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Abstract

Computer assisted music extensively relies on audio sample libraries and virtual instruments

which provide users an ever increasing amount of contents to produce music with. However,

principled methods for large-scale interactions are lacking so that browsing samples and

presets with respect to a target sound idea is a tedious and arbitrary process. Indeed, library

metadata can only describe coarse categories of sounds but do not meaningfully traduce the

underlying acoustic contents and continuous variations in timbre which are key elements of

music production and creativity. Timbre perception has been studied by carrying listening

tests and organising human ratings into low dimensional spaces which reflect the perceived

similarity of sounds, however these analysis spaces do not generalise to new and unrated

examples, nor they allow to synthesise audio.

Digital signal processing models have been applied to analysis and synthesis, so that the

extracted parameters can be manipulated and inverted back to audio. However, we observe

that these methods require a high number of parameters and representation dimensions to

allow accurate reconstructions. Visualisation and control are thus little intuitive, moreover

these invertible dimensions mainly correspond to low-level signal properties and do not rep-

resent much semantic information. The recent advances in deep generative modelling show

unprecedented successes at learning large-scale unsupervised representations which invert to

data as diverse as images, texts and audio. These probabilistic models could be refined to

specific generative tasks such as unpaired image translation and semantic manipulations of

visual features, demonstrating the ability of learning transformations and representations

that are perceptually meaningful.

The application of deep generative models to musical audio is at early stages and requires

adapted model architectures and interactions. High quality auto-regressive waveform syn-

thesis has been achieved for both speech and musical audio, however these models are com-

putationally intensive, unsuited to moderate dataset sizes and offer little control over the

generation for creative purposes. In this thesis, we target efficient analysis and synthesis with

auto-encoders to learn low dimensional acoustic representations for timbre manipulations and

intuitive interactions for music production. We adapt domain translation techniques to tim-

bre transfer and propose alternatives to adversarial learning for many-to-many transfers. In

this process, timbre is implicitly modelled by disentangling the representations of domain

specific and domain invariant features. Then we develop models for explicit modelling of

timbre variations and controllable audio sampling using conditioning for semantic attribute

manipulations and hierarchical learning to represent both acoustic and temporal variations.

We also apply discrete representation learning to decompose a target timbre into short-term

acoustic features that are applied to audio conversions such as timbre transfer and voice-
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driven synthesis. By analysing and mapping this discrete latent representation, we show that

we can directly control synthesis by acoustic descriptors. Finally, we investigate the possi-

bility of further reducing the complexity of trained models by weight trimming for real-time

inference with constrained computational resources. Because the objectives used for training

the models are often disjoint from the ultimate generative application, our discussion and

evaluation emphasise both aspects of learning performance and usability as a creative tool

for music production.

The organisation of this thesis is as follows. The first section introduces computational

music processing, its different levels of expression and sets the problem domain of meaningful

audio synthesis for music and with machine learning tools. The second section details the

representation properties of audio and music information, it reviews classical models for

audio synthesis and introduces the data-driven approach to music processing with machine

learning. The third section introduces unsupervised learning and reviews the fundamentals

of generative modelling with deep learning. The fourth section discusses related works in

the field of neural audio synthesis with an emphasis in music applications. The fifth section

presents the experiments carried during this thesis and discusses the results and evaluations,

in the format of a ”thesis by publications”. The sixth section summarizes the results and

publications along with related projects that were carried during the thesis and conclude

with future works.
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Résumé

La musique assistée par ordinateur fait beaucoup usage de librairies d’échantillons audios

et d’instruments numériques qui offrent des possibilités de composition sans précédent.

Cependant, l’abondance des matériaux sonores disponibles nécessite de nouvelles méthodes

d’interaction en adéquation avec ceux-ci sans quoi le parcours des échantillons et configura-

tions audios est inefficace et arbitraire. En effet, les métadonnées qui structurent tradition-

nellement ces librairies ne peuvent que traduire grossièrement les caractéristiques acoustiques

des différentes catégories sonores. Notamment, les variations continues du timbre musical ne

sont pas exprimées alors qu’elles jouent un rôle significatif dans la production et la créativité

musicale. La perception du timbre a été étudiée par des testes d’écoute et l’analyse de ces

résultats a permis la construction d’espaces de timbre dont les dimensions traduisent la sim-

ilarité perceptive des différents sons. Cependant, ces espaces ne permettent pas d’analyser

de nouveaux échantillons sonores et ils n’offrent aucun mécanisme inverse pour la génération

audio.

Les modèles de traitement du signal numérique permettent l’analyse et la synthèse, de telle

manière que les paramètres extraits du son peuvent être manipulés pour la production

de nouveaux sons. Bien que ces techniques soient performantes, elles nécessitent souvent

l’ajustement de nombreux paramètres afin d’obtenir des reconstructions précises et leur vi-

sualisation est ardue de part leurs représentations à haute dimensionnalité. Ainsi, le contrôle

des techniques basées sur le traitement du signal manque d’intuitivité et les dimensions de

ces espaces de synthèse sont principalement liées à des propriétés de bas niveau du signal

qui ont une valeur sémantique limitée. Les progrès des modèles d’apprentissage génératif ont

démontré des capacités sans précédent pour le traitement des données à grande échelle. Ces

méthodes probabilistes permettent la construction d’espaces non supervisés pour la synthèse

de données telles que les images, le texte ou le son et ont permis de nouvelles interactions

telles que la conversion automatique d’images et la manipulation d’attributs perceptifs et

stylistiques.

L’application des modèles d’apprentissage profond pour la génération audio a pris un es-

sor au cours des dernières années et ce développement requiert des architectures adaptées

ainsi que la conception d’interactions spécifiquement pensées pour la synthèse sonore. La

synthèse directe de forme d’onde par des processus auto-régressifs a établi l’état de l’art pour

la production de la voix et des sons musicaux. Bien qu’ils atteignent une haute qualité, ces

modèles requièrent des puissances de calcul prohibitives et ne sont pas efficaces sur des bases

de données de tailles limitées. De plus, les mécanismes auto-régressifs ont une modélisation

locale performante mais leurs représentations et interactions sur les propriétés à long terme

sont limitées. Au cours de cette thèse, nous développons des techniques d’analyse/synthèse
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efficaces basées sur les modèles auto-encodeurs afin d’apprendre des représentations acous-

tiques inversibles de basse dimensionnalité pour la manipulation intuitive du timbre musical.

En premier lieu, nous adaptons les techniques non supervisées de conversion d’images au

transfert de propriétés de timbre. Nous proposons des objectifs alternatifs à l’entrainement

par réseaux antagonistes génératifs qui permettent le transfert entre de multiples domaines,

tels que des collections d’échantillons audios de différents instruments. Nous référons à cette

approche comme une modélisation implicite du timbre qui est définit comme l’ensemble des

propriétés qui ne sont pas partagées entre les différents domaines sonores. Ensuite, nous

introduisons de nouveaux modèles pour l’apprentissage explicite de représentations du tim-

bre musical et l’échantillonnage avec contrôle des propriétés acoustiques et sémantiques.

Ces modèles s’appuient notamment sur le conditionnement du réseau génératif (décodeur)

par des attributs musicaux cibles et l’apprentissage hiérarchique de représentations acous-

tiques locales et séquentielles à plus long terme. De plus, nous appliquons l’apprentissage

de représentation discrète pour la décomposition acoustique du timbre qui permet de quan-

tifier et convertir d’autres sources audios par reconstruction avec les propriétés de timbre

apprisent dans le domaine cible. Ce faisant, nous proposons une méthode d’analyse de

cette représentation discrète par descripteurs acoustiques qui permet le contrôle direct de

la synthèse de variations acoustiques cibles. Enfin, nous avons conduit une étude sur la

réduction des modèles d’apprentissage profond pour le traitement et la synthèse audio qui

permet de réduire drastiquement la taille et le cout de calcul nécessaires à leur déploiement

sur des systèmes grand-public et embarqués. Ainsi, notre discussion et évaluation ne se

concentrent pas seulement sur la performance d’apprentissage mais aussi sur les qualités

d’interaction et l’efficacité de ces modèles pour un usage avec des ressources de calcul con-

traintes.

L’organisation de cette thèse s’articule de la manière suivante. La première section intro-

duit le traitement numérique de la musique, ses différents niveaux d’expression et pose la

problématique de la synthèse audio avec les techniques d’apprentissage automatique. La sec-

onde section détaille les propriétés des représentations de l’information musicale et sonore.

Pour ce faire, nous récapitulons les méthodes classiques d’analyse et de synthèse ainsi que

l’introduction des approches d’apprentissage. La troisième section détaille les fondements

de l’apprentissage non supervisé et les principaux modèles génératifs de la littérature. La

quatrième section détaille les tâches et modèles de référence appliqués à la synthèse audio

musicale. La cinquième section fait un compte rendu des expériences effectuées au cours

de la thèse, les contributions et résultats sont alors présentés dans le format d’une “thèse

par articles”. Enfin la sixième et dernière section conclut le manuscrit avec un résumé des

travaux de recherche effectués, une discussion des projets conduits en parallèle de la thèse

et les directions futures de recherche.
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1 Introduction

1.1 Modalities of Music

The processing and storage of music span three main media which are lyrics, score and

sound. The lyrics are structured texts which specify the language content of a song that

is to be spoken or sung by human voice. It can be segmented in phrases and assigned to

different voices or ensembles (e.g. groups in a choir). The score is a symbolic notation for

music composition which specifies the notes to be played by the different instruments

(e.g. melodies, chords). In order to be written and executed, it requires a specific

musical understanding of harmony (tonality, keys, scales), rhythm (tempo, measures,

subdivisions and signatures) as well as other parameters pertaining to the composition

technique. For instance, the singing melodic content of a music can be defined with

the score regardless of whether it comprises spoken words or not. This also applies

to indicating specific playing modes and interpretation styles corresponding to a given

instrument. The sound is the acoustic realisation of all the composition elements of

music rendered into an audio signal by the performance process (instruments, singing

voices). Although lyrics and scores can be read, sound is the universal sensory medium

to experience music. This signal may take several forms, whether is is propagated in

the listener auditory system, recorded or processed in the digital domain. Although

some forms may be inherently lossy (e.g. recording medium, digital sampling), the

audio signal is the richest modality of music that implicitly stores all of its components

(Figure 1). Because audio is the medium that can ultimately be played-back and

listened, it is the most widespread mean of music diffusion. It is a concrete realisation

of music that does not require any particular skills to be sensed and enjoyed. At first

we may divide music into the two main modalities of symbolic information and acoustic

information. This reduction helps understanding some key properties of music, although

it surely does not account for all kind of music practices. For instance, improvisation,

live performance, noise music and many other facets of the ever changing field of music.

The symbolic information is an abstract medium of music processing. It is often

composed of several layers of discrete elements (e.g. note onsets, pitches, words) that

are structured according to conventions in music notation and sparsely distributed in

time and classes. The score compresses the musical idea into series of explicit elements

that can be visualised all at once. Due to this symbolic reduction, the score highlights
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SYMBOLIC
COMPOSITION

LYRICS & SCORE

HUMAN 
PERFORMANCE

COMPUTATIONAL
EXPRESSIVITY & HUMANIZATION

ACOUSTIC PERCEPTION
& SIGNAL RECORDING

Figure 1: Overview of the main modalities of music production. A music idea is defined
in the symbolic domain (score, lyrics). These composition elements are performed by human
interpreters or with expressive digital music systems (MIDI effects, virtual instruments, audio
processors ...). Acoustic sources or digital rendering blend all elements of composition and
expression into an audio signal (audition, digital recording).

the global structure of music and is an essential tool for composition and analysis.

Given the needed knowledge of music theory, visual inspection of scores allows direct

understanding of the melody relationships, chord progressions, rhythm patterns, repeti-

tions, variations and other fundamental concepts of a music composition. On the other

hand, such reduction suppresses the finer details of the actual music performance and

acoustic production which are added and interpreted while playing the music piece.

The acoustic information is the most tangible experience of music which blends

and conveys all its parameters to the listeners. While the score views instruments

as individual and abstract classes, the signal is a particular realisation of the infinite

combinations of possibilities existing in the continuous and real world. Thus we have

moved from the violin in a symbolic layer to a given violin instrument, played at a

certain point in time and space by an interpreter within an acoustic environment. This

yields a dense and complex stimuli to human perception, which mainly propagates

through the auditory system and results in the experience of music. In the digital

domain, the audio signal is a time series of pseudo-continuous amplitudes (e.g. 32 bits)

stored at a high sampling rate (e.g. 44,1kHz) in order to match the frequency range and

resolution of the human auditory system. This signal is a highly complex medium of

music processing since it implicitly embeds all of its elements along the single dimension

of time. Direct and global visualisation in the waveform domain gives little to no cues

about the music content, which naturally appears over time by listening while mentally
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aggregating the past context and building the understanding for the music continuation.

These considerations highlight the critical properties of the musical audio signal:

. causality as it realises itself forward in time

. extreme dimensionality along the time axis due to the high sampling rate

. multi-scale temporal relationships over both the local signal properties (oscilla-

tions over hundreds of points), the past musical contexts (several orders of mag-

nitude larger to capture note relationships) and the overall music piece

. additivity of features (e.g. instruments playing simultaneously) as all the elements

of a music piece can be individually perceived while implicitly existing within a

single common dimension

From this initial division, the audio information could be thought as the most

expressive modality with respect to musical ideas. Yet several intermediate subdivisions

and corresponding parameters of expressivity may be interleaved between score and

audio. In the next section, we will discuss different layers of music production and

their corresponding degrees of freedom allowing to refine musical expression. Other

elements and generative functions may be derived around these main modalities of

music processing, of which a general taxonomy is proposed in [108].

1.2 Expressivity in Music Composition and Performance

The domain of musical ideas is multi-modal as it can be processed through several data

formats, mainly score, text and audio. In addition, the possible outputs can greatly vary

in details of interpretation which is the basis of musical expressivity. Depending on such

degrees of freedom pertaining to a given piece of composition, a performance can result

in various effects (e.g. changing the global tempo or loudness of a piece can make it

sound more happy, melancholic or relaxing). To the extent of this introduction, we will

analyse different parameters of musical expression in the symbolic domain of score and

in the audio rendering. Analogous parameters can be derived from lyrics to detail the

mood and emotions conveyed by singing voice, although the research we present is not

specifically considering this element of music. Most notably, we specify the discussion to
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the domain of computer music analysis and production, nonetheless we intend to draw

parallels with expressivity in human performance which would allow to achieve natural

sounding audio results and intuitive interactions. The creative potential of computer

music should no be restricted to mimicking realistic human performances, yet we can

gain insights from analysing those parallels. Comprehensive reviews of computational

models of expressive music performance can be found in [286] [148] [149] which broaden

the scope of this introduction.

In the past history, symbolic composition of music was carried on sheets with no-

tations that are rather agnostic to the instrument of interest. Because of this level

of abstraction, the reading of such documents requires an expert knowledge for both

composers and interpreters. In order to ease the learning and analysis of music, some

novel notations have been developed which offer a more visual representation of the

melody and chords. As an example, instrument-specific scores such as the guitar tab-

lature which traduces notes into string and fret positions. These visual representations

are both simpler to learn for music beginners and convenient for computer process-

ing. Most Digital Audio Workstations (DAW, e.g. Ableton Live, Cubase) integrate the

piano-roll as their default representation for music composition (Figure 2), with rows

representing pitch classes and columns representing the time grid. The event timings

(onset, offset) and other properties (e.g. pitch) are encoded in the Musical Instrument

Digital Interface (MIDI) standard which allows storing score files and communicating

messages between software elements such as Virtual Studio Technology (VST) plugins.

MIDI CLOCK STEPS

M
ID

I P
IT

CH
ES

VELOCITIES

TEMPO AND
MIDI PLAYBACK

BEATS

1/32TH NOTES

MIDI MESSAGE
STREAM

note-on = 60
time-shift = 120ms
set-velocity = 42
note-off = 60
time-shift = 30ms
set-velocity = 0
     …

SOUND SAMPLE LIBRARY

VIRTUAL INSTRUMENT LIBRARY

AUDIO TRACKS

Figure 2: Music production in a Digital Audio Workstation. The composition is defined in the
piano-roll representation which is played back according to the master tempo. This generates
a stream of MIDI messages to control virtual instruments or trigger samples from a library.
This results in audio tracks for each instrument voice that can be down-mixed into an output
audio recording.

Thus we start detailing different layers of music expression from the piano-roll rep-

resentation, and the drum-roll counterpart which represents individual drum tracks as
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pitches, as the simplest expression of a music composition. In this quantised represen-

tation, a note onset and offset are specified as tick positions which equal to the smallest

unit of the time resolution (e.g. number of intervals in a beat, or quarter note). The

MIDI note messages also define a pitch value as an integer semitone between 0 and 127

and a velocity (with 0 being silence). Velocity scaling is defined specifically inside each

plugin, usually log-scaled to approximately fit the perceptual loudness. This compact

encoding of a composition is convenient as it allows visualising and communicating the

main content of a piece. However it discards most of the information of an actual per-

formance and a direct rendering of such score would sound unnatural and robotic, no

matter the audio fidelity of the output synthesizer. The effect of a realistic performance

requires additional modulations and continuous variations that can be appended to the

symbolic domain. A pitch bend can be specified as an envelope of cents deviations

(percents of a semitone) and an amplitude envelope can be applied to the velocity.

Given a sufficient time resolution, expressive timings should as well deviate from the

coarse grid as performers naturally move around the exact rhythm. Adding continuous

and time-varying parameters to the symbolic representation allows traducing realistic

performance features (e.g. a vibrato) and conveys much more intentions of musical

expression (Figure 3). Yet it leaves out most of the acoustic details and the subsequent

rendering system (e.g. virtual instrument) must produce the dense synthesis output

given the sparse conditioning of the composition and performance context.

A given melody in the symbolic domain can have many interpretations and another

central element of the performance lies in the acoustic details of the instrument. When

playing a same note as defined by the pitch and velocity, two different sources (performer

plus instrument) will have distinctive features which are embraced in the concept of

timbre [200] [183]. In the continuous domain, a given combination of pitch and velocity

is traduced into a variable spectral energy distribution which can be decomposed into

several components, such as harmonics, inharmonics and stochastic coefficients [238]

[236]. The perception of these details combines into the concept of timbre and brings

an additional layer of music expression [180], for instance instrument acoustics and

playing styles. Moreover as timbre carries a sense of acoustic identity, it contributes

to the perception the music structure (e.g. recognising the violin and trumpet playing

different voices in a same song). All elements of the composition and its expressive

acoustic rendering are blended in the monophonic (and stereophonic) signal domain,

which makes it highly complex and unpractical to manipulate. Akin to a score which is
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split into individual instrument voices, multi-track audio is common in both recording

settings and production as it allows to separately analyse and process each timbre

element before down-mixing to a regular monophonic or stereophonic playback. Other

expressive parameters are embed in the acoustic features of music, for instance the

spatialisation of the performance (source positions, acoustic environment). Similarly to

playing a quantised score without dynamic expression, audio recordings in an anechoic

setting sound unnatural and loose part of their musical effect. Multi-track audio also

allows to emulate spatialisation, for instance by binaural processing which assigns each

source a given angular transfer function fitted to that of the human audition (HRTFs).

4
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QUANTIZED PITCH AND TIME
EVENTS WITH MICRO-TIMINGS

PITCH ENVELOPES

AMPLITUDE ENVELOPES

ACOUSTIC MIXTURE

INSTRUMENT TIMBRE

COMPOSITION IDEA PERFORMANCE CONTROL
& HUMANIZATION

TIMBRE CONTROL
& AUDIO SYNTHESIS

DIRECT SYMBOLIC TO AUDIO RENDERING

DENSE CONDITIONINGSPARSE CONDITIONING

Figure 3: Different layers of music expression from the score (quantised symbolic input) to
the performance controls (fine-grained and dynamical) and ultimately the acoustic rendering
(instrument timbre, room acoustics). Some systems perform direct score to audio synthesis
and implicitly process the performance features.

1.3 Problem setting

In this introduction, computer music production is mainly summarised as the process of

going from a compressed symbolic representation of the composition idea to the dense

audio mixture that incorporates all elements of performance and acoustic rendering.

Within this process, the thesis research focuses on the synthesis task that is to generate

and model the acoustic variability pertaining to the given musical context. This context

may be explicitly defined, for instance by sparse high-level targets such as pitch, velocity

and instrument classes. Or it may be implicitly carried by another low-level acoustic

example, for instance the performance recording of an instrument as the basis of the
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synthesis of another one, so that the task involves analysis and synthesis. In both

cases, we are primarily interested in the capacity to represent and control variations in

timbre via meaningful parameters that would allow musical interactions in the acoustic

domain. These direct interactions in the acoustic domain aim at modelling perceptual

properties which are discarded from the symbolic representation of music, yet playing a

major role in the production of music and its semantic effects. While a human performer

naturally interacts within the continuous realm and learns to integrate the different

elements of interpretation and acoustic expression by practice, this raises challenges for

computational models of music production.

One direct approach to computer music production is the sample-based rendering

that relies on a library of pre-recorded individual audio samples that are retrieved

according to the event targets, for instance the pitch, velocity and instrument classes

of notes in a melody. In this case, the audio fidelity and control accuracy are ensured

by the use of annotated pre-recorded audio instead of a synthesis engine. However,

the expressivity of sample-based rendering is limited because it concatenates individual

events which are selected by categorical attribute targets. For that reason it does not

produce a natural articulation which requires to model the relationships in a series

of notes and its controllability is limited as it does not offer continuous controls on

the acoustic variations belonging to the given event classes. Since the sample selection

relies on the library metadata, the approach has a limited representation of its semantic

content and besides the coarse categories such as pitches, dynamics and instruments it

does not meaningfully traduce finer timbre details. For that reason, browsing through

large sampler libraries is often tedious and arbitrary.

Another common approach to music production relies on Digital Signal Processing

(DSP) to implement synthesizers with continuous controls over the generated signal

properties [211]. It should be noted that DSP can be combined with samplers, for

instance as an audio effect applied to the sample play-back in order to control or emulate

certain acoustic properties (e.g. reverberation). The synthesizer controls are related

to the underlying signal processing, for that reason there is often a gap between their

functions (e.g. rate of a modulation, frequency of a filter) and the perceptual variations

they produce. Modern digital synthesizers generate audio of high quality and rich

diversity with real-time and continuous controls, however this is often achieved by

processing pipelines of increased complexity that feature a large amount of parameters.
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In that sense, we often observe a trade-off between the capacity of the synthesizer to

produce diverse sounds and the intuitivity of its controls [130]. The synthesizers can be

enhanced by meta-controls which govern multiple parameters and yield a more compact

interface, nonetheless they require extensive practice and time to empirically tune their

parameters until reaching the desired sound. Synthesizer configurations are often saved

as presets with metadata in order to browse many possible settings and explore different

templates of sounds that can be produced. As with audio sample libraries, the browsing

of the synthesizer presets relies on metadata which only partly represent the underlying

acoustic and semantic contents. In order to generate a rich output, the synthesizers

often feature non-linear DSP operations (e.g. frequency modulation) so that parameter

changes can have radical and unpredictable effects. This hinders the use of presets as

a basis to craft other sounds which may be perceptually similar but may correspond to

much dissimilar parameter configurations.

From this perspective, we observe that digital synthesis has the potential to gen-

erate all the acoustic variations we may target but faces the challenge of providing

intuitive controls and interactions with semantic properties. Analysis and synthesis

techniques allow the extraction of audio parameters which can be manipulated in order

to generate new samples. Such audio representation is more interpretable since it can be

directly related to acoustic observations rather than to arbitrary metadata which some-

how describe the parameter configuration. However accurate sound models for analysis

and synthesis often have a high number of processing parameters and representation

dimensions which are impractical for musical interactions. Although the representation

is grounded in the acoustic domain, it hardly traduces semantic properties which may

not have a direct inversion mechanism. For instance, the perception of timbre has been

studied based on human ratings to asses the degree of dissimilarity between the sounds

produced by different instruments. The distribution of these ratings can be organized

into timbre spaces [98] of low dimensionality that traduce the perceptual relationships

of musical sounds as continuous distances. These representations correlate with acous-

tic perception [68], however they are not invertible and there is no synthesis model with

parameters corresponding to the analysis dimensions.

In this thesis, we apply deep generative models to the task of musical audio syn-

thesis to tackle the challenges of large-scale and meaningful interactions with audio

sample libraries by learning probabilistic representations of the data. We focus on in-
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vertible representations for analysis and synthesis to construct generative spaces of low

dimensionality that model the underlying structure of an audio library. In the unsu-

pervised setting that does not rely on metadata, we use probabilistic regularisations as

a mean to automatically organize the observed acoustic variations into a smooth and

compact space which allows visualisation, scattering the data on the learned analysis

dimensions, and generation by using these continuous dimensions as synthesis parame-

ters. The assumption of this probabilistic approach is that audio data with consistent

semantic properties occupy a sub-space of the observation space, a manifold [13] of

lower dimensionality that relates to the underlying nature of the data (e.g. physical

constraints, generative factors). In our case, these dimensions are those of acoustic

perception and temporal structures which correspond to meaningful musical audio that

we observe in a library and learn to represent by analysis and synthesis. We extend

this approach by relying on metadata provided with sample libraries to disentangle

specific factors of variation in the learned representations. These additional explicit

learning constraints enable more predictable transformations and control over the gen-

eration of specific musical attributes. It can be implemented by separating the data

in domains (e.g. different instruments) which we learn to map by disentangling their

specific features from a domain invariant representation. This shared representation

relates to higher-level music properties, for instance symbolic abstractions (e.g. pitch)

or acoustic variations that are found in the joint distribution of multiple timbres. It

applies to timbre transfer and audio stylisation by analysing a source sample and im-

posing it part of the auditory features learned from another target instrument domain.

In the semi-supervised setting, we use metadata to learn specific control dimensions for

target attributes while letting unsupervised dimensions model the remaining acoustic

variations pertaining to the given conditions. Such representation allows controllable

sampling of new audio which is consistent with the library and its metadata, including

the recombination and inversion of multiple perceptual attributes.

While we emphasize the representation learning and interaction properties that we

target by probabilistic generative modelling, a significant research is carried into devel-

oping neural networks adapted to processing audio and music information. This raises

multiple challenges due to the high dimensionality of audio time series which require

multi-scale representations of both local and long-term structures, as well as compu-

tationally efficient models for low latency synthesis and fast training on constrained

amounts of data.
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1.4 Thesis organisation and main contributions

In the second section, we introduce some fundamental concepts of audio and music

processing with an emphasis on classical models. We review the common representa-

tions of the audio waveform in the time domain and in the spectro-temporal domain

by short-term analysis. Based on the different acoustic representations of audio, we

introduce methods for decomposition and feature extraction which enable higher-level

analysis tasks for understanding the music structure. The music information retrieval

setting is presented as an inference mechanism from low-level acoustic features that are

processed and reduced to target music properties in the symbolic domain. We as well

review the main techniques for audio synthesis as the inverse generation mechanism of

the dense acoustic rendering given sparse conditions. We observe that these two pro-

cesses are often disjoint, meaning that most of the features and transformations used in

information retrieval are not invertible. For that reason we detail methods of analysis

and synthesis which are of great interest regarding this thesis research but highlight the

challenge of modelling invertible audio representations which are perceptually relevant

and intuitive to control. We conclude by a generic introduction of supervised machine

learning for audio and music processing, as throughout the thesis we intend to build on

representation learning as an analysis and synthesis tool.

The third section focuses on generative modelling with deep neural networks which

strongly relies on unsupervised learning and probabilistic models. In contrast with su-

pervised learning which aims at retrieving ground-truth labels of the data, generative

modelling is posed as a problem of estimating the continuous data distribution under-

lying a finite dataset of observations. As this problem cannot be evaluated in closed

form, we review several frameworks which use neural networks to parameterise a family

of approximate distributions that is optimised to fit the observed data. The introduc-

tion of these fundamental models for generative modelling is organised with respect

to their information structures, notably by the definition of a prior distribution over

a latent representation and the ability to perform analysis and synthesis. We as well

categorise their different optimization objectives which are usually defined by some ex-

plicit likelihood or by some implicit distribution matching, either in the data space or as

constraints over the latent representation. Given this review of unsupervised learning

models, we detail some specific generative applications which incorporate conditioning

to allow a semi-supervised control as well as domain translations. We conclude by pre-
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senting different kinds of metrics for evaluation, some of which are closely related to the

training objective of distribution matching whereas others emphasise data-dependent

properties or accuracy with respect to control and perception.

The application of generative models in audio synthesis is presented in the fourth

section. We review generic models of neural audio synthesis and spectrogram inversion

before focusing on music signal generation. In that case, control interactions and the

processing of timbre are central properties of the models that we divide between implicit

and explicit representation learning of timbre. These models focus on fine-grained

acoustic modelling and in the later we detail methods for end-to-end learning of analysis

and synthesis sound models, for instance using auto-encoders as done throughout a

significant part of this thesis research. Lastly, we present models focusing on score to

audio synthesis as well as perceptual embeddings which can be used to enhance the

training of these different kinds of generative audio models.

In the fifth section we present some of the work done and published throughout

this thesis, which references were mainly detailed in the sections three and four. Our

contributions in the field of implicit timbre models have relied on domain-translation

techniques which we specify to unsupervised timbre transfer. Since these methods re-

quire adversarial training and do not scale well to many domains, we propose to apply

non-parametric distribution matching to audio spectrograms which offers a stable and

scalable translation objective. We perform many-to-many timbre transfer in a single

neural network by relying on an expressive conditioning mechanism to apply domain-

specific statistics to hidden features. In addition to statistical evaluations, we propose

to visualise the topology of acoustic descriptors and show that our method effectively

converts audio domains which is traduced by implicitly matching the generated distri-

butions of acoustic descriptors with that of the target. Our contributions in the field

of learning representations of timbre are based on analysis and synthesis with auto-

encoders so that dimensions in the latent representation could structure variations in

timbre which can be manipulated and inverted to audio. We show that by applying

an adversarial regularisation to the latent representation we can disentangle attributes

of note samples that are independently controlled, for instance pitch and instrument

classes or playing styles. We pre-train corresponding classifiers and assess the accuracy

of the attribute controls which can be used for intuitive audio sampling with custom tar-

gets. We complement this controllable spectrogram generation model with an inversion

11



model which all-together allow fast waveform generation in a single pass. Our further

contributions have tackled the challenging problem of end-to-end waveform modelling,

which requires efficient learning of both local properties and longer-term dependencies

that span many orders of magnitude. To this extent, we propose a hierarchical model

for granular sound processing which learns a local acoustic representation as well as

a structured temporal embedding of short-term waveform features. We demonstrate

the efficiency of the waveform learning with our proposed short-term noise filtering

and overlap-add approach against a convolutional neural network baseline. The re-

sulting model is light-weight and can run in a prototype virtual drum-machine. The

audio sample generation can be performed as interpolation in the acoustic embedding

or conditional sampling in the temporal embedding. By performing interpolations in

the temporal embedding, we show that we can morph audio samples. Based on this

approach to short-term waveform modelling, we propose a second method to structure

the learned acoustic representation and interact with it. Instead of learning a temporal

embedding, we propose to apply discrete representation learning as a mean to decom-

pose the acoustic representation into a finite set of latent features of timbre. By doing

so, we show that we can perform timbre transfer directly in the waveform domain and

from arbitrary sources including the possibility of voice-driven synthesis. Moreover, we

can analyse and map the learned latent features with acoustic descriptors and control

the synthesis by explicitly defining some target acoustic variations. As part of the

evaluation of our proposed models, we discuss both the learning performance as well

as qualities related to control and usability. Amongst major major challenges in the

dissemination of machine learning tools are the needed data and computation resources

to train and deploy models. Thus we conclude our presentation with a group research

carried on compressing neural networks across a broad range of tasks including music

information retrieval and audio synthesis, which demonstrates the possibility of main-

taining the model performances while drastically reducing their sizes. These results are

significant steps towards real-time capable neural audio processing models running on

laptop CPU or embedded hardware.

