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Abstract

The purpose of this thesis is the theoretical and numerical study of an epidemiological model of multi-strain
co-infection. Depending on the situation, the model is written as ordinary differential equations or reaction-
advection-diffusion equations.

In all cases, the model is written at the host population level on the basis of a classical susceptible-infected-
susceptible system (SIS).

The infecting agent is structured into N strains, which differ according to 5 traits: transmissibility, clearance
rate of single infections, clearance rate of double infections, probability of transmission of strains, and co-
infection rates.

The resulting system is a large system (N2 +N +1 equations) whose complete theoretical study is generally
inaccessible. This thesis is therefore based on a simplifying assumption of trait similarity - the so-called
quasi-neutrality assumption. In this framework, it is then possible to implement Tikhonov-type time scale
separation methods. The system is thus decomposed into two simpler subsystems. The first one is a so-called
neutral system - i.e., the value of the traits of all the strains are equal - which supports a detailed mathematical
analysis and whose dynamics turn out to be quite simple. The second one is a "replication equation" type
system that describes the frequency dynamics of the strains and contains all the complexity of the interactions
between strains induced by the small variations in the trait values.

The first work explicitly determines the slow system in an aspatial framework for N strains using a system
of ordinary differential equations and justifies that this system describes the complete system well. This system
is a replication system that can be described using the N(N −1) fitnesses of interaction between the pairs of
strains. It is shown that these fitnesses are a weighted average of the perturbations of each trait.

The second work consists in using explicit expressions of these fitnesses to describe the dynamics of the
pairs (i.e. the case N = 2) exhaustively.

This part is illustrated with many simulations, and applications on vaccination are discussed.
The last work consists in using this approach in a spatialized framework. The SIS model is then a reaction-

diffusion system in which the coefficients are spatially heterogeneous. Two limiting cases are considered:
The case of an asymptotically small diffusion coefficient and the case of an asymptotically large diffusion
coefficient. In the case of slow diffusion, we show that the slow system is a system of type "replication
equations", describing again the temporal but also spatial evolution of the frequencies of the strains. This system
is of the reaction-advection-diffusion type, the additional advection term explicitly involving the heterogeneity
of the associated neutral system. In the case of fast diffusion, classical methods of aggregation of variables are
used to reduce the spatialized SIS problem to a homogenized SIS system on which we can directly apply the
previous results.

Keywords: multiple timescales, microbial, interactions, replicator, ODEs, PDEs



Résumé

Cette thèse a pour objet l’étude théorique et numérique d’un modèle épidémiologique de co-infection multi-
souche. Selon la situation considéré, le modèle s’écrit sous la forme d’un système d’équations différentielles
ordinaires ou d’équations de réaction-advection-diffusion.

Dans tous les cas, le modèle s’écrit à l’échelle de la population hôte sur la base d’un classique système
susceptibles-infectés-susceptibles (SIS).

L’agent infectueux est structuré en N souches, qui différent selon 5 traits : la transmissibilité, le taux de
clairance des infections simples, le taux de clairance des infections doubles, la probabilité de transmission des
souches et les taux de co-infection.

Le système obtenu est un système de grande taille (N2 +N +1 équations) dont l’étude théorique complète
est inaccessible en général. Cette thèse se fonde donc sur une hypothèse simplificatrice de similarité des traits -
que l’on nomme hypothèse de quasi-neutralité. Dans ce cadre, il est alors possible de mettre en oeuvre des
méthodes de séparations des échelles de temps de type Tikhonov. Le système est ainsi décomposé en deux
sous-systèmes plus simple. Le premier est un système dit neutre - c’est-à-dire dans lequel la valeur des traits de
toutes les souches sont égales - qui supporte une analyse mathématique détaillée et dont la dynamique s’avère
assez simple. Le second se trouve être un système de type "équations de réplication" qui décrit la dynamique
en fréquence des souches et contient toute la complexité des interactions entre souche qu’induit les petites
variations dans les valeurs des traits.

Le premier travail consiste à déterminer explicitement le système lent dans un cadre aspatial pour N souches
faisant intervenir un système d’équations différentielles ordinaires et à justifier, que ce système décrit bien
le système complet. Ce système est un système de réplication qui peut être décrit à l’aide des N(N − 1)
fitnesses d’interaction entre les paires de souche. Il est montré que ces fitnesses sont une moyenne pondéré des
perturbations de chaque traits.

Le second travail consiste a utiliser les expression explicite de ces fitnesses pour décrire exhaustivement la
dynamique des paires (c’est-à-dire le cas N = 2).

Cette partie est illustré à l’aide de beaucoup de simulations des application sur la vaccination sont discutées.
Le dernier travail consiste à reprendre cette approche dans un cadre spatialisé. Le modèle SIS est alors un

système de réaction-diffusion dans lequelle les coefficients sot spatiallement hétérogènes. Deux cas limites
sont considérés : Le cas d’un coefficient de diffusion asymptotiquement petit et celui d’un coefficient de
diffusion asymptotiquement grande. Dans lcas de la diffusion lente on montre que le système lent est un
système de type "équations de réplication" , décrivant à nouveau l’évolution temporelles mais également spatiale
des fréquences des souches. Ce système est de type réaction-advection-diffusion, le terme d’advection addi-
tionelle faisant intervenir explicitement l’hétérogénéité du système neutre associé. Dans le cas de la diffusion
rapide, l’utilisation de méthodes classiques d’aggrrégation des variables sont utilisées pour ramener le problème
SIS spatialisé à un système SIS homogénéisé sur lequel les résultats précédents peuvent directement s’appliquer.

Mots clés: échelles de temps multiples, microbiennes, interactions, replication, EDO, EDP
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Chapter 0

General introduction

Scientists use models to approximate reality, but reality is a complicated and unpredictable place, rife with
uncertainty. There is no such thing as a model exactly representing the world or which can possibly capture
everything of the dynamics in the real world. One reason is that small differences in the parameters are amplified
as the dynamics of the system progresses. The butterfly effect, an underlying principle of deterministic chaos,
describes how a small change in one state of a deterministic nonlinear system can result in large differences in a
later state (meaning that there is sensitive dependence on initial conditions) [133]. So, lightly different initial
conditions may lead to a very different outcome, which becomes a spreading cone of possible trajectories of
the future. However, we may know this quote: "All models are wrong, but some are useful" (by the British
Statistician George E. P. Box - who is called "one of the great statistical minds of the 20th century"), which is a
common aphorism in statistics. It is usually considered to be applicable to not only statistical models, but to
scientific models generally. The aphorism recognizes that statistical or scientific models always fall short of the
complexities of reality but can still be of use. Instead of predictions, something that modelers can offer us is
projections. These are glimpses into a range of possible futures that we have the power to change. This may be
thought as we drive a car, and by the rearview mirror, we may see what may happen and avoid accidents. This
is what a useful model helps.

Because there are quantifiable aspects of life science, mathematics plays a critical role in better understanding
the natural world. Mathematical biology is a field of research that examines mathematical representations
of biological systems. Rich ecosystems comprise many species interacting together in various ways and on
multiple temporal and spatial scales. Understanding the scope and consequences of such interactions has
been the focus of countless theoretical ecology studies, starting with the seminal work by Lotka and Volterra
([136, 203]) on mathematical models of the population dynamics of interacting species. One key role of math
in biology is the creation of mathematical models. These equations or formulas can predict or describe natural
occurrences, such as organism behavior patterns or population changes over time. For scientists, mathematical
models make it so much easier to view and describe a measurable phenomenon without having to stay stuck in
the raw, numerical data. Most fields of medicine are also very dependent upon mathematical models, especially
concerning the frequencies of gene expression and the spreading rates of diseases.

In this thesis, we are interested in models describing the competition between strains. These activities are
frequently found in the reality, for instant, in the epidemiology, the models describing lives or migration of
species (worms, mosquitoes, etc.), the activity of antibiotic and resistance, etc. We propose and study a type of
SIS system with similar strains. Using method of different timescale, we obtains some results in approximating
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and analyzing the ultimate outcome of models.

This thesis is organized as follows. The Chapter 1 recall us a brief history of dynamical system and
mathematical biology, which is followed by a preliminary of SIS (Susceptible-Infected-Susceptible) - model.
We make some general analysis for this type of model, including behaviour of the solution and some remarkable
notes on the famous ratio - the basic reproduction ratio R0. We introduce the model used throughout this thesis
with al the details here. There is an intuitive scheme for our model and unified conventions for parameters and
variables in this section. The main tool of this thesis - the slow-fast decomposition is defined with its related
results, which is applied throughout. The slow dynamics is proven to follow a replicator system. Next, we
introduce the replicator system and its main properties. A concise definition and some examples are given,
allows us better to understand this type of famous equations in game theory. Interestingly, the replicator system
and the Lotka-Volterra can be inferred from each other. We end this chapter by a section presenting some
remarkable points about reaction-diffusion equations. In this section, we mention the traveling wave’s effects in
open domains and Turing instability with weak Allée effects in compact domains. Moreover, we explain the
possibility of applying slow-fast approach for our reaction-diffusion equations in this thesis.

In the Chapter 2, we propose the general type of our main model in ordinary differential equations form for
N strains. Step by step, we completely study it when the variations happen in all traits, including transmission
rates, singled and doubled infection clearance rates, transmission capacity of a strain by a co-colonized host
containing that strain and relative factor of altered susceptibility to co-colonization between a colonizing strain
to an other co-colonizing strain. The slow-fast approximation and in particular the Tikhonov’s theorem, is
the main tool in proofs, come with precise transformations and arguments. It is shown in this chapter that the
completed slow dynamics is given by a (linear) combination of the different elementary blocks, each block
depends on the perturbation from single trait. After all, the replicator system is deduced, in which, the variables
are the frequencies of strains. For a better intuition of the longtime behavior, we also presents the simulations
in many particular cases. Accordingly, it is more convenient to track the different ultimate outcomes in the
various cases of trait perturbations.

In the Chapter 3, we go deeper in the two-strain system. Based on the general results in the chapter 2, it is
necessary to well understand the two strain system because the competition of two is the elementary component
in a whole system with many strains. In this part, a concrete picture is presented, which allows us to see how
traits affect to the behaviours, for examples, how outcomes depend on the infection-to-coinfection ratio µ in
particular cases, how the outcomes depend on the differences of transmission rates and infection clearance
rates, etc. Moreover, there are some claims on the possible outcomes with proofs. Changing in values of traits
are considered, gives us some applications in antibiotic treatment and vaccination. Thank to the simplicity of
number two, all the formulas in this chapter are explicit, makes the precise computations and easy simulations
with verifying. It is remarkable to note that, even in a two strains system, the strain-specific R0 does not
determine the winner in the competition, which is against our common sense.

The Chapter 4 is a study of a similar model in Chapter 2 with a spatial structure, when all of the parameters
depend on the space. In this chapter, we propose two cases, including diffusion rates in type of small ε∆

and large d
ε

∆. These additions make the original system even harder to compute, and is not yet seen in the
literature. First, for the case of slow diffusion, we can apply the previous method, but with adaptations to the
partial differential equations (PDEs), to transform the system into the slow-fast form. The slow system is then
proved to be governed by a replicator system with diffusion. The rest part is similar to the Chapter 2, but
with adaptations to PDEs. The case of fast diffusion

( 1
ε

∆
)

can be studied by applying the Central Manifold
Theorem directly. We obtain a system similar to the main system in the Chapter 2, in which, the variables can
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be calculated using the mean values of variables in the original system with fast diffusion. Under an assumption
for the capacity transmission from a co-colonized host, we then use the result before to have the replicator
equations as the reduced model. We close this chapter by a comparison section between two cases, which
summarizes the two reduced system in slow manifold and displays some examples to see the distinguished
effects of singular and large diffusivity.

In the Appendices, we show some theories used in the main flows of this thesis and present numerical
simulations. Concretely, the Appendix A presents the definition of the Lyapunov function and the well-known
theorem LaSalle’s invariance principle, which is applied widely in dynamical systems. The Appendix B shows
us the whole proof for the Tikhonov’s theorem from the original paper [196], the tool used in the main problem
of this thesis. We think it is useful to put the proof here for whom may have interest in it. Last but not least, the
Appendix C show us many simulations, allow us to have an intuitive view of the approximation of replicator
system to the original model, the space trajectories of a multiple strain system. It is also interesting to see
the outcome of a two-strain model in a large samples and compute the probability of the exclusion of either
strains. Moreover, we study a simulation for the outcome of a system with large number of strains, to have
some comparison to the two-strain model case. The last part in the Appendices considers the intermediate
diffusion case (d∆) for quasi-neutral model, beside two cases already studied in Chapter 4. It is even impossible
to calculate the explicit equilibrium for the neutral system or applying the same method as before. Hence, for
this section, we make some analysis and solve the problem when the neutral system’s parameters do not depend
on the space.
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Chapter 1

Models, approaches and an over view on
replicator system

1.1 An overview: History, a simple SIS model and some analyzing

Dynamics, which was originally a branch of physics, began in the mid-1600, when Newton invented differential
equations, discovered his laws of motion and universal gravitation [191]. He solved the two-body problem-the
problem of calculating the earth around the sun. Then, many mathematicians and physicists tried to extend
Newton’s method to the three body problem (for example: sun, moon and earth), but it was impossible to
solve for an explicit formulas after very long time. In the late 1800s, Henri Poincaré made a breakthrough
by introducing a new point of view that emphasized qualitative rather than quantitative questions, [23]. For
example, instead of asking for the exact positions of three bodies at all times, he wondered whether the solar
system was stable forever or some planets eventually flew flew off to infinity. Poincaré developed a powerful
geometric approach to these questions, which lead to the modern subject of dynamics.

Many mathematicians were working on dynamics, with numerous contributions in both mathematical theory
and applications. In mathematical aspects, in particular, there are works about dynamical system focusing
on ordinary differential equations (ODEs) [34, 44], and we can not dismiss the famous Lyapunov stability
theory by Aleksandr Lyapunov [138]. In partial differential equations (PDEs), there is well-known KAM theory
(Kolmogorov–Arnold–Moser) of Andrey Kolmogorov, Jürgen Moser and Vladimir Arnold [111, 153, 17] and
Henri Poincaré in bifurcation theory [177, 19]. Beside, we also have very big names such as John von Neumann,
Birkhoff in Ergodic Theory [31, 161, 162], Lorenz and Mandelbrot in Chaos Theory [134, 133, 142, 45], etc.
Moreover, people use dynamical ideas in various applications— in , classical mechanics [18, 101], biology
[11, 40, 107], chemical kinetics [68, 185, 188], population biology [102, 164, 170], etc. Under the perspective
of dynamics, all of these subjects can be placed in a common framework and many are solved by mathematical
tools.

It is known that both physics and biology now use mathematical model to deal with problems. However,
[132] illustrates a comparison of fundamental principles for theory construction from physics to biology. These
are summarized by a very relevant conceptual duality: the genericity of physical objects and the specificity
of their trajectories, in contrast to the specificity of biological objects and the genericity of their possible
trajectories. Mathematical models which are necessary to understand complex, non-linear interactions need to
be grounded on robust biological principles. More clearly, the target of theoretical modeling and experimental
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investigation in the biomedical sciences is to show the underlying biological processes that result in a particular
observed phenomenon [157, 158, 166].

This thesis studies a kind of population dynamics, that has traditionally been the dominant branch of
mathematical biology. Population dynamics overlap with another active area of research in mathematical
biology: mathematical epidemiology, the study of infectious disease affecting populations [36–38]. Various
models of viral spread have been proposed and analysed, and provide important results that may be applied to
health policy decisions [33, 60, 110, 141, 150]. The beginning of population dynamics is widely regarded as the
work of Malthus in 1798, formulated as the Malthusian growth model. According to Malthus, assuming that the
conditions (the environment) remain constant, a population will grow (or decline) exponentially [197]. In 1838,
the logistic equation was originally derived by Pierre François Verhulst [201]. In 1910, the Lotka–Volterra
predator-prey equations was initially proposed by Alfred J. Lotka in the theory of autocatalytic chemical
reactions, then it was extended by him in 1920 to 1925. In 1926, the same set of equations was published
independently in 1926 by Vito Volterra, [26, 91, 102, 135, 193]. An alternative to the Lotka–Volterra preda-
tor–prey model, Arditi–Ginzburg equations was in 70 years later [2, 16]. A more general model formulation
was proposed by F. J. Richards in 1959 [178], further expanded by Simon Hopkins, in which the models of
Gompertz, Verhulst and also Ludwig von Bertalanffy are covered as special cases of the general formulation.
The considered population dynamics are often studied in epidemiology, to predict the population or prevalence
of infected strains. Models of disease transmission, or epidemic models for short, have been an integral part of
the epidemiological toolkit, dating back from pioneer models of [106]. The main goal of epidemic models can
be summarized as the ability to accurately predict spreading patterns of a given communicable disease afflicting
a specific population. These models allow decision makers to assess the various intervention strategies available
to them and to plan accordingly.

Before introducing our models which is of type SIS, let us make some points about the SIR model - whose
variations include SIS. The compartmental SIR model simplify the mathematical modelling of infectious
diseases and it is more realistic in general as well as applicable to the disease awareness framework. The origin
of such models is the early 20th century, with an important work being that of Ross [180] in 1916, Ross and
Hudson in 1917 [181], Kermack and McKendrick [106] in 1927. The SIR model [99] is one of the simplest
compartmental models, and many models are derivatives of this basic form. Meanwhile, the SIS model is more
useful when infections do not give immunity upon recovery from infection, and individuals become susceptible
again. It allows us to examine how the infection spreads (and is potentially reintroduced) over time .

In these types of models, the population is assigned to compartments with labels, in which individuals
may progress between. The order of the labels usually shows the flow patterns between the compartments; in
particular, we have the following conventions in the model SIR:

• S: The number of susceptible individuals. When a susceptible and an infectious individual come into
"infectious contact", the susceptible individual contracts the disease and transitions to the infectious
compartment.

• I: The number of infectious individuals. These are individuals who have been infected and are capable of
infecting susceptible individuals.

• R: for the number of removed (and immune) or deceased individuals. These are individuals who have
been infected and have either recovered from the disease and entered the removed compartment, or
died. It is assumed that the number of deaths is negligible with respect to the total population. This
compartment may also be called "recovered" or "resistant".
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For a clear view, we the the following scheme of SIR model in Figure 1.1

Fig. 1.1 A simple diagram for SIR model

The explicit corresponding system is given by

dS
dt

=−β

N
SI +αR

dI
dt

=
β

N
SI − γI

dR
dt

= γI −αR

(1.1.1)

with the total population N.
These variables (S, I, and R) represent the proportion of population in each compartment at a particular time.

To represent that the number of susceptible, infectious and removed individuals may vary over time (even if the
total population size remains constant), we make the precise numbers a function of t (time): S(t), I(t) and R(t).
For a specific disease in a specific population, these functions may be worked out in order to predict possible
outbreaks and bring them under control. This model SIR is reasonably predictive for infectious diseases that
are transmitted from human to human, and where recovery confers lasting resistance, for examples, measles
[32], mumps [123] and rubella [182].

Moreover, we have some other examples of compartmental models derived from SIR, such as, SEIS means
susceptible, exposed, infectious, then susceptible again, or the SIRD model means the Susceptible-Infectious-
Recovered-Deceased model, which differentiates between Recovered (meaning specifically individuals having
survived the disease and now immune) and Deceased.

Now, we introduce the SIS model, that describes the dissemination of a single communicable disease in a
susceptible population of size N. The transmission of the pathogen occurs when infectious hosts transmit the
disease pathogen to healthy susceptible individuals. The infectious period extends throughout the whole course
of the disease until the recovery of the patient, warranting a two-stage model: either infected or susceptible
[159]. Some infections, for example, those from the common cold and influenza, do not confer any long-lasting
immunity. Such infections do not give immunity upon recovery from infection, and individuals become
susceptible again. This is an example where we can apply the type SIS model to figure out the epidemic. For a
clear glance, the scheme of SIS model is presented in figure 1.2 below.

Fig. 1.2 A simple diagram for SIS model
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The explicit corresponding model is given by
dS
dt

=−β

N
SI + γI

dI
dt

=
β

N
SI − γI

(1.1.2)

Note that denoting with N the total population it holds that for all time t > 0:

dS
dt

+
dI
dt

= 0 =⇒ S+ I = N.

Before analyzing this system (1.1.2), let’s briefly explore the meaning of these terms.

• The βSI term: An average infected individual makes contact sufficient to infect βN others per unit
time. Also, the probability that a given individual that each infected individual comes in contact with
is susceptible is S/N. Thus, each infected individual causes (βN)(S/N) = βS infections per unit time.
Therefore, I infected individuals cause a total number of infections per unit time of βSI.

• The γI term is even simpler to understand: γ is the fraction of infected individuals who recover (and
re-enter the susceptible class) per unit time.

Back to model (1.1.2), we have that
dI
dt

= (β − γ) I − β

N
I2

i.e. the dynamics of infectious is ruled by a logistic function, so that for all I(0)> 0,

β

γ
< 1 =⇒ lim

t→∞
I(t) = 0

β

γ
> 1 =⇒ lim

t→∞
I(t) =

(
1− γ

β

)
N
.

It is possible to find the explicit formula for solution of (1.1.2), which is

I(t) =

(
1− γ

β

)
N

1+C exp(−(β − γ) t)
, where C =

(
1− γ

β

)
N

I(0)−1

and S(t) = N − I(t).
Dividing two sides of each equation in (1.1.2) to N, we have the same system for variables S/N and I/N.

In this thesis, we can assume that N = 1, which means variables S, I are population frequencies.
Before, we have two cases of value β/γ for the long time behavior of infectious I(t). This kind of value

is often reference as basic reproductive ratio or basic reproductive number. Generally in epidemiology,
people define the basic reproductive ratio to be the expected number of cases directly generated by one case
in a population where all individuals are susceptible to infection [80]. This definition assumes that no other
individuals are infected or immunized (naturally or through vaccination). R0 is not a biological constant for
a pathogen as it is also affected by other factors such as environmental conditions and the behaviour of the
infected population. According to this definition, in this thesis, we find that

R0 =
β

γ
, (1.1.3)
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R0 values are usually estimated from mathematical models, and the estimated values are dependent on the
model used and values of other parameters. Thus values given in the literature only make sense in the given
context and it is recommended not to use obsolete values or compare values based on different models [64]. It
is important to note that R0 does not by itself give an estimate of how fast an infection spreads in the population.

The most important uses of R0 are to determine if an emerging infectious disease can spread in a population
and what proportion of the population should be immunized through vaccination to eradicate a disease. In
commonly used infection models, when R0 > 1 the infection will be able to start spreading in a population, but
not if R0 < 1. Generally, the larger the value of R0, the harder it is to control the epidemic. For simple models,
the proportion of the population that needs to be effectively immunized (meaning not susceptible to infection)
to prevent sustained spread of the infection has to be larger than 1−1/R0 [76]. Conversely, the proportion of
the population that remains susceptible to infection in the endemic equilibrium is 1/R0. This fact holds in our
quasi-neutral model in chapter 2. To end this part, we display some values of basic reproductive number R0 of
well-known infectious diseases.

Disease Measles
[96]

Pertussis
[112]

Mumps
[15]

COVID-19
[28]

HIV-AIDS
[13]

SARS
[207]

Influenza [50]
(seasonal strains)

Dengue
[129]

Value of R0 12-18 5.5 10-12 3 2-5 2-4 1.3 (1.2-1.4) 4.74
Table 1.1 Values of R0 of well-known infectious diseases

To have a glance on how R0 can be estimated in reality, we consider the example of COVID-19. In [131],
authors estimate an average R0 in Western Europe of 2.2, by combining data from several countries. They thus
apply the principle of “borrowing strength”, trying to consolidate the partly unreliable data collected in some
countries by pooling them with better data collected in other (albeit similar) countries. To do this, they robustly
estimate the exponential growth rate of the disease in 15 Western European countries based on the number of
reported daily incidences (new cases) and then average them to obtain an overall estimate of the exponential
growth rate for Western Europe. To obtain an estimated value of R0, the latter estimation is combined with an
estimation of the parameters of the generation interval distribution, i.e., the time needed for an infected person
(primary case) to infect another person (secondary case), as reconstructed from the literature.

Estimating R0 in Western Europe is necessary although there are many R0-estimation reports using Chinese
data. However, as explained e.g. by Delamater et al. [64], the value of R0 is essentially the combination
of three factors: the (average) number of daily contacts that one contagious person has, the probability of
transmission of the disease during such a contact, and the (average) number of days that an infected person is
contagious. While the latter factor mainly depends on the biological characteristics of the disease, the first two
factors strongly depend on the social habits of a given population. Since these habits may vary considerably in
countries with different cultures, an estimated value of R0 in China is not necessarily valid in Europe.

1.2 The models in this thesis and preliminaries

Host infections by more than one parasite strain or species are ubiquitous in the wild [171, 58]. Multiple-
infections, also referred to as mixed infections, diverse infections or poly-microbial infections receive many
interests because they tend to worsen human health compared with single infections [94]. Hence, well under-
standing how multiple infections shape virulence may have direct applications for health. However, problems of
multi-infections are more complex than single-infection. Since the force of infection-governing the frequency
of multiple infection-depends on the density of infected hosts, which in turn is determined by the virulence of
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the pathogen population, we are confronted with a problem in which evolution and population dynamics are
closely intertwined, [199]. With singly infected hosts, virulence (i.e., disease-induced host mortality) is the
outcome of the struggle between single hosts and single pathogen clones. When only single infections occur,
knowledge of neither population dynamics nor the resident host exploitation strategy is required to find the
optimal host-exploitation strategy; it is purely a matter of "prudent" host exploitation [199]. However, multiple
infection means, in the first place, that the conflict is not only between host and pathogens but among different
pathogen clones as well [69, 122]. But in the second place, population dynamics can no longer be ignored,
because the frequency of multiple infection and the strategies adopted by different pathogen clones will depend
on the state of the entire system [199].

This thesis consider an SIS model with multiple infections. In particular, we focus on modeling the
host-to-host transmissions of different strains, using the SIS (susceptible - infected - susceptible) modeling
approach with quasi-neutral assumptions. This structure of multi-type interactions rises in the epidemiological
dynamics of co-colonizing strains of the same microbial species, [199, 6, 69]. Actually, the simplest model
that incorporates the effect of multiple infection is a model in which hosts can become infected twice. Though
in principle there is no limit to the number of infections a host can receive,we restrict our analysis to at most
two infections per host because it reduces the complexity of the model, while it still allows us to analyze how
optimal virulence depends on exclusive versus shared host exploitation. For instance, if there are n strains in
the population, following the dynamics of each strain requires of the order of n2 equations. Furthermore, if we
want to account for the order of infection, this means that the number of parameters also becomes huge. Then,
in our system, microbial strains can infect a host simultaneously and we concentrate only on the case of up to
two strains co-colonizing a host. This is an assumption most models make, [6].

Single colonization by a resident strain alters the susceptiblity to incoming strains, increasing or decreasing
it, by a factor ki j, relative to unifected hosts, without acquired immunity. The transmission and clearance rates
of all strains, singled/ doubled infected hosts, are assumed to depend on the strains and to be slightly different.
Initially, we establish our model for the case of 2 strains, which can be seen in the figure 1.3 below. Concrete
examples of such a situation can include bacteria of the respiratory tract [83] such as Streptococcus pneumoniae
and Haemophilus influenzae, displaying several genetic and antigenic variants.

We tract the proportion of hosts in seven compartments:

• S: susceptibles

• Ii, for i ∈ {1,2}: hosts colonized by one strain 1st or 2nd

• Ii j, for i, j ∈ {1,2}: hosts co-colonized by one strain i initially then infected by strain j (the order of their
acquisition is considered).

We denote the forces F1 and F2 of infection for strain 1 and 2, respectively, as follows

F1 = β1
(
I1 + p1

12I12 + p1
21I21

)
, F2 = β2

(
I2 + p2

12I12 + p2
21I21

)
.

We make the assumption that, susceptibles are recruited at constant rate r, equal to the per-capita departure
rate. Upon exposure, a host can become colonized by strain 1 or 2. Single and dual carriers contribute equally
to the force of infection for each group of types, and hosts carrying two pathogen clones transmit either with
probability ps

i j. βi’s, i ∈ {1,2} denote the per-capita transmission rate, while γi’s and γi j, i, j ∈ {1,2} denote
the clearance rates for infected hosts and co-infected hosts, respectively, assuming no immune memory.
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Co-infections by the same (resident) strain can seem counter-intuitive. As Van Baalen and Sabelis in [199]
and Alizon in [6] argue, this solves the neutrality problem and avoids giving a frequency-dependent advantage
to the mutant. One could wonder what the biological basis for these hosts infected by the same strain is. If we
are dealing with macro-parasites, the interpretation is intuitive as, for example I11, can be seen as hosts with
a double parasite load. The reasoning is the same for micro-parasites but, given their underlying biology, I11

hosts resemble singly infected host.
Moreover, we assume the direct clearance of colonization and co-colonization, back to the susceptible state

reflects train-transcending immunity as the main player in pathogen clearance. Single carriers Ii can acquire
an additional pathogen clone j at a rate modified by a relative factor ki j. The case ki j < 1 corresponds to
antagonism/competition between types from strain i to j. Meanwhile, ki j ≥ 1 means the facilitation between
clones and enhancement of host susceptibility.

Fig. 1.3 (a) The scheme of two-strain model. The black arrows refer to acquisition of a first clone with forces of infection
F1 and F2. The grey arrows refer to altered acquisition of a secondary clone ki jFi in an already colonized host, where clone
interactions can range from competition (ki j < 1) to cooperation (ki j ≥ 1). The dashed arrows depict colonization clearance
rate γi γi j accordingly. The dotted arrows reflect host demographic processes: birth and death at equal rate r. (b) The
considered dimensions of model.

Generally, we can describe and study a general system for epidemiological dynamics of similar co-infecting
strains of the same infectious agent.

dS
dt

=r(1−S)+
N

∑
i=1

γiIi +
N

∑
i, j=1

γi jIi j −S
N

∑
i=1

Fi,

dIi

dt
=λiS− (r+ γi)Ii − Ii

N

∑
j=1

ki jFj, 1 ≤ i ≤ N,

dIi j

dt
=ki jIiFj − (r+ γi j)Ii j, 1 ≤ i, j ≤ N

(1.2.1)

where

Fi = βi

(
Ii +

N

∑
j=1

(
pi

i jIi j + pi
jiI ji
))

. (1.2.2)

Note that, from now on, we use N with the meaning number of pathogens/number of strains, which is different
from the meaning of total population (assumed to be constant) in (1.1.1) and (1.1.2).

The parameters are described in the following table

11
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Table 1.2 Conventions and notations of parameters and variables, where we assume the traits are numer-
ically close for closely-related strains of the same infectious agent. This similarity assumption (0 < ε ≪ 1,
small) forms the basis for dynamic decomposition into fast and slow components.

Parameter Interpretation
Original system
βi = β (1+ εbi) Strain-specific transmission rates
γi = γ (1+ ενi) Strain-specific clearance rates of single colonization
γi j = γ (1+ ενi j) Clearance rates of co-colonization with i and j
ki j = k+ εαi j Relative factor of altered susceptibility to co-colonization between colonizing strain

i and co-colonizing strain j

ps
i j =

1
2
+ εωs

i j,
s ∈ {i, j}

Transmission capacity of a host co-colonized by strain-i then strain- j,(
pi

i j + p j
i j = 1

)
Neutral system
r Susceptible recruitment rate (Equal to natural mortality)
m Net host turnover rate

According to our assumption of altered transmission rates and clearance rates, our model captures the
possibility that R0 may change or fluctuate over time, for example due to weather conditions, seasonality or
antibiotic use. It is possible that parallel changes in overall transmission, during such targeted vaccination
program might boost the decline of vaccine subtypes, or counteract it, depending on the underlying interaction
strengths between vaccine and non-vaccine strains [86].

In this thesis, we make the very strong assumption that all the trait are close, that means ε in Table 1.2 is
small.

1.3 The slow-fast time scale and its application to our models

Before presenting the slow-fast time scale method, we introduce shortly about the multiple-scale method, which
is mentioned in [104]. In dynamics problems, people may uses matched asymptotic expansions, the solution is
constructed in different regions that are then patched together to form a composite expansion. The method of
multiple scales differs from this approach in that it essentially starts with a generalized version of a composite
expansion. In doing this, one introduces coordinates for each region (or layer), and these new variables are
considered to be independent of one another. The history of multiple scales is more difficult to track than, say,
boundary-layer theory. This is because the method is so general that many apparently unrelated approximation
procedures are special cases of it. One might argue that the procedure got its start in the first half of the 19th
century. For example, Stokes (1843) [190] used a type of coordinate expansion in his calculations of fluid flow
around an elliptic cylinder. Most of these early efforts were limited, and it was not until the latter half of the
19th century that Poincaré (1886) [176], based on the work of Lindstedt (1882) [125], made more extensive use
of the ideas underlying multiple scales in his investigations into the periodic motion of planets. He found that
the approximation obtained from a regular expansion accurately described the motion for only a few revolutions
of a planet, after which the approximation becomes progressively worse. The error was due, in part, to the
contributions of the second term of the expansion. He referred to this difficulty as the presence of a secular term.

12
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To remedy the situation, he expanded the independent variable with the intention of making the approximation
uniformly valid by removing the secular term. This idea is also at the heart of the modern version of the method.
What Poincaré was missing was the introduction of multiple independent variables based on the expansion
parameter. This step came much later; the most influential work in this regard is by Kuzmak (1959) [115] and
Cole and Kevorkian (1963) [54].

In particular, in many cases of ordinary differential equations, see Chapter 3 of [104], it is useful to introduce
the two time-scales t1 = t and t2 = εt to construct the solution well. This implies that the multi-scale method
is used only with the time variable in these cases. Intuitively, we may see that the solution varies on a “fast”
time scale, i.e., one that is smaller than O(1). The relevant scale here is O(ε). It will therefore be convenient to
introduce an additional time variable, which splits the variables into two groups.

We state the following definition.

Definition 1.1. A slow-fast system is a system of ordinary differential equations taking the form
ε

dx
dτ

= f (x,y,ε)

dy
dτ

=g(x,y,ε)
. (1.3.1)

where f : Rm ×Rn ×R→ Rm and g : Rm ×Rn ×R→ Rn and 0 < ε ≪ 1.
Furthermore, the x variables are called fast variables and the y variables are called slow variables. Setting
t =

τ

ε
gives the equivalent form 

dx
dt

= f (x,y,ε)

dy
dt

=εg(x,y,ε)
. (1.3.2)

We refer to t as the fast time scale or fast time and to τ as the slow time scale or slow time.

The parameter ε can be thought of as the “separation” of time scales and is sometimes called the time-scale
parameter. If the notation 0 < ε ≪ 1 follows an equation, it indicates that we are interested only in the case
that ε is small and positive. If it appears in a statement or theorem, then it indicates that ε is sufficiently small,
i.e., 0 < ε ≪ 1 means that there exists some ε0 > 0 such that for all ε ∈ (0,ε0] , the statement of the theorem
holds.

In many situations, f and g are independent of ε , and we can write the fast–slow system as
ε

dx
dτ

= f (x,y)

dy
dτ

=g(x,y)

with the analogous obvious reformulation on the fast time scale.
There are two compelling facts that should encourage one to study fast–slow systems. The first is that the

mathematical structure of fast–slow systems is very intricate due to the small parameter ε . Many techniques
ranging from classical asymptotic methods and nonstandard analysis to geometric methods and numerical
treatments have been used successfully alongside the toolbox of dynamical systems theory, [114]. Although
the first reason alone would clearly suffice to command further investigation, fast–slow systems also regularly
appear in mathematical modeling across many areas of the natural sciences.
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Let us mention the solution of slow-fast time scale. Solutions of slow-fast systems generally consist of slow
and fast time, i.e. long periods of slow change interspersed by short periods of fast change. As ε → 0, the
solution of (1.3.2) approach the solutions of fast subsystem or layer equations

dx
dt

= f (x,y,0)

dy
dt

=0
(1.3.3)

During slow time τ , trajectories of (1.3.1) are well described by the solutions of slow subsystem or reduced
system 0 = f (x,y,0)

dy
dτ

=g(x,y,0)
(1.3.4)

which is a differential-algebraic equation. The algebraic equation in (1.3.4) defines the critical manifold

C = {(x,y) ∈ Rm ×Rm| f (x,y,0) = 0}

which is the phase space of the reduced problem (1.3.4) and is nothing but the set of equilibrium points of
the layer equation (1.3.3). One major goal of singular perturbation theory is to use these lower dimensional
subsystems (1.3.3) and (1.3.4), to understand the dynamics of the full system (1.3.2) when 0 < ε ≪ 1.

The geometric language is useful to describe the model. Roughly speaking, the real dynamics fast follow
the fast dynamics (1.3.3) near the set C. In this timescale, the slow dynamics has no effect. Once near C, we
have that dy

dt = 0(ε), the system is described at the slow timescale τ by the slow system (1.3.4).
The system (1.3.3) allows us to classify the singularly perturbed systems. A compact sub-manifold Ch ⊂C

is normally hyperbolic if all (x,y) ∈Ch are hyperbolic equilibria of the layer problem, that is, the Jacobian
(Dy f )(x,y,0) has no eigenvalues with zero real part. Then, Fenichel theory [71] guarantees the existence
of a perturbed locally invariant manifold Cε called (Fenichel) slow manifold the original system 0 < ε ≪ 1.
Fenichel slow manifolds are typically non-unique but they are exponentially close to each other (away from
their boundary). They inherit the regularity of the vector filed, they are O(ε)-close to the unperturbed manifold
Ch (for the Hausdorff distance) and the flow on them converges to the slow flow as ε → 0. If the unperturbed
manifold Ch belongs to an attracting (resp. a repelling) sheet of C – the real part of the eigenvalues of the
Jacobian (Dy f )(x,y,0) being strictly negative (resp. strictly positive) — then the corresponding slow manifolds
are called attracting (resp. repelling) slow manifolds. If Ch is normally hyperbolic and neither attracting nor
repelling, it is of saddle type, and so are the corresponding slow manifolds. In this present thesis, the result with
strictly negative-real-part eigenvalues are restated in the form of the Tikhonov’s theorem [196]. For a simulation
of this, see the figure 1.4 as follows. In this thesis, the slow-fast dynamics decomposition offers a useful
tool to provide insight into microbial interactions. Although we analyze an endemic multi-strain pathogen
and its dynamics on the epidemiological scale, our results have implications beyond this immediate system,
contributing to novel conceptual unification in community ecology. We show that neutral dynamics between
interacting strains occurs on a fast timescale, whereas the non-neutral stabilizing forces act on a slow timescale,
dependent on trait differences manifested upon co-colonization. We quantify exactly which asymmetries matter
for multi-strain coexistence, and how overall transmission intensity affects stabilization of diversity. Together,
our results define a promising analytical approach to better understand microbial ecosystem.
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Fig. 1.4 The system trajectories (black dashed arrows) reach an ε-neighborhood of the slow manifold (in blue) in a time of
the order O(ε ln(1/ε)). Once in this neighbourhood, the trajectories stay ε-close to the slow manifold and follow the slow
dynamics, taking a time of order O(ε) to reach the equilibria.

1.4 The replicator system

We show in this thesis that the system in slow manifold is in the form of replicator system. To introduce this
famous kind of equations, we first recall the Lotka-Vottera system, which reads as follows

dxi

dt
= xi fi (x1,x2, . . . ,xn) = xi ((Ax)i + ci) ,

with fi’s are linear for all i.
A well-known particular case of the Lotka–Volterra equations, the predator-prey system is a pair of first-

order nonlinear differential equations, ussually used to describe the dynamics of biological systems in which
two species interact, one as a predator and the other as prey. This type of model was initial introduced in [135],
and the populations change through time and are described as follows

dx
dt

=αx−βxy

dy
dt

=δxy− γy
(1.4.1)

where x and y are the densities of preys and predators in the population, respectively. α , β , δ , γ are positive
real parameters describing the interaction of the two species.

Concretely, the prey are assumed to have an unlimited food supply and to reproduce/given birth exponentially,
unless subject to predation; this exponential growth is represented in the equation above by the term αx. The
rate of predation upon the prey is assumed to be proportional to the rate at which the predators and the prey
meet, this is represented above by βxy. If either x or y is zero, then there can be no predation. With these two
terms the equation above can be interpreted as follows: the rate of change of the prey’s population is given by
its own growth rate minus the rate at which it is preyed upon.

On the other side, in the equation for the predators, δxy represents the growth of the predator population.
Note the similarity to the predation rate; however, a different constant δ is used, as the rate at which the predator
population grows is not necessarily equal to the rate at which it consumes the prey. The term γy represents the
mortality rate of the predators, which leads to an exponential decay in the absence of prey. Hence the equation
expresses that the rate of change of the predator’s population depends upon the rate at which it consumes prey,
minus its intrinsic death rate.

15



MODELS, APPROACHES AND AN OVER VIEW ON REPLICATOR SYSTEM

Setting
V (x,y) = δx− γ ln(x)+βy−α ln(y),

then ∇V ·

(
x′(t)
y′(t)

)
= 0 which means G(t) =V (x(t),y(t)) is a constant if (x(t),y(t)) is the solution of (1.4.1).

We note that V only depends on the initial values (x(0),y(0)), see figure 1.5 below.

Fig. 1.5 A simulation for solution of the Lotka-Volterra of 2 strains. In this simulations, we consider the system (1.4.1)
with the parameters α = 1, β = 0.1, δ = 0.075, γ = 1.5. The figure (a) plots the populations of prey and predator in time
with initial values (x(0),y(0)) = (10,5). The figure (b) is the phase-space plotting for the predator prey problem for various
initial conditions of the predator population. It can be proved that these trajectories are all closed and this holds true for
general case of two-strain Lotka-Volterra system.

Now, we consider a system of N populations and denote by xi the densities of i-th species (i = 1,2, . . . ,N).
Then the growth rates of i-th species an be determined by the total effects from itself and from the other ones.
This can be read as

dxi

dt
= xi

(
bi +

N

∑
j=1

ai jx j

)
, i = 1,2, . . . ,N. (1.4.2)

This system is called a generalized Lotka-Volterra system for N species and broadly investigated, see [193, 102].
The parameters bi, i = 1,2, . . . ,N is intrinsic growth or decay rate for i-th strain and the ai j represents the effect
of the j-th strain upon the i-th one. Similarly as in the case two strain, the terms bi and aii, i = 1,2, . . . ,N,
describes the growth rates of i-th strain in the absence of the others, whereas the terms ai j’s are the effects on
the grwoth of i-th species from j-th one.

The matrix A = (ai j)1≤i, j≤N is called the interaction matrix. If the i-th and j-th strains compete to each
other then the sign pattern of (ai j,a ji) becomes (−,−). Meanwhile, if they cooperates together, the sign pattern
now is (+,+). They are the predator-prey relationship means (+,−) for the case i-th species is the predator,
j-th strain is the prey and vice versa. The element on the principle diagonal are usually non-positive for all i
sine they represent the relationship among the same strains and reflect the limited resource. The existence and
uniqueness of solution for (1.4.2) in the nonnegative space Rn

+ is showed in [193].

The replicator dynamics, which is studied much in evolutionary system and game theory, see [102, 59],
describes the evolution of the frequencies of strategies in a population. The replicator equation allows the fitness
function to incorporate the distribution of the population types rather than setting the fitness of a particular
type constant. This important property allows the replicator equation to capture the essence of selection. A
disadvantage is that, the replicator equation does not incorporate mutation and so is not able to innovate new
types or pure strategies. Interestingly, we can transfer the replicator equation to the Lotka-Volterra equation
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and conversely, which we prove later in this subsection. Initial, we assume that the considered population
has n types 1st, 2nd, etc., n− th, corresponding n frequencies (x1,x2, . . . ,xn). The fitness fi of type i-th will
be a function of the composition of the population. The rate of increase ẋ

x of type i-th is a measure of its
evolutionary success which can be expressed as the difference between the fitness fi (x) of type i-th and the
average fitness f̄ (x) = ∑xi fi (x) of the population. Then we observe the most general continuous form of the
replicator equation as follows

dxi

dt
= xi

(
fi (x)− f̄ (x)

)
, 1 ≤ i ≤ n, (1.4.3)

where x = (x1,x2, . . . ,xn) is the vector of the distribution of types in the population.
The set Sn = {x ∈ Rn : x1 + x2 + · · ·+ xn = 1} is invariant under (1.4.3), i.e. if x ∈ Sn then x(t) ∈ Sn for all

t ∈ R. Indeed, according to (1.4.3), the sum S = x1 + x2 + · · ·+ xn verifies dS
dt = (1−S) f̄ , in which S(t) = 1 is

an equilibrium. From now on, we should only consider the restriction of (1.4.3) on Sn.
It can be shown that the change in the ratio of two proportions xi/x j with respect to time is

d
dt

(
xi

x j

)
=

xi

x j
( fi(x)− f j(x)) .

In other words, the change in the ratio is driven entirely by the difference in fitness between types. Moreover,
if we add an arbitrary function φ : Sn → R to all the fi, this does not affect (1.4.3) on Sn. Indeed, setting
gi(x) = fi(x) + φ(x) for all i then we obtain that ḡ(x) = ∑xigi(x) = f̄ (x) + φ(x) (on Sn), which implies
gi(x)− ḡ(x) = fi(x)− f̄ (x) for all i.

Let us now prove that the replicator equation in n dimensions is equivalent to the generalized Lotka-Volterra
equation in n−1 dimensions. Indeed , setting that

xi =
yi

1+∑
n−1
j=1 y j

, 1 ≤ i ≤ n−1; xn =
1

1+∑
n−1
j=1 y j

(1.4.4)

where yi, 1 ≤ i ≤ n are the variables of the Lotka-Volterra equation in n−1 dimensions of (1.4.2). By direct
validation, (x1,x2, . . . ,xn) verifies the replicator equation (1.4.3).

In particular, we are interested in the case linear fi for all i. Then, there exists an n× n matrix A = (ai j)

such that fi (x) = (Ax)i. Hence, when the fitness is assumed to depend linearly upon the population distribution,
which allows the replicator equation to be written in the form

dxi

dt
= xi

(
(Ax)i − xT Ax

)
, 1 ≤ i ≤ n (1.4.5)

where the pay-off matrix A holds all the the fitness information for the population: the expected payoff can be
written as (Ax)i and the mean fitness of the population as a whole can be written as xT Ax. We note that adding a
same constant to all the entries ai j’s of matrix A will not change (1.4.5). This gives a freedom of the definition
of the fi’s in (1.4.3). In particular, it can be assumed that aii = 0 for all i.

The equilibrium of (1.4.5) verifies {
(Ax)1 = (Ax)2 = · · ·= (Ax)n

x1 + x2 + · · ·+ xn = 1

17



MODELS, APPROACHES AND AN OVER VIEW ON REPLICATOR SYSTEM

satisfying xi > 0 for all i. In general, there exists at most one such solution. Indeed, we can compute the
difference between two successive lines i-th and i+1-th which leads to the equivalent system

n

∑
j=1

(
ai j −ai+1, j

)
x j = 0

x1 + x2 + · · ·+ xn = 1

which is nothing but the system Bx = (0, . . . ,0,1)T with B = (bi j) and bi j = ai j −ai+1, j for 1 ≤ i ≤ n−1 and
bn j = 1 for all j. This system have generically (if detB ̸= 0) exactly one solution on Rn.

An interesting and intuitive way to interpret the replicator system is through game theory. We consider a
large population, N, of players Each period, a player is randomly matched with another player and they play a
two-player game. Each player is assigned a strategy and they cannot choose their strategies. We can think of
this in a few ways, for example:

• Players are “born with” their mother’s strategy (ignore sexual reproduction).

• Players “imitate” others’ strategies.

We note that rationality and consciousness do not enter the picture. Now, denoting the proportion of the
population playing strategy A and B as xA and xB, respectively, so:

xA =
NA

N
, xB =

NB

N
,

where NA and NB are the populations playing strategy A and B, respectively. The state of the population is given
by (xA,xB) where xA ≥ 0, xB ≥ 0, and xA + xB = 1.

Since players interacts with another randomly chosen player in the population, a player’s expected payoff is
determined by the payoff matrix and the proportion of each strategy in the population. Payoff for player who is
playing A is fA. Since fA depends on xA and xB we write fA (xA,xB) with

fA (xA,xB)= (probability of interacting with A player)×UA(A,A)+ (probability of interacting with B player)×UA(A,B)

which implies that
fA (xA,xB) = xA ×UA(A,A)+ xB ×UA(A,B).

In which, UA(A,A) and UA(A,B) are the payoff for players playing strategy A when they meet the other player
playing strategy A and B, respectively. We interpret payoff as rate of reproduction (fitness). The average fitness,
f̄ - the weighted average of the two fitness values now becomes

f̄ (x) = xA fA (xA,xB)+ xB fB (xA,xB) .

Now, we wonder that how fast xA and xB grow. We argue for the case xA first and do the same for xB. Recalling
that xA = NA

N and we need to know how fast NA grows. We have that each individual reproduces at a rate fA,
and there are NA of them, so

dNA

dt
= NA fA (xA,xB) .

18



MODELS, APPROACHES AND AN OVER VIEW ON REPLICATOR SYSTEM

Similarly we deduce that
dNB

dt
= NB fB (xA,xB) and

dN
dt

= N f̄ (xA,xB) . By the quotient rule, and combining
with a little simplification, we obtain the replicator system

dxA

dt
= xA

(
fA (xA,xB)− f̄ (xA,xB)

)
dxB

dt
= xB

(
fB (xA,xB)− f̄ (xA,xB)

)
In this deduced system, let us consider the equation for xA, we have the meanings that the growth rate of A is
equal to the product of current frequency of strategy A with its own fitness relative to the average. The term xA

represents how many A’s can reproduce and the term fA (xA,xB)− f̄ (xA,xB) implies that the more successful
strategies will grow faster. For example, if xA > 0 and fA (xA,xB)> f̄ (xA,xB) then we have that the proportion
of A’s is non-zero and the fitness of A is above average, which yields to dxA

dt > 0, i.e., A will be increasing in the
population, which makes sense in reality. We skip the theory about the Nash equilibria and evolutionarily stable
states in this section. These important parts can be seen in chapter 7 of [102].

To close this part, let us now generalize the replicator equation’s example to a 3-player game which is very
familiar with us: Rock, Paper, Scissor, whose strategies are denoted R, P and S, respectively. Supposing NR,
NP, NS are the numbers of players playing R, P, S then xR, xP, xS are the proportions of population playing R, P,
S. The payoff matrix of this game is

A =

 0 −1 1
1 0 −1
−1 1 0


and we note that this is a zero-sum game. The explicit dynamics for this case is

dR
dt

= R(−P+S)

dP
dt

= P(R−S)

dS
dt

= S (−R+P)

. (1.4.6)

There exist only four rest points for (1.4.6), one in the center, m=(1/3,1/3,1/3)∈ intS3 with S3 = {R+P+S=
1}, and the other three at the vertices ei.

Let us consider the functions V1 = R+P+ S and V2 := RPS. By (1.4.6), we can calculate directly that
dV1
dt = 0 and dV2

dt = 0. By visualizing the level sets of the functions V1 and V2 in the three-dimensional (R,P,S)
space, we can see that all orbits in intS3 are closed orbits surrounding m.

We can change the payoff matrix to A =

 0 −1 2
2 0 −1
−1 2 0

 then by the similar argument in page 42 of

[187], we can show that interior fixed point attracts all trajectories on the interior of (R,P,S) We can see these
phenomena in the following figures 1.6.
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Fig. 1.6 Phase space for Rock-Paper-Scissors game. (b) For the generalized case with matrix

 0 −1 1
1 0 −1
−1 1 0

. The

phase space now is always cycle around the interior fixed point for all initial value. (a) For the normal case with matrix 0 −1 2
2 0 −1
−1 2 0

. The phase space now is spiral turning to the attractor.

1.5 Reaction-Diffusion Equations

Reaction-diffusion systems are nonlinear parabolic equations or systems of the form
∂u
∂ t

−M∆u = f (u) in Ω× (0,T )

+ boundary condtions and initial data,
(1.5.1)

where u(x, t) takes its values in Rm, M is an m×m (diagonal) matrix, and f is a nonlinear map from Rm into
Rm.

These system are used to model phenomena occurring in various fields: chemistry, biology, epidemiology,
population genetics, ecology, etc., see [75]. The solutions of reaction-diffusion equations display a wide range
of behaviors, including the formation of traveling waves and self organized patterns, [39].

For reaction-diffusion equations in unbounded domains, we may have a typical question: Is it possible for a
species to invade into new habitats and how does this work? This question is often studied by the traveling
wave approach. A traveling wave is a wave that advances in a particular direction, with the addition of retaining
a fixed shape. Moreover, a traveling wave is associated to having a constant velocity throughout its course of
propagation. Such waves are observed in many areas of science, like in combustion, which may occur as a
result of a chemical reaction [202]. In mathematical biology, the impulses that are apparent in nerve fibres
are represented as traveling waves [158]. Furthermore, the structures present in solid mechanics are typically
modelled as standing waves [46]. From the seminal work of Fisher [77], the reaction-diffusion systems are
know to often exhibit traveling wave solutions. These traveling wave solution can describe an invasion into a
new habitat, where this move appears with a constant speed c (the so-called wave speed), i.e.

u(x, t) = φ (x− ct) . (1.5.2)

For a clearer view, the solution can be illustrated in Figure 1.7.
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Fig. 1.7 Traveling wave solution

The new variable z := x− ct denotes the wave variable and φ (z) is the wave profile. The travelling wave
ansatz includes conditions at ±∞ instead of “classical” boundary conditions:

u(x, t) = φ (x− ct) , φ (−∞) = 1, φ (+∞) = 0 (1.5.3)

which means that the population has reached its capacity for x →−∞ (normalised to 1), and no population has
arrived yet for x →+∞, (1.5.3) leads to:

∂u(x, t)
∂ t

=−cφ
′,

∂ 2u(x, t)
∂x2 = φ

′′ (1.5.4)

Such waves do not propagate, and are typically observed when inducing a fixed boundary. In fact, we can
categorise traveling waves into forms that are attributed to having certain properties. For a traveling wave that
approaches constant states given by φ(−∞) = ul and φ(+∞) = ur, with ul ̸= ur, we have what we call a wave
front see Figure 1.7 for an example. However, if the constant states are equal with ul = ur, the corresponding
wave is known as a pulse wave. If a wave exhibits periodicity with φ(z+T ) = φ(z), where T > 0, the wave is
called a spatially periodic wave.

The first and simplest example is the Fisher equation:

ut = Duxx +µu(1−u) (1.5.5)

together with the travelling wave ansatz (1.5.3) and (1.5.4), this yields

−cφ
′ = Dφ

′′+µφ (1−φ)

which corresponds to a second order ODE and we can transform it into a 2D system of first order ODEs by
introducing a new variable v := φ ′, we write again u instead of φ for reasons of simplicity:u′ = v

v′ =− c
D

v− µ

D
u(1−u)

In [77], Fisher showed that, for every wave speed c ≥ 2
√

µD, (1.5.5) admits traveling wave solution. No such
solution exists for c < 2

√
µD. The wave shape for a given wave speed is unique. We can find the detailed proof

in [77].

Conversely, we do not have traveling wave solution for a reaction-diffusion in a compact domain. Never-
theless, behaviors of dynamics are closed to the case of ordinary differential equations, leading to the similar
effects in ODEs including Turing instability and weak Allee effects.
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Firstly, we recall the Turing instability. There is compelling evidence that Turing instabilities (diffusion-
driven instabilities) can induce patterns in biological systems [157, 158]. A Turing instability, first proposed by
Turing in 1952 [198], asserts that there are real linear constant coefficient linear dynamics

X ′ = ÃX , X ′ = B̃X

both strongly stable in the sense that the eigenvalues of Ã and B̃ lie in the left half plane and so that combining
the effects to yield X ′ =

(
Ã+ B̃

)
X yields an unstable equilibrium. In particular, a steady state, which is stable

in the absence of diffusion, may become unstable when diffusion is present, and patterns are temporally stable
and spatially heterogeneous solutions of the reaction–diffusion system.

Secondly, we recall definition of the Allee effect, which is presented in [57].

Definition 1.2. We have the following terminology related to the Allee effect, see Figure 1.8.

• Allee threshold: a critical population size or density below which the per capita population growth rate
becomes negative.

• Demographic Allee effect: a positive correlation between the overall individual fitness, usually quanti-
fied by the per capita population growth rate, and population size or density.

• Strong Allee effect: a demographic Allee effect with an Allee threshold.

• Weak Allee effect: a demographic Allee effect without an Allee threshold.

Fig. 1.8 Classical negative density dependence (solid) compared to strong (dashed) and weak (dotted) Allee effects, [57]

A simple mathematical example of an Allee effect is given by the cubic growth model

dN
dt

= rN
(

N
A
−1
)(

1− N
K

)
(1.5.6)

where the population has a negative growth rate for 0 < N < A, and a positive growth rate for A < N < K
(assuming 0 < A < K). The equation (1.5.6) has difference comparing with the logistic growth equation

dN
dt

= rN
(

1− N
K

)
(1.5.7)
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where N is the population size; r is the intrinsic rate of increase, K is the carrying capacity, A is the critical
point, and dN/dt is rate of increase of the population.

After dividing both sides of (1.5.7) by the population size N, left hand side of (1.5.7) represents the per
capita population growth rate, which is dependent on the population size N, and decreases with increasing N
throughout the entire range of population sizes. In contrast, when there is an Allee effect the per-capita growth
rate increases with increasing N over some range of population sizes [0,N].

Spatio-temporal models can take Allee effect into account as well. A 1D simple example is given by the
reaction-diffusion model in domain [0,1]

∂N
∂ t

= D
∂ 2N
∂x2 + rN

(
N
A
−1
)(

1− N
K

)
(1.5.8)

with diffusion coefficient D. For some result of (1.5.8), we can see [84]. The dynamical behavior of (1.5.8)
without Allee effect is well-known; meanwhile, when the Allee effect is present, the structure of the set of the
steady state solutions is more complicated [186], in which (1.5.8) can have multiple steady state solutions, and
extinction and persistence are both possible depending on the initial value.

