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A B S T R A C T

A little over a hundred years ago a revolution in modern physics occurred. The description of
spacetime provided by General Relativity changed the way physics describes our universe. The
Newtonian gravity force is promoted to a gravitational field paving spacetime and links intimately
the energy content of the universe with its geometry. Mass curves spacetime which, in turn, dic-
tates how bodies move in relation to one another. The foundation provided by General Relativity
has allowed cosmologists to establish a well defined cosmological paradigm. Its large scale time
evolution is understood to be the direct consequence of the type of energy it contains while the
lumpiness of the large-scale structures we observe today, such as galaxies and clusters of galaxies,
is the result of gravitational instabilities developing on the evolving frame. The increasing preci-
sion of several cosmological probes enabled the possibility of encoding our theoretical and obser-
vational knowledge within a standard model of cosmology; the ΛCDM paradigm. This model was
able to account for the recent discovery that the expansion of the universe is accelerating; a mile-
stone of modern cosmology. In the ΛCDM picture, the universe is constituted today for the major
part by Cold Dark Matter along with the Cosmological Constant Λ that drives cosmic acceleration.
However, this standard model is not fully complete and further breakthroughs in modern physics
can be expected within this century. These will arise from an accurate description of high energy
scales of gravity through a quantum theory of gravity —extremely small lengths— or through a
new description of gravity at low energy scales —on cosmological distances. Such breakthroughs
are essentially motivated on two grounds: using the Cosmological Constant introduces theoretical
issues in a quantum field theory description and tentative observational evidences suggests our
large scale description of the universe should be refined. Therefore, we devote the first chapter of
this thesis to an overview of today’s cosmological paradigm; starting from its founding principles,
up to its shortcomings.

Finding alternatives to the standard model is of crucial importance for two reasons. On the one
hand, a general theory providing a universal description of all the stages the universe has gone
through, and of all physical interactions it contains, still evades our grasp. On the other hand,
the second reason is more closely related to the subject of the thesis. A given cosmological model
can indeed be tested against many observational probes so as to gauge its viability. However, the
soundness and the precision of a viable model can only be assessed once it is compared to an-
other model. This is why, the ΛCDM model stands as the most faithful model; describing most of
the universe’s evolution according to the observations gathered up to now. This is also why one
has to explore alternatives to the standard model. An incredible amount of alternative theories
have been put forward and most of them are based on the addition of degrees of freedom to the
standard picture given by General Relativity. These additional freedoms can manifest in the form
of a new energy component of the universe —the dark energy picture— or through fundamental
modifications of the gravitational interaction —the modified gravity landscape. Such a profusion
of research material, as much on the observational side as on the theoretical, has substantially
increased our understanding of the universe. However, this is also at the expense of our efficiency
in doing so, as it is rather cumbersome to study theories one by one and confront each theoretical
proposal to observations. Aiming to study or create common formulations, enabling the description
of large classes of alternative theories within the same framework, is an efficient path to overcom-
ing this obstacle. This is the reason why, in chapter 2, after reviewing some alternative models
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to ΛCDM, we will focus on presenting a promising unifying framework: the effective field theory
of dark energy. This approach to modified gravity has established a common formalism virtually
describing all alternative theories which add a single extra scalar degree of freedom to Einstein’s
equation. A large class of these models fall under Horndeski theories.

The increasing amount of theoretical knowledge, and the growing amount of data, is also a cry for
phenomenological studies. Future surveys such as EUCLID, SKA, WFIRST and DESI, to name
but a few, will provide ever more precise constraints on deviations from the standard model. In
light of this, understanding the phenomenology behind alternative theories, extracting and test-
ing observables which would characterise measurable deviations from standard gravity are thus a
crucial step cosmological studies must go through today. Therefore, we consider the effective field
theory of dark energy and attempt to provide answers to the following three guiding questions:
What is the cosmological portrait of gravity that emerges in Horndeski theories ? Are there any
universal behaviours and, if yes, where do they stand with respect to the standard model ? Can we
identify observables that will, in the future, enable us to discriminate between theories ? To do so, in
chapter 3, we show how one can parametrise the effective field theory of dark energy framework in
order to extract predictions on a set of large-scale structure observables and how the effective field
theory of dark energy framework can embed early modifications of gravity in Horndeski theories.
Following this, we adopt a Monte Carlo procedure to explore Horndeski models, paying a signifi-
cant attention to the viability of the models we obtain. This procedure enables us to identify some
definite and less definite observational features Horndeski theories yield. This corresponds, for the
major part, to what was explained in [1]. In the second half of chapter 3, we use the Monte Carlo
approach to further synthesise the previous conclusions, and more, into an observable diagnostic.
The goal of this diagnostic is to assess how Horndeski theories could be strongly disfavoured in
an observable space given where future measurements will point. This corresponds to the results
developed in [2].

The effective field theory of dark energy framework having allowed the exploration of the phe-
nomenology of a large number of dark energy and modified gravity models we provide a review
of the results it has produced in chapter 4. The goal of this final is twofold. It allows us to give a
presentation of the landscape this framework can be applied to. In particular, we show the novel
predictions it has brought up, the constraints that were derived with observations, but also how in-
formation on modified gravity can be extracted in an astrophysical context. We also discuss further
theoretical an numerical developments without forgetting the caveats the effective field theory of
dark energy presents. This chapter also has the purpose of discussing the results presented in
chapter 3 with respect to other studies, and suggest paths needing to be explored in the future.
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R É S U M É E N F R A N Ç A I S

Un peu plus d’une centaine d’années en arrière, une révolution de la physique moderne s’est pro-
duite. La description de l’espace-temps fournie par la Relativité Générale a changé la façon dont la
physique décrit notre univers. La force gravitationnelle newtonienne est remplacée par un champ
gravitationnel, pavant l’espace-espace, qui relie le contenu énergétique de l’univers à sa géométrie
de façon intrinsèque. L’espace-temps, courbé par les objets massifs, dicte comment les corps se meu-
vent les uns par rapport aux autres. La Relativité Générale a permis aux cosmologistes d’établir
un paradigme cosmologique bien défini. L’évolution homogène, spatiale et temporelle, de l’univers
à grande échelle est la conséquence directe du type d’énergie qu’il contient et la croissances
des grandes structures que nous observons aujourd’hui, comme les galaxies et amas de galax-
ies, est le résultat d’instabilités gravitationnelles qui se développent dans l’univers en expansion.
La précision croissante de plusieurs sondes cosmologiques a permis d’englober les connaissances
théoriques et observationnelles dans un modèle standard de la cosmologie: le paradigme ΛCDM.
Ce modèle fournit notamment un cadre simple pour expliquer la découverte récente que notre
univers est entré il y à peu de temps dans une phase d’expansion accéléré: un jalon de la cosmolo-
gie moderne. S. Perlmutter, B.P. Schmidt et A.G. Riess ont reçu le prix Nobel en 2011 pour cette
découverte effectuée en 1998. Dans le paradigmeΛCDM, l’univers est constitué aujourd’hui en ma-
jorité de matière noire froide (CDM) et d’énergie noire, décrite par la constante cosmologique, qui
produit l’accélération cosmique. Cependant, ce modèle standard n’est pas entièrement complet et
d’autres avancées dans la physique moderne peuvent être attendues au cours de ce siècle. Celles-
ci pourront notamment découler d’une description précise de la gravité aux régimes d’énergie
très élevée — échelles de distance extrêmement petites — grâce à une théorie quantique de la
gravité ou à travers une nouvelle description de la gravité à faible énergie — sur les distances cos-
mologiques. Celles-ci sont essentiellement motivées par deux raisons: l’utilisation de la constante
cosmologique introduit des problèmes théoriques dans une description de la théorie des champs
quantiques et certaines tension naissantes suggèrent que notre description à grande échelle de
l’univers doit être affinée. Le travail développé dans cette thèse s’insère dans ce contexte.

Dans le premier chapitre de ce manuscrit nous donnons un aperçu du modèle standard de la cos-
mologie; en partant de ses principes fondateurs jusqu’à ses faiblesses. L’évolution de l’univers à
grande échelle, i.e. sa trame de fond, est caractérisée par les equations de Friedmann, et, elle est
ainsi comprise comme étant la conséquence directe du type d’énergie qu’elle contient. Ces equa-
tions (voir (20)) pionnières de la cosmologie moderne relient l’évolution du paramètre de Hubble
et sa dérivée, une mesure de la vitesse et de l’accélération de l’expansion de l’univers, au contenu
énergétique de l’univers. Les composantes énergétiques sont modélisées par leur pression et leur
densités dans une approche fluide. Ces grandeurs sont reliées par une équation d’état qui change
suivant la nature de la composante considérée (voir Tableau 1). La modélisation de la formation
des structures dans l’univers est faite grâce à la théorie des perturbations cosmologiques. Dans
cette dernière, la formation des structures suit le paradigme de l’instabilité gravitationnelle, un
scénario ascendant, où les petites perturbations s’effondrent avant les plus grandes à mesure que
l’univers évolue. En somme, la description contemporaine de notre univers se visualise bien par
l’analogie des fourmis se déplaçant sur un ballon qui gonfle. Le ballon symbolise la trame de fond
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de l’univers qui s’étend alors que les fourmis rendent compte des grandes structures qui évoluent
sur cette trame de fond.

Dans ce chapitre nous présentons aussi les sondes observationnelles, c’est à dire les moyens et tech-
niques observationnelles, qui permettent de mettre en évidence le caractère accéléré de l’expansion
de l’univers, telles que les supernovæ et le fond diffus cosmologique (CMB) pour ne citer que
quelques exemples. Le phénomène d’accélération cosmique peut sembler contre-intuitif a priori en
raison de la nature attractive de la gravité. Ce fait est maintenant corroboré par de nombreuses
combinaisons de sondes. La composante énergétique qui le produit est la contribution majeure au
budget énergétique total de l’univers à l’heure actuelle (∼ 70%). Cependant, au sein du modèle
standard de la cosmologie ΛCDM, des tensions entre les sondes cosmologiques peuvent être iden-
tifiées. Il est donc aujourd’hui nécessaire de comprendre si ces tensions sont dues à des erreurs
systématiques de mesures ou la conséquence de nouveaux processus physiques encore inexpliqués.
Sur le plan théorique, le modèle standard n’est pas encore capable d’apporter une description
unifiée des époques jeunes et tardives de l’univers. De surcroit, décrire l’accélération cosmique
avec la constante cosmologique produit des problèmes théoriques. Cette description semble être
difficile à justifier sur le plan physique et donne lieu à un problème de naturalité ("naturalness")
en raison de son instabilité au niveau des corrections quantiques.

Ainsi, trouver des alternatives au modèle standard revêt une importance cruciale et cela, en par-
ticulier, pour deux raisons. Une théorie générale fournissant une description universelle de toutes
les époques de l’univers et de toutes les interactions physiques qu’il contient échappe encore à
notre compréhension. La deuxième raison, plus étroitement liée au sujet de cette thèse, est la
suivante. Un modèle cosmologique donné peut effectivement être testé contre de nombreuses ob-
servations afin d’établir sa viabilité. Cependant, la robustesse et la précision d’un modèle viable ne
peuvent être évaluées qu’une fois comparées à un autre modèle. C’est ainsi que le modèleΛCDM se
présente comme le plus fidèle aujourd’hui en décrivant la majeure partie de l’évolution de l’univers
selon les observations recueillies jusqu’à maintenant. C’est aussi pourquoi il faut explorer des al-
ternatives au modèle standard pour palier ses faiblesses. Une quantité importante de théories
alternatives ont été proposées et la plupart d’entre elles sont basées sur l’ajout de degrés de lib-
erté à la Relativité Générale. Ces libertés supplémentaires peuvent se manifester sous la forme
d’une nouvelle composante énergétique de l’univers —le paysage de l’énergie sombre— ou par des
modifications fondamentales de l’interaction gravitationnelle — le royaume de la gravité modifiée.
Dans le deuxième chapitre, nous présentons certains modèles alternatifs, en particulier, ceux qui
relèvent des théories tenseur-scalaire où un seul degré de liberté scalaire est ajouté. Les théories
les plus générales de ce type sont les théories de Horndeski.

Une telle profusion de matériel de recherche, tant sur le plan observationnel que sur le plan
théorique, a considérablement amélioré notre compréhension de l’univers. Cependant, cela se fait
également aujourd’hui au détriment de notre efficacité, car il devient trop fastidieux d’étudier les
théories une par une et de confronter chaque proposition aux observations. Viser à étudier ou créer
des formulations communes, permettant la description de grandes classes de théories alternatives
dans le même cadre, est un moyen efficace de surmonter cet obstacle. C’est la raison pour laquelle,
dans ce deuxième chapitre, nous présentons aussi un cadre unificateur très prometteur: la théorie
effective de champ de l’énergie noire (EFT of DE). Cette approche de la gravité modifiée établi
un formalisme commun décrivant pratiquement toutes les théories alternatives qui ajoutent un
seul degré de liberté scalaire supplémentaire à l’équation d’Einstein. L’efficacité de ce formalisme
découle du lien fondamental qu’il a avec les théories tenseur-scalaires. Les fonctions de couplage
de l’action de l’EFT of DE paramétrisent ces théories en termes de fonctions structurelles qui
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évoluent dans le temps et elles apparaissent naturellement dans l’expression des observables cos-
mologiques. Cela conduit à une comparaison simple des prédictions théoriques d’une vaste gamme
de modèles de gravitation modifiée aux observations, comme nous le voyons dans le reste de cette
thèse. De plus, un point important d’en l’EFT of DE est que la présence d’un champ scalaire est
la conséquence inévitable de la brisure spontanée de la symétrie des difféomorphismes temporels.
Néanmoins, cette description présente aussi des inconvénients. Étant une description linéaire, elle
ne peut décrire des régimes non linéaires tels que les mécanismes d’écrantages que tout modèle de
gravitation modifiée doit manifester pour être en accord avec les contraintes locales imposées par
la gravité standard. Aussi, cette formulation est faite dans la jauge unitaire qui ne fournie pas une
description covariante des théories, mais elle a l’avantage de classer les opérateurs dans l’ordre
des perturbations. Toutefois, la description covariante de la théorie peut être retrouvée grâce au
mécanisme de Stückelberg qui consiste à forcer une transformation de coordonnées temporelles
où le champ de Goldstone est réintroduit. Il est aussi intéressant de souligner que le traitement
des brisures spontanées de symétrie va au-delà de la cosmologie ou de la physique des particules.
Par exemple, certains des auteurs qui ont développé l’EFT of DE ont appliqué cette méthode en
physique de la matière condensée. Cela a permis la description des états de la matière "framids"
et la prédiction de nouveaux états hypothétiques.

La quantité croissante de connaissances théoriques et la quantité croissante de données sont égale-
ment un appel pour des études phénoménologiques. Les futurs satellites et télescopes tels que
EUCLID, SKA, WFIRST et DESI, pour n’en citer que quelques-uns, fourniront des contraintes
encore plus précises sur les écarts possibles par rapport au modèle standard. À la lumière de
cela, la compréhension de la phénoménologie derrière les théories alternatives, l’extraction et le
test d’observables qui caractériseraient des écarts mesurables par rapport à la gravité standard
sont donc une étape cruciale de la cosmologie contemporaine. Par conséquent, dans le troisième
chapitre de cette thèse, nous considérons l’EFT of DE et tentons de répondre aux trois questions
directrices suivantes: Quel est le portrait cosmologique de la gravité qui émerge des théories de
Horndeski? Existe-t-il des comportements universels et, le cas échéant, où se situent-ils par rapport
au modèle standard? Peut-on identifier des observables qui, à l’avenir, nous permettront de discrim-
iner entre les théories? Pour ce faire, nous montrons dans un premier temps comment paramétrer
l’EFT of DE afin d’extraire des prédictions sur un ensemble d’observables caractérisant les struc-
tures à grande échelle. En particulier, nous nous concentrons sur des observable clefs pour la
détection de la gravité modifiée tels que la constante effective de Newton, le paramètre de deflex-
ion de la lumière et le taux de croissance des grandes structures. Dans un deuxième temps, nous
proposons des modèles qui permettent de prendre en compte des modifications de gravité précoces
dans l’évolution de l’univers afin de généraliser la modélisation de l’énergie sombre dans l’EFT of
DE :

- "LDE" : les modifications de gravité disparaissent dans le passé.

- "EDE" : en plus du scénario LDE, le tenseur énergie-impulsion de l’énergie sombre peut être
non négligeable dans le passé.

- "EMG" : en plus du scénario EDE, les fonctions de couplages peuvent être non négligeables
dans le passé.

Nous adoptons une procédure de Monte Carlo pour explorer nos modèles de Horndeski. Nous choi-
sissons une paramétrisation générale des fonctions de couplage et nous générons de façon aléatoire
leurs paramètres (voir section 3.1.5). Nous accordons une attention très particulière à la viabilité
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des modèles que nous obtenons. En effet, un modèle viable ne peut présenter des instabilités, telle
que celles de Laplace ou celles reliées à des degrés de liberté fantômes ("ghosts"). Nous prenons
aussi en compte des critères de sélection physiques, c’est à dire, n’autorisant pas les perturbations
à se déplacer à une vitesse supérieure à celle de la lumière. Nous générons ainsi une dizaine de mil-
liers de modèles viables et étudions leurs prédictions. Cette procédure nous permet d’identifier des
prédictions bien définies sur les observables que les théories de Horndeski produisent (voir Figures
de 16 à 22 et les discussions correspondantes). Ces résultats correspondent, pour la plupart, à ceux
présentés dans [1]. Les théories de Horndeski ont effectivement une liberté fonctionnelle très vaste
mais ce travail montre que l’utilisation de critères de sélection physiques permettent l’obtention
de prédictions bornées et bien définies. Dans la deuxième moitié de ce troisième chapitre, nous
utilisons l’approche de Monte Carlo pour synthétiser davantage les conclusions précédentes en
établissant un "diagnostic observationel" des théories de Horndeski dans la formulation de l’EFT
of DE. Le but de ce diagnostic est d’évaluer comment les théories de Horndeski pourraient être
fortement favorisées ou exclues dans un espace d’observable selon les directions dans lesquelles
pointeront les mesures des futures expériences. Cela correspond aux résultats développés dans
[2]. Le diagnostic est résumé efficacement dans la Figure 28. En parcourant l’évolution temporelle,
depuis les premières époques (un redshift de z = 100) jusqu’à aujourd’hui, des observables fonda-
mentales tels que la constante effective de Newton µ, le paramètre de glissement gravitationnel η,
le paramètre de deflexion de la lumière Σ et la fonction du taux de croissance linéaire des grandes
structures fσ8, nous avons constaté que les extensions à la Relativité Générale du type Horn-
deski peuvent être exclues si l’une des conditions suivantes s’applique (voir Figure 28, panneau de
gauche):

- Les observables µ et Σ ont un signe opposé pour z > 1,5.

- µ< 1 à z = 0.

Les sous-classes spécifiques de ces théories dans lesquelles les effets de gravitation modifiée sont
limités aux temps tardifs ou non peuvent être discriminées lorsque des données au redshifts z >
1,5 seront disponibles dans le futur. En effet, nous trouvons que (voir Figure 28, panneau de
droite):

- LDE sera exclu si fσ8 < ( fσ8)ΛCDM à z > 1,5.

- EDE sera exclu si fσ8 > ( fσ8)ΛCDM à z > 1,5 ou fσ8 > ( fσ8)ΛCDM et Σ> 1 à z > 1,5.

Nous montrons aussi que ces résultats sont insensibles à un paramètre de l’équation d’état de
l’énergie sombre constant dans la plage raisonnable w̄ ∈ [−1.1,−0.9]. Nous avons également trouvé
que le diagnostic ne perd pas en prévisibilité lorsque des exigences de viabilité progressivement
moins contraignantes sont imposées, notamment sur la vitesse de propagation des modes scalaires
et tenseurs.

De plus, les mesures des amplitudes fσ8 faibles, par rapport à la valeur extrapolée de Planck,
fournies par les expériences à bas redshift semblent être quasi systématiques, en particulier dans
les analyses où l’évolution de la trame de fond de l’univers est découplée du secteur des perturba-
tions (voir [3–6] par exemple) et les théories linéaires de Horndeski semblent suivre la tendance.
Ce travail montre que les théories linéaires de Horndeski aideraient à lever la tension connue sur
le paramètre σ8,0.

À la lumière de ce chapitre, il reste encore beaucoup à accomplir et un certain nombre d’améliorations
seraient les bienvenues. Nous nous sommes concentrés sur des échelles beaucoup plus petites que
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l’horizon de Hubble. Au fur et à mesure que les données s’améliorent à des échelles plus impor-
tantes, notre analyse devrait être étendue pour inclure les possibles effets dépendants de l’échelle
provenant des termes de masse du champ scalaire qui sont de l’ordre de Hubble. Enfin, il serait
utile d’étudier à quel point nos conclusions sont stables à l’inclusion de scénarios plus généraux
tels que les théories GLPV ou lorsque des couplages conformes-disformes de la matière à la gravité
sont considérés comme dans [7].

L’EFT of DE ayant permis l’exploration de la phénoménologie d’un grand nombre de modèle
d’énergie sombre et de théories de gravité modifiée, nous fournissons une revue des résultats
qu’elle a produits dans le chapitre final de la thèse. L’objectif de ce dernier est double. Cela nous
permet de donner une présentation du paysage auquel le cadre EFT of DE peut être appliqué. En
particulier, nous montrons les nouvelles prédictions qu’il a soulevées, les contraintes qui ont été
dérivées avec les observations, mais aussi la façon dont l’information sur la gravité modifiée peut
être extraite dans un contexte astrophysique. Nous discutons également d’autres développements
théoriques et numériques sans oublier ses mises en garde. Ce chapitre a également pour but de
discuter des résultats présentés au troisième chapitre par rapport à d’autres études et de suggérer
des chemins à explorer à l’avenir.

En somme, l’EFT de DE est une description linéaire des théories de gravitation modifiée, donc elle
ne peut capturer toute la phénoménologie de ces théories. Par exemple, la dynamique à petites
échelles n’est pas décrite comme les mécanismes d’écrantage. Cependant, déjà au niveau linéaire,
beaucoup a été accompli mais beaucoup reste encore à faire. Nous voyons que l’EFT of DE est un
outil puissant pour explorer les scénarios de gravitation modifiée grâce à sa simplicité dans le cal-
cul des observables et la paramétrisation des écarts à la gravité standard en termes de fonctions
de couplage. Cela a permis l’obtention de caractéristiques universelles et de nouvelles prédictions
observables dans la vaste gamme de théories tenseur-scalaire que sont les théories Horndeski et
GLPV. Elle a également permis de contraindre les écarts par rapport au modèle standard avec les
données. Le cadre EFT of DE ne définit pas une théorie spécifique en termes de variables laissant
aux observations de contraindre leurs amplitudes, mais l’EFT of DE se paramétrise elle-même en
terme de fonctions structurelles du temps, les dites fonctions de couplage. On peut ainsi interpréter
les observations directement dans l’espace des théories et non dans le cadre d’un seul paradigme.
Cependant, il y a un prix à payer. Ce prix est que la forme fonctionnelle des fonctions de couplage
est inconnue. Les observations généralement ne disposent pas d’un pouvoir suffisant pour fixer
des fonctions continues du temps, elles fixent des nombres. Avec les futures expérience et la quan-
tité croissantes de données, les études qui incluent l’analyse des composantes principales ("PCA"),
comme nous le voyons pour un cas particulier dans ce chapitre, sont un moyen prometteur de
surmonter cette barrière. Jusqu’à présent, ce problème est manœuvré en ayant recourt à des mod-
élisations phénoménologiques, c’est-à-dire en comprimant l’information inconnue contenue dans
les fonctions structurelles en un ensemble fini de coefficients grâce à une forme paramétrique,
comme nous l’avons fait dans le troisième chapitre. L’étape subtile consiste alors à concevoir une
paramétrisation suffisamment souple et universelle pour permettre d’explorer la plus grande par-
tie de l’espace des phases des théories stables et pouvoir toujours être suffisamment contraint par
les observations.

La principale mise en garde dans l’EFT of DE est en effet la paramétrisation des fonctions de
couplage. Par exemple, comme nous le voyons au troisième chapitre, nous avons besoin d’une
expansion jusqu’à l’ordre 3 des fonctions de couplage pour capturer toutes les caractéristiques
possible des observables. Cela implique qu’un modèle Horndeski, dans cette configuration, aurait
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12 paramètres en plus des paramètres cosmologiques standards. Aujourd’hui, cela semble trop
coûteux numériquement pour effectuer des méthodes du type Monte Carlo Chaine de Markov de
façon raisonnable. C’est pourquoi la généralité et l’efficacité des paramétrisations ont été explorées
dans la littérature afin de trouver le meilleur compromis. Dans [8, 9], les auteurs montrent que
choisir les fonctions de couplage évoluant proportionnellement à la densité d’énergie de l’énergie
sombre s’avère trop réducteur. Par conséquent, les approximations simplifiées des fonctions de cou-
plage pourraient même manquer les signatures de gravitation modifiée. Heureusement, l’auteur
dans [10] montre que les observables ne sont pas extrêmement sensibles aux courtes variations
temporelle. Par conséquent, les paramétrages lisses sont en général suffisants pour décrire cor-
rectement l’espace des théories. Notamment, il est montré que l’utilisation de deux paramètres,
un d’amplitude et un indice de puissance, pour chaque fonction de couplage est préférée sur des
modèles plus complexes pour 86 % de l’espace des théories. Néanmoins, les auteurs dans [11]
soulignent que les prévisions sur les paramètres EFT peuvent être considérablement affectées par
le modèle pour l’évolution du temps des fonctions de couplage. Par conséquent, il semble main-
tenant crucial de mettre en œuvre des prévisions pour les mesures futures dans un paramétrage
plus performant des couplages.

En conclusion, l’exploration de la phénoménologie des modèles d’énergie sombre est une vaste en-
treprise. L’étude présentée dans ce manuscript n’est qu’un grain de sable dans un large seau. Dans
cette thèse, nous avons exploré une grande classe de théorie tenseur-scalaire; les théories de Horn-
deski. Ces dernières sont une possibilité dans une large gamme de théories de gravité modifiée.
Nous pouvons regarder le diagramme en Figure 3 de [12], par exemple, pour se rendre compte
à quel point le domaine des théories de la gravité modifiée est vaste. Néanmoins, les théories de
Horndeski sont un cheminement crucial à explorer. Ils intègrent pratiquement toutes les théories
qui ajoutent un degré de liberté scalaire en plus de la Relativité Générale. Par conséquent, en
étudiant ces théories, nous explorons une des modifications les plus simples et physiquement mo-
tivées de la gravité: on ajoute un champ scalaire. Nous le savons maintenant, au moins un champ
scalaire existe dans la nature: le champ de Higgs. De ce fait, nous pouvons s’interroger sur la
possibilité qu’un autre champ scalaire provoque l’accélération cosmique. En outre, adopter une
modification de la gravité simple est cruciale pour au moins une autre raison; ils fournissent des
modèles mathématiquement sains et justifiés physiquement pour fournir un point de comparaison
avec le modèle standard ΛCDM.

Le modèle standard contient certaines lacune, nous l’avons vu. Que ces dernières soit théoriques
ou observationnelles, des améliorations doivent être explorées. Cela pourrait amener à des méth-
odes plus précises pour produire des données, ou révéler de la nouvelle physique devant être ex-
pliquée au-delà du modèle standard. L’exploration des écarts dans les sondes cosmologiques, et
donc des processus physiques sous-jacents spécifiques, est incontournable pour évaluer les direc-
tions à suivre dans le future pour la complétion du modèle standard. À cet égard, de nombreux
modèles alternatifs expliquant l’accélération cosmique ont été suggérés et la tâche d’évaluer la
viabilité de chaque théorie, grâce aux observations, est une entreprise ardue. Par conséquent, des
cadres unificateurs ont été construits pour donner la possibilité de tester plusieurs théories à la
fois contre les observations. Nous nous sommes concentrés sur l’un d’entre eux: la théorie effective
de champ de l’énergie sombre. Ce cadre nous a permis de tenter de répondre aux questions directri-
ces présentées dans l’introduction de cette thèse. Nous avons montré que, malgré la grande liberté
fonctionnelle des théories de Horndeski, l’application des exigences de viabilité mathématique et
physique conduit à l’obtention de prédictions bornées sur les observables de la structure à grande
échelle et ΛCDM se situe souvent à la frontière. Notamment, nous nous sommes concentrés sur
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des observables tels que: la constante efficace de Newton, le paramètre de deflexion de la lumière
et la fonction de croissance des grandes structures; des observables clés pour détecter des écarts
par rapport au modèle standard. Nous avons procédé grâce à une approche de Monte Carlo pour
générer des modèles viables dans la classe Horndeski et explorer les prédictions qu’elle produit.
Cette approche nous a permis de décrire un diagnostic observable des théories de Horndeski qui
contribuera à exclure ces théories compte tenu des mesures futures. Nous avons également ac-
cordé la possibilité aux théories de Horndeski dans le cadre de l’EFT of DE pour tenir compte des
modifications précoces de la gravité.

Á ce jour, je travail en partie sur une étude dans laquelle nous contraignons les théories de Horn-
deski et GLPV dans l’EFT of DE avec des observations où une attention particulière est accordée
aux contraintes astrophysiques. Nous avons montré que de nombreuses contraintes d’observation
ont déjà été obtenues sur les théories et les sous-classes de Horndeski, grâce à l’EFT of DE. Bien
que ces contraintes ne favorisent pas particulièrement les théories linéaires de Horndeski sur
ΛCDM à ce stade, nous avons montré que la description de ces théories doit être améliorée dans ce
cadre afin de s’assurer que l’on capture toute la phénoménologie, et cela, pour une évaluation ap-
profondie en vue des expériences futures. Nous avons discuté de plusieurs chemins à suivre. Nous
sommes au début de cette époque très excitante qu’est la cosmologie de précision et les prochaines
années donneront lieu à une grande quantité de données observationnelles de haute précision. Il
est donc primordial de préparer les outils théoriques, phénoménologiques et numériques pour anal-
yser correctement toutes les informations dont nous aurons besoin pour améliorer la pertinence
de notre paradigme cosmologique.
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precious help and support throughout my PhD. I am deeply grateful to my collaborators, Federico
Piazza and Julien Bel, for their precious advice on the work I did during these 3 years. I am more
than grateful to my family for looking after me, while most of this manuscript was written, due to
a badly broken leg. I also thank in particular my mother and my sister for having a look at most
of the English in this thesis. I must finish by thanking my friends, notably for providing the beers
when they were most needed; a non-negligible aspect of a PhD student’s life indeed.

xiii





C O N T E N T S

1 T H E M O D E R N C O S M O L O G I C A L PA R A D I G M 1
1.1 General Relativity in a nutshell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Equivalence principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Einstein’s field equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Achievements and short comings . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 The smooth universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Cosmological principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Friedmann equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Distances in cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 The perturbed universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.1 Linear perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 Statistics of the LSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Probes of cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.1 Classical probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.2 Complementary probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4.3 Future experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5 The standard model of cosmology ΛCDM . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.5.1 Cosmic acceleration with Λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5.2 Current constrains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5.3 Observational discrepancies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.5.4 Theoretical shortcomings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2 D A R K E N E R G Y A N D M O D I F I E D G R AV I T Y 39

2.1 Alternative theories to ΛCDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1.1 Quintessence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.1.2 k-essence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.1.3 f(R) theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.1.4 Scalar tensor theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2 Screening mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2.1 Chameleon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2.2 Vainshtein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3 The effective field theory of dark energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.3.2 Construction of the action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.3.3 Stability of theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.4 Background and equations of motion . . . . . . . . . . . . . . . . . . . . . . . . 59

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3 F E A T U R E S I N L A R G E S C A L E S T R U C T U R E O B S E R VA B L E S 63

3.1 Exploring dark energy models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.1.1 Setting the background evolution history . . . . . . . . . . . . . . . . . . . . . 64
3.1.2 Extracting observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.1.3 Embedding dark energy scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.1.4 Viability of theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

xv



xvi C O N T E N T S

3.1.5 Exploration protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2 Signatures from Brans-Dicke to Horndeski theories . . . . . . . . . . . . . . . . . . . 73

3.2.1 Effective gravitational constant and its components . . . . . . . . . . . . . . . 73
3.2.2 Growth of matter perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2.3 Gravitational slip and light deflection parameter . . . . . . . . . . . . . . . . . 78
3.2.4 Different parametrisation scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.2.5 Gauging the effects of µ2

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.3 Diagnostic of Horndeski theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3.1 Correlations as a diagnostic tool . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.3.2 Consistency checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4 P H E N O M E N O L O G Y W I T H T H E E F F E C T I V E F I E L D T H E O R Y O F D A R K E N E R G Y 91

4.1 Novel predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.1.1 The α-basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.1.2 Impact of stability conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.1.3 Growth history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.1.4 Observational signatures on cosmological spectra . . . . . . . . . . . . . . . . 95
4.1.5 Background evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 Parameter and observable constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.2.1 Running Planck mass, linear EFT and f(R) models . . . . . . . . . . . . . . . . 98
4.2.2 Horndeski theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
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1
T H E M O D E R N C O S M O L O G I C A L PA R A D I G M

Modern cosmology emerged once the mathematical tools and the physical interpretation behind
the description of space-time and the gravitational force were revolutionised by A. Einstein. We
give an overview of this in section 1.1. General Relativity, GR henceforth, leads to a description of
the universe schematically divided into two parts. This is well illustrated by the analogy of ants
moving on a balloon being filled with air. The smooth and homogeneous background evolution
is symbolised by the inflating balloon, whereas the perturbations, the galaxies and clusters of
galaxies, are symbolised by the ants walking on the balloon. The fundamental equations describing
both parts will be respectively discussed in section 1.2 and 1.3. Then, in section 1.4, we shall
see how cosmological probes allows one to constrain the fundamental description of the universe.
Finally, having thus explored the theory and the observations at the base of the modern description
of universe, we will be able to dress the picture given by the standard model of cosmology in section
1.5, but also give some issues remaining to be solved in section 1.5.4.

G E N E R A L R E L A T I V I T Y I N A N U T S H E L L

Explaining the attraction between two massive bodies with a long range unknown force bothered
many physicists and Newton himself. GR overcame this conceptual issue by showing the attractive
gravitational force to be the result of bodies moving in a space-time that is curved by their masses.
The development of GR by Einstein is generally attributed to the year 1915, with the publishing
of his four famous papers [13–16], and consolidated in 1916 with his review [17]. Today, GR is
understood to be the unique Lorentz invariant theory describing a local massless spin 2 field in 4
dimensions. To obtain such a clear definition required several decades of work, let us in this section
briefly overview the construction of GR and some of its important definitions and principles.

The starting point is the need to complete Special Relativity [18], SR hereafter, to include accelera-
tion. The revolutionary view of space-time it introduced was not enough, it described only motions
in inertial frames. Einstein wanted to be able to describe the dynamics of accelerating bodies and
frames universally. For instance, acceleration was the key ingredient in solving the apparent twin
paradox. Let us imagine two twins, one remains on earth, one journeys into deep space thanks to
a space-ship travelling almost as fast as the speed of light, and returns. On the one hand, in the
frame of the earth, the dilation of time implies that the travelling twin will return having aged less
than the stationary twin. On the other hand, taking the frame of the space ship, the twin inside
the latter is stationary and the moving twin is the one on earth. In this scheme, once the twins are
reunited on earth, the twin that stayed on earth should be younger due to time dilation. These two
views are completely symmetrical, whether the stationary twin is the one considered in the ship
or on earth, yet they give the opposite outcome. What is wrong ? This remains a paradox in SR but
is broken when considering acceleration. The twin in the ship undergoes one acceleration during
the lift off and one deceleration during the landing. This breaks the symmetry of the problem and
the correct outcome is the travelling twin coming back less aged.
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2 T H E M O D E R N C O S M O L O G I C A L PA R A D I G M

Equivalence principles

The lift "gedanken" (thought) experiment is possibly the one that shows best how Einstein was led
to formulate GR. Einstein thought that an observer standing in a falling lift would feel exactly as if
floating in a space-ship in deep space, and vice versa, an observer standing on earth would feel the
same as if in a space-ship accelerating at ‖~g‖. With this thought experience, Einstein understood
the deep link matter and space-time display. This led him to postulate that a unifying theory
needed to be covariant, in other words that the general theory of gravity should be invariant under
general coordinate transformations. This equivalence found in the lift experiment is formulated
through the equivalence principals.

According to Newton’s second law of motion ~F = m~a, a body of mass m will undergo an acceleration
~a under the force ~F. Equivalently, this relation tells us that a body needs a force ~F to be put
in motion, mediated by the acceleration ~a, with the proportionality factor its mass m. One thus
feels the idea of inertia arising, i.e. this mass m is the physical quantity that dictates the ability
of a body to be put in motion. The inertial mass is thus the ratio of the norm of a force over
the norm of an acceleration. Aside of this, in the context of gravitation, a long range force, one
should define the gravitational mass as the ratio of the norm of the gravitational force over the
norm of the gravitational acceleration. Now, if a body is in free fall, that is to say the motion of a
body where gravity is the sole force acting on it, in a gravitational field of acceleration ~g, one has
~F = mi~a = mg~g, and thus ~a = mg

mi
~g. When one does such an exercise, one automatically sets the

latter mass ratio to one, i.e. mg = mi.