In the last section, these results and academic publications are summarized along

with several related projects carried in the course of the thesis. My topic was motivated

by both a strong interest in science and audio technologies as well as a passion for music

and generative arts, which I could intersect during such projects. Finally, future works

are discussed for modular score to audio generation with expressive performance control.
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2 Audio and Music Processing

2.1 Audio Representations

The digital waveform. The audio domain encompasses a great variety of physical

phenomenons such as speech production, music sounds and environmental noises which

result from the emission of a continuous pressure signal. The most general counterpart

to the acoustic oscillation is the digital waveform (Pulse-Code Modulation), a unidi-

mensional time series which approximates any sound in the audible range if sampled

at a sufficient rate (e.g. 44,1kHz). It is also the least lossy storage and play-back of

audio information as both high sampling rates and high floating point precisions can

approximate the continuous time and real-valued amplitude of the acoustic signal. In

that sense, there is a trade-off between fidelity and dimensionality which is inherently

related to digitisation: the resolution of the time axis sets the higher frequency bound

according to the Nyquist law and the amplitude resolution (audio bit depth) sets the

dynamic range and the noise level due to quantisation errors. The setting of each

resolution can be optimised by choosing a sampling-rate adapted to the highest fre-

quency expected in the audio (sampling at twice the maximum frequency) or by using

an amplitude-dependant quantisation scale (e.g. µ-law). The later applies a non-linear

transformation to the amplitude with a log-shape that follows the dynamic perception

of loudness in the human audition and allows to mitigate quantisation artefacts down

to a 8-bit depth. Given x ∈ [−1, 1] a linear waveform amplitude and µ = 255, the 8-bit

transformation is:

F (x) ≡ sgn(x)
ln(1 + µ|x|)

ln(1 + µ)
. (1)

A certain compression can be achieved, nonetheless the audio waveform remains a highly

dimensional and impractical signal to visualise. Moreover, the local properties of the

waveform (e.g. sensitivity to time shifts) do not align with the macroscopic perception

of sound such as invariance to phase shifts and grouping of slowly varying oscillations.

Short-term representations. Another common class of audio representations are

based on spectro-temporal transformations of the waveform into 2-dimensional features.

Using a sliding window (possibly with overlap), the time axis is down-sampled into

frame series of spectral coefficients such as those of the Discrete Fourier Transform
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(DFT) that yields the Short-Term Fourier Transform (STFT). Formally, we denote the

real-valued waveform time-series as x = {x0, . . . , xL−1} and a chosen window function

w = {w0, . . . , wN−1} applied with a fixed hope size H ∈ N. The 2-dimensional STFT

complex spectrum X(m, k) is computed as:

X(m, k) ≡
N−1∑

n=0

x(n+mH)w(n) exp−2πikn/N ≡ |X(m, k)| expiΦ(X(m,k))

exp−2πikn/N ≡ cos(2πkn/N)− i sin(2πkn/N) (the orthogonal Fourier basis)

(2)

with m ∈ [0 : M ] and k ∈ [0 : K]. The down-sampled time-frame axis is of length

M = (L−N)/H and the frequency axis is of size K = N/2 with its range set according

to Nyquist law so that fK = fs/2 (fK being the frequency of the K-th spectrum bin

and fs the audio sampling rate).

The extraction of stationary frame features (invariant to small translations along

time) better traduces the auditory perception of slowly varying oscillations which ap-

pear as stable energy components in the spectro-temporal plane. The complex valued

STFT can be factorised into magnitude |X(m, k)| and phase Φ(X(m, k)) real-valued

components. The visualisation of spectro-temporal representations, often in the form

of magnitude spectrograms, is eased akin to reading an image projection of the audio

signal. Yet it must be noted that spectro-temporal audio properties differ from images

and should be processed adequately:

. the 2 dimensions are not symmetrical as the spatial dimensions of an image, in

particular the time-frame axis is translation invariant but shifts in the frequency

axis modify the sound pitch

. spectrogram ”pixels” can be shared by multiple sources due to the additivity of

sounds whereas image pixels mostly belong to a single object (occlusion of the

background)

. sound objects are non-locally distributed as spectral energies of a given sound can

be far apart (e.g. harmonic ratios) whereas neighbouring pixels mostly belong to

a same visual object

To a certain extent, the frequency dimension may be seen as ”colour channels” which

can be treated as independent time series, although this assumption has several flaws:
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energy often leaks across several frequency bins and a given energy component varies

over-time and is likely to jump over channels. Methods for re-scaling the linear fre-

quency axis fk = k ∗ fs/N have been introduced and alleviate some of these issues by

using a non-linear frequency bin distribution which aligns with human perception and

better traduces some specific sound properties. An example of such is applying the

Mel-scale which was empirically set to follow the quasi-logarithmic human perception

of pitches as m = 2595 log10(1 + f/700). The use of a logarithmic bin distribution

along the frequency expands the resolution in the low frequencies and compresses the

higher end of the spectrum. This property is as well often desirable with respect to

pitched musical sounds which are prominently composed of harmonic energy compo-

nents. Because these components follow a frequency distribution such that fi = i ∗ f0,

with f0 the fundamental frequency (pitch), it directly implies that harmonics of low

pitched sounds will be closer to each other than harmonics of high pitched sounds.

Thus, for a given size of the frequency axis, the separation of pitched musical sounds

is improved by using a logarithmic frequency spectrogram representation. To this ex-

tent, musically informed spectrogram representations have been specifically proposed,

of which the most common is the Constant-Q Transform (CQT [26]). In the western

tonal standard, musical notes are organised in semitone steps and grouped in octaves of

twelve pitches (well-tempered scale). Because an octave jump corresponds to doubling

the frequency of a pitch, the distribution of musical notes is logarithmic and it is the

scale adopted by the CQT. However, using a logarithmic scale raises issues of ampli-

tude normalisation which have motivated the use of a constant-Q transformation in the

sense of keeping a constant Q = fk/∆fk in reference to the Quality factor of a filter

in signal processing given a bin center frequency fk and a width ∆fk. As a result, the

CQT frequency axis is equivariant with respect to pitches and octaves, which means

that harmonic distributions are translation invariant. In the context of pitched sounds,

the CQT spectrogram shares many of the properties of images and offers a convenient

musical audio representation (Figure 4).

The previous audio representations are derived from the magnitude of the complex-

valued STFT. Another widely used transform is the real-valued Discrete Cosine Trans-

form (DCT) which is usually computed as:

XDCT (k) =
N−1∑

n=0

x(n) cos

[
π

N
(n+

1

2
)k

]
(3)
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wrapped phase waveform linear scale magnitude (energy in dB) CQT scale magnitude (energy in dB)

Figure 4: Visualisation of a 4-second excerpt of Cello solo. Different spectro-temporal rep-
resentations are derived from the raw waveform, the magnitude spectrograms allow direct
observation of the different notes played with a clear temporal segmentation. The CQT has
an improved separation of the note pitches and their corresponding harmonic distributions.

for a signal frame of size N . The DCT is used in signal processing [216] for compression

and in audio for transient modelling [275]. It can as well be combined with the STFT

magnitude spectrogram to compute the coefficients of the Mel Cepstrum (MFCC) by

applying the DCT to the log-magnitude Mel-spectrogram. While the STFT decompo-

sition extracts periodic components from the time domain signal, applying the DCT

subsequently extracts periodic components in the spectrum and yields a smoothed am-

plitude envelope of the spectrogram. It should be noted that both the complex-valued

STFT and the DCT have an exact inverse transformation and thus allow analysis and

synthesis (retrieving the input signal) but the non-linear frequency representation de-

rived from the magnitude are not. Although convenient for visualisation and analysis,

none of the representations such as Mel-spectrogram, CQT and MFCC have a straight-

forward application to audio synthesis. The Non-Stationary Gabor Transform (NSGT)

allows an adaptive signal representation along both the time and the frequency dimen-

sions while remaining invertible. This transformation is based on the Gabor signal

expansion into a periodic sum of elementary signals (grains) and can be thought as a

sampled STFT with windows of different sizes. An application is the Constant-Q NSGT

[273] which provides a frequency scaling that is equivariant with respect to pitches and

octaves while satisfying the condition of invertibility.

2.2 Feature Analysis and Visualisation

The aforementioned magnitude representations facilitate the visualisation of the spectro-

temporal patterns of a given waveform but have discarded the phase information from

the complex-valued short-term spectrum. This is due to the randomness of the raw
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wrapped phase which does not exhibit distinctive features such as those of the energy

amplitude (Figure 4). Interpretable visualisations of the phase information require ad-

ditional processing steps [295] such as unwrapping of the angular phase, computing time

derivatives (instantaneous frequency) and frequency derivatives (group delay). Since

most audio features are derived from the spectral energy distribution, we do not detail

the processing of phase information. The magnitude spectrogram is a lossy represen-

tation of the digital waveform (e.g. halved dimensionality), nonetheless it provides a

rather faithful description of the broadband acoustic information and is the basis for

several analysis processes which we categorise as decompositions or extractions.

Feature decomposition. The decomposition of an audio representation aims at sep-

arating different components of a given sound (Figure 5), which can be re-assembled

in order to retrieve the original representation. This is the basis of what will be re-

ferred as analysis/synthesis methods. Moreover, a given decomposition can serve as a

pre-processing step for a subsequent analysis method (Figure 6). Generally speaking,

audio data are often mixtures of sound sources which overlap in time and frequencies,

for instance an ensemble of instruments playing a given piece of music along with some

background noises. Ideally, the first processing step of an audio signal analysis would

be to decompose the mixture in individual tracks for each instrument. Source separa-

tion has extensively been studied [196] [214] and it remains an open challenge which is

beyond the scope of our discussion (e.g. the number and type of sources may not be

known in advance). To the extent of music production, the results of source separation

tend to leak in between instruments and the audio quality cannot match that of real

multi-track recordings (e.g. part of the timbre is suppressed, signal-to-noise ratio is

low). Considering the sounds produced by a given instrument, these may be coarsely

classified as either harmonic (the sustain of a note) or percussive (the attack of a note).

This classification has a dual representation in time and frequency domains, impulsive

components of the waveform appear as noise-like spectrum distributions (broad bands

of energy) whereas slowly-varying waveform components yield sharp spectrum distribu-

tions (peaks of energy). This property has been efficiently used for harmonic-percussive

decomposition in the spectrogram domain with median filtering [79]. The smoothing

effect of a median filter is either applied along the time dimension to remove transients
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in H̃ or along the frequency dimension to remove harmonics in P̃:

H̃(m,k) = median(|X(m− lh, k)|, . . . , |X(m+ lh, k)|)
P̃(m,k) = median(|X(m, k − lp)|, . . . , |X(m, k + lp)|)

(4)

with 2 ∗ lh + 1 and 2 ∗ lp + 1 the filter sizes along each dimension. The harmonic or

percussive enhanced magnitudes are compared and converted into binary masks applied

to the original spectrogram. This yields a decomposition such that |X| = H + P. It

should be noted that the aforementioned decomposition method is not restricted to

harmonic distributions but rather to narrowband energy components which vary slowly

over time (without constraint such as the integer ratio of frequencies).

time domain decomposition
blue: harmonics ; red: percussive harmonic magnitude spectrogram percussive magnitude spectrogram

Figure 5: A 4-second excerpt of Cello solo is decomposed into harmonic and percussive com-
ponents by median filtering in the spectrogram domain (visualisation in log-frequency). The
corresponding decomposition is shown in the waveform domain.

Feature extraction. As displayed in figure 5, the spectrogram decomposition em-

phasises the underlying content of an audio such that the different notes of a melody

are clearly visible in the harmonic component. However, the interpretation of the per-

cussive component is not straight-forward as some patterns remain over time, which

motivated the use of a finer decomposition in [62]. Such decompositions enhance the

visualisation of sound, yet they do not estimate the parameters of the underlying con-

tent which have to be extracted in a subsequent process (e.g. pitches, onset times).

Since both the input and output representations are the same, the dimensionality of

the decomposition is multiplied by the number of output components. On the other

hand, extraction methods aim at analysing specific features in the input and reducing

it to a set of target properties (while loosing the capability to directly retrieve the

input from the composition of simpler outputs). The relevance of the audio feature
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extraction highly depends on its correlation to human perception or to the subsequent

tasks it allows (yielding an analysis space) and the compression of information directly

traduces the multi-scale nature of audio signals. Following 2.1, we coarsely categorise

the features of music signals from the low-level waveform amplitude to the short-term

intermediate-level (frame-wise) and towards the longer-term semantic properties of mu-

sic (Figure 6). Many frame-wise descriptors have been proposed to traduce the dynamic

acoustic properties of a sound, amongst which spectral descriptors computed on spec-

trogram frames [203]. In comparison with spectral transformations which map to a

specific frequency scale (e.g. Mels), these descriptors are scalars that summarise the

overall spectral distribution of a given frame. For instance the Spectral Centroid (SC)

is a weighted mean of the bin frequencies multiplied by their magnitudes:

SC(m) =

∑K
k=0 fk ∗ |X(m, k)|∑K

k=0 |X(m, k)|
(5)

which correlates to the feeling of brightness of a sound [99]. As introduced in 1.2 the

perception of musical sounds may be divided into pitch, loudness and timbre which

have corresponding audio descriptors. While loudness has standardised measures (e.g.

A-weighting of the power spectrum), the estimation of pitch is not straight-forward

(e.g. cepstrum analysis [178]) and acoustic descriptors of timbre could only be eval-

uated with respect to their degree of correlation to human ratings (e.g. instrument

similarity ratings [181]). As noted in [242], there may be a divide in the use of acoustic

descriptors for research in timbre perception and music information retrieval which has

crafted additional task-specific features (e.g. for onset detection and transcription).

Nonetheless, these different feature extractions are a base for higher-level information

retrieval and semantic analysis. While short-term features have a fixed distribution in

time given the spectral analysis constant frame-rate (yielding feature envelopes such as

pitch contour), the higher-level music properties span longer-term and variable-length

temporal contexts. For instance, musical notes can have different durations of the or-

der of seconds whereas the spectrogram hop size have a fixed duration of the order of

tens to hundreds of milliseconds. This implies that modelling the higher-level music

structure and perception requires further temporal down-sampling, segmentation (e.g.

event onsets and offsets) and classification into categorical labels (e.g. event pitch, ve-

locity and instrument classes). These tasks are referred as Music Information Retrieval

(MIR [188]) and the extraction of an explicit music structure (e.g. piano-roll) serves
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the prediction of global music attributes such as the key, the tempo, the time signature,

the rhythmic patterns and chord progressions. Both symbolic structure and acoustic

features contribute to the perception of music, the fusion of these modalities ultimately

enable the analysis of orchestration which is the art of creating musical effects at the

interplay of composition and instrumentation. Such effects take into consideration the

tessitura (pitch range), playing modes and timbre relations in order to distribute in-

strument voices and achieve the desired musical sound mixtures.
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Figure 6: The multi-scale nature of audio and music information is divided into three levels
of representation. The low-level waveform is first down-sampled by short-term analysis which
extracts local spectro-temporal features. Temporal segmentation and classification allow higher-
level information retrieval and semantic extraction of music and timbre relationships.

2.3 Audio Synthesis

Feature analysis has been detailed as a bottom to top-level inductive process which

leads to musical abstractions such as score properties. Formally, a parametric anal-

ysis model Fφ takes an input sample x (e.g. an audio sample, a spectrogram) and

extracts some higher-level properties y = Fφ(x) (e.g. a label). Its counterpart is the

20



top to bottom-level generative process x = Fθ(y) which ultimately results in audio

synthesis of the target timbre under the composition and performance context (e.g.

articulation of a melody, playing styles). Digital audio synthesis systems [125] [261]

can be broadly grouped into three categories: physical models, corpus-based methods

and signal processing techniques (which will be further detailed as either abstract or

analysis/synthesis). Each of these audio synthesis system types are mostly parametric

models which differ in the meaning of their parameters θ and the underlying structure

of the synthesis parameter space that leads to signal generation. As discussed in the in-

troduction, the relevance of an audio synthesis greatly depends on the control qualities

and thus parts of the synthesis parameters θi usually serve as inputs and controls to the

system whereas the remaining model parameters θm define the internal capacity and

state of the system. These controls can allow direct user manipulations (e.g. turning

a knob, pressing a key) and with respect to the top to bottom information process-

ing shown in Figure 6, the higher-level context y (e.g. melody, pitch contour) should

interface with the synthesizer input parameters in order to render the target music

properties in the signal domain. As a result, we can generally define the generative

process of a conditional synthesis model as:

x = Fθm(y, θi). (6)

Physical simulation. To this extent, physical models [245] [16] simulate the natural

phenomena of acoustic production (e.g. modes of vibration, material interactions) for

a given source. The internal parameters are usually related to the simulation technique

(e.g. wave-guides, modal decomposition, finite elements) and the input parameters

traduce physical variables such as shapes (e.g. length of a string, instrument body),

materials (e.g. stiffness, density) and excitation (e.g. bowing speed, hit intensity).

Part of the input parameters may be found by physical identification from a given

source (shapes and materials) and the other excitation parameters are controls which

emulate the playing of the instrument. As such, physical models benefit from a direct

interpretability with respect to what they simulate (e.g. changing the length of a string

changes its pitch) and can achieve highly realistic audio. However, they have a limited

expressiveness since they only render a certain physical phenomenon, every sources and

playing modes require a dedicated model and simulation. In addition, the simulation

complexity can quickly increase along with the physical phenomenon complexity (e.g.
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non-linear interactions) and required accuracy (e.g. resolution of a mesh, numerical

stability constrains).

Corpus-based methods. Instead of performing the synthesis, corpus-based methods

use libraries of audio recordings as source material for audio generation, for instance

a note sampler that plays-back a certain audio sample corresponding to some control

targets (e.g. instrument, pitch, velocity). A whole performance can be assembled by

concatenating individual event samples corresponding to the notes of a melody, yet such

sampler does not offer expressive controls over the timbre (e.g. continuous acoustic

variations for a given pitch and velocity) and the articulation (relationship between

notes). Some samplers and wavetables include modulations and transformations (e.g.

audio effects) to manipulate the sample play-back. This allows a certain degree of

expressivity but does not scale to large corpuses as a given hand-tuned play-back setting

may only apply the desired effect to a certain sample. Another class of corpus-based

methods does not rely on event-level audio samples (e.g. with an ADSR amplitude

shape of a few seconds) but rather uses shorter signal windows (e.g. around 100ms.)

as independent templates (without inherent time structure) that can be combined to

form longer and more complex signals. These signal templates can be extracted by

slicing all audio samples of a given library into fixed-length grains which are the basis

of granular sound synthesis [225]. Because the duration of audio grains (e.g. 100ms) can

be several orders of magnitude lower than usual audio recordings, this quickly yields

a large number of audio templates to manipulate. To this extent, a grain library is

analysed with audio descriptors which assess the acoustic relationships across grains

that are projected onto a reduced feature space (one dimension per descriptor as shown

in Figure 7). This allows visualisation as well as smoothed audio concatenation (given a

sufficient grain density) as close neighbours should be matched acoustically. The issue

of phase misalignment at the grain edges can be circumvented by overlap-add with

symmetrical windows to fade-in/out the grain edges [84]. Usually, the analysis and

projection into the grain space does not take into account the temporal relationships

between grains which are solely compared in terms of acoustic similarity. Accordingly,

synthesis paths in the grain space often have a good sounding texture but do not exhibit

meaningful temporal structures. Granular and concatenative methods [233] have also

been applied to re-synthesis [231] of a given source sample which conveys its intrinsic

structure. In this approach, the source sample is sliced into short segments which are
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matched with their corresponding grains in the library. The ordered input series of

features can be recomposed with those of a given sound library according to a certain

matching criterion based on distances in acoustic descriptors.

pitch colouring instrument colouring

Figure 7: An analysis of individual notes across the 12 pitch classes and 5 instruments (full
tessitura). Two descriptors are chosen as dimensions for the scattering space, the Spectral
Centroid and the mean of the 20 first MFCCs which are extracted for each sample. On the right
plot with instrument colouring, we can observe some timbre grouping with different regions
pertaining mainly to certain instruments (e.g. top right for the violin).

Signal models and analysis/synthesis. Lastly we will detail methods based on

digital signal processing (DSP) operations which can either be abstract or based on

spectral models. In the abstract approach, the generic DSP parameters define a certain

state of the system from which the signal is generated, without explicit definition of the

target features. For instance non-linear operations such as frequency modulation (FM

synthesis [45]) and wave-shaping which can create complex timbres with only a few

parameters, although these parameters are hard to interpret and thus little predictable

in terms of output sound and musical context. On the other hand, spectral models

often rely on an analysis/synthesis framework [244] and an underlying sound model.

The analysis stage extracts audio parameters θi = Fφ(x) from the signal, these features

correspond to a certain spectral representation and are interpretable parameters for a

subsequent synthesis mechanism x = Fθm(θi) which inverts spectral features back to

the signal domain. Given some context y, the synthesis parameters can be extracted

from a given signal, manipulated according to a certain transformation model θ̂i =

T (θi,y) and synthesised into a new signal x̂ = Fθm(θ̂i) (Figure 8). The spectral model
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is often a basis for decomposing a complex acoustic information into simpler short-

term features that can be transformed and recombined in order to achieve another

complex target sound. The complex STFT allows decomposing any signal into a sum

of sinusoids with variable amplitudes and phases at linearly distributed frequencies and

the inverse STFT (iSTFT) allows overlap-add reconstruction [126]. As detailed in 2.1,

the phase is often discarded from the processing of the spectro-temporal representation

which prevents direct inversion of the magnitude spectrogram with the iSTFT. Phase

estimation from the magnitude spectrogram can be performed with the standard Griffin-

Lim algorithm (GLA) [100], an initial random phase is appended to the magnitude

and iteratively refined by successively applying STFT ◦ iSTFT which only updates the

phase until convergence. The reconstruction quality can be increased by using several

hundreds of iterations which can cause a significant latency, yet noticeable artefacts

remain. The STFT spectrogram representation does not assume a specific sound model

as it provides a complete orthogonal basis on which any signal can be decomposed.

Generally speaking, invertible representations such as the Fourier transform are bound

to preserve (or increase) the input dimensionality and are often over-parameterised

with respect to specific subsets of sounds. For instance, a harmonic sound will have a

sparse energy distribution which is concentrated over a set of spectral peaks, leaving

the other frequency bins unused. Additive synthesis relies on an oscillator bank which

simulates the spectral peaks of a sound, yielding a more compact representation as the

amplitude, frequency and phase information only need to be processed for the most

prominent energy components. These tuned oscillators are summed over time in the

signal domain as:

x(n) =
K∑

k=1

Ak(n) sin(Φk(n))

Φk(n) = 2π
n∑

m=0

fk(m) + Φk,0

(7)

for n ∈ [0 : L − 1] the signal length parameterised with K oscillators of time-varying

amplitudes Ak, instantaneous frequencies fk and phase offsets Φk,0. A natural coun-

terpart of additive synthesis is subtractive synthesis which carves the spectrum of a

broadband excitation (e.g. white noise) at specific energy bands in order to generate a

target spectral envelope. It can be performed from the spectrum domain with iSTFT

(random phase) or it can be performed in the signal domain with a tuned bank of band-

pass filters (classical vocoder) or by estimating the corresponding linear time invariant
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Figure 8: Analysis and synthesis (simplified diagram) in the context of the Sinusoidal plus
Noise (SMS) decomposition. The input waveform is first converted to spectrogram and sinu-
soidal components are extracted (colouring by magnitude). The deterministic signal is sub-
tracted from the input and the stochastic spectral envelopes are fitted on the residual signal.
This yields the audio parameters of the SMS analysis stage, which can be transformed accord-
ing to some user controls and inverted back to signal domain by additive synthesis plus inver-
sion of the residual stochastic envelopes (as an alternative to subtractive synthesis). Analysis
features are computed with the author’s tools [236] https: // github. com/ MTG/ sms-tools .

finite impulse response (LTI-FIR) filter to apply to the noise source [169]. Subtractive

synthesis stems from the natural process of speech production in which the broadband

glottal excitation is adaptively filtered by the human vocal tract and mouth in order

to generate different phonemes. From the musical viewpoint, specific source-filter mod-

els have been proposed in order to allow independent control over pitch, loudness (the

source) and timbre (the filter distribution) [28]. Additive and subtractive sound models

are combined in the Spectral Modelling Synthesis (SMS [236]) technique which is an

analysis/synthesis framework that accounts for both deterministic components such as

harmonic partials and stochastic components such as transients and percussive features.

The SMS model postulates that deterministic signals are slowly-varying narrow band

energy components in the spectrogram (the analysis space from which synthesis param-

eters are extracted) that can be modelled with additive synthesis. For that purpose, the

algorithm performs peak picking at each frame (extracting the frequencies, amplitudes

and phases of )sinusoidal components) and peak tracking across frames so that vari-

ations of each deterministic signal are continuously modelled with the corresponding

oscillator. The sum of deterministic signals is subtracted to the input audio and the

residual stochastic signal is fitted with a spectral envelope that is used for subtractive

synthesis.

The extracted parameters can be modified prior to synthesis in order to indepen-
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dently alter the pitch (e.g. shifting the frequencies) or to perform timbre transforma-

tions such as sound morphing in between synthesis parameters extracted from two dis-

tinct sources [285]. There exists a trade-off as an accurate fitting of the quasi-sinusoidal

signals requires a large analysis window (increased frequency resolution) whereas fine

modelling of transients requires a short analysis window (increased time resolution). A

precise SMS decomposition can be performed with separate analysis windows for fitting

these two components (either smooth time or smooth spectrum), although the final rep-

resentation complexity increases in terms of dimensionality and number of parameters.

Further extensions have been proposed based on the SMS model, notably using a ded-

icated transient model [276] [92] or jointly modelling stationarity and stochasticity in

the full-range spectrum with modulated oscillators [29] [78]. On the other hand further

factorisations can be made such as assuming harmonic relationships between partials,

yielding a more compact/lossy representation which is more practical to visualise and

process. Generally speaking, the accuracy and expressivity of spectral models (SMS,

vocoders) is related to their complexity and the generalisation power bound to that of

the chosen feature decomposition (e.g. ability to reconstruct a specific subset of sounds

or broader corpora).

Since there exists a huge gap in temporal dimensionality from compressed abstract

music representations and the corresponding waveform rendering, audio synthesis may

be performed in a hierarchical fashion such as acoustic production in the interme-

diate domain of spectrogram coefficients (conditioned on high-level musical context)

|X| = Fθm1 (y) and then audio synthesis from spectro-temporal features x = Fθm2 (|X|)
(e.g. inversion with GLA). The magnitude spectrogram has a 2D acoustic structure

which resembles that of the score (e.g. visualised as a piano-roll) as well as a regular

feature distribution over time. Given the frame-wise segmentation and alignment of

the musical context, the acoustic features of the spectrogram can be up-sampled to

waveform by a dedicated model which is responsible for the local signal properties. It

is thus a convenient intermediate representation in the music generation process and

a base for audio synthesis parameter extraction. Yet it remains an open challenge to

match existing purely analysis techniques (e.g. semantic extraction of music properties,

perceptual timbre spaces) with synthesis in order to condition generation on high-level

contexts and limitations imposed by classical analysis/synthesis models often prevent

processing complex recordings (e.g. music mixture, complete performance).
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2.4 Machine Learning for Music and Audio Processing

Throughout this section, music and audio processing have been introduced through

a hierarchy of representations and handcrafted analysis/synthesis stages that either

extract and classify higher-level music properties (retrieval) or render the acoustic in-

formation corresponding to such musical contexts and user controls (generation). The

engineering of a technique may be broadly divided in two steps, the first is feature

design and selection in order to emphasise the relevant data properties, the second is

task modelling using some theoretical knowledge and intuition on how to process the

chosen data representation (e.g. classification rules). The definition and refinement

of a technique often requires many trial and error until sufficient fine-tuning of the

configuration. Novel data-centred approaches have been first applied in the field of

Music Information Retrieval (MIR) using Machine Learning (ML) models to replace

task-specific engineered systems [123]. ML architectures make use of generic non-linear

functions whose parameters can be trained for a given set of observations and corre-

sponding task objective. Given a sufficient capacity (number of internal parameters),

ML models are universal approximators [115] which hold the promise of outperforming

classical audio engineering. Modern ML models are iteratively optimised by gradient

descent of a loss function (objective) which assesses the performance of the current

model state in order to update its parameters towards the loss decrease. For super-

vised predictive tasks such as MIR, we consider a dataset X = {xi} of observations

(e.g. audio snippets) with corresponding ground-truth labels Y = {yi} (e.g. musical

properties). The parametric model Fφ is tasked to infer an annotation ŷ = Fφ(x) and

a loss function L(ŷ,y) measures the prediction error with respect to the supervised

target y. The model state at a given optimisation step is defined by its parameters

φ which are updated by gradient descent of the differentiable loss function such that

φ̂ = φ − η∇φ [L(ŷ,y)] and φ ← φ̂ until convergence, with η an hyper-parameter to

adjust the learning rate. Deep learning models [94] are built by stacking multiple layers

which are composed as Fφ = fφD ◦ . . . ◦ fφ1 with a depth D (number of layers) and

optimisation is performed by back-propagation of the loss gradient from the last layers

(output) to the firsts (input) (Figure 9). Stochastic updates of the model state are

iteratively performed by drawing random mini-batches of data samples and annota-

tions at each training iteration. Each layer fφd with d ∈ [1, D] is usually defined as the

composition of a linear transformation (e.g. weight matrix W and bias vector B) with

a non-linear activation σ and the layer stack goes from input x to output y by com-
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Figure 9: Forward pass and error back-propagation for training a generic supervised deep
learning model by gradient descent. Stochastic optimisation is iteratively performed on random
mini-batches of data until convergence of the model.

puting hidden features as hd∈[1,D−1] = σd(h
T
d−1Wd + Bd). Deep learning architectures

are thus able to extract data features through a cascade of learnable transformations,

from low-level features in the first layers to more abstract features that are aggregated

into the output prediction of a given high-level target (e.g. label classification).

Supervised music information retrieval tasks are mainly based on audio analysis

and do not require a subsequent synthesis. This analysis proceeds by down-sampling

and extraction of features that are ultimately classified either as global labels (e.g.

music tagging) or as predictions over time frames (e.g. transcription, segmentation).