These three phenomena (traveling wave, Turing instability and weak Allee effect) show that reaction-
diffusion systems can exhibit some behaviors which cannot be capture by ODE systems, even if the parameters
are spatially homogeneous. Moreover, and it is actually what we do in this thesis, such a systems can model
explicit spatial heterogeneity by writing a reaction function explicitly dependent on x : f (u)(x, t) = f (x,u(x, t)).
In this thesis we will not focus on the qualitative behavior of reaction diffusion systems but we will construct
several reaction-diffusion systems spatially heterogeneous, by using slow fast techniques.
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Chapter 2

The quasi-neutral model for N strains

This chapter is the work in the paper "Quasi-neutral Dynamics in a Coinfection System with N Strains and
Asymmetries along Multiple Traits", with Dr. Erida Gjini and Dr. Sten Madec, 2021, see [120].

2.1 Introduction

Multiple infections are ubiquitous in nature [21]. They may occur between pathogen strains of the same species
or between different species [51, 29, 206], and have implications for virulence evolution and maintenance of
various polymorphisms among infectious agents [199, 154, 6, 7]. The importance of multiple infection for
antibiotic resistance and vaccination effects in multi-strain systems has also been increasingly highlighted
[127, 30]. Due to its inherent difficulties, multiple infection has only been tackled in a limited manner by
mathematical models so far. A majority of studies focus on coexistence and competitive exclusion criteria for
coinfection systems with N = 2 or N = 3 strains [49, 90, 88, 173]. A few studies, using arbitrary system size,
derive analytical results for any number of coinfecting strains N [4, 140]. But the vast majority of N-strain
coinfection models are entirely based on simulations [51, 61], with limited analytical insight and organic
syntheses for the mechanisms of emergent dynamics.

In this article, we uncover the subtle structure of coinfection model with N strains. We introduce a general
model to describe the population dynamics of multiple strains circulating in a host population with the possibility
of co-infection. In particular, we focus on modeling the host-to-host transmission of different strains, using
the SIS (susceptible - infected - susceptible) compartmental framework for endemic diseases. There are two
sources of complexity in the model: i) the number of strains, which increases quadratically the dimensionality
of the system, and ii) all the fitness dimensions in which the strains may vary. The latter is the main novelty of
our framework.

We present a method for approximating the solution of this SIS- N-strain co-infection system, under a quasi-
neutral assumption for the strain-defining parameters. To that end, we first analyze multi-strain co-infection
system with symmetric traits. Then, based on the theoretical results in [72, 114, 196] and their applications to
similar models in [86, 88, 140], we use the slow-fast dynamics approach and the method of multiple timescales
to approximate the solution of systems with non-symmetric traits.

Extending the foundational work in [86, 88, 140], this article studies a more general dynamic system, with
perturbations in many more dimensions of variation across strains, namely transmission, clearance rates and
within-host competitiveness, besides the co-colonization vulnerability parameters (Figure 2.1). The complexity
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of this general problem is reduced by the quasi-neutral assumption, with each parameter constrained to be close
to its default value, allowing us to leverage the neutral system to approximate the quasi-neutral system. The
difficulty lies in reformulating the original system starting from a neutral component plus perturbations, in terms
of slow fast dynamics consisting of a fast sub-system and a slow sub-system. Thanks to the singular perturbation
theory in [200] and Tikhonov’s Theorem, we expect to find explicitly the emergent system describing the slow
dynamics.

More precisely, we find how to rewrite the original system in the form
dx
dt

= ε f (x,y, t,ε) and
dy
dt

=

g(x,y, t,ε) where x describes the slow dynamics and y the fast dynamics. Taking ε = 0 we obtain the degenerate

fast system
dx
dt

= 0 and
dy
dt

= g(x,y, t,0). Under appropriate assumptions, this fast system admit a (degenerate)

attractor called the slow manifold of the form y = φ(x, t). Then, at the slow time scale τ =
t
ε

we obtain the slow

dynamics on this slow manifold as
dx
dτ

= f (x,φ(x, t),τ,0) that needs to be computed explicitly. The singular
perturbation theory makes the link between this slow dynamics and the dynamics of the original system for
0 < ε ≪ 1.

Even though we have an intuition for how the final model approximation in terms of fast-slow dynamics
should work, with the neutral model as the organizing centre [93], it is not at all obvious from the start which
should be the necessary mathematical steps when multiple perturbations occur and interact at the same time
between N strains. In this article we uncover these steps, which ultimately lead us to a similar replicator equation
to the one derived in [140] but now more complete because it involves variation among strains along more
fitness dimensions. Indeed, we obtain an N dimensional replicator equation for strain frequencies over long
time in terms of their pairwise invasion fitness matrix, and this connects our multi-strain coinfection framework
in an endemic setting with the work of [102] which extensively researches this well-known model, and shows
its contribution to evolution and game theory. With this simplifcation, qualitative and quantitative aspects of the
competitive dynamics between N strains, leading to regimes of exclusion, coexistence, multi-stability, family of
cycles or chaotic behavior can be investigated, and directly linked to their trait variations.

Fig. 2.1 Schematic description of the spirit of our study. We study the full N-strain SIS model with coinfection like in
[140, 88], but here include variation in several parameters among strains, besides co-colonization interactions. For this, we
consider the neutral model as the organizing center of the dynamics, and the slow-fast form for each case of trait variation.
Finally, we combine all cases of singular perturbation in each parameter to obtain the general system. Our result is the
dynamics in the slow manifold, which corresponds to a replicator system for N strain frequencies, governed by the pairwise
invasion fitness matrix.

The paper is organized as follows. Section 2.2 outlines the general systems studied in this paper with
corresponding quasi-neutral and neutral models. Then it introduces Tikhonov’s theorem and the expansion
theorem used to approximate the target model. Section 2.3 presents the main framework used to decompose the
dynamics into fast and slow components, accompanied with lemmas and concrete steps. In this section, we state
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the main result: the replicator system for strain frequencies, whose coefficients’ matrix is defined by pairwise
invasion fitnesses. Section 2.4 is devoted to the explicit computations for perturbations in each trait, and ends
with the proof for the error estimate between the original system and the slow-fast approximation. In Section
2.5 we provide illustration by numerical simulations about the different regimes of system behaviour, including
coexistence, competitive exclusion and more complex dynamics. This helps to contextualize the competitive
outcomes between strains as a function of parameters. Finally, in Section 2.6 we close with conclusions and a
discussion.

2.2 System, methods and results

This section aims to provide a general description of the dynamics followed by an outline of the analytical
framework applied. We introduce the general structure, then subsequently present explicitly the steps of our
approach, consisting in the quasi-neutral model, neutral model and slow-fast model. We then present Tikhonov’s
theorem, which is the key tool we use to approximate the singular perturbation dynamics efficiently. Important
lemmas and main results are also stated in this section.

2.2.1 The general SIS coinfection model with Ntrains and some initial analysis

The dynamics studied in this article groups the pathogen types in N subsets, indexed by i, 1 ≤ i ≤ N. With
a set of ordinary differential equations, we then track the proportion of hosts in 1+N +N2 compartments:
susceptible: S, hosts colonized by strain-i: Ii, hosts co-colonized by strain-i then strain- j: Ii j. Notice that
we include also same strain coinfection, as argued in [140]. We formulate the general model based on the
same structure as that in [140] but here allow for strains to vary in their transmission rates βi, clearance rates
of single infection γi (or duration of carriage 1/γi), clearance rates from mixed co-colonization γi j, within-
host competition reflected in relative transmissibilities from mixed coinfected hosts (pi

i j and pi
ji), as well as

co-colonization vulnerabilities ki j, already studied in [140].

dS
dt

=r(1−S)+
N

∑
i=1

γiIi +
N

∑
i, j=1

γi jIi j −S
N

∑
i=1

βiJi,

dIi

dt
=βiJiS− (r+ γi)Ii − Ii

N

∑
j=1

ki jβ jJ j, 1 ≤ i ≤ N,

dIi j

dt
=ki jIiβ jJ j − (r+ γi j)Ii j, 1 ≤ i, j ≤ N

(2.2.1)

where Ji is proportion of all hosts transmitting strain i, including singly- and co-colonized hosts and has the
explicit formula

Ji = Ii +
N

∑
j=1

(
pi

i jIi j + pi
jiI ji
)
. (2.2.2)

Note that βiJi is the force of infection of strain i, for all i. All mixed coinfection hosts, harboring strain i (and
j), in any order, whether acquired first or second, can transmit strain i and the two probabilities of transmission
are denoted by pi

i j and pi
ji. The corresponding probabilities to transmit the other strain for such hosts, is simply

1− pi
i j and 1− pi

ji respectively. Thus we allow for variation between strains in both transmissibility from mixed
coinfection, and in the benefit gained within-host for transmission when landed there first (a precedence effect).
In (2.2.1), for 1 ≤ i, j ≤ N, parameters are summarized in Table 2.1. Summing up all the equations of (2.2.1)
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Table 2.1 Conventions and notations of parameters defining strains in our model, and host turnover.
Under strain similarity assumptions, we can write each trait using a common reference for all strains,
and express the variation as a deviation from neutrality, with ε a small number between 0 and 1.

Parameter Interpretation Strain similarity
1. βi Strain-specific transmission rates βi = β (1+ εbi)
2. γi Strain-specific clearance rates of single colonization γi = γ (1+ ενi)
3. γi j Clearance rates of co-colonization with i and j γi j = γ (1+ εui j)

4. ps
i j Transmission probability of strain s ∈ {i, j} from a host co-colonized

by strain-i then strain- j,
(

pi
i j + p j

i j = 1
) ps

i j =
1
2
+ εωs

i j

5. ki j Relative factor of altered susceptibility to co-colonization by strain j
when a host is already colonized by strain i

ki j = k+ εαi j

r Susceptible recruitment rate (equal to natural mortality rate)
R0 Basic reproduction number R0 =

β

γ+r

on both sides yields the equation for total mass

d
dt

(
S+

N

∑
i=1

Ii +
N

∑
i, j=1

Ii j

)
= r(1−S)− r

(
N

∑
i=1

Ii +
N

∑
i, j=1

Ii j

)
, (2.2.3)

which leads to S+∑
N
i=1 Ii +∑

N
i, j=1 Ii j = 1− e−rt . Hence, S+∑

N
i=1 Ii +∑

N
i, j=1 Ii j tends to 1 as t → ∞.

We want to study a system whose host population is invariant. Such an expectation leads to the assumption
that, (2.2.1) has the same recruitment rate of susceptibility host and mortality rate of strains. It is plausible to
from now on assume that the total population size is constant and rescaled to unit. We also take the system
(2.2.1) as given the initial conditions S(0)+∑

N
i=1 Ii(0)+∑

N
i, j=1 Ii j(0) = 1, which implies that the total population

size is always one for any time. Thus our compartmental variables can be taken to reflect proportions of host in
different epidemiological states.

2.2.2 Quasi-neutral system and new variables

A straightforward understanding of (2.2.1) is not possible due to its complexity, high-dimensional parameter
space and number of equations. However, for indistinguishable strains, i.e. if all the parameters do not depend
on the strain i, we obtain the so-called neutral system which is analytically tractable (see [86, 88, 140]). In this
text, we make a quasi neutral assumption by assuming that the parameters are nearly equal, because the strains
are similar. Without loss of generality we can take the same epsilon in all parameters with the perturbations
written in the form presented in table 2.1. For the sake of simplicity, we denote the inverse duration of a
carriage episode by strain i with mi = r+ γi, of a co-carriage episode by strains i and j with mi j = r+ γi j and
the corresponding inverse duration of carriage if all strains were equivalent with m = r+ γ .

To work on the neutral system, it’s useful to denote some new state variables, including the total ‘mass’
of singly-infected hosts I, the total ‘mass’ of doubly-infected hosts D, and the total ‘mass’ of infected hosts
T = I +D. According to these definitions of T, I, D, we have the formulae:

I =
N

∑
i=1

Ii, D =
N

∑
i, j=1

Ii j, T = I +D. (2.2.4)
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It can be easily deduced from (2.2.4) together with ω i
i j +ω

j
i j = 0 that ∑

N
i=1 Ji = T .

Thanks to these new variables, the original system (2.2.1) can be rewritten into the extensive new form

dS
dt

=r(1−S)+ γT + εγ

(
N

∑
i=1

νiIi +
N

∑
i, j=1

ui jIi j

)
−βST − εβS

N

∑
i=1

biJi

dT
dt

=βST −mT + εβS
N

∑
i=1

biJi − εγ

(
N

∑
i=1

νiIi +
N

∑
i, j=1

ui jIi j

)
dIi

dt
=βJiS+ εβbiJiS− (m+ εγνi)Ii −β Ii

N

∑
j=1

(k+ εαi j)(1+ εb j)J j

dJi

dt
=β (1+ εbi)JiS−β Ii

N

∑
j=1

(k+ εαi j)(1+ εb j)J j − εγ

[
νiIi +

N

∑
j=1

(
(

1
2
+ εω

i
i j)ui jIi j +(

1
2
+ εω

i
ji)u jiI ji

)]

−mJi +β

N

∑
j=1

(
(

1
2
+ εω

i
i j)(k+ εαi j)(1+ εb j)IiJ j +(

1
2
+ εω

i
ji)(k+ εα ji)(1+ εbi)I jJi

)
dI
dt

=βT S+ εβS
N

∑
i=1

biJi −mI − εγ

N

∑
i=1

νiIi −β

N

∑
i=1

Ii

(
N

∑
j=1

(k+ εαi j)(1+ εb j)J j

)
dIi j

dt
=β (k+ εαi j)(1+ εb j)IiJ j − (m+ εγui j)Ii j.

(2.2.5)
This system has the generic form

dX
dt

= F̃(X ,ε) where X = (X1,X2, . . . ,Xñ) ∈ Rñ

,for some integer ñ, and is equivalent to
dX
dt

= F(X)+O(ε) after some algebraic transformations.

In ours case, the part
dX
dt

= F(X) is known as the neutral system, consistently stays unaltered and be
investigated in the subsection 2.2.3. It is important to note that this neutral system is structurally unstable.

Then, the part O(ε) is a singular perturbation of the neutral system. To treat such an emergence by

Tikhonov’s theorem, it’s essential to rewrite
dX
dt

= F(X)+O(ε) into an equivalent slow-fast form


dx
dt

= ε ( f (x,y)+O(ε))

dy
dt

= g(x,y)+O(ε)

(2.2.6)

where y ∈ Rny is the fast variable and x ∈ Rnx is the slow variable (with nx +ny = ñ).
In general, the finding of this slow-fast reformulation is strongly dependent on the specific system. Here, it

is achieved thanks to the ansatz (2.2.25) which is yielded from the study of the neutral system.
Hence, we start to study the important neutral system which is obtained for ε = 0 in (2.2.5).

This study yields the definition of the appropriate slow and fast variables (vi,zi). These variables together
with the ansatz (2.2.25) are the key for the slow-fast study of the next section.
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2.2.3 Neutral system, ε = 0

Taking ε = 0 in (2.2.5) leads to the so-called Neutral System1 for S,T, I, Ii,Ji, Ii j which reads after some
simplifications: 

dS
dt

= r(1−S)+ γT −SβT

dT
dt

= SβT −mT

dI
dt

= βT S− (m+ kβT )I

dIi

dt
= βJiS−mIi − kIiβT, 1 ≤ i ≤ N

dJi

dt
= (βS−m)Ji +

1
2

βkIJi −
1
2

βkIiT, 1 ≤ i ≤ N

dIi j

dt
= kβ IiJ j −mIi j, 1 ≤ i, j ≤ N.

(2.2.7)

Such a triangular structure of this system enables to successively consider the subsystems for (S,T ), I, (Ii,Ji)

and Ii j.

• Firstly, we consider the neutral system for S,T as following
dS
dt

=m(1−S)−βST

dT
dt

=−mT +βST
(2.2.8)

This system is a classical. As in [139], we define the basic reproduction number as R0 =
β

m
. If R0 > 1 then it

admits a positive steady state (S∗,T ∗) where S∗ =
1

R0
and T ∗ = 1−S∗.

We now recall a crucial proposition, which follows the definition of S∗ and T ∗.

Proposition 2.1. Assume that S(0)> 0 and T (0)> 0. If R0 ≤ 1 then the solution S,T of system (2.2.8) tends
to (1,0). Otherwise, it tends to (S∗,T ∗) asymptotically.

Proof. To apply the LaSalle’s invariance principle in Appendix A, we need to find a suitable Lyapunov function
V (x). Consider that

V (S,T ) =
1
2
(S−S∗)2 .

It’s trivial that V (S,T )> 0 for all (S,T ) ̸= (S∗,T ∗) and V (S∗,T ∗) = 0. We have that

V̇ (S,T ) = (S−S∗) Ṡ =−β (1−S)(S−S∗)≤ 0.

Applying LaSalle’s invariance priciple, we have the conclusion.

• Secondly, we prove that I(t)→ I∗ :=
mT ∗

m+βkT ∗ .

1The name neutral system comes from the fact that if ε = 0 then the parameters do not depend on the strains as in the neutral theory,
and the model describes indistinguishable strains.
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Indeed, substitute (S,T ) by (S∗+(S−S∗),T ∗+(T −T ∗)) into the equation of I in (2.2.8) then make some
manipulations to obtain

dI
dt

= mT ∗− (m+βkT ∗)I +[βS∗ (T −T ∗)+βT ∗ (S−S∗)+β (T −T ∗)(S−S∗)] . (2.2.9)

Consider the equation
dĨ
dt

= mT ∗− (m+βkT ∗)Ĩ (2.2.10)

which has the explicit solution Ĩ(t) =
mT ∗

m+βkT ∗

(
1− m+βkT ∗

mT ∗ I(0)exp(−(m+βkT ∗)t)
)

. We simultane-

ously have the equation for I − Ĩ as follows

d
dt

(
I − Ĩ

)
=−(m+βkT ∗)

(
I − Ĩ

)
+[βS∗ (T −T ∗)+βT ∗ (S−S∗)+β (T −T ∗)(S−S∗)] . (2.2.11)

Set f (t) = βS∗ (T −T ∗)+βT ∗ (S−S∗)+β (T −T ∗)(S−S∗) then f (t)→ 0 asymptotically when t → ∞, by
Proposition 2.1. It’s easy to see

(
I − Ĩ

)
= exp(−(m+βkT ∗)t)

(∫ t
0 exp((m+βkT ∗)s) f (s)ds+C

)
, with C is

some suitable constant. Hence, I(t)− Ĩ(t)→ 0 when t → ∞ then leads to I(t)→ I∗ as t → ∞.

For later reference, we also write their equilibrium values in the neutral system

S∗ =
m
β
, T ∗ = 1− m

β
, I∗ =

mT ∗

m+βkT ∗ , D∗ = T ∗− I∗ =
βkT ∗2

m+βkT ∗ . (2.2.12)

•Thirdly, from (2.2.7), we also have the neutral model for Ii,Ji for all 1 ≤ i ≤ N. This is the very important part
which gives crucial insight for 0 < ε ≪ 1 in the next section. For now, ε = 0 and substitute (S,T, I) by the limit
(S∗,T ∗, I∗), we obtain the (degenerate) linear system

d
dt

(
Ii

Ji

)
=

−(m+βkT ∗) m

−βkT ∗

2
βkI∗

2

(Ii

Ji

)
. (2.2.13)

Setting A =

−(m+βkT ∗) m

−βkT ∗

2
βkI∗

2

 then from the determinant and the trace of A, we note that A has two

eigenvalues 0 and −ξ with ξ = m+βkT ∗− 1
2

βkI∗ > m+
1
2

βk(T ∗− I∗)> 0.
Hence, we read the matrix to determine a variable zi given by the proper direction associated with the value

proper zero, therefore constant.
To do this, we set that

P =

(
2T ∗ I∗

D∗ T ∗

)
, P−1 =

1
|P|

(
T ∗ −I∗

−D∗ 2T ∗

)
,

and for i = 1, · · · ,N , setting:

(
vi

zi

)
= P−1

(
Ii

Ji

) (2.2.14)

We have the diagonalization for matrix A, which is A = P

(
−ξ 0
0 0

)
P−1 and |P|= 2T ∗2 − I∗D∗ > 0.
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From (2.2.13) and (2.2.14), we infer an equation for

(
vi

zi

)
for each 1 ≤ i ≤ N:


dvi

dt
=−ξ vi

dzi

dt
=0.

(2.2.15)

This step of changing to (vi,zi) plays an important role. Since under these new variables, we can rewrite into
the slow-fast form. It allows us to apply the Tikhonov’s Theorem introduced in the next subsection.
Let us remark that zi is exactly frequency of strain i in the total of infected, see the proof in [140].

• Fourthly, the N2 last equations for Ii j in (2.2.7) yields 1 ≤ i ≤ N

dIi j

dt
= βkIiJ j −mIi j. (2.2.16)

Whose dynamics is trivial once Ii and Ji are known. Indeed, assume that for each i, there exists
(
Ĩi, J̃i

)
such that

Ii(t)− Ĩi(t) = O(ε) and Ji(t)− J̃i(t) = O(ε), then we can rewrite (2.2.16) into

dIi j

dt
=−mIi j +βkĨiJ̃ j +βk

[(
Ii − Ĩi

)
J̃ j +

(
J j − J̃ j

)
Ĩi +

(
Ii − Ĩi

)(
J j − J̃ j

)]
. (2.2.17)

Consider the equation
dĨi j

dt
=−mĨi j +βkĨiJ̃ j (2.2.18)

then we can obtain the differential equation for Ii j − Ĩi j

d
dt

(
Ii j − Ĩi j

)
=−m

(
Ii j − Ĩi j

)
+βk

[(
Ii − Ĩi

)
J̃ j +

(
J j − J̃ j

)
Īi +

(
Ii − Ĩi

)(
J j − J̃ j

)]
. (2.2.19)

By our assumption on Ĩi, J̃ j and use the same arguments for I(t)→ I∗, we deduce that Ii j(t)− Ĩi j(t) = O(ε) on
each bounded interval of time.

2.2.4 Tikhonov’s Theorem and derivation of the non-neutral dynamics

Using the above idea, we transform the problem into an equivalent slow-fast form which is analyzed through
singular perturbations method.

According to previous arguments, our slow-fast form includes variables (X ,Y,L,v,z). Using (2.2.14), we

have the variables

(
vi

zi

)
that we determine from

(
Ii

Ji

)
.

Proceeding like in (2.2.15), we obtain for ε > 0:
dvi

dt
=−ξ vi +O(ε)

dzi

dt
=O(ε).

(2.2.20)
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By setting τ = εt, (2.2.20) can be read as the slow time scale:
ε

dvi

dτ
=−ξ vi +O(ε)

dzi

dτ
=O(1).

(2.2.21)

We need to compute explicitly the perturbation O(1) in (2.2.21). This computation is quite complex especially
when involving perturbation in each parameters, so it’s worthwhile dividing this progress into five sub-cases
wherein only one perturbation at a time occurs.

After that, we will treat the slow-fast form by the Tikhonov’s theorem, that is presented as follows.

Theorem 2.2 (Tikhonov, 1952, see [196]). Consider the initial value problem
dx
dτ

= f (x,y,τ)+ ε . . . , x(0) = x0, x ∈ D ⊂ Rn,

ε
dy
dτ

=g(x,y,τ)+ ε . . . , y(0) = y0, y ∈ G ⊂ Rn.

(2.2.22)

For f and g, we take sufficiently smooth vector functions in x, y and t; the dots represent (smooth) higher-order
terms in ε .

a. We assume that a unique solution of the initial value problem exists and suppose this holds also for the
reduced problem 

dx
dτ

= f (x,y,τ), x(0) = x0,

0 =g(x,y,τ),
(2.2.23)

with solution x̄(τ), ȳ(τ).

b. Suppose that 0 = g(x,y,τ) is solved by ȳ = φ(x,τ), where φ(x,τ) is a continuous function and an iso-
lated root, i.e. there exists a neighbor of φ(x,τ) such that there is no other solution for 0 = g(x,y,τ)
in this vicinity. Also, suppose that ȳ = φ(x, t) is an asymptotically stable solution 2 of the equation
dy
dt

= g(x,y,τ), where τ = εt, that is uniform in the parameters x ∈ D and t ∈ R+.

c. y(0) is contained in an interior subset of the domain of attraction of ȳ = φ(x,τ) in the case of the
parameter values x = x(0), τ = 0.

Then, we have
lim
ε→0

xε(τ) =x̄(τ), 0 ≤ τ ≤ T,

lim
ε→0

yε(τ) =ȳ(τ), 0 < τ0 ≤ τ ≤ T,
(2.2.24)

with τ0 and T are constants independent of ε .

2Recall that the solution ȳ = φ(x,τ) is asymptotically stable if for each τ0 > 0, a δ (τ0) can be found such that: ∥y0 −φ(x,τ0)∥ ≤ δ (τ0)
yields lim

τ→∞
∥y(τ;τ0,x0)−φ(x,τ)∥= 0.
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Beside, it needs to use another result that allows us to approximate the original system by the slow-fast
form. The following error estimate gives a more precise description of these limits. (theorem 9.1, [200] adapted
here for the simple case m = 0).

Theorem 2.3. [see [200]] Consider the initial value problem

dx
dt

= f0(t,x)+ εR(t,x,ε) (2.2.25)

with x(t0) = η and |t − t0| ≤ h, x ∈ D ⊂ Rn, 0 ≤ ε ≤ ε0. Assume that in this domain we have

a. f (t,x) continuous in t and x, 2 times continuously differentiable in x;

b. R(t,x,ε) continuous in t,x and ε , Lipschitz-continuous in x.

Let x0(t) be the solution of
dx
dt

= f0(t,x) (2.2.26)

with x0(t0) = η Let T > 0 and assume that both x and x0 are defined on [0,T ] for any ε ∈ (0,ε0). There exist
C > 0 (depending on T ) such that for any ε ∈ (0,ε0), and t ∈ (0,T ), we have the estimate

∥x(t)− x0(t)∥ ≤Cε (2.2.27)

2.3 Integrating many perturbations in the slow-fast approximation

2.3.1 Steps for application of Tikhonov’s theorem in our system

Next we develop a lemma showing allowing to linearly combine all the relevant simple cases directly into the
slow equation. For this purpose, we use the following notations in system (2.2.5).

βi = β (1+χ1εbi) ; γi = γ (1+χ2ενi) ; γi j = γ (1+χ3εui j) ;

ps
i j =

1
2
+χ4εω

s
i j s ∈ {i, j}

(
ω

i
i j +ω

j
i j = 0

)
; ki j = k+χ5εαi j;

(2.3.1)

where χd ∈ {0,1} for d = 1,2,3,4,5.

Any combination of trait variation among strains, can be captured via A where A is a subset of {1,2,3,4,5}
denoting the absence/presence of perturbations in that parameter among strains: for some fixed initial values
given, let CA be the system (2.2.5) with χd = 1 if d ∈ A and χd = 0 if d /∈ A . For simplicity, we note also
C{d} by Cd for d ∈ {1,2,3,4,5}.

Remark 2.1. If A = /0 then there is no perturbation and the system C/0 is exactly the neutral model (2.2.7). If
A = {5} then C5 is the system with perturbation on the co-colonization interaction parameters ki j only, that
has been studied in [86, 88, 140].

In order to capture all the perturbations of order 1 in the equation of the zi we need these additional changes
of variables:

S(t) = S∗− εX(t)+O(ε2); T (t) = T ∗+ εX(t)+O(ε2); I(t) = I∗+ εY (t)+O(ε2). (2.3.2)
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where S∗, T ∗ and I∗ are defined in (2.2.12), and for i = 1, · · · ,N:

Li(t) =
1
2

N

∑
j=1

(ui jIi j(t)+u jiI ji(t)) . (2.3.3)

With these notations, CA reads

dX
dt

=−βT ∗X +χ1βS∗
N

∑
i=1

biJi −χ2γ

N

∑
i=1

νiIi −χ3γ

N

∑
i=1

Li +O(ε)

dY
dt

=β (S∗−T ∗− kI∗)X − (m+βkT ∗)Y +χ1β (S∗− kI∗)
N

∑
i=1

biJi −χ2γ

N

∑
i=1

νiIi −χ5β

N

∑
i, j=1

αi jIiJ j +O(ε)

dLi

dt
=−mLi +χ3

1
2

βγkIi

N

∑
j=1

ui jJ j +χ3
1
2

βγkJi

N

∑
j=1

u jiI j +O(ε)

(2.3.4)
together with (we omit terms of O

(
ε2
)
)

d
dt

(
Ii

Ji

)
= A

(
Ii

Ji

)
− εβ

(
k 1
k
2 1

)(
Ii

Ji

)
X + ε

βk
2

(
0 0
0 1

)(
Ii

Ji

)
Y + εMA

(
Ii

Ji

)
− εχ3

(
0
Li

)
(2.3.5)

where A is defined in (2.2.13) and MA is the matrix −χ1βk
N
∑

i=1
biJi −χ2γνi −χ5β

N
∑
j=1

αi jJ j χ1βbiS∗

β
N
∑
j=1

(
χ4kω i

i j −χ5
αi j
2

)
J j −χ1β

k
2

N
∑

i=1
biJi −χ2γνi χ1βbi

(
S∗+ kI∗

2

)
+β

N
∑
j=1

(
χ4kω i

ji +χ5
α ji
2

)
I j


(2.3.6)

In order to apply the Theorem (2.2), we rewrite system CA using the changes of variables detailed in (2.2.14).
Let us note

L = (Li)i, v = (vi)i, z = (zi)i,

and −ξ =−(m+βkT ∗)+
βkI∗

2
< 0. The system CA reads now as the slow-fast form



dX
dt

=−βT ∗X +χ1F1
X (v,z)+χ2F2

X (v,z)+χ3F3
X (L)+O(ε)

dY
dt

=β (S∗−T ∗− kI∗)X − (m+βkT ∗)Y +χ1F1
Y (v,z)+χ2F2

Y (v,z)+χ5F5
Y (v,z)+O(ε)

dLi

dt
=−mLi +χ3FLi (v,z)+O(ε)

dvi

dt
=−ξ vi +O(ε)

dzi

dt
=ε (Fzi(X ,Y,L,v,z)+O(ε))

(2.3.7)

wherein we have replaced Ii and Ji by vi and zi though the change of variable (2.2.14), that is:(
Ii

Ji

)
= P

(
vi

zi

)
with P =

(
2T ∗ I∗

D∗ T ∗

)
.
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For i = 1, · · · ,N, the functions F i
X , F i

Y and FLi are obviously deduced from the right term of (2.3.4) and are
linear in theirs variables, X ,Y and L respectively. The function F4

Y is quadratic in (v,z). Finally, Fzi is given by
the second line of the right term of (2.3.6) after the linear change of variables (2.2.14):

Fzi (X ,Y,L,v,z)=
(

0 1
)

P−1

β

−k −1

− k
2

−1

X +
βk
2

(
0 0
0 1

)
Y +MA

P

(
vi

zi

)
+
(

0 1
)

P−1
χ3γ

(
0
Li

)
.

(2.3.8)
The next step is to change the time scale. Taking τ = εt in (2.3.7) we obtain3 the following system which is
equivalent to (2.3.7) but in the slow motion τ .

ε
dX
dτ

=−βT ∗X +χ1F1
X (v,z)+χ2F2

X (v,z)+χ3F3
X (L)+O(ε)

ε
dY
dτ

=β (S∗−T ∗− kI∗)X − (m+βkT ∗)Y +χ1F1
Y (v,z)+χ2F2

Y (v,z)+χ5F5
Y (v,z)+O(ε)

ε
dLi

dτ
=−mLi +χ3FLi (v,z)+O(ε)

ε
dvi

dτ
=−ξ vi +O(ε)

dzi

dτ
=Fzi(X ,Y,L,v,z)+O(ε)

(2.3.9)

Using the notation of the Theorem 2.2, we see that the fast variables is y(τ) = (X ,Y,L,v) and the slow variable
is x(τ) = z(τ). The first step in applying the Tikhonov theorem is to take ε = 0 in (2.3.9) and to show that the
fast variable converge to an attractor Φ(z) which is parametrized by the slow variable.

Lemma 2.4. Let ε = 0 in (2.3.9). Then there exist a function Φ(z) = (X∗(z),Y ∗(z),χ3L∗(z),0) such that the
solution (X ,Y,L,v,z) of (2.3.7) with any initial condition

(X ,Y,L,v,z)(0) = (X0,Y0,L0,v0,z0) ∈ R×R×Rn ×Rn ×Rn

verifies z(t) = z0 for all t ≥ 0 and
lim

t→+∞
(X ,Y,L,v)(t) = Φ(z0).

Moreover, X∗ and Y ∗ are linear function of the χi.

Proof. Using the triangular structure of (2.3.9) the idea is to compute the limits step by step of v, L, X and Y in
this order. Here we make a quick formal computation by simply plugging the limits obtained at one step into the
equation of the next step. It is easy to verified that this computation is justified and we omit it here for clarity.
Since (2.3.9) is equivalent to (2.3.7) but in the slow motion, we take ε = 0 in (2.3.7). We have directly z(t) = z0

for all t ≥ 0 and vi = e−ξ tvi(0)→ 0 asymptotically as t →+∞. Remark that taking vi = 0 in the others equations
leads to the simple change of variables : Ii = I∗zi and Ji = T ∗zi that we can plug in (2.3.4)-(2.3.5)-(2.3.6) to
simplify the explicit computations.
Now we have the following asymptotic limits

Li(t)→ χ3
1
m

FLi(0,z0) = χ3L∗
i (z0).

3We use the usual notation abuse. Rigorously speaking, we have to define X̃(τ) = X
(

τ

ε

)
and the same for each variables. Here we

remove the˜for simplicity.
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Denoting L∗ = (L∗
i )i and plugging this into the equation of X we have:

X(t)→− 1
βT ∗

(
χ1F1

X (0,z0)+χ2F2
X (0,z0)+χ3F3

X (χ3L∗(z0))
)
= X∗(z0).

Remark that by linearity of the F i
X and the fact that χ2

d = χd for each d, we have the simpler formula

X∗(z0) =− 1
βT ∗

(
χ1F1

X (0,z0)+χ2F2
X (0,z0)+χ3F3

X (L∗(z0))
)
. (2.3.10)

Finally, using the same arguments we get
Y (t)→ Y ∗(z0)

wherein we have note

Y ∗(z0) =
1

m+βkT ∗

(
β (S∗−T ∗− kI∗)X∗(z0)+χ1F1

Y (0,z0)+χ2F2
Y (0,z0)+χ5F5

Y (0,z0)
)
.

Now, we take ε = 0 in (2.3.9) and we fix

(X ,Y,L,v)(τ) = Φ(z(τ)). (2.3.11)

Then the 2+2N first equations are satisfied and the N last equations give the slow system

dzi

dτ
= Fzi(X

∗(z),Y ∗(z),L∗(z),0,z). (2.3.12)

It’s important to note that, since v = 0 (2.3.12) then (2.2.14) gives ∑
N
i=1 zi = 1 by the formula Ii = I∗zi. Hence

zi reflects the frequency of strain i for all i. Remark that we have also Ji = T ∗zi.
The Theorem 2.2 imply that the solutions of (2.3.12) together with (2.3.11) gives a good approximation of the
original system (2.3.9) for a small enough but positive ε . Coming back to the original variables of the SIS
system, we deduce the following result on error estimate, whose proof will be given in section 2.4.5.

Lemma 2.5. Let T > 0 be fixed. There exists ε0 > 0 and CT > 0 such that for any ε ∈ (0,ε0) we have for any
solution of (S,(Ii)i,(Ii j)i j)i, j of (2.2.1) and (zi)i of (2.3.12)

∣∣∣S(τ

ε

)
−S∗

∣∣∣+ N

∑
i=1

∣∣∣Ii

(
τ

ε

)
− I∗zi(τ)

∣∣∣+ N

∑
i, j=1

∣∣∣∣Ii j

(
τ

ε

)
− k

I∗T ∗

S∗
zi (τ)z j (τ)

∣∣∣∣≤ εCT , (2.3.13)

Proof. See section 2.4.5.

It remains to compute explicitly the slow system (2.3.12). The following lemma shows that it suffices to
compute independently the system for each perturbation, that is A = {d} for d ∈ {1,2,3,4,5}. The case of a
general A is simply a sum over simple cases thanks to the following result.

Lemma 2.6. Let A ⊂ {1, · · · ,5}. Recall that χd = 1 if d ∈ A and χd = 0 if d /∈ A . The functions Fzi for
i = 1, · · · ,N in (2.3.12) read

Fzi(X
∗(z),Y ∗(z),L∗(z),0,z) =

5

∑
d=1

χdzi f d
zi
(z) ,
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where the functions f d
zi

do not depend on χd .
In particular, if A = {d} for some d ∈ {1,2,3,4,5}, then

Fzi(X
∗(z),Y ∗(z),L∗(z),0,z) = zi f d

zi
(z) .

Proof. Taking vi = 0 in (2.3.8) we see that there is two constant CX and CY such that

Fzi(X
∗(z),Y ∗(z),L∗(z),0,z)= zi

(
CX X∗(z),+CYY ∗(z)+

(
0 1

)
PMA P−1

(
0
1

))
+
(

0 1
)

χ3γP−1

(
0

L∗
i (z)

)
.

Firstly, as it is shown in the proof of the lemma 2.4, the expression of X∗ and Y ∗ are both a linear combination
of the χd .

Secondly, recalling that we have at this step Ii = I∗zi, Ji = T ∗zi, L = χ3L∗ and, in particular, χ2
3 = χ3.

Plugging this in (2.3.7), we see that the matrix MA is also a linear combination of the χd :

MA = ∑
d∈A

M{d} = ∑
d∈{1,2,3,4,5}

χdMd .

denoting md (z) =
(

0 1
)

P−1M{d}P

(
0
1

)
, this yields to:

(
0 1

)
P−1MA P

(
0
1

)
= ∑

d∈{1,2,3,4,5}
χdmd (z) . (2.3.14)

Thirdly, plugging Ii = I∗zi and Ji = T ∗zi, for all i in (2.3.4) we prove that

L∗
i (z) =

1
2m

βkI∗T ∗zi

N

∑
j=1

(ui j +u ji)z j.

Actually, this value L∗ (z) is exact as in (2.4.23) computed in section 2.4.3.
The result follows directly from the three previous points.

In the next section 2.4, these functions f d
zi

are explicitly computed for any d.

2.3.2 Main Results

In the earlier study [140], we computed the slow dynamics for A = {5}, that is for perturbation in ki j = k+εαi j

only, i.e. for strains varying only in their co-colonization susceptibility interactions. We found that the slow
system obeys a replicator equation which has the from

żi = Θzi
(
(Λz)i − zT Λz

)
, i = 1, · · · ,N,

N

∑
i=1

zi = 1
(2.3.15)
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where Θ is a positive constant depending on the parameters of the neutral system and Λ =
(

λ
j

i

)
i, j

is the N ×N

matrix of pairwise invasion fitness among strains where the term of line i and column j was

λ
j

i =
I∗

D∗ (α ji −αi j)+(α ji −α j j) .

We remark that, the notation "dot"-˙(in żi) designates here the derivative temporal for the timescale τ (and this
is also in the rest of this chapter).

In this present article, we show that the system (2.3.15) is true for any type of perturbation. The change
is that the constant Θ and the pairwise fitness λ

j
i depend on the multiple trait variations which occur in the

system. From the Lemma 2.6, we infer in particular that the λ
j

i are just a linear combination of the different
perturbations. This implies that the pairwise invasion fitness between any two strains is an explicit weighted
sum over all fitness dimensions where the two strains vary. More precisely, the main result of this article is as
follows.
Let A ⊂ {1,2,3,4,5}. Using the notations in the previous section, we prove in the 2.4 that (2.3.12) reads.

dzi

dτ
= Θ1zi

(
bi −

N

∑
j=1

b jz j

)
+Θ2zi

(
−νi +

N

∑
j=1

ν jz j

)
+Θ3zi

[
−

N

∑
j=1

(ui j +u ji)z j +
N

∑
j,l=1

(u jl +ul j)zlz j

]

+Θ4zi

[
N

∑
j=1

(ω i
i j −ω

j
ji)z j

]
+Θ5zi

[
N

∑
j=1

(
T ∗

D∗ α ji −
I∗

D∗ αi j

)
z j −

N

∑
j,l=1

α jlz jzl

]
(2.3.16)

where

Θ1 = χ1
2βS∗T ∗2

|P|
, Θ2 = χ2

γI∗ (I∗+T ∗)

|P|
, Θ3 = χ3

γT ∗D∗

|P|
, Θ4 = χ4

2mT ∗D∗

|P|
, Θ5 = χ5

βT ∗I∗D∗

|P|
.

(2.3.17)

Naturally, if A = /0, (2.3.16) becomes simply
dzi

dτ
= 0. Otherwise, if A ̸= /0, it is useful to rewrite (2.3.16)

using the pairwise invasion fitness between strains in (2.3.15). Define

Θ = Θ1 +Θ2 +Θ3 +Θ4 +Θ5 and θi =
Θi

Θ
. (2.3.18)

we see that θi ≥ 0 for each i = 1,2,3,4,5 and θ1 +θ2 +θ3 +θ4 +θ5 = 1. For completeness, if A = /0 then we
set Θ = 1. Using these notations, we obtain our main result.

Theorem 2.7. Consider the system of equations

{
żi = Θzi

(
(Λz)i − zT

Λz
)
, i = 1, · · · ,N,

z1 + z2 + · · ·+ zN = 1.
(2.3.19)

where Λ is the square matrix of size N ×N whose coefficients (i; j) are the pairwise invasion fitnesses λ
j

i which
satisfy

λ
j

i = θ1 (bi −b j)+θ2 (−νi +ν j)+θ3 (−ui j −u ji +2u j j)+θ4

(
ω

i
i j −ω

j
ji

)
+θ5 (µ (α ji −αi j)+α ji −α j j) .

(2.3.20)
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with µ =
I∗

D∗ .
Then, for any initial values of (2.2.1), for each τ0 > 0, T > τ0 arbitrarily and independent on ε , there is ε0 > 0,
C > 0 and a vector of positive coefficients z0 ∈ RN verifying ∑

N
i=1 z0,i = 1, such that ∀ε < ε0

∣∣∣S(τ

ε

)
−S∗

∣∣∣+ N

∑
i=1

∣∣∣Ii

(
τ

ε

)
− I∗zi(τ)

∣∣∣+ N

∑
i, j=1

∣∣∣∣Ii j

(
τ

ε

)
− k

I∗T ∗

S∗
zi(τ)z j(τ)

∣∣∣∣≤ εC, ∀τ ∈ (τ0,T ) . (2.3.21)

where S, (I1, I2, . . . , IN), (Ii j)i, j∈{1,...,N} is the solution of (2.2.1) and (z1,z2, . . . ,zN) is the solution of reduced
system (2.3.19) together with z(0) = z0.

This system (2.3.19) is a general replicator system, which is studied in [102].
We have two remarks on λ

j
i in (2.3.20). The first is that, each coefficient θi, i ∈ {1,2,3,4,5} measures the

weight of each trait perturbation on pairwise invasion fitness. Thus, each λ
j

i is a weighted average of the
perturbations. Secondly, the pairwise invasion fitnesses play an important role in predicting collective dynamics,
since λ

j
i is the pairwise invasion fitness between strains i and j, describing the quantitative initial growth rate of

i invading an equilibrium set by j alone. In a 2-strain system, recall the final outcome results depend on the
signs of the these mutual coefficients between the strains (Table 2.2), mentioned and used in [86, 88, 140].

Table 2.2 From 2-strain invasion dynamics to collective multi-strain dynamics. Each pair of strains in
the system falls in one of 4 classes, according to λ 2

1 and λ 1
2 in (2.3.19): either competitive exclusion of 1,

competitive exclusion of 2, coexistence, or bistability. The N-strain mutual invasion network drives competitive
dynamics over long time.

Mutual invasion
(
λ 2

1 ,λ
1
2
)

Pairwise Outcome N-strain network Strain freq.
(+,+) Stable coexistence

żi = Θzi
(
(Λz)i − zT Λz

)(+,−) Exclusion of type 1

i = 1...N
(−,+) Exclusion of type 2
(−,−) Bistability

λ
j

i = θ1 (bi −b j)+θ2 (−νi +ν j)+θ3 (−ui j −u ji +2u j j)+θ4

(
ω i

i j −ω
j
ji

)
+θ5 (µ (α ji −αi j)+α ji −α j j)

In the next section, we present explicitly all the necessary computations and we also prove the lemma for
the error estimate Lemma 2.5.

2.4 Proofs and explicit computations

Initially, let us recall the following definitions.

• S: total proportion of susceptible hosts

• T : the total proportion of infected hosts (prevalence of colonization)

• Ii: the proportion of hosts singly-colonized by strain-i

• Ii j: the proportion of hosts co-colonized by strain-i then strain- j (Including Iii).
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2.4.1 A = {1}. Perturbations only in transmission rates βi

Here we compute the functions f 1
zi

. In (2.3.7), take ε = 0, χ1 = 1 and χd = 0 for d > 1. It comes

dX
dt

=−βT ∗X +F1
X (v,z)

dY
dt

=β (S∗−T ∗− kI∗)X − (m+βkT ∗)Y +F1
Y (v,z)

dLi

dt
=−mLi

dvi

dt
=−ξ vi

dzi

dt
=0

(2.4.1)

Following the notation of the lemma 2.4, we obtain that the solution (X ,Y,L,v,z) of (2.4.1) with the initial
condition (X ,Y,L,v,z)(0) = (X0,Y0,L0,v0,z0) ∈ R×R× (Rn)3 verifies

lim
t→+∞

(X ,Y,L,v)(t) = (X∗(z0),Y ∗(z0),0,0) .

for some functions X∗(z) and Y ∗(z) which remains to be compute.
Replacing L and v by 0 in the two first equation of (2.4.1) yields

dX
dt

=−βT ∗X +F1
X (0,z)

dY
dt

=β (S∗−T ∗− kI∗)X − (m+βkT ∗)Y +F1
Y (0,z)

(2.4.2)

Note that v = 0 implies that the change of variables (2.2.13) reads simply

Ii = I∗zi, Ji = T ∗zi.

The quantities F1
X (0,z) and F1

Y (0,z) are then easily deducting from (2.3.4)

F1
X (0,z) = βS∗T ∗

N

∑
i=1

b jz j, F1
Y (0,z) = β (S∗− kI∗)T ∗

N

∑
i=1

b jz j. (2.4.3)

Plugging this in (2.4.2), we obtain

X∗(z) = S∗
N

∑
i=1

b jz j

and then

Y ∗(z) = β · S∗2 − kI∗S∗− kI∗T ∗

m+βkT ∗

N

∑
i=1

b jz j = β · S∗2 − kI∗

m+βkT ∗

N

∑
i=1

b jz j.

Now, (2.3.8) with the notation of the lemma 2.6 gives

f 1
zi
(z) =− β

|P|

(
kI∗2 −T ∗D∗+2T ∗2

)
S∗

N

∑
i=1

b jz j +
β

|P|
βkT ∗2

m+βkT ∗

(
S∗2 − kI∗

) N

∑
i=1

b jz j

− β

|P|

(
kI∗2T ∗

N

∑
i=1

b jz j +biD∗T ∗S∗−2biT ∗2S∗− kbiT ∗2I∗
)
.

(2.4.4)
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Denote
G =−D∗T ∗S∗+2T ∗2S∗+ kT ∗2I∗

H =−
(

kI∗2 −T ∗D∗+2T ∗2
)

S∗+D∗
(

S∗2 − kI∗
)
− kI∗2T ∗

(2.4.5)

then G =−H = 2T ∗2S∗ > 0, by straightforward computations. Setting Θ1 =
2βT ∗2S∗

|P|
> 0, we have

f 1
zi
(z) = Θ1

(
bi −

N

∑
j=1

b jz j

)
. (2.4.6)

It follows that the slow system (2.3.12) reads

dzi

dτ
= Θ1zi

(
bi −

N

∑
j=1

b jz j

)
, 1 ≤ i ≤ N. (2.4.7)

Now we will show the simple computations showing that this system is exactly on the form of the replicator
equation (2.3.19). It is clear that the set

{
z ∈ [0,1]N , ∑

N
i=1 zi = 1

}
, is conserved for (2.4.7). Hence, (2.4.6) may

be rewrite as

f 1
zi
(z) = Θ1

(
N

∑
j=1

(bi −b j)z j

)
. (2.4.8)

Denoting pairwise invasion fitness between strains i and j, i invading in an equilibrium set by j, λ
j

i = (bi −b j)

and Λ = (λ j
i ), we have

f 1
zi
(z) = Θ1 (Λz)i . (2.4.9)

Finally, from ΛT =−Λ we see that zT Λz = 0 which leads to the (artificial) representation of (2.4.7) :

dzi

dτ
= Θ1zi

(
(Λz)i − zT

Λz
)
, 1 ≤ i ≤ N. (2.4.10)

which is nothing but the slow system (2.3.19) with λ
j

i = bi −b j.

2.4.2 A = {2}. Perturbations only in clearance rates of single colonization γi

Similarly to the case A = {1}, we compute the functions f 2
zi

. In (2.3.7), take ε = 0, χ2 = 1 and χd = 0 for
d ̸= 2. It comes 

dX
dt

=−βT ∗X +F2
X (v,z)

dY
dt

=β (S∗−T ∗− kI∗)X − (m+βkT ∗)Y +F2
Y (v,z)

dLi

dt
=−mLi

dvi

dt
=−ξ vi

dzi

dt
=0

(2.4.11)

Following the notation of the lemma 2.6, we obtain that the solution (X ,Y,L,v,z) of (2.4.11) with the initial
condition (X ,Y,L,v,z)(0) = (X0,Y0,L0,v0,z0) ∈ R×R× (Rn)3 verifies
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lim
t→+∞

(X ,Y,L,v)(t) = (X∗(z0),Y ∗(z0),0,0) .

for some functions X∗(z) and Y ∗(z) which remains to be compute.
Replacing L, K and v by 0 in the two first equation of (2.4.11) yields

dX
dt

=−βT ∗X +F2
X (0,z)

dY
dt

=β (S∗−T ∗− kI∗)X − (m+βkT ∗)Y +F2
Y (0,z)

(2.4.12)

The quantities F2
X (0,z) and F2

Y (0,z) are then easily deducting from (2.3.4)

F2
X (0,z) =−γI∗

N

∑
i=1

νizi, F2
Y (0,z) =−γI∗

N

∑
i=1

νizi. (2.4.13)

Plugging this in (2.4.12), we obtain

X∗(z) =− γI∗

β 2T ∗

N

∑
i=1

νizi

and then

Y ∗(z) =
γI∗(kI∗−S∗)

T ∗(m+βkT ∗)

N

∑
i=1

νizi.

Now, (2.3.8) with the notation of the lemma 2.6 gives

f 2
zi
(z) =

γ

|P|

[
−νiI∗(I∗+T ∗)+

I∗ (kI∗T ∗−D∗+2T ∗)

T ∗

N

∑
j=1

ν jz j

]
. (2.4.14)

By straightforward computations we can verify that

(−kI∗T ∗+D∗−2T ∗)+T ∗(I∗+T ∗) = 0. (2.4.15)

Setting Θ2 =
γI∗ (I∗+T ∗)

|P|
> 0, we have

f 2
zi
(z) = Θ2

(
−νi +

N

∑
j=1

ν jz j

)
. (2.4.16)

It follows that the slow system (2.3.12) reads

dzi

dτ
= Θ2zi

(
−νi +

N

∑
j=1

ν jz j

)
, 1 ≤ i ≤ N. (2.4.17)

By the same arguments in section 2.4.1, we can show the simple computations showing that this system is
exactly on the form of the replicator equation (2.3.19). Denoting the pairwise invasion fitness

λ
j

i = (−νi +ν j)
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and Λ = (λ j
i ), we have

f 2
zi
(z) = Θ2 (Λz)i . (2.4.18)

Finally, from ΛT =−Λ we see that zT Λz = 0 which leads to the (artificial) representation of (2.4.17) :

dzi

dτ
= Θ2zi

(
(Λz)i − zT

Λz
)
, 1 ≤ i ≤ N. (2.4.19)

which is nothing but slow system (2.3.19) with λ
j

i =−νi +ν j.

2.4.3 A = {3}. Perturbations only in clearance rates of co-colonization γi j

Similarly to the case A = {1}, we compute the functions f 3
zi

. In (2.3.7), take ε = 0, χ3 = 1 and χd = 0 for
d ̸= 3. It comes 

dX
dt

=−βT ∗X +F3
X (L)

dY
dt

=β (S∗−T ∗− kI∗)X − (m+βkT ∗)Y

dLi

dt
=−mLi +FLi (v,z)

dvi

dt
=−ξ vi

dzi

dt
=0

(2.4.20)

Following the notation of the lemma 2.6, we obtain that the solution (X ,Y,L,v,z) of (2.4.20) with the initial
condition (X ,Y,L,v,z)(0) = (X0,Y0,L0,v0,z0) ∈ R×R× (Rn)3 verifies

lim
t→+∞

(X ,Y,L,v)(t) = (X∗(z0),Y ∗(z0),L∗(z0),0,0) .

for some functions X∗(z), Y ∗(z) and L∗(z0) which remains to be compute.
Replacing v by 0 in the two first equation of (2.4.20) yields

dX
dt

=−βT ∗X +F3
X (L)

dY
dt

=β (S∗−T ∗− kI∗)X − (m+βkT ∗)Y

dLi

dt
=−mLi +FLi (0,z)

(2.4.21)

The quantities FLi (0,z) and F3
X (L) are then easily deducting from (2.3.4).

F3
X (L) =−γ

N

∑
i=1

Li, FLi (0,z) =
1
2

βkI∗T ∗zi

N

∑
j=1

(ui j +u ji)z j. (2.4.22)

Plugging this in (2.4.21), we obtain

Li
∗(z) =

1
2m

βkI∗T ∗zi

N

∑
j=1

(ui j +u ji)z j, (2.4.23)
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then we deduce that

X∗(z) =−γkI∗

2m

N

∑
i, j=1

(ui j +u ji)ziz j

and

Y ∗(z) =−βγkI∗(S∗−T ∗− kI∗)
2m(m+βkT ∗)

N

∑
i, j=1

(ui j +u ji)ziz j.

Now, (2.3.8) with the notation of the lemma 2.6 gives

f 3
zi
(z) =

γ

|P|

[
βkI∗T ∗2

m

N

∑
j,l=1

(u jl −ul j)zlz j +
βkI∗T ∗2

m

N

∑
j=1

(ui j +u ji)z j

]
. (2.4.24)

It’s trivial to see that
βkI∗T ∗2

m
= T ∗D∗. Setting Θ3 =

γT ∗D∗

|P|
> 0, we have

f 3
zi
(z) = Θ3

[
−

N

∑
j=1

(ui j +u ji)z j +
N

∑
j,l=1

(u jl +ul j)zlz j

]
. (2.4.25)

It follows that the slow system (2.3.12) reads

dzi

dτ
= Θ3zi

[
−

N

∑
j=1

(ui j +u ji)z j +
N

∑
j,l=1

(u jl +ul j)zlz j

]
, 1 ≤ i ≤ N. (2.4.26)

By the same arguments in section 2.4.1, we can show the simple computations showing that this system is
exactly on the form of the replicator equation (2.3.19). Denoting pairwise invasion fitness

λ
j

i =−ui j −u ji +2u j j

and Λ = (λ j
i ), we have

f 3
zi
(z) = Θ3

(
(Λz)i − zT

Λz
)
. (2.4.27)

Finally, we see the (artificial) representation of (2.4.26) :

dzi

dτ
= Θ3zi

(
(Λz)i − zT

Λz
)
, 1 ≤ i ≤ N. (2.4.28)

which is nothing but replicator system (2.3.19) with λ
j

i =−ui j −u ji +2u j j.
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2.4.4 A = {4}. Perturbations only in transmission coefficients from mixed co-colonization
pi

i j

Similarly to the case A = {1}, we compute the functions f 4
zi

. In (2.3.7), take ε = 0, χ4 = 1 and χd = 0 for
d ̸= 4. It comes 

dX
dt

=−βT ∗X

dY
dt

=β (S∗−T ∗− kI∗)X − (m+βkT ∗)Y

dLi

dt
=−mLi

dvi

dt
=−ξ vi

dzi

dt
=0

(2.4.29)

Following the notation of the lemma 2.6, we obtain that the solution (X ,Y,L,v,z) of (2.4.29) with the initial
condition (X ,Y,L,v,z)(0) = (X0,Y0,L0,v0,z0) ∈ R×R× (Rn)3 verifies

lim
t→+∞

(X ,Y,L,v)(t) = (X∗(z0),Y ∗(z0),0,0) .

for some functions X∗(z) and Y ∗(z) which remains to be compute.
The two first equation of (2.4.29) reads

dX
dt

=−βT ∗X

dY
dt

=β (S∗−T ∗− kI∗)X − (m+βkT ∗)Y
(2.4.30)

So X∗(z0) = 0 and ,Y ∗(z0) = 0. Now, (2.3.8) with the notation of the lemma 2.6 gives

f 4
zi
(z) =

1
|P|

[
2(T ∗)2I∗βk

N

∑
j=1

(ω i
i j +ω

i
ji)z j

]
. (2.4.31)

Note that 2βkT ∗2I∗ = 2mT ∗D∗. From ω i
ji =−ω

j
ji we see that the slow system (2.3.12) reads

dzi

dτ
= Θ4zi

N

∑
j=1

(
ω

i
i j −ω

j
ji

)
z j, 1 ≤ i ≤ N (2.4.32)

with Θ4 =
2mT ∗D∗

|P|
.

Denote the N ×N matrix Ω = (ω i
i j)i, j and Λ = Ω−ΩT . We may rewrite this equation as

dzi

dτ
= Θ4zi ((Λz)i) , 1 ≤ i ≤ N. (2.4.33)
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Finally, noting that Λ =−ΛT is skew symmetric, we have zT Λz = 0 so the slow equation reads

dzi

dτ
= Θ4zi

(
(Λz)i − zT

Λz
)
, 1 ≤ i ≤ N. (2.4.34)

which is nothing but (2.3.19) with λ
j

i = ω i
i j −ω

j
ji.

