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Introduction

Ce travail de these concerne les aspects différents de transitions de phase tant & 1’équilibre
thermodynamique que hors équilibre thermodynamique. Plus spé cifiquement, les études et
les résultats rapportés dans ce manuscrit sont visés pour développer une compréhension plus
profonde des principes a la base d’auto-organisation dans des systémes biologiques [’échelle
moléculaire qui exige un haut niveau de coordination parmi les degrés de liberté du systeme.
Considérons, comme un exemple paradigmatique déja au niveau d’une molécule seule, le probleme
du repliement des proteines. Parmi tous les sequences d’acides aminés possibles de longueur
finie, seulement tres peu dont eux - quand introduites dans un environnement aqueux - sont ca-
pables de se replier dans les configurations précises qui donnent lieu & des protéines. Commenant
”d’un bon” ordre d’acides aminés, dans un temps étonnamment court la mme conformation com-
pacte spatiale d’une protéine est toujours atteinte. Ces ordres sont appelés de bons replieurs.
Au contraire, un ordre aléatoirement produite rapporte un heteropolymer aléatoire qui fait
une transition vitreuse (mauvais plieurs). La question cruciale est comment distinguer un bon
replieur d’un mauvais. On le remarquait a plusieurs reprises [Pet07b] [Bacl4b] qu'un mécanisme
efficace de repliement est strictement lié & 1’établissement de comportements coopératifs parmi
les acides aminés en raison des interactions mutuelles entre eux. Cette phénoménologie partage
beaucoup de caractéristiques avec les transitions de phase telles qu’elle sont caractérisés par la
mécanique statistique classique. Néanmoins, selon la mécanique statistique, les transitions de
phase sont rigoureusement définies et caractérisées seulement pour de tres grands systemes, en
réalité seulement dans la limite d’'un nombre infini de degrés de liberté, ce qui a amene a l’idée
répandue que les transitions de phase exigent nécessairement le dogme de la limite thermody-
namique. D’autre part, des problemes comme le repliement des protéines exige une faon de
caractériser des phénomenes coopératifs aussi dans de petits systéemes, c’est-a-dire pour lequel
le nombre de particules est beaucoup plus petit que le nombre de Avogadro.

La Théorie Topologique de transitions de phase, avancées principalement pendant la décennie
derniere, est une des approches possibles qui fournit une généralisation de la description stan-
dard fait par la mécanique statistique qui parte sur les transitions de phase dans des systémes
petits ou mesoscopique et fournit un aperu plus profond du mécanisme général qui provoque les
transitions de phase. Une telle théorie semble de pertinence potentielle pour aborder plusieurs
problemes en Biophysique, comme il sera clarifié ci-dessous. Selon la Théorie Topologique, les
singularités des potentiels thermodynamiques - surgissant dans la limite thermodynamique dans
les ensembles canonique et grancanonique - seraient induites par des changements topologiques
appropriés de quelques sous-varieté de ’espace des configurations. Ces mmes changements
topologiques peuvent avoir lieu a n’importe quel nombre fini de degrés de liberté. Cette théorie,
supportée par beaucoup d’évidences s’étendant de simulations numériques aux calculs analy-

tiques exacts concernant des différents modeles statistiques, a été rigoureusement enracinée
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dans deux théoremes. Ces théorems associent les changements topologiques des ensembles du
niveau potentiels dans ’espace des configurations avec la perte d’analycité de ’entropie mi-
crocanonique configurationelle. Cette derniere circonstance est assumée pour tre la signature
de 'occurrence d’une transition de phase. Un contre-exemple a ce Théoreme de Nécessité a
été récemment trouvé; ceci semble saper, ou au moins considérablement affaiblir, la Théorie
Topologique entiere des transitions de phase .

La Premiére Partie de ce manuscrit est consacrée a une analyse minutieuse "du contre-
exemple” pour comprendre si et comment la théorie peut tre sauvée en fournissant un raffine-
ment et un approfondissement de notre compréhension des relations parmi la topologie et la
géométrie d’espace de configuration dans un cté, et les propriétés thermodynamiques/statistiques
d’un systeme dans ’autre cté. De plus, ce travail peut potentiellement paver la voie a une re-
formulation et a une généralisation de la mme théorie aux cas que on n’a pas considérés dans
la formulation originale, comme, par exemple, les interactions & longue portée.

Ce dernier cas pourrait avoir une pertinence biophysique pour beaucoup d’aspects, parmi les
autres nous mentionnons les interactions intermoléculaires électrodynamiques a longue portée
dont on a théoriquement conjecturées qui pourrait jouer un rle important dans [’organisation
dynamique de la machinerie biomoleculaire a l'intérieur des cellules.

Et en fait, du point de vue physique, un probleme saisissant et stimulant issu de la biolo-
gie moléculaire vient de l’observation qu’un grand nombre de réactions biochimiques et de
processus impliquant un nombre énorme d’acteurs (des molécules, des structures, organelles,
etc.) est coordonné simultanément et efficacement séquencé a temps créant des systemes dy-
namiques hautement organisés. Les dimensions spatiales de ces systémes sont beaucoup plus
grandes que les rayons d’action de réactions chimiques, des interactions électrostatiques et quasi-
électrostatiques (qui sont fortement ecrantées tant par la grande valeur statique de la constante
diélectrique d’eau que par les ions libres), ou des interactions dispersive (Van der Waals-London).
Pourtant les interactions dans la matiere vivante entre les partenaires moléculaires apparentés
(les heteropolymers des acides nucléiques, les homopolymeres organises en microtubules et les
protéines) produisent un systéme biochimique spatio-temporel treés spécifique et tres efficace.
Par conséquent I’exactitude extraordinaire de ces rencontres moléculaires semble & peine tre le
résultat de la seule diffusion aléatoire.

Ceci fait le lien conceptuel avec la Deuxieme Partie de ce manuscrit qui fait un rapport
sur les contributions de 'auteur a un projet ambitieux qui a pour but de vérifier si les parte-
naires des reactiones biochimique apparentés sont activement recruités par des forces attractives
(résonantes) sélectives de nature électrodynamique agissant a grande distance. L’activation des
interactions électrodynamiques classiques a longue portée (décrit par un potentiel decroissant

comme 7>

avec la distance intermoléculaire r) est théoriquement possible entre des grands
diples electrique résonantes oscillant dans la gamme de fréquence 0.1 — 1 THz. La spectro-
scopie a infrarouge lointain et THz al’équilibre thermodynamique a montré que les biomolecules
(comme les protéines ou les fragments d’acides nucléiques) ont des modes normaux dans cette
gamme de fréquences. Ces modes sont généralement attribués aux oscillations collectives par

conséquent, ils devraient provoquer de grandes oscillations du diple electrique associé a chaque
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biomolecule. Néanmoins, a [’équilibre, les collisions avec les molécules d’eau environnantes
menent a l’equipartition de 1’énergie parmi les modes normaux d’un biomolecule. Par con-
sequence les fluctuations thermiques entrainent des oscillations de diple trop faibles qui ne
peuvent pas tre responsables des interactions électrodynamiques a longue distance. Entre la fin
des années 60 et les années 70, Herbert Frohlich a proposé un modele heuristique qui prévoit
la possibilité de canaliser une grande partie de 1’énergie vibratoire d’une biomolecule dans sa
fréquence la plus basse de ses modes normaux. Deux conditions sont exigées pour realiser cette
condensation analogue a celle de Bose; premierement un taux d’injection d’énergie suffisamment
haut! et deuxiemement des interactions non linéaires parmi les modes normaux obtenus grace
a la médiation d’'un bain thermique. Ce phénomeéne est un exemple d’un transition de phase
"hors-équilibre”; la fréquence la plus basse des modes normaux est alors favorisée au detriment
de l'equipartition de 1’énergie (la phase symétrique).

Le modele original de Frohlich fournit une métaphore possible pour expliquer certains phénomenes
collectifs dans des systemes biologiques. Une métaphore plutt qu’'un modele prédictif parce que
I’évaluation des parametres de couplage qui rentre dans les équations originales de taux est trop
difficile.

Dans ce manuscrit sont rapportés, les résultats d’enqutes théoriques, numériques et expérimentales
sur la condensation de Frohlich pour les modes normaux de biomolecules. En particulier la con-
tribution originale de 'auteur du travail présent consiste dans la dérivation en ensemble des
équations de taux qui décrivent un Fr ”le phénomene de condensation ohlich-semblable mis
au point dans un contexte classique. Le départ étant un systeme Hamiltonian classique qui
décrit - d’une faon tres idéalisée - la dynamique des modes normaux d’une protéine, du bain
thermique et la source externe d’énergie. De plus, 'auteur de ce manuscrit a participé a la
définition conceptuelle et & 'interprétation théorique des expériences de spectroscopie THZ sur
une protéine modele. Ces experiences ayant fourni une premieére observation expérimentale de

la condensation de Frohlich pour une protéine hors equilibre en solution aqueuse.

Ceci est un prérequis pour I'activation d’oscillations de diples géants dans les biomolecules
qui entrane des interactions électrodynamiques & longue portée entre des molécules co-résonantes,
en accord avec les premiers principes d’électrodynamique. Cependant, la question suivante sur-
git : la Nature exploite-t-elle ces forces intermoléculaires électrodynamiques a longue portée dans
la matiére vivante? Autrement dit, est-ce que ces interactions sont suffisamment fortes pour
organiser la machinerie biomoleculaire a l'intérieur de la cellule? Pour répondre a cette ques-
tion on doit concevoir une configuration expérimentale technologiquement faisable in vitro pour
détecter les effets directs des interactions électrodynamiques intermoleculaires a longue portée.
Comme nous verrons tout au long de cette these, les interactions a longue portée affectent
manifestement les propriétés de diffusion des molécules en solution acqueuse. En particulier,
une compétition s’établit entre les forces aleatoires créées par les collisions des biomolécules

avec les molécules d’eau environnantes (le bruit thermique) et les intéractions intermoléculaires

!Dans des systemes biologiques, ’approvisionnement en énergie environnemental pourrait tre attribué
a la injection d’énergie métabolique, par exemple, de I’hydrolyse d’adénosine triphosphate (ATP) ou
guanosine triphosphate (GTP) comme bien a partir des collisions d’ion.
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mutuelles. On remarque qu'une compétition analogue entre 1’énergie interne et le bruit ther-
mique est caractéristique des transitions de phase décrites dans I’ensemble canonique. Ainsi il
est raisonnable de penser que la signature de la présence d’interactions a longue portée pourrait
tre un phénomene de type transition de phase pour le coefficient de diffusion. Ce dernier peut
étre consideré comme une fonction d’un parametre de contrle qui est 'intensité des intéractions
mutuelles parmi les biomolécules qui, a son tour, est proportionnelle a la concentration de la
solution. Dans ce manuscrit une étude de faisabilité -basée sur des simulations de dynamique
moléculaire- est presentée pour évaluer cette stratégie expérimentale. Des simulations ana-
logues ont été realisées pour valider une approche expérimentale basée sur la Spectroscopie de
Corrélation de Fluorescence (FCS) dans le but de trouver une telle signature dans des systémes
avec des interactions & longue portée avérées (comme dans le cas d’une solution avec deux

especes moléculaires de charge opposée dissoutes dans 1’eau pure).

Organisation du manuscrit

Comme déja mentionné, ce manuscrit est divisé en deux parties.
La Partie I traitant de la Théorie Topologique de transitions de phase est composée de

deux chapitres:

e le Chapitre 1 est un chapitre o sont presentés les fondements de la théorie des transitions
de phase dans des systemes classiques et de la Théorie Topologique concernant 1’origine

des transitions de phase;

e dans le Chapitre 2 des nouveaux résultats sont rapportés concernant le raffinement de
la Théorie Topologique des transitions de phase en réponse aux critiques récentes. Ces
contributions incluent la définition d’un concept de difféomorphicité asymptotique des
hypersurfaces equipotentielles dans ’espace des configurations, I'interprétation de la ther-
modynamique microcanonique en termes des propriétés géométriques des hypersurfaces
equipotentielles mentionnées et I’application d’un outil informatique récemment développé
dans le domaine de la topologie algébrique, appelé homologie persistante, a 1’étude de la

signature topologique des transitions de phase.

La Partie II présente mes contributions a la recherche sur les interactions électrodynamiques
a longue portée parmi les biomolécules.

Elle est divisée en cing chapitres:

e Le Chapitre 3 est un chapitre d’état de I’art de la recherche sur des interactions électrodynamiques
a longue portée sélectives entre biomolecules. Le contexte théorique principal de la
recherche en cours est présenté; en particulier quelques aspects principaux de la théorie

de la condensation de Frohlich sont rappelés;

e le chapitre 4 presente une démonstration inedite des équations de Frohlich pour un systeme

d’oscillateurs harmoniques classiques représentant les modes vibratoires d’une biomolecule
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générique. Une discussion des solutions stationnaires de ces équations pour quelques cas

simples est rapportée;

le chapitre 5 présente les résultats expérimentaux nouveaux (et leur interprétation) obtenus
avec des techniques alternatives de spectroscopie THz, sur une protéine ”"modele” (BSA).
Ces expériences fournissent une premiere observation de la condensation de Frohlich dans

des biomolecules en solution aqueuse;

le chapitre 6 présente une étude numérique et théorique concernant la possibilité de
détecter la présence d’interactions a longue portée entre biomolecules en étudiant leurs
propriétés de diffusion dans la solution. Ceci inclut aussi ’étude des effets d’interactions

mutuelles sur le chaos dynamique et 'ordre spatial dans ces systemes;

le chapitre 7 traite de la validation de la technique de FCS avec des simulations numériques
de dynamique moléculaire. On montre que la technique FCS peut étre une technique effi-
cace pour détecter la présence des interactions a longue portée avérées (ne nécessitant pas
d’activation) comme, par exemple, les interactions coulombiennes électrostatiques entre

biomolecules en solution aqueuse.



Introduction

This thesis work concerns different aspects of phase transitions both at thermodynamic
equilibrium and out-of-thermodynamic equilibrium. More specifically, the studies and results
reported in this manuscript are aimed to develop a deeper understanding of the principles at
the basis of self-organization in biological systems at the molecular scale that requires a high
level of coordination among the degrees of freedom of the system.

Let us consider, as a paradigmatic example already at the level of a single molecule, the so called
protein folding problem. Among all the possible amino-acid sequences of finite length, only a
very few of them - when put in an aqueous environment - are capable of folding into precise
configurations that are working proteins. Starting from a ”good” sequence of amino acids, in a
surprisingly short time the same spatial compact conformation of a protein is always reached.
These sequences are called good folders. In contrast, a randomly sorted sequence yields a ran-
dom heteropolymer undergoing a glassy transition (bad folders). The crucial question is how
to distinguish a good folder from a bad one. It has been repeatedly noticed [Pet07b][Bacl4b]
that an efficient folding mechanism is strictly related to the establishment of cooperative be-
haviour among amino acids due to the mutual interactions among them. This phenomenology
shares many features with phase transitions as characterized in classical statistical mechanics.
Nevertheless, according to statistical mechanics, phase transitions are rigorously defined and
characterized only for very large systems, actually in the limit of an infinite number of degrees
of freedom, what has led to the widespread idea that phase transitions necessarily require the
thermodynamic limit (thermodynamic limit dogma).

On the other hand, problems like protein folding demand a way to characterize cooperative
phenomena also in small systems, i.e. for which the number of particles is much smaller than
the Avogadro number.

The Topological Theory of phase transitions, put forward mainly during the last decade, is one
of the possible approaches to provide a generalization of the statistical mechanical description
of phase transitions in small or mesoscopic systems, and to provide a deeper insight into the
general mechanism which gives rise to phase transitions. Such a theory appears of potential
relevance to tackle several problems in Biophysics, as it will be clarified in the following.
According to the Topological Theory, the singularities of thermodynamic potentials - arising in
the thermodynamic limit in the canonical and grancanonical ensembles - would be induced by
suitable topological changes of some submanifolds of configuration space. These same topolog-
ical changes can take place at any finite number of degrees of freedom. This theory, supported
by many evidences ranging from numerical simulations to exact analytic computations carried
on different statistical models, has been rigorously rooted in two theorems that associate topo-
logical changes of the equipotential level sets of configuration space with the loss of analyticity

of microcanonical configuration entropy. This last circumstance is assumed to be the signature
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of the occurrence of a phase transition in the microcanonical ensemble. In particular, one of
these two theorems states that if all the equipotential level sets in a certain interval of specific
potential energy are diffeomorphic among them, then the system cannot undergo any phase
transition in the corresponding interval of temperatures.

A counterexample to this Necessity Theorem has been recently found; this seems to undermine,
or at least to considerably weaken, the whole Topological Theory of phase transitions.

The First Part of this manuscript is devoted to a thorough investigation of the ” counterexam-
ple” in order to understand if and how the theory can be saved by providing a refinement and a
deepening of our understanding of the relations among topology and geometry of configuration
space on the one side, and thermodynamic/statistical properties of a system on the other side.
Moreover, this work can potentially pave the way to a reformulation and generalization of the
same theory to cases that were not considered in the original formulation, as, for instance,
long-range interactions.

This latter case could be of biophysical relevance for many aspects, among the others we mention
long-range electrodynamic intermolecular interactions that have been theoretically surmised to
play an important role in the dynamical organization of the biomolecular machinery inside the
cell.

And in fact, from the physics point of view, a striking and challenging problem arising from
molecular biology stems from the observation that a large number of biochemical reactions and
processes involving a huge number of actors (molecules, structures, organelles, etc.) are co-
ordinated simultaneously and efficiently sequenced in time thus giving rise to well and highly
organized dynamic systems. The spatial dimensions of these systems are much larger than the
"action radii” of chemical reactions, of electrostatic and quasi-electrostatic interactions (which
are strongly shielded both by the large static value of water dielectric constant and by freely
moving ions), or of van der Waals-London dispersion interactions. Yet the interactions be-
tween cognate molecular partners in living matter (nucleic acids heteropolymers, microtubules
homopolymers, and proteins) produce a highly specific and highly efficient spatial-temporal
biochemical pattern. Hence the extraordinary accuracy of these molecular encounters hardly
seems to be the result of random diffusion only.

This makes the conceptual link with the Second Part of this manuscript which reports on
the author’s contribution to an ambitious project aimed to ascertain whether the encounters
of distant cognate partners of biomolecular reactions are actively driven by selective (resonant)
attractive forces of electrodynamic nature.

The activation of long-range classical electrodynamic interactions (described by a potential
falling as 72 with the intermolecular distance r) is theoretically possible between large reso-
nant dipoles oscillating in the frequency range 0.1 — 1 THz. Far-infrared and THz spectroscopy
at thermodynamic equilibrium have shown that biomolecules (proteins and fragments of nu-
cleic acids) have normal modes in this range of frequencies, and these modes are commonly
attributed to collective oscillations, consequently, they should bring about large dipole oscilla-
tions. Nevertheless, at equilibrium, the collisions with the surrounding water molecules leads to

energy equipartition among the normal modes of a biomolecule; hence, the dipole oscillations
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due to thermal fluctuations would be too small to be responsible for the activation of sizeable
long-range electrodynamic interactions.

Between the late ’60s and the '70s, Herbert Frohlich proposed an heuristic model that predicts
the possibility to channel a large part of the vibrational energy of a biomolecule into its low-
est frequency normal modes. Two conditions are required for this Bose-like condensation; a
sufficiently high energy injection rate? and non linear interactions among the normal modes
mediated by a thermal bath. This phenomenon is an example of a out-of-thermal-equilibrium
phase transition; the equipartition of energy (symmetric phase) is broken in favour of the lowest
frequency normal modes. The original Frohlich model provides a possible metaphor to explain
certain collective phenomena in biological systems. A metaphor rather than a predictive model
because the estimation of the coupling parameters entering the original rate equations seems
too hard a task.

In this manuscript the results of theoretical, numerical and experimental investigations on
Frohlich-like condensation for normal modes of biomolecules are reported. In particular the
original contribution of the author of the present work consists in the derivation of a set of
rate equations that describe a Frohlich-like condensation phenomenon worked out in a classical
context. The starting point is a classical Hamiltonian system that describes - in a very idealized
way - the dynamics of the normal modes of a protein, of the thermal bath and the external
source of energy. Moreover, the author of this manuscript participated in the conceptual defi-
nition and theoretical interpretation of the THz spectroscopy experiments on a model protein
where a first experimental evidence of a Frohlich-like condensation phenomenon has been ob-
served for a protein in watery solution and out of thermal equilibrium.

This is a prerequisite for the activation of giant dipole oscillations in biomolecules which, ac-
cording to the first principles of electrodynamics, entail long-range electrodynamic interactions
between co-resonant molecules. However, the following question arises: does Nature exploit
these long-range electrodynamic intermolecular forces in living matter? In other words, are
these forces sufficiently strong to play the above surmised role of driving the organisation of
the biomolecular machinery inside the cell? To answer this question one has to devise a tech-
nologically feasible experimental set-up in vitro - to begin with - to detect some direct physical
consequence of the long-range interparticle interactions. As we shall see throughout this thesis,
long-range interactions markedly affect the self-diffusion properties of molecules in solution. In
particular, a competition sets in between the random forces acting on the solvated molecules
due to the collisions with water molecules (thermal noise), and the mutual intermolecular in-
teractions. It has to be remarked that an analogous competition among thermal noise and
internal energy is also a feature of phase transitions when described in the canonical ensem-
ble. Thus it is reasonable to think that the fingerprint of long-range interactions could be a
”transitional” phenomenon concerning the self-diffusion coefficient as a function of a control
parameter. This control parameter would naturally be the strength of the mutual interactions

among the biomolecules which, in turn, is proportional to the concentration of the solution. In

2In biological systems, the environmental energy supply could be attributed to metabolic energy
stemming, for example, from the hydrolysis of adenosine triphosphate (ATP) or guanosine triphosphate
(GTP) as well as from ion collisions.
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this manuscript - based on molecular dynamics simulations - a feasibility study is reported to
assess this hypothesized experimental strategy. Analogous simulations have been performed to
validate an experimental approach based on Fluorescence Correlation Spectroscopy aimed at
finding such ”fingerprint” in systems with built-in long-range interactions (like a binary solution

of oppositely charged molecules solvated in pure water).

Organization of the manuscript

As already mentioned, this manuscript is divided in two parts. The Part I deals with

Topological Theory of phase transitions and is composed of two chapters:

e chapter 1 is a review chapter where some basic facts of the theory of phase transitions

(PTs) in classical systems, and of the Topological Theory of phase transitions are reported;

e chapter 2 is a chapter where original results are reported concerning the refinement of the
Topological Theory of phase transitions in response to recent criticisms. These contribu-
tions included the definition of a concept of asymptotic diffeomorphicity of the equipoten-
tial level sets of configuration space (thus diffeomorphicity in the thermodynamic limit),
the interpretation of microcanonical thermodynamics in terms of geometrical properties
of the mentioned level sets, and the application of a recently developed computational tool
in algebraic topology, called persistent homology, to the investigation of the topological

counterpart of phase transitions.

The Part II deals with different contributions given to the research concerning the long-

range electrodynamic interactions among biomolecules. It is divided into five chapters:

e chapter 3 is a review chapter where the state of the art of the research on selective long-
range electrodynamic interactions among biomolecules is reported. The main theoretical
background of the ongoing research is presented; in particular, some main aspects of the

so called Frohlich condensation are reviewed;

e chapter 4 is a chapter were an original derivation of Frohlich-like rate equations is pre-
sented for a system of classical harmonic oscillators representing the vibrational *modes
of a generic biomolecule. A discussion of the stationary solutions of these equations for

some simple cases is reported;

e chapter 5 reports the original experimental results (and their interpretation) obtained
with non-standard techniques of THz spectroscopy, on a "model” protein (BSA). These
observations provide a first evidence of a Frohlich-like phonon condensation phenomenon

of a biomolecule in watery solution;

e chapter 6 presents a numerical and theoretical investigation concerning the possibility
to detect the presence of long-range interactions among biomolecules by studying their
diffusion properties in solution. This also includes the study of the effects of mutual

interactions on the dynamical chaoticity and spatial ordering of the systems;
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e chapter 7 deals with the validation of Fluorescence Correlation Spectroscopy by means of
numerical simulations of molecular dynamics. the FCS technique is shown to be a fruit-
ful technique to detect the presence of built-in (in the sense of non-externally activated)

long-range interactions among biomolecule in watery solutions.



PART 1

Developments on Topological Theory of phase

transitions






CHAPTER 1 State of art on theory of phase transitions in

classical systems

In this chapter some basic facts on the theory of phase transitions (PTs) in classical systems
are reported. The problem concerning the definition of phase transitions in a unified framework
both for large and small classical systems is far to be considered a closed problem. After a
general overview on the possible approaches, we concentrate our attention on the topological
theory of PTs: the deep origin of a phase transition would be related with a suitable change of

topology of energy (or equipotential) level sets.

1.1 Fundamentals of statistical mechanics

1.1.1 Mechanical foundations of statistical mechanics and statistical en-

sembles

Classical equilibrium statistical mechanics gives prescriptions to express ”macroscopic” (gen-
erally thermodynamic) observables of a system in equilibrium state as averages of some suitable
function of generalized coordinates of ”microscopic” systems getting rid of the details of the
dynamic of the system. In particular time averages can be replaced by statistical integrals
over configuration space endowed with a probability distribution compatible with physical con-
straints on macroscopic parameters like the number of degrees of freedom, the range of states
accessible to each degree of freedom, the total energy of the system, total electric charges and
SO On.

Statistical mechanics allows to derive the thermodynamic (so macroscopic) properties of a large
system of particles when the Hamiltonian equations describing their microscopic dynamics are
known. Nevertheless statistical mechanics is not the same as thermodynamics as being mean-
ingful also when applied to small or mesoscopic system’.

Rigorous foundations of statistical mechanics are rooted in Hamiltonian theory of classical sys-
tems, where the problem of integrability is rigorously defined.

Let us consider an isolated Hamiltoninan system with N degrees of freedom whose state is
described by the canonical conjugate variables (pi,...,pN;q1,-.-,qN) € Af\;ﬂ), being AY | the

(p,9)
N

phase space®.Let Hy : A(p,q) —— R be the Hamiltonian,then the Poisson’ brackets {-,-} are

!This almost-epistemological statement has a great importance for the development of a theory of
phase transitions in finite small and mesoscopic systems

2In what follows we consider the canonical coordinates and the Hamiltonian of the system expressed
in nondimensionalized units.
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where f, g are two arbitrary functions of conjugate canonical coordinates with an explicit time
dependence. The Hamilton equations of motion for the dynamics of microscopical degrees of

freedom are:

dp; oH

o =l H =-

da; ooy O :
dt - QZ7 - apl

and, through the Liouville theorem, the evolution of a density function p ({p;}, {¢i}i=1,.. N, 1) is

described by
9 _

ot
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J0g¢; Op;  Op; Og;

which is well suited to take into account, for instance, the case of the dynamics of a system with

—{pH} = - (1.3)

some incertitude on initial conditions.

The density function p entails information on the statistical behaviour of the Hamiltonian
system: many different realisations of the dynamics can be taken into account with different
initial conditions at the same time. The definition of the probability density p allows to calculate
statistical averages of observables O = O({pi},{¢;}) that can be expressed as functions of the

microscopic degrees of freedom of the system

©,0) = [ pUpih(adimr..n ) O (14)

(p,q)

A dynamical system is considered at the equilibrium if

8pu Can

EE=0 = {pucun My} =0 (1.5)

which means that the density function is a proper constant of motion.

If the dynamical system described by Equation 1.2 is metrically indecomposable (i.e. the only
invariant subsets X of A@g’q) with respect to the flow are those for which their measure is
(X), = 1or (X), = 0) then the time averages calculated along the dynamics are equivalent
to the statistical averages in Equation 1.4 (Birkhoff’s ergodic Theorem); this can be considered
the foundation of statistical mechanics.

If the total energy is the only constant of motion, the density distribution p at the equilibrium

is only a functional of H and it reads:

pucen = —— S(Hn ik {ai}) — E)  E € CoDom(Hy) - (1.6)
wy(E)



In the previous equation, wy (E) is a normalization constant depending on the control parameter

F and it is formally given by

wn (E) :/A

where dy is the volume form of the phase space A

Sl ) - B p =g [ @0 E—tpdtad) (D

(p,a) A

(p,q)

pg) and © (Hy(E — {pi},{q})) the Heaviside
Theta function .
If the phase space is endowed with a Riemannian metric g, and in the absence of critical points

of the Hamiltonian, the Coarea formula (see Appendix A for more details) can be applied to

(B) / _ Aoy (18)
w = .
N sy [lerad, Hll,

Equation 1.7 to give

where LN = H&I(E) is the level set of the Hamiltonian corresponding to a total energy £ and
grad, and || - [|4 are respectively the gradient and the vector norms.

The probability density distribution in Equation 1.6 and the level set volume in Equation 1.7
allow to calculate the statistical averages of any observables for a system with a fixed total
energy F, number of degrees of freedom N, and volume V accessible to the degrees of freedom
at the equilibrium: this defines the microcanonical ensemble.

In more realistic conditions, the total energy of isolated systems is fixed with an uncertainty

AFE. In this case the definition of microcanonical probability density is given by

1
—_— If E<Hy(p,q) <E+AFE
pucan(p,q) =  Bwn(E) (1.9)
0 elsewhere .

Consequently the volume of the region of the phase space of microstates compatible with the
fixed parameters (N, V, E) is given by Awn(E) = (AE)wn(E) at the first order.

Statistical mechanics allows to connect the microscopic properties of large systems with their
thermodynamic properties through the Boltzmann principle: the microcanonical partition func-
tion Awn (E,V) is direct by related with the (microcanonical) entropy Sy(E,V) by

SN(E, V) = kB log [C(N)AWN(E, V)] = kB log [a(AE)wN(E,V)] (1.10)

where kp is the Boltzmann constant and C'(N) is a constant to resolve paradoxes related with
an overcounting of the microstates due to the indistinguishability of the particles(the so called
”Gibbs Paradox”). Thermodynamic intensive observables (as temperature, pressure, specific

heat for instance) are calculated as derivatives of the entropy in Equation 1.10 with respect to



the parameters (N, V, E)3 For instance, the microcanonical temperature T),can is given by:

1 ISN(E,V)
an(£,V) = = 1.12
while the pressure is defined as
E
PMCan(Eyv) = kBTM (113)

1%

The susceptibilities are calculated as second order derivatives of the entropy, as the specific heat

1 <85N(E,V)>2

ok
CspuCan = —— 1.14
HC kp (92Sn(E,V) (1.14)
OE?
or the compressibility
0?Sy(E,V
Byucan = kBTg(vZ) . (1.15)

We have to stress that the theory of phase transitions has been historically formulated in
the framework of thermodynamics; Equation 1.10 allows to give a characterization of phase
transitions in terms of the geometrical and topological properties of the energy level sets.
Although the microcanonical ensemble is the most fundamental statistical ensemble, it is very
difficult to realise in practice a completely isolated system: exchanges of energy, particles,
charges etc. with larger systems (resevoirs) are generally unavoidable. Moreover a rigours
mathematical description of microcanonical ensemble is in general quite difficult.

For such reasons the notion of statistical equilibrium ensembles for open systems has been
introduced in statistical mechanics. The equilibrium probability distribution in these cases is
obtained from the second principle of thermodynamics: it is the function p., that maximize the

Shannon entropy of the system Sy |[p]

Suldl = A floge), = [ ploz (o) dn (1.16)
(p,q)

3Different definitions of the entropy lead to different expected temperatures in the microcanonical
ensemble and, more in general, to a different thermodynamic description especially for systems with
negative temperatures or for ”small” systems (i.e. with a number of degrees of freedom much higher of
the number of integrals of motion and much less than the Avogadro’s number). In particular, a different
definition of the microcanonical entropy has been proposed by Gibbs:

S (B, V) = kg log [0 (B, V)] = ks log/ du. (1.11)
MY

while the entropy of Equation 1.10 is usually referred to as the Boltzmann entropy. The definition of mi-
crocanonical temperature from this two different definition of entropy has been recently the subject of an
intense debate (see for more details [CPV15] and references therein). Nevertheless many arguments and
considerations required the Boltzmann entropy to consistently describes the thermodynamical behaviour
of ”small” systems and negative temperatures as argued in [Gro01] and [CPV15].



under the constraint that the averages (f;) , of some observables are fixed so that

=0 (1.17)
Peq

5 (ssh[m Y <fi>p>
=1

where \; are Langrange multipliers. These parameters A; are intensive fixed physical quantities
that define the macrostate of the system.

For instance, in the canonical ensemble the average total energy (H) peq is fixed. It follows that
the canonical probability density is

e 1.18

PeqCan = ZN,Can(ﬁ,V) ( . )

ZN,Can(ﬁaV) = / e_BHNd,Uz (119)
AN

(p,a)

where 8 = (k:BT)*1 is proportional to the inverse of the canonical temperature 7" while Zn can
is the canonical partition function.

In analogy with microcanonical ensemble, the thermodynamic observables of a given system can
be calculated as derivatives of the thermodynamic potential that, in this case, is the Helmholtz

free energy

FN(ﬁ,V) = _; 1Og [ZN,Can(B’V)] . (120)

We immediately notice that the partition function of Equation 1.24 has a simpler mathematical
form than the density of states in Equation 1.8, its analogous in microcanonical ensemble.

Another example of statistical ensemble for open systems at equilibrium is the Grancanonical
ensemble. In this case only the average number of particle and of the energy are fixed; the total
phase space is A, 4) = ®;;°;’mmA%pyq) and the statistical averages are consequently calculated
using a probability density p({p,n)}; {q,n) )} IV) (Where (k, N) identifies the k-th degree of

freedom in configuration space of dimension N)

+o00

<f({p(k:,N)}v{Q(k,N)}aN)>p = > </A f({p(k:,N)}a{Q(k,N)}vN)p({p(k,N)}v{Q(k,N)}vN)dMN) -
1=Nmin (p,9)

(1.21)

In this case the second principle of thermodynamics leads to the variational equation for peyacan

5 (Sonlel + 8 (Mo, {agmh VD), =1 (N, )| =0 (1.22)
whose solution is
o—BHi+nN
PeqGCan = Zncan(Bon) (1.23)
ZGcan(B,m) = io e ( /A i e_m"”du) (1.24)
i=Nmin (p.9)



where 7 is the chemical potential. The thermodynamic potential of the grandcanonical ensemble
is the grand potential Fgoan(5,n) and it is related to the grand partition function Zgcan(5,1)
by

Focun(B.1) = = 108 Zacun (5,1 (1.25)

The grand canonical ensemble has a great relevance in studies of phase transitions as it is the

statistical ensemble where the celebrated Yang-Lee theorem has been proved.

1.1.2 Equivalence of statistical ensembles

The different statistics associated to different statistical ensembles would in principle lead
to different thermodynamic descriptions of a system. Nevertheless, a widely investigated topic
in statistical mechanics is the relation among thermodynamic observables computed in different
ensembles: in particular, if and when it is possible to find equivalence relations among ther-
modynamic potentials of different statistical ensembles. This problem is usually referred to
as the equivalence of statistical ensembles and it represents a foundamental issue in statistical
mechanics (see for instance [Rue99],[Ell12], [CDFR14],[Toul5] and references therein).

A detailed discussion of this problem is beyond the aims of this work, so we limit our discussion
to the aspects which are relevant for definition of phase transitions at thermodynamic equi-
librium in microcanonical ensemble. As previously remarked, the concept of phase transition
has been historically defined and characterized in the framework of thermodynamics, especially
in open systems®. The possibility to establish equivalences among statistical ensembles allows
to understand which is the signature of PTs in the microcanonical ensemble on the basis of
the standard definitions given in the statistical ensembles of open systems. As a paradigmatic
case we consider here only the case of the equivalence among canonical and microcanonical
ensembles. In this case, the equivalence can be established if the fluctuations of total energy
in the canonical ensemble become negligible: the canonical measure ” concentrates” around the
energy level set corresponding to the mean energy ¥y and can be approximated by the mi-
crocanonical probability density associated to such level set. As statistical fluctuations usually
tends to zero with N™'/2 in the limit of large N, the equivalence is generally established for

systems with a large number of degrees of freedom. More formally, let us consider the canonical
thermodynamic potential:
1
FN(va) = _710g
p AN

o 1 Boos do}y
e Ndu| = —=log dEe — | =
B 0 =N ngadgHN”g
(p.q) E

1 Emag; 1 E’maz
=—"log { / dEe PPun(E, V)] = —log [ / dE e—5E+SN<EvV>]
B 0 B 0

(1.26)

1Let us recall that with open systems we mean a system at thermal equilibrium with a heath bath,
thus exchanging energy with its environment.



where the Coarea formula has been used and the formal definition of the density of states (1.7)
and of the microcanonical entropy (1.10) has been used neglecting the AE term.

To compare the behaviour at large N, thermodynamic limit prescription is used; a larger systems
is constructed by considering many interacting replicas of smaller systems. For a system of
particles, for instance, that means to consider the limit N — +oo with N/V = constant.
According to this prescription, usually referred to as the thermodynamic limit, the succession

of microcanonical entropy functions {Sy(E,V)}nen is defined
o 1 L
SN(E,V) = NSN(NE,NV). (1.27)

If this sequence of functions converges punctually to a function Sy (E,V) in a certain range
of specific energy E and specific volumes V, then the entropy is an extensive quantity of the
system and the thermodynamic limit exists. The existence of this limit it is non-trivial and for

a systems whose Hamiltonian at fixed IV is of the form

N 2
p.
Hy = 21 ?z + Vn({gi}i=1,..~) (1.28)
1=
that is, for systems composed by mutually interacting particles through a potential which de-
pends only on the interparticle distances, it has been demonstrated that thermodynamic limit
exists. This also requires that the potential be smooth, confining, short-range and bounded

from below’. Analogously, it is possible to construct a succession of functions {EFx (8, V)}nen
substituting (1.27) in (1.26) for each fixed N

Emaz = & =N
Fn(B,V) = —Llog [/ dEeN(BE’JBSN(E’V))] . (1.29)
0

If {Sn}nen converges uniformly to a continuous function 6 in thermodynamic limit, we can

write an approximate expression for Fy(3,))

Emax = Fr 3 G v o P
FN(B,]}) — _i log /O dE e_N<ﬁE_leS+oo(E7V))+k];[SN(Evv)_S-FOO(EvV))]] ~

(1.30)

0
|
o
(]
S—
S]]
3
]
o,
&5
® |
2
aumnS
=
i
ol
5=
wn
+
3
i
~
N
+
P
2
L,
|

°A key point in the proof is relied with the additivity of short-range potentials: namely if an iso-
lated system is divided in two subsystems the interaction energy among two subsystems vanishing when
compeared with the sum of the energies of the two systems in the thermodynamic limit(See [Rue99]
for more details). This additivity does not hold in general for particle systems with long-range interac-
tions. In this case the procedure to construct the sequence of functions {Sx (E,V)}nen can be recovered
if a prescription is given to construct a system for which the total energy is extensive (i.e. the Kac’
prescription).

6This condition is a little bit stronger than the pointwise convergence
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The integral in (1.30) can be evaluated using the Laplace approximation method for asymptotic
integrals. If for a given 3 there exists a unique Ey(8) that maximizes the exponent in the
integrand of (1.30) , i.e.

1 7oo = 2700 =
0 movy=0 A L35 v) <0 (1.31)

kp OF

= S = o Emaac 2540 5 2
F(5.9) L gV IBOT g B0 [ g () B g

NG 0
1 - 1 _ _ 1 2rkp
~ BED(va) - %Soo (EO (/85V>) + 5 log —N _82500 + 0(1)
0k
(1.32)
In the limit N — +o00 the previous equation reads
_ _ _ _ _ 1. _ _
Foo(B,V) = Eo(B) — TS (Eo(B),V) = 3 nf {BE —TS(E,V)} (1.33)

where the definition of temperature T'= (8kp)~* has been used.

From the right hand side of (1.33) it follows that the specific free energy in the canonical en-
semble is the Legendre transform of the specific microcanonical entropy if it exists or, in other
words, if the specific free energy is the convex conjugate of the specific microcanonical entropy
Fo(B,V) = Ey — TS (Ep, V). This relation among thermodynamic potentials is fundamental

in studies of classical equilibrium phase transitions as will be discussed in the following section.

Remark 1 (Concavity of microcanonical entropy). Concavity of the microcanonical entropy
plays a crucial role to asses the equivalence of canonical and microcanonical ensembles. In fact,
if the microcanonical entropy is a non strictly concave function, some ”pathological” behaviour
is expected for the function Fy. In particular the Laplace approzimation cannot be applied and
the Laplace transform is ill-defined: this is signalled by a loss of analyticity of Fy.

This mechanism has been suggested to characterize the signature of phase transitions in the mi-
crocanonical ensemble for systems where the existence of phase transitions in canonical ensemble

1s known.

According to egs.(1.31) and (1.33) we can calculate the derivatives of the canonical free
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energy as a function of derivatives of the microcanonical entropy in the thermodynamic limit

dF(B) dEy 1 dSodEy 1 N
B~ 45 tmidE, a3 T kBﬁzSoo(E(ﬂ)) = kBﬁzsoo(E(B))
?Fs(B) 2 _ 1 dSedEy
T e N R T
2 _ 1 (%8, , - -
~ S B + o (G (e
BFo(8) 6 _ 3 (d%S. - a5, - 425, , - -
T = S B o (G B ) — G B (G Fo))
(1.34)
where the following relations derived from the first of egs.(1.31) has been used
dEy  (d®Sw - -
- () (139
d’E, A3S, , - A28, , - -3
T~ ) (G e (1.36)

1.2 Phase Transitions (PTs) at thermodynamic equilibrium:

definition and classification

1.2.1 General concepts on equilibrium Phase Transitions

The concept of phase transition is quite intuitive: a major qualitative change of the property
systems (typically the establishment of collective behaviours like magnetization, crystallization,
spatial order etc. etc.) in response to a small changes of some external thermodynamic parame-
ters (total energy, pressure, temperature, external fields). Nevertheless, a formal definition and
classification remains a major issue in statistical mechanics and thermodynamics.

The first attempts to give a precise characterization of phase transitions is historically related
with the study of liquid-vapour transitions.
Such transitions has been studied in pressure-temperature (P — T') statistical ensemble whose

associated thermodynamic potential is the (specific) Gibbs free energy Goqgl-bbs defined as:

Goo,Gibbs = N1—1>H—1|-oo Gn,Givs(B, P) = N1_1>H}roo “Nks log [Zn Givbs (8, P)] =
1 +o00 B(Hn—PV) (137)
-1 —B(Hn - ith f=— .
. og /0 /Aé\”‘g e dp | dV with S T

For a fixed pressure, liquid-vapour phase transition is associated with the coexistence of the two
phases a certain critical (inverse) temperature S¢; for 8 < fo (8 > S¢) only the vapour (liquid)
phase exists. The coexistence of two phases at a certain temperature is related to the fact that
the energy injected/subtracted into/to the system (which corresponds to decrease/increase [3)

affects discontinuously the number of microstates compatible with the values of macroscopic
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parameters: degrees of freedom suddenly decorrelates/correlates among them and the disap-
pearance/appearance cooperative of phenomena (as clustering, or condensation) is observed in
the real physical system. This yields to a discontinuity of the entropy, which is (proportional) to

the first order derivative of the free energy of the systems respect to the (inverse) of temperature

B;

Q aé’oo 1bbs
Seo,Gibbs (B, P) = kBﬁ2agbb> (1.38)
P

or, in other words, the (specific) constant pressure latent heat @ p (which measure the jump

of entropy around the transition temperature) is strictly positive, i.e

AQp = lim — [S’OO,Gz‘bbs(/B - T, P) — Soo,Gibbs(B + 7, P)] > 0. (1.39)
T—0 k:Bﬁ

However, not all thermodynamic phase transitions show positive latent heat; such an ex-
ample is provided by the He I/He II phase transition. In this case phase coexistence is not
observed and the latent heat is zero (Qp = 0 so that the entropy is a continuous function of the
temperature while discontinuities or singularities affects susceptibility of the systems, namely
the second order derivative.

Such phenomenology suggested a possible classification of phase transitions according to the
behaviour of specific heat: transitions with strictly positive latent heat has been referred to as
discontinuous or first order phase transition while transitions with zero latent heat has been
referred to as continuous phase transition.

A more refined classification based on regularity properties of thermodynamic potentials was

suggested by P. Erehnfest

Definition 1.2.1 (PTs in equilibrium systems: classical definition and Ehrenfest’s classifica-
tion). Let be given a system S, whose equilibrium thermodynamics is described by a general
thermodynamic potential F(a) being a = {a;}ien the set of external thermodynamic variables.
Then the systems undergoes a phase transition at the point aq if some derivatives of F(a):

ak

—F(a 1.40

a7 @ (1.40)
is discontinuous or(weakly) diverges at ag .

The phase transition is said to be of k-order if the first non reqular derivative is of order k.

Such classification has been subjected has been object both of criticisms [CZ90, WKLS90]
and refinements[Hil93]. Nevertheless this remains a phenomenological classification strictly
related to the thermodynamical characterization of PTs. In fact, at this level, the problem
to relate PTs with some features of mutual interaction among microscopic degree of freedom
remain unsolved. In the following Subsection the main results on the origin of phase transition

in classical systems are resumed.
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1.2.2 Mechanisms at the origin of PTs: Landau’s theory and Yang-Lee

Theorems

As reviewed before, PTs have been characterized in mathematical terms by the loose of
analyticity of the thermodynamic potentials of open systems.
However the thermodynamic potential F(a) is a smooth or even an analytic function in the
”finite-size” case (meaning both a finite number of degrees of freedom N for discrete system
and/or a finite accessible range for microscopical degree of freedom) for a very large class of
systems. This suggests the idea that the loose of analyticity of the thermodynamic potentials
is mathematically possible only in the so called in the sense of succession of functions: a suc-
cession of analytic function does not necessarily converge to an analytic function. In order to
accord the statistical mechanics with thermodynamic experimental evidence, this leads to the
idea to take the thermodynamic limit where the number of degrees of freedom tends to infinity
at a fixed density: the succession of function is composed, in this case, by the thermodynamic
potentials at different V.
Historically, the first major evidence of this facts relies in the Onsager’s exact solution for 2D-
Ising model in canonical ensemble; when a finite lattice with IV site is considered, the free energy
for degree of freedom Fy(T) = N~'F(T, N) is analytic, while in the thermodynamic limit, the
free energy punctually to a piece-wise analytic function.
A first attempt to give a deeper insight to phase transitions is due to the Landau theory (1937)
which relates phase transitions with a spontaneous symmetry breaking phenomena. Such a
theory has been developed in the contest of canonical ensemble where energy fluctuations are
allowed. The main idea is that when a system undergoes a phase transition the set of sets acces-
sible to the system is characterized by a different set of symmetries: this origin discontinuities
in second order derivatives of thermodynamic potential respect to the control parameters of the
systems. The maximal set of the possible symmetries that a physical system can have is repre-
sented by all the symmetries of the Hamiltonian describing it. In general, at low temperatures
the accessible states of a system can lack some of the symmetries of the Hamiltonian, so that
the corresponding phase is the less symmetric one, whereas at higher temperatures the thermal
fluctuations allow the access to a wider range of energy states having more, and eventually all,
the symmetries of the Hamiltonian. In the broken-symmetry phase, an extra variable is required
to characterize the physical states belonging to it. Such a variable, of extensive nature, is called
an order parameter. The order parameter vanishes in the more-symmetric phase and is different
from zero in the less-symmetric phase. Under the hypothesis that the free energy F'(P, T, {n;})
has the same symmetries of the Hamiltonian and that it can be expressed as a function of order
parameters {7;}, the discontinuous behaviour of some order parameter at the transition point
induce discontinuities in second order derivatives of free energy.
Landau’s theory of phase transition and the spontaneous symmetry breaking mechanism repre-
sent a very important achievement in comprehension of phase transitions and critical phenom-
ena giving a first theoretical tools to understand in a wide class of phenomena from condensed
matter to fundamental physics. Despite of this Landau’s theory is a mean-field theory, as the

order parameters are averages of some quantities over the degrees of freedoms of the system,
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and neglect the contribution of fluctuations around the transition point. Moreover it requires
the thermodynamic limit, so an infinite number of degrees of freedom to be exact, as for finite
systems thermal fluctuations always allow the system to explore a set of states invariant for the
hamiltonian set of symmetries.

The idea that phase transition phenomena are strictly possible only in thermodynamic limit
has been enforced in a rigours and mathematical sense by Yang-Lee theories, formulated in the
framework of grand canonical ensemble. The main idea is that, for finite systems, the grand
canonical potential Fgoan (T, 2z, V) is an analytic function as a function of temperature and fu-
gacity z = € as the Grand partition function Zgcan (7, z,V) can be written as a polynome in
z with not real roots.

Nevertheless in the thermodynamic limit it is possible that some root of the Grand partition
function tend to real axes on the fugacity complex plane. If this happens, it can be rigorously
argued that the succession of analytic functions Fgoen (T, 2, V) for V — 400 does not con-
verge to an analytic function on the real axes of fugacity complex plane but only to a piecewise
analytic function Fgoan (T, z). Such result assumes a great relevance in statistical mechanics
as for some physical relevant model it is possible to calculate the distribution of roots of grand
partition function in the limit ¥V — 400 on complex fugacity plane.

This two important rigours results lead to the idea that phase transitions intended as a loss of
analyticity of the thermodynamic potentials can be take place only in thermodynamic limit or,
in other words, in infinite systems.

Although this idea attained a strong and coherent mathematical description of phase transitions
as usually described in thermodynamics, it is not a well suited scheme to study self-organization
or transitional phenomena (as nuclear fragmentation or polymerization, i.e.) in system with a

finite number of degrees of freedom far from the ”thermodynamic limit”.

1.3 Beyond the thermodynamic limit dogma: signature of PTs

in microcanonical ensemble

In the last years there has been a growing interest in the emergence of cooperative behaviour
in small or mesoscopic systems, where thermodynamic limit (and consequently a classical ther-
modynamic interpretation) is meaningless.

This enlarged view on ”phase transition” in finite systems leads also to new insight in the
classical ”thermodynamic” theory: it would be questionable if, for instance, is there in finite
systems which entails a phase transition in thermodynamic limit, a signature of the asymptotic
transitional behaviour.

All the different approach that try to answer to these questions have in common the framework
where the problem is set, i.e. the microcanonical ensemble. This choice it seems quite natural
for different reasons. First of all, as largely observed before, microcanonical ensemble constitute
the foundation of statistical mechanics as all the other statistical ensemble; classical thermody-
namic observables are not required to be known a priori to define the ensemble.

Moreover if the presence of self-organization and cooperative phenomena are assumed to be an
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essential features of phase transitions, then they are only due to the mutual interactions among
the degrees of freedom: so the possibility for a system to undertake a phase transition could
in principle be read in the Hamiltonian. This is coherent with the well known fact that the
class of universality which a phase transition belongs to depends only on some properties of
the Hamiltonian describing the "microscopic” degrees of freedom dynamics (as for instance the
nature of the broken symmetries, range of the interactions and dimensionality of the system).
From a statistical mechanics perspective, one of the simplest structure that encodes information
on the system are the Hamiltonian level sets in phase space. The microcanonical entropy at a
fixed value F is the logarithm of the volume of this level sets X and consequently encodes a
global information on the level sets: it is natural to wonder how the emergence of cooperative
phenomena and organization between the degrees of freedom affects the behaviour of the mi-
crocanonical entropy as a function. This problem is equivalent to a pure statistical mechanics
definition of a phase transition in microcanonical ensemble.

Different approaches to this problem have been explored in the last thirty years. One of the
more interesting has been proposed by D.H.E. Gross [GK05][Gro01] and it is kwown as Micro-
canonical analysis: phase transitions in microcanonical systems are signalled by the presence
of convex region of (microcanonical) entropy’

3E, € [Epmin, +00) such that 05N

— >0. .
Sg| 20 (1.41)
E=F.

In Gross’ microcanonical characterization of phase transition the usual Erhenfest classifica-

tion is abandoned in favour of a simplified scheme:

e first order phase transitions are characterized by a convex hull of the entropy, i.e. there
is a region where d?Sy / dE? > 0; the parameters that characterize the convex hull of the
function are related with a mot null latent heat and the presence of separation surfaces

among different phases;

e continuous phase transition are characterized d2Sy/dE? — 0 in the thermodynamic
limit, characterized by diverging specific heat and/or spontaneously broken symmetries ;

they can take place only in thermodynamic limit.

This characterization of phase transitions partially takes advantage of researches on statisti-
cal mechanics of systems with long-range interactions where non strictly concave microcanonical
entropies are quite common. The presence of convex-hull in microcanonical entropy in these
cases generally results in non-equivalence of thermodynamic ensembles and in the presence of
angular points of the canonical free energy (first order phase transition).

In very recent works Bachmann et al.[SSLB11][Bacl4a][Bacl4b] developed the Microcanonical

analysis; the inflection point of inverse microcanonical temperature (the fingerprint of phase

"In the original Gross’ formulation, the entropy is a function of the specific energy and of the density
of particle n = N/V, ie. Sy = Sy(E,n). If A1 > Ay are the eigenvalues of the Hessian of the
microcanonical entropy, a phase transition takes place if exists a region on the plane F —n where A\; > 0

(first order phase transition) or if there is a point s.t. N liIr_l|r A1 = 0 (continuous phase transition).
— 400
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transition in finite and infinite system) would be the phenomenological manifestation of aleast
sensitivity principle around the transition point the microcanonical temperature is less sensitive
to variation of energy.