Since the inversion to audio is not required, it is common to pre-process the data into

short-term features such as magnitude spectrograms (e.g. CQT) which offer a more

structured input representation than the raw waveform for neural network training and

pattern recognition. Convolutional neural networks and pooling have been widely used

on magnitude spectrograms [41] to extract translation invariant features (e.g. onset

detection) that are fed into classification layers such as fully connected and recurrent

neural networks that model global relationships and summarise these features into

the output predictions (e.g. tempo estimation). An overview of common tasks and
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architectures for MIR is available in the following tutorial [40] along with reference

datasets 1 and evaluation benchmarks 2.

Besides MIR, some signal-domain audio processing tasks have been increasingly

tackled with deep learning [212] amongst which are source separation, extracting indi-

vidual tracks from an audio mixture, and audio enhancement (e.g. denoising). These

tasks may be categorized as transformations because their input and output representa-

tions are usually the same. Since they ultimately target the audio signal as an output,

dedicated neural network architectures have been developed to carry the processing

on the raw waveform [251] without need of lossy inversion of an intermediate output

prediction such as magnitude spectrogram. In the recent MIR advances we also observe

novel approaches that incorporate signal-domain processing to improve discriminative

tasks, for instance as a learned pre-processing for automatic music transcription in [202]

or as a mean to tackle unsupervised learning [38] on unannotated datasets with losses

based on audio reconstruction.

Amongst audio and music processing tasks, generation with deep learning mod-

els is a growing field of research [24] which raises challenges of evaluation [294] (e.g.

creative and perceptual quality) as well as development of adapted architectures. Gen-

erative modelling of music requires learning long temporal scales and complex semantic

structures (e.g. polyphony, mixtures) that were restricted to symbolic representations

and music composition with neural networks adapted from natural language processing

[118]. These approaches to automatic music generation could be successfully extended

to the waveform domain [53] using extremely large neural network models to synthesize

whole songs imitating popular music genres. Although it is a significant technolog-

ical feat, we may observe several limitations that generally apply to the approaches

of automatic music generation, from which we distance in this thesis research. These

models are often computationally intensive and little interpretable, whereas the music

generation task may be divided into more efficient and modular networks performing

sub-tasks such as melody and chord generation, accompaniment and drum generation,

singing voice synthesis, individual instrument synthesis. Moreover, such systems offer

little to no control which hinders creative applications and subjective values driven by

user interactions.

1http://ismir.net/resources/datasets/
2https://www.music-ir.org/mirex/wiki/MIREX_HOME
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3 Deep Generative Modelling Frameworks

3.1 Problem formulation

3.1.1 Unsupervised learning

In the previous section 2.4, the use of machine learning has been introduced in the

framework of information retrieval. Data-driven MIR tasks are usually tackled with

annotated databases which pair data observations with target properties in order to

provide supervision to the training of a classification or regression model. In this

section we introduce unsupervised learning with deep generative models (DGMs), a

framework which does not rely on learning a mapping between human-annotated input

and output pairs. Instead DGMs aim at learning factors of variations from the data

observation themselves by probabilistic modelling. Unsupervised learning benefits from

the large availability of unlabelled data, moreover it frees the model from reproducing

potential biases of human assessment and allows learning generic representations of the

data which may be transferred to multiple down-stream tasks. A given set of N data

observations X = {xi=1...N} is assumed to be drawn independently from an underlying

distribution p(x) which the DGM aims at estimating in order to generate novel yet

consistent data samples. Thus, the DGM parametrises a family of distributions pθ(x)

to be fit on the observations so that pθ(x) ≈ p(x) and sampling of new data could be

performed by x̂ ∼ pθ(x).

The frequentist approach. A common estimator in the parameter space of θ is

the Maximum Likelihood Estimation (MLE), i.e. maximising the probability of the

observed data under the independent identically distributed (iid) assumption

θ∗ = arg max
θ

pθ(X ) = arg max
θ

N∏

i=1

pθ(xi). (8)

The optimum parameter configuration is found at the global maximum of the likelihood

function pθ(X ) such that ∂pθ(X )
∂θ

= 0. In practice a more convenient objective is the log-

likelihood, given that log is a monotonically increasing function any positive-valued
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function pθ(X ) (e.g. probability function) satisfies

arg max
θ

pθ(X ) = arg max
θ

log (pθ(X ))

θ∗ = arg max
θ

N∑

i=1

log (pθ(xi)) = arg max
θ

Ex∼p(x) log (pθ(x)) .
(9)

The log-likelihood conveniently turns the product of many probabilities into a sum

which eases numerical computation and can yield a concave optimisation space that

ensures a unique solution ∂ log(pθ(X ))
∂θ

= 0 which is the global maximum. Since we do

not have access to the true data distribution, MLE matches the model distribution

to the empirical data distribution defined by the training set which is found to be

asymptotically convergent as the number of data observations tend to infinite N →∞,

given that the unknown target distribution p(.) lies within the model family pθ(.). This

yields a robust parameter estimator, however its expressiveness is limited to the families

of parametric distributions which have a closed-form expression and most real-world

datasets are far too complex to lie within tractable models. Amongst usual families of

parametric probability distributions (see [94] Chapter 3.9) are:

name variables expression

Bernoulli
x ∈ {0, 1} (binary)

0 < θ < 1

p(x = 1) = θ
p(x = 0) = 1− θ

p(x; θ) = θx(1− θ)(1−x)

Categorical
x ∈ {1, K} (K discrete states)

xi = 1 when x = i
0 < θi < 1

p(x = i) = θi∑K
i=1 θi = 1

p(x; θ) =
∏K

i=1 θ
xi
i

Gaussian
x ∈ R

θ = {µ, σ}
µ ∈ R and σ > 0

N (x;µ, σ) =
1√

2πσ2
exp

(
− (x−µ)2

2σ2

)

Common parametric distributions for univariate random variables.

The Bayesian approach. The density estimation by MLE yields a single parameter

configuration θ∗ as a function of the dataset which is considered as random observations

sampled from an underlying data probability. Another approach based on Bayesian

statistics treats the parameters θ as random variables in order to account for the uncer-

tainty of knowledge given the finite dataset of observations. In this setting, the model is
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defined by the joint probability p(x, θ) = p(x|θ)p(θ) where the prior p(θ) is chosen with

a large entropy that reflects the uncertainty over θ before observing any data. On the

other hand, the posterior p(θ|x) reflects the knowledge over parameters gained by data

observation (decrease in entropy) and can be derived from the conditional likelihood

p(x|θ) according to the Bayes’ rule:

p(θ|x) =
p(x|θ)p(θ)
p(x)

p(θ|X )︸ ︷︷ ︸
aggregated
posterior

∝ p(X|θ)︸ ︷︷ ︸
dataset

likelihood

p(θ)︸︷︷︸
model
prior

(10)

where p(x) =
∫
p(x, θ) dθ refers to the marginal likelihood. In this setting, parameter

estimation is posed as a posterior distribution which is given by the data observations

and a prior which traduces an initial modelling choice (e.g. human assumptions or

computational convenience). Recalling the goal of sampling new data x̂, the Bayesian

approach allows two predictions using either the model posterior or prior distributions:

ppost(x̂|X ) =

∫
p(x̂|θ)p(θ|X ) dθ

pprior(x̂) =

∫
p(x̂|θ)p(θ) dθ.

(11)

However given that the fitted posterior has a reduced entropy, it can be desirable to have

a point estimate of the parameters rather than a probability over which to integrate in

order to make predictions. The common choice of parameter estimate is then given by

the maximum a posteriori:

θ∗ = arg max
θ

log (p(θ|X )) = arg max
θ

log (p(X|θ)) + log (p(θ)) . (12)

Different learning frameworks have been proposed to model real-world datasets

with a sufficient expressivity, at the expense of tractability. Some of these, which

will be detailed in the next section, involve likelihood-based objectives and Bayesian

inference whereas others perform implicit density estimation. Unsupervised learning in

the audio domain notably requires modelling temporal dependencies within time-series

and scaling to highly dimensional datasets. This traduces in modelling the density

p(x) = p(x0, . . . , xL−1) spanning a large number L of waveform samples (e.g. hundreds
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of thousands) for each observation in an audio library of arbitrary size N .

3.1.2 Conditional density estimation

Many applications of DGMs involve a certain context from which data samples de-

pend on, notably some higher-level controls over the expected data properties being

generated. This process corresponds to conditional density estimation, which intro-

duces some sort of supervision as the model is given a dataset X which should relate

to certain input features Y in order to learn to generate new consistent data under the

constraints of a given combination of conditioning parameters. Considering an input

variable y (e.g. a certain class of data observations), conditional density estimation

aims at modelling the subsequent probability of sampling x̂y ∼ p(x|y). Considering y

as a random variable, this conditional probability can be computed as:

p(x|y) =
p(x,y)

p(y)
(13)

Assuming that the input distribution does not depend on the subsequent generative

process, a maximum likelihood estimate is then defined as:

θ∗ = arg max
θ

pθ(X|Y) = arg max
θ

pθ(X ,Y). (14)

To the extent of neural audio synthesis, we may consider some higher-level contexts such

as score, instrumentation, genre and a degree of performance variability under which

exists a certain variability in terms of potential audio outputs. The desired properties

of the conditional generative model are its realisticness, the synthetic data should be

indiscernible from real data, accuracy, it should give outputs which are perceived as

belonging to the target class and range of the data, and the diversity of its outputs given

the conditioning context. These qualities parallel those of the evaluation of classical

audio synthesis and its controllability [130]. In both cases, we may observe some trade-

off such as that of accuracy and diversity.
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3.2 Frameworks

In this section, we describe the main frameworks (Figure 10) for deep generative mod-

elling with directed probabilistic models. These families of unsupervised models share

the common goal of estimating a parametric density underlying a dataset of observa-

tions and can be extended to learning semi-supervised conditional generation. Several

methods have been developed to tackle the task of unsupervised generative modelling,

which mostly differ according to:

. which random variables are considered and how is their joint distribution decom-

posed

. how the model is parametrised and which training objective is used to estimate

these parameters

. is the model learning some latent representation of the data and an inference

mechanism (e.g. analysis and synthesis)

In this review of frameworks, we adopt the following notation:

x ≡ stochastic observed variable

pX ≡ empirical distribution of the dataset

z ≡ stochastic unobserved/latent variable

θ ≡ generator/decoder parameters e.g. Gθ ; pθ(x|z)

φ ≡ inference/encoder parameters e.g. Eφ ; qφ(z|x)

ψ ≡ discriminator parameters e.g. Dψ ; pψ(y|x).

y ≡ discriminating and conditioning variables e.g. labels

3.2.1 Fully-observed models

A fully-observed probabilistic model is such that all stochastic variables are being ob-

served, to the extent of an unsupervised generative model this amounts to (only) the

data observations. Throughout this section, we set the notations such that data obser-

vations x = {x0, . . . , xL−1} ∈ RL belong to a dataset X = {x1, . . . ,xN}. Accordingly,
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Figure 10: Overview of the main deep learning frameworks for unsupervised generative mod-
elling. Fully-observed models only consider the probabilistic process of the data observations
(loops over x), which can be decomposed as an auto-regressive conditional density or estimated
by its gradient field (score-matching). A joint distribution of the data and a stochastic repre-
sentation z can be learned with latent variable models which condition the generative process
Gθ based on a prior pθ(z). The Generative Adversarial Networks (GAN) learn this model with
an auxiliary discriminator Dψ which classifies whether samples are ground-truth observations
from the dataset or synthesised by the generator. On the other hand, approximate posterior
inference can be learned with an encoder Eφ and a latent regularizer DZ . It includes the
Kullback-Leibler divergence DKL used in the Variational Auto-Encoder (VAE) and aggregated
posterior regularizers such as the Maximum Mean Discrepancy (WAE-MMD) or an adversar-
ially learned divergence DGAN (AAE). A tractable latent variable model can be learned with
exact likelihood estimation using invertible neural networks gθ = f−1

θ that can be stacked into
Normalizing Flows. These base frameworks can be combined in order to take advantage from
their respective strengths, for instance Variational Inference with a posterior parametrised
with a normalizing flow, Adversarially Learned Inference with a joint discriminator over both
data and latent distributions.

the multivariate data density of interest is p(x) = p(x0, . . . , xL−1) and it can be decom-

posed into a product according to the chain rule:

p(x0, . . . , xL−1) =
L−1∏

i=1

p(xi|xi−1, . . . , x0)p(x0) =
L−1∏

i=1

p(xi|x<i)p(x0). (15)

This equation is the basis of auto-regressive (AR) models that estimate the probability

of each data dimension conditioned on the previously observed ones. This notably ap-

plies to time-series with causal dependencies because each time step is only conditioned

on the past and the chain rule (15) preserves such ordering. The AR model task is

thus to learn the conditional dependence which is usually parametrised with a neural

network Gθ such that pθ(xi|x<i) = p(xi|Gθ(x<i)), usually this network is shared across

time steps thus we do not consider indexing θi. The different AR models mainly differ

on how the past context is aggregated in order to make every next step predictions.
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Auto-regressive modelling with a temporal auto-encoder. The Neural Auto-

regressive Distribution Estimator (NADE [266]) uses a two-layer neural network to

compute the conditional dependence based on the single preceding time step and a

deterministic hidden state h such that for every i ∈ [1, L− 1]:

hi = Gθ0(xi−1,hi−1)

x̂i = Gθ1(hi).
(16)

The model is trained by maximum likelihood, or equivalently by minimising the negative

log-likelihood such that:

θ∗ = arg min
θ

1

N

N∑

n=1

− log (pθ(xn)) = arg min
θ

1

N

N∑

n=1

L−1∑

i=0

− log
(
pθ(x

(n)
i |x(n)

<i )
)
. (17)

A common challenge for AR models is to account for long-term dependencies by allowing

the past to influence the current time step prediction at several orders of time steps

back. This range called receptive field is usually fixed for architectural reasons (as

neural networks process inputs of fixed dimensions) and its size T is limited by the

finite computation resources allowed such that pθ(xi|x<i) = p(xi|Gθ(xi−1, . . . , xi−T )).

Thus AR models are often designed in order to maximise the receptive field for a given

model complexity (i.e. number of parameters). One common approach to maximise

the receptive field is to use stacked CNNs (weight sharing over time) with stride for

down-sampling in between layers and enabling the upper convolutions to span a large

context (e.g. ConvNADE).

Auto-regressive modelling with recurrent neural networks. Another approach

to AR modelling is to use RNNs which have an internal memory that implicitly stores all

the preceding information. Although RNNs could theoretically allow for any receptive

field, practical applications face several challenges such as vanishing gradients which

gradually extinguish the memory of past events. Several RNN cells have been proposed

in order to alleviate this issue, amongst which the Long short-term Memory (LSTM

[114]) is a common and efficient choice. The LSTM is comprised of a cell state c that

stores information about the past and several gates that regulate the information flow

from input to hidden state h. Similarly to NADE (Figure 11), the hidden state is often

used for the subsequent predictions such that pθ(xi|x<i) = pθ(xi|hi−1). The LSTM
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updates its hidden state according to:

input gate: ii = finput(xi,hi−1)

forget gate: fi = fforget(xi,hi−1)

cell gate: gi = fcell(xi,hi−1)

output gate: oi = foutput(xi,hi−1)

cell state update: ci = fi � ci−1 + ii � gi

hidden state update: hi = oi � tanh (ci)

(18)

with � denoting the Hadamard product.

xi�1

xi

hi

hi+1

p(xi|x<i)

p(xi+1|x<i+1)

✓0 ✓1

{xi,hi�1}
hi�1

xi

forget
gate

ci�1 �
input
gate � cell

gate

+

output
gate �

tanh

hi

ci

p(xi+1|x<i+1)

Neural Auto-regressive Distribution Estimator Recurrent Neural Network with LSTM cell

Figure 11: Unsupervised density estimation with the Neural Auto-regressive Distribution Es-
timator (left) and a LSTM Recurrent Neural Network (right).

Deterministic auto-encoders. In the case of NADE, the hidden activation Gθ0 :

(xi−1,hi−1) → hi allows temporal dependency in the prediction of the next auto-

regressive step Gθ1 : hi → xi. Other types of auto-encoders make use of a deterministic

hidden code for various analysis and synthesis purposes. In this setting a standard (non

auto-regressive) auto-encoder is commonly defined as a pair of networks that learn to

invert each other, the encoder Eφ : x → h (analysis) and the decoder Gθ : h → x

(synthesis) which jointly optimise some reconstruction error L such that:

θ∗, φ∗ = arg min
θ,φ

L (x, Gθ(Eφ(x))) (19)

In this regard, it should be noted that the unsupervised reconstruction objective does

not always rely on a probabilistic decoding and an objective such as the log-likelihood

(e.g. deterministic decoder trained with MSE). Regardless of the nature of its recon-
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struction objective, the auto-encoder is usually designed so that its hidden code enforces

certain learning properties [264], for instance:

. Dimensionality reduction [113], with a compression such that h ∈ Rdh and x ∈ Rdx

with dh � dx.

. Denoising [277], with an invariance to small random input perturbations ε such

that Gθ (Eφ(x + ε)) ≈ x. This invariance property can as well be learned by the

contractive auto-encoder [222] which adds a penalty term to the loss function

L (x; θ, φ) + λ||∇xh|| where λ is an hyper-parameter weighting how strongly the

hidden code should be insensitive to the data.

. Sparsity [8], forcing that a reduced number of hidden dimensions hi are active at

once. This can be done by adding a L1 penalty to the loss function L (x; θ, φ) +

λ
∑dh

i=1 |hi| which constrains the hidden code magnitudes.

. Clustering [247], which aims at grouping similar data observations into neigh-

bouring hidden codes. This can be done using a mixture of auto-encoders (one

per cluster) [298] or a supervised contrastive loss [136] given that data labels are

available.

. Orthogonality of the hidden code dimensions [279] [155], akin to a Principal

Component Analysis (PCA [83]), which can be achieved by adding a covari-

ance penalty to the loss over data batches X ∈ RM∗dx and H ∈ RM∗dh so that

L (X; θ, φ) + λ||HTH− I|| where I is the identity matrix.

Score-based generative modelling. An alternative to maximum likelihood esti-

mation is proposed by learning the gradients of the data distribution rather than the

distribution itself, which is termed as the score ∇x log(p(x)). The score matching [124]

objective of a modelGθ is thus to minimise EX ||Gθ(x)−∇x log(p(x))||22 which would lead

to an iterative data generation process by ascending the direction of maximum score

as estimated by the model (i.e. maximising the likelihood of a data sample initialised

randomly). Since the actual data distribution cannot be estimated in closed-form,

the naive definition of the score matching objective is neither tractable. Under some

common regularity conditions, the score matching objective can be re-written [250] as:
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θ∗ = arg min
θ

EX tr(∇xGθ(x)) +
1

2
||Gθ(x)||22 (20)

with tr() denoting the trace operator. In this setting, the model implicitly learns

the vector field of the gradients of the data probability Gθ(x) ≈ ∇x log(p(x)) while

remaining fully tractable. The training does not require sampling, yet the model can

be used in a generative setting by random initialisation x0 ∼ N (O, I) and implicit

gradient ascent as:

xt+1 = xt + η Gθ(xt). (21)

The first term of equation 20 does not scale to deep networks nor high data dimensional-

ity because of the computation cost of the Jacobian. Ongoing research shows promising

advances for efficient score-based generative modelling [250] [249] [248] which compete

with state-of-art results such as auto-regressive density estimation.

3.2.2 Latent variable models

In the fully-observed setting, the stochastic variables being modelled are only those

of data observations which are approximated by pθ(x). For instance a hidden code

h is introduced in NADE so that the model learns the temporal dependency between

time-steps, yet it does not obey to any probabilistic model besides that of maximis-

ing the data likelihood. Some hidden (also named latent or unobserved) stochastic

variables z ∈ Z can be introduced for enhancing the model which is then estimating

a joint density pθ(x, z). This Latent Variable Model (LVM) can leverage some prior

assumptions pθ(z) on the data structure such that it learns a conditional density as

pθ(x, z) = pθ(x|z)pθ(z). As an example, we can formulate a Gaussian Mixture Model

(GMM) with K components in which each of the k ∈ {1, K} class probability is given

by pθ(z = k) = πk. Under this assumption of a categorical latent variable z, with K

classes as multivariate Gaussian distributions parametrised by µk,Σk, the LVM is given

by:

pθ(x|z = k) = N (x;µk,Σk)

pθ(x) =
K∑

k=1

pθ(x|z = k)pθ(z = k) =
K∑

k=1

πk N (x;µk,Σk).
(22)

In the general case of a continuous latent variable z ∈ Rdz , the calculation of the

marginal likelihood requires integrating pθ(x) =
∫
pθ(x|z)pθ(z) dz and the LVM opti-
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misation by maximum log-likelihood would be computed as:

θ∗ = arg max
θ

Ex∼p(x) log (pθ(x)) = arg max
θ

Ex∼p(x) log

(∫
pθ(x|z)pθ(z) dz

)
. (23)

In practice, this objective is no longer tractable (e.g. we cannot compute Ez∼pθ(z)pθ(x|z))

and requires specialised learning algorithms. On approach to approximate the LVM is

the Expectation-Maximisation (EM [58]) algorithm which requires a tractable posterior

pθ(z|x). The EM algorithm iteratively updates the model parameters until convergence

according to two steps:

Expectation step: z ∼ pθ(z|x) =
pθ(x, z)

pθ(x)
∀x ∈ X

Maximisation step: θ̂ = arg max
θ

Ex∼p(x)Ez∼pθ(z|x) log (pθ(x, z))

Update θ ← θ̂ and repeat until convergence θ̂ ≈ θ∗.

(24)

The Variational Auto-Encoder. Another approach to learn a LVM is Variational

Inference (VI [81]) which turns posterior inference into an optimisation problem, thus it

no longer requires a tractable expectation step. In the VI framework, an approximate

posterior distribution qφ(z|x) with free variational parameters φ which should be fit to

the unknown posterior by minimising the Kullback-Leibler (KL) divergence:

DKL(qφ(z|x)||p(z|x)) =

∫
qφ(z|x) log

(
qφ(z|x)

p(z|x)

)
dz

DKL(qφ(z|x)||p(z|x)) = Ez∼qφ(z|x) log(qφ(z|x))− log(p(z|x)).

(25)

By applying the Bayes’ rule to the posterior, we have p(z|x) = p(x|z)p(z)
p(x)

which allows

to rewrite the objective as:

DKL(qφ(z|x)||p(z|x)) = log(p(x)) + Ez∼qφ(z|x) log(qφ(z|x))− log(p(x|z))− log(p(z))

log(p(x))−DKL(qφ(z|x)||p(z|x)) = Ez∼qφ(z|x) log(p(x|z))−DKL(qφ(z|x)||p(z))
(26)

Since the KL divergence is positive, this provides a lower bound to the likelihood, known

as the Evidence Lower Bound (ELBO):

log(p(x)) ≥ Ez∼qφ(z|x) log(p(x|z))︸ ︷︷ ︸
conditional likelihood

−DKL(qφ(z|x)||p(z))︸ ︷︷ ︸
regularizer

(27)

40



x

z

p(x)

p✓(z|x)p✓(x|z)

p✓(z)

expectation

maximization x

z

q�(z|x)p✓(x|z)
encoder

decoder

DKL (q�(z|x)||p✓(z))

Ez⇠q�(z|x) log(p✓(x|z))

Figure 12: Learning a latent variable model by Expectation-Maximisation (EM, left) and
Variational Inference (VI, right). The EM algorithm requires a tractable posterior distribution,
the Variational Auto-Encoder implements VI by using an encoder network to approximate the
posterior. End-to-end training can be performed by jointly optimising the expected conditional
data likelihood and minimising the Kullback-Leibler divergence with the decoder prior.

which is comprised of a term that corresponds to maximising the conditional data

likelihood and a regularizer that forces the variational posterior distribution to match

the model prior. The VI framework has been implemented into the Variational Auto-

Encoder (VAE [145]) by neural network parametrisation of both the variational poste-

rior distribution with an encoder Eφ and the conditional generation with a decoder Gθ

(Figure 12). In order to allow end-to-end learning of the model parameters θ, φ with

stochastic back-propagation, the VAE should be parametrised such that we can an-

alytically compute the KL divergence and the gradients through sampling from the

latent posterior z ∼ qφ(z|x). The vanilla VAE implements this with an isotropic

unit variance Gaussian prior distribution pθ(z) = N (z;O, I) and an inference poste-

rior qφ(z|x) = N (z;µφ(x), σ2
φ(x)) (diagonal covariance for mean field approximation)

with parameters output by the encoder Eφ : x → µφ(x), σφ(x) (amortised inference).

Under these conditions, the sampling, KL divergence and training objective can be

directly computed as:

z = µφ(x) + σφ(x)� ε with ε ∼ N (ε;O, I) (reparametrisation trick)

DKL(qφ(z|x)||pθ(z)) = 0.5
dz∑

i=1

µ2
i + σ2

i − 1− lnσ2
i

θ∗, φ∗ = arg min
θ,φ

−Ez∼qφ(z|x) log(pθ(x|z)) +DKL(qφ(z|x)||pθ(z))︸ ︷︷ ︸
LELBO(z∼Eφ(x),x̂∼Gθ(z),x)

.

(28)
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Representation learning and the manifold hypothesis. The original parametri-

sation of the VAE is justified by the ease of computation and differentiation of the for-

ward pass through the auto-encoder network. Moreover, latent regularisation schemes

give rise to representation learning properties [2] which can be interpreted in the con-

text of the VAE and the manifold hypothesis [13]. To this extent, we consider the

continuous space of audio waveforms x ∈ RL where L has a size in the order of macro-

scopic observations (e.g. 105 for a few seconds). Sampling the uniform distribution

x ∼ UL[−1,1] will consistently produce white noise whereas all natural sounds are com-

prised within this same distribution. This justifies the hypothesis that natural data

observations are embedded in a sub-space of lower dimensionality than the apparent

data space and that the manifold dimensions are related to the underlying structure of

real-world data (i.e. factors of variations) as opposed to the dimensions of the macro-

scopic observation space [77]. The VAE posterior regularisation with a simple latent

prior distribution (e.g. isotropic Gaussian), often chosen with a reduced dimensionality

such that dz � dx, forces the model to encode a smooth and compact representation of

the data which relates to the manifold properties (Figure 13). This prior over the latent

representation constrains inference and allows ancestral sampling x̂ ∼ pθ(x|z)pθ(z) in

which data generation in the observation space can be conditioned by a much simpler

latent distribution.

+
G✓ +

Figure 13: Manifold learning in the context of the Variational Auto-Encoder with mean field
approximation. Natural data X are folded in a sub-space of the observation space which
the encoder maps to the dense latent space Z regularised by an isotropic Gaussian prior
distribution.

Regularizers for continuous latent spaces. The Variational Auto-Encoder is a

powerful framework for unsupervised representation learning and generative modelling,

which has motivated extensive investigations in order to enhance its capacities [146]
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[284]. Amongst follow-up research works carried with VAEs, we discuss a few findings

and modifications of the original model implementation. The effect of a β hyper-

parameter weighting on the KL divergence was studied in [111] [27] and trades-off

the conditional data-likelihood with an increased regularizer strength which favours

learning a disentangled latent representation under the mean field approximation. The

experiments show that β > 1 encourages the encoder to use separate latent dimensions

for the factors of variations underlying the subsequent generative process. The appli-

cation in the visual domains demonstrates that higher-level properties such as shapes

and dimensions can be manipulated via distinct latent dimensions. Nonetheless, the

regularisation scheme introduced in the VAE is prone to failure cases which may be

observed from the derivation of the ELBO. In equation 26 we can see that the estima-

tion of the data likelihood could be unbounded if the variational posterior was exactly

matched to the true latent posterior distribution. However its restriction to the mean

field family of isotropic Gaussian distributions is unlikely to comprise the true latent

distribution of real-world datasets, causing a gap between the ELBO optima and the

true data distribution. This limitation may be responsible for the fact that VAE sam-

ples tend to miss fine-grained features of the data distribution (e.g. blurry samples)

[302]. Another issue, referred as over-pruning [296], is observed when the optimisa-

tion of the KL divergence pushes the posterior distribution to exactly match the prior.

The latent dimensions which collapse to zero mean and unit variance minimise the KL

divergence but become uninformative and over-pruning leads to a degenerate VAE in

which the decoder by-passes the encoder.

The ELBO gap due to the mean field variational posterior and the failure case of

over-pruning (posterior collapse) have motivated an alternative regularisation scheme

in the Wasserstein Auto-Encoder (WAE [263], also introduced in the InfoVAE [303]).

Considering a batch of data X ∈ X and the corresponding batches of latent sam-

ples Z, the WAE regularizer is applied over the aggregated latent distributions as

EXDZ(qφ(Z|X)||pθ(Z)) where DZ can be an arbitrary divergence measure between the

latent mixtures of posterior and prior samples. While the VAE regularisation pushes

each individual latent code to match the prior, the WAE regularizer only forces the en-

coder posterior to match the prior in average. This enables a more flexible regularisation

and the choice of an arbitrary divergence measure permits the use of a deterministic

encoder as well as diverse prior distributions without requiring the analytical KL di-

vergence calculation. In the WAE-MMD framework, the Maximum Mean Discrepancy
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(MMD [97]) is used as the divergence measure DZ which is a type of kernel two-sample

test. The MMD does not take assumptions on the parametric forms of the compared

distributions, instead it uses their kernel estimates to evaluate their degree of similarity

given batches of samples independently drawn from both. Considering two distribution

P,Q and the corresponding batches of samples X,X′ ∼ P and Y,Y′ ∼ Q the MMD is

computed as:

MMD(P,Q) = EPk(X,X′)︸ ︷︷ ︸
intra P

similarity

+EQk(Y,Y′)︸ ︷︷ ︸
intra Q

similarity

−2EP,Qk(X,Y)︸ ︷︷ ︸
cross P,Q

dissimilarity

(29)

where the kernel k can be chosen as the radial basis function k(x, x′) = exp−||x−x′||22.

In the deterministic case, the WAE-MMD objective can thus be written as:

θ∗, φ∗ = arg min
θ,φ

EX c(X, Gθ(Eφ(X))) +MMD(Eφ(X), pθ(Z)) (30)

with c any reconstruction cost (e.g. MSE).

Discrete representation learning. Another stream of research has focused on

learning a LVM with a discrete latent prior that would potentially reflect the cate-

gorical nature of the data (e.g. a GMM model which assigns class probabilities to

the latent variable). The Vector-Quantized Variational Auto-Encoder (VQ-VAE [270])

implements a discrete latent representation by defining the prior as a set of vectors

Q = {qi=1...K} ∈ RK∗dz which are dynamically learned in an unsupervised fashion.

The deterministic VQ-VAE encoding Eφ : x→ z is quantised into the latent codebook

Q by nearest neighbour lookup, which yields a categorical posterior distribution and

subsequent decoding of the form:

qφ(z = k|x) =





1 for k = arg min
i∈[1,K]

||z− qi||2

0 otherwise

x̂ = Gθ(qk).