Remark that, this system leads to family of closed trajectories of an odd number Ñ of persistent strains
but it is structurally unstable (except if Ñ = 1), see [47]. Hence, in this case A = {4} we need to compute the
term in ε2 in the expansion, which we do not do in this text. However, when there are perturbations in other
terms then the deviation in this trait conducts to interesting non trivial dynamics, which is shown in sections
2.5.3 and 2.5.3.2. This is similar to the case of large µ with perturbation in co-colonization interaction factor ki j,
i.e. A = {5}, see [88]. We find that for µ → 0 and random αi j, we have a case of Generalized Lotka-Volterra
(GLV) dynamics with constant growth rates and random interactions. Meanwhile, if µ ≫ 1, dynamics converge
to hyper-tournament dynamics studied by [10] for anti-symmetric matrix of interaction W with Wi j =±1; and
by [95] for the case in which all the eigenvalues of W+WT are negative.

2.4.5 Proof of lemma 2.5 of error estimate

Lemma 2.8. The solution (zi)i=1,...,N of the slow-fast form system (2.3.9) tends to the solution of the slow
system (2.3.12) as ε → 0 locally uniformly in time on [τ0,T ], with τ0 > 0, T > τ0 arbitrarily and independent
on ε .

Proof. It suffices to verify the conditions for Tikhonov’s theorem, see Theorem (2.2).
• Firstly, we prove that (2.3.9) with initial values possesses the unique solution.
The system (2.3.9) with initial values can be rewritten into

dx
dτ

= f (x), x(0) = x0, (2.4.35)

where x = (X ,Y,L,v,z), then x(τ) ∈ R3N+2. We note that the function f of (2.4.35) is a vector function with
all the components are polynomial of variables (X ,Y,L,v,z) (explicitly computed in sections 2.2.4, 2.4.3 and
2.4.4)and we work in the bounded set [0,T ] of time where all the functions (X ,Y,L,v,z) are differentiable.
Hence, f is global Lipschitz and the uniqueness of solution for (2.3.9) follows, according to the Picard-Lindelof
Theorem, see Theorem 2.2 in [194].
Implement analogously for (2.3.12), we acquire the same conclusion for the uniqueness of solution.

• Secondly, by the proof of lemma 2.4, we have that the solution (X ,Y,L,v,z) of (2.3.7) with any initial
condition

(X ,Y,L,v,z)(0) = (X0,Y0,L0,v0,z0) ∈ R×R× (Rn)3

verifies z(t) = z0 for all t ≥ 0 and
lim

t→+∞
(X ,Y,L,v)(t) = Φ(z0)
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asymptotically, in which, Φ(z) = (X∗(z),Y ∗(z),χ3L∗(z),0) satisfy the system (2.3.9) in slow timescale, with
ε = 0 as follows

0 =−βT ∗X +χ1F1
X (v,z)+χ2F2

X (v,z)+χ3F3
X (L)+O(ε)

0 =β (S∗−T ∗− kI∗)X − (m+βkT ∗)Y +χ1F1
Y (v,z)+χ2F2

Y (v,z)+χ5F5
Y (v,z)

0 =−mLi +χ3FLi (v,z)

0 =−ξ vi

(2.4.36)

Applying Tikhonov’s Theorem, we have the required conclusion.

Let us now approximate the solution of the original dynamics (2.2.1) using the solution of slow-fast form
2.3.9, when ε is small enough.

Lemma 2.9. Under our assumptions, for any initial values of (2.2.1), there exists τ0 > 0 and initial value z(τ0)

of (2.3.9), such that for any T > τ0, there are ε0 > 0 and CT > 0 satisfies ∀ε < ε0∣∣∣S(τ

ε

)
−S∗

∣∣∣+ N

∑
i=1

∣∣∣I∗zi(τ)− Ii

(
τ

ε

)∣∣∣+ N

∑
i=1

∣∣∣T ∗zi(τ)− Ji

(
τ

ε

)∣∣∣≤ εCT , (2.4.37)

for all τ0 ≤ τ ≤ T , where (S, Ii,Ji)i=1,...,N verifies (2.2.1) and (z1, . . . ,zN) is the solution of (2.3.9).

Proof. To prove this lemma, we make two steps, one is to prove the error estimate between S∗, T ∗, I∗ and the
solution (S,T, I) of (2.2.5), the other one is approximating the solutions of (2.2.5) using the solution of (2.3.9).

• First step, we wish to apply the Expansion Theorem 2.3. Note that, if (2.2.5) satisfies the conditions
of Theorem 2.3 because of the property of global Lipschitz, then it will also fulfill the conditions of the
Picard-Lindelof, see Theorem 2.2 in [194]. Thus, if that, for each initial value, (2.2.5) always has the unique
solution. Therefore, it’s suffices to verify the two conditions mentioned in Theorem 2.3, including the global
Lipschitz properties.

Denote x = (S, I1, I2, . . . , IN ,J1,J2, . . . ,JN). By the extract of (2.2.5) for S, Ii,Ji, 1 ≤ i ≤ N, we write the system
for (S,T, Ii,Ji), i = 1, . . . ,N in (2.2.5) into the following form

dx
dt

= f0(t,x)+ ε f1(t,x) (2.4.38)

and in any bounded domain |t − t0| ≤ h we have

1. f0(t,x) is continuous in t, continuously differentiable in x;

2. f1(t,x) continuous in t,x, Lipschitz-continuous in x.

According to this extraction, f0(t,x) and f1(t,x) are well-defined. Note that the function f0(t,x) has the
( fS(t,x), fI1(t,x), . . . , fIN (t,x), fJ1(t,x), . . . , fJN (t,x)) for fS, fIi , fJi are functions R2N+1 → R, for all 1 ≤ i ≤ N.
The function f1(t,x) has the same form as well.
It’s easy to see that f0(t,x) is continuous in t, continuously differentiable in x and the function f1(t,x) continu-
ous in t,x. It remains to prove that f1(t,x) is Lipschitz-continuous in x in each bounded domain |t − t0| ≤ h, for
all h ∈ R+. Indeed, f1(t,x) is a polynomial in multi variables (S,T, Ii,Ji), i = 1, . . . ,N, and note that S+T = 1.
In consequence, it is Lipschitz-continuous.
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By the earlier arguments, if xr = (Sr,T r, Ir
i ,J

r
i ) satisfies the neutral system (2.2.7) and x = (S,T, Ii,Ji)1≤i≤N

satisfying (2.2.5) then ∥x− xr∥R2N+2 = O(ε).

Therefore, note that I = ∑
N
i=1 Ii, we deduce the solution of (2.2.5) can be approximated using neutral sys-

tem. Combine with the arguments in section 2.2.3, the approximation of solution (S,T, I) of (2.2.5) by
(S∗,T ∗, I∗) is accordingly plausible in the sense of O(ε). We have done our first step.

• Second step, we claim that all the algebraic and linear transformations from (2.2.5) to (2.3.9) are equivalent
with error estimate O(ε), including changing (S,T, I) to (X ,Y ) using S∗,T ∗, I∗ (proved in the first part), chang-

ing

(
Ii

Ji

)
to

(
vi

zi

)
(linear operator) and changing to time scale τ = εt with re-denote z(τ) (see argument in

(2.3.9)). We follow the steps of the preceding proof, that are verifying the conditions, and using Expansion
Theorem 2.3 once again (note that v(τ)→ 0 asymptotically), we have that

N

∑
i=1

∣∣∣I∗zi(τ)− Ii

(
τ

ε

)∣∣∣+ N

∑
i=1

∣∣∣T ∗zi(τ)− Ji

(
τ

ε

)∣∣∣= O(ε) ,

for all τ0 ≤ τ ≤ T , where (Ii,Ji)i=1,...,N verify (2.2.1) and (z1, . . . ,zN) is the solution of (2.3.9).

Combining two parts, we have the conclusion for this lemma.

By two lemmas 2.8 and 2.10, we have that

∣∣∣S(τ

ε

)
−S∗

∣∣∣+ N

∑
i=1

∣∣∣I∗zi(τ)− Ii

(
τ

ε

)∣∣∣+ N

∑
i=1

∣∣∣T ∗zi(τ)− Ji

(
τ

ε

)∣∣∣≤ εCT , (2.4.39)

for all τ0 ≤ τ ≤ T , where (S, Ii,Ji)i=1,...,N verifies (2.2.5) and (z1, . . . ,zN) is the solution of (2.3.12).

Finally, we will find an approximation of Ii j, 1 ≤ i ≤ N and estimate the error. Indeed, according to (2.4.39),
we substitute Ii (t) by I∗zi (τ)+O(ε) and J j (t) by T ∗z j (τ) in all of the equations for Ii j (t), 1 ≤ i, j ≤ N we
have the equations

dIi j (t)
dt

= βiki j(I∗zi (τ)+O(ε))(T ∗z j (τ)+O(ε))−mi jIi j (t) , 1 ≤ i, j ≤ N, (2.4.40)

which becomes
dIi j (t)

dt
=−mIi j +βkI∗T ∗zi (τ)z j (τ)+O(ε), 1 ≤ i, j ≤ N. (2.4.41)

Now we formulate and prove the result for approximations of Ii j, 1 ≤ i, j ≤ N, then deduce the approximation
and error estimate for the whole initial system (2.2.1).

Lemma 2.10. Under our assumptions, for any initial values of (2.2.1), there exists τ0 > 0 and initial value
z(τ0) of (2.3.12), such that for any T > τ0, there is ε0 > 0 and CT > 0 satisfies ∀ε < ε0

N

∑
i, j=1

∣∣∣∣Ii j

(
τ

ε

)
− k

I∗T ∗

S∗
zi (τ)z j (τ)

∣∣∣∣≤ εCT , (2.4.42)
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for all τ0 ≤ τ ≤ T , (Ii j)1≤i, j≤N satisfying (2.2.1) and (z1, . . . ,zN) is the solution of reduced system (2.3.12).

Proof. Assume
(

Ir
i j

)
1≤i, j≤N

to be the solution of

dIi j (t)
dt

=−mIi j (t)+βkI∗T ∗zi (εt)z j (εt) , (2.4.43)

1≤ i, j ≤N. Then, for each τ0 > 0 and T > τ0, after the changing time scale τ = εt, we have
N
∑

i, j=1

∣∣∣Ii j

(
τ

ε

)
− Ir

i j

(
τ

ε

)∣∣∣=
O(ε) for any τ ∈ [τ0,T ]. Indeed, from (2.2.1) and (2.4.43), we have that

dIi j

dt

(
τ

ε

)
=−mi jIi j

(
τ

ε

)
+β jki jIi

(
τ

ε

)
J j

(
τ

ε

)
dIr

i j

dt

(
τ

ε

)
=−mIr

i j

(
τ

ε

)
+βkI∗T ∗zi (τ)z j (τ)

(2.4.44)

which implies

d
dt

(
Ii j

(
τ

ε

)
− Ir

i j

(
τ

ε

))
=−m

(
Ii j

(
τ

ε

)
− Ir

i j

(
τ

ε

))
−εγui jIi j

(
τ

ε

)
+
(

β jki jIi

(
τ

ε

)
J j

(
τ

ε

)
−βkI∗T ∗zi (τ)z j (τ)

)
.

(2.4.45)
By lemma 2.9, we have that

∣∣∣β jki jIi

( s
ε

)
J j

( s
ε

)
−βkI∗T ∗zi(s)z j(s)

∣∣∣ = O(ε) uniformly for s ∈ [τ0,T ]. It is

trivial to note that, since
∣∣Ii j
∣∣ ≤ 1, εγui j

∣∣∣Ii j

(
τ

ε

)∣∣∣ = O(ε). Then, for all 1 ≤ i, j ≤ N, using the expansion
theorem- Theorem 2.3, we observe that ∣∣∣Ii j

(
τ

ε

)
− Ir

i j

(
τ

ε

)∣∣∣= O(ε). (2.4.46)

We then compute the solution
(

Ir
i j

)
1≤i, j≤N

of (2.4.43) to be

Ir
i j (t) = e−mt

(
βkI∗T ∗

∫ t

0
emszi (εs)z j (εs)ds+C

)
, C ∈ R. (2.4.47)

For any fixed time T and τ0 ≤ t ≤ T , when ε → 0 we can regard zi (εt) invariant. Hence, for all 1 ≤ i, j ≤ N,

we have
∣∣∣∣Ir

i j (t)− k
I∗T ∗

S∗
zi (εt)z j (εt)

∣∣∣∣= O(ε), which implies
∣∣∣∣Ii j

(
τ

ε

)
− k

I∗T ∗

S∗
zi (τ)z j (τ)

∣∣∣∣= O(ε).

Combining Lemmas 2.8,2.9 and 2.10, we have the Lemma 2.5.

Thanks to this section, we now have the main result for the error estimate, that allows us to approximate
the solution of the original system (2.2.1) using the solution of slow system (2.3.19). The original system
(2.2.1) now formally reduces to the slow system (replicator system) (2.3.19), which leads to many advantages
in analysis and prediction. The massive number of equations in (2.2.1) now decreases from N2 +N +1 to N
equations of (2.3.19), which helps in computation and time. Thus, we may not need to compute the whole
original model (2.2.1) to make prediction but only the replicator equations (2.3.19). The main result in section
2.3.2 also has biological meaning, when the coefficients of slow system (2.3.19) are pairwise invasion fitness,
giving information about survival outcome of 2-strain system as in table 2.2. Furthermore, λ

j
i ’s give us the

meaning and effects of each trait perturbation on the system and its long time behavior, which can not be seen
directly in the (2.2.1).
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2.5 Illustrations of the model and interpretations

In this section, we present some results and simulations about survival outcome of model based on the replicator
system (2.3.19). Initially, we recall the definition of basic reproduction ratio of strain i that is the expected
number of secondary cases produced by a single (typical) infection of strain i in a completely susceptible

population and computed by R0,i =
βi

mi
. If there is only variation in transmission rates among strains, then R0,i’s

fully determine the unique winner in the system. Yet, in cases of variation in transmission and clearance rates, it
can be shown that R0,i’s alone do not determine the survival outcome anymore because of the feedbacks induced
by persistence in the coinfection compartment. These phenomena are illustrated in proofs and numerical
simulations as follows in this section.

2.5.1 Competitive exclusion due to variation in transmission and infection clearance
rates only, A = {1}, A = {2}, and A = {1,2}

2.5.1.1 Variation in transmission rate or infection clearance rates A = {1} or A = {2}

Now, we show the competitive exclusion principle in this case CA with A = {1}. In these cases, the competitive
exclusion principle holds: the species with the largest R0,i is the only survivor.

Theorem 2.11. Assume that A = {1} and b1 > b2 ≥ ·· · ≥ bN . Then E1 = (1,0, . . . ,0) is globally stable in
(0,1)× [0,1]N−1 ∩{u ∈ RN : ∑

N
i=1 zi = 1}.

This result means that, the strain with the largest basic reproduction number is the best competitor. However,
in general, this fact does not always occurs, which we will illustrate in later subsection.

Proof. For simplicity, denote D = (0,1)× [0,1]n−1 ∩{u ∈ RN : ∑
N
i=1 zi = 1}.

We aim to use LaSalle’s invariant principle. Consider V (u) =− lnz1. Since we are consider the coexistence in
D, then

dV (u)
dτ

=−Θ1

(
b1 −

N

∑
j=1

b jz j

)
=−Θ1

(
b1

N

∑
j=1

z j −
N

∑
j=1

b jz j

)
=−Θ1

N

∑
j=1

(b1 −b j)z j. (2.5.1)

It’s straightforward that V (u)> 0 because 0 < z1 < 1 in D. Because of the assumption b1 = max{bi;1 ≤ i ≤ N}

then b1 −b j must be positive for all j ̸= 1. Recall that Θ1 > 0 then,
dV (u)

dτ
≤ 0. We have that

dV (u)
dτ

= 0 ⇔ (b1 −b j)z j = 0, ∀ j ⇔

{
z j =1, j = 1

z j =0, j ̸= 1.
(2.5.2)

Thus, V (u) is a Lyapunov function associated to u(τ). Applying LaSalle’s invariant principle, we obtain our
solution u tends to E1 asymptotically.

Analogously, we have a similar result for A = {2}, that states that, the strain with smallest single infection
clearance rate (longest duration of carriage) is the unique survivor.

Theorem 2.12. Assume that A = {2} and ν1 < ν2 ≤ ·· · ≤ νN . Then E1 = (1,0, . . . ,0) is globally stable in
(0,1)× [0,1]N−1 ∩{u ∈ RN : ∑

N
i=1 zi = 1}.

The proof for this result uses the same argument in the theorem 2.11 so we do not present it.
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2.5.1.2 Variation in transmission and single infection clearance rates, A = {1,2}

In this subsection, it is shown that R0,i’s do not determine the unique survivor anymore when A = {1,2} by
constructing a counterexample. Firstly, we need an auxiliary lemma. With system CA with A = {1,2}, we try
to make a result similar to Theorem 2.11 about the longtime scenarios of competition for

dzi

dτ
= Θ1zi

(
bi −

N

∑
i=1

b jz j

)
+Θ2zi

(
−νi +

N

∑
i=1

ν jz j

)
z1 + z2 + · · ·+ zN = 1.

(2.5.3)

Recalling that Θ1,Θ2 > 0 by definitions, we can prove the following theorem stating that the competitive
exclusion occurs again but depends on the parameters of the neutral model though the quantity Θ1b j −Θ2ν j

which characterizes the unique survivor.

Theorem 2.13. Assume in (2.5.3) with N strains, there exists a strain, namely 1, satisfies Θ1b1 −Θ2ν1 =

max
1≤ j≤N

{Θ1b j −Θ2ν j}. Then E1 = (1,0, . . . ,0) is globally stable in D = (0,1)× [0,1]N−1 ∩{u ∈ RN : ∑
N
i=1 zi =

1}.

Proof. Analogously to the earlier result in section 2.5.1, we want to apply LaSalle’s invariant principle. Consider
the function V (u) =− lnz1 then by our hypothesis, it’s easy to see that V (u)> 0 and

dV (u)
dτ

=−
N

∑
j=1

(Θ1b1 −Θ2ν1 −Θ1b j +Θ2ν j)z j ≤ 0. (2.5.4)

Hence, V (u) is an association Lyapunov function. The equation
dV (u)

dτ
= 0 is equivalent to

{
[(Θ1bi −Θ2νi)− (Θ1b j −Θ2ν j)]z j =0, 1 ≤ j ≤ N

z1 + z2 + · · ·+ zN =0
(2.5.5)

which is equivalent to (z1,z2, . . . ,zN) = (1,0, . . . ,0). By LaSalle’s invariant, E1 is globally stable in D.

We next come to see how this result is used in the forthcoming examples. We then compare the results with
relations of R0,i to see how basic reproduction numbers affect the final competitive outcomes. Firstly, with the
perturbations existing in clearance rates, the R0,i now becomes

R0,i =
βi

mi
=

β + εbi

m+ ενi
=

β

m
(1+

ε

β
bi)
(

1− ε

m
νi

)
+O(ε2), (2.5.6)

which is equivalent to R0,i =
β

m
+ ε

β

m

(
bi

β
− νi

m

)
+O(ε2).

Hence, note that R0 =
β

m
we have that R0,i ≤ R0, j if and only if bi −b j ≤ R0 (νi −ν j) when ε → 0.

Example 2.14. Consider the system (2.5.3).
Initially, we can directly apply Lemma 2.13 and infer that the strain, called 1, satisfying Θ1b1 −Θ2ν1 =

max
1≤ j≤N

{Θ1b j −Θ2ν j} will be the winner.

Yet, unlikely to such result in section 2.5.1, according to the explicit calculation on R0,i, we can construct so
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that this strain 1 may not have the biggest basic reproduction number. Indeed, Θ1bi −Θ2νi ≥ Θ1b j −Θ2ν j is
equivalent to

bi −b j ≥
1
2

γ

β
R0

1
1+ k (R0 −1)

(
1

1+ k (R0 −1)
+1
)
(νi −ν j) . (2.5.7)

We can choose bi, νi, 1 ≤ i ≤ n and γ > 0, r > 0, k > 0 and R0 > 1 such that for j ̸= 1,
b1 −b j ≥

1
2

γ

β
R0

1
1+ k (R0 −1)

(
1

1+ k (R0 −1)
+1
)
(ν1 −ν j) ,

b1 −b j ≤ R0 (ν1 −ν j) ,

(2.5.8)

then strain 1 has Θ1b1 −Θ2ν1 = max
1≤ j≤N

{Θ1b j −Θ2ν j} and R0,1 = min
1≤i≤N

{R0,i}.

It is possible because
1
2

γ

β
R0

1
1+ k (R0 −1)

(
1

1+ k (R0 −1)
+1
)
< R0

and we can pick, for instance, ν1 = max
1≤ j≤N

{ν j}, then easily find satisfactory bi,νi.

This example shows us that, even a strain i with smallest basic reproduction number R0,i can be the single
competitively exclusive strain if there is variation in both transmission and clearance rates in a system with
co-infection. Explicitly, the strain 1 is the only survivor but it has the smallest R0.

Hence, we can see that, even when there is competitive exclusion, R0,i alone still do not determine the
winner if there are perturbations in the transmission rates and clearance rates. More detailed consideration of
such effects and interplay between parameters for the 2-strain general system is provided in [119]. To close this
subsection, we present simulations in figure 2.2 of competitive exclusion to illustrate claims in sections 2.5.1.1
and 2.5.1.2. We choose the 10-strain system and plot frequencies of strains in two cases: perturbation in only
transmission rates βi; and, perturbation in transmission rates βi and in clearance rates of single colonization γi.

2.5.2 Variation in clearance rate of co-colonization may yield coexistence

2.5.2.1 Variation in clearance rate of co-colonization only, A = {3}

In this case, the very first claim about competitive outcomes of the system is that, in contrast to the above cases
A ⊂ {1,2}, there can be coexistence of strains. Indeed, in this case the system can be rewritten on the form
of a replicator system with a symmetric matrices for which several results exists (see in particular [102]). In
particular we have :

Theorem 2.15. Let A = {3} which means variation in coinfection clearance rates only. The system (2.3.19)
may be rewritten as  żi = 2Θ3

(
((−Ū)z)i − zT (−Ū)z

)
, 1 ≤ i ≤ N

z1 + · · ·+ zn = 1.

where the symmetric matrix Ū = 1
2

(
U +UT

)
is symmetric part of the matrix of perturbation U = (ui j)1≤i, j≤N .

In particular, the function z 7→ zTŪz is a strict Lyapunov function and any positive asymptotic equilibria z∗ are
globally stable.

Proof. We refer here to the theorem 7.8.1 page 82 of [102] for the results about a replicator system with a
symmetric matrix A. Then we only have to prove that the system (2.3.19) may be rewritten in terms of the
symmetric matrix −Ū .
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Fig. 2.2 Illustration of competitive exclusion dynamics for N = 10 when strains vary in transmission and clear-
ance rates. We choose the parameter values of the neutral system β = 4, m = 2, γ = 1 and k = 1.5. The
variation of β is given by b =

(
b1 b2 . . . bN

)
and is set to be the equal in both cases and equals b =(

0.25 −0.2 0.125 −0.125 0.075 0.225 0.05 −0.5 −0.175 0
)
. The matrix of νi in (b) is chosen to be

ν =
(
1 0.8 −1.5 −0.5 0.3 −1 1.2 −2 0.7 −2

)
. (a) Strains vary only in transmission rates βi: A = {1}.

(b) Strains vary in transmission and clearance rates βi,γi: A = {1,2}. We can see that competitive exclusion is the only
outcome in either case. However in (a) the strain with the highest reproduction number will persist while all other strains
will go extinct. In contrast, in (b) the coinfection parameters matter, and it is not true that the strain with highest R0 will
persist. In this example strain 10 has highest basic reproduction number but strain 6 is the ultimate winner, because of its
exact advantage in clearance rate (as explained in Example 2.14).(Data & Codes )

This comes from the following general fact in the replicator equation. Let x = (x j)1≤ j≤N be a vector and
A = (ai j)1≤i, j≤N and C = (ci j)1≤i, j≤N be two N ×N matrix such that ci j = ai j + x j. For every z = (z1, · · · ,zn)

we have

(Cz)k − zTCz =
N

∑
j=1

ck jz j −∑
i, j

ci jz jzi =
N

∑
j=1

ak jz j +
N

∑
j=1

x jz j −∑
i, j

ai jz jzi −∑
i, j

x jz jzi, 1 ≤ k ≤ N.

If ∑
N
i=1 zi = 1 then ∑i, j x jz jzi = ∑

N
j=1 x jz j which yields

(Cz)k − zTCz = (Az)k − zT Az, 1 ≤ k ≤ N.

The proof follows from the explicit expression of (2.3.19) when A = {3} and by taking ai j =
1
2 λ

j
i = u j j −

1
2 (ui j +u ji), x j =−u j j and ci j =− 1

2 (ui j +u ji).

Two important features of the dynamics in the case A = {3} are:

• Large possibilities of stable coexistence steady states.

• The parameters of the neutral models affect only the speed of the dynamics, given by Θ3, but not the
qualitative behavior. The latter depends only on the symmetric part of the perturbation U = (ui j).

For an illustration of this case, we take the following example.
We consider a system of N = 10 strains with A = {3}. In figure 2.3, we plot strains frequencies for multiple
values of k showing that the same coexistence equilibrium of 3 strains is achieved with a speed dependent on k.
Note that a similar effect would hold if we vary R0.

54

https://github.com/lthminhthao/quasineutral_coinfection_N-strains_multiple-variations/blob/master/1_competitive_exclusion.ipynb


THE QUASI-NEUTRAL MODEL FOR N STRAINS

Fig. 2.3 Strain coexistence is possible when there is variation in coinfection clearance rate and the speed of the
dynamics depends on the parameters of the neutral model. Here, we illustrate coexistence dynamics under the effect of
k for k = 0.2 (a), k = 1 (b) and k = 5 (c). In the top sub-panels we show the dynamics of 10 strain frequencies. We choose
β = 4, and basic reproduction number R0 = 2. It can be seen that as k increases, the system tends to its stable state faster.
In figures (a, b, c), three strains 2, 4, 7 coexist after a long time. (Data & Codes)

We note that the speed of the dynamics is given by

Θ3 =
γT ∗D∗

|P|
=

γT ∗

2T ∗+ S∗
k

(
1+ m

m+βkT ∗

) ,
which increases with k. Thus, in this case, increasing k only multiplies whole matrix Λ by a factor, which
increases the speed of the convergence to the stable state of coexistence.

2.5.2.2 Variation in transmission and coinfection clearance rates, A = {1,3}

When A ⊂ {1,2,3}, the perturbations occur both on traits {1} and {2} leading on competitive exclusions and
on {3} leading on coexistence. Thus the relative weights of the perturbation, depending on the parameters on
the neutral model, will affect the qualitative outcomes of the dynamics among strains.

Hence, unlike in section 2.5.2.1, the qualitative behavior does not depend only on the pertubations bi, νi and
ui j but also on the values of the parameters of the neutral model. A precise generic result is out of the scope of
this paper.
For simplicity, consider the case A = {1,3}. From the formula λ

j
i = Θ1(bi −b j)+Θ3(−ui j −u ji +2u j j), we

infer that the larger the ratio Θ3
Θ1

is the more chance a coexistence may happen. From

Θ3

Θ1
=

R0

2
γ

m
k +βT ∗ ,

we see in particular that this ratio increases with k. This is illustrated in the figure 2.4. We see in this figure that
shifting k alters qualitatively the dynamics and the ultimate outcome among strains. In figure 2.4(a) k = 0.1
and the only winner is strain 8, whereas for k = 1, figure 2.4(b), then the winners turn to strain 3 and 6. Finally,
for k = 3, the outcome in figure 2.4 (c) is the coexistence of strains 2, 4 and 7.
Note that the short explanation above, gives only an overview of the phenomena and do not explain all the
details. For instance, we observe that the set of coexistent species depends on the value of k in a complex maner.
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Fig. 2.4 The final ecological outcome can shift with changing vulnerability to coinfection, when strains vary
in transmission and coinfection clearance rates. We illustrate coexistence dynamics for k = 0.1 (a), k = 1 (b),
k = 3 (c). In the top sub-panels we show the dynamics of 10 strain frequencies. We choose β = 4, R0 = 5 and
γ = 0.5. We keep the initial values in 2.3 and the matrix of value’s bi as follows, in which bi is in cell i-th(
0 −0.2 0.125 −0.125 0.225 0.75 0.5 1.25 −0.175 0

)
. We plot for multiple values of k respectively

equal to 0.1, 1 and 3, to show effects of k to transient phenomena. It can be seen that as k increases, changes the survival
strains. (Data & Codes)

2.5.3 Variation in transmission probability from mixed carriage may lead to cycles
among strains.

In this subsections, we make simulations in which variation at least in transmission probability from mixed
carriage, 4 ∈ A . Despite of the antisymmetric matrix of pairwise invasion fitness Λ =

(
λ

j
i

)
i, j

as in cases

A = {1} and A = {2}, there are many long time behaviors that may occur in this case. In [47], one proves
that there can be coexistence with higher possibility than competitive exclusive of one strain. However, when
there are combinations with other trait perturbation, the outcome survival can shift due to neutral parameters,
which will be presented in the next subsections 2.5.3.1 and 2.5.3.2.

2.5.3.1 Variation in transmission rates and transmission probability from mixed carriage, A = {1,2,4}

We make simulations when perturbations in transmission rates βi and transmission capacity of a strain by a host
co-colonized. From (2.3.19) when A ⊂ {1,2,4}, the equations for this case can be written as

dz
dτ

= z · (Λz)

where anti-symmetric matrix Λ is the invasion fitness matrix with

Λ
j
i = Θ1 (bi −b j)+Θ2 (ν j −νi)+Θ4

(
ω

i
i j −ω

j
ji

)
.

this type of replicator equation is known as a zero sum games tournaments from which several results are
known (see [47]). In particular the set E of persistent strains is unique, regardless the initial values, and the
number of persistent strains is odd.

• If this odd number is 1, then the competitive exclusion principle occurs, as we saw above in the particular
case /0 ̸= A ⊂ {1,2}.
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• If this odd number is above 1, the system is conservative and structurally unstable: there is a family of
cycles around a single steady states of these strains E. This is possible thus the effect of a perturbation in
ω i

i j (i.e. 4 ∈ A ).

As in the section 2.5.2.2, the parameters of the neutral models affect the relative weight of the pertubation
and therefore the type of outcomes.

In figure 2.5, we take A = {1,4}. We have

Θ4

Θ1
=

k (R0 −1)
1+ k (R0 −1)

=
1

µ +1
.

Hence, changing µ =
1

k (R0 −1)
shift the dynamics outcome. When µ = 0.6, i.e. small enough, makes

Θ1

Θ4
large yielding to a cycle of 3 persistent strains. Conversely, µ = 1.2 large enough leads to the competitive
exclusion.

Fig. 2.5 The long time behavior can shift with changing the co-infection prevalence
(
µ = I

D
)

rate, when
strains vary in transmission rate and transmission coefficients from mixed carriage. We illustrate co-
existence dynamics for µ = 0.6 (a) and µ = 1.2 (b). We choose β = 3, γ = 1.2, R0 = 2 and b =(
0.3 −0.8 2.4 −0.5 0.9 2 1.2 1 −0.7 0.5

)
. It can be seen in this case that an increase in µ (reduc-

ing co-infection prevalence), shifts the cycle of persistent strains in (a), to the competitive exclusion of strain 3-with biggest
transmission rate βi in (b). (Data & Codes)

2.5.3.2 Variation in coinfection clearance rates and transmission probability from mixed carriage,
A = {3,4}

When there are perturbations in coinfection clearance rates and transmission probability from mixed carriage,
pairwise invasion fitness matrix Λ is not anti-symmetric anymore. The analysis of the sections 2.5.2.1 and

2.5.3.1 suggest that, depending on the ratio
Θ4

Θ3
, we may observe coexistence through stable steady states if

Θ4

Θ3
≪ 1 and through cycles if

Θ4

Θ3
≫ 1. We have the explicit formula

Θ4

Θ3
=

2m
γ

= 2
(

1+
r
γ

)
,
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then, depending on the values of r and γ , we can have other interesting phenomena.
We make simulations for two cases of r, susceptible host recruitment rate. When r = 0.2 small enough, we
obtain the coexistence of 3 strains, that is structurally stable, although it oscillates in a first period of time.
When r = 3 large enough, the coexistence of strains becomes structurally unstable. It can be seen that, the
number of coexistent strains is 3, which is odd as mentioned.

Fig. 2.6 The long time behavior can shift with changing neutral transmission rate, when strains vary in transmission
rate and transmission coefficients from mixed carriage. We illustrate coexistence dynamics for r = 0.2 (a) and r = 3
(b). We choose k = 3, R0 = 2, γ = 1 and reuse the initial values in figure 2.3. As r increases, the stable state coexistence of
3 strains in (a), shifts to the unstable trajectory of strains in (b). (Data & Codes)

2.5.4 Summary of multi-strain outcomes by studying the slow system

In general, when there are many traits varying among similar strains, the long time behaviour may lead to
complex outcomes. However, in cases of single trait perturbations only A = { j} , the outcome is often easier
to understand.

• If j ∈ {1,2,3,4} (the cases explored within this section), then we can prove or refer to existing results to
predict the dynamics. In particular, in these cases, the values of the pairwise invasion fitness Λi j do not
depend on the parameters of the neutral system and then
If A = { j} with j ∈ {1,2,3,4} the qualitative outcomes do not depend on the parameters of the
Neutral model.

• If j = 5 (perturbation in ki j only) the outcomes are more complex, and an introduction to the phenomena
is given in [88]. In particular, the pairwise invasion fitness reads λ

j
i = α j j −α ji + µ(α ji −αi j) and

depends on the parameter µ =
I∗

D∗ =
1

k(R0 −1)
. It follows that

if A = {5} the qualitative outcome does not depend on the parameters of the Neutral model.

In the Table 2.3 we give a summary of the multi-strain system behavior when there are perturbations in only
one trait.

In general, when there are perturbations in several traits, the qualitative outcomes result in a complex
manner from each single case. The weight of each perturbation in the λ

j
i ’s, and thus on the qualitative dynamics,

is governed exactly by the Θi’s, which are explicit functions of the parameters of the neutral system. Hence, if
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the ratio between the Θi is changing we may observe a change in the qualitative dynamics. This implies that a
change in any of the global parameters of the neutral model (k, R0, r, γ , β ) may affect not only the speed of the
dynamics, but also, and in a complex manner, the type of the dynamics.

Table 2.3 Summary of multi-strain outcomes for each case of a single trait varying. Note that all the
Θi admits the same denominator |P| =

(
2T ∗2 − I∗D∗) > 0. Since, only the ratio between the Θi impact the

qualitative behavior, we represent the values of |P|Θi.

Trait varying Formula of |P|Θi Type of dynamics

1. Transmission rates βi 2βS∗T ∗2 Competitive exclusion

2. Single infection clearance rates γi γI∗ (I∗+T ∗) Competitive exclusion

3. Co-infection clearance rates γi j γT ∗D∗ Possibility of Coexistence

4. Transmission probability from mixed carriage ps
i j 2mT ∗D∗ Family of cycles

5. Co-colonization interaction factor via altered suscepti-
bilities, ki j

βT ∗I∗D∗ Anything

2.6 Concluding remarks

This mathematical study provides a fundamental advance in understanding analytically quasi-neutral dynamics
between multiple strains in a co-infection system. Until now, explicit and general derivations of coinfection
dynamics among N strains are very rare in the literature [4, 140]. Previous studies have considered N = 2,
N = 3 or N-strain dynamics without coinfection, typically with variation in just one fitness dimension. Others
have sketched the conceptual framework linking neutrality with non-neutral dynamics [128]. Here, we go
beyond the state of the art, and provide a full analytical characterization of the coinfection dynamics among N
strains that vary along multiple fitness dimensions, under the assumption that such variation is relatively small.
We complete a series of studies based on slow-fast dynamics, made explicit, for linking neutral and non-neutral
dynamics in interacting multi-strain pathogens [86, 88, 140].

Naturally in this endemic compartmental model, infectious strains compete for susceptible and singly-
colonized hosts, which are the only resources that can favour their growth and propagation. The different traits
provide each strain with variable fitness advantages or disadvantages in exploiting such dynamic resources
in the system, and interact together to shape multi-strain selection. We establish some remarkable results by
simplifying the dynamics when small perturbations arise in the clearance rates, transmission rates, within-host
competitiveness coefficients, as well as co-colonization susceptibility interaction factors between strains. We de-
rive the corresponding slow-fast form for the global dynamics, with the system of strain frequencies completely
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explicit, and provide the formal approximation for solutions of all epidemiological variables by quantifying
error estimates. We reduce the complexity of N2 +N +1 equations of the original SIS compartmental model to
the N-equations of replicator dynamics, which reduces substantially time for computation.

Instead of studying concurrently all compartmental variables, our approach separately considers the neutral
system and the perturbation components, then integrates them at the final stage. It would be possible to
obtain a solution immediately for the whole emergence within perturbations in all traits. Nevertheless, such an
undertaking in our view would involve many massive and complicated manipulations, and hence constitute a
more difficult route than the one chosen here. This difficulty led us to the main lemma, Lemma 2.6. This result
enables us to integrate all particular cases for the most general problem. It only leaves us concrete special cases,
with the same structure, but simpler.

As a first step, we comprehend the neutral model and deduce the globally asymptotically stable state of
variables (S,T, I) by (S∗,T ∗, I∗), which give us a conservation law for global quantities in the co-infection
system: susceptibles prevalence, total colonization and single colonization prevalence, reached in a fast time
scale. The expansion theorem in [200] plays a role as the first step in bridging between neutrality and the
slow-fast system. Thanks to new variables zi, denoting strain frequencies, and the new time-scale τ = εt,
understanding the emergent model now becomes an exploration of the so-called replicator system for {zi}1≤i≤N .
This derivation makes sense, in light of Tikhonov’s theorem. The model with perturbations is consequently
well approximated by the slow-fast formulation, which helps us to explicitly demonstrate error estimates in
term O(ε) as well.

Concerning the system of strain frequencies, we find out and work in the invariant set {u ∈ RN+ : z1 + · · ·+
zN = 1}. In general, by interpreting pairwise invasion fitness numbers in each singular perturbation case, the
closing equations at each section become special instances of the same replicator system of {zi}1≤i≤N . This
enables us to study the relative dominance of strains, longtime scenarios of dynamics and other important
properties of coexistence and competition. Such a replicator system always admits the competitive exclusion
equilibria Ei = (0,0, . . . ,1, . . . ,0). An essential and sufficient condition for the linear asymptotic stability of
such trivial steady state Ei, is that the pairwise invasion fitness numbers λ i

j (for all j ̸= i) must be negative.
Another remarkable sequel is that there is at most one I -coexistence solution for any nonempty subset I

given. Other well-known results for the replicator equation can be applied directly to our case, and linked with
epidemiological processes and dynamics.

Whereas many deterministic multi-strain models rely on the presence of immune interactions to generate
oscillations in multi-strain dynamics [62, 92, 73] typically focusing on a small number of strains (up to N = 4),
other factors such as natural heterogeneities or stochasticity have also been implicated in regular or chaotic
oscillations in single-strain and ecological predator-prey systems [24, 147, 12], including spatial effects in
multi-strain contexts [137]. However, as argued by [113], the precise assumptions that lead to oscillations
in different strain models are yet to be established, and hence represent an area of constant investigation.
In our study, we have contributed to close further the gap in this area, by providing a direct link between
SIS multi-strain epidemiology with coinfection, and the replicator equation for N strains, where oscillatory
regimes are naturally expected, and have a substantial history of study [102]. We know that in our model,
for any parameter combinations that make the pairwise invasion matrix

(
λ

j
i

)
approach the anti-symmetric

numerical structure, multi-strain relative frequencies will tend to display oscillations similar to dynamics in
zero-sum games ([89, 140]). Remarkably, with the λ

j
i entirely explicit in this model, one can envision several

mechanisms and trait trade-offs by which oscillations, whether regular or irregular, are the rule and not the
exception. Inevitably, this will require an in-depth investigation, links with existing models, and biological
interpretation in the future.
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It is exciting to envision how this approach could be extended to other epidemiological models of multi-
strain dynamics. An essential requirement is that their embedded neutral system admits a central manifold
which is globally stable. The challenge would then be to identify the equations governing slow motion on this
manifold in each specific model. Until now we have not considered a spatial component to the multi-strain
dynamics. A further perspective is considering space and a diffusion model for the replicator equation (e.g see
[35]). Many more extensions and model applications to data in an explicit manner should be now within reach
in the near future. As argued in [140, 89], this coinfection model and its dynamics could also be translated by
analogy to other biological scales, e.g. the colonization dynamics of multi-species communities [10, 95] or gut
microbiota within host [70], which would open new frontiers for application, interpretation and computational
tool development.
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Chapter 3

Disentangling two-strain system

This chapter 3 is the work in the paper "Disentangling how multiple traits drive 2 strain frequencies in SIS
dynamics with coinfection" with Dr. Erida Gjini and Dr. Sten Madec, 2021, see [119].

3.1 Introduction

Epidemiological models of coinfection have a long history of study [122, 4, 165, 146, 199, 154, 145, 195,
6]. Examples of multi-strain infectious agents where coinfection processes appear and shape epidemiology
include Streptococcus pneumoniae bacteria [127, 90], Bordetella pertussis [163], Mycobacterium tuberculosis
[53], Staphylococcus Aureus, [173] and many others, comprising plants [192, 97], and also inter-species co-
colonization such as between Haemophilus Influenzae and pneumococcus serotypes [144, 52] and coinfection
with different viruses [81]. Typically the strain-defining parameters vary much less within than between species.
However, until now, models have not leveraged the conceptual and analytic advantages of strain similarity to
the full extent, except for the classical comparisons between strain-specific basic reproduction numbers.

While it has long been recognized that in coinfection systems, basic reproduction numbers alone do not
determine strain competitive dynamics [165, 199], a generic framework to integrate variation among strains
along several phenotypic axes and coinfection, and map these directly to strain frequencies, has not been
developed. Moreover, until now simplified versions of traits involved in SIS dynamics between two strains
have been addressed: either modeling vulnerability to coinfection as a single parameter [6], or focusing just on
cross-strain competition [127], four-way competitive interactions via altered susceptibilities to coinfection [90],
exclusively cooperative dynamics [49], or focusing on transmission and clearance rate variation [145, 195].

A key level of strain interactions in coinfection is the within-host level, where the order and timing of arrival,
can matter for onward transmission or clearance. Such interactions when studied empirically have revealed
strong priority effects, where the first arriving genotype has an advantage over later arriving ones [63, 97].
Independently of the underlying mechanisms, whether via host immunity, resource overlap within host or others,
priority effects have repercussions on disease dynamics and parasite assemblage dynamics at higher scales. Yet,
the full extent of the inter-dependence between this trait and other traits involved in epidemiological dynamics
remains poorly understood. Thus, although several aspects of coinfection have been studied, typically with
simulations or analyses restricted to special cases and particular models, a comprehensive and concise theoretical
framework for how coinfection prevalence broadly interplays with multiple traits between 2 coinfecting agents
in endemic systems is still missing.
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In this paper, we describe and study a general system for epidemiological dynamics of similar co-infecting
entities (e.g. discrete strains of the same infectious agent or similar species) that comprise a rich ecological and
epidemiological phenomenology. Such a system could apply, but not be limited to, polymorphic Streptococcus
pneumonia bacteria or other commensal bacteria [127, 51, 90, 61]. We generalize a previously- introduced
quasi-neutral Susceptible-Infected-Susceptible (SIS) framework for 2 circulating strains and co-infection, where
we showed that asymmetries in pairwise susceptibilities to co-infection create frequency-dependent advantage
for one of the strains and can give rise to coexistence, bistability as well as competitive exclusion between
strains [90, 86]. Here, we study additional variation between two microbial strains, namely, in other traits
besides vulnerability to co-infection, including transmission rate and duration of carriage, two classical traits
that are known to vary among colonizing pneumococcus serotypes [1], but in general can also vary among
two arbitrary infectious agents, e.g. an antibiotic-resistant and an antibiotic-sensitive strain. Furthermore, we
also allow for variation in transmission biases from co-infected hosts carrying a mixture of two strains, and in
duration of coinfection episodes, where priority effects can play a role, adding new layers where competitive
abilities and asymmetries can manifest. Until now analytic solutions for how such systems behave in time have
not been obtained, although theoretical models have studied the conditions for coexistence vs. competitive
exclusion or used numerical simulations as an approach in specific cases [127, 209, 90, 5, 98].

The novelty of our approach lies in applying singular perturbation theory to a quasi-neutral model, whereby
we obtain a timescale separation, similar to [86], in order to express the total dynamics as a fast plus a slow
component, related to broken symmetries along 5 traits between strains: transmission rate βi, clearance rate
γi, coinfection duration γi j, pairwise vulnerabilitites to coinfection ki j, and transmission priority effects from
coinfection pi

i j. Net competition dynamics can be complex because all traits interact nonlinearly to determine
final strain fitness at the host population level, but here we make such selective process entirely explicit.
Moreover, we show how the strain-transcending parameters, defining the neutral model at the center, feed back
on the strain dynamics on the slow timescale, and tune the net importance of each phenotypic axis.

The bigger N-strain SIS model with coinfection is derived in [120], where all the formal mathematical
details leading to a replicator equation that governs multi-strain frequency dynamics are provided. Here, we
apply this framework to the simpler N = 2 case, and study in depth the emergent ecology mediated by different
epidemiological traits. While in the general N− strain case analytical expressions for equilibrium frequencies
can only be obtained in special cases, as shown by [140, 120], in the N = 2 system, considered here, equilibrium
frequencies are entirely explicit. This allows us to provide exact analytical results on qualitative and quantitative
shifts in system behavior (coexistence vs. exclusion) with coinfection prevalence across a wide spectrum of
biological scenarios.

As in [86, 140], we assume only up to 2 strains may co-infect a host (MOI=2). We model how primary
infection by one strain alters host susceptibility to secondary strains, (increasing or decreasing it) by a factor ki j,
relative to uninfected hosts, without acquired immunity. The altered susceptibilities to co-infection, given by
a 2×2 matrix in the case of 2 strains, can comprise antagonistic or facilitative interactions (ki j < 1 or ≥ 1).
Beyond enabling competition and cooperation to be studied under the same framework, our model allows
also for any asymmetries in this coinfection susceptibility matrix, as for the coinfection clearance rate matrix,
depending on strain composition, and for transmission biases from coinfected hosts, depending on order of
strain arrival.

Considering the complex epidemiological multi-strain dynamics in fast and slow components has many
analytic and computational advantages as argued in [140, 120]. Our neutral model satisfies the criteria for
ecological and population-genetic neutrality discussed in the context of ‘no coexistence for free’ [128], but
much more than a neutral null model, our approach highlights the neutral model as the core organizing centre
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of the multi-strain dynamics. This is made entirely explicit via the slow-fast timescale separation formalism
[140, 120], linking neutral and non-neutral dynamics in an ‘organic’ manner, and showing how parameters of
the neutral model impact significantly on the slow frequency-dependent selection dynamics between strains,
and tune the ecological feedbacks among different traits.

While the multi-strain SIS model with coinfection that we analyze here is deterministic, it should lend itself
easily to later implementations of stochasticity. Although stochasticity has been rarely studied for coinfection
models, the role of stochasticity in epidemiological models in general has a long history of investigation,
involving analyses of pathogen transmission in finite or structured populations [25, 20, 160, 109, 8], simulations
of pathogen diversity [74], simulations of explicit host contact structure [100, 173], individual-based simulations
[61], studies of the role of environmental fluctuations in global parameters and seasonality for disease dynamics
[117, 179], up to statistical inference and parameter estimation [108]. While it is well-known that stochastic
models can differ in outcomes and are more challenging to analyze than deterministic counterparts, having a
solid analytical grip on the dynamic behavior of a deterministic coinfection model for multi-strain dynamics,
should be considered a fundamental theoretical step for subsequent advances toward stochasticity.

Our paper is organized as follows. First, we describe the epidemiological framework. Secondly, we expose
and elaborate on a closed and generic analytic solution for 2-strain frequency dynamics over the slow time-
scale, in a changing fitness landscape shaped by multi-trait variation. This solution coincides with a version
of the classical replicator equation in 2 dimensions [103], but with an explicit payoff matrix derived from
5-dimensional trait variation between strains relatively weighted in the overall pairwise invasion fitness [120].
Third, we analyze why and how coexistence, bistability or competitive exclusion of either strain may occur
between any two strains, for a fixed given trait variation between them. Fourth, we focus our attention on an
in-depth analytic investigation of how strain-transcending mean-field gradients can shift the same system across
these regimes, for different values of global R0 or coinfection prevalence, detailing the context-dependence of
net outcomes. Finally, we conclude with a roadmap for biological applications. We believe our analysis and
approach offer a fresh perspective, to quantify and predict how multiple traits together shape coinfecting strain
dynamics and final equilibria via joint and nonlinear population feedbacks.

3.2 The modeling framework

3.2.1 The SIS model with coinfection

We study an infectious agent transmitted in a host population following Susceptible-Infected-Susceptible
dynamics, where there are two co-circulating strains (denoted by 1 and 2). Susceptible hosts S can acquire
any strain i, by which they enter the single infection (colonization) compartment Ii. Singly-infected hosts
Ii can acquire any secondary strain j, leading them to enter the coinfection (co-colonization) compartment
Ii j. As in the pioneering model by [199], an important epidemiological feature here is that hosts can be
coinfected twice by the same strain (I11 and I22 compartments). Without this assumption, a rare strain always
has an advantage: it can infect hosts already infected by the common strain while the common strain has few
hosts to coinfect. Co-colonized and singly-colonized hosts transmit at equal total rate, and hosts carrying a
mixture of two different strains transmit any strain i with a given probability pi

i j which can be different from
1/2 and may depend on the order of arrival within-host (e.g. pi

i j ̸= pi
ji). The model follows the structure in

[90, 86], but here we have a more general model, allowing for more trait variation between strains. In [86],
only pairwise susceptibilities to co-infection were modeled as different between strains (2-by-2 matrix of ki j

coefficients), and this was sufficient to generate stabilizing mechanisms for coexistence. Here, in addition to ki j,
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Fig. 3.1 SIS coinfection model diagram for two strains (N = 2) and multivariate selection dynamics. a. The model
follows the structure in [86] but here two strains can differ in: transmission rate βi, clearance rate γi, co-colonization
clearance rate γi j, altered susceptibilities to co-colonization ki j and transmission biases from coinfection pi

i j. Thus any
combination of relative fitness costs and advantages can be encapsulated, provided that their variation is not too big, as
expected for similar conspecific strains, or similar infectious co-circulating ‘species’. Non-carriers (S) become carriers of
either strain 1 or 2 (Ii) with force of infection Fi = βi

(
Ii + Iii +∑i j

(
pi

i jIi j + pi
jiI ji

))
where the mixed carriage compartment

(Ii j) may transmit either strain with a slightly biased probability away from 1/2 depending on the order of arrival (see
[120]). Here 1/γi is the strain-specific duration of single colonization, 1/γi j are the composition-specific durations of
co-colonization, which can vary for all four Ii j classes. The coefficients ki j capture the altered relative susceptibilities
to co-colonization between strains, when a host is already colonized, and transitions from primary colonization to co-
colonization. The parameter r is the natural birth/death rate of the host. b. Assuming strain similarity, the epidemiological
dynamics in such an SIS model with coinfection, can be decomposed into a fast (neutral) component and slow (non-neutral)
component. The slow dynamics are shown to follow an explicit replicator equation which includes in the net payoff matrix
variation across 5 dimensions of fitness for each strain [120]. This equation allows to predict analytically the entire temporal
dynamics of two strains as a function of their epidemiological phenotypes. c. We simulate an example of 2-strain system in
two timescales. On the fast time-scale (o(1/ε)), strains follow neutral dynamics, driven by mean-field parameters, where
total prevalence of susceptibles, single infection and co-infection stabilize. On a slow time-scale, εt, within conserved
global epidemiological compartments, complex non-neutral dynamics between strains takes place, depicted here by the blue
and green shadings. d. Each system can be in one of four scenarios between 2 strains, depending on the signs of mutual
invasion fitnesses (e.g. dynamics in c corresponds to the black point in the coexistence region). We find that frequency
dynamics are explicitly governed by the λ

j
i . In our model, invasion fitnesses are explicit functions of strain variability along

different traits and global mean-field parameters.

we model strain-specific transmission rate, βi, and clearance rate γi, as well as coinfection clearance rates γi j

and transmission biases from coinfection pi
i j, depending on strain composition in coinfection. Thus we describe

two types of priority effects: at the between-host level in terms of the ki j, and at the within-host level in terms
of the pi

i j. Recruitment of susceptibles happens at per-capita rate r, assumed equal to the natural mortality rate.
The scheme of the model for two strains is given in Figure 3.1. The explicit dynamical system of equations for
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the N-strain version of this epidemiological model is derived in [120], and given by:

dS
dt

=r(1−S)+
N

∑
i=1

γiIi +
N

∑
i, j=1

γi jIi j −S
N

∑
i=1

Fi,

dIi

dt
=FiS− (r+ γi)Ii − Ii

N

∑
j=1

ki jFj, 1 ≤ i ≤ N,

dIi j

dt
=ki jIiFj − (r+ γi j)Ii j, 1 ≤ i, j ≤ N,

(3.2.1)

where in our case for N = 2, i, j ∈ {1,2}, and the force of infection for each strain is given by:

Fi = βi

(
Ii +

N

∑
j=1

(
pi

i jIi j + pi
jiI ji
))

, (3.2.2)

3.2.2 The similarity assumption

Some conventions and notations for the parameters in a multiple-trait model, under the similarity assumption
between strains, are given in Table 3.1, where strain-specific parameters are defined in terms of relative variation
from a common reference. For example, strain-specific transmission rates are described as βi = β (1+ εbi).
In particular, in this approach ε gives the scale of the perturbation around neutrality, which must be relatively
small for the quasi-neutral approximation to hold, whereas the magnitudes of the perturbations in different traits
are captured by ∆b = bi −b j, etc. which may be large. Furthermore, it is important to note that there is not a
unique representation in terms of ‘scale × magnitude’ of perturbations for a particular system. For example
there are many possibilities preserving ε∆b = β1−β2

β
, for fixed β1,β2 close to each other. In our framework, the

magnitudes and directions of the perturbations in transmission rates, given by b1, b2 provide a description of
how far proportionally from the common reference β are the two respective transmission rates, when measured
in the scale of ε . Since we have many traits varying simultaneously, the choice of the appropriate ε must
be convenient in order to describe all parameters under a common scale. In practice, capturing multivariate
dissimilarity between two strains under the same scale, will involve an intermediate choice of ε balancing the
requirement of relatively small for the approximation to hold, and sufficient for the slow dynamics to be of
significant ecological/observational relevance. However, mathematically speaking, for the slow-fast method to
be applied, the only requirement is that ε has to be as small as needed and that the perturbations bi, νi etc. are
fixed.

To obtain the fast-slow decomposition, we rewrite the system 2.2.1 in terms of new aggregate variables
as in [140], such as the total prevalence of colonized hosts T , the total prevalence of hosts transmitting either
strain Ji, the total prevalence of single colonization I, and co-colonization D:

T =
2

∑
i=1

Ii +
2

∑
i, j=1

Ii j, Ji = Ii +
2

∑
j=1

(
pi

i jIi j + pi
jiI ji
)
, I =

N

∑
i=1

Ii, D = T − I. (3.2.3)

Following similar technical steps as in [140], and applying Tikhonov’s theorem [196], we have derived for the
N strain model in [120] that during the fast timescale, strains behave as neutral (all parameters are identical
between them) and each global aggregated variable tends to its equilibrium: S → S∗, T → T ∗, I → I∗ and

D → D∗ as ε → 0. With the basic reproduction number in this system denoted R0 =
β

m
, this equilibrium is
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Table 3.1 Conventions and notations of parameters and variables, where we assume the traits are numer-
ically close for closely-related strains, or similar infectious entities. This similarity assumption (0 < ε ≪ 1,
small) forms the basis for dynamic decomposition into fast and slow components [120].

Parameter Interpretation Specification Features
Original system
(Quasi-neutral)
βi = β (1+ εbi) Strain-specific transmission rates ∆b = b1 −b2 Favours 1 if ∆b > 0
γi = γ (1+ ενi) Strain-specific clearance rates of single

colonization
∆ν = ν2 −ν1 Favours 1 if ∆ν > 0

γi j = γ (1+ εui j) Clearance rates of co-colonization with
i and j

∆iu = 2u j j − (ui j +u ji) Favours i if ∆iu > 0

ps
i j =

1
2
+ εωs

i j Transmission probability 1 of s ∈ {i, j};
from a host co-colonized by strain-i then
- j (priority effects).

∆ω = ω1
12 −ω2

21 Favours 1 if ∆ω > 0

ki j = k+ εαi j Relative factor of altered susceptibility
to co-colonization between colonizing
strain i and co-colonizing strain j

∆iα = α ji −α j j +µ(α ji −αi j) Favours i if ∆iα > 0

Embedded
neutral system
(Fast):
r Susceptible recruitment rate Equal to natural mortality Host turnover ↑
β Transmission rate (infectiousness) β > 0 Transmission ↑
γ Clearance rate of single infection Equal to clearance rate of co-

infection, γ > 0
Transmission ↓

m Net infected host turnover rate m = r+ γ R0 ↓
R0 Basic reproduction number R0 = β/m > 1 Colonization ↑
k Altered susceptibility to co-infection

when infected
k > 0 k ≥ 1: facilitation, k < 1:

competition
µ Single to co-infection ratio µ = 1

(R0−1)k Monotone in R0 and k
Non-neutral system
(Slow):
θ1 Weight of transmission rate axis βi (µ +1)2 Depends on µ

θ2 Weight of clearance rate axis γi
γ

2(γ+r)

(
2µ2 +µ

)
Depends on µ,γ,r

θ3 Weight of co-infection clearance rate
axis γi j

γ

2(γ+r) (µ +1) Depends on µ,γ,r

θ4 Weight of transmission priority effects
from co-infection axis pi

i j

µ +1 Depends on µ

θ5 Weight of susceptibilities to co-
infection axis ki j

1
2k

Depends on k

given by:

S∗ =
1

R0
, T ∗ = 1−S∗, I∗ =

T ∗

1+ k(R0 −1)
, D∗ = T ∗− I∗. (3.2.4)

and the ratio of single infection to co-infection is given by µ =
I∗

D∗ =
1

k(R0 −1)
.
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Further, during the slow time scale εt, strains are not equivalent, their differences in fitness start to get
manifested, and what follows is non-neutral dynamics at the level of strain frequencies zi. For a 2-strain system,
there are four possibilities for the equilibrium: i) coexistence, ii-iii) exclusion of each strain, and iv) bistability
of competitive exclusion states, also known as a priority effect. Below, these outcomes and their dynamics are
shown to depend explicitly on mutual invasion growth rates between two strains.

