fill
the different slots:

— TO: London
— FROM: Paris
— DAY: this Saturday
— TIME: ∅

Most systems turn the task into a named entity extraction, and fill the appropriate slots with
the extractions. A comprehensive review of the proposed approaches has been done recently
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by Weld et al. (2021). Most often, however, it is assumed that each utterance contains only
one intent, which is often not the case (Gangadharaiah and Narayanaswamy, 2019). There
has been relatively limited research on slot filling and multiple intent detection Gangadharaiah
and Narayanaswamy (2019); Qin et al. (2020). Moreover, among these works, it is assumed
that the different intents are of different types. This can be a concern if the user requests
information about several flights at the same time for example:

"What are the flights from London to Paris this Saturday, and from Paris to London the following
Saturday?"

Only one intent type would be detected (flight info), and several slots (London, Paris, Paris,
London, Saturday, next Saturday) would conflict in the composition of the entities to extract.

2.4.4.2 Event extraction

Another similar task is the extraction of events in texts. Events in linguistics are most often
understood as actions, or situations whose existence is marked by a "trigger" expression (e.g.
a verb), and specified by several arguments.

While the ACE event extraction task is focuses on action-like events, the BioNLP shared
task datasets are more concerned with interactions between different biomedical entities,
where the notion of action is less prominent. As an example:

"The translocation of the b67 induced by ..."

We can then identify:

— the "regulation" trigger: "induced"
— the "cause" argument: ...
— the "theme" argument: b67

Event extraction tasks are divided into two categories: closed world event extraction and
open world event extraction. Closed-world event extraction assumes that one already has
knowledge of the event pattern (e.g. the "attack" pattern in ACE) while open-world event
extraction assumes no predefined pattern as in TDT. Thus, the notion of entity in our problem
matches a closed world event extraction problem.

Many efforts have been made to address the problem and there are several reviews of
the proposed solutions in the general and biomedical domains (Miwa et al., 2014; Xiang and
Wang, 2019). A common approach to this task is to first detect the trigger and argument
entities, then to predict the relations between them, and finally to detect event modifiers (e.g.
negation) and optionally to filter the predicted events. Most works make the assumption that
the named entities are already extracted, but the integration of the entire pipeline into a single
architecture combined with multi-task learning has shown promising results in recent works
(Nguyen and Nguyen, 2019; Trieu et al., 2020).



2.4 Structured entities extraction 32

Overlapping events occur when the same trigger is associated with several arguments
for at least two of these relations, as in this example from the Cancer Genetics (CG) task of
BioNLP Shared Task 2013 (Pyysalo et al., 2013).

Techniques to cope with it are mainly based on distributing the arguments over each other
and checking that the produced events are legal according to the annotation scheme. However,
false positives can be generated with examples such as the one in the figure above. Some
methods then use an additional classifier to detect these false positives (Björne and Salakoski,
2011, 2013, 2015; Heimonen et al., 2010; Liu et al., 2015; Miwa et al., 2010; Trieu et al.,
2020). To our knowledge, these types of events have not been studied in depth. However, they
better illustrate the complexity of structured entities that can be found in clinical radiography
reports, and in our opinion require further consideration.

2.4.4.3 Named entity attribute detection

Another related task is the one of named entity attributes detection. This task consists
in labelling a named entity with different classes. In our case, if we assume that "triggers"
are known ("cyst" for example), the simple prediction of their attributes (type, location, size,
temporality) as multi-label problem can be enough for some downstream processing. However,
it is desirable that the prediction of these attributes be justified when possible by a zone of the
text.

The detection and justification of attributes on named entities has not been the subject of
specific works, but most existing models that seek to extract them either use a set of rules , or
a classifier for each predicted entity. It is conceivable to imagine a system that would explain
its predictions by attention scores on the sentence or the joint prediction of the attribute and
the beginning and end bounds of its justification.

Nevertheless, this approach would again face the issue of superposed triggers, as in
the examples of Section 2.4.1.2, that would prevent the dissociation between the different
combinations of attributes. The prediction and distinction of superposed entities of the same
type, but with different attributes has not been addressed in the literature, but Sequence-to-Set
systems such as DETR (Carion et al., 2020), or its adaptation to texts (Tan et al., 2021) are
promising leads.
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2.4.4.4 Discontinous named entity recognition

The task of recognizing discontinuous named entities can be interesting as well, as it
aims at extracting named entities composed of several segments (or holes in an equivalent
way). Several methods have been proposed. Metke and Karimi (2016); Tang et al. (2018,
2013) propose augmenting sequence tagging techniques with new tags. Lu and Roth (2015);
Muis and Lu (2017) construct a complex hypergraph of words. Dai et al. (2020) address the
problem using transition model. Wang and Lu (2019) transform the problem into a two stages
detection: the first one aims at extracting the fragments (or spans) that will compose the
entities, and the second one aims at filtering by a classifier among all the possible combinations
of these spans which are valid. More recently Li et al. (2021) has also proposed a two stages
approach, but detects the combinations of entities by generating a tree between the different
segments.

However, this task makes the assumption that all segments of a discontinuous entity are
of the same type, which is not our case, and focuses essentially on segments that are close
to each other. Moreover, the number of segments is usually limited, e.g., 3 in SemEval 2014
(Pradhan et al., 2014), which allows enumeration of possible combinations unlike our case.

2.4.5 Public annotated corpora

Several datasets have been developed and made publicly available for information extrac-
tion from radiology reports. RadCore (Hassanpour and Langlotz, 2016) is a multi-institutional
database of radiology reports that contains named entity annotations. However, it does not
relate these named entities together. PadChest (Bustos et al., 2020) contains chest radiographs
associated with reports labeled according to different radiographic findings, diagnoses, and
anatomical locations. Datta et al. (2020b) annotated 2000 chest radiology reports with named
entities of spatial location, observation, and several relationships linking them. Recently Jain
et al. (2021) released RadGraph which consists of 600 annotated chest radiology reports with
spatial location and observation entities following a finer grained scheme than Datta et al.
(2020b).

However, clinical reports in these datasets are relatively short and straightforward, with no
deep imbrication in their structure. As a result, relations between named entities are mostly
found at the sentence level, and not at the document level. Moreover, to our knowledge, there
are no datasets consisting of French radiography reports, let alone breast radiography.

2.5 Conclusion

In this chapter, we have discussed the background regarding the three levels of retrieval
that interest us in this thesis, namely NER, entity normalization, and structured entities. The
following chapters present our work in these three areas.
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In this chapter, we study the named entity recognition task, and more precisely, the nested
named entity recognition task. As we will see in this chapter, tagging-based NER methods,
i.e., based on token classification, have attractive properties for pipeline systems and noisy
data sets. However, it remains a challenge to adapt these models to overlapping entities. To
this end, we propose two supervised approaches using neural networks. The first approach
uses an auto-regressive tagging model, which iteratively predicts non-overlapping entities in
a sentence. The second method is based on a tagging model combined with an exhaustive
scoring model.

We will study the impact of input word features on the model’s performance and whether
a broader context can improve prediction performance when using pretrained contextualized
embeddings. We will also study whether the order of the entities impacts the performance of
the auto-regressive model. We study the contribution of tagging prediction for the combined
model and the gain over an exhaustive scoring model alone. Finally, we will describe a method
to improve the performance of each model by ensembling.

The remainder of this chapter is organized as follows. In Section 3.1, we will describe the
datasets that we use in our experiments. In Section 3.2, we will describe the preprocessing of
the inputs and the features used by our models. Wewill present a first model, the autoregressive
decoder, in Section 3.3, and a second model, the biaffine tagger decoder, in Section 3.4. We
present the experiments n Section 3.6, and the discuss the results in Section 3.7. Finally, we
close this chapter by a conclusion 3.8.

The source code for the models described in this Chapter is available at the following URL:
https://github. com/percevalw/nlstruct.

3.1 Data

In this chapter, we conduct experiments on the two medical named entity datasets DEFT
(Cardon et al., 2020) and GENIA (Kim et al., 2003) and the English subset of the a general
named entity dataset CoNLL 2003 (Sang and De Meulder, 2003). These datasets have been
presented in more detail in Section 2.2.3.

In each cases, we split the training data into 80% for training the model and 20% for the
development (validation) set, and train the final model on both the training and development
sets.

https://github. com/percevalw/nlstruct
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We have noticed that different versions of the GENIA dataset have been used to evaluate
the NER systems. In particular, one of the versions used by Yu et al. (2020), Shen et al. (2021)
and Tan et al. (2021) is pre-tokenized in a way that benefit the performance of NER systems
(some words are sometimes merged with neighboring punctuations like "-induced," but this is
not consistent across samples).

3.2 Text encoding

We start by describing the model used to generate features for each word of the input
sequence. These features will then be used by different decoders to produce named entities.

3.2.1 Preprocessing

Sentence segmentation For long documents, it is common first to perform a sentence
segmentation. This step has three objectives. The first is to reduce the size of the samples
provided to the model in order to reduce the memory impact and speed up the prediction.These
effects are all the more important as the models involve operations of quadratic complexity in
the size of the sentences.

The second objective is to improve the gradients computed by the model. Indeed, once
the corpus is divided into sentences and mixed, each batch can contain more varied samples
and lead to less biased gradients. Finally, the presence or absence of an entity in a sentence is
generally considered not to depend on the content of the other sentences, or only to a small
extent. This hypothesized invariance suggests that we first segment and shuffle the corpus.

Tokenization Our models use two tokenization methods. The first one is the most intuitive
and extracts each word from the sentence. We also consider each punctuation as a token in
itself. The second tokenization method is the one used by BERT and splits each previously
extracted word into subwords (Wu et al., 2016). In the rest of this chapter, we will refer to
these subwords as "wordpieces." For each sample, we align the words and wordpieces to jointly
use models that operate with each of these tokenization methods.

3.2.2 Features

In our models, the text is encoded as words embeddings in two steps. In the first step,
we gather embeddings from various models that we either learn, finetune or leave intact.
These word embeddings are then concatenated and forwarded through a multi-layer highway
bidirectional LSTM. We describe the overall architecture of the text encoder in Figure 3.1.
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Figure 3.1 Overall architecture of the text encoder. The decoder part of the models is grayed
out and will be described in Sections 3.3 and 3.4

.

Pretrained language model features We use the BERT family of pretrained Transformer
models. These models use the Wordpiece tokenization algorithm (Wu et al., 2016) and produce
one embedding per wordpiece. The parameters of these modules can be frozen or fine-tuned
during training. To obtain the embedding of a word, we will evaluate several options: taking
the embedding of the first wordpiece, the embedding of the last wordpiece, or the average of
all the embedding of each wordpiece. To improve the word embeddings, instead of running
the Transformer on each sentence independently, we add neighboring words from the same
document until we reach a maximum length. This method of adding context words before
running the Transformer is similar to the one of Devlin et al. (2019), Kantor and Globerson
(2020), Yu et al. (2020) and further studied by Schweter and Akbik (2020) and Luoma and
Pyysalo (2021). Throughout the rest of this chapter, we will call this method "document
contextualization." This contextualization should help the model improve its representation of
words at the beginning and end of each sequence, especially for short sentences.

Character level features We compute another representation for each word from its charac-
ters. Each character in a word is embedded and fed to multiple convolutional neural networks
(CNNs) of different kernel sizes. The convolution results of each word are max-pooled and
passed through a ReLU. The parameters of these modules are learned from scratch during
training.

Context independent word embeddings Finally, we also extract context-free word embed-
dings with FastText (Bojanowski et al., 2017). These representations are frozen during training
in all our experiments. FastText embeddings cannot adapt to their local context. However, they
can be pre-computed for every word, regardless of its spelling errors or complexity, because
they are computed from character n-grams embeddings.
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3.2.3 Recurrent contextualization

All of the previously mentioned representations are concatenated and fed to a bidirectional
multi-layer LSTM. The LSTM cell can model local interactions well, which fits our problem
since entities often span a few words, and words relevant to the type or boundaries of an entity
are often found inside or close to the expression. The output of each layer passes through a
sigmoid residual gate, and the output of the last layer composes the word features used by
our decoders.

3.3 Auto-regressive decoder

We detail here a first model that handles nested named entity recognition through an auto-
regressive mechanism. The prediction occurs in multiple steps. At each step, the bidirectional
multi-layer LSTM receives the contextualized embeddings and a list of previously predicted
entities (empty list at the first iteration) and produces a list of new entities. The entities
predicted at each iteration do not overlap, but all the entities predicted at the end may overlap.
This model can be seen as similar to the earlier cascaded model of Alex et al. (2007), but
uses a single decoder applied iteratively on the sentence, and is able to recognize overlapping
entities of the same label. Figure 3.2 illustrates the architecture of this decoder.

3.3.1 Architecture

The main component of the decoder is a CRF (Lafferty et al., 2001) layer that predicts
entities through a multi-type tag scheme (BIOUL or BIO 1). This multi-type tag scheme can
only represent flat entities, which means that the decoder only predicts non overlapping
entities at each step. The decoder starts from an empty sequence, in the sense that no entity
has already been predicted, and tags each word according to the tag scheme. The sequence of
tags is converted into a list of (begin, end, label) entities and added to the set of predicted
entities. The decoder repeats this process until no more entities are predicted.

At each step, we need to encode the information about the previously predicted entities to
prevent the model from predicting these entities again. We choose to encode each entity as
a list of tags on the words that it spans. These tags are embedded into a multidimensional
vector space and concatenated with the input features for a given word. In this model, each
word is therefore represented by its BERT, FastText and char CNN embeddings, as well as
a tag embedding that encodes the entities that were already predicted at the position. This
allows the model to reason about what parts of the sentence may still contain other entities.

When multiple previous entities cover the same words, we reduce the tag embeddings at a
given position by summing them together. We encode these previous entities in the form of

1. BIO stands for Begin, Inside, Outside and BIOUL for Begin, Inside, Outside, Unary and Last
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tags assigned to each token with the BIO, or BIOUL formats (Dai et al., 2015; Ratinov and
Roth, 2009). The chosen format will be referred to as the "encoding" tag scheme, in contrast
with the "decoding" tag scheme used to decode the entities.

Figure 3.2 Autoregressive decoder. The encoder part of the model is grayed out and was
described in Section 3.3. In this example, the model can only predict one of the two nested
entities, and chooses the largest one. If the smaller one has not been predicted yet, it will be
predicted in a next step.

.

Confidence Additionally, we can compute the confidence given to a (begin, end, label)
entity by a BIOUL-CRF model as the product of three probabilities:

— the probability of the first word being a B or U tag of the given label

— the probability of the last word being an L or U tag of the given label

— the probability of having no O tag of the label between the first and last words

The first two probabilities can be computed easily by marginalizing the CRF outputs. The last
probability can be computed through cumulated sums of log probabilities.

3.3.2 Training

Autoregressive order We proceed in several steps and predict only entities that are not
overlapping at each step. However, several permutations, or valid prediction paths, lead to the
same list of entities. For two nested statements
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(annotations that we call T and H), we can predict T first, then H knowing T , or the opposite,
i.e. choose to optimize between two objectives :

— P (T,H) = P (T,H|T )× P (T )

— P (T,H) = P (T,H|H)× P (H)

Two simple strategies are to order the entities by increasing or decreasing length. In the
increasing length strategy, the model predicts the small entities first where are overlaps and
the larger entities in subsequent steps. This strategy was used by systems like Ju et al. (2018).
We will call this order short→large.

In the decreasing length strategy, the model predicts the small entities first where are
overlaps and the smaller entities in subsequent steps. We will call this order large→short.

However, the static short→large or large→short strategies may not take advantage of all
the inter-dependencies that could make some mentions easier to find when you know the
others. An alternative is to rank the entities by decreasing order of confidence. We score
each target entity according to the model and greedily build a list of entities starting with the
highest confidence scores. For each added entity, we check that it does not overlap with any
other entity already in the list, to ensure that the set of entities we will train the model with
at this step is flat. By using this ordering strategy, we encourage the model to predict the ones
that are easiest first.

Loss We train the autoregressive model by summing the loss for each prediction step. At
each step, we run the model and select the entities according to a strategy in those previously
described. We convert these entities into tags, and we compute the loss via the linear CRF
forward algorithm. The target entities are added to the list of previously predicted entities,
and the process is repeated and stopped after no more entities are predicted.

To introduce some noise in the training, we randomly select a subset of the entities in
each sentence and mark them as already predicted. This exposes the model to new entities
orderings that would not occur if the model had started its prediction from an empty list.

3.3.3 Inference

For each sentence in the corpus, our model starts by predicting the most likely sequence
of entities from the input token sequence alone since no mention has already been predicted.
Then, we add them to the observed entities list and repeat the prediction until no more entities
can be found.
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Figure 3.3 Overall architecture of the BiTag decoder. The encoder part of the model is grayed
out and was described in Section 3.2.

3.4 Biaffine tagger decoder

3.4.1 Architecture

In this section, we present an other architecture: the Biaffine Tagger decoder (BiTag):
a tagging (or sequence-labeling) based-decoder that combines with a biaffine scorer to dis-
tinguish between several possible boundaries matching. Unlike the Autoregressive model of
Section 3.3, this model does not require multiple prediction steps, and therefore can be easier
to integrate into larger architectures. Figure 3.3 illustrates the architecture of this decoder.

Tagger component The main decoder component is a set of CRF (Lafferty et al., 2001)
layers that predicts entities through an extension of the BIOUL tag scheme for overlapping
entities. Since multiple entity types in a corpus may overlap, we run multiple CRF in parallel,
one for each entity label, with five possible tags each. Therefore, each word of the sequence is
classified as either a Begin word, Inside word, Outside word, Unary word (a word that is both
a Begin word and an End word), or Last word for each label.

Our variant of the BIOUL tag scheme allows overlapping entities of the same label. We
generate a sequence of tags for each label according to the following rules: the begin bound
of an entity is tagged B, and the end bound of an entity is tagged E. Every word in between is
tagged I. If a word is tagged both as a begin and as an end, we tag it as U. If a word is tagged
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both as an I and as a B or a E, the bound tag B/E takes precedence. An example of a generated
tag sequence for nested entities is shown in Figure 3.4.

Figure 3.4 BIOUL tagging sequence for the Protein label in a GENIA sample

Biaffine scorer In the example of Figure 3.4, the three nested entities are [Ca2+-dependent
PKC isoforms], [PKC] and [PKC isoforms]. Multiple combinations of entities can be represented
by the same tag sequence. In the above example, we could wrongly predict [Ca2+-dependent
PKC isoforms] and [PKC], or [Ca2+-dependent PKC isoforms] and [Ca2+-dependent PKC].

We add a biaffine scorer to address this issue and match each begin word with an end
word. This decoder is similar to the one of Yu et al. (2020).

The biaffine decoder scores each (begin, end, label) triplet through a biaffine scoring
matrix. Each word embedding is projected as nlabel begin bound embeddings and nlabel end
bound embeddings. Then, each pair of begin and end bounds of a given label is evaluated
through a dot product to obtain the score of the (begin, end, label) entity.

3.4.2 Training

We compute the global loss of the model as the sum of the losses of each component. The
loss of the tagger module is computed for each label and each sentence via the linear CRF
forward algorithm. The target sequence is computed on the fly for each sequence from its list
of entities.

The biaffine loss is the binary cross-entropy loss for each (begin, end, label) valid triplet.
A triplet is valid when begin ≤ end, and the length is below the maximum entity size. In our
experiments, we set the maximum size to 40 words.

3.4.3 Inference

Finally, at inference time, we first run the Viterbi decoding algorithm for all labels in a
sentence, which gives us a list of tags that we convert into a list of candidate entities. First, for
each candidate, we add it to the list of predictions if the biaffine component gives it a score
over 0. If a begin or end bound was predicted by the tagger component but was not matched
by the biaffine decoder with any other bound, we match it with the end or begin bound that
gives the highest scoring entity according to the biaffine module, even if the score if negative.
This ensures that each bound predicted by the tagger component is part of an entity. Indeed,
we trust the biaffine decoder less on datasets with ambiguous bounds.
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3.5 Ensemble models

We propose a method for ensembling multiple instances of each of our models. For each
ensemble of models, we average the logits produced by each model before "making a decision,"
such as running the Viterbi CRF algorithm or classifying a (begin, end, label) triplet. For
pipeline models, this generated ensemble output is shared between models at the end of each
step. An exemple of the ensembling pipeline before running the Viterbi CRF algorithm is
shown in Figure 3.5

Figure 3.5 Ensemble pipeline before running the Viterbi decoder: each model is run separately
until a decision is required. Then all the instances average their logits and the Viterbi CRF
algorithm is run. In this Figure, only two models (red and blue) are ensembled.