(31)

Because the nearest neighbour quantisation step is not differentiable, end-to-end back-

propagation of the VQ-VAE loss is performed via straight-through approximation [14]

which copies the gradients back-propagated at the decoder input to the encoder output
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and allows the following optimisation:

LVQ-VAE = c(x, x̂) + ||sg(z)− qk||22︸ ︷︷ ︸
Lcodebook

+β ||z− sg(qk)||22︸ ︷︷ ︸
Lcommitment

∇qk,θ LVQ-VAE︸ ︷︷ ︸
decoder gradients

→ ∇z,φ LVQ-VAE︸ ︷︷ ︸
encoder gradients

(32)

with sg(.) denoting the stop gradient operator (identity at forward and zeroing of

gradients at backward). The second term Lcodebook updates the selected codebook

elements towards the unquantised encoder outputs (which is held constant by stop

gradient) and the third term Lcommitment inversely pushes the encoder outputs towards

the nearest neighbour quantisation code (while freezing the codebook by stop gradient).

Overall, the VQ-VAE objective is such that the decoder parameters optimise the first

loss (reconstruction cost), the encoder parameters optimise the first and last losses, the

codebook optimises the first and second losses. The KL divergence can be omitted from

this objective by postulating a uniform prior distribution over the codebook pθ(z = k) =

1/K ∀k ∈ [1, K] which amounts to a constant KL divergence DKL(qφ(z|x)||pθ(z)) =

log(K). Because the KL divergence is held constant throughout the training, the VQ-

VAE alleviates the issue of posterior collapse which often happens in the continuous

VAE setting when using a powerful decoder that may by-pass the encoder inference.

As an example the VQ-VAE can be trained on speech waveform with a powerful auto-

regressive decoder which does not impede the learning of a rich latent representation,

experiments in [270] [44] show that the discrete latent space can unsupervisedly embed

features that strongly correlate with speech phonemes. Follow-up experiments have

introduced alternative implementations of a Vector-Quantized latent space in order to

increase the training stability of the original VQ-VAE. The codebook update loss from

32 can be replaced by an exponentially moving average or it can be removed if keeping

the codebook as a constant set of one-hot vectors in the Argmax Auto-Encoder (AMAE

[54]). In the aforementioned VQ-VAEs, the categorical posterior inference may lead to

a poor use of the codebook which is another form of collapse when the model effectively

uses only a small fraction of the codebook elements. A Soft-VQ-VAE is proposed in

[289] with a decoder that outputs a categorical distribution over the codebook and

posterior inference is performed with a mixture model of its K components.
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Sequential and hierarchical representation learning. As shown in Figure 13,

the VAE latent space mirrors the data space via posterior inference over individual and

independent data observations. In this setting, each data point is individually assigned

some latent parameters {µφ(x), σφ(x)} with a feed-forward encoder. In the case of some

sequential data x(1,...,T ) = {x(1), . . . ,x(T )} the learned representation should capture the

dependencies in the data in a global embedding z(g) as opposed to individually encoding

each step z(t) for t ∈ [1, T ]. The VAE framework can be applied to time series by using

RNNs in the encoder and the decoder, as introduced in the Variational Recurrent

Auto-Encoder (VRAE [76]) which learns an embedding over MIDI songs (series of note

symbols). The VRAE is also applied to natural language in [23] in order to learn a

global embedding of sentences which can be sampled in order to generate new sentences

with coherent series of words. The model is comprised of an RNN-based encoder which

uses its last hidden state to compute the global latent parameters as:

h(t+1) = RNNφ(x(t+1),h(t))

Eφ : hT → µz(g) , σz(g) .
(33)

Sampling can be performed using the reparametrisation trick of equation 28 and the

RNN decoder hidden state is initialised using that embedding before auto-regressive

prediction of the output series (Figure 14). This results in a sequence to sequence

model [255] with a variational information bottleneck z(g) ∈ Rdz that models the joint

probability of sequential data x(1,...,T ) ∈ Rdx∗T . Several variations of recurrent VAEs for

time-series modelling have been proposed [91], which share the same training objective

(ELBO) but mainly differ in the graph structure linking the observed variables and the

latent variables for both posterior inference, sampling and sequential prediction.

The VRAE tackles the learning of a global latent representation of sequential data,

as opposed to individually encoding local features of each time step. The distinction

between local and global features highly depends on the data structure (e.g. time-

series or static observations) and the model, which may explicitly learn hierarchical

representations that span different contexts and degrees of abstraction (Figure 14). A

hierarchical VRAE is proposed in [37] which uses a pyramidal architecture with multiple

encoder-decoder pairs processing different temporal scopes. The upper latent space

aggregates a larger context and is complementary to a lower latent space that models

shorter-term dependencies in the data. Hierarchical learning is also proposed for static
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Figure 14: Left: A VRAE with a RNN encoder that summarises an input sequence into a
final hidden state h(T ) that is used to infer a global latent z(g). The RNN decoder is initialised
with samples from the embedding to perform auto-regressive (dashed line) prediction of output
sequences. Middle: A hierarchical auto-encoder with a two-stage latent space. Right: A
hierarchical recurrent auto-encoder, the first stage encodes individual time-steps and the second
stage embeds series of latent features into a higher-level global latent space.

(i.e. non-sequential) data by combining the ladder auto-encoder structure [267] and

variational inference in [246]. Multiple latent codes are learned for a given individual

data observation and skip connections are introduced in between hidden layers of the

encoder-decoder pairs. These shortcuts directly pass some lower-level information to

the decoders and free the upper-level inference from modelling certain local properties

of the data. As a result, the ladder architecture enables learning representations that

are invariant to different levels of features and allows efficient training of deep VAE

models that capture more abstract data structures as the number of latent spaces

grows. Another enhancement of the VAE framework is proposed in the two-stage VAE

[50] which analyses the issues of posterior collapse and poor ancestral sampling quality

which may arise in the trade-off between learning an accurate data representation and

achieving a low divergence with the Gaussian prior. The method proposes to pre-train a

regular VAE (parameters θ1, φ1) and use it to encode the whole dataset as Z = {zi=1...N}
which gives an approximate manifold qφ1(z) = EX qφ1(z|x). In the non-degenerate case,

it is likely that qφ1(z) 6= N (z;O, I) which prevents from an accurate ancestral sampling.

In the second stage, another VAE (parameters θ2, φ2) is trained over the dataset encoded

by the first VAE and learns the latent representation z2 ∼ qφ2(z2|z) of the manifold

such that qφ2(z2) ≈ N (z2;O, I). A two-stage ancestral sampling can then be performed
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as:
z2 ∼ N (z2;O, I)

z ∼ pθ2(z|z2)

x ∼ pθ1(x|z).

(34)

Exact density estimation with normalizing flows. The VAE framework relies

on approximate posterior inference, which gives some flexibility over the neural network

parameterisation of the latent distribution but prevents direct optimisation of the data

likelihood (bounded estimator such as ELBO). This highlights the trade-off between

the simplicity of the parametric posterior (e.g. a compressed isotropic Gaussian) and

the accuracy of the data density estimation. The Normalizing Flows (NF) framework

has been developed in order to perform exact inference and direct optimisation of the

data likelihood with invertible neural networks [56]. Whereas the auto-encoder model

is comprised of two separate networks which approximately learn to invert each other

(such that x ≈ Gθ(Eφ(x))), the NF model is based on a bijective network which learns

both inference and sampling. A flow is defined as a transformation between two random

variables fθ : x ∈ Rd → z ∈ Rd with an inverse f−1
θ = gθ and according to the change

of variable formula the probability distributions can be written as:

log(pθ(x)) = log(pθ(z)) + log

∣∣∣∣det
(
∂fθ(x)

∂x

)∣∣∣∣ = log(pθ(z)) + log |det (J(fθ))| . (35)

Normalizing flows are built by chaining multiples flows in order to allow for complex

transformations such that fθ = fθ1 ◦ . . . ◦ fθK and choosing a simple and tractable

prior such as pθ(z) = N (z;O, I). In this setting the data log-likelihood can be directly

optimised as:

log(pθ(x)) ∝ −zTz

2
+

K∑

i=1

log |det (J(fθi))| . (36)

Exact samples from this distribution can then be drawn from the prior by using the

inverse transform sampling x = gθ(z). The NF framework offers the advantage of an

exact density estimation but comes with the limitation that the mapping between data

and latents must preserve the dimensionality (no compression). Moreover, as seen in

equation 36, training requires using transformations with an efficient computation of

the determinant of the Jacobian det(J(fθi)) which has led to the development of several

types of flow layers [150] aimed at maximising the expressivity of the transformation

48



with minimal computation cost of the Jacobian. One of the most commonly used flow

layers is the affine coupling layer [57] which splits its input in two parts and use an

arbitrary function (e.g. a neural network NNθ) to predict conditional affine parameters

as:
xa,xb = split(x)

s, t = NNθ(xb)

z = concatenate(s� xa + t,xb).

(37)

Because of the identity function applied to xb, the Jacobian computation of the

affine coupling layer is efficiently reduced to J(fθ) = log(|s|) while allowing the use

of arbitrary neural networks into generative flows for complex data distributions such

as natural images [144]. Another application of normalizing flows is proposed in [220]

for improved posterior inference in the VAE framework. In this setting, the inference

network predicts additional parameters λφ(x) of a normalizing flow applied to the usual

isotropic Gaussian variational posterior qφ(z|x) = N (z;µφ(x), σ2
φ(x)). In that sense, the

normalizing flows allow a more expressive posterior distribution (Figure 15) to feed the

decoder with samples from qφ(zK |x) = fλKφ (x) ◦ . . . ◦ fλ1φ(x)(qφ(z|x)) without sacrificing

the convenience of amortised inference with an isotropic Gaussian encoder.

z z1
fλ1

φ
(x)(z)

zi zi+1

fλi+1
φ

(x)(z
i)

. . .
fλi

φ
(x)(z

i−1)

zK. . .
fλK

φ
(x)(z

K−1)

z ∼ qφ(z|x) zi ∼ qφ(zi|x) zK ∼ qφ(zK |x)

Figure 15: Combining the Normalizing Flows and Variational Auto-Encoder frameworks for
enhanced posterior inference3. The regular mean field Gaussian posterior qφ(z|x) can be trans-
formed into a richer distribution with a chain of normalizing flows with parameters predicted
by the inference network.

3Figure adapted from a source code.
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3.2.3 Implicit density estimation

Generative modelling requires defining a criterion by which the model can learn to ap-

proximate the distribution of the data. The previous approaches have mostly relied on

maximising the data likelihood under the model constraints such as approximate poste-

rior inference (bounded estimate) or bijective inference (exact estimate). The seminal

work on Generative Adversarial Networks (GANs [95]) proposes a totally different ap-

proach to learn a data distribution by comparison in a min-max fashion. Adversarial

learning relies on a generator-discriminator network pair with competitive optimisation,

the discriminator objective is to distinguish between real data samples and generated

ones whereas the generator aims at fooling the discriminator. As the learning pro-

gresses, the generator Gθ improves the realisticness of its outputs and the discriminator

Dψ refines its ability to separate the generator distribution pθ(x) from that of the

dataset pX . Each iteration of this min-max game is defined as:

max
ψ

min
θ

EpX log(Dψ(x)) + Ez∼pθ(z) log(1−Dψ(Gθ(z))) (38)

and a prior distribution such as pθ(z) = N (z;O, I) is usually chosen and deterministi-

cally mapped to the data space by the generator Gθ : z→ x. In contrast with the latent

variable models previously discussed, the original GAN model does not rely on any infer-

ence mechanism which would relate the latent representation to the underlying dataset

structure. The optimisation of equation 38 is usually carried in two steps, first the

generator parameters are kept fixed and the discriminator update aims at maximising

the objective via Dψ(x)→ 1 (real) and Dψ(Gθ(z))→ 0 (fake), second the discriminator

parameters are kept fixed and the generator update aims at minimising the objective

via Dψ(Gθ(z))→ 1 (i.e. fooling the discriminator by being classified as the real data).

For a fixed generator, the optimal discriminator distribution is p∗ψ(y|x) = pX
pX +pθ(x)

, with

y being the real or fake label predicted by the discriminator. As the generator aims at

fitting the dataset as pθ(x) ≈ pX , the min-max training would ideally converge to an

equilibrium pψ(y|x) = 0.5 regardless of whether samples are drawn from the dataset or

generated. Given the optimal discriminator D∗ψ, the generator minimises the objective
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of equation 38 as:

L(θ|ψ∗) = EpX log(D∗ψ(x)) + Ez∼pθ(z) log(1−D∗ψ(Gθ(z)))

= EpX log(D∗ψ(x)) + Ex∼pθ(x) log(1−D∗ψ(x))

= EpX log

(
pX

pX + pθ(x)

)
+ Ex∼pθ(x) log

(
pθ(x)

pX + pθ(x)

)

= − log(4) +DKL(pX ||(pX + pθ(x))/2) +DKL(pθ(x))||(pX + pθ(x))/2)︸ ︷︷ ︸
2∗DJS(pθ(x)||pX )

.

(39)

This equation satisfies the generator optimum p∗θ(x) = pX at which L(θ∗|ψ∗) = − log(4)

and in this setting it is observed that the GAN algorithm has minimised the Jensen-

Shannon divergence DJS between the dataset distribution and the generator output

distribution. In practice, both the generator and the discriminator parameters can be

optimized by gradient descent of two losses that update one network parameters while

keeping the other fixed:

L(ψ|θ) = − log(Dψ(x ∼ pX ))− log(1−Dψ(Gθ(z)))

L(θ|ψ) = − log(Dψ(Gθ(z))).
(40)

In the GAN framework the metric is learned throughout the training rather than

fixed a priori, this technique has enabled unprecedented performances in the domain

of computer vision and image generation [283] (e.g. photo-realistic image synthesis).

Adversarial metric learning has also proven effective in other settings of distribution

matching, this includes posterior inference regularisation [173] (e.g. replacement of

analytical latent divergences) and novel tasks related to unpaired domain conversion

[3] (no metric a priori). However, adversarial training suffers from instability [46] and

GANs are prone to mode collapse [301] which happens when the generator focuses on

a single mode of the data distribution and fails at producing diverse samples. These

known issues with GANs as well as the ongoing quest for increased sampling quality (e.g.

generating larger images and higher resolutions) have motivated an intensive research

which comprises both alternative model formulations and improved architecture design

[49].

Methods relying on two-sample tests have been proposed amongst alternative for-

mulations of the implicit data distribution matching task. The two-sample test mea-
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sures how dissimilar are the distributions of two independent batches of samples and

can be analytically computed with the Maximum Mean Discrepancy (MMD [97]). In

comparison with GANs, it may be considered as a fixed discriminator that a generator

tries to fool in order to produce samples that are statistically indistinguishable from

the dataset [67]. The discriminative power of the MMD against the distribution com-

plexity depends on the choice of kernel for density estimation, the amount of data to

compute the statistics and the dimensionality of the observed space. While training

a generator with a MMD-based objective does not suffer from the GAN instability, it

as well does not compete with the expressivity of adversarial learning (i.e. the GAN

discriminator can provide a finer loss than the fixed kernel MMD), which has motivated

some further investigations. A parametric MMD kernel can be trained [161] in order to

refine standard kernels such as radial basis and inverse multi-quadratic functions while

having much fewer parameters than a traditional discriminator network. Another work

proposes to train an unregularised auto-encoder which may reach a satisfying recon-

struction quality, and to use MMD to train a generator to match its embedding statistics

[162]. While unregularised auto-encoders can achieve accurate reconstructions, they do

not guarantee good sampling. By computing the two-sample test in this compressed

embedding, distribution matching may be more efficient than in the data space and

conveniently lets the generator benefit from the auto-encode pretraining.

Adversarial auto-encoders. The training of GANs relies on a network pair, a gen-

erator and an auxiliary discriminator that is used for training and often discarded once

the generator has converged to a sufficient performance. In contrast with auto-encoders,

the vanilla GAN does not have an inference mechanism which allows meaningful inter-

actions with the latent representation (e.g. visualising the latent distribution of the

dataset) and can support down-stream tasks (e.g. encoder as unsupervised feature ex-

tractor). In order to broaden the use of GANs beyond their success at the generative

task, some techniques have been proposed to inverse a pre-trained generator [48] [159]

via gradient descent. Given an observation x, the inversion aims at finding its latent

representation z∗ such that Gθ(z
∗) is the closest match to the observation. To this ex-

tent, a random latent can be sampled from the prior z ∼ pθ(z) and iteratively updated

by optimising:

z∗ = arg min
z

||x−Gθ(z)||2. (41)
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In the case of a deterministic generator each latent is mapped to a unique data sample,

however there may be multiple latents that approximately correspond to the inverse

of a given observation. Because these inversion techniques are iterative and inherently

ubiquitous, their application to approximate an inference mechanism is inefficient. On

the other hand, several models have been proposed in order to complement the auto-

encoder framework with the strengths of adversarial learning. A VAE/GAN model is

proposed in [157] which replaces the data-likelihood objective of the VAE with the GAN

objective (enforcing realistic output samples) and a reconstruction cost computed in the

hidden activations of the discriminator. Whereas the distance computed in the pixel

space does not yield a good metric of perceptual similarity (e.g. it is not translation

invariant), the distance computed in the hidden layers of the discriminator is expected

to give a better reconstruction metric which spans observation patches of multiple

sizes and improves in the course of the adversarial training. The GAN framework

has also been applied to distribution matching in the latent space of an auto-encoder,

using a discriminator as a probabilistic regularizer of the aggregated posterior inference.

The Adversarial Auto-Encoder (AAE [174]), which is an instance of Wasserstein Auto-

Encoder (WAE-GAN [263]), replaces the KL divergence with a divergenceDGAN learned

in an adversarial fashion:

max
ψ

min
φ

Ez∼pθ(z) log(Dψ(z))︸ ︷︷ ︸
classifier on the prior

+EpX log(1−Dψ(Eφ(x)))︸ ︷︷ ︸
classifier on the posterior

≡ DGAN(Eφ(x)||pθ(z))

ψ∗, θ∗, φ∗ = max
ψ

min
θ,φ
− Ez∼Eφ(x) log(pθ(x|z)) +DGAN(Eφ(x)||pθ(z)).

(42)

to approximate the Jensen-Shannon divergence DJS(qφ(z|x)||pθ(z)). Akin to the WAE-

MMD, the AAE does not require a probabilistic encoder and can allow any prior and

any posterior parametrisation. Moreover, adversarial learning in the latent space is

potentially more stable than in the data space since latents usually have a reduced

number of dimensions and simpler distributions than that of the data observations.

Both the VAE/GAN and the AAE make use of the GAN framework in order to

learn the latent variable model p(x, z), either via adversarial distribution matching

in the data space (VAE/GAN) or as a latent regularizer (AAE). In the auto-encoder

setting, this amounts to learn the two conditional distributions qφ(z|x) (inference with

an encoder Eφ) and pθ(x|z) (generation with a decoder Gθ) to approximate the joint
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LVM probability as:

qφ(x, z) = qφ(z|x)qφ(x)

pθ(x, z) = pθ(x|z)pθ(z)
(43)

and the marginal distributions are commonly fixed as qφ(x) ≡ pX (the observed dataset)

and pθ(z) = N (z,O, I) (fixed prior). From this perspective, a LVM can be learn via

adversarial distribution matching of the joint distributions which leads to the Adversar-

ially Learned Inference (ALI [64], also proposed as Bi-GAN [60]) which solely relies on

the GAN framework for both inference and generation. The task of joint distribution

matching is implemented with a discriminator Dψ(x, z) that learns to classify pairs of

data and latent samples pψ(y|x, z) and a min-max game in which the encoder-decoder

pair competes with the discriminator as:

max
ψ

min
θ,φ

EpX log(Dψ(x, Eφ(x))) + Ez∼pθ(z) log(1−Dψ(Gθ(z), z)). (44)

This objective jointly matches Eφ : x → z to the latent prior and Gθ : z → x to the

dataset observations, leading to an optimum with Eφ and Gθ inverting each other as

expected in the auto-encoder setting.

The common goal of generative modelling frameworks is to approximate the under-

lying distribution of a dataset in order to sample new data which is consistent with the

training observations (e.g. realistic in the sense of GANs) and diverse. With respect

to the ancestral sampling in latent variable models, the first property amounts to gen-

erating data with high-likelihood from any latent sample of the prior and the second

property amounts to a conditional generative distribution that covers all the modes

observed in the dataset. Nonetheless other generative qualities may be desired such

as disentanglement, separating the factors of variation onto separate and interpretable

latent dimensions, and interpolation smoothness, the ability to continuously morph the

semantic characteristics of two samples. As shown in [111], the latent representation

of a Variational Auto-Encoder with a larger β weighting of the KL divergence tends to

have an increased disentanglement and smoothness. This trend is however traded-off

by a lower reconstruction quality, which traduces in more blurry samples. A vari-

ant of the GAN framework is proposed in the Adversarially Constrained Auto-encoder

Interpolation (ACAI [15]) for improving the interpolation quality of an auto-encoder

without impeding its reconstruction quality. An interpolation is defined as a convex

combination of two latent codes zα = αEφ(x1) + (1−α)Eφ(x2) and a desired quality is
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that the generated interpolations xα = Gθ(zα) smoothly morph between the semantic

characteristics of x1 and x2 over α : 1 → 0 while remaining perceptually consistent.

This property is encouraged by complementing the reconstruction objective of an auto-

encoder (e.g. MSE on data observations) with a separate adversarial regularizer that is

applied to random interpolations. The discriminator is trained at predicting the mixing

coefficient Dψ : xα → α with random α ∈ [0, 0.5] and the auto-encoder competes at

being classified as α = 0. The ACAI training is thus minimising the following two

losses:
Lψ = ||Dψ(xα)− α||2︸ ︷︷ ︸

classification

+ ||Dψ(γx + (1− γ)Gθ(Eφ(x)))||2︸ ︷︷ ︸
discriminator regularisation

Lθ,φ = ||x−Gθ(Eφ(x))||2︸ ︷︷ ︸
reconstruction

+λ ||Dψ(xα)||2︸ ︷︷ ︸
adversarial interpolation

regularizer

(45)

with hyper-parameters λ, γ and a regularisation term in Lψ that forces the discriminator

to output zero for non-interpolated data and lets it analyse ground-truth observations

x.

Unsupervised domain translation. The GAN framework is a highly flexible ap-

proach to unsupervised distribution matching and has opened new directions in genera-

tive modelling for domain translation. An extended body of research has been carried in

image conversion [3] which is predominantly performed in the unsupervised setting that

does not assume paired data across domains, although it can as well use paired data in

a conditional GAN setting [129]. Given two or more data domains X1,X2, . . . ,XP , the

task consists in learning a model that would translate a source sample xi ∈ Xi ∀i ∈ [1, P ]

into a sample x̂j perceived as belonging to another target domain Xj ∀j ∈ [1, P ] 6= i.

While the output should be aligned with the target domain, it should as well preserve

the source content and remain structurally consistent. One such example would be an

image translation which converts in between photographs and paintings [304] (e.g. con-

verting a landscape picture into a Van Gogh stylised artwork). To this extent, it should

be noted that there often is no underlying ground-truth of what is the expected trans-

lation output (e.g. Van Gogh has not painted that landscape), which justifies the need

for unsupervised methods to learn from unpaired datasets. Moreover domain transla-

tion is often ill-defined and requires a strong degree of extrapolation. Unpaired data is

thus suited as it gives the model a large degree of freedom at learning correspondences

beyond biases of human annotations.
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Image stylisation was introduced in the seminal work on style transfer [88] as

the task of combining features from a source sample xs with features from another

target sample xt. These features are extracted at different semantic levels using the

hidden activations of the pretrained VGG [243] large-scale image classifier, its lower

layers extract local patterns and its upper layers have a larger receptive field which

can capture more abstract features. A randomly initialised output image xo is then

iteratively optimised by minimising a content loss and a style loss. The content loss

applies the source structure to the output by minimising the distance between their

hidden layer activations VGGl
ik, considering the l-th convolutional layer it gives:

Lcontent(xs,xo, l) =
1

2

∑

i,k

(VGGl
ik(xs)− VGGl

ik(xo))
2 (46)

with i the channel index and k the spatial position. The style loss applies the target

texture to the output by matching their feature statistics computed via the Gram

matrice across channels i, j:

Gramij(VGGl(x)) =
∑

k

VGGl
ik(x)VGGl

jk(x)

Lstyle(xt,xo, l) =
1

4N2
l M

2
l

∑

i,j

(Gramij(VGGl(xt))−Gramij(VGGl(xo)))
2

(47)

with Nl the number of channels and Ml the output size of the l-th convolution layer.

Each optimisation step is then minimising the gradient of a weighted sum of both the

content and style losses across various hidden layers with respect to the output image

being generated. In this setting the conversion is performed by combining the spatial

features of the source sample, the content, with the texture features (local statistics)

of the target sample, the style. It should be noted that the technique does not involve

training any generative model, that it only applies to individual samples rather than

datasets and that the optimisation parameters are empirically set (e.g. which hidden

layers of the pretrained classifier).

While this approach to neural style transfer has motivated several follow-up re-

searches [132], GAN-based methods have been developed at the scale of datasets (defin-

ing each domain) which allow to train dedicated models rather than using features of

pretrained classifiers and hand-tuned heuristics. In the unpaired setting, a common ap-

proach is to use the GAN algorithm with the discriminator(s) forcing the generator(s)
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Figure 16: The Unsupervised Image-to-Image Translation Networks model with a bi-directional
VAE/GAN and a shared latent space. Black dashed connections denote the weight sharing
between the upper layers of the encoder/decoder pairs.

to output a realistic distribution for each of the target domains (domain-specific fea-

tures or style). Some additional constraints (e.g. weight-sharing, cycle-consistency) are

usually applied in order to learn a meaningful mapping which preserves the semantic

content (domain-independent features or structure) of a particular source sample. The

Cycle-GAN approach [304] is a bi-directional translation model with two generator and

discriminator pairs such as Gθ1→2 and Dψ2 (translate to and classify in X2). A cycle-

consistency regularisation loss is added to the GAN training which encourages the model

to learn a bijective mapping between the two domains such that Gθ2→1(Gθ1→2(x1)) ≈ x1.

The training of one domain translation and its inverse cycle-consistency thus follows:

max
ψ2

min
θ1→2

θ2→1

EpX2
log(Dψ2(x2)) + EpX1

log(1−Dψ2(Gθ1→2(x1)))

+||Gθ2→1(Gθ1→2(x1))− x1||1
(48)

and the whole model jointly optimises both domain-dependent GAN objectives and

their corresponding cycle-consistent inverse regularisations. The Unsupervised Image-

to-Image Translation Networks (UNIT [164]) introduce cycle-consistency across the

latent space of a bi-directional VAE with a weight-sharing constraint [165] in the up-

per layers and domain-specific discriminators (Figure 16). Similar to Cycle-GAN, each

discriminator ensures that the decoder outputs match their respective domain distri-

butions but the regularisation and weight-sharing strategies enable the learning of a

shared latent space which encodes domain-invariant features. This follows the hypoth-

esis that matched data observations {x∗1,x∗2} would have a common latent representation

z∗ = Eφ1(x
∗
1) = Eφ2(x

∗
2) which would equally allow recovering them as Gθ1(z

∗) = x∗1
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and Gθ2(z
∗) = x∗2. In addition to the domain-specific GAN and VAE objectives, cycle-

consistency regularisations are added by bi-directional auto-encoding which yields two

KL divergences and a likelihood term for input reconstruction. Considering the cycle-

consistency from and back to domain X1 and a shared prior pθ(z), the regularisation is

computed as:

x1→2 = Gθ2(Eφ1(x1))

LCC1 = DKL(qφ1(z1|x1)||pθ(z)) +DKL(qφ2(z2|x1→2)||pθ(z))

−Ez2∼qφ2 (z2|x1→2) log(pθ1(x1|z2)).

(49)

One of the motivations of unpaired domain translation stems from the ill-defined

nature of the task, meaning that there may be multiple outputs that can plausibly

reflect the given input into the target domain. The Multimodal Unsupervised Image-

to-Image Translation (MUNIT [122]) extends the previous works to generating multiple

target domain instances for a given translation input by learning a disentangled latent

space of content, zc shared across domains, and style, separate zs1, zs2 for each domain.

This enables a multi-modal translation by encoding a source sample Eφ1 : x1 → zc, zs1

and combining its content latent code with random samples of the target style latent

space which are decoded as x1→2 = Gθ2(zc(x1), zs2 ∼ N (O, I)). The disentanglement

of the latent space is enforced by additional unsupervised training objectives such that

by encoding the translation output Eφ2(x1→2) the model retrieves the initial content

code zc(x1→2) = zc(x1) as well as the randomly sampled style code zs2(x1→2) = zs2

(the same procedure is jointly applied to the translation x2→1).

The task of bi-directional domain translation is efficiently learned by cycle-consistent

GANs under the assumption that the two domains are structurally similar (e.g. tex-

ture differences) and homogeneous. However they tend to fail when applied to more

disparate domains which have a large structural and semantic gap. The TraVeL-GAN

[4] proposes a less constrained training strategy than that of cycle-consistency (i.e.

invertibility) which allows it to produce reasonable conversions between domains at

which cycle-consistent GANs fail. This uni-directional translation model comprises a

generator-discriminator pair as well as a Siamese network [25] which acts like an en-

coder Eφ over both the source and target domains to learn a shared embedding. In

this setting the individuality relationship, which output sample should correspond to

a given input sample, is learned via a similarity metric in the shared embedding of
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the siamese network. Given two inputs xi,xj and the corresponding generator outputs

Gθ(xi), Gθ(xj), two embedding vectors can be computed as ν(xi,xj) = Eφ(xj)−Eφ(xi)

and ν(Gθ(xi), Gθ(xj)) and compared with the euclidean (magnitude) and cosine (an-

gle) distances. The generator and siamese network jointly minimise this embedding

distance under the constraints of the target domain adversarial distribution matching

and a margin-based contrastive objective which forces the embedding not to collapse

(e.g. zero distance for every latent points). In contrast with cycle-consistency, this

embedding distance offers more flexibility since the siamese network can freely learn

which features are relevant to compute the cross-domain similarity metric.

Another challenge arises from the definition of the previous methods at performing

cross-domain generation with dedicated networks (either uni-directional or bi-directional).

These methods require a specific generator-discriminator pair per target domain and

thus do not scale efficiently to translations across more than two domains. Multi-domain

translation within a single generator-discriminator pair is proposed in Star-GAN [42],

which aims at processing an arbitrary number of domains X1,X2, . . . ,XP with a fixed

architecture. The single discriminator has an auxiliary classification loss which forces

it to assess the realisticness of any sample xi ∈ Xi ∀i ∈ [1, P ] while discriminating its

domain membership Dψ : xi → y, i (y = 1 if true, y = 0 if generated). Consequently,

the single generator is fed with samples from any source domain as well as a label of

the target domain to which it generates as Gθ : xi, j → xi→j. While the discriminator

has a classification objective to favour a domain-specific discrimination, the genera-

tor has a cycle-consistency objective that requires an accurate output target such that

Gθ(xi→j, i) ≈ xi. This approach to unpaired domain translation attractively scales to

many-to-many domain generation, on the one hand it could be traded-off with some

loss of domain-specific accuracy and diversity, or it may as well benefit from more data

and some overall modelling improvements by multi-task learning [43].

3.2.4 Model conditioning

The aforementioned methods of domain translation have opened novel avenues of gener-

ation, which is mainly driven by example. By providing a source example and a target

domain, one can implicitly specify an input content and a desired output style variation.