3.2.3 Pairwise invasion fitness and replicator dynamics via timescale separation

In this more complex model, we follow the same reasoning as in [140], focusing on mutual invasion fitnesses,
to express the selective dynamics occurring on the slow time scale. We will define λ

j
i to be invasion fitness of

strain i in an equilibrium set by strain j alone, a classical approach in adaptive dynamics [85]. Initially, based
on [120] and Chapter 3 equation (2.3.17), we redefine θi via the global quantities and parameters of the neutral
model:

θ1 =

(
T ∗

D∗

)2

, θ2 =
γI∗ (I∗+T ∗)

2mD∗2 , θ3 =
γT ∗

2mD∗ , θ4 =
T ∗

D∗ , θ5 =
β I∗T ∗

2mD∗ . (3.2.5)

As derived in detail in [120] and Chapter 3 equation (2.3.20), we have that, in our model with multi-trait
variation between strains, for i, j ∈ {1,2}, the mutual invasion fitnesses are given by:

λ
j

i = θ1 (bi −b j)+θ2 (−νi +ν j)+θ3 (−ui j −u ji +2u j j)+θ4

(
ω

i
i j −ω

j
ji

)
+θ5 (µ (α ji −αi j)+α ji −α j j) .

(3.2.6)
This analytic expression sums the relative contributions of multiple trait variations at the same time, with
the weighting constants θi defined above and given explicitly in Table 3.1. By the notations of λ

j
i , setting

Λ =
(

λ
j

i

)
i, j∈{1,2}

, system (3.2.1) on the slow timescale εt, can be approximated by the replicator equation


dz
dτ

= Θz
(
Λz− zT

Λz
)

z1 + z2 + · · ·+ zN = 1
(3.2.7)

for variables z = (z1,z2) denoting strain frequencies, where the overall speed of dynamics Θ is given by:

Θ =
2mD∗2

2T ∗2 − I∗D∗ =
2m

2µ2 +3µ +2
. (3.2.8)

When there is just variation in co-infection susceptibility coefficients ki j, we recover the model and the Θ in
[140]. Further, recall in [140] the term zT Λz is denoted as Q and referred to as mean invasibility of the system,
capturing resistance of the system to invasion by outsiders [89]. In the 2-strain system, more explicitly we have:
Q = zT Λz = (λ 2

1 +λ 1
2 )z1z2, and this quantity is positive only in the case of coexistence between two strains.

In this slow-fast derivation, epidemiological variables of the original model (system 2.2.1) are then a function
of strain frequencies of the slow system:

Ii(τ) = I∗zi(τ) and Ii j(τ) = D∗zi(τ)z j(τ), (3.2.9)

69



DISENTANGLING TWO-STRAIN SYSTEM

where I∗ and D∗ give the overall prevalence of single infection and co-infection in the endemic system (neutral
model), and zi and ziz j give the proportions occupied by strain i and the pair of strains i and j, among singly
infected hosts and co-infected hosts respectively.

3.3 General outcomes of the 2-strain system

3.3.1 Equilibria of the system

Denote by z∗ = (z∗1,z
∗
2) the nonzero equilibrium state of (3.2.7), where strain frequencies are given by:

(z∗1,z
∗
2) =

(
λ 2

1

λ 2
1 +λ 1

2
,

λ 1
2

λ 2
1 +λ 1

2

)
.

Depending on the signs of both invasion growth rates, we therefore have conditions for λ 2
1 and λ 1

2 , leading to
four ecological scenarios between two strains as in [140] (see Table 3.2). Thus, to investigate the equilibria

Table 3.2 System equilibria for 2-strain dynamics according to λ 2
1 and λ 1

2 as expected from the replicator
equation (3.2.7)

Mutual invasion
(λ 2

1 ,λ
1
2 )

Outcome Strain frequencies Quadratic form Q =
zT Λz

(+,+) Stable coexistence z∗1 > 0, z∗2 > 0: 1
λ 2

1 +λ 1
2

(
λ 2

1
λ 1

2

)
Q > 0 and Q → Q∗

(−,+) Exclusion of type 1 z∗1 = 0, z∗2 = 1 Q → 0
(+,−) Exclusion of type 2 z∗1 = 1, z∗2 = 0 Q → 0
(−,−) Bistability z∗1 = 1,or z∗2 = 1 Q < 0 and Q → 0

and their stability in this 2-strain system, it suffices to study the values and signs of pairwise invasion fitness
coefficients

(
λ 2

1 ,λ
1
2
)
, given explicitly as follows:

λ
2
1 = θ1 (b1 −b2)+θ2 (ν2 −ν1)+θ3 (−u12 −u21 +2u22)+θ4

(
ω

1
12 −ω

2
21
)
+θ5 (µ (α21 −α12)+α21 −α22)

λ
1
2 =−θ1 (b1 −b2)−θ2 (ν2 −ν1)+θ3 (−u21 −u12 +2u11)−θ4

(
ω

1
12 −ω

2
21
)
+θ5 (µ (α12 −α21)+α12 −α11) ,

(3.3.1)
while their sum is λ 2

1 +λ 1
2 = 2θ3 (u11 +u22 −u12 −u21)+θ5 (α12 +α21 −α11 −α22) . It’s not easy to deter-

mine the exact long time scenario or the winner in a two-strain system because parameters with perturbations
affect all together the dynamics. The table 3.2 gives us criteria to determine the long time behavior. However,
instead of computing the fitness coefficients explicitly in each case, we can base on (3.3.1) to determine quickly
and for a various range of cases. Inspecting closely equations (3.3.1), we can see two parts:

1. The part θ1∆b+θ2∆ν +θ4∆ω +θ5µ (α21 −α12), which keeps the
(
λ 1

2 ,λ
2
1
)

close to the line λ 2
1 +λ 1

2 = 0,
i.e. the dynamics tend to exclusion of one strain.

2. The part θ3∆2u+θ5 (α21 −α22) , which pulls
(
λ 1

2 ,λ
2
1
)

away from the line λ 2
1 +λ 1

2 = 0, i.e. driving the
dynamics toward coexistence or bi-stability.

This makes it easy to see that variation in transmissibility (∆b) or duration of infection between strains (∆ν),
and the precedence effect in transmission from mixed coinfection (∆ω), always promotes competitive exclusion
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in the system, whereas variation in coinfection parameters (susceptibilities and clearance rates) can oppose
competitive exclusion.

3.3.2 An overview on four system outcomes dependent on R0 and k

What determines competitive exclusion?

The competitive exclusion occurs if and only if λ 2
1 > 0 and λ 1

2 < 0 or reversely, λ 2
1 < 0 and λ 1

2 > 0.
By (3.3.1), taking R0 → 1+ or k → 0+, which implies µ → ∞, makes the nonlinear part tends to 0, which leads
to the competitive exclusion, in the general case when variations occur in all traits. This remark coincides with
the result about µ = 1

(R0−1)k in [88].
We note that a biologically feasible range for R0 and k is: 1 ≤ R0 ≤ 10 and 0 ≤ k ≤ 10, thus we use values

of these parameters in such range to illustrate our model behavior through simulations. However, the model is
general to accommodate any other positive values of such parameters.
Next, we will consider the case if we take µ → ∞, which implies R0 → 1+ or k → 0+, and determine the strain
winning in competitive exclusion.

As mentioned, we can rewrite pairwise invasion fitness so that we highlight two opposing terms, where
the first one, is completely anti-symmetric in the reverse λ 1

2 , thus contributes only to competitive exclusion.
Whereas, the second term in the square bracket captures the trait variation that may lead to outcomes beyond
exclusion. Here, recall that, if we impact on the system so that R0 → 1 or k → 0 to get the phenomenon of

exclusion, then
θ2

θ1
→ γ

γ + r
, and

θ3

θ1
,

θ5

θ1
go to 0. Hence, the second part tends to 0 and determination of

winner/extinct strain depends on the sign of

θ1 (b1 −b2)+θ2 (ν2 −ν1)+θ4

(
ω

i
i j −ω

j
ji

)
+θ5µ (α21 −α12) . (3.3.2)

If the sign of this expression is positive then strain 1 will be the winner strain and vice versa. Generally,
using these arguments, it is still hard to consider exactly the single winner without computing explicitly the
term (3.3.2). The final answer will depend on the advantage in terms including transmission ∆b, duration
of carriage ∆ν , transmission probability of a strain from a co-colonized host ω1

12 −ω2
21 and susceptibility to

co-colonization (α21 −α12). We will study particular cases in the next sections, but an overview of the range of
possible scenarios is given in Table 3.3.

What determines coexistence?

By the previous arguments, in order to have the coexistence of two strains, in our model with coinfection,
the essential condition is R0 > 1 and k > 0 large enough. Coexistence opportunities can only come from
advantages that may arise in coinfection. In other words, this requires the ratio of single to co-colonization µ

tend to 0. In conclusion, from the analysis until here, we have that:

1. The perturbations only in βi, γi and pi
i j lead to the competitive exclusion. Thus strain-specific transmission

and/or clearance rates, and the strain-specific transmission biases from mixed co-colonized hosts only
create forces favouring exclusion in the system.

2. The perturbations in co-colonization clearance rates and susceptibilities, γi j and ki j, create more complex
scenarios including exclusion of each strain, coexistence or bistable exclusion steady states. Thus,
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Table 3.3 Which trait variation between 2 strains leads to which final outcome? Scenarios of variation in biological
parameters analyzed with the quasi-neutral coinfection SIS model for 2-strains, and the final ecological outcome of
their dynamics. There can be exclusion of strain 1 (E1), exclusion of strain 2 (E2), coexistence (C), and bistability (B).
Not all trait variations lead to coexistence. In a majority of scenarios, for a given set of trait variation on ≥ 2 trait axes,
the final outcome between two strains may shift with coinfection prevalence in the system.

Ecology Exclusion Axis Coexistence-Bistability Axis Final outcome for 2 strains
Nr. traits
varying

βi γi pi
i j γi j ki j

Possible equilibria with given trait
variation

1 × × × × E1 or E2 (depends on Ri
0)

1 × × × × E1 or E2 (depends on Ri
0)

1 × × × × E1 or E2 (depends on ω1
12 −ω2

21)
1 × × × × E1, E2, C, B (depends on ui j)
1 × × × × E1, E2, C, B (depends on αi j,(∗∗)
2 • • • × × E1 or E2 (∗)
3 × × E1 or E2 (∗∗)
≥ 2 • • • × E1, E2, C, B (#)
≥ 2 • • • × E1, E2, C, B (#)
≥ 2 • • • E1, E2, C, B (#)

The role of co-infection (co-colonization) as a potential gradient modulator for system behavior:
(*) In this case, for any combination of fixed trait variation between two strains (with traits denoted by • varying or not varying), there is only
competitive exclusion and up to one shift is possible as a function of µ (I∗/D∗). Thus the system can shift from Exclusion of 1 → Exclusion of 2 or
vice versa, only once, because of a particular overall coinfection prevalence (D/T = 1/(µ +1)).

(**) In this case, for any combination of fixed trait variation between two strains, only competitive exclusion is possible, but now up to 2 shifts are
possible as a function of µ (I∗/D∗). Thus the system can shift three times between opposite exclusion equilibria, because of overall coinfection
prevalence.

(#) In all these cases, (with traits denoted by • varying or not varying), for any combination of fixed trait variation between two strains, there can be
more qualitative shifts between scenarios as a function of µ (I∗/D∗, i.e. R0 and k). For example, by varying coinfection prevalence, the system
can shift: Exclusion → Coexistence → Exclusion; or Exclusion → Bistability → Exclusion (see Figs. S3-S4). In very specific cases, for a given
combination of fixed trait variation between two strains, the system may even shift 4 times to different regimes as a function of µ , depending on how
the λ 2

1 and λ 1
2 intersect the x-axis and each-other (see Supplementary proofs in Text S3.4).

only through the possibility of asymmetries in co-colonization (co-infection) parameters can the strains
mediate their mutual coexistence.

In the next section, we will consider the phenomena: exclusion, coexistence or bistable exclusion of either
strain according to µ .

3.4 Effect on each trait variation on final outcome

In this very general version of the model, two strains vary along several fitness dimensions: transmission,
clearance rate, co-infection susceptibilities, and possible biases in the clearance of co-infection and transmission
from the co-infection compartment. In the following we will explore these dimensions in detail, and what is
their effect on the competitive dynamics for N = 2.

In the subsections 3.4.1, 3.4.2, 3.4.3, and 3.4.4, for each case considered, we study the values of mutual
invasion fitnesses λ 2

1 and λ 1
2 as a function of the ratio of single to co-colonization µ . Without loss of generality,

in computation we assume that ν1 < ν2, hence strain 1 is cleared more slowly than strain 2, giving it an
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advantage in duration of carriage (∆ν > 0). First, we recall the relative weights (θi) of each trait in terms of µ ,
µ ∈ [0,+∞) in the Table 3.1.

3.4.1 Definite drivers of competitive exclusion

In this model, exclusion always results from strain-specific transmission and clearance rate of single infection,
and transmission probability from coinfected hosts, if other parameters are equal. Below we explore these
three axes of trait variation in more detail. First, we consider variation only in βi, γi and pi

i j. We assume equal
parameters for co-colonization clearance γi j = γ and interaction coefficients between strains ki j = k. The two
invasion fitnesses (Figure 3.2) are:λ

2
1 =

γ

2(γ + r)
µ (2µ +1)∆ν +(µ +1)2

∆b+(µ +1)∆ω,

λ
1
2 =−λ

2
1 .

(3.4.1)

These fitness coefficients are completely anti-symmetric, implying competitive exclusion as the only outcome.
Thus it doesn’t matter that there is co-infection in the system (k > 0). For promoting coexistence, this is
not sufficient by itself. Variable co-infection susceptibilities or traits between strains would be an additional
requirement. When strains behave equally in all processes related to coinfection, coinfection cannot rescue them
from the destiny of competitive exclusion. However, as we explore below, overall prevalence of coinfection can
actually shift between the winning and losing strain. This can happen only if there is variation in duration of
carriage. For example noticing that when βi is the only trait varying between two strains, k does not appear
in θ1, this indicates that transmissibility’s variation, uniquely determines the winner between two strains; its
relative contribution to λ

j
i cannot be altered by coinfection.

If variation is only in transmission rates βi, then the strain with bigger βi excludes the other one, see figure
3.2 (a). This fact holds for N strains in general and is proved in [120].

If a strain is superior in both fitness dimensions, which means it has smaller clearance rate and greater
transmission rate (∆b > 0,∆ν > 0), then for all value of µ or R0, it surely will be the winner par excellence,
which can be easily seen from (3.4.1). This is unsurprising and naturally expected.

However, if a strain is better in one trait but worse in another, for example if the strain with longer duration
of carriage (lower clearance) also has smaller transmission rate, the determination of the winning strain depends
on value of µ (and in general also R0), see Figure 3.2b.

Since we have fixed here γ = 1.5, r = 0.5 by convention, if we fix neutral transmission rate β , the value of
µ now depends only on the mean interaction coefficient in co-colonization k. This means, when k is high, thus
when strains tend to allow each-other more in co-colonization, µ is sufficiently close to 0, strain 2, which has
the smaller transmission rate but longer duration of carriage is the winner. In contrast, when µ is larger, thus
when hosts are less vulnerable to co-colonization, the strain 1, which has bigger transmission rate and smaller
duration of carriage is the winner.

This illustrates how the relative advantage between two strains, differing in two traits, depends on coinfection
prevalence.

It is interesting to note that, if variations are only in two of which including transmission rates βi, clearance
rates γi and transmission probability from coinfected hosts pi

i j, we can have at most one shifting outcome, i.e.
shifting once from the exclusion of one strain to the exclusion of the other one, see proof in S3.4.1.
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Fig. 3.2 Pure competitive exclusion from variation in three traits, but the winner strain may depend on relative
coinfection prevalence (single-to-co-infection ratio µ = I∗/D∗). Competitive exclusion is the only scenario when two
strains vary only in transmission rate βi and/or infection clearance rate γi and/or transmission probability from coinfected
hosts pi

i j (See (3.4.1)). Completely anti-symmetric mutual invasion leads to competitive exclusion. The strain with the
positive invasion fitness excludes the one with the negative invasion fitness. Here we illustrate the values of λ 2

1 and λ 1
2 as

a function of the ratio of single to co-colonization in the system µ = 1/(k(R0 −1)), with γ = 1.5, r = 0.5, in three cases
of (a) Variations in transmission rates βi only with ∆b =−2, (b) Variations in transmission rates βi and clearance rates γi
with ∆ν = 4 and ∆b =−2, and (c) Variations in transmission rates βi, clearance rates γi and transmission probability from
coinfected hosts pi

i j with ∆ν = 4, ∆b =−2 and ∆ω = 2.02.

Following the same analysis, we can study the model in which transmission probability from co-colonized
hosts, denoting within-host advantage, pi

i j displays strain-specific perturbation. We note that if there is variation
in pi

i j only, if ω1
12 −ω2

21 > 0, strain 1 excludes strain 2, and vice versa. This can be understood via the
precedence advantage that one strain has from mixed coinfected hosts if it arrives first, and thus gets transmitted
more.

If there are combinations of variations in within-host transmission advantage pi
i j, as well as other traits

βi and/or γi, the final outcome is more complex (see Table 3.3 and Figure 3.2 (c)). However, the long time
competitive result is always exclusion of one strain from the system. If perturbations occur in transmission
rate βi and transmission probabilities from mixed coinfection pi

i j, the winning strain depends on coinfection

prevalence in the system, (µ = I∗/D∗) because
θ4

θ1
=

1
1+µ

. If perturbations occur in duration of single

carriage (i.e. strain-specific clearance rates γi) and pi
i j, the winning strain depends on more strain-transcending

parameters: µ , γ and r. This can be explicitly observed in the ratio
θ4

θ2
=

2(γ + r)
γ

µ +1
µ (2µ +1)

, which ultimately

affects the signs of pairwise invasion fitnesses. Figure 3.2 (c) shows us a special example in which the exclusion
of either strains shifts twice when µ varies from 0 to ∞.

3.4.2 Four scenarios possible with variable co-infection clearance rates γi j

As we can see from the fully explicit expression of pairwise invasion fitness, in this model, the coinfection
clearance rate axis contributes to λ

j
i with a term 2(u j j −

u ji+ui j
2 ). Thus what matters is the comparison between

clearance rate of same strain coinfection vs. the mean coinfection clearance rate of mixed-strain coinfection.
While there are no restrictions for how these can vary, in the following we consider three special cases where
the variation in coinfection duration depends on variation in single infection duration. We also assume no
variation in transmission probability from coinfected hosts (pi

i j = 1/2) but the results for the general case can
be easily derived using Eqs.(3.3.1).
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3.4.2.1 Case 1: Unbiased clearance in mixed carriage u12 = u21 =
ν1 +ν2

2
In this first case, we consider that the clearance rate of mixed carriage is unbiased and equal to the mean of the
two clearance rates of single colonization. We have u11 = ν1, u22 = ν2 and the invasion fitnesses between two
strains are anti-symmetric: λ

2
1 =

γ

2(γ + r)

(
2µ

2 +2µ +1
)

∆ν +(1+µ)2
∆b,

λ
1
2 =−λ

2
1 .

(3.4.2)

This case leads again to the pure competitive exclusion. Whichever strain has positive λ
j

i will be the winner.
Similar to the case in section 3.1, if a strain is superior in both transmission βi and clearance νi, it will be

the winner.
However, if ∆ν and ∆b have opposite sign, meaning one strain has advantage in clearance and the other

has advantage in transmission, the final winner will depend on coinfection prevalence, hence on µ . From the
formula of the invasion fitness, it can be seen that in this system, the clearance rate differential (i.e. in duration
of carriage) has more important role than the transmission rate difference in helping an inferior strain overcome
and overturn its fitness disadvantage as µ increases.

3.4.2.2 Case 2: Decreased clearance in mixed carriage u12 = u21 = min{ν1,ν2}= ν1

Fig. 3.3 Competitive exclusion can be broken with variable coinfection clearance rates, and the result may depend
on µ . We illustrate possible scenarios resulting from deviation from symmetry in the mixed coinfection clearance rate γi j as
a function of the ratio of single to coinfection µ . a-b Coinfection clearance equals the minimum clearance rate of either
strain: u12 = u21 = min{ν1,ν2}= ν1 (see (3.4.3)). c-d Coinfection clearance equals the maximum clearance rate of either
strain: u12 = u21 = max{ν1,ν2}= ν2 (see (3.4.4)). We choose γ = 1.5 and r = 0.5 as in figure 3.2. For each sub case, we
plot the mutual invasion fitnesses for transmission advantage and disadvantage of strain 1, respectively: ∆b > 0 (a,c) and
∆b < 0 (b,d). In particular, in the first column ∆b = 2, and in the second column ∆b =−2. The clearance rate differential
∆ν is assumed ∆ν = 5 attributing higher duration of carriage to strain 1. In the first column, strain 1 is superior in all fitness
dimensions, and coinfection clearance cannot overturn the result. In the second column, strain 1 is not superior in all fitness
dimensions, and coinfection matters for the final result.
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Here, we explore the case when mixed co-infection clearance rate corresponds to the minimum of the
two single infection clearance rates. Without loss of generality, we assume that ∆ν ≥ 0 i.e. ν1 ≤ ν2. We still
have u11 = ν1, u22 = ν2, but in hosts carrying a mixture of strain 1 and strain 2, this creates an advantage in
co-infection for the opponent strain (the one with the faster strain-specific clearance). The two invasion fitness
coefficients are not anti-symmetric anymore, hence allowing for more scenarios beyond exclusion (see figures
3.3 (a,b)):

λ
2
1 =

γ

2(γ + r)
[(2µ +1)µ +2(µ +1)]∆ν +(µ +1)2

∆b

λ
1
2 =− γ

2(γ + r)
(2µ +1)µ∆ν −(µ +1)2

∆b.
(3.4.3)

If one strain, denoted to be strain 1 in Figure 3.3a, has larger transmission rate and lower clearance rate (case
when ∆b > 0,∆ν > 0), it will again be the only survivor for all µ .

However if the advantage is only in one of the two traits (case when ∆b,∆ν have opposite signs), for
example the strain with smaller clearance rate has lower transmission rate, as in Figure 3.3b, then coexistence
can occur. However, even in this situation, coexistence can only be possible for sufficiently low µ , i.e. k
large enough for fixed R0 (we already fix γ and r). This means that increasing the relative prevalence of
co-colonization or coinfection in the system, via higher facilitative interactions, can promote coexistence of two
strains. This links back to the arguments at the end of section 2.

The phenomenon of coexistence arising here is similar to what has been found before in the context of
virulence evolution [5], where decreased clearance in coinfection was observed to promote coexistence, hence
persistence of more virulent strains (here strain 2 if ∆ν > 0, and in the limit of strain 2-R0 below 1).

3.4.2.3 Case 3: Increased clearance in mixed co-infection u12 = u21 = max{ν1,ν2}= ν2

The co-infection clearance rate in mixed carriage here is assumed to be equal to the maximum value of the
strain-specific clearance rates in single infection. As in the previous section, we still assume that ∆ν ≥ 0 i.e.
ν1 ≤ ν2. We have u11 = ν1, u22 = ν2 and the pairwise invasion fitness coefficients are (see figures 3.3 (c,d)):

λ
2
1 =

γ

2(γ + r)
(2µ +1)µ∆ν +(µ +1)2

∆b

λ
1
2 =− γ

2(γ + r)
[(2µ +1)µ +2(µ +1)]∆ν −(µ +1)2

∆b
(3.4.4)

If strain 1 has smaller clearance rate and larger transmission rate, it is again the superior strain in the system,
independently of coinfection parameters, like previous cases (Figure 3.3c).

However, if strain 1 has smaller clearance rate but also lower transmission rate, bistability of exclusion
can occur when µ is small enough. When µ becomes larger and tends to infinity, we obtain only competitive
exclusion, as mentioned earlier and proven in Section 2. In that extreme, strain 1 is the only persistent strain
over long time (Figure 3.3d).

In conclusion, by the explicit formulae of
(
λ 2

1 ,λ
1
2
)

in the cases above, we can also prove that for µ large
enough, the strain which has smaller clearance rate will be the only strain persisting in the system.

3.4.3 Four scenarios from variation in pairwise co-colonization susceptibilities ki j

Another fitness dimension is how the strains facilitate or compete in altered susceptibilities to co-infection via
the coefficients ki j. Above we assumed they are all equal to the reference k. But when variation in this parameter
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is allowed, as shown already in [86], all four ecological scenarios are possible, and thus the effect is to open up
space for coexistence and bistability among two strains, when competitive exclusion is expected from other
parameters. According to the derivation of the reduced model in [140], the perturbations in co-colonization
interaction matrix for N = 2 satisfy ∑

2
i, j=1 αi j = 0 when k is defined by the mean of ki j. However, without loss

of generality, one can shift the αi j by the same constant, without changing the mutual λ
j

i and consequently
without changing the dynamics. The explicit formulas for two pairwise invasion fitnesses are (see figure 3.4)

λ
2
1 =

γ

2(γ + r)
(2µ +1)µ∆ν +(R0 −1)µ (µ (α21 −α12)+α21 −α22)+(µ +1)2

∆b,

λ
1
2 =− γ

2(γ + r)
(2µ +1)µ∆ν +(R0 −1)µ (µ (α12 −α21)+α12 −α11)− (µ +1)2

∆b.
(3.4.5)

In this spirit, below we consider a few special cases of αi j variation between strains, to highlight the effect
of co-infection susceptibilities when they provide:

i) an advantage to strain 2: (αi j)i j =

(
−1.5 0.5
0.5 0.5

)
, whose effect on λ

j
i is equivalent to (αi j)i j =(

−2 0
0 0

)
, and increases relatively λ 1

2 :


λ

2
1 =

γ

2(γ + r)
(2µ +1)µ∆ν +(µ +1)2

∆b,

λ
1
2 =− γ

2(γ + r)
(2µ +1)µ∆ν +2(R0 −1)µ − (µ +1)2

∆b.
(3.4.6)

ii) a disadvantage to strain 1: (αi j)i j =

(
−0.5 −0.5
−0.5 1.5

)
; equivalent to (αi j)i j =

(
0 0
0 2

)
when shifted

by the appropriate constant, which relatively decreases λ 2
1 :

λ
2
1 =

γ

2(γ + r)
(2µ +1)µ∆ν −2(R0 −1)µ +(µ +1)2

∆b,

λ
1
2 =− γ

2(γ + r)
(2µ +1)µ∆ν − (µ +1)2

∆b.
(3.4.7)

iii) and exactly counterbalanced effects on either strain: (αi j)i j =

(
−
√

2 0
0

√
2

)
, whose impact on λ

j
i

is to decrease λ 2
1 and increase λ 1

2 by exactly the same amount:
λ

2
1 =

γ

2(γ + r)
(2µ +1)µ∆ν −

√
2(R0 −1)µ +(µ +1)2

∆b,

λ
1
2 =− γ

2(γ + r)
(2µ +1)µ∆ν +

√
2(R0 −1)µ − (µ +1)2

∆b.
(3.4.8)

In Figure 3.4, we consider these cases, where besides ki j, we allow also variation in transmission β and
clearance γ of each strain, but assume initially symmetry in other traits. We assume ∆ν > 0 (strain 1 is cleared
more slowly). In Fig. 3.4a-c we illustrate competitive outcomes (dependent on mutual signs of λ

j
i ), when

strain 1 is superior in transmissibility, and in Fig. 3.4d-f we show outcomes when strain 2 is superior in
transmissibility instead. Naturally as µ → ∞ the role of coinfection interaction asymmetries vanishes, and
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the system tends to exclusion, but for low values of µ , the structure of the αi j matters. In particular, if it is
asymmetric (Figure 3.4,a-b, d-e) there can be at most 3 scenarios as a function of µ: exclusion - coexistence
-exclusion, or exclusion - bistability- exclusion. In particular increase in λ 2

1 acts to enable coexistence when
∆b > 0, and a decrease in λ 1

2 acts to enable bistability when ∆b < 0. Whereas, if co-colonization interactions
have exactly counterbalanced effects on λ

j
i (Fig. 3.4c,f), there can only be alternating exclusion scenarios as a

function of µ .

Fig. 3.4 Breaking the competitive exclusion with co-colonization interactions ki j (see Eqs (3.4.5)). We compute
pairwise invasion fitnesses

(
λ 2

1 ,λ
1
2
)
according to µ in various cases of co-colonization interaction matrix

(
αi j
)

with R0 = 5,
r = 0.5 and γ = 1.5. (a-c) We illustrate the cases of transmission superiority of strain 1: ∆b > 0, when ∆b = 0.4, ∆ν = 0.8.
In (d-f) we plot 2-strain invasion fitnesses for transmission superiority of strain 2: ∆b < 0, when ∆b =−0.4,∆ν = 0.8, with
the same γ , r and R0 as in (a, b, c). Coinfection clearance rate γi j is assumed equal to γ and transmission probability from

coinfected hosts carrying a mixture of two strains pi
i j =

1
2

. Subplots with the same values
(
αi j
)

lie in the same column.

In particular, we consider 3 structures: (a, d)
(
−2 0
0 0

)
(Eqs (3.4.6)); (b, e)

(
0 0
0 2

)
(Eqs (3.4.7)); (c, f)

(
−
√

2 0
0

√
2

)
(Eqs (3.4.8)) for variation in co-colonization interactions. Except for when the αi j exactly counterbalance effects on λ

j
i (c,f)

there is potential for more scenarios beyond competitive exclusion, induced by coinfection susceptibilities between strains.

3.4.4 Adding variation in transmission probability from coinfected hosts

In this case, besides transmission and clearance rates variations (∆b,∆ν), and co-colonization susceptibilities
(αi j), we add to the system variation in terms of a slight priority effect between strains for transmission from
coinfection ∆ω ̸= 0. The explicit formulae for pairwise invasion fitnesses of two strains are as follows:

λ
2
1 =

γ

2(γ + r)
(2µ +1)µ∆ν +(µ +1)∆ω +(R0 −1)µ (µ (α21 −α12)+α21 −α22)+(µ +1)2

∆b

λ
1
2 =

γ

2(γ + r)
(2µ +1)µ∆ν − (µ +1)∆ω +(R0 −1)µ (µ (α12 −α21)+α12 −α11)− (µ +1)2

∆b,
(3.4.9)

Recall that ∆ω = ω1
12 −ω2

21 represents the relative advantage of strain 1 from arriving first within-host, in
transmission from mixed coinfection. It is clear from the expression above, that when variation in this within-
host advantage is combined with variation in coinfection clearance rates or co-colonization susceptibility factors
between strains, coexistence and bistability also become possible. In this case within-host and between-host
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competition combine to give rise to different outcomes. In figure S6 we illustrate the effect of ∆ω on the baseline
outcomes of Figure 3.4a-c. The effect of ∆w < 0 is to increase the potential for strain 2-only competitive
exclusion and coexistence with strain 1 in the system, oftentimes overturning the baseline result especially so
if µ small. The importance of transmission biases from mixed coinfection ∆w is unsurprisingly higher when
relative coinfection prevalence is higher in the system.

3.4.5 The qualitative outcome for two strains can shift multiple times with µ

Until now we have seen the important and explicit role of strain-transcending parameters, (e.g. R0, k, and
specifically µ) which define the core neutral system of this model, on the ultimate competitive outcome between
strains at the epidemiological level. We have seen that the same relative variation between strains, displayed
in (∆b,∆ν ,...) will have a different impact in a system with larger or lower overall prevalence of coinfection,
relationships that are completely transparent in the λ

j
i . Sometimes the effect will be quantitative, changing only

the speed of dynamics without affecting the λ
j

i signs (see Supplementary figure S2). Other times the effect
will be qualitative, changing the signs of the pairwise invasion fitnesses and hence the dynamics. Furthermore,
using such full analytic transparency, we can also prove mathematically special results to make the claims about
qualitative shifts more precise. Depending on how many traits and which traits vary in the system, we can have
at most one, two, or more shifts with µ (see Table 3.2). For example we can prove that with variation only in
transmission and clearance rates, there can be at most one shift in final outcome as a function of µ (Text S3.4.1)

A very special case arises, when the same system can shift 4 times as a function of µ . We have proven that
a necessary condition for its occurrence is the presence of variation in both coinfection clearance rates γi j and
vulnerabilities to coinfection ki j. If any of these is missing, 4 shifts as a function of µ are impossible (see Text
S3.4.2 for the formal proof). An illustration of such a special case is given in Figure 3.5, where the system
traces all 4 quadrants as µ goes from 0 to ∞, highlighting an extreme case of the critical role of coinfection, for
the relative hierarchical advantages between two strains and their selection dynamics. We see that the system
is characterized by competitive exclusion of strain 2 for µ low, then tends to coexistence of both strains for
increasing µ , followed by competitive exclusion of strain 1 for even higher µ , until it returns again in the
competitive exclusion region of strain 2 as µ → ∞.

3.4.6 Parameter regions for 4 outcomes in our SIS model with co-infection

Until now, we have considered fixed trait variations between two strains, and varied µ to show how their net
competitive dynamics driven by λ 2

1 and λ 1
2 will depend on the ratio of single to coinfection in the neutral system.

This context is defined by basic reproduction number R0, and k, of the neutral model (see Table 1). Next, we
consider the distribution of 4 possible ecological outcomes across different systems, as a function of R0 and k.
In figure 3.6 we represent the long time behaviour of a 2-strain model with perturbations in transmission rate
βi, clearance rate of single colonization γi and clearance rate of co-colonization γi j with u11 = u12 = u21 = ν1

and u22 = ν2. Figure 3.6 shows which combinations of ∆b and ∆ν , lead to one of the four scenarios: exclu-

sion of strain 1 or 2, coexistence or bistable state, for each R0 and k, for assumed symmetry in ki j and in pi
i j =

1
2

.

It can be seen that we can choose suitable values of relative trait differences ∆b and ∆ν to observe a given
scenario, typically coexistence and bistability arise for relative advantage in one trait and relative disadvantage
in the other, hence a trade-off between transmission and clearance. Notice that when R0 or k become larger,
increasing relative coinfection prevalence in the corresponding neutral system, (i.e. reducing µ), the possibility
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Fig. 3.5 Four ecological scenarios may happen depending on µ (single-to-co-infection ratio) under fixed trait varia-
tion. Variations here are in transmission rates, infection and coinfection clearance rates, and co-colonization susceptibilities
between strains. The strain-transcending parameters are assumed: γ = 2, r = 0.2 and R0 = 2.5. We assume that ∆b = 0.2,

∆ν = 0.5, the coinfection clearance rate γi j with ui j = min{νi,ν j} and values of
(
αi j
)

to be
(
−1 0
0

√
3

)
. The ultimate

ecological outcomes when µ goes from 0 to ∞ include: exclusion of strain 2, coexistence, exclusion of strain 1, bistablity,
then back to the exclusion of strain 2. Figure (a) plots two pairwise invasion fitnesses as function of µ ∈ [0.01,4], cor-
responding to k ∈ [1/6,66.6]. Figure (b) plots the parametric curve

(
λ 2

1 (µ) ,λ 1
2 (µ)

)
for µ shifting in the same range of

figure (a). This curve crosses all four quadrants, which means the 2-strain system can display all four qualitative outcomes
with changes in coinfection prevalence (i.e. as µ varies).

for coexistence or bistability expands in the system. Near the origin, it’s harder to obtain coexistence or bistable
state rather than competitive exclusion.

The results of Figure 3.6 can be used to connect our system’s behavior to strain-specific basic reproduction
numbers R(1)

0 and R(2)
0 . In a model with coinfection, strain-specific R0 are not sufficient to determine the

long-time epidemiological competition between two strains. We show in Text S1 and in Figure S1 that even for
the same values of R0,1 and R0,2 we can have different long-time scenarios between the two strains. The result
in coinfection depends on the particular combination of traits, strain-specific transmission and clearance rates.
In particular, even for the same strain-specific R0’s, a system with bigger variation in clearance rate between
two strains is more sensitive to coinfection, and it is where coinfection parameters can shift the dynamics more
easily away from competitive exclusion (Fig. S1a). This is because of the advantage conferred to both strains
by staying longer in mixed compartment I12, where from they can have equal chance of transmission.

In Fig. 3.6 coinfection susceptibilities were assumed symmetric and coinfection clearance rate for mixed
carriage was assumed biased toward the same clearance rate of single infection by strain 1: u11 = u12 = u21 = ν1

and u22 = ν2. In another case (Figs. S3-S4), when we remove the bias in coinfection clearance assuming
u12 = u21 = 0, but allow variation in susceptibilities to coinfection, we see only three scenarios emerge, over all
∆b and ∆ν . In this case, depending on the structure of αi j, we observe either coexistence or bistability as a
third possibility flanked by the two opposite exclusion steady states.

3.5 How trait mean and variation impact coexistence frequencies

Next, we zoom in from criteria for coexistence to the details of the coexistence equilibrium in a system with
two strains that vary along multiple fitness dimensions. The general formula in terms of pairwise invasion
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Fig. 3.6 Illustration of 4 possible outcomes, as a function of relative variation in transmission and clearance rate
between two strains, for different values of k and R0. We highlight the respective regions in different colors, according
to the critical relationship between ∆b, ∆ν , k and R0 when perturbations happen only βi, γi, and mixed coinfection clearance
happens base on strain-specific clearance rates γi j with u11 = u12 = u21 = ν1 and u22 = ν2. We choose the values γ = 1
and r = 0.2. Recall that the higher ∆ν > 0, the higher the advantage of strain 1 in the system; and the higher ∆b > 0, the
higher the advantage of strain 1 in the system. We observe coexistence and bistability arise only when the disadvantage in
one trait is compensated by an advantage in the other. In particular coexistence is enabled when the disadvantaged strain 2
in clearance rate benefits from reduced clearance in mixed co-colonization with strain 1.

fitnesses in Eqs. (3.3.1), when this equilibrium exists, is given by

z∗1 =
λ 2

1

λ 2
1 +λ 1

2
z∗2 = 1− z∗1. (3.5.1)

This allows explicit computation for any combination of strain-specific and strain-transcending parameters in
the system. Below we focus on the case of variation in transmission rate βi, clearance rate of infection γi and in
interaction coefficients via susceptibilities to coinfection ki j. We assume the special case of ui j = 0 and initially

no transmission biases in coinfection pi
i j =

1
2

(although we relax this later). We consider only coexistence
regimes (Figure 3.7) and illustrate the equilibrium frequency of one of the strains (here z∗2), as a function of trait
mean and variation between strains. Using the explicit formula z∗2 = λ 1

2 /(λ
2
1 +λ 1

2 ), we explore this quantity
numerically for two values of mean co-infection susceptibility: k = 1.5 and k = 0.2, and symmetric cross-strain

interactions α12 = α21 > α11 = α22. We consider (αi j)i j =

(
0

√
2√

2 0

)
but the general formula for other

cases is straightforward (see Text S3). The criteria enabling coexistence are derived below.
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Fig. 3.7 Strain coexistence frequencies depend on a critical interplay between trait mean and variation. We plot
the coexistence equilibrium frequency of strain 2 (intermediate shading), as a function of (β ,∆b) and (γ,∆ν) for higher
coinfection prevalence (left) and lower coinfection prevalence (right). a-b. Effect of clearance rate. In (a-b) we assume
β = 5.3 and ∆b = 0.15. In these figures, we vary γ in 0 ≤ γ ≤ 5 and β = 5.3, to make R0 > 1. c-d. Effect of transmission
rate. In (c-d) we assume γ = 1 and ∆ν = 1 as fixed. We vary β between 1.5 and 9, ensuring R0 > 1. Right-column subplots
reflect a system with more strain competition preventing co-infection, hence lower coinfection prevalence (µ higher) than
the left-column subplots. The light grey region represents the exclusion of strain 2-z∗2 = 0 and the dark grey region is for

exclusion of strain 1 from the system i.e. z∗2 = 1. We choose r = 0.3 and the matrix
(
αi j
)

to be
(

0
√

2√
2 0

)
thus unbiased

in terms of favouring either strain. The co-infection clearance rate is also assumed unbiased, and equal to the mean. The
black lines denote the border lines for which coexistence is no longer possible and the system shifts to either exclusion of
strain 1 (yellow) or exclusion of strain 2 (blue). In a-b, the lines are denoted by T1 (γ) and T2 (γ), and given by (3.5.3) and
(3.5.4). In c-d, the graphs of S1 (β ) and S2 (β ) are hyperbolic, given by explicit equations (3.5.6) and (3.5.7).

3.5.1 Mean and variation in clearance rate of single infection

By (3.4.3), the equation of boundary z∗2 = 0 is equivalent to λ 1
2 = 0 which can be written explicitly as:

γ

2(γ + r)
1

1+
1
µ

1+
1

1+
1
µ

∆ν =−∆b−
√

2
2

(R0 −1)
µ

(µ +1)2 (3.5.2)

which, by substituting
1
µ

= k
(

β

γ + r
−1
)

, becomes:

∆ν = T1 (γ) , T1 (γ) =−∆b
2 [γ + r+ k (β − γ − r)]2

γ (2γ +2r+ k (β − γ − r))
−
√

2
k
γ

(β − γ − r)2

2(γ + r)+ k (β − γ − r)
. (3.5.3)
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Analogously, we can compute the equation of boundary z∗2 = 1, thus λ 2
1 = 0, which is

∆ν = T2 (γ) , T2 (γ) =−∆b
2 [γ + r+ k (β − γ − r)]2

γ (2γ +2r+ k (β − γ − r))
+
√

2
k
γ

(β − γ − r)2

2(γ + r)+ k (β − γ − r)
. (3.5.4)

Combining (3.5.3) and (3.5.4) we have the condition for 2-strain coexistence between these boundaries,
expressed as an inequality for the variation ∆ν dependent on the mean γ:

Stable Coexistence ⇐⇒ T1 (γ)≤ ∆ν ≤ T2 (γ) . (3.5.5)

The figures 3.7a and 3.7b show critical interplay between mean and variation clearance rates of infection γi.
The light color region in this figure is the region displays coexistence phenomenon, corresponding to the space
between two curves which present equations (3.5.3) and (3.5.4). The contour shading corresponds to the relative
frequency of strain 2. In these figures, we can observe that by decreasing mean co-infection efficiency k, we
can decrease the possibility of coexistence at the same variation in clearance rate ∆ν (3.7b compared to 3.7a).
For γ small enough, which increases overall prevalence in the system, less values of ∆ν lead to coexistence.
When ∆ν becomes larger, the relative frequency of strain 2, decreases.

3.5.2 Mean and variation in transmission rate

Similarly to (3.5.3) and (3.5.4) for mean and variation in clearance rate (duration of carriage), and the same
assumptions about the other parameters, we can find the equation of boundary z∗2 = 0 as a function of (β ,△b)
as follows:

∆b = S2 (β ) , S2 (β ) =−∆ν
γ (2γ +2r+ k (β − γ − r))

2 [γ + r+ k (β − γ − r)]2
+

√
2

2
k (β − γ − r)2

[γ + r+ k (β − γ − r)]2
(3.5.6)

The equation of the boundary z∗2 = 1 as a function of (β ,△b) is:

∆b = S1 (β ) , S1 (β ) =−∆ν
γ (2γ +2r+ k (β − γ − r))

2 [γ + r+ k (β − γ − r)]2
−

√
2

2
k (β − γ − r)2

[γ + r+ k (β − γ − r)]2
. (3.5.7)

Combining (3.5.6) and (3.5.7), we have the condition on intermediate values of ∆b that allow 2-strain coexis-
tence:

Stable Coexistence ⇐⇒ S1 (β )≤ ∆b ≤ S2 (β ) . (3.5.8)

Two figures 3.7c and 3.7d show the value of strain 2 in case of coexistence as a function of mean and variation
in transmission rates ∆b. In contrast to 3.7a and 3.7b, by decreasing co-infection vulnerability k, we increase
the possibility of coexistence at the same variation in transmissibility between strains ∆b. This also means
that for larger β , more values of ∆b lead to coexistence. When ∆b becomes larger, increasing the transmission
advantage of strain 1, the equilibrium frequency of strain 2, decreases. This is similar to Figure 3.7a and 3.7b.

3.5.3 Coexistence strain frequencies are explicit

While the entire frequency dynamics for each strain and for all time (zi(τ)) is fully explicit in the system, via
the replicator equation, so is also the final equilibrium. The value of the equilibrium frequency of strain 2, z∗2
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under the coexistence regimes studied above is given by:

z∗2 =
1
2
− γ

2(γ + r)+ k (β − γ − r)

2
√

2k (β − γ − r)2 ∆ν − [γ + r+ k (β − γ − r)]2
√

2k (β − γ − r)2 ∆b, (3.5.9)

and can be seen to be an explicit function of mean parameters (e.g. β ,γ) as well as variation between
strains (∆b,∆ν). Here, because coinfection interactions are assumed symmetric, it becomes obvious that any
differences between strains will make the frequency deviate from the expected frequency of 1/2 under balancing
selection. If ∆ν ,∆b > 0, then strain 1 has an absolute advantage and z2 will always be inferior than 1/2, if it
coexists. However, if the advantage is only in one trait and not in the other (∆ν , ∆b of different signs), then
strain 2 can increase its equilibrium frequency above 1/2.

More generally, for the rescaled co-colonization susceptibilities matrix being symmetric and satisfying:
αii = α j j = α11 and αi j = α ji = α12, we can write the expression for strain 2 equilibrium frequency, more
compactly as a function of µ , k and R0 constituent parameters, mean transmission rate β , clearance rate γ and
average host lifespan 1/r:

z∗2 =
1
2

[
1− k

α12 −α11

(
µ(2µ +1)

γ

γ + r
∆ν +2(µ +1)2

∆b
)]

(3.5.10)

One can notice that variation in each trait ∆b and ∆ν have their own distinct nonlinear scaling factors for how
they impact on ultimate strain success at the epidemiological level, depending directly on the prevalence of
co-colonization in the system via the parameter µ = I∗/D∗. We can immediately see from this formula, how
the predicted coexistence level among two strains is attributable to clear mechanisms and clearly identifiable
biological differences between strains, which are explicitly weighted by epidemiologic constants.

Even more generally, if in addition there are biases in strain transmission probabilities from co-colonized hosts
carrying a mixture of strains, recalling that ∆ω = ω1

12 −ω2
21 the formula (3.5.10) now reads

z∗2 =
1
2

[
1− k

α12 −α11

(
µ(2µ +1)

γ

γ + r
∆ν +2(µ +1)2

∆b+2(µ +1)∆ω

)]
(3.5.11)

where we can straightforwardly see the contribution of the precedence effect in transmission from co-
colonization as a force in coexistence hierarchies between two strains. Indeed, for any value of coinfection
prevalence and overall R0, hence for any µ , the relative contribution of the transmission rate differential between
strains (∆b) is higher than that of the transmission bias differential from coinfected hosts (∆ω). It is also
interesting to notice in the above expression for z∗2 that the relative contribution of the between-strain difference
in duration of carriage (∆ν) depends on µ but also on the absolute value of the duration of colonization itself γ .
Essentially, keeping all else fixed, differences in duration of carriage between two strains matter more for their
relative fitness, if the colonization episodes are shorter (γ higher), and if hosts are longer lived (r higher).

Perfectly balancing selection, in this model, under a given k ̸= 0, would require that the linear combination
of ∆ν ,∆b,∆ω in the round brackets be equal to zero. Trait variation possibilities satisfying this requirement
are infinite and constitute a plane in 3-d in this case, necessarily encoding trade-offs across different fitness
dimensions that would as a whole lead to the same epidemiologic fitness for the two strains. Other particular
values of z∗2 can be studied explicitly and investigated similarly in terms of the constraints implied for the linear
combination of ∆ν ,∆b,∆ω , and other fitness dimensions eventually, if such variation exists.
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3.6 Model applications: a roadmap

In earlier theoretical work, interaction among co-infecting agents has been assumed to occur only between
different strains, and studied for arbitrary infection multiplicity [4]. Later evolutionary frameworks, based on
[199], have considered a full model including same-strain coinfection, but modeling vulnerability to co-infection
with a single parameter [6]. This aggregation of within- and between- strain interactions into a net parameter
can be found in other co-infection models, considering altered susceptibility to coinfection in the context of
disease persistence [82], and diversity in other traits, e.g. virulence [7] and antibiotic resistance [98]. These
studies highlight the importance of coinfection and its epidemiological details for persistence and evolution
of microorganisms. Sometimes very complex multi-scale models have been invoked to generate coexistence
between strains via coinfection, embedding an explicit within-host dynamics framework [61]. We argue that
many such coinfection and co-colonization models could be mapped to phenomena in the overarching model
proposed here, as special cases, or expansions of a particular parameter.

With the here-proposed explicit framework, the impact of coinfection becomes very easy to understand,
via the role of the parameter µ , given by the ratio of single - to co-infection prevalence in the system, which
modulates the relative weight of different trait asymmetries (θi’s) among strains, and even tuning the net
asymmetries in some traits, as is the case for ki j. This role of coinfection (in terms of 2 global determining
parameters R0,k) can be studied at a deeper level, at a higher resolution in terms of potential asymmetries
within and between strains, and in an entirely analytically-explicit manner which enables precise predictions.
These advantages can lead to new applications to study coexistence and vaccination effects in polymorphic
systems, going beyond current theoretical insights [127, 90]. Similarly, our modeling framework could also
help obtain clear and direct analytical insights into antibiotic resistance evolution, as an alternative or as a
complement to the more cumbersome simulation route [61].

Ideally deterministic and stochastic forces shaping population dynamics and evolution should be integrated
[56]. Although stochastic effects have been somewhat studied in multi-strain epidemiological models, largely
via simulations of ODEs with stochasticity based on the Gillespie Algorithm [3, 179], with the exception
of few analytical investigations [48, 109], stochastic simulation approaches in coinfection models are rare
[61, 100, 173, 172], with analytical results on stochasticity and coinfection even rarer [22]. Hence, our SIS
model with multiple interacting strains in coinfection and emergent replicator dynamics at its deterministic
core offers a simple, general, and elegant template on which stochasticity can be straightforwardly built-in,
simulated, and moreover studied analytically.

Below we sketch briefly some ways in which the model can be applied.

3.6.1 Antibiotic treatment, fitness costs and competitive release

We can apply this model to understand epidemiological competition dynamics between two strains under
antibiotics, co-circulating in a host population with the possibility of coinfection, which constitutes a big study
field in the epidemiological literature [156]. In its simplest form, broad-spectrum antibiotic treatment can be
modelled as an increase in global clearance rate of colonization γ , keeping fixed all other parameters between
strains. Suppose strain 1 is superior in transmission, with strain 2 suffering a relative fitness cost ∆b > 0. For
variation in duration of carriage we explore both an advantage to strain 1 ∆ν > 0 or advantage to strain 2
∆ν < 0. Without perturbation in coinfection parameters, under such scenario, there would be competitive
exclusion of the less fit strain, seen earlier in Section 3.4.1.

But under interactions through coinfection vulnerabilities, coexistence among the two strains is possible.
Thus we may explore, the frequency of strain 2, under such scenario, which would then correspond to the
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variable z2 in our model. We examine how the equilibrium value of the frequency of strain 2, varies as a
function of γ (or total broad-spectrum antibiotic treatment), for different values of strain variation in relative
duration of carriage (clearance rate) ∆ν , and relative transmissibility ∆b.

Fixing for example the rescaled co-infection susceptibility matrix to αii = α j j = 0 and αi j = α ji =
√

2,
corresponds to the case analyzed earlier, where within-strain susceptibilities to coinfection are lower than
between-strain susceptibilities, a condition that a-priori favours coexistence. Hence, applying the earlier results,
we have that for any (β ,γ,∆b,∆ν), stable coexistence of two strains is possible only for T1 (γ)≤ ∆ν ≤ T2 (γ).
The value of z∗2 under such condition is given by Eq. 3.5.9. Thus, in Figure 3.8, we only consider the values
of global clearance rate γ guaranteeing coexistence. It is interesting to point out that depending on how the
fitness differential between the strain 1 and its competitor strain 2, is manifested (∆b,∆ν), increasing antibiotic
administration in a population can have opposing effects: it can increase or decrease the prevalence of a focal
strain (see Fig.3.8a solid vs. dashed lines). This behavior can be understood in full analytic detail because of
the explicit expression for strain frequencies, allowing us to compute and verify directly the first and second
derivatives of z2 with respect to γ (see Supplementary Material S3.6).

To understand the additional effects of possible variations in transmission probability from mixed coinfection
between strains, we have repeated the same simulations with ∆w < 0, favouring strain 2 (Supplementary figure
S7). It is clear that also this dimension of fitness (within-host advantage) has a substantial effect on the net
competitive dynamics between the two strains, and in particular, in this case, enhances the possibility of
two-strain coexistence.

3.6.2 Vaccination, coexistence and strain replacement in colonizing bacteria

Similarly, universal vaccination that protects against both strains could be modelled, to a first-order approxima-
tion, as a global reduction of β in the system, realized via reduced average susceptibility of all hosts to infection.
In figures 3.8c and 3.8d, we explore the effect of a universal reduction in β on the relative prevalence of two
strains. As shown earlier, coexistence is possible only for S1 (β )≤ ∆b ≤ S2 (β ). The value of z∗2 under such
condition is given by Equation 3.5.9. Plotting this as a function of β in Figures 3.8c and 3.8d, we observe again
that changes in strain-transcending transmissibility can have opposing effects on prevalence of a focal strain
(here strain 2). They can either favour its increase in prevalence or its decrease, depending on the underlying
basic trait variation (∆b,∆ν), as well as on coinfection parameters (ki j or others).

Turning the inequalities around, another way to interpret the critical borders for ∆b is with regards to a
strain-specific vaccine. For example, assuming universal coverage, in order to predict the minimal vaccine
efficacy needed to exclude a given strain (or group of strains) from the system, given everything else fixed at
pre-vaccine baseline, we can use the model to extract the ∆b that violates the coexistence inequality criterion:
S1 (β )≤ ∆b ≤ S2 (β ). Notice that this criterion specifically implies that in populations with different overall
β a different ∆b (targeted vaccine efficacy) may be needed to reach exclusion. In the case of ∆b < S1(β ) we
would ensure exclusion of strain 1 from the system, whereas making ∆b > S2(β ) would shift the system to the
exclusion of strain 2 steady state.

3.6.3 Effects of host demography on 2-strain epidemiological competition

Changes in natural susceptible recruitment rate (equal host mortality rate) r affect R0 in the system, which
also determines µ , besides appearing itself also explicitly in Eq.3.5.10. So even with everything else fixed
(β ,γ,k and ∆b,∆ν) it is possible to influence competitive dynamics between strain 1 and strain 2, just via host
demography. Increasing host mortality rate, decreases R0 in the system which increases µ and hence gives a
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Fig. 3.8 Increasing global clearance or global transmission can have opposite effects on single strain frequency at the
endemic equilibrium, depending on underlying trait variation. We plot the frequency of strain 2, z∗2 at the coexistence
equilibrium (Eq. 3.5.9), as a function of mean transmission rate and mean clearance rate. Variation among 2-strains is
encoded in the transmission and clearance rate axes: βi and γi, and co-colonization vulnerabilities ki j . In this simulation, we

choose r = 0.2, k = 1 and the matrix of standardized interactions is assumed symmetric
(
αi j
)
=

(
0

√
2√

2 0

)
, favouring

coexistence with αi j = α ji > αii = α j j . a-b. Equilibrium frequency as a function of strain-transcending γ . We plot z∗2 as a
function of mean clearance rate γ (varied between 1 and 4) for 2 cases of fitness differentials in transmission ∆b and 3 cases
of variability in clearance ∆ν . The global transmission rate is β = 4.5 to ensure R0 ≥ 1. c-d. Equilibrium frequency as a
function of strain-transcending β . We plot z∗2, as a function of mean transmission rate β (varied between 1.5 and 9) for
2 cases of different variation ∆b and 3 cases of ∆ν . In these plots, overall clearance rate is held fixed at γ = 1 to ensure
R0 ≥ 1.

larger weight to the trait variation in clearance rate of infection ∆ν . Increasing host turnover rate might then
enable coexistence of two strains (maintenance of the less fit strain e.g. strain 2) because it could amplify, and
even overturn, the relative advantage in duration of carriage (∆ν < 0) versus the disadvantage in transmissibility
(∆b > 0). This would imply that in different populations, with different rates of susceptible host turnover, the
dynamics of the same two strains could be different. Thanks to this model, all these mechanisms and special
cases in competitive dynamics between two closely-related strains at the epidemiological scale can be studied
in a fully parameter-explicit and analytical manner, which should promote easier and more direct testable links
with data.

3.6.4 Dynamical transitions: from N = 2 to the N-strain ecological network

Throughout this study, we have shown explicitly and illustrated in detail how global parameters of the neutral
model, embedded in the center of the dynamics, can shift qualitatively and quantitatively the net competitive
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outcome for any given pair of strains. Recall that the N = 2 system forms the basic unit in the full competitive
network among an arbitrary number N of strains, and that qualitative shifts in each network ‘edge’, as a function
of global parameters, can have far-reaching effects on the collective dynamics among multiple strains, even
when strains differ just in co-infection vulnerabilities [88]. Having exposed new and nonlinear gradient effects
of µ,R0,k,γ,r in the more complete 2-strain system with variation along 5 fitness dimensions, opens the way
towards deeper analysis of their higher-level effects on the N− strain assembly, dynamics, and coexistence [120].
Studying dynamical transitions mediated via coinfection prevalence and strain-transcending epidemiological
parameters, as well as the statistical distributions of trait variations, possibly informed by data [1, 51, 61] in the
full system, is the natural and exciting next step.