3.5.1 BiTag model

In the BiTag model, two types of decisions are made. The first decision occurs in the Tagger
component and predicts which tag should each word of a sequence be assigned to. All of the
instances produce a sequence of BIOUL tag logits for each (word, label) pair in a sentence: we
take the mean these logits and run the CRF Viterbi algorithm on these averaged logits. The
second decision occurs in the Biaffine component and predicts whether a candidate (begin,
end, label) triplet should be predicted or not. We take the mean of the logits and keep the
triplets that have an average score over 0.

3.5.2 Autoregressive model

Similarly, for the autoregressive model, we average the logits of each instance before
running the Viterbi algorithm. We run the instances in parallel at each prediction step and
split the ensemble output between the different models before running the next step. We
repeat the process until no more entities are predicted.
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3.6 Experiments

We evaluate our models on the DEFT, GENIA and CoNLL datasets. We also perform
additional experiments through ablations for the encoder and decoder components on the
DEFT and GENIA corpora.

3.6.1 Experimental setup

We run each experiment with 6 different seeds (except for the Ensemble model) and
present the average scores. By default, we report the precision, recall and F1 score of the exact
metric, and the relaxed half metric corresponds to the retrieval metric where two entities are
counted as matching when their word Dice overlap score exceeds 0.5 (see Appendix A). For
each model, we optimize the parameters with the Adam optimizer (Kingma and Ba, 2015)
without weight decay., over 4000 steps when finetuning BERT and 20000 steps when BERT
is frozen. We use two learning rates: the first learning rate, that applies to the pretrained
Transformer weights, is initialized at 5 × 10−5 and follows a linear schedule with a 10%
warmup, while the second learning rate, for the other parameters, is initialized at 1× 10−3

and follows a linear decay schedule with no warmup. We selected the hyperparameters by
grid search on the development set and trained on both the training and development splits
for the GENIA and DEFT datasets. The main hyperparameters are summarized in Table 3.1.

Word features We initialize the Transformer with CamemBERT (Martin et al., 2020) weights
for DEFT and BioBERT (Lee et al., 2020) for GENIA and English BERT (Devlin et al., 2019)
for CoNLL. We used large (1024) cased versions of these models for our experiments on
the test set, and base (768) cased versions of these models for other experiments on the
validation set. When finetuning the BERT encoder, we apply Dropout (Srivastava et al., 2014)
with a probability of 0.1 in the Transformer layers. Conversely, when the BERT encoder is
frozen, no dropout is applied on it. Training is much faster in this setup because the generated
embeddings can be cached and reused between epochs. The character embeddings of the
character CNN have a size of 50, and are fed to 3 kernels of size 3, 4 and 5. The FastText
embeddings are the standard English FastText version for the models trained on CoNLL and
GENIA, and the French version for DEFT. The BiLSTM is composed of 3 layers and Dropout is
applied on each layer output with a rate of 0.4.

Biaffine tagger The BiTag model bound embeddings size is either 64 for DEFT and 150 for
the other models. This distinction was made because of the number of labels that is higher in
DEFT (10 labels) than in the other datasets.
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Autoregressive model We set the initial observation rate at 0.1. This means that during
training, around 10% of the entities are already labelled as predicted, regardless of the
autoregressive training order. Following the experiments on the DEFT and GENIA validation
sets, we used the short-to-large strategy for the DEFT dataset and the large-to-short strategy
for the GENIA dataset. For datasets, such as CoNLL, that does not contain any overlapping
features, these three strategies are equivalent.

Ensemble models We evaluate the performance of our ensembling method for each decoder,
by training 3 instance of the same model with different seeds, and ensembling these three
models using the procedure of Section 3.5.

Maximum sentence/context size 256 wordpieces
Char CNN kernel size (3, 4, 5)
Char embedding size 8
Char CNN output size 50
FastText size 300
Decoders dropout 0.1
BiLSTM layers 3
BiLSTM dropout 0.4
Biaffine hidden size 64 or 150
Autoregressive pre-observation rate 0.1
Number of steps 20000 if frozen BERT else 4000
Table 3.1 Hyperparameters of the autoregressive and BiTag models

3.6.2 Baselines and ablations

We provide the reported results for several published models in each dataset. Some recent
models (Shen et al., 2021; Tan et al., 2021; Yu et al., 2020) were not included in the GENIA
comparison (Table 3.2) as they use a non-standard version of the dataset. We compare our
methods against the reported results of these works in Table 3.3, on the modified GENIA
dataset. We also provide a close re-implementation of the method of Yu et al. (2020) by
removing the sequence labelling component from our model, under the name "Biaffine-only".
The main differences between the two implementations are that we finetune the pretrained
BERT while they freeze it, and that they perform "document contextualization" by re-running
a full BERT model for each word of the sentence with a sliding window of size 512, instead of
running BERT once for each sentence in our case.

Finally, we provide the performance of the Hugging Face NER re-implementation of (Devlin
et al., 2019) (BERT followed by a softmax layer) under the name "BERT + softmax" for each
dataset. This model was trained for 4000 steps with the same pretrained weights as our
models on a CoNLL formatted (one label per word with the BIO tag scheme) version of each
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dataset, as preprocessed by the ann2conll.py script of the Github BRAT tools, and the results
were exported to the BRAT standoff format for the evaluation.

Input features We perform several feature ablations on the BiTag model.
We study the effect of the BERT document context. More specifically, we only compute

the BERT embeddings by running the Transformer on the tokens in the sentence. In contrast,
when using Document Context, the neighboring words of a sentence are added as context to
the input sequence when running the Transformer.

We also ablate the character CNN representations and the FastText embeddings to estimate
the contribution of these features.

Finally, we change the word pooling strategy with the BiTag decoder. Specifically, we
evaluate three modes: the "first" mode uses the embedding of the first wordpiece of a word
as the word embedding, the "last" mode uses the embedding of the last wordpiece, and the
"mean" mode computes the unweighted average of the wordpiece embeddings for each word.

Autoregressive model We study the effect of the autoregressive order on the model perfor-
mance. We compare three modes: top to bottom, bottom to top, and greedy decoding. These
modes differ when choosing between two overlapping entities as to which one the model
should first predict.

In the top to bottom mode, we always choose the larger entity first. After learning with
this mode, the model should first focus on the large entities and detect smaller ones later.

In bottom to top mode, between two overlapping entities, we always choose the smaller
entity first. After learning with this mode, the model should output the small entities first and
detect larger entities later.

Finally, we let the model choose the mentions in greedy decoding mode by first selecting
the mention with the highest model confidence score. In this setup, the model should output
the easiest entities first and the more complex entities later.

Biaffine tagger model We remove the tagger decoder while keeping the biaffine module,
such that our decoder is only composed of the biaffine module. This model should be equivalent
to the one of Yu et al. (2020).

3.7 Results and discussion

3.7.1 Main results

The results of our systems and the baselines are presented in Tables 3.2, 3.4 and 3.5.
On the GENIA dataset (see Table 3.2), the proposed BiTag model (with finetuning) ob-

tains the exact F1 score of 78.4 and the ensemble model obtains the F1 score of 79.1. The
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Autoregressive model obtains a score of 78.3 and its ensemble version reaches 79.0. This is
slightly below the reported state-of-the-art results.

An interesting finding comes from the relaxed half metrics, as we observe that exact metric
is not always adequate to discriminate between two models. Indeed, for the GENIA dataset,
the biaffine tagger and Biaffine-only models obtain very close exact F1 scores (78.4 vs 78.5).
However, the BiTag model performs better the biaffine model by +0.5 pt on the relaxed half
F1 score. We will expand further on this aspect in Section 3.7.3. Finetuning also shows a
greater effect on the half F1 metric (+1.1 pt) than on the exact metric (+0.3 pt).

P R F1 Half F1
Katiyar and Cardie (2018) 78.6 68.2 73.6
Ju et al. (2018) 78.5 71.3 74.7
Wang et al. (2018a) 73.9
Wang and Lu (2018) 77.0 73.3 75.1
Sohrab and Miwa (2018) 93.2 64.0 77.1
Lin et al. (2019) 75.8 73.9 74.8
Shibuya and Hovy (2020) 76.3 74.7 75.5
Luan et al. (2019) 76.2
Straková et al. (2019)* 78.3
Wang et al. (2020)* 80.3 78.3 79.3
BERT + softmax 77.5 70.4 73.8 (±0.3) 81.7 (±0.1)
Autoregressive large→short 78.9 77.8 78.3 (±0.1) 84.3 (±0.1)
BiTag w/o finetuning 79.3 76.9 78.1 (±0.1) 83.4 (±0.1)
Biaffine-only 78.0 79.0 78.5 (±0.2) 83.8 (±0.1)
BiTag 78.9 77.9 78.4 (±0.1) 84.3 (±0.1)
Autoregressive large→short (ensemble) 80.0 78.0 79.0 85.1
BiTag (ensemble) 80.3 77.9 79.1 85.1

Table 3.2 GENIA test performance. * indicates that the method also uses Flair embeddings
(Akbik et al., 2018). Some recent models (Shen et al., 2021; Tan et al., 2021; Yu et al., 2020)
were not included in this table, as they use a non-standard version of the dataset.

On the CoNLL English dataset (see Table 3.4), the BiTag model obtains a F1 score of 93.1,
and the Autoregressive model obtains a score of 93.0, slightly below the reported state of the
art models with the same features. The ensemble versions of each model obtain 93.6 and 93.4
F1 respectively, gaining respectively +0.5 pt for the Autoregressive model, and +0.3 pt for the
BiTag model in comparison. The differences between half and exact metrics are much smaller,
and all of our models perform broadly on par with each other.

The results of our systems and the baselines are presented in Tables 3.2, 3.4 and 3.5.
On the GENIA dataset (see Table 3.2), the proposed BiTag model (with finetuning) ob-

tains the exact F1 score of 78.4 and the ensemble model obtains the F1 score of 79.1. The
Autoregressive model obtains a score of 78.3 and its ensemble version reaches 79.0. This is
slightly below the reported state-of-the-art results.
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An interesting finding comes from the relaxed half metrics, as we observe that exact metric
is not always adequate to discriminate between two models. Indeed, for the GENIA dataset,
the biaffine tagger and Biaffine-only models obtain very close exact F1 scores (78.4 vs 78.5).
However, the BiTag model performs better the biaffine model by +0.5 pt on the relaxed half
F1 score. We will expand further on this aspect in Section 3.7.3. Finetuning also shows a
greater effect on the half F1 metric (+1.1 pt) than on the exact metric (+0.3 pt).

P R F1 Half F1
Tan et al. (2021) 82.3 78.7 80.4
Yu et al. (2020) 81.8 79.3 80.5
Shen et al. (2021) 80.2 80.9 80.5
BERT + softmax 79.2 71.1 74.9 (±0.3) 81.8 (±0.3)
Autoregressive large→short 81.4 79.3 80.3 (±0.1) 85.6 (±0.1)
BiTag w/o finetuning 81.6 79.6 80.6 (±0.2) 85.5 (±0.2)
Biaffine-only 80.1 80.5 80.3 (±0.3) 84.8 (±0.3)
BiTag 81.0 79.8 80.4 (±0.3) 85.5 (±0.1)

Table 3.3 Non-standard GENIA test performance, as used by Shen et al. (2021); Tan et al.
(2021); Yu et al. (2020)

For reference, we also provide the results of our model on the modified GENIA dataset in
Table 3.3. Regarding the Exact F1 performance, the models seem to perform on par with each
other and the recent models of Shen et al. (2021); Tan et al. (2021); Yu et al. (2020). However,
regarding the relaxed Half F1 measure, both BiTag models (with and without finetuning)
outperform the Biaffine-only model by an average of 0.7 pt.

P R F1 Half F1
Klein et al. (2003) 91.4 91.9 91.6
Lample et al. (2016) 90.9
Strubell et al. (2017) 90.7
Devlin et al. (2019) 92.8
Straková et al. (2019) 93.4
Yu et al. (2020) 93.7 93.3 93.5
BERT + softmax 90.2 92.0 91.1 (±0.2) 92.8 (±0.2)
Autoregressive 92.9 93.1 93.0 (±0.2) 94.2 (±0.2)
BiTag w/o finetuning 92.6 93.1 92.8 (±0.1) 94.1 (±0.1)
Biaffine-only 92.9 92.8 92.8 (±0.2) 94.0 (±0.1)
BiTag 93.0 93.2 93.1 (±0.2) 94.3 (±0.2)
Autoregressive (ensemble) 93.7 93.5 93.6 94.5
BiTag (ensemble) 93.3 93.6 93.4 94.7

Table 3.4 CoNLL English test performance

On the DEFT task 3.1 (see Table 3.5), the BiTag model obtains the best F1 result of 77.2
(with the exact delimitation of mentions), and a F1 measure of 67.6 on the DEFT task 3.2.
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DEFT 3.1 (exact) DEFT 3.2 (exact) Overall (F1)
P R F1 P R F1 Exact Half

Copara et al. (2020) 74.4 62.3 70.7
Copara et al. (2020) (ensemble) 75.5 66.0 72.6
BERT + softmax 67.8 31.2 42.7 (±0.6) 62.2 63.9 63.0 (±0.9) 50.4 (±0.5) 60.5 (±0.3)
Autoregressive short→large 78.7 75.9 77.3 (±0.2) 66.8 67.1 66.9 (±0.8) 74.1 (±0.3) 84.5 (±0.1)
BiTag w/o finetuning 78.8 75.7 77.2 (±0.5) 66.7 66.5 66.6 (±0.6) 73.9 (±0.3) 83.6 (±0.2)
Biaffine only 76.2 76.4 76.3 (±0.4) 66.6 67.7 67.1 (±1.4) 73.5 (±0.6) 82.1 (±0.3)
BiTag 78.7 75.9 77.2 (±0.4) 67.5 67.6 67.6 (±1.2) 74.3 (±0.4) 84.3 (±0.1)
Autoregressive short→large (ensemble) 80.3 75.9 78.5 70.0 68.9 69.4 75.4 85.2
BiTag (ensemble) 80.0 76.7 78.3 68.5 68.7 68.6 75.3 85.4

Table 3.5 DEFT test performance
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The ensemble BiTag model reaches 78.5 on the 3.1 task and 68.6 on the 3.2 task. We observe
that the different models have a large variance on the strict F1 score, and a lower one on the
relaxed half F1 score, and that the relaxed score is almost 10 pt higher than the strict one.
This could be explained by a high noise in the entities boundaries annotation. The discrepancy
between the exact F1 score and the half F1 score is even stronger in this case: the BiTag model
gains "only" +0.8 pt on the exact metric, but +2.2 pt on the half metric in comparison to the
Biaffine-only model.

For each data set, we observe that the BERT + softmax model performs worse. On the
CoNLL dataset, it reaches a score of 91.1 Exact F1, below the reported results of (Devlin et al.,
2019) (92.8). This difference might be caused by a difference between the hyperparameters
selections (we used the default hyperparameters of the Hugging Face run_ner.py script),
or the fact that we did not set a maximum sequence size that can affect the outputs of the
commonly used seqeval tool. The performance gap with this baseline much larger on the
other datasets containing nested entities, between 15 and 25pt on GENIA and DEFT, which is
due to the impossibility of predicting overlapping entities using a multi-class BIO tag scheme.

The better results of the ensemble models on each dataset confirm the common idea that
ensembling is an effective way to boost the performance of a model. Similarly, finetuning the
BERT model seems to improve the performance of the models to varying degrees depending on
the domain and language. Overall, the gaps in performance between the two proposed models
(BiTag and Autoregressive) are slim, despite the differences in design between each. This
could be explained by the fact that each model is based on a sequence-labelling mechanism,
and this suggests that features have a more important role, since they are the same in both
our proposed models.

3.7.2 Auto-regressive model ablations

3.7.2.1 Tag scheme

We analyze the performance of two common tag schemes: BIO (Begin, Inside, Outside)
and BIOUL (BIO with Unary and Last tags) to encode observed (i.e. previously predicted)
entities. Results can be found in Table 3.6. As a decoding scheme, the BIOUL tag scheme
shows better overall results than the BIO scheme. This conclusion is similar to what others
(Lample et al., 2016; Ratinov and Roth, 2009) have observed for flat named entity recognition.
Moreover, as an encoding scheme, that is to encode previously predicted entities as features to
the subsquent prediction steps, the BIOUL "encoding" tag scheme’s also shows better results.
Overall, we conclude that a linear representation of entities as a tag sequence benefits from
the added expressiveness of the BIOUL scheme.
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BIO encoding BIOUL encoding
BIO decoding 70.1 71.3
BIOUL decoding 70.5 71.6

Table 3.6 Performance of the BIO and BIOUL reading and writing tag schemes on the DEFT
validation dataset.

3.7.2.2 Autoregressive learning order

From Table 3.7 we can observe that the short-to-large training order obtains the highest
performance on the DEFT validation splits, but the large-to-short depth training order obtains
the highest performance on the GENIA dataset. We did not reach the same conclusion in a
previous work (Wajsbürt et al., 2021b) using a variant of the model architecture for which we
observed that the short-to-large strategy obtained the best result on both datasets. On the
DEFT dataset, where entities can be quite long, we hypothesize that learning to detect the
smallest, and often easier, entities first leads the model to learn how to compose new entities
from small entities. On the other hand, learning to predict large, and often more difficult,
mentions first, must lead the model to overfit on these large mentions and fail to recover
smaller nested mentions when the largest ones are wrongly predicted. On the GENIA dataset,
the large-to-short strategy might perform better due to the different average size of entities.
These inconsistent observations between the two datasets could therefore indicate differences
in entities distribution between each of them and/or highlight an excessive sensitivity of the
autoregressive model to these differences

DEFT GENIA
Exact Half Exact Half

large→ short 70.5 79.7 79.5 85.2
greedy 71.1 80.3 79.2 85.2
short→ large 71.6 80.6 78.7 85.0

Table 3.7 F1 score of the autoregressive ordering strategies experiments on the DEFT and
GENIA validation datasets

3.7.3 Biaffine-tagger model ablation

We remove the tagger component of the biaffine tagger model and only rely on the biaffine
scorer to extract spans. We evaluate the effect of this ablation on the DEFT and GENIA
validation datasets. In this setup, the model is similar to the one of Yu et al. (2020), with the
exception of the BERT embedding computation, for which we did not replicate their expensive
sliding window mechanism with a stride of 1. On the DEFT validation dataset, the strict
performance is not significantly affected and increases by +0.2 pt and decreases by −0.1 pt
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DEFT GENIA
Exact Half Exact Half

base 71.4 80.9 78.9 84.5
− Tagging 71.2 (+0.2) 79.2 (−1.7) 78.8 (−0.1) 83.5 (−1.0)
− Doc context 70.6 (−0.8) 80.2 (−0.7) 78.6 (−0.3) 85.0 (−0.2)
− Char CNN 71.0 (−0.4) 80.2 (−0.7) 78.8 (−0.1) 84.4 (−0.1)
− FastText 71.8 (+0.4) 81.1 (+0.2) 78.8 (−0.1) 84.4 (−0.1)
+ Finetuning 73.3 (+1.9) 82.4 (+1.5) 78.9 (+0.0) 84.5 (+0.0)

Table 3.8 F1 score of the ablation experiments on the DEFT and GENIA validation datasets for
the Biaffine Tagger. Every experiment was averaged on 6 different seeds

on the GENIA validation dataset. However, the effect on half performance is significant as the
model loses −1.7 pt on the DEFT dataset and −1.0 pt on the GENIA dataset.

This type of discrepancy can be explained by the presence of entities with ill-defined
bounds. The tagger model confidently labels words inside an entity where there is little
ambiguity and hesitates on entity boundaries for such entities. On the contrary, the Biaffine-
only model is likely to give too low a score to each pair of start/end bounds and predict no
entity. Both models fail to predict the entity exactly, but the tagger model predicts some of its
words. It may be more valuable for downstream tasks (like the model of Chapter 5) to predict
imperfect entities sometimes than perfect entities or nothing.

3.7.4 Features ablations

Document context We remove the "Document Context" described in Section 3.2.2 and
evaluate the model on the GENIA and DEFT validation sets. From Table 3.8, we can see
that the document context contributes a lot to the performance of the model and removing
it leads to −0.7 pt loss on the DEFT exact metric and −0.3 pt loss on the GENIA exact
metric. In this setup, each sentence is contextualized on both sides. We hypothesize that this
contextualization benefits the model because BERT has been pre-trained with large sentences
(between 128 and 512 tokens), and therefore should have a better representation power for
tokens in long sentences.

