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d’optimisation non-convexes. Applications en

apprentissage automatique

THÈSE
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Yaroslav Sergeyev PR, Université de Calabre
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Abbreviations and Notations

Throughout the dissertation, we use uppercase letters to denote matrices, and lowercase let-
ters for vectors or scalars. Vectors are also regarded as matrices with one column. Some of the
abbreviations and notations used in the dissertation are summarized as follows.

DC Difference of Convex functions
DCA DC Algorithm
SDCA Stochastic DCA
ADCA Accelerated DCA
ADCA-Like Accelerated DCA-Like
R set of real numbers
Rn set of real column vectors of size n
R the set of extended real numbers, R = R ∪ {±∞}
‖ · ‖0 zero-norm, ‖x‖0 = |{i = 1, ..., n : xi 6= 0}|, x ∈ Rn
‖ · ‖p `p-norm (0 < p <∞), ‖x‖p = (

∑n
i=1 |xi|p)1/p, x ∈ Rn

‖ · ‖ Euclidean norm (or `2-norm), ‖x‖ = (
∑n

i=1 |xi|2)1/2, x ∈ Rn
‖ · ‖∞ `∞-norm, ‖x‖∞ = maxi=1,...,n |xi|, x ∈ Rn
〈·, ·〉 scalar product, 〈x, y〉 =

∑n
i=1 xi.yi, x, y ∈ Rn

χC(·) indicator function of a set C, χC(x) = 0 if x ∈ C, +∞ otherwise
co{C} convex hull of a set of points C
ProjC(x) projection of a vector x onto a set C
dom f effective domain of a function f
∇f(x) gradient of a function f at x
∂f(x) subdifferential of a function f at x
Wi,: the i-th row of the matrix W
W:,i the i-th column of the matrix W
Ia a-by-a identity matrix
|S| cardinality of set S

1
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Téléphone : +33 (0)3 72 74 79 54
Adresse électronique : minh.le@univ-lorraine.fr
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Date de souteance : 24 octobre 2007.

Composition du jury : Prof. Tao Pham Dinh, président - Prof. Jean Pierre Crouzeix,
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1.2 Expérience professionnelle

- De septembre 2017 à ce jour
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Maître de conférences à l’Université de Lorraine, affecté à l’UFR Mathématiques, Informa-
tique, Mécanique (MIM) et au département Informatique & Applications, Laboratoire de Génie
Informatique, de Production et de Maintenance (LGIPM).
- De juillet 2016 à août 2017

Chercheur contractuel au Laboratoire d’Informatique Théorique et Appliqué (LITA), à l’Uni-
versité de Lorraine. J’ai été membre du comité de pilotage du projet “Smart Marketing”, en
collaboration avec RTE (Réseaux de transport d’électricité) dont le but est de déveloper les
techniques avancées en apprentissage automatique et fouille de données pour découvrir des in-
formations pertinentes des clients de RTE qui seront ensuite utilisées dans différents services de
RTE.
- De juin 2015 à mai 2016

Chercheur contractuel à Luxembourg Centre for Systems Biomedicine (LCSB), à l’Université
de Luxembourg. Pendant cette période, j’ai travaillé dans le cadre du projet international intitulé
“Multi-scale Molecular Systems Biology : Reconstruction and Model Optimization”, financé par
“US Department of Energy”.
- De septembre 2010 à mai 2015

Chercheur contratuel à LITA, à l’Université Paul-Verlaine Metz (devenu l’Université de Lor-
raine en 2012). J’ai participé à plusieurs projets, contrats industriels dont un projet FEDER
(Fonds Européen de Développement Régional) intitulé “Innovations techniques d’optimisation
pour le traitement Massif de Données (InnoMaD)”.
- De février 2009 à juin 2010

Stage post-doctoral effectué au Laboratoire de Mathématiques Appliquées du Havre (LMAH),
à l’Université du Havre. J’ai travaillé dans le cardre du projet “Carrier Laser Tracking System
(CALAS)” dont le but est de développer un système de planification des cavaliers pour le port à
conteneurs du Havre.
- De décembre 2007 à décembre 2008

Stage post-doctorat à LITA, à l’Université Paul Verlaine - Metz. Durant ce stage, j’ai participé
au développement de plusieurs méthodes d’optimisation pour l’apprentissage automatique.

2 Activités d’enseignement

Les thématiques que j’enseigne se focalisent principalement sur la recherche opérationnelle,
la modélisation et la résolution des problèmes industriels. Le tableau ci-dessous résume les ensei-
gnements que j’ai effectués au 1er juillet 2021. L’ensemble représente 970 heures TD équivalent.

Formation Module Type Année Volume horaire
(TD équivalent)

Master 2
Modèles et Algorithmes
pour la Logistique et le
Transport

CM, TD, TP
2018-2019 82
2019-2020 82
2020-2021 82

Master 2 Management et optimisation
de la production CM, TD

2018-2019 19
2019-2020 19
2020-2021 19

Master 2 Tools supporting decision
making

CM, TD 2017-2018 30

Master 2 Scheduling and applications CM, TD 2017-2018 30
Master 2 Outils d’Aide à la décision CM, TD, TP 2017-2018 37
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Master 2 Ordonnancement et applica-
tions

CM, TD 2017-2018 40

Master 2 Modélisation et optimisation
industrielle TD

2012-2013 24
2011-2012 15
2010-2011 15
2006-2007 15
2005-2006 15

Master 2 Encadrement de projets de
synthèse de Master 2 Infor-
matique

Projet 2011-2012 12

Master 1 Modèles et Outils pour
l’Optimisation CM, TD, TP

2018-2019 51
2019-2020 51
2020-2021 51

Master 1 Gestion de Production CM, TD, TP
2018-2019 38
2019-2020 38
2020-2021 53

Master 1 Encadrement de projets
d’initiation à la recherche de
Master 1 Informatique

Projet 2011-2012 4

Master 1 Outils pour l’aide à la
décision TD

2011-2012 15
2010-2011 15
2006-2007 15
2005-2006 15

Licence 3 Recherche opérationnelle TD 2011-2012 40
2010-2011 40

Licence 1 Méthodologie TD 2006-2005 15
2004-2005 15

Total : 970 h

3 Activités de recherche

3.1 Thèmes de recherche

Mes activités de recherche sont centrées autour de la modélisation et l’optimisation (convexe
et non-convexe) et ses applications. Passionné par la recherche appliquée, je ne limite pas mes
recherches à des études théoriques et cherche toujours à m’orienter vers les applications indus-
trielles. Parmi les domaines d’application de l’optimisation, je porte un intérêt particulier à des
méthodes de fouille de données et d’apprentissage. La double compétence en informatique et
mathématique appliquée a rendu dynamique et fructueuse l’orientation de mes recherches vers
les applications concrètes issues des domaines importants d’application industrielle. Au travers
de nombreux projets et des contrats industriels, le développement de logiciels à l’usage industriel
constitue une partie importante de mes activités.

En ce qui concerne l’optimisation, mes recherches s’appuient principalement sur la program-
mation DC (Difference of convex functions) et DCA (DC Algorithm). Cette démarche est motivée
par leur versatilité, flexibilité, robustesse et performance comparés à des méthodes existantes, leur
adaptation aux structures des problèmes traités et leur capacité de résoudre des problèmes indus-
triels de très grande dimension. DCA est reconnu par les chercheurs en optimisation comme un
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des rares algorithmes de la programmation non-convexe étant capables de traiter des problèmes
(différentiables ou non) de très grande taille.

Mes thèmes de recherche principaux sont :
• Optimisation convexe & non-convexe

◦ Approches déterministes : optimisation globale, optimisation DC, optimisation com-
binatoire.
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3.2 Publications
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• 2 articles dans les revues nationales avec comité de lecture
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of DC functions with application to multi-class logistic regression, Neural Networks,
132 :220-231, 2020.

[RI03] L. Heirendt, . . . , H.M. Le, . . . , R.M.T. Fleming, Creation and analysis of biochemical
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[RI05] H.A. Le Thi, T. Pham Dinh, H.M. Le, X.T. Vo, DC approximation approaches for sparse
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[RI06] H.A. Le Thi, H.M. Le and T. Pham Dinh, Feature Selection in machine learning : an exact
penalty approach using a Different of Convex function Algorithm, Machine Learning,
101(1) :163-186, 2015.
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2014.

[RI08] H.A. Le Thi, H.M. Le, T. Pham Dinh, New and efficient DCA based algorithms for
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[RI09] H.M. Le, H.A. Le Thi, T. Pham Dinh, V.N. Huynh, Block Clustering based on DC
programming and DCA, Neural Computation, 25(10) :2776-2807, 2013.
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2012.

[RI12] H.M. Le, A. Yassine and Moussi Riadh, Scheduling of lifting vehicle and Quay Crane
in automated port container terminals, Int. J. Intelligent Information and Database
Systems, 6(6) :516-531, 2012.

[RI13] H.M. Le, H.A. Le Thi, T. Pham Dinh and Pascal Bouvry, A combined DCA - GA for
constructing highly nonlinear balanced Boolean functions in cryptography, Journal of
Global Optimization, 47 :597-613, 2010.

[RI14] H.A. Le Thi, H.M. Le, V.V. Nguyen, T. Pham Dinh, A DC Programming approach for
Feature Selection in Support Vector Machines learning, Journal of Advances in Data
Analysis and Classification, 2(3) :259-278, 2008.

[RI15] H.A. Le Thi, H.M. Le and T. Pham Dinh, Optimization based DC programming and
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1085, 2007.

[RI16] H.A. Le Thi, H.M. Le and T. Pham Dinh, Fuzzy clustering based on nonconvex opti-
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Advances in Data Analysis and Classification, 1 :85-104, 2007.

Articles dans les revues nationales avec comité de lecture
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[CL01] H.A. Le Thi, T. Pham Dinh, H.P.H. Luu, H.M. Le, Deterministic and stochastic DCA for
DC programming, Handbook of Engineering Statistics 2nd edition, In press, Springer.

[CL02] H.M. Le, M.T. Ta, DC Programming and DCA for Solving Minimum Sum-of-Squares
Clustering Using Weighted Dissimilarity Measures, Transactions on Computational In-
telligence XIII, 113-131, 2014.
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[CL03] H.M. Le, T.B.T. Nguyen, M.T. Ta, H.A. Le Thi, Image Segmentation via Feature Weigh-
ted Fuzzy Clustering by a DCA based algorithm, Advanced Computational Methods for
Knowledge Engineering, Studies in Computational Intelligence, 53-63, Springer-Verlag,
2013.

[CL04] H.M. Le, H.A. Le Thi, T. Pham Dinh, Pascal Bouvry, A deterministic Optimization
approach for generating highly nonlinear balanced boolean functions in Cryptography,
in Modeling, Simulation and Optimization of Complex Processes, 381-392, Springer,
2008.

Articles dans des actes de colloque international avec comité de lecture
[CI01] V.A. Nguyen, H.A. Le Thi, H.M. Le, A DCA based algorithm for Feature Selection in

Model-Based Clustering, Lecture Notes in Artificial Intelligence (LNAI) 12033, 404-415,
2020.

[CI02] H.M. Le, X.T. Vo, Reweighted l1 Algorithm for Robust Principal Component Analysis,
Advances in Intelligent Systems and Computing 1121, 133-142, 2020.

[CI03] G. Da Silva, H.M. Le, H.A. Le Thi, V. Lefieux, B. Tran, Customer Clustering of French
Transmission System Operator (RTE) Based on Their Electricity Consumption, Ad-
vances in Intelligent Systems and Computing 991, 893-905, 2019.

[CI04] D.N. Phan, H.M. Le, H.A. Le Thi, Accelerated Difference of Convex functions Algorithm
and its Application to Sparse Binary Logistic Regression, 27th International Joint Confe-
rence on Artificial Intelligence and 23rd European Conference on Artificial Intelligence
(IJCAI-ECAI 2018), 1396-1375, 2018.

[CI05] H.A. Le Thi, H.M. Le, D.N. Phan, B. Tran, Stochastic DCA for the Large-sum of Non-
convex Functions Problem and its Application to Group Variable Selection in Classifica-
tion, Internationale Conference on Machine learning ICML, 3394-3403, 2017.

[CI06] H.A. Le Thi, H.M. Le, D.N. Phan, B. Tran, Stochastic DCA for Sparse Multiclass Logistic
Regression, Advances in Intelligent Systems and Computing 629, 1-12, 2017.

[CI07] H.M. Le, H.A. Le Thi and M.C. Nguyen, DCA based algorithms for feature selection in
Semi-Supervised Support Vector Machines, Lecture Notes in Computer Science (LNCS)
7988, 528-542, 2013.

[CI08] H.A. Le Thi, T.B.T. Nguyen, H.M. Le, Sparse Signal Recovery by Difference of Convex
Functions, Lecture Notes in Computer Science (LNCS) 7803, 387-397, 2012.

[CI09] H.M. Le, H.A. Le Thi, T. Pham Dinh, Gaussian Kernel Minimum Sum-of-Squares Cluste-
ring and solution method based on DCA, Lecture Notes in Artificial Intelligence (LNAI)
719, 331-340, 2012.

[CI10] H.M. Le, M.T. Ta, H.A. Le Thi, T. Pham Dinh, DC Programming and DCA for clustering
using weighted dissimilarity measures, Proceeding of 5th NIPS Workshop on Optimiza-
tion for Machine Learning (OPT2012/NIPS 2012), 2012.

[CI11] H.M. Le, H.A. Le Thi, T. Pham Dinh, V.N. Huynh, An efficient DCA for Spherical
Separation, Lecture Notes in Artificial Intelligence 6592, Intelligent Information and
Database Systems, 421-431, 2011.

[CI12] H.A. Le Thi, H.M. Le, T. Pham Dinh and Pascal Bouvry, Solving the Perceptron Problem
by deterministic optimization approach based on DC programming and DCA, Proceeding
of the 7th IEEE International Conference on Industrial Informatics INDIN 2009, 222-226,
2009.
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[CI13] H.A. Le Thi, H.M. Le, V.V. Nguyen, T. Pham Dinh, Combined Feature Selection and
Classification using DCA, Proceedings of RIVF’08, IEEE International conference on
Research, Innovation and Vision for the future in Computing and Communications Tech-
nologies, Ho Chi Minh city, July 13-17, 232-239, 2008.

[CI14] H.A. Le Thi, H.M. Le, Nguyen Trong Phuc, T. Pham Dinh, Noisy image segmentation
by a robust clustering algorithm based on DC programming and DCA, Lecture Notes
in Computer Science (LNCS) 5077, Advances in Data Mining : Medical Applications,
E-Commerce, Marketing, and Theoretical Aspects, 71-86, 2008.

[CI15] H.A. Le Thi, H.M. Le, T. Pham Dinh, Une approche en programmation DC pour la
classification floue, Proceedings de la 13èmes Rencontres de la Société Francophone de
Classification, 140-144, 2006.

[CI16] H.A. Le Thi, H.M. Le and T. Pham Dinh, Hierarchical Clustering based on Mathema-
tical Optimization, Lecture Notes in Artificial Intelligence (LNAI) 3918, Advances on
Knowledge Discovery and Data Mining, 160-173, 2006.

Directions d’ouvrage

[DO01] H.A. Le Thi, T. Pham Dinh, H.M. Le, (2022, Eds.), Modelling, Computation and Opti-
mization in Information Systems and Management Sciences, Lecture Notes in Networks
and Systems, Volume 363, 404 pages, Springer 2022.

[DO02] H.A. Le Thi, H.M. Le, T. Pham Dinh (2020, Eds.), Optimization of Complex Systems :
Theory, Models, Algorithms and Applications, Advances in Intelligent Systems and
Computing, AISC, Volume 991, 1152 pages, Springer 2020.

[DO03] H.A. Le Thi, H.M. Le, T. Pham Dinh, N.T. Nguyen (2020, Eds.), Advanced Com-
putational Methods for Knowledge Engineering, Advances in Intelligent Systems and
Computing, AISC, Volume 1121, 426 pages, Springer 2020.

4 Encadrement d’activités de recherche

4.1 Co-encadrement doctoral

1. Hoang Phuc Hau Luu

— Sujet : Techniques avancées d’apprentissage automatique basées sur la programmation
DC et DCA. Applications à la maintenance prédictive.

— Directrice de thèse : Hoai An Le Thi.

— Taux d’encadrement : 50%.

— Date de début : 01 october 2019.

— Financement : 50% financés par la région Grand Est, 50% sur fond propre.

— Résumé : L’objectif principal de cette thèse est de développer les techniques avancées
d’apprentissage automatique pour affronter les défis du Big Data et de l’analyse de
séries temporelles.
En amont, nous développerons des algorithmes stochastiques DCA pour résoudre les
problèmes d’optimisation non-convexes de très grande taille. En effet, il est bien connu
que les problèmes d’optimisation issus des applications de Big Data sont souvent de
nature très grande taille. Pour faire face à ces problèmes, les méthodes d’optimisation
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stochastiques semblent être plus adaptées que les méthodes déterministes car elles
sont moins couteuses en termes de temps de calcul. Cependant, dans la littérature,
il existe très peu de méthodes stochastiques pour des problèmes d’optimisation non-
convexe. D’une part, nous développerons stochastique DCA pour déterminer les para-
mètres optimaux des réseaux de neurones profonds qui sont en général des problèmes
d’optimisation non-convexes de très grande taille. D’autre part, nous concevrons des
techniques performantes d’apprentissage pour les données de séries temporelles telles
que la réduction de la dimensionnalité, la sélection de variables, la transformation de
données de séries temporelles ainsi que des méthodes d’optimisation avancées afin de
résoudre les problèmes d’optimisation résultant de ces techniques.
En aval, nous appliquerons les méthodes développées en amont aux problèmes réels en
Big Data et analyse de séries temporelles, en particulier l’apprentissage profond et la
prédiction des séries temporelles. Nous nous intéressons spécialement à la maintenance
prédictive, un élément essentiel de l’industrie 4.0, qui consiste à prédire si une machine
va tomber en panne dans le futur, en analysant des données historiques et l’état actuel
de la machine. Notre but est de mettre en place un système d’apprentissage automa-
tique, pour que les algorithmes apprennent et prédisent si l’équipement tombera en
panne dans un avenir proche. Notre ambition est de relever les défis du DL en général
et du DL pour la maintenance prédictive en particulier : quelle architecture du réseau
neural profond (quels modèles du DL) construire ? Quelles méthodes d’optimisation
utiliser pour obtenir des paramètres optimaux de ce réseau ? Comment affronter le
défi du Big data ? Quelles sont les techniques bien adaptées aux séries temporelles et
au cas où des données de défaillance ne sont pas disponibles ?

— Résultat obtenu : nous avons développé deux nouvelles variantes de DCA, à savoir
deux versions de DCA stochastique en ligne. Les résultats obtenus font l’objet d’un
chapitre de livre et d’un article soumis :

— H.A. Le Thi, T. Pham Dinh, H.P.H. Luu, H.M. Le, Deterministic and stochastic
DCA for DC programming, Handbook of Engineering Statistics, In press, Sprin-
ger.

— H.A. Le Thi, H.P.H. Luu, H.M. Le, T. Pham Dinh, Stochastic DCA with Variance
Reduction, article soumis.

2. Viet Anh Nguyen

— Sujet : Contributions à l’apprentissage statistique et l’apprentissage profond : nou-
veaux modèles et méthodes d’optimisation avancées.

— Directrice de thèse : Hoai An Le Thi.

— Taux d’encadrement : 50%.

— Date de début : : 01 octobre 2018. Le doctorant a été contraint d’arrêter la thèse à
cause de son état de santé en novembre 2019.

— Financement : contrat doctoral de l’Université de Lorraine.

— Résumé : Les modèles de mélange gaussiens (MGM) sont parmi les approches sta-
tistiques les plus connues pour clustering basé sur un modèle, un sujet important de
l’apprentissage non supervisé. Bien que les problèmes de clustering MGM de faible
dimension puissent être résolus efficacement par l’algorithme EM, un problème de
grande dimension est un scénario différent. Le problème d’optimisation devient mal
conditionné à cause de la sur-paramétrisation et de la singularité des matrices de
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covariance. D’un autre côté, l’apprentissage profond est un cadre d’apprentissage au-
tomatique dont les modèles ont la capacité de représenter l’abstraction multi-niveau
des données. Pour clustering en particulier, l’architecture profonde pourrait attraper
des caractéristiques cachées et des modèles pour lesquels les approches classiques ne
pourraient pas traiter. Par conséquence, un modèle combiné des réseaux neuronaux
profonds et des MGM est très prometteur pour améliorer le résultat du clustering.
Les méthodes d’optimisation pour les MGM et les réseaux neuronaux profonds sont
non convexes et posent de nombreux problèmes, par exemple minima locaux, points
de selle, régions de plateau et problèmes mal conditionnés. Le thèse vise à proposer
de nouveaux modèles combinant l’apprentissage statistique et l’apprentissage profond
et des méthodes d’optimisation avancées pour ces modèles. Deux sujets seront consi-
dérés :

— Clustering profond : Modèles et méthodes de Deep Gaussian Mixture pour Big
data.

— Apprentissage profond pour la détection d’anomalies.

— Résultat obtenu : sous notre direction, le doctorant a travaillé sur un problème très
difficile en apprentissage automatique, à savoir le modèle de mélange gaussien par-
cimonieux (Gaussian Mixture Model with sparse regularization). Il s’agit d’un pro-
blème d’optimisation non-convexe de très grande dimension pour lequel nous avons
développé plusieurs algorithmes performants. Malheureusement, le doctorant a été
contraint d’arrêter définitivement la préparation de sa thèse à cause de son état de
santé en novembre 2019. Les résultats obtenus font l’objet d’un article dans un volume
de la série Lecture Notes in Artificial Intelligence et deux articles soumis :

— V.A. Nguyen, H.A. Le Thi, H.M. Le, A DCA based algorithm for Feature Selection
in Model-Based Clustering, Lecture Notes in Artificial Intelligence (LNAI), Vol.
12033, pp. 404-415, 2020.

— H.A. Le Thi, H.M. Le, V.A. Nguyen, DCA-Like for GMM Clsutering with Sparse
Regularization, article soumis.

— H.A. Le Thi, H.M. Le, V.A. Nguyen, Novel DCA based algorithm for joint GMM
clustering with t-SNE, article soumis.

4.2 Encadrement de stage Master 2

1. Mathis Saillot

— Sujet : Object detection and application on TutleBot3.

— Master 2 en informatique Optimisation et Algorithmes (OPAL), UFRMIM, Université
de Lorraine.

— Taux d’encadrement : 50%.

— Date : 06/04/2021 - 02/09/2021.

2. Cong Duc Hoang

— Sujet : Reinforcement learning for time series prediction

— Master 2 en mathématique, Université d’Orléans

— Taux d’encadrement : 100%

— Date : 01/04/2019 - 26/08/2019
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3. Thi Minh Thi Nguyen

— Sujet : Learning to rank

— Master 2 en mathématique, UFR Mathématique de Rennes, Université de Rennes 1

— Taux d’encadrement : 100%

— Date : 03/04/2018 - 29/06/2018

5 Participation aux projets et contrats industriels

1. Contrat industriel “Robot navigation”

— Etablissement : LGIPM, Université de Lorraine.

— Responsable du projet : Hoai An Le Thi.

— Partenariat industriel : Naval Group.

— Date : septembre 2020 - juin 2021.

— Description : le but du projet est de développer une méthode d’apprentissage pour la
navigation automatique d’un robot terrestre. Notre méthode a été testée avec succès
sur un robot dans les conditions réelles. Les détails du projet ne peuvent pas être
présentés dans ce document en raison de la confidentialité.

— Mon rôle : responsable du développement de logiciel.

2. Projet industriel “Flexibilité de l’énergie”

— Etablissement : LGIPM, Université de Lorraine.

— Responsable du projet : Hoai An Le Thi.

— Partenariat industriel : Norske Skog Golbey (NSG), une papeterie du groupe norvégien
Norske Skog ASA qui figure parmi les leaders mondiaux de la production de papiers
de publication.

— Date : janvier 2018 - décembre 2018.

— Description : le prix électrique varie en fonction de l’offre et demande. Une entreprise
peut aussi être un producteur d’électricité en vendant l’électricité qu’elle avait achetée.
Il s’agit du mécanisme appelé flexibilité de la consommation. Nous avons développé
un démonstrateur pour la flexibilisation de l’énergie de NSG. Notre démonstrateur
fournit un plan de production intelligent permettant à maximiser le gain de la revente
de l’électricité non-utilisée tout en respectant toutes les contraintes de l’entreprise.
Notre démonstrateur a été présenté au salon Global Industrie 27-30 mars 2018 à Paris
et a suscité l’attention de nombreux industriels.

— Mon rôle : responsable du développement de logiciel.

3. Contrat industriel “Smart marketing”

— Etablissement : LITA (LGIPM depuis 01/01/2018), Université de Lorraine.

— Responsable du projet : Hoai An Le Thi.

— Partenariat industriel : RTE (Réseaux de transport d’électricité).

— Date : juin 2016 - mars 2019.
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— Description : le projet consiste à développer un logiciel pour analyser les courbes de
charge des clients de RTE qui sont les plus grands industriels en France. Une profonde
analyse de courbe de charge permet à RTE de comprendre mieux le comportement
des clients, identifier les éventuels problèmes, etc. afin de mieux répondre aux besoins
de ses clients. Ce projet s’inscrit dans une démarche d’innovation de RTE.

— Mon rôle : j’ai été membre du comité de pilotage du projet et responsable du déve-
loppement de logiciel. J’ai participé au développement de méthodes d’apprentissage
automatique pour la prédiction de la consommation d’électricité et la segmentation
de clients.

4. Contrat industriel “Toul’embal”
— Etablissement : LITA (LGIPM depuis 01/01/2018), Université de Lorraine.
— Responsable du projet : Hoai An Le Thi.
— Partenariat industriel : Toul’embal - une entreprise, située à Toul, spécialiste de l’adhé-

sif de communication et des produits d’emballage.
— Date : janvier 2014 - avril 2019.
— Description : le but du projet est dedévelopper un logiciel de vente pour Toul’embal

et la maintenance du logiciel. Le logiciel est conçu pour proposer automatiquement
des produits qui sont susceptibles de correspondre aux besoins de clients. Ceci permet
de diminuer le temps de préparation des vendeurs ainsi qu’améliorer la pertinence
des leurs propositions au client. Le système comporte plusieurs modules pour lesquels
nous avons développé plusieurs méthodes efficaces en apprentissage automatique et
fouille de données.

— Mon rôle : j’ai été responsable du pôle logiciel et j’ai également participé au
développement de méthodes apprentissage automatique pour système de recomman-
dation.

5. Projet de recherche “Multiscale Molecular Systems Biology : Reconstruction and
Model”
— Etablissement : LCSB (Luxembourg Centre for Systems Biomedicine), University of

Luxembourg.
— Date : juin 2015 - mai 2016.
— Description : le projet consiste à développer les outils pour la modélisation et l’opti-

misation en Biochimie.
— Mon rôle : développer les méthodes d’optimisation pour résoudre certains problèmes

relevant des systèmes biologiques.
6. Projet de recherche “InnoMaD (Innovations techniques d’optimisation pour le

traitement Massif de Données)”
— Etablissement : LITA, Université Paul-Verlaine Metz.
— Responsable du projet : Hoai An Le Thi.
— Date : septembre 2010 - août 2012.
— Description : le projet consiste à créer une nouvelle génération d’outils et une plate-

forme de logiciels destinés au traitement de grande masse de données et leurs appli-
cations industrielles. Il s’agit des innovations techniques d’optimisation non-convexe
développées au sein du LITA qui sont reconnues internationalement et ont été ap-
pliquées avec succès, par des chercheurs et praticiens dans le monde, aux nombreux
problèmes industriels.
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— Mon rôle : j’ai été responsable du pôle logiciel et j’ai participé au développement de
nouvelles méthodes d’optimisation pour l’apprentissage automatique.

7. Projet de recherche “DCA-SI (Logiciels d’optimisation et aide à la décision DCA
pour des Systèmes d’Information et des Systèmes Industriels)”

— Etablissement : LITA, Université Paul-Verlaine Metz.

— Responsable du projet : Hoai An Le Thi.

— Date : septembre 2010 - décembre 2011.

— Description : l’objectif du projet est de développer des logiciels des nouvelles méthodes
d’optimisation basées sur DCA et les approches globales pour la résolution de plusieurs
classes de problèmes d’optimisation non-convexe, un domaine extrêmement important
d’aide à la décision, pour l’aide au pilotage des systèmes industriels complexes. Cette
plateforme est composée de plusieurs modules, chacun correspondant à un modèle
générique qui pourrait être utilisé dans différents systèmes d’information et systèmes
industriels de divers domaines.

— Mon rôle : j’ai été responsable du pôle logiciel, et j’ai participé à l’étude du marché
pour identifier les industries intéressées par nos produits.

8. Projet industriel “CALAS (Carrier Laser Tracking System)”

— Etablissement : LMAH (Laboratoire de Mathématiques Appliquées du Havre), Uni-
versité du Havre.

— Partenariat industriel : le port du Havre.

— Responsable : Adnan Yassine.

— Date : février 2009 - juin 2010.

— Description : le projet vise à mettre en place un plateforme de logiciels pour la gestion
du port de port du Havre. Ces systèmes d’exécution sont couplés avec des moyens
de suivi et de traçabilité par positionnement laser particulièrement performant. L’ob-
jectif de ce type de solution technologique (logicielle et matérielle) est de permettre
d’améliorer la productivité des terminaux, d’assurer la traçabilité des conteneurs et
d’optimiser les déplacements des engins et vecteurs de transport. Pour répondre à cet
objectif, la solution technologique vise à permettre la modélisation des plateformes
portuaires, à valider l’implantation des moyens et zones de stockage, d’optimiser les
déplacements des vecteurs de transport, de valider la stratégie des déplacements et
localisation de conteneurs, de suivre à temps réel ces activités, de les visualiser et
générer les éléments de guidage et d’affichage nécessaires aux conducteurs de cavaliers

— Mon rôle : j’ai développé les méthodes d’optimisation déterministes pour la planifica-
tion des cavaliers.

6 Activités d’administration, d’animation de la recherche

6.1 Organisation de conférences internationales

Je joue un rôle important dans l’organisation des conférences internationales suivantes :

• World Congress on Global Optimization (WCGO 2019), Metz, 6-8 juillet 2019

— https://wcgo2019.event.univ-lorraine.fr/
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— WCGO 2019 est la sixième édition de la série conférence internationale World Congress
on Global Optimization de l’International Society of Global Optimization (iSoGO).

— WCGO 2019 a été la plus grande édition de la série WCGO. WCGO 2019 réunissait,
autour de 6 conférences plénières, 180 chercheurs venant de 40 pays.

— 112 papiers sélectionnés, parmi 250 papiers soumis, sont publiés dans un volume de
la série Advances in Intelligent Systems and Computing de Springer. Deux numéros
spéciaux dans deux journaux Journal of Global Optimization et Optimization Letters
étaient dédiés à WCGO 2019.

— Mon rôle : j’ai été Pubilicity chair et membre du comité de programmes. J’ai été en
charge de la création du site web de la conférence. Je gérais les soumissions des articles
et les inscriptions. J’ai été également coéditeur des actes de la conférence.

• International Conference on Computer Science, Applied Mathematics and Ap-
plications (ICCSAMA 2019), Hanoi, Vietnam, 19-20 décembre 2019
— http://www.lita.univ-lorraine.fr/~iccsama2019/

— ICCSAMA 2019 est la sixième édition de la série conférence International Conference
on Computer Science, Applied Mathematics and Applications.

— Le programme scientifique de ICCSAMA 2019 était composé de 4 conférences plé-
nières, 4 conférences invitées et 37 articles sélectionnés.

— Plus de 100 scientifiques ont participé à ICCSAMA 2019.
— Les actes de conférence ont été publié dans un volume de la série Advances in Intelli-

gent Systems and Computing de Springer.
— Mon rôle : j’ai été co-président du comité d’organisation et membre du comité de

programmes. J’ai été également coéditeur des actes de la conférence.
• Modelling, Computation and Optimization in Information Systems and Mana-
gement Sciences (MCO 2021), Hanoi, Vietnam, 13-14 décembre 2021
— https://mco2021.event.univ-lorraine.fr/

— MCO 2021 est la quatrième édition de la série conférence Modelling, Computation
and Optimization in Information Systems and Management Sciences.

— Le programme scientifique de MCO 2021 était composé de 3 conférences plénières, 37
articles sélectionnés.

— Les actes de conférence ont été publié dans un volume de la série Lecture Notes in
Networks and Systems de Springer.

— Mon rôle : j’ai été co-président du comité d’organisation et membre du comité de
programmes. Je suis également coéditeur des actes de la conférence.

J’ai été également membre du comité d’organisation de conférences internationales suivantes :
• Non-convex Programming : Local and Global Approaches (NCP’07), 17-21 dé-

cembre 2007, Rouen, France. Le programme scientifique était composé de 12 conférences
plénières et 54 sessions. Trois numéros spéciaux dans les revues internationales étaient
dédiés à NCP’07.
• Modelling, Computation and Optimization in Information Systems and Ma-
nagement Sciences (MCO’08), 8-10 septembre, 2008, Metz, France : cette conférence
réunit, autour de 5 conférences plénières, 120 chercheurs. 65 papiers ont été sélectionnés,
parmi 160 papiers soumis, pour être publiés dans un volume de la série Communication
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in Computer ans Information Sciences de Springer et un numéro spécial du Journal of
Computational Optimization and Applications.
http://www.lita.univ-lorraine.fr/~mco08/

• International Conference on Computer Science, Applied Mathematics and Ap-
plications (ICCSAMA 2015),11-13 mai, 2015, Metz, France. ICCSAMA 2015 est la
troisième édition de la série conférence internationale ICCSAMA avec plus de 50 partici-
pants. Les actes de la conférence ont été publiés dans un volume de la série Advances in
Intelligent Systems and Computing de Springer.
http://www.lita.univ-lorraine.fr/iccsama2015/ICCSAMA/

• Modelling, Computation and Optimization in Information Systems and Ma-
nagement Sciences (MCO 2015), 11-13 mai, 2015, Metz, France. MCO 2015 est la
troisième édition de la série conférence internationale MCO. MCO a rassemblé 5 confé-
rences plénières invitées, 130 participants. Les actes de la conférence ont été publiés dans
un volume la série Advances in Intelligent Systems and Computing de Springer. Deux nu-
méros spéciaux après la conférence étaient dédiés à MCO 2015.
http://www.lita.univ-lorraine.fr/iccsama2015/MCO/

6.2 Activités éditoriales

Je suis relecteur pour de nombreux journaux internationnaux :

— Advances in Data Analysis and Classification (ADAC)

— Computers & Operations Research (COR)

— International Journal of Intelligent Information and Database Systems (IJIIDS)

— Journal of Global Optimization (JOGO)

— Mathematical Programming Series B (MPB)

— Optimization Methods and Softwares (OMS)

Je suis également relecteur pour les conférences internationales suivantes : MCO’08, ACIIDS
de 2011 à 2014, ICCSAMA & MCO 2015, WCGO 2019, ICCSAMA 2019, IEEE KSE 2020.

6.3 Jurys de thèse

J’ai participé au jury de thèse de :

• Bach Tran
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Introduction générale

La programmation DC (Difference of Convex functions) et DCA (DC Algorithm), constituant
l’épine dorsale de l’optimisation non-convexe, ont été introduits en 1985 par Tao PHAM DINH
et intensivement développés par Hoai An LE THI & Tao PHAM DINH depuis 1994 pour
devenir maintenant classiques et de plus en plus utilisés par des chercheurs et praticiens de par le
monde, dans divers domaines des sciences appliquées. Leur popularité vient de leur robustesse et
performance comparées aux méthodes existantes, de leur adaptation aux structures des problèmes
traités et de leur capacité de résoudre des problèmes industriels de grande dimension. Ces outils
théoriques et algorithmiques ont une histoire riche et réussie de trente-cinq ans de développement,
et la recherche de ces dernières années est de plus en plus explorée aux nouvelles tendances
dans le développement de DCA : concevoir de nouvelles variantes de DCA pour améliorer le
DCA standard, pour faire face à la scalabilité et aux problèmes d’optimisation non convexes
au-delà de la programmation DC. Les travaux présentés dans ce mémoire suivent ces tendances,
nous abordons les méthodes avancées basées sur DCA pour différentes classes des problèmes
d’optimisation non convexes et leurs applications à nombreuses thématiques de l’apprentissage
automatique dans l’optique de relever les défis de big data.

Un programme DC standard s’écrit sous la forme :

(Pdc) α = inf{f(x) := g(x)− h(x) : x ∈ Rn},

où g et h sont des fonctions convexes semi-continues inférieurement et propres sur Rn. La fonction
f est dite une fonction DC alors que g et h sont les composantes DC de f . Ce modèle standard
contient également la minimisation d’une fonction DC sur un ensemble convexe C ⊂ Rn, car
grâce à l’utilisation de la fonction indicatrice χC de C (définie par χC (x) := 0 si x ∈ C,+∞
sinon) on a :

inf{f(x) := g(x)− h(x) : x ∈ C} = inf{(g(x) + χC(x))− h(x) : x ∈ Rn}.

La philosophie de DCA consiste en approximation d’un programme DC par une suite des pro-
blèmes convexes. A chaque itération de DCA on remplace la deuxième composante DC h par
sa minorant affine et minimise ensuite le sous-problème convexe résultant. Le schéma de DCA
standard prend la forme :

On constate ainsi que DCA fonctionne sur les composantes DC g et h (qui sont convexes) et
non sur la fonction f elle-même. Et puisqu’une fonction DC admet une infinité de décompositions
DC, il y a autant de DCA que des décompositions DC pour la résolution d’un programme DC.
Le choix d’une décomposition DC appropriée est crucial car il conditionne les qualités essentielles
(rapidité, robustesse, . . . ) du DCA résultant. Théoriquement, la détermination d’une décompo-
sition DC “optimale” reste une question ouverte. En pratique on cherche des décompositions DC
bien adaptées à la structure spécifique du problème traité afin que les calculs de deux suites {xk}
et {yk} soient moins coûteux en temps de calcul (idéalement - elles sont déterminées de manière
explicite).
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Algorithm Schéma DCA standard

Initialisation : Choisir un point initial x0 ∈ Rn, k ← 0.
Répéter

1. Déterminer yk ∈ ∂h(xk).
2. Déterminer xk+1 ∈ argmin{g(x)− 〈yk, x〉 : x ∈ Rn}. (Pk)
3. k ← k + 1.

jusqu’à la convergence de {xk}.

Un aperçu de 30 ans de développement de DCA a été présenté dans le numéro spécial du
journal Mathematical Programming dédié à la programmation DC et DCA à l’occasion de 30ème
anniversaire de DCA [144]. Pour l’instance, il est pertinent de mentionner les propriétés suivantes
de DCA :

• la flexibilité : la programmation DC et DCA constituent une philosophie sur l’extension
de l’analyse/la programmation convexe - à l’analyse/la programmation non convexe non
différentiable. Comme conséquence, DCA n’est pas “un” algorithme (comme les algorithmes
de gradient ou de Newton, etc) mais une infinité d’algorithmes définis par diverses formu-
lations DC équivalentes et une infinité de décompositions DC pour chaque programme DC
formulé ;
• l’universalité : avec des décompositions DC appropriées et reformulations DC convenable-

ment équivalentes, DCA permet de retrouver les méthodes standard en programmation
convexe et non convexe (voir [144], Section 1.2), et de nombreux algorithmes d’optimi-
sation non convexes récemment développés peuvent être vus comme une version spéciale
des algorithmes basés sur DCA (voir [144], Section 3.3). L’universalité de DCA permet
aux chercheurs d’étudier la programmation non convexe par un point de vue unifié via
la programmation DC et DCA, d’autant plus que la flexibilité de DCA peut les aider à
développer de meilleurs algorithmes ;
• le succès : de nombreux algorithmes basés sur DCA ont résolu avec succès des problèmes non

convexes, non différentiables apparaissant dans divers domaines d’application, en particulier
dans l’apprentissage automatique, le système de communication, la biologie, la finance, le
traitement d’image, le transport-logistique, la robotique, etc (voir Section 4 de [144] et
références inclues pour les travaux jusqu’à 2018).

Les travaux récents en programmation DC et DCA visent à aborder les questions ouvertes
importantes suivantes :

i) l’amélioration de la vitesses de convergence de DCA ;
ii) le développement des solveurs performants pour la résolution de sous-problèmes convexes ;
iii) la recherche des bonnes décompositions DC par les techniques de régularisation et dé-

composition, et la recherche des bonnes approximations convexes de la fonction objectif
DC ;

iv) le développement des schémas DCA adaptés aux problèmes avec big data ;
v) l’utilisation de DCA sans mettre en évidence une décomposition DC de la fonction objectif ;
vi) l’extension de DCA à la résolution des programmes non convexes au-delà de la program-

mation DC.
Les algorithmes récemment développés pour la programmation DC ne sont rien d’autre que des
variantes de DCA obtenues en utilisant différentes reformulations DC du problème original, en
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choisissant d’autres décompositions DC et en introduisant des techniques d’accélération pour que
les DCAs “sur mesure” soient aussi efficaces que possibles. Il va sans dire que v) et vi) sont les deux
grandes challenges. Les schémas DCAs pour la résolution de certaines classes de problèmes non
convexe non différentiable au-delà des programmes DC ont vu le jour depuis plusieurs années
via des techniques de reformulation ou d’approximation (voir [144] section 3.2), et nombreux
travaux récents poursuivent cette direction de recherche pour la résolution d’autres classes des
problèmes difficiles.

Les travaux présentés dans ce mémoire sont parmi les premières études dans la littérature sur
des méthodes DCA avancées (sauf ceux pour les trois modèles de clustering dans les chapitres 7,
8 et 9 qui sont en fait des schémas DCA standard), ils visent à répondre aux questions ouvertes
mentionnées ci-dessus.

Le mémoire est divisé en trois parties contenant de douze chapitres. Avant de présenter ces
parties principales, nous donnons dans le chapitre 1 une brève introduction de l’état de l’art de
la programmation DC et DCA.

Dans la première partie nous décrivons les trois approches DCA avancées pour adresser les
cinq premières questions i) – v).

La première approche concernant l’Accélération de DCA (brièvement nommé ADCA) est
présentée dans le chapitre 2. Pour améliorer la vitesse de convergence de DCA (question i)) nous
introduisons la technique d’accélération de Nesterov (initialement proposée pour la programma-
tion convexe) avant l’étape 1 du schéma DCA standard. Plus précisément, au lieu de calculer
yk ∈ ∂h(xk) comme DCA standard, nous cherchons un point vk “plus prometteur” que xk et
prenons yk ∈ ∂h(vk). vk est dit “plus prometteur” que xk si

f(vk) ≤ max
t=max(0,k−q),...,k

f(xt), (1)

pour un q fixé au départ. vk est le point d’extrapolation de xk−1 et xk via le formulation de
Nesterov. Si ce point d’extrapolation n’est pas “plus prometteur” que xk, on maintient vk = xk.
Il est clair que si q = 0 alors la suite {f(xk)} est décroissante comme dans DCA standard. Par
contre, avec un q > 0, ADCA peut faire augmenter la fonction objectif f(xk) et par conséquent
échapper à un éventuel mauvais minimum local. Théoriquement, une valeur élevée de q augmente
les chances d’utiliser les points d’extrapolation dans ADCA. Comme notre technique intervient
au calcul de sous gradient de h (en quelques sortes, il s’agit “d’accélérer” le sous-gradient), elle
nous semble plus avantageuse qu’une autre approche d’accélération DCA proposée dans [10] qui
consiste à accélérer xk+1 par une recherche linéaire de direction de descente de type d’Amijo [77].

Nous démontrons la convergence de ADCA, et estimons le taux de convergence de ADCA
sous les conditions de Lojasiewics. Nous déployons ensuite ce schéma ADCA à la résolution
une classe spéciale des problèmes souvent rencontrés en pratique, qui est la minimisation de
la somme d’une fonction différentiable à dérivé Lipschitzien (possiblement non-convexe) et une
fonction DC. Pour étudier l’efficacité de ADCA, nous l’appliquons au problème de sélection
de variable en régression logistique (ou la régression logistique parcimonieuse bi-classes). Les
résultats numériques montrent que ADCA permet de réduire considérablement le temps de calcul
de DCA standard tout en donnant une meilleure solution. Sur certains jeux de données, le gain
de temps de ADCA par rapport à DCA standard peut aller jusqu’à 12 fois. ADCA montre
également sa supériorité par rapport aux méthodes existantes comme la méthode du gradient
proximal combiné avec la technique d’accélération.

La deuxième approche, nommée DCA-Like, est présentée dans le chapitre 3. Elle vise à
répondre aux deux questions ouvertes iii) et v) pour la résolution de deux classes des problèmes
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de structure spéciale. Une version d’accélération de DCA-Like, appelé ADCA-Like, est également
introduite pour aborder la question i).

DCA-Like est une approche permettant d’utiliser la philosophie de DCA sans mettre en
évidence une décomposition DC de la fonction objectif. De plus, DCA-Like propose une bonne
majorante convexe de la fonction DC adaptée à chaque itération. Ce sont ses deux avantages
considérables par rapport au DCA standard. C’est la structure spéciale des problèmes considérés
qui nous a motivé et permit de construire les schémas DCA-Like.

Le premier problème consiste à minimiser la somme d’une fonction f non-convexe diffé-
rentiable à dérivé Lipschitzien et d’une somme des fonctions composites

∑m
i=1 hi(gi(xi), où

gi : Rni → R sont convexes continues, xi (pour i = 1, . . . ,m) sont les sous-vecteurs de x avec∑m
i=1 ni = n, et hi : R → R sont concaves croissantes. Le deuxième problème est également

considéré dans le chapitre 2 : la minimisation de la somme d’une fonction différentiable à dérivé
Lipschitzien et une fonction DC. Bien que dans nombreux de cas le premier problème devient un
cas spécial du deuxième, la structure des fonctions composites mérite un traitement spécifique.

DCA-Like est “similaire” à DCA dans le sens où ils approximent itérativement le programme
DC original par une séquence des programmes convexes. Cependant, DCA-Like est “différent” à
DCA via

i) la manière de décomposer f = gρ − hρ, avec un paramètre ρ, dans lequel hρ n’est pas
forcément convexe (c’est-à-dire on n’a peut-être pas une décomposition DC de f), et ρ
est mise à jour de sorte que la valeur de la fonction majorante convexe de f à la solution
courant xk puisse être aussi proche que possible de f(xk) ;

ii) la manière de détermination de minorant affine de hρ : ceci peut ne pas être une borne
inférieure de hρ sur tout l’espace mais plutôt seulement à la solution courante xk.

Nous montrons que, heureusement, malgré ces modifications, la séquence bornée {xk} générée par
DCA-Like converge toujours vers un point critique du programme DC considéré, sous certaines
conditions. De plus, nous démontrons que, sous l’hypothèse de Kurdyka-Łojasiewicz, le taux de
convergence de DCA-Like est au moins sous-linéaire O(1/kα) avec α > 1.

Nous appliquons ensuite des schémas DCA-Like et ADCA-Like aux deux thématiques im-
portantes en apprentissage automatique : le problème t-SNE (t-distributed Stochastic Neighbor
Embedding) et la régression logistique parcimonieuse multi-classes (sélection des groupes va-
riables en régression logistique multi-classes). Les résultats numériques montrent la supériorité
des algorithmes basés sur DCA contre des meilleures méthodes existantes, et l’avantage de DCA-
Like par rapport à DCA standard, ainsi que l’atout de ADCA-Like contre DCA-Like.

La troisième approche, appelée DCA Stochastique (SDCA en bref), est présentée dans le
chapitre 4. Elle adresse la question iv) - les DCAs adaptés aux problèmes avec big data. Nous
considérons le problème de minimisation d’une somme d’un grand nombre des fonctions DC de
la forme

min
x∈Rd

{
F (x) :=

1

n

n∑
i=1

Fi(x)

}
,

où Fi sont les fonctions DC, c’est-à-dire Fi(x) = gi(x) − hi(x) avec gi et hi étant convexes,
continues inférieurement et propres, et n est un très grand nombre. Ce problème apparait dans
plusieurs contextes, en particulier dans l’optimisation stochastique et l’apprentissage automa-
tique. En effet, la structure à grande somme apparait naturellement dans la minimisation des
risques (ou encore la minimisation de la moyenne-variance) en programmation stochastique. De
plus, à l’ère du big data, la structure à grande somme est l’une des formes les plus populaires
rencontrées dans la pratique de modélisation de données.
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Ce problème a une double difficulté due à la non convexité de Fi et la grande valeur de n.
Néanmoins, la structure de somme dans F bénéficie d’un avantage : on peut travailler sur Fi
au lieu de la fonction F . Puisque tous les Fi sont des fonctions DC, F l’est également, et par
la suite c’est un programme DC standard auquel DCA peut être appliqué. Néanmoins, bien que
DCA soit une approche capable de résoudre des problèmes de grande taille en optimisation non
convexe, la structure à grande somme est difficile à gérer par des algorithmes déterministes. En
fait, dans DCA standard on doit calculer le sous-différentiel de toutes les fonctions hi à chaque
itération. Mettre DCA dans un “cadre” stochastique nous semble plus avantageux.

Nous proposons une version stochastique de DCA, nommée SDCA, qui nécessite le calcul
d’un faible nombre de sous-différentiel de hi à chaque itération. Cela permet de réduire considé-
rablement le temps de calcul de DCA. Cette approche peut être considérée comme la combinaison
de DCA avec la technique de réduction de variante en programmation stochastique. Une version
inexacte de SDCA est également proposée. Dans cette version, nous calculons seulement une
solution approchée du sous-problème convexe à chaque itération au lieu de le résoudre exac-
tement. Nous démontrons que SDCA et inexact SDCA convergent vers un point critique avec
probabilité 1. Pour étudier l’efficacité de nos algorithmes, nous les déployons à la régression logis-
tique parcimonieuse multi-classes. Les résultats numériques montrent que SDCA est beaucoup
moins coûteux en temps de calcul que DCA tout en fournissant une solution de même qualité.
Ils montrent également la supériorité de nos algorithmes par rapport aux méthodes existantes
dont la plus populaire stochastique gradient descente.

Dans la deuxième partie de ce mémoire nous étudions une thématique difficile et extrêmement
importante - l’optimisation parcimonieuse (sparse optimization en anglais). Cette thématique at-
tire une attention particulière de nombreux chercheurs au cours de la dernière décennie, de par
son rôle significatif dans divers domaines, en particulier l’apprentissage automatique. L’appren-
tissage avec parcimonie est une tâche cruciale pour relever les défis du big data.

L’optimisation parcimonieuse fait référence à un problème d’optimisation dont la fonction
objectif ou les contraintes contiennent la norme zéro (la norme zéro d’un vecteur x est le nombre
de ses composants non nulles). Due à la discontinuité de la norme zéro, il ne s’agit pas d’un
problème DC auquel on peut appliquer DCA. Cette étude adresse donc à la question vi) ci-
dessus : comment utiliser DCA pour la résolution des programmes non-convexes au-delà de la
programmation DC?

L’optimisation parcimonieuse a été démontrée NP-difficile à cause de la discontinuité de la
norme zéro. Dans la littérature, il existe trois approches pour l’optimisation parcimonieuse. La
plus ancienne approche est l’approximation convexe. Elle consiste à remplacer la norme zéro par
des fonctions convexes. La norme `1 est incontestablement l’approximation convexe la plus po-
pulaire de la norme zéro. Dans le premier temps, les approximations convexes sont très utilisées
car les problèmes approchés résultants sont convexes. Néanmoins, la convexité ne favorise pas
la parcimonie. Dans la deuxième approche, la norme zéro est remplacée par les approximations
non convexes qui jouissent meilleures parcimonies par rapport aux approximations convexes.
Cependant les problèmes résultant sont non convexes et donc plus difficile à résoudre. Plusieurs
approximations non-convexes ont été proposées dans la littérature comme les fonctions concave
exponentielle, SCAD, capped-`1, etc. Nous donnerons dans le chapitre 5 la liste des fonctions
d’approximation connues et montrerons que toutes ces fonctions sont DC, et on peut ainsi in-
vestir DCA à la résolution des problèmes approchés résultant. La troisième approche consiste à
reformuler de manière équivalente le problème d’optimisation parcimonieuse sous la forme d’un
problème d’optimisation non-convexe auquel on peut investir DCA. Nos travaux en optimisa-
tion parcimonieuse concernent la deuxième et la troisième approches. Parmi les études dans la
deuxième approche, nos contributions (publiées dans [147]) sont les plus significatives car nous
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proposons une fonction d’approximation DC qui contient toutes les approximations non convexes
dans la littérature, et considérons un modèle d’optimisation unifié incombant tous les problèmes
non convexes résultant des approximations non convexes connues. C’est ainsi que nos DCAs pour
ce modèle général couvrent tous les algorithmes existants dans cette deuxième approche comme
des cas particuliers. Quant à la troisième approche (reformulation via la pénalité exacte), notre
algorithme développé dans [130] est le seul algorithme déterministe pour le problème reformulé.

Cette deuxième partie est composée de deux chapitres. Le chapitre 5 dédie à la description
des deux approches développées (l’approximation DC et la reformulation via la pénalité exacte).
Plusieurs résultats théoriques importants ont été prouvés, en particulier la cohérence entre les
solutions des problèmes original et approché. Nous démontrons qu’une solution du problème
résultant de l’approximation DC appartient à un epsilon voisinage de la solution optimale du
problème original. De plus, nous démontrons que, dans le cas de l’approximation capped-`1 ou
SCAD, le problème résultant est équivalent au problème original avec des paramètres appropriés.
Une analyse profonde et une comparaison de toute les approximations non-convexes dans la
littérature ont été réalisées. Cette étude est utile aux utilisateurs dans leur choix de la fonction
d’approximation et de bons paramètres pour chaque approximation. Nous développons ensuite
trois schémas de DCA pour la résolution du problème approché, qui couvrent tous les algorithmes
existants comme des cas particuliers.

Concernant l’approche de reformulation via la pénalité exacte, nous montrons que le problème
initial peut être formulé comme un problème d’optimisation en variable mixte 0 − 1 qui est en
fait équivalent à un programme DC grâce aux résultats de la pénalité exacte. Nous investirons
ensuite DCA à la résolution du problème reformulé. Il est intéressant de mentionner que cette
technique de reformulation permet de voir que le problème approché via la norme `1 est une
relaxation linéaire de notre formulation en variables 0− 1. Ceci justifie pourquoi la norme `1 ne
favorise pas la parcimonie comme la norme zéro.

Dans le chapitre 6, nous déployons nos deux approches proposées à la résolution de trois
problèmes d’apprentissage automatique, tout en exploitant leur structure spécifique : Sélection
des variables dans Support Vector Machine (sparse SVM), Sélection des variables dans semie-
supervisé SVM (sparse S3VM), et la restauration du signal parcimonieuse (signal recovery in
compressed sensing). Il est à noter que les problèmes de sélection des variables (resp. des groupes
variables) dans bi-classes (resp. multi-classes) logistic regression étudiés dans la première par-
tie concernent également l’optimisation parcimonieuse. Les résultats numériques montrent la
performance de nos algorithmes et leur supériorité par rapport aux méthodes standard.

La troisième partie (contenant cinq chapitres) concerne un sujet fondamental de l’appren-
tissage et fouille de données : le clustering (ou la classification non supervisée, ou encore la
classification automatique). Etant donné un ensemble des points et une mesure de similarité. Le
clustering consiste à faire une répartition de ces points en K clusters de telle sorte que les points
dans le même cluster soient similaires. Le clustering peut être formulé comme un problème d’opti-
misation mathématique, et l’une des approches les plus prometteuses pour le clustering est basée
sur les méthodes d’optimisation. La difficulté majeure de clustering réside dans la non-convexité
du modèle d’optimisation associé d’une part, et la taille très grande de ce modèle d’autre part,
vu la dimension et le volume de masse de données considérée. Avec les différentes mesures de
distance, la plupart des modèles d’optimisation de clustering sont de la forme DC ou peuvent
être transformés en une programmation DC par les techniques de reformulation. Dès lors DCA
peut être développé pour la résolution de ces problèmes, en particulier pour les problèmes de
très grande dimension.

Nous considérons nombreux modèles de clustering dur où chaque objet appartient à une et
une seule classe (cluster) et investirons plusieurs algorithmes basés sur DCA standard et/ou
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DCA-Like à ces modèles.
Le modèle le plus populaire pour le clustering dur est incontestablement MSSC (Minimum

of Sum of Squares Clustering). MSSC s’écrit sous la forme

min

{
N∑
i=1

min
j=1,...,K

‖ai − xj‖2 : xj ∈ IRd, j = 1, . . . ,K

}
. (2)

où ai, i = 1, . . . , N sont les n points à répartir dans les K clusters dont les centres sont xj , j =
1, . . . ,K.

Le premier DCA pour MSSC a été développé dans [123]. Avec une décomposition DC ap-
propriée, le schéma DCA proposé dans [123] est explicit dans tous les deux étapes de calcul yk

et xk+1. Ce DCA nécessite tout simplement le produit de matrice-vecteur à chaque itération,
il est donc très rapide et par conséquent, capable de résoudre des instances de grande taille.
Néanmoins, il est connu que le modèle MSSC n’adapte pas bien au cas où les clusters ne sont
pas bien “séparés”. Ceci nous a motivé à considérer les deux autres formulations de MSSC : dans
la première, nous utilisons les variables binaires pour déterminer si les points ai appartiennent
(ou non) au cluster Cj , et le problème correspondant est la minimisation d’une fonction DC en
variables mixtes 0−1 sous les contraintes linéaires. Ce problème est ensuite reformulé comme un
programme DC via la technique de pénalité exacte. Dans la deuxième formulation, un noyau est
introduit au modèle MSSC pour donner la naissance au modèle “Kernel MSSC” (KMSSC en bref)
et le problème résultant du noyau Gaussien est bien un programme DC. Nous investissons les
deux schémas DCA pour la résolutions de ces deux programmes DC. Il s’en suit que, similaire au
premier DCA pour MSSC, les deux schémas DCA sont simples, rapides, et capables de résoudre
des instances de grande taille. Ils nécessitent, à chaque itération, le calcul de la projection d’un
point sur un simplexe et/ou un rectangle qui est déterminé de manière explicite. Nous proposons
également une procédure de recherche d’un bon point initial pour DCA via un algorithme VNS
(Variable Neighborhood Search). Les résultats numériques montrent que nos deux approches
sont mieux que DCA appliqué au modèle MSSC dans [123] en termes de qualité de clustering,
alors qu’en général ils sont plus coûteux en temps de calcul, en particulier dans les problèmes de
grande dimension. Ces travaux font l’objet du chapitre 7.

Dans le chapitre 8 nous introduisons une pondération (un poids) à chaque variable du modèle
MSSC et/ou au modèle de variables mixtes 0− 1. Le but est d’améliorer la qualité de clustering
et déterminer des variables pertinentes jouant un rôle important dans le processus de clustering.
Habituellement, les variables peuvent être divisées en trois catégories : les variables pertinentes,
redondantes et non pertinentes. Les variables pertinentes sont essentielles pour le processus de
classification, les variables redondantes n’apportent aucune nouvelle information au classifieur,
tandis que les variables non pertinentes ne fournissent aucune information utile. Chaque va-
riable est affectée d’une valeur continue dans l’intervalle [0, 1], nommée un poids, et les variables
pertinentes auront un poids élevé. Contrairement à la sélection de variables en classification,
l’objectif principal de la pondération des variables est d’améliorer la qualité de l’algorithme de
classification, mais pas de réduire le nombre des variables.

Nous développons deux schémas de DCA pour la résolution de ces deux modèles. Il s’avère
heureusement que le DCA correspondant consiste à calculer, à chaque itération, la projection
d’un point sur un simplexe et/ou un rectangle, qui est déterminée de manière explicite. A partir
des expériences numériques nous pouvons dire que l’introduction du poids aux variables per-
met d’améliorer les performances de la tâche de classification. De plus, les résultats numériques
montrent la supériorité en terme de qualité de solution de nos algorithmes par rapport à un
algorithme standard en pondération des variables.
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Le chapitre 9 concerne le clustering par blocs. Etant donné un ensemble des points repré-
sentés sous la forme d’un tableau dont chaque ligne correspond à un point et chaque colonne
représente une variable. Le clustering par blocs consiste à procéder simultanément une parti-
tion des lignes et une partition des colonnes de ce tableau. Il s’agit d’un problème NP-difficile.
Même pour un problème de taille petite, le nombre de partitions possibles peut être énormé-
ment grand. A notre connaissance, dans la littérature, la plupart des méthodes existantes sont
méta-heuristiques. Nous formulons le clustering par blocs comme un problème d’optimisation
avec variables binaires et ensuite reformulons ce dernier sous forme d’un programme DC grâce à
la technique de pénalité exacte. Avec une décomposition DC appropriée, le DCA correspondant
est simple et peu coûteux. Les résultats numériques montrent que notre méthode DCA fournit
toujours des meilleurs solutions par rapport aux méthodes standard (EM, “two-mode K-means”,
“two-mode Fuzzy”).

Le chapitre 10 est consacré au modèle de mélange gaussien (GMM - Gaussian Mixture Model)
pour clustering. Si le MSSC est le modèle déterministe le plus utilisé en classification automatique,
il en est de même pour le modèle GMM dans le cadre d’apprentissage statistique.

Le problème classique du clustering est de considérer qu’un échantillon de données provienne
d’un nombre de groupes inconnus a priori qu’il faut retrouver. Si en plus, on considère que les lois
que suivent les individus sont normales, alors on se place dans le cadre des modèles de mélanges
gaussiens. L’algorithme EM (Expectation-Maximisation) est sans doute le plus célèbre pour le
clustering via le GMM. Il a été montré dans [144] qu’avec une décomposition appropriée EM est
une version de DCA.

Un problème rencontré lors de la mise en oeuvre des modèles de mélange concerne la taille
du vecteur de paramètres à estimer. Dans le cas d’un mélange gaussien de K composantes de
dimension d, le paramètre est de dimension (K × (1 + d + d2)) − 1. Une solution couramment
employée est de sélection des variables qui apportent le plus d’information à l’analyse et d’éliminer
celles qui ne présentent que peu d’intérêt. Cette technique, très employée dans des problèmes
de discrimination l’est moins dans les problèmes de classification. Une raison peut être que le
problème d’optimisation résultant est très difficile, car la norme zéro doit être intégrée pour la
sélection de variables.

Une méthode alternative est de traiter “le sur-paramétrage” - on contraint le modèle initial
de manière à n’estimer qu’un nombre plus restreint de paramètres (modèles dits parcimonieux).

Par ailleurs, comme pour tous les algorithmes de clustering, la détermination correcte du
nombre de clusters (la valeur de K dans GMM) est un défi (la sélection du modèle dans GMM).

Dans ce travail, nous abordons toutes les trois problématiques fondamentales dans le cluste-
ring via modèles de mélange gaussien (GMM) qui sont la sélection du modèle, la sélection des
variables et le sur-paramétrage. Bien que ces trois problématiques sont liées entre eux, la plupart
des travaux existants les abordent séparément. Pour la première fois dans la littérature, nous pré-
sentons une formulation d’optimisation unifiée qui prend en compte ces trois problématiques en
introduisant simultanément les trois régularisations via la norme zéro. Nous sommes donc face à
l’optimisation parcimonieuse étudiée dans la partie 2 de ce mémoire. Nous choisissons l’approche
d’approximation non convexe pour traiter la norme zéro et développons dans le premier temps
DCA standard pour la résolution du problème résultant. Il s’avère que ce schéma DCA est éven-
tuellement coûteux pour les problèmes de grande taille. Cela nous a motivé d’investir un schéma
de DCA-Like, et par la suite un algorithme en deux étapes basés sur DCA-Like afin d’améliorer
le DCA-Like.

Le dernier chapitre de cette troisième partie est centré sur le clustering des séries temporelles
par une technique de deep clustering. Cette étude fait l’objet d’un grand contrat de recherche
avec RTE qui a pour but de regrouper des clients industriels de RTE en fonction de leurs
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consommations électriques.
Nous investissons des méthodes performantes pour aborder les trois problématiques cruciales

dans le clustering des séries temporelles, qui sont

i) une (des) mesure(s) de similarité appropriée(s),

ii) des techniques de réduction de dimension (pour confronter aux données de grande taille),

iii) des algorithmes de clustering efficaces et capables de traiter les jeux de données de grande
dimension.

Pour i), nous utilisons la distance DTW (Dynamic Time Warping) dans l’espace original de
données de séries temporelles. De nombreux travaux ont démontré que la distance DWT est bien
adaptée aux séries temporelles. Cependant, un inconvénient majeur de la distance DWT est le
temps de calcul. L’algorithme de calcul de la distance DWT est un algorithme récursif. Etant
donnée la taille importante des données de notre problème, il n’est pas envisageable d’appliquer
une méthode de clustering utilisant directement la distance DTW. Nous nous proposons donc
d’employer t-SNE (t-distributed stochastic neighbor embedding) pour transformer les données de
séries temporelles de grande dimension dans un autre espace de dimension beaucoup plus petite
(une technique de réduction de dimension). t-SNE est relativement nouveau, il est basé sur une
idée complètement différentes que les autres méthodes classiques comme l’analyse en composantes
principales, la factorisation par matrices non négatives (“Non-negative matrix factorization” en
anglais) ou sélection de variables. Nous utilisons ensuite DCA pour le problème t-SNE (que nous
avons présenté dans le chapitre 3 section 3.4) avec la transformation DTW- Euclidienne. Enfin,
nous appliquons le schéma DCA pour le modèle MSSC [123] pour réaliser le clustering dans le
nouvel espace. Avant cela, pour déterminer le nombre de clusters nous utilisons un autre schéma
DCA pour clustering via la maximisation de modularité [138].

Cette approche peut être considérée comme une méthode de deep clustering. Elle est une
combinaison de plusieurs outils et techniques efficaces : la conception d’une méthode basée sur la
distance DWT bien adaptée aux séries temporelles et des meilleurs algorithmes de clustering sur
la distance Euclidienne pour confronter au Big data est originale. Pour la première fois dans la
littérature la distance DWT est considérée dans le modèle de transformation t-SNE, et le schéma
DCA résultant est particulièrement efficace. Les expériences numériques sur les données réelles
de RTE ont montré que nos résultats de clustering sont cohérents et très profitables pour RTE.
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Chapitre 1

DC programming and DCA : the state
of the art

In this chapter, we present the key idea and some basic properties of DC programming and
DCA. The materials of this chapter are extracted from the state-of-the-arts papers on DCA [142,
144, 189, 190]. The readers are referred to the paper [144] for an extensive overview of more than
thirty years of development of DCA.

1.1 Elementary concepts of convex analysis

We first recall some basic notions and results in convex analysis (refer to the references
[34, 189, 206] for more details).

We are working with the space X = IRn which is equipped with the canonical inner product
〈·, ·〉 and the corresponding Euclidean norm ‖ · ‖, thus the dual space Y of X can be identified
with X itself. We follow [206] for definitions of usual tools of convex analysis where functions
could take the infinite values ±∞. We use in the sequel the convention +∞− (+∞) = +∞.

A subset C of X is said to be convex if (1− λ)x+ λy ∈ C,∀x, y ∈ C and λ ∈ [0, 1].
Let f : S → IR ∪ {±∞} be a function whose values are in R := R∪{±∞} and whose domain

is S ⊂ X. The effective domain of f , denoted by domf , is defined as

dom f = {x ∈ S : f(x) < +∞}.

The function f is called proper if domf 6= ∅ and f(x) > −∞ for all x ∈ S.
The epigraph of f , denoted by epi f , is defined as

epi f = {(x, t) : x ∈ S, t ∈ R, f(x) ≤ t} .

The function f is convex if S is convex and

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y), ∀x, y ∈ S, ∀λ ∈ [0, 1].

f is strictly convex if

f((1− λ)x+ λy) < (1− λ)f(x) + λf(y), ∀x, y ∈ S, 0 < λ < 1.

The function f is said to be lower semi-continuous at a point x ∈ S if

f(x) ≤ lim inf
y→x

f(y).
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Denote by Γ0(X) the set of all proper lower semi-continuous convex functions on X.
Let ρ be a nonnegative number and S be a convex subset of X. One says that a function

f : S → R ∪ {+∞} is ρ–convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− λ(1− λ)

2
ρ‖x− y‖2

for all x, y ∈ S and λ ∈ (0, 1). It amounts to say that f − (ρ/2)‖ ·‖2 is convex on S. The modulus
of strong convexity of f on S, denoted by ρ(f, S) or ρ(f) if S = X, is given by

ρ(f, S) = sup{ρ ≥ 0 : f − (ρ/2)‖ · ‖2 is convex on S}.

Clearly, f is convex on S if and only if ρ(f, S) = 0. One says that f is strongly convex on S if
ρ(f, S) > 0.

A real-valued function f defined on a set C ∈ Rn is said to be Lipschitz on C, if there exists
a nonnegative scalar L such as

|f(x)− f(y| ≤ L‖x− y‖, ∀x, y ∈ C.

Also f is said to be locally Lipschitz relative to C at some x ∈ C if for some ε > 0, f is Lipschitz
on B(x, ε) ∩ C.

A vector y ∈ Y is said to be a subgradient of a convex function f at a point x0 ∈ dom f if

f(x) ≥ f(x0) + 〈x− x0, y〉, ∀x ∈ X.

The set of all subgradients of f at x0 is called the subdifferential of f at x0 and is denoted by
∂f(x0). If ∂f(x) is not empty, f is said to be subdifferentiable at x.
For ε ≥ 0, a vector y ∈ Y is said to be an ε–subgradient of a convex function f at a point
x0
indom f if

f(x) ≥ (f(x0)− ε) + 〈x− x0, y〉, ∀x ∈ X.

The set of all ε–subgradients of f at x0 is called the ε–subdifferential of f at x0 and is denoted
by ∂εf(x0).
For ε ≥ 0, a point xε is called an ε-solution of the problem inf{f(x) : x ∈ Rd} if

f(xε) ≤ f(x) + ε ∀x ∈ Rd.

Proposition 1.1 Let f be a proper convex function. Then

1. ∂εf(x) is a closed convex set, for any x ∈ X and ε ≥ 0.

2. ri(domf) ⊂ dom ∂f ⊂ domf
where ri(domf) is the relative interior of domf .

3. If f has a unique subgradient at x, then f is differentiable at x, and ∂f(x) = {∇f(x)}.
4. x0 ∈ argmin{f(x) : x ∈ X} if and only if 0 ∈ ∂f(x0).

Conjugates of convex functions
The conjugate of a function f : X → R is the function f∗ : X → R, defined by

f∗(y) = sup
x∈X
{〈x, y〉 − f(x)}.
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Proposition 1.2 Let f ∈ Γ0(X). Then we have

1. f∗ ∈ Γ0(X) and f∗∗ = f .

2. y ∈ ∂f(x)⇔ x ∈ ∂f∗(y).

3. f(x) + f∗(y) ≥ 〈x, y〉, for any x, y ∈ X.
Equality holds if and only if y ∈ ∂f(x).

Polyhedral convex functions
A polyhedral convex set is a closed convex set of the form

C = {x ∈ X : 〈x, bi〉 ≤ βi, ∀i = 1, . . . ,m}.

A convex set C is locally polyhedral if, for every x ∈ C, there exists a polyhedral convex neighbou-
rhood of x relative to C. A convex function is said to be locally polyhedral convex if its epigraph
is locally polyhedral convex.

A function f ∈ Γ0(X) is said to be polyhedral convex if

f(x) = max{〈ai, x〉 − αi : i = 1, . . . , k}+ χC(x), ∀x ∈ X (1.1)

where ai ∈ X, αi ∈ R for all i = 1, . . . , k and C is a nonempty polyhedral convex set. It is clear
that dom f = C.

Proposition 1.3 Let f be a polyhedral convex function, and x ∈ domf . Then we have

i) f is subdifferentiable at x, and ∂f(x) is a polyhedral convex set. In particular, if f is defined
by (1.1) with C = X then

∂f(x) = co{ai : i ∈ I(x)}

where I(x) = {i ∈ {1, . . . , k} : 〈ai, x〉 − αi = f(x)}.
ii) The conjugate f∗ is a polyhedral convex function. Moreover, if C = X then

domf∗ = co{ai : i = 1, . . . , k},

f∗(y) = inf

{
k∑
i=1

λiαi

∣∣∣ k∑
i=1

λiai = y,
k∑
i=1

λi = 1, λi ≥ 0, ∀i = 1, . . . , k

}
.

In particular,
f∗(ai) = αi, ∀i = 1, . . . , k.

Kurdyka-Lojasiewicz (KL) property
Let η ∈ (0,+∞]. Denote byMη the class of continuous concave functions ψ : [0, η)→ [0,+∞)

satisfying

• ψ(0) = 0, and ψ is continuously differentiable on (0, η).

• ψ′(t) > 0 for all t ∈ (0, η).

Definition 1.1 A lower semicontinuous function σ satisfies the KL property [13] at u∗ ∈ dom ∂Lσ
if there exists η > 0, a neighborhood V of u∗, and ψ ∈Mη such that for all u ∈ V ∩{u : σ(u∗) <
σ(u) < σ(u∗) + η}, one has

ψ′(σ(u)− σ(u∗))dist(0, ∂Lσ(u)) ≥ 1.
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The class of functions σ satisfying the KL property at all points in dom ∂Lσ is very ample,
for example, semi-algebraic, subanalytic, and log-exp functions. In particular, these classes of
functions satisfy the KL property with ψ(s) = cs1−θ, for some θ ∈ [0, 1) and c > 0.

Subanalytic set and function

Definition 1.2 (i) A subset C of Rn is said to be semianalytic if each point of Rn admits a
neighborhood V such that C ∩ V is of the following form :

C ∩ V =

p⋃
i=1

q⋂
j=1

{x ∈ V : fij(x) = 0, gij(x) > 0},

where fij , gij : V → R (1 ≤ i ≤ p, 1 ≤ j ≤ q ) are real-analytic functions.
(ii) A subset C of Rn is called subanalytic if each point of Rn admits a neighborhood V such

that
C ∩ V = {x ∈ Rn : ∃y ∈ Rm, (x, y) ∈ B},

where B is a bounded semianalytic subset of Rn × Rm with m ≥ 1.
(iii) A function f : Rn → R∪{+∞} is said to be subanalytic if its graph gph f is a subanalytic

subset of Rn × R.

It is obvious that the class of subanalytic sets (resp. functions) contains all analytic sets (resp.
functions). Some key properties of subanalytic sets and subanalytic functions :

— Subanalytic sets are closed under locally finite union and intersection (A collection of sets C
is locally finite if any compact set intersects only finitely many sets in C). The complement
of a subanalytic set is subanalytic.

— The closure, the interior, the boundary of a subanalytic set are subanalytic.
— A closed C ⊆ Rn is subanalytic iff its indicator function χC , defined by χC(x) = 0 if x ∈ C

and +∞ otherwise, is subanalytic.
— Given a subanalytic set C, the distance function dC(x) := infz∈C ‖x− z‖ is a subanalytic

function.
— Let f, g : X → R be continuous subanalytic functions, where X ⊆ Rn is a subanalytic set.

Then the sum f + g is subanalytic if f maps bounded sets on bounded sets, or if both
functions f, g are bounded from below.

— Let X ⊆ Rn, T ⊆ Rm be subanalytic sets, where T is compact. If f : X × T → R is a
continuous subanalytic function, then g(x) := mint∈T f(x, t) is continuous subanalytic.

Proposition 1.4 ([190]) If f : Rn → R ∪ {+∞} is a lower semicontinuous subanalytic stron-
gly convex function then its conjugate f∗ is a C1,1 (the class of functions whose derivative is
Lipschitz) subanalytic convex function.

1.2 DC function

Definition 1.3 A function f : X → IR ∪ {±∞} is called DC function if

f = g − h

with g and h belonging to Γo(X). One says that g − h is a DC decomposition (or DC represen-
tation) of f , and g, h are its convex DC components. If g and h are finite on X, then f = g− h
is said to be a finite DC function on X.
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Remark 1.1 A DC function has infinitely many DC decompositions

The set of DC functions (resp. finite DC functions) onX is denoted byDC(X) (resp.DCf (X)).
It is worth noting the richness of DC(X) and DCf (X) : they contain almost realistic objective
functions and are closed under all the operations usually considered in optimization.

(i) DCf (X) is a subspace containing the class of lower-C2 functions (f is said to be lower-C2

if f is locally a supremum of a family of C2 functions). In particular, DCf (X) contains the space
C1,1(X) of functions whose gradient is locally Lipschitzian on X.

(ii) Under some caution we can say that DC(X) is the subspace generated by the convex cone
Γo(X) :: DC(X) = Γo(X)−Γo(X). This relation marks the passage from convex optimization to
nonconvex optimization and also indicates that DC(X) constitutes a minimal realistic extension
of Γo(X).

(iii) DCf (X) is closed under all the operations usually considered in optimization. In particu-
lar, a linear combination of fi ∈ DCf (X) belongs to DCf (X), a finite supremum of DC functions
is DC.

Proposition 1.5 ([103]) Every nonnegative DC function f = g − h (g, h ∈ Γ0(X)) admits a
nonnegative DC decomposition, i.e., f = g1 − h1 with g1, h1 being in Γ0(X) and nonnegative.

The function h1 and g1 can be defined as [103] :

g1 := g − (〈b, ·〉 − h∗(b)), h1 := h− (〈b, ·〉 − h∗(b))

with b ∈ domh∗.
More generally, every f ∈ DCf (X) admits a nonngative DC decomposition. If follows that

the product of two DC function is a DC function [189].

1.3 DC Programming

Standard DC program
A standard DC program takes the form

(P ) α = inf{f(x) = g(x)− h(x) : x ∈ X}

where f ∈ DC(X) and g, h ∈ Γ0(X).
A DC program with a convex constraint set C (a nonempty closed convex set in Rn) can be

rewritten in the standard form (P ) by using the indicator function on C, defined by χC(x) = 0
if x ∈ C, +∞ otherwise :

inf{f(x) := g(x)− h(x) : x ∈ C} = inf{χC(x) + g(x)− h(x) : x ∈ IRn}.

As mentioned previously, the vector space of DC functions, DC(X) forms a wide class en-
compassing most real-life objective functions and is closed with respect to usual operations in
optimization. DC programming constitutes so an extension of convex programming, sufficiently
large to cover most nonconvex programs ([189, 142] and references therein), but not too large in
order to leverage the powerful arsenal of the latter.

DC duality associates a primal DC program (P ) with its dual, which is also a DC program.
Indeed, using the definition of conjugate functions, we can rewrite the problem (P ) as

α = inf{g(x)− h(x) : x ∈ X}
= inf{g(x)− sup{〈x, y〉 − h?(y) : y ∈ Y } : x ∈ X}
= inf{g(x) + inf{h?(y)− 〈x, y〉 : y ∈ Y } : x ∈ X}
= inf{β(y) : y ∈ Y }
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where
β(y) = inf{g(x)− (〈x, y〉 − h?(y)) : x ∈ X}.

It is clear that β(y) = h?(y)− g?(y) if y ∈ domh?, +∞ otherwise. Finally, the dual problem of
(P ) is stated as

(D) α = inf{h?(y)− g?(y) : y ∈ X}.

We can observe that the dual problem (D) is also a DC program and there is a perfect
symmetry between primal and dual programs (P ) and (D) : the dual program to (D) is exactly
(P ).

Note that the finiteness of α implies that

dom g ⊂ domh and domh? ⊂ dom g?. (1.2)

Polyhedral DC program
In the DC problem (P ), if one of the DC components g and h is a polyhedral convex function,

(P ) is called a polyhedral DC program. Polyhedral DC program is an important class of DC
optimization which is often encountered in practice and has interesting properties.

Consider the case where h is a polyhedral convex function defined as

h(x) = max{〈ai, x〉 − αi : i = 1, . . . , k}.

By Proposition 1.3, the dual problem (D) of (P ) can be written as

α = inf{h?(y)− g?(y) : y ∈ X}
= inf{h?(y)− g?(y) : y ∈ co{ai : i = 1, . . . , k}}
= inf{αi − g?(ai) : i = 1, . . . , k}.

In the case g is polyhedral convex and h is not polyhedral, the dual problem (D) also has the
similar formulation as above since g? is polyhedral.

Remark 1.2 Polyhedral DC programming, which plays a central role in nonconvex optimization
and global optimization has interesting properties (from both a theoretical and an algorithmic
point of view) on local optimality conditions and the finiteness of DCA’s convergence [190].

General DC program
A general DC program takes the form

inf {f0(x) := g0(x)− h0(x) :
fi(x) := gi(x)− hi(x) ≤ 0, i = 1, . . . ,m
x ∈ C}

(1.3)

where C is a nonempty convex set in Rn, gi, hi ∈ Γ0(X), i = 0, . . . ,m and its feasible set
E = {x ∈ C, fi(x) ≤ 0, i = 1, . . . ,m} is supposed to be nonempty.

This class of nonconvex programs is the most general in DC Programming and, a fortiori,
more difficult to treat than that standard DC programs (P ) because of the nonconvexity of the
constraints. Its interests is due to the fact that this class appears, increasingly, in many models
of nonconvex variational approaches.
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1.3.1 Optimality conditions for DC optimization

A point x∗ is said to be a local minimizer of g − h if x∗ ∈ dom g ∩ domh (so, (g − h)(x∗) is
finite) and there is a neighborhood U of x∗ such that

g(x)− h(x) ≥ g(x∗)− h(x∗), ∀x ∈ U. (1.4)

Under the convention +∞− (+∞) = +∞, the above condition is equivalent to

g(x)− h(x) ≥ g(x∗)− h(x∗), ∀x ∈ U
⋃

dom g. (1.5)

A point x∗ is said to be a critical point of g−h if it verifies the generalized Kuhn–Tucker condition

∂g(x∗) ∩ ∂h(x∗) 6= ∅. (1.6)

Let P and D denote the solution sets of problems (P ) and (D) respectively, and let

P` = {x∗ ∈ X : ∂h(x∗) ⊂ ∂g(x∗)}, D` = {y∗ ∈ X : ∂g?(y∗) ⊂ ∂h?(y∗)}.

Theorem 1.1 ([189]) i) Global optimality condition : x ∈ P if and only if

∂εh(x) ⊂ ∂εg(x), ∀ε > 0.

ii) Dually, y ∈ D if and only if ∂εg?(y) ⊂ ∂εh?(y) ∀ε > 0.

iii) Transportation of global minimizers : ∪{∂h(x) : x ∈ P} ⊂ D ⊂ domh?.
The first inclusion becomes equality if g? is subdifferentiable in D. In this case, D ⊂
(dom ∂g? ∩ dom ∂h?).

iv) Dually, ∪{∂g?(y) : y ∈ D} ⊂ P ⊂ dom g.
The first inclusion becomes equality if h is subdifferentiable in P. In this case P ⊂ (dom ∂g∩
dom ∂h).

v) Necessary local optimality : if x∗ is a local minimizer of g − h, then x∗ ∈ P`.
vi) Sufficient local optimality : Let x∗ be a critical point of g − h and y∗ ∈ ∂g(x∗) ∩ ∂h(x∗). Let

U be a neighborhood of x∗ such that (U ∩ dom g) ⊂ dom ∂h. If for any x ∈ U ∩ dom g,
there is y ∈ ∂h(x) such that h?(y)− g?(y) ≥ h?(y∗)− g?(y∗), then x∗ is a local minimizer
of g − h. More precisely,

g(x)− h(x) ≥ g(x∗)− h(x∗), ∀x ∈ U ∩ dom g.

vii) Transportation of local minimizers : Let x∗ ∈ dom ∂h be a local minimizer of g−h. Let y∗ ∈
∂h(x∗) and a neighborhood U of x∗ such that g(x)−h(x) ≥ g(x∗)−h(x∗), ∀x ∈ U ∩dom g.
If

y∗ ∈ int(dom g?) and ∂g?(y∗) ⊂ U

then y∗ is a local minimizer of h? − g?.

Remark 1.3 a) It is clear that the global optimality condition i) is not verifiable in practice.

b) There is no gap between the primal problem (P ) and its dual (D). Globally/locally solving
the primal problem (P ) implies globally/locally solving the dual problem (D) and vice–versa.
Thus, it is useful if one of them is easier to solve than the other.
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c) The necessary local optimality condition ∂h?(x∗) ⊂ ∂g?(x∗) is also sufficient for many
important classes programs, for example, if h is polyhedral convex, or when f is locally
convex at x∗, i.e. there exists a convex neighborhood U of x∗ such that f is finite and convex
on U [142]. We know that a polyhedral convex function is almost everywhere differentiable,
that is to say, it is differentiable everywhere except on a set of measure zero. Thus, if h is
a polyhedral convex function, then a critical point of g− h is almost always a local solution
to (P ).

d) If f is actually convex on X, we call (P) a “false” DC program. In addition, if ri(dom g)∩
ri(domh) 6= ∅ and x0 ∈ dom g such that g is continuous at x0, then 0 ∈ ∂f(x0) ⇔
∂h(x0) ⊂ ∂g(x0) [142]. Thus, in this case, the local optimality is also sufficient for the
global optimality. Consequently, if in addition h is differentiable, a critical point is also a
global solution.

1.3.2 Exact penalty in DC programming

Penalty techniques are powerful tools to transform a difficult (resp. nonconvex) constraints in
easier (resp. convex) constraints. Of course, ensuring the equivalence between the original problem
and the penalized problem, i.e. exact penalty, is very important. This concern is naturally much
more complex in nonconvex programming (than in convex one). Exact penalty techniques in DC
programming have been widely investigated [146, 145, 126]. They permit to recast several classes
of difficult nonconvex programs into suitable DC programs to be tackled by the efficient DCA.

Exact penalty in concave programming
In [146, 145], the authors have established exact penalty for nonconvex programs having

concave objective functions and bounded polyhedral convex constraint sets with additional
concave constraint functions. They considered the two following nonconvex programs

α = min{f(x) : x ∈ K, g(x) = 0} (1.7)

and
α = min{f(x) : x ∈ K, g(x) ≤ 0} (1.8)

where K is a nonempty bounded polyhedral convex subset of Rn and f, g are finite concave
functions on K.

In [146], the exact penalty results have been established under the assumption that g is
nonnegative on K. Later, Le Thi et al. [145] extended the exact penalty results for a more
general case where the assumption of the nonnegativity of g is not needed.

The problem (1.7) can be equivalently rewritten as

α = min{f(x) : x ∈ K, g(x) ≤ 0, g(x) ≥ 0} (1.9)

And its penalized problem is given by

α(τ) = min{f(x) + τg(x) : x ∈ K, g(x) ≥ 0} (1.10)

Denote by V (K) the vertex set of K and by P and Pτ the optimal solution sets of (1.9) and
(1.10), respectively. Furthermore, one uses the convention min∅ g(x) = +∞.

Theorem 1.2 ([145]) Let K be a nonempty bounded polyhedral convex set in Rn and let f ,
g be finite concave functions continuous relative to K. Suppose that the feasible set of (1.9) is
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nonempty. Then there exists τ0 ≥ 0 such that for all τ ≥ τ0, the problems (1.9) and (1.10) have the
same optimal value and the same optimal solution set. Furthermore, we can take τ0 = f(x0−α(0)

m
with m = min{g(x) : x ∈ V (K), g(x) ≥ 0} and any x0 ∈ K, g(x0) = 0.

On the other hand, the problem (1.8) is equivalent to

α = min{f(x) : (x, t) ∈ K × [0, β], g(x) + t = 0, } (1.11)

where β ≥ max{−g(x) : x ∈ K}. The equivalence between (1.8) and (1.11) is in the sense that :
if x is a solution of (1.8) then (x,−g(x) is a solution of (1.11) and conversely, if (x, t) is a solution
of (1.11) then x is a solution of (1.8).

In virtue of Theorem 1.2, there exists τ0 ≥ 0 such that for all τ ≥ τ0, the problems (1.11) is
equivalent to

α = min{f(x) + τ(t+ g(x)) : (x, t) ∈ K × [0, β], g(x) + t ≥ 0, }. (1.12)

The above result permits to recast several classes of difficult in nonconvex programming
and combinatorial optimization including linear/quadratic integer programming, complementa-
rity problems, bilevel programming, multiple objective programming and optimization over the
efficient set into suitable DC programs and open the door to an effective investigation of DCA for
solving them. These works allowed building a first bridge between DC programming and opera-
tions research, founded on which DCA based algorithms were developed for the above mentioned
classes of problems.

Let us consider now a very important class of problems, the linearly constrained quadratic
programming with binary variables, which is written as

α = min

{
f(x) :=

1

2
〈x,Qx〉+ 〈q, x〉 : Ax ≤ b, x ∈ {0, 1}n

}
(BQP )

where Q is an (n× n) symmetric matrix, q, x ∈ Rn, A is an (m× n) matrix and b ∈ Rm.
In [141], Le Thi and Pham Dinh have reformulated (BQP) as a (continuous) DC program by

the following way. First, (BQP) is transformed equivalently in the form

α = min

{
f(x) :=

1

2
〈x, (Q− λ̄I)x〉+ 〈q +

λ̄

2
e, x〉 : x ∈ K, p(x) ≤ 0

}
,

where λ̄ ≥ 0 is such that the matrix Q− λ̄I is negative semidefinite, K := {Ax ≤ b, x ∈ [0, 1]n}
and p := 1

2 [eTx − xTx]. It is clear that p is a concave function with nonnegative values on
K. Hence, from the above exact penalty results in concave programming, it follows that there
exists τ0 ≥ 0 such that for all τ > τ0, (BQP) is equivalent to the (strictly) concave quadratic
minimization program :

α = min

{
1

2
〈x, (Q− λI)x〉+ 〈q +

λ

2
e, x〉 : x ∈ K

}
,

with λ = λ̄+ τ .

Remark 1.4 The linear constrained quadratic zero-one programming problem is equivalently
reformulated as a (continuous) concave quadratic program for which DCA can be applied. It is
important to note that DCA works on a continuous domain but, with a suitable penalty parameter,
it gives an integer solution. Indeed, if at iteration r, DCA gives a integer solution xr ∈ {0, 1}n
than xk ∈ {0, 1}n for all k ≥ r.
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Following these results, several large-scale problems that are modeled as 0–1 (or mixed
0–1) linear/quadratic programming problems, were successfully solved by DCA and combined
DCA—global methods, including the strategic capacity planning in supply chain the strategic
supply chain design problem from qualified partner set, the single-vehicle cyclic inventory routing
problem, the logistics network design and planning problem, the optimization of traffic signals in
networks considering rerouting, the nonlinear UAV task assignment problem under uncertainty,
the quality of service (QoS) routing problems, the minimum m-dominating set problem, etc.

