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A

. This habilitation thesis fits in the fields of algebraic and enumerative combinatorics, with connections with computer science. The main ideas developed in this work consist in endowing combinatorial objects (words, permutations, trees, integer partitions, Young tableaux, etc.) with operations in order to construct algebraic structures. This process allows, by studying algebraically the structures thus obtained (changes of bases, generating sets, presentations by generators and relations, morphisms, representations), to collect combinatorial information about the underlying objects. The algebraic structures the most encountered here are magmas, posets, associative algebras, dendriform algebras, Hopf bialgebras, operads, and pros. This work explores the aforementioned research direction and provides many (functorial or not) constructions having the particularity to build algebraic structures on combinatorial objects. We develop for instance a functor from nonsymmetric colored operads to nonsymmetric operads, from monoids to operads, from unitary magmas to nonsymmetric operads, from finite posets to nonsymmetric operads, from stiff pros to Hopf bialgebras, and from precompositions to nonsymmetric operads. These constructions bring alternative ways to describe already known structures and provide new ones, as for instance, some of the deformations of the noncommutative Faà di Bruno Hopf bialgebra of Foissy and a generalization of the dendriform operad of Loday.

We also use algebraic structures to obtain enumerative results. In particular, nonsymmetric colored operads are promising devices to define formal series generalizing the usual ones. These series come with several products (for instance a pre-Lie product, an associative product, and their Kleene stars) enriching the usual ones on classical power series. This provides a framework and a toolbox to strike combinatorial questions in an original way.

The text is organized as follows. The first two chapters pose the elementary notions of combinatorics and algebraic combinatorics used in the whole work. The last ten chapters contain our original research results fitting the context presented above.
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Introduction

This dissertation contains the main research results developed since our PhD, defended about six years ago. Our research fits in the fields of combinatorics and algebraic combinatorics, with solid connections with computer science. The purpose of this first part of the text is to progressively contextualize the presented work and to provide a preview of its main results.

Context

Combinatorics is a subfield of both mathematics and computer science. It is somewhat hard to provide a global and concise definition of this field. For our part, we think that one of the best definitions of combinatorics is that it is the science of the construction plans. A construction plan is a list of rules expressed in a rigorous language, whose goal is to define objects. Unlike construction plans of houses, bridges, or space shuttles, a single construction plan in combinatorics offers the possibility to build not only one object but many similar ones. Indeed, a certain degree of freedom is contained in such construction plans. All the objects thus described form a set, named a combinatorial set. Given a construction plan, it is natural to collect as many properties as possible of the objects of their combinatorial set.

One of the simplest examples of construction plans is the one describing permutations.

A permutation is a sequence of ∈ N symbols taken in the set {1 }, each one appearing exactly once. From this plan, the smallest objects are 1 12 21 123 132 213 231 312 321 (0.0.1)

where is the unique sequence of = 0 symbols. A slightly more elaborate example is the one of Motzkin paths. This construction plan specifies that a Motzkin path is a possibly empty sequence of steps of three kinds: a stationary step , a rising step , or a descending step , with the constraint that the path ends at the same level as its starting point and never goes below its starting point. From this plan, we can build among others the following Motzkin paths: (0.0.2) where is the unique sequence of 0 steps.

There are several flavors of combinatorics. Each of them depends on the point of view on construction plans. Here follow the main ones related with our work. To continue the metaphor with construction plans of buildings, let us express the point of view of the architect, of the workman, and of the electrician.
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General combinatorics. The role of the architect consists primarily in designing new construction plans. The final aim is to use construction plans and combinatorial sets as tools to solve precise problems or explain some phenomena.

For instance, we can study all the possible ways to bracket an expression involving + 1 occurrences of a variable and occurrences of a binary operation satisfying a priori no relations. For instance, (( ) (( ))) (0.0.3) is one of these. A combinatorial modelization of this problem amounts to seeing such expressions through their syntax trees. Since is binary, one can encode an expression with occurrences of by a binary tree with internal nodes. The previous expression is encoded in this way by the binary tree (0.0.4) Now, the original problem is translated into a more combinatorial language consisting in studying such binary trees. The construction plan of binary trees is recursive: a binary tree is either a leaf or two binary trees attached to an internal node . The first ones are (0.0.5)

From this translation, it is possible to enumerate the underlying expressions of the trees for each size . Moreover, this translation helps to discover some properties of the expressions such as their height, this statistics being the usual height of the binary trees.

Another illustration of the work of the combinatorial architect consists in designing combinatorial objects being the bases of some algebraic structures. A classical example relies on free Lie algebras [START_REF] Reutenauer | Free Lie algebras[END_REF] and the description of their bases. Indeed, the combinatorial set of the Lyndon words on a totally ordered alphabet A is a basis of the free Lie algebra generated by A. A Lyndon word on A is a sequence of ∈ N symbols of A such that all strict suffixes of are greater than for the lexicographic order induced by the total order on A. By knowing this property, the study of free Lie algebras can be transfered on the combinatorial study of Lyndon words. A more modern example in the same vein consists in describing the bases of free pre-Lie algebras [START_REF] Vinberg | The theory of homogeneous convex cones[END_REF][START_REF] Gerstenhaber | The cohomology structure of an associative ring[END_REF][START_REF] Manchon | A short survey on pre-Lie algebras[END_REF] generated by a set G. In this context, the right construction plan is the one of the rooted trees on G, that are connected acyclic graphs whose vertices are labeled on G and admitting a distinguished vertex, the root [START_REF] Chapoton | Pre-Lie algebras and the rooted trees operad[END_REF].

The usual work in the field of general combinatorics consists hence in modelizing a problem or a phenomenon coming from close domains such as computer science, algebra, or physics, by combinatorial objects with the hope of a better understanding.

Enumerative combinatorics. The role of the workman, benefiting of the knowledge of a lot of construction plans and of their internal functioning, is to understand how does a construction plan work and to discover relations between a bunch of them. The combinatorial workman asks in most cases the question to count, given a construction plan, the combinatorial objects we can build of a given size ∈ N. The notion of counting is primary in enumerative combinatorics and is somewhat fuzzy. Counting may mean that we expect a closed formula, a recurrence formula, a generating function, or even a functional equation for a generating series. Generating series are series of the form ( ) = ∈N (0.0.6) where is the number of objects of size for each ∈ N. They form a very important concept in enumerative combinatorics.

For instance, by defining the size of a binary tree as its number of internal nodes, it is possible to show that the generating series ( ) of binary trees satisfies the algebraic equation ( ) = 1 + ( ) 2 (0.0.7) and expresses thus as a generating function by

( ) = 1 - √ 1 -4 2 (0.0.8)
One can deduce from this that the number of binary trees with ∈ N internal nodes satisfies = 1 + 1 2 (0.0.9)

On the other hand, counting integer partitions is not so easy. An integer partition of size ∈ N is a multiset λ 1 λ of integers such that λ 1 + • • • + λ = . The generating series ( ) of these objects satisfies

( ) = ∈N 1 1 1 - (0.0.10)
The situation here is less fruitful than in the case of binary trees since there is no known closed formula for integer partitions similar to (0.0.9).

Besides, as mentioned above, one of the roles of the combinatorial workman consists in establishing links between different combinatorial sets. Consider for instance the combinatorial set of Dyck paths, that are Motzkin paths discussed before, but without horizontal steps . Then, there is a bijection between the set of all binary trees with internal nodes and the set of all Dyck paths having rising steps . This bijection can be computed by induction, but there is a direct interpretation of it consisting in computing a Dyck path in correspondence with a binary tree t by performing a left to right depth-first traversal of t and outputting a step when an internal node is visited and a step when a leaf is visited, without considering the last leaf. For instance, the Dyck path in correspondence with the binary tree appearing in (0.0.4) is (0.0.11) Moreover, not only bijections between combinatorial sets are interesting. Indeed, surjections or injections between combinatorial sets are susceptible to establish interesting links between such sets. For example, the algorithm of insertion of an element in a binary search tree [START_REF] Knuth | The art of computer programming, volume 3: Sorting and searching[END_REF] provides a surjection from the set of all permutations of elements to the set of all binary trees with internal nodes. A binary search tree is a binary tree where all INTRODUCTION internal nodes are labeled by integers with some extra conditions. The insertion of a letter in a binary search tree t consists in following the path starting from the root of t to one of its leaves by going into the right subtree if is greater than the label of the considered internal node and into the left one otherwise. For instance, the insertion from left to right of the letters of the permutation σ := 451326 gives the binary search tree (0.0.12) and, by forgetting the labels of the nodes, we obtain the binary tree image of σ. This surjection has also several algebraic properties [LR98, HNT05].

A last important part of enumerative combinatorics includes algorithms generating all the objects of a given size of a combinatorial set [START_REF] Ruskey | Combinatorial Generation[END_REF]. The efficiency of these algorithms is a highly important feature, so that constant amortized time algorithms are the most sought. One can cite in this context the algorithm of Proskurowski and Ruskey for binary trees [START_REF] Proskurowski | Binary tree gray codes[END_REF], and the Steinhaus-Johnson-Trotter algorithm for permutations [START_REF] Trotter | Algorithm 115[END_REF][START_REF] Johnson | Generation of permutations by adjacent transposition[END_REF][START_REF] Steinhaus | One hundred problems in elementary mathematics[END_REF]. Algebraic combinatorics. The role of the electrician consists in endowing an edifice with a network of electric wires, making it capable to perform additional functions. Given a construction plan, the combinatorial electrician tries to define operations on its combinatorial objects. Operations on combinatorial objects allow to assemble several of these to obtain bigger ones, or, contrariwise, allow to disassemble a single object into smaller pieces. In this last case, it is more accurate to speak of co-operations. This point of view draws a bridge between combinatorics and algebra, creating interactions in both ways between these two fields.

For instance, operations on Motzkin paths offer an interesting way to describe their generating series ( ), counting them with respect to their number of steps. For this, consider the monoid ( •) of all paths consisting in steps , , and (here we relax the conditions about the levels of the starting and ending points of the paths), where • is the concatenation of paths (obtained by superimposing the ending point of the first path and the starting point of the second). For instance,

• =
Now, let g be the formal series defined as the formal sum of all Motzkin paths. Hence,

g = + + + + + + + + + • • • (0.0.13)
By nearly elementary properties of Motzkin paths about their unambiguous decomposition, and by extending • linearly on series, g can be expressed as

g = + • g + • g • • g (0.0.14)
By observing that ( ) is the series obtained by specializing each Motzkin path of size by in g, we deduce from (0.0.14) that ( ) satisfies ( ) = 1 + ( ) + 2 ( ) 2 (0.0.15)

From this algebraic equation, it is possible to obtain a generating function of ( ) or a closed formula for its coefficients, like in the case of binary trees presented above.

On the other hand, endowing combinatorial sets with operations allows to highlight some of their properties. Consider in this context the monoid (S ) where S is the combinatorial set of all permutations and is the shifted concatenation of permutations: given two permutations σ and ν, σ ν is the permutation obtained by concatenating σ with the word obtained by incrementing each letter of ν by the size of σ. For instance, 312 21 = 31254. The minimal generating set of this monoid is the set of all connected permutations, that are the nonempty permutations σ having no proper prefixes that are permutations [START_REF] Comtet | Sur les coefficients de l'inverse de la série formelle ![END_REF]. For instance, the first connected permutations are From this very natural question about finding a minimal generating set of an algebraic structure, we obtain the description of new natural combinatorial objects. Moreover, since (S ) is free as a monoid, the generating series ( ) of connected permutations and the generating series S ( ) of permutations are related by

S ( ) = 1 1 - ( ) = ∈N ! (0.0.17)
Connected permutations have several properties. For instance, the Hopf bialgebra of free quasi-symmetric functions (also known as the Malvenuto-Reutenauer Hopf bialgebra [START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF]) is, as an associative algebra, freely generated by the connected permutations [START_REF] Duchamp | Noncommutative Symmetric Functions VI: Free Quasi-Symmetric Functions and Related Algebras[END_REF].

Let us consider another example consisting in a unary operation on binary trees. As said before, binary trees are in one-to-one correspondence with expressions involving variables and operations . Now, assume that is associative. This leads to allow the relation

( ( 1 
2 ) 3 ) = ( 1 ( 2 3 
) ) (0.0.18) where 1 , 2 , and 3 are expressions. In terms of binary trees (0.0.18) translates as the identification

t 1 t 2 t 3 = t 1 t 2 t 3 (0.0.19)
where t 1 , t 2 , and t 3 are binary trees. This identification can be performed anywhere in the binary trees and not only at their roots. One can see this identification as an operation consisting in taking a binary tree and one of its edges oriented to the left (like the left member of (0.0.19)) and changing it into an edge oriented to right (like the right member of (0.0.19)). This operation is known as a right rotation [START_REF] Knuth | The art of computer programming, volume 3: Sorting and searching[END_REF]. Now, it is possible to show INTRODUCTION by induction on the number of internal nodes of the binary trees that all binary trees with internal nodes can be identified with the right comb tree of size , that is the binary tree such that the left child of each internal node is a leaf. This provides a (quite complicated) proof of the well-known fact that all parenthesizings of an expression involving occurrences of an associative operation are equal.

Finally, as mentioned before, interpreting an algebraic structure by means of combinatorial objects endowed with operations-like free Lie algebras in terms of Lyndon words, free pre-Lie algebras in terms of rooted trees, free dendriform algebras [START_REF] Loday | Dialgebras. In Dialgebras and related operads[END_REF] in terms of binary trees, or even free monoids in terms of words-brings a good understanding of it. These interpretations of algebraic structures are known as combinatorial realizations. In algebraic combinatorics, we endow combinatorial sets, or more generally spaces whose bases are indexed by combinatorial sets, with several algebraic structures. These can be simply monoids or groups, but in some cases posets, lattices, associative algebras, dendriform algebras, pre-Lie algebras, duplicial algebras [START_REF] Loday | Generalized bialgebras and triples of operads[END_REF], etc. In this work, Hopf bialgebras, operads, and pros are the structures encountered the most.

Other flavors of combinatorics. In addition to enumerative and algebraic combinatorics, there are other important flavors of combinatorics. Among these is analytic combinatorics [START_REF] Flajolet | Analytic Combinatorics[END_REF] wherein techniques coming from complex analysis are employed at the level of generating series. This field studies also the asymptotic behavior and the general form of combinatorial objects. Probabilistic combinatorics is close to analytic combinatorics. This domain uses methods coming from probability theory to design algorithms randomly generating objects of a given combinatorial set (see for instance [START_REF] Rémy | Un procédé itératif de dénombrement d'arbres binaires et son application à leur génération aléatoire[END_REF] for an algorithm generating uniformly binary trees). Moreover, probabilistic combinatorics is useful to show, within a given combinatorial set, that there is at least one object satisfying a given property [START_REF] Alon | The Probabilistic Method[END_REF]. This point of view was initiated by Erdős and has links with the Ramsey theory [START_REF] Soifer | Ramsey Theory: Yesterday, Today, and Tomorrow[END_REF]. As a last flavor mentioned here, one can cite geometric combinatorics wherein geometric realizations of polytopes are designed, including the realizations of the permutohedron and of the associahedron [START_REF] Ceballos | Many non-equivalent realizations of the associahedron[END_REF].

Let us now dive a little more deeply into algebraic combinatorics and explain our point of view about it and the context of our contributions.

Point of view

Historically, algebraic combinatorics was concerned with questions related to representation theory [START_REF] Gordon | Representations and Characters of Groups[END_REF]. This field consists in studying algebraic structures (like monoids, groups, associative algebras, Lie algebras, etc.) by regarding their elements as linear maps. In an equivalent way, this amounts to letting the structure act on a vector space in a reasonable way. One of the benefits of this process rests upon the fact that algebraic problems are translated into linear algebra questions. The underlying algorithmic of linear algebra (like Gaussian elimination, matrix inversion, matrix reduction, etc.) offers strategies coming from computer science and combinatorics to explore these problems.

In particular, representations of the symmetric groups S of permutations of size ∈ N have a special status in algebraic combinatorics. Indeed, the irreducible representations of S are indexed by integer partitions of size [START_REF] Fulton | Representation Theory: A First Course[END_REF]. Schur functions are symmetric functions indexed by integer partitions that appear in this context of representation theory. They have the particularity to admit a lot of very different but equivalent definitions [START_REF] Lascoux | Fonctions symétriques[END_REF][START_REF] Stanley | Enumerative Combinatorics[END_REF][START_REF] Lothaire | Algebraic combinatorics on words. Encyclopedia of mathematics and its applications[END_REF]. The set of all symmetric functions is naturally endowed with the structure of an associative algebra S [START_REF] Macdonald | Symmetric Functions and Hall Polynomials[END_REF] and the set of all Schur functions is one of its bases. Many other bases of S have been discovered, like the monomial, elementary, complete homogeneous, and power sum functions. The changes of bases between these different families of functions express most of the time by simple and nice combinatorial algorithms. This work is distant from these classical questions about representation theory and symmetric functions. Our point of view about algebraic combinatorics is somewhat unrelated to these considerations but, instead, related to the study of operations and algebraic structures on combinatorial sets. Nevertheless, like in all these research areas, we work most of the time with finite structures that can be encoded by the computer. For this reason, we can use the computer to perform large computations or to make experiments. These are very powerful tools to establish conjectures and to collect as much information as possible about a given research subject.

Objects, operations, and algebraic structures. In accordance to what we have explained above, defining and studying operations on combinatorial sets has several advantages. More precisely, in this context, we try to progress in both of the following axes:

(A) Endowing combinatorial sets with algebraic structures by defining operations or co-operations; (B) Given a type of algebraic structure, searching a realization of it in terms of combinatorial objects endowed with operations.

Let us explain in more details these two directions.

Point (A) consists, starting with a combinatorial set C, in defining operations or cooperations on C. In practice, we work rather on K C , the linear span of C where K is a field. To highlight some statistics on the objects, K is often the field K( 0 1

) of rational functions on the parameters , ∈ N. The linear structure of K C implies that we inherit the techniques coming from linear algebra to perform its study. When the (co)operations defined on K C endow it with a certain algebraic structure (like an associative algebra, a dendriform algebra, a pre-Lie algebra, or even a coalgebra), we can ask all the algebraic questions related to the structure and we can hope to harvest information about the objects of C.

Among the classical questions, the first one consists in expressing new bases of K C and observing how its operations behave on these. Frequently, changes of bases are triangular and are defined through partial orders on C by considering sums of elements minored by other ones. It is time to study an example. Let us endow K S with the linear binary product ¢, where for any permutations σ and ν, σ ¢ν is the sum of all the permutations that can be obtained by interleaving the letters of σ with the ones of the word obtained by incrementing by the size of σ the letters of ν. For instance, 12 ¢ 21 = 1243 + 1423 + 1432 + 4123 + 4132 + 4312 (0.0.20)

INTRODUCTION

This product is known as the shifted shuffle product of permutations. Consider now the partial order on S being the reflexive and transitive closure of the relation such that for any permutations σ and ν, σ ν if ν can be obtained from σ by exchanging two adjacent letters σ( ) and σ( + 1) such that σ( ) < σ( + 1). This order is known as the right weak order on permutations [START_REF] Th | Analyse algébrique d'un scrutin[END_REF][START_REF] Yanagimoto | Partial orderings of permutations and monotonicity of a rank correlation statistic[END_REF]. Let the family {E σ : σ ∈ S} of elements of K S defined by E σ := By triangularity, this family forms a basis of K S and it appears that the product ¢ on this E-basis satisfies, for all permutations σ and ν,

E σ ¢ E ν = E σ ν (0.0.23)
where is the shifted concatenation of permutations encountered before. This provides an example of a rather complicated product when considered in a given basis that becomes very simple in another one. Moreover, proving that (0.0.23) holds provides an interesting proof of the associativity of ¢ since is clearly associative.

A second question almost as much immediate as the first one is to find minimal generating sets of K C , whose elements can be interpreted as base blocks to build any object of C. This is even more interesting when K C has some freeness properties; in this case, any element decomposes in a unique way in a certain sense. As a consequence, obtaining minimal generating sets of K C leads to expressions for the Hilbert series

K C ( ) = ∈N dim K C( ) (0.0.24)
of K C , where C( ) is the set of the objects of size ∈ N of C. Since as generating series K C ( ) is the generating series C ( ) of C, this may offer an alternative way to enumerate the objects of C. To continue the example we started, (K S ¢) admits as a minimal generating set the set {E σ : σ ∈ } where is the set all connected permutations, and is freely generated by this set as an associative algebra (for details see [START_REF] Duchamp | Noncommutative Symmetric Functions VI: Free Quasi-Symmetric Functions and Related Algebras[END_REF]).

Besides, to complete the study of K C , it is natural to study morphisms (with respect to the algebraic structure equipping K C ) involving it. Automorphisms of K C lead potentially to the discovery of more or less hidden symmetries between the objects of C. Morphisms between K C and other known structures K D lead to establish connections between the objects of C and the ones of D. This also includes the study of substructures and quotients of K C . It is worth observing that most of such morphisms use algorithms coming from computer science in an unexpected way. For instance, the associative algebra (K S ¢) admits several substructures involving a large range of combinatorial objects. Some of these can be constructed by considering a family {P : ∈ D} of elements of K S defined by

P := σ∈S alg(σ)= σ (0.0.25)
where D is a certain combinatorial set and alg is an algorithm transforming a permutation into an object of D. When alg satisfies some precise properties (see [Hiv99, HN07, Gir11, NT14]), the P-family spans an associative subalgebra of (K S ¢). For instance, D can be the set of binary trees and alg, the algorithm of insertion in a binary tree exposed above. In this case, one has for instance P = 2143 + 2413 + 2431 (0.0.26)

Besides, D can be the set of the standard Young tableaux and alg, the algorithm consisting in inserting the letters of a permutation into a standard Young tableau using the Schensted algorithm [START_REF] Schensted | Longest increasing and decreasing subsequences[END_REF][START_REF] Lothaire | Algebraic combinatorics on words. Encyclopedia of mathematics and its applications[END_REF]. In this case, one has for instance P 1 2 4 3 = 1324 + 1342 + 3124 (0.0.27)

These mechanisms, coming from algebraic combinatorics, can also be used to conjecture properties and to obtain results in enumerative combinatorics. Indeed, assume that C and D are two combinatorial sets and that we look for a bijection between them. A tool to discover a bijection consists in endowing K C and K D with algebraic structures satisfying similar properties. More explicitly, when these structures admit minimal generating sets clearly in bijection, and when the objects of C and D decompose in the same way on the generators, one obtains a computable bijection between C and D.

In summary, Direction (A) uses algebra to obtain results in combinatorics and in computer science.

Conversely, Direction (B) employs mechanisms and techniques coming from combinatorics to solve algebraic questions. Given a type of algebra, that is a set of (co)operation symbols together with axioms they have to satisfy, the knowledge of the free structure on a set G of generators brings a lot of information. In many cases, the description of these structures is combinatorial, in the sense that their bases are indexed by combinatorial objects labeled in an adequate way by elements of G. As mentioned before, examples are abundant in the literature. They include pre-Lie algebras using rooted trees and operations of grafting of trees [START_REF] Chapoton | Pre-Lie algebras and the rooted trees operad[END_REF], Zinbiel algebras using words and half-shuffle operations [START_REF] Loday | Cup-product for Leibniz cohomology and dual Leibniz algebras[END_REF], dendriform algebras using binary trees and operations of shuffling of trees [START_REF] Loday | Dialgebras. In Dialgebras and related operads[END_REF], operads using planar rooted trees and grafting operations, and pros using prographs and operations of compositions [START_REF] Markl | Operads and PROPs[END_REF]. Several of these combinatorial realizations of algebraic structures can be established by orienting their axioms to obtain rewrite rules [START_REF] Baader | Term rewriting and all that[END_REF]. When the obtained rewrite rules satisfy some properties like termination and confluence, the normal forms of the rewrite rules can be seen as the elements of the structure.

Another classical example of use of combinatorial methods for algebra is provided by the Littlewood-Richardson rule [START_REF] Littlewood | Group characters and algebra[END_REF]. This rule offers a way to compute the structure coefficients of the algebra of symmetric functions S in the basis of the Schur functions. A simple and enlightening proof [START_REF] Duchamp | Noncommutative Symmetric Functions VI: Free Quasi-Symmetric Functions and Related Algebras[END_REF][START_REF] Hivert | The Algebra of Binary Search Trees[END_REF] of this rule is provided by the combinatorics of Young tableaux and of the plactic monoid [START_REF] Lascoux | 1978), volume 109 of Quad[END_REF][START_REF] Lothaire | Algebraic combinatorics on words. Encyclopedia of mathematics and its applications[END_REF].

INTRODUCTION

Let us now provide details about the main structures appearing here. During our research, we work particularly with three types of algebraic structures: Hopf bialgebras, operads, and pros. We now present some of their features and why they are interesting and adapted structures in the field of algebraic combinatorics.

Hopf bialgebras. Hopf bialgebras are vector spaces endowed with an associative product and a coassociative coproduct ∆. These (co)operations satisfy the relation ∆( ) = ∆( )∆( ) (0.0.28)

for any elements and . If we see as a product assembling two elements to build another one, and ∆ as a coproduct breaking an element into two smaller parts, Equation (0.0.28) says that assembling two elements and then breaking the result is the same as assembling the results obtained by breaking them before. This kind of commutation between and ∆ is thus very natural. Hopf bialgebras K C where C is a combinatorial set with exactly one element of size 0 and where (resp. ∆) is graded (resp. cograded) are the most encountered ones in algebraic combinatorics. These structures are known as combinatorial Hopf bialgebras. Main references about these structures are [START_REF] Cartier | A primer of Hopf algebras[END_REF] and [START_REF] Grinberg | Hopf Algebras in Combinatorics[END_REF].

The prototypal example of a Hopf bialgebra is the symmetric functions S . Indeed, it is possible to add a coproduct on S to turn it into a Hopf bialgebra. Most of other Hopf bialgebras are generalizations of S in the sense that they contain it as a quotient or as a Hopf sub-bialgebra. A famous full diagram of Hopf bialgebras includes the Malvenuto-Reutenauer Hopf bialgebra [START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF], also known as FQSym [START_REF] Duchamp | Noncommutative Symmetric Functions VI: Free Quasi-Symmetric Functions and Related Algebras[END_REF]. This structure is the space K S endowed with the shifted shuffle product and a deconcatenation coproduct of permutations. The Malvenuto-Reutenauer Hopf bialgebra contains the Poirier-Reutenauer Hopf bialgebra of tableaux [PR95], also known as the Hopf bialgebra of free symmetric functions FSym [START_REF] Duchamp | Noncommutative Symmetric Functions VI: Free Quasi-Symmetric Functions and Related Algebras[END_REF][START_REF] Hivert | The Algebra of Binary Search Trees[END_REF] and involves standard Young tableaux. The Loday-Ronco Hopf bialgebra [LR98], also known as the Hopf bialgebra of binary search trees PBT [START_REF] Hivert | The Algebra of Binary Search Trees[END_REF] involves binary trees and is a Hopf sub-bialgebra of FQSym. Moreover, a noncommutative version Sym [GKL + 95] of S exists as a Hopf sub-bialgebra of FQSym known as the Hopf bialgebra of noncommutative symmetric functions. This structure involves integer compositions and provides noncommutative versions of Schur functions. Furthermore, a lot of Hopf bialgebras involving various sorts of trees with links with renormalization theory like the Connes-Kreimer Hopf bialgebra CK [START_REF] Connes | Hopf algebras, renormalization and noncommutative geometry[END_REF] have been introduced. Several variations of this structure exist [START_REF] Foissy | Les algèbres de Hopf des arbres enracinés décorés[END_REF][START_REF] Foissy | Les algèbres de Hopf des arbres enracinés décorés[END_REF] (see also [START_REF] Foissy | Polynomial realizations of some combinatorial Hopf algebras[END_REF]).

One of the main striking facts shared by most of these constructions is that they establish links between combinatorial objects through combinatorial algorithms, lead to the definition of monoids (like the plactic [START_REF] Lascoux | 1978), volume 109 of Quad[END_REF][START_REF] Lothaire | Algebraic combinatorics on words. Encyclopedia of mathematics and its applications[END_REF], sylvester [START_REF] Hivert | The Algebra of Binary Search Trees[END_REF], and hypoplactic [KT97, KT99] monoids), and use partial orders (the right weak order on permutations [GR63, YO69], the Tamari order on binary trees [START_REF] Tamari | The algebra of bracketings and their enumeration[END_REF], and the refinement order on integer compositions).

Besides Hopf bialgebras that are structures allowing, as explained, to assemble or disassemble objects, operads are other ones manipulating combinatorial objects. These last work by composing objects together rather than assembling them.

Operads. Operads are algebraic structures introduced in the context of algebraic topology [START_REF] May | The geometry of iterated loop spaces[END_REF][START_REF] Boardman | Homotopy invariant algebraic structures on topological spaces[END_REF]. These structures provide an abstraction of the notion of operators (of any arities) and of their compositions. This theory has somewhat been neglected during almost the first two decades after its discovery. In the 1990s, the theory of operads enjoyed a renaissance raised by Loday [START_REF] Loday | La renaissance des opérades[END_REF] and, since the 2000s, many links between the theory of operads and combinatorics have been developed. A large survey of this theory can be found in [START_REF] Markl | Operads and PROPs[END_REF][START_REF] Loday | Algebraic Operads[END_REF][START_REF] Méndez | Set operads in combinatorics and computer science[END_REF].

The modern treatment of operads in algebraic combinatorics consists in regarding combinatorial objects like operators endowed with gluing operations mimicking the composition (see for instance [START_REF] Chapoton | Operads and algebraic combinatorics of trees[END_REF]). From an intuitive point of view, an operad is a set (or a space) of abstract operators with several inputs and one output that can be composed in many ways. More precisely, if is an operator with inputs and is an operator with inputs, • denotes the operator with + -1 inputs obtained by gluing the output of to the th input of . Pictorially,

1 • 1 = 1 + -1 (0.0.29)
There is also an action • of the symmetric group S on the elements of arity letting to permute their inputs. Operads are algebraic structures related to trees in the same way as monoids are algebraic structures related to words (by their free objets). There are numerous variations and enrichments of operads, like cyclic operads [START_REF] Getzler | Cyclic operads and cyclic homology[END_REF], colored operads [START_REF] Boardman | Homotopy invariant algebraic structures on topological spaces[END_REF][START_REF] Yau | Colored Operads. Graduate Studies in Mathematics[END_REF], and nonsymmetric operads. In this dissertation, we work mainly with nonsymmetric operads (also called ns operads or pre-Lie systems).

A large number of interactions between operads and combinatorics exist. Let us explain four of these. Koszul duality of operads in an important part of the theory. This kind of duality has been introduced by Ginzburg and Kapranov [START_REF] Ginzburg | Koszul duality for operads[END_REF] as an extension of the analogous duality for quadratic associative algebras. An operad is by definition Koszul if its Koszul complex is acyclic [START_REF] Ginzburg | Koszul duality for operads[END_REF]. When is a Koszul operad, its Hilbert series ( ) and the one ! ( ) of its Koszul dual ! are related by (-! (-)) = (0.0.30) Hence, from the knowledge of ( ), one can hope to compute the coefficients of ! ( ). Moreover, the Koszulity property for operads is strongly related to the theory of rewrite rules on trees, this last theory providing a sufficient combinatorial condition to prove the Koszulity of an operad [Hof10, DK10, LV12]. Besides, another strategy to prove that an operad is Koszul consists in constructing a family of posets from an operad [START_REF] Méndez | Möbius Species[END_REF], so that the Koszulity of the considered operad is a consequence of a combinatorial property of these posets [Val07]. Operads lead also to generalized versions of generating series, enriching the usual techniques for enumeration. Given an operad , one can consider formal series of the where the λ are coefficients in K. From the partial compositions of , we can endow the set K of all series on with a monoid structure. Chapoton studied some of these for many usual operads [START_REF] Chapoton | Un théorème de Cartier-Milnor-Moore-Quillen pour les bigèbres dendriformes et les algèbres braces[END_REF][START_REF] Chapoton | Operads and algebraic combinatorics of trees[END_REF][START_REF] Chapoton | A rooted-trees -series lifting a one-parameter family of Lie idempotents[END_REF]. Some other authors consider such series as e.g., van der Laan [vdL04], Frabetti [START_REF] Frabetti | Groups of tree-expanded series[END_REF], and Loday and Nikolov [START_REF] Loday | Operadic construction of the renormalization group[END_REF].

Let us provide a simple example involving series on operads. The set of all Motzkin paths forms a structure of a ns operad Motz where, given two Motzkin paths and , • is the path obtained by replacing the th point of of (indexed from left to right) by . For example,

• 4 = (0.0.32)
In this operad, a Motzkin path of -1 steps is seen as an operator of arity . Now, by denoting by g ∈ K Motz the formal sum of all the elements of Motz, one obtains the relation

g = + • [ g] + • [ g g] (0.0.33)
where • is the complete composition map of Motz extended on series on Motz. Of course, this expression for g is very similar to the one provided by (0.0.13) but (0.0.33) admits at least two major advantages. First, contrariwise to (0.0.13) which relies on the monoid ( •) of all paths (because and are not Motzkin paths), (0.0.33) only uses elements of Motz. Second, the fact that (0.0.33) holds is a consequence of a presentation by generators and relations of Motz. Indeed, one can show that is a minimal generating set of Motz and that there is a convergent orientation of the nontrivial relations between these generators so that the normal forms are precisely the terms of the form ,

• [ ], or

• [ ], where and are Motzkin paths. This combinatorial property is a consequence of the Koszulity of Motz. All this provides another example of combinatorial properties encapsulated into suitable algebraic structures.

Let us provide now a little more elaborate example concerning the enumeration of balanced binary trees. These trees were introduced in an algorithmic context [START_REF] Adelson-Velsky | An algorithm for the organization of information[END_REF] as efficient data structures to represent dynamic finite sets. A binary tree t is balanced if for any of its internal node , the height of the right and left subtrees of differ by at most 1. For example, (0.0.34) is a balanced binary tree. The generating series ( ) of these trees, enumerating them with respect to their number of leaves, satisfies ( ) = F( 0) where F(

) is the bivariate series satisfying the functional equation F(

) = + F 2 + 2 (0.0.35)
The coefficients of ( ) can hence been computed by iteration. This way of enumerating balanced binary trees is presented in [START_REF] Bergeron | Functional Equations for Data Structures[END_REF][START_REF] Bergeron | of Encyclopedia of Mathematics and its Applications[END_REF][START_REF] Knuth | The art of computer programming, volume 3: Sorting and searching[END_REF]. By using colored operads, it is possible to obtain a better description for the coefficients of ( ). For this purpose, let CMag be the colored operad on the set of all binary trees such that each leaf and the root has a color in {1 2}. The partial composition s • t of two such trees is defined if the output color of t is the same as the color of the th input of s and is the tree obtained by grafting the root of t onto the th leaf of s. For example, In this operad, a binary tree having leaves is seen as an operator of arity . Now, Let g ∈ K CMag be the formal series defined as the formal sum of all the balanced binary trees, seen as elements of CMag where all colors are equal to 1. Hence, where is an associative product on series on CMag obtained from its partial compositions maps and * is the Kleene star of . One can deduce from (0.0.38) and from the properties of the operations and * the recurrence

g = 1 1 + 1 1 1 + 1 1 1 1 + 1 1 1 1 + 1 1 1 1 1 + 1 1 1 1 1 1 + 1 1 1 1 1 1 + 1 1 1 1 1 1 + 1 1 1 1 1 1 + • • • (0.0.
( ) =      1 if ( ) = (1 0) 1 2 ∈N =2 1 + 2 + 1 + 1 2 ( 1 +
2 ) otherwise (0.0.39) for the number ( 0) of balanced binary trees with leaves.

These two examples show that the formalization of combinatorial problems in terms of operads offer tools for enumerative questions. Contrariwise, operads on combinatorial objects may lead to algebraic observations. Indeed, any operad defines a category of algebras called -algebras. Any -algebra can be seen as a representation of in the sense that acts on any -algebra. For instance, there is an operad Lie describing the category of all Lie algebras, an operad As describing the category of all associative algebras, and an operad Dendr describing the category of all dendriform algebras [START_REF] Loday | Dialgebras. In Dialgebras and related operads[END_REF]. Morphisms φ :

1 → 2 between two operads 1 and 2 give rise to functors from the category of 2 -algebras to the one of 1 -algebras. For instance, Lie is a suboperad of As so that there is INTRODUCTION an injective morphism φ : Lie → As. This morphism translates into the well-known functor from associative algebras to Lie algebras consisting in considering the commutator of an associative algebra as a Lie bracket.

Pros. A natural generalization of operads consists in authorizing multiple outputs for its elements instead of a single one. This leads to the theory of pros (this term is an abbreviation of product category). These algebraic structures have been introduced by Mac Lane [START_REF] Lane | Categorical algebra[END_REF].

Intuitively, a pro is a set (or a space) of operators together with two operations: an horizontal composition * and a vertical composition •. The first operation takes two operators and of and builds a new one whose inputs (resp. outputs) are, from left to right, those of and then those of . The second operation takes two operators and of and produces a new one obtained by plugging the outputs of onto the inputs of . Basic and modern references about pros are [Lei04] and [START_REF] Markl | Operads and PROPs[END_REF].

Like operads, pros can describe categories of algebras. Nevertheless, in this case, pros can handle coproducts and can hence describe categories of bialgebras. Consider the pro generated by the following three operations: The first (resp. second) one says that (resp. ∆) is associative (resp. coassociative). By seeing the operator ω as a map transposing its two inputs, the last one models Relation (0.0.28). Hence, this pro describes the category of Hopf bialgebras.

Another interaction between the theory of pros and combinatorics happens when we consider presentations by generators and relations of pros (see for instance [START_REF] Lafont | Diagram rewriting and operads[END_REF]). Recall that the symmetric group S is presented in the following way. It is generated by symbols { : 1 -1} whose elements are called elementary transpositions. These generators are subjected to the relations It is rather technical to show that S admits the stated presentation or, by going in the opposite direction, to show that the group admitting the stated presentation is realized by S . It is worth noting that there is a pro K Per of permutations offering a comfortable way to prove these facts. Each permutation σ of size ∈ N is seen as an operator with inputs and outputs, connecting each th input to the σ( )th output. For instance, the permutation 42153 is seen as the element 1 2 3 4 5 1 2 3 4 5 (0.0.43) of K Per . The operations of pros, that are the horizontal and vertical compositions, translate on permutations respectively as the shifted concatenation of permutations and as the composition • of permutations. Therefore, K Per contains all the symmetric groups S , ∈ N. Now, one can ask about natural algebraic questions as finding a minimal generating set of K Per . It is easy to show that the singleton

G :=          1 2 1 2          (0.0.44)
is a minimal generating set of K Per . The unique element s of G encodes the permutation 21. Now, by finding the nontrivial relations satisfied by s [Laf03], one obtains the analogous relations of (0.0.42a), (0.0.42b), and (0.0.42c), stated in the language of pros. As a side remark, let us mention that the analogous relation of (0.0.42c) is axiomatic for pros. This provides a nice strategy to establish the presentation of the symmetric groups. Note that similar ideas work for establishing presentations or realizations of other Coxeter groups.

Contributions

Let us now present our contributions and the main results contained in this dissertation. Before that, let us say a few words about the organization of the text.

Global overview. This text is divided into twelve chapters, the first two containing preliminary notions, and the last ten containing original results coming from published or submitted works. Figure 0.1 shows the diagram of dependences between the chapters and the references to our work on which each chapter relies. Our results fall into three categories: algebraic combinatorics, enumerative combinatorics, and computer science.

What follows is not a chapter-by-chapter summary. We follow the idea to organize and present our contributions into the three categories cited above. For this reason, a same chapter may appear several times in the sequel.

Algebraic combinatorics. Our main contributions in the field of algebraic combinatorics rely on constructions, taking as input some algebraic structures, and outputting other ones. Most of them are functorial and endow combinatorial sets with (co)operations. We have presented above our point of view about the advantages to endow objects with algebraic structures. Here, our philosophy consists in designing general ways to achieve these goals. For this reason, we create metatools (functorial constructions) whose aim is to create tools (algebraic structures on combinatorial objects). Let us list the main results, chapter by chapter, belonging to this field. Chap. 10 Shuffle of permutations [START_REF] Giraudo | Unshuffling Permutations[END_REF] Chap. 9

From pros to Hopf bialgebras [START_REF] Bultel | Combinatorial Hopf algebras from PROs[END_REF] Chap. 8

Hopf bialgebra of packed square matrices [START_REF] Cheballah | Hopf algebra structure on packed square matrices[END_REF] Chap. 4

From monoids to operads [START_REF] Giraudo | Combinatorial operads from monoids[END_REF] Chap. 5

Pluriassociative and polydendriform operads [START_REF] Giraudo | Pluriassociative algebras I: The pluriassociative operad[END_REF] [Gir16d]

Chap. 6

From posets to operads [START_REF] Giraudo | Operads from posets and Koszul duality[END_REF] F . . Diagram of the dependences between the chapters. Each arrow → means that need some notions contained in . The dashed arrow means an optional dependence.

In Chapter 3, we introduce a tool to facilitate the study of ns operads. This tools is a functor Hull from the category of ns colored operads to the category of ns noncolored operads. It sends a ns colored operad to the smallest ns noncolored operad containing the elements of arities greater than 1 of . The ns operad Hull( ) is realized in terms of anticolored syntax trees labeled on , that are particular syntax trees satisfying some conditions involving the colors of . This construction is used to collect properties of ns operads in the following way. Given a ns operad , finding a ns colored operad such that Hull( ) = brings information on . Indeed, some properties of are implied by properties of , such as the Hilbert series, the description of suboperads and quotients, and presentations by generators and relations. Due to the fact that a ns colored operad is a more constrained structure than a noncolored one, it is in practice easier to collect properties on rather than on . These techniques are illustrated to perform the study of the operad of bicolored noncrossing configurations BNC, an operad on some sorts of noncrossing configurations [FN99], introduced as a generalization of the operads NCT of noncrossing trees and NCP of noncrossing plants [START_REF] Chapoton | The anticyclic operad of moulds[END_REF].

The main contribution of Chapter 4 is a functor T from the category of monoids to the category of operads. Given a monoid , T is an operad of words on seen as an alphabet. The definitions of the partial compositions of T follow from the monoidal product of , and the symmetric groups act on T by permuting the letters of the words. This functor is rich from a combinatorial point of view since it leads to the construction of several (ns) operads on combinatorial objects. Among others, T allows to construct operads on endofunctions, parking functions, packed words, permutations, and ns operads on planar rooted trees, -ary trees (and thus, -Dyck paths, see [START_REF] López | Algebraic structures defined on -Dyck paths[END_REF] for some structures on these), Motzkin paths (the operad Motz appearing above is constructed in this chapter), integer compositions, directed animals, and segmented compositions. This construction T provides also alternative ways to obtain the diassociative operad Dias [START_REF] Loday | Dialgebras. In Dialgebras and related operads[END_REF] and the triassociative operad Trias [START_REF] Loday | Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory[END_REF]. By using rewriting techniques, presentations of these operads are provided. We think that there are a lot of other operads to be constructed through T on many other families of combinatorial objects.

We use in Chapter 5 the functor T to define generalizations of the diassociative operad depending on an integer γ ∈ N. These ns operads Dias γ are realized in terms of certain words on the alphabet {0 1 γ}. Since the diassociative operad is the Koszul dual of the dendriform operad Dendr [START_REF] Loday | Dialgebras. In Dialgebras and related operads[END_REF], we obtain by Koszul duality the ns operads Dendr γ , γ ∈ N, each one being the Koszul dual of Dias γ . These operads Dendr γ are realized in terms of binary trees with labeled edges endowed with tree shuffling operations. The original motivation for this research direction is the following. Dendriform algebras are algebraic structures consisting in two operations ≺ and satisfying some axioms. As a consequence of these axioms, the operation ≺ + is associative. This provides hence a framework to study associative algebras by studying them as dendriform algebras through the definition of two dendriform products such that their sum is the original product of the algebra. The category of algebras described by Dendr γ leads to a generalization of this method and forms a new device to study associative algebras.

In Chapter 6, we provide a functorial construction associating with any finite poset a ns operad As( ). Under some conditions on , As( ) can be realized in terms of Schröder trees labeled on satisfying some conditions. The original motivation for the introduction of this construction comes from the previous chapter where two operads As γ and DAs γ were introduced. Both of these operads can be constructed as degenerate cases of the construction As (by considering respectively trivial orders and total orders). The question to study the operads As( ) when is nondegenerate is natural, and this leads to unexpected results involving Koszul duality of ns operads. Indeed, the main result here states that if is a thin forest poset (a poset whose Hasse diagram satisfies a certain property), the Koszul dual of As( ) is isomorphic to the ns operad As( ⊥ ) where ⊥ is an involution on thin forest posets. The main contributions of this chapter are of two kinds. First, new links between the theory of operads, posets, and Koszul duality are developed (some different links between INTRODUCTION these theories are included in [START_REF] Méndez | Möbius Species[END_REF]Val07,[START_REF] Fauvet | Operads of finite posets[END_REF]). Second, this work provides definitions of several algebraic structures (as As( )-algebras) having many associative operations and generalizing associative algebras.

Another functorial construction C is introduced in Chapter 7. It is defined from the category of unitary magmas to the one of ns operads. Given a unitary magma , C is a ns operad of regular polygons endowed with configurations of arcs labeled on . The definitions of the partial compositions of C follow from the magmatic product of . This construction too is very rich from a combinatorial point of view since it endows several families of configurations with ns operad structures, as for instance, noncrossing configurations, Motzkin configurations, Lucas configurations, and diagrams of involutions. This leads to a new diagram of operads, each one realized in terms of combinatorial objects. Moreover, the construction C allows to define a large number of known operads in a unified way. For instance, one can construct from C the operad BNC (and all its suboperads as NCT, NCP, the dipterous operad [START_REF] Loday | Algèbres de Hopf colibres[END_REF][START_REF] Zinbiel | Encyclopedia of types of algebras 2010. In Operads and universal algebra[END_REF], and the 2-associative operad [START_REF] Loday | On the structure of cofree Hopf algebras[END_REF][START_REF] Zinbiel | Encyclopedia of types of algebras 2010. In Operads and universal algebra[END_REF]), the suboperad 4 of the operad of formal fractions [START_REF] Chapoton | A set-operad of formal fractions and dendriform-like suboperads[END_REF], the operad of multi-tildes MT [START_REF] Luque | Some Combinatorial Operators in Language Theory[END_REF], the operad of double multi-tildes DMT (see Chapter 12), and a ns version of the gravity operad Grav [START_REF] Getzler | Two-dimensional topological gravity and equivariant cohomology[END_REF][START_REF] Alm | Brown's dihedral moduli space and freedom of the gravity operad[END_REF].

Chapter 8 is concerned with Hopf bialgebras and more precisely with the definition of a Hopf bialgebra on packed square matrices PM depending on an integer parameter ∈ N. This Hopf bialgebra is a generalization of FQSym [START_REF] Duchamp | Noncommutative Symmetric Functions VI: Free Quasi-Symmetric Functions and Related Algebras[END_REF] since the subspace of PM restricted to permutation matrices is isomorphic to FQSym. It contains also the Hopf bialgebra of uniform block permutations UBP [START_REF] Aguiar | The Hopf algebra of uniform block permutations[END_REF]. Among the most notable facts, PM contains a Hopf sub-bialgebra ASM involving alternating sign matrices [START_REF] Mills | Alternating sign matrices and descending plane partitions[END_REF]. This chapter provides also an algebraic point of view of some statistics of alternating sign matrices by using the associative algebra structure of ASM.

Like the previous one, Chapter 9 deals with constructions of Hopf bialgebras. We introduce here a construction H from stiff pros to Hopf bialgebras. A stiff pro is a quotient of a free pro by a pro congruence satisfying some precise properties. This construction is a generalization of the construction H associating with an operad its natural Hopf bialgebra [START_REF] Van Der Laan | Operads. Hopf algebras and coloured Koszul duality[END_REF][START_REF] Chapoton | Relating two Hopf algebras built from an operad[END_REF][START_REF] Méndez | An antipode formula for the natural Hopf algebra of a set operad[END_REF]. Indeed, given an operad , one can construct a stiff pro R( ) [START_REF] Markl | Operads and PROPs[END_REF] such that H( ) is isomorphic to the abelianization of H(R( )). In addition to creating a link between the theories of pros and of Hopf bialgebras, the construction H brings several new Hopf bialgebras on objects like forests of trees with a fixed arity and heaps of pieces [START_REF] Viennot | Heaps of pieces. I. Basic definitions and combinatorial lemmas[END_REF]. It allows also to construct some of the deformations of the noncommutative version of the Fàa di Bruno Hopf bialgebra [BFK06] introduced by Foissy [START_REF] Foissy | Faà di Bruno subalgebras of the Hopf algebra of planar trees from combinatorial Dyson-Schwinger equations[END_REF].

The main algebraic contribution of Chapter 12 concerns the introduction of a new category of algebraic objects, the precompositions. These objects are used as inputs of a functorial construction PO producing ns operads. This construction is used to provide alternative definitions of the operads MT and Poset introduced in [START_REF] Luque | Some Combinatorial Operators in Language Theory[END_REF] in the context of language theory and the study of multi-tildes [START_REF] Caron | Multi-Bar and Multi-Tilde Regular Operators[END_REF], and to construct new operads DMT and Qoset as respective extensions of the last two.

Enumerative combinatorics. As explained before, defining algebraic structures on combinatorial objects leads to discover combinatorial properties on them. This form a large part of our philosophy. We list here the main results, chapter by chapter, in this context.

As said above, Chapter 3 presents a way to study a ns operad through a ns colored operad satisfying Hull( ) = . We highlight the fact that the Hilbert series of can be computed from the colored Hilbert series of by solving a system of equations, and, as the developed examples show, the colored Hilbert series of are simpler (rational) than the Hilbert series of (algebraic). Since the Hilbert series of a ns operad and the generating series of its elements are the same series, this offers a tool for enumeration. In this chapter, we enumerate bicolored noncrossing configurations by using this technique.

In Chapter 11, we work with formal power series on ns colored operads to develop enumerative tools. We introduce a new kind of formal grammar (see [START_REF] Harrison | Introduction to formal language theory[END_REF][START_REF] Hopcroft | Introduction to Automata Theory, Languages, and Computation[END_REF]) generalizing both context-free grammars of words and regular tree grammars [CDG + 07]. These grammars, called bud generating systems, allow to generate elements of a ground ns colored operad. To enumerate the elements generated by a bud generating system , we introduce three formal series on ns colored operads: the hook generating series hook( ), the syntactic generating series synt( ), and the synchronous generating series sync( ). Each of these provide a different enumeration of the elements generated by . For instance, hook( ) is a series whose coefficients provide analogs of the hook-length statistics for binary trees [START_REF] Knuth | The art of computer programming, volume 3: Sorting and searching[END_REF]. Moreover, these series are defined through operations on series: a pre-Lie product and an associative product . The example treated above about the enumeration of balanced binary trees uses tools developed in this chapter.

Computer science. In this research some contributions to computer science and, more precisely, to formal language theory and to computational complexity theory have been developed. Let us summarize them.

In Chapter 10, we consider the supershuffle • of permutations introduced by Vargas [START_REF] Vargas | Hopf algebra of permutation pattern functions[END_REF]. This operation is different from the shifted shuffle of permutations and can be seen as an extension of the usual shuffle product ¡ on words [START_REF] Eilenberg | On the groups of H(Π ). I[END_REF]. A classical question in algorithmic consists in evaluating the complexity of recognizing words that are squares for this operation. In other words, the problem amounts to decide if, given a word , there exists a word such that appears in ¡ . It is known from [RV13,BS14] that this problem is NP-complete. We ask in this chapter the analogous question for the recognition of square permutations with respect to • and show that this problem is also NP-complete.

We have explained that Chapter 11 contains enumerative results. In addition to this, the chapter introduces bud generating systems as new kinds of grammars capable to generate any type of combinatorial objects. Some elementary results about these grammars are developed.

As said before, Chapter 12 provides algebraic results. Nevertheless, the operads constructed here are intended to be tools in formal language theory. A common research axis in this field is to define a family of operations to express formal languages with the smallest spatial complexity as possible. Multi-tildes [START_REF] Caron | Multi-Bar and Multi-Tilde Regular Operators[END_REF] have been designed in this way. Here, INTRODUCTION we introduce an extension of multi-tildes, namely the double multi-tildes, increasing their expressive power. An operad DMT of double multi-tildes is constructed and its action on languages is described. One of the main results of the chapter is that every regular language can be expressed by the action of a double multi-tilde seen as an operator of arity on languages α , 1

, such that each α is empty or contains one unique word of length 1. However, this action is not faithful, in the sense that there are different multi-tildes of DMT that act similarly on languages. For this reason, we introduce a quotient Qoset of DMT such that elements are quasiorders. We show that the action of Qoset on regular languages is faithful. This establishes an unexpected link between quasiorders and regular languages.

In combinatorics, counting how many objects a given family contains is one of the most common, hard, and stimulating activities. Nevertheless, even before trying to answer this kind of question, an important preliminary and basic work consists in classifying the objects of a family according to some of their particularities. The size of the objects is, of course, one of these, but also, if we take the example of permutations, the number of inversions and recoils are other features which may be considered.

Combinatorial collections are structures designed to work with such structured sets of combinatorial objects. Roughly speaking, a combinatorial collection is a set expressible by a disjoint union of finite sets, indexed by a particular set I. Depending on I, these collections are designed to represent various kinds of sets of objects. For instance, when the indexing set I is N, one obtains graded collections. These are sets endowed with a size function, a concept fully developed in [START_REF] Flajolet | Analytic Combinatorics[END_REF] under the name of combinatorial classes. When the indexing set is N 2 , one obtains bigraded collections. These collections provide a suitable framework to work with prographs and pros (see Section 3.3 of this chapter and Section 5.1 of Chapter 2) since the elements of these algebraic structures have an input and an output arity. Moreover, when the indexing set is a set of words on a given alphabet, one obtains colored collections. These collections provide a suitable framework to work with colored syntax trees and colored operads (see Section 3.1.2 of this chapter and Section 4.1.10 of Chapter 2) since the elements of these algebraic structures have input and output colors.

There are other sensible tools to encode combinatorial collections. One can cite species of structures introduced by Joyal [Joy81] that allow to work with labeled objects. This theory has been developed by the Quebec school of combinatorics [START_REF] Bergeron | of Encyclopedia of Mathematics and its Applications[END_REF][START_REF] Bergeron | Introduction to the Theory of Species of Structures[END_REF]. Species of structures are very good candidates to work with symmetric operads [START_REF] Méndez | Set operads in combinatorics and computer science[END_REF] since the action of the symmetric group of a symmetric operad is encapsulated into the action of the symmetric group on an underlying species of structure. Another interesting way to describe combinatorial objects passes through polynomial functors [START_REF] Kock | Notes on Polynomial Functors[END_REF]. This machinery of combinatorial collections is applied in this work mainly to rigorously define several families of trees. Let us remark that this concept of tree encompasses a large range of quite different combinatorial objects. For instance, in graph theory, trees are connected acyclic graphs while in combinatorics, one encounters mostly rooted trees. Among rooted trees, some of these can be planar (the order of the children of a node is relevant) or not. In addition to this, the internal nodes, the leaves, or the edges of the trees can be labeled, and some conditions for the arities of their nodes can be imposed. One of the first occurrences of the concept of tree came from the work of Cayley [START_REF] Cayley | On the Theory of the Analytical Forms called Trees[END_REF]. Nowadays, trees appear among other in computer science as data structures [START_REF] Knuth | The art of computer programming, volume 3: Sorting and searching[END_REF][START_REF] Cormen | Introduction to algorithms[END_REF], in combinatorics in relation with enumeration questions and Lagrange inversion [START_REF] Labelle | Une nouvelle démonstration combinatoire des formules d'inversion de Lagrange[END_REF][START_REF] Flajolet | Analytic Combinatorics[END_REF], and in algebraic combinatorics, where several families of trees are endowed with algebraic structures [LR98, HNT05, Cha08]. In our context, the most important families of trees are the syntax trees, which are kind of labeled planar rooted trees. These trees are central objects in the study of operads. This chapter is devoted to set the main definitions and notations about combinatorics. In Section 1, we introduce combinatorial collections and structured combinatorial collections, including the notion of posets and rewrite systems. Trees and syntax trees are considered in Section 2. We describe here several families of trees and rewrite systems on syntax trees. Finally, Section 3 contains a list of definitions of combinatorial objects met afterwards in this dissertation.

Structured collections

We introduce here the general notion of collection. Then, we consider very usual concepts as magmas, monoids, posets, rewrite systems under this context of collections. 

I, C 1 ( ) ⊆ C 2 ( ), C 1 is a subcollection of C 2 .
For any ∈ I, we can regard each C( ) as a subcollection of C consisting in all its -objects.

Let us now consider particular I-collections for precise sets I. Table 1.1 contains an overview of the properties that such collections can satisfy.

Collections

Combinatorial

Finite Simple

-graded Colored

1-graded Monochrome Connected Augmented Monatomic T . . The most common I-collections (in bold) and the properties (in italic) they can satisfy. The inclusions relations between these collections read from bottom to top. For instance, 1-graded collections are particular -graded collections which are particular collections.

1.1.2. Graded collections. An N-collection is called a graded collection. If C is a graded collection, for any object of C, the size | | of is the integer ind( ). The map | -| : C → N is the size function of C.
Let us from now on assume that C is a combinatorial graded collection. The generating series of C is the series

C ( ) := ∈N #C( ) (1.1.2)
where #S denotes the cardinality of any finite set S. 

( ) = C 2 ( ).
We say that C is connected if C(0) is a singleton, and that C is augmented if C(0) = ∅. Moreover, C is monatomic if it is augmented and C(1) is a singleton. We denote by { } the graded collection such that is an object satisfying | | = 0. This collection is called the unit collection. Observe that { } is connected, and that C is connected if and only if there is a unique collection morphism from { } to C. We denote by {•} the collection such that • is an atom, that is an object satisfying | • | = 1. This collection is called the neutral collection. Observe that {•} is monatomic, and that C is monatomic if and only if C is augmented and there is a unique collection morphism from {•} to C. When I is endowed with an associative binary product +, if for any objects 1 , . . . , of

C such that ( 1 ) is defined, ind( ( 1 )) = ind( 1 ) + • • • +ind( ) (1.1.7)
we say that is +-compatible. In the particular case where C is a graded collection and is +-compatible, is graded.

Let us now assume that C is a simple collection endowed with a binary and total product . In this case, C is a magma. We say that C is right cancellable if for any ∈ C,

the relation = implies = . An element 1 of C is a unit for if for all ∈ C, 1 = = 1
. When admits a unit, C is a unitary magma. If, additionally, the product is associative, C is a monoid.

1.1.6. Operations over graded collections. We list here the most important operations that take as input graded collections and output new ones. Most of these are binary or unary, and under some precise conditions, they produce combinatorial collections. In what follows, C, C 1 , C 2 , and C 3 are four graded collections.

Suspension and augmentation.

For any ∈ Z, the -suspension of C is the graded collection Sus (C) defined for all ∈ N by

(Sus (C)) ( ) := C( -) if - 0 ∅ otherwise (1.1.8)
Observe that Sus 1 (Sus -1 (C)) is the subcollection C\C(0) of C, that is the augmented collection having the objects of C without its objects of size 0. We call this collection the augmentation of C and we denote it by Aug(C).

Sum. The sum of C

1 and C 2 is the graded collection C 1 + C 2 such that, for all ∈ N,

(C 1 + C 2 )( ) := C 1 ( ) C 2 ( ) (1.1.9)
In other words, each object of size of C 1 + C 2 is either an object of size of C 1 or an object of size of C 2 . Since the sum operation (1.1.9) is defined through a disjoint union, when the sets C 1 ( ) and C 2 ( ) are not disjoint, there are in (C 1 + C 2 )( ) two copies of each element belonging to the intersection C 1 ( ) ∩ C 2 ( ), one coming from C 1 ( ), the other from C 2 ( ). Moreover, when C 1 and C 2 are combinatorial, C 1 + C 2 is also combinatorial and its generating series satisfies

C 1 +C 2 ( ) = C 1 ( ) + C 2 ( ) (1.1.10)
The iterated version of the operation + is denoted by in the sequel.

Product. The product of C 1 and C 2 is the graded collection C 1 × C 2 such that, for all ∈ N,

(C 1 × C 2 )( ) := {( 1 2 ) : 1 ∈ C 1 2 ∈ C 2 and | 1 | + | 2 | = } (1.1.11)
In other words, each object of size of C 1 × C 2 is an ordered pair ( 1 2 ) such that 1 (resp. 2 ) is an object of C 1 (resp. C 2 ) and the sum of the sizes of 1 and 2 is . Moreover, when C 1 and C 2 are combinatorial, C 1 × C 2 is also combinatorial and its generating series satisfies

C 1 ×C 2 ( ) = C 1 ( ) C 2 ( ) (1.1.12)
Hadamard product. The Hadamard product of C 1 and C 2 is the graded collection C

1 ◊C 2 such that, for all ∈ N,

(C 1 ◊C 2 )( ) := C 1 ( ) × C 2 ( ) (1.1.13)
In other words, each object of size of C 1 ◊C 2 is an ordered pair ( 1 2 ) such that 1 (resp. 2 ) is an object of size of C 1 (resp. C 2 ). Moreover, when C 1 and C 2 are combinatorial, C

1 ◊C 2 is also combinatorial and its generating series satisfies

C 1 ◊C 2 ( ) = C 1 ( )◊ C 2 ( ) = ∈N #C 1 ( )#C 2 ( ) (1.1.14)
List operation. For any 0, the -list operation applied to C produces the graded collection T (C) such that, for all ∈ N,

(T (C)) ( ) := {( 1 ) : 1 ∈ C and | 1 | + • • • + | | = } (1.1.15)
In other words, each object of size of T (C) is a tuple ( 1) of objects of C such that the sum of the sizes of 1 , . . . , is . When C is combinatorial, T (C) is also combinatorial and its generating series satisfies

T (C) ( ) = C ( ) (1.1.16)
The list operation applied to C produces the graded collection T(C) defined by

T(C) := ∈N T (C) (1.1.17)
Moreover, when C is combinatorial and augmented, T(C) is also combinatorial (but not augmented) and its generating series satisfies

T(C) ( ) = 1 1 -C ( ) (1.1.18)
Besides, for any ∈ N, we denote by T (C) the graded collection defined by

T (C) := ∈N T (C) (1.1.19)
This notation "T" comes from tensor algebras (see Section 1.2.3 of Chapter 2).

Multiset operation. For any 0, the -multiset operation applied to C produces the graded collection S (C) such that, for all ∈ N,

(S (C)) ( ) := { 1 : 1 ∈ C and | 1 | + • • • + | | = } (1.1.20)
In other words, each object of size of S (C) is a multiset 1 of objects of C such that the sum of the sizes of 1 , . . . , is . The multiset operation applied to C produces the graded collection S(C) defined by

S(C) := ∈N S (C) (1.1.21)
Moreover, when C is combinatorial and augmented, S(C) is also combinatorial (but not augmented) and its generating series satisfies

S(C) ( ) = ∈N\{0} 1 1 - #C( ) (1.1.22)
This notation "S" comes from symmetric algebras (see Section 1.2.4 of Chapter 2).

Set operation. For any 0, the -set operation applied to C produces the graded collection E (C) such that, for all ∈ N,

(E (C)) ( ) := {{ 1 } ⊆ C : | 1 | + • • • + | | = } (1.1.23)
In other words, each object of size of E (C) is a set { 1 } of objects of C such that the sum of the sizes of 1 , . . . , is . The set operation applied to C produces the graded collection E(C) defined by

E(C) := ∈N E (C) (1.1.24)
Moreover, when C is combinatorial, E(C) is also combinatorial and its generating series satisfies

E(C) ( ) = ∈N\{0} (1 + ) #C( ) (1.1.25)
Unlike the cases of the list and multiset operations, E(C) is a combinatorial collection without requiring that C is augmented. This notation "E" comes from exterior algebras (see Section 1.2.5 of Chapter 2).

Composition product. For any 0 and graded collections C

1 , . . . , C , the homogeneous composition of C with C 1 , . . . , C is the graded collection C • [C 1 C ] such that, for all ∈ N, (C • [C 1 C ]) ( ) := ∈C( ) {( ( 1 )) : ∈ C 1 and | 1 | + • • • + | | = } (1.1.26) In other words, each object of size of C • [C 1 C ] is an ordered pair ( ( 1 ))
where is an object of C of size , and ( 1) is a tuple such that each is an object of C , 1

, and the sum of the sizes of these objects is . The

composition of C 1 and C 2 is the graded collection C 1 • C 2 such that, for all ∈ N, (C 1 • C 2 )( ) := ∈N C 1 • [C 2 C 2 ] terms (1.1.27)
Moreover, when C 1 and C 2 are both combinatorial and C 2 is augmented, C 1 • C 2 is also combinatorial (but not necessarily augmented) and its generating series satisfies

C 1 •C 2 ( ) = C 1 ( C 2 ( )) (1.1.28)
1.2. Main collections. We define, in some cases by using the operations of Section 1.1.6, some usual graded combinatorial collections. At the same time, we set here our main notations and definitions about their objects.

1.2.1. Natural numbers. We can regard the set N as the graded collection satisfying N( ) := { } for all ∈ N. Hence, T({•}) N for an atom •. Moreover, for any ∈ N, let N be the graded collection defined by

N := Sus (Sus -(N)) (1.2.1)
By definition of the suspension operation over graded collections, N is the set of all integers greater than or equal to . Observe that N 1 = Aug(N). The generating series of N satisfies

N ( ) = 1 - = + +1 + +2 + • • • (1.2.2)
Observe also that the list operation over graded collections can be expressed as a composition involving N since It is time to provide some notations about natural numbers. For any multiset S := 1 of elements of N, we denote by S the sum 1 + • • • + of its elements. We moreover denote by S! the multinomial coefficient

T(C) N • C (1.2.
S! := S 1 = ( 1 + • • • + )! 1 ! ! (1.2.4)
1.2.2. Words. Let A be an alphabet, that is a set whose elements are called letters. One can see A as a graded collection wherein all letters are atoms. In this case, we denote by A * the graded collection T(A). By definition, the objects of A * are finite sequences of elements of A. We call words on A these objects. When A is finite, A * is combinatorial and it follows from (1.1.18) that the generating series of A * is . When A is endowed with a total order and is nonempty, max ( ) is the greatest letter appearing in with respect to . Moreover, an inversion of is a pair ( ) such that < , ( ) = ( ), and ( ) ( ). Given two words and on A, the concatenation of and is the word • containing from left to right the letters of and then the ones of . If can be expressed as = 

A * ( ) = ∈N = 1 + + 2 2 + 3 3 + • • • (1.2.
( ) = 1 - 1 -2 = 1 + 1 2 -1 = 1 + +
+ • • • + λ .
The length (λ) of λ is , and for any ∈ [ (λ)], the th part of λ is λ . The unique composition of size 0 is denoted by and is called empty composition (even if is already used to express the empty word, this overloading of notation is not a problem in practice).

The descents set of λ is the set

Des(λ) := {λ 1 λ 1 + λ 2 λ 1 + λ 2 + • • • + λ -1 } (1.2.7)
For instance, Des(4131) = {4 5 8}. Moreover, for any word defined on an alphabet A equipped with a total order , the composition cmp( ) of is the composition of size

| | defined by cmp( ) := (| 1 | | |) (1.2.8) where = 1 • • • • •
is the factorization of in longest nondecreasing factors (with respect to the order ). For instance, if := 2 2 3 1 3 2 1 2 is a word on the alphabet A := { Integer compositions are drawn as ribbon diagrams in the following way. For each part λ of λ, we draw a horizontal line of λ boxes. These lines are organized so that the line for the first part of λ is the uppermost, and the first box of the line of the part λ +1 is glued below the last box of the line of the part λ , for all ∈ [ (λ) -1]. For instance, the ribbon diagram of the composition 4131 is (1.2.9) 1.2.4. Integer partitions. Again by regarding the set N as a graded collection as considered in Section 1.2.1, let Part be the graded combinatorial collection S (N 1 ). Since #N 1 ( ) = 1 for all 1, it follows from (1.1.22) that the generating series of Part is

Part ( ) = 1 1 1 - = 1 + + 2 2 + 3 3 + 5 4 + 7 5 + 11 6 + 15 7 + 22 8 + • • • (1.2.10)
By definition, the objects of Part are finite multisets of positive integers. We call integer partitions (or, for short, partitions) these objects. As a consequence of the definition of Part, the size |λ| of any partition λ is the sum of the integers appearing in the multiset λ.

Due to the definition of partitions as multisets, we can present a partition as an ordered sequence of positive integers with respect to any total order on N 1 . For this reason, we denote any partition λ by a nondecreasing sequence (λ 1 λ ) of positive integers (that is,

λ λ +1 for all ∈ [ -1]
). Under this convention, the length (λ) of λ is , and for any ∈ [ (λ)], the i part of λ is λ . A descent of σ is a position ∈ [|σ| -1] such that σ( ) > σ( + 1). The set of all descents of σ is denoted by Des(σ). A coinversion of σ is an ordered pair of letters (a b) occurring in σ such that a < b and the position of a is greater than the position of b in σ. The set of all coinversions of σ is denoted by Civ(σ). For any word defined on an alphabet A equipped with a total order , the standardized std( ) of is the permutation of size | | having the same inversions as the ones of . In other terms std( ) has its letters in the same relative order as those of , with respect to , where equal letters of are ordered from left to right as the smallest to the greatest. For example, by considering the alphabet N equipped with the natural order of integers, std(211241) = 412563. This map std is a surjective collection morphism from N * to S.

This collection S admits the following straightforward generalization. For any 1, let S ( ) be the set of all pairs (σ ) where σ is a permutation and is a word of [ ] |σ| . We call this object an -colored permutation. The size of (σ ) in S ( ) is the size of σ in S.

1.2.6. Binary trees. Let BT ⊥ be the combinatorial graded collection satisfying the relation

BT ⊥ = {⊥} + {•} × BT ⊥ 2 (1.2.12)
where ⊥ is an atomic object called leaf and • is an object of size 0 called internal node. We call binary tree each object of BT ⊥ . By definition, a binary tree t is either the leaf ⊥ or an ordered pair (• (t 1 t 2 )) where t 1 and t 2 are binary trees. Observe that this description of binary trees is recursive. For instance,

⊥ (• (⊥ ⊥)) (• ((• (⊥ ⊥)) ⊥)) (• (⊥ (• (⊥ ⊥)))) (• ((• (⊥ ⊥)) (• (⊥ ⊥)))) (1.2.13)
are binary trees. If t is a binary tree different from the leaf, by definition, t can be expressed as t = (• (t 1 t 2 )) where t 1 and t 2 are two binary trees. In this case, t 1 (resp. t 2 ) is the left subtree (resp. right subtree) of t. By drawing each leaf by and each binary tree with at least one internal node by an internal node attached below it, from left to right, to its left and right subtrees by means of edges , the binary trees of (1.2.13) are depicted by (1.2.14) By definition of the sum and the product operations over graded collections, the size of a binary tree t satisfies

|t| = 1 if t =⊥ |t 1 | + |t 2 | otherwise (t = (• (t 1 t 2 ))) (1.2.15)
In other words, the size of t is the number of occurrences of ⊥ it contains. Since {⊥} ( ) = and {•} ( ) = 1, it follows from (1.1.10) and (1.1.12) that the generating series of BT ⊥ satisfies the quadratic algebraic equation

- BT ⊥ ( ) + BT ⊥ ( ) 2 = 0 (1.2.16)
The unique solution having a combinatorial meaning of (1.2.16) is

BT ⊥ ( ) = 1 - √ 1 -4 2 = ∈N 1 1 2 -2 -1 (1.2.17)
The sequence of integers associated with BT ⊥ begins by 1 1 2 5 14 42 132 429 (1.2.18)

and is Sequence A000108 of [Slo]. These numbers are known as Catalan numbers.

Posets on collections.

We consider now collections endowed with partial order relations compatible with their indexations. Such structures are important in combinatorics since they lead for instance to the construction of alternative bases of combinatorial spaces (see Section 1.3 of Chapter 2). We provide general definitions about posets and consider as examples three important ones: the cube, Tamari, and right weak order posets.

1.3.1. Elementary definitions. An I-poset is a pair ( ) where is an I-collection and is both a relation on (recall that relations on collections preserve the indices) and a partial order relation. For any property P of collections, we say that (

) satisfies the property P if, as a collection, satisfies P. Observe in particular that our terminology concerning graded posets differs from the classical one [Sta11] (where a poset is graded when all its maximal chains have the same length). Moreover, simple posets are usual posets (that are sets endowed with partial order relations, without extra structure). 

(λ 1 λ -1 λ λ +1 λ +2 λ ) (λ 1 λ -1 λ + λ +1 λ +2 λ ) (1.3.6)
For instance, 2123 215 and 2123 8. This order is the refinement order of compositions.

The Hasse diagram of (Comp ) restricted on Comp(4) is shown in Figure 1.1. F . . The Hasse diagram of the refinement order of compositions of size 4, where each composition is represented through its ribbon diagram.

Observe that for all compositions λ and µ, λ µ if and only if Des(µ) ⊆ Des(λ).

Each -subposet of the refinement order of compositions is known as the cube poset of dimension -1. Moreover, the cube poset of dimension -1 is isomorphic to the dual of the poset of all subsets of [ -1] ordered by set inclusion. An isomorphism is provided by the map Des sending a composition of size to a subset of [ -1].

The Tamari order on binary trees. Let be the partial order relation on the combinatorial collection BT ⊥ of binary trees generated by the covering relation defined by

( (• ((• (r 1 r 2 )) r 3 )) ) ( (• (r 1 (• (r 2 r 3 )))) ) (1.3.7)
where r 1 , r 2 , and r 3 are any binary trees. We call the right rotation relation. At this moment, the definition of this relation on binary trees is informal, but, in Section 2.4, we shall develop precise tools to define and handle such operations on binary trees and more generally on syntax trees. The order is the Tamari order on binary trees. The Hasse diagram of (BT ⊥ ) restricted on BT ⊥ (5) is shown in Figure 1.2.

F

. . The Hasse diagram of the Tamari poset of binary trees of size 5.

The Tamari poset is a combinatorial poset on binary trees introduced in the study of nonassociative operations [START_REF] Tamari | The algebra of bracketings and their enumeration[END_REF]. Indeed, the covering relation generating this poset can be thought as a way to move brackets in expressions where a nonassociative product intervenes. Moreover, seen on binary trees, this operation translates as a right rotation, a fundamental operation on binary search trees, used in an algorithmic context [START_REF] Knuth | The art of computer programming, volume 3: Sorting and searching[END_REF]. This operation is used to maintain binary trees with a small height in order to access efficiently, from the roots, to their internal nodes. Some of these trees are known as balanced binary trees [START_REF] Adelson-Velsky | An algorithm for the organization of information[END_REF] and form efficient structures to represent dynamic sets (sets supporting the addition and the suppression of elements). A lot of properties of the Tamari poset are known, like the number of intervals of each of its -subposets [START_REF] Chapoton | Sur le nombre d'intervalles dans les treillis de Tamari[END_REF] (equivalently, this is the number of pairs of comparable trees enumerated by their size), and the fact that these posets are lattices [START_REF] Huang | Problems of associativity: A simple proof for the lattice property of systems ordered by a semi-associative law[END_REF], for all ∈ N 1 . Generalizations of this poset have been introduced by Bergeron and Préville-Ratelle [START_REF] Bergeron | Higher trivariate diagonal harmonics via generalized Tamari posets[END_REF] under the name of -Tamari poset. This poset is defined on the combinatorial collection of all +1-ary trees (see Section 2.2.2). The number of intervals of each of its -subposets, and the fact that these posets are lattices are known from [START_REF] Bousquet-Mélou | The number of intervals in the -Tamari lattices[END_REF], for all ∈ N The right weak poset of permutations is also a lattice [START_REF] Th | Analyse algébrique d'un scrutin[END_REF][START_REF] Yanagimoto | Partial orderings of permutations and monotonicity of a rank correlation statistic[END_REF]. In a surprising way, despite its apparent simplicity, there is no known description of the number of intervals of each -subposet, ∈ N, of the right weak poset. Some other combinatorial poset structures exist on S like the Bruhat order, whose generating relation is similar to the one of the right weak poset. The definition of the Bruhat order on permutations comes from the general notion of Bruhat order [START_REF] Björner | Orderings of Coxeter groups[END_REF] in Coxeter groups [Cox34].

As a last noteworthy fact, the cube, the Tamari, and the right weak posets are linked through surjective morphisms of combinatorial posets [START_REF] Loday | Order Structure on the Algebra of Permutations and of Planar Binary Trees[END_REF]. Indeed, a map between the right weak poset to the Tamari poset is based upon the binary search tree insertion algorithm [START_REF] Knuth | The art of computer programming, volume 3: Sorting and searching[END_REF][START_REF] Hivert | The Algebra of Binary Search Trees[END_REF]. This algorithm consists in inserting the letters of a permutation to form step by step a binary tree. Moreover, a map between the Tamari poset to the cube poset uses the canopies [LR98] of the binary trees. The canopy of a binary tree is a binary word encoding the orientations (to the left or to the right) of its leaves.

Rewrite systems on collections.

A rewrite rule describes a process whose goal is to transform iteratively a combinatorial object into another one. We consider rewrite rules on I-collections, so that an -object, ∈ I, can be transformed only into -objects. As we shall see, rewrite rules and posets have some close connections because it is possible, in some cases, to construct posets from rewrite systems. A general reference about rewrite rules and rewrite systems is [START_REF] Baader | Term rewriting and all that[END_REF].

Two properties of rewrite systems are fundamental: the termination and the confluence. We provide strategies to prove that a given rewrite system satisfies one or the other. 1.4.1. Elementary definitions. Let C be an I-collection. An I-rewrite system is a pair (C ) where C is an I-collection and is a relation on C. We call a rewrite rule. For any property P of collections, we say that (C ) satisfies the property P if, as a collection, C satisfies P. If , 1 , . . . , , and are objects of C such that ∈ N and 

• • • (1.4.2)
where all ∈ C, ∈ N 1 , (C ) is terminating. Observe that, if C is combinatorial, due to the fact that for any ∈ I, each set C( ) is finite and the fact that the rewriting relation preserves the indices, if an infinite chain (1.4.2) exists, then it is of the form

1 • • • • • • • • • (1.4.3) for a ∈ N 1 .
A normal form of (C ) is an object of C such that for all ∈ C, * imply = . In other words, a normal form of (C ) is an object which is not rewritable by . This set of objects, which is a subcollection of C, is denoted by (C ) . The following result provides a tool in the aim to show that a rewrite system is terminating. L 1.4.1. Let (C ) be a combinatorial rewrite system. Then, (C ) is terminating if and only if the binary relation * is an order relation and endows C with a structure of a combinatorial poset.