Character embeddings We ablate the character embeddings features and observe from
Table 3.8 that these features have a positive effect on the performance for exact and half
metrics, and contribute to up to +0.4 pt of the exact performance on the DEFT dataset and
+0.1 pt on the GENIA dataset. Sub-word embeddings have been shown to perform poorly on
tasks that require a reasoning on the character level (Wallace et al., 2019). Such ability can
be necessary for tasks that involve accurate number representations or acronym detection,
and could therefore benefit named entity recognition. Likewise, the pretrained FastText
embeddings for English and French were trained with a n-gram size of 5 and are fixed during
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training. Thus, they may not offer a representation that enables the model to reason on shorter
n-grams. GENIA contains a lot of DNA and RNA related acronyms, which could explain that it
gains more from the character embeddings than the DEFT dataset. We conclude that character
embeddings offer a useful representation for named entity recognition.

FastText embeddings We remove English FastText embeddings for the GENIA dataset and
French FastText embeddings for the DEFT dataset. On the GENIA dataset, these features have
a positive contribution of 0.1 pt of the model exact performance, and on the DEFT dataset,
these features have a negative contribution of −0.4 pt of the model exact performance. Overall,
these differences are slim, and this mixed effect could be explained by the differences of
language, domain or size between the two corpora.

Wordpiece pooling Table 3.9 shows that the "mean" wordpiece pooling obtains a better
performance than the "first" and "last" pooling strategies. This suggests that every wordpiece
of a word contains information that is relevant to the NER task, rather than only a specific
word such as the first or the last one. This superiority of the mean pooling also holds when
BERT is fine-tuned. However, it is less significant, which suggests that BERT is able to learn to
gather the required information of all the wordpieces of a word in the embedding of the first
or the last.

DEFT GENIA

Frozen BERT
first 71.7 80.0
last 72.0 80.1
mean 73.0 80.5

Finetuned BERT
first 74.4 80.6
last 74.2 80.6
mean 74.6 80.7

Table 3.9 Wordpiece pooling ablation

3.8 Conclusion

In this chapter, we addressed the task of nested named entity recognition and proposed
two approaches. We have compared these models with each other and with state-of-the-art
models. We have highlighted a divergence between the strict and relaxed metrics, which
should not be overlooked when choosing NER models. Indeed, this difference seems to be all
the more important when the dataset is small and contains entities with ambiguous start/end
bounds. We have also provided insight into the behavior of the decoders and the contribution
of the input features. We have shown that finetuning BERT improves model performance,
but more importantly, preserving the context of sentences before running BERT improves
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the performance significantly. We also observed that the autoregressive order impacts the
performance of the layered named entity recognition model and that predicting short entities
first and large ones later gives the best results. Finally, we show that the simpler biaffine
tagger model achieves the best overall results and that its Biaffine-only counterpart performs
worse on relaxed metrics.

In the next chapter, we will focus on the task of normalizing named medical entities.
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In this chapter, we focus on the normalization of medical named entities. More specifically,
we address the task of medical entity normalization in non-English languages for large medical
lexicons containing hundreds of thousands of concepts, with few to no annotated samples.

Our objective is to match a given named entity with a concept in a terminology, as illustrated
in Figure 4.1. We assume that the named entities have already been extracted and may have
been labelled with a semantic group. Possible methods for medical named entity recognition
have been detailed in Chapter 3.

Figure 4.1 Example of medical entity normalization

We take advantage of the multilingual nature of available terminologies and embedding
models to improve concept normalization in non-English languages without translation nor
direct supervision. We chose to consider the task as a standard classification task amongst
concepts, meaning that we only encode concepts of the target terminology, rather than their
synonyms, into fixed-length representations that can be stored and even indexed to accelerate
lookup at inference time.

This chapter is organized as follows. In Section 4.1 we describe the corpora and termi-
nologies used to train and evaluate our model. In Section 4.2 we describe the neural network
model architecture. In Section 4.3 we describe the method used to perform the training and
the inference on new data. We present the experiments n Section 4.4, and the discuss the
results in Section 4.5. Finally, we close this chapter by a conclusion.

The source code for the model described in this chapter is available at the following URL:
https://github.com/percevalw/deep_multilingual_normalization.

4.1 Data

In this our experiments, we focus on normalizing terms in the Quaero FrenchMed corpus
(Névéol et al., 2014) and the Mantra corpus (Kors et al., 2015). We have described both
datasets, and the corresponding UMLS and Mantra vocabularies in Section 2.3.1, and will
briefly review some key aspects of these resources.

https://github.com/percevalw/deep_multilingual_normalization
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Corpus Mentions Unique mentions CUIs French CUI %

EMEA 2015 train* 2695 923 650 67
test** 2260 756 525 70

Medline 2015 train* 2994 2296 1860 77
test** 2977 2288 1847 76

EMEA 2016
train* 2695 923 650 67
dev** 2260 756 525 70
test 2204 658 474 62

Medline 2016
train* 2994 2296 1860 77
dev** 2977 2288 1847 76
test 3103 2390 1909 79

Table 4.1 Statistics of the Quaero corpus. In each EMEA and Medline split, * and ** denote
identical sets of documents between the 2015 and 2016 versions of the corpus

4.1.1 Quaero

The Quaero FrenchMed corpus contains two sets of documents, Medline article search
titles and EMEA drug records, annotated with concepts from the 2014AB version of UMLS in
10 semantic types. Since two versions of this dataset were proposed in 2015 and then 2016
(the latter version proposing a new test set), we will evaluate our method on each version.
Also, in order to ensure a fair comparison with the other systems published on this benchmark,
we use the 2014AB version of UMLS, unless otherwise mentioned. Each annotated entity has
an associated semantic type that can be used to improve normalization predictions. Table 4.1
presents general corpus statistics including the number of annotated mentions (i.e., text spans
linked to UMLS concepts within the documents), the number of unique mentions, the number
of unique concept CUIs, as well as the rate of mentions in each corpus that are linked to a
concept with at least one synonym in French in the terminology. Note that very few mentions
are annotated with more than one CUI in the corpora.

We have described the UMLS in Section 2.3.1. We will call the UMLS Bilingual subset the
set of concepts that have a synonym in both French and English. We built a subset, that we
will call "English 5 sources", of the UMLS with terms from five CHV, SNOMEDCT_US, MTH,
NCI, or MeSH terminologies. We chose these terminologies because they cover 96% of the
labels in the annotated training corpus, without exceeding a million labels. Table 4.3 shows
statistics on the number of concepts and synonyms in English and French, for the versions
2014AB and 2019AB, both used in this work.

4.1.2 Mantra

As mentioned in Section 2.3.1, the Mantra corpus (Kors et al., 2015) consists of 1450
annotated with concepts of the Mantra terminology, in five different languages: English,
Spanish, French, German and Dutch. While the English language has synonyms for every
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Language Docs Mentions Unique mentions Unique CUI Language coverage %
English 550 1963 1366 1301 100.0
Spanish 200 756 522 550 93.9
French 250 1052 729 710 68.5
German 250 1082 751 729 68.4
Dutch 200 677 481 490 64.3

Table 4.2 Statistics of the Mantra corpus

Terminology Subset #synonyms #concepts #synonyms/#concept

UMLS
2014AB

English 5,772,518 2,528,878 2.28
English 5 sources 2,298,600 766,548 3.00
French 179,992 88,985 2.02
Bilingual 544,383 88,911 6.12

UMLS
2019AB

English 9,187,793 4,258,236 2.16
English 5 sources 3,055,453 968,467 3.15
French 374,144 154,362 2.42
Bilingual 903,098 154,307 5.85

Mantra

English 2,030,891 591,665 3.43
Spanish 750,740 309,600 2.42
French 138,990 67,743 2.05
German 116,338 65,974 1.76
Dutch 127,951 60,241 2.12
Overall 3,164,910 591,918 5.35

Table 4.3 UMLS and Mantra terminologies statistics. The UMLS Bilingual subset is the set of
concepts having synonyms in both English and French.

concept that appears in the terminology, other languages do not and coverage drops as low as
64.3% for the Dutch entities, as illustrated in Table 4.2. Most importantly, being much smaller
than the Quaero corpus, the Mantra corpus does not contain a training set and only consists
of test samples. It is therefore not possible to perform any supervised learning on this dataset.
Moreover, unlike the Quaero dataset, the entities are not labeled with a semantic group: only
the text can be used to identify the concept of an entity. Table 4.2 shows statistics on the
number of concepts and entities, as well as the percentage of concepts in each language split
that have at least one synonym of the same language in the Mantra terminology.

4.2 Model overview

We cast the normalization problem as a classification task. C = {c} is the set of all concepts
c (i.e., concepts to predict) identified by their CUI. Each concept is associated with one semantic
group Gc, with very few exceptions (Bodenreider, 2004). We denote the set of all concepts in
a semantic group g as Cg. An entity m is a phrase in a textual document referring to a concept.
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In this work, we consider these mentions to be already available and each labeled with a
semantic group gm. The set of synonyms that share a same concept c is called a synset. For
example, the concept C0678222 contains the synonyms "breast cancer", "breast carcinoma",
"carcinoma of the breast", is associated with the semantic type "Neoplastic Process" and is
therefore in the semantic group "DISO" (Disorders). Given a french term "cancer du sein"
extracted from a document and pre-labelled with the "DISO" semantic group, our goal will be
to correctly map it to the C0678222 concept. Given a dataset, D = [m1,m2, ...,mn] we build
a CUI classifier, i.e to learn a probability distribution P to predict the concept of each mention
m ∈ D:

c∗ = argmaxP (c|m; θ,Hg) (4.1)

where θ represents the parameters of the encoder (detailed below), which goal is to map a
mention to a dense vector space, and Hg represents the embeddings of the concepts in this
space, that have the same semantic group gm as the mention.

Figure 4.2 Model overview. In the two step training (see Section 4.3.2), candidate concepts
(bottom right of the figure) of step 1 are those of the terminology subset; during step 2,
candidate concepts are the top candidates

Our model is a classification model built on top of a pretrained Transformer (Vaswani
et al., 2017). We call this model MLNorm (for MultiLingual Normalization). The model is
described in this section and illustrated in Figure 4.2. The mentions are first tokenized into
wordpieces (Wu et al., 2016) and fed into a pretrained BERT encoder to obtain contextualized
representations ti for each token.

(ti) = BERT(m) (4.2)
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These contextualized token representations are then averaged across each mention as tm,
without the first [CLS] and last [SEP] special tokens

tm =
1

l − 2

∑
i∈[1,l−1]

ti (4.3)

We then perform a projection into a lower dimension embedding to reduce the model size,
apply a ReLU function and normalize the result with batch normalization. This leads to a
mention embedding hm.

hm = BNµ,σ [ReLU(W · tm + b)] (4.4)

where BNµ,σ is the batch normalization layer with mean µ and variance σ, and W and b are
the projection weights and bias respectively. Finally, we classify each mention by computing
the cosine similarity between its representation and the embedding of the concepts in the
semantic group of the mention. Following Wang et al. (2018b) we multiply the similarity by a
hyperparameter s. We obtain concept probabilities by applying the softmax function on these
scores.

P (c|m; θ;H) =
es·cosine(hm,Hc)∑

k∈Cg
es·cosine(hm,Hk)

(4.5)

where

cosine(hm, Hc) =
hm
||hm||

Hc

||Hc||
Hc is the embedding of the gold concept

Hk is the embedding of a concept in the semantic group Cg of c

θ = {µ, σ,W, b,BERT}

4.3 Model training and inference

We now describe the procedure to train this model and perform predictions with it.
Training our model can be done by learning/finetuning the parameters of the encoder,

and all the concepts at the same time, as a standard classification model. In this setup, we
iterate through mini-batches of synonyms and classify each synonym against the set of all
possible concepts. However, the number of concepts can be very large (up to almost a million
in our experiments), and affect both the required computational time required and available
memory for training. We discuss two procedures to reduce this computational burden.
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4.3.1 Top candidate sampling

A first method, illustrated in Figure 4.3 consists in filtering the set of concepts that are
going to be included in the softmax computation, by only keeping those that are the most
probable, and the gold concept.

For each synonym, we will refer to its k most likely concepts as its k top candidates.

top_candidates = topkcP (c|m, θ,H) (4.6)

Figure 4.3 Overview of the local concept embedding learning. For each synonym (green dot),
we compute its k closest concepts neighbors (squares in the blue disk). Only these concept
neighbors will be updated (arrows)

Indeed, for each mention, most of the concepts have a near-zero probability and are
therefore not updated during the optimization. Using this method, we only have to compute
gradients for a relevant subset of the concept embeddings, thus enabling a faster and more
memory-efficient training. Since a batch consists of multiple samples, each sample lists its
own most likely concepts, and the set of concepts that will be optimized in a given batch is
the union of all. This relates to softmax sampling methods (Jean et al., 2015) with synonym
dependent hard negatives (Schroff et al., 2015).
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Figure 4.4 Two steps training procedure

4.3.2 Two steps training

We propose to include the previous mechanism in a two step training procedure, illustrated
in Figure 4.4. Intuitively, the role of the encoder is to group synonyms such that multiple
synonyms of a same concept, maybe in different languages, are projected to the same location
in the embedding space. The finetuning of BERT and learning of concept representations
is time-consuming and computationally expensive. Moreover, the inclusion of all concepts
might not be required to learn this behavior. Therefore, we suggest to start by training the
encoder on a subset of synonyms and concepts, with full softmax computation. To choose
an adequate subset, we keep bilingual concepts, that have a synonym in at least English and
another language (French in the case of Quaero), to focus our training on the multilingual
capacity of the model. This leads to a system called S1, limited to predicting only concepts
having French synonyms.

In a second step, we freeze the encoder (Transformer + projection parameters) and train
the representation of all the concepts (not only those of the initial subset) with the top-k
softmax computation. The idea is that enough synonyms were seen during the first step to
ensure that the encoder produces adequate medical entities representations. We now only
need to add the missing concepts to the model. The encoder being frozen, the embeddings of
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the synonyms stay the same during the second step, and we can efficiently compute the indices
of the top candidates before starting the optimization. For each concept, we re-initialize its
embedding as the sum of its synset’s representations:

Hmean
c =

∑
m ∈ synset(c)hm (4.7)

and use these representations to compute and store the k top candidates for each synonym.

4.3.3 Prediction

At inference time, a mention is tokenized and passed into the encoder and the classifier.
We subset the candidate concepts to only keep those that are in the semantic group of the
mention if given (only for Quaero entities in our experiments). Finally, we apply a threshold
to remove all the predictions that have a low probability. This filtering is required because
not all mentions can be mapped to a concept: in our experiments, 4% of the concepts that
occurred in the training set where dropped as described in Section 4.1.1. We expect that the
filtering will leave out the entities with missing concepts.

4.4 Experiments

We now present and discuss the results obtained by the system on the Quaero and Mantra
datasets.

We report our main results on the test datasets from the Quaero FrenchMed 2015 and
2016 challenges, on the Mantra dataset and the results of our additional experiments, using
the traditional metrics precision, recall and F1-measure. We also give some predictions of the
distantly supervised (trained without the Quaero training set) model in Table 4.6.

The method was evaluated through two main sets of experiments that we call "distantly
supervised" and "supervised." In the "distantly supervised" setup, we used only distant super-
vision from the UMLS, and no direct concept supervision from the available, labeled samples
from Quaero. Since the Mantra corpus does not contain a training set, the models that we
evaluate on this dataset also fall in the "distantly supervised" category and were only trained
with the (synonym, concept) pairs from the Mantra terminology. These systems do not suffer
from any potential bias related to the specificities of the corpus and do not benefit from the
redundancy of mentions in labeled data sets.

In the "supervised" setup, we augment the training (synonym, concept) pairs with mentions
and labels from the Quaero Medline and Quaero EMEA training sets, thus enabling comparison
with state-of-the-art supervised approaches on the Quaero dataset. Despite being annotated
with concepts from all the UMLS 2014 AB version, we restricted the concepts used in our
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Quaero experiments to the EN5 subset (see Table 4.3), because of its good coverage of the
corpus and reasonable size.

4.4.1 Experimental setup

We chose the hyperparameters by selecting the best-performing values on the training set
of Quaero in the distant supervision setting. We kept the same hyperparameters to train the
Mantra models. We run our models on a 20 Go Tesla P40 GPU, except the 1-step experiment
which required a 30Go Tesla V100 GPU.

As a result from the hyperparameter search described above, the token embeddings space
of size 768 is projected into a space of size 350, the cosine similarity scaling parameter s is of
20, both dropout rates for the transformer and the projection layer are set to 0.2. We set the
batch size to 128 and the maximum synonym wordpiece count to 100. We used two different
learning rates, lrBERT for the pretrained transformer, lrmain for the concept embeddings and
projection layer. During the training, we vary the learning rates using two schedules. Following
Sun et al. (2019), we used a slanted triangular learning rate lrBERT for BERT with a warm-up
phase of 10% of the total number of training steps. We keep the learning rate lrmain constant
during the warm-up phase and linearly decay it for the rest of the training. We set the
maximum learning rates to lrBERT=2e-5 and lrmain = 8e-3. We used Adam with parameters
β1 = 0.9 and β2 = 0.999. During the second step of the two-steps training, we preselect
the k = 100 highest scoring concepts for each synonym. Unless mentionned otherwise, we
perform the step 1 training for 15 epochs and the step 2 for 5 epochs in the 2-step setup, the
probability threshold is set to 0.1 and the pretrained Transformer is the multilingual BERT
(bert-base-multilingual-uncased in the Huggingface library) (Devlin et al., 2019).

4.4.2 Baselines and ablations

Baselines We compare our system against the following baselines:

— the top ranked systems of respectively CLEF 2015 (Afzal et al., 2015) and CLEF 2016
(Cabot et al., 2016), on the same exact task of normalization from gold-standard men-
tions. The CLEF 2015 winning team (Afzal et al., 2015) first augments the French UMLS
by translating a subset of the English UMLS concepts encountered in Medline abstracts,
using Google Translate. This terminology is then queried by a rule-based text indexer.
The CLEF 2016 winning team (Cabot et al., 2016) relies on their ECMT indexer which
performs bag of words concept matching at the sentence level and integrates up to 13
terminologies partially or totally translated into French.

— the best-performing system, to the best of our knowledge (Roller et al., 2018) on Quaero
and Mantra. In this work, the authors first train a local LSTM-based French to English
translator on synonym pairs from the UMLS and other general domain sources. The
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French and English terminologies are then indexed and searched using Apache Solr
through exact and fuzzy matching rules.

We also performed a range of ablation studies and additional experiments on the distantly
supervised setup, in order to estimate the impact of our different choices.

Impact of the two-step procedure We trained our system in one step with full softmax
instead of two steps, using all the synonyms (French and English from EN5), and evaluated
the model on the Quaero 2015 dataset. This is a much more time- and memory-consuming
experiment that will allow us to estimate the trade-off between cost and quality.

Impact of the pretrained embeddings We compare the performance on Quaero, using
different BERT embeddings either trained on French data only (CamemBERT (Martin et al.,
2020), model camembert-base-uncased) or English-only (model bert-base-uncased), or multi-
ple languages (bert-base-multilingual-uncased), in order to evaluate the contribution of the
multilingual embeddings.

Impact of translating entities Since the system from Roller et al. (2018), based on machine
translation + English-only normalization, is quite different from our own system, we also
experimented on the Quaero dataset with a machine translation approach combined with our
classifier. This allows a fairer comparison between our multilingual learning approach and
a translation-based approach. For this purpose, we translated all UMLS French terms with
a state-of-the-art pretrained (opus-mt-fr-en) translation system (Tiedemann and Thottingal,
2020) built with MarianMT (Junczys-Dowmunt et al., 2015) and trained on the OPUS bitext
repository corpus (Tiedemann, 2012). We then trained our model with all original-English
and translated-English terms. We called this strong baseline BERT-MT (using the English
BERT) and mBERT-MT (using the multilingual BERT).

Impact of more French terms (UMLS2014AB vs. UMLS2019AB) We present an experi-
ment using the 2019AB version of the UMLS, containing 154k concepts with French synonyms
instead of 89k in the 2014AB version. With this system (UMLS2019), we aim at showing the
impact of adding new French synonyms to the terminology used for distant supervision.

Impact of the training language We evaluated the impact that the training data language
has on the performance of our system. To do so, we only trained our distantly supervised
system on the bilingual UMLS concepts (French and English) and evaluated it on the Quaero
2015 corpus. This filtering was done to train our experiments with the same number of
concepts, and mitigate the errors that occur due to missing concepts in the training data.
Because the number of synonyms is lower, we trained FR-only model, EN-only model and
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FR+EN model longer for 30, 20 and 20 epochs respectively. We use a probability threshold of
0.5 since more entities have concepts that are not seen during training. Moreover, due to the
small number of concepts in this configuration, the two-step training was not necessary.