The deeper meaning in this simplification is that all bodies fall in the same way: free fall is univer-
sal. This simplification is conceptually not trivial and has puzzled physicists for centuries. From
J. Philoponus in the 6th century to Galileo and more recently Eötvös in 1889, B. Dicke in 1964
[19], no deference between mi and mg were found. Up to the point that the Eötvös parameter, the
difference in the free fall of two objects of different mass,

η1,2 = 1
2

( mi
mg

)
1 −

( mi
mg

)
2( mi

mg

)
1 +

( mi
mg

)
2

, (1)

has been constrained recently to be η1,2 < 10−13 from the free fall of beryllium-aluminium and
beryllium-titanium test body pairs in [20]. The quest for measuring a difference still runs, the
satellite MICROSCOPE [21] launched in 2016 should be able to measure this parameter with a
precision of 10−18.

This tight constrain between mi and mg falls under the Weak Equivalence Principle (WEP) which
implies the impossibility to distinguish between the effects of a gravitational field from those of
an uniformly accelerated frame (recall Einstein’s lift thought experiment) and thus that free fall
is universal. According to Einstein, the WEP should not only be valid for free falling test-particles
but also for any experiment. Thereby, the Einstein Equivalence Principle (EEP) adds on top of the
WEP [22] that the outcome of any local non-gravitational test experiment is independent of the
velocity of the free falling apparatus, and of where and when in the universe it is performed. A
local non gravitational experiment corresponds to a small sized experiment performed in a freely
falling laboratory. In the WEP and EEP, gravitational interactions are excluded. To include them
a stronger version exists, the Strong Equivalence Principal (SEP). The SEP states [23] that the
WEP is valid also for massive gravitating bodies and that in all freely falling frames the laws of
SR, independent of velocity and position, are recovered locally and up to tidal gravitational forces.



1.1 G E N E R A L R E L A T I V I T Y I N A N U T S H E L L 3

The main consequence of the EEP is that gravitational interactions must depend on space-time
curvature. This imposes any metric theory of gravity to satisfy the following properties [22, 24] :

i) Space-time is a manifold endowed with a metric (gµν).

ii) The world lines of test bodies on such a manifold correspond to the geodesics of the metric,
i.e. the shortest path between two points.

iii) All non gravitational laws of physics in local freely falling frames (Local Lorentz frames) are
governed by SR.

The last statement has an important implication: for a body in free fall, it will be always possible
to find a reference frame in which the body is in a rectilinear uniform motion, the local inertial
reference frame. Therefore, assuming mi = mg, in such a frame the proper acceleration of a test
body will be

d2xµ

dτ2 = 0 , (2)

with τ = ∫
ds/c the proper time of the body. The idea of Einstein was for the laws of physics to

be valid in any frame and thus including gravitation, they needed to be written in the form of
tensors under general coordinate transformations (dx̃α = (∂x̃α/∂xµ)dxα)1. For example, a rank 2
tensor must transform as

gµν = ∂x̃α

∂x̃µ
∂xβ

∂xν
g̃αβ . (3)

From this, for (2) to be valid in any frames it needed to be complemented into

d2 x̃µ

dτ2 +Γµ
αβ

dx̃α

dτ
dx̃β

dτ
= 0 . (4)

This is the geodesic equation which enables one to find the shortest path between two points on
the manifold. Γµ

αβ
is the connection, thus the quantity enabling the parallel transport of a vector

along a geodesic. One must use the non-metricty tensor to express the connection in terms of the
metric, vanishing in GR, one has ∇µ gαβ = 0. ∇µ is the covariant derivative, i.e. the extension of
derivatives to curved space-time, defined for a tensor as

∇αTµ1···µp
ν1···νq = ∂αTµ1···µp

ν1···νq −Γλαν1
Tµ1···µp

λν2···νq −·· ·−Γλανq
Tµ1···µp

ν1···νq−1λ

+Γµ1
αλ

Tλµ2···µp
ν1···νq +·· ·+Γµp

αλ
Tµ1···µp−1λ

ν1···νq . (5)

This leads to the expression of the connection of GR, the Levi-Civita connection which is expressed
in terms of the Christoffel symbols2

Γ
µ

αβ
= 1

2
gµν

(
gαν,β+ gβν,α− gαβ,ν

)
. (6)

The display of gµν and Γµ
αβ

in the equations of GR clearly highlights the geometrisation of a physi-
cal theory, a revolution in 1915. From this geometric formulation, one obtains that every quantities
defined from the connection can be written in terms of the metric. In addition, GR is torsion free
that is to say the anti-symmetric part of the connection vanishes (Γµ[αβ] = 0). Also, any structures
are defined on what is called a pseudo-Riemaniann manifold, Riemannian means a differentiable
manifold and the pseudo comes from the fact that the metric is not positive definite.

1 A convention used throughout this thesis is following. We adopt the Einstein summation, indices are summed when
they are repeated above and below, e.g. uµuµ = u0u0 +u1u1 +u2u2 +u3u3, Greek indices span from 0 to 3 and Latin
indices span from 1 to 3.

2 The derivative symbols will be sometimes omitted for clarity thanks to the convention ∂µ(·)= (·),µ and ∇µ(·)= (·);µ
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Einstein’s field equation

Let us now overview how Einstein obtained his field equation. He adopted a heuristic approach.
He knew that in the weak field limit, i.e. low space-time curvature and low energies, he had to
recover Newton’s dynamics for gravitating bodies such as the field equation for the Newtonian
potential Φ,

∆Φ= 4πGρ , (7)

where ∆ = δi j∂i∂ j, ρ the energy density at play and G Newton’s constant. This equation links a
second order differential operator acting on a potential with a measure of the mass distribution,
thus a dynamical equation. To insure general covariance, both the left and right hand side of the
new equation needed to be upgraded to tensors. For the later, the general relativistic extension to
ρ is the energy momentum tensor Tµν. Using the metric directly for the former was to no avail, for
∆gµν does not transform as a tensor under general coordinate transformations. On the other hand,
the Riemann tensor, which measures to what extent the metric tensor is not locally isometric to
that of Euclidean space,

Rµ
νσρ = ∂σΓµνρ−∂ρΓµνσ+ΓκνρΓµκσ−ΓκνσΓµκρ , (8)

yields too many indices. This is how Einstein first proposed, the Ricci tensor, a contraction of the
Riemann tensor Rµν = Rρ

µνρ as a candidate,

Rµν = 8πG
c4 Tµν , (9)

where c is the speed of light. However, further investigation revealed that this could not be a
suitable candidate since ∇µRµν =∇νR/2 implied the conservation of energy was not satisfied. This,
led Einstein to correct his equation to

Gµν = 8πG
c4 Tµν , (10)

where the Einstein tensor yields,

Gµν = Rµν− 1
2

R gµν , (11)

with the Ricci scalar being R = Rµ
µ = gµνRµν, gµν the inverse of the metric defined as gµα gαν = δµν

and δµν = diag(1,1,1,1) is the Kronecker symbol. We will use the (−,+,+,+) signature for the metric
throughout this thesis. The Einstein tensor was proved much later, by J. Lovelock in 1971 [25], to
be the only divergence-free rank 2 tensor containing up to second partial derivatives of the metric
on a 4 dimensional differentiable manifold.

Soon after the publication of Einstein’s articles on GR, D. Hilbert showed a more direct way to
obtain Einstein’s field equation from the variational principle. The action of GR was found,

S = c4

16πG

∫
d4x

p−g R+Sm(gµν,ψ) , (12)

where the first integral is now called the Einstein-Hilbert term and Sm is the action for the matter
fields, ψ, that gravitate, in other words matter that couple to the metric. Indeed, taking the vari-
ation of the action with respect to the inverse metric (12) yields the Einstein field equation (10)
where the energy momentum tensor is obtained by

Tµν =− 2p−g
δSm

δgµν
. (13)
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Figure 1: Left: Pictorial representation of gravitational lensing. CREDITS: NASA/ESA,
http://www.cfhtlens.org/public/what-gravitational-lensing. Right: Representation of a perihe-
lion precession.

Furthermore, in virtue of the Bianchy identities obtained by permuting ν, κ and η in

∇ηRλµνκ+∇κRλµην+∇νRλµκη = 0 , (14)

on can shown that
∇µTµν = 0 . (15)

which is the generalisation of energy-momentum conservation with gravity. The Einstein field
equation (10) shows the intimate link between the geometry of space-time and the energy compo-
nents it supports, in J. Wheeler’s words:

“Spacetime tells matter how to move; matter tells space-time how to curve".

Gravitation is the result of the curvature of space-time.

Achievements and short comings

Gravitational Lensing

One of the early achievements of GR is the correct computation of the deflection of light by massive
objects, i.e. the gravitational lensing of light, as shown in Figure 1 (left panel). Einstein was the
first to compute it correctly [26]. Einstein and GR thus became famous in 1919, when A. Eddington
and his collaborators measured the change in the position of stars during a solar eclipse [27]
which revealed GR to be consistent with their measurements. Einstein had performed a previous
computation in 1911 that contained a factor 2 error due to the use of a wrong metric which he
corrected later in 1915.

Mercury’s perihelion precession

Newtonian gravity predicts that a body gravitating another one undergoes a fixed ellipsoidal orbit.
However, it was pointed out by U. Le Verrier in 18593 that Mercury’s orbit displayed precession,

3 U. Le Verrier (1859), “Lettre de M. Le Verrier à M. Faye sur la théorie de Mercure et sur le mouvement du périhélie de
cette planète (Lettre from M. Le Verrier to M. Faye on the theory of Mercury and the motion of its perihelion)", Comptes
rendus hebdomadaires des séances de l’Académie des sciences (Paris), vol. 49 (1859), pp.379–383.
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that is to say the orbit rotated in time, as shown in Figure 1 (right panel). Einstein showed in [17]
that GR predicted the correct precession angle which constituted another great proof of his theory.

Historically, the prediction of gravitational lensing and Mercury’s precession are probably the most
spectacular experimental confirmation of GR. Over the years more tests of GR have been done. GR
is very tested experimentally in the solar system and in astrophysical contexts through the Post-
Newtonian Formalism [22].

Static universes

We have seen some clear successes of GR. However, in the early years after its publication it led to
some less satisfactory concepts. For instance, Einstein held strongly to the notion of a static uni-
verse for a long time. The Einstein universe [28] was infinite in time but spatially closed, a cylinder
universe. It required the famous Cosmological Constant fixed to Λ= 4πGρm, to make the universe
static by counter balancing the attractive matter density (ρm). To leave no free parameters, the
curvature radius of the universe was fixed to Λ−1/2. However, this universe did not resolve Olber’s
paradox “Why is the night sky so dark?", i.e. if the universe is infinite and static one should end
up seeing a star in every corner of the sky and thus a bright night sky. This is indeed solved when
an expanding universe is considered. The Einstein universe also suffered a more drastic issue,
instability: an over-density (under-density) in matter collapses (expands).

Another competing model at that time was the de Sitter universe [29], a static universe with either
positive or negative spatial curvature, where the matter in the universe is completely negligible
with respect to the cosmological constant. This universe has grown important in cosmology espe-
cially for the description of inflation, an early accelerated expansion phase of the universe (see
section 1.5.4.2), since it can be interpreted as a flat universe with an exponential expansion.

It is quite interesting to see that indeed physics is sometime a game of power. Probably due to the
growing fame of Einstein, the ideas of a static universe held strong for some years over the works of
A. Friedmann in 1922 and 1924 [30, 31] and G. Lemaître in 1927 [32] on expanding universes. The
situation changed in the 1930s when E. Hubble published his results about the flight of galaxies
(see section 1.2). This led Einstein to drop the cosmological constant and to abandon his idea of a
static universe.

Let us finish by mentioning that GR works extremely well in all the regimes in which it has
been tested [22, 26]. Nevertheless, despite numerous success, it must still be seen as an effective
filed theory valid in a certain regime. One knows that GR lacks a UV-completion, that is to say a
description of high energies such as a quantum description.

T H E S M O O T H U N I V E R S E

It is A. Friedmann, in 1922 [30], who found the most general solution of Einstein’s fields equa-
tion for a uniform distribution of matter and energy. Thanks to this he was able to predict and
model accurately the dynamical nature of the universe. This was confirmed seven years later by E.
Hubble when he revealed the phenomenon of the "flight of galaxies" [33] guided by the evidence
provided by B. Slipher, 10 years before, who showed that the light from nebulae were strongly
red-shifted [34]. Today, the description of the universe inserts itself into the cosmological principle
which provides a universal picture of the universe.
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Figure 2: Images of the universe at different scales reconstructed from the Millennium Simulation [41],
CREDITS: http://wwwmpa.mpa-garching.mpg.de/millennium/.

Cosmological principle

Nowadays, the universe is believed to be fairly identical everywhere on average. This means that
if one looks at different large scale patches of the universe, one should not be able to spot charac-
teristic differences between them but should rather be struck by their mutual resemblance. This
fact is set under the Cosmological Principle, sometimes known as the Copernican principle. In a
more mathematical approach, it is based on two properties that a manifold can exhibit:

i) Isotropy: Space looks the same in any direction for an observer at a specific point in space.
This is described by the rotational invariance of the spatial part of the metric, i.e. the three
spatial directions are Killing vectors of the metric.

ii) Homogeneity: The metric is the same throughout space.

On the one hand, the scale of homogeneity is still under debate among cosmologists. While the
images constructed from the Millennium Simulation (see Figure 2) would lead us to set the scale
of homogeneity at about ∼ 200 Mpc/h, some evidences of very large structures in the universe
exists, such as the Sloan Great Wall (423 Mpc) [35] or the Hercules–Corona Borealis Great Wall
(2000-3000 Mpc) [36] for example. This could limit the use of the cosmological principle in certain
cases. On the other hand, isotropy remains a strong principle still today [37]. It started to be well
motivated with the discovery of the Cosmic Microwave Background, CMB henceforth, in 1964 by
A. Penzias and R. Wilson [38] and first predicted in 1948 by R. Alpher and R. Herman [39]. The
CMB is a relic radiation of the early universe, more details will be given in section 1.4.1.2. The
scale of isotropy can be deduced from the distribution of galaxies. It has been estimated to be ∼ 150
Mpc/h [40].

Friedmann equations

Friedmann’s equations determine the evolution of the background of the universe, that is to say
the evolution of the scale factor a and the amplitude of the spacial curvature, as a function of the
density ρ and pressure p of the energy content of the universe in a perfect fluid description. To
obtain the Friedmann equations, one must use the Friedman-Lemaître-Robertson-Walker (FLRW)
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line element, that is the most general metric on a pseudo-Riemannian manifold with maximal
symmetry on constant-time hyper-surfaces4,

ds2 =−dt2 +a2(t)
( dr2

1−kr2 + r2 (
dθ2 + sin2(θ)dφ2 ))

, (16)

where k is a constant characterising the intrinsic curvature of space,

k =


+1 for a closed spherical universe
0 for an open flat universe
−1 for an open hyperbolic universe

(17)

and the energy momentum tensor of perfect fluids,

Tµν =
∑

i
T i
µν =

∑
i

(
(ρ i + pi)uµuν− gµνpi

)
, (18)

with ρ i and pi respectively the energy density and pressure of the energy component of index
i. This index corresponds to the form of energy content one can consider (baryonic matter, dark
matter, radiation etc.). uµ is the normalised velocity 4-vector defined as uµ = dxµ/

p
−ds2 and so

uµ = (1,~0). Using the FLRW line element (16) and the energy momentum tensor (18) in Einstein’s
field equation augmented with the cosmological constant

Rµν− 1
2

R gµν+Λgµν = 8πG Tµν , (19)

leads to the Friedmann equations(
ȧ
a

)2
= H2 = 8πG

3

∑
i
ρ i − k

a2 + Λ
3

, (20)

ä
a
= Ḣ+H2 =−4πG

3

∑
i

(
ρ i +3pi

)+ Λ
3

, (21)

where the dot corresponds to derivatives with respect to cosmic time, i.e. the time measured by a
clock at rest with respect to the expanding universe and t = 0 is set at the Big-Bang. We have also
introduced the quantity H = ȧ

a often called the Hubble parameter or Hubble rate, which charac-
terizes the rate of expansion of the universe. ρ i and pi can be at most a function of time in order
to satisfy the cosmological principle. It is important to understand that these two equations, the
basis of modern cosmology, mean that the kinematic nature of the universe, expansion and accel-
eration, is fully described by its energy content through density and pressure. As a matter of fact,
perfect fluids have their pressure and density linked by the equation of state

pi = wi ρ i , (22)

where each fluid composing the universe has a specific equation of state parameter wi given in
Table 1. Computing the conservation of the energy momentum tensor leads to the conservation of
energy or continuity equation,

ρ̇ i +3H(1+wi)ρ i = 0 , (23)

4 We will adopt the system of natural units for most of this thesis. It is defined by setting the reduced Planck constant,
the Boltzmann constant and the speed of light to unity, i.e. h/(2π) = kB = c = 1. This implies that all physical units are
expressed in terms of energy as [E]= [M]= [T]−1 = [L]−1.
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Fluid component Index wi

Pressure-less non relativistic matter (dust, galaxies, dark matter) m ≈ 0
Relativistic particles (radiation) r 1/3

Intrinsic spatial curvature k −1/3
Cosmological constant Λ −1

Dark energy or modified gravity de <−1/3

Table 1: Equation of state parameter of the common energy components contained in the universe.

which once integrated yields,

ρ i = ρ i,0

(a0

a

)3(1+wi)
, (24)

where ρ i,0 and a0 are respectively today’s value of the energy density considered and of the scale
factor5. The first Friedmann equation can be rewritten in a purely energetic and dimensionless
form, allowing straightforward physical interpretation:

Ωm(t)+Ωr(t)+ΩΛ(t)= 1+Ωk(t) . (25)

where on the left hand side
Ωi(t)= 8πG

3H(t)2ρ i(t) , (26)

are generally dubbed the (reduced) density parameters, in other words the cosmological parame-
ters that characterize the proportion of the different forms of energy in the universe. To do so, we
have used the definition of the critical energy density,

ρc = 3H2

8πG
, (27)

which is defined so that the spatial geometry is flat in a non accelerating universe. The matter
content of the universe regroups standard matter, dubbed baryons in cosmology (Ωb), and dark
matter (Ωdm) since both components are generally modelled to be pressure-less (wm ≈ 0). This way,
one has

Ωm =Ωb +Ωdm . (28)

The total amount of matter today is dominated by dark matter, DM thereafter, as Ωdm,0 ≈ 0.25
against Ωm,0 ≈ 0.05. Whereas the total energy content of the universe is dominated today by
the component responsible for cosmic acceleration (ΩΛ,0 ≈ 0.7). Radiation, on the other hand, is
completely negligible today (Ωr,0 ¿ 1%). We will discuss further the current constraints on these
cosmological parameters in section 1.5.2. The term on the right hand side of (25) is defined as

Ωk(t)= −k
a(t)2H2(t)

ρ i , (29)

and enables the link between the spatial curvature of the universe with its energy content. De-
pending on the sign of Ωk the geometry of the universe changes as the pictorial representation
in Figure 3 (right panel) shows. It is quite astonishing to see the expansion history can be char-
acterised by such simple parameters and, depending on their values, the history and fate of the
universe can change drastically (see Figure 3 (left panel)). Nevertheless, the universe is measured
currently to be very close to spatial flatness (Ωk,0 < 1%) (see section 1.5.2).

5 An index 0 will indicate a quantity evaluated at present time throughout this thesis with the exception of tensor
components.
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Figure 3: Left: Pictorial representation of the number of galaxies seen by an observer as a func-
tion of the distance in the universe depending on the curvature of space. CREDITS:
http://abyss.uoregon.edu. Right: The fate of the universe for different cosmological models. The
curves assume ρΛ ranging from 0.95 ρc (top curve) down to 0.4 ρc. CREDITS : http://www-
supernova.lbl.gov/PhysicsTodayArticle.pdf.

The scale factor, however, is not a quantity one can observe and constrain directly. The fundamen-
tal observable of cosmology is the redshift:

z = λr −λe

λe
, (30)

where λe is the wave length of the emitted photon and λr is the wave length of the photon mea-
sured by the observer. The redshift is linked to the scale factor by

1+ z = a0

a
. (31)

The shift of galaxy spectra to the red (redshift), which increases with the distance from the galaxy
to the observer is the phenomenon that allowed Hubble to highlight the expansion of the universe.
He characterised it thanks to the relation,

v = H0 d . (32)

This fundamental relation, the Hubble law, links the recession velocity v of galaxies at a distance
d from the observer with the constant of proportionality the Hubble constant H0. The latter is
constrained to be about ≈ 70 k s−1 Mpc−1 (see section 1.5.2). The redshift evolution of the Hubble
rate can naturally be linked to the density parameters using the first Friedmann equation and
(24),

H2 = H2
0

(
Ωr,0 (1+ z)4 +Ωm,0 (1+ z)3 +Ωk,0 (1+ z)2 +Ωde,0 e

∫
wde(z)dz

)
, (33)

which fully defines the background expansion of the universe. A dimension-less Hubble parameter
is often also defined as

h = H0

100 k s−1 Mpc−1 . (34)

In this expression, the relevant unit to characterise distances in cosmology has appeared, the
megaparsec (Mpc). This unit is probably impossible to be grasped by human standards as 1 Mpc≈
3.26×106 ly ≈ 3,09×1022 m. Nonetheless, let us keep in mind that the typical size of a galaxy
is ∼ 10 kpc, of a cluster of galaxies is ∼ 1 Mpc, of super clusters 100 Mpc and of the observables
universe today, c/H0 with H0 ≈ 70 k s−1 Mpc−1 is ∼ 4000 Mpc.
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Distances in cosmology

We have mentioned units to measure distances. The meter has been defined, since 1983, to be the
distance light travels in 1/299792458 seconds. However, one must now ask the question: how does
one define a distance in an expanding universe with non-euclidean geometry? Since we are dealing
with distances, we will reintroduce c in the equations in this section for clarity.

In the FLRW universe, it is useful to redefine the metric by setting r = sin χ (k = 1), r = χ (k = 0)
and r = sinh χ (k =−1) which leads to

ds2 =−c2dt2 +a2(t)
[
dχ2 + s2

k(χ)
(
dθ2 +sin2(θ)dφ2

)]
, (35)

where

sk(χ)=


sin χ for k =+1

χ for k = 0

sinh χ for k =−1

(36)

with χ the comoving interval defined by

χ(z)= c
a0

∫ z

0

dz
H(z)

. (37)

Comoving distance

Physically, the comoving distance is the distance between two objects in which cosmic expansion
has been factored out, hence this distance does not depend on time. For instance, light travelling
along the direction χ satisfies ds2 = −c2 dt2 +a2(t)dχ2 = 0. From this, in a flat universe (Ωk = 0),
light emitted at a time t = te, with χ= χe and a redshift z will reach an observer at time t = 0, with
χ= 0 and z = 0, thus the comoving distance dC is computed as

dC =
∫ χe

0
dχ=−c

∫ te

t0

dt
a(t)

= c
∫ z

0

dz̃
H(z̃)

, (38)

where we have set a0 = 1 for simplicity, which is the case for a flat universe. As expected, this
distance depends on the "cosmology" through H(z). For very close objects, one can approximate

dC ≈ c
H0

z, for z ¿ 1. (39)

Then, using the definition of the recession velocity with redshift, v = zc, we retrieve the Hubble
law (32), v ≈ H0 dC.

Luminosity distance

Theoretically, the comoving distance is very useful, however, it is not directly measurable. Flux on
the other hand is an observable and is expected to follow the relation

f = L
4πd2

L

, (40)

in curved space-time where dL is the luminosity distance and L the luminosity. Note that the latter
needs to be normalised cautiously. Taking z = 0, the flux is related to the observed luminosity by
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f = L0/S0 where S0 = 4π s2
k(χ) is the area of a sphere of radius sk(χ) at z = 0. From this one can

derive
d2

L = s2
k(χ)

L
L0

. (41)

Luminosity is an amount of energy delivered during an interval of time. Therefore, a source that
emits an energy of ∆Ee = L∆te during the time interval ∆te will be observed as an energy ∆E0 =
L∆t0 during an interval ∆t0. Recalling that λ∝ t, we have ∆t0/∆te =λ0/λe = 1+ z, and E ∝ t−1 we
have ∆Ee/∆E0 =λ0/λe = 1+ z. Therefore

L
L0

= ∆Ee

∆E0

∆te

∆t0
= (1+ z)2 , (42)

from which we deduce the expression

dL = sk(χ)(1+ z) , (43)

and for z ¿ 1 one has dL ≈ dC.

Angular diameter distance

The last distance one can consider in cosmology is the angular diameter distance. It is defined in
such a way that the small angle approximation still holds in curved space,

dA = ∆l
∆θ

, (44)

where ∆θ is the angle of an object of physical size ∆l orthogonal to the line of sight as seen by the
observer. Taking the observed object to lie on the surface of a sphere of radius sk(χ) and redshift z,
the physical size ∆l at a time t = te must be

∆l = a(te) sk(χ)∆θ = sk(χ)
1+ z

∆θ , (45)

which leads to define
dA = dL

(1+ z)2 . (46)

This is valid for any metric as long as the flux is conserved.

T H E P E R T U R B E D U N I V E R S E

Now that we have seen the general equations ruling the background evolution of the universe, let
us move on to the description of its perturbed sector, i.e. the behaviour and evolution of the large-
scale structures (LSS) of the universe such as galaxies, clusters of galaxies and super clusters.
The seeds of in-homogeneities in the universe are believed to arise from quantum fluctuations in
the primordial universe. The evolution of these in-homogeneities is modelled classically in modern
cosmology by cosmological perturbation theory.

Linear perturbation theory

In the gravitational instability paradigm, the formation of structures is understood to occur in a
hierarchical way, that is to say with small-scale perturbations collapsing before large-scale pertur-
bations. This is a bottom-up scenario. Solving Einstein equations requires a perturbative approach,
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i.e. by slightly perturbing the quantities and studying their evolution on the smooth background.
To do so, the metric is perturbed as

gµν = ḡµν+δgµν (47)

where the quantity with a bar corresponds to the background value and the one preceded by δ is
the perturbation on that background. The perturbed Einstein equation yields

δGµν = 8πGδTµν . (48)

A thorough derivation of the full perturbation theory is something very involved (see for example
[42, 43] for detailed derivations). For the pedagogical purposes of this thesis, we are going to obtain
the linearised Einstein equations and stress-energy conservation, i.e. only expressions containing
up to first order perturbations. For this, we consider a simplified case where only scalar pertur-
bations without anisotropic stress, hence only non vanishing diagonal terms, are considered. The
perturbed FLRW line element in the conformal Newtonian gauge (also called longitudinal gauge)
reduces thus to

ds2 = a2(η)
[− (1+2Φ)dη2 + (1−2Ψ)δi jdxidx j

]
, (49)

where conformal time is defined as η = ∫ t
0

dt̃
a(t̃) , Φ is the Newtonian potential and Ψ the curvature

potential. (49) is a choice of gauge therefore all the following results will be derived in this specific
gauge.

Fluid perturbations

Let us now compute the perturbed energy momentum tensor of a perfect fluid. For this, one per-
turbs the quantities it contains as

ρ(~x,η)= ρ̄(η)+δρ(~x,η) , (50)

p(~x,η)= p̄(η)+δp(~x,η) , (51)

uµ(~x,η)= ūµ(η)+δuµ(~x,η) . (52)

The reason we are able to make such a decomposition is thanks to the cosmological principle.
Homogeneity allows to set ρ̄ = ρ̄(η) and p̄ = p̄(η) while isotropy allows us to consider the fluid
component at rest, therefore for a comoving observer uµ = (u0,0,0,0). Note that Φ(~x,η) and Ψ(~x,η)
are already the scalar perturbations in the line element (49). Perturbing (18) produces

δTµ
ν = (δρ+δp)ūµūν+ (ρ̄+ p̄)(ūνδuµ+ ūµδuν)−δpδµν . (53)

Now we must compute the perturbation of the velocity 4-vector in terms of the metric. Since it is
normalised, we have gµνuµuν = gµνuµuν =−1, hence

δgµνūµūν+2ūµδuµ = 0 . (54)

Given that in the conformal Newtonian gauge we have ūµ = (a−1,~0) and ūµ = (a,~0), we deduce

uµ = a−1(1−Φ,vi) , (55)

uµ = a(−1−Φ,vi) , (56)

where vi = dxi/dη is the coordinate velocity often dubbed peculiar velocity with respect to the
expanding background. It is customary to define the velocity divergence,

θ =∇i vi , (57)
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and the dimensionless density contrast,

δ= ρ− ρ̄
ρ̄

= δρ

ρ̄
. (58)

The initial state of fluctuations are modelled as a random field with mean 〈δ〉 = 0. Therefore,
the density contrast increases in time, that is to say, initial over-densities grow whereas under-
densities decay. Note that in the standard picture of inflation (see section 1.5.4.2), the initial fluc-
tuation field is predicted to be Gaussian.

In the fluid description, as much as one defines an equation of state p = wρ in the background
sector, one defines the propagation speed of scalar (adiabatic) perturbations as

c2
s =

δp
δρ

, (59)

which is of important physical relevance as we will see later. From all the above, we can write
down the components of the perturbed energy momentum tensor,

δT0
0 =−δρ =−ρ̄ δ , (60)

δT0
i =−δT i

0 = (ρ̄+ p̄)vi = (1+w)ρ̄ vi , (61)

δT i
j = δpδi

j = ρ̄ c2
s δδ

i
j . (62)

Linearised Einstein equations

Now that we have expressed all the components of the perturbed energy momentum tensor, we
need to compute the perturbation of the Einstein tensor. Perturbing (11) at first order yields

δGµν = δRµν− 1
2

Rδgµν− 1
2

gµνδR , (63)

where

δRµν = δΓαµν,α−δΓαµα,ν+δΓαµνΓβαβ+ΓαµνδΓ
β

αβ
−δΓαµβΓβαν−ΓαµβδΓβαν , (64)

δΓ
µ

αβ
= 1

2
δgµν

(
gαν,β+ gβν,α− gαβ,ν

)+ 1
2

gµν
(
δgαν,β+δgβν,α−δgαβ,ν

)
, (65)

δR = δgµνRµν+ gµνδRµν . (66)

From this, we deduce the components of the perturbed Einstein tensor δGµ
ν = δµαGαν+ gµαδGµν,

δG0
0 =−2a−2∆Ψ+6a−2H(Ψ ′+HΦ) , (67)

δG0
i =−δG i

0 =−2a−2∇i(Ψ ′+HΦ) , (68)

δG i
j = a−2[

2Ψ ′′+∆(Φ−Ψ)+H (2Φ ′+4Ψ ′)+ (4H ′+2H 2)Φ
]
δi

j +a−2∇i∇ j(Ψ−Φ) , (69)

where H = aH is the conformal Hubble rate and ′ is a derivative with respect to conformal time.
Now using the previously obtained components of the perturbed energy momentum tensor, we can
write down the linearised Einstein equations for a fluid i. It proves useful to decompose them into

¦ the 00 equation :
−∆Ψ+3H (Ψ ′+HΦ)= 4πGa2ρ̄ iδi , (70)

Note that the zero-th order contribution would have given the first Friedmann equation.
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¦ the 0i equation :
∇(Ψ ′+HΦ)=−4πGa2(1+wi)ρ̄ i~v , (71)

¦ the ij trace-part equation :

Ψ ′′+H (Φ ′+2Ψ ′)+ (2H ′+H 2)Φ+ 1
3
∆(Φ−Ψ)= 4πGa2ρ̄ i c2

s,i δi , (72)

where we have used that the trace of the Kronecker symbol is equal to 3. Note that the
zero-th order contribution would have given the second Friedmann equation.

¦ the ij trace-less equation :
Φ−Ψ= 0 , (73)

If we had considered anisotropic stress we would not have obtained Φ=Ψ.

Note that in the case of multiple fluids one would have to sum each components, for example
ρ̄ iδi becomes ρ̄mδm + ρ̄rδr for matter and radiation. Another set of useful equations, although not
independent from the linearised Einstein equations, can be derived from the perturbed energy
conservation condition. Perturbing the latter produces

δTµ
ν;µ = δTµ

ν,µ−δΓανβTβ
α−ΓανβδTβ

α+δΓαβαTβ
ν+ΓαβαTβ

ν = 0 , (74)

from which one can deduce for a fluid i

- The ν= 0 equation is the relativistic version of the continuity equation,

δ ′
i +3H (c2

s,i −wi)δi + (1+wi)(θi −3Ψ̇)= 0 . (75)

Note that the zero-th order contribution would have given the continuity equation ρ̄ ′
i +

3H (1+wi)ρ̄ i = 0. Equation (75) describes the evolution of density perturbations. The sec-
ond term is a friction term (Hubble friction) and the last is the source term. We see that
decreasing potential wells but also converging peculiar velocities contribute to the collapse
of perturbations. In the Newtonian limit wi ¿ 1 and thus without the relativistic correction
Ψ̇, one recovers the usual continuity equation δ ′

i +θi = 0.

- The ν= i equation is the relativistic version of the Euler equation,

θ ′
i +

(
H (1−3wi)+

w ′
i

1+wi

)
θi +∆

( c2
s,i

1+wi
δi +Φ

)
= 0 . (76)

This highlights that peculiar accelerations are sourced by gravity (∆Φ) and pressure gradi-
ents (c2

s,i∆δi). One recovers the standard Euler equation θ ′
i +H θi +∆(c2

s,i δi +Φ) = 0 in the
Newtonian limit.

The perturbation variables Φ(~x,η), Ψ(~x,η), δ(~x,η) and θ(~x,η) are stochastic fields. One can thus as-
sume them to be the sum of plane waves ei~k·~r. There is no mode mixing and each plane wave obeys
the same equation with different ~k since we are considering the linearised equations. Therefore,
the linearity of the equations also allows us to drop ei~k·~r. Combining equations (70), (71) and (73)
in Fourier space leads to the relativistic Poisson equation,

−k2Φ= 4πGa2ρ̄ i

(
δi +3H (1+wi)

θi

k2

)
, (77)

and combining (70), (72) and (73), one obtains the equation for the evolution of the Newtonian
potential,

Φ ′′+3H
(
1+ c2

s,i)Φ
′+ (

2H ′+H 2(
1+3 c2

s,i
)+k2c2

s,i
)
Φ= 0 . (78)

Now, let us discuss some important limits on the scales we consider.
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Super-horizon scales

Thermodynamics tells us that entropy is conserved in equilibrium. The universe containing far
more photons than baryons, the entropy of the universe is dominated by the one of the photon
bath in equilibrium. Therefore, any non-equilibrium processes that create entropy are negligible.
This way, the expansion of the universe is considered to be adiabatic. Most models of the early
universe predict initial fluctuations to be adiabatic. Adiabatic perturbations can be seen as their
local state being the same as the background but with a small time shift. This describes the picture
of a universe where small portions are slightly ahead or behind in its evolution. Such perturbations
have c2

s ≈ w.

On scales much larger than the Horizon, we can use the simplification k ¿ H . Using also H ′ =
−1

2 (1+3w)H 2, the equation (78) reduces to

Φ ′′+3H
(
1+w

)
Φ ′ = 0 . (79)

This equation has two solutions, a decaying and a constant mode. Introducing the latter, which is
the cosmologically interesting one, into (70) and using the first Friedmann equation, yields

δ≈−2Φ= const. , (80)

which implies that the perturbations are frozen on super Hubble scales as long as we have c2
s ≈ w,

which is true for both matter and radiation dominated epochs.

Sub-horizon scales

For the purpose of studying structure formation, let us now consider scales much smaller than
the Horizon (k ÀH ) and non-relativistic matter (wm ≈ 0 and c2

s,m ¿ 1). In this configuration, the
Poisson equation (77) reduces to

−k2Φ= 4πGa2ρ̄mδm = 3
2

H 2Ωmδm , (81)

which, when used into (76), produces

δ ′′
m +H δ ′

m +
(
c2

s,mk2 − 3
2

H 2
)
δm = 0 . (82)

If H = 0, the latter equation produces a standard wave equation. Furthermore, equation (82)
implies that a perturbation will grow if and only if

c2
s,mk2 − 3

2
H 2 < 0 . (83)

Considering the wave length of a perturbation is λ= 2π a
k , the perturbation will grow only if

λm > cs,m

√
π

Gρm
≡λJ . (84)

Therefore, wave modes shorter than the Jeans length λJ will undergo damped oscillations whereas
larger ones will grow in time according to

δ ′′
m +H δ ′

m − 3
2

H 2δm = 0 . (85)
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Cold dark matter (CDM) displays low velocity dispersion and an almost vanishing sound speed, the
Jeans length is thus small. On the contrary, radiation has a large velocity dispersion, cs,r = c/

p
3,

which leads to disabling any growth on scales smaller than the Hubble scale. For baryons, cs,b = cs,r

when they are coupled to photons in the early universe. After decoupling, the sound speed of
baryons drops rapidly and they become trapped into the CDM gravitational potential wells. That
is to say, that inside the Hubble scale, matter perturbations grow according to (85). The latter,
when solved in the matter dominated era, leads to the solutions

δm,+ ∝ a ∝ t2/3 , (growing mode) (86)

δm,− ∝ a−3/2 ∝ t−1 , (decaying mode). (87)

Using the growing mode solution in the Poisson equation (81) tells us that Φ= const. during the
matter dominated epoch. Therefore, galaxies can form, clusters can grow, however, the sine qua
non condition is to include dark matter in the universe.