3.6.5 Extensions of the model towards stochasticity

One could investigate the stability of the global endemic vs. disease-free equilibrium under stochastic noise;
which is key for the establishment of the neutral model on the fast time-scale (based on R0 > 1). It has been
noted that outcomes predicted by stochastic and deterministic models can differ widely, especially concerning
persistence and extinction [48], and, in the case of strains differing in epidemiological traits, in final competitive
outcomes [151]. This indicates that the influence of fluctuations on dynamics of infectious agents could be
significant and should be studied also in our context of coinfection.

In SIR frameworks with immunity and cross-immunity between strains, simulations have revealed that the
dynamics of ‘semi-stochastic’ multi-strain models, can be strikingly different from those of the corresponding
deterministic model, with large amplitude limit cycles typically replaced by oscillatory irregular dynamics
with a limited strain diversity circulating at any time [152]. Similar to our key driver of model behavior, µ ,
dependent on basic reproduction number R0 and mean susceptibility to coinfection k [88], sharp transitions in
other multi-strain studies have been shown as a function of the reproduction number of the pathogen and the
intensity of cross–immunity [3]. These could be studied further in stochastic versions of our model with finite
host population size, possibly affecting µ-mediated transitions in the N = 2 system described here, and likely
more relevant and interesting in the full SIS formulation with N strains and coinfection derived in [120].

At their mathematical core, SIS endemic frameworks share many properties with logistic growth, and
have stochastic models with well-established phenomena [160, 8]. Possibly, existing or forthcoming analytic
results could be translated across this interface, accounting also for multiple strains and coinfection. A clear
benefit of the deterministic framework proposed here is the reduction in the number of relevant parameters for
predicting dynamics (the two mutual invasion fitnesses in the N = 2 system, or N mutual invasion fitnesses
in the generic N-strain model [120]) hence enabling easier, more precise and reproducible estimation across
countless scenarios of subtle biological trait variations among the co-circulating infectious agents. This means
that parametrization of epidemiological coinfection SIS models of this sort with interacting strains, from strain
frequency temporal data, could become substantially more efficient, even under stochasticity, observation
process and measurement error. Many avenues for links with data can now be explored.

3.7 Discussion

Coinfection is an important aspect of many infectious diseases, and a metaphor applied to model also certain
information propagation and species colonization processes. There are substantial modeling efforts dedicated to
co-infection in the last decades [4, 127, 90, 7, 98, 61]. Yet, simple and sufficiently general mathematical frame-
works to analyze and unify the full spectrum of hierarchical patterns emerging from co-infection interactions
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and variation in other fitness dimensions between two strains are missing. Here, we contribute to fill this gap,
thanks to a model reduction obtained after assuming strain similarity [120]. Focusing on N = 2, here we have
modeled simultaneously 5 fitness dimensions where two strains can differ, and used the decomoposition into
two timescales to simplify their dynamics: neutral dynamics between types on a fast timescale and non-neutral
selective processes on a slow timescale, driven explicitly by trait variation, going beyond [86] where only
pairwise vulnerabilities to co-infection (a single ‘trait’) were studied.

Many studies of coinfection are either totally epidemiological in nature [145, 195, 127], exploring trans-
mission dynamics of infectious agents in a host population, or they focus on evolution of specific pathogen
traits (often virulence) [154, 7] using the coinfection framework developed by [199] for microparasites causing
persistent infections. The latter group of studies, typically derive the conditions of invasion of a rare mutant
in a host population already infected by a resident strain, following adaptive dynamics theory [149], where
it is further assumed that the resident strain is at equilibrium, that is, that the densities of susceptible, singly-
infected and coinfected hosts have reached their equilibrium values. Invader fitness is then evaluated using
the basic reproduction ratio [199], where it becomes clear that the fitness of a mutant strain is the sum of two
components: the fitness achieved through the infection of susceptible hosts and the fitness achieved through
the infection of hosts already infected by the resident. Typically by analyzing whether the reproduction ratio
is greater than or lower than 1, conditions for successful or unsuccessful invasion, and ultimate evolutionary
dynamics for the trait in consideration are established. However, sometimes the criteria derived in such models
can be model-dependent, involve cumbersome mathematical expressions, and may not provide immediate
comprehensive insight into the biological mechanisms. Furthermore, explicit frequency dynamics post-invasion
are typically not derived or elaborated upon.

In the present work, we have bridged these fields of study. With a rather generic model, we have revealed
coexistence and competition mechanisms in their bare essence, and have integrated, generalized and advanced
analytically the epidemiological and adaptive dynamics perspectives on coinfection. We have linked population
dynamics of endemic transmission with slow selective dynamics in strain trait space, and shown that such
dynamics are given by a replicator equation involving the mutual invasion fitness matrix between strains
(Eq.(3.2.7)). We have generalized single trait evolution to multiple trait evolution, exploring phenotypic
differentiation along 5 dimensions between two strains: transmission, clearance, vulnerability to coinfection,
duration of coinfection, and transmission biases from mixed coinfection, all of which contribute to mutual
invasion fitness (Eq.3.3.1). We have illustrated the utility of an analytical expression for explicit frequency
dynamics between two strains, under an endemic global equilibrium, which allows to use the well-known
replicator equation to make predictions for exclusion vs. coexistence (Section 3, Eq.3.5.1), relative strain
abundances over time, the means of different traits, and exposes how the means of different traits act to shape
their slow variance dynamics.

By elaborating several systematic examples, we have shown that coinfection effects can be very complex
on the epidemiological competition between two strains. Indeed, high coinfection prevalence (small µ here) is
not always a promoter of coexistence; instead, its effect to generate or prevent polymorphism is non-monotonic,
and crucially depends on the type and level of existing phenotypic differentiation between strains. We have also
proven formally what type of trait variation is required for 2, 3, and 4 qualitative shifts in the same system as
a function of coinfection prevalence alone (Table 3.3). This may prove extremely relevant when interpreting
different ecological outcomes potentially arising between the same strains when they occur together in different
geographical locations, environmental settings, temperature, resources or other biophysical gradients that act on
R0 and k.
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Although we have illustrated special cases, where the traits are uncorrelated, possible co-variation con-
straints or trade-offs between different traits (e.g. transmission-clearance, or transmission -competition in
co-colonization) can be studied under the same analytically-explicit framework, especially for higher N, pro-
vided they do not violate the similarity assumption. One mathematical requirement for the singular perturbation
expansion to hold is small ε . Yet, numerically we find that the slow-fast approximation remains valid and
quantitatively reasonably close to the original system even for values of ε in the order of 0.2-0.3, expanding its
applicability. On the other hand, full characterization of the selective dynamics between two strains for small
ε , as provided by our framework, has utility for studying local bifurcations near neutrality and the origin of
speciation in such systems. Inevitably, the feature of expressing multivariate phenotypic differentiation into
a common currency, ε , is central to the slow-fast representation [120], and restricts somewhat the types of
systems that can be modelled to those where multiple traits between strains display similar variance. In practice,
there are many ways to define the neutral model for the original system 2.2.1 starting from given parameters.
Although they will lead to slightly different fast-slow dynamics, all of them will eventually be ε− close to the
real dynamics and preserve its key features.

It is important to keep in mind that our model is deterministic in nature, and as such it cannot account
for the subtleties in selection dynamics induced by demographic stochasticity, possibly even in cases where
net invasion fitnesses fully equalize between the two strains. It has been shown using simpler population
models that how net fitness is realized in terms of vital rates between two species can have drastic effects on
stochastic extinction or mutual coexistence [168, 124, 55]. This aspect in our model remains to be studied in
the future with new frameworks that incorporate stochasticity. Stochastic fluctuations could impact strongly
the dynamics especially in those cases where bistable outcomes (alternative stable states for general N) are
predicted from the deterministic model. Similarly, extensions in model structure, for example sequential
instead of direct clearance from coinfection, are likely to require specific investigation to establish whether a
similar replicator-like equation is possible to derive using the singular perturbation approach, and determine
the eco-evolutionary feedbacks governing strain selection. The very same techniques used here to explore the
role of coinfection can have may potential advantages if applied in the context of more complex host-pathogen
systems where host population is structured differently, for example heterogeneity in host-specific traits, or
contact networks [49, 100]. Another path for future exploration is clearly linking our theoretical results to the
broader theoretical developments in quantitative genetics, also based on Taylor expansions around mean traits,
for example the oligomorphic approximation by [184] for examining the joint ecological and evolutionary
dynamics of populations with multiple interacting morphs, and recent extensions thereof [126].

However, even if arising from a specific epidemiological context, we believe our analytical approach,
derived for general number of strains N in [120], starting with a complete coinfection structure, involving both
same strain and mixed co-infection as in [199, 6, 90], and made possible via separation of timescales and model
reduction under strain similarity [86, 140], can have countless further theoretical and practical applications,
not least by harnessing the elegant simplicity and historical study record of the replicator equation [103].
Understanding more deeply and in explicit time-scales multiple-trait selection in systems with co-infecting
interacting entities will enable easier and more direct insights on several important health challenges, including
antibiotic resistance, virulence evolution, optimal immunization, and patterns of diversity in multi-strain
endemic pathogens or colonization-based ecosystems.
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Code availability

An illustrative code that simulates the dynamics between two strains in our SIS model with coinfection and
multi-trait variation, under the proposed slow-fast approximation and replicator equation, is provided on Github.
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S3.2 Strain-specific R0 in co-infection vs. actual trait variation

We may consider the relations between the basic reproductive numbers R0,1 and R0,2 in determining the winner
in the case of exclusion. We recall the basic reproductive number of each strain, see [120] as follows

R0,1 =
β

m
+ ε

β

m

(
b1 −

γν1

m

)
+O

(
ε

2) , R0,2 =
β

m
+ ε

β

m

(
b2 −

γν2

m

)
+O

(
ε

2) (S3.2.1)

which implies
R0,1 ≥ R0,2 ⇐⇒ b1 −b2 ≥

γ

m
(ν1 −ν2) . (S3.2.2)

Strain 1 has higher strain-specific R0 if and only if its advantage in transmission is bigger than its relative
disadvantage in clearance rate, weighted by the global reproduction number.

For any given value R0,1, when we fix any value of ν1, we can find unique value b1 such that strain 1 is
associated to b1 and ν1 and has the basic reproductive number R0,1. The same holds true for strain 2. This is

plausible because of the formulas R0,i =
βi

mi
=

β (1+ εbi)

m+ εγνi
.

Hence, with only values of basic reproductive number R0,1 and R0,2, in a coinfection model, we cannot
determine the long time behavior of the dynamics. Figure S1 is actually a vertical slice in each sub figure of
figure S6 when we keep ∆ν unchanged and change the value of ∆b to vary (R0,1,R0,2). It is consistent with
figure S6 when the smaller ∆ν leads to the smaller possibility of coexistence in the same range of ∆b but the
possibility of the exclusion of strain 2 stays the same.

Fig. S1 Ecological scenarios do not depend just on relative basic reproduction numbers of strains R0,1 and R0,2. We
compare the case of large variation in clearance rate between two strains ν1 =−1, ν2 = 1 (a) with lower one ν1 =−0.25,
ν2 = 0.25 (b). The other parameters are assumed: k = 3, m = 1.5, β = 6, ε = 0.1. We vary ∆b in each case to obtain the
relative comparison between R0,1 and R0,2 shown in the figures. The variations are in transmission rates βi, single clearance
rates γi, and for coinfection clearance rate we assume γi j with u12 = u21 = min{ν1,ν2}. Comparing (a) and (b), for the
same combination of strain-specific R0, the scenarios can diverge depending on the actual difference in strain-specific
parameters leading to the particular reproduction number. Particularly, where the ∆ν is higher (a), the relative benefit
of strain 2 from lower clearance in mixed co-colonization is larger, leading to a larger strain-2 only region, and a larger
coexistence region, over the same R0 range. (Code)
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S3.3 Speed of strain dynamics depends on global parameters

Our model allows explicit quantification of the speed of strain dynamics as a function of epidemiological
parameters. Next we illustrate a dynamics example for a 2-strain system tending to exclusion. For the same
relative variation between two strains, the dynamics are much faster when R0 is lower, in this case obtained by
changes in β . For the dynamics in figure S2, we calculate the values of theta’s and pairwise invasion fitnesses

Fig. S2 An example of 2-strain system with multi-trait variation. b1 = 1,b2 = −1.5, ν1 = −2,ν2 = −3,
(
ui j
)

i j =(
1 −2
−2 3

)
,
(

ω i
i j

)
i j
=

(
−1 −3
−1 3

)
and

(
αi j
)

i j =

(
−
√

2 0√
2 0

)
. We choose mean transmission rate β = 4, mortality

r = 0.2, mean co-colonization interaction factor (altered susceptibility to co-colonization) k = 1.5, and the initial values of
strain frequencies (z1,z2) =

(
0.3 0.7

)
. Both figures present periods of transient coexistence before the exclusion of strain

1. The dashed-dotted grey vertical lines, denoted by d in two figures show the region where min(z1,z2)> 0.02. Figure (a)
plots for R0 = 1.5, in which, d goes through a point between 3 and 4 (near 4). Figure (b) plots for R0 = 1.1, in which, d
goes through a point very near and less than 1. Thus, it can be seen that the the region of "effective transient coexistence”
when R0 = 1.5 is larger than when R0 = 1.1.

in each sub figure as follows:

• (a):
(

θ1 θ2 θ3 θ4 θ5

)
≈
(

0.48 0.2 0.09 0.03 0.2
)

, and
(
λ 2

1 ,λ
1
2
)
≈ (10.37,−0.20).

• (b):
(

θ1 θ2 θ3 θ4 θ5

)
≈
(

0.51 0.39 0.03 0.07 0.0
)

, and
(
λ 2

1 ,λ
1
2
)
≈ (8.28,−4.42).

It is easy to verify that because of the values of λ
j

i , we have exclusion of strain 2 from the system and only
strain 1 persists, but depending on the value of R0 the dynamics will be quicker or slower. In this particular
case, reducing R0, hence overall endemic prevalence of the two strains, leads to faster exclusion dynamics and
shorter period of transient coexistence.

S3.4 Qualitative transitions in the same system when varying µ

S3.4.1 A result for variation occurring only in two out of: i) transmission rates βi, ii)
clearance rates γi and ii) transmission biases from coinfection pi

i j

In this subsection, we prove that, in the case of variation between 2 strains only, can be in transmission rates
βi, clearance rates γi and transmission probability from co-colonized hosts, there is at most one shift for the
ecological outcome as a function of µ (single to coinfection ratio in the system). Indeed, we show this result in
three cases.
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Case 1: Transmission rates βi and clearance rates γi vary between strains.

By formulae (3.4.1) with ∆ω = 0 we have that mutual invasion fitnesses are:λ
2
1 =

γ

2(γ + r)
µ (2µ +1)∆ν +(µ +1)2

∆b

λ
1
2 =−λ

2
1

. (S3.4.1)

It suffices to show that the following equation can not have two positive roots, when solved for µ

γ

2(γ + r)
µ (2µ +1)∆ν +(µ +1)2

∆b = 0.

Assume the contradiction, which means that it has two positive roots, which can be denoted by µ1 and µ2. By
Viete’s theorem, we have that

µ1 +µ2 =−
γ

2(γ+r)∆ν +2∆b
γ

γ+r ∆ν +∆b
> 0, µ1µ2 =

∆b
γ

γ+r ∆ν +∆b
> 0. (S3.4.2)

Thus, (S3.4.2) implies µ1 +µ2 +
3
2

µ1µ2 > 0, which is equivalent to

−
γ

2(γ+r)∆ν +2∆b
γ

γ+r ∆ν +∆b
+

3
2 ∆b

γ

γ+r ∆ν +∆b
> 0,

which is absurd because the left-hand side is equal to −1
2

.

Case 2: Clearance rates γi and transmission probability from coinfected hosts pi
i j vary.

By formulae (3.4.1) with ∆b = 0 we have that mutual invasion fitnesses are given by:λ
2
1 =

γ

2(γ + r)
µ (2µ +1)∆ν +(µ +1)∆ω

λ
1
2 =−λ

2
1

. (S3.4.3)

It suffices to show that the following equation can not have two positive roots, when solved for µ

γ

2(γ + r)
µ (2µ +1)∆ν +(µ +1)∆ω = 0.

Assume the contradiction, which means that it has two positive roots, which can be denoted by µ1 and µ2. By
Viete’s theorem, we have that

µ1 +µ2 =−
γ

2(γ+r)∆ν +∆ω

γ

γ+r ∆ν
> 0, µ1µ2 =

∆ω

γ

γ+r ∆ν
> 0. (S3.4.4)
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Thus, (S3.4.4) implies µ1 +µ2 +µ1µ2 > 0, which is equivalent to

−
γ

2(γ+r)∆ν +∆ω

γ

γ+r ∆ν
+

∆ω

γ

γ+r ∆ν
> 0,

which is absurd because the left-hand side is equal to −1
2

.

Case 3: Transmission probabilities from coinfected hosts pi
i j and transmission rates βi vary.

By formulae (3.4.1) with ∆ν = 0 we have that{
λ

2
1 = (µ +1)2

∆b+(µ +1)∆ω

λ
1
2 =−λ

2
1

. (S3.4.5)

The quadratic equation
(µ +1)2

∆b+(µ +1)∆ω = 0

has one root to be −1. Hence, it can not have two positive roots, which implies our requirement.

S3.4.2 The case of four ecological outcomes in the same system according to µ

It is possible to have four distinct ecological outcomes between which the same system with two strains can
shift, as a function of global µ . Initially, we will prove that the necessary condition for the presenting of fully
four survival outcomes: E1, E2, C, B is that, variations are in coinfection clearance rates γi j and co-colonization
interaction ki j.

Proof. • Firstly, we prove that if variations are only in βi, γi, pi
i j and ki j then we can not have four

survival scenarios as µ → ∞.
The formulas for pairwise invasion fitnesses are

λ
2
1 =

γ

2(γ + r)
µ (2µ +1)∆ν +(µ +1)∆ω +

(R0 −1)µ

2
(µ (α21 −α12)+α21 −α22)+(µ +1)2

∆b

λ
1
2 =− γ

2(γ + r)
µ (2µ +1)∆ν − (µ +1)∆ω +

(R0 −1)µ

2
(−µ (α21 −α12)+α12 −α11)− (µ +1)2

∆b
.

(S3.4.6)
We have that two equations λ 2

1 = 0 and λ 1
2 = 0 are respectively equivalent to

(Eq1) : A1µ
2 +B1µ

2 +C1 = 0, A1 > 0

and
(Eq2) : A2µ

2 +B2µ
2 +C2 = 0, A2 > 0,

in which A1 = A2 and C1 =C2, easily deduced from (S3.4.6).
On the other side, by direct verification, to have fully four outcomes, the signs of

(
λ 2

1 ,λ
1
2
)

must change
at least three times, so one in two equations (Eq 1) or (Eq 2) must have two distinguished positive solutions
and the other must have at least one positive solution. By Viete’s theorem, the products of solutions in two
equations (Eq 1) and (Eq 2) are equal. Hence, (Eq 1) and (Eq 2) must have both positive solutions.
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Denote two positive solutions of (Eq 1) are x1 < x2, two positive solutions of (Eq 2) are y1 < y2.
By direct checking, and note that when µ →+∞ or µ →−∞ , λ 2

1 +λ 1
2 → 0, we have that, to have fully four

outcomes, it must be
x1 < y1 < x2 < y2

or
y1 < x1 < y2 < x2.

Both of these inequality requires the products of solutions in (Eq 1) is strictly less or more than the products of
solutions in (Eq 2), which is a contradiction of the equality of two products mentioned before.
Thus, if variations are only in βi, γi, pi

i j and ki j then we can not have four survival scenarios as µ → ∞.

• Secondly, we prove that if variations are only in βi, γi, γi j and pi
i j then we can not have four sur-

vival scenarios as µ → ∞.

The formulas for pairwise invasion fitnesses now read

λ
2
1 =

γ

2(γ + r)
µ (2µ +1)∆ν +

γ

2(γ + r)
(µ +1)∆2u+(µ +1)∆ω +(µ +1)2

∆b

λ
1
2 =− γ

2(γ + r)
µ (2µ +1)∆ν +

γ

2(γ + r)
(µ +1)∆1u− (µ +1)∆ω − (µ +1)2

∆b
. (S3.4.7)

For the sake of simplicity, we denote that m := 2(γ+r)
γ

, d1 :=−u12 −u21 +2u22 and −d2 :=−u12 −u21 +

2u11.
We have that two equations λ 2

1 = 0 and λ 1
2 = 0 are respectively equivalent to

(Eq3) : A′
1µ

2 +B′
1µ

2 +C′
1 = 0, A′

1 > 0

and
(Eq4) : A′

2µ
2 +B′

2µ
2 +C′

2 = 0, A′
2 > 0,

now in which
A′

1 = 2∆ν +m∆b, B′
1 = ∆ν +d1 +2m∆b, C′

1 = d1 +m∆b

and
A′

2 = 2∆ν +m∆b, B′
2 = ∆ν +d2 +2m∆b, C′

2 = d2 +m∆b.

Denote two solutions of (Eq 3) to be x3 < x4, and two solutions of (Eq 4) to be y3 < y4. By the same
arguments, it can be deduce that, to have fully four survival outcome, it must be

(∗) x3 < y3 < x4 < y4

or
(∗∗) y3 < x3 < y4 < x4

where at least 0 < x3 < x4 or 0 < y3 < y4. Without loss of generality, similarly to the previous arguments, we
assume that 0 < x3 < x4 and y4 > 0.
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According to Viete’s theorem, we obtain, note that A′
1 = A′

2

x3 + x4 =−B′
1

A′
1
, x3x4 =

C′
1

A′
1
,

y3 + y4 =−B′
2

A′
2
, y3y4 =

C′
2

A′
2
.

Case 1: A′
1 = A′

2 > 0.

• If d1 > d2 then −B′
1

A′
1
< −B′

2
A′

2
and

C′
1

A′
1
>

C′
2

A′
2

, which implies x3 + x4 < y3 + y4 and x3x4 > y3y4. From

x3 + x4 < y3 + y4, then 0 < x3 < y3 < x4 < y4, which contradicts x3x4 > y3y4.

• If d1 < d2 then −B′
1

A′
1
> −B′

2
A′

2
and

C′
1

A′
1
<

C′
2

A′
2

, which implies x3 + x4 > y3 + y4 and x3x4 < y3y4. From

x3x4 < y3y4, then 0 < x3 < y3 < x4 < y4, which contradicts x3 + x4 > y3 + y4.

Case 2: A′
1 = A′

2 < 0.

• If d1 > d2 then −B′
1

A′
1
> −B′

2
A′

2
and

C′
1

A′
1
<

C′
2

A′
2

, which implies x3 + x4 > y3 + y4 and x3x4 < y3y4. From

x3x4 < y3y4, then 0 < x3 < y3 < x4 < y4, which contradicts x3 + x4 > y3 + y4.

• If d1 < d2 then −B′
1

A′
1
< −B′

2
A′

2
and

C′
1

A′
1
>

C′
2

A′
2

, which implies x3 + x4 < y3 + y4 and x3x4 > y3y4. From

x3 + x4 < y3 + y4, then 0 < x3 < y3 < x4 < y4, which contradicts x3x4 > y3y4.

Hence, if variations are only in βi, γi, γi j and pi
i j then we can not have four survival scenarios as µ → ∞.

In the main text, we give an example, in which varying µ from 0 to ∞ may give us 4 outcome exclusion of
either strain, coexistence and bistability.

S3.5 Examples for 3 possible global outcomes

We illustrate possible outcomes as a function of ∆b and ∆ν , similarly to Figure 3.6, when the perturbations are
only in transmission rates βi, clearance rates γi and co-colonization interactions ki j. We recall that the borders
separating exclusion regions are lines representing λ 2

1 = 0 and λ 1
2 = 0.

According to the explicit formulas of
(
λ 2

1 ,λ
1
2
)
, the border lines have the same slope, thus leading to

parallelism. Thus, there are at most 3 possible outcomes for each fixed value (R0,k). Figures S3 and S4 shows
that changing the matrix (αi j) may generate different final outcomes.

According to (3.3.1), we can deduce that regardless of changing (αi j), we can not observe coexistence and
bistability for a fixed value of (αi j). Indeed, according (3.3.1), two coefficients of ∆ν in the formulae of λ 2

1 and
λ 1

2 are of opposite signs, and the same holds for ∆b.
Then, for (∆ν ,∆b)→ (∞,∞) and (−∞,−∞), we have the opposing signs of

(
λ 2

1 ,λ
1
2
)
, leading to exclusion.

S3.6 The analytical expression for coexistence prevalence

Here we compute the value of z∗2 in the case of symmetric co-colonization interaction matrix. Thus: αi j = α ji,
αii = α j j. We also assume that strain-specific transmission probability from mixed coinfected hosts is in this
case pi

i j =
1
2 (no priority effects).
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Fig. S3 Illustration of 3 possible outcomes, as a function of ∆ν and ∆b, for different values of k and R0. We highlight
the respective regions in different colors, according to the critical relationship between ∆b, ∆ν , k and R0 when perturbations

happen only βi, γi, and ki j with γ = 1, r = 0.2 and the matrix
(
αi j
)

be
(

0 −
√

2
−
√

2 0

)
. Three possible survival outcomes

include the exclusion of strain 1, bistability and the exclusion of strain 2.

• Perturbation in βi,γi,γi j,ki j

z∗2 =
1
2
·
−∆b− θ2

θ1
∆ν +

θ3

θ1
(2u11 −u12 −u21)+

θ5

θ1
(α12 −α11)

θ3

θ1
(u11 +u22 −u12 −u21)+

θ5

θ1
(α12 −α11)

(S3.6.1)

• Perturbation in βi,γi,ki j

z∗2 =
1
2
·
−∆b− θ2

θ1
∆ν +

θ5

θ1
(α12 −α11)

θ5

θ1
(α12 −α11)

=
1
2

 −∆b− θ2

θ1
∆ν

θ5

θ1
(α12 −α11)

+1


=

1
2

(
− 1

α12 −α11
· 2(γ + r)+ k (β − γ − r)

k (β − γ − r)2 · γ∆ν − 1
α12 −α11

· 2(γ + r+ k (β − γ − r))2

k (β − γ − r)2 ∆b+1

)
.

(S3.6.2)
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Fig. S4 Illustration of 3 possible outcomes, as a function of difference in transmission and clearance rates between
two strains, for different values of k and R0. We highlight the respective regions in different colors, according to the
critical relationship between ∆b, ∆ν , k and R0 when perturbations happen only βi, γi, and ki j with γ = 1, r = 0.2 and the

matrix
(
αi j
)

be
(
−2 0
0 0

)
. This changing of matrix

(
αi j
)

flips the position of two lines λ 2
1 = 0 and λ 1

2 = 0 leads to the

other possible outcomes. Three possible system outcomes include: the exclusion of strain 1, coexistence and the exclusion
of strain 2.

S3.6.1 Studying the monotonicity of z∗2: increasing vs. decreasing equilibrium strain
frequency

For the sake of simplicity, and for the purposes of illustration, we consider the equilibrium of resistance strain
in section 4. Recall the formula of z∗2 in (3.5.9)

z∗2 =
1
2
−∆ν · γ 2(γ + r)+ k (β − γ − r)

2
√

2k (β − γ − r)2 −∆b
[γ + r+ k (β − γ − r)]2

√
2k (β − γ − r)2 . (S3.6.3)

To investigate the monotonicity of strain frequency, we need to compute the first partial derivative of z∗2 with
respect to β and γ , noting that m = γ + r and investigate its sign:

∂ z∗2
∂β

=−∆ν
1

2
√

2k
(k−4)m−βk

(β −m)3 −∆b
1√
2k

2m((k−1)m−βk)

(β −m)3 , (S3.6.4)

and

∂ z∗2
∂γ

=−∆ν
1

2
√

2k
β (βk− km+4m)− r ((k+2)β − (k−2)m)

(β −m)3 −∆b
1√
2k

2β (βk− km+m)

(β −m)3 . (S3.6.5)
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It can be seen that the expressions are entirely explicit but they display nonlinear dependence on many
parameters, including strain variation (∆b,∆ν), as well as mean parameters β ,m or coinfection determinants
(k, etc.). This allows to obtain a full analytic understanding of the coexistence between two strains at the
epidemiological level and how their relative hierarchies depend and may shift with overall context.

Fig. S5 Monotonicity and convexity of z∗2 according to transmission rate β and clearance rate γ . We choose r = 0.2,

k = 1 and matrix including entries αi j is
(

0
√

2√
2 0

)
. The behavior observed is by plotting for ∆ν =−0.5. In (a) and (c),

setting ∆b = 0.3, we plot z∗2 according to γ with β = 5.3 and β = 6.3 respectively. Figures (c) and (b) present the curve of
first and second orders derivatives of z∗2 according to γ , respective for figures (a) and (b).

S3.6.2 Studying the convexity of z∗2: accelerating vs. decelerating behavior

In this subsection, we consider the convexity of z∗2 with respect to β and γ , global strain-transcending parameters,
that can be controlled via interventions (antibiotic treatment, vaccines, etc.). Thus, we compute the second-order
derivative of z∗2 related to β as follows, noting that m = γ + r:

∂ 2z∗2
∂β 2 =−∆ν

1√
2k

6βm+(−4m+ k)(β −m)

(β −m)4 −∆b

√
2m(3m−2km+2βk)

k (β −m)4 , (S3.6.6)

and the second-order derivative of z∗2 related to γ as follows:

∂ 2z∗2
∂γ2 =−∆ν

βk− (k−6)m
√

2k (β −m)4 −∆b
2β ((2k+1)−2(k−1)m)

k (β −m)4 . (S3.6.7)

These expressions reveal whether the behavior of the strain frequency as a function of global parameters is
decelerating or accelerating. This has implications for the control of the strain composition at the population
level if we intervene via changing global transmissibility of all strains β or global clearance rate γ . If the
behavior is increasing and accelerating, this means that the frequency of that strain can reach fixation for
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some value of the global parameter. If the behavior is increasing and decelerating (first derivative positive and
second derivative negative) this means that the strain frequency saturates at a particular value < 1 indicating
coexistence in the limit of high values of the control parameter. The following simulation in Figure S5 allows us
to see how we can use these analytical expressions above to predict exactly the behavior the strain coexistence
frequencies as a function of our parameters, and possible responses to interventions in global transmission rate
β or clearance rate γ . In these figures, we can see that z∗2 is always convex related to γ in the considered period
of varying γ .

S3.6.3 Effect of transmission priority effects from mixed coinfection ∆ω

To see the effect of transmission biases from mixed coinfection, as in the section 3.4 we plot the values of
pairwise invasion fitnesses according to the single to co-colonization ratio µ . From 3.4.1, it is known that if
variations are only in transmission rates βi, clearance rates γi and transmission probability from coinfected hosts
pi

i j, the outcome is always the exclusion of either strain. In this figure, the perturbations are in transmission
rates, clearance rates, transmission probability from co-colonized hosts as well as in co-colonization interaction
factor ki j to break the anti-symmetry. Except the transmission biases from mixed coinfection pi

i j favor to strain
2, other trait differences in βi, γi favors to strain 1.

We consider in three cases including co-colonization interaction factor ki j favors to strain 2, disfavors to
strain 1 and counter balance, respectively. Although the difference ∆ω is bias to strain 2, when µ is large
enough, the difference in transmission probability does not effect too much. This can be seen in the similar
trending of

(
λ 2

1 ,λ
1
2
)

in figures (a, b, c) in figure 3.4, whose values of ∆b and ∆ν are kept the same.
These phenomena are plausible because the weight (written in µ) of transmission probability from coinfected

hosts is µ +1 in the formulae of invasion fitnesses (3.4.5). Of course, unlike 3.4.3, when µ is small enough,
∆ω leads to the exclusion of strain 2 in figure S6 (a) and the exclusion of strain 1 in figure S6 (b). Meanwhile,
λ 2

1 is always positive in figure 3.4 (a) and λ 1
2 is always negative in figure 3.4 (b).

Fig. S6 Additional effects of within-host transmission advantage from mixed coinfection pi
i j ̸=

1
2 (for comparison

with Figure 3.4 a-b-c) Here we combine variation in co-colonization interactions ki j with variations in transmission rates,
infection clearance rates, and transmission probability from coinfected hosts (See Eqs (3.4.9)). We compute pairwise
invasion fitnesses

(
λ 2

1 ,λ
1
2
)
according to µ in various cases of co-colonization interaction matrix

(
αi j
)
. We illustrate the

cases of transmission and clearance superiority of strain 1 (parameters as in top row of Figure 4): ∆b = 0.4, ∆ν = 0.8,
R0 = 5, r = 0.5 and γ = 1.5. We choose the value ∆ω =−2 to increase the advantage in transmission probability of strain

2 from mixed coinfection. We consider 3 structures: (a)
(
−2 0
0 0

)
; (b)

(
0 0
0 2

)
; (c)

(
−
√

2 0
0

√
2

)
for variation in

co-colonization interactions.

Secondly, as mentioned in Sections 3.6.1 and 3.6.2, we point out that depending on how the fitness
differential between strain 1 and its competitor strain 2, is manifested (∆b,∆ν) increasing strain-transcending
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clearance or transmission rates (γ or β ) in a population can have opposing effects. Besides other trait parameters
which are kept unchanged, we analyze the effect of ∆ω < 0 favouring strain 2, and how this modifies the range
of γ guaranteeing the coexistence, originally observed in Figure S7. We can see that the shapes of curves
representing z∗2 are similar to the Figures 3.8 (a, b, c, d). respectively. However, in Figures S7 for all (a, b, c,
d), for ∆ν > 0 (which favours strain 1), compared to figures 3.8 (a, b, c, d) respectively, the ranges for survival
of strain 2 are larger, highlighting the positive effect of its precedence in transmission from mixed coinfection.
In contrast to this, when ∆ν < 0, the range for coexistence decreases, to a larger advantage of strain 2-only
persistence. In all cases, the values of equilibrium of strain 2 in Figure S7 corresponding to each parameter γ or
β are higher than in Figure 3.8.

Fig. S7 Strain frequency at the endemic equilibrium vs. γ and β depends on underlying trait variation (related to
Fig.3.8 but with ∆ω ̸= 0). We plot the prevalence of strain 2, z∗2 at the coexistence equilibrium (Eq. 3.5.9), as a function of
mean transmission rate and mean clearance rate. Variation among 2-strains is encoded in the transmission and clearance
rate axes: βi and γi, transmission probability from co-colonized hosts pi

i j and co-colonization vulnerabilities ki j. In this
simulation, we keep the same values of r, k and the matrix of standardized interactions in Figure 3.8. We choose ∆ω =−0.5,
which favors strain 2 in precedence of transmission from mixed coinfection. a-b. We plot the equilibrium z∗2 as a function
of mean clearance rate γ (varied between 1 and 4) for 2 cases of fitness differentials in transmission ∆b and 3 cases of
variability in clearance ∆ν . The global transmission rate is β = 4.5 to ensure R0 ≥ 1. c-d. We plot the equilibrium frequency
of strain 2, z∗2, as a function of mean transmission rate β (varied between 1.5 and 9) for 2 cases of different variation ∆b and
3 cases of ∆ν . In these plots, overall clearance rate is held fixed at γ = 1 to ensure R0 ≥ 1.

S3.7 Error estimates of the slow dynamics approximation

In this section, we present numerical simulations to verify the error estimates when approximating the quasi-
neutral system (3.2.1) using the corresponding replicator equation when N = 2. We recall the following
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estimate in main result of [120], using the solution of the slow-system at time τ to approximate the system of
the quasi-neutral system at time τ

ε
, for all τ > 0.

Error estimate =
∣∣∣S(τ

ε

)
−S∗

∣∣∣+ N

∑
i=1

∣∣∣Ii

(
τ

ε

)
− I∗zi (τ)

∣∣∣+ N

∑
i, j=1

∣∣∣Ii j

(
τ

ε

)
−D∗ziz j (τ)

∣∣∣ (S3.7.1)

Using the ODE solving processes of scipy.integrate.odeint for two models (quasi-neutral and slow dyanmics),
we also can have the comparison in time complexity, see Figure S8.

Fig. S8 Error of the slow dynamics approximation, starting from the slow manifold. The error (mean over all model
variables and all time) between the original system trajectories and the slow dynamics. We create randomly 15
2-strain SIS quasi-neutral systems in which the dynamics start near the slow manifold. Recall that parameters include
transmission rates βi, single clearance rates γi, coinfection clearance rates γi j, transmission probability ps

i j and relative
factors of altered susceptibilities to co-colonization ki j, i, j ∈ {1,2}. We only fix the value recruitment rate as well as the
mortality rate to be 0.3 in this simulation. To ensure these 15 systems are quasi-neutral, we create their parameters using
the formulas: βi = β (1+ ε0bi), γi = γ (1+ ε0νi), γi j = γ

(
1+ ε0ui j

)
, ps

i j = 1/2+ ε0ωs
i j and ki j = k+ ε0αi j. Choosing

ε0 = 0.01, to create these systems, we generate random values for β , γ , k in their appropriate ranges, and bi, νi, ui j , ωs
i j , αi j ,

for i, j ∈ {1,2}, in their appropriate ranges as well. Then, we solve these SIS systems for time t = 1000. For each ε given,
we have a replicator system and we solve them for τ = εt. For each of these 15 systems, we can compute the error estimate
base on the formulas ∥S (τ)−S∗∥+∑∥Ii (τ/ε)− I∗zi (τ)∥+∑

∥∥Ii j (τ/ε)−D∗zi (τ)z j (τ)
∥∥, with τ = εt. This leads us to

observe the average error estimates for each value ε over 15 systems and over all time. As expected from the mathematical
theory, the mean error increases with ε , but remains small even for ε = 0.2, pointing to the wider applicability of our
method. (Code)

We also note that, the initial values for the replicator system is generated randomly as well. Accordingly,
the initial vales for the original quasi-neutral system is calculated using the formula

Ii(0) = I∗zi(0), Ii j(0) = D∗zi(0)z j(0), S0 = S∗ =
m
β
.

We can change the range for creating neutral parameters r, β , γ and k to see the different cases. Using the
neutral parameters and values S∗, T ∗, I∗, D∗ computed, we can input and solve the replicator system by its
pairwise invasion fitness matrix.

We can note that, there is a trade-off, since the two time-scale in (S3.7.1) is
τ

ε
and τ . We can choose a

smaller ε but the fast-time that can be used to approximated becomes larger.
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Chapter 4

A Reaction-Advection-Diffusion Model
for Quasi-neutral Dynamics of
Coinfected Strains

This chapter is the work in the paper "A Reaction-Advection-Diffusion Model for Quasi-neutral Dynamics of
Coinfected Strains", with Dr. Sten Madec, 2021, see [121].

4.1 Introduction

Heterogeneity is a common feature of real world infections. Heterogeneous susceptibilities may arise, for
instance, through individuals having differing histories of prior exposure to infection or vaccination. Thus, it
remains challenging to accurately describe diffusion process of bacteria/virus and investigate the transmission
dynamics of free-living bacteria/virus in the contaminated environment on disease infection. There are many
studies the mathematical framework on the predator-prey models within heterogeneous environment [174, 175].
In particular, many studies deeply solution for compartmental models in epidemiology with diffusion terms.
For instants, [205, 204] studies the existence and non-existence of travelling wave solutions for a general class
of diffusive Kermack–McKendrick SIR models with nonlocal and delayed disease transmission. However,
there is a lack of a comprehensive theoretical framework for spatial models of co-infection though it frequently
appears in models with migration, evolution, and heterogeneous environment. It is known that co-infection
dynamics have received considerable attention [4, 6, 145], because of their importance to biology, especially
in the outbreaks of infectious diseases. For instance, [143, 206] studied different co-infection models to help
diagnose and treat infectious diseases.

Even without a spatial structuration, the interactions between traits and strains yield complex consequences
on the population dynamics [140, 120]. However, under a quasi-neutral hypothesis, this complexity is decoded
into a replicator equation. In a heterogeneous environment, the dynamics surely become a PDE system, which
is more complex to studies. In this study, with diffusion terms and under appropriate conditions, the dynamical
system of co-infection, now becomes a reaction-advection-diffusion system, will be coded again through a
replicator equation, with or without diffusion, depending on the rate of diffusion.
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In this article, we describe and study the spatial version of dynamics considered in [120], i.e. the quasi-
neutral SIS model between similar strains, with diffusion and zero flux assumption on the boundaries, in two
cases, including slow (ε∆) and fast diffusions ( 1

ε
∆). The choice of terms presenting heterogeneity depends on a

priori on the type of population considered. For the case of a large population in a bounded domain, which leads
to a large density, diffusion is a good approach to model spatial movements because organisms are assumed to
have random motions. In a mathematical sense, the term diffusion-presented by the Laplacian operator is a
strong elliptic operator. Most of results of this paper may be extended to more general elliptic operators. For
the sake of simplicity, we restrict ourselves to the Laplacian.

We focus on modeling the host-to-host transmission of different strains using the SIS (susceptible-infected-
susceptible) modeling approach. Despite the assumption on compactness and smoothness of domain, the main
difficulty is to take into account the impact of strain traits under propagation in space. It is useful to take the
viewpoint of reaction-diffusion equations, which are studied deeply in [41]. Moreover, the assumptions of zero
total flux on the boundary make our system isolated. An important point is that, in the case of slow diffusion,
we assume that whole the considered domain is at high risk of infection, which means at any point in the
considered domain, the transmission rate of either is larger than the sum of the clearance rate and the mortality
rate. This assumption leads to the existence, the uniqueness and the stability of the endemic equilibrium. When
low risk site, the set of all points in which the transmission rate is less than the clearance rate, is non empty as
well, we also have a disease-free equilibrium, which is studied concretely in [9].

For each type of diffusion, we present a specific method to approximate the solutions under a quasi-neutral
assumption on the parameters. In the case of slow diffusion, we first consider the reaction-diffusion model with
symmetric interactions, which is the neutral system with diffusion. Similar to [120], and K f , Kg are operators
which are computed later, we find how to rewrite the original system in the form ∂

∂ t f (x, t)=F ( f ,g,x, t,ε)+K f f
and ∂

∂ t g(x, t) = εG( f ,g,x, t,ε)+ εKgg, where f describes the fast dynamics and g the slow dynamics. The
Tikhonov’s theorem used in [120] now is improved to a Tikhonov-like theorem applied for PDEs model with
appropriate assumptions. Accordingly, at the slow time scale τ =

t
ε

, we obtain the slow dynamics on the slow
manifold.

For the case of fast diffusion, the Central Manifold Theorem [42] is applied directly on the original SIS
system under an appropriate rewriting, yielding to an ordinary differential (ODE) SIS system under the mean
variables. In this system, we invoke the quasi-neutral assumptions on the traits to use the main result of [120].
For a clearer view, this theorem plays the main role in [42, 43].

Analogously to the non-spatial models in [120], we obtain the diffusion replicator system at the end and
they are in different types due to the distinguished kinds of diffusions. The replicator system with diffusion
attracts much attention and be studied in [35]. Comparing two cases of diffusion, the Tikhonov-like approxi-
mates the slow-fast form to the replicator system, in which variables are prevalences of strains. Meanwhile, the
Central Manifold Theorem leads us to equations of total masses over the domain of susceptible, infected and
coinfected strains. Although, both of them claim that the original system’s solution can be approached based on
the solution of a simpler system in any bounded time interval as ε → 0. Despite the distinction in variables of
system in slow-manifold, error estimates in both cases are computed in L2 and L1 norms, respectively.

This article is organized as follows. Sections 4.2 and 4.3 are dedicated to the case when the coefficients
of diffusion are ε . In the beginning of section 4.2, we present the model and state some general results including
the existence of a unique solution and the introduction of new variables. Next, we analyzes the semi-neutral
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system and the slow-fast form to prepare for application the approximation theorems. Similarly to [120],
we solve the system with slow diffusion in each elementary sub-case in which only one trait depends on the
strains. For this sake, a lemma showing of to combine the elementary cases is presented, starting section 4.3.
With these sufficient materials, the replicator system with diffusion follows with proofs and finalizes the case
of small diffusion rates. The model with fast diffusion ( 1

ε
∆) is studied in section 4.4. We refer the Central

Manifold Theorem in [43] and make some conventions at the beginning to apply this result. As mentioned after
the application of the Central Manifold Theorem, we invoke the quasi-neutral assumptions on traits. These
ingredients are combined and used to derive the replicator system, by the main result in [120], in which the
variables are total masses over domain of strains. Section 4.5 is to compare the two cases of diffusion in some
respects including the relations with basic reproduction ratio R0 and three examples for different behaviors.
Section 4.6 draws remarkable results and concluding. The final section Appendix A4.1 closes this article with
the proofs of the theorems stated in section 4.2.

4.2 General and Semi-neutral Systems with Slow Diffusion

4.2.1 The general N-strain model

The dynamics studied in this article groups the pathogen types in N subsets, indexed by i, 1 ≤ i ≤ N. With
a set of ordinary differential equations, we then track the proportion of hosts in 1+N +N2 compartments:
susceptible: S (x, t), hosts colonized by strain-i: Ii (x, t), hosts co-colonized by strain-i then strain- j: Ii j(x,t).
Notice that we include also same strain coinfection, as argued in [120].

We formulate the general model based on the same structure as that in [120] but here allow for strains to
vary in their transmission rates βi (x), clearance rates of single infection γi (x) (or duration of carriage 1/γi (x)),
clearance rates from mixed co-colonization γi j (x), within-host competition reflected in relative transmissibilities
from mixed coinfected hosts (pi

i j (x) and pi
ji (x)), as well as co-colonization vulnerabilities ki j (x), already

studied in [120]. In a compact domain Ω ⊂Rd with smooth boundary Γ, we consider the general SIS dynamics
in a coinfection system with diffusion as follows

∂S
∂ t

=r(1−S)+
N

∑
i=1

γiIi +
N

∑
i, j=1

γi jIi j −S
N

∑
i=1

βiJi+ ε∆S,

∂ Ii

∂ t
=βiJiS− (r+ γi)Ii − Ii

N

∑
j=1

ki jβ jJ j+ ε∆Ii, 1 ≤ i ≤ N,

∂ Ii j

∂ t
=ki jIiβ jJ j − (r+ γi j)Ii j+ ε∆Ii j, 1 ≤ i, j ≤ N,

(4.2.1)

where Ji is proportion of all hosts transmitting strain i, including singly- and co-colonized hosts and has the
explicit formula

Ji = Ii +
N

∑
j=1

(
pi

i jIi j + pi
jiI ji
)
.

We will assume no-flux boundary conditions, i.e. the Neumann boundary conditions ∂nS = ∂nIi = ∂nIi j = 0 on
the boundary Γ of Ω and the given initial values.

Note that βiJi is the infection force of strain i, for all i. In (4.2.1), for 1 ≤ i, j ≤ N, parameters (that all
depend on space) are interpreted as follows
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Table 4.1 Conventions and notations of parameters

Parameter Interpretation Under strain similarities
1. βi (x) Strain-specific transmission rates βi (x) = β (x)(1+ εbi (x))
2. γi (x) Strain-specific clearance rates of single colonization γi (x) = γ (x)(1+ ενi (x))
3. γi j (x) Clearance rates of co-colonization with i and j γi j (x) = γ (x)(1+ εui j (x))

4. ps
i j (x) Transmission capacity of the strain s ∈ {i, j} by a host co-

colonized by strain-i then strain- j,
(

pi
i j (x)+ p j

i j (x) = 1
) ps

i j (x) =
1
2
+ εωs

i j (x)

5. ki j (x) Relative factor of altered susceptibility to co-colonization be-
tween colonizing strain i and co-colonizing strain j

ki j (x) = k (x)+ εαi j (x)

r (x) Susceptible recruitment rate (Equal to natural mortality)

Assumption 4.1. We assume the regularity for the intial values and parameters as follows.

• Initial values S (x,0), Ii (x,0), and Ii j (x,0) are smooth enough in x ∈ Ω, for 1 ≤ i, j ≤ N.

• All the parameters in (4.2.1), which are included in Table 4.1, are all smooth enough in x ∈ Ω.

From Assumption 4.1, we can see that the perturbations considered on the epidemiological parameters
depend on the spatial position, bring a real richness of "spatial" to the model.

It is classical that this systems conserved the positive quadrant and then we consider only positive solutions.
For the sake of simplicity, we denote the inverse duration of a carriage episode by strain i with mi = r+ γi,

of a co-carriage episode by strains i and j with mi j = r+ γi j and the corresponding inverse duration of carriage
if all strains were equivalent with m = r+ γ .

In this paper, we use the notation ∇u and ∆u when u(x, ·) =
(

u1 (x, ·) u2 (x, ·) . . . uk (x, ·)
)

, for k ∈ N,
with the meaning

∇u =
(

∇u1 ∇u2 . . . ∇uk

)
, and ∆u =

(
∆u1 ∆u2 . . . ∆uk

)
.

Such a very general pattern of considered system forms
∂X
∂ t

= F̃(X ,x,ε)+ ε∆X with Neumann boundary

condition, where X = (X1,X2, . . . ,Xn) ∈ Rn and is equivalent to
∂X
∂ t

= F(X ,x) +O(ε) + ε∆X after some

algebraic transformations. The part
dX
dt

= F(X ,x)+ ε∆X is called as the semi-neutral system, consistently
stays unaltered and be investigated in the subsection 4.3.1. It is important to note that this system is structurally
unstable. Then, the part O(ε) is a slow perturbation of the neutral system. To treat such an emergence by a

Tikhonov-liked theorem, it’s essential to rewrite
∂X
∂ t

= F(X ,x)+O(ε)+ ε∆X into equivalent slow-fast form



dU
dt

= f (U,V,x)+O(ε)+ ε∆U

dV
dt

= ε (g(U,V,x)+O(ε)+∆V )

∂U
∂n

=
∂V
∂n

= 0, on ∂Ω

(4.2.2)
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where U ∈ RN is the slow variable and V ∈ RN is the fast variable. This step is achieved thanks to the ansatz
(4.3.2) will be yielded from the study of the semi-neutral system.
This subsection makes a change of variables then allows to rewrite the system in an equivalent structure
explicitly dependent on ε . Then, we study the important semi-neutral system which is obtained for ε = 0 except
in diffusion terms. The study on the semi-neutral system leads to the definition of the appropriate slow and
fast variables (zi,vi). These variables together with the ansatz (4.3.2) are the key for the slow-fast study of the
next section.

• Initially, sum up all the equations of (4.2.1), we have that
∂

∂ t

(
S+

N

∑
i=1

Ii +
N

∑
i, j=1

Ii j

)
= r (1−S)− r

(
N

∑
i=1

Ii +
N

∑
i, j=1

Ii j

)
+ ε∆

(
S+

N

∑
i=1

Ii +
N

∑
i, j=1

Ii j

)

∂n

(
S+

N

∑
i=1

Ii +
N

∑
i, j=1

Ii j

)
= 0 on Γ.

Denoting

T =
N

∑
i=1

Ii +
N

∑
i, j=1

Ii j, (4.2.3)

we have the following equation

∂

∂ t
(S+T ) = r [1− (S+T )]+ ε∆(S+T ) .

with the Neumann boundary condition. The assumed smoothness of ∂Ω implies that ε∆ generates a C0 semi
group of contraction on C0

(
Ω̄
)
, see [27].

Note that S+T = 1 are the solution of r [1− (S+T )]+ ε∆(S+T ) = 0 and the linearized operator becomes
ε∆− r which has spectrum lies in the left-half plane (since the Laplacian has the negative spectrum and
r(x) > 0). By the Theorem 11.20 in [189], we deduce that S+ T = 1 is asymptotically stable, which im-
plies that S + ∑

N
i=1 Ii + ∑

N
i, j=1 Ii j → 1 as t → ∞ asymptotically for all x. Therefore, we can assume that

S+∑
N
i=1 Ii +∑

N
i, j=1 Ii j = 1 in this article.

From this convention, we deduce that, (4.2.1) has unique solution for every ε > 0. Indeed, (4.2.1) can
be rewritten in the form of

∂

∂ t
u(x, t) = F (u(x, t) ,x,ε)+ ε∆u(x, t) , x ∈ Ω (4.2.4)

with u =
(

S I1 . . . IN I11 . . . INN

)T
. We state the following result on the unique existence of solution

of (4.2.4). The proof is given in Appendix A4.1.1.

Theorem 4.2. Given compact domain Ω ∈ Rd and u : Ω × [0,+∞) → Rn, (x, t) 7→ u(x, t). Assume that
F : Rn ×Ω×R+ is continuous in x ∈ Ω and F : Rn ×Ω×R+ → Rn is a Lipschitz map in u ∈ Rn, i.e. there is
a constant L such that

∥Fu−Fv∥ ≤ L∥u− v∥ , ∀u,v ∈ Rn, ∀x ∈ Ω.

Then (4.2.4) admits a solution in C2 (Ω×·,Rn)∩C1 (·× [0,∞) ,Rn), and this solution is unique.
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For the sake of clarify later, we now make conventions for the norms used in this article.

Definition 4.3. Let v : Ω×R+ → Rn and v ∈ L2 (Ω) for each t ≥ 0, we define.

• The norm |·|1 for v(x, t) ∈ Rn for each x ∈ Ω and t ∈ R+:

|v(x, t)|1 :=
n

∑
i=1

|vi (x, t)| (4.2.5)

with v(x, t) =
(

v1 (x, t) v2 (x, t) . . . vn (x, t)
)

.

• The norm |·|2 for v(x, t) ∈ Rn for each x ∈ Ω and t ∈ R+:

|v(x, t)|2 :=

(
n

∑
i=1

|vi (x, t)|2
)1/2

(4.2.6)

with v(x, t) =
(

v1 (x, t) v2 (x, t) . . . vn (x, t)
)

.

However, for the sake of simplicity, we only write |·| instead of |·|2.

• The norm for v(·, t) ∈ L2 (Ω) for each t ∈ Rn:

∥v(·, t)∥2 :=
(∫

Ω

|v(x, t)|2 dx
)1/2

. (4.2.7)

Note that in (4.2.4), u(x, t) ∈ RN2+N+1 and in this finite-dimensional space, the norms |·| and |·|1 are
equivalent, we recall our previous convention S+∑

N
i=1 Ii +∑

N
i, j=1 Ii j = 1. Then, thanks to the positivity of

the solutions, |u(·, t) |1 = S+∑
N
i=1 Ii +∑

N
i, j=1 Ii j = 1 and satisfies the Theorem 4.2. Hence, the system (4.2.1)

always has unique solution.

• Secondly, for the sake of simplicity, we denote mi = r + γi, mi j = r + γi j and m = r + γ . Then, we de-
fine total mass of single infected I, the total mass of double infected D and and the total mass of infected T , as
in [120], which reads

I =
N

∑
i=1

Ii, D =
N

∑
i=1

Ii j, T = I +D. (4.2.8)
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(4.2.8) yields ∑
N
i=1 Ji = T . For later computations, remark that ∑

N
i=1 βiJi = βT + ε ∑

N
i=1 biJi. Thanked to the

new variables, the systems for (S,T ), (Ii,Ji) and (Ii j)1≤i, j≤N reads

∂S
∂ t

=r(1−S)+ γT + εγ

(
N

∑
i=1

νiIi +
N

∑
i, j=1

ui jIi j

)
−βST − εβS

N

∑
i=1

biJi + ε∆S

∂T
∂ t

=βST −mT + εβS
N

∑
i=1

biJi − εγ

(
N

∑
i=1

νiIi +
N

∑
i, j=1

ui jIi j

)
+ ε∆T

∂ Ii

∂ t
=β (1+ εbi)JiS− (m+ εγνi)Ii −β Ii

N

∑
j=1

(k+ εαi j)(1+ εb j)J j + ε∆Ii

∂Ji

∂ t
=β (1+ εbi)JiS−β Ii

N

∑
j=1

(k+ εαi j)(1+ εb j)J j − εγ

[
νiIi +

N

∑
j=1

((
1
2
+ εω

i
i j

)
ui jIi j +

(
1
2
+ εω

i
ji

)
ν jiI ji

)]

−mJi +β

N

∑
j=1

((
1
2
+ω

i
i j

)
(k+ εαi j)(1+ εb j) IiJ j +

(
1
2
+ εω

i
ji

)
(k+ εα ji)(1+ εbi) I jJi

)
+ ε∆Ji

∂ Ii j

∂ t
=β (k+ εαi j)(1+ εb j)IiJ j − (m+ εγui j)Ii j + ε∆Ii j, 1 ≤ i, j ≤ N.

(4.2.9)

4.2.2 The semi-neutral system

Take ε = 0 in (4.2.9) except the diffusion rates, we obtain the semi-neutral system1 for (S,T, I, Ii,Ji), which
reads 

∂S
∂ t

=m(1−S)−βST +ε∆S

∂T
∂ t

=βST −mT +ε∆T

∂ I
∂ t

=βT S− (m+βkT ) I +ε∆I,

∂ Ii

∂ t
=βJiS−mIi −βkIiT +ε∆Ii, 1 ≤ i ≤ N

∂Ji

∂ t
=(βS−m)Ji −βkIiT +

βk
2

(IiT + JiI) +ε∆Ji, 1 ≤ i ≤ N

∂ Ii j

∂ t
=βkIiJ j −mIi j +ε∆Ii j

(4.2.10)

with the Neumann boundary condition and the initial condition
∂S
∂n

=
∂T
∂n

=
∂ Ii

∂n
=

∂ Ii j

∂n
= 0 on ∂Ω

S(x,0) = S0(x), T (x,0) = T0(x), I(x,0) = Ii,0(x), Ii j(x,0) = Ii j,0(x).

1The name semi-neutral system comes from the fact that if ε = 0, except the coefficients of diffusion terms, then the parameters do not
depend on the strains as in the neutral theory.
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• Firstly, we consider the semi-neutral equation for (S,T ), that reads

∂S
∂ t

=m(1−S)−βST + ε∆S

∂T
∂ t

=−mT +βST + ε∆T.

S(x,0) =S0(x), T (x,0) = T0(x),

∂S
∂n

|∂Ω =
∂T
∂n

|∂Ω = 0.