— FR/EN: trained with synonyms of bilingual UMLS concepts

— FR-only: only the French synonyms of these bilingual concepts

— EN-only: only the English synonyms of these bilingual concepts

On the Mantra dataset, we evaluated the effect of training the system with various lan-
guages combinations. More specifically, we trained 6 systems with subsets of the Mantra
terminology, containing either:

— the synonyms in all languages (Multilingual)

— only the English synonyms (ENG)

— the English and the French synonyms (ENG + FRE)

— the English and the Spanish synonyms (ENG + SPA)

— the English and the German synonyms (ENG + GER)

— the English and the Dutch synonyms (ENG + DUT)

We report the performance on each language in the Mantra dataset for all of these models.

4.5 Results and discussion

4.5.1 Main results

On the Quaero corpus, our distantly supervised system obtains very good results without
concept-labeled training data (Table 4.4). It even reaches a slightly higher performance than
the best system published so far (Roller et al., 2018) on the corpus MEDLINE 2015 (F1=73.7
vs. 73.6) that used the Quaero training set. It also outperforms all participants of the 2016
edition. Note that CLEF campaigns provide scores on both end-to-end task (named entity +

normalization) and normalization-only task; similarly to Roller et al. (2018), we compare
to the latter. The much higher term redundancy can explain the better score of supervised
systems on EMEA corpus (e.g., F1=83.5 and 73.4 on 2015 and 2016 for Roller et al. (2018)
vs. resp. 76.5 and 72.7 for our system) between training and test set (see Table 4.1), which
gives a free boost to supervised systems but is not very representative of a real world scenario
where no annotated document is available. Training our system with corpus data leads to an
F1 improvement of +5.3 pt, +8.6 pt, +4.1 pt and +1.6 pt on resp. MEDLINE 2015 and EMEA
2015, MEDLINE 2016 and EMEA 2016. It outperforms other systems by a large margin on
MEDLINE. It also outperforms (Roller et al., 2018) on EMEA 2015 and 2016, but not (Afzal
et al., 2015) that obtained a perfect precision on EMEA 2015, at the cost of many handcrafted
rules and extra labeled data.
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MEDLINE 2015 EMEA 2015
Prec. Rec. F1 Prec. Rec. F1

Others
2015

(Afzal et al., 2015) 80.5 57.5 67.1 100 77.4 87.2
(Roller et al., 2018) 83.1 66.1 73.6 90.9 77.2 83.5

MLNorm dist. supervised 75.6 71.9 73.7 79.7 73.6 76.5
supervised 80.6 77.5 79.0 87.5 82.7 85.1

MEDLINE 2016 EMEA 2016
Prec. Rec. F1 Prec. Rec. F1

Others
2016

(Cabot et al., 2016) 59.4 51.5 55.2 60.4 46.3 52.4
(Roller et al., 2018) 77.1 66.3 71.3 78.1 69.2 73.4

MLNorm dist. supervised 77.5 73.4 75.4 74.6 70.9 72.7
supervised 86.0 74.0 79.5 83.2 67.0 74.3

Table 4.4 Main results for our system on the 2015 and 2016 Quaero datasets, and comparison
with existing systems.
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English Spanish French Dutch German
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

(Roller et al., 2018) (Medline) — — — 79.0 60.7 68.7 79.4 60.4 68.6 76.7 56.0 64.8 80.4 58.8 67.9
MLNorm (Medline) 82.7 80.7 81.7 76.5 72.5 74.5 75.6 67.7 71.5 75.4 65.4 70.0 80.7 71.8 76.0
MLNorm (all) 82.5 79.6 81.0 75.7 71.3 73.4 78.2 70.4 74.1 74.7 64.0 68.9 77.9 68.6 73.0

Table 4.5 Comparison between our system and Roller et al. (2018) on the Mantra dataset. Roller et al. (2018) only evaluate their
method on Medline titles. We also provide the results for all documents in the Mantra corpus (all).
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System Example mention Expected concept + synonyms Predicted concept + synonyms

MLNorm(S2)

greffon renal

C1261317
— [EN] transplanted kidney
— [EN] kidney transplant
— [EN] structure of transplanted kidney

X

cinquième métacarpien

C0730166
— [EN] bone structure of fifth metacarpal
— [EN] fifth metacarpal bone
— [EN] fifth metacarpal

X

vaccination par le b.c.g

C0199804
— [FR] immunisation contre la tuberculose
— [EN] bcg vaccination
— [EN] tuberculosis vaccination
— [EN] tuberculosis immunization
— [EN] administration of bcg vaccine. . .
— (other similar English synonyms)

X

in vitro

C0681828
— [EN] in vitro study
— [EN] studies vitro
— [EN] study vitro

C3850137
— [EN] in vitro techniques
— [EN] technique in vitro
— [EN] in vitro as topic

coffea robusta C0678439
— [EN] coffea rubusta (food)

C1138610
— [EN] coffea arabica

mBERT-MT cellar (translated from the
French “cave”)

C0042460
— [EN] vena cava structure
— [EN] venae cavae
— [EN] vena cava
— [EN] vein
— [MT] veins cellars (from “veines caves”
— [MT] vein cellar (from “veine cave”)

C0007634
— [EN] cell
— [EN] cell structure
— [EN] cells set
— [EN] cellular
— [EN] normal cell
— [MT] cells (from “cellules”)

be careful (translated from
the French “attention”)

C0004268
— [EN] attention
— [EN] attentions

C3257858
— [EN] my thinking is usually
careful and purposeful

Table 4.6 Some predictions from our system. The last two columns contain the synonyms seen during training for the target concept
and the predicted one, if different. Some long or similar synonyms have been removed to improve readability.
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We can also see that the system using only French synonyms (FR-only in Table 4.11)
performs much worse, with almost 20 points less in recall than the model trained with all the
terminology, which we can attribute to the missing concepts in the French UMLS.

On the Mantra Medline titles (Table 4.5), the F1 score of our system outperforms the
reported results of Roller et al. (2018) by a large margin in all languages, namely Spanish (+
5.8 pt), French (+ 2.9 pt), Dutch (+ 5.2 pt) and German (+ 8.1 pt), as illustated in Table 4.5.
However, it is worth mentioning that their method obtains a higher precision in all languages
except German. Besides our use of a pretrained Transformer to compute rich representations
of entities, we believe that this gap is also explained by their only bilingual translation, since
they train a system for each language to translate entities into English. In contrast, we take
advantage of all the languages to train a single multi-lingual system. We will expand further
on this aspect in Section 4.5.6.

We will now discuss the experiments described in Section 4.4.2

4.5.2 Impact of the two steps training

Our experiment with one-step training procedure showed no improvement over the two-
step training (Table 4.7, "1-step"), and took approximately 15 hours instead of 7 hours (5
hours for the first step and 2 hours for the second step with one million synonyms). Our
two-step method can therefore effectively reduce training time without reducing accuracy by
choosing an appropriate partition of the training data. Our results even show a slight loss in
performance for the one-step model. This could be explained by the regularization that occurs
in the two-step training when we freeze the encoder during Step 2. Indeed, since most of the
data seen during Step 2 is English, unfreezing the encoder may encourage the model to forget
its inner translation abilities.

MEDLINE 2015 EMEA 2015
Prec. Rec. F1 Prec. Rec. F1

2 steps 75.6 71.9 73.7 79.7 73.6 76.5
1 step 78.5 69.2 73.6 81.6 71.4 76.2

Table 4.7 Comparison on Quaero 2015 of two models trained with the one step procedure or
the two steps procedure

4.5.3 Impact of translating entities

Our experiments with translated French terms (Table 4.8) show that even a good machine
translation model can lower the accuracy of the final model. We experimented with both
English BERT and multilingual BERT to account for the impact of the transformer pre-training
language. We could argue that the off-the-shelf translation model could be improved by



4.5 Results and discussion 71

MEDLINE 2015 EMEA 2015
Prec. Rec. F1 Prec. Rec. F1

MLNorm (dist. supervision) 75.6 71.9 73.7 79.7 73.6 76.5
w/ mBERT-MT 73.5 70.2 71.8 78.4 74.6 76.5
w/ BERT-MT 75.1 69.8 72.4 77.4 73.7 75.5

Table 4.8 Comparison of our system with a comparable machine translation approach, using
our classifier.

fine-tuning on UMLS synonyms like Roller et al. (2018). However, we think that those results
hint at the fact that translation and indexer pipeline may suffer from error cascade: being
trained in an end-to-end fashion, our system does not suffer from this behavior. Table 4.6
shows that the ambiguity of some terms ("cave" can mean both "cellar" and "cava" in English)
is lost during translation.

4.5.4 Impact of the pretrained embeddings

MEDLINE 2015 EMEA 2015
Prec. Rec. F1 Prec. Rec. F1

mBERT (mulilingual) 75.6 71.9 73.7 79.7 73.6 76.5
camemBERT (FR) 76.9 70.4 73.5 82.1 69.9 75.5
BERT (FR) 75.9 71.6 73.7 80.5 73.4 76.8

Table 4.9 Comparison on Quaero 2015 of two models using differently pretrained BERT models

Our experiments with French-only embeddings CamemBERT and English-only embeddings
BERT, reported in Table 4.9, show that our hypothesis that multilingual embeddings improve
the system’s performance is not verified, with almost no difference between these three
embeddings. French wordpieces and embeddings can handle medical terms in English, and
vice versa. Even if this can be again explained in part by the proximity of the two languages
concerned, the low results of EN-only in Table 4.11, yet benefiting from much more training
data, suggest that it is not that obvious; besides, other papers in the literature suggest that
multilingual embeddings are helpful even for such pairs of languages (Pires et al., 2020;
Wu and Dredze, 2020). This observation may also be due to the fact that medical synonym
normalization data (short word sequences) is quite different from BERT pretraining data (full
sentences), so it is harder for the model to re-use its multilingual knowledge. This aspect
deserves more experiments, notably on other, non-European languages. Note that biomedical-
specific embeddings such as Clinical BERT (Alsentzer et al., 2019) are not yet available in
French, which is why we did not consider them. Moreover, as illustrated in Table 4.6, we
can see that the model correctly predicts concepts, even when no common wordpieces exist
between the entity and the training synonyms of the target concept. Therefore, the proximity
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between French and English cannot be the only explanation to the model performance. To
correctly classify the mention "cinquième métacarpien" (fifth metacarpal bone) to its concept,
without having the numeral "cinquième" in any of the training synonyms, the model must have
learned to generalize from other concepts that contained both French "cinquième" and English
"fifth" in their training synonyms. We can also note that despite addressing out-of-vocabulary
errors with wordpiece vocabularies, such errors still exist. For example in Table 4.6, "robusta"
(single wordpiece "##robusta") and "rubusta" (two wordpieces, "##rubus" and "ta") are
tokenized differently despite having almost identical characters. Recent models (El Boukkouri
et al., 2020) that compute wordpieces embeddings from their characters are a promising
approach to reduce such errors.

4.5.5 Impact of more French data

MEDLINE 2015 EMEA 2015
Prec. Rec. F1 Prec. Rec. F1

UMLS 2014AB 75.6 71.9 73.7 79.7 73.6 76.5
UMLS 2019AB 75.3 71.0 73.1 79.5 72.8 76.0

Table 4.10 Comparison on Quaero 2015 of two models trained with the synonyms of 2014AB
UMLS or those of the 2019AB UMLS

Our experiment with UMLS 2019AB (Table 4.10) leads to slightly lower results than the
model trained with the 2014AB version, despite the much higher number of concepts with
French synonyms. The system has more French terms to train on, but the coverage in the
Quaero corpora is not much better. In addition, this could be explained by the higher number
of concepts, i.e. choices, for each model prediction. Since Quaero annotations are based
on a different version of UMLS, it is possible that some entities would have been annotated
differently if the 2019 version of UMLS had been used, possibly leading to some prediction
errors.

4.5.6 Impact of the training languages

MEDLINE 2015 EMEA 2015
Prec. Rec. F1 Prec. Rec. F1

FR synonyms only 73.8 52.8 61.5 82.4 52.8 64.4
EN synonyms only 79.7 45.1 57.5 84.3 41.0 55.1
FR + EN synonyms 78.3 62.1 69.3 82.7 57.4 67.8

Table 4.11 Comparisons between monolingual training setups and bilingual training evaluated
on the Quaero dataset. Only concepts that have both French and English synonyms were kept.
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In Table 4.11, we compare the same model trained with either only the French synonyms
of bilingual concepts, only the English synonyms, or with both (FR + EN synonyms). FR +
EN achieves an 7.8 pt improvement over FR-only, despite having the same concepts coverage
and the same pretrained embeddings. This indicates that a larger training set, even in
a different language can help improve the system’s performance by a significant margin.
This improvement could be attributed to the lexical similarities between French and English
languages. For example in Table 4.6, the only training French synonym of "vaccination par le
b.c.g" is "immunisation contre la tuberculose" and shares no common word. The system can
therefore benefit from the addition of similar terms, such as "bcg vaccination" even though
they are in English.

English Spanish French German Dutch Overall
ENG 81.1 52.2 53.0 45.9 38.7 62.2
ENG+SPA 81.9 72.8 60.8 49.9 40.0 67.4
ENG+FRE 81.4 56.9 73.7 48.8 40.9 67.4
ENG+GER 81.8 55.5 56.6 70.9 45.2 68.3
ENG+DUT 81.4 55.7 55.1 51.7 66.1 66.6
Multilingual 81.0 73.4 74.1 72.9 68.8 75.7

Table 4.12 F1-score of the system on the Mantra corpus when trained with different language
combinations

The F1 scores from our experiment with different language combinations on the Mantra
dataset are presented in Table 4.12. Not surprisingly, looking at the diagonal of the table,
the model performs better for a given language when that language was part of the train-
ing combination, and conversely performs worse when that language was not seen during
training. However, we also observe that the multilingual training configuration improves the
performance for all non-English languages compared to the bilingual training. In particular,
the Dutch and German scores increase by more than 2 points with the multilingual model
compared to the bilingual model. The different models seem to achieve similar scores for
English, but we note that the the Spanish-English combination seems slightly better.

Another interesting way to read the results is to look at the interactions between different
languages (other than English). We can see that the Dutch language benefits the most from
training in German, and vice versa, and that the French language benefits the most from
training in Spanish, and vice versa. This can be explained by the etymological similarity
between the languages in these two pairs. Both these experiments on Quaero and Mantra
demonstrate the transfer that operates between languages, and the importance of training on
multiple languages when possible.
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4.6 Conclusion

In this chapter, we have presented a method for medical entity normalization. Our method
is able to handle a large number of concepts and predict entities in French, despite the low
number of French synonyms in international terminologies. We obtained state of the art
results on the Quaero and Mantra corpora. We demonstrated the importance of training with
French and English data jointly, and even the benefit of training a single multilingual model,
instead of several bilingual models.

Our system can therefore be used to normalize simple entities on medical documents,
and does not require manually annotated concepts to obtain good results. These structured
predictions can then be used directly to query reports, or as inputs to more complex systems.
In the next chapter we will focus on the task of extracting structured entities from breast
imaging reports.
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In this chapter, we focus on the problem of extracting structured entities from breast
radiology reports, as described in the introduction to this thesis. These reports contain rich
and useful information about a patient’s physical condition, clinical history, and physician
assessments and recommendations.

As discussed in the Chapter 2 Section 2.4.1, the task of structured entity extraction can be
approached from a frame semantic perspective. We describe a frame-based annotation scheme
for extracting radiological entities, procedures, and assessments from these reports. Using this
scheme, we describe a new corpus of 120 annotated documents from the APHP clinical data
warehouse. Next, we consider the task of automatically generating these annotations. While
many methods exist for related topics such as event extraction, slot filling, or discontinuous
entity recognition, a challenge in our study resides in the fact that clinical reports typically
contain overlapping frames that span multiple sentences or paragraphs. We propose a new
method that addresses these difficulties and evaluate it on the new annotated corpus. Despite
the small number of annotated documents, we will see that the hybridization between 1/ a
system of constraints on the outputs of the system, 2/ a terminology and a 3/ learning-based
system allows us to quickly obtain proper results. We will also introduce the concept of scope
relations and show that it both improves the performance of our system, and provides a visual
explanation of the predicted relations. In this study, we will focus only on the extraction and
classification of frames, and leave the task of object extraction, i.e. frame coreferences, for
future work.

In order to avoid confusion, we will call simple entities "mentions", the conjunction of
several mentions and labels "frames" and the union of several frames "objects". Examples of
mentions will be denoted by the form [the mention].

This chapter is organized as follows. We first describe the annotation scheme and the
resulting corpus in Section 5.1. In Section 5.2, we describe the architecture of the proposed
model. We will detail the different components that will allows us to extract and normalize
the named entities and compose them as frames. We present several experiments in order to
study the contribution of the various components of the model and the choices regarding its
training in Section 5.3, and the discuss the results in Section 5.4. Finally, we close this chapter
with a conclusion.

This study was approved by the institutional review board at APHP (CSE 190022) as part
of the EZMammo project. Only previously pseudonimized documents were used in this study
(Paris et al., 2019). The source code for the model described in this Chapter is available at the
following URL: https://github.com/percevalw/breast-imaging-frame-extraction.

https://github.com/percevalw/breast-imaging-frame-extraction
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5.1 Annotation scheme

We first detail the annotation scheme and the resulting dataset. We focus on entities related
to therapeutic (e.g. surgery) or diagnostic (e.g. mammography) procedures, radiological
observations (e.g. cysts or masses), and breast density or BIRADS scores. The relevant entities
to extract were the result of discussions with a physician expert in the field. The annotation
scheme itself was the result of many iterations between annotations and scheme revision.
The document-level statistics are detailed in Table 5.1. The corpus consists of 120 annotated
clinical documents, 80 for the training set and 40 for the evaluation set.

train test
count 80 40
average words 361.0750 362.175
average lines 45.7375 45.475
average frames 19.4750 18.425
average objects 10.8125 10.475

Table 5.1 Document level statistics for the EZMammo NLP corpus

Our annotations focus on three types of elements: mentions, frames and objects. Mentions
are simple named entities that consist of a begin, an end, a type and optionally a value. We
have seen in Chapter 3 how to extract entities and in Chapter 4 how to label them using a
fine-grained terminology. Frames are conjunction of mentions, that is entities in which every
mention applies its meaning. Finally, objects are unions of frames that define the same real
world elements.

As an example, we seek to structure the following report excerpt. The extracted mentions,
frames and objects are presented in Figure 5.2.

Breast ultrasound:
Left:
Two cysts located on the 8 o’clock radius at
3 cm, and at 2cm on the 6 o’clock radius.
These nodules are millimetric.

Right:
No abnormal masses to report.

CONCLUSION :
Multiple cysts on the left.

1

2

3

4

5

6

7

8

9

10

11

Figure 5.1 Fictitious radiology report except
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Diag. procedure object 1 Frame 1 Frame 2
field value justification value justification
trigger [Ultrasound] [Ultrasound]
type ultrasound [Ultrasound] ultrasound [Ultrasound]
organ breast [Breast] breast
laterality left [Left]: right [Right]:
temporality overlap overlap

Finding object 1 Frame 3 Frame 5
field value justification value justification
trigger [cysts], [nodules] Multiple [cysts]
organ breast [Breast] breast
laterality left [Left]: left on the [left]
temporality overlap overlap
quadrant
size [millimetric]
distance 30mm [3 cm]
angle 8 [8 o’clock radius]

Finding object 2 Frame 4 Frame 5
field value justification value justification
trigger [cysts], [nodules] Multiple [cysts]
organ breast [Breast] breast
laterality left [Left]: left on the [left]
temporality overlap overlap
quadrant
size [millimetric]
distance 20mm [2 cm]
angle 6 [6 o’clock radius]

Table 5.2 Mention, frames and objects extracted from the example 5.1

5.1.1 Mention annotation

First, we annotate several types of mentions, each justifying the value of a field in a frame.
In our scheme, each mention has an effect that can be combined with other effects to describe
an entity. Some mentions have the effect of justifying the existence of a frame: we will refer
to these mentions as "triggers". Other mentions have the effect of specifying an attribute of an
object: we will refer to them as "attribute" mentions. No frame is created if there is no trigger,
even if several attributes are present. In the example 5.1, the trigger [Ultrasound] mention
has the effect of creating at least one "Diagnostic procedure" frame, whereas the [millimetric]
attribute has the effect of giving a size to the frames that it is part of.
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The trigger mention types are BIRADS score, Breast density, Diagnostic procedure, Thera-
peutic procedure and Radiological lesion. The additional attribute mention types are Diagnostic
procedure type, Therapeutic procedure type, Breast density type, BIRADS score type, Organ,
Laterality, Temporality, Size, Distance, Angle and Breast quadrant.

We have chosen to annotate mentions describing attributes (such as laterality or size)
even if they are not part of any frame. On the other hand, trigger mentions are not annotated
if they do not justify the presence of an object. In the sentence "No suspicious mass on the
right", only [right] is annotated as potentially justifying the laterality of an object, but not
[mass] since it is preceded by a negation, and therefore does not justify the creation of any
radiological lesion object.