Exact penalty in DC Programming via error bounds
One considers the following optimization problem

α := inf{f(x) : (x) ∈ C, h(x) ≤ 0} (1.13)

where f , h are real-valued functions defined on C. Denote by P is optimal solution set of (1.13).
Define S := {x ∈ C : h(x) ≤ 0}.

Let g : C → R be a nonnegative function such that S can be expressed by

S := {x ∈ C : g(x) ≤ 0}

Such a function g must verify

g(x) = 0 if and only if x ∈ S.

Exact penalty in mathematical programming usually deals with

g(x) := [h+(x)]t.

For τ ≥ 0, let us define the penalized problem

α(τ) := inf{f(x) + τg(x) : (x) ∈ C} (1.14)

whose the optimal solution set is denoted by Pτ .

Proposition 1.6 ([145]) Let f be a Lipschitz function on C with constant L and let g be a
nonnegative finite function on C such that S := {x ∈ C : h(x) ≤ 0} = {x ∈ C : g(x) ≤ 0}. If S
is nonempty and there exists some ` > 0 such that

d(x, S) ≤ `g(x) ∀x ∈ C,

then one has :
(i) α(τ) = α and P ⊂ Pτ for all τ ≥ L`
(ii) P = Pτ for all τ > L`.

Exact penalty techniques in Mixed Integer DC Programming
A Mixed Interger DC Program is of the form

α := inf{f(x, y) = g(x, y)− h(x, y) : (x, y) ∈ K,x ∈ [l, u] ∩ Zn} (1.15)

where K is a bounded polyhedral convex set in Rn+p : K := {(x, y) ∈ Rn+p : C(x, y) :=

Ax+By ≤ b} with C ∈ Rm×(n+p), A ∈ Rm×n, B ∈ Rm×p, [l, u] :=
n∏
i=1

[li, ui] ⊂ Rn, with li, ui ∈ Z,
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li < ui for i = 1, ..., n. This class of problems encompasses most combinatorial optimization
problems, in particular usual mixed integer linear/quadratic programming problems. In [190],
Pham Dinh and Le Thi proposed five following functions to penalize the interger variable x :

1) p1(x, y) :=
n∑
j=1

sin2(πxj).

2) p2(x, y) := d2
2(x, [l, u] ∩ Zn) = min{‖x− z‖22 : z ∈ [l, u] ∩ Zn} =

n∑
j=1

min{(xj − zj)2 : zj ∈

[lj , uj ] ∩ Z} is piecewise convex.

3) p3(x, y) :=
n∑
j=1
|sinπxj | is piecewise concave.

4) p4(x, y) := d1(x, [l, u] ∩ Zn) = min{‖x− z‖1 : z ∈ [l, u] ∩ Zn}

=
n∑
j=1

min{|xj − zj | : zj ∈ [lj , uj ] ∩ Z} is piecewise concave.

5) p5(x, y) = p5(x) :=
n∑
j=1

pj5(xj), with p
j
5(xj) := max{[xj − (lj + k)][(lj + k + 1) − xj ] : k =

0, ..., (uj − lj)− 1} is piecewise concave.
It is clear that all five above penalty functions are DC functions. Using one of these penalty

functions, the problem (1.15) can be reformulate as a continuous optimization problem

α := inf{f(x, y) = g(x, y)− h(x, y) + τp(x, y) : (x, y) ∈ K,x ∈ [l, u]} (1.16)

Pham Dinh and Le Thi [190] have proved the exact penalty for the last three penalty functions.
As for the first two penalty functions, there is no proof for exact penalty to date.

1.4 DC Algorithm

1.4.1 DCA for solving standard DC programs : standard DCA

DCA consists in the construction of the two sequences {xk} and {yk} (candidates to primal
and dual solutions, respectively) which are easy to calculate and satisfy the following properties :

i) The sequences (g − h)(xk) and (h? − g?)(yk) are decreasing.
ii) Their corresponding limits x∞ and y∞ either satisfy the local optimality condition (x∞, y∞) ∈
P` ×D` or are critical points of g − h and h? − g?, respectively.

Based on the local optimality conditions (Theorem 1.1), DCA constructs the sequences {xk}
and {yk}, from a given initial point x0 ∈ dom g, by setting

yk ∈ ∂h(xk);xk+1 ∈ ∂g?(yk).

The interpretation of DCA is simple. At iteration k, one replaces the second component h in
the primal program (P ) by its affine minorant

hk(x) = h(xk) + 〈x− xk, yk〉, (1.17)

where yk ∈ ∂h(xk). Then the primal program (P ) becomes the following convex program

(Pk) inf{g(x)− hk(x) : x ∈ X} = inf{g(x)− 〈x, yk〉 : x ∈ X}

The solution of (Pk) is nothing but xk+1 ∈ ∂g?(yk). Dually, a solution xk+1 of (Pk) is then
used to define the dual convex program (Dk+1) obtained from (D) by replacing the second DC

37



DC programming and DCA : the state of the art

component g? by its affine minorization g?k(y) = g?(yk) + 〈y − yk, xk+1〉. The convex problem
(Dk+1) is written as

(Dk+1) inf{h?(y)− g?k(y) : y ∈ X} = inf{h?(y)− 〈y, xk+1〉 : y ∈ Y }.

The solution set of (Dk+1) is exactly ∂h(xk+1).
The standard DCA for solving the standard DC program (P ) is described in Algorithm 1.1.

Algorithm 1.1 Standard DCA for solving a standard DC program

1: Initialization : Choose an initial point x0, k ← 0.
2: repeat
3: Compute yk ∈ ∂h(xk).
4: Compute xk+1 ∈ arg min

{
g(x)− 〈yk, x〉

}
.

5: k ← k + 1.
6: until Stopping criterion.

Convergence properties of DCA
Complete convergence properties are given in [189]. However, it is worthwhile to mention the

following properties :

Theorem 1.3 ([189]) Suppose that the sequences {xk} and {yk} are generated by DCA. Then
we have

i) The sequences {g(xk)− h(xk)} and {h?(yk)− g?(yk)} are decreasing and

• g(xk+1) − h(xk+1) = g(xk) − h(xk) if and only if {xk, xk+1} ⊂ ∂g?(yk) ∩ ∂h?(yk) and
[ρ(h) + ρ(g)]‖xk+1 − xk‖ = 0.

• h?(yk+1)− g?(yk+1) = h?(yk)− g?(yk) if and only if {yk, yk+1} ⊂ ∂g(xk) ∩ ∂h(xk) and
[ρ(h?) + ρ(g?)]‖yk+1 − yk‖ = 0.

DCA terminates at the k-th iteration if either of the above equalities holds.

ii) If ρ(h) + ρ(g) > 0 (resp. ρ(h?) + ρ(g?) > 0), then the sequence {‖xk+1 − xk‖2} (resp.
{‖yk+1 − yk‖2}) converges.

iii) If the optimal value α is finite and the sequences {xk} and {yk} are bounded, then every limit
point x∞ (resp. y∞) of the sequence {xk} (resp. {yk}) is a critical point of g − h (resp.
h? − g?).

iv) DCA has a linear convergence for general DC program.

v) In polyhedral DC programs, the sequences {xk} and {yk} contain finitely many elements and
DCA has a finite convergence.

vi) If DCA converges to a point x∗ that admits a convex neighborhood in which the objective
function f is finite and convex (i.e. the function f is locally convex at x∗) and if the second
DC component h is differentiable at x∗, then x∗ is a local minimizer to the problem (P ).

Remark 1.5

• DCA works with the convex DC components g and h but not with the DC function f itself.
Thus DCA can enjoy all the fundamental properties and results of convex optimization.
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• The most important among the key properties of DCA is the flexibility : there are as many
DCA as there are DC decompositions. Since a DC function f has infinitely many DC de-
compositions which have crucial impacts on the qualities (speed of convergence, robustness,
efficiency, globality of computed solutions,...) of DCA, one can explore and exploit the ef-
fects of DC decomposition to design efficient DCA schemes. For a given DC program, the
choice of “good” DC decompositions is still open. Of course, it should strongly depend on
the very specific structure of the considered problem.

• In practice, DCA quite often converges to global optimal solutions. The globality of DCA
may be assessed either when the optimal values are known a priori, or through global opti-
mization techniques such as Branch-and-Bound or cutting plane.

Convergence of DCA with subanalytic data
The general convergence of DCA above mentioned states that every convergent subsequence

of the sequence {xk} (resp. {yk}) converges to a generalized KKT point of (P ) (resp. (D)).
From a theoretical point of view, convergence rate analysis of DCA is an open issue. In [190],
the authors have studied the convergence of the whole sequences {xk} and {yk} as well as their
convergence rate, in case the objective functions and the constraints are subanalytic.

Theorem 1.4 ([190]) Let us consider DC program (P ) with α ∈ R. Suppose that the sequences
{xk}, {yk} are defined by the DCA and contained in the two convex sets C and D, respectively.

(i) Suppose that the DC function f := g−h is subanalytic such that dom f is closed ; f |dom f

is continuous and that g or h is differentiable on dom h or dom g, respectively with locally
Lipschitz derivative. Assume that ρ(g, C) + ρ(h,C) > 0, where ρ(g, C), ρ(h,C) are the strong
convexity modulus of g, h, respectively. If either the sequence {xk} or {yk} is bounded then {xk}
and {yk} are convergent to critical points of (Pdc) and (Ddc), respectively.

(ii) Similarly, for the dual problem, suppose that h∗−g∗ is subanalytic such that dom (h∗−g∗)
is closed ; (h∗ − g∗) |dom (h∗−g∗) is continuous and that g∗ or h∗ is differentiable on dom g∗ or
dom h∗, respectively with locally Lipschitz derivative. If ρ(g∗, D) + ρ(h∗, D) > 0 and either the
sequence {xk} or {yk} is bounded then {xk} and {yk} are convergent to critical points of (Pdc)
and (Ddc), respectively.

The convergence rates of the sequence {xk} generated by DCA is given in Theorem 1.5.

Theorem 1.5 ([190]) Suppose that the assumptions of Theorem 1.4 (i) are satisfied. Let x∞

be the limit point of {xk} with a Lojasiewicz exponent θ ∈ [0, 1). Then there exists constants
τ1, τ2 > 0 such that

‖xk − x∞‖ ≤
∞∑
j=k

‖xj − xj+1‖ ≤ τ1‖xk − xk−1‖+ τ2‖xk − xk−1‖
1−θ
θ , k = 1, 2, .... (1.18)

As a result, one has

— If θ ∈ (1/2, 1) then ‖xk − x∞‖ ≤ ck
1−θ
1−2θ for some c > 0.

— If θ ∈ (0, 1/2] then ‖xk − x∞‖ ≤ cqk for some c > 0; q ∈ (0, 1).

— If θ = 0 then {xk} is convergent in a finite number of steps.
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1.4.2 Links between DCA and standard convex/nonconvex programming ap-
proaches

As mentioned above, thanks to its flexibility, DCA recovers most standard methods in convex
and nonconvex optimization with an appropriate DC decomposition and/or suitable DC refor-
mulations.

Le Thi and Pham Dinh [144] have analyzed the common points and the difference between
DCA and Majorization-Minimization (MM). Recall that MM method for solving min{f(x) : x ∈
X ⊂ Rn} consists on computing iteratively xk+1 ∈ arg min{ϑ(x, xk) : x ∈ X} where ϑ is a
majorization of f such that f(x) ≤ ϑ(x, y),∀x, y ∈ X and f(x) = ϑ(x, x),∀x ∈ X . Note that,
when ϑ is convex, the MM is known under the name Successive Convex Approximation (SCA).
We can see that, DCA and MM are both a philosophy but not a simply an algorithm, they give a
way to construct algorithms. However, MM does not specify the way to construct the surrogate
function ϑ(x, x) which is a challenging task. Meanwhile, DCA gives the simplest and the most
closed convex surrogate function of objective funcion f . MM works directly with the nonconvex
f which can be a source of difficulty. As for DCA, by working with g and h, (the DC components
of f) which are convex, DCA enjoys all the fundamental convex analysis. Furthermore, while
the MM method majorizes iteratively the whole function f , DCA approximates only one part
of f . Thus, it is likely that the majorization in DCA is better than in MM. Regardless of its
generality, most related works using the MM/SCA method in the literature can be recovered
as versions of DCA. Le Thi and Pham Dinh [144] have showed that SCA using commonly used
convex surrogate functions in the literature (e.g. linear upper bounds, quadratic upper bounds
and proximal upper bounds) are DCA versions.

Furthermore, in [144], Le Thi and Pham Dinh have proved that

— proximal point algorithm and Goldstein-Levitin-Polyak projection algorithm for convex
programming are DCA versions ;

— concave-convex procedure (CCCP) is an instance of DCA in smooth optimization ;

— EM algorithm for exponential families is a special case of DCA ;

— Iterative shrinkage-thresholding algorithm (ISTA) is a DCA version.

Beside the above-mentioned algorithms, several other ones are also recognized as special cases of
DCA, such as Single block SCA, Jacobi SCA Algorithm, NOVA (iNner cOnVer Approximation
algorithm), SUM (Successive upper-bound minimization), FBSA (Forward-Backward Splitting
Algorithm), GIST (General Iterative Shrinkage and Thresholding), etc. For a complete list and
a deeper discussion, readers are referred to [144].

1.4.3 DCA for solving General DC Programs

Two approaches were proposed for the general DC program (1.3) [125, 190]. Both of them
consist in reformulating (1.3) as a standard DC program then apply standard DCA to solve the
latter. Both approaches can be viewed as a sequence of standard DCAs with updated penalty
(resp. relaxation) parameters, which marks the passage from standard DCAs to general DCAs
[144].

The first approach is based on penalty technique. Let the functions p and p+ be defined by

p(x) := max{fi(x) : i = 1, ...,m}; I(x) := {i ∈ {1, ...,m} : fi(x) = p(x)}
p+(x) := max{0, p(x)}.
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It is easy to see that p(x) and p+(x) are DC functions with the following DC decompositions

p(x) = max
i=1,...,m

gi(x) +
m∑

j=1,j 6=i
hj(x)

−
m∑
j=1

hj(x) (1.19)

p+(x) = max
i=1,...,m


m∑
j=1

hj(x), gi(x) +
m∑

j=1,j 6=i
hj(x)

−
m∑
j=1

hj(x) (1.20)

where gi, hi are the DC components of fi, i = 1, . . . ,m.
Thus, the general DC program (1.3) is reformulated as

α = inf{f0(x) := g0(x)− h0(x) : x ∈ C, p+(x) ≤ 0} (1.21)

and its penalized problem is a standard DC program

α(τ) = inf{ϕτ (x) := f(x) + τp+(x) : x ∈ C} (Pτ ) (1.22)

where τ > 0 is a penalty parameter.
Let DC decomposition of p+ be given by

p+(x) = p1(x)− p2(x), (1.23)

Then, ϕτ is a DC function with the below DC decomposition

ϕτ (x) = gτ (x)− hτ (x), (1.24)

where,
gτ (x) := g0(x) + τp1(x); hτ (x) := h0(x) + τp2(x). (1.25)

Exact penalty (relative the constraint p+(x) ≤ 0) for (1.21) means that there is τ0 ≥ 0 such
that for all τ > τ0 the general DC program (1.3) is equivalent to the penalized problem (1.22)
in the sense that they have the same global solution set and α(τ) = α. Hence, the solution of
the general DC program (1.3) can be obtained by solving the standard DCA program (1.22)
by standard DCA. However, in practice, the penalty parameter τ0 is generally unknown. To
overcome this issue, Pham Dinh and Le Thi [190] proposed a DCA scheme with updated penalty
parameter. Instead of solving the problem (Pτ ) with a fixed penalty parameter τ , one applies
DCA to the sequence of (Pτk) with an increasing sequence of penalty parameters {τk} given by a
updating rule from the current iteration xk such that xk+1 is the next iteration of DCA applied
to (Pτk) from xk.

One considers the sequence of penalized DC programs (1.22)

inf{ϕk(x) := f0(x) + βkp
+(x) : x ∈ C} (1.26)

with penalty parameters τ = βk and ϕk(x) = ϕτ (x). DCA with updated penalty parameter is
described in Algorithm 1.2.

Note that the update rule of penalty parameter is to ensure that if the sequence {βk} is
unbounded then ‖xk+1 − xk‖ → 0 and rk > 0.

To state the converge properties of Algorithm 1.2, we need the following assumptions.

Assumption 1.1 (i) f ′is (i = 0, ...,m) are locally Lipschitz functions at every point of C.
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Algorithm 1.2 DCA with updated penalty parameter for solving general DC program (1.3)

1: Initialization : Choose an initial point x0 ∈ C; δ > 0; an initial penalty parameter β0 > 0,
k ← 0, STOP = false.

2: repeat
3: Compute yk ∈ ∂hk(xk).
4: Compute xk+1 ∈ ∂(gk + χC)∗(yk),i.e., xk+1 is a solution of the convex program

min{gk(x)− 〈x, yk〉 : x ∈ C}. (1.27)

5: Stopping test : if xk+1 = xk and p(xk) ≤ 0 then STOP=true.
6: Update the penalty parameter : Compute rk := min{p(xk), p(xk+1)} and set

βk+1 =

{
βk if either βk ≥ ‖xk+1 − xk‖−1 or rk ≤ 0,
βk + δ if βk < ‖xk+1 − xk‖−1 and rk > 0,

7: k ← k + 1.
8: until STOP = true.

(ii) Either gk or hk is differentiable on C, and ρ(g0, C) + ρ(h0, C) + ρ(p1, C) + ρ(p2, C) > 0.
(iii) The (extended) Mangasarian-Fromowitz constraint qualification (EMFCQ) is satisfied at

any x ∈ Rn with p(x) ≥ 0.

Theorem 1.6 Suppose that C ⊆ Rn is a nonempty closed convex set and fi, i = 1, ...,m are
DC functions on C. Suppose further that the Assumption 1.1 is verified.

Let δ > 0, β1 > 0 be given. Let {xk} be a sequence generated by Algorithm 1.2. Then Al-
gorithm 1.2 either stops, after finitely many iterations, at a KKT point xk for problem (1.3) or
generates an infinite sequence {xk} of iterates such that limk→∞ ‖xk+1−xk‖ = 0 and every limit
point x∞ of the sequence {xk} is a KKT point of problem (1.3).

In the second approach for solving the general DC program (1.3), one applies the main idea
of DCA (that is the linearization of concave part of the DC structure) to the DC constraints.
Thus, the generalized DCA for general DC program (1.3) consists in solving a sequence of convex
programs of the form :

inf{ g0(x)− 〈yk0 , x〉 :
x ∈ C, gi(x)− hi(xk)− 〈yki , x− xk〉 ≤ 0, i = 1, ...,m} (1.28)

where, xk ∈ Rn is the current iterate, yki ∈ ∂hi(xk) for i = 0, ...,m. This linearization introduces
an inner convex approximation of the feasible set of (1.3) which is quite often poor and can
lead to infeasibility of convex subproblem (1.28). To avoid this issue, one considers the following
problem instead of (1.28)

inf{ g0(x)− 〈yk0 , x〉+ βkt :
x ∈ C, gi(x)− [hi(x

k) + 〈yki , x− xk〉] ≤ t, i = 1, ...,m;
t ≥ 0}

(1.29)

where βk > 0 is a penalty parameter. The second DCA scheme for solving the general DC
problem (1.3) is presented in Algorithm 1.3.

The following lemma is needed to investigate the convergence of Algorithm 1.3.
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Algorithm 1.3 DCA for solving general DC program (1.3)

1: Initialization : Choose an initial point x0 ∈ C; δ1, δ2 > 0; an initial penalty parameter
β0 > 0, k ← 0, STOP = false.

2: repeat
3: Compute yki ∈ ∂hi(xk), i = 0, ...,m.
4: Compute (xk+1, tk+1) as the solution of (1.29), and the associated Lagrange multipliers

(λk+1, µk+1).
5: Stopping test : xk+1 = xk and tk+1 = 0 then STOP=true.
6: Update the penalty parameter : Compute rk := min{‖xk+1− xk‖−1, ‖λk+1‖1 + δ1}, where

‖λk+1‖1 =
∑m

i=1 |λ
k+1
i |, and set

βk+1 =

{
βk if βk ≥ rk,
βk + δ2 if βk < rk.

7: k ← k + 1.
8: until STOP = true.

Lemma 1.1 The sequence (xk, tk) generated by Algorithm 1.3 satisfies the following inequality

ϕk(x
k)− ϕk(xk+1) ≥ ρ

2
‖xk+1 − xk‖2, for all k = 1, 2, ... (1.30)

where, ρ := ρ(g0, C) + ρ(h0, C) + min{ρ(gi, C) : i = 1, ...m}.

The convergence of Algorithm 1.3 is stated in the Theorem 1.7.

Theorem 1.7 Suppose that C ⊆ Rn is a nonempty closed convex set and fi, i = 1, ...,m, are
DC functions on C such that (i) and (iii) in Assumption 1.1 are verified. Suppose further that
for each i = 0, ...,m, either gi or hi is differentiable on C and that

ρ := ρ(g0, C) + ρ(h0, C) + min{ρ(gi, C) : i = 1, ...m} > 0.

Let δ1, δ2 > 0, β1 > 0 be given. Let {xk} be a sequence generated by Algorithm 1.3. Then
Algorithm 1.3 either stops, after finitely many iterations, at a KKT point xk for problem (1.3)
or generates an infinite sequence {xk} of iterates such that limk→∞ ‖xk+1 − xk‖ = 0 and every
limit point x∞ of the sequence {xk} is a KKT point of problem (1.3).

1.5 Open issues and new trends in DC Programming and DCA
development

Despite the bright successes of DC Programming and DCA for modeling and solving numerous
nonconvex non-smooth optimization problems, one can still exploit the full power and freedom
offered by these tools to further improve the proposed DCAs . Indeed, DCA is rather a philosophy
than an algorithm and the design of an efficient DCA for a considered problem is not a simple
procedure. Several aspects should be studied while developing DCA [144].
(i) Finding an good DC decomposition. A DC function has infinitely many DC decompositions,

thus there is not only one DCA for a considered problem. The choice of a “good” DC de-
composition is still an open issue. This should greatly depend on the very specific structure
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of the problem being considered. From the computational point of view, the complexity of
DCA depends strongly on the solution methods for convex sub-problems. Thus, designing
fast and scalable solvers for convex sub-problems is an important issue of DCA. The ideal
DC decomposition corresponds to an explicit DCA, i.e. the solution of convex sub-problem
at each iteration can be explicitly computed.

(ii) Finding a good starting point. A good starting point for DCA can be obtained by using
or combining with other approaches such as heuristic algorithms or local search methods.
Another way consists is finding a convex minorant of the objective function and solving
the resulting convex program whose solution is used to initialize DCA [144].

(iii) Improve the convergence speed of DCA. One can use the Nesterov acceleration technique
or Armijo type linesearch to boost the convergence speed of DCA.

(iv) Globalizing DCA. Several strategies can be investigated to obtain the global solution :
DCA multi-start, combine DCA with global approaches such as Brand and Bound or Cut
methods, finding convex minorants of DC functions for computing lower bounds of optimal
values.

The new trend in development of DC programming and DCA consists in developing advan-
ced variants of DCA in order to improve the standard DCA and to deal with very large-scale
optimization problems. Recently, several variants of DCA have been proposed : Approximate
DCA [230], DCA with successive DC decomposition [144], Stochastic DCA [191], Online DCA
[105, 124, 106], Boosted DCA [10, 11], etc.
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Advanced techniques in DC
programming and DCA
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In this part, we present several advanced variants of DCA in order to improve the standard
DCA and to deal with very large-scale optimization problems.

In Chapter 2, we introduce Accelerated DCA (ADCA) with the aim to improve the conver-
gence of standard DCA. Firstly, we develop ADCA for solving the standard DCA by incorporating
the Nesterov’s acceleration technique into standard DCA (Section 2.2). The acceleration step in
ADCA which consists in using an extrapolated point from the current iterate xk and the pre-
vious one, aims to find a point zk which is better than xk for the computation of xk+1. We prove
that ADCA converges to a critical point of the standard DC program. Furthermore, we study
the convergence rate of ADCA under Kurdyka-Lojasiewicz (KL) assumption. In Section 2.3, we
investigate ADCA for a special class of optimization problems, namely the sum of two nonconvex
function minimization problem

min
x∈Rn

f(x) + r(x),

where f is a differentiable function with L-Lipschitz continuous gradient (possibly nonconvex)
and r is a DC function. Exploiting the fact that f(x) is differentiable with L-gradient, we propose,
an efficient DC decomposition for which the corresponding ADCA scheme is inexpensive. As
application, we address the sparse binary logistic regression problem (Section 2.4). It turns out
that ADCA for solving the latter is very inexpensive : it only required the soft thresholding
operator which is explicitly computed.

In Chapter 3, we develop the second variant of DCA, named DCA-Like. DCA-Like is “like”
DCA in the sense that they iteratively approximate the DC program by a sequence of convex
ones. However, DCA-Like is “unlike” DCA in the way to approximate the objective function for
which we possibly do not have a DC decomposition. While standard DCA works with a convex
majorization of the objective function on the whole space via an available DC decomposition,
DCA-Like seeks a better convex approximation at the current solution through a decomposition
which is not necessarily DC. Thus, DCA-Like works even when one can not highlight a DC
decomposition. We investigate DCA-Like for two special classes of optimization problems. In
Section 3.2, we consider the minimization of the sum of a nonconvex, differentiable function with
L-Lipschitz continuous gradient and composite functions, i.e.,

min
x∈X

f(x) +
m∑
i=1

hi(gi(xi)),

where f : Rn → R is nonconvex differentiable with L-Lipschitz continuous gradient, gi : Rni → R
are continuous convex (possibly nonsmooth) where xi (for i = 1, . . . ,m) are sub-vectors of x with∑m

i=1 ni = n, hi : R → R are concave increasing and X ⊂ Rn is closed convex set. Exploiting
the special structure of the considered problem, we develop DCA-Like to solve it. Furthermore,
we improve DCA-Like by incorporating the Nesterov’s acceleration technique into it, to obtain
the so named Accelerated DCA-Like (ADCA-Like). We prove that the whole bounded sequence
{xk} generated by DCA-Like converges to a critical point of considered problem under some
conditions. Furthermore, under Kurdyka-Łojasiewicz assumption, the convergence rate of DCA-
Like is proved to be at least sublinear O(1/kα) with α > 1.

Following the same direction, in Section 3.3, we develop DCA-Like and DCA-Like for the mi-
nimization of the sum of two nonconvex function minimization problem (that we had considered
in Section 2.3).

The efficiency of DCA-Like and ADCA-Like is illustrated in three applications in machine
learning : the t-distributed Stochastic Embedding (t-SNE) problem (Section 3.4), the group
variables selection multi-class logistic regression (Section 3.5) and the sparse binary logistic
regression (Section 3.6).
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In Chapter 4, we present another variant of DCA, named Stochastic DCA (SDCA), for solving
the large sum of DC functions minimization which takes the form :

min
x∈Rd

{
F (x) :=

1

n

n∑
i=1

Fi(x)

}
,

where Fi are DC functions, i.e., Fi(x) = gi(x)−hi(x) with gi and hi being lower semi-continuous
proper convex functions, and n is a very large integer number. The above problem has a double
difficulties due to the nonconvexity of Fi and the large value of n. By taking the advantage
of the sum structure, we develop SDCA to solve the large sum of DC functions minimization
problem. The basic idea of stochastic DCA is to update, at each iteration, the minorant of only
some randomly chosen hi while keeping the minorant of the other hi. We prove that the SDCA’s
convergence is guaranteed with probability one. We further propose an inexact stochastic DCA
version in which both subgradient of H and optimal solution of the resulting convex program
are approximately computed. In Section 4.3, we apply SDCA to the group variables selection in
multi-class logistic regression. By using a suitable DC decomposition of the objective function,
we design a SDCA scheme in which all computations are explicit and inexpensive.
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Chapitre 2

Accelerated DCA for standard DC
program1

Abstract: In this chapter, we present a variant of standard DCA with the aim to accelerate the DCA’s
convergence. The proposed algorithm, named Accelerated DCA (ADCA), consists in incorporating the
Nesterov’s acceleration technique into DCA. We first investigate ADCA for solving the standard DC
program and rigorously study its convergence properties and the convergence rate. Secondly, we develop
ADCA for a special case of the standard DC program whose the objective function is the sum of a
differentiable function with L-Lipschitz continuous gradient (possibly nonconvex) and a DC function.
We exploit the special structure of the problem to propose an efficient DC decomposition for which the
corresponding ADCA scheme is inexpensive. As an application, we consider the sparse binary logistic
regression problem. Numerical experiments on several benchmark datasets illustrate the efficiency of our
algorithm and its superiority over well-known methods.

2.1 Introduction

Nowadays, especially with the Big Data explosion, it has been becoming more and more
important to develop advanced optimization methods able to handle very large-scale problems.
Motivated by the success of DCA on several nonconvex/nonsmooth programs to which it was
proved to be more robust and more efficient than related standard methods, we aim to investigate
a variant of DCA in order to improve its performance.

Our contribution : Firstly, we introduce Accelerated DCA (ADCA) for solving the standard
DC program. In ADCA, we incorporate the Nesterov’s acceleration technique into standard DCA
in order to improve its performance. The idea of ADCA is different to the usual line search
acceleration using Armijo type rule which can be computationally costly. The acceleration step
in ADCA which consists in using an extrapolated point from the current iterate xk and the
previous one, aims to find a point zk which is better than xk for the computation of xk+1. We
then provide a rigorous argument to prove the interesting convergence properties of ADCA as
well as the convergence rate under the Lojasiewicz assumption.

1. The results presented in this chapter were published in :

• D.N. Phan, H.M. Le, H.A. Le Thi, Accelerated Difference of Convex functions Algorithm and its Application
to Sparse Binary Logistic Regression, 27th International Joint Conference on Artificial Intelligence and 23rd
European Conference on Artificial Intelligence (IJCAI-ECAI 2018), 1369-1375, 2018.
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Secondly, we investigate ADCA for a special case of the standard DC program, namely the
sum of two nonconvex function minimization problem

min
x∈Rn

f(x) + r(x), (2.1)

where f is a differentiable function with L-Lipschitz continuous gradient (possibly nonconvex)
and r is a DC function. The problem (2.1) covers several nonconvex and nonsmooth problems
arising from various fields such as machine learning, computational biology, signal processing,
etc.

The problem (2.1) has been attracting attention of many researchers. Proximal gradient (PG)
methods, which are also known as different names ISTA, fixed point iteration, forward-backward
splitting (see e.g. [111, 21, 57, 93]), have been extensively developed for the convex case of (2.1),
i.e., both f and r are convex. In [170], the author introduced the first accelerated proximal
gradient (APG) method for solving (2.1) with f convex and r = 0. Later, Beck and Teboulle
[20, 21] extended it for the case where both f and r are convex. These algorithms exhibit a
global convergence rate O(1/k2), where k is the iteration counter. Recently, several extensions
of APG method for the convex case of (2.1) have been proposed for the nonconvex cases. For
instance, Li and Lin [154] have extended the method of [20] for f differentiable with L-Lipschitz
gradient and r nonconvex. In [90], the authors presented inexact versions of PG and APG for
solving (2.1) with f smooth and r nonsmooth (possibly nonconvex). Another inexact APG for the
nonconvex case of (2.1) which only requires one proximal step at each iteration, were proposed in
[248]. However, the aforementioned algorithms have to compute the proximal map of nonconvex
functions r which do not has closed form in many cases. Usually, this computation can be very
expensive or impossible.

In this work, by exploiting the properties of f and r, we propose an efficient DC decomposition
for which the corresponding DCA and ADCA are inexpensive.

Finally, as an application, we consider the sparse binary logistic regression and carefully
perform numerical experiments of all proposed algorithms.

The remainder of the chapter is organized as follows. In Section 2.2 we introduce ADCA
for the standard DC program and study its convergence properties. ADCA for solving the pro-
blem (2.1) is presented in Section 2.3. The numerical experiments on the sparse binary logistic
regression problem are reported in Section 2.4 and Section 2.5 concludes the chapter.

2.2 Accelerated DCA for the standard DC program

Let us consider the standard DC program

(P ) α = inf{F (x) = G(x)−H(x) : x ∈ X} (2.2)

where G,H ∈ Γ0(X).
Recall that the standard DCA (Algorithm 1.1) for solving the standard DC program (P)

consists in the construction of the two sequences {xk} and {yk} such that yk ∈ ∂H(xk) and xk+1

is an optimal solution of the convex sub-problem min
{
G(x)− 〈yk, x〉

}
.

One of the ways to improve standard DCA is to incorporate acceleration techniques. Aragon
Artacho et al. [10] introduced Boosted DCA which accelerates standard DCA by a line search
using an Armijo type rule. In Boosted DCA, the point xk generated by DCA is used to define
the search direction which was proposed by Fukushima-Mine [77]. The first version of Boosted
DCA [10] was proposed only to smooth DC functions. Later, it was extended for some classes of
non-smooth DC functions [11].
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In our work, we introduced a different way to accelerate the standard DCA. The so called
Accelerated DCA (ADCA in short) consists in incorporating the Nesterov’s acceleration tech-
nique [170] (which was proposed for convex programs) into standard DCA. More precisely, the
acceleration step in ADCA aims to find a point zk which is an extrapolated point of the current
iterate xk and the previous iterate xk−1 via Nesterov’s acceleration formulation

zk = xk +
tk − 1

tk+1

(
xk − xk−1

)
,

where tk+1 =
1+
√

1+4t2k
2 . If zk is better than one of last q + 1 iterates {xk−q, . . . , xk−1, xk} in

terms of objective function, i.e., F (zk) ≤ max
t=max(0,k−q),...,k

F (xt) then zk will be used instead of

xk to compute yk in the DCA scheme. This condition allows the objective function F (x) to
increase and consequently to escape from a potential bad local minimum [89, 239]. Theoretically,
a large-value of q increases the chance of using the extrapolated points zk in ADCA. Note that
if q = 0 then F (zk) ≤ F (xk) and ADCA is a monotone algorithm like DCA. ADCA is described
in Algorithm 2.1.

Algorithm 2.1 ADCA for solving the standard DC program

1: Initialization : Choose an initial point x0, z0 = x0, q ∈ N, t0 = (1 +
√

5)/2, and k ← 0.
2: repeat
3: If F (zk) ≤ maxt=max(0,k−q),...,k F (xt) then set vk = zk, otherwise set vk = xk.
4: Compute yk ∈ ∂H(vk).
5: Compute xk+1 = argminx∈X

{
G(x)− 〈yk, x〉

}
.

6: Compute tk+1 =
1+
√

1+4t2k
2 and zk+1 = xk+1 + tk−1

tk+1

(
xk+1 − xk

)
if k ≥ 1

7: k ← k + 1.
8: until Stopping criterion.

Convergence of ADCA. The first result provides the behavior of the limit points of the
sequence {xφ(k)} generated by ADCA, where φ(k) = arg mint=k+1,...,k+1+q ‖xt − vt−1‖2.

Theorem 2.1 Let µ(g) and µ(h) be the convex modulus of g and h, respectively. If
α = infx∈Rn f(x) > −∞ and min{µ(g), µ(h)} > 0, then for any subsequence {xφ(kj)} of {xφ(k)},
converging to x∗ such that {yφ(kj)−1} is bounded, the limit point x∗ is a critical point of (2.2).

To prove Theorem 2.1, we will use the following lemma. Denote by {Γk} the sequence defined
as

Γk = maxt=max(0,k−q),...,k F (xt).

Lemma 2.1 Let {xk} and {vk} be sequences generated by ADCA. The following statements hold.
(i) For any k = 0, 1, ...,

Γk − Γk+1+q ≥ µ(G) + µ(H)

2
‖xφ(k) − vφ(k)−1‖2. (2.3)

As a result, by choosing q = 0, we get the monotone property of {F (xk)}, i.e., F (xk)−F (xk+1) ≥
µ(G)+µ(H)

2 ‖xk+1 − vk‖2.
(ii) If α = infx∈Rn F (x) > −∞ and min{µ(G), µ(H)} > 0, then

∑+∞
k=0 ‖xφ(k) − vφ(k)−1‖2 <

+∞, and therefore limk→+∞ ‖xφ(k) − vφ(k)−1‖ = 0.
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Proof 2.1 First let us justify (i) by noting from the µ-convexity of G and yk ∈ ∂G(xk+1) that

G(vk) ≥ G(xk+1) + 〈yk, vk − xk+1〉+
µ(G)

2
‖vk − xk+1‖2.

It follows from the µ-convexity of H and yk ∈ ∂H(vk) that

H(xk+1) ≥ H(vk) + 〈yk, xk+1 − vk〉+
µ(H)

2
‖xk+1 − vk‖2.

Summing two above inequalities, we have

F (vk)− F (xk+1) ≥ µ(G) + µ(H)

2
‖xk+1 − vk‖2. (2.4)

Observe that F (vk) ≤ maxt=max(0,k−q),...,k F (xt) = Γk. It follows from this and (2.4) that

F (xk+1) ≤ Γk − µ(G) + µ(H)

2
‖xk+1 − vk‖2. (2.5)

This implies that F (xk+1) ≤ Γk. We prove by induction that for all t = 0, ..., q

F (xk+1+t) ≤ Γk − µ(G) + µ(H)

2
‖xk+1+t − vk+t‖2. (2.6)

Indeed, it follows from (2.5) that the claim holds for t = 0. We suppose that it also holds for
t = 0, ..., p− 1 with 1 ≤ p ≤ q. Thus, we have

F (xk+1+p) ≤ Γk+p − µ(G)+µ(H)
2 ‖xk+1+p − vk+p‖2

≤ max(Γk, F (xk+1), ..., F (xk+p))− µ(G)+µ(H)
2 ‖xk+1+p − vk+p‖2

≤ Γk − µ(G)+µ(H)
2 ‖xk+1+p − vk+p‖2,

where last inequality follows from F (xk+1+t) ≤ Γk for t = 0, ..., p− 1. Therefore, we obtain

Γk+q+1 = maxt=k+1,...,k+q+1 F (xt) ≤ Γk − min
t=k+1,...,k+1+q

µ(G)+µ(H)
2 ‖xt − vt−1‖2

= Γk − µ(G)+µ(H)
2 ‖xφ(k) − vφ(k)−1‖2.

Next let us prove (ii) by noting that Γk ≥ α for all k. Summing (2.3) over k = 0, ..., N we get

µ(G)+µ(H)
2

∑N
k=0 ‖xφ(k) − vφ(k)−1‖2 ≤

∑q
t=0(Γt − ΓN+t+1)

≤ (q + 1)(maxt=0,...,q F (xt)− α).

Since min{µ(G), µ(H)} > 0, we have

∑N
k=0 ‖xφ(k) − vφ(k)−1‖2 ≤

2(q+1)( max
t=0,...,q

F (xt)−α)

µ(G)+µ(H) .

Passing to the limit over the sequence {N}N∈N, we obtain∑+∞
k=0 ‖xφ(k) − vφ(k)−1‖2 < +∞, (2.7)

and therefore limk→+∞ ‖xφ(k) − vφ(k)−1‖ = 0. �
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Proof 2.2 (Proof of Theorem 2.1) Let {xφ(kj)} be a subsequence of {xφ(k)} that converges
to x∗. It follows from (ii) of Lemma 2.1 that limj→+∞ v

φ(kj)−1 = x∗. Without loss of genera-
lity, we can suppose that the sequence {yφ(kj)−1} converges to y∗. By the closed property of the
subdifferential mapping ∂H, we have y∗ ∈ ∂H(x∗). We note that

xφ(kj) ∈ arg min{G(x)− 〈yφ(kj)−1, x〉}.

This implies that yφ(kj)−1 ∈ ∂G(xφ(kj)). By the closedness of ∂G, we obtain y∗ ∈ ∂G(x∗).
Therefore, y∗ ∈ ∂G(x∗) ∩ ∂H(x∗). It follows from this that x∗ is a critical point of the DC
program (2.2). �

Recall that a lower semicontinuous function f has the Lojasiewicz property [12] if for any
limiting-critical point x∗, that is 0 ∈ ∂LF (x∗), there exist C, ε > 0 and θ ∈ [0, 1) such that

|F (x)− F (x∗)|θ ≤ C‖x̂‖, ∀x ∈ B(x∗, ε), ∀x̂ ∈ ∂LF (x).

Here ∂LF (x) denotes the limiting-subdifferential of F at x. The class of functions having the
Lojasiewicz property is very ample, for example, semi-algebraic, subanalytic, and log-exp func-
tions.

Lemma 2.2 Consider the settings of Theorem 2.1. Let {xk} be sequence generated by ADCA
with q = 0. Denote by Ω the set of limit points of {xk}. Suppose further that {xk} and {yk} are
bounded, and f is lower semicontinuous. The following statements hold.

(i) Ω is a compact set and limk→∞ F (xk) = F (x∗) for some x∗ ∈ Ω. Thus, F has the same
value on Ω, which is denoted by F ∗.

(ii) If F has the Lojasiewicz property and H is differentiable, then there exist C, ε > 0 and
θ ∈ [0, 1) such that ∀x ∈ {x ∈ Rn : dist(x,Ω) ≤ ε}, one has

|F (x)− F ∗|θ ≤ C‖x̂‖, (2.8)

∀x̂ ∈ ∂LF (x).
(iii) If F has the Lojasiewicz property and G is differentiable, then there exist C, ε > 0 and

θ ∈ [0, 1) such that ∀x ∈ {x ∈ Rn : dist(x,Ω) ≤ ε}, one has

|F (x)− F ∗|θ ≤ C‖x̂‖, (2.9)

∀x̂ ∈ ∂L(−F )(x).

Proof 2.3 (i) Since {xk} is bounded and Ω is the set of its limit points, Ω is a compact set.
It follows from α = infx∈Rn F (x) > −∞ and (i) of Lemma 2.1 that the sequence {F (xk)} is
non-increasing and bounded below. Thus, there exists F ∗ = limk→∞ F (xk). Let x∗ ∈ Ω. There
exists a subsequence {xkj} that converges to x∗. Without loss of generality, we can assume that
{ykj−1} converges to y∗. We note that

xkj ∈ arg min{G(x)− 〈ykj−1, x− vkj−1〉}.

This implies that for all x,

G(xkj )− 〈ykj−1, xkj − vkj−1〉 ≤ G(x∗)− 〈ykj−1, x∗ − vkj−1〉.

Taking j → +∞ gives us that

lim sup
j→+∞

G(xkj ) ≤ G(x∗). (2.10)
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Therefore, we have

lim sup
j→∞

F (xkj ) = lim sup
j→∞

[G(xkj )−H(xkj )]

≤ lim sup
j→∞

G(xkj )− lim inf
j→∞

H(xkj )

≤ G(x∗)− lim inf
j→∞

H(xkj )

≤ G(x∗)−H(x∗) = F (x∗),

where the second inequality follows from (2.10) and the last inequality holds by the lower semicon-
tinuity of H. On the other hand, from the lower semicontinuity of F , we obtain lim infj→∞ F (xkj ) ≥
F (x∗). Hence, by the uniqueness of limit, we have F ∗ = F (x∗).

Let us justify (ii) by noting that ∂LF (x∗) = ∂G(x∗)−∇H(x∗) for all x∗ ∈ Ω. Hence, Ω is a
subset of the limiting-critical points of F . According to Lemma 1 in [12], applied to the function
F , there exist C, ε > 0 and θ ∈ [0, 1) such that ∀x ∈ Rn, dist(x,Ω) ≤ ε, ∀x̂ ∈ ∂LF (x), one has

|F (x)− F ∗|θ ≤ C‖x̂‖.

By using a similar argument, we have the result (iii). �

We now provide the asymptotic convergence rate of ADCA under the Kurdyka-Lojasiewicz
(KL) assumption.

Theorem 2.2 Consider the settings of Theorem 2.1. Suppose further that either G or H is
differentiable with locally Lipschitz derivative. Let {xk} be sequence generated by ADCA with q =
0. Assume that F is lower semicontinuous and has the Lojasiewicz property, and {xk}, {yk} are
bounded. Denote by θ the parameter, which is defined as in Lemma 2.2. The following estimations
hold

(i) If θ = 0, then the sequence {F (xk)} converges to F ∗ in a finite number of steps.
(ii) If θ ∈ (0, 1/2], then the sequence {F (xk)} converges linearly to F ∗.
(iii) If θ ∈ (1/2, 1), then there exist positive constants η and N0 such that F (xk) − F ∗ ≤

ηk−
1

2θ−1 , for all k ≥ N0.

Proof 2.4 Let us consider the following cases.
Case 1. G is differentiable and its derivative is locally Lipschitz. For each x ∈ Ω, there exist

Lx, εx > 0 such that

‖∇G(u)−∇G(v)‖ ≤ Lx‖u− v‖ ∀u, v ∈ B(x, εx). (2.11)

From the compactness of Ω, there exist w1, ..., wm ∈ Ω such that Ω ⊂ ∪mi=1B(wi, εwi/4), where
B(w, ε) is the open ball with the center w and radius ε. Set L = max{Lwi : i = 1, ...,m} and
ε = min{εwi/2 : i = 1, ...,m}. It follows from the (ii) of Lemma 2.1 that {vk} and {xk} share
the same the set of limit points Ω. Hence, there exists N1 > 0 such that vk ∈ ∪mi=1B(wi, εwi/2)
and ‖xk+1 − vk‖ ≤ ε whenever k ≥ N1. Thus, for any k ≥ N1, there is wi such that xk+1, vk ∈
B(wi, εwi). This implies that

‖∇G(xk+1)−∇G(vk)‖ ≤ Lwi‖xk+1 − vk‖ ≤ L‖xk+1 − vk‖. (2.12)

On the other hand, since G is differentiable and by the definition of xk+1, we have

∇G(xk+1)−∇G(vk) = yk −∇G(vk)
∈ ∂H(vk)−∇G(vk) = ∂L(−F )(vk).
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Therefore, from the (iii) of Lemma 2.2 and dist(vk,Ω) → 0, by increasing N1 if necessary, we
have for all k ≥ N1

|F (vk)− F ∗|θ ≤ C‖G(xk+1)−∇G(vk)‖.

Combining this and F (vk)− F ∗ ≥ F (xk+1)− F ∗ ≥ 0, we get

|F (xk+1)− F ∗|2θ ≤ C2‖G(xk+1)−∇G(vk)‖2
≤ (CL)2‖xk+1 − vk‖2

≤ 2(CL)2

µ(G)+µ(H) [F (xk)− F (xk+1],

where the second inequality follows from (2.12) and the last inequality follows from (i) of Lemma
2.1. Hence, by setting rk = F (xk)− F ∗, we obtain

r2θ
k+1 ≤

2(CL)2

µ(G) + µ(H)
[rk − rk+1]. (2.13)

Case 2. H is differentiable and its derivative is locally Lipschitz. Similar to Case 1, we can
find L,N2 > 0 such that for any k ≥ N2,

‖∇H(vk)−∇H(xk+1)‖ ≤ L‖vk − xk+1‖. (2.14)

Since H is differentiable and by the definition of xk+1, we have

∇H(vk)−∇H(xk+1) = yk −∇H(xk+1)
∈ ∂G(xk+1)−∇H(xk+1)
= ∂LF (xk+1).

(2.15)

Therefore, from the (ii) of Lemma 2.2 and dist(xk+1,Ω)→ 0, by increasing N2 if necessary, we
have for all k ≥ N2,

|F (xk+1)− F ∗|2θ ≤ C2‖∇H(vk)−∇H(xk+1)‖2
≤ (CL)2‖vk − xk+1‖2

≤ 2(CL)2

µ(G)+µ(H) [F (xk)− F (xk+1)],

where the second inequality follows from (2.14) and the last inequality follows from the (i) of
Lemma 2.1. Hence, we obtain

r2θ
k+1 ≤

2(CL)2

µ(G) + µ(H)
[rk − rk+1]. (2.16)

Thus, from (2.13) and (2.16), we have shown that, in both cases, there exists τ > 0 such that

r2θ
k+1 ≤ τ [rk − rk+1]. (2.17)

By using similar arguments in [74], it is easy to show that sequence {rk} satisfying the above
inductive property converges to zero at different rates according to θ as stated in the theorem. �

We consider now a special case of the standard DC program whose the objective function is
the sum of a differentiable function with L-Lipschitz continuous gradient (possibly nonconvex)
and a DC function. We exploit the special structure of the problem to propose an efficient DC
decomposition for which the corresponding ADCA scheme is inexpensive.
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2.3 Accelerated DCA for the sum of two nonconvex functions
minimization problem

We consider now the sum of two nonconvex functions minimization problem (2.1). Recall
that (2.1) is of the form

min
x∈Rn

F (x) = f(x) + r(x),

where f(x) is a differentiable non-convex function with L-Lipschitz continuous gradient and r(x)
is a DC function.

Since f is a function with L-Lipschitz continuous gradient, it can be expressed as a DC
function : f(x) = ρ

2‖x‖
2 −

[ρ
2‖x‖

2 − f(x)
]
, where ρ ≥ L. Let r(x) := gr(x) − hr(x), then a DC

decomposition of F (x) = f(x) + r(x) is given by

F (x) = G(x)−H(x), (2.18)

where G(x) = ρ
2‖x‖

2 + gr(x) and H(x) = ρ
2‖x‖

2 − f(x) + hr(x). Thus, DCA and ADCA can
be applied to solve (2.1). According to Algorithm 2.1, ADCA for solving the problem (2.1) is
described in Algorithm 2.2.

Algorithm 2.2 ADCA for solving (2.1)

1: Initialization : Choose an initial point x0, z0 = x0, q ∈ N, t0 = (1 +
√

5)/2, ρ > L, and
k ← 0.

2: repeat
3: If F (zk) ≤ maxt=max(0,k−q),...,k F (xt) then set vk = zk, otherwise set vk = xk.
4: Compute yk = ρvk −∇f(vk) + ξk, where ξk ∈ ∂hr(vk).
5: Compute xk+1 by solving strongly convex problem

min
x∈Rn

{ρ
2
‖x‖2 + gr(x)− 〈yk, x〉

}
. (2.19)

6: Compute tk+1 =
1+
√

1+4t2k
2 and zk+1 = xk+1 + tk−1

tk+1

(
xk+1 − xk

)
if k ≥ 1

7: k ← k + 1.
8: until Stopping criterion.

Note that µ(g) > ρ > 0 and the convergence results of Algorithm 2.2 are guaranteed by
Theorem 2.1 and Theorem 2.2. Furthermore, with most of existing nonconvex regularizers r
in the literature, the resolution of the sub-problem (2.19) is inexpensive or can be explicitly
computed.

2.4 Application of ADCA on the sparse binary logistic regression
problem

We consider now the sparse binary logistic regression problem. The problem can be described
as follows. Let {(x1, y1), . . . , (xn, yn)} be a training set with observation vectors xi ∈ Rd and
labels yi ∈ {−1, 1}. We aim to find a hyperplane 〈w, x〉 + b that separates the two classes. To
find w and b, we maximize the log-likelihood function − 1

n

∑n
i=1 log(1 + exp(−yi(xTi w+ b))). On

the other hand, to deal with irrelevant and redundant features in high-dimensional data, we use

56



Accelerated DCA

features selection method which consists in minimizing the zero-norm of w. Hence the sparse
binary logistic regression is formulated by

min
w∈Rd,b∈R

{
1

n

n∑
i=1

log(1 + exp(−yi(xTi w + b))) + λ‖w‖0

}
, (2.20)

where λ > 0 is the trade-off parameter between the two terms. It is well-known that the mini-
mization of zero-norm is NP-hard. The readers are referred to Chapter 5 for an review and our
works on the minimization of zero-norm. In this work, we replace ‖x‖0 by a nonconvex approxi-
mation, namely the concave exponential function defined by rexp(w) =

∑d
i=1(1− exp(−α|wi|)).

Thus, the problem (2.20) becomes

min
(w,b)

{
F (w, b) =

1

n

n∑
i=1

log(1 + exp(−yi(xTi w + b))) + λrexp(w)

}
. (2.21)

Let f(w, b) = 1
n

∑n
i=1 log(1 + exp(−yi(xTi w + b))) and r(w) = λrexp(w). Note that r is a DC

function with the following DC decomposition r = g − h, where

g(w) = λα‖w‖1 and h(w) = λ
d∑
i=1

(α|wi| − 1 + exp(−α|wi|)).

Thus, F (w, b) is a DC function with

F (w, b) = G(w, b)−H(w, b),
G(w, b) = ρ

2‖(w, b)‖
2 + g(w),

H(w, b) = ρ
2‖(w, b)‖

2 − f(w, b) + h(w)
(2.22)

where ρ ≥ L. On the other hand, f is a differentiable function whose gradient ∇f(w, b) =
(∇wf(w, b),∇bf(w, b)) is defined by

∇wf(w, b) =
1

n

n∑
i=1

−yi
1 + exp(yi(xTi w + b))

xi,

∇bf(w, b) =
1

n

n∑
i=1

−yi
1 + exp(yi(xTi w + b))

.

(2.23)

The hessian ∇2f of f is given by

∇2
wf(w, b) =

1

n

n∑
i=1

exp(yi(x
T
i w + b))(

1 + exp(yi(xTi w + b))
)2xixTi ,

∇2
bf(w, b) =

1

n

n∑
i=1

exp(yi(x
T
i w + b))(

1 + exp(yi(xTi w + b))
)2 .

Hence, we can compute a bound of the spectral radius of ∇2f as follows.

‖∇2f(w, b)‖ ≤ 1

n

n∑
i=1

exp(yi(x
T
i w + b))(

1 + exp(yi(xTi w + b))
)2 ‖(xi, 1)‖22

≤ 1

4n

n∑
i=1

(‖xi‖2 + 1).
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It follows that f(w, b) has Lipschitz continuous gradient with a Lipschitz constant
L = 1

4n

∑n
i=1(‖xi‖2 + 1). Thus, the problem (2.21) takes the form of (2.1) and then can be

solved by DCA and ADCA. In DCA and ADCA, at each iteration k, we need to compute
(uk, vk) ∈ ∂H(wk, bk) and solve a convex sub problem of the form

min
{ρ

2
‖(w, b)‖2 + λα‖w‖1 − 〈(uk, vk), (w, b)〉

}
. (2.24)

Recall that the gradient of f is given by (2.23) and ξk ∈ ∂h(wk) can be computed as

ξk = λα
d∑
i=1

(1− exp(−α|wki |))sign(wki ). (2.25)

Moreover, it is easy to see that the convex problem (2.24) can be explicitly solved by

wk+1 = S
(
uk/ρk, λα/ρk

)
,

bk+1 = vk/ρk.
(2.26)

where S(x, t) : Rd×R+ → Rd is the elementwise soft-thresholding operator defined by S(x, t)i =
sign(xi)(|xi| − t)+.

Finally, DCA and ADCA for solving (2.21) is given in Algorithm 2.3 and Algorithm 2.4.

Algorithm 2.3 DCA for solving (2.21)

1: Initialization : Choose an initial point (w0, b0), ρ > L, and k ← 0.
2: repeat
3: Compute uk = ρwk−∇wf(wk, bk)+ ξ and vk = ρbk−∇bf(wk, bk) with ξk and ∇f defined

in (2.23) and (2.25).
4: Compute (wk+1, bk+1) by (2.26).
5: until Stopping criterion.
6: k ← k + 1.

Algorithm 2.4 ADCA for solving (2.21)

1: Initialization : Choose an initial point (w0, b0), (ω0, β0) = (w0, b0), q ∈ N, t0 = (1 +
√

5)/2,
ρ > L, and k ← 0.

2: repeat
3: If F (wk, bk) ≤ maxt=max(0,k−q),...,k F (wt, bt) then set (w̄k, b̄k) = (ωk, βk), otherwise set

(w̄k, b̄k) = (wk, bk).
4: Compute uk = ρw̄k−∇wf(w̄k, b̄k)+ ξ and vk = ρb̄k−∇bf(w̄k, b̄k) with ξk and ∇f defined

in (2.23) and (2.25).
5: Compute (wk+1, bk+1) by (2.26).

6: Compute tk+1 =
1+
√

1+4t2k
2 and (ωk+1, βk+1) = (wk+1, bk+1) +

tk−1
tk+1

(
(wk+1, bk+1)− (wk, bk)

)
if k ≥ 1

7: k ← k + 1.
8: until Stopping criterion.
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2.4.1 Experiment setting

The numerical experiment was performed on data sets from the well-known repertory LibSVM.
The detailed information of used datasets is summarized in the first column of Table 2.1. ntrain
(resp. ntest) represents the number of points in training set (resp. test set) while d is the number
of features.

The two comparative algorithms are inexact APG (inAPG) [248] and monotone
APG (nmAPG) [154] which are two variants of accelerated proximal gradient (APG) develo-
ped for (2.1). For DCA and ADCA, we estimated a Lipschitz constant L by computing a bound
of Hessian matrix of logistic loss. Note that inAPG and nmAPG require to compute the proximal
mapping of the DC function rexp. However, this proximal mapping do not have a closed form.
We therefore use DCA to compute the proximal mapping of r in inAPG and nmAPG. All the
algorithms are terminated when the change of two consecutive objective function values is less
than 10−5. We also stop algorithms after 5h (18.000 seconds) of CPU time.

All experiments are performed on a PC Intel i7 CPU3770, 3.40 GHz of 8GB RAM and the
codes were written in MATLAB. We fix α = 5 as proposed in [35]. The parameter q is set to 5.
The trade-off parameter λ is fixed to 10−4 on rcv1, epsilon and 10−3 on the other data sets.
For the epsilon dataset, nmAPG algorithm did not furnish any result due to a out of memory
problem.

2.4.2 Numerical results

The numerical results are summarized in Table 2.1.
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Figure 2.1 – Objective value versus training time (in seconds)

We observe that ADCA gives the best classification accuracy for all 5 datasets (all four
algorithms give the same result on madelon). As for the sparsity of solution, the four algorithms
are comparable. All four algorithms give the same results on madelon and the best sparsity of
solution on a9a is obtained by DCA, inAPG, nmAPG. nmAPG suppresses more features than the
others on rcv1 while ADCA gives the best sparsity of solution on w8a, epsilon. In terms of running
time, ADCA is clearly the fastest one among the four compared algorithms. ADCA improves
considerably the running time comparing to DCA : ADCA is up to 12.09 times faster than DCA
(epsilon). ADCA is faster than inAPG and nmAPG which also use acceleration technique. We
can observe from Figure 2.1 that the objective functions of ADCA decrease drastically in few
first iterations comparing to the others three algorithms.
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Table 2.1 – Comparative results. Bold values correspond to the best results for each dataset

Dataset Method Time Acc Sparsity
(s) (%) (%)

madelon DCA 1.14 62.17 0.4
ntrain=2 000 ADCA 0.54 62.17 0.4
ntest=600 inAPG 0.86 62.17 0.4
d=500 nmAPG 1.23 62.17 0.4
w8a DCA 32.8 98.43 16
ntrain=49 749 ADCA 5.58 98.51 15.67
ntest=14 951 inAPG 36.42 98.45 17
d=300 nmAPG 54.81 98.4 19.33
rcv1 DCA 113.03 91.8 0.87
ntrain=20 242 ADCA 33.74 94.23 0.79
ntest=677 399 inAPG 39.65 91.1 0.85
d=47 236 nmAPG 112.37 93.9 0.72
a9a DCA 7.11 84.95 32.52
ntrain=32 561 ADCA 1.11 84.98 33.33
ntest=16 281 inAPG 6.38 84.97 32.52
d=123 nmAPG 14.01 84.97 32.52
real-sim DCA 33.25 94.49 2.71
ntrain=57 847 ADCA 7.74 94.5 2.59
ntest=14 462 inAPG 33.49 94.42 2.62
d=20 958 nmAPG 53.11 94.39 2.82
epsilon DCA 18000 87.53 7.77
ntrain=400 000 ADCA 1488 88.22 7.75
ntest=100 000 inAPG 18000 73.14 12.6
d=2 000 nmAPG NA NA NA
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2.5 Conclusion

We have incorporated the Nesterov’s acceleration technique into DCA which gives rise to
ADCA. We have proved that ADCA converges to a critical point of the standard DC program.
Furthermore, we have studied the convergence rate of ADCA under Kurdyka-Lojasiewicz (KL)
assumption. ADCA is further developed for minimizing the sum of a (possibly nonconvex) dif-
ferentiable function with L-Lipschitz continuous gradient and a DC function, which is a special
case of the standard DC program. Exploiting the fact that f(x) is differentiable with L-Lipschitz
gradient, we propose, an efficient DC decomposition for which the corresponding ADCA scheme
is inexpensive. To evaluate the performance of proposed algorithm, we consider the sparse binary
logistic regression problem. ADCA for solving the latter is very inexpensive : it only required the
soft thresholding operator which is explicitly computed. Numerical results showed that ADCA
improves considerably the running time of DCA (up to 12.09 times faster than DCA) while giving
similar or better classification accuracy and sparsity of solution. Furthermore, ADCA outper-
formed related accelerated proximal gradient methods such as non-monotone APG and inexact
APG.

The present work is only one among several options of acceleration techniques which can be
investigated into DCA. In future works we plan to develop

i) Nesterov acceleration technique for solving convex program in DCA (inner acceleration) ;

ii) Momentum based methods which accelerates the subgradient yk ∈ ∂h(xk) in the first step
of DCA (outer acceleration) ;

iii) Combined inner-outer accelerations.
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Chapitre 3

DCA-Like and Accelerated DCA-Like
for some classes of nonconvex

optimization problems1

Abstract: In this chapter, we present two new variants of standard DCA, named DCA-Like and Accelera-
ted DCA-Like to address two special classes of structured nonconvex minimization problems. The objective
function in the first class is the sum of a differentiable nonconvex function with L-Lipschitz continuous
gradient and a composite function while the one in the second class is the sum of a differentiable noncon-
vex function with L-Lipschitz continuous gradient and a DC function. Being common models of various
applications, especially in machine learning, these classes of problems attract the attention of many re-
searchers during the last years. DCA-Like is based on a new and efficient way to approximate the DC
program without knowing a DC decomposition while Accelerated DCA-Like further improve DCA-Like by
incorporating the Nesterov’s acceleration technique into it. The convergence properties and convergence
rate of the proposed algorithms are rigorously studied. We prove that, they subsequently converge from
every initial point to a critical point of the considered problems. Moreover, we study their convergence
rate with Kurdyka-Lojasiewicz assumption. Finally, we investigate the proposed algorithms for three im-
portant problems in machine learning : the sparse binary logistic regression, the group variables selection in
multi-class logistic regression and the t-distributed stochastic neighbor embedding. Numerical experiments
on several benchmark datasets illustrate the efficiency of our algorithms.

3.1 Introduction

In this chapter, we propose two new variants of standard DCA, named DCA-Like and Acce-
lerated DCA-Like to address two special classes of nonconvex optimization problems.

The main idea of DCA relies on DC decompositions of the objective function. DCA consists
in approximating a DC (nonconvex) program by a sequence of convex ones. Hence, to apply
DCA, we have to highlight a DC decomposition of the objective function. However, it is not easy
or always possible to find an explicit DC decomposition of a DC function. On another hand, the

1. The results presented in this chapter were published/submitted in

• H.A. Le Thi, H.M. Le, D.N Phan, B. Tran, Novel DCA Based Algorithms for a special class of nonconvex
problems with Application in Machine learning, Applied Mathematics and Computation, 409, 2021.

• H.A. Le Thi, D.N Phan, H.M. Le, DCA-Like and its Boosted scheme for a class of Nonconvex Optimization
Problems, submitted.
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way to approximate the DC objective function by convex functions plays an important role in
the design of DCA. Devising efficient ways to approximate the DC objective function without
knowing a DC decomposition is a challenge in DC programming and DCA.

The first work addressing this challenge was [134], which considered the problems of minimi-
zing the sum of a nonconvex, differentiable function with L-Lipschitz continuous gradient and
composite functions. It takes the form

min
x∈X

{
F1(x) := f(x) +

m∑
i=1

hi(gi(xi))

}
. (3.1)

Here f : Rn → R is nonconvex differentiable with L-Lipschitz continuous gradient, gi : Rni → R
are continuous convex (possibly nonsmooth) where xi (for i = 1, . . . ,m) are sub-vectors of x
with

∑m
i=1 ni = n, hi : R → R are concave increasing and X ⊂ Rn is closed convex set. In

[134], exploiting the special structure of the problem (3.1) we extended DCA to give rise to the
so-named DCA-Like, which is based on a new and efficient way to approximate the DC objective
function without knowing its DC decomposition. We further improve DCA-Like by incorporating
the Nesterov’s acceleration technique into it, and design the so named Accelerated DCA-Like
(ADCA-Like in short).

DCA-Like is “like” DCA in the sense that they iteratively approximate the DC program
(3.1) by a sequence of convex ones. However, DCA-Like is “unlike” DCA as it relaxes two key
requirements in DCA :

i) in the manner to decompose F1 = Gρ − Hρ, with a parameter ρ, in which Hρ is not
necessarily convex (i.e. we possibly do not have a DC decomposition of F1), and ρ is
updated so that the value of the surrogate convex function of F1 at the current solution
could be as close as possible to F1 ;

ii) the affine minorant of Hρ may not be a lower bound of Hρ on the whole space but rather
only at the current solution.

We prove that, fortunately, in spite of these modifications, the whole bounded sequence {xk}
generated by DCA-Like still converges to a critical point of (3.1) under some conditions. Fur-
thermore, we demonstrate that, under Kurdyka-Łojasiewicz assumption, the convergence rate of
DCA-Like is at least sublinear O(1/kα) with α > 1.

Late, in [150], following the same direction, we developed DCA-Like and ADCA-Like for the
second class of problems which minimize the sum of a nonconvex differentiable function with
L-Lipschitz continuous gradient and a DC function :

min
x∈Rn

{F2(x) := f(x) + r(x)} , (3.2)

where f : Rn → R is a differentiable nonconvex function with L-Lipschitz continuous gradient
and r(x) is a DC function of which a DC decomposition is available. The problem of minimizing
F2 under a convex set ∆ is also of the type (3.2), as the convex constraint x ∈ ∆ can be
incorporated into the objective function F2 via the indicator function χ∆.

The two above classes of problems are common mathematical models of various problems
arising from different domains such as signal processing, finance, computational biology, machine
learning,. . . . For instance, several problems in machine learning are formulated as minimizing
the sum of a loss function f and a regularization term r (weighted by a trade-off parameter
between these two terms) and in many cases, f is nonconvex and r is DC. In particular, the
zero norm regularization is often considered in learning with sparsity, a very important area of
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machine learning. Several approaches used a sparsity inducing function to approximate the zero
norm and it has been showed in [147] that most existing sparsity inducing nonconvex functions
are DC. On the other hand, they can also be expressed as a sum of composite functions hi(gi(·)).

The two problems (3.1) and (3.2) are linked, but the special structure of composite functions
requires special techniques to handle them. If the composite function hi(gi(·)) in (3.1) is DC (it
is not always the case), then (3.1) takes the form of (3.2). However, even if hi(gi(xi)) is proved to
be DC (and so is

∑m
i=1 hi(gi(xi))), it is not easy to highlight a DC decomposition of it. We will

see in the next section that the problem (3.1) can be reformulated in the form of (3.2) by using
an additional variable z ∈ Rm. Meanwhile, our algorithms in [134] exploit well the structure of
composite functions, they work only on the variable x, then adding variable z doesn’t make the
algorithms more complicated.

The remainder of the chapter is organized as follows. Section 3.2 is devoted to DCA-Like and
ADCA-Like for solving (3.1) as well as theirs convergence properties convergence and convergence
rate. The resolution of (3.2) by DCALike/ADCA-Like is presented in Section 3.3. In Section 3.4
and 3.5, respectively, we show how to apply the proposed algorithms for Problem (3.1) on the
t-distributed Stochastic Neighbor Embedding (t-SNE) and the sparse multi-class logistic regres-
sion. They are the two very important problems in machine learning. Section 3.6 deals with the
proposed algorithms for Problem (3.2) applied on sparse binary logistic regression. Finally, in
Section 3.7 we give some final remarks and conclude the chapter.

3.2 Minimizing the sum of a nonconvex, differentiable function
with L-Lipschitz continuous gradient and composite functions

In this section, we address the sum of a nonconvex, differentiable function with L-Lipschitz
continuous gradient and composite functions minimization problem (3.1).

In learning with sparsity problems (which involve the `0-norm), one often approximates the
`0-norm by one of the sparse reducing regularizers in Table 3.1 and then solves the resulting
problems which have the form of the problem (3.1). For instance, let us indicate some important
applications.

Sparse signal recovery. Given a sensing matrix A ∈ IRm×n (m << n) and a measurement vector
y of a signal x ∈ IRn, say y = Ax ∈ IRm. The recovery sparse signal consists in finding the
sparsest signal x being consistent with its measurement. Its mathematical formulation is

min
{
‖Ax− y‖2 + λ‖x‖0 : x ∈ IRn

}
.

Sparse inverse covariance (resp. covariance) estimation. the sparse inverse covariance (resp. cova-
riance) estimation problem consists in finding a sparse inverse covariance (resp. sparse covariance)
matrix x from a given sample covariance matrix S, they can be formulated as

min
x∈X
{− log detx+ tr(Sx) + λ‖(x)‖0} (resp. min

x∈X
{log detx+ tr(Sx−1) + λ‖(x)‖0})

where X = Sn++ is the set of positive definite matrices or X = {x ∈ Sn++ : γI � x � γ̄I} (A � B
means that B −A is positive semidefinite).

Sparse multi-class logistic regression (or group variable selection in multi-class logistic regres-
sion). Logistic regression, introduced by D. Cox in 1958 [58], is undoubtedly one of the most
popular supervised learning methods. Logistic regression has been successfully applied in various
real-life problems such as cancer detection [119], medical [33, 16, 218], social science [120], etc.
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Especially, logistic regression combined with feature selection has been proved to be suitable
for high dimensional problems, for instance, document classification [80] and microarray classi-
fication [155, 119]. We will sow in Section 3.5 that the problem of group variable selection in
multi-class logistic regression using the mixed-norm regularizer `q,0 can be formulated in the
form of (3.1).

t-distributed Stochastic Neighbor Embedding (t-SNE) : the t-distributed Stochastic Neighbor Em-
bedding (t-SNE) is a machine learning algorithm which models each high dimensional object by
a lower dimensional point (specifically two or three dimensions in case of visualization) in such
a way that similar objects are modeled by nearby points and dissimilar objects are modeled
by distant points with high probability. t-SNE was first introduced in [161] as a visualization
technique for high dimensional data, and later, it has been applied in many applications such
as bioinformatic, cancer research, feature visualization in neural networks, etc. We will show in
Section 3.4 that t-SNE can be formulated as an optimization problem of the form (3.1).

Our contributions. Firstly, we propose a standard DCA scheme for solving (3.1). With the
assumptions on f , gi, and hi, one can in most cases show that F1 is a DC function and then
DCA can be applied. However, it is not evident to highlight a DC composition of the composite
functions hi(gi(·)) to get a DC decomposition of F1. To tackle this difficulty, we equivalently
reformulate (3.1) as an DC program whose the DC decomposition of the objective function is
explicit, and then investigate DCA for solving the equivalent problem. It turns out that in this
DCA scheme, one has to compute a parameter ρ greater or equal to the L-Lipschitz constant
of f . In practice, it is difficult (or even impossible) to determine the exact value of L, and one
usually estimates L by a quite large number. However, a large value of L could lead to a bad
convex approximation of F , then DCA may converge rapidly to a biased critical point.

To overcome this drawback and improve the standard DCA, we propose a new variant of
DCA, named DCA-Like. This constitutes our second contribution. We prove that, the whole
bounded sequence {xk} generated by DCA-Like still converges to a critical point of (3.1) under
some conditions. Furthermore, we demonstrate that, under Kurdyka-Łojasiewicz assumption, the
convergence rate of DCA-Like is at least sublinear O(1/kα) with α > 1.

Thirdly, we incorporate a Nesterov’s acceleration technique into DCA-Like to give rise to Ac-
celerated DCA-Like (ADCA-Like). We prove that the accelerated version enjoys similar conver-
gence properties and convergence rate as of DCA-Like.
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3.2.1 Standard DCA for solving (3.1)

Since f is a differentiable function with L-Lipschitz continuous gradient, it is a DC function.

On the other hand, the second term of F1, e.g.
m∑
i=1

hi(gi(·)), can be generally rewritten as a DC

function. For instance, it has been proved that if gi : A → B and hi : B → R are DC (with
A ⊂ Rni being a convex set, B being a convex and open set) then hi(gi(·)) is DC on A [15, 95].

Nevertheless, it is not easy to highlight a DC decomposition of hi(gi(xi)). Hence, we first
reformulate the problem (3.1) as :

min
{
ϕ(x, z) := χΩ(x, z) + f(x) +

m∑
i=1

hi(zi) : (x, z) ∈ Rn × Rm
}
, (3.3)

where Ω := {(x, z) : x ∈ X, gi(xi) ≤ zi, i = 1, ...,m}. Let g(x) be the function defined by
g(x) = (g1(x1), ..., gm(xm)). The problems (3.1) and (3.3) are equivalent in the following sense.

Proposition 3.1 A point x∗ ∈ X is a global (resp. local) solution to the problem (3.1) if and
only if (x∗, g(x∗)) is a global (resp. local) solution to the problem (3.3).

Proof 3.1 Let x∗ be a local solution of the problem (3.1). Hence there exists ε > 0 such that
F1(x) ≥ F1(x∗), for all x ∈ B(x∗, ε) where B(x∗, ε) is the ball of center x∗ and radius ε in Rn.
We have ‖x − x∗‖ ≤ ‖(x, g(x)) − (x∗, g(x∗))‖. This implies that if (x, g(x)) ∈ B((x∗, g(x∗)), ε)
then x ∈ B(x∗, ε). Hence, for all (x, z) ∈ B((x∗, g(x∗)), ε), we have ϕ(x, z) ≥ F1(x) ≥ F1(x∗) =
ϕ(x∗, g(x∗)). It follows that (x∗, g(x∗)) is a local solution to (3.3).

Inversely, let (x∗, g(x∗)) be a local solution to (3.3). There exists ε > 0 such that ϕ(x, z) ≥
ϕ(x∗, g(x∗)), for all (x, z) ∈ B((x∗, g(x∗)), ε). Since g is convex, it is locally Lipschitz continuous
around x∗, and by shrinking ε if necessary, we can find L∗ > 0 such that ‖g(x) − g(x∗)‖ ≤
L∗‖x−x∗‖ for all x ∈ B(x∗, ε). Therefore ‖(x, g(x))−(x∗, g(x∗))‖ ≤

√
L2
∗ + 1‖x−x∗‖. It follows

that, for all x ∈ B(x∗, ε/
√
L2
∗ + 1), F1(x) = ϕ(x, g(x)) ≥ ϕ(x∗, g(x∗)) = F1(x∗). This implies

that x∗ is a local solution of (3.1).
Suppose that x∗ ∈ X is a global solution of (3.1). For any (x′, z′), let ε > ‖(x′, z′) −

(x∗, g(x∗))‖. Clearly, F1(x) ≥ F1(x∗), for all x ∈ B(x∗, ε). As above, we have ϕ(x, z) ≥ ϕ(x∗, g(x∗))
for all (x, z) ∈ B((x∗, g(x∗)), ε). Thus, ϕ(x′, z′) ≥ ϕ(x∗, g(x∗)). This is true for any (x′, z′), hence
(x∗, g(x∗)) is a global solution to (3.3).

Inversely, suppose that (x∗, g(x∗)) is a global solution to (3.3). For any x′, let ε >
√
L2
∗ + 1 ‖x′−

x∗‖. Obviously, ϕ(x, z) ≥ ϕ(x∗, g(x∗)) for all (x, z) ∈ B((x∗, g(x∗)), ε). As above, for all x ∈
B(x∗, ε/

√
L2
∗ + 1), F1(x) ≥ F1(x∗). Thus, F1(x′) ≥ F1(x∗). This is true for any x′, so x∗ is a

global solution to (3.1). �

Since the problems (3.1) and (3.3) are equivalent, in the remaining of the chapter, we consider
the problem (3.3) instead of (3.1). The main advantage of (3.3) is that the objective function ϕ
does not contain composite functions, and it is easy to highlight its DC decompositions.

Standard DCA for solving (3.3).
As hi is concave, the function

∑m
i=1 hi is concave too. Then (3.3) can be reformulated as a

DC program, for any ρ ≥ L,

min {ϕ(x, z) = Gρ(x, z)−Hρ(x, z) : (x, z) ∈ Rn × Rm} , (3.4)
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with Gρ(x, z) := ρ
2‖x‖

2 + χΩ(x, z), Hρ(x, z) := ρ
2‖x‖

2 − f(x) −
∑m

i=1 hi(zi). Standard DCA
applied to to (3.4) amounts, at each iteration k, to solving the convex sub-problem

min

{
ρ

2
‖x‖2 − 〈yk, x〉+

m∑
i=1

(−ξki )zi : (x, z) ∈ Ω

}
, (3.5)

where ξki ∈ ∂(−hi)(zki ) and yk = ρxk −∇f(xk). Furthermore, we prove that an optimal solution
of (3.5) can be obtained by solving a strongly convex problem of only variable x.

Proposition 3.2 If xk+1 is an optimal solution to the following strongly convex problem

min{ρ
2
‖x‖2 − 〈yk, x〉+

m∑
i=1

(−ξki )gi(xi) : x ∈ X}, (3.6)

then (xk+1, g(xk+1)) is an optimal solution to (3.5).

Proof 3.2 Assume that xk+1 is the optimal solution to (3.6). We have

ρ
2‖x‖

2 − 〈yk, x〉+
m∑
i=1

(−ξki )zi ≥ ρ
2‖x‖

2 − 〈yk, x〉+
m∑
i=1

(−ξki )gi(xi)

≥ ρ
2‖x

k+1‖2 − 〈yk, xk+1〉+
m∑
i=1

(−ξki )gi(x
k+1
i ), ∀(x, z) ∈ Ω,

where the first inequality follows from −ξki ≥ 0 and zi ≥ g(xi), and the second inequality comes
from the fact that xk+1 is the optimal solution to (3.6). This implies that (xk+1, g(xk+1)) is an
optimal solution to (3.5). �

Finally, the standard DCA for solving (3.3) is described in Algorithm 3.1.

Algorithm 3.1 Standard DCA for solving (3.3)
1: Initialization : Choose an initial point x0, ρ ≥ L and set k ← 0.
2: repeat
3: Compute ξki ∈ ∂(−hi)(gi(xki )), yk = ρxk −∇f(xk)
4: Compute xk+1 by solving the strongly convex problem (3.6)
5: k ← k + 1.
6: until Stopping criterion.

Remark 3.1 Thanks to the use of the variable z in (3.3) and the DC decomposition (3.4), the
above DCA scheme is not affected by the fact that the function gi in the composite function
hi(gi(·)) is smooth or not.

The convergence properties of Algorithm 3.1 are provided in Theorem 3.1. We recall that,
by the definition of the critical point mentioned above, a point (x∗, z∗) ∈ Rn × Rm is called a
critical point of the problem (3.3) if and only if

[(∇f(x∗), 0m) +NΩ(x∗, z∗)]
⋂

[0n × ∂(−h1)(z∗1)× ...× ∂(−hm)(z∗m)] 6= ∅,

where 0d denotes the zero vector in Rd, and NΩ(u∗) is the normal cone of Ω at u∗ which is defined
by NΩ(u∗) = {v : 〈v, u− u∗〉 ≤ 0,∀u ∈ Ω} .
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Theorem 3.1 Let {xk} be the sequence generated by Algorithm 3.1. The following statements
hold.

(i) The sequence {ϕ(xk, g(xk))} is decreasing.
(ii) If α = inf ϕ(x, z) > −∞ then

∑+∞
k=0 ‖xk+1−xk‖2 < +∞, and therefore limk→+∞ ‖xk+1−

xk‖ = 0.
(iii) If α = inf ϕ(x, z) > −∞, then any limit point of {(xk, g(xk))} is a critical point of (3.3).

These results are direct consequences of Theorem 3 about convergence properties of standard
DCA in [189].

3.2.2 DCA-Like

In Algorithm 3.1, if ρ is very large, then the convex approximation of the DC objective func-
tion F1 could be bad. Hence, we introduce DCA-Like, aiming to get better convex approximations
than the one in DCA. The main idea of DCA-Like is to keep the parameter ρ as small as possible
while finding a convex approximation of F1. DCA-Like relaxes the two key requirements of stan-
dard DCA which are i) the second component Hρ must be convex, and ii) the affine minorant
of Hk

ρ must be a lower bound of Hρ on the whole space (note that in DCA the condition i) and
the way to define Hk

ρ imply the condition ii)). In fact, at each iteration k, we only need to find
ρk such that

Hρk(xk+1, zk+1) ≥ Hk
ρk

(xk+1, zk+1), with (xk+1, zk+1) ∈ arg minϕkρk(x, z). (3.7)

The DCA-Like algorithm for solving (3.3) is described in Algorithm 3.2.

Algorithm 3.2 DCA-Like for solving (3.3)

1: Initialization : Choose an initial point x0, a small enough positive parameter ρ0, η > 1 and
0 < δ < 1. Set k ← 0.

2: repeat
3: Compute ξki ∈ ∂(−hi)(gi(xki )) and ∇f(xk).
4: Set ρk = max{ρ0, δρk−1} if k > 0.
5: Compute xk+1 by solving (3.6) with ρ = ρk and yk = ρkx

k −∇f(xk).
6: while Hρk(xk+1, g(xk+1)) < Hk

ρk
(xk+1, g(xk+1)) do

7: ρk ← ηρk.
8: Update xk+1 by solving (3.6) with ρ = ρk and yk = ρkx

k −∇f(xk).
9: end while

10: k ← k + 1.
11: until Stopping criterion.

Remark 3.2 a) It is easy to show that the while loop stops after finite steps. Indeed, it follows
from the convexity of −hi that for i = 1, ...,m

−hi(gi(xk+1)) ≥ −hi(gi(xk)) + 〈ξki , gi(xk+1)− gi(xk)〉. (3.8)

Since f has L-Lipschitz gradient, for ρk ≥ L we have

f(xk) + 〈∇f(xk), xk+1 − xk〉+
ρk
2
‖xk+1 − xk‖2 ≥ f(xk+1). (3.9)
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Summing inequalities (3.8) and (3.9) we see that the condition (3.7) holds if ρk ≥ L. Therefore,
there also exists β > 0 such that ρk ≤ βL for all k.

b) The condition (3.7) does not imply that ρk is large enough to ensure the convexity of Hρk .
However, we can prove that the convergence properties of DCA-Like are still guaranteed.

c) In fact, the condition (3.7) can be expressed as

F1(xk) + 〈∇f(xk), xk+1 − xk〉+
ρk
2
‖xk+1 − xk‖2 − 〈ξk, g(xk+1)− g(xk)〉 ≥ F1(xk+1).

d) The hyper parameters δ and η are used to suitably update ρk. From computational point of
view, their values may affect the behavior of DCA-Like. A neutral and reasonable choice could be
η = 2, δ = 1/2. The choice of ρ0 is also important. As we want to keep ρk as small as possible,
we have an interest in choosing a small enough ρ0 (for instance 10−6 in our experiments).

We now study the convergence properties of DCA-Like in the following theorem.

Theorem 3.2 Let {xk} be the sequence generated by DCA-Like (Algorithm 3.2). The following
statements hold.

(i) The sequence {ϕ(xk, g(xk))} is decreasing. Moreover, we have

ϕ(xk, g(xk))− ϕ(xk+1, g(xk+1)) ≥ ρk
2
‖xk+1 − xk‖2.

(ii) If α = inf ϕ(x, z) > −∞ then
∑+∞

k=0 ‖xk+1−xk‖2 < +∞, and therefore limk→+∞ ‖xk+1−
xk‖ = 0.

(iii) If α = inf ϕ(x, z) > −∞, then any limit point of {(xk, g(xk))} is a critical point of (3.3).

Proof 3.3 (i) From the ρk-convexity of Gρk on x and (yk, ξk) ∈ ∂Gρk(xk+1, g(xk+1)), we have

Gρk(xk, g(xk)) ≥ Gρk(xk+1, g(xk+1)) + 〈yk, xk − xk+1〉

+ 〈ξk, g(xk)− g(xk+1)〉+
ρk
2
‖xk − xk+1‖2.

This inequality and Hρk(xk+1, g(xk+1)) ≥ Hk
ρk

(xk+1, g(xk+1)) imply that

ϕ(xk, g(xk))− ϕ(xk+1, g(xk+1)) ≥ ρk
2
‖xk − xk+1‖2. (3.10)

(ii) For ρ0 ≤ ρk, we obtain from (3.10) that

ϕ(xk, g(xk))− ϕ(xk+1, g(xk+1)) ≥ ρ0

2
‖xk − xk+1‖2.

Summing the above inequality over k = 0, ..., N we have

ϕ(x0, g(x0))− ϕ(xN+1, g(xN+1)) ≥ ρ0

2

N∑
k=0

‖xk − xk+1‖2. (3.11)

It follows from (3.11), ρ0 > 0 and ϕ(xN+1, g(xN+1)) ≥ α that

2

ρ0
[ϕ(x0, g(x0))− α] ≥

N∑
k=0

‖xk − xk+1‖2.
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Finally, passing to the limit over the sequence {N}N∈N we get
∑+∞

k=0 ‖xk − xk+1‖2 < +∞, and
therefore limk→+∞ ‖xk+1 − xk‖ = 0.
(iii) Let (x∗, z∗) be a limit point of the sequence {(xk, g(xk))}. By the continuity of g, we can
take a subsequence {xkj} of {xk} that converges to x∗ and z∗ = g(x∗) = limj→+∞ g(xkj ). It
follows from (ii) that limj→+∞ x

kj+1 = x∗. In addition, without loss of generality, we suppose
that the subsequence {ξkj} converges to ξ∗. By the continuity of gi and closed property of the
subdifferential mapping ∂(−hi), we have ξ∗i ∈ ∂(−hi)(gi(x∗i )).
On another hand, since (xkj+1, g(xkj+1)) is an optimal solution of the convex problem

min
{
Gρkj (x, z)− 〈y

kj , x〉 − 〈ξkj , z〉
}
, (3.12)

we have
ρkj
2 ‖x

kj+1‖2 + χΩ(xkj+1, g(xkj+1)− 〈ρkjxkj −∇f(xkj ), xkj+1〉 − 〈ξkj , g(xkj+1)〉
≤

ρkj
2 ‖x

∗‖2 + χΩ(x∗, g(x∗))− 〈ρkjxkj −∇f(xkj ), x∗〉 − 〈ξkj , g(x∗)〉.

Therefore
ρkj
2 ‖x

kj+1 − xkj‖2 +χΩ(xkj+1, g(xkj+1)) ≤
ρkj
2 ‖x

∗ − xkj‖2 + χΩ(x∗, g(x∗))
+〈∇f(xkj ), x∗ − xkj+1〉 − 〈ξkj , g(x∗)− g(xkj+1)〉.

From Remark 3.2 (a), the sequence {ρkj} is bounded, i.e., ρ0 ≤ ρk ≤ βL. Hence, taking j → +∞
we get

lim sup
j→+∞

χΩ(xkj+1, g(xkj+1)) ≤ χΩ(x∗, g(x∗)). (3.13)

Combining (3.13) with the lower semi-continuity of the function χ we get

lim sup
j→+∞

χΩ(xkj+1, g(xkj+1)) = χΩ(x∗, g(x∗)). (3.14)

Similarly, it follows from (3.12) and ρ0 ≤ ρk ≤ βL that

ρ0
2 ‖x

kj+1 − xkj‖2 +χΩ(xkj+1, g(xkj+1)) ≤ βL
2 ‖x− x

kj‖2 + χΩ(x, z)
+〈∇f(xkj ), x− xkj+1〉 − 〈ξkj , z − g(xkj+1)〉. (3.15)

Passing to the limit and combining with (3.14) we get

χΩ(x∗, g(x∗)) ≤ βL

2
‖x− x∗‖2 + χΩ(x, z) + 〈∇f(x∗), x− x∗〉 − 〈ξ∗, z − g(x∗)〉.

This implies
0 ∈ (∇f(x∗),−ξ∗) +NΩ(x∗, g(x∗)). (3.16)

It follows from (3.16) and ξ∗i ∈ ∂(−hi)(gi(x∗i )) that

(0, ξ∗) ∈[(∇f(x∗), 0m) +NΩ(x∗, g(x∗))]∩
[0n × ∂(−h1)(g1(x∗1))× ...× ∂(−hm)(gm(x∗m))].

Therefore, (x∗, g(x∗)) is a critical point of (3.3). �

Remark 3.3 Since the basic convergence properties of DCA were proved by using the conjugate
of convex functions, we cannot use these techniques in the case that the second component may
be nonconvex. Unlike DCA, we justified the convergence properties of DCA-Like based on three
key facts :
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i) There exists β > 0 such that ρ0 ≤ ρk ≤ βL for all k.

ii) ϕ(xk, g(xk))− ϕ(xk+1, g(xk+1)) ≥ ρk
2 ‖x

k+1 − xk‖2 for all k.

iii) If hi is differentiable with locally Lipschitz derivative, there exists a non-negative integer N
and π > 0 such that

dist(0, ∂Lϕ(xk+1, g(xk+1))) ≤ (ρk + L+ π)‖xk+1 − xk‖ ∀k > N (3.17)

Clearly, these key properties were obtained without the convexity of the second component.

In Theorem 3.3, we provide the sufficient conditions that guarantee the convergence of the
whole sequence {xk} generated by DCA-Like. These conditions include the KL property of ϕ and
the differentiability with locally Lipschitz derivative of hi. Moreover, if the function ψ appearing
in the KL inequality has the form ψ(s) = cs1−θ with θ ∈ [0, 1) and c > 0, then we obtain the
rates of convergence for both sequences {xk} and {ϕ(xk, g(xk))}.

Theorem 3.3 Suppose that inf ϕ(x, z) > −∞, and hi is differentiable with locally Lipschitz
derivative. Assume further that ϕ has the KL property at any point (x, z) ∈ dom ∂Lϕ. If {xk}
generated by DCA-Like is bounded, then the whole sequence {xk} converges to x∗ and (x∗, g(x∗))
is a critical point of (3.3). Moreover, if the function ψ appearing in the KL inequality has the
form ψ(s) = cs1−θ with θ ∈ [0, 1) and c > 0, then the following statements hold :

i) If θ = 0, then the sequences {xk} and {ϕ(xk, g(xk))} converge in a finite number of steps
to x∗ and ϕ∗, respectively.

ii) If θ ∈ (0, 1/2], then the sequences {xk} and {ϕ(xk, g(xk))} converge linearly to x∗ and ϕ∗,
respectively.

iii) If θ ∈ (1/2, 1), then there exist positive constants δ1, δ2, and N0 such that ‖xk − x∗‖ ≤
δ1k
− 1−θ

2θ−1 and ϕ(xk, g(xk))− ϕ∗ ≤ δ2k
− 1

2θ−1 for all k ≥ N0.