(4.2.11)

By the Theorem 4.2 that (4.2.11) has the unique solution.
Before analyzing, similar to [9], we say that x is a low-risk site if the local disease transmission rate β (x)

is lower than the local disease recovery rate (which is the sum of clearance rate and mortality rate) m(x). A
high-risk site is defined in a similar manner. Let

H− = {x ∈ Ω : β (x)< m(x)} and H+ = {x ∈ Ω : β (x)> m(x)} (4.2.12)

denote the set of these low- and high-risk sites, respectively. Accordingly, the term R0 (x) is the local reproduc-
tion number at x ∈ Ω. Then R0(x)< 1 for low-risk sites x ∈ H− and R0(x)> 1 for high-risk sites x ∈ H+. It is
well-known that without movement, the disease can persist at high-risk sites but not at low-risk sites. We say
that, a domain Ω′ is a low-risk domain if

∫
Ω′ β <

∫
Ω′ m and a high-risk domain if

∫
Ω′ β >

∫
Ω′ m.

In this case of slow diffusion, i.e. in sections 4.2 and 4.3, we make an assume that

Assumption 4.4. The domain Ω is high-risk everywhere, i.e. β (x)> m(x) for all x ∈ Ω.

Denoting S∗(x) =
m(x)
β (x)

=
1

R0(x)
and T ∗(x) = 1− S∗(x), then 0 ≤ S∗,T ∗ ≤ 1 for all x ∈ Ω, which is

well-defined. At each x ∈ Ω, consider the differential equations of variables
(
S̃ (·, t) , T̃ (·, t)

)


dS̃
dt

= m(x)
(
1− S̃

)
−β (x) S̃T̃

dT̃
dt

=−m(x) T̃ +β (x) S̃T̃
, (4.2.13)

with initial condition
(
S̃ (0) , T̃ (0)

)
= (S (x,0) ,T (x,0)). It is claimed that

(
S̃ (x, t) , T̃ (x, t)

)
→ (S∗ (x) ,T ∗ (x))

for each x ∈ Ω and t → ∞, see [120].
Furthermore, noting that

∣∣S̃(x, t)−S∗(x)
∣∣2 ≤ 2 for all (x, t) ∈ Ω×R+ and Ω is compact, by Dominated

Convergence Theorem, for all sequence (tn)n satisfying t0 < t1 < · · · < tn < .. . , tn → +∞, we obtain that∥∥S̃(x, t)−S∗(x)
∥∥

2 → 0 as t → ∞.
Another important point is that, for any t ∈R+, S̃ (x, t) is smooth enough with respect to x. Indeed, we have

the differential equation for S̃ (x)− S̃ (x′) as follows

d
dt

(
S̃ (x)− S̃

(
x′
))

=
(
S̃ (x)− S̃

(
x′
))[

−(m+β )+β
(
S̃ (x)+ S̃

(
x′
))]

.

Noting that S̃ (x)+ S̃ (x′)≤ 2 for all t ∈ R+ and x,x′ ∈ Ω, applying the Gronwall’s inequality, we deduce that
|S̃(x)−S̃(x′)|

|x−x′| can be controlled at each t, since S̃ (0) is smooth enough with respect to x.
Analogously, we observe x 7→ T̃ (x, t) is smooth enough as well.
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Alternatively, we have that

∂

∂ t

(
S− S̃

)
=
[
F (S)−F

(
S̃
)]
+ε∆S, with F (X) =F (X , ·) = m(·)(1−X (·))−β (·)X (·)(1−X (·))

then F (X) is Lipschitz continuous with coefficient C > 0. We have the following transformations

(
S− S̃

) ∂

∂ t

(
S− S̃

)
=
(
S− S̃

)[
F (S)−F

(
S̃
)]

+ ε
(
S− S̃

)
∆S

=⇒1
2

∂

∂ t

∣∣S− S̃
∣∣2 ≤C

∣∣S− S̃
∣∣2 + ε

(
S− S̃

)
∆
(
S− S̃

)
+ ε
(
S− S̃

)
∆S̃

=⇒1
2

∂

∂ t

∫
Ω

∣∣S− S̃
∣∣2 ≤C

∫
Ω

∣∣S− S̃
∣∣2 + ε

∫
Ω

(
S− S̃

)
∆S̃

By the definition of S̃ and max
∣∣S− S̃

∣∣≤ 2 then by the Gronwall’s inequality we have that∥∥S− S̃
∥∥

2 = O
(√

ε
)
, since S (·,0) = S∗ (·,0) ,

which leads to ∥S−S∗∥2 → O
(√

ε
)

as t → ∞ since Ω is compact.
Recalling that S+T = 1 then ∥T −T ∗∥2 → O

(√
ε
)

when t → ∞.

• Secondly, we consider the semi-neutral equation for I(x, t) which reads
∂ I
∂ t

= βT S− (m+βkT ) I + ε∆I

∂ I
∂n

|∂Ω = 0

Similarly to the previous proof for the stability of (S(x, t),T (x, t)), we consider the equation for Ĩ (·, t) at
each x ∈ Ω

∂ Ĩ
∂ t

= βT ∗S∗− (m+βkT ∗) Ĩ, Ĩ (·,0) = I(x,0),

which implies Ĩ (x, t)→ I∗ (x) :=
mT ∗

m+βkT ∗ at each x ∈ Ω as t → ∞, as proved in [120].

By the same arguments for
∥∥S̃(x, t)−S∗(x)

∥∥
2 → 0 as t →∞ previously, we also obtain that

∥∥Ĩ(x, t)− I∗(x)
∥∥

2 →
0 as t → ∞.

Similarly to the proof of the smoothness of x 7→ S̃ (x, t), we can prove that x 7→ Ĩ (x, t) is smooth enough as
well, for all t ∈ R+.

Accordingly, we deduce the equation

∂

∂ t

(
I − Ĩ

)
=
[
G (I)−G

(
Ĩ
)]

+ϕ (S,T,S∗,T ∗)+ ε∆I,

where G (X) = βT ∗S∗− (m+βkT ∗)X and

ϕ (S,T,S∗,T ∗) = β [(T −T ∗)S∗+(S−S∗)T ∗+(T −T ∗)(S−S∗)]
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which means G is Lipschitz continuous and ∥ϕ∥2 = O
(√

ε
)
. We make the similar process as before, then

combining the Holder’s inequality, we deduce that

1
2

∂

∂ t

∫
Ω

∣∣I − Ĩ
∣∣2 ≤ (C+ ε)

∫
Ω

∣∣I − Ĩ
∣∣2 + ε

∫
Ω

(
I − Ĩ

)
∆Ĩ

which implies
∥∥I − Ĩ

∥∥
2 = O

(√
ε
)

by applying the Gronwall’s inequality with noting that I (·,0) = Ĩ (·,0). Thus,
we have that ∥I − I∗∥2 → O

(√
ε
)

as t → ∞.

For later reference, we also write

S∗ =
m
β
, T ∗ = 1− m

β
, I∗ =

mT ∗

m+βkT ∗ , D∗ = T ∗− I∗ =
βkT ∗2

m+βkT ∗ . (4.2.14)

Note that, since all parameters depend on x, then S∗(x), T ∗(x), I∗(x) and D∗(x) depend on x.
Hence, for (S,T, I) satisfying the semi-neutral system (4.2.10), we have that

∥S−S∗∥2 → O
(√

ε
)
, ∥T −T ∗∥2 → O

(√
ε
)
, ∥I − I∗∥2 → O

(√
ε
)
. (4.2.15)

when t → ∞.

• Thirdly, the N2 equations for Ii j in (4.2.10) yields that, for 1 ≤ i ≤ N,

∂ Ii j

∂ t
= βkIiJ j −mIi j + ε∆Ii j. (4.2.16)

Whose dynamics is trivial once Ii and Ji are known. Indeed, assume that for each i, there exists
(
Ĩi (x, t) , J̃i (x, t)

)
such that

∥∥Ii − Ĩi
∥∥

2 = O
(√

ε
)

and
∥∥Ji − J̃i

∥∥
2 = O

(√
ε
)
, then we can rewrite (4.2.16) into

∂ Ii j

∂ t
=−mIi j +βkĨiJ̃ j +βk

[(
Ii − Ĩi

)
J̃ j +

(
J j − J̃ j

)
Ĩi +

(
Ii − Ĩi

)(
J j − J̃ j

)]
+ ε∆Ii j.

At each x ∈ Ω, we consider the equation of Ĩi j (·, t)

∂ Ĩi j

∂ t
=−mĨi j +βkĨiJ̃ j, Ĩi j (·,0) = Ii j (x,0)

Once again, by the same argument for the smoothness of x 7→ S̃ (x, t), we obtain that x 7→ Ĩi j (x, t), for all
1 ≤ i, j ≤ N.

Then we can obtain the differential equation for
(
Ii j − Ĩi j

)
∂

∂ t

(
Ii j − Ĩi j

)
=−m

(
Ii j − Ĩi j

)
+βk

[(
Ii − Ĩi

)
J̃ j +

(
J j − J̃ j

)
Ĩi +

(
Ii − Ĩi

)(
J j − J̃ j

)]
+ ε∆

(
Ii j − Ĩi j

)
+ ε∆Ĩi j.

Denoting
φ (x, t) = βk

[(
Ii − Ĩi

)
J̃ j +

(
J j − J̃ j

)
Ĩi +

(
Ii − Ĩi

)(
J j − J̃ j

)
+ ε∆Ĩi j

]
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then ∥φ∥2 = O
(√

ε
)
. By the same process as previous, we have that

1
2

∂

∂ t

∫
Ω

∣∣Ii j − Ĩi j
∣∣2 =−m

∫
Ω

∣∣Ii j − Ĩi j
∣∣2 +∫

Ω

φ (x, t)
(
Ii j − Ĩi j

)
− ε

∫
Ω

∣∣∇(Ii j − Ĩi j
)∣∣2 .

Using the Holder’s inequality for the term
∫

Ω
φ (x, t)

(
Ii j − Ĩi j

)
then applying the Gronwall’s inequality again,

note that Ii j (·,0) = Ĩi j (·,0), we have that
∥∥Ii j − Ĩi j

∥∥
2 → O

(√
ε
)

as t → ∞, for all 1 ≤ i, j ≤ N.

4.2.3 The slow-fast form and approximations theorems

Next, we consider the semi-neutral system for

(
Ii

Ji

)
for all 1 ≤ i ≤ N


∂ Ii

∂ t
= βJiS−mIi −βkIiT +ε∆Ii

∂Ji

∂ t
= (βS−m)Ji −βkIiT +

βk
2

(IiT + JiI) +ε∆Ji

. (4.2.17)

Denoting D∗ = T ∗− I∗, we set

A(x) =

−(m+βkT ∗) m

−βkT ∗

2
βkI∗

2

 ,

and

P =

(
2T ∗ I∗

D∗ T ∗

)
, P−1 =

1
|P|

(
T ∗ −I∗

−D∗ 2T ∗

)
. (4.2.18)

We have

A(x) = P(x)

(
−ξ (x) 0

0 0

)
P−1 (x)

where ξ = m+βkT ∗− 1
2

βkI∗ > 0 and |P(x) |= 2T ∗2 − I∗D∗ > 0.

In the equations for (Ii,Ji) in (4.2.17), we substitute (S,T, I) by (S∗,T ∗, I∗) and note that

∥S−S∗∥2 = O
(√

ε
)
, ∥T −T ∗∥2 = O

(√
ε
)
, ∥I − I∗∥2 = O

(√
ε
)
.

Now, we have the semi-neutral system of equations for (Ii,Ji)1≤i≤N , in the sense of norm ∥·∥2 of L2 (Ω):

∂

∂ t

(
Ii

Ji

)
= A(x)

(
Ii

Ji

)
+O

(√
ε
)(Ii

Ji

)
+ ε

(
∆Ii

∆Ji

)
. (4.2.19)

Applying Theorem 4.6, we have that∥∥Ii − Ĩi
∥∥

2 = O
(√

ε
)
,

∥∥Ji − J̃i
∥∥

2 = O
(√

ε
)
, (4.2.20)

where (Ii,Ji)1≤i≤N are solutions of the semi-neutral system (4.2.17) and
(
Ĩi, J̃i

)
1≤i≤N are solutions of

∂

∂ t

(
Ii

Ji

)
= A(x)

(
Ii

Ji

)
+ ε

(
∆Ii

∆Ji

)
(4.2.21)
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Hence, it suffices to consider the system (4.2.21). For every 1 ≤ i ≤ N, set(
vi

zi

)
= P−1

(
Ii

Ji

)
(4.2.22)

From (4.2.21) we infer an equation for

(
zi

vi

)
for each 1 ≤ i ≤ N:

∂

∂ t

(
vi

zi

)
=

(
−ξ (x) 0

0 0

)(
vi

zi

)
+ ε

[
P−1 (x)

(
∆ 0
0 ∆

)
P(x)

](
vi

zi

)
(4.2.23)

This step of changing to (zi,vi) plays an important role. Since under these new variables, we can rewrite into
the slow-fast form. It allows us to apply the approximation theorem introduced in the next subsection.

When vi = 0 - which will be asymptotically true - then zi is exactly Ii
I∗ =

Ji
T ∗ the prevalence of strain i in the

total of infected, see the proof in [140].
∂vi

∂ t
=−ξ vi +O(ε)+ ε∆vi + ε

1
|P|

[(2T ∗
∇T ∗− I∗∇D∗)∇vi +(T ∗

∇I∗− I∗∇T ∗)∇zi]

∂ zi

∂ t
=O(ε)+ ε∆zi + ε

1
|P|

[(−D∗
∇T ∗+2T ∗

∇D∗)∇vi +(−D∗
∇I∗+2T ∗

∇T ∗)∇zi]

.

(4.2.24)
Next, by setting τ = εt, (4.2.24) can be read as the slow time scale

ε
∂vi

∂τ
=−ξ vi +O(ε)+ ε

1
|P|

[(2T ∗
∇T ∗− I∗∇D∗)∇vi +(T ∗

∇I∗− I∗∇T ∗)∇zi]+ ε∆vi

∂ zi

∂τ
=O(1)+

1
|P|

[(−D∗
∇T ∗+2T ∗

∇D∗)∇vi +(−D∗
∇I∗+2T ∗

∇T ∗)∇zi]+∆zi.

(4.2.25)

We need to compute explicitly the perturbation O(1) in (4.2.24). This computation is quite complex especially
when involving perturbation in each parameters, so it’s worthwhile of dividing this progress into five sub single
cases wherein only one perturbation at the time occurs.

After that, we will treat the slow-fast form by a Tikhonov-like theorem, that is presented in the Theorem
4.5. This result is for the parameter-dependent reaction-diffusion system with Neumann boundary condition as
following, 

∂

∂ t
f (x, t) = F ( f (x, t),g(x, t),x, t) +K f f (x, t)

ε
∂

∂ t
g(x, t) = G( f (x, t),g(x, t),x, t)+ εG1(x) ·∇ f (x, t) + εKgg(x, t)

∂

∂n
f (x, t) =

∂

∂n
g(x, t) = 0, x ∈ ∂Ω,

f (x,0) = f 0 (x) , g(x,0) = g0 (x)

(4.2.26)

in which,

• f : Ω×R→ Rn and g : Ω×R→ Rm,

• G1 : Ω → Rm is continuously differentiable and · denotes the scalar product,
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• the operators K f ,Kg defined on C∞ (Ω× [0, t1]) by K f u := a f (x)∇u+∆u, Kgu := ag (x)∇u+∆u, in
which a f (x) is an n×n diagonal matrix and ag (x) is an m×m diagonal matrix, in which entries of each
matrix depends on x ∈ Ω. We assume that a f (x) and ag (x) are differentially continuous in x.

Theorem 4.5. Let f0(x, t) : Ω× [t0, t1] 7→ Rn, g0(x, t) : Ω× [t0, t1] 7→ Rm be continuous functions satisfying
equations 

∂

∂ t
f (x, t) =F ( f (x, t),g(x, t),x, t)+K f f (x, t)

0 =G( f (x, t),g(x, t),x, t)

∂

∂n
f (x, t) =

∂

∂n
g(x, t) = 0, x ∈ ∂Ω

(4.2.27)

where F : Rn ×Rm ×R 7→ Rn and G : Rn ×Rm ×R 7→ Rm are continuous functions. We make an addition
assumption that g0 ∈C1 (Ω×R).

For any (x, t) ∈ Ω×R+ and f (x, t) ∈Rn, we denote A(x, t) is the Jacobian matrix of G( f (x, t) , ·,x, t) with
respect to the second variable.

Alternatively, we assume that F,G are continuously differentiable with respect to their first two arguments
in a neighborhood of the trajectory f0(x, t), g0(x, t), and that A(x, t) is a Hurwitz matrix, i.e. every eigenvalue
of it has strictly negative real part, for all t ∈ [t0, t1] and x ∈ Ω.

Then there exists ε0 > 0 and C > 0 such that inequalities
∫

Ω

| f0(x, t)− f (x, t)|2dx ≤Cε, ∀t ∈ [t0, t1]∫
Ω

|g0(x, t)−g(x, t)|2dx ≤Cε, ∀t ∈ [t0, t1]
(4.2.28)

hold for all solutions of (4.2.26) with
∫

Ω
| f0(x, t0)− f (x, t0)|2dx ≤ ε ,

∫
Ω
|g0(x, t0)− g(x, t0)|2dx ≤ ε and ε ∈

(0,ε0).

The conclusion of this theorem means that, for the initial values closed enough to f0 (x, t0) and g0 (x, t0) in the
sense of L2 (Ω) norm, we have the approximation for the solution of (4.2.26). Explicitly, this can be rewritten
as follows

∥ f0(x, t)− f (x, t)∥2 = O
(√

ε
)
, ∥g0(x, t)−g(x, t)∥2 = O

(√
ε
)
, ∀t ∈ [t0, t1]

for all solutions of (4.2.26) with ∥ f0(x, t0)− f (x, t0)∥2 = O
(√

ε
)
, ∥g0(x, t0)−g(x, t0)∥2 = O

(√
ε
)

and ε ∈
(0,ε0).

Next, we claim a result that allows us approximate the original system by the semi-neutral system. The
following error estimate gives a more precise description of these limits.

Theorem 4.6. Given Ω ∈ Rn compact domain with smooth boundary. Let F and G be two continuously
differentiable functions on Ω× [0,∞) and suppose that F is Lipschitz continuous. Assume there exists a
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bounded function u satisfies the reaction diffusion equation with Neumann boundary condition
∂u
∂ t

= F (u,x)+ εG(u,x)+ ε∆u,

u(x,0) = u0 (x) , x ∈ Ω,

∂u
∂n

|∂Ω = 0.

(4.2.29)

Then for every fixed T > 0, ∀t < T , we have that
∫

Ω
|u(x, t)− v(x, t) |2dx = O(ε), i.e. ∥u(x, t)− v(x, t)∥2 =

O
(√

ε
)
, with v(t) is the solution of the problem


∂v
∂ t

= F (v)+ ε∆v,

v(x,0) = u0 (x) , x ∈ Ω, ∀x ∈ Ω.

∂v
∂n

|∂Ω = 0.

(4.2.30)

4.3 Approximation theorems, derivations of original dynamics and main
results for the case of slow diffusion

4.3.1 Lemmas and derivation of non-semi neutral dynamics

Next we develop a lemma showing allowing to linearly combine all the relevant simple cases directly into the
slow equation. For this purpose, we use the following notations in system (4.2.1).

βi = β (1+χ1εbi) ; γi = γ (1+χ2ενi) ; γi j = γ (1+χ3εui j) ;

ps
i j =

1
2
+χ4εω

s
i j, s ∈ {i, j},

(
ω

i
i j +ω

j
i j = 0

)
; ki j = k+χ5εαi j,

(4.3.1)

where χd ∈ {0,1} for d = 1,2,3,4,5.

Any combination of axes of trait variation among strains, can be captured via A where A is a subset of
{1,2,3,4,5}, and for some fixed initial values given, denote CA be the system (4.2.4) with χd = 1 if d ∈ A

and χd = 0 if d /∈ A . For simplicity, we note also C{d} by Cd for d ∈ {1,2,3,4,5} denote the absence/presence
of perturbations in that parameter among strains.

Remark 4.1. If A = /0 then there is no trait perturbation and the system C/0 is exactly the semi neutral model
(4.2.10).

In order to capture all the perturbations of order 1 in the equation of the zi we need these additional changes
of variables:

S(x, t) = S∗(x, t)− εX(x, t)+O
(
ε

2) ; T (x, t) = T ∗(x, t)+ εX(x, t)+O(ε2); I(x, t) = I∗(x, t)+ εY (x, t)+O
(
ε

2)
(4.3.2)

where S∗, T ∗ and I∗ are defined in (4.2.14), and for i = 1, · · · ,N:

Li(x, t) =
1
2

N

∑
j=1

(ui jIi j(x, t)+u jiI ji(x, t)) . (4.3.3)
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With these notations, CA reads

∂X
∂ t

=−βT ∗X +χ1βS∗
N

∑
i=1

biJi −χ2γ

N

∑
i=1

νiIi −χ3γ

N

∑
i=1

Li + ε∆X +O(ε)

∂Y
∂ t

=β (S∗−T ∗− kI∗)X − (m+βkT ∗)Y +χ1β (S∗− kI∗)
N

∑
i=1

biJi −χ2γ

N

∑
i=1

νiIi −χ5β

N

∑
i, j=1

αi jIiJ j + ε∆Y +O(ε)

∂Li

∂ t
=−mLi +χ3

1
2

βγkIi

N

∑
j=1

ui jJ j +χ3
1
2

γβkJi

N

∑
j=1

ν jiI j + ε∆Li +O(ε)

(4.3.4)
together with

∂

∂ t

(
Ii

Ji

)
=

(
−(m+βkT ∗) m

−βkT ∗

2
βkI∗

2

)(
Ii

Ji

)
+ ε

(
∆Ii

∆Ji

)

− ε

[
β

(
k 1
k
2 1

)(
Ii

Ji

)
X +

βk
2

(
0 0
0 1

)(
Ii

Ji

)
Y +MA

(
Ii

Ji

)
−χ3γ

(
0
Li

)] (4.3.5)

where MA is the matrix −χ1βk
N
∑

i=1
biJi −χ2γνi −χ5β

N
∑
j=1

αi jJ j χ1βbiS∗

β
N
∑
j=1

(
χ4kω i

i j −χ5
αi j
2

)
J j −χ1

βk
2

N
∑

i=1
biJi −χ2γνi χ1βbi

(
S∗+ kI∗

2

)
+β

N
∑
j=1

(
χ4kω i

ji +χ5
α ji
2

)
I j


(4.3.6)

In order to apply the Theorem (4.5), we rewrite system CA using the changes of variables

(
vi

zi

)
= P−1

(
Ii

Ji

)
with P−1 in (4.2.18). Let us note

L = (Li)i, v = (vi)i, z = (zi)i,

and −ξ =−(m+βkT ∗)+
βkI∗

2
< 0. The system CA reads now as the slow-fast form



∂X
∂ t

=−βT ∗X +χ1F1
X (v,z)+χ2F2

X (v,z)+χ3F3
X (L)+ ε∆X +O(ε)

∂Y
∂ t

=β (S∗−T ∗− kI∗)X − (m+βkT ∗)Y +χ1F1
Y (v,z)+χ2F2

Y (v,z)+χ5F5
Y (v,z)+ ε∆Y +O(ε)

∂Li

∂ t
=−mLi +χ3FLi (v,z)+O(ε)+ ε∆Li

∂vi

∂ t
=−ξ vi +O(ε)+ ε∆vi + ε

1
|P|

[(2T ∗
∇T ∗− I∗∇D∗)∇vi +(T ∗

∇I∗− I∗∇T ∗)∇zi]

∂ zi

∂ t
=ε (Fzi(X ,Y,L,v,z)+O(ε))+ ε∆zi + ε

1
|P|

[(−D∗
∇T ∗+2T ∗

∇D∗)∇vi +(−D∗
∇I∗+2T ∗

∇T ∗)∇zi]

.

(4.3.7)
For i = 1, · · · ,N, the functions F i

X , F i
Y , FLi are obviously deduced from the right term of (4.3.4) and are linear in

theirs variables, X ,Y,L, respectively. The function F5
Y is quadratic in (v,z). Finally, Fzi is given by the second
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line of the right term of (4.3.6) after the linear change of variables (4.2.22):

Fzi (X ,Y,L,v,z)=
(

0 1
)

P−1

β

−k −1

− k
2

−1

X +
βk
2

(
0 0
0 1

)
Y +M

P

(
vi

zi

)
+
(

0 1
)

P−1
χ3γ

(
0
Li

)
.

(4.3.8)

Lemma 4.7. Let ε = 0 in (4.3.11). Then there exist a function Φ(z) = (X∗(z),Y ∗(z),χ3L∗(z),0) such that the
solution (X ,Y,L,v,z) of (4.3.7) with any initial condition

(X ,Y,L,v,z)(0) = (X0,Y0,L0,v0,z0) ∈ R×R× (Rn)3

verifies z(t) = z0 for all t ≥ 0 and
lim

t→+∞
(X ,Y,L,v)(t) = Φ(z0)

exponentially. Moreover, X∗ and Y ∗ are linear function of the χi.

Proof. First, in (4.3.11), we can write the system for X ,Y,L,v when ε = 0 in the following form

0 = G(z,(X ,Y,L,v))

with function G(x1,x2) : RN ×R2N+2 → R2N+2, x1 = z, x2 = (X ,Y,L,v).
The Jacobian matrix of G respected to

(
X Y L v

)
reads as as follows

A(x, t) =



−βT ∗ 0 ∗ ∗ . . . ∗ ∗
β (S∗−T ∗− kI∗) −(m+βkT ∗) 0 . . . 0 ∗

0 0 −m 0 . . . 0 ∗
0 0 0 −m . . . 0 ∗
. . .

0 0 0 0 . . . −m ∗
0 0 0 0 . . . 0 −ξ 0 . . . 0
0 0 0 0 . . . 0 0 −ξ . . . 0
. . .

0 0 0 0 . . . 0 0 0 . . . −ξ



. (4.3.9)

Since A(x, t) is block-diagonal matrix, it is easy to find the characteristic polynomial

(λ +βT ∗)(λ +m+βkT ∗)(λ +m)n (λ +ξ )n

which implies that all the eigenvalue of A have the negative real part.

Using the triangular structure of (4.3.11) the idea is to compute the limits when ε → 0 step by step of v,
L, X and Y in this order. Here we make a quick formal computation by simply plugging the limits obtained at
one step into the equation of the next step.
Indeed, since (4.3.11) is equivalent to (4.3.7) but in the slow motion, we take ε = 0 in (4.3.7). We have
directly z(t) = z0 for all t ≥ 0 and vi = e−ξ tvi(0)→ 0 exponentially as t → +∞. Remark that taking vi = 0
in the others equations leads to the simple change of variables : Ii = I∗zi and Ji = T ∗zi that we can plug in
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(4.3.4)-(4.3.5)-(4.3.6) to simplify the explicit computations.
Now we have the following exponential limits

Li(t)→ χ3
1
m

FLi(0,z0) = χ3L∗
i (z0),

Denoting L∗ = (L∗
i )i and plugging this into the equation of X we have that exponentially:

X(t)→− 1
βT ∗

(
χ1F1

X (0,z0)+χ2F2
X (0,z0)+χ3F3

X (χ3L∗(z0))
)
= X∗(z0).

Remark that by linearity of the F i
X and the fact that χ2

d = χd for each d, we have the simpler formula

X∗(z0) =− 1
βT ∗

(
χ1F1

X (0,z0)+χ2F2
X (0,z0)+χ3F3

X (L∗(z0))
)
. (4.3.10)

Finally, using the same arguments we get

Y (t)→ Y ∗(z0) exponentially

wherein we have note

Y ∗(z0) =
1

m+βkT ∗
(
β (S∗−T ∗− kI∗)X∗(z0)+χ1F1

Y (0,z0)+χ2F2
Y (0,z0)+χ4F4

Y (0,z0)
)
.

The next step is to change the time scale. Taking τ = εt in (4.3.7) we obtain2 the following system which is
equivalent to (4.3.7) but in the slow motion τ

ε
∂X
∂τ

=−βT ∗X +χ1F1
X (v,z)+χ2F2

X (v,z)+χ3F3
X (L)+O(ε)+ ε∆X

ε
∂Y
∂τ

=β (S∗−T ∗− kI∗)X − (m+βkT ∗)Y +χ1F1
Y (v,z)+χ2F2

Y (v,z)+χ5F5
Y (v,z)+O(ε)+ ε∆Y

ε
∂Li

∂τ
=−mLi +χ3FLi (v,z)+O(ε)+ ε∆Li

ε
∂vi

∂τ
=−ξ vi +O(ε)+ ε

1
|P|

[(2T ∗
∇T ∗− I∗∇D∗)∇vi +(T ∗

∇I∗− I∗∇T ∗)∇zi]+ ε∆vi

∂ zi

∂τ
=Fzi(X ,Y,L,K,v,z)+O(ε)+

1
|P|

[(−D∗
∇T ∗+2T ∗

∇D∗)∇vi +(−D∗
∇I∗+2T ∗

∇T ∗)∇zi]+∆zi

(4.3.11)
Using the notation of the Theorem 4.5, we see that the fast variables is y(τ) = (X ,Y,L,v) and the slow variable
is x(τ) = z(τ). The first step in applying the Theorem 4.5 is to take ε = 0 in (4.3.11) and to show that the fast
variable converge exponentially to an attractor φ(z) which is parametrized by the slow variable.

Now, we take ε = 0 in (4.3.11) and

(X ,Y,L,v)(τ) = Φ(z(τ)), (4.3.12)

2We use the usual notation abuse. Rigorously speaking, we have to define X̃(τ) = X
(

τ

ε

)
and the same for each variables. Here we

remove the˜for simplicity.
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the 2N +2 first equations are satisfied and the N last equations give the slow system

dzi

dτ
= Fzi(X

∗(z),Y ∗(z),L∗(z),0,z)+
1
|P|

(−D∗
∇I∗+2T ∗

∇T ∗)∇zi +∆zi. (4.3.13)

It’s important to note that, since v = 0 then (2.3.12) gives ∑
N
i=1 zi = 1. This is plausible because zi reflects the

frequency of strain i by the formula Ii = I∗zi for all i.
The Theorem 4.5 imply that the solutions of (2.3.12) together with (4.3.12) gives a good approximation of the
original system (4.3.11) for a small enough but positive ε . Coming back to the original variables of the SIS
system, we deduce the following result on error estimate, whose proof will be given in section 4.3.2.

Lemma 4.8. Let T > 0 be fixed. There exists ε0 > 0 and CT > 0 such that for any ε ∈ (0,ε0) we have for any
solution of (S,(Ii)i,(Ii j)i j)i, j of (4.2.1) and (zi)i of (2.3.12)

∫
Ω

∣∣∣S(τ

ε

)
−S∗

∣∣∣2 + N

∑
i=1

∫
Ω

∣∣∣Ii

(
τ

ε

)
− I∗zi(τ)

∣∣∣2 + N

∑
i, j=1

∫
Ω

∣∣∣D∗zi (τ)z j (τ)− Ii j

(
τ

ε

)∣∣∣2 ≤ εCT , (4.3.14)

Proof. See section 4.3.2

It remains to compute explicitly the slow system (2.3.12). The following lemma shows that it suffices to
compute independently each perturbation, that is A = {d} for d = 1, · · · ,5. The case of a general A being just
a sum of each simple case thanked to the following result.

Lemma 4.9. Let A ⊂ {1, · · · ,5}. Recall that χd = 1 if d ∈ A and χd = 0 if d /∈ A . The functions Fzi for
i = 1, · · · ,N in (2.3.12) read

Fzi(X
∗(z),Y ∗(z),L∗(z),0,z) =

5

∑
d=1

χdzi f d
zi
(z) ,

where the functions f d
zi

do not depend on χd .
In particular, if A = {d} for some d ∈ {1,2,3,4,5}, then

Fzi(X
∗(z),Y ∗(z),L∗(z),0,z) = zi f d

zi
(z) .

Proof. Taking vi = 0 in (4.3.8) we see that there is two constant CX and CY such that

Fzi(X
∗(z),Y ∗(z),L∗(z),0,z)= zi

(
CX X∗(z),+CYY ∗(z)+

(
0 1

)
PMA P−1

(
0
1

))
+χ3γ

(
0 1

)
P

(
0

L∗
i (z)

)
.

Firstly, as it is show in the proof of the lemma 4.7, the expression of X∗ and Y ∗ are both a linear combination of
the χd .

Secondly, recalling that we have at this step Ii = I∗zi, Ji = T ∗zi, Li = χ3L∗ and χ2
d = χd , for d = 3 and

d = 5 particularly. Plugging this in (4.3.7), we see that the matrix MA is also a linear combination of the χd

which yields for some functions md (z) which do not depend on χd :

(
0 1

)
PMA P−1

(
0
1

)
= ∑

d∈{1,2,3,4,5}
χdmd (z) . (4.3.15)
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Thirdly, plugging Ii = I∗zi and Ji = T ∗zi, for all i in (4.3.4) we prove that

L∗
i (z) =

1
2m

βkI∗T ∗zi

N

∑
j=1

(ui j +u ji)z j.

The result follows directly from three previous points.

In the next section 4.3.2, these functions f d
zi

are explicitly compute for any d.

4.3.2 Main results and proofs

We reuse the computations in [120], in each case of A = {d}, d ∈ {1,2,3,4,5}. We set that

ϑ⃗ =
1
|P|

(−D∗
∇I∗+2T ∗

∇T ∗) .

Note that ϑ⃗ = 0 if I∗ and T ∗ do not depend on x.
In each following case of perturbation, by the similar argument, we obtain the slow system (2.3.12),

respectively.

• Perturbations in transmission rates, A = {1}
∂ zi

∂τ
=

2βS∗T ∗2

|P|
zi

(
bi −

N

∑
j=1

b jz j

)
+ ϑ⃗ ·∇zi +∆zi,

∂ zi

∂n
|∂Ω = 0,

1 ≤ i ≤ N.

• Perturbations in clearance rates γi, A = {2}
∂ zi

∂τ
=

γI∗ (I∗+T ∗)

|P|

(
νi −

N

∑
j=1

ν jz j

)
zi + ϑ⃗ ·∇zi +∆zi,

∂ zi

∂n
|∂Ω = 0, 1 ≤ i ≤ N.

• Perturbations in co-infection clearance rate γi j, A = {3}
∂ zi

∂τ
=

γT ∗D∗

|P|

[
N

∑
j=1

(ui j +u ji)z j −
N

∑
j,l=1

(
u jl +ul j

)
zlz j

]
zi + ϑ⃗ ·∇zi +∆zi,

∂ zi

∂n
|∂Ω = 0, 1 ≤ i ≤ N.

• Perturbations in perturbations in transmission coefficients from mixed carriage pi
i j, A = {4}

∂ zi

∂τ
=

2mT ∗D∗

|P|
zi

N

∑
j=1

(
ω

i
i j −ω

j
ji

)
z j + ϑ⃗ ·∇zi +∆zi,

∂ zi

∂n
|∂Ω = 0,

1 ≤ i ≤ N.
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• Perturbations co-colonization interaction ki j, A = {5}
∂ zi

∂τ
=

−βT ∗I∗D∗

|P|
zi

[
N

∑
j=1

(
T ∗

D∗ α ji −
I∗

D∗ αi j

)
z j −

N

∑
j,l=1

α jlz jzl

]
+ ϑ⃗ ·∇zi +∆zi,

∂ zi

∂n
|∂Ω = 0,

1 ≤ i ≤ N.

Let A ⊂ {1,2,3,4,5}. Using the notations in the previous section, (2.3.12) reads.

∂ zi

∂τ
=Θ1zi

(
bi −

N

∑
j=1

b jz j

)
+Θ2zi

(
−νi +

N

∑
j=1

ν jz j

)
+Θ3zi

[
−

N

∑
j=1

(ui j +u ji)z j +
N

∑
j,l=1

(u jl +ul j)zlz j

]

+Θ4zi

N

∑
j=1

(
ω

i
i j −ω

j
ji

)
z j +Θ5zi

[
N

∑
j=1

(
T ∗

D∗ α ji −
I∗

D∗ αi j

)
z j −

N

∑
j,l=1

α jlz jzl

]
+ ϑ⃗ ·∇zi +∆zi

(4.3.16)
where Θi, i = 1,2,3,4,5, are given by

Θ1(x)= χ1
2βS∗T ∗2

|P|
, Θ2(x)= χ2

γI∗ (I∗+T ∗)

|P|
, Θ3(x)= χ3

γT ∗D∗

|P|
, Θ4(x)= χ4

2mT ∗D∗

|P|
, Θ5(x)= χ5

βT ∗I∗D∗

|P|
.

(4.3.17)
It is useful to rewrite (4.3.16) using the pairwise invasion fitness between strains. Define

Θ(x) = Θ1 (x)+Θ2 (x)+Θ3 (x)+Θ4 (x)+Θ5 (x) and θi (x) =
Θi (x)
Θ(x)

. (4.3.18)

we see that θi (x) > 0 for each i = 1,2,3,4,5 and θ1 +θ2 +θ3 +θ4 +θ5 = 1 for all x. For completeness, if
A = /0 then we set Θ = 1. Using these notations, we obtain our main result.

Theorem 4.10. Consider the system of equations


∂ zi

∂τ
= Θzi

(
(Λ(x)z)i − zT

Λ(x)z
)
+ ϑ⃗ ·∇zi +∆zi, i = 1, · · · ,N,

z1 + z2 + · · ·+ zN = 1.
(4.3.19)

where Λ(x) is the square matrix of size N ×N whose coefficient (i; j) are the pairwise fitness λ
j

i (x) which
satisfy

λ
j

i (x) = θ1 (bi −b j)+θ2 (−νi +ν j)+θ3 (−ui j −u ji +2u j j)+θ4

(
ω

i
i j −ω

j
ji

)
+θ5 (µ (α ji −αi j)+α ji −α j j) .

(4.3.20)

with µ =
I∗

D∗ .
Then, for any initial values of (4.2.1), for each τ0 > 0, T > τ0 arbitrarily and independent on ε , there is ε0 > 0,
C > 0 and a vector of positive coefficients z0 ∈ RN verifying ∑

N
i=1 z0,i = 1, such that ∀ε < ε0

∫
Ω

∣∣∣S∗(x)−S
(

x,
τ

ε

)∣∣∣2+ N

∑
i=1

∫
Ω

∣∣∣I∗zi(x,τ)− Ii

(
x,

τ

ε

)∣∣∣2+ N

∑
i, j=1

∫
Ω

∣∣∣D∗zi(x,τ)z j(x,τ)− Ii j

(
x,

τ

ε

)∣∣∣2 ≤ εC, ∀τ ∈ (τ0,T ) .
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where S, (I1, I2, . . . , IN), (Ii j)i, j∈{1,...,N} is the solution of (4.2.1) and (z1,z2, . . . ,zN) is the solution of reduced
system (4.3.19) together with z(0) = z0.

This system (4.3.19) is a general replicator system with diffusion, which is studied in [35]. We back to the
proof of Theorem 4.8.

Proof. We separate this proof into three steps, in which, we respectively show the approximation for S, Ii,
i = 1, . . . ,N using the theorems 4.5, 4.6, then prove the approximation holds for Ii j, i, j = 1, . . . ,N.

• Firstly, use the Theorem 4.6,we have that

∥S (x, t)−S∗(x)∥2 = O
(√

ε
)
. (4.3.21)

On the other side, we note that the algebraic linear transformations to the new variables (zi,vi)1≤i≤N ; and vi → 0
when ε → 0 (by the Theorem 4.5), which deduces that

∥S (x, t)−S∗(x)∥2 +
N

∑
i=1

∥Ii (x, t)− I∗zs
i (x, t)∥2 = O

(√
ε
)
, (4.3.22)

where (zs
1,z

s
2, . . . ,z

s
N) are solution of slow-fast system (4.3.7), noting that and changing time scale yielding the

equivalent system .

• Secondly, by the lemma 4.7 and the same arguments in [120], we can verify the exponential stability
condition of the Theorem 4.5. Hence, the solution of system (4.3.11) after changing time scale τ = εt tends to
the solution of (4.3.19) as ε → 0 on [τ0,T ], with τ0 > 0, T > τ0. arbitrary and independent on ε .
Combine with the previous claim (4.3.22), we obtain that

∥∥∥S
(

x,
τ

ε

)
−S∗(x)

∥∥∥
2
+

N

∑
i=1

∥∥∥I∗zi(x,τ)− Ii

(
x,

τ

ε

)∥∥∥
2
= O

(√
ε
)
. (4.3.23)

• Thirdly, we make a result for solutions Ii j (x, t), 1 ≤ i, j ≤ N. For the sake of shortness, we remark that each
partial differential equation in this proof associates with Neumann boundary condition and we will not remark
it in each equation. Assume

(
Ir
i j

)
1≤i, j≤N

to be the solution of

∂ Ii j

∂ t
=−mIi j +βkI∗(x)T ∗(x)zi (x,τ)z j (x,τ)+ ε∆Ii j, 1 ≤ i, j ≤ N (4.3.24)

Then, for each τ0 > 0 and T > τ0, we claim that
N
∑

i, j=1

∥∥∥Ii j

(
x,

τ

ε

)
− Ir

i j

(
x,

τ

ε

)∥∥∥
2
= O(

√
ε) for any τ ∈ [τ0,T ].

Indeed, by the property of solutions of (4.2.16) and (4.3.24), we have that (we omit the term (x)-dependence on
x, of parameters, for the sake of convenience)

∂ Ii j

∂ t

(
x,

τ

ε

)
=−mi jIi j

(
x,

τ

ε

)
+β jki jIi

(
x,

τ

ε

)
J j

(
x,

τ

ε

)
+ ε∆Ii j

(
x,

τ

ε

)
∂ Ir

i j

∂ t

(
x,

τ

ε

)
=−mIr

i j

(
x,

τ

ε

)
+βkI∗(x)T ∗(x)zi (x,τ)z j (x,τ) + ε∆Ir

i j

(
x,

τ

ε

) (4.3.25)
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which implies

∂

∂ t

(
Ii j

(
x,

τ

ε

)
− Ir

i j

(
x,

τ

ε

))
=ε∆

(
Ii j

(
x,

τ

ε

)
− Ir

i j

(
x,

τ

ε

))
−m

(
Ii j

(
x,

τ

ε

)
− Ir

i j

(
x,

τ

ε

))
+
(

β jki jIi

(
x,

τ

ε

)
J j

(
x,

τ

ε

)
−βkI∗(x)T ∗(x)zi (x,τ)z j (x,τ)

)
− εγui jIi j

(
x,

τ

ε

)
.

(4.3.26)
Then for all 1 ≤ i, j ≤ N, using the Theorem 4.6, we observe that∥∥∥Ii j

(
x,

τ

ε

)
− Ir

i j

(
x,

τ

ε

)∥∥∥
2
= O(

√
ε). (4.3.27)

Note that, k(x) I∗(x)T ∗(x)
S∗(x) =D∗(x), it suffices to compute the solution Ir

i j, which satisfies
∥∥∥Ir

i j −D∗(x)zi (εt)z j (εt)
∥∥∥

2
=

O
(√

ε
)

for all 1 ≤ i, j ≤ N, by the Theorem 11.19 in [189] again. Combining with (4.3.27) implies that∥∥Ii j −D∗(x)zi (εt)z j (εt)
∥∥

1 = O
(√

ε
)
.

Combine the results in three above steps, we get the conclusion of the lemma 4.8.

4.4 Models with fast diffusion

4.4.1 The general model and the Central Manifold Theorem

Keeping the same notations of the previous sections, we now study the following system, where the rates of
diffusion are large.

∂S
∂ t

=r(x)(1−S)+
N

∑
i=1

γi(x)Ii +
N

∑
i, j=1

γi j(x)Ii j −S
N

∑
i=1

βiJi +
d
ε

∆S ,

∂ Ii

∂ t
=βiJiS− (r(x)+ γi(x)) Ii − Ii

N

∑
j=1

ki jβ jJ j +
d
ε

∆Ii, 1 ≤ i ≤ N,

∂ Ii j

∂ t
=ki j(x)β jIiJ j − (r(x)+ γi j(x)) Ii j +

d
ε

∆Ii j, 1 ≤ i, j ≤ N,

(4.4.1)

with the Neumann boundary conditions
∂S
∂n

=
∂ Ii

∂n
=

∂ Ii j

∂n
= 0 for all 1 ≤ i, j ≤ N on the boundary of Ω and

given initial conditions.
Accordingly, this system (4.4.1) can be shortly written as

∂

∂ t
W(x, t) = F (x,W(x, t))+

1
ε

KW(x, t) ,

∂

∂n
W(x, t) = 0, x ∈ ∂Ω

(4.4.2)

where
W(x, t) = (S, I1, . . . , IN , I11, . . . , INN)

and K is the operator


d∆· . . . 0

...
. . .

...
0 . . . d∆

.
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We set the notation A = d∆. When seen as an operator on L2 (Ω), the operator A2 with the formula of A,
accompanied with homogeneous Neumann boundary conditions, is defined as follows, see [43].

D
(
A2)={U ∈ H1 (Ω) : ∃V ∈ L2 (Ω) ,∀φ ∈ H1 (Ω) ,

∫
∇U (x)∇φ (x)dx =−d

∫
V (x)φ (x)dx

}
,

A2U :=V, U ∈ D
(
A2) . (4.4.3)

In order to obtain uniform estimates, we prefer to focus on the operator A∞ := A acting on C0(Ω̄) with sup
norm. Hence, we define

D(A∞) :=
{

U ∈ D
(
A2)∩C

(
Ω̄
)
,A2U ∈C

(
Ω̄
)}

,

A∞U = A2U, U ∈ D(A∞) .
(4.4.4)

Then we have that

E0 := ker(A∞) = span(1) = R and Im(A∞)⊂
{

U ∈C0(Ω̄),
∫

Ω

U = 0
}
= F0. (4.4.5)

One gets C0
(
Ω̄
)
= kerA∞ ⊕ ImA∞. Now we define the Banach space

(
C0
(
Ω̄
))N2+N+1 together with the norm∥∥(U1, . . . ,UN2+N+1

)∥∥
∞
= ∥U1∥∞

+ · · ·+
∥∥UN2+N+1

∥∥
∞

(4.4.6)

and the operator (A∞)N2+N+1 acting on each coordinate of
(
C0
(
Ω̄
))N2+N+1. The kernel and the range of this

operator are respectively

E := ker
(
(A∞)N2+N+1

)
= RN2+N+1 and F := (F0)

N2+N+1 . (4.4.7)

Hence we have
(
C0
(
Ω̄
))N2+N+1

= Ē ⊕ F̄ . The projection of
(
C0
(
Ω̄
))N2+N+1 on E and F , denoted by ΠE and

ΠF respectively, given explicit by

ΠE
(
V1, . . . ,VN2+N+1

)
=

1
|Ω|

(∫
Ω

V1, . . . ,
∫

Ω

VN2+N+1

)
; ΠF = Id−ΠE . (4.4.8)

For all u ∈
(
C0
(
Ω̄
))N2+N+1 we rewrite it into u = X+Y with X ∈ E and Y ∈ F . We change the system

(4.4.1) on an equivalent slow-fast form by projecting (4.4.1) on E and F respectively. The slow variable
X := ΠE (W) ∈ E is the vector

X =

(
1
|Ω|

∫
Ω

S,
1
|Ω|

∫
Ω

I1, . . . ,
1
|Ω|

∫
Ω

IN ,
1
|Ω|

∫
Ω

I11, . . . ,
1
|Ω|

∫
Ω

INN

)
∈ RN2+N+1
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and the fast variable is Y := ΠF W = W−X ∈ F . Projecting the system (4.4.1) on E and F yields to the
equivalent system

(Sε) :



d
dt

X(t) = f (X,Y)

d
dt

Y(t) = g(X,Y)+
1
ε

KY

∂

∂n
X = 0

∂

∂n
Y = 0

X(0) = ΠE(W(0))

Y(0) = ΠF(W(0))

(4.4.9)

For the end of this section, we state the Central Manifold Theorem 4.11 and the Theorem of convergence
towards the central manifold. These theorems may be proved in [42, 43]. Let us begin by a version of the central
manifold Theorem for an elliptic operator K. This Theorem claims the existence of an invariant manifold for
the slow-fast system which allows to defined several reduced systems.

Theorem 4.11. (Central Manifold Theorem) Let E and F be two Banach spaces. Define f (X ,Y )∈C1 (E ×F ;E)
and g(X ,Y ) ∈C1 (E ×F ;F). Assume that f and g are uniformly bounded as well than their first derivatives.
Let K be an operator with domain D(K)⊂ F. Assume that K generates an analytical semi-group exp(tK) of
linearly operators on F and that there exists µ > 0 such that

∀t ≥ 0; ∀ε ∈ (0,1],
∥∥∥exp

( t
ε

K
)

Y
∥∥∥

F
≤C∥Y∥F exp

(
−µ

t
ε

)
. (4.4.10)

For all initial condition (x0,y0)∈E×F and for all ε ∈ (0,1], one defines Xε (t,x0,y0)≡Xε(t) and Y ε (t,x0,y0)≡
Y ε(t) the solution, for t ≥ 0, of the differential system

(Sε) :


d
dt

Xε(t) = f (Xε(t),Y ε(t),ε) ,

d
dt

Y ε(t) = g(Xε(t),Y ε(t),ε)+
1
ε

KY ε(t),

Xε(0) = x0,Y ε(0) = y0.

(4.4.11)

Then there exists ε0 > 0 such that, for all ε ∈ (0,ε0), the system (Sε) admits a central manifold Cε in the
following sense.

1. There exists a function h(X ,ε)∈C1 (E × [0,ε0] ;F) such that, for all ε ∈ (0,ε0], Cε = {(X ,h(X ,ε)) ;X ∈ E}
is invariant under the semi flow generated by Sε for t ≥ 0. Moreover, we have that ∥h(·,ε)∥L∞(E,F) =O(ε)

as ε → 0.

2. The function h(x,ε) satisfies the partial differential equation

Dxh(x,ε) f (x,h(x,ε) ,ε) =
K
ε

h(x,ε)+g(x,h(x,ε) ,ε) , (4.4.12)
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where Dxh stands for
Dh
Dx

. On top of that, any bounded function h̃ such that
∥∥h̃
∥∥

L∞ ,
∥∥Dxh̃

∥∥
L∞ ≤ 1, and

such that we have

Dxh̃(x,ε) f
(
x, h̃(x,ε) ,ε

)
=

K
ε

h̃(x,ε)+g
(
x, h̃(x,ε) ,ε

)
+O(ε) (4.4.13)

in L∞, also necessarily satisfies ∥∥h− h̃
∥∥

L∞ = O(ε) . (4.4.14)

This Theorem provides the existence of a manifold Cε which is invariant for the system (4.4.11) and
parametrized by the slow variable Xε ∈ E In our application, E is finite dimensional so that the system on Cε

is a finite dimensional system. After showing that the solutions are close to the central manifold, up to an
exponentially small error term, we can reduce the study to a system on the invariant manifold Cε . This finite
dimensional system approach the original problem in a sense that is specified below.
More precisely, let us define the following reduced system. We do not precise the initial data at this step.(

S[∞]
ε

)
:

d
dt

Xε,[∞](t) = f
(

Xε,[∞](t),h
(

Xe,[∞](t),ε
)
,ε
)
, Y ε,[∞](t) = h

(
Xε,[∞](t),ε

)
. (4.4.15)

When the original data belongs to this manifold, that is if Y ε(0) = h(Xε(0),0), (4.4.15) describes the exact
dynamics of (4.4.11). In general, if Y ε (0) ̸= h(Xε (0) ,ε) and the solutions do not belong to Cε . However, the
initial data can be slightly modified so that the solution of (4.4.11) are exponentially close to the solution of
(4.4.15).

Note that, h(X ,ε) admits an asymptotic expansion of the form h(X ,ε) = ∑
r−1
k=1 εkhk (X) + O(εr), which

is explicitly calculable provided the functions f and f have Cr smoothness. The approximate h(X ,ε) ≈
∑

r
k=1 εkhk (X) leads to the writing of reduced systems of order r (see [42]). This paper focus only on the case

r = 1. By this assumption, we obtain the following reduced system(
S[0]ε

)
:

d
dt

Xε,[0](t) = f
(

Xε,[0](t),0,ε
)
, Y ε,[0](t) = h

(
Xε,[0](t),ε

)
. (4.4.16)

An important fact in the sequel is that the dynamic of S[∞]
ε is completely determined by its first equation: the

following O.D.E system

(Sc
ε) :

d
dt

Xε,[∞](t) = f
(

Xε,[∞](t),h
(

Xε,[∞](t),ε
))

and Sc
ε can be seen as a regular perturbation of the first equation of S[0]ε , that is

(Sc
0) ,

d
dt

X [0](t) = f
(

X [0](t),0
)
.

4.4.2 Application of the Central Manifold Theorem and main results

In order to apply the Central Manifold Theorem and related results, we need that the operator K define a
C0 semi-group of contraction on F . Note that, the assumed smoothness of ∂Ω implies that the operator A∞

generates a C0 semi group of contraction on
(
C
(
Ω̄
))N2+N+1, see [27]. Denoting exp(tA∞

2 ) this semi-group, we
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deduce that
∀t ≥ 0, ∥exp(tT ∞)v∥

∞
≤ ∥v∥

∞
. (4.4.17)

Lemma 4.12. The restriction of Ã of A∞ to the subspace F0 =
{

u ∈C0
(
Ω̄
)

:
∫

Ω
u = 0

}
is the generator of a C0

semi-group of strict contraction exp
(
tÃ
)

on F0 verifying for some µ > 0

∀v ∈ F0,
∥∥exp

(
tÃ
)

v
∥∥

∞
≤ e−µt ∥v∥

∞
. (4.4.18)

Proof. F0 is closed in C0
(
Ω̄
)

and is clearly invariant under exp(tA∞) by its definition. It follows (from [169] p.
123) that Ã is the generator of a C0 semi-group of contraction on F0.

On the other side, it is well known that the the Laplacian operator on C0
(
Ω̄
)

has the discrete spectrum
σ (A) which totally lies in the negative half line. Since σ

(
Ã
)
⊂ σ (A∞) and 0 /∈ σ

(
Ã
)
, one has that σ

(
Ã2
)
⊂

(−∞,−λ1] (for some λ1 > 0). Apply the Theorem 4.3 (p.118) in [169], we have the conclusion of the
lemma.

We have the following result.

Proposition 4.13. K is the generator of a C0 semi group exp(tK) on F verifying

∥exp(tK)v∥F ≤ e−µt∥v∥F . (4.4.19)

Now, we need to show that the function f = ΠEF and g = ΠFF are smooth enough. By the same
arguments of Lemma 4.3 in [43] and note that F is the vector-valued function whose each component is a
multi-variable polynomial. This result can be stated as follows.

Lemma 4.14. The function f and g have C1 smoothness when acting on E ×F .

By the Central Manifold Theorem, there exists a manifold M ε = {(x,h(x,ε)) ,x ∈ E} ∈ E ×F which is
invariant for (Sε). It verifies moreover h(xε ,ε) = O(ε) and M ε attracts any trajectory exponentially fast in
time.
Recalling E0 defined in (4.4.5) and denoting ΠE0(U) =

1
|Ω|

∫
Ω

U for all U ∈C0
(
Ω̄
)
.

Setting that S̄ = ΠE0 (S), Īi = ΠE0 (Ii) and Īi j = ΠE0 (Ii j), for all 1 ≤ i, j ≤ N.

Since h(xε ,ε) = O(ε) as ε → 0, one obtains the approximation of the slow manifold to be
∂X
∂ t

= f (X,0)
as follows

d
dt

S̄ =ΠE0 (r)
(
1− S̄

)
+ΠE0 (γi) Īi +ΠE0 (γi j) Īi j − S̄

N

∑
i=1

ΠE0 (βiJi)

d
dt

Īi =ΠE0 (βiJi) S̄−
(
ΠE0 (r)+ΠE0 (γi)

)
Īi − Īi

N

∑
j=1

(
ΠE0 (β jki j) Īi +

N

∑
j=1

(
ΠE0

(
β j pi

i jki j
)

Īi j +ΠE0

(
β j pi

jiki j
)

Ī ji
))

d
dt

Īi j =Īi

(
ΠE0 (β jki j) Ī j +

N

∑
l=1

(
ΠE0

(
β j p

j
jlki j

)
Ī jl +ΠE0

(
β j p

j
l jki j

)
Īl j

))
−
(
ΠE0 (r)+ΠE0 (γi j)

)
Īi j

(4.4.20)
Now, we make a quasi neutral assumption as in Table 4.1 and wish to transform (4.4.20) to apply result in
[120]. It suffices to write the parameters ΠE0 (β jki j), ΠE0

(
β j pi

i jki j

)
, etc, in (4.4.20) as the forms in [120].
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Indeed, we first denote

r̄ = ΠE0 (r) , β̄ = ΠE0 (β ) , γ̄ = ΠE0 (γ) ,

b̄i =
ΠE0 (βbi)

ΠE0 (β )
, ν̄i =

ΠE0 (γνi)

ΠE0 (γ)
, ūi j =

ΠE0 (γui j)

ΠE0 (γ)
, 1 ≤ i, j ≤ N

(4.4.21)

then ΠE0 (βi) = β̄
(
1+ ε b̄i

)
:= β̄i, ΠE0 (γi) = γ̄ (1+ εν̄i) := γ̄i and ΠE0 (γi j) = γ̄ (1+ ε ūi j) := γ̄i j. Next, we set

that

p̄s
i j =

1
2
+ εω̄

s
i j, with ω̄

s
i j =

ΠE0

(
βiω

s
i j

)
ΠE0 (βi)

;

and

k̄i j = k̄+ εᾱi j, with k̄ =
ΠE0 (βk)
ΠE0 (β )

and ᾱi j =
1
ε

[
ΠE0 (β jki j)

ΠE0 (β j)
− k̄
]
. (4.4.22)

It is necessary to note that p̄s
i j ̸= ΠE0

(
ps

i j

)
and k̄i j ̸= ΠE0 (ki j) to not make mistakes.