Finally, each mention is classified, or normalized, according to a predetermined set of
values. For example, a trigger mention "Breast density" may be labeled exclusively "type 1",
"type 2", "type 3", "type 4". A laterality can take the values "left", "right", or "left + right".

The annotation statistics for mentions and their type are described in Table 5.3.

5.1.2 Frame annotation

Frames describe semantic slices of an object, or conjunction of triggers and attributes that
share their effect (or concept) on a given entity. In the above example, [8 o’clock radius]
(applying an angle), [3cm] (applying a distance), [Left] (applying a laterality), [Breast]
(applying an organ) and the trigger [cysts] (applying the effect of existing) share their respective
effect on a same slice of an object. These mentions may be located in different sentences or
paragraphs, and a field in a given frame may be justified by several mentions. On the other
hand, if an object is described in several places in the text, we annotate it with several distinct
frames. The notion of "several places" and the choice to split a same object into multiple
frames is sometimes ambiguous. We choose to annotate a single frame for an object if it is
described on several juxtaposed sentences, and split it into multiple frames otherwise. For
instance, the [cysts] trigger is combined with the [nodules] trigger because they are found in
juxtaposed sentences, and [nodules] is clearly referring to the previously mentioned [cysts].

All frames follow a specific scheme that constraints the set of labels and mentions (or
effects) combinations. A summary of the frame schemes is shown in Figure 5.4. In practice,
these constraints take the form of a list of 2502 label tuples that enumerates every possible
mention / label combination. For example, a Cancer Risk type 0 on the right breast at the
time of the exam is described by the following tuple:

(score_trigger, score_type_0, temp_overlap, organ_breast, lat_right)

As shown in the structured output 5.2 of example 5.1, five frames are annotated:

— the ultrasound "Diagnostic procedure" frame for its left location, composed of the [Breast],
[ultrasound] and [left] mentions on lines 1 and 2



5.1 Annotation scheme 80

Mention type Mention value (if any) Train Test Examples
Trigger mentions

Finding 491 228 [nodules], [mass]
Diagnostic proc. 468 227 [mammography]
Therapeutic proc. 80 32 [surgery], [chemo]
BIRADS score 132 64 [ACR 3]
Breast Density 55 27 [type 2 density]

Attribute mentions

Diagnostic
proc. type

biopsy procedure 123 49 [micro-biopsy]
ultra sound procedure 128 81 [ultrasound]
MRI procedure 32 17 [MRI]
mammography 137 74 [mammography]
other 17 11 [PET scan]
palpation 19 4 [palpation]

Therapeutic
proc. type

surgery 32 13 [tumorectomy]
other 19 7 [radiotherapy]

BIRADS score
type

Type 0 BIRADS score 1 0 [ACR0]
Type 1 BIRADS score 20 7 [ACR 1]
Type 2 BIRADS score 48 30 [score BIRADS 2]
Type 3 BIRADS score 19 9 [ACR 3]
Type 4 BIRADS score 18 8 [ACR 4]
Type 4a BIRADS score 6 1 [ACR4a]
Type 4b BIRADS score 2 1 [ACR 4 b]
Type 4c BIRADS score 2 5 [ACR 4c]
Type 5 BIRADS score 8 4 [ACR 5]
Type 6 BIRADS score 2 1 [ACR 6]

Density type

Type 1 breast density 10 3 [type A density]
Type 2 breast density 24 15 [type 2 density]
Type 3 breast density 18 7 [type III density]
Type 4 breast density 2 2 [type D density]

Angle 51 19 [8 o’clock position]
Radial distance 63 30 at [1cm from the nipple]
Size 130 70 measured at [1cm]

Temporality
future temporality 35 20 [in 6 months]
current temporality 101 47 exam date if any
passed temporality 212 106 [last time]

Organ breast organ 461 235 [breast]
other organ 78 8 [kidney], [hepatic], ...

Laterality left laterality 345 188 [left]
right laterality 349 183 [right]

Breast quadrant

areolar region 42 28 [para areolar region]
axillary region 110 55 [axillary areas]
lower outer quadrant 21 7 [lower outer quadrant]
lower inner quadrant 12 6 [lower inner quadrant]
upper outer quadrant 60 37 [upper outer quadrant]
upper inner quadrant 10 9 [upper inner quadrant]
outer quad. junction 27 12 [outer quadrants junction]
lower quad. junction 19 7 [lower quadrants junction]
inner quad. junction 6 5 [inner quadrants junction]
upper quad. junction 25 3 [upper quadrants junction]

Table 5.3 Mention annotation statistics
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— the ultrasound "Diagnostic procedure" frame for its right location, composed of the
[Breast], [ultrasound] and [right] mentions on lines 1 and 7

— the first "Finding" frame of the first nodule, with two trigger mentions: [cysts] and
[nodules] and attribute mentions [8 o’clock position], [3cm] and [millimetric] on lines
1, 2, 3, 4 and 5

— the first "Finding" frame of the second nodule, with two trigger mentions: [cysts] and
[nodules] and attribute mentions [6 o’clock position], [2cm] and [millimetric] on lines
1, 2, 4 and 5

— the second "Finding" frame of both nodules in the conclusion: composed of the trigger
[cysts] and the laterality [left] on line 11

Since the mass negation on line 8 is not an indication of the presence of an object, we do not
annotate it. The temporality of each frame overlaps the exam, although no explicit mention
can support this fact, so we fill the temporality field of the frames with the value "overlap"
and leave the justification empty.

5.1.3 Object annotation

Finally, the different frames are grouped into objects. Objects are union of frames. For
a given set of concepts, multiple frames might be required to describe a same object. In
the context of of growing lesions, a union of multiple (temporality, size) conjunctions can
represent the evolution. In an other setting with moving objects, a union of (temporality,
localisation) labels could be used. In our case, as we represent lateralities with two exclusive
"left" and "right" concepts, bilateral objects are described with two co-referent frames.

In the previous example, three objects are annotated, grouping two frames for the ultra-
sound procedure and two frames for each cyst. The last nodule frame in the conclusion is a
case of plural coreference, since it its attributes apply to both objects. In this case, the frame
describing several objects is added to each one. The statistics of objects in the annotated
documents are described in Table 5.5. This step amounts to annotating coreferences between
frames.

5.1.4 Annotation process

Clinical documents were de-identified automatically beforehand and themanual annotation
was performed with Brat (Stenetorp et al., 2012) by two annotators. 120 clinical reports were
sampled from a from of query the APHP clinical data warehouse that combined the substrings
"mamm" (to obtain breast related reports), "ACR" and "BI-?RADS" (to obtain BIRADS scores).
Some sampled reports were not breast radiology reports, yet we kept them as negative samples.
Since Brat was not originally designed to annotate long multi-line relations, using the "Event"
or "Relation" annotations turned out to be impractical and made the annotated documents
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Frame type Field Field value

Cancer Risk

score trigger
score type type 0 / type 1 / ... type 6
laterality left / right
temporality overlap / before doc time

Breast density

density trigger
density type type 1 / type 2 / type 3 / type 4
laterality left / right
temporality overlap / before doc time

Diagnostic procedure

diag. trigger
diag. type mammography / ultrasound / ...
organ breast / other
laterality left / right
temporality overlap / before / after doc time

Therapeutic procedure

ther. trigger
ther. type surgery / other
organ breast / other
laterality left / right
temporality overlap / before / after doc time

Radiological lesion

lesion trigger
organ breast / other
laterality left / right
temporality overlap / before doc time
quadrant lower inner / axillary region / ...
size
distance
angle

Table 5.4 Schemes of the extracted frames. Each frame is composed of multiple fields that can
take a value.

train val
object frame object frame

radiological lesion 279 449 122 210
diagnostic procedure 285 795 141 379
therapeutic procedure 51 83 22 29
BIRADS score 152 152 82 82
breast density 98 98 52 52

Table 5.5 Frame and object statistics in the annotated corpus

hard to read. We choose instead to annotate frames using a mix of identifier attributes
(frame1, frame2, ...) on mentions, and relations on close-by mentions. Coreferences, i.e.
object annotation, were annotated using identifier attributes (objectA, objectB, ...) for the
same reason. The BRAT annotations of Example 5.1 are shown in Figure 5.2. The direction of
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the annotated relations is only used to extract the paths along which the frames are clustered,
but is not used as directed relation in our model, since it is not consistent.

Figure 5.2 BRAT annotation of Example 5.1

5.1.5 Metrics

We propose three metrics to evaluate the predictions at the mention and frame level. A
more detailed explanation of the procedures used to compute these relaxed metrics is given
in Appendix A.

5.1.5.1 Mention

The mention metrics scores the retrieved mentions using the standard NER metrics. Every
value of a multi-label mention produces its own triplet (begin, end, value), and we run the
half NER metric described in Chapter 3, in which a mention is only counted as correct if its
Dice overlap measure with a gold mention is at least 0.5 (i.e. at least half of the predicted and
expected words match) and its label/value is correct.

5.1.5.2 Frame support

We design a specific metric to score frame support in a document. When comparing two
frames, each supported field of the predicted frame is counted as correct if it overlaps any
mention of the same field in the other frame. The score is 1 if all fields are correct, 0 if no
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field is correct and the Dice overlap of predicted and gold fields otherwise. In the following
example:

Predicted: "The small [nodules](lesion) on the [left](lat:left) measure [2cm](distance)"

Expected : "The [small nodules](lesion) on the [left](lat:left) measure [2cm](size)"

Only 2 of the 3 predicted and 3 expected fields [nodules], [left] have the correct label and
overlap, so the final mention field overlap score is 2 · 2

3+3 = 0.66

5.1.5.3 Frame label

Finally, we evaluate the final multi-label classification of frames using the Frame label
metric. Two frames are matched only if their triggers overlap, and all predicted labels are
correct. We add an exception to this rule: if a label is predicted in a frame, and the target
frame does not contain it but another frame of the parent object does, the label is not counted
as false. For instance, if an object is described in two places in the text, the first time only
with a left laterality, and the second time only with its size, we will not penalize the model if
it predicts a left laterality on the second frame.

Figure 5.3 Overview of the decoder

5.2 Proposed method

We now detail a neural network based method to automatically extract the previously
described structured entities from clinical reports.
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We encode each documents as word embeddings and share them with the downstream
decoding components. Like most relation and event extraction models, our model operates as
a pipeline. As illustrated by Figure 5.3, the first two mention-level decoders extract the named
entities (step 1 ), or mentions, that are likely to be used in the composition of structured
entities, and normalize them (step 2 ) to obtain the value of the field they apply to. The next
two decoders focus on frame-level extractions. The frame extraction decoder (step 3 ) detects
the relations between these mentions, or more specifically, extracts groups of mentions to
form frames. The last frame classification decoder (step 4 ) predicts for each frame the values
of the fields for which no mention was found, such as the temporality.

5.2.1 Text encoder

5.2.1.1 Word embeddings

Like the models of the previous chapters 3 and 4, we use a pre-trained BERT Transformer.
Our documents are written in French, therefore a good candidate is the CamemBERT model
(Martin et al., 2020) pre-trained on a general French corpus. A specifically pre-trained clinical
French BERT would most likely perform better. However no such model has been trained to
our knowledge. Following our experiments in Chapter 3 Section 3.7.4, we also average the
wordpieces embeddings of a word to obtain its embedding, and add the left and right contexts
(document context) of a sentence before running it through BERT.

5.2.1.2 Document-wide contextualization

As in the models of Chapter 3, we apply an LSTM layer on BERT embeddings. A notable
difference with the previously addressed tasks is the longer size of the documents: BERT can
only encode sequences of up to 512 wordpieces and more than half of our reports exceed
512 wordpieces. Several works on encoding long sequences by Transformers have emerged
since 2019 (Beltagy et al., 2020b; Zaheer et al., 2020) but no pre-training has been applied to
French to our knowledge. One strategy is to split these reports into sentences, apply BERT
on each sentence and then re-contextualize these sentences by applying the LSTM on the
concatenated sentence word embeddings. Additionally, the preliminary sentence splitting
reduces the length of the processed sequences and thereby makes the processing of each
document faster. This process is illustrated in Figure 5.4.

Moreover, because BERT models focus on sentences, the "line break" character is missing
from their vocabulary and replaced by a single space during preprocessing. However, clinical
documents typically contain multiple line breaks and this separation information would
normally be lost. To prevent this, we replace all line breaks with the rarely used "_" character
so that this information is kept in the generated embedding sequences.
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Figure 5.4 Overview of the document encoder

5.2.1.3 LSTM gating mechanism

We observed that the standard gating mechanism of the multi-layer LSTM converged
poorly. We propose an alternative formulation in which the outputs of each LSTM layer are not
mixed with the outputs of the previous layer, but with the input features of the contextualizer.
We also drop the sigmoid weight and use simple addition instead. While in the original
formulation, each LSTM layer must produce an update to the output of the previous layer, the
role of each layer is now to produce an update to the first input. We will call the proposed
gating mechanism "input-residual", as opposed to the standard "last-residual" mechanism. The
difference between these two mechanisms is detailed in Figure 5.5.

(a) Standard "last-residual" gating mechanism

(b) Proposed "input-residual" gating mechanism

Figure 5.5 Difference between the gating mechanisms, shown on a two layer LSTM network.
The top figure (a) shows the standard "last-residual" gating, while the bottom figure (b) shows
the "input-residual" variant.

5.2.2 Mention recognition and normalization

5.2.2.1 Mention detection

We reuse the architecture of the BIOUL decoder described in Chapter 3. Mentions may
overlap, but our annotations do not contain overlaps of the same type. For this reason, the
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matching of start and end boundaries is unambiguous from the tags predicted by the BIOUL
decoder and the biaffine module is not needed.

5.2.2.2 Mention normalization

Each mention is then classified, or normalized to obtain the values of the fields to which it
applies. Unlike the system proposed in Chapter 4 which allowed only one concept per mention,
each mention can accept several values. For example, "bilateral" is normalized as both "left"
and "right". However, most mentions map to only one value. The mapping between NER labels
and the legal multi-label combinations is part of the annotation scheme. Another difference is
that we run the normalizer on embeddings of mentions in which the words carry contextual
information from outside the mention. In contrast, the model of Chapter 4 processed each
mention as a text sample on its own.

We compute a max-pooled representation for each mention m and project it against to
obtain one score per label

scorelabel(m) = V mention label · maxpool
w∈words(m)

E(w)

Finally the score of each possible legal label combination Lmention is computed as the score
of the labels present in the combination. The probability of a combination is computed by
normalizing over all legal combinations Lmention

scoreLmention(m) =
∑

label∈Lmention

scorelabel(m) (5.1)

P(Lmention|m) =
1

Z
scoreLmention(m) (5.2)

with Z =
∑

legal Lmention

scoreLmention(m) (5.3)

5.2.2.3 Mention embedding

Each mention is represented by a single embedding in order to be processed by the next
decoders. This embedding E(m) is computed as the average embedding of the words of the
mention.

5.2.3 Frame extraction

We now seek to extract the frames. Given that we have extracted entities in a previous step,
we need a strategy to group mentions of a same frame together. The approach of most Event
Extraction models is to extract one frame (event) per trigger mention, and look for related
mentions that might be part of the same frame (event). However, many trigger mentions
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belong to several distinct frames that can only be distinguished by considering interactions
between their attribute mentions. Indeed, in a sentence containing an elliptic conjunction:
"Nodules of 2cm on the right and 3cm on the left", the trigger mention [Nodules] belongs to two
different frames, and the knowledge alone of trigger-attribute relations [2cm]⇐⇒[Nodule],
[3cm]⇐⇒[Nodule], [right]⇐⇒[Nodule] and [left]⇐⇒[Nodule] is not sufficient to reconstruct
the two frames.

To address this issue, an approach consists in listing all the possible combinations of
mentions, then filtering them with a classifier (Björne and Salakoski, 2011, 2013, 2015;
Heimonen et al., 2010; Liu et al., 2015; Miwa et al., 2010; Trieu et al., 2020). However, this
solution does not seem satisfactory from a computational point of view. Indeed, a frame can
contain up to 8 mentions (and more if there are several mentions for the same field), which
quickly leads to a combinatorial explosion of possible frames.

We will now describe a method to overcome the previously discussed issues. The overall
frame extraction component and its training are described in Figure 5.6.

5.2.3.1 Clique extraction

Our approach consists in examining relations between every mention of a document. The
binary relation between two mentions answers the question: "are these two mentions part of
the same frames ?". We can then extract maximal groups of entities such that in each group,
all the mentions agree with each other on belonging to the same entity. In graph theory, this
type of subgraph is known as a clique. To extract maximal cliques, i.e. cliques that cannot be
extended by including one more mention, we use the NetworkX implementation based on the
works of Bron and Kerbosch (1973) and Tomita et al. (2006), and only keep the cliques that
contain at least one trigger mention.

Each mention u computes its agreement scores r(u, v) with the other mentions v of a
document. For two mentions u and v, we obtain two scores: the one computed by u on its
agreement with v (r(u, v)), and the one computed by v on its agreement with u (r(v, u)). We
define the final agreement score between the two mentions as the maximum score

R(u, v) = max T r = max(r(u, v), r(v, u))

Intuitively, this means that one of the two mentions can be uncertain about the relationship.

5.2.3.2 Biaffine relation scores

A simple approach to compute r(u, v) is to use a biaffine model. In our case, we compute
this score as an attention score between the mentions. Additionally, we inject the relative
distances between mentions inside the attention mechanism using a similar mechanism to
He et al. (2020). This attention is the sum of a content-content attention (the original dot



5.2 Proposed method 89

Figure 5.6 Overview of the frame extraction process and its supervision. Forbidden scope
begin and end locations (because they are located after or before the mention) are grayed
out. Green matrices and arrows at the left and top of the Figure show the possible supervision
signals: red forces a logit to be negative, green forces a logit to be positive, and white means
no supervision for the associated logit.

product attention of Vaswani et al. (2017)), a content-position attention and a position-content
attention.
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and px−→y the embedding of the relative position of y w.r.t. x

To get a better intuition about these different types of attention, we formulate them as
fictitious search samples from a given mention in the document:

— content-content : "my content is ’ultrasound’ so I’m looking for other mentions whose
content contains information about temporality"

— content-position: "my content is ’ultrasound’ so I’m looking for mentions that are 3
positions after of me"

— position-content : "regardless of my content, I will attend to the mention one word away
from me if it contains information about temporality, two words way next word if it
contains information about laterality, etc."

5.2.3.3 Scope relation scores

We propose another approach for the same relation extraction task, based on the concept
of scopes. Scopes are annotations of contiguous text zones on which a named entity referred
to as a "cue" applies its meaning. Scopes have been mostly studied in the context of negation
and uncertainty detection (Dalloux et al., 2020; Khandelwal and Sawant, 2020; Li and Lu,
2018; Vincze et al., 2008). For example in the sentence: "There is no sign of cancer", the scope
of the negation entity [no] is "sign of cancer". We propose to extend this concept to all types of
named entities and make it the primary mode of relation extraction in our problem. Indeed, it
may be simpler for the model to detect where the scope of a mention starts and stops, and to
retrieve all entities between these boundaries, rather than inferring the value of the relation for
each pair of mentions. In the example of Section 5.1.2, the scope of laterality [Left] covers all
the section and therefore applies its effect to all frames composed of these mentions, and the
scope of one of the two mentions [2cm] and [8’oclock position] contains the other mention.

For the mathematical details of our formulation, we will call u and v two mentions, and t

a token (or word) of the document. Each scope is represented with the BIOUL format. We
compute two attention matrices AB(u, t) and AL(u, t) between the mentions and words, using
the relative attention mechanism described in Section 5.2.3.2, to obtain start (B) and end (L)
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scope scores for each word. We prevent the start of a scope from being after the first word of
a mention, and the end of a scope from being before the last word of a mention, which means
that we impose that mention is contained within its scope. The score of the tag U (scope that
only contains one word) can be computed as the sum of the start and end scores.