To prove Theorem 3.3, we use the following Lemma 3.2 and Lemma 3.3. We also need the Lemma
below given in [30].

Lemma 3.1 ([30]) Let Λ be a compact set and let σ : Rd → (−∞,+∞] be a proper and lower
semicontinuous function. Assume that σ satisfies the KL property at each point of Λ on which σ
is constant. Then, there exist η > 0, ε > 0 and ψ ∈ Mη such that for all u ∈ {u : dist(u,Λ) <
ε} ∩ {u : σ(u∗) < σ(u) < σ(u∗) + η}, one has

ψ′(σ(u)− σ(u∗))dist(0, ∂Lσ(u)) ≥ 1.

Lemma 3.2 Let {xk} be the sequence generated by DCA-Like (Algorithm 3.2). If inf ϕ(x, z) >
−∞, and the set of limit points C of {xk} is not empty, then limk→+∞ ϕ(xk, g(xk)) = ϕ(x∗, g(x∗))
for some x∗ ∈ C. Thus, ϕ has the same value on Λ = {(x∗, g(x∗)) : x∗ ∈ C}.

Proof 3.4 (Proof of Lemma 3.2) Since inf ϕ(x, z) > −∞, it follows from (i) of Theorem 3.2
that {ϕ(xk, g(xk))} is non-increasing and bounded below. Thus, there exists
ϕ∗ = limk→+∞ ϕ(xk, g(xk)). Let x∗ be a limit point of {xk}. We therefore can find a subsequence
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{xkj} that converges to x∗. We have

lim sup
j→+∞

ϕ(xkj , g(xkj )) = lim sup
j→+∞

[χΩ(xkj , g(xkj )) + f(xkj )−
m∑
i=1

(−hi)(gi(x
kj
i ))]

≤ lim sup
j→+∞

χΩ(xkj , g(xkj )) + lim sup
j→+∞

f(xkj )− lim inf
j→+∞

m∑
i=1

(−hi)(gi(x
kj
i ))

≤χΩ(x∗, g(x∗)) + f(x∗)−
m∑
i=1

(−hi)(gi(x∗i )) = ϕ(x∗, g(x∗)),

where the last inequality holds by (3.14) and the lower semicontinuity of −hi. From the above
inequality and the lower semicontinuity of ϕ, we obtain limj→+∞ ϕ(xkj , g(xkj )) = ϕ(x∗, g(x∗)).
Hence, by the uniqueness of the limit, we have ϕ∗ = ϕ(x∗, g(x∗)). �

Lemma 3.3 Let {sk} be a sequence in R+ and let α, γ be some non-negative constants. Assume
that sk → 0 as k → +∞ and there exists N > 0 such that

sαk+1 ≤ γ(sk − sk+1), ∀k ≥ N. (3.18)

Then, the following statements hold.
i) If α = 0, then {sk} converges in a finite number of steps to 0.
ii) If α ∈ (0, 1], then {sk} converges linearly to 0 with rate γ

1+γ .
iii) If α > 1, then there exist positive constants δ and N0 such that

sk ≤ δk−
1

α−1 , ∀k ≥ N0.

Proof 3.5 (Proof of Lemma 3.3) The proof of Lemma 3.3 is similar to the one of Theorem
2 in [12].

(i) If α = 0, then we have sk − sk+1 ≥ 1
γ . This implies (i).

(ii) Assume that α ∈ (0, 1]. Since {sk} converges to 0, there exists N1 such that sk < 1
whenever k > N1. Hence, we have sk+1 ≤ sαk+1 ≤ γ(sk−sk+1). Therefore sk+1 ≤ γ

1+γ sk, ∀k > N1,
which implies (ii).

(iii) The condition (3.18) implies that the sequence {sk}k≥N is decreasing and non-negative.
Thus, if there is k0 ≥ N such that sk0 = 0 then sk = 0 for any k ≥ k0 and iii) trivially holds.
Now we assume that sk > 0 for all k ≥ N . Due to convexity of the function s ∈ (0,∞) 7→ s1−α

and the condition (3.18), we have

s1−α
k+1 − s

1−α
k ≥ (1− α)s−αk (sk+1 − sk) ≥

sαk+1

sαk

α− 1

γ
, ∀k ≥ N.

Therefore, if sαk ≤ 2sαk+1, we have

s1−α
k+1 − s

1−α
k ≥ α− 1

2γ
, ∀k ≥ N.

Otherwise, if sαk > 2sαk+1, by taking both sides to the power of 1−α
α < 0 we obtain

s1−α
k < 2

1−α
α s1−α

k+1 =⇒ s1−α
k+1 − s

1−α
k > (1− 2

1−α
α )s1−α

k+1 .

74



DCA-Like and Accelerated DCA

Since 1− 2
1−α
α > 0 and 0 < sk → 0, there exists ρ̄ > 0 such that

(1− 2
1−α
α )s1−α

k+1 ≥ ρ̄, ∀k ≥ N.

Letting ρ = min{α−1
2γ , ρ̄} > 0, we have

s1−α
k+1 − s

1−α
k ≥ ρ, ∀k ≥ N.

By summing these inequalities, we obtain that

s1−α
k =

k−1∑
i=N

(s1−α
i+1 − s

1−α
i ) + s1−α

N ≥ (k −N)ρ, ∀k ≥ N.

Thus, with N0 = 2N and δ = (ρ2)
1

1−α > 0, we have

s1−α
k ≥ ρ

2
k or sk ≤ δk

1
1−α , ∀k ≥ N0.

�

Proof 3.6 (Proof of Theorem 3.3) Denote by C the set of limit points of {xk}. It follows
from the continuity of g that the set of limit points Λ of {(xk, g(xk))} takes the form Λ =
{(x, g(x)) : x ∈ C}. By the Lemma 3.2, ϕ has the same value on Λ, which is denoted by ϕ∗.
Thus, limk→+∞ ϕ(xk, g(xk)) = ϕ∗. If there exists k ≥ 1 such that ϕ(xk, g(xk)) = ϕ∗, then
ϕ(xk, g(xk)) = ϕ(xk+p, g(xk+p)) for any p ≥ 0 due to the decreasing property of {ϕ(xk, g(xk))}.
Hence, xk = xk+p for all p ≥ 0 and DCA-Like terminates after a finite number of steps. Hence,
without loss of generality, we can assume that ϕ(xk, g(xk)) > ϕ∗ for all k.

Since {xk} is bounded, C is a compact set. Define H(z) =
∑m

i=1(−hi)(zi). By the locally
Lipschitz property of ∇H and g, for each x ∈ C, there exist Lx and εx such that ‖∇H(g(u)) −
∇H(g(v))‖ ≤ Lx‖u−v‖ for all u, v ∈ B(x, εx). By the compactness of C, there exist w1, ..., wp ∈ C
such that C ⊂ ∪pi=1B(wi, εwi/4). Set π = max{Lwi : i = 1, ..., p} and ε = min{εwi/2 : i = 1, ..., p}.
Since C is the set of limit points of {xk}, we have limk→+∞ dist(xk, C) = 0. From this and (ii)
of Theorem 3.2, there exists N1 > 0 such that xk−1 ∈ ∪pi=1B(wi, εwi/2) and ‖xk − xk−1‖ < ε
whenever k ≥ N1. Hence, there are some wi such that xk, xk−1 ∈ B(wi, εwi). Thus,

‖∇H(g(xk))−∇H(g(xk−1))‖ ≤ Lwi‖xk − xk−1‖ ≤ π‖xk − xk−1‖, ∀k ≥ N1. (3.19)

Thank to the compactness of C and the continuity of g, Λ is also a compact set. Applying Lemma
3.1 to the function ϕ and by shrinking ε if necessary, we can find η > 0 and ψ ∈Mη such that

ψ′(ϕ(x, z)− ϕ∗)dist(0, ∂Lϕ(x, z)) ≥ 1 (3.20)

∀(x, z) ∈ U := {(x, z) : dist((x, z),Λ) < ε}∩{(x, z) : ϕ∗ < ϕ(x, z) < ϕ∗+ η}. From the definition
of Λ : limk→+∞ dist((xk, g(xk)),Λ) = 0. Thus, there exists N2 > 0 such that dist((xk, g(xk)),Λ) <
ε whenever k ≥ N2. By (i) of Theorem 3.2 and Lemma 3.2, there exists N3 > 0 such that
ϕ∗ < ϕ(xk, g(xk)) < ϕ∗+η for all k ≥ N3. Taking N = max{N1, N2, N3} we get (xk, g(xk)) ∈ U
for all k ≥ N . Hence, it follows from (3.20) that for any k ≥ N ,

ψ′(ϕ(xk, g(xk))− ϕ∗)dist(0, ∂Lϕ(xk, g(xk))) ≥ 1. (3.21)
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By the differentiability of hi and the definition of {xk}, we have

(yk−1, ξk−1) ∈ ∂Gρk(xk, g(xk)) = ρkx
k + ∂χΩ(xk, g(xk)).

This implies that

(ρk(x
k−1 − xk)−∇f(xk−1) +∇f(xk), ξk−1) ∈ ∂χΩ(xk, g(xk)) + (∇f(xk), 0).

Therefore
(ρk(x

k−1 − xk)−∇f(xk−1) +∇f(xk), ξk−1 − ξk)
∈ ∂χΩ(xk, g(xk)) + (∇f(xk), 0)− (0,∇H(g(xk)))∂Lϕ(xk, g(xk)).

(3.22)

By the Lipschitz continuity of ∇f and (3.19), for all k ≥ N , we have

‖(ρk(xk−1 − xk)−∇f(xk−1) +∇f(xk), ξk−1 − ξk)‖
≤(ρk + L+ π)‖xk−1 − xk‖ ≤ ((β + 1)L+ π)‖xk−1 − xk‖,

where the last inequality follows from ρk ≤ βL. Combining this with (3.22) we obtain, for any
k ≥ N ,

dist(0, ∂Lϕ(xk, g(xk))) ≤M‖xk−1 − xk‖, where M = (β + 1)L+ π. (3.23)

It follows from this, (3.21), and the concavity of ψ that

∀k ≥ N : M‖xk−1 − xk‖[ψ(ϕ(xk, g(xk))− ϕ∗)− ψ(ϕ(xk+1, g(xk+1))− ϕ∗)]
≥ dist(0, ∂Lϕ(xk, g(xk)))ψ′(ϕ(xk, g(xk))− ϕ∗)(ϕ(xk, g(xk))− ϕ(xk+1, g(xk+1)))

≥ ϕ(xk, g(xk))− ϕ(xk+1, g(xk+1)) ≥ ρ0

2
‖xk − xk+1‖2,

where the last inequality comes from (i) of Theorem 3.2. This implies that

∀k ≥ N : ψ(ϕ(xk, g(xk))− ϕ∗)− ψ(ϕ(xk+1, g(xk+1))− ϕ∗)

≥ ρ0

2M

‖xk − xk+1‖2

‖xk−1 − xk‖
≥ ρ0

2M
[‖xk − xk+1‖ − 1

4
‖xk−1 − xk‖],

where the last inequality follows from a2/b ≥ a− b/4 for all a, b > 0. Thus,

∀k ≥ N : ‖xk − xk+1‖ ≤1

4
‖xk−1 − xk‖+

2M

ρ0
[ψ(ϕ(xk, g(xk))− ϕ∗)

− ψ(ϕ(xk+1, g(xk+1))− ϕ∗)].

Summing the above inequality from N to N + k − 1 we get

k∑
j=1
‖xN+j − xN+j−1‖ ≤ 8M

3ρ0
[ψ(ϕ(xN , g(xN ))− ϕ∗) + 1

3‖x
N−1 − xN‖

−ψ(ϕ(xN+k, g(xN+k))− ϕ∗)].

By the non-negativity of ϕ, we have

k∑
j=1

‖xN+j − xN+j−1‖ ≤ 1

3
‖xN−1 − xN‖+

8M

3ρ0
ψ(ϕ(xN , g(xN ))− ϕ∗).
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Taking the limit we obtain
+∞∑
k=N

‖xk+1 − xk‖ ≤ 1

3
‖xN−1 − xN‖+

8M

3ρ0
ψ(ϕ(xN , g(xN ))− ϕ∗) < +∞. (3.24)

This implies that {xk} is a Cauchy sequence, and hence it converges to a point x∗. By Theorem
3.2, (x∗, g(x∗)) is a critical point of (3.3). From (3.21) and (3.23), for all k ≥ N , we have

ψ′(ϕ(xk, g(xk))− ϕ∗)M‖xk−1 − xk‖ ≥ 1. (3.25)

By the assumption ψ(t) = ct1−θ, (ii) of Theorem 3.2, and the above inequality, we obtain, for all
k ≥ N ,

‖ϕ(xk, g(xk))− ϕ∗‖2θ ≤ [c(1− θ)M ]2‖xk−1 − xk‖2

≤ 2[c(1− θ)M ]2

ρ0
(ϕ(xk−1)− ϕ(xk)).

(3.26)

Set rk = ϕ(xk, g(xk))− ϕ∗. It follows from (3.26) that

r2θ
k ≤

2[c(1− θ)M ]2

ρ0
(rk−1 − rk),∀k ≥ N. (3.27)

Therefore, taking α = 2θ, γ = 2[c(1−θ)M ]2

ρ0
and applying Lemma 3.3 on the sequence {rk}, we

get the convergence rate of {ϕ(xk, g(xk))} → ϕ∗ related to different values of θ as stated in this
theorem.

Consider now the convergence rate of {xk}. By setting si =
∑+∞

k=i ‖xk+1 − xk‖, it follows
from (3.24) that si is finite. Since ‖xi − x∗‖ ≤ si, the rate of convergence of {xi} to x∗ can be
deduced from the rate of convergence of {si} to 0. By (3.24) and ψ(t) = ct1−θ we get

(ϕ(xi, g(xi))− ϕ∗)1−θ ≥ ρ0

8Mc
[3si − ‖xi−1 − xi‖], ∀i ≥ N. (3.28)

Combining ψ(t) = ct1−θ and (3.25), we have

c(1− θ)M‖xi−1 − xi‖ ≥ (ϕ(xi, g(xi))− ϕ∗)θ,∀i ≥ N. (3.29)

This implies that if θ = 0, then ‖xi−1 − xi‖ ≥ 1
cM for all i ≥ N . Hence, by (i) of Theorem 3.2,

we have
ϕ(xi−1, g(xi−1))− ϕ(xi, g(xi)) ≥ ρk

2
‖xi−1 − xi‖2 ≥ ρ0

2[cM ]2
.

Hence, DCA-Like must terminate after a finite number of iterations. If θ ∈ (0, 1), according to
(3.29) and (3.28) we have, for all i ≥ N ,

(c(1− θ)M‖xi−1 − xi‖)
1−θ
θ ≥ ρ0

8Mc
[3si − ‖xi−1 − xi‖]. (3.30)

Since ‖xi−1−xi‖ → 0 as i→ +∞, by increasing N if necessary, we have ‖xi−1−xi‖ < 1 for all
i ≥ N . Let φ(θ) = min(1, 1−θ

θ ). Hence, it follows from (3.30) that
3ρ0

8Mc
si ≤ [(c(1− θ)M)

1−θ
θ +

ρ0

8Mc
]‖xi−1 − xi‖φ(θ)

= [(c(1− θ)M)
1−θ
θ +

ρ0

8Mc
](si−1 − si)φ(θ).

(3.31)

This implies that s
1

φ(θ)

i ≤ (8Mc
3ρ0

(c(1 − θ)M)
1−θ
θ + 1

3)
1

φ(θ) (si−1 − si), ∀i ≥ N. Taking α = 1/φ(θ),

γ = (8Mc
3ρ0

(c(1−θ)M)
1−θ
θ + 1

3)1/φ(θ) and applying (ii) and (iii) of Lemma 3.3 on the sequence {si},
we get the convergence rate of {si} → 0, which is the convergence rate of {xk} → x∗, related to
different values of θ as stated in (ii) and (iii) of this theorem. �
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3.2.3 Accelerated DCA-Like

Following the same idea of Accelerated DCA, we introduce an accelerated version of DCA-
Like (ADCA-Like), which is described in Algorithm 3.3.

Algorithm 3.3 ADCA-Like for solving (3.3)

1: Initialization : Choose an initial point x0, w0 = x0, t0 = (1 +
√

5)/2, a small enough
positive parameter ρ0, η > 1 and 0 < δ < 1 and k ← 0.

2: repeat
3: If ϕ(wk, g(wk)) ≤ ϕ(xk, g(xk)) then set vk = wk ;

else set vk = xk.
4: Compute ξki ∈ ∂(−hi)(zki ) with zki = gi(v

k
i ) and ∇f(vk).

5: Set ρk = max{ρ0, δρk−1} if k > 0
6: Compute xk+1 by solving (3.6) with ρ = ρk and yk = ρkv

k −∇f(vk).
7: while Hρk(xk+1, g(xk+1)) < H

(vk,g(vk))
ρk (xk+1, g(xk+1)) do

8: ρk ← ηρk.
9: Update xk+1 by solving (3.6) with ρ = ρk and yk = ρkv

k −∇f(vk).
10: end while
11: Compute tk+1 =

1+
√

1+4t2k
2 and wk+1 = xk+1 + tk−1

tk+1

(
xk+1 − xk

)
.

12: k ← k + 1.
13: until Stopping criterion.

The convergence properties of ADCA-Like are provided in the following theorems. In Theorem
3.4, we provide the convergence properties of ADCA-Like.

Theorem 3.4 Let {xk} be the sequence generated by Algorithm 3.3. The following statements
hold.

(i) The sequence {ϕ(xk, g(xk))} is decreasing. More precisely, we have

ϕ(xk, g(xk))− ϕ(xk+1, g(xk+1)) ≥ ρk
2
‖xk+1 − vk‖2.

(ii) If α = inf ϕ(x, z) > −∞ then
∑+∞

k=0 ‖xk+1− vk‖2 < +∞ and therefore limk→+∞ ‖xk+1−
vk‖ = 0.

(iii) If α = inf ϕ(x, z) > −∞, then any limit point of {(xk, g(xk))} is a critical point of (3.3).

Proof 3.7 Similar to DCA-Like, the proof of convergence properties of ADCA-Like are mainly
based on the key results analogue to (ii) and (iii) of Remark 3.3, with the use of the intermediate
variable vk.

(i) By the definition of xk+1, we have (yk, ξk) ∈ ∂Gρk(xk+1, g(xk+1)). Hence, it follows from
the ρk-convexity of Gρk on x that

Gρk(vk, g(vk)) ≥ Gρk(xk+1, g(xk+1)) + 〈yk, vk − xk+1〉

+ 〈ξk, g(vk)− g(xk+1)〉+
ρk
2
‖vk − xk+1‖2.

Combining the above inequality with Hρk(xk+1, g(xk+1)) ≥ Hρk(vk, g(vk)) + 〈yk, xk+1 − vk〉 +
〈ξk, g(xk+1)− g(vk)〉 we get

ϕ(vk, g(vk))− ϕ(xk+1, g(xk+1)) ≥ ρk
2
‖vk − xk+1‖2.
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From this and ϕ(vk, g(vk)) ≤ ϕ(xk, g(xk)), we obtain

ϕ(xk, g(xk))− ϕ(xk+1, g(xk+1)) ≥ ρk
2
‖vk − xk+1‖2. (3.32)

(ii) From (3.32) and ρk ≥ ρ0, we have

ϕ(xk, g(xk))− ϕ(xk+1, g(xk+1)) ≥ ρ0

2
‖vk − xk+1‖2.

Summing the above inequality over k = 0, ..., N we get

ϕ(x0, g(x0))− ϕ(xN+1, g(xN+1)) ≥ ρ0

2

N∑
k=0

‖vk − xk+1‖2. (3.33)

It follows from (3.33), ρ0 > 0 and ϕ(xN+1, g(xN+1)) ≥ α that

2

ρ0
[ϕ(x0, g(x0))− α] ≥

N∑
k=0

‖vk − xk+1‖2.

Passing to the limit over the sequence {N}N∈N, we obtain
∑+∞

k=0 ‖vk − xk+1‖2 < +∞, and
therefore limk→+∞ ‖xk+1 − vk‖ = 0.
(iii) Let (x∗, z∗) be a limit point of the sequence {(xk, g(xk))}. By the continuity of g, we can take a
subsequence {xkj+1} of {xk} that converges to x∗ and z∗ = g(x∗) = limj→+∞ g(xkj+1). It follows
from (ii) that limj→+∞ v

kj = x∗. In addition, without loss of generality, we can suppose that the
subsequence {ξkj} converges to ξ∗. By the continuity of gi and the property of the subdifferential
mapping ∂(−h), we have ξ∗i ∈ ∂(−h)(gi(x

∗
i )). We note that (xkj+1, g(xkj+1)) is a solution of the

following convex problem

min
{
Gρkj (x, z)− 〈y

kj , x〉 − 〈ξkj , z〉
}
. (3.34)

This implies that
ρkj
2 ‖x

kj+1‖2 + χΩ(xkj+1, g(xkj+1))− 〈ρkjvkj −∇f(vkj ), xkj+1〉 − 〈ξkj , g(xkj+1)〉
≤

ρkj
2 ‖x

∗‖2 + χΩ(x∗, g(x∗))− 〈ρkjvkj −∇f(vkj ), x∗〉 − 〈ξkj , g(x∗)〉.

Therefore
ρkj
2 ‖x

kj+1 − vkj‖2 +χΩ(xkj+1, g(xkj+1)) ≤
ρkj
2 ‖x

∗ − vkj‖2 + χΩ(x∗, g(x∗))
+〈∇f(vkj ), x∗ − xkj+1〉 − 〈ξkj , g(x∗)− g(xkj+1)〉.

Since there exists β > 0 such that ρ0 ≤ ρk ≤ βL, we have

ρ0
2 ‖x

kj+1 − vkj‖2 +χΩ(xkj+1, g(xkj+1)) ≤ βL
2 ‖x

∗ − vkj‖2 + χΩ(x∗, g(x∗))
+〈∇f(vkj ), x∗ − xkj+1〉 − 〈ξkj , g(x∗)− g(xkj+1)〉.

As limj→+∞ x
kj+1 = limj→+∞ v

kj = x∗, taking j → +∞ we obtain

lim sup
j→+∞

χΩ(xkj+1, g(xkj+1)) ≤ χΩ(x∗, g(x∗)). (3.35)

Combining (3.35) with the lower semi-continuity of the function χ, we get

lim sup
j→+∞

χΩ(xkj+1, g(xkj+1)) = χΩ(x∗, g(x∗)). (3.36)
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Similarly, it follows from (3.34) that

ρ0
2 ‖x

kj+1 − vkj‖2 +χΩ(xkj+1, g(xkj+1)) ≤ βL
2 ‖x− v

kj‖2 + χΩ(x, z)
+〈∇f(vkj ), x− xkj+1〉 − 〈ξkj , z − g(xkj+1)〉. (3.37)

Passing to the limit and combining with (3.36) we obtain

χΩ(x∗, g(x∗)) ≤ βL

2
‖x− x∗‖2 + χΩ(x, z) + 〈∇f(x∗), x− x∗〉 − 〈ξ∗, z − g(x∗)〉.

This implies that 0 ∈ (∇f(x∗),−ξ∗) +NΩ(x∗, g(x∗)). Consequently

(0, ξ∗) ∈ [(∇f(x∗), 0) +NΩ(x∗, g(x∗))]
∩[0× ∂(−hi)(g1(x∗1))× ...× ∂(−hi)(gm(x∗m))].

Therefore, (x∗, g(x∗)) is a critical point of (3.3). �

The sufficient descent property (i) of Theorem 3.4 is different from Theorem 3.2 due to
the intermediate variable vk. Hence, neither the convergence of the whole sequence {xk} nor
convergence rate for {‖xk − x∗‖} can be achieved. However, we can still obtain some interesting
results for the sequence {ϕ(xk, g(xk))} under the KL assumption. These properties are presented
in Theorem 3.5.

Theorem 3.5 Suppose that inf ϕ(x, z) > −∞, and hi is differentiable with locally Lipschitz
derivative. Assume further that ϕ has the KL property at any point (x, z) ∈ dom ∂Lϕ with
ψ(s) = cs1−θ for some θ ∈ [0, 1) and c > 0. If {xk} generated by accelerated DCA-Like is
bounded, then the following statements hold.

(i) If θ = 0, then {ϕ(xk, g(xk))} converges in a finite number of steps to ϕ∗.
(ii) If θ ∈ (0, 1/2], then {ϕ(xk, g(xk))} converges linearly to ϕ∗.
(iii) If θ ∈ (1/2, 1), then there exist positive constants δ and N0 such that ϕ(xk, g(xk))−ϕ∗ ≤

δk−
1

2θ−1 for all k ≥ N0.

To prove Theorem 3.5, we use the following Lemma 3.4 whose the proof is similar to the
proof of Lemma 3.2.

Lemma 3.4 Let {xk} be the sequence generated by ADCA-Like (Algorithm 3.3). If inf ϕ(x, z) >
−∞, and the set of limit points C of {xk} is not empty, then limk→+∞ ϕ(xk, g(xk)) = ϕ(x∗, g(x∗))
for some x∗ ∈ C. Thus, ϕ has the same value on Λ = {(x∗, g(x∗)) : x∗ ∈ C}.

Proof 3.8 (Proof of Theorem 3.5) (i) By Theorem 3.4 (ii), the sequences {xk} and {vk}
share the same set of limit points C. Since {xk} is bounded, C is compact. As H(z) =

∑m
i=1(−hi)(zi)

is differentiable with locally Lipschitz derivative, by the continuity of g and by (ii) of Theorem
3.4 we see that there exist positive constants N1 and π such that

‖∇H(g(xk+1))−∇H(g(vk))‖ ≤ π‖xk+1 − vk‖, ∀k ≥ N1. (3.38)

Since g is continuous, the set of limit points of {(xk, g(xk))} is given by Λ = {(x, g(x)) : x ∈ C}.
Thus, Λ is also a compact set. By Lemma 3.4, ϕ has the same value ϕ∗ on Λ. According to
Lemma 3.1, there exist ε > 0, η > 0 and ψ ∈ Mη such that for all ∀(x, z) ∈ U := {(x, z) :
dist((x, z),Λ) < ε} ∩ {(x, z) : ϕ∗ < ϕ(x, z) < ϕ∗ + η}, we have

ψ′(ϕ(x, z)− ϕ∗)dist(0, ∂Lϕ(x, z)) ≥ 1. (3.39)

80



DCA-Like and Accelerated DCA

Similar to the proof of Theorem 3.3, without loss of generality, we can assume that ϕ(xk, g(xk)) >
ϕ∗ for all k. By Lemma 3.4, there exists N2 such that ϕ∗ < ϕ(xk, g(xk)) < ϕ∗ + η whenever
k ≥ N2. On the other hand, it follows from limk→+∞ dist((xk, g(xk)),Λ) = 0 that there is N3 such
that dist((xk, g(xk)),Λ) < ε for all k ≥ N3. Let N = max{N1, N2, N3}, we have (xk, g(xk)) ∈ U .
It follows this and (3.39) that for all k ≥ N ,

ψ′(xk, g(xk))− ϕ∗)dist(0, ∂Lϕ(xk, g(xk))) ≥ 1. (3.40)

Since H is differentiable, by the definition of xk+1 we have

(yk,∇H(g(vk)) ∈ ∂Gρk(xk+1, g(xk+1)) = ρkx
k+1 + ∂χΩ(xk+1, g(xk+1)).

This implies that
(ρk(v

k − xk+1)−∇f(vk) +∇f(xk+1),∇H(g(vk)))

∈ ∂χΩ(xk+1, g(xk+1)) + (∇f(xk+1), 0).

Therefore

(ρk(v
k − xk+1)−∇f(vk) +∇f(xk+1),∇H(g(vk))−∇H(g(xk+1)))

∈∂χΩ(xk+1, g(xk+1)) + (∇f(xk+1), 0)− (0,∇H(g(xk+1)))

=∂Lϕ(xk+1, g(xk+1)).

(3.41)

By the Lipschitz continuity of ∇f , ρk ≤ βL and (3.38) for any k ≥ N , we have ‖(ρk(vk−xk+1)−
∇f(vk) + ∇f(xk+1),∇H(g(vk)) − ∇H(g(xk+1)))‖ ≤ M‖xk+1 − vk‖, where M = βL + L + π.
Combining this and (3.41) we get dist(0, ∂Lϕ(xk+1, g(xk+1))) ≤ M‖xk+1 − vk‖. Denote rk+1 =
ϕ(xk+1, g(xk+1))− ϕ∗ > 0. It follows from the above inequality and (3.40) that, for all k ≥ N ,

1 ≤ [ψ′(ϕ(xk+1, g(xk+1))− ϕ∗)M‖xk+1 − vk‖]2

≤ [ψ′(rk+1)]2M2 2(ϕ(xk, g(xk))− ϕ(xk+1, g(xk+1)))

uk

≤ [ψ′(rk+1)]2M2 2(rk − rk+1)

u0
,

(3.42)

where the second inequality follows from (i) of Theorem 3.4, and the last inequality holds by
ρk ≥ ρ0. Since ψ takes the form ψ(s) = cs1−θ, we get ψ′(s) = c(1 − θ)s−θ. Therefore, the
inequality (3.42) becomes

r2θ
k+1 ≤

2c(1− θ)M2

ρ0
(rk − rk+1), ∀k ≥ N. (3.43)

Finally, applying Lemma 3.3 with sk = rk, α = 2θ and γ = 2c(1−θ)M2

ρ0
gives us that the sequence

{rk} converges to 0 with the rates corresponding to different values of θ as started in this theorem.
�

3.3 Minimizing the sum of a nonconvex differentiable function
with L-Lipschitz continuous gradient and a DC function

We now consider le sum of a nonconvex differentiable function with L-Lipschitz continuous
gradient and a DC function minimization problem (3.2). Recall that, in Chapter 2, we have
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developed standard DCA and Accelerated DCA to solve this problem. The readers are referred
to Section 2.1 for more details on the description and existing works of (3.2). The standard DCA
and Accelerated DCA for solving (3.2) are presented in Chapter 2 Section 2.3.

Similarly to the problem (3.1), the DC decomposition of (3.2) requires a parameter ρ which
is greater ou equal to the L-Lipschitz constant of f . Hence, in order to avoid a bad convex
approximation of the objective function by using a large value of ρ, we will develop DCA-
Like for (3.2). DCA-Like and ADCA-Like for (3.2) as well as their convergence properties and
convergence rate are presented in the following sub-sections.

3.3.1 DCA-Like

In order to keep the parameter ρ as small as possible, at each iteration k of DCA-Like, we
only need to find ρk such that Hρk(x, xk) := Hρ(x

k) + 〈ρxk − ∇f(xk) + ξk, x − xk〉 is a lower
bound of Hρk(x) at xk+1 but not on the whole space, i.e.,

Hρk(xk+1) ≥ Hρk(xk+1, xk). (3.44)

The DCA-Like algorithm for solving (3.2) is described in Algorithm 3.4.

Algorithm 3.4 DCA-Like for solving (3.2)

1: Initialization : Choose an initial point x0, a small enough positive parameter ρ0 η > 1, 0 <
δ < 1, and k ← 0.

2: repeat
3: Compute ξk ∈ ∂h(xk) and ∇f(xk).
4: Set ρk = max{ρ0, δρk−1} if k > 0.
5: Compute xk+1 by solving the convex program

min
x∈Rn

{ρk
2
‖x‖2 + g(x)− 〈ρkxk −∇f(xk) + ξk, x〉

}
. (3.45)

6: while Hρk(xk+1) < Hρk(xk+1, xk) do
7: ρk ← ηρk.
8: Compute xk+1 by solving (3.45).
9: end while

10: k ← k + 1.
11: until Stopping criterion.

Remark 3.4 a) It is easy to show that the while loop stops after finite steps. Indeed, it follows
from the convexity of h that

h(xk+1) ≥ h(xk) + 〈ξk, xk+1 − xk〉. (3.46)

Since f is L - Lipschitz gradient, when ρk ≥ L, we have

f(xk) + 〈∇f(xk), xk+1 − xk〉+
ρk
2
‖xk+1 − xk‖2 ≥ f(xk+1). (3.47)

Summing the inequalities (3.46) and (3.47) we obtain that the condition (3.44) holds when ρk ≥ L.
Consequently, there exists β > 0 such that ρ0 ≤ ρk ≤ βL for all k.
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b) The condition (3.44) does not imply that ρk is large enough to ensure the convexity of Hρk .
However, we can prove that the convergence properties of DCA-Like are still guaranteed.

c) The hyper parameters δ and η are used to suitably update ρk. From computational point of
view, their values may affect the behavior of DCA-Like. A neutral and reasonable choice could be
η = 2, δ = 1/2. The choice of ρ0 is also important. As we want to keep ρk as small as possible,
we have an interest in choosing a small enough ρ0 (for instance 10−6 in our experiments).

We now study the convergence properties and convergence rate of DCA-Like. In Theorem
3.6, we give the properties of the limit points of the sequence {xk} generated by DCA-Like. We
recall that a point x∗ is a critical point of (3.2) if

[∇f(x∗) + ∂g(x∗)] ∩ ∂h(x∗) 6= ∅.

The modulus of strong convexity of σ on Ω, denoted by µ(σ,Ω) or µ(σ) if Ω = Rn, is given by

µ(σ,Ω) = sup{ρ ≥ 0 : σ − (ρ/2)‖.‖2 is convex on Ω}.

One says that σ is strongly convex on Ω if µ(σ,Ω) > 0.

Theorem 3.6 Let {xk} be the sequence generated by Algorithm 3.4. The following statements
hold.

i) The sequence {F2(xk)} is decreasing. More precisely, we have

F2(xk)− F2(xk+1) ≥ ρk + µ(g)

2
‖xk+1 − xk‖2.

ii) If α = infx∈Rn F2(x) > −∞, then
∑+∞

k=1 ‖xk+1−xk‖2 < +∞ and therefore limk→+∞ ‖xk+1−
xk‖ = 0.

iii) If α = infx∈Rn F2(x) > −∞, then for any subsequence {xkj} of {xk}, converging to x∗, the
limit point x∗ is a critical point of (3.2).

Proof 3.9 i) It follows from the computation of xk+1 that yk − ρkxk+1 ∈ ∂g(xk+1), where yk =
ρkx

k −∇f(xk) + ξk). Hence, we obtain

g(xk) ≥ g(xk+1) + 〈yk − ρkxk+1, xk − xk+1〉+
µ(g)

2
‖xk − xk+1‖2.

By the condition (3.44), we have

ρk
2
‖xk+1‖2 − f(xk+1) + h(xk+1) ≥ ρk

2
‖xk‖2 − f(xk) + h(xk) + 〈yk, xk+1 − xk〉.

Summing the two above inequalities, we get

F2(xk) ≥ F2(xk+1) +
ρk + µ(g)

2
‖xk − xk+1‖2. (3.48)

ii) Substituting ρk by ρ0 (ρk ≥ ρ0) in the inequality (3.48) that gives us

F2(xk)− F2(xk+1) ≥ ρ0 + µ(g)

2
‖xk − xk+1‖2. (3.49)
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By summing the above inequality over k = 0, ..., N we obtain

F2(x0)− F2(xN+1) ≥ ρ0 + µ(g)

2

N∑
k=0

‖xk − xk+1‖2. (3.50)

Since ρ0 > 0 and F2(xN+1) ≥ α we have

2

ρ0 + µ(g)

(
F2(x0)− α

)
≥

N∑
k=0

‖xk − xk+1‖2.

By passing to the limit, we get
+∞∑
k=0

‖xk − xk+1‖2 ≤ +∞,

which implies that limk→+∞ ‖xk − xk+1‖ = 0.
iii) Let {xkj} be a subsequence of {xk} which converges to x∗. It follows from (ii) that limj→+∞ x

kj+1 =
x∗. Since {xkj} is bounded and finite convexity of h, {ξkj} is bounded. Without loss of generality,
we can assume that {ξkj} converges to ξ∗. By the closed property of the subdifferential mapping
∂h, we have ξ∗ ∈ ∂h(x∗). Furthermore, we have

ρkj (x
kj − xkj+1)−∇f(xkj ) + ξkj ∈ ∂g(xkj+1).

Since {ρkj} is bounded and by the closedness property of the subdifferential, passing to the limit
we get

−∇f(x∗) + ξ∗ ∈ ∂g(x∗),

where we use the fact that limj→+∞ x
kj = limj→+∞ x

kj+1 = x∗. Therefore,

ξ∗ ∈ [∇f(x∗) + ∂g(x∗)] ∩ ∂h(x∗).

�

In the Theorem 3.7, we will study the sufficient conditions which guarantee the convergence of
the whole sequence {xk} generated by DCA-Like. Moreover, we provide the rates of convergence
for the both sequences {xk} and {F2(xk)}.

Theorem 3.7 Assume that infx∈Rn F2(x) > −∞, and F2 is lower semicontinuous. Suppose
further that {xk} generated by DCA-Like is bounded, and one of the following assumptions is
satisfied :

A) g is differentiable with locally Lipschitz gradient and F2 has the strong KL property at any
x ∈ domF2.

B) h is differentiable with locally Lipschitz gradient and F2 has KL property at any x ∈ domF2.

Then the whole sequence {xk} converges to a critical point x∗ of (3.2). Moreover, if the function
ψ in the KL inequality has the form ψ(s) = cs1−θ with θ ∈ [0, 1) and c > 0, then we have

i) If θ = 0, then the sequences {xk} and {F2(xk)} converge to x∗ and F ∗2 in a finite number
of steps, respectively.

ii) If θ ∈ (0, 1/2], then the sequences {xk} and {F2(xk)} converge linearly to x∗ and F ∗2 ,
respectively.
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iii) If θ ∈ (1/2, 1), then there exist positive constants δ1, δ2, and N0 such that for all k ≥ N0,

‖xk − x∗‖ ≤ δ1k
− 1−θ

2θ−1

F2(xk)− F ∗2 ≤ δ2k
− 1

2θ−1 .

To prove Theorem 3.7, we use the following lemma. The lemma is a result related to the strong
KL property, which is similar to the one connected with the KL property ([30], Lemma 6). It can
be proved in a similar way of [30] by using the strong KL property instead of the KL property.

Lemma 3.5 Let Ω be a compact set and F : Rn → (−∞,+∞] be a proper lower semicontinuous
function. If F has the strong KL property at each point of Ω on which F is constant, then there
exist ε > 0, η > 0, and ψ ∈ Mη such that for all x ∈ {x : dist(x,Ω) < ε} ∩ {x : F ∗ < F1(x) <
F ∗1 + η}, one has

ψ′(F1(x)− F ∗)dist(0, ∂CF1(x)) ≥ 1.

Proof 3.10 (Proof of Theorem 3.7) We first prove that {xk} satisfies three conditions H1,
H2, H3 in [14]. Obviously, the suffucient decrease condition (H1) is satisfied by the (i) of Theorem
3.6. We next verify the relative error condition (H2), i.e., there exist N, π > 0 such that for all
k ≥ N

dist(0, ∂CF2(xk)) ≤ π‖xk+1 − xk‖, (3.51)

if the assumption (A) is satisfied, and

dist(0, ∂LF2(xk+1)) ≤ π‖xk − xk+1‖, (3.52)

if the assumption (B) is satisfied. Let us consider the following cases.
Case 1, (A) is satisfied. Since g is differentiable and its gradient is locally Lipschitz, it is easy

to prove that there exists N,L1 > 0 such that for any k ≥ N

‖∇g(xk+1)−∇g(xk)‖ ≤ L1‖xk+1 − xk‖. (3.53)

On the other hand, by the definition of xk+1, we have

ρk(x
k − xk+1)−∇f(xk) + ξk = ∇g(xk+1).

Combining the last equality with ξk ∈ ∂h(xk), we get

ρk(x
k − xk+1) +∇g(xk)−∇g(xk+1) = ∇f(xk) +∇g(xk)− ξk

∈ ∇f(xk) +∇g(xk)− ∂h(xk)
= ∂CF2(xk).

Hence the last equality holds since f and g are differentiable, and h is continuous. Therefore,
combining the above equation with (3.53) we obtain that for any k ≥ N1,

dist(0, ∂CF2(xk)) ≤ ‖ρk(xk − xk+1) +∇g(xk)−∇g(xk+1)‖
≤ ‖ρk(xk − xk+1)‖+ ‖∇g(xk)−∇g(xk+1)‖
≤ (βL+ L1)‖xk+1 − xk‖,

(3.54)

knowing that ρk ≤ βL.
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Case 2, (B) is satisfied. Since h is differentiable with locally Lipschitz derivative, similar to
Case 1, we can find L2 > 0 such that for any k ≥ N (increasing N if necessary),

‖∇h(xk)−∇h(xk+1)‖ ≤ L2‖xk − xk+1‖. (3.55)

By the definition of xk+1, we have(
ρk(x

k − xk+1)−∇f(xk) +∇h(xk)
)

+∇f(xk+1)−∇h(xk+1)

∈∂g(xk+1) +∇f(xk+1)−∇h(xk+1) = ∂LF2(xk+1).
(3.56)

On the other hand, by the Lipschitz continuity of ∇f and (3.55), we obtain

‖
(
ρk(x

k − xk+1)−∇f(xk) +∇h(xk)
)

+∇f(xk+1)−∇h(xk+1)‖

≤ (βL+ L+ L2) ‖xk − xk+1‖.

It follows from the above inequality and (3.56) that for any k ≥ N ,

dist(0, ∂LF2(xk+1)) ≤ (βL+ L+ L2) ‖xk − xk+1‖. (3.57)

We now verify the continuity condition (H3). Since the boundedness of {xk}, there exists a
sub-sequence {xkj+1} that converges to a point x∗. We need to prove that lim

j→∞
F2(xkj+1) = F2(x∗).

Indeed, we have

xkj+1 ∈ arg min
{ρkj

2
‖x− xkj‖2 + g(x)− 〈ξkj −∇f(xkj ), x− xkj 〉

}
,

which implies that
ρkj
2
‖xkj+1 − xkj‖2 + g(xkj+1)− 〈ξkj −∇f(xkj ), xkj+1 − xkj 〉

≤
ρkj
2
‖x∗ − xkj‖2 + g(x∗)− 〈ξkj −∇f(xkj ), x∗ − xkj 〉.

Using the limsup, we get
lim sup
j→+∞

g(xkj+1) ≤ g(x∗), (3.58)

where we have used the bounded properties of {ρk} and {ξk}, the continuity of ∇f , and (ii) of
Theorem 3.6. Therefore, we have

lim sup
j→∞

F2(xkj+1) = lim sup
j→∞

[f(xkj+1) + g(xkj+1)− h(xkj+1)]

≤ lim sup
j→∞

f(xkj+1) + lim sup
j→∞

g(xkj+1)− lim inf
j→∞

h(xkj+1)

≤ f(x∗) + g(x∗)− lim inf
j→∞

h(xkj+1)

≤ f(x∗) + g(x∗)− h(x∗) = F2(x∗),

where the second inequality follows from the continuity of f and (3.58), and the last inequality
holds by the lower semicontinuity of h. On the other hand, from the lower semicontinuity of F2,
we obtain lim infj→∞ F2(xkj+1) ≥ F2(x∗). Hence, we get lim

j→∞
F2(xkj+1) = F2(x∗).

Since the convergence of whole sequence {xk} to a critical point now can follow from Lemma 3.5
and similar arguments of the proof for [14, Theorem 2.9] while the second part of Theorem can
be justified by using similar proof techniques of [29, Theorem 2] and [74, Theorem 3.4], we omit
the detail of the rest of the proof. �
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3.3.2 Accelerated DCA-Like

We now present the accelerated version of DCA-Like to solve (3.2). Note that the acceleration
step is more general than the one in ADCA-Like for (3.1) (Algorithm 3.3). Here, we compare the
extrapolated point zk with last q iterates {xk−q, . . . , xk−1, xk} while we only do the comparison
with the latest iterate in Algorithm 3.3. Theoretically, a large-value of q increases the chance of
using the extrapolated points zk in ADCA and consequently increases its chance to accelerate

Algorithm 3.5 ADCA-Like for solving (3.2)

1: Initialization : Choose an initial point x0, z0 = x0, q ∈ N, t0 = (1 +
√

5)/2, a small enough
positive parameter ρ0, η > 1, 0 < δ < 1, and k ← 0.

2: repeat
3: If F2(zk) ≤ max

t=[k−q]+,...,k
F2(xt), then set vk = zk, otherwise set vk = xk.

4: Compute ξk ∈ ∂h(vk) and ∇f(vk).
5: Set ρk = max{ρ0, δρk−1} if k > 0.
6: Compute xk+1 by solving (3.45).

min
x∈Rn

{ρk
2
‖x‖2 + g(x)− 〈ρkvk −∇f(vk) + ξk, x〉

}
. (3.59)

7: while Hρk(xk+1) < Hρk(xk+1, vk) do
8: ρk ← ηρk.
9: Compute xk+1 by solving (3.45).
10: end while
11: Compute tk+1 =

1+
√

1+4t2k
2 and zk+1 = xk+1 + tk−1

tk+1

(
xk+1 − xk

)
12: k ← k + 1.
13: until Stopping criterion.

The convergence properties and convergence rates of ADCA-Like are provided in the following
theorems. Denote by {Γk} and {φ(k)} the sequences respectively defined as Γk = max

t=[k−q]+,...,k
F2(xt)

and φ(k) = arg min
t=k+1,...,k+1+q

ρt−1+µ(g)
2 ‖xt − vt−1‖2.

Theorem 3.8 Let {xk} and {vk} be the sequences generated by Algorithm 3.5. The following
statements hold.

i) For any k = 0, 1, ...,

Γk − Γk+1+q ≥
ρφ(k)−1 + µ(g)

2
‖xφ(k) − vφ(k)−1‖2. (3.60)

As a result, by choosing q = 0, we get the monotone property of {F2(xk)}, i.e., F2(xk) −
F2(xk+1) ≥ ρk+µ(g)

2 ‖xk+1 − vk‖2.
ii) If α = infx∈Rn F2(x) > −∞, then

+∞∑
k=0

‖xφ(k) − vφ(k)−1‖2 < +∞,

and therefore limk→+∞ ‖xφ(k) − vφ(k)−1‖ = 0.
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iii) If α = infx∈Rn F2(x) > −∞, then for any subsequence {xφ(kj)} of {xφ(k)}, converging to
x∗, the limit point x∗ is a critical point of (3.2).

Proof 3.11 i) From yk − ρkxk+1 ∈ ∂g(xk+1), where yk = ρkv
k −∇f(vk) + ξk, we have

g(vk) ≥ g(xk+1) + 〈yk − ρkxk+1, vk − xk+1〉+
µ(g)

2
‖vk − xk+1‖2.

Combining the above inequality and Hρk(xk+1) ≥ Hρk(xk+1, vk), we get the following inequality

F2(vk)− F2(xk+1) ≥ ρk + µ(g)

2
‖xk+1 − vk‖2. (3.61)

Observe that F2(vk) ≤ maxt=[k−d]+,...,k F2(xt) = Γk. It follows that

F2(xk+1) ≤ Γk − ρk + µ(g)

2
‖xk+1 − vk‖2. (3.62)

This implies that F2(xk+1) ≤ Γk. We prove by induction that for all t = 0, ..., q

F2(xk+1+t) ≤ Γk − ρk+t + µ(g)

2
‖xk+1+t − vk+t‖2. (3.63)

Indeed, it follows from (3.62) that the claim holds for t = 0. We suppose that it also holds for
t = 0, ..., p− 1 with 1 ≤ p ≤ q. Thus, we have

F2(xk+1+p) ≤ Γk+p −
ρk+p + µ(g)

2
‖xk+1+p − vk+p‖2

≤ max(Γk, F2(xk+1), ..., F2(xk+p))− ρk+t + µ(g)

2
‖xk+1+p − vk+p‖2

≤ Γk −
ρk+p + µ(g)

2
‖xk+1+p − vk+p‖2,

where last inequality follows from F2(xk+1+t) ≤ Γk for t = 0, ..., p− 1. Therefore, we obtain

Γk+q+1 = max
t=k+1,...,k+q+1

F2(xt)

≤ Γk − min
t=k+1,...,k+1+q

ρt−1 + µ(g)

2
‖xt − vt−1‖2

= Γk −
ρφ(k)−1 + µ(g)

2
‖xφ(k) − vφ(k)−1‖2.

ii) Note that Γk ≥ α for all k. By substituting ρk ≥ ρ0 in (3.60), we get

ρ0 + µ(g)

2
‖xφ(k) − vφ(k)−1‖2 ≤ Γk − Γk+q+1. (3.64)

Summing the inequality over k = 0, ..., N , we obtain

ρ0 + µ(g)

2

N∑
k=0

‖xφ(k) − vφ(k)−1‖2 ≤
q∑
t=0

(Γt − ΓN+t+1)

≤ (q + 1)( max
t=0,...,q

F2(xt)− α).
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Therefore ∑N
k=0 ‖xφ(k) − vφ(k)−1‖2 ≤

2(q+1)( max
t=0,...,q

F2(xt)−α)

ρ0+µ(g) .

Passing to the limit over the sequence {N}N∈N we get∑+∞
k=0 ‖xφ(k) − vφ(k)−1‖2 < +∞, (3.65)

and therefore limk→+∞ ‖xφ(k) − vφ(k)−1‖ = 0.
iii) Let {xφ(kj)} be a subsequence of {xφ(k)} that converges to x∗. It follows from (ii) that
limj→+∞ v

φ(kj)−1 = x∗. Since the sequence {vφ(kj)−1} is bounded, {ξφ(kj)−1} is bounded too.
Without loss of generality, we can suppose that the sequence {ξφ(kj)−1} converges to ξ∗. By the
closed property of the subdifferential mapping ∂h, we have ξ∗ ∈ ∂h(x∗). We note that

ρφ(kj)−1(vφ(kj)−1 − xφ(kj))−∇f(vφ(kj)−1) + ξφ(kj)−1 ∈ ∂g(xφ(kj)). (3.66)

Passing the limit of (3.66) and taking into account the closedness of ∂g, we obtain −∇f(x∗)+ξ∗ ∈
∂g(x∗). Therefore, ξ∗ ∈ [∇f(x∗) + ∂g(x∗)] ∩ ∂h(x∗) which implies that x∗ is a critical point of
(3.2). �

The flowing theorem shows rates of convergence of ADCA-Like in terms of objective value.
Denote `(k) = arg maxt=[k−q]+,...,k F2(xt) and i(k) = `((q + 1)k). From the proof of Theorem
3.7, we can show that {F2(x`(k))} is non-increasing. Hence, there exists L∗ such that L∗ =
limk→+∞ F2(x`(k)).

Theorem 3.9 Assume that infx∈Rn F2(x) > −∞, and F2 is is lower semicontinuous. Suppose
further that {xk} generated by ADCA-Like is bounded, and one of the following assumptions is
satisfied :

A) g is differentiable with locally Lipschitz gradient and F2 has the strong KL property at any
x ∈ domF2.

B) h is differentiable with locally Lipschitz gradient and F2 has KL property at any x ∈ domF2.

Moreover, if the function ψ in the KL inequality has the form ψ(s) = cs1−θ with θ ∈ [0, 1) and
c > 0, then we have the following conclusions

i) If θ = 0, there exists N such that F2(xk)− F ∗2 ≤ 0 for all k ≥ N .

ii) If θ ∈ (0, 1/2], there exists δ ∈ (0, 1), c > 0, and N such that F2(xk) − F ∗2 ≤ cδk for all
k ≥ N .

iii) If θ ∈ (1/2, 1), there exist positive constants η and N such that

F2(xk)− F ∗2 ≤ ηk
− 1

2θ−1 ,

for all k ≥ N .

Proof 3.12 Like the proof of Theorem 3.7, we verify three similar conditions H1, H2, and H3,
but they are different from those in the proof of Theorem 3.7 in the way that there is the sequence
{vi(k)}. We first verify the condition H1. Substituting i(k)− 1 for k in the inequality (3.11), we
obtain

ρi(k)−1 + µ(g)

2
‖xi(k) − vi(k)−1‖2 ≤ F2(x`(i(k)−1)− F2(xi(k)). (3.67)
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In addition, we have

i(k)− 1 ≥ (q + 1)k − q − 1 = (q + 1)(k − 1). (3.68)

It follows from this and (3.11) that F2(x`(i(k)−1) ≤ F2(xi(k−1)). Therefore, we get

ρ0 + µ(g)

2
‖xi(k) − vi(k)−1‖2 ≤ F2(xi(k−1))− F2(xi(k)). (3.69)

To verify the condition H2, we consider the following cases.
Case 1, (A) is satisfied. Since g is differentiable and its gradient is locally Lipschitz, there

exists N,L1 > 0 such that for any k ≥ N

‖∇g(xi(k))−∇g(vi(k)−1)‖ ≤ L1‖xi(k) − vi(k)−1‖. (3.70)

On the other hand, by the definition of xi(k), we have

ρi(k)−1(vi(k)−1 − xi(k))−∇f(vi(k)−1) + ξi(k)−1 = ∇g(xi(k)).

Combining this with ξi(k)−1 ∈ ∂h(vi(k)−1), we get

ρi(k)−1(vi(k)−1 − xi(k)) +∇g(vi(k)−1)−∇g(xi(k)) ∈ ∂CF2(vi(k)−1).

Therefore, combining this with (3.70), we obtain that for any k ≥ N1,

dist(0, ∂CF2(vi(k)−1)) ≤ π‖xi(k) − vi(k)−1‖, (3.71)

where π = βL+ L1.
Case 2, (B) is satisfied. Since h is differentiable with locally Lipschitz gradient, we can find

L2 > 0 such that for any k ≥ N (increasing N if necessary),

‖∇h(vi(k)−1)−∇h(xi(k))‖ ≤ L2‖vi(k)−1 − xi(k)‖. (3.72)

By the definition of xi(k), we have(
ρi(k)−1(vi(k)−1 − xi(k))−∇f(vi(k)−1) +∇h(vi(k)−1)

)
+∇f(xi(k))

−∇h(xi(k)) ∈ ∂g(xi(k)) +∇f(xi(k))−∇h(xi(k)) = ∂LF2(xi(k)).
(3.73)

Therefore, for any k ≥ N , we obtain

dist(0, ∂LF2(xi(k))) ≤ π‖vi(k)−1 − xi(k)‖, (3.74)

where π = βL+ L+ L2.
We now verify the condition H3, i.e., we have to show that there exists a sub-sequence {xi(kj)}

converging to a point x∗ such that lim
j→∞

F2(xi(kj)) = F2(x∗) . Indeed, since the boundedness of

{xi(k)}, there exists {xi(kj)} that converges to a point x∗. We have

xi(kj) ∈ arg min
{ρi(kj)−1

2
‖x− vi(kj)−1‖2 + g(x)− 〈ξi(kj)−1 −∇f(vi(kj)−1), x− vi(kj)−1〉

}
,

which implies that
ρi(kj)−1

2
‖xi(kj) − vi(kj)−1‖2 + g(xi(kj))− 〈ξi(kj)−1 −∇f(vi(kj)−1), xi(kj) − vi(kj)−1〉

≤
ρi(kj)−1

2
‖x∗ − vi(kj)−1‖2 + g(x∗)− 〈ξi(kj)−1 −∇f(vi(kj)−1), x∗ − vi(kj)−1〉.

90



DCA-Like and Accelerated DCA

Using the limsup, we get
lim sup
j→+∞

g(xi(kj)) ≤ g(x∗), (3.75)

where we have used the bounded properties of {ρi(k)−1} and {ξi(k)−1}, the continuity of ∇f , and
the fact that ‖xi(kj) − vi(kj)−1‖ → 0 as j → +∞. Therefore, we have

lim sup
j→∞

F2(xi(kj)) = lim sup
j→∞

[f(xi(kj)) + g(xi(kj))− h(xi(kj))]

≤ lim sup
j→∞

f(xi(kj)) + lim sup
j→∞

g(xi(kj))− lim inf
j→∞

h(xi(kj))

≤ f(x∗) + g(x∗)− lim inf
j→∞

h(xi(kj))

≤ f(x∗) + g(x∗)− h(x∗) = F2(x∗),

where the second inequality follows from the continuity of f and (3.58), and the last inequality
holds by the lower semicontinuity of h. On the other hand, from the lower semicontinuity of F2,
we obtain lim infj→∞ F2(xi(kj)) ≥ F2(x∗). Hence, we get lim

j→∞
F2(xi(kj)) = F2(x∗).

The results now can follow from Lemma 3.5, similar arguments of the proof for [14, Theorem
2.9] and [29, Theorem 2], and the facts that F2(xi(k)) ≤ F2(vi(k)−1) ≤ F2(xi(k−1)) and for all
k ∈ [(q + 1)t− q, (q + 1)t] with any t ≥ 1, F2(xk) ≤ F2(xi(t)). �

3.4 Application to the t-distributed Stochastic Neighbor Embed-
ding problem

The t-SNE can be described as follows. Given a data set of N (high-dimensional) input
objects D = {a1, ..., aN} with ai ∈ Rd, the t-SNE aims to find, for each input object ai, a
low-dimensional embedding point xi ∈ Rs in a way that respects similarities between points. To
this end, t-SNE first defines joint probabilities pij (using Gaussian distribution) and qij (using a
Student t-distribution with one degree of freedom [161]) that measure, respectively, the pairwise
similarity between objects ai and aj in the original space, and the one between two points xi
and xj in the embedding space E , which are given by

pij =
pj|i + pi|j

2N
; pj|i =

exp(−‖ai − aj‖2/2σ2
i )∑

k 6=i exp(−‖ai − ak‖2/2σ2
i )

if i 6= j, 0 otherwise,

where σi is the variance of the Gaussian that is centered at ai, and

qij =
(1 + ‖xi − xj‖2)−1∑
k 6=l(1 + ‖xk − xl‖2)−1

if i 6= j, and 0 otherwise.

Then t-SNE learns a s-dimension map x1, . . . , xN ∈ Rs which minimizes the Kullback-Leibler
divergence between the two joint distributions P = (pij) and Q = (qij) :

min
x

F (x) = KL(P ||Q) =
∑
i 6=j

pij log
pij
qij

 . (3.76)

The nonconvex optimization problem (3.76) has been studied in several works ([161, 246,
229]), and the most noticeable was presented in [247] where the authors presented and compared

91



DCA-Like and Accelerated DCA

Majorization Minimization algorithm (MM) with five state-of-the-arts methods, such as gra-
dient descent, gradient descent with momentum [161], spectral direction [229], FPHSSNE [246]
and Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS [178]. The numerical results
showed that MM [247] outperforms all five state-of-the-art optimization methods.

We now show that (3.76) takes the form of (3.1). Indeed, the function F in (3.76) can be
rewritten as

F (x) = f(x) +
∑
i,j

hij(gij(xi, xj)), (3.77)

where
f(x) :=

∑
i 6=j

pij log pij + log(
∑
i 6=j

(1 + ‖xi − xj‖2)−1), (3.78)

hij(t) = pij log(1 + t), gij(xi, xj) = ‖xi − xj‖2. (3.79)

It is obvious that gij are convex functions, and hij are concave increasing functions. Moreover,
the function f is differentiable with L-Lipschitz continuous gradient by the following proposition.

Proposition 3.3 The function f(x) in (3.78) is smooth with Lipschitz gradient, where we can
choose a Lipschitz constant L = 4.

Proof 3.13 We recall the definition of function f

f(x) :=
∑
i 6=j

pij log pij + log

∑
i 6=j

(1 + ‖xi − xj‖2)−1

 .

Note that pij is known in advance hence the first term of f is a constant. Let’s consider the
second term of f

ϕ(x) = log

∑
i 6=j

(1 + ‖xi − xj‖2)−1

 .

For i 6= j, let’s define the function

zij(x) = ‖xi − xj‖2.

Then, we have

ϕ(x) = log

∑
i 6=j

1

1 + zij(x)

 ,

or equivalently

eϕ(x) =
∑
i 6=j

1

1 + zij(x)
.

Taking derivatives in x both sides of the above equation, we get

∇ϕ(x) eϕ(x) =
∑
i 6=j

−1

(1 + zij(x))2
∇zij(x).
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Taking derivatives in x both sides of the above equation, we get

∇2ϕ(x) eϕ(x) +∇ϕ(x)(∇ϕ(x))T eϕ(x)

=
∑
i 6=j

(
2

(1 + zij(x))3
∇zij(x)(∇zij(x))T +

−1

(1 + zij(x))2
∇2zij(x)

)

Note that zij are convex then ∇2zij(x) � 0. The above equation implies that

∇2ϕ(x) eϕ(x) �
∑
i 6=j

2

(1 + zij(x))3
∇zij(x)(∇zij(x))T

�
∑
i 6=j

2‖∇zij(x)‖2

(1 + zij(x))3
I.

Moreover,
‖∇zij(x)‖2 = 8‖xi − xj‖2 = 8zij(x) ≤ 2(1 + zij(x))2.

Thus,

∇2ϕ(x) eϕ(x) �
∑
i 6=j

4

1 + zij(x)
I = 4 eϕ(x) I,

or equivalently,
∇2ϕ(x) � 4I.

Therefore, ϕ(x) is Lipschitz gradient with a Lipschitz constant L = 4. �

As (3.76) takes the form of (3.1), DCA-Like (Algorithm 3.2) and ADCA-Like (Algorithm 3.3)
can be developed to solve it. For applying DCA based algorithms on (3.76), at each iteration,
we have to compute

ξkij = ∇(−hij)(gij(xki , xkj )) = − pij

1 + ‖xki − xkj ‖2

and ∇f(xk) by

∇xif(xk) =
n∑
j=1

−4(xki − xkj )(1 + ‖xki − xkj ‖2)−2∑
l 6=m(1 + ‖xkl − xkm‖2)−1

, (3.80)

and solve the following convex problem to compute xk+1

min
x

ρk2 ‖x− xk‖2 + 〈∇f(xk), x〉+
∑
i,j

−ξkij‖xi − xj‖2
 .

The solution xk+1 of the above problem is given by

xk+1 = (2L−ξk−(ξk)T + ρkI)−1(−∇f(xk) + ρkx
k), (3.81)

where the matrix ξk is defined by the elements ξkij and LA denotes the matrix with (LA)ij = −Aij
if i 6= j and −Aii +

∑n
l=1Ail otherwise. Note that all the above DCA based algorithms are in

explicit form and very inexpensive. We also observe that, from the update rule (3.81) for xk+1

and this stopping criterion for searching ρk, the algorithm MM in [247] for (3.76) is a special
version of DCA-Like.
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Algorithm 3.6 DCA-Like for solving t-SNE problem (3.76)

1: Initialization Choose x0, η > 1, 0 < δ < 1, ρ0 > 0 and k ← 0.
2: repeat
3: Compute ξkij = − pij

1+‖xki−xkj ‖2
and ∇f(xk) by (3.80).

4: Set ρk = max{ρ0, δρk−1} if k > 0.
5: Compute xk+1 by (3.81).
6: while U tsneρk

(xk+1, xk) < F (xk+1) do
7: ρk ← ηρk.
8: Compute xk+1 by (3.81).
9: end while

10: k ← k + 1.
11: until Stopping criterion

According to the Algorithm 3.2, at each iteration k, we only need to find ρk such that

U tsneρk
(xk+1, xk) ≥ F (xk+1), (3.82)

where U tsneρk
(xk+1, xk) = F (xk) + 〈∇f(xk), xk+1− xk〉+ µk

2 ‖x
k+1− xk‖2− 〈ξk, g(xk+1)− g(xk)〉.

Finally, DCA-Like for solving (3.76) is given in Algorithm 3.6.
ADCA-Like for (3.76) is obtained by adding the acceleration steps (Step 3 and 11 of Algo-

rithm 3.3) to Algorithm 3.6.
We recall that all semi-algebraic functions and subanalysis functions satisfy the KL property

[13], for examples, real polynomial functions, logarithm function, `p-norm with p ≥ 0. In ad-
dition, finite sums, products, generalized inverse, compositions of semi-algebraic functions are
also semi-algebraic. This implies that the objective function of (3.76) satisfies the KL property.
Hence, DCA-Like and ADCA-Like for solving (3.76) enjoy all convergence properties provided
in Theorems 3.6–3.9.

3.4.1 Experiment setting

The numerical experiments were realized on several data sets taken from the UCI data re-
pository. We compare our algorithms with MM [247] and DC Proximal Newton (DC-PN) [198].
Recall that Yang et al. (2015) [247] have developed a MM method for t-SNE and showed that
their method outperformed many other methods for t-SNE such as gradient descent, gradient
descent with momentum, spectral direction, FPHSSNE, etc. And as MM for t-SNE [247] is a
special case of DCA-Like, it is not necessary to compare our methods with other non DCA-based
methods. On the other hand, DC-PN is chosen since it is one of the most recent paper and has
been successfully applied to several non-convex optimization problems, especially in Machine
Learning.

As mentioned before, in DCA and ADCA schemes for solving (3.76) we have to estimate
the L-Lipschitz constant of f . According to Proposition 3.3, we can choose L = 4. However, in
practice, this value is still large and consequently DCA could converge rapidly to a bad solution.
Hence, we incorporate a ρ updating procedure into DCA and ADCA. We start with a small value
of ρ and increase ρ if the objective value increases in DCA/ADCA scheme. For all algorithms,
the initial value of ρ is set to be ρ0 = 10−6. We set η = 1

δ = 2 as proposed in [247].
We adopt the same test procedure as described in [247]. The initial point x0 is drawn from

normal distribution N (0, 10−8) for all methods. We use the early exaggeration technique as
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proposed in [161] which consists in running the algorithm in 2 stages. In the first stage, we run
the algorithm from the initial point x0 with modified value of pij (for instance, pij is multiplied
by 4). Then the solution of the first stage is used as a starting point for the second stage in
which we use the true value of pij . By using large value of pij in the first stage, the algorithm is
encouraged to focus on modelling pij by fairly large qij in low dimensional space and consequently
it tends to form tight widely separated clusters in the map. This creates a lot of empty space
in the map, which makes it much easier for the clusters to move around in order to find a good
global organization in the second stage [161].

Recent research on t-SNE suggests using Barnes-Hut tree approximation to reduce the run-
ning time by computing approximately the objective function and gradient in t-SNE [160]. This
technique is well-known in Neighbor Embedding problems, which allows to reduce greatly the
running time while having a small loss in gradients and the objective function. The parameter
θBarnes-Hut is set to be 0.5. It has also been shown that Barnes-Hut tree approximation works
very well with sparse matrix P . In our experiment, k-Nearest Neighbor (with k = 10) is em-
ployed to construct a sparse matrix P as follows : pij =

p̄ij∑
k,l p̄kl

where p̄ij = 1 if data point j
(reps. i) is one of k nearest neighbors of data point j (reps. i) and p̄ij = 0 otherwise. We use the
same way to compute variances σi of Gaussian centered at ai as in [161]. More precisely, one
performs a binary search for the value of σi that produces a probability distribution Pi with a
fixed perplexity given by the user.

The stopping conditions of all algorithms are the same, by either (a) number of iterations
exceeds 10000 or (b) ‖xk − xk−1‖/‖xk−1‖ ≤ 10−8. Throughout our experiment, the number of
embedding dimension is set to s = 2.

The performance of each algorithm is evaluated on three criteria : the objective value F (x),
the number of iterations and the running time (measured in seconds). We run each algorithm 10
times and then report the mean and standard deviation for each criterion in Table 3.2.

3.4.2 Numerical results

Table 3.2 – Comparative results on t-SNE problem. Bold values indicate best results.

Dataset Algorithm Objective Iteration Time (sec.)
Mean STD Mean STD Mean STD

gisette DCA 3.52 0.04 27 0 15.3 0.2
N = 7000 ADCA 3.33 0.00 118 31 39.5 7.9
d = 5000 DCA-Like 3.34 0.01 283 81 209.0 57.9

ADCA-Like 3.32 0.02 133 24 62.9 10.0
DC-PN 3.53 0.02 2187 186 1218.3 194.3

usps DCA 2.41 0.01 29 1 23.1 1.8
N = 9298 ADCA 3.92 1.36 70 107 27.9 39.0
d = 256 DCA-Like 2.34 0.00 106 18 62.5 11.0

ADCA-Like 2.34 0.01 107 15 64.9 6.0
DC-PN 2.57 0.07 2083 538 1315.2 171.7

magic DCA 2.40 0.00 850 373 413.4 170.4
N = 19020 ADCA 2.46 0.01 215 9 150.5 9.8
d = 10 DCA-Like 2.36 0.00 168 39 135.2 31.1

ADCA-Like 2.36 0.00 106 7 101.7 4.8
DC-PN 2.80 0.07 3498 237 4321.0 557.8
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s
letters DCA 1.58 0.02 1186 159 652.8 98.2
N = 20000 ADCA 1.49 0.02 369 104 268.4 86.8
d = 16 DCA-Like 1.48 0.01 164 24 149.0 19.3

ADCA-Like 1.48 0.01 90 7 96.8 7.4
DC-PN 2.14 0.07 1326 253 1997.1 539.0

shuttle DCA 1.60 0.02 3520 459 6056.5 782.9
N = 58000 ADCA 1.48 0.04 760 96 1781.7 215.1
d = 9 DCA-Like 1.45 0.02 333 9 981.7 33.1

ADCA-Like 1.42 0.00 152 23 553.7 123.6
DC-PN 2.54 0.03 4693 68 26784.4 3633.2

sensorless DCA 3.18 0.02 1788 454 3232.1 837.3
N = 58509 ADCA 3.13 0.01 418 24 912.8 50.0
d = 48 DCA-Like 3.21 0.02 313 41 953.7 114.5

ADCA-Like 3.18 0.02 153 28 499.3 91.2
DC-PN 3.81 0.04 4255 144 20586.9 4488.6

mnist DCA 3.44 0.00 3894 111 13752.7 644.9
N = 70000 ADCA 3.45 0.01 960 60 2659.1 63.3
d = 784 DCA-Like 3.46 0.01 371 67 1576.8 259.7

ADCA-Like 3.43 0.01 196 27 834.1 127.5
DC-PN 4.12 0.01 3703 308 21486.7 3643.1

miniboone DCA 3.55 0.05 3401 1151 20473.3 6471.2
N = 130064 ADCA 3.47 0.06 454 338 2917.1 2050.2
d = 50 DCA-Like 3.53 0.05 469 61 4841.7 691.5

ADCA-Like 3.53 0.02 170 12 1560.6 209.1
DC-PN 5.36 0.15 471 29 7071.7 844.0

covertype DCA 2.14 0.00 3998 35 71591.8 1407.2
N = 581012 ADCA 1.88 0.00 1670 0 29954.8 0.0
d = 54 DCA-Like 2.10 0.04 1217 66 37123.1 3546.5

ADCA-Like 1.68 0.01 330 10 8338.4 191.8
DC-PN 4.24 0.00 5741 45 140122.8 5126.4

• Comparison between DCA-Like and DCA.
For two smallest datasets (gisette and ups), DCA is faster than DCA-Like while the later is

better than the former in terms of objective value. One possible reason is that the value of ρ is
quite large in DCA and then it converges quickly to a “bad” critical point.

In datasets of over 10, 000 samples, DCA-Like is superior to DCA in all three criteria. In terms
of running time, the number of iterations of DCA-Like is from 3.2 to 10 times less than DCA.
Consequently, the computing time of DCA-Like is improved from 1.9 to 8.7 times comparing to
DCA. Furthermore, DCA-Like gives lower objective value than DCA in six out of nine datasets
(gisette, usps, magic, letters, shuttle, miniboone, and covertype), whereas the difference of two
algorithms is neglectable for other three datasets.

In summary, DCA-Like improves the standard DCA on both quality of solution and rapidity.
• We study now the benefit of acceleration technique via the comparison between two pairs :
ADCA versus DCA and ADCA-Like versus DCA-Like.

Not surprisingly, the number of iterations of ADCA-Like is always smaller (up to 3.6 times
smaller) than that of DCA-Like. The gains in running time are also considerable, ADCA-Like is
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Figure 3.1 – Objective value versus running time (average of ten runs)

faster than DCA-Like from 1.5 to 5 times. On another hand, the two algorithms furnish the same
objective value on three datasets (ups, magic and letters) while ADCA-Like gives better results
than DCA-Like in the other six datasets. Thus, we can say that ADCA-Like further improves
the performance of DCA-Like.

As for the comparison of DCA and ADCA, in most of the cases, ADCA is better than DCA. In
five out of nine datasets (letters, shuttle, sensorless, miniboone and covertype), ADCA is superior
to DCA in all three aspects. The ratio of gains in terms of running time is from 2.4 to 7.0 times.
In the two datasets (magic and mnist), ADCA is faster, but is slightly worse in terms of objective
value.
• Among the five comparative algorithms, ADCA-Like gives the best results. In terms of running
time, ADCA-Like, followed by DCA-Like, is the fastest in seven over nine datasets. As for the
objective value, ADCA-Like gives the best result in seven datasets, followed by DCA-Like in
three datasets. Note that, the gains of ADCA-Like versus the second-best algorithm, in each
comparative criterion, are noticeable. This illustrates the superior of ADCA-Like versus the
other algorithms.

In Figure 3.1, we plot the objective value against the running time.
We observe that DCA performs thoroughly at the beginning but then it is left behind, while
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(a) DCA (b) ADCA (c) DCA-Like

(d) ADCA-Like (e) DC-PN

Figure 3.2 – Visualization of embedding space on mnist dataset. Colors represent classes of
data (0-9).

DCA-Like, ADCA and ADCA-Like improve swiftly over time. It is noticeable that, in the plot
of magic, letters, shuttle, although ADCA-Like struggle at first iterations, it soon catches up
and surpasses others algorithms to produce the best result while being the fastest. Also, for the
biggest dataset (covertype), the effectiveness of accelerated algorithms is clearly demonstrated :
ADCA-Like (reps. ADCA) surpass DCA-Like (reps. DCA) after a short amount of time.

Figure 3.2 visualizes the results on the well-known dataset mnist. This dataset consists of
70000 gray-scale 28 × 28 images over 10 classes of handwritten digits. mnist can be considered
as the benchmark dataset for SNE-based algorithms, since they are able to capture both local
and global structure of this dataset, especially in 2D embedding space. As we can see, in the
embedding space, all four DCA-based algorithms managed to keep the structure of dataset of
the original space, whereas DC-PN failed to maintain the structure. Four images of DCA-based
algorithms in Figure 3.2 are quite similar since their objective values are fairly similar.
•We now study the effect of ρ0 on the performance of DCA-Like. We run DCA-Like with different
values of ρ0 taken from the interval

[
10−7, . . . , 1, 4

]
. This experiment is performed on letters -

an arbitrary chosen dataset. In Figure 3.4 (a) we report the objective value given by DCA-Like
as ρ0 varies. We observe that the best values of objective function are achieved when ρ0 is in the
vicinity of 10−7 , and the objective value increases quickly as ρ0 ≥ 10−6. Figure 3.4 (b) shows
the percentage of number of iterations in inner while loop in DCA-Like over the total number of
iterations (blue curve) and the percentage of time spent on the inner while loop over the total
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(a) DCA (b) ADCA (c) DCA-Like

(d) ADCA-Like (e) DC-PN

Figure 3.3 – Visualization of embedding space onminiboone dataset (2 classes). Colors represent
classes of data.

running time (red curve). We observe that with the smallest value ρ0 = 10−7, DCA-Like needs
a large number of iterations in the inner loop for finding a suitable value of ρk. In contrast, the
number of inner iterations decreases drastically as ρ0 increases and for ρ0 ≥ 10−5 it is equal to
0. It means that for a too large value of ρ0, the condition (3.44) is always verified and DCA-Like
does not enjoy its advantages. It seems that ρ0 = 10−6 could be a good initial value of ρ0 to
realize the trade-off between the objective value and the running time.

Overall, ADCA-Like gives the best results in all three comparison criteria while the results
furnished by DC-PN are worst off. We can safely conclude that DCA-Like considerably improves
DCA and ADCA-Like further enhances DCA-Like.

3.5 Application to group variables selection in multi-class logistic
regression

Logistic regression, introduced by D. Cox in 1958 [58], is undoubtedly one of the most popular
supervised learning methods. Logistic regression has been successfully applied in various real-life
problems such as cancer detection [119], medical [33, 16, 218], social science [120], etc. Espe-
cially, logistic regression combined with feature selection has been proved to be suitable for high
dimensional problems, for instance, document classification [80] and microarray classification
[155, 119].
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(b) Percentage of number of iterations in DCA-
Like where the inner while loop is activated and
the time spent on inner while loop. Values of
both lines are 0 for ρ0 ≥ 10−5.

Figure 3.4 – Result of DCA-Like with different value of ρ0 on dataset letters.

The multi-class logistic regression problem can be described as follows. Let {(xi, yi) : i =
1, ..., n} be a training set with observation vectors xi ∈ Rd and labels yi ∈ {1, ..., Q} where
Q is the number of classes. Let W be the d × Q matrix whose columns are W:,1, ...,W:,Q and
b = (b1, ..., bQ) ∈ RQ. The couple (W:,i, bi) forms the hyperplane fi := W T

:,ix + bi that separates
the class i from the other classes.

In the multi-class logistic regression problem, the conditional probability p(Y = y|X = x)
that an instance x belongs to a class y is defined as

p(Y = y|X = x) =
exp(by +W T

:,yx)

Q∑
k=1

exp(bk +W T
:,kx)

. (3.83)

We aim to find (W, b) for which the total probability of the training observations xi belonging to
its correct classes yi is maximized. A natural way to estimate (W, b) is to minimize the negative
log-likelihood function which is defined by

L(W, b) :=
1

n

n∑
i=1

`(xi, yi,W, b) (3.84)

where `(xi, yi,W, b) = − log p(Y = yi|X = xi). Moreover, in high-dimensional settings, there
are many irrelevant and/or redundant features. Hence, we need to select important features in
order to reduce overfitting of the training data. A feature j is to be removed if and only if all
components in the row j of W are zero. Therefore, it is reasonable to consider rows of W as
groups. Denote by Wj,: the j-th row of the matrix W . The `2,0-norm of W , i.e., the number of
non-zero rows of W , is defined by

‖W‖2,0 = |{j ∈ {1, ..., d} : ‖Wj,:‖2 6= 0}|.
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Hence, the `2,0 regularized multi-class logistic regression problem is formulated as follows

min
W,b

{
1

n

n∑
i=1

`(xi, yi,W, b) + λ‖W‖2,0

}
. (3.85)

In this work, we use a non-convex approximation of the `2,0-norm based on the function
Capped-`1 regularization which is defined by ηα(s) := min{1, αs}. The Capped-`1 is chosen
since it has some interesting theoretical properties (c.f. Chapter 5 for more details on sparse
inducing regularizations) and has shown its effectiveness in several problems, for instance sparse
optimal scoring problem [149], sparse covariance matrix estimation problem [194]. Note that, our
algorithms presented below are still available for other nonconvex regularizations such as concave
exponentiel, SCAD, etc.

The corresponding approximate problem of (3.85) takes the form :

min
W,b

 1

n

n∑
i=1

`(xi, yi,W, b) + λ

d∑
j=1

ηα(‖Wj,:‖2)

 . (3.86)

It is easy to see that the objective function F (w, b) of (3.86) can take the form of (3.1), where
f(W, b) = 1

n

∑n
i=1 `(xi, yi,W, b), gj(t) = λmin(α |t| , 1), hj(W ) = ‖Wj,:‖q. In deed, the function

f is differential with L-Lipschitz continuous gradient, gj are non-smooth convex functions, and
hj are concave increasing functions. As for the problem (3.1), we equivalently reformulate the
problem (3.86) to the following problem in order to remove the composite function from the
objective funtion

min
(W,b,t)

F (w, b, z) =
1

n

n∑
i=1

`(xi, yi,W, b) + χΩ(W, b, z) + λ

d∑
j=1

ηα(zj)

 , (3.87)

where Ω = {(W, b, z) ∈ Rd×Q × RQ × Rd : ‖Wj,:‖2 ≤ zj , j = 1, ..., d}.
The problem (3.87) is in the form of (3.3), thus DCA and DCA-Like can be developed to solve

it. DCA applied to (3.87) consists in computing, at each iteration l, (Uk, vk, tk) ∈ ∂H(W k, bk, zk),
and solving the convex sub-problem

min
(W,b,t)

{ρ
2
‖(W, b)‖2 + χΩ(W, b, z)− 〈Uk,W 〉 − 〈vk, b〉 − 〈tk, z〉

}
. (3.88)

The computation of (Uk, vk, tk) is explicitly defined as follows.

(Uk, vk, tk) =
1

n

n∑
i=1

(Uki , v
k
i , t

k
i ), (U

k
i , v

k
i , t

k
i ) ∈ ∂hi(W k, bk, zk),

(Uki ):,l = ρW k
:,l −

(
pkk(xi)− δlyi

)
xi, l = 1, ...Q,

(vki )l = ρbkl −
(
pkl (xi)− δlyi

)
, l = 1, ...Q,

(tki )j = −λα if αzkj ≤ 1, and 0 otherwise, j = 1, . . . , d,

(3.89)

with pkl (xi) = exp(bkl + (W k
:,l)

Txi)/(
∑Q

h=1 b
k
h + (W k

:,h)Txi)), δlyi = 1 if l = yi and 0 otherwise.
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The convex sub-problem (3.88) can be solved as follows (note that tkj ≤ 0 for j = 1, . . . , d)

W k+1 = arg min
W

ρ2‖W‖2 +
d∑
j=1

(−zkj )‖Wj,:‖2 − 〈Uk,W 〉

 , (3.90)

bk+1 = arg min
b

{ρ
2
‖b‖2 − 〈vk, b〉

}
=

1

ρ
vk, (3.91)

zk+1
j = ‖W k+1

j,: ‖2, j = 1, ..., d. (3.92)

Since the problem (3.90) is separable in rows of W , solving it amounts to solving d independent
sub-problems

W k+1
j,: = arg min

Wj,:

{ρ
2
‖Wj,:‖2 + (−tkj )‖Wj,:‖2 − 〈Ukj,:,Wj,:〉

}
(3.93)

W k+1
j,: can be explicitly computed as follows. From (3.93) we can write

W k+1
j,: = arg min

Wj,:

{
1

2
‖Wj,: − Ukj,:/ρ‖2 + (−tkj )‖Wj,:‖2

}
.

W k+1
j,: = prox(−tkj )/ρ‖·‖2

(
Ukj,:/ρ

)
,

where the proximal operator proxf (ν) is defined by

proxf (ν) = arg min
t

{
1

2
‖t− ν‖2 + f(t)

}
.

The proximal operator of (−tkj )/ρ‖ · ‖q can be efficiently computed [184]. The computation of
prox(−tkj )/ρ‖.‖q (ν/ρ) is given by

prox(−tkj )/ρ‖.‖q (ν/ρ) =


(

1− −tkj
‖Ukj,:‖2

)
Ukj,:/ρ if ‖Ukj,:‖2 > −tkj

0 if ‖Ukj,:‖2 ≤ −tkj .
(3.94)

Hence, DCA for solving (3.87) is described in Algorithm 3.7.

Algorithm 3.7 DCA-`2,0 : DCA for solving (3.87)

1: Initialization : Choose (W 0, b0) ∈ Rd×Q × RQ, ρ > L and k ← 0.
2: repeat
3: Compute (Uk, vk, tk) by (3.89).
4: Compute (W k+1, bk+1, zk+1) according to (3.91), (3.92) and (3.94).
5: k ← k + 1.
6: until Stopping criterion.

In the DCA-Like scheme for solving (3.87), we observe that the while loop stops if the
following inequality holds

ULRρk ((W, b, z)k+1, (W, b, z)k) ≥ F ((W, b, z)k+1), (3.95)

where ULRρl ((W, b, z)k+1, (W, b, z)k) = F ((W, b, z)k) + 〈∇f((W, b, z)k), (W, b, z)k+1 − (W, b, z)k〉+
ρk
2 ‖(W, b, z)

k+1−(W, b, z)k‖2−〈zk, g(W k+1)−g(W k)〉. Thus, DCA-Like for solving problem (3.87)
is presented in Algorithm 3.8.

ADCA-Like for solving (3.87) is obtained by adding the steps (Step 3 and 11 of Algorithm 3.3)
to Algorithm 3.8.
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Algorithm 3.8 DCA-Like for solving (3.87)

1: Initialization : Choose (W 0, b0) ∈ Rd×Q × RQ, ρ0 > 0 and k ← 0.
2: repeat
3: Compute (U, v, t)k by (3.89).
4: Set ρl = max{ρ0, δρl−1} if l > 0.
5: Compute (W, b, z)k+1 according to (3.91), (3.92) and (3.94).
6: while ULRρl ((W, b, z)k+1, (W, b, z)k) < F ((W, b, z)k+1) do
7: ρl ← ηρk.
8: Compute (W, b, z)k+1 according to (3.91), (3.92) and (3.94).
9: end while

10: k ← k + 1.
11: until Stopping criterion

3.5.1 Experiment setting

The comparisons are performed between 6 algorithms : DCA, DCA-Like, ADCA, ADCA-Like,
nm-APG (non-monotone APG) [154] and DC-PN (DC Proximal Newton) [198]. Recall that nm-
APG is an accelerated proximal gradient based method for minimizing f(x) + r(x) where f(x)
is a differentiable function with L-Lipschitz gradient and r(x) is a nonconvex function. nm-
APG requires to compute the proximal mapping of the DC function ηα. However, this proximal
mapping does not have a closed form. We therefore use DCA to compute the proximal mapping
of ηα in nm-APG.

For DCA and ADCA, the Lipschitz constant L is estimated by an upper bound of Hessian
matrix of logistic loss function which clearly too large. Hence, similarly as in the first application,
we incorporate a ρ-updating procedure into DCA and ADCA. We set the initial value of ρ to
ρ0 = 10−1.

We performed numerical experiments on several benchmark datasets taken from UCI and
LIBSVM data repositories. The detailed information of used datasets is summarized in the first
column of Table 3.3. n represents the number of points in dataset, d is the number of features,
and Q is the number of classes. We randomly take 80% of the whole dataset as a training set
and the rest is used as test set (20%).

In order to evaluate the performance of algorithms, we consider the following criteria : the
classification accuracy (percentage of well-classified point on test set), the sparsity of obtained
solution (percentage of selected features), the running time (measured in seconds) and the number
of iterations.

3.5.2 Numerical results

The numerical results are reported in Table 3.3.
• Comparison between DCA and DCA-Like. Concerning the running time, DCA-Like is clearly
faster than DCA, with the gains from 1.6 to 8.8 times. In term of classification accuracy and
sparsity, DCA-Like is slightly better than DCA. In 4 cases (satimage, mushroom, shuttle and
sensorless), DCA-Like achieves better classification accuracy (up to 1%) whereas choosing the
same number of features. In the remaining 2 cases, the difference between them are neglectable.
• Comparison between ADCA and ADCA-Like. In terms of classification accuracy, ADCA-Like
is slightly better than DCA-Like. In five over six datasets (except mushroom dataset), ADCA-
Like shows the superior over DCA-Like in both classification accuracy and sparsity : ADCA-Like
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Table 3.3 – Comparative results on the group variable selection in multiclass logistic regression
problem. Bold values correspond to best results for each dataset. n, d and Q are the number of
instances, dimensions and classes respectively.

Dataset Algorithm Accuracy (%) Time (sec.) Sparsity (%)
Mean STD Mean STD Mean STD

dna DCA 93.41 0.54 3.95 0.19 8.89 0.56
n = 3186 ADCA 93.30 0.18 0.60 0.02 8.89 0.56
d = 180 DCA-Like 93.20 0.74 0.98 0.13 7.78 0.96
Q = 3 ADCA-Like 93.88 0.83 0.92 0.05 7.78 2.00

nm-APG 93.30 0.65 3.30 0.05 8.52 0.32
DC-PN 93.56 0.16 1.20 0.13 29.07 2.51

satimage DCA 84.25 0.20 4.02 1.15 44.44 2.78
n = 6435 ADCA 83.61 0.95 2.90 2.58 62.04 25.66
d = 36 DCA-Like 84.51 0.25 0.46 0.05 44.44 2.78
Q = 6 ADCA-Like 84.67 0.43 0.28 0.03 49.07 1.60

nm-APG 81.84 0.70 1.98 0.05 100.00 0.00
DC-PN 78.63 0.88 4.24 0.26 47.22 16.90

mushroom DCA 98.44 0.30 5.71 0.08 4.50 0.00
n = 8124 ADCA 98.24 0.30 0.48 0.03 6.31 3.12
d = 112 DCA-Like 99.41 0.22 0.25 0.02 4.50 0.00
Q = 2 ADCA-Like 99.41 0.22 0.20 0.09 3.60 0.00

nm-APG 98.44 0.30 12.07 0.47 4.50 0.00
DC-PN 97.81 0.66 0.17 0.04 27.93 1.80

phishing DCA 92.52 0.18 2.60 0.08 33.82 2.55
n = 11055 ADCA 92.64 0.07 0.38 0.01 28.92 0.85
d = 68 DCA-Like 92.36 0.32 0.19 0.01 27.94 1.47
Q = 2 ADCA-Like 92.66 0.15 0.14 0.01 27.45 0.85

nm-APG 92.40 0.32 6.95 0.18 28.43 1.70
DC-PN 92.66 0.11 0.38 0.03 61.76 5.30

shuttle DCA 95.97 0.11 16.50 5.13 59.26 6.42
n = 58000 ADCA 96.11 0.26 15.93 4.43 59.26 6.42
d = 9 DCA-Like 96.06 0.05 1.81 0.20 59.26 6.42
Q = 7 ADCA-Like 96.13 0.08 1.43 0.21 59.26 6.42

nm-APG 96.06 0.05 21.27 0.30 66.67 0.00
DC-PN 92.56 0.61 3.04 0.73 92.59 6.42

sensorless DCA 78.55 0.45 58.76 0.15 12.50 0.00
n = 58509 ADCA 79.03 0.44 12.47 0.27 12.50 0.00
d = 54 DCA-Like 79.51 0.41 55.10 1.32 12.50 0.00
Q = 11 ADCA-Like 79.56 0.36 36.02 0.79 12.50 0.00

nm-APG 78.72 0.41 46.53 0.86 12.50 0.00
DC-PN 77.64 1.20 8.43 1.11 78.47 12.73
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yields higher classification accuracy while choosing a smaller subset of features.
• Comparison between our algorithms and existing methods (nm-APG and DC-PN). In term
of classification accuracy, ADCA-Like produces the best results in all six datasets. As for the
sparsity of solution, ADCA-Like also furnishes good results : the best result on four datasets and
the second-best result on the other two datasets. It is worth to mention that in two datasets
(sensorless and shuttle), while most algorithms choose the same percentage of features, ADCA-
Like has the highest classification accuracy. We also observe that DC-PN often chooses the
biggest subset of features while giving lower classification accuracy. In term of computing time,
DCA-Like and ADCA-Like are arguably faster than the other algorithms, whereas nm-APG
is the slowest. Overall, both ADCA-Like and ADCA achieve better results than nm-APG and
DC-PN.