Then, we have that,

ΠE0

(
βi ps

i j
)
= β̄i p̄s

i j, ΠE0 (β jki j) = β̄ j k̄i j, ∀1 ≤ i, j ≤ N. (4.4.23)

We will show that ᾱi j = O(1), indeed,

ᾱi j =
1
ε

[∫
Ω
(β + εb j)(k+ εαi j)∫

Ω
β + ε

∫
Ω

b j
−
∫

Ω
βk∫

Ω
β

]
=

1
ε

[( ∫
Ω

βk∫
Ω

β + ε
∫

Ω
b j

−
∫

Ω
βk∫

Ω
β

)
+ ε

∫
Ω
(kb j +βαi j)∫

Ω
β + ε

∫
Ω

b j
+ ε

2
∫

Ω
b jαi j∫

Ω
β + ε

∫
Ω

b j

]

=

∫
Ω

βk∫
Ω

β
·

−
∫

Ω
b j∫

Ω
β

1+ ε

∫
Ω

b j∫
Ω

β

+

∫
Ω
(kb j +βαi j)∫

Ω
β + ε

∫
Ω

b j
+ ε

∫
Ω

b jαi j∫
Ω

β + ε
∫

Ω
b j

.

Combining this with direct calculations, we have that∥∥ΠE0 (β jki j ps
mn)− β̄ j k̄i j p̄s

mn
∥∥= O(ε) , s ∈ {m,n}, ∀1 ≤ i, j,m,n ≤ N.

Indeed, for s ∈ {m,n}, for all 1 ≤ i, j,m,n ≤ N, denote that εψ
s,i j
mn to be ΠE0 (β jki j ps

mn)− β̄ j k̄i j p̄s
mn then

εψ
s,i j
mn = ε

[
1
2
(
ΠE0 (kb j)− k̄b̄ j

)
+
(
ΠE0 (βkω

s
mn)− β̄ k̄ω̄

s
mn
)]

+ε
2
[

1
2
(
ΠE0 (αi jb j)− ᾱi jb̄ j

)
+

1
2
(
ΠE0 (βαi jω

s
mn)− β̄ ᾱi jω̄

s
mn
)
+
(
ΠE0 (kb jω

s
mn)− k̄b̄ jω̄

s
mn
)]

+ε
3 [

ΠE0 (αi jb jω
s
mn)− ᾱi jb̄ jω̄

s
mn
]
.

For the sake of applying the result in [120], we make an assumption that

Assumption 4.15. ps
i j does not depend on x for all 1 ≤ i, j ≤ N and s ∈ {i, j}.
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Hence, ΠE0 (β jki j ps
mn) = β̄ j k̄i j p̄s

mn and the system (4.4.20) becomes

dS̄
dt

=r̄
(
1− S̄

)
+

N

∑
i=1

γ̄iĪi +
N

∑
i, j=1

γ̄i j Īi j − S̄
N

∑
i=1

β̄iJ̄i

dĪi

dt
=β̄iJ̄iS̄− (r̄+ γ̄i) Īi − Īi

N

∑
j=1

k̄i jβ̄ j J̄ j, 1 ≤ i ≤ N,

dĪi j

dt
=k̄i jβ̄ j ĪiJ̄ j − (r̄+ γ̄i j) Īi j, 1 ≤ i, j ≤ N,

(4.4.24)

where

β̄i = β̄
(
1+ ε b̄i

)
, γ̄i = γ̄ (1+ εν̄i) , γ̄i j = γ̄ (1+ ūi j) , p̄s

i j =
1
2
+ εω̄

s
i j, k̄i j = k̄+ εᾱi j

and

J̄i = Īi +
N

∑
j=1

(
p̄i

i j Īi j + p̄i
ji Ī ji
)
, ∀1 ≤ i ≤ N

Before applying the result in [120], we make the following assumption on the basic reproduction ratio.

Assumption 4.16. Assume that
∫

Ω
β (x)dx >

∫
Ω

m(x)dx, which means
∫

Ω
β (x)dx∫

Ω
m(x)dx

> 1.

Applying the result in [120] for (4.4.24), we have the following theorem. Initially, we define that

S∗ =
m̄
β̄
, T ∗ = 1−S∗, I∗ =

m̄T ∗

m̄+ β̄ k̄T ∗ , D∗ = T ∗− I∗ (4.4.25)

and
Θ = Θ1 +Θ2 +Θ3 +Θ4 +Θ5 and θi =

Θi

Θ
(4.4.26)

where

Θ1 = χ1
2β̄S∗T ∗2

|P|
, Θ2 = χ2

γ̄I∗ (I∗+T ∗)

|P|
, Θ3 = χ3

γ̄T ∗D∗

|P|
, Θ4 = χ4

2m̄T ∗D∗

|P|
, Θ5 = χ5

β̄T ∗I∗D∗

|P|
.

(4.4.27)
We see that θi > 0 for each i = 1,2,3,4,5 and θ1 +θ2 +θ3 +θ4 +θ5 = 1. Using these notations, we obtain our
main result.

Theorem 4.17. Consider the system of equations

{
żi = Θzi

((
Λ̄z
)

i − zT
Λ̄z
)
, i = 1, · · · ,N,

z1 + z2 + · · ·+ zN = 1.
(4.4.28)

where Λ̄ is the square matrix of size N ×N whose coefficient (i; j) are the pairwise fitness λ̄
j

i which satisfy

λ̄
j

i = θ1
(
b̄i − b̄ j

)
+θ2 (−ν̄i + ν̄ j)+θ3 (−ūi j − ū ji +2ū j j)+θ4

(
ω̄

i
i j − ω̄

j
ji

)
+θ5 (µ (ᾱ ji − ᾱi j)+ ᾱ ji − ᾱ j j) .

(4.4.29)

with µ =
I∗

D∗ .
Then, for any initial values of (4.4.1), for each τ0 > 0, T > τ0 arbitrarily and independent on ε , there is ε0 > 0,
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C > 0 and a vector of positive coefficients z0 ∈ RN verifying ∑
N
i=1 z0,i = 1, such that ∀ε < ε0

∣∣∣S̄(τ

ε

)
−S∗

∣∣∣+ N

∑
i=1

∣∣∣I∗zi(τ)− Īi

(
τ

ε

)∣∣∣+ N

∑
i, j=1

∣∣∣D∗zi(τ)z j(τ)− Īi j

(
τ

ε

)∣∣∣≤ εC, ∀τ ∈ (τ0,T ) . (4.4.30)

where S̄, (Ī1, Ī2, . . . , ĪN), (Īi j)i, j∈{1,...,N} are the mean values over Ω of the solution for (4.4.1) and (z1,z2, . . . ,zN)

is the solution of reduced system (4.4.28) together with z(0) = z0.

4.5 Comparison between two cases of slow and fast diffusions

Initially, we recall the two replicator system used to approximate in both cases

Case 1. Slow diffusion ε∆: {
żi = Θzi

(
(Λ(x)z)i − zT

Λ(x)z
)
+ ϑ⃗ ·∇zi +∆zi, i = 1, · · · ,N,

z1 + z2 + · · ·+ zN = 1.
(4.5.1)

where ϑ⃗ (x) =
1
|P|

(−D∗∇I∗+2T ∗∇T ∗) and Λ(x) is the square matrix of size N ×N whose coefficient

(i; j) are the pairwise fitness λ
j

i which satisfy

λ
j

i (x)= θ1 (bi −b j)+θ2 (−νi +ν j)+θ3 (−ui j −u ji +2u j j)+θ4

(
ω

i
i j −ω

j
ji

)
+θ5 (µ (α ji −αi j)+α ji −α j j) .

(4.5.2)

Case 2. Fast diffusion
1
ε

∆: {
żi = Θzi

((
Λ̄z
)

i − zT
Λ̄z
)
, i = 1, · · · ,N,

z1 + z2 + · · ·+ zN = 1.
(4.5.3)

where Λ̄ is the square matrix of size N ×N whose coefficient (i; j) are the pairwise fitness λ̄
j

i which
satisfy

λ̄
j

i = θ1
(
b̄i − b̄ j

)
+θ2 (−ν̄i + ν̄ j)+θ3 (−ūi j − ū ji +2ū j j)+θ4

(
ω̄

i
i j − ω̄

j
ji

)
+θ5 (µ (ᾱ ji − ᾱi j)+ ᾱ ji − ᾱ j j) .

(4.5.4)

We first note that, in Case 1, the replicator system is partial differential equations, in which, its variables are
prevalences of strains depending in space x ∈ Ω and time (in slow time scale) τ ∈ R+. Moreover, it is not
actually the same type of replicator equations with diffusion studied in [35] since there is a term of gradient in
each equation, which is interesting. The parameters in the replicator system of this case, including the pairwise
invasion fitness matrix

(
λ

j
i

)
1≤i, j≤N

and ϑ⃗ = 1
|P| (−D∗∇I∗+2T ∗∇T ∗), are taken from the parameters of the

neutral equations then depends on space. In Case 2, meanwhile, the replicator system is ordinary differential
equations, in which, its variables are total masses over the domain of strain frequencies. Thus, the system’s
parameters- the pairwise invasion fitness matrix, can be taken directly from original model’s ones, but their
mean values over domain Ω.

One point need to note is the basic reproductive ratio R0. In Case 1, we assume in Assumption 4.4 that all

domain Ω is high-risk site, i.e. β (x)> m(x) for all x ∈ Ω. Hence, the equilibrium of susceptible S∗ =
m(x)
β (x)

is
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well-defined and proved to be stable as in section 4.2. In this case, we denote spatial basic reproductive ratio

R0(x) =
β (x)
m(x)

, which exceeds 1, leading to the equilibrium of endemic mentioned in the Introduction.

However, in Case 2, we make a slighter assumption that Ω is a high-risk domain, i.e.
∫

Ω
β (x)>

∫
Ω

m(x).
Hence, there can exist non empty low risk site, i.e. the set H− in (4.2.12) is non empty. Next, we make some
analyzing on the basic reproductive ratio for the quasi-neutral SIS system with fast diffusion (i.e. Case 2). First,
we assume that

Assumption 4.18. 1.
∫

Ω
T (x,0)dx > 0, i.e. at the beginning, the total mass of infected and coinfected

individuals is positive.

2. H+ and H− are nonempty, with H+, H− are in (4.2.12).

Thank the singular perturbation in transmission rates βi = β (1+ εbi) and clearance rates γi = γ (1+ ενi),
γi j = γ (1+ui j), we now define a basic reproductive ratio R0 for (4.4.1), recalling m = γ + r.

Theorem 4.19. Similarly in [9], for each ε > 0, let

R0 = sup
φ∈H1(Ω),

φ ̸=0


∫

Ω
βφ 2∫

Ω

(
1
ε
|∇φ |2 +mφ 2

)
 . (4.5.5)

Then, we have that

R0 →
∫

Ω
β∫

Ω
m

as ε → 0.

Note that, our variational characterization of the basic reproduction number R0 is in keeping with the
next generation approach for heterogeneous populations [65] which occupy a continuous spatial habitat. It is
interesting that

∫
Ω β∫
Ω m is the basic reproductive ratio R0 of (4.4.24).

Proof. Firstly, we recall the semi-neutral system for (S,T ) in Case 2
∂S
∂ t

= mT −βT S+
1
ε

∆S

∂T
∂ t

=−mT +βST +
1
ε

∆T
. (4.5.6)

with the same initial value condition of (4.4.1) and Neumann boundary condition.
By similar proof for Theorem 4.6, we have that the solution (S,T ) of (4.4.1) can be approximated by the

solution (S,T ) of (4.5.6) with error O(ε).

Apply the Theorem 2 in [9], we have that R0 →
∫

Ω
β∫

Ω
m

as ε → 0.

Next, we come to three following examples, to see more detailed comparison between two cases.

Example 4.20. Firstly, we consider the simplest example of an N-strain system and compact domain Ω, when
all the parameters in Table 4.1 do not depend on x. In addition in this example, we consider the perturbations
are only in the transmission rates βi, i.e. νi, ui j, ωs

i j and αi j are all zeros, for all i, j and s ∈ {i, j}. Without loss
of generality, we assume that b1 > b2 ≥ b3 ≥ ·· · ≥ bN .
In the Case 2, when diffusion is fast 1

ε
∆, apply the result in [120], the strain with biggest transmission rate, in

this case is strain 1, becomes the unique survivor.
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Meanwhile, in the Case 2, when diffusion rates are singular ε∆, we have the replicator equation system as
follows 

żi = Θ1zi

N

∑
j=1

(bi −b j)z j +∆zi, i = 1, . . . ,N

z1 + z2 + · · ·+ zN = 1

(4.5.7)

with Θ1 =
2βS∗T ∗2

|P|
which can be regarded as ż = f (z)+∆z. We can compute the linearized operator d f |z̄ +∆

with stable state z̄ = (1,0, . . . ,0) as follows

d f |z̄ +∆ =



∆ Θ1 (b1 −b2) Θ1 (b1 −b3) . . . Θ1 (b1 −bN)

0 ∆ 0 . . . 0
0 0 ∆ . . . 0
...

...
...

. . .
...

0 0 0 . . . ∆


which has the negative spectrum, since b1−b j > 0 for all j ̸= 1 and the Laplacian has negative spectrum. Apply
Theorem 11.20 in [189], the state (1,0, . . . ,0) is linearly stable, implying the unique survival of strain 1.

In this example, the survival outcomes in two strain are the same.

When perturbations are only in single-infection clearance rates γi j or transmission capacity of the strain
s by a co-colonized host by strain-i then strain- j ps

i j, we can have the similar results by applying the same
arguments.

Roughly speaking, it can happen that, in both cases: slow diffusion and fast diffusion, the unique survivors
are the same.

To close this section, we consider two other examples, in which, the longtime behaviors of strains distinguish
in two cases of diffusions.

Example 4.21. We consider in two cases the systems of two strains N = 2 and Ω = [0,1] when the neutral
values of parameters as follows

β = 3, k = 0.1, m =
3(ψ −0.36)+3

√
ψ (ψ −0.8)

2(1.62+ψ)
, with ψ (x) =

1
− 1

3 x+ 1
2

,∀x ∈ [0,1].

(4.5.8)
It can be verified directly that m < β for all x, which satisfies our assumption 4.4.

From (4.3.17), we recall that µ =
1

k (R0 −1)
and

Θ1

Θ5µ
= 2k2 (µ +1)2 (R0 −1) . (4.5.9)

Substituting (4.5.8) into (4.5.9), by direct calculation, we can verify that

Θ5µ

Θ1
=−1

3
x+

1
2
. (4.5.10)
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In this case, we consider perturbations in transmission rates βi and co-colonization interaction ki j, which are
given as follows

b1 (x) =
x
3
, b2 (x) =

1− x
3

,

α12 = x, α21 = 1− x, α11 = α12, α22 = α21,

(4.5.11)

for all x ∈ [0,1].
In the case of fast diffusion 1

ε
∆, using (4.5.3) and (4.5.4), we only need to compute the pairwise-invasion

fitness for the slow-system to determine the unique survivor. From (4.5.11), we have that
∫ 1

0 b1dx =
∫ 1

0 b2dx,
leading to b̄1 = b̄2 and β̄1 = β̄2. From the definition of ᾱi j in (4.4.22), we deduce that λ̄ 2

1 + λ̄ 1
2 < 0, indeed, we

recall the formula (4.5.4) in this case{
λ̄

2
1 = θ5 (µ (ᾱ21 − ᾱ12)+ ᾱ21 − ᾱ22)

λ̄
1
2 = θ5 (µ (ᾱ12 − ᾱ21)+ ᾱ12 − ᾱ11)

. (4.5.12)

Then we have that

1
θ5

(
λ̄

2
1 + λ̄

1
2
)
= (ᾱ12 − ᾱ11)+(ᾱ21 − ᾱ22) =

1

ε
∫ 1

0 β1dx

∫ 1

0
(k21 − k12)(β1 −β2)dx

=
β

ε
∫ 1

0 β1dx

∫ 1

0
(εα21 − εα12)(εb1 − εb2)dx =− 2ε

3
∫ 1

0 (1+ εb1)

∫ 1

0

(
x− 1

2

)2

dx

=− βε

18
∫ 1

0 (1+ εb1)
< 0.

Moreover, we observe that

ᾱ12 − ᾱ21 =

∫ 1
0 β2k12dx

ε
∫ 1

0 β2dx
−
∫ 1

0 β1k21dx

ε
∫ 1

0 β1dx
=

1

ε
∫ 1

0 β1dx

[∫ 1

0
(3+ ε (1− x))(0.1+ εx)dx−

∫ 1

0
(3+ εx)(0.1+ ε (1− x))dx

]
,

which implies ᾱ12 = ᾱ21. From (4.5.12), we have that

λ̄
1
2 − λ̄

2
1 = ᾱ22 − ᾱ11 =

ε∫ 1
0 (1+ εb1)dx

∫ 1

0
(b2α21 −b1α12)dx = 0.

Then λ̄ 2
1 = λ̄ 1

2 . Combining with λ̄ 2
1 + λ̄ 1

2 < 0 then λ̄ 2
1 = λ̄ 1

2 < 0, which leads to the bistability.
When the diffusion is slow ε∆, we compute the pairwise invasion fitnesses of both strains at each x ∈ [0,1].

From (4.5.2), we have the explicit formulas for pairwise invasion fitness in this case as follows{
λ

2
1 (x) = θ1 (b1 −b2)+θ5µ (α21 −α12)

λ
1
2 (x) = θ1 (b2 −b1)+θ5µ (α12 −α21)

(4.5.13)

It is easy to see that λ 2
1 (x)+λ 1

2 (x) = 0 for all x ∈ [0,1]. We claim that λ 2
1 > 0 for all x ∈ [0,1]. Indeed, we

will show that
b1 −b2 ≥

Θ5µ

Θ1
(α12 −α21) . (4.5.14)
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Because 3(b1 −b2) = α12 −α21 = 2x−1 and Θ5µ

Θ1
=− 1

3 x+ 1
2 , we have that

(b1 −b2)−
Θ5µ

Θ1
(α12 −α21) =

1
3
(2x−1)2 ≥ 0,

implies the inequality (4.5.14). According to the formulas for pairwise invasion fitnesses (4.5.13), this means
that, at every point x ∈ Ω, strain 1 excludes strain 2 in the case of asymptotically small diffusion.

Roughly speaking, it can happen that, when the diffusion rates are singular, a strain is the unique survivor at
each point of domain; meanwhile, in the case of large rates of diffusion, the longtime behavior is bistability.

The following example is similar to the Example 4.21. In which, strain 1 is the unique survivor at each point
of domain in the case of slow diffusion, but strain 2 excludes strain 1 when the diffusion is asymptotically fast.

Example 4.22. We consider in two cases the systems of two strains N = 2 and Ω = [0,1] when the neutral
values of parameters as follows

β = 2, k = 0.2, m =
ψ −0.64+

√
ψ (ψ −1.6)

1.28+ψ
, with ψ (x) =

1

−1
3

x+ 1
2

,∀x ∈ [0,1]. (4.5.15)

It can be verified directly that m < β for all x, which satisfies our assumption 4.4.
Analogously to the previous Example 4.21, by direct calculation, we can verify that

Θ5µ

Θ1
=−1

3
x+

1
2
. (4.5.16)

In this case, we consider perturbations in transmission rates βi and co-colonization interaction ki j, which are
given as follows

b1 (x) =
x
2
, b2 (x) =

1− x
2

,

α12 = x(x+1) , α21 = (1− x)(x+1) , α11 = α12, α22 = α21,

(4.5.17)

for all x ∈ [0,1].
When the diffusion rates are singular ε∆, we compute the pairwise invasion fitnesses of both strains at each

x ∈ [0,1]. From (4.5.2), we have the explicit formula for pairwise invasion fitnesses in this case as follows{
λ

2
1 (x) = θ1 (b1 −b2)+θ5µ (α21 −α12)

λ
1
2 (x) = θ1 (b2 −b1)+θ5µ (α12 −α21)

(4.5.18)

It is easy to see that λ 2
1 (x)+λ 1

2 (x) = 0 for all x ∈ [0,1]. We claim that λ 2
1 > 0 for all x ∈ [0,1]. Indeed, we

will show that
b1 −b2 ≥

Θ5µ

Θ1
(α12 −α21) . (4.5.19)

Because 2(b1 −b2) = 2x−1, α12 −α21 = (2x−1)(x+1) and Θ5µ

Θ1
=− 1

3 x+ 1
2 , we have that

(b1 −b2)−
Θ5µ

Θ1
(α12 −α21) =

1
6

x(2x−1)2 ≥ 0,
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implies the inequality (4.5.19). According to the formulas for pairwise invasion fitnesses (4.5.18), this means
that, at every point x ∈ Ω, strain 1 excludes strain 2 in the case of asymptotically slow diffusion.

Meanwhile, in the case of fast diffusion 1
ε

∆, using (4.5.3) and (4.5.4), we only need to compute the
pairwise-invasion fitness for the slow-system to determine the unique survivor. From (4.5.17), we have that∫ 1

0 b1dx =
∫ 1

0 b2dx, leading to b̄1 = b̄2 and β̄1 = β̄2. From the definition of ᾱi j in (4.4.22), we deduce that
λ̄ 2

1 + λ̄ 1
2 → 0 as ε → 0, indeed, we recall the formula (4.5.4) in this case{

λ̄
2
1 = θ5 (µ (ᾱ21 − ᾱ12)+ ᾱ21 − ᾱ22)

λ̄
1
2 = θ5 (µ (ᾱ12 − ᾱ21)+ ᾱ12 − ᾱ11)

. (4.5.20)

Then we have that

1
θ5

(
λ̄

2
1 + λ̄

1
2
)
= (ᾱ12 − ᾱ11)+(ᾱ21 − ᾱ22) =

1

ε
∫ 1

0 β1dx

∫ 1

0
(k21 − k12)(β1 −β2)dx

=
β

ε
∫ 1

0 β1dx

∫ 1

0
(εα21 − εα12)(εb1 − εb2)dx =− 2ε∫ 1

0 (1+ εb1)

∫ 1

0

(
x− 1

2

)2

(x+1)dx

=− βε

4
∫ 1

0 (1+ εb1)
→ 0 when ε → 0.

Moreover, we observe that

ᾱ12 − ᾱ21 =

∫ 1
0 β2k12dx

ε
∫ 1

0 β2dx
−
∫ 1

0 β1k21dx

ε
∫ 1

0 β1dx

=
1

ε
∫ 1

0 β1dx

[∫ 1

0
(2+ ε (1− x))(0.2+ εx(x+1))dx−

∫ 1

0
(2+ εx)(0.2+ ε (1− x)(x+1))dx

]
=

1∫ 1
0 β1dx

∫ 1

0
(2x−1)(2x+1.8)dx =

1

3
∫ 1

0 β1dx
> 0.

From (4.5.20), we have that

λ̄
1
2 − λ̄

2
1 =(2µ +1)(ᾱ12 − ᾱ21)+(ᾱ22 − ᾱ11)=

1∫ 1
0 (1+ εb1)dx

[(
2µ +1

6

)
− 1

6
− ε

12

]
=

1∫ 1
0 (1+ εb1)dx

(
µ

3
− ε

12

)
> 0

for ε small enough. Then λ̄ 2
1 < 0 < λ̄ 1

2 for ε small enough, since λ̄ 1
2 − λ̄ 2

1 = O(1). Therefore, when the
diffusion is fast, strain 2 excludes strain 1 in long time.

Roughly speaking, it can happen that, when the diffusion rates are singular, a strain, denoted by strain 1, is
the unique survivor at each point of domain; meanwhile, in the case of large rates of diffusion, the other strain,
denoted strain 2, will exclude strain 1 over the domain.

4.6 Conclusion

Epidemiology for homogeneous environment receives many intention so far [14] because invasion of disease
is now an international public health problem. In reality, populations tend not to be homogeneous and there
are nonlocal interactions. Hence, people investigate more theory on the geographical spread of infectious
diseases. The mechanisms of invasion of disease to new territories may take many different forms and
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there are several ways to model such problems [67, 116, 130, 155], in which, the equilibrium behavior has
been studied. This mathematical study provides a fundamental advance in understanding analytically quasi-
neutral dynamics between multiple strains in a co-infection diffusion system. Until now, explicit and general
derivations of coinfection dynamics among N strains are very rare in the literature, especially models with
diffusion. Nevertheless, many models have been proposed to investigate effect of diffusion of disease infection
[167, 79, 78, 183].

Motivated by the dynamics without diffusion in [120], we formulate an SIS-type reaction diffusion equations
among similar strains, in both cases of slow and fast diffusions. Naturally in this present model, infectious strains
compete for susceptible and singlycolonized hosts, which are the only resources that can favor their growth
and propagation. The different traits provide each strain with variable fitness advantages or disadvantages
in exploiting such dynamic resources in the system, and interact together to shape multi-strain selection.
We aim to simplify the dynamics when small perturbations arise in the clearance rates, transmission rates,
within-host competitiveness coefficients, as well as co-colonization susceptibility interaction factors between
strains. However, with spatial structure, it requires us to add some appropriate assumptions, especially, the
assumption of high-risk site Ω with slow diffusion and the assumption of

When diffusion rates are singular (ε∆), we base on the framework in [120] and adapt for our current system,
including proving a Tikhonov-like Theorem. The details of this framework are not mentioned again here.
We derive the corresponding slow-fast form for the global dynamics, with the system of strain frequencies
completely explicit, and provide the formal approximation for solutions of all epidemiological variables
by quantifying error estimates. We reduce the complexity of N2 + N + 1 equations of the original SIS
compartmental model to the N-equations of replicator dynamics with diffusion, which reduces substantially
time for computation. Meanwhile, for the case of fast diffusion ( 1

ε
∆), we apply the Central Manifold Theorem

to obtain an SIS system for total masses of susceptible, infected and coinfected individuals, which allows us to
use the main result in [120]. Accordingly, the reduced system in this case is the replicator equation, which is
studied widely [102]. A similar point in both approaches is that, the error in approximation is estimated for
total masses of susceptible, infected and coinfected strains.

When the diffusion is fast, we can use the result about survival outcome of strains in [120] to study the
longtime behavior of total mass of each strain. However, there is not much study on the replicator equations with
diffusion and gradient, so there is no general theory for the long time phenomena of individuals in the case of
slow diffusion. Though, it is exciting to envision how this approach could be extended to other epidemiological
models of multi- strain dynamics with diffusion or even more with general spatial structure. Like the non-spatial
model, an essential requirement is that their embedded neutral system admits a central manifold which is
globally stable. The challenge would then be to identify the equations governing slow motion on this manifold
in each specific model. It is essential to note that we use strong assumption of high-risk site Ω in Case 1 and
high-risk domain Ω in Case 2, which lead to the endemic equilibrium. In general, without these assumption,
people are interested in the theory of disease-free equilibrium and endemic equilibrium, [9, 208].

In Case 1, when diffusion rates are singular, without the assumption of high risk site Ω, i.e. H− ̸= /0, there
are points x’s at which S∗ = 1, that may not allow the smoothness of S∗ in x. Then, our approach may not work
because ∥S−S∗∥2 → O

(√
ε
)

may not hold anymore.
One more thing, until now we have not considered a spatial component of intermediate diffusion (d∆, d > 0)

to the multi-strain dynamics. A further perspective is considering the application of the Central Manifold
Theorem to this model.
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A4.1 Appendix: Proof for theorems

A4.1.1 Proof for theorem 4.2

In this proof, we will show that equation, recalling Ω compact,
∂u
∂ t

= F (u(x, t) ,x)+d∆u,

∂u
∂n

= 0 on ∂Ω, u(x,0) = u0 (x)
(A4.1.1)

has unique solution u : Ω× [0,∞)→Rn, satisfying u∈C2 (Ω×·,Rn)∩C1 (·× [0,∞) ,Rn) when F :Rn×·→Rn

is a Lipschitz map, i.e. there exists a constant L such that

∥Fũ−Fṽ∥ ≤ L∥ũ− ṽ∥ , ∀ũ, ṽ ∈ Rn, ∀x ∈ Ω. (A4.1.2)

First, we denote that QT = Ω× [0,∞) and Q̄T = Ω× [0,∞) and u(x, t) ∈ Rn for (x, t) ∈ Q̄T . When seen
the Laplacian as an operator on L2 (Ω), the operator A2 with homogeneous Neumann boundary conditions is
defined as

D
(
A2)={U ∈ H1 (Ω) : ∃V ∈ L2 (Ω) ,∀φ ∈ H1 (Ω) ,

∫
∇U (x)∇φ (x)dx =−d

∫
V (x)φ (x)dx

}
,

A2U :=V, U ∈ D
(
A2) . (A4.1.3)

In order to obtain uniform estimates, we prefer to focus on the operator A∞ := A acting on C2(Ω). Denoting by
operator A to be the Laplacian ∆ acting on

(
C2 (Ω×·)

)n. Hence, we define

D(A∞) :=
{

U ∈ D
(
A2)∩C

(
Ω̄
)
,A2U ∈C

(
Ω̄
)}

,

A∞U = A2U, U ∈ D(A∞) .
(A4.1.4)

Firstly, by Duhamel’s formula and [169], (A4.1.1) implies that

u(x, t) = eAtu0 +
∫ t

0
eA(t−s)F (u(x,s) ,x)ds, ∀(x, t) ∈ QT (A4.1.5)

where exp(At) is the semi-group generated by the operator ∆ with the Neumann boundary condition. We
consider the operator T defined by

Tu(x, t) := eAtu0 +
∫ t

0
eA(t−s)F (u(x,s) ,x)ds, ∀(x, t) ∈ QT .

Given k > 0, to be fixed later, set

X =

u ∈C1 (Ω× [0,+∞) ,Rn) ; sup
t≥0
x∈Ω

e−kt ∥u(x, t)∥ ≤+∞
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We can check that X is a Banach space for the norm

∥u∥X = sup
t≥0
x∈Ω

e−kt ∥u(x, t)∥ .

For every u ∈ X , the Tu also belongs to X . To prove this, using the argument in the beginning of subsection
4.4.2,we first recall that A is the generator of a C0 semi-group exp(tA) on C2 (Ω×·) verifying ∥exp(tA)v∥ ≤
exp(−µt)∥v∥, for µ ≥ 0.

Then we observe that

e−kt ∥Tu∥ ≤ e(A−kI)tu0 + e−kt
∫ t

0

∥∥∥eA(t−s)F (u(x,s) ,x)
∥∥∥ds

≤ e(A−kI)tu0 + e−kt
∫ t

0
e−µ(t−s) ∥F (u(x,s) ,x)∥ds

≤ e(A−kI)tu0 + e−kt
∫ t

0
e−µ(t−s) (L∥u(x,s)−u0∥+∥Fu0∥)ds

according to (A4.1.2). Hence, we deduce that

e−kt ∥Tu∥ ≤ e(A−kI)tu0 +
e−kt

µ
(L∥u0∥+∥Fu0∥)

(
1− e−µt)+ e−ktL

∫ t

0
∥u(x,s)∥ds.

Alternatively, we have that

e−ktL
∫ t

0
∥u(x,s)∥ds = e−ktL

∫ t

0
e−ks ∥u(x,s)∥ · eksds ≤ e−ktL∥u∥X

∫ t

0
eksds

which implies

e−kt ∥Tu∥ ≤ e(A−kI)tu0 +
e−kt

µ
(L∥u0∥+∥Fu0∥)

(
1− e−µt)+ 1

k
L∥u∥X

(
1− e−kt

)
,

leading to Tu ∈ X whenever u ∈ X . Moreover, for all u,v ∈ X , we have that

∥Tu−TV∥X ≤ e−kt
∫ t

0

∥∥∥eA(t−s) [F (u(x,s) ,x)−F (v(x,s) ,x)]
∥∥∥ds

≤ e−kt
∫ t

0
e−µ(t−s) ∥F (u(x,s) ,x)−F (v(x,s) ,x)∥ds

≤ Le−(k+µ)t
∫ t

0
e(µ+s)s · e−ks ∥u(x,s)− v(x,s)∥ds ≤ L

µ + k

(
1− e−(µ+k)t

)
∥u− v∥X .

Fixing k > 0 such that k+µ > L then applying the Banach fixed point theorem, we obtain that (A4.1.1) has at
least one solution.

For the uniqueness, assume there exists functions u and v, which satisfy for (A4.1.5). For any given T > 0, we
have that

∥u(x, t)− v(x, t)∥ ≤
∥∥eAt (u0 − v0)

∥∥+∫ t

0

∥∥∥eA(t−s) [F (u(x,s),x)−F (v(x,s),x)]
∥∥∥ds

≤ ML
∫ t

0
∥u(x,s)− v(x,s)∥ds, ∀0 ≤ t ≤ T
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By the Gronwall’s inequality and the same initial value of u and v, we have that u(, t) = v(x, t), for all x ∈ Ω

and 0 ≤ t ≤ T . This holds for all T ≥ 0, which yields the uniqueness of solution.
Therefore, the equation (4.2.4) has the unique solution.

A4.1.2 Proof for theorem 4.5

The idea of our proof bases on the technique mentioned in [148].

Proof. Firstly, we make a convention for the norm using in this proof. For each t ∈ R+, for every f1, f2 ∈
L2 (Ω×R,Rn) we denote

⟨ f1, f2⟩=
∫

Ω

f1 (x, t) · f2 (x, t)dx,

where the f1 · f2 representing for the usual scalar product ∑
n
i=1 f i

1 f i
2 in Rn. This scalar product ⟨·, ·⟩ induces the

norm

∥ f (·, t)∥2 =

(∫
Ω

f (x, t) · f (x, t)dx
)1/2

For the sake of convenience in this proof, we only write ∥·∥ instead of ∥·∥2.
We do the same convention for ⟨g1,g2⟩ and ∥g(·, t)∥ for all g1,g2,g ∈C1 (Ω×R,Rm).
Because in the finite dimensional space, all norms are equivalent, we then denote | · | to be the usual

2-Euclidean norm. Moreover, we recall the notation A ≺ 0 for a symmetric matrix A if A is definitely negative,
and A ≻ 0 for definitely positive symmetric matrix.

First, let us show that the interval [t0, t1] can be subdivided into subinterval ∆k = [τk−1,τk], where k ∈
{1,2, . . . ,N} and t0 = τ0 < τ1 < · · ·< τN = t1 in such a way that for every k, there exists a symmetric matrix
Pk = PT

k ≻ 0 for which
PkA(x, t)+AT (x, t)Pk ≺−I. (A4.1.6)

Indeed, since A(x, t) is a Hurwitz matrix for every t ∈ [t0, t1], according to [66], there exists P(x, t) =PT (x, t)≻ 0
such that

P(x, t)A(x, t)+AT (x, t)P(x, t)≺−I.

Since A depends continuously on t, there exists an open interval ∆(t) such that t ∈ ∆(t) and

P(x, t)A(x,τ)+AT (x,τ)P(x, t)≺−I, ∀τ ∈ ∆(t).

Now the open intervals ∆(t) with t ∈ [t0, t1] cover the whole closed bounded interval [t0, t1] and taking a
finite number of τk, k = 1, . . . ,N such that [t0, t1] is completely covered by ∆(τk) yields the desired partition
subdivision.

We can note that a strictly negative upper bound is not required on the real parts eigenvalues uniformly in
space, because the spatial domain is supposed to be compact.
Note that, from (A4.1.6), for all y ∈ Rm we have that

yT (PkA+AT Pk
)

y ≺−yT y. (A4.1.7)

Second, because F,G are continuously differential in x and t, then for every µ > 0 there exists C,r > 0 such that∥∥F
(

f0(x, t)+ δ̄ f (x, t) ,g0(x, t)+ δ̄g (x, t) ,x, t
)
−F ( f0,g0,x, t)

∥∥≤C
(∥∥δ̄ f (x, t)

∥∥+∥∥δ̄g (x, t)
∥∥) (A4.1.8)
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for all t ∈ R, δ̄ f (x, t) ∈ Rn, δ̄g (x, t) ∈ Rm satisfying

∀t ∈ [t0, t1],∀x ∈ Ω, |δ̄ f (x, t)| ≤ r, |δ̄g(x, t)| ≤ r.

For the sake of simplicity, we write δ̄ f and δ̄g instead of δ̄ f (x, t) and δ̄g (x, t). We now have the Taylor expansion
as follows, noting that G( f0(x, t),g0(x, t),x, t) = 0,

G
(

f0(x, t)+ δ̄ f ,g0(x, t)+ δ̄g,x, t
)
= A(x, t) δ̄g +B(x, t)δ̄ f +o

(
|δ̄g|
)
+o
(
|δ̄g|
)
, (A4.1.9)

with B(x, t) is the Jacobian matrix of G(·, ·, t) with respect to the first variable.

For each k = 1, . . . ,N, and u ∈ Rm, set |u|k =
(
uT Pku

)1/2, then | · |k is a norm in Rm. Indeed, because
Pk ≻ 0 then | · |k is well-defined, it suffices to check the condition |u+ v|k ≤ |u|k + |v|k, which is equivalent to(

uT Pkv
)2 ≤

(
uT Pku

)(
vT Pkv

)
.

It now becomes ((
LT u

)T (
LT v
))2

≤
((

LT u
)T (

LT u
))((

LT v
)T (

LT v
))

, (A4.1.10)

thanks to the Cholesky’s factorization, which states that, if Pk ≻ 0, there exist a square matrix such that
Pk = LT

k Lk. Note that, (A4.1.10) holds because of the inequality Cauchy-Schwarz. Hence, | · |k is a norm in Rm

and it is equivalent to an arbitrary norm in Rm.

Then, for δ f (x, t) = f (x, t)− f0(x, t), δg(x, t) = g(x, t)−g0(x, t), we have that
d
dt

∥∥δ f
∥∥2 ≤C1

(∥∥δ f
∥∥+∥∥δg

∥∥)∥∥δ f
∥∥ ,

ε
d
dt

∥∥δg
∥∥2

k ≤−q
∥∥δg
∥∥2

k dt +C1

(∥∥δ f
∥∥2

+ ε

)
dt

(A4.1.11)

as long as δ f , δg are sufficiently small, where C1, q are positive constants which do not depend on k.
Initially, for the sake of simplicity, in the following arguments, we write f , g instead of f (x, t) and g(x, t),
respectively. Then, we have the equation for δ f (x, t) as follows

∂

∂ t
δ f = F

(
f0 +δ f ,g0 +δg,x, t

)
−F ( f0,g0,x, t)+Kδ f .

By the convention of ∥·∥, we have that

d
dt

∥∥δ f
∥∥2

=
d
dt
⟨δ f ,δ f ⟩= 2⟨ ∂

∂ t
δ f ,δ f ⟩

= ⟨F
(

f0 +δ f ,g0 +δg,x, t
)
−F ( f0,g0,x, t)+Kδ f ,δ f ⟩

= ⟨F
(

f0 +δ f ,g0 +δg,x, t
)
−F ( f0,g0,x, t) ,δ f ⟩+ ⟨Kδ f ,δ f ⟩

≤
∥∥F
(

f0 +δ f ,g0 +δg,x, t
)
−F ( f0,g0,x, t)

∥∥∥∥δ f
∥∥+ ⟨Kδ f ,δ f ⟩

≤C
(∥∥δ f

∥∥+∥∥δg
∥∥)∥∥δ f

∥∥+ ⟨Kδ f ,δ f ⟩.
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On the other hand, recalling that K f = a f (x)∇+∆ implies

⟨K f δ f ,δ f ⟩= ⟨∆δ f ,δ f ⟩+ ⟨a f (x)∇δ f ,δ f ⟩=−
∫

Ω

∣∣∇δ f
∣∣2 dx+

∫
Ω

a f (x)∇δ f ·δ f dx

which leads to, when we apply the Young inequality for the term
∫

Ω
a(x)∇δ f ·δ f dx,

⟨K f δ f ,δ f ⟩≤−
∫

Ω

∣∣∇δ f
∣∣2 dx+max

x∈Ω

(∣∣a f (x)
∣∣) 1

max
x∈Ω

(∣∣a f (x)
∣∣) ∫

Ω

∣∣∇δ f
∣∣2 dx+C

(
max
x∈Ω

(∣∣a f (x)
∣∣))∫

Ω

∣∣δ f
∣∣2 dx

 ,
where

∣∣a f (x)
∣∣ is the matrix in which entries are absolute values of corresponding coordinates of a f (x).

Accordingly, we have the estimation for
d
dt

∥∥δ f
∥∥2 as follows

d
dt

∥∥δ f
∥∥2 ≤C1

(∥∥δ f
∥∥+∥∥δg

∥∥)∥∥δ f
∥∥ (A4.1.12)

Next, we come to control the growth of
∥∥δg
∥∥

k. We first observe that

ε
∂

∂ t
δg =G

(
f0 (x, t)+δ f ,g0 (x, t)+δg,x, t

)
+εKgδg+ε

[
Kgg0 (x, t)+

∂

∂ t
g0 (x, t)+G1(x) ·∇ f0

]
+εG1(x)·∇δ f .

We denote ε

[
Kgg0 (x, t)+

∂

∂ t
g0 (x, t)+G1(x) ·∇ f0

]
as O(ε), then

ε
∂

∂ t
δg = G

(
f0 (x, t)+δ f ,g0 (x, t)+δg,x, t

)
+ εKgδg +O(ε)+ εG1(x) ·∇δ f . (A4.1.13)

Using the Taylor expansion for G in (A4.1.9) and the equation (A4.1.13), we obtain the following computations

ε
d
dt

∥∥δg
∥∥2

k = ε
d
dt
⟨δg,Pkδg⟩= ε⟨ ∂

∂ t
δg,Pkδg⟩+ ε⟨δg,Pk

∂

∂ t
δg⟩

= (⟨Aδg,Pkδg⟩+ ⟨δg,PkAδg⟩)+2B(x, t)⟨δ f ,δg⟩+ ⟨o
(∣∣δg

∣∣)+o
(∣∣δg

∣∣)+O(ε) ,Pkδg +δg⟩

+2ε⟨G1(x) ·∇δ f ,Pkδg +δg⟩+ ε⟨Kgδg,Pkδg +δg⟩

= ⟨δg,
(
AT Pk +PkA

)
δg⟩+2B(x, t)⟨δ f ,δg⟩+ ⟨o

(∣∣δ f
∣∣)+o

(∣∣δg
∣∣)+O(ε) ,Pkδg +δg⟩

+2ε⟨G1(x) ·∇δ f ,Pkδg +δg⟩+ ε⟨Kgδg,Pkδg +δg⟩

≤ −
∥∥δg
∥∥2

+2C1
∥∥δ f
∥∥∥∥δg

∥∥+ ⟨o
(∣∣δ f

∣∣)+o
(∣∣δg

∣∣)+O(ε) ,Pδg +δg⟩+2ε⟨G1(x) ·∇,Pkδg +δg⟩+ ε⟨Kgδg,Pδg +δg⟩.
(A4.1.14)

Using the Young inequality, we have the estimation for ⟨o
(∣∣δ f

∣∣)+o
(∣∣δg

∣∣)+O(ε) ,Pδg +δg⟩ as follows

⟨o
(∣∣δ f

∣∣)+o
(∣∣δg

∣∣)+O(ε) ,Pδg +δg⟩ ≤ O(ε)+C̃
∥∥δg
∥∥2

, with C̃ ≪ 1. (A4.1.15)

Alternatively, applying the Young inequality, we have that

⟨G1(x) ·∇δ f ,Pkδg +δg⟩ ≤C (G1)
∥∥∇δ f

∥∥2
+
∥∥δg
∥∥2 ≤C (G1)+

∥∥δg
∥∥2 (A4.1.16)

since ∇δ f is bounded in Ω.
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For the term ⟨Kgδg,Pδg +δg⟩, we get that

⟨Kgδg,Pδg +δg⟩= ⟨∆δg,Pδg⟩+ ⟨∆δg,δg⟩+ ⟨ag (x)∇δg,Pδg⟩+ ⟨ag (x)∇δg,δg⟩

=
∫

Ω

∆δg ·Pδgdx+
∫

Ω

∆δg ·δgdx+
∫

Ω

ag (x)∇δg ·Pδgdx+
∫

Ω

ag (x)∇δg ·δgdx

=−
∫

Ω

∇δg ·∇(Pδg)dx−
∫

Ω

∣∣∇δg
∣∣2 dx+

∫
Ω

ag (x)∇δg ·Pδgdx+
∫

Ω

ag (x)∇δg ·δgdx

=−
∫

Ω

∇δgP∇δgdx−
∫

Ω

∇δg · (∇P)δgdx−
∫

Ω

∣∣∇δg
∣∣2 dx+

∫
Ω

ag (x)∇δg ·Pδgdx+
∫

Ω

ag (x)∇δg ·δgdx.

Note that P ≻ 0 then
∫

Ω
∇δgP∇δgdx ≥ λ

∥∥∇δg
∥∥2. Applying the Young inequality once more for the terms∫

Ω

∇δg · (∇P)δgdx,
∫

Ω

ag (x)∇δg ·Pδgdx,
∫

Ω

ag (x)∇δg ·δgdx,

we have that

⟨Kgδg,Pδg +δg⟩ ≤ −(1+λ )
∥∥∇δg

∥∥2
+(1+λ )

∥∥∇δg
∥∥2

+C (1+λ )
∥∥δg
∥∥2

which implies
⟨Kgδg,Pδg +δg⟩ ≤C (1+λ )

∥∥δg
∥∥2

, (A4.1.17)

with C (1+λ ) denoting a constant depending on 1+λ .
Combining these equations (A4.1.14), (A4.1.15), (A4.1.16), and (A4.1.17), and noting that two norms ∥·∥k

and ∥·∥k are equivalent, we observe that

ε
∂

∂ t

∥∥δg
∥∥2

k ≤ (2ε + εC (1+λ )−1)
∥∥δg
∥∥2

k +C1
∥∥δ f
∥∥∥∥δg

∥∥+C1ε

which implies when ε small enough

ε
∂

∂ t

∥∥δg
∥∥2

k ≤−q
∥∥δg
∥∥2

k +C1
∥∥δ f
∥∥∥∥δg

∥∥+C1ε (A4.1.18)

Thus, combine (A4.1.12) and (A4.1.18) and we obtain that

d
dt

(∥∥δ f
∥∥2

+ ε
C1

q

∥∥δg
∥∥2
)
≤C1

∥∥δ f
∥∥2 −

∥∥δg
∥∥2

k +C1ε. (A4.1.19)

for some constant C1 independent of k.

By the Gronwall’s inequality for
(∥∥δ f

∥∥2
+

εC1

q

∥∥δg
∥∥2

k

)
dx, for each k ≥ 1, we can regard τk−1 as the initial

value, and then deduce that

∥∥δ f (τk−1 + τ)
∥∥2 ≤ eC3τ

(∥∥δ f (x,τk−1)
∥∥2

+ ε
C1

q

∥∥δg (x,τk−1)
∥∥2

k

)
dx+C1ε
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for τ ∈ [0,τk − τk−1]. With the aid of this bound for the growth of |δ f |, the second inequality of (A4.1.11)
implies a bound for

∥∥δg
∥∥

k as following

∥∥δg (τk−1 + τ)
∥∥2

k dx ≤ e−qτ/ε
∥∥δg (τk−1)

∥∥2
k +C4

(∥∥δ f (x,τk−1)
∥∥2 dx+ ε

C1

q

∥∥δg (x,τk−1)
∥∥2

k

)
+C4ε.

We already have that δ f (x, t0) = δ f (x,τ0) ≤ ε and δg (x, t0) = δg (x,τ0) ≤ ε0 for ε0 small enough. Then, by
the compactness of Ω, for τ ∈ [0,τ1 − τ0],

∥∥δ f (τ)
∥∥2 ≤ O(ε), for all x ∈ Ω. Make a process similarly and

successively for k = 1,2, . . . , we have that
∥∥δ f
∥∥2 ≤ O(ε) for all x ∈ Ω. Analogously, we can also prove that∥∥δg

∥∥2 ≤ O(ε) .

Therefore,
∫

Ω
| f (x, t)− f0(x, t)|2 dx ≤Cε and

∫
Ω
|g(x, t)−g0(x, t)|2dx ≤Cε , and we have the conclusion of the

theorem.

A4.1.3 Proof for theorem 4.6

Proof. Note that ∥F (u1,x)−F (u2,x)∥≤C∥u1 −u2∥ ,∀u1,u2 ∈D(F) and |G(u,x)v| is bounded, ∀u,v bounded
due to the continuous differentiability of G in a bounded domain. Consider

1
2

∂

∂ t
|u− v|2 = (u− v)

∂

∂ t
(u− v) = (u− v) [F (u,x)−F (v,x)]+ ε (u− v)G(u,x)+ ε (u− v)∆(u− v)

≤C|u− v|2 +O(ε)+ ε (u− v)∆(u− v) .
(A4.1.20)

Taking the integral of (A4.1.20) over Ω and using the Neumann boundary condition implies that

1
2

∂

∂ t

∫
Ω

|u− v|2dx ≤C
∫

Ω

|u− v|2dx+O(ε)− ε

∫
Ω

∥∇(u− v)∥2 dx,

which leads to
∂

∂ t

∫
Ω

|u− v|2dx ≤C
∫

Ω

|u− v|2dx+O(ε) .

Apply the Gronwall’s in equality, we have that∫
Ω

|u− v|2dx ≤ O(ε)+O(ε)eCt ,

which implies
∫

Ω
|u− v|2dx = O(ε) for all t < T with given T > 0, by the compactness of Ω.
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Appendix A

Lyapunov Functions

This section of appendix is to remind the Lyapunov functions and the LaSalle’s invariance principle, which we
use in chapter 2. The presented theory can be referred in [188, 191].

In many cases, even for systems that have nothing to do with mechanics, it is occasionally possible to
construct an energy-like function that decreases along trajectories. Such a function is called a Lyapunov
function, which is defined as follows.

Definition A.1. (Lyapunov function) Given the a system ẋ = f (x) with a fixed point at x∗, i.e. f (x∗) = 0. A
function V (x) is called Lyapunov function if it satisfies:

• V (x) is real-valued and continuously differentiable.

• V (x)> 0 for all x ̸= x∗, and V (x∗) = 0. (We say that V is positive definite.)

• V̇ (x)< 0 for all x ̸= x∗ with V̇ (x) = ∇V (x) · ẋ < 0 (All trajectories flow "downhill" toward x∗.)

The following result is of fundamental importance in system theory [138]. It asserts the possibility of
establishing stability or asymptotic stability of equilibrium points without explicitly computing trajectories.

Theorem A.2. (Lyapunov) Given the system

ẋ(t) = f (x(t)) , x(0) = x0, f (0) = 0 (A4.0.1)

and let φ(t;0,x0) denote the unique solution x(t) to (A4.0.1).
Let xe = 0 be an equilibrium point for (A4.0.1). Let V : Rn → R radially unbounded, be a positive definite

continuously differentiable function.

1. If V̇ : Rn → R is negative semi-definite, then xe is stable.

2. If V̇ is negative definite, then xe is asymptotically stable.

Proof. Suppose that V̇ : Rn → R is negative semi-definite. Given ε > 0 , consider the closed ball B̄(0,ε). Since
its boundary S (0,ε) is compact (closed and bounded) and V is continuous, V admits a minimum m on S (0,ε)
by Weierstrass’s theorem. Such minimum is positive because V is positive definite:

min
{x:∥x∥=ε}

V (x) = m > 0
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LYAPUNOV FUNCTIONS

Since V is continuous, in particular at the origin, there exists a δ > 0 such that

x0 ∈ B(0,δ )⇒ |V (x)−V (0)|=V (x)< m.

We claim that this δ is the δ required in the definition of stability, so that any trajectory starting from B(0,δ )
never exits B(0,ε).

Choose indeed x0 ∈ B(0,δ ) as the initial condition for (A4.0.1), and for the sake of contradiction suppose
that the trajectory φ (t;0,x0) is not entirely contained in the ball B(0,ε). Then there exists a time T in which
the trajectory intersects the boundary of B̄(0,ε), i.e. V (φ(T ;0;x0))≥ m. But the derivative of V with respect
to time, that is V̇ , is negative semi-definite, hence V is non-increasing along the corresponding trajectory (that
is, V (φ(T ;0,x0))≤V (x0)). Therefore,

m ≤V (φ (T ;0,x0))≤V (x0)< m

which is a contradiction. Hence, the trajectory is contained in B(0,ε). Given ε > 0, we have constructed a
δ > 0 such that if x0 ∈ B(0,δ ) then φ (t;0,x0) ∈ B(0;ε) for all t ≥ 0. Hence, 0 is a stable equilibrium point.

Suppose now that V̇ is negative definite, which implies that V̇ is also negative semi-definite. Hence the first
property in the definition of asymptotic stability is trivially satisfied. This means that, given ε > 0, there exists
δ > 0 such that if x0 ∈ B(0;δ ) then φ(t;0;x0) ∈ B(0;ε) for all t ≥ 0.

We claim that lim
t→∞

φ (t;0,x0) = 0 or, more explicitly that for all ε ′ such that 0 < ε ′ < ε , there exists a certain

time T such that φ (t;0,x0) ∈ B(0,ε ′) for all t ≥ T . Indeed, in view of stability and time invariance, for all
ε ′ > 0 there exists a δ ′ > 0 such that, if x(T ) ∈ B(0;δ ′), then φ(t;T ;x(T )) ∈ B(0,ε ′) for all t ≥ T . Hence, we
just need to prove that there exists T such that x(T ) ∈ B(0,δ ′).

For the sake of contradiction, suppose that this is not the case. Then, for all t ≥ 0 we have

φ (t;0,x0) ∈ B̄(0,ε)\B
(
0,δ ′)

Since B̄(0,ε)\B(0,δ ′) is compact and V̇ is continuous and negative definite, V̇ attains a negative maximum
−µ there. Hence, V̇ (x)<−µ if x ∈ B̄(0,ε)\B(0,δ ′) and then

V (φ (t;0,x0)) =V (x0)+
∫ t

0
V̇ (φ (τ;0,x0))dτ ≤V (x0)−µt.

Letting t → ∞, we obtain the contradiction because V (x)> 0 for all x ∈ B̄(0,ε) but the right-hand side tends to
−∞. Therefore there must exist T such that x(T ) ∈ B(0,δ ′). This proves the theorem.

The LaSalle’s invariance principle [118] gives a criterion for asymptotic stability in the case when V̇ (x) is
only negative semi-definite.

Theorem A.3. (LaSalle’s invariance principle) Let Ω be a closed set with the property that every solution of

ẋ = f (x), where x is the vector of variables (A4.0.2)

which begins in Ω remains for all future time in Ω. Suppose that we can find a C1 function V (x) such that
V̇ (x)≤ 0 and V (x)> 0 for all x ̸= 0. Let E be the set of all points in Ω where V̇ (x) = 0. Let M be the largest
invariant set in E. Then every solution starting in Ω approaches M as t →+∞.
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By this, we can deduce that, if we can find a Lyapunov function V (x), x∗ is globally asymptotically stable:
for all initial conditions, x(t)→ x∗ as t → ∞. For the proof of this, see [105]. We note that, using the LaSalle’s
invariance principle, we can prove that a system has no closed orbits.

The intuition is that all trajectories move monotonically down the graph of V (x) toward x∗, see figure A.1
The solutions can not get stuck anywhere because if they did, V (x) would stop changing, but by assumption,

Fig. A.1 Intuition of the Lyapunov function

V̇ < 0 everywhere except at x∗. Unfortunately, there is not systematic way to construct Lyapunov functions.
One of ideas, which occasionally works, is sum of squares, as we do in section 2.

Proof. Let x(t) be a solution of (A4.0.2) starting in Ω. Since V̇ (x) < 0 in Ω, V (x(t)) is a non-increasing
function of t. Recalling that V (x(t))> 0, then V (x(t)) has a limit c as t →+∞.

Note also that the positive limiting set Γ+ (the set of all limit points when t →+∞) is a subset of Ω (because
Ω is closed), and since V is continuous on Ω, V (x) = c on Γ+. Since Γ+ is invariant under (A4.0.2), we have
that V̇ (x) = 0 on Γ+, which implies Γ+ ⊂ M i.e. x(t) → M as t → +∞. Hence, all solutions starting in Ω

approach M as t approaches infinity.

We close this section by applying Lyapunov’s theorem to prove an algebraic result.

Theorem A.4. Let A ∈ Rn×n. The following statements are equivalent:

1. all the eigenvalues of A have negative real part;

2. for all matrices Q = QT ≻ 0 there exists an unique solution P = PT ≻ 0 to the following (Lyapunov)
equation:

AT P+PA+Q = 0. (A4.0.3)

Proof. (2)⇒ 1)) Consider the equation ẋ = Ax. To prove 1), it suffices to show that x∗ = 0 is an asymptotically
stable state. We consider

V (x) = xT (Px) , with AT P+PA =−I.

V is a Lyapunov function, indeed,

• Since P = PT ≻ 0 then V (x) = xT (Px)> 0 for all x ̸= 0,

• V̇ (x) = (ẋ)T (Px)+ xT Pẋ = xT AT Px+ xT PAx = xT
(
AT +PA

)
x < 0, for all x ̸= 0.

Hence, x∗ = 0 is asymptotically stable.
(1)⇒ 2)) Suppose that all the eigenvalues of A have negative real parts. Define

P :=
∫

∞

0
eAT tQeAtdt.
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Since the elements of the integrand matrix are all linear combinations of functions of the form tkeαt where α

has negative real part (this can be verified by considering the Jordan form of A), the integral exists and finite.
We claim that P satisfies AT P+PA+Q = 0. Indeed,

AT P+PA =
∫

∞

0

(
AT eAT tQeAt + eAT tQeAtA

)
dt =

∫
∞

0

d
dt

(
eAT tQeAt

)
dt = eAT tQeAt |∞0

Alternatively, since all of eigenvalues of A have negative real parts, we have that x∗ = 0 is an asymptotically
stable equilibrium of ẋ=Ax, leading eAt → 0 and eAT t → 0 as t →+∞. Hence, we observe that lim

t→+∞
eAT tQeAt =

0, which leads to AT P+PA = Q.
Moreover, the solution is unique; indeed, let P1 and P2 be any two solutions of (A4.0.3), then AT (P1 −P2)+

(P1 −P2)A = 0. Hence

0 = eAT t (AT (P1 −P2)+(P1 −P2)A
)

eAt =
d
dt

(
eAT t (P1 −P2)eAt

)
leading to eAT t (P1 −P2)eAt is a constant for all t. Recalling that lim

t→+∞
eAT t (P1 −P2)eAt = 0, letting t = 0, we

have that P1 = P2.
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Proof for Tikhonov’s theorem 1952

Theorem B.1 (The Tikhonov’s theorem). Consider the initial value problem
dx
dt

= f (x,z, t) , x(t0) = x0, x ∈ D ⊂ Rn,

µ
dz
dt

=F (x,z, t) , z(t0) = z0, z ∈ G ⊂ Rm.