SB(u, t) =

−∞ if t is after the first word of the mention

AB(u, t) otherwise
(5.5)

SL(u, t) =

−∞ if t is before the last word of the mention

AL(u, t) otherwise
(5.6)

SU(u, t) = SB + SL (5.7)

SI(u, t) = 0 (5.8)

SO(u, t) = 0 (5.9)

To know if a word is in the scope of a mention, we compute the marginalized probabilities
of a CRF (hereafter referred to as Scope CRF) with the forward-backward algorithm that we
apply to the scope of each mention. The Scope CRF is parameter-less but illicit transitions
(such as I −→ B or L −→ I) between tags are prevented (i.e. the transition is set to −∞). A
word is in a scope if it is labeled I, B, L or U but not O. The score rscope(u, t) of each word t

being in the scope of u is therefore:

rscope(u, t) = S
marg
B + S

marg
L + S

marg
U + S

marg
I − S

marg
O (5.10)

with S
marg
BIOUL(u) = ForwardBackwardCRF(SBIOUL(u)) (5.11)

and, the relation score between two mentions u and v is computed as the score of v being
in the scope of u, i.e. the average of the scores of each word of v of being in the scope of u:

rscope(u, v) =
1

|words(v)|
∑

t∈words(v)

rscope(u, t) (5.12)

Using a CRF allow us to never explicitly compute the score for a word to be in the scope
of a given mention. Instead, we let the network predict the start and end of scope for each
mention via the mention-word attention matrices, and use the CRF Scope to "paint" the inside
and outside of the scopes in a differentiable way.
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5.2.3.4 Score combination

The scope relation and biaffine relation scores are combined together. Because we defined
scopes as continuous spans of text, it is possible that a mention falls in the scope of another
mention and yet does not belong to its frame. In the following example

"Mammography: we find the left mass biopsied in 2010. Nothing else in the right breast."

the scope of [Mammography] contains the temporality [2010] but the two mentions are
not part of a same frame. Therefore, a relationship between two mentions is only predicted
if both components (biaffine-based and scope-based) predict this relation. A mathematical
formulation reflecting this constraint consists in returning the minimum of the two scores.

r(u, v) = min(rscope(u, v), rbiaffine(u, v))

5.2.3.5 Frame relation supervision

Asymmetric supervision Training the frame extraction module raises several difficulties.
For two compatible mentions u and v, we require that R(u, v) is positive if u and v are part of
the same frames, and negative otherwise. The symmetric matrix R(u, v) is the result of the
maximum of a matrix r(u, v) and its transpose, which, from a scope perspective, means that
one mention can be within the scope of another without the reverse being true. One problem
with supervising this non-differentiable maximum alone, is that the network might initially
choose the wrong direction (e.g., decide that [Breast] belongs to the scope of [2cm], when it
is the opposite), and get stuck in this wrong configuration for the rest of the training.

We propose instead to supervise one of the two direction scores specifically, instead of
the maximum, through the asymmetric matrix r(u, v). The difference between these two
supervision modes is illustrated at the top of the figure 5.6. If two mentions u and v are not
part of the same frames, then both direction should have a negative score. However, if the two
mentions share the same frames, the question becomes: what do we ask the model to learn?
We do not know a priori the direction of the relation u—v, only that one of the directions
must have a positive score. One solution is to "explore" the different possibilities. To do this,
we perform stochastic sampling of the supervised direction rtarget(u, v) by weighting each
direction with its probability as estimated by the model:

[rtarget(u, v), rtarget(v, u)] ∼ Cat(softmax([r(u, v), r(v, u)]))

The idea is that the model explores a few configurations at the beginning of the training when
the probabilities are close to 0.5, and sticks to a given strategy that leads to stable solutions as
learning progresses and its confidence in either direction increases.
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Relation supervision heuristics We also propose to incorporate heuristics in the supervision
matrix rtarget(u, v). If u belongs to strictly more frames than v, we maximize r(u, v). If both
belong to the same number of frames, we choose the direction that leads to the smallest
number of wrong scope memberships. For example, in the example section 5.1.2, if we chose
[Breast] to be in the scope of [2cm], then [8 o’clock radius] would also be in the scope of
[2cm] due to the continuity of the scope. Conversely, if we choose [2cm] to be in the scope of
[Breast], no erroneous scope assignment is generated. Finally, if no heuristic can be applied,
we sample a direction as previously described.

Word-level scope supervision (WSS) We also propose to supervise the scopes at the word-
level using partial word-level annotation generated from the rtarget matrix, as illustated on the
left side of Figure 5.6. Using this supervision matrix, for a given mention u, we can determine
which words t of other mentions should be contained in its scope, which words of other
mentions should not, and which words are not supervised. Because scopes are contiguous, if a
mention v that is not part of the frame of u is contained within its partially supervised scope,
i.e. if it is between two mentions that belong to the scope of u, we do not supervise its words
and leave the biaffine component handle the non-relation detection. Thus, we generate a
partial supervision matrix rWSS with which we supervise the Scope CRF outputs. An example
of this matrix is shown on the left of Figure 5.6.

5.2.4 Frame classification

Some labels of a frame such as its temporality or laterality may not be explicitly supported
by the text. Each frame is therefore fed through a multi-label classifier. The possible field-
value combinations and incompatibilities in a frame are known in advance. For example, a
mammogram is necessarily located on the breasts. The "legal" label combinations are the
same 2502 label tuples mentioned in Section 5.1.2.

We represent each frame by an embedding computed as a projection of the max-pooling
output of its mentions’ embeddings.

E(f) = Wframe · maxpool
m∈mentions(f)

E(m)

This embedding is then projected to give a score per label.

scorelabel(f) = V label · E(f)

Finally the score of each possible legal combination Lframe is computed as the score of
the labels present in the combination. The probability of a combination is computed by
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normalizing over all legal combinations:

scoreLframe(f) =
∑

label∈Lframe

scorelabel(f)

P(Lframe|f) =
1

Z
scoreLframe(f) (5.13)

with Z =
∑

legal Lframe

scoreLframe(f)

During prediction, the label combinations are filtered to keep only those that contain at
least all the supported labels predicted by the frame extraction decoder.

5.2.5 Optimization

Every component, namely the named entity recognition and normalization modules (5.2.2),
the frame extraction module (5.2.3) and the frame classification module (5.2.4) are trained
jointly. The encoder is shared and each decoder receives the prediction of the previous
decoders.

The NER model uses the CRF Forward algorithm to compute the NER loss LNER, the
normalization loss Lnorm is the cross entropy loss. The frame extraction decoder relation loss
Lrelation is the sum of binary cross entropy for every valid supervised mention-mention pair
and the CRF Forward algorithm to compute the Scope CRF loss Lscope. Finally, the frame
classification decoder loss is Lframe_classification the cross entropy loss for every extracted frame.

The losses are combined through a weighted average:

L =αNERLNER
+αnormalizationLnormalization

+αrelationLrelation (5.14)

+αWSSLWSS

+αframe_classificationLframe_classification

5.2.6 Knowledge injection via data augmentation and constraints

We now discuss several techniques to inject knowledge via data augmentation and output
constraints.

5.2.6.1 Data augmentation

Given the small number of annotated documents, we augment our training data in two
ways. First, we randomly extract parts of documents such that no frame is cut, and add them
as new documents to the dataset. This augmentation assumes that there is little dependence
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between distant frames, and since we do not address the task of coreference in this work,
splitting documents is not an issue. This augmentation also has the effect of reducing the
training time (by around half in our experiments), as the average size of the training samples
becomes smaller.

Second, we build synthetic sentences from a manually pre-defined lexicon of mentions,
and add these sentences to the dataset. Because these sentences contain no frame annotations,
the frame related losses are masked for these samples. The sentence creation process is the
following: we randomly pick a synonym from the lexicon such as [ACR 6] and insert it in a
randomly picked context from a predefined list such as "There is {} ." to generate "There is
[ACR 6]." This sentence is then added to the list of training samples. Although this may seem
very simple, we will see that this allows us to easily inject knowledge into our model and
improve its performance. This method is closely related to the training of the Chapter 4, in
which we built a training set from a terminology. As we mentioned in Section 5.2.2.2, however,
our model deals with mentions that are part of a context, which is why we add an artificial
context around each of our synonyms to avoid having too large a distribution gap between
our real and synthetic samples.

The documents generated from these augmentations aremixedwith the original documents
such that every batch approximately contains 1

3 of each (original, doc parts and lexicon
sentences).

5.2.6.2 Output constraints

As stated in the section 5.1.2, the set of "legal" frame label combinations is known in
advance. These label tuples supplement the manual annotations. Some background knowledge
can be injected this way by constructing rules such as the fact that "left" and "right" are exclusive,
or the fact that a mammogram is always performed on the breasts.

During the frame extraction step, relations between mentions that cannot be part of
the same frame are filtered out during learning and prediction. We derive the allowed and
forbidden relations from the list of label tuples mentioned earlier. For example, due to the
spatial division of objects, two mentions [left] and [right] are incompatible and the relation
r([left], [right]) is set to −∞. This filtering reduces the number of possibilities that the model
must evaluate. In addition, sometimes a procedure is explicitly located on a quadrant in the text.
However, we chose not to extract the "quadrant" field for diagnostic or therapeutic procedures
during annotation in order to simplify the schema. Preventing the model from learning that
"procedure" and "quadrant" are incompatible in our schema improves the consistency of the
supervision information.

During the frame classification step, instead of classifying each label independently, we
score each combination of allowed labels, as described in equation 5.13. Conversely, scoring
each label independently is equivalent to allowing all label combinations.
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Maximum BERT sequence size 192 wordpieces
Post-encoder dropout 0.5
Decoder dropout 0.2
BiLSTM layers 3
BiLSTM hidden size 200
Number of steps 2000
Batch size 16
lrBERT 5e−5

lrmain 4e−5

αNER 2
αnormalization 1
αrelation 1
αWSS 1
αframe_classification 0.5

Table 5.6 Hyperparameters

5.3 Experiments

We evaluate our proposed approach on the test set of the new annotated dataset, using the
mention metric, the Frame Support metric and Frame Label metrics described in Section 5.1.5.

We also evaluate different document-level queries on the predicted frames. Each query
extracts a deduplicated list of tuples for each document, and standard precision and recall
metrics are computed on the predictions. As an example, the query "Lateralized current
breast density" extracts tuples (laterality, density score) from frames with document overlap
temporality, while the query "Current breast density" does not extract laterality.

5.3.1 Experimental setup

Hyperparameters were manually selected by trial and error on 20 documents from the
training dataset. Many of them are the same as the model from Chapter 3. We optimize the
parameters with the Adam optimizer (Kingma and Ba, 2015) without weight decay and use
two learning rates: the first learning rate lrBERT, that applies to the pretrained CamemBERT
(Martin et al., 2020) base weights, is initialized at 5× 10−5 and follows a linear schedule with
a 10% warmup, while the second learning rate lrmain, for the other parameters, is initialized
at 5× 10−4 and follows a linear decay schedule with no warmup. The models were trained
with a batch size of 16 samples. Due to the large size of model and documents, we used the
gradient accumulation method to fit the available GPU memory (32Go). All experiments were
averaged by training 3 differently seeded models. The main hyper-parameters are described
in Table 5.6.
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5.3.2 Ablations

Additionally, we perform several ablation experiments to investigate the design choices of
our model:

— we look at the effect of the gating mechanism and the relative positional attention
mechanism on our model

— we evaluate the contribution of scope relations and the effect of different types of super-
vision, i.e., we drop the word-level scope supervision and also change the supervision of
the relation mechanism from asymmetric supervision of r(u, v) to symmetric supervision
of R(u, v).

We also perform experiments on the training data. In particular, we investigate the contribution
of the augmented samples, and the evolution of the performance with the amount of annotated
data.

5.4 Results and discussion

5.4.1 Main results

Table 5.7 shows the performance on the different types of frames. The model performs
better for frames with fewer fields such as Cancer or Breast densities. It is worth mentioning
that matching all frame of a document is not necessary to answer most queries, since multiple
frames can be co-referent.

The query metrics are shown in Table 5.8. Similarly the model performs better for queries
that require less frame fields. The model low performance on the passed surgery query can
be explained by the few number of annotated therapeutic procedures, and the difficulty to
extract the temporality, that sometimes requires complex contextual and global reasoning.

We visualize the predicted scopes of the proposed model on the right side of Figure 5.7. We
observe that the scopes coarsely follow the structure of the document, i.e. that the predicted
boundaries are located at the beginning or the end of the different sections. It is worth keeping
in mind that these scopes have only been supervised with the requirement that they contain
or exclude certain mentions, and that no information regarding the precise location of their
boundaries has been given.

Moreover we notice that the reading of these scopes gives a partial explanation of why
some relations were predicted or not, whereas the outputs of relation prediction model are
usually hardly explainable.
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Frame support Frame label
Frame type P R F1 P R F1
BIRADS score 89.6 95.7 92.5 80.6 86.1 83.3
Breast density 84.9 96.9 90.5 82.6 94.3 88.1
Diagnostic procedure 82.1 91.7 86.6 74.0 82.7 78.1
Therapeutic procedure 86.2 87.1 86.6 68.3 69.0 68.6
Finding 74.0 82.4 78.0 59.6 66.5 62.9
Overall 81.1 90.0 85.3 68.7 76.2 72.2

Table 5.7 Performance of the model at the frame level

P R F1
Is mammography ? 88.5 100.0 93.9
Has passed surgery ? 63.6 87.5 73.7
Current BIRADS score 94.3 100.0 97.1
Current lateralized BIRADS score 92.0 92.0 92.0
Current breast density 89.3 96.2 92.6
Current lateralized breast density 86.4 95.0 90.5
Current lesion with quadrant 85.2 81.2 83.2
Current lesion with quadrant or radial position 77.9 77.9 77.9
Current lesion with quadrant or radial position & size 76.7 78.4 77.5

Table 5.8 Performance of the model against various queries

Mention Frame support Frame label
Base 96.2 85.3 72.2

Neural
net tricks

− input-residual 95.2 (−0.9) 83.9 (−1.4) 69.3 (−2.9)
− relative attention 95.6 (−0.5) 84.0 (−1.3) 70.5 (−1.8)

Frame
extraction

− relation heuristics 96.1 (−0.1) 85.4 (+0.1) 71.8 (−0.4)
−WSS 96.1 (−0.1) 82.1 (−3.2) 69.5 (−2.7)
−WSS − asymmetric 95.9 (−0.3) 74.4 (−10.9) 57.5 (−14.8)
− scopes (only biaffine) 96.2 (+0.0) 80.4 (−4.9) 66.9 (−5.3)

Knowledge
injection

− doc splitting (1) 96.1 (−0.0) 85.3 (+0.1) 71.5 (−0.7)
− lexicon sentences (2) 95.4 (−0.8) 85.0 (−0.3) 70.8 (−1.5)
− data augmentations (1+2) 95.4 (−0.8) 85.0 (−0.3) 69.9 (−2.3)
− constraints 96.2 (−0.0) 84.0 (−1.3) 69.4 (−2.8)

Table 5.9 Ablation experiments on the model and training data. WSS stands for Word-level
Scope Supervision. All reported metrics are F1-scores.



5.4 Results and discussion 99

(a) Scopes inferred by a model trained with
symmetric R(u, v) supervision only

(b) Scopes inferred by the proposed model with
asymmetric r(u, v) supervision and word level su-
pervision

Figure 5.7 Visualization of the predicted mentions and scopes on the example of Section 5.1.2.
The vertical axis represents the words, and the horizontal axis represents the mentions. For
each scope, the words contained in the corresponding mention are marked in white.
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5.4.2 Model ablations

5.4.2.1 Impact of scopes

Table 5.9 shows the effect of ablating the model scopes. In this configuration, the model
can only predict the relations through the biaffine model. We can observe that ablating scopes
results in an overall loss of 5.3 pt for the Frame Label metric and 4.9 pt for the Frame Support
metric. We believe that this is due to the inability of other neural components to reason with
intervals, i.e., to answer queries such as "what word is between these two words". Scopes allow
the model to focus on section or enumeration boundaries and leave interval logic reasoning to
the scope CRF.

Given that scopes improve the quality of predictions, the question arises as to what kind
of supervision is needed for to learn them. As shown in Table 5.9, when the scopes are
learned directly using word-level partial annotations, the model performs better than with
distant supervision on the r(u, v) matrix. This suggests that finer manual annotation of scopes
may benefit the system. If we directly supervise the symmetric matrix R(u, v) instead of the
asymmetric matrix r(u, v), the performance collapses and we lose between 10 and 15 pt for
the Frame metrics. This can be seen in the visualization of Figure 5.7: the scopes overlap
several unrelated sections, which leads to the prediction of erroneous frames. The learning of
scopes must be hindered by the uncertainty related to the supervision of this matrix alone
and the small amount of data.

Interestingly, if we remove the relation supervision heuristic and let the model explore
different configurations on its own, the performance remains on par with the proposed
approach. Since these heuristics aim at injecting information about the hierarchy of mentions
and the structure of the text, this suggests that the model is able to infer this information itself
from "flat" annotations. This is a valuable finding because it suggests that complex, hierarchical,
directed annotations for other tasks could be alleviated when it is easier to annotate groups of
mentions than directed graph structures between mentions.

5.4.2.2 Impact of the gating mechanism

Table 5.4.2 shows the effect of the different gating mechanisms on the performance of the
model. We can observe that the "input-residual" gating mode leads to a performance gain of
1.4 pt in Frame Support and 2.9 pt in Frame labels. Although this variant performed well in
our experiments, more research is required to evaluate the reason behind this apparent better
performance, and we did not investigate this mechanism further in this work.

5.4.2.3 Impact of the relative attention mechanism

We evaluated the effect of the added information on the relative position of the word-
mention and mention-mention attention mechanisms. From the table 5.4.2, we can observe
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that this added information leads to a performance gain of 1.3 pt of F1 frame support and
1.8 pt of F1 frame label. Without it, a mention is "positionally blind" and must rely on the
inductive bias of the LSTM to find its neighboring words or mentions. Therefore, we expected
a larger drop in performance, especially in the context of long documents. This suggests that
the chain structure of the LSTM is capable of encoding relative position information at both
the word and mention level. Nevertheless, relative attention proves to be an effective way to
improve retrieval performance.

5.4.3 Data ablations

5.4.3.1 Impact of the size of the training data

Figure 5.8 shows the overall performance of the model when trained with different numbers
of annotated samples. We can observe that the first 10 documents are critical, and expectedly
that the added value of additional documents becomes lower as their number increases. On
one hand, we can note that our system requires only a small amount of documents to achieve
"correct" accuracy, i.e., it can be used to pre-annotate more documents. This "data efficiency" is
important when tackling new domains in order to allow quick feedback and possible changes
regarding the annotation scheme. However, given the complexity of the task and the evolution
of performance with the training set size, we also note that a larger number of annotated
documents might be needed to approach a perfect score.

5.4.3.2 Impact of the augmented samples

We remove the augmented samples from the training data and show the effect on perfor-
mance in Table 5.9 and Figure 5.8. We observe that adding synthetic sentences only slightly
helps improving the model mention detection performance (+0.3 pt). However, this improved
performance has a larger effect of 1.5 pt on the Frame Label metric. This is typical of the
phenomenon of error propagation. Indeed, a missing or mislabelled mention can have an
effect on multiple frames. This shows the importance of focusing efforts on the first steps of
pipeline models such as ours.

As we reduce the number of annotated documents in the training set, the effect of aug-
mentation becomes more important, and with only 4 annotated documents we obtain an
average performance of 89.4 F1 in mention extraction versus 81.1 F1 without, and an average
performance of 45.7 F1 in Frame Label F1 versus 34.7 without. Finally, we can see that a
model trained with synthetic sentences only retrieves most of the annotated mentions, which
is valuable when tackling a new domain. The non-zero Frame metrics can be explained by the
presence of singleton frames that contain only one mention, and by the Frame classification
constraints that prevent the system from predicting impossible label combinations.
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Figure 5.8 Plotted evolution of the F1 scores with the number of annotated documents. The
plain lines show the performance with data augmentation (synthetic sentences and document
splitting), while the dashed lines show the performance without augmentation.

5.4.3.3 Impact of the constraints

We train the model without the constraints described in section 5.2.6. In this configuration,
the model learns that each pair of mentions is legal. However, we still apply these constraints
during the evaluation phase to avoid illicit predictions. This amounts essentially to applying
only post-processing on the predictions. We observe in Table 5.9 that removing these rules
leads to a loss of 2.3 pt in the Frame label F1-score and 1.3 pt in the Frame support F1-score.
This can be explained by the fact that the model has to "learn" the annotation scheme and its
inevitable imperfect representations of the reports. These constraints can also help the model
focus on the actual uncertainties of the task, and leave what is already known to the modeled
constraints.

5.5 Limitations

In this section, we review some of the limitations of our method.

Annotation bias First, the model was developed in parallel to the data annotation. While
this approach allowed us to better fit our initial objective, this biases the performance of
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the model such that it obtains a correct performance on the annotated data, but might not
generalize as well on other tasks.

Scheme granularity Second, we did not annotate the radiological lesions using a fine-
grained scheme and left that disambiguation task for future works. This again might overesti-
mate the performance of the model on these radiological lesions, since we do not distinguish
between tumors and cancer diagnosis. Moreover, we did not annotate other relevant aspect of
tumors such as their size trend, morphology, or margin.

Coreferences Third, we did not address the issue of coreferences, which are nevertheless
important in the extraction of information from clinical documents, since they allow us to
obtain a deduplicated list of entities, to fill in possible missing fields, and to perform a final
evaluation of the extraction independently of the intermediate annotation choices. This step
will be the focus of future work, together with the problem of cross-document coreference to
link objects across multiple reports.