Statistics of the LSS

The study of structure formation requires us to contrast observations, namely the grained nature
of the universe described by discrete statistics (galaxies, clusters of galaxies etc.), with cosmolog-
ical perturbation theory described by continuous processes (stochastic fields). Cosmology faces a
statistical problem due to its nature, although it is possible to look back in time by looking far
away, it is not possible to study many realizations of the same process to make statistics accurate,
indeed "we have only one universe".

A good way to overcome this issue, is to study statistics on the scales of the perturbations, thanks
to the quantity called the matter power spectrum

Pm(k, t)= 2π2

k3 〈δm(k, t)δ∗m(k, t)〉 .

The power spectrum is a measure of the average squared amplitude of the Fourier mode k of
a given cosmological perturbation. Being sensitive to the cosmological parameters such as the
amount of dark matter and baryons in the universe but also to the evolution of matter density
perturbations, it is a powerful probe for cosmology. One can use Boltzmann codes to compute the
power spectrum of a given model such as the Code for Anisotropies in the Microwave Background
(CAMB) [44] or the Cosmic Linear Anisotropy Solving System (CLASS) [45].

The 2-point correlation function, hereafter simply called correlation function, is another statistical
tool of the LSS. It is defined, and linked to the matter power spectrum, as

ξ(~r, t)= 〈δm(~x, t)δm(~x+~r, t)〉 = 1
(2π)3

∫
d3k Pm(k, t)ei~k·~x . (88)

This statistical tool is thus very useful since it measures the amount of correlation between an
over-density (resp. under-density) at a point with an over-density (resp. under-density) at another
point separated by~r.

Another statistical tool to characterize the matter density field and the structure formation is the
filtered variance or root mean square (rms) of matter fluctuations,

σ2
R(t)=

∫ +∞

0

k3

2π2 Pm(k, t)Ŵ2(kR)d lnk , (89)
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where Ŵ(kR) = 3 j1(kR)
kR = 3 kRcos(kR)−sin(kR)

(kR)3 is the Fourier transform of the Top-Hat filter window
function (a low pass filter). The filtered variance characterizes the density fluctuations of the mat-
ter density field over a filtering scale R.

The power spectrum is fully characterised by its shape and normalisation. Its normalisation is com-
monly made thanks to the rms of matter fluctuations at 8 h−1Mpc, σ8. This particular choice comes
from the fact that the first galaxy redshift survey [46] showed that the rms of galaxy counts was
around unity in spheres of 8 h−1Mpc. The σ8 quantity is dependent on redshift, from (89) we see
that it has the same dependence as δm, and it is generally computed as σ8(z)=σ8,0δm(z)/δm(z = 0)
where σ8,0 is its present day value. The quantity commonly used to characterise the growth of
structure is the growth function fσ8; we will see why in section 1.4.2.3. It is the product of σ8(z)
with the growth rate f = d lnδm/d lna.

P R O B E S O F C O S M O L O G Y

Let us summarise in this section the main probes of cosmology. We focus in particular on how the
discovery of cosmic acceleration was made historically and how it is now comforted by other mea-
surements obtained thanks to complementary probes. It is important to see that observations of
this phenomenon can be made by probing the background and perturbation sector, and combining
such probes provides efficient tools to constrain the cosmological model.

Classical probes

Supernovae

Supernovae (SN) are stellar explosions of extreme intensity such that a supernova occurring in
a galaxy would outshine the galaxies for a short period of time and a supernova occurring in the
Milky Way could be seen with the naked eye. The first written record of a SN dates back to 185
AD (SN 185) in the book of the Later Han by a Chinese astronomer. J. Kepler used SN 1604, the
latest to be observed in the Milky way with the naked eye, to go against the picture in which
the universe beyond the planets is immutable, that is, the Aristotelian view of the cosmos; the
dominating view at this epoch. The first classification of SN and their name "new star" are due to
Lundmark who released a list of 60 suspected SN in 1921. Today SN are divided into two main
classes, type II present hydrogen during the explosion whereas type I do not. Then, within the
latter class, the presence (type Ia) of silicon during the explosion and the absence (type Ib and
Ic). The thermonuclear supernovae (SNIa) are the ones of most interest for cosmology. They come
as the end result of the agitated life of a binary system where the companions have different
masses. The star with the lowest mass will evolve more rapidly. Once it has consumed all its
hydrogen, it will start collapsing and reheating. At about 108K the Helium is fused into carbon and
oxygen and any hydrogen left is ejected. The carbon-oxygen core contracts until the equilibrium
between the Fermi electron degeneracy pressure and gravity has been reached. If the star before
its collapse was above the Chandrasekhar limit [47], it will collapse into a neutron star or a black-
hole. Otherwise the star will become a white dwarf. The white dwarf is a curious type of body since
the heavier it is, the smaller it is. In the binary system configuration, the white dwarf increases its
mass by accreting matter from its companion that by then has become a red giant. Once the white
dwarf reaches the Chandraskhar limit, the high temperatures, and thus the high fusion reaction
rate, will ignite a thermonuclear flame —the carbon detonation— which causes the supernova.
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The point of interest for cosmologists is that the underlying mechanisms of the supernovae are
universal and all supernovae lead to an absolute magnitude of about

M ≈ 19.5 (90)

at maximum light. Therefore, they were first said to be standard candles [48]. The slight devi-
ations, of about ±1.5 for a SNIa, arise from the variations in the composition of the core of the
white dwarf. However, the luminosity of the SNIa has been shown to be correlated to the decay
of its light curve over the 15 days after the maximum light. Therefore, SNIa if not strictly stan-
dard candles are at least standardisable candles [49]. In addition, supernovae are the brightest
of all astrophysical events and display a characteristic silicon absorption peak in their light spec-
tra making them incredibly useful distance indicators. To make this a probe of the cosmological
model, one has to make use of the cosmological distances derived in section 1.2.3. One must use
the luminosity distance dL to define the distance modulus

µ= m−M = 5log10

( dL

1Mpc

)
+25 , (91)

where m is the apparent magnitude of a light source and M its absolute magnitude. Therefore,
by knowing the absolute magnitude (90) and measuring the apparent magnitude, the SNIa can
thus be used to constrain cosmological parameters as depicted in Figure 4. Indeed, the use of the
distance modulus with the measurements of SNIa is how the discovery of cosmic acceleration by
S. Perlmutter [50], B.P. Schmidt et A.G. Riess [51] in 1998 (Nobel Prize 2011), was made thanks
to a sample of 42 and 60 SNIa respectively. They showed that the universe today was composed
with Ωm ∼ 0.3 and ΩΛ ∼ 0.7. In conslusion, when using SNIa in cosmology one measures distances,
hence they are probes of the background evolution of the universe.

Cosmic Microwave Background

The CMB is the observable relic of the early universe. This relic radiation was first predicted in
1948 by R. Alpher and R. Herman [39] and first measured by A. Penzias and R. Wilson in 1964 [38].
The CMB was emitted at the recombination epoch around 380 000 years after the big bang when
electrons and protons started to form hydrogen atoms. The observations of the CMB revealed the
presence of a plasma with a homogeneous temperature, as shown in Figure 5. The slight temper-
ature deviations are at the origin of the cosmological structures observed today. The release of
the CMB is the result of the cooling of the primordial universe. The recombination epoch where
electrons and protons merged into neutral hydrogen started when the universe had a temperature
of about T ∼ 4000 K, that is, when the number density of photons with energies above the ion-
ization energy of hydrogen (13.6 eV) dropped below the baryon density. At T ∼ 3000K, decoupling
took place, all hydrogen atoms had formed and there were no more free electrons to absorb ther-
mal radiation; the universe became transparent. The photons acquired an infinite mean free path
and the set of points where these photons started travelling freely in the universe, seen from an
observer on earth, is called the last scattering surface.

These photons are the CMB photons we measure today to have an almost perfect thermal black
body spectrum at a temperature of about 2.72 K with anisotropies of the order of 10−5. The CMB
is sensitive to peculiar velocities, density fluctuations and the gravitational potentials. To confront
CMB observations with the prediction of the temperature anisotropies from a cosmological model,
one usually decomposes the temperature anisotropy field, i.e the dimensionless deviations from
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Figure 4: The distance modulus of measured SNIa and predicted by 3 models with differ-
ent Ωm,0 and ΩΛ as a function of redshift are shown. The lower panel corresponds
to the residuals with respect to the Ωm,0 = 0.3 and ΩΛ = 0.0 model. CREDITS :
https://ned.ipac.caltech.edu/level5/March08/Frieman/Frieman3.html, figure adapted from [52, 53]
based on [50, 51].

Figure 5: The cosmic microwave background where the color scale corresponds to the
temperature anisotropies. CREDITS : Planck satellite, 2015, SMICA pipeline,
https://www.cosmos.esa.int/web/planck .
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Figure 6: The temperature power spectrum measured from Planck [54]. The error bars show the ±1σ uncer-
tainties. The best fit base ΛCDM model is shown in red and residuals with respect to this model
are shown in the lower panel.

the perfect black body temperature in a direction given by the unit vector~n, in spherical harmonics
Ylm as

Θ(~r,η)=
∞∑

l=1

l∑
m=−l

alm(~r,η)Ylm(~n) , (92)

where the coefficients alm are taken to be statistically independent. Therefore, they have a zero
mean value but a non vanishing variance. That is the quantity generally of interest to cosmologists,
i.e the angular power spectrum

Cl =
1

2l+1

∑
m
〈 |alm|2 〉 , (93)

where l is the multipole moment and is related to the measured angle θ by θ =π/l. The Cl spectrum
can be related to the temperature field in Fourier space by

Cl =
2
π

∫ ∞

0
dk k2|Θl(k)|2 . (94)

Like the matter power spectrum, the angular power spectrum contains crucial information about
the cosmological model. An example of the measured angular power spectrum taken from the
Planck collaboration [54] is shown in Figure 6. One can see for instance its main features, the sev-
eral acoustics peaks, the relics of the baryonic acoustic oscillations phenomenon (see the following
section). The amplitude of such peaks depends on Ωm and Ωb whereas their position depends on
Ωk.

Deriving the complete formula for the temperature or the polarisation power spectrum requires
numerical treatment for it involves solving Einstein and Boltzmann equations for the several
coupled fluid components. Nevertheless, schematically speaking, the temperature anisotropies can
be decomposed as [23]

Θ=Θ|LS +Θ|ISW +Θ|SEC , (95)
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where the first term characterises all the effects coming from the last scattering surface, whereas
the last two terms encompass effects related to the fact that we measure the CMB today. The
second term corresponds to the integrated Sachs Wolfe effect (ISW). This effect corresponds to the
gravitational red-shift the photons undergo when passing through deep potential wells during
their travel from the last scattering surface to the CMB detector. The contribution of the ISW to
the angular power spectrum corresponds to the integral of the time variation of the gravitational
potentials

Θ|ISW =
∫ (
Φ ′+Ψ ′)dη . (96)

Being sensitive to the time variations of the gravitational potentials, the ISW is thereby a useful
probe to constrain the time evolution of dark energy, DE hereafter. However, unfortunately, it takes
place at low multipoles in the angular power spectrum, that is where the data is the most affected
by cosmic variance, making statistical inference less precise. The last term of (95) corresponds
to second order effects such as the weak lensing of the CMB and others. The CMB is in some
sense a "multi-probe" since it probes the background sector for l& 30 thanks to the amplitude and
position of the peak, whereas for l . 30 the perturbation sector is probed through the ISW effect.
Measuring the lensing of the CMB is also a probe of the perturbation sector.

Baryonic acoustic oscillations

An important feature contained in the power spectrum and the angular power spectrum are bary-
onic acoustic oscillations (BAO). They are due to the competition between gravity and pressure
forces, as gravity tries to compress the baryon-photon fluid, radiation pressure resists resulting in
acoustic oscillations. Perturbations, over-densities and over-pressures, are dominated by photons
and baryons as they are coupled together. Hence overpressure tries to equalize with its surround-
ing resulting in an expanding sound wave moving at its speed of sound (approximately 2/3 of the
speed of light). After decoupling the photons are no longer interacting with the baryonic matter
thus they diffuse away. This releases the pressure on the system, leaving shells of baryonic matter
at fixed radius which then collapse under the gravity forces mainly due to DM. We see here that
when the baryonic matter content of the universe grows at the expense of DM, namely Ωb grows
and Ωdm decreases, the amplitude of the BAO increases. Indeed, the pressure effects of the bary-
onic matter coupled to light are more and more present. It produces a standard ruler for cosmology.
The sound waves which travelled in the baryon-photon plasma before decoupling define a length
scale, the sound horizon, which is computed as

rs =
∫ tdec

0
cs dt , (97)

where the sound speed cs = 1/
(
3
(
1+Rs

))
with the baryon-to-photon density Rs = 3ρb/(4ργ). This

sound horizon rs represents the average separation at which one expects to find an excess of pairs
of galaxies. Therefore, measuring such a scale in a galaxy survey enables one to infer constraints
on the cosmological parameters. BAO leading to a measure of distances is thus another probe of
the background evolution of the universe.

Combination

The constraining power of probes often becomes higher when they can be combined since, generally,
observations probing different physical processes lead to different degeneracies on the physical
parameters they measure. The combination of SNIa, CMB and BAO shown in Figure 7 is one
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Figure 7: Plot of ΩΛ versus Ωm,0 where SNIa, CMB and BAO constraints are shown. CREDITS : Supernova
Cosmology Project [55].

example. The release of this contour plot was a great achievement in the understanding of the
universe, as three probes constraining different physical processes converged to show the universe
was not, in fact, matter dominated but contained Ωm,0 ∼ 0.3 and ΩΛ ∼ 0.7 at the percentage level
precision.

Complementary probes

Cluster counts

Dense regions of the universe are lit-up by countless galaxies. These dense regions are generally
regrouped into clusters of galaxies, i.e. galaxies that are gravitationally bound together. Clusters
shine both at optical wavelengths and at X-ray wavelengths thanks to the hot gas in their core
(see Figure 8). It is generally more interesting to observe clusters in their X-ray emission to avoid
optical pollution.

A lower amount of dark matter in the universe would result in observing fewer clusters today,
whereas a lower amount of DE would lead to having more massive clusters today. Therefore, count-
ing the number of clusters of a given mass in a given volume leads to a probe of matter and of DE
once a model is assumed. For instance, the cluster abundance follows

dN(z)
dzdΩ

= c
H(z)

d2
A (1+ z)2 ×

∫ ∞

0
dM f (M)

dn(M, z)
dM

, (98)
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Figure 8: Images of clusters from Chandra X-ray Observatory launched in 2017 seen in the optical (Left)
and X-ray (Right) wavelengths. CREDITS : http://chandra.harvard.edu/photo/2017/clusters/

where the first term on the right hand side is a geometric term and the second is a growth of
structure term. Notably, the number objects with a mass between M and M+dM can be given by
Press-Schechter-like theory [56]

N(M)dM = 1p
π

(
1+ ns

3

) ρ̄m

M2

( M
Mc

) 3+ns
6

exp
(
−

( M
Mc

) 3+ns
3

)
dM (99)

where Mc is the critical mass above which structures form and ns is the scalar spectrum power-
law index which quantifies the tilt of the primordial power spectrum. Let us note that in the same
philosophy, counting voids, regions where the density is much lower than the average density, is
therefore also a probe of DE [57].

Weak lensing

Gravitational lensing can be split into two categories, strong lensing and weak lensing. The former
corresponds to the light being strongly bent by a punctual massive body. This leads to having
clear lensing patterns around the lens, such as Einstein’s rings (see Figure 9 (left panel)). On the
other hand, the latter corresponds to an overall statistical effect. As the name suggests, weak
lensing is described in the weak field limit and corresponds to the sum of all the deviations of light
induced by the potentials of the surrounding massive bodies. Weak lensing provides a measure
of masses without any prior knowledge of the composition or dynamics of the probed objects. The
first analysis of the weak lensing of a cluster was carried out in 1990 by J. Tyson and collaborators
[58] where they detected a coherent alignment of the ellipticities of galaxies, i.e. galaxy shapes,
behind a cluster.

Weak lensing is an involved topic (see [59, 60] for recent reviews) where several categories can
be found. For instance, one differentiates between galaxy-galaxy lensing [61] and cosmic shear
[62]. The former corresponds to a punctual object lensing surrounding galaxies whereas the latter
corresponds to the observation of alignment patterns of objects behind LSS. Let us summarize
here, for pedagogical purposes, some important steps in weak lensing computations.

The true position of an object θtrue is related to its deflected position θdefl by

θtrue = θdefl −
rol

r ls
δ~θ , (100)
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Figure 9: Left: Example of an Einstein ring (LRG 3-757). CREDITS : ESA/Hubble & NASA. Mid-
dle: Representation of the effects of convergence and shear on a circular source. CREDITS :
https://en.wikipedia.org/wiki/Gravitational_lensing_formalism. Right: Representation of the ef-
fects induced by redshift space distortions.

where rol and r ls are respectively the distance from the observer to the lens and the distance from
the lens to the source. δ~θ is the deflection angle which is related to the gravitational potentials
along the line of sight by

δ~θ =−∇⊥
(
Φ+Ψ)

dη . (101)

This quantity will be indeed sensitive to an abnormal relation between the gravitational potentials
and thus interesting to probe modification of gravity also. In practise, what is generally extracted
from imaging surveys is the inverse magnification matrix

M−1 = ∂~θtrue

∂~θdefl
= I+

∫ zS

0

rol r ls

ros
∇⊥∇⊥

(
Φ+Ψ) dη

dz
dz . (102)

which, in the small deflections limit, is often parametrised as

M=
(

1−κ−Re[γ] −Im[γ]
−Im[γ] 1−κ+Re[γ]

)
(103)

where κ is the convergence and γ is the shear parameter. These parameters encode how the ellip-
ticities are distorted by the gravitational potentials as shown in Figure 9 (middle panel).

Given that weak lensing allows one to make a map of the matter distribution of patches of the
sky it can thus be used to constrain the matter power spectrum. Therefore, it produces a powerful
probe of the cosmological parameters thus the cosmological model. Let us finish by stating however
that weak lensing studies are not an easy task since they require wide and deep surveys and good
quality images. Indeed, detecting very faint lensing correlations requires to average over a high
density of background objects.

Redshift space distortions and fσ8

When extracting measurements from galaxy surveys there are two important issues to have under
control: galaxy biasing and redshift space distortions (RSD). Observations probe visible matter,
stars, galaxies, clusters of galaxies and, unfortunately, visible matter is not a perfect tracer of the
distribution of dark matter. Therefore, establishing the distribution of visible matter, baryons, will
allow one to predict the distribution of dark matter only once a galaxy biasing model has been
taken into account. Moreover, it happens that galaxies and clusters of galaxies have large proper
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motions relative to the comoving frame. Therefore, any conversion from redshift space to real space
will be affected, distorted, by these peculiar velocities.

Peculiar velocities produce two distortion effects. In the linear regime, on large scales (& 20 h−1Mpc),
the dominating distortion effect is due to the matter perturbations falling towards high density
peaks in a coherent flow. Distributions of galaxies appear squashed along the line of sight (see
Figure 9 (right panel)). This is the so-called Kaiser effect [63]. In the non-linear regime, on small
scales (∼ 1 h−1Mpc), the dominating distortion is due to the randomness of the peculiar velocities.
The center of the distribution of galaxies appears elongated along the line of sight, the so-called
fingers of god effect [64] (see Figure 9 (right panel)).

Let us sketch the computation that relates the power spectrum in real and redshift space consid-
ering the Kaiser effect. The position of the source in redsift space~s is related to that of real space
~r by

~s =
(
1+ v‖(r)−v‖(0)

H r

)
~r , (104)

where v‖(r) =~v ·~r/r is the comoving peculiar velocity component along the line of sight, v‖(0) is
the one of the observer with respect to the source and r = ‖~r‖. This leads to expressing the galaxy
density contrast δg,s in redshift space with the one of real space δg,r by

δg,s = δg,r −2
∆v‖(r)

H r
− 1

H
dv‖
dr

, (105)

where ∆v‖(r)= v‖(r)−v‖(0). The simplest modelling of galaxy biasing is to assume that the galaxy
density contrast in real space is equal to the one of matter up to a linear bias factor [65]. In Fourier
space it yields

δg,r = bδm . (106)

The expression of peculiar velocities for a coherent flow given from cosmological perturbation the-
ory depends the galaxy contrast as

~v = iH f δm
~k
k2 = iH

f
b
δg,r

~k
k2 , (107)

with f the growth rate. Using (105) and (107) in the case of surveys spanning small angles, one
obtains after some computations [63]

Pg,s(k,µ)= Pg,r(k)
(
1+2

f
b
µ2 + f 2

b2µ
4
)

, (108)

where µ =~k ·~r/(kr) is the cosine of the angle between a given mode ~k and the line of sight. On
can thus observe the key consequence of RSD: the isotropic matter power spectrum in real space
becomes anisotropic in redshift space. From this, since b and f are positive values, one can grasp
the effect of the coherent in fall: the power spectrum in redshift space will appear boosted or
suppressed depending on µ, i.e maximum along the line of sight (µ= 1/(kr)) and minimum perpen-
dicular to the line of sight (µ= 0).

An interesting step to extract a characteristic measurement for cosmology is as follows. Schemat-
ically, the relation (106) implies that the galaxy power spectrum can be decomposed as Pg,s =
b2σ2

8P̃m with P̃m being the matter power spectrum normalised at high redshifts and σ8 the root
mean square of matter perturbations characterising the time evolution of the matter perturba-
tions. Hence, one can write

Pg,s(k,µ)= P̃m(k)
(
(bσ8)2 + 2

3
(bσ8)( fσ8)µ2 + 1

5
( fσ8)2µ4

)
. (109)
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This way, one can extract from a fitting process the RSD parameter fσ8. This growth function is
an archetypal probe of the perturbed sector of the universe as it can be predicted theoretically (see
section 1.3.2).

Future experiments

Let us present some key future experiments which will provide data for studies around the DE
phenomenon.

¦ Euclid : The Euclid satellite [66–68] is an ESA mission in preparation. It should be launched
after 2020. It will probe the distance-redshift relation and the evolution of LSS by measuring
the redshift and the shape of billions of galaxies and clusters over 15 000 square degrees of
the extragalactic sky, up to a redshift of 2. These measurements will be made mainly thanks
to weak lensing and galaxy clustering. The scientists in charge of the mission also hope to
expand the mission to measure supernovae in the future.

¦ SKA : The Square Kilometre Array is a multi radio telescope project which should be built in
Australia and South Africa starting in 2018. SKA will be sensitive to the 21cm emission line
of hydrogen allowing the mapping of billions of galaxies at high redshifts and at the borders
of the observable universe. SKA’s aims will lead to more results on the DE phenomenon
thanks to BAO and RSD measurements [69–72]. SKA has also the goal to study the epoch of
re-ionization and cosmic magnetic fields.

¦ WFIRST : The Wide Field Infrared Survey Telescope [73] is a NASA observatory scheduled
to be launched after 2020. It has been designed to study DE but also for the detection of
exoplanets for example. The goal of the telescope is to probe the universe through infrared
wavelengths which are blocked to ground telescopes by the atmosphere.

¦ DESI : The Dark Energy Spectroscopic Instrument [74] is a spectrograph that should be
installed on the Mayall 4-meter telescope at Kitt Peak National Observatory (USA) in 2018.
It is scheduled to obtain the spectra and the redshift of 18 million emission-line galaxies,
4 million luminous red galaxies and 3 million quasi-stellar objects. The measurements to
constrain DE will be made thanks to BAO and RSD. It also has the goal to measure the sum
of neutrino masses and signatures from inflation.

T H E S T A N D A R D M O D E L O F C O S M O L O G Y ΛC D M

The Λ-cold dark matter, ΛCDM henceforth, model emerged in the late 1990s and is considered
to be the standard model of cosmology today, sometimes also dubbed the concordance model. In
this model, the dominating components are the cosmological constant Λ and cold dark matter
(CDM). In ΛCDM, geometry and kinematics are driven by the energy content of the universe
and GR with a cosmological constant is assumed to be the theory of gravity. Today, Λ its the
simplest and most faithful way to model cosmic acceleration according to observations. It was
used notably by Perlmutter, B.P. Schmidt and A.G. Riess [50, 51] in 1998 when fitting the distance
modulus curves of SNIa (see section 1.4.1.1). It also predicts the abundances in the universe of
hydrogen, deuterium, helium, lithium, i .e . big-bang nucleosynthesis (BBN), and the existence
and the structure of the CMB, both in very good agreement with observations [54]. Let us briefly
review here some expressions the cosmological constant yields, the current constraints on the
cosmological parameters characterising this model and some existing observational discrepancies.
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Cosmic acceleration with Λ

The action of the standard model corresponds to GR augmented with the cosmological constant as

S = 1
16πG

∫
d4 x

p− g
(
R − 2Λ

) + Sm ( gµν ,ψ) , (110)

which yields the Einstein equation (19) and the Friedmann equations (20). Today, probes and
combinations of probes we have discussed in the previous section lead to a measurement of the
value of the cosmological constant of

Λobs ≈ 4×10−54m−2 . (111)

This gives rise to a puzzle for theoreticians who now need to explain to what this extremely small
number corresponds6. The cosmological constant is much smaller than the size of a proton squared
∼ 10−30m2. Such a small quantity should be explained thanks to a quantum theory perspective.
One could rightfully switch the side of the cosmological constant in the Einstein equation (19)
leading to another interpretation. The cosmological constant can then be seen as an effective per-
fect fluid with the energy momentum tensor

TΛµν = ρΛuµuν+ pΛ(uµuν− gµν)= Λ

8πGN
gµν , (112)

with pressure and density defined as

ρΛ =−pΛ = Λ

8πGN
, (113)

and thus giving rise to a repulsive force and a constant equation of state parameter wΛ = −1.
Nowadays, the cosmological constant is studied in the context of vacuum energy. However, com-
puting the zero mode quantum fluctuations corrections to it leads to some issues as we will see in
section 1.5.4.4.

Current constrains

The cosmological parameters characterising ΛCDM can all be constrained by the CMB power spec-
tra and this to an astonishing percentage level precision. The most precise measurements on the
CMB are due to the Planck satellite, launched in May 2009 and operated by the European Space
Agency (ESA) in strong collaboration with the National Aeronautics and Space Administration
(NASA). Table 2 shows the most recent constraints from this satellite on the cosmological parame-
ters. It is important to note that already within the CMB, considering combinations of its different
spectra helps reducing the errors bars (their acronyms are defined in the caption of Table 2).

More specific surveys are generally sensitive to a single or a few parameters, and operating com-
binations between surveys can significantly increase the precision, as we have already seen in
section 1.4.1.4. The spatial curvature of the universe is another example. Considering CMB mea-
surements only, spatial curvature has been constrained to Ωk,0 =−0.040+0.038

−0.041 (at 95% confidence

6 Note that the cosmological constant has the units of an inverse area. It is now known in black hole physics that the
entropy of a black hole is proportional to the surface of its horizon [75]. This has made the study of surfaces carrying
fundamental degrees of freedom a hot topic in theoretical physics in the recent years, see for example the holographic
principle [76, 77]. Therefore, some physicists investigate whether the entropy, the horizon of the universe and Λ could
all be related. These ideas are speculative at the moment but could lead to interesting developments in the future.
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Parameter Planck TT+lowP Planck TT,TE,EE+lowP Planck TT,TE,EE+SIMlow

Ωb,0h2 0.02222±0.00023 0.02225±0.00016 0.02218±0.00015
Ωc,0h2 0.1197±0.0022 0.1198±0.0015 0.1205±0.0014
τ 0.078±0.019 0.079±0.017 0.0596±0.0089

ln(1010 As) 3.089±0.036 3.094±0.034 3.056±0.018
ns 0.9655±0.0062 0.9645±0.0049 0.9619±0.0045
H0 67.31±0.96 67.27±0.66 66.93±0.62
Ωm,0 0.315±0.013 0.3156±0.0091 0.3202±0.0087
σ8,0 0.829±0.014 0.831±0.013 0.8174±0.0081

Table 2: Constraints on some of the parameters characterising the base ΛCDM cosmology computed from
the baselines of Planck likelihoods from [54] (left and middle column) and [78] (right column). The
errors displayed correspond to the 68% limits. The acronyms TT, TE, EE and lowP respectively
stand for temperature (autocorrelation) power spectrum, the cross correlation between the tem-
perature and E-mode power spectrum, the E-mode (autocorrelation) power spectrum and the low
multipole part of polarisation power spectrum. SIMlow corresponds to the new low-multipole like-
lihood based on simulations introduced in [78]. The cosmological parameters in this table that we
have not discussed so far are the following: τ is the Thomson scattering optical depth from reioni-
sation. As is the normalisation of the primordial power spectrum.

level from Planck TT,TE,EE+lowP [54]). This implies a 2σ detection of positive spatial curvature.
Nevertheless, considering on top of this the lensing of the power spectrum and BAO measurements
shifts back the constraint and significantly increases the precision to [54]

Ωk,0 = 0.000±0.005 . (114)

The universe today is thus measured to be very close to spatial flatness. Therefore, it is often set
to be flat for simplicity.

On the other hand, the base ΛCDM model needs to be extended to include neutrinos so as to
produce a faithful description of the universe. Taking neutrinos into account, the CMB produces
the constraints depicted in Table 3. These constraints are well in agreement with the standard
model of particle physics. Indeed, they are found to be very light as the sum of the neutrino masses
Σmν is measured to be below the eV scale and the effective number of neutrino-like relativistic
degrees of freedom Neff is measured to be close to 3.

As for the amount of relativistic radiation today, a simple estimation consists in using the con-
straint on the matter-radiation equality redshift zeq ≈ 3371±23 [54]. Then, equating the matter
and radiation energy densities at this redshift yieldsΩm,0(1+zeq)3 =Ωr,0(1+zeq)4, thusΩr,0 ∼ 10−5.
Radiation is thereby a completely negligible component in the total energy budget of the universe
today.

To finish the discussion on the constraints on the cosmological parameters, let us consider the equa-
tion of state of DE. Considering an extension of the ΛCDM model where a constant DE equation
of state parameter wde is free, the CMB alone favours slightly more negative than −1 values as
shown in Table 3. However, a combination of Planck TT,TE,EE+lowP with BAO, SNIa, a probe of
H0, and lensing of the power spectrum shifts back the constraint to the trueΛCDM value wde =−1,
at 95% confidence level it yields [54]

wde =−1.019+0.075
−0.080 . (115)
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Parameter Planck TT,TE,EE+lowP Planck TT,TE,EE+SIMlow

Σmν [eV] < 0.492 < 0.340

Neff 2.99+0.41
−0.39 2.91+0.39

−0.37

wD −1.55+0.58
−0.48 −1.59+0.58

−0.46

Table 3: Constraints on some of the 1-parameter extensions to the base ΛCDM model from [54] (left column)
and [78] (right column). The errors displayed correspond to the 95% limits.

Figure 10: Figure 1 in [79] where the results of the concordance test between cosmological data sets are
summarised.

Observational discrepancies

From the previous, one sees that the standard model of cosmology ΛCDM is well constrained
and produces strong agreements with observations. However, when going into more details and
considering more specific surveys, it seems to produce some observational tensions which could be
tentative evidence for physics beyond the standard model. Yet, such tensions must be taken with
care, since they could arise from a lack of control of delicate systematic errors or could also be very
well due to a failure of the standard model. The consistency betweens pairs of cosmological surveys
has been tested in [79]. The author used Bayesian inference to assess quantitatively whether there
is concordance between different datasets when theΛCDM model is considered. This study reveals
there is good agreement in general between most of the up-to-date and major datasets in cosmology.
The net exception is the discordance between CMB and weak-lensing measurements (see Figure
10). Let us now discuss more specific measurements that produce tensions within the standard
model.
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Figure 11: Top left: Figure 4 of [80]. Likelihood contours for (σ8,0, Ωm,0) for CMB, BAO and SZ (Sunyaev-
Zeldovich) cluster counts data . Top right: Redshift evolution of f σ8 predicted by the Planck
ΛCDM best fit and compared to data, the error bars represent their 1σ standard deviation. Bot-
tom left: Figure 28 of [54]. Likelihood contours for the CPL parametrisation w(a) = w0 + wa (1−
a) [81, 82] for various data combinations. The acronym BSH stands for BAO+SNIa+H0. Bottom
right: Figure 2 of [5]. Constrains on Ωde when the background and perturbation sector contribu-
tions are split using the probes of Table 4.

The Hubble constant

Probably the most intriguing tension, at least because of its statistical significance, concerns mea-
surements of the Hubble constant H0. The most resent release of the Planck collaboration [78]
gives H0 = 66.93±0.62 k s−1 Mpc−1 at 68% confidence level (c.l.) under the assumption of a ΛCDM
model. This result is in tension at more than 3σ with the measurement of the Hubble Space
Telescope (HST) of 73.24±1.74 k s−1 Mpc−1 at 68% c.l. [83]. Another independent measurement,
although less precise, seems also to give a higher Hubble constant, the strong lensing survey
H0LiCOW has recently measured [84] H0 = 71.9+2.4

−3.0 k s−1 Mpc−1 at 68% c.l.. Furthermore, authors
in [85] have shown the observation of 580 SNIa of the Union 2.1 compilation [86] to be compatible
with ΛCDM at 2σ c.l., whereas the results obtained with measurements of H(z) compiled in [87]
with H0 of [83] not to be. Interestingly, the tension between the HST and Planck measurements
can be alleviated when considering a coupled quintessence model (see section 2.1.3.1).
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Cosmological Probe Measurement Geometry Growth

CMB high-l (TT, TE and EE power spectra) X
CMB low-l (TT, TE and EE power spectra) X
CMB 406 l6 400 lensing power spectrum X
SNIa dl X
BAO DV /rs, dA/rs and c/(Hrs) X

Clusters Ω
β
mσ8 X

RSD fσ8 X

Table 4: Probes considered in the analysis carried out in [5] (Table 1 therein). The geometrical or growth
nature of the probes is also highlighted.

Root mean square of matter perturbations

A tension with measurements of σ8,0 also exists. The CMB tends to prefer higher values than local
measurements. Figure 11 (top left quadrant) shows that the Sunyaev-Zeldovich cluster counts
from the Planck satellite favour lower values as compared to that constrained by the CMB. This
can also be grasped with the naked eye, ΛCDM seems to slightly over estimate fσ8 measurements
as depicted in Figure 11 (top left quadrant). Moreover, Planck CMB measurements are in tension
with surveys of cosmic shear (weak lensing) such as CFHTLens [88] and KiDS-450 [89]. The most
striking example is when considering the clustering parameter S8 = σ8

√
Ωm/0.3 where a 2.3σ

tension between the measurement of KiDS-450 and Planck [89] arises. Interestingly, the tension
within σ8,0 can be relieved by DE models (see for instance [4]).

Lensing

There has been some debate about the parameter AL which controls the amount of gravitational
lensing in small scale anisotropies [90]. The most recent measurement of this parameter by Planck
[78] AL = 1.15+0.13

−0.12 at 95% c.l is more than 2σ away from unity which is the base ΛCDM value. In
addition, for weak lensing, the bottom left quadrant of Figure 11 shows that the combination of
Planck CMB data and weak lensing puts ΛCDM (w0 =−1, wa = 0) 2σ away. However, the tension
is alleviated once measurements of BAO and RSD are considered. This is one manifestation of the
discordance between CMB and weak lensing measurements mentioned previously.

High-l’s and low-l’s in the CMB

Some studies split the various power spectra into their high-multipole (high-l) part (l> 1000) and
low-multipole (low-l) (l 6 1000) to test the self-consistency of CMB measurements [91, 92]. These
types of studies reveal interestingly that some parameters are not always self consistent in be-
tween their constraints obtained thanks to the high-l and low-l part. Sometimes, some parameters
can have either the low or high-l value in tension with the measurements from another survey. For
instance, authors in [92] show that the Planck high-l prediction H0 = 64.1±1.7 k s−1 Mpc−1 is in 3σ
tension with the value 73.0±2.4 k s−1 Mpc−1 from [93]. This tension is even worse (5σ) considering
the 2016 measurement of H0 = 73.24±1.74 k s−1 Mpc−1 [83]. On the other hand, the low-l value
H0 = 69.7±1.7 k s−1 Mpc−1 is consistent within 2σ. The authors claim however that the existing
discrepancy between the Planck and South Pole Telescope (SPT) high-l CMB spectra renders the
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interpretation of this tension, among others, as evidence for physics beyond the standard model
ΛCDM to be disfavoured.