3.6 Application to the sparse binary logistic regression problem

Consider now the sparse binary logistic regression problem whose the description is given in
Section 2.4 of Chapter 2. Recall that we have developed ADCA and ADCA to solve this problem
in Chapter 2. Let us recall that the considered problem is written as

min
(w,b)

{
F (w, b) =

1

n

n∑
i=1

log(1 + exp(−yi(xTi w + b))) + λrexp(w)

}
. (3.96)

with rexp(w) =
∑d

i=1(1−exp(−α|wi|)). In Section 2.4, we have shown that f(w, b) = 1
n

∑n
i=1 log(1+

exp(−yi(xTi w + b))) is a Lipschitz continuous gradient with a Lipschitz constant
L = 1

4n

∑n
i=1(‖xi‖2 + 1) and rexp(w) is a DC function. Thus, the problem (3.96) takes the

form of (3.2).
In DCA-Like for solving (3.96), we observe that the while loop stops if the following inequality

holds
Hρk(wk+1, bk+1) ≥ Hρk(wk+1, bk+1), (wk, bk)), (3.97)

where Hρk((w, b), (wk, bk)) := Hρ(w
k, bk) + 〈(uk, vk), (w, b)− (wk, bk)〉.

Thus, DCA-Like for solving (3.96) is presented in Algorithm 3.9.

Algorithm 3.9 DCA-Like for solving (3.96)

1: Initialization : Choose an initial point (w0, b0), 0 < δ < 1, ρ0 > 0 and k ← 0.
2: repeat
3: Compute uk = ρwk−∇wf(wk, bk)+ ξ and vk = ρbk−∇bf(wk, bk) with ξk and ∇f defined

in (2.23) and (2.25).
4: Set ρk = max{ρ0, δρk−1} if k > 0.
5: Compute (wk+1, bk+1) by (2.26).
6: while Hρk((wk+1, bk+1) < Hρk((wk+1, bk+1, (wk, bk)) do
7: ρk ← ηρk.
8: Compute (wk+1, bk+1) by (2.26).
9: end while

10: until Stopping criterion.
11: k ← k + 1.

ADCA-Like for solving (3.96) is obtained by adding the steps (Step 3 and 11 of Algorithm 3.5)
to Algorithm 3.9.
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3.6.1 Experiment setting

Comparative algorithms. The comparison is performed between 6 algorithms :

— DCA,

— ADCA,

— DCA-Like,

— ADCA-Like,

— nmAPG [154] : nonmonotone accelerated proximal gradient method,

— inAPG [248] : inexact accelerated proximal gradient algorithm.

DCA and ADCA require to compute the Lipschitz constant L of function f . In our numerical
experiments, L is estimated by a large value L = 1

4n

∑n
i=1(‖xi‖2 + 1) as showed above.

For inAPG and nmAPG, one has to compute the proximal mapping of the DC function rexp.
Unfortunately, this proximal mapping do not have a closed form. We therefore use DCA for
computing the proximal mapping of rexp in inAPG and nmAPG. Furthermore, the step size in
inAPG and nmAPG is computed by a backtracking line search initialized with Barzilai-Borwein
rule in which the parameters are used as proposed by [154].
Setting. The numerical experiments were performed on several datasets taken from the well-
known UCI and LibSVM data repertories. The detailed information of used datasets is given
in the first column of Table. 3.4 where ntrain (resp. ntest) represents the number of points in
training set (resp. test set) while d stands for the number of features.

All experiments are performed on a PC Intel i7 CPU3770, 3.40 GHz of 8GB RAM and the
codes have been written in MATLAB. We set ρ0 = 1/n, η = 2 and δ = 0.5 for ADCA and
ADCA-Like. The parameter α for controlling the tightness of zero-norm approximation is set to
5. We set the trade-off parameter λ = 10−4 on rcv1 and λ = 10−3 on the other datasets.

All the algorithms are terminated when the difference between objective function values of
two consecutive iterations is smaller than ε = 10−5. We set the initial points to zero.

In order to evaluate the performance of algorithms, we consider the following three criteria :
the classification accuracy (percentage of well classified point on test set), the sparsity of obtained
solution and the running time (measured in seconds). The sparsity is computed as the percentage
of selected variables.

3.6.2 Numerical results

3.6.2.1 Experiment 1

We report in Table 3.4 the running time in seconds, the classification accuracy on test set and
the sparsity (percentage of selected features) of solutions. We also plot the curves of objective
function values versus training time in Figure 3.5. Note that the parameter q of acceleration step
in ADCA and ADCA-Like is set to 5 (c.f the experiment 2 in Section 3.6.2.2).

Table 3.4 – Comparative results. Bold values correspond to best results for each dataset

Dataset Method Time(s) Accuracy(%) Sparsity (%)

madelon DCA 1.14 62.17 0.4
ntrain=2000 ADCA 0.54 62.17 0.4
ntest=600 DCA-Like 0.42 62.17 0.4
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d=500 ADCA-Like 0.13 62.83 0.4
inAPG 0.86 62.17 0.4
nmAPG 1.23 62.17 0.4

gisette DCA 687.27 96.9 2.54
ntrain=6000 ADCA 51.47 96 2
ntest=1000 DCA-Like 51.9 96 1.35
d=5000 ADCA-Like 17.02 96 1.37

inAPG 172.74 95.9 1.43
nmAPG 559.81 95.9 1.33

w8a DCA 32.8 98.43 16
ntrain=49 749 ADCA 5.58 98.51 15.67
ntest=14 951 DCA-Like 25.92 98.51 15.33
d=300 ADCA-Like 6.37 98.52 15.33

inAPG 36.42 98.45 17
nmAPG 54.81 98.4 19.33

a9a DCA 108.3 84.88 47.97
ntrain=32 561 ADCA 9.3 85.01 44.72
ntest=16 281 DCA-Like 6.06 84.98 32.52
d=123 ADCA-Like 0.95 85.04 30.08

inAPG 6.38 84.98 32.52
nmAPG 14.01 84.97 32.52

rcv1 DCA 113.03 91.8 0.87
ntrain=20 242 ADCA 33.74 94.23 0.79
ntest=677 399 DCA-Like 62.03 94.29 0.71
d = 47236 ADCA-Like 9.31 94.4 0.68

inAPG 39.65 91.1 0.85
nmAPG 112.37 93.9 0.72

real-sim DCA 33.25 94.49 2.71
ntrain=57 847 ADCA 7.74 94.5 2.59
ntest=14 462 DCA-Like 21.71 94.5 2.63
d=20 958 ADCA-Like 6.01 94.5 2.54

inAPG 33.49 94.42 2.62
nmAPG 53.11 94.39 2.82

epsilon DCA 18000 87.53 7.77
ntrain=400 000 ADCA 1488 88.22 7.75
ntest=100 000 DCA-Like 15608.01 88.1 6.9
d=2000 ADCA-Like 975.73 88.3 7.15

inAPG 18000 73.14 12.6
nmAPG NA NA NA

url DCA 2857.08 97.27 0.004
ntrain=1 916 904 ADCA 396.77 97.47 0.0038
ntest=479 226 DCA-Like 1891.05 97.3 0.0038
d=3 231 961 ADCA-Like 234.75 97.47 0.0038

inAPG 7786.16 97.45 0.0045
nmAPG 5213.68 97.45 0.0051
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(a) madelon (b) gisette (c) w8a (d) a9a

(e) rcv1 (f) sim (g) epsilon (h) url

Figure 3.5 – Objective value versus running time (average of ten runs)

Concerning the classification accuracy, all 6 algorithms are comparable. Although ADCA-
Like gives better accuracy than other algorithms on 6 out of 8 datasets, the gain is quite small.
Overall, DCA-Like and ADCA-Like furnish better classification accuracy than DCA, except for
the dataset gisette.

As for the sparsity of solution, we observe again that DCA-Like and ADCA-Like improve
the result of DCA on 7 out of 8 datasets (all 6 algorithms give the same sparsity of solution on
madelon). ADCA-Like suppresses more features than the other algorithms on 3 datasets (with
an important gain of 17.89% on dataset a9a). On dataset w8a, DCA-like and ADCA-Like give
the best result while all three variants of DCA give the same result on url. Overall, ADCA-Like
seems to give better result than other five algorithms.

Concerning the rapidity, DCA-Like and ADCA-Like improve considerably the running time
of DCA. ADCA is always faster than DCA with an important gain of 11.6 times on dataset a9a
and 13.3 times on dataset gisette. DCA-Like also is faster than DCA with a gain up to 13.2
times (on gisette). Not surprisingly, ADCA-Like, which incorporates an acceleration technique
into DCA-Like is the fastest algorithm. ADCA-Like is up to 40.4 times faster than DCA. We
also observe from Figure 3.5 that the objective function of DCA-Like and ADCA-Like decreases
drastically in few first iterations.
Overall, among the six compared algorithms, ADCA-Like is the fastest one while giving better or
similar classification accuracy and sparsity of solution. Furthermore, DCA-Like and ADCA-Like
improve DCA on all three criteria.

3.6.2.2 Experiment 2

In this experiment, we study the influence of parameter q in ADCA and ADCA-like. Recall
that, in ADCA and ADCA-Like, the parameter q allows to control how often the algorithms use
the extrapolated points zk instead of the last iterate xk in acceleration step.
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We randomly choose a data set (madelon) and vary the value of q from 0 to 9. We report the
results in the Table 3.5. The last column (#iter) presents the number of times (in percentage of
the total number of iterations of ADCA-Like/ADCA) where the extrapolated points zk is better
than one of last q iterates.

Table 3.5 – Numerical results on madelon data set with different value of q

q ADCA ADCA-Like
Time Accuracy Sparsity #iter Time Accuracy Sparsity #iter
(s) (%) (%) (%) (s) (%) (%) (%)

0 0.78 62 0.4 90 0.23 62.17 0.4 90.9
1 0.65 62.17 0.4 91.3 0.19 63.34 0.4 92.3
2 0.63 62.17 0.4 96.6 0.16 62.35 0.4 97.2
3 0.62 62.17 0.4 99 0.16 62.83 0.4 97.3
4 0.62 67.17 0.4 99 0.15 62.83 0.4 98
5 0.54 67.17 0.4 100 0.13 62.83 0.4 100
6 0.54 67.17 0.4 100 0.13 62.83 0.4 100
7 0.54 67.17 0.4 100 0.13 62.83 0.4 100
8 0.54 67.17 0.4 100 0.13 62.83 0.4 100
9 0.54 67.17 0.4 100 0.13 62.83 0.4 100

We observe from the last column that the value of #iter logically increases as the value of q
increases. With q ≥ 5, #iter achieves 100%, i.e., the extrapolated point zk is always used instead
of the last iterate xk and consequently decreases the running time of ADCA-Like/ADCA as we
can observe from the second column (Times). As we can see, the the accuracy and sparity are
the same for q from 5 to 10. Thus, we will use q = 5 for ADAC-Like and DCA-Like for our
experiments.

3.7 Final remarks and Conclusion

We saw that the two classes of problems considered in this chapter are formulated or reformu-
lated as DC programs (recall that (3.1) is equivalent to (3.3) which is a DC program on variable
(x, z)). Therefore standard DCA and its acceleration version can be applied to solve these pro-
blems. The DC compositions of their objective function are essentially based on the one of f . As
f is differentiable with L-Lipschitz continuous gradient, we use the natural DC decomposition
f = (1/2)ρ‖.‖2 − ((1/2)ρ‖.‖2 − f). with ρ ≥ L. In practice, it is difficult (or even impossible) to
determine the exact value of L, and one usually estimates L by a quite large number. However, a
large value of L could lead to a bad convex approximation of F1 and F2, then DCA may converge
rapidly to a biased critical point. In DCA-Like we do not need to evaluate L, as the algorithm
starts with a small value of ρ and then updates ρ accordingly to get a convex majorization which
may not be a upper bound of the objective function on the whole space (as in standard DCA)
but rather only at the current solution.

The idea of DCA-Like is original and its advantage is double. Firstly, while standard DCA
works with a convex majorization of the objective function on the whole space via an avai-
lable DC decomposition, DCA-Like seeks a better convex approximation at the current solution
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through a decomposition which is not necessarily DC. Secondly, and more importantly in several
practical problems, DCA-Like works even when one can not highlight a DC decomposition. It
turns out that, fortunately, despite these modifications we can prove that DCA-Like still enjoys
the convergence properties of DCA.

While the two DCA-Like investigated to (3.3) and (3.2) are similar and enjoy the same
convergence properties, the acceleration steps in the two algorithms 3.3 and 3.5 are different, by
the way, these two ADCA-Like schemes do not have the same convergence properties. In fact,
they are only the same if we take q = 0 in all iterations of Algorithm 3.5. Taking q > 0 allows the
objective function to increase and consequently to escape from a potential bad local minimum.

The efficiency of DCA-Like and ADCA-Like was proved on three applications in machine
learning : the sparse binary logistic regression, the group variables selection multi-class logistic
regression and the t-distributed Stochastic Embedding (t-SNE) problem. The numerical showed
that DCA-Like and ADCA-Like improve considerably the running time of standard DCA while
giving similar or better solution. For instance, DCA-Like is faster than DCA with a gain up to
13.2 times while ADCA-Like is up to 40.4 times faster than DCA in the sparse binary logistic
regression problem.

We are convinced that DCA-Like and the accelerated versions can be efficiently exploited for
solving broader classes of nonconvex problems, and it is the purpose of our future works.
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Chapitre 4

Stochastic DCA for minimizing a large
sum of DC functions1

Abstract: We consider the problem of minimizing a large sum of DC functions which appears in several
different areas, especially in stochastic optimization and machine learning. Two DCA based algorithms
are proposed : Stochastic DCA and Inexact Stochastic DCA. We prove that the convergence to a critical
point of both algorithms is guaranteed with probability one. Furthermore, we develop our Stochastic DCA
for solving an important problem in multi-task learning, namely group variables selection in multi class
logistic regression. The corresponding stochastic DCA is very inexpensive, all computations are explicit.
Numerical experiments on several benchmark datasets and synthetic datasets illustrate the efficiency of
our algorithms and their superiority over existing methods, with respect to classification accuracy, sparsity
of solution as well as running time.

4.1 Introduction

We address the so called large sum of DC functions minimization problem which takes the
form

min
x∈Rd

{
F (x) :=

1

n

n∑
i=1

Fi(x)

}
, (4.1)

where Fi are DC functions, i.e., Fi(x) = gi(x)−hi(x) with gi and hi being lower semi-continuous
proper convex functions, and n is a very large integer number. Note that, the problem of mi-
nimizing F under a convex set Ω is also of the type (4.1), as the convex constraint x ∈ Ω can
be incorporated into the objective function F via the indicator function χΩ on Ω. The problem
(4.1) appears in several different contexts, especially in stochastic optimization and machine lear-
ning. Indeed, the large-sum structure arises naturally in empirical risk minimization in stochastic

1. The results presented in this chapter were published in :

• H.A. Le Thi, H.M. Le, D.N Phan, B. Tran, Stochastic DCA for minimizing a large sum of DC functions
with application to multi-class logistic regression, Neural Networks, 132 :220-231, 2020.

• Stochastic DCA for the Large-sum of Non-convex Functions Problem and its Application to Group Variable
Selection in Classification, Internationale Conference on Machine learning ICML, 3394-3403, 2017.

• Stochastic DCA for Sparse Multiclass Logistic Regression, Advances in Intelligent Systems and Computing,
Vol. 629, 1-12, 2017.
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programming. For example, let us consider the expected loss minimization problem

min
x∈Ω

E[f(x, ξ)], (4.2)

where f is a loss function of a real variable x and a random variable ξ. A standard approach for
solving (4.3) is the sample average method [98] which approximates the problem (4.2) by

min
x∈Ω

1

n

n∑
i=1

f(x, ξi), (4.3)

where ξ1, ..., ξn are independent variables, identically distributed realizations of ξ. When the
loss function f is DC, the problem (4.3) takes the form of (4.1) with Fi(x) = f(x, ξi) + χΩ(x).
Obviously, the larger n is, the better approximation will be. Hence, a good approximate model
of the form (4.3) in average sample methods requires an extremely large number n.

Another similar example is the mean-variance minimization problem of the form

min
x∈Ω
{E[f(x, ξ)] + λV aR[f(x, ξ)], (4.4)

where f(x, ξ) is a loss function, ξ is a random vector and λ is a regularization parameter. It is
proved in [238] that VaR is a DC function in the case finite scenarios and f(x, ξ) = xT ξ. Hence,
by using the sample average approximation method, the resulting problem of (4.4) takes the
form of (4.1).

Furthermore, in the era of big data, the large-sum structure is one of the most popular forms
encountered in practice to model big data-driven problems. The objective function is usually
composed of a loss function (the data-fitting term) and a regularization term (to encourage
some desired properties on the found solutions or to model constraints on x). For instance, let
us mention an important problem in machine learning, the multi-task learning. Let T be the
number of tasks. For the j-th task, the training set Dj consists of nj labeled data points in the
form of ordered pairs (xji , y

j
i ), i = 1, ..., nj , with x

j
i ∈ Rd and its corresponding output yji ∈ R.

Multi-task learning aims to estimate T predictive functions f jθ (x) : Rd → Rm, j = 1, ..., T , which
fit well the data. The multi-task learning can be formulated as

min
θ


T∑
j=1

nj∑
i=1

L(yji , f
j
θ (xji )) + λp(θ)

 , (4.5)

where L denotes the loss function, p is a regularization term and λ > 0 is a trade-off parameter.
For a good learning process, T and nj are, in general, very large numbers. Clearly, this problem
takes the form of (4.1) when L and p are DC functions. We observe that numerous loss functions
in machine learning (e.g. least square loss, squared hing loss, ramp loss, logistic loss, etc) are
DC. On another hand, most of existing regularizations can be expressed as DC functions. For
instance, in learning with sparsity problems involving the zero norm (which include, among of
others, variable / group variable selection in classification, sparse regression, compressed sensing)
all standard nonconvex regularizations studied in the literature are DC functions [147]. Moreover,
in many applications dealing with big data, the number of both variables and samples are very
large.

The problem (4.1) has a double difficulties due to the nonconvexity of Fi and the large value
of n. Meanwhile, the sum structure of F enjoys an advantage : one can work on Fi instead of the
whole function F . Since all Fi are DC functions, F is DC too, and therefore (4.1) is a standard
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DC program on which DCA can be applied. Nevertheless, although DCA is a scalable approach
in nonconvex optimization, the large-sum structure is difficult to be handled by deterministic
algorithms. Therefore, we are suggested to investigate stochastic DCA for solving (4.1).

Related works on stochastic algorithms.
To the best of our knowledge, although several methods have been developed for solving

different special cases of (4.1), our approach [133], named stochastic DCA, is the first in the
literature solving the general nonsmooth nonconvex problem (4.1).

In the convex setting, the literature on stochastic optimization is vast. A well-known approach
is the stochastic gradient (SG) which was first introduced in [205] for convex functions (in fact,
it is initially introduced in form of a Markov chain). The SG method chooses il ∈ {1, ..., n}
randomly and takes the update

xl+1 = xl − αl∇f(xl, ξil), (4.6)

where αl is the step size and ∇f(xl, ξil) is a stochastic gradient. This simple scheme has inspired
a large number of works, here we name a few. In [25, 24], the authors proposed the proximal
stochastic subgradient methods (also referred as incremental proximal methods) for solving (4.3)
in convex case, i.e., Ω is a closed convex set and f(·, ξi) are convex functions. The computational
cost per iteration of these basic SG methods is very cheap, however, due to the variance intro-
duced by random sampling, their convergence rates are slower than the “full” gradient methods.
Hence, some SG methods for solving (4.3) in unconstrained differentiable convex case use either
the average of the stored past gradients or a multi-stage scheme to progressively reduce the va-
riance of the stochastic gradient (see e.g [210, 213, 60, 61, 117, 173]). In [8, 214], the convexity
of each function f(·, ξi) is relaxed (say, it is not necessarily convex), but the overall objective
function is still required to be convex.

In the nonconvex setting, each function f(·, ξi) is usually required to be L-smooth (or slightly
milder : the objective is L-average-smooth)[6, 7, 71, 174, 175, 259, 153]. In [31], the author
analyzed the SG scheme for differentiable objective function under the condition that is closely
related to convexity, then extended the analysis to the nonconvex case where the higher order
of smoothness is imposed. In the practical perspective, the work [152] presents various tricks to
use SG in training neural networks. To meet the practical demands in modelling, some works
add a (nonsmooth) convex function (to capture the regularizer that usually appears in machine
learning) into the L-smooth large sum (conventionally called the “composite" setting) [112, 233,
188]. Note that, even with the composite setting, the literature remains really limited [188].

The problem considered (4.1) is more general : the objective is a large sum of DC functions
whose both DC components can be nonsmooth. For nonsmooth DC large-sum problems, the cur-
rent body of research is even more limited. There were some recent works that coupled stochastic
algorithms and DCA. The first stochastic DCA was proposed in [131] for a large-sum of (noncon-
vex) L-smooth functions with the DC regularizer ‖x‖2,0 . The work in this chapter extends [131]
to the general problem (4.1) where the L-smooth assumption is relaxed. Another approach was
studied in [244] where the data-fitting term is large-sum DC and the regularizer is nonconvex,
nonsmooth whose proximal operator can be efficiently computed. By using the Moreau envelope
(which is a DC function) of the regularizer, the authors approximated the original problem by a
DC program and proposed DCA schemes for solving it. Their algorithms can be regarded as the
standard DCA in which the (large-sum) convex subproblems are solved by stochastic algorithms
(e.g., Adagrad [69], SVRG [242]) up to a certain level of accuracy.

Our contributions.
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To tackle the difficulty due to the large value of n, we first propose Stochastic DCA, by taking
the advantage of the sum structure of F , for solving (4.1). The basic idea of stochastic DCA
is to update, at each iteration, the minorant of only some randomly chosen hi while keeping
the minorant of the other hi. Hence the main advantage of the stochastic DCA versus standard
DCA is the computational reduction in the step of computing a subgradient of H. Meanwhile,
the convex subproblem is the same in both standard DCA and stochastic DCA. The first work
in this direction was published in the conference paper [131] where we only considered a machine
learning problem which is a special case of (4.1), namely

min
x

1

n

n∑
i=1

fi(x) + λ‖x‖2,0,

where fi are L-Lipschitz functions. We rigorously studied the convergence properties of this
stochastic DCA and proved that its convergence is guaranteed with probability one. In this
chapter, we present our approach for the general model (4.1), and the same convergence properties
of stochastic DCA is proved.

Secondly, to deal with the computational aspect in large-scale setting, we further propose
an inexact stochastic DCA version in which both subgradient of H and optimal solution of the
resulting convex program are approximately computed. We show that the convergence properties
of stochastic DCA are still valid for the inexact stochastic DCA.

Thirdly, we show how to develop the proposed stochastic DCA for the group variables se-
lection in multi-class logistic regression, a very important problem in machine learning which
takes the form (1). We consider three nonconvex regularizations `q,0 (q ∈ {1, 2,∞}) with two
approximation functions of `q,0, and develop 12 algorithms (6 versions of standard DCA and 6
versions of stochastic DCA) for this problem. For the first time, a careful study is proposed in the
literature. Thanks to a suitable DC decomposition, all versions of our proposed algorithms are
explicit, i.e. all calculations are explicitly defined and no supplement solver is needed. Numerical
experiments on very large synthetic and real-world datasets show that our approach is much
more efficient, in both quality and rapidity, than four related methods.

The remainder of the chapter is organized as follows. Solution methods based on stochastic
DCA for solving (4.1) are developed in Section 4.2 while the stochastic DCA for the group
variables selection in multi-class logistic regression is presented in Section 4.3.

4.2 Stochastic DCA for minimizing a large sum of DC functions

Now, let us introduce a stochastic version of DCA, named SDCA, for solving (4.1). A natural
DC formulation of the problem (4.1) is

min
{
F (x) = G(x)−H(x) : x ∈ Rd

}
, (4.7)

where

G(x) =
1

n

n∑
i=1

gi(x) and H(x) =
1

n

n∑
i=1

hi(x).

According to the generic DCA scheme, DCA for solving the problem (4.7) consists of computing,
at each iteration l, a subgradient vl ∈ ∂H(xl) and solving the convex subproblem of the form

min
{
G(x)− 〈vl, x〉 : x ∈ Rd

}
. (4.8)
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As H = 1
n

∑n
i=1 hi, the computation of subgradients of H requires the one of all functions hi.

This may be expensive when n is very large. The main idea of SDCA is to update, at each
iteration, the computation of subgradient of only some randomly chosen hi while keeping the
one of the other hi.

SDCA for solving the problem (4.7) is described in Algorithm 4.1 below.

Algorithm 4.1 SDCA for solving the problem (4.1)

1: Initialization : Choose x0 ∈ dom ∂H, s0 = {1, ..., n}, and l← 0.
2: repeat
3: Compute vli ∈ ∂hi(xl) if i ∈ sl and keep vli = vl−1

i if i /∈ sl, l > 0. Set vl = 1
n

∑n
i=1 v

l
i.

4: Compute xl+1 by solving the convex problem (4.8).
5: Set l← l + 1 and randomly choose a small subset sl ⊂ {1, ..., n}.
6: until Stopping criterion

Remark 4.1 SDCA differs from DCA only at the step 3. Instead of computing ∂H (by computing
∂hi for all i = 1, . . . , n) as in DCA, SDCA updates only a small number of ∂hi. Clearly, this
technique reduces considerably the running time of DCA, and, intuitively, SDCA should be much
faster than DCA, in particular when the computation of ∂hi is expensive. Naturally, such a
technique may reduce the quality of solution, and the crucial matter is the convergence properties
of SDCA : do we get a critical point as in DCA?

The following theorem shows that the convergence properties of SDCA are guaranteed with
probability one.

Theorem 4.1 Assume that α∗ = inf F (x) > −∞, and |sl| = b for all l > 0. Let {xl} be a
sequence generated by SDCA , the following statements hold.

a) {F (xl)} is the almost sure convergent sequence.

b) If mini ρ(hi) > 0, then
∑∞

l=1 ‖xl−xl−1‖2 < +∞ and liml→∞ ‖xl−xl−1‖ = 0, almost surely.

c) If mini ρ(hi) > 0, then every limit point of {xl} is a critical point of F with probability one.

Proof 4.1 a) Let x0
i be the copies of x0. We set xl+1

i = xl+1 for all i ∈ sl+1 and xl+1
j = xlj for

j 6∈ sl+1. We then have vli ∈ ∂hi(xli) for i = 1, ..., n. Let T li be the function given by

T li (x) = gi(x)− hi(xli)−
〈
x− xli, vli

〉
.

It follows from vli ∈ ∂hi(xli) that

hi(x) ≥ hi(xli) +
〈
x− xli, vli

〉
.

That implies T li (x) ≥ Fi(x) ≥ Fi(x) for all l ≥ 0, i = 1, ..., n. We also observe that xl+1 is a
solution to the following convex problem

min
x
T l(x) :=

1

n

n∑
i=1

T li (x), (4.9)
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Therefore

T l(xl+1) ≤ T l(xl) = T l−1(xl) +
1

n

∑
i∈sl

[T li (x
l)− T l−1

i (xl)]

= T l−1(xl) +
1

n

∑
i∈sl

[Fi(x
l) + 2εl − T l−1

i (xl)],

(4.10)

where the second equality follows from T li (x
l) = Fi(x

l) for all i ∈ sl. Let Fl denote the σ-
algebra generated by the entire history of SDCA up to the iteration l, i.e., F0 = σ(x0) and
Fl = σ(x0, ..., xl, s0, ..., sl−1) for all l ≥ 1. By taking the expectation of the inequality (4.10)
conditioned on Fl, we have

E
[
T l(xl+1)|Fl

]
≤ T l−1(xl)− b

n

[
T l−1(xl)− F (xl)

]
.

By applying the supermartingale convergence theorem [172, 23] to the nonnegative sequences
{T l−1(xl)−α∗}, { bn [T l−1(xl)−F (xl)]} and {0}, we conclude that the sequence {T l−1(xl, yl)−α∗}
converges to T ∗ − α∗ and

∞∑
l=1

[
T l−1(xl)− F (xl)

]
<∞, (4.11)

with probability 1. Therefore {F (xl)} converges almost surely to T ∗.
b) By vl−1

i ∈ ∂hi(xl−1
i ), we have

hi(x) ≥ hi(xl−1
i ) + 〈x− xl−1

i , vl−1
i 〉+

ρ(hi)

2
‖x− xl−1

i ‖
2, ∀x ∈ Rd.

This implies

Fi(x) ≤ T l−1
i (x)− ρ(hi)

2
‖x− xl−1

i ‖
2. (4.12)

From (4.10) and (4.12) with x = xl, we have

T l(xl+1) ≤ T l−1(xl)− 1

n

∑
i∈sl

ρ(hi)

2
‖x− xl−1

i ‖
2. (4.13)

Taking the expectation of the inequality (4.13) conditioned on Fl, we obtain

E
[
T l(xl+1)|Fl

]
≤ T l−1(xl)− b

4n2

n∑
i=1

ρ(hi)‖xl − xl−1
i ‖

2 +

(
2b

n
+ 1

)
εl.

Combining this and ρ = mini=1,...,n ρ(hi) > 0 gives us

E
[
T l(xl+1)|Fl

]
≤ T l−1(xl)− bρ

2n2

n∑
i=1

‖xl − xl−1
i ‖

2.

Applying the supermartingale convergence theorem to the nonnegative sequences {T l−1(xl) −
α∗}, { bρ

2n2

∑n
i=1 ‖xl − x

l−1
i ‖2} and {0}, we get

∞∑
l=1

n∑
i=1

‖xl − xl−1
i ‖

2 <∞,
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with probability 1. In particular, for i = 1, ..., n, we have

∞∑
l=1

‖xl − xl−1
i ‖

2 <∞, (4.14)

and hence liml→∞ ‖xl − xl−1
i ‖ = 0 almost surely.

c) Assume that there exists a sub-sequence {xlk} of {xl} such that xlk → x∗ almost surely.
From (4.14), we have ‖xlk+1 − xlki ‖ → 0 almost surely. Therefore, by the finite convexity of hi,
without loss of generality, we can suppose that the sub-sequence vlki tends to v∗i almost surely.
Since vlki ∈ ∂hi(x

lk
i ) and by the closed property of the subdifferential mapping ∂hi, we have

v∗i ∈ ∂hi(x∗). As xlk+1 is a solution of the problem minx T
lk(x), we obtain

0 ∈ ∂T lk(xlk+1). (4.15)

This is equivalent to

0 ∈ ∂ 1

n

n∑
i=1

gi(x
lk+1)− 1

n

n∑
i=1

vlki = ∂G(xlk+1)− 1

n

n∑
i=1

vlki . (4.16)

Hence, 1
n

∑n
i=1 v

lk
i ∈ ∂G(xlk+1). By the closedness property of the subdifferential mapping ∂G,

we obtain v∗ = 1
n

∑n
i=1 v

∗
i ∈ ∂G(x∗) with probability one. Therefore,

v∗ ∈ ∂G(x∗) ∩ ∂H(x∗), (4.17)

with probability 1. This implies that x∗ is a critical point of F with probability 1 and the proof is
then complete. �

4.2.1 Inexact Stochastic DCA

The SDCA scheme requires the exact computations of vli and x
l+1. Observing that, for stan-

dard DCA these computations are not necessarily exact ( [144]), we are suggested to introduce
an inexact version of SDCA. This could be useful when the exact computations of vli and x

l+1

are expensive. The inexact version of SDCA computes ε-subgradients vli ∈ ∂εlhi(xl) and an εl-
solution xl+1 of the convex problem (4.8) instead of exactly computing. The inexact version of
SDCA, named ISDCA, is described as follows.

Algorithm 4.2 ISDCA for solving the problem (4.1)

1: Initialization : Choose x0 ∈ dom ∂H, s0 = {1, ..., n}, ε0 ≥ 0 and l← 0.
2: repeat
3: Compute vli ∈ ∂εlhi(xl) if i ∈ sl and keep vli = vl−1

i if i /∈ sl, l > 0. Set vl = 1
n

∑n
i=1 v

l
i.

4: Compute an εl-solution xl+1 of the convex problem (4.8).
5: Set l← l + 1, randomly choose a small subset sl ⊂ {1, ..., n}, and update εl ≥ 0.
6: until Stopping criterion.

Remark 4.2 ISDCA should be less expensive than SDCA when the computation of ∂hi and/or
the solution of convex subproblems (4.8) is very hard and expensive. In such cases ISDCA could be
an effective algorithm. If the computation of all ∂hi as well as the solution of convex subproblems
(4.8) are defined in explicit forms, then this version ISDCA is useless.
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Under an assumption that
∑∞

l=0 ε
l < +∞, the ISDCA has the same convergence properties

as SDCA, which are stated in the following theorem.

Theorem 4.2 Assume that α∗ = inf F (x) > −∞, and |sl| = b for all l > 0. Let {xl} be a
sequence generated by ISDCA with respect to a nonnegative sequence {εl} such that

∑∞
l=0 ε

l < +∞
almost surely. The following statements hold.

a) {F (xl)} is the almost sure convergent sequence.
b) If mini ρ(hi) > 0, then

∑∞
l=1 ‖xl−xl−1‖2 < +∞ and liml→∞ ‖xl−xl−1‖ = 0, almost surely.

c) If mini ρ(hi) > 0, then every limit point of {xl} is a critical point of F with probability one.

To prove Theorem 4.2, we will use the following lemma.

Lemma 4.1 Let f : Rd → R∩{+∞} be a ρ-convex function. For any ε ≥ 0 and any v ∈ ∂εf(x)
with x ∈ dom f , we have

2ε+ f(y) ≥ f(x) + 〈v, y − x〉+
ρ

4
‖y − x‖2, ∀y ∈ Rd.

Proof 4.2 Since v ∈ ∂εf(x), we have

ε+ f(z) ≥ f(x) + 〈v, z − x〉, ∀z ∈ Rd.

Replacing z with x+ t(y − x) in this inequality gives that

ε+ f(x+ t(y − x)) ≥ f(x) + t〈v, y − x〉, ∀y ∈ Rd.

It follows from the ρ-convexity of f that for y ∈ Rd and t ∈ (0, 1),

tf(y) + (1− t)f(x) ≥ f(x+ t(y − x)) +
ρt(1− t)

2
‖y − x‖2.

Summing the two above inequalities gives us

ε+ tf(y) ≥ tf(x) + t〈v, y − x〉+
ρt(1− t)

2
‖y − x‖2.

Thus, the conclusion follows from this inequality with t = 1/2.

Proof 4.3 (Proof of Theorem 4.2) a) Let x0
i be the copies of x0. We set xl+1

i = xl+1 for all
i ∈ sl+1 and xl+1

j = xlj for j 6∈ sl+1. Set ε0i = ε0 and εl+1
i = εl+1 if i ∈ sl+1, εli otherwise. We

then have vli ∈ ∂εlihi(x
l
i) for i = 1, ..., n. Let T li be the function given by

T li (x) = gi(x)− hi(xli)−
〈
x− xli, vli

〉
+ 2εli.

It follows from vli ∈ ∂εlihi(x
l
i) that

εli + hi(x) ≥ hi(xli) +
〈
x− xli, vli

〉
.

This implies T li (x) ≥ Fi(x) + εli ≥ Fi(x) for all l ≥ 0, i = 1, ..., n. We also observe that xl+1 is
an εl-solution of the following convex problem

min
x
T l(x) :=

1

n

n∑
i=1

T li (x) (4.18)
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Therefore

T l(xl+1) ≤ T l(xl) + εl = T l−1(xl) +
1

n

∑
i∈sl

[T li (x
l)− T l−1

i (xl)] + εl

= T l−1(xl) +
1

n

∑
i∈sl

[Fi(x
l) + 2εl − T l−1

i (xl)] + εl,

(4.19)

where the second equality follows from T li (x
l) = Fi(x

l) + 2εl for all i ∈ sl. Let Fl denote the
σ-algebra generated by the entire history of ISDCA up to the iteration l, i.e., F0 = σ(x0, ε0) and
Fl = σ(x0, ..., xl, ε0, ..., εl, s0, ..., sl−1) for all l ≥ 1. By taking the expectation of the inequality
(4.19) conditioned on Fl, we have

E
[
T l(xl+1)|Fl

]
≤ T l−1(xl)− b

n

[
T l−1(xl)− F (xl)

]
+

(
2b

n
+ 1

)
εl.

Since
∑∞

l=0 ε
l
i < +∞ with probability 1, by applying the supermartingale convergence theorem

[172, 23] to the nonnegative sequences {T l−1(xl)− α∗}, { bn [T l−1(xl)− F (xl)]} and {(2b
n + 1)εl},

we conclude that the sequence {T l−1(xl, yl)− α∗} converges to T ∗ − α∗ and
∞∑
l=1

[
T l−1(xl)− F (xl)

]
<∞, (4.20)

with probability 1. Therefore {F (xl)} converges almost surely to T ∗.
b) By vl−1

i ∈ ∂εl−1
i
hi(x

l−1
i ) and Lemma 4.1, we have

2εl−1
i + hi(x) ≥ hi(xl−1

i ) + 〈x− xl−1
i , vl−1

i 〉+
ρ(hi)

4
‖x− xl−1

i ‖
2, ∀x ∈ Rd.

This implies

Fi(x) ≤ T l−1
i (x)− ρ(hi)

4
‖x− xl−1

i ‖
2. (4.21)

From (4.19) and (4.21) with x = xl, we have

T l(xl+1) ≤ T l−1(xl)− 1

n

∑
i∈sl

ρ(hi)

4
‖x− xl−1

i ‖
2 +

(
2b

n
+ 1

)
εl. (4.22)

Taking the expectation of the inequality (4.22) conditioned on Fl, we obtain

E
[
T l(xl+1)|Fl

]
≤ T l−1(xl)− b

4n2

n∑
i=1

ρ(hi)‖xl − xl−1
i ‖

2 +

(
2b

n
+ 1

)
εl.

Combining this and ρ = mini=1,...,n ρ(hi) > 0 gives us

E
[
T l(xl+1)|Fl

]
≤ T l−1(xl)− bρ

4n2

n∑
i=1

‖xl − xl−1
i ‖

2 +

(
2b

n
+ 1

)
εl.

Applying the supermartingale convergence theorem to the nonnegative sequences {T l−1(xl) −
α∗}, { b

4ρn2

∑n
i=1 ‖xl − x

l−1
i ‖2} and {(

2b
n + 1)εl}, we get

∞∑
l=1

n∑
i=1

‖xl − xl−1
i ‖

2 <∞,
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with probability 1. In particular, for i = 1, ..., n, we have

∞∑
l=1

‖xl − xl−1
i ‖

2 <∞, (4.23)

and hence liml→∞ ‖xl − xl−1
i ‖ = 0 almost surely.

c) Assume that there exists a sub-sequence {xlk} of {xl} such that xlk → x∗ almost surely.
From (4.23), we have ‖xlk+1−xlki ‖ → 0 almost surely. Without loss of generality, we can suppose
that the sub-sequence vlki → v∗i almost surely. From the proof of (a), we have

1

n

n∑
i=1

εli ≤ T l(xl+1)− F (xl+1).

From this and (4.20) it follows that εli converges to 0 as l → +∞ with probability 1. Since
vlki ∈ ∂εlki

hi(x
lk
i ), εlki → 0 with probability 1, and by the closedness property of the ε-subdifferential

mapping ∂
ε
lk
i

hi, we have v∗i ∈ ∂hi(x∗). Since xlk+1 is a εlk-solution of the problem minx T
lk(x),

we obtain
T lk(xlk+1) ≤ T lk(x) + εlk . (4.24)

Taking k →∞ gives us

lim sup
lk→+∞

G(xlk+1) ≤ G(x)− 〈x− x∗, v∗〉, ∀x ∈ Rd,

with probability 1, where v∗ = 1
n

∑n
i=1 v

∗
i ∈ ∂H(x∗) almost surely. It follows from this with x = x∗

that
lim sup
lk→+∞

G(xlk+1) ≤ G(x∗),

almost surely. Combining this with the lower semi-continuity of G gives us that

lim
lk→+∞

G(xlk+1) = G(x∗),

almost surely. Thus, we have

G(x∗) ≤ G(x)− 〈x− x∗, v∗〉, ∀x ∈ Rd,

almost surely. This implies
v∗ ∈ ∂G(x∗), (4.25)

with probability one. Therefore,

v∗ ∈ ∂G(x∗) ∩ ∂H(x∗), (4.26)

with probability 1. This implies that x∗ is a critical point of F with probability 1 and the proof is
then complete. �

120



Stochastic DCA

4.3 Application to group variables selection in multi-class logistic
regression

Consider now the group variables selection in multi-class logistic regression whose the des-
cription is given in Section 3.5 of Chapter 3. Recall that we have developed DCA-Like and
ADCA-Like to solve this problem in Chapter 3 with `2,0 regularization. In this section, we consi-
der a broader case with `2,0 regularization defined as follows

‖W‖q,0 = |{j ∈ {1, ..., d} : ‖Wj,:‖q 6= 0}|,

with q ∈ {1, 2,∞}. Hence, the `q,0 regularized multi-class logistic regression problem is formulated
as follows

min
W,b

{
1

n

n∑
i=1

`(xi, yi,W, b) + λ‖W‖q,0

}
. (4.27)

We use a non-convex approximation of the `q,0-norm based on the following two penalty functions
ηα(s) :

Concave exponential : ηexp
α (s) = 1− exp(−αs),

Capped-`1 : ηcap-`1
α (s) = min{1, αs}.

These penalty functions have shown their effectiveness in several problems, for instance, indivi-
dual variables selection in SVM [35, 128], sparse optimal scoring problem [149], sparse covariance
matrix estimation problem [194], and bi-level/group variables selection [151, 193]. For a more
complete references on nonconvex approximation approaches for the `0 norm, refer to Chapter 5.

The corresponding approximate problem of (4.27) takes the form :

min
W,b

 1

n

n∑
i=1

`(xi, yi,W, b) + λ
d∑
j=1

ηα(‖Wj,:‖q)

 . (4.28)

Since ηα is increasing on [0,+∞), the problem (4.28) can be equivalently reformulated as follows

min
(W,b,t)

 1

n

n∑
i=1

`(xi, yi,W, b) + χΩ(W, b, t) + λ

d∑
j=1

ηα(tj)

 , (4.29)

where Ω = {(W, b, t) ∈ Rd×Q×RQ×Rd : ‖Wj,:‖q ≤ tj , j = 1, ..., d}. Moreover, as `(xi, yi,W, b) is
differentiable with L-Lipschitz continuous gradient and ηα is concave, the problem (4.29) takes
the form of (4.1) where the function Fi(W, b, t) is given by

Fi(W, b, t) = `(xi, yi,W, b) + χΩ(W, b, t) + λ

d∑
j=1

ηα(tj) := gi(W, b, t)− hi(W, b, t),

where the DC components gi and hi are defined by (with ρ > L) :

gi(W, b, t) =
ρ

2
‖(W, b)‖2 + χΩ(W, b, t),

hi(W, b, t) =
ρ

2
‖(W, b)‖2 − `(xi, yi,W, b)− λ

d∑
j=1

ηα(tj).

Before presenting SDCA for solving (4.29), let us show how to apply standard DCA to this
problem.
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4.3.1 Standard DCA for solving the problem (4.29)

We consider three norms corresponding to q ∈ {1, 2,∞}. DCA applied to (4.29) consists of
computing, at each iteration l, (U l, vl, zl) ∈ ∂H(W l, bl, tl), and solving the convex sub-problem

min
(W,b,t)

{ρ
2
‖(W, b)‖2 + χΩ(W, b, t)− 〈U l,W 〉 − 〈vl, b〉 − 〈zl, t〉

}
. (4.30)

The computation of (U l, vl, zl) is explicitly defined as follows.

(U l, vl, zl) =
1

n

n∑
i=1

(U li , v
l
i, z

l
i), (U

l
i , v

l
i, z

l
i) ∈ ∂hi(W l, bl, tl),

(U li ):,k = ρW l
:,k −

(
plk(xi)− δkyi

)
xi, k = 1, ...Q,

(vli)k = ρblk −
(
plk(xi)− δkyi

)
, k = 1, ...Q,

(zli)j =

{
−λα exp(−αtlj), j = 1, . . . , d if ηα = ηexp

α ,

−λα if αtlj ≤ 1, and 0 otherwise, j = 1, . . . , d, if ηα = ηcap−`1
α ,

(4.31)

with plk(xi) = exp(blk + (W l
:,k)

Txi)/(
∑Q

h=1 b
l
h + (W l

:,h)Txi)), δkyi = 1 if k = yi and 0 otherwise.
The convex sub-problem (4.30) can be solved as follows (note that zlj ≤ 0 for j = 1, . . . , d)

W l+1 = arg min
W

ρ2‖W‖2 +
d∑
j=1

(−zlj)‖Wj,:‖q − 〈U l,W 〉

 , (4.32)

bl+1 = arg min
b

{ρ
2
‖b‖2 − 〈vl, b〉

}
=

1

ρ
vl, (4.33)

tl+1
j = ‖W l+1

j,: ‖q, j = 1, ..., d. (4.34)

Since the problem (4.32) is separable in rows of W , solving it amounts to solving d independent
sub-problems

W l+1
j,: = arg min

Wj,:

{ρ
2
‖Wj,:‖2 + (−zlj)‖Wj,:‖q − 〈U lj,:,Wj,:〉

}
(4.35)

W l+1
j,: can be explicitly computed as follows. From (4.35) we can write

W l+1
j,: = arg min

Wj,:

{
1

2
‖Wj,: − U lj,:/ρ‖2 + (−zlj)‖Wj,:‖q

}
.

W l+1
j,: = prox(−zlj)/ρ‖·‖q

(
U lj,:/ρ

)
,

where the proximal operator proxf (ν) is defined by

proxf (ν) = arg min
t

{
1

2
‖t− ν‖2 + f(t)

}
.

The proximal operator of (−zlj)/ρ‖ · ‖q can be efficiently computed [184]. The computation of
prox(−zlj)/ρ‖.‖q

(ν/ρ) can be summarized in Table 4.1.
Hence, DCA based algorithms for solving (4.29) with q ∈ {1, 2,∞} are described as follows.
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Table 4.1 – Computation of W l+1
j,: = prox(−zlj)/ρ‖.‖q

(
U lj,:/ρ

)
corresponding to q ∈ {1, 2,∞}.

q prox(−zlj)/ρ‖.‖q

(
U lj,:/ρ

)
1

(
|U lj,:|/ρ− (−zlj)/ρ

)
+
◦ sign(U lj,:)

2


(

1− −zlj
‖U lj,:‖2

)
U lj,:/ρ if ‖U lj,:‖2 > −zlj

0 if ‖U lj,:‖2 ≤ −zlj .

∞

U
l
j,:/ρ−

(
1
−zlj
|U lj,:| − δ

)
+

◦ sign(U lj,:) if ‖U lj,:‖1 > −zlj

0 if ‖U lj,:‖1 ≤ −zlj ,

where δ satisfies
∑Q

k=1

(
1
−zlj
|U lj,k| − δ

)
+

= 1.

Algorithm 4.3 DCA-`q,0 : DCA for solving (4.29) with q ∈ {1, 2,∞}

1: Initialization : Choose (W 0, b0) ∈ Rd×Q × RQ, ρ > L and l← 0.
2: repeat
3: Compute (U l, vl, zl) = 1

n

∑n
i=1(U li , v

l
i, z

l
i), where (U li , v

l
i, z

l
i), i = 1, ..., n are defined in

(4.31).
4: Compute (W l+1, bl+1, tl+1) according to Table 4.1, (4.33) and (4.34).
5: l← l + 1.
6: until Stopping criterion.

4.3.2 Stochastic DCA for solving the problem (4.29)

In SDCA, at each iteration l, we have to compute (U li , v
l
i, z

l
i) ∈ ∂hi(W

l, bl, tl) for i ∈ sl
and keep (U li , v

l
i, z

l
i) = (U l−1

i , vl−1
i , zl−1

i ) for i /∈ sl, where sl is a randomly chosen subset of the
indexes, and solve the convex sub-problem taking the form of (4.30). Hence, SDCA for solving
(4.29) is described below.

Algorithm 4.4 SDCA-`q,0 : DCA for solving (4.29) with q ∈ {1, 2,∞}

1: Initialization : Choose (W 0, b0) ∈ Rd×Q × RQ, ρ > L and l← 0.
2: repeat
3: Compute (U li , v

l
i, z

l
i) by (4.31) if i ∈ sl and keep (U li , v

l
i, z

l
i) = (U l−1

i , vl−1
i , zl−1

i ) if i /∈ sl.
Set (U l, vl, zl) = 1

n

∑n
i=1(U li , v

l
i, z

l
i).

4: Compute (W l+1, bl+1, tl+1) according to Table 4.1, (4.33) and (4.34).
5: l← l + 1.
6: until Stopping criterion

We observe that all calculations of (U li , v
l
i, z

l
i) and (W l+1, bl+1, tl+1) in DCA and SDCA for

the problem (4.29) are exactly defined in explicit form. Therefore the inexact version ISDCA is
useless (Remark 4.2). Hence in our experiments we consider only SDCA.
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4.3.3 Experiment setting

Datasets. To evaluate the performances of algorithms, we performed numerical experiments on
two types of data : real datasets (covertype, madelon, miniboone, protein, sensit and sensorless)
and simulated datasets (sim_1, sim_2 and sim_3 ). All real-world datasets are taken from the
well-known UCI and LibSVM data repositories. We generate three synthetic datasets (sim_1,
sim_2 and sim_3 ) by the same process proposed in [236]. The information of datasets are given
in following.

— covertype belongs to the Forest Cover Type Prediction from strictly cartographic variables
challenge (https://archive.ics.uci.edu/ml/datasets/Covertype). It is a very large
dataset containing 581, 012 points described by 54 variables.

— madelon is one of five datasets used in the NIPS 2003 feature selection challenge (https:
//archive.ics.uci.edu/ml/datasets/Madelon). The dataset contains 2600 points, each
point is represented by 500 variables. Among 500 variables, there are only 5 informative
variables and 15 redundant variables (which are created by linear combinations of 5 in-
formative variables). The 480 others variables were added and have no predictive power.
Notice that madelon is a highly non-linear dataset.

— miniboone is taken form the MiniBooNE experiment to observe neutrino oscillations (https:
//archive.ics.uci.edu/ml/datasets/MiniBooNE+particle+identification), containing
130, 065 data points.

— protein (https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.
html ) is a dataset for classifying protein second structure state (α, β, and coil) of each
residue in amino acid sequences, including 24, 387 data points.

— sensit 4.3.3 dataset obtained from distributed sensor network for vehicle classification. It
consists of 98, 528 data points categorized into 3 classes : Assault Amphibian Vehicle (AAV),
Dragon Wagon (DW) and noise.

— sensorless measures electric current drive signals from different operating conditions, which
is classified into 11 different classes (https://archive.ics.uci.edu/ml/datasets/Dataset+
for+Sensorless+Drive+Diagnosis). It is a huge dataset, which contains 58, 509 data
points, described by 48 variables.

— For sim_1 : we generate a four-classes classification problem. Each class is assumed to
have a multivariate normal distribution N (µk, I), k = 1, 2, 3, 4 with dimension of d = 50.
The first 10 components of µ1 are 0.5, µ2j = 0.5 if 11 ≤ j ≤ 20, µ3j = 0.5 if 21 ≤ j ≤ 30,
µ4j = 0.5 if 31 ≤ j ≤ 40 and 0 otherwise. We generate 250, 000 instances with equal
probabilities.

— For sim_2 : this synthetic dataset contains three classes of multivariate normal distribu-
tions N (µk,Σ), k = 1, 2, 3, each of dimension d = 50. The components of µ1 = 0, µ2j = 0.4
and µ3j = 0.8 if j ≤ 40 and 0 otherwise. The covariance matrix Σ is the block diagonal
matrix with five blocks of dimension 10× 10 whose element (j, j′) is 0.6|j−j

′|. We generate
150, 000 instances.

— For sim_3 : this synthetic dataset consists of four classes. For class k = 1, 2, 3, 4, i ∈ Ck
then Xij ∼ N (0, 1) for j > 100, and Xij ∼ N (k−1

3 , 1) otherwise, where N (µ, σ2) denotes
the Gaussian distribution with mean µ and variance σ2. We generate 62, 500 data points
for each class.

Comparative algorithms. We will compare the performance of the proposed SDCA with
standard DCA as well as four other algorithms : the first two algorithms, named SPGD-`2,1 and
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msgl, use the convex regularization `2,1 instead of `2,0 and deal with the following problem

min
W,b

{
1

n

n∑
i=1

`(xi, yi,W, b) + λ‖W‖2,1

}
. (4.36)

SPGD-`2,1 is a version of stochastic gradient descent algorithm [31, 152], the most popular stochas-
tic algorithm in machine learning, while msgl ([227]) is a coordinate gradient descent method.
The last two algorithms, named nm-APG ([154]) and DC-PN ([198]), are the most recent which
consider nonconvex regularization `2,0. nm-APG [154] is an accelerated proximal gradient based
method for minimizing f(x) + r(x) where f(x) is a differentiable function with L-Lipschitz gra-
dient and r(x) is a nonconvex function. nm-APG requires to compute the proximal mapping of
the DC function ηα. However, this proximal mapping does not have a closed form. We the-
refore use DCA to compute the proximal mapping of ηα in nm-APG. DC-PN was proposed in
[198] for minimizing f(x) + h(x), where f(x) = f1(x) − f2(x) is a DC function, twice diffe-
rentiable, with f(x) verifying the L-Lipschitz gradient property ; h(x) = h1(x) − h2(x) where
both h1 and h2 are convex functions and (possibly) non-differential. Note that, in DC-PN, L-
BFGS is employed for approximating the Hessian matrix Hk ; and the sub-problem is solved
by minFunc solver (minFunc : unconstrained differentiable multivariate optimization in Matlab.
http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html).
Setting. We randomly split each dataset into a training set and a test set. The training set
contains 80% of the total number of points and the remaining 20% are used as a test set.

We use the early-stopping condition for SDCA and SPGD-`2,1. Early-stopping is a well-know
technique in machine learning, especially in stochastic learning which permits to avoid the over-
fitting in learning. More precisely, after each epoch, we compute the classification accuracy on
a validation set which contains 20% randomly chosen data points of training set. We stop SDCA
and SPGD-`2,1 if the classification accuracy is not improved after npatience = 5 epochs. The batch
size of stochastic algorithms (SDCA and SPGD-`2,1) is set to 10%. DCA is stopped if the difference
between two consecutive objective functions is smaller than a threshold εstop = 10−6. For msgl,
we use its default stopping parameters as in [227]. We also stop algorithms if they exceed 2 hours
of running time in the training process.

The parameter α for controlling the tightness of zero-norm approximation is chosen in the set
{0.5, 1, 2, 5}. We use the solution-path procedure for the trade-off parameter λ. Let λ1 > λ2 >
... > λl be a decreasing sequence of λ. At step k, we solve the problem (4.27) with λ = λk from the
initial point chosen as the solution of the previous step k−1. Starting with a large value of λ, we
privilege the sparsity of solution (i.e. selecting very few variables) over the classification ability.
Then by decreasing the value λ, we select more variables in order to increase the classification
accuracy. In our experiments, the sequence of λ is set to {104, 3× 103, 103, . . . , 3× 10−3, 10−3}.

All experiments are performed on a PC Intel (R) Xeon (R) E5-2630 v2 @2.60 GHz with 32GB
RAM. In order to evaluate the performance of algorithms, we consider the following three criteria :
the classification accuracy (percentage of well-classified points on the test set), the sparsity of
obtained solutions and the running time (measured in seconds). The sparsity is computed as the
percentage of selected variables. Note that a variable j ∈ {1, . . . , d} is considered to be removed if
all components of the row j of W are smaller than a threshold, i.e., |Wj,i| ≤ 10−8,∀i ∈ 1, . . . , Q.
We perform each algorithm 10 times and report the average result over 10 runs.

4.3.4 Numerical results

Experiment 1 : Comparison between SDCA with other algorithms. For this purpose,
among three regularizations `q,0 and two approximations of the `0 norm we fix the `2,0 regulari-
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zation and the capped-`1 approximation. As the capped-`1 function is nonsmooth, the resulting
approximate problem is nonsmooth (and nonconvex) (whereas the exponential approximation
is a smooth function). We perform comparative experiments on SDCA-`2,0- cap`1, DCA-`2,0-
cap`1, as well as the four comparative algorithms mentioned above. The comparative results (the
average on 10 runs) are reported in Table 4.2. To simplify the presentation, in this experiment
we use SDCA, DCA and SPGD instead of SDCA-`2,0-cap`1, DCA-`2,0-cap`1 and SPGD-`2,1
respectively.

Table 4.2 – Experiment 1 : The average results on 10 runs of six algorithms on all datasets. n, d
and Q is the number of instances, the number of variables and the number of classes respectively.
NA means that the algorithm fails to furnish a result after 12 hours.

Dataset Performance SDCA DCA SPGD mgsl mn-APG DC-PN
covertype Accuracy% 70.40 70.40 66.97 71.22 NA 71.43
n=581,012 Sparsity% 57.41 57.41 100 68.52 NA 93.21
d=54, Q=7 Time(s) 7.47 61.15 60.59 525.49 NA 64.95
madelon Accuracy% 62.18 61.28 61.79 60.48 56.99 59.49
n=2,600 Sparsity% 0.40 0.93 1.00 0.67 0.40 56.87
d=500,Q=2 Time(s) 0.15 0.21 1.07 23.92 2.43 0.55
miniboone Accuracy% 83.31 83.74 83.86 81.99 83.95 83.57
n=130,065 Sparsity% 6.00 6.00 11.00 10.00 6.00 14.00
d=50, Q=2 Time(s) 1.18 7.04 8.77 121.17 56.51 7.96
protein Accuracy% 66.41 67.04 66.59 67.34 67.04 67.39
n=24,387 Sparsity% 22.64 50.47 92.70 47.15 44.29 63.30
d=357, Q=3 Time(s) 1.13 3.35 11.73 5.59 31.04 4.13
sensit Accuracy% 78.59 78.92 79.52 79.02 79.16 79.20
n=98,528 Sparsity% 33.80 56.67 27.00 23.00 14.33 50.33
d=100,Q=3 Time(s) 2.94 26.36 22.44 11.16 332.58 10.42
sensorless Accuracy% 84.77 89.60 86.07 85.06 89.09 87.66
n=58,509 Sparsity% 68.06 53.47 88.89 50.00 36.81 97.22
d=48, Q=11 Time(s) 2.45 24.75 8.16 199.00 360.02 30.11
sim_1 Accuracy% 72.24 72.24 71.48 72.33 71.02 72.18
n=100,000 Sparsity% 80.00 80.00 83.50 82.00 80.00 96.00
d=50, Q=4 Time(s) 0.50 0.30 7.16 214.83 344.65 2.77
sim_2 Accuracy% 68.50 67.70 67.62 68.42 66.96 67.50
n=150,000 Sparsity% 80.00 80.00 82.00 82.00 80.00 88.00
d=50, Q=3 Time(s) 1.02 4.29 7.77 367.29 319.28 3.93
sim_3 Accuracy% 99.69 99.88 99.70 99.93 99.86 99.85
n=250,000 Sparsity% 80.00 80.00 80.00 80.20 80.00 80.13
d=500, Q=4 Time(s) 21.95 249.74 212.71 1581.44 571.19 144.72

• Stochastic SDCA versus standard DCA. As expected, in terms of classification accuracy, SDCA
produces fairly similar results comparing with DCA, with a gap less than 1% on 8 out of 9
datasets. More precisely, the gap is zero in two datasets, in favor of SDCA in 2 datasets, and in
favor of DCA in 5 datasets. For the remaining dataset sensorless the gap is 4.83% in favor of
DCA.

As for the sparsity of solution, the two algorithms give the same result on 5 out of 9 datasets,
SDCA is better than DCA on 2 datasets (the gap is 27.83% and 22.87%), and DCA is better
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than SDCA on 2 datasets (the gap is 0.53% and 14.59%).
Concerning the running time, not surprisingly, SDCA is much faster than DCA, the ratio of

gain varies from 1.41 (madelon) to 11.38 (sim_3 ) times on 8 out of 9 datasets. Except for sim_1
where DCA is slightly faster than SDCA (0.5 versus 0.3 s).

Overall, SDCA achieves similar solutions’ quality in a much shorter time than DCA, that is
the aim of our work.
• SDCA and DCA versus other algorithms. In terms of classification accuracy, SDCA and DCA
produce fairly similar results compared with the best results given by the four algorithms SPGD,
mgsl, mn-APG, DC-PN with a gap less than 1% on 8 out of 9 datasets (4 in favor of SDCA/DCA,
4 in favor of the best among the four other algorithms) and equal to 1.03% in the remaining
dataset (covertype). More concretely, comparing with the two `2,1 (convex) regularization algo-
rithms SPGD and mgsl, the gap versus SPGD (resp. mgsl) is in favor of SDCA/DCA on 6 (resp.
5) datasets. As for the two `2,0 (nonconvex) regularization algorithms mn-APG, DC-PN, the gap
versus mn-APG as well as DC-PN is in favor of SDCA/DCA on 6 datasets, and the gap versus
mn-APG is zero on 1 dataset.

Regarding the sparsity, SDCA gives the sparsest solutions on 7 datasets, while DCA as well
as mn-APG get the best result on 5 datasets (these three algorithms furnish the same sparsity of
solutions on 4 datasets). The gain of SDCA versus the three remaining algorithms is considerable.
It varies from 0.68% (resp. 0.27%) to 70.06% (resp. 24.51%) comparing with SPGD (resp. mgsl).
Relating to DC-PN, the gap varies from 16% to 56.47% on 6 datasets, and from 0.13% to 8% on
3 datasets. Altogether, SDCA is the best while DC-PN is the worst.

Overall, combining the two criteria - accuracy and sparsity, SDCA is the best, followed by
DCA, and then mn-APG (not counting covertype for which mn-APG is failed after 12 hours),
while DC-PN is the worse.

In the matter of rapidity (running time), SDCA (resp. DCA) is the fastest on 8 (resp. 1)
dataset(s). The gain of SDCA versus the four other algorithms is huge. The ratio of gain varies
from 3.33 (resp. 4.95) to 14.32 (resp. 360.09) times comparing with SPGD (resp. mgsl), and
from 16.20 (resp. 3.65) to 689.30 (resp. 12.29) times compared with mn-APG (resp. DC-PN).
Altogether, SDCA is the fastest algorithm, followed by DCA, and then DC-PN, while mn-APG
is the slowest, in particular it fails to get a solution after 12 hours on covertype.

In summary, as expected, SDCA reduces considerably the running time of DCA while achie-
ving equivalent classification accuracy and better sparsity. Moreover, SDCA outperforms the four
related algorithms SPGD, msgl, mn-APG and DC-PN. Hence, SDCA is the best algorithm on
both quality (accuracy and sparsity) and rapidity.

Experiment 2 : Comparison on feature selection. For the purpose of feature selection, the
effect of regularization terms as well as of approximation functions is an important matter. In this
experiment we study the effectiveness of SDCA in terms of different non-convex regularizations
`q,0 (q ∈ {1, 2,∞}) by comparing three algorithms SDCA-`1,0-exp, SDCA-`2,0-exp and SDCA-
`∞,0-exp (the exponential approximation is fixed for this experiment). The results are summarized
in Table 4.3 (the columns 3-5). We also study the effect of the approximation functions (capped-`1
and exponential approximation) by comparing two algorithms : SDCA-`2,0-exp and SDCA-`q,0-
cap`1. The results are given in the same Table 4.3 (4th and 6th column).
•SDCA with three regularizations `1,0, `2,0, `∞,0. In terms of classification accuracy, the three
algorithms SDCA-`1,0-exp, SDCA-`2,0-exp and SDCA-`∞,0-exp get similar results with a gap less
than 1% on all datasets. In particular, the gap between SDCA-`1,0-exp and SDCA-`2,0-exp is
lower than 0.3% on 6 datasets. The gain is in favor of SDCA-`1,0-exp on 4 datasets, of SDCA-
`∞,0-exp on 4 datasets (they have the same best result on sim_1 ) and of SDCA-`2,0-exp on 2
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Table 4.3 – The average results on 10 runs of Experiment 2 (SDCA with different regularization
`q,0, q ∈ 1, 2,∞)

Dataset Performance `1,0-exp `2,0-exp `∞,0-exp `2,0-cap`1

covertype
Accuracy% 71.34 71.62 69.92 70.40
Sparsity% 69.91 61.11 60.49 57.41
Time(s) 10.27 4.74 11.93 7.47

madelon
Accuracy% 61.92 62.12 61.68 62.18
Sparsity% 0.65 0.40 0.70 0.40
Time(s) 0.14 0.16 0.16 0.15

miniboone
Accuracy% 83.90 83.84 83.10 83.31
Sparsity% 8.00 6.00 8.00 6.00
Time(s) 1.57 3.60 1.62 1.18

protein
Accuracy% 67.23 67.84 68.13 66.41
Sparsity% 63.67 64.89 92.79 22.64
Time(s) 1.47 1.28 1.36 1.13

sensit
Accuracy% 79.64 78.67 79.73 78.59
Sparsity% 34.00 28.33 53.67 33.80
Time(s) 3.11 3.48 1.61 2.94

sensorless
Accuracy% 87.33 86.52 86.69 84.77
Sparsity% 54.69 37.50 97.92 68.06
Time(s) 1.40 1.47 1.41 2.25

sim_1
Accuracy% 72.24 72.22 72.24 72.24
Sparsity% 80.00 80.00 80.00 80.00
Time(s) 0.46 0.46 0.56 0.50

sim_2
Accuracy% 68.48 68.53 68.71 68.50
Sparsity% 80.00 80.00 80.00 80.00
Time(s) 0.73 0.79 0.97 1.02

sim_3
Accuracy% 99.93 99.69 99.56 99.69
Sparsity% 80.00 80.00 80.73 80.00
Time(s) 10.74 36.61 22.11 21.45
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datasets.
As for the sparsity of solution, SDCA-`2,0-exp is the best on 7 datasets (except for covertype

and protein), while SDCA-`∞,0-exp is the worse on 8 datasets (except for covertype it gives
the best result). The gain of SDCA-`2,0-exp versus SDCA-`1,0-exp (resp. SDCA-`∞,0-exp) varies
from 0.25% to 17.19% (resp. from 0.30% to 60.42%), and the gain of SDCA-`1,0-exp versus
SDCA-`∞,0-exp varies from 0.05% to 43.23%. Overall, combining the two criteria - accuracy and
sparsity, SDCA-`1,0-exp and SDCA-`2,0-exp realize a better trade-off between classification and
sparsity of solution than SDCA-`∞,0-exp, and SDCA-`2,0-exp is the best.

In terms of rapidity, the three algorithms are comparable on 6 datasets where the running
time is less than 1.5 s. As for the 3 remaining datasets, each algorithm is winner on 1 dataset.
SDCA-`2,0-exp is the winner on covertype with the ratio of gain being 2.17 and 2.52 versus
SDCA-`1,0-exp and SDCA-`∞,0-exp respectively. SDCA-`1,0-exp is 3.4 (resp. 2.06) times faster
than SDCA-`2,0-exp (resp. SDCA-`∞,0-exp) on sim_3 while SDCA-`∞,0-exp is 1.93 (resp. 2.16)
times faster than SDCA-`1,0-exp (resp. SDCA-`2,0-exp) on sensit.

In summary, the two algorithms SDCA-`1,0-exp and SDCA-`2,0-exp are comparable and they
are better than SDCA-`∞,0-exp on both quality and rapidity, in particular in terms of sparsity.
Hence, for feature selection purpose, it is suggested to use the first two algorithms.
•SDCA with the two approximations - exponential and cap`1 functions.

In terms of classification accuracy SDCA-`2,0-exp is slightly better than SDCA-`2,0-cap`1 on
8 datasets with a gap less than 1% on 5 datasets and less than 1.8% on 3 datasets. For the
remain dataset (sim_1 ) the gain is only 0.02% in favor of SDCA-`2,0-cap`1. Regarding sparsity,
the two algorithms get the same result on 5 datasets, SDCA-`2,0-cap`1 is winner on covertype
and protein with the gain 3.7% and 42.25% respectively, while SDCA-`2,0-exp is winner on sensit
and sensorless with the gain 5.47% and 43.56% respectively.

As for running time, SDCA-`2,0-exp is faster than SDCA-`2,0-cap`1 from 1.08 to 1.57 times
on 4 datasets, while the later is faster than the former from 1.13 to 3.05 times on 5 datasets.

Overall, SDCA-`2,0-exp seems to be better for the purpose of classification, and it realizes a
better trade-off between quality and rapidity in most cases.
Experiment 3 : Comparison between SDCA, DCA-Like and ADCA-Like.

In this experiment, we aim to evaluate the performance of our three proposed algorithms,
namely SDCA, DCA-Like and ADCA-Like for high-dimensional datasets. For this purpose, we
choose q = 2 and concave exponential approximation. The results are reported in the Table 4.4.

We observe that
— The classification accuracy of DCA-Like and ADCA-Like are similar (< 0.1% in 8 over 9

cases) ; and both are slightly higher than SDCA by up to 0.5% (in protein and sim_1).
Overall, the differences are neglectable.

— Similarly, in terms of sparsity, DCA-Like and ADCA-Like often choose the least number of
variables, and is much smaller than SDCA. The gap between DCA-Like (reps. ADCA-Like)
and SDCA is up to 9%, which is equivalent to 2 to 6 times bigger subset of features in
some datasets (CLL_SUB_111, ORL and miniboone).

— In terms of running time, it is clear that SDCA is faster than DCA-Like and ADCA-Like,
especially for large dataset. Except the three smallest datasets (CLL_SUB_111, Carcinom
and lung) where DCA-Like (reps. ADCA-Like) is faster than SDCA ; SDCA is faster. The
reduction in running time is from 1.3 to 8 times ; especially in the two biggest datasets
where SDCA is faster than the second fastest ones by 4 and 8 times respectively.

In conclusion, ADCA-Like is faster than DCA-Like, while having similar classification accu-
racy and sparsity. SDCA is much faster than ADCA-Like (reps. DCA-Like) while having similar

129



Stochastic DCA

Table 4.4 – Comparative results on group variable selection for multi-class logistic regression.
Bold values correspond to best results for each dataset. NA means that the algorithm fails to
furnish a result. n, d and Q are the number of instances, dimensions and classes respectively.
Unit of time is second.

Dataset Algorithm Accuracy (%) Time (sec.) Sparsity (%)
Mean STD Mean STD Mean STD

CLL_SUB_111 DCA-Like 78.79 6.94 0.75 0.03 0.32 0.18
n× d = 111× 11340 ADCA-Like 78.79 6.94 0.63 0.06 0.18 0.04
Q = 3 SDCA 78.79 5.25 5.25 1.64 1.95 1.09

Carcinom DCA-Like 89.52 8.25 3.06 0.05 0.41 0.01
n× d = 174× 9182 ADCA-Like 90.48 6.60 1.81 0.11 0.41 0.01
Q = 11 SDCA 90.48 6.60 4.16 2.74 0.66 0.25

lung DCA-Like 91.06 3.73 0.71 0.01 0.47 0.02
n× d = 203× 3312 ADCA-Like 91.06 3.73 0.42 0.08 0.50 0.02
Q = 5 SDCA 91.06 3.73 0.86 0.10 0.57 0.11

ORL DCA-Like 94.58 5.05 10.76 0.56 6.02 0.31
n× d = 400× 1024 ADCA-Like 94.58 2.89 7.43 0.76 7.71 0.34
Q = 40 SDCA 94.58 5.05 3.04 1.38 16.76 6.69

BASEHOCK DCA-Like 94.65 1.26 5.72 2.53 4.24 0.87
n× d = 1993× 4862 ADCA-Like 94.65 1.38 5.47 1.51 2.28 0.69
Q = 2 SDCA 94.74 0.25 3.54 0.28 2.73 0.16

protein DCA-Like 68.26 0.50 2.92 0.43 77.90 2.03
n× d = 24387× 357 ADCA-Like 68.29 0.51 4.16 0.90 78.00 2.13
Q = 3 SDCA 67.94 0.62 1.17 0.35 80.43 0.58

sim_1 DCA-Like 72.22 0.50 0.66 0.00 80.00 0.00
n× d = 100000× 50 ADCA-Like 72.22 0.50 0.63 0.02 80.00 0.00
Q = 4 SDCA 72.18 0.57 0.49 0.06 80.00 0.00

miniboone DCA-Like 83.78 0.07 4.82 0.42 6.00 0.00
n× d = 130064× 50 ADCA-Like 83.78 0.07 3.68 0.60 6.00 0.00
Q = 2 SDCA 84.25 0.34 0.92 0.23 11.33 1.15

sim_3 DCA-Like 99.93 0.01 358.40 7.38 80.00 0.00
n× d = 250000× 500 ADCA-Like 99.93 0.01 159.95 16.26 80.00 0.00
Q = 4 SDCA 99.93 0.02 17.86 3.28 80.00 0.00

accuracy ; however ADCA-Like selects more compact subset of variables than SDCA.
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4.4 Conclusion

We have proposed two novel DCA-based algorithms, stochastic DCA and inexact stochastic
DCA with the aim of reducing the computation cost of DCA in large-scale setting. The sum
structure of the objective function F permits us to work separately on the component functions
Fi. The stochastic DCA is then proposed to tackle problems with huge numbers of Fi while the
inexact stochastic DCA aims to address large-scale setting and big data. In the algorithmic point
of view, our SDCA scheme enjoys some variance reduction design : the SDCA can be regarded as a
combination of the standard DCA and the SAG estimator (which is a variance-reduced gradient)
introduced in [210]. We proved that both algorithms converge to a critical point with probability
1. We applied DCA and SDCA to group variables selection in multi-class logistic regression, an
important problem in machine learning. By using a suitable DC decomposition of the objective
function we have designed a DCA scheme in which all computations are explicit and inexpensive.
Consequently SDCA is very inexpensive. Numerical results showed that, as expected, SDCA
reduces considerably the running time of standard DCA while achieving equivalent classification
accuracy and better sparsity.

Our works, more particularly the paper [131] was the first contribution which initialized a
very attracting research direction coupled DCA and stochastic framework. Since then, several
algorithms in this direction were developed in the literature (e.g. [127, 158, 136, 177, 244]. As for
us, we are continuing to develop stochastic DCA in the following works (which are not presented
in this chapter) :

i) Online stochastic DCA [148] which can be used in the context of online learning and big
data ;

ii) Stochastic DCA with Variance Reduction for solving a class of structured DC problems
[135].

In future works we plan to

1. develop new stochastic DCA schemes with competitive complexity compared with existing
algorithms ;

2. develop stochastic based general DCA for stochastic DC programs with stochastic DC
constraints (Stochastic General DCA) ;

3. deploy novel Stochastic General DCA schemes on several important areas and their ap-
plications such as Chance constrained optimization, Bayesian optimization, Interference
networks in Telecommunications, Distributionally Robust Chance Constrained Program-
ming based on Generative adversarial networks.
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Sparse Optimization and its
applications
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This part is devoted to the sparse optimization problem which refers to an optimization pro-
blem involving the `0-norm in objective or constraints. Formally, a sparse optimization problem
takes the form

inf {F (x, y) = f(x, y) + λ ‖x‖0 : (x, y) ∈ K ⊂ Rn×Rm } ,

where the function f corresponds to a given criterion and λ > 0 is the trade-off between the
criterion f and the sparsity of x.

We develop an unifying framework, with solid theoretical tools as well as efficient algorithms
based on DC programming and DCA for sparse optimization. Our unified DC programming
framework shed a new light on sparse nonconvex programming. It permits to establish the crucial
relations among existing sparsity-inducing methods and therefore to exploit, in an elegant way,
the nice effect of DC decompositions of objective functions.

In Chapter 5, we present two approaches for sparse optimization, namely nonconvex approxi-
mation approach and nonconvex exact reformulation approach. In nonconvex approximation
approach (Section 5.2), the zero-norm is approximated by a nonconvex continuous function.
Considering a class of DC approximation functions of the zero-norm including all usual sparse
inducing approximation functions in literature, we provide several important results from both a
theoretical and an algorithmic point of view. We prove the consistency between global minimums
(resp. local minimums) of approximate and original problems. We show that, in several cases,
some global minimizers (resp. local minimizers) of the approximate problem are also those of the
original problem. Furthermore, we prove that for some particular approximations, the approxi-
mate problem with suitable parameters is equivalent to the original problem. The efficiency of
several sparse inducing penalty functions is carefully analyzed. Four DCA schemes are developed
that cover all standard algorithms in nonconvex sparse approximation approaches as special ver-
sions. In nonconvex exact reformulation approach (Section 5.3), the sparse optimization problem
is equivalently reformulated as DC program using the exact penalty technique. Then, the latter
can be solved by DCA based algorithm.

In Chapter 6, we apply the two proposed approaches in three applications : feature selection
in Support Vector Machine (Section 6.1), feature selection in Semi-Supervised Support Vector
Machine (Section 6.2) and sparse recovery signal (Section 6.3).
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Chapitre 5

DCA based algorithms for sparse
optimization1

Abstract: In this chapter, we developed an unifying framework, with solid theoretical tools as well as
efficient algorithms based on DC programming and DCA, to tackle the sparse optimization problem.
Two approaches are developed, namely nonconvex approximation and nonconvex exact reformulation. In
nonconvex approximation approach, using a common DC approximation of the zero-norm including all
standard sparse inducing penalty functions, we studied the consistency between global minimums (resp.
local minimums) of approximate and original problems. We showed that, in several cases, some global
minimizers (resp. local minimizers) of the approximate problem are also those of the original problem.
Furthermore, we proved that for some particular approximations, the approximate problem with suitable
parameters is equivalent to the original problem. The efficiency of several sparse inducing penalty func-
tions have been fully analyzed. Four DCA schemes were developed that cover all standard algorithms in
nonconvex sparse approximation approaches as special versions. They can be viewed as, an `1-perturbed al-
gorithm / reweighted-`1 algorithm / reweighted-`1 algorithm. In nonconvex exact reformulation approach,
we equivalently reformulated the original problem as a DC program thanks to the exact penalty technique
and then developed DCA to solve it. Moreover, we established the link between the exact reformulation with
the approximate problem using the convex approximation `1 and the nonconvex approximation Capped-`1.
By these results, we unified all nonconvex approaches for treating the zero-norm into the DC programming
and DCA.

5.1 Introduction

The zero-norm on Rn, denoted `0-norm or ‖.‖0, is defined by

‖x‖0 := |{i = 1, ..., n : xi 6= 0}| ,

where |S| is the cardinality of the set S. The useful notation |.|0 denoting the `0-norm on R
allows to express the separability of ‖.‖0 on Rn

‖x‖0 =
n∑
i=1

|xi|0 .

1. The results presented in this chapter were published in :
• H.A. Le Thi, T. Pham Dinh, H.M. Le, X.T. Vo, DC approximation approaches for sparse optimization,

European Journal of Operational Research,244(1) :26-46, 2015.
• H.A. Le Thi, H.M. Le and T. Pham Dinh, Feature Selection in machine learning : an exact penalty approach

using a Different of Convex function Algorithm, Machine Learning, 101(1) :163-186, 2015.
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The `0-norm is an important concept for modelling the sparsity of data and plays a crucial role
in optimization problems where one has to select representative variables. Sparse optimization,
which refers to an optimization problem involving the `0-norm in objective or constraints, has
many applications in various domains (in particular in machine learning, image processing and
finance), and draws increased attention from many researchers in recent years. The function `0,
apparently very simple, is lower-semicontinuous on Rn, but its discontinuity at the origin makes
nonconvex programs involving ‖.‖0 challenging. Note that although one uses the term “norm” to
design ‖.‖0, ‖.‖0 is not a norm in the mathematical sense. Indeed, for all x ∈ Rn and λ 6= 0, one
has ‖λx‖0 = ‖x‖0 , which is not true for a norm.

Formally, a sparse optimization problem takes the form

inf {F (x, y) = f(x, y) + λ ‖x‖0 : (x, y) ∈ K ⊂ Rn×Rm } , (5.1)

where the function f corresponds to a given criterion and λ is a positive number, called the
regularization parameter, that makes the trade-off between the criterion f and the sparsity of
x [235, 254]. In some applications, one wants to control the sparsity of solutions, the `0-term is
thus put in constraints, and the corresponding optimization problem is

inf{f(x, y) : (x, y) ∈ K, ‖x‖0 ≤ k}. (5.2)

Let us mention some important applications of sparse optimization corresponding to these
models.

Feature selection in classification learning. Feature selection is one of fundamental problems in
machine learning. In many applications such as text classification, web mining, gene expression,
micro-array analysis, combinatorial chemistry, image analysis, etc, data sets contain a large
number of features, many of which are irrelevant or redundant. Feature selection is often applied
to high-dimensional data prior to classification learning. The main goal is to select a subset
of features of a given data set while preserving or improving the discriminative ability of the
classifier. The embedded feature selection in classification can be formulated as min f(x)+λ‖x‖0
where f(x) is the loss function corresponding to the classification method and λ > 0 is the trade-
off between two terms. Numerous sparse optimization methods have been developed for feature
selection in classification, for instance in SVM [35, 121], S3VM [121, 245], Gaussian Mixtures
Model [176], Logistique regression [192, 132], etc

Sparse Regression. Given a training data set {bi, ai}qi=1 of q independent and identically distri-
buted samples composed of explanatory variables ai ∈ Rn (inputs) and response variables bi ∈ R
(ouputs). Let b := (bi)i=1,...,q denote the vector of outputs and A := (ai,j)

j=1,...,n
i=1,...,q denote the ma-

trix of inputs. The problem of the regression consists in looking for a relation which can possibly
exist between A and b, in other words, relating b to a function of A and a model parameter x.
Such a model parameter x can be obtained by solving the optimization problem

min

{
f(x) :=

q∑
i=1

L(bi, a
T
i x) : x ∈ Rn

}
, (5.3)

where L : Rn → R is called loss function. The sparse regression problem aims to find a sparse
solution of the above regression model, it takes the form of (5.1) :

min
x∈Rn

{
q∑
i=1

L(bi, a
T
i x) + ρ ‖x‖0

}
. (5.4)
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Regression problems have many important applications, among them sparse signal/image
recovery and feature selection in classification.
Sparse Fisher Linear Discriminant Analysis. Discriminant analysis captures the relationship
between multiple independent variables and a categorical dependent variable in the usual multi-
variate way, by forming a composite of the independent variables. Given a set of q independent
and identically distributed samples composed of explanatory variables ai ∈ Rn and binary res-
ponse variables bi ∈ {−1, 1}. The idea of Fisher linear discriminant analysis is to determine a
projection of variables onto a straight line that best separables the two classes. The line is so de-
termined to maximize the ratio of the variances of between and within classes in this projection,
i.e. maximize the function f(α) = 〈α,SBα〉

〈α,SWα〉 , where SB and SW are, respectively, the between and
within classes scatter matrix (they are symmetric positive semidefinite) given by

SB := (q+ − q−)(q+ − q−)T , SW = S+ + S−,

S+ =

q∑
i=1,bi=+1

(xi − q+)(xi − q+)T , S− =

q∑
i=1,bi=−1

(xi − q−)(xi − q−)T .

Here, for j ∈ {±}, qj is the mean vector of class j, lj is the number of labeled samples in class
j. If α is an optimal solution of the problem, then the classifier is given by F (a) = αTa + c,
c = 0.5αT (q+ − q−).
The sparse Fisher Discriminant model is defined by (ρ > 0 )

min{αTSWα+ ρ ‖α‖0 : αT (q+ − q−) = b}.

Sparse Covariance Matrix Estimation. The estimation of a covariance matrix is a fundamental
problems in statisticsand emerges from many applications such as portfolio management and risk
assessment, high-dimensional classification, finding quantitative trait loci based on longitudinal
data, etc [194]. Let Y = (Y1, . . . , Yp)

T be p-dimensional random vector with the covariance
matrix Σ = [Σ]ij ]1≤i,j≤p where Σ]ij is the covariance between Yi and Yj . Suppose that we
observe a sample including n observational data points X1, . . . , Xn from a multivariate normal
distribution N (0,Σ). The sparse covariance matrix extimation is formulated as

min
{

log det Σ + tr(Σ−1S) + λ‖Σ‖0
}

where S = 1
n

n∑
i=1

XiX
T
i is the sample covariance matrix.

Compressed sensing. Compressed sensing refers to techniques for efficiently acquiring and re-
constructing signals via the resolution of underdetermined linear systems. Compressed sensing
concerns sparse signal representation, sparse signal recovery and sparse dictionary learning which
can be formulated as sparse optimization problems of the form (5.1).

Portfolio selection problem with cardinality constraint. In portfolio selection problem, given a
set of available securities or assets, we want to find the optimum way of investing a particular
amount of money in these assets. Each of the different ways to diversify this money among the
several assets is called a portfolio. In portfolio management one wants to limit the number of
assets to be investigated in the portfolio, that leads to a problem of the form (5.2).

Other applications : Other applications of sparse optimization include Sensor networks ([18]),
Error correction ([43, 42]), Digital photography ([219]), etc.
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State of the art of sparse optimization

During the last decades, research is very active in models and methods optimization involving
the zero-norm. Works can be divided into three categories according to the way to treat the zero-
norm : convex approximation, nonconvex approximation, and nonconvex exact reformulation.

Convex approximation. In the machine learning community, one of the best known ap-
proaches, belonging to the group "convex approximation", is the `1 regularization approach
proposed in [223] in the context of linear regression, called LASSO (Least Absolute Shrinkage
and Selection Operator), which consists in replacing the `0 term ‖x‖0 by ‖x‖1, the `1 -norm of
the vector x. In [88], the authors have proved that, under suitable assumptions, a solution of
the `0- regularizer problem over a polyhedral set can be obtained by solving the `1- regularizer
problem. However, these assumptions are quite restrictive. Since its introduction, several works
have been developed to study the `1-regularization technique, from the theoretical point of view
to efficient computational methods (see [96], Chapter 18 for more discussions on `1-regularized
methods). The LASSO penalty has been shown to be, in certain cases, inconsistent for variable
selection and biased [263]. Hence, the Adaptive LASSO is introduced in [263] in which adaptive
weights are used for penalizing different coefficients in the `1-penalty.

Nonconvex approximations. At the same time, nonconvex continuous approaches, belon-
ging to the second group "nonconvex approximation" (the `0 term ‖x‖0 is approximated by a
nonconvex continuous function) were extensively developed. A variety of sparsity-inducing pe-
nalty functions have been proposed to approximate the `0 term : exponential concave function
[35], `p-norm with 0 < p < 1 [76] and p < 0 [203], Smoothly Clipped Absolute Deviation
(SCAD) [70], Logarithmic function [235], Capped-`1 [186]. Using these approximations, several
algorithms have been developed for resulting optimization problems, most of them are in the
context of feature selection in classification, sparse regressions or more especially for sparse si-
gnal recovery : Successive Linear Approximation (SLA) algorithm [35], DCA based algorithms
[53, 56, 79, 91, 121, 128, 140, 139, 137, 171, 180, 121, 253, 252, 261], Local Linear Approximation
(LLA) [264], Two-stage `1 [256], Adaptive Lasso [263], reweighted-`1 algorithms [44], reweighted-
`2 algorithms such as Focal Underdetermined System Solver (FOCUSS) ([85, 203, 202]), Itera-
tively reweighted least squares (IRLS) and Local Quadratic Approximation (LQA) algorithm
[70, 264].

Nonconvex exact reformulation. In the third category named nonconvex exact reformulation
approaches, the `0-regularized problem is reformulated as a continuous nonconvex program. There
are a few works in this category. In [163], the author reformulated the problem (5.1) in the context
of feature selection in SVM as a linear program with equilibrium constraints (LPEC). However,
this reformulation is generally intractable for large-scale datasets. In [221, 190] an exact penalty
technique in DC programming is used to reformulate (5.1) and (5.2) as DC programs. In [222]
this technique is used for Sparse Eigenvalue problem with `0-norm in constraint functions

max{xTAx : xTx = 1, ‖x‖0 ≤ k}, (5.5)

where A ∈ Rn×n is symmetric and k an integer, and a DCA based algorithm was investigated
for the resulting problem.

Beside the three above categories, heuristic methods are developed to tackle directly the
original problem (5.1) by greedy based algorithms, e.g. matching pursuit, orthogonal matching
pursuit, [162, 185], etc.
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Challenges in sparse optimization. Convex regularization approaches involve convex opti-
mization problems which are so far "easy" to solve, but they don’t attain the solution of the
`0-regularizer problem. Nonconvex approximations are, in general, deeper than convex relaxa-
tions, and then can produce good sparsity, but the resulting optimization problems are still
difficult since they are nonconvex and there are many local minima which are not global. The
exact reformulation approach has the same difficulty since the equivalent problems are nonconvex
and require efficient methods to solve. Many issues have not yet been studied or proved in the
existing approximation approaches. First, the consistency between the approximate problems
and the original problem is a very important question but still is open. Only a weak result has
been proved for two special cases in [36] (resp. [204]) when f is concave, bounded below on a
polyhedral convex set K and the approximation term is an exponential concave function (resp.
a logarithm function and/or `p-norm (p < 1)). It has been shown in these works that the inter-
section of the solution sets of the approximate problem and the original problem is nonempty.
Moreover no result on the consistency between local minimum of approximate and original pro-
blems has been available, while most of the proposed algorithms furnish local minima. Second,
several existing algorithms lack a rigorous mathematical proof of convergence. Hence the choice
of a “good” approximation remains relevant. Two crucial questions should be studied for solving
large scale problems, that are, how to suitably approximate the zero-norm and which computa-
tional method to use for solving the resulting optimization problem. The development of new
models and algorithms for sparse optimization problems is always a challenge for researchers in
optimization and machine learning.