This approach for the definition and classification of phase transitions in microcanonical ensem-
ble has the advantage to be a very general approach that inscribe transitional phenomena for
large and small systems in a common framework. Very recently it has been proposed to apply
Microcanonocal analysis also for the classification of phase transitions also in finite systems
out-of-equilibrium.

On the other side, it gives only a general criteria to characterize phase transition fingerprint at
a " phenomenological level” as entropy (or someone of its derivatives) can not be determined a
priori but it results from numerical simulation, experimental measures, and, only in rare cases,
from analytical computations. In this sense the approach presented in this section remains on a
phenomenological /thermodynamical level, as it does not associate phase transitions with some
property related with the form of the interaction among the microscopic degrees of freedom.
In the same framework of microcanonical ensemble, an other approach has been developed
aimed to predict if the system undertake a PTs from the information encoded in topology of
level set of the Hamiltonian (or more precisely of the potential energy function for a separable
Hamiltonian). Such a theory is presented in following section: it constitute the main framework

where a part of this thesis work is inscribed.

1.4 The Topological Theory of phase transitions

1.4.1 Motivations: From the dynamics of chaotic systems to the topolog-

ical hypotheisis

Topological Theory of phase transitions has its roots in the geometrical formulation of
Hamiltonian dynamics for the characterization of chaotic systems®.
In mid ’90s, the group leaded by Prof. Pettini investigated chaos in hamiltonian systems, from
a geometrical point of view. Natural motions can be read as geodesic in configuration space
endowed with Jacobi metric, a local conformal rescaling of natural euclidean metric depending
encoding the information of potential energy g;; = (E — V(ql,...,qn))dijdg; ® dg;: this allows
to describe hamiltonian chaos in terms of geodesic spread. This approach succeeded to find the
origin of chaos in parametric resonances of curvature fluctuations of configuration space (with
Riemannian structure induced by Jacobi metric) along the geodesic.
The study of curvature fluctuations of configuration space along natural motions was performed
also in systems where continuous phase transition and critical phenomena take place. A peak of
curvature fluctuations as function of total energy was observed at the critical point for different
choices of configuration space metric. These results suggested that high curvature fluctuation
would be the geometric signature of some topological change (independent by metric choice) of

the topological subspace M, = {1: € Aév VN (q) = v} when v crosses the critical energy value

8This section is brief summary of second part of the book [Pet07b]. The interested reader can be
found there a more detailed discussion.
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NE..

Moreover a ”jump” has been observed in the pattern of Largest Lyapunov Exponent as function
of total energy in correspondence of critical value of energy. The stability property of geodesic
flux around critical point g. of potential energy in configuration space are related to its index,
namely the number of negative eigenvalues of Hessian of potential in g.. On the other side,
critical points of a suitable class of functions on manifold and their index are strictly related
to the topology of the same manifold according to Morse theory. An abrupt change in density
of critical points or of their index passing from M,, to M,, where vy < E. < vy, signalling a
topological change among this two manifolds, can in principle be the origin both of changes in
chaotic behaviour of the dynamics and of phase transitions.

The topology of Morse function level sets are strictly connected with the topology of the whole
configuration space: this facts allows to establish a more direct link among the topology of

configuration space accessible to the system and thermodynamics. In fact, for system described
N
by Hamiltonian of the form Hy = Zp?v/2 + Vn(q1,-.., qn), microcanonical partition function

i
can be written in terms of integral evaluated on equipotential level sets

dO'EN N N p
= 1.42
By [ L Teradny /¢ p5<§ >~ 42

and the same is possible for canonical free energy

Fy(.Y) =~ log [/AN

(p,a)

Ema:l: N
/ dv eﬁv/ 7(1025
B 0 =~ |lgrad, V||

(1.43)

1(N
eBHNd,u] =—— (2 log % + log

) |

The only non trivial integral in previous expressions is the so called structure integral

w = [ e, (1.44)

wy(v) = —_— 1.44
s [lgrady Vv |lg

that can be interpreted as the configurational microcanonical entropy. In this framework, the

Topological Hypothesis can be formulated:

Proposition 1.4.1 (Topological Hypothesis). The basic origin of phase transitions lies in a
topological change of the support of the measure describing a system. This change of measure

itself at the transition point.

The peculiarity of this approach is that phase transition are characterized from the point of
view of Hamiltonian dynamics: this allows to look for a characterization of phase transition more
related to geometrical/dynamical properties (being equipotential level sets the ”fundamental”
objects) than to thermodynamic properties (as in the case of Microcanonical Analysis where
the knowledge of microcanonical temperature is required.). This open the possibility to predict
the possibility of a system to undergo a phase transition or not from the properties of potential.

In this theoretical framework, two theorems, proved in late ’90s, established a strong relation
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among topology of configuration space and the presence of phase transitions in thermodynamic

limit.

1.4.2 Necessity theorem for PTs and Pettini-Franzosi Theorem

A major leap forward of Topological Theory of phase transition is constituted by two the-
orems claiming that that topological changes of equipotential hypersurfaces of configuration
space—and of the regions of configuration space bounded by them are a necessary condition
for the appearance of thermodynamic phase transitions. This is obtained for a wide class of
potential functions of physical relevance, and for first- and second-order phase transitions. How-
ever, long-range interactions, nonsmooth potentials, unbound configuration spaces, “exotic” and
higher-order phase transitions, are not encompassed by the actual formulation of the theory and
are still open problems deserving further work.

In these standard approaches, a phase transition is seen as stemming from singular properties
of the statistical measures, whereas the two theorems presented below show that these singular-
ities are not “primitive” phenomena but are induced from a deeper level, that of configuration-
space topology. In other words, once the microscopic interaction potential is given, the infor-
mation about the existence of a phase transition is already contained in the topology of its level

sets, prior to and independently of the definition of any statistical measure.

Theorem 1.4.2 (Regularity under diffeomorphicity). Let Vi (qi,...,qn) : RY — R, be a
smooth, nonsingular, finite-range potential. Denote by X3, := Vﬁl(v), v € R, its level sets, or

equipotential hypersurfaces, in configuration space.

Then let v = v/N be the potential energy per degree of freedom. If for any pair of values v and

v’ belonging to a given interval Iy = [vo, v1] and for any N > Ny, we have
YNGR XNws

that is, ¥ np is diffeomorphic to Xy, then the sequence of the Helmholtz free energies { Fn ()} Nen—
where = 1/T (T is the temperature) and 3 € Ig = (5(v0), B(V1)) —is uniformly convergent at
least in C*(Ig), so that Fs, € C*(Ig) and neither first- nor second-order phase transitions can

occur in the (inverse) temperature interval (B(vg), 5(01)).

In general, given a model described by a smooth, nonsingular, finite-range potential, it is
a hard task to locate all its critical points and thus to ascertain whether Theorem 77 actually
applies to it. Moreover, the requirement of the existence—at any N—of an energy density
interval [vg,71] free of critical values seems rather strong. Theorem 1.4.2 is very useful and
crucial to prove Theorem 1.4.3 which establishes that the occurrence of a phase transition is
necessarily driven by topological changes in configuration space. To do this we have to consider
what happens to the entropy when a critical value of the potential is crossed. Taking just one
critical value v, of the potential, and allowing an arbitrary growth with N of the number of
critical points on 3., one can see that it is the energy variation of the volume only in the vicinity

of critical points that can entail an unbounded growth with N of the third- or fourth-order
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derivative of the entropy. In other words, the breaking of uniform convergence of the entropy in
C? or in C? can be originated only by a topological change of the X, or, equivalently, of the M,.
To rule out any role—in the breaking of uniform convergence—of the part of configuration space
volume which is free of critical points, one resorts to Theorem 1.4.2. Theorem Theorem 1.4.3
applies to all those systems whose potential is a good Morse function.” But are there systems
with only one critical value in an interval [vg,?7;]? At present we can conjecture that the
result expressed by Theorem Theorem 1.4.3 extends at least to those potential functions for
which the number of critical values 7/ contained in [tg, 7] grows at most linearly with N (thus
encompassing a wide class of short-range interaction potentials). The basic case of only one
critical value has a great conceptual meaning: it allows a direct proof of the role of critical
points. Once we have proved that phase transitions can stem only from the neighbourhoods
of critical points in the ideal case of one v, in [tg, v1], we can hardly imagine how the part of
configuration space volume which is free of critical points could start playing any role when the
number of critical values in the interval is let grow, although it is possible in principle. However,
this possibility is ruled out by resorting to Theorem 1.4.2, though in the special case of one
critical value in an interval [vg, v1]. Again, it seems very hard to imagine how this could change
by simply allowing the existence of more critical values. As a consequence, topology changes are

also necessary for the existence of phase transitions. Theorem 1.4.3, is enunciated as follows:

Theorem 1.4.3 (Entropy and topology). Let Vi (qi,...,qn) : RY — R, be a smooth, nonsin-
gular, finite-range potential. Denote by M, := Vﬁl((—oo,v]), v € R, the generic submanifold
of configuration space bounded by X,. Let {qgi) € RN}z’e[l,N(v)} be the set of critical points of
the potential, that is, such that VVN(qgi)) =0, and let N'(v) be the number of critical points up

to the potential energy value v. Let F(qgi),EQ) be pseudocylindrical neighborhoods of the critical

points, and u;(M,) the Morse indexes of M,. Then there exist real numbers A(N,i,e0), gi

and real smooth functions B(N,i,v,e0) such that the following equation for the microcanonical

configurational entropy S](V_)(v) = (1/N) log/ d™q holds:
V(g)<v

N
_ 1
S zlog[ / dVg + A(N,i,e0) gi pi(My_
N ( ) N Mv\Uﬁ(lv) F(qgi),go) ; ( 0) ( 60)

NV('U)+1

cp

+ Z B(N,i(n),v—vZ® &)
n=1

Moreover, an unbounded growth with N of one of the derivatives |0FS) (v)/ovF|, for k = 3,4,

and thus the occurrence of a first- or second-order phase transition, can be entailed only by the
N

topological term ZA(N, i,€0) Gi pi(My—cq)-
i=0
Together, these two theorems imply that for a wide class of potentials that are good Morse
functions, a first- or second-order phase transition can only be the consequence of a topological

change of the submanifolds M, (or equivalently of the ¥,) of configuration space. The converse

9Let us keeping mind that Morse functions are dense in the space of smooth functions bounded below.
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is not true: topological changes are necessary but not sufficient for the occurrence of phase

transitions.

1.4.3 A counterexample to Topological Theory of PTs

The Topological Theory of phase transitions has been recently object of harsh criticism
[KM11, MHK12]. In these papers it has been argued against this theory on the basis of the
observation the second order phase transition of the 2D lattice ¢*-model would be a counterex-
emple of the Theorem.

The lattice ¢* model with Periodic Boundary Conditions (PBC) is defined by the Hamiltonian

2
B y J o 1 59 Ay
H(p, @) = E 51 t3 E (05 —1)" — SRt (1.45)
ies¥ JEN ()

lact

where i is an index which identifies a node of the d-dimensional lattice Sl(f 2t, N@D (i) is the set of
the nearest neighbours of the node i and J,m and A parameters which define potential energy.
At equilibrium and for d > 2, this model — representing a set of linearly coupled nonlinear
oscillators — shows a second order phase transition with nonzero critical temperature. This
phase transition consist in a spontaneous breaking of the discrete O(1), or Zg, symmetry and
it occurs at a critical value v, of the potential energy density which belongs to a broad interval
of v-values void of critical points of the potential function.

This means that the {Evac tver are diffeomorphic to the {Ef,v>vc }ver so that no topological
change seems to correspond to the phase transition.

The authors of [KM11, MHK12] conclude that the Franzosi-Pettini Necessity Theorem for PTS
is 7allegedly proved” and that in the case of 2D lattice ¢*-model the phase transitions are
originated by a ”concentration measure” mechanism.

The object of part of the work reported in this manuscript is aimed to provide a refinement and

development of Topological Theory of PTs. In particular:

e numerical simulation has been performed to investigate the dynamical properties of the
system and geometrical properties of different diffeomorphic level sets in the region around

a critical value;

e concept of asymptotic diffeomorphicity among level sets is delineated as a possible hy-

pothesis to be added to the formulation of the Necessity Theorem:;

e derivatives of entropy at any order in (configurational) microcanonic ensemble are inter-
preted in terms of global geometry of the foliation induced by (potential) energy level sets

in (configuration) phase space, in absence of critical points;

e the application of new computational techniques in algebraic topology (persistent homol-

ogy) for investigation of topology of (potential) energy landscape is presented.
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CHAPTER 2 Developments of the Topological Theory of

Phase Transitions

In this chapter some original results and contributions for the refinement of the topological
theory of PTs is reported. Results of Monte Carlo simulations for the ”counterxample”, namely
the ¢*-model on 2d lattice, are discussed and the necessity of a supplementary hypothesis (the
asymptotic diffeomorphicity among level sets) to prevent phase transitions is conjectured.
Moreover, the derivatives of (configurational) microcanonical entropy are interpreted in terms
of the geometry of configuration space with a properly rescaled metric. Finally, an application
of new computational techniques in algebraic topology is given in the context of the Topological
Theory of PTs.

2.1 Preliminary results towards a generalization of the Topo-

logical Theory

2.1.1 Motivations

The counterexample to the Pettini-Franzosi Necessity Theorem, briefly discussed in the pre-
vious chapter, has undermined the Topological Theory of PTs. However, since the validity of
this theoretical approach relies also on some rigorous analytical results worked out for some
particular models, an effort to save the theory is well justified.

Thus the work presented in this chapter is motivated by the reasonable conviction that the
above mentioned counterexample does not really undermine the Topological Theory, so that, as
a matter of fact, the microcanonical thermodynamic information of a physical system is actually
encoded in the topological/geometrical properties of its configuration space and in the foliation
induced on it by the equipotential level sets. So the question is if it is possible to fix the problem
paving the way to a more general formulation of the theory itself.

Let us remark that a counterexample to a theory does not necessarily mean that it has to be
discarded: to the contrary, a counterexample can stimulate a refinement of a theory. An in-
stance, which is not out of place in the present context, is the famous counterexample that J.
Milnor gave against De Rham’s cohomology theory (the two manifolds M = S? x §*, product of
spheres, and N = CP3, complex-projective space, are neither diffeomorphic nor homeomorphic
yet have the same cohomology groups). The introduction of the so called ”cup product” fixed
the problem and saved the theory making it more powerful.

Let us remark that the two basic theorems Theorem 1.4.2 rely on the assumption of diffeomor-
phicity at any arbitrary finite N € N of any pair of level sets of specific potential energy E%TN,
with ¥ € [0g, U1], but no assumption is made about the ”asymptotic (N — o) diffeomorphicity”

relation among the EEVN .
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The concept of ”asymptotic diffeomorphicity” for the leaves of foliations in ambient spaces of
increasing dimension (N — o0) seems an almost-meaningless problem. In fact, it requires to
define a measure of "how much” two leaves are diffeomorphic between them and to define a
prescription to compare pairs of leaves defined in spaces with different dimensionality. These
two operations can be defined in a quite arbitrary way: the choice as meaningful as possible
has to be done on the basis of physical considerations and constraints as general as possible.
An heuristic argument in favour of the idea that asymptotic diffeomorphicity takes place in
the p*-model on 2d lattice is suggested by the interpretation of the qualitative feature of the
Hamiltonian dynamics in terms of the geometry/topology properties of configuration and phase
space spaces. In this case, spontaneous Zo-symmetry breaking, present in the thermodynamic
limit, is associated with an asymptotic (N — oco) breaking of the ergodicity of the systems whose
phase space trajectories remain ”confined” in a region corresponding to a non vanishing average
magnetization (subsection 2.1.3). In turn, this ergodicity breaking stems from the asymptotic
breaking of topological transitivity giving rise to an asymptotic (N — +o0) ”disconnection”
of regions of the energy level sets corresponding to opposite signs of the total magnetization. In
this framework, phenomena like concentration of microcanonical measure would not be unique
on the energy level sets (what is often invoked as a possible origin of ergodicity breaking) and
would result from an ”asymptotic disconnection” of the support of the measure, i.e. of the same
energy level sets Z?N with € < €. where €, is the specific critical energy.

A link among the topology of (specific) energy level sets and the topology of configuration space
accessible to the system can be established, and this is possible as the Topological Theory of

phase transitions is (in its actual formulation) restricted to systems whose microscopic dynamics

N

is described by Hamiltonian of the form Hx(p,q) = Zp?/2 + Vn(q1, ..., qn) with short-range
i=1

potentials bounded from below (we can suppose that 0,;, = 0 for all V).

Hence, the level sets of the specific energy function Hy = Hxy /N can be given by the disjoint
union of a trivial unitary sphere bundle (representing the phase space region where the kinetic
energy does not vanish) and the hypersurface in configuration space where the potential energy
takes total energy value.

H v - \%
BeN = M x sV || =& (2.1)

where S™ is the n-dimensional unitary sphere and

M{ = { € Dom(f)|f(2) €T}, S ={a € Dom(f)|f(z) =c},. (2:2)

)

The idea that the ”asymptotic topology” of E?N is affected by the ”asymptotic topology” of
the accessible region of configuration space is suggested by the Kinneth formula: if Hy(X) is

the k-th homological group of the topological space X on the field F then

Hy(X xY;F)~ @ Hi(X;F) ® Hy(Y;F). (2.3)
i+j=k
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N
Moreover, as Hy, (LU;=1 X;, F) = EBHk(Xi,IE‘), it follows that:
i

Hy, (Z?N,R> ~ @ H; (MK%;R) ® H; (SN_l;R) & H, (Z?N;R> ~
i+j=k o)
~ Hi(n-1) (M[‘O/g);R) QR @ Hy (M[‘(i]g); ) @R @ H, (E!N;R>

So, in that case, the topological changes of Z?N can be derived only by topological changes in
configuration space. Numerical simulations to support these hypotheses have been performed on
the model claimed to be a definitive ”counterexample” to the theory. The results are reported

in what follows.

2.1.2 The model: ¢?-model on lattice

As mentioned in the previous chapter, the model of interest is the d = 2 version of the ¢*-

model on d-dimensional lattice, with nearest neighbour interactions, defined by the Hamiltonian

2
Hip.p)= Y % + % > (p—w)? - %mzﬁpg + 290? v =1{viticsw P =1pikicsw
ies®, JEN@ (i)

(2.5)
where i is an index which identifies a node of the d-dimensional lattice Sl(jc)t, N@D(i) is the
set of the nearest neighbours of the node i and J,m and A\ are parameters. This system
has a discrete Zso-symmetry and short-range interactions; therefore, according to the Mermin—
Wagner theorem, in d = 1 there is no phase transition whereas in d = 2 there is a a second
order symmetry-breaking transition, with nonzero critical temperature, of the same universality
class of the 2d Ising model. The thermodynamic signature of this transition is a logarithmic
divergence of the specific heat in correspondence of critical energy €.. Also hamiltonian dynamics
displays a transition at critical energy between a weak chaotic regime to a strong one (see

[CCPY8] for a detailed analysis of this phase transition)!.

2.1.3 Numerical simulation of Hamiltonian dynamics

The numerical integration of the equations of motion derived from (1.45) has been performed
for d = 2 and d = 1, with periodic boundary conditions, using a bilateral symplectic integration
scheme [Cas95b]. The model parameters have been chosen as follows: J = 1, u* = 2, and
A = 3/5 for the whole set of numerical simulation reported in what follows.

By means of standard computations, as reported in [CCP98] and [CCCT98b], and for the

chosen values of the parameters, the 2d system undergoes the symmetry-breaking phase transi-

LChaotic properties have been shown to be related with the presence of critical points of the potential
function, in fact the neighbors of critical points act as ”scatterers” of the configuration space trajectories.
Morse theory establishes a strong relation among critical point of (Morse) functions on manifold and the
topology of the latest; this originally suggested a connection among phase transitions and topology of
configuration space.
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tion at a critical energy density value e, = E./N ~ 11.1, correspondingly the critical potential
energy density value is v. = (V')./N ~ 2.2. The initial conditions were: ¢; = 0 and p; randomly
chosen and adjusted so that the initial kinetic energy value corresponds to the wanted ¢ value.
With respect to the numerical simulations already reported in the mentioned literature we have

here followed the time evolution of the order parameter (”magnetization”)

M = > o (2.6)

(d
Card(slact GS(d)

lact

This vanishes in the symmetric phase, that is for € > €., whereas it takes a positive or
negative value in the broken symmetry phase, that is for € < €.. However, at finite N the order
parameter can flip from positive to negative and viceversa. This flipping is associated with a
trapping phenomenon of the phase space trajectories alternatively in one of the two subsets of the
constant energy surfaces which correspond to positive and negative magnetization, respectively.
This phenomenon has been investigated by computing the average trapping time 7, for different
lattice sizes, and choosing values of € just below and just above .. The results are displayed
in Figure 2.1. Denote with ¢/ : ¥¢ — X¢ the H-flow, with X¢ = H~'(N€) a constant energy
hypersurface of phase space, with MZ C 3¢ the set of all the phase space points for which
M >n > 0, i-th M7 C 3¢ the set of all the phase space points for which M < —n < 0,
and with M7 C X¢ a transition region, that is, the set of all the phase space points for which
—n < M <, with n < (|M|). In numerical computations we used n = 0.01(|M|).

Thus ¥z = MF U M- UMY From the very regular functional dependences of 7,.(IV)

reported in Figure Figure 2.1, we can see that:

e at € < &, for any given 1, > 0 there exists an N(71y) such that for any N > N(714) and
t € [0, 7] we have o (M)E = ME .
In other words, below the transition energy density the subsets ./\/l;ic of the constant
specific energy surfaces E?T appear to be invariant for the H y-flow on a finite time scale
Tir, with the remarkable fact that 7, — oo in the limit?> N — co.

Formally this reads as
VACMIVBC M- and te0,7(N)]
is YT ANB=0.

e To the contrary at € > €., there exists a Ttor > 0 such that for any N and
VAC M VBCM: and t>r
is YH(ANB#(.

Since X = MF UMz UMY, and since the residence times in the transition region are found

to be very short and independent of N - so that the relative measure meas(M?Z)/meas(ME)

2The N — oo extrapolation is safe because increasing N essentially amounts to gluing together
identical replicas of smaller lattices.
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Figure 2.1: Average trapping time 7, of the magnetization vs.the number of lattice sites N
for the 2d ¢*-model. Different data series refer to different values of the energy per degree of

freedom €: € = 8 (squares), € = 10 (circles), both below the transition energy €. = 11.1, and
€ = 12 (triangles), above the transition energy.

vanishes in the limit N — oo - Theorem 1.4.2 means that below the transition energy the
topological transitivity of ¥z is broken up to a time 74,.(IN) - which is divergent with N.

To the contrary, above the transition energy the Xz are topologically transitive [Kol][ANO7].
The asymptotic breaking of topological transitivity at € < €., that is the divergence of 74,-(IV) in
the limit N — oo, goes together with asymptotic ergodicity breaking due to the Zy-symmetry
breaking. Moreover, on metric and compact topological spaces, topological transitivity is equiv-
alent to connectedness of the space [Kol|[ANO7], so the loss of topological transitivity entails the

loss of connectedness, that is, a major topological change of the space.

And if we denote by H2(XY;R) the "finite time zeroth cohomology space” of E?N , for
7 < 7ip(N) we have by = dim HOA(SHV;R) = 2 at € < &, and by = dim HO(SHV;R) = 1 at
€ > €.. The dimension of this cohomology space (the Betti number bg) counts the number of
connected components of E?N and is invariant under diffeomorphisms of the E?N . Hence the
asymptotic jump of a diffeomorphism invariant across the phase transition point, which can be
deduced by our numerical computations, means that the E?N undergo an asymptotic loss of
diffeomorphicity, in the absence of critical point® of the potential V(q). Now, the breaking of
topological transitivity of the E?N implies the same phenomenon for configuration space and
its submanifolds EEN (specific potential level sets) as discussed above. These level sets are the
basic objects, foliating configuration space, that enter in Theorem 1.4.2 and Theorem 1.4.3, and
represents the nontrivial topological part of phase space.

The link of these geometric objects with microcanonic entropy is given by

< kol ‘ al 1 L p? do vy
Sn(€) = °lo/da/ dp; 6 =Y L —(e—7 / 2.7

3Notice that in this case transversality is absent, see([Hir97]).
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As N increases the microscopic configurations giving a relevant contribution to the entropy, and
to any microcanonical average, concentrate closer and closer on the level set EX’%

Therefore, it is interesting to make a direct numerical analysis on these level sets at different
N values to find out - with a purely geometric glance- how configuration space asymptotically
breaks into two disjoint components. The intuitive picture is that, approaching from above
(e > &.) the transition point, some subset of each EXN - a "high dimensional neck” related with
ML - should be formed which bridges the two regions M, and M, . And this neck should

increasingly shrink with increasing N.

2.1.4 Monte Carlo simulation on equipotential level sets

To perform the analysis prospected at the end of previous section, we resort to a Monte
Carlo algorithm constrained on any given EEVN of a general specific potential function Vy of
the class considered in Theorem 1.4.2 and Theorem 1.4.3.

This is obtained by generating a Markov Chain with a Metropolis importance sampling of the
microcanonical configuration weight appearing in (2.7) Xy = ||VVN||H§%[ . The details of the

Monte Carlo code are discussed in Appendix B.
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Figure 2.2: Variance of xx over potential level sets Zﬁv N endowed with microcanonical measure
L vs. potential energy per degree of freedom @ for 1d and 2d ¢*-models, and for lattice sizes:
N = 10 x 10 (circles), N = 20 x 20 (squares), N = 30 x 30 (triangles) in the 2d case, and
N =900 (rhombs) in the 1d case. The vertical dashed line indicates the phase transition point
at v ~ 2.2.

In order to check the validity of the intuitive idea of a neck which shrinks at increasing NV,
we have to identify some useful geometric quantities to be numerically computed. To do this
we proceed as follows.

Let us note that, in the absence of critical points in an interval [a,b], the explicit form of the

diffeomorphism € that maps one to the other the level sets ¥/, with ¢ € [a,b], of a function
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Figure 2.3: Variance of (5 = divgn€, on the potential level sets Eq‘j/ N with microcanonical
measure j vs. potential energy per degree of freedom 7 for 1d and 2d ¢*-models, and for lattice
sizes: N = 10 x 10 (circles), N = 20 x 20 (squares), N = 30 x 30 (triangles) in the 2d case, and
N =900 (rhombs) in the 1d case. The vertical dashed line indicates the phase transition point
at v >~ 2.2.

f:RY = R is explicitly given by [Hir97]

dﬂﬁi_ i) = Vif(ﬂﬁ) (e
R R C LD (28)

and this applies as well to the energy level sets in phase space as to the potential level sets in

configuration space. It has to be stressed that yn = ||€ || for the equipotential level sets XYV,
If we consider an infinitesimal change of specific potential energy v — v + Av with |Av|/v < 1,
and denote with dist(y) the field of local distances between two level sets El—,VN and ZZIF\’AE, from
i(0+Av) = ;(0) +&AD and using (2.8), at first order in Av, we get dist(¢) = Ags/||[VV N], =
AsXn(p)-

Moreover the divergence div,§y in euclidean configuration space can be related with the vari-
ation rate of the measure of the microcanonic area duE?N = YNdUZ,?N over regular level sets
DIE

The first variation formula for the induced measure of the Riemannian area daE?N along the
flow ¢(v) reads [Lee09]

do(e(v+ Av)) = <1 — AvY(N — 1)h25VN ) do(¢(v)) + o(Av) (2.9)

here hz{,g is the mean curvature of the regular hypersurface ZZ respect to metric g, i.e. the

sum of principal curvatures(see Appendix A for a more details), that in terms of f is given by

_ 1 Vf f
hZ£7g($) =-N_ 1d1vg (vaH)‘ x € Xl (2.10)

Applying the Leibniz rule, the first variation formula for the measure of the microcanonic
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Figure 2.4: Toy model representation of the possible geometrical origin of the peaks in Figure 2.2
and Figure 2.3. The first four lines pictorially represent "level sets” separated by the same

potential energy interval. The first two external lines abstractly represent level sets 21‘7/ N oat
v > 0. (above the phase transition). The third and fourth lines abstractly represent level sets

E%/ N at v < v, (below the phase transition) with a neck. The variance of the length of the blue
lines (corresponding to the formation of the neck) is larger than that of the red lines.

area is

du(p(v + Av)) =Xy (#(0 + Av))do(v + Av) =

= [1 + Av <—XN(N —1)h (V'Vx)

- v@-xN)} dulp@) = (211)
= (1 + A7 divé y) du(p(D))

Vogn VY|

Then, the two following quantities have been numerically computed along the mentioned
— \2
u <XN>EEVN

<(divEN)2>2?N W <(divg)>227N . These are functions of the specific potential energy v = V/N

. _ ) T\
Monte Carlo Markov Chain: VarEEVN,u(XN) = <XN>EEVN and Varzf”,y(dWEN) =

’ )

and are sequences labeled b; NL,L the thermodynamic limit can be derived if the density is kept
constant for N — +oc.

In order to obtain point-wise convergent functions for the mentioned quantities, they have to
be scaled by a factor depending on N. The estimation of these scale factors is a key point to
compare geometrical and topological properties of objects defined in ambient spaces of different
dimensionality. We proceeded heuristically in the derivation of these terms, although a rigorous
derivation of their scaling would be in principle possible by taking into account the prescription
to take the thermodynamic limit of systems with short range potentials.

The basic assumption is that 9;Vy ~ O(1), i.e. these terms do not scale with N because of
the short-range property of the interactions among the degrees of freedom, this fact introduces
a cut-off scale: each degree of freedom does not interact with the degrees freedom outside the
cut-off radius of the interaction (which is the same at any N) . It follows that the forces acting

on a single degree of freedom depend on the energy density but not on N. This leads to estimate
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N
OV N ~O(N") and |[VV x| =) (8:Vn)* ~ O(N ") that yields
=1
- _ VTR v T AN ~ 1/2
<XN>21‘\/I%V,# = ([IVwl >EXM O(N/7) . (2.12)

Through analogous considerations, we can derive the scaling with N for the average of dingN,

N
oV
N (= Al N 211 ) B (213)
N\ IIVVNI? [ gow O(N—1) '
qu 7#
The variance (so the average of squared fluctuation)of these two quantities are supposed to scale
as

Var_v (Xy) ~ O(1)

»VN

Neoft (2.14)
Varzzgyu(dlvg&v) ~ O(N).

The outcomes, reported in Figure 2.2 and Figure 2.3, show very different patterns in the 1d
and 2d cases: monotonic for the 1d case, non-monotonic displaying cuspy points at v = v, (the

phase transition point) of Var(xy) and of VarzvN (div€ y) for the 2d case.
. Nﬁ 7/”‘
As Xy = 1/||[VV n|| is locally proportional to the distance between nearby level sets, its variance

is a measure of the total dishomogeneity of this distance, so that a peak of Var(yy) can be due
to the formation of a "neck” in the {E@VN }7 " foliation of configuration space.

This is pictorially shown through the toy movgel of Figure 2.4. The same is true for Var(dingN)
since dingN is locally proportional to the variation of the area of a small surface element when

a level set is transformed into a nearby one by the diffeomorphism in Eq.(2.8).

2.1.5 Discussion of the numerical results

In spite of the absence of critical points of V(¢) of the ¢*-model [Eq.(??)] in correspondence
with the critical potential energy density v, at which the phase transition takes place, we have
here found sufficient evidence that this transition stems from an asymptotic change of topology
of both the Z?N and E%—TN around the critical level. This paves the way to a more general
formulation of the topological theory of phase transitions once a basic assumption of the theory
is made explicit also in the N — oo limit. This can be achieved by resorting to the explicit
analytic representation (2.8) of the diffeomorphism &y : Z@VN Cc RNFL EZ” c RVFL
Uniform convergence in N of the sequence of vector valued many-variable functions {EN} NeN
can be used to define asymptotic diffeomorphicity in some class C' of the {E@VN }oer after the
introduction of a suitable norm containing all the derivatives up to (9'€,/ axﬁ e (%Uﬁ’;) Ac-
cordingly, in Theorem 1.4.2 and Theorem 1.4.3 the assumption of asymptotic diffeomorphicity
of the {EﬁvN }56R has to be added to the hypothesis of diffeomorphicity just at any finite V.
A deeper investigation of the link between the geometry and topology of the regular equipoten-

tial level sets and the thermodynamics of (configurational) microcanonical ensemble is developed
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in what follows.

2.2 Geometry of regular potential energy level sets in configu-

ration space

As prospected at the end of the previous Section, the numerical simulations therein re-
ported suggest that a suitably defined concept of ”asymptotic diffeomorphicity” among the
equipotential level sets for N — +o00o can lead to a generalization of the Theorem 1.4.2 (Neces-
sity Theorem) by adding the assumption of asymptotic diffeomorphicity to its hypotheses, thus
excluding the 2d lattice ¢* model from the domain of validity of the theorem. This will fix the
problem by eliminating the counterexample.

A first encouraging step in this direction is in the possibility of expressing the microcanonical
(configurational) Boltzmann entropy in terms of integrals on regular level sets E?N (E{,VN ) of
geometrical properties of the vector field that generates the diffeomorphism of eq.(2.8) among

level sets.

2.2.1 Microcanonical configurational statistical mechanics from differen-

tial topology of regular equipotential level sets

We consider in what follows the configurational microcanonical ensemble® (A, py(q; 7))
where the constraint is obtained by fixing the value of some specific potential energy function
Vi :A; — R and the corresponding microcanonical configurational density function is given
by B
pn(a;0) = $Vnla) _,U) :

Sy~ 6 (VN(q) — ) dVoly

where g is a natural metric structure in configuration space® and dVol, the associated Rieman-

(2.15)

nian volume form. The normalization constant in (2.15) is the microcanonical partition function

according to Boltzmann’s definition:

0 0 — —
QN,Boltz(@) = %QN,Gibbs(E) = 8’0//\ @(VN(q) - @)dVOlg = / 1) (VN(q) — 5) dVOlg (2.16)

q

where ©(x) is the Heaviside step function.
In analogy with the usual definitions in statistical microcanonical ensemble, the configurational

microcanonical entropy density function is given by:

— 1
SNBoltz = 37 I QN,Bolts (0) (2.17)

4The same considerations apply to the classical microcanonical ensemble where the specific energy is
fixed, simply replacing the configuration space A, with the phase space A, , and the specific potential
energy V n (with fixed value ) with the Hamiltonian representing the energy per degree of freedom H
(with fixed value €).

>The introduction of a metric space is an arbitrary operation and not always the euclidean one is the
best choice. For instance for a system with angular generalized coordinates 6; € [0; 2m) the torus metric
could be more appropriate.
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As a consequence of eq.(2.17), the microcanonical volume of the level sets of V y as a func-
tion of v contains the whole information on the thermodynamics of the system.
In what follows, the thermodynamic properties of the configurational microcanonical ensem-
ble are expressed as integrals of quantities associated with the vector field that generates the

diffeomorphism among the level sets of V.

Definition 2.2.1 (Equipotential level sets). We recall that the equipotential level sets EYN are
defined as
SyN ={q € AVN(g) =7} (2.18)

Remark 2 (Compactness of level sets). As Vi € C>(A,) is a continuous function then

Vz_\fl () C Ay is a compact set.

Let the gradient vector field grad,Vy € X(A,) of the function Vy be
g(grad,Vy,X) = dVy(X) VX € X(Ay) . (2.19)

Remark 3 (Non critical level set). If there are no critical points of VN on the level set ZXN,

1.e..

grad,Vy| #0 Vg € Xy (2.20)
q

then ZgN s a reqular compact hypersurface.

Let consider a configuration space subset where there is no critical point, i.e.

By = {q € Ayl gradgV‘ #+ 0} . (2.21)
q
and the set
Mgy o= | =Y (2.22)
DE[D0,01]

and suppose that exist some vy, v; such that M [‘5 (j\’m] C B. This means that the one-form dV y

is non-degenerate over M VN
[To,01] _

It follows from Froebenius’ Theorem that a co-dimension one foliation can be defined on M. [‘g (fvm]

through regular level sets of V. Hence, it is possible to define a unit normal vector field to

the equipotential hypersurfaces (the leaves of the foliation):

oo gradVy (2.23)
lgrad,V n |4

VN
[v0,01]
consequences on the topology of the level sets therein: in particular, we will use the following

We stress that the absence of critical points of V x over the manifold M has important

well known result in differential topology:
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Theorem 2.2.1 (Regular interval theorem([Hir97], p.153)). Let f : M — [a,b] be a "' map
on a compact manifold 1 <r < w (where w means analytical). Suppose f has no critical points

and f(OM) = {a,b}. Then all level surfaces of f are diffeomorphic.

In the proof of the same theorem in [Hir97], an explicit formulation is given for the vector
field that generates the diffeomorphisms among the level sets and it is parametrized by the
values taken by f on them.

If the function f is identified with V y (as already mentioned in the previous Section) the vector
field that generates the diffeomorphisms among the level sets, parametrized by o, is

3 gradpyVy
N

5 = XNVN En € %(M[U]\;,vl]) : (2.24)

g N

grad,  Val

where we have introduced the symbol X for the norm of vector field € in the ambient space

(Ag, 9), Le
1

Xy = ———— = |[Exlly - (2.25)
N7 lgrad, Vi, N

This means that the diffeomorphic flow generated by €, is normal to the level sets and is

parametrized by the differences of V y along the flow lines
dVn(€y) =1 (2.26)

More in explicit, this means that there exists a diffeomorphism flow F1 : EgON x [0; 01 — vg] —
VN among the level sets, s.t.
[0,01]

v

Fli(p) € DI

_ = 2.27
% (f o FlL) (p) = (Enf) (Flo_oy(p))  Vp e XyN and Vo € [vg; 1] (227
t=(v—20)

where f is an arbitrary function of class C'' defined over an open set of A, containing M [;“/(fm}‘

In this differential topological framework it is possible to express the microcanonical entropy
and its derivatives in terms of integral of quantities related only to the vector field &,: this
establishes a link among the property of diffeomorphicity of the level sets in M[me and the
thermodynamic behaviour of the system. In particular the microcanonical partition function in
eq.(2.16) can be rewritten in a more suitable form using the Coarea Formula [Fed14, Nic] which

generalizes Fubini’s theorem.

Theorem 2.2.2 (Co-Area formula ([Nic] Corllary 1.4, p.5)). Suppose M is a C' manifold
equipped with a Ct-metric g and f : M — R is a function with no critical points. Then for

any measurable function ¢ : M — R we have

_ ¢p) 4
| o = | </zf Terad, fll, “7= ﬂ) @ (228
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where dVoly is the Riemannian volume form on M, and doy o is its restriction over the

reqular level set E{. In particular, by setting ¢ = 1 it follows

Vol (M):/ / sty dt (2.29)
g r \Jx! |lgrad,f|,

We can apply the Theorem (2.2.2) to derive an useful expression for the configurational
microcanonical partition function Qu(v) for v € By. In fact, let us consider two values vg, 1 €
By such that 99 < ¥ < 71, then the smooth function V x has no critical points in M[‘ﬁ/évm] and

it follows

QN Boitz (V) = == QN Gibbs (V)

9 Qn,Gibbs(Vo) + [ dVolg

N
[17011_)/]

SR VIR P . (TR
o’ 0 EYN ngadgVN”g =7 EEVN ||gradgVN||g

This very well known formula can be reinterpreted in order to make the vector field &,

_ 9
oY

v'=0v

appear by simply using eq.(2.25):

o _ - N-1
QN,BOltZ(U> = /;;VN XN daEgN,g = /VN d,u,@ (2.31)
where
dps ™ =Xvdory (2.32)

is the microcanonical area (N — 1)-form for non critical energy level sets. In what follows we
refer only to the Boltzmann configurational microcanonical entropy, i.e. defined through the
volume Qn Boltz (7).

As we have seen, the thermodynamic behaviour of a system is described by means of response
functions which depend on the derivatives of the configurational microcanonical entropy and,
consequently, of the configurational microcanonical partition function (volume). So we need to
calculate the derivatives of Qn otz (0) in eq.(2.31) with respect to the control parameter v in
the configurational microcanonical ensemble that we are considering, and then express these
derivatives in terms of quantities directly related with the diffeomorphisms generating vector
field.

The following result allows to do this

Theorem 2.2.3 (Derivation of integral over regular level sets). Let O an open bounded set of
a Riemannian manifold (MY, g) with a connection V. Let ¢ € CPT1(O) be constant on each
connected component of the boundary 90O and f € CP(O). Define ]\/[]?[t/[ ={zeO0lt<vy(x) <t}

and

F(v) = /21" fdoge (2.33)

where do is the Riemannian area N — 1-form induced over Ef. If C > 0 exists such that

=Yg
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for any ]\4]?72&,[, lgrad v (z)|lg > C and the level sets Y of ¥ are without boundary, then for
any k such that 0 < k < p, for any v €]t,t'[, one has

d*F .
W(’U) = /Ew Alﬁ,gdeZ?f,g (234)
with ) d. ()
gra T
Apof =divg Wf) m——F——1 v=— 97" (2.35)
- 25 lgrad,v(@)]y lgrad, ()],
proof.

We prove the formula at the first order of derivation, namely for k = 1

dF d
— | Aygfdogy (2.36)

FOAC A
as the case for £ > 1 can be obtained by recursion.
The absence of critical points of 1 implies that the level sets Zf of 1) determine a foliation of the
open manifold JW]]t\ft,[. Moreover all the level sets are diffeomorphic by after Theorem 2.2.1 and
a vector field &€ generating a family of one-parameter group of diffeomorphisms Fl; parametrized

by differences of values of i can be found, i.e.

_ gradgz/)(x) 1

= - J >’ = B —— 2.37
lerad, 0 @2~ ¥ X Tgrad,o@, (2.37)

In order to pass the derivative into the integral in eq.(2.36) we use the transport property

of integral under the action of the one-parameter group of diffeomorphisms:

d — d *
dF . /Fl (2111) f O-Efvg /Ew f 0-21{’9 . Fls(f dO’zw g) — (f dO'Ew g)
—(v) = lim S . = lim c: vd —
dv s—+00 S s——+00 Z:}b S

:/Eg £§(fdazg,’g):/zg Xc,,(fdaw’g):/zf ¥ [£o(f)dogy , + FLu(doyy )

(2.38)

where we have used the definition of the Lie derivative L¢ of forms with respect to the vector
field &, and we used its linearity with respect to reparametrization of the one-parameter group

of diffeomorphisms. As

Ly(dogw )= TrI(ll)dogu g = Thgdose (2.39)

V.9

where II, is the second fundamental form of the hypersurface Zf and 71 4 is the sum of principal

curvatures (see Appendix A), the last expression in eq.(2.38) can be rewritten as

d
T = [ X+ ngldasy,. (2.40)

In order to complete the proof it is sufficient to show that div,(fv) is equal to the expression

in square brackets in eq.(2.40). Let us choos an adapted orthonormal frame (v, ey, ...,en_1) to
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the regular set Ew we have

N-1
dive(fv) = Y 9(Ve,(fv), &) + g(Vu(fv),v) =
=1 (2.41)
N—-1 N—-1
=Y f9(Vev,e)+ Y (Ve f)gw,e) + f9(Vor,v) + (Vo fa(v,v).
=1 =1

Using the definition of the second fundamental form II4(X,Y) = ¢g(Vxv,Y) and the orthor-

mality of the adapted frame we obtain:

N-1
divg(fv) = > 9(Ve,e) + (Vo f) = fTr9(Iy) + Lo f = Lo f + fTig (2.42)
=1

as the actions of the covariant derivative and of the Lie derivative coincide on functions.

Remark 4. This results is implicitly contained in the geometrical microcanonical formalism de-
veloped by Rugh in [Rug97, Rug98, Rug01] and Franzosi [Frall]. Nevertheless we present this
proof as we are interested to stress the connection among the thermodynamics of a (configura-
tional) microcanonical system and the geometrical properties related with the Riemannian

structure of configuration space.
As a corollary of the theorem above we obtain the following results for Euclidean spaces:

Corollary 2.2.4 (Federer,Laurence ([Fed14][Lau89])). Let O C R? be a bounded open set. Let
Y € C"HO) be constant on each connected component of the boundary 0O and f € C™(O).
Define Oy ={z € O |t <¢(z) < t'} and

_ oP~1 )
Flv) = /{ L (2.43)

where doP~! represents the Lebesque measure of dimension p—1. If C > 0 exists such that for
any x € Oy, | gradp,y(x)|re > C, then for any k such that 0 < k < n, for any v €]t,t'[, one

has k
d*F
— () :/ Ajgof do?™h (249
dok {yp=v} v
with dgyt 1
. gradpy
| e 9.45
v f = dive <ugradRpw||Rp > erads, vl .

Remark 5. The operator Ay 4 acting on the set of C™ functions defined over the manifold By

is not a derivation. Although Ay 4 is R-linear (as it is the sum of R-linear operators), it does
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not verify the Leibniz rule, i.e.:

Ayg(fh) = frfaxmig + faLey (f1) + filey (fo)XxTrg = [i(faxTig + Lg, f2)+
+ fo(fixTig + Lg, 1) — (fif2)xmig =
= 114y g(f2) + foAyo(f1) = (frf2)xT1g #
# [1Ayg(f2) + f2Ay4(f1) -

(2.46)

for two arbitrary C™ functions f1, fo over By

Theorem 2.2.3 allows also to calculate higher order derivatives of the microcanonical parti-

tion function 2, (v) at any order.

Corollary 2.2.5 (Higher order derivatives of the microcanonical partition function). Let O be
an open bounded set of a N-dimensional Riemannian manifold Ay, g and let V be a Levi-Civita

connection. Let V iy € CPTH(O) be a generalized potential constant on each connected component

of the boundary OO and f € CP(O). Define 1\4}%;7@1[ ={z €Oy < Vn(z) <01} and
()= [ daul! (2.47)
>N

where dp =1 is the microcanonical (N — 1)-area-form of eq.(2.32) induced over / . If there

=y

exists C > 0 such that for any ]\4[]]@\;,171[7 lgrad,V (z)lly > C, and if the level sets >N of Vn

are without boundary, then for any k such that 0 < k < p, for any v €|vy,v1[, one has

dkQ
— (1) = g AR (1) dpd (2.48)
with
Au(f) = fdivy (Ex) + Xn Loy (F) = Fx + L (f) (2.49)

Remark 6 (Derivatives of Qx(v) and properties of diffecomorphisms of level sets). Equations
(2.48) and (2.49) relate the thermodynamic behaviour of the system considered (higher deriva-
tives of microcanonical partition function) with the diffeomorphic properties of equipotential level
sets through the scalar quantities related to the vector field & : its divergence ( and its module
Xn- This would lead to the conclusion that some suitable analytical constraint on the behaviour
of (i and Xy can determine the absence of phase transitions in certain given family of level

sets.

Resorting to the above given formulas, we can readily express the derivatives of the micro-
canonical entropy as integrals of quantities over hypersurfaces only related to vector field € 5.
This is an important point because it constitutes the key point to understand the origin of the
difficulty of the present formulation of the Necessity Theorem.

Equations(2.48) and egs.(2.49) allow to derive the links between microcanonical thermodynam-

ics on one side and the geometrical properties of the vector field € 5 on the other side. The core
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of the proof of Necessity Theorem (Theorem 1.4.2) consists in constructing uniform bounds in
N for the derivatives of configurational microcanonical entropy Sy () up to the fourth order:
so we begin by calculating the derivatives of configurational microcanonical partition function

Qn(v) up to the fourth order with respect to v

dQN N\ — N—1

d2Q [ -
G @ = [ [+ g, @) !

*ay [+3 Va v (i) = N-1

B 0= Loy [T +90e, (C) + £ G and

d'Qn (-4 | 2 = = (i) 7 = \2 | AGii) = N-1

@ = [ [T+ 6L, € + 4T T +3 (g, @)+ £07 C) | ans

(2.50)
We recall that the configurational microcanonical entropy density is given by

S (D) = - 7) = L~ N-1
Sn (@) = N InQy(v) = N ln/EZN dp (2.51)

so its derivatives are given by:

dSy . 1 9y(®)
@ = Naxm)

Sy 1% () ’
dv? N | Qn(D) Qn (D)

Q@) () %(Z; Ly (QM

/

2

3|

TN ) - L
@ TN | an@) COn®) Ol

>3

<

WSy 1 [ePm)  ol@ey® | Be%m . (%) (%o
@ TN am T ae P am C\ave) " ove

(2.52)

To express also the derivatives of the microcanonical entropy density in terms of the scalar
functions ¥ and (, and of their Lie derivatives with respect to the vector field &y, it is
convenient to introduce the following notation for the average of a generic measurable function

f: MY — R over the hypersurface EEVN endowed with microcanonical measure duév -1

/VN fduév_l /VN fd'uév_l
(Fro= "t S M- : (2.53)

e N-1 Qn(v)
/zgw Wi
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Consequently, we introduce the quantities

Varg ., (f) = Cuml = <f2> — f>%#

Corrvg)(f; g) = <£g>vu - <f>§,p <g>7ﬂu (254)
Cumly’ (f) = (/*)5., — 3 ( <f > +2(f)3,

Cum® (1) = (5950~ 4 () Fho 12 ()5 12— 3, 6L,

which represent the variance, the correlation function, and the 3rd and 4th order cumulants on
the hypersurface Z@VN with measure du@N —1 respectively.

With this notation and substituting eqs.(2.50) in eqs.(2.52) it is possible to show that the
derivatives of the microcanonical entropy at a non critical value v, and at fixed NV, can be tightly

related to the vector field € 5 which generates the diffeomorphisms among the equipotential level

sets:
ds
dzjv N <<N Jou
d2s 1 - _
dEQN @ = [Varv,uw # (e, @), |
d*s 1 = i) (=
(0 = % {Cuml(?’) (C) +8Corrs,. (Ci Lg, () + (L8 (Cw) ). H]
d*Sy

() = [Cum1(4) (C) + 6Corrs (Civi Lg (Cn) ) + BVarg, (Lg, (Cn)) +
+4Corrs,. (Cni £ (C)) = 12 (), Corra (Cvi L, (Cn)) + (287 () ] =

N!Cuml 4) (gN)+4corrW(¢N, ”>(§N))+3VMW(L£ (cN))+

6 (o) (Corro (ACws £, (€)) ) + (£87 ().

v,
(2.55)
where for sake of simplicity we have introduced the quantity
Z2
Aly = =N _9Cy . (2.56)
<§N>§,,u

As mentioned above, the first important consequence that can be argued by egs.(2.55) is
that, in principle, it is possible to directly control the behaviour of microcanonical entropy and
its derivatives at any finite N and in the thermodynamic limit. This is obtained by imposing
some conditions on the behaviour of the components of the vector & .

This result opens the possibility to refine the Pettini-Franzosi Theorem. In fact, the requirement
of diffeomorphicity among the equipotential level sets at any finite N - in a given interval of v

values - is not sufficient to avoid the occurrence of a phase transition in the thermodynamic limit
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in the same interval of specific potential energy values. Thanks to eqs.(2.55) it is possible to
control asymptotically in N “how” and/or “how much” the level sets have to be diffeomorphic
among themselves in order to prevent the occurrence of phase transitions. This is shown in

what follows.

2.3 Results of simulation on ¢*-model on 2D-lattice

In this Section we present the results of Monte Carlo numerical simulations on equipotential
level set of the ¢*-model on a 2d-lattice with periodic boundary conditions (PBC) to calculate
the geometrical averages appearing in egs.(2.55). This study has been performed in order to
identify which terms composing the derivatives of the specific configurational microcanonical
entropy with respect to the specific potential energy is not uniformly bounded in N, as is ex-
pected according to the proof of Theorem 1.4.2.

The simulations have been performed using the same codes used to obtain the results reported
in subsection 2.1.4, for systems with a total number of degrees of freedom N = 10 x 10 = 100,
N =20 x 20 =400, N =30 x 30 =900, N = 40 x 40 = 1600 and N = 50 x 50 = 2500. The
simulations were performed with vanishing magnetization as initial condition, for 2 x 107 steps,

a number sufficient to guarantee the convergence of the reported quantities.

Numerical results on 9;Sy and related quantities

(a) (b)
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Figure 2.5: First order derivative of configurational microcanonical entropy with respect to
specific energy v (a) and caloric curve (b) for lattices with different NV; in particular, N = 100
(red dots), N = 400 (blue squares), N = 900 (black diamonds), N = 1600 (green triangles),
N = 2500 (purple reversed triangles).

In what follows the results are reported for the first derivative of the specific microcanonical

configuration entropy with respect to v as a function of v (Figure 2.5). An inflection point is



40

found around the transition value v ~ 2.2; this result is compatible with what is expected from
a statistical analysis in the microcanonical ensemble.
In analogy with microcanonical statistical mechanics, the configurationl microcanonical temper-

ature T' is defined as the inverse of the first derivative of specific configurational microcanonical

T(v) = (a;]N > B (2.57)

entropy with respect to v:

and the plot of this function on the v-T" plane is the configurational caloric curve. The results
in this case (see Figure 2.5) show a qualitative agreement with the caloric curve computed in

the microcanonical ensemble (cfr.[CCP98]).