The extension to multi-domain translation [42] could allow a finer granularity of control

by specifying sub-domains of a given database, for instance a collection of human faces

59



[166] may be divided into domains corresponding to annotated gender, age, hair and

skin colours. Nonetheless, such definition of domain-specific features is somehow arbi-

trary since there are inherent overlaps in between classes (e.g. a blond haired person

can have any gender). In this regard, the use of a single network to generate multiple

target attributes raises several issues on how to model domain-invariant features and

how to effectively provide the conditioning information (as opposed to training sepa-

rate networks for each target). An effective learning of conditional generation should

provide a model that accurately generalises to unseen pairs of input and target label,

moreover it could allow the regression of continuous output attributes [55] (as opposed

to categorical domain classes) with potential feature interpolations.

In comparison with the unsupervised distribution matching task which aims at

capturing all modes of a dataset at once, conditional generation aims at learning many

per-class distributions. Star-GAN uses a conditional generator with one-hot encoded

label concatenation at its input and a discriminator with an auxiliary classification

objective. Besides the somehow ill-defined nature of the classification objective for

multi-attribute learning, it can be observed that the conditioning mechanism at the

generator input may not be optimal. In a generic conditional GAN [194] (Figure 18),

the feedforward generation proceeds from a randomly sampled prior vector of low di-

mension which is passed through several layers with up-sampling, the overall semantic

structure (global features) is shaped by input layers while those by the output process

a smaller receptive field (local features). Class-specific properties may be perceived in

both the global structure and the local statistics of data, given that the generator is

provided the conditioning information at its input, it should learn to pass that infor-

mation throughout the hidden layers in order to allow the ultimate layer to equally

produce conditional features as the input layer does. As an example, an image gener-

ator conditioned on animal classes such as birds, fishes, horses and zebras should both

generate some consistent body shapes (e.g. large animal with four legs) and textures

(e.g. zebra stripes or not). From this perspective, one key aspect of conditioning lies in

the method by which hidden features are altered by the conditioning information. One

direct modification to the input concatenation is to perform label concatenation for all

hidden layers, which amounts to learning a conditional biasing of hidden features [65].

Another approach is conditional scaling, which replaces the additive conditioning by a

multiplication, or gating if using a sigmoidal scaling activation that selectively filters

hidden activations. In this spirit, the Feature-wise Linear Modulation (FiLM [204])
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.

proposes a general purpose conditioning layer which combines conditional biasing and

scaling. To this extent we consider a generator Gθ : z,y→ xy with y some representa-

tion of the conditioning information, such as a one-hot vector of the class y or a target

style sample (Figure 17). For generality we refer to the input as a latent z, although

in domain translation it would correspond to a source sample of another domain (e.g.

Gθ : x 6=y,y → xy). Given hl(z) the activations of any l-th hidden layer, a FiLM layer

produces conditional bias βlθ(y) and scale γlθ(y) parameters which are applied as:

FiLM(hl(z)) = γlθ(y)� hl(z) + βlθ(y) (50)

before feeding the subsequent hidden layer. This technique modifies the hidden feature

statistics, which resembles the process of the many normalisation techniques proposed in

the literature. One broadly used normalisation technique is Batch-Normalisation (BN

[127]) which accelerates neural network training by normalising the mean and standard

deviation for each individual feature dimension (e.g. channel of a convolution) as:

BN(hl(z)) = γ �
(

hl(z)− µ(hl)

σ(hl)

)
+ β (51)

with γ, β two learned affine parameters and µ(hl), σ(hl) the mean and standard devi-

ation of the l-th layer activations computed over the batch size. An alternative nor-

61



malisation technique called Instance Normalisation (IN) is introduced for stylisation

[265] which computes statistics µ(hl), σ(hl) across spatial dimensions independently for

each sample (and each channel if applied to a convolution). Since the IN statistics are

individually computed over the spatial dimensions, it is responsible for contrast normal-

isation and may be interpreted as a style normalisation [121] which would whiten the

Gram matrice used in style transfer [88]. Several models [121] [66] [90] have used this

property for Adaptive Instance Normalisation (AdaIN) which uses conditional affine pa-

rameters to alter the instance normalised activations, for instance extending the FiLM

framework as:

AdaIN(hl(z)) = γlθ(y)�
(

hl(z)− µ(hl)

σ(hl)

)

︸ ︷︷ ︸
IN statistics

+βlθ(y). (52)

Feature normalisation and conditional re-scaling are efficiently applied to feed-

forward generation and tasks such as image-to-image translation and style transfer,

by removing some domain-specific information and shifting feature statistics to match

that of a target. Specific frameworks have been introduced in the auto-encoder setting,

which address the issue of disentangling attribute conditions from the latent space [103]

[156]. A conditional auto-encoder is usually comprised of an unsupervised encoder, an

analysis that does not require input labels, and a conditional decoder, a generator which

is provided supervision in the forms of controls. In that case the encoder can freely

extract any features from the data, including the attributes of the conditioning. This

would lead to a decoder that can ignore its conditioning by relying solely on the en-

coded features, thus making conditioning ineffective at test time. These observations

have motivated the learning of an attribute-invariant latent representation in the Fader

Networks [156] which uses an adversarial regularizer to constrain the encoder repre-

sentation to be disentangled from attribute conditions (Figure 18). This approach is

reminiscent of domain adaptation techniques [86] [288] which rely on making predic-

tions based on features that are invariant between source and target domains in order

to allow efficient knowledge transfer for classification in the unlabelled target domain.

Given data x paired with K ground-truth binary attributes y = {0, 1}K , adversarial

regularisation in the Fader Networks is enforced by a latent discriminator trained at

classifying Dψ : Eφ(xy) → y while the encoder is trained such that the discriminator

fails and predicts the opposite labels ȳ. As a result, the decoder should retrieve the in-
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put data Gθ : z,y→ xy by making use of both the attribute-invariant code z ≡ Eφ(xy)

and the ground-truth attributes. The overall training is done minimising the two oppo-

site adversarial objectives (NLL classification) as well as the reconstruction loss (MSE):

Ldisc.(ψ|φ) = − log(pψ(y|Eφ(xy)))

Lae.(θ, φ|ψ) = ||Gθ(Eφ(xy),y)− xy||22 − log(pψ(ȳ|Eφ(xy))).
(53)

This approach has several advantages, it uses adversarial training in the compressed la-

tent space rather than in the observation space, it readily applies to multiple attributes

and categorical feature distributions (e.g. multiple hair colours). Moreover the authors

report that feature interpolation may be performed using y as a fader, or mixing co-

efficient, such that setting the hair attribute half-way between blond and black would

make brown colour. The underlying idea is that two hypothetical data pairs, matched

up to the attribute, would correspond to the same latent and could be equally decoded.
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Figure 18: Left: A conditional generator is trained in a GAN fashion with a discriminator
evaluating the realisticness of the synthetic samples against data observations, as well as
the class membership via an auxiliary classification loss. Right: A Fader Networks auto-
encoder learns an attribute invariant representation with an adversarial latent classifier. The
attributes conditioning the decoder are disentangled from the encoder representation by an
adversarial regularisation. The classifier is trained at inferring the ground-truth attributes
while the decoder competes at being classified wrongly.

3.2.5 Learning with perceptual embeddings

In the first place, the training of a generative model aims at fitting its parametric output

distribution to the observed distribution of a dataset. This may be done with an explicit

probabilistic formulation such as maximising the likelihood of the model with respect

to each ground truth sample, or with a deterministic regression such as minimising
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some reconstruction error in the observation space (e.g. pixel-wise MSE). It can also be

done with an implicit formulation which matches the expectation of the model output

with samples randomly drawn from the dataset, usually following the GAN framework.

One main drawback of the first approach would be that distances in the pixel space

are little aligned with perception (e.g. no shift invariance) and may not provide the

model with insights on the semantic structure of the observations (global features). As

detailed in the previous section, these models may be enhanced by learning a latent

space which embeds a global representation of the data. The second approach takes

advantage from learning the metric with a discriminator that is trained at assessing the

distance between the distributions of the model output and the dataset, throughout

the generator training. A generic discriminator, akin to an encoder, usually has an

architecture mirroring that of the generator and is able to extract features at different

semantic levels (e.g. increasing receptive fields) until its output which is reduced to

a scalar prediction (real or synthetic, as opposed to latent parameters of an encoder).

For these reasons, the discriminator can provide a refined divergence measure which

relies on both local and global features. On the other hand, GAN training in the

data space is prone to instability and does not actually guarantee a good convergence

(e.g. mode collapse when the generator and discriminator only model a limited subset

of the data variations). As proposed in the VAE/GAN [157], these two approaches

may be combined by using the discriminator to assess the model realisticness as well

as computing a reconstruction error in its hidden activation space. This idea, termed

”auto-encoding beyond pixels using a learned similarity metric”, emphasises the power

of computing the reconstruction error in a perceptual embedding rather than in the

observation space. The perceptual embedding refers to multi-scale features extracted by

a network (Figure 19) trained on an auxiliary task which mimics a process of perception.

In this case, it refers to the discriminator task of predicting whether samples are true or

synthetic. In the seminal work on neural style transfer [88] [87], feature matching losses

are computed in the hidden layers of a pretrained classifier which is another instance

of perceptual embedding that results from a high-level recognition task.

Several works have leveraged large-scale models pretrained in the image domain to

improve generative modelling with perceptual losses. Besides the usefulness of the deep

feature representations [299], it should be noted that they are readily applicable because

computed with neural networks which are inherently designed for GPU accelerated and

differentiable processing, an efficiency condition which is not always met by hand-
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crafted metrics. An image translation model is proposed in [133] which optimises style

and content losses computed in the hidden feature space of VGG. For generality, we

refer to the l-th layer of the pretrained feature extractor as F l(.) and do not specify

its parameters which are kept fixed. Given a sample x1 in the source domain and a

corresponding sample x2 in the target domain, a translation model Gθ1→2 : x1 → x̂2 is

trained similarly to equations 46,47 by minimising losses:

Llcontent ∝ ||F l(x1)− F l(Gθ1→2(x1))||22
Llstyle ∝

∑

i,j

||Gramij(F
l(x2))−Gramij(F

l(Gθ1→2(x1)))||2F . (54)

An alternative model [61] proposes to replace the use of a hand-crafted style loss based

on Gram matrices by an adversarial loss in the target domain which is combined with

both deep feature and pixel-wise distances. A perceptual distance is also used as an

auto-encoder reconstruction loss in [207] which reports representation learning improve-

ments assessed by increased classification performances using the trained latent features

as inputs to subsequent predictive tasks. The use of a perceptual embedding is also

proposed in [228] as an extension to generative moment matching [67] [162] using fea-

ture statistics (e.g. MMD, mean and covariance) within the activations of a pretrained

classifier. Another potential use of a pretrained classifier is to promote the accurate

generation of specific attributes of the data via a regression loss, which is reminiscent of

the auxiliary classification loss in conditional GANs. Assuming a conditional generator

Gθ : z, y → xy and a classifier pretrained on the task F : xy → y, the auxiliary loss

may be provided as a regression:

Lauxiliary = |F (Gθ(z, y))− y|. (55)

3.3 Evaluation of Generative Modelling

The common methodology of deep learning relies on a given dataset to exemplify and

simulate a certain task. An overall model structure defines the information flow and

interactions between variables, which is parametrised with neural networks. The ran-

domly initialised space of model parameters is iteratively updated by an optimisation

algorithm which performs stochastic gradient descent of a loss function. This training
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Figure 19: A pretrained feature extractor F (.), e.g. a classifier, can be used as a perceptual
embedding to compute feature distances in its hidden activation space. Layers at different
depths extract features associated with increasing degrees of abstraction and usually spanning
a larger receptive field (e.g. in CNNs), up to the final layer which performs a semantic
prediction. Perceptual losses can be used as reconstruction errors for x̂ ≈ x as well as for
domain translation by computing losses of x̂ ≡ x1→2 with samples from both pX1 (source loss)
and pX2 (style loss). The classification output can as well be used in an auxiliary loss such as
a label regression.

cost measures the performance of the model within the simulation, by which an optimal

parameter configuration is searched until convergence. The dataset is usually split in

between training, validation and test data in order to evaluate the generalisation capa-

bility of the model. The training set is used for optimisation, the validation set can be

used for hyper-parameter search (i.e. empirical tuning or grid-search of the parameters

which are not optimised) and the test set is kept unobserved in order to evaluate the

model performance on unseen data. Modern deep learning architectures often have a

high capacity such that the dimensionality of the model parameter space may be of

orders of magnitude approaching that of the dataset, in this case the model is prone to

over-fitting (i.e. copying the training data). This behaviour may be observed when the

training loss could be extremely decreased while the test loss diverges, a phenomenon

which usually means that the model learns irrelevant patterns in the data (e.g. noise)

which are detrimental to its performance on unseen test data. Given this common diag-

nosis, many actions may be taken in order to prevent over-fitting such as early-stopping,

regularisation (e.g. weight penalty, dropout), increase of the dataset size (e.g. artificial

data augmentation) or adjustment of the model capacity. All these elements belong to
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the task simulation within a given dataset and according to a certain optimisation cost,

for simplicity and to the extent of this thesis we do not go into details of the many

frameworks which may exceed this setting such as reinforcement learning [192], transfer

learning [306], one-shot learning [281], neural architecture search [219], meta-learning

[116], life-long learning [198] and the ever growing field of artificial intelligence.

The aforementioned practice allows to assess how well a model has learned inside

the given task simulation, i.e. according to its training algorithm and the dataset.

Although several concerns remain, amongst them is the model robustness outside the

dataset and during real-world deployment (i.e. the ability of the simulation to cover

unseen situations beyond those of the test set). Another question is the model eval-

uation, in many cases the end-user objective cannot be strictly evaluated as part of

the optimisation and the training objective is only designed as an implicit way for the

model to learn the task. For instance, the end goal may not be tractable or it may not

be computed efficiently or it may not be differentiable such that error gradients could

be back-propagated. While it is hoped that reducing the loss will improve the evalu-

ated model performance, it may not be guaranteed given the gap that exists and there

could be cases such that a better performing model with respect to the loss may appear

less efficient with respect to the task evaluations. The difficulty of model evaluation

notably arises in the field of generative modelling where there are no all-encompassing

metrics of the perceptual quality of a model, as opposed to information retrieval tasks

which are usually well evaluated by some predictive scores such as accuracy, recall or

F-measure. Moreover since the training objective is often model dependent, it prevents

direct model comparisons by their losses. These reasons justify the need for evaluation

metrics in generative modelling [22] [259] [35] [191] which should ideally be independent

from the training algorithms and models, as well as applicable across datasets.

3.3.1 Statistical metrics

Given that most probabilistic generative models are optimising some per-example like-

lihood (explicitly or implicitly), a natural evaluation is the average log-likelihood of

the model on the test set, if tractable, or an approximation based on Kernel Density
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Estimation (KDE):

1

N

N∑

i=1

log(pθ(xi)) (average log-likelihood)

p(x) ≈ 1

N

N∑

i=1

K(x− xi) (KDE)

(56)

with kernel function K (e.g. Gaussian). According to the estimated probability func-

tions of the dataset and the model, other measures may be used such as the Kullback-

Leibler divergence DKL(pθ(x)||pX ) or the Jensen-Shannon divergence. However, for

high-dimensional data these evaluations are not robust such that models with high log-

likelihood can produce samples of poor quality [260]. In a similar fashion as the KDE,

the Maximum Mean Discrepancy can be used to approximate the distance between the

distribution of samples from the dataset and from the model, as well as other methods

for two-sample test [158] and coverage metrics [262].

Since blind statistical metrics may not assess well the generative quality of a model,

more specific evaluations have been introduced with an emphasis on both the indi-

vidual sample accuracy as well as the overall diversity, two performances which are

often traded-off [1]. Sample diversity can be evaluated via the Number of Statistically-

Different Bins (NDB [221]) which states that for a given clustering of the dataset with

a bin indicator function IB(x) = 1 for x ∈ B, if the model distribution is the same

as the data distribution then the number of samples that fall into a given bin should

be the same, i.e. 1
N

∑N
i=1 IB(xi ∼ pX ) ≈ 1

N

∑N
i=1 IB(xi ∼ pθ(x)). NDB is measured

as the number of bins where the number of data examples is significantly different

from the number of generated examples, i.e. a missing mode. The Inception Score (IS

[227]) has become a standard generative modelling metric which assesses both accuracy

and diversity using a large-scale pretrained classifier (originally Inception Net [256] for

images, also extended to audio in [59] [69]). It states that the conditional classifier

distribution p(y|x) over individual samples should have a low entropy (i.e. accuracy

as strong confidence at being associated with one of the semantic classes) while the

marginal distribution p(y) =
∑

x∼pθ(x) p(y|x)p(x) over all generated samples should

have a high-entropy (i.e. diversity as uniform distribution over all possible semantic
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classes). The IS can be evaluated via the following Kullback-Leibler Divergence:

IS = exp(Ex∼pθ(x)DKL(p(y|x)||p(y))). (57)

The Fréchet Inception Distance (FID [110]) and its music domain counterpart Fréchet

Audio Distance (FAD [139]) use feature statistics computed in the perceptual embed-

ding of a pretrained classifier, akin to the perceptual losses. The means µdata, µmodel

and covariances Σdata,Σmodel of multivariate Gaussian distributions fitted on the hidden

activations of a given pretrained classification layer are compared by the Wasserstein-2

distance:

FID = ||µdata − µmodel||22 + tr(Σdata + Σmodel − 2
√

ΣdataΣmodel). (58)

3.3.2 Data metrics

Individual sample reconstruction errors can be computed to assess a generative model

accuracy on test data, while preventing from evaluating the quality of random samples

it complements statistical metrics with signal-related distances. Such evaluations are

often data-dependent in order to quantitatively assess specific properties related to

the perception of images [239], audio [31] and other domains. To the extent of audio

quality assessment, there exist specific evaluations for speech [117] such as PESQ [223]

and ViSQOL [112] or more generic distances either computed in the waveform domain

or on spectrograms. A distance between the reference waveform x = {x1, . . . , xL} and

the model reconstruction x̂ can be computed with different measures such as the Signal

to Noise Ratio (SNR), the cosine distance (cosdist) or the Czenakowski Distance (CZD):

SNRdB(x, x̂) = 10 log10

( ∑L
i=1 |xi|∑L

i=1 |xi − x̂i|

)

cosdist(x, x̂) =
x� x̂

||x|| � ||x̂||

CZD(x, x̂) = 1− 2
∑L

i=1 min(xi, x̂i)∑L
i=1 xi + x̂i

.

(59)

Waveform-domain distances are sensitive to phase shifts, for this reason they are usually

computed in a segmental fashion (i.e. averaged over consecutive windows rather than

the whole signal) or replaced by short-term frequency domain distances. Regardless
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of whether the model is trained for waveform or spectrogram generation, a spectral

distance can be evaluated by measures such as the Spectral Convergence (SC, between

magnitude spectrograms |X|), the Log Spectral Distance (LSD), the Itakura-Saito Dis-

tance (ISD), the Cepstral Distance (e.g. RMSE between MFCCs) or the Bark Spectral

Distortion (e.g. MSE between Bark spectra [307]):

SC(X, X̂) =
|| |X| − |X̂| ||F
|| |X| ||F

LSD(X, X̂) =

√√√√∑
(

10 log10

(
|X|2
|X̂|2

))2

ISD(X, X̂) =
∑(

|X|
|X̂|
− log

(
|X|
|X̂|

)
− 1

)
.

(60)

3.3.3 Control and task-specific metrics

By measuring the diversity and quality of samples produced by a generative model, one

can quantitatively evaluate the extent to which the model has succeeded in fitting the

target data distribution. Signal-related metrics emphasise the reconstruction accuracy

of the model in domain-specific features as an automatic assessment of the perceptual

quality. In the audio domain, the perceived quality is crucial for telecommunications

(e.g. intelligibility, fidelity of the individual voice) as well as for music applications which

cannot compromise the realisticness of the sound as well as its aesthetics. Nonetheless,

the usability of a generative model directly depends on the controls it offers and the

interpretability of its representation with respect to the end-user task. A taxonomy of

classical synthesis techniques and corresponding evaluation criteria for control param-

eters have been proposed in [130] [261], of which we summarise the main qualities:

. Intuitiveness: a well-behaved control parameter should have a perceived effect

which is proportional to the parameter variation and this response should be

homogeneous and accurate across the parameter range.

. Interpretability: the perceived effect should be predictable such that there exist a

meaningful relationship between the expected outcomes and the control param-

eters. This quality can be promoted by a sparse control stream (fewer observed
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parameters or macro-controls) or an underlying physical model to which param-

eters can be related. This quality can as well benefit from analysis tools which

describe the relationship between parameters and data observations or metadata.

. Diversity: which amount of variations and classes can be represented within the

control parameter ranges.

. Robustness: a given perceptual class should be consistently identified across its

corresponding parameter range and the overall parameter range should yields

outputs which remain consistent with the expected classes.

We can observe that statistical and data metrics assess part of these criteria, mainly

the diversity and robustness. On the other hand, the intuitiveness and interpretability

are little to not covered although they are crucial elements of the end-user interaction.

Conditional density estimation allows to define a specific information structure and

semi-supervision lets enforcing the use of specific attributes as part of the generation

process. It is thus relevant to evaluate how accurate is the semi-supervised generation

with respect to the pre-defined attribute targets. A task-specific classifier can be trained

as a reference for automatic evaluation of a generative model, which differs from large-

scale generic classifiers used as embeddings for statistical metrics. For instance, a

pitch-conditional GAN is trained in [69] along with a reference pitch classifier in order

to measure the accuracy and entropy of synthesised outputs with respect to their pitch

targets. In a similar way, one could train an instrument classifier in order to assess

the accuracy of domain translation in between timbres or to measure the robustness

of timbre while varying pitch conditions. These approaches could be as well extended

to continuous conditioning parameters given a reference regression model, for instance

replacing pitch classification with fundamental frequency estimation. Such attributes

which can be labeled are inherently interpretable, e.g. they have a physical sense

such as pitch, thus if learned accurately they are as well intuitive to the user. Other

properties such as continuous timbre variations do not have an explicit measure, which

is a common problematic to evaluate many kinds of semantic interpolations. Inference

models benefit from the possibility to analyse data and visualise their relationships in

the continuous embedding, this gives insights in the latent structure from which one

can continuously generate. In the conditional setting, it is reasonable to consider the

latent representation as an embedding of the data variations which are not specified by

the conditioning attributes [156], for instance by conditioning on pitch and loudness we
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can expect that the embedded factor of variations mainly account for timbre. Yet, the

unsupervised latent variables are often hard to interpret and hardly intuitive as control

parameters. Unfortunately, metrics for interpolation [15] and disentanglement [111] are

often only applicable to simple simulated datasets or limited subsets of properties of

real-world data. One approach to measuring the representation quality is to perform

post-classification on the learned features with a low-capacity model. Its underlying

idea is that if an unsupervised representation is efficiently structured, it can easily

be transferred to train a shallow classifier. For instance an instrument classifier with

a single layer over latents, which would be ineffective if directly applied in the audio

domain. Since the latent space dimensionality of a generative model is often impractical

to visualise (e.g. more than 3 dimensions), interactions can as well be enhanced by using

an invertible dimensionality reduction technique such as PCA [83] although it discards

parts of the data variations (i.e. dimensions of lower variance).

3.3.4 Human rating

Significant research is invested in developing automatic evaluation metrics although

there remain a gap between computational assessment and the human judgement which

cannot ultimately be replaced. Particularly in the field of generative modelling and

neural audio synthesis, human rating often remains necessary in order to measure the

perceived realisticness (e.g. Turing test) and subjective user preferences. To this extent,

crowd-sourcing platforms such as Amazon Mechanical Turk have been commonly used

to carry listening tests and collect Mean Opinion Scores (MOS [252]) from randomised

A/B tests [151]. The rating is often based on a scale of 5 points and averaged over

many listeners and randomised listening tests which yield a MOS. It is also a common

practice to evaluate the perception of real data alone (e.g. ground-truth audio) in order

to report an upper bound of the experiment as the perceived quality of real data may

be rated lower than 5. Human assessment gives valuable qualitative insights on the

generative performance, however it is time-consuming, expensive and less reproducible

than automatic evaluations. Another kind of human-in-the-loop evaluation which is less

considered in the academic research, although probably highly valued in the industry,

is expert user feedback for instance on the usability and controllability of a system.

While MOS often relies on the innate human ability to listen and judge, the feedback

on usability requires trained practitioners and even longer testing phases.
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3.3.5 Efficiency

Deep learning has thrived on the increased computational resources enabled by specific

chips such as Graphics Processing Units (GPU) and Tensor Processing Units (TPU).

These processors allow accelerated parallel computing which is a backbone of all mod-

ern machine learning frameworks, nonetheless the overall training costs in deep learning

research have steadily increased as the capacity of models can be augmented to unprece-

dented sizes in order to push the state-of-the-art performance in many domains and

tasks [230]. This raises several issues and a growing concern in the academic and indus-

trial community about the energy footprint of neural network training (e.g. grid-search

optimisation) and life-long deployment [253], as well as the inclusivity of the research

for institutions with unequal budgets [107]. Training extremely large networks [241]

on gigantic datasets can yield increased performances, yet the evaluation dramatically

lacks taking into consideration efficiency, i.e. the trade-off between exponential increase

in computational costs and the magnitude of the score improvement [119] (e.g. only

a few percents of accuracy). When it comes to measuring the efficiency of a model,

several factors could be taken into consideration such as its training time and inference

speed with respect to the computing resources engaged, the amount of data required to

train, the diversity of tasks and data it can process, its transferability to other down-

stream tasks [213]. Pruning methods for optimising a given model to achieve resource

efficient inference [189] have a long-standing history in machine learning research [218].

The effectiveness of pruning may be understood by the fact that the best generalization

will be achieved by the smallest system that will fit the data, as opposed to overfitting.

Nonetheless, there is no definitive rule on how to set this optimum size and neural

networks are often over-parametrised in order to allow a sufficient flexibility (i.e. large

search space) and successful optimisation. As a result, only a fraction of parameters

out of the random initialisation effectively contribute to the performance of the trained

model. Pruning methods usually rely on some ranking criteria of the importance of

parameters in order to mask the least effective ones and fine-tune the sparsified model

to maintain a target accuracy or even outperform this accuracy after model compres-

sion [305]. Amongst the recent developments of model compression techniques [20],

unprecedented gains in performance and sparsification have been achieved based on

the lottery ticket hypothesis [80] [93]. Instead of the usual pruning by fine-tuning,

the lottery ticket hypothesis relies on rewinding a trained model to its randomly ini-

tialised state, masking the weights identified as least relevant and re-training. After
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several iterations, the amount of active parameters can be drastically reduced and the

performance increased by significant margins. The pruning results achieved in a broad

array of tasks and frameworks highlight the need for taking into consideration efficiency

as a central evaluation of deep learning, since they demonstrate an obvious trend to

over-parametrisation which is detrimental to generalization and induces a significant

environmental footprint [5].

In the field of audio and music, efficiency of deep learning is an essential fact to

keep in mind since many applications require low-latency or real-time capable process-

ing on constrained devices (e.g. mobile phones, laptops, embedded devices). Classical

DSP solutions are very efficient compared to deep learning solutions, this allows regu-

lar laptops to flawlessly run many softwares in real-time and in parallel for instance a

Digital Audio Workstation with multiple VSTs. While it is common place in any music

production workflow, it is up to date unrealistic to integrate deep learning models in

such setting. Since local integration is often impossible, modern technologies powered

with deep-learning usually rely on cloud computing which introduces an inherent la-

tency, issues with stability, continuous costs as well as concerns on security and privacy

since one constantly needs to be connected and exchanging data.
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4 Related Works in Neural Audio Synthesis

As exposed in section 2.4, data-driven approaches to audio and music processing have

been first developed for information retrieval in a supervised setting. Over the last

decade, significant advances have been done in the unsupervised generative setting

and major breakthroughs could be first witnessed in the field of computer graphics and

neural image rendering [258]. Generative modelling has gradually extended to the audio

domain and is currently an active field of research of its own. Neural audio synthesis

was primarily driven by the speech community, more recently it has been spreading

into the music domain which is the focus of this thesis. To this extent, we present the

related works structured as follow:

. Unconditional audio synthesis: we review reference works which are general to the

domain of neural audio synthesis, as such they have been both applied to speech

and music synthesis, as well as extended to conditional generation and specific

tasks.

. Spectrogram inversion: from the perspective of Figure 6, neural audio synthesis is

a multi-scale problem and intermediate short-term representations such as mag-

nitude spectrograms are often interleaved between the global context and local

synthesis. This is observed both in the speech domain (e.g. Text-To-Speech)

and in music generation (e.g. score to audio), which can be performed in two

steps by first generating spectrogram and then inverting to the audio waveform.

This approach breaks-down the challenge of audio modelling on long temporal

scales, thus spectrogram inversion models are common elements of a neural audio

synthesis pipeline [240].

. Implicit timbre models: we introduce conditional generative models specifically

applied to music, as opposed to unspecific inversion models conditioned on spec-

trogram. Timbre is a central element in the task of neural audio synthesis, in the

first place we review reference works done in implicit timbre rendering. These

models do not have explicit parameters of timbre, instead they are mostly con-

ditioned by example (i.e. domain translation) or by disentangling other acoustic

features from the model representation (e.g. fundamental frequency and loud-

ness). When framed in the analysis/synthesis approach, these models often rely

on hand-crafted feature extraction.
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. Learning representations of Timbre: since continuous timbre variations cannot be

explicitly labelled, we review generative models that learn unsupervised and semi-

supervised representations of timbre. One major challenge is to find interpretable

and disentangled representations in order to allow intuitive timbre control from

the learned representation. When framed in the analysis/synthesis approach,

these models often rely on learned feature extraction (e.g. auto-encoder).

. Score to audio: models which are conditioned on high-level musical context and

translate a whole composition from the symbolic domain to the acoustic domain.

Although we focus on the synthesis process, we as well discuss bijective systems

which perform both symbolic inference and acoustic generation.

. Perceptual audio embedding for generative modelling: we detail some models

relevant to section 3.2.5 which are specifically trained in the audio domain.

4.1 Unconditional Audio Synthesis

The primary aim of neural audio synthesis is to learn generative processes that match

the distribution of audio observations in order to consistently synthesise new audio data.

In that sense unconditional synthesis is commonly associated with probabilistic models

that fit a data density solely based on the audio observations, without any conditioning

context, and in turn can generate new data by sampling the learned density.