Our contributions
We consider in this chapter the sparse optimization problem (5.1) where K is a polyhedral

convex set in Rn × Rm and f is a finite DC function with the following decomposition

f(x, y) = g(x, y)− h(x, y) ∀(x, y) ∈ Rn × Rm, (5.6)

where g, h are finite convex functions on Rn × Rm.
We address all challenge cited above and develop an unifying approach based on DC pro-

gramming and DCA, from both a theoretical and a computational point of view.
Firstly, considering a common DC approximate function, we prove the consistency between

the approximate problem and the original problem by showing the link between their global
minimizers as well as their local minimizers. We demonstrate that any optimal solution of the
approximate problem is in a ε−neighbourhood of an optimal solution to the original problem
(5.1). More strongly, if f is concave and the objective function of the approximate problem
is bounded below on K, then some optimal solutions of the approximate problem are exactly
solutions of the original problem. These new results are important and very useful for justifying
the performance of approximation approaches.

Secondly, thanks to the exact penalty technique in DC programming, we equivalently refor-
mulate the optimization problem (5.1) and (5.2) as continuous optimization problems which are
DC program. DCA is then developed for solving the continuous exact reformulation of (5.1).
Moreover, we show that the `1 approximation is nothing but the linear relaxation of our exact
formulation. Note that in our paper [130], we have developed the continuous exact reformulation
of (5.1) and (5.2) with f being convex. Here, we consider a broader case where f is a DC function.

Thirdly, we provide an in-depth analysis of usual sparsity-inducing functions and compare
them according to suitable parameter values. This study suggests the choice of good approxima-
tions of the zero-norm as well as that of good parameters for each approximation. A reasonable
comparison via suitable parameters identifies Capped -`1 and SCAD as the best approximations.
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Fourthly, we prove, via an exact reformulation approach by exact penalty techniques that,
with suitable parameters (θ > θ0), nonconvex approximate problems resulting from Capped -
`1 or SCAD functions are equivalent to the original problem. Moreover, when the set K is a
box, we can show directly (without using exact penalty techniques) the equivalence between the
original problem and the approximate Capped -`1 problem and give the value of θ0 such that
this equivalence holds for all θ > θ0. These interesting and significant results justify our analysis
on usual sparsity-inducing functions and the pertinence of these approximation approaches. It
opens the door to study other approximation approaches which are consistent with the original
problem.

Fifthly, we develop solution methods for all DC approximation approaches. Our algorithms
are based on DC programming and DCA, because our main motivation is to exploit the efficiency
of DCA to solve this hard problem. We propose three DCA schemes for three different formu-
lations of a common model to all concave approximation functions. We show that these DCA
schemes include all standard algorithms as special versions. The fourth DCA scheme is concerned
with the resulting DC program given by the DC approximation (nonconcave piecewise linear)
function in [122]. Using DC programming framework, we unify all solution methods into DC,
and then convergence properties of our algorithms are guaranteed, thanks to general convergence
results of the generic DCA scheme. It permits to exploit, in an elegant way, the nice effect of DC
decompositions of the objective functions to design various versions of DCA. It is worth men-
tioning here the flexibility/versatility of DC programming and DCA : the four algorithms can
be viewed as an `1-perturbed algorithm / a reweighted-`1 algorithm (intimately related to the
`1-penalized LASSO approach) / a reweighted-`2 algorithm in case of convex objective functions.

The remainder of the chapter is organized as follows. In Section 5.2, we present the theoretical
tools and different DCA algorithms for the nonconvex approximation approach. Section 5.3 is
devoted to the exact reformulation approach and its resolution by DCA.

5.2 DC approximation approach for sparse optimization

In this session, we focus on the sparse optimization formulation (5.1) which involves the `0
norm in objective function, i.e.,

inf {F (x, y) = f(x, y) + λ ‖x‖0 : (x, y) ∈ K ⊂ Rn×Rm } .

Let us define the step function s : R → R by s(t) = 1 for t 6= 0 and s(t) = 0 otherwise.
Then ‖x‖0 =

∑n
i=1 s(xi). The idea of approximation methods is to replace the discontinuous step

function by a continuous approximation rθ, where θ > 0 is a parameter controling the tightness
of approximation. This leads to the approximate problem of the form

min

{
Frθ(x, y) = f(x, y) + λ

n∑
i=1

rθ(xi) : (x, y) ∈ K

}
. (5.7)

Assumption 5.1 {rθ}θ>0 is a family of functions R→ R satisfying the following properties :

i) limθ→+∞ rθ(t) = s(t), ∀t ∈ R.
ii) For any θ > 0, rθ is even, i.e. rθ(t) = rθ(|t|) ∀t ∈ R) and rθ is increasing on [0,+∞).
iii) For any θ > 0, rθ is a DC function which can be represented as

rθ(t) = ϕθ(t)− ψθ(t) t ∈ R,

where ϕθ, ψθ are finite convex functions on R.
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iv) tµ ≥ 0 ∀t ∈ R, µ ∈ ∂rθ(t).where ∂rθ(t) = {u− v : u ∈ ∂ϕθ(t), v ∈ ∂ψθ(t)}.
v) For any a ≤ b and 0 /∈ [a, b] : lim

θ→+∞
sup {|z| : z ∈ ∂rθ(t), t ∈ [a, b]} = 0.

We now study the consistency between the approximate problems and the original one.

5.2.1 DC approximation approaches : consistency results

First of all, we observe that by assumption ii) above, we get another equivalent form of (5.7)

min
(x,y,z)∈Ω1

F rθ(x, y, z) := f(x, y) + λ

n∑
i=1

rθ(zi), (5.8)

where
Ω1 = {(x, y, z) : (x, y) ∈ K, |xi| ≤ zi ∀i = 1, . . . , n}.

Indeed, (5.7) and (5.8) are equivalent in the following sense.

Proposition 5.1 ([147]) A point (x∗, y∗) ∈ K is a global (resp. local) solution of the problem
(5.7) if and only if (x∗, y∗, |x∗|) is a global (resp. local) solution of the problem (5.8). Moreover,
if (x∗, y∗, z∗) is a global solution of (5.8) then (x∗, y∗) is a global solution of (5.7).

Proof 5.1 Since rθ is an increasing function on [0,+∞), we have

F rθ(x, y, z) ≥ F rθ(x, y, |x|) = Frθ(x, y) ∀(x, y, z) ∈ Ω1.

Then the conclusion concerning global solutions is trivial. The result on local solutions also follows
by remarking that if (x, y, z) ∈ B((x∗, y∗, z∗), δ) (B(u∗, δ) stands for the set of vectors u ∈ Rd
such that ‖u−u∗‖ < δ) then (x, y) ∈ B((x∗, y∗), δ), and if (x, y) ∈ B((x∗, y∗), δ2) then (x, y, |x|) ∈
B((x∗, y∗, |x∗|), δ). �

In standard nonconvex approximation approaches to `0-problem, all the proposed approxi-
mation functions rθ are even and concave increasing on [0,+∞) (see Table 5.1 below) and the
approximate problems were often considered in the form (5.8). Here we study the general case
where rθ is a DC function and consider both problems (5.7) and (5.8) in order to exploit the nice
effect of DC decompositions of a DC program.

Now we show the link between the original problem (5.1) and the approximate problem (5.7).
This result gives a mathematical foundation of approximation methods.

Theorem 5.1 Let P,Pθ be the solution sets of the problem (5.1) and (5.7) respectively.

i) Let {θk} be a sequence of nonnegative numbers such that θk → +∞ and {(xk, yk)} be a
sequence such that (xk, yk) ∈ Pθk for any k. If (xk, yk)→ (x∗, y∗), then (x∗, y∗) ∈ P.

ii) If K is compact, then for any ε > 0 there is θ(ε) > 0 such that

Pθ ⊂ P +B(0, ε) ∀θ ≥ θ(ε).

iii) If there is a finite set S such that Pθ ∩ S 6= ∅ ∀θ > 0, then there exists θ0 ≥ 0 such that

Pθ ∩ S ⊂ P ∀θ ≥ θ0.
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Proof 5.2 i) Let (x, y) be arbitrary in K. For any k, since (xk, yk) ∈ Pθk , we have

f(x, y) + λ
n∑
i=1

rθk(xi) ≥ f(xk, yk) + λ
n∑
i=1

rθk(xki ). (5.9)

By Assumption 5.1 ii), if x∗i = 0, we have

lim inf
k→+∞

rθk(xki ) ≥ lim inf
k→+∞

rθk(0) = 0.

If x∗i 6= 0, there exist ai ≤ bi and ki ∈ N such that 0 6= [ai, bi] and xki ∈ [ai, bi] for all k ≥ ki.
Then we have

|rθk(xki )− s(x∗i )| ≤ max {|rθk(ai)− s(ai)|, |rθk(bi)− s(bi)|} ∀k ≥ ki.

Since limk→+∞ rθk(ai) = s(ai) and limk→+∞ rθk(bi) = s(bi), we have limk→+∞ rθk(xki ) = s(x∗i ).
Note that f is continuous, taking lim inf of both sides of (5.9), we get

f(x, y) + λ
n∑
i=1

s(xi) ≥ f(x∗, y∗) + λ
n∑
i=1

lim inf
k→∞

rθk(xki ) ≥ f(x∗, y∗) + λ
n∑
i=1

s(x∗i ).

Thus, F (x, y) ≥ F (x∗, y∗) for any (x, y) ∈ K, or (x∗, y∗) ∈ P.
ii) We assume by contradiction that there exists ε > 0 and a sequence {θk} such that θk →

+∞, and for any k there is (xk, yk) ∈ Pθk\(P + B(0, ε)). Since {(xk, yk)} ⊂ K and K is
compact, there exists a subsequence {(xkl , ykl)} of {(xk, yk)} converges to a point (x∗, y∗) ∈ K.
By i), we have (x∗, y∗) ∈ P. However, {(xkl , ykl)} ⊂ K\(P + B(0, ε)) that is a closed set, so
(x∗, y∗) ∈ K\(P +B(0, ε)). This contradicts the fact that (x∗, y∗) ∈ P.

iii) Assume by contradiction that there is a sequence {θk} such that θk → +∞, and for any
k there is (xk, yk) ∈ (Pθk ∩ S)\P. Since S is finite, we can extract a subsequence such that
(xkl , ykl) = (x, y) ∀l. Then we have (x, y) /∈ P. This contradicts the fact that (x, y) ∈ P following
i). �

Remark 5.1 The assumption that rθ is an even function is not needed for proving this theorem.
More precisely, the theorem still holds when the assumption ii) is replaced by “for any θ > 0, rθ is
decreasing on (−∞, 0] and is increasing on [0,+∞)”. For the zero-norm, since the step function
is even, it is natural to consider its approximation rθ as an even function.

Theorem 5.1 shows that any optimal solution of the approximate problem (5.7) is in a
ε−neighboohord of an optimal solution to the original problem (5.1), and the tighter approxima-
tion of `0-norm is, the better approximate solutions are. Moreover, if there is a finite set S such
that Pθ ∩ S 6= ∅ ∀θ > 0, then any optimal solution of the approximate problem (5.7) contained
in S solves also the problem (5.1). By considering the equivalent problem (5.8), we show in the
following Corollary that such a set S exists in several contexts of applications (for instance, in
feature selection in SVM).

Corollary 5.1 Suppose that r is concave on [0,+∞), K is a polyhedral convex set having at least
a vertex and f is concave, bounded below on K. Then Ω1 defined in (5.8) is also a polyhedral
convex set having at least a vertex. Let V be the vertex set of Ω1 and

Pθ = {(x, y) : ∃z ∈ Rn s.t. (x, y, z) ∈ V is a global solution of (5.8)} .

Then Pθ 6= ∅ ∀θ > 0 and there exists θ0 > 0 such that Pθ ⊂ P, ∀θ ≥ θ0.
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Proof 5.3 By the assumptions, we have F rθ is concave, bounded below on Ω1, so Pθ 6= ∅ ∀θ > 0.
Let S = {(x, y) : (x, y, z) ∈ V for some z ∈ Rn}. By Proposition 5.1, we have Pθ ⊂ Pθ∩S ∀θ > 0.
Since V is finite, so is S. The property iii) of Theorem 5.1 implies the existence of θ0 > 0 such
that

Pθ ⊂ Pθ ∩ S ⊂ P ∀θ ≥ θ0.

�

Note that the consistency between the solution of the approximate problem and the original
problem have been carried out in [36] (resp. [204]) for the case where f is concave, bounded
below on the polyhedral convex set K and r is the exponential approximation defined in Table
5.1 below (resp. r is the logarithm function and/or `p-norm (p < 1)). Here, besides general results
carried out in Theorem 5.1, our Corollary 5.1 gives a much stronger result than those in [36, 204]
where they only ensure that Pθ ∩ P 6= ∅ ∀θ ≥ θ0.

Observing that the approximate problem is still nonconvex for which, in general, only local
algorithms are available, we are motivated by the study of the consistency between local mini-
mizers of the original and approximate problems. For this purpose, first, we need to describe
characteristics of local solutions of these problems.

Proposition 5.2 i) A point (x∗, y∗) ∈ K is a local optimum of the problem (5.1) if and only if
(x∗, y∗) is a local optimum of the problem

min{f(x, y) : (x, y) ∈ K(x∗)}, (5.10)

where K(x∗) = {(x, y) ∈ K : xi = 0 ∀i /∈ supp(x∗)}.
ii) If (x∗, y∗) ∈ K is a local optimum of the problem (5.1) then

〈x∗, x− x∗〉+ 〈y∗, y − y∗〉 ≥ 0 ∀(x, y) ∈ K(x∗), (5.11)

for some (x∗, y∗) ∈ ∂f(x∗, y∗).

Proof 5.4 i) The forward implication is obvious, we only need to prove the backward one. Assume
that (x∗, y∗) is a local solution of the problem (5.10). There exists a neighbourhood V of (x∗, y∗)
such that

supp(x∗) ⊂ supp(x) and |f(x, y)− f(x∗, y∗)| < λ ∀(x, y) ∈ V,

and
f(x∗, y∗) ≤ f(x, y) ∀(x, y) ∈ V ∩K(x∗).

For any (x, y) ∈ V ∩K, two cases occur :
- If (x, y) ∈ K(x∗), then ‖x‖0 = ‖x∗‖0 and f(x∗, y∗) ≤ f(x, y).
- If (x, y) /∈ K(x∗), then ‖x∗‖0 ≤ ‖x‖0 − 1 and f(x∗, y∗) < f(x, y) + λ.

In both cases, we have f(x∗, y∗) + λ‖x∗‖0 ≤ f(x, y) + λ‖x‖0. Thus, (x∗, y∗) is a local solution of
the problem (5.2).
ii) Since f = g − h is a DC function, (5.10) is a DC program. Therefore, the necessary local
condition of the problem (5.10) can be stated by

0 ∈ ∂(g + χK(x∗))(x
∗, y∗)− ∂h(x∗, y∗),

or equivalently, there exists (x∗, y∗) ∈ ∂f(x∗, y∗) such that

−(x∗, y∗) ∈ ∂χK(x∗)(x
∗, y∗)⇔ 〈x∗, x− x∗〉+ 〈y∗, y − y∗〉 ≥ 0 ∀(x, y) ∈ K(x∗).

�
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As for the characteristics of local solutions of the problem (5.7), we follow the necessary local
optimality conditions for a DC program

∂h(x∗) ∩ ∂g(x∗) 6= ∅ (5.12)

Writing the problem (5.7) in form of a DC program

min
x,y
{Frθ(x, y) := G(x, y)−H(x, y)}, (5.13)

with

G(x, y) = χK(x, y) + g(x, y) + λ
n∑
i=1

ϕθ(xi), H(x, y) = h(x, y) + λ
n∑
i=1

ψθ(xi). (5.14)

Then, for a point (x∗, y∗) ∈ K, the necessary local optimality condition (5.12) can be expressed
as

0 ∈ ∂G(x∗, y∗)− ∂H(x∗, y∗),

which is equivalent to

〈x∗, x− x∗〉+ 〈y∗, y − y∗〉+ 〈z∗, x− x∗〉 ≥ 0 ∀(x, y) ∈ K, (5.15)

for some (x∗, y∗) ∈ ∂f(x∗, y∗) and z∗i ∈ λ∂rθ(x∗i ) ∀i = 1, . . . , n.
Now we are able to state consistency results of local optimality.

Theorem 5.2 Let L and Lθ be the sets of (x, y) ∈ K satisfying the conditions (5.11) and (5.15)
respectively.

i) Let {θk} be a sequence of nonnegative numbers such that θk → +∞ and {(xk, yk)} be a
sequence such that (xk, yk) ∈ Lθk ,∀k. If (xk, yk)→ (x∗, y∗), we have (x∗, y∗) ∈ L.

ii) If K is compact then, for any ε > 0, there is θ(ε) > 0 such that

Lθ ⊂ L+B(0, ε) ∀θ ≥ θ(ε).

iii) If there is a finite set S such that Lθ ∩ L 6= ∅,∀θ > 0, then there exists θ0 ≥ 0 such that

Lθ ∩ S ⊂ L ∀θ ≥ θ0.

Proof 5.5 i) By definition, there is a sequence {(xk, yk, zk)} such that for all k = 1, 2, . . .

(xk, yk) ∈ ∂f(xk, yk), and zki ∈ λ∂rθk(xki ) i = 1, . . . , n,

〈xk, x− xk〉+ 〈yk, y − yk〉+ 〈zk, x− xk〉 ≥ 0 ∀(x, y) ∈ K. (5.16)

For k = 1, 2, . . . , we have
(xk, yk) = (xkg , y

k
g )− (xkh, y

k
h),

where (xkg , y
k
g ) ∈ ∂g(xk, yk), and (xkh, y

k
h) ∈ ∂h(xk, yk).

Since {(xk, yk)} converges to (x∗, y∗), there is k0 ∈ N and a compact set S ⊂ Rn × Rm
such that (xk, yk) ∈ S, ∀k ≥ k0. It follows by Theorem 24.7 ([206]) that ∂g(S) := ∪x∈S∂g(x)
and ∂h(S) := ∪x∈S∂h(x) are compact sets. Thus, there is an infinite set K ⊂ N such that the
sequence {(xkg , ykg )}k∈K converges to a point (x∗g, y

∗
g) ∈ ∂g(S) and the sequence {(xkh, ykh)}k∈K
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converges to a point (x∗h, y
∗
h) ∈ ∂h(S). By Theorem 24.4 ([206]), we have (x∗g, y

∗
g) ∈ ∂g(x∗, y∗)

and (x∗h, y
∗
h) ∈ ∂h(x∗, y∗). Therefore, the sequence {(xk, yk)}k∈K converges to (x∗, y∗) = (x∗g, y

∗
g)−

(x∗h, y
∗
h) ∈ ∂f(x∗, y∗).

By Assumption 5.1 iv), we have zki x
k
i ≥ 0 ∀i, k. Moreover, for any i ∈ supp(x∗), there exist

ai ≤ bi and ki ∈ N such that 0 /∈ [ai, bi] and xki ∈ [ai, bi] for all k ≥ ki. By Assumption 5.1 v),
we deduce that zki → 0 as k → +∞.

For arbitrary (x, y) ∈ K(x∗), (5.16) implies that

〈xk, x− xk〉+ 〈yk, y − yk〉 ≥
∑

i/∈supp(x∗)

zki x
k
i −

∑
i∈supp(x∗)

zki (xi − xki )

≥ −
∑

i∈supp(x∗)

zki (xi − xki ) ∀k.

Taking k ∈ K, k → +∞, we get

〈x∗, x− x∗〉+ 〈y∗, y − y∗〉 ≥ 0 ∀(x, y) ∈ K(x∗).

Thus, (x∗, y∗) ∈ L.
ii) and iii) are proved similarly as in Theorem 5.1. �

5.2.2 DC approximation functions

First, let us mention, in chronological order, the approximation functions proposed in the
literature in different contexts, but we don’t indicate the related works concerning algorithms
using these approximations). The first was concave exponential approximation proposed in [35]
in the context of feature selection in SVM, and `p-norm with 0 < p < 1 for sparse regression
([76]). Later, the `p-norm with p < 0 was studied in [203] for sparse signal recovery, and then the
Smoothly Clipped Absolute Deviation (SCAD) [70] in the context of regression, the logarithmic
approximation [235] for feature selection in SVM, and the Capped-`1 ([186]) applied on sparse
regression.

A common property of these approximations is they are all even, concave increasing functions
on [0,+∞). It is easy to verify that these function satisfy the conditions in Assumption 1 and so
they are particular cases of our DC approximation r. More general DC approximation functions
are also investigated, e.g., PiL ([122]) that is a (nonconcave) piecewise linear function defined in
Table 5.1.

Note that, some of these approximation functions, namely logarithm (log), SCAD and `p-
norm defined by

Log : log(|t|+ ε), ε > 0, `p : sign(p)(|t|+ ε)p, 0 6= p ≤ 1, ε > 0; (5.17)

SCAD :


γ|t| if 0 ≤ |t| ≤ γ, (a+1)γ2

2 if |t| ≥ aγ
−t2+2aγ|t|−γ2

2(a−1) if γ < |t| < aγ , a > 1, γ > 0 (5.18)

do not directly approximate `0-norm. But they become approximations of `0-norm if we multi-
ply them by an appropriate factor (which can be incorporated into the parameter λ), and add
an appropriate term (such a procedure doesn’t affect the original problem). The resulting ap-
proximation forms of these functions are given in Table 5.1. We see that rscad is obtained by

147



DCA based algorithms for sparse optimization

Table 5.1 – `0-approximation functions r and the first DC decomposition ϕ. The second DC
decomposition is ψ = ϕ− r.

Approximation Function r Function ϕ
Exp ([35]) rexp(t) = 1− e−θ|t| θ|t|
`p(0 < p < 1)([76]) r`+p (t) = (|t|+ ε)1/θ ε1/θ−1

θ |t|
`p(p < 0)([203]) r`−p (t) = 1− (1 + θ|t|)p, p < 0 −pθ|t|

Log ([235]) rlog(t) = log(1+θ|t|)
log(1+θ)

θ
log(1+θ) |t|

SCAD ([70]) rscad(t) =


2θ
a+1 |t| 0 ≤ |t| ≤ 1

θ
−θ2t2+2aθ|t|−1

a2−1
1
θ < |t| <

a
θ

1 |t| ≥ a
θ

2θ

a+ 1
|t|

Capped-`1 ([186]) rcap(t) = min{1, θ|t|} θ|t|

PiL [122] rPiL = min
{

1,max
{

0, θ|t|−1
a−1

}}
θ

a−1 max
{

1
θ , |t|

}
multiplying the SCAD function by 2

(a+1)γ2
and setting θ = 1

γ . Similarly, by taking θ = 1
ε , we

have
rlog(t) =

log(|t|+ ε)

log(1 + 1/ε)
− log ε

log(1 + 1/ε)
, and r`−p (t) = −(|t|+ ε)p

εp
+ 1.

For using `p-norm approximation with 0 < p < 1, we take θ = 1
p . Note that limθ→∞ |t|1/θ = s(t).

To avoid singularity at 0, we add a small ε > 0. In this case, we require ε = ε(θ) satisfying
limθ→∞ ε(θ)

1/θ = 0 to ensure that limθ→∞ r`+p (t) = s(t).
All these functions satisfy Assumption 5.1 (for proving the condition iii) of Assumption 5.1

we indicate in Table 5.1 a DC decomposition of the approximation functions), so the consistency
results stated in Theorems 5.1 and 5.2 are applicable.

Discussion. Except rPiL that is differentiable at 0 with r′PiL(0) = 0, the other approximations
have the right derivative at 0 depending on the approximation parameter θ. Clearly the tightness
of each approximation depends on related parameters. Hence, a suitable way to compare them
is using the parameter θ such that their right derivatives at 0 are equal, namely

θcap =
2

a+ 1
θscad = θexp = −pθ`−p .

In this case, by simple calculation we have

0 ≤ r`−p ≤ rexp ≤ rscad ≤ rcap ≤ s. (5.19)

Comparing rcap and rscad with different values θ, we get{
0 ≤ rscad ≤ rcap ≤ s, if 2θscad

a+1 ≤ θcap
0 ≤ rcap ≤ rscad ≤ s, if θcap ≤ θscad

a .
(5.20)

Inequalities in (5.19) show that, with the parameter θ such that their right derivatives at 0 are
equal, rscad and rcap are closer to the step function s than r`−p and rexp.

As for rlog and r`+p , we see that they tend to +∞ when t→ +∞, so they have poor approxi-
mation for t large. Whereas, the other approximations are minorants of s and larger t is, closer
to s they are. For easier seeing, we depict these approximations in Figure 5.1.
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Figure 5.1 – Graphs of approximation functions. Except `p-norm(0 < p < 1) and PiL, the
others have the same derivative at 0. Here θlog = 10 for Log, a = 4 for SCAD, p = −2 for
`p-norm(p < 0). For `p-norm(0 < p < 1), ε = 10−9 and p = 0.2. For PiL, a = 5 and θPiL = aθexp.

Now, we give a deeper study on Capped-`1 approximation. Using exact penalty techniques re-
lated to `0-norm developed in Section 5.3 we prove a much stronger result for this approximation,
that is the approximation problem (5.7) is equivalent to the original problem with appropriate
parameters θ when K is a compact polyhedral convex set (this case quite often occurs in ap-
plications, in particular in machine learning contexts). Furthermore, when K is a box, we show
(directly, without using the exact penalty techniques) that the Capped-`1 approximation problem
is equivalent to the original problem and we compute an exact value θ0 such that the equivalence
holds for all θ > θ0.

5.2.3 A deeper study on Capped-`1 approximation problem

5.2.3.1 Link between the continuous exact formulation and Capped-`1 approxima-
tion problem

The Capped-`1 approximation is defined by :

Ψ
θ
(x) :=

n∑
i=1

rcap(xi),∀x = (xi) ∈ Rn, with rcap(t) := min{θ |t| , 1}, t ∈ R. (5.21)

Hence, the approximate problem of (5.1) using Capped-`1 approximation is written as

β(θ) := inf

{
f(x, y) + λ

n∑
i=1

rcap (xi) : (x, y) ∈ K

}
. (5.22)

We will demonstrate that the problem (5.22) is equivalent to the continuous exact reformulation
of (5.1) with suitable values of parameters λ, τ and θ. The complete detail of the exact refor-
mulation approach is presented in the Section 5.3. For the reader convenience, let us briefly give
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the continuous exact reformulation of (5.1). Define the binary variable ui ∈ {0, 1} as

ui = |xi|0 =

{
1 if xi 6= 0

0 if xi = 0,
∀i = 1...n.

and p(u) :=
n∑
i=1

min{ui, 1− ui}, the continuous exact reformulation of (5.1) is given by (τ being

the positive penalty parameter)

α(τ) := inf{f(x, y) + λeTu+ τp(u) : (x, y) ∈ K,u ∈ [0, 1]n. |xi| ≤ ciui, i = 1, ..., n}, (5.23)

We now establish the link between the continuous exact reformulation (5.23) and the Capped-
`1 approximation problem.

Let M = max{ci : i = 1, . . . , n}, consider the problem (5.23) in the form

α(τ) := inf{f(x, y) + λeTu+ τp(u) : (x, y) ∈ K,u ∈ [0, 1]n, |xi| ≤Mui, i = 1, . . . , n}. (5.24)

Let ς : R→ R be the function defined by ς(t) = min{t, 1− t}. Then p(u) =
∑n

i=1 ς(ui) and the
problem (5.24) can be rewritten as

α(τ) := inf

{
f(x, y) + λ

n∑
i=1

(
ui +

τ

λ
ς(ui)

)
: (x, y) ∈ K, |xi|

M
≤ ui ≤ 1, i = 1, . . . , n

}
, (5.25)

or again

α(τ) := inf

{
f(x, y) + λ

n∑
i=1

π (ui) : (x, y) ∈ K, |xi|
M
≤ ui ≤ 1, i = 1, . . . , n

}
(5.26)

where π : R→ R be the function defined by π(t) := t+ τ
λ ς(t).

Proposition 5.3 Let θ := τ+λ
λM . For all τ ≥ λ problems (5.26) and (5.22) are equivalent in the

following sense : (x∗, y∗) is an optimal solution of (5.22) iff (x∗, y∗, u∗) is an optimal solution of
(5.26), where u∗i ∈

{
|x∗i |
M , 1

}
such that π(u∗i ) = rcap(x

∗
i ) for i = 1, . . . , n. Moreover, α(τ) = β(θ).

Proof 5.6 If (x∗, y∗, u∗) is an optimal solution of (5.26), then u∗i is an optimal solution of the
following problem, for every i = 1, . . . , n

min

{
π(ui) :

|x∗i |
M
≤ ui ≤ 1

}
. (5.27)

Since ς is a concave function, so is π. Consequently

min

{
π(ui) :

|x∗i |
M
≤ ui ≤ 1

}
= min

{
π

(
|x∗i |
M

)
, π(1)

}
= min

{(
1 +

τ

λ

) |x∗i |
M

, 1

}
= rcap(x

∗
i ).

For an arbitrary (x, y) ∈ K, we will show that

f(x∗, y∗) + λ
n∑
i=1

rcap(x
∗
i ) ≤ f(x, y) + λ

n∑
i=1

rcap(xi). (5.28)
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By the assumption that (x∗, y∗, u∗) is an optimal solution of (5.26), we have

f(x∗, y∗) + λ

n∑
i=1

π(u∗i ) ≤ f(x, y) + λ

n∑
i=1

π(ui) (5.29)

for any feasible solution (x, y, u) of (5.26). Let

uxi ∈ arg min

{
π(ξ) : ξ ∈

{
|xi|
M

, 1

}}
⊂ arg min

{
π(ξ) :

|xi|
M
≤ ξ ≤ 1

}
,

for all i = 1, . . . , n. Then (x, y, ux) is a feasible solution of (5.24) and

π(uxi ) = min

{
π(ξ) :

|xi|
M
≤ ξ ≤ 1

}
= rcap(xi), ∀i = 1, . . . , n.

Combining (5.29) in which ui is replaced by uxi and the last equation we get (5.28), which implies
that (x∗, y∗) is an optimal solution of (5.22).

Conversely, if (x∗, y∗) is a solution of (5.22), and let u∗i ∈
{
|x∗i |
M , 1

}
such that π(u∗i ) = rcap(x

∗
i )

for i = 1, . . . , n. Then (x∗, y∗, u∗) is a feasible solution of (5.26) and for an arbitrary feasible
solution (x, y, u) of (5.26), we have

f(x, y) + λ
n∑
i=1

π(ui) ≥ f(x, y) + λ
n∑
i=1

rcap(xi)

≥ f(x∗, y∗) + λ
n∑
i=1

rcap(x
∗
i ) = f(x∗, y∗) + λ

n∑
i=1

π(u∗i ).

Thus, (x∗, y∗, u∗) is an optimal solution of (5.26). The equality α(τ) = β(θ) is immediately
deduced from the equality π(u∗i ) = rcap(x

∗
i ). �

We conclude from the above results that for θ = τ+λ
λM with τ > max{λ, τ0}, or equivalently

θ > θ0 := max{ 2
M ,

τ0+λ
λM }, the approximate problem (5.22) is equivalent to the origial problem

(5.1). The result justifies the goodness of the Capped-`1 approximation studied in Section 5.2.2
above.

5.2.3.2 Link between the original problem (5.1) and Capped-`1 approximation pro-
blem

In particular, for a special structure of K, we get the following result.

Proposition 5.4 Suppose that K =
∏n
i=1[−li, li]× Y (0 ≤ li ≤ +∞ ∀i, Y ⊂ Rm) and κ > 0 is

a constant satisfying

|f(x, y)− f(x′, y)| ≤ κ‖x− x′‖2 ∀(x, y), (x′, y) ∈ K, ‖x− x′‖0 ≤ 1. (5.30)

Then for θ > κ
λ , the problems (5.1) and (5.22) are equivalent.

Proof 5.7 We observe that if (x, y) ∈ K such that 0 < |xi0 | < 1
θ for some i0, let (x′, y) ∈ K

determined by x′i = xi ∀i 6= i0 and x′i0 = 0, then

f(x, y) + λΦ(x) > f(x′, y) + λΦ(x′),
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where Φ(x) =
∑n

i=1 rcap(xi). Indeed, this inequality follows the facts that

|f(x, y)− f(x′, y)| ≤ κ‖x− x′‖ = κ|xi0 |

and
Φ(x)− Φ(x′) = rcap(xi0) = θ|xi0 | >

κ

λ
|xi0 |.

For x ∈ Rn, we define tx ∈ Rn by txi = 0 if |xi| < 1
θ and txi = xi otherwise. By applying the above

observation, for any (x, y) ∈ K, we have

f(x, y) + λΦ(x) ≥ f(tx, y) + λΦ(tx).

The equality holds iff |xi| ≥ 1
θ ∀i ∈ supp(x).

Therefore, if (x∗, y∗) is a solution of (5.22), we have |x∗i | ≥ 1
θ ∀i ∈ supp(x∗). Then, for any

(x, y) ∈ K,

f(x, y) + λ‖x‖0 ≥ f(x, y) + λΦ(x) ≥ f(x∗, y∗) + λΦ(x∗) = f(x∗, y∗) + λ‖x∗‖0.

This means that (x∗, y∗) is a solution of (5.1).
Conversely, assume that (x∗, y∗) is a solution of (5.1). Then for any (x, y) ∈ K, we have

f(x, y) + λΦ(x) ≥ f(tx, y) + λΦ(tx) = f(tx, y) + λ‖tx‖0
≥ f(x∗, y∗) + λ‖x∗‖0 ≥ f(x∗, y∗) + λΦ(x∗).

Thus, (x∗, y∗) is a solution of (5.22). �

For the problem of feature selection in SVM, we consider the loss function

f(x, b) = (1− λ)

(
1

NA
‖max{0,−Ax+ eb+ e}‖1 +

1

NB
‖max{0, Bx− eb+ e}‖1

)
,

It is easy to prove that for u ∈ Rn, ι ∈ R and i ∈ {1, . . . , n}, we have

|max{0, 〈u, x〉+ ι} −max{0, 〈u, x′〉+ ι}| ≤ |u|i|xi − x′i|,

for all x, x′ ∈ Rn such that xj = x′j ∀j 6= i. Therefore, for

κ = (1− λ) max
i=1,...,n

{
1

NA

NA∑
k=1

|Aki|+
1

NB

NB∑
l=1

|Bli|

}
,

we have

|f(x, b)− f(x′, b)| ≤ κ‖x− x′‖, ∀b ∈ R,∀x, x′ ∈ Rn s.t. ‖x− x′‖0 ≤ 1.

By virtue of Proposition 5.4, in the case of feature selection in SVM, for θ > θ∗ := κ
λ , the

problems (5.1) and (5.22) are equivalent.
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5.2.4 Extension to other approximations

Proposition 5.5 i) Suppose that σ is a function on R satisfying

rcap(t) ≤ σ(t) ≤ s(t) =

{
0, if t = 0,

1, otherwise,

for some θcap > θ0. Then, the problems (5.1) and

inf{f(x, y) + λ
n∑
i=1

σ(xi) : (x, y) ∈ K} (5.31)

are equivalent.
ii) In particular, if θscad > aθ0 then for all τ ≥ λ the approximate problem

inf{f(x, y) + λ
n∑
i=1

rscad(xi) : (x, y) ∈ K}

is equivalent to (5.1).

Proof 5.8 As discussed before, since θcap > θ0, the problems (5.1) and (5.22) are equivalent.
Moreover, if (x∗, y∗) is a common solution then

f(x∗, y∗) + λ

n∑
i=1

rcap(x
∗
i ) = f(x∗, y∗) + λ‖x∗‖0.

Then i) is trivial by the fact that

f(x, y) + λ
n∑
i=1

rcap(xi) ≤ f(x, y) + λ
n∑
i=1

σ(xi) ≤ f(x, y) + λ‖x‖0, ∀(x, y).

ii) is a direct consequence of i) and Propositions 5.3 and (5.20). �

5.2.5 DCA for solving the approximate problem (5.7)

In the sequel, we will omit the parameter θ when this doesn’t cause any ambiguity.
Usual sparsity-inducing functions are concave, increasing on [0,+∞). Therefore, first we

present three variants of DCA for solving the problem (5.7) when r is concave on [0,+∞). We
also suppose that r has the right derivative at 0, denoted by r′(0), so ∂(−r)(0) = {−r′(0)}.

First, we consider the approximate problem (5.7).

5.2.5.1 The first DCA scheme for solving the approximate problem (5.7)

We propose the following DC decomposition of r :

r(t) = η|t| − (η|t| − r(t)) ∀t ∈ R, (5.32)

where η is a positive number such that ψ(t) = η|t| − r(t) is convex. The next result gives a
sufficient condition for the existence of such a η.
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Proposition 5.6 Suppose that r is a concave function on [0,+∞) and the (right) derivative at
0, r′(0), is well-defined. Let η ≥ r′(0). Then ψ(t) = η|t| − r(|t|) is a convex function on R.

Proof 5.9 Since r is concave on [0,+∞), the function η|t| − r(t) is convex on (0,+∞) and
on (−∞, 0). Hence it suffices to prove that for any t1 > 0, t2 < 0 and α, β ∈ (0, 1) such that
α+ β = 1, we have

ψ (αt1 + βt2) ≤ αψ(t1) + βψ(t2). (5.33)
Without loss of generality, we assume that α|t1| ≥ β|t2|. Then (5.33) is equivalent to

η(α|t1| − β|t2|)− 2r (α|t1| − β|t2|) ≤ η(α|t1|+ β|t2|)− αr(|t1|)− βr(|t2|)

which can be equivalently written as

αr(|t1|) + βr(|t2|)− r (t0) ≤ 2ηβ|t2|, (5.34)

where t0 = α|t1|−β|t2| ≥ 0. Let µ ∈ R such that −µ ∈ ∂(−r(t0)). Since r is concave on [0,+∞),
we have

αr(|t1|) + βr(|t2|)− r (t0) ≤ r (α|t1|+ β|t2|)− r (t0) ≤ 2µβ|t2|.
Hence (5.34) holds when µ ≤ η. By the concavity of r, we have

r

(
t0
2

)
≤ r(0) + r′(0)

t0
2
, and r

(
t0
2

)
≤ r(t0)− µt0

2
,

therefore

(z − r′(0))t0 ≤ r(0) + r(t0)− 2r

(
t0
2

)
≤ 0.

This and the condition r′(0) ≤ η imply that µ ≤ r′(0) ≤ η. The proof is then complete. �

With η ≥ r′(0), a DC formulation of the problem (5.7) is given by

min
x,y
{Fr(x, y) := G1(x, y)−H1(x, y)}, (5.35)

where

G1(x, y) = χK(x, y) + g(x, y) + λη‖x‖1, H1(x, y) = h(x, y) + λ
n∑
i=1

(η|xi| − r(xi)) ,

and g, h are DC components of f .
By the definition ψ(t) = η|t| − r(t) ∀t ∈ R, we have

∂ψ(t) = η + ∂(−r)(t) if t > 0, −η − ∂(−r)(−t) if t < 0,
[
−η + r′(0), η − r′(0)

]
if t = 0. (5.36)

Following the generic DCA scheme, DCA applied on (5.35) is given by Algorithm 5.1 below.

Algorithm 5.1 DCA1 - The first DCA scheme for solving (5.7)

1: Initialize (x0, y0) ∈ K, k ← 0
2: repeat
3: Compute (xk, yk) ∈ ∂h(xk, yk) and zki ∈ λ∂ψ(xki ) ∀i = 1, . . . , n via (5.36).
4: Compute

(xk+1, yk+1) ∈ arg min
(x,y)∈K

{
g(x, y)− 〈xk, x〉 − 〈yk, y〉+ λη‖x‖1 − 〈zk, x〉

}
5: k ← k + 1.
6: until Stopping criterion
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Table 5.2 – Choice of η and expression of zki ∈ λ∂ψ(xki ) in Algorithm 5.1 and related works.

r η zki ∈ λ∂ψ(xki ) Related works Context

rexp θ sign(xki )λθ
(

1− e−θ|xki |
) [128] Feature selection in SVMs

[180] Learning sparse classifiers

r`+p
ε1/θ−1

θ sign(xki )λθ
[
ε1/θ−1 − (|xki |+ ε)1/θ−1

]
r`−p −pθ −sign(xki )λpθ

[
1− (1 + θ|xki |)p−1

]
rlog

θ
log(1+θ) sign(xki )

λθ2|xki |
log(1+θ)(1+θ|xki |)

rscad
2θ
a+1


0 |xki | ≤ 1

θ

sign(xki )
2λθ(θ|xki |−1)

a2−1
1
θ < |x

k
i | < a

θ

sign(xki ) 2λθ
a+1 otherwise

[140] Feature selection in SVMs

rcap θ

{
0 |xki | ≤ 1

θ

sign(xki )λθ otherwise
[180] Learning sparse classifiers

Instances of Algorithm 1 can be found in our previous works [128, 140, 180] using exponential
concave, SCAD or Capped−`1 approximations (see Table 5.2). Note that for usual sparse inducing
functions given in Table 5.2, this DC decomposition is nothing but that given in Table 5.1, i.e.
ϕ(t) = η|t|.

Now we consider the approximate problem (5.8) and introduce a DCA scheme that includes
all standard algorithms of reweighted-`1-type for sparse optimization problem (5.1).

5.2.5.2 DCA2 - Relation with reweighted-`1 procedure

The problem (5.8) can be written as a DC program as follows

min
x,y,z
{F r(x, y, z) := G2(x, y, z)−H2(x, y, z)}, (5.37)

where

G2(x, y, z) = χΩ1(x, y, z) + g(x, y), H2(x, y, z) = h(x, y) + λ
n∑
i=1

(−r)(zi),

and g, h are DC components of f as stated in (5.6).
Assume that (xk, yk, zk) ∈ Ω1 is the current solution at iteration k. DCA applied to DC

program (5.37) updates (xk+1, yk+1, zk+1) ∈ Ω1 via two steps :

- Step 1 : compute (xk, yk) ∈ ∂h(xk, yk), and zki ∈ λ∂(−r)(zki ) ∀i = 1, . . . , n.
- Step 2 : compute

(xk+1, yk+1, zk+1) ∈ arg min
{
G2(x, y, z)− 〈xk, x〉 − 〈yk, y〉 − 〈zk, z〉

}
= arg min

(x,y,z)∈Ω1

{
g(x, y)− 〈xk, x〉 − 〈yk, y〉+ 〈−zk, z〉

}
.

Since r is increasing, we have −zk ≥ 0. Thus, updating (xk+1, yk+1, zk+1) can be done as
follows {

(xk+1, yk+1) ∈ arg min(x,y)∈K
{
g(x, y)− 〈xk, x〉 − 〈yk, y〉+ 〈−zk, |x|〉

}
zk+1
i = |xk+1

i | ∀i.
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DCA for solving the problem (5.8) can be described as in Algorithm 5.2 below.

Algorithm 5.2 DCA2 - DCA for solving (5.8)

1: Initialize (x0, y0, z0) ∈ Ω1, k ← 0
2: repeat
3: Compute (xk, yk) ∈ ∂h(xk, yk), zki ∈ −λ∂(−r)(zki ) ∀i = 1, . . . , n.
4: Compute

(xk+1, yk+1) ∈ arg min
(x,y)∈K

{
g(x, y)− 〈xk, x〉 − 〈yk, y〉+ 〈zk, |x|〉

}
zk+1
i = |xk+1

i | ∀i = 1, . . . , n.

5: k ← k + 1.
6: until Stopping criterion

Relation with reweighted-`1 procedure. If the function f in (5.1) is convex, we can chose
DC components of f as g = f and h = 0. Then (xk, yk) = 0 ∀k. In this case, the step 4 in
Algorithm 5.2 becomes

(xk+1, yk+1) ∈ arg min
(x,y)∈K

{
f(x, y) +

n∑
i=1

zki |xi|

}
. (5.38)

We see that the problem (5.38) has the form of a `1-regularization problem but with different
weights on components of |xi|. So Algorithm 5.2 iteratively solves the weighted–`1 problem (5.38)
with an update of the weights zki at each iteration k. The expression of weights zki according to
approximation functions are given in Table 5.3.

The update rule (5.38) covers standard algorithms of reweighted–`1–type for sparse optimi-
zation problem (5.1) (see Table 5.3). Some algorithms such as the two–stage `1 ([256]) and the
adaptive Lasso ([263]) only run in a few iterations (typically two iterations) and their reasonings
bear a heuristic character. The reweighted–`1 algorithm proposed in [44] lacks of theoretical
justification for the convergence.

Next, we introduce a slight perturbation of the formulation (5.7) and develop the third DCA
scheme that includes existing algorithms of reweighted–`2–type for sparse optimization problem
(5.1).

5.2.5.3 DCA3 - Relation with reweighted-`2 procedure

To avoid the singularity at 0 of the function r(t1/2), t ≥ 0, we add ε > 0 and consider the
perturbation problem of (5.7) which is defined by{

minx,y F̃r(x, y) := f(x, y) + λ
∑n

i=1 r((|xi|2 + ε)1/2)

s.t. (x, y) ∈ K,
ε > 0. (5.39)

Clearly (5.39) becomes (5.7) when ε = 0. The problem (5.39) is equivalent to

min
(x,y,z)∈Ω2

F̂r(x, y, z) := f(x, y) + λ
n∑
i=1

r((zi + ε)1/2), (5.40)
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Table 5.3 – Expression of zki in Algorithm 5.2 and relation with reweighted-`1 algorithms.

Function r expression of zki Related works Context

rexp λθe−θz
k
i SLA ([35]) Feature selection in SVMs

r`+p
λ

θ(zki + ε)1−1/θ Adaptive Lasso ([263])

Linear regression

r`−p −λpθ(1 + θzki )p−1

rscad


2λθ
a+1 if zki ≤ 1

θ

0 if zki ≥ a
θ

λθ(a−θzki )

a2−1
otherwise

LLA (Local Li-
near Approxima-
tion) ([264])

rcap

{
λθ if zki ≤ 1/θ

0 otherwise
Two-stage `1
([256])

rlog
λθ

log(1 + θ)(1 + θzki )
Adaptive Lasso
([263]) ; Reweigh-
ted `1 ([44])

Sparse signal reconstruction

where Ω2 = {(x, y, z) : (x, y) ∈ K; |xi|2 ≤ zi ∀i}. The last problem is a DC program of the
form

min
x,y,z
{F̂r(x, y, z) := G3(x, y, z)−H3(x, y, z)}, (5.41)

where

G3(x, y, z) = χΩ2(x, y, z) + g(x, y), H3(x, y, z) = h(x, y) + λ

n∑
i=1

(−r)((zi + ε)1/2),

and g, h are DC components of f as stated in (5.6). Note that, since the functions r and (t+ε)1/2

are concave, increasing on [0,+∞), (−r)((t+ ε)1/2) is a convex function on [0,+∞).
Let (xk, yk, zk) ∈ Ω2 be the current solution at iteration k. DCA applied to DC program

(5.41) updates (xk+1, yk+1, zk+1) ∈ Ω2 via two steps :

- Step 1 : compute (xk, yk) ∈ ∂h(xk, yk), and zki ∈ λ
2(zki +ε)1/2

∂(−r)((zki +ε)1/2) ∀i = 1, . . . , n.

- Step 2 : compute

(xk+1, yk+1, zk+1) ∈ arg min
{
G3(x, y, z)− 〈xk, x〉 − 〈yk, y〉 − 〈zk, z〉

}
= arg min

(x,y,z)∈Ω2

{
g(x, y)− 〈xk, x〉 − 〈yk, y〉+ 〈−zk, z〉

}
Since r is increasing, we have −zk ≥ 0. Thus, updating (xk+1, yk+1, zk+1) can be done as

follows {
(xk+1, yk+1) ∈ arg min(x,y)∈K

{
g(x, y)− 〈xk, x〉 − 〈yk, y〉+

∑n
i=1(−zki )x2

i 〉
}

zk+1
i = |xk+1

i |2 ∀i = 1, . . . , n.

DCA for solving the problem (5.40) can be described as in Algorithm 5.3 below.
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Algorithm 5.3 DCA3 - DCA for solving (5.40)

1: Initialize (x0, y0, z0) ∈ Ω2, k ← 0
2: repeat
3: Compute (xk, yk) ∈ ∂h(xk, yk), zki ∈ −λ

2(zki +ε)1/2
∂(−r)(zki + ε)1/2) ∀i = 1, . . . , n.

4: Compute

(xk+1, yk+1) ∈ arg min
(x,y)∈K

{
g(x, y)− 〈xk, x〉 − 〈yk, y〉+

n∑
i=1

zki x
2
i

}
,

zk+1
i = |xk+1

i |2 ∀i = 1, . . . , n.

5: k ← k + 1.
6: until Stopping criterion

Relation with reweighted-`2 procedure. If the function f in (5.1) is convex, then, as before,
we can chose DC components of f as g = f and h = 0. Hence, in the step 3 of Algorithm 5.3,
we have (xk, yk) = 0 ∀k. In this case, the step 4 in Algorithm 5.3 becomes

(xk+1, yk+1) ∈ arg min
(x,y)∈K

{
f(x, y) +

n∑
i=1

zki x
2
i

}
. (5.42)

Thus, each iteration of Algorithm 5.3 solves a weighted-`2 optimization problem. The expression
of weights zki according to approximation functions are given in Table 5.4.

If ε = 0 then the update rule (5.42) encompasses standard algorithms of reweighted-`2 type
for finding sparse solution (see Table 5.4). However, when ε = 0 the (right) derivative at 0 of
r(t1/2) is not well-defined, that is why we take ε > 0 in our algorithm. Note also that, in LQA
and FOCUSS, if at an iteration k one has xki = 0 then xli = 0 for all l ≥ k, by the way these
algorithms may converge prematurely to bad solutions.

5.2.5.4 Discussion on the three DCA based Algorithms 5.1, 5.2 and 5.3

Algorithm 5.1 seems to be the most interesting in the sense that it addresses directly the
problem (5.7) and doesn’t need the additional variable z, then the subproblem has less constraints
than the one in Algorithms 5.2 and 5.3. Moreover, the DC decomposition (5.32) is more suitable
since it results, in several cases, in a DC polyhedral program where both DC components are
polyhedral convex (for instance, in feature selection in SVM with the approximations rscad, rcap)
for which Algorithm 5.1 enjoys interesting convergence properties.

Algorithms 5.2 and 5.3 are based on two different formulations of the problem (5.7). In (5.8),
we have linear constraints |x|i ≤ zi, i = 1, . . . , n that lead to the subproblem of weighted–`1
type. Whereas, in (5.39), quadratic constraints |x|2i ≤ zi, i = 1, . . . , n result to the subproblem
of weighted–`2 type. With second order terms in subproblems, Algorithm 5.3 is, in general, more
expensive than Algorithms 5.1 and 5.2. We also see that Algorithms 5.1 and 5.2 possess nicer
convergence properties than Algorithm 5.3. Both Algorithms 5.1 and 5.2 have finite convergence
when the corresponding DC programs are polyhedral DC. While (5.39) can’t be a polyhedral
DC program because the set Ω2 and the functions r((t+ ε)1/2) are not polyhedral convex.

To compare the sparsity of solutions given by the algorithms, we consider the subproblems
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Table 5.4 – Expression of zki ’s in Algorithm 5.3 and relation with reweighted-`2 algorithms.

Function r weight zki (t
k
i = (zki + ε)1/2) Related works Context

rexp
λθ

2

e−θt
k
i

tki

r`+p
λ

2θ(tki )
2− 1

θ FOCUSS ([85, 203, 202]) ; Sparse signal

r`−p
−λpθp

2tki (
1
θ + tki )

1−p
IRLS ([51]) reconstruction

rlog
λ

2 log(1 + θ)

1

tki (
1
θ + tki )

rcap

{
λθ
2tki

if |tki | ≤ 1
θ

0 otherwise

rscad


λθ

(a+1)tki
if tki ≤ 1

θ

0 if tki ≥ a
θ

λθ(−θtki +a)

(a2−1)tki
otherwise

LQA ([70, 264]) Linear regression

in Algorithms 5.1, 5.2, and 5.3 which have the form

min
(x,y)∈K

{
g(x, y)− 〈xk, x〉 − 〈yk, y〉+ λ

n∑
i=1

ν(xi, x
k
i )

}

where (xk, yk) ∈ ∂h(xk, yk),

ν(xi, x
k
i ) =


ν1(xi, x

k
i ) = η|xi| − sign(xki )(η − zki )xi + Cki for Algorithm 5.1

ν2(xi, x
k
i ) = zki |xi|+ Cki for Algorithm 5.2

ν3(xi, x
k
i ) =

zki
2|xki |
|xi|2 + 1

2z
k
i |xki |+ Cki for Algorithm 5.3,

with zki ∈ −∂(−r)(|xki |), Cki = r(xki )− zki |xki | and η = r′(0).
All three functions ν1, ν2 and ν3 attain minimum at 0 and encourage solutions to be zero.

Denote by ν ′−(t) and ν ′+(t) the left and right derivative at t of ν respectively. We have

ν ′1,−(0, xki ) = −2η + zki , ν ′2,−(0, xki ) = −zki , ν ′3,−(0, xki ) = 0,

ν ′1,+(0, xki ) = zki , ν ′2,+(0, xki ) = zki , ν ′3,+(0, xki ) = 0.

We also have η ≥ zki by the concavity of r on [0,+∞). Observe that if the range [ν ′−(0), ν ′+(0)] is
large, it encourages more sparsity. Intuitively, the values ν ′−(0) and ν ′+(0) reflect the slope of ν at
0, and if the slope is hight, it forces solution to be zero. Here we have [ν ′3,−(0, xki ), ν

′
3,+(0, xki )] ⊂

[ν ′2,−(0, xki ), ν
′
2,+(0, xki )] ⊂ [ν ′1,−(0, xki ), ν

′
1,+(0, xki )]. Thus, we expect that Algorithm 5.1 gives

sparser solution than Algorithm 5.2, and Algorithm 5.2 gives sparser solution than Algorithm
5.3.
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Figure 5.2 – Graphs of functions : r = 1− e−2|x|, ν1, ν2 and ν3 with xk = 0.5.

5.2.5.5 DCA4 - DCA applied on approximate problem (5.7) with the new DC ap-
proximation

We have proposed three DCA schemes for solving (5.7) or its equivalent form (5.8) when r is
a concave function on [0,+∞). Consider now the general case where r is a DC function satisfying
Assumption 1. Hence the problem (5.7) can be expressed as a DC program (5.13) for which DCA
is applicable. Each iteration of DCA applied on (5.13) consists of computing

- Compute (xk, yk) ∈ ∂h(xk, yk) and zki ∈ λ∂ψ(xki ) ∀i = 1, . . . , n.
- Compute (xk+1, yk+1) as a solution of the following convex program

min
(x,y)∈K

{
g(x, y)− 〈xk, x〉 − 〈yk, y〉+ λ

n∑
i=1

ϕ(xi)− 〈zk, x〉

}
. (5.43)

The new approximation function rPiL is a DC function but not concave on [0,+∞). Hence
we apply DCA4 for solving the problem (5.7) with r = rPiL

rPiL = min

{
1,max

{
0,
θ|t| − 1

a− 1

}}
=


0 if |t| ≤ 1

θ ,
θ|t|−1
a−1 if 1

θ < |t| <
a
θ ,

1 otherwise,
a > 1. (5.44)

DC components of rPiL are given by

ϕPiL(t) :=
θ

a− 1
max

{
1

θ
, |t|
}
, ψPiL(t) :=

θ

a− 1
max

{a
θ
, |t|
}
− 1 ∀t ∈ R, (5.45)

that are polyhedral convex functions. Then, the problem (5.7) can be expressed in form of a DC
program as follows

min
x,y
{FrPiL(x, y) := G4(x, y)−H4(x, y)}, (5.46)

where

G4(x, y) = χK(x, y) + g(x, y) + λ
n∑
i=1

ϕPiL(xi), H4(x, y) = h(x, y) + λ
n∑
i=1

ψPiL(xi),
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and g, h are DC components of f as stated in (5.6).
At each iteration k, DCA applied to (5.46) updates (xk+1, yk+1) from (xk, yk) via two steps :
- Compute (xk, yk) ∈ ∂h(xk, yk) and zki ∈ λ∂ψPiL(xki ) ∀i = 1, . . . , n.
- Compute (xk+1, yk+1) as a solution of the following convex program

min
(x,y)∈K

{
g(x, y)− 〈xk, x〉 − 〈yk, y〉+

λθ

a− 1

n∑
i=1

max

{
1

θ
, |xi|

}
− 〈zk, x〉

}
. (5.47)

Calculation of zki (i = 1, . . . , n) is given by

zki =


λθ
a−1 if xki >

a
θ

−λθ
a−1 if xki <

−a
θ

0 otherwise.
(5.48)

Furthermore, (5.47) is equivalent to

min
(x,y,t)∈Ω3

{
g(x, y)− 〈xk, x〉 − 〈yk, y〉+

λθ

a− 1

n∑
i=1

ti − 〈zk, x〉

}
, (5.49)

where Ω3 =
{

(x, y, t) : (x, y) ∈ K, 1
θ ≤ ti, xi ≤ ti,−xi ≤ ti ∀i = 1, . . . , n

}
.

Algorithm 5.4 DCA4 - DCA applied to (5.46)

1: Initialize (x0, y0) ∈ K, k ← 0
2: repeat
3: Compute (xk, yk) ∈ ∂h(xk, yk) and zki ∈ λ∂ψPiL(xki ) ∀i = 1, . . . , n via (5.48).
4: Solve the convex problem (5.49) to obtain (xk+1, yk+1).
5: k ← k + 1.
6: until Stopping criterion.

5.2.5.6 Updating θ procedure

According to consistency results, the larger θ is, the better approximate solution would be.
However, from a computational point of view, with large values of θ, the approximate problems
are difficult and the algorithms converge often to local minimums. We can overcome this bot-
tleneck by using an update procedure for θ. Starting with a chosen value θ0, at each iteration
k, we compute (xk+1, yk+1) from (xk, yk) by applying the DCA based algorithms with θ = θk.
The sequence {θk}k is increasing by θk+1 = θk + ∆θk. ∆θk can be fixed or updated during the
iterations.

5.3 Nonconvex exact reformulation for sparse optimization

In this section, we focus on the nonconvex exact reformulation approach. We will present
some main results concerning penalty techniques related to `0-norm allowing the reformulation
of (5.1) and (5.2) as nonconvex programs in the continuous framework, especially DC programs,
that can be treated by DC programming and DCA.

Denote by e the vector of ones in the appropriate vector space. We suppose that f is a
Lipschitz function on K and K is a polyhedral convex set and bounded in the variable x, i.e.
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K ⊂ Πn
i=1[ai, bi]×Rm where ai, bi ∈ R such that ai ≤ 0 < bi for i = 1, ..., n. Let ci := max{|xi| :

xi ∈ [ai, bi]} = max{|ai| , |bi|} for i = 1, ..., n. Define the binary variable ui ∈ {0, 1} as

ui = |xi|0 =

{
1 if xi 6= 0

0 if xi = 0,
∀i = 1...n. (5.50)

Then (5.1) and (5.2) can be reformulated as

α := inf{f(x, y) + λeTu : (x, y) ∈ K,u ∈ {0, 1}n, |xi| ≤ ciui, i = 1, ..., n}, (5.51)

and

α := inf{f(x, y) : (x, y) ∈ K,u ∈ {0, 1}n, |xi| ≤ ciui, i = 1, ..., n, eTu ≤ k }, (5.52)

respectively.
Let p(u) be the penalty function defined by

p(u) :=
n∑
i=1

min{ui, 1− ui} . (5.53)

Then (5.1) and (5.2) can be rewritten respectively as

α = inf{f(x, y) + λeTu : (x, y) ∈ K,u ∈ [0, 1]n, |xi| ≤ ciui, i = 1, ..., n, p(u) ≤ 0}, (5.54)

and

α := inf{f(x, y) : (x, y) ∈ K,u ∈ [0, 1]n, |xi| ≤ ciui, i = 1, ..., n, eTu ≤ k, p(u) ≤ 0}. (5.55)

It leads to the corresponding penalized problems (τ being the positive penalty parameter)

α(τ) := inf{f(x, y) + λeTu+ τp(u) : (x, y) ∈ K,u ∈ [0, 1]n, |xi| ≤ ciui, i = 1, ..., n}, (5.56)

and

α(τ) := inf{f(x, y) + τp(u) : (x, y) ∈ K,u ∈ [0, 1]n, |xi| ≤ ciui, i = 1, ..., n, eTu ≤ k}. (5.57)

Proposition 5.7 There is τ0 ≥ 0 such that for every τ > τ0 problems (5.1) (resp. (5.2)) and
(5.56) (resp. (5.57)) are equivalent, in the sense that they have the same optimal value and
(x∗, y∗) ∈ K is a solution of (5.1) (resp. (5.2)) iff there is u∗ ∈ {0, 1}n such that (x∗, y∗, u∗) is
a solution of (5.56) (resp. (5.57)).

Proof 5.10 Direct consequences of Theorem 8 in [145]. �

Since f is a DC function, (5.56) and (5.57) are DC programs.
Note that, in general, the minimal penalty parameter τ0, if any, is not computable. In practice,

upper bounds for τ0 can be calculated in some cases, e.g. sparse eigenvalue problems ([222]).
In the sequel, we will focus on the `0− regularizer problem (5.1) and its penalized problem

(5.56).
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5.3.1 Link between the exact formulation (5.51) and the `1− regularization
problem

It is easy to see that the linear relaxation of Problem (5.51) is a `1− regularization problem.
Indeed, the linear relaxation of Problem (5.51) (which is in fact the penalized problem (5.56)
when τ = 0) takes the form

inf{f(x, y) + λeTu : (x, y) ∈ K,u ∈ [0, 1]n, |xi| ≤ ciui, i = 1, ..., n}. (5.58)

Let M = max{ci : i = 1, . . . , n}, problem (5.58) becomes

inf{f(x, y) + λeTu : (x, y) ∈ K,u ∈ [0, 1]n, |xi| ≤Mui, i = 1, . . . , n}

which can be rewritten as

inf

{
f(x, y) + λeTu : (x, y) ∈ K,u ∈ [0, 1]n,

|xi|
M
≤ ui ≤ 1, i = 1, . . . , n

}
or again

inf

{
f(x, y) +

λ

M

n∑
i=1

|xi| : (x, y) ∈ K

}
= inf

{
f(x, y) +

λ

M
‖x‖1 : (x, y) ∈ K

}
.

We are going now show how to solve the continuous exact reformulation of the `0-regularization
(5.1), say the penalized problem (5.56), by DC programming and DCA.

5.3.2 DCA for solving the continuous exact reformulation problem (5.56)

We consider in the sequel the problem (5.56) with a sufficient large number τ > τ0 :

α(τ) := inf{f(x, y) + λeTu+ τp(u) : (x, y) ∈ K,u ∈ [0, 1]n, |xi| ≤Mui, i = 1, . . . , n}.

Let ∆ be the feasible set of Problem (5.56), i.e. ∆ := {(x, y, u) : (x, y) ∈ K,u ∈ [0, 1]n, |xi| ≤
Mui, i = 1, . . . , n}. Since f is DC with the DC decompostion (5.6) and p is concave, the following
DC formulation of (5.56) seems to be natural :

inf{G(x, y, u)−H(x, y, u) : (x, y, u) ∈ Rn × Rp × Rn}, (5.59)

where
G(x, y, u) := χ∆(x, y, u) + g(x, y), H(x, y, u) := h(x, y)− λeTu− τp(u)

are clearly convex functions.
According to the standard DCA scheme, applying DCA to (5.59) amounts to computing

two sequences {(xl, yl, ul)} and {(x̄l, ȳl, ūl)} in the way that (x̄l, ȳl, ūl) ∈ ∂h(xl, yl, ul) and
(xl+1, yl+1, ul+1) solves the convex program of the form

min{g(x, y)− 〈(x, y, u, ), (x̄l, ȳl, ūl)〉 : (x, y, u) ∈ ∆}

Since (x̄l, ȳl, ūl) ∈ ∂h(xl, yl, ul)⇔ x̄l = ∂xh(xl, yl), ȳl = ∂yh(xl, yl) and

ūli =

{
−λ+ τ if uli ≥ 0.5

−λ− τ if uli < 0.5
, i = 1, ...n,

the algorithm can be described as follow.
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Algorithm 5.5 DCAEP - DCA applied on continuous exact formulation (5.56)

1: Initialization : Choose an initial point (x0, y0, u0) ∈ IRn × IRp × [0, 1]n, and l← 0.
2: repeat
3: Compute x̄l = ∂xh(xl, yl), ȳl = ∂yh(xl, yl) and set ūli = −λ+τ with if uli ≥ 0.5, ūli = −λ−τ

otherwise, for i = 1, ...n. .
4: Compute (xl+1, yl+1, ul+1) = arg min{g(x, y)− 〈(x, y, u, ), (x̄l, ȳl, ūl)〉 : (x, y, u) ∈ ∆}
5: k ← k + 1.
6: until Stopping criterion.

Remark 5.2 In [130], we considered a special case of (5.1) where f is a convex function. In this
case, we can simply take g = f and h = 0 as DC components of f and H becomes a polyhedral
convex function. Thus (5.59) is a DC polyhedral program and DCAEP enjoys a finite convergence.

5.4 Conclusion

We have intensively studied DC programming and DCA for sparse optimization problem.Two
approaches, namely nonconvex approximation and nonconvex exact reformulation, were develo-
ped with a unifying point of view in DC programming framework.

In the nonconvex approximation approach, DC approximations have been investigated from
both a theoretical and an algorithmic point of view. Considering a class of DC approximation
functions of the zero-norm including all usual sparse inducing approximation functions, we have
proved several novel and interesting results : the consistency between global (resp. local) mini-
mizers of the approximate problem and the original problem, the equivalence between these two
problems (in the sense that, for a sufficiently large related parameter, any optimal solution to
the approximate problem solves the original problem) when the feasible set is a bounded polyhe-
dral convex set and the approximation function is concave, the equivalence between Capped-`1
(and/or SCAD) approximate problems and the original problem with sufficiently large parame-
ter θ (in the sense that they have the same set of optimal solutions), the way to compute such
parameters θ in some special cases, and a comparative analysis between usual sparse inducing
approximation functions. Considering the three DC formulations for a common model to all
concave approximation functions we have developed three DCA schemes and showed the link
between our algorithms with standard approaches. It turns out that all standard nonconvex ap-
proximation algorithms are special versions of our DCA based algorithms. A new DCA scheme
has been also investigated for the DC approximation (piecewise linear) which is not concave as
usual sparse inducing functions.

In nonconvex exact reformulation approach, using the exact penalty in DC programming, we
show that the sparse optimization problem can be reformulated as a continuous optimization
problem which is a DC program. The resulting problem is then solved by DCA. Furthermore,
we establish the link between the exact reformulation and the approximate problem using `1 or
Capped-`1 regularization.

Our unified DC programming framework shed a new light on sparse nonconvex programming.
It permits to establish the crucial relations among existing sparsity-inducing methods and the-
refore to exploit, in an elegant way, the nice effect of DC decompositions of objective functions.
The four algorithms (DCA1-DCA4) can be viewed as an `1-perturbed algorithm / reweighted-`1
algorithm (intimately related to the `1-penalized LASSO approach / reweighted-`2 algorithm in
case of convex objective functions. It specifies the flexibility/versatility of these theoretical and
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algorithmic tools. These results should enhance deeper developments of DC programming and
DCA, in order to efficiently model and solve real-world nonconvex sparse optimization problems,
especially in the large-scale setting.

In future works we plan to

i) Develop global approaches such as Brand and Bound and/or interval analysis for sparse
optimization problems. In deed, as DCA has been shown to be efficient and scalable, it is
worthwhile to suitable combine DCA with these global approaches to possibly improve the
quality of computer solution.

ii) Find tight convex underestimation of functions involving the zero norm.
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Chapitre 6

Applications of Sparse Optimization

In this chapter, we will present three important applications which are formulated as a sparse
optimization problem. The first considered problem is the feature selection in Support Vector
Machine (SVM). The second application is an extension of the first one in context of semi-
supervised learning, namely Semi-Supervised SVM (S3VM) with feature selection. In the third
application, we address the sparse recovery signal in compressed sensing. For each problem,
taking into account its structure, we carefully investigate the DCA based algorithms for sparse
optimization presented in Chapter 5 to solve it.

Beside the three above-mentioned problems, we have addressed other problems (not presen-
ted in this chapter) that can be also formulated as a sparse optimization problem. In Chapter 3
and Chapter 4, we develop DCA-Like/ADCA-Like and SDCA for the group variables selection in
multi-class logistic regression. The sparse binary logistic regression are solved by ADCA (Chap-
ter 2 and DCA-Like/ADCA-Like (Chapter 3). In Chapter 10, we develop DCA and DCA-Like for
solving the Gaussian mixture model (GMM) avec `0 regularization. It is clear that all these three
problems involve the minimization of `0 norm and can also be solved by DCA based algorithms
presented in Chapter 5.

6.1 Feature selection in Support Vector Machine1

In this section we focus on the context of feature selection in Support Vector Machines (SVM)
learning with two-class linear models. Generally, the problem can be formulated as follows. Given
two finite point sets A (with label +1) and B (with label −1) in Rn represented by the matrices
A ∈ RNA×n and B ∈ RNB×n, respectively, we seek to discriminate these sets by a separating
hyperplane (x ∈ Rn, b ∈ R)

P = {w ∈ Rn : wTx = b} (6.1)

1. The results presented in this section were published in :

• H.A. Le Thi, T. Pham Dinh, H.M. Le, X.T. Vo, DC approximation approaches for sparse optimization,
European Journal of Operational Research,244(1) :26-46, 2015.

• H.A. Le Thi, H.M. Le and T. Pham Dinh, Feature Selection in machine learning : an exact penalty approach
using a Different of Convex function Algorithm, Machine Learning, 101(1) :163-186, 2015.

• H.A. Le Thi, H.M. Le, V.V. Nguyen, T. Pham Dinh, A DC Programming approach for Feature Selection in
Support Vector Machines learning, Journal of Advances in Data Analysis and Classification, 2(3) :259-278,
2008.
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which uses as few features as possible. We adopt the notations introduced in [35] and consider
the optimization problem proposed in [35] that takes the form (e ∈ Rn being the vector of ones) :

min
x,b

(1− λ)

(
1

NA
‖max{0,−Ax+ eb+ e}‖1 +

1

NB
‖max{0, Bx− eb+ e}‖1

)
+ λ ‖x‖0 (6.2)

or equivalently

minx,b,ξ,ζ (1− λ)( 1
NA
eT ξ + 1

NB
eT ζ) + λ ‖x‖0

s.t. −Ax+ eb+ e ≤ ξ, Bx− eb+ e ≤ ζ, ξ ≥ 0, ζ ≥ 0.
(6.3)

The nonnegative slack variables ξj , j = 1, ..., NA represent the errors of classification of aj ∈ A
while ζj , j = 1, ..., NB represent the errors of classification of bj ∈ B. More precisely, each positive
value of ξj determines the distance between a point aj ∈ A (lying on the wrong side of the
bounding hyperplane wTx = b+1 for A) and the hyperplane itself. Similarly for ζj , B and wTx =
b−1. The first term of the objective function of (6.3) is the average error of classification, and the
second term is the number of nonzero components of the vector x, each of which corresponds to
a representative feature. Further, if an element of x is zero, the corresponding feature is removed
from the dataset. Here λ is a control parameter of the trade-off between the training error and
the number of selected features.

In [35], the authors used the following concave approximation for ‖v‖0 :

‖v‖0 ' e
T (e− ε−αv).

By introducing a non-negative variable v ≥ 0 and the constraint relaxation −v ≤ x ≤ v, they
reformulated the problem (6.3) in the next parametric (for λ ∈ [0, 1)) concave minimization
problem which is known as Feature Selection concaVe (FSV) :

min F (x, b, ξ, ζ, v) := (1− λ)( 1
NA
eT ξ + 1

NB
eT ζ) + λeT (e− ε−αv)

s.t. −Ax+ eb+ e ≤ ξ, Bx− eb+ e ≤ ζ, ξ ≥ 0, ζ ≥ 0, −v ≤ x ≤ v. (6.4)

Denote by K the polyhedral convex set in Rm+k+2n+1 defined as :

K :=

{
x, b, ξ, ζ, v : −Ax+ eb+ e ≤ ξ, Bx− eb+ e ≤ ζ,

ξ ≥ 0, ζ ≥ 0, −v ≤ x ≤ v.

}
. (6.5)

The SLA (Successive Linearization Algorithm) proposed in [35] consists of solving at each itera-
tion l the linear program of the form

min

{
(

1

NA
eT ξ +

1

NB
eT ζ) + λα(ε−αv

l
)T (v − vl) : (x, b, ξ, ζ, v) ∈ K

}
.

It is easy to verify that SLA is exactly DCA applied to (6.4).

Our contributions. Observe that the problem (6.3) is a special case of (5.1) where the function
f is given by

f(x, b, ξ, ζ) := (1− λ)

(
1

NA
eT ξ +

1

NB
eT ζ

)
(6.6)

and K is a polytope defined by

K :=
{

(x, b, ξ, ζ) ∈ Rn × R× RNA+ × RNB+ : −Ax+ eb+ e ≤ ξ, Bx− eb+ e ≤ ζ
}
. (6.7)

Hence we will develop all the DCA based algorithms for sparse optimization presented in Chap-
ter 5 to solve (6.3). Our experiments aim to realize a complete comparison between all these
DCA based algorithm for sparse optimization.
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6.1.1 DCA based algorithms for feature selection in SVM

Here the function f is simply linear, and DC components of f is taken as g = f and h = 0.
Hence, all algorithms presented in Chapter 5 can be developed to solve (6.3).

6.1.1.1 Solving (6.3) by DC approximation approach

The approximate problem of (6.3) takes the form

min

{
F (x, b, ξ, ζ) := f(x, b, ξ, ζ) + λ

n∑
i=1

r(xi) : (x, b, ξ, ζ) ∈ K

}
, (6.8)

where r is one of the sparsity-inducing functions given in Table 5.1. This problem is also equivalent
to

min

{
F (x, b, ξ, ζ, z) := f(x, b, ξ, ζ) + λ

n∑
i=1

r(zi) : (x, b, ξ, ζ, z) ∈ K

}
, (6.9)

where K = {(x, b, ξ, ζ, z) : (x, b, ξ, ζ) ∈ K,−zi ≤ xi ≤ zi ∀i = 1, . . . , n}.
Note that, since K is a polyhedral convex set, all the resulting approximate problems (6.8)

with approximation functions given in Table 5.2 (except for r = rPiL) are equivalent to the
problem (6.3) in the sense of Corollary 5.1. More strongly, from Proposition 5.4, if r = rcap and
θ > θ∗ := 1−λ

λ ∆, where

∆ := max
j=1,...,n

{
1

NA

NA∑
i=1

|Aij |+
1

NB

NB∑
i=1

|Bij |

}
, (6.10)

then the problems (6.3) and (6.8) are equivalent.
For η given in Table 5.2, let ψ(t) = η|t| − r(t). The DCA1 for solving (6.8) is described as

follows.

Algorithm 6.1 DCA1-SVM : DCA1 applied on the approximate problem (6.8)

1: Initialization : Choose an initial point (x0, b0, ξ0, ζ0) ∈ Rn ×R×RNA+ ×RNB+ , and k ← 0.
2: repeat
3: Compute zki ∈ λ∂ψ(xki ) ∀i = 1, . . . , n as given in Table 5.2.
4: Compute (xk+1, bk+1, ξk+1, ζk+1) by solving the linear program

min

{
(1− λ)

(
1

NA
eT ξ +

1

NB
eT ζ

)
+ λη

n∑
i=1

zi − 〈zk, x〉 : (x, b, ξ, ζ, z) ∈ K

}
. (6.11)

5: k ← k + 1.
6: until Stopping criterion.

Since f is linear and K is a polyhedral convex set, the first DC component G1 in (5.35)
is polyhedral convex. Therefore, (5.35) is always a polyhedral DC program. According to the
convergence property of polyhedral DC programs, DCA1 applied to (6.8) generates a sequence
{(xk, bk, ξk, ζk)} that converges to a critical point (x∗, b∗, ξ∗, ζ∗) after finitely many iterations.
Furthermore, if r = rcap and |x∗i | 6= 1

θ ∀i = 1, . . . , n, the second DC component H1 in (5.35) is
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polyhedral convex and differentiable at (x∗, b∗, ξ∗, ζ∗). Using the DCA’s convergence property,
we deduce that (x∗, b∗, ξ∗, ζ∗) is a local solution of (6.8).

DCA2 applied to the approximation (6.9) is given in Algorithm 6.2.

Algorithm 6.2 DCA2-SVM : DCA2 applied on the approximate problem (6.9)

1: Initialization : Choose an initial point (x0, b0, ξ0, ζ0) ∈ Rn ×R×RNA+ ×RNB+ , and k ← 0.
2: repeat
3: Compute zki ∈ −λ∂(−r)(|xki |) ∀i = 1, . . . , n as given in Table 5.3.
4: Compute (xk+1, bk+1, ξk+1, ζk+1) by solving the linear program

min

{
(1− λ)

(
1

NA
eT ξ +

1

NB
eT ζ

)
+ 〈zk, z〉 : (x, b, ξ, ζ, z) ∈ K

}
.

5: k ← k + 1.
6: until Stopping criterion.

Similar to the case of DCA1 mentioned above, (6.9) is also a polyhedral DC program. Thus,
DCA2 applied to (6.9) generates a sequence {(xk, bk, ξk, ζk, |xk|)} that converges to a critical
point (x∗, b∗, ξ∗, ζ∗, |x∗|) after finitely many iterations. Furthermore, if r = rcap and |x∗i | 6=
1
θ ∀i = 1, . . . , n, the second DC component H2 in (5.37) is polyhedral convex and differentiable
at (x∗, b∗, ξ∗, ζ∗, |x∗|). Then (x∗, b∗, ξ∗, ζ∗, |x∗|) is a local solution of (6.9).

DCA3 for solving (6.8) is described in Algorithm 6.3.

Algorithm 6.3 DCA3-SVM : DCA3 applied on the approximate problem (6.8)

1: Initialization : Choose an initial point (x0, b0, ξ0, ζ0) ∈ Rn ×R×RNA+ ×RNB+ , and k ← 0.
2: repeat
3: Compute zki ∈ −λ

2(|xki |2+ε)1/2
∂(−r)((|xki |2 + ε)1/2) ∀i = 1, . . . , n as given in Table 5.4.

4: Compute (xk+1, bk+1, ξk+1, ζk+1) by solving the quadratic convex program

min

{
(1− λ)

(
1

NA
eT ξ +

1

NB
eT ζ

)
+

n∑
i=1

zki x
2
i : (x, b, ξ, ζ) ∈ K

}
.

5: k ← k + 1.
6: until Stopping criterion.

Consider the case r = rPiL. DCA4 for solving (6.8) is given in Algorithm 6.4.
Since the second DC component H4 in (6.8) is polyhedral convex, (5.46) is a polyhedral DC

program. Thus, DCA4 applied to (6.8) generates a sequence {(xk, bk, ξk, ζk)} that converges to a
critical point (x∗, b∗, ξ∗, ζ∗) after finitely many of iterations. Moreover, if |x∗i | 6= 1

θ ∀i = 1, . . . , n,
then H4 is differentiable at (x∗, b∗, ξ∗, ζ∗). This implies that (x∗, b∗, ξ∗, ζ∗) is a local solution of
(6.8).

We have seen in Sect. 5.2.3 that the approximate problem using Capped-`1 and SCAD ap-
proximations are equivalent to the original problem if the parameter θ is beyond a certain thre-
shold : θ ≥ θ0 (cf. Proposition 5.3 and Proposition 5.5). However, the computation of such a
value θ0 is in general not available, hence one must take large enough values for θ0. But, as
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Algorithm 6.4 DCA4-SVM : DCA4 applied on the approximate problem (6.8) with r = rPiL

1: Initialization : Choose an initial point (x0, b0, ξ0, ζ0) ∈ Rn ×R×RNA+ ×RNB+ , and k ← 0.
2: repeat
3: Compute zki ∈ λ∂ψPiL(xki ) ∀i = 1, . . . , n via (5.48).
4: Compute (xk+1, bk+1, ξk+1, ζk+1) by solving the linear program

min

{
(1− λ)

(
1

NA
eT ξ +

1

NB
eT ζ

)
+

λθ

a− 1

n∑
i=1

ti − 〈zk, x〉

}
,

s.t. (x, b, ξ, ζ, t) ∈ K, 1

θ
≤ ti ∀i = 1, . . . , n.

5: k ← k + 1.
6: until Stopping criterion.

discussed in Sect. 5.2.5.6, a large value of θ makes the approximate problem hard to solve. For
the feature selection in SVM, we can compute exactly a θ0 as shown in (6.10), but it is quite
large. Hence we use an updating θ procedure. On the other hand, in the DCA1 scheme, at each
iteration, we have to compute z̄k ∈ ∂λψ(xk) and when ψ is not differentiable at xk, the choice
of z̄k can influence on the efficiency of the algorithm. For Capped-`1 approximation, based on
the properties of this function we propose a specific way to compute z̄k. Below, we describe the
updating θ procedure for DCA1 with Capped-`1 approximation.

In the above procedure, the computation of zk is slightly different from formula given in Table
5.2. When |xki | = αk+1, ∂r(xki ) is an interval. Taking into account information of derivative of u
w.r.t. the variable xi at xki helps us judge which between two extreme values of ∂r(xki ) may give
better decrease of algorithm.

At each iteration, the value of θ increases at least ∆θ > 0 as long as it does not exceed θ∗

– the value from which the problems (6.3) and (6.8) are equivalent. Moreover, we know that
for each fixed θ, DCA1 has finite convergence. Hence, the above procedure also possesses finite
convergence property.

If F (xk+1, bk+1, ξk+1, ζk+1) = F (xk, bk, ξk, ζk) then (xk, bk, ξk, ζk) is a critical point of (6.8)
with r = rcap and θ = θk+1. In addition, if αk+1 = αk, which means that |xki | ≥ αk ≥ 1

θk
for any

i ∈ supp(xk), then (xk, bk, ξk, ζk) is a critical point of (6.8) for all θ ≥ θk+1.

6.1.1.2 Exact reformulation approach for solving (6.3)

The continuous exact reformulation of (6.3) is written as :

inf{G(x, b, ξ, ζ, u)−H(x, b, ξ, ζ, u) : (x, b, ξ, ζ, u) ∈ Rn × R× RNA+ × RNB+ × [0, 1]n}, (6.12)

where
G(x, b, ξ, ζ, u) := χ∆(x, b, ξ, ζ, u) + (1− λ)( 1

NA
eT ξ + 1

NB
eT ζ),

H(x, b, ξ, ζ, u) := −λeTu− τp(u).

with ∆ := {(x, b, ξ, ζ, u) : (x, y, ξ, ζ) ∈ K,u ∈ [0, 1]n, |xi| ≤ Mui, i = 1, . . . , n}. Since K is a
polyhedral convex set, so is ∆, hence χ∆ is a polyhedral convex function. Therefore (6.12) is a
polyhedral DC program with both polyhedral DC components g and h.

DCAEP (Algorithm 5.5) applied to (6.3) is described in Algorithm 6.6.
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Algorithm 6.5 updating θ procedure for DCA1 with Capped-`1 approximation

1: Initialization : ∆θ > 0, α0 = +∞, θ0 = 0, k = 0. Let (x0, b0, ξ0, ζ0) be a solution of the
linear problem (6.8).

2: repeat

3: I = {i : 0 < |xki | < αk}, αk+1 =

{
max{|xki | : i ∈ I} if I 6= ∅,
αk otherwise.

4: Compute θk+1 = min
{
θ∗,max

{
1

αk+1 , θ
k + ∆θ

}}
.

5: Compute zk : For i = 1, . . . , n

- If |xki | < αk+1, zki = 0.

- If |xki | > αk+1, zki = sign(xki )λθ.

- If |xki | = αk+1, compute F−i (resp. F+
i ) the left (resp. right) derivative of the function

u(x, b) w.r.t. the variable xi at xki , where

u(x, b) = (1− λ)
(

1
NA
‖max{0,−Ax+ eb+ e}‖1 + 1

NB
‖max{0, Bx− eb+ e}‖1

)
+λ
∑n

j=1 r(xj).

Then zki =

{
sign(xki )λθ

k+1 if xki (F
−
i + F+

i ) < 0

0 ortherwise.

6: Solve the linear problem (6.11) with η = θk+1 to obtain (xk+1, bk+1, ξk+1, ζk+1).
7: k ← k + 1.
8: until Convergence of {xk, bk, ξk, ζk}

Theorem 6.1 (Convergence properties of DCAEP-SVM)

(i) DCAEP-SVM generates a sequence {(xl, bl, ξl, ζ l, ul)} contained in V (∆) such that the
sequence {f(xl, bl, ξl, ζ l) + τp(ul)} is decreasing.
(ii) For a number τ sufficiently large, if at an iteration q we have uq ∈ {0, 1}n, then
ul ∈ {0, 1}n for all l ≥ q.
(iii) The sequence {(xl, bl, ξl, ζ l, ul)} converges to {(x∗, b∗, ξ∗, ζ∗, u∗)} ∈ V (∆) after a finite
number of iterations. The point (x∗, b∗, ξ∗, ζ∗, u∗) is a critical point of Problem (6.12).
Moreover if u∗i 6= 1

2 for all i = 1...n, then {(x∗, b∗, ξ∗, ζ∗, u∗)} is a local solution to (6.12).

Proof 6.1 i) is consequence of DCA’s convergence Theorem for a general DC program.
ii) Let τ > τ1 := max

{
f(x,b,ξ,ζ)+λeTu−η

δ : (x, b, ξ, ζ, u) ∈ V (∆), p(u) ≤ 0
}

where

η := min{f(x, b, ξ, ζ) + λeTu : (x, b, ξ, ζ, u) ∈ V (∆)} and δ := min{p(u) : (x, b, ξ, ζ, u) ∈ V (∆)}.
Let {(xl, bl, ξl, ζ l, ul)} ⊂ V (∆) (l ≥ 1) be generated by DCA1DCAEP-SVM. If V (∆) ⊂ {∆∩ u ∈
{0, 1}n}, then the assertion is trivial. Otherwise, let (xl, bl, ξl, ζ l, ul) ∈ {∆ ∩ u ∈ {0, 1}n} and
(xl+1, bl+1, ξl+1, ζ l+1, ul+1) ∈ V (∆) be an optimal solution of the linear program (6.13). Then
from (i) of this theorem we have

f(xl+1, bl+1, ξl+1, ζ l+1) + λeTul+1 + tp(ul+1) ≤ f(xl, bl, ξl, ζ l) + λeTul + tp(ul).

Since p(ul) = 0, it follows

τp(ul+1) ≤ f(xl, bl, ξl, ζ l) + λeTul − f(xl+1, bl+1, ξl+1, ζ l+1)− λeTul+1

≤ f(xl, bl, ξl, ζ l) + λeTul − η.
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Algorithm 6.6 DCAEP-SVM : DCA applied on continuous exact reformulation (6.12)

1: Initialization : Choose an initial point (x0, b0, ξ0, ζ0, u0) ∈ Rn × R× RNA+ × RNB+ × [0, 1]n,
and l← 0.

2: repeat
3: Set ūl = (ūli) with ūli = −λ+ τ if uli ≥ 0.5, −λ− τ otherwise, for i = 1, ...n.
4: Solve the linear program

min{(1− λ)(
1

NA
eT ξ +

1

NB
eT ζ)− 〈u, ūl〉 : (x, b, ξ, ζ, u) ∈ ∆} (6.13)

to obtain (xl+1, bl+1, ξl+1, ζ l+1, ul+1)
5: l← l + 1.
6: until Stopping criterion.

If p(ul+1) > 0, then

τ ≤ f(xl, bl, ξl, ζ l) + λeTul − η
p(ul+1)

≤ f(xl, bl, ξl, ζ l) + λeTul − η
δ

≤ τ1

which contradicts the fact that τ > τ1. Therefore we have p(ul+1) = 0.

iii) Since (6.12) is a polyhedral DC program, DCAEP-SVM has a finite convergence, say,
the sequence {(xl, bl, ξl, ζ l, ul)} converges to a critical point (x∗, b∗, ξ∗, ζ∗, u∗) ∈ V (∆) after a
finite number of iterations. If u∗j 6= 1/2, ∀j ∈ 1..n, then the function h is differentiable at
(x∗, b∗, ξ∗, ζ∗, u∗) and then the necessary local condition

∂h(x∗, b∗, ξ∗, ζ∗, u∗) ⊂ ∂g(x∗, b∗, ξ∗, ζ∗, u∗)

holds. Since h is a polyhedral convex function, this subdifferential inclusion is also a sufficient
local optimality condition, i.e. (x∗, b∗, ξ∗, ζ∗, u∗) is a local minimizer of (6.12). The proof is then
complete. �

6.1.2 Numerical experiments

Dataset
Experiments were performed on several real-word datasets taken from well-known UCI data

repository and from challenging feature-selection problems of the NIPS 2003 datasets. In Table
6.1, the number of features, the number of points in training and test set of each dataset are
given. The full description of each dataset can be found on the web site of UCI repository and
NIPS 2003.
Experiment setting

We stop all algorithms with the tolerance ε = 10−5. The non-zero elements of x are determined
according to whether |xi| exceeds a small threshold (10−5).

For the comparison of algorithms, we are interested in the accuracy (PWCO - Percentage
of Well Classified Objects) and the sparsity of obtained solution as well as the rapidity of the
algorithms. POWC1 (resp. POWC2) denotes the POWC on training set (resp. test set). The
sparsity of solution is determined by the number (and percentage) of selected features (SF ) while
the rapidity of algorithms is measured by the CPU time in seconds.
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Table 6.1 – Datasets

Data #features # points in training set # points in test set
Ionosphere 34 234 117
WPBC (24 months) 32 104 51
WPBC (60 months) 32 380 189
Breast Cancer 24481 78 19
Leukemia 7129 38 34
Arcene 10000 100 100
Gisette 5000 6000 1000
Prostate 12600 102 21
Adv 1558 2458 821

6.1.2.1 Experiment 1

In this experiment, we study the effectiveness of the DCA1-SVM, DCA2-SVM and DCA3-
SVM for a same approximation. Capped-`1 approximation is chosen for this experiment. For each
dataset, the same value of λ is used for all algorithms. We set λ = 0.1 for first three datasets
(Ionosphere, WPBC(24), WPBC(60)) while λ = 0.001 is used for five large datasets (Adv,
Arcene, Breast, Gisette, Leukemia). To chose a suitable value of θ for each algorithm DCA1-SVM,
DCA2-SVM and DCA3-SVM, we perform them by 10 folds cross-validation procedure on the set
{0.001, 0.005, 0.01, 0.1, 0.5, 1, 2, 3, 5, 10, 20, 50, 100, 500} and then take the value corresponding to
the best results. Once θ is chosen (its value is given in Table 6.2), we perform these algorithms
10 times from 10 random starting solutions and report, in the columns 3 - 5 of Table 6.2, the
mean and standard deviation of the accuracy, the sparsity of obtained solutions and CPU time
of the algorithm.