Numerical results on 925y and related quantities
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Figure 2.6: Variance of (5 (a) and average of Lie derivative of ( with respect to the vector
field &€, generating the diffeomorphism among equipotential level sets vs. the specific energy
v for lattices with different N. In particular, N = 100 (red dots), N = 400 (blue squares),
N =900 (black diamonds), N = 1600 (green triangles), N = 2500 (purple reversed triangles).

In this subsection the behaviour of the second derivative of the specific microcanonical con-
figurational entropy and related quantities are studied. In Figure 2.6 we report the variance of
(y and its Lie derivative along €y averaged on ET,VN endowed with the configurational micro-
canonical measure. The sum of these two contributions gives rise to the second derivative of
the configurational microcanonical entropy with respect to v. These two terms have opposite
signs: the variance of (  is positive by definition, while the average of its Lie derivative is nega-
tive. Hence, the behaviour of the second order derivative of the configurational microcanonical
entropy is given by the competition between these two terms. In particular, we stress that
a phase transition is signaled by a non strictly concave microcanonical entropy according to
microcanonical statistical analysis: in the framework here proposed, a phase transition would

be induced when the variance of (y its greater or equal to the average of its derivatives along
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Figure 2.7: Second order derivative of configurational microcanonical specific entropy with
respect to specific energy (a) and the configurationl specific heat vs. the specific energy o for
lattices with different N. In particular, N = 100 (red dots), N = 400 (blue squares), N = 900
(black diamonds), N = 1600 (green triangles), N = 2500 (purple reversed triangles).

the flow generating the diffeomorphisms. This fact could suggest a stronger ”inhomogeneity”
of the equipotential level sets near the critical value of the specific potential energy.

The results reported in Figure 2.6 (b) evidenciate that a relative maximum of the variance (
on the equipotential level sets is present at the transition point. This affects the behaviour of
the second derivative of the configurational microcanonical entropy (see Figure 2.7 (a)) with
respect to ¥: it shows a maximum around the transition point v ~ 2.2 that does not seem
to vanish with IV as is expected for a second order phase transition. This counter intuitive
phenomenology seems to be compatible with finite-size effects already reported in the literature
for the ¢?-model on a 2d lattice studied in the microcanonical ensemble. In fact, in [BPH05]
it is reported that the negative value of the minimum of the microcanonical entropy has a non
monotonic N-dependence at the transition point: at increasing NV it initially decreases and then
it increases tending towards zero.

As for the temperature, it is possible to define a configurational microcanonical specific heat in

analogy with the common definition in the microcanonical ensemble:

— 2
oS
dv (aiN>
d7__ 2?28y
Ov?

Csn(v) = (2.58)

As can be observed in Figure 2.7(b), this observable seems to show a slightly divergent behaviour
only for very high N. This can be explained by the fact that the divergence of specific heat for
this model is logarithmic: further (computationally heavy) investigations would be required to

better evidence the transitional features.
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Numerical results on 925y and related quantities

f(v) df/dv

Varns . (Cn) Cumulg\?}%’u (ZN) + 2Corr N, <ZN; EENZN)
(xS | (6606w Cormmas (Coi £, C)

Table 2.1: Components of third derivative of specific configurational microcanonical entropy
with respect to v.
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Figure 2.8: Average over the regular equipotential level sets of the second order Lie derivative of
( in direction € 5 (a) and correlation with respect to configurational microcanoinical measure p
between ( and its derivative in direction € 5 vs. the specific energy o for lattices with different
N. In particular, N = 100 (red dots), N = 400 (blue squares), N = 900 (black diamonds),
N = 1600 (green triangles), N = 2500 (purple reversed triangles).

In this Subsection we present the results of numerical simulations for the third derivative
of the configurational microcanonical entropy with respect to v, and for its related geometrical
quantities. In the classical formulation of Franzosi-Pettini Theorems the loss of analyticity of
the second order derivative of the Helmholtz free energy is expected to be associated with a loss
of analyticity of the third order derivative of specific configurational microcanonical entropy
with respect to v. Hence the study of the single terms entering it is important because it allows
to identify which terms can be responsible for its asymptotic loss of analyticity. In Table 2.1
are reported the derivatives of each term entering the second order derivative of the specific
configurational microcanonical entropy according to egs.(2.55).

The results show that the third order derivative of the specific configurational microcanonical
entropy tends toward a step-like pattern - which gets steeper at increasing N - in coincidence
of the critical value of the specific potential energy v ~ 2.2 (see Figure 2.9(b)).

This means that a priori there would be at least one term entering the third order derivative of
specific configurational microcanonical energy whose derivative diverges at the critical specific

energy. The results reported in Figure 2.8 show that the second order Lie derivative of {  with
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Figure 2.9: Third cumulant of ¢ with respect to configurational microcanonical measure (a)
and specific microcanonical configurational entropy vs. the specific energy v for lattices with
different N. In particular, N = 100 (red dots), N = 400 (blue squares), N = 900 (black
diamonds), N = 1600 (green triangles), N = 2500 (purple reversed triangles).

df/do
Cuml})) € +3(Cx),, (Corrs (ACx: £, (Cn))
Corryg (ZN; £§32N> + Varng,u (EENZN) +
+ <ZN>N1—)’H Corryg 4 (AZNQ ﬁgNZN
Corrng,u (ZN; ﬁ?ZN) + <‘C%)ZN>

f(©)

Cumlg\?}%’ uz N

Corrnp,u (ZN? EENZN)

(£e, o)
Table 2.2: Components of third order derivative of specific configurational microcanonical en-
tropy with respect to v.

respect to € 5, and the correlation between ¢, and its first order Lie derivative along & 5, are not
responsible for any divergence because at the critical potential energy they have an inflection
point and a relative minimum, respectively.

The only term whose derivative seems to diverge at the critical potential energy value is the
third order cumulant of (, (properly rescaled with INV), that exhibits a step like behaviour
analogous to the one of the third order derivative of the entropy. This means that at least one
term appearing in the derivative with respect to @ of the third order cumulant of ¢, diverges

at increasing N.

Numerical results on 9.5y and related quantities

In this Subsection the results concerning the fourth order derivative of configurational micro-
canonical entropy with respect to specific potential energy v and the related terms are reported.
As discussed in the previous Subsection, the step-like profile of the third order derivative of

the entropy implies a (negative) divergence with N of the fourth order derivative of the specific
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Figure 2.10: Components of the derivative of the third order cumulants of ¢, with respect :
fourth order cumulant of ¢ (a) and correlation terms (b) vs. the specific energy v for lattices
with different N. In particular, N = 100 (red dots), N = 400 (blue squares), N = 900 (black
diamonds), N = 1600 (green triangles), N = 2500 (purple reversed triangles).

configurational microcanonical entropy: this is generated by some divergence in the derivative
of third order cumulant of ¢, with respect to ©. In Table 2.2 it is remarked that only two terms
contribute to the derivative of the third cumulant of ¢y the fourth order cumulant of ¢ and
a very complex correlation term involving ¢ and its Lie derivatives with respect to &,. The
results from numerical simulations on these two terms are reported in Figure 2.10.

The correlation term (see Figure 2.10 (b)) does not present any divergent behaviour with N
as the sequence of functions converges to a bounded function. It follows that the divergence
of the fourth order derivative of the configurational microcanonical entropy can be only due to
the fourth cumulant of ¢, rescaled by N1

This idea is supported by the numerical results on the other terms that enter in the fourth
order derivative of the entropy (see Figure 2.12 and Figure 2.12 (b)) converges uniformly in NV
to bounded functions in an interval of v containing the critical value. The results of numerical
calculation of the fourth order cumulant of ¢, are reported in Figure 2.10 (a): a behaviour
coherent with a negative increasing peak in correspondence of the critical value of potential
energy is observed for NV < 1600. The results obtained for N = 2500 are not reliable because
the numerical computation of a fourth cumulant requires a huge computational effort as N
increases because of the slowing down of convergence rate with respect to what happens for
the averages, correlations and variances. Great quantitative and qualitative differences in the
profile of this cumulant are found for different Monte Carlo simulations at a fixed large N value.
Moreover, as the fourth cumulant dominates the behaviour of the fourth order derivative of the
entropy with respect to v its asymptotic negative divergence cannot be observed for large values
of N.

Nevertheless, the information that can be retrieved from the profile of the third order derivative

of the microcanonical entropy allows to inductively conclude that the term N *1Cumu1§é27 #ZN
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Figure 2.11: Correlation of the second order Lie derivative of {y and { (a) and variance of Lie
derivative of ¢, with respect to €y vs. the specific energy v for lattices with different N. In
particular, N = 100 (red dots), N = 400 (blue squares), N = 900 (black diamonds), N = 1600
(green triangles), N = 2500 (purple reversed triangles).

is not uniformly bounded in N, and this contradicts an intermediated result in proof® of Theo-

rem 1.4.2 where the same term is predicted to vanish for N — +oo.

2.3.1 From the numerical simulation to the revision of the Franzosi-

Pettini necessity Theorem: outlooks and perspectives

The results presented above guide the theoretical search for conditions that have to be added
to the hypotheses of the Necessity Theorem 1.4.2 both to exclude the ¢*-model on 2d lattice
from the domain of validity of the same theorem and, consequently, to provide its generalization
and a refinement of the whole Topological Theory of phase transitions.

The main way to provide such a refinement should seem to fulfil two main requirements:

5 In the original formulation of the theorem the bounds where derived for the average, variance and
cumulants of A(xn)/xn which corresponds, in our notation, to the divergence of &y

A(xnN) grad Vy . grad,Vy -
XN

= =d div,——% " = Ndiv 77N . 2.59
=N = AVaEN = AN o VP “grad,VnE N (259

For this terms, under the hypothesis of the theorem, the following uniform bounds are derived

. 1 -1 /7
NLHEOO <CN>N17 - NhIEOON <CN>N1‘; MR
Nl—lg-loo NVarnsg MCN = EH_IOON Vava ugN eR*
lim  N2Cumul?) (y= lim N~ 1Cumul), (=0 (2.60)
N—+o0 No,p N—+o0 Nous>N
. 3 . -1 4) = _
NLHEOON CumulNU “CN = lirilmN CumulNi’MCN =0.

This is equivalent to state that (N has the same asymptotic limit of the distribution of the sum of N
independent, identically distributed random variables.
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Figure 2.12: Fourth order derivative of specific configurational microcanonical entropy (a) and
average of third order Lie derivative of ( with respect to £ (b) vs. the specific energy v for
lattices with different N. In particular, N = 100 (red dots), N = 400 (blue squares), N = 900
(black diamonds), N = 1600 (green triangles), N = 2500 (purple reversed triangles).

e it has to allow the derivation of uniform bounds in N for the (rescaled) fourth cumulants
of N _TN, namely the divergence of the vector field £, whose properties are widely

discussed in section 2.2;

e such refinement should derive from a formalization of the concept of ”"asymptotic diffeo-

morphicity” heuristically introduced in section 2.1. introduced

A possible way to refine the Necessity Theorem would consist in adding an hypothesis of
uniform boundedness in N of a suitable norm of class k for the vector field and its derivatives,

i.e.

k
IEnll, , vx =N"sup vy [Enllg+> NVEN vy <B<+oc VYNeN (261)

7 1m0, 01] [%0,71] =1 [v0,71]

where I ( (. (Vx.€x) ) |l
Vl b = su : — - :
| EN‘MVN p ||X1||ga e ||XlH9

[90,71] pemV N

(2.62)

and (ag,...,qq) € Q are the parameters that have to be fixed in order to construct uniform
bounds in N for N _1Cumul(4)ZN. Through the eq.(2.61) the concept of asymptotic diffeomor-
phicity is introduced as uniform boundedness of the covariant derivative at any order of the

vector field € .
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2.4 Geometrization of thermodynamics through regular equipo-
tential level sets
Eqgs.(2.55) open to the possibility of directly associating the microcanonical entropy and its

derivatives to geometrical features of regular equipotential level sets. In fact, using the notation

introduced in this Section

(v (p) = dives (Ey)(p) = divegy (Xyvn) (p) = Xn (P)h,gon (P) + (Lo yXn) () (2.63)

where p € ET,VN c RY and hi,g,y is the sum of principal curvatures of E@VN immersed in RY
endowed with the metric induced by the ambient space (see Appendix A).
Substituting the above expression in the first of Egs.(2.50)

dQpn ,_ _
V@) =N | [xhig + Loxn)| duls! =
dU SN R
=N [ [ xv(hggy + (Loy (= Tog x))| exp [~ log x] o5 !
EN?
where the last expression has been derived to compare this result with well known results in

the theory of manifolds with density.

2.4.1 Regular equipotential surfaces as manifolds with density

The derivatives of configurational microcanonical partition function with respect to v are
reported in eq.(2.50) only as functions of integral quantities of ¢, and its Lie derivatives with
respect to the vector field €,. This establishes a strong relation between configurational mi-
crocanonical thermodynamics and diffeomorphic properties of the level sets; this was motivated
by the search for a proper framework to define the concept of ”asymptotic change of topology”.
Another possible approach to this problem would consist to interpret the integral quantities that
enter egs.(2.50) in terms of ”geometrical observables” (especially curvatures) of the equipoten-
tial level sets and of the (configuration) ambient space. Eq.(2.63) suggests a link between (5
and the mean curvature of equipotential level sets. Nevertheless, at this level it is not clear
how to give a pure geometrical interpretation of the integrals in egs. (2.50). To attain this
result, we consider quite recent results on the differential geometry of manifolds with density”
[Mor05][CHH T 06]. In this framework, usual geometric quantities (as curvatures) of a Rieman-
nian manifold are redefined in order to encode in the geometry also the information carried by
an arbitrary measure over a manifold.

Let M be a Riemannian manifold endowed with a metric g, and consider an immersed codi-
mension one submanifold ¥ C M; the Riemannian volume forms dVol, and doy , are induced
on the manifold M and ¥ respectively.

To construct a manifold with density, a density function ¥ : M —s R™ is defined on M so that

"This objects are widely studied in the context of isoperimetric problems and in optimal transportation
theory.
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the volume form and the area form on ¥ are rescaled in order to give respectively

dVoly = ¥dVol, = exp[¢]dVol,

(2.65)
doyy = Udoy g = UdVoly| = exp[y]dVol,| .

where ¢ = In .

The mean curvature hy 4 = 714/(N — 1) of the hypersurface ¥ is redefined with the intro-
duction of the density such that the sum of principal curvatures 71 4 v is directly proportional
to the variation of area element doyx, ¢ at the first order in normal direction to the level set

hypersurfaces, i.e.
Lydos,y = —T1gwdos gy = —(N — 1>h(1,g7\1/)d0'27\;[; (2.66)

which is immediately verified.
For a manifold with density (M, g, ¥) a natural extension of the sum of principal curvatures
71,4 is thus given by:

T(1,9,9) = Tig + Lot (2.67)

where v is the normal vector field to the hypersurface. Consistently the first and second

variation formula for the area of the hypersurface S are

Ag = / doy (2.68)
S

under the action of a diffeomorphism parametrized by ¢ and generated by a vector field W = wv,
such that d¢(W) = 1, we have [Bay03]

% = /S —wh( g vydoy = /S —w (h1,g + L) exp[y]doy (2.69)

and
djl':;s = /S [ngadgwﬂg —w? (hig + Ly (Lo1)) — 2,9 — Ricy(vn, I/N))] exp[y]dog,  (2.70)
where 75, = |[TI;||* is the squared norm of the shape operator, i.e. it is the the sum of

the squares of principal curvatures, and Ric, is the Ricci curvature of the ambient space with
metric g.
We easily see that with the identification w = Yy, ¥ = —log(X ) and, consequently, ¥ = X;,l)

we exactly obtain the expression in eqs.(2.64).

2.4.2 Rescaled metric in configuration space

In subsection 2.4.1 we have discussed how it is possible to interpret equipotential level sets
equipped with the microcanonical measure as manifolds with density, ” geometrizing” some fea-
tures strictly related with measure properties.

Nevertheless, in an ideal program of ” geometrization” of classical microcanonical thermodynam-
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ics”, all the terms in the integrands of eqs.(2.50) should be retrieved only from the geometrical

and topological properties of the equipotential level sets and of the ambient space. In particular,
according to what has been reported in the previous Subsection, the function X (well defined
in absence of critical points of potential energy) and its derivatives in the normal direction
vy carry two distinct information that have to be ”geometrized”: one concerns the density
measure ¥ = eX¥_ while the other concerns the ”velocity” of the vector field that ”"moves” the
level set w = X . A possible way consists in the introduction of a rescaled metric g where the
microcanonical measure duE?N and the vector field € ;- are "natural” in the sense that they are
naturally included in the differential geometrical structure of the space.

In the following section we introduce the function ¢y : By € Xy — R{f such that:

on = logXn (2.71)

to simplify the notation.
Although not strictly necessary, for further computations it is convenient to introduce a coor-

L ...,uN_l} over Mg, 5,) C By such that one coordinate parametrizes the

dinate system {u’,u
specific potential energy

du’ =dVy = du’(Ey)=1 (2.72)

{80,01,...,0(n_1)} is the coordinate frame and {dug,dus,...duy_y)} its dual. The greek
indices® run in the interval [0; N — 1] while the latin indices refer to the coordinate system over
the level set hypersurfaces and run in the interval [1; N — 1].

With this coordinate choice the g metric of the ambient space reads

N-1N-1 N-1N-1 ' ‘
g= Z Z Japdu® & du? = 2V du® @ du® + Z Z gijdu’ @ du? (2.73)
a=0 g=0 i=1 j=1

and the normal vector field 7y defining the foliation of Mg 51 is

0y = 'EN — VN = €_¢Nao (2.74)

With such a choice of coordinates, the Riemannian volume form of the ambient space and the

area form induced over a fixed EEVN € M[g,,5,) are respectively
dVol, = |det(ga,g)|du’ A ...du ™t = e?¥ |det(g;;)| du® A Adub A ....du T (2.75)

and
dazﬁng = |det(gij)|du’ A ... Adu™ Tt (2.76)

Christoffel symbols ng of the Levi-Civita connection V associated with g are supposed to be
given.
As reported in section 2.2, all the informations concerning the statistical mechanics of the

configurational microcananical ensemble are given by functional depending on ¢y = divy (EN)

8Einstein’s convention is assumed for repeated indices.



20

and its Lie derivatives respect to the same vector field £€y. Eq.(2.63) clearly shows that the
mean curvature of ZT)VN and its derivatives with respect to vy are the geometrical quantities
of the level sets directly related with the derivatives of configurational microcanonical entropy.
For these reasons we provide an explicit expression of the mean curvature and its first order
Lie derivatives respect to the normal vector field as a function of Christoffel of Levi-Civita
connection of metric g. With the choice of coordinates introduced at the beginning of this

section, the sum of principle curvatures 7 4 of a regular level sets Z}j/ N is given by:

N-—1 N-—1
Tg= D, Aig = Z Mg = > 9(Vown,95)g" =
17]_1 7] 1 ,]:1
N1 N1 (2.77)
= Zg(val( %N@O) a)g”—e PN ZP gkjgj—e SONI‘
i,l=1 i,l=1

where II is the second fundamental form on the equipotential level sets (see Appendix A for a
brief review on differential geometry.).
Moreover, as a consequence of the Riccati’s Equation applied to Weingarten operator under the

action of the vector field vy, we obtain:

Ly (T1,9) = —T2,9 — Ric(vn,vn) (2.78)

where 75, = Z )\ is the sum of the squares of principal curvatures and Ric is the Ricci

tensor of the amblent space. Using the coordinate system introduced above we obtain using

definitions:
N-1
Ric(90,80) = Y g(R(Da,00)00,0a) = 0aTo — ol + T 00 — TosThg =
= (2.79)
= 0Ty — 8ol + gl — T0: T — éjrgo
Ric(vy,vn) = Ric(e™#N 0y, e PNdy) = e 2PN Ry =
. S . o (2.80)
= N <8iF60 — 8ol + Tiploo — T0:Tho — f)jrgo)
while for the sum of the squares of principle curvatures is given by
7’279 = Tl”g (WQ) = H' 'Hklgjkgil =g (Vai(e_SDNé?o), 6]) g (e_LpNao) 81) Jk Zl
Jk il _ —2go k i (281)
= e Ngmignli6 ko9’ g Mol 'ko

As anticipated, we endow the manifold M[vo 1] in configuration space with a new metric g

satisfying the following properties:

1. the Riemannian area form doj induced over the equipotential level sets Eév € M[v]_\; 1]
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from ambient space would exactly correspond with the microcanonical density form

dud ™t =dé v, = |det(gij)|du’ Adut Ao AduN T (2.82)

2. the vector field £y € X(M[%\Z,m) coincides with the normal vector to the equipotential

hypersurfaces
iEn.En) =1 = DN=¢&Ey. (2.83)

in this way the derivation with respect to the parameter v (along the flow generated by

&) coincides with the Lie derivative along the vector field & .

We notice that the first condition concerns the properties of the metric restricted to the tangent
space of hypersurfaces ET,VN while the second condition concerns a rescaling in normal direction.
This suggests that a possible choice for g can be done by performing two different conformal
rescalings for the components of the metric g, i.e. the tangent and normal ones to the equipo-
tential level sets, as follows:

Jwn,vn) = e *Ng(vy,vn) )

G(X,)Y)=eBg(X,Y) with E= ¥ 1 (2.84)

(X, vn)=9(X,vN)=0

where vy is the normal vector field to the equipotential level sets Z@VN with respect to the metric
g,and XY € TpE}—J/N are vector fields belonging to the tangent bundle of a leaf EVN e MV~

[D0,01]"

Remark 7 (Restrictions to the definition of the rescaled metric §). It has to be stressed that the
suggested rescaling change of metric on M[Zf:’ﬁl] is possible only in the case of absence of critical
points of the specific potential energy V n, i.e. when the function Xy = ||g1'adgVN||g_1 > 0 is
non singular. In this case the rescaled metric g defined in(2.84) is well defined and it is positive

definite so that (M[EN“ g) is a Riemannian manifold. As the specific potential energy is in

the closure of the Morse function set in M[_ 5] for a large class of potentials. This implies
that the proposed rescaling of the metric g for the geometrization of microcanon-
ical thermodynamics is possible only under the hypothesis of diffeomorphicity of

equipotential level sets EVN e MY ] at any finite N

[vv

Using the local coordinate system {ua}a:()?__,( ~N-1) introduced at the beginning of this sec-

tion, the rescaled metric g reads

N-— N—-1N-1
Z oéﬁduaduﬁ = e 2N goodu’ @ du® + Z Z eQE(bNgijdui @ du! =

i=1 j=1

||Fﬂ2

No1IN_1 (2.85)

= Goo du’ ® du’ + Z Z Gij du’ @ du’ .
i=1 j=1
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With this rescaling of the metric it is quite simple to verify both condition (item 1)

N-1 1/2
Ao vy = |det(gi;)|dut A ... A dul T = (H 625¢N> |det(gi;)|dut Ao A du T =
g

v i (286)
= eV |det(gij)|dut A ... AduN T = YNdO—E?N,g = d,uE?N
and condition (item 2)
9(€n.En) =du’(Ey) @ du’(€y) =1 = Dy =E&y(= o) (2.87)

in last equation we have used (2.26).

Remark 8 (Preservation of ambient space volume). The new metric introduced in egs.(2.84)

preserves the Riemannian volume form dVoly, in fact

N-1 1/2
dVoly = [g(a, B)|du’ A dul A ... AduN "1 = (H 625@N> |det(gi;)|dul A ... A dulN Tt =

= e?Ndet(gij)|du’ A ... Adu™ T = X y|det(gi;)|dul A ... A duMN T = dVol,
(2.88)

From the point of view of thermodynamic properties of the system, this means that the Gibbs’ mi-
crocanonical volume Qaiphs, v and the Gibbs” microcanonical entropy ?GibbS,N =Nl QGibbs, N

are invariant for the transformation of the metric in eq.(2.84).

The introduction of the rescaled metric g allows to express the derivatives of configurational
microcanonical entropy in terms of geometric properties of z}{ N,
The microcanonical partition function Qy(v) becomes simply the Riemannian area of the hy-

Vi
persurfaces ¥

QN (D) = /E . (2.89)

Moreover, as required, the vector field that generates the one-parameter group of diffeomorfisms
Fl; among equipotential level sets coincides with the normal vector field & y.
According to eq.(2.90), the Lie derivative along the vector field that generate the diffeomorphism
v of the area form reads in rescaled metric g

Loy(do v, )= Trg(IIg)dézﬁvN’g =1 5do

VN -
=N,

(2.90)
g

sYNG'
our rescaling is consistent with our purposes of ”geometrizating” the configurational micro-
canonical thermodynamics if 71 5 = dingN.

In the next Subsection a characterization of some geometrical properties of the Riemannian
manifolds (M%f\{}l, g) and of the equipotential level sets Z}—f N C M%J\%1 is given in order to es-
tablish a link between the geometry with rescaled metric g, the geometry induced by the metric

g, and configurational microcanonical thermodynamics.
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2.4.3 Geometry of Riemannian Manifolds (Mggm],f]) and (ZZN,g‘EZN)

By the use of local coordinate system in {Ua}a:07m7( N-1) We can compute the geometrical
properties of the manifold (M, [Z]’\”@l] , §) of diffeomorphic level sets EEVN endowed with the rescaled
metric § defined in (2.84).

This leads to the fact that the mean curvature of the equipotential level sets in configura-
tion space with the rescaled metric § coincides with the divergence of £ 5 in configuration space
with the non rescaled metric g. Moreover, the curvature of the ambient manifold is related to
the possibility to use some important results in differential topology (i.e. as the Chern-Lashof
Theorem) which relate the global curvature integral of submanifolds immersed in space with
constant scalar curvature and their topological invariants.

The geometric quantities calculated in the configuration space with the rescaled metric (M, VN )
[v0,01]

are tilded and expressed in terms of the geometrical quantities calculated in (M?N, ,g) and
[D0,01]

the rescaling function ¢y .

Christoffel symbols (Levi-Civita connection associated to §)

The starting point to characterize the geometry of the configuration space, and of the regular
equipotential level sets foliating it, consists in computing the Christoffel symbols associated
withthe Levi-Civita connection V of the metric .

Using the definition of Christoffel symbols, we obtain:

1 _ iy Looog o 1
I = §90a (200G0a — Gagoo) = 590000900 = 590030900 + 9% goodopn = T — 500N = 0
(2.91)

o 1_gn . _ " o00g (5 L =
L3 = 58" (9ifiag + 03Gai — 0adij) = —55"00 (35) = —5¢**¥ g™ =] = (2.92)
_ 62(E+1)¢N (I‘?j o Egijao¢N)
N 1. ) . ~ 1. N 1 -
o = 590& (9900 + Bogaj — Bogoj) = 59006j (doo) = 5€2¢N9006j <e 2¢N900> T )

=TI — 60068 =0

-1 ) ) 1 e - o . )
00 = 59”‘ (G0Ga0 + G0gao — OaJoo) = ¢ 220N g1 9); (6 2¢Ngoo) = ¢ 2EH0ON [Tl + good dn] =
=0
(2.94)
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=~ 1 ~ - ~ ~ 1 o= = 1 p—
Iy = igm (0iJa0 + O0Gia — 0aGi0) = € 220N gk 9y (62“¢N9u> = §gkl5’ogu + ZgM grdodn =
=TI + 267 0o

(2.95)

- 1. ~ B 1 omy -
ik = 59" (9j9ak + Okdaj — Dagjk) = 5€ =N gt {83‘(62“%911) + O (e¥50N gij) — (¥ N gyy) | =
= Fék +E (606N + 5§3k¢N — 910" dN)
(2.96)
Principal curvatures, Ricci curvatures, Scalar curvature

The expression of the sum of principal curvatures 75 of equipotential level sets Z%V in the

Riemannian manifolds ( ;g v+ J) is given according to the definition by

Fo5) = ;37 = §(Va, N, 8;)§7 = §(Va,00,8;)e =N g7 = T;;e™=N g ;*=0N g1 = Tt gy g
7

5 i 0; _ _ _ R
= (FI& + N — a0¢N) = Lo + N — 150 log (Xn) = XnT(1,9) + Loy (X)) = divgéy
(2.97)

This gives the expected results that the sum of curvatures of equipotential level sets embedded
i configuration space with the rescaled metric g coincides with the divergence of the vector field
& in the non rescaled configuration space.
Lie derivatives of sums of principal curvatures are involved in the calculation of the higher order
derivatives of the configurational microcanonical partition function and entropy. The formula
for the first order Lie derivative of the sum of principal curvatures along the normal field is
given by

Loy (Frg) = OoF1g = —Fag — Ric(Dn, Un) = —2,5 — Ricoo (2.98)
(its derivation is reported in Appendix A) where and Ric is the Ricci tensor of ambient space
with the rescaled metric g.

The sums of square of principal curvatures (the called ”second order mean curvature”) is given
by:

Fog = Tl *g" = (va 80,8) <V3k80,61> gl =Tk =

(FIO + (N - 1)60¢N> <F§co + (Nz_l)ao@v) =eMNpy, + 22\77’5’)6 ON + M .
(2.99)

The relevant curvature properties of the configuration space for our problem are contained in
the Ricci tensor; its contraction with the metric tensor gives the scalar Riemannian curvature of

the total space that appears in many theorems and results concerning total curvature integral
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over immersed submanifolds.

From eqs.(2.98) and (2.97) it is possible to derive the expression of the component Ricgp in
space with rescaled metric as a function of the same component for the Ricci tensor in space
with metric g:

o =5 ~ ~ ~ . N+1

Ricgp = Ric(vn,vn) = =00 (T1,9) — T2,g = Ricoo — N1 I'ly00pN — EodNOopn — gdn

(2.100)

—_—

The Ricci tensor (Ricz)ij restricted over the potential level sets which transforms under con-

formal changes as follows (see [Bes07])

N — 3 (0ipN) (O;0N)

(Ricy),; = 8kffj — ;T + fllilféj - f?lﬁci = (Ricg);; — N_1 Vo, 0jén — N -1 +

(N —1)As¢n — (N —2)|grad, on |2,

1
(N —1)2 9i = (Rics),; Fz(j) + F®g,

(2.101)

being Ay the Laplace-Beltrami operator restricted on the regular potential level set
Asf = g"T50nf — 00" f . (2.102)

The components of the Ricci tensor along tangent direction to level sets EﬁvN are given by

Rici; = 0oL — 8;T0; + LTy + D0k + TRolY, — T9I% — T9.Tk — Th Y, + (Ricy),; =
— Rici; + (eQ(EHWN - ) [aoro + 9Ty +TOTh, — (ro,croz +Th r?k)} +

+ 26 ETVNGuNTY, + 0,016 — TF0k6N + 00N Dipn+

— g EVNE (30°n 06N + Aoy + T on ) — By + FPg;

(2.103)
The other components of Ricci tensor in rescaled metric read:
e T « a b 3 N-2 0
RICOZ‘ = (9QF 8 T a0 +T¢ 5F FﬁOFaO = RICZ'() — N 1808i¢N — F008i¢N+
N N B (2.104)
- ﬁ Diodion + v—7 T0kon + Tiododn — gool 5 d + gind T,

It follows that the scalar curvature of the equipotential level sets is given by

(V-2
(N —1)

(N = 3)(N —2)
(N —1)2

Aoy —

Rs (RICE) —2=9N (Rz +2 ||gradg¢NH§> (2.105)
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while the scalar curvature of the ambient space R in rescaled metric reads

ﬁ = gaﬁ/ﬁéaﬁ = EOO/P—{EOO + @”ﬁ%w = 62¢N900Ri(300+

o OIN 3N
+ e 2= gURIcy; — 2N | Z—Tipon + ———=0"dndopn — 2000°¢n | +
N -1 N-—-1
+ (€208 — €220 ) g [T, + ThTY, + ThTh, — (T9Th; + T5rS, )| +262v A g7+
3N -5 54 =
+ ﬁe 2¢NE (AECbN + ||gradE¢N||32)
(2.106)

2.4.4 Geometrical interpretation of the configurational microcanonical

statistical mechanics

The metric rescaling introduced above allows to give a pure geometrical interpretation of con-
figurational microcanonical entropy and its derivatives. If we apply the rule proved in eq.(2.40)

to pass the derivatives of the control parameter v into the integral of(2.89) we obtain:

dQy

dv /EVN Loldogrn ;) = /ZVN Mg 4Ty 5
d’Qn

d772 = /EVN ﬁ'l_J(Tlvg dO-EVN ~) = /ZVN [T12,§ +£VN(TL§)] dUEVN pd

B3y ,
W = /EVN [Tl,g + 37—1,{3'6111\1 (7—1,@) + ‘C’VN (‘CVN (Tl,g))] dO-EiVN,g (2'107)

d*Qn
e /E - [Tﬁg + 6775 Luy (1) +4715L0y (Lo (11,9))+

4871 (Lo(m1.9)) + Lo (Luy (Luy (11.9) | do gy

v

and consequently, using eqs.(2.55),(?7?) and the definition of mean curvature in (??) we obtain

for the derivatives of specific configurational microcanonical entropy:

dfz-jv (®) = % (T19)05 = (N]\_f 2 (hg); 5 (2.108)
d?Sy 1
VQN( ) N [<712,§>55 + <»CVN(T1,_{;)>127’5 (T1,) e &] = 2100
(N-1)
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d3§N 17 i

5 = v | (e T3 (maluy (119))s 5 + <55N)(ﬁ,§)>5’& +

371505 Lo (M))ap = 3710025 () +2(ma) 5] =

N-1)] 3 ii

=1 N V1V = 1)2Cumat®) (h ) + (V = 1)Cove,y (h gi Lon (1)) + <£,<,N><hl,g)>77 J
2.110)

d*s 1

d@‘lN (v) = N Cuml%ﬁ(TlQ) + 6Covy, (71,55 T1,5Luy (T1,5)) + 3Varg , (Lo (T1,5)) +

+ 4Covy,, (Tl,g; 5%)(71,5,)) +12Covy (11 i Loy (T1,5)) + <£%i) (71,§)>1j J =
(2.111)

N -1
= (]V> [(N — 1)3Cum11(f2‘(h17§,) + G(N — 1)QCOV@,;L (th; hl}gﬁyN (hl,g)) +
+ 12(N — 1)*Covgy (hf 5 Loy (hrg)) + 3(N — 1)Varg , (Loy (h1g)) +

+4(N —1)Covy (h1,§§ ﬁz(jjf,)(hlg)) + <£z(/lzlvl) (h17§)>1_]#]

where the statistical quantities are calculated over the level sets ZT)VN using the induced Rie-
mannian area form dUEZN,g that coincides with the microcanonical area measure.
It has to be stressed that in the Riemannian formulation proposed for the configurational
microcanonical ensemble the inverse of microcanonical temperature 3(7) = T71(3) =
(0Sy/0v) coincides for large N with the average of the mean curvature of the asso-
ciated equipotential level set Z‘ﬁVN giving a quite simple geometrical interpretation
of this basic statistical mechanics observable.
More in general, the geometrical interpretation of statistical mechanics in configurational mi-
crocanonical ensemble can help the research of other signatures at finite NV, with respect to
topological changes, that signal the presence of phase transitions. In i particular we remark
that an interesting possible starting point for further investigations consists in the formalization
in geometrical terms of a condition that can allow to prevent the second order derivative of en-
tropy to be non-negative. In fact, according to the theory of microcanonical statistical analysis
(briefly reviewed insection 1.3) a signature of phase transition in the microcanonical ensemble
is the non-concavity of the entropy, i.e. 8%31\7 >0 or Nlirfm 82E§N(EC) =0.
Assuming that the same signature of phase transitions is observed also in configuration space,
the condition that has to be imposed to prevent phase transitions in thermodynamic limit is
given by

Vargzhig < B < (Loyhig)  YNEN, (2.112)

In this framework, the problem of phase transitions could be formulated in terms of suitable

condition that has to be imposed to the mean curvature field iLLg in order to satisfy the condition
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in eq.(2.112) and that can be possibly read as a geometrical characterization of a topological
asymptotic change.

The most difficult issue to overcome in this scheme of refinement of the Necessity Theorem is
constituted by the derivation of an upper bound of the variance of the mean curvature over a
level set. This aspect is still an open problem; nevertheless some possible strategies to derive
upper bounds of the variance have been investigated. A promising starting point to attain this

aim would be the Poincar Inequality [Led05]
M Vargzf < <||gradgf||2>w (2.113)

where A; is the first non trivial eigenvalues of the Laplace-Beltrami operator. Lower bounds
on A; for compact riemannian manifolds (M, g) with non-negative Ricci curvature have been
obtained by Li-Yau and Zhong-Yang (see [Li93] and reference therein)

2

T
M(M)> ——
1o(M) = diamg(M)

(2.114)

where diamg (M) is the diameter of the manifold. Another important results is the Lichnerowicz

theorem:

Theorem 2.4.1 (Lichnerowicz theorem). et M be an N -dimensional compact manifold without

boundary. Suppose that the Ricci curvature of M is bounded from below by
Ric;; > (N - 1)K (2.115)
for some constant K > 0, then the first nonzero eigenvalue of the Laplacian on M must satisfy

ALg(M) > NK (2.116)

Moreover, equality holds if and only if M is isometric to a standard sphere of radius K12,

Despite of the fact that these results would seem to suggest the possibility to easily con-
struct non tautological geometrical conditions on the mean curvature l~11,§, the condition of
non-negative Ricci curvature (?{\/10)1] seems to not be easily verifiable a priori from eq.(2.101)
nor a posteriori from the results of numerical simulations on equipotential level sets as it is a

pointwise condition.

2.5 Persistent homology: a method to ”compute” topology

In the previous chapter it has been stressed that the Topological Theory has the great ad-
vantage, with respect to other approaches on phase transitions, to provide at the same time a
minimalist and powerful mathematical framework for the understanding of the deep origin of
phase transitions: the topological properties of the equipotential level sets. Despite this, the
topological approach suffers from computational difficulties, and analytic topological informa-

tion can be obtained only for a very few models.
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Also the direct numerical measurement of topological properties of the configuration space of
physical systems faces serious computational issues because of the high dimensionality of the
associated manifolds. The idea that some of the mentioned computational obstacles could be
overcome comes from the observation of the existence of new computational tools in the fields of
discrete geometry and topology. These new methods have already been developed for analysing
data in high-dimensional spaces|[NSWO08]. Hence, we expect that they could be useful to inves-
tigate topological changes also in physical configuration spaces by identifying their homology
from random samples.

In what follows we resort to persistent homology analysis. Persistent homology [Ghr08, CZ05,
Car09], a particular sampling-based technique from algebraic topology, was originally introduced
in 2002 [ELA02] by Edelsbrunner et al with the aim of extracting coarse topological information
from high-dimensional datasets [NSWO08]. In a nutshell, while homology detects the connected
components, tunnels, voids of a given topological space, persistent homology computes multi-
scale homological features obtained from a discrete sample of a topological space X by foliating
it appropriately. Hitherto, the study of persistent homology has already proved useful in various
fields like biological and medical data analysis, neuroscience [PET14], sensor network coverage
problems [DSGO7], to quote just a few of them.

Here persistent homology is applied to the study of equilibrium phase transitions. Two models
are considered for which we rigorously know what to expect: the so-called Mean-Field XY model
(MFXY) and the classical lattice ¢! model already introduced before. For the MFXY model
both the thermodynamics and the configuration space topology are exactly known, whence the
topological origin of phase transition is rigorously ascertained; while for the <p4 model it is
analytically known that the phase transition does not correspond to any topology change in
configuration space at any finite N.

The benchmarking so performed gives sharp and unambiguous results in the good direction.
This could open new interesting perspectives for practical applications of the topological theory

of phase transitions.

2.5.1 The Mean-Field XY Model.

The mean-field XY model is defined by the Hamiltonian [AR95, CDR09]
Hipe) = Y. 5 Ton > 1= cos(pi — ¢;)]
= ij=1

i=1

N
- hZcoscpi . (2.117)
i=1

Here ¢; € [0,27] is the rotation angle of the ith rotator and h is an external field. Defining
at each site ¢ a classical spin vector m; = (cosy;,sing;), the model describes a planar (XY')
Heisenberg system with interactions of equal strength among all the spins. We consider the
ferromagnetic case J = 1. The equilibrium statistical mechanics of this system is exactly

described, in the thermodynamic limit, by mean-field theory. In the limit A — 0, the system
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has a continuous phase transition, with classical critical exponents, at the critical temperature
T. =1/2, or at the critical energy density E./N = 3/4 [AR95].

The entire configuration space M of the model is an N-dimensional torus, parametrized by
N angles. The submanifolds M, C M are defined by

M, =V (—o0,]
={(¢1,---,oN) €E M : V(p1,...,0N) <V}, (2.118)

i.e., defined by the constraint that the potential energy per particle V = V/N does not exceed
a given value v.

Morse theory states that topology changes of the M, occur in correspondence with critical
points of V, i.e., those points where VV = 0. This implies that there are no topological changes
for V > 1/2 + h?/2, i.e., all the M,, with V > 1/2 4+ h?/2 are diffeomorphic to the whole M.

The Euler characteristic, a topological invariant of the manifolds M, which is ezactly com-
puted in Ref.[CPC00, CPCO03], is defined by

N
X(My) =D (= 1)* (M) (2.119)
k=0

where the Morse number g, is the number of critical points of V that have index k [Mil63].

After a monotonic growth with v, a sharp, discontinuous jump to zero of x(M,) is found
at the phase transition point, that is, at v. = 1/2 + 0%. However, as already shown in
[CPCO00, CPCO3], it is just this major topological change occurring at v, that is related to
the thermodynamic phase transition of the Mean Field XY model.

2.5.2 Topological analysis

Some basic fact are here reported concerning the topological analysis which begins by sam-
pling the configuration space of each system at different energies. Then persistent homology

analysis is applied

2.5.3 Samples of the configuration space

We begin by constructing samples of the configuration spaces to be studied. For the MF XY
model, this is done by numerically integrating the equations of motion derived from Hamiltonian
((2.117)) with the external field set to h = 0 for a system of N spins, with N up to 6000.
The numerical integration is performed by means of a fifth-order optimal symplectic algorithm
[MA92]. We sampled the configuration space for the following values of the energy density
e = E/N = 0.6,0.75,0.88, that is, below, at, and above the critical energy, respectively. The
system is initialized with a Gaussian distribution for both conjugated variables {y;, p;}. The

total angular momentum (P = Zpi = 0) is imposed to vanish. Given the initial conditions
i
for the aforementioned energies, the system dynamics is evolved for a T'= 1.26- 107 time steps,

with an integration step of At = 0.05. With these integration step and the use of a fifth order
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symplectic algorithm the relative energy fluctuations were kept at AE/E ~ 107, Then 6000
snapshots are uniformly sampled in time after a transient dynamics to equilibrate kinetic and
potential energies to their equipartition values.

For the ¢! model we set J = 1,m? = 2,d = 3 and A\ = 0.1 in the Hamiltonian ((??)). We
consider a 3D cubic lattice with 8% sites, periodic boundary conditions, and an integration time
step At = 0.05. With these parameters, the use of a third order symplectic algorithm [Cas95a]
kept the relative energy fluctuations at AE/E ~ 107 (a lower order algorithm was required in
this case with respect to the MF XY model because trigonometric functions are replaced by the
polynomial form of the ¢* potential). Then the Hamiltonian dynamics is numerically simulated
at two different values of the energy density, that is, ¢ = 25 well below the transition energy
density e, ~ 31 [CCCT98a], and ¢ = 35 well above ..

2.5.4 Persistent Homology

The main idea of persistent homology is to build an increasing sequence of simplicial com-
plexes, called a filtration (see [CZ05]), from a point cloud, i.e. a set of points embedded in
a metric space. We report a detailed mathematical description of persistent homology in Ap-
pendix C refer the interested reader to [CZ05]. Here we streamline the topological analysis. The
standard way to obtain a simplicial complex from a set of points S is to construct its p-Rips-
Vietoris complex [CZ05], an abstract simplicial complex that can be defined on any set of points
in a given metric space M. The n simplices of the p-Rips-Vietoris complex are determined by
subsets of n + 1 points {po, ...,pn} such that D(p;, p) N D(p;,p) # 0 for all i # j € {0,...,n},
where D(p, p) is ball of radius p centered at p. Persistent homology is a powerful instrument in
that it does not select just an p value, but rather studies how the homology of the space, and
in particular of the p-Rips-Vietoris complexes, changes as p varies. As p is increased, simplexes
are added in the p-Rips-Vietoris simplicial complex. A new simplicial complex is added to the
filtration only when a new simplex is born along the (continuous) parameter p. i.e., the p-Rips-
Vietoris complex has changed. Thus the filtration is discrete: it can be indexed by integers,

useful to characterize the topological features of the space.

2.5.5 Simplicial Complexes in configuration space

In most applications of persistent homology, the parameter p is taken to represent the
Fuclidean distance between points in .S. In the case of physical configuration spaces we replace
it by a Riemannian one. In fact, the configuration space M of a standard Hamiltonian systems
(that is with quadratic kinetic energy) equipped with the Jacobi metric [Pet07a], is a complete
Riemannian manifold, which means that given any two points there exists a length-minimizing
geodesic connecting them (Hopf-Rinow theorem [?]). Of course this is also the case of the

mean-field XY and <;54 models, thus the distance among two points P; and P in M is:

P, N 2
an.ry) - | ([E ~V(pn- . on)] ZW)?) (2.120)

! k=1
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In other words, computing this distance requires solving the equations of motion with assigned
initial and final conditions. In practice this is computationally very heavy. We therefore take
advantage of the robustness of topological information with respect to metrical deformations
and observe that the integral contains a non constant factor multiplying the Euclidean arc
length. We then choose to approximate d(P;, P») by replacing the factor by its mean among

the initial and final values:

d(p1,p2) = %(\/E —V(p1) + VE — V(p2))dewer(p1,2) (2.121)
N

dewel(pr,p2) = | D_(9*(p2) — ¥ (p1))? (2.122)
k=1

An important computational issue lies in the size of the produced simplicial complexes.
Indeed, already for a sample of the configuration space S with cardinality N = 6000 points,
the set of complexes will contain a huge number of simplices hindering efficient computation,
since the number of all simplices for all dimensions up to N — 1 scales as number of subsets
of N, that is 2VV. So, we first restrict ourselves to the study of the first two homology groups,
Hy and H;, which allows us to consider only simplices up to dimension 2 and then adopt
a sub-sampling strategy which allows to reduce the dimension of the problem by choosing a
representative subset of points L C S without losing important topological features of the
configuration space. The sub-sampling is based on a suitable selection of landmark points
called sequential mazmin [SMLO0O5, GHI10]. In sequential maxmin, the first landmark is picked
randomly from S. Inductively, if L;_1 is the set of the first i — 1 landmarks, then let the i-th
landmark be the point of S which maximizes the distance ((2.121)) from all the points of L;_;.
Since the starting node is chosen at random, the resulting L subsets will change if the algorithm
is iterated. In our case, this allows us to perform a bootstrap-like procedure, by repeatedly
subsampling the full point clouds and then aggregating the homological signatures detected.

The results we present are obtained from 20 different sub-samples, each containing 300 points.

2.5.6 Results

Persistent homology computes the generators of topological features (homology groups)
persisting across different scales and assigns them birth and death values related to their points
of appearance and disappearance along the filtration. That is, when the radius p of the balls
varies, for any persistent generator g we have the value of the parameter p of the filtration
where g first appears (birth index indicated by 3,) and the value where it disappears (death
index indicated by d4). In this way, connected components, one-dimensional cycles, three-
dimensional voids and similar higher order structures of the topological space M acquire a
weight proportional to the length of their persistence interval, 7, = d, — 84. Note that for
Hy, mg = 44, because all (dis)connected components are already present at the beginning. For
higher order homology groups H}, the generators can instead appear and disappear freely along
the filtration.
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Figure 2.13: (Color online) Persistence diagram for the M F XY model. H; persistence distri-
butions below (e = 0.6), at (. = 0.75), and above (¢ = 0.88) the phase transition.
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Figure 2.14: (Color online) Persistence diagram for the ¢* model. H; persistence distributions
below (¢ = 25) and above (¢ = 35) the phase transition, occurring at the critical energy density
€c ~ 31.

In Figures Figure 2.13 and Figure 2.14 the basic descriptors of persistent homology, that is,
persistence diagrams, are displayed for the H; generators of the M FXY model and of the !
model, respectively.

Usually one considers important topological features to be those associated with generators

of Hy, such that their 7, is large with respect to some meaningful length.
In our case we do not have a given reference scale. We can however compare the results obtained
at energies below and above the transition energy in order to look for topological signatures of
a phase transition. We show the distributions of d, for the Hy generators of the M F XY model
(Fig. Figure 2.15) and of the ¢* model (Fig. Figure 2.16). In the former case, as the energy is
increased, the peak of the distribution d, of Hy becomes progressively narrower and centred at
larger p-values. To the contrary, in the latter case the peak of the distribution shifts to larger
p values at higher energies, but it does not broaden.

In order to show that this behaviour is genuinely due to topological features and not due to

the different geometrical sizes of the point clouds, we take the point cloud at the lowest energy
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Figure 2.15: Homological features of the M FXY model. Raw (inset) and rescaled (main plot)
distributions of deaths for the generators of the first homology group Hy. Note that the width
and shape of the distributions change across the transition, becoming more and more narrow
as the energy is increased
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Figure 2.16: Homological features of the ¢* model. Raw (inset) and rescaled (main plot)
distributions of deaths for the generators of the first homology group Hy. At variance with the
MF XY model, here there is no appreciable change in the width and shape of the distributions
across the transition. The green points refer to ¢ = 25 < e.. The velvet points refer to
€ =35> ¢..

and affinely rescale the point clouds at higher energies as to make them comparable i.e.
7dij(€) (2.123)

where d;;(e) is the distance between points ¢ and j for the pointcloud at energy density €. In
this way, we can meaningfully compare the persistences of generators belonging to clouds of
different size. Below the transition of the MFXY model, the distribution of the Hy persis-
tences of configuration space covers more scales than it does at and above the transition energy,
respectively. This broader distribution means that the corresponding point cloud is heteroge-
neously distributed in the embedding space M compared to the distributions, definitely more
homogeneous, in the other two cases. No variation of the peak widths of the Hy persistence
distributions is observed in the case of the ¢* model.

Figures Figure 2.15 and Figure 2.16 display the raw (inset) and rescaled (main plot) distri-
butions of deaths for the generators of the first homology group Hy. The rescaling is necessary

to make the point clouds, sampled at different energies, comparable. In fact, the death and
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Figure 2.17: Distributions of persistences for the generators of the homology group Hj in the

case of the M F XY model. In this case the difference in functional forms for the H; persistence
distribution below and above the transition is even clearer.

Figure 2.18: Distributions of persistences for the generators of the homology group Hj in the
case of the ¢* model. In this case no difference is found in functional form for the H; persistence
distributions below and above the transition.



66

birth indexes are the values of the radius of the balls where the generators appear and disap-
pear. Thus, without the rescaling, 3, and 7, would reflect the size of the underlying manifold.
Note that for the M FXY model the width and shape of the distributions change across the
transition, becoming more and more narrow as the energy is increased, while there is no ap-
preciable change in the ¢* case. The different topological signatures highlight the presence of a
topological change in the case of the MFXY model, that is absent in the ¢* model. In Figures
Figure 2.17 and Figure 2.18 the distributions of persistences for the generators of the homology
group Hi confirm what is found for Hy. In this case the difference in functional forms for the H;
persistence distribution below and above the M F XY transition is even clearer, while, again,
we find no differences for the ¢* model.

Now let us comment about the hollowness detected by the H; homology group. For what

concerns the MFXY model, below the phase transition energy, the H; persistence distribution
displays a long tail which disappears at and above the transition (Fig. Figure 2.17). We
observe that the three sets of points superpose for values of 7 less then approximately 25. This
range of 7w values, in the present context, can be attributed to what is commonly referred to as
noise, whereas larger m-values are usually considered as bringing about meaningful topological
information. Thus, the stronger persistence of meaningful cycles, which corresponds to the long
tail observed below the phase transition point of the MEFXY model, certainly probes a change
of “shape” of configuration space. And this change of shape can be interpreted as the signature
of a change of the dimension of high order homology groups.
Let us remark that the performed samplings of configuration space submanifolds are definitely
sparse and they could not be other then sparse had we taken billions of points. Not to speak of
the huge total number of simplexes, growing as 2" with N the number of sample points. This
notwithstanding, the results shown in Fig. Figure 2.17 clearly tell us that the MFXY phase
transition corresponds to a change of the topology of the configuration space submanifolds, in
perfect agreement with the available theoretical knowledge. The same concordance is found in
the case of the q§4 model where we see that the difference in Hy persistences disappears, in perfect
agreement with a-priori known absence of topological changes of the underlying configuration
space in correspondence with the phase transition.