Parameter splitting

The idea of splitting probes can be pushed further. Authors in [5] have pursued an analysis where
some parameters of the ΛCDM model were split also into their background (geometry, kinematics)
contribution and perturbation sector (dynamics, growth) contribution. This was achieved by con-
sidering that the probes, displayed in Table 4, could constrain one contribution or the other. For
instance, a part of the analysis in [5] constituted in constraining the standard set of parameters
for a flat ΛCDM model

{H0, As, ns, τ, wde,Ωbh2,Ωgeom
cdm h2,Ωgrowth

cdm h2} , (116)

where Ωcdm was split. The results displayed in the bottom right of Figure 11 show that data seem
to favour a larger amount of DE when considering growth of structures than when considering
the background evolution. This is interesting since modified gravity models often produce smaller
values of σ8 today with respect to ΛCDM by lowering the amount of dark matter over DE for
instance. One should note that Ωm or Ωde are intrinsically linked and degenerate with σ8, indeed
schematically more matter induces more clustering.

Theoretical shortcomings

From the previous sections, one sees that modern cosmology is endowed with the well based stan-
dard model ΛCDM despite some observational discrepancies. Yet, within or beyond the standard
model, some crucial questions remain to be answered by cosmology. In this section, we shall review
some of the issues actively explored in cosmology by giving a sketch of the overall history of the
universe.

Planck era

The birth or the origin of the universe is not yet understood clearly. Commonly it is modelled
as a Big-Bang, an initial time where the universe was infinitely small and its energy density
infinitely high. Some alternative views put forward cyclic and bouncing universes. Nevertheless,
the common paradigm agrees with the fact that the universe in its premises was in a special epoch,
the Planck era, where energies were of the order of the Planck scale,

Mpl =
√

hc
16π2G

≈ 2.4×1018 GeV , (117)

and any classical description fails. The need to consider a quantum description of gravity followed
by grand unification theory (GUT), where electroweak (EW) and strong interactions are regrouped
arises. In brief, the standard picture of the universe tells us that right after this era the universe
grew at an exponential rate, inflation. The expansion induced the universe to cool down, which
enabled the fundamental forces to reveal themselves little by little until BBN started to create
light atoms. After this primordial universe where radiation was the dominating component, the
universe went into a period of matter domination where LSS emerged. Today, the universe has
entered into another period of cosmic acceleration.
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Primordial universe

The epoch that followed the Planck era also bears intriguing facts. A model that describes the
physics of such an epoch must be able to solve several problems. The horizon problem, stated
in 1968 by C. Misner [94], consists in understanding how the universe can be homogeneous and
isotropic on large-scales when such scales cannot be causally connected due to the finite speed
of light. For instance, the tiny deviations in the CMB imply that it is thermalised, however the
large patches forming it are not in causal connection. Another issue one must consider is the
flatness problem. The universe has been measured to be very close to spatially flat today and
Ωk ∝ a−2 implies the early universe was even flatter in its premises by many orders of magnitude.
This appears as a fine-tuning, since a flat universe corresponds to a point in the parameter space
(Ωk = 0) as compared to closed (Ωk < 0) or hyperbolic (Ωk > 0) spatial geometries, which needs to be
explained. There is another problem broached sometimes, but somewhat more controversial, the
monopole problem. Many GUT theories predict the creation of topological defects and the magnetic
monopole is one of them. This monopole has never been detected and this could be explained by
an early period that extremely diluted the universe. Some cosmologists do not think this to be an
issue since these topological defects are already hypothetical, in M. Rees words7,

"Skeptics about exotic physics might not be hugely impressed by a theoretical argument to explain
the absence of particles that are themselves only hypothetical. Preventive medicine can readily seem
100 percent effective against a disease that doesn’t exist!"

The first model which solved these problems was proposed by A. Guth in 1980 [95]. The idea is that
the universe must have gone through a period of extremely rapid expansion in its early times such
that its content was substantially stretched and diluted. This period is called inflation. In models
of inflation, the universe underwent an exponential expansion which lasted from 10−36 seconds
after the Big Bang to around 10−32s, and the temperature dropped by 5 orders of magnitude or
so, depending on the inflationary model. Note that to solve the problems mentioned above the
universe needs to increase its size by at least N > 50 e-foldings (depending on the inflationary
model). For example, during inflation the physical wavelength (aλ with a ∝ tn with n > 1) grows
faster than the Hubble horizon (H ∝ t) and therefore the former is pushed outside of the latter.
This leads to regions originally causally connected to be no longer after inflation, which solves the
horizon problem. The space-time of inflation is quasi de Sitter, the universe must be very close to
it, but not quite, for inflation to end. That is also why the primordial power spectrum is almost
scale invariant.

The most simple model of inflation contains a scalar field, the inflaton. Its potential energy drives
the exponential expansion of the universe, and to do so it must dominate over its kinetic energy.
That is why an almost flat potential is generally required to lead to a sufficient amount of inflation.
The inflation ends when its slow-roll parameters, measures of the slope of the potential, grow to
unity. The temperature returns to the temperature of the universe before inflation thanks to the
re-heating process, where the large potential energy of the scalar field decays into the standard
model particles. The universe then enters into the radiation dominated era. Many different types
of inflationary models exists today, some with one scalar field but different potentials or some with
several scalar fields (see [96–98] for details). Alternative models to inflation also exist such as
Bouncing cosmologies [99, 100]. In these models, the universe is not born in an initial singularity
but rather at the end of the contracting phase of the previous universe, the Big-Bounce. Conformal
field theories also attempt to provide a description of the early universe [101]. It is interesting to

7 Rees, Martin. (1998). Before the Beginning (New York: Basic Books)
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note that in the realm of quantum gravity, in general, String theories predict inflation whereas
loop-quantum gravity predicts big-bounces.

Let us mention here that the primordial universe ends schematically when BBN starts. It took
place once the quantum chromodynamics (QCD) transition and nuclear fusion happened, them-
selves following the EW transition which occurred after inflation. The physics behind BBN is very
important for cosmology as it is a probe for fundamental physics. The key point is that certain
elements contained in the universe today could not have been produced or not sufficiently by stel-
lar processes, thus these elements must come from BBN. Comparing such abundances today leads
to constraints on parameters, to mention but a few, the Hubble rate and the value of the Newton
constant at BBN.

Dark matter

Once atoms of heavier and heavier mass had formed, the universe entered the matter dominated
era. Matter started to collapse where it was over-dense, the seeds being quantum fluctuations
present before inflation. However, the consideration of baryonic matter as the only matter content
of the universe does not allow a correct prediction of today’s amplitude and density of large-scale
structures. To overcome this issue, cosmologists resorted to add a new form of matter to the cos-
mological model: dark matter. This form of matter was thus named for it does not seem to interact
through electromagnetic or through strong interactions but only with baryonic matter through
gravity and maybe through the weak interaction. The first indirect observation of the DM phe-
nomenon was made through the observation of the abnormal peculiar velocities of galaxies in the
Coma cluster, by Zwicky in 1933 [102]. In the gravitational instability paradigm, DM would have
created important inhomogeneities by gravitational collapse. Once baryonic matter was decoupled
from photons, DM played a catalysing role in the evolution of cosmological perturbation, allowing
the fast growth of aggregates of baryonic matter into today’s cosmological structures as we have
discussed previously. Neutrinos play also a role in the formation of structures by slowing it slightly
due to their large mean free path.

The DM phenomenon is now quite well understood and modelled from the cosmological point of
view indeed. However, it still remains a puzzle for particle physics to understand its nature and
its constitution. Nowadays, DM is understood to be cold, in opposition to earlier theories of hot
dark matter, in the sense that particles of DM are assumed to have a velocity distribution much
lower than the speed of light. The quest to detect the first DM particles is very active. Detection
techniques are numerous, they can be done by direct or indirect methods and in particle acceler-
ators or via astrophysical processes (see [103] for a review on particle dark matter). The number
one candidate for DM particles are weakly interacting massive particles (WIMPS) which are sup-
posed to interact very weakly through the weak interaction. Another candidate is axions, light
particles introduced to solve the strong charge-parity problem: why QCD does not seem to break
the charge-parity symmetry on the contrary to the EW interaction. On the astrophysical point of
view, the cold dark matter description still contains difficulties. For instance, it fails to explain the
missing satellites problem [104], i.e. the fact that n-body simulations predict more dwarf galaxies
around galaxies of the type of the Milky Way than what we observe. Another issue is the cupsy
halo problem [105] where CDM simulations produce density distributions of dark matter halos
much more peaked with respect to observations.
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Issues with the cosmological constant

Modelling late time acceleration with the cosmological constant produces some theoretical draw-
backs, for example, the fine-tuning problem. In order to illustrate this issue, let us consider a scalar
field φ with the following action

Sφ =
∫

d4x
p−g

[1
2
φ,µφ,µ−V (φ)

]
. (118)

The first term in the squared brackets corresponds to the kinetic energy of the scalar field and the
second to its potential energy. The energy momentum tensor can be deduced from (118) and yields

Tµν =φ,µφ,ν− gµν
[1

2
φ,µφ,µ+V (φ)

]
(119)

The vacuum state corresponds to the minimum energy state. Therefore, one needs to consider a
set-up where the kinetic energy is null and the field is at the minimum of its potential. This implies

〈Tµν〉 =−V (φmin) gµν , (120)

from which we must define ρvac =V (φmin) to stick to the definition of the energy momentum tensor
of a field placed in the vacuum state [106]

〈0|Tµν|0〉 =−ρvac gµν . (121)

Note that ρvac has actually two contributions, the classical one coming from the value of the poten-
tial at its minimum (118) and a quantum one which comes from the zero point fluctuations of the
ground state.

The fact that vacuum energy should gravitate was first proposed by W. Nernst in 19148 in the con-
text of the electromagnetic field. Experimentally, it has been shown to exist thanks to the Casimir
effect in 1947. Casimir experiments measure the difference of vacuum energy in between two dif-
ferent configurations. However, the physical interpretation of this effect is subject to controversy
for it can also be explained by the relativistic Vander Waals forces between the two metal plates
rather than by using the zero-point energies of the vacuum state [107]. Nevertheless, let us state
that vacuum fluctuations being a form of energy and according to GR they should gravitate. There-
fore, a consistent expression of Einstein’s equation once quantum field theory is considered sums
up to [106]

Rµν− 1
2

R gµν+ΛB gµν = 8πG
(
Tmatter
µν +〈Tµν〉

)
, (122)

where the cosmological constant appearing is the one in the action (110) and is simply a new
parameter of the theory, i.e. the bare cosmological constant. Now, for (122) to be equivalent to that
of the standard model of cosmology ΛCDM (19), it must be cast into

Rµν− 1
2

R gµν+Λeff gµν = 8πG Tmatter
µν , (123)

where
Λeff =ΛB +8πGρvac . (124)

The effective cosmological constant Λeff is the observed one, thus the one constrained by cosmolog-
ical tests as in (111).

8 W. Nernst, "Über einen Versuch von quantentheoretischen Betrachtungen zur Annahme stetiger Energieänderungen
zurückzukehren", Verhandlungen der Deutschen Physikalischen Gesellschaft, 4, p. 83 (1914).



1.6 C O N C L U S I O N 37

A simple estimation of ρvac often found in literature is of the following form. Considering a field
of mass m, momentum q and frequency w, its zero-point energy will be given by E = w/2 =√

q2 +m2/2. Then integrating over all the zero-point energies up to a cut off scale qmax >> m
yields

ρvac = 1
2

∫ qmax

0

d3q
(2π)3

√
q2 +m2 ≈ q4

max

16π2 . (125)

The strong coupling scale of gravity is the Planck scale, it is thus the natural cut-off scale and qmax

should thus be taken to be Mpl. This gives the vacuum energy density equal to

ρvac ∼ 1074 GeV4 . (126)

On the other hand, from the observed value of the cosmological constant one can also estimate

ρΛ ≈
ΛobsM2

pl

8π
∼ 10−47 GeV4 , (127)

leading to a discrepancy between observed and predicted value of ρvac of 121 orders of magnitude
when taking the Planck cut off, and does not decrease relevantly when taking other cut-off ’s such
as EW or QCD. The conclusion is then that the term ΛB in (124) needs to be extremely fine tuned
for (124) to be valid since ρvac is huge in comparison to the observed value Λeff. This is what is
dubbed the cosmological constant problem or fine-tuning problem.

Another issue affiliated to the cosmological constant is the coincidence problem. This issue is how-
ever somewhat more controversial than the previous one [108]. It represents the fact that the
energy density linked to the cosmological constant is of the same order of magnitude than that of
matter today

ρΛ ∼ ρm(z = 0) . (128)

This can be considered quite curious since matter and the cosmological constant do not scale the
same way with redshift at all. Therefore having them of the same order today seems to be a strange
coincidence and maybe a fine tuning which should be explained. To be precise, the coincidence
happened at

zcoinc. =
( ΩΛ,0

1−ΩΛ,0

)1/3
−1≈ 0.3 . (129)

This leads us to ask our selves why the universe started accelerating only recently and not some
time in the past or in the future. Our knowledge of structure formation tells us that if cosmic
acceleration started too early, no LSS or even stars and planets would have had the time to form
before the universe got ripped apart by the repulsive force induced by the cosmological constant.

C O N C L U S I O N

In this chapter, we have seen that General Relativity provides the means to study the evolution of
the background and the perturbations of the universe. The background evolution is characterised
by the Friedmann equations which link the Hubble rate to the energy content of the universe.
The modelling of the formation of structures in the universe is made thanks to cosmological per-
turbation theory. The general picture of structure formation follows the gravitational instability
paradigm, a bottom-up scenario, where small perturbations collapse before large ones as the uni-
verse evolves. We have given a review of the basic of linear perturbation theory. Let us note that,
however, more complex and refined descriptions can be achieved. For instance, in standard pertur-
bation theory [109] one can consider higher order perturbations for a more accurate description.
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One can also considered the recent description from the effective field theory of large-scale struc-
tures [110] proposed to push the scale at which an analytical modelling of the power spectrum
is possible further towards non linear scales. Numerically, for example, CAMB can compute the
non-linear power spectrum thanks to the non-linear clustering Halofit model [111, 112].

We have also discussed the astonishing fact that observations show the universe to be in an accel-
erated expansion phase today. This can be counter intuitive at first due to the attractive nature
of gravity. This fact is now supported by many combinations of probes. The energy component re-
sponsible for it is the major contribution to the total energy budget of the universe at present time
(∼ 70%). In fact, our knowledge and the modelling of the universe are symbolised today through
the standard model of cosmology ΛCDM. However, on the observational side, tensions in between
cosmological probes can be spotted. They may very well be due to either systematic errors or
new physics. On the theoretical side, the standard model lacks the important completion which
would allow a unifying description of the very early and later epochs of the universe. In the late
epochs, also, describing cosmic acceleration with the cosmological constant produces theoretical
issues. That is why, in the next chapter, we will discuss alternative ways to describe the late-time
expansion history of the universe.
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D A R K E N E R G Y A N D M O D I F I E D G R AV I T Y

Dark energy models and modified gravity theories are actively explored today. The former explains
cosmic acceleration thanks to a new form of energy while the latter by modifying the equations of
GR, i.e. the gravitational interaction, at a fundamental level. Schematically speaking, dark energy
could be seen as modifying the fluid components ρ i and pi in the Friedmann equation,

ä
a
∝G×∑

i

(
ρ i +3pi

)
, (130)

whereas modified gravity could be seen as modification of the gravitational constant G. However,
given the profound equivalence between the geometry and the energy content of the universe
arising from Einstein’s equation (10), the distinction between dark energy and modified gravity
could usually be understood as a semantic concern, physically one often induces the other. We will
often use one or the other term blindly in the rest of this thesis. Note, however, that a distinction
could be made in principle, for example, quintessence models do not yield an abnormal relation
between the gravitational potentials (Φ =Ψ) whereas scalar-tensor theories do, thus the former
could be called a dark energy model and the latter modified gravity. We will give an overview of
such models in section 2.1.

Finding viable alternative models to ΛCDM does not come without hurdles. Driving cosmic ac-
celeration requires a theory to produce notable effects on cosmological scales, i.e exhibit infrared
modifications of GR. However, local tests of gravity limit stringently any deviations from GR on
astrophysical scales. This produces the need for modified gravity theories to incorporate screen-
ing mechanisms. We will discuss how some of these processes emerge naturally in the context
of scalar tensor theories in section 2.2. Moreover, the research around cosmic acceleration has
created an incredible amount of dark energy models. It thus seems important to manufacture
frameworks where many theories can be tested on the same grounds. The goal is then to create
a "meta-formalism" where its parameters can be constrained by observations, and deducing con-
straints on a specific theory should come straightforwardly from the mapping of the theory to the
unifying framework. This seems indeed more efficient than having to constrain each theory one by
one. We will end this chapter by presenting one promising framework to do so, the effective field
theory of dark energy.

A LT E R N A T I V E T H E O R I E S T O ΛC D M

Many alternatives to the standard model exists. Let us state here that well before the standard
model of cosmology was established, straight after the first publications on GR, physicists were
already exploring modifications of the latter. Notably, in 1919, one of the first modified gravity,
MG henceforth, theory was born: Einstein-Cartan gravity1. The idea in this theory is that the
intrinsic spin of fermions produces torsion, i .e . the Levi-Civita connection is no longer symmetric.
This theory has not been ruled out by observations and is still popular nowadays. It produces

1 Élie Cartan. "Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion." C. R. Acad. Sci.
(Paris) 174, 593–595 (1922). "Sur les variétés à connexion affine et la théorie de la relativité généralisée." Part I: Ann.
Éc. Norm. 40, 325–412 (1923) and ibid. 41, 1–25 (1924); Part II: ibid. 42, 17–88 (1925).

39



40 D A R K E N E R G Y A N D M O D I F I E D G R AV I T Y

interesting phenomenology such as replacing the Big-Bang by a Big-Bounce, and black holes by
worm-holes. For the purposes of this thesis, we will discuss mostly theories which add a single
scalar degree of freedom to the Einstein-Hilbert action.

Quintessence

One of the first model suggested to solve the issues of the cosmological constant used an additional
scalar field. It originated in the late 1980s [113, 114] and is now dubbed quintessence [115]. The
name quintessence harkens back to the ancient Greek thought in which space beyond the Earth
was filled with a fifth element called aether.

The quintessence field couples to all the other components in the universe through gravity. This
extra scalar field φ is dynamical, i.e it varies across time, and fluctuates, i.e varies in space, in
opposition to the cosmological constant. The gravitational action of quintessence is of the form

Sg =
∫

d4x
p−g

[ 1
16πG

R+Lφ

]
, (131)

where
Lφ =−1

2
gµνφ,µφ,ν−V (φ) , (132)

is the Lagrangian density of the quintessence field, gµν∂µφ∂νφ its canonical kinetic energy and
V (φ) its potential energy density. Let us note that this action is almost like the one of the inflaton,
although the fundamental difference is that, in the context of DE, one must also consider matter.
Therefore, the total action is S = Sg +Sm. The scalar field has an effective mass defined as

mφ =
√

V,φφ

∣∣∣
φmin

, (133)

where V,φφ = d2V /dφ2 and the associated energy momentum tensor is the one defined in (119).
Alike the cosmological constant, it can be associated to a perfect fluid where its pressure and
density must be

pφ = 1
2
φ̇2 −V (φ) , (134)

ρφ = 1
2
φ̇2 +V (φ) , (135)

and equation of state is thus

wφ = pφ
ρφ

= φ̇2 −2V (φ)
φ̇2 +2V (φ)

. (136)

In the case of a flat FLRW universe, varying the action (131) with respect to the metric produces
the Friedmann equations,

H2 = 8πG
3

[1
2
φ̇2 +V (Φ)+ρm

]
, (137)

Ḣ =−8πG
2

[
φ̇2 +ρm + pm

]
, (138)

and varying it with respect to φ yields the evolution equation for the scalar field, i.e. its equation
of motion

φ̈+3Hφ̇+V,φ = 0 . (139)
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The behaviour of the quintessence field is regulated by its potential V (φ). For instance, matter
domination (ρm >> ρφ) is insured by a steep potential φ̇2 >> V (φ). In opposition, cosmic acceler-
ation requires Ḣ + H2 > 0 which implies from the Friedmann equations that wφ < −1/3, hence
a shallow potential φ̇2 < V (φ). This is the slow-roll condition as in analogy with inflation. Many
models have been proposed [115–117] according to the potential chosen (see [118] for a recent re-
view) and they are now generally classified into two categories: freezing and thawing models [119].
In the former, the quintessence field rolls down its potential as long as H > mφ and eventually
"freezes" once cosmic acceleration kicks in. Typical potentials for freezing models are

V (φ)= m4+nφ−n (n > 0) , (140)

V (φ)= m4+nφ−ne
α

φ2

M2
pl , (141)

where m corresponds to a mass scale. These potentials do not have a minimum and this is why the
field rolls down slowly towards infinity and eventually "freezes".

On the contrary, in thawing models, the Hubble friction term (Hφ̇) in (139) "freezes" the field at
early times with wφ ≈ −1, until H < mφ when it starts to evolve and drive cosmic acceleration.
Typical representatives of such models are

V (φ)=V0 +m4−nφn (n > 0) , (142)

V (φ)= m4 cos2(φ/ f ) . (143)

One particularity of these models is that the potential energy of the quintessence field can drop
below zero in the future implying the collapse of the universe.

Freezing quintessence models exhibit a tracker behaviour [120]. At early times, the field has a den-
sity slightly less than radiation but "tracks" its evolution until matter-radiation equality. It then
starts to have the behaviour of DE (wφ ≈ −1) and produces cosmic acceleration. Such a tracker
solution relieves the coincidence problem and has also been argued to partly solve the fine-tuning
problem [117]. The freedom for tracking solutions is restricted however. The reduced density at-
tributed to the field Ωφ = 8πG

3H2 ρφ is constrained stringently by early time physics such as BBN and
CMB. It must be less than 1% from the Planck satellite measurements [80].

For the quintessence field to be able to drive cosmic acceleration, its effective mass must be of the
order of Hubble

mφ ∼ H0 ∼ 10−33 eV , (144)

which is extremely small. Indeed, the least massive particle of the standard model of particle
physics is the neutrino with a mass of the order of the eV. Therefore, quintessence provides the
means to drive cosmic acceleration should vacuum energy vanish or be subdominant, and the
means to describe the evolution of perturbations. However, to do so, it shifts the fine tuning issue
of the cosmological constant to a fine tuning of the potential of the scalar field [121]. This is why,
a step further for a more convenient modelling of DE is to study scalar field models where cosmic
acceleration is not driven by the potential term.

k-essence

It has been shown in [122, 123], based on earlier studies [124, 125], that cosmic acceleration can
be produced without a fine-tuned potential. This is the goal of theories where the kinetic term
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accounts for cosmic acceleration, the so-called k-essence, short for kinetic-quintessence. In this
case, the action for the scalar field is of the form

Sφ = 1
16πG

∫
d4x

p−g p(φ, X ) , (145)

where X = φ,µφ,µ/2 is the canonical kinetic energy density. The derived momentum tensor of the
k-essence field is

Tφ
µν = p,Xφ,µφ,ν+ p(φ, X )gµν , (146)

with the energy density and pressure defined as

ρφ = 2X p,X − p(φ, X ) , (147)

pφ = p(φ, X ) . (148)

The equation of motion of the k-essence field is more involved than for quintessence[
p,X gµν+ p,X Xφ

;µφ;ν
]
φ;νµ+2X p,φX − p,φ = 0 . (149)

One example of k-essence is the ghost condensate proposed in [126] where the Lagrangian density
is taken to be

p(φ, X )=−X + X2

m4 . (150)

We have seen in section 1.5.2 that observations constrain today’s value of equation of state of DE
wde closely to −1, however, wde.−1 is not excluded. Producing such an equation of state requires
a negative kinetic term which is generally plagued with a ghost instability, i.e energy density
unbounded from below (see section 2.3.3). Here, the addition of the quadratic term X2 insures
the safe crossing of the phantom barrier wde =−1. Other examples of k-essence models have been
proposed in the context of string theories and brane models, such as the tachyon model [127] and
Dirac-Born-Infeld theories [128].

k-essence models can also exhibit tracking solutions as for quintessence and drive acceleration
with wφ ≈ −1. They are thus viable alternatives to the cosmological constant provided the time
evolution of wφ they produce remains consistent with future measurements.

f(R) theories

Another path explored in parallel to the inclusion of a scalar field is to modify the Einstein-Hilbert
directly. If it is promoted to a function of the Ricci scalar, one enters the realm of f(R) theories.
These theories became popular in 1980, when A. Starobinsky showed that adding an R2 term
produced an action with an asymptotic de Sitter solution on a homogeneous background [129]; thus
a suitable model for inflation. Then, with the discovery of the cosmic acceleration, f(R) theories
have been studied widely in the context of DE and many models have been proposed (see [130] for
a modern review). The generic action of f(R) theory is

S = 1
16πG

∫
d4x

p−g f (R)+Sm(gµν,ψ) , (151)

which, once varied with respect to the metric, yields the field equation

f,RRµν− 1
2

f gµν−∇µ∇ν f,R +� f,R gµν = 8πGTµν , (152)
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with f = f (R), f,R = d f /dR and Tµν the energy momentum tensor of matter and radiation. Replac-
ing the Ricci scalar by a function of itself has substantial consequences. For instance, taking the
trace of (152) gives

3� f,R + f,RR−2 f = 8πGT , (153)

where T is the trace of the energy momentum tensor. This equation is dynamical, a wave equation,
on the contrary to the case of GR; R = 8πGT. It shows that f,R corresponds to a propagating
degree of freedom: the scalaron [129]. The tensor equation (152) yields for a flat FLRW universe
with non-relativistic pressure-less matter and radiation the "modified Friedmann equations"

3 f,RH2 = 8πG
(
ρm +ρr)+ 1

2
(
f,RR− f

)−3H ḟ,R , (154)

−2 f,RḢ = 8πG
(
ρm + 4

3
ρr)−H ḟ,R + f̈,R . (155)

Throughout the previous computations, setting f (R) = R −2Λ would produce the standard model
equations. The equations (154) and (155) are not solvable analytically. The Ricci scalar of flat
FLRW metric (R = 6(2H2+ Ḣ)) makes these equations fourth order non-linear coupled differential
equations. Nevertheless, note that once the system is solved, it is always possible to construct by
identification an effective DE component which satisfies the standard continuity equation ρ̇de +
3H(ρde + pde) = 0. This enables a more straightforward understanding of the behaviour of f(R)
theories and an easier comparison with observations.

The evolution of matter perturbation can be seen as being ruled by a time and scale dependent
effective Newton constant Geff. Indeed, taking the perturbed FLRW line element (16), the Poisson
equation for f(R) theories in the large scale limit can be cast into

−k2Φ= 4πGeff a2δρm , (156)

where

Geff =
1

8π f,R

1+4m k2

a2R

1+3m k2

a2R

, (157)

with the mass term m = (R f,RR)/ f,R .

f(R) theories can be written in terms of a scalar field. To do so, one must perform the conformal
transformation

gµν→ g̃µν =Ω2 gµν , (158)

with the conformal factor Ω2 = f,R . Then, making the identifications

φ=
√

3
16πG

ln f,R , (159)

V (φ)= R f,R − f

16πG f 2
,R

, (160)

allows one to rewrite the action (151) in the form

S̃φ =
∫

d4x
√− g̃

[ 1
16πG

R̃− 1
2

g̃µνφ;µφ;ν−V (φ)
]
+Sm

(
e−

√
16πG

3 φ g̃µν,ψ
)

. (161)

The action (151) is written in the Jordan frame, the frame in which the gravitational Lagrangian
is modified with respect to GR and the matter Lagrangian remains the same as in the standard
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model. It is the physical frame, that is to say, the one where the energy momentum tensor of matter
is covariantly conserved, in which test-particles follow geodesics of the metric and in which exper-
iments are performed, thus, the frame of most direct physical interpretation [131]. In opposition,
the action (161) is written in the Einstein frame, where no coupling to curvature (here the Ricci
scalar R) can be seen but where a coupling has appeared in the matter sector: exp

(−p
16πG/3φ

)
.

Indeed, the metric g̃µν, to which the matter fields ψ couple, is itself coupled to the scalaron through
the conformal factor. The Einstein frame is the frame where one obtains the field equation in the
form of Einstein field equation as opposed to (152). In fact, from (161) one sees that f(R) theories
are equivalent to the so called coupled quintessence models with a fixed coupling (Q =−p(4πG)/3)
between the scalaron and matter fields (see the next section).

Over the years of exploration of these models, it has been shown (see [132] and references included)
that f(R) theories must fulfil a number of analytical conditions in order to produce viable models :

◦ f,R > 0 for R>R0 to avoid anti-gravity, R0 being the Ricci scalar evaluated at present time.

◦ f,RR > 0 for R > R0 for the compatibility with local gravity tests, to make sure the matter
dominated era occurs and for the stability of cosmological perturbations.

◦ f (R) must asymptote to R−2Λ for R À R0 for the compatibility with local gravity tests and
to make sure the matter dominated era occurs.

◦ 0 < R f,RR
f,R

< 1 at R f,R
f = 2 for the stability of the late-time de Sitter attractor, i.e the future

phase where DE will be fully dominant.

The Hu and Sawicki model [133]

f (R)= R−µRc

( R
Rc

)2n( R
Rc

)2n +1
, (162)

and the Starobinsky model [134]

f (R)= R−µRc

[
1−

(
1+ R2

R2
c

)−n]
, (163)

where n, µ, Rc > 0, are two substantially studied models passing the previous conditions. To fulfil
these condition, f(R) theories must in general have more than one free parameter indeed. In such
phenomenological models there are no theoretical prescriptions that allows one to predict the or-
der of magnitude of the free parameters. It thus seems that the fine tuning of the cosmological
constant is replaced by the tuning of more parameters. The observational constrains on f(R) theo-
ries (see for example [135–139]) lead towards having viable models being almost observationally
indistinguishable from ΛCDM.

Interacting dark energy models

Models where DE and DM interact, i.e. are coupled through an additional interaction aside of
gravity, are dubbed interacting dark energy models. They present an interesting alternative to the
cosmological constant problems. The first of these models, coupled quintessence, was proposed by
Wetterich in 1994 [140]. Today more complicated scenarios have been studied (see for instance
[141, 142]). The idea of coupled quintessence is that the general action of the theory

S = SEH +Sφ+Sm +Sint (164)
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has an interacting term Sint beyond the Einstein-Hilbert term SEH, matter term Sm and quintessence
Sφ (131). It is customary to parametrise this interaction directly from the "non-conservation" of
the matter and DE energy momentum tensor by

∇µTφ
µν =−QTm∇νφ , (165)

∇µTm
µν =+QTm∇νφ , (166)

where Tm ≈ ρm is the trace of the matter energy momentum tensor and the coupling Q symbolises
the interaction rate. In a FLRW metric, one obtains the continuity equations

ρ̇φ+3Hρφ (1+wφ)=−Qρmφ̇ , (167)

ρ̇m +3Hρm =+Qρmφ̇ , (168)

ρ̇r +4Hρr = 0 . (169)

The last equation was expected to be equal to zero since the trace of the energy momentum tensor
of photons vanishes Tr = gµνTr

µν = ρr −3pr = 0. The scalar field equation yields

φ̈+3Hφ̇+V,φ =−Qρm . (170)

From the previous 4 equations, we observe Q to regulate the evolution of all the fluids components
in the model. Assuming φ̇ > 0, Q > 0 leads to the conversion of energy from DE to DM and Q < 0
the opposite. Interestingly, it has been shown in [143] that a weakly negative coupling relieves the
tension we have mentioned concerning the HST measurements (section 1.5.3). CMB observations
have also constrained Q . 0.1 [144]. Should future measurements constrain Q to be negative,
a sound description of the universe would emerge: DM converts itself into DE as time goes on.
Depending on ones leanings, this could seem a comforting and natural description of the evolution
of the universe since we observe Ωde to grow over Ωm.

The DGP braneworld

The Dvali-Gabadadze-Porrati (DGP) [145] braneworld model does not require a DE component nor
a cosmological constant to produce cosmic expansion (see [146] for a review). In this extradimen-
sional model, our 3+1 dimensional spacetime, dubbed the brane, is embedded in a 4+1 dimensional
Minkowsky space time, the bulk. The idea of extra dimensions within a gravitational theory has
been studied since the last century. Today, compact extra dimensions are an important component
of string theories. Also, the idea of "diluting" the cosmological constant in extra-dimensions was
proposed more than thirty years ago in [147].

Let us look briefly into the DGP model. Taking xA = (xµ, x5) to be the coordinates of the bulk space
time and g̃AB its metric, the induced metric on the brane is defined as gµν = xA

,µxB
,ν g̃AB. We will

write the quantities of the bulk with a tilde and for the brane without. From this, the DGP action
takes the form

S =
M2

pl

2

∫
d4x

p−g
(
R+Lm

)
+ M̃3

Pl

2

∫
d5x

√− g̃ R̃ , (171)

where matter is only included in the brane and thus the sole component coupled to the bulk metric
is gravity. The idea of this model is that gravity dilutes itself at large distances in the bulk. In fact,
gravity resembles that of GR up to the characteristic length scale defined by

rc =
M2

pl

M̃3
Pl

, (172)
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and above which gravity starts "leaking" into the bulk. Notably, it was shown in [146] that in the
weak field limit one has

Φ(r)∼−G̃m
r2 , r À rc , (173)

Φ(r)∼−Gm
r

, r ¿ rc , (174)

where G̃ ∝ M̃−3
Pl . This is a type of Vainshtein screening (see section 2.2) as below the rc scale GR

is preserved .

Recent studies [6] have shown this model to be almost excluded by LSS data. Also, a decoupling
mechanism must be invoked to explain the smallness of M̃Pl. Indeed, one needs rc ∼ H−1

0 for the
DGP model to produce cosmic acceleration which implies M̃Pl ∼ 100 MeV, which seems un-natural
since one expects quantum gravity effects taking place in the bulk at this scale to have some effects
in the brane. Therefore, this raises more unknowns as to what is the decoupling mechanism in the
bulk which prevents us from observing these effects. It was also shown that the self-accelerating
solution, i.e the solution which produces cosmic acceleration through genuine modifications of
gravity rather than from a negative pressure component, unfortunately introduces a ghost mode
[148]. Therefore, DGP models seem to have a hard time producing viable alternatives to ΛCDM.

Scalar tensor theories

Brand-Dicke theory

The Brans-Dicke theory of gravity, or Jordan-Brans-Dicke theory, is one of the first scalar-tensor
theory. The characteristic of these theories stems from having the extra scalar field coupled to a
curvature term in the action. In 1961, R. Dicke and C. Brans released their theory [149] based on
earlier work of P. Jordan2. Their goal was to modify GR in order for it to include Mach’s principle.
It was much later shown given the discovery of cosmic acceleration, that minimal changes to the
original Brans-Dicke theory allowed for it to produce cosmic acceleration [150]. The action of the
theory is

S = 1
16π

∫
d4x

p−g
(
φR− ωBD

φ
∇µφ∇µφ

)
+Sm(gµν,ψ) , (175)

where ωBD is the Brans-Dicke parameter; the parameter quantifying the extra freedom of the
theory. A potential term −V (φ) is sometimes added in the action. The action is written in the
Jordan frame and one can see a non-minimal coupling has appeared, that is, a curvature term
(here the Ricci scalar R) multiplied by a function of the scalar field (here simply φ). Another
characteristic to see in this action is the replacement of the Newton constant with 1/φ. Varying
(175) with respect to the scalar field yields the evolution equation

�φ− ∇µφ∇µφ
2φ

+ φ

2ωBD
R = 0 , (176)

and varying it with respect to the metric gµν produces the field equation

Rµν− 1
2

R gµν− 1
φ

(∇µ∇νφ−�φgµν
)− ωBD

φ2

(∇µφ∇µφ− 1
2

gµν∇αφ∇αφ
)= 8π

φ
Tµν . (177)

2 J. Jordan, "Schwerkraft und Weltall", Vieweg (Braunschweig): Projective Relativity (1955)
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Combining the equations (176) and (177) one obtains the wave equation for the scalar degree of
freedom

�φ= 8π
3+2ωBD

ρm . (178)

From this, one can see that the matter distribution sources the scalar field which itself contributes
to the curvature through (177). The tensor equation (177) and the evolution equation of the scalar
field (176) in a FLRW space time produce a system of 3 coupled differential equations for a and φ

( ȧ
a

)2
+ ȧ

a
φ̇

φ
− ωBD

6

( φ̇
φ

)2
+ k

a2 = 8π
3φ

∑
i
ρ i , (179)

ä
a
+ 1

2
φ̈

φ
+ 1

2
ȧ
a
φ̇

φ
+ ωBD

3

( φ̇
φ

)2
=−4π

3φ

∑
i

(
ρ i +3pi

)
, (180)

φ̈

φ
+3

ȧ
a
φ̇

φ
= 1

3+2ωBD

8π
φ

∑
i

(
ρ i −3pi

)
. (181)

The standard Friedmann equations are recovered for ωBD →∞ and φ→ 1/G. As for f(R) theories
and many MG theories, Brans-Dicke theories also produce an effective Newton constant

Geff =
4+2ωBD

3+2w
1
φ

. (182)

In fact, Brans-Dicke theories augmented with a potential include f(R) theories for

ωBD = 0 , (183)

φ= f (R) , (184)

V (φ)= 1
16πG

(
R f,R − f ) . (185)

Brans-Dicke theory has been tested observationally and the Brans-Dicke parameter ωBD is best
constrained by local gravity tests. The most recent Cassini-Huygens measurements lead to ωBD >
4×104 at 2σ using the post-Newtonian approach [151]. This theory has not been ruled out so far
and remains a viable alternative to the standard model.