We are also interested on the efficiency of Updating θ procedure. For this purpose, we compare
two versions of DCA1-SVM with and without Updating θ procedure (in case of Capped-`1
approximation). For a fair comparison, we first run DCA1-SVM with Updating θ procedure and
then perform DCA1 with the fixed value θ∗ which is the last value of θ when the Updating θ
procedure stops. Computational results are reported in the columns 6 (DCA1-SVM with fixed
θ) and 7 (DCA1-SVM with Updating θ procedure) of Table 6.2.

To evaluate the globality of the DCA based algorithms we use CPLEX 12.2 for globally
solving the exact formulation problem (5.51) via exact penalty techniques (Mixed 0-1 linear
programming problem) and report the results in the last column of Table 6.2.

Bold values in the result tables correspond to best results for each data instance.

Comments on numerical results

— Comparison between DCA1-SVM, DCA2-SVM and DCA3-SVM (columns 3 - 5)

— Concerning the correctness, DCA1-SVM furnishes the best solution out of the three
algorithms for all datasets (with an important gain of 6, 9% on dataset WPBC(24)).
DCA2-SVM and DCA3-SVM are comparable in terms of correctness.

— As for the sparsity of solution, all the three DCA schemes reduce considerably the
number of selected features (up to 99% on large datasets such as Arcene, Breast,
Leukemia, . . . ). Moreover, DCA1-SVM gives better results than DCA2-SVM/DCA3-
SVM on 6 out of 7 datasets.

— In terms of CPU Time, DCA1-SVM and DCA2-SVM are faster than DCA3-SVM.
This is natural, since at each iteration, the first two algorithms only require solving
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Table 6.2 – Comparison of different DCA schemes for Capped-`1 approximation

DCA1-SVM DCA2-SVM DCA3-SVM DCA1-SVM DCA1-SVM with CPLEX
with θ∗ Updating θ

Ionosphere θ 3 5 3 4,3 4,3
POWC1 86,2 ±1,5 85,2 ±1,7 84,8 ±1,8 84,0 ±1,2 90,2 90,2
POWC2 80,3 ±1,6 75,3 ±1,3 74,3 ±1,3 80,3 ±1,4 83,7 83,7
FS 3,5 (10,3%) 3,8 (11,2%) 3,8 (11,2%) 3,2 (9,4%) 2 (5,9%) 2 (5,9%)
CPU 0,2 0,2 0,7 0,3 0,6 2,5

WPBC(24) θ 1 0,1 0,1 661 661
POWC1 84,3 ±1,4 75,3 ±1,3 77,4 ±1,1 75,3 ±1,2 77,4 77,4
POWC2 77,9 ±1,4 80,2 ±1,6 79,3 ±1,6 72,3 ±1,2 77,2 78,4
FS 7,4 (23,1%) 8,5 (26,6%) 8,5 (26,6%) 8,4 (26,3%) 8 (25,0%) 7 (21,9%)
CPU 0,2 0,3 0,8 0,2 1,1 6,4

WPBC(60) θ 1 3 3 347 347
POWC1 96,2 ±1,3 95,2 ±1,3 95,2 ±1,3 98,2 ±1,3 96 96
POWC2 92,5±1,4 92,5±1,4 90,8±1,8 96,8±1,8 95,3 95,3
FS 4,7 (15,7%) 5,5 ( 18,3%) 5,7 (19,0%) 8,9 (29,7%) 3 (10,0%) 3 (10,0%)
CPU 0,4 0,6 1,6 0,5 1 1,8

Breast θ 5 10 2 435 435
POWC1 95,1±1,3 94,2±1,3 95,2±1,4 93,2±1,6 96,8 N/A
POWC2 68,3±1,2 67,3±1,2 70,3±1,6 66,3±1,1 65,1 N/A
FS 32,6 (0,1%) 47,5 (0,2%) 43,5 (0,2%) 52,3 (0,2%) 28 (0,1%) N/A
CPU 30 25 78 79 76 3600

Leukemia θ 5 5 5 178 178
POWC1 100 100 100 100 100 N/A
POWC2 97,2±0,4 97,1±0,4 96,8±0,3 94,8±0,7 97,2 N/A
FS 8,2 (0,1%) 8,5 (0,1%) 8,5 (0,1%) 12,0 (0,2%) 8 (0,1%) N/A
CPU 10 10 75 14 17 3600

Arcene θ 0,1 0,01 3 328 328
POWC1 100 100 100 100 100 N/A
POWC2 80±1,6 82±1,1 81±1,9 61±1,1 70 N/A
FS 78,5 ( 0,79%) 82,4 (0,82%) 82,4 (0,82%) 35 (0,35%) 32 (0,32%) N/A
CPU 21 26 273 30 118 3600

Gisette θ 0,1 0,01 0,1 735 735
POWC1 92,5±1,3 88,5±1,3 88,5±1,3 90,5±1,2 91,2 N/A
POWC2 85,3±1,2 83,4±1,2 83,1±1,6 84,1±1,1 83,2 N/A
FS 339,4 (6,8%) 330,7 (6,6%) 332,2 (6,6%) 456 (9,1%) 123 (2,5%) N/A
CPU 87 65 253 71 387 3600

Adv θ 0,1 0,01 0,1 321 321
POWC1 95,5±1,5 92,3±1,5 95,3±1,5 92,3±1,2 97,2 N/A
POWC2 94,2±1,1 93,2±1,5 93,1±1,2 92,1±1,6 93,2 N/A
FS 5,4 (0,35%) 6,2 (0,40%) 6,4 (0,41%) 6,5 (0,42%) 5 (0,32%) N/A
CPU 2,1 2,4 7,8 2,3 4,6 3600

one linear program while DCA3-SVM has to solve one convex quadratic program.
DCA1-SVM is somehow a bit faster than DCA2-SVM on 5 out 7 datasets.

— Overall, we see that DCA1-SVM is better than DCA2-SVM and DCA3-SVM on all
the three evaluation criteria. Hence, it seems to be that the first DCA scheme is more
appropriate than the other two for Capped-`1 approximation.

— DCA1-SVM with and without Updating θ procedure (columns 3, 6 and 7) :
— For all datasets, Updating θ procedure gives a better solution (on both accuracy and

sparsity) than DCA1-SVM with θ = θ∗.
— Except for dataset WPBC(24), Updating θ procedure is better than DCA1-SVM with

θ chosen by 10 folds cross-validation in terms of sparsity of solution. As for accuracy,
the two algorithms are comparable.

— The choice of the value of θ defining the approximation function is very important.
Indeed, the results given in columns 3 and 6 are far different, due to the fact that,
the value of θ chosen by 10 folds cross-validation is much more smaller than θ∗.
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These results confirm our analysis in Subsection 5.2.5.6 above : while the approximate
function would be better with larger values of θ, the approximate problems become
more difficult and it can be happened that the obtained solutions are worse when θ is
quite large. To overcome this ”contradiction” between theoretical and computational
aspects, the proposed Updating θ procedure seems to be efficient.

— Comparison between DCA-SVM based algorithms and CPLEX for solving the original
problem (5.51)

— For Ionosphere andWPBC(60), Updating θ procedure for Capped-`1 gives exactly the
same accuracy and the same number of selected features as CPLEX. It means that Up-
dating θ procedure reaches the global solution for those two datasets. For WPBC(24),
the two obtained solutions are slightly different (same accuracy on training set and 7
selected features for CPLEX instead of 8 for Updating θ procedure).

— For large datasets, CPLEX can’t furnish a solution with a CPU Time limited to 3600
seconds while DCA based algorithms give a good solution in a short time.

6.1.2.2 Experiment 2

In the second experiment, we study the effectiveness of different approximations of `0. We
use DCA1-SVM for all approximations except PiL for which DCA4-SVM is applied (cf. Section
5.2.5.5).

In this experiment, for the trade-off parameter λ, we used the following set of candidate values
{0.001, 0.002, 0.003, 0.004, 0.05, 0.1, 0.25, 0.4, 0.7, 0.9}. The value of parameter θ is chosen in the
set {0.001, 0.005, 0.01, 0.1, 0.5, 1, 2, 3, 5, 10, 20, 50, 100, 500}. The second parameter a of SCAD
approximation is taken from {1, 2, 3, 5, 10, 20, 30, 50, 100}. For each algorithm, we firstly perform
a 10-folds cross-validation to determine the best set of parameter values. In the second step, we
run each algorithm, with the chosen set of parameter values in step 1, 10 times from 10 starting
random points and report the mean and standard deviation of each evaluation criterion. The
comparative results are reported in Table 6.3.

We observe that :

— In terms of sparsity of solution, the quality of all approximations are comparable. All
the algorithms reduce considerably the number of selected features, especially for 5 large
datasets (Adv, Arcene, Breast, Gisette, Leukemia). For Breast dataset, our algorithms select
only about thirty features out of 24481 while preserving very good accuracy (up to 98, 7%
correctness on train set).

— Capped-`1 is the best in terms of accuracy : it gives best accuracy on all train sets and 4
out of 7 test sets. The quality of other approximations are comparable.

— The CPU time of all the algorithms is quite small : less than 34 seconds (except for Gisette,
CPU time of DCAs varies from 72 to 102 seconds).

176



Applications of Sparse Optimization in Machine Learning

T
a
bl

e
6.
3
–
C
om

pa
ri
so
n
of

di
ffe

re
nt

ap
pr
ox

im
at
io
ns

D
C

A
1-

SV
M

D
C

A
1-

SV
M

D
C

A
1-

SV
M

D
C

A
1-

SV
M

D
C

A
1-

SV
M

D
C

A
1-

SV
M

D
C

A
4-

SV
M

SV
M

-`
1

C
ap

pe
d-

l1
SC

A
D

E
xp

lp
+

lp
-

L
og

P
iL

Io
no

sp
he

re
P
O
W
C

1
86

,2
±

1,
5

80
,1
±

1,
4

82
,1
±

1,
4

81
,5
±

1,
3

83
,1
±

1,
4

81
,2
±

1,
4

83
,2
±

1,
4

77
,3

P
O
W
C

2
80

,3
±

1,
6

73
,5
±

1,
6

84
,8
±

1,
3

75
,1
±

1,
1

70
,3
±

1,
2

73
,1
±

2,
1

83
,5
±

1,
6

75
,3

SF
3,

5
(1

0,
3%

)
3,

1
(9

,1
%

)
2,

3
(6

,8
%

)
3,

8
(1

1,
2%

)
3,

1
(9

,1
%

)
3,

3
(9

,7
%

)
2,

6
(7

,6
%

)
10

(2
9,

4%
)

C
P

U
0,

2
0,

3
0,

3
0,

2
0,

3
0,

15
0,

2
0,

01
W

P
B

C
(2

4)
P
O
W
C

1
84

,3
±

1,
4

77
±

1,
3

84
,3
±

1,
5

81
,3
±

1,
2

81
,9
±

1,
2

71
,3
±

1,
4

84
,2
±

1,
4

73
,3

P
O
W
C

2
77

,9
±

1,
4

79
,3
±

1,
6

74
,3
±

1,
9

78
,4
±

1,
2

79
,8
±

1,
1

68
,4
±

1,
6

78
,5
±

1,
4

72
,1

SF
7,

4
(2

3,
1%

)
8,

1
(2

5,
3%

)
7,

2
(2

2,
5%

)
7,

8
(2

4,
4%

)
7,

5
(2

3,
4%

)
7,

2
(2

2,
5%

)
7,

6
(2

3,
8%

)
8

(2
5,

0%
)

C
P

U
0,

1
0,

2
0,

1
0,

2
0,

2
0,

2
0,

2
0,

01
W

P
B

C
(6

0)
P
O
W
C

1
97

,2
±

1,
3

93
,5
±

1,
7

95
,1
±

1,
6

93
±

1,
2

94
,5
±

1,
1

89
±

1,
5

95
,2
±

1,
3

84
,3

P
O
W
C

2
93

,5
±

1,
4

89
,1
±

1,
9

92
,3
±

1,
9

85
±

1,
2

90
,6
±

1,
2

80
±

1,
6

88
,5
±

1,
1

85
,5

SF
5,

4
(1

8,
0%

)
5,

2
(1

7,
3%

)
5,

2
(1

7,
3%

)
5,

9
(1

9,
7%

)
5,

7
(1

9,
0%

)
5,

4
(1

8,
0%

)
5,

4
(1

8,
0%

)
6

(2
0,

0%
)

C
P

U
0,

4
0,

4
0,

4
0,

5
0,

4
0,

6
0,

5
0,

01
B

re
as

t
P
O
W
C

1
98

,7
±

1,
3

91
,9
±

1,
4

96
,3
±

1,
4

93
,2
±

1,
4

91
,9
±

1,
4

91
,2
±

1,
4

92
,4
±

1,
2

94
,3

P
O
W
C

2
68

,3
±

1,
2

69
,1
±

1,
6

70
%
±

1,
4

67
,3
±

1,
1

69
,1
±

1,
6

66
,3
±

1,
2

71
,3
±

1,
4

67
,8

SF
35

,3
(0

,1
%

)
37

,0
(0

,2
%

)
37

,4
(0

,2
%

)
40

,3
(0

,2
%

)
37

,0
(0

,1
%

)
45

,3
(0

,2
%

)
26

,5
43

25
(1

7,
7%

)
C

P
U

30
31

25
32

31
31

31
3,

2
L
eu

ke
m

ia
P
O
W
C

1
10

0
98

,3
±

0,
2

10
0

10
0

98
,3
±

0,
2

10
0

10
0

68
,3

P
O
W
C

2
97

,2
±

0,
4

88
,3
±

0,
6

97
,2
±

0,
5

90
,1
±

0,
8

92
,3
±

0,
6

90
,1
±

0,
3

89
,2
±

0,
9

70
,3

SF
8,

2
(0

,1
%

)
8,

2
(0

,1
%

)
8,

3
(0

,1
%

)
27

,9
(0

,4
%

)
8,

2
(0

,1
%

)
27

,3
(0

,4
%

)
12

,8
(0

,2
%

)
21

34
(2

9,
9%

)
C

P
U

25
21

23
27

21
28

22
3

A
rc

en
e

P
O
W
C

1
10

0
10

0
10

0
10

0
10

0
10

0
10

0
74

,3
P
O
W
C

2
80
±

1,
6

78
,2
±

1,
9

78
,9
±

1,
4

78
,9
±

1,
1

74
,2
±

1,
2

72
,9
±

1,
6

79
±

1,
2

66
,5

SF
78

,5
(0

,7
9%

)
72

,5
(0

,7
3%

)
69

,4
(0

,6
9%

)
71

,1
(0

,7
1%

)
73

,1
(0

,7
3%

)
72

,3
(0

,7
2%

)
83

,5
(0

,8
4%

)
21

02
(2

1,
02

%
)

C
P

U
21

31
34

31
31

30
23

3
G

is
et

te
P
O
W
C

1
92

,5
±

1,
3

87
,3
±

1,
5

87
,3
±

2,
1

88
,3
±

2,
4

86
,4
±

1,
2

86
,3
±

2,
1

89
,5
±

1,
4

74
,3

P
O
W
C

2
85

,3
±

1,
2

81
,2
±

1,
4

82
,2
±

1,
2

77
,3
±

1,
3

82
,2
±

1,
5

79
,3
±

1,
4

84
,5
±

1,
2

73
,1

SF
33

9,
4

(6
,8

%
)

34
0,

1
(6

,8
%

)
33

0,
1

(6
,6

%
)

34
1,

5
(6

,8
%

)
34

2,
3

(6
,8

%
)

35
4,

5
(7

,1
%

)
34

4,
3

(6
,9

%
)

14
24

(2
8,

5%
)

C
P

U
87

81
98

10
2

81
10

2
72

12
A

dv
P
O
W
C

1
95

,5
±

1,
5

94
,2
±

1,
3

95
,5
±

1,
1

93
,2
±

1,
1

92
,2
±

1,
5

95
,2
±

1,
6

94
,1
±

1,
8

84
,3

P
O
W
C

2
94

,2
±

1,
1

94
,4
±

1,
9

94
,5
±

1,
5

80
,2
±

1,
5

88
,1
±

1,
2

92
,2
±

1,
5

90
,2
±

1,
1

77
,8

SF
5,

4
(0

,3
5%

)
8,

1
(0

,5
2%

)
5,

1
(0

,3
3%

)
12

,3
(0

,7
9%

)
6,

4
(0

,4
1%

)
21

,3
(1

,3
7%

)
7,

4
(0

,4
7%

)
41

3
(2

6,
5%

)
C

P
U

2,
1

2,
5

2,
3

2,
8

2,
5

2,
8

3,
1

12

177



Applications of Sparse Optimization in Machine Learning

6.1.2.3 Experiment 3

In this experiment, we aim to compare the two approaches, continuous exact reformulation
avec DC approximation. Among the three DCA based algorithm for DC approximation approach,
DCA1 is chosen according to the Experiment 1. Furthermore, as we have proved the Capped-`1 is
equivalent to our exact formulation with suitable parameters, we exclude it from this comparison
and focus on the piecewise concave exponential and SCAD approximations. We also compare
our proposed algorithms with

— `1-SVM : SVM with `1 regularization [35],

— ElasticNet-SVM : SVM with Elastic net regularization which is a combination between the
ridge (`2 norm) and the LASSO regularization [231],

— CPLEX 12.2 for globally solving the exact formulation problem (5.51).

The comparative results are reported in Table 6.4.
Comments on numerical results :

— CPLEX only gives a solution for 3 small datasets. For large datasets, CPLEX can’t furnish
a solution with a CPU Time limited to 3600 seconds.

— Concerning the sparsity of solution (the number of selected feature), DCAEP-SVM and
DCA1-SVM-Exp are the best : averagely, only 5% and 4.6% of features are selected, res-
pectively. All DCA based algorithms perform better than `1-SVM and ElasticNet-SVM,
especially on Gisette and Breast. All DCA based algorithms suppress considerably the
number of features (up to 99% on large datasets such as Arcene and Leukemia) while the
correctness of classification is quite good (from 77% to 100%). For WPBC(60) and Pros-
tate, DCAEP-SVM suppresses more features than the other algorithms while furnishing a
better classification accuracy. On other datasets, DCAEP-SVM selects slightly more fea-
tures than DCA1-SVM-Exp (1 or 2 features, except for Gisette). Overall, DCAEP-SVM
realizes a better trade-off between accuracy and sparsity than other algorithms.

— As for the accuracy of classification, DCAEP-SVM is the best for 6 out of 8 training sets.
The gain is important on 2 datasets : WPBC(24) 10, 4% and Gisette 12, 1%. The same
conclusion goes for test sets, DCAEP-SVM is better on 6 datasets (with a gain up to 17.1%
on Gisette dataset). ElasticNet-SVM is slightly better than DCA based algorithms (1.1%
and 1.8% on two datasets Breast and Ionosphere. This can be explained by the fact that
ElasticNet-SVM selects 6 (resp. 4) times more features than DCA based algorithms on
Breast (resp. Ionosphere) dataset.

— In terms of CPU time, not surprisingly, `1-SVM is the fastest algorithm, with an average of
CPU time 11, 1 seconds, since it only requires solving one linear program. The CPU time of
DCA based algorithms is quite small, less than 101 seconds for the largest dataset (Gisette).
DCAEP-SVM is somehow slightly faster with an average of CPU time 21, 5 seconds while
that of DCA-SVM-Exp (resp. DCA1-SVM-SCAD) is 24, 6 (resp. 22, 6) seconds.
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6.1.3 Conclusion

In this section, we have considered the feature selection in SVM problem. This problem is
formulated as a sparse optimization problem which involves the `0 norm in the objective function.
We then developed five DCA based algorithms proposed in Chapter 5 to solve the latter : DCA1-
SVM, DCA2-SVM, DCA3-SVM, DCA4-SVM that belong to the DC approximation approach and
DCAEP-SVM for the exact reformulation approach. Thanks to the special structure of considered
problem, ours DCA algorithms enjoy interesting convergence properties. DCAEP-SVM, DCA1-
SVM and DCA2-SVM converge to a critical point after a finite number of iterations. Several
numerical experiments were conducted allowing to analyze the efficiency of our approaches and
to show their superiority versus existing methods. The numerical results confirmed our analysis in
Section 5.2.5.4, DCA1 is better than DCA2 and DCA3 in all three comparative criteria (accuracy,
sparsity of solution and running time). Comparing to DCA1, DCAEP seems to realize a better
trade-off between accuracy and sparsity with similar running time.

6.2 Sparse Semi-Supervised Support Vector Machines1

In machine learning, supervised learning is a task of inferring a predictor function (classifier)
from a labeled training dataset. Each example in training set consists of an input object and
a label. The objective is to build a predictor function which can be used to identify the label
of new examples with highest possible accuracy. With the rapid development of various techno-
logies, it is easy to collect a huge amount of data and it requires a huge amount of time and
efforts to manually label the data. Hence, in most of real word applications, a large portion of
training data are unlabeled and supervised learning can not be used in these contexts. To deal
with this difficulty, there has been an attracting increasing attention in using semi-supervised
learning methods that take into account a small amount of labeled data and a large amount of
unlabeled data to construct prediction models. Semi-supervised methods also allow to improve
the prediction model’s robustness.

We are interested in semi-supervised classification, more precisely, in the so called Semi-
Supervised Support Vector Machines (S3VM). Among the semi-supervised classification methods,
the large margin approach S3VM, which extends the Support Vector Machine (SVM) to semi-
supervised learning concept, is certainly the most popular [48, 50, 55, 82, 250, 159, 217, 216, 255].
S3VM was originally proposed by Vapnik and Sterin in 1977 [226] under the name of transductive
support vector machine. Later, in 1999, Bennett and Demiriz [22] proposed the first optimization
formulation of S3VM which is described as follows.

Given a training set which consists ofm labeled points {(wi, yi) ∈ IRn×{−1, 1}, i = 1, . . . ,m}
and p unlabeled points {wi ∈ IRn, i = (m+1), . . . , (m+p)}. We are to find a separating hyperplane
P = {w ∈ IRn | wTx = b}, far away from both the labeled and unlabeled points. Hence, the
optimization problem of S3VM takes the form

min
x,b
‖x‖22 + α

m∑
i=1

L (yi(〈x,wi〉+ b)) + β

m+p∑
i=m+1

L (|〈x,wi〉+ b|) . (6.14)

1. The results presented in this section were published in :
• H.M. Le, H.A. Le Thi, M.C. Nguyen, Sparse semi-supervised support vector machines by DC programming

and DCA, Neurocomputing, 153 :62-72, 2015.
• H.M. Le, H.A. Le Thi and M.C. Nguyen, DCA based algorithms for feature selection in Semi-Supervised

Support Vector Machines, Lecture Notes in Computer Science (LNCS), Vol. 7988, 528-542, 2013.
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The first two terms in (6.14) define the standard SVM while the third one incorporates the
loss function of unlabeled data points. The loss function of labeled and unlabeled data points
are weighted by penalty parameters α > 0 and β > 0. Usually, in classical SVM one uses the
hinge loss function L(u) = max{0, 1 − u} which is convex. On contrary, the problem (6.14) is
nonconvex, due to the nonconvexity of the third term.

There are two broad strategies for solving the optimization problem (6.14) of S3VM : the
combinatorial methods (Mixed IntegerProgramming [22], Branch and Bound algorithm [49]) and
the continuous optimisation methods such as self-labeling heuristic S3VM light [115], gradient
descent [48, 81], deterministic annealing [217], semi-definite programming [28], DC programming
[55]. Combinatorial methods are not available for massive data sets in real applications (high
dimension and large data set). Thus, major efforts have focused on efficient local algorithms. For
more complete reviews of S3VM methods, the reader is referred to [50, 262, 62] and references
therein.

We consider here the S3VM problem with feature selection. More precisely, we are to find a
separating hyperplane far away from both the labeled and unlabeled points, that uses the least
number of features. Similar to SVM, we replace the term ‖w‖22 in (6.14) by the `0-norm and then
formulate the S3VM problem with features selection as follows :

min
x,b
‖x‖0 + α

m∑
i=1

L (yi(〈x,wi〉+ b)) + β

m+p∑
i=m+1

L (|〈x,wi〉+ b|) . (6.15)

While S3VM has been widely studied, there exist few methods in the literature for feature
selection in S3VM. Due to the discontinuity of the `0 term and the non convexity of the third
term, we are facing “double” difficulties in solving (6.15). Even if we replace the `0 by a convex
approximation, the resulting problem is still nonconvex. In [245], the author used the concave
exponential approximation of `0-norm, that was proposed in [35], for (6.15) and developed DCA
to solve the resulting problem. Later, in our conference paper [121], we proposed another DC
decomposition for the concave exponential approximation and presented a DCA to solve it.
Note that the DCA developed in [121] is the nothing but DCA1 applied to concave exponential
approximation.

Our contributions. In this section, we will develop both nonconvex exact reformulation and DC
approximation approaches presented in Chapter 5 for the S3VM with feature selection problem
(6.15). According to the analysis of DCA1, DCA2 and DCA3 in Section 5.2.5.4, DCA1 seems to be
more interesting than DCA2 and DCA3 since the corresponding subproblem has less constraints.
Furthermore, DCA1 is expected to give sparser solution than DCA2 and DCA3. These analysis
were confirmed by the numerical results given in the Section 6.1. Hence, we will develop DCAEP
and DCA1 for all DC approximations except PiL for which DCA4 is available.

6.2.1 DCA based algorithms for solving S3VM with feature selection problem

Assume that the m labeled points and p unlabeled points are represented by the matrix
A ∈ IRm×n and B ∈ IRp×n, respectively. D is a m ×m diagonal matrix where Di,i = yi, ∀i =
1, . . . ,m. Denote by e the vector of ones in the appropriate vector space. For each labeled point
wi (i = 1, . . . ,m), we introduce a new variable ξi which represents the misclassification error.
Similarly, for each unlabeled point wi (i = (m + 1), . . . , (m + p)), we define ri and si for two
possible misclassification errors. Let r and s be vectors in IRp who ith component are ri and
si respectively. Then, the final class of unlabeled wi corresponds to the one that has minimal
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misclassification. The feature selection in S3VM problem (6.15) can be rewritten as follows :

min {F (x, b, ξ, r, s) := α〈e, ξ〉+ β〈e,min{r, s}〉+ ‖x‖0 : (x, b, ξ, r, s) ∈ K} , (6.16)

where K is polyhedral convex set defined by
(x, b, ξ, r, s) ∈ IRn × IR× IRm × IRp × IRp : D(Ax− eb) + ξ ≥ e,

Bx− eb+ r ≥ e,
−Bx+ eb+ s ≥ e,
ξ, r, s ≥ 0.

 . (6.17)

It is easy to see that (6.16) is a special case of (5.1) where f(x, b, ξ, r, s) = α〈e, ξ〉 +
β〈e,min{r, s}〉. Since f is a concave function, we can rewrite f as a DC function : f = g − h
with g = 0 and h = −f .

We will now develop DCA based algorithms presented in Chapter 5 to solve (6.16).

6.2.1.1 DC approximation approach for solving (6.16)

The approximate problem of (6.16) takes the form

min

{
Fr(x, b, ξ, r, s) := f(x, b, ξ, r, s) +

n∑
i=1

r(xi) : (x, b, ξ, r, s) ∈ K

}
, (6.18)

where r is one of the sparsity-inducing functions given in Table 5.1.
For η given in Table 5.2, let ψ(t) = η|t| − r(t). A DC decomposition of (6.18) is given by

min {Fr(x, b, ξ, r, s) := G1(x, b, ξ, r, s)−H1(x, b, ξ, r, s)} , (6.19)

where G1(x, b, ξ, r, s) = η‖x‖1 + χK(x, b, ξ, r, s) and H1(x, b, ξ, r, s) = f(x, b, ξ, r, s) +
n∑
i=1

(η|xi|+

r(xi)).
The computation of a subgradient of H1(x, b, ξ, r, s) leads us to take (xl, b

l
, ξ
l
, rl, sl) =

(z̄l, 0,−αe, rl, sl) with z̄li ∈ ∂ψ(xli) and

r̄li =


−β if rli < sli,

0 if rli > sli,

−βµ if rli = sli

∀i = 1, . . . , p, µ ∈ [0, 1] (6.20)

s̄li =


0 if rli < sli,

−β if rli > sli,

−β(1− µ) if rli = sli,

∀i = 1, . . . , p, µ ∈ [0, 1] (6.21)

The DCA1 for solving (6.18) is described in Algorithm 6.7.
It is easy to see that (6.18) is a DC polyhedral program. According to the convergence property

of polyhedral DC programs, DCA1 applied to (6.18) generates a sequence {(xk, bk, ξk, rk, sk)}
that converges to a critical point (x∗, b∗, ξ∗, r∗, s∗) after finitely many iterations. Furthermore, if
r = rcap and |x∗i | 6= 1

θ ∀i = 1, . . . , n then (x∗, b∗, ξ∗, r∗, s∗) is a local solution of (6.18).
Consider now the case r = rPiL, DCA4 for solving (6.18) is given in Algorithm 6.8.
Similar to DCA1, DCA4 applied to (6.18) generates a sequence {(xk, bk, ξk, rk), sk)} that

converges to a critical point (x∗, b∗, ξ∗, r∗, s∗) after finitely many of iterations. Moreover, if |x∗i | 6=
1
θ ∀i = 1, . . . , n, then (x∗, b∗, ξ∗, r∗, s∗) is a local solution of (6.18).
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Algorithm 6.7 DCA1-S3VM : DCA1 applied on the approximate problem (6.18)

1: Initialization : Choose an initial point (x0, b0, ξ0, r0, s0) ∈ Rn × R × Rm × Rp × Rp, and
l← 0.

2: repeat
3: Set (xl, b

l
, ξ
l
, rl, sl, ul) = (z̄l, 0,−αe, rl, sl, ul) following (6.20), (6.21) and z̄li ∈ ∂ψ(xli).

4: Compute (xk+1, bk+1, ξk+1, rk+1, sk+1) by solving the linear program

min η
n∑
i=1

vi − 〈(x, b, ξ, r, s), (xl, b
l
, ξ
l
, rl, sl)〉 : (x, b, ξ, r, s, v) ∈ K̄ (6.22)

5: l← l + 1.
6: until Stopping criterion.

Algorithm 6.8 DCA4-S3VM : DCA4 applied on the approximate problem (6.18) with r = rPiL

1: Initialization : Choose an initial point (x0, b0, ξ0, r0, s0) ∈ Rn × R × Rm × Rp × Rp, and
l← 0.

2: repeat
3: Set (xl, b

l
, ξ
l
, rl, sl, ul) = (z̄l, 0,−αe, rl, sl, ul) following (6.20), (6.21) and z̄li ∈ ∂ψ(xli).

4: Compute (xk+1, bk+1, ξk+1, rk+1, sk+1) by solving the linear program

min
θ

a− 1

n∑
i=1

ti − 〈(x, b, ξ, r, s), (xl, b
l
, ξ
l
, rl, sl)〉 : (x, b, ξ, r, s, v) ∈ K̄, 1

θ
≤ ti (6.23)

5: l← l + 1.
6: until Stopping criterion.

6.2.1.2 Exact reformulation approach for solving (6.16)

The continuous exact reformation of (6.16) takes the form

inf{G(x, b, ξ, r, s, u)−H(x, b, ξ, r, s, u) : (x, b, ξ, r, s, u) ∈ Rn×R×Rm×Rp×Rp× [0, 1]n}, (6.24)

where
G(x, b, ξ, r, s, u) := χ∆(x, b, ξ, r, s, u)
H(x, b, ξ, r, s, u) := −α〈e, ξ〉 − β〈e,min{r, s}〉 − eTu− τp(u).

with ∆ := {(x, b, ξ, r, s, u) : (x, b, ξ, r, s) ∈ K,u ∈ [0, 1]n, |xi| ≤ Mui, i = 1, . . . , n}. Since K is a
polyhedral convex set, so is ∆, hence χ∆ is a polyhedral convex function. Therefore (6.24) is a
polyhedral DC program with both polyhedral DC components g and h.

The computation of a subgradient of H(x, b, ξ, r, s, u) leads us to take (xl, b
l
, ξ
l
, rl, sl, ul)

= (0, 0,−αe, rl, sl, ul) with r̄l and s̄l being defined in (6.20) and (6.21)

uli =

{
+τ if uli ≥ 0.5,

−τ if uli < 0.5
∀i = 1, ...n. (6.25)

Finally, DCAEP (Algorithm 5.5) applied to (6.24) is presented in Algorithm 6.9.

Theorem 6.2 (Convergence properties of DCAEP-S3VM)
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Algorithm 6.9 DCAEP-S3VM : DCA applied on continuous exact reformulation (6.24)

1: Initialization : Choose an initial point (x0, b0, ξ0, r0, s0, u0) ∈ Rn×R×Rm×Rp×Rp×[0, 1]n,
and l← 0.

2: repeat
3: Set (xl, b

l
, ξ
l
, rl, sl, ul) = (0, 0,−αe, rl, sl, ul) following (6.20), (6.21), (6.25).

4: Solve the linear program

min−〈(x, b, ξ, r, s, u), (xl, b
l
, ξ
l
, rl, sl, ul)〉 : (x, b, ξ, r, s, u) ∈ ∆} (6.26)

to obtain (xl+1, bl+1, ξl+1, ζ l+1, ul+1)
5: l← l + 1.
6: until Stopping criterion.

(i) DCAEP-S3VM generates a sequence {(xl, bl, ξl, rl, sl, ul)} contained in V (∆) such that
the sequence {f(xl, bl, ξl, rl, sl, ul) + τp(ul)} is decreasing.

(ii) For a number τ sufficiently large, if at an iteration q we have uq ∈ {0, 1}n, then
ul ∈ {0, 1}n for all l ≥ q.
(iii) The sequence {(xl, bl, ξl, rl, sl, ul)} converges to {(x∗, b∗, ξ∗, r∗, s∗, u∗)} ∈ V (∆) after
a finite number of iterations. The point (x∗, b∗, ξ∗, r∗, s∗, u∗) is a critical point of Problem
(6.24). Moreover if u∗i 6= 1

2 and r∗i 6= s∗i for all i = 1...n, then {(x∗, b∗, ξ∗, r∗, s∗, u∗)} is a
local solution to (6.12).

The proof of Theorem 6.2 is similar to the one of Theorem 6.1.

6.2.2 Numerical experiments

Datasets. To illustrate the performances of algorithms, we performed numerical tests on 2 sets of
data sets. The first set of data sets contains several real-world data sets taken from UCI Machine
Learning Repository and NIPS Feature Selection Challenge. The second set of data sets is the
CBCL Face Database, taken from MIT Center For Biological and Computation Learning (http:
//cbcl.mit.edu/projects/cbcl/software-datasets/). The CBCL Face Database is devoted
to the face detection task that we will briefly present later (cf. Experiment 3). The CBCL Face
Database contains 19 × 19 pixels grayscale images. As proposed in [208] and [99], we represent
each image by a vector of 19×19 = 361 elements which correspond to the gray level of its pixels.
The training set (resp. test set) CBCL Face Database contains 2, 429 face and 4, 548 non-face
images (resp. 472 face and 23,573 non-face images).

The information about data sets is summarized in Table 6.5 (#Att is the number of features
while #Train(resp. #Test) stands for the number of points in training set (resp. test set)).
For GIS, LEU and ARC datasets, training and test sets are given. For the remaining datasets,
training and test sets are randomly sampled from the original set.
Comparative algorithms. We compare our DCA based algorithms with the S3VM using `1-
norm, namely

min {F`1(x, b, ξ, r, s) := α〈e, ξ〉+ β〈e,min{r, s}〉+ ‖x‖1 : (x, b, ξ, r, s) ∈ K} . (6.27)

Once again, problem (6.27) can be formulated as a DC program and then solved by DC pro-
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Table 6.5 – Datasets

Dataset #Att #Train #Test #Total
W60 30 - - 569
Ionosphere (INO) 34 - - 351
Spambase (SPA) 57 - - 2301
Internet Advertisements (ADV) 1558 - - 3279
Gisette (GIS) 5000 6000 1000 7000
Leukemia (LEU) 7129 38 34 72
Arcene (ARC) 10000 100 100 200
CBCL Face Database 361 7077 24045 32122

gramming and DCA. F`1 is a DC function with the following DC decomposition

F`1(x, b, ξ, r, s) = G`1(x, b, ξ, r, s)−H`1(x, b, ξ, r, s)
G`1(x, b, ξ, r, s) = ‖x‖1
H`1(x,b,ξ,r,s) = −α〈e, ξ〉 − β〈e,min{r, s}〉

Then, DCA applied to (6.27) can be described as follows :

Algorithm 6.10 S3VM-`1 : DCA applied to S3VM with `1 regularization

1: Initialization : Choose an initial point (x0, b0, ξ0, r0, s0) ∈ Rn × R × Rm × Rp × Rp, and
l← 0.

2: repeat
3: Compute (x̄l, b̄l, ξ̄l, r̄l, s̄l) = (0, 0,−αe, r̄l, s̄l) with r̄l and ,s̄l being defined in (6.20) and

(6.21).
4: Solve the linear program

min 〈e, t〉 − 〈(x̄l, b̄l, ξ̄l, r̄l, s̄l), (x, b, ξ, r, s)〉,
s.t. (x, b, ξ, r, s) ∈ K,

ti ≥ xi, ti ≥ −xi ∀i = 1, . . . , n.
(6.28)

to obtain (xl+1, bl+1, ξl+1, ζ l+1)
5: k ← k + 1.
6: until Stopping criterion.

The second comparative algorithm is presented in [245]. The authors used the concave ex-
ponential approximation proposed in ([35]), named FSV, to replace the `0 norm in (6.15) and
developed DCA to solve the resulting problem. The proposed algorithm, name S3VM-FSV is
descripbed as follows. By introducing a non-negative variable u ≥ 0 and the constraint relation
−u ≤ x ≤ u, the resulting problem takes the form

min

{
FFSV (x, b, ξ, r, s, u) := α〈e, ξ〉+ β〈e,min{r, s}〉+

n∑
i=1

(1− e−λui) : (x, b, ξ, r, s, u) ∈ K̃

}
(6.29)

with K̃ = {(x, b, ξ, r, s) ∈ K;−u ≤ x ≤ u;u ≥ 0}. The problem (6.29) can be written as

FFSV (x, b, ξ, r, s, u) = GFSV (x, b, ξ, r, s, u)−HFSV (x, b, ξ, r, s, u)
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where GFSV (x, b, ξ, r, s, u) = χK̃ and HFSV (x, b, ξ, r, s, u) = −FFSV (x, b, ξ, r, s, u). It is clear
that GFSV (x, b, ξ, r, s, u) and HFSV (x, b, ξ, r, s, u) are convex functions. Therefore (6.29) is a DC
program. Below is the description of DCA applied to (6.29) :

Algorithm 6.11 S3VM-FSV : DCA applied (6.29)

1: Initialization : Choose an initial point (x0, b0, ξ0, r0, s0, u0) ∈ Rn×R×Rm×Rp×Rp×Rn,
and l← 0.

2: repeat
3: Compute (x̄l, b̄l, ξ̄l, r̄l, s̄l, ūl) = (0, 0,−αe, r̄l, s̄l, ūl) with r̄l (resp. s̄l) being defined in (6.20)

(resp.(6.21)) and ūi = λε−λui ∀i = 1, . . . , n.
4: Solve the linear program

min −〈(x̄l, b̄l, ξ̄l, r̄l, s̄l, ūl), (x, b, ξ, r, s, u)〉,
s.t. (x, b, ξ, r, s, u) ∈ K̃, (6.30)

to obtain (xl+1, bl+1, ξl+1, ζ l+1, ul+1)
5: k ← k + 1.
6: until Stopping criterion.

Setting
All algorithms were implemented in the Visual C++ 2005, and performed on a PC Intel

i5 CPU650, 3.2 GHz of 4GB RAM. We stop DCA with the tolerance τ = 10−6. The non-zero
elements of x are determined according to whether |xi| exceeds a small threshold (10−6). On each
given training set and test set, each algorithm is performed 10 times from 10 random starting
points taken in the following way : ξ0, r0, s0 are set to 0 and x0 and b0 are randomly chosen.
Overall, we perform 100 executions on each dataset. We then report the best result, the average
result and the standard deviation over the executions.

We are interested in the classification error and the sparsity of obtained solution as well as
the rapidity of the algorithms. We measure the classification error via two criteria : the maximum
sum (MS) and the accuracy (ACC) which are defined as follows :

MS = (SE + SP )/2, ACC = (TP + TN)/(TP + TN + FP + FN),

where TP and TN denote true positives and true negatives while FP and FN represent false
positives and false negatives. SE = TP/(TP + FN) (resp. SP = TN/(TN + FP )) is the
correctness rate of positive class (resp. negative class). The sparsity of solution is determined by
the number of selected features (SF ) while the rapidity of algorithms is measured by the CPU
time in seconds.

6.2.2.1 Experiment 1

In the first experiment, we are interested in the effectiveness of all algorithms when the
number of unlabeled points varies. For this purpose, we arbitrarily choose a data set (LEU) and
then change the percentage of unlabeled points in training set from 20% to 80%. We report in
Figure 6.2 (resp. Figure 6.1), the ACC (resp. SF ) of all algorithms on training and test set.

We observe that :

— In most cases, the DCA based algorithms on the `0 model give better accuracy while
choosing much less features than S3VM-`1 (the gain on number of selected features is up
to 5, 6 times).
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Figure 6.1 – Accuracy of classifiers (ACC) on training (right) and test (left) of dataset LEU
with different number of unlabeled points.

Figure 6.2 – Percentage of selected features on dataset LEU with different number of unlabeled
points.
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— When the number of unlabeled points exceeds 70%, the accuracy of all algorithms decrease
dramatically, especially for S3VM-`1.

6.2.2.2 Experiment 2

In the second experiment, we compare the effectiveness of all the algorithms with a fixed
percentage of unlabeled points . According to the second remark of experiment 1, 60% of training
set will be set to be unlabeled points. The comparative results are reported in Table 6.6, Table
6.7, Table 6.8, Table 6.9.
From the computational results we observe that :

— All DCA based algorithms on `0 model reduce considerably the number of features (from
72.11% to 99.94%) while the accuracy of classifier is quite good (from 61.80% to 94.94%).
In comparison with S3VM-`1, naturally the DCA based algorithms on `0 model suppress
much more features while they always furnish better accuracy (MS/ACC). The gain
of percentage of selected features (SF ) with respect to S3VM-`1 is up to 123.29 times
(DCA1-S3VM-Exp comparing to S3VM-`1 on dataset ADV ). Averagely on all datasets,
DCA1-S3VM-Exp is the best on term of selected features. The number of selected fea-
tures of S3VM-`1 is higher than that of DCA1-S3VM-Exp (resp. DCA1-S3VM-Capped`1,
DCA4-S3VM-PiL, DCA1-S3VM-SCAD, DCA1-S3VM-Log and S3VM-DCAEP) 3.39 (resp.
2.80, 2.78, 3.06, 3.19 and 2.98) times.

— In term of ACC/MS, the quality of all five DCA based algorithms on `0 model are compa-
rable. DCA1-S3VM-Log is better than other on 5 out of 7 datasets which can be explained
by the fact that DCA1-S3VM-Log selects slightly more features than other algorithms in
these datasets.

— Concerning the computation time, the CPU time of all DCA based algorithms is quite
small : less than 22 seconds (except for dataset GIS).

6.2.2.3 Experiment 3

In this experiment, we are interested in the face detection problem which has been one of the
most studied topics in the computer vision in the past few decades. The goal of face detection
is to locate an unknown number (if any) of human faces in a digital image. Face detection
can be exploited in numerous application areas : security, surveillance, smart card, . . . For more
complete reviews of face detection approaches and its applications, the reader is referred to
[104] and references therein. Face detection involves segmentation, extraction, and verification
of faces ([104]). In this experiment, we are only interested in the last step of face detection, i.e.
verification of faces. Classification algorithms can be applied for this task. Among them, SVMs
have been successfully developed for this purpose ([99, 181]). Motivated by the good results of
ours proposed approaches on numerics data sets in experiments 1 and 2, we intend to apply them
for face detection problem. Our experiment is realized on CBCL Face Database. The comparative
results are reported in Table 6.10. We observe that :

— Overall, all DCA based algorithms on l0 model give better results than S3VM-l1, not only
for number of selected features but also the accuracy of classifiers (ACC/MS).

— Concerning the sparsity of solution, DCA4-S3VM-PiL gives the best result. DCA4-S3VM-
PiL only selects 40 out of 361 features (11.08%) while giving a good accuracy (81.14% in
term of ACC and 86.06% in term of MS). It does mean that, using the solution given by
DCA4-S3VM-PiL, one only needs 40 out of 361 pixels to determine whether a new image
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is face image or not. The gain of percentage of selected features with respect to S3VM-l1
is 3.375 times.

— In term of accuracy of classifiers, DCA1-S3VM-Exp (resp. S3VM-DCAEP) furnishes the
best ACC on the test set (resp. on the training set) with 83.20% (resp. 86.17%) in average.
Similarly, S3VM-DCAEP gives the best MS on the training set with 89.16% whereas, on
the test set, DCA1-S3VM-Capped`1 achieves the best result with 77.61% in average.

— For the CPU time, DCA1-S3VM-Log is the fastest algorithm with 52.69 seconds in average.

Figure 6.3 – Some image detection results given by DCA4-PiL. F :Face,NF :Non-Face.

6.2.3 Conclusion

Using 5 different approximations and the continuous exact reformulation via an exact penalty
technique, we have investigated 6 DCA based algorithms for the S3VM with feature selection
problem. All algorithms converge to a critical point after finitely many iterations. Numerical
results on several real datasets showed the robustness, the effectiveness of the our algorithms.
Our algorithms select much less features than the S3VM using `1 regularization, the gain is up
to 123.29 times. The test performed on the face detection problem is promising. Our algorithm
only needs 40 out of 361 pixels to determine whether a new image is face image or not with an
accuracy of 86.06%.
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6.3 Sparse Signal Recovery1

Compressed Sensing (CS) (or compressive sensing or compressive sampling) which was in-
troduced by Donoho [64] and Candes et al. [38], is an emerging area having significant interest
in data analysis. CS is considered as a new framework for signal acquisition and sensor design
to remove the deficiencies in the classical approach. CS suggests that one can represent many
signals by using only a few non-zero coefficients in a suitable basis or dictionary and then, one
can recover these signals from a few non-adaptive, linear measurements. Since CS was introdu-
ced, it is applied in various fields including radar imaging, signal extraction, medical imaging,
geophysics, oil-exploration, landmine detection, civil engineering, etc.

Let us firstly give some basic definitions and notations in CS. For a complete study of CS the
reader is referred to [68] and the references therein. We rely on a signal representation in a given
basis {ψi}ni=1 for IRn. Every signal x ∈ IRn is representable in terms of n coefficients {θi}ni=1 as

x =
n∑
i=1

ψiθi. Arranging the ψi as columns into the n × n matrix Ψ and the coefficients θi into

the n × 1 coefficient vector θ, we can write that x = Ψθ, with θ ∈ IRn. In a general setting, we
refer to Ψ as the sparsifying dictionary [68].

A vector x ∈ IRn is called k − sparse in the basis or frame Ψ if there exists a vector θ ∈ IRn

with only k � n nonzero entries such that x = Ψθ. The set of indices nonzero entries is called
the support of θ and denote it by supp(θ).

If a signal is not sparse itself, we can sparsify it by choosing an appropriate representation
system. There exist various well-known transformations to sparsify a signal, for example Fourier,
Cosine, wavelet, curvelet,... Signals are known to be very nearly sparse when represented using
these transforms, for example wavelet transform. The wavelet transform consists of recursively
dividing the image into its low- and high-frequency components. The lowest frequency compo-
nents provide a coarse scale approximation of the image, while the higher frequency components
fill in the detail and resolve edges ([59]).

A signal is called compressible signal if it has the vector of coefficients in certain basis is
composed of few large coefficients and other coefficients with small value. This kind of signal is
not really sparse signal. However, if the small coefficients are set to zero, the remaining large
coefficients can represent the original signal almost exactly.

The research in CS can be classified into two major contribution areas. The first one consists
of the theory and applications related to finding a sensing matrix A to ensure that it preserves
the information of the signal x. The second area includes reconstruction techniques for recovering
the original sparse signal x from its measurement y = Ax via a sensing matrix A.

In this work, we focus on the problem of sparse signal recovery. Suppose that the signal x
is already sparse. The problem can be stated as follows. Given a sensing matrix A ∈ IRm×n

(m << n) and a measurement vector y = Ax ∈ IRm. We are to recover the sparse signal x ∈ IRn.
Since the linear system y = Ax is highly underdetermined, and has therefore infinitely many

solutions, the recovery sparse signal can be seen as finding mutually the sparsest signal x being
consistent with its measurement. This leads to solving the `0-minimization problem :

(P ) α := min {||x||0 : Ax = y, x ∈ IRn} . (6.31)

1. A part of the results presented in this section was published in :

• H.A. Le Thi, T.B.T. Nguyen, H.M. Le, Sparse Signal Recovery by Difference of Convex Functions, Lecture
Notes in Computer Science (LNCS) 7803, 387-397, 2012.
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An alternative version of (P), due to the hight underdetermination of the linear system
y = Ax, can be formulated as follows : finding a sparse signal vector x which is as consistent with
y as possible according to the square error criterion. Then the resulting optimization problem,
named Regularization Least Square model (RLS), is written as

(RLS) αλ = min

{
1

2
‖Ax− y‖2 + λ‖x‖0 : x ∈ IRn

}
. (6.32)

where λ > 0, called the regularized parameter, represents a trade-off between error and sparsity.
Intuitively, if λ decreases to zero, we attach more importance in ‖Ax− b‖22 and it seems

normal that, if xλ is a solution of (RLS), ‖Axλ − b‖22 decreases and xλ becomes a good approxi-
mation of a solution of (P ). The following proposition expresses it in a rigorous way.

Proposition 6.1 Assume that the linear system Ax = y admits a solution. Then

1. αλ ≤ λα, ∀ρ > 0,

2. there exists λ0 > 0, such that αλ = λα and (P ) and (RLS) have the same solution set,
∀0 < λ ≤ λ0.

Proof. The property 1) comes from the fact that any feasible point x of (P ) is feasible for (RLS)
and satisfies Ax = y.
The proof of 2) can be found in [220].

Many efficient algorithms have been developed in literature to deal with the problem (P )
or (RLS). The readers are referred to [97, 197, 201] for complete reviews on existing work on
compressed sensing. As the minimization of `0 is NP-Hard, alternates have been proposed. The
most commonly-used is to use the `1 norm, as given in [67], that leads to a convex optimization
problem. Another common alternate in CS consists in using the nonconvex regularization lp(0 <
p < 1) norm. In [253, 252], the authors proposed to replace `0 by a nonconvex Lipschitz continuous
regularization, that is `1 − `2. This hybrid norm model is proved to be closer to `0 than `1 and
can improve the robustness of `1. Later, inspired by this idea, Zhou and Yu [261] introduced the
`p− `1 (0<p<1) regularization. It is obvious that `1− `2 and `p− `1 are DC functions and DCA
was developed in [253, 252, 261] to solve the resulting optimization problems.

Our contributions. In this work, we deal with the RLS model (6.32). Clearly, (6.32) is a par-
ticular case of the sparse optimization model (5.1). We will develop DCA1 for 3 approximations
Capped-`1, concave exponential, SCAD and DCA4 for PiL (recall that for PiL approximation,
only DCA4 is available (c.f. Section 5.2.5.5). This choice is justified by the performance of DCA1
and these approximations in our numerical experiments on sparse SVM (Section 6.1) and sparse
S3VM (Section 6.2).

6.3.1 DCA for sparse signal recovery

It is easy to see that (6.32) is a special case of (5.1) with f(x) := 1
2‖Ax− y‖

2 and K = Rn.
Here, f is convex, and the DC components of f can simply be g = f and h = 0.

The approximate problem of (6.32) takes the form :

min

{
Fr(x) := f(x) + λ

n∑
i=1

r(xi) : (x) ∈ Rn
}
, (6.33)
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where r is one of the sparsity-inducing functions given in Table 5.1. For η given in Table 5.2, let
ψ(t) = η|t| − r(t). A DC decomposition of (6.33) is given by

min {Fr(x) := G1(x)−H1(x)} , (6.34)

where G1(x) = 1
2‖Ax − y‖

2 + λη‖x‖1 and H1(x) = λ
n∑
i=1

ψ(xi). The DCA1 for solving (6.33) is

described as in Algorithm 6.12.

Algorithm 6.12 DCA1-RLS : DCA1 applied on the approximate problem (6.33)

1: Initialization : Choose an initial point x0 ∈ Rn, and l← 0.
2: repeat
3: Set x̄li ∈ ∂ψ(xli).
4: Compute xk+1 by solving the linear program

min
1

2
‖Ax− y‖2 + η

n∑
i=1

vi − 〈x, xl〉 : vi ≥ xi, vi ≥ −xi (6.35)

5: l← l + 1.
6: until Stopping criterion.

Consider now r = rPiL. DCA4 for solving (6.33) is given in Algorithm 6.13.

Algorithm 6.13 DCA4-RLS : DCA4 applied on the approximate problem (6.33) with r = rPiL

1: Initialization : Choose an initial point x0 ∈ Rn, and l← 0.
2: repeat
3: Set x̄li ∈ ∂ψ(xli).
4: Compute xk+1 by solving the linear program

min
1

2
‖Ax− y‖2 +

θ

a− 1

n∑
i=1

ti − 〈x, xl〉 : vi ≥ xi, vi ≥ −xi,
1

θ
≤ ti (6.36)

5: l← l + 1.
6: until Stopping criterion.

6.3.2 Numerical experiments

Dataset. Our experiments are performed on 11 datasets (Prob1-Prob11) taken from Sparco
Toolbox, a well-known testing framework for sparse reconstruction problem.
Comparative algorithms

We compare our algorithms with 5 other ones :

— GPSR ([72]) - a gradient projection algorithm for solving

min{1

2
‖Ax− y‖2 + λ‖x‖1} (6.37)

— L1eq ([40]) also known as basis pursuit, solves the problem

min{‖x‖1 : Ax = y} (6.38)
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— L1qc ([39]) that addresses the following problem

min{‖x‖1 : ‖Ax− y‖2 ≤ ε} (6.39)

— L1dantzig ([41]) which deals with the Dantzig selector constraint

min{‖x‖1 : ‖A∗(Ax− y)‖∞ ≤ γ} (6.40)

where γ > 0 is a regularization parameter.

— SL0 ([168]) which uses the concave exponential approximation to replace `0 in (6.31).

Setting
We use two criteria for evaluation : the value ‖x‖0 and the MSE (Mean Square Error) values.

The first criterion presents the sparsity of solution. The second criterion MSE quantify the
difference between the value estimated and the true value. MSE is defined by : MSE = ‖x −
x0‖2/n.

All our algorithms were developed in Visual C++ 2008, and performed on a PC Intel
Core(TM)2 Quad CPU Q9505, 2.83 GHz and 4GB RAM. CPLEX 12.3 was used for solving
quadratic sub-problems.
Numerical results

The numerical results are reported in Table 6.11. The sparsity of the original signal ‖x0‖0 is
given in the first column.

We observe that :

— As for the sparsity of solution, DCA1-SCAD is the best, following by our three other
algorithms. DCA1-SCAD recovers the exact value of ‖x0‖0 in 9 out of 11 datasets. Even
if DCA1-SCAD fails to give the exact value of ‖x0‖0 on Prob3 and Prob4 datasets, the
difference is small. Our algorithms are clealy better than SL0 which also uses a nonconvex
aproximation. SL0 recovers the true value of ‖x0‖0 on only 2 datasets while the difference
between the sparsity of its solutions and ‖x0‖0 is huge for the rest. l1dz seems to be the
worst algorithm in this experiment, it fails to give a sparse solution on all datasets. In some
cases, GPSR gives a much more sparser solution than the other algorithms. However, its
MSE is much more bigger, meaning that GPSR recovers the wrong components.

— Concerning the MSE criteion, our algorithms are clearly better than the others existing
methods. They gives best value of MSE on all 11 datasets.
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6.3.3 Conclusion

We considered the sparse signal recovery in compressed sensing which involves the mini-
mization of `0 norm. Four DCA based schemes based on DC approximation approach were
investigated for the RLS (Regularization Least Square) model. The numerical experiments on
well-known Sparco toolbox datasets have showed the efficiency of our algorithms. In most of
cases, they successfully recover a signal with the same sparsity of the original one and small
MSE (Mean Square Error).
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In this part, we develop DCA based algorithms to address several problems in unsupervised
classification, commonly known as clustering.

In Chapter 7, we deal with the minimum sum-of-squares clustering (MSSC in short). Among
many criteria used in clustering, MSSC is one of the most popular since it expresses both homo-
geneity and separation. MSSC consists in partitioning the set X := {x1, x2, ..., xn} into c clusters
in order to minimize the sum of squared distances from the entities to the centroid of their clus-
ter. This problem may be formulated mathematically in several ways, which suggest different
possible algorithms. The two most widely used models are a bilevel programming problem and a
mixed integer program. We first consider the mixed integer formulation of MSSC and equivalently
reformulate it as a DC program thanks to the exact penalty technique. Secondly, we introduce
a Gaussian Kernel version of the bilevel programming formulation of MSSC (named GKMSSC)
and then reformulate GKMSSC as a DC program. We develop two DCA based algorithms to
solve the two resulting optimization problems. It fortunately turns out that the corresponding
DCA consists in computing, at each iteration, the projection of points onto a simplex and/or a
ball, that all are given in the explicit form. For initializing DCA, a local search procedure VNS
(Variable Neighborhood Search) is proposed.

In Chapter 8, we address the MSSC model using weighted dissimilarity measure (each feature
is assigned a continuous value in the interval [0, 1] which represents the relevant degree of the
feature). We consider the bilevel programming and mixed integer formulations of MSSC with
weighted dissimilarity measures. Both problems can be reformulated as DC programs for which
efficient DCA algorithms are developed.

The Chapter 9 deals with the so-called block clustering that consists in simultaneous cluste-
ring on the set of samples (objects) and on the set of their features in order to find homogeneous
blocks. Based on exact penalty technique, the block clustering problem is recast as a DC program
in its elegant matrix formulation. A very nice DC decomposition is proposed of which the cor-
responding DCA is simple, elegant and inexpensive : it consists in computing, at each iteration,
the projection of points onto a simplex and/or a box, that all are given in the explicit form.

In Chapter 10, we consider Gaussian Mixture Model (GMM) clusetering, the most popular
model-based clustering model in the literature. We address three fundamental issues in GMM
clustering : the choice of appropriate number of clusters, the over-parameterization and the selec-
tion of useful features. Although all these three issues are linked together, most of existing works
deal with them separately. For the first time, we present an unified optimization formulation
that takes into account all three above-mentioned issues. It turns out that the corresponding
optimization problem involves the minimization of `0-norm. To tackle the resulting problem,
we develop DCA-Like and then a Two-Step DCA-Like to further improve the performance of
DCA-Like.

In Chapter 11, we deal with the time-series data clustering. We tackle three crucial issues in
high-dimensional time-series data clustering for pattern discovery : appropriate similarity mea-
sures, efficient procedures for high-dimensional setting, and fast/scalable clustering algorithms.
Our approach incorporates several advanced techniques : t-distributed stochastic neighbor em-
bedding (t-SNE) method to transform the high-dimensional time-series data into a lower dimen-
sional space, efficient algorithm for finding the number of clusters (DCA-Modularity), and fast
and scalable clustering algorithm (DCA-MSSC). The innovative character intervenes in all stages
of the proposed approach : the data transformation via t-SNE with the DTW measure in the
original data space and the Euclidean distance in the transformed space is original. As applica-
tion, we applied our approach for customer clustering of French transmission system operator
(RTE) based on their electricity consumption.
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Chapitre 7

Minimum Sum-of-Squares Clustering1

Abstract: We consider the two most widely used models for the so called Minimum Sum-of-Squares Clus-
tering (MSSC in short) that are a bilevel programming problem and a mixed integer program. Firstly, the
mixed integer formulation of MSSC is carefully studied and is reformulated as a continuous optimization
problem via the exact penalty technique in DC programming. DCA is then investigated to the resulting pro-
blem. Secondly, we introduce a Gaussian Kernel version of the bilevel programming formulation of MSSC,
named GKMSSC. The GKMSSC problem is formulated as a DC program for which a simple and efficient
DCA scheme is developed. A regularization technique is investigated for exploiting the nice effect of DC
decomposition and a simple procedure for finding good starting points of DCA is developed. The proposed
DCA schemes are original and very inexpensive because they amount to computing, at each iteration, the
projection of points onto a simplex and/or onto a ball, and/or onto a box, that are all determined in the
explicit form. Numerical results on real word datasets show the efficiency, the scalability of DCA and its
great superiority with respect to k-means and Kernel k-means, standard methods for clustering.

7.1 Introduction

An instance of the partitional clustering problem consists of a data set X := {x1, x2, ..., xn}
of n entities in IRd, a measured distance, and an integer c (2 ≤ c ≤ n) ; we are to choose c
members vi (i = 1, ...c) and assign each member of X to its closest centroid (or center).

Let U = (uik) ∈ IRc×n with i = 1, . . . , c and k = 1, . . . , n be the matrix defined by :

uik :=

{
1 if xk ∈ Ci
0 otherwise.

Then a straightforward mixed integer formulation of MSSC is

(IP-MSSC)


minF (U, V ) :=

n∑
k=1

c∑
i=1

uik||xk − vi||2

s.t.
c∑
i=1

uik = 1, k = 1, .., n

uik ∈ {0, 1} i = 1, .., c, k = 1, .., n

(7.1)

1. The results presented in this chapter were published in :
• H.A. Le Thi, H.M. Le, T. Pham Dinh, New and efficient DCA based algorithms for Minimum Sum-of-

Squares, Pattern Recognition, 47(1) :388-40, 2014.
• H.M. Le, H.A. Le Thi, T. Pham Dinh, Gaussian Kernel Minimum Sum-of-Squares Clustering and solution

method based on DCA, Lecture Notes in Artificial Intelligence (LNAI) 719, 331-340, 2012.
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where ‖.‖ is, in this chapter, the Euclidean norm, and V the (c × d) - matrix whose ith row is
vi ∈ IRd, the center of cluster Ci. In the sequel to simplify related computations we will work on
the vector space IRc×n ×IRc×d of real matrices. The variables are then (U, V ) ∈ IRc×n × IRc×d,

where U ∈ IRc×n whose kth column is denoted Uk and V ∈ IR
c×d

whose ith row is denoted Vi or
vi (vi is a row-vector in IRd).

The last constraint of (7.1) ensures that each point xk is assigned to one and only one
group. It means that the intersection of any pairwise clusters is empty, hence we are faced
with hard clustering. Problem (7.1) is a mixed integer program where the objective function
is nonconvex. It has been shown in [9] that the problem is NP-hard with possibly many local
minima. Several works in optimization approaches have been developed for the MSSC with the
mixed integer programming formulation. Exact solution methods are difficult but a variety of
approaches have been explored, among them the branch and bound or cutting methods via
reformulation-linearization techniques [215, 195], 0-1 SDP formulation [37, 187], interior point
method [65]. However, exact solution methods are not available for massive data sets in real
applications (high dimension and large data set, i.e. d and n are very large). Most of the methods
for the model (7.1) are heuristics that can only locate a “good” local solution.

Another formulation of MSSC is based on bilevel programming and was first introduced by
Vinod [228] :

(B-MSSC) min

{
n∑
k=1

min
i=1,...,c

‖xk − vi‖2 : vi ∈ IRd, i = 1, . . . , c

}
. (7.2)

This is a nonconvex nonsmooth optimization problem and is very hard to solve. While several
heuristic methods based on k-means algorithm have been proposed for solving (7.2), there are
few deterministic approaches that address directly this bilevel problem. Two efficient works in
this direction can be found in Le Thi et al. [123] that is based on DC programming and DCA
and in Xavier et al. [241] which uses a hyperbolic smoothing technique.

Our contributions. We develop efficient and scalable DCA based algorithms for both formu-
lations of MSSC : the mixed integer programming problem (7.1) and the bilevel programming
problem (7.2).

Firstly, we propose an efficient continuous approach based on DCA for solving the mixed inte-
ger programming problem (7.1). Using an exact penalty result developed in [145] we equivalently
reformulate the combinatorial problem (7.1) in term of a continuous optimization problem which
is in fact a DC program. We then investigate a DCA scheme for solving the resulting problem.
From the construction of this algorithm we are able to interpret why DCA is better than k-means
algorithm. It is worthy to note that minimizing a nonconvex functions under 0 − 1 variables
is a very hard problem and there is no continuous approach in the literature for solving the
combinatorial problem (7.1). The preliminary version of this method has been published in the
conference paper [143] where the authors presented a DC reformulation and its corresponding
DCA for solving (7.1) as well as some preliminary numerical experiments. In this chapter we
carefully explore and exploit this approach from both a theoretical and an algorithmic point of
view. Related key questions are investigated : the choices of DC decomposition, some convexifica-
tion techniques to construct appropriate DC components, a procedure for finding good starting
points for DCA. Numerical experiments on several test problems and comparative results between
different approaches are reported.

Secondly, we introduce a Gaussian kernel version of (7.2), called GKMSSC, and investigate
DCA for solving it. Kernel clustering methods are known to be efficient in the situations where
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the sets to be discriminated in the original space (for example, a data set composed of two rings
of points) can not be separabled by standard partitioning methods using centroids (k-means,
Fuzzy C-Means...). The basic idea is to implicitly transform data to a higher dimensional space
and to find a classifier without having to perform any computations in the high dimensional
space. Among several kernel functions we have chosen voluntarily in this chapter the Gaussian
kernel. This choice is very favorable to the developement of DCA for the corresponding GKMSSC
problem : we get a DCA scheme very simple and inexpensive in term of time consuming. In
addition, exploiting the effect of DC decompositions, we use a regularization technique for the
GKMSSC problem which allows DCA to well separate the clustering centers in the projection
space.

For both (IP-MSSC) and (GKMSSC), the two proposed DCA schemes are simple, fast and
scalable. We also investigate a Variable Neighborhood Search (VNS) algorithm to find good
starting points for DCA.

The remainder of the chapter is organized as follows.The solution of the mixed integer pro-
gramming problem (7.1) by DCA is developed in Section 7.2 while Section 7.3 deals with DCA
for solving the Gaussian kernel MSSC problem. The procedure of finding a good starting point
by VNS algorithm is discussed in Section 7.4 and the computational results are reported in
Section 7.5.

7.2 DCA for solving the mixed integer (IP-MSSC) problem

For applying DCA we reformulate (IP-MSSC) as a continuous optimization problem. First of
all, since uik ∈ {0, 1} we can replace uik by u2

ik and rewrite the objective function of (IP-MSSC)
by

F (U, V ) :=
n∑
k=1

c∑
i=1

u2
ik||xk − vi||2.

We will see on the next that using u2
ik instead to uik is useful for getting a good DC decomposition

and the resulting DCA is interesting.
In the problem (IP-MSSC) the variable U is a priori bounded in IRc×n. One can also find

a constraint for bound the variable V by determining a ball of radius r and center 0 ∈ IRd

containing necessarily the optimum centers vi. Indeed, let ∆ be the (c−1)-simplex in IRc defined
by

∆ = {y ∈ [0, 1]c :
c∑
i=1

yi = 1}

and ∆n be the Cartesian product of n simplices ∆. Hence, Uk ∈ ∆ ∩ {0, 1}c ,∀k = 1, . . . , n and
U ∈ ∆n ∩ {0, 1}c×n.

The problem (IP-MSSC) can be rewritten as :

min
U∈∆n∩{0,1}c×n

min
V ∈IRc×d

F (U, V ). (7.3)

For each fixed U ∈ ∆n∩{0, 1}c×n , the necessary first order optimality condition for the problem
minV ∈IRc×d F (U, V ) implies that ∇V F (U, V ) = 0, i.e.,

∂viF (U, V ) =
n∑
k=1

uik2(vi − xk) = 0, i = 1, ..., c, k = 1, ..., n,
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or

vi

n∑
k=1

uik =

n∑
k=1

uikxk.

On the other hand, the condition that cluster should not be empty imposes that
n∑
k=1

uik > 0 for

i = 1, ..., c. Hence

‖vi‖2 ≤
(
n∑
k=1

uik‖xk‖)2

(
n∑
k=1

uik)2

≤
n∑
k=1

‖xk‖2 := r2.

Let Ri (i = 1, ..., c) be the Euclidean ball centered at the origin and of radius r in IRd, and let
C := Πc

i=1Ri. We can rewritte the problem (IP-MSSC) as :

min
{
F (U, V ) : (U, V ) ∈ ∆n ∩ {0, 1}c×n × C

}
. (7.4)

7.2.1 A continuous reformulation

Our reformulation technique is based on the following results developed in [145].

Theorem 7.1 ([145]) Let K be a nonempty bounded polyhedral convex set, f be a DC function
on K and p be a nonnegative concave function on K. Then there exists t0 ≥ 0 such that for all
t > t0 the following problems have the same optimal value and the same solution set :

(P ) γ = inf{f(x) : x ∈ K, p(x) ≤ 0}
(Pt) γ(t) = inf{f(x) + tp(x) : x ∈ K}.

For applying this result in the reformulation of (IP-MSSC) we first show that F (U, V ) is a
DC function. Using the equation 2g1g2 = (g1 + g2)2 − (g2

1 + g2
2) we can express F (U, V ) as

F (U, V ) = 1
2

n∑
k=1

c∑
i=1

[(
u2
ik + ‖xk − vi‖2

)2 − (u4
ik + ‖xk − vi‖4

)]
.

Hence the following DC decomposition of F (U, V ) seems to be natural :

F (U, V ) := G0(U, V )−H0(U, V ) (7.5)

where

G0(U, V ) =
1

2

n∑
k=1

c∑
i=1

(
u2
ik + ‖xk − vi‖2

)2 (7.6)

and

H0(U, V ) =
1

2

n∑
k=1

c∑
i=1

(
u4
ik + ‖xk − vi‖4

)
(7.7)

are clearly convex functions.
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Let Ti be a box containing the ball Ri (i = 1, ..., c) and let T := Πc
i=1Ti. Hence C ⊂ T .

Consider the function p defined on IRc×n by

p(U) :=
c∑
i=1

n∑
k=1

uik(1− uik).

Clearly, p is finite concave on IRc×n, nonnegative on ∆n, and

∆n ∩ {0, 1}c×n = {U ∈ ∆n : p(U) = 0} = {U ∈ ∆n : p(U) ≤ 0}.

Using the above theorem we can now write (7.3) in the form of the following nonconvex program
in continuous variables :

min {F1(U, V ) := F (U, V ) + tp(U) : (U, V ) ∈ ∆n × T } , (7.8)

where t > t0 is called penalty parameter. Since C ⊂ T and C containing necessarily the optimum
centers vi,the following problem is equivalent to (7.8) :

min {F1(U, V ) := F (U, V ) + tp(U) : (U, V ) ∈ ∆n × C} . (7.9)

In the sequel we will consider the MSSC problem via the continuous formulation (7.9) with
t being sufficiently large. We will develop DC programming and DCA for solving (7.9).

7.2.2 A DC formulation for the resulting MSSC problem (7.9)

We first remark that, if F is a DC function with DC components G0 and H0 then the function
F1(U, V ) := F (U, V ) + tp(U) is DC too with DC components G0 and H0 − tp (remember that
p is concave function). Hence, the natural DC decomposition (7.5) of F involves the next DC
decomposition of F1 :

F1(U, V ) := G0(U, V )− [H0(U, V )− tp(U)] . (7.10)

However, from numerical point of views, the DCA scheme corresponding to this DC decomposi-
tion is not interesting because it requires an iterative algorithm for solving a convex program at
each iteration. We will propose another DC decomposition of F1(U, V ) for which the resulting
DCA is explicitly determined via a very simple formula. We rewrite F1(U, V ) as follows

F1(U, V ) =
[
ρ
2 ‖(U, V )‖2

]
−
[
ρ
2 ‖(U, V )‖2 − F1(U, V )

][
ρ
2 ‖(U, V )‖2

]
−
[
ρ
2 ‖(U, V )‖2 − F (U, V )− tp(U)

] (7.11)

Since −tp(U) is convex, it suffices to compute ρ such that H(U, V ) := ρ
2 ‖(U, V )‖2−F (U, V )

is convex to get a DC decomposition of F1(U, V ). We have

H(U, V ) =
ρ

2
‖(U, V )‖2 −

n∑
k=1

c∑
i=1

u2
ik||xk − vi||2

=

n∑
k=1

c∑
i=1

ρ

2
u2
ik +

ρ

2n
‖xk − vi‖2 − u2

ik‖xk − vi‖2 +
ρ

n
〈xk, vi〉 −

ρ

2n
‖xk‖2 .

209



Minimum Sum-of-Squares Clustering

Let us consider the function θi,k : IR× IR→ IR defined by

θi,k(uik, vi) = ρ
2 u

2
ik + ρ

2n‖xk − vi‖
2 − u2

ik‖xk − vi‖2 . (7.12)

The Hessian of θi,k is given by :

Hθi,k(uik, vi) =

(
ρ− 2‖xk − vi‖2 −4uik‖xk − vi‖2
−4uik‖xk − vi‖2 ρ

n − 2u2
ik

)
. (7.13)

The function θi,k(uik, vi) is convex on {0 ≤ uik ≤ 1, ‖vi‖ ≤ r} if the determinant of Hθi,k(uik, vi)
is positive and ρ− 2‖xk − vi‖2 > 0, ρn − 2u2

ik > 0 for all 0 ≤ uik ≤ 1, ‖vi‖ ≤ r. Hence, we deduce
that for all

ρ ≥ n

[
1
n ξ

2 + 1 +

√[
1
n ξ

2 + 1
]2

+ 12
n ξ

2

]
, with ξ = r + max1≤k≤n ‖xk‖ , (7.14)

θi,k is convex on {0 ≤ uik ≤ 1, ‖vi‖ ≤ r}.
As a consequence, the function hi,k defined by

hi,k(uik, vi) = θi,k(uik, vi) +
ρ

n
〈xk, vi〉 −

ρ

2n
‖xk‖2

is convex. Finally, since

H(U, V ) :=
ρ

2
‖(U, V )‖2 − F (U, V ) =

n∑
k=1

c∑
i=1

hi,k(uik, vi),

the function H(U, V ) is convex on ∆n × C with ρ satisfying (7.14). �
Assume in the sequel that the function H is defined with a ρ satisfying the condition (7.14).

We can express our second DC decomposition of F1 as follows :

F1(U, V ) := G1(U, V )−H1(U, V ) (7.15)

with

G1(U, V ) :=
ρ

2
‖(U, V )‖2 , H1(U, V ) := H(U, V )− tp(U)

being clearly convex functions. Now, the optimization problem (7.4) can be written as

min
{
χ∆n×C(U, V ) +

ρ

2
‖(U, V )‖2 −H1(U, V ) : (U, V ) ∈ (U, V ) ∈ IRc×n × IRc×d

}
. (7.16)

7.2.3 DCA applied to (7.16)

The function H1 is differentiable and its gradient at the point (U l, V l) is given by :

(Y l, Z l) = ∇H1(U l, V l) where

Y l
k,i =

((
ρulik − 2ulik

)
‖xk − V l

i ‖2 + 2tulik − t
)k=1,...n

i=1,...c
,

Z li =

(
ρV l

i − 2
n∑
k=1

(V l
i − xk)(ulik)2

)
i=1,...c

.
(7.17)
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The projection of (U, V ) on ∆n × C can be separably computed as(
U l+1

)k
= Proj∆

((
Y l
)k)

k = 1, ...n, V l+1
i = Pr ojRi

(
1
ρ(Z l)i

)
i = 1, ...c. (7.18)

For computing the projection of points onto a simplex ∆, some efficient algorithms are available
among them we use the very inexpensive algorithm developed in [116]. The projection of points
onto a ball is explicit. The algorithm can be described as follows.

Algorithm 7.1 IP-DCA : DCAP2 applied to (7.16)

1: Initialization : Choose the memberships U0 and the cluster centers V 0. l← 0.
2: repeat
3: Compute Y l and Z l via (7.17).
4: Define (U (l+1), V (l+1)) by setting :(

U (l+1)
)k

= Proj∆

((
Y l
)k)

for k = 1, ...n,

V
(l+1)
i = Pr ojRi

(
1

ρ
(Z l)i

)
=


(Zl)i,.
ρ if ‖(Z l)i,.‖ ≤ ρr

(Zl)i.r
‖(Zl)i‖

otherwise
.

(i = 1, .., c)

5: l← l + 1.
6: until Stopping criterion.

Remark 7.1 a) With the DC decomposition (7.15) the resulting DCA is simple :each iteration
of DCA consists of computations of the projection of points onto a simplex ([116]) and/or onto a
ball, that all are explicitly computed. So DCA do not require an iterative method at each iteration
as in the DCA scheme applied to the first DC decomposition (7.10).

b) Theoretically, (7.14) gives a sufficient condition to obtain a value ρ0 such that the functions
1
2ρ‖(U, V )‖2−F (U, V ) is convex for all ρ ≥ ρ0. But this is not a necessary condition, that means,
when 0 < ρ < ρ0 the function 1

2ρ‖(U, V )‖2−F (U, V ) may be still convex. In such a case the DC
decompostion (7.15) is still valid.

c) On a numerical point of view, from the description of DCA we observe that, among the
values ρ such that 1

2ρ‖(U, V )‖2 − F (U, V ) is convex, the smaller ρ is, the less important the
concave part −h(x) := −1

2ρ‖(U, V )‖2 − F (U, V ) will be, and then the more efficient IP-DCA
is. Hence it is interesting to find a tight lower bound of ρ and choose ρ as small as possible. In
practice, based on the "descent" property of DCA, such values can be determined via a dynamic
computation of ρ during DCA’s steps as shown in the procedure "Update ρ" below.

For finding a good value of ρ we star DCA with ρ0 computed by (7.14), and then, at each
iteration l, reduce ρ while the sequence

{
f(xl)

}
decreases. The procedure can be described as

follows.
Procedure Update ρ : let x0 be given in IRd and let τ be a number such that 0 < τ < 1.

Set l := 0, STOP :=false
While not STOP do

— Set ρ := τρl.
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— Calculate xl+1 = ProjC((ρxl −∇f(xl)/ρ).

— If f(xl+1) > f(xl) then STOP := true, else set l← l + 1, ρl ← ρ

Ouput : set ρ := ρl, x
0 := xl.

We then continue to apply IP-DCA with this value of ρ and from the point x0.
Note that we can again refine this procedure by modifying τ at each iteration.

7.2.4 An interpretation of DCA : why DCA is better than k-means ?

In the MSSC formulation (7.1) the variable U corresponds to the affectation of objects to
clusters while the variable V stands for centers of clusters. The computation of U l+1 at iteration
l of DCA can be interpreted as the affectation of objects to clusters with centers V l

i , i = 1, ..., c
(that are defined at iteration l−1) while the calculation of V l+1 is nothing but the determination
of the new center of clusters. There are actually some similarities between DCA and the k-means
algorithm. However DCA enjoys the main advantage that might explain why DCA is better than
k-means : in DCA U l+1 and V l+1 are separately but simultaneously computed in the way that
U l+1 as well as V l+1 depend on both U l and V l, while k-means determines them alternatively
and V l+1 depends on U l+1. In other words DCA determines at the same time the clusters and
their centers.

7.3 Solving a Kernel version of MSSC problems by DCA

We introduce a Gaussian Kernel version of bilevel formulation of MSSC (7.2), called (GKM-
SSC), and develop a new DCA based algorithm for solving it.

7.3.1 Kernel Minimum Sum-of-Square Clustering

Let φ : IRm −→ H be a transformation that maps each data xi from the input space IRm to a
new space H, being a Hilbert space, where the given algorithm can be used. Such transformation
is done implicitly by means of a kernel function [100] K, satisfying :

K(xi, xj) = 〈φ(xi), φ(xj)〉.

Mercer’s theorem guarantees that as long as the corresponding matrix K of kernel function is
positive definite, the algorithm implicitly operates in a higher dimensional space. This kernel
trick saves the algorithm from the computational expense of explicitly representing all of the
features in a higher-dimensional space.

With a kernel function φ the objective function of (7.2) becomes

fK(V ) :=

n∑
k=1

min
i=1,...c

‖φ(xk)− φ(vi)‖2 . (7.19)

Since

‖φ(xk)− φ(vi)‖2 = 〈φ(xk), φ(xk)〉 − 2〈φ(xk), φ(vi)〉 + 〈φ(vi), φ(vi)〉
= K(xk, xk)− 2K(xk, vi) +K(vi, vi), (7.20)

the kernel version of (MSSC) takes the form

(KMSSC)
{

min
V

{
fK(V ) :=

n∑
k=1

min
i=1,...c

(
K(xk, xk)− 2K(xk, vi) +K(vi, vi)

)}
.
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This is named "Kernel Minimum Sum-of-Square Clustering" problem or KMSSC in short.
Using a given kernel function we will get its corresponding KMSSC model. Obviously, from

numerical points of view, the degree of difficulty of the KMSSC problem varies from each to
other model. Among several kernel functions we consider in this chapter the Gaussian kernel. We
will see in the next that this choice is interesting : we can investigate simple and efficient DCA
based algorithm for solving the corresponding problem which is so named GKMSSC .

By replacing the Gaussian kernel function k(x, y) := exp
(
−‖x−y‖

2

2σ2

)
in the objective function

of (KMSSC) we have :

fGK(V ) =
n∑
k=1

min
i=1,...c

[
exp

(
− ‖xk−xk‖

2

2σ2

)
− 2 exp

(
− ‖xk−vi‖

2

2σ2

)
+ exp

(
− ‖vi−vi‖

2

2σ2

)]
=

n∑
k=1

min
i=1,...c

[
2− 2 exp

(
−‖xk−vi‖

2

2σ2

)]
.

Then the optimization model of the Gaussian kernel MSSC takes the form

(GKMSSC) min

{
FGK(V ) :=

n∑
k=1

min
i=1,...c

[
− 2 exp

(
−‖xk − vi‖

2

2σ2

)]}
. (7.21)

We will show in the next section how to investigate DCA for solving the GKMSSC problem.

7.3.2 DC formulation of the GKMSSC problem

First of all, by bounding the variable V in the box T := Πc
i=1Ti with Ti := Πd

j=1 [ζj , βj ]
and ζj := mink=1,...,n xk,j , βj := maxk=1,...,n xk,j , we can express the unconstrained optimization
problem (KMSSC) as a constrained optimization problem whose feasible set is T .

Our DC decomposition of FGK(V ) is based on the similar DC decomposition in (7.11). Define

fki(V ) = − 2 exp
(
−‖xk−vi‖

2

2σ2

)
. (7.22)

Denote by Hf (x) the Hessian matrix of f at x and λn(Hf (x)) the largest eigenvalue of the Hf (x).
We have, for all ρ ≥ 2

σ2 ≥ λn(Hfki(V )) = 2
σ2 exp

(
−‖xk−vi‖

2

2σ2

)
, the function ρ

2‖vi‖
2 − fki(V ) is

convex on Ti. Then with ρ ≥ 2
σ2 , we get the following DC decomposition of fki(V ) :

fki(V ) := gki(V )− hki(V ), gki(V ) = ρ
2‖vi‖

2, hki(V ) = ρ
2‖vi‖

2 − fki(V ). (7.23)

It follows that, for k = 1 . . . n,

fk(V ) := min
i=1..c

fki(V ) = min
i=1..c

gki(V )− hki(V )

= min
i=1..c

(∑c
l=1 gkl(V )−

∑
l=1..c,l 6=i

gkl(V )

)
− hki(V )

=
∑c

l=1 gkl(V )− max
i=1..c

( ∑
l=1..c,l 6=i

gkl(V ) + hki(V )

)

= ρ
2

c∑
l=1

‖vl‖2 − max
i=1..c

( ∑
l=1..c,l 6=i

ρ
2‖vl‖

2 + ρ
2‖vi‖

2 − fki(V )

)
= ρ

2

c∑
i=1
‖vi‖2 − max

i=1..c

(
ρ
2

c∑
i=1
‖vi‖2 − fki(V )

)
.

(7.24)
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Consequently, the objective function of (GKMSSC) can be now written as

FG(V ) =
n∑
k=1

fk(V ) = G2(V )−H2(V ), (7.25)

where G2(V ) := nρ
2

c∑
i=1
‖vi‖2 and H2(V ) :=

n∑
k=1

max
i=1..c

(
ρ
2

c∑
i=1
‖vi‖2− fki(V )

)
are convex functions.

Hence, we can recast Problem (GKMSSC) as a DC program

min {G2(V )−H2(V ) : V ∈ T } . (7.26)

7.3.3 DCA applied to DC program (7.26)

The DCA scheme applied to (7.26) amounts to computing the two sequences {V l} and {W l}
in IRc×d such that

W l ∈ ∂
(
H2(V l)

)
(7.27)

and

V (l+1) ∈ arg min

{
nρ

2

c∑
i=1

‖Vi‖2 − 〈W l, V 〉 : V ∈ T

}
(7.28)

or again
(Vi)

(l+1) = Pr ojTi
(

(wi)
(l)/(nρ)

)
, for i = 1..c. (7.29)

Note that the projection of points onto a box is explicitly computed.
A gradient of H2(X) is computed as follows :

W ∈ ∂H2(V )⇔W =
n∑
k=1

∂hk(V ), (7.30)

where hk(V ) := max
i=1..c

hki(V ) and hki(V ) = ρ
2

c∑
i=1
‖vi‖2 − fki(V ).

Let Ik(V ) := {i = 1, . . . , c : hki(V ) = hk(V )}. We have :

∂hk(V ) = co
{
∪i∈Ik(V )∂hki(V )

}
,

where co stands for the convex hull. Hence ∂hk(V ) is a convex combination of {∇(hki)(V ) : i ∈
Ik(V )}, i.e.,

∂hk(V ) =
∑

i∈Ik(V )

λ
[j]
i ∇(hki)(V ) with λ[k]

i ≥ 0 for i ∈ Ik(V ) and
∑

j∈Ik(V )

λ
[k]
i = 1. (7.31)

The gradient of hki(V ) is computed as (for q = 1, ..., c)

[∇(hki)(V )]q = ρvi −
2

σ2
. exp

(
−‖xk − vi‖

2

2σ2

)
(vi − xk) if q = i, 0 otherwise. (7.32)

Finally, W ∈ ∂H2(V ) is determined via the formulas (7.30), (7.31) and (7.32). From the above
computations, the DCA applied to problem (7.26) can be described as follows :
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Algorithm 7.2 GK-DCA : DCA applied to (7.26)

1: Initialization : Let V 0 be given. Set l← 0.
2: repeat
3: Compute W l ∈ ∂H2(V l) via the formulas (7.30), (7.31) and (7.32).
4: Compute xk+1 = argminx∈X

{
G(x)− 〈yk, x〉

}
.

5: Compute V (l+1) via (7.29).
6: k ← l + 1.
7: until Stopping criterion.

7.3.4 A regularized version of GK-DCA

Since we work on the projection space, it can happen, due the computation of V l
i in GK-DCA,

that some V l
i are coincide. It imply that there are some empty clusters. To avoid this situation

we propose a regularization technique by adding the convex term τ
2‖V ‖

2 in each DC component
G2(V ) and H2(V ) to get the following DC program (τ is a positive number) :

FGK(V ) =
(
G2(V ) +

τ

2
‖V ‖2

)
−
(
H2(V ) +

τ

2
‖V ‖2

)
, (7.33)

DCA applied to the regularized problem (7.33), called GK-RDCA is nothing else GK-DCA
with a little modification : in (7.30) W is replaced by W + τV , and in (7.28) and (7.29) nρ is
replaced by nρ+ τ .

7.4 VNS for initializing DCA

Finding a good starting point is a challenge in designing DCA schemes for DC programs.
The search of such a point depends on the structure of the problem being considered. Generally,
a good starting point for DCA must not be a local minimizer, because DCA is stationary from
such a point. For this problem, we use a simple and effective metaheuristic (or framework for
heuristics) called Variable Neighborhood Search (VNS) [167].

The principle of VNS is to change and randomly explore neighborhoods with an appropriate
local search routine. Contrary to other metaheuristics, e.g., simulated annealing or Tabu search ,
VNS does not follow a trajectory but explores increasingly distant neighborhoods of the current
incumbent solution, and jumps from there to a new one if and only if an improvement has been
made, through a local search.

Let us denote a finite set of pre-selected neighborhood structures with Nl(l = 1, . . . , lmax)
and with Nl(x) (and preferably such as Nl ⊂ Nl+1) the set of solutions in the lth neighborhood
of x.

The basic VNS heuristic, applied to the problem min{f(x) : x ∈ S}, is summarized in
Algorithm 7.3.

Note that (VNS) uses only one parameter lmax which can often be disposed of, e.g., by setting
it equal to the size of the vector x considered.

For all the problems considered the neighborhood structure Nl(x) is defined by the Hamming
distance γ between solutions X and x′ (i.e., the number of components in which these vectors
differ) :

γ(x, x′) = l⇐⇒ x′ ∈ Nl(x).

The local search routine is two step of K-Means algorithm on the neighborhood Nl(x).
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Algorithm 7.3 VNS
1: Initialization. Select a set of neighborhood structures Nl, that will be used in the search ;

choose an initial solution x.
2: repeat
3: l← 1
4: repeat
5: Shaking. Generate randomly a point x′ in the neighborhood of x (x′ ∈ Nl(x)).
6: Local search. Apply some local search method with x′ as initial solution ; denote with

x′′ the obtained solution.
7: Move or not. If x′′ is better than x, move there (x ← x′′), and continue the search

with N1(l← 1) ; otherwise, set l← l + 1.
8: until l = lmax
9: until Stopping criterion.

7.5 Numerical experiments

Datasets. Numerical experiments were performed on several real world datasets taken from
UCI Machine Learning Repository. The information about datasets is summarized in Table 7.1.
We have implemented the algorithms in the V.S C++ v6.0 environment and performed the
experiments on a Intel Duo Core 3.06GHz, with 4Go of RAM.

Table 7.1 – Datasets

Dataset Points Dimension Number of classes
Pima 768 8 2
Yeast 1484 8 10
ADN 3186 60 3
Vote 435 16 2
Lympho 148 18 4
Waveform 5000 40 3
Papillon 23 4 4
Iris 150 4 3
Ionosphere 315 34 3
Wine 178 13 3
Breast 683 9 2
Statlog 4435 36 6
Glass 214 10 6
Comp 3891 10 3

Comparative algorithms. Three DCA based algorithms have been implemented : IP-DCA,
GK-RDCA and the DCA applied on the bilevel formulation developed in [123] named B-DCA.
For each DCA based algorithm, two variants have been considered that differ from one of other
by the choice of initial point :

— IP-DCA-Rand / GK-RDCA-Rand / B-DCA-Rand : apply DCA from randomly
chosen k centers in T .