5.6 Conclusion

In this chapter, we proposed an annotation scheme and a system for extracting structured
entities from clinical breast radiology reports. We trained and evaluated our method on a
new dataset of 120 annotated documents. Although these documents are not made public
for medical privacy concerns, this dataset can be used to evaluate the performance of future
systems and developments in the field of clinical NLP. In particular, the pre-training of specific
encoders for the French clinical domain and for long documents should greatly benefit our
system. We have shown that the addition of synthetic sentences can improve the performance
in the context of a small amount of data. This information is valuable for the annotation
and development of new information retrieval systems in other domains, where key words
or phrases are known in advance. The method we described introduces the notion of frame
extraction in the form of mention cliques, and we have shown that a formulation of the relation
extraction task via scopes improves the performance of our system. Future work will evaluate
this approach on other structured entity extraction tasks such as event extraction.
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Conclusion and perspectives
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Structuring medical documents is a complex task that is related to several NLP research
topics. This thesis presented several contributions to the extraction and normalization of
simple and structured entities. This chapter makes a brief summary of the thesis (Section 6.1)
and discusses future research directions (Section 6.2).

6.1 Summary

In our work on nested named entity recognition, we introduced two methods to handle the
extraction of overlapping entities. In particular, we showed that sequence labelling methods
are better suited for the extraction of long and ambiguously annotated entities when exact
boundaries are not required, and we discussed several aspects of the design of these systems.
We also showed how ensembling can improve the performance of a NER model.

We also addressed the issue of training models in languages other than English. More
specifically, in Chapter 4, we demonstrated the importance of training French and English
jointly in the case of medical concept normalization, and even the benefit of training a single
multilingual model, instead of several bilingual models. We evaluated all the models proposed
in this thesis on French datasets, and annotated a new corpus of French clinical radiology
reports in Chapter 5.
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In the case of structured entities in Chapter 5, we proposed a new frame-based annotation
scheme, and designed a method to automatically extract these entities from unlabelled reports.
We also introduced the concept of mention cliques to overcome the issue overlapping structured
entities, as well as a new mechanism of relation prediction with mention scopes. We showed
how these "scope-relations" both improve the performance of our system on clinical documents,
and provide partial explanation of the predicted relations between mentions.

Finally, we also developed multiple techniques to inject external medical knowledge into
the training of learning algorithms, while alleviating the need for language or domain specific
pre-processing methods and reducing the requirement for annotated data. In Chapter 4, our
proposed model obtained good results without any annotated normalization sample. In the
context of radiological entity extraction in Chapter 5, we showed that the hybridization of a
set of output constraints, a terminology and a learning based method enabled our method to
be effective with a small number of training documents.

6.2 Future research directions

Starting from the work presented in this thesis, several research directions arise.

6.2.1 Deeper hybridization between learning and symbolic models

In Chapter 5, we saw how a structured entity extraction task could be represented by
an enumeration of compatible concepts. However, the number of legal combinations (2502)
remained tractable and could be baked into the model without becoming an issue. More
complex schemes could lead to a larger number of combinations, making their enumeration
infeasible. One solution to overcome this problem is to directly represent the allowed outputs
by logical propositional formulas and model them with a CRF (Lafferty et al., 2001). For
example, Deng et al. (2014) used a CRF to model subsumption and exclusion relations between
labels to improve image classification.

Further along this path, the integration of first-order logic into retrieval models is an
exciting perspective. Indeed, when relations are added to the retrieval scheme, modeling
the logical interactions between objects could improve performance. Markov logic networks
(Domingos and Lowd, 2009) unify symbolic and learning-based methods, and are a promising
avenue for integrating symbolic reasoning into information extraction models. For example,
we saw how implicit attributes could be inferred from other attributes, such as the organ
in the case of a mammogram. However, all these entities require the presence of a trigger
and implicit entities are out of scope of the proposed model. One could therefore imagine
conditioning the existence of a current lesion on the presence of a (possibly implicit) current
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diagnostic procedure by modeling the following formula:

∃Lesion s.t. lesion_frame(Lesion, temp:overlap_exam, ...) (6.1)

=⇒ ∃Diag s.t. diag_proc_frame(Diag, temp:overlap_exam, ...)

6.2.2 Multilingual and multitask training

We saw in chapter 4 how joint training on multiple languages benefits a normalization
system. Recent work has shown how a unified training on multiple named entity datasets
improves the performance of a NER system. Since resources for medical entity normalization
are scarce, a promising approach is to train a normalization system on multiple datasets and
multiple languages to achieve a robust, multilingual normalization system. To go further, we
can also consider a multi-task training of normalization, NER and structured entity extraction
systems. Moreover, we have shown how a pre-trained system can handle more concepts by
being partially re-trained in a second phase. The reverse direction can also be considered, i.e.,
pre-training a normalization model on a large amount of concepts, and fine-tuning it on a
smaller number to better fit the target domain.

6.2.3 Interactively programmable annotation software

As mentioned in Chapter 5 Section 5.1.4, the choice of annotation software must be
taken into account in the design of the annotation scheme. For example, it is difficult to
annotate implicit entities in Brat or to annotate relations on multiple lines, and impossible
to handle multiple documents at once. There are many annotation tools available (Neves
and Ševa, 2021), but most of them are either proprietary, poorly adapted to document or
patient annotation, require a complex installation that is not compatible with existing remote
work environments, or are difficult to customize. Finally, the standardization of annotation
levels (mention / relation / event) is an obstacle to the development of new tasks. Given
these limitations, we started to develop Metanno (illustrated in Figure 6.1), a dynamically
programmable annotation software integrated to the popular Jupyter IDE.

We list here some of its features:

— ease of installation as a Jupyter extension
— joint annotation of multiple reports (cross-document co-referencing)
— visualization of annotations at the level of a document, patient or corpus in Excel-style

dynamic tables
— bidirectional communication between the Python kernel and the front-end to facilitate

the integration of active learning algorithms
— simple Python API to modify the behavior of the software when clicking a button,

selecting annotations, highlighting table rows
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Figure 6.1 Metanno annotation software

— large range of possible actions such as batch modification or selection of annotations
— annotation of any type of entity that can be represented as tables.

This project did not come to fruition in time for the annotation of the Chapter 5 corpus, but
we plan to open-source a first version in the upcoming months. We believe that this project
could have significant repercussions on future research. A more detailed explanation of the
software can be found in Appendix B.

6.2.4 Structured entity centric pre-training

In addition to the data augmentation and logic modeling discussed earlier, incorporating
inductive biases and biomedical structuring task-specific goals into text encoding models could
be beneficial to the development of information extraction models.

We saw in Section 5.1 that the concept of scopes was a useful and intuitive mechanism
for improving detection of relations between mentions. We also saw how incorporating
mechanisms such as relative attention improves the detection of relations between mentions.
One avenue for improvement is the integration of scopes into model attention to allow for a
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broader range of query types that the model can rely on to compute its representations. To
the best of our knowledge, no current attentional mechanism can formulate an attentional
query of the type "what are the words/mentions after me and before the next line break?"

Another avenue for improvement is the development of pre-training that promotes the
representation of simple entities. Several studies have been conducted on the improvement of
pre-training objectives to better take into account the entities in the text representation models
(Joshi et al., 2019; Lin et al., 2021; Yamada et al., 2020) and most pre-trained models focus on
whole sentence representations. In particular, to the best of our knowledge, entity-centered
pre-trainers that handle both contextualized and context-free entity representations have not
yet been studied. As an example, a key aspect of taking context into account in medical entity
normalization is the distributional shift between contextualized entity representations and
non-contextualized entity representations such as those present in terminologies. To overcome
this problem, our approach in Chapter 4 was to "cut out" the entities in the medical texts,
while we chose to augment the synonyms with an artificial context in Chapter 5. Nevertheless,
these are not elegant solutions. Just as the pre-training of models like BERT or ELMO have
improved the performance of many NLP tasks, the pre-training of a model that also takes
entity representations into account should benefit the improvement of information extraction
systems.



Appendix A

Relaxed retrieval metrics

Unlike the exact match NER metric for which a true positive is unambiguously counted
when two elements of the predicted and gold entities match, defining and computing relevant
metrics between more complex sets of objects becomes more difficult as the number of element
attributes increases. One option is to lower the minimum similarity threshold required between
predicted and gold features to account for small errors such as mismatch between mention
boundaries. However, this leads to ambiguities in the metric computation, since several
predicted elements may match a single gold element, and vice versa. We explicitly formulate
a greedy matching procedure to compute a maximum bipartite greedy match between the
elements of two sets, in the algorithm 1 to avoid double counting true positives.

For reference, the exact match metric NER is written using this matching procedure in the
Algorithm 2.

The NER metric for the section 3 uses a score function that returns 1 if the Dice overlap of
words in two mentions is higher than 0.5. The procedure is described in the Algorithm 3.

The matching procedure is used in the computation of the frame support metric in Chapter
5 (Algorithm 4), where two frames have a non-zero match score if some of their mentions
overlap, and a perfect score if all their mentions overlap, and 0 otherwise. This score between
0 and 1 is the Dice/F1 overlap between the mentions of the two frames. It is used as a "relaxed"
true positive when computing the retrieval metrics.

The matching procedure is used in the calculation of the frame label metric in Chapter
5 (Algorithm 5), where two frames have a matching score of 1 if their labels match and
their trigger mentions overlap, and 0 otherwise. This score is used as a true positive when
computing retrieval metrics.
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Algorithm 1 Procedure to compute the maximum sum of greedily matched items between
two sets of predicted and gold items
1: ◃ greedily matches elements between two sets P and G to maximize the sum of the bipartite

matching according to the match_score function
2: function match_sum(P, G, match_score)
3: scores← empty matrix ◃ match scores between P and G
4: matched← {} ◃ matched predicted and gold entities
5: result← 0 ◃ the aggregated score
6: for each predicted item p ∈ P do
7: for each gold item g ∈ G do
8: scores[p, g]← match_score(p, g)
9: while there remains both gold and predicted entities not matched do

10: Take the first remaining predicted entity p ∈ P\matched
11: g← argmax(scores[p]) ◃ find the best matching g ∈ G
12: if scores[p, g] > 0 then
13: result← result + scores[p, g]
14: matched← matched

⋃
{p, g}

15: return result

Algorithm 2 Procedure to compute the Exact NER metric
1: function exact_ner_match_score(p, g)
2: ◃ return 1 if p and g have the same boundaries and label, 0 otherwise

3: return p.begin = g.begin and p.end = g.end and p.label = g.label

4: function exact_ner(P, G)
5: ◃ return the retrieval metrics, where true positives between P and G are computed with

exact_ner_match_score
6: tp← match_sum(P, G, exact_ner_score)
7: precision← tp/|P|
8: recall← tp/|G|
9: f1← 2 · tp/(|G|+|P|)

10: return (precision, recall, f1)
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Algorithm 3 Procedure to compute the Half NER metric
1: function half_ner_match_score(p, g)
2: ◃ return 1 if p and g have a word dice overlap ≥ 0.5 and the same label, 0 otherwise

3: return 2·|p.words
⋂

g.words| / (|p.words| + |g.words|) > 0.5 and p.label = g.label

4: function half_ner(P, G)
5: ◃ return the retrieval metrics, where true positives between P and G are computed with

half_ner_match_score
6: tp← match_sum(P, G, half_ner_score)
7: precision← tp/|P|
8: recall← tp/|G|
9: f1← 2 · tp/(|G|+|P|)

10: return (precision, recall, f1)

Algorithm 4 Procedure to compute the Frame Support retrieval metrics
1: function same_type_overlap(a, b)
2: ◃ return 1 if a and b share ≥ 1 word and have the same label, 0 otherwise

3: return |a.words
⋂

b.words| > 0 and a.label = b.label

4: function frame_support_match_score(p, g)
5: ◃ return the Dice overlap between p mentions and g mentions which is 0 if there is no

overlap and 1 if all mentions of p and g match
6: tp← match_sum(p.mentions, g.mentions, same_type_overlap)
7: return 2 · tp/(|g.mentions|+ |p.mentions|)

8: function frame_support(P, G)
9: ◃ return the retrieval metrics, where (relaxed) true positives between P and G are computed

with frame_support_match_score
10: relaxed_tp← match_sum(P, G, frame_support_match_score)
11: precision← relaxed_tp/|P|
12: recall← relaxed_tp/|G|
13: f1← 2·relaxed_tp/(|G|+|P|)
14: return (precision, recall, f1)
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Algorithm 5 Procedure to compute the Frame Label retrieval metrics
1: function frame_label_match_score(p, g)
2: ◃ return 1 if all labels of g are in p, all labels of p are in g or a non conflicting frame of the

same object and the triggers overlap, 0 otherwise
3: return p.labels ⊆ g.object.shared_labels and p.labels ⊇ g.labels

and |p.triggers.words
⋂

g.triggers.words| > 0

4: function frame_label(P, G)
5: ◃ return the retrieval metrics, where true positives between P and G are computed with

frame_label_match_score
6: tp← match_sum(P, G, frame_label_match_score)
7: precision← tp/|P|
8: recall← tp/|G|
9: f1← 2 · tp/(|G|+|P|)

10: return (precision, recall, f1)



Appendix B

Metanno: a programmable and
modular annotation software

Annotation tools are essential to the development of new information retrieval tasks and
models and have been the focus of many development efforts for several years (Neves and
Ševa, 2021). We considered three NLP tasks in this thesis: the first, named entity recognition,
benefits from many existing annotation tools. The second task is the normalization of medical
entities, and requires specialization of tools to speed up labeling and pre-filter the list of
candidate concepts. Such specializations can be found in some of the softwares like BRAT,
Webanno, prodigy and others. However, the third task of frame extraction did not fit well
into the BRAT framework, mostly due to the long-range relationships between named entities.
Other tools, such as GATE or the XConc Suite, allow for long relationships through tables and
are customizable to some extent, but with minimal to no web support, and these customizations
require a substantial amount of work. Overall, we could find no free web-based software with
sufficient customization and support for long range dependencies.

B.1 Rationale

Our first observation is that complex custom tasks require specific annotation tools, and no
existing software provides sufficient customization features. This may lead to either modifying
the ideal annotation scheme to fit existing software and forgoing some annotations, or making
the scheme more complex. There are many annotation tools available, but most of them are
either proprietary or ill-suited to annotating documents or multi-documents, require complex
installation that is not compatible with existing remote working environments, or are difficult
to customize.

A second observation is the gain in popularity of the Python language, its simplicity for
scripting and its integration into collaborative web IDEs like Jupyter. As a result, the integration
of Python into an annotation tool to more fully control its behavior and interact with its inputs
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Figure B.1 Example of the Metanno software for named entity recognition with a custom
relation column

and outputs from a Python kernel has become possible. This is in contrast to most tools that
prefer a more rigid configuration system that does not require programming.

Finally, pre-annotation and integration of machine and user feedback into the annotation
process has become a crucial requirement for bootstrapping and accelerating new retrieval
tasks. Active learning requires a tight coupling between the model and the interface, and we
believe it is essential to anticipate these needs when creating future annotation tools.

Given these observations, the Metanno project was initiated to enable the development of
comprehensive and highly customizable annotators through a simple Python API.

B.2 Modelisation

We define some goals for our ideal tool.
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Fast software response time Software response times should less than 100ms to allow a
"fluid" user experience, without noticeable delay (Card et al., 1983). This should also be the
case for unreliable connections, with which web-based annotators like BRAT are not robust.

One programming language Most data science programs are done in Python, and this
language has been taught to students for some time. This makes it a candidate of choice to
interact with the software.

Completeness Structured data can be easily represented in relational databases with a set
of tables. For example, text classification requires only one table for documents. Named entity
annotation requires two tables for documents and entities. Frame annotation requires three
tables (documents, entities, frame) for example. The example in Figure screenshot shows
a possible structure for a named entity annotator with an additional column per entity for
relationships. Since most data scientists are used to working with tabular data such as Excel,
support for tabular views seemed both natural and necessary to meet most data annotation
requirements.

Interactivity Finally, the software should be interactive, both for developing the annotator
and for manipulating the input and output data. The Jupyter notebook scheme is ideal for this,
and customizations (what happens if the user clicks on an entity, or hovers over it) should be
taken into account immediately, without the need to recompile Jupyter, or restart the Python
core.

B.3 Workflow

All the app is controlled by a single class instance and all the displayed data is gathered as a
single json-like state, replicated on both the client and the Python kernel. Each view rendered
in Jupyter, either a text view or a tabular view, uses a derivation of this state (view_data =

fn(app_data)) and calls functions in the app class whenever an event occurs. An overview of
the software workflow can be found in Figure B.2.

Immutable state Every state mutation is recorded by proxying the state, which enables
undo/redo operations. This also allows to send patches instead of the full state when the
client or the kernel produces a mutation to keep client and kernel states replicas in sync. This
immutable paradigm has been popularized by Javascript libraries like Redux and Immer.

Client-kernel communication To avoid having to open a new port, which can slow down
the integration if the user does not have the Jupyter environment, all communication between

https://github.com/reduxjs/redux
https://github.com/immerjs/immer
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Figure B.2 Overview of the workflow of the annotator
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the client and the kernel is done using the Jupyter web-socket. This web-socket is used to
transmit remote function calls, state patches and the transpiled app class code.

Python to Javascript transpilation This app class is written in Python by the user and
automatically translated into Javascript using the Transcrypt software. This javascript code
is sent to the front-end such that every action taken by the user is answered immediately
whenever possible. If an action must be executed in the kernel (like file saving) or the client
(like scrolling a view to a given annotation), the user can wrap a given function with a specific
Python decorator (@frontend_only or @kernel_only).

Two kinds of views On the client side, the widgets are built in React with state selectors
written in Python (and transpiled with Transcrypt). A first widget is the text view renderer,
which allows to visualize and annotate multi-line and/or nested text spans on a given text.
The second widget is the table widget, based on react-data-grid. Different types of data types
are supported like text, hyperlinks, lists of text and list of hyperlinks, which suffice to annotate
named entities, relations, events or frames. Custom input suggestions can be provided using
the app shared state for each column.

B.4 Perspectives

A first version of the software is available at https://github.com/percevalw/metanno.
Much work remains to be done, including providing documentation and examples, more
traditional Excel-like functionality for tabular views, visualization of relationships in text, and
support for more data types, such as images or PDFs.

https://github.com/QQuick/Transcrypt
https://github.com/facebook/react
https://github.com/QQuick/Transcrypt
https://github.com/adazzle/react-data-grid
https://github.com/percevalw/metanno
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Extended French summary

Les documents cliniques hospitaliers (comme les rapports d’hospitalisation ou de consulta-
tion, les comptes rendus, les rapports de radiologie, les rapports d’anatomo-pathologie, les
transmissions infirmières, les lettres de sortie et les prescriptions, ou encore les lettres des
médecins) constituent des documents riches en informations pour diverses applications telles
que le recrutement de patients pour la recherche clinique, la surveillance épidémiologique, le
codage médical et les outils d’aide à la décision (Wang et al., 2018c). Ces documents sont
essentiellement rédigés en langage naturel, qui se prête bien à une description exhaustive
et exacte des informations, permet de détailler les cas particuliers et facilite la saisie des
informations. On estime ainsi que plus de 80 % des données hospitalières sont collectées
sous forme textuelle (Raghavan et al., 2014). Malheureusement, le texte libre ne se prête
pas facilement aux traitements informatiques standard. En revanche, les représentations
structurées améliorent la qualité et la réutilisation des données des patients pour les soins
cliniques (y compris l’aide à la décision), l’audit et la recherche cliniques, le codage médical
pour l’allocation des ressources et la gestion des services de santé. Nous nous intéressons à la
structuration automatique de documents textuels. Cette discipline, communément appelée
extraction d’information (IE) dans le traitement automatique du langage (TAL), englobe de
nombreux domaines de recherche.