(A4.0.1)

For f and F, we take sufficiently smooth vector functions in x, z and t.

a. We assume that a unique solution of the initial value problem exists and suppose this holds also for the
reduced problem 

dx
dt

= f (x,z, t), x(t0) = x0,

0 =F(x,z, t),
(A4.0.2)

with solutions x̄(t), z̄(t).

b. Suppose that 0 = F(x,z, t) is solved by z̄ = φ(x, t), where φ(x, t) is a continuous function and an isolated

root. Also, suppose that z̄ = φ(x, t) is an asymptotically stable solution of the equation
dz
dτ

= F(x,z, t)

that is uniform in the parameters x ∈ D and t ∈ R+.

c. z(0) is contained in an interir subset of the domain of attraction of z̄ = φ(x, t) in the case of the parameter
values x = x(0), t = t0.

Then we have 
lim
ε→0

xε(t) = x̄(t), t0 ≤ t ≤ L,

lim
ε→0

zε(t) = z̄(t), t0 < d ≤ t ≤ L
(A4.0.3)

with d and L are constants independent of ε .

We present the proof in the original publication of Tikhnov’s. First, we recall the definition of asymptotic
stability and state a lemma. For the purpose of consistence, denote by B(x0,r) the ball with center x0 and radius
r, r > 0.

Definition B.2. Assume that the equation
dz
dτ

= F(x,z, t) (A4.0.4)
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has a solution z̄ = φ(x, t) stable at any (x, t) in some closed set Ω ⊂ D× [0,+∞). Given any ε > 0, then there
exists δ (ε) independent on (x, t) such that, the trajectory of any point in B(z̄(τ0),δ (ε)) converges to z̄(τ) when
τ → ∞, i.e.

∥z(τ0)− z̄(τ0)∥< δ (ε) ⇒ lim
τ→∞

z(τ) = z̄(τ). (A4.0.5)

Remark: From this definition we can deduce that trajectories starting at points in B(z̄(τ0),δ (ε)) do not
come out B(z̄(τ),ε), i.e. for any τ > τ0

∥z(τ0)− z̄(τ0)∥< δ (ε) ⇒ ∥z(τ)− z̄(τ)∥< ε. (A4.0.6)

Lemma B.3. Given ε > 0, we can find δ (ε) and µ(ε) such that: if some trajectory (x(t,µ),z(t,µ)) which sat-
isfies the hypothesis of Theorem B.1 at µ < µ(ε), starts in B(z̄(0),δ (ε)), with z̄ = φ(x, t) is the asymptotically

stable solution of
dz
dτ

= F (x,z, t) for any points (x, t) ∈ Ω ⊂ D× [0,+∞), then

i. the trajectory (x(t,µ),z(t,µ)) stays forever in B(z̄,ε);

ii. the projection of (x(t,µ),z(t,µ)) onto the space (x, t) never leaves Ω.

Proof. Take δ (ε) = δ̄

(
ε

2

)
, where δ̄ defined in the Definition B.2. Let us prove that there exists µ(ε) satisfies

Lemma B.3.
Assume the contrast that for arbitrary δn(ε) → 0 there exists Ln(t) be trajectory of (x(t,µn),z(t,µn)) of
(A4.0.1) with µn → 0 enters B(z̄,δ (ε)) but does not stay forever in B(z̄,ε). For each given values t̃n → ∞, let(
x
(
t̄ ′n,µn

)
,z
(
t̄ ′n,µn

))
be first point of the trajectory leaves B(z̄,ε) at t > t̃n.

Denote by t̄n last value of time corresponding intersection Ln with boundary of B(z̄,δ (ε)) and before t̄ ′n.
Thus

δ (ε)<∥z(t,µn)−φ (x(t,µn), t)∥< ε, t̄n < t < t̄ ′n,

∥z
(
t̄ ′n,µn

)
−φ

(
x(t̄ ′n,µn), t̄ ′n

)
∥= ε, t = t̄ ′n.

(A4.0.7)

By our assumption at first, Ln (t̄n) converges to (x0,z0, t0). Consider the trajectory L0(τ) defined by the equations

dz
dτ

= F (x0,z, t0) , z(0) = z0 (A4.0.8)

and then transform the original system to
dx
dτ

=µ f (x,z, t̄n +µnτ) , x(0) = x(t̄n,µn) ,

dz
dτ

=F (x,z, t̄n +µnτ) , z(0) = z,(t̄n,µn) .

(A4.0.9)

where τ =
t − t̄n

µn
. Obviously, the solution of (A4.0.9) is Ln (t̄n +µnτ). Since continuous change of solutions

depends on the continuous change of the right hand side of first equation of (A4.0.9) and the initial condition
Ln (t̄n)→ (x0,z0, t0) = L0(0), we have that

Ln (t̄n +µnτ)→ L0(τ) as n → ∞. (A4.0.10)

On the other side, since (x0,z0, t0) ∈ B(z̄(0),δ (ε)), it is possible to find τ0 be strictly positive so that
L0(τ0) ∈ B(z̄,δ (ε)) then whole the trajectory L0(τ) ∈ B

(
z̄,

ε

2

)
for 0 ≤ τ ≤ τ0.
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For 0 ≤ τ ≤ τ0, Ln (t̄n +µnτ) approaches L0(τ) as n → ∞, and therefore, starting from some n0, the tra-

jectories Ln (t̄n +µnτ) for n > n0, 0 ≤ τ ≤ τ0 lie entirely in B
(

z̄,
3
4

ε

)
and for τ = τ0 are in B(z̄,δ (ε)). Note

that (x0,z0, t0) ∈ B(z̄(0),δ (ε)), consequently, L0(τ) always stays in B
(

z̄,
ε

2

)
by the definition δ (ε) = δ̄

(
ε

2

)
.

Hence, Ln (t̄n +µnτ) cannot escape from B(z̄,ε) for τ > τ0 when µn → 0.

This, however, contrasts to the behavior of Ln(t) assumed at first.

Now, we can back to the theorem.

Proof. Take an arbitrary ε and choose δ (ε) defined by Lemma B.3. Consider the associated system with
solution ¯̄z

d ¯̄z
dτ

= F (x0, ¯̄z, t0) , ¯̄z(0) = z0 (A4.0.11)

where (x0,z0, t0) are initial values of (A4.0.1). Since z0 is in the domain of attraction of the solution z = φ(x, t)
by the condition 2, the trajectory ¯̄z(τ) approaches a stable point φ(x0, t0) as τ → ∞. Hence, from some τ0, ¯̄z(τ)

stays forever in B
(

φ(x0, t0),
δ (ε)

2

)
.

Rewrite the original system into a new form
dx
dτ

=µ f (x,z, t0 +µτ) , x(τ)|τ=0 = x0,

dz
dτ

=F (x,z, t0 +µτ) , z(τ)|τ=0 = z0.

(A4.0.12)

By Lemma B.3, as µ → 0, z(τ,µ) approaches ¯̄z(τ) (of (A4.0.11)), therefore, there exists µ0 such that if µ < µ0

then z(t,µ) ∈ B
(

φ(x0, t0),
δ (ε)

2

)
from t1 = t0 + µτ0. On the other side, we can also choose this µ0 small

enough such that for µ < µ0,

∥φ (x(t,µ), t)−φ(x0, t0)∥<
δ (ε)

2
, ∀t < t0 +µ0τ0. (A4.0.13)

Hence, we deduce that

∥z(t,µ)−φ (x(t,µ), t)∥< δ (ε), t = t1 = t0 +µτ0, (A4.0.14)

which implies that the trajectory (x(t,µ),z(t,µ))⊂ B(φ(x, t),δ (ε)) by the asymptotic stability of φ(x, t).

By Definition B.1, the trajectory (x(t,µ),z(t,µ)) never exits out of B(z̄,ε), while (x(t,µ), t) ⊂ Ω for all
t. Thus

z(t,µ) = φ (x(t,µ), t)+ ε(t,µ), t ≥ t1 = t0 +µτ0. (A4.0.15)

Moreover, ε(t,µ) can be small arbitrarily by take µ small enough. Consequently,

dx
dt

= f (x(t,µ),φ (x(t,µ), t)+ ε(t,µ), t) , t ≥ t1 (A4.0.16)
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with initial condition x|t=t1 = x0 + δ̄ (µ) with δ̄ (µ)→ 0 as µ → 0.

By Poincare expansion theorem, there exists a limit

x̄(t) = lim
µ→0

x(t,µ) (A4.0.17)

satisfies the equation 
dx̄
dt

= f (x̄,φ(x̄, t), t) ,

x̄(t0) = x0.

(A4.0.18)

Combine this derivation with (A4.0.15), which concludes the theorem.
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Appendix C

Simulations

C.1 Error estimates and time-complexity comparison between quasi-
neutral system and the replicator equation

In this section, we present numerical simulations to verify the error estimates when approximating the quasi-
neutral system in Chapter 2 using the corresponding replicator equation. We recall the following estimate which
is the equation (2.3.21) in Theorem 2.7, using the solution of the slow-system at time τ to approximate the
system of the quasi-neutral system at time τ

ε
, for all τ > 0.

Error estimate =
∣∣∣S(τ

ε

)
−S∗

∣∣∣+ N

∑
i=1

∣∣∣Ii

(
τ

ε

)
− I∗zi (τ)

∣∣∣+ N

∑
i, j=1

∣∣∣Ii j

(
τ

ε

)
−D∗ziz j (τ)

∣∣∣ (C.1.1)

Using the ODE solving processes of scipy.integrate.odeint for two models (quasi-neutral and slow dyanmics),
we also can have the comparison in time complexity, see C.1. Since we choose ε = 0.1, the time T is taken to
be large enough T = 200 and solve the replicator equation for τ ∈ (0,20).

We also note that, the initial values for the replicator system is generated randomly as well. Accordingly,
the initial vales for the original quasi-neutral system is calculated using the formula

Ii(0) = I∗zi(0), Ii j(0) = D∗zi(0)z j(0), S0 = S∗ =
m
β
.

We can change the range for creating neutral parameters r, β , γ and k to see the different cases. Using the
neutral parameters and values S∗, T ∗, I∗, D∗ computed, we can input and solve the replicator system by its
pairwise invasion fitness matrix.

The figure C.1 (a) illustrates our results in error estimate in Chapter 2, in which the Error Estimate in (C.1.1)
is equal to O(ε). However, we can note that, there is a trade-off, since the two time-scale in (C.1.1) is

τ

ε
and τ .

We can choose a smaller ε but the fast-time that can be used to approximated becomes larger.
The figure C.1 (b) illustrates the comparison of time-complexity of two solving progresses. This is plausible

because the dimension of the original system is N2 +N +1 and the dimension of the replicator equation is N.
For example, this fact is displayed clearly when N = 20, the quasi-neutral system now contains 401 equations
whereas the corresponding replicator model has only 20 equations.
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Fig. C.1 Error estimates and time-complexity comparison between quasi-neutral system and its corresponding
replicator equations. We make the simulations for multiple cases of number of strains, varying from 2 to 20. In each case,
we compute the mean error estimates at the last time (when τ = 20 and t = 200) and mean time of processes over 10 pairs
of SIS system and its corresponding replicator system, randomly created. We choose randomly these parameters, including
transmission rate β , the clearance rate γ , and the co-colonization interaction coefficient k > 1 meaning the cooperation.
Meanwhile the mortality as well as the recruitment rate are kept r = 0.3 . The value ε = 0.1 and all the variations in
dimension traits are randomly created. We solve the original SIS systems for t = 200 which implies τ = 20 for the replicator
systems. (a) The error estimates using the formulas (C.1.1). (b) The time-complexity in each case solving the original
quasi-neutral system and replicator equation. (Data & Code)

C.2 Two examples of ten-strain systems and their space phases

We make an illustration for a replicator system of ten species. In these example, we consider two cases when
the the difference only occurs in co-colonization interaction coefficient ki j or in the transmission capacity ps

i j,
with s ∈ {i, j}, of a host co-colonized by strain i then strain j. The code can be found in ccode. Each vertex i of
the decagon in each figure represent for the unique survival of strain i.

Fig. C.2 An example of replicator system for 10 strains when variation in only ki j. The figure (a), plots the frequencies
of all strains. The figure (b) plots the space phase. The variation αi j’s are chosen randomly whereas the transmission
rate β is equal to 2, the mortality as well as the recruitment rate is 0.3 and the clearance rate γ is chosen to be 1.2. The
co-colonization interaction k is chosen randomly from 0 to 10.

For this first case, when the perturbation is only in ki j, we recall that the pairwise fitness invasion now
becomes

λ
j

i = Θ5 (µ (α ji −αi j)+α ji −α j j)
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and note that µ =
1

k (R0 −1)
now becomes large because R0 =

4
3

- quite near 1, which yield µ turns large. In

this figure C.2, the matrix of pairwise invasion fitness is nearly anti-symmetric, which makes the space-phase
tends to go around in a submanifold of the invariant set {z1 + · · ·+ zN = 1} (actually, it is not a cycle).

Fig. C.3 An example of replicator system for 10 strains when variation in only ps
i j. The figure (a), plots the frequencies

of all strains. The figure (b) plots the space phase. The variation ωi j’s are chosen randomly whereas the transmission
rate β is equal to 2, the mortality as well as the recruitment rate is 0.3 and the clearance rate γ is chosen to be 1.2. The
co-colonization interaction k is chosen randomly from 0 to 10.

In this case, as we mention in preceding chapter, the matrix of pairwise invasion fitness is anti-symmetric
since

λ
j

i = Θ4

(
ω

i
i j −ω

j
ji

)
.

We can note that there is 5 strain surviving in long time and the space phase tends to go around in a submanifold
{zi1 + · · ·+ zi5 = 1}. The trajectory is not cycle but tends to go around and have no equilibrium because the
frequency of strain j surviving is

z j =
n

∑
k=1

Ake−iξkτ .

C.3 Probability of final outcome in two-strain system

In chapter 3, we state that in a two-strain dynamics, there are only four possibility of final outcome including
exclusion of strain 1 either strain 2, bistable state and coexistence. In this section, we will compute the
probability of exclusion of either strain when the variations in traits are given by uniform distribution. We can
make similar proofs for the case normal distribution.

C.3.1 Variations in only co-infection clearance rates γi j

First, we compute for the case the variation in only coinfection clearance rates γi j = γ (1+ εui j) and the
variation ui j’s are given by the uniform distribution, in C.4. The case of normal distribution is similar. The code
for this type of simulation can be found at [code].

We consider the case ui j’s are independent variables and given by the uniform distribution in
[
− 1

2 ,
1
2

]
. The

case for normal distribution can be solved similarly. We already have that the outcome is exclusion of either
strains if and only if

u11 ≤
u12 +u21

2
≤ u22 or u22 ≤

u12 +u21

2
≤ u11.
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Fig. C.4 Probability of exclusion of either strains when variation in only coinfection clearance rates γi j and the
variation ui j’s are given by the uniform distribution. We simulate in three cases of µ varies from small to large. The
sample space is taken by 10000 and the neutral parameters are chose to be γ = 1.2, r = 0.3, k = 3. The transmission rate
depends on value of µ . However, in the chapter 2, we already know that, actually, the final outcome does not depend on the
neutral parameters.

For the sake of simplicity, set u11 = a, u12 = b, u21 = c, u22 = d, we need to compute the probability of the
event: b+c

2 lies between a and d with a,b,c,d are given by uniform distribution in
[
− 1

2 ,
1
2

]
. This probability is

equal to

P = 1−P
(

b+ c
2

< a,
b+ c

2
< d
)
−P

(
b+ c

2
> a,

b+ c
2

> d
)
.= 1−2P

(
b+ c

2
> a,

b+ c
2

> d
)

(C.3.1)
Note that b+c

2 now is given by Irwin-Hall distribution with n = 2. The CDF of b+c
2 now is given by:

Fb+c
2
(x) =



0, x ≤−1
2

2
(

x+
1
2

)2

, − 1
2
< x ≤ 0

1−2
(

1
2
− x
)2

, 0 < x ≤ 1
2

0, x >
1
2

(C.3.2)

Denote the CDF of random variables a and d to be Fa and Fd respectively. Then Fa(x) = Fd(x) = x+ 1
2 .

We now compute Q = P
( b+c

2 > a, b+c
2 > d

)
which is equal to

Q =

∞∫
−∞

Fa (x)Fd (x)F ′
b+c

2
(x)dx =

1/2∫
−1/2

Fa (x)Fd (x)F ′
b+c

2
(x)dx

=

0∫
−1/2

Fa (x)Fd (x)F ′
b+c

2
(x)dx+

1/2∫
0

Fa (x)Fd (x)F ′
b+c

2
(x)dx

=

0∫
−1/2

4
(

x+
1
2

)3

dx+

1/2∫
0

(
x+

1
2

)2

·4
(

1
2
− x
)

dx =
1

16
+

11
48

=
7
24

.

(C.3.3)
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Then P = 1−2× 7
24

=
5
12

.

C.3.2 Variations in only co-colonization interaction factor ki j

We compute the probability of exclusion of either strains in a two-strain system, in which there is only variation
in co-colonization interaction factors ki j = k+ εαi j, i, j ∈ {1,2} and αi j’s are given by the uniform distribution
in
[
− 1

2 ,
1
2

]
. Recall the infection-to-coinfection factor µ = I∗

D∗ , by the formulas of pairwise invasion fitnesses we
have that

λ
2
1 = Θ5 (µ (α21 −α12)+α21 −α22)

λ
2
1 = Θ5 (µ (α12 −α21)+α12 −α11)

The exclusion of eithers strains occurs when
(
λ 2

1 ,α
1
2
)

have opposite signs. Thus, it suffices to compute the
probability of the event, in which

(µ +1)α21 −µα12 < α22

(µ +1)α12 −µα21 > α11
.

For the sake of simplicity, this problem can be rewritten as follows.
The conditions are equivalent to

α12 > max
{
(µ +1)α21

µ
− α22

µ
,

µα21

µ +1
+

α11

µ +1

}
. (C.3.4)

so the problem is simply to determine the volume of a region in 4-space bounded by hyperplanes. If we make
the change of variables

W = α11 +
1
2
, X = α21 +

1
2
, Y = α12 +

1
2
, Z = α22 +

1
2
.

Then (C.3.4) is equivalent to

Y > Ymax := max
{
(µ +1)X

µ
− Z

µ
,

µX
µ +1

+
W

µ +1

}
, (C.3.5)

in which W,X ,Y,Z are independent random variables, uniformly distributed on [0,1].
By direct computations, we find that

(µ +1)X
µ

− Z
µ

≥ µX
µ +1

+
W

µ +1
⇐⇒ X ≥ µ

2µ +1
W +

µ +1
2µ +1

Z.

Since the term µ

2µ+1W + µ+1
2µ+1 Z is a convex combination of W and Z, it always lies in [0,1].

Whichever function gives the maximum, we must distinguish several cases. First, if Ymax < 0, then Y
can take any value in [0,1]. Second, if 0 ≤ Ymax ≤ 1, then Y can take values between Ymax and 1. Finally, if
Ymax > 1, Y cannot possibly exceed it, so we can ignore this case.

We see that the problem breaks up into several cases. First, we suppose that X ≥ µ

2µ+1W + µ+1
2µ+1 Z, so

Ymax =
(µ+1)X

µ
− Z

µ
. It is straightforward to see that

0 ≤ (µ +1)X
µ

− Z
µ

≤ 1 ⇐⇒ Z
µ +1

≤ X ≤ Z +µ

µ +1
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Both the extreme values are non negative numbers not exceeding 1, so that’s not a problem, but in order for this
case to obtain, we must have X ≥ µ

2µ+1W + µ+1
2µ+1 Z. In the first place, we need

Z +µ

µ +1
≥ X ≥ µ

2µ +1
W +

µ +1
2µ +1

Z. (C.3.6)

For this to hold, we need the left-hand side to be greater than or equal to the right-hand side, which is true if
and only if

(2µ +1)(Z +µ)≥ µ (µ +1)W +(µ +1)2 Z

or
2µ

2 +µ ≥
(
µ

2 +µ
)

W +µ
2Z

which is true since 0 ≤W,Z ≤ 1.
So (C.3.6) doesn’t need adjustment, but we must have

X ≥ max
{

Z
µ +1

,
µ

2µ +1
W +

µ +1
2µ +1

Z
}
.

However, it’s easy to see that µ+1
2µ+1 −

1
µ+1 = µ2

(2µ+1)(µ+1) , so Z
µ+1 ≤ µ

2µ+1W + µ+1
2µ+1 Z and (C.3.6) gives the

conditions for this case to hold.
We may write the probability associated with this case as

∫ 1

0

∫ 1

0

∫ x1

x0

∫ 1

y0

dy ·dx ·dz ·dw where x0 =
µw

2µ +1
+

(µ +1)z
2µ +1

, x1 =
z+µ

µ +1
, y0 =

(µ +1)x
µ

− z
µ

which becomes ∫ 1

0

∫ 1

0

∫ x1

x0

∫ 1

y0

dy ·dx ·dz ·dw =
µ
(
7µ2 +7µ +2

)
12(4µ3 +8µ2 +5µ +1)

.

Moreover, Ymax < 0 when X ≤ Z
µ+1 but we have just seen that this is impossible in this case, so we can move

on to the case where Ymax =
µX

µ+1 +
W

µ+1 in (C.3.6).
In this case, Ymax is a convex combination of W and Z, so it is always between 0 and 1, and there are no

adjustments needed. We may write the probability associated with this case as

∫ 1

0

∫ 1

0

∫ x0

0

∫ 1

y0

dy ·dx ·dz ·dw where x0 =
µw

2µ +1
+

(µ +1)z
2µ +1

, y0 =
µx

µ +1
+

w
µ +1

which leads to ∫ 1

0

∫ 1

0

∫ x0

0

∫ 1

y0

dy ·dx ·dz ·dw =
17µ3 +27µ2 +15µ +3
12(4µ3 +8µ2 +5µ +1)

.

The sum of two integral, which is the probability of (C.3.4), which is

12µ2 +11µ +3
12(2µ2 +3µ +1)

.

Hence, the probability of the exclusion of either strains is

12µ2 +11µ +3
6(2µ2 +3µ +1)
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which makes sense with our simulation as follows.

Fig. C.5 Probability of exclusion of either strains when variation in only co-colonization interaction factors ki j and
the variation αi j’s are given by the uniform distribution. We simulate in three cases of µ varies from small to large.
The sample space is taken by 10000 and the neutral parameters are chose to be γ = 1.2, r = 0.3, k = 3. The transmission
rate depends on value of µ . However, in the chapter 2, we already know that, actually, the final outcome depends on the
neutral parameters only through µ , as in [87]. When µ ≪ 1, the probability is near 0.5, and it rises as µ increases. When
µ = 10 which is large, the probability of exclusion of either strains becomes near 94.8%.

C.4 Dependence of system on infection-to-coinfection ratio µ

We investigate the relation between the infection-to-coinfection ratio µ = 1
k(R0−1) and each pair of strains

in a whole system of N = 150 strains. In the following simulation, we consider each pair of strains (i, j),
for 1 ≤ i, j ≤ N, which has 150×149

2 such pairs. Recall that the notations bi, νi, ui j, ωs
i j, αi j in Table 2.1 are

the perturbation parts of transmission rates βi, infection clearance rates γi, coinfection clearance rates γi j,
transmission capacity of a strain from a co-colonized host ps

i j and relative factor of altered susceptibility to
co-colonization ki j, respectively. We consider the case when variation only in co-colonization interaction
ki j = k+ εαi j. αi j’s are given by the uniform distribution in

[
− 1

2 ,
1
2

]
.

We can see that when µ = 0.001 is small enough, the probability of the exclusion of either strains is near
50%. When µ = 1, this probability increases to 72.4%. When µ = 10 is large enough, all the points in sample
seem fit to the line λ

j
i +λ i

j = 0.
We can see that, clouds in three cases of Figure C.6 look similar when we simulate independent pairs of

pairwise invasion fitness in Figure C.5. However, in general, the pairs
(

λ i
j,λ

j
i

)
in two figures actually are not

in the same distribution. Indeed, we show as following an example for this claim.
We consider a system of 3 strains with perturbation in only co-colonization ki j = k+ εαi j. We choose the

variations αi j satisfying αi j = 0 for all i ̸= j. Recalling the formula for pairwise invasion fitness in chapter 2,

now we have λ
j

i =−Θ5α j j, which leads to the independence between
(

λ i
j,λ

j
i

)
. Without loss of generality, by

normalization, we assume that the pairwise invasion fitness λ
j

i ’s are calculated to be belong to distribution A in
[−1,1]. We have two cases, corresponding two types of simulation in Figures C.5 and C.6:

1. We create three pairs of pairwise invasion fitnesses
(

λ
j

i ,λ
i
i

)
independently, in which

(
λ

j
i ,λ

i
i

)
’s are

given by the distribution A.

2. We create a vector (X1,X2,X3) and three pairs
(

λ
j

i ,λ
i
i

)
are created by λ

j
i ∈ {X1,X2,X3}, i, j ∈ {1,2,3},

i < j.
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In the second case, there always exists two points in the cloud have the same first coordinates, i.e. the probability
of this event is 1.

However, in the first case, the probability of the event "there are exactly two points having the same first
coordinates" is less than 1. This is trivial when A is a continuous distribution. When A is a concrete distribution,
this holds as well. Indeed, assume that A is a distribution in which the probability of k is pk, k ∈ N, 1 ≤ k ≤ n
and p1 + p2 + · · ·+ pn = 1. Then, we have that

P(X1 = X2 ̸= X3) = ∑
i̸= j

p2
i p j =

n

∑
i=1

p2
i (1− pi) .

Alternatively, we have that pi
(

pi − 1
2

)2 ≥ 0 which implies p2
i (1− pi) ≤ 1

4 pi. Hence,
n
∑

i=1
p2

i (1− pi) ≤ 1
4 .

Accordingly, the probability of the event "there are exactly two points have the same first coordinates" in this
first case, which is 3×P(X1 = X2 ̸= X3), does not exceed 3

4 .

Therefore, the pairs
(

λ i
j,λ

j
i

)
in two figures C.5 and C.6 are not in the same distribution in general.

Fig. C.6 Invasion fitness of each pairs in a 150-strain system. Each dot in figures represents the value of
(

λ
j

i ,λ
i
j

)
for

1 ≤ i < j ≤ N. Perturbations are in co-colonization interaction ki j. We plot for three cases when infection-to-coinfection
ratio µ equals to 0.001, 1 and 10. We choose the clearance rate γ = 1.2, the mortality as well as the recruitment rate r = 0.3
and the co-colonization interaction k = 3. When µ small enough, it can be seen that four scenarios have similar probability.
The exclusion of either strains is the major phenomenon even with small µ = 1. When µ becomes larger, this behavior
appears apparently. When µ = 10, all the points seem lying on the line λ

j
i +λ i

j = 0. (Code).

As mentioned before, we can see there is similarity between Figures C.6 and C.5. Indeed, for N = 150,
we can divide these 150 strains into 75 pairs of "two strains", which leads to 75 distinct pairs of invasion
fitnesses

(
λ

j
i ,λ

i
j

)
, i.e. each strain occurs uniquely in some pair. Hence, in each way of dividing, all

(
λ

j
i ,λ

i
j

)
are independent and taken from the same distribution, which is also the distribution for

(
λ

j
i ,λ

i
j

)
in previous

subsection C.3.2. On the other side, there are

(
150

2

)
dots, implying that there are 149 sets of "75 pairs". This

leads to the clouds in Figure C.6 seem to look like in Figure C.5.
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Appendix D

A special case of intermediate diffusion

D.1 The general, quasi-neutral and neutral system

D.1.1 The general and neutral systems

The dynamics studied in this article groups the pathogen types in N subsets, indexed by i, 1 ≤ i ≤ N. With
a set of ordinary differential equations, we then track the proportion of hosts in 1+N +N2 compartments:
susceptible: S (x, t), hosts colonized by strain-i: Ii (x, t), hosts co-colonized by strain-i then strain- j: Ii j (x, t).
Notice that we include also same strain coinfection, as argued in [120].

We formulate the general model based on the same structure as in [120] but here allow for strains to vary
in their transmission rates βi (x), clearance rates of single infection γi (x) (or duration of carriage 1/γi (x)),
clearance rates from mixed co-colonization γi j (x), within-host competition reflected in relative transmissibilities
from mixed coinfected hosts (pi

i j (x) and pi
ji (x)), as well as co-colonization vulnerabilities ki j (x), already

studied in [120]. In a compact domain Ω ⊂Rn with smooth boundary Γ, we consider the general SIS dynamics
in a coinfected system with diffusion as follows

∂S
∂ t

=r(1−S)+
N

∑
i=1

γiIi +
N

∑
i, j=1

γi jIi j −S
N

∑
i=1

βiJi+ d∆S,

∂ Ii

∂ t
=βiJiS− (r+ γi)Ii − Ii

N

∑
j=1

ki jβ jJ j+ d∆Ii, 1 ≤ i ≤ N,

∂ Ii j

∂ t
=ki jIiβ jJ j − (r+ γi j)Ii j+ d∆Ii j, 1 ≤ i, j ≤ N,

(D.1.1)

where Ji is proportion of all hosts transmitting strain i, including singly- and co-colonized hosts and has the
explicit formula

Ji = Ii +
N

∑
j=1

(
pi

i jIi j + pi
jiI ji
)

with the Neumann boundary conditions ∂nS = ∂nIi = ∂nIi j = 0 on the boundary Γ of Ω and the given initial
values S (0), Ii (0) and Ii j (0) for all 1 ≤ i, j ≤ N.
Note that βiJi is the infection force of strain i, for all i. Through out this Chapter, in (D.1.1), for 1 ≤ i, j ≤ N,
we assume that all parameters are given in the following Table D.1.
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A SPECIAL CASE OF INTERMEDIATE DIFFUSION

Table D.1 Conventions and notations of parameters for system with intermediate diffusion

Parameter Interpretation Under strain similarities
1. βi (x) Strain-specific transmission rates βi = β (1+ εbi (x))
2. γi (x) Strain-specific clearance rates of single colonization γi = γ (1+ ενi (x))
3. γi j (x) Clearance rates of co-colonization with i and j γi j = γ (1+ εui j (x))

4. ps
i j (x) Transmission capacity of the strain s ∈ {i, j} by a host co-

colonized by strain-i then strain- j,
(

pi
i j (x)+ p j

i j (x) = 1
) ps

i j (x) =
1
2
+ εωs

i j (x)

5. ki j (x) Relative factor of altered susceptibility to co-colonization be-
tween colonizing strain i and co-colonizing strain j

ki j (x) = k+ εαi j (x)

r Susceptible recruitment rate (Equal to natural mortality)

For the sake of simplicity, we denote the inverse duration of a carriage episode by strain i with mi = r+ γi,
of a co-carriage episode by strains i and j with mi j = r+ γi j and the corresponding inverse duration of carriage
if all strains were equivalent with m = r+ γ .

For the sake of applying the same frame work of [120], we make the following assumptions.

Assumption D.1. (Assumptions on the parameters) All the values of neutral parameters does not depend on
space. In another word, mean transmission rate β , mean clearance rate γ , mortality as well as recruitment rate r,
and mean co-colonization interaction factor k are all constants.

Note that, the system (D.1.1) has unique positive solution. By this, we wish to analyze the asymptotic
behavior of the dynamic of (D.1.1) when ε → 0.

In this section, we consider the operator ∆ with Neumann condition, acting on C0
(
Ω̄
)
.

• Firstly, we consider the total mass S+T . Sum up all of the equations of (D.1.1) we have that
∂

∂ t

(
S+

N

∑
i=1

Ii +
N

∑
i, j=1

Ii j

)
= r(x)− r(x)

(
S+

N

∑
i=1

Ii +
N

∑
i, j=1

Ii j

)
+d∆

(
S+

N

∑
i=1

Ii +
N

∑
i, j=1

Ii j

)
,

∂

∂n

(
S+

N

∑
i=1

Ii +
N

∑
i, j=1

Ii j

)
= 0 on ∂Ω.

(D.1.2)

which can be rewritten into the form

∂

∂ t
(S+T ) = r(x) [1− (S+T )]+d∆(S+T ) . (D.1.3)

with the Neumann boundary condition. The assumed smoothness of ∂Ω implies that d∆ generates a C0 semi
group of contraction on C0

(
Ω̄
)
, see [27].

Note that S+T = 1 are the solution of r [1− (S+T )]+d∆(S+T ) = 0 and the linearized operator becomes
d∆− r which has spectrum lies in the left-half plane (since the Laplacian has the strictly negative spectrum and
r > 0). By the Theorem 11.20 in [189], we deduce that S+T = 1 is asymptotically stable.
Hence, we assume the total mass S+T = 1 for the later.
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A SPECIAL CASE OF INTERMEDIATE DIFFUSION

• Secondly, take ε = 0 in (D.1.1), we have the neutral system for S,T, I as follows

∂S
∂ t

= m(1−S)−βST +d∆S,

∂T
∂ t

= βST −mT +d∆T,

∂ I
∂ t

= βT S− (m+ kβT ) I +d∆I.

∂S
∂n

=
∂T
∂n

=
∂ I
∂n

= 0, on ∂Ω.

(D.1.4)

For later reference, we denote

S∗ =
m
β
, T ∗ = 1−S∗, I∗ =

mT ∗

m+βkT ∗ , D∗ = T ∗− I∗ (D.1.5)

Note that (S∗,T ∗, I∗) satisfy the following equations
r (1−S)−βST +d∆S = 0

−mT +βST +d∆T = 0

βT S− (m+βkT ) I +d∆I = 0.

(D.1.6)

and the linearized operator in the right-hand side of (D.1.4) at (S∗,T ∗, I∗) becomes−m−βT ∗+d∆ −βS∗ 0
βT ∗ βS∗−m+d∆ 0
βT ∗ βS∗−βkI∗ −(m+ kβT ∗)+d∆


which has spectrum lies in the left-half plane since the Laplacian has the strictly negative spectrum. According
to Theorem 11.20 again in [189], (S∗,T ∗, I∗) is asymptotically stable.

• Thirdly, Setting the operator

A =

(
−(m+βkT ∗) m

−βkT ∗

2
βkI∗

2

)
(D.1.7)

then

A = P

(
−ξ 0
0 0

)
P−1, ξ = m+

1
2

βkT ∗− 1
2

βkI∗ > 0, (D.1.8)

with

P =

(
2T ∗ I∗

D∗ T ∗

)
, and P−1 =

1
|P|

(
T ∗ −I∗

−D∗ 2T ∗

)
, |P|= 2T ∗2 − I∗D∗ > 0. (D.1.9)

Now we have the neutral system for
(

Ii Ji

)
∂

∂ t

(
Ii

Ji

)
= A

(
Ii

Ji

)
+d

(
∆Ii

∆Ji

)
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which gives 
∂vi

∂ t
=−ξ vi +O(ε)+d∆vi

∂ zi

∂ t
= O(ε)+d∆zi

(D.1.10)

by the variable change

(
vi

zi

)
= P−1

(
Ii

Ji

)
. Using the Theorem 11.20 in [189] again, we have that vi → 0 as

t → ∞ for all x ∈ Ω, 1 ≤ i ≤ N.
We define the ansatz as follows

S(x, t) = S∗(x)+ εX(x, t)+O
(
ε

2) , T (x, t) = T ∗(x)− εX(x, t)+O
(
ε

2) I(x, t) = I∗(x)+ εY (x, t)+O
(
ε

2) .
(D.1.11)

and we need to write the system for (X ,Y ) in later sections.

D.1.2 The slow-fast form

Initially, we define that for i = 1, · · · ,N:

Li(x, t) =
1
2

N

∑
j=1

(ui jIi j(x, t)+u jiI ji(x, t)) . (D.1.12)

Similarly to [120], we use the following notations in system (D.1.1).

βi = β (1+χ1εbi) ; γi = γ (1+χ2ενi) ; γi j = γ (1+χ3εui j) ;

ps
i j =

1
2
+χ4εω

s
i j s ∈ {i, j}

(
ω

i
i j +ω

j
i j = 0

)
; ki j = k+χ5εαi j;

(D.1.13)

where χd ∈ {0,1} for d = 1,2,3,4,5.
Any combination of trait variation among strains, can be captured via A where A is a subset of {1,2,3,4,5}

denoting the absence/presence of perturbations in that parameter among strains: for some fixed initial values
given, let CA be the system (D.1.1) with χd = 1 if d ∈ A and χd = 0 if d /∈ A . For simplicity, we note also
C{d} by Cd for d ∈ {1,2,3,4,5}.

If A = /0 then there is no perturbation and the system C/0 is exactly the neutral model deduced from (D.1.1)
when ε = 0. With these notations, CA reads

∂X
∂ t

=−βT ∗X +χ1βS∗
N

∑
i=1

biJi −χ2γ

N

∑
i=1

νiIi −χ3γ

N

∑
i=1

Li +d∆X +O(ε)

∂Y
∂ t

= β (S∗−T ∗− kI∗)X − (m+βkT ∗)Y +χ1β (S∗− kI∗)
N

∑
i=1

biJi −χ2γ

N

∑
i=1

νiIi −χ5β

N

∑
i, j=1

αi jIiJ j +d∆Y +O(ε)

∂Li

∂ t
=−mLi +χ3

1
2

βγkIi

N

∑
j=1

ui jJ j +χ3
1
2

γβkJi

N

∑
j=1

u jiI j +d∆Li +O(ε)

(D.1.14)
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together with (we omit terms of O
(
ε2
)
)

∂

∂ t

(
Ii

Ji

)
=

(
−(m+βkT ∗) m

−βkT ∗

2
βkI∗

2

)(
Ii

Ji

)
+d

(
∆Ii

∆Ji

)

− ε

[
β

(
k 1
k
2 1

)(
Ii

Ji

)
X +

βk
2

(
0 0
0 1

)(
Ii

Ji

)
Y +MA

(
Ii

Ji

)
−χ3γ

(
0
Li

)]
(D.1.15)

where MA is the matrix −χ1βk
N
∑

i=1
biJi −χ2γνi −χ5β

N
∑
j=1

αi jJ j χ1βbiS∗

β
N
∑
j=1

(
χ4kω i

i j −χ5
αi j
2

)
J j −χ1

βk
2

N
∑

i=1
biJi −χ2γνi χ1βbi

(
S∗+ kI∗

2

)
+β

N
∑
j=1

(
χ4kω i

ji +χ5
α ji
2

)
I j


(D.1.16)

Now, we rewrite system CA using the variables

(
vi

zi

)
. Let us note

L = (Li)i , v = (vi)i , z = (zi)i .

The system CA reads now as the slow-fast form

∂X
∂ t

=−βT ∗X +χ1F1
X (v,z)+χ2F2

X (v,z)+χ3F3
X (L)+d∆X +O(ε)

∂Y
∂ t

=β (S∗−T ∗− kI∗)X − (m+βkT ∗)Y +χ1F1
Y (v,z)+χ2F2

Y (v,z)+χ5F5
Y (v,z)+d∆Y +O(ε)

∂Li

∂ t
=−mLi +χ3FLi (v,z)+O(ε)+d∆Li

∂vi

∂ t
==−ξ vi +O(ε)+d∆vi

∂ zi

∂ t
=ε (Fzi (X ,Y,L,v,z)+O(ε))+d∆zi

(D.1.17)
which leads to vi → 0 as t → ∞ and ε → 0.

Setting τ = εt and change (D.1.17) to the new time-scale, see [120]

∂X
∂τ

=
1
ε

[
−βT ∗X +χ1F1

X (v,z)+χ2F2
X (v,z)+χ3F3

X (L)+d∆X
]
+O(1)

∂Y
∂τ

=
1
ε

[
β (S∗−T ∗− kI∗)X − (m+βkT ∗)Y +χ1F1

Y (v,z)+χ2F2
Y (v,z)+χ5F5

Y (v,z)+d∆Y
]
+O(1)

∂Li

∂τ
=

1
ε
[−mLi +χ3FLi (v,z)+O(ε)+d∆Li]

∂vi

∂τ
=− ξ

ε
vi +O(1)+

d
ε

∆vi

∂ zi

∂τ
=Fzi (X ,Y,L,v,z)+O(ε)+

d
ε

∆zi

.

(D.1.18)
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Set U =
(

X Y L v z
)T

be the solution of (D.1.18), then we rewrite (D.1.18) in the form as follows:


∂

∂ t
W(x, t) = F (W(x, t))+

1
ε

KW(x, t), t > 0 & x ∈ Ω

∂nW(x, t) = 0, t > 0 & x ∈ ∂Ω

W(x,0) =
(
X0(x),Y 0(x),z0

1(x), · · · ,z0
N(x)

)
, x ∈ Ω.

(D.1.19)

with K = diag(∆) acting on
(
C0
(
Ω̄
))3N+2. We need to find the null space ker(K). First, as in [43], define

T = d∆. (D.1.20)

When seen as an operator on L2 (Ω), the operator T 2 with the formula in (D.1.20) with homogeneous Neumann
boundary conditions is defined as, see [43]

D
(
T 2)={U ∈ H1 (Ω) : ∃V ∈ L2 (Ω) ,∀φ ∈ H1 (Ω) ,

∫
∇U (x)∇φ (x)dx =−d

∫
V (x)φ (x)dx

}
,

T 2U :=V, U ∈ D
(
A2) . (D.1.21)

In order to obtain uniform estimates, we prefer to focus on the operator T ∞ := T acting on C0(Ω̄) with sup
norm. Hence, we define

D(T ∞) :=
{

U ∈ D
(
T 2)∩C

(
Ω̄
)
,T 2U ∈C

(
Ω̄
)}

,

T ∞U = T 2U, U ∈ D(T ∞) .
(D.1.22)

Then we have that

E0 := ker(T ∞) = span(1) = R and Im(T ∞)⊂
{

U ∈C0(Ω̄),
∫

Ω

U = 0
}
= F0. (D.1.23)

One gets C0
(
Ω̄
)
= kerT ∞ ⊕ ImT ∞. Now we define the Banach space

(
C0
(
Ω̄
))3N+2 together with the norm

∥(U1,U2)∥∞
= ∥U1∥∞

+∥U2∥∞
+ · · ·+∥U3N+2∥∞

(D.1.24)

and the operator (T ∞)3N+2 acting on each coordinate of
(
C0
(
Ω̄
))3N+2. The kernel and the range of this

operator are respectively

E := ker
(
(T ∞)3N+2

)
= R3N+2 and F := Im

(
(T ∞)3N+2

)
. (D.1.25)

Hence we had
(
C0
(
Ω̄
))3N+2

= E ⊕F . The projection of
(
C0
(
Ω̄
))3N+2 on E and F , denoted by ΠE and ΠF

respectively, given explicit by

ΠE (V1,V2, . . . ,V3N+2) =
1
|Ω|

(∫
Ω

V1,
∫

Ω

V2, . . . ,
∫

Ω

V3N+2

)
; ΠF = Id−ΠE . (D.1.26)
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A SPECIAL CASE OF INTERMEDIATE DIFFUSION

We have that E = kerK and F = ImK. Hence, we can find W = W1 +W2, with

W1 =
(

X̄ Ȳ z̄1 . . . z̄N v̄1 . . . v̄N

)T
∈ E,

W2 =
(

X̃ Ỹ z̃1 . . . z̃N ṽ1 . . . ṽN

)T
∈ F.

(D.1.27)

in which, the slow variable is W1 := ΠE (W) ∈ E and the fast variable is W2 := ΠF W = W−W1 ∈ F .
Projecting the system (D.1.18) on E and F yields to the equivalent system

d
dt

W1(t) = f (W1,W2)

d
dt

W2(t) = g(W1,W2)+
1
ε

KW2

∂

∂n
W1 = 0

∂

∂n
W2 = 0

W1(0) = ΠE(W(0))

W2(0) = ΠF(W(0))

(D.1.28)

where f (W1,W2) = ΠEF (W1 +W2) and g(W1,W2) = ΠEF (W1 +W2)− f (W1,W2).

D.2 Applications of Central Manifold Theorem and main results

To apply the Central Manifold Theorem and related results, we need that the operator K define a C0 semi-group
of contraction on F . Note that, the assumed smoothness of ∂Ω implies that the operator T ∞ generates a C0

semi group of contraction on
(
C
(
Ω̄
))2, see [27]. Denoting exp(tT ∞

2 ) this semi-group, we deduce that

∀t ≥ 0, ∥exp(tT ∞)v∥
∞
≤ ∥v∥

∞
. (D.2.1)

Lemma D.2. The restriction of T̃ of T ∞ to the subspace F0 =
{

u ∈C0
(
Ω̄
)

:
∫

Ω
u = 0

}
is the generator of a C0

semi-group of strict contraction exp
(
tT̃
)

on F0 verifying for some µ > 0

∀v ∈ F0,
∥∥exp

(
tT̃
)

v
∥∥

∞
≤ e−µt ∥v∥

∞
. (D.2.2)

Proof. F0 is closed in C0
(
Ω̄
)

and is clearly invariant under exp(tT ∞) by its definition. It follows (from [169] p.
123) that T̃ is the generator of a C0 semi-group of contraction on F0.

On the other side, it is well known that the the Laplacian operator on C0
(
Ω̄
)

has the discrete spectrum
σ (T ) which totally lies in the negative half line. Since σ

(
T̃
)
⊂ σ (T ∞) and 0 /∈ σ

(
T̃
)
, one has that σ

(
T̃2
)
⊂

(−∞,−λ1] (for some λ1 > 0). Apply the Theorem 4.3 (p.118) in [169], we have the conclusion of the
lemma.

We have the following result.

Proposition D.3. K is the generator of a C0 semi group exp(tK) on F verifying

∥exp(tK)v∥F ≤ e−µt∥v∥F . (D.2.3)
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A SPECIAL CASE OF INTERMEDIATE DIFFUSION

Now, we need to show that the function f = ΠEF and g = ΠFF are smooth enough. By the same
arguments of Lemma 4.3 in [43] and note that F is the vector-valued function whose each component is a
multi-variable polynomial. This result can be stated as follows.

Lemma D.4. The function f and g have C1 smoothness when acting on E ×F .

Apply the Central Manifold Theorem in [43], we have that, there is an ε0 > 0 such that for any ε < ε0,
a central manifold Cε = {(x,h(x,ε)) ;x ∈ Ω, t ∈ [0,T )} is invariant under the flow generated by the system
(D.1.18) and ∥h(W1,ε)∥∞ = O(ε) as ε → 0. The function h(x,ε) satisfies the partial differential equation

DW1h(W1,ε) f (W1,h(W1,ε) ,ε) =
1
ε

Kh(W1,ε)+g(W1,h(W1,ε) ,ε) . (D.2.4)

For all u ∈C0
(
Ω̄
)
, denote ū := ΠE0 (u) =

1
|Ω|

∫
Ω

u with E0 defined in (D.1.23).

By [43], the solution of (D.1.18) can be approximated by the solution of
∂

∂ t
W1 = f (W1,0), which is



ε
dX̄
dτ

=−βT ∗X̄ +χ1ΠE0

(
F1

X (v,z)
)
+χ2ΠE0

(
F2

X (v,z)
)
+χ3ΠE0

(
F3

X (L)
)
+O(ε)

ε
dȲ
dτ

=β (S∗−T ∗− kI∗)X̄ − (m+βkT ∗)Ȳ +χ1ΠE0

(
F1

Y (v,z)
)
+χ2ΠE0

(
F2

Y (v,z)
)
+χ5ΠE0

(
F5

Y (v,z)
)
+O(ε)

ε
dL̄i

dτ
=−mL̄i +χ3ΠE0 (FLi (v,z))+O(ε)

ε
dv̄i

dτ
=−ξ v̄i +O(ε)

∂ z̄i

∂τ
=ΠE0 (Fzi (X ,Y,L,v,z))+O(ε)

.

(D.2.5)
Apply the Tikhonov’s Theorem for (D.2.5), we have the slow system

dz̄i

dτ
= ΠE0 (Fzi (X

∗,Y ∗,L∗,0,z∗)) . (D.2.6)

Use the result in [120], we easily deduce the slow equations as follows

dz̄i

dτ
= Θ1z̄i

(
b̄i −

N

∑
j=1

b̄ j z̄ j

)
+Θ2z̄i

(
−ν̄i +

N

∑
j=1

ν̄ j z̄ j

)
+Θ3z̄i

[
−

N

∑
j=1

(ūi j + ū ji) z̄ j +
N

∑
j,l=1

(
ū jl + ūl j

)
z̄l z̄ j

]

+Θ4z̄i

N

∑
j=1

(
ω̄

i
i j − ω̄

j
ji

)
z̄ j +Θ5z̄i

[
N

∑
j=1

(
T ∗

D∗ ᾱ ji −
I∗

D∗ ᾱi j

)
z̄ j −

N

∑
j,l=1

ᾱ jl z̄ j z̄l

]
(D.2.7)

where

Θ1 = χ1
2βS∗T ∗2

|P|
, Θ2 = χ2

γI∗ (I∗+T ∗)

|P|
, Θ3 = χ3

γT ∗D∗

|P|
, Θ4 = χ4

2mT ∗D∗

|P|
, Θ5 = χ5

βT ∗I∗D∗

|P|
.

(D.2.8)
and

b̄i = ΠE0 (bi) , ν̄i = ΠE0 (νi) , ūi j = ΠE0 (ui j) , ω̄
s
i j = ΠE0

(
ω

s
i j
)
, ᾱi j = ΠE0 (αi j) . (D.2.9)
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A SPECIAL CASE OF INTERMEDIATE DIFFUSION

For the sake of convenience, we remove the bars over zi and recall that S̄ = ΠE0 (S), Īi = ΠE0 (Ii), Īi j = ΠE0 (Ii j),
1 ≤ i, j ≤ N. By the same argument used in [120], we have the following theorem.

Theorem D.5. Consider the system of equations

{
żi = Θzi

(
(Λz)i − zT

Λz
)
, i = 1, · · · ,N,

z1 + z2 + · · ·+ zN = 1.
(D.2.10)

where Λ is the square matrix of size N ×N whose coefficient (i; j) are the pairwise fitness λ
j

i which satisfy

λ
j

i = θ1
(
b̄i − b̄ j

)
+θ2 (−ν̄i + ν̄ j)+θ3 (−ūi j − ū ji +2ū j j)+θ4

(
ω̄

i
i j − ω̄

j
ji

)
+θ5 (µ (ᾱ ji − ᾱi j)+ ᾱ ji − ᾱ j j) .

(D.2.11)

with µ =
I∗

D∗ and

Θ = Θ1 +Θ2 +Θ3 +Θ4 +Θ5, θi =
Θi

Θ
, i = 1,2,3,4,5.

Then, for any initial values of (D.1.1), for each τ0 > 0, T > τ0 arbitrarily and independent on ε , there is ε0 > 0,
C > 0 and a vector of positive coefficients z0 ∈ RN verifying ∑

N
i=1 z0,i = 1, such that ∀ε < ε0

∥∥∥S∗−S
(

x,
τ

ε

)∥∥∥+ N

∑
i=1

∥∥∥I∗zi(τ)− Īi

(
τ

ε

)∥∥∥+ N

∑
i, j=1

∥∥∥D∗zi(τ)z j(τ)− Īi j

(
τ

ε

)∥∥∥≤ εC, ∀τ ∈ (τ0,T ) , ∀x ∈ Ω.

where S, (I1, I2, . . . , IN), (Ii j)i, j∈{1,...,N} is the solution of (D.1.1) and (z1,z2, . . . ,zN) is the solution of reduced
system (D.2.10) together with z(0) = z0.

To close this section, we remark several difficulties when the parameters’ mean values depend on space, if
we want to keep the same approach.

1. The neutral system for (S,T, I) (D.1.4) can not be solved explicitly. However, we can work around it by
denoting (S∗,T ∗, I∗) to be the unique solution of (D.1.4).

2. We can not diagonalize the operator A in (D.1.7) explicitly and the new variables
(

vi zi

)
, 1 ≤ i ≤ N

can not be defined using A. There may be another way to deal with this, by using the operator

Ã =

(
−(m+βkT ∗)+d∆ m

−βkT ∗

2
βkI∗

2 +d∆

)
.

We have a claim that, φ0 =

(
I∗

T ∗

)
is an eigenvector of Ã respected to eigenvalue 0. The difficulty is that,

due to the absence of symmetry, the spectrum of Ã may be very complex and hard to study, and so may
the semi-group eÃt .

3. The operator K is not simple as before, now it depends on the operator transforming

(
Ii

Ji

)
to

(
vi

zi

)
.
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Résumé 
Cette thèse a pour objet l'étude théorique et numérique d'un modèle épidémiologique de co-infection multi-souche. Selon la 

situation considéré, le modèle s'écrit sous la forme d'un système d'équations différentielles ordinaires ou d'équations de 

réaction-advection-diffusion. Dans tous les cas, le modèle s'écrit à l'échelle de la population hôte sur la base d'un classique 

système susceptibles-infectés-susceptibles (SIS). L'agent infectueux est structuré en N  souches, qui différent selon 5 traits : 

la transmissibilité, le taux de clairance des infections simples, le taux de clairance des infections doubles, la probabilité de 

transmission des souches et les taux de co-infection. Le système obtenu est un systèame de grande taille ( ² 1N N+ +
équations) dont l'étude théorique complète est inaccessible en général. Cette thèse se fonde donc sur une hypothèse 

simplificatrice de similarité des traits - que l'on nomme hypothèse de quasi-neutralité. Dans ce cadre, il est alors possible de 

mettre en oeuvre des méthodes de séparations des échelles de temps de type Tikhonov. Le système est ainsi décomposé en 

deux sous-systèmes plus simples. Le premier est un système dit neutre - c'est-à-dire dans lequel la valeur des traits de toutes 

les souches sont égales - qui supporte une analyse mathématique détaillée et dont la dynamique s'avère assez simple. Le 

second se trouve être un système de type "équations de réplication" qui décrit la dynamique en fréquence des souches et 

contient toute la complexité des interactions entre souche qu'induit les petites variations dans les valeurs des traits. Le 

premier travail consiste à déterminer explicitement le système lent dans un cadre aspatial pour N  souches faisant 

intervenir un système d'équations différentielles ordinaires et à justifier, que ce système décrit bien le système complet. Ce 

système est un système de réplication qui peut être décrit à l'aide des ( )1N N −  fitnesses d'interaction entre les paires de 

souche. Il est montré que ces fitnesses sont une moyenne pondéré des perturbations de chaque traits. Le second travail 

consiste a utiliser les expression explicite de ces fitnesses pour décrire exhaustivement la dynamique des paires. Cette partie 

est illustré à l'aide de beaucoup de simulations des application sur la vaccination sont discutées. Le dernier travail consiste à 

reprendre cette approche dans un cadre spatialisé. Le modèle SIS est alors un système de réaction-diffusion dans lequel les 

coefficients sot spatialement hétérogènes. Deux cas limites sont considérés: Le cas d'un coefficient de diffusion 

asymptotiquement petit et celui d'un coefficient de diffusion asymptotiquement grande. Dans le cas de la diffusion lente on 

montre que le système lent est un système de type "équations de réplication", décrivant à nouveau l'évolution temporelles 

mais également spatiale des fréquences des souches. Ce système est de type réaction-advection-diffusion, le terme 

d'advection additionnel faisant intervenir explicitement l'hétérogénéité du système neutre associé. Dans le cas de la 

diffusion rapide, l'utilisation de méthodes classiques d'aggrrégation des variables permet de ramener le problème SIS 

spatialisé à un système SIS homogénéisé sur lequel les résultats précédents peuvent directement s'appliquer. 

Mots-clé : échelles de temps multiples, microbiennes, interactions, replication, EDO, EDP 
 

Abstract 
The purpose of this thesis is the theoretical and numerical study of an epidemiological model of multi-strain co-infection. 

Depending on the situation, the model is written as ordinary differential equations or reaction-advection-diffusion 

equations. In all cases, the model is written at the host population level on the basis of a classical susceptible-infected-

susceptible system (SIS). The infecting agent is structured into N  strains, which differ according to 5 traits: transmissibility, 

clearance rate of single infections, clearance rate of double infections, probability of transmission of strains, and co-infection 

rates. The resulting system is a large system ( ² 1N N+ +  equations) whose complete theoretical study is generally 

inaccessible. This thesis is therefore based on a simplifying assumption of trait similarity - the so-called quasi-neutrality 

assumption. In this framework, it is then possible to implement Tikhonov-type time scale separation methods. The system is 

thus decomposed into two simpler subsystems. The first one is a so-called neutral system - i.e., in which the value of the 

traits of all the strains are equal - which supports a detailed mathematical analysis and whose dynamics turn out to be quite 

simple. The second one is a "replication equation" type system that describes the frequency dynamics of the strains and 

contains all the complexity of the interactions between strains induced by the small variations in the trait values. The first 

work explicitly determines the slow system in an aspatial framework for N  strains using a system of ordinary differential 

equations and justifies that this system describes the complete system well. This system is a replication system that can be 

described using the ( )1N N −  fitnesses of interaction between the pairs of strains. It is shown that these fitnesses are a 

weighted average of the perturbations of each trait. The second work consists in using explicit expressions of these fitnesses 

to describe exhaustively the dynamics of the pairs. This part is illustrated with many simulations and applications on 

vaccination are discussed. The last work consists in using this approach in a spatialized framework. The SIS model is then a 

reaction-diffusion system in which the coefficients are spatially heterogeneous. Two limiting cases are considered: The case 

of an asymptotically small diffusion coefficient and the case of an asymptotically large diffusion coefficient. In the case of 

slow diffusion we show that the slow system is a system of type "replication equations", describing again the temporal but 

also spatial evolution of the frequencies of the strains. This system is of the reaction-advection-diffusion type, the additional 

advection term explicitly involving the heterogeneity of the associated neutral system. In the case of fast diffusion, the use of 

classical methods of aggregation of variables are used to reduce the spatialized SIS problem to a homogenized SIS system on 

which the previous results can be directly applied. 

Keywords : multiple time scales, microbial, interactions, replicator, ODE, PDE 
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