Finally, in Figures Figure 2.19 and Figure 2.20 we show the outcomes of a different method
of getting insight to the “shape” of data obtained by sampling the configuration space of the
MFXY and ¢* models, respectively. This is the so called persistence landscape which combines
the main tool of persistent homology method, that is, persistence diagram, with statistics [?].
With respect to the barcode or persistence diagram this descriptor has the technical advantage
of being a function, thus allowing the use of the vector space structure of its underlying function
space to apply the theory of random variables with values in this space. Theory and details
of this method can be found in Refs. [?] and [?]. In practice, one proceeds by computing the
Hy homology for a subsample of the original dataset, then one associates to each generator a
symmetric tent-shaped function peaking in the middle of the persistence interval of the corre-
sponding generators and finally one considers the envelope of the functions defined in this way

over all the generators. Informally, one can think of the persistence landscape as the envelope
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Figure 2.19: (Color online) Average persistence landscape of the H; homology for the M FXY
model. A, is the average function (see text) reported as a function of the radius p of the balls
used to construct the Rips-Vietoris simplicial complex. The “shadows” around solid lines are
95% confidence band.
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Figure 2.20: (Color online) Average persistence landscape of the H; homology for the #* model.
A, is the average function (see text) reported as a function of the radius p of the balls used
to construct the Rips-Vietoris simplicial complex. The “shadows” around solid lines are 95%
confidence band.

of the 7/4-clockwise rotated persistence diagram (operation that can be given a proper mathe-
matical definition) thus associating a curve A,(p) to each persistence diagram. In our case, we
iterated this procedure for the different subsamples, in our case 20 subsamples, obtaining the
curve (Ap(p)) averaged over the samples. Each curve reported in Figure Figure 2.19 reports the
results for different energy values: below, at, and above the phase transition point. A marked
difference is again obtained above and below the phase transition in the case of the MFXY
model, and no relevant difference between the patterns below and above the phase transition

in the case of the ¢* model, apart from a meaningless translation.

2.5.7 Some remarks on the application of persistent homology to Topo-

logical Theory

The results reported for each model in the Figures shown in the preceding Section, and

especially the comparison with those reported in Figures Figure 2.17, Figure 2.18, Figure 2.19
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and Figure 2.20 are strongly supportive of the validity of the application of persistent homology
to probe major topological changes in the configuration spaces of physical systems undergoing
phase transitions.

The results reported in the present work show that persistent homology, by providing handy
computational tools (which are presently available as open access software packages), can lend
new credit to the prospective practical interest of the topological theory of phase transitions.
And, especially, since improvements of the numerical algorithms are continuously underway.
Moreover, this opens many fascinating and challenging questions related with the mentioned
necessarily sparse sampling of high dimensional manifolds. It is not out of place to mention
that this situation is reminiscent of Montecarlo methods which typically allow efficient estimates
of multiple integrals in high dimensional spaces with very sparse samplings. Monte Carlo
methods owe their efficacy to the so called importance sampling technique, suggesting that
further developments in the proposed application of the persistent homology could be found in

a somewhat similar direction.
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PART 11

Self organization and out-of-thermal equilibrium PTs

in biological systems
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CHAPTER 3 Basics facts on the theory of long range

interactions among biomolecules

A review on the state of art of search of selective long range electrodynamic interactions
among biomolecules is presented in this chapter. Main theoretical background of ongoing re-
searches are presented; in particular some main aspect of the so called Frohlich condensation
(the analogous of Bose-Einstein condensation for out-of-thermal-equilibrium systems) are re-

called in relation to the possibility to activate such long range interactions among biomolecules.

3.1 Motivations

The maintenance of cell functions is based on a precise orchestration of functional inter-

actions among different biomolecules such as DNA, RNA and proteins. Although these basic
mechanisms generally do not exhibit strict spatial organization, they seem forced into a very
accurate temporal -or dynamic- pattern. This raises the question of what types of physical
forces can, in the cellular environment (or environments), bring the various actors of complex
biochemical processes both in the right place, at the right time and in the right order so as to
ensure the essential cellular functions. Random encounters between cognate partners involved
in biochemical reactions cannot explain such a level of dynamical organization in cellular envi-
ronments; if only random forces acted on biomolecules they would undertake brownian diffusion
and, for the typical conditions in cells environments, the average encounter time for cognate
partner of biochemical reactions would result to be much greater then one observed experi-
mentally in real systems. Some mechanisms have been proposed to (partially) explain such an
efficiency for biomolecules to find their targets: one of the most celebrated examples in this
sense is the facilitated diffusion (such example will be briefly discussed later). Although such
a mechanism successfully allows to explain how some molecules find their targets in the right
time, such a theory requires the presence of structures on which the molecules ”slide”: it re-
mains an unsolved problem to understand how singular components can find each other within
in the "mess” of cellular environment to self-assembly in such complex structures.
In this framework it seems quite reasonable to formulate the hypothesis of the existence of mu-
tual interactions among biomolecules of non negligible effects on the distance range of 0.1 —1um
(corresponding to the typical cellular length scale), in order to create the dynamical organization
discussed before by facilitating the encounters of cognate partners of biochemical reactions. In
order to be compatible with what observed in real biological systems, such interactions should
be selective, in the sense that they should be established only among the ”right” molecules, and
should require a mechanism of activation (i.e. an external energy supply) in order to act only
at the "right” moment.

As discussed later in detail in the following Sections, biological systems are characterized by
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conditions that seem to screen every possible long range interaction (specifically electrostatic
interactions) while other interactions (chemical bonds, hydrogen bonds, dispersive and Van der
Waals interactions) are short range acting at a distance of the order of few Angstroms. Nev-
ertheless, a more detailed analysis, inspired by the the theories formulated by H. Frohlich in
’60s and 70s, reveals that electrodynamic long range interactions are possible. Moreover, it
has been recently shown from first principles that, in the context of classical electrodynamics,
these interactions can act at a long distance only among resonant oscillators and out-of-thermal-

equilibrium. In this chapter some of these aspects are reviewed.

3.2 Intermolecular interactions

Intermolecular interactions are responsible of mutual interactions exerted among molecules
in every state of matter. In order to clarify what we mean with long-range or short-range
interactions (as some improper use of these terms has been done in the literature) we recall that

an interaction potential V' (r) is short-range in a d-dimensional space if

lim  V(r)r? < 4+o0 (3.1)
|r| =400
while, if the limit in eq.(3.1) diverges, the potential is long-range. The intermolecular inter-
actions in biological systems are of electromagnetic nature due to to energy and length scales
typical of such systems.

In the following sections relevant potential among biomolecules are reviewed.

3.2.1 Electrostatic interactions

In general biomolecules (DNA,RNA proteins) have a non negligible net charge and a large
dipole moment; it is thus reasonable to wonder which is the role played by electrostatic inter-
actions in biological systems at the molecular scale. Electrostatic interactions are established
among electric charges, ions, permanent dipoles, and non vanishing multipolar moments of
molecular charge distributions. Electrostatic interactions include the polarization induced in
atoms and molecules by electrostatic fields generated by surrounding free electric charges and
permanent electric dipoles. Such interactions organise and stabilize the structure of biomolecules
contributing to determine their shape and their biological functions. The electrostatic field gen-
erated by a given biomolecule is determined by many factors ad the superficial charge distribu-
tion, the presence of a solvent (water) and the ionic population of the surrounding environment.
The electrostatic interactions among biomolecules are reviewed with emphasis on the effects of

the surrounding environment and on the Debye shielding phenomena.
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3.2.1.1 Electrostatic interactions in vacuum

Let us consider the electrostatic potential ¢ at a point r of physical space generated by a

r) = Z E Eim‘, (3.2)

charge distribution {¢;,r;},

It is possible to rewrite |r — r;| as

= P =1 2 (1 (33)

with » = |r|. As we are interested to the effects of electrostatic forces on length scales much
larger than the characteristic molecular dimensions, we can consider r > r; = |r;|, Vi. In such

a case the electrostatic potential ¢ can be expanded in Taylor series
o) = 1Y a{i- (o
ISl ) e
X {0 - ()) )
So the previous formula can be rewritten as:

() Z““ax ()‘ZZ aﬁax 975 <1>+-~- (3.5)

a=1 =1

with

Q=D 6, o= GTiaand Mus = GiTiaTip;

where z;, are the components of the vector r;, o = 1,2,3. @ is the total charge, p is the
dipole momentum vector and M is the quadrupole momentum tensor. It follows that the
eq.(3.5) naturally leads to a multipole expansion. Generally electric dipoles generate a field
which decreases with distance as 1/ r2, for quadrupole moments 1 /r3,for octoupole moments
1/r*, etc. etc. In the case of a neutral distribution the first term of the eq.(3.5) is zero, and the
electrostatic field is of course a long-range dipolar one.

The multipolar expansion can be applied also in the case of the interaction among an external

electrostatic field ¢ and a set of charges {¢;, 7}

r) = Zqigb('ri). (3.6)
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so substituting r; for r + r; with r > r; (i.e. the charge distribution is spread around 7), we

obtain:

0 o 0
U = zi:% ¢(T>+za:l'i,aaxa szza zﬂax 81’5¢()

(3.7)

= Q—i-zlua —|— ZZMaga a$5 o o(r),

where @, @, M ,...are the multipole moments of the charge set previously introduced. The dipole
contribution to the interaction is determined by the electric field € given by € = —V¢. So it is
possible to calculate the electrostatic interaction potential among biomolecules in the ”far field”
limit; this is obtained by considering a system composed by a molecule A, characterized by a
set of charges {ga,74:}, and the electrostatic potential generated by the charge distribution
{gB,j,TB,j} of amolecule B (with r4; and r g ; we have indicated the position of the charges g ;
e gp,; with respect to the center of mass of the molecules A e B, respectively). For distances
much greater than the characteristic dimensions of the molecules A and B, the interaction

potential can be calculated from the eqgs.(3.7) and (3.5):
le' 1 a af B
U(’l") = QA + HA o 0 + §MA,045 0“0 + e ¢ (’I")

1 1
= {QA + HA« o” + §MA,Q[3 ao‘ﬁﬁ —+ - } {C%rB — UB,X 8)\ <T> (38)

1 A9p 1
+2MB,)\p38 <T>+ },

where 7 is the vector joining the mass centres of both molecules, where «, 8,7, p = 1,2, 3, and

z!, 2% and 2® are the components of the vector r *. Hence in the vacuum long range interactions

are possible. In particular this are:

e the coulombic electrostatic potential which depends on the total electric charge

~ QaQs

Ucoulombian(r) — r (39)
e the dipole-dipole interaction potential, given by
1 6oc>\ l‘al’)\
Udd(r) = _/J/A,aMB,)\aaa)\ (T) = HA,atBX (’F?’ — 37“5> . (310)

the latter is the only contribution if one of the two biomolecules is electrically neutral.

—n

Higher moments decay with distance as r~", with n > d, resulting in short-range interac-

tions.

!The Einstein convention is assumed for repeated indices
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3.2.1.2 Dielectric medium and Debye Shielding

In the previous discussion, the effects of the surrounding environment on the intermolecular
interactions have been neglected. In biological systems the environment is substantially consti-
tuted of a water solution of freely moving ions.

Water is a dielectric medium 2 and in the limit for which it can be considered as a continuous
medium, we can adopt the classic theory of polarizable media applies. The polarization field P
for isotropic media is given by

P = y.F, (3.11)

where Y. is the electric susceptibility 2, in the limit of an arbitrarily small electric field E. Such a
condition is typically satisfied by biological systems; in the cellular membranes the double layer
electric field is of the order of 10%volts/cm so that the polarization induced in the medium by
any external electric field that is negligible. For electric fields generated by a charge distribution
p(r) the relations holds

D(r)=E(r)+ 4nP(r)

(3.12)
V- D(r) =4mp(r) .

Substituting the relation egs. (3.11) in (3.12) we obtain an equation for the electric field E:

dmp

V-E= (3.13)

put
where € = 1 + 47y, is the electrostatic dielectric constant, thus the effect of the polarizability
of the medium is that the electrostatic interactions are screened by a factor 1/e; for the pure
water at 300K the electrostatic dielectric constant is € ~ 80.

For media with a high concentration of freely moving ions (as in the case of biological systems)
the value of the electric field is strongly affected because these freely moving ions tend to screen
any electrostatic field so that T‘EIEOO ro(r) = 0, where ¢(r) is the electrostatic potential.

A first theoretical derivation of this screening effect has been obtained by Debye and Hiickel in
the framework of the electrolytes theory [DH23]: the electrostatic potential ¢(r) originated by
a single electric charge ¢ in presence of Nj,, ionic species, each of them with a ionic valence Z;

and a numerical concentration n;, at temperature 7" is given by:

q _r/x
P(r)=— b 3.14
()= Lo, (3.14)

where A\p is the Debye-Hiickel length

—1/2
_ e“Ng
2D <6kBTZZn]> (3.15)

2We remember that a dielectric is an insulator that can be macroscopically polarized by the presence
of an electric field

3We recall that for isotropic media eq.(3.11) is a matricial equation where x, is a rank-two tensor.
In what follows we will consider only the case of isotropic medium.
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being kp is the Boltzmann constant, T the temperature of the system and N4 the Avogadro’s
number.
Therefore, while electrostatic potentials diverge for short distances, at a distance greater than

Ap electrostatic forces are small according to the ionic strength Z njof the electolyte solution.

J
We can estimate the value of the Debye length Ap, for instance, in conditions comparable with

physiological ones for a solution with a NaCl concentration of the order C' = 0.1mol.L L.

In such a case, this is equivalent to set Z ijean ~ 2¢2C, where e is the elementary charge

J
and the electrostatic dielectric constant* e = 80 and T = 300K, yielding to:

2 -1/2
Ap = (8”8 C> ~975 A .

ekT

This value is two orders of magnitude smaller than the range of the potentials should be re-
sponsible of dynamically organizing the biomolecular machinery in cells. Moreover, the Debye
length is even smaller than the characteristic linear dimensions of the proteins ( of the order
30 — 60 A).

So the electrostatic interactions between any pair of biomolecules can hardly play any role, in
biological conditions, for the dynamical organization inside the cell except for short distance
interactions. For instance, short distance forces play a central role for the so called facilitated
diffusion[vHB89]. At the best of our knowledge, such a mechanism has been initially proposed
by Adam and Delbriick [AD68] who pointed out how many structures are topologically well-
suited to act as tracks for diffusion in one or two dimensions (for instance in the case of cellular
membranes, or 1-dimensional structures as the DNA, microfilaments, microtubules and soon).
In such conditions, the molecules can find their targets by sliding along these structures thus
considerably reducing the characteristic encounter time. This is the effect of the reduction of the
dimensionality of the space domain where the diffusion takes place. This mechanism has been
invoked to explain the characteristic encounter time for the LAC operon of F. coli whose target
is situated on a long DNA chain: such an encounter time is some orders of magnitude smaller
than the one predicted by assuming brownian diffusion of the Lac operon in a 3-dimensional
space [Bar81]. This process is substantially diffusive and electrostatic and Van der Waals (see

the following section) forces keep the sliding molecule close to the DNA chain on which it moves.

3.2.2 Dispersive interactions

The previously described physical interactions are all electrostatic ones. As is well known,
there is another type of interatomic and intermolecular interactions acting electrically neutral
object; there interactions are the dispersive forces[Isrl5, Par73] and their action range is typi-
cally of the order of a few Angstroms.

This class of interactions includes London and Van Der Walls forces. The existence of this

4The dielectric constant of water solutions with freely moving ions is quite close to the pure water
dielectric water constant, so with an extimed value of the order of 80, as reported in [Glu64].



77

forces is explained by quantum mechanics and QED®. Qualitative, by two neutral non polar
atoms in their fundamental state have finite fluctuations of the dipole moments around zero.
The energy of two isolated neutral atoms is corrected by a dipole-dipole interaction potential
at the first-order perturbation expansion which is proportional to the product of the averages
of the two dipole moments. This contribution vanishes when the two atoms are both in the
fundamental state. The second order corrections to the interaction potential are due to the
coupling among instantaneous fluctuations of dipole moments and is proportional to 1/ 7.

More in general, three main different kind of interactions is due to similar mechanism involv-
ing instantaneous coupling among fluctuating electric dipole moments or induced polarization

effects:

e Keesom’s interactions, also called orientation effects, are established among two perma-
nent dipoles whose orientations fluctuates due to thermal noise; electrostatic interactions

tend to correlate the orientation of the molecules giving rise to the Keesom potential:

piey 1

U(r orient — — ., 9
(Porient = = ()2 70

; (3.16)

e Debye’s interactions, or inductive effects, among permanent dipoles and the dipolar mo-

ment induced by them in a non polar molecule. The Debye potential is given by [Deb21]:

oo+ ppag 1

U(T)an = 82 ’I"ﬁ
r

(3.17)
where a9 are the polarizabilities of the molecules;

e London’s interactions, or dispersive interactions among two non polar molecules with
polarizabilities «; and first ionization energies corresponding to hr; , whose expression is
given by [EL30, Lon37]:

1 3]’LV11/2041042
(4meg)? 2 (v1 +v2) 76

U(T)disp - - (3'18)

where h is the Planck constant.

The first two interactions are described in terms of classical electrodynamics, as they involve
a polar molecules. To the contrary, the dispersive interactions among non polar molecules
(although polarizable) can only be described quantum mechanics. In the general case, two
polar or polarizable molecules interact through the superposition of the previously mentioned

interactions, them all decrease with a power law r~°, where r is the intermolecular distance:

U(T)l/ = U(T)om'ent + U(T)ind + U(T)disp =
1 I piag + p3aq 3 hvaiay (3.19)
6 |3 (4meoe, ) kpT — (4meoe,)® 4 (4mep)?

°In the contest of QED such interactions are due to the exchange of virtual photons among atoms.
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which is known as Wan der Waals potential. As U(r) o 1/7%, the corresponding decays as

1/ r7. The characteristic properties of these forces are non trivial:

e anisotropy of the interaction, as consequence of the dependence of the polarizability on

the mutual orientation of the biomolecules;
e non-additivity, due to reflection many body effects for the fields generated by biomolecules;

e retardation effects, concerning only the dispersive component as it is an electrodynamic
potential; these effects are due to the finite propagation time of the electromagnetic waves
between two dipoles when this is comparable with the characteristic time scale of dipole
fluctuations. Casimir e Polder have shown how these effects are appreciable on a length
scale approximatively of 30nm and that for distances greater then 100nm London poten-
tial decreases as v~ [CP48)].

3.2.2.1 Hamacker Theory for extended spheres in vacuum

In 1937 Hamaker derived the Van der Waals interaction potential for two extended spheres
of radii Ry and Ry in the vacuum [Ham37], under two approximations: the retardation effects
were neglected at any distance, and neglecting many body effects (in particular neglecting the

effects due to the presence of surrounding molecules), whence:

A 2R Ry
6 22*(R1+R2)2
2R R 2 (R1 + Ry)?
+ = — 2+1n<22 Sl 2)2>]'
z —(Rl—Rg) z —(Rl—Rg)

U(z; R1, R) = —
(3.20)

where A is the so called Hamacker coefficient, whose value strongly depends on the properties
of the medium surrounding the spheres (which can even change the sign of A), z = Ry + Ra+
is the distance between the centres, i.e. the sum of the radii R1,Rs and r is the distance between
the spheres surfaces.
Recent studies have pointed out that Van der Waals interactions among proteins have a range of
the order ~ 3 —5A4 and can be considered as contact interactions, therefore inaugurate to drive
the dynamical organization in cells if this requires to go beyond random encounters between

reaction partners.

3.3 Electrodynamic long range interactions among biomolecules
3.3.1 Why electrodynamic interactions can be long range in biological
systems

As shown in previous sections, the main interactions which take place among biomolecules

in physiological conditions are short-range, with a typical range of a few Angstroms. It follows
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that such interactions cannot explain the dynamical organization observed on scales of the order
of 1 +2.5-10%A. We have seen that the range of electrostatic forces is drastically shortened by
the screening effects due to generated by freely moving ions and by the dielectric properties of
water.

Nevertheless, some experimental observations suggest the possibility that in the same conditions

electrodynamic long-range interactions can be possible. In fact:

e it has been experimentally shown that electrolytic solutions behave like pure dielectrics

with no screening effects on the electrodynamic field for frequencies higher a = 250MHz;

e it has been measured that for frequencies higher then ~ 1 THz the dielectric constant of

water has a value around ~ 4, a much smaller value respect to the electrostatic case.

e absorption Raman spectra and far-infrared spectra of biomolecules have peaks for fre-
quencies in the THz domain, generally attributed to collective vibrational modes of the

whole molecule or of a large part of it.

We will examine in detail each of these aspects.

3.3.1.1 Behaviour of electrolyte solutions for high frequency electric
field

In order to deepen the understanding of the role of electrodynamic interactions among

biomolecules it is interesting to mention some relevant experimental results due to Xammar
Oro et al. [JRAXOG92].
The setup of these experiments consists in preparing a cell containing an electrolytic solution
and applying to it an alternate sinusoidal tension using electrodes: in this way the impedance Z
of the electrolytic solution is measured as a function of the frequency of the applied tension(see
Figure 3.1 (a)). An electrolyte solution is equivalent to a parallel RC circuit (see Figure 3.1
(b)): the capacity C represents the dispersion of the dielectric, while the resistance R accounts
for the dissipations.

For such a circuit the value of the impedance is given by:

1 —-1/2
Z = <R2 + w202> : (3.21)
where w is the frequency of the applied tension and the following relations hold
R=1/go and C = ge, (3.22)

where o is the conductivity and € is the dielectric constant both depending by w, while g is a
geometric factor. As it can be deduced from eq.(3.21), when w tends to zero the value of the
impedance is dominated by the effects of the resistor; in this regime the solution behaves as a
pure conductor. For high values of w, the impedance becomes capacitative and tends to zero

for w — +o0.
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The transition between these two regimes takes place for a frequency wys, known as Mazwell’s

frequency®, satisfying the equation:

Z(wyr) = Z(w = 0)/V2, i.e, wy=1/RC=0c/e. (3.23)

(b)

Figure 3.1: Measure circuit used by Xammar Oro et al.[JRAXOG92]. O oscillator, Ry resistor,
Z measure cell;(b) Equivalent circuit for cells filled with an electrolyte.(Figure adapted by
[JRAXOGI2))

The main results obtained by Xammar Oro et al. are reported in fig. 3.2; where the
impedance of the electrolytic solution is plotted as a function of the frequency w of the applied
tension. The different curves represent different distances h among the electrodes (a null distance
corresponds to the case of an ideal solution so that the condition eq.(3.21) is exactly verified).
As it can be argued from fig.3.2, the impedance reduces considerably for w > wjys and attains
zero for very high frequencies”. In other words, as predicted by eq.(3.21), the electrolyte looses
its conductive properties for sufficiently high frequencies and behaves like a dielectric medium.
For an electrolyte of ionic strength close to physiological conditions, the Maxwell’s frequency
has been estimated around 255 MHz.

The results found by Xammar Oro et al. represent the dynamical analogue of the Debye
screening effect. In particular it can be observed that in the limit of high frequencies freely
moving ions do not screen the electric field generated by an oscillating distribution of charges.
In the static case, the electrostatic potential generated by a fixed charge ¢ is described by the

Poisson equation:

V20 (r) = —%p(r), with p(r) = gd(r — 70) + poshers(r). (3.24)

where 7 is the position of the fixed charge and pothers(7) is the charge density at = due to the

presence of freely moving ions in the stationary limit;® the last terms in eq.(3.24) is entirely

6In facts, such frequency has been originally predicted by Maxwell [Max54].

Tt has to be stressed that the Maxwell’s frequency as defined in the eq.(3.23) is obtained extrapolating
h = 0 as explained [JRAXOGOS]

8 In such a case we have considered a continuous charge distribution modelling the ions in the elec-
trolytic solution
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Figure 3.2: Product of the impedance Z and of the current 7 in the cell containing the elctrolyte
solution[JRAXOGO8]. The current is maintained constant. Different curves correspond to dif-
ferent values of the space among electrodes (spaces increases from 1 to 5); the arrows indicate
the frequency such that Z(wyr) = Z(w = 0)/v/2.(Figure adapted by [JRAXOG08])

responsible of the screening effect.

In the context of classical electrodynamics, a similar equation can be derived considering the
Coulomb gauge (V - A = 0) and writing the Fourier transform (in frequency) of the electrody-
namic version of the Poisson equation for a field generated by an oscillating charge ¢ in presence

of an ion density distribution pe¢pers(T,w). One gets

V20(r,w) = —%p(r,w), (3.25)

with p(r,w) = q(w)d(r — 10) + pothers(T,w) being 7o the position of the oscillating charge g
and pothers(T,w) the Fourier Transform of density charge of freely moving ions in 7. In the cell
cytoplasm the majority of charges can be considered static so that pothers(7, W) = pothers(T)d(w).
The latter equation holds for a purely dielectric material. Whereas, for a purely conductive
medium as is the intracellular one, the contribution of the induced charges fluctuations has to
be considered, so that pyners(T,w) can be different from zero when w > 0: in this context the
induced current is given by Ohm’s Law: j(7r,w) = o(w)E(r,w). Using the continuity equation,
when r # g, or in other terms iwpothers(T,w) = V - j(r,w), the total charge density is given
by

p(’l", w) = Q(W)d(r - 'I"(]) + pothers('r"w)
(3.26)

io(w)

= q(w)d(r —rg) — V. E(r,w),

w
when w > 0. Here the second term on the right-hand side corresponds to the Fourier
Transform of the induced charge density and describes the dynamical effects of the Debye

screening. On the other side, it can be noticed that the same term becomes zero when w — +00.
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In fact for sufficiently high frequencies, the medium looses its conductive properties and the

Debye screening effect is absent.

3.3.1.2 Electrodynamic dielectric constant of water

From classical electrodynamics it is known that the relative permittivity is an adimensional

complex number, i.e.

er(w) = —, (3.27)

where e(w) is a complex number, called absolute permittivity of the medium, which is generally
a function of the frequency of the applied external electromagnetic field and ¢¢ is the vacuum
permittivity. Using the polar representation of complex numbers, the phase of permittivity
corresponds to the phase difference among the polarization field P and the applied electric field
E.

The relative permittivity can be decomposed in a real and an imaginary part, i.e. [Jac07]:

/ "

er(w) = ¢, (w) — 16, (W) (3.28)

where 1 is the imaginary unit. The real part is related to the energy stored in the medium while
the imaginary part is related with dissipations;
In such a context, theory and experiments on water permittivity [E1l07] show a drop of both

imaginary and real parts of the permittivity for frequencies in the range ~ 0.1 — 1 THz (3.3).
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Figure 3.3: (Adapted by [El07])Theoretical (line) and experimentally measured (dots) water
permittivity at the temperature of 300 K as a function of frequency expressed (in GHz). The
real part of permittivity ¢’ is reported in black diamond (referred to left axes) and the imaginary
part ” with black triangles (referred to right axes).

3.3.1.3 Collective vibrational modes of biomolecules at thermal equi-

librium

Biomolecules are not rigid bodies: they have a number of vibrational modes proportional to
the number of atomic groups which constitute them. Such modes, which are generally coupled

among themselves, can be decoupled in the elastic approximation and treated as normal modes,
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in the context of quantum mechanics”. It is possible to study and observe the equilibrium
vibrational spectrum of a molecule by means of Raman or far-infrared spectroscopy (~ 0.1 — 10
THz). In this spectral region many absorption peaks have been observed for many proteins;
such peaks have been commonly attributed to collective oscillation modes of the protein (vedi
Figs. (77) e (77)).

When these oscillation modes are activated also conformational changes are produced, and if,
for instance, they have a no vanishing dipole moment, these behave like oscillating dipoles cou-
pled by an electromagnetic field oscillating at the same frequencies. As previously observed, the
water dielectric properties change dramatically in this range of frequencies; it is then reason-
able to investigate the possibility that long range electrodynamic interactions establish among

biomolecules set in.

Absorbance
°
L
Absorbance
°
L

-1 -1
Frequency (cm ) Frequency (cm )

Figure 3.4: (Adapted by [MWHBO02]) Absorption spectra in far infrared domain for lysozime
(left) and myoglobine (right).

3.3.2 Electrodynamic interactions among by biomolecules

As said in previous sections, biomolecules have in general a non vanishing net charge and

dipole moment. It is then reasonable to wonder what kind of electrodynamic interactions can
be possibly activated among biomolecules when collective vibrational modes are set in some
mechanism (for example, energy injection by ATP hydrolysis).
This hypothesis has been put forward and theoretically explored by H. Frohlich in the late 60’s
and 70’s. In a series of articles [Fro68, Fro72, Fro77, Fro78, Fro80] he depicted a very interesting
theoretical framework where the activation of giant dipole oscillations in biomolecules (thus of
low frequency modes) external energy supply would result in the activation of two-body long-
range interactions between biomolecules. Moreover these interactions would be selective only
when oscillating dipoles are resonant.

This theoretical framework it the "reference frame” and the starting point of the research project

9For an extended dissertation on collective modes (phonons) which involve the coherent motion of all
the atoms or a large part, of them, see[Kit04]
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(including experimental, numerical and theoretical studies) where this PhD thesis is partially

rooted. As mentioned above the milestones of the theory are:

e the activation of giant dipole oscillations in biomolecules, through a mechanism analogous
to Bose-Einstein condensation but applied to phonons in an open system (a bio-molecule)

that is known as Fréhlich condensation;

e the activation of resonant (selective) long-range electrodynamic interactions. In the orig-
inal Frohlich theory these interactions are derived in the context of quantum electrody-
namics and are predicted to be active at thermodynamic equilibrium. Recent develop-
ments [PPT15] have pointed out that these interactions can be derived from classical

electrodynamics and can be active only out-of-thermodynamic equilibrium.

In the next subsections, both aspects are revisited in the light of more recent results.

3.3.3 Frohlich condensation

In order to explain the activation of giant dipole oscillations in biological macro-molecules,
prerequisite for the activation of long-range electrodynamic interactions, H. Frohlich proposed a
phase transitional mechanism analogous to the Bose-Einstein condensation for a set of quantum
oscillators, coupled with a thermal bath, with a source supplying energy and interacting among
themselves through a coupling with thermal bath (representing anharmonicity of the system).
In its original approach Frohlich [Fro68, Fro77] considered the extraordinary dielectric and
polarization properties that can be found in living matter at a microscopic level; for instance,
he noticed that the electric fields intensity in cell membranes can be of the order of 10°V /cm;
a remarkably high value that can be also higher near proteins, nucleic acids, etc. In this case
oscillations in polar systems are accompanied by polarization waves associated with an electric
field that can mediate long range interactions; the quanta of polarization field are subject to
thermal fluctuations and non linear interactions among normal modes take place due to the
strong polarization field. The same conceptual scheme has been applied to phonons describing
the quanta of vibrational normal modes of a biomolecule, in contact with a thermal bath and
an external source of energy (for instance energy supplied by esothermal processes as ATP
hydrolization); also in this case the coupling among normal modes is mediated by a thermal
bath and take into account for anahrmonicity.

In the more detail, the model system considered by Frohlich is composed of three subsystems:

e a set of N harmonic oscillators with frequencies {w;},_; 5 representing the normal
modes of a principal system (transverse modes of the polarization field or, equivalently,
vibrational modes of a biomolecule). Each mode is characterized by an occupation number

n,, and the energy in each mode is obviously given by E,, = n,w;;

e an external source providing energy to the harmonic oscillators of the considered system.

If s, is the average number of quanta that excite the i-th mode, the total supplied energy
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rate is given by

N
We = suhw (3.29)

e a thermal bath characterized by a temperature T, (8 = (kgo1T8) ') coupled in different
ways to the normal modes of the considered system. The one-boson exchange process
among the principal system and the thermal bath is described by a term of the form:

dn,,
L = g, (s exp [Br] — (s, + 1) (3.30)

while the process describing the energy exchanges between normal modes of the principal
system, mediated by the thermal bath, takes the form'’

o = X 2 Ny [T (s, + 1) = s (s, + )70 3.31)

Wi

This last contribution to the rate equation has the relevant property that it conserves the
total number of bosons, i.e. Z N,y = 0 so that

wi
S= 5w, =Y bu (nu, exp[Bhwi] — (ny, +1)) . (3.32)

wj wj
For a system of this kind, Frohlich’s theory postulated a set of N-coupled rate equations

that describe the temporal evolution of the occupation numbers n,, of each normal mode for

the principal system:

dn,, .
2 (5} = Pl ) — (s + 1))
N (3.33)
- ZXwiwj [nwi(nwj +1) — T (Nw; + 1)eﬂh(wj_wi) ) i=1,.N
j=1

where ¢, = ¢(,w;) is the coefficient associated with the term describing the linear coupling
of the i-th mode of the principal system with the thermal bath and Ay,.; = A(8,w;,w;) is the
coefficient associated with the non linear coupling between the ¢-th and the j-th normal mode
of the system mediated by the thermal bath. A large number of free parameters have been thus
introduced;then, in order to simplify the rate eqs.(3.33), the coupling constants are generally
assumed to be independent on the frequencies, i.e. ¢, = ¢ and x., = X.

The form of the terms appearing in the rate equations for occupation numbers has been derived
by Frohlich in the original articles from heuristic considerations. A more refined derivation
based on stochastic mechanics and Markov-chain representation of the boson exchange among
the principal system, the thermal bath and the external source has been recently suggested

[Prel2]. Moreover a microscopic quantum Hamiltonian model has been suggested in the ’80s

107t has to be noticed that the term w; = w; gives a zero contribution so that it can be formally
included in the sum in this case
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by Wu and Austin [WA77, WA78a, WA78b, WASI] in order to derive Frohlich rate equations;
this will be discussed in more details, and generalized to semi-classical systems, in the following
sections of this manuscript.

In order to characterize the main qualitative aspects of the system described by the set of

egs.(3.33), the stationary solutions, i.e. n,, are studied.
N
When there is no energy injection, S = Z s; = 0 the system admits as stationary solutions the

1

Planck distribution

1
Ny, (3.34)

P Bl — 1
On the other side, if s,, # 0 but the coeflicient describing non linear interactions is zero, i.e.

x = 0, the stationary solution is given by

_ Sw; @ _ Suw; 1
T e 1) T e - )

(3.35)

so that the presence of an external energy supply has the only effect to increase the total
number of bosons present into the system for sufficiently high values of S. When both the
external injection of energy and the non linear interactions among normal modes are present,

the stationary solutions of Frohlich rate equations are formally given by

Ny, = . (3.36)

where
o+ x(1+ny,)

S, wi
A, = — @i exp [—Bu] = 7 . 3.37
oY X, p[=ul © + D XN, exp [Bhw;] (3.37)
wj wj

It has to be noticed that the stationary solution eq.(3.36) has the same form of the Bose-Einstein

distribution in the grancanonical bosons ensemble with an effective chemical potential p s.t.
hwy > >0 (3.38)

where w1 = min  w;. In this case it is in principle possible to find an upper bound to the

total number of bosons in the principal system:

N\, Sw; (1 — exp [—Bhwi]) ¢ 1
nTot_%: oy < <1+ 5 )%:exp[ﬁ(ﬁwi—u)]—l (3.39)

according to the original argument given by Frohlich’s , if the sum is replaced by an integral it is
possible to construct an upperbound on N which is independent of S. This conclusion contra-
dicts the result that the number of bosons increases linearly with S, so that replacing the sum
with an integral in eq.(3.39) is incorrect as u tends to hw; and n,, tends to become very large
compared with any n,, . This leads to the so called Frohlich condensation: when the supply of
energy is sufficiently high, the lowest frequency mode is strongly excited. It has to be remarked

that finally, Frohlich condensation can be regarded as a phase transitional phenomenon in sys-
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tem out-of-thermodynamic equilibrium, where the fraction of the energy contained in the lowest
frequency mode is a sort of order parameter and the injected energy is the control parameter.
This mechanism can explain the activation of low frequency vibrational modes (~ 1011Hz) in
proteins that consequently behave as microscopic oscillating antennas. Hence arising question
is if and in which conditions long range interactions can take place if such collective oscillations

in biomolecules (considered as oscillating electric dipoles) are activated.

3.3.4 Classical electrodynamic long range interactions two oscillating dipole

Following the approach of [Prel3] and [PPT15], we shall consider a simple system composed
by two biomolecules A and B, with a dipole moments 4 and pp oscillating at frequencies w4

and wp respectively. In such a case, the equations of motions are given by:

fia +vafis +wipa = CAER(ra,t) + Faltat) 5.0
3.40

fip +vBitg +whkp = CBEA(TE,t) + fp(pp. t).

As the dipole approximation has been considered, the interaction between the molecules placed
at r = rp 4 is mediated by the electric field E 4 p(r,t) created by the oscillations of the dipole
moments of each molecule.

The associated coupling constants are (4 = Qi /ma, with @4 and m4 being respectively the
effective charge and effective mass for the dipole A; analogous expressions hold for B-labelled
coupling constants. Dissipative effects are represented by terms where damping coefficients v4 p
appear, and the functions f 4 p stand for possible anharmonic contributes for each dipole, and
possible external forcing.

An estimation of the mean interaction energy between the oscillators described by eq.(3.40) can
be obtained writing the time-Fourier transform of these equations. The starting point is the

harmonic and conservative sub-system

fig+wipy =CaEp(ra,t)
(3.41)

fip +whpp = CBEA(rp,t),

wWNt are

where the normal modes are defined as the frequencies wy such that py p(t) = py ge
solutions for the system in eq.(3.41). In order to calculate w; the expression for E4 p(r,t) is
required. Passing then to the Fourier transform in the frequency domain
1 oo ot
E(r,w)=— E(r,t)e""dt (3.42)
(27) J oo
and using classical electrodynamics theory, it can be derived, the dipolar approximation, the

electric field at r generated by an oscillating dipole at the origin in a reference frame is given
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E(r,w) = XE(’F,(U)/I,(W), (3.43)

where p(w) is the Fourier transform of the dipole moment, that in our case has been assumed
to oscillate harmonically, p(w) = p4 gé(w — wy), and xZ (r,w) is the electric susceptibility of
the electric field, a tensor of rank 2 that in the case of a dipole oriented along the z axes takes

the form:

E _ . F _
Xm(r,w) - ny(’I“,CU) - E(w)’f’?’ 02

_eiiwmr/c (1 . iw\/mT B WQE(L«))7-2>
- )

XZZ(T7O‘)) = 5(&))7’3 and

. 9etiwy/e(w)r/c (1:': iw@r) . (3.44)
C )

XG(r,w) =0 per i#j,

the sign + is attributed to the positive or negative sign of Im(w m), respectively. For real
values of wy, each element y;;(r,wy) of x(r,wy) is a complex number whose imaginary part
represents the dissipative effects due to the propagation of the field[?].

Since in computing the normal modes dissipative effects are neglected, we will consider in the
follow only the real part of each element of x, denoted by ;.

Substituting these results in eq.(3.41), the following system is derived:

(Wi — Wit = Caxis(r,wn ) s,
(3.45)

(w% - w]2\])MB,7J = CBX%(TU WN)NAJ

The existence of non-trivial solutions for (3.45) is assured by the hypothesis that the determinant

is vanishing, in particular:

(Wi — wR)(Wh — wi) — Calr(xis(rwn))® = 0. (3.46)

After some calculation, two possible solutions for w]zv are derived for each direction i; these

solutions will be denoted by %2, , and wg _ satisfying the equation

wzi — % {(wi + w%) + \/(wi — w%)z +4CaCB (X5, (r, wiﬂi))2} = 0. (3.47)

Notice that for to compute the normal frequencies w; 1, the system eq.(3.41) is rewritten as
a system of six decoupled harmonic oscillators with frequencies w; +, ¢ = 1,2,3 and energies
E; + = wi+J; +, where J; + are the associated action constants, fixed by the initial conditions of
the system. In eq. (3.47), the frequencies w; + are whereas implicitly expressed while an explicit,
even if approximated, expression is required for w; 4+ in order to calculate the total energy and

the interaction energy of the dipoles system. Two fundamental cases are distinguished:

e the non resonant case with w4 > wp (or analogously wy < wp), yielding at the leading
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order:
- % {(wi L)+ () (1 . 2(Aii(2x§¢(:2w)i,2i))2>} ~0,
A~ YpB
from which:
wzi - w‘%,B T CACB%;"(T’ L;i’i))Q =0, where wap wa for i (3.48)

w5 —w
A B wp for w; _.

Applying the Laplace Inversion Theorem of the complex analysis , after some steps, the

explicit expression for w; +(r) can been obtained:

CaCB (X (r,wa,B)))?
2wa,B (w?4 — wQB) ’

A(wa,B)i

Using the expression for the energy for angle-action variables, the total energy of the

wi+(r) ~wap+t (3.49)

system is given by:
Eiot = Z Ei++E _= sz‘,+Ji,+ +wi —Ji -
i i

= ZWAJZ',+ +wpdi - + Z A(wa)idi+ — A(wp)idi— (3.50)

~~

Energy of Interaction energy U
the decoupled system

The first term of the sum represents the energy of the decoupled system, while the second
term corresponds to the interaction energy U(r) of the system that, according to the
equation eq.(3.49), scales proportionally to (X;i(r, wA,B))Q.

From eq.(3.44), in the limit » < ¢/wa p (near field limit), the interaction is found to be
short-range one, as (xj;(r, wAVB))Q is of order 1/7% (in fact, the term proportional to 1/r3
in eq.(3.44) is dominant). For large distances r > c/wa p (far field limit), retardation

effects make the interaction energy spatially oscillate with an envelope proportional to
1/r2.

the resonant case with, ws ~ wp = wy, for which eq.(3.47) simplifies to:
Wiy —wp F V/Calxi(r,wis) = 0. (3.51)

As seen before, the following expression is obtained for w; 4+ (7):

n!  dwn1 w + wo (3:52)

. +g (£1)" a»! H VCalxi(r,w) }"} =
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which at first order takes the form:

Wit (r) = wo + \/CACBW . (3.53)

A(wo)i

where now the first contribution for the correction to the frequency is proportional /.

In this case the total energy is given by:

Brot = Y wodiy +wodic + > Awo)i (Jiy — Ji-) (3.54)

Energy of Interaction energy U
the decoupled system

So according to eqs.(3.53) and (3.44), U(r) will be a polynomial in 1/r% with o < 3
(the dimensionality of physical space): hence the potential is so a long-range one at any
distance. In particular, from eq. (3.44) in the near field limit < ¢/wp, the interaction is

proportional to 1 /7'3, while oscillates for larger distances with an envelope proportional
to 1/r.

In conclusion it can be observed that:

e in the context of classical electrodynamics long range resonant interactions can be acti-

vated for a pair of oscillating dipoles;

e Considering eq.(3.54) it can be observed that the interaction energy is attractive, i.e.
AU (r) < 0, when the system is out-of-thermal equilibrium: in fact, under the hypothesis
that the energy is equally distributed among all oscillation modes (or in other words
Ji+ = cost) the interaction energy vanishes. In order to activate long-range attractive
forces it is necessary, for instance, that J, . > J, _, where J, + represents the action
associated to longitudinal modes. In order words, an out-of-equilibrium condition is
necessary. This is sound in view of application to real biological systems because many
biochemical reactions need to be activated by an energy input given, typically, by ATP
or GTP hydrolysis.
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3.4 Developments in research of long range interactions among

biomolecules

In this chapter, the theoretical framework of the research aiming to find long-range electro-
dynamic interactions among biomolecules in physiological conditions has been depicted. This
fascinating hypothesis, if experimentally verified, would entail a major leap forward in our com-
prehension of the processes -in the long term- that drive the dynamics of biomolecules in living
matter with even possible implications for medical applications [KDT07]. Even if Frohlich
propositions have stimulated a very active theoretical research between the 70’s and the 90’s
the persistent lack of experimental confirmations have marginalized this research field. The
reason is that the experimental techniques were not sufficiently developed to provide a clear
evidence of the Frohlich condensation and/or the activation of long range electrodynamic inter-
actions among biomolecules in aqueous solution at least in vitro. This is mostly due to the fact
the THz frequency range, which corresponds to the expected range of frequency of collective
biomolecular oscillations, is very difficult to investigate with classical spectroscopic techniques.
In fact because of thermal noise it is very difficult to realize sufficiently precise THz sources and
detectors, moreover it is a hard task to extract protein absorption in aqueous solution because
the vibrational modes of water belong to the same frequency range.

A partial renewed interest in Frohlich’s theories comes from the fact that it has been evoked
in Penrose-Hameroff’s theory of consciousness as a possible underlying mechanism for the set
in of coherent quantum states in neuronal microtubles, that is in "wet and warm” biological
conditions [HP96, HP14].

Only recently, technical developments in THz spectroscopy and in experimental methods for the
study of molecular dynamics has given new impetus to the research on Frohlich condensation
and long-range electrodynamics interactions.

In the very last years the development and refinement of spectroscopic techniques in THz do-
main and of techniques the dynamics of biomolecules dynamic with great precision re-open the
way for research of Frohlich condensation and long range interactions.

Some indirect evidence of Frohlich-like condensation in dry protein has been recently obtained
[LRW " 15] observing structural deformation of crystallized protein subjected to THz radiation
using X-Ray crystallography. In the following chapters we report about new theoretical and
numerical outcomes-worked out during this thesis work. They are aimed to a further refinement
of the presented theoretical framework picture and to the interpretation of new experimental
results obtained with proteins in water solution investigating both the possibility to induce
Frohlich condensation in real biomolecules and, consequently, the activation of electrodynamic

long range interactions. In particular

e Frohlich condensation phenomena has been theoretically derived in quantum mechanics
framework, nevertheless it seems an ambitious statement to claim for quantum behaviour
of vibrational collective modes of biomolecules as this objects are very "heavy”. In chapter
4 it is discussed how it is possible to derive analogous rate equations analogous to Frohlich

ones in semi-classical approximation considering a classical Hamiltonian system describing
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the dynamics of the a system coupled with a thermal bath and an external source of

energy;

in chapter 5 it is discussed the theoretical interpretation of very recent out-of-thermal
equilibrium THz spectroscopy experiment on biomolecules in water solution; the outcomes

would be a first evidence of Frohlich-like condensation in biomolecules in water solution;

in chapter 7 the some results of some numerical feasibility studies is reported for the
detection of long range interactions among biomolecules in water solutions; the main idea
is that mutual long range interactions would affect the dynamics of biomolecules also when
they are very far apart respect to their characteristic dimensions. Such results have been
used to provide a validation of a partially new experimental technique using Fluorecence
Correlation Spectroscopy to study diffusion behaviour of biomolecules in a wide range of

concentration to retrieve information on the presence of long range interactions.
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CHAPTER 4 From theory to experiment and return: Frohlich

condensation in classical systems

In this chapter an original derivation of Frohlich-like rate equations is derived for a sys-
tem of classical harmonic oscillators representing the vibrational (normal) modes of a generic
macro-biomolecule. The Time Dependent Variational Principle is used to associate a classical
Hamiltonian model to a microscopic quantum model originally introduced by Wu and Austin.
Then, the Koopman-Von Neumann formalism is applied to the associated classical Liouville

equation to derive Frohlich-like rate equations for the action variables of the normal modes.

4.1 Looking for Frohlich condensation in classical open systems:

motivations

As mentioned in the previous chapter, Frohlich rate equations (3.33) for the occupation

numbers, in the Fock’s representation of the normal modes amplitudes, of a generic biomolecule
were originally put froward heuristically. Therefore, the original formulation of Fréhlich con-
densation was lacking a microscopic model.
In the ’80s Wu and Austin derived the Frohlich rate equations from a quantum Hamiltonian
system describing - in a second quantization formalism - the normal modes dynamics associ-
ated to the mechanical deformation of a protein, to the coupling with a thermal bath, and to
the coupling with an external energy source. For a long time this model has been the only
”microscopic” description of the dynamics underlying Frohlich condensation.

A semiclassical approach based on a suitably defined Markov process among the energy
levels of the system has been recently considered in order to derive the Frohlich rate equations.
In this model the transition probabilities among the energy levels of the system are estimated
in an heuristic way. Also in this case the spectrum of the energy levels is assumed to be
discrete, so that neither this model can be interpreted in terms of classical dynamics [Prel2].
The construction of a quantum or of a markovian dynamics among discrete states to derive
Frohlich condensation seems quite questionable when applied to the internal vibrational modes
of a protein. In fact, thermal noise allows for transitions of frequencies of the order vy ~ kgT'/h
which, at room temperature (7' = 300 K), gives vy ~ 6.6 THz which is larger than the expected
frequencies of protein collective vibrations. Moreover, let us consider the average energy of each

molecule considered as an harmonic oscillator at the lowest frequency

2
D 1
+ —Myeqwi , Az? (4.1)

H =
est ered 2

where my,..q is the effective reduced mass associated to the lowest frequency vibrational mode
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of a protein. From the Equipartition Theorem it follows that

OH.s p?
<p o t> = 7<nes>t =kpT = o,= \/<p2> = \/m,,edk:BT (4.2)

and an estimation of the De Broglie wavelength associated with the oscillator is given by

h h

)\DeBroglie = ;p = W (43)
re

where h is the Planck constant; for a protein we can consider mye¢q ~ 10K Da ~ 1.66 x 1072 Kg
and a temperature of T' = 37 ~ 310K, eq.(4.3) yields ApeBroglic = 2.5 X 10~ '2m. As the typical
hydrodynamic radius of a protein is of the order of magnitude of ~ I1nm it follows that the
De Broglie wavelength is about three orders of magnitude smaller then typical molecular linear
dimensions.

For this reason, Frohlich rate equations should be derived from a model of classical harmonic
oscillators representing the vibrational modes of a protein, a thermal bath and an external
source of energy. Therefore we proceed to derive a classical Hamiltonian model from the Wu-
Austin original quantum Hamiltonian by resorting to a ”dequantization” technique called Time
Dependent Variational Principal (TDVP). A Liouville equation is then associated with the
classical Hamiltonian so obtained. Finally, the rate equations for the classical actions are
worked out using the Koopman-Von Neumann (KvN) description of classical mechanics. This
allows to treat Liouville equation in the Hilbert space of square integrable functions on phase

space, in analogy with the standard quantum mechanical formalism.

4.2 Quantum Hamiltonian to describe Frohlich condensation:
Wu and Austin model

As mentioned above, Frohlich condensation is a phase transition phenomenon predicted by

considering the stationary solutions of the rate equations (3.33), these describe the time evolu-
tion of the occupation numbers of the normal mode states. In the Frohlich original formulation
the rate equations have been written quite directly in an heuristic way: this method reveals
all its power in opening a new research pathway. Nevertheless it leaves open the problem of a
microscopic dynamical model from which these rate equations can be derived; this is necessary
both to deepen the comprehension of this phenomenon and possibly to allow an a priori esti-
mation of the coupling parameters ¢, and X,w; from the knowledge of the microscopic details
of the system.
Since Frohlich put forward a quantum model, the first microscopic model proposed to derive
Frohlich rate equations was a Hamiltonian quantum model [WAT7, WAT78a], by Wu and Austin,
formulated in second quantization formalism. LEt us sketch the main aspects of this model, as
it constitutes the starting point to derive a classical microscopic model for Frohlich condensa-
tion.

In what follows we indicate with awi,iili the quantum creation/annihilation operator for the
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vibrational normal modes of the main system (i.e. a biomolecule) with frequency w; € Zgys.
Such a system is put in contact with a thermal bath which represents the degrees of freedom
of the environment surrounding the protein and, possibly, other normal modes of the protein
which can be considered at thermal equilibrium with the surrounding environment. The ther-
mal bath is characterized by a temperature Tg and it is represented by a collection of harmonic
oscillators with characteristic frequencies Q; € Zpy, whose annihilation/creation operators are
BQ]. and /b\gr)j, respectively.

In order to put the system representing normal modes of the protein out of thermal equilib-
rium, an external source of energy is necessary: such an external source is represented as another
thermal bath at temperature Tg > Tg. Also in this case the thermal bath is described by a
collection of harmonic oscillators with frequencies Q;ﬂ € Zsre, the quantum annihilation/creation
operators of which are cQ/ and ¢ CQ, . These three sets of harmonic oscillators can be regarded
as three subsystems of a larger 1solated system S (we coherently indicate with Zgs the set of all

the normal modes of the system) whose quantum dynamics is described by the Hamiltonian
Hpor = Ho+ Hppe = (4.4)

where ﬁo is the free Hamiltonian of the three sets of harmonic oscillators representing normal

modes:

= > Twad %+§:ﬁ9%m+§:mwcﬂ (4.5)

erIsys Q erath Q EISTC

The interactions among normal modes are described by H Int; In the original formulation by Wu

and Austin such interaction term has the form:

HIntWA :Hsys—bth + Hsrc—sys + Hsys—bath—sys = Z Nw; Q25 aLibQB+
Wi €Lsys,825 € Lptn
+ > ¢ ooal e, + > X ﬁaﬁ-mcua
wiQ, YwiCa wiwj Q. Go; Dw; Vg, T H-C
wi €T sys 2 ELsrc wA;wA; €Lsys U €Tpen

where 7,0 j,gwi% s Xwiw;, € C are the coupling constants describing the linear interactions
among the thermal bath modes and the protein modes, the linear interactions between the
external source and the protein, and the mode-mode interactions among the protein normal
modes mediated by the thermal bath, respectively.

From these terms it is possible to derive the Frohlich rate equations, by resorting to time
dependent perturbation theory; details are given in the literature of Refs. [WA77][WA78a] and
in the reference work by J. Pokorny [PW13].

However, the mode coupling term corresponds to a potential energy unbounded from below and,
consequently, this would give rise to dynamical instability of the system and, in the quantum
context, to the absence of a finite energy ground state. This problem led to a strong criticism
against the Wu and Austin Hamiltonian and also against the ensemble of Frohlich condensation
theory [Bol99] [RMM09]. Let us put 5%% = 0 so that only the interactions among the normal

modes of the main system and the thermal bath are considered. An upper bound for the ground
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state energy can be derived considering a normalized trial state |1); a possible choice for such

II II Ine)el=,) (4.7)

Wy EIsys Qj EIbth

a state has the form:

where |N,,) is a normalized bosonic state where the occupation number N,, is fixed, i.e.
Al

o,
N,,!