In practice, Lemma 1.4.1 is used as follows. To show that a combinatorial rewrite system (C ) is terminating, we construct a map θ : C → where (

) is an I-poset such that for any ∈ C, implies θ( ) ≺ θ( ). Such a map θ is a termination invariant. Indeed, since each C( ), ∈ I, is finite, this property leads to the fact that there is no infinite chain of the form (1.4.3). In most cases, is a set of tuples of integers of a fixed length, and is the lexicographic order on these tuples.

In [START_REF] Baader | Term rewriting and all that[END_REF], a general method using maps called measure functions to show that (not necessarily combinatorial) rewrite systems are terminating is presented.

When C is combinatorial and is terminating, by Lemma 1.4.1, (C *

) is a combinatorial poset and we call it the poset generated by . . In practice, showing that a terminating rewrite system is confluent is made simple thank to the following result, known as the diamond lemma. L 1.4.2. Let (C ) be a rewrite system. If (C ) is terminating and all of its branching pairs are joinable, (C ) is confluent.

Lemma 1.4.2 is a highly important result in the theory of rewrite systems and is due to Newman [New42]. There are some additional useful tools in this theory like the Knuth-Bendix completion algorithm [START_REF] Knuth | Simple word problems in universal algebras[END_REF]. This semi-algorithm takes as input a non-confluent rewrite system and outputs, if possible, a confluent one having the same reflexive, symmetric, and transitive closures.

When

is both terminating and confluent, is convergent.

1.4.4. Closures. Let (C ) be an I-rewrite system and assume that C is endowed with a set of +-compatible products, where + is an associative binary product on I. Then, let (C ) be the rewrite system such that contains (as a binary relation) and satisfies

1 -1 +1 1 -1 +1 (1.4.4)
for any product of arity of , ∈ [ ], ∈ C, ∈ [ ] \ { }, ∈ C such that , and when both members of (1.4.4) are defined (because the products of can be partial, see Section 1.1.5). The fact that all products of are +-compatible ensures that (C ) is a rewrite system. We call (C ) the -closure of (C ). Such closures provide convenient and concise ways to define rewrite systems.

Examples. Let us review some examples of rewrite systems on various combinatorial sets.

A rewrite rule on words. Let A := {a b} be an alphabet, and consider the rewrite system ) are the words that do not admit aba as factor. Moreover, (A * ) is not confluent since ababa babba and ababa abbab, and {babba abbab} is a non-joinable branching pair for ababa (since these two elements are normal forms).

(A * ) defined by (1) ( -1) ( ) ( ) (1) ( -1) (1.4.

Collections of trees

This section is devoted mainly to set all basic definitions about trees used in this work. We define here the collection of planar rooted trees and present some of its properties. We then consider enrichments of planar rooted trees, namely the syntax trees. These are one of the most important objects in this work since bases of free operads are indexed by syntax trees. Moreover, rewrite systems on syntax trees are reviewed. These rewrite systems are a major tool to study operads since they allow to establish presentation by generators and relations, or the Koszulity of an operad.

Planar rooted trees.

The graded combinatorial collection of the planar rooted trees can be defined concisely in a recursive way by using some operations over graded combinatorial collections (see Section 1.1.6). However, to define rigorously the usual notions of internal node, leaf, child, father, path, subtree, etc., we need the notion of language associated with a tree. Indeed, a planar rooted tree is in fact a finite language satisfying some properties. Therefore, in this section, we shall adopt the point of view of defining most of the properties of a planar rooted tree through its language.

2.1.1. Collection of planar rooted trees. Let PRT be the graded combinatorial collection satisfying the relation

PRT = {•} × T(PRT) (2.1.1)
where • is an atomic object called node. We call planar rooted tree each object of PRT. By definition, a planar rooted tree t is an ordered pair (• (t 1 t )) where (t 1 t ) is a (possibly empty) tuple of planar rooted trees. This definition is recursive. By convention, the planar rooted tree (• ()) is denoted by ⊥ and is called the leaf. Observe that the leaf is of size 1. For instance,

⊥ (• (⊥)) (• (⊥ ⊥)) (• (⊥ (• (⊥)))) (• ((• ((• (⊥ ⊥)))) ⊥ (• (⊥ ⊥)))) (2.1.2)
are planar rooted trees. The root arity of a planar rooted tree t := ( By definition of the product and the list operations over graded collections (see Section 1.1.6), the size of a planar rooted tree t having a root arity of satisfies

|t| = 1 + ∈[ ] |t | (2.1.4)
In other words, the size of t is the number of occurrences of • it contains. We also deduce from (2.1.1) that the generating series of PRT satisfies

PRT ( ) = 1 - PRT ( ) (2.1.5)
so that it satisfies the quadratic algebraic equation

- PRT ( ) + PRT ( ) 2 = 0 (2.1.6)
2.1.2. Induction and structural induction. One among the most obvious techniques to prove that all the planar rooted trees of a subcollection C of PRT satisfy a predicate P consists in performing a proof by induction on the size of the trees of C.

There is another method which is in some cases much more elegant than this approach, called structural induction on trees then, all objects of C satisfy P.

Theorem 2.1.1 provides a powerful tool to prove properties P of planar rooted trees belonging to inductive combinatorial subsets C. In practice, to perform a structural induction in order to show that all objects t of C satisfy P, we check that C is inductive and that Properties (i) and (ii) of Theorem 2.1.1 hold.

Links with binary trees.

As a consequence of (2.1.6), we observe that the generating series of PRT satisfies the same algebraic relation as the one of the graded collection BT ⊥ of binary trees where the size of a binary tree is its number of leaves (defined in Section 1.2.6). Therefore, PRT and BT ⊥ are isomorphic as graded collections. Let us describe an explicit isomorphism between these two collections. Let φ : PRT → BT ⊥ be the map recursively defined, for any planar rooted tree t, by

φ(t) := ⊥∈ BT ⊥ if t =⊥ (• (φ(t 1 ) φ ((• (t 2 t ))))) otherwise (t = (• (t 1 t 2 t )) with 1) (2.1.7)
One has for instance

φ = (2.1.8a) φ       = (2.1.8b) P 2.1.2.
The graded combinatorial collections PRT and BT ⊥ are isomorphic. The map φ defined by (2.1.7) is an isomorphism between these two collections. This bijection is known as the rotation correspondence and is due to Knuth [START_REF] Knuth | The Art of Computer Programming[END_REF]. It offers a means to encode a planar rooted tree by a binary tree and admits applications in algebraic combinatorics [NT13, EFM14].

Tree languages.

To rigorously specify nodes in planar rooted trees, we shall use a useful interpretation of planar rooted trees as special languages on the alphabet N 1 . Recall that a right monoid action of a monoid A * of words (endowed with the concatenation product) on a set S is a map

• : S × A * → S satisfying • = and • = ( • ) • , for all ∈ S, ∈ A * , and ∈ A. Let • : PRT × N * 1 → PRT (2.1.9)
be the right partial monoid action defined recursively by

(• (t 1 t ))• := (• (t 1 t )) if = t • otherwise ( = where ∈ N * 1 and ∈ N 1 ) (2.1.10) for any (• (t 1 t )) ∈ PRT and ∈ N * 1 .
Observe that this action is partial since each t in (2.1.10) is well-defined only if is no greater than the root arity of t. The tree language (t) of t is the finite language on N 1 of all the words such that t • is a well-defined planar rooted tree.

For instance, by setting

t := (2.1.11) we have t • 1 = t • 231 = t • 3 = t • 21 = t • 23 = (2.1.12)
and, among others, the actions of the words 11, 24, and 2321 on t are all undefined. Moreover, the tree language of t is Proposition 2.1.3 is used in practice to define planar rooted trees through their languages. This will be useful later when operations on planar rooted trees will be described.

(t) = {
2.1.5. Additional definitions. Let t be a planar rooted tree. We say that each word of (t) is a node of t. A node of t is an internal node if there is an ∈ N 1 such that is a node of t. A node of t which is not an internal node is a leaf. The set of all internal nodes (resp. leaves) of t is denoted by • (t) (resp. ⊥ (t)). The root of t is the node (which can be either an internal node or a leaf). The degree deg(t) of t is # • (t) and the arity ari(t) of t is # ⊥ (t). A node of t is an ancestor of a node of t if = and pref . Moreover, is the th child of if = for an ∈ N 1 . In this case, is the (unique) father of . The arity of a node is the number of children it has. Two nodes and of t are brothers if there exist a node of t and = ∈ N 1 such that is the th child of and is the th child of . The lexicographic order on the words of (t) induces a total order on the nodes of t called depth-first order. The th leaf of t is the th leaf encountered by considering the nodes of t according to the depth-first order. A sector of t is an ordered pair ( +1 ) of leaves of t such that (resp. +1 ) is the th (resp. +1st) leaf of t. The number of sectors of t is denoted by ∧(t) and is equal to ari

(t) -1. A path in t is a sequence ( 1 ) of nodes of t such that for any ∈ [ -1],
is the father of +1 . Such a path is maximal if 1 is the root of t and is a leaf. The length of a path is the number of nodes it contains. The height ht(t) of t is the maximal length of its maximal paths minus 1. This is also the length of a longest word of (t) minus 1. When all maximal paths of t have the same length, t is perfect. For any node of t, the planar rooted tree t • is the suffix subtree of t rooted at . By extension, the th suffix subtree of is the planar rooted tree t • when is no greater than the arity of . A planar rooted tree s is a prefix subtree of t if (s) ⊆ (t). A planar rooted tree s is a factor subtree of t rooted at a node if s is a prefix subtree of a suffix subtree of t rooted at . The poset induced by t is the poset ( t t ) where t := • (t) and t is the prefix order relation pref on words. In other terms, the poset induced by t is a poset on the internal nodes of t where t is its Hasse diagram wherein the root is the least element.

Let us provide some examples for these notions. Consider the planar rooted tree t of (2.1.11). Then, being a suffix subtree of s rooted at the node 2, is a factor subtree of t rooted at 2.

• (t) = { 2

Subcollections of planar rooted trees.

By basically restraining the possible arities of the internal nodes of planar rooted trees, we obtain several subcollections of PRT. We review here the families formed by ladders, corollas, -ary trees, and Schröder trees. Besides, among these families, some admit alternative size functions.

Ladders and corollas.

A ladder is a planar rooted tree of arity 1. The first ladders are (2.2.1) This set of ladders forms a subcollection Lad of PRT. Besides, a corolla is a planar rooted tree of degree 1. The first corollas are (2.2.2) This set of corollas forms a subcollection Cor of PRT. Observe that (• (⊥)) is the only planar rooted that is both a ladder and a corolla.

-ary trees. Let ∈ N

1 . A -ary tree is a planar rooted tree t such that all internal nodes are of arity . For instance, the first 3-ary trees are (2.2.3) This set of -ary trees forms a subcollection Ary ( ) of PRT expressing recursively as

Ary ( ) = {⊥} + {•} × Ary ( ) (2.2.4)
where ⊥ and • are both atomic. One can immediately observe that Ary (1) = Lad.

By structural induction (see Theorem 2.1.1) on Ary ( ) (which is an inductive subcollection of PRT), it follows that for any -ary tree t, the arity and the degree of t are related by

ari(t) -deg(t)( -1) = 1 (2.2.5)
This implies that a -ary tree of a given arity has an imposed degree and conversely, aary tree of a given degree has an imposed arity. Hence, since the size of a -ary tree t is ari(t) + deg(t) and there are finitely many planar rooted trees of a fixed size, there are finitely many -ary trees of a fixed arity, and there are finitely many -ary trees of a fixed degree. As a consequence, the graded collections Ary ( )

⊥ and Ary ( )

• of all -ary trees such that the size of a tree of Ary ( )

⊥ is its arity and the size of a tree of Ary ( ) • is its degree are combinatorial.

Observe that Ary

(2) ⊥

BT ⊥ where BT ⊥ is defined in Section 1.2.6. Moreover, the generating series of Ary ( ) • satisfies the algebraic equation 1 -

Ary ( ) • ( ) + Ary ( ) • ( ) = 0 (2.2.6)
and it is known [START_REF] Dvoretzky | A problem of arrangements[END_REF] that #Ary ( )

• ( ) = 1 ( -1) + 1 (2.2.7)
For instance, the sequences of integers associated with Ary ( )

• begin with The second, third, and fourth sequences are respectively Sequences A000108, A001764, and A002293 of [Slo]. These are known as the Fuss-Catalan numbers.

1 1 1 1 1 1 1 1 = 1 (2.2.8a)
From now on, we call binary tree any 2-ary tree. If t is a binary tree and is an internal node of t, 1 and 2 are nodes of t. We call 1 (resp. 2) the left (resp. right) child of , and t • 1 (resp. t • 2) the left (resp. right) subtree of in t. The left (resp. right) subtree of t is the left (resp. right) subtree of the root of t. Besides, a left (resp. right) comb tree is a binary tree t such that for all internal nodes of t, all right (resp. left) subtrees of are leaves. The infix order induced by t is the total order on the set of its internal nodes defined recursively by setting that all the internal nodes of t • 1 are smaller than the root of t, and that the root of t is smaller that all the internal nodes of t • 2.

Schröder trees.

A Schröder tree is a planar rooted tree such that all internal nodes are of arities 2 or more. Some among the first Schröder trees are (2.2.9) This set of Schröder trees forms a subcollection Sch of PRT expressing recursively as

Sch = {⊥} + {•} × T 2 (Sch) (2.2.10)
where ⊥ and • are both atomic.

By structural induction on Sch (which is an inductive subcollection of PRT), it follows that there are finitely many Schröder trees of a given arity . For this reason, the graded collection Sch ⊥ of all the Schröder trees such that the size of a tree of Sch ⊥ is its arity is combinatorial. Conversely, considering the degrees of the trees for their sizes does not form a combinatorial graded collection since there are infinitely many Schröder trees of degree 1 (the corollas). The generating series of Sch ⊥ satisfies the algebraic quadratic equation

-(1 + ) Sch ⊥ ( ) + 2 Sch ⊥ ( ) 2 = 0 (2.2.11)
Let nar( ) be the number of binary trees of arity having exactly internal nodes having an internal node as a left child. Then, for all 0 -2, it is known [START_REF] Narayana | Sur les treillis formés par les partitions d'un entier et leurs applications à la théorie des probabilités[END_REF] that and forms Sequence A001003 of [Slo].

nar( ) = 1 + 1 -2 -1 (2.

Syntax trees.

We are now in position to introduce syntax trees. Such trees are, roughly speaking, planar rooted trees where internal nodes are labeled by objects of a fixed graded collection. These trees can be endowed with two size functions (where the size is the degree or the arity), leading to the definition of two graded collections of syntax trees.

Collections of syntax trees.

Let C be an augmented graded collection. A syntax tree on C (or, for short, a C-syntax tree) is a planar rooted tree t endowed with a map ω t : • (t) → C sending each internal node of t of arity to an element of size of C. This map ω t is the labeling map of t. We say that an internal node of t is labeled by ∈ C if ω t ( ) = . The collection C is the labeling collection of t. The underlying planar rooted tree of t is the planar rooted tree obtained by forgetting the map ω t . For any ∈ C, the corolla labeled by is the C-syntax tree ( ) having exactly one internal node labeled by and with | | leaves as children. All the notions about planar rooted trees defined in Sections 2.1 and 2.2 apply to C-syntax trees as well. More precisely, for any property P on planar rooted trees, we say that t satisfies the property P if the underlying planar rooted tree of t satisfies P. Moreover, the notions of suffix, prefix, and factor subtrees of planar rooted trees naturally extend on C-syntax trees by taking into account the labeling maps. In graphical representations of a C-syntax tree t, instead of drawing each internal node of t by , we draw by its label ω t ( ).

For instance, consider the labeling collection C := C(1) C( 2 where C is the graded collection defined in (2.3.3) wherein • is atomic and ⊥ is of size 0. When C is augmented and is finite, we can show by structural induction on PRT C

• that there are finitely many C-syntax trees of a given degree .

For this reason, PRT C • is combinatorial. In this case, the generating series of PRT C • satisfies

PRT C • ( ) = 1 + C PRT C • ( ) (2.3.8)
Observe that PRT C • is not an augmented graded collection.

Syntax tree patterns and rewrite systems.

We focus now the theory of rewrite systems on the particular case of syntax trees. Intuitively, a rewrite rule on syntax trees works by replacing factor subtrees in a syntax tree by other ones. We explain techniques to prove termination and confluence of these particular rewrite systems.

2.4.1. Occurrence and avoidance of patterns. Let C be an augmented graded collection, and s and t be two C-syntax trees. For any node of t, s occurs at position in t if s is a factor subtree of t rooted at . In this case, we say that t admits an occurrence of the pattern s. Conversely, t avoids s if there is no occurrence of s in t. By extension, t avoids a set P of C-syntax trees if t avoids all the patterns of P. 2.4.2. Grafting of syntax trees. Let t be a C-syntax tree of arity , ∈ [ ], and s be a C-syntax tree. The grafting of s onto the th leaf of t is the C-syntax tree r := t • s defined as follows. The underlying planar rooted tree of r admits the tree language (r) := ( (t)

\ { }) ∪ { : ∈ (s)} (2.4.4)
and the labeling map of r satisfies, for any ∈ • (r),

ω r ( ) := ω t ( ) if ∈ • (t) ω s ( ) otherwise ( = and ∈ • (s)) (2.4.5)
Observe that by Proposition 2.1.3, r is wholly specified by its tree language (r) defined in (2.4.4). In more intuitive terms, the tree r is obtained by connecting the root of s onto the th leaf of t. For instance, by considering the same labeling collection C as above, The operations • thus defined are binary products 

• : PRT C ⊥ × PRT C ⊥ → PRT C ⊥ (2.4.7) on PRT C ⊥ ,
• ( ) (t s 1 s ) := ( ((t • s ) • -1 s -1 ) ) • 1 s 1 (2.4.9)
In more intuitive terms, the tree • ( ) (t s 1 s ) is obtained by connecting the root of each s onto the th leaf of t. For instance, by considering the same labeling collection C as before,

• The operations • ( ) thus defined are products ). In other terms, is the rewrite rule satisfying

• ( ) : PRT C ⊥ × PRT C ⊥ → PRT C ⊥ (2.
t • (r • [s 1 s ]) t • r • [s 1 s ] (2.4.16)
for any C-syntax trees t, r, r , s 1 , . . . , s where t of arity , ∈ [ ], and r r . In intuitive terms, one has q q for two C-syntax trees q and q if there are two C-syntax trees r and r such that r r and, by replacing an occurrence of r by r in q, we obtain q . For instance, by considering the same labeling set C as before, let (PRT C ⊥ ) be the rewrite system defined by ( ) is of finite type. In this context, the degree of (PRT C ⊥ ) is the maximal degree among the C-syntax trees appearing as left members of . The arity of (PRT C ⊥ ) is the maximal arity among the C-syntax trees appearing as left (or right) members of . 2.4.5. Proving termination. We have observed in Section 1.4.2 that termination invariants provide tools to show that a combinatorial rewrites ystem is terminating. This idea extends on rewrite systems on syntax trees defined as closures of other ones in the following way.

Let (PRT C ⊥

) be a combinatorial rewrite system and (PRT C ⊥ ) its closure. Assume that θ : PRT C ⊥ → is a termination invariant for (PRT C ⊥ ), where ( ) is a poset. We say that θ is compatible with the closure if, for any C-syntax trees r and r such that r r , the

inequality θ (s • (r • [q 1 q ])) ≺ θ s • r • [q 1 q ] (2.4.20)
holds for all C-syntax trees s, q 1 , . . . , q , where := ari(r) = ari(r ). Now, as a consequence of (2.4.16) and Lemma 1.4.1, one has the following result. In other words, tam(t) is the sum, for all internal and binary nodes of t, of the number of internal nodes appearing in the 2nd suffix subtrees of . One can check that θ(t) ≺ θ(t ) for all the C-syntax trees r and r such that r r . Indeed,

θ c = (1 0) ≺ (2 0) = θ    a a    (2.4.22) and θ    a b    = (2 0) ≺ (2 1) = θ    a b    (2.4.23)
Moreover, the fact that θ is compatible with the closure is a straightforward verification. Therefore, the closure (PRT C ⊥ ) of (PRT C ⊥ ) is terminating.

2.4.6. Proving confluence. In the same way as the tool to show that a rewrite system on C-syntax trees is terminating presented in Section 2.4.5, we present here a tool to prove that rewrite systems on syntax trees defined as closures of other ones are confluent. This criterion requires now some precise properties. This graph satisfies the required property stated above, and, as a systematic study of cases shows, all other graphs G s where s is a C-syntax tree of degree 3 or less, also. For this reason, (PRT C ⊥ ) is confluent.

Combinatorial objects

This last section of the chapter contains a list of definitions about combinatorial objects appearing in some next chapters.

Other kinds of trees.

Let us set some definitions about two other kinds to trees: rooted trees and colored syntax trees.

3.1.1. Rooted trees. Let RT be the graded collection satisfying the relation

RT = {•} × S(RT) (3.1.1)
where • is an atomic object called node. We call rooted tree each object of RT. By definition, a rooted tree t is an ordered pair (• t 1 t ) where t 1 t is a multiset of rooted trees.

Like the case of planar rooted trees, this definition is recursive. For instance,

(• ∅) (• (• ∅) ) (• (• ∅) (• ∅) ) (• (• ∅) (• ∅) (• ∅) ) (• (• (• ∅) (• ∅) ) ) (3.1.2) are rooted trees. If t = (• t 1 t ) is a rooted tree, each t , ∈ [ ], is a suffix subtree of t.
Rooted trees are different kinds of trees than planar rooted trees presented in Section 2. The difference is due to the fact that rooted trees are defined by using multisets of rooted trees, while planar rooted trees are defined by using lists of planar rooted trees. Hence, the order of the suffix subtrees of a rooted tree is not significant.

By drawing each rooted tree by a node attached below it to its subtrees by means of edges , the rooted trees of (3.1.2) are depicted by (3.1.3) By definition of the product and multiset operations over combinatorial collections, the size of a rooted tree t satisfies

|t| := 1 + ∈[ ] |t | (3.1.4)
The sequence of integers associated with RT begins by 1 1 2 4 9 20 48 115 (3.1.5) and forms Sequence A000081 of [Slo].

3.1.2. Colored syntax trees. Let C be a set of colors and C be a C-colored collection (see Section 1.1.4). A C-colored C-syntax tree is a triple ( t ) where t is a C-syntax tree, ∈ C, ∈ C ari(t) , and for any internal nodes and of t such that is the th child of , out( ) = in ( ) where (resp. ) is the label of (resp. ). The set of all C-colored C-syntax trees is denoted by CPRT C . This set is a C-colored collection by setting that out((( t ))) := and in(( t )) := for all ( t ) ∈ CPRT C

. By a slight abuse of notation, if is an internal node of t, we denote by out( ) (resp. in( )) the color out( ) (resp. word of colors in( )) where is the label of . We say that a C-colored C-syntax tree t is monochrome if C is a monochrome colored collection. In graphical representations of a C-colored C-syntax tree ( t ), we draw t together with its output color above its root and its input color ( ) below its th leaf for any is a C-colored C-syntax tree. Its degree is 5, its arity is 8, and its height is 3. Moreover, its output color is 1 and its word of input colors is 21222111. Besides, (1 ⊥ 1) and (1 ⊥ 2) are two C-colored C-syntax trees of degree 0 and arity 1.

∈ [| |].
Let ( t ) and ( s ) be two C-colored C-syntax trees and ∈ [|ari(t)|]. If = ( ), the grafting on s onto the th leaf of t is defined by

( t ) • ( s ) := ( t • s ) (3.1.7)
where is the word obtained by replacing the th letter of by , and the second occurrence of • in (3.1.7) is the grafting of syntax trees defined in Section 2.4.2. For instance, by considering the same labeling C-colored collection as above, 

• : CPRT C ⊥ × CPRT C ⊥ → CPRT C ⊥ (3.1.9)
on CPRT C ⊥ , in the sense of Section 1.1.5. We call each • a grafting operation. By seeing CPRT C ⊥ as a graded collection (see Section 1.1.4), the • , ∈ N 1 , are +-compatible products, where + is the operation considered in Section 2.4.2. Observe also that, due to the condition on the colors between the two operands to the operation, the • are partial products.

Most of the notions exposed in Section 2.4 about syntax trees and rewrite systems on syntax trees naturally extend on colored syntax trees like, among others, the notions of occurrences of patterns, the complete grafting operations, and the criteria offered by Propositions 2.4.1 and 2.4.2 to respectively prove the termination and the confluence of rewrite system on syntax trees.

Configurations of chords. Configurations of chords are very classical combinato-

rial objects defined as collections of diagonals and edges in regular polygons. The literature abounds of studies of various kinds of configurations. One can cite for instance [START_REF] De Loera | Triangulations[END_REF] about triangulations, [FN99] about noncrossing configurations, and [CP92] about multi-triangulations. We provide here definitions about them and consider a generalization of configurations wherein the edges and diagonals are labeled on a set.

Polygons. A polygon of size

1 is a directed graph p on the set of vertices [ + 1]. An arc of p is a pair of integers ( ) with 1 < + 1, a diagonal is an arc ( ) different from ( + 1) and (1 + 1), and an edge is an arc of the form ( + 1) and different from (1 + 1). We denote by p (resp. p , p ) the set of all arcs (resp. diagonals, edges) of p. For any ∈ [ ], the th edge of p is the edge ( + 1), and the arc (1 + 1) is the base of p.

In our graphical representations, each polygon is depicted so that its base is the bottommost segment, vertices are implicitly numbered from 1 to + 1 in the clockwise direction, and the diagonals are not drawn. For example,

p := 1 2 3 4 5 6 (3.2.1)
is a polygon of size 5. Its set of all diagonals is

p = {(1 3) (1 4) (1 5) (2 4) (2 5) (2 6) (3 5) (3 6) (4 6)} (3.2.2)
its set of all edges is

p = {(1 2) (2 3) (3 4) (4 5) (5 6)} (3.2.3)
and its set of all arcs is

p = p p {(1 6)} (3.2.4)
3.2.2. Configurations. For any set S, an S-configuration (or a configuration when S is known without ambiguity) is a polygon c endowed with a partial function

φ c : c → S (3.2.5)
When φ c (( )) is defined, we say that the arc ( ) is labeled and we denote it by c( ). When the base of c is labeled, we denote it by c 0 , and when the th edge of c is labeled, we denote it by c .

In our graphical representations, we shall represent any S-configuration c by drawing a polygon of the same size as the one of c following the conventions explained before, and by labeling its arcs accordingly. 

Additional definitions.

Let us now provide some definitions and statistics on configurations. Let c be a configuration of size . The skeleton of c is the undirected graph skel(c) on the set of vertices [ + 1] and such that for any < ∈ [ + 1], there is an arc

{ } in skel(c) if ( ) is labeled in c.
The degree of a vertex of c is the number of vertices adjacent to in skel(c). The degree degr(c) of c is the maximal degree among its vertices. Two (non-necessarily labeled) diagonals (

) and ( ) of c are crossing if < < < or < < < . The crossing of a labeled diagonal ( ) of c is the number of labeled diagonals (

) such that ( ) and ( ) are crossing. The crossing cros(c) of c is the maximal crossing among its labeled diagonals. When cros(c) = 0, there are no crossing diagonals in c and in this case, c is noncrossing. A (non-necessarily labeled) arc (

) is nested in a (non-necessarily labeled) arc ( ) of c if < . We say that c is nesting-free if for any labeled arcs (

) and ( ) of c such that ( ) is nested in ( ), ( ) = ( ). Besides, c is acyclic if skel(c) is acyclic. When c has no labeled edges nor labeled base, c is white. If c has no labeled diagonals, c is a bubble. A triangle is a configuration of size 2.

Obviously, all triangles are bubbles, and all bubbles are noncrossing.

Prographs.

We present here prographs, that are combinatorial objects modeling operations with several inputs and several outputs. These objects are elements of free pros (see Section 5.1 of Chapter 2) and admit many different definitions. A first one consists in defining prographs (called in this context diagrams) through an equivalence relation [START_REF] Lafont | Diagram rewriting and operads[END_REF]. A second one consists in defining prographs (called in this context directed ( )-graphs) by graphs satisfying some conditions [START_REF] Markl | Operads and PROPs[END_REF]. We chose to define these objects by using the tools offered by the theory of bigraded collections. Our approach is however similar to the one of [START_REF] Lafont | Diagram rewriting and operads[END_REF]. ) be the rewrite system satisfying 

For
(( 1 a 2 + |b| ↓ + 3 ) ( 1 + |a| ↑ + 2 b 3 )) (( 1 + |a| ↓ + 2 b 3 ) ( 1 a 2 + |b| ↑ + 3 )) (3.3.

Let (PPrg C

) be the { }-closure of (PPrg C ) (it is possible to define a product + on N 2 so that is +-compatible) and ↔ be the reflexive, symmetric, and transitive closure of . Let the bigraded collection Prg C defined by

Prg C := PPrg C / ↔ + Wir (3.3.9)
We call prograph on C (or, for short, a C-prograph) any element of Prg C . When is an object of PPrg C / ↔ , we represent by considering the drawing of any preprograph of the ↔-equivalence class of and by letting the elementary prographs constituting to move vertically along the edges. When is an object of Wir, we represent as explained in Section 3.3.1. For instance, the prograph having the preprograph of (3. 

) is any preprograph in the ↔-equivalence class . Finally, when and are both objects of PPrg C / ↔ , * is defined, by using the particular cases for the horizontal composition explained above and the vertical composition, by 3.4. Alternating sign matrices. We recall here some definitions about alternating sign matrices and usual statistics on them.

* := * 1 | | ↓ • 1 | | ↑ * (3.
3.4.1. Alternating sign matrices and six-vertex configurations. An alternating sign matrix [START_REF] Mills | Alternating sign matrices and descending plane partitions[END_REF], or an ASM for short, of size is a square matrix of order with entries in the alphabet {0 + -} such that every row and column starts and ends by 0 or by + and in every row and column, the + and the -alternate. For instance, δ := 0 + 0 0 0 0 0 + 0 0 + -0 0 + 0 + -+ 0 0 0 + 0 0 (3.4.1) is an ASM of size 5. The number of these objects of size satisfies = 0 -1

(3 + 1)! ( + )! (3.4.2)
a formula conjectured in [START_REF] Mills | Alternating sign matrices and descending plane partitions[END_REF] and proven independently by Zeilberger [START_REF] Zeilberger | Proof of the alternating sign matrix conjecture[END_REF] and Kuperberg [START_REF] Kuperberg | Another proof of the alternating-sign matrix conjecture[END_REF].

A six-vertex configuration of size is an × square grid with oriented edges so that each vertex has two incoming and two outgoing edges. There are six possible configurations for each vertex, whence the name. A six-vertex configuration satisfies the domain wall boundary condition if all its horizontal (resp. vertical) edges on the boundary are oriented inwardly (resp. outwardly). Figure 1.4b shows an example of such an object. In what follows, we shall exclusively and implicitly consider six-vertex configurations satisfying the domain wall boundary condition.

Six-vertex configurations of size are in one-to-one correspondence with ASMs of the same size. To compute the ASM in correspondence with a six-vertex configuration, we replace each of its vertices by a symbol 0, +, or -according to the rules described in Table 1 1.2). Then, for each zero entry of δ, we look at the sum (resp. ) of the entries (a + counts as 1 and a -counts as -1) to the left (resp. above) of it and in the same row (resp. column). By the alternating property of the ASMs, and belong to {0 1}. Now, set in δ the configuration (resp.

) if = 1 (resp. = 0) together with the configuration (resp. ) if = 1 (resp. = 0). Figure 1.4 shows an example.   0 0 + 0 0 0 + 0 0 0 0 0 0 0 0 0 + 0 0 + 0 0 -+ 0 0 0 + 0 0 0 0 0 0 + 0   ( ) An ASM δ.

( ) The six-vertex configuration in correspondence with δ.

F

. . An ASM and a six-vertex configuration in correspondence.

Statistics on alternating sign matrices.

It is possible to define several statistics on ASMs by counting how many entries of an ASM play a special role, seen as vertices of the six-vertex configurations in correspondence.

Let us denote by ne(δ) (resp. sw(δ), se(δ), nw(δ), oi(δ), io(δ)) the number of vertices ne (resp. sw, se, nw, oi, io) in the six-vertex configuration in bijection with the ASM δ (see Table 1.2). Let Z := {se nw sw ne} be the set of the statistics counting the four configurations of 0 and N := {io oi} be the set of the statistics counting the two nonzero configurations.

Let us end this section on ASMs by stating the following result establishing some symmetries satisfied by these statistics. P 3.4.1. Let δ be an ASM of size . Then,

se(δ) = nw(δ) ne(δ) = sw(δ) oi(δ) = io(δ) + (3.4.3) CHAPTER 2

Algebraic combinatorics

One of the main activities in algebraic combinatorics consists in developing interactions between combinatorics (enumerative combinatorics and even computer science) and algebra. The benefits are twofold: one obtains combinatorial properties and results by seeing combinatorial objects under an algebraic framework, and studying algebraic structures with the help of combinatorics leads to general algebraic results.

The first direction consists in endowing collections of combinatorial objects with operations. This provides a framework to collect combinatorial and enumerative properties on the objects by exploring natural and usual algebraic questions on the obtained algebraic structures. To be a little more precise, let C be a collection and K C be the linear span of C where K is any field. To get a better understanding of properties of the objects of C, we endow K C with operations or co-operations. In this way, we can ask about the behavior of these operations under different bases of K C (leading to discovering links between different products, for instance, the shifted shuffle product and the shifted concatenation products of permutations are the same ones [DHT02, DHNT11]), minimal generating sets of K C (leading to describe the objects of C as assemblies of elementary building blocks), morphisms involving K C and other linear spans of collections (leading to discover symmetries of C-useful for enumeration problems-, or establishing links between C and other collections [LR98, DHT02, HNT05]).

The second direction consists, on the contrary, in seeing abstract algebraic structures as linear spans of combinatorial objects endowed with operations. This process is known as a combinatorial realization of an algebraic structure. To be more concrete, given a category of algebras defined by the relations their (co)operations have to satisfy, the problem consists in understanding the free object on a set G of generators. This reinforces the understanding of the category since all other ones are, in most cases, quotients or substructures of free ones. The literature contains a lot of such constructions. For instance, free Lie algebras are realized in terms of Lyndon words and concatenation operations [START_REF] Reutenauer | Free Lie algebras[END_REF], free pre-Lie algebras in terms of rooted trees and grafting operations [START_REF] Chapoton | Pre-Lie algebras and the rooted trees operad[END_REF], free dendriform algebras in terms of binary trees and shuffling operations [START_REF] Loday | Dialgebras. In Dialgebras and related operads[END_REF], free duplicial algebras in terms of binary trees and over and under operations [START_REF] Loday | Generalized bialgebras and triples of operads[END_REF], and free Zinbiel algebras using words and half-shuffle operations [START_REF] Loday | Cup-product for Leibniz cohomology and dual Leibniz algebras[END_REF].

Additionally to very classical algebraic structures like magmas, monoids, groups, posets, and associative algebras, in our work we consider Hopf bialgebras [Car07, GR16], operads [START_REF] Markl | Operads and PROPs[END_REF][START_REF] Loday | Algebraic Operads[END_REF][START_REF] Méndez | Set operads in combinatorics and computer science[END_REF], and pros [Lei04,[START_REF] Markl | Operads and PROPs[END_REF]. The purpose of this chapter is to present a unified approach to work with these structures. We introduce in this way the notion of polynomial spaces and of biproducts, that are operations working with several inputs and several outputs. All the aforementioned algebraic structures can be seen as particular cases of these objects. This chapter begins in Section 1 by defining polynomial and series spaces on collections. Then, in Section 2, we introduce biproducts, bialgebras, and list some examples of such algebraic structures. Finally, in Sections 3, 4, and 5, we provide the mains definitions and properties of Hopf bialgebras, operads, and pros used in the next chapters.

Polynomial spaces

We introduce here the notion of polynomial spaces and series spaces. All the algebraic structures considered in this dissertation are polynomial or series spaces endowed with some operations or co-operations. A set of operations, analogous to the operations on graded collections of Section 1.1.5 of Chapter 1, over graded polynomial spaces are considered. We also review some links between changes of bases of polynomial spaces, posets, and incidence algebras.

1.1. Series and polynomials on collections. Intuitively, a series (resp. polynomial) on a collection C is a formal sum (resp. finite formal sum) of objects of the C with coefficients in a field K. In what follows, K can be any field of characteristic 0.

1.1.1. Rational functions. In a combinatorial context, it is nevertheless convenient to set K as the space Q( 0 1

) of rational functions on the formal parameters , ∈ N. Let us recall some classical notations. For any ∈ N,

( ) := 1 + + 2 + • • • + -1 ∈ N 1 (1.1.1a) ( ) ! := 1 if = 0 ( ) ( -1) ! otherwise ( ∈ N 1 ) (1.1.1b) 1 + 2 1 2 := ( 1 + 2 ) ! ( 1 ) ! ( 2 ) ! 1 2 ∈ N (1.1.1c)
Elements (1.1.1a) are known as -analogs of integers. Indeed, the specialization := 1 in ( ) is equal to . Elements (1.1.1b) are -factorials and (1.1.1c) are -binomials.

1.1.2. Series and polynomials. Let C be an I-collection. A series on C (or, for short, a C-series) is a map :

C → K. The coefficient ( ) of ∈ C in is denoted by . The support of is the set Supp( ) := { ∈ C : = 0} (1.1.2)
where the symbol 0 of (1.1.2) is the zero of K. A polynomial on C (or, for short, a Cpolynomial) is a C-series having a finite support. A C-series is a C-monomial if Supp( ) is a singleton. We say that is homogeneous if there is an ∈ I such that Supp( ) ⊆ C( ).

For any subset X of C, the characteristic series of X is the C-series ch(X) defined, for any

∈ C, by ch(X) := 1 ∈ K if ∈ X 0 ∈ K otherwise (1.1.3)
Given two C-series and , the scalar product of and is the scalar

:= ∈C (1.1.4) of K.
Of course, when or are C-polynomials, is well-defined. When and are both C-series, may not. This notation for the scalar product of C-series is consistent with the notation for the coefficient of in because by (1.1.4), the coefficient and the scalar product ch({ }) are equal.

When C is a graded collection and is a C-polynomial, the degree deg( ) of is undefined if Supp( ) = ∅ and is otherwise the greatest size of an object appearing in Supp( ).

1.1.3. Polynomial spaces. The C-polynomial space is the set K C of all the C-polynomials. We say that C is the underlying collection of K C . For any property P of collections (see Section 1 of Chapter 1), we say that K C satisfies the property P if C satisfies P. This set K C is endowed with the following two operations. First, the addition

+ : K C × K C → K C (1.1.5) is defined, for any 1 2 ∈ K C and ∈ C, by 1 + 2 := 1 + 2 (1.1.6)
Second, the multiplication by a scalar

• : K × K C → K C (1.1.7)
is defined, for any ∈ K C , λ ∈ K, and ∈ C, by

λ • = λ (1.1.8)
Endowed with these two operations, K C is a K-vector space. Moreover, K C decomposes as a direct sum

K C = ∈I K C( ) (1.1.9)
We call each K C( ) the -homogeneous component of K C . In the sequel, we shall also write K C ( ) for K C( ) .

Besides, by using the linear structure of K C , any C-polynomial can be expressed as the finite sum of C-monomials We would like to emphasize the fact a polynomial space K C is always seen through its explicit basis C (contrarily to working with a vector space without explicit basis). In the sequel, we shall define (co-)operations on C which extend by linearity on K C . Properties of such (co-)operations (like associativity or commutativity) can be defined and checked only on C.

= ∈C • ch({ }) (1.1.
Besides, we are sometimes led to consider several bases of K C and work with many of them at the same time. In this case, to distinguish elements expressed on different bases, we denote them by putting elements of C as indices of a letter naming the basis. For instance, the elements of the B-basis of K C are denoted by B , ∈ C. 

Let
to K C 1 .
1.1.4. Graded combinatorial polynomial spaces. When C is a graded combinatorial collection, as a particular case of (1.1.9), K C decomposes as a direct sum

K C = ∈N K C ( ) (1.1.13)
Moreover, since C is combinatorial, each K C( ) , ∈ N, is finite dimensional. For this reason, the Hilbert series of K C , defined by

K C ( ) = ∈N dim K C ( ) (1.1.14)
is a well-defined series. We can observe that the Hilbert series K C ( ) of K C and the generating series C ( ) of C are the same power series.

1.1.5. Duality. The dual of K C is the K-vector space K C defined by

K C := ∈I K C ( ) (1.1.15)
where for any ∈ I, K C ( ) is the dual space of K C ( ). If C is combinatorial, all K C ( ) are finite dimensional spaces, so that K C ( ) K C ( ), and hence,

K C K C (1.1.16)
For this reason, we shall identify K C and K C in this work once C is combinatorial. The duality bracket between K C and K C is the linear map

--: K C ⊗ K C → K (1.1.17)
defined, for all ∈ C, by :=

1 if = 0 otherwise (1.1.18)
If is a K-vector space, ⊗ denotes the space of all tensors on of order ∈ N. The duality bracket extends for any . By summing all these C-polynomials, we obtain that η( )belongs to (C ) . By linearity, this implies that is a subspace of (C ) . Now, let B be the family of all the C-polynomials of the form η( )where is an object of C which is not a normal form for (C ) (otherwise, the polynomial would be zero). Since all the elements of B are linearly independent, B is a basis of . Hence, the linear map φ : → satisfying φ(η( )-) := for all ∈ C \ (C ) is an isomorphism. This shows that (C ) is isomorphic to K C \ (C ) . The statement of the proposition follows.

∈ N on K C ⊗ ⊗ K C ⊗ linearly by 1 ⊗ • • • ⊗ 1 ⊗ • • • ⊗ := ∈[ ] ( 1 
1.1.7. Series spaces. The C-series space is the set K C of all C-series. Most of the definitions concerning C-polynomials and C-polynomial spaces developed in Section 1.1.3 remain valid in the context of C-series. For instance, K C is a vector space (for the similar operations of addition and multiplication by a scalar as the ones of C-polynomials) and each element of K C can be expressed by a sum notation (1.1.11), which is possibly infinite. One of the main differences of features between K C and K C is that the first one admits C as a basis, while the second does not.

Observe that a generating series of a combinatorial graded collection is an element of K S({ }) , where { } is the graded collection wherein is an atomic object and S is multiset operation over graded collections (see Sections 1.1.2 and 1.1.6 of Chapter 1). Since the introduction of formal power series, a lot of generalizations were proposed in order to extend the range of enumerative problems they can help to solve.

The most obvious ones are multivariate series allowing to count objects not only with respect to their sizes but also with respect to various other statistics. This encompasses the case of the generating series of combinatorial multigraded collections (see Section 1.1.3 of Chapter 1). Such series are elements of K S({ 1 }) where all the , ∈ [ ], are atomic objects. Another one consists in considering noncommutative series on words [Eil74, SS78, BR10] (and hence, elements of K A *

, where A is an alphabet), or even, pushing the generalization one step further, on elements of a monoid [Sak09] (and hence, elements of K where is a monoid). Besides, as another generalization, series on trees have been considered [START_REF] Berstel | Recognizable formal power series on trees[END_REF][START_REF] Bozapalidis | Context-free series on trees[END_REF]. Series on operads (see Section 4.1 about these algebraic structures) increase the list of these generalizations. Chapoton is the first to have considered such series on operads [START_REF] Chapoton | Un théorème de Cartier-Milnor-Moore-Quillen pour les bigèbres dendriformes et les algèbres braces[END_REF][START_REF] Chapoton | Operads and algebraic combinatorics of trees[END_REF][START_REF] Chapoton | A rooted-trees -series lifting a one-parameter family of Lie idempotents[END_REF]. Several authors have contributed to this field by considering slight variations in the definitions of these series. Among these, one can cite van der Laan [vdL04], Frabetti [START_REF] Frabetti | Groups of tree-expanded series[END_REF], and Loday and Nikolov [START_REF] Loday | Operadic construction of the renormalization group[END_REF].

Operations over graded polynomial spaces.

In the same way as operations over graded collections allow to create new graded collections from already existing ones, there exist operations over graded polynomial spaces. Some of these are consequences of the definitions of operations over graded collections. We present here the main ones. In what follows, K C , K C 1 and K C 2 are three graded polynomial spaces.

1.2.1. Direct sum. The sum of two graded collections translates as the direct sum of the associated graded polynomial spaces. Indeed,

K C 1 + C 2 K C 1 ⊕ K C 2 (1.2.1)
An isomorphism between the two spaces of (1.2.1) is provided by the map φ :

K C 1 + C 2 → K C 1 ⊕ K C 2 , linearly defined for any ∈ C 1 + C 2 by φ( ) := ∈ K C 1 if ∈ C 1 ∈ K C 2 otherwise ( ∈ C 2 ) (1.2.2)
1.2.2. Tensor product. The product of two graded collections translates as the tensor product of the associated graded polynomial spaces. Indeed

K C 1 × C 2 K C 1 ⊗ K C 2 (1.2.3)
An isomorphism between the two spaces of (1.2.3) is provided by the map φ : to consider a poset structure on C to define new bases of K C . Indeed, such new bases are defined by considering sums of elements greater (or smaller) than other ones. In this context, incidence algebras of posets and their Möbius functions play an important role. We expose here these concepts.

K C 1 × C 2 → K C 1 ⊗ K C 2 ,
1.3.1. Incidence algebras. One of the first apparitions of incidence algebras in combinatorics is due to Rota [START_REF] Rota | On the foundations of combinatorial theory. I. Theory of Möbius functions[END_REF]. These structures, associated with any locally finite poset, provide an abstraction of the principle of inclusion-exclusion [Sta11] through their Möbius functions. Indeed, the usual inclusion-exclusion principle comes from the Möbius function of the cube poset.

Let (

) be a locally finite I-poset and be the I-collection of all the ordered pairs ( ) of objects of such that , called pairs of comparable objects. The index of ( ) is the index of in (or equivalently, the index of in ). The incidence algebra of ( ) is the polynomial space K endowed with the linear binary product (the notion of products in polynomial spaces is presented in the following Section 2 but here, only elementary notions about these are needed) defined, for any objects (

) and ( ) of by

( ) := ( ) if = 0 otherwise (1.3.1)
This product is obviously associative. Moreover, on each -homogeneous component of K , ∈ I, the -polynomial

1 := ∈C( ) ( ) (1.3.2)
plays the role of a unit, that is, 1 = = 1 for all ∈ K C ( ). Let for any ∈ I the -polynomial ζ , called -zeta polynomial of ( ), defined by

ζ := ∈C( ) ( ) (1.3.3)
This -polynomial encodes some properties of the order . For instance, the coefficient in

ζ ζ of each ( ) ∈ ( ) is the cardinality of the interval [ ] in ( ). The -Möbius polynomial of ( ) is the -polynomial µ satisfying µ ζ = 1 = ζ µ (1.3.4)
In other words, µ is the inverse of ζ with respect to the product . Recall that, as exposed in Section 1.1.2, polynomials on collections are functions associating a coefficient with any object. For this reason, ζ and µ are functions associating a coefficient with any pair of comparable objects of . We have presented the elements of incidence algebras as polynomials of pairs of comparable elements, but in the literature [Sta11], it is most common to see these elements as maps associating a coefficient with each pair of comparable elements. These two points of view are therefore equivalent but the definition of the product of incidence algebras in terms of polynomials is simpler.

T 1.3.1. Let ( ) be a locally finite I-poset. Then, the -Möbius polynomial µ , ∈ I, of (

) is a well-defined element of K and its coefficients satisfy ( ) µ = 1 for all ∈ ( ), and

( ) µ = - ∈ ( ) ≺ ( ) µ (1.3.5)
for all ∈ C( ) such that = .

P . Let be a -polynomial satisfying ζ = 1 . By using the definitions of and of ζ , we obtain

∈ ( ) ( ) ( ) = ∈ ( ) ( ) (1.3.6)
This leads to the fact that ( ) = 1 for all ∈ ( ), and, for all ∈ ( ) such that = ,

∈ ( ) ( ) = 0 (1.3.7)
Then, (1.3.7) rewrites as

( ) + ∈ ( ) ≺ ( ) = 0 (1.3.8)
Moreover, in the same way, one can prove that if is a -polynomial satisfying ζ = 1 , the coefficients of satisfy the same relations as the ones of . Recall now that in any algebraic structure endowed with a unitary and associative product, if an element has an inverse, it is unique. For this reason, µ = . Hence, (1.3.8) implies that the coefficients of µ satisfy (1.3.5). Finally, since all coefficients appearing in µ are well-defined, µ is a well-defined -polynomial.

Theorem 1.3.1 provides a recursive way to compute the coefficients of µ , ∈ I, as a consequence of the finiteness of each interval of ( ). )

µ B = ∈C ( ) µ ∈C = ∈C     ∈C ( ) µ     = ( ) µ + ∈C <     ∈C ( ) µ     = + 0 (1.3.12)
Therefore, (1.3.11) holds. Finally, since C is a basis of K C and, as we have shown, any ∈ C can be expressed as a linear combination of elements of the B -family, this family is a basis of K C .

Bialgebras

Bialgebras are polynomial spaces endowed with operations. These operations are very general in the sense that they can have several inputs and outputs. These structures encompass all the algebraic structures seen in this work.

Biproducts and duality. Polynomial spaces are rather poor algebraic structures.

It is usual in combinatorics to handle spaces endowed with several products. When the products are compatible with the sizes of the underlying combinatorial objects, all this form a graded algebra. This notion is detailed here, as well as the concepts of coproduct, duality, and coalgebras and bialgebras.

2.1.1. Biproducts. Let C be an I-collection. A biproduct on K C is a linear map : K C ⊗ → K C ⊗ (2.1.1)
where ∈ N. The arity (resp. coarity) of is (resp. ). Any biproduct of arity and coarity can be seen as an operation taking elements of K C as input and outputting elements of K C . This biproduct is depicted by a rectangle labeled by its name, with incoming edges (below the rectangle) and outgoing edges (above the rectangle) as (2.1.2) Under a concrete point of view, given any objects 1 , . . . , of C,

( 1 ⊗ • • • ⊗ ) = 1 ∈C ξ ( 1 ⊗•••⊗ 1 ⊗•••⊗ ) 1 ⊗ • • • ⊗ (2.1.3)
where the ξ

( 1 ⊗•••⊗ 1 ⊗•••⊗ )
are coefficients of K. These coefficients are called structure coefficients of and wholly determine the behavior of . We say that is degenerate if all its structure coefficients are zero.

The set of all the biproducts of arity and coarity on K C has a structure of a Kvector space. Indeed, if 1 and 2 are two such biproducts, the addition of 1 and 2 is the biproduct 1 + 2 defined by

( 1 + 2 ) ( 1 ⊗ • • • ⊗ ) := 1 ( 1 ⊗ • • • ⊗ ) + 2 ( 1 ⊗ • • • ⊗ ) (2.1.4)
for any objects 1 , . . . , of C. Moreover, for any coefficient λ ∈ K, if is such a biproduct, the multiplication by a scalar of by λ is the biproduct λ defined by

(λ )( 1 ⊗ • • • ⊗ ) := λ ( 1 ⊗ • • • ⊗ ) (2.1.5)
for any objects 1 , . . . , of C.

Dual biproducts.

Assume that C is combinatorial so that we can identify K C with its dual K C as mentioned in Section 1.1.5. Given a biproduct on K C of arity and coarity , the dual biproduct of is the biproduct

: K C ⊗ → K C ⊗ (2.1.6)
of arity and coarity , linearly defined, for all 1 ∈ C, by

( 1 ⊗ • • • ⊗ ) := 1 ∈C ( 1 ⊗ • • • ⊗ ) 1 ⊗ • • • ⊗ 1 ⊗ • • • ⊗ (2.1.7)
Let us observe that in (2.1.7), the coefficient

( 1 ⊗ • • • ⊗ ) 1 ⊗ • • • ⊗ is the structure coefficient ξ ( 1 ⊗•••⊗ 1 ⊗•••⊗ )
of . Hence, if one sees the structure coefficients of as a matrix whose rows are indexed by the 1 ⊗ • • • ⊗ and the columns by the 1 ⊗ • • • ⊗ , the structure coefficients of is the transpose of this matrix.

Products.

A product is a biproduct of coarity 1. In this section, is a product of arity ∈ N.

For any

1, let T ( ) be the biproduct

T ( ) : K C ⊗ ⊗ K C ⊗ → K C ⊗ (2.1.8) defined linearly by T ( ) 1 1 ⊗ • • • ⊗ 1 ⊗ 1 2 ⊗ • • • ⊗ 2 ⊗ • • • ⊗ 1 ⊗ • • • ⊗ := 1 1 ⊗ • • • ⊗ 1 ⊗ 2 1 ⊗ • • • ⊗ 2 ⊗ • • • ⊗ 1 ⊗ • • • ⊗ (2.1.9)
for any

1 1 1 2 1 2 1 ∈ C. Graphically, T ( ) is the biproduct 1 1 1 1 2 2 1 (2.1.10)
This product T ( ) can be seen as the th-tensor power of seen as a linear map. For this reason, T ( ) is called the th tensor power of . For instance, when is a binary product, one has T 2 ( ) :

K C ⊗2×2 → K C ⊗2 (2.1.11) and ( 1 1 ⊗ 2 1 ) T 2 ( ) ( 1 2 ⊗ 2 2 ) = ( 1 1 1 2 ) ⊗ ( 2 1 2 2 ) (2.1.12)
for all 1 1 2 1 1 2 2 2 ∈ C. In (2.1.12), since and T 2 ( ) are binary products, we denote them in infix way. We follow this convention in all this text. Graphically, T 2 ( ) is the biproduct

1 1 2 1 1 2 2 2
(2.1.13)

Let us now list some properties a product can satisfy.

When I is endowed with an associative binary product +, if for any

1 ∈ C one has ( 1 ⊗ • • • ⊗ ) ∈ K C (ind( 1 ) + • • • +ind( )) (2.1.14)
we say that is +-compatible. In the particular case where C is a graded collection and is +-compatible, is graded.

If {B : ∈ C} is a basis of K C such that, for any objects 1 , . . . , of C there is an ∈ C satisfying B 1 ⊗ • • • ⊗ B = B (2.1.15)
we say that the B-basis of K C is a set-basis (or a multiplicative basis) with respect to .

Assume now that is of arity 2. The associator of is the ternary product

(---) : K C ⊗ K C ⊗ K C → K C (2.1.16) defined linearly for all 1 2 3 ∈ C by ( 1 2 
3 ) := ( 1 2 ) 3 - 1 ( 2 3 ) (2.1.17)
When for all

1 2 3 ∈ C, ( 1 2 3 ) = 0 (2.1.18)
we say that is associative. The commutator of is the binary product

[--] : K C ⊗ K C → K C (2.1.19) defined linearly for all 1 2 ∈ C by [ 1 2 ] := 1 2 - 2 1 (2.1.20) When for all 1 2 ∈ C, [ 1 2 ] = 0 (2.1.21)
the product is commutative. When there is an element 1 of K C such that, for all ∈ C,

1 = = 1 (2.1.22)
we say that is unitary and that 1 is the unit of . This element 1 of K C can be seen as a product of arity 0, that is 1 : (K C ⊗0 = K) → K C is the map sending linearly the multiplicative unit of K to the element 1 of K C . Observe that if 1 is a graded product, 1 is necessarily of degree 0.

Finally, any product on C of arity gives rise to a product ¯ on K C defined linearly, for any objects 1 , . . . , of C, by

¯ ( 1 ⊗ • • • ⊗ ) := ( 1 ) if ( 1 ) is well-defined 0 otherwise (2.1.23)
This product ¯ is the linearization of .

Coproducts.

A coproduct is a biproduct of arity 1. Let ∆ be a product of coarity ∈ N. Observe that the dual of a coproduct is a product and conversely.

All the properties of products defined in Section 2.1.3 hold for coproducts in the following way. For any property P on products, we say that ∆ satisfies the property "coP" if the dual product ∆ of ∆ satisfies P. For instance, ∆ is cograded if ∆ is graded, and ∆ is coassociative if ∆ is associative.

Polynomial bialgebras.

We now consider polynomial spaces endowed with a set of biproducts. The main definitions and properties of these structures are listed.

Elementary definitions. A polynomial bialgebra is a pair (K C

) were K C is a polynomial space endowed with a (possibly infinite) set of biproducts. Let (K C 1 1 ) and (K C 2 2 ) be two polynomial bialgebras. These algebras are µ-compatible if there exists a bijective map µ :

1 → 2 that sends any biproduct of 1 to a biproduct of 2 of the same arity and coarity. When (K C 1 1 ) and (K C 2 2 ) are µ-compatible, a µpolynomial bialgebra morphism (or simply a polynomial bialgebra morphism when there

is no ambiguity) from K C 1 to K C 2 is a polynomial space morphism φ : K C 1 → K C 2 such that φ ⊗ ( 1 ⊗ • • • ⊗ ) = (µ( )) φ( 1 ) ⊗ • • • ⊗ φ( ) (2.2.1)
for all biproducts or arity and coarity of 1 , and

1 ∈ C 1 ,
where φ ⊗ is the th tensor power T (φ) of φ. Graphically, (2.2.1) reads as

1 φ φ = µ( ) φ φ 1 (2.2.2) Besides, when (K C 1 1 ) and (K C 2 2 ) are µ-compatible, (K C 2 2 ) is a sub- bialgebra of (K C 1 1 ) if there is an injective µ-polynomial bialgebra morphism from K C 2 to K C 1 . Let (K C ) be a polynomial bialgebra. For any subset G of K C , the bialgebra generated by G is the smallest sub-bialgebra K C G of K C containing G. When K C G = K C and G is minimal with respect to the inclusion among the subsets of G sat- isfying this property, G is a minimal generating set of K C . A polynomial bialgebra ideal of K C is a subspace of K C such that 1 ⊗ • • • ⊗ -1 ⊗ ⊗ +1 ⊗ • • • ⊗ ∈ ∈[ ] K C ⊗ -1 ⊗ ⊗ K C ⊗ - (2.2.3)
for all biproducts of of arity and coarity , ∈ [ ], ∈ , and

∈ C where ∈ [ ]\{ }.
Given a polynomial bialgebra ideal of K C , the quotient bialgebra K C / of K C by is defined in the usual way.

When contains only products (resp. coproducts), (K C

) is a polynomial algebra (resp. polynomial coalgebra).

Combinatorial polynomial bialgebras.

In practice, and even more so in this dissertation, most of the encountered polynomial bialgebras are of the form (K C

) where C is a combinatorial I-collection and contains only products and coproducts. When all products (resp. coproducts) of are +-compatible (resp. +-cocompatible) for some associative binary products + on I, we say that K C is a combinatorial bialgebra. In most practical cases, C is a graded, a bigraded, or a colored combinatorial collection.

Let us assume that (K C

) is a combinatorial bialgebra. The dual bialgebra of K C is the bialgebra (K C

) where is the set of the dual biproducts of the biproducts of .

It is very common, given a combinatorial bialgebra (K C

), to endow C with a structure of a combinatorial poset (C ) in order to construct B -families (see Section 1.3.2). For instance, when a biproduct has complicated structure coefficients, considering an adequate partial order relation on C such that the B -family is a set-basis with respect to allows to infer properties of (such as generating sets of K C , a description of the nontrivial relations satisfied by these generators, or even freeness properties).

Set-theoretic algebras. When (K C

) is a polynomial algebra such that its fundamental basis is a set-basis with respect to all the products of , each product ¯ of is the linearization of a product on C. In this case, it is possible to forget the linear structure of K C and work only with C and its set of products := { : ¯ ∈ }. We say in this case that C is a set-theoretic algebra.

A large part of the concepts presented above about bialgebras work for the particular case of set-theoretic algebras with some adjustments. For instance, to define quotients of a set-theoretic algebra (C ), we do not work with polynomial algebra ideals but with congruences of set-theoretic algebras. To be a little more precise, a set-theoretic algebra congruence is a relation ≡ on C which is an equivalence relation satisfying

1 -1 +1 ≡ 1 -1 +1 (2.2.4) for all products of arities , ∈ [ ], ∈ C, ∈ C, ∈ [ ] \ { }, whenever ≡ .
In the sequel, if "N" is the name of an algebraic structure, we call "set-N" the corresponding set-theoretic structure. For instance, a set-theoretic unitary associative algebra is a monoid. We shall further encounter in this way set-operads, colored set-operads, and set-pros.

Types of polynomial bialgebras. A type of polynomial bialgebra is specified by

biproduct symbols together with their arities and coarities, and the possible relations between them (like, for instance, associativity, commutativity, cocommutativity, or distributivity). In this section, we list some of the very ordinary types of polynomial bialgebras in combinatorics, and give concrete examples for each of them. Hopf bialgebras are other very important types of polynomial bialgebras and are presented in Section 3.

Associative algebras.

An associative algebra is a polynomial space endowed with an associative binary product. An associative algebra is unitary if its product is unitary. Besides, an associative algebra is commutative if its product is commutative. To perfectly fit to the definition of types of bialgebras given above, the type of unitary associative and commutative algebras is made of a product symbol of arity 2 and a product symbol 1 of arity 0 together with the relations (

1 2 3 ) = 0, [ 1 2 ] = 0, 1(λ) = λ = 1(λ)
, where λ is any coefficient of K, and 1 , 2 , and 3 are any elements of the space.

Concatenation algebra. Let

A := { 1
} be an alphabet. The concatenation product is the binary product • on K A * defined as the linearization of the concatenation product on A * . Since • is graded and all K A are finite dimensional for all ∈ N, (K A * •) is a combinatorial algebra. Moreover, • is associative, noncommutative, and admits the empty word as unit so that (K A * •) is a unitary noncommutative associative algebra.

Shuffle algebra. The shuffle product is the binary product ¡ on K A * linearly and recursively defined by

¡ := =: ¡ (2.3.1a) ¡ := ( ¡ ) • + ( ¡ ) • (2.3.1b)
for any ∈ A * and ∈ A, where • is the concatenation product of words. Intuitively, ¡ consists in summing in all the ways of interlacing the two operands. For instance,

1 2 ¡ 2 1 1 = 1 2 2 1 1 + 1 2 2 1 1 + 1 2 1 2 1 + 1 2 1 1 2 + 2 1 2 1 1 + 2 1 1 2 1 + 2 1 1 1 2 + 2 1 1 2 1 + 2 1 1 1 2 + 2 1 1 1 2 = 2 1 2 2 1 1 + 1 2 1 2 1 + 1 2 1 1 2 + 2 1 2 1 1 + 2 2 1 1 2 1 + 3 2 1 1 1 2 (2.3.2)
Since ¡ is graded and all K A are finite dimensional for all ∈ N, (K A * ¡) is a combinatorial algebra. Moreover, ¡ is associative, commutative, and admits as unit so that (K A * ¡) is a unitary commutative associative algebra.

Coassociative coalgebras.

A coassociative coalgebra is a polynomial space endowed with a coassociative coproduct. A coassociative coalgebra is counitary if its coproduct is counitary. Besides, a coassociative coalgebra is cocommutative if its coproduct is cocommutative.

Deconcatenation coalgebra. let ∆ • be the dual coproduct of the concatenation product • of K A * considered in Section 2.3.1. By (2.1.7), for all ∈ A * , ∆ • ( ) = ∈A * • ⊗ = ∈A * • = ⊗ (2.3.3) For instance, ∆ • ( 1 1 2 ) = ⊗ 1 1 2 + 1 ⊗ 1 2 + 1 1 ⊗ 2 + 1 1 2 ⊗ (2.3.4)
This coproduct is known as the deconcatenation coproduct and endows K A * with a structure of a counitary coassociative noncocommutative coalgebra.

Unshuffle coalgebra. Let ∆ ¡ be the dual coproduct of the shuffle product

¡ of K A * . Again by (2.1.7), for all ∈ A * , ∆ ¡ ( ) = ∈A * ¡ ⊗ (2.3.5)
The coefficient ¡ counts the number of ways to decompose as two disjoint subwords and , and thus, ∆ ¡ ( ) =

P 1 P 2 ⊆[| |] P 1 P 2 =[| |] |P 1 ⊗ |P 2 (2.3.6)
This coproduct can also be expressed by

∆ ¡ ( ) = ⊗ + ⊗ (2.3.7)
for any ∈ A, and

∆ ¡ ( ) = ∈[| |] ∆( ) (2.3.8)
for any ∈ A * , where the product of (2.3.8) denotes the iterated version of the 2nd tensor power T 2 (•) of the concatenation product •. This product T 2 (•) is associative due to the fact that • is associative, and hence, its iterated version is well-defined. For instance,

∆ ¡ ( 1 1 2 ) = ( ⊗ 1 + 1 ⊗ ) T 2 (•) ( ⊗ 1 + 1 ⊗ ) T 2 (•) ( ⊗ 2 + 2 ⊗ ) = ⊗ 1 1 2 + 2 ⊗ 1 1 + 1 ⊗ 1 2 + 1 2 ⊗ 1 + 1 ⊗ 1 2 + 1 2 ⊗ 1 + 1 1 ⊗ 2 + 1 1 2 ⊗ = ⊗ 1 1 2 + 2 ⊗ 1 1 + 2 1 ⊗ 1 2 + 2 1 2 ⊗ 1 + 1 1 ⊗ 2 + 1 1 2 ⊗ (2.3.9)
This coproduct is known as the unshuffling coproduct and endows K A * with a structure of a counitary coassociative cocommutative coalgebra. [START_REF] Loday | Dialgebras. In Dialgebras and related operads[END_REF] is a polynomial space K C endowed with two binary products ≺ and satisfying

Dendriform algebras. A dendriform algebra

( 1 ≺ 2 ) ≺ 3 = 1 ≺ ( 2 ≺ 3 ) + 1 ≺ ( 2 3 ) (2.3.10a) ( 1 2 ) ≺ 3 = 1 ( 2 ≺ 3 ) (2.3.10b) ( 1 ≺ 2 ) 3 + ( 1 2 ) 3 = 1 ( 2 3 ) (2.3.10c) for all 1 2 3 ∈ K C . Dendriform algebra structure. A polynomial algebra (K C
), where is a binary product, admits a dendriform algebra structure if its product can be split into two operations =≺ +

(2.3.11)

where ≺ and are two non-degenerate binary products such that (K C ≺ ) is a dendriform algebra. Observe that if (K C ) admits a dendriform algebra structure, is associative. The associativity of ≺ + is a consequence of Relations (2.3.10a), (2.3.10b), and (2.3.10c) of dendriform algebras.

Codendriform coalgebra structure. By dualizing the notion of dendriform algebra structure, one obtains the notion of codendriform coalgebras [START_REF] Foissy | Bidendriform bialgebras, trees, and free quasi-symmetric functions[END_REF]. More precisely, a codendriform coalgebra is a polynomial space K C endowed with two binary coproducts ∆ ≺ and ∆ such that the dual products ≺ and of respectively ∆ ≺ and ∆ endow K C with a dendriform algebra structure.

In the same way as above, we say that a polynomial coalgebra (K C ∆), where ∆ is a binary coproduct, admits a codendriform algebra structure if its coproduct can be split into two operations

∆ = ∆ ≺ + ∆ (2.3.12)
where ∆ ≺ and ∆ are two non-degenerate binary coproducts such that

(K C ∆ ≺ ∆ ) is a codendriform colalgebra. Bidendriform bialgebra structure. A bialgebra (K C ∆)
, where is a binary product and ∆ is a binary coproduct, admits a bidendriform bialgebra structure [START_REF] Foissy | Bidendriform bialgebras, trees, and free quasi-symmetric functions[END_REF] if K C admits both a dendriform algebra (K C ≺ ) and a codendriform coalgebra (K C ∆ ≺ ∆ ) structure with some extra compatibility relations between the products ≺ and and the coproducts ∆ ≺ and ∆ .

One among the main benefits of showing that K C admits a bidendriform bialgebra structure relies a rigidity theorem [START_REF] Foissy | Bidendriform bialgebras, trees, and free quasi-symmetric functions[END_REF] implying several properties of K C . For instance, when K C is a Hopf bialgebra (see Section 3), the fact that K C admits a bidendriform bialgebra structure implies its self-duality, its freeness as an associative algebra, and its freeness as a coassociative coalgebra.

Remarks and generalizations. We invite the reader to take a look at [LR98, Agu00, Lod02, Foi07, EFMP08, EFM09, LV12] for a supplementary review of properties of dendriform algebras.

Besides, in the recent years, a lot of generalizations of dendriform algebras and their dual notions were introduced, each of them splitting an associative product in different ways and in more that two pieces. Tridendriform algebras [START_REF] Loday | Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory[END_REF], quadri-algebras [AL04], enneaalgebras [START_REF] Leroux | Ennea-algebras[END_REF], -dendriform algebras of Leroux [START_REF] Leroux | A simple symmetry generating operads related to rooted planar -ary trees and polygonal numbers[END_REF], -dendriform algebras of Novelli [START_REF] Novelli | dendriform algebras[END_REF], and polydendriform algebras (see Chapter 5) are examples of such structures.

Shuffle dendriform algebra. Consider on K A * the binary products ≺ and defined linearly and recursively by

≺ := =: (2.3.13a) =: 0 := ≺ (2.3.13b) ≺ := ( ¡ ) • (2.3.13c) := ( ¡ ) • (2.3.13d)
for any ∈ A * , ∈ A + , and ∈ A, where • is the concatenation product of words. In other words, ≺ (resp.

) is the sum of all the words obtained by shuffling and such that the last letter of comes from (resp. ). For example,

1 2 ≺ 2 1 1 = 1 2 1 1 2 + 2 1 1 1 2 + 2 1 1 1 2 + 2 1 1 1 2 = 1 2 1 1 2 + 3 2 1 1 1 2 (2.3.14a) 1 2 2 1 1 = 1 2 2 1 1 + 1 2 2 1 1 + 1 2 1 2 1 + 2 1 2 1 1 + 2 1 1 2 1 + 2 1 1 2 1 = 2 1 2 2 1 1 + 1 2 1 2 1 + 2 1 2 1 1 + 2 2 1 1 2 1 (2.3.14b)
These two products endow K A * with a structure of a dendriform algebra. Moreover, the products ≺ and divide the shuffle product into two parts in the sense that

¡ = ≺ + (2.3.15) for all ∈ A *
. This shows that (K A * ¡) admits a dendriform algebra structure and offers a way to recover the recursive definition (see (2.3.1a) and (2.3.1b)) of ¡. This recursive description of the shuffle product was known since Ree [Ree58].

Max dendriform algebra. Assume here that A is a totally ordered alphabet by if . Consider on K A + the binary products ≺ and defined linearly by

≺ := • if max ( ) max ( ) 0 otherwise (2.3.16a) := • if max ( ) < max ( ) 0 otherwise (2.3.16b) for all ∈ A +
, where • is the concatenation product of words. These two products endow K A + with a structure of a dendriform algebra. Moreover, we have here • =≺ + where • is the associative algebra product of concatenation of K A + .

Pre-Lie algebras.

A pre-Lie algebra is a polynomial space K C endowed with a binary product satisfying

( 1 2 ) 3 - 1 ( 2 3 ) = ( 1 3 ) 2 - 1 ( 3 2 ) (2.3.17)
for all 1 2 3 ∈ K C . This relation (2.3.17) of pre-Lie algebras says that the associator (---) is symmetric in its two last entries.

Pre-Lie algebras were introduced by Vinberg [Vin63] and Gerstenhaber [START_REF] Gerstenhaber | The cohomology structure of an associative ring[END_REF] independently. These structures appear under different names in the literature, for instance as Vinberg algebras, left-symmetric algebras, or chronological algebras. The appellation pre-Lie algebra is now very natural since, given a pre-Lie algebra (K C

), the commutator of endows K C with a structure of a Lie algebra. In the context of combinatorics, several pre-Lie products are defined on combinatorial spaces by summing over all the ways to compose (in a certain sense) two combinatorial objects. For this reason, in an intuitive way, pre-Lie algebras encode the combinatorics of the composition of combinatorial objects in all possible ways [START_REF] Chapoton | Operads and algebraic combinatorics of trees[END_REF]. For more details on pre-Lie algebras, see [START_REF] Manchon | A short survey on pre-Lie algebras[END_REF].

Pre-Lie algebras from associative algebras. When (K C

) is a an associative algebra, satisfies in particular (2.3.17) since both left and right members are equal to zero. For this reason, (K C

) is a pre-Lie algebra.

Pre-Lie algebra of rooted trees. Recall that RT is the graded combinatorial collection of all rooted trees (see Section 3.1.1 of Chapter 1). Consider now on K RT the products ( )

: K RT ⊗ → K RT defined linearly for all 1 and all rooted trees t 1 , . . . , t by ( )

(t 1 ⊗ • • • ⊗ t ) := (• t 1 t ) (2.3.18)
Intuitively, ( ) consists in grafting all the trees t 1 , . . . , t onto a common root. This product is symmetric with respect to all its inputs. Now, let be the binary product on K RT defined linearly and recursively by

s t := ( +1) (s 1 ⊗ • • • ⊗ s ⊗ t) + ∈[ ] ( ) (s 1 ⊗ • • • ⊗ s -1 ⊗ (s t) ⊗ s +1 ⊗ • • • ⊗ s ) (2.3.19)
for any s t ∈ RT where s = (• s 1 s ). Intuitively, consists in summing all the ways of connecting the root of the second operand on a node of the first. For example,

= + + + 2 (2.3.20)
This product endows K RT with a structure of a pre-Lie algebra.

The free objects in the category of pre-Lie algebras have been described by Chapoton and Livernet [START_REF] Chapoton | Pre-Lie algebras and the rooted trees operad[END_REF]. They have shown that the free pre-Lie algebra generated by a set G is the combinatorial space of all rooted trees whose nodes are labeled on G, and the product of two such rooted trees is the sum of all the ways to connect the root of the second tree to a node of the first. Thereby, the pre-Lie algebra (K RT

) is the free pre-Lie algebra generated by a singleton. 2.3.5. About bialgebras. In the field of algebraic combinatorics, many types of bialgebras have emerged recently. As previously mentioned, bidendriform bialgebras [START_REF] Foissy | Bidendriform bialgebras, trees, and free quasi-symmetric functions[END_REF] are one of these. In [START_REF] Loday | Generalized bialgebras and triples of operads[END_REF], Loday defined the notion of triples of operads, leading to the constructions of various kinds of bialgebras and analogs of the Poincaré-Birkhoff-Witt and Cartier-Milnor-Moore theorems (see also [START_REF] Chapoton | Un théorème de Cartier-Milnor-Moore-Quillen pour les bigèbres dendriformes et les algèbres braces[END_REF]). He defined, among others, infinitesimal bialgebras, forming an example of combinatorial bialgebras having one associative binary product and one coassociative binary coproduct satisfying a compatibility relation. Moreover, in [START_REF] Foissy | Ordered forests and parking functions[END_REF], Foissy considered algebraic structures, named Dup-Dendr bialgebras, having two binary products satisfying the duplicial relations [BF03, Lod08], two binary coproducts such that their dual products satisfy the dendriform relations, and such that these four (co)products satisfy several compatibility relations. These structures lead to rigidity theorems, in the sense that any Dup-Dendr bialgebra is free as a duplicial algebra. In the same way, Foissy introduced also in [START_REF] Foissy | Examples of Com-PreLie Hopf algebras[END_REF] structures named Com-PreLie bialgebras, that are spaces with an associative and commutative binary product, a pre-Lie product, and a binary coproduct that satisfy compatibility relations.

Hopf bialgebras in combinatorics

Hopf bialgebras are polynomial spaces endowed with an associative product and a coassociative coproduct ∆ satisfying a kind of commutativity relation very natural in combinatorics. We list the basic concepts related with these structures and provide some examples.

Hopf bialgebras.

A Hopf bialgebra is a polynomial space K C endowed with a binary product and a binary coproduct ∆ such that (K C

) is a unitary associative algebra, (K C ∆) is a counitary coassociative coalgebra, and, for all

1 2 ∈ K C , ∆( 1 2 ) = ∆( 1 ) T 2 ( ) ∆( 2 ) (3.1.1)
The dual bialgebra of a Hopf bialgebra is still a Hopf bialgebra.

Let us now provide some classical definitions about Hopf bialgebras.

3.1.1. Primitive and group-like elements.

An element of K C is primitive if ∆( ) = 1 ⊗ + ⊗ 1. The set K C of all primitive elements of K C forms a subspace of K C and the commutator [--] endows K C with a structure of a Lie algebra. Besides, an element of K C is group-like if ∆( ) = ⊗ .

Convolution product and antipode. Given two Hopf bialgebras (K

C 1 1 ∆ 1 ) and (K C 2 2 ∆
2 ), if ω and ω are two Hopf bialgebra morphisms from K C 1 to K C 2 , the convolution of ω and ω is the map

ω * ω : K C 1 → K C 2 (3.1.2)
defined linearly, for any ∈ C 1 , by

(ω * ω )( ) := 1 2 ∈C 1 ξ ( 1 ⊗ 2 ) ∆ 1 ω( 1 ) 2 ω ( 2 ) (3.1.3)
where the ξ

(--) ∆ 1
are the structure coefficients of ∆ 1 . This convolution product is associative, as a consequence of the fact that ∆ 1 is coassociative and 2 is associative. Now, let (K C ∆) be a Hopf bialgebra. Let ν : K C → K C be the linear map defined as the inverse of the identity map Id K C on K C . This map ν is the antipode of K C and it can be undefined in certain cases.

Combinatorial Hopf bialgebras. In algebraic combinatorics, one encounters very particular Hopf bialgebras. A combinatorial Hopf bialgebra is a Hopf bialgebra (K C

∆) which is graded and combinatorial (that is K C is a graded combinatorial space, and and ∆ are respectively graded and cograded) and such that C is connected as a graded collection (as a consequence, K C (0) is of dimension 1 and can be identified with K).

All combinatorial Hopf bialgebras admit a unique well-defined antipode ν. Indeed, consider a combinatorial Hopf bialgebra (K C ∆) and let us denote by 1 its unique element of C(0). We can consider, without loss of generality that 1 is the unit of . The antipode ν must satisfy

ν * Id K C ( ) = 1 if = 1 0 otherwise (3.1.4)
Hence, we obtain

1 2 ∈C ξ ( 1 ⊗ 2 ) ∆ ν( 1 ) 2 = 1 if = 1 0 otherwise (3.1.5)
Now, by using the fact that ∆ is counitary and cograded, we obtain

ν(1) = 1 (3.1.6)
and, for any

∈ Aug(C), ν( ) = - 1 2 ∈C 2 =1 ξ ( 1 ⊗ 2 ) ∆ ν( 1 ) 2 (3.1.7)
Therefore, (3.1.6) and (3.1.7) imply that the antipode of K C is well-defined can be computed by induction.

Main Hopf bialgebras in combinatorics.

Hopf bialgebras are a heavily studied subject. In the last years, many Hopf bialgebras have been introduced involving a very wide range of combinatorial spaces. Let us review the main examples.