Auto-regressive models. Audio information is by nature a temporal process and

its lowest-level representation, the waveform x = {x1, . . . , xL}, a uni-dimensional causal

time series. Auto-regressive density estimation (Figure 20) is thus a relevant approach,

yet it faces the challenge of the high sampling rate of audio which produces time se-

ries of large dimensionality. Given the auto-regressive model formulation pθ(xi|x<i) =

p(xi|Gθ(xi−1, . . . , xi−T )) with Gθ a neural network that estimates the next time step

based on its receptive field over the past T time steps, we can observe that inferring

from a limited context of 250 milliseconds at 44.1kHz would already require modelling

dependencies across 11025 dimensions. Due to this computational complexity, mod-

els are often developed at lower sampling rates such as 16kHz although it prevents

from rendering the higher part of the audible spectrum. WaveNet [268] has pioneered

raw waveform generation using an auto-regressive architecture based on stacking dilated
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convolutions which allow an exponential increase of the receptive field for a given model

size. It achieves a receptive field of about 250 milliseconds which is sufficient for synthe-

sising a locally consistent audio signal and uses µ-law quantised waveform amplitudes

(8-bit) in order to optimise the conditional prediction as a compressed categorical distri-

bution of 256 bins. An alternative approach to increase the learned context is proposed

in the Sample-RNN [185] architecture which uses parallel RNN tiers that operate at

fractions of the raw sampling rate. The idea of partitioning a RNN network into mod-

ules operating at different time resolutions was introduced in the Clockwork-RNN [153]

in order to facilitate memorising longer-term dependencies, although initially limited

to waveform segments of 7 milliseconds. The Sample-RNN output layer predicts µ-law

quantised waveform samples while upper-level RNNs process down-sampled represen-

tations and aggregate memories over increasing temporal contexts. Recurrent units do

not have an explicit receptive field yet in practice they only learn to memorise a limited

context, the Sample-RNN multi-scale architecture is able to model audio dependencies

consistent in the order of a second.

input

output

dilation = 1

dilation = 2

dilation = 4

tt� 1t� 2. . .

RNN at sampling-rate /8

RNN at sampling-rate /4

RNN at sampling-rate /2

auto-regressive output

input

t + 1

Figure 20: Left: Stacked convolutions as in WaveNet with a receptive field 2n growing exponen-
tially with the number n of layers. Right: A pyramidal RNN architecture as in Sample-RNN
with tiers operating at fractions of the sampling rate in order to aggregate memory over longer
contexts to condition the auto-regressive output prediction. Each tier (a row) is an individual
RNN and dashed connections are the conditioning from one tier to another. Horizontal arrows
show the strided translation along time of each RNN tier.

Auto-regressive audio modelling raises several issues amongst which are the high

model complexity required for inferring from limited contexts, inducing long training

times and needs for large datasets, the slow generation since sampling is done one time

step at a time and the optimisation strategy. Using µ-law quantisation simplifies the

optimisation, yet auto-regressive models often need to be trained with teacher-forcing

(i.e. using ground-truth past samples) which causes an exposure bias at inference

time (accumulating errors from the prediction into the past context). By design the

auto-regressive training objective is sensitive to phase shifts which is one cause of the
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optimisation difficulty, according to it two waveforms with a phase offset will be strongly

penalised although they are equally perceived by the human audition. Auto-regressive

modelling in the magnitude spectrogram domain is proposed in [271] to address learning

longer temporal dependencies with a phase invariant representation. Since the short-

term time axis is down-sampled, this model learns consistent temporal structures of the

order of several seconds. However it prevents from high audio fidelity and end-to-end

learning as it only models lossy features (discarded phase, Mel scaled frequency) which

require a subsequent inversion model. Since the adoption of WaveNet as a reference

baseline in neural audio synthesis, we can observe that a significant amount of research

has been pursued into improving audio modelling directly in the waveform domain [21].

In order to increase the temporal receptive field of auto-regressive waveform models and

generate audio with consistent longer temporal structures, [54] proposes to learn multi-

ple WaveNet auto-encoders which operate at different scales. By pooling the output of

WaveNet encoders, the model aggregates a downsampled context which provides a hi-

erarchy of decoders with signals corresponding to features of increasing temporal scales.

In order to allow faster than real-time sampling, the Parallel-WaveNet [269] and Clar-

iNet [208] introduce a two-stage training which relies on using a pretrained WaveNet as

teacher to train an Inverse Auto-regressive Flow (IAF [147]) student model. The IAF

model allows fast parallel sampling but is slow to train due to the sequential likelihood

estimation. Its training is made efficient by a method called probability density distil-

lation, which optimises the student sample generation under the distribution learned

by the teacher. Once the IAF student has matched its teacher distribution, it can be

used as a feed-forward replacement of the pretrained WaveNet without loss in audio

quality, although the overall process requires twice the amount of training and the

teacher-student matching is prone to instability. Alternatively, a highly optimised sin-

gle layer RNN is proposed in [135] for waveform modelling with a dual softmax output

over 16-bit audio at 24kHz. The proposed model is pruned and fine-tuned, this enables

a network sparsification by 96% without loss of audio quality and efficient inference on

mobile phone CPU.

Adversarial Audio Synthesis. Oppositely to auto-regressive models which are bi-

ased towards learning local dependencies with an iterative sampling scheme, Generative

Adversarial Networks allow fast parallel sampling from a latent prior and global evalu-

ation by an adversarial discriminator. The GAN framework has largely contributed to
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advances in neural image rendering, however it faces challenges in the audio domain be-

cause of the sequential structure of the data (as opposed to images with a fixed spatial

size) and the need for locally coherent phase generation to avoid strong auditory arte-

facts. In [59], a DCGAN image baseline is unrolled on the time axis by flattening both

kernels and strides and allows producing consistent audio waveforms such as speech

fragments or musical samples (e.g. drum hits). The up-sampling artefacts caused by

transposed convolutions [193] are mitigated by nearest-neighbour up-sampling in the

generator and phase shuffle in the discriminator to prevent from learning a trivial policy

based on phase patterns. Alternatively to modelling raw waveform, adversarial audio

synthesis has been applied to time-frequency representations designed for efficient in-

version in [69] [177]. Since the raw phase information is highly unstructured, which

disrupts the neural networks efficiency for pattern recognition, alternative representa-

tions are paired to the magnitude spectrogram by taking either phase time derivatives

(e.g. instantaneous frequency) or phase frequency derivatives (e.g. group delay). These

models benefit from efficient learning in the time-frequency domain and approximate

inversion to waveform is reported to achieve high audio quality and fast rendering.

However, the aforementioned models are bound to generate fixed length audio (in the

order of a second) from a unique global latent prior, which is a strong limitation that

is tackled in [163]. The proposed model generates magnitude spectrograms of arbitrary

length in a coarse to fine manner from series of random noise vectors sampled from

the prior. However it relies on a subsequent inversion model to synthesise waveform

from the lossy Mel-spectrogram output, as opposed to the prior works which target

end-to-end learning.

4.2 Spectrogram Inversion

Spectrograms are rather generic representations that are applicable to many types of

audio domains, such as speech, environmental noises and musical sounds. Because of

the down-sampled time frame axis, generation using an intermediate time-frequency

representation can help breaking down the complexity of neural audio synthesis into

two steps. The understanding of the global and long-term context (e.g. language,

composition) can belong to a first model generating acoustic features in the spectro-

gram domain. This step is usually performed without modelling the unstructured phase

information [282], thus it requires a second inversion step to waveform which can be
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performed with the standard Griffin-Lim Algorithm (GLA [100]). Although convenient,

this approach prevents from end-to-end learning which leads to error accumulation of

both the spectrogram prediction and the waveform inversion. Using GLA notably intro-

duces auditory artefacts from the approximate phase estimation, as well as latency as

many iterations are required. Based on that, the desired properties of the spectrogram

inversion model are the audio quality (compounding as little as possible errors) and the

synthesis speed (adding the least latency after the spectrogram generation).

WaveNet-like vocoders. Because WaveNet has proven an unprecedented quality

at generating locally consistent waveform, it was subsequently applied to spectrogram

inversion by providing it a global context in the form of spectrogram conditioning [240].

In this sense, the conditioning is provided as a guide but does not correspond to the

control definition in Section 3.3.3. Interactions are usually learned in the spectrogram

generation model which conditions the inversion model with a dense acoustic specifica-

tion of the audio target which should be rendered with the highest possible fidelity (no

semantic alteration). Many research investigations have been dedicated into WaveNet

inspired vocoders which alleviate the limitation of slow iterative sampling while main-

taining its high audio fidelity. As observed in Parallel-WaveNet, an IAF student can

be trained to this extent and subsequent experiments have developed generative flows

for fast feed-forward waveform synthesis without a two-stage training. In order to par-

allelize both training and generation, these models have mostly revolved around the

affine coupling transformation [57] which allows fast computation of the jacobians and

arbitrary operations over the conditioning signal (Figure 21). In WaveGlow [210], the

audio counterpart of [144], a uniform noise prior distribution is mapped to waveform

given spectrogram conditioning by stacking several invertible transforms and optimisa-

tion is directly performed on the exact likelihood. The signal is arranged in contiguous

channels by a squeeze operation so that each time step covers an increased duration, the

spectrogram is aligned along this axis and processed by dilated temporal convolutions

which provide parameters of the channel-wise affine transforms. Several models have

built upon this framework and provide modelling improvements in order to speed-up

the training and inference [143] [209] [297] [140].

Alternative vocoder formulations. Other architectures and training schemes have

been proposed besides the ongoing effort spent into refining variations of the WaveNet
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Figure 21: Schematic view of a generative flow conditioned on magnitude spectrogram, such
as in WaveGlow. The audio waveform is squeezed into channels, aligned with the acoustic
conditioning and processed by a stack of invertible affine coupling transforms. Half of the
squeeze dimension is fed with the conditioning into a WaveNet-like module that predicts biasing
and scaling coefficient s, t to transform the other half input. The invertible 1x1 convolution
allows mixing the squeeze channels at each flow step.

vocoder [96]. The FFTnet [131] uses a tree structure such that each layer splits its

input into even and odd steps that are transformed and summed, akin to sinusoidal

and cosinusoidal components of a DFT. By stacking n of these transforms it aggregates

a context of size 2n, two such networks are combined to process both past audio samples

and aligned acoustic features by summing their hidden features. The output node of

this tree is used for conditional auto-regressive prediction and it is reported to achieve

a competitive audio quality with a lighter network. Apart from auto-regressive and

likelihood based neural vocoders, fully-convolutional feed-forward models have been

proposed in order to synthesise several orders of magnitude faster. By design, these

models are parallel for both training and sampling thus potentially very efficient. The

Multi-head CNN (MCNN [9]) takes advantage of the additive property of sound by

using several parallel networks which focus on up-sampling different frequency bands of

the input spectrogram and sum up into the output audio. Its optimisation is based on

hand-tuned spectral losses for both magnitude and complex components which guide

the reconstruction of specific perceptual audio qualities.

The GAN framework has also been applied to spectrogram inversion such as in Mel-

GAN [154] which is able to produce variable-length audio with an unprecedentedly fast

and efficient architecture. To that extent, the authors introduce specific architectural

choices for both the generator convolution parameters (kernel, stride, dilation sizes)
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which alleviate up-sampling artefacts and for the discriminator. It is composed of mod-

ules operating on several down-sampled audio resolutions in order to discriminate over

different frequency ranges. This discriminator is used both for matching the expected

dataset density and for a deep feature loss which ensures that the generated audio is

accurately conditioned. This idea of multiple discriminators is also developed in [19]

which proposes an ensemble of random window discriminators to capture both different

resolutions and randomised sub-contexts as a mean of data augmentation. Other GAN

developments combine a multiple discriminator approach with a multi-band generator

architecture [292], add nested discriminators at the intermediate layer outputs of a

multi-scale generator [293] or pair the GAN criterion with a multi-resolution spectro-

gram reconstruction loss [291].

Alternatively, some neural vocoders more closely follow the original Griffin-Lim

algorithm and implement its successive iterations of phase estimation as the chain of

transformations within a feed-forward neural network. The GAN framework is used

in [195] to predict the correct complex spectrogram from a magnitude and zero-initial

phase, which in turn can be directly inverted with the inverse STFT. In [179] the GLA

iterations are learned with a stack of neural networks trained in a denoising fashion by

reconstruction of the clean signals from their complex magnitude spectrograms altered

with random noise perturbations. Whereas most generative models estimate a target

data density or regress some reconstruction errors, generative models based on score-

matching directly learn the gradients of the target data density. This approach is

applied to conditional audio synthesis in [34] [152] which iteratively convert a random

noise into waveform by gradient ascent in the data space, i.e. iteratively maximising

the waveform likelihood for the given acoustic context. At each denoising step the

network is provided with the spectrogram conditioning and the current noisy signal

and then directly estimates the gradient direction to refine the signal estimation. These

models are non auto-regressive and offer an explicit trade-off between synthesis speed

and quality by setting the number of denoising iterations (akin to GLA). It is shown

to achieve high audio quality, competitive to state-of-the-art auto-regressive solutions,

with compact architectures that can be parallelized to arbitrary signal durations thus

allowing efficient sampling.

Learning invertible time-frequency representations. Usual time-frequency trans-

formations such as the STFT and its inverse are convolution operations with a set of
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filters which define the frequency basis (e.g. in Equation 2 the Fourier basis with real

and imaginary parts computed with cosinusoidal and sinusoidal filters). Accordingly,

these transformations can be efficiently computed with 1-dimensional convolutional neu-

ral networks and these filters may be adaptively learned as part of an analysis pipeline

for MIR [36] or speech recognition [217]. Moreover, research in source separation has

seen recent breakthroughs [170] [197] by learning invertible time-frequency representa-

tions as part of the analysis-separation-synthesis pipeline commonly used for this task.

Earlier works in the field have used fixed transformations for the analysis and synthesis

(e.g. STFT/iSTFT in [128]) and these results have been largely improved by perform-

ing the separation (e.g. masking) in the analysis/synthesis representation learned with

neural networks. Although we have not seen yet any experiments applied to generative

modelling, one could apply this technique by learning an invertible time-frequency rep-

resentation instead of a neural vocoder which approximates the inverse transformation.

This could allow end-to-end learning, as in source separation where the representation

is learned along with the masking, by modelling an upper-level generative task in the

time-frequency representation learned with a lower-level analysis-synthesis network.

4.3 Implicit Timbre Models

The aforementioned models for neural audio synthesis are mainly generic and make

little to no assumptions on the types of sounds to be represented. To the extent of this

thesis we focus on musical audio and the predominant acoustic features to be modelled

are the fundamental frequency, which translates into pitch and harmony, the loudness,

which translates into velocity and dynamics, and the timbre which carries the percep-

tual identity of the instrument. There surely exist some inter-dependencies across these

features, for instance the pitch is bounded by the instrument tessitura and playing styles

induce variations both in timbre and in fundamental frequency and loudness envelopes

(e.g. vibrato is a pitch modulation, tremolo is a loudness modulation). Nonetheless,

this gives us a standard categorisation of acoustic features and it conveniently aligns

with our understanding of the music generation pipeline as pitches and dynamics are

composition elements (as well as rhythm is) which specify a content from which the syn-

thesis model should render all the acoustic details which belong to the timbre domain.

From this perspective the fundamental frequency, if the considered sources are pitched

instruments, and loudness are inherent specifications to the task of neural audio syn-
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thesis for music and the models may be categorised by their representation of timbre.

These representations notably vary according to either treating timbre as a categorical

feature (an instrument class), an implicit feature (e.g. the remainder of pitch and loud-

ness) or a continuous feature (expressive representation), as well as by the number of

timbre domains that can be processed (e.g. single or multiple instruments).

Neural style transfer for audio. The results achieved in the domain of neural im-

age stylisation [88] have motivated subsequent experiments to apply this technique to

audio generation, for instance timbre transfer when providing content and style samples

belonging to different instruments. Neural stylisation is directly applied to magnitude

spectrograms in [274] by computing the content and style losses in the embedding of a

pre-trained audio classifier in order to match a randomly initialised spectrogram to the

target feature statistics. This naive application raises two main questions, the choice of

representation which treats spectrograms as images and the lossy generation since the

magnitude spectrograms are inverted with GLA. Different representations and corre-

sponding pre-trained embeddings are investigated in [187] which opens the possibility

of waveform domain audio style transfer. Further works [101] show that the randomly

initialised input can be replaced with the content sample and optimisation may only be

performed on target style features, a process which resembles more to domain transla-

tion. These applications of neural style transfer for audio have opened some creative

approaches for implicit timbre synthesis driven-by-example and were refined for texture

synthesis in [6], yet they do not account for many of the intrinsic differences between

the audio and visual domains. Audio representations are temporal and do not satisfy

the same statistical properties as images [290], moreover the semantic of music is multi-

modal and the optimisation derived from Gram matrix statistics in a single generic

embedding is unlikely to disentangle what is implicitly provided as style and content

within the acoustic mixture. To this extent, generative modelling approaches to domain

translation may learn more adapted features which globally belong to an instrument or a

music style class and are expected to disentangle arbitrary contents (domain-invariant)

and styles (domain-specific) from the acoustic mixture, for instance using unpaired data

and adversarial learning. To the extent of this thesis, we focus on timbre style transfer

and attributes pertaining to the acoustic domain. It should be noted that this process

is only a subset of music styles which also encompass composition style transfer and

performance style transfer [184].
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Domain translation for timbre. While the aforementioned approach to audio style

transfer iteratively performs a cross-synthesis in between two chosen samples, domain

translation aims at modelling the transformations between datasets and can be trained

without supervision (e.g. paired data). In this setting, the model should learn features

for both the realisticness with respect to the target (e.g. the domain style) and the

uniqueness of the mapping which preserves the underlying content of the given input.

The TimbreTron model [120] applies a CycleGAN [304] on a CQT audio representa-

tion for bijective timbre transfer between individual instrument notes of fixed-length.

This image-like representation is chosen because of the pitch equivariance in the fre-

quency axis, accordingly translations in the 2-dimensional spectrogram are perceptually

consistent (linear temporal lag or linear pitch transposition), which approximates the

invariance property of the spatial dimensions of natural images. In addition to the

usual GAN losses that ensure that samples generated in a given domain are realis-

tic, the cycle-consistency losses ensure the uniqueness of the mapping by pushing the

generators to invert each other. Waveform synthesis from spectrogram is done with

a pretrained WaveNet conditioned on CQT predictions. Music conversion in between

similar sub-genres of electronic dance music is proposed with CycleGAN in [272]. The

model is applied to magnitude spectrograms of 4-bar long music excerpts and does not

require specifying instruments or isolating tracks. In this setting the style differences are

mainly attributed to textures (e.g. harshness of synthesizers, intensity of drums) and the

conversion does not modify the music structure, akin to an audio effect. Direct iSTFT

spectrogram inversion can be performed by using the source phase information because

audio texture differences are little sensitive to phase. A variable-length audio style

transfer model is proposed in [199] by adapting the TraVeLGAN [4] to spectrograms.

Pairs of contiguous spectrogram slices are split before one-sided domain translation and

concatenated back at the input of the discriminator which assesses the realisticness of

the generated result with respect to the target domain as well as to the frame continu-

ity. Because the generator output should be free from artefacts and discontinuities at

the concatenation edges, it is able to process variable length spectrograms. In order to

learn a style transformation which preserves content information (e.g. music structure,

speech intelligibility), an additional Siamese network is trained in cooperation with the

generator to preserve vector arithmetic in the cross-domain embedding. This approach

was proven efficient for image translations between more heterogeneous domains, at

which cycle-consistency fails, and its application to audio allows conversion between

more dissimilar genres such as pop and classical music domains.
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Multi-domain timbre transfer and variable-length waveform modelling are per-

formed in [190] by training a universal encoder and domain specific WaveNet-based

decoders. The domain invariance of the encoder output is enforced by adversarial

training against a latent classifier of the source domains, akin to [156]. This regularisa-

tion lets multiple decoders share the latent representation in order to generate audio in

their respective domains and the experiments show that the pre-trained encoder can be

transferred to train new decoders on unseen domains, for instance adding a new target

instrument. However the model computation and data requirements are prohibitive

since it relies on as many WaveNet models as there are target domains. Another limi-

tation shared by all the aforementioned models is that their mappings do not allow finer

controls than selection of a target domain, nor they allow generating multiple candidate

conversions for a single source example. This challenge is tackled in [167] which learns

a bilateral multi-modal timbre transfer by adapting the MUNIT framework [122] to au-

dio spectrograms. This model combines two auto-encoders with disentangled style and

content latent features that are trained with domain specific discriminators. Besides

the intra-domain reconstruction, the learning of domain invariant content and domain

specific style features relies on the cross-domain adversarial loss and cycle-consistency.

Given a source content encoding and random target style code, the decoded sample

must appear realistic to the target domain discriminator. Moreover the encoding of

that generated sample from the target domain should be consistent such that its style

matches the provided random style code and its content code matches the one of the

original source encoding. A multi-channel spectrogram representation is proposed in

order to account for different qualities of timbre and their acoustic correlations, it com-

prises the Mel spectrogram and three subsequent features: MFCC, spectral difference

and spectral envelope. According to this correlated multi-channel representation, the

MUNIT losses are complemented with an intrinsic consistency loss which assesses that

the generated spectrogram features follow their pre-defined relationships to the Mel

spectrogram channel. Audio synthesis is performed only using the Mel spectrogram

channel that is mapped to linear scale and inverted with iSTFT using the phase from

the source sample. Because the style is randomly sampled from a Gaussian prior when

training the conversion, it allows multi-modal outputs by combining any given source

content features with different target style codes, including those encoded from target

data observations.
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Implicit acoustic models. Implicit timbre modelling driven by example such as in

domain conversion allows unsupervised learning and sound transformations, yet it does

not offer an expressive acoustic control over the generated outputs. Some low-level

acoustic properties such as the fundamental frequency [142] and the loudness can be

automatically extracted to condition fine-grained neural audio synthesis models which

convert acoustic envelopes into audio. These acoustic properties are extracted at a

slower frame rate than audio (e.g. control rate of 250Hz), similarly to spectrogram

features, but only provide a partial acoustic specification of the target audio as op-

posed to spectrogram conditioning. For instance, pitched instrument synthesis may be

controlled by the f0 and loudness envelopes from which timbre is implicitly generated

as the remainder of acoustic features. Thus we refer to this class of models as implicit

acoustic models which learn to generate a specific timbre (e.g. an instrument) based

on its corresponding fundamental frequency and loudness envelopes. This approach

offers direct and independent controls for instance by transposition of the f0 without

alteration of the loudness. These models can be applied to timbre transfer using the

acoustic bottleneck of the control features, for instance extracting envelopes from one

source instrument performance to condition the synthesis of another target instrument

learned by the implicit acoustic model.

The WaveRNN architecture is adapted to musical audio synthesis from f0 and

loudness envelopes in [104]. This experiment explores different conditioning strategies

such as representing the f0 with a categorical pitch embedding and continuous cent

deviations, which are fed in separate stacks processing the categorical and continuous

feature envelopes. The output of the conditioning network is up-sampled to the audio

rate and used as conditional biasing in the auto-regressive waveform prediction with

a highly optimised single layer RNN cell. An implicit model for both timbre and

articulation is proposed in [186] by hierarchical in-painting at increasing sampling rates

(Figure 22). The model uses the input f0 conditioning to synthesise a pure sinusoid

tone at 2kHz that is wave-shaped by a convolutional generator which is expected to

generate a realistic articulation of the target fundamental frequency. The output of each

wave-shaping module is up-sampled by a factor of two before feeding the next level of

sampling rate until reaching the target audio rate (e.g. from 2kHz to 16kHz). Because

each step increases the Nyquist frequency by two, the model iteratively enriches the

spectral distribution of the target timbre by in-painting the upper half added to the

spectrum of the previous scale. The coarse-to-fine generation, from the articulation (f0
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contour) to the target timbre, is conditioned by the loudness up-sampled to each scale

resolution and trained with a spectral reconstruction error, an adversarial discriminator

and a perceptual loss computed in the embedding of a pre-trained pitch extractor. The

composition of these losses is expected to ensure that the model follows a consistent

pitch trajectory while flexibly shaping a realistic articulation and timbre distribution.

QUANTIZED PITCH QUANTIZED VELOCITY

EXPRESSIVE LOUDNESSEXPRESSIVE F0

 0.00  0.58 0.05  0.10  0.15  0.20  0.25  0.30  0.35  0.40  0.45  0.50  0.55

 0.00  0.58 0.05  0.10  0.15  0.20  0.25  0.30  0.35  0.40  0.45  0.50  0.55

 0.00  0.58 0.05  0.10  0.15  0.20  0.25  0.30  0.35  0.40  0.45  0.50  0.55

 0.00  0.58 0.05  0.10  0.15  0.20  0.25  0.30  0.35  0.40  0.45  0.50  0.55

DDSP decoder
additive harmonic components

f0

f1

f2

...

residual stochastic component

+

•
DFT filter

noise source

DFT

+

generator
iDFT

250Hz features

16kHz output

x2 up-sample

16kHz output

i

i
=

2
k
H

z,
4k

H
z
...16k

H
z

2kHz up-sample

learned 
reverberation

instrument agnostic

instrument articulation
(e.g. vibrato)

Figure 22: Neural audio synthesis from fine-grained fundamental frequency and loudness en-
velopes. On the bottom left, the hierarchical in-painting approach with generators that wave-
shape a pure tone input at several up-sampling stages up to the target audio rate. On the
bottom right, the DDSP model for neural audio synthesis parametrised with a harmonic addi-
tive synthesizer summed with a subtractive synthesizer (spectral domain noise filtering). The
DDSP framework combines interpretable modules and back-propagation in order to train effi-
cient and modular neural networks for audio processing, for instance by chaining the output
synthesizers with a learned convolution module. These two models are conditioned with ex-
pressive continuous input envelopes at a relatively high control rate (e.g. 250Hz), thus not
directly applicable to composition. One further direction of research is to learn control models
able to convert the quantised score targets into realistic acoustic features for conditioning the
DDSP decoder.

The aforementioned models allow expressive control for fundamental frequency

and loudness but their interpretability is limited as WaveRNN relies on a highly opti-

mised RNN cell and the hierarchical in-painting model relies on a hybrid architecture

that combines many sub-networks and various losses including adversarial training.
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A highly efficient and interpretable approach to neural audio synthesis is introduced

with the Differentiable Digital Signal Processing (DDSP [70]) library which combines

elements of classical DSP that were specifically implemented for parallel computation

and back-propagation in order to be integrated within the deep learning framework. It

is observed in both the audio domain and in the image domain [138] [137] that inte-

grating elements of classical rendering within generative modelling can allow learning

very efficient, interpretable and controllable architectures. Accordingly, these models

directly benefit from domain-specific knowledge and are biased to learn properties of

the signal perception. The DDSP decoder implements the SMS decomposition [237]

by inferring control parameters for an additive harmonic synthesizer which is summed

with a subtractive noise synthesizer to render both deterministic and stochastic audio

components (Figure 22). The decoder outputs for amortised synthesis are the harmonic

amplitudes of the additive harmonic synthesizer and the spectral amplitudes of the fil-

ter applied to the noise spectrum, which are predicted with a rather generic neural

network fed with f0 and loudness envelopes. To this extent, it should be noted that

the additive synthesizer (following Equation 7 with zero initial phase) is directly fed

with the pre-extracted input f0 [142] up-sampled to audio rate, thus it cannot modify

the articulation or correct some potential prediction errors. A learned convolutional

reverberation module can be trained at the summed synthesizer output in order to

disentangle the average recording reverberation from the decoder. This architectural

modularity allows direct audio manipulations such as dereverberation by reconstruc-

tion without the reverberation module. Due to the specific model design, it achieves

high quality waveform generation after a few hours of training on little amount of data

(e.g. 20 minutes of audio) and low-latency inference. The DDSP framework is a very

promising direction for musical neural audio synthesis and its current limitations raise

many questions for future research:

. Implementing a more flexible sound model within the DDSP framework. The

harmonic plus noise decoder output can approximate the ordinario playing style

of wind, brass and bowed string instruments but it does not model well tran-

sients and percussive components (e.g. violin pizzicato). It cannot accurately

model other families of instruments such as pitched percussions (e.g. timpani),

plucked/struck strings (e.g. guitar, piano) and inharmonic instruments (e.g.

bells). One such attempt has been done for generalising DDSP to speech in

[75] and could potentially apply to singing voice synthesis.
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. Handling of polyphonic audio with multiple simultaneous fundamental frequencies

or non-pitched audio sources (e.g. drums).

. Modification of the articulation as part of the timbre transfer. As the input f0

is directly fed into the additive synthesizer output, the model does not have the

flexibility to modify the articulation and can fail at producing high-quality audio

if the source does not follow a pitch contour similar to the training data. More-

over, conversion between instruments would be enhanced by the model ability to

add specific modulations with respect to the target (e.g. adding vibrato when

converting a flute to violin).

. Interactions for composition. The envelope rate at the input of these implicit

acoustic models is relatively high (e.g. 250Hz) and unsuited for direct user control,

an approach to allow composition would thus require to convert a score (e.g.

pitch and velocity targets) into realistic and fine-grained acoustic envelopes for

conditioning such neural audio synthesis models [134].

4.4 Learning Representations of Timbre

The previous section has detailed two main families of implicit timbre models. The first

is based on domain translation which treats timbre as a categorical class and learns it by

disentangling domain invariant features (content, e.g. pitch and velocity) from domain

specific features (style, e.g. timbre). These translation models can process multiple

timbres as implicit transformations of a given source sample to other target domains.

The second is based on fine-grained fundamental frequency and loudness conditioning

which lets the model learn a single timbre as the remaining acoustic features. For in-

stance by hierarchical in-painting of the spectral distribution or by prediction of the

corresponding harmonic and stochastic components. This approach enables indepen-

dent manipulations of f0 and loudness, variable-length waveform synthesis, as well as

timbre transfer to the learned instrument target. Yet it does not provide any direct

control over continuous timbre variations which would allow to change the sound of the

instrument at a fixed pitch and velocity.

Implicit timbre embeddings. An approach to perceptual drum sound synthesis

is proposed in [215] which conditions a Wave-U-NET [251] architecture with semantic
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descriptors from the Audio Commons extractor 4. The chosen architecture is designed

for waveform-to-waveform applications such as source separation and its adaptation

to drum synthesis is done by providing an input loudness envelope up-sampled at the

audio rate which is converted into a drum waveform corresponding to the global condi-

tioning features of the semantic target. The feature extraction is based on a pretrained

regression over human annotated audio for the attributes hardness, depth, brightness,

roughness, boominess, warmth and sharpness which are provided as conditioning vari-

ables and allow shaping the target timbre via continuous semantic descriptors. However

the relationship between semantic descriptors and instrument timbre (e.g. which target

drum class) is not learned explicitly and these descriptors may seem in parts antago-

nist (e.g. brightness and warmth) or overlapping (e.g. hardness and boominess) which

induces some entanglement in the controls. An approach to pitched note synthesis is

proposed in the Symbol-to-Instrument Neural Generator (SING [52]) which pretrains

a waveform auto-encoder and learns a latent feature regression model conditioned with

pitch, velocity and instrument class targets. The bottom auto-encoder learns a frame-

wise acoustic embedding and the upper latent regression model is a RNN which infers

ordered series of frame features given the target note classes. This results in a control-

lable note sampler which combines the RNN and the decoder into a waveform synthesis

pipeline from global attributes. The GAN framework is extended to conditional au-

dio synthesis in [69] by providing the generator with categorical pitch and velocity

attributes as one-hot vectors concatenated to the global latent prior. As opposed to

implicit acoustic models which abstract timbre from envelopes of the local fundamental

frequency and loudness, this global conditioning allows the GAN latent prior to model

continuous timbre variations pertaining to a given combination of pitch and velocity

targets. The generator outputs a spectrogram representation with both the magnitude

and the instantaneous frequency which can be approximately mapped to the complex

spectrogram and inverted with iSTFT. As a result, the model can synthesise audio with

little latency and allows a continuous timbre control over the generation of individual

notes of fixed duration. However, the GAN latent space is little interpretable since

it does not correspond to an inference mechanism which would allow to analyse and

visualise the embedded timbre distributions.