The Brans-Dicke action can be generalised to that of the basic action for scalar-tensor theories:

Sφ = 1
16πG

∫
d4x

p−g
[
A(φ,R)+B(φ)gµνφ,µφ,ν

]
, (186)

and one can see immediately it includes the models we have discussed previously thanks to the
mapping,

¦ ΛCDM : A(φ,R)= R−2Λ and B(φ)= 0.

¦ Quintessence : A(φ,R)= R−V (φ) and B(φ)= 1/2.

¦ f(R) theories : A(φ,R)= f (R) and B(φ)= 0.

¦ Brans-Dicke theory : A(φ,R)= G
φ

R and B(φ)= G
φ
ωBD .
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Galileon theories

Galileon theories were first proposed in [152] as a generalisation of the 4-dimensional brane action
of the DGP model. It is a scalar tensor theory, where the modifications to gravity are induced by
the Galileon scalar field φ. The four dimensional brane action of the DGP model is invariant under
the (Galilean) shift symmetry

φ→φ+b+vµxµ , (187)

where b and vµ are constants. This symmetry is inherited from the 5-dimensional Poincaré in-
variance of the DGP bulk action [153]. Lagrangians preserving the shift symmetry can avoid the
ghost in the self-accelerating branch the DGP model was plagued with. Exactly 5 Lagrangians ex-
ists and they produce second order equations of motions in a 4-dimensional Minkowski spacetime.
They constitute the action of Galileon theories

S =
∫

d4x
p−g

( R
16πG

−
5∑

i=1
ciLi

)
+Sm(gµν,ψ) , (188)

where the ci are the dimensionless free parameters of the theory and

L1 = m3φ , (189)

L2 =φ,µφ
,µ , (190)

L3 = m−3φ,µφ
,µ�φ , (191)

L4 = m−6φ,µφ
,µ

((
�φ

)2 −φ,αβφ
,αβ− 1

4
Rφ,µφ

,µ
)

, (192)

L5 = m−9φ,µφ
,µ

((
�φ

)3 −3φ,αβφ
,αβ�φ+2φ,µαφ

,α
,βφ

,βµ−6φ,αφ
,αµφ,νGµν

)
, (193)

where the mass must be m ∼ (
MplH2

0
)1/3 ∼ 10−17 GeV in order to drive cosmic acceleration. Usually,

c1 is set to zero in order for the latter to be driven by the kinetic terms rather than a potential;
hence avoiding the quintessence fine tuning issue. The non linear couplings between the deriva-
tives of the field and R or Gµν will change the way matter affects the geometry of the universe with
respect to GR. Such effects will be screened in high curvature regimes thanks to the Vainshtein
mechanism (see section 2.2). The Galileon action when generalized to curved space falls under the
class of Horndeski theories, and these non linear couplings break the shift symmetry. Galileon
models have been constrained observationally and yield a suitable alternative to the cosmological
constant, however, they are not necessarily favoured over ΛCDM by data [154].

Horndeski theories

Up to what complexity can one generalise scalar-tensor theories? It was shown by R. Woodard
[155] that on a 4-d manifold, a non-degenerate Lagrangian containing time derivatives higher
than first will produce Ostrogradsky instabilities. Therefore, equations of motion can be at most
second order in time derivatives. This has therefore been argued to be the reason why differential
equations of higher order than two do not appear in the description of any physical phenomenon
[156].

In the context of gravity, Horndeski theories are the most general 4-dimensional scalar-tensor
theories keeping the field equations of motion at most second order directly. These theories were
first proposed by G. Horndeski [157] and were recently revived by [158] as generalised Galileons.
Horndeski theories are described by the action

S =
∫

d4x
p−g

5∑
i=2

Li +Sm(gµν,ψ) , (194)
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where the Lagrangians L i are

L2 =G2(φ, X ) , (195)

L3 =G3(φ, X )�φ , (196)

L4 =G4(φ, X )R−2G4,X

[(
�φ

)2 −φ;µνφ
;µν

]
, (197)

L5 =G5(φ, X )Gµνφ
;µν+ 1

3
G5,X

[
(�φ)3 −3(�φ)φ;µνφ

;µν+2φ;µαφ
;α

;βφ
;βµ

]
, (198)

with G i (i = 2,3,4,5) functions of the scalar field φ and its canonical kinetic energy X =−∇µφ∇µφ/2,
the partial derivatives G i,X = ∂G i/∂X , and Gµν the Einstein tensor. The term G2(φ, X ) is the
k-essence term, −G3(φ, X )�φ is the cubic Galileon term, G4(φ, X ) is the generalisation of the
Einstein-Hilbert term, and G5(φ, X )Gµνφ

;µν is the non-minimal derivative coupling to Einstein’s
tensor. Horndeski theories thereby regroup most of the theories we have discussed, and more,
thanks to the mapping:

¦ ΛCDM : G4 = 1
16πG

(
R−2Λ

)
, G2 =G3 =G5 = 0.

¦ Quintessence : G2 =−X −V (φ), G4 = 1
16πG , G3 =G5 = 0.

¦ f(R) theories : G2 = 1
16πG

(
R f,R − f

)
, G4 = f,R

16πG , G3 =G5 = 0.

¦ Brans-Dicke theory : G2 =−ωBD X
16πφ , G4 = 1

16πφ, G3 =G5 = 0.

¦ Kinetic Braiding gravity [159] : G2 =G2(φ, X ), G3 =G3(φ, X ), G4 =G4(φ), G5 = 0.

¦ Galileon gravity [152] : G2 = c2X , G3 = c3m−3X , G4 = 1
16πG + c4m−6X2, G5 = c5m−9X2.

We will study Horndeski theories more in depth in their effective field theory formulation in the
following sections and chapters.

GLPV theories

The hint of having healthy theories beyond that of Horndeski arose from the effective field theory
of dark energy construction (see section 2.3). The first covariant formulation of Beyond Horndeski
theories or GLPV theories, was first proposed in [160] (see also [161] for early studies in this
direction). The action of such theories contains additional terms in L4 and L5 with respect to that
of Horndeski :

Lφ

4 ≡G4(φ, X ) (4)R−2G4,X (φ, X )(�φ2 −φ;µνφ;µν)

+F4(φ, X )εµνρσ ε
µ ′ν ′ρ ′σφµφµ ′φνν ′φρρ ′ , (199)

Lφ

5 ≡G5(φ, X ) (4)Gµνφ
;µν+ 1

3
G5,X (φ, X )(�φ3 −3�φφµνφµν+2φµνφµσφνσ)

+F5(φ, X )εµνρσεµ
′ν ′ρ ′σ ′

φµφµ ′φνν ′φρρ ′φσσ ′ , (200)

where εµνρσ is the totally antisymmetric Levi-Civita tensor. One recovers Horndeski theories by
setting F4(φ, X )= F5(φ, X )= 0.

Horndeski and Beyond Horndeski theories are degenerate theories. In mathematical terms, the
transformation to phase space variables is not invertible, which can also be seen as the vanish-
ing of the determinant of the corresponding Hessian matrix. This implies there are less degrees
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Figure 12: Representation of the potential and effective potential for the chameleon screening mechanism
for two set ups : high density (galaxy, clusters, etc.) and low density (cosmos). Courtesy of J.
Beltràn Jiménez.

of freedom than originally expected. In Horndeski theories, the equations of motions are second
order (in time derivatives) directly, although one would naively expect to have 4th order equations
from a Lagrangian with second derivatives. In GLPV theories, the equations of motions are third
order. However, since the determinant of the Hessian vanishes, the extra constraints reduces the
equations to second order. This is why GLPV theories yield in appearance third order equations
of motions but produce a single scalar degree of freedom propagating with a healthy second order
equation. An interesting phenomenological difference between Horndeski and GLPV theories is
the fact that, in the latter, the scalar field affects the sound speed of matter perturbations even if
it is minimally coupled to the metric.

S C R E E N I N G M E C H A N I S M S

Infrared modifications of gravity induce a fifth force from the introduction of new degrees of free-
dom, however, this new force has never been detected experimentally. Therefore, in order to re-
cover GR on small scales and in high density environments, MG theories must contain screening
mechanisms which, schematically speaking, make the fifth force "hide" itself in such environments.
These mechanisms are provided by the non-linearities of the theory and can be classified in three
families. Let us consider a Lagrangian for a scalar field perturbed as φ= φ̄+δφ with the non-linear
terms

Lφ = 1
2

Z(φ̄)∂µδφ∂µδφ− 1
2

m2(φ̄)δφ2 + g(φ̄)δφδρm . (201)

The term Z(φ0) would yield the Vainshtein [162], K-mouflage [163] and Kinetic [164] screening
mechanisms, the function m2(φ0) would yield the chameleon [165] and g(φ0) the symmetron [166]
and dilaton [167] mechanism. Let us now go through the guiding principles behind some of these
mechanisms key for the observational viability of MG theories.

Chameleon

The chameleon is the screening mechanism that can take place in f(R) theories for example. In
this mechanism, the central quantity is the Compton wavelength of the scalar field; the inverse of
its effective mass. This effective mass depends on the density of the scalar field’s environment. In
practice, in galaxies or clusters the density is high, the effective mass of the scalar field increases
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and the fifth force can be suppressed with respect to the Newtonian force. On the contrary, the
average matter density is very low on cosmological scales and thus the effective mass of the scalar
field is small; the scalar field transmits a fifth force.

To be more practical, let us consider the f(R) action in the Einstein frame

Sφ =
∫

d4x
p−g

[ 1
16πG

R− 1
2
φ;µφ;µ−V (φ)

]
+Sm

(
A2(φ)gµν,ψ

)
, (202)

where we have introduced a conformal and universal (same for all matter species) coupling A2(φ)
between the chameleon scalar field φ and the matter fields ψ. Varying this action with respect to
φ produces the equation of motion in the Einstein frame

δφ=V,φ− A,φρm , (203)

where we have considered a non relativistic, pressure-less source ρm. One can then deduce that
the scalar field will be influenced by the matter source through the effective potential

Veff =V (φ)+ A(φ)ρm . (204)

Provided V (φ) and A(φ) are chosen wisely so that the effective potential develops a minimum, the
mass of the chameleon field is then

m2
min =V,φφ(φmin)+ A,φφ(φmin)ρm . (205)

Figure 12 highlights well how the previous two equations behave in a high and low density set up.
Indeed, one can see that while the potential is unaffected, the effective potential becomes deeper
in a dense region as in a cluster of galaxies and thus the mass of the chameleon field increases,
whereas in a low density environment, that is, on cosmological scales, the effective potential is
shallower and the mass lighter.

Vainshtein

The Vainshtein mechanism is found in Horndeski theories, massive gravity [168], braneworld mod-
els such as DGP and de-gravitation theories [169]. This mechanism relies on the fact that deriva-
tive couplings of a scalar field become large near massive objects. The non-linearities of the scalar
field increase its kinetic energy which weakens its interaction with matter.

Let us take the example of a cubic Galileon Lagrangian

Lπ =−3(∂π)2 − 1
Λ3

s
�π(∂π)2 − π

Mpl
ρm , (206)

where (∂π)2 is short for ∂µπ∂µπ and Λs ∼
√

L−2Mpl is the strong coupling scale of Galileon theories.

Provided they drive cosmic acceleration, one has L ∼ H0, hence Λs ∼ (1000 km)−1. Screening will
occur when |(∂π)2| > Λ3

s . Let us be slightly more precise and sketch the procedure described in
[170]. Varying the action (206) with respect to the scalar field π gives the equation of motion

3�π+ 1
Λ3

s

((
�π

)2 − (
∂µ∂νπ

)2
)
= 1

2Mpl
ρm . (207)
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In the case of a point source of mass M, the trace of the energy momentum tensor becomes T =
−Mδ(3)(~x) with δ(3) the 3 dimensional Dirac delta and the equation (207) reduces to

∇·
(
6∇π+~r 4

Λ3
s

(∇π)2

r

)
= M

Mpl
δ(3)(~x) , (208)

for a spherically-symmetric static configuration [171]. Integrating the latter equation over a sphere
centred around the point source yields

6∇π+ 4
Λ3

s

(∇π)2

r
= M

4πr2Mpl
. (209)

This equation can be solved analytically and gives

∇π=±Λ
3
s

r
(√

9r4 +4r3
V r−3r2

)
(210)

where we have introduced the characteristic scale for the mechanism, the Vainshtein radius

rv =
(
2GML2

) 1
3

. (211)

The "-" solution produces unstable perturbations [172]. Considering the "+", one can split the solu-
tion into two asymptotic regimes

◦ On large scales r À rV , one has ∇π(r À rV )≈ 1
3

GM
r2 , and since a force is F ≈ |∇π|, one obtains

the ratio of the scalar (fifth) force Fπ to the standard gravity force Fg

Fπ

Fg
≈ 1

3
. (212)

◦ On small scales r ¿ rV , one has ∇π(r ¿ rV ) ≈ 1p
r , and therefore the field is screened, its

strength is much lower than standard gravity

Fπ

Fg
≈

( r
rV

) 3
2

. (213)

The key signature of the Vainshtein mechanism is therefore the new scale it introduces defined by
the Vainshtein radius. It indicates the transition scale between the regions where non linearities of
the scalar field become dominant or negligible with respect to standard gravity. The region around
the radius sets the difference between the screened region, where the field is weakly coupled to
matter, with the un-screened region where the field is strongly coupled to matter (see Figure 13).

T H E E F F E C T I V E F I E L D T H E O R Y O F D A R K E N E R G Y

In section 2.1, we have focused on models that incorporate an extra scalar degree of freedom to
the Einstein-Hilbert action. Such models are numerous and one is tempted to ask whether a way
to describe all these theories at a fundamental level and in a common framework exists. This
unifying description should be able to grant the user the possibility to study and test many models
against observations at once. A promising way to achieve this goal is to use effective field theory.
Effective field theory is a description of the low energy scales of a more fundamental theory. For
example, GR is an effective field theory of a quantum gravity theory. The advantage of using an
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Figure 13: Schematic diagram of the evolution of the screening strength depending on the scale.

effective field theory is that one only deals with the degrees of freedom associated with the low
energy part of the theory, thus integrating out higher energy scales sometimes irrelevant for the
problem at hand.

In the context of attempting an explanation of cosmic acceleration thanks to either DE of MG, one
is generally concerned by the cosmological evolution of the universe. The expansion of the universe
is a low energy process, indeed the energy scale associated to DE, mde, can be estimated from the
first Friedmann equation as

H2 = m4
de

M2
pl

→ mde =
√

Mpl H0 ∼ 1 meV . (214)

Short scale and high energy interactions (> 1 eV) are often not relevant when comparing DE
models to cosmological observations; hence (214) places DE as a suitable ground for an effective
field theory description. This has been proposed in the recent years: the effective field theory of
dark energy, EFT of DE hereafter.

Generalities

Before going through the construction of the action of the EFT of DE, let us see how it came about
and on what fundamental principles it is based on.

Development of the EFT of DE

Scalar fields are not used exclusively to model late-time cosmic acceleration. Their use is required
to break de Sitter invariance in inflation for example. A common description of single scalar field
inflationary models is the Effective Field Theory of Inflation. It has been initiated in [173] and
systematically developed in [174]. This is the seed of the description of DE with an EFT frame-
work. The key point used to produce such unifying description is to apply an effective field theory
construction to cosmological perturbations directly. They are treated as the Goldstone boson of
spontaneously broken time-translations as we will see in the next section. Such a description was
then used to describe quintessence [175] and later extended to include Horndeski and GLPV the-
ories in [176–178] and [179, 180]. The EFT of DE is a description up to linear level as we will see
further on, thereby, it does not include non-linearities such as the ones producing screening mech-
anisms. Nonetheless, at linear level, the EFT of DE can virtually describe all DE or MG theories
which include a single scalar degree of freedom in addition to standard gravity. Therefore, it de-
scribes Horndeski and GLPV theories. It has also been recently used to describe Hořava-Lifshitz
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gravity [181, 182]. There exist another formulation of the EFT action established in [183]. We will
present it in chapter 4 . Many theoretical studies have been maid thanks to the EFT of DE [184–
191] and many phenomenological results have been obtained; we will give an overview of them in
the final chapter of this thesis. The EFT of DE has also been extended to include interacting DE
[7] or kinetic matter mixing [192], mildly-non linear scales [193], two scalar field scalar field (DE
and DM) [194], K-mouflage [195], and higher-order scalar-tensor theories [196]. For the purpose of
this thesis we concentrate on the EFT of DE in its "original" non extended form. Let us understand
now on what it is based on and how it is constructed.

Spontaneous symmetry breaking in cosmology

Where does one find spontaneous symmetry breaking in a cosmological context? Let us better
understand this concept first by taking an example in the standard model of particle physics. EW
theory has its SU(2) × U(1) gauge symmetry broken spontaneously into a diagonal U(1) by the
Higgs mechanism. The Goldstone bosons3 created by the spontaneously broken symmetry can be
absorbed in the longitudinal degrees of freedom of the vector boson W± and Z in the unitary gauge.
Gauge invariance is lost in this set-up to the benefit of dealing directly with the observable low-
energy degrees of freedom of the theory, i.e. one Higgs particle and three massive vector bosons.

For our concerns, GR stands as a gauge theory from its invariance under general coordinate trans-
formations. The metric field plays the role of the gauge field sector. In the case of Minkowski or
de Sitter spacetimes, time translations are a global symmetry as they contain a time-like killing
vector. One can say that time translations are broken by any spacetimes that do not bear such a
killing vector. For example, inflation is quasi-de Sitter due to the almost scale invariant primordial
power spectrum and the need to exit the accelerating phase at some point. Therefore, inflation
is said to spontaneously break time translations and this must be accompanied by a Goldstone
excitation. The Goldstone excitation comes about upon the application of the Stückleberg mecha-
nism (see section 2.3.2.3). This implies that the presence of a scalar field is simply the inevitable
consequence of the broken time translations; the root of an effective field theory of cosmological
perturbations [178]. In summary, a FLRW background that is neither Minkowski nor de Sitter
must yield a propagating scalar degree of freedom. These scalar fluctuations are the adiabatic
perturbations in the case of Inflation. It is a little more subtle for DE because one needs to involve
matter fields. This complications is bypassed by applying the EFT construction only to the grav-
itational sector, thereby assuming the WEP to be valid and thus considering the matter fields to
couple universally to the metric through the standard covariant matter action Sm(gµν,ψ). This
amounts to consider the existence of a Jordan metric. Note that it would possible, although more
complicated, to consider different matter sectors coupled to different metrics.

Construction of the action

Let us sketch how the action of the EFT of DE is constructed starting by defining the unitary
gauge. We follow the presentation given in [176–178] using the redefinition of the coupling function
proposed in [197].

3 A boson is a particle with an integer spin and therefore it follows Bose-Einstein statistics as opposed to a fermion
(half-integer spin which follows Fermi-Dirac statistics).
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Unitary gauge

The unitary gauge was first introduced in the context of the EW spontaneous symmetry breaking
by S. Weinberg in 1971 [198]. In cosmology, it was used for cosmological perturbation theory by H.
Kodama and M. Sasaki in 1984 [199], under the name of velocity orthogonal gauge. A definition of
the unitary gauge is in short:

The unitary gauge is the choice of the basis in which the Goldstone boson components of a field
responsible for the spontaneous symmetry breaking vanish.

For DE or inflation, the unitary gauge is constructed as follows. In a perturbed FLRW universe,
the scalar field is decomposed as

φ(t,~x)= φ̄(t)+δφ(t,~x). (215)

Choosing the time coordinate to be function of φ such that δφ= 0 simplifies further equation (215).
This way φ defines a preferred time slicing (φ = const.); constant time hypersurfaces coincide
with constant scalar field hypersurfaces. Seeing this in a fluid language implies that the velocity
of the scalar field is orthogonal to the constant time hypersurfaces, i.e. the velocity orthogonal
gauge. Doing so, the action will not bear the scalar field, it is in some sense "eaten" by the metric.
Therefore, one forgets about φ and builds the action thanks to the unit vector nµ perpendicular to
the time slicing. This vector yields in the unitary gauge

nµ =− ∂µφ√
−(∂µφ)2

→−
δ0
µ√

−g00
. (216)

This way, for example, the quintessence term transform as

−1
2

(∂φ)2 −V (φ)→−1
2

˙̄φ2 g00 −V (t) , (217)

and the cubic Galileon term as

(∂φ)2�φ→(2/3)(−g00)3/2 ˙̄φ3K (218)

=−2 ˙̄φ2
[

¨̄φ
√

−g00 −H ˙̄φ
(
(−g00)3/2 −1

)]
+ (2/3)

[
(−g00)3/2 −1

]
˙̄φ3δK . (219)

where δK is the perturbation of the trace of the extrinsic curvature tensor (see (220)). It follows
from the unitary gauge construction that, along with 4-d covariant terms such as the Ricci scalar
and any curvature invariants, any contractions of tensors with nµ are allowed in the action, for
instance, g00 and R00. The complete set of operators in the action is found by also considering
covariant derivatives of nµ. Equivalently, one can use their projection orthogonal to the constant
time hypersurfaces, that is, the extrinsic curvature tensor

Kµν = h σ
µ ∇σnν , (220)

with the induced metric defined as hµν = gµν+nµnν and nσ∇σnν∝ h µ
ν ∂µg00. One must not forget

that the coefficients in front of the operators in the action should be made time dependent since
time translations are broken. In particular, as opposed to inflation, if one wants to keep matter
minimally coupled to the Jordan frame metric, a free function of time must be allowed to multiply
the Ricci scalar.

Despite loosing apparent covariance, using the unitary gauge leads to advantages. The operators
in the action can be organized straightforwardly in the order of perturbations. Consequently, oper-
ators beyond the linear order do not affect the background evolution of the universe. Moreover, the
way the action is expanded yields direct observable implications. For example, the cubic operators
of the EFT of inflation are related to the observable three-point functions of the CMB.
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EFT of DE action

The above considerations imply, in summary, that the action will contain

- four-dimensional diffeomorphism-invariant scalars multiplied in general by functions of time,
e.g. the Ricci scalar and any curvature invariants.

- four-dimensional covariant tensors with free upper 0 indices and all spatial indices con-
tracted, e.g. g00, R00, etc.

- three-dimensional objects living on the t = const. hypersuface, e.g. the extrinsic curvature
K i j its trace K and the three dimensional curvatures terms (3)R, (3)Ri j, etc.

In total, the EFT of DE gravitational action [177] yields thus

S =
∫

d4x
p−g

M2(t)
2

[
R−λ(t)−C (t)g00 + µ2

2(t) (δg00)2 − µ3(t)δKδg00

−ε4(t)
(
δK2 −δKµνδKµν

)
+ ε̃4(t) (3)Rδg00

− ε̄2
4(t)δK2 + ε̄5(t) (3)RδK +κ(t) (3)R2

+ ...

+Lm(gµν,ψ)
]

(221)

where (M2, λ, C , µ2
2, µ3, ε4, ε̃4, ε̄4, ε̄5, κ) are the coupling functions, i.e. the structural functions

of time that scale the evolution of the background and perturbations. The first line of (221) cor-
responds to the operators acting on the background. Including the second line yields the most
general EFT action for single scalar field up to quadratic order in the Jordan frame, i.e. the GLPV
action in the EFT framework. Horndeski theories are recovered by setting ε̃4 = ε4. These two lines
encompass all the models depicted in Table 5. The third line includes operators that lead to higher
order space derivatives. The ellipsis stand for higher order terms, for example those constructed
with the Weyl tensor (see [176] for details). It proves useful to define the Brans-Dicke coupling
(the EFT version of wBD) as the time variation of the bare Planck mass M2

µ1(t)= d ln M2(t)
dt

. (222)

The background functions C (t) and λ(t) are not free function of the theory. They depend on the
Hubble parameter H(t), µ1(t) and the matter content. We will give their expression in section
2.3.4.

Stüeckelberg mechanism

Given a Lagrangian in the unitary gauge, gauge invariance is restored upon application of the
Stückelberg "trick". In others words, the method to make the Goldstone excitation resulting from
the spontaneously broken time translations appear in (221). To do so, one has to force back the
broken gauge transformation on the fields in the Lagrangian by imposing the time coordinate
transformation

t → t̃ = t+π(xµ) , (223)

xi → x̃i = xi , (224)
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µ1 λ C µ2
2 µ3 ε4 ε̃4

ΛCDM 0 const. 0 0 0 0 0
Quintessence 0 X X 0 0 0 0
k-essence 0 X X X 0 0 0
Brans-Dicke X X X 0 0 0 0
f (R) X X 0 0 0 0 0
Kinetic braiding [159] 0 X X X X 0 0
DGP X X X X X 0 0
f (G) -Gauss-Bonnet [200] X X X X X X 0
Galileons X X X X X X 0
Horndeski X X X X X X 0
GLPV X X X X X X X

Table 5: Some of the explicit DE models and MG theories encompassed by the action (221).

where π is the Goldstone field. This induces time dependent functions in the action to transform
as

f (t)→ f (t+π(x))= f (t)+ ḟ (t)π(x)+ ... , (225)

while scalars do not. The latter holds also true for the volume element and the matter action, since
we assume it to be covariant and universally coupled to the Jordan metric. The transformations of
the quantities of interest for the EFT of DE are

M2 → M2 +µ1M2π+ 1
2

(µ̇1 +µ2
1)M2π2 , (226)

g00 → g00 +2g0µπ̇+ gµν∂µπ∂νπ , (227)

δK i j → δK i j − Ḣπhi j −∂i∂ jπ , (228)

δK → δK −3Ḣπ− 1
a2 ∂

2π , (229)

(3)Ri j → (3)Ri j +H(∂i∂ jπ+δi j∂
2π) , (230)

(3)R → (3)R+ 4
a2 H∂2π . (231)

Stability of theories

One of the advantages of the EFT of DE is its capability to give a straightforward assessment of the
stability of a model. The severity of this problem depends on the type of instability encountered.

Toy model

In order to illustrate this, let us consider the quadratic action for one scalar degree of freedom π

L = 1
2

M2(t)
[
π̇2 − c2

s(t) |∇π|2 − 1
2

m2(t)π2
]

, (232)

where M2(t) is the running Planck mass of the theory, c2
s is the so-called propagation speed (which

coincides with the actual propagation speed of π-waves of momentum larger than m2) and m2
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is the mass of the scalar degree of freedom. This Lagrangian can present 3 different types of
instabilities:

• Tachyon instability. This is the less severe instability and corresponds to having m2 < 0. This
is not a catastrophic instability since it signals the presence of exponentially growing modes
as emt. The time scale of the instability is therefore set by m. If m ¿ H0, the time scale for
the development of the instability is larger than the age of the universe and it would not
manifest yet. Hence, a model can still be viable with tachyonic instabilities as long as the
corresponding mass is sufficiently small.

• Gradient/Laplacian instability. This instability is more severe than the previous one. It cor-
responds to having c2

s < 0. Again, this signals the presence of exponentially growing modes of
the form ecskt. The difference with respect to the tachyon instability is that now the timescale
is set by csk, which can be, in principle, arbitrarily large. Within an EFT framework we ex-
pect to have some cutoff kmax for the validity of the EFT so the shortest timescale on which
the instability will develop is such a kmax. However, since the background must evolve on
timescales η0 ¿ kmax, this means that the instability develops instantaneously as seen by
the background evolution. Hence, these instabilities are fatal for the viability of the model.

• Ghosts. This instability corresponds to having M2 < 0 and signals the presence of modes
with negative kinetic energy. Having modes with negative kinetic energy means vacuum is
unstable against processes involving the ghost modes and normal particles. This is another
instability one cannot tolerate.

The EFT of DE case

The stability conditions in the case of the EFT of DE can be obtained thanks to the Arnowitt-
Deser-Misner (ADM) formalism (see [177, 178] for instance) or, as we do here, by applying the
Stückelberg trick to (221) and choosing the Newtonian gauge. The propagating scalar degree of
freedom in the EFT of DE being a Stückelberg field, it has no mass and thus cannot develop
tachyon instabilities. From now on, since we will explore the phenomenology of Horndeski theories
in chapter 3, we restrict ourselves to the case ε4 = ε̃4. The action takes the form [177, 197]

Sπ =
∫

a3M2

[
A

(
µ1,µ2

2,µ3,ε4

)
π̇2 − B

(
µ1,µ3,ε4

) (~∇π)2

a2

]
, (233)

where the other two stability conditions in the scalar sector, the ghost and gradient free condition,
expressed in terms of the coupling functions are respectively given by

A = (C +2µ2
2)(1+ε4)+ 3

4
(µ1 −µ3)2> 0 (234)

B = (C + µ̊3

2
− Ḣε4 +Hε̊4)(1+ε4)− (µ1 −µ3)

(
µ1 −µ3

4(1+ε4)
−µ1 − ε̊4

)
> 0 . (235)

We have defined with a circle some "generalized time derivatives"

µ̊3 ≡ µ̇3 +µ1µ3 +Hµ3 , (236)

ε̊4 ≡ ε̇4 +µ1ε4 +Hε4 . (237)

The definition of sound speed of dark energy perturbations follows,

c2
s = B

A
, (238)
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which is the propagation speed of the scalar degree of freedom. It is described, in the case of
Horndeski and GLPV theories, by the dispersion relation ω2 = c2

s k2, ω being the pulsation.

For the stability of tensor perturbations, one needs to study the propagation of tensor modes from
the action (221). One must consider the spatial metric

hi j = a2(t)e2ζĥi j , (239)

where det ĥ = 1, ĥi j = δi j +γi j + 1
2γikγk j, γi j is traceless and divergence-free, i.e. γii = ∂iγi j = 0.

Then, since tensor and scalar modes are decoupled at the linear level, one can simply replace this
metric into the action (221), producing

S(2)
γ =

∫
d4xa3 M2

8

[
(1+ε4) γ̇2

i j −
1
a2 (∂kγi j)2

]
. (240)

This implies the ghost and gradient free conditions for tensor modes to be respectively

c2
T = 1

1+ε4
≥ 0 , (241)

M2 ≥ 0 . (242)

Hence, on can observe that the propagation speed of tensor modes can be different from one in
Horndeski and GLPV theories, i.e. ε4 6= 0.

Background and equations of motion

The construction and the stability of the EFT of DE action having been addressed, we shall now
move on to the structure it produces. We want to obtain the characteristic equations the action
produces in order be able to compute observable predictions in the following chapters. First, we
take the perfect-fluid assumption to obtain the background equations of motion and decompose
the matter energy momentum tensor as

T0
0 =−(ρm +δρm) , (243)

T0
i = (ρm + pm)∂iv =−a2T i

0 , (244)

T i
j = (pm +δpm)δi

j +
(
∂i∂ j − 1

3
δi

j∂
2
)
σ , (245)

with ρm and pm being respectively the background energy density and pressure of matter and
δρm, δpm their perturbations. v is the 3-velocity potential and σ is the scalar component of the
anisotropic stress. Varying the first line of the action (221) with respect to the metric yields the
background equations

C = 1
2

(
Hµ1 − µ̇1 −µ2

1

)
− Ḣ+ k

a2 − 1
2M2 (ρm + pm) , (246)

λ=
(
5Hµ1 + µ̇1 +µ2

1

)
Ḣ+3H2 +2

k
a2 − 1

2M2 (ρm − pm) , (247)

where the Hubble rate H(t) is free to be set by the user. From this, we see that the background
equations C and Λ are linked to M2, H and matter. At this point, one can see that the freedom of
a Horndeski model is represented in the EFT of DE by one constant and five functions of time:{

ρm,0, H(t), µ1(t), µ2
2(t), µ3(t), ε4(t)

}
, (248)
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where the evolution of ρm will be provided by the definition of H(t). As we will see in the next
chapter,

{
ρm,0, H(t)

}
can be described by two constants when choosing H(t) to be that of ΛCDM.

At this point, let us continue with the structure of the background equations. Since we have con-
sidered the Jordan frame, test particles follow geodesics and the matter energy momentum tensor
is conserved in the standard way

ρ̇m +3H(ρm + pm)= 0 . (249)

On the contrary, the non-minimal coupling of the scalar field to gravity implies DE is not conserved.
It proves useful to keep track of the fluid description by defining the fluid quantities thanks to the
modified Friedmann equations

H2 + k
a2 = 1

3M2 (ρm +ρde) , (250)

Ḣ− k
a2 =− 1

2M2 (ρm +ρde + pm + pde) . (251)

Then, the "non-conservation" can be quantified by a continuity equation, using (250), (251) and
(249) one obtains

ρ̇de +3H(ρde + pde)= 3µ1M2
(
H2 + k

a2

)
. (252)

The non conservation of DE is thus essentially regulated by the Brans-Dicke coupling µ1.

Finally, using (250) and (251) in (246) and (247) allows the simplification

C = 1
2

(Hµ1 − µ̇1 −µ2
1)+ 1

2
(ρde + pde) , (253)

λ= 1
2

(5Hµ1 + µ̇1 +µ2
1)+ 1

2
(ρde − pde) . (254)

One could equivalently define an effective ρeff
de and peff

de

ρde =
M2

M2
pl

ρeff
de +

(
M2

M2
pl

−1

)
ρm , (255)

pde =
M2

M2
pl

peff
de +

(
M2

M2
pl

−1

)
pm , (256)

so as to recover a more standard form of Friedmann equations

H2 + k
a2 = 1

3M2
pl

(
ρm +ρeff

de

)
, (257)

Ḣ− k
a2 =− 1

2M2
pl

(
ρm +ρeff

de + pm + peff
de

)
, (258)

where the dependency on the non-minimal coupling M2 has been hidden in the DE component.

Now, having all the equations characterising the background, let us obtain the equations of mo-
tions of the perturbations. To do so, one applies Stückelberg trick to the action (221) and considers
the linearly perturbed FLRW metric with only scalar fluctuations,

ds2 =−(1+2Φ)dt2 +2∂iαdtdxi +a2(t)
[
(1−2Ψ)δi j +2χi j

]
dxidx j , (259)
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where χi j ≡ (∂i∂ j − 1
3δi j∂

2)β is given in terms of the scalar perturbation β. Then one must vary
(221) with respect to each scalar components and then fix α = β = 0 in the derived equation to
recover the Newtonian gauge. This procedure produces

¦ 00-component (δS/δΦ= 0):

M2
(

k2

a2

((
µ1 −µ3

)
π−2Ψ (ε4 +1)

)+Φ(
2C −6H2ε4 −6H2 −6Hµ1 +6Hµ3 +4µ2

2

)
+ π̇

(
−2C +3Hµ1 −3Hµ3 −4µ2

2

)
+3π

(
H

(
2C −Hµ1 +µ2

1 + µ̇1

)
+ Ḣ

(−2Hε4 −µ1 +µ3
))−3Ψ̇

(
2Hε4 +2H+µ1 −µ3

))= δρm

(260)

¦ 0i-component (δS/δα= 0):

M2
(
π

(
−2C +Hµ1 +2Ḣε4 −µ2

1 − µ̇1

)
+Φ(

2Hε4 +2H+µ1 −µ3
)+ (

µ3 −µ1
)
π̇+2Ψ̇ (ε4 +1)

)
=−(pm+ρm)v

(261)

¦ i j-trace component (δS/δΨ= 0):

M2
(

k2

a2

(
−2

3
π

(
ε4(H+µ1)+µ1 + ε̇4

)+ 2Ψ
3

− 2
3
Φ (ε4 +1)

)
+Φ

(
2C +6H2ε4 +6H2 +4Hµ1 −3Hµ3 +2Hµ1ε4 +2Hε̇4 +2Ḣ (ε4 +2)+2µ2

1 +2µ̇1 + µ̇3 +µ1µ3

)
+π

(
−2C µ1 −2Ċ +3H2µ1 −6C H−2Hµ2

1 −2Hµ̇1 + Ḣ
(
2ε4(3H+µ1)+µ1 +2ε̇4

)+2ε4Ḧ−µ3
1 − µ̈1 −3µ̇1µ1

)
+π̇

(
−2C −2Hµ1 +3Hµ3 +2Ḣε4 −2

(
µ2

1 + µ̇1

)
− µ̇3 −µ1µ3

)
+Φ̇(

2Hε4 +2H+µ1 −µ3
)+2Ψ̇

(
(ε4 +1)(3H+µ1)+ ε̇4

)+ (
µ3 −µ1

)
π̈+2(ε4 +1)Ψ̈

)= δpm

(262)

¦ i j-traceless component (δS/δβ= 0):

M2 (
π

(
ε4(H+µ1)+µ1 + ε̇4

)−Ψ+Φ (ε4 +1)
)=σ (263)

Combining (260) and (261) produces the EFT of DE generalisation of the Poisson equation,

¦ Generalised Poisson equation:

M2
(

k2

a2

((
µ1 −µ3

)
π−2Ψ (ε4 +1)

)−2π̇
(
C +2µ2

2

)
+Φ

(
2C −3Hµ1 +3Hµ3 +4µ2

2

)
+3Ḣ

(
µ3 −µ1

)
π+ (

3µ3 −3µ1
)
Ψ̇

)
= δρm −3H(pm +ρm)v

(264)

The full set of equations needed to capture all the modifications of gravity in the perturbed sector
are indeed involved. However, as we will see in the next chapter, one can simplify these equations
on certain scales thanks to the quasi-static approximation. This enables one to condense all the in-
formation in two observables: the effective Newton constant and the gravitational slip parameter.