Shuffle deconcatenation Hopf bialgebra. Let

A := { 1
} be an alphabet. The concatenation product • and the unshuffling coproduct ∆ ¡ (see Section 2.3.2) endow K A * with a structure of a combinatorial Hopf bialgebra (K

A * • ∆ ¡ ). Its dual bialgebra is the Hopf bialgebra (K A * ¡ ∆ • )
where ¡ is the shuffle product and ∆ • is the deconcatenation coproduct (see again Section 2.3.2).

Noncommutative symmetric functions.

Consider the graded combinatorial polynomial space Sym := K Comp of the compositions. Let {S λ : λ ∈ Comp} be the basis of the complete noncommutative symmetric functions of Sym and be the binary product defined linearly, for any λ µ ∈ Comp, by

S λ S µ := S λ•µ (3.2.1)
where λ • µ is the concatenation of the compositions (seen as words of integers). Moreover, let ∆ be the binary coproduct defined linearly, for any λ ∈ Comp, by

∆ (S λ ) := ∈[ (λ)]     ∈N + =λ S ( ) ⊗ S ( )     (3.2.2)
where the product of (3.2.2) denotes the iterated version of 2nd tensor power T 2 ( ) of , and for any 1, S ( ) is the basis element indexed by the composition of length 1 whose only part is , and S (0) is identified with the unit 1 of K. For instance,

∆ (S 121 ) = (1 ⊗ S 1 + S 1 ⊗ 1) T 2 ( ) (1 ⊗ S 2 + S 1 ⊗ S 1 + S 2 ⊗ 1) T 2 ( ) (1 ⊗ S 1 + S 1 ⊗ 1) = 1 ⊗ S 121 + S 1 ⊗ S 111 + S 1 ⊗ S 12 + S 1 ⊗ S 21 + 2S 11 ⊗ S 11 + S 11 ⊗ S 2 + S 2 ⊗ S 11 + S 111 ⊗ S 1 + S 12 ⊗ S 1 + S 21 ⊗ S 1 + S 121 ⊗ 1 (3.2.3)
The product and the coproduct ∆ endow Sym with a structure of a combinatorial Hopf bialgebra.

Moreover, let {R λ : λ ∈ Comp} be the family defined by

R λ := µ∈Comp λ µ (-1) (λ)-(µ) S µ (3.2.4)
where is the refinement order of compositions. For instance,

R 212 = S 212 -S 23 -S 32 + S 5 (3.2.5)
By triangularity, this family forms a basis of Sym and is known as the basis of ribbon noncommutative symmetric functions. On this basis, one has, for any

λ µ ∈ Comp, R λ R µ := R λ µ + R λ µ (3.2.6)
for any λ µ ∈ Comp, where λ • µ is the concatenation of the compositions and

λ µ := λ 1 λ (λ)-1 λ (λ) + µ 1 µ 2 µ (µ) (3.2.7) For instance, R 3112 R 142 = R 3112142 + R 311342 (3.2.8)
This Hopf bialgebra Sym is usually known as the Hopf bialgebra of noncommutative symmetric functions. To explain this name, consider a totally ordered alphabet

A := { 1 2
} where 1 implies . Now, let the series

R λ (A) := ∈A * cmp( )=λ
(3.2.9) of K A * defined for all λ ∈ Comp, where cmp is defined in Section 1.2.3 of Chapter 1. Observe that all R λ (A) are polynomials when A is finite, but are series in the other case. For instance,

R 31 ({ 1 2 }) = 1 1 2 1 + 1 2 2 1 + 2 2 2 1 (3.2.10a) R 21 ({ 1 2 3 }) = 1 2 1 + 1 3 1 + 1 3 2 + 2 2 1 + 2 3 1 + 2 3 2 + 3 3 1 + 3 3 2 (3.2.10b) R 121 ({ 1 2 3 }) = 2 1 2 1 + 2 1 3 1 + 2 1 3 2 + 3 1 2 1 + 3 1 3 1 + 3 1 3 2 + 3 2 2 1 + 3 2 3 1 + 3 2 3 2 (3.2.10c)
The linear span of all the R λ (A), λ ∈ Comp, is the space of noncommutative symmetric functions on A. The associative algebra structure of Sym is compatible with these series in the sense that

R λ (A) • R µ (A) = (R λ R µ ) (A) (3.2.11)
for all λ µ ∈ Comp, where the product • of the left member of (3.2.11) is the usual product of noncommutative series of K A * .

This Hopf bialgebra has been introduced in [GKL + 95] as a generalization of the usual symmetric functions [START_REF] Macdonald | Symmetric Functions and Hall Polynomials[END_REF]. This generalization is a consequence of the fact that there is a surjective morphism from Sym to the algebra of symmetric functions.

Free quasi-symmetric noncommutative symmetric functions.

Consider the graded combinatorial polynomial space FQSym := K S of the permutations. Let {F σ : σ ∈ S} be the basis of the fundamental free quasi-symmetric functions of FQSym and be the binary product defined linearly, for any σ ν ∈ S, by

F σ F ν := π∈S π σ ¡ ν F π (3.2.12)
where ν is the word obtained by incrementing each letter of ν by |σ|, and ¡ is the shuffle product of words defined in Section 2.3.1. For instance

F 21 F 12 = F 2134 + F 2314 + F 2341 + F 3214 + F 3241 + F 3421 (3.2.13)
This product is known as the shifted shuffle product. Let also ∆ be the binary coproduct defined linearly, for any π ∈ S, by

∆(F π ) := 0 |π| F std(π(1) π( )) ⊗ F std(π( +1) π(|π|)) (3.2.14)
where std is defined in Section 1.2.5 of Chapter 1. For instance

∆(F 42513 ) = 1 ⊗ F 42513 + F 1 ⊗ F 2413 + F 21 ⊗ F 312 + F 213 ⊗ F 12 + F 3241 ⊗ F 1 + F 42513 ⊗ 1 (3.2.15)
The product and the coproduct ∆ endow FQSym with a structure of a combinatorial Hopf bialgebra.

This Hopf bialgebra FQSym is usually known as the Hopf bialgebra of free quasisymmetric functions. Indeed, as for Sym, there is a way to see the elements of FQSym as noncommutative series. For this, consider a totally ordered alphabet

A := { 1 2
} where 1 implies . Let the series

F σ (A) := ∈A * std( )=σ -1 (3.2.16) of K A * defined for all σ ∈ S. For instance F 312 ({ 1 2 3 }) = 2 2 1 + 2 3 1 + 3 3 1 + 3 3 2 (3.2.17a) F 132 ({ 1 2 3 }) = 1 2 1 + 1 3 1 + 1 3 2 + 2 3 2 (3.2.17b)
Furthermore, the Hopf bialgebras FQSym and Sym are related through the injective morphism of Hopf bialgebras φ : Sym → FQSym defined linearly by 

φ (R λ ) := σ∈S Des ( σ -1 )=Des(λ) F σ (3.2.
(A) = F 312 (A) + F 132 (A).
This Hopf bialgebra has been introduced by Malvenuto and Reutenauer [START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF] and is sometimes called the Malvenuto-Reutenauer algebra. Due to its interpretation [START_REF] Duchamp | Noncommutative Symmetric Functions VI: Free Quasi-Symmetric Functions and Related Algebras[END_REF] as an algebra of noncommutative series F σ (A), it is also called the algebra of free quasisymmetric functions. Other classical examples include the Poirier-Reutenauer Hopf bialgebra of tableaux [PR95], also known as the Hopf bialgebra of free symmetric functions FSym [START_REF] Duchamp | Noncommutative Symmetric Functions VI: Free Quasi-Symmetric Functions and Related Algebras[END_REF][START_REF] Hivert | The Algebra of Binary Search Trees[END_REF]. This Hopf bialgebra is defined on the combinatorial space of all standard Young tableaux. The Loday-Ronco Hopf bialgebra [LR98], also known as the Hopf bialgebra of binary search trees PBT [START_REF] Hivert | The Algebra of Binary Search Trees[END_REF] is defined on the combinatorial space of all binary trees. As other modern examples of combinatorial spaces endowed with a Hopf bialgebra structure, one can cite WQSym [START_REF] Hivert | Combinatoire des fonctions quasi-symétriques[END_REF] involving packed words, PQSym [START_REF] Novelli | Hopf algebras and dendriform structures arising from parking functions[END_REF] involving parking functions, Bell [START_REF] Rey | Algebraic constructions on set partitions[END_REF] involving set partitions, Baxter [START_REF] Law | The Hopf algebra of diagonal rectangulations[END_REF][START_REF] Giraudo | Algebraic and combinatorial structures on pairs of twin binary trees[END_REF] involving ordered pairs of twin binary trees, and Camb [START_REF] Châtel | Cambrian Hopf algebras[END_REF] involving Cambrian trees.

The study of all these structures uses a large set of tools. Indeed, it relies on algorithms transforming words into combinatorial objects, congruences of free monoids, partials orders structures and lattices, and polytopes and their geometric realizations. Besides, a polynomial realization of a combinatorial Hopf bialgebra K C consists in seeing K C as an algebra of noncommutative series so that its product is the usual product of series and its coproduct is obtained by alphabet doubling (see for instance [START_REF] Hivert | An introduction to Combinatorial Hopf Algebras[END_REF]). In this text, only the polynomial realizations of Sym and FQSym have been detailed, but all the Hopf bialgebras discussed here have polynomial realizations.

Congruences and Hopf sub-bialgebras of

FQSym. It is worth to note that some of the structures discussed above (and many other ones) can be constructed through congruences of the free monoid A *

where

A := { 1 2 }. Indeed, if ≡ is a congruence of A *
, one can construct a family {P [σ] ≡ : σ ∈ S} where [σ] ≡ is the ≡-equivalence class of the permutation σ seen as a word on A by identifying each letter of σ with the letter of A, and, for any σ ∈ S,

P [σ] ≡ := σ∈[σ] ≡ F σ (3.2.20)
Of course, the elements (3.2.20) do not form a Hopf sub-bialgebra of FQSym without precise properties on ≡. Let us state them. First, we consider that A is totally ordered by the relation satisfying if . For any interval J of A and any word on A, we denote by |J the subword of consisting in the letters belonging to J. We say that ≡ is compatible with the restriction of alphabet intervals if, for any interval J of A and any ∈ A * , ≡ implies |J ≡ |J . We say that ≡ is compatible with the destandardization process if, for any ∈ A * , ≡ if and only if std( ) ≡ std( ) and and have the same commutative image. T

Let ≡ be a monoid congruence of A * compatible with the restriction of alphabet intervals and with the destandardization process. Then, the elements (3.2.20) form a combinatorial Hopf sub-bialgebra of FQSym whose bases are index by the ≡equivalence classes of permutations.

This way to construct combinatorial Hopf sub-bialgebras of FQSym has been introduced in [START_REF] Hivert | Dual graded graphs in combinatorial Hopf algebras[END_REF]. One can see also [START_REF] Hivert | Combinatoire des fonctions quasi-symétriques[END_REF][START_REF] Giraudo | Combinatoire algébrique des arbres[END_REF][START_REF] Novelli | Hopf Algebras of m-permutations, ( + 1)-ary trees, and -parking functions[END_REF] where properties of this construction are studied.

Let us now provide some examples of congruences satisfying the requirements of Theorem 3. dence with the set of all binary trees with internal nodes. A possible bijection between these two sets is furnished by the binary search tree insertion algorithm [START_REF] Knuth | The art of computer programming, volume 3: Sorting and searching[END_REF].

Plactic congruence. The plactic congruence [LS81, Lot02] is the finest monoid congru- ence ≡ of A * satisfying, for any a b c ∈ A, acb ≡ cab a b ≺ c (3.2.23a) bac ≡ bca a ≺ b c (3.2.23b)
The set of all ≡-equivalence classes of permutations of size are in one-to-one correspondence with the set of all standard Young tableaux [START_REF] Lascoux | 1978), volume 109 of Quad[END_REF][START_REF] Fulton | Young Tableaux, with Applications to Representation Theory and Geometry[END_REF]. A possible bijection between these two sets is furnished by the Robinson-Schensted correspondence [START_REF] Schensted | Longest increasing and decreasing subsequences[END_REF].

Baxter congruence. The Baxter congruence [Gir12b] (see also [Rea05, LR12]) is the finest monoid congruence ≡ of A * satisfying, for any ∈ A * and a b c d ∈ A, c ad b ≡ c da b a b ≺ c d (3.2.24a) b da c ≡ b ad c a ≺ b c ≺ d (3.2.24b)
The set of all ≡-equivalence classes of permutations of size are in one-to-one correspondence with the set of all ordered pairs of twin binary trees, objects introduced in [START_REF] Dulucq | Mots de piles, tableaux standards et permutations de Baxter[END_REF].

A possible bijection between these two sets uses the classical binary search tree insertion algorithm together with a variant of it where the last inserted node becomes the root of the tree [Gir12b].

Bell congruence. The Bell congruence [START_REF] Rey | Algebraic constructions on set partitions[END_REF] is the finest monoid congruence ≡ of A * 

ac b ≡ ca b a b ≺ c (3.2.26a) b ca ≡ b ac a ≺ b c (3.2.26b)
The set of all ≡-equivalence classes of permutations of size are in one-to-one correspondence with the set of all compositions of size .

Total congruence. The total congruence is the monoid congruence ≡ satisfying ≡ if and have the same commutative image. There is exactly one ≡-equivalence class of permutations of size .

3.2.5. Hopf bialgebra of colored permutations. Let, for any 1, the graded combinatorial polynomial space FQSym ( ) := K S ( ) of the -colored permutations. Let {F (σ ) : (σ ) ∈ S ( ) } be the basis of the fundamental -free quasi-symmetric functions of FQSym ( ) . The space FQSym ( ) is endowed with a binary product similar to the product of FQSym (see (3.2.12)) wherein the letters of the permutations and their colors are shuffled. For instance, in FQSym (5) ,

F (12 43) F (1 5) = F (123 435) + F (132 453) + F ( 312 543) 
(3.2.27)

Let also ∆ be the binary coproduct defined in FQSym ( ) in a similar way as the coproduct of FQSym (see (3.2.14)). Again in this case, the colors follow the letters of the permutations. For instance, in FQSym (4) ,

F (312 411) = 1 ⊗ F (312 411) + F (1 4) ⊗ F (12 11) + F (21 41) ⊗ F (1 1) + F (312 411) ⊗ 1 (3.2.28)
The product and the coproduct ∆ endow FQSym ( ) with a structure of a combinatorial Hopf bialgebra. These Hopf bialgebras have been introduced in [START_REF] Novelli | Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions[END_REF]. Obviously, they provide a generalization of FQSym since since FQSym = FQSym (1) and, for any 1, FQSym ( ) is a Hopf sub-bialgebra of FQSym ( +1) .

Hopf bialgebra of uniform block permutations.

A uniform block permutation (or a UBP for short) of size is a bijection π : π → π where π and π are set partitions of [ ], and, for any ∈ π , # = #π( ). These objects are obvious generalizations of permutations since a permutation is a UBP where π and π are sets of singletons. For instance, the map π defined by

π({1 4 5}) := {2 5 6} π({2}) := {1} π({3 6}) := {3 4} (3.2.29)
is a UBP of size 6. We denote by UBP the graded combinatorial collection of all UBPs. The sequence of integers associated with UBP starts by

1 1 3 16 131 1496 22482 426833 (3.2.30)
and is Sequence A023998 of [Slo].

The graded combinatorial polynomial space UBP := K UBP admits a combinatorial Hopf bialgebra structure defined through its basis {F π : π ∈ UBP} (see [START_REF] Aguiar | The Hopf algebra of uniform block permutations[END_REF]). This Hopf bialgebra contains FQSym.

Hopf bialgebra of matrix quasi-symmetric functions.

A packed matrix is a matrix with entries in N such that each row and each column contains at least one nonzero entry. We denote by M the graded combinatorial collection of all packed matrices, where the size of a packed matrix is the sum of its entries.

The graded combinatorial polynomial space MQSym := K M admits a combinatorial Hopf bialgebra structure defined through its basis {M M : M ∈ M} of the quasi-multiword functions. Let be the binary product defined linearly, for any M 1 M 2 ∈ M in the following way. The product M M 1 M M 2 is the sum of all the M M such that the packed matrix M is obtained by horizontally concatenating N 1 and N 2 where N 1 (resp. N 2 ) is obtained from M 1 (resp. M 2 ) by inserting some null rows, and so that N 1 and N 2 have both a same number of rows. For example,

M 2 1 0 1 M [ 1 3 ] = M 2 1 0 0 0 1 0 0 0 0 1 3 + M 2 1 0 0 0 1 1 3 + M 2 1 0 0 0 0 1 3 0 1 0 0 + M 2 1 1 3 0 1 0 0 + M 0 0 1 3 2 1 0 0 0 1 0 0 (3.2.31)
There is also a binary coproduct ∆ defined on MQSym that, on the basis of quasi-multiword functions, splits the packed matrices horizontally and delete the columns of zeros. This Hopf bialgebra has been introduced in [START_REF] Hivert | Combinatoire des fonctions quasi-symétriques[END_REF] (see also [START_REF] Duchamp | Noncommutative Symmetric Functions VI: Free Quasi-Symmetric Functions and Related Algebras[END_REF]).

Operads in combinatorics

We regard here operads as polynomial algebras and provide the main definitions used in the following chapters. We also give examples of some usual operads. Moreover, the products

• , ∈ N 1 , satisfy • : K C ( ) ⊗ K C ( ) → K C ( + -1) ∈ N 1 ∈ [ ] (4.1.2) This is equivalent to the fact that if ∈ C( ), ∈ C( ), and ∈ [ ], • ∈ K C ( + -1)
For any ∈ C( ), ∈ C( ), and ∈ C( ), one must have

( • ) • + -1 = • ( • ) ∈ [ ] ∈ [ ] (4.1.3a) ( • ) • + -1 = ( • ) • < ∈ [ ] (4.1.3b)
Finally, we demand the existence of an element 1 of K C (1) satisfying, for any ∈ C( ),

1 • 1 = = • 1 ∈ [ ] (4.1.4)
Let us now provide an intuitive meaning of these relations. Any element of K C ( ) is seen as a product of arity , depicted as 1 (4.1.5) and where the inputs are indexed from 1 to from left to right. The • act by composing these products: for any ∈ K C ( ), ∈ K C ( ), and ∈ [ ], • is the product obtained by plugging the output of onto the th input of . This is depicted as

1 • 1 = 1 + -1 (4.1.6)
Under this formalism, Relation (4.1.3a) says that the product Since a ns operad is a particular polynomial algebra, all the properties and definitions about polynomial algebras exposed in Section 2.2 remain valid for ns operads (like ns operad morphisms, ns suboperads, generating sets, operad ideals and quotients, etc.). Observe also, from (4.1.2) that the • , ∈ N 1 , are not graded products. Nevertheless, these partial composition maps are +-compatible products where + is the operation satisfying + := + -1 for any ∈ N 1 . As a side remark, since C augmented, one can see the partial composition maps as graded products on the space K Sus -1 (C) . In this way, when C is combinatorial, one can see K C as a particular combinatorial algebra (see Section 2.2.2). 4.1.2. Additional definitions. Given a ns operad K C , the complete composition maps of K C are, the linear maps

• ( ) , ∈ N 1 , satisfying • ( ) : K C ( ) ⊗ K C ( 1 ) ⊗ • • • ⊗ K C ( ) → K C ( 1 + • • • + ) (4.1.10)
defined linearly, for any ∈ C( ) and 1 ∈ C, by

• ( ) ( ⊗ 1 ⊗ • • • ⊗ ) := ( (( • ) • -1 -1 ) ) • 1 1 (4.1.11)
To gain concision, we shall denote by

• [ 1 ] the element • ( ) ( ⊗ 1 ⊗ • • • ⊗ ) of K C , for all ∈ K C ( ) and 1 ∈ K C . Under this notation, we call • the complete composition map of K C .
Let us now provide some particular definitions about ns operads that do not come from the general ones of polynomial algebras of Section 2.2. 

An element of arity 2 of

K C is associative if • 1 = • 2 . If K C 1 and K C 2 are two ns operads, a ns operad antimorphism is a graded polynomial space morphism φ : K C 1 → K C 2 such that φ( • ) = φ( ) • -+1 φ( ) for any element of arity of K C 1 , any ∈ K C 1 ,
( 1 2 ) • ( 1 2 ) := ( 1 • 1 2 • 2 ) (4.1.12) for any ( 1 2 ) ∈ (C 1 ◊C 2 )( ), ( 1 
2 ) ∈ C 1 ◊C 2 , ∈ [ ],
where the second (resp. third) occurrence of • in (4.1.12) is a partial composition map of K C 1 (resp. K C 2 ).

Free ns operads.

Let G be an augmented graded collection. The free ns operad over G is the ns operad

FO(G) := K PRT G ⊥ (4.1.13)
where PRT G ⊥ is the graded collection of all the G-syntax trees (see Section 2.3 of Chapter 1).

The space FO(G) is endowed with the linearizations of the grafting operations 

• , ∈ N 1 , defined in Section 2.
1 ∈ K C if t =⊥ ω t ( ) • [ev (t 1 ) ev (t )] otherwise (4.1.16)
where • is the complete composition map of K C , ω t ( ) is the label of the root of t, and is the root arity of t. This map ev is the unique surjective ns operad morphism from FO(C) to K C satisfying ev( ( )) = for all ∈ C.

For any subset S of C, an S-treelike expression of an element of K C is an element of FO(S) such that ev( ) = . A treelike expression can be thought as a factorization in a ns operad.

Presentations by generators and relations.

A presentation of a ns operad K C consists in a pair (G ) such that G is an augmented graded collection, is a subspace of FO(G) and

K C FO(G)/ (4.1.17)
where is the ns operad ideal of FO(G) generated by . We call G the set of generators and the space of relations of K C .

We say that a presentation (G ) of K C is quadratic if is a homogeneous subspace of FO(G) consisting in syntax trees of degree 2. Besides, we say that (G ) is binary if G has only elements of size 2. By extension, we say also that K C is quadratic (resp. binary) if it admits a quadratic (resp. binary) presentation.

In practice, to establish presentations of ns operads, we use rewrite systems on syntax trees (see Section 2.4 of Chapter 1). ) is convergent, and its set of normal forms Besides, (iii) and Proposition 1.1.1 imply, as spaces, the isomorphisms

(PRT G ⊥ ) is isomor- phic to C, then (G ) is a presentation of K C .
FO(G)/ K (PRT G ⊥ ) K C (4.1.19)
This, together with the fact that φ is surjective implies that φ is a ns operad isomorphism. Hence, K C admits the claimed presentation.

In practice, there are at least two ways to use Theorem 4.1.1 to establish a presentation of a ns operad K C . The first one is the most obvious: it consists first in finding a generating set G of K C , then conjecturing a space of relations and a rewrite system (PRT G

⊥

) such that all conditions (i), (ii), and (iii) are satisfied. This can be technical (especially to prove that the closure (PRT G ⊥ ) is convergent), and relies heavily on computer exploration. The second way requires as a prerequisite that K C is combinatorial (and hence, all its homogeneous components are finite dimensional). In this case, we need here also to find a generating set G of K C , a space of relations and a rewrite system (PRT G

⊥

) such that (i), (ii) hold. The difference with the first way occurs for (iii): it is now sufficient to prove (PRT G

⊥

) is terminating (and not necessarily convergent

). Indeed, if (PRT G ⊥ ) is terminating, since K C is combinatorial, dim K C( ) = # (PRT G ⊥ ) ( ) dim FO(G( ))/ (4.1.20)
for all 1. The inequality of (4.1.20) comes from the fact that, since we do not know if (PRT G

⊥

) is confluent, it can have more normal forms of arity than the dimension of FO(G)/ in arity . It follows from (4.1.20), by using similar arguments as the ones used in the proof of Theorem 4.1.1, that there is a ns operad isomorphism from FO(G)/ to K C .

4.1.6. Koszulity and Koszul duality. In [START_REF] Ginzburg | Koszul duality for operads[END_REF], Ginzburg and Kapranov extended the notion of Koszul duality of quadratic associative algebras to quadratic ns operads. Starting with a ns operad K C admitting a binary and quadratic presentation (G ) where G is finite, the Koszul dual of K C is the ns operad K C ! , isomorphic to the ns operad admitting the presentation G ⊥ where ⊥ is the annihilator of in FO(G) with respect to the scalar product

--: FO(G)(3) ⊗ FO(G)(3) → K (4.1.21) linearly defined, for all ∈ G(2), by ( ) • ( ) • :=        1 if = = and = = 1 -1 if = = and = = 2 0 otherwise (4.1.22)
Then, with knowledge of a presentation of K C , one can compute a presentation of K C ! .

A quadratic ns operad K C is Koszul if its Koszul complex is acyclic [GK94, LV12]. Furthermore, when K C is Koszul and admits an Hilbert series, the Hilbert series of K C and of its Koszul dual K C ! are related [START_REF] Ginzburg | Koszul duality for operads[END_REF] by

K C -K C ! (-) = (4.1.23)
Relation (4.1.23) can be used either to prove that a ns operad is not Koszul (it is the case when the coefficients of the hypothetical Hilbert series of the Koszul dual admits coefficients that are not nonnegative integers) or to compute the Hilbert series of the Koszul dual of a Koszul operad.

In all this work, to prove the Koszulity of a ns operad K C , we shall make use of a tool introduced by Dotsenko and Khoroshkin [START_REF] Dotsenko | Gröbner bases for operads[END_REF] in the context of Gröbner bases for operads, which reformulates in our context, by using rewrite rules on syntax trees, in the following way. ) is a convergent rewrite system, then K C is Koszul.

When (PRT G

⊥

) satisfies the conditions contained in the statement of Lemma 4.1.2, the set of G-syntax trees that are normal forms (PRT G ⊥ ) forms a basis of FO(G)/ , called Poincaré-Birkhoff-Witt basis. These bases arise from the work of Hoffbeck [START_REF] Hoffbeck | A Poincaré-Birkhoff-Witt criterion for Koszul operads[END_REF] (see also [START_REF] Loday | Algebraic Operads[END_REF]). 4.1.7. Algebras over ns operads. Any ns operad K C encodes a type of graded polynomial algebras, called algebras over K C (or, for short, K C -algebras). A K C -algebra is a graded polynomial space K D , where D is a graded collection, and endowed with a linear left action

• : K C ( ) ⊗ K D ⊗ → K D 1 (4.1.24)
satisfying the relations imposed by the structure of a ns operad of K C , that are

( • ) • ( 1 ⊗ • • • ⊗ + -1 ) = • ( 1 ⊗ • • • ⊗ -1 ⊗ • ( ⊗ • • • ⊗ + -1 ) ⊗ + ⊗ • • • ⊗ + -1 ) (4.1.25) for all ∈ K C ( ), ∈ K C ( ), ∈ [ ],
and

1 ⊗ • • • ⊗ + -1 ∈ K D ⊗ + -1
In other words, any element of K C of arity plays the role of a linear operation

: K D ⊗ → K D (4.1.26)
taking elements of K D as inputs and computing an element of K D . Under this point of view, Relation (4.1.25) reads as

• 1 + -1 = 1 + -1 + -1 (4.1.27)
Notice that, by (4.1.25), if G is a generating set of K C , it is enough to define the action of each ∈ G on K D ⊗| | to wholly define •.

By a slight but convenient abuse of notation, for any ∈ K C ( ), we shall denote by ( 1), or by 1 2 if has arity 2, the element

• ( 1 ⊗ • • • ⊗ ) of K D , for any 1 ⊗ • • • ⊗ ∈ K D ⊗
. Observe that by (4.1.25), any associative element of K C gives rise to an associative operation on K D .

The class of all the K C -algebras forms a category, called category of K C -algebras, wherein morphisms

φ : K D 1 → K D 2 (4.1.28) between two K C -algebras K D 1 and K D 2 are K C -algebra morphisms, that are graded polynomial algebra morphisms satisfying φ ( ( 1 )) = (φ ( 1 ) φ ( )) (4.1.29) for all 1 ∈ K D 1 and ∈ K C ( ), ∈ N 1 .
4.1.8. Set-operads. Following Section 2.2.3, in a ns set-operad K C , any partial composition of two elements of C belongs to C. We say in this case that the fundamental basis of K C is a set-operad basis. Besides, by extension, if K C is a ns operad admitting a basis C which is a set-operad basis, we say that K C is a set-operad. To study a set-operad K C , it is in some cases convenient to forget about its linear structure and see it as a graded collection C endowed with partial composition maps • , ∈ N 1 . We will follow this idea multiple times in the sequel. In the context of set-operads, a K C -algebra is called a C-monoid.

We now state some useful lemmas and notions about ns set-operads. Of course, the set appearing in (4.1.30) could be empty or infinite, so that some elements of C could have no S-degree.

4.1.9. Left expressions in ns set-operads and hook-length formula. Let C be a ns setoperad, S be a subset of C, and be an object of C. An S-left expression of is an expression for of the form

= ( ( 1 • 1 2 ) • 2 ) • -1 (4.1.31) where 1 ∈ S and 1 -1 ∈ N 1 .
A linear extension of a syntax tree t is a linear extension of the poset t induced by t (see Section 2.1.5 of Chapter 1). Left expressions and linear extensions of treelike expressions in ns set-operads are related, as shown by the following lemma. 

. Let C be a combinatorial ns operad and S be a subset of C. Then, for any object of C, the set of all the S-left expressions of is in one-to-one correspondence with the set of all pairs (t ) where t is an S-treelike expression of and is a linear extension of t.

A famous result of Knuth [START_REF] Knuth | The art of computer programming, volume 3: Sorting and searching[END_REF], known as the hook-length formula for trees, stated here in our setting, says that given a syntax tree t, the number of linear extensions of the poset induced by t is

hk(t) := deg(t)! ∈ • (t) deg(t ) (4.1.32)
A subset S of C finitely factorizes C(1) if any element of C(1) admits finitely many factorizations on S with respect to the operation • 1 .

When S finitely factorizes C(1), the number of S-treelike expressions for any object of C is finite. Hence, in this case, we deduce from Lemma 4.1.4 and (4.1.32) that the number of S-left expressions of is 

out(1 ) = = in(1 ) ∈ C (4.1.34a) 1 • 1 = = • 1 ∈ C( ) ∈ C ∈ [ ] ∈ N 1 (4.1.34b)
whenever out( ) = and in ( ) = . We call each 1 , ∈ C, the unit of color . For any nonnegative integer , a ns -colored operad is a ns C-colored operad where C is a -colored collection. A ns monochrome operad is a ns C-colored operad where C is monochrome.

To describe free ns colored operads, we need the notion of C-colored syntax trees (see Section 3.1.2 of Chapter 1). Let G be a C-colored graded collection. The free ns C-colored operad over G is the ns C-colored operad

FCO(G) := K CPRT G (4.1.35)
where CPRT G is the C-colored collection of all the C-colored G-syntax trees. The space FCO(G) is endowed with the linearizations of the grafting operations • , ∈ N 1 , defined in Section 3.1.2 of Chapter 1. The units of color , ∈ C, are the trees of degree 0 and arity 1 with output and input colors equal to . 

. Let C be a combinatorial ns C-colored set-operad and S be a subset of C such that S finitely factorizes C(1). Then, any element of C admits finitely many S-treelike expressions.

All the notions developed in the above sections about ns operads extends on ns colored operads by taking colors into account. Classical references about colored operads are [START_REF] Boardman | Homotopy invariant algebraic structures on topological spaces[END_REF][START_REF] Yau | Colored Operads. Graduate Studies in Mathematics[END_REF].

4.1.11. Categorical point of view. In the same way as a monoid can be seen as a category with exactly one object (the elements of are interpreted as morphisms φ : → ), a ns operad can be seen as a multicategory with exactly one object . In this case, the elements of of arity ∈ N 1 are interpreted as multimorphisms φ : → . The complete composition maps of translate as the composition of multimorphisms.

In a similar way, a ns C-colored operad can be seen as a multicategory having C as set of objects (see [Cur12]). In this case, the elements of having 1 ∈ C as word of input colors and ∈ C as output color are interpreted as multimorphisms φ :

1 × • • • × → .
The complete composition maps of translate as the composition of multimorphisms, where the constraints imposed by the colors in become constraints imposed by the domains and codomains of multimorphisms.

4.1.12. Enrichments. Ns operads can have some additional structure. Let us now describe some usual enrichments of operads. In what follows, K C is a ns operad.

Basic ns set-operads. When K C is a ns set-operad, let for any ∈ C( ) the maps 

• : C( ) → C( + -1) ∈ N 1 ∈ [ ] ( 4 
: C( ) → [ ] ∈ N 1 (4.1.38)
satisfying, for all ∈ C( ), ∈ C( ), and

∈ [ ], root( • ) =        root( ) + -1 if root( ) -1 root( ) + root( ) -1 if = root( ) root( ) otherwise ( root( ) + 1) (4.1.39)
We call such a map a root map. More intuitively, the root map of a rooted ns operad associates a particular input with any of its basis elements and this input is preserved by partial compositions. It is immediate that any ns operad K C is rooted for both the root maps root L and root R which send respectively all objects of C of arity to 1 or to . For this reason, we say that K C is nontrivially rooted if it can be endowed with a root map different from root L and root R . These notions are slight variations of ones introduced first in [START_REF] Chapoton | Flows on rooted trees and the Menous-Novelli-Thibon idempotents[END_REF].

Cyclic ns operads. Finally, K C is cyclic if there is a map

ρ : K C ( ) → K C ( ) ∈ N 1 (4.1.40) satisfying, for all ∈ K C ( ), ∈ K C ( ), and ∈ [ ], ρ(1) = 1 (4.1.41a) ρ +1 ( ) = (4.1.41b) ρ( • ) = ρ( ) • ρ( ) if = 1 ρ( ) • -1 otherwise (4.1.41c)
We call such a map ρ a rotation map. Intuitively, a rotation map in a ns operad acts by transforming its 1st input of an element in an output, its 2nd input in a 1st input, its 3rd input in a 2nd input, and so on, and its output in a last input. This notion has been introduced in [START_REF] Getzler | Cyclic operads and cyclic homology[END_REF].

4.1.13. Symmetric operads. Let Per be the ns operad defined by Per := K Aug(S) with the partial compositions defined as follow. For all σ ∈ S( ), ν ∈ S( ), and This ns operad is known as the associative noncommutative operad or more prosaically, the operad of permutations.

∈ [ ], σ • ν := σ (1) σ ( -1)ν (1) ν ( )σ ( + 1) σ ( ) (
A symmetric operad, or an operad for short, is a ns operad K C together with linear maps

• : K C ( ) ⊗ Per( ) → K C ( ) 1 (4.1.46)
satisfying, for any ∈ C( ), ∈ C( ), σ ∈ S( ), ν ∈ S( ), and ∈ [ ],

( • σ) • ( • ν) = ( • σ ) • (σ • ν) (4.1.47)
and in such a way that • also is a symmetric group action. Note that any operad K C is also (and thus can be seen as) a ns operad by forgetting its action of Per.

A simple permutation is a permutation σ such that for all factors of σ, if the letters of form an interval of N then | | = 1 or | | = |σ|. For instance, the permutation 624135 is not simple since the letters of the factor := 2413 form an interval of N. On the other hand, the permutation 5137462 is simple. There is also a notion of algebras over symmetric operads. An algebra over K C (or, short, a K C -algebra) is an algebra K D over K C seen as a ns operad. We ask additionally that the relation 

( • σ)( 1 ) = σ -1 (1) σ -1 ( ) (4.1.49) holds for any ∈ K C ( ), σ ∈ S( ), 1 ∈ K D , ∈ N 1 .

Main

2 ) • 1 (a 2 ) -(a 2 ) • 2 (a 2 ) (4.2.2)
Any algebra over As is a space K D endowed with a binary associative operation.

Magmatic operad. Let Mag := K Ary

(2) ⊥ be the ns operad where for any binary trees t and s, the partial composition t • s is the grafting of s onto the th leaf of t, seen as syntax trees. In other terms, Mag is the operad FO(C) where C := C(2) := {a}. This ns operad is the magmatic operad.

The ns operad Mag is a set-operad and its Hilbert series satisfies

Mag ( ) = 1 - √ 1 -4 2 (4.2.3)
Moreover, Mag admits the presentation (G ) where

G := (4.2.4)
and is the trivial space. Any algebra over Mag is a space K D endowed with a binary operation which do satisfy any required relation.

Duplicial operad. Let Dup

:= K Aug(Ary (2)
• ) be the ns operad where for any nonempty binary trees t and s, the partial composition t • s consists in replacing the th (with respect to the infix order) internal node of t by a copy of s, and by grafting the left subtree of to the first leaf of the copy, and the right subtree of to the last leaf of the copy. For instance,

• 6 = (4.2.5)
This ns operad is the duplicial operad [START_REF] Loday | Generalized bialgebras and triples of operads[END_REF].

The ns operad Dup is a set-operad and its Hilbert series satisfies

Dup ( ) = 1 -2 - √ 1 -4 2 (4.2.6)
Moreover, Dup admits the presentation (G ) where

G := (4.2.7)
and is the space generated by, by denoting by (resp.

) the first (resp. second) tree of (4.2.7), ( )

• 1 ( ) -( ) • 2 ( ) (4.2.8a) ( ) • 1 ( ) -( ) • 2 ( ) (4.2.8b) ( ) • 1 ( ) -( ) • 2 ( ) (4.2.8c)
Any algebra over Dup is a space K D endowed with two binary relations and such that both and are associative (as consequences of (4.2.8a) and (4.2.8b)), and, for any ∈ D,

( ) = ( ) (4.2.9)
These structures are called duplicial algebras.

4.2.4.

Operad of rational functions. The graded vector space of all commutative rational functions K(U), where U is the infinite commutative alphabet { Observe that since RatFct is a graded space, each rational function has an arity. Hence, by setting 1 ( 1 ) := 1 and 2 ( 1 2 ) := 1, 1 is of arity 1 while 2 is of arity 2, so that 1 and 2 are considered as different rational functions. The partial composition of two rational functions ∈ RatFct( ) and ∈ RatFct( ) satisfies, for any ∈ [ ],

• := (

1 -1 + • • • + + -1 + + -1 ) ( + -1 ) (4.2.11)
This ns operad is the operad of rational functions. The rational function of RatFct 

e • e =        e + -1 + -1 if < e + -1 + -1 if = e + -1 otherwise ( > ) (4.2.12) for all ∈ N 1 , ∈ [ ], ∈ [ ],
( ) -( ) • 2 ( ) ( ) • 1 ( ) -( ) • 2 ( ) (4.2.15a) ( ) • 1 ( ) -( ) • 2 ( ) (4.2.15b) ( ) • 1 ( ) -( ) • 2 ( ) ( ) • 1 ( ) -( ) • 2 ( ) (4.2.15c)
This operad, by its presentation by generators and relations, has been introduced in [START_REF] Loday | Dialgebras. In Dialgebras and related operads[END_REF].

Its realization in terms of the elements e and the partial compositions maps (4.2.12) appears in [START_REF] Chapoton | On some anticyclic operads[END_REF]. Any algebra over Dias is a space K D endowed with two binary relations and such that both and are associative (as particular consequences of (4.2.15a) and (4.2.15c)), and, for any ∈ D,

( ) = ( ) (4.2.16a) ( ) = ( ) (4.2.16b) ( ) = ( ) (4.2.16c)
These structures are called diassociative algebras.

4.2.6. Dendriform operad. The dendriform operad Dendr is the ns suboperad of RatFct generated by the set 1 1 1 2 [START_REF] Loday | On the operad of associative algebras with derivation[END_REF]. This operad admits the presentation (G ) where

G := G(2) := {≺ } (4.2.17)
and is the space generated by

(≺) • 1 (≺) -(≺) • 2 (≺) -(≺) • 2 ( ) (4.2.18a) (≺) • 1 ( ) -( ) • 2 (≺) (4.2.18b) ( ) • 1 (≺) + ( ) • 1 ( ) -( ) • 2 ( ) (4.2.18c)
This operad, by its presentation by generators and relations, has been introduced in [START_REF] Loday | Dialgebras. In Dialgebras and related operads[END_REF].

It is shown here that Dendr is the Koszul dual of Dias and that these operads are Koszul operads. Hence, the Hilbert series Dendr ( ) of Dendr satisfies, by (4.1.23),

Dendr ( ) = 1 -2 - √ 1 -4 2 (4.2.19)
This shows that Dendr is, as a combinatorial polynomial space, the space K Aug(Ary (2) • ) . A gravity chord diagram is a configuration c (see Section 3.2 of Chapter 1) where each arc can be blue (drawn as a thick line) and that satisfies the following conditions. By denoting by the size of c, all the edges and the base of c are blue, and if ( ) and ( ) are two blue crossing diagonals of c such that < , the arc ( ) is not labeled. In other words, the quadrilateral formed by the vertices , , , and of c is such that its side ( ) is not labeled. For instance, (4.2.23) is a gravity chord diagram of arity 7 having four blue diagonals (observe in particular that, as required, the arc (3 5) is not labeled). For any 2, Grav( ) is the linear span of all gravity chord diagrams of size . Moreover, Grav(1) is the linear span of the singleton containing the only polygon of arity 1 where its only arc is not labeled. The partial composition of Grav is defined, in a geometric way, as follows. For any gravity chord diagrams c and d of respective arities and , and ∈ [ ], the gravity chord diagram c • d is obtained by gluing the base of d onto the th edge of c, so that the arc ( + ) of c • d is blue. For example,

• 3 = (4.2.24)

Pros in combinatorics

We regard here pros as polynomial algebras and provide the main definitions used in the following chapters. We also give examples of some usual pros.

Pros.

Pros can be thought as variations of operads allowing multiple outputs for some elements. Surprisingly, pros appeared earlier than operads in the work of Mac Lane [START_REF] Lane | Categorical algebra[END_REF]. Intuitively, a pro is a space K C wherein elements are biproducts (see Section 2.1.1) and is endowed with two operations: an horizontal composition and a vertical composition. The first operation takes two operators and of K C and builds a new one whose inputs (resp. outputs) are, from left to right, those of and then those of . The second operation takes two operators and of K C and produces a new one obtained by plugging the outputs of onto the inputs of . Basic and modern references about pros are [Lei04] and [START_REF] Markl | Operads and PROPs[END_REF]. This formal definition of pros is not combinatorial. Let us provide in the next section a more concrete one.

Axioms of pros.

A pro is a bigraded polynomial space K C endowed with a binary linear product

* : K C ( ) × K C ( ) → K C ( + + ) 0 (5.1.1)
called horizontal composition and a binary linear product • is a map of the form

• : K C ( ) × K C ( ) → K C ( ) 0 (5.1.2)
called vertical composition. We demand, for any ∈ N, the existence of an element

1 of K C ( ) called unit of arity . The input (resp. output) arity of ∈ K C ( ) is | | ↑ := (resp. | | ↓ := ).
These data have to satisfy for all ∈ C the six relations

( * ) * = * ( * ) (5.1.3) ( • ) • = • ( • ) | | ↑ = | | ↓ | | ↑ = | | ↓ (5.1.4) ( • ) * ( • ) = ( * ) • ( * ) if | | ↑ = | | ↓ | | ↑ = | | ↓ (5.1.5) 1 * 1 = 1 + 0 (5.1.6) * 1 0 = = 1 0 * (5.1.7) • 1 = = 1 • 0 if | | ↑ = | | ↓ = (5.1.8)
Since a pro is a particular polynomial algebra, all the properties and definitions about polynomial algebras exposed in Section 2.2 remain valid for pros (like pros morphisms, sub-pros, generating sets, pro ideals and quotients, etc.). 5.1.3. Free pros. Let G be a bigraded collection such that G(

) = ∅ if = 0 or = 0. The free pro over G is the pro FP(G) := K Prg G (5.1.9)
where Prg G is the bigraded collection of all the G-prographs (see Section 3.3 of Chapter 1). The space FP(G) is endowed with linearizations of the horizontal composition of prographs and of the vertical composition of prographs (see Section 3.3.4 of Chapter 1). The unit of arity , 0, is the sequence of wires 1 . Notice that by the above assumption on G, there is no elementary G-prograph in FP(G) with a null input or output arity. Therefore, 1 0 is the only element of FP(G) with a null input (resp. output) arity. In this dissertation, we consider only free pros satisfying this property.

Let us now state some definitions and properties about free pros.

Let FP(G) be a free pro. Since FP(G) is free (and, by convention, G has no generator of input or output arity 0), any G-prograph can be uniquely written as

= 1 * • • • * (5.1.10)
where the are G-prographs different from 1 0 , and 0 is maximal. We call the word dec( ) := ( Besides, we say that a G-prograph is indecomposable if its maximal decomposition consists in exactly one factor. Note that 1 0 is not indecomposable while 1 1 is. L 5.1.1. Let and be two G-prographs such that = red( ). Then, by denoting by ( 1) the maximal decomposition of , there exists a unique sequence of nonnegative integers ) as an operator with inputs and outputs where each th input is connected to the ( )th output, (5.2.3a) and (5.2.3b) read respectively as (5.2.4b) Observe hence that the horizontal composition of K Map is a shifted concatenation of words and that the vertical composition of K Map is a functional composition. We call K Map the pro of maps.

1 +1 such that = 1 1 * 1 * 1 2 * 2 * • • • * * 1 +1 (5.

Pro of increasing maps. Let NDMap be the bigraded collection wherein for any ∈ N, NDMap(

) is the set of nondecreasing maps from [ ] to [ ], that is the maps such that implies ( ) ( ). Since the operations * and • of K Map are stable in K NDMap and the identity maps 1 , ∈ N, are nondecreasing maps, K NDMap is a sub-pro of K Map . In particular, we call K NDMap the pro of nondecreasing maps. 5.2.3. Pro of permutations and props. Let Per be the bigraded subcollection of Map consisting in all bijective maps. Hence, Per( ) = ∅ when = . Since the operations * and • of K Map are stable in K Per and the identity maps 1 , ∈ N, are bijections, K Per is a sub-pro of K Map . It is moreover possible to show that the singleton G := {21} ⊆ Per(2 2) is a minimal generating set of K Per . We call K Per the pro of permutations.

A prop is a pro K C containing K Per as a sub-pro.

Introduction

In [START_REF] Chapoton | The anticyclic operad of moulds[END_REF], Chapoton considered a ns operad structure on the objects called noncrossing trees and noncrossing plants. These objects can be depicted as simple graphs inside regular polygons, and are some kinds of noncrossing configurations that are well-known combinatorial objects [FN99, FS09]. The partial compositions of these ns operads have very simple graphical descriptions and it is tempting and easy to generalize this composition as much as possible, by removing some constraints on the objects. This leads to a very big ns operad of noncrossing configurations. This research initially started as a study of this ns operad, with possible aim the description of its suboperads.

This study has led us to the following results. First, we introduce a general functorial construction from ns colored operads to ns operads, which is called the enveloping operad. This can be compared to the amalgamated product of groups, in the sense that it takes a compound object to build a unified object in the simplest possible way, by imposing as few relations as possible. The main interest of this construction relies on the fact that a lot of properties of an enveloping operad (as e.g., its Hilbert series and a presentation by generators and relations) can be obtained from its underlying ns colored operad.

Next, we consider the ns operad BNC of bicolored noncrossing configurations, defined by a simple graphical composition, and show that it admits a description as the enveloping operad of a very simple ns colored operad on two colors called Bubble. We also obtain a presentation by generators and relations of the ns colored operad Bubble.

Then this understanding of the operad BNC is used to describe in details some of its suboperads, namely those generated by two chosen generators among the binary generators of BNC. This already gives an interesting family of operads, where one can recognize some known ones: the operad of based noncrossing trees NCT [START_REF] Chapoton | The anticyclic operad of moulds[END_REF], the operad of noncrossing plants NCP [START_REF] Chapoton | The anticyclic operad of moulds[END_REF], the dipterous operad [LR03, Zin12], and the 2-associative operad [START_REF] Loday | On the structure of cofree Hopf algebras[END_REF][START_REF] Zinbiel | Encyclopedia of types of algebras 2010. In Operads and universal algebra[END_REF]. Our main results here are a presentation by generators and relations for all these suboperads except one, and also the description of all the generating series. It should be noted that the presentations are obtained in a case-by-case fashion, using similar techniques involving rewrite rules on syntax trees (see Section 2.4 of Chapter 1). This chapter is organized as follows. In Section 1, the general construction of enveloping operads is given and its properties described. Next, in Section 2, we introduce the operad BNC and prove that this operad is isomorphic to an enveloping operad. Finally, in Section 3, several suboperads of BNC are considered, in a more or less detailed way.

Note. This chapter deals only with ns set-operads and ns colored set-operads. For this reason, "operad" means "ns set-operad". Moreover, we consider only colored operads such that (1) is trivial, that is (1) = {1 : ∈ [ ]}. Moreover, all considered colored operads are -colored operads (see Section 4.1.10 of Chapter 2).

Enveloping operads of colored operads

The aim of this section is twofold. We begin by introducing the main object of this chapter: the construction which associates an operad with a colored one, namely its enveloping operad. We finally justify the benefits of seeing an operad as an enveloping operad of a colored one by reviewing some properties of that can be deduced from the ones of . where ≡ is the smallest operad congruence of FO(Aug( )) satisfying

( ) • ( ) ≡ ( • ) (1.1.2)
for all ∈ Aug( ) such that • are well-defined in . Observe that in (1.1.1), FO(Aug( ))

is the free noncolored operad generated by Aug( ), where Aug( ) is here a combinatorial graded collection whose input and output colors are forgotten.

1.1.2. Reductions. Let t be a syntax tree of FO(Aug( )) and be an edge of t connecting two internal nodes and respectively labeled by and , such that is the th child of and, as elements of , in ( ) = out( ). Then, the reduction of t with respect to is the tree obtained by replacing and by an internal node labeled by • (see Figure 3.1). This tree is an element of FO(Aug( )).

•

F

. . The reduction of syntax trees. The internal node is the th child of .

1.1.3. Anticolored syntax trees. Let C be a -colored collection. A -anticolored syntax tree on C (or for short, a -anticolored C-syntax tree) is a (noncolored) C-syntax tree t such that for any internal nodes and of t such that is the th child of , we have in ( ) = out( ) where (resp. ) is the label of (resp. ). The set of all -anticolored C-syntax trees is denoted by Anti(C). Observe that the leaf ⊥ is a -anticolored syntax tree. Since anticolored syntax trees are particular syntax trees, the usual terminology and tools about them applies (see Section 2 of Chapter 1).

1.1.4. The operad of anticolored syntax trees. For any -colored operad , the set Anti(Aug( )) is endowed with an operad structure for the partial composition defined as follows. Let s and t be two anticolored syntax trees on Aug( ). If out(t) = in (s), s • t is the anticolored syntax tree obtained by grafting the root of t on the th leaf of s. Otherwise, when out(t) = in (s), s • t is the anticolored syntax tree obtained by grafting the root of t on the th leaf of s and then, by reducing the obtained tree with respect to the edge connecting the nodes and , where is the parent of the th leaf of s and is the root of t (see Figure 3.2).

( ) s ( ) t ( ) s • t if out(t) = in (s) • ( ) s • t if out(t) = in (s) F .
. The two cases for the partial composition of two anticolored trees s and t. In (d), is the index of the th leaf of s among the children of the internal node . P 1.1.1. For any colored operad , the operads Hull( ) and Anti(Aug( )) are isomorphic.

P

. Let φ : Hull( ) → Anti(Aug( )) be the map associating with any ≡-equivalence class of syntax trees on Aug( ), the only anticolored Aug( )-syntax tree on belonging to it. To prove the statement, let us show that φ is a well-defined operad isomorphism.

For that, let be the closure of the rewrite relation of reduction with respect to the partial compositions operations of trees. The axioms of operads ensure that is confluent, and since any rewriting decreases the degrees of the trees, is terminating. The normal forms of are the trees that cannot be reduced, and thus, are anticolored Aug( )-syntax trees. Since by definition of ≡, s t implies s ≡ t, the application φ is well-defined and is a bijection.

Finally, let [s] ≡ [t] ≡ ∈ Hull( ), s := φ([s] ≡ ), and t := φ([t] ≡ ). The only anticolored syntax tree in [s• t] ≡ is obtained by grafting s and t together and performing, if possible, a reduction with respect to the edge linking them. Since the obtained tree is also the anticolored syntax tree s • t of Anti(Aug( )), φ is an operad morphism.

Proposition 1.1.1 implies that the elements of Hull( ) can be regarded as anticolored trees, endowed with their partial composition defined above. We shall maintain this point of view in the rest of this chapter by setting Hull( ) := Anti(Aug( )). 

P

. For any colored operad , Hull( ) is by definition an operad on anticolored syntax trees on Aug( ). Moreover, by induction on the number of internal nodes of the anticolored syntax trees, it follows that for any colored operad morphism φ, Hull(φ) is a well-defined operad morphism.

Since Hull is compatible with map composition and sends the identity colored operad morphism to the identity operad morphism, Hull is a functor. It is moreover plain that if φ is an injective (resp. surjective) colored operad morphism, then Hull(φ) is an injective (resp. surjective) operad morphism.

Theorem 1.1.2 is rich in consequences: Propositions 1.2.2, 1.2.3, 1.2.5, 1.2.4 of next section directly rely on it.

Notice that Hull is a surjective functor. Indeed, since an anticolored syntax tree on a 1-colored collection is necessarily a corolla, for any operad , Hull( ) contains only corollas labeled on Aug( ) and it is therefore isomorphic to .

Notice also that Hull is not an injective functor. Let us exhibit two 2-colored operads not themselves isomorphic that produce by Hull two isomorphic operads. Let be the 2-colored operad where (2) := {a 

Bubble decompositions of operads and consequences.

Let be an operad. We say that is a -bubble decomposition of if is a -colored operad such that Hull( ) and are isomorphic. In this case, we say that the elements of are bubbles. As we shall show, since a bubble decomposition of an operad contains a lot of information about , the study of can be confined to the study of . Then, the main interest of the construction Hull is here: the study of an operad is confined to the study of one of its bubble decompositions. Since colored operads are more constrained structures than operads, this study is in most cases simpler than the direct study of the operad itself.

1.2.1. Hilbert series. Let ∈ [ ] be a color. The -colored Hilbert series of is the series B (z

1 z ) := x -1 Aug( ) (0 0 x 0 0 z 1 z ) (1.2.1)
where Aug( ) is the generating series of the colored collection Aug( ) (see Section 1.1.4 of Chapter 1). In more concrete terms, B (z 1 z ) is the series wherein the coefficient of z α 1 1 z α counts the nontrivial elements of having as output color and α inputs of color for all ∈ [ ]. P 1.2.1. Let be a -colored operad. Then, the Hilbert series ( ) of the enveloping operad of satisfies

( ) = + 1 ( ) + • • • + ( ) (1.2.
2) where for all ∈ [ ], the series ( ) satisfy

( ) = B ( ( ) - 1 ( ) ( ) - ( ))
Note that Proposition 1.2.1 implies that, if the colored Hilbert series of is algebraic, the Hilbert series of Hull( ) also is. Nevertheless, as we shall see, rationality is not preserved. 

The operad of bicolored noncrossing configurations

In this section, we shall define an operad over a new kind of noncrossing configurations.

In order to study it and apply the results of Section 1, we shall see this operad as an enveloping operad of a colored one.

Bicolored noncrossing configurations.

Let us start by introducing our new combinatorial object, some of its properties, and its operad structure.

Bicolored noncrossing configurations.

A bicolored noncrossing configuration (or, for short, a BNC) is a noncrossing configuration (see Section 3.2 of Chapter 1) where each arc can be either blue (drawn as a thick line) or red (drawn as a dotted line) and such that all red arcs are diagonals. We say that c is based if its base is blue and nonbased otherwise. Besides, we impose by definition that there is only one BNC of size 1: the segment consisting in one blue arc. For aesthetic reasons, the resulting shape is reshaped to form a regular polygon. For instance,

• 3 = (2.1.1a) • 5 = (2.1.1b) • 2 = (2.1.1c) • 3 = (2.1.1d)
are partial compositions in BNC. P 2.1.1. The set of all the BNCs, together with the partial composition maps • and the BNC of arity 1 as unit form an operad, denoted by BNC.

The colored operad of bubbles.

We now define a colored operad involving particular BNCs and perform a complete study of it.

Bubbles.

A bubble is a BNC of size no smaller than 2 with no diagonal (hence the name). For instance, (2.2.1) is a bubble of size 6 and whose border is 111221. 

Let us denote by 1

1 and 1 2 two virtual bubbles of arity 1 such that out(1

1 ) := in 1 (1 1 ) := 1 and out(1 2 ) := in 1 (1 2 ) := 2. P 2.2.1.
The set of all the bubbles, together with the partial composition map • of BNC and the units 1 1 and 1 2 form a 2-colored operad, denoted by Bubble.

Notice that any bubble b is wholly encoded by the pair out(b) (in (b)) ∈|b| . Therefore, Bubble is a very simple colored operad: for any , the set of elements of arity 2 is [2] × [2] and the partial composition, when defined, is a substitution in words. For instance, the partial composition

• 3 = (2.2.2)
of Bubble can be expressed concisely as

(1 22211) • 3 (2 2112) = (1 22211211) (2.2.3)
2.2.3. Colored Hilbert series. Since Bubble contains by definition all the bubbles, the colored Hilbert series of Bubble satisfies 

B 1 (z 1 z 2 ) = B 2 (z 1 z 2 ) = 2 (z 1 + z 2 ) = (z 1 + z 2 ) 2 1 -z 1 -z 2 (2.2.
• 1 ↔ • 1 ↔ • 2 ↔ • 2 (2.2.7a) • 1 ↔ • 1 ↔ • 2 ↔ • 2 (2.2.7b) • 1 ↔ • 1 ↔ • 2 ↔ • 2 (2.2.7c) • 1 ↔ • 1 ↔ • 2 ↔ • 2 (2.2.7d) • 1 ↔ • 1 ↔ • 2 ↔ • 2 (2.2.7e) • 1 ↔ • 1 ↔ • 2 ↔ • 2 (2.2.7f) • 1 ↔ • 1 ↔ • 2 ↔ • 2 (2.2.7g) • 1 ↔ • 1 ↔ • 2 ↔ • 2 (2.2.7h) • 1 ↔ • 1 ↔ • 2 ↔ • 2 (2.2.7i) • 1 ↔ • 1 ↔ • 2 ↔ • 2 (2.2.7j) • 1 ↔ • 1 ↔ • 2 ↔ • 2 (2.2.7k) • 1 ↔ • 1 ↔ • 2 ↔ • 2 (2.2.7l) • 1 ↔ • 1 ↔ • 2 ↔ • 2 (2.2.7m) • 1 ↔ • 1 ↔ • 2 ↔ • 2 (2.2.7n) • 1 ↔ • 1 ↔ • 2 ↔ • 2 (2.2.7o) • 1 ↔ • 1 ↔ • 2 ↔ • 2 (2.2.

7p) Moreover, the set of the colored G

Bubble -syntax trees avoiding the trees appearing as second, third or fourth members of Relations (2.2.7a)-(2.2.7p) is a Poincaré-Birkhoff-Witt basis of Bubble.

P

. To prove the presentation of the statement, we shall show that there exists a colored operad isomorphism φ : FCO (G Bubble ) / ≡ → Bubble where ≡ is the operad congruence generated by ↔.

Let us set φ ([ ( )] ≡ ) := for any of G

Bubble . We observe that for any relation ( ) • ( ) ↔ ( ) • ( ) of the statement, we have • = • . It then follows that φ can be uniquely extended into a colored operad morphism. Moreover, since the image of φ contains all the generators of Bubble, φ is surjective.

Let us now prove that φ is a bijection. For that, let us orient the relation ↔ by means of the rewrite rule on the colored syntax trees on G Bubble satisfying s t if s ↔ t and t is one of the following sixteen target trees

• 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 (2.2.8)
The target trees of are the only left comb trees appearing in each ↔-equivalence class of the statement such that the color of the first input of the root is the same as the color of the first input of its child.

Let

be the closure of and let us prove that is terminating. Let ψ be the map associating the pair (tam(t) ln(t)) with a colored syntax tree t, where tam is defined by (2.4.21) in Chapter 1, and ln(t) is the number of internal nodes labeled by of t having an internal node labeled by as left child such that in 1 ( ) = in 1 ( ). We observe that, for any trees t 0 and t 1 such that t 0 t 1 , ψ(t 1 ) is lexicographically smaller than ψ(t 0 ). Hence, is terminating.

The normal forms of are the colored G Bubble -syntax trees avoiding the trees s appearing as a left members of . These are left comb trees t such that for all internal nodes and of t, in 1 ( ) = in 1 ( ). Pictorially, t is of the form

t = -1 1 1 1 2
(2.2.9)

where

∈ [2], ∈ [2] for all ∈ [ ],
and

∈ G Bubble for all ∈ [ -1].
Since t is a colored syntax tree, given and the , there is exactly one possibility for all the . Therefore, there are ( ) := 2 normal forms of of arity with as output color. This imply that FCO (G Bubble ) / ≡ contains at most ( ) elements of arity and as output color. Then, since ( ) is also the number of elements of Bubble with arity and as output color (see Section 2.2.3), φ is a bijection. Finally, since is an orientation of ↔ and the normal forms of are the colored G Bubble -syntax trees avoiding the trees appearing as second, third or fourth members of Relations (2.2.7a)-(2.2.7p) (see (2.2.8)), the last part of the statement follows.

Properties of the operad of bicolored noncrossing configurations. Let us come

back to the study of the operad BNC. We show here that BNC is the enveloping operad of Bubble and then, by using the results of Section 2.2 together with the ones of Section 1.2, give some of its properties. The dual tree of c is the planar rooted tree labeled by bubbles defined as follows. If c is of size 1, its dual tree is the leaf. Otherwise, put an internal node in each area of c and connect any pair of nodes that are in adjacent areas. Put also leaves outside c, one for each edge, except the base, and connect these with the internal nodes of their adjacent areas. This forms a tree rooted at the node of the area containing the base of c. Finally, label each internal node of the tree by the bubble associated with the area containing it. Figure 3.5 shows an example of a BNC and its dual tree.

( ) A bicolored noncrossing configuration endowed with its dual tree.

( ) The dual tree of c.

F

. This forms Sequence A234596 of [Slo].

2.3.3. Other consequences. Since Bubble is, by Theorem 2.3.1, a 2-bubble decomposition of BNC, we can use the results of Section 1.2 to obtain the generating set, the group of symmetries, and the presentation by generators and relations of BNC. Thus, by Propositions 1.2.3 and 2.2.2, the generating set of BNC is the set of the eight BNCs of arity 2. By Propositions 1.2.4 and 2.2.3, the group of symmetries of BNC is generated by the maps cpl := Hull(cpl) and ret := Hull(ret). For any BNC c, cpl (c) is the BNC obtained by swapping the colors of the red and blue diagonals of c, and by swapping the colors of the edges of c. Moreover, for any BNC c, ret (c) is the BNC obtained by applying to c the reflection through the vertical line passing by its base. Finally, by Proposition 1.2.5 and Theorem 2.2.4, BNC admits the presentation by generators and relations of the statement of Theorem 2.2.4.

Suboperads of the operad of bicolored noncrossing configurations

We now study some of the suboperads of BNC generated by various sets of BNCs. We shall mainly focus on the suboperads generated by sets of two BNCs of arity 2.

Overview of the obtained suboperads.

In what follows, we denote by G the suboperad of BNC generated by a set G of BNCs, and when G is a set of bubbles, by G the colored suboperad of Bubble generated by G.

Orbits of suboperads.

There are 2 8 = 256 suboperads of BNC generated by elements of arity 2. The symmetries provided by the group of symmetries of BNC (see Proposition 2.2.3) allow to gather some of these together. Indeed, if G 1 and G 2 are two sets of BNCs and φ is a map of the group of symmetries of BNC such that φ(G 1 ) = G 2 , the suboperads G 1 and G 2 would be isomorphic or antiisomorphic. We say in this case that these two operads are equivalent. There are in this way only 88 orbits of suboperads that are pairwise nonequivalent.

Suboperads on one generator.

There are three orbits of suboperads of BNC generated by one generator of arity 2. The first contains

. By induction on the arity, one can show that this operad contains all the triangulations and that it is free. The second one contains

. By using similar arguments, one can show that this operad is also free and isomorphic to the latter. The third orbit contains . This operad contains exactly one element of any arity, and hence, is the associative operad. 3.1.4. Suboperads on two generators. The 8 2 = 28 suboperads of BNC generated by two BNCs of arity 2 form eleven orbits. Table 3.1 summarizes some information about these. Some of these operads are well-known operads: the free operad on two generators of arity 2, the operad of noncrossing trees [START_REF] Chapoton | The anticyclic operad of moulds[END_REF][START_REF] Leroux | L-algebras, triplicial-algebras, within an equivalence of categories motivated by graphs[END_REF] , the dipterous operad [START_REF] Loday | Algèbres de Hopf colibres[END_REF][START_REF] Zinbiel | Encyclopedia of types of algebras 2010. In Operads and universal algebra[END_REF] , and the 2-associative operad [LR06 . The eleven orbits of suboperads of BNC generated by two generators of arity 2, their dimensions and the degrees of nontrivial relations between their generators. Hilbert series of the eleven operads are algebraic, with the genus of the associated algebraic curve being 0. The sequences of the dimensions of the operads of Table 3.1 are respectively Sequences A052701, A234938, A234939, A007863, A006013, and A006318 of [Slo].

3.1.5. Suboperads on more than two generators. Some suboperads of BNC generated by more than two generators are very complicated to study. For instance, the operad has two equivalence classes of nontrivial relations in degree 2, three in degree 3, ten in degree 4 and seems to have no nontrivial relations in higher degree (this has been checked until degree 6). The operad is also complicated since it has four equivalence classes of nontrivial relations in degree 2, sixteen in degree 3 and seems to have no nontrivial relations in higher degree (this has been checked until degree 6).

Suboperads generated by two elements of arity 2.

For any of the eleven nonequivalent suboperads of BNC generated by two elements of arity 2, we compute its dimensions and provide a presentation by generators and relations by passing through a bubble decomposition of it.

Outline of the study.

Let G be one of these suboperads. Since, by Theorem 2.3.1, Bubble is a bubble decomposition of BNC and G is generated by bubbles, G is a bubble decomposition of G . We shall compute the dimensions and establish the presentation by generators and relations of G to obtain in return, by Propositions 1.2.1 and 1.2.5, the dimensions and the presentation by generators and relations of G . To compute the dimensions of G , we shall furnish a description of its elements and then deduce from the description its colored Hilbert series. Table 3.2 shows the first coefficients of the colored Hilbert series of the eleven colored suboperads. All of these series are rational. To establish colored operad

Based bubbles Nonbased bubbles 2, 2, 2, 2, 2, 2, 2 0, 0, 0, 0, 0, 0, 0 2, 3, 5, 8, 13, 21, 34 0, 0, 0, 0, 0, 0, 0 2, 3, 4, 5, 6, 7, 8 0, 0, 0, 0, 0, 0, 0 2, 4, 8, 16, 32, 64, 128 0, 0, 0, 0, 0, 0, 0

1, 1, 1, 1, 1, 1, 1 1, 1, 1, 1, 1, 1, 1 T .
. The eleven orbits of 2-colored suboperads of Bubble generated by two generators of arity 2 and the number of their bubbles, based and nonbased.

the presentation of G , we shall use the same strategy as the one used for the proof of the presentation of Bubble (see the proof of Theorem 2.2.4). Recall that this consists in exhibiting an orientation of the presentation we want to prove such that its closure is a terminating rewrite rule on colored syntax trees and its normal forms are in bijection with the elements of G .

3.2.2. First orbit. This orbit consists of the operads , , , and . We choose as a representative of the orbit. P 3.2.1. The set of bubbles of is the set of based bubbles such that all edges of the border except possibly the last one are blue. Moreover, the colored Hilbert series of satisfy 

B 1 (z 1 z 2 ) = z 1 z 2 + z 2 2 1 -z 2 and B 2 (z 1 z 2 ) = 0 (3.2.
B 1 (z 1 z 2 ) = z 1 + z 2 2 1 -3z 1 z 2 -z 3 1 -z 3 2 - z 1 1 -z 1 z 2 (3.2.3a)
and

B 2 (z 1 z 2 ) = z 2 + z 2 1 1 -3z 1 z 2 -z 3 1 -z 3 2 - z 2 1 -z 1 z 2 (3.2.3b) P 3.2.5. The Hilbert series ( ) of satisfies 4 -2 2 -3 + 4 + (-4 + 4 -2 + 2 3 ) ( ) + (6 + ) ( ) 2 + (1 -2 ) ( ) 3 -( ) 4
= 0 (3.2.4) P 3.2.6. The operad does not admit nontrivial relations between its generators in degree two, three, five and six. It admits the following non trivial relations between its generators in degree four:

(( • 2 ) • 3 ) • 3 = (( • 1 ) • 1 ) • 2 (3.2.5a) (( • 2 ) • 2 ) • 4 = (( • 1 ) • 1 ) • 3 (3.2.5b) (( • 2 ) • 2 ) • 3 = (( • 1 ) • 1 ) • 4 (3.2.5c) (( • 1 ) • 3 ) • 4 = (( • 1 ) • 2 ) • 2 (3.2.5d) (( • 2 ) • 3 ) • 3 = (( • 1 ) • 1 ) • 2 (3.2.5e) (( • 2 ) • 2 ) • 4 = (( • 1 ) • 1 ) • 3 (3.2.5f) (( • 2 ) • 2 ) • 3 = (( • 1 ) • 1 ) • 4 (3.2.5g) (( • 1 ) • 3 ) • 4 = (( • 1 ) • 2 ) • 2 (3.2.5h) P
. This statement is proven with the help of the computer. All partial compositions between the generators and are computed up to degree six and relations thus established. Proposition 3.2.6 does not provide a presentation by generators and relations of . The methods employed in this chapter fail to establish the presentation of because it is not possible to define an orientation of the relations of the statement of Proposition 3.2.6. Indeed, in degree six, all the closures of have no less than 7518 normal forms whereas they should be 7516. Nevertheless, these relations seem to be the only nontrivial ones; this may be proved by using the Knuth-Bendix completion algorithm (see [START_REF] Knuth | Simple word problems in universal algebras[END_REF][START_REF] Baader | Term rewriting and all that[END_REF]) over an appropriate orientation of the relations.

3.2.4. Third orbit. This orbit consists of the operads , , , and . We choose as a representative of the orbit. P 3.2.7. The set of based (resp. nonbased) bubbles of of arity is the set of based (resp. nonbased) bubbles such that first edge is blue and the number of uncolored edges of the border is congruent to (resp. + 1) modulo 2. Moreover, the colored Hilbert series of satisfy

B 1 (z 1 z 2 ) = z 2 2 1 -2z 1 + z 2 1 -z 2 2 and B 2 (z 1 z 2 ) = z 1 z 2 -z 2 1 z 2 + z 3 2 1 -2z 1 + z 2 1 -z 2 2 (3.2.6) P 3.2.8. The Hilbert series ( ) of satisfies 2 -2 + (2 -2) ( ) + 3 ( ) 2 = 0 (3.2.7)
T 3.2.9. The operad admits the presentation ({ } ↔) where ↔ is the equivalence relation satisfying

• 2 • 3 ↔ • 1 • 2 (3.2.8a) • 2 • 3 ↔ • 1 • 2 (3.2.8b) Moreover, the set of the { }-syntax trees avoiding the trees • 1 • 2 and • 2 • 3 is a Poincaré-Birkhoff-Witt basis of .
3.2.5. Fourth orbit. This orbit consists of the operads and . We choose as a representative of the orbit. P 3.2.10. The set of bubbles of is the set of bubbles such that first edge is blue and last edge uncolored. Moreover, the colored Hilbert series of satisfy

B 1 (z 1 z 2 ) = z 1 z 2 1 -z 1 -z 2 and B 2 (z 1 z 2 ) = z 1 z 2 1 -z 1 -z 2 (3.2.9) P 3.2.11. The Hilbert series ( ) of satisfies 2 -2 + (2 -2) ( ) + 3 ( ) 2 = 0 (3.2.10) T 3.2.
12. The operad admits the presentation ({ } ↔) where ↔ is the equivalence relation satisfying 3.2.6. Fifth orbit. This orbit consists of the operads and . We choose as a representative of the orbit. P 3.2.13. The set of based (resp. nonbased) bubbles of is the set of based (resp. nonbased) bubbles such that penultimate edge is blue (resp. uncolored) and the last edge is uncolored (resp. blue). Moreover, the colored Hilbert series of satisfy 

• 2 • 2 ↔ • 1 • 2 (3.2.11a) • 2 • 2 ↔ • 1 • 2 (3.2.11b) Moreover,
B 1 (z 1 z 2 ) = z 1 z 2 1 -z 1 -z 2 and B 2 (z 1 z 2 ) = z 1 z 2 1 -z 1 -z 2 (3.2.
• 2 • 2 ↔ • 1 • 1 (3.2.14) • 2 • 2 ↔ • 1 • 1 (3.2.15)
Moreover, the set of the { }-syntax trees avoiding the trees

• 2 • 2 and • 2 • 2 is a Poincaré-Birkhoff-Witt basis of .
3.2.7. Sixth orbit. This orbit consists of the operads and . We choose as a representative of the orbit. P 3.2.16. The set of bubbles of is the set of based bubbles such that maximal sequences of blues edges of the border have even length.Moreover, the colored Hilbert series of satisfy 

B 1 (z 1 z 2 ) = z 2 1 + z 2 2 + z 1 z 2 2 1 -z 1 -z 2 2 and B 2 (z 1 z 2 ) = 0 (3.2.

Concluding remarks

We have developed in this chapter a tool to study a noncolored operad by considering one of its bubble decompositions . As explained, most of the properties of come from properties of . This, together with the fact that a colored operad is a more constrained structure than a noncolored one, leads to easier proofs for most of their properties (for instance to establish a presentation by generators and relations, a bubble decomposition reduces the number of orientations of relations to consider). This framework has been applied to the operad BNC of bicolored noncrossing configurations and on some of its suboperads. As an additional remark, this chapter considers only colored or uncolored set-operads but the notion of enveloping operads and bubble decompositions also work for linear operads.

Introduction

We propose here a new generic method to build combinatorial operads. The starting point is to pick a monoid . We then consider the set of words whose letters are elements of . The arity of such words are their length, the composition of two words is expressed from the product of , and permutations act on words by permuting letters. In this way, we associate an operad denoted by T with any monoid . This construction is rich from a combinatorial point of view since it allows us, by considering suboperads and quotients of T , to get new (symmetric or not) operads on various combinatorial objects. Our construction is related to two previous ones.

The first one is a construction of Méndez and Nava [START_REF] Méndez | Colored species, -monoids, and plethysm I[END_REF] emerging from the context of the species theory [Joy81]. Roughly speaking, a species is a combinatorial construction U which takes an underlying finite set E as input and produces a set U[E] of objects by adding some structure on the elements of E (see [START_REF] Bergeron | of Encyclopedia of Mathematics and its Applications[END_REF]). This theory has many links with the theory of operads since an operad is a monoid with respect to the operation of substitution of species. In [START_REF] Méndez | Colored species, -monoids, and plethysm I[END_REF], the authors defined the plethystic species, that are species taking as input sets where any element has a color picked from a fixed monoid . This monoid has to satisfy some precise conditions (as to be left cancellable and without proper divisor of the unit, and such that any element has finitely many factorizations). It appears that the elements of the so-called uniform plethystic species can be seen as words of colors and hence, as elements of T . Moreover, the composition of this operad is the one of T . The main difference between the construction of Méndez and Nava and ours lies in the fact that the construction T can be applied to any monoid.

The second one, introduced by Berger and Moerdijk [START_REF] Berger | Axiomatic homotopy theory for operads[END_REF], is a construction which allows to obtain, from a commutative bialgebra , a cooperad T . Our construction T and the construction T of these two authors are different but coincide in many cases. For instance, when (

) is a monoid such that for any ∈ , the set of pairs ( ) ∈ 2 satisfying = is finite, the operad T is the dual of the cooperad T where is the dual bialgebra of K endowed with the diagonal coproduct. On the other hand, there are 131 operads that we can build by the construction T but not by the construction T, and conversely. For example, the operad TZ, where Z is the additive monoid of integers, cannot be obtained as the dual of a cooperad built by the construction T of Berger and Moerdijk.

Furthermore, the operads T are defined directly on set-theoretic bases. Hence, these operads are well-defined in the category of sets and the computations are explicit. It is therefore possible given a monoid , to make experiments on the operad T , using if necessary a computer. In this chapter, we study many applications of the construction T focusing on its combinatorial aspect. More precisely, we define, by starting from very simple monoids like the additive or max monoids of integers, or cyclic monoids, various nonsymmetric operads involving well-known combinatorial objects. This chapter is organized as follows. We begin, in Section 1, by defining the construction T associating an operad with a monoid and establishing its first properties. We show that this construction is a functor from the category of monoids to the category of operads which preserves injections and surjections. We then apply this construction in Section 2 to various monoids and obtain several new (symmetric or not) operads. We construct in this way some operads on combinatorial objects which were not provided with such a structure: planar rooted trees with a fixed arity, Motzkin words, integer compositions, directed animals, and segmented integer compositions. We also obtain new operads on objects which are already provided with such a structure: endofunctions, parking functions, packed words, permutations, planar rooted trees, and Schröder trees. By using the construction T, we also give an alternative construction for the diassociative operad [START_REF] Loday | Dialgebras. In Dialgebras and related operads[END_REF] and for the triassociative operad [START_REF] Loday | Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory[END_REF].

Note. In this chapter, "operad" means "symmetric operad". To refer to a nonsymmetric operad, we shall write "ns operad".

A functor from monoids to operads

We describe in this section the main ingredient of this chapter, namely the construction T.

1.1. The operad of a monoid. We explain here how the construction T associates an operad T with any monoid and an operad morphism Tθ : T 1 → T 2 with any monoid morphism θ :

1 → 2 . We also review some of the main properties of T.

Let be a monoid with an associative product admitting a unit 1 . We denote by T the space T := 

(a 2 ) • 1 (a 2 ) -(a 2 ) • 2 (a 2 ) (1.2.1a) ( ) • 1 ( ) -( ) ∈ (1.2.1b) (a 2 ) • [ ( ) ⊗ ( )] -( ) • 1 (a 2 ) ∈ (1.2.1c)
The proof of Proposition 1.2.3 relies on a orientation of satisfying

a 2 a 2 a 2 a 2 (1.2.2a) ∈ (1.2.2b) a 2 a 2 ∈ (1.2.2c)
The closure of is a convergent rewrite rule and its normal forms of arity are in one-to-one correspondence with the set of the words of arity of T .

Let

be an associative algebra with associative product denoted by •, and

↑ : → ∈ (1.2.3)
be a family of associative algebra morphisms satisfying

↑ • ↑ =↑ (1.2.4)
for all ∈ . Observe that (1.2.4) implies in particular that ↑ 1 = Id where Id is the identity map on . We call -compatible algebra such an algebra. T 1.2.4. Let be a monoid and be an -compatible algebra. Then, is an algebra on T . Theorem 1.2.4 is a consequence of the presentation of T provided by Proposition 1.2.3. Indeed, the associative product • comes from the generator a 2 of T , and each map ↑ , ∈ , comes from the generator ∈ of T .