7

|Nu;) = |0) (4.8)

while ‘sz> is a Glauber quasi-classical or coherent state [G1a63][ZC190] satisfying in general
ba, ‘ZQJ> = 2Q; ‘Zﬂj> and <Z91‘3gzj = <sz‘ 20, - (4.9)

As coherent states are eigenstates of the annihilation operator they can be interpreted as ” quasi-
classical” states, meaning that the annihilation of a single boson does not alter the state.
The values of {"wi}wieIsys and {ZQj}Qj T and the upper bound on the minimum of the

bath-system interaction energy (ignoring linear interactions) results to be in this case
Bgo <W Hal)= Y hwiNu+ Y e[+
wZEIsys Q ETpth

*
+ Z Nw,- (Xwiwiﬂj Zﬂj + Xwiwiﬂj ZQj) .
wi EIsysyﬂj ETpth

(4.10)

if zq; € R and such that 2Re (Xwiwiﬂj) zo; < 0 then it possible for zq; to satisfy also the

condition
hw; + 2Re (Xww,0,) D 20, <0 (4.11)
Q2
and it follows that for large V,,; the expectation value of the interaction Hamiltonian between
the thermal bath and the system is not bounded from below.
Such a problem can be easily fixed by adding a term with a quartic dependence on the cre-

ation/annihilation operators of the form

HzntQ = E [H(l)wiijkwl awiawjawkawl+
Wiywjvwkvwlezsys (412)
+ H(Q)wiijkwl awz aw] Wi a’wl + K/( )wiijkwl awza awk wl + h c.

as using the same trial function [¢)) the expectation value of the Hamiltonian operator is now
given by
LUAl. E.Zsys wjel-sys/wi

so that the previously calculated upper bound to the ground level energy does not go to —oo
for large values of N,,.

Such a quartic interaction stands for a anharmonic interaction among the normal modes of the
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protein, a broadly studied topic of relevance to energy transport in proteins.

4.3 Dequantization of Wu and Austin Hamiltonian by Time
Dependent Variational Principle (TDVP)

In this section, a classical Hamiltonian system with its canonical equations is associated to
the quantum system described by the quantum Hamiltonian of egs. (4.4), (4.6) and (4.12). This
result is obtained by applying the Time Dependent Variational Principle (TDVP) technique’
[KS80][Kra08] This consists in the evaluation of the time-dependent operator action on coherent
states of quantum harmonic oscillators. The scalar parameters describing the coherent states
become generalized coordinates of a classical dynamical system whose equations of motion can
be derived from a variational principle.

In more details, we make the ansatz that the wavefunction is parametrized by N parameters
{l’z’}i:L.._,N

) = [¥(z1, ... zN)) - (4.14)

where the parameters x; = z;(t) are in general functions of time. For a quantum system with
Hamiltonian ﬁTot the equations of motion of the x; can be derived using the following variational

principle (equivalent to the Least Action principle)
t —
§S=0  with S—/ L(x,v) dt’ (4.15)
0

where L(v,) is the Lagrangian associated to the system

) = () )
L) =5 —Gm - <w:|Fw> ‘

(4.16)

The equations of motions derived from eq.(4.15) can be worked out in the framework of classical
Hamiltonian dynamics.
The classical Hamiltonian is associated with the quantum one by simply taking the expectation

value of the Hamiltonian operator f-\Itot over the state |¢(x1,...,xy)), that is

Hror = (21, ... 2n)| Hrot [0(21, . ) (4.17)

The Poisson brackets {-,-} depend only on the chosen parametrization for the wavefunction.

wi=n{wlg?) = {500 (419

Lthe same technique, much more deepened from mathematical and conceptual point of view, has been
proposed as a ”dequantization” technique by [JS10] as a sort inverse procedure respect to the geometrical
quantization.

Starting from the variables
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it is possible to the define the antisymmetric tensor

ow;  OJw;

W = J _ v 4.19
K 8.1‘Z 8xj ( )

such that the equation of motion is implicitly given by

N
OH

S Wiy = % (4.20)

1 81’1

If the condition DetW;; # 0 holds then the matrix W;; = (W_l)l.j defines the Poisson brackets

for the classical Hamiltonian system

{f,9} = Z Wi (% (4.21)

This formalism can be applied to the quantum system described by the quantum Hamiltonian
of eq.(4.4) to construct a classical Hamiltonian system associated to it.

The choice of the parametrization for the wavefunction is quite arbitrary and the TDVP, as any
other variational principle, restricts the dynamics to a certain region of the Hilbert space.

The Hamiltonian is expressed in terms of creation/annihilation operators of the quantum har-
monic oscillators which describe the system; for this reason, the wavefunction has been chosen

as a product of the coherent states introduced before. In particular in this case

w(t)) = I1 2 () s © [20, (), @ 20 (B) (4.22)

ws eIsys 7Qj EIbtiuQ;C ELsrc

where |24, (£)) gy + |28, (0) e, » !zop (t)>sm are normalized coherent states for the normal modes
of the main system, of the thermal bath and of the external source, respectively: their general

form is given by

2) = exp {—'H 3 ¢% ) = exp [—22

> o 10) where z=z(t) €C. (4.23)
k=0 )

From the definition of coherent states eq.(4.9) it follows that the expectation value for the

occupation number is given by the squared norm of z

(ni(t)) = (=(O)|a'a|(t)) = |2(1)|” (4.24)

so, as we are interested in writing rate equations for these quantities, we parametrize the

wavefunction ¢(¢) with the set of real parameters {(n;, 0;)},cz, such that

1/2
ZZ':’/LZ-/

exp [—10;] = =z = nl/? exp [16;] ni = |z i €ZLs. (4.25)

K3 7
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Using eq.(4.18) it is possible to derive the Poisson brackets associated with the variables
{(ni, 03) }iez:

0
Wy, = Zh<{(nj,0j}jezs ‘87711 {(”j7‘9j}jels> -

1h
= W <{(”ja ej}jeIs

k
’ZJ'IT f ]zj’k exp [—1k0;] (a}) 0| =

2 k!

0
9 o]
Ol 7= k=0

1h
= 511 (1ol {100 83z 10 )z, ) + o8] (L0 3 ser, |8 | {5, e, ) ) =
h
= o (=il + [2i] explafi] expl-161]) = 0
2|z
(4.26)
0
wWe; = Zﬁ<{(nj7 ej}jel's 8791 ‘{(nja ej}jel's> =
k
k ~
9 12,27 2 |2 |" exp [—1k0;] (aj>
ﬁ<{(n],9 }]GIS 20, ®jezs | exp [— ; Z u |0) | = (4.27)
k=0
= 1(—1)h|zi| exp[—10;] <{(n],0 Viezs| @l |{(n5,6; }Jezs> = hlzi[* = hn; .
and, consequently, using the definition (4.19) the entries of the matrix W are
Wo,0, = Wnyn, =0 (4.28)
Owg,  Owp,
o= — — . 4.2
anek Wek”z anz agk 51719 ( 9)
and its inverse has the form
d;
Weoin, = —Wny0, = f%k (4.31)

Consequently it follows that the variables J,, = hAin,, and 6,, are canonically conjugated variables.

The classical Hamiltonian H = Ho+ H w4+ HntQuad for the variables {(6,,, Ju)} weTs 18 given
by a free classical part
Ho = (U0, J)| Ho [¥(0u, Jo)) = Y widu, + Y Qo+
WieIsys QkEIbth
(4.32)

> Yo

0 €E€Tsre
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by a semi-classical Wu and Austin interaction part

Hrnewa = (0, Jo)| Hrnewa |9 (0, J)) =

= Z Z ’nw’Qk Jl/QJé/2 cos <0 —bo, + Hy,wiﬂk) +

Wi EIsys Qk ELytn

‘ 4.33
szISUSQ ELsre o
Yy ’”;;;;Sk TP 008 (B = B + B + O, )
Wi,Wj eIsys Q. E€Tytn
and by the quadratic term
HlntQ = <\P<9w7 Jw)’ FIINtQ ‘\I/(G&H Jw» = Z J"‘1)1/2J53/2Ji£2jil/2
Wi Wy Wk w1 €ELsys
‘I{(l)wiijkwl )
T COS (0“;1 + ewj - ewk - ewl + 0“(1)wiijkwl) T
(4.34)
‘/{(Q)wiijkwl
T COS (sz + Qw]- + Hwk - ewl + 9”(2)“’1'“3'“’1@“1) +
"‘5(3)%%‘%% )
+ T CcOs <0w1 + ij- + Hwk + le + 0”(3)wiijkwl)

where each complex coupling constant is given in polar representation. In what follows, the

coupling constants are considered real and rescaled s.t.

enwiﬂk = eéwQ; = GXWinQk = 0”(1,2,3)wiijkwk = O

1
_ ’nwiQk’ - ’fw Q) ‘ B |XWinQk‘ _ K(1,2,3)w;wjwiw,
Nw; Qe = A ngﬂ - A Xwiijk - h3/2 f‘i(172,3)wiijkwl - h2

(4.35)
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with these choices, the total Hamiltonian of the system reads

HTot({(waewi}wieIS): Z wi i + Z QjJQj+ Z Q;JQ;C'—’_

wi€sys Qj€Lpin Q) €Tsre
1/2 71/2 1/2 y1/2
+ Z Z Tw;Q; Jwi/ JQ]' cos (0‘”1' o (99].) + Z Z 5‘%9;@ Jwi/ JQ/ €08 (9% B GQ;) *
ws GISTJS Qj €Tpth wi el—sl/s Q;g ELsre *

Z Z Xwiw; Qe J(};Z/QJ&;JHJ(l){f cos (Gwi - ewj + eﬂk) +

Wi wj €ELsys QU ELpeh,

+ > TP T2 TN Koo €08 (B, + 0wy — Oy, — 0) +

Wi ,Wj,Wg,wp eZsys

R(Q)wiwj'wkwl COs (ewl + ewj + ewk - 0&)1) + "1(3)wiijkwl COs (le + 90.)]' + ewk + ewl)

(4.36)

In order to derive Frohlich-like rate equations, the dynamics of the action variables J,,, of the
system has to be studied. We could choose to investigate the dynamics of the system by letting
observable quantities evolve in time (according to Hamilton’s equations of motion) and then
performing time averaging and an averaging on different initial conditions compatible with
the assumption that the two subsystems Zy, and Zg.. are two thermal baths with different
temperatures. However, this method has some disadvantages: the integration should be done
numerically for the presence of non-linear interactions terms in the Hamiltonian and for the large
number of degrees of freedom that would be necessary to simulate the dynamics of the thermal
baths. Moreover, long integration times would be necessary to attain the convergence of time
averages, and, finally, this would be a computational effort providing a redundant information
on the phase dynamics.

Another way to derive rate equations for the J,, consists in a more ”statistical” approach: the
t) so

dynamical variable to consider is the phase space distribution function p({(Jw,0w)},ezs »

that the rate equations are written for the statistical averages of actions variables

Ut = [ Tuap sz, &) ] Al (437

w€ELs

The following Section is dedicated to the problem of deriving classical Frohlich-like rate equa-

tions from the Liouville equation for the distribution function p.

4.4 Derivation of Frohlich-like rate equations using Koopman-

Von Neumann (KvN) formalism

4.4.1 General considerations concerning KvIN formalism

Let p({(Juw: 0uw) } ez, 31) e a probability density function for the whole system described by

the Hamiltonian in eq. (4.36); according to the Liouville Theorem the evolution of p associated
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with this Hamiltonian is given by

%0 (H,p} = ~1Lulp) (4.39)

where {-, -} are the canonical Poisson brackets

_ of g 09 Of of 99 909 Of
{1.9} _;<8Jwi 96, 0. aewi)jL;(aJQj 0o, DJg, aegj)+

af dg g Of >
+)° ( - :
o oy Doy gy Dy

and Ly (-) =+{H,-} is the Liouville operator acting on functions defined on the phase space of

(4.39)

the system. An interesting method to study and solve Liouville equations relies on the Koopman-
Von Neumann (KvN) formalism developed in the 30’s: a formal analogy among Liouville and
Schrodinger equation is established such that also classical mechanics can be formulated in the
framework of a Hilbert space of square integrable functions.

In our case the Hilbert space of complex square integrable functions in phase space is L? (A{( Jus0) Yo 6IS)

with the inner product defined by

27 —+00
(flg) = /A g 1] dJwdb, = ] /0 de,, /0 dJ, f*g (4.40)

{(J’O‘)}WGZS LUEIS LUGIS
with f,g € LQ(A{( T 0) . On this space we can define the action of the Liouville operator

boezs)
Lulf)=Lu(f). (4.41)

and consider the domain Dy C LQ(A{( Jo80)}e eIs) where the Liouville operator is self-adjoint,
AT L
namely, £L;; = Ly and DLH = DEH'

Let ({(J,0)}z5;t) € Dj_ be a normalized time-dependent function % such that

9y

v (3,6:) = Lyip(J,0;t) (4.42)

then it is possible to demonstrate that p = [|9b| 12 )y = %" is a normalized function for

Ao
which (4.38) holds. Moreover as L is a self-adjoint operator it represents the unitary time

evolution of the wave function as

G, 0)}zit) = exp <L $({(J.0)}2:0) (4.43)

in analogy with quantum mechanics. With this formalism the problem of deriving rate equations

(3.33) for the average values of the actions (which are the analogous of quantum occupation

2This formulation is equivalent to Schrodinger representation in classical quantum mechanics.
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numbers) for the main system normal modes w; can be expressed in this formal way:

d d N A
= Uy = 7 WOl Mo, [0(0) =2 WO £, Mo, | ®) (4.44)
where M J., 1s a multiplicative operator acting on L? (A{( Js0) Yo eIS) such that
My, [0) = |Ju1b) . (4.45)

Now let us suppose that the Liouville operator can be decomposed as
Ly =Ly, +Lu,, () (4.46)

where the eigenfunctions of Ly, operator are known and the operator EAHIM can be treated
as a time dependent perturbation, which is adiabatically turned on and off from ¢ = —oco to
t = +00. Then the analogous of the Interaction representation is adopted as a suitable formalism
to study this class of systems. In particular, if [1(t))g is the wave function in the Schrodinger

representation, its expression in Interaction representation [¢(t)); reads
(1)), = exp [t | [ (1) (4.47)

and given a generic operator Ag in Schrodinger picture its expression in Interaction picture Ar
reads

Ag(t) = exp {ztﬁHO} Agexp [—ztEAHO} . (4.48)
With this formalism the time evolution of [¢)(t)); can be written through the unitary evolution

operator U (t; o) satisfying

A

[Y(#)r = Ul(t;to) [¢(to)); (4.49)
zaUéthO) — Fu (DT (5 10) (4.50)
and the formal solution of (4.50) is given by
t ~ A
Ult;to) =1—1 | Lp,,tU({;ty) dt’. (4.51)

to

At first order in £ H,,,(t'), the unitary evolution operator U (t;to) in the right hand side of eq.
is substituted by the identity operator meaning that the state |¢(to));, if the perturbation is
turned on at to, can be approximated at zeroth order by [1(t0)); =~ [ (t0))g and assumed to be
coincident with Schrodinger picture (i.e. [1(0)) = |t)), then

o), =~ (i-1 [ i Lo 1)) (452)
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and, as Lg,, (') is a self-adjoint operator, the time evolution for the ”bra” has the form
A t ~
(W), = (Wol; (H + z/ LHm(t')> . (4.53)

The time derivative of the multiplicative operator M J., in interaction picture is derived ac-
cording to eq.(4.48)

('AlewJI =1 <[ﬁH,Msz}>I = 1exp {'LtEAHO:| [ﬁH,/\;leJ exp [—ztﬁHo} . (4.54)

This means that the average (4.44) can be entirely rewritten using the interaction picture as

Ty =1 1 (M) 00y = o o] ([ X0, ] ) o), =

I

~ 1 (o (ﬁ Fo /_ ; Lo (1) dt’) ([EH MJ%} (t))l <T1 — /0 t Lz (t) dt’> o) =

= ool ([£m 21, ] ), o)+ [ ol [([Be ] ), (Bt ) ] 1) e
(4.55)

4.4.2 Liouvillian operator properties of Wu-Austin-like model

In order to derive the equivalent of Frohlich rate equations in a classical context, we now
apply the method described in the previous Section to the model described by the Hamiltonian
in eq.(4.36). Let us introduce the multiplicative operator for scalar functions M FU(Jurb)
with

}wEIS)

—

Myt wezs) 1) = F{ (o 00) boezs )Y = | F({ (o, 0u) oezs ) ) (4.56)

and the derivative operators respect to angular variables lA?gw and respect to action variables

D, whose actions are given by

Dy, 1) = —ds.f Do, |v) = o, f . (4.57)
The commutation rules for such operators are obviously given by

'M\f({(Jw,Gu)}weIs)’ M\g({(Jw,gw)}wezs)} =0 (commutativity of functions product)
D sz,,ﬁgwj] = [ZA? Jwi,ﬁ ij] = [139%_,139%} =0 (Schwarz Theorem for C? functions)

_ﬁsz‘ R M\f({(‘]wvgw)}wels)} = —lM\awa({(JMgw)}weIS) (Leibniz’ Rule of derivation)

_De‘*’i ’ Mf({(t]wggw)}wels)} = —ZM[—)GWZ_ f({(‘]W10w)}WEIS) :
(4.58)
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in particular the following case, of particular for our problem, can be derived by the general
formulas (4.58)

DJWZ.;MJZJ} = —ij\/ljgfléij Wi, wj € Is q€Z

-Da~93Mexp[zB~9]i| = (a : /8) Mexp[zﬁﬂ] a-fB= Z O‘wiﬁwi (4.59)
wiEIS

— — |:A — —

_ﬁa-ﬂa Mcos[ﬁﬂ}] - Z(a : B) Msin[,@-@] Do, Msin[ﬁﬂ]:| - —’L(O’, ’ B) MCOS[,@'Q]

where
Dag = —1 Z 0,0, a, €R,. (4.60)
w€Lls
With this definition it follows that the free Liouville operator L H, for the system we considered
can be rewritten as:

Liy=-1Y wdy, =Daug . (4.61)

w€Ls

The interaction Liouville operator is can be seen as the sum of four contributions

~ ~ ~

‘CHint (t) = ‘CHsys—bth (t) + ZHsysfsrc (t) + EHsysfbthfsrc (t) + EHIntQ (t) (462)

where the explicit time dependence takes into account the adiabatic switching off of the inter-
action at ¢ = +o0; this can be obtained by the introduction of a term of the form exp[—\¢]
where A > 0 is the inverse time scale on which the interaction is supposed to be active.

The term £ Hyyoper, (t) and L Hays—sre (1) describes the linear interactions among the normal modes
of the protein, of the thermal bath, and of the external source of energy; they are respectively

given by

Loy =D > exp(=M)mu0 [M 12 M 12 Main(o,—60) (ﬁfu - BJQ> +
wEIsys QEIbth (463)
1~

+ iMcos(eweg) (MJ;UzMJé/zDew + Mji/zMJS;l/zDen)}

and

EHsysfsrc (t> = Z Z eXp (_)\t) an/ [MJi/QMJI{QMSiH(GW—QQ/) (DJw - DJQ/> +
welfys Q/ ELsre Q2 (464)

+ 2MCOS(9w—99/) <MJW1/2MJ;2{2D9“’ + MJ(})/zMJQIIMDQQ/)] .
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The Liouvillian operator representing non linear interaction term among normal modes of the

main system with the thermal bath is given by

£Hsysfbthfsys (t) =

= Z eXp (_)\t){M 1/2M 1/2M 1/2 [waZQMSIH( "Feﬂ_ewi) (ﬁJw + ﬁJQ) +

w,w; eIsys Qpin €L

+XwaQMsm( QQ)DJW:| + ./\/l 1/2M 1/2M 1/2 [wa QMcos(a 000, )-i-

XwiWQMCOS(Gwi+9sz—9w):| Dy, + iMJ‘},/ZMJMQMJ51/2M005(9w+952—9wi ) Desz }
(4.65)

Under the simplifying hypothesis that the coefficients £ (,)w,w;w,w, are symmetric with respect to
the exchange of symbols then the terms representing quadratic anharmonic interactions among

normal modes are given by

Lhet)= Y en(=M) {MJi/QMJi/QMJi/?MJif [4“<1)wwiijkMsin(ww—wj )t
i ]

W,Wi,Wj ,Wg Ezsys

T R(2)wwiw;w <3Msm(0w+6)w +y 0 + Msin(Gw—Gwi—ij—ka)> +

—

1~ @ —~ o~ —
T 4H(3)WwiijkMSin(9w+0wi+9wj+9wk) Dy, + §MJ3/2MJ52/2MJ3J§2MJ$£2

o~

4“(1)wwiijkoos(9w+9wi—ij—ewk) T R@)uwiwjwr (3Mcos(9w+ewi+ewj—ewk) + Msm(ew—ewi—ewj—ewk)) +

~

+ 4k(3)wwi“’jwkMsin(9w+9wi +0u,; 46w, ) D,

(4.66)

The particular form of the Liouville operator imposes some restriction on the domain of the L?
functions on phase space that we have to consider. The Liouvillian operator for the model that

has been introduced is invariant under angle translation by multiples of 27
exp[127 Do) L1 (0, 1) exp[—12m Dycg] = L (0 + 27k, t) = L(0,1) ke ZNwet  (4.67)

where Ny, is the total number of normal modes of the main system, of the thermal bath and
of the external source. The property (4.67) implies that we can restraint the domain of the
operator on the space of 2m-periodic functions with respect to the angle variables: this means

that any function in the domain of the operator can be written in terms of Fourier series, i.e.

S ) buezs ) = D Wm ({(To}uezs o t) exp 1k - 6] (4.68)

keZNtot
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S with the normalization condition

> o ({(uduezs 1) IP=1. (4.69)

keZNtot

In order to verify that the Liouville operator considered is hermitian, it is sufficient to prove

that the following operator, depending only on a pair of action-angle variables, is hermitian
o —~ ~ 1 —~ . ~ .
Licst = MJﬁ/QMsin(Gw—l—&)DJw + (H + 2MJ£/2_1MCOS(9w+5)> Dy, with k>1 (4.70)
so that
<g|Etestf> =

2 +oo 8f k 8f
— * | 7k/2 o Nork/2—1 1 _
Z/o dé,, /0 dJ, g [Jw sin (6 4 9) —aJ—i— <2 J cos (0, +0) + ) 60

9 J=400 9
™ ™ +oo ag*
= _Z/ A6, J5? sin (0, + 8) g* f + z/ d@w/ dJ, sin (0, + 6) J¥/ 2L+
0 o 0 0 9.,
0=2m
k(% oo . . ko[Too k/2—1 «
+ 1= dé,, dJysin (0, +0)g"f — 1= dJ, <cos (0, +0)J; + 1) g f +
2 Jo 0 2 Jo =0
+oF /27r d6 /m a. (cos (6 + ) T8> 4 1) 99" ¢
9 0 w 0 w w w 89w
k 2 +o0
— z/ dew/ dJ,, sin (8, +8) JF2 g f =
2 Jo 0
2 Too 0=2m
= <£test9‘f> — 13 / dJy, (COS (9w + 5) J£/2_1 + 1) g*f +
2Jo =0
27 J=+o00
— 7,/ A0, J*/% sin (0, + 0) g* f
0 J=0
(4.71)

So, if we consider a domain of functions in L*([0,2x] x [0, 4+00)) such that they are periodic in

the angle variables and such that for both f, g
. 1/4 _
Jim (Y ery) = 0 (4.72)

holds then the operator /jtest is hermitian and consequently the Liouville operator we considered
to study Frohlich condensation in classical systems is hermitian.

We notice that if we consider the Fourier representation of amplitude functions v as suggested
in eq.(4.68) and we make the hypothesis that the only non zero component is ¢o({Ju}, ez, +?)

we can verify that the square root of the normalized Boltzmann distribution for equilibrium
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independent harmonic oscillators

kT wdy,
PBol(Juw, 1) = 1/ &P [— QkBT] (4.73)

satisfies the condition in eq.(4.72).

In what follows we assume that the amplitude test function |1 (%)) ¢ in Schrédinger representation

has the form

W(1)s = do({Jutuers) = I ¢(Jert) T osa(Ja) [[ ¢BalJy)- (4.74)

WeIsys Q€Tyin Q/ ELsre

This assumption on the form of the states we are interested in takes into account for many
physical approximation. The independence by angular variables (as ¢k ({Jw}, ez4,t) = 0 for
k # 0) can be interpreted as the angular variable are not decorrelated among them. More-
over the factorization of the function depending by the actions in Boltzmann time-independent
distribution functions for the single harmonic oscillator of the thermal bath and the external
source of energy is a possible formalization of the behaviour of a thermal bath: the degrees of
freedom has a given statistic andit is not influenced by the dynamics. Finally the factoriza-
tion of the distribution function for the normal modes of the system translate the quite strong

approximation that the action variables of the main system are independent, i.e.

<H Jjjw> ~ [T (7&) (4.75)

w€ZTs w€Zls

4.4.3 Derivation of rate equations for actions expectation values J,,

In order to derive the analogous of Frohlich rate equation according to eq.(4.55) we had to
derive the form of the Liouville operator and of the commutator of the Liouville opeartor with
multiplicative operator by J,, in Interaction picture.

We first notice that for an operator A;(t) in Interaction picture

~

dA;(t ~ - ~ ~
dIt( ) = exp (ztﬁHO) [.As(t), ﬁHo} exp (—thHO) (4.76)
so that the time dependence of the operator in the interaction is acquired only by multiplica-
tive operators for functions which depends by angular variables M F{0u} ez’ in the Liouville
wels

operator associated to the Hamiltonian eq.(4.36) such functions have the general form

o~ o~

— Mex k-6 Mex —ik-0

Mcos(k.g) — p( ) 2 p( ) ( 77)
- -/T/l\ex k-0 M\ex —1k-0 .
Msin( 0) — p( ) p( ) .

21
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with k € RV7ot . As the following differential equation holds

d (Mj:ze;:(:tzk-ﬂ)>l _ % [exp (ztEAHO) (M\izexp(ilk'o))SeXp (ZtEHO)} = (4.78)

=49 (k . Wt) (M\ilexp(ilk'e))f (t)

it follows that
(Mizexp(izk-e))l (t) = exp (+ik - w) (Miexp(izk-0)> (4.79)

and consequently

(M\cos(k~9))l (t) = M\cos(k-(e—l—wt))

- . (4.80)
(Msin(k-ﬂ)) () = Mainge(0-+w01)) -

Now we have all the elements to derive a Frohlich like rate equations from eq.(4.55).

4.4.3.1 Linear term respect to EHW in eq.(4.55)

We start considering the contribution of first order term in L Hy,, to the right hand side of
rate equations (4.55). Such a term is given by the expectation value on the initial unperturbed
state |1ho(—00)) of the commutator of the interaction Liouville £, H,,, operator with the multi-
plication operator for the action variables J,, in Interaction picture.

Using commutation rules in eq.(4.59) and eqs.(4.80) the commutator in Interaction picture reads

<[ﬁH,MJwiD] (t) = (=) exp (_)\t)< Z nwiQ//\ZJi{ZM\Jé/2M\sin[ewi—09+(wi+9)t}+

QEToys

+ Z 5w¢Q’MJ5/2MJS}Z{2Msm[0wi—9Q,+(wi—9f)t]+
VT e '

+ Z Z MJifMJ}/?MJé”(XwiijMsin[ewﬁenfewj+(wz~+waj)t]+
w; E€Lsys QETpin J

—

— ijwiQMsin[Qwi —ij —GQ—I—(wi —wj —Q)t] ) +

—

+ Z MJL}J{QMJ:;§2MJ3.:£2MJ:;Z/2 [4K(1)wiw]'Wle MSin[ewi +9“’j —0, 0, +(wi+wj' 7wk7wl)t] +

k7wl
Wi, Wk ,Wi EIsys

(2) M
+ /{Wiijkwl Msin[ewi —0u

; —ka—le—l—(wi—wj—wk—wl)t] + 3Msin[9wi —0,. —0,, —Gwl—i—(wi—wj- —wk—wl)t]) +

J k
+ k) M
AZ'A]' AR A; sin [9‘*’2‘ +9“’j +9“"k +9""l +(w,' —Wj — W —wy )t]
(4.81)

It has to be noticed that all terms contain a linear dependence by the sinus function of angular
variables. When the expectation value of this terms is calculated on the state |1) of the form

assumed in the eq.(4.74), it gives a null contribution as averages of linear trigonometric functions
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of each variables are taken on the interval [0;27]. That means that the lowest order contribu-
tions to rate equations for expectation values of action variables J,, come from quadratic term

in Ly,

4.4.3.2 Second order term in ZHW in eq.(4.55)

The second order term respect to L H;,, in right hand side of eq. (4.55) gives in general a
not null contributions when the expectation value is calculated on the state |¢g) of eq.(4.74) as
quadratic terms in trigonometric functions of angular variables appear.

The general form for this terms would given by

(F)= X o [ (), 0. (), 0] s

(2),(it)€IdzSet

where IdzSet = {sys — bth, sys — srec, sys — src — sys, intQ(1), intQ(2), intQ(3)} is the set of
indices labelling the different terms in interaction Liouville operator; this means that a priori
there are 36 contributions to calculate. Nevertheless, some equivalent of selection rules can
be applied due to the particular form of the state |1)g(t)) we have chosen. As argued in the
previous paragraph, the terms in between the bra and ket has to be depend by pair power low of
trigonometric function of each variable in order to give a not null contribution; this is possible
only if with the same indices in IdzSet are considered.

Let us consider the detailed derivation of the contribution to the rate equations due to the term
describing linear interactions among the bath and the main system as an example of the general
procedure we used also in the other cases.

Let us start considering the operator at right hand side of (4.82) where (i) = (ii) = sys — bth

at a certain time ¢ > 0 in Interaction picture

/Ot |:<|:EHsys—bth7M\Jwi:|)I (1), (Esysfbth>l (t/)} dt' =
X =/

exp (—At) exp (—)\t/) ﬁwiflm’QMJi/QMJg/Q [(Mjw;/g./\/lﬂ/zh,wi-%
wej-sys QyﬂGIbth Z !

—

— MJL}JZ/QMJQUZ&Q’Q) Msin[&,i—05—2+(wi—§~2)t]MSin[ewfeﬂJr(w*Q)t’]+ <MJwi1/2MJ§2/25w7wi+
_ MJL}/QMJQUZ(;Q,Q>

Mcos[ewi —95-2+(wi—fl)t] MCOS[ew GQJr(WQ)t,]) ] dt’

(4.83)
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and performing the integration over the time variable ¢’ and considering the limit A — 0 we

obtain

/Ot [( [ZHSyS*bth’M\sz'])I (t), (Esys—bth>1 (t,)} dt’ =
1 —~ g sin @)
— 9 Z Z M Qw2 MJi/zMJ;Z/QW

wei-sys Q,QEIbth

~ M apM b g | [ M : .
VA QQ)( cos[9w79979wi+052+(wfﬁf@)t}+ (484)

—

- M 5 + M\_1/2./T/l\12(5 -—M\1/2M\—12(5 &
cos[9w799+9wi79()+(waeri;Q)t} Ju, Jﬁ/ Wi Jio; JQ/ 2.0

M —1/2M 1/26ww-+
J“’i Jﬁ YW

M v g\ 1 TM _—
Cos|:9w—99—9wi+9ﬁ+(w—9— ’2 )t:| COS|:9W—QQ+9LUZ.—0Q+(W—Q+ l2 )t]

When the expectation values is calculated over the states [ig) the only terms that give a
contributions are the ones for which Jw € Z,y, and 30 € Ty, such that the trigonometric
functions in (4.84) do not depends any more by angular variables, i.e. w = w; and Q = Q. In
this way the averages over angular variables give not null contributions; after this passages are

performed the expression (4.84)

ol [ [([Ertarcsas T ]), 00 (o), 0] 0} =

> (3%s) Smjg: : ;2; } (M) = (M0,)) (4.85)

QETyn,
where the bracket in the previous expression refers to the averages over actions variables. Ac-

cording to the form for the |1)p) function assumed in eq.(4.74), we have for the expectation value
of action variables of heath bath that

(M) = kBQTB . (4.86)

In the limit for which the thermal bath can be considered constituted by a continuum of nor-

mal modes the coefficient 772(2 becomes a distribution function respect to the frequencies of

thermal bath modes, i.e. nf,(fl) and obviously the sum becomes an integral over frequen-
+oo
cies Z — / d). As we are interested in the behaviour of the system for long times
QETy, 0 ~
t> max |2 — w]_l, the following approximation is assumed

UJGIsys 7Qerth

o [Ew _ Q> t} — S(w — Q) (4.87)
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when the continuum limit for thermal bath modes is considered, being §(z) the Dirac 6-
distribution. Finally, the averages over the action variables are considered evaluated at t and

not at tp = 0 in order to write a set of rate equations for J,,, as in the spirit of perturbation
theory, |[¥o(t)) ~ |1po(t)); it follows that?

+o0

F) = [ dadonaso = [ gl = (M) 0 @ss)

The final for the contribution due to the linear system-bath interaction is

ol [ [([Btans ¥00.]), 0 (B 0] ) = (B ) [ B2 — 1] =

wj
— | "2 ()]

Wi

(4.89)

where )

b, =
wi Qwi

(4.90)

An analogous is derived considering the terms due to the linear coupling among the principal

system and the thermal bath:

ol [ (B M), 0 (B, )] ) a7 = e (P2 - () =

2 W;

2
T wa, kpTp

2 WA,

03

= Swi
(4.91)

kT,
where in the last equation the approximation (J,,) (t) < B-P

: has been made. This approxi-
mation correspond to the physical request of a continuous enzergy injection as s, is in general
non-negative and time independent.

The contribution to rate equation given by the term in Liouvillian operator related to non linear

interaction among the main system and the thermal bath is more complicate:

t

(wol | (Lt Mo )) O (Bt ) @] 1) @ = 37 X2 0|0 = wil)

2
OJEZsys

BBIE (1)~ () + senlw — w,) <le.Jw>} -

N Z WXEW(’W—%D[ kpTp

2 |w — w;]

() = (T + sEn(e — w2) (o) <Jw>}

(4.92)

3 This passage is quite mathematically ”ambiguous” ans reflects the hybrid character of the Inter-
action picture where both operators and states are considered to evolve with time. Nevertheless the
approximation of eq.(4.88) is the same operated by Wu and Austin in original derivation of Frohlich
equations made the same approximation [WA78a].
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where in the last approximated equality we have assumed that the correlation of actions of
systems normal modes are negligible. Introducing the coefficients
ThBTBX2, (Jw — wil)

= 4.93
Cuwi 2w — wil (4.93)

the eq.(4.92) simplifies

0l [ (Bt ), O (Bt s), 0] ) =

= Y e =+ S ) ).

wAEIsys

(4.94)

There are further difficulties in the derivation of the contribution due to the terms in Liouvil-
lian related to quadratic interactions among normal modes. In the previous cases the explicit
time dependence which appears in rate equations through sin [(w; — Q)t] / [7(w; — ©)] has been
managed considering a continuum for the thermal bath and replacing the sinc function by a
d-distribution. This would be incorrect for what concerns the finite and countable set of normal

modes of the main system; for such a reason the sinc function is substituted

(4.95)

sin [AOJ(A)th (wi)t] 0 when A“j(A)intQ(Wi) 7é 0
=0

~ 1
TAW(A)intQ(Wi)

5wsy5 when Aw(l)

where dwgys = minwj, wy € Lsys(|wj — wi|) is the spectral resolution of the main system while
and
AwryintgWi) = wi +wj —wp —wi AW i (Wi) = wi — wj — Wi — Wy

(4.96)
Awiiyintg = wi +wj + wg — wy Aw@yintg = wi +wj + wi +w

are the resonance condition for the different quadratic terms. It can be noticed that with this

approximation the contribution due to the terms E(g)th are null as w > 0. The other two

quadratic terms give

il [ (Bt M), 0 (B, O] i) e =

1672 Wl
- ¥ fsﬁ, () ( (g ) (o) + () () = 2 () <J°’j>>

wj,wi,wi €Lsys
“"i‘H’Jj —wg 7wl:0

(4.97)
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and

ol [ (Bt M0.]), 00 (B, O] o ot =

OWsys

37 [ Z 3/6%2)wiijkwl <ka> < <ij> <sz> +2 <Jwi> (sz> - <Jwi> <ij>> +

ijkwlelsys
wi+wj+wk—wl:0

+ Z Ké)wiijkwl <le> <ka> <<ij> -3 <sz>>] .

ijkwlel'sys
wij—wj—wp—w;=0

(4.98)

Putting together all the contributions we have derived, a Frohlich-like rate equations is obtained

for expectation value of actions

d<Jw> kBTB Wy — Wj
L= sy 4 by |2 — o | | (T — (T, o) (T
‘f’j#wi
16mk?2
Nwiwjwrw
+ Z “<le>(<ij><ka>+<Jwi> <ka> _2<Jwi><<]wj>>
uj,wk,ulelsys sYs
wi+wj7wk7wl:O
3
+ &us s [ Z 3"{%2)wiwj-wkwl <ka> <<Jw]> <le> + 2 <sz> <le> - <sz> <ij>> +
Y ijkaGISyS
witw;jtwg—w;=0
+ Z ’%%Z)wiijkwl <le> <ka> < <ij> -3 <Jw1>>] .
ijkwlezsys
wi—wj—wk—wlzo
(4.99)

4.5 Discussion and properties of Frohlich-like rate equations
(4.99)

The set of rate (4.99) equations we have derived by solving Liouville equation associated
to the Hamiltonian system (4.36) is quite close to the original set of Frohlich equations (3.33).
Moreover, neglecting the k-terms, the eqs.(4.99) can be directly derived by egs. (3.33) consid-
ering the limit w; (J,,) < ko Tp; this is related that in original Frohlich set of rate equations
the Planck distribution was assumed for normal modes of thermal bath and of energy source
modes, while in the derivation we have proposed the Boltzmann distribution has been assumed.
As in the original formulation of Frohlich condensation theory, the main interest in writing rate

equations is to find the stationary solutions. In order to make this study easier we provide a
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nondimensionalization of egs.(4.99): introducing the following set of variables

: . Wi <Jw> )
T = tw with wop = min w = ! oy, = —
’ T weL, M0 hgolTa Y w
Su. =« Su B . = b& C _ Cuwiw; T _ 16”“(1)wiijkwl(kBolTB)2
w; wj kol w; wo WiwW; wo (Dwswjwiw; 5wsysw8
T _ 37”{'(2)wiijkwl(kBolTB)2
(2Qwiwjwrw; — 5wsysw8
(4.100)
the eqs.(4.99) read
y dy i Q; (a  — & z)
Yowi = ~ = Swi + Bu, (1 - ywi) + Z Cwiw~ —wyw‘ — Yu, | + uywiyw +
dr J a J o '
ijISyS wj wj
wj;ﬁwi
Y, Oly; 1 1
T Z T(l)wz‘ijkmﬂ = Yooy Yoo, T+ — Yoo Yoy, = 2— Yo, Yoo,
Wi Wi,w €Lsys Quyp \ Cw; Qg Ay, Qo
wiiw]-—wk—wlzo
Yo Ay 1 1
+ Z 3T(2)wiijkwl Yw; Yuw, + 27ywiywl — — Y, Yw; +
wiwpw ELsys Ay, awj Qyy Ay, O[wj
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Ywr Y Oy
+ Z T(Q)wiijsz e - Yw; — Y, w; € Ly, .
ijleEIsys awkawl awj
wi—wj—wk—wl:()
(4.101)

Some properties of eqs.(4.101) has to be noticed:

o if the system of normal modes thermalize at the temperature Tp, so that (J,,) =

kpoiTB/wi, it follows that the variables y,, = 1;

e if we ignore the contribution due to the external source of energy, i.e. S,, = 0, we can
easily observe that y,, = 1 is a stationary solution of the system, namely ., = 0. More
strongly each sum give a null contribution; this is consistent with the physical interpre-
tation that, if the system is not put in contact with the external source of energy the

Boltzmann distribution is a stationary one for the system (thermodynamic equilibrium).

An analogous nondimensionalization procedure can be applied to egs.(3.33) leading to

dy.,, ~ ~ . .
ywz — Swi + Bwi <1 _ ywz eXp [pawz} ) _|_
dr PWi

+ Z éwiwj [(O;wl exp [p (aUJj — awj)] ywj _ ywi> + yWiywj exp [P (Oéwj - Oéwi)]

. paqu

(4.102)
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with i =1, ..., Ngys and, with reference to egs.(3.33)

hw ~ . ~ . . ~ o
p - ]{7 ; Swi = S"Jz pawi Bwi = _M Cwiwj = _lewj : (4103)
Bol4 B wo wo wo

We notice that p ~ 1.3 x 1072 at typical temperature in biological systems T ~ 310K and
values of omega in the range of biomolecules vibrational modes, i.e. wy ~ 0.5THz. It fol-
lows that if the ay,, < 10 the exponentials in (4.102) can be approximated at the first order,
i.e.exp (pxr) =~ 1 + px + o(px). This naturally leads to egs.(4.101).

In order to study Frohlich condensation numerical integration of (4.101) for two systems of
harmonic oscillators (representing vibrational normal modes of a biomolecule, i.e.) whose fre-
quencies (in arbitrary units) are given by wy, = 1+ ndwsys where for the first set ny = 0,1, ...,10
and dwsys1 = 1 and for the second set no = 0,1, ...,20 and dwgys2 = 0.5.

One of the main problem of this model (as in the case of quantum Wu-Austin one) is the extreme
difficulty in providing an a priori estimation of the coupling constant for a real biosystem: the
nondimensionalization of the equation partially solve the problem as only the ratios among the
coefficients has to be known. As we are interested in a qualitative study of the behaviour of the
system in order to asses that Frohlich condensation is possible also in the classical mechanics
framework, the coupling constants appearing in eqgs.(4.101) are supposed to not be dependent
by frequencies for sake of simplicity. In particular the condition S,,, = S can be physically in-
terpreted as an energy injection rate which is independent by the frequency of the normal mode.
The Frohlich condensation(-like) phenomena can be regarded as a out-of-thermal-equilibrium
phase transition: slightly varying the energy injection rate (the control parameter) around
a certain critical value the system attains a major changes in the energy distribution among
normal modes resulting in a more ”organized” phase (the energy is stocked mainly in the lowest
frequency mode) . In order to characterize such major change in energy distribution among
normal modes of the system, the equivalent of an order parameter for a finite set of normal

modes is introduced:

Yo (1) 1
E(el)w; (t) = S o) N (4.104)
wiezsys '

As g, is the energy in the mode at frequency w; in kg7, units, when the system is at thermal
equilibrium it follows that €,, = 0; when the energy condensate in a mode ¢,, > 0. The range
of each parameter €,, is [—1/Ngys;1 — 1/Ngys]; the lower bound corresponds to a system at
T, = 0 effective temperature while the upper bound corresponds to the condition where all
the energy is in the w; normal mode. In general the parameters €., (f) is a time dependent
function; nevertheless, we are interested in stationary stationary solutions (namely such that
Y, = 0) that can eventually be attained if initial conditions are fixed such that y,, (0) = 1, so
supposing that at the initial time the systems is at in equilibrium with the heat bath. In order
to compare the qualitative behaviour of stationary solution of the classical and quantum derived
rate equations, also the (4.102) has been numerically integrated for the set of frequencies Zgy 1
and with initial conditions y,,, = pa;/ (exp [pay,] — 1) coherently with the supposed Planck

distribution at thermodynamic equilibrium. For the same reason a slightly different order
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parameter is introduced in this case

Ywi (t) PO,
Clanelt) = =5 - - (4.105)
Y 1(t) e .| — 1 e L
wi€Lsys N ( P [p wl] )Wj EZIsys Cxp(paw]’)_l

4.5.1 Results of numerical simulation
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Figure 4.1: Comparison of numerical solution of Frohlich rate equation in classical and quantum
case. The e,, order parameter for both quantum (pointed lines)and classical (solid lines) case
is reported vs. the injection energy rate S,, = Sw“ for the three lowest frequencies of the
system Zgys1 (a) Zsys2 (b) and , ie. w =1 (blue), wp = 2 (green), w = 3 (red). The other

parameters of the system were set B, = By, = 1, Cyw; = Cuw; = 0.1 and T(q) = T(2) =0
(no quadratic contribution). The black solid lines correspond to the lower and upper bound
of the order parameter in classical case, while dashed lines corresponds to the quantum upper
bound of order parameter for w = 1 and to the quantum lower bound for w = 2 and w = 3.

In Fig.4.1 the results of numerical integration of the quantum rate equations (4.102) and of
the classical rate equation(4.101) are reported for the set Zyy,s1 and Zgyso with the initial condi-
tions specified in the previous section. The other parameters in equations (4.102) and (4.101)
were set B, = BM =1, Cwiwj = C’wiw]. = 0.1 and no quadratic interaction were considered in
classical rate equations (namely Y(;y = Y(2) = 0). This choice is justified by the fact that the
results really depends by the ratios of coupling constants (i.e. S/B and C/B); the coefficient B
has been chosen as reference parameteras it is directly related with characteristic thermalization
time scale Tiperm &~ B~!. The choice C/B = 0.1 is coherent respect to what can be found in
literature [PW13] for qualitative studies on Frohlich condensation. The integration has been
performed in each case for a time interval 71tz > 0 sufficiently long such in order to guarantee

that |ey, (T) — €w, (Tstat)| < 107 for Tstat, t € [0, treg]-

The results shows a qualitative and quantitative accord between classical and quantum case,

as expected by the fact that the classical set of rate equations can be obtained by the quantum
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one in the "hight temperature limit” as argued in previous section.
In particular, it can be observed that three qualitative different stationary state regimes are

attained depending by the value of S (energy injection rate in adimensionalized units):

e an equipartition regime (example in blue in Fig.4.2) for § < 0.5 x 10~! where the injected
energy and not linear interactions among bath and normal modes are not sufficient to
brake the equipartition energy, all the oscillator attain the thermodynamic equilibrium

at a temperature Tgay > T;

e a partial condensation regime (example in green and purple in Fig.4.2) for 0.5 x 107 >
S 2 100 where the energy is not equally distribute among normal modes, and the lower

normal modes has much more energy than the others;

e a saturated condensation regime (example in red in Fig.4.2) for S 2 100 the vibrational
energy is condensed entirely in the lower normal modes and there is no energy in the

higher normal modes.

0.1+

-9-8-0-5-0-0-0-0-0-0-0-0-00"0"0"0--9-F
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Figure 4.2: Fraction of energy in vibrational modes vs. frequencies of normal modes of the
system Zgys2. The coupling consant have been fixed B = 1, C' = 0.1, T(l) =103 (this is
sufficient to guarantee a finite bound from below for the classical Hamiltonian), T(g) =0 and
S = 0.1 (blue dots), S = 1 (green dots), S = 10 (purple dots), S = 100 (red dots). The
equipartition state correspondsto dark dashe line. It has to be noticed the great difference
among the energy fraction in lower normal mode is approximatlivy three order of magnitude
higher in satured condensed phase.

This results (see Fig.4.3) have been tested for different values of C. It has observed that the
Frohlich-like condensation features are qualitatively stable and for lower values of C' (C' = 0.01

and C' = 0.001) both in classical and quantum case. Moreover it can be conjectured that the
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values of the threshold in energy injection rate to induce the condensation is inversely propor-
tional to C'. For the higher values of C' = 1 the results does not seems to be also quantitatively
different from what found for C' = 0.1; this would suggest a saturation threshold for C. Nev-
ertheless in this latter case the perturbative approach used to derive Frohlich rate equations

seems to be almost questionable.
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Figure 4.3: Comparison of numerical solution of Froéhlich rate equation in classical and quantum
case. The ¢,, order parameter for both quantum (pointed lines)and classical (solid lines) case

is reported vs. the injection energy rate S,, = S.,, for the three lowest frequencies of the
system Zgyeo with C'= 0.001 (a),C = 0.01 (b) and C' = 1(c). The frequencies are w = 1 (blue),
wy = 2 (green), w = 3 (red). The other parameters of the system were set B,, = B,, = 1 and
Ty = Y(2) = 0 (no quadratic contribution). The black solid lines correspond to the lower
and upper bound of the order parameter in classical case, while dashed lines corresponds to the
quantum upper bound of order parameter for w = 1 and to the quantum lower bound for w = 2
and w = 3.

Frohlich-like condensation phenomena observed by our numerical studies both in quantum
and classical case shares some features with other transitional phenomena: the system under-
takes a transition between a "more symmetric phase” (where the energy is equally distributed)
and "less symmetric phase” (where the whole energy is condensed in first normal mode) when
a certain critical point of the control parameter (the energy injection rate into the system) is
traversed.

The effect of quartic direct interactions among normal modes on the order parameters €, as
functions of the energy injection rate S has been investigated in classical framework for the two
frequency sets Zgys1 and Zgys2. Some different test have been done for C' = 0.1 and and different
values of Y1) and T y).

To compare the results for the two systems Zsys1 and Zsyso, coefficients of terms derived by
quadratic interactions have been chosen such that T (1)dwsys = 'Nf(l) and T (9)0wsys = T(Q) where
T(l) and T@) are supposed to be constant.

The presence of terms in rate equations proportional to T(;) has been verified to not affect
in qualitative of quantitative way the Frohlich condensation in classical systems for both the

normal modes considered sets: the results are not reported in this case.
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To the contrary the presence of the quartic term proportional to T (9) seems to strongly affect
the qualitative behaviour of the system for different values of S with a suppression of Frohlich
condensation. The effect is stronger for the system with more ”dense” normal modes as showed
in Fig.4.4, where the energy distribution is showed for C = 0.1, T(l) = 1073 and different values
of To. This suggest that quartic interactions responsible T (9)-term in Frohlich rate equations
allow the transfer of energy from lower frequency modes to higher frequency modes. This is
consistent with the idea that a quartic oscillator exert a ”confining” action: if too much en-
ergy tends to be condensed in lowest frequency normal mode, the quartic interactions limit the
amplitude of its oscillations promoting the transfer of energy towards higher frequency normal
modes. The analysis of the energy distribution among normal modes of the system sys2 shows
clearly how the terms proportional to T ;) populates higher frequency normal modes: especially
w = 3 as the quadratic term proportional to k(o) promotes the exchanges among this normal

mode and the lowest frequency one.
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Figure 4.4: Order parameter €, vs. adimensionalized injection rate S for frequencies w =
1(blue), w = 2(green), w = 3 (red), w = 4 (purple) of Zs . The coupling consant have been

fixed B=1,C=0.1, T = 1073 (this is sufficient to guarantee a finite bound from below for
the classical Hamiltonian), T(Q) = 1079 (dotted line), Y(Q) =107 (dashed line) and T(Q) =101
(solid line).
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Figure 4.5: Fraction of energy in vibrational modes vs. frequencies of normal modes of the
system Zgys2. The coupling consant have been fixed B = 1, ¢ = 0.1, T(l) =103 (this is
sufficient to guarantee a finite bound from below for the classical Hamiltonian), T(z) =107 (a)
and T(g) = 107% (b) with S = 1 (blue dots), S = 10 (green dots), S = 10% (purple dots) and
S =10" (red dots). The equipartition state corresponds to dark dashe line. It can be noticed
how at high values of S higher frequencies (especially w = 3 are excited).

4.6 Comments and conclusions

Frohlich rate equations describe the dynamics of a system of harmonic oscillators in contact
with an heat bath and an external source of energy. They have been heuristically derived and
admit stationary solution where the energy is condensed in the lowest frequency mode when
a certain supplied energy rate is over a certain threshold. This out-of-equilibrium transitional
phenomenon represent a general paradigm for organization in biological systems and it could
be responsible for long-range electrodynamic interactions among biomolecules in living matter.
As such equations are very general and heuristically derived, they has been considered more
as a metaphor than a model that can be adapted to describe realistic cases. This justifies
the research of a microscopic model from which Frohlich equations can be derived. Wu and
Austin proposed a quantum Hamiltonian model that success in provide a microscopic underly-
ing Frohlich equations. Despite of this success this leaded to the idea that Frohlich condensation
is a phenomenon due to quantum effects and regarded as the equivalent of Bose condensation
for out-of-equilibrium systems. Moreover, original Wu and Austin model have been strongly
criticized as it was proved that their quantum Hamiltonian has not a finite energy ground state.
The work presented in this chapter aimed to verify if Frohlich condensation can take place also
in classical systems and if it affected by the presence of interactions that can correct the absence
of a finite lower bound for the Hamiltonian (so the total energy).

A classical Hamiltonian system is derived from Wu and Austin quantum Hamiltonian (”cor-
rected” with added quartic interactions among normal modes of the main system to correct

the lower bound behaviour) applying a ”dequantization” technique (based on a semi-classical
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approach): the Time Dependent Variational Principle (TDVP).

Frohlich-like rate equations are derived from Liouville equation associated to classical Hamil-
tonian systems using the Koopman-Von Neumann formalism that allows to formulate classical
mechanics in Hilbert space. This has the advantage that the derivation is formally very similar
to the known one for quantum systems. The main difference relies to the fact that in classical
case the equilibrium distribution for the heat bath is supposed to be the Boltzmann one while
in quantum case is the Bose-Einstein one (with zero chemical potential).

The stationary solution where numerically derived by time integration of rate equations for
initially conditions such that the system is at the thermodynamic equilibrium with the heat
bath.