C O N C L U S I O N

We have seen that many alternative models to ΛCDM exist. A large class of which fall under the
label of scalar-tensor theories where a single scalar degree of freedom is added to GR. The most
general theories of this type were Horndeski theories until recently, when they were generalised to
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GLPV theories. The achievement in this generalisation transpires from the third order equations
of motion they yield and yet, the degree of freedom they produce propagates with a healthy second
order equation. In the realm of DE and MG, scalar-tensor theories are only the "tip of the iceberg".
We have not discussed, massive gravity and bi-gravity (see [168] for a detailed review) where a
mass is given to the graviton, and many more (see for instance the summary diagram in Figure 3
of [12]). This profusion of theories calls for unifying descriptions. For instance, the parametrised
post-Newtonian formalism [22] offers the possibility of efficiently confronting gravitational theo-
ries with solar system and astrophysical tests. It has notably shown how stringently gravity is
constrained to be that of GR on small scales. The parametrised post-Friedmannian formalism
[201] is a complementary tool of the parametrised post-Newtonian formalism. While the latter is
valid in the weak field limit such that an expansion around the Minkowski metric is justified, the
parametrised post-Friedmannian formalism is valid for any background space times provided the
curvature perturbations are small.

In this chapter, however, we have concentrated on presenting another unifying framework: the
effective field theory of dark energy. The reason for this stems from the fundamental link the EFT
of DE has with scalar-tensor theories. The coupling functions of the action parametrise these the-
ories in terms of structural functions of time which, in turn, appear naturally in the expression
of observables. This leads to an easy comparison of theoretical predictions with observations, as
we will see in the rest of this thesis. One profound revelation of the EFT of DE description is
the presence of a scalar field arising as the inevitable consequence of the spontaneously broken
time translations of spacetime. This description has its advantages and drawbacks. Being a linear
description, it cannot describe non-linear regimes such as the screening mechanism we have dis-
cussed in section 2.2. Moreover, the unitary gauge description looses the apparent covariance of
the theory, however, it has the benefit of classifying operators in order of perturbations. Neverthe-
less, the covariant description of the theory can be recovered thanks to the Stückelberg trick which
consist in forcing a time coordinate transformation where the Goldstone field is reintroduced.

As a concluding remark of this chapter and before moving to observable predictions of the EFT of
DE, it is interesting to point out that treating broken symmetries goes indeed beyond cosmology.
For instance, some of the authors that developed the EFT of DE have applied the EFT method to
condense matter physics [202]. This enabled the description of framids, a common description of
matter states, and the prediction of new hypothetical states.
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In this chapter, we shall put the tools provided by the EFT of DE into practical use. The back-
ground motivation, as we have mentioned in the introduction of this thesis, is to give the means
for MG theories to be efficiently diagnosed in perspective of future surveys. In the context of LSS
observables, any deviations from ΛCDM will imply some atypical relation among the curvature
perturbation Ψ, the Newtonian potential Φ and the matter density contrast δm. These effects can
be encoded within time and scale modifications to the effective Newton’s constant µ and to the
gravitational slip parameter η [203]. The former quantity describes how fluctuations of the matter
fields interact in the universe, while the latter encapsulates the non-standard relation between the
Newtonian potential Φ (time-time part of the metric fluctuations) and the curvature potential Ψ
(space-space part). One can derive a further parameter from µ and η, Σ, which is more relevant for
lensing surveys [204, 205]. Σ relates the matter over-density with the lensing (or Weyl) potential
Φ+ = (Φ+Ψ)/2. We will consider the growth function fσ8 which, as we have seen in section 1.4.2.3,
can be optimally estimated from the analysis of RSD. This is another key quantity turning galaxy
redshift surveys into gravity probes. Thanks to these set of observables of the LSS, which provide
an efficient tool-kit to characterise modified gravity effects, we will try, in this chapter, to bring
answers to the guiding questions mentioned in the introduction. We will also use this chapter to
introduce a novel classification of dark energy scenarios we embed in linear Horndeski theories:

- Late-time dark energy (LDE): This is the reference class of models, in which both the dark
energy momentum tensor and the possible modifications of gravity (i.e. the non-minimal
gravitational couplings) become negligible at early times.

- Early dark energy (EDE): In these scenarios dark energy can contribute to the total energy
momentum tensor even at early times, while non-minimal gravitational couplings are kept
as a late-time phenomenon.

- Early modified gravity (EMG): Linear Horndeski theories in their full generality. Not only
does dark energy always contribute to the total energy momentum tensor, but modified grav-
ity effects are also persistent at early times, during matter domination.

This chapter is organised as follows. We present first a practical guide to the EFT of DE for ex-
tracting observable predictions. Then, we discuss the definite and less definite predictions of linear
Horndeski theories and sub classes we obtain. We use the term "linear" Horndeski since it is the
part the EFT of DE describes. However, this is the regime of interest when considering LSS ob-
servables. Finally, we establish an observable diagnostic of linear Horndeski theories thanks to
the correlations of the LSS observables.

E X P L O R I N G D A R K E N E R G Y M O D E L S

Extracting observable features of EFT models from the set equations of motions we derived in
section 2.3.4 requires a number of additional steps. One must choose the background expansion
history and compute the LSS observables thanks to their expressions with the EFT couplings —
accurately parametrised— while bearing in mind stability imperatives. One possible direction to
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follow is to use numerical codes that solves Boltzmann equations such as EFT-CAMB [206] and
hi_class [207]. However, we pursue a complementary route in this chapter. We use a Monte Carlo
generation of viable models to assess the statistical tendencies the EFT models produce.

Setting the background evolution history

The accelerated nature of the universe is not given by the EFT of DE per say but by the background
expansion it is applied onto, dubbed the effective background. The advantage of this description
is that one can directly set the background evolution to flat ΛCDM, as it is strongly suggested by
observations, and concentrate on MG predictions on the perturbed sector. Doing so, we also follow
the prescription used in the release of cosmological measurements. Generically, they are released
in aΛCDM background fiducial model, therefore, the sake of effective comparison leads us to chose
ΛCDM for the background evolution as well. We set the background thusly

H2(z)= H2
0

[
x0(1+ z)3 + (1− x0) (1+ z)3(1+w̄)

]
, (265)

where the reduce matter density of the background at present time, x0, and the constant effective
equation of state parameter, w̄, are free parameters that we will set to Planck 2015 measurements
[54] (x0 = 0.315, w̄ =−1). We neglect the contribution of radiation, since our analysis is restricted
to redshifts z < 100.

We use the fractional matter density of the background reference model calculated at any epoch,
x, as our time variable. Its expression as a function of the redshift is

x = x0

x0 + (1− x0)(1+ z)3w̄ . (266)

This time variable proves useful for late-time cosmology for two reasons. It characterises the evo-
lution of the universe by smoothly interpolating between x = 1, deep in the matter dominated era,
and to its present value of x0 as depicted in Figure 14. It has also the benefit of "zooming in" the
late time epoch when the transition to DE domination takes place. This change of time variable
implies a derivative with respect to cosmic time can be converted into one with respect to x as

d
dt

= 3Hw̄x(1− x)
d
dx

. (267)

Having specified the background geometry H(z), we must express the functions M2(t) and C (t)
accordingly. First of all, M2(t) and µ1 are related by (222). By inverting the latter, we obtain

M2(t) =
M2

pl

(1+ε4(x0))2 exp
(∫ t

t0

dt ′µ1(t ′)
)
, (268)

where today’s initial conditions have been set according to (281). One can equivalently parametrise
either M2 or µ1, we choose µ1 (see section 3.1.5). To fully determine the evolution equation for the
background coupling 1 C given by (246), considering pressure-less matter, we still need to supply
an expression of ρm. There, ρm represents the physical energy density of non-relativistic matter.
By "physical" we mean the quantity appearing in the energy momentum tensor. It scales as a−3

since we work in the Jordan frame. We can define the physical fractional energy density thusly

Ωm,0 ≡ ρm(t0)
3M2

plH
2
0

. (269)

1 The background coupling function λ(t) does not play a role in the LSS observables nor in the stability of theories
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Figure 14: Plot of the function x(z) form (266) with x0 = 0.315 and w̄ =−1.

In principle, one could try to measure ρm(t0) by directly weighing the total amount of baryons
and DM, for instance within a Hubble volume. In parallel, the effective ρ̄m would arise from the
effective description of (265) and would be measured by constraining the background with SNIa
measurement for example. This implies that, in theories of MG, ρm and ρ̄m can be at most propor-
tional [197]. The same goes for Ωm,0 and x0, however, we set Ωm,0 = x0 for simplicity.

In conclusion, by setting the background evolution to that of a flat ΛCDM model, an EFT model is
now described by {

x0, w̄, µ1(t), µ2
2(t), µ3(t), ε4(t)

}
. (270)

These functions and constants are coordinates in the parameter space of the EFT models (see
Figure 15). We shall now obtain the expressions of the LSS observables they produce.

Extracting observables

There is a range of scales on which extracting perturbation observables from MG theories is rel-
atively straightforward: the window of comoving Fourier modes ksh < k < knl. For momenta less
than the non-linear scale, knl ' (10Mpc)−1, one can trust linear perturbation theory. For momenta
well above the sound horizon scale ksh ' aH/cs (cs being the speed of sound of DE fluctuations), one
can neglect the time derivatives of the metric and scalar fluctuations in the linear equations of mo-
tions in front of k, the so called quasi-static approximation [208, 209]. In this regime, it is possible
to compute algebraically the effective reduced Newton constant Geff(t,k) and the gravitational slip
parameter η(t,k) of a given EFT of DE model [177]. The entire set of perturbation equations we pre-
sented in section 2.3 reduces, in the flat Newtonian gauge ds2 =−(1+2Φ)dt2+a2(1−2Ψ)δi jdxidx j,
to

−k2

a2Φ= 4πGeff(t,k)δρm , (271)

η(t,k)= Ψ
Φ

. (272)

Moreover, in surveys of LSS, modes well inside the Hubble horizon are generally observed. One
can thus ignore mass terms in the perturbation quantities π, Φ and Ψ, because they are naturally



66 F E A T U R E S I N L A R G E S C A L E S T R U C T U R E O B S E R VA B L E S

of order Hubble if the scalar degree of freedom plays a relevant role in the acceleration of the
universe, and are small compared to the gradient terms2.

Effective gravitational coupling (µ)

In this set-up, the action (221) becomes for linear Horndeski theories

S =
∫

a M2
[
(~∇Ψ)2 −2(1+ε4)~∇Φ~∇Ψ−2(µ1 + ε̊4)~∇Ψ~∇π

+ (µ1 −µ3)~∇Φ~∇π−
(
C + µ̊3

2
− Ḣε4 +Hε̊4

)
(~∇π)2

]
−a3Φδρm , (273)

where δρm = ρmδm is the perturbation of the non-relativistic energy density, a dot means deriva-
tive w.r.t. proper time. We take first the variation of (273) with respect to the curvature potential
Ψ to obtain the expression of Geff. It produces the algebraic relation

Ψ= (1+ε4)Φ+ (µ1 + ε̊4)π (274)

that, once substituted back into (273), yields

S =
∫

a M2
{
−(1+ε4)2(~∇Φ)2 + [

µ1 −µ3 −2(µ1 + ε̊4)(1+ε4)
]
~∇Φ~∇π

−
[
C + (µ1 + ε̊4)2 + µ̊3

2
− Ḣε4 +Hε̊4

]
(~∇π)2

}
−a3Φρmδm . (275)

We can solve the coupled π-Φ system by taking the variation of (275) with respect to π, giving
another algebraic relation[

2C +2(µ1 + ε̊4)2 + µ̊3 −2Ḣε4 +2Hε̊4

]
π = [

µ1 −µ3 −2(µ1 + ε̊4)(1+ε4)
]
Φ . (276)

By inserting the later into (275) and then varying the result w.r.t to Φ, we obtain, in Fourier space,

−k2

a2Φ= 4πGeff(t)ρmδm , (277)

where
Geff = 1

8πM2(1+ε4)2
a0

b0
. (278)

with

a0 = 2C + µ̊3 −2Ḣε4 +2Hε̊4 +2(µ1 + ε̊4)2 ,

b0 = 2C + µ̊3 −2Ḣε4 +2Hε̊4 +2
(µ1 + ε̊4)(µ1 −µ3)

1+ε4
− (µ1 −µ3)2

2(1+ε4)2 = 2B
1+ε4

, (279)

with B being the gradient free stability condition (234). An alternative route one could have fol-
lowed was to use the two algebraic relations in the generalised Poisson equation (264) directly.

Now, we need to specify the relation between Geff and the Newton constant GN —or, equivalently,
the Planck mass Mpl— to define appropriately the effective Newton constant, the ratio of the two.
Powerful Solar System [211, 212] and astrophysical [213, 214] tests impose stringent limits on
MG. As we have mentioned in section 2.2, realistic models must incorporate screening mecha-
nisms that ensure convergence to GR on small scales and/or high-density environments. Such an

2 Note that we would not have been allowed to do so if we were exploring chameleon and f (R) models, which phenomeno-
logically require a mass for the scalar field much larger than H [210].
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astrophysical effect is not encoded within the EFT of DE; the couplings in (273) depend only on
time and not on space. A "temporal" or "cosmological" screening also exists which screens out MG
effects at high redshifts [215]: even though the EFT formulation does not provide a microscopic
description of how this comes about, it does effectively account for such a temporal effect via the
time-dependent functions, µ1, µ2

2, µ3 and ε4. By inspection of action (275) we conclude that in a
screened environment, the "bare" gravitational coupling M−2 gets simply addressed by a factor of
(1+ ε4)−2. This is what we obtain in the Poisson equation (271) if we switch off the mixing term
~∇Φ~∇π. We thus define a screened gravitational coupling

Gsc(t) ≡ 1
8πM2(1+ε4)2 , (280)

valid only in (totally) screened environments. Since we live and perform experiments in a screened
environment, the value of Gcs evaluated today must be the Newton constant measured by Cavendish
experiments for example. Hence

GN ≡ 1
8πM2

pl

' 1

8πM2(x0) (1+ε4(x0))2 . (281)

In summary, beyond the "bare" mass M multiplying the Einstein Hilbert term in the unitary gauge
action (221), we can define three gravitational couplings of interest:

i)

µsc = Gsc

GN
=

(
M(x0) (1+ε4(x0))

M (1+ε4)

)2
(282)

is the gravitational coupling of two objects in the quasi-static approximation when screening is
effective. In other words, it characterises the un-screenable MG effects introduced by the scalar
field.

ii)

µff =
Geff

Gsc
= a0

b0
= 1+ 1+ε4

B

[
µ1 −µ3

1+ε4
− (µ1 + ε̊4)

]2
(283)

is the quantity characterising the strength of the fifth-force mediated by the scalar field. Physically,
the scalar field contribution to the gravitational interaction must always be attractive, as expected
from a (healthy) spin-0 field. This is indeed the case since B > 0 and (1+ ε4)−1 > 0 for a healthy
theory.

iii)

µ= Geff

GN
=µsc ×µff (284)

is the total gravitational coupling of two objects in the quasi-static approximation and in the linear
regime, i.e. when screening is not effective. This is the quantity which is relevant on large (linear)
cosmological scales.

Growth function (fσ8)

The effective gravitational constant comes as part of the source term in the evolution of the linear
density perturbations of matter δm :

δ̈m +2Hδ̇m −4πµGNρmδm = 0 . (285)
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The δm variable being difficult to observe, it would be preferable to characterise the growth of
structures thanks to the growth function fσ8 we have presented in section 1.4.2.3. The growth
rate f , using f = d ln,δm/d lna, can be obtained by converting (285) into

3w̄(1− x)xf ′(x)+ f (x)2 +
[
2− 3

2
(w̄(1− x)+1)

]
f (x)= 3

2
xµ , (286)

which approximates the true evolution of f in the Newtonian regime (below the Hubble scale) and
well after the initial, radiation dominated phase of cosmic expansion. We compute the amplitude
of σ8(x) in a given EFT model, by rescaling the Planck best fitting value σPlanck

8,0 as follows:

σEFT
8 (x)= DEFT+ (x)

DPlanck+ (x0)
σPlanck

8,0 , (287)

where D+ is the growing mode of linear matter density perturbations obtained by integrating the
growth rate.

Gravitational slip parameter (η)

Having specified the effective gravitational constant µ, we must now provide an expression for the
gravitational slip parameter η in order to fully describe all possible modifications of gravity. By
inserting (276) into (274) we obtain

η = 1− c0

a0
, (288)

with
c0 = (µ1 + ε̊4)(µ1 +µ3 +2ε̊4)−ε4(2C + µ̊3 −2Ḣε4 +2Hε̊4) . (289)

Note that µ and η share the same term a0.

Light deflection parameter (Σ)

In general, observations probing the gravitational potentials, such as weak lensing measurements,
are not directly sensitive to the gravitational slip parameter but rather to the sum of the gravita-
tional potentials Φ+Ψ, as we have seen in section 1.4.2.2. Therefore, we chose to consider also the
light deflection parameter Σ defined by − k2

a2 (Φ+Ψ)= 8πΣ(t,k)GNρmδm. In GR, as for η, it is equal
to 1. In MG, it is not necessarily and it can be expressed straightforwardly as the combination of
µ and η

Σ= µ

2
(1+η) . (290)

This theoretical degeneracy between LSS observables will be instrumental in understanding spe-
cific predictions of linear Horndeski theories in section 3.3.1.

Embedding dark energy scenarios

One feature of freezing quintessence models we saw in section 2.1.1 is their tracking behaviour. As
compared the standard model, the tracking solution, despite mimicking radiation, can allow a non
negligible amount of DE in the past [216, 217]. An intuitive way to account for the early effects it
produces is to directly parametrize the DE component Ωde [218] to yield early dark energy [219].
The background evolution is thereby supplemented with a DE component effective at early times,
Ωede, and treated as a free parameter [220–223]. In this spirit, many types of parametrisations
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have been introduced and tested [224, 225]. However, late observations [80] have put stringent
bounds on Ωede (less than 1%). As a consequence of these tight bounds, new paths have been
studied. For example, the authors in [226] show how interacting early DE and DM can alleviate
the coincidence problem. Authors in [227] have studyed early modifications of gravity effects on
cosmological observables revealing that stronger coupling with matter arises.

Therefore, we would like for our EFT of DE description to be able to account for early modifications
to GR. Since functional expression of the couplings is not imposed by the EFT of DE, one can
change the asymptotic behaviours of the couplings to achieve this goal. Starting from the classical
modelling of DE in the EFT formulation, we suggest, in the following, a novel classification of early
DE models embedded in linear Horndeski theories. One particularity of these new models stems
from the fact that they affect solely the perturbation sector. The background being fixed to that of
ΛCDM, they evade the strong constraints on early modifications to the background.

Late-time dark energy (LDE) fhjf

A general consensus for modelling time dependent coupling functions of the DE sector is to require
their switching off at early times in order to fulfil early tests such as BBN and CMB. An order zero
parametrisation used commonly in literature (see for example [192, 197, 228–230]) is

" coupling function(t)= Ω̄de(t)×const. " , (291)

where Ω̄de(t) is the background fractional DE density. Therefore, modifications of gravity are
parametrized to follow the background evolution of the DE component. However, this is not suffi-
cient. The full recovery of GR at early times requires an additional condition. In order to see that,
one must substitute ρm = 3M2

pl xH2, obtained from (269), into (246), hence

C

H2 = 1
2

(
µ1

H
− µ̇1

H2 − µ2
1

H2

)
− Ḣ

H2 − 3
2

M2
pl

M2 x . (292)

Provided that µ1/H →
x→1

0, (292) implies

C

H2 →
x→1

3
2
− 3

2

M2
pl

M2 , (293)

thereby a cancellation between the last two terms on the RHS of (292) is necessary to obtain
C /H2 →

x→1
0, and in parallel λ/H2 →

x→1
const., so as to recover the standard model at early times.

From (268), one can see the condition on C /H2 and λ/H2 to be nothing else than asking a condition
on M2, i.e. M2 →

x→1
M2

pl, thus requiring DE to be fully vanishing at high redshifts (x → 1).

LDE is thus the minimal model, in which all effects of DE are confined to late times. Not only do
non minimal couplings (µ1, µ2

2, µ3, ε4) go to zero at early times but M goes to Mpl. In other words,
the energy density of non relativistic particles ρm must saturate the Friedmann equations at early
time. In summary,

LDE

{
M2

M2
pl

→ 1 ,
µ1

H
→ 0 ,

µ2
2

H2 → 0 ,
µ3

H
→ 0 , ε4 → 0

}
x→1

. (294)
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x → 1 M2/M2
pl µ1/H µ3/H, ε4 µ η Σ cs

LDE 1 0 0 1 1 1 #
EDE # 0 0 # 1 # 1
EMG # 0 # # # # #

Table 6: Summary of the phenomenological effects of the different dark energy scenarios. The symbol #
stands for a constant different from 0 and 1.

Early dark energy (EDE) fhjf

In light of the above, an immediate extension is to relax the condition on M2 to explore early DE.
The DE will contribute to the total energy momentum tensor even at early times, while, however,
all non-minimal couplings vanish. As mentioned for quintessence models, the only way this is
possible is thanks to a tracker behaviour, i.e. for DE to acquire the same physical equation of state
as DM early on, so that it becomes indistinguishable from the latter as long as the background
evolution is concerned. In summary,

EDE

{
M2

M2
pl

→ const. ,
µ1

H
→ 0 ,

µ2
2

H2 → 0 ,
µ3

H
→ 0 , ε4 → 0

}
x→1

. (295)

A caveat must be issued regarding the use we make of the adjective "early". Our study is oblivious
of the radiation dominated epoch. Therefore "early" means for us always well after equivalence, at
z ' 100, but well before the onset of acceleration, at z ' 1. Accordingly, the early non-standard sce-
narios we are considering evade Big-Bang Nucleosynthesis (BBN) constraints. In principle, since
the background expansion is fixed to that of ΛCDM, the time at which neutrinos decouple and the
neutron-proton fluid exits from equilibrium is not modified in our non-standard gravitational sce-
narios. However, the time elapsed from this epoch (T ∼ 0.8 Mev) to that when BBN begins (T ∼ 0.1
Mev), which regulates neutron decays and accounts for the final neutron-to-proton ratio available
for nucleosynthesis, critically depends on the value of the Newton constant.

Early modified gravity (EMG) fhjf

The last extension is to allow for the asymptotic value of the non-minimal couplings at early times
to be different from zero. However, the Brans-Dicke non-minimal coupling µ1 needs a special at-
tention due to its link with M2; (268) implies for any asymptotic value of µ1 different from zero M2

would either tend to zero or plus infinity, corresponding to infinite or zero gravitational coupling
respectively. We thus restrict to the cases when µ1 → 0. In summary, EMG is the most general
case,

EMG

{
M2

M2
pl

→ const. ,
µ1

H
→ 0 ,

µ2
2

H2 → const. ,
µ3

H
→ const. , ε4 → const.

}
x→1

. (296)

Allowing modifications of gravity also deep in matter domination without altering the background
evolution is the novelty of the scenarios EDE and EMG. Table 6 summarises the features of the
three types of DE considered in this paper and highlights the effects they have on the asymptotic
behaviour of some relevant quantities of the EFT of DE.
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Viability of theories

We will require all our models to be free of instabilities according to section 2.3.3. Furthermore,
along the arguments detailed in [231], we will generally not allow superluminal propagation
speeds for either scalar or tensor modes. On top of these theoretical requirements, we should
exclude models that are already ruled out by current observations. As for the choice of the back-
ground expansion rate, which we describe via the effective Hubble rate (265), we exploit current
limits available in the perturbed sector of the universe. Notably, the local value of gravitational
waves of EFT of DE models has been recently constrained leading to a bound on the value of
ε4(x0) ∼ 10−2 [232], hence we simply set its present value to 0 for simplicity. Also, the speed of
tensor modes has been argued to be tightly constrained from below by the gravitational Cerenkov
effect of cosmic rays, 1− cT < 2×10−15[233]. However, the typical energy scale of the the emitted
gravitons, ∼ 1010 GeV, is well above the expected limit of validity of an effective theory of DE.
For instance, the cut-off scale of Galileon theories is Λs ∼

√
H2

0 MPl ∼ (1000 km)−1 ∼ 10−12 eV (see
section 2.2). In summary, we require our models to fulfil

Stability of the models,

A ≥ 0 ghost free (scalar), (297)

B ≥ 0 gradient free (scalar), (298)

M2 > 0 ghost free (tensor), (299)

c2
T ≥ 0 gradient free (tensor), (300)

Subluminal propagation speeds,

c2
s 6 1 scalar modes, (301)

c2
T 6 1 tensor modes, (302)

Observational requirement (compatibility with current constraints),

ε4(x = x0)= 0 . (303)

The dependence of our conclusions on the requirement of sub-luminal propagation speeds will be
assessed in Sec. 3.3.2.1.

As already discussed in section 3.1.3, the models we are considering are ineffective in describing
cosmic evolution at such an early epoch as those where BBN could be used to constrain them.
However, on the opposite end, i.e. today, Lunar ranging tests have put constraints on the variation
of Newton’s constant, at around ĠN/GN < 0.02H0 (see [234] for a detailed review). Since we are
not considering EFT operators beyond the linear level, it is difficult to predict how non-linearities
would affect the definition of GN for our models. It is however misleading to draw the conclusion
that the coupling µ1 or M2 would end up being severely constrained. Indeed, variations in the
Planck mass could still be relatively large, although appropriately counter-balanced by the spe-
cific time scaling of ε4 (and so ċT , see (281)). Accordingly, we do not consider the Lunar ranging
constraint as an additional viability criteria. We simply note that linear Horndeski models passing
this constraint would constitute a sub-sample of the whole set of healthy theories considered in
this study.
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Exploration protocol

We have the expressions of the LSS observables at our disposal, we have chosen the background
history suggested by observations, we have defined the possible asymptotic behaviour coupling
functions can have within linear Horndeski theories and we have defined the viability framework
we focus on. In light of this, we must now parametrise acutely the coupling functions.

On the one hand, the cases of LDE and EDE require the switching off of the coupling functions
deep in matter domination, therefore a (1− x) factor is requested to follow the prescription of
(291). Then, one must give enough flexibility to the coupling functions to access all the observable
features of linear Horndeski theories. An intuitive guess is to call for a polynomial expansion in
powers of (x− x0) for example. A posteriori tests have shown that an expansion up to (x− x0)2 is
enough to cover all the rich phenomenology of our models. In summary, the coupling functions for
LDE and EDE yield :

µ1 (x) = H (1− x)
(
p11 + p12 (x− x0)+ p13 (x− x0)2

)
, (304)

µ2
2 (x) = H2 (1− x)

(
p21 + p22 (x− x0)+ p23 (x− x0)2

)
, (305)

µ3 (x) = H (1− x)
(
p31 + p32 (x− x0)+ p33 (x− x0)2

)
, (306)

ε4 (x) = (1− x)
(

p42 (x− x0)+ p43 (x− x0)2
)

. (307)

According to the discussion in section 3.1.3, the LDE case requires a constraint on the expansion
coefficients of µ1. By using (268), the constraint

1− x0

6w̄
[2 p12 + p13 (1−3x0)]− ln x0

3w̄

[
p11 − x0 p12 + x2

0 p13

]
= 0 (308)

must be imposed to enforce M2(x → 1)→ M2
pl. Note that there is no order 0 parameter for ε4 given

the observational bounds discussed in section 3.1.4.

On the other hand, the EMG case displays non vanishing coupling functions (except µ1), hence the
factor (1− x) is left out :

µ1 (x) = H (1− x)
(
p11 + p12 (x− x0)+ p13 (x− x0)2

)
, (309)

µ2
2 (x) = H2

(
p21 + p22 (x− x0)+ p23 (x− x0)2

)
, (310)

µ3 (x) = H
(
p31 + p32 (x− x0)+ p33 (x− x0)2

)
, (311)

ε4 (x) =
(

p42 (x− x0)+ p43 (x− x0)2
)

. (312)

To study the predictions of these DE scenarios, we explore the space of non-minimal couplings
µ1, µ2

2, µ3 and ε4 that covers the entire set of Horndeski theories by a Monte Carlo procedure.
We randomly generate the coefficients pi,n. We reject the theories that do not pass the viability
conditions of section 3.1.4 until we have produced 104 viable models. We find that dealing with
the full parameter space, the chance of hitting a viable theory is much lower than 1%. In addition,
we want the quasi-static approximation to have a large enough range of applicability, we therefore
also impose cs > 0.1, which allows us to cover the Fourier volume of the EUCLID mission [209]. We
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Figure 15: Pictorial representation of the space of theories spanned by the EFT coordinates µ1,µ3 and ε4.

emphasize, however, that this is a very weak selection effect on our randomly generated models.
There is no "natural unit" in the space of expansion coefficients, however, the coupling functions
are expected to be of order 1. Therefore, we randomly generate the coefficients in the interval
pi,n ∈ [−1,1].

S I G N A T U R E S F R O M B R A N S - D I C K E T O H O R N D E S K I T H E O R I E S

In this section, we analyse the time evolution of the LSS observables presented in section 3.1.2
generated from our Monte Carlo procedure. In particular, we want to see whether the predictions
of linear Horndeski and sub classes follow bounded trends in the most restrictive set-up: LDE sce-
nario, all viability conditions requested and µ2

2 = 0. The coupling µ2
2 does not appear explicitly in

the observables but plays a role in the ghost stability conditions only. Its function being a modula-
tion of the sound speed; keeping it would broaden significantly the space of stable theories. Hence,
we will set it to zero at first and assess its effect later in section 3.2.5.

In summary, we will restrict our exploration to EFT models with the background expansion set
to ΛCDM exactly (w̄ = −1) and theories with the non-minimal coupling of Brans-Dicke (BD), µ3

of the cubic galileon- and Horndeski-3 (H3), and ε4 present in galileon-Horndeski 4 and 5 (H45)
Lagrangians. They all correspond to coordinates in the space of theories as schematically shown
in Figure 15.

Effective gravitational constant and its components

The redshift dependence of the effective Newton constant appears to be well bounded by our via-
bility conditions. Indeed, Figure 16 shows that the µ of our large class of models have a similar
evolution pattern over time. The universal behaviour of µ(x) is best captured by the following few
features.

First, all the curves display a negative derivative at x = 1, which implies stronger gravitational
attraction (µ ≥ 1) at early epochs (z > 2). This behaviour was proved analytically in [197] for a
restricted set of models in which the expansion for the couplings is retained only at zero-th order.
By inspection of Figure 16, we note the effect to be still there at any order in the expansion.
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Figure 16: The behaviour of µ (top row) and its two separate contributions of (284) (middle and bottom row)
as a function of the reduced matter density x is shown for a sample of 104 randomly generated
viable models of BD, H3 and H45. The shades of blue highlight the density of curves passing
through a point. The dotted vertical lines identify, from left to right, the cosmic epochs z = 0.5,
z = 1 and z = 2. The thick red line represents ΛCDM. Note that H3 and H45 do not seem to
approach this limit in a continuous way. The point is that BD, H3 and H45 correspond to "sub-
spaces" of progressively higher dimensions in the theory space (see Figure 15).ΛCDM represents
a well-defined limit for all models, but the volume of stable theories for H3 and H45 asymptot-
ically reduces to an "hyperplane" of lower dimensions in the vicinity of ΛCDM. As a result, the
neighbourhood of ΛCDM is effectively a volume-zero subset in our randomly generated of models.
Nonetheless, the Monte Carlo procedure does recover ΛCDM as a limiting case of BD.
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Figure 17: The behaviour of d2aE /dt2
E /(aE H2) as a function of the reduced matter density x is shown for

the viable 104 EFT models. The ΛCDM predictions are shown in red.

The amplitude of the initial bump in µ(x) varies, with a few models displaying also conspicuous
departures from the standard model. The width of the time interval over which this early stronger
gravity period extends is quite model dependent. We find that this bump can be levelled out by
going to the EDE and EMG cases.

Even more interesting is the fact that all the models consistently predict the amplitude of µ to
be suppressed, µ≤ 1 in the redshift range 0.5. z. 1 before turning stronger, once again, around
the present epoch. The reason for the intermediate range suppression is that at those redshifts
the dominant contribution to the total of µ is given by the screened gravitational coupling µsc.
Viability conditions always make µsc ≤ 1 during the whole evolution. The characteristic S-shape
pattern shown in Figure 16 is clearly a feature common to all models.

Within covariant Galileon theories —a subclass of the models considered here— the same qualita-
tive behaviour of µ was found (see e.g Ref. [235], Fig. 9, Ref. [236], Fig. 3), although the background
evolution in that more constrained case is different from ΛCDM. Regarding the weaker gravita-
tional attraction at intermediate redshifts, these results are in agreement with those in [237].

A way to make sense of why the effective gravitational constant is stronger/weaker than the cor-
responding standard model value at characteristic cosmic epochs, is to keep in mind its decompo-
sition expressed in (284). Stability conditions (298) and (302) imply µff> 1. Physically, this means
that the scalar field contribution to the gravitational interaction is always attractive, as expected
from a (healthy) spin-0 field. This circumstance is displayed in the second row of Figure 16. The
behaviour of µsc (see the last row of Fig. 16) also has a physical interpretation related to the via-
bility of the models, although somewhat more subtle. First, note that the value of such a quantity
today is unity by definition —as we have argued in section 3.1.2.1, GN ≡ Gsc(t0)— while at early
epochs (x = 1) it is given by the asymptotic value of M2. On the other hand, the overall behaviour
of µsc as a function of time can be understood as a product of the two independent factors, M−2

and (1+ ε4)−2. The latter quantity is always lower than unity because tensor perturbations are
assumed to propagate at subliminal speed (see (302)). Also M−2 decreases as a function of the red-
shift (i.e. backward in time) at around the present epoch. The physical reason is better understood
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in the "Einstein frame"—the frame in which the metric is decoupled from the scalar—which for
the background evolution simply reads as (see e.g. [176])

g(E)
µν = M2(t)

M2
pl

gµν . (313)

A growth of M as a function of the redshift means less acceleration in the Einstein-frame, thus im-
plying that the observed acceleration in the physical (Jordan) frame is due to a genuine MG effect
(self-acceleration). Therefore, the third row of Figure 16 provides a rough estimate of the amount
of self-acceleration for the various randomly generated models. Curves that deviate the most from
ΛCDM represent models with strong self-acceleration, while the opposite cases represent models
in which acceleration is essentially due to a negative pressure component in the energy momentum
tensor.

To better quantifying the production of self-acceleration, let us to compare the amount of accel-
eration a theory produces in the Jordan and Einstein frames [238]. The scale factor and time
derivative in both frames are related by (see section 5.2 of [176] for details):

aE = M
Mpl

a (314)

d
dtE

=
(

M
Mpl

)−1 d
dt

(315)

where we have denoted the quantities in the Einstein-frame with a subscript (E) and the Jordan
frame quantities without a subscript. It is then straightforward to obtain the acceleration in the
Einstein frame,

d2aE

dt2
E

= aE

2

(
M2

M2
pl

)−1 (
2

ä
a
+µ1H+ µ̇1

)
, (316)

where the dot means derivative w.r.t time in the Jordan frame. The term ä/a being the acceleration
in the Jordan frame, hence that ofΛCDM, the production of self acceleration arises from M2 and/or
its log derivative µ1. It is striking to see in Figure 17 that our models can produce a substantial
amount of self-acceleration, for instance more than half of the curves have their äE changing sign
for z < 0.5. In other words, the self acceleration produced is so strong that it is able to change the
sign of the acceleration between the Jordan and Einstein frames, i.e. produce genuine modifica-
tions of gravity [210]. We must emphasise that theories exhibiting strong self-acceleration do not
necessarily deviate substantially from ΛCDM in the LSS observables. We have conducted a test
where only theories with äE < 0 today were selected and the same phenomenology was obtained.