For instance, by Theorem 1.2.4, the space K * of noncommutative polynomials on , endowed with the associative product • of concatenation of words of * and with the maps ↑ , ∈ , defined linearly for all words on by ↑ ( ) := ( 1 )

| |

(1.2.5) is an algebra on T .

Concrete constructions

Through this section, we consider examples of applications of the functor T. We shall mainly consider, given a monoid , some suboperads of T , symmetric or not, which have for all 1 finitely many elements of arity . For the most part of the constructed operads , we shall establish isomorphisms of combinatorial spaces φ : → K C where the C are well-chosen combinatorial sets. To this aim, we shall consider bijections between the basis elements of ( ) and the elements of size of C, for all 1. Interpreting the partial compositions of on K C amounts to endow K C with the structure of an operad, and thus to the construction of an operad on the objects of C. Moreover, we shall also establish presentations by generators and relations of the constructed ns operads by using tools from rewrite theory on syntax trees (see Section 2.4 of Chapter 1). As a consequence of this observation, let us call a word a twisted endofunction (resp. parking function, packed word, permutation) if the word ( 1 + 1)( 2 + 1) ( + 1) is an endofunction (resp. parking function, packed word, permutation). For example, the word 2300 is a twisted endofunction since 3411 is an endofunction. Let us denote by End (resp. PF, PW, Per 0 ) the linear span of all twisted endofunctions (resp. parking functions, packed words, permutations). Under this reformulation, one has the following result: Note that End is not a finitely generated operad. Indeed, the twisted endofunctions of size satisfying := -1 for all ∈ [ ] cannot be obtained by partial compositions involving elements of End of arity smaller than . Similarly, PF is not a finitely generated operad since the twisted parking functions of size satisfying := 0 for all ∈ [ -1] and := -1 cannot be obtained by partial compositions involving elements of PF of arity smaller than . However, the operad PW is a finitely generated operad: P 2.1.2. The operad PW is the suboperad of TN generated by {00 01}.

Let be the linear span of all twisted packed words having multiple occurrences of a same letter. P 2.1.3. The space is an operad ideal of PW. Moreover, the quotient operad PW/ is the space Per 0 of twisted permutations. Finally, for all twisted permutations and , the partial composition map in Per 0 can be expressed as

• = • if = | | -1 0 K otherwise (2.1.4)
where 0 K is the null vector of Per 0 and the partial composition map • in the right member of (2.1.4) is the partial composition map of PW.

Here Let us consider the combinatorial graded collection of all planar rooted trees where the size of such a tree is its number of nodes (this is the collection PRT defined in Section 2.1.1 of Chapter 1). There is a bijection φ PRT between the words of PRT of arity and planar rooted trees of size . To compute φ PRT ( ) where is a word of PRT, iteratively insert the letters of from left to right according to the following procedure. If | | = 1, then = 0 and φ PRT (0) is the only planar rooted tree with one node. Otherwise, the insertion of a letter a 1 into a planar rooted tree t consists in grafting in t a new node as the rightmost child of the last node of depth a -1 for the depth-first traversal of t. The inverse bijection is computed as follows. Given a planar rooted tree t of size , one computes a word of PRT of arity by labeling each node of t by its depth and then, by reading its labels following a depth-first traversal of t. Since the words of PRT satisfy Proposition 2.1.4, φ PRT is well-defined. Hence, we can regard the words of arity of PRT as planar rooted trees with nodes. In terms of planar rooted trees, the partial composition of PRT can be expressed as follows: P 2.1.5. Let s and t be two planar rooted trees and be the th node for the depth-first traversal of s. The composition s • t in PRT amounts to replace by the root of t and graft the children of as rightmost sons of the root of t. Proposition 2.1.6 also says that PRT is isomorphic to the ns magmatic operad and hence, that PRT is a realization of the magmatic operad. This result is already known since in [START_REF] Méndez | Möbius Species[END_REF], Méndez and Yang point out that the species of parenthesizations (binary trees) and the species of planar rooted trees are isomorphic. This isomorphism implies that these species are also isomorphic as ns operads. Moreover, PRT can be seen as a planar version of the non-associative permutative operad NAP [START_REF] Méndez | Möbius Species[END_REF] (see also [START_REF] Livernet | A rigidity theorem for pre-Lie algebras[END_REF]) seen as a ns operad, which is an operad involving labeled non-planar rooted trees.

A ns operad on -ary trees.

Let 0 be an integer and FCat ( ) be the ns suboperad of TN generated by G FCat ( ) := {00 01 0 }. It is immediate from the definition of FCat ( ) that for any 0, FCat ( ) is a ns suboperad of FCat ( +1) . Hence, the ns operads FCat ( ) form an increasing sequence (for the inclusion) of ns operads. Note that FCat (0) is isomorphic to the ns associative operad As. Note also that since FCat (1) is generated by 00 and 01 and since PRT is generated by 01, PRT is a ns suboperad of FCat (1) . P 2.1.7. For any 0, the fundamental basis of FCat ( ) is the set of all the words on the alphabet N satisfying 1 = 0 and 0

+1 + for all ∈ [| | -1].
Let us consider the combinatorial graded collection of the + 1-ary trees where the size of such a tree is its number of internal nodes (this is the collection Ary ( +1)

• defined in Section 2.2.2 of Chapter 1). Let t be a + 1-ary tree of size . We say that an internal node of t is smaller than an internal node if, in the depth-first traversal of t, appears before . We also say that a +1-ary tree t is well-labeled if its root is labeled by 0, and, for each internal node of t labeled by a, the children of which are not leaves are labeled, from left to right, by a + , . . . , a + 1, a. There is a unique way to label a + 1-ary tree so that it is well-labeled. There is a bijection φ ( ) FCat between the words of FCat ( ) of arity and well-labeled +1-ary trees of size . To compute φ ( ) FCat ( ) where is a word of FCat ( ) , iteratively insert the letters of from left to right according to the following procedure. If | | = 1, then = 0 and φ ( ) FCat ( ) is the only well-labeled +1-ary tree of size 1. Otherwise, the insertion of a letter a 0 into a well-labeled +1-ary tree t consists in replacing a leaf of t by the +1-ary tree s of size 1 labeled by a so that s is the child of the greatest internal node such that the obtained +1-ary tree is still well-labeled. The inverse bijection is computed as follows. Given a well-labeled +1-ary tree t, one computes a word of FCat ( ) of arity by reading its labels following a depth-first traversal of t. Since the words of FCat ( ) satisfy Proposition 2.1.7, φ ( ) FCat is well-defined. Hence, we can regard the words of arity of FCat ( ) as +1-ary trees of size . F . . Interpretation of a word of the ns operad FCat (2) in terms of 3-ary trees via the bijection φ

(2) FCat . The 3-ary tree in the middle is well-labeled.

Hence, the Hilbert series of FCat ( ) satisfies the algebraic relation

1 - FCat ( ) ( ) + FCat ( ) ( ) +1 = 0 (2.1.7) so that FCat ( ) ( ) = 1 1 + 1 + (2.1.8)
In terms of +1-ary trees, the partial composition of FCat ( ) can be expressed as follows: P 2.1.8. Let s and t be two +1-ary trees and be the th internal node for the depth-first traversal of s. The composition s • t in FCat ( ) amounts to replace by the root of t and graft the children of from right to left on the rightmost leaves of t. (2) .

• 1 = F . . Interpretation of the partial composition map of the ns operad FCat (2) in terms of 3-ary trees.

T 2.1.9. For any 0, the ns operad FCat ( ) admits the presentation G

FCat ( )
where is the subspace of FO G FCat ( ) generated by the elements It is now natural to ask if FCat (1) is isomorphic to the dendriform operad Dendr of to the duplicial operad Dup since all these ns operads share the same dimensions. Let us show that FCat (1) is not isomorphic to Dup nor to Dendr. Assume first that φ : Dup → FCat (1) is an operad morphism so that φ( ) = λ 1 00 + λ 2 01 and φ( ) = λ 3 00 + λ 4 01 for some coefficients λ 1 , λ 2 , λ 3 , and λ 4 of K. Now, Relation (4.2.8a) of Section 4.2.3 of Chapter 2 of the presentation of Dup leads to φ( )

(0(a + b)) • 1 (0a) -(0a) • 2 ( 0b 
• 1 φ( ) -φ( ) • 2 φ( ) = 0 (2.1.10) so that λ 2 1 000 + λ 1 λ 2 010 + λ 1 λ 2 001 + λ 2 2 011 -λ 2 1 000 -λ 1 λ 2 001 -λ 1 λ 2 011 -λ 2 2 012 = 0 (2.1.11)
implying that λ 2 = 0. Similarly, Relation (4.2.8c) of the presentation of Dup implies that λ 4 = 0. Therefore, we obtain φ( ) = λ 1 00 and φ( ) = λ 3 00, showing that φ is not an isomorphism. Assume now that φ : Dendr → FCat (0) is an operad morphism so that φ( ) = λ 1 00 + λ 2 01 and φ( ) = λ 3 00 + λ 4 01 for some coefficients λ 1 , λ 2 , λ 3 , and λ 4 of K. Relation (4.2.18b) of Section 4.2.6 of Chapter 2 of the presentation of Dendr leads to

φ( ) • 1 φ(≺) -φ(≺) • 2 φ( ) = 0 (2.1.12) so that λ 1 λ 3 000 + λ 2 λ 3 010 + λ 1 λ 4 001 + λ 2 λ 4 011 -λ 1 λ 3 000 -λ 1 λ 4 001 -λ 2 λ 3 011 -λ 2 λ 4 012 = 0 (2.1.13)
implying that λ 2 = 0, or λ 3 = 0 = λ 4 . When λ 2 = 0, one has φ(≺) = λ 1 00 and, since λ 1 00 is associative in FCat (1) but ≺ is not associative in Dendr, φ cannot be an isomorphism. Moreover, when λ 3 = 0 = λ 4 , the kernel of φ is nontrivial, showing that φ is not an isomorphism.

Since by Theorem 2.1.9, FCat ( ) is binary and quadratic, this ns operad admits a Koszul dual. Let FCat ( ) ! be the Koszul dual of FCat ( ) . P 2.1.10. For any 0, the ns operad FCat ( ) ! admits the presentation G FCat ( ) where is the subspace of FO G FCat ( ) generated by the elements Let us consider the combinatorial graded collection of the Schröder trees where the size of such a tree is its number of sectors (this is the collection Sus -1 (Sch ⊥ ) where Sch ⊥ is the collection defined in Section 2.2.3 of Chapter 1). There is a bijection φ Schr between the words of Schr of arity and Schröder trees of size . To compute φ Schr ( ) where is a word of Schr, factorize as = (1) a a ( ) where a is the smallest letter occurring in and the where denotes the empty word and (t 1 t ) is the Schröder tree consisting in a root that has t 1 , . . . , t as subtrees from left to right. The inverse bijection is computed as follows. Given a Schröder tree t, one computes a word of Schr by assigning to each sector ( +1 ) of s the maximal depth of the common ancestors to the leaves and +1 . The word of Schr is obtained by reading the labels from left to right. Since the words of Schr satisfy Proposition 2.1.12, φ Schr is well-defined. forming Sequence A001003 of [Slo].

(0(a + b)) • 1 (0a) -(0a) • 2 (0b) a b 0 a + b (2.1.14a) (0a) • 1 (0(a + b + 1)) 0 a 0 b -1 a + b + 1 (2.1.14b) (0a) • 2 (0b) 0 a 0 b a + b + 1 (2.
It is possible to use the bijection φ Schr to express the partial composition of Schr in terms of Schröder trees. We shall not describe it here but 

(00) • 1 (00) -(00) • 2 (00) (2.1.20a) (01) • 1 (10) -(10) • 2 (01) (2.1.20b) (00) • 1 (01) -(00) • 2 (10) (2.1.20c) (01) • 1 (00) -(00) • 2 (01) (2.1.20d) (00) • 1 (10) -(10) • 2 (00) (2.1.20e) (01) • 1 (01) -(01) • 2 (00) (2.1.20f) (10) • 1 (00) -(10) •
(00) • 1 (00) -(00) • 2 (00) (2.1.21a) (01) • 1 (10) -(10) • 2 (01) (2.1.21b) (00) • 1 (01) -(00) • 2 (10) (2.1.21c) (01) • 1 (00) -(00) • 2 (01) (2.1.21d) (00) • 1 (10) -(10) • 2 (00) (2.1.21e) (01) • 1 (01) -(01) • 2 (00) (2.1.21f) (10) • 1 (00) -(10) • 2 (10) (2.1.21g) (10) • 1 (01) (2.1.21h) (10) • 1 (10) (2.1.21i) (01) • 2 (01) (2.1.21j) (01) • 2 (10) (2.1.21k) P 2.1.15.
For any 0, the Hilbert series of the ns operad Schr ! can be expressed as

Schr ! ( ) = (1 -)(1 -2 ) (2.1.22)
We deduce from Proposition 2.1.15 that

Schr ! ( ) = 1 (2 -1) (2.1.23)
2.1.5. A ns operad on Motzkin words. Let Motz be the ns suboperad of TN generated by G Motz := {00 010}. Since 00 and 010 are elements of FCat (1) , Motz is a ns suboperad of FCat (1) . Moreover, since G

FCat ⊆ G Motz , FCat (0) is a ns suboperad of Motz. P 2.1.16. The fundamental basis of Motz is the set of all the words on the alphabet N beginning and starting by 0 and such that | -

+1 | 1 for all ∈ [| | -1].
A Motzkin word is a word on the alphabet {-1 0 1} such that the sum of all letters of is 0 and, for any prefix of , the sum of all letters of is a nonnegative integer. The size | | of a Motzkin word is its length plus 1. In the sequel, we shall denote by 1 the letter -1. We can represent a Motzkin word graphically by a Motzkin path that is the path in

N 2
connecting the points (0 0) and ( 0) obtained by drawing a step (1 -1) (resp. (1 0), (1 1)) for each letter 1 (resp. 0, 1) of . There is a bijection φ Motz between the words of Motz of arity and Motzkin words of size . To compute φ Motz ( ) where is an word of Motz( ), build the word of length -1 satisfying := +1for all ∈ [ -1]. The inverse bijection is computed as follows. The word of Motz in bijection with a Motzkin word is the word such that is the sum of the letters of the prefix

1 -1 of , for all ∈ [ ].
Since the words of Motz satisfy Proposition 2.1.16, φ Motz is well-defined. 

(00) • 1 (00) -(00) • 2 (00) (2.1.26a) (010) • 1 (00) -(00) • 2 (010) (2.1.26b) (00) • 1 (010) -(010) • 3 (00) (2.1.26c) (010) • 1 (010) -(010) • 3 (010) (2.1.26d) Moreover, Motz

P

. Observe first that since the evaluations of all the elements (2.1.28a)-(2.1.28d) are 0, for all element of , ev( ) = 0. Let now be the rewrite rule, being an orientation of , defined by 00 00 00 00

(2.1.29a) DA := {00 01}. Since FCat (1) is the ns suboperad of TN generated by G

(1) FCat = {00 01}, and since TN 3 is a quotient of TN, DA is a quotient of FCat (1) . We denote here by 1 the representative of the equivalence class of 2 in N A directed animal is a subset A of N 2 such that (0 0) ∈ A and ( ) ∈ A with 1 or 1 implies ( -1 ) ∈ A or ( -1) ∈ A. The size of a directed animal A is its cardinality. Figure 4.12 shows a directed animal.

F

. . A directed animal of size 21. The point (0 0) is the lowest and leftmost point.

According to [START_REF] Gouyou-Beauchamps | Equivalence of the two-dimensional directed animal problem to a one-dimensional path problem[END_REF], there is a bijection α between the set of prefixes of Motzkin words of length -1 and the set of directed animals of size . Hence, by Proposition 2.1.23, the map α • φ DA is a bijection between the words of DA of arity and directed animals of size . Therefore, DA can be seen as a ns operad on directed animals.

Hence, the Hilbert series of DA satisfies the algebraic relation A segmented composition is a sequence (λ 1 λ ) of compositions λ , ∈ [ ]. The size of a segmented composition is the sum of the sizes of the compositions constituting it. We shall represent a segmented composition λ by a ribbon diagram, that is the diagram consisting in the sequence of the ribbon diagrams of the compositions that constitute λ. There is a bijection between the words of SComp of arity and ribbon diagrams of segmented compositions of size . To compute φ SComp ( ) where is a word of SComp, factorize as = 0 (1) 0 ( ) such that for any ∈ [ ], the factor ( ) has no occurrence of 0, and compute the sequence φ Comp 0 ¯ (1) φ Comp 0 ¯ ( ) , where for any ∈ [ ], ¯ ( ) is the word obtained from ( ) by decreasing all letters. The inverse bijection is computed as follows. 2) satisfying φ( ) = 01, φ( ) = 10, and φ(⊥) = 00 is an isomorphism. Proposition 2.2.4 also shows that Tr is a realization of the ns triassociative operad.

+ (3 -1) DA ( ) + (3 -1) DA ( ) 2 = 0 (2.
(00) • 1 (00) -(00) • 2 (00) (2.1.37a) (01) • 1 (00) -(00) • 2 (01) (2.1.37b) (01) • 1 (01) -(01) • 2 (00) (2.1.37c) (00) • 1 (01) -(01) • 2 (02) (2.1.37d) (01) • 1 (02) -(02) • 2 (02) (2.1.37e) (00) • 1 (02) -(02) • 2 (01) (2.1.37f) (02) • 1 (00) -(00) • 2 (02) (2.1.37g) (02) • 1 (01) -(01) • 2 (01) (2.1.37h) (02) • 1 (02) -(02) • 2 (00) (2.1.37i)

Concluding remarks

We have presented here the functorial construction T producing an operad given a monoid. As we have seen, this construction is very rich from a combinatorial point of view since most of the obtained operads coming from usual monoids involve a wide range of combinatorial objects. There are various ways to continue this work. Let us address here the main directions.

In the first place, it appears that we have somewhat neglected the fact that T is a functor to operads and not only to ns ones. Indeed, except for the operads End, PF, PW, and Per 0 , we only have regarded the obtained operads as ns ones. Computer experiments let us think that the dimensions of the operads PRT, FCat (2) , Motz, DA and SComp seen as symmetric ones are, respectively, Sequences A052882, A050351, A032181, A101052, and A001047 of [Slo]. Bijections between elements of these operads and combinatorial objects enumerated by these sequences, together with presentations by generators and relations in this symmetric context, would be worth studying.

Introduction

Associative algebras play an obvious and primary role in algebraic combinatorics. Let us cite for instance the algebra of symmetric functions [START_REF] Macdonald | Symmetric Functions and Hall Polynomials[END_REF] involving integer partitions, the algebra of noncommutative symmetric functions [GKL + 95] involving integer compositions, the Malvenuto-Reutenauer algebra of free quasi-symmetric functions [START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF] (see also [START_REF] Duchamp | Noncommutative Symmetric Functions VI: Free Quasi-Symmetric Functions and Related Algebras[END_REF]) involving permutations, the Loday-Ronco Hopf algebra of binary trees [LR98] (see also [START_REF] Hivert | The Algebra of Binary Search Trees[END_REF]), and the Connes-Kreimer Hopf algebra of forests of rooted trees [START_REF] Connes | Hopf algebras, renormalization and noncommutative geometry[END_REF]. There are several ways to understand and to gather information about such structures and their associative operations. A very fruitful strategy consists in splitting an associative product into two separate operations ≺ and in such a way that turns to be the sum of ≺ and (see Section 2.1.1 of Chapter 2 about the sum of operations). One of the most obvious example occurs by considering the shuffle product on words (see Section 2.3.1 of Chapter 2). Indeed, this product can be separated into two operations according to the origin (first or second operand) of the last letter of the words appearing in the result [Ree58].

Other main examples include the split of the shifted shuffle product of permutations of the Malvenuto-Reutenauer Hopf algebra and of the product of binary trees of the Loday-Ronco Hopf algebra [START_REF] Foissy | Bidendriform bialgebras, trees, and free quasi-symmetric functions[END_REF]. The original formalization and the germs of generalization of these notions, due to Loday [START_REF] Loday | Dialgebras. In Dialgebras and related operads[END_REF], lead to the introduction of dendriform algebras. Dendriform algebras are vector spaces endowed with two operations ≺ and so that ≺ + is associative and satisfy some few other relations. Since any dendriform algebra is a quotient of a certain free dendriform algebra, the study of free dendriform algebras is worth considering. Besides, the description of free dendriform algebras has a nice combinatorial interpretation involving binary trees and shuffle of binary trees.

In recent years, several generalizations of dendriform algebras were introduced and studied. Among these, one can cite tridendriform algebras [START_REF] Loday | Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory[END_REF], quadri-algebras [AL04], ennea-algebras [START_REF] Leroux | Ennea-algebras[END_REF], -dendriform algebras of Leroux [START_REF] Leroux | A simple symmetry generating operads related to rooted planar -ary trees and polygonal numbers[END_REF], and -dendriform algebras of Novelli [START_REF] Novelli | dendriform algebras[END_REF], all providing new ways to split associative products into more than two pieces. Besides, free objects in the corresponding categories of these algebras can be described by relatively complex combinatorial objects and more or less tricky operations on these. For instance, free tridendriform algebras involve Schröder trees, free quadri-algebras involve noncrossing connected graphs on a circle, and free -dendriform algebras of Leroux and free -dendriform algebras of Novelli involve planar rooted trees where internal nodes have a constant number of children.

The first goal of this chapter is to define and justify a new generalization of dendriform algebras, using the point of view offered by the theory of operads. Our long term primary objective is to develop new implements to split associative products in smaller pieces. We use the approach consisting in considering the diassociative operad Dias [START_REF] Loday | Dialgebras. In Dialgebras and related operads[END_REF], the Koszul dual of the dendriform operad Dendr, rather that focusing on Dendr. Since Dias admits a description far simpler than Dendr, starting by constructing a generalization of Dias to obtain a generalization of Dendr by Koszul duality is a convenient path to explore. To obtain a generalization of the diassociative operad, we exploit the general functorial construction T producing an operad from any monoid (see Chapter 4). We show here that this functor T provides an original construction for the diassociative operad. In the present chapter, we rely on T to construct the operads Dias γ , where γ is a nonnegative integer, in such a way that Dias 1 = Dias.

The operads Dias γ , called γ-pluriassociative operads, are operads defined on the linear span of some words on the alphabet {0} [γ]. By computing the Koszul dual of Dias γ , we obtain the operads Dendr γ , satisfying Dendr 1 = Dendr. The operads Dendr γ govern the category of the so-called γ-polydendriform algebras, that are algebras with 2γ operations , , ∈ [γ], satisfying some relations. Free algebras in these categories involve binary trees where all edges connecting two internal nodes are labeled on [γ]. These algebras are endowed with 2γ products described by induction and can be seen as kinds of shuffle of trees, generalizing the shuffle of trees introduced by Loday [START_REF] Loday | Dialgebras. In Dialgebras and related operads[END_REF] intervening in the construction of free dendriform algebras. Moreover, the introduction of γ-polydendriform algebras offers to split an associative product by

= 1 + 1 + • • • + γ + γ (0.0.1)
with, among others, the stiffening conditions that all partial sums

1 + 1 + • • • + + (0.0.2)
are associative for all ∈ [γ]. Besides, this work naturally leads to the consideration and the definition of numerous operads. Table 5.1 summarizes some information about these.

This work is organized as follows. Section 1 is devoted to the introduction and the complete study of the operads Dias γ , and in Section 2, algebras over Dias γ are studied. In Section 3 we presents an analogous generalization Trias γ of the triassociative operad [START_REF] Loday | Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory[END_REF]. The study of Dendr γ is performed in Section 4, where we provide several presentations of this operad and a construction of free γ-polydendriform algebras. Section 5 extends a part of the operadic butterfly [START_REF] Loday | Dialgebras. In Dialgebras and related operads[END_REF][START_REF] Loday | Completing the operadic butterfly[END_REF]. This extension contains the operads Dias γ , Dendr γ , and two generalizations As γ and DAs γ of the associative operad, Koszul duals one of the other. Finally, in Section 6, we sustain our previous ideas to propose still new generalizations of some more operads like the operad Dup γ generalizing the duplicial operad [START_REF] Loday | Generalized bialgebras and triples of operads[END_REF] and the operad TDendr γ generalizing the tridendriform operad. We also then define the operads Com γ , Lie γ , Zin γ , and Leib γ , that are respective generalizations of the commutative operad, the Lie operad, the Zinbiel operad [START_REF] Loday | Cup-product for Leibniz cohomology and dual Leibniz algebras[END_REF] and the Leibniz operad [START_REF] Loday | Une version non commutative des algèbres de Lie : les algèbres de Leibniz[END_REF].

Note. This chapter deals mostly with ns operads. For this reason, "operad" means "ns operad".

Pluriassociative operads

We define here one of the main object of this chapter: a generalization on a nonnegative integer parameter γ of the diassociative operad (see [START_REF] Loday | Dialgebras. In Dialgebras and related operads[END_REF] or Section 4.2.6 of Chapter 2). We provide a complete study of this new operad.

Construction and first properties. Our generalization of the diassociative operad

passes through the functor T (see Section 1.1 of Chapter 4). We begin here by describing a basis and by establishing the Hilbert series of our generalization.

1.1.1. Construction. For any integer γ 0, let M γ be the monoid {0} [γ] with the binary operation max as product, denoted by ↓. We define the γ-pluriassociative operad Dias γ as the suboperad of TM γ generated by The second one is Sequence A001787, the third one is Sequence A027471, and the last one is Sequence A002697 of [Slo].

G Dias γ := {0 0 : ∈ [γ]} (1.

Additional properties.

We exhibit here, among others, two presentations of Dias γ and establish the fact that it is a Koszul operad.

Presentation by generators and relations. For any ∈ [γ], let us denote by (resp.

) the generator 0 (resp. 0) of Dias γ .

T 1.2.1. For any integer γ 0, the operad Dias γ admits the presentation G Dias γ

Dias γ where

Dias γ is the space induced by the equivalence relation ↔ γ satisfying

( ) • 1 ( ) ↔ γ ( ) • 2 ( ) ∈ [γ] (1.2.1a) ( ) • 1 ( ) ↔ γ ( ) • 2 ( ) < ∈ [γ] (1.2.1b) ( ) • 1 ( ) ↔ γ ( ) • 2 ( ) < ∈ [γ] (1.2.1c) ( ) • 1 ( ) ↔ γ ( ) • 2 ( ) < ∈ [γ] (1.2.1d) ( ) • 1 ( ) ↔ γ ( ) • 2 ( ) < ∈ [γ] (1.2.1e) ( ) • 1 ( ) ↔ γ ( ) • 2 ( ) ↔ γ ( ) • 2 ( ) ∈ [γ] (1.2.1f) ( ) • 1 ( ) ↔ γ ( ) • 1 ( ) ↔ γ ( ) • 2 ( ) ∈ [γ] (1.2.1g)
Our proof of Theorem 1.2.1 does not follow the usual technique consisting in providing a convergent orientation γ of ↔ γ and proving that its closure γ admits as many normal forms of arity as basis words of Dias γ ( ) (as for instance in Chapter 4). Instead, we consider the evaluation morphism ev : FO G Dias γ → Dias γ (1.2.2) and show that its kernel is generated by Dias γ . This strategy uses the noteworthy fact that the image of a G Dias γ -syntax tree t can be computed as follows. We say that an integer ∈ {0} [γ] is eligible for a leaf of t if = 0 or there is an ancestor of labeled by (resp.

) and is in the right (resp. left) subtree of . The image of is its greatest eligible integer. Now, ev(t) is the word obtained by considering, from left to right, the images of the leaves of t (see Figure 5.1). (1.2.12a) and =

∈[γ]
(1.2.12b)

and by triangularity, the family 

G Dias γ := { : ∈ [γ]} (1.2.
( ) • 1 ( ) -( ) • 2 ( ) ∈ [γ] (1.2.14a) ( ) • 1 ( ) < ∈ [γ] (1.2.14b) ( ) • 2 ( ) < ∈ [γ] (1.2.14c) ( ) • 1 ( ) < ∈ [γ] (1.2.14d) ( ) • 2 ( ) < ∈ [γ] (1.2.14e) ( ) • 1 ( ) -( ) • 2 ( ) < ∈ [γ] (1.2.14f) ( ) • 1 ( ) -( ) • 2 ( ) < ∈ [γ] (1.2.14g) ( ) • 1 ( ) -( ) • 2 ( ) < ∈ [γ] (1.2.14h) ( ) • 1 ( ) -( ) • 2 ( ) < ∈ [γ] (1.2.14i) ( ) • 1 ( ) -   ∈[γ] ( ) • 2 ( )   ∈ [γ] (1.2.14j)   ∈[γ] ( ) • 1 ( )   -( ) • 2 ( ) ∈ [γ] (1.2.14k) ( ) • 1 ( ) -   ∈[γ] ( ) • 2 ( )   ∈ [γ] (1.2.14l)   ∈[γ] ( ) • 1 ( )   -( ) • 2 ( ) ∈ [γ] (1.2.14m)
Despite the apparent complexity of the presentation of Dias γ exhibited by Proposition 1.2.8, as we will see in Section 4, the Koszul dual of Dias γ computed from this presentation has a very simple and manageable expression.

Pluriassociative algebras

We now focus on algebras over γ-pluriassociative operads. For this purpose, we construct free Dias γ -algebras over one generator, and define and study two notions of units for Dias γ -algebras. We end this section by introducing a convenient way to define Dias γ -algebras and give several examples of such algebras.

Category of pluriassociative algebras and free objects. Let us study the category

of Dias γ -algebras and the units for algebras in this category. = implies = and = .

Given a subset C of [γ], one can keep on the vector space only the operations and such that ∈ C. By renumbering the indices of these operations from 1 to #C by respecting their former relative numbering, we obtain a #C-pluriassociative algebra. We call it the #C-pluriassociative subalgebra induced by C of .

Free pluriassociative algebras. Recall that

Dias γ denotes the free Dias γ -algebra over one generator. By definition, Dias γ is the linear span of the set of the words on {0} [γ] with exactly one occurrence of 0. Let us endow this space with the linear operations :

Dias γ ⊗ As the following proposition shows, the presence of a wire-unit in has some implications. P

Let γ 0 be an integer and be a γ-pluriassociative algebra admitting a -wire-unit for a ∈ [γ]. Then (i) for all ∈ [ ], the operations , , , and of are equal; (ii) is also an -wire-unit for all ∈ [ ]; (iii) is the only wire-unit of ; (iv) if is an -bar unit for a ∈ [ ], then = .

Relying on Proposition 2.2.1, we define the height of a γ-pluriassociative algebra as 0 if has no wire-unit, otherwise as the greatest integer ∈ [γ] such that the unique wire-unit of is a -wire-unit. Observe that any pure γ-pluriassociative algebra has height 0 or 1.

Construction of pluriassociative algebras.

We now present a general way to construct γ-pluriassociative algebras. Our construction is a natural generalization of some constructions introduced by Loday [START_REF] Loday | Dialgebras. In Dialgebras and related operads[END_REF] in the context of diassociative algebras. In this section, we introduce new algebraic structures, the so-called γ-multiprojection algebras, which are inputs of our construction.

Multiassociative algebras.

For any integer γ 0, a γ-multiassociative algebra is a vector space endowed with linear operations

: ⊗ → ∈ [γ] (2.3.1)
satisfying, for all ∈ , the relations

( ) = ( ) = ( ) = ( ) ∈ [γ] (2.3.2)
These algebras are obvious generalizations of associative algebras since all of its operations are associative. Observe that by (2.3.2), all bracketings of an expression involving elements of a γ-multiassociative algebra and some of its operations are equal. Then, since the bracketings of such expressions are not significant, we shall denote these without parenthesis. In upcoming Section 5, we will study the underlying operads of the category of γ-multiassociative algebras, called As γ , for a very specific purpose.

If 1 and 2 are two γ-multiassociative algebras, a linear map φ : 1 → 2 is a γ-multiassociative algebra morphism if it commutes with the operations of 1 and 2 . We say that is commutative when all operations of are commutative. Besides, for an ∈ [γ], an element 1 of is an -unit, or simply a unit when taking into account the value of is not necessary, of if for all ∈ , 1 = = 1. When admits a unit, we say that is unital. As the following proposition shows, the presence of a unit in has some implications. (iii) 1 is the only unit of .

Relying on Proposition 2.3.1, similarly to the case of γ-pluriassociative algebras, we define the height of a γ-multiassociative algebra as zero if has no unit, otherwise as the greatest integer ∈ [γ] such that the unit 1 of is an -unit.

Multiprojection algebras.

A γ-multiprojection algebra is a γ-multiassociative algebra endowed with endomorphisms π :

→ ∈ [γ] (2.3.3) satisfying π • π = π ↓ ∈ [γ] (2.3.4)
By extension, the height of is its height as a γ-multiassociative algebra. We say that is unital as a γ-multiprojection algebra if is unital as a γ-multiassociative algebra and its only, by Proposition 2.3.1, unit 1 satisfies π (1) = 1 for all ∈ [ ] where is the height of .

2.3.3.

From multiprojection algebras to pluriassociative algebras. The next result describes how to construct γ-pluriassociative algebras from γ-multiprojection algebras. T 2.3.2. For any integer γ 0 and any γ-multiprojection algebra , the vector space endowed with binary linear operations , , ∈ [γ], defined for all ∈ by := π ( ) (2.3.5a) and := π ( ) (2.3.5b) where the , ∈ [γ], are the operations of and the π , ∈ [γ], are its endomorphisms, is a γ-pluriassociative algebra, denoted by M( ).

P

. This is a verification of the relations of γ-pluriassociative algebras in M( ). Let , , and be three elements of M( ) and

∈ [γ].
By (2.3.2), we have

( ) = π ( ) π ( ) = ( ) (2.3.6)
showing that (1.2.3a) is satisfied in M( ).

Moreover, by (2.3.2) and (2.3.4), we have

( ) = π (π ( ) ) = π ↓ ( ) π ( ) = ↓ π ↓ ( ) π ( ) = ( ↓ ) (2.3.7)
so that (1.2.3b), and for the same reasons (1.2.3c), check out in M( ).

Finally, again by (2.3.2) and (2.3.4), we have

( ) = π ( π ( )) = π ( ) π ↓ ( ) = π ( ) ↓ π ↓ ( ) = ( ) ↓ (2.3.8)
showing that (1.2.3d), and for the same reasons (1.2.3e), are satisfied in M( ).

When is commutative, since for all ∈ M( ) and

∈ [γ], = π ( ) = π ( ) = (2.3.9)
it appears that M( ) is a commutative γ-pluriassociative algebra.

When is unital, M( ) has several properties, summarized in the next proposition. P

Let γ 0 be an integer, be a unital γ-multiprojection algebra of height . Then, by denoting by 1 the unit of and by π , ∈ [γ], its endomorphisms, (i) for any ∈ [ ], 1 is an -bar-unit of M( ); (ii) for any ∈ [ ], Halo (M( )) is a subset of Halo (M( )); (iii) for any ∈ [ ], the linear span of Halo (M( )) forms an -+1-pluriassociative subalgebra of the -+1-pluriassociative subalgebra of M( ) induced by [ ]; (iv) for any ∈ [ ], π is the identity map if and only if 1 is an -wire-unit of M( ).

Examples of constructions of pluriassociative algebras. The construction M of Theorem 2.3.2 allows to build several γ-pluriassociative algebras. A few examples follow.

The γ-pluriassociative algebra of positive integers. Let γ 1 be an integer and consider the vector space Pos spanned by positive integers, endowed with the operations , ∈ [γ], all equal to the operation ↓ extended by linearity and with the endomorphisms π , ∈ [γ], linearly defined for any positive integer by π ( ) := ↓ . Then, Pos is a non-unital γmultiprojection algebra. By Theorem 2.3.2, M(Pos) is a γ-pluriassociative algebra. We have for instance 2 3 5 = 5 (2.3.10a)

1 3 2 = 3 (2.3.10b)
We can observe that M(Pos) is commutative, pure, and its 1-halo is {1}. Moreover, when γ 2, M(Pos) has no wire-unit and no -bar-unit for 2 ∈ [γ]. This example is important because it provides a counterexample for (ii) of Proposition 2.3.3 in the case when the construction M is applied to a non-unital γ-multiprojection algebra.

The γ-pluriassociative algebra of finite sets. Let γ 1 be an integer and consider the vector space Sets of finite sets of positive integers, endowed with the operations , ∈ [γ], all equal to the union operation ∪ extended by linearity and with the endomorphisms π , ∈ [γ], linearly defined for any finite set of positive integers by π ( )

:= ∩ [ γ]. Then,
Sets is a γ-multiprojection algebra. By Theorem 2.3.2, M(Sets) is a γ-pluriassociative algebra.

We have for instance

{2 4} 3 {1 3 5} = {2 3 4 5} (2.3.11a) {1 2 4} 3 {1 3 5} = {1 3 4 5} (2.3.11b)
We can observe that M(Sets) is commutative and pure. Moreover, ∅ is a 1-wire-unit of M(Sets) and, by Proposition 2.2.1, it is its only wire-unit. Therefore, M(Sets) has height 1.

Observe that for any ∈ [γ], the -halo of M(Sets) consists in the subsets of The γ-pluriassociative algebras M(Sets) and M(Words) are related in the following way. Let I com be the subspace of M(Words) generated by thewhere and are words of positive integers and have the same commutative image. Since I com is a γ-pluriassociative algebra ideal of M(Words), one can consider the quotient γ-pluriassociative algebra CWords := M(Words)/ I com . Its elements can be seen as commutative words of positive integers.

Moreover, let I occ be the subspace of M(CWords) generated by thewhere and are commutative words of positive integers and for any letter ∈ [γ], appears in if and only if appears in . Since I occ is a γ-pluriassociative algebra ideal of M(CWords), one can consider the quotient γ-pluriassociative algebra M(CWords)/ I occ . Its elements can be seen as finite subsets of positive integers and we observe that M(CWords)/ I occ = M(Sets). The γ-pluriassociative algebra of marked words. Let γ 1 be an integer and consider the vector space MWords of the words of positive integers where letters can be marked or not, with at least one occurrence of a marked letter. We denote by ¯ any marked letter and we say that the value of ¯ is . Let us endow MWords with the linear operations ,

∈ [γ]
, where for all words and of MWords, is obtained by concatenating and , and by replacing therein all marked letters by ¯ where := max( ) ↓ ↓ max( ) where max( ) (resp. max( )) denotes the greatest value among the marked letters of (resp. We can observe that M(MWords) is not commutative, pure, and has no wire-units neither bar-units.

The free γ-pluriassociative algebra over one generator. Let γ 0 be an integer. We give here a construction of the free γ-pluriassociative algebra Dias γ over one generator described in Section 2.1.3 passing through the following γ-multiprojection algebra and the construction M. Consider the vector space of nonempty words on the alphabet {0} [γ] with exactly one occurrence of 0, endowed with the operations , ∈ [γ], all equal to the concatenation operation extended by linearity and with the endomorphisms h , ∈ [γ], defined in Section 2.1.3. This vector space is a γ-multiprojection algebra. Therefore, by Theorem 2.3.2, it gives rise by the construction M to a γ-pluriassociative algebra and it appears that it is Dias γ . Besides, we can now observe that Dias γ is not commutative, pure, and has no wire-units neither bar-units.

Pluritriassociative operads

We describe in this section a generalization on a nonnegative integer parameter γ of the triassociative operad [START_REF] Loday | Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory[END_REF].

Construction and first properties.

Our original idea of using the T construction (see Section 1.1.1) to obtain a generalization of the diassociative operad admits an analogue in the context of the triassociative operad. Let us describe it. These sequences are respectively Sequences A000225, A001047, A005061, and A005060 of [Slo].

By examining the expression for Dendr γ ( ) of the statement of Proposition 4.1.2, we observe that for any 1, Dendr γ ( ) can be seen as the vector space Dendr γ ( ) of all binary trees with internal nodes wherein its -1 edges connecting two internal nodes are labeled on [γ]. We call these trees γ-edge valued binary trees. In our graphical representations of γ-edge valued binary trees, any edge label is drawn into a hexagon located half the edge (see Figure 5.3). We deduce from Proposition 4.1.2 that the Hilbert series of Dendr γ satisfies

Dendr γ ( ) = 1 - √ 1 -4γ -2γ 2γ 2 (4.1.5)
and we also obtain that for all 1, dim Dendr γ ( ) = γ -1 cat( ) where cat( ) is the number These sequences are respectively Sequences A000108, A003645, A101600, and A269796 of [Slo].

4.1.3. Associative operations. In the same manner as in the dendriform operad the sum of its two operations produces an associative operation, in the γ-dendriform operad there is a way to build associative operations, as the next statement shows. The presentation of Dendr γ provided by Theorem 4.1.4 is easier to handle than the one provided by Theorem 4.1.1. The main reason is that Relations (4.1.1f) and (4.1.1g) of the first presentation involve a nonconstant number of terms, while all relations of this second presentation always involve only two or three terms. As a very remarkable fact, it is worthwhile to note that the presentation of Dendr γ provided by Theorem 4.1.4 can be directly obtained by considering the Koszul dual of Dias γ over the K-basis (see Sections 1.2.4 and 1.2.5). Therefore, an alternative way to establish this presentation consists in computing the Koszul dual of Dias γ seen through the presentation having

Dendr γ as space of relations, which is made of the relations of Dias γ expressed over the K-basis (see Proposition 1.2.8).

From now on, ↑ denotes the operation min on integers. Using this notation, the space of relations Dendr γ of Dendr γ exhibited by Theorem 4.1.4 can be rephrased in a more compact way as the space generated by Therefore, we can observe that γ-polydendriform algebras over the operations , , ∈ [γ], are adapted to study associative algebras (by splitting its single product in the way we have described above) while γ-polydendriform algebras over the operations ≺ , , ∈ [γ], are adapted to study vectors spaces endowed with several associative products (by splitting each one in the way we have described above). Algebras with several associative products will be studied in Section 5.

(≺ ) • 1 ( ) -( ) • 2 (≺ ) ∈ [γ] (4.1.12a) (≺ ) • 1 (≺ ) -(≺ ↑ ) • 2 (≺ ) -(≺ ↑ ) • 2 ( ) ∈ [γ] (4.1.12b) ( ↑ ) • 1 (≺ ) + ( ↑ ) • 1 ( ) -( ) • 2 ( ) ∈ [γ] ( 4 

Free polydendriform algebras.

From now on, in order to simplify and make the next definitions uniform, we consider that in any γ-edge valued binary tree t, all edges connecting internal nodes of t with leaves are labeled by ∞. By convention, for all ∈ [γ], we have ↑ ∞ = = ∞ ↑ . For example, we have

Let us endow the vector space

1 3 1 ≺ 2 1 2 = 1 2 2 2 1 1 + 1 1 2 2 1 1 + 1 1 2 2 1 1 + 1 2 2 1 1 1 + 1 2 2 1 1 1 + 1 2 2 3 1 1 (4.2.6a) 1 3 1 2 1 2 = 1 2 1 1 1 1 + 1 2 1 1 1 1 + 1 2 1 3 1 1 + 1 2 2 3 1 1 (4.2.6b) T 4.2.1.
For any integer γ 0, the vector space Dendr γ of all γ-edge valued binary trees endowed with the operations ≺ , , ∈ [γ], is the free γ-polydendriform algebra over one generator.

Multiassociative operads

There is a well-known diagram, whose definition is recalled below, gathering the diassociative, associative, and dendriform operads. The main goal of this section is to define a generalization on a nonnegative integer parameter of the associative operad to obtain a new version of this diagram, suited to the context of pluriassociative and polydendriform operads.

Two generalizations of the associative operad.

The associative operad is generated by one binary element. This operad admits two different generalizations generated by γ binary elements with the particularity that one is the Koszul dual of the other. In this section, we introduce and study these two operads.

Multiassociative operads. For any integer γ 0, we define the γ-multiassociative operad As γ as the operad admitting the presentation G As γ

As γ , where

G As γ := G As γ (2) := { : ∈ [γ]} (5.1.1)
and As γ is generated by

( ) • 1 ( ) -( ) • 2 ( ) ∈ [γ] (5.1.2a) ( ) • 1 ( ) -( ) • 2 ( ) < ∈ [γ] (5.1.2b) ( ) • 2 ( ) -( ) • 2 ( ) < ∈ [γ] (5.1.2c) ( ) • 2 ( ) -( ) • 2 ( ) < ∈ [γ] (5.1.2d)
This space of relations can be rephrased in a more compact way as the space generated by

( ) • 1 ( ) -( ↓ ) • 2 ( ↓ ) ∈ [γ] (5.1.3a) ( ) • 2 ( ) -( ↓ ) • 2 ( ↓ ) ∈ [γ] (5.1.3b)
It follows immediately that As γ is well-defined as a set-operad. Moreover, since As 1 is isomorphic to the associative operad As and As γ is a suboperad of As γ+1 , for all integers γ 0, the operads As γ are generalizations of the associative operad. Observe that the algebras over As γ are the γ-multiassociative algebras introduced in Section 2.3.1.

Let us now provide a realization of As γ . A γ-corolla is a rooted tree with at most one internal node labeled on [γ]. Denote by

As γ the graded vector space of all γ-corollas where the arity of a γ-corolla is its arity, and let :

As γ ⊗ As γ →

As γ

(5.1.4) be the linear operation where, for any γ-corollas c 1 and c 2 , c 1 c 2 is the γ-corolla with + -1 leaves and labeled by ↓ where (resp. ) is the number of leaves of c 1 (resp. c 2 ) and (resp. ) is the label of c 1 (resp. c 2 ). P 5.1.1. For any integer γ 0, the operad As γ is the vector space As γ of γcorollas and its partial compositions satisfy, for any γ-corollas c 1 and c

2 , c 1 • c 2 = c 1 c
2 for all valid integer . Besides, As γ is a Koszul operad and the set of right comb G

As γ -syntax trees where all internal nodes have the same label forms a Poincaré-Birkhoff-Witt basis of As γ .

We have for instance in As 3 ,

2 • 1 1 = 2 (5.1.5a) 2 • 2 3 = 3 (5.1.5b)
We deduce from Proposition 5.1.1 that the Hilbert series of As γ satisfies

As γ ( ) = + (γ -1) 2 1 - (5.1.6)
and that for all 2, dim As γ ( ) = γ.

Let us now establish a realization of DAs γ . P 5.1.6. For any nonnegative integer γ, the operad DAs γ is the vector space DAs γ of γ-alternating Schröder trees. Moreover, for any γ-alternating Schröder trees s and t, s • t is the γ-alternating Schröder tree obtained by grafting the root of t on the th leaf of s and then, if the father of and the root of t have a same label, by contracting the edge connecting and . 

We have for instance in DAs

ζ γ = + ∈ [γ] (5.2.5)
extends in a unique way into an operad morphism.

We have to observe that the morphism ζ γ defined in the statement of Proposition 5.2.2 is injective only for γ 1. Indeed, when γ 2, we have the relation where η γ is the surjection defined in the statement of Proposition 5.2.1 and ζ γ is the operad morphism defined in the statement of Proposition 5.2.2. Diagram (5.2.7) is a generalization of (5.2.1) in which the associative operad splits into operads As γ and DAs γ .

ζ 2    1 2 1    + ζ 2    1 2 1    = ζ 2   1 2   + ζ 2   1 2 1   (

Further generalizations

In this last section of this chapter, we propose some generalizations on a nonnegative integer parameter of well-known operads. For this, we use similar tools as the ones used in the first sections of the chapter.

Duplicial operad.

We construct here a generalization on a nonnegative integer parameter of the duplicial operad and describe the free algebras over one generator in the category encoded by this generalization. 

(≺) • 1 ( ) -( ) • 2 (≺) (6.1.1a) (≺) • 1 (≺) -(≺) • 2 (≺) - (≺) • 2 ( ) (6.1.1b) ( ) • 1 (≺) + ( ) • 1 ( ) -( ) • 2 ( ) (6.1.1c)
One can observe that D 1 is the dendriform operad and that D 0 is the duplicial operad.

On the basis of this observation, from the presentation of Dendr γ provided by Theorem 4.1.4 and its concise form provided by Relations (4.1.12a), (4.1.12b), and (4.1.12c) for its space of relations, we define the operad D γ with two parameters, an integer γ 0 and ∈ K, in the following way. We set D γ as the operad admitting the presentation

G D γ D γ , where G D γ := G Dendr γ and D γ is the space generated by (≺ ) • 1 ( ) -( ) • 2 (≺ ) ∈ [γ] (6.1.2a) (≺ ) • 1 (≺ ) -(≺ ↑ ) • 2 (≺ ) - (≺ ↑ ) • 2 ( ) ∈ [γ] (6.1.2b) ( ↑ ) • 1 (≺ ) + ( ↑ ) • 1 ( ) -( ) • 2 ( ) ∈ [γ] (6.1.2c)
One can observe that D 1 γ is the operad Dendr γ .

Let us define the operad the γ-multiplicial operad Dup γ as the operad D 0 γ . By using respectively the symbols and instead of ≺ and for all ∈ [γ], we obtain that the space of relations Dup γ of Dup γ is generated by

• 1 - • 2 ∈ [γ] (6.1.3a) • 1 - ↑ • 2 ∈ [γ] (6.1.3b) ↑ • 1 - • 2 ∈ [γ] (6.1.3c)
We denote by G Dup γ the generating set { : ∈ [γ]} of Dup γ . P 6.1.1. For any integer γ 0, the operad Dup γ is Koszul and for any integer 1, Dup γ ( ) is the vector space of γ-edge valued binary trees with internal nodes.

Since Proposition 6.1.1 shows that the operads Dup γ and Dendr γ have the same underlying vector space, asking if these two operads are isomorphic is natural. The next result implies that this is not the case. P 6.1.2. For any integer γ 0, any associative element of Dup γ is proportional to or to for an ∈ [γ].

By Proposition 6.1.2 there are exactly 2γ nonproportional associative operations in Dup γ while, by Proposition 4.1.5 there are exactly γ such operations in Dendr γ . Therefore, Dup γ and Dendr γ are not isomorphic. 6.1.2. Free multiplicial algebras. A γ-multiplicial algebra is a Dup γ -algebra. From the definition of Dup γ , any γ-multiplicial algebra is a vector space endowed with linear operations , ∈ [γ], satisfying the relations encoded by (6.1.3a)-(6.1.3c).

In order the simplify and make uniform next definitions, we consider that in any γ-edge valued binary tree t, all edges connecting internal nodes of t with leaves are labeled by ∞. By convention, for all ∈ [γ], we have ↑ ∞ = = ∞ ↑ .

Let us endow the vector space

Dup γ of γ-edge valued binary trees with linear operations For example, we have

: Dup γ ⊗ Dup γ → Dup γ ∈ [γ] ( 6 
1 3 1 2 1 2 = 1 2 2 2 1 1 (6.1.6a) 1 3 1 2 1 2 = 1 2 2 3 1 1 (6.1.6b) T 6.1.3.
For any integer γ 0, the vector space Dup γ of all γ-edge valued binary trees endowed with the operations , , ∈ [γ], is the free γ-multiplicial algebra over one generator.

Polytridendriform operads.

We propose here a generalization TDendr γ on a nonnegative integer parameter γ of the tridendriform operad [START_REF] Loday | Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory[END_REF]. This last operad is the Koszul dual of the triassociative operad. We proceed by using an analogous strategy as the one used to define the operads Dendr γ as Koszul duals of Dias γ . Indeed, we define TDendr γ as the Koszul dual of the operad Trias γ , called γ-pluritriassociative operad, a generalization of the triassociative operad defined in Section 3. 

By examining the expression for

TDendr γ ( ) of the statement of Proposition 6.2.2, we observe that for any 1, TDendr( ) can be seen as the vector space TDendr γ ( ) of Schröder trees with sectors wherein its edges connecting two internal nodes are labeled on [γ]. We call these trees γ-edge valued Schröder trees. In our graphical representations of γ-edge valued Schröder trees, any edge label is drawn into a hexagon located half the edge (see Figure 5.5). We deduce from Proposition 6.2.2 that 

TDendr γ ( ) = 1 -1 -(4γ + 2) + 2 -(2γ + 1) 2(γ + γ 2 ) (6.

Operads of the operadic butterfly.

In what follows, we shall work with algebraic structures satisfying relations involving possibly permutations of some inputs. For simplicity, instead of working with symmetric operads, we shall just work with types of algebras (see Section 4.1.13 of Chapter 2).

A generalization of the operadic butterfly. Let us consider the diagram of symmetric operads Dendr

γ As γ DAs γ Dias γ Com γ Lie γ Zin γ Leib γ ! ! ! ! (6.3.1)
where DAs γ is the γ-dual multiassociative operad defined in Section 5.1.2 and Com γ , Lie γ , Zin γ , and Leib γ , respectively are generalizations on a nonnegative integer parameter γ of the operads Com, Lie, Zin, and Leib. Let us now define these operads.

Commutative and Lie operads. Observe that the commutative operad Com is a commutative version of As = DAs

1 (see Section 4.1.13 of Chapter 2). We define the symmetric operad Com γ by using the same idea of being a commutative version of DAs γ . Therefore, Com γ is the symmetric operad describing the category of algebras with binary operations , ∈ [γ], subjected for any elements , , and of to the two sorts of relations

= ∈ [γ] (6.3.2a) ( ) = ( ) ∈ [γ] (6.3.2b)
Moreover, we define the symmetric operad Lie γ as the Koszul dual of Com γ .

Zinbiel and Leibniz operads. It is well-known that the Zinbiel operad Zin [Lod95] is a commutative version of Dendr = Dendr

1 [START_REF] Loday | Dialgebras. In Dialgebras and related operads[END_REF]. We define the symmetric operad Zin γ by using the same idea of having the property to be a commutative version of Dendr γ . Therefore, Zin γ is the symmetric operad describing the category of algebras with binary operations ¡ , ∈ [γ], subjected for any elements , , and of to the relation

( ¡ ) ¡ = ¡ ↑ ( ¡ ) + ¡ ↑ ( ¡ ) ∈ [γ] (6.3.3)
Relation (6.3.3) is obtained from Relations (4.1.12a), (4.1.12b), and (4.1.12c) of γ-polydendriform algebras with the condition that for any elements and and

∈ [γ], ≺ = ,
and by setting ¡ := ≺ . Moreover, we define the symmetric operad Leib γ as the Koszul dual of Zin γ . P 6.3.1. For any integer γ 0 and any Zin γ -algebra , the binary operations , ∈ [γ], defined for all elements and of by

:= ¡ + ¡ ∈ [γ]
(6.3.4) endow with a Com γ -algebra structure.

P

. Since for all ∈ [γ] and all elements and of , by (6.3.3), we have -

= ¡ + ¡ -¡ -¡ = 0 (6.3.5)
the operations satisfy Relation (6.3.2a) of Com γ -algebras. Moreover, since for all ∈ [γ] and all elements , , and of , by (6.3.3), we have 

( ) - ( ) = ( ¡ + ¡ ) ¡ + ¡ ( ¡ + ¡ ) -¡ ( ¡ + ¡ ) -( ¡ + ¡ ) ¡ = ( ¡ ) ¡ + ( ¡ ) ¡ + ¡ ( ¡ ) + ¡ ( ¡ ) -¡ ( ¡ ) -¡ ( ¡ ) -( ¡ ) ¡ -( ¡ ) ¡ = ( ¡ ) ¡ -( ¡ ) ¡ = ¡ ( ¡ ) + ¡ ( ¡ ) -¡ ( ¡ ) -¡ ( ¡ ) = 0 (6.
:= ¡ ∈ [γ]
(6.3.8) endow with a γ-polydendriform algebra structure.

The constructions stated by Propositions 6.3.1 and 6.3.2 producing from a Zin γ -algebra respectively a Com γ -algebra and a γ-polydendriform algebra are functors from the category of Zin γ -algebras respectively to the category of Com γ -algebras and the category of γ-polydendriform algebras. These functors respectively translate into symmetric operad morphisms from Com γ to Zin γ and from Dendr γ to Zin γ . These morphisms are generalizations of known morphisms between Com, Dendr, and Zin of the operadic butterfly (see [START_REF] Loday | Dialgebras. In Dialgebras and related operads[END_REF][START_REF] Loday | Completing the operadic butterfly[END_REF][START_REF] Zinbiel | Encyclopedia of types of algebras 2010. In Operads and universal algebra[END_REF]).

Concluding remarks

In this chapter, we have defined a new generalization Dendr γ of the dendriform operad and also several ones of related operads. Among its most important features, Dendr γ encodes the notion of splitting an associative product in several pieces. Moreover, as illustrated, the underlying combinatorics of this operad involves a new kind of combinatorial objects, which are binary trees with labeled edges. A natural question about these trees consists in investigating whether some particular subfamilies of these form suboperads of Dendr γ . Moreover, like the dendriform operad which admits a realization in term of rational functions [START_REF] Loday | On the operad of associative algebras with derivation[END_REF] (see also Section 4.2.4 of Chapter 2), we can ask whether Dendr γ admits a similar realization.

Besides, a complete study of the operads Com γ , Lie γ , Zin γ , and Leib γ (like computing their presentations and providing realizations), and suitable definitions for all the morphisms intervening in our generalization of the operadic butterfly (6.3.1) is worth to interest for future works.

Finally, one of our generalizations of the associative operad, namely the multiassociative

Introduction

This chapter is devoted to enrich connections between operads and combinatorics by establishing a new link between posets and operads by means of a construction associating a operad As( ), called -associative operad, with any finite poset . This construction is a functor As from the category of finite posets to the category of binary and quadratic operads. The will to generalize two families of operads Koszul dual to each other, constructed in Chapter 5, is the first impetus of this work. The operads of these families are the multiassociative operads As γ and the dual multiassociative operads DAs γ (see Section 5 of Chapter 5). In this present work, we retrieve As γ by applying the construction As to the total order on a set of γ elements and we retrieve DAs γ by applying the construction As to the trivial order on the same set. Note that different constructions of operads involving posets [START_REF] Fauvet | Operads of finite posets[END_REF], and not directly related constructions involving posets and operads [START_REF] Méndez | Möbius Species[END_REF]Val07] have been considered in the literature.

Let us describe some main properties of As. First, each operad obtained by our construction provides a generalization of the associative operad since all its generating operations are associative. Besides, many combinatorial properties of the starting poset lead to algebraic properties for As( ) (see Table 6 T . . Summary of the properties satisfied by a poset implying properties for the operad As( ). Note that any trivial poset is also a thin forest poset, and that a thin forest poset is also a forest poset. In particular, if is a trivial poset, As( ) has all properties mentioned in the middle column. that no element of covers two different elements), As( ) is a Koszul operad. Moreover, when is not a trivial poset, the fundamental basis of As( ) is not a basic set-operad basis. This last property seems to be interesting since almost all set-operad bases of common operads are basic, such as the associative operad or the diassociative operad [START_REF] Loday | Dialgebras. In Dialgebras and related operads[END_REF] (see additionally [START_REF] Zinbiel | Encyclopedia of types of algebras 2010. In Operads and universal algebra[END_REF]). This gives to our construction a very unique flavor.

The further study of the operads obtained by the construction As is driven by computer exploration. Indeed, computer experiments bring us the observation that some operads obtained by the construction As are Koszul duals to each other. This observation raises several questions. The first one consists in describing a family of posets, called thin forest posets, such that the construction As restricted to this family is closed under Koszul duality. The second one consists in defining an operation ⊥ on this family of posets such that for any of these posets , As( ⊥) is isomorphic to the Koszul dual As( ) ! of As( ). The last one relies on an expression of an explicit isomorphism between As( ) ! and As( ⊥

). We answer all these questions in this work, forming its main results. As additional results, we provide a complete study of the operads As( ), including, when satisfies some precise properties, an expression for its Hilbert series and a realization involving labeled Schröder trees. This chapter is organized as follows. Section 1 is concerned with the description of the construction As and the first general properties of the obtained operads. In Section 2, we focus on the case where the poset at input of the construction As is a forest poset. We show that in this case, As( ) is a Koszul operad and derive some consequences. This chapter ends by introducing in Section 3 the class of thin forest posets. The construction As restricted to this class of posets has the property to be closed under Koszul duality.

Note. In this chapter all posets are finite. For this reason, "poset" means "finite poset".

Moreover, since this chapter deals only with ns operads, "operad" means "ns operad". If is a generator of an operad , we denote by ¯ the associated generator in the Koszul dual of .

From posets to operads

This section is devoted to the introduction of our construction producing an operad from a poset. We also establish here some of its first general properties. We end this section by presenting algebras over our operads and some of their properties.

Construction.

Let us describe the construction As, associating with any poset a binary and quadratic operad presentation, and prove that it is functorial.

Operad presentations from posets. For any poset (

), we define the -associative operad As( ) as the operad admitting the presentation G where G is the set of generators

G := G (2) := { : ∈ } (1.1.1)
and is the space of relations generated by

( ) • 1 ( ) -( ↑ ) • 2 ( ↑ ) ∈ and ( or ) (1.1.2a) ( ↑ ) • 1 ( ↑ ) -( ) • 2 ( ) ∈ and ( or ) (1.1.2b)
Besides, when is the trivial poset on the set [ ], 0, the operad As( ) is generated by the set G = { 1 } and, by Lemma 1.1.1, subjected to the relations

• 1 = • 2 ∈ [ ] (1.1.8)
In particular, when = 0, As( ) is the trivial operad, when = 1, As( ) is the associative operad, and when = 2, As( ) is the operad 2as [START_REF] Loday | On the structure of cofree Hopf algebras[END_REF]. These operads, for a generic 0, are the dual multiassociative operads DAs , introduced in Section 5 of Chapter 5. These operads can be realized using Schröder trees endowed with labels satisfying some conditions. In Section 2.2.2, we shall describe a generalized version of this realization. Furthermore, when is the total order on the set [ ],

0, the operad As( ) is generated by the set G = { 1 } and, by Lemma 1.1.1, subjected to the relations

• 1 = • 1 = • 1 = • 2 = • 2 = • 2 ∈ [ ] (1.1.9)
In particular, when = 0, As( ) is the trivial operad and when = 1, As( ) is the associative operad. These operads, for a generic 0, are the multiassociative operads As , introduced in Section 5 of Chapter 5. They have the particularity to have stationary dimensions since dim As( )(1) = 1 and dim As( )( ) = for all 2.

General properties. Let us now list some general properties of the operad As( )

where is a poset without particular requirements. We provide the dimension of the space of relations of As( ), describe its associative elements, and give a necessary and sufficient condition for the fact that its fundamental basis is a basic set-operad basis. We shall exhibit two examples of -associative algebras in the sequel: in Section 2.2.3, free -associative algebras over one generator when is a forest poset and in Section 1.3.2, -associative algebras involving the antichains of the poset .

1.3.1. Units. Let be a poset and be a -associative algebra. An -unit, ∈ , of is an element 1 of satisfying

1 = = 1 (1.3.3)
for all ∈ . Obviously, for any ∈ there is at most one -unit in .

Besides, for any element of , we denote by ( ) the set of elements of such that is an -unit of . Obviously, if 1 is an -unit of , ∈

(1 ). P 1.3.1. Let be a poset and be a -associative algebra. Then:

(i) for any element of , ( ) is an order filter of ; (ii) for all elements and of such that = , the sets ( ) and ( ) are disjoint.

Proposition 1.3.1 implies that the sets ( ), ∈ , form a partition of an order filter of where each part is itself an order filter of . } is an antichain of of size .

We endow K[X ]/ with linear operations

: K[X ]/ ⊗ K[X ]/ → K[X ]/ ∈ (1.3.5)
defined, for all reduced monomials (1.3.9c)

Forest posets, Koszul duality, and Koszulity

Here, we focus on the construction As when the input poset of the construction is a forest poset. In this case, we show that As( ) is Koszul, we provide a realization of As( ), and we obtain a functional equation for its Hilbert series. We end this section by computing presentations of the Koszul dual of As( ).

Koszulity and Poincaré-Birkhoff-Witt bases.

We prove here that when is a forest poset, As( ) is Koszul. For that, we consider an orientation of the space of relations of As( ) and show that this orientation is a convergent rewrite rule. As a consequence, the Koszulity of As( ) follows (see Lemma 4.1.2 of Chapter 2).

2.1.1. Forest posets. We call forest poset any poset avoiding the pattern (see Section 1.3.2 of Chapter 1 for the definition of pattern avoidance in posets). In other words, a forest poset is a poset for which its Hasse diagram is a forest of rooted trees (where roots are minimal elements). Figure 6.2 shows an example of a forest poset.

2.1.2. Orientation of the space of relations. Let be a poset (not necessarily a forest poset just now) and be the rewrite rule on G -syntax trees satisfying

( ) • 1 ( ) ( ↑ ) • 2 ( ↑ ) ∈ and ( or ) (2.1.1a) ( ) • 2 ( ) ( ↑ ) • 2 ( ↑ ) ∈ and ( ≺ or ≺ ) (2.1.1b)
Let also be the closure of . Let us denote by ( ) the set of the normal forms of , described in the statement of Lemma 2.1.3. Moreover, we denote by ( )( ), 1, the set ( ) restricted to syntax trees with exactly leaves. From their description provided by Lemma 2.1.3, any tree t of ( ) different from the leaf is of the recursive unique general form

t = s 1 s -1 s (2.1.2)
where ∈ and the dashed edge denotes a right comb tree wherein internal nodes are labeled by , and for any ∈ [ ], s is a tree of ( ) such that s is the leaf or its root is labeled by a , ∈ , so that and are incomparable in . (2.1.5)

Since these two trees are normal forms of , this branching pair is not joinable, hence showing that is not confluent.

Realization.

Let us describe a combinatorial realization of As( ) when is a forest poset in terms of Schröder trees (see Section 2.2.3 of Chapter 1) with a certain labeling and through an algorithm to compute their partial composition.

If is a poset (not necessarily a forest poset just now), a -Schröder tree is a Schröder tree where internal nodes are labeled on . For any element of and any 2, we denote by c the -Schröder tree consisting in a single internal node labeled by attached to leaves. We call these trees -corollas. A -alternating Schröder tree is a -Schröder tree t such that for any internal node of t having a father , the labels of and are incomparable in . We denote by ( ) the set of all -alternating Schröder trees and by ( )( ), 1, the set ( ) restricted to trees with exactly leaves. Any tree t of ( ) different from the leaf is of the recursive unique general form

t = s 1 s (2.2.19)
where ∈ and for any ∈ [ ], s is a tree of ( ) such that s is a leaf or its root is labeled by a ∈ and and and incomparable in .

Relying on the description of the elements of ( ) provided by Lemma 2.1.3 and on their recursive general form provided by (2.1.2), let us consider the map s : ( )( ) → ( )( ) 1 (2.2.20) defined recursively by sending the leaf to the leaf and, for any tree t of ( ) different from the leaf, by

s (t) = s      s 1 s -1 s      := s (s 1 ) s (s ) (2.2.21)
where ∈ and, in the syntax tree of (2.2.21), the dashed edge denotes a right comb tree wherein internal nodes are labeled by , and for any ∈ [ ], s is a tree of ( ) such that s is the leaf or its root is labeled by , ∈ , and and are incomparable in . It is immediate that s (t) is a -alternating Schröder tree, so that s is a well-defined map. L 2.2.2. Let be a poset. Then, for any 1, the map s is a bijection between the set of syntax trees of ( )( ) with leaves and the set ( )( ) of -alternating Schröder trees with leaves.

In order to define a partial composition for -alternating Schröder trees, we introduce the following rewrite rule. Since these two trees are normal forms of , this branching pair is not joinable and hence, is not confluent.

We define the partial composition s • t of two -alternating Schröder trees s and t as the -alternating Schröder tree being the normal form by of the -Schröder tree obtained by grafting the root of t on the th leaf of s. We denote by ASchr( ) the linear span of the set of the -alternating Schröder trees endowed with the partial composition described above and extended by linearity. Consider for instance the forest poset := (2.2.29) is a sequence of rewritings steps by , where the leftmost tree of (2.2.29) is obtained by grafting the root of the second tree of (2.2.28) onto the first leaf of the first tree of (2.2.28). P 2.2.4. Let be a forest poset. Then, ASchr( ) is an operad graded by the number of the leaves of the trees. Moreover, as an operad, ASchr( ) is generated by the set of -corollas of arity two.

T 2.2.5. Let be a forest poset. Then, the operads As( ) and ASchr( ) are isomorphic.

P

. First, by Proposition 2.2.4, ASchr( ) is an operad wherein for any 1, its graded component of arity has bases indexed by -alternating Schröder trees with leaves. By Lemma 2.2.2, these trees are in bijection with the elements of the Poincaré-Birkhoff-Witt basis ( ) of As( ) provided by Theorem 2.1.5. By [START_REF] Hoffbeck | A Poincaré-Birkhoff-Witt criterion for Koszul operads[END_REF], this shows that ASchr( ) and As( ) are isomorphic as graded vector spaces.

The generators of ASchr( ), that are by Proposition 2.2.4 -corollas of arity two, satisfy at least the nontrivial relations

c 2 • 1 c 2 -c 2 ↑ • 2 c 2 ↑ = 0 ∈ and ( or ) (2.2.30a) c 2 ↑ • 1 c 2 ↑ -c 2 • 2 c 2 = 0 ∈ and ( or ) (2.2.30b)
obtained by a direct computation in ASchr( ). By using the same reasoning as the one used to establish Proposition 1.2.1, we obtain that there are as many elements of the form (2.2.30a) or (2.2.30b) as generating relations (see (1.1.2a) and (1.1.2b)) for the space of relations of As( ) . Therefore, as ASchr( ) and As( ) are isomorphic as graded vector spaces, it cannot be more nontrivial relations in ASchr( ) than Relations (2.2.30a) and (2.2.30b).

Finally, by identifying all symbols c 2 , ∈ , with , we observe that As( ) and ASchr( ) admit the same presentation. This implies that As( ) and ASchr( ) are isomorphic operads.

As announced, Theorem 2.2.5 provides a combinatorial realization ASchr( ) of As( ) when is a forest poset.

Free forest poset associative algebras over one generator. The realization of

As( ), when is a forest poset, provided by Theorem 2.2.5 in terms of -alternating Schröder trees leads to the following description. The free -associative algebra over one generator, where is a forest poset, has ASchr( ) as underlying vector space and is endowed with linear operations : ASchr( ) ⊗ ASchr( ) → ASchr( )

∈ (2.2.31)
satisfying for all -alternating Schröder trees s and t,

s t = c 2 • 2 t • 1 s (2.2.32)
In an alternative way, s t is the -alternating Schröder obtained by considering the normal form by of the tree obtained by grafting s and t respectively as left and right child of a binary corolla labeled by . (2.2.34e)

Koszul dual.

We now establish a first presentation for the Koszul dual As( ) ! of As( ) where is a poset (and not necessarily a forest poset) and provide moreover a second presentation of As( ) ! when is a forest poset. This second presentation of As( ) ! is simpler than the first one and it shall be considered in the next section. 

Presentation by generators and relations.

G ¯ := G ¯ (2) := {¯ : ∈ } (2.3.1) and ¯ is the subspace of FO G ¯ generated by (¯ ) • 1 (¯ ) -(¯ ) • 2 (¯ ) + ∈ ≺ ( (¯ ) • 1 (¯ ) + (¯ ) • 1 (¯ ) -(¯ ) • 2 (¯ ) -(¯ ) • 2 (¯ )) ∈ (2.3.2a) (¯ ) • 1 (¯ ) ∈
• 1 1 = 1 • 2 1 (2.3.15a) 2 • 1 2 = 2 • 2 2 (2.3.15b) 3 • 1 3 = 3 • 2 3 (2.3.15c) 1 • 1 2 = 2 • 1 1 = 1 • 1 3 = 3 • 1 1 = 3 • 2 1 = 1 • 2 3 = 2 • 2 1 = 1 • 2 2 = 0 (2.3.15d)
This describes .

Thin forest posets and Koszul duality

As we have seen in Section 2, certain properties satisfied by the poset imply properties for the operad As( ). In this section, we show that when is a forest poset with an extra condition, the Koszul dual As( ) ! of As( ) can be constructed via the construction As.

Thin forest posets.

A subclass of the class of forest posets, whose elements are called thin forest posets, is described here. We also define an involution on these posets that is linked, as we shall see later, to Koszul duality of the concerned operads.

Description.

A thin forest poset is a forest poset avoiding the pattern (see Section 1.3.2 of Chapter 1 for the definition of pattern avoidance in posets). In other words, a thin forest poset is a poset so that the nonplanar rooted tree t obtained by adding a (new) root to the Hasse diagram of has the following property. Any node of t has at most one child such that the suffix subtree of t rooted at has two nodes or more. For instance, Figure 6.1a shows a thin forest poset, while Figure 6.2 shows a forest poset that does not satisfies the described property.

( ) A thin forest poset. A standard labeling of a thin forest poset consists in labeling the vertices of the Hasse diagram of from 1 to # in the order they appear in a depth first traversal, by always visiting in a same sibling the node with the biggest subtree as last. For instance, a standard labeling of the poset of Figure 6.1a is the poset shown in Figure 6.1b. In what follows, we shall consider only standardly labeled thin forest posets and we shall identify any element of a thin forest posets as the label of in a standard labeling of . Moreover, we shall see (2) defined by

¯ := ∈ ⊥ ⊥ ¯ (3.2.1)
We denote by G (3.2.3) and hence, the elements of G ¯ express as

¯ 1 = ¯ 1 (3.2.4a) ¯ 2 = ¯ 1 + ¯ 2 (3.2.4b) ¯ 3 = ¯ 1 + ¯ 2 + ¯ 3 (3.2.4c) ¯ 4 = ¯ 1 + ¯ 2 + ¯ 4 (3.2.4d) ¯ 5 = ¯ 1 + ¯ 2 + ¯ 4 + ¯ 5 (3.2.4e) ¯ 6 = ¯ 1 + ¯ 2 + ¯ 4 + ¯ 6 (3.2.4f) L 3.2.1.
Let be a thin forest poset. Then, the dimension of the space ⊥ of relations of As( ⊥) and the dimension of the space ¯ of relations of As( ) ! are related by

dim ⊥ = 4 int ⊥ -3 # = dim ¯ (3.2.5) 3.2.2. Isomorphism.
T 3.2.2. Let be a thin forest poset. Then, the map φ : As( ⊥ ) → As( ) ! defined for any ∈ ⊥ by φ( ) := ¯ extends in a unique way to an isomorphism of operads.

P

. Let us denote by ¯ the space of relations of As( ) ! , expressed on the generating family G ¯ . This space is the same as the space ¯ , described by Proposition 2.3.3. Let us exhibit a generating family of ¯ as a vector space. For this, let and be two elements of ⊥ such that ⊥ . We have, by using (3.2.1), 

¯ • 1 ¯ -¯ • 2 ¯ = ∈ ⊥ ⊥ ⊥ ¯ • 1 ¯ - ∈ ⊥ ⊥ ⊥ ¯ • 2 ¯ = ∈ ⊥ ⊥ ¯ • 1 ¯ - ∈ ⊥ ⊥ ¯ • 2 ¯ = 0 (3.2.
¯ • 1 ¯ -¯ • 2 ¯ = 0 (3.2.7a) ¯ • 1 ¯ -¯ • 2 ¯ = 0 (3.2.7b) ¯ • 1 ¯ -¯ • 2 ¯ = 0 (3.2.7c)
We then have shown that the elements

¯ • 1 ¯ -¯ ↑ ⊥ • 2 ¯ ↑ ⊥ ∈ ⊥ and ( ⊥ or ⊥ ) (3.2.8a) ¯ ↑ ⊥ • 1 ¯ ↑ ⊥ -¯ • 2 ¯ ∈ ⊥ and ( ⊥ or ⊥ ) (3.2.8b) are in ¯ .
It is immediate that the family consisting in the elements (3.2.8a) and (3.2.8b) is free. We denote by the vector space generated by this family. By using the same arguments as the ones used in the proof of Proposition 1.2.1, we obtain that the dimension of is Notice also that since the dual of the total order on a set of 0 elements is the trivial order ⊥ on the same set, by Theorem 3.2.2, As( ) is the Koszul dual of As( ⊥ ). This is coherent with the results of Section 5 of Chapter 5 about the multiassociative operad (equal to As( )) and the dual multiassociative operad (equal to As( ⊥ )).

dim = 4 int ⊥ -3 # ⊥ (3.2.

Concluding remarks

Through this chapter, we have presented a functorial construction As from posets to operads establishing a link between the two underlying categories. The operads obtained through this construction generalize the (dual) multiassociative operads. As we have seen, some combinatorial properties of the starting posets imply properties on the obtained operads As( ) as, among others, basicity and Koszulity. This work raises several questions. We have presented two classes of -associative algebras: the free -associative algebras over one generator where are forest posets and a polynomial algebra involving the antichains of a poset . The question to characterize free -associative algebras over one generator with no assumption on is open. Also, the question to define some other interesting -associative algebras has not been considered in this work and deserves to be addressed.

Introduction

Regular polygons endowed with configurations of diagonals are very classical combinatorial objects. Up to some restrictions or enrichments, sets defined on these polygons can be put in bijection with several combinatorial families. For instance, it is well-known that triangulations [START_REF] De Loera | Triangulations[END_REF], forming a particular subset of the set of all polygons, are in oneto-one correspondence with binary trees, and a lot of structures and operations on binary trees translate nicely on triangulations. Indeed, among others, the rotation operation on binary trees [START_REF] Knuth | The art of computer programming, volume 3: Sorting and searching[END_REF] is the covering relation of the Tamari order [Tam62, HT72] (see also Section 1.3.3 of Chapter 1) and this operation translates as a diagonal flip in triangulations. Also, noncrossing configurations [FN99] form another interesting subfamily of such polygons. Natural generalizations of noncrossing configurations consist in allowing, with more or less restrictions, some crossing diagonals. One of these families is formed by the multitriangulations [CP92], that are polygons wherein the number of mutually crossing diagonal is bounded. Besides, let us emphasize that the class of combinatorial objects in bijection with sets of polygons with configurations of diagonals is large enough in order to contain, among others, dissections of polygons, noncrossing partitions, permutations, and involutions.

The purpose of this work is twofold. First, we are concerned in endowing the linear span of the polygons with configurations of arcs with a structure of an operad. This is justified by the preliminary observation that most of the subfamilies of polygons endowed with configurations of diagonals discussed above are stable for several natural composition operations. Even better, some of these can be described as the closure with respect to these composition operations of small sets of polygons. For this reason, operads are very promising candidates, among the modern algebraic structures, to study such objects under an algebraic and combinatorial flavor. This leads to see these objects under a new light, stressing some of their combinatorial and algebraic properties. Second, we would provide a general construction of operads of polygons rich enough so that it includes some already known operads. As a consequence, we obtain alternative definitions of existing operads and new interpretations of these.