4https://www.audiocommons.org/2018/07/15/audio-commons-audio-extractor.html
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Learned analysis/synthesis timbre representations. Early works on neural mu-

sical audio synthesis have used auto-encoders on magnitude spectrogram frames to

learn a low-dimensional invertible audio representation which embeds timbre as well as

other features (e.g. pitch) in an entangled manner [229]. As a result these features are

being manipulated all together, which prevents from predictable transformations. A

comparison of diverse auto-encoder models for reconstruction of short-term magnitude

spectrograms of musical notes is conducted in [226] which highlights the benefits of

variational auto-encoders in terms of usability of the continuous latent representation.

Direct waveform modelling is introduced with a WaveNet auto-encoder in [71] along

with the reference Nsynth dataset 5 of annotated musical notes. The encoder output is

down-sampled in time by average pooling, yielding a variable length embedding that is

concatenated with the categorical pitch target, up-sampled to the audio rate and used

as conditioning to the WaveNet decoder that synthesises audio in an auto-regressive

fashion. For that reason, the model is computationally intensive and unsuited for real-

time inference, although an open source interface has been developed for controlling a

GPU-equipped server back-end 6. This model lets users morph instrument timbres by

continuous interpolations in the embedding given the desired pitch target. A disentan-

gled latent space of pitch and timbre is learned in [171] with a VAE on fixed-length

magnitude spectrograms of sustained note portions. The encoder outputs parameters

for two separate Gaussian distributions over pitch and timbre, which form a Gaus-

sian mixture that can be independently sampled and jointly decoded. An extension of

this model for unsupervised learning is proposed in [172], which proposes novel losses

based on the assumption that small pitch shifts do not modify timbre. In this setting,

ground-truth labels are not available to train latent classifiers and enforce that each

latent space is discriminative with respect to either pitch or timbre. Thus unsupervised

disentanglement is encouraged by first having a categorical output distribution for the

pitch encoder and a continuous one for the timbre encoder. During training, an input

audio is pitch shifted and a regression loss is applied to the timbre encoding which

should be invariant to moderate pitch shifts. The additional losses for unsupervised

disentanglement are based on cycle-consistency (decoding with a different timbre or

pitch latent and re-encoding to the same latent), contrastive learning and a surrogate

loss that regresses the known pitch shifting deviation in the pitch encoding. To evaluate

the unsupervised disentanglement achieved by the model, a metric for pitch clustering

5https://magenta.tensorflow.org/datasets/nsynth
6https://github.com/googlecreativelab/open-nsynth-super
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and a consistency-diversity score for conditional generation are introduced. Another

approach to disentanglement of pitch and timbre is proposed in [254] using a condi-

tional VAE on parameters of a source-filter representation. The harmonic component

of the SMS [237] model is decomposed into fundamental frequency and cepstral coeffi-

cients (as features of timbre) which are both analysed with the encoder. The decoder

uses the estimated fundamental frequency as conditioning information and inverts the

learned latent space, which is expected to embed timbre, into the harmonic spectral

envelopes. In contrast with the parametric model of DDSP [70], the stochastic residual

component is not processed and the reconstruction is evaluated on the parameters of

the source-filter model rather than on the output waveform, which inherently bounds

the model quality to that of the pre-defined analysis/synthesis.

4.5 Score and Audio Processing

The previous sections discussed generative models focused on acoustic production, for

instance synthesising individual audio events for some given pitch and velocity targets

which is the function of a note sampler. Or synthesising an audio performance from

fine-grained acoustic envelopes which implicitly carry the underlying music structure

but do not allow direct composition from the symbolic domain. Expressive audio mod-

elling from score raises the challenges of both the global structure understanding, for

instance modelling the relationships between the notes played to generate a realistic

melody articulation and chords, the intermediate control on the performance timbre

and the local fidelity of the synthesis output. It also relies on the availability of aligned

score and audio datasets, a ressource which is much harder to collect than individual

sample audio libraries, or calls for unsupervised learning methods to tackle the com-

plex task of bijective mapping between the audio and score domains [39]. For this

purpose, the Wave2Midi2Wave model [106] is introduced along with the unprecedent-

edly large MAESTRO dataset7 that was collected using the Yamaha Disklavier piano8,

an electromechanical device which automatically transcribes the played performance

into score. The model is composed of three modules that are separately trained in

order to factorize the different data processes involved in piano music modelling. The

Onsets and Frames model [105] is trained for supervised piano transcription from audio

7https://magenta.tensorflow.org/datasets/maestro
8https://www.piano-e-competition.com/ecomp_yamaha.asp
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to MIDI. Using this pretrained transcriber, it is possible to automatically annotate new

piano performances and train a language model for symbolic music [118] which can

generate new compositions that are musically consistent with the considered perfor-

mance dataset. Given the discrete score conditioning (onsets from a MIDI piano-roll),

a WaveNet synthesizer is trained to reconstruct the audio with high-fidelity. By com-

bining state-of-art modules, the Wave2Midi2Wave system is able to generate piano

music such that both the composition and the performance are perceptually similar to

human-made music. However, its transcription is tailored to piano music and the ren-

dering does not offer expressive acoustic controls over the performance. Moreover, due

to the complexity of the separate models, it does not train end-to-end and is unlikely

to adapt to smaller annotated datasets such as those available for other instruments.

A similar large-scale dataset collection was carried for drumming performances 9 using

the Roland TD-11 electronic drum kit 10, which enabled the supervised training of a

reference model for drum transcription [30], yet there is no equivalent counterparts for

other instruments such as strings or winds.

A score to audio pipeline for cello solo music generation is developed in [176] by

training a bi-axial LSTM model in the symbolic domain to condition a down-sized

WaveNet synthesizer pretrained with the annotated audio of the MusicNet database,

about 50 minutes of recorded performances for that instrument. To alleviate the diffi-

culty of training a waveform synthesis model with a limited amount of annotated data,

other works have used a two step approach by training a score to spectrogram model

which can be inverted with generic models such as a WaveNet vocoder pre-trained on

unlabelled audio. The PerformanceNet [278] model generates high-quality spectrograms

from score in a coarse to fine manner. The first module is a U-NET that converts the

input piano-roll into a low-resolution acoustic representation that is up-sampled in the

frequency dimension with a second module. The acoustic resolution is increased with

a multi-band tree structure which doubles the number of frequency channels until the

target spectrogram output size. The Mel2Mel [141] model focuses on timbral expressiv-

ity by conditioning the inputs and outputs of a bi-directional RNN with an instrument

embedding. Instrument-dependent input hidden features are obtained from the score

information, which are expected to represent the temporal envelopes and dynamics of

instrumental notes. Mel-spectrograms are generated from the RNN outputs by a sec-

9https://magenta.tensorflow.org/datasets/groove
10https://www.roland.com/us/products/td-11/
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ond layer with instrument conditioning, in order to add the spectral information and

acoustic features of the target timbre. The expressive conditioning from the instrument

embedding is done by feature-wise linear transformation [204] such that a given melody

can be played by different instruments and the learned timbres can be morphed. How-

ever, because annotated datasets with balanced instrument ratios were not available,

the model is trained on synthetic audio produced from piano melodies by sample-based

rendering in the different target instruments. Expressive control for piano performance

synthesis is proposed in [257] with a gaussian mixture recurrent VAE that predicts Mel-

Spectrogram with a latent representation that separately accounts for articulation and

dynamics. Each expressivity parameter relating to either note duration or velocity is

extracted from score onsets and binarised in between {staccato,legato} and {soft,loud}
that are encoded as separate gaussian mixture components. This expressive encoding

is provided to the decoder that generates spectrograms that are inverted to audio by

a pretrained WaveGlow synthesizer. By sampling or morphing in the mixture compo-

nents, it is possible to modify the style of the given score rendering. Another research

direction for score to audio generation relies on pre-trained implicit acoustic models of

a given target timbre [70] [186] which are controlled with f0 and loudness envelopes at

an intermediate sampling rate. This highly-compressed acoustic representation allows

to train light-weight control models [134] [33] between the quantised pitch and velocity

targets and the corresponding natural envelopes of the target instrument articulation

(Figure 22) while the neural synthesizer implicitly generates all the acoustic details of

the target timbre.

4.6 Perceptual Audio Embeddings for Generative Modelling

Both the training and the evaluation of generative audio models can make use of pre-

trained network embeddings, either in the form of a perceptual loss or as a basis for

statistical scores such as the Fréchet Audio distance. Besides the specific network

architectures, these embeddings differ by their training tasks and datasets which we

may divide in two groups: generic classifiers trained at categorising many unrelated

classes or specific embeddings trained at analysing a particular sound feature (e.g.

pitch). Accordingly, the former group can provide a general metric in which many

features may be entangled whereas the later can provide a distance which accounts for

a single target feature.
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Generic audio embeddings. Large scale audio event classification was introduced

with the AudioSet [89] dataset which contains more than two millions audio clips from

ten second long Youtube videos labelled into 632 classes of various kinds, including

environmental noises, musical sounds and voice. A comparison study [109] was carried

on this dataset to adapt the state-of-art CNN architectures from computer vision to su-

pervised audio classification based on a common Mel-spectrogram input representation.

One such example is the VGGish11 adaptation of [243] to the acoustic classification of

the AudioSet ontology. The VGGish model was used as the reference embedding for

generative evaluation with the Fréchet Audio Distance [139] as well as for computing

Gram losses for audio synthesis [6] by deep feature matching. A large-scale audio em-

bedding is learned without labels in SoundNet [10] which uses the output features of a

pretrained image classifier on video frames to match its own features extracted from the

corresponding raw waveform audio. This training relies on the underlying audio-visual

feature correspondence between video frames and aligned audio to train the audio em-

bedding on unlabelled videos under the feature distribution of the pretrained image

classifier. The experiment demonstrates the efficiency of the method for transfer learn-

ing by using this audio feature extraction to train a shallow classifier on limited amount

of labelled audio, for instance 2000 clips of the ESC-50 dataset [206], which outperforms

training a classifier from scratch only on the labelled target data. The Look, Listen

and Learn (L3 [7] and OpenL3 [47]) method proposes a fully self-supervised approach

to learn audio-visual embeddings by jointly training two parallel sub-networks either

processing image frames or aligned audio spectrograms. The outputs of both networks

are fed into a fusion layer which optimises a discriminative task by either classifying

input pairs of the two modalities as corresponding or not. Because creating wrong pairs

does not require any labels (e.g. randomly swapping audio or image frames between

different videos), this method allows training both image and sound embeddings with

large uncurated datasets. In the experiment of transfer learning for training a down-

stream supervised audio classifier, the openL3 embedding is shown to outperform both

SoundNet and VGGish although its self-supervised pre-training is the least constrained

in terms data requirements.

Feature-specific embeddings. The features extracted by the aforementioned large-

scale embeddings are little interpretable since discriminating unrelated classes of Au-

11https://github.com/tensorflow/models/tree/master/research/audioset
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dioSet or assessing audio-visual correspondences from uncurated videos requires the

implicit learning of many underlying audio properties, some of which may relate to

pitch, timbre or temporal dynamics in an entangled manner. For this reason they are

efficient at providing a general pool of features for transfer learning to other down-

stream tasks, for instance training a classifier on a new and possibly unrelated dataset.

On the other hand, some classifiers which are trained at predicting a specific feature

can provide a more interpretable embedding which is expected to discriminate that

particular property while being invariant to other ones. Considering a reference pitch

detection model such as CREPE [142], we can expect its feature statistics to provide a

distance closely related to pitch variations and more invariant to timbre since it learns

to perform that task regardless of the many different training instruments. A CREPE

embedding loss is used to train a self-supervised DDSP [70] model by providing a learn-

ing signal which specifically assesses the model performance at generating the correct

fundamental frequency envelope. This technique is also used in [186] to ensure that

the iterative wave-shaping preserves the input pitch contour while adding the desired

timbre distribution. The learning of a differentiable metric of perceived audio fidelity

is introduced in [175] which uses human labels to assess whether various strengths of

audio distortion are perceptually noticeable or not, in order to train a classifier at the

threshold of just noticeable differences (JND). Audio pairs are presented to the listening

test with some randomised audio perturbations (e.g. noise, equalisation, compression,

reverberation) and rated as whether they sound exactly the same or not. The model is

comprised of a convolutional feature extractor, with activations of the l-th layer denoted

as Fl(.) ∈ RTl∗Cl , which yields a deep feature distance:

D(x, x̂) =
L∑

l=1

1

Tl ∗ Cl
||wl � (Fl(x)− Fl(x̂))|| (61)

computed with a learnable channel weighting wl ∈ RCl . This distance is learned as

part of a JND classifier E which is trained at predicting the label y = {0, 1} of whether

the clean audio x and perturbed audio x̂ are perceptually dissimilar y = 1 or indistin-

guishable y = 0. Accordingly, the convolutional feature extractor and shallow classifier

jointly optimise the following binary cross-entropy

L(Fl=1...L, E) = BCE(E(D(x, x̂)), y). (62)
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Since the model classifies ground-truth human ratings, its learned distance accounts for

the perception of audio quality and outperforms classical metrics of audio quality by

having a stronger correlation with blind mean opinion scores. Moreover, as the distance

is computed in a neural network embedding it can be used as a differentiable loss to

train down-stream tasks such as audio enhancement models (e.g. speech denoising).
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5 Experiments in Neural Audio Synthesis

In this section, we present the results of the experiments carried and published during

this thesis which have been framed into three main topics. These topics are implicit

modelling of timbre, learning representations of timbre and light-weight neural audio

processing. For each experiment, we provide a global introduction and discussion of

the main contributions that is followed with details and quantitative results. These are

provided in the corresponding papers, following the PhD thesis by publication model,

and additional contents are linked in the project webpages. To ease reading, published

papers are reformatted in a common template style and links to the original templates

are provided.

5.1 Implicit Timbre Models

As witnessed in the image domain, generative modelling techniques have proven success-

ful at converting data between semantic domains with applications to processing visual

artistic styles [304]. Unpaired domain translation models enable generation driven by

example, provided a source sample and the learned mapping to another target domain,

these models transform parts of the input features to match the specific distribution

of those observed in the output domain. For audio applications, this motivates our

experiment of using domain translation as a model of timbre transfer which consid-

ers sample libraries of different instruments as domains across which we would like to

convert features that belong to the relative perception of each acoustic source. The

concrete application of this process resembles that of an audio effect which performs

cross-synthesis by mixing the user-provided input sound sample with auditory proper-

ties learned in the target domain, for instance we would like to transform a violin note

as played by a trombone.

For this task, we choose the Studio-on-Line dataset [12] which is a library of in-

dividual note recordings across the whole tessitura of the Piano, Cello, Violin, Flute,

Clarinet, Trombone, French-Horn, English-Horn, Oboe, Saxophone, Trumpet and Tuba.

Each instrument is recorded in several dynamics and playing styles, some of which

are usually specific to an instrument or a family (e.g. pizzicato for the strings), so

that multiple variations are available for a same pitch. We down-sample the audio
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to 22050Hz, normalise amplitudes and compute log-magnitude spectrograms with the

Non-Stationary Gabor Transform (NSGT [11]) with 500 bins on the Mel frequency

scale. Each spectrogram is sliced into blocks of 16 frames so that the model inputs

are of shape (500,16). We choose this representation for the log-scaled frequency axis

which increases the separation of lower harmonic frequencies, its efficient approximate

inversion with the Griffin-Lim algorithm and the compactness of the input which we

wish to visualise in a 3-dimensional latent space. We first validate this setting by train-

ing a VAE model on the database of multiple instruments, which can be done without

conditioning or by using additional database labels corresponding to either pitch or

instrument classes. Accordingly, we can observe how the distribution of instruments in

the latent space varies and that the instrument conditional VAE has the least separated

class projections.

In the second place, we adapt this spectral VAE baseline to the UNIT [164] frame-

work which performs bijective domain translation using a pair of VAEs and correspond-

ing domain-specific adversarial networks. The translation model relies on the shared

latent space assumption which states that two hypothetically matched samples in both

domains should map to the same latent code that would then be equally decoded back

to both domains. This is enforced by weight sharing in the upper network layers, do-

main specific adversarial learning and cycle-consistency regularisation so that the input

of one VAE can be retrieved from the output of the other VAE. Because the model

learns a continuous latent space shared for both domains, it allows translation as well

as generating some variations by moving in the 3-dimensional space while decoding

in the two output domains. In order to enhance the model control, we train a UNIT

variant with pitch conditioning so that we can either choose some transposition or set

the translation output pitch to that of the input. One major limitation of the UNIT

framework is that it does not scale efficiently to more than two domains, as it would

require to train an increasing number of losses (6 for the bijective case) and adversarial

discriminators. One workaround that we investigated is to chain multiple UNIT models,

for instance given the learned mappings X1 ↔ X2 and X2 ↔ X3 we could approximately

convert X1 ↔ X3 by feeding the output of the first translation as input to the second,

although we compound errors of both models that were trained separately.

This work was submitted to the first international conference on timbre organised

by McGill University in Montreal, Canada and presented as a poster.

100



Timbre transfer between orchestral instruments

with semi-supervised learning

Adrien Bitton, Axel Chemla-Romeu-Santos & Philippe Esling

(original publishing template for abstract and poster available at

https://www.mcgill.ca/timbre2018/files/timbre2018/timbre2018_proceedings.pdf

https://github.com/acids-ircam/Timbre_MoVE/blob/master/docs/poster_2018.pdf)

Motivations

We aim to provide new ways of synthesizing timbres by high-level interaction and transfer

of properties between instruments. Our hypothesis is that each instrument defines a timbral

domain.

Challenges in prior timbre studies. Analysis spaces of perceptual ratings are not

invertible. They do not generalize to new audio nor they allow synthesis. Automatically

extracted audio descriptors show limited correlations to timbre spaces. Representations based

on DSP have a high number of parameters and analysis dimensions which require additional

knowledge models to interprete and manipulate timbre.

Our proposal. We apply variational learning for finding high-level structured represen-

tations by joint optimization of analysis and generation processes. Dimensionality reduction

yields 3-dimensional latent spaces of higher-level abstraction which are shared across multiple

instrument domains and organized without need for human ratings.

Machine Learning Background

Variational Auto-Encoder. Modeling the data distribution p(x) based on a lower-

dimensional latent representation z that retrieves x so that p(x, z) = p(x|z)p(z). Approximate

solution through variational inference (VAE [145]) over parametric families of candidate dis-

tributions for the encoder qφ and the decoder pθ that are optimized on the evidence lower

bound (ELBO). This generative model is fast to train and effective on small datasets.
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Aims/goals
Understanding the timbre qualities of orchestral instruments is a central question in music perception, 
usually studied through signal descriptors. Recent advances in unsupervised generative models provide an 
alternative way to obtain higher-level features to study timbre by constructing latent spaces, learned on 
sets of sounds through hierarchical models. Once learned, these models allow weight sharing with others 
to provide a common knowledge space. Hence, transferring latent spaces allows domain translation so 
that data is encoded in one architecture, and generated by another one. We propose to use such 
architectures to achieve what we call timbre transfer: using instrument-specific generative systems for 
analyzing timbre organizations relative to each, but also to build a common timbre space of higher 
abstraction that can be used for analysis purposes and sound translation from one instrument to the other.

Background information
Observations of complex data is caused by several underlying generative factors with specific perceptual 
features. However, these factors are usually entangled and cannot be extracted directly from the data. 
Regarding timbre, modeling these underlying factors of variation accurately could lead to understand 
inner structures of music and also to control meaningful generative processes directly from them.
Here, we address the problem of finding continuous timbre representations with a hierarchical approach, 
based on multi-layered inference generative systems. Recent advances in unsupervised learning allow to 
infer high-level features by directly generating from the space of factors of variations and compare this 
generation to the original data. Specifically, Deep Latent Gaussian Models (DLGM), are a variational 
approach to hierarchical latent space discovery. Let  be hierarchical continuous spaces, such that data  can 
be generated recursively from the top layer   with a generative model (called decoder)

�
where the densities  are parametrized by neural networks. We approximate the intractable inference model 
with a distribution  mirroring a simpler generative process

�
DLGMs are trained with a variational procedure, by maximizing the following lower-bound

�
which can be explained as the optimization of a likelihood (reconstruction) term and a regularization term 
that forces the system to learn an encoding that corresponds to a prior distribution 
Recently, the idea of style transfer tries to use properties of deep networks to apply the style of an input to 
another (Gatys, 2016). An interesting method of image translation (Liu, 2017) was proposed based on the 
idea of a shared latent space, where variations between different data is matched in a common space. 
Here we adapt this idea to orchestral instruments in order to perform timbre transfer. This is done by 
training the first layers for each instrument separately, while higher latent layers will be shared by all 
instrument-specific architectures, that will represent higher-level timbre features common to every 
instrument. With this architecture, we aim to obtain instrument-relative timbre information in first layers, 
and extracting global timbre information from all these instrument-relative features. This architecture 
allows us to perform timbre transfer by encoding the spectral content from a first instrument in the shared 
latent representation, and decoding this latent variable with the decoder of another instrument. We write 
this criterion explicitly in the training objective by introduction an adversarial criterion.
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no clear clustering 
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structures within the pitch classes 

Hence the network jointly models pitch-independent features related 
to each instrument and is able to transfer them across domains 

II. Timbre transfer with generative models 

Studio On Line dataset (SOL) 
. note recordings of 12 orchestral instruments (winds, strings, 
keyboard, brass) in several dynamics, playing styles and all pitches 
. Non-Stationary Gabor Transform (NSGT) as input signal transform 
for its beneficial representation and invertibility properties 
. 2D-(de)convolutional layers on the data domains to process blocks 
of NSGT-Mel frames  spectro-temporal features of ~120ms context 

Timbre transfer strategies 
Instrument-conditional VAEs switching the encoding condition to any 
decoding target condition 

 indexed latent subspaces w.r.t. instrument conditions 

UNIT-like translators paired domains with single instruments, 
switching decoder from one to the other 

 shared latent space but one-to-one transfer 

possible semitone-conditioning  subspaces abstracted from pitch 

 control over (un)transposed transfers 

Across instrument families domains are groups of instruments  
 VAEs are instrument-conditional w.r.t. their family 

switching decoders and selecting target instrument condition 
 more versatile one-to-many transfers

Motivations 

We aim to provide new ways of synthesizing timbres by high-level 
interaction and transfer of properties between instruments. 
Our hypothesis is that each instrument defines a timbral domain. 

Challenges in prior timbre studies 
non-invertible analysis spaces of perceptual ratings 

 does not generalize nor synthesize audio 

audio descriptors with limited correlation to timbre spaces 
 little predictive power 

DSP techniques with complex sound decompositions  no knowledge 
model and high number of parameters / analysis dimensions 

Our proposal 
. variational learning for finding high-level structured representations 
. joint optimization of analysis and generation processes 
. dimensionality reduction onto latent spaces of higher abstraction 
. no need of annotations nor ratings 
. building a common latent space between instruments
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I. Machine Learning Background 

Variational Auto-Encoder (VAE) 
Modeling the data distribution p(x) based on lower-dimensional 
latent representation  z  that retrieves  x  so  p(x,z) = p(x|z)p(z)  

Approximate solution through variational inference over a parametric 
family of candidate distributions  evidence lower bound 
optimization of encoder  q   mirrored with decoder  p 

     
      

• such models are light and fast to train 
• variational learning is effective on  

small datasets (around 103 samples) 
• latent space is structured, generative 

and disentangles data variations
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Conclusions and references 

Our study provides novel tools for interacting with timbre data that 
do not suffer from previous limitations 

 3D continuous representations that generalize and synthesize audio 

 techniques for timbre transfer/morphing and exploring novel tones 
that efficiently visualize information and directly render sound 

Our framework can be applied on melodies, on sampled notes from 
synthesizers and could be adapted to non-musical sounds (e.g. tone-
to-noise) which encourages creative sonic applications. 

It also motivates further investigations, including: 
. modeling timbre paths under constraints and along manifolds 
. analyzing latent space correlations to signal descriptors 
. developing methods for mapping across several translator pairs or 
adapting one translator to an other 

Main references 
Kingma et al. Auto-Encoding Variational Bayes arXiv:1312.6114 2013 
Liu et al. Unsupervised Image-to-Image Translation Networks NIPS 2017 
Balazs et al. Theory, implementation and applications of Nonstationary 
Gabor frames Journal of computational and applied mathematics 2011 
Ballet et al. Studio online 3.0: An internet "killer application" for remote 
access to IRCAM sounds and processing tools JIM 1999

Chaining translator pairs 
two separate trainings but as translators share a common instrument 
it enables a chained transfer across that common data domain 

we observe successive spectral profiles 
denser distribution in the brass domain  

and sparser when transferring to the other wind instrument 

Further experiments 
Instrument-conditional family translators 
Timbre trajectories as geodesic/constrained latent paths 
Timbre interpolations and morphings in latent space
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Unsupervised Translation Networks (UNIT) 
Paired data domains that map onto a common knowledge space 
hypothesis: a shared latent space allows transfer from one to the other 
no matched samples across domains, instead, an additional adversarial 
objective pushes separate decoder layers to match their domain 
attributes from any latent coordinates

 competitive optimization: the generator produces more realistic 
samples while the discriminator becomes more accurate 

 domain translation by switching decoders 

 reinforced by a circle-consistency objective so that the reverse 
transfer should reconstruct the original sample

III. Results 

Validating a base framework for further experiments (e.g.) 
. warmup procedures of the different training objectives 
. layer capacities, initializations, activations, batch-normalization 
. optimizer, back-propagation and learning rate decays 

 good generative and generalization power with down to 3 latent 
dimensions (16*500 input dimensions) under the UNIT assumptions 

 3D representation & synthesis spaces easing high-level interaction 
note: generated audio samples are available for listening evaluation 
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Figure 23: Auto-encoder model and training objective (ELBO) for reconstruction of spectro-
gram frames. The spectrum (blue, normalised amplitude) is analysed and reconstructed (red).

Unsupervised Translation Networks. Paired data domains are mapped onto a com-

mon knowledge space in the UNIT [164] framework. The underlying hypothesis is a shared

latent space that would allow transfer from one domain to the other. It does not rely on

matched samples across domains, instead, an additional adversarial objective pushes sepa-

rate decoder layers to match their domain attributes from any latent coordinates. This leads

to a competitive optimization by which the generator produces more realistic samples while

the discriminator becomes more accurate at detecting fake samples. Domain translation is

performed by switching decoders. A cycle-consistency regularization is applied so that the

reversed transfer should reconstruct the original sample.
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. Non-Stationary Gabor Transform (NSGT) as input signal transform 
for its beneficial representation and invertibility properties 
. 2D-(de)convolutional layers on the data domains to process blocks 
of NSGT-Mel frames  spectro-temporal features of ~120ms context 

Timbre transfer strategies 
Instrument-conditional VAEs switching the encoding condition to any 
decoding target condition 

 indexed latent subspaces w.r.t. instrument conditions 

UNIT-like translators paired domains with single instruments, 
switching decoder from one to the other 

 shared latent space but one-to-one transfer 

possible semitone-conditioning  subspaces abstracted from pitch 

 control over (un)transposed transfers 

Across instrument families domains are groups of instruments  
 VAEs are instrument-conditional w.r.t. their family 

switching decoders and selecting target instrument condition 
 more versatile one-to-many transfers

Motivations 

We aim to provide new ways of synthesizing timbres by high-level 
interaction and transfer of properties between instruments. 
Our hypothesis is that each instrument defines a timbral domain. 

Challenges in prior timbre studies 
non-invertible analysis spaces of perceptual ratings 

 does not generalize nor synthesize audio 

audio descriptors with limited correlation to timbre spaces 
 little predictive power 

DSP techniques with complex sound decompositions  no knowledge 
model and high number of parameters / analysis dimensions 

Our proposal 
. variational learning for finding high-level structured representations 
. joint optimization of analysis and generation processes 
. dimensionality reduction onto latent spaces of higher abstraction 
. no need of annotations nor ratings 
. building a common latent space between instruments
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Conclusions and references 

Our study provides novel tools for interacting with timbre data that 
do not suffer from previous limitations 

 3D continuous representations that generalize and synthesize audio 

 techniques for timbre transfer/morphing and exploring novel tones 
that efficiently visualize information and directly render sound 

Our framework can be applied on melodies, on sampled notes from 
synthesizers and could be adapted to non-musical sounds (e.g. tone-
to-noise) which encourages creative sonic applications. 

It also motivates further investigations, including: 
. modeling timbre paths under constraints and along manifolds 
. analyzing latent space correlations to signal descriptors 
. developing methods for mapping across several translator pairs or 
adapting one translator to an other 

Main references 
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Ballet et al. Studio online 3.0: An internet "killer application" for remote 
access to IRCAM sounds and processing tools JIM 1999
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two separate trainings but as translators share a common instrument 
it enables a chained transfer across that common data domain 

we observe successive spectral profiles 
denser distribution in the brass domain  

and sparser when transferring to the other wind instrument 

Further experiments 
Instrument-conditional family translators 
Timbre trajectories as geodesic/constrained latent paths 
Timbre interpolations and morphings in latent space
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Figure 24: The UNIT model implementation for timbre transfer on NSGT magnitude spectro-
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Figure 25: Pairing of two UNIT translators to translate across multiple domains using a
common domain. On the left are visualized the two shared latent spaces, on the right are
shown consecutive transfers from Flute to French-Horn (shared domain) to Alto-Saxophone.
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Timbre processing by domain translations. The UNIT framework relies on un-

supervised learning of domain-specific features with adversarial networks to match each

decoder outputs with the observed data distributions of their respective target domains.

This conveniently removes the need for paired data by which the conversion objective

could be computed as a reconstruction error. However, this implies training one dedi-

cated discriminator per domain and incurs the potential optimisation instabilities often

observed in the adversarial matching of high-dimensional data distributions. An al-

ternative unsupervised objective can be formulated with non-parametric two-sample

test statistics such as the Maximum Mean Discrepancy (MMD [97]), which has been

applied to generative moment matching [67] [162]. In our setting, we consider the spec-

trogram outputs of the decoder and the random samples from the target domain as

two distributions which are approximated with the kernel density estimator (e.g. radial

basis function) from which the MMD distance is computed. As opposed to the GAN

framework, the MMD provides a fixed estimator which can be computed independently

across domains and sub-networks, making it efficient for multi-domain translation. Al-

though we did not explore this option to keep our method scalable to many domains, an

in-between approach was proposed by training parametric MMD kernels as learnable

discriminators [161].

We keep the same data settings as in the previous timbre translation experiment

and investigate the extension of the UNIT framework for many-to-many domain trans-

lation. In the first place, we run a modified UNIT timbre transfer experiment by re-

placing the two adversarial losses with MMD distances computed in each data domain.