— IP-DCA-VNS / GK-RDCA-VNS / B-DCA-Rand : apply DCA after performing
some iterations of the VNS algorithm from k centers randomly chosen.
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Setting. In the Gaussian Kernel regularized algorithm GK-RDCA the regularized parameter τ
is chosen as 0.1 for the first ten data and as 0.2 for others. The value of σ in the Gaussian kernel
function is taken in the interval [0.5, 10].

For computing ρ, we use the procedure Update ρ in IP-DCA while in GK-RDCA we take
ρ = 2

σ2 .
The two main criteria used for comparing the performances of algorithms are the percentage of

well classified objects (PWCO), and the running time in seconds. For giving more informations
about the quality of clustering algorithms we also report, in the last experiment, three other
criteria that are the Rand index, the inertia interclass and intraclass inertia.

The Rand index (named by William M. Rand), simply measures the number of pairwise
agreements. Let’s denote, for every instance xi, its initial class by Iref (xi) and its cluster obtained
from the clustering algorithm by Iclass(xi). The Rand index is defined by :

RandI =
a+ d

a+ b+ c+ d
, (7.34)

where
a = | {i, j | Iref (xi) = Iref (xj) & Iclass(xi) = Iclass(xj)} |,
b = | {i, j | Iref (xi) = Iref (xj) & Iclass(xi) 6= Iclass(xj)} |,
c = | {i, j | Iref (xi) 6= Iref (xj) & Iclass(xi) = Iclass(xj)} |,
d = | {i, j | Iref (xi) 6= Iref (xj) & Iclass(xi) 6= Iclass(xj)} | .

(7.35)

The intraclass inertia is a measure of how compact each cluster is when the number of cluster
is fixed. The dispersion of classes from the center of gravity of the points is called the interclass
inertia. They are defined as follows :

IIntra = 1
n

c∑
j=1

∑
xi∈Cj

‖xi − vj‖2,

IInter = 1
n

c∑
j=1

nj‖vj − v∗‖2,
(7.36)

where nj is the number of points in cluster Cj , v̄j is the center of gravity of cluster Cj and v∗ is
the center of gravity of all points xi.

Our experiments are composed of five parts.

Experiment 1
In the first experiment we are interested in the effectiveness of the first approach, say DCA

applied to the integer nonconvex programming (IP-MSSC). For this purpose we compare the
two DCA schemes applied to the two formulations of MSSC : the bilevel formulation (B-MSSC)
and the mixed integer programming (IP-MSSC). In Figure 7.1, the best PWCO of IP-DCA-VNS
and B-DCA-VNS over 10 executions are reported. We also report the CPU time of the execution
that achieved the best PWCO. The mean and the standard deviation are given in Table 7.2.

We observe that the quality of two DCA based algorithms applied on the bilevel formulation
and the integer programming formulation are comparable, and moderately IP-DCA is slightly
better. IP-DCA gives better results, with an important gain of PWCO, on three datasets (Yeast
5.89%, Lympo 5.80%, Wave 9.7%) while B-DCA is better on one dataset (Stalog, with the gain
4.9%). For other datasets, the difference of PWCO given by the two algorithms is quite small,
and it is less than 2% in all most cases. The average of PWCO of IP-DCA is 81.17 and that of
B-DCA is 80.47 (cf. Table 7.2). Both algorithms are very fast and B-DCA is somewhat faster.

Experiment 2
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Figure 7.1 – Comparative results of IP-DCA-VNS and B-DCA-VNS

In the second experiment, we are interested in the impact of kernel method. We compare
the two DCA based algorithms applied on the bilevel formulation, with and without kernel, say
B-DCA-VNS and GK-RDCA-VNS. The best results out of 10 executions for each algorithm are
given in Figure 7.2.

We can see that the kernel algorithm GK-RDCA is very efficient. In most of cases GK-RDCA
gives the best results (except for Statlog and Glass), with a very slight increase in the running
time.

Experiment 3
The third experiment deals with the effect of starting points for DCA. We compare two

variants (with and without VNS procedure) of two new DCA based algorithms (IP-DCA and
GK-RDCA). The comparative results (best result over 10 executions) are presented in Figure
7.3 and 7.4.

From the computational results we observe that using VNS for the initial point improves the
result, in all most of cases.
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Figure 7.2 – Comparative results of B-DCA-VNS and GK-DCA-VNS

Experiment 4
In this experiment, we are interested in the effectiveness of IP-DCA when the value of para-

meter ρ varies. Note that the Update ρ proceduce can also be used for GK-DCA but the ρ0 in
GKMSSC is small and a slightly smaller value do not influence on the quality of GK-DCA .

For this purpose, we arbitrarily choose a data set (Iris) and then vary the value of ρ from 178
(the value obtained by applying (7.14)) to 25 (the value computed by the procedure Update ρ).
We report in Figure 7.5 the PWCO and the number of iterations of IP-DCA for each value of ρ.

We observe that, not surprisingly, the smaller ρ is, the more efficient IP-DCA is (in term of
PWCO). The best value of ρ is 30 (on both PWCO and number of iterations) which is much
more smaller than the theoretical value given by (7.14).

Experiment 5
In the last experiment we compare the performance between six variants of DCA based

algorithms as well as those with k-means, Gaussian kernel k-means algorithms (GK-k-mean) and
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Figure 7.3 – IP-DCA with and without VNS for starting point

VNS algorithm(VNS ).
For every data instance, we perform each algorithm 10 times from 10 random starting points

and report in Table 7.2 the mean and the standard deviation of each criterion.
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Figure 7.4 – GK-RDCA with and without VNS for starting point

Figure 7.5 – Results of IP-DCA when the value of parameter ρ varies
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Overall, all DCA based algorithms are efficient : the PWPO given by these algorithms is
greater than 70% in 12/15 datasets and the average of PWCO on all datasets is greater than
79%, while running times are less than 0.2 second. Morerover, DCA based algorithms are much
better than k-means and GK-k-means on the quality of solutions. The rapidity of DCA and
k-means are comparable while GK-k-means is much slower : the running time of GK-k-means
varies from 2 to 216 seconds while the one of other algorithms is less than 0.2 second.

7.6 Conclusion

We have proposed two new and efficient based DCA algorithms for solving the MSSC problem.
The hard combinatorial optimization MSSC model has been recast as a DC program in its
elegant matrix formulation and with a nice DC decomposition, in order to make simpler and
so much less expensive the computations in the resulting DCA. It fortunately turns out that
the corresponding DCA consists in computing, at each iteration, the projection of points onto a
simplex and/or a ball, that all are given in the explicit form. In addition, a kernel version of the
bilevel formulation of the MSSC has been considered. The choice of the Gaussian kernel method
is to facilitate not only the formulation of the problem, but also the implicit projection of the
data in a space where the representation is richer and the resolution of the problem is simpler.
For both DCA schemes, the two main features of DCA were carefully studied. The choice of DC
decomposition is judicious, and the regularization technique is very useful in the context of hard
clustering. Like IP-DCA, the resulting GK-DCA is very simple, it requires, at each iteration, the
explicit projection of points onto a box. For initializing DCA, a local search procedure VNS is
proposed. Numerical results on several real datasets showed the robustness, the effectiveness and
the superiority of the DCA based schemes with respect to the k-means based algorithms. We are
convinced that DCA is an efficient, fast and scalable approach for clustering.
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Chapitre 8

Minimum Sum-of-Squares Clustering
using weighted dissimilarity measures1

Abstract: In this chapter, we address the MSSC (Minimum Sum-of-Squares Clustering) using weighted
dissimilarity measures. Two most widely used models of MSSC( bilevel program and mixed integer pro-
gram) are studied. It turns out that both optimization problems can be reformulated as a DC program and
then efficient DCA algorithms are developed. Experimental results on real world datasets have illustrated
the efficiency of our proposed algorithms and its superiority with respect to standard algorithms in terms
of quality of solution.

8.1 Introduction

Feature selection is one of the techniques to deal with irrelevant or redundant features. Feature
selection methods aim to select a subset of features that minimize redundancy while preserving
or improving the classification rate of algorithm. On the other hand, feature weighting that can
be seen as an extension of feature selection, has attracted the attention of many researchers. In
feature selection, a feature is assigned a binary decision variable (value 1 implies that the feature
is selected while value 0 means that it will be removed). In feature weighting, each feature is
assigned a continuous value, named a weight, in the interval [0, 1]. Relevant features correspond
to a high weight value, whereas a weight value close to zero represent irrelevant features. The
difference between feature selection and weighting feature is that weighting feature does not aim
to reduce the number of used features in clustering. The main objective of feature weighting is
to improve the quality of classification algorithm.

Feature weighting has been applied successfully in many classification algorithms. Feature
weighting in SVMs [63], in K-Means type clustering [47, 109, 156], in Fuzzy classification [101],
etc to name a few. In this chapter, we deal with the MSSC (Minimum Sum of Squares Clustering)
using weighted features. Recall that, in Chapter 7, we have presented two most used models that
are the mixed integer program (7.1) and the bilevel programming problem (7.2). We now intro-
duce the feature weighting to these two models. In feature weighing, the dissimilarity measure

1. The results presented in this chapter were published in :

• H.M. Le, M.T. Ta, DC Programming and DCA for Solving Minimum Sum-of-Squares Clustering Using
Weighted Dissimilarity Measures, Transactions on Computational Intelligence XIII, 113-131, 2014.
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between a center vi and a data point xk is now defined by d weighted features, namely

d2
WF (vi, xk) =

d∑
j=1

λβij(vij − xkj)
2,

where λij ∈ [0, 1] defines the weight (degree of relevance) of j-th feature to the cluster Ci. Hence
the bilevel programming formulation of MSSC using weighted features is given by

minF1(V,Λ) :=
n∑
k=1

min
i=1,...,c

d∑
j=1

λβij(vij − xkj)2

s.t :
d∑
j=1

λij = 1, i = 1..c,

λij ∈ [0, 1], i = 1..c, j = 1..d.

(8.1)

Similarly, we have the mixed integer formulation of MSSC using weighted dissimilarity measure :

minF2(U, V,Λ) :=
c∑
i=1

n∑
k=1

d∑
j=1

uikλ
β
ij(vij − xkj)2

s.t :
c∑
i=1

uik = 1, k = 1..n,

d∑
j=1

λij = 1, i = 1..c,

uik ∈ {0, 1}, i = 1..c, k = 1..n,

λij ∈ [0, 1], i = 1..c, j = 1..d.

(8.2)

where β is an exponent greater than 1.
While several heuristic and deterministic approaches have been investigated to MSSC, there is

a few deterministic methods dealing with weighted MSSC models. In [47], the authors considered
a K-means type algorithm, named WF-KM, to solve the problem (8.2). At first, WF-KM fixes
V,Λ and finds U to minimize F (U, ., .). Then U,Λ are fixed for finding V minimizing F (., V, .).
Finally, Λ is obtained by minimizing F (., .,Λ) with U and V fixed. The process is repeated until
no more improvement in the objective function can be made. In [156], the authors proposed
a variance of (8.2) by adding the entropy of dimensions, namely γ

∑d
k=1 λij logλij , to objective

function. By modifying the objective function, the algorithm can avoid the problem of identifying
clusters by few dimensions in sparse data. In another work ([109]), a simplified version of (8.2)
was considered where the matrix of weights Λ becomes a vector Λ̄. More precisely, Λ̄k defines the
relevance of k-th feature to all cluster Ci (i = 1..c). The proposed algorithms in [156] and [109]
are similar to the WF-KM developed in [47].

Based on the algorithms we have developed in Chapter 7 for the mixed integer program (7.1)
and the bilevel programming problem (7.2), we develop similar algorithm to solve (8.1) and (8.2).

The remainder of the chapter is organized as follows. In Section 8.2, we present DCA based
algorithms for solving (8.1) and (8.2). Numerical results on real datasets and some remarks will
be presented in the Section 8.4.

8.2 DCA for solving MSSC using weighted features

We will adapt the techniques developed in Chapter 7 for getting DC formulations and cor-
responding DCA for solving (8.1) and (8.2).
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8.2.1 DCA for solving the bilevel formulation (8.1)

In the problem (8.1) the variable Λ are a priori bounded. One can also find a constraint
to bound the variable V . Let αi := mink=1,...,n xkj , γi := maxk=1,...,n xkj . Hence vi ∈ Tl :=
Πd
j=1 [αi, γi] for all i = 1, ..., c. Finally, V ∈ T := Πc

i=1Ti. Let ∆i be the (m− 1)-simplex in IRm,
for each i ∈ {1, ..., c}, defined by :

∆i :=

{
Λi := (λij)i ∈ [0, 1]d :

d∑
j=1

λij = 1

}
and T := Πc

i=1 Ti,∆ := Πc
i=1∆i.

Then the problem (8.1) can be rewritten as :

min {F1(V,Λ) : V ∈ T ,Λ ∈ ∆} . (8.3)

Denote fi(vij , λij) =
d∑
j=1

λβij(vij − xkj)2. Then

F1(V,Λ) =
n∑
k=1

min
i=1,...,c

fi(vij , λij). (8.4)

We can see that fi can be decomposed as follows

fi(vij , λij) = gi(vij , λij)− hi(vij , λij)

where gi(vij , λij) =
d∑
j=1

(ρ12 v
2
ij + ρ1

2 λ
2
ij) and hi(vij , λij) =

d∑
j=1

[
(ρ12 v

2
ij + ρ1

2 λ
2
ij)− λ

β
ij(vij − xkj)2

]
.

On another hand, one has

min
i=1,...,c

fi = min
i=1,...,c

(gi − hi) =
c∑
i=1

gi − max
i=1,...,c

{ c∑
p=1,p 6=i

gp + hi

}
(8.5)

By applying the above formula to the objective function of (8.4), we obtain :

F1(V,Λ) =
n∑
k=1

c∑
i=1

gi −
n∑
k=1

max
i=1,...,c

{ c∑
p=1,p 6=i

gp + hi

}
= G1(V,Λ)−H1(V,Λ) (8.6)

where

G1(V,Λ) =
n∑
k=1

c∑
i=1

gi

and

H1(V,Λ) =
n∑
k=1

max
i=1,...,c

{ c∑
p=1,p 6=i

d∑
j=1

ρ1

2
(v2
pj+λ

2
pj) +

d∑
j=1

[ρ1

2
(v2
ij + λ2

ij)− λ
β
ij(vij − xkj)

2
]}
.

Clearly, G1(V,Λ) is a convex function. On another hand, H1(V,Λ) is also convex according
to following Proposition.
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Proposition 8.1 There exists ρ1 > 0 such that the function H1 is a convex function on {V ∈ T ,Λ ∈ ∆}.

Proof 8.1 We consider the function f1 : R× R→ R defined by :

f1(v, y) = yβ(v − a)2. (8.7)

The Hessian of f1 is given by :

J(v, y) =

(
2yβ 2β(v − a)yβ−1

2β(v − a)yβ−1 β(β − 1)(v − a)2yβ−2

)
. (8.8)

We have for the determinant of J(v, y) (with λ is a eigenvalue) :

det |J(v, y)| = (2yβ − λ)[β(β − 1)(v − a)2yβ−2 − λ]− [2β(v − a)yβ−1]2 .

Hence :
λ1,2 =

1

2
∗
{

[2yβ + β(β − 1)(v − a)2yβ−2]± sqrt(4)
}

(8.9)

where λ1,2 are eigenvalues and

4 = [2yβ − β(β − 1)(v − a)2yβ−2]2 + 4 ∗ [2β(v − a)yβ−1]2.

Hence, the function :
h1(v, y) =

ρ1

2

(
v2 + y2

)
− yβ(v − a)2 (8.10)

is convex on {v ∈ [α, σ], y ∈ [0, 1]} if :

ρ1 ≥
1

2
∗
(

2 + β(β − 1)γ2 +
√

4 + β2(β − 1)2γ4 + 12β2γ2 + 4βγ2
)

(8.11)

where γ = σ − α and β > 1.
As a consequence, for v ← vij , y ← λij, the function

hli(vij , λij) =
ρ1

2

(
v2
ij + λ2

ij

)
− λβij(vij − xkj)

2 (8.12)

is convex on {vij ∈ [αi, γi], λij ∈ [0, 1]}
Hence, the function H1(V,Λ) is convex on {V ∈ T ,Λ ∈ ∆}. �

DCA applied to (8.6). According the generic DCA scheme, at each iteration, we have to
compute (Z̄ l, Λ̄l) ∈ ∂H1(Z l,Λl) and then solve the convex program :

min


n∑
k=1

c∑
i=1

d∑
j=1

(ρ1

2
v2
ij +

ρ1

2
λ2
ij

)
− 〈(V,Λ), (, Z̄ l, Λ̄l)〉 : V ∈ T ,Λ ∈ ∆

 . (8.13)

We have
H1(V,Λ) =

n∑
k=1

Hk(V,Λ) (8.14)

where Hk(V,Λ) = max
i=1,...,c

Hki(vij , λij) and

Hki(vij , λij) =

c∑
p=1,p 6=i

d∑
j=1

ρ1

2
(v2
pj + λ2

pj) +

d∑
j=1

[ρ1

2
(v2
ij + λ2

ij)− λ
β
ij(vij − xkj)

2
]
. (8.15)

230



Minimum Sum-of-Squares Clustering using weighted dissimilarity measures

Applying the usual rules in the calculations of subgradients of convex function, we get

∂H1(V,Λ) =
n∑
k=1

∂Hk(V,Λ) (8.16)

where (co denotes convex hull)

∂Hk(V,Λ) = co{∂Hki : Hki = Hk}. (8.17)

Hki is differentiable and

∇Hki
∇vrj =

{
ρ1vrj − 2λβri(vrj − xkj) if r = i

ρ1vrj if r 6= i
∀r = 1, ..., c,

∇Hki
∇λrj =

{
ρ1λrj − βλβ−1

rj (vrj − xkj)2 if r = i

ρ1vrj if r 6= i
∀r = 1, ..., c.

(8.18)

On another hand, the solution of the auxiliary problem (8.13) is explicitly computed as (ProjD
stands for the orthogonal projection on D) :

(V l+1)li = Proj[αi,γi]
(

1
nρ1

(Z̄ l)li

)
i = 1, ..., c, j = 1, ..., d;

(Λl+1)l = Proj∆l

(
1
nρ1

(Λ̄l)l

)
i = 1, ..., c.

(8.19)

Note that the projection of points onto a rectangle is explicit while there exists many efficient
methods for computing the projection of points onto a simplex ([116]).

The algorithm can be described in Algorithm 8.1.

Algorithm 8.1 BI-WF-DCA : DCA applied to (8.6)

1: Initialization : Choose an initial point (V 0,Λ0) and l← 0.
2: repeat
3: Compute (V̄ l, Λ̄l) via (8.14)-(8.18).
4: Compute (V l+1,Λl+1) via (8.19).
5: l← l + 1.
6: until Stopping criterion.

8.2.2 DCA for solving the mixed integer formulation (8.2)

In this section, we deal with the mixed integer programming problem 8.2. Since uik ∈
{0, 1} we can replace uik by u2

ik and rewrite the objective function of (8.2) by F2(U, V,Λ) :=
c∑
i=1

n∑
k=1

d∑
j=1

u2
ikλ

β
ij(vij − xkj)2. In the problem (8.2) the variables U and Λ are a priori bounded.

By the same way as in Section 3.1, the variable V can be bounded. Let Cj be the (k−1)-simplex
in IRk, for each j ∈ {1, ..., n}, defined by :

Cj :=

{
Wj := (uik)j ∈ [0, 1]k :

c∑
i=1

uik = 1

}
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and C := Πn
k=1 Cj , T := Πc

i=1 Tl,∆ := Πc
i=1∆l.

The problem (8.2) can be rewritten as :

min
{
F2(U, V,Λ) : U ∈ C ∩ {0, 1}c×n , V ∈ T ,Λ ∈ ∆

}
. (8.20)

8.2.2.1 A continuous reformulation

Our reformulation technique is based on the following new results developed in [145]. We first
show that F2(U, V,Λ) is a DC function. Clearly, F2(U, V,Λ) can be reformulated as :

F2(U, V,Λ) = G2(U, V,Λ)−H2(U, V,Λ) (8.21)

where

G2(U, V,Λ) :=
c∑
i=1

n∑
k=1

d∑
j=1

ρ2
2

(
u2
ik + v2

ij + λ2
ij

)
,

H2(U, V,Λ) :=
c∑
i=1

n∑
k=1

d∑
j=1

[
ρ2
2

(
u2
ik + v2

ij + λ2
ij

)
− u2

ikλ
β
ij(vij − xkj)2

]
.

(8.22)

It is easy to see that G2(U, V,Λ) is a convex function. H2(U, V,Λ) also a convex function by
following proposition.

Proposition 8.2 There exists ρ2 > 0 such that the function H2(U, V,Λ) is a convex function on
{U ∈ C, V ∈ T ,Λ ∈ ∆}.

Proof 8.2 First, we consider the function f2 : R× R→ R defined by :

f2(u, v, y) = u2yβ(v − a)2. (8.23)

The Hessian of f2 is given by :

J(u, v, y) =

 2yβ(v − a)2 4uyβ(v − a) 2βuyβ−1(v − a)2

4uyβ(v − a) 2u2yβ 2βu2yβ−1(v − a)
2uβyβ−1(v − a)2 2βu2yβ−1(v − a) β(β − 1)u2yβ−2(v − a)2

 .

The determinant |J(u, v, y)|1 of J(u, v, y) is defined by :

|J(u, v, y)|1 = max
{

2yβ(v − a)2 + 4uyβ(v − a) + 2βuyβ−1(v − a)2;

4uyβ(v − a) + 2u2yβ + 2βu2yβ−1(v − a);

2uβyβ−1(v − a)2 + 2βu2yβ−1(v − a) + β(β − 1)u2yβ−2(v − a)2
}
.

(8.24)

For all (u, v, y) : u ∈ {0, 1}, v ∈ [α, σ], y ∈ [0, 1], β > 1, we have :

|J(u, v, y)|1 < ρ2 : = max{2γ2 + 4γ + 2βγ2; 4γ + 2 + 2βγ;

2βγ2 + 2βγ + β(β − 1)γ2}
= max

{
4γ + 2(β + 1)γ2; 2 + 2(β + 2)γ; 2βγ + β(β + 1)γ2

}
where γ = σ − α.
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As a consequence, with ρ2 defined above, the function :

h2(u, v, y) =
ρ2

2

(
u2 + v2 + y2

)
− u2yβ(v − a)2 (8.25)

is convex on {u ∈ {0, 1}, v ∈ [α, σ], y ∈ [0, 1]}.
Hence, for u← uik, v ← vij , y ← λij, the function :

hlij(uik, vij , λij) =
ρ2

2

(
u2
ik + v2

ij + λ2
ij

)
− u2

ikλ
β
ij(vij − xkj)

2 (8.26)

is convex on {uik ∈ [0, 1], vij ∈ [αi, γi], λij ∈ [0, 1]}.

As a result, the function H2(U, V,Λ) is convex on {U ∈ C, V ∈ T ,Λ ∈ ∆}. �
Then F2(U, V,Λ) is a DC function with DC decomposition (8.21).

We will now reformulate (8.21) as a continuous optimization problem thanks to an exact
penalty technique ([145]) (c.f. Theorem 7.1).
Let us consider the function p defined on IRc×n by :

p(U) :=
n∑
k=1

c∑
i=1

uik(1− uik).

Clearly, p is finite concave on IRc×n, nonnegative on C, and

C ∩ {0, 1}c×n = {U ∈ C : p(U) = 0} = {U ∈ C : p(U) ≤ 0}.

By using Theorem 7.1, we obtain the following problem which is equivalent to problem (8.2) :

min
{
F̄2(U, V,Λ) := F2(U, V,Λ) + tp(U) : U ∈ C, V ∈ T ,Λ ∈ ∆

}
, (8.27)

where t > t0 is called penalty parameter.
We will now develop DC programming and DCA for solving (8.27). Remark that, if F2 is a

DC function with DC components G2 and H2 then the function F̄2(U, V,Λ) is also DC :

F̄2(U, V,Λ) : = G2(U, V,Λ)− H̄2(U, V,Λ) (8.28)

where H̄2(U, V,Λ) = H2(U, V,Λ)− tp(U).

8.2.2.2 DCA applied to (8.28)

For designing a DCA applied to (8.28), we first need to compute (W̄ l, Z̄ l, Λ̄l) ∈ ∂H̄2(W l, Z l,Λl)
and then solve the following convex program :

min
{ρ2

2

c∑
i=1

n∑
k=1

d∑
j=1

(
u2
ik + v2

ij + λ2
ij

)
− 〈(U, V,Λ), (W̄ l, Z̄ l, Λ̄l)〉 :

U ∈ C, V ∈ T ,Λ ∈ ∆
}
. (8.29)

The function H̄2 is differentiable and its gradient at the point (W l, Z l,Λl) is given by :

W̄ l = ∇W H̄2(U, V,Λ) =

(
mρ2uik −

d∑
j=1

2uikλ
β
ij(vij − xkj)2 + t(2uik − 1)

)i=1,...,c

k=1,...,n

,

Z̄ l = ∇ZH̄2(U, V,Λ) =

(
nρ2vij −

n∑
k=1

2u2
ikλ

β
ij(vij − xkj)

)j=1,...,d

i=1,...,c

,

Λ̄l = ∇ΛH̄2(U, V,Λ) =

(
nρ2λij −

n∑
k=1

βu2
ikλ

β−1
ij (vij − xkj)2

)j=1,...,d

i=1,...,c

.

(8.30)
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Furthermore, the solution of the auxiliary problem (8.29) is explicitly computed as :

(W l+1)j = ProjCj
(

1
mρ2

(W̄ l)j

)
j = 1, ...n;

(Z l+1)li = Proj[αi,γi]
(

1
nρ2

(Z̄ l)li

)
i = 1, ..., c, j = 1, ..., d;

(Λl+1)l = Proj∆l

(
1
nρ2

(Λ̄l)l

)
i = 1, ..., c.

(8.31)

Finally, DCA scheme applied to (8.28) can be described as follows :

Algorithm 8.2 IP-WF-DCA : DCA applied to (8.28)

1: Initialization : Choose an initial point (U0, V 0,Λ0) and l← 0.
2: repeat
3: Compute (W̄ l, Z̄ l, Λ̄l) via (8.30).
4: Compute (W l+1, Z l+1,Λl+1) via (8.31).
5: l← l + 1.
6: until Stopping criterion.

8.2.3 Finding a good starting points for DCAs

Finding a good starting point is an important question while designing DCA schemes. The
research of such a point depends on the structure of the problem being considered and can be
done by, for example, a heuristic procedure. As proposed in [123], we use an alternative KMeans
- DCA procedure for finding a starting point. The procedure is described as follows.
KM - DCA procedure

• Initialization : Choose V 0. Let maxiter > 0 be a given integer. Set s← 0.

• Repeat

◦ Perform one iteration of BI-DCA from V s.

◦ Perform one iteration of KMeans from the solution given by BI-DCA to obtain V s+1.

◦ s← s+ 1

• Until s = maxiter

In our experiments, we observed that q = 2 is sufficient to find a good initial points.

8.3 Numerical experiments

Datasets. Numerical experiments were performed on 11 real-world datasets : Stalog Shuttle,
Wave form, Breast Cancer Wiscosin, Ecoli, Column_3C, Magic, Breast Tissue and Madelon
taken from UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/datasets.
html), SVM guide1 taken from LibSVM-Dataset Repository (http://www.csie.ntu.edu.tw/
cjlin/libsvm), ItalyPowerDemand taken from KENT-Dataset Repository (www.cs.ucr.edu/
$\sim$eamonn/time_series_data/) and Mamographic taken from KEEL-Dataset Repository
(http://sci2s.ugr.es/keel/category.php?cat=clas&order=name#sub2). The information about
datasets is summarized in Table 8.1.
Setting. The following criteria were used to compare the performances of algorithms : the
percentage of well classified points (PWCO), Rand Index value and the CPU running time.
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Table 8.1 – Datasets

Dataset No. Points No. Attributes No. Clusters
Stalog Shuttle 14500 9 7
Wave form 5000 40 3
Breast Cancer Wiscosin 683 9 2
Ecoli 336 7 8
Column_3C 310 6 3
Magic 19020 3 2
Breast Tissue 106 9 6
Madelon 600 500 2
Svmguide1 4000 4 2
Italy Power Demand 1029 24 2
Mamographic 830 5 2

The Rand index (named after William M. Rand), simply measures the number of pairwise
agreements. Let’s denote, for every instance xi, its initial class by Iref (xi) and its cluster obtained
from the clustering algorithm by Iclass(xi). The Rand index is defined by :

RandI =
a+ d

a+ b+ c+ d
(8.32)

where
a = | {i, j | Iref (xi) = Iref (xj) & Iclass(xi) = Iclass(xj)} |,
b = | {i, j | Iref (xi) = Iref (xj) & Iclass(xi) 6= Iclass(xj)} |,
c = | {i, j | Iref (xi) 6= Iref (xj) & Iclass(xi) = Iclass(xj)} |,
d = | {i, j | Iref (xi) 6= Iref (xj) & Iclass(xi) 6= Iclass(xj)} | .

(8.33)

All algorithms clustering was implemented in the Visual C++ 2008, and performed on a PC
Intel i5 CPU650, 3.2 GHz of 4Gb RAM.

We suggested using the following set of candidate values in our experiments
{1.1; 1.5; 2.0; 2.5; 3.0; 3.5; 4.0; 4.5; 5.0}.

For every data instance, we perform each algorithm 10 times from 10 same random starting
points and report the mean and the standard deviation of each criterion. Bold values in result
tables are best value for each data instance.

Experiment 1
In the first experiment we are interested in the effect of feature weighting in classification

task. For this purpose, we perform our four algorithms

— BI-WF-DCA,

— IP-WF-DCA,

— BI-DCA : DCA for bilevel formulation of MSSC (7.2), ([123])

— IP-DCA : DCA of the mixed interger formulation (7.1) (Algorith 7.1).

We report in Table 8.2 the mean and standard deviation of PWCO. The comparative results
of Rand Index(resp. CPU Time) are reported in Table 8.3 (resp. Table 8.4).

From the numerical results, we observe that :

— BI-WF-DCA and IP-WF-DCA give better PWCO than BI-DCA and IP-DCA on all
datasets except Wave form. The gain BI-WF-DCA(resp. IP-WF-DCA) over BI-DCA is
more than 10% for 5 (resp. 6) our of 11 datasets. The gain can go up to 30.74% (Italy
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Table 8.2 – Comparison of CPU Time between BI-DCA,BI-WF-DCA and IP-WF-DCA

Data PWCO
BI-DCA IPDCA BI-WF-DCA IP-WF-DCA

Stalog Shuttle 43.987%±5.143% 75.411±2.132 62.884%±7.093% 79.166%±0.000%
Wave form 48.116%±15.855% 71.42±3.65 64.514%±7.118% 64.514%±7.118%
Breast Cancer Wiscosin 96.032%±0.044% 96.12±0.53 96.076%±0.471% 96.354%±0.406%
Ecoli 57.798%±8.311% 58.52±0.98 61.012%±9.658% 61.012%±9.658%
Column_3C 59.613%±5.652% 63.533±3.13 72.032%±5.107% 71.677%±4.921%
Magic 64.516%±0.580% 62.231±1.12 65.419%±2.581% 65.991%±7.136%
Breast Tissue 54.906%±4.401% 55.313±3.212 56.604%±5.236% 57.547%±5.660%
Madelon 54.433%±4.096% 54.123±3.21 55.867%±3.900% 57.033%±2.845%
Svmguide1 75.073%±0.013% 83.562±3.45 87.355%±6.062% 86.818%±6.427%
Italy Power Demand 51.448%±0.078% 73.315±4.12 82.187%±15.543% 82.187%±15.543%
Mamographic 68.687%±0.266% 67.423±0.912 68.831%±0.607% 79.880%±0.258%

Average 61.328%±4.040% 63.241±2.41 70.253%±5.761% 72.925%±5.452%

Table 8.3 – Comparison of Rand index Time between BI-DCA,BI-WF-DCA and IP-WF-DCA

Data Rand Index
BI-DCA IP-DCA BI-WF-DCA IP-WF-DCA

Stalog Shuttle 0.525±0.037 0.59±0.045 0.617±0.072 0.515±0.058
Wave form 0.686±0.038 0.714±0.043 0.688±0.029 0.688±0.029
Breast Cancer Wiscosin 0.924±0.001 0.921±0.001 0.925±0.009 0.930±0.007
Ecoli 0.821±0.027 0.822±0.031 0.823±0.043 0.823±0.043
Column_3C 0.669±0.009 0.712±0.014 0.731±0.019 0.726±0.017
Magic 0.542±0.003 0.554±0.019 0.549±0.015 0.561±0.042
Breast Tissue 0.811±0.007 0.811±0.012 0.813±0.020 0.822±0.015
Madelon 0.506±0.009 0.509±0.002 0.509±0.009 0.510±0.010
Svmguide1 0.626±0.001 0.723±0.021 0.786±0.083 0.779±0.088
Italy Power Demand 0.500±0.000 0.71±0.003 0.755±0.141 0.755±0.141
Mamographic 0.569±0.002 0.623±0.032 0.570±0.004 0.678±0.003

Average 0.653±0.012 0.69±0.192 0.706±0.040 0.708±0.041

Table 8.4 – Comparison of CPU Time between BI-DCA,BI-WF-DCA and IP-WF-DCA

Data Running time
BI-DCA IP-DCA BI-WF-DCA IP-WF-DCA

Stalog Shuttle 0.984±0.008 15.312±1.311 8.539±1.323 43.972±2.808
Wave form 0.401±0.029 1.2±0.021 0.689±0.021 1.441±0.036
Breast Cancer Wiscosin 0.016±0.007 0.314±0.012 0.053±0.072 0.506±0.038
Ecoli 0.030±0.008 0.03±0.021 0.022±0.007 0.045±0.008
Column_3C 0.010±0.002 0.032±0.014 0.089±0.006 0.242±0.017
Magic 0.539±0.143 1.10±0.312 4.944±1.093 61.779±2.087
Breast Tissue 0.010±0.001 0.12±0.003 0.088±0.009 0.206±0.026
Madelon 0.404±0.048 0.9±0.01 0.788±0.019 1.153±0.028
Svmguide1 0.094±0.012 0.14±0.001 0.490±0.081 0.268±0.019
Italy Power Demand 0.039±0.020 0.02±0.001 0.072±0.008 0.131±0.016
Mamographic 0.013±0.008 0.1±0.002 0.016±0.003 0.573±0.107

Average 0.231±0.026 1.7±0.212 1.435±0.240 10.029±0.472
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Table 8.5 – Comparison of PWCO between WF-KM, BI-WF-DCA and IP-WF-DCA

Data PWCO
WF-KM BI-WF-DCA IP-WF-DCA

Stalog Shuttle 55.737%±0.544% 62.884%±7.093% 79.166%±0.000%
Wave form 50.420%±3.410% 64.514%±7.118% 64.514%±7.118%
Breast Cancer Wiscosin 92.943%±4.774% 96.076%±0.471% 96.354%±0.406%
Ecoli 43.036%±0.583% 61.012%±9.658% 61.012%±9.658%
Column_3C 51.452%±7.795% 72.032%±5.107% 71.677%±4.921%
Magic 55.499%±0.000% 65.419%±2.581% 65.991%±7.136%
Breast Tissue 50.849%±5.524% 56.604%±5.236% 57.547%±5.660%
Madelon 54.167%±2.337% 55.867%±3.900% 57.033%±2.845%
Svmguide1 58.550%±0.150% 87.355%±6.062% 86.818%±6.427%
Italy Power Demand 59.038%±10.035% 82.187%±15.543% 82.187%±15.543%
Mamographic 52.205%±9.867% 68.831%±0.607% 79.880%±0.258%

Average 56.718%±4.093% 70.253%±5.761% 72.925%±5.452%

Power Demand dataset) with BI-WF-DCA and 35.18% (Stalog Shuttle dataset) with IP-
WF-DCA. The average of PWCO of BI-WF-DCA is 70.25% and that of IP-WF-DCA is
72.93% which a much more better than BI-DCA (61, 33%).

— The quality of our two algorithms BI-WF-DCA and IP-WF-DCA are comparable. However,
IP-WF-DCA furnishes better PWCO than BI-WF-DCA with a big gain on Stalog Shuttle
(16.29%) and Mamographic (11.05%).

— Concerning the Rand index criterion, except for Stalog Shuttle where BI-DCA is better
than IP-WF-DCA, BI-WF-DCA and IP-WF-DCA alway furnish better result.

— Undoubtedly DCA-KM is fastest algorithm out of three and IP-WF-DCA is the most time
consuming, especially Magic datasets where DCA-KM is somehow 44 and 116 times faster
than IP-WF-DCA. Except for Ecoli, DCA-KM is faster than BI-WF-DCA, the gain varies
from 1.2 times to 9, 8 times.

From the above observes, we can conclude that using weighted dissimilarity measure allowed
us to improve greatly the performance classifier in term of quality of classification.

Experiment 2
In the second experiment, we compare the performance of 3 algorithm for MSSC using weigh-

ted dissimilarity measure : our algorithms BI-WF-DCA, IP-WF-DCA andWF-KM ([47]). We also
reported the PWCO, Rand Index and CPU Time of each algorithm.

We observe that, in all datasets, our algorithms give better solutions than WF-KM. The gain
can go up to 28.81% (Svmguide1 dataset) with BI-WF-DCA and 28, 27% with IP-WF-DCA.
BI-WF-DCA is faster than WF-KM for 6 out of 11 datasets while IP-WF-DCA is the slowest
algorithm.

8.4 Conclusion

We have studied two widely used models bilevel program MSSC and mixed integer program
MSSC using weighted feature. Based on the reformulation technique and exact penalty in DC
programming, two optimization models were recast as a DC program. It fortunately turns out
that the corresponding DCA consists in computing, at each iteration, the projection of points
onto a simplex and/or a rectangle, that all are given in the explicit form. From experiments,
we can conclude that the introduction of weighted feature allows to improve the performance
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Table 8.6 – Comparison of Rand index between WF-KM, BI-WF-DCA and IP-WF-DCA

Data Rand Index
WF-KM BI-WF-DCA IP-WF-DCA

Stalog Shuttle 0.499±0.003 0.617±0.072 0.515±0.058
Wave form 0.624±0.024 0.688±0.029 0.688±0.029
Breast Cancer Wiscosin 0.873±0.070 0.925±0.009 0.930±0.007
Ecoli 0.296±0.023 0.823±0.043 0.823±0.043
Column_3C 0.648±0.021 0.731±0.019 0.726±0.017
Magic 0.506±0.000 0.549±0.015 0.561±0.042
Breast Tissue 0.783±0.023 0.813±0.020 0.822±0.015
Madelon 0.504±0.005 0.509±0.009 0.510±0.010
Svmguide1 0.517±0.006 0.786±0.083 0.779±0.088
Italy Power Demand 0.536±0.087 0.755±0.141 0.755±0.141
Mamographic 0.520±0.061 0.570±0.004 0.678±0.003

Average 0.573±0.029 0.706±0.040 0.708±0.041

Table 8.7 – Comparison of CPU time between WF-KM, BI-WF-DCA and IP-WF-DCA

Data Running time
WF-KM BI-WF-DCA IP-WF-DCA

Stalog Shuttle 5.023±2.635 8.539±1.323 43.972±2.808
Wave form 11.623±3.053 0.689±0.021 1.441±0.036
Breast Cancer Wiscosin 0.055±0.017 0.053±0.072 0.506±0.038
Ecoli 0.024±0.008 0.022±0.007 0.045±0.008
Column_3C 0.056±0.020 0.089±0.006 0.242±0.017
Magic 3.901±0.719 4.944±1.093 61.779±2.087
Breast Tissue 0.040±0.014 0.088±0.009 0.206±0.026
Madelon 4.245±1.321 0.788±0.019 1.153±0.028
Svmguide1 0.044±0.006 0.490±0.081 0.268±0.019
Italy Power Demand 0.362±0.155 0.072±0.008 0.131±0.016
Mamographic 0.017±0.003 0.016±0.003 0.573±0.107

Average 2.308±0.723 1.435±0.240 10.029±0.472
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of classification task. Furthermore, computational experiments show the superiority in term of
quality of solution of our algorithms with respect to the standard algorithm in feature weighting.
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Chapitre 9

Block Clustering1

Abstract: We address the Block clustering problem in the continuous framework, which traditionally
requires solving a hard combinatorial optimization problem. DC reformulation techniques and exact penalty
in DC programming are developed to build an appropriate equivalent DC program of the Block clustering
problem. They lead to an elegant explicit DCA scheme for the resulting DC program. Computational
experiments show the robustness and efficiency of the proposed algorithm and its superiority over standard
algorithms such as Two-mode K-means, Two-mode Fuzzy Clustering, Block Classification EM.

9.1 Introduction

In this chapter, we are interested in the so-called block clustering, or bi-clustering or again
two-mode clustering that consists in simultaneous clustering on the set of samples (objects)
and on the set of their features in order to find homogeneous blocks. Bi-clustering has a great
significance in different fields, in particular for biomedical applications. When bi-clustering is
performed with high reliability, we are able not only to diagnose conditions represented by sample
classes, but also to identify features (e.g., genes or proteins) responsible for them, or serving as
their markers.

Let a data set of n objects (samples), each of them is composed of m features (variables).
This data set is presented by a n × m real-valued rectangular matrix X = (xij)n×m where
i ∈ I := {1, ...n}, the set of n rows, and j ∈ J := {1, ...m}, the set of m columns, and the value
xij is the expression of jth feature in ith object. More precisely, each row of X refers to an object
while each column of X corresponds to a feature.

A bi-clustering of a data set is a collection of pairs of object and feature subsets B =
{(O1, F1) , ... (Ok, Fl, ...)} such that the collection {O1, ..., Ok, ..., OK} forms a partition of the
set of objects on K clusters (row clusters), and the collection {F1, ..., Fl, ..., FL} forms a partition
of the set of features on L clusters (column clusters). A pair (Ok, Fl) will be called a bi-cluster. In
other words, bi-clustering (two-mode clustering) assigns each element of X to a row cluster and
a column cluster. If L = m, two-mode clustering reduces to one-mode clustering (partitioning
the set of rows), and the same is true if K = n (partitioning the set of columns).

1. The results presented in this chapter were published in :

• H.M. Le, H.A. Le Thi, T. Pham Dinh, V.N. Huynh, Block Clustering based on DC programming and DCA,
Neural Computation, 25(10) :2776-2807, 2013.
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Depending on the definition of the distance measure, bi-clustering covers a large variety of
problems. In this paper, we focus on bi-clustering using the squared Euclidean metric as the
distance measure. The problem can then be stated as follows. Let

— Pn×K = (pik)I×K be the binary matrix containing row cluster membership values (called
row-classification matrix), i.e. pik = 1 if row i belongs to row cluster k, and pik = 0
otherwise ;

— Qm×L = (qjl)J×L be the binary matrix containing column cluster membership values (cal-
led column-classification matrix), i.e. qjl = 1 if column j belongs to column cluster l, and
qjl = 0 otherwise ;

— VK×L = (vkl)K×L be the matrix representing prototype values for the entries in a block,
i.e. xij is in the block with prototype vkl when pikqjl = 1.

We have to search for the block cluster prototype matrix V and the two cluster membership
values matrices P , Q which minimize the sum of squared Euclidean distances from the entries
to their respective prototype values.

Define the inner product 〈X,Y 〉 inMn,m(IR) (the vector space of n×m real-valued matrices)
as the trace of the matrix XTY which is denoted by Tr(XTY ), say

〈X,Y 〉Mn,m(IR) =

n∑
i=1

XiY
T
i =

m∑
j=1

(Xj)TY j = Tr(XTY ),

where Xi and Xk are, respectively ith row and kth column of the matrix X. Denote by ‖ · ‖ the
corresponding Euclidean norm onMn,m(IR).Then the function to be minimized in bi-clustering
is given by

f(P,Q, V ) :=

K∑
k=1

L∑
l=1

n∑
i=1

m∑
j=1

pikqjl(xij − vkl)2 =
∥∥X − PV QT∥∥2

. (9.1)

As usual, the classification matrices must satisfy the following constraints :

— The cluster membership values of each row and column object must sum to one :

K∑
k=1

pik = 1 ∀i = 1, . . . , n,
L∑
l=1

qjl = 1 ∀j = 1, . . . ,m.

— None of the row or column clusters is empty :

n∑
i=1

pik ≥ 1 ∀k = 1, . . . ,K,
m∑
j=1

qjl ≥ 1 ∀l = 1, . . . , L.

— All cluster membership values must be either zero or one :

pik ∈ {0, 1} ∀i = 1, . . . , n, k = 1, . . . ,K,
qjl ∈ {0, 1} ∀j = 1, . . . ,m, l = 1, . . . , L.
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Finally, the mathematical block clustering problem can be written as :

min(P,Q,V ) f(P,Q, V ) =
∥∥X − PV QT∥∥2

s.t
K∑
k=1

pik = 1;
L∑
l=1

qjl = 1; ∀i = 1, . . . , n; j = 1, . . . ,m

n∑
i=1

pik ≥ 1;
m∑
j=1

qjl ≥ 1; ∀k = 1, . . . ,K; l = 1, . . . , L)

P ∈ {0, 1}n×K , Q ∈ {0, 1}m×L, V ∈ IRK×L.

(9.2)

Problem (9.2) is a nonconvex nonlinear mixed 0-1 program, known to be NP-hard and for
which no efficient global algorithm is available. Even for small n and m, the number of possible
partitions can become extremely large. There are several optimization methods for two-mode
clustering. All of these algorithms are heuristics (often based on meta-heuristic, multistart pro-
cedures) that are not guaranteed to find the global optimum and often get stuck in local minima.
An extensive overview of two-mode clustering methods can be found in [165].

In [207], the authors have given an overview of existing optimization methods based on meta-
heuristics and introduced new Fuzzy algorithms (Two-mode Fuzzy) for solving Problem (9.2). A
simulation study has been performed to compare these methods and to determine how effective
they are at finding the optimal clustering. It turns out that the application of the Multistart
heuristic in combination with the K-means algorithm usually has the best average performance.

Our contributions. We aim is to develop a new efficient and scalable DCA based algorithm
for block clustering problem (9.2). The investigation of DC programming and DCA to the hard
optimization block clustering problem (9.2) requires a rigorous study for reformulating it in
terms of a DC program. Using an interesting exact penalty result developed in [145] we first
transform (9.2) into an equivalent continuous optimization problem. Afterwards we carefully
study DC reformulation techniques for the continuous optimization problem to get finally a nice
DC program. A simple and elegant DCA scheme for solving the resulting DC program is then
developed. The proposed DCA scheme is original and very inexpensive because it amounts to
computing, at each iteration, the projection of points onto a simplex and/or onto a box, that
are all determined in the explicit form. Numerical experiments on several data sets have shown
the efficiency of the proposed method and its superiority over the Two-mode K-means, Two-
mode Fuzzy (two best algorithms presented in [207]) and Block Classification EM (Expection
Maximization) called BCEM [86] see below in Section 4.

The rest of the chapter is organized as follows. In Section 9.2, we introduce a continuous
formulation of problem (9.2) by using an exact penalty result in DC Programming. The Sec-
tion 9.3 is devoted to DC programming and DCA for solving the block clustering problem in
the continuous optimization form. Comparative experimental results with Two-mode K-Means,
Two-mode Fuzzy [207] and BCEM [86] are reported in Section 9.4.

9.2 A continuous formulation of block clustering problem

First, let us show that the variable V in Problem (9.2) can be bounded in a box. Let
(P ∗, Q∗, V ∗) be a solution of Problem (9.2). For every k, l there exist i, j such that pik = qjl = 1.
Thus

(xij − vkl)2 ≤ f(P ∗, Q∗, V ∗) ≤
n∑
i=1

m∑
j=1

x2
ij .
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Hence

xij − a ≤ vkl ≤ xij + a, where a2 :=
n∑
i=1

m∑
j=1

x2
ij .

Denote by α = min
i=1,...,n;j=1,...,m

{xij − a}, β = max
i=1,...,n;j=1,...,m

{xij + a}, then vkl ∈ [α, β], ∀ k, l. By

this observation, it suffices to consider (9.2) with V ∈ V = [α, β]K×L.
Set

P =
{
P = (pik)I×K :

K∑
k=1

pik = 1; pik ∈ {0, 1}, i = 1, ...n, k = 1, ...K ;
n∑
i=1

pik ≥ 1
}
,

Q =
{
Q = (qjl)J×L :

L∑
l=1

qjl = 1; qjl ∈ {0, 1}, j = 1, ...m, l = 1, ...L ;

m∑
j=1

qjl ≥ 1
}
.

Problem (9.2) is equivalent to

min {f(P,Q, V ) : (P,Q, V ) ∈ P ×Q× V} . (9.3)

Lemma 9.1 The function f(·, ·, V ) is uniformly Lipschitz on P × Q for V ∈ V with uniform
Lipschitz constant L given by

L =
√

2 max{α2, β2}max{nK,mL}. (9.4)

Proof 9.1 For x, y, z; x′, y′ ∈ R, by the Cauchy -Schwarz inequality, we have the following bound

xyz2 − x′y′z2 = z2y(x− x′) + z2x′(y − y′) ≤ z2
√
y2 + x′2

√
(x− x′)2 + (y − y′)2.

So by taking z = xij − vkl, x = pik, x
′ = p′ik, y = qjl, y

′ = q′jl into account, it follows directly that
f(·, ·, V ) is uniformly Lipschitz on P ×Q for V ∈ V with uniformly Lipschitzian constant

L =
√

2 max{α2, β2}max{nK,mL}. (9.5)

�

For reformulating (9.2) in a continuous optimization form, first let us recall the following exact
penalty result. For a point x ∈ Rn and a set S ⊂ Rn, denote by d(x, S) the distance from x to
S, i.e.,

d(x, S) := inf
z∈S
‖x− z‖).

We have

Lemma 9.2 ([145]) Suppose that f is Lipschitz on X ⊂ Rn with constant L0. Let ϕ : X →
Rn ∪ {+∞} be a nonnegative function defined on X and

S := {x ∈ X : ϕ(x) = 0}.

If d(x, S) ≤ ϕ(x) for all x ∈ X , then for all L > L0, the two problems

inf{f(x) : x ∈ S} and inf{f(x) + Lϕ(x) : x ∈ X}

are equivalent insofar as they have the same optimal value and the same solution set.
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Denote by

Sp =
{
P = (pik)I×K :

K∑
k=1

pik = 1; pik ∈ [0, 1], i = 1, .., n; k = 1, ..,K
}

;

Sq =
{
Q = (qjl)J×L :

L∑
l=1

qjl = 1; qjl ∈ [0, 1], j = 1, ..,m; l = 1, .., L
}

;

S1
p =

{
P ∈ Sp : pik ∈ {0, 1}, i = 1, .., n; k = 1, ..,K

}
;

S1
q =

{
Q ∈ Sq : qjl ∈ {0, 1}, j = 1, ..,m; l = 1, .., L

}
.

For using Lemma 9.2 we find an upper bound for d((P,Q),P ×Q) with (P,Q) ∈ Sp × Sq.

Step 1. Estimation Bounds for d((P,Q), S1
p × S1

q ) with (P,Q) ∈ Sp × Sq.
The following lemma will be needed.

Lemma 9.3 Let

K := {x ∈ Rn :
n∑
i=1

xi = 1, xi ∈ [0, 1], i = 1, ...n},

and

C := {x ∈ Rn :
n∑
i=1

xi = 1, xi ∈ {0, 1}, i = 1, ...n}.

Then for all x = (x1, · · · , xn) ∈ K, one has

d(x,C) ≤ 2(1− max
1≤i≤n

{xi}).

Proof 9.2 For x = (x1, ..., xn) ∈ K, one has

d2(x,C) = min

{
n∑
i=1

(xi − yi)2 : y = (y1, ..., yn) ∈ C

}

= min

{
n∑
i=1

x2
i − 2

n∑
i=1

xiyi + 1 : y = (y1, ..., yn) ∈ C

}

=
n∑
i=1

x2
i + 1− 2 max

1≤i≤n
{xi}.

Let r ∈ {1, · · · , n} be such that max
1≤i≤n

{xi} = xr. Then

d2(x,C) =
∑
i 6=r

x2
i + (1− xr)2 ≤

(∑
i 6=r

xi + 1− xr
)2

= 4(1− xr)2 = 4(1− max
1≤i≤n

{xi})2.

The proof is complete. �

Remark 9.1 Let x = (x1, ..., xn) ∈ K and ϕ(x) = 2(1−max1≤i≤n{xi}). Then

d(x,C) ≤ ϕ(x) ∀x ∈ K and x ∈ C iff ϕ(x) = 0.

245



Minimum Sum-of-Squares Clustering

From this lemma, one obtains the following bound

d((P,Q), S1
p × S1

q ) ≤ 2
( n∑
i=1

(1− max
1≤k≤K

{pik}) +
m∑
j=1

(1− max
1≤l≤L

{pjl})
)

(9.6)

for all (P,Q) ∈ Sp × Sq.
Step 2. Bound for d((P,Q),P ×Q) with (P,Q) ∈ S1

p × S1
q .

Let (P,Q) ∈ (S1
p × S1

q ) \ (P ×Q). It is easy to see that

d(P,P) ≤
√

2n; d(Q,Q) ≤
√

2m.

On the other hand, since (P,Q) /∈ P ×Q, there exists indices k0, l0 such that

n∑
i=1

pik0 = 0 and
m∑
j=1

pjl0 = 0.

Therefore,

d((P,Q),P ×Q) ≤
√

2n

K∑
k=1

max{0, 1−
n∑
i=1

pik}+
√

2m

L∑
l=1

max{0, 1−
n∑
j=1

qjl}. (9.7)

By using the relation max{0, x} = |x|−max{0,−x} and observing that 1−
∑n

i=1 pik, 1−
∑m

j=1 qjl
are integer for (P,Q) ∈ P ×Q, one has the following inequalities :

max

{
0, 1−

n∑
i=1

pik

}
=

∣∣∣∣∣1−
n∑
i=1

pik

∣∣∣∣∣−max

{
0,

n∑
i=1

pik − 1

}

≤
( n∑
i=1

pik − 1
)2
−

∣∣∣∣∣1−
n∑
i=1

pik

∣∣∣∣∣max

{
0,

n∑
i=1

pik − 1

}

≤
( n∑
i=1

pik − 1
)2
−max

{
0,

n∑
i=1

pik − 1

}2

. (9.8)

Similarly, one has

max

0, 1−
n∑
j=1

qjl

 ≤ (
n∑
j=1

qjl − 1
)2
−max

0,

n∑
j=1

qjl − 1


2

. (9.9)

Combining the preceding inequalities, one obtains

d((P,Q),P ×Q) ≤
√

2n
( K∑
k=1

( n∑
i=1

pik − 1
)2 − K∑

k=1

max

{
0,

n∑
i=1

pik − 1

}2 )
+

+
√

2m
( L∑
l=1

( m∑
j=1

qjl − 1
)2 − L∑

l=1

max{0,
m∑
j=1

qjl − 1}2
)
. (9.10)

Denote by

ϕ(P,Q) := 2
( n∑
i=1

(1− max
1≤k≤K

{pik}) +

m∑
j=1

(1− max
1≤l≤L

{pjl}
)
, (9.11)
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and

ψ(P,Q) :=
√

2n
( K∑
k=1

( n∑
i=1

pik − 1
)2 − K∑

k=1

max{0,
n∑
i=1

pik − 1}2
)

+

+
√

2m
( L∑
l=1

( m∑
j=1

qjl − 1
)2 − L∑

l=1

max{0,
m∑
j=1

qjl − 1}2
)
. (9.12)

Obviously, ϕ, ψ are nonnegative on Sp × Sq and

S1
p × S1

q = {x ∈ Sp × Sq : ϕ(P,Q) = 0};

P ×Q = {x ∈ S1
p × S1

q : ψ(P,Q) = 0}.

The following lemma gives an upper bound for d((P,Q),P ×Q) in terms of the function ϕ and
ψ.

Lemma 9.4 For all (P,Q) ∈ SP × Sq, one has

d((P,Q),P ×Q) ≤ τϕ(P,Q) + ψ(P,Q), (9.13)

where τ = t+ 1 = max{4n
√

2n, 4m
√

2m}+ 1.

Proof 9.3 Observe that ψ is Lipschitz on Sp × Sq with constant t. Let (P,Q) ∈ Sp × Sq. Let
(P1, Q1) ∈ S1

p × S1
q be the projection of (P,Q) into S1

p × S1
q . One has

d((P,Q),P ×Q) ≤ d((P,Q), S1
p × S1

q ) + d((P1, Q1),P ×Q)

≤ d((P,Q), S1
p × S1

q ) + ψ(P1, Q1)

≤ (t+ 1)d((P,Q), S1
p × S1

q ) + ψ(P,Q) ≤ τϕ(P,Q) + ψ(P,Q).

The lemma is then proved. �

From Lemma 9.2 and Lemma 9.4, we derive that the problem (9.2) is equivalent to the following
continuous optimization program :

min{F (P,Q, V ) := f(P,Q, V ) + γτϕ(P,Q) + γψ(P,Q) : (P,Q, V ) ∈ Sp × Sq × V}, (9.14)

for all γ > L, where L is defined by (9.5). In the next section, we will consider the block clustering
problem in the form (9.14) with a sufficiently large value γ, say
γ >
√

2 max{α2, β2}max{nK,mL}.

9.3 DCA for solving block clustering problem

We now develop DCA for solving the equivalent block clustering problem (9.14).

247



Minimum Sum-of-Squares Clustering

9.3.1 DC formulation of problem (9.14)

By directly checking, for

C := max{α2 + 2α, β2 + 2β, 4α+ 2, 4β + 2}, (9.15)

the function

(x, y, z) ∈ R3 7→ C

2
(x2 + y2 + z2)− xyz2

is convex on [0, 1]× [0, 1]× [α, β]. Therefore, for

ρ1,P ≥ CmL, ρ1,Q ≥ CnK, ρV ≥ Cmn, (9.16)

the function

ρ1,P

2
‖P‖2 +

ρ1,Q

2
‖Q‖2 +

ρV
2
‖V ‖2 − f(P,Q, V ) is convex on Sp × Sq × V.

Likewise, for ρ2 ≥ 4
√

2nγ and ρ3 ≥ 4
√

2mγ, the following functions are convex :

ρ2/2‖P‖2 −
√

2nγ

K∑
k=1

( n∑
i=1

pik − 1)2;

ρ3/2‖Q‖2 −
√

2mγ
L∑
l=1

( m∑
j=1

qjl − 1)2.

Hence, we can recast Problem (9.14) as a DC program as follows.

min{F (P,Q, V ) = G(P,Q, V )−H(P,Q, V ) : (P,Q, V ) ∈ Sp × SQ × V}, (9.17)

where,
G(P,Q, V ) = ρP /2‖P‖2 + ρQ/2‖Q‖2 + ρV /2‖V ‖2;

ρP ≥ CmL+ 4
√

2nγ; ρQ ≥ CnK + 4
√

2mγ; ρV ≥ Cmn; (9.18)

H(P,Q, V ) = ρP /2‖P‖2 + ρQ/2‖Q‖2 + ρV /2‖V ‖2 − f(P,Q, V )−

−
√

2nγ
K∑
k=1

( n∑
i=1

pik − 1)2 −
√

2mγ
L∑
l=1

( m∑
j=1

qjl − 1)2+

+
√

2nγ

K∑
k=1

max{0,
n∑
i=1

pik − 1}2 +
√

2mγ

L∑
l=1

max{0,
m∑
j=1

qjl − 1}2+

+ 2γτ

n∑
i=1

max
1≤k≤K

{pik}+ 2γτ

m∑
j=1

max
1≤l≤L

{qjl}.
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9.3.2 DCA for solving DC program (9.17)

According to the general DCA scheme described in Subsection 3.1, applying DCA to (9.17)
amounts to computing two sequences {(Y r, Zr,W r)} and {(P r, Qr, V r)} in the way that(Y r, Zr,W r) ∈
∂H(P r, Qr, V r) and (P r+1, Qr+1, V r+1) solves the convex program of the form (Pr).
Computing ∂H(P,Q, V )

For simplicity of notations, let us set

Pi = (pik)1≤k≤K , Qj = (qjl)1≤l≤L, i = 1, · · · , n, j = 1, · · · ,m;

P = (P1, P2, · · · , Pn)T , Q = (Q1, Q2, · · · , Qm)T ;

hip(Pi) := max
1≤k≤K

{pik}; Kip =
{
k ∈ {1, · · ·K} : pik = max

1≤k≤K
{pik}

}
;

hjq(Qj) := max
1≤l≤L

{qjl}; Ljp =
{
l ∈ {1, · · ·L} : qjl = max

1≤l≤L
{qjl}

}
.

Then,

∂hip(Pi) = {P ′i = (p′ik) : p′ik ≥ 0; p′ik = 0 if k /∈ Kip,
K∑
k=1

p′ik = 1}.

Similarly,

∂hjq(Qj) = {Q′j = (q′jl) : q′jl ≥ 0; q′jl = 0 if l /∈ Ljq,
L∑
l=1

q′jl = 1}.

Hence (Y r, Zr,W r) ∈ ∂H(P r, Qr, V r) can be determined as :

Y r = (Y r
i ), Zr = (Zrj ),W r = (W r

kl),

where

W r
kl = ρV v

r
kl − 2

n∑
i=1

m∑
j=1

prikq
r
jl(v

r
kl − xij); (9.19)

Y r
i = ρPP

r
i − [∇P f(P r, Qr, V r)]i − 2

√
2nγ

(∑n
i=1(prik − 1)

)
1≤k≤K

+2
√

2nγ
(

max{0,
∑n

i=1 p
r
ik − 1}

)
1≤k≤K + 2γτ∂hip(P

r
i );

(9.20)

Zrj = ρQQ
r
j − [∇Qf(P r, Qr, V r)]j − 2

√
2mγ

(∑m
j=1(qrjl − 1)

)
1≤l≤L

+2
√

2mγ
(

max{0,
∑m

j=1 q
r
jl − 1}

)
1≤l≤L + 2γτ∂hjq(Q

r
j).

(9.21)

Computing (P r+1, Qr+1, V r+1)
This is equivalent to solving the convex program of the form (Pr), say

min{G(P,Q, V )− 〈(P,Q, V ), (Y r, Zr,W r)〉 : (P,Q, V ) ∈ Sp × Sq × V}.

It is easy to see that (ProjC denotes the projection on the set C)

P r+1
i = Proj∆K

(Y r
i /ρP );Qr+1

j = Proj∆L
(Zrj /ρQ);

V r+1 = ProjC(W r/ρV ),

where, ∆K , ∆L, are the (K − 1)−simplex, the (L− 1)−simplex defined as

∆K = {x ∈ RK :
K∑
k=1

xk = 1, xk ∈ [0, 1]}; ∆L = {x ∈ RL :
L∑
l=1

xl = 1, xl ∈ [0, 1]},

and C = [α, β]K×L. Since the projections on a simplex and/or on a box are explicitly determined,
the computation of the sequence (P r+1, Qr+1, V r+1) is explicit too. The proposed DCA applied
to the DC program (9.17) then is explicit and, consequently, inexpensive. It can be summarized
in Algorithm 9.1.
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Algorithm 9.1 ADCA for solving the standard DC program

1: Initialization : Choose the two matrices of cluster memberships (P 0, Q0) and the cluster
centers V 0. r ← 0.

2: repeat
3: Set (Y r, Zr,W r) according to (9.19), (9.20), (9.21).
4: Set

P r+1
i = Proj∆K

(Y r
i /ρP );Qr+1

j = Proj∆L
(Zrj /ρQ);

V r+1 = ProjC(W r/ρV ),

5: r ← r + 1.
6: until Stopping criterion.

9.4 Numerical experiments

9.4.1 Experiment setting

To our knowledge, there is no algorithm for globally solving the problem (9.2). Since the
approaches developed in [207] considered the same clustering criterion (the squared error (9.1)),
we compare our algorithm DCA with Two-mode K-means and Two-mode Fuzzy Clustering, the
two best algorithms studied in [207]. On the other hand , we also compare DCA with the BCEM
algorithm [86] (an EM based algorithm for block clustering) which is an efficient standard method
for block clustering. BCEM is based on probabilistic mixture models but it has been shown in
several works (see e.g. [45, 46, 86]) that some of the most popular heuristic clustering approaches
including K-mean can be viewed as approximate estimations of probability models.

Data
To illustrate the performances of algorithms, we performed numerical tests on 3 types of data :

real data sets, simulated continuous data sets (Data1-Data12) and simulated binary data sets
(Data13-Data17). The real data sets are available online http://algorithmics.molgen.mpg.
de/Static/Supplements/CompCancer/datasets.htm. Thereby only the number of row clusters
(K) is assumed to be known. We give below a brief description of real datasets :

— “Brain cancer 1” contains 50 gliomas : 28 glioblastomas and 22 anaplastic oligodendroglio-
mas. This dataset was used to build a two-class prediction of malignant gliomas [179].

— “Brain cancer 2” is a dataset containing 42 patient samples (10 medulloblastomas, 5 CNS
AT/RTs, 5 renal and extrarenal rhabdoid tumours, and 8 supratentorial PNETs, as well
as 10 non-embryonal brain tumours (malignant glioma) and 4 normal human cerebella).
In [196], the authors used this dataset for the problem of distinguishing different central
nervous system embryonal tumour from each other.

— “Multi Tissue” contains 190 tumor samples, spanning 14 common tumor types. This dataset
was used in [200], in order to determine whether the diagnosis of multiple common adult
malignancies could be achieved purely by molecular classification.

— “Lung” consists of 186 lung tumor samples and 17 normal lung tissues (NL). The lung
tumors included 139 adenocarcinoma (AD), 6 small-cell lung cancer (SCLC), 20 pulmonary
carcinoids (COID) and 21 squamous cell lung carcinomas (SQ). In [26], the authors used this
dataset for studying a new molecular taxonomy of tumors and demonstrate the potential
power of gene expression profiling in lung cancer diagnosis.

250

http://algorithmics.molgen.mpg.de/Static/Supplements/CompCancer/datasets.htm
http://algorithmics.molgen.mpg.de/Static/Supplements/CompCancer/datasets.htm


Minimum Sum-of-Squares Clustering

Table 9.1 – Simulated continuous datasets.

Name Size Name Size
n m K L E n m K L E

Data1 20 20 5 4 0.5 Data2 20 20 5 4 1
Data3 20 20 5 4 2 Data4 60 60 6 6 0.5
Data5 60 60 6 6 1 Data6 60 60 6 6 2
Data7 100 100 10 10 0.5 Data8 100 100 10 10 1
Data9 100 100 10 10 2 Data10 150 100 7 7 0.5
Data11 150 100 7 7 1 Data12 150 100 7 7 2

We use the same way as proposed in [207] to generate continuous datasets (Data1-Data12).
For each of four data dimensions (n,m,K,L) ((20, 20, 5, 4), (60, 60, 6, 6),
(100, 100, 10, 10), (150, 100, 7, 7)), the procedure for generating continuous datasets is described
as follows :

1. Randomly generate the row-classification matrix P ∗ ∈ {0, 1}n×K .

2. Randomly generate the column-classification matrix Q∗ ∈ {0, 1}m×L.
3. Generate the matrix of prototypes V ∗ ∈ IRK×L according to K × L independent normal

distribution with mean 0 and standard deviation equal to 1.

4. Generate 3 noise matrices E ∈ IRn×m according to n×m independent normal distribution
with mean 0 and standard deviation equal to 0.5, 1 and 2. Note that standard deviations
of 0.5 and 1 give a reasonable amount of noise in the simulated data, whereas a standard
deviation of 2 can make clustering difficult.

5. Finally, the data matrix X is computed by X = P ∗V ∗Q∗T + E.

The information on these data sets is summarized in Table 9.1.
For generating binary datasets (Data13-Data17), we use a procedure that is similar to the

one given in [86] and can be described as follows.

1. Generate the row-classification matrix P ∗ ∈ {0, 1}n×K according to the mixing proportions
π1 = π2 = . . . = πK = 1/K.

2. Generate the column-classification matrix Q∗ ∈ {0, 1}m×L according to the mixing propor-
tions η1 = η2 = . . . = ηL = 1/L.

3. Randomly generate the matrix of prototypes V ∗ ∈ {0, 1}K×L.
4. Randomly generate εkl ∈ [0, 1

2 ] for k = 1, . . . ,K, l = 1, . . . , L.

5. Compute αkl = εkl if εkl ∈ [0, 1/2] and αkl = 1 − εkl if εkl ∈ [1/2, 1], for k = 1, . . . ,K, l =
1, . . . , L.

6. Generate xij for i = 1, . . . , n, j = 1, . . . ,m according to the Bernoulli distribution parame-
terized by αkl, where (k, l) is the bi-cluster containing xij .

Set up experiments and Parameters
All clustering algorithms were implemented in the Visual C++ 2008, and performed on a PC

Intel i5 CPU650, 3.2 GHz of 4GB RAM. We stop all algorithms with the tolerance ε = 10−4.

251



Minimum Sum-of-Squares Clustering

In [207], the authors stated that if the initial value of s is too high, the Two-mode Fuzzy
algorithm often reaches a saddle point. To prevent from this drawback, in our experiments, we
set the fuzzy step size γ equal to 0.9 and the initial value of s equal to 1.2. The threshold value
smin is set to 1.01.

Our experiments are composed of two parts : on continuous data and on binary data. In
the first experiment, we compare the performance of DCA, Two-mode K-Means and Two-mode
Fuzzy on the simulated continuous data sets containing 12 problems (Data1-Data12) and on 4
real data sets.

The following criteria were used to compare the performance of three algorithms DCA, Two-
mode K-means and Two-mode Fuzzy : ”VAF” (Variance Accounted For criterion), the error rate
(in comparing with true clusters in case of simulated data where true clusters are known) and
the CPU time in seconds.

The “VAF” is defined as

V AF = 1−

K∑
k=1

L∑
l=1

n∑
i=1

m∑
j=1

pikqjl(xij − vkl)2

n∑
i=1

m∑
j=1

(xij − x̄)2

= 1− f(P,Q, V )
n∑
i=1

m∑
j=1

(xij − x̄)2

,

where x̄ =
n∑
i=1

m∑
j=1

xij . It is clear that maximizing VAF corresponds to minimizing f(P,Q, V ).

The error rate of the partitions (P,Q) given by an algorithm in comparing with true partitions
(P ∗, Q∗) in block clustering is defined from one-way clustering as shown in [87] :

e
(
(P,Q), (P ∗, Q∗)

)
= e(P, P ∗) + e(Q,Q∗)− e(P, P ∗)e(Q,Q∗),

where e(P, P ∗) = 1− 1

n

n∑
i=1

K∑
k=1

pikp
∗
ik, e(Q,Q

∗) = 1− 1

m

m∑
j=1

L∑
l=1

qjlq
∗
jl.

For real data sets, we only know the true row clusters but the true column clusters are
not available. Hence, the evaluation is done by the VAF criterion. For each real data set, we
performed the tests with five values of L : L ∈ {5, 10, 15, 20, 25}.

In the second experiment, the BCEM algorithm is added. Here we compare the error rate
and CPU times in seconds of the four algorithms on binary data.

For every data instance, we perform each algorithm 20 times from 20 random starting points
and report the best, the mean and the standard deviation of each criterion. Bold values in result
tables are best value for each data instance.

9.4.2 Experimental results and comments

Experiment 1 : continuous data
The computational results on simulated data sets (resp. real data sets) are reported in Table

9.2 (resp. Table 9.3).
From Table 9.2 we observe that in all experiments, among three algorithms, DCA is the best

in terms of VAF and Error rate. The results of DCA are quite stable with different starting points
while Two-mode K-means and Two-mode Fuzzy are sensitive to them. Moreover, not surprisingly,
the larger the standard deviation of the noise matrix E is, the more difficult problem is, and
then the larger error rate given by each algorithm would be.
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Similarly, for real data sets DCA is always the best in terms of VAF criterion. For each
algorithm and in all real data sets, the maximal value of VAF when L varies corresponds to the
case L = 10. In fact, the VAF value increases at first, reaches the best value at L = 10 and then
decreases. According to this phenomenon, we can conclude that L = 10 is the optimal number
of column clusters in these data sets.

Concerning the computation time, DCA is faster than Two-mode Fuzzy and slightly slower
than Two-mode K-means : the average CPU time of Two-mode K-means, DCA, Two-mode Fuzzy
is, respectively, 1.3, 2.7, 9.9 seconds in simulated data sets and 12.5, 12.8, 14 seconds in real data
sets.

Experiment 2 : binary data
The computational results (error rate and CPU Time) are reported in Table 9.4.
We observe from Table 9.4 that DCA is the best in terms of error rate : DCA is better than

Two-mode K-means and Two-mode Fuzzy for all 5 data instances, DCA is better than BCEM
on 3/5 data sets and on the 2 other ones DCA and BCEM give the same results. The average
CPU time of Two-mode K-means, Two-mode Fuzzy, BCEM and DCA is, respectively, 2.28, 3.02,
2.66 and 2.68 seconds.

9.5 Conclusion

We have rigorously studied the DC programming and DCA for bi-clustering. Based on an
interesting result of exact penalty, the hard combinatorial optimization model of bi-clustering has
been recast as a DC program in its elegant matrix formulation. A very nice DC decomposition
is proposed of which the corresponding DCA is simple, elegant and inexpensive : it consists in
computing, at each iteration, the projection of points onto a simplex and/or a box, that all are
given in the explicit form. Computational experiments show the efficiency and the superiority of
DCA with respect to the Two-mode K-means, Two-mode Fuzzy clustering, and BCEM.
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Chapitre 10

Gaussian Mixture Models clsutering
with Sparse Regularization1

Abstract: We address three fundamental issues in Gaussian Mixture Models (GMM) clustering that are
the model selection, the feature selection and the over-parameterization. Although all these three issues
are linked together, most of existing works deal with them separately. For the first time, we present an
unified optimization formulation that takes into account all three above-mentioned issues. It turns out
that the corresponding optimization problem involves the minimization of `0-norm. We choose the non-
convex approximation approach to deal with the l0-norm and develop DCA-Like to tackle the resulting
optimization problem. Exploiting the specific structure of the considered optimization problem, DCA-Like
proposes a new and efficient way to approximation the DC objective function without knowing a DC
decomposition. Furthermore, we propose a Two-Step DCA-Like in order to improve the performance of
DCA-Like. Numerical experiments on several benchmark and synthetic datasets illustrate the efficiency
of our algorithms comparing to existing EM methods.

10.1 Introduction

In this chapter, we address the Gaussian mixture model (GMM) clustering, the most popular
model-based clustering model in the literature. GMM has been largely developed and success-
fully applied to several applications thanks to its interesting properties on both theoretical and
computational aspect [32]. Moreover, it was shown that any continuous distribution can be ap-
proximated by a finite mixture of normal densities [164]. The GMM clustering problem can be
described as follows. Given a data set X = {xi ∈ RD : i ∈ {1, . . . , N}} of N data points that are
assumed to be generated from a finite mixture of K probability distributions :

p(xi | θ1, . . . , θK) =

K∑
k=1

πkp (xi | θk) , (10.1)

where θk, πk are respectively the parameter and the mixing proportion of the k-th probability
distribution p (· | θk), with

∑K
k=1 πk = 1 and πk ≥ 0 for all k ∈ {1, . . . ,K}. In GMM, each com-

ponent probability distribution is a Gaussian distribution with mean µk and inverse covariance

1. The results presented in this chapter were published/submitted in
• V.A. Nguyen, H.A. Le Thi, H.M. Le, A DCA based algorithm for Feature Selection in Model-Based Clus-

tering, Lecture Notes in Artificial Intelligence (LNAI) 12033, 404-415, 2020.
• H.A. Le Thi, H.M. Le, V.A. Nguyen, DCA-Like for GMMClsutering with Sparse Regularization, submitted.
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matrix (precision matrix) Wk :

p (xi | θk = (µk,Wk)) =

√
det (Wk)

(2π)D
exp

(
−1

2
(xi − µk)T Wk (xi − µk)

)
. (10.2)

The parameters θk and the mixing proportion πk can be estimated by solving the following
maximum log-likelihood problem :

max
Θ∈D

{
L (Θ) :=

N∑
i=1

log

(
K∑
k=1

πkp (xi | θk)

)}
, (10.3)

where
Θ = (π, θ) = (π1, ..., πK , µ1, ..., µK ,W1, ...WK) , (10.4)

and

D =

{
(π, µ,W ) :

K∑
k=1

πk = 1, Wk � 0, ∀k ∈ {1, ...,K}

}
. (10.5)

The above optimization problem can be solved by the Expectation-Maximisation (EM) algo-
rithm. Although the development of GMM has been active in last decades, there are still several
open questions, especially in applications with high dimensional data.

We focus on three fundamental issues in GMM clustering : the choice of appropriate number
of clusters, the over-parameterization and the selection of useful features. In many clustering
applications, the number of clusters is not known a priori. If we choose a too high number of
clusters is too large, the mixture model may over-fit the data while the mixture model may not
be good enough to cover the data structure if the number of clusters is too low. Determining the
optimal number of clusters is a very difficult issue since it is somehow subjective and depends
on the clustering method. Furthermore, the second and the third above-mentioned issues often
occur when working with high-dimensional data. On the one hand, it is well-known that when
the number of dimensions D increases, the number of parameters of GMM increases with a fast
rate, leading to a high computational cost and the over-fitting problem. On the other hand,
high-dimensional data potentially contains redundant and non-informative features, which can
badly affect the clustering result. Hence, it is important to choose and use only useful features.
Note that the number of parameters in GMM is a quadratic function of D. Thus removing
redundant and non-informative features also helps to reduce the over-parameterization problem.
To the best of our knowledge, although several methods have been developed to address these
above-mentioned issues, there is no existing work that considers together these three issues.

Existing works. For determining the number of clusters, also called the model selection problem
in mixture model, most conventional methods are based on a model selection criterion. These
methods consist of three steps : a) define an upper bound Kmax of the number of clusters ; b)
solve the maximum log-likelihood problem (10.3) to estimate the parameter Θ̂K of mixture model
for all K ∈ [1, . . . ,Kmax] and then c) choose the best value of K with respect to a specific model
selection criterion P(k), that is

Kbest = argmax
K
{L(Θ̂K)− P(k)}

where P(k) is an increasing function penalizing higher value ofK. Several model selection criteria
have been proposed. The most used criteria are based on information theoretic such as the
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Bayesian information criterion (BIC) [211] or Akaike information criterion (AIC) [5]. Another
class of criteria is based on the distance between the fitted model and the nonparametric estimate
of the population distribution, for instance Kullback-Leibler distance [114] or Hellinger distance
[237]. However, these conventional methods have some majors drawbacks. Firstly, one needs to
define the upper bound of number of clusters Kmax which is not an easy problem. Secondly,
the computational cost is usually high since these methods require to solve the maximum log-
likelihood problem (10.3) several times. Recently, another approach, which attempts to estimate
K simultaneously with the mixture parameter Θ, has been proposed. The main idea is to start
with a large enough value of K and then reduce it iteratively during the estimation of Θ. In this
approach, the objective function of the maximum log-likelihood problem (10.3) is penalized by
regularization term of the mixing proportion π

max
Θ∈D

L (Θ)− λP1(π), (10.6)

where λ > 0 is the trade-off parameter. [52] defined the penalization as P1
log(π) = −

∑K
k=1 log πk

which forces the value of πk away from 0. Furthermore, they considered a second regularization
term on θ to prevent that a component density is close to one another. With the assumption
that θ1 ≤ θ2 ≤ . . . ≤ θK , the problem is written as

max
Θ∈D

L (Θ)− λ

(
−

K∑
k=1

log πk +
K−1∑
k=1

p(θk+1 − θk)

)
, (10.7)

where p(.) is the SCAD penalty function [70]. The above problem is solved by a modified EM
algorithm in which one reduces the number of clusters by merging clusters that have the same
mean. However, it happens that this procedure merges Gaussian components with the same
mean but different variance, which is not correct. In another approach, [108] proposed to remove
empty clusters (e.g. clusters having πk equals to 0) instead of merging clusters as in [52]. Hence,
to promote the sparsity of π, they defined the penalization term as P1

ε (π) = log ε+πk
ε where ε is

a very small positive number. Furthermore, to prevent that log ε+πk
ε over-penalizes large values

of πk and consequently yields a biased estimator, they presented the following second model

max
Θ∈D

L (Θ)− λ
K∑
k=1

log
ε+ p(πk)

ε
, (10.8)

where p(.) is the SCAD penalty function. In [108], a modified EM algorithm was proposed to
solve both formulations. In this procedure, whenever a mixing proportion πk is shrunken to 0 the
corresponding cluster is deleted and K is reduced by 1 for the remaining iterations. Comparing to
conventional methods that need to solve several times the maximum log-likelihood problem, this
new approach is undeniably less computational costly. However, the modified EM proposed in
[52] and [108] still remain the limitations of EM, for instance EM breaks down when a covariance
matrix becomes ill-conditioned [73].

The feature selection problem in model-based clustering has been studied in several works.
A review of existing approaches can be found in [2, 32]. The idea behind the feature selection in
model-based clustering is that if the means of a feature d on each component are equal to 0, i.e.
µkd = 0 for all k = 1, . . . ,K, then this feature is considered as irrelevant and can be consequently
removed. The cluster means µkd can be driven toward 0 by penalizing the objective function of
maximum log-likelihood problem (10.3) as follows

max
Θ∈D

L (Θ)− λP2 (µ) , (10.9)
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where P2(µ) :=
∑K

k=1

∑D
d=1 |µkd|0 and λ > 0 is the trade-off parameters between the two terms.

As we can see, (10.9) involves the minimization of the l0-norm which is known to be NP-hard.
Several methods have been developed in the literature for the minimization of l0-norm (sparse
optimization). The readers are referred to Chapter 5 for an overview and our works in sparse opti-
mization. Most of existing work in literature for feature selection in model-based clustering belong
to the convex approximation approach. In [182] and [260], the authors replaced P2(µ) by the l1
approximation defined as P2

l1
(µ) =

∑K
k=1

∑D
d=1 |µkd| . Later, [27] introduced a variant of l1 regu-

larization function with the presence of proportion of each cluster P2
π (µ) =

∑K
k=1 πk

∑D
d=1 |µkd|.

In the same manner, [232] replaced the l0 norm by the l∞ norm. In another work, [92] introduced
the pairwise fusion penalty defined by Pfusion (µ) =

∑D
d=1

∑
1≤k<k′≤K |µkd − µk′d|. Instead of

shrinking the means µkd to 0, the pairwise fusion penalty shrinks the means towards each other.
Thus, dimension d is considered non-informative if all the values of means at that dimension
are equal, i.e. µkd = µk′d for all k 6= k′. For all above-mentioned works, EM algorithm was
developed. It is important to note that, in [182, 232, 92], the authors assumed that all clusters
have a common diagonal covariance matrix. This assumption restricts the correlations between
features, therefore highly reduces the flexibility of the mixture model. Recently, for the first time,
in our conference paper, a nonconvex approximation, was used for the feature selection in GMM
clustering in [176]. The numerical results showed that our algorithm DCA outperforms the EM
method in [260] which uses l1-norm approximation.

To handle the third issue in model-based clustering, i.e. the over-parametrization, one thinks
naturally to impose a sparse condition on the precision matrices Wk since they are the highest
dimensional variables among πk, µk and Wk. The majority of the existing literature assume that
all clusters have a common diagonal covariance matrix, implying the same orientation for all
clusters [182, 243, 232, 92]. However, it has been shown that this assumption is too stringent and
can consequently badly affect the mixture models. On the other hand, the sparsity of Wk can
be achieved by adding a regularization term of Wk to the objective function of the maximum
log-likelihood problem (3)

max
Θ∈D

L (Θ)− λP3(W ), (10.10)

where P3(W ) :=
∑K

k=1

∑D
d=1

∑D
j=1;j 6=d |Wk (d, j)|0 (Wk(d, j) is the element with index (d, j) of

matrixWk). Similarly to the feature selection problem, the l0-norm in P3(W ) makes the problem
(10.10) hard to solve. Most of existing works have focused on using a convex regularization
to replace P3(W ). The l1 regularization was used in [260] while weighted l1 was developed
in [102] and [240]. Later, [94] also considered the similarity among precision matrices Wk by
combining the l1 regularization with the l2-norm, i.e.

∑D
d=1

∑D
j=1;j 6=d(

∑K
k=1 |Wk (d, j)|2)1/2. In

another work, [78] replaced P3(W ) by a non-convex regularization, named truncated LASSO, to
get the following optimization problem

max
Θ∈D

L (Θ)− λ1

K∑
k=1

D∑
d=1

D∑
j=1;j 6=d

rα (Wk (d, j)) + λ2

∑
k<k′

D∑
d=1

D∑
j=1;j 6=d

rα (Wk (d, j)−Wk′ (d, j)) ,

(10.11)
where rα (s) = min {|s| , α}. An EM based algorithm was developed for solving (10.11). Note
that, in this EM algorithm, the computation of W at step M requires to solve a DC program
and the proposed method coincides with the idea of DCA.

In summary, all three above-presented issues in model-based clustering, i.e. the model selec-
tion, the features selection and the over-parameterization are related to the sparse optimization.
The model selection can be done through a sparse inducing regularization of the mixing pro-
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portion πk. Similarly, feature selection (resp. over-parameterization) can be formulated as the
minimization of the l0-norm of µk (resp. the l0-norm of Wk). Although all these three issues are
linked together, most of existing works deal with them separately and there is not an unified
model which considers all three issues simultaneously. As for resolution method, most of exis-
ting works replaced the l0-norm by an convex approximation and then proposed an EM based
algorithm to solve the resulting optimization problem.

Our contribution. In this work, for the first time, we introduce an unified optimization formu-
lation that considers at the same time the model selection, the feature selection and the over-
parameterization problem in GMM clustering. Our maximum sparse penalized log-likelihood
problem takes the form

max
Θ∈D

L (Θ)− Pλ(W ), (10.12)

where

Pλ (Θ) = λ1P1(π) + λ2P2(µ) + λ3P3(W )

= λ1

K∑
k=1

log
ε+ |πk|0

ε
+ λ2

K∑
k=1

D∑
d=1

|µkd|0 + λ3

K∑
k=1

D∑
d=1

D∑
j=1;j 6=d

|Wk (d, j) |0,
(10.13)

with the trade-off parameters λ1, λ2, λ3 ≥ 0. Lets recall that in [108], the regularization term of
π is defined as

∑K
k=1 log ε+p(πk)

ε where p(.) is the SCAD penalty function. Since SCAD penalty
function is known as an approximation of the l0-norm, in our work, we define P1(π) in a more
general way, i.e. P1(π) :=

∑K
k=1 log ε+|πk|0

ε . Note that we do not impose any assumption on the
variables π, µ and W .

On the contrary to the existing works, we adopt the non-convex approximations approach to
deal with l0-norm as they are more efficient than convex approximation approach. The resulting
optimization is non-convex for which we investigate DCA based algorithms to solve.

We will firstly show that standard DCA can solve the optimization problem (10.12). It turns
out that with this DC decomposition the corresponding standard DCA can be computationally
expensive for high dimensional datasets. Inspired by the idea of DCA-Like presented in Chapter 3,
we will exploit the specific structure of (10.12) to develop an tailored DCA-Like algorithm to
solve it. Furthermore, we propose a Two-Step DCA-Like in order to improve DCA-Like.

The remainder of the chapter is organized as follows. In Section 10.2, we develop a standard
DCA for solving (10.12). DCA-Like is presented in Section 10.3 while Section 10.4 is devoted
to Two-Step DCA-Like. In Section 10.5, we realize several numerical experiments and provide
a comparison of our algorithms with existing methods on benchmark and synthetic datasets.
Finally, Section 10.6 concludes the chapter.

10.2 DCA for solving Gaussian Mixture Models clsutering with
sparse regularization

We will now reformulate the problem (10.12) by replacing the l0-norm by a non-convex
approximation. Among the well-known existing non-convex approximations, we choose the expo-
nential concave function approximation function which has been successfully applied in several
machine learning problems. Note that, the algorithms developed in this paper work with other
non-convex approximations of l0-norm such as SCAD, capped-l1, logarithm function, piecewise
linear function, lp with 0 < p < 1 or lp with 0 < p. Let s ∈ R, the exponential concavec function
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is defined by rα(s) = 1− exp (−α|s|), where α > 0 controls the tightness of the approximation.
As showed in Chapter 5, rα is a DC function with following DC decomposition

rα(s) = γ|s| − (γ|s| − rα(s)) (10.14)

where γ > 0 is a positive real number such that γ|s| − rα(s) is a convex function. Through out
this chapter, we choose γ = α as proposed in Chapter 5. Substituting l0 by rα in (10.13), we
obtain the new regularization term

Pλ,α (Θ) := λ1P1
λ,α(π) + λ2P2

λ,α(µ) + λ3P3
λ,α(W )

= λ1

K∑
k=1

log
ε+ rα (πk)

ε
+ λ2

K∑
k=1

D∑
d=1

rα (µkd) + λ3

K∑
k=1

D∑
d=1

D∑
j=1;j 6=d

rα (Wk (d, j)) .

(10.15)
Hence, we can reformulate the maximum sparse penalized log-likelihood problem (10.12) in
minimization form as follows

min
Θ∈D
F(Θ) := −L(Θ) + Pλ,α(Θ), (10.16)

with L(Θ) and D defined in (10.3) and (10.5). In the sequence, we consider the problem (10.16)
instead of (10.12). We now present the standard DCA for solving (10.16).

On the one hand, since −L(Θ) is at least twice differentiable, it is a DC function, for instance,
with the following DC decomposition −L(Θ) = Gρ(Θ)−Hρ(Θ) where :

Gρ(Θ) =
ρ

2
‖Θ‖2,

Hρ(Θ) =
ρ

2
‖Θ‖2 + L(Θ).

(10.17)

There exists a positive value ρ0 such that for all ρ > ρ0 the function Hρ(Θ) is convex. In deed,
denote by λn(Θ) the largest eigenvalue of the Hessian matrix of −L at Θ. It is easy to prove that
for all ρ > max{0, λn(Θ)} the function Hρ(Θ) is convex.

On the other hand, rα(s) is a DC function. Hence Pλ,α(Θ) is a DC function

Pλ,α(Θ) = Gλ,α(Θ)−Hλ,α(Θ),

Gλ,α(Θ) =
λ1α

ε
‖π‖1 + λ2α‖µ‖1 + λ3α

∑K
k=1 ‖Wk‖1,

Hλ,α(Θ) =
λ1α

ε
‖π‖1 + λ2α‖µ‖1 + λ3α

∑K
k=1 ‖Wk‖1 − Pλ,α (Θ) .