For this aim, we work here with -decorated cliques (or -cliques for short), that are complete graphs whose arcs are labeled on , where is a unitary magma. These objects are natural generalizations of polygons with configurations of arcs since the arcs of any -clique labeled by the unit of are considered as missing. The elements of different from the unit allow moreover to handle polygons with arcs of different colors. For instance, each usual noncrossing configuration c can be encoded by an N 2 -clique p, where N 2 is the cyclic additive unitary magma Z/ 2Z , wherein each arc labeled by 1 ∈ N 2 in p denotes the presence of the same arc in c, and each arc labeled by 0 ∈ N 2 in p denotes its absence in c. Our construction is materialized by a functor C from the category of unitary magmas to the category of operads. It builds, from any unitary magma , an operad C on -cliques. The partial composition p • q of two -cliques p and q of C consists in gluing the th edge of p (with respect to a precise indexation) and a special arc of q, called the base, together to form a new -clique. The magmatic operation of explains how to relabel the two overlapping arcs.

This operad C has a lot of properties, which can be apprehended both under a combinatorial and an algebraic point of view. First, many families of particular polygons with configurations of arcs form quotients or suboperads of C . We can for instance control the degrees of the vertices or the crossings between diagonals to obtain new operads. We can also forbid all diagonals, or some labels for the diagonals or the edges, or all nestings of diagonals, or even all cycles formed by arcs. All these combinatorial particularities and restrictions on -cliques behave well algebraically. Moreover, by using the fact that the direct sum of two ideals of an operad is still an ideal of , these constructions can be mixed to get even more operads. For instance, it is well-known that Motzkin configurations, that are polygons with disjoint noncrossing diagonals, are enumerated by Motzkin numbers [START_REF] Th | Relations between hypersurface cross ratios, and a combinatorial formula for partitions of a polyion, for permanent preponderance, and for non-associative products[END_REF].

Since a Motzkin configuration can be encoded by an

-clique where all vertices are of degrees at most 1 and no diagonal crosses another one, we obtain an operad Mot on colored Motzkin configurations which is both a quotient of Deg 1 , the quotient of C consisting in all -cliques such that all vertices are of degrees at most 1, and of NC , the quotient (and suboperad) of C consisting in all noncrossing -cliques. We also get quotients of C involving, among others, Schröder trees, forests of paths, forests of trees, dissections of polygons, Lucas configurations, with colored versions for each of these. This leads to a new hierarchy of operads, wherein links between its components appear as surjective or injective operad morphisms. Table 7.1 lists the main operads constructed in this work and gathers some information about these.

One of the most notable of these substructures is built by considering the D 0 -cliques that have vertices of degrees at most 1, where D 0 is the multiplicative unitary magma on {0 1}. This is in fact the quotient Deg 1 D 0 of CD 0 and involves involutions (or equivalently, standard Young tableaux by the Robinson-Schensted correspondence [START_REF] Schensted | Longest increasing and decreasing subsequences[END_REF][START_REF] Lothaire | Algebraic combinatorics on words. Encyclopedia of mathematics and its applications[END_REF]). To the best of our knowledge, Deg 1 D 0 is the first nontrivial operad on these objects. As an important remark at this stage, let us highlight that when is nontrivial, C is not a binary operad. Indeed, all its minimal generating sets are infinite and its generators have arbitrary high arities. Nevertheless, the biggest binary suboperad of C is the operad NC of noncrossing configurations and this operad is quadratic and Koszul, regardless of . Furthermore, the construction C maintains some links with the operad RatFct of rational functions introduced by Loday [ T . . The main operads defined in this work. All these operads depend on a unitary magma which has, in some cases, to satisfy some precise conditions. Some of these operads depend also on a nonnegative integer or subsets B, E, and D of .

already known operads in original ways. For instance, for well-chosen unitary magmas , the operads C contain 4 , a suboperad of the operad of formal fractions [START_REF] Chapoton | A set-operad of formal fractions and dendriform-like suboperads[END_REF], the operad NCT of based noncrossing trees [START_REF] Chapoton | The anticyclic operad of moulds[END_REF][START_REF] Leroux | L-algebras, triplicial-algebras, within an equivalence of categories motivated by graphs[END_REF], and MT and DMT, two operads respectively defined in [START_REF] Luque | Some Combinatorial Operators in Language Theory[END_REF] and in Chapter 12 that involve multi-tildes and double multitildes, which are operators coming from formal language theory [START_REF] Caron | Multi-Bar and Multi-Tilde Regular Operators[END_REF]. Moreover, C provides a construction of BNC, the operad of bicolored noncrossing configurations (see Chapter 3). For this reason, in particular, all the suboperads of BNC can be obtained from the construction C. This includes for example the dipterous operad [START_REF] Loday | Algèbres de Hopf colibres[END_REF][START_REF] Zinbiel | Encyclopedia of types of algebras 2010. In Operads and universal algebra[END_REF]. The operads C also contains Grav, the gravity operad, a symmetric operad introduced by Getzler [START_REF] Getzler | Two-dimensional topological gravity and equivariant cohomology[END_REF], seen here as a nonsymmetric one [START_REF] Alm | Brown's dihedral moduli space and freedom of the gravity operad[END_REF]. This chapter is organized as follows. In Section 1, we introduce -cliques, the construction C, and study some of its properties. Then, Section 2 is devoted to define several suboperads and quotients of C . This leads to a bunch of new operads on particular cliques. We focus next, in Section 3, on the study of the suboperad NC of C on the noncrossing -cliques. Among others, we provide a presentation by generators and relations of NC and of its Koszul dual. Finally, in Section 4, we use the construction C to provide alternative definitions of some known operads.

Note. This chapter deals onlys with ns operads. For this reason, "operad" means "ns operad".

From unitary magmas to operads

We describe in this section our construction from unitary magmas to operads and study its main algebraic and combinatorial properties.

1.1. Unitary magmas, decorated cliques, and operads. We present here our main combinatorial objects, the decorated cliques. The construction C, which takes a unitary magma as input and produces an operad, is defined.

1.1.1. Unitary magmas. Recall first that a unitary magma is a set endowed with a binary operation admitting a left and right unit 1 . For convenience, we denote by ¯ the set \ {1 }. To explore some examples in this chapter, we shall mostly consider four sorts of unitary magmas: the additive unitary magma on all integers denoted by Z, the cyclic additive unitary magma on Z/ Z denoted by N , the unitary magma

D := {1 0 d 1 d } (1.1.1)
where ) of p is labeled by an element different from 1 , we say that the arc ( ) is solid. By convention, we require that the -clique of size 1 having its base labeled by 1 is the only such object of size 1. The set of all -cliques is denoted by .

In our graphical representations, we shall represent any -clique p by following the drawing conventions of configurations explained in Section 3.2 of Chapter 1 with the difference that non-solid diagonals are not drawn. For instance,

p := -1 2 1 -1 3 2 1 (1.1.4) is a Z-clique such that, among others p(1 2) = -1, p(1 5) = 2, p(3 7) = -1, p(5 7) = 1, p(2 3) = 0 (
because 0 is the unit of Z), and p(2 6) = 0 (for the same reason).

Let us now provide some definitions and statistics on -cliques. The underlying configuration of p is the ¯ -configuration p of the same size as the one of p and such p( ) := p( ) for all solid arcs ( ) of p, and all other arcs of p are unlabeled. The skeleton, (resp. degree, crossing) of p is the skeleton (resp. the degree, the crossing) of p. Moreover, p is nestingfree, (resp. acyclic, white, an -bubble, an -triangle), if p is nesting-free (resp. acyclic, white, a bubble, a triangle). The set of all -bubbles (resp.

-triangles) is denoted by (resp.

). Finally, the border of p is the word bor(p) of length such that for any ∈ [ ], bor(p) = p . 1.1.3. Partial composition of -cliques. From now on, the arity of an -clique p is its size and is denoted by |p|. For any unitary magma , we define the vector space

C := 1 C ( ) (1.1.5)
where C ( ) is the linear span of all -cliques of arity , 1. The set forms hence a basis of C called fundamental basis. Observe that the space C (1) has dimension 1 since it is the linear span of the -clique . We endow C with partial composition maps

• : C ( ) ⊗ C ( ) → C ( + -1) 1 ∈ [ ] (1.1.6)
defined linearly, in the fundamental basis, in the following way. Let p and q be two -cliques of respective arities and , and ∈ [ ] be an integer. We set p • q as the -clique of arity + -1 such that, for any arc ( ) where 1 < + ,

(p• q)( ) :=                        p( ) if p( -+ 1) if < + and ( ) = ( + ) p( -+ 1 -+ 1) if + q( -+ 1 -+ 1) if < + and ( ) = ( + ) p q 0 if ( ) = ( + ) 1 otherwise (1.1.7)
We recall that denotes the operation of and 1 its unit. In a geometric way, p • q is obtained by gluing the base of q onto the th edge of p, by relabeling the common arcs between p and q, respectively the arcs ( + 1) and ( 1+ 1), by p q 0 , and by adding all required non solid diagonals on the graph thus obtained to become a clique (see Figure 7.1). For example, in CZ, one has the two partial compositions

p +1 p • q 0 q = p +1 p q 0 q = + p q 0 F
. . The partial composition of C , described in geometric terms. Here, p and q are two -cliques. The arity of q is and is an integer between 1 and |p|. We name the construction C as the clique construction and C as the -clique operad. Observe that the fundamental basis of C is a set-operad basis of C . Besides, when is the trivial unitary magma {1 }, C is the linear span of all decorated cliques having only non-solid arcs. Thus, each space C ( ), 1, is of dimension 1 and it follows from the definition of the partial composition of C that this operad is isomorphic to the associative operad As. The next result shows that the clique construction is compatible with the Cartesian product of unitary magmas. P 1.1.2. Let 1 and 2 be two unitary magmas. Then, the operads (C 1 )◊(C 2 ) and C( 1 × 2 ) are isomorphic. 1.2. General properties. We investigate here some properties of clique operads, as their dimensions, their minimal generating sets, the fact that they admit a cyclic operad structure, and describe their partial compositions over two alternative bases. 

1 -2 -2 1 • 2 1 3 1 2 = 1 -2 1 1 1 2 1 (1.1.8a) 1 -2 -2 1 • 2 1 2 1 2 = 1 -2 1 1 2 1 (1.1.
p 1 q 0 ∈ δ=p 1 q 0 λ p 2 p 1 p 0 λ q 2 q 1 q 0 = 0 p 0 p 2 q 1 q 2 ∈ δ ∈ ¯ (1.2.6a) p 1 q 0 ∈ p 1 q 0 =1 λ p 2 p 1 p 0 λ q 2 q 1 q 0 -λ p 1 q 1 p 0 λ p 2 q 2 q 0 = 0 p 0 p 2 q 1 q 2 ∈ (1.2.6b) p 2 q 0 ∈ δ=p 2 q 0 λ p 2 p 1 p 0 λ q 2 q 1 q 0 = 0 p 0 p 1 q 1 q 2 ∈ δ ∈ ¯ (1.2.6c)
For instance, by Proposition 1.2.3, the binary elements 

1 1 1 (1.2.7a) + 1 - 1 + 1 -1 1 + 1 1 - 1 1 - 1 1 1 (1.2.
ρ    1 -2 -2 1    = -2 1 1 -2
(1.2.11) P 1.2.6. Let be a unitary magma. The map ρ is a rotation map of C , endowing this operad with a cyclic operad structure.

1.2.6. Alternative bases. If p and q are two -cliques of the same arity, the Hamming distance ham(p q) between p and q is the number of arcs (

) such that p( ) = q( ). Let be be the partial order relation on the set of all -cliques, where, for any -cliques p and q, one has p be q if q can be obtained from p by replacing some labels 1 of its edges or its base by other labels of . In the same way, let d be the partial order on the same set where p d q if q can be obtained from p by replacing some labels 1 of its diagonals by other labels of .

For all -cliques p, let the elements of C defined by 

H p := p ∈ p be p p (1.2.12a) and K p := p ∈ p d p (-1) ham(p p) p (1.2.12b) For instance, in CZ, H 1 1 2 2 = 1 2 + 1 2 2 + 1 1 2 + 1 1 2 2 (1.2.13a) K 1 1 2 2 = 1 1 2 2 - 1 2 2 - 1 1 2 + 1 2 (1.2.
H p • H q =              H p• q + H d (p)• q + H p• d 0 (q) + H d (p)• d 0 (q) if p = 1 and q 0 = 1 H p• q + H d (p)• q if p = 1 H p• q + H p• d 0 (q) if q 0 = 1 H p• q otherwise
(1.2.15) P 1.2.8. Let be a unitary magma. The partial composition of C can be expressed over the K-basis, for any -cliques p and q different from and any valid integer , as

K p • K q = K p• q if p q 0 = 1 K p• q + K d (p)• d 0 (q) otherwise (1.2.16)
For instance, in CZ,

H -1 2 1 • 2 H -1 1 1 = H -1 -1 2 1 1 + 2 H -1 2 1 1 + H -1 1 2 1 1 (1.2.17a) 220 7. OPERADS OF DECORATED CLIQUES K -1 2 1 • 2 K -1 1 1 = K -1 2 1 1 (1.2.17b) and in D 1 , H 0 d 1 0 • 2 H 0 0 0 = 3 H 0 0 d 1 0 0 + H 0 d 1 0 0 (1.2.18a) K 0 d 1 0 • 2 K 0 0 0 = K 0 0 d 1 0 0 + K 0 d 1 0 0 (1.2.18b)
1.2.7. Rational functions. We develop here a link between C and the operad RatFct of rational functions introduced by Loday [START_REF] Loday | On the operad of associative algebras with derivation[END_REF] (see also Section 4.2.4 of Chapter 2).

Let us assume that is a Z-graded unitary magma, that is a unitary magma such that there exists a unitary magma morphism θ : → Z. We say that θ is a rank function of . In this context, let

F θ : C → RatFct (1.2.19)
be the linear map defined, for any -clique p, by

F θ (p) := ( )∈ p + • • • + -1 θ(p( ))
(1.2.20)

For instance, by considering the unitary magma Z together with its identity map Id as rank function, one has

F Id     -1 2 1 -2 3 -1     = ( 1 + 2 + 3 + 4 ) 2 ( 1 + 2 + 3 + 4 + 5 + 6 ) 3 4 1 ( 3 + 4 + 5 + 6 ) 2 ( 5 + 6 )
(1.2.21) T 1.2.9. Let be a Z-graded unitary magma and θ be a rank function of . The map F θ is an operad morphism from C to RatFct.

The operad morphism F θ is not injective. Indeed, by considering the magma Z together with its identity map Id as rank function, one one has for instance

F Id 1 -1 - 1 = ( 1 + 2 ) - 1 - 2 = 0 (1.2.22a) F Id -1 -1 --1 -1 - -1 -1 = 1 2 3 - 1 ( 2 + 3 ) 3 - 1 2 ( 2 + 3 ) = 0 (1.2.22b) P 1.2.10
. The subspace of RatFct of all Laurent polynomials on U is the image by F Id : CZ → RatFct of the subspace of CZ consisting in the linear span of all Z-bubbles.

On each homogeneous subspace C ( ) of the elements of arity 1 of C , let the product

: C ( ) ⊗ C ( ) → C ( ) (1.2.23)
defined linearly, for each -cliques p and q of C ( ), by

(p q)( ) := p( ) q( ) (1.2.24)
where ( ) is any arc such that 1

< + 1. For instance, in CZ, 2 -1 1 -2 3 1 -1 1 2 = 3 3 -1 2 -1
(1.2.25) P 1.2.11. Let be a Z-graded unitary magma and θ be a rank function of . For any homogeneous elements and of C of the same arity,

F θ ( )F θ ( ) = F θ ( ) (1.2.26) P 1.2.12. Let p be an -clique of CZ. Then, 1 F Id (p) = F Id ((Cη)(p)) (1.2.27)
where η : Z → Z is the unitary magma morphism defined by η( ) := -for all ∈ Z.

Quotients and suboperads

We define here quotients and suboperads of C , leading to the construction of some new operads involving various combinatorial objects which are, basically, -cliques with some restrictions.

Main substructures. Most of the natural subfamilies of

-cliques that can be described by simple combinatorial properties as -cliques with restrained labels for the bases, edges, and diagonals, white -cliques, -cliques with a fixed maximal value for their crossings, -bubbles, -cliques with a fixed maximal value for their degrees, nesting-free cliques, and acyclic -cliques inherit the algebraic structure of operad of C and form quotients and suboperads of C . We construct and briefly study here these main substructures of C . For instance, in the operad BubZ, we have 

-1 2 • 3 1 1 = 1 2 (2.1.7a) 1 2 • 3 1 = 0 (2.1.
, 0 0 d 1 0 • 1 d 1 d 1 = d 1 0 0 0 d 1 (2.1.23a) 0 0 d 1 0 • 3 d 2 d 1 = 0 (2.1.23b)
The skeletons of the -cliques of Acy of arities greater than 1 are acyclic graphs or equivalently, forest of non-rooted trees. Therefore, Acy can be seen as an operad on colored forests of trees, where the edges of the trees of the forests have one color among the set ¯ . When # = 2, the dimensions of Acy begin by 1 7 38 291 2932 36961 561948 10026505 (2.1.24) and form, except for the first terms, Sequence A001858 of [Slo].

2.2. Secondary substructures. Some more substructures of C are constructed and briefly studied here. They are constructed by mixing some of the constructions of the seven main substructures of C defined in Section 2.1 in the following sense.

For any operad and operad ideals 1 and 2 of , the space 1 + 2 is still an operad ideal of , and / 1 + 2 is a quotient of both / 1 and / 2 . Moreover, if is a suboperad of and is an operad ideal of , the space ∩ is an operad ideal of , and / ∩ is a quotient of and a suboperad of / . For these reasons (straightforwardly provable), we can combine the constructions of the previous section to build a bunch of new suboperads and quotients of C . (2.2.13)

The skeletons of the -cliques of Luc are graphs such that all vertices are of degrees at most 1 and all arcs are of the form { + 1} or {1 + 1}, where + 1 is the number of vertices of the graphs. Therefore, Luc can be seen as an operad on such colored graphs, where the arcs of the graphs have one color among the set ¯ . When # = 2, the dimensions of Luc begin by 1 4 7 11 18 29 47 76 (2.2.14) and form, except for the first terms, Sequence A000032 of [Slo].

Relations between substructures.

The suboperads and quotients of C constructed in Sections 2.1 and 2.2 are linked by injective or surjective operad morphisms. To establish these, we rely on the following lemma. 

Relations between the secondary and main substructures.

Let us now list and explain the morphisms between the secondary and main substructures of C . First, immediately from their definitions, WNC is a suboperad of Cro 

Operads of noncrossing decorated cliques

We perform here a complete study of the suboperad Cro 0 of noncrossing -cliques defined in Section 2.1.3. For simplicity, this operad is denoted in the sequel as NC and named as the noncrossing -clique operad. The process giving from any unitary magma the operad NC is called the noncrossing clique construction.

General properties.

To study NC , we begin by establishing the fact that NC inherits some properties of C . Then, we shall describe a realization of NC in terms of decorated Schröder trees, compute a minimal generating set of NC , and compute its dimensions.

First of all, we call fundamental basis of NC the fundamental basis of C restricted on noncrossing -cliques. By definition of NC and by Proposition 2.1.3, the partial composition p • q of two noncrossing -cliques p and q in NC is equal to the partial composition p • q in C . Therefore, the fundamental basis of NC is a set-operad basis. ) be a diagonal or the base of p. Consider the path ( =

1 2 +1 = ) in p such that 2, for all ∈ [ + 1],
, and for all ∈ [ ], +1 is the greatest vertex of p so that ( +1 ) is a solid diagonal or a (non-necessarily solid) edge of p. The area of p adjacent to ( ) is the -bubble q of arity whose base is labeled by p( ) and q = p( +1 ) for all ∈ [ ]. From a geometric point of view, q is the unique maximal component of p adjacent to the arc ( ), without solid diagonals, and bounded by solid diagonals or edges of p. For instance, for the noncrossing Z-clique

p := 1 1 4 1 2 3 1 2 1 (3.1.1)
the path associated with the diagonal (4 9) of p is (4 5 6 8 9). For this reason, the area of p adjacent to (4 9) is the Z-bubble

1 3 2 (3.1.2) P 3.1.2.
Let be a unitary magma and p be a noncrossing -clique of arity greater than 1. Then, there is a unique -bubble q with a maximal arity 2 such that p = q • [r . Let be a unitary magma. Then, the map bt is injective and the image of bt is the linear span of all syntax trees t on such that (i) the root of t is labeled by an -bubble; (ii) the internal nodes of t different from the root are labeled by -bubbles whose bases are labeled by 1 ; (iii) if and are two internal nodes of t such that is the th child of , the th edge of the bubble labeling is solid.

Observe that bt is not an operad morphism. Indeed, bt

• 1 = = = bt • 1 bt (3.1.6)
Observe moreover that (3.1.6) holds for all unitary magmas since 1 is always idempotent.

Realization in terms of decorated Schröder trees. An

-Schröder tree t is a Schröder tree (see Section 2.2.3 of Chapter 1) such that each edge connecting two internal nodes is labeled on ¯ , each edge connecting an internal node an a leaf is labeled on , and the outgoing edge from the root of t is labeled on (see (3.1.7) for an example of a Z-Schröder tree).

From the description of the image of the map bt provided by Proposition 3.1.4, any bubble tree t of a noncrossing -clique p of arity can be encoded by an -Schröder tree s with leaves. Indeed, this -Schröder tree is obtained by considering each internal node of t and by labeling the edge connecting and its th child by the label of the th edge of the -bubble labeling . The outgoing edge from the root of s is labeled by the label of the base of the -bubble labeling the root of t. For instance, the bubble tree of (3.1.5) is encoded by the Z-Schröder tree where the labels of the edges are drawn in the hexagons and where unlabeled edges are implicitly labeled by 1 . We shall use these drawing conventions in the sequel. As a side remark, observe that the -Schröder tree encoding a noncrossing -clique p and the dual tree of p (in the usual meaning) have the same underlying unlabeled tree.

This encoding of noncrossing -cliques by bubble trees is reversible and hence, one can interpret NC as an operad on the linear span of all -Schröder trees. Hence, through this interpretation, if s and t are two -Schröder trees and is a valid integer, the tree s • t is computed by grafting the root of t to the th leaf of s. Then, by denoting by the label of the edge adjacent to the root of t and by the label of the edge adjacent to the th leaf of s, we have two cases to consider, depending on the value of := . If = 1 , we label the edge connecting s and t by . Otherwise, when = 1 , we contract the edge connecting s and t by merging the root of t and the father of the th leaf of s (see Figure 7.4). For instance, in NCN 3 , one has the two partial compositions

1 1 2 1 2 • 2 1 2 1 = 1 2 1 2 2 1 2 (3.1.8a) 1 1 2 1 2 • 3 1 2 1 = 1 1 1 1 2 2 (3.1.8b)
In the sequel, we shall indifferently see NC as an operad on noncrossing -cliques or on -Schröder trees. ( ) The expression s • t to compute. The displayed leaf is the th one of s. Proposition 3.1.5 also says that NC is the smallest suboperad of C that contains all -triangles and that NC is the biggest binary suboperad of C .

3.1.5. Dimensions. We now use the notion of bubble trees introduced in Section 3.1.2 to compute the dimensions of NC . P 3.1.6. Let be a finite unitary magma. The Hilbert series NC ( ) of NC satisfies

+ 3 -2 2 + 2 -1 2 + 2 2 -3 + 2 -1 NC ( )+( -1) NC ( ) 2 = 0 (3.1.9) where := # .
We deduce from Proposition 3.1.6 that the Hilbert series of NC satisfies

NC ( ) = 1 -(2 2 -3 + 2) -1 -2(2 2 -) + 2 2 2( -1) (3.1.10)
where := # = 1.

By using Narayana numbers, whose definition is recalled in Section 2.1.6, one can state the following result. We can use Proposition 3.1.7 to compute the first dimensions of NC . For instance, depending on := # , we have the following sequences of dimensions: The second one forms, except for the first terms, Sequence A054726 of [Slo]. The last two sequences are not listed in [Slo] at this time.

1 1 1 1 1 1 1 1 = 1 (3.1.

Presentation and Koszulity.

The aim of this section is to establish a presentation by generators and relations of NC . For this, we will define an adequate rewrite rule on the set of the syntax trees on and prove that it admits the required properties.

Space of relations.

Let NC be the subspace of FO ( ) (3) generated by the elements

p 2 p 1 p 0 • 1 q 2 q 1 q 0 - p 2 r 1 p 0 • 1 q 2 q 1 r 0 if p 1 q 0 = r 1 r 0 = 1 (3.2.1a) p 2 p 1 p 0 • 1 q 2 q 1 q 0 - r 2 q 1 p 0 • 2 p 2 q 2 r 0 if p 1 q 0 = r 2 r 0 = 1 (3.2.1b) p 2 p 1 p 0 • 2 q 2 q 1 q 0 - r 2 p 1 p 0 • 2 q 2 q 1 r 0 if p 2 q 0 = r 2 r 0 = 1 (3.2.1c)
where p, q, and r are -triangles. Observe that, by Proposition 3.2.2, the dimension of NC only depends on the cardinality of and not on its operation .

Rewrite rule.

Let be the rewrite rule on the set of the -syntax trees on satisfying 

p 2 p 1 p 0 • 1 q 2 q 1 q 0 p 2 δ p 0 • 1 q 2 q 1 if q 0 = 1 where δ := p 1 q 0 (3.2.3a) p 2 p 1 p 0 • 1 q 2 q 1 q 0 q 1 p 0 • 2 p 2 q 2 if p 1 q 0 = 1 (3.2.3b) p 2 p 1 p 0 • 2 q 2 q 1 q 0 δ p 1 p 0 • 2 q 2 q 1 if q 0 = 1 where δ := p 2 q 0 (3.2.
:= FO ( ) / NC (3.2.4)
as the linear span of all normal forms of . Moreover, as a consequence of Lemma 3.2.1, the map φ : → NC defined linearly for any normal form t of by φ(t) := ev(t) is an operad morphism. Now, by Proposition 3.1.5, φ is surjective. Moreover, by Lemma 3.2.4, we obtain that the dimensions of the spaces ( ), 1, are the ones of NC ( ). Hence, φ is an operad isomorphism and the statement of the theorem follows. By Theorem 3.2.5, the operad NCN 2 is generated by

N 2 = 1 1 1 1 1 1 1 1 1 1 1 1 (3.2.5)
and these generators are subjected exactly to the nontrivial relations

3 • 1 2 1 1 = 3 1 • 1 2 1 1 2 3 ∈ N 2 (3.2.6a) 1 • 1 2 1 1 = 3 • 1 2 1 = 1 • 2 3 2 = 1 1 • 2 3 2 1 1 2 3 ∈ N 2 (3.2.6b) 1 • 2 3 2 1 = 1 1 • 2 3 2 1 2 3 ∈ N 2 (3.2.6c)
T 3.2.6. For any finite unitary magma , NC is Koszul and the set of the normal forms of forms a Poincaré-Birkhoff-Witt basis of NC .

Suboperads generated by bubbles.

In this section, we consider suboperads of NC generated by finite sets of -bubbles. We assume here that is endowed with an arbitrary total order so that = { 0 1 

} with 0 = 1 . 3.
) := p∈ G p = ∈[|p|] ξ p (3.3.1)
where G is the set of all -bubbles that can be obtained by partial compositions of elements of G. Observe from (3.3.1) that a noncommutative monomial ∈ Ξ 2 appears in B with 1 as coefficient if and only if there is in the suboperad of NC generated by G an -bubble with a base labeled by and with as border.

Let also for any ∈ , the series F of N defined by

F ( ) := B + F 0 ( ) + F 1 ( ) (3.3.2)
where for any ∈ ,

F ( ) := ∈ =1 F ( ) (3.3.3) P 3.3.2

. Let be a unitary magma and G be a finite set of -bubbles such that, by denoting by B (resp. E) the set of the labels of the bases (resp. edges) of the elements of G,

is (E B)-quasi-injective. Then, the Hilbert series (NC ) G ( ) of the suboperad of NC generated by G satisfies

(NC ) G ( ) = + ∈ F ( ) (3.3.4)
As a side remark, Proposition 3.3.2 can be proved by using the notion of bubble decompositions of operads developed in Chapter 3. This result provides a practical method to compute the dimensions of some suboperads (NC ) G of NC by describing the series (3.3.1) of the bubbles of G . This result implies also, when G satisfies the requirement of Proposition 3.3.2, that the Hilbert series of (NC ) G is algebraic. Hence, (NCE 2 ) G is not a quadratic operad. Moreover, it is possible to prove that this operad does not admit any other nontrivial relations between its generators. This can be performed by defining a rewrite rule on the syntax trees on G, consisting in rewriting the left patterns of (3.3.6a), (3.3.6b), (3.3.6c), and (3.3.6d) into their respective right patterns, and by checking that this rewrite rule admits the required properties (like the ones establishing the presentation of NC by Theorem 3.2.5). The existence of this nonquadratic operad shows that NC contains nonquadratic suboperads even if it is quadratic.

By describing the bubbles of (NCE 2 ) G , Proposition 3.3.2 leads to the fact that the Hilbert series of (NCE 2 ) G satisfies the algebraic equation

+ ( -1) (NCE 2 ) G ( ) + (2 + 1) (NCE 2 ) G ( ) 2 = 0 (3.3.7)
The first dimensions of (NCE 2 ) G are 1 2 8 36 180 956 5300 30316 (3.3.8) and form Sequence A129148 of [Slo]. Computer experiments show that the generators of (NCD 0 ) G are subjected to four quadratic nontrivial relations

• 1 = • 2 (3.3.10a)
where p, q, and r are -triangles. Remark that has to be finite because Theorem 3.2.5 requires this property as premise.

3.4.2. Free algebras over one generator. From the realization of NC coming from its definition as a suboperad of C , the free NC -algebra over one generator is the linear span NC of all noncrossing -cliques endowed with the linear operations

p 2 p 1 p O : NC ( ) ⊗ NC ( ) → NC ( + ) p ∈ 1 (3.4.3)
defined, for any noncrossing -cliques q and r, by

q p 2 p 1 p 0 r := p 2 p 1 p 0 • 2 r • 1 q (3.4.4)
In terms of -Schröder trees (see Section 3.1.3), (3.4.4) is the -Schröder tree obtained by grafting the -Schröder trees of q and r respectively as left and right children of a binary corolla having its edge adjacent to the root labeled by p 0 , its first edge labeled by p 1 q 0 , and second edge labeled by p 2 r 0 , and by contracting each of these two edges when labeled by 1 . For instance, in the free NCN 3 -algebra, we have

1 2 1 1 2 1 2 1 1 2 2 = 1 1 2 1 2 2 1 1 1 1 (3.4.5a) 1 2 1 1 2 1 1 1 1 2 2 = 1 1 2 2 1 1 1 2 1 (3.4.5b) 1 2 1 1 2 0 2 1 1 2 2 = 1 1 2 2 2 1 1 1 1 (3.4.5c) 1 2 1 1 2 0 1 1 1 2 2 = 1 2 2 1 1 1 2 1 (3.4.5d)
3.4.3. From associative algebras. Let be an associative algebra with associative product denoted by , and ω : → ∈ (3.4.6) be a family of linear maps, not necessarily associative algebra morphisms, indexed by the elements of . We say that together with this family (3.4.6) of maps is a

-compatible algebra if ω • ω = ω (3.4.7)
for all ∈ . Observe that (3.4.7) implies in particular that ω 1 = Id where Id is the identity map on . This notion of -compatible algebras is very similar to the notion of -compatible algebras where is a monoid, developed in Section 1.2 of Chapter 4. Let us now use -compatible associative algebras to construct NC -algebras.

T 3.4.1. Let be a finite unitary magma and be an -compatible associative algebra. The vector space endowed with the binary linear operations

p 2 p 1 p 0 : ⊗ → p ∈ (3.4.8)
defined for each -triangle p and any

1 2 ∈ by 1 p 2 p 1 p 0 2 := ω p 0 (ω p 1 ( 1 ) ω p 2 ( 2 )) (3.4.9)
is an NC -algebra.

By Theorem 3.4.1, has the structure of an NC -algebra. Hence, there is a left action • of the operad NC on the tensor algebra of of the form

• : NC ( ) ⊗ ⊗ → 1 (3.4.10)
whose definition comes from the ones of the operations (3.4.8) and Relation (4.1.25) of Chapter 2. We describe here an algorithm to compute the action of any element of NC of arity on tensors

1 ⊗ • • • ⊗ of ⊗ . First, if b is an -bubble of arity , b • ( 1 ⊗ • • • ⊗ ) = ω b 0   ∈[ ] ω b ( )   (3.4.11)
where the product of (3.4.11) denotes the iterated version of the associative product of . When p is a noncrossing -clique of arity , p acts recursively on

1 ⊗ • • • ⊗ as follows. One has p • 1 = 1 (3.4.12)
when p = , and Observe that, by Propositions 3.2.2 and 3.5.2, we have

p • ( 1 ⊗ • • • ⊗ ) = b • r 1 • 1 ⊗ • • • ⊗ |r 1 | ⊗ • • • ⊗ r • |r 1 |+•••+|r -1 |+1 ⊗ • • • ⊗ (3.4.
dim NC + dim ! NC = 2 6 -2 5 + 4 + 2 5 -4 = 2 6 = dim FO ( ) (3) 
(3.5.5) as expected by Koszul duality, where := # .

3.5.2. Dimensions. P 3.5.3. Let be a finite unitary magma. The Hilbert series

NC ! ( ) of NC ! satisfies +( -1) 2 + 2 2 -3 + 2 -1 NC ! ( )+ 3 -2 2 + 2 -1 NC ! ( ) 2 = 0 (3.5.6)
where := # .

We deduce from Proposition 3.5.3 that the Hilbert series of NC ! satisfies

NC ! ( ) = 1 -(2 2 -3 + 2) -1 -2(2 3 -2 2 + ) + 2 2 2( 3 -2 2 + 2 -1)
(3.5.7) where := # = 1. P 3.5.4. Let be a finite unitary magma. For all 2,

dim NC ! ( ) = 0 -2 +1 ( ( -1) + 1) ( ( -1)) --2 nar( ) (3.5.8)
We can use Proposition 3.5.4 to compute the first dimensions of NC ! . For instance, depending on := # , we have the following sequences of dimensions: The second one is Sequence A234596 of [Slo]. The last two sequences are not listed in [Slo] at this time. It is worth observing that the dimensions of NC ! when # = 2 are the ones of the operad BNC of bicolored noncrossing configurations (see Chapter 3).

1 1 1 1 1 1 1 1 = 1 (3.5.

Basis. To describe a basis of NC !

, let us introduce the following sort of -decorated cliques. A dual -clique is an 2 -clique such that its base and its edges are labeled by pairs ( ) ∈

2

, and all solid diagonals are labeled by pairs ( ) ∈ 2 with = . Observe that a non-solid diagonal of a dual -clique is labeled by (1 1 ). All definitions about -cliques of Section 1.1 remain valid for dual -cliques. For example,

(

(0 2) ( 1 1) 
(

(3.5.10) is a noncrossing dual N 3 -clique. P 3.5.5. Let be a finite unitary magma. The underlying graded vector space of NC ! is the linear span of all noncrossing dual -cliques.

Proposition 3.5.5 gives a combinatorial description of the elements of NC ! . Nevertheless, we do not know for the time being a partial composition on the linear span of these elements providing a realization of NC ! .

Concrete constructions

The clique construction provides alternative definitions of known operads. We explore here the cases of the operad NCT of based noncrossing trees, the operad 4 of formal fractions, the operad BNC of bicolored noncrossing configurations, the operads MT and DMT of multi-tildes and double multi-tildes, and the gravity operad Grav.

Rational functions and related operads.

We use here the (noncrossing) clique construction to interpret some few operads related to the operad RatFct of rational functions. 4.1.1. Dendriform and based noncrossing tree operads. One can build the operad NCT of based noncrossing trees [START_REF] Chapoton | The anticyclic operad of moulds[END_REF] (see for instance Section 3.2.8 of Chapter 3 where an operad isomorphic to NCT is constructed) in the following way. is isomorphic to the operad NCT.

By Theorem 1.2.9, F Id is an operad morphism from CZ to RatFct. Hence, the restriction of F Id on NCT is also an operad morphism from NCT to RatFct. Moreover, since 

F Id -1 = 1 1 (4.1.2a) F Id -1 = 1 2 (4.1.2b) and RatFct { -1 1 -1 2 } is isomorphic
1 -1 -1 -1 1 -1 1 1 -1 -1 -1 1 (4.1.3) is isomorphic to the operad 4 .
Proposition 4.1.2 shows hence that the operad 4 can be built through the construction C. Observe also that, as a consequence of Proposition 4.1.2, all suboperads of 4 defined in [START_REF] Chapoton | A set-operad of formal fractions and dendriform-like suboperads[END_REF] that are generated by a subset of (4.1.3) can be constructed by the clique construction.

Operad of bicolored noncrossing configurations.

One can build the operad BNC of bicolored noncrossing configurations (see Chapter 3) in the following way.

Consider the unitary magma BNC := {1 a b} wherein operation is defined by the Cayley table

1 a b 1 1 a b a a a 1 b b 1 b (4.2.1)
In other words, BNC is the unitary magma wherein a and b are idempotent, and a b = 1 = b a. Observe that BNC is a commutative unitary magma, but, since 

Moreover, φ

BNC is an isomorphism between these two operads.

Proposition 4.2.1 shows hence that the operad BNC can be built through the noncrossing clique construction. Moreover, observe that in Section 2.2.5 of Chapter 3, an automorphism of BNC called complementary is considered. The complementary of a bicolored noncrossing configuration is an involution acting by modifying the colors of some of its arcs. Under our setting, this automorphism translates simply as the map Cθ :

BNC → BNC where BNC is the operad isomorphic to BNC described in the statement of Proposition 4.2.1 and θ : BNC → BNC is the unitary magma automorphism of BNC satisfying θ(1) = 1, θ(a) = b, and θ(b) = a.

Besides, it is shown in Chapter 3 that the set of all bicolored noncrossing configurations of arity 2 is a minimal generating set of BNC. Thus, by Proposition 4.2.1, the set (4.2.4) is a minimal generating set of the suboperad BNC of NC BNC isomorphic to BNC. As a consequence, all the suboperads of BNC defined in Chapter 3 which are generated by a subset of the set of the generators of BNC can be constructed by the noncrossing clique construction. This includes, among others, the magmatic operad, the free operad on two binary generators, the operad of noncrossing plants NCP [START_REF] Chapoton | The anticyclic operad of moulds[END_REF], the dipterous operad [LR03, Zin12], and the 2-associative operad [LR06, Zin12]. 4.3. Operads from language theory. We provide constructions of two operads coming from formal language theory by using the clique construction. 4.3.1. Multi-tildes. One can build the operad MT of multi-tildes [START_REF] Luque | Some Combinatorial Operators in Language Theory[END_REF] (see also Chapter 12) in the following way.

Let φ

MT : MT → CD 0 be the map linearly defined as follows. For any multi-tilde ( s) different from (1 {(1 1)}), φ MT (( s)) is the D 0 -clique of arity defined, for any 1 < + 1, by

φ MT (( s))( ) := 0 if ( -1) ∈ s 1 otherwise (4.3.1)
For instance,

φ MT ((5 {(1 5) (2 4) (4 5)})) = 0 0 0 (4.3.2) P 4.3.1.
The operad CD 0 is isomorphic to the suboperad of MT consisting in the linear span of all multi-tildes except the nontrivial multi-tilde (1 {(1 1)}) of arity 1.

Moreover, φ

MT is an isomorphism between these two operads.

Double multi-tildes.

One can build the operad DMT of double multi-tildes (see Chapter 12) in the following way.

Consider the operad CD 2 0 and let φ DMT : DMT → CD 2 0 be the map linearly defined as follows. The image by φ DMT of (1 ∅ ∅) is the unit of CD 2 0 and, for any double multi-tilde ( s t) of arity 2, φ DMT (( s t)) is the D 2 0 -clique of arity defined, for any 1

< + 1, by φ DMT (( s t))( ) :=              (0 1) if ( -1) ∈ s and ( -1) / ∈ t (1 0) if ( -1) / ∈ s and ( -1) ∈ t (0 0) if ( -1) ∈ s and ( -1) ∈ t (1 1) otherwise (4.3.3) For instance, φ DMT ((4 {(2 2) (2 3)} {(1 3) (1 4) (2 3)})) = (1 0) (1 0) (0 1) (0 0) (4.3.4) P 4.3.2.
The operad CD 2 0 is isomorphic to the suboperad of DMT consisting in the linear span of all double multi-tildes except the three nontrivial double multi-tildes of arity 1. Moreover, φ

DMT is an isomorphism between these two operads.

Gravity operad.

One can build the nonsymmetric version [START_REF] Alm | Brown's dihedral moduli space and freedom of the gravity operad[END_REF] (see Section 4.2.7 of Chapter 2) of the operad Grav of gravity chord diagrams [START_REF] Getzler | Two-dimensional topological gravity and equivariant cohomology[END_REF] in the following way.

Let φ

Grav : Grav → CD 0 be the linear map defined in the following way. Let us say that an -clique p satisfies the gravity condition if p = , or p has only solid edges and bases, and for all crossing diagonals ( ) and ( ) of p such that < , p(

) = 1 = p( ) implies p( ) = 1 . P 4.4.1.
The linear span of all D 0 -cliques satisfying the gravity condition forms a suboperad of CD 0 isomorphic to Grav. Moreover, φ Grav is an isomorphism between these two operads. Proposition 4.4.1 shows hence that the operad Grav can be built through the clique construction. Moreover, as explained in [START_REF] Alm | Brown's dihedral moduli space and freedom of the gravity operad[END_REF], Grav contains the nonsymmetric version of the Lie operad, the symmetric operad describing the category of Lie algebras. This nonsymmetric version of the Lie operad as been introduced in [START_REF] Salvatore | The operad Lie is free[END_REF]. Since Lie is contained in Grav as the subspace of all gravity chord diagrams having the maximal number of blue diagonals for each arity, Lie can be built through the clique construction as the suboperad of CD 0 containing all the D 0 -cliques that are images by φ Grav of such maximal gravity chord diagrams.

Besides, this alternative construction of Grav leads to the following generalization for any unitary magma of the gravity operad. Let Grav be the linear span of all -cliques satisfying the gravity condition. It follows from the definition of the partial composition of C that Grav is an operad. Moreover, observe that when has nontrivial unit divisors, Grav is not a free operad.

Concluding remarks

This chapter presents and studies the clique construction C, producing operads from unitary magmas. We have seen that C has many both algebraic and combinatorial properties. Among its most notable ones, C admits several quotients involving combinatorial families of decorated cliques, admits a binary and quadratic suboperad NC which is a Koszul, and contains a lot of already studied and classic operads. Besides, in the course of this chapter, whose is already long enough, we have put aside a bunch of questions. Let us address these here.

First, we have for the time being no formula to enumerate prime (resp. white prime) -cliques (see (1.2.3) (resp. (1.2.4)) for # = 2). Obtaining these forms a first combinatorial question.

When is a Z-graded unitary magma, a link between C and the operad of rational functions RatFct has been developed in Section 1.2.7 by means of a morphism F θ between these two operads. We have observed that F θ is not injective (see (1.2.22a) and (1.2.22b)). A description of the kernel of F θ , even when is the unitary magma Z, seems not easy to obtain. Trying to obtain this description is a second perspective of this work.

Here is a third perspective. In Section 2, we have defined and briefly studied some quotients and suboperads of C . In particular, we have considered the quotient Deg 1 of C , involving -cliques of degrees at most 1. As mentioned, Deg 1 D 0 is an operad defined on the linear span of involutions (except the nontrivial involution of S 2 ). A complete study of this operad seems worth considering, including a description of a minimal generating set, a presentation by generators and relations, a description of its partial composition on the H-basis and on the K-basis, and a realization of this operad in terms of standard Young tableaux.

The last question we develop here concerns the Koszul dual NC ! of NC . Section 3.5 contains results about this operad, like a description of its presentation and a formula for its dimensions. We have also established the fact that, as graded vector spaces, NC ! is isomorphic to the linear span of all noncrossing dual -cliques. To obtain a realization of NC ! , it is now enough to endow this last space with an adequate partial composition. This is the last perspective we address here.

Introduction

The combinatorial collection of the permutations is naturally endowed with two operations. One of them, the shifted shuffle product, takes two permutations as input and put these together by blending their letters. The other one, the deconcatenation coproduct, takes one permutation as input and disassembles it by cutting it into prefixes and suffixes. These two operations satisfy certain compatibility relations, resulting in that the linear span of all permutations forms a Hopf bialgebra [START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF], known as the Malvenuto-Reutenauer Hopf bialgebra or FQSym [START_REF] Duchamp | Noncommutative Symmetric Functions VI: Free Quasi-Symmetric Functions and Related Algebras[END_REF] (see Section 3.2.3 of Chapter 2). This Hopf bialgebra plays a central role in algebraic combinatorics for at least two reasons. On the one hand, FQSym contains, as Hopf sub-bialgebras, several structures based on well-known combinatorial objects as e.g., standard Young tableaux [START_REF] Duchamp | Noncommutative Symmetric Functions VI: Free Quasi-Symmetric Functions and Related Algebras[END_REF], binary trees [START_REF] Hivert | The Algebra of Binary Search Trees[END_REF], and integer compositions [GKL + 95]. The construction of these substructures revisits many algorithms coming from computer science and combinatorics. Indeed, the insertion of a letter into a Young tableau (following Robinson-Schensted [START_REF] Schensted | Longest increasing and decreasing subsequences[END_REF][START_REF] Lothaire | Algebraic combinatorics on words. Encyclopedia of mathematics and its applications[END_REF]) or in a binary search tree [START_REF] Knuth | The art of computer programming, volume 3: Sorting and searching[END_REF] are algorithms which prove to be as enlightening as surprising in this algebraic context [START_REF] Duchamp | Noncommutative Symmetric Functions VI: Free Quasi-Symmetric Functions and Related Algebras[END_REF][START_REF] Hivert | The Algebra of Binary Search Trees[END_REF]. On the other hand, the polynomial realization of FQSym allows to associate a polynomial with any permutation [START_REF] Duchamp | Noncommutative Symmetric Functions VI: Free Quasi-Symmetric Functions and Related Algebras[END_REF] providing a generalization of symmetric functions, the free quasi-symmetric functions. This generalization offers alternative ways to prove several properties of (quasi)symmetric functions.

It is thus natural to enrich this theory by proposing generalizations of FQSym. In the last years, several generalizations were proposed and each of these depends on the way we regard permutations. By regarding a permutation as a word and allowing repetitions of letters, Hivert introduced in [Hiv99] (see [START_REF] Novelli | Polynomial realizations of some trialgebras[END_REF] for a detailed study) a Hopf bialgebra WQSym on packed words. Additionally, by allowing some jumps for the values of the letters of permutations, Novelli and Thibon defined in [START_REF] Novelli | Hopf algebras and dendriform structures arising from parking functions[END_REF] another Hopf bialgebra PQSym which involves parking functions. These authors also showed in [START_REF] Novelli | Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions[END_REF] that the -colored permutations admit a Hopf bialgebra structure FQSym ( ) . Furthermore, by regarding a permutation σ as a bijection associating the singleton {σ( )} with any singleton { }, Aguiar and Orellana constructed [START_REF] Aguiar | The Hopf algebra of uniform block permutations[END_REF] a Hopf bialgebra structure UBP on uniform block permutations, i.e., bijections between set partitions of [ ], where each part has the same cardinality as its image. Finally, by regarding a permutation through its permutation matrix, Duchamp, Hivert and Thibon introduced in [DHT02] a Hopf bialgebra MQSym which involves some kind of integer matrices.

In this chapter we propose a new generalization of FQSym by regarding permutations as permutation matrices. For this purpose, we consider the set of 1-packed matrices that are square matrices with entries in the alphabet {0 1} which have at least one 1 by row and by column. By equipping these matrices with a product and a coproduct, we obtain a bigraded Hopf bialgebra, denoted by PM 1 . By only considering the grading offered by the size (resp. the number of nonzero entries) of matrices, we obtain a simply graded Hopf bialgebra denoted by PMN 1 (resp. PML 1 ). Note that since permutation matrices form a Hopf sub-bialgebra of PMN 1 (and PML 1 ) isomorphic to FQSym, PMN 1 (and PML 1 ) provides a generalization of FQSym. Now, by allowing the entries different from 0 of a packed matrix to belong to the alphabet [ ] where is a positive integer, we obtain the notion of a -packed matrix. The definition of PM 1 (and PMN 1 and PML 1 ) obviously extends to these matrices and leads to the Hopf bialgebra PM (and PMN and PML ) involving -packed matrices. Besides, since any -packed matrix is also a + 1-packed matrix, (PM )

1 is an increasing infinite sequence of Hopf bialgebras for inclusion. Let us now list some remarkable facts about these Hopf bialgebras. First, FQSym ( ) embeds into PMN (and PML ), and the dual UBP of UBP embeds into PMN 1 . Besides, as associative algebras, PML 1 embeds into MQSym. On the other hand, by considering a bijection between the set of the alternating sign matrices [START_REF] Mills | Alternating sign matrices and descending plane partitions[END_REF] and particular 1-packed matrices, it appears that the linear span of these 1-packed matrices forms a Hopf sub-bialgebra of PM . This Hopf bialgebra, called ASM, is hence a Hopf bialgebra on alternating sign matrices. Several statistics defined on alternating sign matrices through the six-vertex configurations with domain wall boundary conditions [START_REF] Kuperberg | Another proof of the alternating-sign matrix conjecture[END_REF] can be interpreted under this algebraic point of view.

Our results are presented as follows. The aims of Section 1 are to introduce -packed matrices and the Hopf bialgebra of -packed matrices. Section 2 is devoted to the study of the algebraic properties of PM . In Section 3, we describe morphisms between PM another Hopf bialgebras. We also provide a general way to construct Hopf sub-bialgebras of PM analogous to the construction of Hopf sub-bialgebras of FQSym by monoid congruences [START_REF] Hivert | Combinatoire des fonctions quasi-symétriques[END_REF] (see also [START_REF] Giraudo | Combinatoire algébrique des arbres[END_REF]). We end this chapter by Section 4 where we study the Hopf sub-bialgebra ASM of PMN 1 .

Hopf algebra of packed matrices

We begin this section by defining -packed matrices and by enumerating them following their sizes and their number of nonzero entries. Then we introduce the Hopf algebra PM on the linear span of the -packed matrices. A -packed matrix M of size is a matrix of in which each row and each column contains at least one entry different from 0, that is to say if the subsets N r (M) and N c (M) are empty.

We shall denote in the sequel by the set of all -packed matrices of size with exactly nonzero entries, by -the set of all -packed matrices of size , by -the set of all -packed matrices with exactly nonzero entries, and by the set of all -packed matrices. The -packed matrix of size 0 is denoted by ∅. For instance, the seven 1-packed matrices of size 2 are

1 0 0 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 (1.1.2)
and the ten 1-packed matrices of 1 -3 are

1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 (1.1.3)
1.1.2. Operations and decompositions. Let us now define some operations on packed matrices. We shall denote by Z the × null matrix. Given M 1 and M 2 two -packed matrices of respective sizes 1 and 2 , set

M 1 M 2 :=   M 1 Z 2 1 Z 1 2 M 2   and M 1 M 2 :=   Z 2 1 M 1 M 2 Z 1 2   (1.1.4)
Note that these two matrices are -packed matrices of size 1 + 2 . We shall respectively call and the over and under operators. These two operators are obviously associative.

Given a matrix M whose entries are in A , the compression of M is the matrix cp(M) obtained by deleting in M all null rows and columns. Let M be a -packed matrix. The tuple (M 1 M ) is a column decomposition of M, and we write

M = M 1 • • • • • M , if for all ∈ [ ]
the cp(M ) are square matrices (and not necessarily column matrices) and

M = M 1 M (1.1.5)
Similarly, the tuple (M 1 M ) is a row decomposition of M, and we write

M = M 1 •• • ••M , if for all ∈ [ ]
the cp(M ) are square matrices (and not necessarily row matrices) and

M =      M 1 M      (1.1.6)
For instance, here are a 1-packed matrix of size 5, one of its column decompositions and one of its row decompositions: 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 = 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0

• 0 0 0 0 1 1 0 0 1 1 = 0 1 1 0 0 0 0 1 0 0 • 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 (1.1.7)
These two decompositions have the following property.

L 1.1.1. Let M be a packed matrix and (M 1 M 2 ) be a column (resp. row) decomposition of M. Then, there is no integer such that the th rows (resp. columns) of M 1 and M 2 contain both a nonzero entry.

Lemma 1.1.1 provides a sufficient condition to ensure that a given pair (M 1 M 2 ) of matrices cannot be a column (resp. row) decomposition of a matrix M. Nevertheless, it is not a necessary condition. Indeed, let

M := 1 1 0 0 0 1 0 0 1 and (M 1 M 2 ) := 1 1 0 0 0 0 0 1 1 (1.1.8)
Then, even if there is no nonzero entry on the same row in M 1 and M 2 , (M 1 M 2 ) is not a column decomposition of M.

Enumeration.

We enumerate here -packed matrices by both their size and their number of nonzero entries. We then specialize our enumeration to obtain formulas enumerating these objects by their size and, separately, by their number of nonzero entries. 1.2.1. General enumeration. Using the sieve principle, we obtain the following enumerative result. P 1.2.1. For any 1, 0, and 0, the number # of -packed matrices of size with exactly nonzero entries is

# = 0 (-1) + (1.2.1)
Table 8.1 shows the first few values of # . The enumeration in the case = 1 is Sequence A055599 of [Slo]. 1.2.2. Enumeration by size. Notice that for any 0, since

-= 2 (1.2.2)
the set -is finite. Hence, by using Proposition 1.2.1, we obtain These are respectively Sequences A104602 and A230880 of [Slo].

# -= 0 (-1) + ( + 1) (1.2.3) Sequences (# 1 
1.3. Hopf bialgebra structure. We are now in position to define a Hopf bialgebra structure on the linear span of all -packed matrices.

1.3.1. Bigraded space. Let, for any 1,

PM := 0 0 K (1.3.1)
be the bigraded vector space spanned by the set of all -packed matrices. The elements F M , where the M are -packed matrices, form a basis of PM . We shall call this basis the fundamental basis of PM .

1.3.2. Product and coproduct. Given M 1 and M 2 two -packed matrices of respective sizes 1 and 2 , set

M 1 • 2 :=   M 1 Z 1 2   and 1 • M 2 :=   Z 2 1 M 2   (1.3.2)
The column shifted shuffle M

1 ¢ M 2 of M 1 and M 2 is the set of all matrices obtained by shuffling the columns of M 1 • 2 with the columns of 1 • M 2 .
Let us endow PM with a product • linearly defined, for any -packed matrices M 1 and

M 2 , by F M 1 • F M 2 := M ∈ M 1 ¢M 2 F M (1.3.3) For instance, in PM 1 one has F 0 1 1 1 • F 1 0 0 1 = F   0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 1   + F   0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 1   + F   0 0 0 1 1 0 0 1 0 1 0 0 0 0 1 0   + F   0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1   + F   0 0 0 1 0 1 0 1 1 0 0 0 0 0 1 0   + F   0 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0   (1.3.4)
Moreover, we endow PM with a coproduct ∆ linearly defined, for any -packed matrix M, by

∆ (F M ) := M=M 1 •M 2 F cp(M 1 ) ⊗ F cp(M 2 )
(1.3.5)

For instance, in PM 1 one has

∆F   1 1 0 0 0 0 0 1 1 0 1 0 0 1 0 0   = F   1 1 0 0 0 0 0 1 1 0 1 0 0 1 0 0   ⊗ F ∅ + F 1 1 0 1 0 1 0 1 0 ⊗ F [ 1 ] + F ∅ ⊗ F   1 1 0 0 0 0 0 1 1 0 1 0 0 1 0 0   (1.3.6)
Note that by definition, the product and the coproduct of PM are multiplicity free.

T 1.3.1. The vector space PM endowed with the product • and the coproduct ∆ is a bigraded and connected bialgebra where homogeneous components are finitedimensional.

Notice that since any -packed matrix is also a + 1-packed matrix, the vector space PM is included in PM +1 . Hence, and by Theorem 1.3.1,

PM 1 PM 2 • • • (1.3.7)
is an increasing infinite sequence of bigraded bialgebras for inclusion. The first few dimensions of PM 1 and PM 2 are given by Table 8.1.

1.3.3. Antipode. Since PM is, by Theorem 1.3.1, a bigraded and connected bialgebra, it admits an antipode and hence, is a Hopf bialgebra. The antipode ν of PM satisfies, for any -packed matrix M, ν

(F M ) = 1 M=M 1 •••••M M =∅ ∈[ ] (-1) F cp(M 1 ) • • F cp(M ) (1.3.8)
For instance, in PM 1 one has

ν F 0 1 1 1 0 0 0 1 0 = -F 0 1 1 1 0 0 0 1 0 + F [ 1 ] • F 1 1 1 0 = F 1 0 0 0 1 1 0 1 0 + F 0 1 0 1 0 1 1 0 0 + F 0 0 1 1 1 0 1 0 0 -F 0 1 1 1 0 0 0 1 0 (1.3.9)
Note besides that ν is not an involution. Indeed, and PML 2 are given by (1.2.8) and (1.2.9). In the sequel, we shall denote by ( ) (resp. ( )) the Hilbert series of PMN (resp. PML ).

ν 2 F 0 1 1 1 0 0 0 1 0 = F 1 1 0 1 0 0 0 0 1 + F 1 0 1 1 0 0 0 1 0 + F 0 1 1 0 1 0 1 0 0 + F 0 1 1 1 0 0 0 1 0 -F 1 0 0 0 1 1 0 1 0 -F 0 1 0 1 0 1 1 0 0 -F 0 0 1 1 1 0 1 0 0 (1.3.

Algebraic properties

A complete study of the algebraic properties of PM is performed here. We show that PM is free as an associative algebra, self-dual, and admit a bidendriform bialgebra structure.

Multiplicative bases and freeness.

To show that PM is free as an associative algebra, we define two multiplicative bases of PM . The definitions of these bases rely on a poset structure on the set of all -packed matrices. We now endow with the partial order relation PM defined as the reflexive and transitive closure of . Figure 8.2 shows an interval of this partial order. 1 0 0 0 1 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 1 1 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 1 0 1 0 0 0 0 1 0 0 0 1 1 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 0 F . . The Hasse diagram of an interval for the order PM of packed matrices.

Notice that by regarding a permutation σ of S as its permutation matrix (i.e., the 1packed matrix M of size satisfying M = 1 if and only if σ = ), the poset ( -PM ) restricted to permutation matrices is the right weak order on permutations [START_REF] Th | Analyse algébrique d'un scrutin[END_REF]. These are respectively Sequences A230883 and A230884 of [Slo].

2.2. Self-duality. The product and the coproduct of the dual of PM are described here.

Moreover, the fact that PM is a self-dual Hopf bialgebra is shown.

2.2.1. Dual Hopf bialgebra. Let us denote by PM the bigraded dual vector space of PM , by F M , where the M are -packed matrices, the adjoint basis of the fundamental basis of PM , and by -the associated duality bracket (see (1.1.17) of Chapter 2).

Let M

1 and M 2 be two -packed matrices of respective sizes 1 and 2 . By duality, the product in PM satisfies

F M 1 • F M 2 = M∈ ∆ (F M ) F M 1 ⊗ F M 2 F M (2.2.1) Let us set M 1 • 2 := M 1 Z 2 1 and 1 • M 2 := Z 1 2 M 2 (2.2.2)
The row shifted shuffle M 1 * M 2 of M 1 and M 2 is the set of all matrices obtained by shuffling the rows of M 1 • 2 with the rows of 1 • M 2 . By a routine computation, we obtain the following expression for the product of PM :

F M 1 • F M 2 = M∈M 1 * M 2 F M (2.2.3)
For instance, in PM 1 one has

F 0 1 1 1 • F 1 0 0 1 = F   0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 1   + F   0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 1   + F   0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 1   + F   0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0   + F   0 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0   + F   0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0   (2.2.4)
Let M be a -packed matrix. By duality, the coproduct in PM satisfies

∆ (F M ) = M 1 M 2 ∈ F M 1 • F M 2 F M F M 1 ⊗ F M 2 (2.2.5)
By a routine computation, we obtain the following expression for the coproduct of PM :

∆ (F M ) = M=M 1 •M 2 F cp(M 1 ) ⊗ F cp(M 2 )
(2.2.6)

For instance, in PM 1 one has 

∆F   0 0 1 0 0 0 0 1 1 0 0 0 1 1 0 0   = F   0 0 1 0 0 0 0 1 1 0 0 0 1 1 0 0   ⊗ F ∅ + F 1 0 1 1 ⊗ F 1 0 0 1 + F 0 0 1 1 0 0 1 1 0 ⊗ F [ 1 ] + F ∅ ⊗ F   0 0 1 0 0 0 0 1 1 0 0 0 1 1 0 0   ( 2 
M := F M 1 • • F M (2.2.9)
where the M are connected packed matrices (see Section 2.1.3) and M = M 1 M .

Then, we have

W M = F M + M ∈R F M (2.2.10)
where any matrix M of R satisfies M PM M since the product in PM consists in shifting and shuffling rows of matrices. Thus, by triangularity, the W M form a basis of PM . Moreover, for any -packed matrices M 1 and M 2 , the product of PM can be expressed as

W M 1 • W M 2 = W M 1 M 2 (2.2.11)
Let us denote by V M , where the M are -packed matrices, the adjoint elements of the W M . P 2.2.2. The elements V M , where M are connected -packed matrices, form a basis of the vector space of primitive elements of PM . By Proposition 2.2.2, the V M , where M are connected -packed matrices, generate the Lie algebra of primitive elements of PM . The first few dimensions of the Lie algebras of primitive elements of PMN 1 , PMN 2 , PML 1 , PML 2 are respectively given by (2.1.7), (2.1.8), (2.1.9), and (2.1.10).

Bidendriform bialgebra structure.

We show here that PM admits a bidendriform bialgebra structure [START_REF] Foissy | Bidendriform bialgebras, trees, and free quasi-symmetric functions[END_REF] (see also Section 2.3.3 of Chapter 2). 2.3.1. Dendriform algebra structure. We denote by PM + the subspace of PM restricted on nonempty matrices. For any nonempty matrix M, we shall denote by last c (M) its last column. Let us endow PM + with two products ≺ and linearly defined, for any nonempty -packed matrices M 1 and M 2 of respective sizes 1 and 2 , by

F M 1 ≺ F M 2 := M∈M 1 ¢M 2 last c (M)=last c (M1• 2 ) F M (2.3.1) and F M 1 F M 2 := M ∈ M 1 ¢M 2 last c (M)=last c ( 1 •M 2 ) F M (2.3.2)
In other words, the matrices appearing in a ≺-product (resp. -product) on the fundamental basis involving M 1 and M 2 are the matrices M obtained by shifting and shuffling the columns of M 1 and M 2 such that the last column of M comes from M 1 (resp. M 2 ). For example,

F 0 1 1 1 ≺ F 1 0 0 1 = F   0 0 0 1 1 0 0 1 0 1 0 0 0 0 1 0   + F   0 0 0 1 0 1 0 1 1 0 0 0 0 0 1 0   + F   0 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0   (2.3.3a) F 0 1 1 1 F 1 0 0 1 = F   0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 1   + F   0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 1   + F   0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1   (2.3.3b)
Since the last column of any matrix appearing in the shifted shuffle of two matrices comes from exactly of the two operands, for any nonempty packed matrices M 1 and M 2 , one obviously has 

F M 1 • F M 2 = F M 1 ≺ F M 2 + F M 1 F M 2 (2.
∆ ≺ (F M ) := M=L•R last r (L• )=last r (M) F cp(L) ⊗ F cp(R) (2.3.5) and ∆ (F M ) := M=L•R last r ( •R)=last r (M) F cp(L) ⊗ F cp(R) (2.3.6)
where (resp. ) is the number of columns of R (resp. L). In other words, the pairs of matrices appearing in a ∆ ≺ -coproduct (resp. ∆ -coproduct) in the fundamental basis are the pairs (L R) of packed matrices such that the last row of L (resp. R) comes from the last row of M. For example,

∆ ≺ F    
1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0

    = F 1 0 0 0 1 1 0 0 1 ⊗ F 0 0 1 1 0 0 1 1 0 + F    1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0    ⊗ F [ 1 ]
(2.3.7a)

∆ F    
1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0

    = F [ 1 ] ⊗ F    1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0    (2.3.7b)
Since by Lemma 1.1.1, one cannot vertically split a packed matrix by separating two nonzero entries on a same row, for any nonempty packed matrix M, one has These are respectively Sequences A230887 and A230888 of [Slo].

∆ (F M ) = 1 ⊗ F M + ∆ ≺ (F M ) + ∆ (F M ) + F M ⊗

Related Hopf bialgebras

In this section, we describe links between PM and some already known Hopf bialgebras. Next, we provide a method to construct Hopf sub-bialgebras of PM .

Links with known bialgebras.

We consider here the Hopf bialgebras of -colored permutations, of uniform block permutations, and of matrix quasi-symmetric functions.

3.1.1. Hopf bialgebra of colored permutations. The Hopf bialgebra FQSym ( ) ofcolored permutations is introduced in [START_REF] Novelli | Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions[END_REF] (see also Section 3.2.5 of Chapter 2). where M (σ ) is the -packed matrix satisfying M

(σ )
= δ σ is an injective Hopf morphism.

In particular, Proposition 3.1.1 shows that PMN 1 contains FQSym. Notice that the map α is still well-defined on the codomain PML instead of PMN .

3.1.2. Hopf bialgebra of uniform block permutations. The Hopf bialgebra UBP of uniform block permutations is introduced in [START_REF] Aguiar | The Hopf algebra of uniform block permutations[END_REF] (see also Section 3.2.6 of Chapter 2). we have

β (F π ) = F     0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0     (3.1.5)
The existence of this particular morphism β exhibited by Proposition 3.1.2 implies that UBP is free (as an associative algebra), cofree (as a coassociative coalgebra), self-dual, and admits bidendriform bialgebra structure.

Besides, by using same arguments as those used in Section 2.1, one can build multiplicative bases of UBP by setting, for any UBP π, These are Sequence A230889 and A230890 of [Slo].

E M π := M π PM M π F M π and H M π := M π PM M π F M π ( 3 
Moreover, since for any UBP π, there exists a UBP π -1 such that the transpose of

M π is M π -1
, by Proposition 2.2.1, the map φ : UBP → UBP linearly defined for any UBP π by φ (F M π ) := F M π (3.1.9) is an isomorphism.

3.1.3. Algebra of matrix quasi-symmetric functions. The Hopf algebra of matrix quasisymmetric functions is introduced in [START_REF] Duchamp | Noncommutative Symmetric Functions VI: Free Quasi-Symmetric Functions and Related Algebras[END_REF] (see also [START_REF] Hivert | Combinatoire des fonctions quasi-symétriques[END_REF] . . The condition for overlaying the th and ( + 1)st rows of a (not necessarily square) packed matrix according to the relation . The darker regions contain any entries and the white ones, only zeros. We now endow the set of matrices that index MQSym with the partial order relation MQ defined as the reflexive and transitive closure of . Figure 8.4 shows an interval of this partial order. 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 1 1 F . . The Hasse diagram of an interval for the order MQ on (not necessarily square) packed matrices. is an injective associative algebra morphism.

For instance, one has

γ     F   1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1       = M   1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1   + M 1 1 1 0 0 1 1 0 0 0 0 1 + M 1 1 0 0 0 0 1 0 0 1 1 1 + M 1 1 1 0 0 1 1 1 (3.1.11)
Notice that γ is not a Hopf morphism since it is not a coassociative coalgebra morphism. Indeed, we have 

∆ γ F 1 1 1 0 = 1 ⊗ M 1 1 1 0 + M 1 1 1 0 ⊗ 1 (3.1.12) but (γ ⊗ γ) ∆ F 1 1 1 0 = 1 ⊗ M 1 1 1 0 + M [ 1 1 ] ⊗ M [ 1 ] + M 1 1 1 0 ⊗ 1 ( 3 

Equivalence relations and Hopf sub-bialgebras.

We provide here a way to construct Hopf sub-bialgebras of PM analogous to the way using congruences to construct Hopf sub-bialgebras of FQSym (see Section 3.2.4 of Chapter 2). 

P [M] ↔ := M ∈[M] ↔ F M (3.2.2) of PM .
One has for instance

P       1 1 0 1 0 1 1 0 0 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0       ↔ P = F    1 1 0 1 0 1 1 0 0 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0    + F    1 1 0 1 0 1 1 0 0 1 1 0 1 0 0 0 0 0 1 1 1 0 0 1 0    + F    1 1 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 1 0 0    + F    1 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 0 1 1 0 1 0 0    + F    1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 0    (3.2.3)
In particular, if ↔ is compatible with the decompression process, any ↔-equivalence class of a packed matrix only contains packed matrices. The family P [M] ↔ , where the [M] ↔ are ↔-equivalence classes of packed matrices, forms then a basis of a vector subspace of PM denoted by PM ↔ .

T , where ↔ is successively the Baxter, Bell, sylvester, plactic, hypoplactic, and total congruence.

Alternating sign matrices

In this last section of the chapter, we construct and study a Hopf sub-bialgebra of PM 1 whose bases are indexed by ASMs. We provide its main properties and investigate how usual statistics on ASMs behave algebraically inside it. 4.1. Hopf bialgebra structure. Let us explain how to encode ASMs by particular 1packed matrices. As a consequence, we obtain a Hopf bialgebra on ASMs. 4.1.1. From ASMs to 1-packed matrices. Let δ be an ASM [START_REF] Mills | Alternating sign matrices and descending plane partitions[END_REF] (see also Section 3.4 of Chapter 1). We denote by M δ the matrix satisfying

M δ := 1 if δ ∈ {+ -} 0 otherwise (4.1.1)
For instance, of δ is the ASM defined by δ := 0 + 0 0 0 0 0 + 0 0 + -0 0 + 0 + -+ 0 0 0 + 0 0 (4.1.2)

we obtain M δ = 0 1 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 0 1 0 0 (4.1.3)

It is immediate that M δ is a 1-packed matrix of the same size as δ. Besides, observe that since the + and the -alternate in an ASM, by starting from a 1-packed matrix M, there is at most one ASM δ such that M δ = M.

4.1.2. Hopf bialgebra structure on ASMs. Let ASM be the vector space spanned by the set of all ASMs. For any ASM δ, let us denote by F δ the element F M δ . Due to the above observation, the family F δ , where δ are ASMs, spans ASM. Moreover, since the map F δ F M δ is an injective morphism from ASM to PM 1 , this family forms a basis.

The product and the coproduct of PM 1 induce the product and the coproduct of ASM. For example, we have

F 0 + 0 + -+ 0 + 0 • F [ + ] = F   0 + 0 0 + -+ 0 0 + 0 0 0 0 0 +   + F   0 + 0 0 + -0 + 0 + 0 0 0 0 + 0   + F   0 0 + 0 + 0 -+ 0 0 + 0 0 + 0 0   + F   0 0 + 0 0 + -+ 0 0 + 0 + 0 0 0   (4.1.4) and ∆F   0 + 0 0 0 0 0 + + -+ 0 0 + 0 0   = F ∅ ⊗ F   0 + 0 0 0 0 0 + + -+ 0 0 + 0 0   + F 0 + 0 + -+ 0 + 0 ⊗ F [ + ] + F   0 + 0 0 0 0 0 + + -+ 0 0 + 0 0   ⊗ F ∅ (4.1.5) T 4.
1.1. The vector space ASM, endowed with the product and coproduct of PM 1 , forms a free, cofree, and self-dual bigraded Hopf bialgebra which admits a bidendriform bialgebra structure.

From now on, we shall see ASM as a simply graded Hopf bialgebra so that the degree of any F δ , where δ is an ASM, is the size of δ. The dimensions of ASM form Sequence A005130 of [Slo] These are respectively Sequences A231498 and A231499 of [Slo].

Moreover, since the transpose of an ASM is also an ASM, by Proposition 2.2.1, the map φ : ASM → ASM linearly defined for any ASM δ by φ (F δ ) := F δ (4.1.10) is an isomorphism.

Algebraic interpretation of statistics on ASMs.

We provide algebraic interpretations of very common statistics on ASMs, whose definitions are recalled in Section 3.4 of Chapter 1. These algebraic interpretations rely on the Hopf bialgebra ASM and morphisms from ASM to K( ) (see Section 1.2.7 of Chapter 2 for notations about -analogs of integers). We also study here algebraic quotients of ASM defined by ideals involving these statistics.

4.2.1. Maps from ASM to -rational functions. The results presented here are consequences of the following two combinatorial properties, highlighting compatibility between the statistics ne, sw, se, nw, oi, and io with the column shifted shuffle product of ASMs. 

= F   0 + 0 0 + -+ 0 0 + 0 0 0 0 0 +   -F   0 + 0 0 + -0 + 0 + 0 0 0 0 + 0   (4.2.8)
is an element of io , the element The dimensions of ASM/ io form Sequence A033638 of [Slo] and the first few terms are 1 1 1 2 3 5 7 10 13 17 21 (4.2.11)

∆( ) = 1 ⊗ + F 0 + 0 + -+ 0 + 0 ⊗ F [ + ] + ⊗ 1 (4.2.9) is not in ASM ⊗ io + io ⊗ ASM.
A basic argument on generating series implies that these dimensions cannot be the ones of a free commutative algebra and hence, ASM/ io is not free as a commutative associative algebra.

Using the symmetry between the statistics io and oi provided by Proposition 3. 

= F   0 0 0 + + 0 0 0 0 0 + 0 0 + 0 0   -F   0 0 + 0 0 + 0 0 + 0 -+ 0 0 + 0   (4.2.12)
is an element of nw , the element Note however that ASM/ io nw does not inherit the structure of a coalgebra of ASM because even if

∆( ) = 1 ⊗ + F [ + ] ⊗ F 0 0 + 0 + 0 + 0 0 + F + 0 0 + ⊗ F 0 + + 0 + F + 0 0 0 0 + 0 + 0 ⊗ F [ + ] + ⊗ 1 (4.
:= F   0 + 0 0 + -+ 0 0 0 0 + 0 + 0 0   -F   0 + 0 0 0 0 + 0 + -0 + 0 + 0 0   (4.2.17) is an element of io nw , the element ∆( ) = 1 ⊗ + F 0 + 0 + -+ 0 + 0 ⊗ F [ + ] + ⊗ 1 (4.2.18)
is not in ASM ⊗ io nw + io nw ⊗ ASM. Hence, io nw is not a coideal.

By computer exploration, the first few dimensions of ASM/ io nw are 1 1 2 5 13 31 66 127 225 (4.2.19) and seems to be Sequence A116701 of [Slo].

A basic argument on generating series implies that these dimensions cannot be the ones of a free commutative associative algebra and hence, ASM/ io nw is not free as a commutative algebra. 4.2.6. Others quotients of ASM. Using the symmetries provided by Proposition 3.4.1, all the algebras ASM/ S , where S contains two nonsymmetric statistics, are equal to ASM/ io nw . Moreover, note that by using the same arguments as before, one can prove that for any S ∈ Z ∪ N, ASM/ S is a commutative algebra isomorphic to ASM/ io , ASM/ nw , or ASM/ io nw .

Concluding remarks

The work presented in this chapter contributes to enrich the already large collection of combinatorial Hopf bialgebras related to FQSym. Our main contributions are the Hopf bialgebra PM of -packed matrices and the Hopf bialgebra ASM of alternating sign matrices.

Naturally, our results raise several questions for further research. First, one can ask for the enumeration of equivalence classes of -packed matrices for the equivalence relations considered in Section 3.2.4. Second, we have described an injective associative algebra morphism from PML 1 to MQSym (see Proposition 3.1.3). Nevertheless, as observed, this morphism is not a Hopf bialgebra morphism. Then, the question to define a Hopf embedding of PML 1 into MQSym is open. Let us address a last research direction. Most Hopf bialgebras related to FQSym have polynomial realizations, that is, a way to encode their elements as polynomials [START_REF] Duchamp | Noncommutative Symmetric Functions VI: Free Quasi-Symmetric Functions and Related Algebras[END_REF], compatible with the product and the alphabet doubling (see for instance [START_REF] Hivert | An introduction to Combinatorial Hopf Algebras[END_REF]). The question to provide such a polynomial realization of PM seems worth studying.

Introduction

The theory of operads and the one of Hopf bialgebras have several known interactions. One of these is a construction [vdL04] taking an operad as input and producing a Hopf bialgebra H( ) as output, which is called the natural Hopf bialgebra of . This construction has been studied in some recent works: in [START_REF] Chapoton | Relating two Hopf algebras built from an operad[END_REF], it is shown that H can be rephrased in terms of an incidence Hopf bialgebra of a certain family of posets, and in [START_REF] Méndez | An antipode formula for the natural Hopf algebra of a set operad[END_REF], a general formula for its antipode is established. Let us also cite [START_REF] Frabetti | Groups of tree-expanded series[END_REF] in which this construction is considered to study series of trees. The initial motivation of the work contained in this chapter was to generalize this H construction with the aim of constructing some new and interesting Hopf bialgebras. The direction we have chosen is to start with pros (see [ML65, Lei04, Mar08]), algebraic structures which generalize operads in the sense that pros deal with operators with possibly several outputs (see Section 5.1 of Chapter 2).

Our main contribution consists in the definition of a new construction H from pros to bialgebras. Roughly speaking, the construction H can be described as follows. Given a pro satisfying some mild properties, the Hopf bialgebra H( ) has bases indexed by a particular subset of elements of . The product of H( ) is the horizontal composition of and the coproduct of H( ) is defined from the vertical composition of , enabling to separate a basis element into two smaller parts. The properties satisfied by imply, in a nontrivial way, that the product and the coproduct of H( ) satisfy the required axioms to be a bialgebra. This construction generalizes H and establishes a new connection between the theory of pros and the theory of Hopf bialgebras.