Growth of matter perturbations

The universal evolution of µ is expected from (286) to result in a characteristic growth history
for the linear density fluctuations of matter. Figure 18 shows that the expectation of a pattern of
stronger/weaker growth phases with respect to the prediction of ΛCDM is confirmed. Understand-
ably, since f obeys the evolution equation (286) sourced effectively by xµ, it responds to periods of
stronger/weaker gravity with a time-lag. Moreover, as an integrated effect, f has a smaller spread
compared to µ. The first thing worth highlighting is that essentially all MG models with the same
expansion history of ΛCDM consistently predict that cosmic structures grow at a stronger pace,
compared to ΛCDM, at all redshifts greater than z ∼ 2. A second distinctive feature is that non-
standard models of gravity are generally less effective in amplifying matter fluctuations during the
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Figure 18: Percentage of randomly generated EFT models with growth rate f lower than that predicted by
ΛCDM Planck-cosmology as a function of the redshift z. We have checked the robustness of our
analysis by changing the interval of the randomly generated expansion coefficients (center) and
by augmenting the order of the expansion (right).

Figure 19: The redshift evolution of fσ8 expected in 104 viable EFT models is shown and compared to data.
The error bars represent 1σ standard deviation. The evolution predicted by the best Planck fit is
shown in red.

intermediate epochs in which cosmic acceleration is observed, i.e. in the redshift range 0.5. z. 1.
Figure 18 shows that 95% of the growth rates predicted in the BD, H3 and H45 classes of theories
are weaker than expected in the standard ΛCDM scenario.

These predictions can be compared to observations. A collection of available measurements of
the growth related quantity fσ8 is presented in Figure 19 and compared to the most generic
predictions of BD, H3 and H45 theories. The current errorbars are still large, therefore one should
not read too much into these plots. Nonetheless, it is intriguing that the data suggest less growth
than is predicted by ΛCDM. If this holds up in future surveys, it would be important to check that
growth is stronger than ΛCDM at z > 1, as is predicted by the bulk of the models. In fact, recent
observations at higher redshifts z ∼ 1.4 [239], seem to be suggestive of an early epoch with an
excess of growth with respect to ΛCDM ( fσ8(z = 1.4)= 0.482±0.116 at 1σ), although the error bar
being too large it does not yet allow to draw any meaningful interpretations. However, it serves
as an illustration that, if such values were to hold up, they would effectively confirm a definitive
prediction of linear Horndeski theories.
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Figure 20: The amplitude of the gravitational slip η and lensing potential Σ as a function of x for 104 viable
EFT models. The expected values of both these functions in a ΛCDM cosmology are shown in red.
The vertical dotted lines correspond from left to right to z = 0.5, z = 1 and z = 2.

Gravitational slip and light deflection parameter

While the peculiar velocity of galaxies falling into the large scale overdensities of matter constrains
the possible growth histories of cosmic structures, CMB and weak gravitational lensing provide
complementary probe of gravity, notably they allow one to test whether the metric potentials Φ
and Ψ are indeed equal, as predicted by GR in the absence of anisotropic stress, or differ as pre-
dicted by most non-standard models of gravity. For BD-like theories it is straightforward to show
analytically that the amplitude of the curvature potential Ψ is never greater than the Newtonian
potential Φ, that is, at any epoch, η(t) ≤ 1. For this specific class of theories, the lensing potential
reduces to Σ= µsc. From our earlier results (see Figure 20, right panels), we see that this observ-
able cannot be larger than unity at any cosmic epoch, and must be equal to 1 (the ΛCDM value) at
the present time.

When additional degrees of freedom are allowed (like in H3 and/or H45 models), we still find
distinctive features in the evolution of η and Σ. Indeed, the slip parameter is always smaller than
unity at any redshift except possibly in the window 0.5. z. 1, where relevant deviations from the
ΛCDM expectations can be observed. Moreover, η is never larger than ∼ 1.5 at any cosmic epoch.
Similar to the case of BD-like theories, the lensing potential Σ is weaker than the standard model
value at high redshifts (z > 0.5–1), but becomes stronger (greater then unity) in recent epochs.
Indeed, virtually all H3 and H45 models predict an amplitude of Σ greater than 1 at the present
time.
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Figure 21: The plots displayed are computed in the w-parametrisation scheme. The evolution of µ(x) (left
panel), fσ8(z) (middle panel) for a sample of 103 randomly generated models of viable H45 the-
ories is shown. The thick red line represents the prediction of ΛCDM. The percentage of 104

randomly generated models with growth rate f lower than that predicted by ΛCDM is shown in
the right panel.

Different parametrisation scheme

Having seen the pattern of stronger/weaker gravity on predictions of the growth of structures to
be mostly regulated by the bare Planck mass M2, we should asses how these results are affected
when the latter is parametrised differently. Authors in [197] have used a specific parametrisation
of the Brans-Dicke non-minimal coupling µ1(t), based on the "physical" equation of state parame-
ter for DE wde = pde/ρde. This is the equation of state parameter one obtains by matching (250) to
that of ΛCDM. We dub this scheme "w-parametrisation" in opposition to the "µ-parametrisation"
adopted in this chapter. This parametrisation provides a complementary way to solve the back-
ground/perturbation sector degeneracy in the action (273) so that the function C is no longer free
but is directly linked to µ1. A little bit of algebra is enough to show that µ1 and the physical
equation of state parameter wde are related as follows (see [197] for details)

µ1(x)= 3w̄H(1− x)
w− w̄(1− x)

[
w− w̄+ x(1− x)

w̄
w

dw
dx

]
. (317)

One can thus proceed by expanding in a polynomial series the function wde

wde (x)= w̄
1− x0

1− x0 (1+ε4(x0))2 + p(1)
1 (x− x0)+ p(2)

1 (x− x0)2 , (318)

instead of µ1 as we have done in this chapter. The zero-th order term is obtained from the condition
x0 = Ωm,0 we fixed. We keep, however, the other couplings functions expanded as presented in
section 3.1.5. We chose to randomly pick p(i)

1 ∈ [−0.8,0.8] (for wde) and p(i)
2,3 ∈ [−2,2] (for µ3 and ε4)

in order for µ curves to have the same amplitude as in the µ-parametrisation. Figure 21 displays
some of the results we obtain. The resemblance of µ to the one presented in Figure 16 confirms
the robustness of our findings; the universal behaviour of µ (S-shape) is recovered no matter what
parametrisation is used for µ1. In addition, the fraction of models with lower/higher growth with
respect to ΛCDM displays the same general scaling as a function of z. We find that ∼ 90% of
H45 theories predict growth rates below the ΛCDM prediction in the redshift window 0.5. z. 1.
The change of parametrisation implies a slight modification of the asymptotic behaviour of the
coupling functions µ1 and C /H2 at x = 1, more precisely a modification of the speed at which these
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Figure 22: The amplitude of µsc, µ, η as a function of the reduced matter density x and fσ8 as a function
of the redshift z for 104 viable EFT models where µ2

2 is switched on. The expected values of both
these functions in a ΛCDM cosmology are shown in red. The vertical dotted lines correspond
from left to right to z = 0.5, z = 1 and z = 2.

two functions go to zero during mater domination. This is well illustrated by the tail of the curves,
the transition to the super-growth epoch is now shifted to higher redshifts (z ∼ 2.5).

In summary, computing the coupling function µ1 by a direct expansion as in (304) or computing
it with w expanded as in (318), although producing different behaviours of the function µ1, does
not affect our general findings. This gives evidence of the independence of our results from the
functional form that has been chosen for the couplings and, indirectly, from the choice of the time
variable x. Indeed, it is not difficult to see that expanding in a different time variable is analogous
to changing the functional form for the couplings. Therefore, from now on we stay with the "µ-
parametrisation".

Gauging the effects of µ2
2

Let us now allow for the µ2
2 parameter to be turned on and be free to vary in the interval [−1,1] as

the other couplings. Inspecting Figure 22 tells that µ2
2, even though only affecting the sound speed,

and more precisely the no-ghost stability condition (234), induces non-negligible back reactions on
the LSS observables. As expected it significantly broadens the space of viable models. We under-
stood from the previous sections that the period of weaker gravity in µ(x) at intermediate redshifts
was induced by the µsc component. Figure 22 reveals that switching on µ2

2 is the necessary con-
dition for LDE models to exhibit µsc > 1, and thus M2 < M2

pl, in a stable way. Therefore, it leads
to a subset of models displaying µ > 1 at intermediate redshifts, i.e. stronger gravity (and faster
growth) and also deeper gravity potentials than the standard model. Since, under these conditions,
light should bend more on average, it does not come as a surprise that models exhibiting µ> 1 in
z ∈ [0.5,1] also display η > 0, i.e. Φ >Ψ (or Σ < 1). Therefore, we conclude that the clear pattern
of weaker/stronger growth is partially broken by µ2

2 6= 0. It breaks down at low redshift, yet the
feature of EFT models predicting more growth than ΛCDM at z& 1.5 remains.

D I A G N O S T I C O F H O R N D E S K I T H E O R I E S

From the previous, despite large functional freedom, Horndeski theories seem to produce definite
time behaviours in their prediction, provided the viability of models is required. We should thus
push the analysis further towards an observable diagnostic. Previous research has shown the
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LDE :

Figure 23: The correlations between µ, η, Σ and fσ8 is displayed at several redshift epochs, from left to
right z = { 0, 0.2, 0.5, 1, 2, 3 }, for the 104 viable EFT models in the LDE scenario. The ΛCDM
prediction corresponds to the intersection of the two dashed lines. The gray/blue scale highlights
the density of points.

correlations of the LSS observables to provide an effective tool to constrain MG (see for instance
[80, 204, 205, 240]). Let us therefore see where do the predictions of linear Horndeski theories
stand in these observable plane. We allow now µ2

2 to vary as the other couplings and study the
EDE and EMG scenario by using the Monte Carlo procedure.

Correlations as a diagnostic tool

Inspecting the first row of panels in Figure 23 shows that we recover two definite features: (i)
the peculiar S-shape redshift evolution of the effective Newton constant µ(z) in LDE models. No-
tably, the subset of models displaying µ > 1 in the interval 0.5 < z < 1, have small size relative
to the entire set of simulated models and are due to the coupling µ2

2; (ii) the time evolution of µ
affects strongly the growth of structures, as captured by the fσ8 observable. Figure 23 shows that
amplitude of fσ8 expected in a ΛCDM model is always minimal if compared to linear Horndeski
expectations for z > 1.5.

The remarkable tightness of the growth rate evolution of fσ8(z) also deserves a comment. Despite
µ, η and Σ spanning, especially at low redshift, a large range of values, absolute deviations of
fσ8 from the ΛCDM prediction are never larger than 20% at all cosmic epochs investigated. The
remarkably low theoretical dispersion, or equivalently, the poor sensitivity of fσ8 to the variation
of the Horndeski couplings is not, however, prejudicial from the observational side, for the purposes
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of model identification. Indeed, it is also remarkable that no single model displays both fσ8 < 0
and Σ> 0 for any z > 1. Measurements of fσ8 from redshift surveys, when combined with lensing
estimations of Σ, provide thus an interesting diagnostic tool: evidences of even a single data point
lying in the top right quadrant of the fσ8 −Σ plane at redshift larger than 1 would definitely rule
out LDE of the Horndeski type as a viable candidate for theoretical interpretation.

Among the features emerging from Figure 23 there is a strong positive correlation between µ and Σ
at high redshifts, or, even more telling, the lack of theories predicting µ−1 and Σ−1 of opposite sign
as long as z > 0.5. When the behaviour of the gravitational slip parameter is closely scrutinized,
the fact that both η and µ cannot be positive once z > 1 also stands out.

The question is now whether any violation of these features is a smoking gun of the failure of
the LDE models only, or, more interestingly, if it can rule out even more general linear Horndeski
scenarios. The classification scheme outlined in section 3.1.3 contains the possibility that DE is
present early in the matter domination era, either in the energy momentum tensor (EDE) or also
as early modified gravity (EMG). Figure 24 shows that the presence of modifications of GR at early
times alters the values of LSS observables even in the late universe. Indeed, irrespectively of the
specific scenario, viability conditions favour theories with µ smaller than 1 for z > 0.5. Despite
the fact that we are now allowing initial values of M2 different than M2

pl, the tendency of having
M2 > M2

pl survives. On the other hand, the EMG scenario is the only possibility to produce a small
subset of models with µ > 1 at early times. This can be understood by looking at (284). Stability
requirements impose B > 0 and ε4 > −1 (cT > 0), and the quantity in squared brackets of (283)
is by definition greater than or equal to 0. Therefore, allowing non vanishing ε4 and µ3 at x = 1
pushes up the value of µ at early times. The above expression shows that the value of µ at present
time, µ(x0), is always greater than or equal to unity whatever the DE scenario, a consequence
of the expressions (282) and (283). Equation (282), as we recall, also illustrates the competition
between the two major physical mechanism that contribute to the amplitude of the gravitational
coupling, we recall : (i) the fifth force induced by the scalar field, which must always be attractive,
hence larger than unity, for a massless spin 0 field (embodied by the term in squared brackets)
and (ii) the possibility of realising weaker gravity through the M−2(1+ε4)−2 component, which, as
pointed out in section 3.2.1, is related to the amount of self-acceleration a model produces.

The behaviour of µ at early times affects the fσ8 observable at late epochs. For instance, the
amplitude of fσ8 predicted in EDE scenarios is lower than the standard ΛCDM value for z > 0.5,
as opposed to LDE, for which models systematically flip over ΛCDM at z & 1.5. Therefore, the
ΛCDM growth history appears as an extremum on wide redshift intervals not only among the
whole class of LDE models, but also when EDE scenarios are considered. Intriguingly, only EDE
models manage to strongly suppress the amplitude of the linear growth function at present time.
On the opposite, the only models allowing for a faster growth than ΛCDM (with fσ8 more than
20% higher), are the EMG scenarios. This is not surprising for, as we said, it is the only set-up for
which µ> 1 at early times.

The asymptotic value of the gravitational slip parameter η at x = 1 is, by definition, 1 when the
coupling functions µ3 and ε4 vanish. Therefore, only very mild differences arise between LDE and
EDE at early times. On the contrary, the redshift dependence of η is significantly affected in the
EMG case, since µ3 and ε4 are different from zero at all cosmic epochs. As far as the evolution of Σ
is concerned, the amplitude calculated in LDE and EDE scenarios is always lower than ΛCDM for
z > 1.5. Once more, the standard model appears as an extremal model. EMG is the only mechanism
enabling Σ to be greater than unity also at high redshifts.



3.3 D I A G N O S T I C O F H O R N D E S K I T H E O R I E S 83

EDE :

EMG :

Figure 24: Same as in figure 23 but for 104 viable models in the EDE and EMG scenario.
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Figure 25: Present day value of σ8 as a function of the fractional matter density today Ωm,0 = x0 of 104 EFT
models. Here, the value of Ωm,0 per model is left as free parameter and is randomly generated,
as are the coefficients of the coupling functions. The background has been set to a flat ΛCDM
background. The intersection of the dashed lines corresponds to the Planck measurements [54].

The positive correlation marked between µ and Σ for z > 1.5 persists in EDE models as it did in
LDE models. In fact, since

µ−1=
(

2
1+η

)
(Σ−1) − η−1

1+η , (319)

a ∼ 45◦ correlation should be seen as long as η is close to unity. This stands out clearly, at high
redshifts, for LDE and for EDE scenarios, as opposed to the EMG case which displays slightly
more dispersion, for it exhibits larger values of η. Assuming a non-standard gravitational signal
would be detected by future surveys, we can therefore tentatively conclude from comparing Figs. 23
and 24 that the linear Horndeski class of models would be ruled out by high redshift measurement
if µ and Σ have different sign for z > 1.5. The same conclusion holds if future estimates should
eventually converge on a local (z = 0) value of the effective Newton constant lower than unity,
since µff(x0) ≥ 1 and µsc(x0) = 1 by definition. In addition, we observe a systematic increase in the
scatter of the η values, first when considering the µ2

2 parameter to not be zero at all times in the
LDE case, and then when allowing more generic initial conditions such as in the EDE and EMG
scenarios.

In much of the same way as the plane µ–Σ provides a diagnostic for the whole class of linear
Horndeski models, the plane fσ8–Σ allows us to tell apart linear Horndeski DE sub-classes. For
example, if fσ8 > ( fσ8)ΛCDM at z > 1.5, then EDE scenarios are ruled out. Similarly, LDE is not
viable if both fσ8 and Σ have smaller amplitude than predicted by ΛCDM for z > 1.5.

Identical conclusions follow from the analysis of the amplitude of the σ8 observable alone. Fig-
ure 25 shows the present-day linear extrapolation σ8,0, which we assume to be normalized by the
Planck measurements at last scattering. Predictions closely reproduce the ΛCDM limit in all the
LDE models. However, a local measurement of σ8 showing large deviations from the ΛCDM ex-
trapolation will be instrumental for disentangling EDE from EMG scenarios. The first would be
definitely ruled out if observational evidences should indicate that σ8,0& 0.9. The EDE and EMG
scenarios could thus be a way to release the σ8,0 tension we discussed in section 1.5.3. We note
that lower values of σ8 are also found in the "kinetic matter mixing" model considered in [192].

In summary, we find the effects of early modification of GR to be conspicuous also at low redshift.
Joint measurements of the η, Σ and fσ8 observables would give strong indications as to the type
of DE required for a faithful description of cosmological perturbations. Indeed, complementing an
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analysis on the growth of structures with lensing observables increases substantially the discrim-
inating power between models.

Consistency checks

Let us investigate under what changes the observable diagnostic depicted in the previous section
might change. As a first test, we have checked whether the correlations we find are unchanged
even if the coefficients are picked from Gaussian distributions centred around 0, the ΛCDM value,
and with a standard deviation of 1. More interestingly, in the following we assess the impacts of
relaxing some of the viability conditions, the propagation speeds, and the change of the background
equations of state parameter w̄.

Testing viability conditions

When dealing with the dark sector it is still, debated whether super-luminal propagation in a low-
energy effective theory can be acceptable. We tend to see super-luminality as a serious pathology
of a low-energy theory, following the reasoning in [231]. However, for the sake of generality, in
Figure 26 we show the effects of relaxing the conditions on the propagation speeds of the scalar
and the tensors modes.

It is worth noting that, in our formulation, a theory exhibiting cs > 1 can always be tuned back to
cs 6 1 by using the parameter µ2

2. The latter, as we recall, does not enter the expressions of the
LSS observables. Therefore, switching on µ2

2 allows one to include linear Horndeski models with
cs > 1 but µ2

2 = 0, in some sense. This is well illustrated in Figure 26 since the predictions with the
conditions S and the condition S+ cs are virtually the same. One can rightfully conclude that the
selection criterion cs < 1 is useless once a non null µ2

2 is considered.

On the other hand, by writing µ as

µ=
(

cT

cT (x0)

)4 M2(x0)
M2

a0

b0
, (320)

one already appreciates analytically how cT > 1 strengthens gravity at high redshifts. This is
highlighted by Figure 26, the correlation lines of in the µ–Σ or fσ8–Σ planes are thinner once
the cT 6 1 is implemented. The practical conclusion out of this analysis is if a data point was
to be found at high redshifts in the top left corner of either the µ –Σ or fσ8–Σ plane, only a
linear Horndeski model with a cT > 1 would be valid. More will be able to be said once cT is
tightly constrained at large redshifts by future measurements of the electromagnetic counter part
of gravitational wave emitting events [241, 242].

Changing the background

Does the evolution of perturbed sector observables depend on the acceleration of the background
metric? What we find is that setting w̄ =−0.9 does not change the diagnostic described in the pre-
vious section. We thus do not display plots to be concise. The effect of lowering the DE equation
of state below w̄ = −1 is also very mild, but worth commenting. Crossing the w̄ = −1 means con-
sidering violations of the null energy condition. Such violation can be produced in a stable theory
only by switching on the non-minimal gravitational couplings (see Figure 1 and 2 in [197]), and
therefore in a region of the space of theories that is "far" from ΛCDM (where all couplings van-
ish). Nevertheless, the effects of MG are not significantly amplified as it can be seen by comparing
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S :

S+ cs :

S+ cT :

Figure 26: Correlations in the µ–Σ and fσ8–Σ planes for 104 EMG models with the stability condition S
(first two rows), the stability condition S and cs6 1 (middle two rows) and the stability condition
S and cT 6 1 (bottom two rows). The background evolution has been set to a flat ΛCDM. The
ΛCDM prediction stands at the intersection of the two dashed lines.
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LDE :

EMG :

Figure 27: Correlations in the µ–Σ and fσ8–Σ for 104 LDE models (top two rows) and 104 EMG models
(bottom two rows) with the full viability conditions requested but the background e.o.s set to
w̄ =−1.1. The (w =−1.1)CDM prediction corresponds to the crossing of the two dashed lines.

Figure 23 and 24 to Figure 27. The amplification effect is effectively compensated by the wide vari-
ations of the couplings and by the large volume in the theory space that we are considering, even
in the w̄ <−1 case. In summary, we do not find distinctive definite features of LSS phenomenology
characteristic to stable violations of the null energy condition.

C O N C L U S I O N

In the first part of this chapter, we have seen that LSS observables in linear Horndeski theories can
be economically described in terms of two constant parameters, x0, w̄, which control the evolution
of the background metric, as well as four functions µ1(t), µ2

2(t), µ3(t) and ε4(t) which, being active in
the perturbation sector, determine how matter fluctuations evolve in time at the linear level. Then
we chose to scan the theory space by generating the expansion coefficients of the EFT functions
in a Monte Carlo fashion and required the background expansion rate H(z) to be that of a ΛCDM
model.

This procedure has enabled us to show that under strict viability requirements, linear Horndeski
theories do present bounded time trends for LSS observables and that theΛCDM predictions often
stands out as an extremal model. Pushing the analysis further, we have achieved an observable
diagnostic of linear Horndeski theories. The EFT of DE also allowed us to investigate what Horn-
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Figure 28: Schematic diagrams of the fundamental observable planes allowing to discard linear Horndeski
theories (left diagram) and the type of DE embedded (right diagram).

deski theories "had to say" about early DE. The observable diagnostic and the answer to the latter
question can be effectively summarized in Figure 28. By tracing the time evolution, from early
epochs (z = 100) down to present day, of fundamental LSS observables such as the reduced effec-
tive Newton constant µ, the gravitational slip parameter η, the lensing parameter Σ and the linear
growth function of LSS fσ8 we have found that GR extensions contemplating an additional scalar
degree of freedom with second order equations of motion can be definitely ruled out if one of the
following conditions apply (Figure 28, left panel):

- The observables µ and Σ have an opposite sign for z > 1.5

- µ< 1 at z = 0

Specific sub-classes of such theories in which the MG effects are limited to late times could be
discriminated if data at redshift z > 1.5 eventually become available for both redshift and lensing
surveys. Indeed, we find that above that critical redshift (Figure 28, right panel):

- LDE will be ruled out if fσ8 < ( fσ8)ΛCDM at z > 1.5

- EDE will be ruled out if fσ8 > ( fσ8)ΛCDM at z > 1.5 or fσ8 > ( fσ8)ΛCDM and Σ> 1 at z > 1.5

These results are insensitive to the background DE e.o.s parameter within the reasonable range
w̄ ∈ [−1.1,−0.9]. We have also found the diagnostic not to lose predictability when progressively
less constraining viability requirements are imposed.

Furthermore, measurements of low fσ8 amplitudes,with respect to the Planck-extrapolated value,
provided by local redshift surveys seem to be quasi systematic, especially in analyses where the
background is decoupled from the perturbation sector (see [3–6] for instance) and linear Horndeski
theories seem follow the trend. Recalling discussion on the σ8,0 tension in section 1.5.3, one can
clearly feel from our analysis that linear Horndeski theories would help in alleviating this tension.

In light of this chapter, there is still much to be accomplished and a number of improvements would
be welcome. We have focused on scales much smaller than the Hubble radius. As data improves on
larger scales, our analysis should be extended to include possible scale dependent effects coming
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from mass terms of the scalar field that are of the order of Hubble. Lastly, it would be useful to
study to which level our diagnostic plots are stable to the inclusions of more general scenarios such
as GLPV theories or when conformal-disformal couplings of matter to gravity are considered [7].





4
P H E N O M E N O L O G Y W I T H T H E E F F E C T I V E F I E L D T H E O R Y O F D A R K
E N E R G Y

In this final chapter, we shall give a review of the phenomenological results obtained with the EFT
of DE up till now. This literature review is thus meant to provide the state of the art of the EFT
of DE field and we shall use it to contextualise the results obtained in the previous chapter when
possible.

The straightforwardness of the EFT of DE for computing predictions and for singling out theoreti-
cally viable models has led to many studies and results. An important factor of the outreach of the
EFT of DE stems from its inclusion into Einstein-Boltzmann codes. The first of which being EFT-
CAMB, an extension of CAMB (Code for Anisotropies in the Microwave Background) [44]. This
code is based on the formulation of the EFT from [176]. The hi_class (Horndeski in the Cosmic Lin-
ear Anisotropy Solving System) [207] extension to CLASS (the Cosmic Linear Anisotropy Solving
System) [45] and COOP (Cosmology Object Oriented Package) [243] also exist, both are based on
the α-basis [183].

In this chapter we will first present the novel predictions unveiled thanks to the EFT of DE before
concentrating on the observational constraints it has produced. Then, we will show how the EFT
of DE has been used in astrophysical context. We finish by discussing further investigations and
conclude by highlighting the caveats in the EFT of DE.

N O V E L P R E D I C T I O N S

Let us start by presenting an alternative formulation of the EFT of DE that parametrises linear
Horndeski and GLPV theories before entering a general discussion of the predictions obtained us-
ing the EFT of DE. The goal of this section is to highlight how the "user-friendly" parametrisation
of observables, stability conditions and the straightforward numerical implementation of the MG
theories provided by the EFT of DE has lead to a number of novel and specific predictions.

The α-basis

The alternative parametrisation of EFT of DE, we dub the α-basis as opposed to the µ-basis we
have used in the previous chapters, was recently found in [183] and further developed in [244, 245].
It has substantially contributed the release of novel predictions and constraints. The α-basis has
the benefit of attaching the evolution of coupling functions to clear physical effects. However, the
theory-friendly view point is lost, subsets of Horndeski theories are described by more involved
combinations of the coupling functions as compared to the µ basis. The quadratic action in the α-
basis for GLPV theories is the most concise in the unitary gauge following the ADM decomposition.
In this case, the line element yields

ds2 =−N2dt2 +hi j(dxi +N idt ) (dxi j+N jdt ) (321)

91
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where N2 is the lapse, N i is the shift, and the action yields [244]

S =
∫

d4x
M2∗(t)

2

{
δ2

[p−g
(
(4)R−6H2 +2ρm/M2

∗−
2
N

(
2Ḣ+ (ρm + pm)/M2

∗
))]

+2HαM(t)δ2
[p

h(K −2H)
]+αT (t)δ2

(p
h(3)R

)
+a3H2αK (t)δN2 +4a3HαB(t)δNδK +a3αH(t)δN(3)R

}
,

(322)

where δ2 refers to taking the expansion at second order in perturbations, h is the determinant of
the spatial metric hi j. Similarly to the µ-basis, the time variation of Planck mass is quantified by
the non minimal coupling

αM = 1
H

d ln M2∗
d ln t

. (323)

A Horndeski model in the α-basis is thus described by 5 functions of time{
ρm,0, H(t), αM(t), αK (t), αB(t), αT (t)

}
, (324)

where all the α coupling functions bear a distinct physical effect:

¦ αM is the running Planck mass rate. It has contributions from the G4 and G5 functions of
the Horndeski action (194).

¦ αK is the kineticity. It measures the intrinsic dynamics of scalar field, i.e. that arising from
its kinetic energy term. It bears contributions from all the G i functions.

¦ αB is the braiding. It quantifies the coupling between the scalar field and the metric, i.e their
kinetic mixing. It regulates also the clustering of dark energy. It has contributions from the
G3, G4 and G5 functions.

¦ αT is the tensor speed excess. It regulates the excess speed of gravitational waves as αT =
c2

T −1. It does not vanish in models where a non-linear derivative coupling of the scalar field
to the metric is considered. It has contributions from the G4 and G5 functions.

¦ aH is the Beyond Horndeski coupling. It quantifies "non-Horndeski-ities" and one recovers
Horndeski theories by setting aH = 0.

The mapping to convert the α to the µ-basis is given by

M∗ = M
√

1+ε4 , (325)

αM = ε̇4

H(1+ε4)
+ µ1

H
, (326)

αK = 2C +4µ2
2

H2(1+ε4)
, (327)

αB = µ1 −µ3

2H(1+ε4)
, (328)

αT =− ε4

1+ε4
, (329)

αH = ε̃4 −ε4 . (330)
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Figure 29: Figure 1 and 2 in [197]. The stability regions of the Linear Horndeski theories are shown. The
results have been obtained in an order zero expansion of the coupling function µ2

2, µ3 and ε4 (η2,
η3 and η4 are the coefficients respectively) while the coupling µ1 is specifically parametrised with
the parameters α and β (see [197] for details). The left panel displays the results for η2 = 0 and
right panel for η2 = 106.

Impact of stability conditions

Having the stability conditions expressed in terms of the EFT coupling functions makes assessing
whether a model is viable or not direct. In this respect, the first article in which the EFT of DE was
used to obtain predictions focused, among others, on the impacts of stability conditions for several
values of the background equation of state [197]. As showed in Figure 29, the stability conditions
shrink the allowed space of EFT parameters up to the point where ΛCDM corresponds to a corner
of the stability region. This picture highlights well the fact that ΛCDM corresponds to the EFT
stability functions (A and B) being strictly equal to zero (see. section 2.3.3). In the realm of scalar
tensor theories, ΛCDM stands at the border. More importantly, this analysis reveals the location
in the parameter space of models within the linear Horndeski class which violate the null energy
condition in a stable manner, i.e. super-accelerating models (w̄ < −1). The space of such models
shrinks when the background equation of state decreases. In particular, the ΛCDM origin is no
longer at the border of the space but well outside of it. This begs the conclusion that a non-minimal
coupling must be switched on in order to have stable violations of the null-energy condition.

The results we have discussed in chapter 3 are a direct follow up to this study of the impact
of stability conditions detailed above. The latter were shown to significantly cut the parameter
space and to leave ΛCDM at the border. Therefore, looking for bounded trends on observables and
comparing them to ΛCDM was the natural next step. We will see further on in this chapter that
the stability conditions have been revealed to be useful strong priors when constraining models
with data. In chapter 3, we do recover some of the features discussed in [197]. The shrinking
of the stability space when going to w̄ < −1 transpires in our diagnostic for which, in this case,
the spread of the models in the correlations shrinks. We also discussed how µ2

2 had the effect of
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Figure 30: Figure in 3 [197]. Stable regions of Horndeski theories in the γ0 −γ1 plane from the EFT frame-
work. The dotted line corresponds to the boundary between stronger and weaker gravity pre-
dictions with respect to ΛCDM. The 68%, 95% and 99% likelihood contours correspond to the
constraints forecasted for a EUCLID-like survey.

broadening the space of stable models. This transpired for the major part on the behaviour of the
M2 component (in µsc), hence also on the low redshift predictions of fσ8. The right panel of Figure
29 shows how the stability regions are broadened when µ2

2 is switched on. In particular, although
the parametrisation is not strictly the same as us and here µ2

2 has a huge value today, one can see
how µ2

2 switched on allows: (i) to open the region for α < 0 which coincides with enabling µsc > 1,
while η3 and η4 are virtually unaffected which coincides with µff being unaffected; (ii) the w̄ <−1
case to crawl back on the stability space covered by the other two cases w̄ = {−1.0, −0.9}.

Growth history

A goal one is after when considering MG theories is predictions of lower growth at low redshift so as
to palliate for the tension on the σ8,0 measurements (see section 1.5.3). However, it is generally not
expected of scalar-tensor theories to produce lower growth than that of ΛCDM since the fifth-force
strengthens gravity by definition. The EFT of DE has contributed for the major part in showing it
is not, in fact, always the case for linear Horndeski models. The likeliness of Horndeski theories to
produce lower growth was shown first in [197] by considering the growth index parametrisation of
the growth rate:

f =Ωγ0+γ1 ln(Ωm)
m . (331)

Considering a ΛCDM background evolution, authors have shown (see Figure 30) that, given sta-
bility conditions, the space of theories leading to weaker gravity in the γ0 − γ1 plane is much
larger than that of stronger gravity. In other words, Horndeski theories are more likely to produce
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models which exhibit weaker gravity than stronger as compared to ΛCDM. This fact was high-
lighted, in chapter 3, from the time evolution of the fσ8 predictions, the correlations and also in
the (σ8,0,Ωm,0) plane (Figure 30). In is interesting to note also that in Figure 30 ΛCDM stands
clearly at the corner of the accepted region in the γ0 −γ1 plane. This is not necessarily to be ex-
pected since it corresponds to an involved parametrisation of an observable and not directly to
the stability conditions. This is what gave us the hint that we should search for an extremising
behaviour of ΛCDM in fσ8 predictions for Horndeski theories. We found it to exist, however, µ2

2 is
the key function modulating the redshift intervals on which ΛCDM is extremal.

The analytical prescriptions for Horndeski theories to display weaker gravity were explained first
in [237]. The author showed that the two key quantities were cT and Ωm. This amounts to the
same conclusions we have found from a different perspective through the behaviour of µsc. Indeed,
cT , i.e. αT or ε4 depending on the basis, is one the two quantities in µsc (see (282)) and the other
being M2. The latter can be linked to Ωm as follows. When we set the background evolution of the
EFT models to that of ΛCDM in section 3.1.1, it implies we are setting in fluid description

H2 = 1
3M2(t)

(ρm +ρde) = 1
3M2

pl

(ρ̄m + ρ̄de) . (332)

In the previous equation, ρ̄m and ρ̄de correspond to the effective background (ΛCDM) while ρm

and ρde are the physical densities the model would exhibit in a fluid description. In fact, if one
wants to stick with a fluid description of the model, equation (332) is the equation one should use
to define ρm and ρde given a chosen effective background. Defining Ωm = ρm/(ρm +ρde), Ω̄m ≡ x =
ρ̄m/(ρ̄m + ρ̄de) and using ρm = ρ̄m implies from (332)

x
Ωm

= M2

M2
pl

. (333)

Therefore, the interpretation of weaker gravity in µsc ∝ M−2(1+ ε)−2 induced by M2/M2
pl > 1 is

equivalent to Ωm < x. In summary, whether one thinks in terms of Ωm’s or the bare Planck mass
M2, the important point is that Horndeski and GLPV theories naturally produce a fifth force,
the scalar-matter coupling, but also produce intrinsic (un-screenable) modifications of the gravi-
tational interaction, and it is the latter that is responsible for predictions of lower growth at low
redshifts. The author in [237] has also shown that the extra freedom in GLPV theories makes them
more compatible with redshift-space distortions measurements than Horndeski theories. This is
indeed because GLPV theories have more freedom in general, in particular, it can be explained in
the EFT of DE language since one can show for GLPV theories that

µsc =
M2

pl

M2

c2
T

(1+αH)2 , (334)

thereby αH gives an extra freedom on top of M2 and cT to modulate the stronger/weaker gravity
pattern through µsc, hence fit RSD data in a even more flexible way as compared to Horndeski
theories.

Observational signatures on cosmological spectra

Let us now move on to the effects the EFT parameters within the Horndeski class have been shown
to produce on the angular power power spectrum, lensing spectrum and bi-spectrum. While the
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Figure 31: Figure 3 in [246]. Several relativistic contributing to the galaxy number count angular power
spectrum are shown for the correlation of the redshift bin z = 0.3 with itself. ΛCDM and Galileon
models with specific values of the EFT parameters are considered. The top-left panel displays
the relativistic effects including their cross-correlation with density whereas the top-right panel
shows the pure auto-correlation. The lower panels correspond to the relative difference of each
cases with respect to ΛCDM.

hight and position of the acoustic peaks of the angular power spectrum should not be affected much
by the EFT coupling functions since the former are essentially controlled by the energy densities,
they will have a clear effect on low multipoles (l . 20) through the ISW effect (see also section
4.2.2). Such effects can be seen at larger multipoles (l . 300) on the lensing power spectra. Both
effects have been illustrated in Figure 1 of [247], for instance.

Integrated quantities along the line of sight are indeed of paramount importance when consid-
ering MG power spectra. Authors in [246] have shown that Galileons models can produce up to
O (1000%) deviations from GR on the ISW effect, while they only yield O (10%) deviations on fσ8.
The effects induced by these integrated quantities are especially dominant when considering cor-
relations of galaxy number counts at different redshifts and can add-up to ∼ 50% deviations in
the total signal which could be observable with future surveys. This highlights the importance
of considering epochs well before the DE domination because relativistic effects will show up on
constraints at present time given their integrated nature. From this, we expect indeed our LDE
Horndeski scenario to be constrained efficiently by CMB physics but, in particular, we expect the
EDE and EMG versions to be stringently constrained by such integrated effects.