Structuration La structuration est le processus de transformation d’un échantillon de texte
libre en une vue organisée des informations qu’il contient. L’échantillon de texte peut être
une seule phrase, un paragraphe, un rapport entier ou même un dossier de patient contenant
plusieurs rapports. Ces représentations structurées peuvent prendre différentes formes, comme
l’illustre la Figure B.3. Dans le cas de d’une classification, nous pouvons attribuer à chaque
échantillon une étiquette unique à partir d’une liste prédéfinie, telle que le type de rapport, le
sexe d’un patient, ou une réponse oui/non à une question. La classification multi-étiquette
permet de classer les échantillons avec plusieurs étiquettes, comme le type de rapport et
un score de risque de cancer s’il s’agit d’une mammographie. Un autre type de structure
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se concentre sur la notion d’entité. La reconnaissance d’entités vise à extraire un nombre
variable d’objets, comme par exemple les lésions observées dans un rapport de radiologie.
Les différentes entités sont généralement mentionnées explicitement dans le texte par un
mot-clé ou une expression, mais elles peuvent aussi être composées de plusieurs morceaux ou
être implicites. Comme pour les tâches de classification, chaque entité peut être caractérisée
par une ou plusieurs étiquettes. L’extraction d’entités a été le sujet de nombreuses études
depuis plusieurs décennies, et de nombreuses solutions ont ainsi été proposées. La tâche bien
connue de reconnaissance d’entités nommées ( 1 dans la figure B.3) correspond à l’extraction
de mention d’entités ayant un début, une fin et une seule étiquette. Cependant, l’extraction
d’entités imbriquées ou se chevauchant fait toujours l’objet de recherches actives. De plus,
l’extraction d’entités plus exotiques, contenant plusieurs étiquettes et/ou plusieurs parties
( 3 dans la figure B.3), est encore loin d’être résolue, malgré la pertinence de ces entités dans
certains domaines comme pour l’extraction d’informations cliniques. Nous appellerons ces
entités des entités structurées, par opposition aux entités nommées classiques. Les étiquettes
elles-mêmes peuvent être définies spécifiquement selon la tâche à accomplir ou empruntées
à des bases de concepts médicaux. Le processus d’appariement entre entités et les concepts
de ces bases est appelé normalisation ( 2 dans la figure B.3). Ces bases de données sont
souvent riches en informations: les ontologies fournissent des relations entre les concepts, et
les terminologies fournissent des synonymes pour définir ces concepts et les identifier dans le
texte. Leur utilisation favorise l’interopérabilité entre les systèmes.

Figure B.3 Vue d’ensemble des différents objectifs de structuration, avec normalisation des
concepts

Défis liés à la supervision de l’apprentissage Au cours des dernières décennies, le besoin
d’analyse de documents médicaux, couplé à la croissance rapide des entrepôts de données
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de santé et au nombre croissant de publications scientifiques biomédicales, a conduit au
développement d’approches de TAL dans les domaines général et biomédical. L’avènement de
l’apprentissage automatique, en particulier l’apprentissage profond, s’est accompagné de la
promesse de décrire une tâche à l’aide d’exemples à partir desquels généraliser, plutôt que de
construire des règles spécifiques à un domaine et à une langue. Ces méthodes sont devenues
très populaires et ont démontré leur supériorité dans un grand nombre de domaines. Toutefois,
les possibilités offertes par ces méthodes se sont également accompagnées d’un besoin critique
de données annotées: de nombreuses méthodes d’apprentissage modernes entrent dans
la catégorie de l’apprentissage supervisé, c’est-à-dire qu’elles nécessitent la création d’un
ensemble de données annotées (par des experts humains) pour permettre l’apprentissage d’un
modèle qui peut ensuite être appliqué à de nouvelles données. Le coût temporel de l’annotation
des documents et les besoins élevées en annotations des approches par apprentissage profond
représentent un obstacle à l’automatisation de l’extraction d’informations. Cependant, dans
de nombreux cas, il existe des ressources de connaissances médicales auxiliaires, telles que
des terminologies, qui ne se présentent pas sous la forme d’exemples annotés. L’injection de
ces connaissances dans les modèles d’apprentissage fait encore l’objet de recherches actives.
De plus, le processus d’annotation lui-même est loin d’être trivial. En effet, la conception d’un
schéma qui concilie simplicité, expressivité et cohérence est un défi en soi.

Traitement du langage clinique français Les difficultés liées au traitement du langage
naturel sont nombreuses. En effet, le langage naturel est sujet à des ambiguïtés sémantiques
et syntaxiques. Comme tout document écrit, un rapport clinique peut contenir des fautes
d’orthographe, des erreurs grammaticales, voire des contradictions. De plus, l’informatisation
de ces rapports et leur conversion vers/depuis des formats portables (par exemple PDF)
peuvent introduire des artefacts difficiles à traiter informatiquement. Outre ces "erreurs", la
compréhension du langage naturel des rapports cliniques nécessite un certain sens commun,
ainsi que de connaissances médicales. Il est fréquent de rencontrer des termes qui ne font pas
partie d’aucune des ressources fournies à la machine, et ce malgré le nombre considérable de
synonymes présents dans les terminologies évoquées précédemment. Lors du développement
de modèles, en particulier dans le domaine clinique, il faut également tenir compte de
structures linguistiques spécifiques telles que les conjonctions elliptiques, ou la segmentation
hiérarchique des relations. Malgré les améliorations récentes des modèles de langage naturel,
la compréhension automatique du langage, et, a fortiori, des documents cliniques en français,
est encore loin d’être résolue. L’anglais dispose de beaucoup plus d’outils de traitement et de
ressources terminologiques que les autres langues, et les approches anglaises ne sont pas toutes
directement transposables au français par exemple. De plus, bien qu’il existe de nombreux
travaux en français sur le TAL dans le domaine général, mais bien moins dans le domaine
biomédical (Névéol et al., 2018). À titre d’exemple, bien qu’étant la cinquième langue la
plus représentée dans la version 2019 de la terminologie UMLS, le français ne dispose de
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synonymes que pour 3,5% des concepts présents. Par conséquent, un aspect important de ce
travail est le développement de méthodes pour le TAL clinique en français.

Une étude de cas Nous abordons la tâche de structuration de rapports de radiologie. Cette
étude s’inscrit dans le cadre du projet EZMammo, dont l’objectif principal est d’optimiser
l’entrepôt de données cliniques de l’Assistance Publique des Hôpitaux de Paris (APHP) et
de valider les prédictions d’un algorithme d’analyse de mammographies par apprentissage
profond. Une tâche préliminaire de cette évaluation consiste à construire un jeu de données de
mammographies étiquetées avec le diagnostic de cancer et les lésions trouvées dans les rapports
correspondants. Dans le cas de lésions suspectes, l’examen radiologique est suivi d’une analyse
cytologique. Il faut alors faire correspondre les résultats des deux rapports pour étiqueter la
mammographie originale avec le diagnostic définitif. Ce traitement implique qu’il soit possible
d’extraire des comptes rendus plusieurs entités médicales (comme des procédures, scores ou
lésions) et leur caractéristiques spatiales, temporelles et morphologiques. Ces extractions
peuvent ensuite être utilisées pour filtrer et aligner les résultats entre les images radiologiques,
les rapports de mammographie et les rapports d’anatomo-pathologie. Comme nous le verrons,
les entités à extraire se composent de plusieurs étiquettes et de plusieurs parties textuelles,
et entrent donc dans la catégorie des entités structurées. Cette tâche d’extraction d’entités
structurées se compose de plusieurs sous-tâches, à savoir l’extraction d’entités nommées pour
localiser les mentions d’objets et leurs caractéristiques, la normalisation pour les étiqueter
finement, et la composition de ces mentions pour aboutir à des entités structurées.

Questions de recherche

Une première ligne de questionnement découle des problèmes liés aux représentations
structurées. La simple extraction d’entités et la normalisation peuvent ne pas être suffisantes
pour représenter adéquatement les informations présentes dans un rapport clinique. Ainsi,
quelle structure est la mieux adaptée à l’extraction d’informations dans le domaine
clinique ? Dans le cas d’entités structurées, commentmodéliser un système pour regrouper
les différentes parties d’une même entité ? Plus généralement, dans le cas d’entités
simples comme structurées, quelles sont les difficultés rencontrées lorsque ces entités
se chevauchent dans le texte, et quelles méthodes peuvent être utilisées pour surmonter
ces difficultés ?

Notre deuxième série de questions relève du langage lui-même. L’anglais étant la langue
prédominante de la recherche en TAL, peut-on construire desmodèles de TAL pour d’autres
langues que l’anglais comme le français ?. Une question subsidiaire se pose : quand peu
de ressources sont disponibles dans les langues autres que l’anglais, comme dans le cas
de la normalisation, est-il encore possible d’appliquer des modèles d’apprentissage à
ces langues ?



Résumé étendu

Enfin, notre dernière question concerne le besoin critique de données annotées des méth-
odes par apprentissage profond. Le coût de l’annotation des documents médicaux étant
élevé, quelles techniques peuvent être mises en œuvre pour entraîner des algorithmes
d’apprentissage profond avec peu de données ?

Reconnaissance d’entités nommées

Nous étudions d’abord la tâche de reconnaissance d’entités nommées ( 1 dans la Figure
B.3), et plus précisément, la tâche de reconnaissance d’entités nommées imbriquées, ou avec
chevauchement. L’adaptation des modèles classiques d’étiquetage de séquence aux entités
imbriquées reste un défi. À cette fin, nous proposons deux approches supervisées utilisant des
réseaux de neurones. Notre première approche (figure B.4) utilise un modèle d’étiquetage
auto-régressif, qui prédit itérativement des entités sans chevauchement dans une phrase. La
seconde méthode (figure B.5) est basée sur un modèle de d’étiquetage combiné à un modèle
d’appariement de bornes.

Figure B.4 Modèle de reconnaissance d’entités nommées auto-régressif

Nous étudions l’impact des caractéristiques des mots sur les performances du modèle, et
observons que l’ajout du contexte de chaque phrase (phrases voisines) améliore nettement
les performances, ce qui peut s’expliquer par le pré-entraînement du modèle BERT, qui est
"habitué" aux phrases relativement longues. L’ajout de caractéristiques liées aux caractères de
chaque mot bénéficie également à nos modèles dans une moindre mesure, tandis que l’ajout
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Figure B.5 Modèle de reconnaissance d’entités nommées par étiquetage de séquence ap-
pariement biaffine

de plongements non-contextualisés FastText a un impact faible et mitigé. Enfin, prendre la
moyenne des plongements de sous-mots pour chaque mot semble la méthode d’agrégation la
plus efficace pour obtenir des plongements par mots en utilisant BERT. Nos deux décodeurs,
malgré leurs architectures différentes, obtiennent des résultats comparables sur chacun des
jeux de données. Concernant notre première approche de décodeur auto-régressif, pour
laquelle il faut choisir si l’on apprend au modèle à prédire d’abord les entités les plus courtes
ou les plus longues, nous observons que l’ordre optimal diffère selon le jeu de données. Cela
peut être dû à des différences de domaine, de langage ou de distribution des entités. Un
résultat majeur de nos expériences est la divergence entre les métriques d’évaluation exactes
et approximatives. En effet, concernant notre seconde approche d’extraction par étiquetage
de séquence et appariement de bornes, nous observons que l’appariement de bornes seul
obtient des résultats similaires selon la métrique d’évaluation exacte des entités, mais des
résultats bien moindres selon une métrique relaxée, qui ne nécessite pas d’obtenir exactement
les mêmes bornes de début et de fin. Il s’agit d’un résultat important, car cette métrique n’est
pas souvent renseignée dans les publications de recherche, et reflète pourtant un objectif utile
qui est de trouver une entité, même si ses délimitations dans le texte sont imparfaites, plutôt
que de ne rien trouver. Cet objectif est notamment pertinent dans des systèmes d’extraction
en cascade, dans lesquels les sorties d’un système d’extraction d’entités sont utilisées par un
autre système en aval. De plus, d’après nos expériences, cette différence entre les deux types
de métriques semble être d’autant plus importante que le jeu de données est petit et contient
des entités avec des limites de début/fin ambiguës. Enfin, comme attendu, notre approche de
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combinaison par ensemble de modèles s’avère efficace pour améliorer les performances d’un
système d’extraction d’entités nommées.

Normalisation

Nous nous concentrons ensuite sur la normalisation des entités nommées médicales ( 2
dans la Figure B.3). Plus précisément, nous abordons la tâche de normalisation des entités
médicales dans des langues autres que l’anglais pour de grandes terminologies médicales
contenant des centaines de milliers de concepts, et avec peu ou pas d’échantillons annotés.
Notre objectif est d’appareiller des entités nommées avec un concept dans une terminologie.
Nous profitons de la nature multilingue des terminologies pour améliorer la normalisation des
concepts dans les langues non anglaises sans traduction ni supervision directe.

Nous proposons à cet effet une architecture de classification standard dans laquelle nous
calculons des représentations pour les entités et les concepts dans un espace multidimensionnel
commun. La probabilité pour chaque entité d’appartenir à un concept est ensuite déterminée à
partir de la similarité des deux représentations. Le nombre de concepts pouvant être très grand,
nous proposons une technique pour accélérer l’entraînement et réduire le besoin en mémoire
en découpant l’entraînement en deux étapes. Le modèle chargé de représenter les entités est
d’abord pré-entraîné sur un sous-ensemble de la terminologie, puis les représentations de tous
les concepts sont apprises en ne considérant que les candidats les plus probables pour chaque
synonymes.

(a) Modèle de normalisation par classification

(b) Entrainement en deux étapes sur
un grand nombre de concepts

Figure B.6 Modèle et méthode proposés pour la normalisation multilingue à grand échelle

Notre méthode obtient de très bons résultats sur les jeux de données Quaero FrenchMed
(textes en français) et Mantra (textes anglais, français, espagnol, allemand et néerlandais).
Nos expériences montrent tout d’abord que notre technique d’apprentissage en deux étapes ne



Résumé étendu

semble pas avoir d’effet négatif sur la performance du modèle, comparé à un modèle appris
en une seule étape, mais réduit le temps d’apprentissage de 15h à 7h pour une terminologie
de presque 1 million de concepts. Contrairement à ce que nous attendions, en comparant
différents modèles BERT français, anglais, et multilingue sur Quaero, le modèle BERT pré-
entraîné ne semble pas avoir d’effet majeur sur la performance. En revanche, l’entraînement sur
différentes langues, pour un même nombre de concepts, a un effet notable sur les prédictions.
Nous observons cela au travers d’une évaluation sur Quaero et Mantra en combinant les
langues disponible dans leur terminologies respectives. Sur le jeu de données Mantra, nous
observons que l’entraînement sur les cinq langues obtient de meilleurs résultats pour les
langues hors anglais, en comparaison à des entrainement bilingues séparés anglais + langue
en question. Enfin, nous retrouvons les similarités linguistiques entre le français et l’espagnol
d’une part, et l’allemand et le néerlandais d’autre part, en observant quelle langue, autre que
l’anglais et la langue d’évaluation, contribue le plus par sa terminologie à la performance de
normalisation dans chaque langue.

Entités structurées

Enfin, nous nous concentrons sur le problème de l’extraction d’entités structurées à partir
de rapports de radiologie du sein ( 3 dans la Figure B.3). Ces rapports contiennent des
informations riches et utiles sur l’état physique d’un patient, son historique clinique, ainsi que
les évaluations et les recommandations du médecin.

Figure B.7 Différentes étapes de structuration des comptes rendus
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Nous décrivons un schéma d’annotation pour l’extraction d’entités radiologiques, de procé-
dures et de scores à partir de ces rapports. En utilisant ce schéma, nous construisons un
nouveau corpus de 120 documents manuellement annotés issus de l’entrepôt de données
cliniques de l’APHP. Nous étudions également la génération automatique de ces annotations.
Bien que de nombreuses méthodes existent pour des sujets connexes tels que l’extraction
d’événements, le slot-filling ou la reconnaissance d’entités nommées discontinues, un défi
dans notre étude réside dans le fait que les rapports cliniques contiennent généralement des
cadres qui se recouvrent et s’étendent sur plusieurs phrases ou paragraphes. Nous proposons
une nouvelle méthode qui résout ces difficultés et l’évaluons sur le nouveau corpus annoté.

(a) Modèle d’extraction de cadres par cliques de mentions et relations de
portées (b) Exemple de portées

prédites par le modèle

Figure B.8 Modèle proposé et prédiction de cadres dans un compte rendu clinique

Le système proposé se compose de quatre modules illustrées dans la Figure B.7, entraînés
conjointement. Un premier module 1 extrait les entités nommées, à savoir les mentions
d’objets ou de leurs caractéristiques. Le second module 2 effectue la normalisation de ces
entités vers une terminologie. À la différence du modèle présenté dans la section précédente,
cette terminologie est très petite (moins de 50 concepts), les entités peuvent avoir plusieurs
concepts, et nous prenons en compte le contexte de chaque entité. Un troisième module
3 extrait des "cadres": des cliques de mentions. Ces cliques sont générées à partir de
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relations binaires entre les mentions, visant à savoir si les deux mentions appartiennent à la
même entité. Pour chaque relation, nous calculons d’une part un score par produit scalaire
entre les représentations de chaque mention, et introduisons le mécanisme de relation par
portée. Ces relations par portées visent à déterminer si une mention est située dans la zone
d’effet d’une autre mention, sans supervision spécifique de ces zones. Ce module est illustré
plus en détail dans la Figure B.8a. Enfin, le dernier module 4 rempli dans chaque cadre
les champs qu’aucune mention n’a pu justifier explicitement. Nous proposons également
plusieurs techniques pour injecter des connaissances auxiliaires par le biais de contraintes,
d’augmentation du jeu de données et d’une petite terminologie.

En évaluant notre système sur le nouveau jeu de données annotées, nous montrons que
l’ajout d’informations auxiliaires peut améliorer les performances du modèle dans le contexte
d’une petite quantité de données. Cette information est précieuse pour l’annotation et le
développement de nouveaux systèmes de recherche d’information dans d’autres domaines, où
les mots ou phrases clés sont connus à l’avance. Dans ce contexte, notre système commence
à obtenir des résultats avec presque aucun document annoté. Notre méthode de détection
de relations par portées améliore significativement les prédictions, et il en va de même pour
plusieurs astuces de modélisation que nous implémentons, à savoir l’attention relative et une
modification du mécanisme de connexion résiduelle standard. Nous montrons également que
les portées peuvent être apprises sans aucune heuristique, ou annotation spécifique, et qu’elles
fournissent un moyen interprétable de visualiser les prédictions du modèle, comme l’illustre
la figure B.8b.

Ces différentes contributions, concernant l’extraction et la normalisation d’entités simples et
structurées dans les rapports médicaux, montrent que le traitement automatique du langage
clinique français est un sujet complexe qui mérite des approches spécifiques, tant du point de
vue de la modélisation du système que du point de vue de la collecte des données et de leur
injection dans les modèles.
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Abstract
Hospital clinical documents are rich sources of information for various applications such as
patient recruitment for clinical research, epidemiological surveillance, medical coding, and
decision support tools. However, being primarily written in natural language, these documents
are not easily amenable to large-scale computer processing and must first be structured. We
aim to extract entities mentioned in these documents, whether simple or structured, i.e.,
containing several labels or parts, and normalize them with concept bases. We contribute to
several natural language processing (NLP) tasks, namely named entity recognition (NER),
medical entity normalization, and structured entity extraction. In particular, we investigate
training deep learning models in low data settings, for languages other than English and in
the clinical domain. We structure our approach in three steps: tag, normalize, and compose.
We first propose two methods to tag simple entities, especially when they overlap in texts.
We then develop a large-scale multilingual model to normalize them in several languages.
Finally, to compose simple entities into structured entities, we propose a new method based
on mention cliques and scope relations. We evaluate it to a new annotated dataset of breast
imaging reports.
Keywords: [nlp, structure, extraction, tag, normalize, compose, clinical, multilingual]

Résumé
Les documents cliniques hospitaliers constituent de riches sources d’information pour diverses
applications telles que le recrutement de patients pour la recherche clinique, la surveillance
épidémiologique, le codage médical et les outils d’aide à la décision. Cependant, étant
essentiellement rédigés en langue naturelle, ces documents ne se prêtent pas aisément à des
traitements informatiques à grande échelle et doivent d’abord être structurés. Nous visons à
extraire les entités mentionnées dans ces documents, qu’elles soient simples ou structurées,
c’est-à-dire contenant plusieurs étiquettes ou parties, et à les normaliser selon des bases de
concepts. Nous contribuons à plusieurs tâches de traitement du langage naturel (TAL), à savoir
la reconnaissance des entités nommées, la normalisation des entités médicales et l’extraction
d’entités structurées. Nous nous intéressons notamment à l’entraînement de modèles par
apprentissage profond (deep learning) dans des conditions de données limitées, pour des
langues autres que l’anglais et dans le domaine clinique. Nous structurons notre approche en
trois étapes : surligner, normaliser et composer. Nous proposons d’abord plusieurs méthodes
pour surligner des entités simples, notamment lorsqu’elles se chevauchent dans les textes.
Nous développons ensuite une approche multilingue à grande échelle pour les normaliser
dans plusieurs langues. Enfin, pour composer ces entités simples en entités structurées,
nous proposons une nouvelle méthode basée sur les cliques de mentions et les relations
de portée. Nous l’évaluons sur un nouveau corpus annoté de comptes rendus cliniques de
mammographies.
Mots clé: [tal, structure, extraction, surligner, normaliser, composer, clinique, multilingue]
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