(10.18)

We note here the l1-norm for matrices, which is ‖Wk‖1, is off-diagonal, i.e. the diagonal elements
are not considered.

Since −L(Θ) and Pλ,α(Θ) are DC functions, F(Θ) = −L(Θ)+Pλ,α(Θ) is a DC function with
F(Θ) = G(Θ) −H(Θ) where G(Θ) := Gρ(Θ) + Gλ,α(Θ) and H(Θ) := Hρ(Θ) + Hλ,α(Θ). Thus,
DCA can be developed for solving the optimization problem (10.16). According to general DCA
scheme, at each iteration t we compute Θ̄t = (π̄t, µ̄t, W̄ t) ∈ ∂H(πt, µt,W t) and then compute
Θt+1 = (πt+1, µt+1,W t+1) as the solution to the following convex problem

min
π,µ,W∈D

{
G(π, µ,W)− 〈(π̄t, µ̄t, W̄ t), (π, µ,W )〉

}
. (10.19)
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The optimization problem (10.19) is separable on all three variables. Thus, we have

πt+1 ∈ arg min

{
ρ

2
‖π‖2 +

λ1α

ε
‖π‖1 − 〈π̄t, π〉 :

K∑
k=1

πk = 1

}
, (10.20)

µt+1 ∈ arg min

{
ρ

2
‖µ‖2 + λ2α‖µ‖1 − 〈µ̄t, µ〉

}
, (10.21)

W t+1 ∈ arg min

{
ρ

2
‖W‖2 + λ3α‖W‖1 − 〈W̄ t,W 〉 : Wk � 0, ∀k ∈ {1, ...,K}

}
. (10.22)

The solution of (10.20) is nothing else but the projection onto a simplex ∆ := {π ∈ (0, 1)K :∑K
k=1 πk = 1} for which several efficient algorithms are available, for instance the work of

[118]. The problem (10.21) can be efficiently solved using the soft thresholding operator [21].
The resolution of problem (10.22) requires a projection onto the positive definite cone Wk :=
{Wk : Wk � 0}. Unfortunately, this projection is computationally expensive for high dimensional
matrices.

Remark 10.1 Finding an DC decomposition for −L(Θ) is challenging due to its mathemati-
cal definition as a logarithm function of a sum. In the above-presented DCA scheme for solving
(10.16), the DC decomposition of −L(Θ) is only based on the fact that −L(Θ) is twice differen-
tiable. With this DC decomposition, −L(Θ) is fully integrated to Hρ(Θ) and its structure is not
well exploited. This leads to a standard DCA scheme that may require high effort in computation
for large-scale data.

In literature, the GMM clustering problem (10.3) has been efficiently solved by EM algorithm.
The effectiveness of EM comes from the fact that one can easily obtain a convex upper bound
Q of −L and the problem of minimization of Q can be explicitly solved. Inspired by the idea
of DCA-Like presented in Chapter 3, we aim to utilize the convex upper bound Q to develop a
DCA-Like algorithm for solving (10.16) in the next section.

10.3 DCA-Like

Lets first recall briefly the EM algorithm for solving the GMM clustering problem (10.3). Let

zik =
πkp (xi | θk)∑
l πlp (xi | θl)

. We have

−L(Θ) = −
N∑
i=1

log

(
K∑
k=1

πkp (xi | θk)

)
=
∑
i,k

z
(t)
ik log (zik)−

∑
i,k

z
(t)
ik log (πkp (xi | θk)) .

Let

z
(t)
ik =

π
(t)
k p

(
xi | θ(t)

k

)
∑

l π
(t)
l p

(
xi | θ(t)

l

) ≥ 0.

Since − log is convex and
∑K

k=1 z
(t)
ik = 1, we have

−L(Θ) = −
N∑
i=1

log

(
K∑
k=1

πkp (xi | θk)

)
= −

N∑
i=1

log

(
K∑
k=1

z
(t)
ik

πkp (xi | θk)
z

(t)
ik

)
≤
∑
i,k

z
(t)
ik log

(
z

(t)
ik

)
−
∑
i,k

z
(t)
ik log (πkp (xi | θk)) .
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Let Q(Θ,Θ(t)) = −
∑

i,k z
(t)
ik log (πkp (xi | θk)). Since 0 ≤ zik ≤ 1, we obtain :

−L(Θ) ≤ −
∑
i,k

z
(t)
ik log (πkp (xi | θk)) = Q(Θ,Θ(t)). (10.23)

The EM algorithm for maximimum log-likelihood problem, e.g. maxΘ∈D L(Θ) or equivalently
minΘ∈D −L(Θ), consists on computing the posterior probability zik in the E step and then
minimizing Q(Θ,Θ(t)) to update Θ in the M step. Fortunately, the solution of the optimization
problem in step M can be obtained explicitly and there is no projection needed. This is the
main reason why EM algorithm is efficient for GMM clustering. However, when dealing with
penalized likelihood problem (10.16) where the regularization term is non-convex, the resulting
upper bound of the objective function is non-convex. Therefore, we need a more appropriate
method for solving (10.16). On the other hand, standard DCA can effectively handle the non-
convex penalty term when the log-likehood term −L is DC decomposed. This observation gives
rise to a incorporated method between upper-bounding −L by Q and treating the regularization
term by DCA.

We propose to decompose −L(Θ), using the Q(Θ,Θ(t)), as follows

−L(Θ) = G
(t)
L −H

(t)
L ,

G
(t)
L (Θ) = Q(Θ,Θ(t)),

H
(t)
L (Θ) = Q(Θ,Θ(t)) + L(Θ).

(10.24)

Hence, with the DC decompsition of Pλ,α(Θ) in (10.18), F(Θ) can be decomposed as

F(Θ) =
[
G

(t)
L (Θ) +Gλ,α(Θ)

]
−
[
H

(t)
L (Θ) +Hλ,α(Θ)

]
. (10.25)

To solve (10.16) with this decomposition, we develop a DCA-Like algorithm. Note that (10.25)
is not a DC decomposition since H(t)

L (Θ) +Hλ,α(Θ) is not necessarily convex. DCA-Like is “like”
DCA in the sense that they iteratively approximate the DC program (10.16) by a sequence of
convex ones. However, DCA-Like is “unlike” DCA as it relaxes a key requirement of DCA in
the manner to decompose F(Θ). The DCA-Like algorithm for solving (10.16) is described in
Algorithm 10.1.

Algorithm 10.1 DCA-Like scheme for solving (10.16)

1: Initialization Let
(
π(0), µ(0),W (0)

)
∈ D be a best guess.

Choose α > 0, λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0, t← 0.
2: repeat
3: Calculate G(t)

L (Θ) and Θ̄t = (π̄t, µ̄t, W̄ t) ∈ ∂Hλ,α(πt, µt,W t).
4: Calculate Θ(t+1) as a solution of

min
Θ∈D

[
G

(t)
L (Θ) +Gλ,α(Θ)

]
−
〈
Θ̄t,Θ

〉
. (10.26)

5: t = t+ 1.
6: until stopping criterion.

Remark 10.2 Lets consider a special case of (10.16) where Pλ,α = 0, e.g. the classical GMM
clustering (10.3). Hence the sub-problem (10.26) in DCA-Like scheme becomes

min
Θ∈D

G
(t)
L (Θ) = min

Θ∈D
Q(Θ,Θ(t)).
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This coincides with the M step of EM algorithm. Thus, DCA-Like is reduced to EM algorithm
when Pλ,α = 0.

Below we give more details of the calculation in each step of Algorithm 10.1.

Computation of (π̄t, µ̄t, W̄ t) ∈ ∂Hλ,α(πt, µt,W t). Recall that

Hλ,α(Θ) =
λ1α

ε
‖π‖1 + λ2α‖µ‖1 + λ3α

∑K
k=1 ‖Wk‖1

−λ1

K∑
k=1

log
ε+ rα (πk)

ε
− λ2

K∑
k=1

D∑
d=1

rα (µkd)− λ3

K∑
k=1

D∑
d=1

D∑
j=1;j 6=d

rα (Wk (d, j)) .

The function Hλ,α(Θ) is differentiable and its gradient can be computed as

∇Hλ,α(Θ) = (π̄, µ̄, W̄ ) ∈ RK × RK×D × RK×D×D

where

π̄k = λ1α
ε − λ1

αe−απk
ε+rα(πk) ∀k = 1, . . . ,K

µ̄kd =

{
λ2α (1− e−αµkd) if µkd > 0,

−λ2α (1− eαµkd) otherwise,
∀k = 1, . . . ,K, ∀d = 1, . . . , D

W̄k(d, j) =

{
λ3α

(
1− e−αWk(d,j)

)
if Wk(d, j) > 0

−λ3α
(
1− eαWk(d,j)

)
otherwise

∀k = 1, . . . ,K, ∀j, d = 1, . . . , D, and j 6= d.

(10.27)

Solution to the sub-problem (10.26). Recall that in DCA-Like scheme (Algorithm 10.1), we
have to solve the following convex sub-problem at each iteration

min
π,µ,W∈D

G
(t)
L (π, µ,W ) +Gλ,α(π, µ,W )−

〈
(π̄t, µ̄t, W̄ t), (π, µ,W )

〉
.

We observe that in (10.26), the variable π can be separated from variables µ and W .
Sub-problem for mixing proportions π. By removing terms that do not contain π in (10.26), we
obtain

π(t+1) ∈ arg min

{
−

N∑
i=1

K∑
k=1

z
(t)
ik log (πk) +

λ1α

ε
‖π‖1 +

〈
π̄t, π

〉
:
K∑
k=1

πk = 1

}
. (10.28)

According to [108], we can obtain the close-form solution of (10.28) as follows :

π
(t+1)
k =

1

γk

n∑
i=1

z
(t)
ik , (10.29)

with

γk = N −
λ1α

ε

K∑
l=1

∇rα
(
π

(t)
l

)
π

(t)
l +

λ1α

ε
∇rα

(
π

(t)
k

)
.

At iteration t, if the mixing proportion πk of component k is equal to 0, we consider that
component non-relevant and eliminate it. In practice, πk rarely equals 0 exactly due to numerical
instability [108]. Hence, we can choose a small threshold η and if πk < η, we shrink it to 0.
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Sub-problem for means µ and inverse covariance matrices W . By neglecting terms not containing
µ and W in (10.26), we have :(

µ(t+1),W (t+1)
)
∈ arg min −1

2

∑
i,k z

(t)
ik

[
log (det (W ))− (xi − µk)T W (xi − µk)

]
+λ2α‖µ‖1 + λ3α‖W‖1 −

〈
µ̄t, µ

〉
−
〈
W̄ t,W

〉
,

(10.30)

To solve (10.30), we alternatively solve for µ and W as follows.
Means µ. The sub-problem for µ reads :

min
µ

N∑
i=1

K∑
k=1

z
(t)
ik

(
1

2
(xi − µk)T W (xi − µk)

)
+ λ2α‖µ‖1 −

〈
µ̄t, µ

〉
(10.31)

Consider µkd, by using KKT conditions, we obtain∑
i

z
(t)
ik Wk(d, :) (xi − µk)− sign(µkd)λ2α+ µ̄t = 0, when µkd 6= 0 (10.32)∣∣∣∣∣∣

∑
i

z
(t)
ik

∑
j 6=d

Wk(d, j) (xij − µkj) +Wk(d, d)xid

+ µ̄t

∣∣∣∣∣∣ ≤ λ2α, when µkd = 0

where Wk(d, :) is the d-th row of Wk matrix and xid is the d-th element of xi. Put{
ψ1 =

∑
i z

(t)
ik W

(t)
k (d, d)

ψ2 =
∑

i z
(t)
ik

[∑
j 6=dW

(t)
k (d, j)

(
xij − µ(t)

kj

)
+W

(t)
k (d, d)xid

]
+ µ̄t

(10.33)

From (10.32), we obtain µkd =
ψ2 − sgn(ψ2)λ2α

ψ1
, when ψ2 > λ2α

µkd = 0, when ψ2 ≤ λ2α
(10.34)

Inverse covariance matrices W . The sub-problem of Wk has the form :

min
W1,...,WK�0

1

2

∑
i,k

z
(t)
ik

[
− log (det (Wk)) +

(
xi − µ(t+1)

k

)T
Wk

(
xi − µ(t+1)

k

)]

+ λ3α
K∑
k=1

‖Wk‖1 −
〈
W̄ t,W

〉
.

This can be simplified as

min
W1,...,WK�0

1

2

K∑
k=1

zk [− log (det (Wk)) + tr (SkWk)] + λ3α‖Σ−1‖1 −
〈
W̄ t,Wk

〉
(10.35)

where

zk =
N∑
i=1

z
(t)
ik ,

Sk =

∑N
i=1 z

(t)
ik

(
xi − µ(t−1)

k

)(
xi − µ(t−1)

k

)T
zk

.

Problem (10.35) can be solved effectively via convex solvers [75, 107].

266



Gaussian Mixture Models

Remark 10.3 When we choose the penalty coefficient λi = 0, i = 1, . . . , 3, that means we do
not penalize the variable corresponding to λi. Then, that variable is updated via EM algorithm as
follows :

π
(t+1)
k =

1

N

N∑
i=1

z
(t)
ik , (10.36)

µ
(t+1)
k =

∑N
i=1 z

(t)
ik xi∑N

i=1 z
(t)
ik

, (10.37)

W
(t+1)
k =

1

N

∑
i,k

z
(t)
ik (xi − µk) (xi − µk)T . (10.38)

Finally, the detailed DCA-Like for solving (10.16) is presented in Algorithm 10.2.

Algorithm 10.2 DCA-Like for (10.16)

1: Initialization Choose an initial number of clusters K(0)
e .

Let
(
π(0), µ(0),W (0)

)
∈ D be a best guess, α > 0, λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0, t← 0.

2: repeat
3: Calculate G(t)

L (Θ) and Θ̄t = (π̄t, µ̄t, W̄ t) ∈ ∂Hλ,α(πt, µt,W t) via (10.27).
4: for k = 1 : K

(t)
e do

5: If λ1 > 0, update π(t+1) by (10.29). Else, update π(t+1) by (10.36).
6: If λ2 > 0, update µ(t+1) by (10.34). Else, update µ(t+1) by (10.37).
7: If λ3 > 0, updateW (t+1) by solving sub-problem (10.35). Else, updateW (t+1) by (10.38).

8: If π(t+1)
k = 0, eliminate component k and set K(t+1)

e = K
(t)
e − 1.

9: end for
10: t← t+ 1
11: until stopping criterion.

10.4 Two-Step DCA-Like

In this section, we propose a strategy to improve the clustering results of Algorithm 10.2.
Recall that at Θ(t) =

(
π(t), µ(t),W (t)

)
, Algorithm 10.2 aims at minimizing the objective function

−L(Θ) + Pλ,α(Θ) by first exploiting the DC-Like structure of −L and Pλ,α, then forms an
appropriate upper bound of −L(Θ) + Pλ,α(Θ) at Θ(t) and minimize it. As in Algorithm 10.2, if
the mixing proportion π(t)

k is equals to 0, then we delete component k for the remaining iterations.
This changes the feasible set of Θ since the dimension of π is reduced. After some iterations,
the algorithm will reach a point where the number of clusters estimated becomes stable, i.e. its
value does not decrease anymore until convergence. Lets call that number Ke. For a fixed Ke, the
feasible set of Θ is also fixed. If we call that stable feasible set D∗, then the problem becomes :

min
Θ∈D∗

−L(Θ) + Pλ,α(Θ) = −L(Θ) + λ1P1
λ,α(π) + λ2P2

λ,α(µ) + λ3P3
λ,α(W ).

As we can see, the penalty term P1
λ,α(π) of π is now unnecessary since the number of clusters

is stable. If we continue keeping that penalty term, it could badly affect the quality of Algo-
rithm 10.2. Therefore, when the number of clusters becomes stable, we should fix Ke and remove
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the term P1
λ,α(π) from the regularization term Pλ,α. Based on this observation, we propose a

Two-Step DCA-Like scheme as follows. In the Step 1, we apply the steps of Algorithm 10.2 until
Ke becomes stable. Then we remove P1

λ,α(π) by setting λ1 = 0 and continue the Step 2 with
fixed Ke. All the computations of Step 2 are similar to Step 1 except for the update of πk. The
Two-Step DCA-Like is presented in Algorithm 10.3.

Algorithm 10.3 Two-Step DCA-Like for (10.16)

1: Initialization : Choose an initial number of clusters K(0)
e .

Let
(
π(0), µ(0),W (0)

)
∈ D be a best guess.

Choose α > 0, λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0, t← 0.
2: Step 1 :
3: repeat
4: Calculate G(t)

L (Θ) and Θ̄t = (π̄t, µ̄t, W̄ t) ∈ ∂Hλ,α(πt, µt,W t) via (10.27).
5: for k = 1 : K

(t)
e do

6: If λ1 > 0, update π(t+1) by (10.29). Else, update π(t+1) by (10.36).
7: If λ2 > 0, update µ(t+1) by (10.34). Else, update µ(t+1) by (10.37).
8: If λ3 > 0, updateW (t+1) by solving sub-problem (10.35). Else, updateW (t+1) by (10.38).

9: If π(t+1)
k = 0, eliminate component k and set K(t+1)

e = K
(t)
e − 1.

10: end for
11: t← t+ 1
12: until stopping criterion on stability of K(t)

e

13: Ke = K
(t)
e

14: Step 2 :
15: repeat
16: Calculate G(t)

L (Θ) and Θ̄t = (π̄t, µ̄t, W̄ t) ∈ ∂Hλ,α(πt, µt,W t) via (10.27)
17: for k = 1 : Ke do
18: Update π(t+1) by (10.36)
19: If λ2 > 0, update µ(t+1) by (10.34). Else, update µ(t+1) by (10.37)
20: If λ3 > 0, updateW (t+1) by solving sub-problem (10.35). Else, updateW (t+1) by (10.38)
21: end for
22: t← t+ 1
23: until stopping criterion.

10.5 Numerical experiments

10.5.1 Experiment settings

Notations. In DCA-Like (Algorithm 10.2), for each choice (either zero or non-zero) of the tuple
(λ1, λ2, λ3), we have a different version of Algorithm 10.2. To differentiate different version of
Algorithm 10.2, we choose the notation DCAabc, with a, b, c ∈ {0, 1}, where value 0 means
the related λ is set to 0. For instance, DCA100 means λ1 6= 0, λ2 = 0, λ3 = 0. To denote the
class of algorithms with some common λi, we denote by x the variations. For example, DCA1xx
contains four algorithms : DCA100, DCA110, DCA101 and DCA111. For Two-Step DCA-Like
(Algorithm 10.3), we use the notation DCA2bc, where 2 stands for Two-Step. Note that for
Two-Step DCA-Like, λ1 is always non-zero.
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Regarding the number of clusters, we denote by Ke the number of clusters estimated by an
algorithm. K∗ is the true number of clusters given from the benchmark datasets. Khf is Ke with
highest frequency over 100 runs of an algorithm.
Comparative criteria To evaluate the performance of algorithms, we consider the following
criteria

— Adjusted Rand Index (ARI) : a well-known measure of the similarity between two cluste-
rings [110].

— Selected Feature percentage (SF) : the percentage of selected features over the total number
of features.

— True Positive Rate (TPR) : the percentage of features selected which is informative over
all informative features.

— False Positive Rate (FPR) : the percenrage of non-informative features selected over all
non-informative features.

— Computation time.
Datasets. Benchmark datasets are taken from UCI Machine Learning Repository [66]. Informa-
tion of datasets is given in Table 10.1.

Dataset Instances (N) Dimension (D) Number of classes (K*)
comp 3891 10 3
dermatology 358 34 6
glass 214 9 6
ionosphere 351 32 2
iris 150 4 3
thyroid 215 5 3
wine 178 27 3
zoo 101 16 7

Table 10.1 – Datasets

Experiment setting The parameter α is chosen from the set {1, 5, 10} while λ1, λ3 belong to
{0.001, 0.0002, ..., 1} and λ2 in {0.1, 0.1099, ..., 10}. We use a grid search procedure for choosing
the best value of α and λ. To reduce the effects of initial values and local minima, we repeat
the search multiple times. The grid point with highest average BIC value, as defined below, is
chosen as the optimal tuning parameters.

BIC(α, λ) =

N∑
i=1

log

(
Ke∑
k=1

π̃kp
(
xi | θ̃k

))
−

1

2
log(N)

Ke∑
k=1

Pk.

We run each algorithm 100 times with the optima parameters and report the mean and
standard deviation of each criteria. K-means is used for finding an initial point for all algorithms.
Convex sub-problems on sparse covariance selection are solved by QUIC software [107].

The experiments are performed on a Intel Core i7 3.60 GHz PC with 16 GB of RAM and the
codes were written in MATLAB.

10.5.2 Experiment 1 - Estimating the number of clusters

This experiment aims to evaluate the ability of our algorithms in estimating the correct
number of clusters.
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Comparative algorithm. We benchmark the class of four DCA1xx algorithms, e.g. λ1 6= 0
(c.f. Section 10.5.1) and compare them with the algorithm proposed by [108] and the well-known
package mclust [212]. Recall that mclust uses BIC as the model selection criterion while [108]
deals with the optimization (10.8), that is

max
Θ∈D

L (Θ)− λ
K∑
k=1

log
ε+ p(πk)

ε
.

Experiment setting. The lower bound and upper bound for the number of clusters are 1 and
9, respectively (as given default in mclust). Hyperparameters λ1, λ2, λ3 and α are chosen as in
Section 10.5.1. Let Ke be the estimated number of clusters by an algorithm. As we choose the
bounds for the number of clusters above, the set of all possible outcomes of Ke is limited to
{1, 2, ..., 9}. As mentioned in Section 10.3, the threshold η to shrink the mixing proportion πk is
set to 10−6. We run each algorithm 100 times and record the frequency of each outcome. Let Khf

be the outcome of Ke with highest frequency. Adjusted Rand Index of cases where Ke = Khf

are reported along with the running time in the Table 10.2.

Table 10.2 – Experiment 1 - Estimating the number of clusters of the algorithms on real datasets. Bold values
correspond to the correct number of clusters estimated for each dataset (Khf = K∗). Khf is the estimated number
of clusters with the highest frequency.

Algorithms Frequency
Khf ARI Time(s)

1 2 3 4 5 6 7 8 9

DCA100 1 28 71 0 0 0 0 0 0 3 0.9533 ± 0.0095 0.5727 ± 0.01
DCA110 2 27 70 1 0 0 0 0 0 3 0.9317 ± 0.0018 7.9523 ± 0.18
DCA101 0 21 79 0 0 0 0 0 0 3 0.9496 ± 0.015 1.9554 ± 0.65
DCA111 0 16 81 3 0 0 0 0 0 3 0.9378 ± 0.0098 39.0379 ± 2.41
Huang 0 4 86 10 0 0 0 0 0 3 0.9666 ± 0 0.9047 ± 0.14
mclust 0 0 0 0 0 0 0 14 86 9 0.4372 ± 0.0413 57.384 ± 5.1

Data set comp : N = 3891, D = 10,K∗ = 3.

Algorithms Frequency
Khf ARI Time(s)

1 2 3 4 5 6 7 8 9

DCA100 0 48 39 8 5 0 0 0 0 2 0.7752 ± 0.0296 0.7011± 0.0843
DCA110 3 49 40 8 0 0 0 0 0 2 0.7438 ± 0.022 14.9491± 1.0355
DCA101 24 74 0 0 0 0 0 0 0 2 0.7636 ± 0.0302 3.2247± 0.4231
DCA111 13 79 7 1 0 0 0 0 0 2 0.7584 ± 0.0133 18.8638± 0.6758
Huang 0 13 23 45 19 0 0 0 0 4 0.6374 ± 0.0304 0.1008± 0.0604
mclust 0 100 0 0 0 0 0 0 0 2 0.3461 ± 0 42.7856± 1.58

Data set ionosphere : N = 351, D = 32,K∗ = 2.

Algorithms Frequency
Khf ARI Time(s)

1 2 3 4 5 6 7 8 9

DCA100 0 21 78 1 0 0 0 0 0 3 0.9094 ± 0.0293 0.0307± 0.0153
DCA110 0 16 36 35 4 0 0 0 0 3 0.8524 ± 0.0458 0.3596± 0.0786
DCA101 0 2 91 7 0 0 0 0 0 3 0.8783 ± 0.0041 0.1912± 0.0589
DCA111 0 3 97 0 0 0 0 0 0 3 0.8321 ± 0.0062 0.8766± 0.0421
Huang 0 74 26 0 0 0 0 0 0 2 0.7763 ± 0.0011 0.0465± 0.0293
mclust 0 100 0 0 0 0 0 0 0 2 0.5681 ± 0 0.0352± 0.0108

Data set iris : N = 150, D = 4,K∗ = 3.

Algorithms Frequency
Khf ARI Time(s)

1 2 3 4 5 6 7 8 9

DCA100 0 2 88 9 1 0 0 0 0 3 0.9331 ± 0.0045 0.0607± 0.0197
DCA110 0 4 91 5 0 0 0 0 0 3 0.9215 ± 0.0467 0.5288± 0.0124
DCA101 0 2 98 0 0 0 0 0 0 3 0.8535 ± 0.003 0.1429± 0.0186
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DCA111 0 1 90 9 0 0 0 0 0 3 0.8331 ± 0.005 1.2473± 0.1115
Huang 0 0 69 29 2 0 0 0 0 3 0.9317 ± 0.0045 0.0531± 0.0192
mclust 0 0 100 0 0 0 0 0 0 3 0.8925 ± 0 0.2822± 0.0083

Data set thyroid : N = 215, D = 5,K∗ = 3.

Algorithms Frequency
Khf ARI Time(s)

1 2 3 4 5 6 7 8 9

DCA100 0 7 70 23 0 0 0 0 0 3 0.9228 ± 0.037 0.2078± 0.0352
DCA110 2 14 65 13 6 0 0 0 0 3 0.8767 ± 0.0467 3.8266± 0.1783
DCA101 0 6 83 11 0 0 0 0 0 3 0.9125 ± 0.0356 0.8944± 0.0103
DCA111 0 2 81 17 0 0 0 0 0 3 0.8936 ± 0.0234 8.4474± 0.4546
Huang 2 16 47 35 0 0 0 0 0 3 0.8912 ± 0.0135 0.2311± 0.0085
mclust 0 0 100 0 0 0 0 0 0 3 0.9306 ± 0 12.4456± 1.06

Data set wine : N = 178, D = 27,K∗ = 3.

Algorithms Frequency
Khf ARI Time(s)

1 2 3 4 5 6 7 8 9

DCA101 25 4 0 0 2 69 0 0 0 6 0.9184 ± 0.0486 0.8671± 0.0427
DCA111 17 0 0 0 4 72 7 0 0 6 0.8966 ± 0.0815 43.1283± 4.6154
mclust 0 0 0 0 0 0 0 0 100 9 0.6362 ± 0 0.4264± 0.0091

Data set dermatology : N = 358, D = 34,K∗ = 6.

Algorithms Frequency
Khf ARI Time(s)

1 2 3 4 5 6 7 8 9

DCA101 0 0 0 7 37 56 0 0 0 6 0.559 ± 0.0166 0.497± 0.0232
DCA111 0 0 0 0 27 61 12 0 0 6 0.5213 ± 0.0191 3.5362± 0.7323
mclust 0 0 0 0 100 0 0 0 0 5 0.147 ± 0 0.1608± 0.0418

Data set glass : N = 214, D = 9,K∗ = 6.

Algorithms Frequency
Khf ARI Time(s)

1 2 3 4 5 6 7 8 9

DCA101 0 0 0 0 1 37 42 18 2 7 0.9282 ± 0.0183 0.0465± 0.0031
DCA111 0 0 0 0 4 30 51 12 3 7 0.9008 ± 0.0286 12.4918± 1.4299
mclust 0 0 0 100 0 0 0 0 0 4 0.2633 ± 0 0.0964± 0.016

Data set zoo : N = 101, D = 16,K∗ = 7.

In dermatology, glass and zoo datasets, the algorithms using full covariance structures (DCA100,
DCA110 and [108]) fail to give a result. The error is caused by ill-conditioned precision matrices
Wk.
Comments on numerical results. In terms of estimating the true number of clusters, all
algorithms of class DCA1xx (λ1 6= 0) are able to estimate the correct number of clusters with
high frequency, in all experimented datasets. The algorithm of [108] overestimates the number
of clusters in ionosphere dataset (Khf = 4,K∗ = 2) whereas underestimates it in iris dataset
(Khf = 3,K∗ = 2). Although mclust does not encounter the ill-conditioned covariance matrices
problem in dermatology, glass and zoo, it misestimates the number of clusters in those datasets
as well as in comp and iris datasets.

As for the frequency of correct estimation, DCA1xx detect the correct K∗ with higher fre-
quency than [108]. In thyroid and wine datasets, DCA1xx correctly detects K∗ with notably
higher frequencies than [108]. In thyroid dataset, the frequencies of DCA1xx vary from 88 to
98, while the frequency of [108] is 69. In wine dataset, the smallest frequency in all DCA1xx
algorithms is 65 and the frequency of [108] is 47. In comp dataset, although [108] has higher
frequency (86/100) than all DCA1xx algorithms, the difference is not significant compared to
DCA111 (81/100). mclust is quite stable in term of frequency (correct estimation or not). Except
for dataset comp, mclust always gives the same K over 100 runs.
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We observe that the presence of feature selection and sparsity penalization on precision
matrices, e.g. λ2, λ3 > 0, helps to improve the frequency of correct detection of K∗ in DCA algo-
rithms. DCA111 has highest frequencies of correctly detecting K∗ among all DCA1xx algorithms
in most of datasets (except for wine and thyroid). Algorithms with covariance sparsity (DCA1x1 )
not only prevent ill-conditioned matrices problem (dermatology, glass and zoo datasets), but also
increase the frequency of correct detection of K∗. Naturally, dealing with multiple penalizations
increases the computational time, DCA111 is the slowest among DCA1xx.

Concerning ARI, all DCA1xx algorithms furnish significant better results than [108] and
mclust for all datasets, except for comp dataset where [108] is slightly better.

Overall, the class of DCA1xx algorithms can detect the correct number of clusters in all
considered datasets with high frenquency.

10.5.3 Experiment 2 - Feature selection

In this experiment, we evaluate the capacity of algorithms in detecting the informative fea-
tures to provide high classification accuracy. We will perform the experiment on synthetic datasets
whose informative features are known a priori and also on real datasets.
Synthetic dataset. The synthetic dataset is generated as follows. First, we create three vectors
of dimension 20, namely m1,m2,m3. Three first elements of m1 are set to 1 and the rest are
0. Similarly, the 4th, 5th and 6th elements of m2 are 1 and the rest are 0. The element 7th,
8th and 9th of m3 are equal to 1 and the rest are 0. Using these three vectors, we generate
three corresponding multivariate Gaussians, each possesses mi as its mean and the co-variance
matrix is unit diagonal matrix. From each Gaussian, we randomly generate 100 data points.
Thus, the synthetic dataset contains 300 data points evenly divided into 3 classes ; each data
point is represented by 20 features but only first 9 features are informative.
Comparative algorithm. For this experiment, we compare our algorithm DCA010 (λ1 = λ3 =
0, λ2 > 0) with Zhou-010, a modified EM algorithm presented in [260] for solving the GMM with
l1 regularization

min
Θ∈D
−L (Θ) + λ2

K∑
k=1

D∑
d=1

|µkd| .

Experimental setting. We choose hyperparameter λ2 as presented in Section 10.5.1. For each
algorithm, we measure the Selected Feature percentage (SF), the True Positive Rate (TPR) and
the False Positive Rate (FPR). TPR is the percentage of features selected which is informative
over all informative features while FPR is the percentage of non-informative features selected
over all non-informative features. As in previous experiment, we also report the ARI and the
computational time. The results are recorded over 100 runs.

Numerical results of synthetic and benchmark dataset are given in Table 10.3a and Table
10.3b, respectively.

Comments on numerical results. In synthetic dataset, Zhou-010 selects slightly less features
than DCA010 (54% vs 55%). However, DCA010 selects more informative features (91.34%) than
Zhou-010 (71.11%). Consequently, DCA010 selects less non-informative than Zhou-010 (25.45%
vs 40%). Concerning the ARI, DCA010 gives 0.6723 which is significantly higher than 0.0663 of
Zhou-010. Furthermore, DCA010 is 25 faster than Zhou-010 (4.1 vs 107.6 seconds).

In all benchmark datasets, Zhou-010 fails to select features since it keeps all the features. We
observe that, except for the iris, DCA010 gives better ARI than Zhou-010 why selecting less
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Table 10.3 – Experiment 2- Selecting informative features. Bold values indicate best results.

Results DCA010 Zhou-010
SF(%) 55 ± 7.4 54 ± 15.57
TPR(%) 91.34 ± 7.46 71.11 ± 18.59
FPR(%) 25.45 ± 11.18 40 ± 13.79
ARI 0.6723 ± 0.0311 0.0663 ± 0.0183
Time(s) 4.1211 ± 0.03 106.718 ± 1.4935

(a) Synthetic dataset

Datasets Results DCA010 Zhou-010

comp
SF(%) 82 ± 6.01 100 ± 0
ARI 0.973 ± 0.0021 0.9279 ± 0.0015
Time(s) 6.1102 ± 1.5407 641.808 ± 185.2588

ionosphere
SF(%) 45.25 ± 4.13 100 ± 0
ARI 0.7913 ± 0.009 0.4089 ± 0
Time(s) 4.4182 ± 0.0945 78.002 ± 0.0455

iris
SF(%) 75 ± 0 100 ± 0
ARI 0.7432 ± 0.0031 0.9039 ± 0
Time(s) 0.3935 ± 0.0941 24.618 ± 0.0638

thyroid
SF(%) 60 ± 0 100 ± 0
ARI 0.9387 ± 0.0032 0.8933 ± 0
Time(s) 0.2049 ± 0.0096 18.18 ± 0.0235

(b) Benchmark datasets

features. As for the computation time, DCA-GMM is significantly faster than EM-GMM, e.g.
up to 105 times faster on comp dataset.

In summary, DCA010 is better than Zhou-010 in all three comparative criteria : percen-
tage of selected feature, ARI and computation time. The results confirm again that non-convex
approximation is better than convex approximation to deal with the sparse optimization.

10.5.4 Experiment 3 - Sparsity on precision matrices

In this experiment, we are interested on the sparsity of the obtained precision matrices. For
this purpose, we set λ1 = 0 (since we are not interested on model selection) and λ3 > 0. We
consider two cases where feature selection is used (λ2 > 0) or not (λ2 = 0). Hence, the two
versions of DCA that we use for this experiment are DCA001 and DCA011.
Comparative algorithms. The comparison of our algorithms are realized with two algorithms
presented in [260] for solving the GMM with l1 regularization, namely Zhou-001 and Zhou-011.
Zhou-011 solves the following problem

min
Θ∈D
−L (Θ) + λ2

K∑
k=1

D∑
d=1

|µkd|+ λ3

K∑
k=1

D∑
d=1

D∑
j=1

|Wk (d, j)|

where λ2, λ3 > 0. Zhou-001 deals with the above problem in the case where λ2 = 0 and λ3 > 0.
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The comparative results are given in Table 10.4. Beside the percentage of selected feature
(SF(%)), the ARI, the computation time, we report the the percentage of non-zero elements in
precision matrices (Sparse(%)).

Table 10.4 – Experiment 3 - Evaluating sparsity on precision matrices. Bold values indicate
best results.

Datasets Results DCA001 Zhou-001 DCA011 Zhou-011

comp

SF(%) NA NA 70 ± 1.8 100 ± 0
Sparse(%) 71.5 ± 4.24 54.67 ± 1.25 65.33 ± 2.51 53.73 ± 0.37
ARI 0.9673 ± 0.0064 0.8024 ± 0.1203 0.9653 ± 0.0063 0.8885 ± 0.0562
Time(s) 1.8356 ± 0.7638 763.2 ± 181.6157 35.0387 ± 2.52 781.568 ± 392.2629

ionosphere

SF(%) NA NA 42.19 ± 4.1 93.75 ± 0
Sparse(%) 36.87 ± 5.75 24.12 ± 0 25.79 ± 4.6 24.12 ± 0
ARI 0.8741 ± 0.0069 0.0316 ± 0 0.8559 ± 0.0157 0.0257 ± 0
Time(s) 0.058 ± 0.0041 43.828 ± 0.1501 14.582 ± 1.42 49.096 ± 0.0483

iris

SF(%) NA NA 100 ± 0 100 ± 0
Sparse(%) 57.29 ± 0.87 25 ± 0 62.5 ± 0 25 ± 0
ARI 0.9686 ± 0.0027 0.868 ± 0 0.9575 ± 0.0019 0.8341 ± 0
Time(s) 0.1535 ± 0.031 13.68 ± 0.0141 0.7813 ± 0.0145 12.19 ± 0.0543

thyroid

SF(%) NA NA 60 ± 2.12 100 ± 0
Sparse(%) 63.33 ± 12.83 22.67 ± 0 73.33 ± 7.29 22.67 ± 0
ARI 0.9446 ± 0.0152 0.8763 ± 0 0.9436 ± 0.0181 0.8763 ± 0
Time(s) 0.1121 ± 0.0213 8.09 ± 0.3365 0.8824 ± 0.0124 11.05 ± 0.0843

wine

SF(%) NA NA 33.33 ± 1.71 100 ± 0
Sparse(%) 61.01 ± 3.42 3.98 ± 0 54.53 ± 0.64 3.98 ± 0
ARI 0.9756 ± 0.0083 0.8951 ± 0 0.9759 ± 0.0092 0.8783 ± 0
Time(s) 0.7385 ± 0.0242 9.936 ± 0.4991 17.3725 ± 2.6253 17.456 ± 0.0365

dermatology

SF(%) NA NA 39.71 ± 2.2 NA
Sparse(%) 14.63 ± 1.92 NA 23.85 ± 1.32 NA
ARI 0.9591 ± 0.0049 NA 0.9632 ± 0.0084 NA
Time(s) 0.6241 ± 0.0557 NA 37.2428 ± 3.1934 NA

glass

SF(%) NA NA 75 ± 7.86 NA
Sparse(%) 18.31 ± 20.14 NA 16.05 ± 11 NA
ARI 0.7036 ± 0.0318 NA 0.7031 ± 0.0287 NA
Time(s) 0.4138 ± 0.0829 NA 3.1917 ± 0.5829 NA

zoo

SF(%) NA NA 45.31 ± 16.2 NA
Sparse(%) 19.85 ± 1.02 NA 67.76 ± 5.03 NA
ARI 0.9872 ± 0.0005 NA 0.9833 ± 0.003 NA
Time(s) 0.0637 ± 0.0024 NA 12.5823 ± 2.1449 NA

Zhou-001 and Zhou-011 fail to furnish a result on three datasets dermatology, glass and zoo
datasets. Note that we do not report the SF forDCA001 and Zhou-001 since they do not deal
with feature selection.
Comments on numerical results. In term of feature selection, Zhou-011 selects all features
in most of datasets, except for ionosphere where 93.75% of features are selected while DCA011
only use 42.19%. Overall, DCA011 selects relatively small number of features in wine (33.33%),
dermatology (39.71%) and zoo (45.31%), ionosphere (42.19%).

Regarding the sparsity of precision matrices, Zhou-001 and Zhou-011 are quite similar with
the same values of precision matrices sparsity in almost datasets. The percentages of non-zero
elements in precision matrices of Zhou-001 and Zhou-011 are notably smaller than DCA001 and
DCA011. Despite of that, ARIs of DCA001 and DCA011 are comparable and significantly higher
than both Zhou-001 and Zhou-011. For instance, in wine dataset, ARI of DCA011 is 0.9759 and
ARI of Zhou-001 is 0.8951. In iris dataset, ARI of DCA001 is 0.9686 while ARI of Zhou-001
is 0.868. The differences in ARI and sparsity on precision matrices shows that Zhou-001 and
Zhou-011 algorithms neglected the correlated features, therefore having small sparsity but also
reducing ARI. On the other hand, DCA-Like algorithms do not eliminate too much elements on
precision matrices, maintaining an appropriate balance between ARI and sparsity.
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10.5.5 Experiment 4 : Evaluating Two-Step DCA-Like

In this experiment, we study the efficiency of Two-Step DCA-Like. We benchmark Two-
Step DCA-Like algorithms DCA201 and DCA211. For comparison, we take into account mclust
package. We choose hyperparameters as in section 10.5.1. Each algorithm is performed 100 times
and we report the average results in Table 10.5.

Table 10.5 – Experiment 4 - Evaluating Two-Step DCA-Like. Bold values indicate best results.

Datasets Results DCA201 DCA211 mclust

comp ARI 0.9634 ± 0.0059 0.9641 ± 0.0075 0.9285 ± 0.001
Time(s) 2.6356 ± 0.8018 43.6922 ± 2.9183 7.1656 ± 0.909

ionosphere ARI 0.8694 ± 0.0077 0.9062 ± 0.0385 0.3461 ± 0
Time(s) 0.0787 ± 0.0089 15.5862 ± 1.2646 42.7856 ± 1.58

iris ARI 0.9672 ± 0.0029 0.9576 ± 0.0018 0.9039 ± 0
Time(s) 0.1718 ± 0.0283 0.9769 ± 0.0139 0.0922 ± 0.0097

thyroid ARI 0.9472 ± 0.0157 0.9437 ± 0.0189 0.8925 ± 0
Time(s) 0.17 ± 0.0199 1.5208 ± 0.0121 0.2822 ± 0.0083

wine ARI 0.9801 ± 0.0079 0.9782 ± 0.0093 0.9306 ± 0
Time(s) 0.9642 ± 0.0235 21.7878 ± 2.5063 12.4456 ± 1.06

dermatology ARI 0.9619 ± 0.0053 0.9742 ± 0.0084 0.8996 ± 0
Time(s) 0.9382 ± 0.0556 49.631 ± 3.2456 0.2833 ± 0.0071

glass ARI 0.7107 ± 0.0283 0.7004 ± 0.0309 0.131 ± 0
Time(s) 0.7338 ± 0.0855 4.9222 ± 0.5923 0.1489 ± 0.0078

zoo ARI 0.9867 ± 0.0005 0.9874 ± 0.003 0.5238 ± 0
Time(s) 0.0953 ± 0.0026 14.3507 ± 2.0404 0.0256 ± 0.0073

Comments on numerical results. Both DCA201 and DCA211 have higher ARI than mclust
in all datasets. The ARIs of Two-Step algorithms are also significantly higher than their One-
step versions that we experimented in previous sections. This shows that removing the penalty
term of π in the second step improves the quality of the solution. DCA201 and DCA211 are
comparable in term of ARIs and by far better than mclust. As for running time of DCA201 is
notably better than DCA211 since the feature selection procedure of DCA211 adds considerable
time to the algorithm.

Overall, we can conclude that Two-Step DCA-Like (Algorithm 10.3) allows improve the
efficiency of DCA-Like (Algorithm 10.2).

10.6 Conclusion

In this chapter, we have studied three fundamental issues GMM clustering : the model se-
lection, the feature selection and the over-parameterization. For the first time, we presented an
unified model that considers all these three issues at the same time. The model selection is done
though a sparse regularization of the mixing proportion πk. Similarly, a sparse regularization of
µ (resp. of W ) is used for the feature selection (resp. the over-parameterization).

We approximated the l0-norm by the concave exponential function. The resulting problem
can be then recast as a DC program. However, the corresponding standard DCA seems to not
be efficient since the sub-problem requires high effort in computation.
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On the one hand, it is well-known that a convex upper bound of −L(Θ) (L(Theta) is the
log-likelihood function) can be easily computed. On the other hand, DCA can effectively handle
the non-convex regularization term. This observation gives rise to a incorporated method, namely
DCA-Like, between upper-bounding −L by the convex function and treating the regularization
term by DCA. DCA-Like can work even when we can not highlight a DC decomposition. Fur-
thermore, we propose a Two-Step DCA-Like in order to improve the performance of DCA-Like.
The first step aims to find the correct number of clusters and then we remove the regularization
of π in the second step to improve the clustering results.

We have carefully conducted several numerical experiments on both synthetic and Bench-
mark datasets to illustrate the effectiveness of our algorithms. The results have shown that our
algorithms are efficient and outperformed existing methods.
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Chapitre 11

Time-series clustering. Application on
customer clustering of French

transmission system operator (RTE)
based on their electricity consumption1

Abstract: We tackle three crucial issues in high-dimensional time-series data clustering for pattern disco-
very : appropriate similarity measures, efficient procedures for high-dimensional setting, and fast/scalable
clustering algorithms. For that purpose, we use the DTW (Dynamic Time Warping) distance in the ori-
ginal time-series data space, the t-distributed stochastic neighbor embedding (t-SNE) method to transform
the high-dimensional time-series data into a lower dimensional space, and DCA based clustering algo-
rithms. As application, we applied our approach for customer clustering of French transmission system
operator (RTE) based on their electricity consumption. The ultimate goal of customer clustering is to au-
tomatically detect patterns for understanding the behaviors of customers in their evolution. It will allow
RTE to better know its customers and consequently to propose them more adequate services, to optimize
the maintenance schedule, to reduce costs, etc. The numerical results on real-data of RTE’s customer
have shown that our clustering result is coherent : customers in the same group have similar consump-
tion curves and the dissimilarity between customers of different groups are quite clear. Furthermore, our
method is able to detect whether or not a customer changes his way of consuming.

11.1 Introduction

In recent years, due to an exponential growth of the time-series data applications in emer-
ging areas such as sale data, finance, weather, . . . , there have been considerable research and
developments in time-series clustering. Time-series clustering is a hard task due to the follo-
wing two main difficulties. The first lies in the nature of temporal information in time-series.
More precisely, while evaluating the similarity between time-series objects, the chosen simila-
rity measure should be able to take into account the temporal information of the considered
time-series data. The second main difficulty concerns the high-dimensional nature of time-series

1. The results presented in this chapter were published in :
• G. Da Silva, H.M. Le, H.A. Le Thi, V. Lefieux, B. Tran, Customer Clustering of French Transmission

System Operator (RTE) Based on Their Electricity Consumption, Advances in Intelligent Systems and
Computing 991, 893-905, 2019.
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data. A high number of dimensions leads to great increases in the computation time of clustering
algorithms. Furthermore, clustering techniques often suffer from the "curse of dimensionality"
phenomenon, say the quality of clustering algorithms is degraded as the dimension of data in-
creases. Hence, for developing an efficient time-series clustering algorithm, one has to deal with
three important issues : appropriate similarity measures for time-series data, efficient procedures
for high-dimensional setting, and fast/scalable clustering algorithms. That is the purpose of our
work.

We will apply our time series clustering method for the clustering of customers of RTE (French
transmission system operator) based on their electricity consumption. RTE is in charge of the
high voltage grid for electricity in France. As a smart grid, RTE is responsible for the balance
of production and consumption, the safety of transportation and the quality of the delivered
services. The main objective of customer clustering task is to automatically detect patterns and
find casualties of customers in their evolution. The results will help RTE to better know its
customers and to propose them more adequate services. To speak in marketing terms, they will
allow a better adaption of maintenance schedule, a smooth preparation for real-time operations
and a cost reduction. Understanding more precisely the behaviors of customers on the grid is
one more step towards a smart grid.

Each RTE’s customer is characterized by his electricity consumption curves which contain the
electricity consumption of each 10 minutes over two years. Hence, each customer is represented by
a time-series sequence of 105, 120 points. We are undoubtedly facing a very large-scale time-series
clustering problem.

The remainder of the chapter is organized as follows. The proposed approach is developed in
Section 11.2 while the experiment and the result analysis are reported in Section 11.3. Finally,
Section 11.4 concludes the chapter.

11.2 The proposed high-dimensional time-series data clustering
approach

In the development of our solution method, the following questions are crucial (to which
the answers are not independent) : which similarity measure to be considered ? which clustering
algorithm should be investigated ? and how to deal with high-dimensional data ?

11.2.1 DTW distance : a suitable similarity measure for time-series data

Similarity measure is a major challenge in time-series clustering. A suitable choice of distance
measure depends mainly on the objective of clustering task, and on the characteristic as well
as the length of time-series. In this section, we will study an appropriate similarity measure in
high-dimensional time-series data clustering for pattern discovery. A large number of similarity
measures for time-series data have been proposed in the literature. The readers are referred to
the surveys [3] and [234] for a more complete list of similarity measures for time-series data.
Generally speaking, they can be divided into two main categories : lock-step measures (one-to-
one) like `p-distance and elastic measures (one-to-many/one-to-none) including DTW distance,
Longest Common Sub-sequence distance, Probability-based distance [234], etc. The one-to-one
distances, as the name suggests, compare the two time-series point by point. However, in problems
where one wants to catch similar patterns of time-series that do not occur at the same moment,
the one-to-one distances are not adapted. The Figure 11.1 (a) perfectly illustrates the drawback
of one-to-one distance in this case. As we can see, the Euclidean distance of two time-series is
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high despite the fact that the two time-series have the same shape (the second time-series is
nothing else but a horizontally shifted transformation of the first one).

(a) Euclidean Distance (b) DWT Distance

Figure 11.1 – Euclidean and DTW distance of two very-similar time-series (red and blue curves).
The black line shows the matching {pl = (nl,ml)}l=1,...,L between points between two time-series.

In contrast to one-to-one measures, the main difference and superiority of elastic measures
lie in their ability to handle temporal drift/shifting in time-series. Among all the existing elastic
measures, Dynamic Time Warping (DTW) distance has been proved to be appropriate in several
applications involving time-series data [251, 1, 54]. The DTW distance of two time-series x ∈
rTx and y ∈ rTy can be defined as follows [166]. Let (N,M)-warping path be a sequence p =
(p1, . . . , pL) with pl = (nl,ml) ∈ [1, N ]× [1,M ] for l = 1, . . . , L. A valid DTW path (N,M) also
needs to satisfy (1) the boundary condition (p1 = (1, 1) and pL = (N,M) = (Tx, Ty)) ; (2) the
monitonicity condition (n1 ≤ n2 ≤ · · · ≤ nL and m1 ≤ m2 ≤ · · · ≤ mL) ; and (3) the step-size
condition (pl+1 − pl ∈ {(1, 0), (0, 1), (1, 1)} for l ∈ {1, . . . , L − 1}). Hence, the DTW distance
between two time-series x and y is given by

dDTW(x, y) = min

{
L∑
l=1

|xnl − yml |
∣∣∣ p is a valid (N, M)-warping path

}
. (11.1)

DTW minimizes the differences between two times-series by aligning each point from one time-
series to the best corresponding points in the other time-series by a warping path. Hence DTW
is enough flexible to handle the shifting between time-series, and is able to catch the similar
patterns of two time-series sequences. Therefore, the DTW distance is chosen for our time-series
clustering approach.
However, the main drawback of DTW distance is its computation time. The algorithm for com-
puting the DTW distance is a recursive algorithm with complexity of O(T 2) where T is the
length of time-series. Hence, for high-dimensional time-series data, it is very slow, even impos-
sible to use directly DTW distance in clustering algorithms involving the computation of DTW
at each iteration (e.g. k-means and its variants). To overcome this drawback of DTW, we adopt a
feature-based clustering approach. Clustering time-series is usually tackled by two approaches :
the raw-data-based, where clustering is directly applied over time-series vectors without any
space-transformation previous to the clustering phase, and the feature based approach which
does not directly perform clustering on the time-series raw data.

11.2.2 A feature-based clustering approach for high-dimensional time-series
data

Feature-based clustering approach consists of two main steps : (a) transform the time-series
into feature vectors in a smaller dimensional space, then (b) perform clustering algorithm on the
transformed data. We will describe below an efficient data transformation algorithm to the first
step.
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11.2.2.1 Data transformation by t-SNE

In the literature, several data transformation algorithms for time-series data have been deve-
loped. The most well-known one is certainly the Fourier and Wavelet transformation. The Fourier
transformation decomposes the time-series into a sum of sinusoids, which allows us working in
frequency-domain instead of raw data ; whereas Wavelet transformation uses a different basic
function (not necessarily sinusoids). Recently, Schafer et al. [209] proposed Bag-of-SFA-Symbol
(BOSS), an advanced feature extraction algorithm for time-series, which combines Fourier trans-
formation on sliding windows with Bag-of-words to extract the characteristic from the time-series.
The authors have shown that BOSS performed better than existing transformations [209, 17].

In this work, we will consider t-distributed stochastic neighbor embedding (t-SNE), a relative
new algorithm based on a completely different idea than other classical algorithms like Principal
Component Analysis (PCA), Non-negative Matrix Factorization (NMF) and above-mentioned
algorithms. t-SNE was first introduced by Maateen et al. [161] as a dimensional reduction algo-
rithm for data visualization. The t-SNE transforms data-points from the original space into a
new space (normally lower-dimensional space) such that the probability of two data-points be in
the same cluster in the original space is equal to the probability that their transformations be
in the same cluster in the new space. The reader are referred to Chapter 3 Section 3.4 for a des-
cription and mathematical formulation of t-SNE. Recall that in Section 3.4, we have developed
DCA-Like to solve t-SNE and showed that DCA-Like outperformed all existing methods.

t-SNE offers the liberty to choose the similarity measures doriginal (resp. dnew) in original
(resp. new space). In the original work [161], the authors applied t-SNE to an application in data
visualization where the number of dimensions in the new space is low (2 or 3), with both doriginal
and dnew are Euclidean distance. In our case, we consider doriginal as the DTW distance while
the Euclidean distance is chosen for dnew. On the one hand, it is obvious that doriginal should
be DTW distance since it is well adapted for time-series data as we have shown in Sub-Section
11.2.1. On the other hand, the choice of Euclidean distance for dnew is motivated by the existence
of several efficient, scalable and robust clustering algorithms based on DCA via the Euclidean
distance (e.g. DCA-MSSC [123], DCA-KMSSC [129]). To the best of our knowledge, this is the
first time t-SNE is used with DTW distance.

The time-series data are now transformed into a new space by t-SNE. In the next Section,
we will study some efficient clustering algorithms for the transformed data.

11.2.2.2 Fast and scalable DCA based clustering algorithms

As we have mentioned previously, in our problem, except the time series curves, we do not
have any information on the clusters, nor the number of clusters. Finding the number of clusters is
challenging for clustering tasks. Generally, there exist two approaches. The first approach consists
in finding firstly the number of clusters with a “simple” procedure then apply a clustering algo-
rithm with the number of clusters found previously. In the second approach, one simultaneously
determines the number of clusters and clustering assignment.

In the literature, several algorithms have been developed for finding the number of clus-
ters. For instance, Elbow algorithm which uses the WSS criterion ("total within-cluster sum of
square") to determine the number of clusters. The number k∗ of clusters is optimal if the corres-
ponding WSS does not change significantly when increases the number of clusters by 1. Silhouette
Average algorithm is similar to Elbow algorithm. This algorithm varies the number of clusters
and chooses the one that maximizes the Silhouette criterion. Gap Statistic algorithm [224] is
another variant of Elbow algorithm. Gap Statistic algorithm maximize "gap statistic" criterion,
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which is defined by the difference between the measured WSS and its expected value under some
conditions.

Assuming that the number of clusters is known, there exists a variety of Euclidean-based
clustering algorithms such as k-means, k-medoids, fuzzy c-means, etc. Among many models for
clustering, the Minimum Sum-of-Squares (MSSC) is one of the most popular since it expresses
both homogeneity and separation (c.f. Chapter 7).

Le Thi et al. [123] have developed DCA-MSSC, an efficient algorithm based on DCA for
solving the MSSC model. DCA-MSSC have shown its superior in comparison with state-of-the-
art algorithms : performance, robustness, and adaptation to different types of data. We refer to
the original paper [123] for more details of DCA-MSSC algorithm.

On the other hand, among the algorithms that simultaneously determines the number of
cluster and clustering assignment, mclust [212] is a well-known one. mclust uses the Gaussian
Mixture Model. The optimal number of segments K∗ is determined by the Bayesian Information
Criterion (BIC) and Integrated Complete-data Likelihood (ICL). In a different direction, Le Thi
et al. [138] have proposed the DCA-Modularity algorithm. DCA-Modularity transforms the
data-points into a graph then segments vertices of the graph using the modularity criterion as a
measure of clustering quality. The problem of maximization of graph modularity is summarized as
follows. Consider an undirected unweighted network G = (V,E) with N nodes (V = {1, . . . , N})
and M edges (M = Card(E)). Denote by the adjacency matrix A : ai,j = 1 if (i, j) ∈ E, 0

otherwise. The degree of node i is denoted ωi (ωi =
∑N

j=1 ai,j), and ω stands for the vector
whose components are ωi. Let P be a partition of V , and K is the number of communities in P .
Define the binary assignment U = (ui,k)

k=1,...,K
i=1,...,N , says ui,k = 1 if vertex i belongs to community

k and 0 otherwise. Then, the modularity maximization problem can be written as

max
U

Q(U) := 1
2M

∑N
i,j=1 bi,j

∑K
k=1 ui,kuj,k, (11.2)

s.t.
∑K

k=1 ui,k = 1, for i = 1, . . . , N ;

ui,k ∈ {0, 1}, for i = 1, . . . , N, k = 1, . . . ,K;

where B := (bi,j)i,j=1,...,N = A − 1
2M ωω

T is a constant matrix, called the modularity matrix.
The problem (11.2) is a mixed-binary optimization problem for which Le Thi et al. [138] have
proposed DCA-Modularity. Le Thi et al. [138] have proved that DCA-Modularity is able to
give the right number of clusters as well as a good clustering assignment on several benchmark
datasets. The readers are referred to the original paper [138] for more details of DCA-Modularity
algorithm.

Motivated by the success of DCA-MSSC and DCA-Modularity, we will adopt both of them
for our clustering method. Precisely, DCA-Modularity will be used to determine the number of
clusters and a good staring clustering assignment. Based on the clustering assignment given by
DCA-Modularity, DCA-MSSC focus on improving the clustering assignment. This combination
allows us to take advantage of both DCA-MSSC and DCA-Modularity. According to all above
in-depth studies, we are going to describe below our solution method for clustering of RTE’s
customers based on their electricity consumption.

11.2.3 Description of the main algorithm

Our proposed method (c.f. Figure 11.2) consists of several steps : data processing, data
transformation and clustering. The first step, data processing, deals with the noisy and outlier
data caused by erroneous measurement at electric meter. In the second step, data transformation,
we transform the high-dimensional time-series data into a lower dimensional space using the
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t-SNE algorithm with DTW distance. As for the clustering algorithm, we combine the DCA-
Modularity [138] and DCA-MSSC [123]. DCA-Modularity [138] is used to compute the number
of clusters as well as a good starting point for the clustering algorithm DCA-MSSC. Since we are

Figure 11.2 – The proposed time-series clustering method’s pipeline.

interested in detecting similar patterns of time-series data, the transformation must be scaling
and translation invariant. Hence, the z-normalization [83] is employed for normalizing time-series
data. The effectiveness of this well-known transformation has been proved in several works [83,
199, 183]. Given a time-series a of length Ta : (at)t=1,...,Ta , the z-normalization of a is computed
as

anorm
t =

at − ā
σ(a)

for t ∈ {1, . . . , Ta} (11.3)

where ā and σ(a) are mean and standard-deviation of a : ā = 1
Ta

∑Ta
t=1 at and

σ(a) =
√

1
Ta

∑Ta
t=1(at − ā).

The proposed method for customer clustering is summarized in Algorithm 11.1.

Algorithm 11.1 Proposed algorithm for clustering time-series
1: Input : N time-series ai, . . . , aN .
2: Output : Clustering assignment p∗ = (p∗i )i=1,...,N where p∗i is the cluster of ai.
3: Step 1 : Z-Normalization transformation.
4: Input : N time-series a1, . . . , aN in RT .
5: Output : N normalized time-series ā1, . . . , āN in RT .
6: Step 2 : t-SNE DTW-Euclidean transformation.
7: Input : N normalized time-series āi, . . . , āN in RT .
8: Output : N vectors x1, . . . , xN in new space RD where xi is the corresponding transfor-

mation of ai in the new space.
9: Step 3 : Clustering algorithm

10: Step 3.1 : DCA-Modularity clustering [138].
11: Input : N vectors x1, . . . , xN in RD.
12: Output : The number of clusters K∗, a clustering assignment p0 = (p0

i )i=1,...,N .
13: Step 3.2 : DCA-MSSC clustering [123].
14: Input : N vectors x1, . . . , xN in RD, the number of clusters K∗, the clustering assignment

p0 = (p0
i )i=1,...,N .

15: Output : Clustering assignment p∗ := (p∗i )i=1,...,N .

11.3 Numerical experiments

Our experiments are realized on a dataset which contains 462 customer’s electricity consum-
mation curves of RTE. For a confidential reason, each client is named by a randomly generated
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number. The consumption curve contains the electricity consumption of each 10 minutes over
two years (from 01 January 2016 to 31 December 2017).

The code was written in C# 4.7.1. All experiments are conducted on an Intel(R) Xeon(R)
E5-2630v4 (40 CPUs) with 32 GB of RAM.

Experiment 1 : We first analyze the relevance of our clustering result. For this purpose, we
perform the Algorithm 11.1 on the whole dataset. It is worth to note that the computation time
of our method is only 42 minutes in total. It comes out that the number of clusters determined
by our algorithm is 19. In Figure 11.3, we report the number of customers in each cluster.

Figure 11.3 – Number of customers by clusters.

We will analyze the result from three clusters. The choice is solely based on the number
of customers in each cluster : the biggest cluster (cluster C7), followed by a medium-size one
(cluster C3, which is 25% smaller than cluster C7) and one small-size cluster (cluster C17, which
is the 4th smallest cluster). The consumption curve of four arbitrarily chosen customers from
each cluster are presented in Figure 11.4 (cluster C3), Figure 11.5 (cluster C7) and Figure 11.6
(cluster C17).

We observe that customers in each cluster clearly have similar shapes. For cluster C7, custo-
mers tend to have a "regular" consumption pattern : the consumption is high and followed by
a short "drop", i.e. the consumption suddenly tumbles to a small value, in comparison with the
consumption level of previous period), which repeats during the year. Further analysis reveals
that this is a typical "weekly" consumption pattern, where the drops often happen during the
weekend. In addition, they also have a long drop in consumption for 2 − 3 weeks around the
middle of August, and a shorter drop at the end of the year. For cluster C17, as we can see,
all four customers have a low electricity consumption (all are around 0), despite the differences
in their maximum consumption. They frequently generate very high peaks in a short duration
during the whole year. Customers in cluster C3 have a stable consumption during the whole
year (mostly varies around a base) and rarely have long "drop" during the year. They often have
short drops in consumption (as oppose to short "peaks" in cluster C17).

From the Figure 11.4, Figure 11.5 and Figure 11.6, we can conclude that (1) the consumption
curve of customers in the same clusters are coherent and (2) the differences of customers between
clusters are quite clear.

Figure 11.4 – Some consumption curves of customers from cluster C3.
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Figure 11.5 – Some consumption curves of customers from cluster C7.

Figure 11.6 – Some consumption curves of customers from cluster C17.

Experiment 2 : In this experiment, we are interested in the capacity of our method to detect if
a customer changes his way of consuming. For this purpose, we apply a Sliding Window technique
with slide duration of four weeks, thus we obtain 13 different one-year-window datasets. Each
one-year window datasets is processed by Algorithm 11.1.

We now analyze a customer whose consumption behavior changes over time. Consider the
case of customer 10010. As we can see in Figure 11.7, this customer has a sharp drop in consump-
tion in August 2015 while there is a much smaller decline in August 2016. This customer has
therefore clearly changed his mode of consumption. In Figure 11.8, we show the clusters to which
customer 10010 belongs during the 12 monthly runs of our segmentation algorithm. We see that
up to the 12/08/2016, customer 10010 belongs to cluster C2. As it was detected by our algorithm,
this customer changes his mode of consumption in August 2016. By 09/09/2016, customer 10010
is assigned to a new cluster (cluster C7).

In Figure 11.9 and Figure 11.10, we show some customers in cluster C2 and cluster C7.
We observe the similarities between the load curve of customer 10010 from August 12th, 2015
to August 11th, 2016 (Figure 11.7a) and those of customers in cluster C2 (Figure 11.9). This
same remark is valid between customer 10010’s consumption curve from September 9th, 2015 to
September 8th, 2016 (Figure 11.7b) and other customers of cluster C7 (Figure 11.10).

(a) August 12th, 2016 (b) September 09th, 2016

Figure 11.7 – The consumption of customer 10010 from 12/08/2015 to 11/08/2016 (left figure)
and from 09/09/2015 to 08/09/2016 (right figure).
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Figure 11.8 – The cluster of customer 10010 during nine runs. The first four runs’ results are
also C2, thus it is cropped out for visibility reason. The date (i.e. 22/04/2016) represents the
staring date of the one-year window.

Figure 11.9 – Some customers from cluster C2 on 12/08/2016.

Figure 11.10 – Some customers from cluster C7 on 09/09/2016.

11.4 Conclusion

The proposed algorithm in this work is the result of in-depth studies using advanced theore-
tical and algorithmic tools for large-scale time-series data clustering. We have efficiently tackled
the three challenges for our time-series clustering task : the similarity distance measure, the
clustering algorithm, and the Big data. The innovative character intervenes in all stages of the
proposed approach : the data transformation via t-SNE with the DTW measure in the origi-
nal data space and the Euclidean distance in the transformed space is original. Indeed, on one
hand, the DTW measure is appropriate to time-series clustering for pattern discovery. In another
hand, the use of Euclidean distance in the transformed space allows us to investigate efficient
clustering algorithms based on this distance. This transformation is very efficient to confront
the high-dimensional data. For the first time the DTW distance is considered in the t-SNE
transformation model and the resulting DCA scheme is particularly effective. Last but not least,
the combination of two powerful clustering algorithms - DCA-Modularity and DCA-MSSC - is
interesting, which gives rise to a performant method of clustering.

From a business point of view, this clustering has led to results that are already interpretable
and useful for RTE. The possibility of monitoring potential customer developments is of particular
interest to customer relationships managers, who can thus offer customized services.
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Chapitre 12

Research Perspectives

This chapter presents the research directions that I would like to explore in the future.
These perspectives are in accordance with my research developed thus far. I will continue to
investigate new advanced techniques in DC programming and DCA, with a focus on stochastic
optimization. From my best knowledge, the development of stochastic methods for non-convex
stochastic optimization is still limited. Based on our previous works on Stochastic DCA, I aim
to design novel efficient stochastic versions of DCA for other classes of stochastic optimization
problems.

12.1 Introduction

Stochastic optimization refers to a wide class of programming methodologies and optimi-
zation algorithms where the randomness/uncertainty is present. It is arguably that stochastic
optimization plays a significant role in almost all fields of applied sciences, in which it is the main
tool to model, design complex systems as well as to tackle the resulting problems. In the era of
unprecedented growth of data, stochastic optimization is a mean to resolve many associated chal-
lenges including data processing, storage bottleneck, noisy measurements, high dimensionality,
etc.

A typical stochastic optimization problem takes the following form :

min f(x) := Eξ(F (x, ξ)) (SP)

subject to x ∈ X .

There is a vast literature that studies the problem (SP) in the convex setting : F (·, ξ) are
convex for all ξ, X is deterministic and convex. However, when either F (·, ξ) or X becomes
non-convex, the problem becomes more difficult. More than that, the problem (SP) will be much
more challenging if the constraint is given in a stochastic form, i.e., Eξ(Q(x, ξ)) ≤ 0.

In our previous works, we have addressed the Stochastic DC program where the objective is
DC under deterministic convex constraint. However, there are still many open questions. We aim
firstly to extend our previous works on Stochastic DC program, e.g. study the non-asymptotic
convergence properties of these algorithms. Secondly, we will study a larger class of problems,
namely the Stochastic DC programs under Stochastic DC constraints. This class of problems is
very large and is so far under studied.
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12.2 Stochastic DC programs

Let (Ω,ΣΩ,P) be a probability space. Consider the Stochastic DC program :

min{f(x) := Φ(x) + r(x) : x ∈ Rn}, (SDC)

where r : Rn → R ∪ {+∞} is a lower semicontinuous DC function given by

r(x) := r1(x)− r2(x), x ∈ Rn,

with r1, r2 : Rn → R ∪ {+∞} being semicontinuous convex functions, and the expected loss
function

Φ(x) := G(x)−H(x) = Eξ(g(x, ξ))− Eξ(h(x, ξ))

where g(·, ξ), h(·, ξ), ξ ∈ Ω are convex functions defined on Rn.
In practice, the distribution of ξ is unknown by nature, so is Φ. We can, however, approximate

the function Φ by Monte-Carlo’s method. Given a large number of i.i.d. samples {ξ1, ξ2, . . . , ξN}
obtained from the distribution of ξ, the function Φ can be approximated by the empirical loss

Φ(x) ≈ Φemp(x) :=
1

N

N∑
i=1

g(x, ξi)−
1

N

N∑
i=1

h(x, ξi),

which leads to the following approximation optimization problem

min{f̄(x) := Φemp(x) + r(x) : x ∈ Rn}. (ERM)

The Stochastic DC program (SDC) and its empirical problem (ERM) are very challenging :
they are non-convex, nonsmooth programs. The problem (SDC) is stochastic by nature while
the problem (ERM) is a large-sum problem (N must be large for a good approximation). Conse-
quently, stochastic approaches are more suitable than deterministic approaches to tackle these
problems.

Literature Review. The current body of research on the problem (SDC) as well as (ERM)
remains limited.

— Le Thi et al. (2017) [131] considered a large sum of L-smooth function with `2,0 regulari-
zation term. The `2,0 is then approximated by DC functions, which leads to a special case
of (ERM). A stochastic DCA was developed and the authors established an asymptotic
convergence to DC critical points (with probability 1).

— Le Thi et al. (2020) [133] considered the problem (ERM) directly, where no smoothness
condition is required. A stochastic DCA was developed and the asymptotic convergence
with probability 1 to DC critical points was proved.

— Le Thi et al. (2021) [136] studied the problem (SDC) over a compact convex set in the
context of streaming data. An online stochastic DCA scheme was developed based on
Sample Average Approximation (SAA). The asymptotic convergence with probability 1 to
critical DC points was established.

— Le Thi et al. (2020) [127] developed several Stochastic DCA schemes for solving the general
problem (SDC) in an incremental fashion. The convergence with probability 1 to DC critical
points and the iteration convergence rate were proved.
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— Liu et al. (2020) [158] studied the two-stage stochastic programming with linearly bi-
parameterized quadratic recourse. The problem was then formulated in the form of (SDC)
and the authors developed a stochastic scheme based on DCA.

— Nitanda and Suzuki (2017) [177] studied the problem (SDC) where r = 0, G and H are
differentiable. The authors developed a proximal Stochastic DCA scheme and obtained the
first non-asymptotic convergence result.

— Xu et al. (2019) [244] developed proximal stochastic DCA for solving the problem (SDC) as
well as (ERM) where two cases of the regularizer r have been considered : r is convex or r
is non-convex whose proximal operator is simple. Their meta-algorithm can be considered
as the standard DCA, where the convex subproblems are solved by SPG [257] or Adagrad
[69] (in case of problem (SDC)) or by SVRG [242] (in case of problem (ERM)).

Perspectives. In previous works, we have established the asymptotic convergence of Stochastic
DCA to DC critical points. In order to evaluate theoretically the robustness of our algorithms,
in future works, we aim to :

— Establish non-asymptotic convergence rate of these Stochastic DCA schemes. To be specific,
we want to evaluate iteration convergence rate (note that, in [127] we have provided such
a rate). Furthermore, the computation complexity of each iteration is taken into account
(it consists of the complexity of computing the stochastic gradient and the complexity
of the underlying convex solver for solving sub-problem). Overall, the total computation
complexity will be established. Moreover, in machine learning, sample complexity is also a
very important concept. The sample complexity measures how many i.i.d. samples need to
use to obtain certain level of accuracy. We will study this kind of complexity.

— We will design new stochastic DCA schemes with competitive complexity comparing with
existing results ([177, 244]).

12.3 Stochastic General DCA

We consider the General Stochastic DC problem, i.e. Stochastic DC programs with Stochastic
DC constraints, as follows

min f0(x) := Eξ0(g0(x, ξ0))− Eξ0(h0(x, ξ0)) + r0(x)− s0(x),

subject to (GSDC)

fi(x) := Eξi(gi(x, ξi))− Eξi(hi(x, ξi)) + ri(x)− si(x) ≤ 0, i = 1, 2, . . . ,m.

where gi(·, ξi), hi(·, ξi) are convex defined on Rn, ri, si are lower semicontinuous convex functions :
Rn → R ∪ {+∞}.

The problem (GSDC) is really challenging as both the objective and constraints are given
in form of Stochastic DC. To our best knowledge, there is no existing work in the literature
that addresses this problem. Liu et al. (2019 ) [157] and Ye and Cui (2019) [249] are the only
works that study a stochastic non-convex program with non-convex constraints. More precisely,
they consider the following stochastic (non-convex) L-smooth programs with stochastic L-smooth
constraints :
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min f0(x) := Eξ(p0(x, ξ)),

subject to (SLC)

fi(x) := Eξ(pi(x, ξ)) ≤ 0, i = 1, 2, . . . ,m,

where pi(·, ξ) are L-smooth. Clearly, the class of (SLC) programs is strictly contained in the class
of (GSDC) programs.

Even with the (SLC) problem, there are many difficulties that have been encountered. For
example, as the constraints are non-convex and stochastic, how can we design an algorithm
that ensures the feasibility of such constraints. Moreover, how to prove the convergence with
probability one to critical/stationary points ?

Challenges of (GSDC)

— The DC structures of both objective and constraints.

— The stochastic nature of both objective and constraints : we can only access the objective
and constraints through noisy random observations.

— How to design an iterative algorithm whose subproblems are feasible at each iteration and
the generated sequence converges to a feasible point of (GSDC) ?

Perspectives. In the deterministic context where both objective and constraints are (deter-
ministic) DC functions, General DCA ([125]) can be developped. Based on this spirit, we aim to
extend the General DCA for the stochastic setting to handle the problem (GSDC). Then, we will
study both asysmptotic and non-asymptotic convergence results where (computation/sample)
complexities of the proposed algorithms will be analyzed. Finally, we will apply the newly propo-
sed algorithms to solve some important stochastic optimization problems such as chance constrai-
ned programs, interference networks in Telecommunications, Neyman-Pearson classification in
machine learning, etc.

Two approaches can be considered for solving (GSDC) : penalty technique and feasible point
pursuit.

Approach 1 : Penalty technique. Let p(x) := max{f1(x), f2(x), . . . , fm(x)} and p+(x) =
max{p(x), 0}. Then we can reformulate the problem (GSDC) by using the penalty technique as
follows

min{ϕ(x) := f0(x) + βp+(x)} (Pen-GSDC)

The problem (Pen-GSDC) is an unconstrained Stochastic DC program for which we can
employ directly, as well as further develop, our existing Stochastic DCA schemes to tackle.

Some important open questions :

— When does the exact penalty hold, i.e., the problem (Pen-GSDC) is equivalent to (GSDC)
in the sense that they have the same optimal value and the same solution set ?

— Even when (Pen-GSDC) is equivalent to (GSDC) in terms of globality, the connections of
these two problems in terms of locality/stationarity/criticality should be established since
iterative algorithms can only - in theory - find the latter kind of points.

— How to develop good algorithms to solve (Pen-GSDC) ?
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Approach 2 : Feasible Point Pursuit. In this approach, we aim to convexify each DC
constraint by linearizing their concave part. By this way, at each iteration we will obtain a
Stochastic DC programs over a (stochastic) convex set. The stochastic convex constraints can be
further approximated by the sample convex constraints. However, these convex constraints can
be infeasible. To avoid the infeasbility, we use the feasible point pursuit technique that consists
in introducing slack variables. We consider the following problem

min
x,z

f0(x) := Eξ0(g0(x, ξ0))− Eξ0(h0(x, ξ0)) + r0(x)− s0(x) + β
m∑
i=1

zi,

subject to (FPP_GSDC)

fi(x) := Eξi(gi(x, ξi))− Eξi(hi(x, ξi)) + ri(x)− si(x) ≤ zi, i = 1, 2, . . . ,m,

z1, z2, . . . , zm ≥ 0,

where z1, z2, . . . , zm are slack variables and β > 0 is the penalty parameter. At each iteration,
we can linearize Eξi(hi(x, ξi)) (and further approximate the affine minorant by the sample affine
minorant) and si(x). The resulting convex constraints are always feasible thanks to z1, z2, . . . , zm.

In the deterministic context, this technique has been successfully employed in the General
DCA [125]. In the stochastic context, it has been successfully employed in the Stochastic SCA
developed for solving L-smooth stochastic objective with L-smooth stochastic constraints [249].

12.3.1 Some Applications of Stochastic General DCA

12.3.1.1 Chance constrained optimization

In many systems, it is desirable to impose such constraints ui(x, ξ) ≤ 0 for all uncertain data
ξ. In many situations, this requirement is too strictly or even impossible due to the uncertainty
nature of ξ [169]. Chance (or probabilistic) constraint is an important concept that can address
this issue. Instead of requiring “ui(x, ξ) ≤ 0 for all ξ ∈ Ω" (appear in the context of robust
optimization, worst-case analysis), we can ask for a weaker constraint of the form “ui(x, ξ) ≤ 0
with at least probability of η". Formally, a chance constraint is described as

Prob(ui(x, ξ) ≤ 0) ≥ η, (12.1)

which is equivalent to

Prob(ui(x, ξ) > 0) ≤ 1− η

where η is usually a huge value in [0, 1], e.g. 0.9, 0.95, 0.99.
The chance constraint is the same as VaR(ui(x, ξ); η) ≤ 0 where VaR(z; η) is the value-at-

risk of random variable z at level η.
Example. In portfolio selection [4], let R = (R1, R2, . . . , Rn) be rates of return on n assets,
x = (x1, x2, . . . , xn) be the amount money allocated to each asset, t be a specified lower bound of
porfolio return, and α be stipulated probability. Then, the following chance constraint is imposed

Prob(〈R, x〉 < t) ≤ α.

Clearly, chance constraints can be written in form of expectation since

Prob(ui(x, ξ) > 0) = E
(
1(0,+∞)(ui(x, ξ))

)
.
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The function 1(0,+∞) is discountinuous. We can, however, use (convex) continuous functions to
approximate this discountinuity [169]. Let φ : R → R be nonnegative convex nondecreasing
function with φ(0) = 1. We see that, for each αi > 0, φ(z/αi) ≥ 1(0,+∞)(z), ∀z ∈ R. Therefore

Prob(ui(x, ξ) > 0) ≤ Eφ(ui(x, ξ)/αi). (12.2)

Consequently, the constraint Eφ(ui(x, ξ)/αi) ≤ 1 − η implies the chance constraint (12.1).
When ui(·, ξ) are convex for all ξ, φ(ui(·, ξ)) are convex. Hence we obtain a stochastic convex
constraint.

Some common choices of φ :

— Markov bound : φ(u) = (u+ 1)+.

— Chebyshev bound : φ(u) = (u+ 1)2
+.

— Chernoff bound : φ(u) = exp(u).

If ui(·, ξ) is non-convex or φ is chosen to be non-convex (to get a better bound in (12.2) for
example), then φ(ui(·, ξ)) is generally non-convex . When for each ξ, ui(·, ξ) is DC, if we further
assume that φ is DC where both DC components are Lipschitz continuous, then the composite
φ(ui(·, ξ)) is DC [15].

12.3.1.2 Interference networks in Telecommunications

Let K be a number of pairs frequency-selective interference channel. Let Hkj be the random
coefficient of the channel between the k-th transmitter and the j-th receiver. Assume that Hkj

are i.i.d. whose law is CN (0, δkj). Let pk be the transmit power for the k-th transmitter and Pk
be the power limit for the k-th transmitter.
Ergodic Sum-Rate Maximization with Coupled Constraints [249]

max
p
r0(p) =

K∑
k=1

rk(p),

subject to
0 ≤ pk ≤ Pk, k = 1, 2, . . . ,K,

rk(p) ≥ Rk, k = 1, 2, . . . ,K,

where r1, r2, . . . , rK are ergodic rates defined as follows

rk(p) = E

[
log

(
1 +

|Hkk|2pk∑
j 6=k |Hkj |2pj + σ2

k

)]
.

Many related problems in telecommunications such as Ergodic Sum-rate maximization with
decoupled constraints, MIMO transmit signal design with imperfect CSI, Robust beaming design,
Massive MIMO Hybrid Beaming Design, etc. can be found in [249, 157].

12.3.1.3 Neyman-Pearson Classification in Machine Learning

Let (X,Y ) be a pair of random variables where X is a random feature vector and Y ∈ {−1, 1}
is the corresponding label. In the classification task, we learn the classifier φ that maps X to its
label Y .
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The overall classification error that the classifier φ incurs is

R(φ) = Prob(φ(X) 6= Y ) = E(1φ(X)6=Y ).

Traditional approach is to find a classifier φ that minimizes R(φ).
By law of total probability, R(φ) can be written as

R(φ) = Prob(Y = −1)×Prob(φ(X) 6= Y |Y = −1) + Prob(Y = 1)×Prob(φ(X) 6= Y |Y = 1)

:= Prob(Y = −1)R0(φ) + Prob(Y = 1)R1(φ).

The traditional approach indeed seeks to minimize R0 and R1 simultaneously. In contrast, the
Neyman-Pearson paradigm looks for a classifier φ that minimizes R1 while guaranteeing the term
R0 smaller than some level α. The (α-level) Neyman-Pearson oracle classifier is the minimizer of
the following problem [225]

minR1(φ) = Prob(φ(X) 6= Y |Y = 1)

subject to
Prob(φ(X) 6= Y |Y = −1) ≤ α,

which literary reads “minimize the misclassification error of class 1 while keeping the misclassi-
fication error of class −1 under α".

Usually, the classifier φ takes the following form

φ(x) =

{
+1 if h(w, x) > 0,

−1 if h(w, x) < 0
,

where h(w, x) is a regression function parameterized by w. Then,

R(φ) = Prob(φ(X) 6= Y ) = Prob(Y h(w,X) < 0) = E
(
1(−∞,0)(Y h(w,X))

)
.

In practice, the above “0-1" loss function 1(−∞,0) is not tractable in general. Therefore, we
replace it by a suitable surrogate loss ϕ function (a common practice is to use a convex surrogate
for facility) [19] :

R̄(φ) = E(ϕ(Y h(w,X))).

The “surrogate" (α-level) Neyman-Pearson is as follows :

min
w
R̄1(φ) = EX|(Y=1) (ϕ(h(w,X))) ,

subject to
R̄0(φ) := EX|(Y=−1)(ϕ(−h(w,X))) ≤ α.

This is a stochastic program with both the objective and the constraint given in the expec-
tation forms. Classical approach uses linear function h (h(w,X) := w>X) and convex ϕ, which
leads to a convex optimization problem. With other choices of h and ϕ, the resulting problems
can be non-convex, nonsmooth.
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12.3.1.4 Bayesian optimization

Bayesian statistical inference is a comprehensive framework to incorporate newly arriving
information into the current probabilistic system based on the Bayes’ rule. In the Bayesian phi-
losophy, probability has subjective nuances : (unknown) deterministic objects are modeled as
random variables (the uncertainty actually comes from the lack of knowledge about the inter-
ested objects). Suppose we want to perform some computations on the deterministic unknown
parameter ξ. Since ξ is unknown, we treat it as a random variable, where we have some initial
beliefs (prior) π(ξ) about its distribution (if there is no knowledge about ξ, uniform priors can
be used). When new data Xn that reveals some information about ξ arrives, our belief about ξ
is updated via Bayes’ theorem :

π(ξ|Xn) =
p(Xn|ξ)π(ξ)∫
p(Xn|ξ)π(ξ)dξ

,

where π(ξ|Xn) is the posterior distribution of ξ, p(Xn|ξ) is the likelihood of observing Xn.
The above Bayesian framework allows one to draw inference under uncertainty, making the

best use of new relevant information.
In Bayesian optimization, suppose we are dealing with the following program parameterized

by ξ [113],

min
x∈X

f(x, ξ)

subject to gi(x, ξ) ≤ 0,∀i ∈ {1, 2, . . . ,m}.

In many situations, the true value of ξ is unknown beyond lying in some set Θ. Hence, ξ is
modeled as a random variable where we assume some prior knowledge π about its distribution
over Θ. When a new relevant observation Xn is revealed, our belief is updated, giving rise to the
posterior distribution π(ξ|Xn) which encodes the most up-to-date information about ξ. We then
solve the following stochastic optimization problem

min
x∈X

Eπ(ξ|Xn)[f(x, ξ)]

subject to Π(gi(x, ξ) ≤ 0, i = 1, 2, . . . ,m|Xn) ≥ β,

where, for any A ⊂ Θ, Π(A|Xn) =
∫
A π(ξ|Xn)dξ.

The above problem is in general non-convex stochastic optimization program when f(·, ξ), gi(·, ξ)
are non-convex.

12.3.1.5 Distributionally Robust Chance Constrained Programming based on Ge-
nerative adversarial networks (GANs)

Generative adversarial networks. Generative adversarial networks (GANs) [84] are a special fa-
mily of generative models (to learn how to generate data from an interested distribution). Unlike
traditional generative models that learn by maximizing the likelihood , GANs consist of two
components : a Generator (G) and a Discriminator (D). To learn how to generate data from
the target distribution over data x, the generator learns a mapping from a prior noise model
pz(z) to the space of samples x. On the other hand, the Discriminator learns how to distinguish
samples obtained from the true distribution and samples generated by the Generator by per-
forming binary classification. Formally, D and G play the following minimax game with value
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V (G,D) :

min
G

max
D

V (G,D) := Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log(1−D(G(z)))] .

Usually, the Generator G and the Discriminator D are parameterized as two neural networks
G(z; θg) and D(z; θd). Then, the parameters θg and θd are optimization variables.

This problem is - in general - a non-convex stochastic program. The conventional approach
to solve it is to use Stochastic Gradient Descent (and Stochastic Gradient Ascent) alternatively
between the Generator’s parameter space θg and the Discriminator’s parameter space θd.

GAN-based Data-Driven Distributionally Robust Chance Constrained Programming. The distri-
butionally robust chance constrained programming takes the following form

min f(x)

subject to inf
P∈D

Pς∼P (u(x, ς) ≤ 0) ≥ 1− α, (P )

x ∈ X,

where D is an ambiguity set and X is a deterministic constraint.
If the ambiguity set is constructed based on φ-divergence, the distributionally robust chance

constrained program can be formulated as the conventional chance constrained program (intro-
duced in [258]) with a modified risk level α′,

inf
P∈D

Pς∼P (u(x, ς) ≤ 0) ≥ 1− α⇔ Pς∼P0 (u(x, ς) ≤ 0) ≥ 1−max{0, α′},

where the ambiguous probability distribution P is replaced by the empirical probability distri-
bution P0.

min f(x)

subject to Pς∼P0 (u(x, ς) ≤ 0) ≥ 1−max{0, α′}, (Q)

x ∈ X.

Recently, GANs have been used to learn a good estimation for the empirical probability
distribution P0 [258]. Then, the Generator of GANs will generate data which are further used to
construct SAA problem (Sample Average Approximation) for the problem (Q). If the constraints
and the objective of (P ) are linear, the SAA problem is a mixed-integer linear programming
which can be solved by existing packages such as CPLEX, GUROBI, etc. When the objective
and constraints are non-convex, the SAA problems are much more difficult. We can employ the
continuous approximation technique in Section 12.3.1.1 to transform the (continuous) Stochastic
non-convex program.
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Résumé

Ce mémoire d’HDR est consacré au développement des méthodes avancées en programm-
tion DC (Difference of Convex functions) et DCA (DC Algorithm) pour différentes classes des
problèmes d’optimisation non convexes et leurs applications à nombreuses thématiques de l’ap-
prentissage automatique. Le mémoire est divisé en trois parties contenant de douze chapitres.
Dans la première partie, nous présentons trois approches avancées de DCA pour plusieurs classes
de problèmes d’optimisation non convexe. La première approche, nommée Accelerated DCA
(ADCA), est pour but d’améliorer la vitesse de convergence de DCA. La deuxième approche, ap-
pelée DCA-Like, permet de résoudre deux classes des problèmes d’optimisation non convexes sans
mettre en évidence une décomposition DC. La troisième approche, DCA Stochastique, est déve-
loppée pour faire face aux problèmes avec big data. La deuxième partie du mémoire concerne une
thématique difficile et extrêmement importante - l’optimisation parcimonieuse. Nous présentons
deux approches majeures pour l’optimisation parcimonieuse : l’approximation DC et la refor-
mulation via la pénalité exacte. Nous avons prouvé plusieurs résultats théoriques importants et
dévelopé quatre méthodes DCA pour résoudre les problèmes résultants. Nous déployons ensuite
nos deux approches proposées à la résolution de trois problèmes d’apprentissage automatique.
La troisième partie concerne le développement des méthodes DCA pour un sujet fondamental de
l’apprentissage et fouille de données : le clustering. Cinq problèmes en clustering sont considérés :
le MSSC (Minimum of Sum of Squares Clustering), le MSSC avec pondération de variables, le
clustering par blocs, le modèle de mélange gaussien, le clustering des séries temporelles.

Mots-clés: Non-convexe optimisation, Programmation DC, DCA, Apprentissage automatique

Abstract

This habilitation thesis is devoted to the development of advanced methods in DC (Difference
of Convex functions) and DCA (DC Algorithm) programming for different classes of non-convex
optimization problems and their applications in machine learning. The dissertation is divided
into three parts containing twelve chapters. In the first part, we present three advanced DCA ap-
proaches for several classes of non-convex optimization problems. The first approach, Accelerated
DCA (ADCA), aims to improve the convergence speed of DCA. The second approach, DCA-
Like, allows to solve two classes of non-convex optimization problems without highlighting a DC
decomposition of the objective function. The third approach, Stochastic DCA, is developed to
deal with problems with big data. The second part of the thesis concerns a difficult and extremely
important topic - sparse optimization. We present two major approaches for sparse optimization :
DC approximation and nonconvex exact reformulation. Several important theoretical results and
efficient DCA based method are presented. We then deploy our two proposed approaches to solve
three machine learning applications. The third part concerns the development of DCA methods
for a fundamental subject of learning and data mining : clustering. Five clustering problems are
considered : MSSC (Minimum of Sum of Squares Clustering), MSSC with weighted variables,
block clustering, Gaussian mixture model, clustering of large-scale time-series.

Keywords: Nonconex optimization, DC Programming, Advanced DCA, Machine Learning
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