Results of numerical simulation allow to conclude that Fréohlich-like condensation phenomena
are possible also in classical systems derived by Wu and Austin quantum Hamiltonian through
a "dequantization” procedure. In both the case, some features of phase transitions are found for
this class of system as the existence of two different phases and a presence of a threshold in
control parameter (the external energy injection rate). The introduction of terms in rate equa-
tions derived from quartic direct interactions among normal modes can affect the condensation
of the energy in the lowest frequency normal modes rate equation weakening the phenomenon
for very high values of injected energy.

On one side this work opens the way for further research on Frohlich-like condensation in clas-
sical mechanics framework especially for what concerns the analytical discussion of stationary
solution. In particular it would be interesting to deepened the investigation of the analytical
dependence of the order parameters €., in the stationary state by the parameters in rate equa-
tions. On the other side Koopman-Von Neumann formalism has turned out to be a suitable
mathematical tool to investigate the properties of out of thermal equilibrium systems. Rate
equations for higher moment of J,,. variables (or equivalently for y,,,) can give more information
on the form of stationary energy distribution for out-of-thermal equilibrium systems.

Finally it has to be stressed that it is already unsolved the major issue to derive or almost pro-
vide and a priori estimation of the coefficients in equation of (4.99) for a real protein in cellular
environment. Such aim it seems very difficult to be attained due to the extreme complexity of
the system constituted by protein, hydratation water and bulk water and molecular and atomic
level. In particular the interactions among protein and surrounding environment (especial water
molecules) is main object of current researches right now. Nevertheless, the work here presented
is a little step in the direction to make the ” Frohlich condensation metaphor” a realistic model

for biomolecules in living matter.
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CHAPTER 5 Terahertz spectroscopy experiments for the
observation of collective oscillations in biomolecules

out-of-thermodynamic equilbrium

In this chapter the theoretical interpretation of experimental outcomes of THz spectroscopy
experiment is discussed. Such experiments have been performed to research an evidence of
Fréhlich condensation of vibrational energy in biomolecules in aqueous solution when they are
put out-of-thermal-equilibrium. The theoretical interpretation of these very recent experimental

results is here presented!.

5.1 Terahertz spectroscopy on biomolecules: motivations and

methods

Motivations of the experiments

In the previous chapter it has been argued that Frohlich-like condensation phenomena can
take place in classical system out-of-thermodynamic equilibrium and, consequently, also in quite
"heavy” macromolecules (in the sense specified at the very beginning of the previous chapter)
even in "wet and warm” biological environments.

Necessary conditions to obtain a stationary condensed state are the presence of non linear in-
teractions among heath bath and normal vibrational modes of the considered system and that
a sufficiently hight energy injection rate is provided.

Hence it seems natural to investigate if Frohlich-like condensation is really exploited by biomolecules
in living matter; as observed in chapter 3 the presence of collective oscillations in biomolecules
would result in giant oscillations of electric dipole and, consequently, in the possibility to acti-
vate long-range electrodynamic resonant (selective) interactions.

A direct observation of collective oscillations in biomolecules in physiological conditions consti-
tutes a real experimental challenge for many reasons. Terahertz domain spectroscopy requires
to overcome technical difficulties; it represents a critical frequency range for electronic devices
and the realization of sufficiently precise THz sources and detectors has been possible only
in the last decade. Moreover other serious difficulties derived by the necessity of studying
biomolecules in water solutions (being these very opaque media for Terahertz radiation) and
in an out-of-equilibrium stationary state sustained by some external energy injection. It is in
fact very well known that the absorption properties of water in THz domain is strongly af-

fected by the presence of structured ensembles of water molecules [PSY " 15]. Such properties

L Although the work of the author of this manuscript mainly concerns the theoretical interpretation
of the experimental outcomes, he also directly participated to some experimental session giving his own
advices on set-up definition and optimization.
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have been very recently use [SDD15] to determine the thickness of hydratation water shall
around protein. Experimental evidence of the existence of collective modes of vibration of
proteins and of fragments of nucleic acids has been provided at thermal equilibrium by means
of Raman and far-infrared (FIR) spectroscopy [Kei95]. Important results have been recently
obtained in the characterization of collective vibrational motion at the thermodynamic equilib-
rium of biomolecules; such vibration and could be strongly affect their functional role in vivo
systems[KCM06, CKY 07, KCHMO07, HCK " 11].

Despite of this it has been recently shown [PPT15] that at thermal equilibrium the energy
exchange of a biomolecule with its environment through random thermal noise cannot activate
long-range electrodynamic forces.

Evidence of deviation from the expected behaviour in relaxation to thermal equilibrium in crys-
tallized protein has been found through X-ray crystallographic experiments on protein excited
by THz-pulsed radiation [LRW " 15].

Moreover, no experimental evidence was hitherto available of the possibility of exciting out-of-
equilibrium collective oscillations of a biomolecule, that is, to generate the basic condition to
activate intermolecular electrodynamic interactions in physiological conditions.

Very recent and innovative techniques in Terahertz spectroscopy developed by the team of
Prof.Varani at the IES (Electronique institute) of Montpellier and by the team of prof.Ortolani
at the University ”La Sapienza” (Rome) allowed to perform for the first time Terahertz spec-

troscopy on out-of thermal equilibrium biomolecules in water solutions.

5.1.1 Set-up of the experiments

The experimental set-up is composed by three main parts that we shall discuss in detail:

e the test biomolecule used in the experiment (BSA) and the water solution properties;

e the mechanism of energy injection in collective vibrational mode of biomolecules, a nec-

essary condition for the Frohlich-like condensation;

o the Terahertz detection device used in the two experiments (Rome and Montpellier)
based on ”near-field” antennas?: a microwire-based THz spectroscopy in Montpellier and

a rectenna-based THz spectroscopy in Rome.

Characteristic of the test biomolecule (BSA) and water solution

The possibility to activate collective oscillations in biomolecules has been experimentally in-
vestigated for an aqueous solution of Bovine Serum Albumine at the concentration of 1mg/ml.
These conditions has been set in order to study the mechanical and dielectric properties of
biomolecules in conditions more similar as possible to physiological ones. The salt (NaCl) has

been added to the solution to screen electrostatic interactions. BSA (Bovine Serum Albumine)

2With ”near-field” antennas we mean devices able to read the intensity of the electric field in a
region very near (some micrometers) to the surface of the detection part of the antenna (a nano-wire in
Montpellier device and a the gain of a nano-transistor in Rome device).
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has been chosen as test protein: such biomolecule is mainly made out of a-helices (see Fig.5.1)

and is a "model” since it is largely studied in the physico-chemical literature.

Figure 5.1: Crystal structure BSA

Mechanical properties of a-helices have been largely studied in the last thirty years as they
could play a central role in energy trapping mechanisms in biomolecules. a-helices can be
represented as a system of three one-dimensional chains of springs coupled among them (see
5.2): each chain is composed by two types of harmonic oscillators, alternated and representing
hydrogen bonds and the backbone C=0 group [Sc092].

Frohlich-Holstein Hamiltonian is generally adopted to describe the dynamics of the harmonic
oscillators into a single chain and their mutual couplings, it has been proved that the system
admits stationary solitonic-like solutions (so without dispersion and dissipation). This means
that the system energy can eventully store the injected energy in solitonic waves (the so called
Davydov’s soliton[Dav73, Dav77][Sco92][CHT97]) or in elliptic waves [TNC*95][Sim09].

A fascinating hypothesisn propoesed by Del Giudice et al. in [DGDMVS&5] in the framework of
Quantum Field Theory suggests an interplay among the excitation of Davydov’s solitons in a
biomolecule and the possibility to activate Frohlich condensation both regarded as related to
the creation of Goldstone’s bosons in spontaneous-symmetry braking mechanism (SO(1) in the
case of Davydov’s soliton SO(3) for the Frohlich condensation).

In particular the solitonic waves (or the elliptic ones) generated along an a-helix could be as-
sociated with local coherent polarization waves that can in principle contribute to align water
dipolar molecules surrounding the chain: this would generate the spontaneous symmetry break-
ing in the orientation of water dipole and an enhancement of the total dipolar momentum of
the whole system of biomolecule and surrounding water molecules.

Finally, many different estimation, based on theoretical models and experimental evidence
[Cho83][Cho84], suggested that long a-helices have low-frequency accordion-like vibrational

modes with v ~ 0.65 <+ 0.7 THz, a range compatible with the possibility to activate long-range
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Figure 5.2: Molecular structure of a-helix. Hydrogen bonds are represented by dashed green
lines. Figure adapted by [Lod08].

(not screened) electrodynamic interactions (as discussed in chapter 3).

Energy injection in vibrational normal modes

A key aspect of the experiments here discussed is the necessity to provide an energy injection
rate that can exceed the threshold necessary to induce Frohlich condensation (also in classical
systems as observed in chapter 4).

An out-of-equilibrium state in BSA molecules is induced by means of optical pumping as follows.
Each protein molecule is marked with a few Alexa488 fluorochrome molecules (covalently bonded
at the lysine residues) excited by means of an Argon laser (wavelength 488 nm) and emits
fluorescence around the wavelength 519 nm: it follows that about 0.15 eV per fluorochrome
and per incident photon is available for an energy transfer to the protein and, partly, also to
its environment. When the Argon laser operates at 500 uW the number of emitted photons
per second is 1.2 x 10'®. The cross section of the fluorochrome Alexa488 is 3.2 x 1076 cm?,
so that using 4 x 1072 cm? for the laser beam section we find that each Alexa488 molecule
receives about 10 photons per second. Each protein molecule has an average number of 5/6
fluorochromes attached to it so that, considering that some of them could be partly shadowed by
the protein itself, we can assume that the average number of photons received by each protein
per second belongs to the interval 25+ 60. Hence the upper bound for the energy rate injection

W is estimated between 7.9 x 1072 erg s71 and 1.9 x 107! erg s7 1.

THz generators and detection devices

A typical experiment consists in measuring the dependence of the electromagnetic power

detected by the near-field probes on the frequency of the THz radiation. All the measurements
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have been performed at room temperature. Two THz-near-field absorption spectroscopy set-up

of watery solutions of the protein operates into two distinct laboratories(Fig.5.3(a),(c)).

e The first set-up, developed in Montpellier, (Fig. 5.3 (a),(b)) used a micro-coaxial near-
field probe put inside a metallic rectangular waveguide enabling a modal transition from
TMO1 Sommerfeld’s to TEO1 waveguide mode. The sub-wavelength diameter of the wire
(12 pm) allows an extremely localized detection of the longitudinal component of the
electric field at its end and on a volume of about 4 pl. A constitutive element of the
experimental set-up is a tunable and continuous-wave primary source emitting in the
0.22 — 0.33 =~ THz frequency range with an average power of 1 ~ mW. The high spectral
resolution (< 300 Hz) of the continuous-wave source allows an accurate detection of res-
onances.

The emitted radiation beam is focused on the samples of protein solutions on which, at
option, a 488 nm light beam — produced by an Argon laser — can also be focused. The blue
light provides the proteins with the necessary energy to activate a collective vibrational
state. The latter being an out-of-equilibrium state because it is kept by a non-thermal
energy supply.

A drop of the protein solution sample is placed under the near-field probe which is directly
immersed inside the solution. A typical experiment consists in measuring the near-field
electric field intensity through a reference medium (water) and the protein solution sam-
ple. A sweep through the frequency domain accessible to the THz source is performed
alternatively when the blue light is switched-on and off to yield a difference spectrum
showing the absorption features that are attributed to collective vibrations of each pro-
tein molecule.

To optimize the coupling efficiency a particular attention must be paid to the position of
the wire inside the guide, to the angular position of the bent portion of the wire and to
the total length and diameter of the wire. The spectra were normalized to the spectrum
of pure water in order to remove artefacts coming either from the water absorption or

from the geometry of the experimental set-up.

e The second set-up, developed in Rome, (Fig. 5.3 (c),(d)) used a near-field probe rectenna
composed of a planar metal bow-tie antenna with dimensions close to half-a-wavelength
(at 0.3 THz) that enhanced the THz field in the feed gap region (volume of about 0.2 pl)
and a plasma-wave field-effect transistor (FET) integrated in the feed gap of the antenna,
that provides a DC-voltage — between Source and Drain contacts — proportional to the
THz-field intensity[DS93, KKD 02, NMT*09]. An hemispherical silicon lens pressed on
the back of the semiconductor substrate focused the THz radiation on the antenna simul-
taneously avoiding substrate interferences. After acquiring the empty-channel response
spectrum of the device, a drop of protein solution was cast on the top (air) side of the
device with a micropipette (a volume of 1 microliter was drop-casted). The drop extends
over the entire antenna, but the radiation comes from below (i.e. from inside the sub-
strate) and it is not attenuated by the whole drop. This set-up allows to minimize the

optical depth of water, as the probe domain was reduced to a volume of 10 x 10 microns
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in horizontal plane and to about 2 microns in vertical axis. Therefore, the number of
molecules probed in this set-up is that present in a 10 x 10 x 2 micron volume, 107% times

less than the number of molecules present in a 1 mm? diffraction limited focus.

Visible

Near-field

(a) (c)
probe N

Drop of protein solution
BSA Proteins
5, B,
-W|re VISIble Antenna arm ‘ 4 o Antenna arm
to Source \Nb %, N, Drain
4 M’ . or
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Figure 5.3: Experimental set-ups of THz absorption near-field spectroscopy. (a) A drop of the
biological sample is placed under the near-field probe which is directly immersed inside the
solution. (b) Picture of the near-field probe and its p-wire. (¢) A drop of the biological sample
is placed above the near-field rectenna. (d) Electron-beam microscopy picture of the bow-tie
antenna with its integrated FET.

It is really important to point out that these two very different set-ups give the same informa-
tions on absorption properties in THz domain of the watery solutions containing biomolecules;
this allows a direct qualitative comparison between the experimental outcomes.

It has to be remarked that it is a major challenge to provide a theoretical model that describes
quantitatively all the effects that characterize the response of the biomolecules in water solution
to the THz radiation.

Moreover the complexity of the experimental set-up makes really hard to control some
aspects as the exact volume and form of the drop used in each measure session®.
Nevertheless Frohlich-like condensation is a phenomenon that would be active only when energy

is injected into protein, as pointed out before: this means that it would be possible to find a

3In order to give an idea of the difficulty in mounting a measure session, in Rome set-up, the drop
of solution has to be put by hand into the gap of the microscopic transistor coupled with the planar
antenna: the operator used a microscope to guide the tip of the pipette. A slight error in the positioning
of the drop would irreversibly ruin the antenna. In Montpellier the nanowire antenna has to be directly
put in the drop whose radius is less than a 1 mm
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fingerprint of the phenomenon considering for each sample only the difference spectra of the
received signal between laser on and laser off measures. Spectroscopic measures have been
performed on solution with marked and non marked molecules and, in both the cases, with and
without laser illumination.

The spectra of the protein solution without illumination was subtracted to the spectra with
illumination (this correspond to consider the logarithm of absolute antenna response intensity
ratio).

The hypothesis of activation of Frohlich condensation-like phenomenon is not falsified only if a
significant difference spectra when the laser is turned on is observed only with marked protein

solution.

5.1.2 Experimental outcomes

All the reported measures refers to the case of fluorochrome-marked protein as the other

considered cases (solution of pure water, pure water with salt, pure water salt and fluorochrome,
pure water salt and not marked fluorochrome) exhibited almost null spectra between the cases
where of laser illumination was turned on and off.
Figure 5.4 (a) presents the spectra obtained using the mic ro-coaxial probe in the absence of
illumination (black circles) and in the presence of visible illuminations of different durations
(from 3 to 9 min). In the former case (no illumination), there was no specific spectral feature
in the studied frequency range while in the latter case (with illumination) we observed spectral
resonances which become more evident for increasing duration of illumination. In particular,
the strongest resonance appeared at 0.314 THz accompanied by three other minor resonances
situated at 0.278, 0.285 and 0.322 THz; these values did not depend on the time of illumination
and the strength of the resonances saturated after 9 min of illumination. Figure 5.4 (b) presents
the spectra obtained using the rectenna probe for two durations of illumination. Also in this
case we observed the appearance of evident resonances whose strength saturated at increasing
durations of illumination. The spectra obtained using the two previously described methods and
for the longer durations of illumination are shown in Figure 5.4 (¢). The principal resonance at
0.314 THz is perfectly reproduced using two completely different and complementary set-ups.

Since THz extinction in water is huge (2000 dB/cm), the emergence of this spectral feature of
the protein out of the water absorption background must be associated with the activation of a
giant dipole moment. And this can happen only as a consequence of the activation of a coherent
oscillation of the whole molecule. Moreover it appears only for marked protein; counterchecks
performed on non marked protein and solution with the only fluorochrome Alexa488 does not
manifest any significant change in absorption features when the laser illumination is turned on.

In Figure 5.7 the raw outcomes of the Rectenna-based absorption spectra obtained in Rome
are reported. The spectra of the THz source without solution, of the THZ source with watery
solution with and without LED blue illumination are reported, respectively. Whence the final
result given in Figure 5.4 (b) is obtained as a difference spectrum. In Figure 5.4 (¢) a comparison
in given between the results of the two experiments. The agreement is strikingly good for what

concerns the feature at 314 THz. The relevance of such excellent agreement relies on the facts
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Figure 5.4: Normalized absorption spectra as functions of the frequency. (a) Spectra obtained
using the micro-coaxial probe normalized to the water spectrum in the absence of illumination
and in the presence of illuminations for the reported durations. (b) Spectra obtained using
the rectenna, after subtraction of the protein solution without illumination, for the reported
durations.(c) Comparison of the two normalized spectra for the longest illumination durations.
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Figure 5.5: Microwire-based absorption spectra. No blue light illumination. Obtained with:
water (blue circles); solvated AF488 in water (black squares); solvated non-labelled BSA in
water (red rhombs); BSA labelled with AF488 solvated in water (green triangles).

that this results have been obtained by two different groups, into different labs with two different

techniques.

5.2 Interpretation of experimental outcomes

5.2.1 A premise on methodology

Although the solution studied in these experiments is much simpler than real cell environ-
ment at molecular scale, it is really hard to derive a quantitative predictive model that describe
the response of the solution to THz radiation. As mentioned in the introduction of this chapter,
there are many aspects concerning water response to terahertz radiation and interaction among
water molecule and proteins not already fully understood and object of ongoing researches.
Facing to this situation, a ”minimalistic” approach has been adopted: experimental outcomes
has been explained using simplified models, each of them describing only some aspect or feature
of the observations. Much more complex models aimed to a more detailed and precise interpre-

tation and description of the experimental outcomes will be object of further investigations.

5.2.2 Interpretation of the absorption peak frequency

Since the BSA is a heart-shaped globular protein, a first rough estimate of a global oscillatory
frequency is obtained considering a model of the molecule as composed of two masses m, equal
to half the total protein mass, joined by a spring of elastic constant k given by k = EAg/ly,
where F is the Young modulus of the protein, Ag and [y are its transverse section and length
at rest, respectively. Using m = 33 KDa, Ay ~ 1.2 x 107 ¥ cm?, Iy ~ 1.2 x 1077 cm, and
E = 6.75 GPa, we find v = (1/27)y/k/m =~ 0.300 THz which is close to the main resonance
observed at 0.314 THz. A more refined approximation is obtained by modelling the protein with
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Figure 5.6: Microwire-based absorption spectra. With blue light illumination. Obtained with:
solvated AF488 in water (black circles); solvated non-labelled BSA in water (red circles); BSA
labelled with AF488 solvated in water (green triangles).

an elastic sphere and then considering its vibrational frequencies. The fundamental frequency

of a spheroidal breathing mode of an elastic sphere is given by the formula [Bas94]

E \ /2
vo = (1/2m)[2(21 + 1) (1 — 1)]*/2 <2>
pRY

which holds for [ > 2. Using the following data for the BSA protein: Young modulus F =
6.75 GPa obtained at room temperature using Brillouin light scattering of hydrated BSA pro-
teins [PNE*13], hydrodynamic (Stokes) radius Ry = 35A, and specific volume 1/p = 0.74
derived from small-angle X-ray scattering (SAXS) experiments [MS07], we find for the lowest
mode (I = 2) the frequency vy = 308 GHz which agrees within an error of about 2% with the
observed peak value at v = 314 GHz.

Secondary resonances are also present in both spectra. A possible explanation could be tenta-

tively given considering torsional modes. These could be activated at the frequencies given by

the relation [Bas94]
(el
P\ 2020+ 1)

whence, for [ = 2 and [ = 3, one finds v = 257 GH z and v = 246 G H z respectively. These could
be associated with the two weaker absorption lines observed at v = 278 GHz and v = 285 GH z.
Here the larger discrepancy can be attributed to the non-spherical shape of the BSA, what
entails the existence of different moments of inertia according to the rotation axis, whereas the

breathing mode is insensitive to this fact.

5.2.3 Spectroscopic detection of the collective mode

In both experiments the collective oscillation of the BSA protein is seen as a spectroscopic

absorption feature. At variance with standard absorption spectroscopy, where the radiation
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Figure 5.7: Rectenna-based absorption spectra. Response of water solution to THz radiation
without blue illumination (black). Response of the systems water and protein when the blue
illumination is on just after illumination(red series), after 10 minutes (green series) and after
15 minutes (blue).

entering the absorbing medium is responsible for the creation of atomic or molecular excited
states, in the experiments reported here the THz radiation is used to detect an already excited
state of the molecules. Actually, the collective oscillation of the proteins makes them behave as
very small antennas (Hertzian dipoles) with the characteristic property of antennas of simulta-
neously absorbing and emitting electromagnetic radiation. However, the absorption along the
THz optical path cannot be compensated by the radiation emitted by the oscillating dipoles
because it spreads over all the directions in space. The net result is an absorption feature. If we
denote with ji(¢) the dipole moment of a protein and with E(t) = Ey cos(wt) the electric field of
the THz radiation, the attenuation of the electric energy density within the drop of protein solu-
tion is proportional to the work done by the electric field, that is, L = —fi(t) - E(t) = uE cos 0g
where 0 is the angle among the electric dipole of the biomolecule and the electric field. The
oscillation of the dipole moment is necessarily damped, due to the interaction with the surround-
ing molecules resulting in dissipations. Denoting by 7 the lifetime of the activated collective
oscillation and by w, its frequency, we can set fi(t) = jige "7 cos(wet). Thus, after averaging
over all the relative orientations A and all the phase differences ¢ between ji(t) and E(t) such

that the electric field does a positive work, we obtain
sy [e.e]
L(w) = 2/ dgf)/ dtpoEoe™ ! Tw, sin(wet) cos(wt + ¢) . (5.1)
0 0

This is the elementary attenuation process of the THz radiation. This process is repeated in
time for each molecule at a rate proportional to the intensity of the drop illumination with the
blue light. Moreover, the total attenuation is proportional to the concentration of absorbing
molecules in the protein solution.

Equation (5.1) gives for L(w) a Lorentzian shape centred at w., the resonance frequency of the
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collective oscillation of the BSA protein. Figure Figure 5.8 shows three different shapes of the

function L(w) obtained for different values of 7 (in arbitrary units).
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Figure 5.8: The function L(w) of Eq.(5.1) is plotted in arbitrary units for three different values
of 7. The blue line corresponds to 7 = 1, the red line to 7 = 5, the black line to 7 = 10, having
set w = 10.

In Figures Figure 5.5 and Figure 5.6 several control spectra are reported which have been
obtained with the microwire antenna. The two groups of spectra refer to the blue light emitting
laser switched off and on, respectively. The observed absorption line at 314 GHz is clearly found
only when the fluorochrome AF488 is attached to the BSA molecules and in presence of 4880A
laser light illumination of the protein solution. These spectra rule out any other origin of the

observed absorption feature beside the proposed one in the main text of the present work.

5.3 Some remarks on THz spectroscopy measures

According the Frohlich-like model it is also expected that the appearance of the resonance
peak at 0.314 THz should exhibit a threshold-like behaviour when increasing the energy flowing
through the protein. Figure 5.9 (a) presents a clear threshold in the intensity of the resonance
peak when the optical input power exceeds 10 uW. By using the classical formalism for the anal-
ysis of the out-of-equilibrium phonon condensation (given in chapter 4) we have calculated the
intensity of all the normal resonant modes of the BSA-protein (though in an idealised model)
as a function of the source power injected through the protein. Figure 5.9 (b) highlights a
threshold-like behaviour of the intensity of the fundamental mode that concentrate the input
energy at the expenses of the excited modes. This theoretical threshold-like behaviour isin

very good qualitative agreement with the experimentally observed threshold. By increasing the
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Figure 5.9: Threshold-like behaviour of giant dipolar oscillations. (a) Intensity of the resonant
peak measured at 0.314 THz as a function of the optical laser power. (b) Normalized energy of
the fundamental mode calculated as a function of the normalized source power. The different
curves correspond to the reported numbers of normal modes of the BSA protein.

number of modes included in the calculation, this threshold becomes more and more evident.
In addition to the already known existence of collective vibrational modes of biomolecules, ob-
served in the past at thermal equilibrium by means of Far Infrared and Raman Spectroscopy,
we show that strong out-of-equilibrium collective modes can be also activated and sustained by
external energy pumping of a model protein.

We suggest that the observed phenomenology, notably the existence of a threshold in the energy
supply rate, can be qualitatively understood as a non-equilibrium Bose-like condensation of the
vibrational modes of the BSA protein, much in the spirit of a long-standing theoretical proposal
put forward by H. Frohlich, even though we have reformulated it in a classical context. Finally,
the strikingly good agreement among the results obtained with two independent and different
experiments, operating in two different laboratories, rules out the possibility of experimental
artefacts.

Our study, through the strong absorption feature observed in a watery solution of the BSA
protein, reveals that the protein vibrating in its collective spheroidal breathing mode has to
be dressed by ordered layers of water molecules® in order to attain an effective dipole moment
sufficiently large to overcome the strong absorption of bulk water. From basic facts of classi-
cal electrodynamics, two or more dipoles of large moment, oscillating out-of-equilibrium, can
interact through long range electrodynamic forces [PPT15], thus our findings motivate suitable

experimental attempts at detecting them [NSP™14].

“In [SDD15] it has been shown that BSA-molecules are dressed in aqueous solution by 8 layers of
water molecules thus making an overall layer of 25 Aaround each molecule.
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CHAPTER 6 Study of experimental strategies to detect long

range interactions: Feasibility study

In this chapter, it is reported a numerical and theoretical investigation concerning the pos-
sibility to detect the presence of long-range interactions among biomolecules by studying their
diffusion. In particular long- and short-range interactions would affect in a qualitative different
way the dependence of self-diffusion coefficient as a function of the concentration of mutually
diffusing particles. The work here reported has been published in [NSP ™ 14].

6.1 Motivations

In previous chapter we have reported experimental outcomes whose theoretical interpre-
tation suggest the that it is possible to activate collective oscillations in biomolecules when a
sufficient energy injection rate is provided. Such collective oscillations in biomolecules would
result in giant dipole oscillations due both to the deformation of biomolecule static dipole and
of the hydratation water. From first principles of classical electromagnetism, this would imply
that it is possible to activate in the same condition long-range electrodynamic classical interac-
tions among oscillating dipoles if they are resonant (as in the case of identical molecules, i.e.).
Nevertheless the observations of out-of-equilibrium giant dipole oscillations in biomolecules is
not sufficient to answer to the following question: does Nature exploit these long-distance elec-
trodynamic intermolecular forces in living matter? In other words, are these forces sufficiently
strong to play the above surmised role? The complexity of such systems and the actual state
of the theory make almost impossible to provide an a priori analytical answer to these funda-
mental questions.

The work presented in this chapter is the sequel of a paper [PFN"12] addressed the problem
of estimating whether certain biomolecular interactions of electrodynamic origin could entail
sizable effects in a parameter domain accessible to standard laboratory techniques. Though the
answer was in principle affirmative for what concerns molecular concentrations, temperature
and solvent properties, the physical observable chosen (the first encounter time between two
interacting biomolecules) turns out hardly measurable in practice because it requires to follow
the dynamics of single molecules. Thus the work presented in this chapter aims at filling this
gap between theory and experimental feasibility. This is achieved by investigating some trans-
port properties of long-range interactions acting among a set of particles freely moving in a fluid
environment.

The novelty of the present work is that one dimensional analytic results in [PEN"12] are here
replaced by 3D numerical results in a more realistic context. In fact, biomolecules, which are
typically charged, move in three dimensional space where they are subjected to several interac-

tions out of which there is at least one kind of long-range ones: electrostatic interactions. Thus
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we begin by considering Coulomb interactions, both screened and unscreened, for which all the
parameters can be precisely assigned. On this basis we get a reference scenario allowing an
assessment of the sensitivity of diffusion to forces which are undoubtedly active among charged
biomolecules. Then we make classical electrodynamic forces derived in Subsection 3.3.4 enter
the game. By studying their possible competition with Coulomb forces we can find out how
new characteristic features of the concentration dependence of diffusion can emerge making the
difference with the previous case. Whence feasible experiments can be identified.

New experimental protocols have been developed to determine if in a system of diffusive particles
(as biomolecules in cellular environments) are present mutual long-range interactions. This new
experimental protocols demands both feasibility studies (numerical and theoretical) to asses the
possibility to have a clear fingerprint of the presence of long-range interactions and numerical
simulation to validate the theory on some benchmark case, where long-range interactions are
"built-in” (as in the case of electrically charged diffusing particles subjected to electrostatic
interactions in pure water, i.e.).

In what follows such work is presented: theoretical and numerical studies support a new exper-
imental technique that allows to study the self-diffusion coefficient of these biomolecules in a
very wide range of concentration (average intermolecular distance) when ”activation condition”
of collective giant dipole oscillations in BSA (see previous chapter) are realized. An important
qualitative difference in the behaviour of self-diffusion as function of average intermolecular
distance coefficient has been observed among long- and short-range forces both in numerical
simulation. Numerical molecular dynamics simulations have been used to validate the use of a
new experimental technique based on Fluorescence Correlation Spectroscopy for the detection

of long range forces among diffusive particles (see next chapter).

6.2 Model and methods

In the following section a simple model of diffusing particles is considered, in order to study
how long-range and short-range interactions affect their dynamics. The model equations, the
molecular interaction potentials, the numerical algorithm and the relevant observables for the
numerical study of an ensemble of mutually interacting particles in presence of an external

random force shall be defined in what follows.

6.2.1 Basic equations

We consider a system composed of N identical molecules, modelled as spherical Brownian
particles of radius R, mass M and a net number of electric charges Z, moving in a fluid
with viscosity 7 at a fixed temperature 7', interacting through a pairwise potential U (r) which
depends only on the distance r between their centres.

Under the assumption that the friction exerted by the fluid environment on the particles is

described by Stokes’ law, the dynamics of the system is given by N coupled Langevin equations
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[Garl0]:
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dt a4 (6.1)

+\/27vkpT¢&;(t) fori=1,...N

where r; is the coordinate of the center of i-th particle, v = 6wnR is the friction coeflicient
and kg is the Boltzmann constant. The stochastic displacements are uncorrelated so that
£t) = (&4,..,€&yN) is a 3N-dimensional random process modelling the fluctuating force due
to the collisions with water molecules, usually represented as a Gaussian white noise process
satisfying:
(€ (t))e = 0
(6.2)

(€2 (0L (t))e = 810 (t — 1)

where o, 8 = z,y, 2z are the Cartesian components of &;’s and (-)¢ stands for the average over
many realizations of the noise process. As the random process is stationary the average over
different realizations of the noise is equivalent to a time average
1 t
(f(€))e= lim — [ f(&(7))dr = lim (f(&(t))) (6.3)

t—+oo t 0 t—+o00

Considering times much larger than the relaxation time 7, = M /7, we can neglect inertial

effects obtaining the overdamped limit for Egs. (6.1):

dr; N
yd; == > Vo U(lri—r)+
=L (6-4)

+\/29kpTE() i=1,...N

In systems like the one we are interested in (involving protein or nucleid acids in aqueous

medium) 7, is negligible compared with the characteristic time scales for experimental observa-

tions !

, S0 we can assume that the dynamics for such systems is described by Egs.(6.4).

As the deterministic interactions are in general non linear, we are dealing with a system of first
order Stochastic Differential Equations (SDEs) which describes a randomly perturbed nonlinear
N-body dynamical system with an expected complex (chaotic) dynamics since the integrabil-
ity is exceptional. For this reason, we undertake the numerical integration of Eqs.(6.4). We
remark that Eqs.(6.4) can be considered as a Lagrangian description of a system whose Eule-

rian description is given by a Fokker-Planck equation for the N-body probability distribution

T.e. for a biomolecule with a hydrodynamic radius R = 2 x 10~3um and mass M = 15KDa in pure
water at 300K, the relaxation time 7, is in the order of 10~%us.
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Py (ry1,...7N,t) [?] of the form:

N
8PN V,,..U(T‘l,...,’l“n)
— = V| DV, P P : 6.5
ot 7;:1 < BVyr, N+ N 5 (6.5)

N

where Dp = kpT'/~ is the Brownian diffusion coefficient and U (71, ..., ry,) = Z Z U(lri—rj)
i=1 j>i

is the total interaction energy. It is well known that Gibbs configurational distribution Pﬁ,q =

Py (71, ...,N) is the stationary solution of Eq.(6.5) which also minimizes free energy [?]:

P = %exp [—BU(71, ..., T0)] (6.6)

where § = 1/kgT and

N
Z = /exp [—ﬂU(rl,...,rn)]Hdri (6.7)
i=1

The distribution of Eq.(6.6) defines an equilibrium measure p®

N
pei(sr)) = [ o) [Jar (6.9)
=1

which is invariant respect to the flow defined by Eqgs.(6.4). As we are interested especially in the
behaviour of systems described by Egs. (6.4) in the limit ¢ — 400, we assume that the system
thermalizes without any dependence on initial conditions, .e. for every initial configuration

r;(0) ;1N it exists a time ¢ such as Py (t) ~ P for t > t.
{ri : N

6.2.2 Model potentials

The explicit forms of the pairwise potential U(]r|) used in our simulations have been the
following. The first case that we considered is the electrostatic interaction among identical

molecules in electrolytic solution; this is described by the Debye-Hiickel potential [AR76]:

(Ze)* 6_%(%_ )
elrl  (1+R/A\p)?

Ubebye(T) = (6.9)
where Ap is the Debye length of the electrolytic solution, R is the molecular radius, e is the
elementary charge and ¢ is the static dielectric constant of the medium. As water is ubiquitous in
microscopic biological systems, we put € = €yqter =~ 80, i.e. its static value at room temperature.
Coulomb screening is an essential feature of biological systems which shortens the range of
electrostatic interactions due to small ions freely moving in the environment. In order to study
how the diffusion and dynamical properties of the system change by varying the spatial range

of the interactions, we consider different values for A\p and, in the ideal case of Ap — +o00, we
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adopt the pure Coulomb potential for charged particles in a dielectric medium:

(Ze)®

UCoul(T) = 5’,’4’

(6.10)

The second case concerns the long-range attractive dipolar potential predicted by the classical
electrodynamics among biomoleculesout-of-thermal-equilibrium (see chapter 3 for more details).

This, in regularized form, reads as

Cc

—— 6.11
Pra (6.11)

Ubipolar(T") =
where ¢ is a positive parameter and « is a parameter that prevents U(r) from becoming singu-
lar. This potential describes both an attractive electrostatic and an attractive electrodynamic
dipole-dipole interaction. In describing a system with a strong Debye shielding, the use of the
potential of Eq.(6.11) is equivalent to the implicit assumption that this potential is of electrody-
namic origin. The parameter « flattens U(r) at short distances when these are comparable with
the radius R of the molecules. In fact, when r is small, higher multipolar moments could play
a role and, in principle, this would lead to the description of the interaction among complex

bodies whose charge distributions should be taken into account[Sto08].

Here it is assumed that the net result of these interactions (which can be attractive as well
as repulsive), occurring when the molecules are close one to the other, is zero. The softened
potential Eq.(6.11) solves this problem. The parameter « is fixed by the condition that the
second derivative of U (where the force intensity reaches its maximal value) vanishes, that is
a=2r3 at r = 0.1pum.

The value of the coefficient ¢, which controls the force intensity, has been determined by the re-
quirement that U(r), at the same value 7 = 0.1um, is equal to a given fraction of —kgT', whence
U(r = 0.1 pm) = —kpT'/10. A-priori we could think that, in order to have some observable
effect, deterministic forces should overcome the average thermal energy per degree of freedom.
However we observed that this is not the case: for example with U(r = 0.1 ym) = —3kgT
we always found a vanishing D. This happens because deterministic forces keep almost the
same directions on time scales for which random forces (that mimic water molecules collisions)
incoherently change much more their directions. The relevant physical consequence is that
interaction potentials definitely weaker than kg1 can have sizeable effects. That the choice
U(r =0.1 pum) = —kpT/10 is realistic for biomolecules is supported by quantitative estimates

that can be found in [?].

6.2.3 Numerical algorithms

We have numerically studied systems of N molecules confined in a cubic volume of size L.
To get rid of spurious boundary effects, periodic boundary conditions (PBC) have been assumed
which implies the existence of an infinite number of replicas/images throughout the space. As

we are interested in studying dynamical properties and diffusive behaviour of different concen-
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trations of molecules, we fixed the number of molecules IV and varied the average intermolecular

distance (d) according to the relation
L = VN{d) (6.12)

In presence of long-range interactions and PBC, each molecule contained in the previously men-
tioned box interacts with all the molecules contained in the above mentioned images/replicas,
that is, the pairwise potential U(r;,7;) = U(|r; —r;)| in Egs. (6.1) and (6.4) has to be replaced
by an effective potential Ut (r;,7;) of the form:

U (ri,ry) = Y Ullrs — 7 + kL)) (6.13)
kez3

where Z? is the space of 3-dimensional integer vectors. In order to compute the force Fj(r;)
on the i-th particle due to the j-th particles and all its replicas, we rearrange the terms of the
sum in Eq. (7.9), so that

Fj(ri) = =Va,U(jzi — 7))+

+ Ve, > Ul —#;+ kL)) (6.14)
keZ3 k40

where x; is the i-th particle image position into the reference box and 7; is the nearest image
of j-th particle, that is

LV3

|$i —’l~"j| = |'ri,j‘ = i%lZIé |$1 —Tj +kL| < T = ANN (615)

It is clear by Eqgs. (6.14) and (6.15) that short and long-range interactions (in the sense specified
in the Introduction) have to be managed in two different ways. For short range interactions it is
always possible to define a cutoff length scale A.y such that the effects of the interactions beyond
this distance are negligible. In the systems we have studied by means of numerical simulations,
the Debye electrostatic potential is a short range potential with a cutoff scale of the order of some
units of the Debye length Ap. As for each case considered it is Axyny > 30Ap, the second term
on the right-hand side of Eq.(6.14) has been neglected in numerical computations. For long-
range interactions (i.e. Coulomb potential Eq.(7.15) and dipole-dipole electrodynamic potential
Eq.(6.11)), it is not possible to define a cutoff length scale Ayt so that, in principle, the infinite
sum in Eq.(6.14) should be considered. A classical way to account for long-range interactions
resorts to the so called Ewald summation [AT89]. In the subsequent Section we describe a
more recent and practical method replacing Ewald’s one - known as Isotropic Periodic Sum
(IPS). The equations of motion (6.4) were numerically solved using the Euler-Heun algorithm
[BLLO7], a second order predictor-corrector scheme. The position 7;, of the i-th particle at

time t,, = tog + nAt, ty being the initial time, is obtained by:

1 . 2kT
Tin = Tin—1+ 2 [F(Ti,n—1) + F(Tz,n)] At + \/ Tfi,n—1 (6.16)
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where F' is the resultant of the forces acting on the i-th particle, and 7; ,, is calculated with the
Euler predictor by:

- 1 2kT
Tin = Tin—1+ ;F(Tz’,n—l)At + 7&,71—1 (6.17)

The initial position of each particle is randomly assigned at #y using a uniform probability dis-

tribution in a cubic box of edge L.

IPS correction to long-range potentials

Because of the long-range nature of Coulomb and dipolar potentials (described by Eqs.(7.15)
and (6.11), respectively) the force acting on each particle is given by the sum of the forces exerted
by all the particles in the box and by the particles belonging to the images. For the computation
of these forces, we used the IPS method [WB05] [WB08], a cutoff algorithm based on a statistical
description of the images isotropically and periodically distributed in space. Assuming that the
system is homogeneous on a length scale R., we can define an effective pairwise IPS potential
utrs = yirs (|7i5], Re) which takes into account the sum of pair interactions within the local

region and with the images of this one:

U(lrijl) + o(|rigl, Re), |rijl < Re
U3 (|rigl, Re) = (6.18)

Oa |ri,j| > Rc

where ¢(|r; ;|, R.) is a correction to the potential obtained by computing the total contribution
of the interactions with the particle images beyond the cutoff radius R. [WB05] [WB08]. For
the Coulomb potential of Eq.(7.15), we obtained an analytical expression for the IPS correction
®coul(Tij, Re). For computational reasons this has been approximated by a polynomial of degree

seven in « = |r; j|/R. with z in the interval (0;1]:

Pcou(z) = — 9.13636 x 1077 4+ 0.000100298z+
+ 0.29858822 + 0.01515952° 4
+0.00881283z* + 0.108492°+
— 0.09302642° + 0.048243427

(6.19)

For the regularized dipole potential of Eq.(6.11) it is not possible to compute analytically the
IPS correction. Nevertheless, since the regularization constant « in (6.11) could be negligible
with respect to Rg, so that a/ RZ’ < 1, we will assume that the dipolar potential has the form

Ubipolar () =~ c/r?’ for r > R.. Thus, we can compute the exact IPS correction ¢pipolar(|74,5], Re),
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and, approximating this by means of a polynomial, we obtain:

Dloar (T) = — 3.34576 x 107% 4 0.0001998652+
+ 0.93625422 + 0.025948123+
+0.0971465x* + 0.1847212°+
— 0.14620525 + 0.0877732x7

(6.20)

We have chosen R, = L/2 under the hypothesis that on this scale the system is homogeneous.

6.2.4 Long-time diffusion coefficient

We aim at assessing the experimental detectability of long-range interactions between biomolecules
taking into account quantities accessible by means of standard experimental techniques. A valid
approach to do so is the study of transport properties. For this reason, in our simulations we
chose the long-time diffusion coefficient D as main observable of the system described by Eqgs.
(6.4). This coefficient is defined, consistently with Einstein’s relation [AT89], as:

Ar;i(t)|?
D= tim JATOF) (6.21)
t—+o00 6t
N
Ar;(t) = r;(t) — r;(0) being the total displacement of a particle in space and (a;) = 1/N Z ai,
i=1

the average over the particle set. We remark that in our system the displacements Ar;(¢) are
not mutually independent due to the interaction potential U(|r; — r;|) in Eqgs. (6.4) which
establishes a coupling between different particles; in that case, the average over particles index
concerns correlated stochastic variables. Nevertheless, as our system is non-linear with more
than three degrees of freedom, it is expected to be chaotic [?] so that, in this case, the statis-
tical independence of particle motions is recovered. Moreover, when a chaotic diffusion gives
(|A7;(t)[?) oc t (which is the case of the models considered in the present work), the diffusion co-
efficient D is readily computed through a linear regression of (|Ar;(t)|?) expressed as a function

of time. In what follows we refer to (|Ar;(t)|?) as Mean Square Displacement(MSD).

6.2.5 Self-diffusion coefficient for interacting particles

In this Section, we derive a formula which corrects the Brownian diffusion coefficient by
taking into account molecular interactions described by U (r) in Egs.(6.1). Following the classical
derivation given by Langevin, we rewrite Eqs.(6.1) in terms of the displacement of each particle

with respect to its initial position: Ar; = r;(t) — r;(0)

d?Ar; dAr; &
M L=y L — g Vi, U(ri, i)+
de? dt = (6.22)

+\/2vkpTé&;(t) fori=1,...N
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since d"r;/dt" = d"Ar;/dt". Taking the scalar product with Ar; of both sides, we obtain:

1 RARE L,y dar

2 de? ‘ 2 dt
N
— A’I"Z‘ . Z VTiU(’I’Z‘, Tj) + \/ 2’)/AkBTA’I’i . El(t) (6'23)
J#i
fori=1,....N

where v? = |dAr;/dt|? = |dr;/dt|%. Introducing the time derivative of the square module of the

total displacement z; = d|Ar;|?/dt, we obtain

1 dz
7M71 _ MU? = —%21 — AI‘z‘ . ZvrlU(Tur])—i_

2 dt
i#j (6.24)
V2vkgT Ar; - €,(1) fori=1,...N

According to Eq.(7.18) the self-diffusion coefficient D can be equivalently expressed in terms of

Z; as

-1 fd{Ari())?) T
where ((-)) indicates a double mean over particles and time. Let us now apply this double
averaging to Eqgs.(6.24) and remark that ((Ar;-€;(t))) = 0 because the time average is equivalent

to an average over noise realizations (see Eq.(6.3)). Thus we get:

e == ()

2 M (@2)) - (A Ve U, m)

(6.26)
: |
i#]

Y

whose limit for ¢ — 400 gives an expression for the diffusion coefficient which explicitly depends
on U(r), according to Eq.(6.25). We assume that such a limit is finite for every term on the
right hand side in Eq.(6.26) and that:

RENE o)

which amounts to considering that the motion is diffusive. Since we consider systems at ther-
modynamic equilibrium, the Equipartition Theorem entails . liin M{(v?)) = 3kgT. We thus
—+00

obtain the following expression for the diffusion coefficient D

1 4an) By Vellrery)

D= lim Dy Sk T
B

t—+o00

(6.28)

where Dy = kpT'/~ is the Brownian diffusion coefficient.
We remark that the correction term does not depend on initial conditions, as it would appear at
a first glance at the equation above. In fact, having assumed thermal equilibrium, the dynamics

is self-averaging so that time averages of observables for very long time ¢ (ideally t — +o00) are
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equivalent to an average over initial conditions?®.

For numerical calculations, the potential-dependent term in Eq.(6.28) is computed using:

N m
AD Dy—D, 1 1
= = — — Ar;(kAt) - Fi(kAt 6.29
b= 5= 5 (S Ay - Figkan)) (6.20)
=1 k=1

where Ar;(kAt) = r;(kAt) —r;(0) is the total displacement of the i-th particle at k-th integra-
tion step (taking into account PBC according to Eq.(6.14) and possibly IPS corrections) and
F;(kAt) is the resultant force acting on the i-th particle .

6.2.6 Measuring chaos in dynamical systems with noise

Equations (6.4) are a system of non linear differential equations with additive noise. A

relevant observable measuring the degree of instability of the dynamics is the Largest Lyapunov
Exponent (LLE). The definition and numerical computation of the LLE is standard for noiseless
deterministic maps and dynamical systems [BGS76], while it is more debated and controversial
for randomly perturbed dynamical systems, the difficulty being due to the non differentiable
character of stochastic perturbations [LPV96][GT9I6][Arn88].
However, note that our system is in principle a smooth dynamical system because the stochastic
term in Eqgs. (6.4) is just a simplified way to represent the deterministic (and differentiable)
collisional interactions between Brownian solute particles with solvent molecules (water). In
other words Eqs.(6.4) are a practical representation of the dynamical system described by the
following smooth ODEs:

d’l“i -
v == 2L VU (Iri —vil) + V2yksT £i(1) (6.30)
j=1

where f(t) = (f1(t),..., fn(t)) is a 3N-dimensional time-dependent vector of functions rep-
resenting the effect of collisions of water molecules with Brownian particles on a microscopic
scale. If we look at f(t) on a time scale comparable to the characteristic collision time of
water molecules with Brownian particles (7., ~ 1ps), f(t) is a differentiable function and its
Fourier spectrum has a-priori a cut-off frequency. In spite of this, since we study the dynamics
on time scales which outnumber 7., by at least six orders of magnitude, f(¢) can be safely
approximated by the standard white noise specified by Egs.(6.2) and (6.3). Each 3-dimensional
process f,;(t) would appear as stationary and isotropic on a time scale much larger than and
for 7.0y — 0. Such approximation is clearly justified by the fact that for biomolecules in water
and typically 7oy < 7.

In light of these considerations, the time-average and self-correlation properties of process f(t)

have to be compatible with properties Eq.(6.2) for 7.,y — 0. That means that f(¢) has, for

2 A naive computation, neglecting the effect of PBC, would always give a value of diffusion coefficient
that is increased with respect to the Brownian one in the case of repulsive interactions, and decreased
in the case of attractive interactions. The presence of infinite replicas due to PBC makes this statement
incorrect in our case, as it can be seen using the form of the effective potential in Eq.(7.9).
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instance, a null-average process on time scale much larger than 7.,; requiring;:

’<fz>t’ < A\dife for t> 7o

(6.31)
lim (f;); =0 i=1,...,3N
t—+o00
where A\gig = V/ kBT'7-/7 is a length scale which characterize diffusion.
For what concerns autocorrelation functions (bx’“xl( ) of the process f
1 t
LTl — 1 - Tk (F ZU(AAF
o) = dim g [ A ai (6.32)
where 4, j are particle indices and xy, x; cartesian coordinate ones, we impose:
d)ffml (1)< 1 for 7> 1.0
(6.33)

lim / qu’m )dT = 0;;0%% "

as we are ignoring the hydrodynamical effects which could introduce more complicate correla-
tions for f, 7.e. both time and space dependent.

The white noise approach is useful for the numerical computation of the dynamics, but the
underlying physics is in principle well described by the ODEs system of Eqs.(6.30). Having this
in mind, we get rid of the subtleties of defining chaos in randomly perturbed dynamical systems
and we resort to standard computational methods [Pet07b]. Deterministic chaos stems from
two basic ingredients: stretching and folding of phase space trajectories. In our case the folding
of trajectories in phase space is guaranteed by PBC which make phase space compact, while
stretching is given by the local instability of the trajectories. Hence their average instability is

measured through the usual Largest Lyapunov Exponent A, defined as:

A= lim -In 6.34
AR o) 039
where || - || is the euclidean norm in R*Y and ¢ = ({1, ...(3) is a 3N-dimensional vector whose
time evolution is given by the following tangent dynamics equations:
N
d¢; 1 9*U
d6 _ 1 ‘ Ge(t)  i=1,..,3N (6.35)

Of course, a positive LLE indicates deterministic chaos. Using the above definition we expect
that the LLE vanishes in the absence of an interaction potential U(r) in Eqgs.(6.30) since the
tangent dynamics equations (6.35) becomes trivial. Note that the term f(¢) does not contribute
to Eqs.(6.35) which means that the precise functional form of "noise” has no influence on the

chaotic properties of the system. Besides its theoretical interest, computing LLEs has to do also
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with the possibility, at least in principle, of working out these quantities from experimental data.
This could provide an additional observable to probe the presence of long-range intermolecular

interactions. For numerical computations of the LLE Eq.(6.34) is replaced by:

Nstep

=
In 6.36
stepm 2 et (6:36)

where Ntep is the total number of integration steps and At is the time step. In practice, to
compute the time evolution of the tangent vector in Eqs.(6.35) for N = 1200 particles (conse-
quently for 3N = 3600 degrees of freedom) amounts to computing about 6.5 millions of matrix
elements of the Hessian of U(r) for each time. This would be a very heavy computational task,
thus we resorted to an old algorithm described in the celebrated paper [?]. This consists of con-
sidering a reference trajectory x(¢) and of computing very short segments of varied trajectories

x(t) issuing very close to this reference trajectory. Details are given in the quoted paper.

6.3 Numerical Results

In the present Section we report the effect of long-distance interactions on the diffusion
behavior of a collection of molecules by analysing how D deviates from its Brownian value.
The numerical integration of Eqgs. (6.4) was performed using the model potentials given in
Section 7.3.2, using the integration algorithm with periodic boundary conditions, and the IPS
corrections to the interactions both described in Section 6.2.3. The computer code used was
written in Fortran90, developed in a parallel computing environment. This program was run
on a computer cluster for typical durations of 500 to 1500 hours (total CPU time) for each
simulation. The overall CPU time needed for the results reported in this Section amounts to
about 200000 CPU hours. All the simulations were performed considering a system of 1200
molecules (since we typically used 120 processors) of radius R = 0.002um, at a temperature of
300K, with an integration time step h = 0.001us and each computation consisted of 5 — 8 x 106
steps. In this paper, we use the following system of units: um for lengths, kDa for masses
(1kDa = 6.0221 x 10"?%gr ) and s for time.

In our simulations we considered uniform random initial conditions to mimic a typical
experimental setup wih a drop of aqueous solution of biomolecules. Then we considered the
system in a bona-fide equilibrium state when, by integrating the dynamics, (r(t)) reached a
stable linear time dependence on a millisecond time scale.