Let us provide some details about our construction H. A first version of this construction is presented, associating a Hopf bialgebra H( ) with a free pro . The fundamental basis of this Hopf bialgebra is a set-basis with respect to the product, and the structure coefficients of the coproduct are nontrivial (i.e., they are possibly different from 0 and 1). As an associative algebra, H( ) is always free. This construction is extended to a class of non-necessarily free pros. The pros of this class, called stiff pros, can be described by particular quotients of free pros. These pros arise somewhat naturally because, under some mild conditions, two well-known constructions of pros [START_REF] Markl | Operads and PROPs[END_REF] produce stiff pros. The first one, R, takes as input operads and the second one, B, takes as input monoids. The construction R is used to show that the natural Hopf bialgebra of an operad can be reformulated as a particular case of our construction H. The Hopf bialgebras that one can construct from H are very similar to the Connes-Kreimer Hopf bialgebra [START_REF] Connes | Hopf algebras, renormalization and noncommutative geometry[END_REF] in the sense that their coproduct can be computed by means of admissible cuts in various combinatorial objects. From very simple stiff pros, it is possible to reconstruct the Hopf bialgebra of noncommutative symmetric functions Sym [GKL + 95] and the noncommutative Fàa di Bruno Hopf bialgebra FdB [BFK06]. Besides, we present a way of using H to reconstruct some of the Hopf bialgebras FdB γ , a γ-deformation of FdB introduced by Foissy [Foi08]. This chapter is organized as follows. In Section 1, we recall the natural Hopf bialgebra construction H of an operad and some background about the noncommutative Faà di Bruno Hopf bialgebra FdB and its commutative version F B. We provide in Section 2 the description of our new construction H and study some of its algebraic and combinatorial properties. We conclude this chapter by giving some examples of applications of H in Section 3 from very simple pros. We hence obtain several Hopf bialgebras, which, respectively, involve forests of planar rooted trees, some kinds of graphs consisting of nodes with one parent and several children or several parents and one child that we call forests of bitrees, heaps of pieces (see [START_REF] Viennot | Heaps of pieces. I. Basic definitions and combinatorial lemmas[END_REF] for a general presentation of these combinatorial objects), and a particular class of heaps of pieces that we call heaps of friable pieces. All these Hopf bialgebras depend on a nonnegative integer as parameter γ.

Note. This chapter deals only with ns set-operads. For this reason, "operad" means "ns set-operad" in this chapter. Similarly, "pro" means "set-pro". Moreover, all the free pros appearing here have generators with at least one input and one output.

Hopf bialgebras and the natural Hopf bialgebra of an operad

We recall in this section a construction associating a combinatorial Hopf bialgebra with an operad. This construction can be used to define the Faà di Bruno Hopf bialgebra.

Combinatorial Hopf algebras.

Let us start by recalling some definitions and properties about the Faà di Bruno Hopf bialgebra, the Hopf bialgebra of symmetric functions, and some of its noncommutative analogs. Here, we assume that the ground field K on which all the Hopf bialgebras are defined contains R.

1.1.1. Faà di Bruno Hopf bialgebra and its deformations. Let F B be the free commutative algebra generated by elements , 1, with deg( ) = . The bases of F B are thus indexed by integer partitions, and the unit is denoted by 0 . Alternatively, F B := K Part , where Part is the graded combinatorial collection of integer partitions defined in Section 1.2.4 of Chapter 1. This is the algebra of symmetric functions [START_REF] Macdonald | Symmetric Functions and Hall Polynomials[END_REF]. There are several ways to endow F B with a coproduct to turn it into a Hopf bialgebra. In [START_REF] Foissy | Faà di Bruno subalgebras of the Hopf algebra of planar trees from combinatorial Dyson-Schwinger equations[END_REF], Foissy obtains, as a byproduct of his investigation of combinatorial Dyson-Schwinger equations in the Connes-Kreimer algebra, a one-parameter family ∆ γ , γ ∈ R, of coproducts on F B, defined by using alphabet transformations (see [START_REF] Macdonald | Symmetric Functions and Hall Polynomials[END_REF]), by

∆ γ ( ) := 0 ⊗ -(( γ + 1)X) (1.1.1)
where, for any α ∈ R and ∈ N, (αX) is the coefficient of in the series 0 α . In particular,

∆ 0 ( ) = 0 ⊗ - (1.1.2)
The algebra F B with the coproduct ∆ 0 is the classical Hopf bialgebra of symmetric functions S [START_REF] Macdonald | Symmetric Functions and Hall Polynomials[END_REF]. Moreover, for all γ = 0, all F B γ are isomorphic to F B 1 , which is known as the Faà di Bruno bialgebra [START_REF] Joni | Coalgebras and bialgebras in combinatorics[END_REF]. The coproduct ∆ 0 comes from the interpretation of F B as the algebra of polynomial functions on the multiplicative group

G( ) :=    1 + 1 : ∈ R 1    (1.1.3)
of formal power series of constant term 1, and ∆ 1 comes from its interpretation as the algebra of polynomial functions on the group G( ) for the series composition of formal diffeomorphisms of the real line.

1.1.2. Noncommutative analogs. Formal power series in one variable with coefficients in a noncommutative algebra can be composed (by substitution of the variable). This operation is not associative, so that they do not form a group. For example, when and belong to a noncommutative algebra, one has

( 2 • ) • = 2 2 • = 2 2 2 (1.1.4) but 2 • ( • ) = 2 • = 2 (1.1.5)
However, the analogue of the Faà di Bruno Hopf bialgebra still exists in this noncommutative context and is known as the noncommutative Faà di Bruno Hopf bialgebra. It is investigated in [BFK06] in view of applications in quantum field theory. In [START_REF] Foissy | Faà di Bruno subalgebras of the Hopf algebra of planar trees from combinatorial Dyson-Schwinger equations[END_REF], Foissy also obtains an analogue of the family F B γ in this context. Indeed, considering noncommutative generators S (with deg(S ) = ) instead of the , for all 1, leads to a free noncommutative algebra FdB whose bases are indexed by integer compositions. This is the algebra of noncommutative symmetric functions [GKL + where S 0 is the unit. In this way, FdB with the coproduct ∆ 0 is the Hopf bialgebra of noncommutative symmetric functions Sym [GKL + 95, KLT97], and for all γ = 0, all the FdB γ are isomorphic to FdB 1 , which is the noncommutative Faà di Bruno Hopf bialgebra.

The natural Hopf bialgebra of an operad.

We describe here a construction associating a Hopf bialgebra with an operad (under some conditions). We then apply this construction to obtain F B from the associative operad. . Alternatively, H( ) = K S( + ) , where S is the multiset operation over graded collections (see Section 1.1.6 of Chapter 1). The unit of H( ) is denoted by T 1 and the coproduct of H( ) is the unique associative algebra morphism satisfying, for any element of + ,

∆(T ) = 1 ∈ •[ 1 ]= T ⊗ T 1 T (1.2.1)
The Hopf bialgebra H( ) can be graded by deg(T ) := | | -1. Note that with this grading, when (1) = {1} and when the ( ) are finite for all 1, H( ) becomes a combinatorial Hopf bialgebra. is encoded by T 655311 . Moreover the degrees of such basis elements indexed by words are the sums of their letters. For this reason, the basis elements of H(As) are indexed by integer partitions. Besides, here is an example of a coproduct in H(As) using (1.2.1):

∆(T 2 ) = T 1 ⊗ T 2 + T 1 ⊗ (T 1 T 1 + T 1 T 1 ) + T 2 ⊗ T 1 T 1 T 1 = T 1 ⊗ T 2 + 2T 1 ⊗ T 1 + T 2 ⊗ T 1 (1.2.2)
For instance, the coefficient of T 1 ⊗ T 1 in ∆(T 2 ) is 2 because there are two ways to factorize a 3 in As by using the complete composition map where the first operand is a 2 :

a 3 = a 2 • [a 1 a 2 ] and a 3 = a 2 • [a 2 a 1 ]
. It is known (see for instance [START_REF] Méndez | An antipode formula for the natural Hopf algebra of a set operad[END_REF]) that H(As) is isomorphic to F B 1 .

From pros to combinatorial Hopf algebras

We introduce in this section the main construction of this work and review some of its properties. In all this section, is a free pro generated by a bigraded set G. We recall that we work only with generating sets satisfying G( ) = ∅ when = 0 or = 0. Starting with , our construction produces a bialgebra H( ) whose bases are indexed by the reduced elements of . We shall also extend this construction over a class of non necessarily free pros. As a consequence of Lemma 5.1.2 of Chapter 2, the coproduct ∆ of H( ) is coassociative. Moreover, this lemma implies that ∆ is a morphism of associative algebras. Hence, we obtain the following result. T 2.1.1. Let be a free pro. Then, H( ) is a Hopf bialgebra.

Properties of the construction.

Let us now study the general properties of the Hopf bialgebras obtained by the construction H.

2.2.1. Algebraic generators and freeness. P 2.2.1. Let be a free pro. Then, H( ) is freely generated as an associative algebra by the set of all S , where the are indecomposable and reduced elements of .

2.2.2.

Gradings. There are several ways to define gradings for H( ) to turn it into a combinatorial Hopf bialgebra. For this purpose, we say that a map ω : red( ) → N is a grading of if it satisfies the following four properties:

(G1) for any reduced elements and of , ω( * ) = ω( ) + ω( ); (G2) for any reduced elements of satisfying = • where ∈ , ω( ) = ω(red( )) + ω(red( ));

(G3) for any 0, the fiber ω -1 ( ) is finite;

(G4) ω -1 (0) = {1 0 }.
A very generic way to endow with a grading consists in providing a map ω : G → N\{0} associating a positive integer with any generator of , namely its weight; the degree ω( ) of any element of being the sum of the weights of the occurrences of the generators used to build . For instance, the map ω defined by ω(a) := 3 and ω(b) := 2 is a grading of AB and we have

ω   a b a   = 8
(2.2.1) P 2.2.2. Let be a free pro and ω be a grading of . Then, with the grading

H( ) = 0 K {S : ∈ red( ) and ω( ) = } (2.2.2)
H( ) is a combinatorial Hopf bialgebra.

2.2.3. Antipode. Since the antipode of a combinatorial Hopf bialgebra can be computed by induction on the degrees, we obtain an expression for the one of H( ) when admits a grading. This expression is an instance of the Takeuchi formula [Tak71] and is particularly simple since the product of H( ) is multiplicative. P 2.2.3. Let be a free pro admitting a grading. For any reduced element of different from 1 0 , the antipode ν of H( ) satisfies ν

(S ) = 1 ∈ 1 1 ••••• = red( ) =1 0 ∈[ ] (-1) S red( 1 * ••• * ) (2.2.3)
We have for instance in H(AB), 2.3. The Hopf bialgebra of a stiff pro. We now extend the construction H to a class a non-necessarily free pros. Still in this section, is a free pro.

Let ≡ be a congruence of . For any element of , we denote by [ ] ≡ (or by [ ] if the context is clear) the ≡-equivalence class of . We say that ≡ is a stiff congruence if the following three properties are satisfied: (C1) for any reduced element of , the set [ ] is finite; (C2) for any reduced element of , [ ] contains reduced elements only; (C3) for any two elements and of such that ≡ , the maximal decompositions of and are, respectively of the form ( 1) and ( 1) for some 0, and for any ∈ [ ],

≡ .

We say that a pro is a stiff pro if it is the quotient of a free pro by a stiff congruence.

For any ≡-equivalence class [ ] of reduced elements of , set

T [ ] := ∈[ ] S (2.3.1)
Notice that thanks to (C1) and (C2), T [ ] is a well-defined element of H( ). If ≡ is a stiff congruence of , (C2) and (C3) imply that all the elements of a same ≡equivalence class [ ] have the same number of factors and are all reduced or all nonreduced. Then, by extension, we shall say that a ≡-equivalence class [ ] of / ≡ is indecomposable (resp. reduced) if all its elements are indecomposable (resp. reduced) in . In the same way, the wire of / ≡ is the ≡-equivalence class of the wire of .

We shall now study how the product and the coproduct of H( ) behave on the We shall denote, by a slight abuse of notation, by H( / ≡ ) the sub-bialgebra of H( ) spanned by the T [ ] , where the [ ] are ≡-equivalence classes of reduced elements of . Notice that the construction H as it was presented in Section 2.1 is a special case of this latter when ≡ is the most refined congruence of pros.

Note that this construction of sub-bialgebras of H( ) by taking an equivalence relation satisfying some precise properties and by considering the elements obtained by summing over its equivalence classes is analog to the construction of certain sub-bialgebras of the Malvenuto-Reutenauer Hopf algebra [START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF]. Indeed, some famous Hopf algebras are obtained in this way (see Sections 3.2.3 and 3.2.4 of Chapter 2). Here, ≡ is not a stiff congruence since it satisfies (C2) but not (C3).

We have showing that neither the coproduct is well-defined on the T [ ] .

T   a   • T   a   = S a • S a = S
2.3.5. Properties. By using similar arguments as those used to establish Proposition 2.2.1 together with the fact that ≡ satisfies (C3) and the product formula of Proposition 2.3.1, we obtain that H( / ≡ ) is freely generated as an algebra by the T [ ] where the [ ] are ≡equivalence classes of indecomposable and reduced elements of . Moreover, when ω is a grading of so that all elements of a same ≡-equivalence class have the same degree, the bialgebra H( / ≡ ) is graded by the grading inherited the one of H( ) and forms hence a combinatorial Hopf bialgebra.

For instance, if is the additive monoid of natural numbers, the pro B( ) contains all words over N. The horizontal composition of B( ) is the concatenation of words, and the vertical composition of B( ), defined only on words with a same length, is the componentwise addition of their letters. Here is the main link between our construction H and the construction H. P 2.4.3. Let be an operad such that the monoid ( (1) • 1 ) does not contain any nontrivial subgroup. Then, the bialgebra H( ) is the abelianization of H(R( )). 

Examples of application of the construction

Hopf bialgebra of forests.

We present here the construction of two Hopf bialgebras of forests, one depending on a nonnegative integer γ, and with different gradings. The pro we shall define in this section will intervene in the next examples.

3.1.1. Pro of forests with a fixed arity. Let γ be a nonnegative integer and PRF γ be the free pro generated by G := G(γ + 1 1) := {a}, with the grading ω defined by ω(a) := 1. Any prograph of PRF γ can be seen as a planar forest of planar rooted trees with only internal nodes of arity γ + 1. This coproduct is similar to the one of the noncommutative Connes-Kreimer Hopf bialgebra CK [START_REF] Connes | Hopf algebras, renormalization and noncommutative geometry[END_REF]. The main difference between H(PRF γ ) and CK lies in the fact that in a coproduct of CK, the admissible cuts can change the arity of some internal nodes; it is not the case in H(PRF γ ) because for any t ∈ Adm(t), any internal node of t has the same arity as it has in t. To turn H(PRF ∞ ) into a combinatorial Hopf bialgebra, we cannot consider the grading ω defined by ω(a ) := 1 because there would be infinitely many elements of degree 1. Therefore, we consider on H(PRF ∞ ) the grading ω defined by ω(a ) := . In this way, the degree of a basis element S f is the number of edges of the forest f. By Proposition 2.2.2, H(PRF ∞ ) is a combinatorial Hopf bialgebra.

3.1.7. Dimensions. The series of the algebraic generators of H(PRF ∞ ) is

( ) := 1 1 + 1 2 (3.1.6)
since its coefficients are the Catalan numbers, counting planar rooted trees with edges. As H(PRF ∞ ) is free as an associative algebra, its Hilbert series is

H(PRF ∞ ) ( ) := 1 1 -( ) = 1 + 1 1 2 2 (3.1.7)
The dimensions of H(PRF ∞ ) are then the same as the dimensions of H(PRF 1 ) (see (3.1.4)).

Faà di Bruno

Hopf bialgebra and its deformations. We shall give here a method to construct the Hopf bialgebras FdB γ of Foissy [START_REF] Foissy | Faà di Bruno subalgebras of the Hopf algebra of planar trees from combinatorial Dyson-Schwinger equations[END_REF] from our construction H in the case where γ is a nonnegative integer.

Hopf bialgebra of forests of bitrees.

To define Hopf bialgebras of forests of bitrees, we need the following general construction on pros. Notice that in this definition, we consider FP(G) and FP(G ) as sub-pros of FP(G G ) in an obvious way. Notice also that if is a free pro FP(G), then the congruence ≡ is trivial, so that ∼ = is also trivial, and S( ) = FP(G G ). Besides, as another immediate property of this construction, remark that when is a stiff pro, the congruence ∼ = satisfies (C2) and (C3), and then, S( ) is a stiff pro.

We shall present here two Hopf bialgebras coming from the construction S applied to PRF γ and As γ .

Pro of forests of bitrees.

Let γ be a nonnegative integer and FBT γ be the free pro generated by G := G(γ + 1 1) G(1 γ + 1) where G(γ + 1 1) := {a} and G(1 γ + 1) := {b}, with the grading ω defined by ω(a) := ω(b) := 1. One has S(PRF γ ) = FBT γ . Any prograph of FBT γ can be seen as a forest of γ-bitrees, that are labeled planar trees where internal nodes labeled by a have γ + 1 children and one parent, and the internal nodes labeled by b have one child and γ + 1 parents. Since the reduced elements of FBT γ have no wire, they are encoded by forests of nonempty γ-bitrees.

3.3.3. Hopf bialgebra. By Theorem 2.1.1 and Proposition 2.2.2, H(FBT γ ) is a combinatorial Hopf bialgebra. By Proposition 2.2.1, as an associative algebra, H(FBT γ ) is freely generated by the S t , where the t are nonempty γ-bitrees. Its bases are indexed by planar forests of such bitrees where the degree of a basis element S f is the total number of internal nodes in the bitrees of f. Moreover, by Proposition 2.2.5, since PRF γ is generated by a subset of the generators of FBT γ , H(PRF γ ) is a quotient bialgebra of H(FBT γ ).

3.3.4.

Coproduct. The coproduct of H(FBT γ ) can be described, like the one of CK on forests, by means of admissible cuts on forests of γ-bitrees. We have for instance

∆S = S ∅ ⊗ S + S ⊗ S + S ⊗ S + S ⊗ S + S ⊗ S + S ⊗ S ∅ (3.3.4)
3.3.5. Dimensions. We only know the dimensions of H(FBT γ ) when γ = 0. In this case, 0bitrees of size are linear trees and can hence be seen as words of length on the alphabet {a b}. Therefore, as H(FBT γ ) is free as an associative algebra, the bases of H(FBT 0 ) are indexed by multiwords on {a b} and its Hilbert series is

H(FBT 0 ) ( ) := 1 + 1 2 2 -1
(3.3.5) 3.3.6. Pro of biassociative operators and its Hopf bialgebra. Let BAs γ be the quotient of FBT γ by the finest pro congruence ≡ satisfying 

+ 2 = γ = 1 + 2 (3.3.7)
We can observe that BAs γ is a stiff pro because ≡ satisfies (C2) and (C3). Notice that S(As γ ) = BAs γ and BAs 0 = FBT 0 . We consider on BAs γ the grading ω inherited the one of FBT γ . This grading is still well-defined in BAs γ since any ≡-equivalence class contains prographs of a same degree. Notice that BAs 1 is very similar to the pro governing Hopf bialgebras (see [START_REF] Markl | Operads and PROPs[END_REF]). Indeed, it only lacks in BAs 1 the usual compatibility relation between its two generators. Notice also that the pro governing bialgebras is not a stiff pro. By Theorem 2.3.5 and Proposition 2.2.2, H(BAs γ ) is then a combinatorial Hopf bialgebra. Moreover, we can observe that H(As γ ) is a quotient Hopf bialgebra of H(BAs γ ).

Hopf bialgebra of heaps of pieces.

We present here the construction of a Hopf bialgebra depending on a nonnegative integer γ, whose bases are indexed by heaps of pieces.

3.4.1. Pro of heaps of pieces. Let γ be a nonnegative integer and Heap γ be the free pro generated by G := G(γ + 1 γ + 1) := {a}, with the grading ω defined by ω(a) := 1. Any prograph of Heap γ can be seen as a heap of pieces of width γ + 1 (see [START_REF] Viennot | Heaps of pieces. I. Basic definitions and combinatorial lemmas[END_REF] for some theory about these objects). For instance, the prograph 3.4.2. Hopf bialgebra. By Theorem 2.1.1 and Proposition 2.2.2, H(Heap γ ) is a combinatorial Hopf bialgebra. By Proposition 2.2.1, as an associative algebra, H(Heap γ ) is freely generated by the S λ where the λ are heaps of pieces that cannot be obtained by juxtaposing two heaps of pieces. Its bases are indexed by horizontally connected heaps of pieces of width γ + 1 where the degree of a basis element S λ is the number of pieces of λ.

3.4.3.

Coproduct. The coproduct of H(Heap γ ) can be described, like the one of CK on forests, by means of admissible cuts on heaps of pieces. Indeed, if λ is a horizontally connected heap of pieces, by definition of the construction H,

∆(S λ ) = λ ∈Adm(λ) S λ ⊗ S λ/ λ (3.4.3)
where Adm(λ) is the set of admissible cuts of λ, that is, the set of heaps of pieces obtained by keeping an upper part of λ and by readjusting it so that it becomes horizontally connected and where λ/ λ denotes the heap of pieces obtained by removing from λ the pieces of λ and by readjusting the remaining pieces so that they form an horizontally connected heap of pieces. These four integer sequences are respectively Sequences A247637, A247638, A059715, and A247639 of [Slo].

Hopf bialgebra of heaps of friable pieces. By considering special quotient of

Heap γ , we construct a Hopf bialgebra structure on the (γ + 1)st tensor power of the vector space Sym. We can observe that FHeap γ is a stiff pro because ≡ satisfies (C2) and (C3) and FHeap 0 = Heap 0 . We call FHeap γ the pro of heaps of friable pieces of width γ + 1. This terminology is justified by the following observation. Any piece of width γ + 1 (depicted by ) consists in γ + 1 small pieces, called bursts, glued together. This forms a friable piece (depicted, for γ = 2 for instance, by

). The congruence ≡ of Heap γ can be interpreted by letting all pieces break under gravity, separating the bursts constituting them. For instance, the prographs of (3.5.3), respectively, encoded by the heaps of pieces (3.5.4) all become the heap of friable pieces (3.5.5) obtained by replacing each piece of any heap of pieces of (3.5.4) by friable pieces.

The grading ω of FHeap γ is the one inherited the one of Heap γ . This grading is still welldefined in Heap γ since any ≡-equivalence class contains prographs of a same degree. Since the reduced elements of FHeap γ have no wire, they are encoded by horizontally connected heaps of friable pieces.

Besides, FHeap γ admits the following alternative description using the B construction (see Section 2.4.2). Indeed, FHeap γ is the sub-pro of B(N) generated by 1 γ+1

, where N denotes here the additive monoid of nonnegative integers and 1 γ+1 denotes the sequence of γ + 1 occurrences of 1 ∈ N. The correspondence between heaps of friable pieces and words of integers of this second description is clear since any element of the sub-pro of B(N) generated by 1 γ+1 encodes a heap of friable pieces consisting, from left to right, in columns of bursts for ∈ [ ], where is the length of . For instance, the word 122211 encodes the heap of friable pieces of (3.5.5).

3.5.2. Hopf bialgebra. By Theorem 2.3.5 and Proposition 2.2.2, H(FHeap γ ) is a combinatorial Hopf sub-bialgebra of H(Heap γ ). The bases of H(FHeap γ ) are indexed by horizontally connected heaps of friable pieces of width γ + 1 where the degree of a basis element T λ is the number of pieces of λ.

3.5.3.

Coproduct. The coproduct of H(FHeap γ ) can be described with the aid of the interpretation of FHeap γ as a sub-pro of B(N). Indeed, if λ is an horizontally connected heap of friable pieces, by Proposition 2.3.4,

∆(T λ ) = λ 1 λ 2 ∈FHeap γ λ=λ 1 +λ 2 T λ 1 ⊗ T λ 2 (3.5.6)
where λ 1 + λ 2 is the heap of friable pieces obtained by stacking λ 2 onto λ 1 and where λ 1 (resp. λ 2 ) is the readjustment of λ 1 (resp. λ 2 ) so that it is horizontally connected. For instance, we have in H(FHeap 1 )

T = S + S + S (3.5.7) ∆T = T ∅ ⊗ T + T ⊗ T + T ⊗ T + T ⊗ T + T ⊗ T + T ⊗ T ∅ (3.5.8)
3.5.4. Dimensions. P 3.5.1. For any nonnegative integers γ and , the th homogeneous component of H(FHeap γ ) has dimension (γ + 2) -1 .

3.5.5. Miscellaneous properties. By the dimensions of H(FHeap γ ) provided by Proposition 3.5.1, as a graded vector space, H(FHeap γ ) is the γ + 1st tensor power of the underlying vector space of Sym. Indeed, the th homogeneous components of these two spaces have the same dimension. Besides, notice that since FHeap γ is by definition a sub-pro of the pro obtained by applying the construction B to a commutative monoid, H(FHeap γ ) is cocommutative.

Concluding remarks

We have defined a construction H establishing a new link between the theory of pros and the theory of combinatorial Hopf bialgebras, by generalizing a former construction from operads to Hopf bialgebras. By the way, we have exhibited the so-called stiff pros which is the most general class of pros for which our construction works.

By using H, we have introduced some new and recovered some already known combinatorial Hopf bialgebras by starting with very simple pros. Nevertheless, we are very far from having exhausted the possibilities, and it would not be surprising that H could reconstruct some other known Hopf bialgebras, maybe in unexpected bases.

Computing the Hilbert series of a combinatorial Hopf bialgebra is, usually, a routine work. Nevertheless, in the general case, it is very difficult to compute the Hilbert series of H( ) when is a free pro. Indeed, this computation requires to know, given a free pro , the series ( ) := ∈red( ) deg( ) (3.5.9) which seems difficult to explicitly describe in general.

As another perspective, it is conceivable to go further in the study of the algebraic structure of the bialgebras obtained by H. The question of the potential autoduality of H( ) depending on some conditions on the pro is worth studying. A way to solve this problem is to provide enough conditions on to endow H( ) with a bidendriform bialgebra structure [START_REF] Foissy | Bidendriform bialgebras, trees, and free quasi-symmetric functions[END_REF] (see also Section 2.3.3 of Chapter 2). This strategy is based upon the fact that any bidendriform bialgebra is free and self-dual as a bialgebra [START_REF] Foissy | Bidendriform bialgebras, trees, and free quasi-symmetric functions[END_REF].

the shifted shuffle product (see Section 3.2.3 of Chapter 2). It is a simple exercise to prove that, given three permutations π, σ 1 , and σ 2 , deciding if π is in the shifted shuffle of σ 1 and σ 2 is in P. This chapter is organized as follows. In Section 1, we introduce the general notion of square elements in algebras. We take as examples the case of the shifted shuffle product of permutations and the shuffle product of words. We provide a definition of the supershuffle of permutations in Section 2, by introducing it from its dual coproduct ∆, called unshuffling coproduct. Some algebraic and combinatorial properties of these product and coproduct are reviewed. Section 3 is devoted to contain an algorithmic study of square permutations with respect to •. The most important result of this work, concerning the fact that deciding if a permutation is square is NP-complete, appears here.

Square elements, shuffles, and words

Before defining and studying the supershuffle product of permutations, we set here a general algebraic framework about square elements in algebras.

1.1. Square elements with respect to a product. The general notion of square elements in polynomial algebras endowed with a binary product is introduced here. This notion relies on the notions of collections (see Section 1 of Chapter 1) and of polynomial algebras (see Section 2 of Chapter 2 for the basic definitions about these structures).

1.1.1. General definitions. Let C be a collection and K C be an algebra (not necessarily an associative algebra) endowed with a binary product . An object of C is a square with respect to if there is an object of C such that appears in the product . In this case, we say that is a square root of . Observe that this notion depends on the basis of C of K C . Indeed, seen on anther basis C of K C , square elements can be different.

By duality, by considering the dual (K C ∆ ) of (K C

), an element of C is a square and ∈ C is one of its square root if and only if the tensor ⊗ appears in ∆ ( ). Indeed, by definition is a square and is one of its square root if and only if the structure coefficient ξ

( ⊗ )
of is nonzero (see Section 2.1.1 of Chapter 2). Hence, this is equivalent to say that the structure coefficient ξ

( ⊗ ) ∆ of ∆ is nonzero.
In the case where (K C ) is graded, there are two algorithmic problems related to these concepts. The first one takes as input an element of C of size and consists in deciding whether is a square. We call this problem the square detection problem SDP. The second one takes as input an element of C of size and another element of C and consists in deciding whether is a square root of . We call this problem the square root checking problem RCP. The complexity of these two problems is studied with respect to . 1.1.2. Square permutations in FQSym. To give an example of this notion of squares, consider the space FQSym = K S of all permutations endowed with the shifted shuffle product (see Section 3. forming (after removing the 0s) Sequence A001813 of [Slo].

To test if a permutation σ of an even size is a square, one can extract its subword consisting in the letters in 1 2 2 , its subword consisting in the letters in 2 + 1 2 + 2 , and checking if std( ) = , where std is the standardization algorithm (see Section 1.2.5 of Chapter 1). Since all these operations are obviously polynomial in , SDP is polynomial.

Besides, to check if a permutation ν is a square root of a permutation σ of an even size , one can check if the subword of σ consisting in the letters in 1 2 2 of σ and if the standardized of subword consisting in the letters in 2 + 1 2 + 2 are both equal to ν. Since these operations are polynomial in , RCP is polynomial.

1.2. Square words for the shuffle product. We now turn our attention to square words for the shuffle product and the complexity of SDP. These results come from [RV13] and are used as prototype in our upcoming study of square permutations. 1.2.1. Square words. Let us consider here the shuffle algebra (K A * ¡) where A is a finite alphabet (see Section 2.3.1 of Chapter 2). For instance, if A := {a b}, the word abaaba is a square since it appears in the shuffle of aba with itself. Contrariwise, the word abba is not a square. Observe that having an even number of occurrences for each letter of A is a necessary condition to be a square. 1.2.2. Perfect matchings. Let us describe a way to decide if a word is a square. This comes from [RV13] and use perfect matchings on words. A perfect matching on a word

∈ A * is a graph (V E) such that V := {( ( ) ) : ∈ [| |]} (1.2.1)
every vertex of V belongs to exactly one edge of E, and {( ( ) ) ( ( ) )} ∈ E implies ( ) = ( ). Figure 10.1 shows a perfect matching on a word. A perfect matching (V E) is containment-free if there are no edges {( ( ) ) ( ( ) )} and {( ( ) ) ( ( ) )} of E such that < < < . Observe that the perfect matching of Figure 10.1 is not containment-free.

The criterion of Rizzi and Vialette [RV13] to recognize square words is the following. P 1.2.1. A word ∈ A * is a square if and only if there exists a containmentfree perfect matching on . ( ) The word abba is not a square since it admits this only perfect matching which is not containment-free.

F

. . Two perfect matchings on words.

As a consequence of this criterion, given a containment-free perfect matching on , a square root of is readable by observing the subword ( 1 ) ( 2 ) ( ) of such that the indices 1 , 2 , . . . , satisfy 1 < 2 < and, for all ∈ [ ], {( ( ) ) ( ( ) )} is an edge of the perfect matching where < . 1.2.3. Recognizing square words. By using the criterion provided by Proposition 1.2.1, it is possible to perform a polynomial-time reduction from the longest common subsequence problem for binary words (which is NP-complete) to SDP. This leads to the following result [RV13]. T 1.2.2. In the shuffle algebra (K A * ¡) where A is a finite alphabet, SDP is NP-complete.

Supershuffle of permutations

The purpose of this section is to define a shuffle product • on permutations, different from the shifted shuffle (see Section 1.1.2). Recall that a first definition of this product was provided by Vargas [START_REF] Vargas | Hopf algebra of permutation pattern functions[END_REF]. To present an alternative definition of this product adapted to our study, we shall first define a coproduct denoted by ∆, enabling to unshuffle permutations. By duality, ∆ implies the definition of •. The reason why we need to pass through the definition of ∆ to define • is justified by the fact that a lot of properties of • depend of properties of ∆, and that this strategy allows to write concise and clear proofs of them.

2.1. Unshuffling coalgebra and square permutations. After defining the unshuffling coproduct of permutations, we define the supershuffle product. The first properties of this product and of its square elements are reviewed.

2.1.1. Unshuffling coproduct. Let us say that two permutations σ and ν are order-isomorphic if std(σ) = std(ν). We endow the polynomial space FQSym with the linear coproduct ∆ defined in the following way. For any permutation π, we set ∆(π) =

P 1 P 2 =[|π|] std π |P 1 ⊗ std π |P 2 (2.1.1)
We call ∆ the unshuffling coproduct of permutations. For instance,

∆(213) = ⊗ 213 + 2 • 1 ⊗ 12 + 1 ⊗ 21 + 2 • 12 ⊗ 1 + 21 ⊗ 1 + 213 ⊗ (2.1.2a) ∆(1234) = ⊗ 1234 + 4 • 1 ⊗ 123 + 6 • 12 ⊗ 12 + 4 • 123 ⊗ 1 + 1234 ⊗ (2.1.2b) ∆(1432) = ⊗ 1432 + 3 • 1 ⊗ 132 + 1 ⊗ 321 + 3 • 12 ⊗ 21 + 3 • 21 ⊗ 12 + 3 • 132 ⊗ 1 + 321 ⊗ 1 + 1432 ⊗ (2.1.2c)
Observe that the coefficient of the tensor 1 ⊗ 132 is 3 in (2.1.2c) because there are exactly three ways to extract from the permutation 1432 two disjoint subwords respectively orderisomorphic to the permutations 1 and 132 (that are (4 132), (3 142), and (2 143)).

2.1.2. Supershuffle product. Now, by definition of duality, the dual product of ∆, denoted by •, is a linear binary product on FQSym . Since FQSym is a graded combinatorial polynomial space, FQSym FQSym , so that we shall identify these two spaces. We call • the supershuffle of permutations. This product satisfies, for any permutations σ and ν, Observe that the coefficient 3 of the permutation 1432 in (2.1.4) comes from the fact that the coefficient of the tensor 12 ⊗ 21 is 3 in (2.1.2c).

σ • ν = π∈S ξ (π σ⊗ν) ∆ π ( 2 
Intuitively, the supershuffle blends the values and the positions of the letters of the permutations. One can observe that the empty permutation is a unit for • and that this product is graded by the sizes of the permutations.

2.1.3. Square permutations. According to Section 1, a permutation π is a square with respect to • if there is a permutation σ such that π appears in σ • σ. In this case, we say that σ is a square root of π. Equivalently, π is a square with σ as a square root if and only if the tensor σ ⊗ σ appears in ∆(π). This sequence (after removing the 0s) is known as Sequence A279200 of [Slo]. We do not have any description (by a formula, recurrence, or generating series) of these numbers.

Square binary words and permutations.

In this section, we shall establish the fact that the square binary words (i.e., square words on the alphabet {0 1} with respect to the shuffle product) are in one-to-one correspondence with square permutations avoiding some patterns. This property establishes a link between the shuffle of binary words and the supershuffle of permutations and allows to obtain a new description of square binary words.

2.2.1. From binary words to permutations. Let be a binary word of length with occurrences of 0. We denote by btp (Binary word To Permutation) the map sending any such word to the permutation obtained by replacing from left to right each occurrence of 0 in by 1, 2, . . . , , and from right to left each occurrence of 1 in by + 1, + 2, . . . , . For instance, btp 

P

. To prove the associativity of •, we shall prove that its dual coproduct ∆ is coassociative. This strategy relies on the fact that a product is associative if and only if its dual coproduct is coassociative. For any permutation π, by denoting by Id the identity map on FQSym, we have

(∆ ⊗ Id)∆(π) = (∆ ⊗ Id) P 1 P 2 =[|π|] std π |P 1 ⊗ std π |P 2 = P 1 P 2 =[|π|] ∆ std π |P 1 ⊗ I std π |P 2 = P 1 P 2 =[|π|] Q 1 Q 2 =[|P 1 |] std std π |P 1 |Q 1 ⊗ std std π |P 1 |Q 2 ⊗ std π |P 2 = P 1 P 2 P 3 =[|π|] std π |P 1 ⊗ std π |P 2 ⊗ std π |P 3 (2.3.1)
An analogous computation shows that (Id ⊗ ∆)∆(π) is equal to the last member of (2.3.1), whence the associativity of •.

Finally, to prove the commutativity of •, we shall show that ∆ is cocommutative, that is for any permutation π, if in the expansion of ∆(π) there is a tensor σ ⊗ ν with a coefficient λ, there is in the same expansion the tensor ν ⊗ σ with the same coefficient λ. Clearly, a product is commutative if and only if its dual coproduct is cocommutative. Now, from the definition (2.1.1) of ∆, one observes that if the pair ( Let π be a square permutation and σ be a square root of π. Then, (i) the permutation π is a square and σ is one of its square roots;

(ii) the permutation π is a square and σ is one of its square roots; (iii) the permutation π -1 is a square and σ -1 is one of its square roots.

P

. All statements (i), (ii), and (iii) are consequences of Proposition 2.3.2. Indeed, since π is a square permutation and σ is a square root of π, by definition, π appears in the product σ • σ. Now, by Proposition 2.3.2, for any ∈ [3], since φ is an endomorphism of associative algebras of FQSym, φ commutes with the shuffle product of permutations •. Hence, in particular, one has

φ (σ • σ) = φ (σ) • φ (σ) (2.3.3)
Then, since π appears in σ • σ, φ (π) appears in φ (σ • σ) and appears also in φ (σ) • φ (σ). This shows that φ (σ) is a square root of φ (π) and implies (i), (ii), and (iii).

Let us make an observation about Wilf-equivalence classes of permutations restrained on square permutations. Recall that two permutations σ and ν of the same size are Wilf equivalent if #S( ) {σ} = #S( ) {ν} for all 0. The well-known [START_REF] Simion | Restricted permutations[END_REF] fact that there is a single Wilf-equivalence class of permutations of size 3 together with Proposition 2.3.3 imply that 123 and 321 are in the same Wilf-equivalence class of square permutations, and that 132, 213, 231, and 312 are in the same Wilf-equivalence class of square permutations. Computer experiments show us that there are two Wilf-equivalence classes of square permutations of size 3. Indeed, the number of square permutations avoiding 123 begins by 1 0 2 0 12 0 118 0 1218 0 14272 (2.3.4) while the number of square permutations avoiding 132 begins by 1 0 2 0 11 0 84 0 743 0 7108 (2.3.5)

Besides, another consequence of Proposition 2.3.3 is that it makes sense to enumerate the sets of square permutations quotiented by the operations of mirror image, complement, and inverse. The sequence enumerating these sets begins by 1 0 1 0 6 0 81 0 2774 0 162945 (2.3.6)

These three sequences (2.3.4), (2.3.5), and (2.3.6) are (after removing the 0s) respectively Sequences A279201, A279202, and A279203 of [Slo]. We do not have any description (by a formula, recurrence, or generating series) of these numbers.

Algorithmic aspects of square permutations

We construct here an analog of the criterion to recognize square words of Rizzi and Valette [RV13] for the case of square permutations. This criterion is a center piece to show that SDP for square permutation is NP-complete.

Directed perfect matchings on permutations.

We need a little more complicated combinatorial object than perfect matching here. We work with directed perfect matchings and some notions of pattern avoidance.

Hardness of recognizing square permutations.

We are now in position to state our criterion to decide if a permutation is a square. 3.2.1. Recognizing square permutations. Let us define two additional properties on directed perfect matchings on permutations. Let (V A) be a directed perfect matching on a permutation π. We say that (V A) satisfies PShape if it avoids all the patterns of the set (3.2.1) Besides, we say that (V A) satisfies PValue if for any two distinct arcs ((π( ) ) (π( ) )) and ((π( ) ) (π( ) )) of (V A), we have π( ) < π( ) if and only if π( ) < π( ). P 3.2.1. A permutation π is a square if and only if there exists a directed perfect matching on π satisfying PShape and PValue. Proposition 3.2.1 is hence the analogous of Proposition 1.2.1 for the supershuffle product and associated square permutations. Moreover, observe that given a square permutation π and a directed perfect matching (V A) on π satisfying PShape and PValue, one can recover a square root of π by considering the standardized permutation of the word of sources (or, equivalently, the word of sinks) of (V A). Recall that the pattern involvement problem consists, given two permutations π and σ, in deciding if π admits an occurrence of σ. This problem is known to be NP-complete [START_REF] Bose | Pattern Matching for Permutations[END_REF]. Theorem 3.2.2 can be shown by performing a polynomial-time reduction from the pattern involvement problem to SDP.

Concluding remarks

There are a number of further directions of investigation in this general subject. They cover several areas: algorithmic, combinatorics, and algebra. Let us mention several -not necessarily all new-open problems that are, in our opinion, the most interesting.

First ones are enumerative questions. We have computed few first terms of some integer sequences, like (2.1.6) for the number of square permutations, (2.3.6) for the number of square permutations quotiented by their natural symmetries, or (1.1.2) for the number of square permutations avoiding the patterns 213 and 231 (equivalently, by Proposition 2.2.1, this is also the number of square binary words [START_REF] Henshall | Shuffling and Unshuffling[END_REF]). We can ask about formulas to compute these numbers.

Second ones are algorithmic questions. One can first ask the difficulty of deciding whether a permutation avoiding 213 and 231 is a square (see [HRS12, RV13, BS14] for the point of view of square binary words). Besides, one can ask about the hardness of RCP in the context of the supershuffle. In other terms, the problem consists, given two permutations π and σ, in deciding if σ is a square root of π.

Finally, in a more algebraic flavor, we can ask about the properties of the associative algebra (FQSym •), continuing the work of Vargas [Var14]. This includes, among others, the description of a generating family, the definitions of multiplicative bases, and determining whether this algebra is free as an associative algebra.

Introduction

Coming from theoretical computer science and formal language theory, formal grammars [START_REF] Harrison | Introduction to formal language theory[END_REF][START_REF] Hopcroft | Introduction to Automata Theory, Languages, and Computation[END_REF] are powerful tools having many applications in several fields of mathematics. A formal grammar is a device which describes-more or less concisely and with more or less restrictions-a set of words, called language. There are several variations in the definitions of formal grammars and some sorts of them are classified by the Chomsky-Schützenberger hierarchy [Cho59, CS63] according to four different categories, taking into account their expressive power. In an increasing order of power, there is the class of Type-3 grammars known as regular grammars, the class of Type-2 grammars known as contextfree grammars, the class of Type-1 grammars known as context-sensitive grammars, and the class of Type-0 grammars known as unrestricted grammars. One of the most striking similarities between all these variations of formal grammars is that they work by constructing words by applying rewrite rules [START_REF] Baader | Term rewriting and all that[END_REF] (see also Section 1.4 of Chapter 1). Indeed, a word of the language described by a formal grammar is obtained by considering a starting word and by iteratively altering some of its factors in accordance with the production rules of the grammar.

Similar mechanisms and ideas are translatable into the world of trees, instead only of those of words. Grammars of trees [CDG + 07] are hence the natural counterpart of formal grammars to describe sets of trees, and here also, there exist many very different types of grammars. One can cite for instance tree grammars, regular tree grammars [START_REF] Gècseg | Tree Automata[END_REF], and synchronous grammars [START_REF] Giraudo | Intervals of balanced binary trees in the Tamari lattice[END_REF], which are devices providing a way to describe sets of various kinds of treelike structures. Here also, one of the common points between these grammars is that they work by applying rewrite rules on trees. In this framework, trees are constructed by growing from the root to the leaves by replacing some subtrees by other ones. Like free monoids are algebraic structures involving words, free ns operads are algebraic structures involving planar rooted trees. Since monoids are the underlying structures for most of the generating systems on words, it is natural to ask whether ns operads can be thought as underlying structures of generating systems on trees.

The initial spark of this work has been caused by the following simple observation. The partial composition • of two elements and of a ns operad can be regarded as the application of a rewrite rule on to obtain a new element of -the rewrite rule being encoded essentially by . This leads to the idea consisting in considering a ns operad to define grammars generating some subsets of . In this way, according to the nature of the elements of , this provides a way to define grammars which generate objects different than words (as in the case of formal grammars) and than trees (as in the case of grammars of trees). We rely in this work on ns colored operads (see Section 4.1.10 of Chapter 2). Ns colored operads are the suitable devices to our aim of defining a new kind of grammars since the restrictions provided by the colors allow a precise control on how the rewrite rules can be applied. Thus, we introduce in this work a new kind of grammars, the bud generating systems. They are defined mainly from a ground ns operad , a set C of colors, and a set R of production rules. A bud generating system describes a subset of Bud C ( )-the ns colored operad obtained by augmenting the elements of with input and output colors taken from C. The generation of an element works by iteratively altering an element of Bud C ( ) by composing it, if possible, with an element of R. In this context, the colors play the role analogous of the one of nonterminal symbols in the formal grammars and in the grammars of trees. Any bud generating system specifies two sets of objects: its language L( ) and its synchronous language L S ( ). Thereby, bud generating systems can be used to describe sets of combinatorial objects. For instance, they can be used to describe sets of Motkzin paths with some constraints, sets of Schröder trees with some constraints, the set of {2 3}perfect trees [MPRS79, CLRS09] and some of its generalizations, and the set of balanced binary trees [START_REF] Adelson-Velsky | An algorithm for the organization of information[END_REF]. One remarkable fact is that bud generating systems can emulate both context-free grammars and regular tree grammars, and allow to see both of these in a unified manner. In the first case, context-free grammars are emulated by bud generating systems with the associative operad As as ground ns operad and in the second case, regular tree grammars are emulated by bud generating systems with a free ns operad FO(G) as ground ns operad, where G is a precise set of generators.

A very normal combinatorial question consists, given a bud generating system , in computing the generating series s L( ) ( ) and s L S ( ) ( ), respectively counting the elements of the language and of the synchronous language of with respect to the arity of the elements. To achieve this objective, we consider a new generalization of formal power series, namely series on ns colored operads. Series on ns operads and operads satisfying some precise properties have been considered [Cha02, Cha08, Cha09] (see also [START_REF] Van Der Laan | Operads. Hopf algebras and coloured Koszul duality[END_REF][START_REF] Frabetti | Groups of tree-expanded series[END_REF][START_REF] Loday | Operadic construction of the renormalization group[END_REF]). In this work, we consider series on ns colored operads which are, in some sense, generalizations of these notions of series. Any bud generating system leads to the definition of three series on ns colored operads: its hook generating series hook( ), its syntactic generating series synt( ), and its synchronous generating series sync( ). The hook generating series allows to define analogues of the hook-length statistics of binary trees [START_REF] Knuth | The art of computer programming, volume 3: Sorting and searching[END_REF] for objects belonging to the language of , possibly different than trees. The syntactic (resp. synchronous) generating series bring functional equations and recurrence formulas to compute the coefficients of s L( ) ( ) and s L S ( ) ( ). The definitions of these three series rely on particular operations on series on ns colored operads: a pre-Lie product, an associative product, and their respective Kleene stars. This chapter is organized as follows. Section 1 begins by introduction the construction Bud C . Then, we provide elementary definitions about series on ns colored operads, and define a pre-Lie product and an associative product on these series. Next, Section 2 is concerned with the definition of bud generating systems and to study their first properties. This chapter ends with Section 3 wherein we use the definitions and the results of both previous sections to consider bud generating systems as devices to define statistics on combinatorial objects or to enumerate families of combinatorial objects.

Note. This chapter deals only with ns set-operads and ns colored set-operads. For these reasons, "operad" means "ns set-operad" and "colored operad" means "ns colored set-operad".

Colored operads and formal power series

The purpose of this section is twofold. First, we present a very natural construction Bud C taking as input a monochrome operad and outputting a colored operad by augmenting the outputs and inputs of the elements of with colors of C. This construction will be used to define bud generating systems in the next section. Second, we consider series on colored operads and define two products on them. These products are considered in the last section of this chapter for enumerative goals. Proposition 1.1.1 shows that Bud C is a functorial construction producing colored operads from monochrome ones. We call Bud C ( ) the C-bud operad of .

When C is a singleton, Bud C ( ) is by definition a monochrome operad isomorphic to . For this reason, in this case, we identify Bud C ( ) with .

As a side observation, remark that in general, the bud operad Bud C ( ) of a free operad is not a free C-colored operad. Indeed, consider for instance the bud operad Bud The associative operad and its bud operads will play an important role in the sequel. For this reason, to gain readability, we shall simply denote by ( ) any element a | | of Bud C (As) without any loss of information.

1.1.4. Pruning map. Here and in the sequel, we use the fact that any monochrome operad can be seen as a C-colored operad where all output and input colors of its elements are equal to 1 , where 1 is the first color of C. Let pru : Bud C ( ) → (1.1.9) be the map defined, for any ( ) ∈ Bud C ( ), by pru(( )) := (1.1.10)

We call pru the pruning map on Bud C ( ). Observe that pru is not a morphism of C-colored operads since it is not a C-colored collection morphism.

The space of series on colored operads.

We work here with series on colored operads. We explain how to encode usual noncommutative multivariate series and series on monoids by series on colored operads.

1.2.1. First definitions. For any C-colored operad , a -series is a series on seen as a collection (see Section 1.1.7 of Chapter 2). In other terms, a -series is an element of K .

For any combinatorial C-colored collection C, we denote by s C the generating series of C, seen as a graded collection.

The -series u defined by u :

= ∈C 1 (1.2.1)
is the series of colored units of and will play a special role in the sequel. Since C is finite, u is a polynomial.

Observe that -series are defined here on fields K instead of on the much more general structures of semirings, as it is the case for series on monoids [Sak09]. We choose to tolerate this loss of generality because this considerably simplifies the theory. Furthermore, we shall use in the sequel -series as devices for combinatorial enumeration, so that it is sufficient to pick K as the field Q( 0 1 2

) of rational functions in an infinite number of commuting parameters with rational coefficients. The parameters , ∈ N intervene in the enumeration of colored subcollections of with respect to several statistics.

Functorial construction. If

1 and 2 are two C-colored operads and φ : 1 → 2 is a morphism of colored operads, K φ is the map

K φ : K 1 → K 2 (1.2.2) defined, for any f ∈ K 1 and ∈ 2 , by K φ (f) := ∈ 1 φ( )= f (1.2.3)
Equivalently, K φ can be defined, by using the sum notation of series (see Section 1.1.3 of Chapter 2), by

K φ (f) := ∈ 1 f φ( ) (1.2.4)
Observe first that K f is a linear map. Moreover, notice that (1.2.3) could be undefined for arbitrary colored operads 1 and 2 , and an arbitrary morphism of colored operads φ. However, when all fibers of φ are finite, for any ∈ 2 , the right member of (1.2.3) is welldefined since the sum has a finite number of terms. Moreover, since any morphism from a combinatorial colored operad has finite fibers, one has the following result. Let us explain how to encode any series s ∈ K A * by a series on a particular colored operad. Let C A be the set of colors A {♦} where ♦ is a virtual letter which is not in A, and A be the C A -colored subcollection of Bud C A (As) consisting in arity one in the colored units of Bud C A (As) and in arity 2 in the elements of the form

(♦ 1 -1 ♦) 1 -1 ∈ A -1 (1.2.5)
Since the partial composition of any two elements of the form (1.2.5) is in A , A is a colored suboperad of Bud 

→ K S (X C + Y C ) (1.2.17) defined for all α β ∈ C by X α C Y β C colt(f) := ( )∈Bud C (As) type( )=α type( )=β ( ) col(f) (1.2.18)
By the definition of the map col, colt

f) = ∈ f X type(out( )) C Y type(in( )) C (1.2.19) ( 
Observe that for all α β ∈ C such that deg(α) = 1, the coefficients of

X α C Y β C in colt(f)
are zero. In intuitive terms, the series colt(f), called series of color types of f, can be seen as a version of col(f) wherein only the output colors and the types of the input colors of the elements of its support are taken into account, the variables of X C encoding output colors and the variables of Y C encoding input colors. In the sequel, we are concerned by the computation of the coefficients of colt(f) for some -series f.

1.2.7. Pruned series. Let be a monochrome operad, Bud C ( ) be a bud operad, and f be a Bud C ( )-series. Since C is finite, the series K pru (f) is well-defined and, by a slight abuse of notation, we denote by 

P

. Let be a combinatorial C-colored operad. First of all, since is combinatorial, the pre-Lie product of any two -series f and g is well-defined due to the fact that the sum (1.3.1) has a finite number of terms. Let f, g, and h be three -series and ∈ . We denote by λ(f g h) the coefficient of in (f g) hf (g h). We have

λ(f g h) = ∈ ∈N =( • )• f g h - ∈ ∈N = • ( • ) f g h = ∈ > ∈N =( • )• f g h = ∈ > ∈N =( • )• f g h = λ(f h g) (1.3.4)
The second and the last equality of (1.3.4) come from Relation (4.1.3a) of Section 4.1.1 of Chapter 2 of operads and the third equality is a consequence of Relation (4.1.3b) of Section 4.1.1 of Chapter 2 of operads. Therefore, since by (1.3.4), λ(f g h) is symmetric in g and h, the series (f g) hf (g h) and (f h) gf (h g) are equal. This

shows that K , endowed with the product , is a pre-Lie algebra. Finally, by using the fact that by Proposition 1.2.1, ( φ) (K K φ ) is functorial, we obtain that K φ is a morphism of pre-Lie algebras. Hence, the statement of the proposition holds.

Proposition 1.3.1 shows that is a pre-Lie product. This product is a generalization of a pre-Lie product defined in [START_REF] Chapoton | Operads and algebraic combinatorics of trees[END_REF], endowing the linear span of the underlying monochrome collection of a monochrome operad with a pre-Lie algebra structure. 1.3.2. Noncommutative multivariate series and series on monoids. The pre-Lie product on -series provides also a generalization of the usual product of noncommutative multivariate series. Indeed, consider the method described in Section 1.2.3 to encode noncommutative multivariate series on an alphabet A as series on the colored operad Bud C A (As). where is the operation of , so that mo(st) = mo(s) mo(t). Hence, the pre-Lie product of series on colored operads is a generalization of the Cauchy product of series on monoids [Sak09]. 1.3.3. Pre-Lie star product. For any -series f ∈ K and any 0, let f be the -series recursively defined by

f := u if = 0 f -1 f otherwise (1.3.7)
Immediately from this definition and the definition of the pre-Lie product , the coefficients of f , 0, satisfies for any ∈ ,

f =          δ 1 out( ) if = 0 ∈ ∈[| |] = • f -1
f otherwise (1.3.8) L 1.3.2. Let be a combinatorial C-colored operad and f be a series of K . Then, the coefficients of f +1 , 0, satisfy for any ∈ ,

f +1 = 1 +1 ∈ 1 ∈N =( ( 1 • 1 2 )• 2 )• +1 ∈[ +1] f (1.3.9)
The -star of f is the series

f * := 0 f = u + f + f 2 + f 3 + f 4 + • • • = u + f + f f + (f f) f + ((f f) f) f + • • • (1.3.10)
Observe that f * could be undefined for an arbitrary -series f.

In what follows, we shall use the notion of finite factorization introduced in Section 4.1.9 of Chapter 2. More precisely, in this context of colored operads, we say that a subset S of (1) finitely factorizes (1) if any element of (1) admits finitely many factorizations on S with respect to the operation • 1 .

P 1.3.3. Let be a C-colored operad and f be a series of K . Then, if is combinatorial and Supp(f)(1) finitely factorizes (1), f * is a well-defined series. Moreover, in this case, for any ∈ , the coefficient of in f * is

f * = δ 1 out( ) + ∈ ∈[| |] = • f * f (1.3.11)
Proposition 1.3.3 gives hence a way, given a -series f satisfying the constraints stated, to compute recursively the coefficients of its -star f * by using (1.3.11). P 1.3.4. Let be a combinatorial C-colored operad and f be a series of K such that Supp(f)(1) finitely factorizes (1). Then, the equation

xx f = u (1.3.12) admits the unique solution x = f * .

Composition product on series.

We define here a binary operation on the space of -series. As we shall see, this operation is partially defined, unitary, noncommutative, and associative.

1.4.1. Composition product. Given two -series f g ∈ K , the composition product of f and g is the -series f g defined, for any ∈ , by

f g := 1 | | ∈ = •[ 1 | | ] f ∈[| |] g (1.4.1)
Observe that f g could be undefined for arbitrary -series f and g on an arbitrary colored operad . Besides, notice from (1.4.1) that is linear on the left and that the series u is the left and right unit of . However, this product is not linear on the right since we have, for instance in K As , a Recall that the notations ht(t) and • (t) appearing in the statement of Lemma 1.4.2 stand respectively for the height of t and for the set of the internal nodes of t (see Section 2.1.5 of Chapter 1). Moreover, the notation FCO perf ( ) denotes the set of all perfect colored -syntax trees (we recall that a tree t is perfect if all the maximal paths have the same length).

The -star of f is the series

f * := 0 f = u + f + f 2 + f 3 + f 4 + • • • = u + f + f f + f f f + f f f f + • • • (1.4.6)
Observe that f * could be undefined for an arbitrary -series f. P 1.4.3. Let be a C-colored operad and f be a series of K . Then, if is combinatorial and Supp(f)(1) finitely factorizes (1), f * is a well-defined series. Moreover, in this case, for any ∈ , the coefficient of in f * is

f * = δ 1 out( ) + 1 | | ∈ = •[ 1 | | ] f * ∈[| |] f (1.4.7)
Proposition 1.4.3 gives hence a way, given a -series f satisfying the constraints stated, to compute recursively the coefficients of its -star f * by using (1.4.7). whose coefficients are defined for any ∈ by

f -1 := δ 1 out( ) 1 out( ) f - 1 1 out( ) f 1 | | ∈ =1 out( ) = •[ 1 | |] f ∈[| |]
f -1 (1.4.9)

Observe that f -1 could be undefined for an arbitrary -series f. P 1.4.5. Let be a combinatorial colored C-operad and f be a series of K such that Supp(f) = {1 : ∈ C} S where S is a C-colored subcollection of such that S(1) finitely factorizes (1). Then, f -1 is a well-defined series and the coefficients of f -1 satisfy for any ∈ ,

f -1 = 1 1 out( ) f t∈FCO(S) ev(t)= (-1) deg(t) ∈ • (t) t( ) f ∈[| |] 1 in ( ) f
(1.4.10) P 1.4.6. Let be a combinatorial colored C-operad and f be a series of K such that Supp(f) = {1 : ∈ C} S where S is a C-colored subcollection of such that S(1) finitely factorizes (1). Then, the equations

f x = u
(1.4.11) and

x f = u (1.4.12) admit both the unique solution x = f -1 . Proposition 1.4.6 shows that the -inverse f -1 of a series f satisfying the constraints stated is the inverse of f for the composition product. Moreover, f -1 can be computed recursively by using (1.4.9) or directly by using (1.4.10). 
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Let L

p be the set of Motzkin paths with no consecutive horizontal steps. Recall that if t is a binary tree, the height of t is the length of a longest path connecting the root of t to one of its leaves (see Section 2.1.5 of Chapter 1). A balanced binary tree [START_REF] Adelson-Velsky | An algorithm for the organization of information[END_REF] is a binary tree t wherein, for any internal node of t, the difference between the height of the left subtree and the height of the right subtree of is -1, 0, or 1. (2.1.6) 2.2. First properties. We state now two properties about the languages and the synchronous languages of bud generating systems. L 2.2.1. Let := ( C R I T) be a bud generating system. Then, for any ∈ Bud C ( ), belongs to L( ) if and only if admits an R-treelike expression with output color in I and all input colors in T.

P

. Assume that belongs to L( ). Then, by definition of the derivation relation →, admits an R-left expression. Lemma 4.1.4 of Chapter 2 implies in particular that admits an R-treelike expression t. Moreover, since t is a treelike expression for , t has the same output and input colors as those of . Hence, because belongs to L( ), its output color is in I and all its input colors are in T. Thus, t satisfies the required properties.

Conversely, assume that is an element of Bud C ( ) admitting an R-treelike expression t with output color in I and all input colors in T. Lemma 4.1.4 of Chapter 2 implies in particular that admits an R-left expression. Hence, by definition of the derivation relation →, is derivable from 1 out( ) and all its input colors are in T. Therefore, belongs to L( ). L 2.2.2. Let := ( C R I T) be a bud generating system. Then, for any ∈ Bud C ( ), belongs to L S ( ) if and only if admits an R-treelike expression with output color in I and all input colors in T and which is a perfect tree. where, for any t ∈ Bud B (Tree), ∈ B, and ∈ B + , t is the B-bud tree obtained by labeling the output of t by and by labeling from left to right the leaves of t by the letters of . P 2.3.3. Let be a synchronous grammar. Then, the map φ : L S (SG( )) → L defined by φ(( t )) := t is a bijection between the synchronous language of SG( ) and the language L of .

Series on colored operads and bud generating systems

In this section, we explain how to use bud generating systems as tools to enumerate families of combinatorial objects. For this purpose, we will define and consider three series on colored operads extracted from bud generating systems. Each of these series brings information about the languages or the synchronous languages of bud generating systems. One of a key issues is, given a bud generating system , to count arity by arity the elements of the language or the synchronous language of . In other terms, this amounts to compute the generating series s L( ) or s L S ( ) . As we shall see, these generating series can be computed from the series of colored operads extracted from . and that, since R is finite, this series is a polynomial.

3.1.3. Maps. In the sequel, we shall use maps φ : C × C → N such that φ( γ) = 0 for a finite number of pairs ( γ) ∈ C × C , to express in a concise manner some recurrence relations for the coefficients of series on colored operads. We shall consider the two following notations. If φ is such a map and ∈ C, we define φ ( ) as the natural number φ Observe that (3.2.1) could be undefined for an arbitrary set of rules R of . Nevertheless, when r satisfies the conditions of Proposition 1.3.3, that is, when is a combinatorial operad and R(1) finitely factorizes Bud C ( )(1), hook( ) is well-defined.

3.2.1. Expression. The aim of the following is to provide an expression to compute the coefficients of hook( ). Observe that (3.3.1) could be undefined for an arbitrary set of rules R of . Nevertheless, when ur satisfies the conditions of Proposition 1.4.5, synt( ) is well-defined. Remark that this condition is satisfied whenever is combinatorial and R(1) finitely factorizes Bud C ( )(1).

3.3.1. Expression. The aim of this section is to provide an expression to compute the coefficients of synt( ). Theorem 3.3.2 explains the name of syntactic generating series for synt( ) because this series can be expressed following (3.3.3) as a sum of evaluations of syntax trees. An alternative way to see synt( ) is that for any ∈ Bud C ( ), the coefficient synt( ) is the number of R-treelike expressions for .

Support and unambiguity.

The following result establishes a link between the syntactic generating series of and its language. P 3.3.3. Let := ( C R I T) be a bud generating system such that is a combinatorial operad and R(1) finitely factorizes Bud C ( )(1). Then, the support of the syntactic generating series of is the language of .

We rely now on syntactic generating series to define a property of bud generating systems. We say that is unambiguous if all coefficients of synt( ) are equal to 0 or to 1. This property is important from a combinatorial point of view. Indeed, by definition of the series of colors col (see Section 1.2.5) and Proposition 3.3.3, when is unambiguous, the coefficient of (

) ∈ Bud C (As) in the series col(synt( )) is the number of elements of L( ) such that (out( ) in( )) = ( ).

For instance, consider the bud generating system p introduced in Section 2.1.3. Observe that since the Motzkin path of Motz(5) admits exactly the two R-treelike expressions As a side remark, observe that Theorem 3.3.2 implies in particular that for any bud generating system of the form := ( C R C C), if synt( ) is unambiguous, then the colored suboperad of Bud C ( ) generated by R is free. The converse property does not hold.

3.3.3.

Series of color types. The purpose of this section is to describe the coefficients of colt(synt( )), the series of color types of the syntactic series of , in the particular case when is unambiguous. We shall give two descriptions: a first one involving a system of equations of series of K S(Y C ) , and a second one involving a recurrence relation on the coefficients of a series of K S(X C + Y C ) . L 3.3.4. Let := ( C R I T) be an unambiguous bud generating system such that is a combinatorial operad and R(1) finitely factorizes Bud C ( )(1). Then, for all colors ∈ I and all types α ∈ C such that C α ∈ T + , the coefficients x Y α C colt(synt( )) count the number of elements of L( ) such that (out( ) type(in( ))) = ( α). where f T is the specialization of the series f (y 1 y ) at y := for all ∈ T and at y := 0 for all ∈ C \ T. Therefore, the resolution of the system of equations given by Proposition 3.3.5 provides a way to compute the coefficients of s L( ) .

T 3.3.7. Let := ( C R I T) be an unambiguous bud generating system such that is a combinatorial operad and R(1) finitely factorizes Bud C ( )(1). Then, the generating series s L( ) of the language of is algebraic.

When is a bud generating system satisfying the conditions of Theorem 3.3.6 (which are the same as the ones required by Proposition 3.3.5), one has for any 1,

s L( ) = ∈I α∈ C α =0 ∈C\T x Y α C f (3.3.8)
Therefore, this provides an alternative and recursive way to compute the coefficients of s L( ) , different from the one of Proposition 3.3.5. Observe that (3.4.1) could be undefined for an arbitrary set of rules R of . Nevertheless, when r satisfies the conditions of Proposition 1.4.3, that is, when is a combinatorial operad and R(1) finitely factorizes Bud C ( )(1), sync( ) is well-defined.

3.4.1. Expression. The aim of this section is to provide an expression to compute the coefficients of sync( ). Theorem 3.4.2 implies that for any ∈ Bud C ( ), the coefficient of sync( ) is the number of R-treelike expressions for which are perfect trees.

3.4.2. Support and unambiguity. The following result establishes a link between the synchronous generating series of and its synchronous language. P 3.4.3. Let := ( C R I T) be a bud generating system such that is a combinatorial operad and R(1) finitely factorizes Bud C ( )(1). Then, the support of the synchronous generating series of is the synchronous language of .

We rely now on synchronous generating series to define a property of bud generating systems. We say that is synchronously unambiguous if all coefficients of sync( ) are equal to 0 or to 1. This property is important from a combinatorial point of view. Indeed, by definition of the series of colors col (see Section 1.2.5) and Proposition 3.4.3, when is synchronously unambiguous, the coefficient of ( ) ∈ Bud C (As) in the series col(sync( )) is the number of elements of L S ( ) such that (out( ) in( )) = ( ).

For instance, the bud generating system bbt introduced in Section 2.1.5 is synchronously unambiguous.

3.4.3. Series of color types. The purpose of this section is to describe the coefficients of colt(sync( )), the series of color types of the synchronous series of , in the particular case when is unambiguous. We shall give two descriptions: a first one involving a system of functional equations of series of K S(Y C ) , and a second one involving a recurrence relation on the coefficients of a series of K S(X C + Y C ) . Moreover, when is a synchronous grammar [START_REF] Giraudo | Intervals of balanced binary trees in the Tamari lattice[END_REF] (see also Section 2.3.3 for a description of these grammars) and when SG( ) = , the system of functional equations provided by Proposition 3.4.5 and (3.4.6) for s L S ( ) is the same as the one which can be extracted from .

When

is a bud generating system satisfying the conditions of Theorem 3.4.6 (which are the same as the ones required by Proposition 3.4.5), one has for any 1, s

L S ( ) = ∈I α∈ C α =0 ∈C\T x Y α C f (3.4.7)
Therefore, this provides an alternative and recursive way to compute the coefficients of s First, the notion of rationality and recognizability in usual formal power series [Sch61, Sch63, Eil74, BR88], in series on monoids [Sak09], and in series of trees [START_REF] Berstel | Recognizable formal power series on trees[END_REF] are fundamental. For instance, a series s ∈ K on a monoid is rational if it belongs to the closure of the set K of polynomials on with respect to the addition, the multiplication, and the Kleene star operations. Equivalently, s is rational if there exists a K-weighted automaton accepting it. The equivalence between these two properties for the rationality property is remarkable. We ask here for the definition of an analogous and consistent notion of rationality for series on a colored operad . By consistent, we mean a property of rationality for -series which can be defined both by a closure property of the set K of the polynomials on with respect to some operations, and, at the same time, by an acceptance property involving a notion of a K-weighted automaton on . The analogous question about the definition of a notion of recognizable series on colored operads also seems worth studying.

A second research direction fits mostly in the contexts of computer science and compression theory. A straight-line grammar (see for instance [ZL78, SS82, Ryt04]) is a context-free grammar with a singleton as language. There exists also the analogous natural counterpart for regular tree grammars [START_REF] Lohrey | The complexity of tree automata and XPath on grammar-compressed trees[END_REF]. One of the main interests of straight-line grammars is that they offer a way to compress a word (resp. a tree) by encoding it by a context-free grammar (resp. a regular tree grammar). A word can potentially be represented by a context-free grammar (as the unique element of its language) with less memory than the direct representation of , provided that is made of several repeating factors. The analogous definition for bud generating systems could potentially be used to compress a large variety of combinatorial objects. Indeed, given a suitable monochrome operad defined on the objects we want to compress, we can encode an object of by a bud generating system with as ground operad and such that the language (or the synchronous language) of is a singleton { } and pru( ) = . Hence, we can hope to obtain a new and efficient method to compress arbitrary combinatorial objects.

Let us finally describe a third extension of this work. Pros (see Section 5.1 of Chapter 2) are algebraic structures which naturally generalize operads. Indeed, a pro is a set of operators with several inputs and several outputs, unlike in operads where operators have only one output (see for instance [START_REF] Lane | Categorical algebra[END_REF][START_REF] Markl | Operads and PROPs[END_REF]). It seems fruitful to translate the main definitions and constructions of this work (as e.g., bud operads, bud generating systems, series on colored operads, pre-Lie and composition products of series, star operations, etc.) with pros instead of operads. We can expect to obtain an even more general class of grammars and obtain a more general framework for combinatorial generation.

Introduction

Regular languages form an important class of languages, defined as the ones that can be generated by Type-3 grammars of the Chomsky-Schützenberger hierarchy [Cho59, CS63]. One of the most surprising property of regular languages is that they can be described by nonequivalent different ways, for instance by regular grammars, automata, or regular expressions. These tools are nonequivalent in terms of spatial complexity: a same family of regular languages can be represented for example by automata with a linear number of states but by regular expressions with an exponential number of symbols [START_REF] Ehrenfeucht | Complexity Measures for Regular Expressions[END_REF].

Multi-tildes [START_REF] Caron | Multi-Bar and Multi-Tilde Regular Operators[END_REF] are operators acting on languages and introduced in order to increase the expressiveness of regular expressions (that is, describing regular languages with the smallest possible spatial complexity). These operators allow intuitively to jump forward in a regular expression. Besides, multi-tildes come with a very natural notion of composition, and it appears that this composition endows the graded set of all the multi-tildes with a structure of a ns set-operad [START_REF] Luque | Some Combinatorial Operators in Language Theory[END_REF]. This establishes an unexpected link between the theories of formal languages and of ns operads.

In [START_REF] Luque | Some Combinatorial Operators in Language Theory[END_REF], the ns operads MT of the multi-tildes and Poset of the pseudo-transitive multi-tildes have been defined. The first one is the ns operad aforementioned of multi-tildes and the second one is a quotient operad of MT involving posets. The set of all the languages over a finite alphabet is endowed with the structure of an MT-monoid, and also of a Posetmonoid. The first structure is nonfaithful while the second is faithful (in the sense that two different elements of Poset act differently on languages). The ns operad Poset provides hence a new way to express languages with optimality. Moreover, any finite language can be expressed by the action of an element of Poset on languages that are empty or consisting only in one word of length 1.

The purpose of the present work is to generalize these constructions of ns operads to regular languages (and not only on finite ones). The main idea for this is to extend the notion of multi-tildes to double multi-tildes. These are operators acting on languages and allow intuitively to jump forward or backward in a regular expression. In this generalization also, double multi-tildes are endowed with a natural notion of composition and form a ns set-operad DMT. This operad acts on the set all the languages over a finite alphabet, and provides a way to express any regular language by the action of an element of DMT on 343 languages that are empty or consisting only in one word of length 1. In this context, we also construct a quotient operad Qoset of DMT which plays the same role for regular languages as Poset plays for finite languages. Indeed, the set of all regular languages forms a faithful Qoset-monoid.

All the four ns set-operads considered in this chapter can be constructed in a very similar way. For this reason, we provide an abstraction for their construction through a functorial construction PO, producing a ns set-operad from a precomposition. These last structures are kinds of representations of a particular monoid. We provide, by using precompositions and PO, alternative constructions for the already known operads MT and Poset, and interpret our construction of the new operads DMT and Qoset. This chapter is organized as follows. Section 1 contains the definition of the category of the precompositions and of the functor PO. In Section 2, we provide alternative constructions of MT and Poset, and define DMT and Qoset. In Section 3, we study actions of DMT and Qoset on languages.

Note. This chapter deals only with ns set-operads. For this reason, "operad" means "ns set-operad".

Breaking operads via precompositions

The objective of this section is to introduce new algebraic objects, the precompositions. These objects are a kind of representation of a certain monoid denoted by p whose elements can be described in terms of infinite matrices. We present here a functor from the category of precompositions to the category of operads. We shall use this functor in the sequel to reconstruct some already known operads and to construct new ones.

1.1. Monoids of infinite matrices. We introduce here an associative algebra ¯ ∞ of infinite matrices whose entries are indexed on Z 2 and a quotient ∞ of ¯ ∞ of infinite matrices whose entries are indexed on N 2 . Moreover, two respective subalgebras ¯ ∞ and ∞ of ¯ ∞ and ∞ are described. The purpose of this section is to give a realization and a presentation of p , a monoid defined by seeing ∞ as a monoid.

1.1.1. A first algebra of infinite matrices. We consider the vector space ¯ ∞ of all infinite matrices (A ) ∈Z with a finite number of nonzero diagonals whose entries belong to K. A typical element A of ¯ ∞ is a finite linear combination of elements where λ λ := (λ + λ ) ∈Z , we deduce that ¯ ∞ is stable for the product of infinite matrices. Moreover, the unit of ¯ ∞ is 1 := D (0 ( 1 1 )) = ∈Z E ( ) (1.1.4)

This leads to the following result. P 1.1.1. The space ¯ ∞ is a unitary associative algebra.

Notice that when K is the field of complex numbers, the algebraic structure of ¯ ∞ is very rich and has many connections with the study of infinite Lie algebras (see e.g., [START_REF] Kac | Infinite-Dimensional Lie Algebras[END_REF]). 

with 1 ⊆ 2 ⊆ • • • ⊆ ⊆ • • • (1.2.2)
and such that each is a submonoid of . We will denote by 1 the unit of .

A precomposition is a monoid morphism φ : p → End( ) (1.2.3)

where End( ) denotes the set of all monoid endomorphisms of , satisfying φ (a ) :

→ + -1 1 (1.2.4a) φ (a ) | = Id + 1 (1.2.4b)
where φ (a ) | denotes the restriction of the map φ (a ) to the domain , and Id is the identity map on .

For simplicity, we denote by φ the map φ (a ). Observe that the maps φ have the following intuitive meaning. If is an element of , one can see as an element having any number of inputs non smaller than . Under this point of view, φ ( ) is an element of + -1 obtained by replacing in its th input by -1 new ones. Axioms (1.1.7a), (1.1.7b), and (1.1.7c) can be understood in the light of this interpretation. 

Concluding remarks

The work presented in this chapter provides two kinds of results. The first one consists in a general construction of operads through a functor PO, producing an operad from a precomposition. The second one consists in the application of this construction to obtain new operads or alternative descriptions of already existing ones. In this context we have introduced and worked with operads acting on formal languages.

The operad Qoset, quotient of the operad DMT of double multi-tildes, acts faithfully on the set of all regular languages over a finite alphabet. Since Qoset is a combinatorial operad, it offers countable operations for denoting regular languages. The expressions thus obtained to define regular languages lead to the definition of several measures for their complexity. For instance, if l is a regular language, one can define 1 (l) (resp. 2 (l)) as the minimal arity (resp. number of pairs) of the element of Qoset required to express l (see Proposition 3.1.3 and Theorem 3.2.1). Intuitively, 1 and 2 can be respectively interpreted as functions measuring the width and the height of a language. The first one, 1 , is indeed the minimal number of occurrences of symbols or ∅ in the expression of l. The measure 2 expresses the minimal complexity of an operator involved for denoting the languages. These measures deserve to be investigated; in particular a parallel with the size of a minimal automaton (in terms of states or transitions) should be established.

Another perspective is the extension of the conversion methods from automata to expressions by using double multi-tildes. These conversions were studied in [CCM10] and in [START_REF] Caron | Multi-tilde-bar expressions and their automata[END_REF]. By slightly modifying the action of the operads, we aim to extend these algorithms of conversions. Conversely, it seems worth designing algorithms producing automata from expressions (like e.g., position functions [START_REF] Glushkov | The abstract theory of automata[END_REF] or expression derivatives [START_REF] Brzozowski | Derivatives of regular expressions[END_REF][START_REF] Antimirov | Partial derivatives of regular expressions and finite automaton constructions[END_REF]).

A last perspective is the following. By the Alexandroff correspondence [START_REF] Alexandroff | Diskrete Räume[END_REF], quasiorders on finite sets are in bijection with finite topologies. The question here consists in investigating if the action of the operad of quasiorders Qoset on languages has a topological interpretation.

Conclusion

In all this dissertation, our main philosophy is to design operations on combinatorial objects in order to construct algebraic structures on them. By studying algebraically these structures, we hope to grab combinatorial properties on the objects. All this provides a tool to tackle problems coming from enumerative combinatorics or computer science.

We expose in this work numerous constructions inputting simple algebraic structures (like magmas, monoids, or posets) and outputting more complicated ones (like Hopf bialgebras, operads, and pros) and involving combinatorial objects. Therefore, our main contribution is to provide metatools, in the sense that our constructions can be used to endow combinatorial collections with algebraic structures.

Each chapter ends with a section named "Concluding remarks" raising some contextual open questions. For this reason we will not mention these here. Let us instead speak about the general and cross sectional ideas and directions for future research.

About constructions of operads

A first general direction consists in using the constructions T (see Chapters 4 and 5), As (see Chapter 6), C (see Chapter 7), and PO (see Chapter 12) to define even more operads. As we have seen, these constructions lead to the definitions of many interesting operads, involving a large range of combinatorial objects and of partial composition operations and algorithms. We think that we are far to have exhausted the subject and that many other operads deserving to be studied can be obtained.

A next logical continuation is to develop more connections between combinatorial algebraic structures and properties of their underlying combinatorial objects. We have pointed out, mostly in Chapter 11, that ns colored operads lead to a generalization of usual formal power series. By using the operations of operads, we obtain a bunch a natural operations on such generalized series, forming new tools for enumerative prospects. This axis consists in constructing new operads on various kind of objects (like integer partitions, Young tableaux, planar maps, etc.) and use these and their formal power series to discover enumerative properties.

About pros and their combinatorics

In Chapter 9, a link between the theory of pros and the one of Hopf bialgebras has been highlighted through a construction H associating a Hopf bialgebra with some pros. These last objects are generalizations of operads and their underlying combinatorics is much less 357 developed and understood than those of operads. For instance, while free operads are very well-known structures, free pros are not well described. Some particular phenomena occur when one considers free pros on generators having null input and/or output arities. The question here is to provide a good combinatorial realization of free pros. The described realization in terms of prographs (see Chapters 1 and 2) allows only generators with at least one input and one output. This research axis contains also questions like a description of the Hilbert series of free pros.

Pros provide also an interesting framework to work with all the symmetric groups at the same time. Indeed, the pro K Per of all permutations (see Chapter 2) encapsulates the composition operation of all permutations and hence, contains all groups S , ∈ N. This pro, by computing its presentation by generators and relations, leads to the known presentation of the symmetric groups in terms of elementary transpositions. Here we ask for a general construction associating a pro with any sequence W , ∈ N, of Coxeter groups, analog to what is K Per for S , ∈ N. This could lead to combinatorial realizations of some Coxeter groups. The same, but more general and hard question, consisting in encapsulating a sequence M , ∈ N, of monoids in pros holds also.