Authors in [246] take into account a series of relativistic effects playing a role in galaxy number
counts and compare their respective contribution to ΛCDM and Galileon models (see Figure 31).
It is interesting to note that, on the one hand, all the contributions of the relativistic effects de-
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Figure 32: Figure 2 in [248]. Left: The probability density of the background w̄. Right: The projection of
the probability density in the w0-wa plane of the CPL parametrisation. The white lines/points
correspond to the mean, the contours to the 68%, 95%, 99% c.l. intervals and the dotted lines
to the ΛCDM predictions. The shades of blue in the left plot are an indicator of the probability
density.

crease significantly when the multipole increases, i.e on smaller scales, whereas the contribution
of the lensing convergence does not, and its variation over multipoles is mild in comparison. The
relativistic effects are exclusively large-scale effects as compared to lensing. On the other hand,
the galaxy number counts are mostly dominated by RSD while the ISW effect yields the smallest
contribution (see upper panels). However, the latter is the contribution that gives the largest devi-
ation with respect to ΛCDM as expected (see bottom right panel). Therefore, with the increasing
precision of future surveys, considering such effects in numerical computations is becoming more
and more important. Comparing the contributions of each relativistic effects rather that the to-
tal contribution on power spectra could give strong insight as to which deviations of gravity are
favoured by data or not.

The effects of the couplings functions on the bispectrum have been studied in [230]. Authors have
shown that having large deviations in the bispectrum kernel is incompatible without introducing
large deviations in first-order quantities if the following naturalness condition is satisfied

|α4, α5|. |αM , αT |.O (1) , (335)

where α4 and α5 are the second order coupling functions in the perturbation expansion. Such a
relation is expected to hold in realistic DE or MG models, i.e. in a healthy perturbation scheme
the contribution of the nth order is expected to be smaller than that of the nth −1 order. Authors
show thus that in general it is unnatural in Horndeski theories to produce 10% ( 1%) deviations
of the bispectrum introducing even larger ∼ 30% (∼ 5%) deviations in the linear growth rate. One
simplifying conclusion derived out of this, is that the bispectrum kernel of Horndeski theories can
be is approximated by that of ΛCDM when considering future observationally viable predictions.

Background evolution

Up till now, most analysis we have discussed consider the background to be that of ΛCDM. It is
a reasonable choice since ΛCDM provides the most faithful model of the background evolution of
the universe given observations, but, also because the analyses discussed focused on MG effects
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induced on the perturbation sector. The freedom contained in Horndeski theories allows them to
virtually produce any background depending on the form of the G i functions. In the EFT formula-
tion, this amounts to having no prior knowledge on how to parametrise H(t). That is why one picks
a parametric form that could either, be fixed according to ones taste, or constrained with data, de-
pending on the analysis undertaken. However, using too specific parametric forms could bias the
outcome as one is already selecting a branch of models at the level of the background. We have
shown thanks to our diagnostic that predictions on LSS observables are very mildly affected by
reasonable choice of a constant w̄. Yet, a constant equation of state could be a strong assumption
and in this era of precision cosmology more involved evolution of w̄ must be thoroughly investi-
gated.

In this respect, the analysis carried out in [248] goes further than assuming a constant or even
parametric form of w̄. Authors in [248] have investigated the type of background evolution Horn-
deski theories favour without assuming a parametric form of w̄. They use principal component
analysis in order to constrain the unknown evolution of the background equation of state w̄. A
theoretical prior covariance matrix for w̄ is derived thanks to a Monte Carlo procedure and the
application of physical viability conditions. Interestingly, it was shown that the prior favours a
tracking behaviour as depicted in Figure 32. The authors map this evolution onto the Chevallier-
Polarski-Linder (CPL) parametrisation w = w0+wa(1−a) [81, 82] (see the right panel of Figure 32).
It is interesting to observe that since the contours on (w0, wa) are large this tracking behaviour
could help lifting the tension between weak lensing CMB tension (see section 1.5.3 and the bot-
tom left panel of Figure 11). However, we note that the mean of the curves stands slightly on the
diagonally opposed quadrant of the weak lensing induced contours (see Figure 11). The authors
also apply this analysis to quintessence models using the EFT of DE, and, as expected, a tracker
behaviour is found but w0 < −1 is excluded by stability. Indeed, as we have seen in section 2.1,
one has to go at least to k-essence models to obtain a safe crossing of the phantom barrier w̄ =−1.
In light of the above, one conclusion that begs is the need to asses the effects of a time evolving
background equation of state on LSS observables in the context of Horndeski theories.

PA R A M E T E R A N D O B S E R VA B L E C O N S T R A I N T S

There are many key paths one can follow for the study of dark energy. We have discussed one of
them: the exploration of the observable predictions a model produces. This leads to spotting char-
acteristic, observational or theoretical, features the model yields and thus understanding better
its phenomenology. Another crucial and complementary path is to constrain the deviations with
respect to our concordance model thanks to observations. This is of paramount importance to dis-
tinguish between models viable or not and understanding what deviations from standard gravity
are allowed observationally. The final goal is indeed to see whether observations or datasets favour
MG over ΛCDM. Therefore, we shall now go through the constraints obtained with the EFT of DE.

Running Planck mass, linear EFT and f(R) models

The running Planck mass αM at present time has been constrained in [243]. This participated in
showing that combining CMB data and the H0 prior from Riess et al. [93] favours at nearly 2σ a
positive αM as shown in Figure 33. However, only a slight preference remains when considering
geometric probes. The author in [243] points also out that an increasing effective Planck mass
(M2(t)) suppresses the unlensed CMB power spectrum on low multipoles (l. 30) via the ISW effect,
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Figure 33: Right: Figure 3 in [243]. The marginalised constraints on H0 and αM,0 are shown with several
likelihoods and priors as depicted in the labels. The contours are the 68% and 95% c.l.. Left:
Figure 1 in [249]. Stability regions in the linear EFT and f(R) designer model are shown.

but enhances the lensing power spectrum. This is indeed in agreement from what was found in
[247]. We note that a positive value of αM today, i.e. an increasing M2, means µsc decreases back in
time and thus favouring a period of weaker gravity at low redshifts, given the analysis presented
in chapter 3.

Authors in [249], the first article on parameter constraints obtained thanks to the EFT formula-
tion, consider a linear EFT model, i.e. where only the background EFT coupling functions M2(t),
C(t) and λ(t) are switched on. In the parametrisation of EFTCAMB, the effective Planck mass is
traded with a factor 1+Ω such that:

M2

M2
pl

(t)= 1+Ω(t) . (336)

In this analysis, the background is set to that of a wCDM background implying the C(t), λ(t)
system is cast in terms of Ω(t). It is then parametrised as being proportional to the scale factor
Ω=ΩEFT

0 a. The EFT formulation also allowed the authors to consider f(R) gravity. In this analysis,
the designer approach is used, that is, fixing the background evolution (here wCDM) and using
the Friedmann equation to solve for f (R). The f(R) model is parametrised by today’s value of the
Compton wavelength of the scalaron, B0, in Hubble units

B = fRR

1+ fR

H R ′

H ′−H 2 , (337)

where ′ is a derivative with respect to conformal time.

This analysis allowed to show that the stability conditions (shown in Figure 33’s right panel) can
act as a strong prior in deriving constraints on the parameters contained in the EFT models. The
constraints obtained are shown in Figure 34. For the designer f(R) model, it is interesting to note
that the constraints obtained from the combination of probes are shown to be very strong on the
present day value of the equation of state, w̄0 ∈ (−1,−0.9997) at 95% c.l.. For the linear EFT models,
the constraints obtained yield the bound ΩEFT

0 < 0.061 at 95% c.l. for the ΛCDM background and
ΩEFT

0 < 0.058 for wCDM background.

The linear EFT and designer f(R) model have also been used in [250] to answer the question
whether MG can reconcile the tension between CMB measurements and lensing, i.e. the AL ten-
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Figure 34: Figure 2 in [249]. The confidence regions on the parameters of the linear EFT and f(R) designer
model are shown for several combination of observables. The acronym WP stands for WMAP
low-polarisation.

sion. To look into this, authors choose to simulate CMB anisotropy and CMB lensing spectra as-
suming Planck 2015’s best-fit values and the Planck blue book on beam and noise specifications.
From this, models with an effective Newton constant stronger than GN can have an modulat-
ing effect similar to that of AL. Nevertheless, this induces higher values of σ8,0 which in turn
strengthens the tension with CFHTLenS measurements. It would therefore be interesting to see
if switching on the other EFT parameters can solve this issue.

The f(R) Hu-Sawicki model (see section 2.1.3) has also been constrained with the EFT of DE [251].
Authors chose this model to present in detail the procedure needed for the full mapping of a
specific model of MG into EFTCAMB. An interesting result, was that σ8,0 and | f 0

R | are degener-
ate but the WiggleZ galaxy number density counts favour a high value of both parameters while
CMB and CFHTLenS measurements favour smaller values. All in all, WiggleZ data favour a non-
vanishing value of the Hu-Sawicki model parameter, log10(− f 0

R), which implies a large value of
σ8,0, CFHTLenS drags the estimate of log10(− f 0

R) back to the ΛCDM limit. The scale dependence
of the cosmological observables fσ8 and EG (another MG observable [252]) in Hu-Sawicki f(R)
model are also shown and discussed.

Horndeski theories

Looking at how observables are expressed as a function of the EFT couplings can already give
strong indications and constraints on the observable predictions of Horndeski theories. Indeed,
with the knowledge of the structure of Horndeski theories, authors in [240] have derived a set of
consistency conditions that allows one to rule out Horndeski theories or sub classes given where
future measurements will lie. Let us summarise a few of their important findings. An important
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Figure 35: The regions allowing a sign agreement between µ−1 and Σ−1 in the (η, Σ) plane according to
(319) is shown is the left panel. In the middle and right panels, the correlations between the LDE
models with µ2

2 = 0, cs < 1 and cT < 1 are shown in the µ−1,Σ−1 and η planes at z = 0.

criteria is the scale dependence of the LSS observables µ and Σ (and η). Self accelerating models
in the Horndeski class have the Compton wavelength of the scalar field very small, of the order
Hubble, so as to drive cosmic acceleration. Therefore, the scale dependence it introduces must bear
effects at very large scales, i.e. Hubble scales. This begs the conclusions that given surveys of the
LSS probe the small scale regime, should any future LSS measurement detect a scale dependence
in µ or Σ the self accelerating Horndeski theories would be ruled out. Furthermore, the authors
show that the whole Horndeski class would be ruled out if µ<µsc since indeed µff must be positive
for a healthy Horndeski theory. Note that the contrary would favour the Kinetic Matter Mixing
models we discuss further on.

Authors in [240] also argue that measuring µ−1 and Σ−1 of opposite signs at any redshift and
scale would strongly disfavour all Horndeski models. Given the similarities in the expressions of µ
and Σ, producing µ−1 and Σ−1 of opposite signs could seem as an unlikely tuning of the coupling
functions. We find, however, with the correlations of chapter 3 that this statement is progressively
weakened at low redshift where a non negligible amount of models display µ−1 > 0 and Σ−1 < 0
at redshift zero for instance. We understand this to originate from a subtle point, and essentially
related to the viability conditions. According to (319), one can observe in Figure 35 (left panel) that
the region producing a sign disagreement is indeed a small region in the observable space of (η, Σ).
Yet we find, within our procedure of chapter 3, this region to become populated when the stability
space is broadened either by switching on µ2

2 or by going to the EDE and EMG scenarios. As a
matter of fact, taking the LSS correlations in the LDE case with µ2

2 = 0 at all times (see Figure 35
middle and right panel) we observe the sign disagreement region to be depopulated to the benefit
of the bottom sign agreement region. The consequence is indeed that µ−1 and Σ−1 now bears a
sign agreement and even the nearly 45 degree correlation obtained previously at higher redshifts
is recovered. We also note that when µ2

2 is switched off the models are pushed further away from
their ΛCDM reference values as we had observed in Figure 20. The likeliness of having µ−1 and
Σ−1 displaying a sign agreement should be assessed when higher precision data will be provided
in the future.

The authors in [240] give a stringent diagnostic on the Brans-Dicke theories. For instance, the Σ
reduces to the inverse of conformal factor relating the Jordan and Einstein frames, Σ = M2

pl/M
2

in the EFT description. Therefore, detecting any scale dependence in this observable would rule
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out these theories. The authors have thoroughly summarised all their findings in a flow chart (see
Figure 36); a "must-follow" when exploring Horndeski theories in perspective of higher precision
data with future surveys.

Constraints on the EFT parameters taking data into account, both in the α-basis and µ-basis, have
been obtained. Authors in [229] made the first constraints ever made on the full Horndeski theories
in the EFT. They parametrise the α’s at order 0: αi = ci(1−x)/(1−x0) where i stands for {M, K , B, T}.
In this analysis only models unstable in the tensor sector are considered. The constrains they
obtain (see Figure 37) show that reasonable values of the cK parameter virtually do not affect the
constraints on the other parameters when considering data. However, one must be cautious since
a zero order parametrisation condenses the effects of the coupling at low redshifts. Note that, aK is
the equivalent of the µ2

2 of the µ-basis. Moreover, the constraints on the parameters exclude their
ΛCDM value at more that 2σ, however, the authors show that no evidence against ΛCDM from
computing the Bayesian evidence ratio of the MG models with respect to ΛCDM is found.

Authors in [247] parametrise the µ-basis at order zero and consider all the stability priors along
with Planck CMB data 2015. They show that the posterior distribution of the EFT parameters are
mostly driven by the stability priors. On top of this, asking for sub-luminal propagation of scalar
and tensor perturbation are shown to reduce drastically the likelihood contours of the parameters
and observables, as shown in Figure 38. Therefore, a model-dependent analysis is optimal if one
is to exploit theoretical priors about the physical viability of specific Horndeski models to com-
plement the discriminatory power of data. Also, one can appreciate that our diagnostic fits well
with the CMB constraints obtained for a LDE model with µ2

2 = 0 and order zero expansion of the
couplings on the LSS observable displayed Figure 38.

We must emphasize that when taking data into account, two complementary strategies allow to es-
timate the likelihood of data given MG. One is model dependent and constrains a theory given data.
This is what we have discussed up till now. The other, consists in implementing model-independent
likelihood analysis and parametrising LSS observables in a purely phenomenological way, blindly
of any gravitational theory. The diagnostic developed in chapter 3 is meant to facilitate theoretical
interpretation in this case. Interestingly, model-independent analyses have been pursued for ex-
ample in [205]. More recently, the Planck collaboration [80] have used a simple monotonic redshift
evolution for the relevant large-scale structure observable O(x),

O(x)= 1+O0(1− x) , (338)

be it µ, Σ or η, so that the MG scenario converges to the standard picture at high redshifts. These
observables have thereby been constrained in a fairly model independent way thanks to the cos-
mological probes as displayed in Figure 39. These results are suggestive of a negative value of
µ−1 at redshift z = 0. Should future, higher precision data strengthen the statistical significance
of these findings, one can conclude that the Horndeski landscape would face hard times. Moreover,
the likelihoods in Figure 39 put the ΛCDM value at the 2σ limit. Therefore, the observables µ, η
and Σ given future and more precise constraint could thus be instrumental for a detection of MG.

Hořava Gravity

Hořava gravity was recently suggested as a candidate for an ultra-violet completion of GR [253,
254]. The idea behind this theory is to add higher order spatial derivatives to the action in order to
modify the graviton propagator. Authors in [182] give the mapping of this theory into the EFT for-
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Figure 36: Figure 1 in [240]. Flow chart diagram summarising the possible interpretations once key features
of Horndeski theories would been measured or not. In the notations of this diagram the subscript
0 stands for the screened part of the observable, i.e. µ0 is µsc, and the ∞ subscript stands for the
full contribution, i.e. µ∞ is µ.
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Figure 37: Figure 3 in [229]. Constraints on the parameters of the order zero parametrisation of the α

functions from CMB, BAO, RSD and P(k) power spectrum measurements.

malism and study constraints on the low-energy part of the theory. Considering CMB temperature-
temperature and lensing power spectra by Planck 2013, WMAP low-polarization spectra, WiggleZ
galaxy power spectrum, local Hubble measurements, Supernovae data from SNLS, SDSS and HST
and the BAO measurements from BOSS, SDSS and 6dFGS, the authors constrain the background
and the perturbations of the low energy theory. Among others, this analysis shows that the quasi-
static approximation is not a safe approximation to describe perturbations in Low-energy Hořava
gravity. Furthermore, the effects of the modifications induced by the low-energy Hořava gravity
action are shown to be quite dramatic and therefore current data places tight bounds on the pa-
rameters governing the theory.

Early modified gravity

Early modifications of gravity have been discussed and constrained in the EFT formalism. Authors
in [255] embed a hybrid-metric Palatini f(R) gravity with a ΛCDM background into the EFT frame-
work. In this model, the early modifications of gravity can become significant after recombination
but then decay towards the present. These decaying early time modifications are tested against
geometric probes and Planck measurements. However, no evidence for such effects is found in the
observations. Authors find tight constraints for the scalar field value at | fR(z = zon)| . 10−2 for
modifications introduced at redshifts zon ∼ (500−1000) with a present-day value | fR0|. 10−8. It is
therefore important to apply such an analysis to our EDE and EMG models. Since they allow for
large modifications deep in matter domination, it would be interesting to see if they undergo such
tight constraints also.



4.2 PA R A M E T E R A N D O B S E R VA B L E C O N S T R A I N T S 105

Figure 38: Top row: Figure 4 in [247]. The CMB constraints are shown for an order zero expansion of the
couplings. Bottom row: Figure 7 in [247]. The corresponding CMB constraints shifted to the LSS
observables. Several viability conditions are required: stable theories, stable theories and cs ≤ 1,
stable theories and cs ≤ 1 and cT ≤ 1. In the models considered here, µ2

2 = 0 since it would be
constrained only from the back-reaction of stability conditions and thus too poorly constrained.

Figure 39: Figures 14 and 15 in [80]. Constraints on the present time value of µ, η and Σ parametrised as
(338) based on several combination of cosmological probes is shown.
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Figure 40: Figure 1 in [11]. The cosmological constraints for the combination of Stage 4 CMB, LSST (galaxy
clustering and shear) and an intensity mapping experiment by SKA Stage 1 are shown in pink.
Adding to that BAO scale and growth rate measurements from a DESI-like experiment produces
the green contours.

Forecasts

The straightforwardness of the computations in the EFT also allows one to make Fisher forecasts
for modification of gravity. Authors in [197] give forecasts on the γ0 −γ1 parametrisation of the
growth rate for a EUCLID-like survey (see Figure 30). Interestingly, authors in [256] have shown
the constraints on the dark energy equation of state to be weakly affected from the inclusion of the
EFT parameters. Authors in [11] give forecasts on the α-basis considering Stage IV photometric
redshift surveys, including weak lensing and multiple tracers of the matter distribution, radio
experiments and measurements of the CMB. This analysis is very complete, it includes relativistic
effects, it is done without quasi-static approximation and makes conservative assumptions about
the effect of screening on small scales. A figure of merit is also computed for cosmological tests
of gravity which highlights how the combination of different types of surveys, probing different
length scales and redshifts, lead to constraints on MG to better than a few percent. We display
some of the constraints obtained in Figure 40 where one can appreciate how using BAO scale and
growth rate measurements from a DESI-like experiment on top of CMB Stage 4, LSST and SKA
measurements can ameliorate the constraints on the EFT and cosmological parameters. Should
the best-fit values obtained in [229] remain, the authors show that a more than 7σ detection of
deviations fromΛCDM would be found given the constraints that will be produced the combination
of the most efficient probes. The constraints on the Horndeski parameters will greatly improve,
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for instance, they estimate in the best combination of probes that σ(cM) ' 0.06, σ(cB) ' 0.12 and
σ(cT )' 0.15. The authors point out also that ultra-large-scale modes will have negligible statistical
weight on the constraints on the parameters compared to smaller-scale fluctuations.

A S T R O P H Y S I C A L I M P L I C A T I O N S

The EFT of DE can also allow one to confront MG theories with astrophysics. Notably, an emerging
prospects is to use compact systems to constrain modifications of gravity.

GLPV theories

Parameter constraints on GLPV theories have not been released in the literature yet. However,
constraints on a set of parameters have been obtained thanks to local objects, based on the findings
in [257]. For example, red dwarf stars have been shown to yield the constraint [258, 259]

Υ= α2
H

αH −αT −αB(1+αT )
. 0.0068 , (339)

where Υ is a free dimensionless parameter characterising the deviations from GR in the hydro-
static equilibrium equation of the stars (see eq.(1) of [258]). This upper bound is obtained thanks
to the interplay between plasma physics and the gravitational interaction which sets a minimum
mass for the hydrogen burning in stars. This can be compared with observations and thus yield
constraints on the underlying theory of gravity. Similarly, galaxy clusters have been used in [260]
to constrain the quantities

Υ1 =
4α2

H

c2
T (1+αB)−αH −1

=−0.11+0.93
−0.67 and Υ2 = 4αH(αH −αB)

5(c2
T (1+αB)−αH −1)

=−0.22+1.22
−1.19 , (340)

at 2σ.

Gravitational waves

Horndeski and GLPV theories can produce a propagation speed of gravitational waves (GW) differ-
ent from that of light. This deviation was constrained thanks to local tests in [232]. An important
point shown is why a non standard value of cT survives the conventional screening even at the
linear level in the covariant description of Horndeski and GLPV theories. We see the consequences
of this in the EFT of DE through µsc. It originates from the persistence of the scalar field’s gradient
inside virialized overdensities. In the authors words: "it effectively pierces the Vainshtein screen-
ing". This is how the use of the Hulse-Taylor pulsar and the PPN constraint from the Cassini
spacecraft experiment ηPPN −1= ηsc−1= (2.3±2.1)×10−5 [212] in the analysis carried out in [232]
has led to the overall local constraint

0.995 . µgw
c

cT
. 1 , (341)

where µgw = GN/c2
T . This translates in the constraints on cT and αH shown in Figure 41 (left

panel). These constraints being local ones, they imply that in Horndeski theories, the value of cT

at present time cannot deviate from that of light by more than 10−2.
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Figure 41: Left: Figure in 2 [232]. Hulse-Taylor Pulsar and Cassini constraints on αH and c2
T are shown.

Right: Figure 4 in [261]. The prospective constraints on αM and αT with gravitational wave de-
tectors measuring the decay of the wave amplitude with standard sirens and the arrival time
with respect to the electromagnetic emission from a cosmological event. The shaded regions cor-
respond to the allowed regions and the red region corresponds to where self-accelerating models
lie.

The anomalous speed of GW has been used in [261] to break the degeneracy between MG and
dark energy behaviours within Horndeski theories, i.e singling out self-accelerating models. Lin-
ear shielded Horndeski models of [185] in the EFT of DE are considered. These models recover
the ΛCDM values µ(t,k) = η(t,k) = 1 in the quasistatic regime of linear perturbations and are
matched with the ΛCDM background expansion history. Therefore, authors identified a stable self-
accelerating Horndeski model that is degenerate with ΛCDM at the background and linear level.
Some prospective constraints on the couplings αM and αT are derived (see Figure 41’s right panel).
The region that allows for self-acceleration is very narrow. In particular, the self-accelerating de-
generate model is shown to induce the present tensor speed to be < 95% than that of light and a
damping of the wave amplitude > 5% less efficient than in GR. On the contrary, in [238] a minimal
modification for self-acceleration within Horndeski theories while bearing cT = 1 is found. How-
ever this model is shown to yield a 3σ poorer fit to cosmological observables compared to ΛCDM.

In [262], authors explore up to which extent there is a one-to-one relationship between producing
an anomalous speed of GW and a gravitational slip different from unity in MG theories. Bi-metric,
Einstein-Aether gravity and Horndeski theories are used as case studies. Horndeski theories are
studied in their EFT formulation and they are shown to a have enough freedom to hide its gravi-
tational slip dynamically, but at the cost of making the perturbations evolve towards a divergent
kinetic term. The other theories do not offer this possibility.

F U R T H E R D E V E L O P M E N T S

Let us now discuss further developments implemented within the EFT of DE.
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Neutrinos and modified gravity

The degeneracy between MG and the neutrino mass has been revisited in the EFT framework in
[263]. Combinations of the first released data from Planck, BAO measurements, LSS data from
WiggleZ and a ΛCDM background are considered. In the case of the designer f(R) model, a lower
degeneracy than in the previous literature is found and the data sets the bound log10 B0 <−4.1 at
95% c.l. for Σmν = 0.06 eV. On the contrary, no sizable degeneracy is found within the linear EFT
model. The bound obtained is ΩEFT

0 < 0.05 and Σmν < 0.26 at 95% c.l. which is slightly improved
with respect to what was obtained in [249].

The neutrino-modified gravity degeneracy has also been explored in the α-basis in [264]. Using
forecasted CMB and galaxy power spectrum datasets one observes the parameter cB, that is the
parameter characterising the function αB, to dominate the correlation with the total neutrino
mass. It can cancel the power suppression due to massive neutrinos at a given redshift for certain
values. Authors find that future surveys such as EUCLID would limit but not fully break the
degeneracy between this parameter and the neutrino mass. In fact, in [11] no apparent degeneracy
between MG and the sum of neutrino masses is obtained given the forecasted precision on the α
parameters.

Disformal transformations, disformal couplings and non-minimal couplings with matter

The disformal transformations between the Jordan Frame and the Einstein frame within GLPV
theories has been explored in [265]. The fact that the matter sector, although being minimally
coupled to the metric, feels the modifications of gravity is pointed out. Authors advocate that
the disformal transformation is useful for understanding gravitational interactions with matter
mediated by the scalar field.

Extensions of the EFT of DE allowing for conformal and disformal couplings of matter species to
the gravitational sector have been introduced in [7]. The phenomenological consequences of such
inclusion have been explored in [228] where EUCLID-like forecasts are given considering, the
galaxy power spectrum in redshift space, tomographic weak-lensing shear power spectrum and
the correlation spectrum between the ISW effect and the galaxy distribution. This is done in three
fiducial backgrounds, we display the results in the ΛCDM background in Figure 42. In the three
fiducial, authors find the 1σ constraints on the MG parameters to be of the order σ∼ 10−2. One can
appreciate how an EUCLID-like survey gives an order of magnitude tighter constraints than CMB
Stage IV experiments (see Figure 40). However, we note that in Figure 42 cT = 1 was fixed while in
Figure 40 it was not and additional parameters for neutrinos and the background are considered.
In [7], the non-minimal coupling of CDM is shown to enhance the effects of MG and to reduce
the statistical errors accordingly. In all cases, the parameters are found to be highly degenerate.
However, some degeneracies can be broken by combining all three observational probes.

The extension ito disformal couplings has been pushed further with Kinetic Matter Mixing models
in [192] where, as the name suggests, kinetic mixing between matter species and the scalar field
is considered. In this case, the disformal couplings also depend on the gradient of the scalar field.
The effects on the matter power spectrum and the angular spectra of the CMB anisotropies and
the CMB lensing potential are displayed. Interestingly, Kinetic Matter Mixing weakens gravity
on small scales which leads to lower σ8,0 predictions with respect to the ΛCDM case. The key
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Figure 42: Figure in [228]. The 68% c.l. contours for the Fisher forecasts in the ΛCDM background are
shown. The parameters not displayed have been set to their fiducial value. The blue region cor-
responds to the unstable region.

phenomenon is that this extension allows for the fifth force contribution to the total gravitational
interaction to be negative in a healthy way.

Initial conditions and N-body simulations

Initial conditions for cosmological N-body simulations have been discussed within the EFT frame-
work in [266]. The f(R) designer model with wCDM and ΛCDM backgrounds is taken as a case
study. The authors first give a description for setting initial particle displacements and field values
for simulations of arbitrary metric theories of gravity, fluids (perfect and imperfect) with arbitrary
characteristics, which is independent from the EFT of DE. Then, using the designer f(R) model,
authors show that initial conditions set at high redshifts are affected up to 5% at Mpc scales. The
dynamics of the models are evolved thanks to EFTCAMB. This notably implies that one must go
beyond ΛCDM initial conditions if one wants to deal with modifications of gravity outside of the
quasi-static approximation. Authors give the initial conditions for a simulation where the modifi-
cations of gravity induced by the scalar field is modelled in a Lagrangian particle-like description
as well. The contribution of this article paves the way for future simulations and mock galaxy cat-
alogues of MG theories. This is another crucial point for progress towards precise tests of gravity
in cosmology.

The study for more precise initial conditions within EFTCAMB has been pushed further in [267].
The authors present a more self-consistent algorithm to set the initial conditions in EFTCAMB.
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Some important results are derived from this. For instance, the corrections in the adiabatic initial
assumption produced by the linear EFT model and a constant linear EFT model (ΩEFT

0 = const.)
are found to be negligible with respect to ΛCDM. Indeed, authors highlight that the dominant
ingredient is the primordial curvature perturbation from inflation, thus the energy budget of the
matter components is not crucial. Also, no iso-curvature mode sourced by the scalar field is found
to exist in the two EFT models considered. Lastly, an O (1%) and < O (1%) difference is found
for respectively the constant and linear model when the initial condition is set at a = 10−2 and
a = 10−7.

Semi-dynamical perturbations

Authors in [268] introduce a semi-dynamical treatment extrapolated from the evolution of pertur-
bations at a pivot scale of choice on top of the EFT of DE. This can be useful to keep computations
of observables straightforward and more precise on very large scales. For Horndeski theories, this
approach has the benefit to recover a quasistatic approximation and to account for corrections
near the Hubble scale. For models GLPV theories, authors point out that the velocity field and
time derivative of the spatial metric potential should not generally be neglected, even in the small-
scale limit. The authors conducts tests in between the semi-dynamical approximation and the
linear perturbations for several dark energy and MG models and a good agreement between the
two is found.

C O N C L U S I O N A N D C AV E A T S

The EFT of DE is a linear description of MG theories therefore it cannot capture all the phe-
nomenology of such theories. For example, the dynamics at small scales are not described such
as screening mechanisms. However, already at the linear level, a lot has been done and much is
still left to be done. We have seen the EFT of DE to be a powerful tool to explore MG scenarios
from its straightforwardness to compute observables and to parametrise deviations from standard
gravity in terms of coupling functions. This has enabled the findings of universal features and
novel observable predictions in the wide class of scalar tensor theories that are Horndeski and
GLPV theories. It has also allowed one to constrain deviations from the standard model with data.
The EFT framework, does not parametrise a specific theory in terms of variables, letting obser-
vations to fix their amplitudes, but, it parametrises theories themselves in terms of structural
functions of time. One can thereby interpret observations directly in the space of theories and not
within the framework of a single paradigm. However, there is a price to pay. This price is that the
functional form of the coupling functions is unknown. Observations generally do not have enough
power to fix continuous functions of time, they fix numbers. With future surveys and the growing
amounts of data, studies which include principal component analysis, as we have discussed for the
background evolution in the EFT of DE, is a promising way to overcoming this issue. Up till now,
the apparent intractability of the problem is manoeuvred by phenomenological modelling, that is,
by compressing the unknown information contained in the structural functions into a finite set
of coefficients thanks to a parametric form. The subtle step then is to engineer a parametrization
which is flexible and universal enough to allow exploring most of the phase space of stable theories
and yet be effectively constrained by observations. In other words, one faces the dilemma between
using a very general parametrisation and not invoking too many free parameters.
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The main caveat in the EFT of DE is indeed the parametrisation of the couplings. For instance, as
we have discussed in chapter 3, we needed an expansion up to order 3 to capture all the feature
in the LSS observables. This implies a Horndeski model in this set-up would have 12 parameters
in addition to the cosmological parameters to be constrained in a Monte Carlo Markov chain run.
Today, this seems overly CPU greedy to be reasonably feasible. The generality and efficiency of
the parametrisations have been explored in the literature in order to find the best middle ground.
In [8, 9], the assumption of the couplings evolving as const.× (1− x) is shown to be a poor fit in
general, but one can still derive some general characteristics in early and late time limits. For in-
stance, the authors in [8] prove that the gravitational slip must restore to unity as in GR in the de
Sitter limit of Horndeski theories, and why it does not more generally. Interestingly, with a more
accurate parametrisation of the α, authors obtained the same trends in the observables we found
later in the LDE scenario. That is, the succession of epochs during which µ and η yield larger or
lower amplitudes than ΛCDM. In general, authors in [8, 9] argue that the simple parametrisa-
tion const.× (1− x) estimates wrongly the observable and thus, they are unlikely to be successful.
Therefore oversimplified approximations of the coupling function could even miss the signature of
MG. Thankfully, the author in [10], shows as expected that observables are not extremely sensi-
tive to short time-scale variations. Therefore, smooth parametrizations are in general sufficient to
describe the theory space well. Notably, it is shown that using two parameters, an amplitude and
a power law index, for each function is preferred over more complex models for 86% of the theory
space. Nevertheless, authors in [11], point out that the forecasts on the EFT parameters can be
substantially impacted by the model for the time evolution of the coupling functions. Therefore, it
seems now crucial to implement forecasts for future measurements in more involved parametrisa-
tion of the couplings. The study of the forecasts they would engineer on the LSS observables must
also be thoroughly investigated given the status of model dependent and independent analysis we
have discussed.
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Exploring the phenomenology of dark energy models is a vast enterprise. Although this thesis is
entitled in this respect, the study it presents is only a grain of sand in a large bucket. We have
explored a large class of scalar tensor theories; Horndeski theories themselves but a possibility in
a wide range of modified gravity theories. One can look at the summary diagram of Figure 3 in
[12] for instance, to appreciate how large the realm of modified gravity theories is. Nonetheless,
Horndeski theories are a crucial path to explore. They virtually incorporate all theories that add
one scalar degree of freedom in addition to General Relativity. Therefore, by studying these the-
ories one is exploring one of the simplest and physically motivated modification of gravity: one
adds a scalar field. Scalar fields have been shown to exist with the Higgs field. One could thus
argue why another could not exist and cause cosmic acceleration. Furthermore, adopting a simple
modification of gravity is crucial for at least another reason; they provide mathematically sound
and physically motivated models for the standard model ΛCDM to be compared to.

The standard model has been shown to have some shortcomings and we have summarised most
of them. Whether the latter are theoretical or observational; paths for improvements should be
explored. Doing so could very well produce more accurate methods to release precise data and
understand it to a greater degree within our gravitational paradigm, or reveal new physics need-
ing to be explained beyond the standard model. Exploring the deviations cosmological probes, and
thus specific underlying physical processes, favour is decisive to assess which direction to follow
for a completion of the standard model. In this respect, many alternative models explaining cosmic
acceleration have been suggested and the task to assess the viability of each theory with observa-
tions is an arduous endeavour. Therefore, unifying frameworks have been constructed to yield the
possibility of testing several theories at once against observations. We have focused on one of them:
the effective field theory of dark energy. This framework grants a parametrisation in terms of cou-
plings functions of its action of virtually all models including an extra scalar degree of freedom to
General Relativity, and thus Horndeski theories for example. This framework can only describe
modified gravity theories at the linear level and does not allow to describe the screening of modi-
fied gravity theories. However, this framework grants a physical motivation for the use of a scalar
field; its existence arises naturally as the result of the spontaneously broken time translations of
spacetime.

This is the framework that allowed us provided answers to the guiding questions presented in the
introduction of this thesis. We have shown that, despite the large functional freedom Horndeski
theories exhibit, the application of mathematical and physical viability requirements lead to ob-
taining bounded predictions on observables of the large-scale structure, and ΛCDM often stands
at the border. Notably, we have focused on observables such as: the effective Newton constant,
the light deflection parameter and the growth function; all shown to be key for detecting devia-
tions from the standard model. We proceeded thanks to a Monte Carlo approach to generate viable
models in the linear Horndeski class, that is the one accessed by the effective field theory of dark
energy, and explore the predictions it yields. This approach enabled us to outline an observable di-
agnostic of Horndeski theories that will be instrumental for ruling out such theories given future
measurements. We also granted the possibility for Horndeski theories in the effective field theory
of dark energy to account for early modifications of gravity deep in matter domination.
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I am now focusing on a study in which we constrain Horndeski and Beyond Horndeski theories
within the effective field theory of dark energy with observations where special attention is paid to
solar system and astrophysical constraints. We also want to assess the viability of self-accelerating
models in this context. However, we have shown that many observational constraints have already
been obtained on Horndeski theories and subclasses, thanks to the effective field theory of dark en-
ergy. Although these constraints do not particularly favour linear Horndeski theories over ΛCDM
at this point, we have shown that the description of these theories must be improved in the effec-
tive field theory framework so as to be sure one is capturing all the phenomenology for a thorough
assessment in the light of future surveys. We have discussed several paths to follow in the future,
notably using the effective field theory of dark energy framework. We are at the beginning of this
very exciting era of Precision Cosmology and the next years will give rise to a huge amount of
high precision observational data. It is therefore of paramount importance to prepare theoretical,
phenomenological and numerical tools to properly analyse all the cosmological information we will
be provided with, within pertinently defined paradigms.
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