The values of the self-diffusion coefficient D have been obtained by means of a least squares

fit of the time dependence of the MSD, that is, using the following fitting function:
(r’(t)) = b + 6Dt (6.37)

where the additive offset by has no physical relevance, but has been included in order to better
estimate the long time behavior of the MSD. In the following Sections, the values of D will

be plotted normalized by the Brownian diffusion coefficient Dy. This coefficient is known a-
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priori and is compared with the numerical outcome obtained for very low concentrations. These
values are found to be in very good agreement within typical statistical errors of the order of
1/VN = 1/v/1200. As we will see in the following (see figures 6.2, 6.4, 6.10), the results for
(r2(t)) are to an excellent degree of approximation straight lines. Thus, the errors in determining
the diffusion coefficient values are tiny, smaller than the size of the symbols referring to D. We
will also see that, in addition to the standard source of diffusion represented by the random
forces \/m &, (t), another source of diffusion is given by the intrinsic chaoticity of the particle
dynamics stemming from the interparticle interactions. The latter contribution to diffusion does
not alter the linear time dependence of the MSD. This circumstance is not new and has been
reported in many examples of chaotic diffusion [PVM 88, OP91, OPB85, OC90, CFVP9I1]. To
give a measure of spatial correlation in the simulated system we calculated the radial distribution

function g(r,) defined as:

1 N;
g(?‘n) = N ir

i=1 | —
3

sTn

(03 — (n — 1)3)p3?

n=1,..Npn (6.38)

where /\f”n represents the number of particles at an ”effective” distance r € [r,, — ;7 + 0)
from the i-th particle (i.e. taking into account also different images of the system for PBC),
with § = L/(2NBin), rn = (2n — 1)§ and p = N/L3. Although the function g(r,) has a
discrete domain, we will refer to it as g(r) for the sake of simplicity and as we set Np;, = 1000.
We calculated the distance between all pairs of molecules and binned them into an histogram
normalized to the density of the system. This function gives a measure of the spatial correlation
in the system since it is proportional to the probability of finding a molecule at a given distance
r from another one. In addition we have measured the Lyapunov exponent, according to what

is given in Section 6.2.6, and the correction to the Brownian value Dy, according to Eq.(6.29).

6.3.1 Excluded volume effects

As we already said, we aim at investigating the different possible sources of deviation from
Brownian diffusion, thus we begin with the most simple possibility: excluded volume effects at
the foreseen experimental conditions.

We considered hard-spheres with vanishing intermolecular potential, U = 0, and modelling
impenetrability as follows: whenever two molecules 7 and j get in touch and interpenetrate at
some time ¢ (that is |r;(t) — 7;(t)| < 2R, with R the radius of each molecule) we get back to
t — h and redraw the &;(t) until r; ;(¢) are such that the impenetrability condition is satisfied.
In Figure 6.1 we can see that the excluded volume effects on diffusion coefficient D normalized
with the Brownian value Dy are very small. These results agree with the theoretically predicted
values [Yos85] according to which D = Dg[1 — 2¢] where ¢ = 1/6mR3n and n = N/L? is the

number density.
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Figure 6.1: Excluded volume simulations. Semi-log plot of the normalized theoretical self diffu-
sion coefficient D/ Dy (open circles) computed according to [Yos85] compared to the outcomes of
the standard numerical simulations (crosses) given by [Eqs.(7.18) and (6.37)] versus the average
distance between the particles with vanishing intermolecular potential.

6.3.2 Effects of long and short range electrostatic interactions at fixed

average intermolecular distance

The next step is obtained by switching on interparticle interactions, keeping fixed all the
parameters (temperature, viscosity, average interparticle distance, Debye length) but the num-
ber of charges Z. This way, we can vary only the intensity of the interparticle forces measuring
the largest Lyapunov exponent and how D deviates from Brownian motion. To begin with,
the screened Coulomb potentials defined in Eq.(7.3) have been considered for an average inter-
molecular distance (d) = 0.04um and a Debye length A\p = 0.01um. In Figure 6.2 and in Figure

6.3, we report the outcomes of these numerical simulations.
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Figure 6.2: (a) Normalized self diffusion coefficient D/Dq (circles) computed according to
[Eq.(6.29)] compared to the outcomes of the standard computation (squares) according to
[Egs.(7.18) and (6.37)] versus the number of charges Z of the particles interacting through
Coulomb potential with Ap = 0.01um [Eq.(7.3)] at average interparticle distance (d) = 0.04um.
On the second axes we report the largest Lyapunov exponent [Eq.(6.36)] (rhombus). Full sym-
bols represent the corresponding theoretical values for vanishing Z value.(b) Plot of the time
evolution of the simulated MSD for different values of charge. The charge Z increases starting
from the top line that corresponds at Z = 10, passing to Z = 50, to Z = 100, up to the bottom
line corresponding at Z = 180.



150

In Figure 6.2(a) we can see that the stronger the interparticle interaction the larger the
deviation from the Brownian diffusion, that is stronger decrease of the diffusion coefficient D.
The degree of chaoticity, represented by the largest Lyapunov exponent, is also affected by the
strength of the interparticle interaction. At the same time, the time dependence of the MSD
remains linear, that is, the chaotic diffusion still follows the Einstein-Fick law [CFVP9I1], as it
can be seen in Figure 6.2(b). The decreasing of the diffusion coefficient occurring in presence
of repulsive interactions is due to the fact that the molecules uniformly fill all the accessible
volume, thus, since there is no room for a free expansion of the system, the motion of any given
molecule is somewhat hindered and slowed down by the surrounding ones. On the contrary,
in presence of repulsive forces an increase of diffusion is expected when measured by mutual
diffusion coefficient [TP92]. The latter describes the decay of a concentration fluctuation and
it is intuitive that under the action of repulsive forces a local higher density of particle diffuses
faster than a Brownian diffusion. We can also observe a strikingly good agreement between the
values of D obtained through the time dependence of the MSD and by computing the theoretical
corrections to Brownian value Dg due to deterministic forces, according to Equation (6.29). The
behavior of the Lyapunov exponents (Figure 6.2(a)) is characterized by an initial increase of
the chaoticity of the system with a bending - towards lower values - beginning around Z = 120.
Such results can be qualitatively understood with the aid of the radial distribution functions
g(r) reported in Figure 6.3. The pattern of g(r) shows a transition from a gaseous-like system
to more and more spatially correlated systems with increasing Z. The higher Z, the larger the
range of spatial ordering as indicated by a larger numbers of peaks displayed by the function g(r)
at distance values which are multiples of the average intermolecular distance. This is similar to
a transition from a gaseous-like state system to higher spatial ordered systems (like a liquid or
possibly a glass).

We can surmise that the behaviour of the LLE is due to the competition between the chaotic
dynamics and the spatial ordering. To better elucidate this phenomenology, we have considered
the unscreened Coulomb potential.

The results reported in Figures 6.4 and 6.5 have been obtained by means of the Coulomb
potential defined in Eqgs.(7.15) and (7.17) having kept constant all the parameters (as above
with (d) = 0.04pum) with the exception of the number of charges Z.

Likewise to Figure 6.2, we can observe that the stronger the interparticle interaction, the
larger the deviation from Brownian diffusion, with a linear time dependence of the MSD for
all the charge values used in these simulations, as shown in Figure 6.4(b). The increase of the
strength of chaos, measured by Lyapunov exponents, observed between Z = 10 and Z = 50
(Figure 6.4(a)) is related to the increase of the strength of intermolecular interactions. This
corresponds to a gaseous-like state of the system as shown by the first panel of Figure 6.5. In
the second panel of the same Figure, the maximum value reached by the LLE, at Z = 50, is
attained when a sufficient degree of spatial order sets in so that it competes with dynamical
chaos of the gaseous-like phase. The strong decrease of the LLE observed from Z = 75 is due
to a further enhancement of spatial order, as shown by the g(r) in the third panel of Figure 6.5.

The fourth panel of the same Figure shows a crystal-like arrangement of the molecules confirmed
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Figure 6.3: Radial distribution function g(r) [Eq.(6.38)] and particles position snapshots at the
final simulation time for four charge values of Figure 6.2 starting from the top with Z = 10 on
the first line, Z = 50 on the second line, Z = 100 on the third line and Z = 180 on the last
one. Large dashed black line correspond to » = Ap = 0.01pum while short dashed black line
correspond to the 7 = (d) = 0.04um. Full black line show the value g(r) = 1. In the left panels
the units of r are um, as well as the units of the snapshots axes to the right.

by the pattern of the function g(r) [?]. Moreover for Z > 120 the LLE drops to values very close
to zero with a pattern displaying a seemingly sharp transition. Correspondingly, the diffusion
coefficient also drops to zero after a monotonous decrease from its Brownian value at Z = 0.
Finally, the values of D/Dy given by Eq.(6.29), reported in Figure 6.4(a), are again in very good
agreement with the outcome of the standard computation; a growing discrepancy is observed
in the above mentioned transition occurring at Z = 120 where the degree of chaoticity is close

to vanishing.

6.3.3 Effects of long and short range electrostatic interactions at fixed

charge value

Let us now consider the effect of changing the interaction strength resulting from a variation

of the average intermolecular distance and a variation of the action radius of electrostatic forces.
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Figure 6.4: (a) Normalized self diffusion coefficient D/Dy (black circles) computed according
to [Eq.(6.29)] compared to the outcomes of the standard computation (grey/green circles) ac-
cording to [Eqs.(7.18) and (6.37)] versus the number of charges Z of the particles interacting
through a pure Coulomb potential [Eq.(7.15)] at average interparticle distance (d) = 0.04pm.
On the second axes we report the largest Lyapunov exponent [Eq.(6.36)] (rhombus). Full sym-
bols represent the corresponding theoretical values for vanishing Z value. (b) Plot of the time
evolution of the simulated MSD for different values of charge. The charge Z increases starting

from the top line that corresponds at Z = 10, passing to Z = 50, to Z = 100, up to the bottom
line corresponding at Z = 180.

This is obtained by using different Debye lengths (Ap = 0.001 and 0.01 pm) for the screened
Coulomb potential defined in Eq.(7.3) and by using the Coulomb potential defined in Egs. (7.15)
and (7.17) (Ap = o0), for different charge values (Z = 10 and Z = 100). The choice of these
parameter values is partially inspired, on the one side, by the typical range of values of charges
for proteins (Z = 10 is a reasonable value for many proteins at physiological pH) and for small
fragments of nucleic acids (each pair of nucleotides brings about 2 unbalanced electron charges),
and, on the other side, the lowest value A\p = 0.001 pm is approximately the Debye length of
the cytosol while longer Debye lengths are relevant for prospective in vitro experiments. Let us
remark that even though electrostatic attractive interactions play a role in biological contexts, in
view of the experimental setups we envisage to detect long-range electrodynamic interactions,
the use of identical particles is the most favourable to begin with (in fact, the excitation of
collective vibrations of identical particles necessarily entails resonance: all of them vibrate with
the same frequency spectrum). As a consequence we have considered only repulsive electrostatic
interactions.

Figure 6.6 summarizes the dependence of the normalized mean diffusion coefficient as a function
of the average distance among the molecules. Different values of Ap are considered for Z = 10
(Fig.6.6 (a)) and Z = 100 (Fig.6.6 (b)). We can observe that at low concentrations diffusion
reaches its Brownian limit characterized by D/Dy ~ 1, and the larger the Debye length and
the number of charges, the larger the decrease of the diffusion coefficient. It turns out that
an appreciable change in the diffusion coefficient shows up for A\p > 0.01pm. The outcomes
of numerical computations obtained for Z = 100 and Ap = oo are reported also in Figure 6.7

and compared with the values of the LLE and of the outcomes of the theoretical correction to
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Figure 6.5: Radial distribution function g(r) [Eq.(6.38)] and particles position snapshots at the
final simulation time for four charge values of Figure 6.4 starting from the top with Z = 10 on
the first line, Z = 50 on the second line, Z = 100 on the third line and Z = 180 on the last one.
Short dashed black line correspond to the r = (d) = 0.04pm. Full black line show the value
g(r) = 1. In the left panels the units of r are um, as well as the units of the snapshots axes to
the right.

the Brownian diffusion coefficient ((6.29)). At very high dilutions corresponding to an average
interparticle distance larger than 10 pm, the diffusion is Brownian while at shorter interparticle
distances the effect of electrostatic interactions is again a decrease of the diffusion coefficient up
to a concentration corresponding to (d) = 0.03 um where diffusion stops. By resorting to the
computation of the radial distribution functions we observe the same phenomenology reported
in Figure 6.5, that is, in the case of Brownian diffusion the corresponding radial distribution
function closely resembles to that in first panel of Figure 6.5. When diffusion deviates from
being purely Brownian the radial distribution shows regular peaks as in the second and third
panel of Figure 6.5 and it looks like that in the fourth panel of Figure 6.5 when diffusion
stops. At the same time, we observe an increase of the LLE which corresponds to the decrease
of D up to the point where D vanishes. When D vanishes, a sudden drop of the LLE is
observed to practically zero values. Finally, we observe a very good agreement of the theoretical
correction to the Brownian diffusion coefficient except when diffusion stops; this suggests that
a developed chaoticity of the dynamics is a requisite for such a computation to be reliable. In
other words when the largest Lyapunov exponent becomes exceedingly small the requirement

that the dynamics has to be self-averaging is no longer fulfilled.
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Figure 6.6: Semi-log plot of the normalized self-diffusion coefficient D /Dy versus the average
distance of the particles interacting through Coulomb potentials [Eqgs.(7.15) and (7.17)] for
different combinations of A\p values at Z = 10 (panel(a)) and Z = 100 (panel (b)). The symbols
indicate the Debye length values: Ap = 0.001pm correspond to triangles, Ap = 0.01pym to
squares and Ap = oo to circles.

6.3.4 Long range attractive dipolar effects

As remarked in the Introduction, we are interested in verifying the experimental detectabil-
ity of long-range interactions among molecules of biological interest through their diffusive
behaviour. In this Section, we focus on the study of diffusive and dynamical properties of the
system when both electrostatic Debye potential, described in Eq.(7.3), and attractive dipole-
dipole electrodynamic potential, described in Eqgs. (6.11) and (6.20), are involved. The choice
of considering the simultaneous presence of these two kinds of interactions is motivated by the
fact that biomolecules are charged objects with non-vanishing dipolar moments.

The dynamical properties and diffusive behaviour in presence of an attractive interaction are
qualitatively different from those observed in the previous sections regarding only the repulsive
Coulomb potential. For the sake of clarity, we present and compare the combined presence of
Coulomb and dipole-dipole electrodynamic potentials (represented by full symbols) with the
presence of only Coulomb potential (represented by open symbols), the latter already presented
in the previous Section. The kind of symbol corresponds, as before, to the different Debye
length values: triangles correspond to Ap = 0.001 pgm and squares to Ap = 0.01 pm. In Figure
6.8 the numerical outcomes for the normalized diffusion coefficient, D /Dy, are reported as a
function of the average intermolecular distance for two charge values, Z = 10 (Fig. 6.8(a))
and Z = 100 (Fig. 6.8(b)) and different values of the Debye lengths, both in presence and in
absence of dipole-dipole electrodynamic potential. At very high dilutions, in a range between
(d) = 1pm and (d) = 0.2um the diffusion follows its Brownian limit characterized by D/Dg ~ 1
for each combination of charge or potential as observed in both panels of the aforementioned
figure. Let us resume first the results when only Coulomb potential is involved; in order to
observe a significant deviation from the Brownian limit the Debye length must be at least equal
to 0.01 pum (open squares) with a more pronounced effect for Z = 100 where the deviation

from Brownian motion reaches D/Dy ~ 0.3. To begin with, we switch on the dipolar potential
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Figure 6.7: Semi-log plot of the normalized self-diffusion coefficient versus the average distance of
the particles interacting through Coulomb potential [Eqgs.(7.17)] with Z = 100. The normalized
self diffusion coefficient D/Dy (black circles) computed according to [Eq.(6.29)] is compared
to the outcomes of the standard computation (grey/green circles) according to [Egs.(7.18) and
(6.37)]. On the second axes we report the largest Lyapunov exponent [Eq.(6.36)] (rhombus).
The dashed lines are guides to the eye.

focusing on the lower charge value, Z = 10 (Fig. 6.8(a)). We can observe a sharp decrease of
the normalized diffusion coefficient, with a transition between a diffusive Brownian motion and
an absence of diffusion.

These results are independent of the action radius of Coulomb potential, in fact no differ-
ence has been observed between the two different Debye length values. The results reported
in Figure 6.8(b)) are obtained by switching on the dipolar potential and by increasing the
intensity of Coulomb potential (taking Z = 100). When the Coulomb interactions is weak
(Ap = 0.001 pm full triangle), so that the dipolar contribution overcomes it, we can observe
the same aforementioned sharp transition characterized by no diffusion.

On the contrary, with a larger Debye length (Ap = 0.01 pm full square) the effects of
a competition between the two potentials, repulsive and attractive respectively, are observed
when the average intermolecular distance is varied. At large average intermolecular distances the
particle motions are practically independent one from the other resulting in a Brownian diffusion,
while at shorter distances the mutual interactions play an important role. The interplay between
the repulsive and attractive interactions leads to a diffusion behaviour dominated by the dipolar
interactions in a small range of distances in correspondence of the transition from D/Djy ~ 1
to D/Dy ~ 0, as it is observed in Figure 6.8(a). At smaller values of (d), the dipolar effect
on diffusion is balanced by the presence of short-range Coulomb repulsion, thus preventing the
formation of a clustered system. In Fig.6.9, we report the outcomes of numerical computations
of D/Dy versus (d) obtained in the case of a dominant dipolar potential with respect to the
Coulomb one (Z = 100 and Debye length A\p = 0.001 um).
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Figure 6.8: Semi-log plot of the normalized self-diffusion coefficient D/Dy versus the average
distance of the particles interacting only through Coulomb potential [Eq.(7.15)] and through
Coulomb potential and the attractive dipole-dipole potential [Eq.(6.20)] for different combina-
tions of Ap values at Z = 10 (panel (a)) and Z = 100 (panel (b)). The symbol shapes indicate
the Debye length values, Ap = 0.001pm correspond to triangles and Ap = 0.01pm to squares,
while open symbols represent Coulomb potential and full ones the combined action of Coulomb
and dipole-dipole potentials.

In the same figure, we add to D/Dy, the values of the LLE and of the outcomes of the
theoretical correction to the Brownian diffusion coefficient due to interparticle interactions (Eq.
(6.29)). This figure shows a good agreement between the theoretical correction to Dy and the
numerical results. We can also observe that the transition from a diffusive to a non-diffusive
behavior goes with a sharp increase of the LLE, indicating a transition from a non-chaotic to a
chaotic dynamics. Note that, in the transition region, fluctuating patterns of the LLE and of
the theoretical correction to Dy are found.

While the regular oscillation of D /Dy versus (d) is due to a competition between two forces
of opposite sign repulsive electrostatic and attractive dipolar), the oscillation of the Lyapunov
exponent below the transition has only a qualitative meaning. The clustering transition is
reminiscent of a phase transition, implying the well known phenomenon of the critical slowing
down of dynamical variables correlation. We can thus surmise that in this region, the dynam-
ics displays long transients to the final clustered configurations, so that memory of the initial
conditions could be kept as is confirmed by numerical simulations performed with different ini-
tial conditions. However, knowing the exact shape of A\ versus (d) would not add any relevant

information with respect to the aims of the present work.

In Fig.6.10 the radial distribution functions of the particles and the snapshots of their
positions are given. These results refer to two average interparticle distances and confirm a
transition from a gaseous-like state to a clustered configuration. Summarizing, the diffusion
quasi-arrest is always connected to the occurrence of large clusters, as shown by the lower
panels in the center and right sides of Figure 6.10. The clustering phenomenon associated with
a sudden drop of the diffusion coefficient at some critical average distance among the particles is
very sharp (Figure 6.9). This is strongly reminiscent of a phase transition due, as usual, to the

competition between the entropic driving toward thermal disorder and the determistic forces
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Figure 6.9: Semi-log plot of the normalized self-diffusion coefficient versus the average distance
of the particles interacting through Coulomb and dipolar potential [Eqgs.(7.15) and (6.20)] with
Z =100 and A\p = 0.001pm. The normalized self-diffusion coefficient D /Dy (circles) computed
according to [Eq.(6.29)] is compared to the outcomes of the standard computation (triangles) ac-
cording to [Eqgs.(7.18) and (6.37)]. On the second axes we report the largest Lyapunov exponent

[Eq.(6.36)] (rhombus).

trying to make order in the system. In the clustered phase the particles are confined in definitely
smaller space and, in spite of the appearance of chaos due to the deterministic forces that drive
the clustering, the particles are not free to move everywhere as in the gaseous phase, thus
diffusion is hindered. Finally, let us note that the results presented in the current section indicate
a possibility to disentangle the effects of electrostatic and electrodynamic interactions. In fact,
by using a sufficiently high ion concentration in prospective experiments, and so weakening the

electrostatic forces, only the effects of electrodynamic interactions would be observed.
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Figure 6.10: Radial distribution function g(r) [Eq.(6.38)], particles position snapshots at the
final simulation time and mean square displacement versus time at two average interparticle
distance (d) = 0.18um (first line) and (d) = 0.04um (second line) for particles of Z = 100 inter-
acting with a Coulomb potential [Eq.(7.15) with Ap = 0.001pm] and with a dipolar potential
[Eq.(6.20)]. The large dashed black line corresponds to r = Ap while short dashed black line
corresponds to the r = (d). The full black line shows the value g(r) = 1. In the left-hand panels
the units of r are um, as well as the units of the snapshots axis to the right. In the right-hand
panels, the units are pm? for the MSD and ps for the time.

6.4 Conclusions and perspectives

In previous sections a work aimed at assessing the experimental possibility of detecting long-
range electrodynamic interactions between biomolecules is presented. It consists of a conceptual
proof of feasibility of an experimental approach resorting to an actually measurable observable.
In particular, this observable is the diffusion coefficient that can be measured by means of sev-
eral available techniques like pulsed-field gradient nuclear magnetic resonance forced Rayleigh
scattering (FRS),Fluorescence Recovery After Photobleaching (FRAP) and Fluorescence Cor-
relation Spectroscopy (FCS) to mention some of them. The long-range electrodynamic forces
we are after have been hitherto elusive to observation in spite of many studies on the diffusion
behaviour of biomolecules in solution. In order to achieve the above mentioned assessment
about experimental detectability of electrodynamic intermolecular interactions, we have per-

formed numerical simulations whose outcomes can be summarized as follows:

1. We have found that, for dilute systems ((d) ranging from about 400A up to 30000A ),
the diffusion coefficient is sensitive to all the interactions considered. Starting with a
uniform distribution of molecules in all the accessible volume, an interesting phenomenon
is observed: the diffusion coefficient decreases independently of the repulsive or attrac-
tive nature of the molecular interactions (repulsive Coulomb with and without screening,

attractive electrodynamic dipole-dipole).

2. Moreover, we observed that, in the gaseous-like phase, a decrease of the diffusion coeffi-
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cient is always accompanied by an increase of chaos. On the contrary, when spatial order
sets in, a decrease of the diffusion coefficient is always accompanied by a decrease of chaos.
Even though it is well known that no simple relation exists between Lyapunov exponents
and transport properties in dynamical systems, the qualitative correspondences observed
are consistent with the intuitive idea that both phenomena are related to the intensity of

intermolecular interactions.

3. Nice transitional phenomena have been observed: for Coulomb interactions a first tran-
sition from purely stochastic diffusion to chaotic plus stochastic diffusion is found; then,
at sufficiently high concentrations, a spatial ordering of the molecules is found resembling
to a crystal-like structure. For dipole-dipole interactions an abrupt clustering transition

is observed, which is strongly reminiscent of an equilibrium phase transition.

4. The simple theoretical model proposed in Section 6.2.5 gives the good values of the diffu-
sion coefficients computed along the dynamics in presence of intermolecular interactions
within a few percent of error. This result paves the way - at least in principle - to ana-
lytic predictions if the time averages used in this work are replaced by statistical averages
Eq.(6.8) worked out with the Boltzmann-Gibbs weight Eq.(6.6) (which is the stationary

measure associated with our model equations).

From the experimental point of view, which was the main motivation of the this work work,
we conclude that the variations of the diffusion coefficient D with respect to its Brownian value,
as well as the patterns of D versus the average interparticle distance (d), are such that the
practical possibility exists of experimentally tackling the problem of interest by means of, for
example, one of the above mentioned techniques.

Let us conclude with a remark about the applicability of the above reported results to two-
dimensional systems like, for example, protein diffusion on lipid membranes. The same kind of
computations reported above can be performed also in two dimension. But a-priori we expect
non-trivial differences between the two and three dimensional cases, for example, the potential
1 /r3 is long-range in three dimension but short-range in two dimension because in the latter
case the exponent 3 is larger than the spatial dimension. Another example of a difference is
that in the absence of deterministic interactions a random ”walker” in one and two dimension
will always almost surely return to the starting point, whereas this is not the case in three
dimension because after a theorem due to Polya the probability to return to the origin drops

to about 0.34, and this of course affects also the encounter probability of two different objects.
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CHAPTER 7 Validation of Fluorescence Correlation

Spectroscopy measures for detection of long-range interactions

The present chapter reports about the third and last step of a feasibility study (cfr. [PFN712]
and [NSP"14]) concernng a possible strategy to detect long range electrodynamic forces acting

among biomolecules.

7.1 DMotivations

The experimental technique envisaged at the end of previous chapter was Fluorescence Cor-
relation Spectroscopy (FCS), a well established experimental technique [MW74, HS07, Els11].
In the present paper we report about this kind of experimental investigation carried on molecules
which interact through built-in long range interactions, that is, an electrostatic force field. The
interacting molecules (a protein, Lysozyme, and an oppositely charged dye, Alexa488) are sol-
vated in pure water, thus in the absence of Debye screening, and in salted water to confirm
that the concentration dependent attenuation of the self diffusion coefficient is due to the elec-
trostatic interparticle interactions. Molecular Dynamics simulations have been also performed,
and their results are in excellent agreement with the experimentally observed phenomenology.
We conclude that the FCS technique is actually a viable experimental procedure for an assess-
ment of the strength - thus of the potential biological relevance - of resonant electrodynamic

intermolecular interactions.

7.2 Experimental measures of self-diffusion coefficient of biomolecules

interacting by Fluorescence Correlation Spectroscopy (FCS)

7.2.1 A brief review on FCS

The Fluorescence Correlation Spectroscopy is the experimental technique used to study dif-
fusion of mutual interacting molecules: a brief review on some basic facts on this techniques
are presented in what follows'. This techniques is applied to investigate diffusion of fluores-
cent diffusing particles? FCS provides a direct measure of a time-domain signal of fluorescence

emitted by fluorescent particle traversing a microscopic observation volume. The average time

!Concepts and principles of Fluorescence Correlation Spectroscopy (FCS) has been developed by
Magde, Elson, and Webb at beginning of '70s [MEW72],[MEW?74],[EM74] and subsequently refined
using know-how on Dynamic Light Scattering [BP76] [AP76].

2Fluorescence consists in light emission by an atom or a molecule in an excited electronic state. Light
emission takes place within 1ns from the radiation absorption (so the creation of the excited state): the
emitted light has a lower frequency respect to the absorbed one as a part of the energy is converted in
vibrational energy (Stokes shift).
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(1) need for a particle to traverse the volume can be indirectly measured by the analysis of the

correlation of fluctuations of the signal. The set-up of FCS is reported in fig.7.1.
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Figure 7.1: FCS set-up.(a) A laser beam is initially dispersed and then focalized by a high
numerical aperture microscope objective (OBJ) on a fluorescent sample (S). The epifluorescence
is collected by the same objective, reflected by a diachroic (DM), focalized by a tubular lens (TL),
filtered (F), and finally detected (DET) after it passed through a confocal opening. (b) Details
of the focal volume (green) where the diffusing marked particles (black spot) are observed.(c)
Typical detected fluorescence detected signal as a function of time for green rhodamine (RG) at
the wavelength A = 488 nm. (d) Part of the same signal of fig.(c) The signal is self-correlated
at a delayed time (t + 7) to derive the autocorrelation function G(7). (e) The derived G(7)
allows to derive the average crossing time (7). (Adapted by [HHHWO02]).

The autocorrelation function G(7), originated by molecules interacting and diffusing in and

out of the observation volume, is defined by

(OF(t)6F (t + 7))
(F()?

where (F'(t)) is the average intensity, F'(t) the intensity of fluctuations, and the brackets

G(r) =

mean ensemble average. The general procedure consists in fitting G(7) with the appropriate
mathematical model describing the characteristics of the system under study. The analytical
form of the autocorrelation function (ACF) for a single molecular species, assuming a three-
dimensional Gaussian profile of the excitation beam accounting for diffusion [MW74] and a
triplet state of the dye [WMR95], is obtained under the assumption that diffusion driven by

random hits of water molecules and protein-dye dynamics driven by electrostatic forces are
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independent processes:

-
1+ np exp (—>
T
(1 + T) 1+ 52—
) ™D

Here N stands for the number of molecules in the FCS observation volume, 7p is the diffusion

G(r) =1+ (7.1)

time through this volume, 77 the triplet lifetime, ny = Tr/(1 — T'r), with T'r the fraction
of molecules in the triplet state. The dimensionless parameter s, called structure parameter,
describes the spatial properties of the detection volume. It is given by s = wy,/w., where the
parameter w, is related to the length of the detection volume along the optical axis, and the
radial waist wy , is related to the radius of its orthogonal section. The diffusion coefficient D is

expressed as a function of the radial waist w; ,, and of the diffusion time 7p by:
D=uwl, /4D . (7.2)

7.2.2 How characterize long-range interaction with FCS experiments

In the present Section we report about the effect of electrostatic long distance intermolecular
interactions on the diffusion behaviour of oppositely charged molecules. Molecular diffusion is
detected using FCS.

The interacting molecules considered in the present study are Lysozyme, a small globular
protein of 14307 KDa [Can63, Jol69] keeping a net positive charge for all pH values up to its
isoelectric point, which is around pH = 11.35 [WD51], and Alexa Fluor 488 dye (hereinafter
AF488) a very bright anionic fluorophore. FCS is a well established spectroscopic technique
that enables a real time investigation of diffusion processes through a statistical analysis of the
fluctuating fluorescence signal detected [MW74, HS07, Els11, RE12, HHHWO02]. Self diffusion is
affected by any interaction among the diffusing species, repulsive or attractive, that produce an
attenuation depending on the interparticle interaction; the stronger the interaction the larger
the deviation from Brownian diffusion [NSP*14]. The experimentally accessible parameters
to implement this study are the average intermolecular distance (d) and the ionic strength of
the electrolytic solution used, as already discussed in [NSP14]. The average intermolecular
distance among molecules changes with their concentration as (d) = C ~1/3 where C is the total
number of molecules per reaction volume. The electrostatic interaction among the molecules in

electrolytic solution is described by the Debye-Hiickel potential (see the previous chapter):

_zzer oo 5 (5 -1)]
B N (Y /v i

where Ap is the Debye screening length of the electrolytic solution, R is the molecular radius, e
is the elementary charge and ¢, is the static dielectric constant of the medium. For a monovalent
electrolyte, like NaCl which has been used throughout this study, the Debye length in Eq.(7.3)
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where ¢ is the vacuum permittivity, kp is the Boltzmann constant, N, is the Avogadro constant

reduces to:

and [ is the ionic strength. Debye screening-due to small ions freely moving in the environment-
is an essential feature of biological systems because it shortens the range of electrostatic interac-
tions. In the limiting case of A\p — +00, charged particles in electrolytic solution are submitted
to a pure Coulomb potential given by:

_ Z1Zs(e)?

Ucoul(T) = o (7.5)

that is, the Debye-Hiickel short-range potential turns to a long-range one. By long-range inter-
action we mean an interaction potential falling off with the interparticle distance r as 1/r” with

v < d, d being the spatial dimension of the system.

7.2.3 FCS results

The main outcome of FCS measurements on a solution of oppositely charged molecules is the
average time 7p taken by a molecule of AF488 to cross the section of some observation volume
in presence of different concentrations of Lysozyme. The measure of 7p gives access to physical
quantities as the diffusion coefficient D (Eq. (7.2)) and the hydrodynamic radius Ry (Eq.(??)).
This study has been performed for different average values of the intermolecular interaction
strength. The latter depends on the average intermolecular distance (d), and, possibly, on a
variation of the Debye screening length. The average distance between any two interacting

molecules is given by

(d) = (Carass + Crys)"/* (7.6)

where the concentration of the AF488 dye has been kept constant and equal to 1 nM, while the
Lysozyme concentration covered a range between 0 and 0.69 mM (9.86 mg/ml).

In Figure 7.2 some typical outcomes of the FCS measurements are displayed. These are the
autocorrelation functions (ACFs) of fluorescence intensity fluctuations (for graphical reasons
the normalized versions are displayed). Then the experimental ACFs are fitted by means of
the analytic expression in Eq.(7.1). Out of these measurements and fittings one obtains the
diffusion times 7p , and hence the values of the diffusion coefficient D, at different values of
(d). When the Lysozyme concentration is zero the solution contains only InM of AF488
corresponding to an average intermolecular distance of 11841.8A. The diffusion coefficient of
the dye in the absence of Lysozyme is used as the infinite dilution value Dy of AF488. Then
the average protein-dye distance is varied by varying the Lysozyme concentration. In order to
change the action range of electrostatic interactions we chose five different NaCl concentrations:
0,20, 50, 100, 150 mM. The 0 mM concentration of NaCl implies that the molecules are solvated
in pure water and submitted to a pure Coulombic potential (Eq.(7.5)), while the additions of
salt in solution screens the electrostatic interaction between charged molecules (Eq.(7.3)). The
Debye screening lengths for NaCl salt contents of 20, 50,100 and 150 mM, are equal to 21.4A,
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Figure 7.2: Semilog plot of the normalized au‘gocorrelation function of ﬂuoorescence fluctuations,
defined in Eq.(7.1), obtained at (d) = 240A (red line), at (d) = 920A (blue line), and at
(d) = 4200A (black line).

13.6A7 9.6A and 7.8A (Eq.(7.4) for a temperature of 30°C), respectively.

As several experiments have been performed on different days - so that the outcomes of the
measures can be affected by even minor FCS setup modifications - the values of the measured
diffusion coefficient D are normalized to the infinite dilution value Dg, which is determined
anew each time a new experiment is performed, and which corresponds to Brownian diffusion
of the dye molecules.

In Figure 7.3(a) we can observe that at low concentrations of Lysozyme, corresponding
to an average interparticle distance larger than approximately 20001&, the diffusion of the dye
molecules is Brownian, that is, D/Dgy ~ 1, where D/Dg = 1p,/7p (see Eq.(7.2)). By increasing
the Lysozyme concentration, a marked drop of the normalized diffusion coefficient is observed. A
rough estimate of the distance at which the electrostatic interaction energy of Eq.(7.5) - written
for two molecules - equals the average thermal noise energy of 3kpT/2 gives a distance of ~
2500A between a Lysozyme molecule and a dye molecule. Below this value of the intermolecular
distance, a sizeable effect of the electrostatic interaction is expected. As a matter of fact, this
is in very good agreement with the observed average distance at which D/Dy starts bending.
The patterns of the ACF's reported in Figure 7.2 are well fitted by the single species function
in Eq.(7.1) even though a-priori a two-species ACF [?] could seem to better take into account
the presence of two subpopulations, one of complexed dye molecules with proteins, and the
other of freely moving dye molecules. However, we have to think of a more complex dynamical
situation. When the concentration of protein molecules is such that D/Dy starts bending, the
non-complexed dye molecules are subjected to an electrostatic attraction in every direction
exerted by the surrounding protein molecules, this situation of ”frustration” slows down their
diffusion [NSP"14]. Then we have to think of the possible formation of temporary/”flickering”

bound states between the protein and the dye molecules. In fact, the thermal fluctuations,
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due to the collisions with the surrounding water molecules, continuously tend to destroy the
bound states. The larger the concentration of Lysozyme, the more frequent presumably is the
formation of temporary bound states Lysozyme-AF488, thus resulting in a lowering of the value
of the diffusion coefficient. Of course the existence of a subpopulation of permanently bounded
states Lysozyme-AF488 is not excluded, and also these complexes necessarily contribute to
reduce the diffusion coefficient. In view of the just depicted dynamical scenario, we report in
what follows the data corresponding to the whole dye population obtained by fitting the ACFs
with the function in Eq. (7.1).

As the Lysozyme concentration is increased the average distance between the proteins and
the dyes is reduced, and the electrostatic interaction between these oppositely charged molecules
is strengthened. This results in an increasing fraction of temporarily bounded pairs of proteins
and dye molecules, so species with different diffusion coefficients are detected by the FCS appa-
ratus which thus averages the corresponding values of 7p. This provides a natural explanation of
the physical origin of the observed pattern of the diffusion coefficient displayed in Figure 7.3(b).
Let us remark that investigating the details of the clustering process is far beyond the aim of

the present work, which is to validate the FCS technique to detect intermolecular long-range

interactions.
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Figure 7.3: Semilog plot of the normalized diffusion coefficients D/Dj of AF488 as a function
of the distance in A between proteins and dyes (a); semilog plot of the diffusion coefficient D
for a single experiment with 0mM of NaCl in solution (b); semilog plot of hydrodynamic radius
(c) of AF488 (1nM) versus the average distance between all the molecules in pure water.

As a cross check we observe that the diffusion coefficient D measured at the lowest values
of the intermolecular distances has to correspond to the condition where all the molecules
of AF488 are bounded to the Lysozyme molecules for most of the time, thus in this case

D must approximately equal the value of the Lysozyme diffusion coefficient (apart from a
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Figure 7.4: Semilog plot of the normalized diffusion coefficients D/ Dy at different concentrations
of NaCl in solution: 0mM (blue diamonds), 20mM (orange dots), 50mM (red squares), 100mM
(purple rectangles) and 150mM (green triangles); smaller symbols are used to refer to different
experiments.

small difference due to a slightly modified Stokes radius). Therefore, the diffusion coefficient of
Lysozyme molecules chemically labelled with AF488 has been measured. The value obtained is
Dpys = 166.55 = 1pm? /s which is in fairly good agreement with that one corresponding to the
lowest intermolecular distance in Figure 7.3(b).

The above given natural explanation of the result displayed in Figure 7.3(a) can be further
and nicely confirmed by acting on the effective range of the the intermolecular interaction
potential according to Eq.(7.3). The range of the potential is controlled by the Debye screening
length Ap, which depends on the concentration of freely moving ions in the electrolytic solution.
This is practically realised by adding to the watery solution of proteins and dyes different
concentrations of sodium chloride. The effect of this action on Ap is shown in Figure 7.4. The
different patterns of D((d)) are consistently showing that the higher the ionic strength (that is

the shorter Ap) the shorter the distance (d) at which D deviates from a Brownian value.

7.3 Numerical results for validation of the experimental tehc-

nique

Numerical simulations of molecular dynamics have been performed to strengthen the inter-
pretation of numerical results presented in previous chapter: i.e., the fingerprint of long-range
(attractive, in this case) interactions is sharp, transitional-like drop of diffusion coefficient of
the dye particles.

New numerical simulation are required as in this case the system is constituted by two different
molecular species (dyes and the lysozime molecules) while, in the simulation presented in the
previous chapter only one molecular specie has been considered. Moreover, as in this case elec-
trostatic forces can be also attractive, the highly non-trivial problem of represent the excluded

volume of the spherical particles has to be considered.
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7.3.1 Basic dynamical equations

We have numerically studied systems of two populations of molecules confined in a cubic
volume of size L. The number of particles for each type is fixed: N4 is the number of A-type
particles (Lysozyme molecules), and Np is the number of B-type particles (AF488 molecules).
To avoid spurious boundary effects, periodic boundary conditions (PBC) have been assumed,
which is equivalent to the existence of an infinite number of images/replicas throughout the
space. In order to study diffusion at different concentrations, the numbers of molecules N4 and
Np are kept fixed, and the average intermolecular distance (d) among the molecules of type A

and B is then controlled according to the relation

L=3{/Nai+ Ngld). (7.7)

We remark that such a choice is not entirely equivalent to the experimental situation de-
scribed in the previous paragraphs where the dye (AF488) concentration was fixed; in fact, in
molecular dynamics simulations (MDS) both the concentration of Lysozyme and dye change
with (d), the ratio of concentrations being constant. This choice is justified by the fact that
in real experiments N4/Np varies in a range [1 — 5 x 10°]; fixing Ng = 50, the experimen-
tal situation would correspond to taking N, in a range [1 — 2.5 x 10°], which is very highly
demanding for computation. In MDS the ratio N4/Np has been chosen as large as possible
(Na/Np = 10 in our case) to avoid that dye molecules (AF488) dynamics could significantly
affect the biomolecules (Lysozyme) dynamics.

In the presence of long-range interactions and PBC, each molecule contained in the pre-
viously mentioned box interacts with all the molecules contained in the above mentioned im-

ages/replicas, that is, the pairwise potential
Ukl(rikjl) = U(‘Tik - sz|) (7‘8)

in Eq. (6.4) has to be replaced by an effective potential UgH (r;, ;,) of the form:

Ul?lff(rikjl) = Z U(|rs, — Ty + nL), (7.9)

nez3

where Z3 is the space of 3-dimensional integer vectors.

It is clear that short and long-range interactions (in the sense specified in the Introduction)
have to be managed in two different ways. For short range interactions it is always possible to
define a cutoff length scale Ayt such that the effects of the interactions beyond this distance
are negligible. In the systems we have studied by means of numerical simulations, the Debye
electrostatic potential is a short range potential with a cutoff scale of the order of some units
of the Debye length A\p. For long-range interactions as the Coulomb potential Eq.(7.15), it is
not possible to define a cutoff length scale A.yt so that, in principle, an infinite sum should
be considered. A classical way to account for long-range interactions resorts to the so called

Ewald summation [AT89]. In the following Section we describe a more recent and practical
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method - replacing Ewald’s one - known as Isotropic Periodic Sum (IPS). The equations of
motion (6.4) were numerically solved using a second order Euler-Heun algorithm [BLLO7],that
is, a predictor-corrector scheme.

The initial position of each particle is randomly assigned at tg using a uniform probability

distribution in a cubic box of edge L.

7.3.2 Model potential

The interactions among the molecules are linear combinations of pairwise potentials regu-

larized as follows:

Usc(Tig,) Figji < 1.01 Ry

Ui(ripg,) = (7.10)

Ukistat(Tiyj,) Tigs > 1.01 Ry

where Ry, = Ry + Ry is the sum of the two molecular radii, Usc(r;,j,) is a soft-core potential
and Ugisiat (74, 5,) is the Coulomb electrostatic potential. The choice of a soft-core potential is
related to the fact that a small fictitious overlap among the interacting molecules is allowed
in numerical simulations for computational reasons (that is, to avoid the need of very short

integration time steps). The soft-core potential has the form:

Ti, 4
USC’(rikjl) = ASCkz exp |:_]€kjll + 1:| . (711)

The parameter related with the potential strength Agc,, has been chosen such that:
Arsci, (0.95 Ryy) + Arsc;, (0.95 Ry;) = 0.05 Ry (7.12)

where Argc;, is the drift on the the particle 5, due to the soft-core potential in a discrete time

interval At:

At |dUsc (i)

Arsci, (1i,5,) = 7.13
T'SCiy, (r k]l) e dr ( )
This yields the following expression for Agc,,;:
Ry (1 1\!
Asc,, = 0.05 exp [-0.05] =X ( + ) . 7.14
SCri p| N =T (7.14)

The electrostatic Coulomb potential Ugisiqae (74,5, ), describing the experimental condition where
no salt is dissolved in solution, is:
Zp Zy 2
Ucoul(Tig) = ———— (7.15)
€ Tirgy
where e is the elementary charge and ¢ is the electric permittivity of the medium, for which the

static value at room temperature is € = eyqter = 80.
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IPS correction to long-range potentials

Because of the long-range nature of the Coulomb potential described by Eq.(7.15), the force
acting on each particle is given by the sum of the forces exerted by all the particles in the box
and by the particles belonging to the images. For the computation of these forces, we used the
IPS method [WBO05][WBO08], a cutoff algorithm based on a statistical description of the images
isotropically and periodically distributed in space. Assuming that the system is homogeneous
on a length scale R., we can define an effective pairwise IPS potential U/FS = UTPS(|r,; 5|, R.)

which takes into account the sum of pair interactions within the local region around a particle

Ulrigl) + (il Re) » |rigl < Re
U5 (740, Re) = (7.16)

0 s |71i,j‘ > RC

where ¢(|r; ;|, R.) is a correction to the potential obtained by computing the total contribution
of the interactions with the particle images beyond the cutoff radius R.[WB05][WB08]. For
the Coulomb potential of Eq.(7.15), we obtained an analytical expression for the IPS correction
®coul(Tij, Re). For computational reasons this has been approximated by a polynomial of degree

seven in « = |r; j|/R. with z in the interval (0;1]:

Pcou(z) = — 9.13636 x 1077 + 0.000100298z+
+ 0.29858822 + 0.01515952° 4
+0.00881283z* + 0.108492°+
—0.09302642° + 0.048243427

(7.17)

We have chosen R. = L/2 under the hypothesis that on this scale the system is homogeneous.

7.3.3 Long-time diffusion coefficient

We aim at assessing the experimental detectability of long-range interactions between biomolecules
using quantities accessible by means of standard experimental techniques. A meaningful ap-
proach to this issue is the study of transport properties. For this reason, in our simulations we
chose the long-time diffusion coefficient D as the main observable of the system described by
Eqgs.(6.4). This coefficient is defined, consistently with Einstein’s relation [AT89], as:

Ari(t)]?
D= pim JATE) (7.18)
t—+o0 6t
N
Ar;(t) = r;(t) — r;(0) being the total displacement of a particle in space and (a;) = 1/NZ a;
i=1

the average over the particle set. We remark that in our system the displacements Ar;(t) are
not mutually independent due to the interaction potential U(|r; — r;|) in Eqgs.(6.4), which es-
tablishes a coupling between different particles; in that case, the average over particles index

concerns correlated stochastic variables. Nevertheless, as our system is non-linear with more
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than three degrees of freedom, it is expected to be chaotic [?] so that, in this case, the statis-
tical independence of particle motions is recovered. Moreover, when a chaotic diffusion gives
(|A7;(t)|?) o< t (which is the case of the models considered in the present work), the diffusion co-
efficient D is readily computed through a linear regression of (|Ar;(t)|*) expressed as a function
of time. In what follows we refer to (|Ar;(t)|?) as Mean Square Displacement (MSD).

7.3.4 Simulation Parameters

Molecular Dynamics simulations were performed considering a solution with N4 = 500 and
Np = 50 representing respectively Lysozyme molecules and AF488 molecules. This choice
seemed to be a good compromise between the need of a large Np for a good statistics, a

sufficiently large ratio N4/Np and the request of a not too high computation time.
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Figure 7.5: Comparison among experimental results and numerical simulations. Semilog plot
of the normalized diffusion coefficients D/Dy: experimental values (red diamonds), N4 = 200
and Np = 20 (light green circles), N4 = 500 and Np = 50 (light blue squares).

The A-type particles, which represent Lysozyme molecules, have a radius R4 = 2x 1072 ym
and a net electric charge expressed in elementary charge units Z4 = +10. The B-type particles,
which represent AF488 molecules, have a radius R = 0.5 x 1072 um and a net electric charge
expressed in elementary charge units Zp = —2. The medium where diffusion takes place
represents an aqueous solution, so that the viscosity n = 8.90 x 107*Pa - s7! is the water
viscosity at T' ~ 300K . The relative dielectric permittivity has been taken to be ¢ = 80 as for
pure water.

The time step has been chosen to At = 5x 10~ us: this choice can allow important overlaps
among particles in MDS and does not permit a correct description of excluded volume effects,

i.e. the drift due to stochastic forces on dye molecules in a single time steps is comparable
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with Rp. Nevertheless the effects we are interested in concern the diffusive behaviour of dyes
on larger length and time scales and we considered acceptable such ovelaps. The number of
time steps was fixed such that the dynamics was simulated for 5000us so that for the dye
particles /6 DgAt ~ 4 uym > (d), where Dy is the brownian self-diffusion coefficient of the
dye molecules, for any considered case. In Figure 7.5 the outcomes of the above described
numerical simulations are compared to the experimental results obtained for the same quantity:
the diffusion coefficient D, normalized with respect to its Brownian value Dy, as a function of
the average interparticle distance (d). The numerical outcomes for D quantify the diffusion of
the small particles that model the dye molecules. We observe that the choice N4 = 500 and
Np = 50 yields a less noisy pattern with respect to the choice Ny = 200 and N = 20, what is of
course sound. Even though the number of particles considered in numerical simulations is very
small with respect to the actual number of molecules in laboratory experiments, a common
situation in standard Molecular Dynamics simulations, the agreement among numerical and

experimental results is excellent.

7.4 Concluding remarks

The work reported in this chapter concludes a feasibility survey aimed at assessing the ade-
quacy of diffusion studies to detect the activation of electrodynamic intermolecular interactions.
Other two works, [PFN"12] and [NSP"14], dealt with this problem from the theoretical and
numerical sides, respectively. The present work contains a leap forward in what it provides an
experimental assessment of the adequacy of Fluorescence Correlation Spectroscopy to detect
intermolecular long range interactions. Even though our ultimate goal is to detect long range
electrodynamic intermolecular interactions, for the time being we have tested this technique
against a system where long range interactions are built-in, that is, a solution of oppositely
charged molecules interacting through non-screened electrostatic interactions. As a matter of
fact, we have found that FCS is certainly appropriate to detect intermolecular interactions in
dilute systems, that is, when the solvated molecules interact at large distances, in the present
study up to 2000A approximately. Furthermore, the excellent quantitative agreement between
the experimental outcomes and the corresponding numerical simulations has a twofold relevance.
From the one side it confirms that the observed phenomenology, namely, the sudden bending
of the diffusion coefficient when the average intermolecular distance is lowered below a critical
value, as well as its pattern as a function of the intermolecular distance, are actually due to the
electrostatic interaction among the solvated molecules. From the other side this validates the
numerical algorithm and approximations adopted, suggesting that this numerical scheme can
be safely applied to interpret the readouts of experiments where electrodynamic interactions

will be possibly excited.
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Conclusions and further perspectives

In this manuscript many different aspects of phase transitions and cooperative phenomena
are studied and investigated from different points of view.
In the first part of this manuscript, we investigated the ¢*-model on 2D-lattice elsewhere pro-
posed as counterexample to the Necessity Theorem 1.4.2 which constitutes the conceptual basis
of the Topological Theory of phase transitions.
Such an investigation has been motivated mainly by the necessity to save a powerful approach
to phase transitions. On the one side it allows to extend the classical theory of phase transitions
to small or mesoscopic systems, far from the thermodynamic limit, what makes this theory a
powerful theoretical tool also in view of future applications in biophysics. On the other side, the
Topological Theory of phase transitions allows to predict, from the topology of equipotential
level sets at any finite IV, if a system undergoes a phase transition in the thermodynamic limit.
Our numerical and theoretical investigations of the ¢*-model on 2D-lattice suggested that the
hypothesis of diffeomorphicity of the equipotential level sets at any finite N is not sufficient to
prevent an asymptotic loss of simple connectedness of the equipotential level sets: an additional
condition has to be imposed to the vector field generating the diffeomorphism among equipo-
tential level sets to prevent the occurrence of phase transitions in the thermodynamic limit. In
this sense, the original ”geometrization” of microcanonical thermodynamics, provided in this
work, could in principle make easier to construct uniform bounds on this vector field as the
derivatives of the microcanonical entropy calculated on a certain level set Y3 can be expressed
as microcanonical averages of some scalar functions associated to the vector field (in particular
its divergence and modulus) and of their derivatives. Further more, a method to encode the
thermodynamical information on a system in a suitable metric of configuration space, allows to
express the derivatives of entropy at any order as functions only of the averages of the mean
curvature of the potential level sets and their derivatives with respect to the normal vector field.
This insight seems quite promising as the links among global integral geometry and topology
are known.
Finally, the application of persistent homology to systems which undergo phase transitions, as
illustrated in chapter 2, gives the Topological Theory a computational interest. In fact, this the-
ory is not a mere mathematical speculation on the origin of phase transitions, but it potentially
constitutes the theoretical basis for a method that, among other things, allows to study phase
transitions in small systems from the computation of the topological properties of configuration
space.
The second part of this manuscript has been devoted to present the author’s contributions to
the ambitious research program aimed at verifying the possibility to electrodynamic long range
resonant interactions among biomolecules in acqueous solutions. According to the complex

theoretical picture presented in chapter 3, the possibility for biomolecules to exploit this kind
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of electrodynamic long-range interactions is strictly dependent on the possibility of inducing
collective vibrations of biomolecules. Between the mid of '60s and the '70s, H. Frohlich devel-
oped an heuristic model (that, because of its genericity, has to be considered as a metaphor)
that predicts the possibility of canalizing all the vibrational energy of a biomolecule in its low-
est frequency vibrational mode when the external energy supply exceeds some threshold value
Hitherto the rate equations for the average actions of normal modes have been derived from a
quantum Hamiltonian system by Wu and Austin. This leads to the conclusion that Frohlich
theory would be a quantum effect: this was the central point which attracted many criticisms
that had the consequence of disqualifying this theory as a possible explication of the activation
of out-of-equilibrium collective oscillations in biomolecules.

In chapter 4 we show that the Frohlich-like condensation can exist also in a classical frame-
work. This result makes the ”Frohlich metaphor” more plausible if applied to biomolecules and
makes reasonable the experimental search for Frohlich-like condensation in biomolecules, even
in "wet” and "warm” environment, where quantum phenomena are supposed not to take place.
Nevertheless, as observed at the end of chapter 4, the Frohlich-like condensation theory, both
in quantum and classical version, is described for an hyper-simplified model whose parameters
seem quite hard to estimate for a realistic protein. Moreover, a central point in Frohlich theory
consists of the non-linear interaction of normal modes of the biomolecules with the so called
”thermal bath”. The original Frohlich description includes all thermalized degrees of freedom,
in particular the surrounding water molecules and other internal vibrational modes of the con-
sidered biomolecule. Nevertheless, the problem of describing the interactions of biomolecules
undergoing collective oscillations with their surrounding aqueous environment is still an open
research field, that has been only partially explored, especially for what concerns the dissipation
of vibrational energy.