Here is a last theme about pros we would like to expose. As said before, (colored) operads are promising devices to generalize usual formal power series. Since pros are in some sense generalizations of operads, series on pros would be an even more powerful generalization of such series. Additionally, they could be very interesting devices for enumeration. Due to the richness of the structure, series on pros come with a lot of different products. At least, a generalization of the pre-Lie and composition product on series on colored ns operads (see Chapter 11) can be considered.

About biproducts and their algorithmic

As exposed in Chapter 10, combinatorial (bi)algebraic structures are good supports to ask questions of analysis of algorithms. To be more precise, given a combinatorial space K C endowed with a biproduct of arity , the question of the complexity of the computation of ( 1 ⊗ • • • ⊗ ), where 1 , . . . , are objects of C seems in general unexplored and open. The analysis may be performed with respect to the sum of the sizes of 1 , . . . , . This could lead to a hierarchy of biproducts depending on their complexity. Some biproducts can have different complexity on different bases of K C . This research direction mixes in a balanced way algebraic combinatorics and computer science.
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A

. This habilitation thesis fits in the fields of algebraic and enumerative combinatorics, with connections with computer science. The main ideas developed in this work consist in endowing combinatorial objects (words, permutations, trees, integer partitions, Young tableaux, etc.) with operations in order to construct algebraic structures. This process allows, by studying algebraically the structures thus obtained (changes of bases, generating sets, presentations by generators and relations, morphisms, representations), to collect combinatorial information about the underlying objects. The algebraic structures the most encountered here are magmas, posets, associative algebras, dendriform algebras, Hopf bialgebras, operads, and pros. This work explores the aforementioned research direction and provides many (functorial or not) constructions having the particularity to build algebraic structures on combinatorial objects. We develop for instance a functor from nonsymmetric colored operads to nonsymmetric operads, from monoids to operads, from unitary magmas to nonsymmetric operads, from finite posets to nonsymmetric operads, from stiff pros to Hopf bialgebras, and from precompositions to nonsymmetric operads. These constructions bring alternative ways to describe already known structures and provide new ones, as for instance, some of the deformations of the noncommutative Faà di Bruno Hopf bialgebra of Foissy and a generalization of the dendriform operad of Loday.

We also use algebraic structures to obtain enumerative results. In particular, nonsymmetric colored operads are promising devices to define formal series generalizing the usual ones. These series come with several products (for instance a pre-Lie product, an associative product, and their Kleene stars) enriching the usual ones on classical power series. This provides a framework and a toolbox to strike combinatorial questions in an original way.

The text is organized as follows. The first two chapters pose the elementary notions of combinatorics and algebraic combinatorics used in the whole work. The last ten chapters contain our original research results fitting the context presented above.

INTRODUCTION

  

1. 1 .

 1 Collections. After defining collections, combinatorial collections, (multi)graded collections, and colored collections, a bunch of operations on graded collections are reviewed. 1.1.1. General collections. Let I be a nonempty set called index. An I-collection is a set C expressible as a disjoint union all C( ), ∈ I, are sets. All the elements of C (resp. C( ) for an ∈ I) are called objects (resp. -objects) of C.

1.1. 3 .}) is defined, ( 1 )

 31 Statistics and multigraded collections. Let C be a collection. A statistics on C is a map s : C → N, associating a nonnegative integer value with any object of C. A -graded collection (also called multigraded collection) is an N -collection for an integer 1. To not overload the notation, we denote by C(1) the subset C((1)) of any -graded collection C. These collections are useful to work with objects endowed with many statistics. Indeed, if is an ( 1 )-object, one sets s ( ) := for each 1 . This defines in this way statistics s : C → N, 1 . Besides, the generating series of a combinatorial -graded N -collection C is the series Of course, (1.1.2) is a particular case of (1.1.3) when = 1. 1.1.4. Colored collections. Let C be a finite set, called set of colors. A C-colored collection C is an I-collection such that I := ( ) : ∈ C and ∈ C for an 1 (1.1.4) In other terms, any object of C has an index ( ). By setting that the size of is the length | | of (that is the integer such that ∈ C ), we can see C as an augmented graded collection. Moreover, the output color of is out( ) := , and the word of input colors of is in( ) := . The th input color of is the th letter of in( ), denoted by in ( ). We say that C is monochrome if C is a singleton. For any nonnegative integer , a -colored collection is a C-colored collection where C is the set of integers {1 }. Assume now that C = { 1 and let X C := {x 1 x } and Y C := {y 1 y } be two alphabets of commutative letters. The generating series of C is the series that when C is monochrome, the specialization C (1 ) is the generating series of C seen as a graded collection. 1.1.5. Products in collections. Let C be an I-collection. A product on C is a partial map : C → C (1.1.6) where ∈ N \ {0}. The arity of is . Any product of arity can be seen as an operation taking elements of C as input and outputting one element of C. When, for any ∈ I and any objects 1 , . . . , of C( ) such that ( 1 ∈ C( ) holds, we say that is internal.

  3) for any augmented combinatorial graded collection C. Let also, for any ∈ N, the subcollection [ ] := { ∈ N : }, and [ ] := [1 ]. These examples of graded collections are among the simplest nontrivial ones.

  word on A, it follows from the definition of A * that the size | | of is . The th letter of is and is denoted by ( ) (and also denoted by in some contexts). For any letter b ∈ A, the number of occurrences | | b of b in is the cardinality of the set { ∈ [| |] : ( ) = b}. The unique word on A of size 0 is denoted by and is called empty word. The subcollection A + := Aug(A * ) of A * contains all nonempty words on A. For any ∈ N, A denote the subcollection A * ( ) of A *

  ( ) = 3212. When #A 2, this map cmp is a surjective collection morphism from A * to Comp.

1.2. 5 .

 5 Permutations and colored permutations. A permutation of size is a bijection σ from [ ] to [ ]. The combinatorial graded collection of all permutations is denoted by S. The generating series of S is S • (1.2.11) Any permutation σ of S( ) is denoted as a word σ(1) σ( ) on N 1 . Under this convention, a permutation of size is a word on the alphabet [ ] with exactly one occurrence of each letter of [ ]. The composition operation • of maps forms a binary internal operation on S.

1 .

 1 The right weak order on permutations. Let be the partial order relation on the combinatorial collection S of permutations generated by the covering relation defined by ab ba (1.3.8) where and are words on N 1 , and a and b are letters such that a < b. This order is the right weak order of permutations. The Hasse diagram of (S ) restricted on S(4) Hasse diagram of the right weak poset of permutations of size 4.

  For instance, consider the combinatorial collection C := C(2) C(3) where C(2) := {a b} and C(3) := {c}, and the C-syntax tree

  way that the right rotation operation on binary trees considered in Section 1.3.3 (see (1.3.7)) can be expressed as the closure of the rewrite system (PRT B ⊥ ) such that B := B(2) := {b} defined by b b b b

P

  

P

  

  For instance, by considering the same labeling set C as above, let (PRT C ⊥ is a C-syntax tree of degree 2 -1 = 3. The graph G t associated with t is of the form confluent. Indeed, t is a non-joinable branching tree. On the other hand, consider the rewrite system (PRT C ⊥ syntax tree of degree 2 -1 = 3. The graph G t associated with t is of the form

  For instance, consider the set of colors C := {1 2} and the C-colored collection C defined by C := C(2) C(3) with C(2) := {a b}, C(3) := {c}, out(a) := 1, out(b) := 2, out(c) := 1, in(a) := 11, in(b) := 21, and in(c) := 221. The tree

  ⊥ be the C-colored collection of the C-colored C-syntax trees. The operations • thus defined are binary products

  {a b c}-configuration. The arcs (1 2) and (1 4) of c are labeled by a, the arcs (2 5) and (4 5) are labeled by b, and the other arcs are unlabeled.

  7) where a and b are elementary C-prographs and C-preprographs such that | | ↑ = | | ↓ , we denote by • the C-preprograph ( 1 1 ). Let also be the ternary product on PPrg C defined by ( ) := • • where , , and are three C-preprographs satisfying | | ↑ = | | ↓ and | | ↑ = | | ↓ .

1.3. 2 .

 2 Changes of basis. Let C be a combinatorial I-collection and be a partial order relation on C such that (C ) is an I-poset. Consider the family B ∈ C (1.3.9) of elements of K C defined, from the fundamental basis of K C , by B := ∈C (1.3.10) Observe that since C is combinatorial and preserves the indices of the objects of C, each B is a homogeneous C-polynomial. We call the family (1.3.9) the B -family of K C . P 1.3.2. Let (C ) be a combinatorial I-poset. The B -family forms a basis of K C and = ∈C ( ) µ B (1.3.11) for all ∈ C( ), ∈ I, where µ is the -Möbius polynomial of (C ). P . Let us compute the right member of (1.3.11) by using (1.3.10). Then, for any ∈ C( ), ∈ I, by using the relations satisfied by the coefficients of µ provided by Theorem 1.3.1, we obtain ∈C (

  2.1. Sylvester congruence. The sylvester congruence [HNT05] is the finest monoid congruence ≡ of A * satisfying, for any ∈ A * and a b c ∈ A, ac b ≡ ca b a b ≺ c (3.2.21) For example, the ≡-equivalence class of the permutation 15423 (see Figure 2.1) is {12543 15243 15423 51243 51423 54123} (3.2.22)The set of all ≡-equivalence classes of permutations of size are in one-to-one corresponsylvester equivalence class of the permutation 15423.

  satisfying, for any ∈ A * and a b c ∈ A, ac b ≡ ca b a b ≺ c and for all letters d of c d (3.2.25) The set of all ≡-equivalence classes of permutations of size are in one-to-one correspondence with the set of all set partitions of [ ]. A possible bijection between these two sets uses a variant of the patience sorting algorithm [Rey07]. Hypoplactic congruence. The hypoplactic congruence [KT97,KT99] is the finest monoid congruence ≡ of A * satisfying, for any ∈ A * and a b c ∈ A,

4. 1 .

 1 Operads. Operads have been introduced in the field of algebraic topology [May72, BV73]. Here we see operads under a combinatorial point of view. The notions of operads, nonsymmetric operads, free operads, presentations by generators and relations, Koszul duality, and algebras over operads are reviewed. 4.1.1. Nonsymmetric operads. A nonsymmetric operad (or a ns operad for short) is a graded augmented polynomial space K C endowed with a set of binary linear products {• : ∈ N 1 }. These products have to satisfy several relations. First, when ∈ C( ) and + 1, for any ∈ C, • = 0 (4.1.1)

  by two ways: by starting by composing and , and the result with , or by starting by composing and , and the result with . Relation (4.1.3b) says that the product (4.1.8) can be formed by two ways: by starting by composing and , and the result with , or by starting by composing and , and the result with . Finally, Relation (4.1.4) says that 1 behaves as an identity product, so that1 some vocabulary. Each element of K C ( ) is of arity . Thearity of is denoted by | |. The maps • , 1, are partial composition maps. Relation (4.1.3a) is the series associativity relation, while (4.1.3b) is the parallel associativity relation. The element 1 of arity 1 satisfying (4.1.4) is the unit of K C . This element is unique.

  and ∈ [ ]. A symmetry of K C is either a ns operad automorphism or a ns operad antiautomorphism of K C . The set of all symmetries of K C forms a group for the map composition, called group of symmetries of K C . Given two ns operads K C 1 and K C 2 , the Hadamard product of K C 1 and K C 2 is the ns operad denoted by K C 1 ◊K C 2 and defined on the polynomial space K C 1 ◊C 1 where ◊ is the Hadamard product of graded collections (see Section 1.1.5 of Chapter 1). The partial compositions • , ∈ N 1 , are defined linearly by

  4.2 of Chapter 1. The unit of FO(G) is the only G-syntax tree ⊥ of arity 1. Let also : G → FO(G) (4.1.14) be the inclusion map, that is the map sending any ∈ G to the corolla ( ) (see Section 2.3.1 of Chapter 1). 4.1.4. Evaluations and treelike expressions. Let now K C be a ns operad. Since C is a graded augmented collection, one can consider the free ns operad FO(C) of the C-syntax trees. The evaluation map of K C is the map ev : FO(C) → K C (4.1.15) defined linearly by induction, for any C-syntax tree t, by ev(t) :=

  T 4.1.1. Let K C be a ns operad, G be a subcollection of C, and be a subspace of FO(G) of syntax trees of degrees 2 or more. If (i) the collection G is a generating set of K C ; (ii) for any ∈ , ev( ) = 0; (iii) there exists a rewrite system (PRT G ⊥ ) being an orientation of , such that its closure (PRT G ⊥

P.

  By definition of the evaluation map ev : FO(C) → K C and by (ii), the map φ : FO(G)/ → K C (4.1.18) defined linearly for any ∈ C by φ([ ]) := ev( ), where [ ] is the image of through the canonical surjection from FO(C) to FO(C)/ , is a ns operad morphism. Moreover, by (i), and since has no element of degree 0 or 1, φ([ ]) = for all ∈ G. This implies that φ is surjective.

  L 4.1.2. Let K C be a ns operad admitting a quadratic presentation (G ). If there exists an orientation (PRT G ⊥ ) of such that its closure (PRT G ⊥

  L 4.1.3. Let C be a ns set-operad generated by a set G of generators. Then any object of C different from the unit can be written as = • , where ∈ C( ), ∈ N 1 , ∈ G, and ∈ [ ]. Lemma 4.1.3 is a consequence of the fact that, since G is a generating set of C, any object of C admits a treelike expression being a G-syntax tree. Now, let C be a ns set-operad. Given a subset S of C, the S-degree of an object of C is defined by deg S ( ) := max {deg(t) : t ∈ FO(S) and ev(t) = } (4.1.30)

  10. Colored operads. Let C be a set of colors. A nonsymmetric C-colored operad (or a ns C-colored operad for short) is a polynomial space K C where C is a C-colored collection and K C is endowed with a set of partially defined binary linear products {• : ∈ N 1 } of the form (4.1.2). The following conditions have to hold. First, the partial composition • is defined if and only out( ) = in ( ) for any ∈ C( ), ∈ C( ), and ∈ [ ]. Moreover, when they are well-defined, Relations (4.1.2), (4.1.3a), and (4.1.3b) have to hold. Finally, we demand the existence of a set of elements {1 : ∈ C} of arity 1 satisfying

  P 4.1.6. As a ns operad, Per is minimally generated by the set of all simple permutations of sizes 2 or more. One of the simplest examples of symmetric operads is the commutative associative operad Com. This operad is defined as Com := K C where C is the augmented graded collection satisfying C( ) := {a } for all ∈ N 1 , its partial compositions satisfy a • a := a + -1 (4.1.48) for any ∈ N 1 and ∈ [ ], and Per acts trivially on Com.

}

  , has the structure of a ns operad RatFct introduced by Loday [Lod10] and defined as follows. Let RatFct( ) be the subspace K(

  (1) defined by ( 1 ) := 1 is the unit of RatFct. As shown by Loday, this operad is (nontrivially) isomorphic to the operad Mould introduced by Chapoton [Cha07]. 4.2.5. Diassociative operad. Let the operad Dias := K C where C is the augmented graded collection satisfying C( ) := {e : ∈ [ ]} for all ∈ N 1 . The partial compositions of Dias are defined by

  5.1.1. Categorical definition.A product category (or, for short, a pro) is a category endowed with a associative bifunctor * : × → such that the objects of are the elements of N and * := + for all ∈ N.

1)

  the maximal decomposition of and the the factors of . Notice that the maximal decomposition of 1 0 is the empty word. We have in FP(G), for instance, by setting G as the bigraded collection defined by G := G(2 2) G(3 1) where G(2 2) := {a} and G(3 1) := {b}, 1.11)An G-prograph is reduced if all its factors are different from 11 . For any G-prograph , we denote by red( ) the reduced G-prograph admitting as maximal decomposition the longest subword of dec( ) consisting in factors different from 1 1 . We have in FP(G), for instance, 1.12) By extension, we denote by red(FP(G)) the set of all the reduced G-prographs. Note that 1 0 belongs to red(FP(G)).

1. 1 .

 1 The construction. Let us now introduce the construction associating a (noncolored) operad with a colored one. We begin by giving the formal definition of what enveloping operads of colored operads are, and then, give a combinatorial interpretation of the construction in terms of anticolored syntax trees. 1.1.1. Enveloping operads. Let be a -colored operad. Recall that Aug( ) is the set \ (1). The enveloping operad Hull( ) of is the smallest (noncolored) operad containing Aug( ). In other terms, Hull( ) := FO (Aug( )) / ≡ (1.1.1)

  2 } with out(a 2 ) := 1 and in 1 (a 2 ) := in 2 (a 2 ) := 2, and for all 3, ( ) := ∅. Due to the output and input colors of a 2 , there is no nontrivial partial composition in . On the other hand, let FAs be the 2-colored operad where, for all 2, FAs( ) := {b } with out(b ) := 1, in 1 (b ) := 1, and in (b ) := 2 for all 2 . Nontrivial partial compositions of FAs are only defined for the first position by b • 1 b := b + -1 for any2. One observes that Hull( ) and Hull(FAs) are both the free operad generated by one element of arity 2 with no nontrivial relations, and hence, are isomorphic. The isomorphism between Hull( ) and Hull(FAs) can be described by a left-child right-sibling bijection[START_REF] Cormen | Introduction to algorithms[END_REF] between binary trees and planar rooted trees.1.1.6. Example. Consider the 2-colored operad FAs defined in the previous section. The elements of Hull(FAs) are anticolored syntax trees on Aug(FAs). Because of the output and input colors of the elements of FAs, Hull(FAs) contains trees where all internal nodes have no child in the first position. For instance, composition in Hull(FAs) which does not require any reduction. On the other hand, 1.5) is a partial composition requiring a reduction.

  Figure 3.3 shows a BNC. When the size of c is not smaller than 2, the border of c is the word bor(c) of length such that, for any ∈ [ ], bor(c) := 1 if the th edge of c is uncolored and bor(c) := 2 otherwise. See Figure 3.3 for an example.

F

  . . A nonbased BNC of size 9. Blue arcs are (1 2), (2 8), (4 6), (7 8), and (9 10), and red arcs are (2 6) and (2 10). All other arcs are uncolored. The border of this BNC is 211111212. 2.1.2. Operad structure. From now on, the arity |c| of a BNC c is its size. Let c and d be two BNCs of respective arities and , and ∈ [ ]. The partial composition c • d =: e is obtained by gluing the base of d onto the th edge of c, and then, (1) if the base of d and the th edge of c are both uncolored, the arc ( + ) of e becomes red; (2) if the base of d and the th edge of c are both blue, the arc ( + ) of e becomes blue; (3) otherwise, the base of d and the th edge of c have different colors; in this case, the arc ( + ) of e is uncolored.

  2.2.2. Colored operad structure. Let b be a bubble of arity . Let us assign input and output colors to b in the following way. The output color out(b) of b is 1 if b is based and 2 otherwise, and the color in (b) of the th input of b is the th letter of the border of b.

  2.2.5. Symmetries. The complementary cpl(b) of a bubble b is the bubble obtained by swapping the colors of the edges of b (blue edges become uncolored and conversely). The returned ret(b) of b is the bubble obtained by applying to b the reflection through the vertical line passing by its base. Figure 3.4 shows examples of these symmetries.

  P

  2.3.1. Bubble decomposition. Let c be a BNC. An area of c is a maximal component of c without colored diagonals and bounded by colored arcs or by uncolored edges. Any area of c defines a bubble b consisting in the edges of . The base of b is the only edge of that splits c in two parts where one contains the base of c and the other contains . Blue edges of remain blue edges in b and red edges of become uncolored edges in b.

  3.1.3. Operads of noncrossing trees and plants. Chapoton defined in[START_REF] Chapoton | The anticyclic operad of moulds[END_REF] an operad NCT involving based noncrossing trees and an operad NCP involving noncrossing plants. As follows directly from the definition, these operads are the suboperads and of BNC respectively. The operad NCT governs L-algebras, a sort of algebras introduced by Leroux[START_REF] Leroux | L-algebras, triplicial-algebras, within an equivalence of categories motivated by graphs[END_REF].

  the set of the { }-syntax trees avoiding the trees • -Birkhoff-Witt basis of .

  basis of T called fundamental basis. We endow T with the partial composition maps • : T ( ) ⊗ T ( ) → T ( + -1) 1 ∈ [ ] (1.1.2) defined linearly, over the fundamental basis, for any words ∈ and ∈ by • endow T with right actions • : T ( ) ⊗ Per( ) → T ( ) 1 (1.1.4) defined linearly, for any permutation σ ∈ S( ) and word ∈ by • σ := σ 1 σ (1.1.5)In other words, T is the vector space of the words on seen as an alphabet, the partial composition returns to insert a word onto the th letter of a word together with a left multiplication by , and permutations act by permuting the letters of the words. The arity | | of an element of TM( ) is .Now, let1 and 2 be two monoids and θ : 1 → 2 be a monoid morphism. Let us denote by Tθ the map Tθ : .1. The construction T is a functor from the category of monoids with monoid morphisms to the category of operads with operad morphisms. Moreover, T preserves injections and surjections.Observe that the word 1 ∈ T (1) is the unit of T . Let us consider an example. Let := {a b} * be a free monoid. Then, T is the space of all words whose letters are words on {a b}. We call such element multiwords. For instance, (aa ba b a) is an element of arity 5 of T and (aa ba b a) • 3 (ab a) = (aa ba bab b ba a) (1.1.6) and (aa ba b a) • 41352 = ( aa b a ba) (1.1.7) Moreover, if θ : → N is the monoid morphism defined by θ( ) := | |, where N is the additive monoid of natural numbers, one has θ((aa ba b a)) = 22101 (1.1.

2. 1 .

 1 Operads from the additive monoid. Let us denote by N the additive monoid of natural numbers, and for all 1, by N the cyclic additive monoid on Z/ Z . Note that since, by Theorem 1.1.1, T is a functor which preserves surjective maps, TN is a quotient operad of TN. Besides, since the monoids N and N are right cancellable, by Proposition 1.2.1, the fundamental bases of the operads TN and TN are basic set-operad bases. As a consequence, the fundamental bases of all the suboperads of TN and TN constructed in this section are basic set-operad bases. All these operads fit into the diagram of ns operads represented by Figure 4.1.

  P2.1.1. The spaces End, PF, and PW form suboperads of TN.For example, we have in End the partial composition

P 2.1. 4 .

 4 The fundamental basis of PRT is the set of all the words on the alphabet N satisfying 1 = 0 and 1 +1 + 1 for all ∈ [| | -1].

  Figure 4.2 shows an example of this bijection.Hence, the Hilbert series of PRT satisfiesPRT ( ) = 1 1 2 -2 -1 (2.1.6)so that its dimensions are the Catalan numbers. of a word of the ns operad PRT in terms of a planar rooted tree via the bijection φ PRT . The nodes of the planar rooted tree in the middle are labeled by their depth.

Figure 4 .

 4 Figure 4.3 shows an example of a partial composition in PRT.

  Figure 4.4 shows an example of this bijection.

Figure 4 .

 4 Figure 4.5 shows an example of composition in FCat(2) .

  Moreover, FCat ( ) is a Koszul operad and the set of the G FCat ( ) -syntax trees avoiding the trees (0(a + b)) • 1 (0a) for all a b 0 and a + b is a Poincaré-Birkhoff-Witt basis of FCat ( ) .

P 2.1. 12 .

 12 The fundamental basis of Schr is the set of all the words on the alphabet N having at least one occurrence of 0 and, for all letter b 1 of , there exists a letter a := b -1 such that has a factor a b or b a where is a word consisting in letters c satisfying c b.

  Figure 4.6 shows an example of this bijection. Hence, the Hilbert series of Schr satisfies the algebraic relation + (3 -1) Schr ( of a word of the ns operad Schr in terms of Schröder trees via the bijection φ

  Figure 4.7 shows an example of such a composition. of the partial composition map of the ns operad Schr in terms of Schröder trees. T 2.1.13. The ns operad Schr admits the presentation (G Schr ) where is the subspace of FO (G Schr ) generated by the elements

  Schr is a Koszul operad and the set of the G Schr -syntax trees avoiding the trees (is a Poincaré-Birkhoff-Witt basis of Schr. Since by Theorem 2.1.13, Schr is binary and quadratic, this ns operad admits a Koszul dual. Let Schr ! be the Koszul dual of Schr. P 2.1.14. The ns operad Schr ! admits the presentation (G Schr ) where is the subspace of FO (G Schr ) generated by the elements

  Figure 4.8 shows an example of this bijection. of a word of the ns operad Motz in terms of Motzkin words and Motzkin paths via the bijection φ Motz .Hence, the Hilbert series of Motz satisfies the algebraic relation + (In terms of Motzkin words, the partial composition of Motz can be expressed as follows: P 2.1.17. Let and be two Motzkin words where is of size , and ∈ [ ] be an integer. Then the composition • in Motz amounts to insert at the th position into .

Figure 4 .

 4 Figure 4.9 shows an example of composition in Motz.

  is a Koszul operad and the set of the G Motz -syntax trees avoiding the trees (00) • 1 (00), (010) • 1 (00), (00) • 1 (010), and (010) • 1 (010) is a Poincaré-Birkhoff-Witt basis of Motz.2.1.6. A ns operad on compositions. Let Comp be the ns suboperad of TN 2 generated by GComp := {00 01}. Since FCat(1) is the ns suboperad of TN generated by G(1) FCat = {00 01}, and since TN 2 is a quotient of TN, Comp is a quotient of FCat (1) . P 2.1.19. The fundamental basis of Comp is the set of all the words on the alphabet {0 1} beginning by 0. P . It is immediate, from the definition of Comp and Lemma 4.1.3 of Chapter 2, that any element of this ns operad starts by 0 since its generators 00 and 01 all start by 0.Let us now show by induction on the length of the words that Comp contains any word satisfying the statement. This is true when | | = 1. When := | | 2, let us observe that if only consists in letters 0, Comp contains because can be obtained by composing the generator 00 with itself. Otherwise, has at least one occurrence of 1. Since its first letter is 0, there is in a factor +1 = 01. By setting := 1 +2, we have = • 01. Since satisfies the statement, by induction hypothesis Comp contains . Hence, Comp also contains .Let us consider the combinatorial graded collection of the compositions where the size of such a composition is the sum of its parts (this is the collection Comp defined in Section 1.2.3 of Chapter 1. The th box of a ribbon diagram of a composition λ is the th encountered box by traversing λ column by column from left to right and from top to bottom. The transpose of λ is the ribbon diagram obtained by applying to λ the reflection through the line passing by its first and its last boxes. There is a bijection φ Comp between the words of Comp of arity and ribbon diagrams of compositions of size . To compute φ Comp ( ) where is a word of Comp, iteratively insert the letters of from left to right according to the following procedure. If | | = 1, then = 0 and φ Comp (0) is the only ribbon diagram consisting in one box. Otherwise, the insertion of a letter a into λ consists in adding a new box below (resp. to the right of) the right bottommost box of λ if a = 1 (resp. a = 0). The inverse bijection is computed as follows. Given a ribbon diagram λ of a composition of size , one computes a word of Comp of arity by labeling the first box of λ by 0 and the th box by 0 if the ( -1)st box is on the left of or by 1 otherwise, for any 1 . The corresponding word of Comp is obtained by reading the labels of λ from top to bottom and left to right. Since the words of Comp satisfy Proposition 2.1.19, φ Comp is well-defined. Hence, we can regard the words of arity of Comp as ribbon diagrams with boxes.Figure 4.10 shows an example of this bijection. Hence, the Hilbert series of Comp satisfies Comp ribbon diagrams, the partial composition of Comp can be expressed as follows: P 2.1.20. Let λ and µ be two ribbon diagrams, be an integer, and be the th box of λ. Then, the composition λ • µ in Comp amounts to replace by µ if is the upper box of its column, or to replace by the transpose ribbon diagram of µ otherwise.

  of a word of the ns operad Comp in terms of compositions via the bijection φ Comp . Boxes of the ribbon diagram in the middle are labeled.

Figure 4 .

 4 Figure 4.11 shows two examples of compositions in Comp.

  23. Let, for any 1, ( ) be the set of the words of forming the fundamental basis of DA( ) and let φ DA : ( ) all ∈ [ -1]. Then, φ DA is a bijection between the words of arity of DA and prefixes of Motzkin words of length -1. Here are two examples of images by φ DA of words of DA: φ

  Given a ribbon diagram λ := (λ 1 λ ) of a segmented composition of size , one computes a word of SComp of arity by computing the sequence (1) ( ) where for any ∈ [| |], ( ) is the word of Comp obtained by applying the inverse bijection of φComp to λ , then by incrementing in each( ) all letters, excepted the first one, and finally by concatenating the words of the sequence together. Since the words of SComp satisfy Proposition 2.1.25, φ SComp is well-defined.

  Figure 4.13 shows an example of this bijection. of a word of the operad SComp in terms of a segmented composition via the bijection φ SComp . Boxes of the ribbon diagram in the middle are labeled. Hence, the Hilbert of SComp satisfies SComp ribbon diagrams, the partial composition of SComp can be expressed as follows: T 2.1.26. The ns operad SComp admits the presentation G SComp where is the subspace of FO G SComp generated by the elements

  Dias γ -syntax tree t where the images of its leaves are shown. This tree satisfies ev(t) = 340122332242. 1.2.5. Alternative presentation. The K-basis introduced in the previous section leads to state a new presentation for Dias γ in the following way. For any ∈ [γ], let us denote by (resp.) the element K 0 (resp. K 0 ) of Dias γ . Then, for all ∈ [γ] we have= ∈[γ]

  P 2.3.1. Let γ 0 be an integer and be a γ-multiassociative algebra admitting a -unit 1 for a ∈ [γ]. Then (i) for all ∈ [ ], the operations and of are equal; (ii) 1 is also an -unit for all ∈ [ ];

  3.1.1. Construction. For any integer γ 0, we define the γ-pluritriassociative operad Trias γ as the suboperad of TM γ generated by G Trias γ := {0 00 0 : ∈ [γ]} (3.1.1) By definition, Trias γ is the vector space of words that can be obtained by partial compositions of words of G Trias γ . We have, for instance, First properties. In the first place, observe that Trias 1 is the operad Tr defined in Chapter 4. For this reason, Trias 1 is the triassociative operad Trias. Moreover, observe that Trias 0 is the trivial operad and that Trias γ is a suboperad of Trias γ+1 . Then, for all integers γ 0, the operads Trias γ are generalizations of the triassociative operad. Observe that since G Trias γ = G Dias γ {00}, Dias γ is a suboperad of Trias γ . Finally, remark that the fundamental basis of Trias γ is a set-operad basis. 3.1.3. Elements and dimensions. P 3.1.1. For any integer γ 0, the fundamental basis of Trias γ is the set of all the words on the alphabet {0} [γ] containing at least one occurrence of 0. We deduce from Proposition 3.1.1 that the Hilbert series of Trias γ satisfies Triasγ ( ) = (1 -γ )(1 -γ -) (3.1.3)and that for all 1, dim Trias γ ( ) = (γ + 1) -γ . For instance, the first dimensions of Trias 1

  4-edge valued binary tree of arity 10. This tree is a basis element of Dendr 4 (10).

P 4.1. 3 .

 3 For any integers γ 0 and ∈ [γ], the element • := ∈[ ] + (4.1.7) of Dendr γ is associative.

  diagram of operads. We now define morphisms between the operads Dias γ , As γ , DAs γ , and Dendr γ to obtain a generalization of a classical diagram involving the diassociative, associative, and dendriform operads. 5.2.1. Relating the diassociative and dendriform operads. -known diagram of operads, being a part of the so-called operadic butterfly [Lod01, Lod06] and summarizing in a nice way the links between the dendriform, associative, and diassociative operads. The operad As, being at the center of the diagram, is its own Koszul dual, while Dias and Dendr are Koszul dual one of the other. The operad morphisms η : Dias → As and ζ : As → Dendr are linearly defined through the realizations of Dias and Dendr recalled respectively in Sections 4.2.5

6.1. 1 .

 1 Multiplicial operads. It is well-known[START_REF] Loday | Algebraic Operads[END_REF] that the dendriform operad and the duplicial operad Dup[START_REF] Loday | Generalized bialgebras and triples of operads[END_REF] are both specializations of a same operad D with one parameter ∈ K. This operad admits the presentation G

  Theorem 3.2.1, by exhibiting a presentation of Trias γ , shows that this operad is binary and quadratic. It then admits a Koszul dual, denoted by TDendr γ and called γ-polytridendriform operad. T 6.2.1. For any integer γ 0, the operad TDendr γ admits the presentation G TDendr γ TDendr γ where G TDendr γ := G TDendr γ (2) := { ∧ : ∈ [γ]} and TDendr γ is the space generated by (∧) •

  4-edge valued Schröder tree of arity 16. This tree is a basis element of TDendr 4 (16).

  π : K[X ] → K[X ]/ is the canonical projection. These operations , ∈ , endow K[X ]/ with a structure of a -associative algebra.

L 2.1. 4 .

 4 Let be a forest poset. Then, is a confluent rewrite rule.In Lemma 2.1.4, the condition on to be a forest poset is a necessary condition. Indeed,

  Let us provide examples of computations in the free -associative algebra over one generator where is the forest poset

P 2.3. 1 .

 1 Let be a poset. Then, the Koszul dual As( ) ! of As( ) admits the presentation G ¯ ¯ where

  diagrams of a thin forest poset and a standardly labeled version.

  family of the G ¯ generating As( ) ! is subjected to the same relations as the family of the G generating As( ⊥ ) (compare (3.2.8a) with (1.1.2a) and (3.2.8b) with (1.1.2b)). Whence the statement of the theorem.

  1 is the unit of D , 0 is absorbing, and d d = 0 for all ∈ [ ], and the unitary magma E the unit of E and e e = 1 for all ∈ [ Decorated cliques. An -decorated clique (or an -clique for short) is an configuration p (see Section 3.2 of Chapter 1) such that each arc of p has a label. When the arc (

For

  span of all -cliques without solid arcs. If p and q are such -cliques, all partial compositions p • q are equal to the unique -clique without solid arcs of arity |p| + |q| -1. For this reason, Deg 0 is the associative operad As.Any skeleton of an-clique of arity of Deg 1 can be seen as a partition of the set [ + 1] in singletons or pairs. Therefore, Deg 1 can be seen as an operad on such colored partitions, where each pair of the partitions have one color among the set ¯ . In the operad Deg 1 D 0 (observe that D 0 is the only unitary magma without nontrivial unit divisors on two elements), one has for instance 0 1.11b) By seeing each solid arc () of an -clique p of Deg 1 D 0 of arity as the transposition exchanging the letter and the letter , we can interpret p as an involution of S +1 made of the product of these transpositions. Hence, Deg 1 D 0 can be seen as an operad on involutions. Under this point of view, the partial compositions (2.1.11a) and (2.1.11b) translate on permutations the Robinson-Schensted correspondence (see for instance[START_REF] Schensted | Longest increasing and decreasing subsequences[END_REF][START_REF] Lothaire | Algebraic combinatorics on words. Encyclopedia of mathematics and its applications[END_REF]), Deg 1 D 0 is an operad of standard Young tableaux. The dimensions of Deg 1 form, except for the first terms, Sequence A000085 of[Slo]. Moreover, when # = 3, the dimensions of Deg 1 begin by 1 7 25 81 331 1303 5937 26785 (2.1.14) and form, except for the first terms, Sequence A047974 of [Slo]. Besides, any skeleton of an -clique of Deg 2 can be seen as a thunderstorm graph, i.e., a graph where connected components are cycles or paths. Therefore, Deg 2 can be seen as an operad on such colored graphs, where the arcs of the graphs have one color among the set ¯ . When # = 2, the dimensions of this operad begin by 1 8 41 253 1858 15796 152219 1638323 (2.1.15) and form, except for the first terms, Sequence A136281 of [Slo]. 2.1.6. Nesting-free cliques. Let Nes be the subspace of C generated by all -cliques that are not nesting-free. As a quotient of graded vector spaces, Nes := C / Nes (2.1.16) is the linear span of all nesting-free -cliques. P 2.1.6. Let be a unitary magma without nontrivial unit divisors. Then, the space Nes is a quotient operad of C .

  .1. Relations between the main substructures. Let us list and explain the morphisms between the main substructures of C . First, Lemma 2.3.1 implies that there are surjective operad morphisms from Acy to and from Acy to Nes . Second, when B, E, and D are subsets of such that 1 ∈ B, 1 ∈ E, and E B ⊆ D, Whi is a suboperad of Lab B E D . Finally, there is a surjective operad morphism from Whi to the associative operad As sending any -clique p of Whi to the unique basis element of As of the same arity as the one of p. The relations between the main suboperads and quotients of C built here are summarized in the diagram of operad morphisms of Figure7diagram of the main suboperads and quotients of C . Arrows (resp. ) are injective (resp. surjective) operad morphisms. Here, is a unitary magma without nontrivial unit divisors, is a positive integer, and B, E, and D are subsets of such that 1 ∈ B, 1 ∈ E, and E B ⊆ D.

.

  For these reasons, there are surjective operad morphisms from Pat to Deg 1 , from Pat to Nes , from For to Mot , and from Mot to Luc . The relations between the secondary suboperads and quotients of C built here are summarized in the diagram of operad morphisms of Figure 7.3. diagram of the secondary suboperads and quotients of C together with some of their related main suboperads and quotients of C . Arrows (resp. ) are injective (resp. surjective) operad morphisms. Here, is a unitary magma without nontrival unit divisors.

1r

  ], where each r , ∈ [ ], is a noncrossing -clique with a base labeled by 1 . Consider the map bt : NC → FO ( ) (3.1.3) defined linearly an recursively by bt( ) :=⊥ and, for any noncrossing -clique p of arity greater than 1, by bt(p) := (q) • [bt(r 1 ) bt(r )] (3.1.4) where p = q • [r 1 r ] is the unique decomposition of p stated in Proposition 3.1.2. We call bt(p) the bubble tree of p. For instance, in NCZ, Let be a unitary magma. For any noncrossing -clique p, bt(p) is a treelike expression on of p. P 3.1.4

  partial composition of NC realized on -Schröder trees. Here, the two cases (b) and (c) for the computation of s • t are shown, where s and t are two -Schröder trees. In these drawings, the triangles denote subtrees. 3.1.4. Minimal generating set. P 3.1.5. Let be a unitary magma. The set of all -triangles is a minimal generating set of NC .

3.3. 3 .

 3 First example: a cubic suboperad. Consider the suboperad of NCE 2 that the generators of (NCE 2 ) G are not subjected to any quadratic relation but are subjected to the four cubic nontrivial relations e

3.3. 4 .

 4 Second example: a suboperad of Motzkin paths. Consider the suboperad of NCD

  13) where, by setting t as the bubble tree bt(p) of p (see Section 3.1.2), b and r 1 , . . . , r are the unique -bubble and noncrossing -cliques such that t = (b) • [bt(r 1 ) bt(r )] P 3.5.2. Let be a finite unitary magma. Then, the dimension of the space

(

  b a) a = 1 a = a = b = b 1 = b (a a) (4.2.2) the operation is not associative. Let φ BNC : BNC → NC BNC be the linear map defined in the following way. For any bicolored noncrossing configuration c, φ BNC (c) is the noncrossing BNC -clique of NC BNC obtained by replacing all blue arcs of c by arcs labeled by a, all red diagonals of c by diagonals labeled by b, all uncolored edges and bases of c by edges labeled by b, and all uncolored diagonals of c by diagonals labeled by 1. For instance, The linear span of together with all noncrossing BNC -cliques without edges nor bases labeled by 1 forms a suboperad of NC BNC isomorphic to BNC.

  For any gravity chord diagram c, φGrav (c) is the D 0 -clique of CD 0 obtained by replacing all blue arcs of c by arcs labeled by 0 and all unlabeled arcs by arcs labeled by 1. For instance,

1. 1 .

 1 Packed matrices. Let us introduce here the most important combinatorial object of this work. 1.1.1. First definitions. Let 1 be an integer. We denote by the set of × matrices with exactly nonzero entries in the alphabet A := {0 1 } and by N r (M) (resp. N c (M)) the set of the indices of the zero rows (resp. columns) of M ∈ . For example, by considering the matrix ) = {5} and N c (M) = {1 3}.

  of -packed matrices respectively graded by the size and by the number of nonzero entries of matrices. By Theorem 1.3.1, and since each homogeneous component of these vector spaces is finite-dimensional (see Section 1.2), PMN and PML are Hopf bialgebras.

  condition for swapping the th and ( + 1)st columns of a packed matrix according to the relation . The darker regions contain any entries and the white ones, only zeros. 2.1.1. Poset structure. Let be the binary relation on defined in the following way. If M 1 and M 2 are two -packed matrices of size , we have M 1 M 2 if there is an index ∈ [ -1] such that, denoting by the number of 0 ending the th column of M 1 , and by +1 the number of 0 starting the ( + 1)st column of M 1 , one has + +1 , and M 2 is obtained from M 1 by exchanging its th and ( + 1)st columns (see Figure 8.1).

P 3.1. 1 .

 1 The map α : FQSym ( ) → PMN linearly defined, for any -colored permutation (σ ) by α F (σ ) := F M (σ ) (3.1.1)

P 3.1. 2 .

 2 The map β : UBP → PMN 1 linearly defined, for any UBP π by β (F π ) := F M π (3.1.2) where M π is the 1-packed matrix satisfying M π := 1 if there is ∈ π such that ∈ and ∈ π( ) 0 otherwise (3.1.3) is an injective Hopf morphism. For example, if π is the UBP defined by π({1 4 5}) := {2 5 6} π({2}) := {1} and π({3 6}) := {3 4} (3.1.4)

P 3.1. 3 .

 3 The map γ : PML 1 → MQSym linearly defined, for any 1-packed matrix M by γ (F M ) := M MQ M M M (3.1.10)

  .1.13) 3.1.4. Diagram of embeddings. The diagram of Figure 8.5 summarizes the relations between known Hopf algebras related to PM and, more specifically, to its simply graded versions PMN and PML . The Hopf bialgebra ASM is the subject of Section 4. diagram of Hopf bialgebras of packed matrices and related structures. Arrows are injective Hopf bialgebra morphisms. The dotted arrow is an associative algebra morphism.

L

  

  95]. The addition of the coproduct ∆ γ defined by ∆ γ (S ) := 0 S ⊗ S -(( γ + 1)A) (1.1.6)where, for any α ∈ R and ∈ N, S (αA) is the coefficient of in

1.2. 1 .

 1 The construction. A slightly different version of the construction we shall present here is considered in [vdL04, CL07, ML14]. Let be an operad and denote by + the set \ {1}. The natural Hopf bialgebra of is the free commutative algebra H( ) spanned by the T , where the are elements of + . The bases of H( ) are thus indexed by finite multisets of elements of +

2. 1 .

 1 The Hopf bialgebra of a free pro. We shall use from now on the notions about prographs introduced in Section 3.3.3 of Chapter 1 and the notions about free pros contained in Section 5.1.3 of Chapter 2. The bases of the vector space H( ) := K red( ) (2.1.1) are indexed by the reduced elements of . The elements S , ∈ red( ), form thus a basis of H( ), called fundamental basis. We endow H( ) with a product • : H( ) ⊗ H( ) → H( ) linearly defined, for any reduced elements and of , by S • S := S * (2.1.2) and with a coproduct ∆ : H( ) → H( ) ⊗ H( ) linearly defined, for any reduced elements of , by ∆ (S ) := this section, we shall consider some examples involving the free pro generated by G := G(2 2) G(3 1) where G(2 2) := {a} and G(3 1) := {b}, denoted by AB. For instance, we have in H(AB)

  4. Duality. When admits a grading, let us denote by H( ) the graded dual of H( ). By definition, the dual basis of the fundamental basis of H( ) consists in the elements S , ∈ red( ). P 2.2.4. Let be a free pro admitting a grading. Then, for any reduced elements and of , the product and the coproduct of H( ) satisfy S 5. Let G and G be two bigraded sets such that G ⊆ G. Then, the map φ : H(FP(G)) → H (FP (G )) linearly defined, for any reduced element of FP(G), by φ(S ) := S if ∈ FP (G ) 0 otherwise (2.2.9) is a surjective bialgebra morphism. Moreover, H (FP (G )) is a quotient bialgebra of H (FP (G)).

For

  instance, if is the quotient of the free pro generated by G := G(1 1) G(2 2) where G(1 1) := {a} and G(2 2) := {b} by the finest congruence ≡ satisfying can observe that ≡ is a stiff congruence.

2.3. 4 .

 4 The importance of the stiff congruence condition. Let us now explain why the stiff congruence condition required as a premise of Theorem 2.3.5 is important by providing an example of a non-stiff congruence of pros failing to produce a Hopf bialgebra.Consider the pro quotient of the free pro generated by G := G(1 1) G(2 2) where G(1 1) := {a} and G(2 2) := {b} by the finest congruence ≡ satisfying

  Let be a monoid that does not contain any nontrivial subgroup. Then, B( ) is a stiff pro.2.4.3. The natural Hopf bialgebra of an operad. We call abelianization of a Hopf bialgebrathe Hopf bialgebra quotient of by the Hopf bialgebra ideal spanned by the • -• for all ∈ .

  We conclude this chapter by presenting examples of application of the construction H. The pros considered in this section fit into the diagram represented by Figure 9.1 and the obtained Hopf bialgebras fit into the diagram represented by Figure 9.2. of pros where arrows (resp. ) are injective (resp. surjective) pro morphisms. The parameter γ is a positive integer. When γ =

3.3. 1 .

 1 Symmetrization of pros. If G is a bigraded collection of the form G = point of view, any elementary prograph over G is obtained by reversing from bottom to top an elementary prograph over G. We moreover denote by rev : FP(G ) → FP(G) the bijection sending any prograph of FP(G ) to the prograph rev( ) of FP(G) obtained by reversing from bottom to top. Now, given a pro := FP(G)/ ≡ , we define the symmetrization S( ) of as the pro S( ) := FP (G G ) / ∼ = (3.3.2) where ∼ = is the finest congruence of FP(G G ) satisfying ∼ = if ( ∈ FP(G) and ≡ ) or ( ∈ FP(G ) and rev( ) ≡ rev( )) (3.3.3)

  by the heap of pieces of width 3 depicted by (3.4.2) Notice that Heap 0 = PRF 0 . Besides, since the reduced elements of Heap γ have no wire, they are encoded by horizontally connected heaps of pieces of width γ + 1.

3.5. 1 .

 1 Pro of heaps of friable pieces. Let γ be a nonnegative integer and FHeap γ be the quotient of Heap γ by the finest pro congruence ≡ satisfying

  2.3 of Chapter 2). The permutation 316425 is a square since it appears in the shifted shuffle of 312 with itself. The first square permutations are 12 21 1234 1324 1342 3124 3142 3412 2143 2413 4213 2431 4231 4321 (1.1.1) and the sequence of the number of square permutations begins by 1

  perfect matching on the word bababbcc.

Figure 10 .

 10 Figure 10.2 shows two examples related to Proposition 1.2.1.

  containment-free perfect matching on the word ccababbb, showing that it is a square. The associated square root is cabb.

Figure 10 .

 10 Figure 10.4 an example related to Proposition 3.2.1.

  directed perfect matching on the permutation π := 35867241 satisfying PShape and PValue, showing that it is a square. It follows also that σ := 2431 is a square root of π since σ is the standardized of both the word of sources 3641 and the word of sinks 5872 of the directed perfect matching.3.2.2. Hardness.Here is the main algorithmic result of this chapter. T 3.2.2. In the supershuffle algebra (FQSym •), SDP is NP-complete.

1. 1 .

 1 Bud operads. Let us first present a simple construction producing colored operads from operads. 1.1.1. Sets of colors. In all this chapter, we consider that C has cardinal 1 and that the colors of C are arbitrarily indexed so that C = { 1 }. 1.1.2. From monochrome operads to colored operads. If is a monochrome operad and C is a finite set of colors, we denote by Bud C ( ) the C-colored collection (see Section 1.1.4 of Chapter 1) by Bud C ( )( ) := C × ( ) × C 1 (1.1.1) and for all ( ) ∈ Bud C ( ), out(( )) := and in(( )) := . We endow Bud C ( ) with the partially defined partial composition • satisfying, for all triples ( ) and ( ) of Bud C ( ) and ∈ [| |] such that out(( obtained by replacing the th letter of by . Besides, if 1 and 2 are two operads and φ : 1 → 2 is an operad morphism, we denote by Bud C (φ) the map Bud C (φ) : Bud C ( 1 ) → Bud C ( .1. For any set of colors C, the construction ( φ) (Bud C ( ) Bud C (φ)) is a functor from the category of monochrome operads to the category of C-colored operads.

∈

  {1 2} ( ), where := FO(C) and C is the monochrome collection defined by C := C(1) := {a}. Then, a minimal generating set of Bud {1 2} ( , implying that Bud {1 2} ( ) is not free. 1.1.3. Bud operad of the associative operad. Let us consider the C-bud operads of the associative operad As (see Section 4.2.1 of Chapter 2). For any set of colors C, the bud operad Bud C (As) is the set of all triples ( C. For C := {1 2 3}, one has for instance the partial composi-

P 1.2. 1 .

 1 The construction ( φ) (K K φ ) is a functor from the category of combinatorial C-colored operads to the category of K-vector spaces.1.2.3. Noncommutative multivariate series. For any finite alphabet A of noncommutative letters, recall that K A * is the set of noncommutative series on A [Eil74, SS78, BR10].

  pru : K Bud C ( ) → K (1.2.20)the map sending any series f of K Bud C ( ) to K pru (f), called pruned series of f. series pru(f) can be seen as a version of f wherein the colors of the elements of its support are forgotten. Besides, f is said faithful if all coefficients of pru(f) are equal to 0 or to 1. 1.2.8. Example: series of trees. Let be the free C-colored operad over C where C := {1 2} and C is the C-colored collection defined by C := C(2) C(3) with C(2) := {a}, C(3) := {b}, out(a) := 1, out(b) := 2, in(a) := 21, and in(b) := 121. Let f a (resp. f b ) be the series of K where for any syntax tree t of , t f a (resp. t f b ) is the number of internal nodes of t labeled by a (resp. b). The series f a and f b are of the form

  For any s t ∈ K A * and ∈ A * , we have(♦ ♦) mu(s) mu(t) = ∈A * ∈N (♦ ♦)=(♦ ♦)• (♦ ♦) (♦ ♦) mu(s) (♦ ♦) mu(t) (st) = mu(s) mu(t).Moreover, through the method presented in Section 1.2.4 to encode series on a monoid as series on the colored operad K , we have for any s t ∈ K and ∈

  The construction ( φ) ((K ) K φ ) is a functor from the category of combinatorial C-colored operads to the category of monoids.Proposition 1.4.1 shows that is an associative product. This product is a generalization of the composition product of series on operads of[START_REF] Chapoton | Un théorème de Cartier-Milnor-Moore-Quillen pour les bigèbres dendriformes et les algèbres braces[END_REF][START_REF] Chapoton | A rooted-trees -series lifting a one-parameter family of Lie idempotents[END_REF] (see also [vdL04, Fra08, Cha08, LV12, LN13]).1.4.2. Composition star product. For any -series f ∈ K and any 0, let f be the series recursively defined by f of (1.4.3) denotes the iterated version of . Since by Proposition 1.4.1, is associative, this definition is consistent. Immediately from this definition and the definition of the composition product , the coefficient of f , 0, satisfies for any ∈ , Let be a combinatorial C-colored operad and f be a series of K . Then, the coefficients of f +1 , 0, satisfy for any ∈ ,

  Let be a combinatorial -colored operad and f be a series of K such that Supp(f)(1) finitely factorizes (1). Then, the equation xx f = u (1.4.8) admits the unique solution x = f * . 1.4.3. Invertible elements. For any -series f ∈ K , the -inverse of f is the series f -1

Figure 11

 11 Figure 11.1 shows a sequence of derivations in p and Figure 11.2 shows the derivation graph of p .

P 2.1. 1 .

 1 The bud generating system p satisfies the following properties. (i) It is faithful. (ii) The restriction of the pruning map pru on the domain L( p ) is a bijection between L( p ) and L p . (iii) The set of rules R(1) finitely factorizes Bud {1 2} (Motz)(1).

P 2.1. 2 .

 2 The bud generating system bbt satisfies the following properties. (i) It is synchronously faithful. (ii) The restriction of the pruning map pru on the domain L S ( bbt ) is a bijection between L S ( bbt ) and the set of balanced binary trees. (iii) The set of rules R(1) finitely factorizes Bud {1 2} (Mag)(1). Property (ii) of Proposition 2.1.2 is based upon combinatorial properties of a synchronous grammar of balanced binary trees defined in [Gir12e] and satisfying SG( ) = bbt (see Section 2.3.3 and Proposition 2.3.3). Besides, Properties (i) and (ii) of Proposition 2.1.2 together imply that the sequence enumerating the elements of L S ( bbt ) with respect to their arity is the one enumerating the balanced binary trees. This sequence in Sequence A006265 of [Slo], starting by 1 1 2 1 4 6 4 17 32 44 60 70 184 476 872 1553 2720 4288 6312 9004

  Let := ( C R I T) be a bud generating system. Then, the language of satisfiesL( ) = ∈ Bud C ( ) R : out( ) ∈ Iand in( ) ∈ T + (2.2.1) P 2.2.4. Let := ( C R I T) be a bud generating system. Then, the synchronous language of is a subset of the language of . If := (B R) is a synchronous grammar, we denote by SG( ) the bud generating system SG( ) := (Tree B R { } B) (2.3.7) wherein R is the set of rules R := {( t ) ∈ Bud B (Tree) : ( t ) ∈ R} (2.3.8)

3. 1 .

 1 General definitions. Let us list some notations used in this section. In what follows, := ( C R I T) is a bud generating system such that is a combinatorial monochrome operad and, as before, C is a set of colors of the form C = { 1 }.3.1.1. Characteristic series. We shall denote by r the characteristic series of R, by i the series i Let := ( C R I T) be a bud generating system and f be a Bud C ( )series. Then, for all ∈ Bud C ( ),i f t = f if out( ) ∈ Iand in( ) ∈ T + 0 otherwise (3.1.3) 3.1.2. Polynomials. For all colors ∈ C and types α ∈ C , let χ α := # { ∈ R : (out( ) type(in( ))) = ( α)} (3.1.4) For any ∈ C, let g (y 1 y ) be the series of K S(Y C ) defined by

  φ as the finite multiset φ := φ( γ) : γ ∈ C (3.1.8) 3.2. Hook generating series. We call hook generating series of the Bud C ( )-series hook( ) defined by hook( ) := i r * t (3.2.1)

L 3 .

 3 2.1. Let := ( C R I T) be a bud generating system such that is a combinatorial operad and R(1) finitely factorizes Bud C ( )(1). Then, for any ∈ Bud C ( ), Let := ( C R I T) be a bud generating system such that is a combinatorial operad and R(1) finitely factorizes Bud C ( )(1). Then, for any ∈ Bud C ( ) such that out( ) ∈ I, the coefficient r * is the number of multipaths from 1 out( ) to in the derivation graph of .P. First, since R(1) finitely factorizes Bud C ( )(1), by Proposition 1.3.3, r * is a welldefined series. If = 1 for a ∈ I, since 1 r * = 1, the statement of the proposition holds. Let us now assume that is different from a colored unit and let us denote by λ the number of multipaths from 1 out( ) to in the derivation graph G( ) of . By definition of G( ), by denoting by µ the number of edges from ∈ Bud C ( ) to in G( ), we have λ = ∈Bud C ( ) observe that Relation (3.2.3) satisfied by the λ is the same as Relation (3.2.2) of in the statement of Lemma 3.2.1 satisfied by the r * . This implies the statement of the proposition.T 3.2.3. Let := ( C R I T) be a bud generating system such that is a combinatorial operad and R(1) finitely factorizes Bud C ( )(1). Then, the hook generating series of L( ) and G( ), any ∈ L( ) can be reached from 1 out( ) by a multipath1 out( ) → 1 → 2 → • • • → -1 → (3.2.5) in G( ),where 1 -1 are elements of Bud C ( ) and 1 out( ) ∈ I. Hence, by definition of →, admits an R-left expression = ( ((1 out( ) • 1 ∈ [ ], ∈ R, and for any ∈ [ -|]. This shows that the set of all multipaths from 1 out( ) to in G( ) is in one-to-one correspondence with the set of all R-left expressions for . Now, observe that since R(1) finitely factorizes Bud C ( )(1), by Proposition 1.3.3 r * is a well-defined series. By Proposition 3.2.2, Lemmas 4.1.5 and 4.1.4, and (4.1.33) of Chapter 2, we obtain that

L 3 .

 3 3.1. Let := ( C R I T) be a bud generating system such that is a combinatorial operad and R(1) finitely factorizes Bud C ( )(1). Then, for any ∈ Bud C ( ), (ur) -1= δ 1 out( 2. Let := ( C R I T) be a bud generating system such that is a combinatorial operad and R(1) finitely factorizes Bud C ( )(1). Then, the syntactic generating series

P 3 .

 3 3.5. Let := ( C R I T) be an unambiguous bud generating system such that is a combinatorial operad and R(1) finitely factorizes Bud C ( )(1). For all ∈ C, let f (y 1 y ) be the series of K S(Y C ) satisfying f Then, for any color ∈ I and any type α ∈ C such that C α ∈ T + , the coefficientsx Y α C colt(synt( )) and Y α C f are equal.T 3.3.6. Let := ( C R I T) be an unambiguous bud generating system such that is a combinatorial operad and R(1) finitely factorizes Bud C ( )(1). Let f be the series of K S(X C + Y C ) satisfying, for any ∈ C and any type α ∈ C ,x Y α C f = δ α type( ) + φ:C× C →N α=φ ( 1 ) φ ( )any color ∈ I and any type α ∈C such that C α ∈ T + , the coefficientsx Y α C colt(synt( )) and x Y α C f are equal.3.3.4. Generating series of languages. When is a bud generating system satisfying the conditions of Proposition 3.3.5, the generating series of the language of satisfies s

3. 4 .

 4 Synchronous generating series. We call synchronous generating series of the Bud C ( )-series sync( ) defined by sync( ) := i r * t (3.4.1)

L 3 .

 3 4.1. Let := ( C R I T) be a bud generating system such that is a combinatorial operad and R(1) finitely factorizes Bud C ( )(1). Then, for any ∈ Bud C ( ), Let := ( C R I T) be a bud generating system such that is a combinatorial operad and R(1) finitely factorizes Bud C ( )(1). Then, the synchronous generating series of satisfies sync( ) = t∈FCO perf (R) out(t)∈I in(t)∈T + ev(t) (3.4.3)

L 3 .

 3 4.4. Let := ( C R I T) be a synchronously unambiguous bud generating system such that is a combinatorial operad and R(1) finitely factorizes Bud C ( )(1). Then, for all colors ∈ I and all types α ∈ C such that C α ∈ T + , the coefficientsx Y α C colt(sync( )) count the number of elements of L S ( ) such that (out( ) type(in( ))) = ( α). P 3.4.5. Let := ( C R I T) be a synchronously unambiguous bud generating system such that is a combinatorial operad and R(1) finitely factorizes Bud C ( )(1). For all ∈ C, let f (y 1 y ) be the series of K S(Y C ) satisfying f Then, for any color ∈ I and any type α ∈ C such that C α ∈ T + , the coefficients x Y α C colt(sync( )) and Y α C f are equal. T 3.4.6. Let := ( C R I T) be a synchronously unambiguous bud generating system such that is a combinatorial operad and R(1) finitely factorizes Bud C ( )(1). Let f be the series of K S(X C + Y C ) satisfying, for any ∈ C and any type α ∈ C , x Y α C f = δ α type( ) + φ:C× C →N α=φ ( 1 ) φ ( ) any color ∈ I and any type α ∈ C such that C α ∈ T + , the coefficients x Y α C colt(sync( )) and x Y α C f are equal.3.4.4. Generating series of synchronous languages. When is a bud generating system satisfying the conditions of Proposition 3.4.5, the generating series of the synchronous language is the specialization of the series f (y 1 y ) at y := for all ∈ T and at y := 0 for all ∈ C \ T. Therefore, the resolution of the system of equations given by Proposition 3.4.5 provides a way to compute the coefficients of s L S ( ) . This resolution can be made in most cases by iteration[START_REF] Bergeron | of Encyclopedia of Mathematics and its Applications[END_REF][START_REF] Flajolet | Analytic Combinatorics[END_REF].

  different from the one of Proposition 3.4.5.3.4.5. Example: enumeration of balanced binary trees. Let us consider the bud generating systembbt introduced in Section 2.1.5. We have bbt satisfies the conditions of Proposition 3.4.5, by this last proposition and (3.4.6), the generating series s functional equation for the generating series of balanced binary trees is the one obtained in [BLL88, BLL98, Knu98, Gir12e] by different methods. As announced in Section 3.4.4, the

  1.1.2. A first monoid of infinite matrices.Here, for our purpose, we consider only the structure of monoid of ¯ ∞ . In particular, we define the submonoid ¯ ∞ of ¯ ∞ generated by the matrices M The monoid ¯ ∞ is isomorphic to the monoid ¯ p generated by the symbols {a : ∈ Z 1} subjected to the relations where 1 is the unit.1.1.3.A second algebra of infinite matrices. Let ∞ be the vector space of all infinite matrices (A ) ∈N 1 with a finite number of nonzero diagonals whose entries belong to K. An analogous result as the one stated by Proposition 1.1.1 shows that ∞ is a unitary associative algebra. Moreover, there is a surjective monoid morphism from ¯ ∞ to ∞ sending any matrix (A ) ∈Z to (A ) ∈N 1 . Hence, ∞ is a quotient monoid of ¯ ∞ . 1.1.4. A second monoid of infinite matrices. Let us define the submonoid ∞ of ∞ The monoid ∞ is isomorphic to the monoid p which is the quotient of the monoid ¯ p satisfying the extra relations and operads. Before describing a functor from the category of precompositions to the category of operads, we define this last category. All this relies on the presentation of the monoid p introduced in Section 1.1. 1.2.1. Precompositions. Let ( ) be a commutative monoid endowed with a filtration = 1 (1.2.1)

( 2 {

 2 (1 1) (1 2)} {(1 2) (2 2)}) • ({ } { }) = (( + ) + ) * (3.2.8a) (2 {(1 1) (1 2) (2 2)} {(1 1) (1 2) (2 2)}) • ({ } { }) = ( + ) * (3.2.8b) (2 {(1 2) (2 2)} {(1 1) (1 2)}) • ({ } { }) = ( + ( + )) * (3.2.8c)

  By regarding the set N as a graded collection as explained in Section 1.2.1, let Comp be the combinatorial graded collection T (N 1 ). It follows from (1.1.18) and (1.2.2) that the generating series of Comp is

	Comp							
	where	1	2	3 ∈ A *	, we say that	1 (resp.	3 ,	1 • 2 ) is a prefix (resp. suffix, factor) of . We 2 • 3
	denote by		pref	(resp.		suff ,	fact ) the fact that is a prefix (resp. suffix, factor)
	of . For any subset P := {	1	• • •	} of [| |], |P is the word (	1 )	( ). Moreover,
	when is a word such that there exists P ⊆ [| |] satisfying = |P , is a subword of . The
	commutative image of is the multiset	( ) : ∈ [| |] . Given two words and of the
	same size , the Hamming distance ham(	) between and is the number of integers

∈ [ ] such that ( ) = ( ). A language on A is subcollection of A * . A language on A is prefix if for all ∈ and ∈ A * , pref implies ∈ .

1.2.3. Integer compositions.

  -1]. An antichain of is a subset of pairwise incomparable elements of . A linear extension of is an I-poset ( Examples. We consider here three well-known combinatorial posets.The cube poset. Let be the partial order relation on the combinatorial collection Comp

		L	1.3.2. Let be a forest poset and , , and be three elements of such that
		) being a total order and such that and are comparable and and are comparable. Then, ↑ ↑ is a well-defined contains
	as a relation. An order filter of is a subset element of .	of such that for all ∈	and all ∈
	satisfying		, is in . For any ∈ I, the -subposet of	is the poset obtained by
	restricting of vertices and all the pairs ( on ( ). The Hasse diagram of ( ) where covers as set of arcs. ) is the directed graph having as set We shall define posets by drawing Hasse diagrams, where minimal elements are drawn 1.3.3. of compositions generated by the covering relation defined, for any composition λ of
	uppermost and vertices are labeled by the elements of . For instance, the Hasse diagram length , by
								1	2
								3	4	(1.3.1)
								5	6
	denotes the simple poset ([6] ) satisfying among others 3 5 and 2 6.
		The dual of is the poset (	¯	) such that ¯	holds whenever	for any	∈ .
	Besides, if (	1	1 ) and (	2	2 ) are two posets, a map φ :	1 →	2 is a poset morphism if
	φ is a collection morphism and for all	∈	1 such that	1	, φ( )	2 φ( ). Besides,	2
	is a subposet of	1 if	2 is a subcollection of	1 and	2 is the restriction of	1 on	2 .
		Let us state the following easy lemma, used for instance in Chapter 6.
		L	1.3.1. Let	1 and	2 be two posets and φ :	1 →	2 be a morphism of posets.
	Then, for all comparable objects and of	1 ,
							φ ( ↑	1	) = φ( ) ↑	2 φ( )	(1.3.2)
		1.3.2. Patterns. Let (	1	1 ) and (	2	1 ) be two posets. We say that	1 admits an oc-
	currence of (the pattern) subposet of 1 . Conversely, we say that 2 if there is an isomorphism of posets φ : 1 avoids 2 if there is no occurrence of 1 → 2 where 2 in 1 is a 1 .
	Since only the isomorphism class of a pattern is important to decide if a poset admits an
	occurrence of it, we shall draw unlabeled Hasse diagrams to specify patterns. For instance,
	the simple poset				
								1
								2
								:=	3	4	(1.3.3)
	The strict order relation of ≺ if and = . The interval between two objects is the binary relation ≺ on satisfying, for all 5 and of is the set ∈ , admits two occurrences of the simple pattern
	[	] := { ∈ :					(1.3.4)
	a first one since 1	2, 1	4, 2	5, and 4	5, and a second one since 1	3, 1	least) 4,
	element if for all ∈ ( ), 3 5, and 4 5. Moreover, avoids the simple pattern (resp. ). Moreover, for any ∈ I, an object of
		( ) is a maximal (resp. minimal) element if for all ∈ ( ),	(resp.	) implies (1.3.5)
		= . The partial binary operation min (resp. max) with respect to the order	is denoted
	by ↑ (resp. ↓ ). If and are two objects of , covers if since has no antichain of cardinality 3.	and [	] = {	}.

}. When all intervals of are finite, is locally finite. Observe that when is combinatorial, is locally finite. When is finite, the number of intervals of is finite and is denoted by int( ). For any ∈ I, an object of ( ) is a greatest (resp. Two objects and are comparable (resp. incomparable) in if or (resp. neither nor holds). If for any ∈ I and any -objects and of , and are comparable, is a total order. A chain of is a sequence ( 1 ) such that +1 for all ∈ [ We call forest poset any finite simple poset avoiding the pattern . In other words, a forest poset is a poset for which its Hasse diagram is a forest of rooted trees (where roots are the minimal elements).

  Planar rooted trees are depicted by drawing each leaf by and each planar rooted tree different from the leaf by a node attached below it, from left to right, to its suffix subtrees t

	1 , . . . , t by means of edges . For instance, the planar
	rooted trees of (2.1.2) are depicted by
	(2.1.3)

• (t 1 t )) is . If t is a planar rooted tree different from the leaf, by definition, t can be expressed as t = (• (t 1 t )) where 1 and all t , ∈ [ ], are planar rooted trees. In this case, for any ∈ [ ], t is the th suffix subtree of t.

  . A subcollection C of PRT is inductive if C is nonempty and, if t ∈ C, all suffix subtrees t of t belong to C. Observe in particular that ⊥ belongs to any inductive subcollection of PRT.

	T	2.1.1. Let C be an inductive subcollection of PRT and P be a predicate on C.
	If		
		(i) the leaf ⊥ satisfies P;
	(ii) for any t 1	t ∈ C such that t := (• (t 1	t )) belongs to C, the fact that all
		P(t ), ∈ [ ], hold implies that P(t) holds;

  Operations on prographs. Let and be two C-prographs such that | | ↑ = | | ↓ .

	3.3.4. The vertical composition • of		and	is defined as follows. When	(resp. ) is a
	sequence of wires, • is equal to (resp. ). Otherwise, and are not sequences of
	wires, and • is the C-prograph [ • ] ↔ where	and	are respectively any elements
	of the ↔-equivalence classes and , and • is the operation on preprographs defined in
	Section 3.3.3. For instance,					
		a	b	•			a	=	a	b	(3.3.11)
									a
	Let and be two C-prographs. The horizontal composition * of and is defined
	as follows. If and are both the sequences of wires 1 and 1 for some	∈ N,
					1 * 1 := 1	+	(3.3.12)
	If is the sequence of wires 1 for a ∈ N and is an object of PPrg C / ↔ ,
			1 * := [(( +	1 a	1 1 )	( +	a	))] ↔	(3.3.13)
	where (( if is an object of PPrg C / ↔ and is the sequence of wires 1 , ∈ N, 1 a 1 1 ) ( a )) is any preprograph in the ↔-equivalence class . Similarly,
			* 1 := [((	1 a	1 1 + )	( a	+ ))] ↔	(3.3.14)
	where ((	1 a	1 1 )					
									3.6) in its ↔-
	equivalence class is depicted as				
							b	
					a			(3.3.10)
								a
	The degree deg( ) of a prograph is defined in the following way. When is an object of PPrg C / ↔ , deg( ) is the length of where is any preprograph of the ↔-equivalence
	class . In other terms, deg( ) is the number of elementary prographs constituting . When
	is an object of Wir, deg( ) := 0. For instance, the prograph of (3.3.10) has 3 as degree, and
	each sequence of wires 1 , ∈ N, has 0 as degree.

. Changes of basis and posets. It

  is very usual, given a polynomial space K C ,

	1.2.3. Tensor algebras. If An isomorphism between the two spaces of (1.2.15) is provided by the map φ : K E(C) → is a K-vector space, the tensor algebra of is the space
	T defined by EK C , linearly defined for any {	1		} ∈ E(C) by
					φ({	1	T :=	∈N }) :=	⊗	1	(1.2.5) (1.2.16)
	A basis of T is formed by all tensors on any basis of . The list operation applied to a 1.3
	graded collection translates as the tensor algebra of the associated graded polynomial space.
	Indeed, for any	0,			K T (C)	K C ⊗	(1.2.6)
	and						
						K T(C)	TK C	(1.2.7)
	An isomorphism between the two spaces of (1.2.7) is provided by the map φ : K T(C) →
	TK C , linearly defined for any (	1		) ∈ T(C) by
					φ((	1		)) :=	1 ⊗ • • • ⊗	(1.2.8)
	1.2.4. Symmetric algebras. If	is a K-vector space, the symmetric algebra of	is the
	space S defined by				
								S := T /	S	(1.2.9)
	where	S is the subspace of TK C consisting in all the tensors
					⊗	1 ⊗	2 ⊗ -⊗	2 ⊗	1 ⊗	(1.2.10)
	where	∈ T and	1	2 ∈ . A basis of S is formed by all monomials on any basis of
	. The multiset operation applied to a graded collection translates as the symmetric algebra
	of the associated graded polynomial space. Indeed,
						K S(C)	SK C	(1.2.11)
	An isomorphism between the two spaces of (1.2.11) is provided by the map φ : K S(C) →
	SK C , linearly defined for any	1		∈ S(C) by
					φ(	1		) := α 1	1	α	(1.2.12)
	where is the number of distinct elements of	1	and each α , ∈ [ ], denotes the
	multiplicity of	in	1	.		
	1.2.5. Exterior algebras. If is a K-vector space, the exterior algebra of is the space
	E defined by					
								E := T /	E	(1.2.13)
	where	E is the subspace of T consisting in all the tensors
					⊗	1 ⊗	2 ⊗ + ⊗	2 ⊗	1 ⊗	(1.2.14)
	where	∈ T and	1	2 ∈ . A basis of E is formed by all monomials on a basis of
	linearly defined for any ( without repeated variables. The set operation applied to a graded collection translates as the 1 2 ) ∈ C 1 × C 2 by exterior algebra of the associated graded polynomial space. Indeed,
						φ(( K E(C) 1 2 )) := EK C 1 ⊗	2	(1.2.4) (1.2.15)

  operads in combinatorics. This section contains a list of common ns operads studied or encountered in the sequel. A classical text containing a list of definitions of operads is[START_REF] Zinbiel | Encyclopedia of types of algebras 2010. In Operads and universal algebra[END_REF].4.2.1. Associative operad. The associative operadAs is defined as the operad Com seen as a nonsymmetric one (see Section 4.1.13).The ns operad As is a set-operad and its Hilbert series satisfies

	As ( ) =	1 -	(4.2.1)
	Moreover, As admits the presentation (G ) where G := {a 2 } and	is the space generated
	by		
	(a		

  The ns operad Dias is a set-operad and its Hilbert series satisfies

		Dias ( ) =	(1 -) 2	(4.2.13)
	Moreover, Dias admits the presentation (G ) where
		G := {e	2 1 e	2 2 }	(4.2.14)
	and	is the space generated by, by denoting by (resp. ) the first (resp. second) element
	of (4.2.14),		
		( ) • 1		

and ∈ [ ]. This operad is the diassociative operad.

  The free dendriform algebra over one generator is the space Dendr, that is the linear span of all nonempty binary trees, endowed with the linear operations Operad of gravity chord diagrams. The operad of gravity chord diagrams Grav is an operad defined in[START_REF] Alm | Brown's dihedral moduli space and freedom of the gravity operad[END_REF]. This operad is the nonsymmetric version of the gravity operad, a symmetric operad introduced by Getzler[START_REF] Getzler | Two-dimensional topological gravity and equivariant cohomology[END_REF]. Let us describe this operad.

				≺ : Dendr ⊗ Dendr → Dendr		(4.2.20)
	defined recursively, for any nonempty tree s, and binary trees t 1 and t	2 by
						s ≺ := s =:	s			(4.2.21a)
						≺ s := 0 =: s				(4.2.21b)
		t	1	t 2	≺ s :=	t 1	t 2 ≺ s	+	t 1	t 2	s	(4.2.21c)
		s	t	1	t 2	:=	s t 1	t 2	+	s ≺ t 1		2 t	(4.2.21d)
	Note that neither ≺ nor		are defined. We have for instance,
	≺	=					+			+	(4.2.22a)
		=					+			+	(4.2.22b)
	4.2.7.										

Moreover, the operads Dias and Dendr are Koszul dual one of the other. Finally, any algebra of Dendr is a dendriform algebra (see Section 2.3.3).

  1.2.2. Suboperads and quotients.

	P	1.2.2. Let be a colored operad and	be one of its colored suboperads
	(resp. quotients). Then, the enveloping operad of	is a suboperad (resp. quotient) of the
	enveloping operad of .	
	1.2.3. Generating sets.	
	P	1.2.3. Let be a colored operad admitting G as a generating set. Then,
	the enveloping operad of is generated by	
		Hull(G) := { ( ) : ∈ G}	(1.2.3)
	1.2.4. Symmetries.	
	P	1.2.4. Let be a colored operad and	its group of symmetries. Then,
	the group of symmetries of the enveloping operad of is Hull( ) where
		Hull( ) := {Hull(φ) : φ ∈ }	(1.2.4)
	1.2.5. Presentations by generators and relations.

P 1.2.5. Let be a colored operad admitting a presentation (G ↔). Then, the enveloping operad of admits the presentation (Hull(G) ↔ ), where ↔ is the equivalence relation satisfying s ↔ t if and only if s ↔ t (1.2.5) where s (resp. t ) is the Hull(G)-colored syntax tree obtained by replacing any node labeled by of s (resp. t) by ( ).

  Enumeration of the bicolored noncrossing configurations. By using the fact that, by Theorem 2.3.1, Bubble is a 2-bubble decomposition of BNC, together with Proposition 1.2.1 and the colored Hilbert series (2.2.4) of Bubble, we obtain the following algebraic equation for the generating series of the BNCs.

	BNC.			
	2.3.2. P	2.3.2. The Hilbert series ( ) of BNC satisfies
		--2	+ (1 -4 ) ( ) -3 ( ) 2	= 0	(2.3.1)
	First numbers of BNCs by size are	
		1 8 80 992 13760 204416 3180800 51176960 844467200	(2.3.2)

. A bicolored noncrossing configuration and its dual tree. T 2.3.1. The 2-colored operad Bubble is a 2-bubble decomposition of the operad

  The set of based (resp. nonbased) bubbles of of arity is the set of based (resp. nonbased) bubbles having at least two consecutive edges of the border of a same color and the number of blue (resp. uncolored) edges of the border is congruent to 1 -modulo 3. Moreover, the colored Hilbert series of satisfy

	T	3.2.3. The operad	is the free operad generated by two generators of
	arity 2.		
	3.2.3. Second orbit. This orbit consists of the operad	.
	P	3.2.4.	
				1)
	P	3.2.2. The Hilbert series ( ) of	satisfies
			-( ) + 2 ( ) 2	= 0	(3.2.2)

8) 1.2. Main properties of the construction. Let

  us review the main properties of the

	construction T.		
	P		1.2.1. Let		be a monoid. The fundamental basis of T	is a basic
	set-operad basis if and only if	is a right cancellable monoid.
	P		1.2.2. Let	be a monoid. Then, the set G :=	{a 2 }, is a generating
	set of T as a ns operad, where a 2 := 1 1 and the elements of	are seen as elements
	of arity 1 of T .		
	P		1.2.3. Let	be a monoid. The ns operad T	admits the presentation
	(G	) where	is the subspace of FO (G ) generated by the elements

  Table4.1 summarizes some information about these ns operads. Operads on endofunctions, parking functions, packed words, and permutations. Recall that an endofunction of size is a word of length on the alphabet {1 }. A parking function of size is an endofunction of size such that the nondecreasing re-Ground monoids, generators, first dimensions, and combinatorial objects involved in the ns suboperads and quotients of TN.

	Monoid Ns operad Generators		First dimensions	Combinatorial objects
		End		-		1 4 27 256 3125	Endofunctions
		PF			-		1 3 16 125 1296	Parking functions
		PW			-		1 3 13 75 541	Packed words
	N	Per 0		-		1 2 6 24 120	Permutations
		PRT		01		1 1 2 5 14 42	Planar rooted trees
		FCat ( )	00, 01, . . . , 0	Fuß-Catalan numbers	-ary trees
		Schr		00, 01, 10		1 3 11 45 197	Schröder trees
		Motz		00, 010		1 1 2 4 9 21 51	Motzkin words
	N 2	Comp		00, 01		TN 1 2 4 8 16 32	Compositions
	3 N	DA	TN	2	End 00, 01		1 2 5 13 35 96	TN 3 Directed animals
		SComp		00, 01, 02		1 3 27 81 243	Seg. compositions
					PF		
	T	. .					
					PW	FCat (3)
					Per 0 Schr	FCat (2)
						FCat (1)	SComp
		Comp	Motz		PRT	DA
						FCat (0)
	F	. . The diagram of ns suboperads and quotients of TN. Arrows
	(resp. ) are injective (resp. surjective) ns operad morphisms.
	2.1.1. arrangement of satisfies	for all ∈ [ ]. A packed word of size is an endofunction
	of size such that for any letter	2 of , there is in a letter	=	-1. Note that
	neither the set of endofunctions, of parking functions, of packed words, nor of permutations
	are suboperads of TN. Indeed, one has the following counterexample:
						12 •	2 12 = 134	(2.1.1)
	showing that, even if 12 is a permutation, 134 is not an endofunction.

  are two examples of compositions in PerLet us recall that any minimal generating set of Per (seen as a ns operad) has no element of arity 3 (see Section 4.1.13 of Chapter 2). Moreover, since the homogeneous component of arity 3 of Per

		0 :
		20431 • 1 102 = 0 K	(2.1.5a)
		20431 • 3 102 = 2054631	(2.1.5b)
	{01 10}	
	0	is only of dimension 4, any minimal generating set of Per 0 has two
	elements of arity 3. Therefore, Per

0 and Per are not isomorphic as ns operads.

2.1.2. A ns operad on planar rooted trees. Let PRT be the ns suboperad of TN generated by G

PRT := {01}.

  A ns operad on Schröder trees. Let Schr be the ns suboperad of TN generated by G Schr , FCat(1) is a ns suboperad of Schr. Moreover, since PW is, by Proposition 2.1.2, generated as an operad by {00 01}, Schr is a ns suboperad of PW.

				1.14c)
	P	2.1.11. For any	0, the Hilbert series of the ns operad FCat ( ) ! can be
	expressed as		
			FCat ( ) ! ( ) =	(1 -) +1	(2.1.15)
	We deduce from Proposition 2.1.11 that
				+ -1
		FCat ( ) ! ( ) =	(2.1.16)
			1
	2.1.4. (1) FCat ⊆ G

Schr := {00 01 10}. Since G

  is the Hilbert series of Comp. Hence, by Theorem 4.1.1 of Chapter 2, Comp admits the claimed presentation. Since by Theorem 2.1.21, Comp is binary and quadratic, this ns operad admits a Koszul dual. Let Comp ! be the Koszul dual of Comp.

					01	01	01	00	(2.1.29c)
					01	00	01	01	(2.1.29d)
	Let	be the closure of . It is immediate that the map tam (see (2.4.21) of Chapter 1) is
	a termination invariant for		so that	is terminating. Moreover, the normal forms of
	are the G	Comp -syntax trees which have no internal node with an internal node as left child.
	Hence, the generating series	( ) of the normal forms of	satisfies
						( ) =	2 -1	(2.1.30)
						1
	By Proposition 2.1.19,	( ) also
					00	01	00	01	(2.1.29b)

P 2.1.22. The ns operad Comp is self-dual, that is Comp Comp ! . 2.1.7. A ns operad on directed animals. Let DA be the ns suboperad of TN 3 generated by G

  Moreover, SComp is a Koszul operad and the set of the G The ns operad SComp is self-dual, that is SComp SComp ! .2.2. Operads fromthe max monoid. We shall denote by M the monoid N with the binary operation max as product. Note that the ns suboperad of TM generated by {aa} where a ∈ M are all isomorphic to the ns associative operad As. The operads constructed in this section fit into the diagram of ns operads represented by Figure 4.14. Table 4.2 summarizes some information about these ns operads. The diassociative operad. Let Di be the ns suboperad of TM generated by G The ns operad Di and the ns diassociative operad Dias are isomor-Proposition 2.2.2 also shows that Di is a realization of the ns diassociative operad. 2.2.2. The triassociative operad. Let Tr be the ns suboperad of TM generated by G The fundamental basis of Tr is the set of all the words on the alphabet {0 1} containing at least one 0. The triassociative operad Trias is a ns operad introduced in [LR04].

	trees (00)• 1 (00), (01)• 1 (00), (01)• P 2.2.2. phic and the map	SComp -syntax trees avoiding the 1 (01), (01)• 1 (01), (00)• 1 (02), (00)• 1 (02),
	(02)• 1 (00), (02)•	1 (01), and (02)• 1 (02) is a Poincaré-Birkhoff-Witt basis of SComp. φ : Dias → Di (2.2.1)
	Since by Theorem 2.1.26, SComp is binary and quadratic, this ns operad admits a Koszul satisfying φ( ) = 01 and φ( ) = 10 is an isomorphism of operads.
	dual. Let SComp !	be the Koszul dual of SComp.
						Tr :=
	P {00 01 10}. Since G Di ⊆ G Tr , Di is a ns suboperad of Tr. 2.1.27. TM P 2.2.3.
						Tr
						Di
						As
	F	. . The diagram of ns suboperads and quotients of TM. Arrows
	(resp. ) are injective (resp. surjective) ns operad morphisms.
	Monoid Ns operad Generators First dimensions	Combinatorial objects
	M	Di	01, 10		1 2 3 4 5	Binary words with exactly one 0
		Tr	00, 01, 10	1 3 7 15 31	Binary words with at least one 0
	T	. . Ground monoids, generators, first dimensions, and combinatorial
	objects involved in the ns suboperads of TM.
	2.2.1. Di :=
	{01 10}.				
	P		2.2.1. The fundamental basis of Di is the set of all the words on the
	alphabet {0 1} containing exactly one 0.
	The diassociative operad Dias [Lod01] is a ns operad whose definition is recalled in
	Section 4.2.5 of Chapter 2.	

P 2.2.4. The ns operad Tr and the ns triassociative operad Trias are isomorphic and the map φ : Trias → Tr (2.2.

  First properties. In the first place, observe that Dias 1 is the operad Di defined in Chapter 4. For this reason, Dias 1 is the diassociative operad Dias. Moreover, observe that Dias 0 is the trivial operad and that Dias γ is a suboperad of Dias γ+1 . Then, for all integers γ 0, the operads Dias γ are generalizations of the diassociative operad. Besides, it follows immediately from the definition of Dias γ as a suboperad of TM γ that its fundamental basis is a set-operad basis. Indeed, any partial composition of two basis elements of Dias γ gives rises to exactly one basis element.

					Dias	2 (2) = K {01 02 10 20}	(1.1.2b)
		Dias	2 (3) = K {011 012 021 022 101 102 201 202 110 120 210 220}	(1.1.2c)
	and, as examples of partial compositions in Dias	3 ,
					211201 • 4 31103 = 2113222301	(1.1.3a)
					111101 • 3 20 = 1121101	(1.1.3b)
					1013 • 2 210 = 121013	(1.1.3c)
	1.1.2. 1.1.3. Elements and dimensions.
	We deduce from Proposition 1.1.1 that the Hilbert series of Dias γ satisfies
					Dias γ ( ) =	(1 -γ ) 2	(1.1.4)
	and that for all	1, dim Dias γ ( ) = γ -1	. For instance, the first dimensions of Dias	1 ,
	Dias	2 , Dias	3 , and Dias	4 are respectively
					1 2 3 4 5 6 7 8 9 10 11	(1.1.5a)
					1 4 12 32 80 192 448 1024 2304 5120 11264	(1.1.5b)
					1 6 27 108 405 1458 5103 17496 59049 196830 649539	(1.1.5c)
				1 8 48 256 1280 6144 28672 131072 589824 2621440 11534336	(1.1.5d)
					1.1)
	By definition, Dias γ is the linear span of all the words that can be obtained by partial com-
	positions of words of G Dias γ . We have, for instance,
					Dias	2 (1) = K {0}	(1.1.2a)

P

1.1.1. For any integer γ 0, the fundamental basis of Dias γ is the set of all the words on the alphabet {0} [γ] containing exactly one occurrence of 0.

  2.1.1. Pluriassociative algebras. We call γ-pluriassociative algebra any Dias γ -algebra. From the presentation of Dias γ provided by Theorem 1.2.1, any γ-pluriassociative algebra is

	a vector space endowed with linear operations		, ∈ [γ], satisfying the relations encoded
	by (1.2.3a)-(1.2.3e).				
	2.1.2. General definitions. Let	be a γ-pluriassociative algebra. We say that	is com-
	mutative if for all	∈ and ∈ [γ],	=	. Besides, is pure for all	∈ [γ],

  By Proposition 5.2.1, the map η γ , whose definition is only given in arity 2, defines an operad morphism. Nevertheless, by induction on the arity, one can prove that for any word of Dias γ , η γ ( ) is the γ-corolla of arity | | labeled by the greatest letter of . For any integer γ 0, the map ζ γ : DAs γ → Dendr γ satisfying

	5.2.2. Relating the pluriassociative and polydendriform operads.
	P	5.2.1. For any integer γ 0, the map η γ : Dias γ → As γ satisfying
		η γ (0 ) =	= η γ ( 0)	∈ [γ]	(5.2.4)
	extends in a unique way into an operad morphism. Moreover, this morphism is surjective.
	P	5.2.2.		
					and4.2.6 of Chapter 2
	by			
		η(e 2 1 ) :=	=: η(e 2 2 )	(5.2.2)
	and			
		ζ		:=	+	(5.2.3)
	Since Dias is generated by e 2 1 and e	2 2 , and since As is generated by	, η and ζ are wholly
	defined.			

  (for the natural order on the labels and that are integers). For instance, consider the poset Alternative basis. Let be a thin forest poset. For any element of , let ¯ be the element of As( ) !

		(iii) otherwise, is of the form =		where	is a thin forest poset, and then
									1	⊥	2	
													⊥
											=			(3.1.7)
			F		. . The Hasse diagram of a forest poset which is not a thin forest
		L	poset. Indeed, the node has two children 3.1.2. Let be a thin forest poset. Then, the number of intervals of and the 1 and 2 such that the suffix
	subtrees rooted at number of intervals of its dual are related by 1 and 2 have both two nodes or more.
	thin forest posets as forests of nonplanar rooted trees, obtained by considering the Hasse (# ) 2 + 3 # int( ) + int ⊥ = (3.1.8)
													2
	diagrams of these posets. 3.2. Koszul duality and poset duality. By defining here an alternative basis for As( )
	Thin forest posets admit the following recursive description. If is a thin forest poset, then is the empty forest ∅, or it is the forest when is a thin forest poset, we show that the construction As is closed under Koszul duality on thin forest posets. More precisely, we show that As( ) ! and As( ⊥ ) are two isomorphic
	operads.											(3.1.1)
	consisting in the tree of one node (labeled by 1) and a thin forest poset , or it is the forest 3.2.1.
														(3.1.2)
	consisting in one root (labeled by 1) attached to the roots of the trees of the thin forest poset . Therefore, there are 2 -1 thin forest posets of size 1.
	all	3.1.2. Duality. Given a thin forest poset , the dual of is the poset ⊥ ∈ ⊥ ,	such that, for
									1		2	
									:=		3 4 5	(3.1.3)
													6
	Since 1 dual ⊥	2, 1 of we have 1 3, 1	4, 1 ⊥ 2, 1	5, 1 ⊥ 3, 1	6, 3 ⊥ 4, 1	4, 3 ⊥	5, 1	5, 3 ⊥	6, 3	6, 4 ⊥	5, 4 4, 3	⊥	6, in the 5, 3 ⊥ 6,
	4	⊥	5, 4	⊥	6 and hence,						
											1		
									⊥		2	3	
									=		4		(3.1.4)
											5 6	
	Observe that this operation ⊥	is an involution on thin forest posets.
		We now state two lemmas about thin forest posets and the operation ⊥	.
		L			3.1.1. Let	be a thin forest poset. The dual ⊥ of	admits the following
	recursive expression:							
			(i) if is the empty forest ∅, then				
									∅ ⊥	= ∅;		(3.1.5)
		(ii) if is of the form =	where		is a thin forest poset, then
										⊥		
											=	⊥ ;	(3.1.6)

⊥

if and only if = or and are incomparable in and <

  Besides, the last equality of (3.2.6) comes, by Proposition 2.3.3, from the presence of the elements (2.3.8a) in

6) Indeed the second equality of (3.2.6) comes, by Proposition 2.3.3, from the presence of the elements (2.3.8b) and (2.3.8c) in ¯ , together with the fact that for all comparable elements and in , the fact that ⊥ , ⊥ , and ⊥ implies that = . ¯ . Similar arguments show that

  The construction C is a functor from the category of unitary magmas to the category of operads. Moreover, C respects injections and surjections.

					8b)
	1.1.4. Functorial construction from unitary magmas to operads. If	1 and	2 are two
	unitary magmas and θ :	1 →	2 is a unitary magma morphism, we define
					Cθ : C	1 → C	2	(1.1.9)
	as the linear map sending any	1 -clique p of arity to the	2 -clique (Cθ)(p) of the same
	arity such that, for any arc (	) where 1	<	+ 1,
				((Cθ)(p))(	) := θ(p(	))	(1.1.10)
	In a geometric way, (Cθ)(p) is the	2 -clique obtained by relabeling each arc of p by the
	image of its label by θ.		
	T	1.1.1.		

  2.1.1. Restricting the labels.In what follows, if X and Y are two subsets of such that the bases of p are labeled on B, all edges of p are labeled on E, and all diagonals of p are labeled on D.

	, X Y be the subspace of C generated be a unitary magma and B, E, and D be three finite subsets : ∈ X and ∈ Y }. Let B, E, and D be three subsets of denotes the set { and Lab B E D by all 2.1.2. Let dim Lab B E D ( ) = ( +1)( -2)/2 (2.1.1) where := #B, := #E, and := #D. 2.1.2. White cliques. Let Whi be the subspace of C generated by all white -cliques. Since, by definition of white -cliques, Whi = Lab {1 } {1 } (2.1.2) by Proposition 2.1.1, Whi is a suboperad of C . It follows from Proposition 2.1.2 that when is finite, the dimensions of Whi satisfy, for any 2, dim Whi ( ) = ( +1)( -2)/2 (2.1.3) where := # . 2.1.3. Restricting the crossings. Let 0 be an integer and Cro be the subspace of C generated by all -cliques p such that cros(p) + 1. As a quotient of graded vector spaces, Cro := C / Cro (2.1.4) is the linear span of all -cliques p such that cros(p) . P 2.1.3. Let be a unitary magma and 0 be an integer. Then, the space Cro is both a quotient and a suboperad of C . For instance, in the operad Cro 2 Z, we have 2 1 2 1 3 • 3 2 1 = 1 2 2 1 3 2 1 (2.1.5) When 0 are integers, by Proposition 2.1.3, Cro and Cro are both quotients and suboperads of C . First, since any -clique of Cro is also an -clique of Cro , Cro is a suboperad of Cro . Second, since Cro is a subspace of Cro , Cro is a quotient of Cro . Remark that Cro 0 is the linear span of all noncrossing -cliques. We can see these objects as noncrossing configurations [FN99] where the edges and bases are colored by elements of and the diagonals, by elements of ¯ . The operad Cro 0 has a lot of properties and will be studied in details in Section 3. 2.1.4. Bubbles. Let Bub be the subspace of C generated by all -cliques that are P 2.1.4. Let be a unitary magma. Then, the space Bub is a quotient -cliques p P of . For all 2, operad of C .
	not bubbles. As a quotient of graded vector spaces,	
		Bub := C /	Bub	(2.1.6)
	is the linear span of all	-bubbles.	

P 2.1.1. Let be a unitary magma and B, E, and D be three subsets of . If 1 ∈ B, 1 ∈ D, and E B ⊆ D, Lab B E D is a suboperad of C .

  if is a left child of , the first edge of the -triangle labeling is not labeled by 1 .

					3c)
	where p and q are	-triangles. Let also	be the closure of	.
	P		3.2.3. Let	be a finite unitary magma. Then,	is a convergent rewrite
	rule and an orientation of	NC .
	L		3.2.4. Let	be a unitary magma. The set of the normal forms of	is the
	set of the	-syntax trees t such that, for any internal nodes and of t where is a
	child of ,		
	(i) the base of the	-triangle labeling is labeled by 1 ;
	(ii) Moreover, when	is finite, the generating series of the normal forms of	is the Hilbert
	series	NC ( ) of NC .
	3.2.3. Presentation and Koszulity. The results of Sections 3.2.1 and 3.2.2 are finally used
	here to state a presentation of NC	and the fact that NC	is a Koszul operad.
	T		3.2.5. Let	be a finite unitary magma. Then, NC	admits the presenta-
	tion (		NC ).	
	P	. First, Proposition 3.2.3 implies that we can regard the underlying space of the
	quotient operad	

  3.1. Treelike expressions on bubbles. Let B and E be two subsets of . We denote by

	B E	the set of all	-bubbles p such that the bases of p are labeled on B and all edges of
	p are labeled on E. Moreover, we say that	is (E B)-quasi-injective if for all	∈ E and
	∈ B,	=	= 1 implies =	and = .
	L (E B)-quasi-injective, then any be a unitary magma, and B and E be two subsets of 3.3.1. Let -clique admits at most one treelike expression on . If	is B E
	of a minimal degree.		
	3.3.2. Dimensions. Let G be a set of	-bubbles and Ξ := {ξ	0 ξ	1	} be a set of
	noncommutative variables. Given	∈ , let B be the series of N Ξ defined by
				B (ξ	0 ξ	1

  Codendriform coalgebra structure. For any nonempty matrix M, we shall denote by last r (M) its last row. Let us endow PM with two coproducts ∆ ≺ and ∆ linearly defined, for any nonempty -packed matrix M, by

		3.4)
	P	2.3.1. The Hopf algebra PM admits a dendriform algebra structure for
	the products ≺ and .
	2.3.2.	

  The Hopf bialgebra PM admits a bidendriform bialgebra structure for the products ≺, and the coproducts ∆ ≺ , ∆ .

	1 2.3.2. The Hopf algebra PM admits a codendriform coalgebra structure (2.3.8) for the coproducts ∆ ≺ and ∆ . P 2.3.3. Bidendriform bialgebra structure. T ture. Following [Foi07], the generating series ( ) and ( ) of totally primitive elements of PMN and PML satisfy respectively ( ) = ( ) -1 ( ) 2 and ( ) = ( ) -1 ( ) 2 (2.3.9) The first few dimensions of totally primitive elements of PMN 1 and PMN 2 are respectively 0 1 5 240 40404 24827208 57266105928 (2.3.10) and 0 2 48 15640 39023776 813415850016 147655768992433664 (2.3.11) There are respectively Sequences A230885 and A230886 of [Slo]. The first few dimensions of totally primitive elements of PML 1 and PML 2 are respectively 0 1 0 5 36 381 4720 67867 1109434 (2.3.12) and 2.3.3. Theorem 2.3.3 also implies that PMN and PML admit a bidendriform bialgebra struc-0 2 0 40 576 12192 302080 8686976 284015104 (2.3.13)

  and Section 3.2.3 of Chapter 2).

	Let us endow the set of matrices indexing MQSym with a binary relation	defined in
	the following way. If M	1 and M	2 are two matrices such that M	1 has rows and	columns,
	we have M	1	M 2 if there is an index ∈ [ -1] such that, denoting by	the number of
	0 which end the th row of M	1 , and by	+1 the number of 0 which start the ( + 1)st row
	of M	1 , one has +	+1	and M	2 is obtained from M 1 by overlaying its th and ( + 1)st
	rows (see Figure 8.3).	

  3.2.2. Properties of equivalence relations. An equivalence relation ↔ on C *is compatible with the restriction to alphabet intervals if for any interval I of C and for all ∈ C * , ↔ implies |I ↔ |I , where |I denotes the word obtained by erasing in the letters that are not in I.

	Finally, we say that ↔ is compatible with the decompression process if for all	∈ C *
	such that and are matrices, ↔ if and only if cp( ) ↔ cp( ) and and have the
	same commutative image.	
	3.2.3. Construction of Hopf sub-bialgebras. Given an equivalence relation ↔ on the words of C * and a ↔-equivalence class [M] ↔ of packed matrices of C * , we consider the
	elements	

  PM ↔ is a Hopf sub-bialgebra of PM . Note that since ↔ is compatible with the decompression process, any matrix contained in a ↔-equivalence class [M] ↔ is obtained by switching columns of M. Then, any ↔-equivalence class [M] ↔ of -packed matrices only contains matrices whose size and number of nonzero entries are the same as in M. Hence, Theorem 3.2.1 also implies that the family (3.2.2) forms a basis of Hopf sub-bialgebras of both PMN and PML . We respectively denote these by PMN ↔

			Hopf bialgebra	First dimensions
			PMN	1	↔	Bx	1 1 7 265 38051
			PMN	1	↔	Bl	1 1 7 221 25789
			PMN	1	↔	S	1 1 7 221 24243
			PMN	1	↔	P	1 1 7 177 17339
			PMN	1	↔	H	1 1 7 177 13887
			PMN	1	↔	T	1 1 4 57	2306
			PML	1	↔	Bx	1 1 2 10	68	578 5782
			PML	1	↔	Bl	1 1 2 9	53	390 3389
			PML	1	↔	S	1 1 2 9	52	364 2918
			PML	1	↔	P	1 1 2 8	41	266 1976
			PML	1	↔	H	1 1 2 8	39	220 1396 9716
			PML	1	↔	T	1 1 1 3	11	43	191	939
										↔
	T	↔	. . First few dimensions of the Hopf sub-bialgebras PMN 1	and
	PML	1							
		3.2.1. Let ↔ be an equivalence relation on the words of C * such that ↔
	(i) is a monoid congruence on C * ;
	(ii) is compatible with the restriction to alphabet intervals;
	(iii) is compatible with the decompression process.
	Then, Let ↔ be an equivalence relation on C *	satisfying (i), (ii), and (iii) of Theorem 3.2.1.
	and PML ↔	.					
	3.2.4. Computer experiments. By Theorem 3.2.1, the version of sylvester, plactic, Baxter,
	Bell, hypoplactic, and total equivalence relations (see Section 3.2.4 of Chapter 2) applied to C * lead to bigraded Hopf sub-bialgebras of PM . Table 8.2 shows first few dimensions of
	the Hopf subalgebras of PMN	1 and PML	1 obtained from these congruences, computed by
	computer exploration.			

  Equivalence relations on ASMs and associated subspaces of ASM. Let S ⊆ Z ∪ N be a set of statistics and ∼ S be the equivalence relation on the set of ASMs defined, for any The algebra ASM/ I io . Let us first study the statistics io ∈ N.

	4.2.2. ASMs δ 1 and δ	2 of the same size, by
			δ	1 ∼ S δ 2		if and only if	(δ	1 ) = (δ	2 ) for all ∈ S	(4.2.6)
	We denote by S the associated vector space spanned by
								{F δ	1 -F δ	2 : δ	1 ∼ S δ	2 }	(4.2.7)
	4.2.3. P	4.2.1. Let δ, δ 4.2.5. The quotient ASM/ 1 , and δ 2 be three ASMs such that M δ ∈ M δ io is a commutative associative algebra. 1 ¢ M δ 2 . Then, for
	any statistics s of N, Note however that ASM/	io does not inherit the structure of a coalgebra of ASM because
	even if						
	L	4.2.2. Let δ, δ	1 , and δ	s(δ) = s(δ 2 be three ASMs such that M δ ∈ M δ 1 ) + s(δ 2 ) :	1 ¢M δ	2 . Let	(4.2.1) be the
	size of δ M δ coming from M δ 2 (resp. δ 1 ) and { 2 (resp. M δ 1 <	} be the set of the indices of the columns of 1 ). Then, for any s ∈ {nw se} (resp. s ∈ {sw ne}), 2 < • • • <
							s(δ) = s(δ	1 ) + s(δ	2 ) +	( -)	(4.2.2)
								1
	To illustrate Lemmas 4.2.1 and 4.2.2, we show here the product (4.1.4) in ASM, seen
	on six-vertex configurations, where the vertices represented by squaresare of kind io while
	those represented by circles are of kind nw:
	F		• F		= F		+ F	+ F	+ F	(4.2.3)
	P		4.2.3. The maps φ : ASM → K( ) and φ : ASM → K( ) linearly defined,
	for any ∈ N, ∈ Z, and any ASM δ of size by
			φ (F δ ) :=	(δ)	and	φ (F δ ) :=	(δ)	(4.2.4)
								!	( ) !
	are associative algebra morphisms.
	This previous results remain valid in the dual ASM of ASM.
	P for any s ∈ N, ∈ Z, and any ASM δ of size by 4.2.4. The maps ψ s : ASM → K( ) and ψ s : ASM → K( ) linearly defined,
			ψ	s (F δ ) :=	s(δ) !	and	ψ s (F δ ) :=	s (δ) ( ) !	(4.2.5)
	are associative algebra morphisms.

  The algebra ASM/ I nw . Let us now study the statistics nw ∈ Z.

						4.1 of
	Section 3.4 of Chapter 1, we immediately have ∼	oi =∼	io and then, ASM/	oi = ASM/	io .
	4.2.4. P	4.2.7. The quotient ASM/	nw is a commutative associative algebra.
	Note however that ASM/	nw does not inherit the structure of a coalgebra of ASM because
	even if				
			:		

  1.2.2. The natural Hopf bialgebra of the associative operad. Let us consider the associative operad As (see Section 4.2.1 of Chapter 2). The set As + consists in the elements a with 2. The Hopf bialgebra H(As) is the linear span of the elements T

	1	where
	∈ As + word α , ∈ [ ]. Any multiset X := a 1 α where α is the multiplicity of a 1 a of As + +1 in X for any ∈ [ ]. For instance, the can be encoded by a nondecreasing 1 basis element T a 2 a 2 a 4 a 6 a 6 a 7

  Product. Let us show that the linear span of the T [ ] , where the [ ] are ≡-equivalence classes of reduced elements of , forms an associative subalgebra of H( ).

	2.3.1. The
	product on the T [ ] is multiplicative and admits the following simple description.
	P	2.3.1. Let	be a free pro and ≡ be a stiff congruence of . Then, for
	any ≡-equivalence classes [ ] and [ ],
				T [ ] • T [ ] = T [ * ]	(2.3.4)
	where (resp. ) is any element of [ ] (resp. [ ]).
	2.3.2. Coproduct. To prove that the linear span of the T [ ] , where the [ ] are ≡-equi-
	valence classes of reduced elements of , forms a subcoalgebra of H( ) and provides the
	description of the coproduct of a T [ ] , we need the following notation. For any element
	of ,		
				red ([ ]) := red	: ∈ [ ]	(2.3.5)
	L	2.3.2. Let	be a free pro and ≡ be a stiff congruence of . For any element
	of ,		
				red ([ ]) = [red( )]	(2.3.6)
	L	2.3.3. Let	be a free pro, ≡ be a stiff congruence of , and and be two
	elements of	such that ≡ . Then, red( ) = red( ) implies = .
	The next result is based upon Lemmas 2.3.2 and 2.3.3.
	P	2.3.4. Let	be a free pro and ≡ be a stiff congruence of . Then, for
	any ≡-equivalence class [ ],
			∆ T [ ] =	T red([ ]) ⊗ T red([ ])	(2.3.7)
				[ ] [ ]∈ / ≡
				[ ]•[ ]=[ ]
	2.3.3. Hopf sub-bialgebra. The description of the product and the coproduct on the T [ ]
	leads to the following result.
	T	2.3.5. Let be a free pro and ≡ be a stiff congruence of . Then, the linear
	span of the T [ ] , where the [ ] are ≡-equivalence classes of reduced elements of , forms
	a Hopf sub-bialgebra of H( ).
				T [ ] .

  Since the reduced elements of PRF γ have no wire, they are encoded by forests of nonempty trees. Hopf bialgebra. By Theorem 2.1.1 and Proposition 2.2.2, H(PRF γ ) is a combinatorial Hopf bialgebra. By Proposition 2.2.1, as an associative algebra, H(PRF γ ) is freely generated by the S t , where the t are nonempty planar rooted trees with only internal nodes of arity γ + 1. Its bases are indexed by planar forests of such trees where the degree of a basis element S f is the number of internal nodes of f. ) is the set of admissible cuts of t, that is, the empty tree or the subtrees of t containing the root of t and where t/ t denotes the forest consisting in the maximal subtrees of t whose roots are leaves of t , by respecting the order of these leaves in t and by removing the empty trees. For instance, we have

				H(FBT γ )	H(Heap γ )
			H(PRF γ )			H(BAs γ )	
					H(As γ )	H(FHeap γ )
	F	. . Diagram of combinatorial Hopf bialgebras where arrows
	(resp. ) are injective (resp. surjective) Hopf bialgebras morphisms. The pa-
	rameter γ is a positive integer. When γ = 0, H(PRF	0 ) = H(As	0 ) = H(Heap	0 ) =
	H(FHeap 0 ) and H(FBT	0 ) = H(BAs	0 ).		
	3.1.2. Notice that the bases of H(PRF	0 ) are indexed by forests of linear trees and that H(PRF	0 )
	and Sym are trivially isomorphic as combinatorial Hopf bialgebras.
	3.1.3. Coproduct. By definition of the construction H, the coproduct of H(PRF γ ) is given
	on a generator S t by						
				∆(S t ) =		S t ⊗ S t/ t		(3.1.1)
						t ∈Adm(t)	
	where Adm(t∆S	= S ∅ ⊗ S		+ S	⊗ S	+ S	⊗ S
	+ S	⊗ S	+ S		⊗ S	+ S	⊗ S	+ S	⊗ S ∅
									(3.1.2)

  3.1.4. Dimensions. The series of the algebraic generators of H(PRF γ ) is Pro of general forests. We denote by PRF ∞ the free pro generated by G := Any prograph of PRF ∞ can be seen as a planar forest of planar rooted trees. Since the reduced elements of PRF ∞ have no wire, they are encoded by forests of nonempty trees. Observe that for any nonnegative integer γ, PRF γ is a sub-pro of PRF ∞ .3.1.6. Hopf bialgebra. By Theorem 2.1.1, H(PRF ∞ ) is a Hopf bialgebra. By Proposition 2.2.1, as an associative algebra, H(PRF ∞ ) is freely generated by the S t , where the t are nonempty planar rooted trees. Its bases are indexed by planar forests of such trees. Besides, by Proposition 2.2.5, since PRF γ is generated by a subset of the generators of PRF ∞ , H(PRF γ ) is a Hopf bialgebra quotient of H(PRF ∞ ). Moreover, the coproduct of H(PRF ∞ ) satisfies (3.1.1).

					1	(γ + 1)
		( ) :=	1	γ + 1	(3.1.3)
	since its coefficients are the Fuss-Catalan numbers, counting planar rooted trees with
	internal nodes of arity γ + 1 (see Section 2.2.2 of Chapter 1). Since H(PRF γ ) is free as an
	associative algebra, its Hilbert series is		H(PRF γ ) ( ) := 1 1-( ) .
	The first dimensions of H(PRF	1 ) are
		1 1 3 10 35 126 462 1716 6435 24310 92378	(3.1.4)
	and those of H(PRF	2 ) are		
	1 4 19 98 531 2974 17060 99658 590563 3540464 21430267	(3.1.5)
	These two sequences are respectively Sequences A001700 and A047099 of [Slo].
	3.1.5.			

1 G( 1) := 1 {a }.

  |P 2 are order-isomorphic. Computer experiments give us the first numbers of square permutations with respects to their size, which are, from size 0 to 10,

	1 0 2 0 20 0 504 0 21032 0 1293418	(2.1.6)
	The first square permutations are	
	12 21 1234 1243 1324 1342 1423 2134 2143 2314 2413 2431	
	3124 3142 3241 3412 3421 4132 4213 4231 4312 4321 (2.1.5)
	In a more combinatorial way, this is equivalent to saying that there are two sets P	1 and
	P	

2 of disjoints indices of letters of π satisfying P 1 P 2 = [|π|] such that the subwords π |P and π

  For any 0, the map btp restricted to the set of square binary words of length 2 is a bijection between this last set and the set of square permutations of size 2 avoiding the patterns 213 and 231. The supershuffle product • of permutations is associative and commutative, that is (FQSym •) is an associative commutative algebra.

	2.3.1. Associativity and commutativity.		
	P	2.3.1.					
								0
	and | | 1 are both even, where ∈ {0 1}. For instance,
			ptb(615423) = 101100	(2.2.2a)
				ptb(1423) = 0101		(2.2.2b)
	2.2.2. Link between square binary words and square permutations.
	P 2.2.1. The number of square binary words is (after removing the 0s) Sequence A191755 of [Slo]
	beginning by						
		1 0 2 0 6 0 22 0 82 0 320 0 1268 0 5102 0 020632	(2.2.3)
	According to Proposition 2.2.1, this is also the sequence enumerating square permutations
	avoiding 213 and 231. Notice that it is conjectured in [HRS12] that the number of binary
	words of length 2 is					
		2	1	2 -	2 -1	2 -1	+ O 2 -2	(2.2.4)
			+ 1		+ 1		
	2.3. Algebraic properties. The aim of this section is to establish some of properties of
	the supershuffle product of permutations •. It is worth to note that, as we will see, algebraic
	properties of the unshuffling coproduct ∆ of permutations defined in Section 2.1.1 lead to
	combinatorial properties of •.					

= 918723465 (2.2.1) Observe that for any nonempty permutation π in the image of btp, there is exactly one binary word such that btp( 0) = btp( 1) = π. In support of this observation, when π has an even size, we denote by ptb(π) (Permutation To Binary word) the word such that | |

  C A (As). Then, any series

	1.2.5. Series of colors. Let	
					col : → Bud C (As)	(1.2.10)
	be the morphism of colored operads defined for any ∈ by
					col( ) := (out( ) in( ))	(1.2.11)
	By a slight abuse of notation, we denote by
					col : K	→ K Bud C (As)	(1.2.12)
	the map sending any series f of K	to K col (f), called series of colors of f. By (1.2.4),
					col(f) =	s :=	s f (out( ) in( ))	(1.2.6) (1.2.13)
						∈	∈A *
	of K A * Intuitively, the series col(f) can be seen as a version of f wherein only the colors of the is encoded by the series
	elements of its support are taken into account.
	mu(s) := 1.2.6. Series of color types. The C-type of a word ∈A * s (♦ ♦)	∈ C +	(1.2.7) is the word type( ) of N
	defined by				
	of K				type( ) := | |	1	| |	(1.2.14)
	1.2.4. Series on monoids. For any monoid mutative series on [Sak09]. Noncommutative multivariate series are particular cases of , recall that K if the set of noncom-series on monoids since any noncommutative multivariate series of K A * We denote by C α the word C α 1 α := α (1.2.15) 1 can be seen as an A * -series, where A * is the free monoid on A. Let us explain how to encode any series s ∈ K by a series on a particular colored Let Z C := {z 1 z } be an alphabet of commutative letters. For any type α, we denote by Z α C the monomial Z α C := z α 1 1 z α (1.2.16)
	operad. Let We define the map • be the monochrome collection concentrated in arity one where 1 : (1) × (1) → (1) for all ∈ by • 1 := is the operation of . Since is associative and admits a unit, • 1 satisfy all relations of (1) := . where operads, so that of K S(Z 1 x } is a monochrome operad. Then, any series s := and {y 1 y }. We can see these two alphabets as graded collections where each letter is s (1.2.8) of size 1. Consider the map
				colt : K	∈
	of K	is encoded by the series
					mo(s) :=	s	(1.2.9)
						∈
	of K	. We shall explain a little further how the usual product of series of K	,
	called Cauchy product in [Sak09], can be translated on series of the form (1.2.9).
	Observe that when letters, we then have two ways to encode a series s of K A * is a free monoid A * where A is a finite alphabet of noncommutative . Indeed, s can be encoded
	as the series mu(s) of K	A	of the form (1.2.7), or as the series mo(s) of K	A *	of the
	form (1.2.9). Remark that the first way to encode s is preferable since A is a combinatorial
	operad while A *	is not.		

A . We shall explain a little further how the usual noncommutative product of series of K A * can be translated on Bud C A (As)-series of the form (1.2.7). By extension, we shall call C-type any word of N with at least a nonzero letter and we denote by C the set of all C-types. The degree deg(α) of α ∈ C is the sum of the letters of α. C ) . Moreover, for any two types α and β, the sum α +β of α and β is the type satisfying (α +β)( ) := α( ) + β( ) for all ∈ [ ]. Observe that with this notation, Z α C Z β C = Z α +β C . Now, set X C and Y C respectively as the two alphabets of commutative letters {x

  is the series wherein the coefficient of any syntax tree t of is its degree. Let also f | 1 (resp. f | 2 ) be the series of K where for any syntax tree t of , t f | The sum f | 1 + f | 2 is the series wherein the coefficient of any syntax tree t of is its arity. Moreover, the series f | 2 is the series wherein the coefficient of any syntax tree t of is its total number of nodes. We are now in position to define a binary operation on the space of the -series. As we shall see, this operation is partially defined, nonunitary, noncommutative, and nonassociative. 1.3.1. Pre-Lie product. Given two -series f g ∈ K , the pre-Lie product of f and g is the -series f g defined, for any ∈ , by is not a right unit of . This product is also nonassociative in the general case since we have, for instance in K As , ) is a functor from the category of combinatorial C-colored operads to the category of pre-Lie algebras.

	The series of colors of f	a is of the form
	col(f	a ) = (1 21) + 2 (1 221) + 3 (1 2221) + (2 2121) + (2 1221) + (1 1211) + • • •	(1.2.23)
	and the series of color types of f is of the form
				colt(f	a ) = x 1 y 1 y 2 + 2x	1 y 1 y 2 2 + x	1 y 3 1 y 2 + 3x	1 y	1 y 3 2 + 2x	2 y 2 1 y 2 2 + • • •	(1.2.24)
	1.3. Pre-Lie product on series. f	g :=	f	g	(1.3.1)
									∈
									∈[| |] = •
	Observe that f	g could be undefined for arbitrary -series f and g on an arbitrary colored
	operad . Besides, notice from (1.3.1) that	is bilinear and that u (defined in (1.2.1)) is a left
	unit of . However, since			
						f		u =	| |	f	(1.3.2)
								∈
	the -series u (a 2	a 2 )	a 2 = 6a 4 = 4a	4 = a 2	(a 2	a 2 )	(1.3.3)
	Nevertheless, it satisfies the pre-Lie relation (see (2.3.17) of Section 2.3.4 of Chapter 2).
	P			1.3.1. The construction ( φ)	((K	) K φ
									• • •	(1.2.22b)
	The sum f	a + f					
									1	(resp.
	t f |							

b 2 ) is the number of inputs colors 1 (resp. 2) of t. a + f b + f | 1 + f

  a generating set of Motz. Hence, HS Motz G is a hook generating system. This leads to the definition of a statistics on Motzkin paths, provided by the coefficients of the hook generating series hook (HS We call syntactic generating series of the Bud C ( )-

		Motz G ) of HS	Motz G which begins by			
	hook (HS	Motz G ) =	+	+ 2	+	+ 6	+ 2	+ 2
	+	+ 24		+ 6	+ 6		+ 3	+ 6
		+ 2	+ 3	+ 2		+	+ • • •	(3.2.12)
	3.3. Syntactic generating series. series synt( ) defined by				
				synt( ) := i (u -r) -1 t		(3.3.1)
									(3.2.8)
					∈ • (t)	deg(t )	

Finally, by Lemma 3.1.1, for any ∈ Bud C ( ) such that out( ) ∈ I and in( ) ∈ T + , we have hook( ) = r * . This shows that the right member of (3.2.4) is equal to hook( ). is

  Let Precomp be the category wherein objects are all precompositions and arrows are precomposition morphisms.

		Now, let φ :	p → End( ) and φ :	p → End( ) be two precompositions. A map
	α :	→	is a precomposition morphism from φ to φ if α is a monoid morphism and
	satisfies			
					α :	→	1	(1.2.5a)
				φ	(α( )) = α( φ	( ))	∈	(1.2.5b)

COMBINATORICS

ALGEBRAIC COMBINATORICS

FROM POSETS TO OPERADS

Remerciements

From pros to Hopf bialgebras

The content of this chapter comes from [START_REF] Bultel | Combinatorial Hopf algebras from PROs[END_REF] and is a joint work with Jean-Paul Bultel.

The space of relations

Dias γ of Dias γ exhibited by Theorem 1.2.1 can be rephrased in a more compact way as the space generated by ( )

(1.2.3e) 1.2.2. Koszulity.

T 1.2.2. For any integer γ 0, Dias γ is a Koszul operad and the set of the G Dias γ -syntax trees avoiding the trees

1.2.3. Miscellaneous properties. We list some secondary properties of Dias γ . The definitions of these properties can be found in Section 4.1 of Chapter 2. P 1.2.3. For any integer γ 0, the group of symmetries of Dias γ contains the linear map sending any word of Dias γ to its mirror image. P 1.2.4. For any integer γ 0, the fundamental basis of Dias γ is a basic set-operad basis. P 1.2.5. For any integer γ 0, Dias γ is a nontrivially rooted operad for the root map sending any word of Dias γ to the position of its 0. 1.2.4. Alternative basis. Let γ be the order relation on the underlying set of Dias γ ( ), 1, where for all words and of Dias γ of a same arity , we have , where the are words of Dias γ , forms by triangularity a basis of Dias γ , called the K-basis.

Recall that ham(

) denotes the Hamming distance between the words and of the same length. For any word of Dias γ of length , we denote by Incr γ ( ) the set of all words obtained by incrementing by 1 some letters of smaller than γ and greater than 0. Proposition 1.1.1 ensures that Incr γ ( ) is a set of words of Dias γ . P 1.2.6. For any integer γ 0 and any word of Dias γ ,

To compute a direct expression for the partial composition of Dias γ over the K-basis, we have to introduce two notations. If is a word of Dias γ of length nons maller than 2, we denote by min( ) the smallest letter of among its letters different from 0. Proposition 1.1.1 ensures that min( ) is well-defined. Moreover, for all words and of Dias γ , a position such that = 0, and ∈ [γ], we denote by • the word • in which the 0 coming from is replaced by instead of . T 1.2.7. For any integer γ 0, the partial composition of Dias γ over the K-basis satisfies, for all words and of Dias γ of arities non smaller than 2,

(1.2.10)

We have for instance K (1.2.11e) Theorem 1.2.7 implies in particular that the structure coefficients of the partial composition of Dias γ over the K-basis are 0 or 1. It is possible to define another bases of Dias γ by reversing in (1.2.6) the relation γ and by suppressing or keeping the Möbius function µ γ . This gives obviously rise to three other bases. It is worth to note that, as small computations reveal, over all these additional bases, the structure coefficients of the partial composition of Dias γ can be negative or different from 1. This observation makes the K-basis even more particular and interesting. It has some other properties, as next section will show.

Additional properties.

We exhibit here a presentation of Trias γ and establish the fact that it is a Koszul operad.

3.2.1. Presentation by generators and relations. For any ∈ [γ], let us denote by (resp.

, ⊥) the generator 0 (resp. 0, 00) of Trias γ . T 3.2.1. For any integer γ 0, the operad Trias γ admits the presentation G Trias γ

Trias γ where

Trias γ is the space induced by the equivalence relation ↔ γ satisfying

(3.2.1k)

In the same fashion as we have done for Theorem 1.2.1, our proof of Theorem 3.2.1 is based upon the computation of the kernel of the evaluation morphism ev : FO G Trias γ → Trias γ (3.2.2)

In this case, the image of a G Trias γ -syntax tree t can be computed in the same way as in the case of G Dias γ -syntax trees (see Section 1.2.1). The internal nodes of t labeled by ⊥ do not play any role in this computation (see Figure 5.2). . . A G Trias γ -syntax tree t where the images of its leaves are shown. This tree satisfies ev(t) = 332440433201.

The space of relations

Trias γ of Trias γ exhibited by Theorem 3.2.1 can be rephrased a bit more concisely as the space generated by 

Polydendriform operads

We introduce at this point our generalization on a nonnegative integer parameter γ of the dendriform operad and dendriform algebras. We first construct this operad, compute its dimensions, and give then two presentations by generators and relations. This section ends by a description of free algebras over one generator in the category encoded by our generalization. 

Construction and properties

Theorem 4.1.1 provides a quite complicated presentation of Dendr γ . We shall define below a more convenient basis for the space of relations of Dendr γ . 

Moreover, by setting F( ) := Dias γ (-), where Dias γ ( ) is the Hilbert series of Dias γ defined by (1.1.4), we have

showing that F( ) and G( ) are the inverses for each other for series composition. 

For any integer γ 0, let , ∈ [γ], the elements of DAs defined by

Then, since for all ∈ [γ] we have 

Observe, from the presentation provided by Proposition 5.1.3 of DAs γ , that DAs 2 is the operad denoted by 2as in [START_REF] Loday | On the structure of cofree Hopf algebras[END_REF].

Notice that the presentation of the Koszul dual of DAs γ computed from the presentation G DAs γ DAs γ of Proposition 5.1.3 gives rise to the following presentation for As γ . This last operad admits the presentation G

As γ

As γ where

and As γ is the space generated by ( ) By examining the expression for DAs γ ( ) of the statement of Proposition 5.1.4, we observe that for any 1, DAs γ ( ) can be seen as the vector space DAs γ ( ) of all Schröder trees of arity , all labeled on [γ] such that the label of an internal node is different from the labels of its children that are internal nodes (see Figure 5.4). We call these trees γ- alternating Schröder trees. Let us also denote by DAs γ the graded vector space of all γ-alternating Schröder trees.

We deduce also from Proposition 5.1.4 that The second one is Sequence A006318, the third one is Sequence A103210, and the last one is Sequence A103211 of [Slo]. 

Then, for all s t ∈ R , st is an element of the space of relations of As( ).

By Lemma 1.1.1, we observe that all , ∈ , are associative. For this reason, As( ) is a generalization of the associative operad on several binary generating operations. As we will see in the sequel, this very simple way to produce operads has many combinatorial and algebraic properties. (1.1.6) the operad As( ) is binary and quadratic, generated by the set G = { 1 2 3 4 }, and, by Lemma 1.1.1, subjected to the relations

(1.1.7d) 

where for all ∈ , the ( ) satisfy

and for all ∈ , the ¯ ( ) satisfy 

so that the Hilbert series of As( ) satisfies the quadratic functional equation

This Hilbert series can expressed as 

and the space of relations is generated by

To end this section, let us give a complete example of the spaces of relations , ¯ , ¯ , and of the operads As( ) and As( ) ! where is the forest poset

First, by definition of As and by Lemma 1.1.1, the generators of G are subjected to the relations

This describes .

By Proposition 2.3.1, the generators of G ¯ are subjected to the relations

This describes ¯ .

By Proposition 2.3.3, the generators of G ¯ are subjected to the relations

This describes ¯ .

FROM POSETS TO OPERADS

The isomorphism φ between As( ⊥ ) and As( ) ! provided by Theorem 3.2.2 can be expressed from the generating family G ⊥ of As( ⊥ ) to the generating family G ¯ of As( ) ! , for any ∈ ⊥ , as

For instance, by considering the pair of thin forest posets in duality

Moreover, by considering the opposite pair of thin posets forests in duality

It is possible to prove that this operad does not admit any other nontrivial relations between its generators. This can be performed by defining a rewrite rule on the syntax trees on G, consisting in rewriting the left patterns of (3.3.10a), (3.3.10b), (3.3.10c), and (3.3.10d) into their respective right patterns, and by checking that this rewrite rule admits the required properties (like the ones establishing the presentation of NC by Theorem 3.2.5).

By describing the bubbles of (NCD 0 ) G , Proposition 3.3.2 leads to the fact that the Hilbert series of (NCD 0 ) G satisfies the algebraic equation

The first dimensions of (NCD 0 ) G are 1 1 2 4 9 21 51 127 (3.3.12)

and form Sequence A001006 of [Slo]. The operad (NCD 0 ) G has the same presentation by generators and relations (and thus, the same Hilbert series) as the operad Motz defined in Section 2.1.5 of Chapter 4, involving Motzkin paths. Hence, (NCD 0 ) G and Motz are two isomorphic operads. Note in passing that these two operads are not isomorphic to the operad MotD 0 constructed in Section 2.2.4 and involving Motzkin configurations. Indeed, the sequence of the dimensions of this last operad is a shifted version of the one of (NCD 0 ) G and Motz.

Algebras over the noncrossing clique operads.

We begin by briefly describing NC -algebras in terms of relations between their operations and the free NC -algebras over one generator. We continue this section by providing two ways to construct (nonnecessarily free) NC -algebras. The first one takes as input an associative algebra endowed with endofunctions satisfying some conditions, and the second one takes as input a monoid.

3.4.1.

Relations. From the presentation of NC established by Theorem 3.2.5, an NCalgebra is a vector space endowed with binary linear operations

satisfying, for all 1 2 3 ∈ , the relations

Here are few examples of the construction provided by Theorem 3.4.1. Noncommutative polynomials and selected concatenation: Consider the unitary magma S of all subsets of [ ] with the union as product. Let A := { : ∈ [ ]} be an alphabet of noncommutative letters. We define on the associative algebra K A of polynomials on A the linear maps ω S :

as follows. For any ∈ A * and S ∈ S , we set

Since, for all ∈ A * , ω ∅ ( ) = and (ω S • ω S )( ) = ω S∪S ( ), and ∅ is the unit of S , we obtain from Theorem 3.4.1 that the operations (3.4.8) endow K A with an NCS -algebra structure. For instance, when := 3, one has

Besides, to compute the action

where := 1 + 2 + 3 , we use the above algorithm and (3.4.11) and (3.4.13). By presenting the computation on the bubble tree of the noncrossing S 3 -clique of (3.4.17), we obtain

(3.4.18) so that (3.4.17) is equal to the polynomial (

Noncommutative polynomials and constant term product: Consider the unitary magma

} be an infinite alphabet of noncommutative letters. We define on the associative algebra K A of polynomials on A the linear maps

as follows. For any ∈ A * , we set ω 1 ( ) := , and

In other terms, ω 0 ( ) is the constant term, denoted by (0), of the polynomial ∈ K A . Since ω 1 is the identity map on K A and, for all ∈ A * ,

we obtain from Theorem 3.4.1 that the operations (3.4.8) endow K A with a NCD 0 -algebra structure. For instance, for all polynomials 1 and 2 of K A , we have

If is a monoid, with binary associative operation and unit 1 , we denote by K * the space of all noncommutative polynomials on , seen as an alphabet, with coefficients in K. This space can be endowed with an NC -algebra structure as follows.

For any ∈ and any word ∈ * , let

This operation * is linearly extended on the right on K * . P 3.4.2. Let be a finite monoid. The vector space K * endowed with the binary linear operations

defined for each -triangle p and any

is an NC -algebra.

Here are few examples of the construction provided by Proposition 3.4.2. with a structure of an NCD -algebra. For instance, for all words and of D * , we have

where, for any word of D * and any element d of D , ∈ [ ], d is the word obtained by replacing each occurrence of 1 by d and each occurrence of d , ∈ [ ], by 0 in .

Koszul dual.

Since by Theorem 3.2.5, the operad NC is binary and quadratic, this operad admits a Koszul dual NC ! . We end the study of NC by collecting the main properties of NC ! .

3.5.1. Presentation. Let ! NC be the subspace of FO ( ) (3) generated by the elements

where p and q are -triangles. .

By Proposition 3.5.1, the operad NCN ! 2 is generated by

and these generators are subjected exactly to the nontrivial relations

2.1.2. Multiplicative bases. By mimicking definitions of the bases of symmetric functions, for any -packed matrix M, the elementary elements E M and the homogeneous elements H M are respectively defined by

By triangularity, these two families are bases of PM . For instance, in PM 1 one has

The elements appearing in a product of PM expressed in the fundamental basis form an interval for the PM -partial order. More precisely, for any -packed matrices M 1 and M 2 ,

T 2.1.3. The Hopf bialgebra PM is freely generated as an associative algebra by the elements E M (resp. H M ) where the M are connected (resp. anti-connected) -packed matrices.

Theorem 2.1.3 also implies that PMN and PML are freely generated by the E M (resp. H M ) where the M are connected (resp. anti-connected) -packed matrices. Hence, the generating series ( ) and ( ) of algebraic generators of PMN and PML satisfy respectively

The be the free monoid generated by the set C of all × 1-matrices with entries in A , for all 1. In other words, the elements of C * are words whose letters are columns and its product • is the concatenation of such words. When all the letters of an element M ∈ C * have, as columns, a same number of rows, M is a matrix and we shall denote it as such in the sequel.

The alphabet C is naturally equipped with the total order where, for any 1 2 ∈ C , 1 2 if and only if the bottom to top reading of the column 1 is lexicographically smaller than the bottom to top reading of 2 . For instance,

Since C is then totally ordered and C * is a free monoid, one can consider the previous two congruences on C * instead on A * . For instance, Figure 8.6 represents a ↔ S -equivalence class and a ↔ P -equivalence class of packed matrices.

1 0 1 1 0 1 0 1 0 1 0 1 1 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0 1 1 0 0 1 1 0 1 0 0 0 0 0 1 1 1 0 0 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 0 ( ) A sylvester equivalence class.

1 1 0 1 0 1 1 0 0 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 1 1 0 0 1 1 0 1 0 0 0 0 0 1 1 1 0 0 1 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 1 0 0 

Related constructions.

In this section, we first describe two constructions allowing to build stiff pros. The main interest of these constructions is that the obtained stiff pros can be placed at the input of the construction H. We next present a way to recover the natural Hopf bialgebra of an operad through the construction H and the previous constructions of stiff pros.

2.4.1. From operads to stiff pros. Any operad gives naturally rise to a pro R( ) whose elements are sequences of elements of (see [START_REF] Markl | Operads and PROPs[END_REF]).

We recall here this construction. Let us set R( ) :

The horizontal composition of R( ) is the concatenation of sequences, and the vertical composition of R( ) comes directly from the composition map of . More precisely, for any

where for any ∈ [ ], ∈ ( ) and the occurrences of • in the right-member of (2.4.2) refer to the total composition map of .

For instance, if is the magmatic operad Mag (see Section 4.2.2 of Chapter 2), since its elements are binary trees, the elements of the pro R( ) are forests of binary trees. The horizontal composition of R( ) is the concatenation of forests, and the vertical composition

), defined only between two forests f 1 and f 2 such that the number of leaves of f 1 is the same as the number of trees in f 2 , consists in the forest obtained by grafting, from left to right, the roots of the trees of f 2 on the leaves of f 1 .

P 2.4.1. Let be an operad such that the monoid ( (1) • 1 ) does not contain any nontrivial subgroup. Then, R( ) is a stiff pro.

2.4.2.

From monoids to stiff pros. Any monoid can be seen as an operad concentrated in arity one. Then, starting from a monoid , one can construct a pro B( ) by applying the construction R to seen as an operad.

This construction can be rephrased as follows. We have B( )

The horizontal composition of B( ) is the concatenation of sequences and the vertical composition

where is the product of .

3.2.1. Associative pro. Let γ be a nonnegative integer and As γ be the quotient of PRF γ by the finest pro congruence ≡ satisfying a a 1 2

We can observe that As γ is a stiff pro because ≡ satisfies (C2) and (C3), and that As 0 = PRF 0 . Moreover, observe that, when γ 1, there is in As γ exactly one indecomposable element of arity γ + 1 for any 0. We denote by α this element. We consider on As γ the grading ω inherited the one of PRT γ . This grading is still well-defined in As γ since any ≡-equivalence class contains prographs of a same degree and satisfies, for all 0, ω(α ) = . Any element of As γ is then a word α 

where T 0 is identified with the unit T of H(As γ ). For instance, in H(As 1 ), we have

and in H(As 2 ), we have 

Shuffle of permutations

The content of this chapter comes from [START_REF] Giraudo | Unshuffling Permutations[END_REF] and is a joint work with Stéphane Vialette.

Introduction

The shuffle product ¡ is a well-known operation on words first defined by Eilenberg and Mac Lane [START_REF] Eilenberg | On the groups of H(Π ). I[END_REF]. Given three words , 1 , and 2 , is said to be a shuffle of 1 and 2 if it can be formed by interleaving the letters from 1 and 2 in a way that maintains the left-to-right ordering of the letters from each word (see also Section 2.3.1 of Chapter 2). Besides purely combinatorial questions, the shuffle product of words naturally leads to the following computational problems:

(i) Given two words 1 and 2 , compute the set of the words appearing in the shuffle of 1 with 2 ; (ii) Given three words , 1 , and 2 , decide if appears in the shuffle of 1 with 2 ; (iii) Given a word , decide if there is a word such that is in the shuffle of with itself.

Even if these problems seem similar, they radically differ in terms of time complexity. Let us now review some facts about these. In what follows, denotes the size of and denotes the size of each . A solution to Problem (i) can be computed in O 1 + 2 1 time [Spe86, All00]. Problem (ii) is in P; it is indeed a classical textbook exercise to design an efficient dynamic programming algorithm solving it. It can be tested in O 2 / log( ) time [START_REF] Van Leeuwen | Efficient Recognition of Rational Relations[END_REF]. To the best of our knowledge, the first O( 2) time algorithm for this problem appeared in [START_REF] Mansfield | On the computational complexity of a merge recognition problem[END_REF]. This algorithm can easily be extended to check in polynomial-time whether a word is in the shuffle of any fixed number of given words. Let us now finally focus on Problem (iii). It is shown in [RV13,BS14] that it is NP-complete to decide if a word is a square with respect to the shuffle, that is a word with the property that there exists a word such that appears in the shuffle of with itself. Hence, Problem (iii) is NP-complete.

This chapter is intended to study a natural generalization of ¡, denoted by •, as a shuffle of permutations. Roughly speaking, given three permutations π, σ 1 , and σ 2 , π is said to be a shuffle of σ 1 and σ 2 if π (viewed as a word) appears in the shuffle of two words whose standardized permutations are respectively σ 1 and σ 2 . This shuffle product was first introduced by Vargas [START_REF] Vargas | Hopf algebra of permutation pattern functions[END_REF] under the name of supershuffle. Our intention in this work is to study this shuffle product of permutations • both from a combinatorial and from a computational point of view by focusing on square permutations, that are permutations π appearing in the shuffle of a permutation σ with itself. Many other shuffle products on permutations appear in the literature. For instance, in [START_REF] Duchamp | Noncommutative Symmetric Functions VI: Free Quasi-Symmetric Functions and Related Algebras[END_REF], the authors define the convolution product and 3.1.1. Directed graphs. A directed graph is an ordered pair (V A) where V is a set whose elements are called vertices and A is a set of ordered pairs of vertices, called arcs (from a source vertex to a sink vertex). Notice that the aforementioned definition does not allow a directed graph to have multiple arcs with same source and target nodes. We shall not allow directed loops (that is, arcs that connect vertices with themselves). Two arcs are independent if they do not have any common vertex. A directed graph is a directed matching if all its arcs are independent. A directed matching is perfect if every vertex is either a source or a sink.

Directed perfect matchings.

A directed perfect matching on a permutation π of an even size 2 is a directed perfect matching (V A) such that

Figure 10.3 shows a directed perfect matching on a permutation. The word of sources (resp. word of sinks) of (V A) is the subword π( 1 )π( 2) π( ) of π where the indices 1 < 2 < • • • < are the sources (resp. sinks) of the arcs of (V A).

F . . A directed perfect matching on the permutation 41328576. The word of sources of is 4327 and its word of sinks is 1856.

A pattern is a directed perfect matching ([2 ] B). We say that a direct perfect matching (V A) on a permutation π admits an occurrence of ([2 ] B) if (i) there is a map φ : [2 ] → V such that, for any ∈ [2 ], < implies that the second coordinate of φ( ) is smaller than the second coordinate of φ( ); (ii) for any arc ( ) of ([2 ] B), (φ( ) φ( )) is an arc of (V A).

Observe that this notion of pattern occurrence does not depend on the permutation π. Intuitively, (V A) admits an occurrence of ([2 ] B) if (V A) contains a copy of ([2 ] B) as a subgraph by changing some of its labels if necessary and by preserving their order induced by the second coordinates of the labeling pairs. When (V A) does not admit any occurrence of ([2 ] B), we say that (V A) avoids ([2 ] B). In the sequel, we shall draw patterns as unlabeled directed graphs. The vertices of the patterns are implicitly labeled by 1, 2, . . . , 2 from left to right.

For instance, a directed perfect matching (V A) on a permutation π admits an occurrence of the pattern if there are four vertices (π( 1 ) 1 ), (π( 2 )

2 ), (π( 3 ) 3 ), (π( 4 ) 4 ) of (V A) such that 1 < 2 < 3 < 4 , and ((π( 1 ) 1 ) (π( 4 ) 4 )) and ((π( 3 ) 3 ) (π( 2 )

2 )) are arcs of (V A). The directed perfect matching of Figure 10.3 admits hence exactly two occurrences of this pattern: a first one for the arcs ((4 1) (5 6)) and ((2 4) (1 2)), and a second one for the arcs ((3 3) (6 8)) and ((7 7) (8 5)). P 1.4.7. Let be a combinatorial colored C-operad. Then, the subset of K consisting in all series f such that Supp(f) = {1 : ∈ C} S where S is a C-colored subcollection of such that S(1) finitely factorizes (1) forms a group for the composition product .

The group obtained from of the -series satisfying the conditions of Proposition 1.4.7 is a generalization of the groups constructed from operads of [START_REF] Chapoton | Un théorème de Cartier-Milnor-Moore-Quillen pour les bigèbres dendriformes et les algèbres braces[END_REF][START_REF] Chapoton | A rooted-trees -series lifting a one-parameter family of Lie idempotents[END_REF] (see also [vdL04, Fra08, Cha08, LV12, LN13]).

Bud generating systems and combinatorial generation

In this section, we introduce bud generating systems. A bud generating system relies on a monochrome operad , a set of colors C, and the bud operad Bud C ( ). The principal interest of these objects is that they allow to specify sets of objects of Bud C ( ). We shall also establish some first properties of bud generating systems by showing that they can emulate context-free grammars, regular tree grammars, and synchronous grammars.

Bud generating systems.

We introduce here the main definitions and the main tools about bud generating systems.

Bud generating systems. A bud generating system is a tuple := ( C R I T)

where is an operad called ground operad, C is a finite set of colors, R is a finite C-colored subcollection of Bud C ( ) called set of rules, I is a subset of C called set of initial colors, and T is a subset of C called set of terminal colors.

A monochrome bud generating system is a bud generating system whose set C of colors contains a single color, and whose sets of initial and terminal colors are equal to C. In this case, as explained in Section 1.1.2, Bud C ( ) and are identified. These particular generating systems are hence simply denoted by pairs ( R).

Let us explain how bud generating systems specify, in two different ways, two C-colored subcollections of Bud C ( ). In what follows, := ( C R I T) is a bud generating system.

2.1.2. Generation. We say that 2 ∈ Bud C ( ) is derivable in one step from 1 ∈ Bud C ( ) if there is a rule ∈ R and an integer such that such that 2 = 1 • . We denote this property by 1 → 2 . When

we say that 2 is derivable from 1 . Moreover, generates ∈ Bud C ( ) if there is a color of I such that is derivable from 1 and all colors of in( ) are in T. The language L( ) of is the set of all the elements of Bud C ( ) generated by . Finally, is faithful if the characteristic series of L( ) is faithful (see Section 1.2.7). Observe that all monochrome bud generating systems are faithful.

The derivation graph of is the directed multigraph G( ) with the set of elements derivable from 1 , ∈ I, as set of vertices. In G( ), for any 1 2 ∈ L( ) such that 1 → 2 , there are edges from 1 to 2 , where is the number of pairs ( )

Properties (i) and (ii) of Proposition 2.1.1 together say that the sequence enumerating the elements of L( p ) with respect to their arity is the one enumerating the Motzkin paths with no consecutive horizontal steps. This sequence is Sequence A104545 of [Slo] 

we say that 2 is synchronously derivable from 1 . Moreover, synchronously generates ∈ Bud C ( ) if there is a color of I such that is synchronously derivable from 1 and all colors of in( ) are in T. The synchronous language L S ( ) of is the set of all the elements of Bud C ( ) synchronously generated by . Finally, we say that is synchronously faithful if the characteristic series of L S ( ) is faithful (see Section 1.2.7). Observe that all monochrome bud generating systems are synchronously faithful.

The synchronous derivation graph of is the directed multigraph G S ( ) with the set of elements synchronously derivable from 1 , ∈ I, as set of vertices. In G S ( ), for any 1 2 ∈ L S ( ) such that 1 2 , there are edges from 1 to 2 , where is the number of tuples (

2.1.5. A bud generating system for balanced binary trees. Let us consider the magmatic operad Mag (see Section 4.2.2 of Chapter 2). Let the bud generating system bbt := (Mag {1 2} R {1} {1}) where

Figure 11.3 shows a sequence of synchronous derivations in bbt .

. A sequence of synchronous derivations in bbt . The input colors of the elements of Bud {1 2} (Mag) are depicted below the leaves. The output color of all these elements is 1. Since all input colors of the last tree are 1, this tree is in L S ( bbt ).

Links with other generating systems.

Context-free grammars, regular tree grammars, and synchronous grammars are already existing generating systems describing sets of words for the first, and sets of trees for the last two. We show here that any of these grammars can be emulated by bud generating systems.

2.3.1. Context-free grammars. Recall that a context-free grammar [Har78, HMU06] is a tuple := (V T P ) where V is a finite alphabet of variables, T is a finite alphabet of terminal symbols, P is a finite subset of V × (V T) * called set of productions, and is a variable of V called start symbol. If 1 and 2 are two words of (V T) * , 2 is derivable in one step from 1 if 1 is of the form 1 = and 2 is of the form 2 = where ∈ (V T) * and ( ) is a production of P. This property is denoted by 1 → 2 , so that → is a binary relation on (V T) * . The reflexive and transitive closure of → is the derivation relation. A word ∈ T * is generated by if is derivable from the word . The language of is the set of all words generated by . We say that is proper if, for any ( ) ∈ P, is not the empty word.

If

:= (V T P ) is a proper context-free grammar, we denote by CFG( ) the bud generating system CFG(

Let be a proper context-free grammar. Then, the restriction of the map in, sending any ( ) ∈ Bud V T (As) to , on the domain L(CFG( )) is a bijection between L(CFG( )) and the language of .

P

. Let us denote by V the set of variables, by T the set of terminal symbols, by P the set of productions, and by the start symbol of .

Let (

) ∈ Bud V T (As), 1, and

. Then, by definition of CFG, there are in CFG( ) the derivations

if and only if = and there are in the derivations

Then, ( ) belongs to L(CFG( )) if and only if = and belongs to the language of . The fact that in (( )) = completes the proof.

Regular tree grammars.

Let V be a finite graded collection of variables and T be a finite graded collection of terminal symbols. For any 0 and ∈ T( ) (resp. ∈ V ( )), the arity | | of is . We moreover impose that all the elements of V are of arity 0. The tuple (V T) is called a signature.

A (V T)-tree is an element of Bud V T(0) (FO(T \ T(0))), where T \ T(0) is seen as a monochrome collection. In other words, a (V T)-tree is a planar rooted t tree such that, for any 1, any internal node of t having children is labeled by an element of arity of T, and the output and all leaves of t are labeled on V T(0).

A regular tree grammar [GS84, CDG + 07] is a tuple := (V T P ) where (V T) is a signature, P is a set of pairs of the form ( s) called productions where ∈ V and s is a (V T)-tree, and is a variable of V called start symbol. If t 1 and t 2 are two (V T)-trees, t 2 is derivable in one step from t 1 if t 1 has a leaf labeled by and the tree obtained by replacing by the root of s in t 1 is t 2 , provided that ( s) is a production of P. This property is denoted by t 1 → t 2 , so that → is a binary relation on the set of all (V T)-trees. The reflexive and transitive closure of → is the derivation relation. A (V T)-tree t is generated by if t is derivable from the tree 1 consisting in one leaf labeled by and all leaves of t are labeled on T(0). The language of is the set of all (V T)-trees generated by .

If := (V T P ) is a regular tree grammar, we denote by RTG( ) the bud generating system

where, for any t ∈ FO(T \ T(0)), ∈ V T(0), and

is the (V T)-tree obtained by labeling the output of t by and by labeling from left to right the leaves of t by the letters of . P 2.3.2. Let be a regular tree grammar. Then, the map φ : L(RTG( )) → L defined by φ(( t )) := t is a bijection between the language of RTG( ) and the language L of . Let B be a finite alphabet. A B-bud tree is an element of Bud B (Tree). In other words, a B-bud tree is a planar rooted tree t such that the output and all leaves of t are labeled on B.

The leaves of a B-bud tree are indexed from 1 from left to right.

A synchronous grammar [START_REF] Giraudo | Intervals of balanced binary trees in the Tamari lattice[END_REF] is the derivation relation. A B-bud tree t is generated by if t is derivable from the tree 1 consisting is one leaf labeled by . The language of is the set of all B-bud trees generated by .

An alternative way to understand hook( ) hence offered by Theorem 3.2.3 consists is seeing the coefficient hook( ) , ∈ Bud C ( ), as the number of R-left expressions of .

3.2.2. Support. The following result establishes a link between the hook generating series of and its language. P 3.2.4. Let := ( C R I T) be a bud generating system such that is a combinatorial operad and R(1) finitely factorizes Bud C ( )(1). Then, the support of the hook generating series of is the language of .

3.2.3. Analogs of the hook statistics. Bud generating systems lead to the definition of analogues of the hook-length statistics [START_REF] Knuth | The art of computer programming, volume 3: Sorting and searching[END_REF] for combinatorial objects possibly different than trees in the following way. Let be a monochrome operad, G be a generating set of , and HS G := ( G) be a monochrome bud generating system depending on and G, called hook bud generating system. Since G is a generating set of , by Propositions 2.2.3 and 3.2.4, the support of hook (HS G ) is equal to L (HS G ). We define the hook-length coefficient of any element of as the coefficient hook (HS G ) .

Let us consider the hook bud generating system HS Mag G where Mag is the magmatic operad (whose definition is recalled in Section 4.2.2 of Chapter 2) and G := (3.2.9) This bud generating system leads to the definition of a statistics on binary trees, provided by the coefficients of the hook generating series hook HS Mag G which begins by hook HS

Theorem 3.2.3 implies that for any binary tree t, the coefficient t hook HS Mag G can be obtained by the usual hook-length formula of binary trees. Alternatively, the coefficient

is the cardinal of the sylvester class [START_REF] Hivert | The Algebra of Binary Search Trees[END_REF] of permutations encoded by t. This explains the name of hook generating series for hook( ), when is a bud generating system. Consider now a second example of a hook generating system involving the operad Motz of Motkzin paths (see Section 2.1.5 of Chapter 4) seen as a set-operad. From its definition, G := (3.2.11) coefficients of f 1 (and hence, those of s L S ( bbt ) ) can be computed by iteration. This consists in defining, for any 0, the polynomials f

Equation (3.4.11) provides a way to compute the coefficients of f 1 (y 1 y 2 ). First polynomials f where f is the series satisfying, for any type α ∈ {1 2} , the recursive formula

This recursive formula offers an efficient way to compute the number of balanced binary trees of a given size.

Concluding remarks

We have presented in this chapter a framework for the generation of combinatorial objects by using colored operads. The described devices for combinatorial generation, called bud generating systems, are generalizations of context-free grammars [START_REF] Harrison | Introduction to formal language theory[END_REF][START_REF] Hopcroft | Introduction to Automata Theory, Languages, and Computation[END_REF] generating words, of regular tree grammars [GS84, CDG + 07] generating planar rooted trees, and of synchronous grammars [START_REF] Giraudo | Intervals of balanced binary trees in the Tamari lattice[END_REF] generating some treelike structures. We have provided tools to enumerate the objects of the languages of bud generating systems or to define new statistics on these by using formal power series on colored operads and several products on these. There are many ways to extend this work. Here follow some few further research directions.

CHAPTER 12

Operads and regular languages

The content of this chapter comes from [GLMN16] and is a joint work with Jean-Gabriel Luque, Ludovic Mignot, and Florent Nicart. 

We call such a morphism γ a compatible morphism. p → End( ) be a precomposition and γ be a compatible morphism. Then, the operads PO(φ)/ ≡ γ and PO(φ γ ) are isomorphic.

Constructing operads from precompositions

We apply here the construction PO introduced in the previous section to provide alternative constructions of the operads MT and Poset introduced in ) are injective (resp. surjective) operad morphisms.

Alternative constructions.

We begin by using the methods exposed in Section 1.2 to construct the operads MT of multi-tildes and Poset of posets.

2.1.1. Operad of multi-tildes. Multi-tildes are operators introduced in [START_REF] Caron | Multi-Bar and Multi-Tilde Regular Operators[END_REF] in the context of formal language theory as a convenient way to express regular languages. Let, for any 1, P be the set

A multi-tilde is a pair ( s) where is a positive integer and s is a subset of P . The arity of the multi-tilde ( s) is . The binary relation of ( s) is the binary relation

As shown in [START_REF] Luque | Some Combinatorial Operators in Language Theory[END_REF], the graded (by the arity) collection of all multi-tildes admits a very natural structure of an operad. This operad, denoted by MT, is defined as follows. The partial composition ( s) • ( t), ∈ [ ], of two multi-tildes ( s) and ( t) is defined by and form Sequence A006125 of [Slo]. Observe that the dimensions of MT are very similar to the dimensions of the operads obtained by the clique construction applied to a unitary magma having exactly two elements (see Section 1.2.1 of Chapter 7).

Let us provide a construction of MT through the functor PO. Let be the set of all the subsets of P . By observing that ⊆ +1 , let := ∪ 1 . The pair ( ∪) is a commutative monoid whose unit is 1 := ∅ and belongs to 1 . Observe also that is, as a monoid, generated by the set {{( )} : }.

Let φ : p → End( ) be the precomposition such that each morphism φ is defined by its values on the generators of by

One can check that φ is a precomposition. P 2.1.1. The operads MT and PO(φ) are isomorphic.

2.1.2. Operads of posets. In [START_REF] Luque | Some Combinatorial Operators in Language Theory[END_REF], an operad Poset defined as the quotient of MT by the operad congruence ≡ is considered, where for any multi-tildes ( s) and ( t), one sets ( s) ≡ ( t) if the binary relations ( s) and ( t) have the same reflexive and transitive closure. Since any ≡-equivalence class contains exactly one reflexive, transitive, and antisymmetric relation, Poset is an operad on the set of all posets. More precisely, the elements of Poset( ) are posets on [ + 1] admitting (1 2 + 1) as a linear extension. For instance, one has (4 Let us consider the monoid and the precomposition φ of Section 2.1.1. Let γ : → be the map sending any set s ∈ P to the set s ∈ P such that ( s ) is the reflexive and transitive closure of ( s) . For instance, the second components of the left members of (2.1.8a) and (2.1.8b) show elements of P 4 and the second components of their respective right members are their reflexive and transitive closures. A multi-tilde ( s) is pseudotransitive if s belongs to the image of γ. One can check that γ is a compatible morphism.

Hence, we can consider the operad PO(φ γ ) which is, by Theorem 1.2.2, isomorphic to the operad MT/ ≡ γ . P 2.1.2. The operads Poset and PO(φ γ ) are isomorphic.

New operads.

We now generalize the concept of multi-tildes to double multi-tildes.

In terms of operators on languages (see Section 3), multi-tildes can be seen as operators allowing to jump forward in a regular expression and double multi-tildes as operators allowing to jump both forward or backward in a regular expression. The interest of this extension relies on the fact that, while multi-tildes can emulate the sum and the concatenation, double multi-tildes can emulate in addition to this the Kleene star of regular expressions and their languages. We construct in this section an operad DMT of double multi-tildes and a quotient Qoset of DMT of quasiorders. We define the operad Qoset as the quotient of DMT by the operad congruence ≡ defined as follows. For any double multi-tildes ( s t) and ( s t ), one sets ( s t) ≡ ( s t ) if the binary relations ( s t) and ( s t ) have the same reflexive and transitive closure. For instance, one has and form Sequence A000798 of [Slo].

Let us consider the monoid and the precomposition ψ of Section 2.2.1. Let γ : → be the map sending any pair of (s t) of 2 to the pair (s t ) of 2 such that ( s t ) is the reflexive and transitive closure of ( s t) . For instance, the pair consisting in the second and third components of the left member of (2.2.6) shows elements of P 2 4 and the second and third components of the right member is its reflexive and transitive closure. A double multi-tilde ( s t) is pseudo-transitive if (s t) belongs to the image of γ. One can check that γ is a compatible morphism. Hence, we can consider the operad PO(ψ γ ) which is, by Theorem 1.2.2, isomorphic to the operad DMT/ ≡ γ .

Links with language theory

The main motivation for the introduction of the four operads MT, Poset, DMT, and Qoset (the first two in [START_REF] Luque | Some Combinatorial Operators in Language Theory[END_REF] and the last two here) relies on the fact that they act on languages. In more precise terms, the set of all languages over a finite alphabet A is endowed withmonoid structures, where is one of the four aforementioned operads. We describe these structures in this section.

Action of multi-tildes and double multi-tildes. The action of DMT on languages

on a finite alphabet can be described in terms of automata. This leads to the construction of a DMT-monoid. All this justifies the role of DMT in formal language theory since this operad provides a concise way to express languages.

Automata and regular languages. An automaton is a tuple (A Q δ

) where A is a ground alphabet, Q is a finite set, called set of states, δ :

We consider here very particular automata (also known as -automata). We use the main definitions of the theory (see for instance [Sak09]), like the notion of language recognized by an automaton, regular languages, regular expressions, etc.

From now on, A is the infinite alphabet A := {a 1 a 2 } and A is any finite alphabet.

3.1.2. From double multi-tildes to automata. Let ( s t) be a double multi-tilde of arity of DMT and ( s t) be the automaton (A Q δ 1 +1 ) defined by We can observe that if ( s t) and ( s t ) are two double multi-tildes, ( s t)• ( s t ) is the automaton obtained by replacing the transition labeled by a connecting the states and +1 of ( s t) by ( s t ) , and by relabeling adequately its states and transitions. Replacing in this way a transition by an automaton is possible since ( s t ) has exactly one initial and one terminal state. From this observation, one has the following result. for some 1, ( s ∅) ∈ DMT( ), and α ∈ {{ } ∈ A} ∪ {∅}.

Action of pseudo-transitive double multi-tildes.

The quotient Qoset of DMT inherits the action of DMT on languages. The main interest to consider the associated Qosetmonoid instead of the DMT-monoid is that this last one is nonfaithful while the first is. Hence, Qoset is an operad providing optimal operators to describe regular languages.

3.2.1.

A nonfaithful action of DMT on languages. Observe that the description of languages by the action of a double multi-tilde on languages (for instance in the ways provided by Propositions 3.1.3 and 3.1.4) is not optimal since a language l can be described from different double multi-tildes of the same arity. Indeed, In other words, the DMT-monoid consisting in all languages endowed with the action • is a nonfaithful DMT-monoid. 

A faithful action of