In chapter 5 a first experimental evidence of the activation of collective oscillations of biomolecules
in watery solutions and out-of-thermal equilibrium is reported. The importance of this result
relies on the fact that it revitalises a research field abandoned for a long time because of major
technical difficulties to be overcome in order to perform these measures. Moreover, from the
point of view of theoretical physics, also the interpretation of these measures constitutes a real
challenge. Despite the fact that our in vitro experiments represent a simplified condition with
respect to the cellular environment, the presence of water makes really hard a quantitative
interpretation of some aspects of the experimental outcomes. In fact, also in this case, the in-
teraction between a biomolecule and its surrounding aqueous environment could play a relevant
role.

The theoretical interpretation we provided in chapter 5 explains the main features of the ob-
served spectra: the presence of a protein absorption peak due to light illumination, the value
of the frequency for which the absorption peak is observed, the shape of the absorption peak.
Any finer analysis of the experimental outcomes cannot leave aside a description of the response
of water to electromagnetic radiation in the THz domain. Moreover a deeper understanding
of cooperative phenomena of water molecules surrounding a biomolecule is needed to assess

the role of hydration molecules in their surmised electrodynamic interaction. For instance, the
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presence of a thick layer of organized water around biomolecules (that can be reach the thick-
ness of 2.5nm) can play a decisive role both to amplify the biomolecules electric dipole and
to reduce the vibrational energy dissipations of the biomolecule. In this context, further re-
search should address also the fascinating theory proposed by G. Preparata and E. Del Giudice
in QED framework on the possibility to induce coherence domains in water (see for instance
[ABGP95, DGP98, Apo09, DGET09)).
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Figure 7.6: Preliminary results of FCS measure of excited BSA self-diffusion coefficient vs.
intermolecular average distance. Different colours indicated different measure set.

In chapter 6 and chapter 7 the possibility to recognize the activation of long-range (attrac-
tive) interactions through the observation of self-diffusion behaviour has been assessed both by
numerical simulation and real FCS experiments. The validation of the experimental method
allows to consider the further crucial step: the research of long-range electrodynamic inter-
molecular interactions among biomolecules when collective oscillations are activated with the
same procedure used in the THz experiments so far performed. Preliminary results on the same
BSA molecule are reported in Figure 7.6. The results are quite encouraging: a sudden drop of
self-diffusion coefficient to lower values is observed for an intermolecular average distance of the
order of ~ 15004; a pattern qualitatively very similar to reported in Figure 6.8 for the clustering
transition in a system of identical molecules interacting through an attractive potential between
oscillating dipoles. If these preliminary results are confirmed by other ongoing experiments, an
exciting research field will be opened. A large number of theoretical and experimental issues
will be raised for both in wvitro and prospectively in vivo investigations.

About the prospective biological relevance of all the above mentioned results, the excitation of
collective vibrations, and thus the activation of long-range attractive forces, would be driven

by ATP hydrolysis in living cells. The typical intracellular concentration of ATP molecules is
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given around 1 mM implying that a protein molecule in the cell undergoes around 10° collisions
with ATP molecules per second [AJL"02]. Given the standard free-energy obtained from ATP
hydrolysis estimated around 50 kJ.mol™ = 8.306 x 10~ *3erg, if we assume that only 1% of the
collisions with ATP will provide energy, a power supply of 8.306 x 10~ %erg s is potentially
available. This is considerably larger than the power supplied to each protein in our THz exper-
iments, thus the condensation mechanism in vivo can be considerably faster and more efficient.
Adding this long-range electrodynamic selective interactions to the usually considered short-
range interactions (chemical bonds, Van der Waals interactions, hydrogen bonds, etc.) would
open unpredictable scenarios in our understanding of the functioning of the molecular machin-
ery at work within the living cells. For instance, a quite fascinating study, among the others,
would be that of investigating synchronization phenomena in physiological conditions among the
biomolecules intervening in some specific biochemical reaction like gene transcription, activation
of DNA-polymerase and so on. Finally the presence of phase-locking phenomena could affect
the repulsive or attractive nature of biochemical interactions having important consequences at

the level of dynamical organization in cellular environment.
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A Basic facts of differential geometry and geometric measure

theory

A.1 Brief review of Riemannian Geometry

In this appendix we review some concepts concerning the Riemannian Geometry that oc-
curring in the main part of the manuscript. The reader is supposed to be acquainted with very

basic notions of differential geometry that we briefly sketch here.

A.1.1 The concept of differentiable manifold

One of the main purpose of the Differential Geometry is to extend the applicability of the
differential calculus, usually performed on open set of the vector (linear) space R", to more
general sets. Basically, the definitions and the principal features of the differential calculus are
local properties; i.e., they depend only on their behaviour in an arbitrarily small neighbourhood
of a point. So, if a set M is locally as an open set of R™, we are able to introduce a differential
calculus on M.

An n-Smooth Manifold is an abstract set’ such that a small region around each point
of it is done as an open set? of R™ equipped with an additional smooth structure we are
going to introduce. A set M which is locally like the linear space R" is called a topological
manifold of dimension n; here, an inhabitant of M, living a neighbourhood of a given point
p, needs exactly n dimensions to describe the surrounding reality. Roughly speaking, the map
o(p) = (z'(p),...,2"(p)) realizes those dimensions on R™ and the maps z'(p),...,z"(p) are
called local coordinates of M in p. More formally, given a set M and p € M, a chart (U, ¢) at
p is a bijective map ¢ : U — V, where U C M and V is an open set of R™. Actually, a chart
provides on U C M the coordinates of R™. In this way, a chart allows one to describe each
point of U with a n-tuple of real numbers. Thus, U is the part of M that is essentially like
R"™. Roughly speaking, the chart (U, ¢) provides a geographic map to describe M, at least in a
small part of it. It is then clear that to describe the whole set M we need a collection of charts
covering all M.

A problem arises when a region of M is described by different charts: this chance is drawn in
Fig. A.1. Consider, for example, two inhabitants of M living one in a neighbourhood of a point
p € M and the other in a neighbourhood of a point ¢ € M. They could display the respective
surroundings with two different charts, say (U1, ¢1), (U2, ¢2) and so with two different sets of
local coordinates. Moreover, in case of overlap, i.e. in the region U = U; N U # 0, the charts

should be (in a suitable sense) equivalent. The equivalence is provided by the compatibility

'Here we introduce the concept of the manifold thinking of it as living into no linear space R".
2This requirement implies that the manifold has the same topology of R™, at least locally.
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condition: ¢ (U) and ¢o(U) are open sets of R™ and 2 0 ;! 1 1(U) — wo(U) is a bijective,
smooth map with inverse smooth again®. The map ¢ o gofl is called change of coordinates or

transition map. This map allows U to inherit the structure of the linear space R".

Figure A.1: The transition map: the sets U;,U; C M have ®;(U;) and ®;(U;) as realization
into the linear space R?. The overlap U; N U; should have the same realization with both ®;
and ®;, as it turns out in the turquoise triangle.

Finally, a natural covering of the set M is provided by a collection of compatible (each
one with each other) charts. In this way all regions of M can be described by equivalent local
coordinates. A collection of compatible charts covering M is called atlas. Moreover, two atlas
are compatible if their union is yet an atlas of M. A differentiable structure is the maximal
(with respect the inclusion) atlas M. Thus, a smooth manifold is the pair (M, .A) where A is a
differentiable structure. Trivially, R" is a smooth manifold with one chart and local coordinates

given by the natural ones.

A.1.2 Tangent and cotangent space

Other extra structures on the manifold M are possible. The most evident example of
manifold with an extra structure is the linear space R": it is also a vector space. The canonical
scalar product allows to introduce a metric structure on R": we can measure the length of the
tangent vectors, the length of the curves and the distance between two different points. Now
we want introduce a metric structure also on M. Doing that we obviously need a structure of
vector space associated with M. We know that a small region is like an open set* U ¢ R™, but
as matter of fact we can not add two different points p and ¢ in M. The associated structure of
vector space is given by the definition of the tangent space of M at a given point p € M. Thus,
at any point p we have a vector structure and so a scalar product. Then, roughly speaking, we
can consider a metric structure on M as the union of all scalar product on any tangent space
as p varies on M. Let us see first what is a tangent vector of M at p and then which is the
structure of the tangent space. Consider another mathematical object with one dimension, the

curve, different from the line®. More formally, a smooth curve is a smooth map o : I — R,

3This is properly the definition of a diffeomorphism.

4This means, the small region of M has the same topology of R".

°The number eight drawn in a R? is a curve, but not a line. In fact, any small region around the
auto-intersection point is a cross, but not a straight line, as request from the definition of the line.
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where I C R is an interval. Given p € M, we can realize a small region around p as an open
set U C R™ and perform the derivative of any differentiable function defined on it. A tangent
vector of M at p is the one ¢’(0), where o : (—§,6) — M is a curve inside the small region
around p and such that o(0) = p: see Fig. A.2 for a major understanding of the concept. The
collection of all tangent vectors of M at p is the tangent space T, M of M at p.  In general,

Figure A.2: The tangent space of M at z: the vector v, is the tangent vector of a suitable
curve o(t) living in a small region of M, such that o(0) = x.

given an n-dimensional smooth manifold M and a point p € M, the tangent space T, M of M
at p is a vector space which could be identified with the set of the partial derivatives. So, let

(U, ¢) be the chart providing the realization of the small region around p as an open set of R",

a basis of T, M is given by B = {01,...,0,}, where 8; = % and {z'}"_, is the set of local
coordinates.

The vector space structure 7, M naturally allows to define a dual vector space, the so called
cotangent space 7, M, such that every; namely if ¢ € T, M and X € T, M then 6,(X) € R.
In particular, if B* = {dx,,...,dx}} is a basis of T M then dz},(8;) = 6;;°

This two vector space allow to construct a tensor space of rank (7, s), a multilinear map of the
form

70, = @ TM @, TyM (A1)

an element t € 72(57;)10 that in local components read

t=11""9; ®9; ®dz) ®dal. (A.2)

J1---Js
Fundamental operation on the tensor and their multilinear algebra are

e the linear combination of two tensor that in coordinates reads (ax + By)““ = a4

S Jreeds T g1 s
1.0 .
By;, i where o, f € R;

eletl<A<randl <p<sanduze 7'((;))[) then its tensor contraction Cy,(x) € '7??:11))1)

7:1...7:7« _ il---’i,\_lki/\_,_l...ir

reads in coordinate (C/\u(x))jl...js =

e the tensor product of two tensor x € = € 7?3;1))]) and x € 72222))1? whose action in coordinates

P

6B* is the dual basis of B and the Kronecher symbol di; is defined as d;; = 1 if i = j, otherwise it is
ZErO.
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reads
i1 ...ir1+r2 _il "'iTl ir1+1~-~ir1+r2
(SU ® y)jl---jsl+52 _jl---jsl jsl+1---jsl+52 (A3)

this operation satisfies associative and distributive laws;

e the index permutation o that can be applied to tensors of rank (r,0) (multivector) or

(0, s) (multiform); for instance, in the latest case we have that (o());, ;. = Zj,1..js,- If
we define the sign of a permutation as
+1 even permutations
sgno = (A.4)
-1 odd permutations

we can introduce the symmetrazing map Ss and the alternating map A, of a multiform

(0)
T 7E8)7p

As(z) = E Z sgno - oxSs(x) = 1 Z ox . (A.5)

T oeS(s) " oeS(s)

The alternating map allows to define an exterior (wedge) product of an s-form 7 and an k-form
p as
nAp=Asik(n®p) (A.6)

with associative law, distributive law respect to sum and anticommutative law, i.e. p A =
(=1)%*0 A p. The local space of k-forms will be indicated in what follows with A’; .

A.2 Tensor fields, derivations, connections and curvatures

The vector (or tensor) space introduced in the previous section are defined point-wise; the
next step to enrich the structure of a differential manifolds consists in extend such structures to
the whole manifold. A very simple way to realise this consists in taking the disjoint union 7'M
of all T, M with respect p € M : this is called the tangent bundle. Analogously the disjoint
union T*M of all T; M with respect p € M is called the cotangent bundle. Thus, a tangent
(co-tangent) bundle is a vectorial over structure upon the manifold; more in general the disjoint
union of the tensor in each point p € M of a riemanian manifold constitute the so called tensor
bundle. In Fig. A.3 the columns represent the vector spaces built upon the flat manifold R?:
each column correspond to one tangent space, called fiber of the tangent bundle while the flat
manifold is the base of the bundle More in general the fiber can be constituted by an arbitrary
vector space V' (as a space of tangent vector, covector, tensor spaces obtained as tensor product
of them) and the vector bundle associated has the local structure of the Cartesian product of
the manifold and the vector space: when this properties holds also globally the bundle is trivial.
An application with associate at each point p of the base M a vector in the corresponding fiber
VpM is a section of the fiber bundle. A wector field over a manifold M can be regarded as a
section in some vector bundle V.M, as for instance the tangent bundle T M.

In this case a vector field X € 7;M that takes the value X(p) = X*(p)8; in p € M can be



Figure A.3: The tangent bundle: the columns represent the tangent spaces, called, in general,
fibers of bundle. The blue lines are curves on the manifold, while the red lines are indicated as
the sections of the tangent bundle upon the blue curve.

locally regarded as the tangent vector field of a curve y(t) € M with v(0) = p and 4(0) = X(p).
The tangent bundle structure allows to introduce the operation of tensor derivation” D7) —

’7;(’") that in general have to satisfy the the following properties:

e Commutes with contractions, i.e. if A € TS(T), {Vitj=1,..s € T and {e}i=1, s
DA(Gl,...,Qi,...,er,Vl,...,Vj,...,V;) = (DA)(el,...,ei,...,97,‘/1,..‘,‘/]',...,‘/;)+

+Y A1, Dy 00, VRV V)
=0

+) A1, 0,00, V1, DV, V)
j=1

(A.7)

e satisfy a Leibniz law with respect to tensor product, i.e. D(A® B) = DA® B+ A® DB.

From this two properties is follows that the action of a derivation is specified by its action over
function and vector field. The Lie derivative L£x with respect to a vector field X generalize
the concept of derivation along a curve: it measure the local rate of change of a tensor field
along a curve whose tangent vector is X. Its action over functions f and vector fields Y € T'M

is given by:
Lxf:=X(f)=X'0f LxY=[X,Y]= (X9, ~Y’9;X")8; (A.8)

and consequently its action on one form is given by Lx () = (Lx0), dz’ = X'0;0; + 0;0,X".
We notice that to calculate the values of the derivative of a tensor with respect to a vector field
X in a point p it is not sufficient to know its point-wise value but it is required its local value

for the presence of its derivatives®

. Moreover this derivation cannot be applied to a general
vector bundle constructed over M. For this latest case is required to introduce the concept
of connection over a vector bundle. Let be I'(E) the set of all sections over a g-dimensional
vector bundle F with base M and fibre V ; then a connection V over this vector bundle is a

map V :T'(E) —» I'(T * M ® E) such that

"The function over a manifold can be regarded as a tensor bundle of (0,0)-rank
8The only case where the point-wise information of X is sufficient is when it is applied to functions
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e the connection of a sum of sections is the sum of the connections of each section, i.e.

s1,82 € I'(E) it follows that V(s1 4 s2) = Vs1 + Vso;

e if f is a function over M and s € T'(E) then V(fs) = df ® s + fVs where df = 9;fda*

is the differential of the function.

When the connection Vs is contracted with a vector field X € T'M is called covariant deriva-
tive of s with respect to X and it is indicated with Vxs. The action of the connection is
characterized by matrix valued 1-form, called connection form 0: if s = s%e, is a section in

vector bundle V' whose local basis is {€q}a=1,...q
Vs=ds*“ ®e, + sBOZfea = (81-50‘ + sﬁﬂg;i) dr' @ e, . (A.9)

Covariant derivative with respect to X = X'd; on a tensor bundle T((sg)./\/l acts like a derivation;

it follows that also in this case it is uniquely defined by its action on function and vectors
Vxf = X'0,f VXY:gw(@y%+Yw@Jai (A.10)

and consequently, in the case of the covariant derivative with respect to X of a general tensor

t= t;ll'_'.';-iail ®...0;, ®d2’t ®@...dz’" it is given by

T S
(Vxt)y =X (6@3—1...; LD DU e S ) (A1)
=1 =1
For connections on the tangent bundle, the torsion (2,1)-rank tensor is defined as
Tor(X,Y)=VxY - VyX — [X,Y] (A.12)
and in components reads
k
Torf; = 0, — 0%, — (194, 8,])" . (A.13)

In general VxVy # VyVx a measure of the difference between these derivatives is the cur-

vature R of the connection, i.e.

R(X,Y)=VxVy —VyVx — Vix,y] (A.14)

A.3 Differential forms, exterior differentiations, integration of

forms

Let us indicate with A¥(M) the tensor bundle constructed over the manifold M as a disjoint

union of the k-form spaces A’;. For the n-dimensional manifold M the space A(M) = Z AR (M)
k=0

is a graded algebra as with respect to the operation of sum + and wedge product A of differential
forms, meaning that A(M) is a direct sum of a sequence of a vector spaces, and the product A
defines a map A : A"(M) + A°(M) — A""*(M) where A""*(M) is zero when r + s > n. The
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exterior derivative d is a derivation introduced on A(M) such that d(A%(M)) c A*F1(M)
such that for any «, 8 € A(M):

e dla+f) =da+dp;

e if o€ A"(M) then d(a A B) =da A B+ (=1)"a AdS;

e if f is a smooth function M (i.e. f € A°(M)), where df = 9; fda*
o if f is a smooth function M then d(df) = 0.

The exterior differentiation of a differential k-form o € A¥(M) is given by

k+1
(do) (X1, ., Xp1) = 3 (D)X (@(Xn, -, X, X, - X)) +

i=1 (A.15)
+ Z (—1>Z+]Oz([Xi,Xj],X1,...Xi_1Xi+1...Xj_1Xj+1...Xk+1)

1<i<j<k+1

The Poincare’s Lemma states that da = 0 for all a € A(M). The space A(M) endowed with
the differential d is called a complex. In any subspace Ak(/\/l) two subspaces can be identified:

e the space Z¥(M) of all k-forms « that are closed, so da = 0, (also called cocycles)

e the space B¥(M) of all k-forms a that are ezact, so that exist 3 € C¥~1(M) such that

dp = a, (also called coboundaries).

The cohomology space H*(M;R) is defined as
H*(M;R) = Z¥(M)/B*(M) (A.16)

and an element |w] in this space is the equivalence class of k-forms that differ among them for
an exact form, i.e. [wi] = [we] if w1 — wo = dphi. From the definition of differential k-form it
follows that H*(M,R) = 0 if k& > n.

The De Rham cohomology space H*(M;R) is a graded space obtained as the direct sum

of the k-dimensional cohomology spaces:

H*(M,R) = @0 HF (M;R). (A.17)
and it is a multiplication ring with the the addition [w1]+ [w2] = [w1 +we] and the multiplication
[wi] — [wa] = [w1 A wa]. Moreover if f : M™ — N* is a smooth map the pullback? f* :

AP(NFY = AF(M™) is a homomorphism induced by the mapping among cohomology rings, i.e.
f*  H (N R) — H* (M R) with f*[w] = [f*w].
Two smooth mapping fo : M™ — N* and f; : M™ — N* are smoothly homotopic if there is a

9Let be h : N' = M an application between two manifolds, and let f : M — R be a function over M,
then the pullback of a function is defined as the function (h*f) : N'— R s.t. (h*f) = f o h. The wedge
product and exterior differentiation commutates with the pullback of forms, i.e. h*(wjAws) = h*wi Ah*wsy
and d(h* f) = h*dw.
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smooth homotopy mapping F : M™ x [0,1] — N* such that F(z,k) = fi(z) with k = 0,1. In
this case the action of the homomorphism of cohomology rings fi : H*(N*:R) — H*(M™;R)
and fi : H*(N*;R) — H*(M™;R) coincides. Two manifolds M" and N™ are said to be
homotopically equivalent if there exists two mappings f : M™ — N* and ¢ : N¥ — M”
such that fg and gf are homotopic to the identity. It can be proved that two homotopically
equivalent manifolds have isomorphic cohomology groups.

The integration of exterior derivatives allows to connect local and global properties of a manifold.
The first step consists in defining an orientable manifold as n-dimensional manifold M where
there exists a continuous and nonvanishing exterior differential n-form; two differential n-forms
which differ everywhere by a function factor which is always positive define an orientation. Let
us suppose that M is a manifold oriented by a differential n-form w, then a chart (U, x) is
compatible if w and dz' A ... A dz"™ define the same orientation.

The main results that allows to define the integration over a manifold is the Partition of
Unity Theorem: suppose Y is an open covering of a smooth manifold M. Then there exists

a family of smooth functions {g,} on M satisfying the following conditions:

e 0 < g, <1 and the suppgs = {p € M|ga(p) # 0} is compact for each . Moreover, there
exists an open set W; € ¥ such that g, C W;;

e For each point p € M there is a neighbourhood U that intersects suppg, for only a finite

number of «

° Zgazl.
6

The integral of a differential m-form w is defined as

w= JalphaW A.18
L= 2, o (819

where in a local coordinate system gphow = f(zh, ... 2™ dzt AL Ada™ so that / GalphaW =

/ f(z',...,z™)da'...d2z". Let us suppose that h : NV — M is the imbedding of a k-
W;

dimensional submanifold in the n-dimensional ambient manifold M. Then the integral of the

differential k-form h*w over N is defined as

/ w:/ h*w . (A.19)
h(N) N

A very relevant result in integration theory of differential forms is the Stokes Theorem: let

w be a (n — 1)-form and D C M and with a smooth or piecewise smooth boundary 9D then

| o= [ . (A.20)

This formula has its importance as it allows to characterize the topology of a certain domain D

over a manifold M as it establishes a duality (Poincar duality) among the boundary operator
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0 and the coboundary operator (i.e. the exterior differentiation) d on forms. This result can be

expressed

/aDw:(aD,w):(D,dw):/ dw (A.21)

D
which represents the link between homology, the rigorous mathematical way to classify the
manifolds with respect to their "holes”, and the De Rham cohomology of differential forms on
manifolds.
A geometric cycle on a manifold M" is a pair (N kof ) consisting of a smooth mapping f : N'* —
M™. If there is an orientation on the manifold A, then such a cycle will be said to be oriented.
Any closed k-form w on a manifold M" specifies a function on the set of all k-dimensional cycles

z = (N*, f) by the formula

(w,z) = ffw.. (A.22)
N

It can be proved that the value of (w, z) depends only by the cohomology group [w].
Let Ap(M) the space generated by all the oriented p-cycle over the field R. For each element z of
this space we can define the integral of a closed p-form w over z. Namely let z = A\jz1+. ..+ g2k

where \; € R and z; = (N7, fi) are ordinary cycles. Then

(w,2) = Z)\z‘ (w, z;) = ZM‘ //\/ fiw (A.23)

Let B,(M) C Ap(M) be the subspace that consist of the cycles such that the integral of all

closed p-forms over these cycles vanish. The quotient space
Hy(MP;R) = Ap(M™)/Bp(M") (A.24)

is called the real p-dimensional homology group of the manifold M"™. The homology space is
dual to the cohomology group H?(MP;R) and for any nonzero element [w] € HP(MP;R) the
linear functional

(W], [2)) = (w,2) =€ Hy(MPR). (A.25)

For compact manifolds all the cohomology groups are finite-dimensional and their dimensions are

called Betti numbers by(M) = dimHy(MP;R) = dimH?(MP; R) and are topological invariants.
n

The alternating sum of the Betti numbers is the Euler characteristics x(M) = Z(—l)i bi(M);

i=0
as for a compact n-dimensional connected manifold without boundaries the Poincare duality

implies H" *(MP;R) = H"(MP;R) it follows that for odd-dimensional manifolds the Euler

characteristic vanishes x(M?"T1) = 0.

A.4 Riemannian structure

Thanks to the vector structure, a scalar product, can be defined on T, M as g, : T,M x
T,M — R. This is a way to associate a real number to any pair (X,,Y,) of tangent vectors.

This product inherits all the features of the canonical scalar product on the linear space R"; in
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particular HXpH?]p = gp(X;, X,) > 0 for all tangent vector X,, and g,(X,,Y,) = 0, if and only
if one of the tangent vectors X, or Y, is null.
The Riemannian structure allows to define the gradient grad,f of a function f on M as the

vector field with the property
g(grad, £, Y) = Y(f) = Yid,f . (A.26)

and the divergence of a vector field X as

(div,X) 7 (Vg,X) . (A.27)

uMz

If this properties holds for every point p € M for the tensor field (0, 2)-rank g = gijdxi®dxj such
a tensor is a metric tensor field that defines a Riemannian structure over the manifold
M.

The definition of a metric tensor allows to define the length of a curve ¢(t) : [a,b] — R as

b
_ / le(t)|2dt (A.28)

and the volume form dVol,
dVol, = |detg;;|/2dzt A ... Ada?Y . (A.29)

The inverse of g;; is given by the g™ matrix with 9ij gk = 5f ; this two matrices allows to define
the raising and lowering of indices of a tensor, i.e.

i1y RS Y 7 R TS WO 78 kjy 4i1..ir _ 4i1edn k
ki, Jregr =t K 1 g g = Jledir diptede

(A.30)

This allows to define the metric-dependent trace of a (0,2)-rank tensor A = A;;dz’ @ da’ as:
Trd (A) = g7 A;; = A" . (A.31)
The Riemannian structure puts some constraints on the definition of a connection on the tangent
and tensor bundles over a given manifold; in particular, a Levi-Civita connection is compatible

with the metric, that means
(Vx9);; = X" 0pgi5 — Qﬁ;kglj - aé‘;kgil (A.32)

and torsion free, i.e. Tor = 0. In this case the components of the matrix-valued connection
form are expressed by the Christoffel symbol Fk = Gk It can be proved that the for a given
metric g over M a unique Levi-Civita is defined.

The Christoffel symbol can be expressed as a function of derivatives of the components of the
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metric tensor

. 1 .

k= igll 039k + Okgjk — Orgjk) - (A.33)
The curvature tensor for a Levi-Civita connection specified by the symbols I‘;- i 1s the Riemann
curvature tensor that in components reads:

R;l,d = alrgik — ;T + T} I | (A.34)

and whose completely covariant version is the tensor R;jr; = gmiRékl with basic symmetries:
Riji = —Rjiy = —Rijie = Ry - (A.35)

In order to give a geometrical interpretation of Riemann curvature, let us introduce the concept
geodesic curve as the shortest smooth curve that connects two points on a Riemannian manifold;

a variational formulation of this condition for a geodesic v = (z!(t)...z"(t))) is given by:
Ayy=0 = & +T}al". (A.36)

Now let us consider a smooth one parameter family of geodesic v, with vo(t) = () than the

Jacobi vector field J along the geodesic v(t) is defined as

J=0m(0)| (A.37)

The Riemann curvature tensor gives a measure of the local geodesic spread. The evolution
of the Jacobi field along a given geodesic is described by the Jacobi-Levi-Civita equation. Let
us suppose that along the geodesic it is consider a orthonormal frame {e;};=1, . n in Tv(t)/\/l,
parallel transported all along Ae; = 0 and with e; = +/||7||, than if the jacobi vector field is

expressed J = y'e; the Jacobi Levi Civita for the geodesic spread reads
i* + H’.Y”Zlejlyj =0. (A.38)
The contraction C2(R) of the Riemann curvature tensor is the Ricci curvature tensor
Rici; = Rly; = O — 0,T}; + T}, I — T4 Th . (A.39)

For a given metric g the Ricci curvature gives a local measure of the difference between the
volume form with respect to an euclidean metric gg, i.e. if in a certain point g;; = d;;+0 (HXHg)
with X = X'9;
1. ko
dVol, = dVolg, <1 - gRlcij X' 4o (HXH2)> (A.40)

so in the directions X such that Ric(X, X)) is positive the volume is contracted with respect to
the Euclidean volume.

The metric-dependent trace of the Ricci curvature tensor is the Scalar curvature R =
TrfRic = g/ Ricy;.
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A.5 Riemmanian geometry of codimension one submanifolds

(regular level sets)

Let (M, g) be a N-dimensional Riemannian manifold whose Levi-Civita commection is V.
A regular Submanifold of dimension K is a subset ¥ such that for every point p € ¥ such
that for a certain chart (U,z) over M it holds = (U N Sigma) = z(U) URE x {¢} for some
c € RVN"K that means that exists a chart over M such that for its restriction over ¥ there are
N — K fixed components. In particular, the set defined as a locus that in a chart (U, z) reads
s={pe M| fa(zt(p), ..., zn(p)} =0 for A=1,...,L it is a K-dimensional level sets (with
K < L) if the rank of the Jacobian 0;f4 is K.
The equipotential level sets discussed in the first part of this manuscript are an example of regu-
lar submanifold without boundaries in absence of critical point of potential energy. Moreover in
this specific case, we have a local regular foliation F of the configuration space, namely when
the ambient manifolds can be regarded as the disjoint union of connected regular submanifolds
Yacrn-x called leaves of dimension K (and co-dimension N — K') such that in a neighbour-
hood of any point of the ambient space exists a chart (U, x) such where the coordinate can be
expressed in the form (al, cnaVTE gt 2K ). In what follows we consider level sets of one
single function so that K = N — 1.
As we supposed that the ambient space has a Riemannian structure, each leaf inherits a metric
structure, the so called First Fundamental Form I: 7,2 x T, — R defined over a regular

submanifold of co-dimension one
Ix(X,Y) =3(X,Y) X, Y eT,X (A.41)

and it coincides with the restriction of metric tensor g on the immersed co-dimension one sub-
manifold ¥. This allows to define a Levi-Civita connection V over the regular submanifold. In
order to introduce a more suitable notation for a fixed ¥, we will use in what follows g = 1.
Moreover, for a co-dimension one regular submanifold 3 in a ambient space M it is possible
to define a normal vector field as the vector field ¥ # 0 such that g(rv,X) = 0 for every
X eT,X.

The rate of (covariant) variation of the normal vector field in a direction tangent to the subman-
ifolds defines is intuitively related with the concept of curvature for a immersed submanifold.
This is can be formalized as follows. First of all let us consider the Weingarten operator or
Shape Operator W, : T;,> — T},

Wy, (X) = qu\p XeT,x . (A.42)

This operator can be regarded as (1, 1)-rank tensor field over he submanifold tangent space; the
induced metric structure over the submanifold allows to construct a (0, 2)-rank tensor field over
this submanifold called Second Fundamental Form Ily, : 7,3 x T),>) —+ R

s (X, Y) = g(W,(X),Y) = g(Vxv, Y) = —§(v,VxY) X, Y eT,n (A.43)
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The second fundamental form is symmetric in its arguments as:

H(X7Y) = g(vXV7Y) = _g(V7vXY) = —g(u,VYX) - g(u, [X7Y]) =

- (A.44)
=g(Vyr,X) =1(Y,X) X, YeT,%

The eigenvalues (A1, ..., \,) of the Weingarten operator are called principal curvatures and
the metric-dependent trace of shape operator is called mean curvature:
Y dig _ T  mig

= .4
N -1 N -1 N -1 (A.45)

hsg =

We derive a formula for the variation of mean curvature along the normal direction, in a coor-

dinate system (xo, 2N _1), where 8¢ = v, for a co-dimension one regular foliation

Ly(115) = Vo (¢V1L;) = Lo (¢ + ¢ L, (1) i,j=1,..,N—1 (A.46)
We note that
Ly (99g%) =0 (A.47)

from what follows
Log" = —g*g" L0 (gu1) - (A.48)

The last term can be calculated considering that the action of Lie derivative and covariant

differentiation coincide on functions

,Cy(gkl) = V,, (g(ek,el)) = Q(Wiek,el) = 2(vekl/,el) = QII(ek,el) = 2Hkl (A49)
so that substituting the last expression in (A.47) we obtain
L,g" = —2119 (A.50)

and the first term of right-side in eq. (A.46) results

N-1
L, (g")L; = —201V1L; = —2(I1%) = —2Tv (I1%) (: =2 A= —272@) (A.51)
=1

Let us now consider the Lie derivative of second fundamental form along the normal field.

L1 = L, 1(e;,e5) = ﬁyg(vziu,ej) = Q(Vzﬁeiu, ej) + §(Ve,v,V,e;) =
+

_ i o (A.52)
= g (R(Vuei)y7ej) + g(veivuuvej) g([’/’ei] 7ej) +g(v9iy7 vl’ej)

where R is the Riemannian curvature tensor of the ambient space. Under the hypothesis that

Vv = 0 and using the antisymmetrical properties of the Riemann tensor we obtain:

EVIIlj = _g (R(ei,u)u,ej) + g(ﬁeiyvﬁej'y) = - 7j0i0 + waé'g(ekael) =

_ _ (A.53)
= —Rjoi0 + TGy = —Rjoio + 1111, .
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Putting together egs. (A.47) and (A.53) in eq.(A.46) we obtain

Lo(r15) = —2191L; + g (—ij + ankj) — — (IT11;; + Ricgo) = s
A54
= —Tr9(11%) — Ric(v,v) = —725 — Ric(v,v)



190

B Details on the codes used in numerical simulations

In order to investigate the ¢* models described in Eqs.1.45 a code for Montecarlo importance

sampling over energy potential level sets has been implemented.

B.1 A MonteCarlo code to explore regular level sets of potential

energy

A C code has been realized in order to calculate the weighted averages (2.53) over equipoten-
tial level set Z‘%@. The algorithm consists of a Monte Carlo Metropolis sampling in configuration
space over the E%@ with statistical weight xy = ||gradgy Vy||gny. In order to assure that the
random configurations explored belong to a energy level set with a fixed potential energy Nv, a

reprojection of the point over the chosen Z]N\m is performed at any step using the diffeomorphism

generated by the vector field €, with a required precision § = =N 1070,
N

More in details, for each simulation a fixed value o and a total number of nodes N = L? has

been fixed. The initial configuration q(tg) € RY of the system has been chosen such that

Vn(q(to)) = Nv

Z qi(to) =0 (null total magnetization) (B.1)
ieA

4Gk (o) = —a(j,L—r)(to) Vi k=1,.... L

where Vi takes into the account for periodic boundary condition and the last condition assures
a Z% symmetrical configuration respect to the central column of the lattice element considered.
Analogous condition has been imposed for initial configuration of ¢*-model in 1D.

In what follows we say that a ”configuration q belongs to X,” if |V (q) — No|/(Nv) < 6.

To move from a configuration q(t;) to another q(t;;1) both belonging to ¥V, , we use the
following procedure. A random vector n € RY is extracted with each component 7; uniformly
distributed in the interval [—0.5;0.5] and completely independent from the other. A predicted
configuration q(¢; + 1) is then obtained by

q(ti) = q(ti) + Agm (B.2)

with the parameter ¢, regulating the mean module of the displacement in configuration space; in
our simulation J, = 2. If the new configuration belongs to the fixed level set, then a Metropolis-

Hastings acceptance test for the new configuration q(¢; + 1) using an acceptance probability

p =min{1; x(a(t:))/x(a(t; + 1))} (B.3)
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and if the acceptance test successes then q(t; + 1)) = q(t; + 1) else q(t;) = q(t; + 1) and
the geometric quantities are sampled in q(¢; + 1). Differently, if the configuration obtained by
(B.2) does not belong to X4 the difference AVzy = Viv((t; + 1)) — N is calculated and the
configuration q(t; + 1) is reprojected on the fixed level set 2%5 integrating numerically using a

second order Heun algorithm the following differential equations

dl’i 8VN

(B.4)

dv XN ox;
in the interval v € [0; AVp,]| with initial conditions x(0) = q(t; + 1) and discrete steps
dy = AVpe/10. If the final configuration belongs to 2%5 then the Metropolis test is per-
formed with q(¢; + 1)) = x(AVrs), else the reprojection procedure is repeted.

B.2 Derivatives of the Hirsch vector field as function of poten-
tial

In the following section we derive explicit formulation of Lie derivatives of one-parameter
diffeomorfism vector fiel £ for a potential V' in ”critical points-free” region of configuration
space (X,gpn endowed with a riemmanian metric. Let (qi,....,qn) be a set of coordinates
in configuration space; in what follows we shall refer to 0; as the partial derivatives respect
to coordinate ¢; and (with an abuse of notation respect to the main part of this manuscript)
(VV); = (gradgnV); = 0;V and the Hessian (HessV);; = 8%V.

With these chioces the divergence of Hirsch vector field { = divpny € reads:
AV VV - (HessVVYV)

di = -2
Ve e = Gy NGE

(B.5)

N
where A(-) = Z@’@z() is the Laplacian operator in the Euclidean configuration space and
i

| X[|* = gg~ (X, X) is the Euclidean norm. Consequentely we calculate explicitely higher order
Lie derivative of { respect to £ as averages, correlations, and other cumulants of this quantities
appears in calculation of microcanonical entropy density. As the Lie derivative operator along
the flux generated by vector field & is

N 3 o'
L) = (€ V)0 = X2 [yt = [ov (B.6)

This yields at the first order:

£e(0) _VV-v(@Av) ) (VV - Hess(V)VV)AV + 2||HessVVV |2 + D3V(VV,VV,VV) N
S AT [vve
(VV - HessVVV)?2
+8 B
il

(B.7)
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at the second order:

Eg-,-)(o :V(AV) - (HessVVV) 4+ VV - (Hess(AV)VV) n
hag
L [AVDIV(VV, UV, V) + 24V [HessV IV
vV
4(HessVVV) - (HessVHessVVV)
gl

7DV (HessVVV, VV, VV) + DAV(VV, VV, VV, V1)
[VV|I® +3(VV -HessVVV)(VV - V(AV))
28(VVHessVVV) [2|HessVV V|2 4+ D3V (VV,VV,VV)] + 12(VVHessVVV)2AV
! oV !

IVVIE +

(VVHessVVV)3

— 64
vVt
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at the third order:

3VV - Hess(AV)HessVVV + D3AV(VV,VV,VV) + D3V (VV,VV, V(AV))
vV
V(AV) - HessVHessV VYV [4D*V(VV. YV, VV)(VV - V(AV))
Ivv® Vv
7DV (VV,VV,VV,HessVVV)
Vv
N 15D3V (VV, VV, HessVHessVVV) + 7||D3V (VV, VV)||2 + 18D3V (HessV VV, HessVVV, VV)
Vv
| 4DV(VV,VV, VV, HessV'VV) + DV(VV, VV.VV, YV, VV) + 8(VV - V(AV))|[HessV VV|? |
Vv
8||HessVHessVVV||2 + 7TD3V (VV, VV, HessVVV)AV
+ +
VvV
AVDAV(VV,VV,VV,VV) +4AV (HessVVV) - HessVHessVVV+
IVV[o

n 6(HessV - HessVVV)(VV - Hess(AV)VV) + 6(HessV - HessVVV)(V(AV) - HessVVV) n
IVV][*

7(D3V(VV,VV,VV))® + 28DV (VV, VV, VV)|HessV V V|2
! NE *

| WAVDV(VV,VV, VV)(VV - HessVVV)
Vv

28||HessVVV ||* + 20AV [|[HessVVV||2(VV - HessV'VV)

+ +
Vv
. (VV - HessVVV)[77DV (VV, VV, HessV V V)
VvV

11DYV/(VV,VV,VV,VV) + 44(HessVVV) - (HessVHessVVV)

! [vvie "

15(HessV - HessVVV)(VV - V(AV))]
vV ’

+

_l’_

59D3V (VV,VV,VV)(VV - HessVVV)?
NEE +

n (VV - HessVVV)?[118|HessVV V> + 15AV(VV - HessVVV)] + 768 (VV -HessVVV)4
Vv IVV][*e

(B.9)
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C Basic facts of homololgy

C.1 Simplicial Complexes

We can see a simplicial complex X as a set of polyhedrons (convex hulls of linearly inde-
pendent points: points, lines, triangles, tetrahedra, and higer dimensional equivalents) in RN
attached in a good way, i.e., the intersection of two polyhedrons is empty or a face of the two
and all the faces of a polyhedron of X is also a polyhedron of X. We can also think of simplicial

complexes as abstract sets, with the definition:

Definition C.1.1. An (abstract) simplicial complex is a non empty family X of finite subsets,

called faces, of a vertex set V' such that o C 7 € X implies that o € X.

We assume that the vertex set is finite and totally ordered. A face of n+ 1 vertices is called
n—face, denoted by [po,...,pn], and n is its dimension. We set, as usual, the dimension of the
empty set as -1. The dimension of a simplicial complex is the highest dimension of the faces in
the complex.

In Figure C.1 the vertices (full circles) represent O-simplices, segments joining two ver-
tices represent 1-simplices, triangles represent 2-simplices, and the tetrahedron represents a

3-simplex.

C.1.1 Simplicial Homology

Let us fix a field k. In the following, by vector space we intend k—vector space. Given a
simplicial complex X of dimension d, for any n such that 0 < n < d consider the vector space
C,, = Cp(X) of all the linear combinations of n-faces of X with coefficients in k. Elements in

C,, are called n-chains.

‘v

Figure C.1: (Color online) A graphic representation of a simplicial complex
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The boundary operators are the linear maps sending a n-face to the alternate sum of its

(n — 1)-faces, i.e.,

D0 :Cn — Cpoy (C.1)
[p07"'7pn] — Z(_l)l[p(ba j—lapj—i-l?"'apn]- (02)
7=0

They share the property 9,—1 o 9, = 0. The nullspace ker 9,, = {¢ € C,|d,c = 0}, that is, the
subspace of C,, containing only the n-chains without boundary, is called the vector space of
n-cycles and denoted by Z,, := Z,(X), with by convention Zy = (). The subspace Im 9,41 of
Ch, is called the vector space of n-boundaries and denoted by B,, := B,,(X), with by convention

By = (0. The property 0,,_1 0 &, = 0 is then equivalent to B,, C Z,, for all n.

Definition C.1.2. For 0 < n < d, the n—th simplicial homology space of X, with coefficients
in k, is the vector space H,, := H,(X) := Z,,/B,,. We denote by ,, := Bn(X) the dimension of
H,, which is usually called the n-th Betti number of X.

Let us see two examples. First, let us consider the simplicial complex X consisting of a trian-

gle [p1pap3] and all its edges and vertices (i.e., X = {[pipaps], [p1p2], [P1p3]; [p2p3], [p1]: [p2], [p3]})-
The boundary of the 2-simplex [p1pops] is

O2([p1p2ps]) = [p2ps] — [p1p3] + [p1p2] (C.3)

that is a one-chain whose boundary is

O1( [p2ps] — [p1ps] + [p1p2]) = [ps] — [p2] +
+[p1] = [ps] + [p2] — [m1] = 0. (C.4)

Therefore Z; = Bj is the vector space generated by [paps] — [pips] + [pip2], so Hi = 0 and
p1=0.

After let us consider the simplicial complex X’ consisting of all the edges and vertices of
the triangle but without the face [p1pops] (i-e., X' = X/[p1p2ps]). Therefore Zi is generated by
[pops] — [p1ps]+[p1p2] whereas B} = (). So H] = Z] and 8 = 1. Comparing the two examples, we
see that by eliminating the two-face from X (roughly speaking, punching hole in the triangle) a
generator of Hy is created. In conclusion, the homology spaces characterize the presence of holes
in simplicial complexes. Indeed, the 0-th Betti number is the number of connected components
of X, the first Betti number is the number of generators of two dimensional (poligonal) holes, the
third Betti number is the number of generator of three dimensional holes (convex polyhedron),

etc.

C.1.2 Persistent Homology

The starting point in persistent homology is a filtration. As in [CZ05], we call a simplicial

complex X filtered if we are given a family of subspaces {X,} parametrized by N, such that



Figure C.2: (Color online) Rips Complex Filtration. Reproduced with owner’s permission
from: Ghrist, Robert. “Barcodes: the persistent topology of data.” Bulletin of the American
Mathematical Society 45.1 (2008): 61-75.

X, C X, whenever v < w and X, is a simplicial complex. The family {X,} is called a filtration.

There are many ways to construct a filtration from a point cloud or a network. The most
popular filtration for data analysis is the Rips-Vietoris filtration [CZ05].

The Rips-Vietoris complex is a simplicial complex associated to a set of points in a metric
space in the following way: every point p is the center of a radius p ball D(p,p) and n + 1
points {po, ..., pn} determine a n—face in the Rips-Vietoris complex if the corresponding radius
p balls intersect two by two, i.e D(p;,p) N D(pj,p) # 0 for all ¢ # j € {0...n}. Clearly
the Rips-Vietoris complex depends on the parameter p and if p; < ps the complex with p;
radius balls is contained in the complex with ps radius balls. To the growth of p we obtain
an increasing sequence of simplicial complexes, a filtration, the Rips-Vietoris filtration. In this
context persistent topological features of the filtration are considered as features of the point
cloud. Figure C.2 pictorially represents a Rips-Vietoris filtration: given a point cloud, it is
shown that simplicial complexes of increasing complexity are found by increasing the radii of
the balls centered at the points of the cloud.

The following basic properties of the algebraic structure of persistent homology hold:

Proposition C.1.1. Let X and Y be two simplicial complexes, a simplicial map f: X — Y is
a map sending vertices of X to vertices of Y and faces of X to faces of Y. Then f determines

a linear map between the homology groups H;(f) : Hy(X) — H;(Y') for all i.
From which it makes sense the following.

Definition C.1.3. The persistent homology module of a filtration is given by the direct sum of
the homology groups of the simplicial complezes H,(X,) and the linear maps iy, : Hp(Xy) —
H,(Xy) induced in homology by the inclusions X, — X, for all v < w.

Following [CZ05], this system is called a module because the direct sum of vector spaces
H, = &,H,(X,) has a k[r]—module structure via an algebraic action given by z-m := i, y+1(m)

for m € H,(X,). The linear maps i,,41 are not always injective. A persistent homology
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generator is a generator of H, as k[z]—module, i.e an element g € H,(X,) such that there is
no h € H,(X,) for w < v with the property that z""“h = g. By the structure theorem on
modules over principal ideal domains, the isomorphism class of a k[z]—module is completely
determined by the degree of each generator g (birth of the generator ;) and the degree in which
the generator is annihilated by the module action (death of the generator d,). The persistence
(lifetime) of a generator is measured by pg := dy — S,.

Persistent homology modules can be computed using libraries like javaPlex (Java) or Diony-
sus (C++4), which are both available from the Stanford’s CompTop group website (http:
//comptop.stanford.edu/).


http://comptop.stanford.edu/
http://comptop.stanford.edu/
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Résumé de la these en franais

Les études et les résultats présentés dans ce manuscrit ont pour but de développer une
meilleure compréhension des principes a la base de 'auto-organisation dans les systéemes bi-
ologiques. De nombreux problemes de biophysique exigent un moyen de caractériser les phénomenes
collectifs également dans les systemes petits. La théorie topologique des transitions de phase est
I’un des approches possibles pour fournir une généralisation de la description des transitions de
phase dans les systemes petits ou mésoscopiques. Cette théorie a été rigoureusement enracinée
dans deux théoremes: un contre exemple a I'un de ces théoremes a été récemment découvert.
La premieére partie de ce manuscrit est donc consacré a mieux comprendre ce ” contre-exemple”
pour verifier si et comment la théorie peut tre sauvé. Ce travail peut potentiellement ouvrir la
voie a une généralisation de la mme théorie a des cas qui ne sont pas considérés dans la formu-
lation d’origine, comme un presence des interactions & longue portée. Ce dernier cas pourrait
tre pertinent pour de nombreux aspects de biophysique; nous mentionnons des interactions in-
termoléculaires a long portée qui ont été supposés jouer un rle important dans 'organisation
de la machinerie biomoléculaire a l'intérieur de la cellule. La précision extraordinaire de cette
organisation moléculaire ne semble guere tre le résultat de la diffusion aléatoire seulement. Cela
rend le lien conceptuel avec la deuxiéme partie de ce manuscrit sur la contribution de ’auteur
a un projet visant a déterminer si les rencontres de partenaires des réactions biomoléculaires
sont activement entranés par des forces attractives et sélectives de nature électrodynamique.
L’activation de ces interactions électrodynamiques est théoriquement possible entre des grandes
diples oscillants et résonnants dans la gamme de fréquences 0,1-1 THz. Les biomolécules ont des
modes dans cette gamme de fréquences attribuée a des oscillations collectives. Mais a 1’équilibre
les oscillations dipolaires seraient trop petites pour activer des interactions électrodynamiques
suffisamment intenses. H. Frohlich a proposé un modele heuristique qui prédit la possibilité de
canaliser une grande partie de 1’énergie vibratoire d’'une biomolécule dans ses modes normaux
de plus basse fréquence. Dans ce manuscrit les résultats des recherches théoriques, numériques
et expérimentales sur la condensation a la Frohlich sont reportés. En outre, I'auteur de ce
manuscrit a participé a la définition conceptuelle et 'interprétation théorique des expériences
de spectroscopie THz o une premiere preuve expérimentale d’'un phénomene de condensation a
la Frohlich a été observée pour une protéine en solution aqueuse et hors de 1’équilibre thermique.
Ceci est une condition préalable a l'activation des oscillations dipolaires géantes qui entranent
des interactions électrodynamiques a long portée entre les molécules coresonnantes. Cepen-
dant, la question se pose: sont ces forces suffisamment intenses pour entraner 1’organisation
de la machine biomoléculaire dans la cellule 7 pour répondre cette question, il faut concevoir
un dispositif expérimental technologiquement réalisable in vitro pour détecter la conséquence
directe de I’action des interactions interparticulaires a long portée. Dans cette these, on mon-

tre que les interactions a longue portée affectent sensiblement les propriétés de diffusion des
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molécules en solution. Une empreinte des interactions a long portée pourrait tre un phénomene
de ”transition” en ce qui concerne le coefficient de diffusion en fonction d’'un parametre de con-
trle proportionnel & lintensité d’interaction. Une étude de faisabilité (basé sur des simulations
de dynamique moléculaire) est reporté pour évaluer cette stratégie expérimentale. Simulations
analogues ont été réalisées afin de valider une approche expérimentale visant a trouver une telle

empreinte dans les systemes avec interactions a longue portée.
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Abstract of the manuscript

The studies and results reported in this manuscript are aimed to develop a deeper under-
standing of the principles at the basis of self-organization in biological systems. Many problems
in biophysics demand a way to characterize cooperative phenomena also in small systems. The
Topological Theory of phase transitions is one of the possible approaches to provide a gener-
alization of description of phase transitions in small or mesoscopic systems. This theory has
been rigorously rooted in two theorems that associate topological changes of the equipotential
level sets of configuration space with the loss of analyticity of microcanonical entropy. A coun-
terexample to one of these theorems has been recently found. The first part of this manuscript
is devoted to investigation of the ”counterexample” to understand if and how the theory can
be saved. This work can potentially pave the way to a generalization of the same theory to
cases not considered in the original formulation, as long-range interactions. This latter case
could be of biophysical relevance for many aspects, among the others we mention long-range
electrodynamic intermolecular interactions that have been theoretically surmised to play an
important role in thermodynamical organization of the biomolecular machinery inside the cell.
The extraordinary accuracy of these molecular organization, in fact, hardly seems to be the
result of random diffusion only. This makes the conceptual link with the second part of this
manuscript reporting on the author’s contribution to a project aimed to ascertain whether the
encounters of distant cognate partners of biomolecular reactions are actively driven by selective
attractive forces of electrodynamic nature. The activation of long-range classical electrodynamic
interactions is theoretically possible between large resonant dipoles oscillating in the frequency
range 0.1 — 1 THz. It has been shown that biomolecules have normal modes in this range of
frequencies, commonly attributed to collective oscillations. Nevertheless, at equilibrium the
associated dipole oscillations due to thermal fluctuations would be too small to be responsible
for the activation of sizable long-range electrodynamic interactions. H. Fr”ohlich proposed an
heuristic model that predicts the possibility to channel a large part of the vibrational energy
of a biomolecule into its lowest frequency normal modes. In this manuscript the results of the-
oretical, numerical and experimental investigations on Fr”ohlich-like condensation for normal
modes of biomolecules are reported. Moreover, the author of this manuscript participated in the
conceptual definition and theoretical interpretation of the THz spectroscopy experiments where
a first experimental evidence of a Fr”ohlich-like condensation phenomenon has been observed
for a protein in watery solution and out of thermal equilibrium. This is a prerequisite for the
activation of giant dipole oscillations in biomolecules which entail long-range electrodynamic
interactions between coresonant molecules. However, the following question arises: are these
forces sufficiently strong to drive the organisation of the biomolecular machinery inside the cell?
To answer this question one has to devise a technologically feasible experimental set-up in vitro

to detect direct consequence of the action of long-range interparticle interactions. In this thesis
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is shown that long-range interactions markedly affect the self-diffusion properties of molecules
in solution. A fingerprint of long-range interactions could be a ”transitional” phenomenon
concerning the self-diffusion coefficient as a function of a control parameter proportional to
interaction strength. A feasibility study (based on molecular dynamics simulations) is reported
aiming at assessing this experimental strategy. Analogous simulations have been performed to
validate an experimental approach aimed at finding such ”fingerprint” in systems with built-in

long-range interactions.
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