Then we replace the VAE pair by an instrument conditional VAE which is trained at

processing all source and target domains in a single architecture, which alleviates the

second limitation of scalability observed in the UNIT framework. The processing of all

domains in a single VAE model requires it to learn to modulate analysis and synthesis

features with respect to the different instrument conditions, as opposed to train a sep-

arate sub-network for each domain. We implement the conditioning by Feature-wise

Linear Modulation (FiLM [204]) on the normalised hidden activations using biasing and

scaling parameters predicted by a conditioning sub-network. The overall architecture

is jointly trained with the VAE objective in the randomised source domain conditions

(reconstruction), the MMD matching with randomised target domain conditions (con-

version) and the cycle-consistency loss (regularisation).
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The bijective timbre transfer task is evaluated on several model variations, from the

default UNIT framework that we iteratively modify by adding the concatenative pitch

conditioning, the MMD loss (instead of GANs), the conditioning with FiLM layers and

the single VAE model with instrument domain conditioning. We observe that the UNIT

models with separate VAEs perform best in terms of reconstruction but that the pro-

posed single VAE model performs best in terms of statistical metrics of transfer (MMD

and k-NN clustering). We also visualise the topology of acoustic descriptors in the target

domain ground-truth samples and synthetic conversion samples which confirm that the

acoustic distributions are matched. Finally, we show results of training the model for

many-to-many domain translations on four instrument classes: Saxophone, Flute, Vio-

lin and French-Horn. Some additional visualisations and audio samples are hosted on

the dedicated online repository: https://github.com/acids-ircam/Timbre_MoVE/.

Further experiments on many-to-many timbre conversion could be carried using

a conditional GAN framework such as Star-GAN [42] which alleviates the need of

training multiple sub-networks. Another approach to be investigated could rely on

non-adversarial statistics matching (e.g. moment matching) with disentangled deep

feature embeddings. Neural network pretraining on specific tasks and data can provide

differentiable perceptual losses for training generative models, for instance the CREPE

pitch embedding or the JND embedding of perceived audio quality [175]. If multiple

embeddings do not overlap in terms of discriminative features, they could be used to

compute independent distances in the source and target domains without paired data,

for instance preserving the input pitch while matching an output timbre distribution.

This approach has the advantage of being potentially more stable and less demanding

in computations as only the generator is trained. Moreover it provides interpretable

losses with respect to the pretrained features, as opposed to the learned discriminator

which may fail at capturing certain modes of the distributions or learn a trivial policy.
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Modulated Variational auto-Encoders for

many-to-many musical timbre transfer

Adrien Bitton, Philippe Esling & Axel Chemla-Romeu-Santos

(original publishing template and appendix available at

https://arxiv.org/abs/1810.00222)

Generative models have been successfully applied to image style transfer and domain

translation. However, there is still a wide gap in the quality of results when learning such

tasks on musical audio. Furthermore, most translation models only enable one-to-one or one-

to-many transfer by relying on separate encoders or decoders and complex, computationally-

heavy models. In this paper, we introduce the Modulated Variational auto-Encoders (MoVE)

to perform musical timbre transfer. We define timbre transfer as applying parts of the auditory

properties of a musical instrument onto another. First, we show that we can achieve this task

by conditioning existing domain translation techniques with Feature-wise Linear Modulation

(FiLM). Then, we alleviate the need for additional adversarial networks by replacing the

usual translation criterion by a Maximum Mean Discrepancy (MMD) objective. This allows

a faster and more stable training along with a controllable latent space encoder. By further

conditioning our system on several different instruments, we can generalize to many-to-many

transfer within a single variational architecture able to perform multi-domain transfers. Our

models map inputs to 3-dimensional representations, successfully translating timbre from one

instrument to another and supporting sound synthesis from a reduced set of control parameters.

We evaluate our method in reconstruction and generation tasks while analyzing the auditory

descriptor distributions across transferred domains. We show that this architecture allows for

generative controls in multi-domain transfer, yet remaining light, fast to train and effective

on small datasets.

Introduction

Music information can be analyzed in many forms, each of which conveys different specificities

over musical qualities. Among these, timbre is the set of properties that distinguishes one

instrument from another playing at the same pitch and loudness. Timbre has become a core

concept in music composition since the 19th century [180]. It has been studied using human

dissimilarity ratings to construct timbre spaces, which exhibit the perceptual relationships

between instruments [98]. However, these spaces are not invertible to the signal domain and

do not generalize to new examples [181]. The heavy reliance on hand-crafted audio descriptors
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to analyze timbre perception altogether leads to a lack of established models to understand

and generate timbres [180]. Moreover, the specific nature of music tasks requires tailored

evaluation principles that are yet to be ascertained [130].

Recent advances in generative models open alternative avenues to analyze highly dimen-

sional data and tackle complex subsequent tasks. Amongst these, the idea of style transfer

[88] has recently gained a flourishing interest. This approach allows to modify the stylistic

features of an image while preserving its overall content and led to the more generic ques-

tion of domain translation. In the recent UNsupervised Image-to-image Translation (UNIT)

model, [164] proposed to learn a shared latent space with a Variational Auto-Encoder (VAE)

and translate between different data domains with an adversarial criterion. However, specific

properties of the generation cannot be controlled and that discriminative objective might lead

to an unstable and longer training. Here, we first extend this approach to musical transfer

while improving it by introducing Modulated Variational auto-Encoders (MoVE) that offer

control over the generation through conditioning. Furthermore, by replacing the discrimina-

tive networks by a Maximum Mean Discrepancy (MMD) objective, we alleviate the need for

an additional adversarial training specific to each domain.

Although UNIT provides a powerful framework, it only applies to one-to-one transfer.

This implies that a different model has to be trained for each pair of domains. To mitigate

this issue, [42] proposed StarGAN which performs many-to-many transfer between several

domains. However, it relies solely on Generative Adversarial Networks (GANs) and does not

learn an implicit task representation to interact with. In the music realm, [190] proposed

Universal Music Translation (UMT), which does not use GANs. Although it enables transla-

tion across multiple complex audio domains, this method requires to learn a separate decoder

for each domain, which leads to a prohibitive training time. In contrast to these methods,

we show that MoVE can be further conditioned on domain information and generalizes to

many-to-many transfer with a single encoder and decoder architecture able to perform multi-

domain transfer. The resulting models are rather lightweight and fast to train while effective

on a moderate amount of examples.

Here, we define timbre transfer as applying a variable part of the auditory properties of

a musical instrument onto another. We circumvent the lack of definition for timbre by consid-

ering each instrument as a separate domain that maps onto a common latent representation.

We further address the crucial need for interactivity and control in creative applications such

as audio synthesis. Accordingly, our method yields 3-dimensional latent spaces that can be

explored and controlled through high-level explicit variables such as pitch and octave val-

ues. This supports sound generation with smoothly evolving timbre qualities and complex
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domain transfers from a reduced set of parameters. Finally, we analyze traditional audio de-

scriptor distributions when transferring between multiple domains or decoding across latent

dimensions to demonstrate the generative capacities of our model.

Related works

Style transfer and image translation. In computer vision, style transfer [88] has been

proposed to generate images that preserve the content from a source image but feature stylistic

qualities belonging to another target image. Although this technique provides compelling

results, it operates on local textural information and fails to capture higher-level semantic

properties of the style. Further research has been carried to address this question of domain

translation, first proposed by [129]. In the fully supervised setting, this translation would

require paired samples. However, such datasets are scarce and the concept of existing samples

exactly matching the translation task is restrictive from a generative perspective. In the

UNIT approach [164], the underlying assumption is that two hypothetically matching samples

should map onto the same point in a shared latent space. Hence, translation is achieved by

partially weight-shared VAEs in order to map the two separate domains to a common latent

representation. Learning is performed with an auxiliary pair of adversarial discriminators

which push translated samples to match the distributions of their respective domains. An

additional cycle-consistency objective [304] reinforces the shared learning by ensuring that

translated samples can be retrieved back to their original domains. However, this architecture

can only operate on single domain pairs.

In order to provide many-to-many translations, [42] proposed to replace weight-sharing

by conditioning a single GAN. This allows to train on multiple domains simultaneously, while

enabling control over the generative process. However, the authors evaluate only on highly

similar domains (eg. face attributes). Furthermore, this approach relies solely on GANs,

which are notoriously difficult to train, prone to lack full support over the data [102] and do

not provide a latent space encoder.

Recently, Feature-wise Linear Modulation (FiLM) has been proposed to improve con-

ditioning by learning conditional bias and scaling throughout a network [204]. This method

was successfully used in image stylization [90] where adaptive modulation conditioned on a

style image is applied after each intermediate instance normalization. Here, we show that by

relying on FiLM layers for domain conditioning, we can perform many-to-many domain trans-

lation with a single VAE architecture, as depicted in Figure 26. Moreover, by using a MMD

criterion, we alleviate the need for GANs or specific adversarial discriminators. Hence, we
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obtain an unsupervised, lightweight and easy to train model with a general and controllable

latent space.
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Figure 26: Different approaches to domain translation. (a) One-to-one transfer models such
as UNIT are restricted to domain pairs. (b) One-to-many transfer models such as UMT
require to train a different decoder for each domain. (c) Our proposed many-to-many transfer
model (MoVE) allows to perform multi-domain transfer with a single encoder and decoder,
while providing control over the generation with external high-level conditioning variables.

Audio translations. Recent applications of generative models to audio have shown promis-

ing results, notably supported by solutions to efficiently generate waveforms such as Wavenet

[268] or SampleRNN [185]. Most of these proposals target voice signals and there is still a

large gap when addressing musical data. Some approaches have tackled musical style transfer

[274]. However, as pointed by [51], musical style is a multimodal and multi-scale notion, which

implies a variety of underlying factors. Specifically for domain translation, [190] proposed a

Universal Music Translation (UMT) network that globally translates musical recordings be-

tween different genres and instrument domains. Using a single Wavenet encoder and separate

decoders for each domain, this approach is able to transform a given melody so that it is played

by different instruments. By design, this method requires to train a specific Wavenet decoder

for each of the target domain. It does not provide control over audio synthesis and the learned

representation does not allow direct visualization nor transfer of only specific parts of timbre

attributes. Hence, it does not enable informed generative processes, musical interaction and

creativity. Our proposal targets 3-dimensional latent spaces supporting timbre transfer and

continuous synthesis paths with explicit control over musical attributes.

Musical Timbre Transfer

Musical timbre can be defined as the set of auditory qualities that distinguishes two instru-

ments playing the same note at the same loudness. Seminal studies relying on human dis-

similarity ratings provided an interesting step towards understanding music perception [182].
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However, the ordination techniques used yield non-invertible and fixed timbre spaces. Hence,

they do not support audio synthesis nor do they provide a way to manipulate timbre struc-

tures. Signal processing techniques have also been developed to process and alter timbre.

However, these rely on complex analysis schemes that decompose sounds into large sets of

parameters [237], precluding intuitive control over the audio synthesis process.

Here, we propose to use generative models in order to perform musical timbre transfer.

In order to circumvent the complexity of defining timbre, our underlying hypothesis is that

each instrument defines a timbral domain, which contains all style qualities that shape its

identity. Musical timbre transfer can be achieved by transforming a certain amount of the

auditory features of a musical instrument according to another (eg. like playing a saxophone

with a bow). Transferring all timbre properties of an instrument leads to domain translation,

while partial modification of these amounts to style transfer. Furthermore, our goal is to

obtain a controllable model that can be used for creative purposes. Hence, we aim to ob-

tain 3-dimensional latent spaces along with high-level musical parameters that enable human

interaction and control over the generation.

This type of transfer can be performed in several ways, as depicted in Figure 26. First,

one-to-one transfer models such as UNIT map samples from a given pair of domains to

a shared latent space. By learning separate layers and weight-shared layers in both the

decoder and encoder, domain translation can be assessed through adversarial discriminators.

We first adapt this model to timbre transfer and show that we can alleviate the need for

GAN training by using an alternative MMD objective. It leads to a faster and more stable

learning that we further enhance by modulating shared layers with FiLM layers [204] on

pitch and octave. This provides an explicit control over generation, altering or not the pitch

regardless of timbre. The one-to-many transfer models (UMT) allow to work with multiple

domains but require to learn a different decoder for each. This leads to a more complex and

longer training and reduces the generalization ability of the model gained through multi-task

learning. Here, we show that our proposed Modulated Variational auto-Encoder (MoVE)

allows to perform many-to-many transfers with a single VAE simultaneously processing all

domains. The success of our solution relies on an efficient domain conditioning, together

with external control variables, performed through FiLM layers acting on the whole network.

This solution offers a greater generalization power by jointly learning all transfer tasks within

a single architecture. The resulting latent space successfully models joint and conditional

distributions over several instrument domains. This also enables control with semantic labels,

while providing interactive 3-dimensional spaces to synthesize novel tones from a reduced set

of control parameters.
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One-to-one transfer

Our one-to-one transfer model is based on an architecture similar to UNIT [164] where the

core idea is to learn a latent space that is shared between two domains X1 and X2. Based

on samples x1 ∈ X1 and x2 ∈ X2, we aim to model the joint distribution pX1,X2(x1, x2) over

the two domains. By learning domain-specific encoders E1 and E2, matching samples drawn

from each marginal distribution pX1(x1) and pX2(x2) should map onto the same latent code

z = E1(x1) = E2(x2). Equally, any latent code can be decoded back to any of the two

domains d ∈ {1, 2} by learning appropriate decoders x∗d = Dd(z). A paired VAE implements

this assumption through separate domain-specific layers {ed ; dd} alternated with weight-

shared ones {ews ; dws}. The full encoders and decoders are defined by the composition of

both parts Ed = ews ◦ ed and Dd = dd ◦ dws.

Each VAE is trained with a reconstruction loss on its own domain, by approximating the

intractable latent conditional p(z|x) with a parametric encoding network qφ(z|x) with φ ∈ Φ.

In comparison to UNIT, we both use a Gaussian encoder qφ and decoder pθ so that z ∼
qφ(z|x) = N (µφ(x), σφ(x)) and x ∼ pθ(x|z) = N (µθ(z), σθ(z)). Training the model amounts

to optimize {θ ; φ} on the Evidence Lower Bound Objective (ELBO), defined as a Negative

Log-Likelihood (NLL) term on the output prediction error and a β-weighted Kullback-Leibler

Divergence (KLD) term that assesses the error from the approximate latent density against

the intractable true posterior distribution.

Lrec.θ,φ = Eqφ(z)[log pθ(x|z)]− β ∗DKL[qφ(z|x)‖pθ(z)]

This inference objective allows to learn structured low-dimensional and invertible representa-

tions of the data, while disentangling generative factors in the encoded variables [111].

Translation is performed by switching domains between the encoding and decoding stages

eg. x1→2 = D2 ◦E1(x1). However, there is usually no matching sample x∗2 that could allow to

perform the optimization of the reconstruction error L1→2
θ2,φ1 = err(x1→2‖x∗2). To circumvent

this challenge, UNIT relies on GANs to discriminate the generated translations against the

target data distributions they model. However, this GAN criterion leads to a more complex

and possibly unstable training process. Here, we show that we can efficiently replace the ad-

versarial criterion by a differentiable distance measure on the probability distribution spaces.

We minimize the Maximum Mean Discrepancy (MMD), a non-parametric kernel method [97],

between the set of transferred samples x1→2 ∼ pθ2(x|z, φ1) and a randomly sampled set from
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the target domain x̄2 ∼ pX2

L1→2
θ2,φ1 = MMD[x1→2‖x̄2] = Ex,x′ [k(x, x′)]− 2 ∗ Ex,x̄[k(x, x̄)] + Ex̄,x̄′ [k(x̄, x̄′)]

∀{x, x′} ∈ x1→2 and ∀{x̄, x̄′} ∈ x̄2

where k is a Radial Basis Functions (RBF) kernel k(x, x′) =
n∑

i=1

exp−αi‖x−x′‖2 .

Reconstruction and translation objectives are jointly optimized with an extra cycle-

consistency (CC) criterion. It consists in encoding a translated sample back to the latent

space and decoding it to its source domain so that xcc1 = D1 ◦ E2(x1→2). Hence, this double

translation should retrieve the initial sample and the reconstruction error can be optimized

with a NLL loss.

Lcc1θ1,φ2 = Eqφ2 (z|x1→2)[log pθ1(x|z)]

Finally, the complete optimization objective is defined as

Ltrainθ,φ = Lrec1θ1,φ1 + Lrec2θ2,φ2 + λMMD(L1→2
θ2,φ1 + L2→1

θ1,φ2) + λCC(Lcc1θ1,φ2 + Lcc2θ2,φ1)

where λMMD and λCC allow to weigh the relative influence of different objectives. For the

purpose of controllable musical timbre transfer, we further apply conditioning at the input of

the weight-shared networks by concatenating one-hot encoded pitch classes and octaves. This

pushes the shared encoder to structure note-agnostic features, while providing control over

the generation.

Many-to-many transfer

In order to alleviate the one-to-one limitation that requires a different training for each do-

main pair, we propose the single MoVE architecture as depicted in Figure 27. All layers are

shared over the multiple domains processed, by learning a single modulated encoder Es and

decoder Ds. Transfer is performed by switching the categorical condition between different

instruments. Hence, the practical success of this method highly depends on the conditioning

strategy, which must also retain the pitch and octave control. To do so, we use an input

embedding that jointly maps these categorical conditions to dense vectors fed into FiLM gen-

erators. We replace each intermediate batch normalization with instance normalization and

activation is followed by a FiLM modulation layer (conditional instance normalization). Bi-

asing and scaling are either applied feature-wise for 1-dimensional activations or channel-wise

after 2-dimensional feature maps. A different generator output is used for modulating each
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instance normalization layer depending on its shape. The MoVE model trains in reconstruc-

tion with the ELBO and in transfer with the MMD, which is separately computed for each

instrument against each of the others.

2x 3x

Generation controls
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Figure 27: The Modulated Variational auto-Encoder (MoVE) provides a single architecture
able to perform many-to-many transfer while controlling the generation with external param-
eters. Both the domain and control information are processed to modulate different layers of
the architecture.

Experiments

Dataset. In order to learn our timbre transfer models, we rely on the Studio-On-Line (SOL)

database of orchestral instrument note recordings [12]. We selected 12 instruments across the

4 families of wind (Alto-Saxophone, Bassoon, Clarinet, Flute, Oboe), brass (English-Horn,

French-Horn, Tenor-Trombone, Trumpet), string (Cello, Violin) and keyboard (Piano). We

consider each instrumental subset as a timbral domain Xi, which contains the full tessitura of

each instrument at different velocities (amounting to around 100 to 200 samples per domain).

We split these subsets into 90% training notes and 10% test set. The audio waveforms are

down-sampled to 22050Hz before computing the Non-Stationary Gabor Transform (NSGT)

[11]. This spectral transform allows to map to a perceptual pitch scale, while remaining

iteratively invertible to the signal domain [205]. NSGTs are computed on a scale of 500 Mel

bins ranging from 10Hz to 11000Hz. The resulting matrix data is sliced into chunks of 16

temporal frames, amounting for a context of about 120ms. This yields a final input size of

16x500 dimensions. We keep only the magnitude information and lowest values are floored

to 6e−5 before applying a logarithmic transform. Finally, we normalize the entire dataset by

computing a zero-mean unit-range normalization on all training samples.
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Implementation details. The one-to-one transfer network is implemented as follows.

The first encoding stacks ed are domain-specific, each composed of two 2-dimensional strided

convolutions, an intermediate flattening step and a fully-connected (FC) layer. The interme-

diate representation is either concatenated (denoted as C-po models) with the conditioning

vector of size 21 (12 pitch and 9 octave classes) or modulated by FiLM (denoted as F-po

models). Follows a weight-shared set ews of two FC layers and two Gaussian encoder output

layers mapping the input to a shared 3-dimensional latent space. All intermediate layers are

followed by batch normalization and a Leaky-ReLU non-linearity. This structure is mirrored

in the decoders, where the latent code is conditioned and fed into a weight-shared block dws of

3 FC layers. Follow separate decoding stacks dd each with a FC layer, two transpose convolu-

tions that up-sample the representation and two Gaussian decoder outputs. The final output

activation is a Tanh applied to the decoded means, according to the initial data scaling. Full

details of the architectures are given in appendix A.

The many-to-many transfer model relies on the same architecture, but without domain-

specific encoders and decoders. Hence, all layers are similar but a single network jointly

processes all domains thanks to FiLM layers (denoted as F-pod models). For these, an

embedding layer maps our categorical vocabulary of pitch, octave and instrument classes to

dense vectors which are processed by two FiLM generators, one for the encoder and one

for the decoder. Each has 3 FC layers followed by scaling and biasing output pairs that

each maps to the size of the modulated layer. We replace every batch normalization by

instance normalization and apply FiLM generator outputs as linear transforms modulating

normalized hidden activations. Conditional instance normalization is performed feature-wise

for 1-dimensional vectors and channel-wise for 2-dimensional feature maps.

Regarding optimization, all training objectives are simultaneously back-propagated in

all networks. We use a Xavier weight initialization and the ADAM optimizer with an initial

learning rate of 1e−4. Following the β-warmup procedure [246], only the NLL reconstruction

objective is optimized in the first epochs and the KLD strength is gradually increased from 0

to 1 during half the total number of training epochs. Similarly, we introduce the translation

objective after 40 epochs and the optional cycle-consistency objective after 60 epochs. We

train on mini-batches of size 128 and the MMD is evaluated against batches of size 2048

sampled from the target distributions and computed with three Gaussian kernel parameter

values {0.05, 0.1, 1}. We found the magnitude of MMD gradients to be much smaller than

that of the ELBO. Hence, we set λMMD to 1e5. Given that our models are light, the training

over instrument pairs or triplets can be done in less than 24 hours on a single mid-range GPU

(eg. NVIDIA TITAN Xp 12Gb).
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One-to-one transfer

First, we compare our MoVE proposal to UNIT on the one-to-one transfer task. To do so,

we learn a different model for each pair of instruments. We perform incremental comparisons

by ablating certain aspects of our proposal to assess their importance. First, we add con-

catenative conditioning of pitch and octave to UNIT (noted UNIT(GAN;C-po)). Then we

add our proposed alternative MMD criterion replacing the GAN objective (UNIT(MMD;C-

po)). Then, we introduce the FiLM layers leading to our MoVE proposal. The first version

still features separate domain-specific encoders and decoders, so it is noted MoVE* (MMD;

F-po). By further introducing domain conditioning and relying on a single VAE (Figure 27),

we obtain our proposal MoVE (MMD; F-pod).

& Rafsky (1983)). Both are dissimilarity measures computed between the target data distribution
and transferred samples. Hence, we evaluate test set transfers between different target domains.

Reconstruction and domain transfer. The averaged reconstruction and transfer results are pre-
sented in Table 3, while separate evaluations for different pairs are in Annex B. As we can see,
the UNIT-MMD model obtains the highest within-domain reconstruction score, while the MoVE
model achieves better domain translation. Hence, it appears that the MMD increases reconstruction
performance, and that the FiLM conditioning ameliorates the transfer. It also seems that relying
on a single encoder and decoder for domain transfer might provide better generalization, as can be
verified by looking at the relative MMD and kNN scores on the transfer task. Indeed, it seems that
the modulated but separate layers approach perform worse, while the single architecture performs
better on most evaluations.

Table 1: Evaluations of various models on the test sets

reconstructions transfers

RMSE LSD MMD
(� = 0.05)

k-NN
(k = 10)

MMD
(� = 0.05)

k-NN
(k = 10)

UNIT (GAN) 0.3412 718.47 2.117e-2 57269 2.038 e-2 43180
UNIT (GAN; C-po) 0.3011 693.22 1.989 e-2 57806 9.112 e-2 43414

UNIT (MMD; C-po) 0.3036 692.41 2.125 e-2 57102 2.304 e-2 43878
MoVE* (MMD; F-po) 0.3134 762.51 9.632 e-3 57273 3.153 e-2 43443
MoVE (MMD; F-pod) 0.3339 781.11 2.587 e-3 57509 1.747 e-2 43173

Audio descriptors topology. Audio descriptors are features used to compare the qualities of dif-
ferent sounds (Peeters et al. (2011)). Hence, we rely on these to assess the effect of transfer, while
providing a deeper understanding of its behavior. We compute the spectral flatness, centroid, roll-off
and loudness on test samples reconstructed on their own domain or transferred to the other domain.
Distribution and sample-specific plots for the spectral centroid are presented in Figure 3.

Figure 3: Understanding the effect of musical timbre transfer through audio descriptor distributions.

As we can see, the transfer produces an almost exact match of the descriptor distribution to the target
domain. This shows the success in transferring multimodal distributions of auditory properties, as
all the modes of the descriptors’ distributions are preserved. The scatter plot also suggests that the
centroid transfer is highly influenced by the loudness of the sample. This correlates to perception
studies, as playing an instrument louder usually leads to a higher centroid McAdams et al. (1995).

In order to further understand how the latent space is organized with respect to audio descriptors,
we provide their spatial topology in Figure 4. To compute this, we define a sampling grid over
the latent space and decode the audio at each point to compute their descriptors. As we can see,
the audio descriptors are locally very smooth. Furthermore, one key observation is that the latent
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Evaluations of various models on the test sets.

Evaluation scores. To evaluate reconstruction performances, we compute several crite-

ria between input samples x and reconstructions x̃. The Root-Mean-Square Error RMSE=
√∑

(x−x̃)2 and Log-Spectral Distortion LSD=
√∑

(10∗log10( x2

x̃2
))2 provide different assessments of

how various models are able to reconstruct samples from the test set. Therefore, they only

assess reconstruction abilities without domain transfer. To evaluate the quality of domain

transfers, we compute the Maximum Mean Discrepancy (MMD) and the non-differentiable

k-Nearest Neighbour (k-NN) test [82]. Both are dissimilarity measures computed between

the target data distribution and transferred samples. Hence, we evaluate test set transfers

between different target domains.

Reconstruction and domain transfer. The averaged reconstruction and transfer re-

sults are presented in the following table, while separate evaluations for different pairs are in

Annex B. As we can see, the UNIT-MMD model obtains the highest within-domain recon-

struction score, while the MoVE model achieves better domain translation. Hence, it appears
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that the MMD increases reconstruction performance, and that the FiLM conditioning ame-

liorates the transfer. It also seems that relying on a single encoder and decoder for domain

transfer might provide better generalization, as can be verified by looking at the relative MMD

and kNN scores on the transfer task. Indeed, it seems that the modulated but separate layers

approach perform worse, while the single architecture performs better on most evaluations.

Audio descriptors topology. Audio descriptors are features used to compare the qual-

ities of different sounds [203]. Hence, we rely on these to assess the effect of transfer, while

providing a deeper understanding of its behavior. We compute the spectral flatness, centroid,

roll-off and loudness on test samples reconstructed on their own domain or transferred to the

other domain. Distribution and sample-specific plots for the spectral centroid are presented

in Figure 28.
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Figure 28: Understanding the effect of musical timbre transfer through audio descriptor dis-
tributions.

As we can see, the transfer produces an almost exact match of the descriptor distribution

to the target domain. This shows the success in transferring multimodal distributions of

auditory properties, as all the modes of the descriptors’ distributions are preserved. The

scatter plot also suggests that the centroid transfer is highly influenced by the loudness of the

sample. This correlates to perception studies, as playing an instrument louder usually leads

to a higher centroid [182].

In order to further understand how the latent space is organized with respect to audio

descriptors, we provide their spatial topology in Figure 29. To compute this, we define a

sampling grid over the latent space and decode the audio at each point to compute their

descriptors. As we can see, the audio descriptors are locally very smooth. Furthermore, one
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key observation is that the latent space of both conditioned target domains follow the same

overall topology. Animations showing the complete latent descriptor topology are available

on the supporting webpage.

Centroid
Flatness

d1
d1

d2
d2

-1 1X

Figure 29: Topology of the latent space with respect to audio descriptors.

Latent space synthesis and performance. As the latent space provides continuous

audio synthesis and that our method introduce high-level conditioned controls, we can use

our proposal as a full musical synthesizer. Furthermore, as we map to 3-dimensional spaces,

the user can directly interact with the space while performing timbre transfer. Furthermore,

although these models are trained to transfer single instrumental notes, they still can be used

to transfer a full melody recording between timbre domains. To do so, the recording is split

and iteratively reconstructed by transfering each signal window to the target domain. Audio

examples of applying this strategy to transfer a complete instrumental solo are also available

in the supporting webpage.

Many-to-many transfer

Here, we evaluate the application of MoVE to perform many-to-many transfer. Given our new

architecture, this simply consists in training on multiple domains at once by modulating with

the appropriate domain information. This architecture allows us to train a single model for

different domains and thus to perform multi-domain translation. The conditioning vector is

then composed of the pitch, the octave and here the instrument of the corresponding example.

This conditioning vector is then processed by an embedding to ease the FILM conditioning.

Results are presented in the following table: we can see that the MoVE architecture is able

to reconstruct and transfer multiple domains at the same time at the cost of a slight decrease
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in performance, even in the case of diverse domains (here Alto-Saxophone, Flute, Violin and

French-Horn).

space of both conditioned target domains follow the same overall topology. Animations showing the
complete latent descriptor topology are available on the supporting webpage.

Figure 4: Topology of the latent space with respect to audio descriptors.

Latent space synthesis and performance. As the latent space provides continuous audio synthe-
sis and that our method introduce high-level conditioned controls, we can use our proposal as a full
musical synthesizer. Furthermore, as we map to 3-dimensional spaces, the user can directly interact
with the space while performing timbre transfer. Furthermore, although these models are trained to
transfer single instrumental notes, they still can be used to transfer a full melody recording between
timbre domains. To do so, the recording is split and iteratively reconstructed by transfering each
signal window to the target domain. Audio examples of applying this strategy to transfer a complete
instrumental solo are also available in the supporting webpage.

4.2 MANY-TO-MANY TRANSFER

Here, we evaluate the application of MoVE to perform many-to-many transfer. Given our new
architecture, this simply consists in training on multiple domains at once by modulating with the
appropriate domain information. This architecture allows us to train a single model for different
domains and thus to perform multi-domain translation. The conditioning vector is then composed
of the pitch, the octave and here the instrument of the corresponding example. This conditioning
vector is then processed by an embedding to ease the FILM conditioning. Results are presented in
Table 2 : we can see that the MoVE architecture is able to reconstruct and transfer multiple domains
at the same time at the cost of a slight decrease in performance, even in the case of diverse domains
(here Alto-Saxophone, Flute, Violin and French-Horn).

Table 2: Many-to-Many MoVE reconstruction & transfer scores

averaged reconstructions averaged transfers

RMSE LSD MMD
(� = 0.05)

k-NN
(k = 10)

MMD
(� = 0.05)

k-NN
(k = 10)

Alto-Saxophone 0.5327 835.67 2.117 e-2 42299 2.386 e-2 59157
Flute 0.4593 761.46 2.119 e-2 49719 1.975 e-2 57277

Violin 0.3271 773.65 5.659 e-3 58013 1.452 e-2 55379
French-Horn 0.6239 869.69 3.404 e-3 70946 2.086 e-2 51317

5 CONCLUSION

We introduced the Modulated Variational auto-Encoders (MoVE), which perform many-to-many
domain transfer within a single architecture and without adversarial training while providing high-
level control over the generation. We effectively adapted this technique to musical timbre transfer
and showed the successes of our method for audio synthesis. As our technique is generic, it could
be applied to other types of data such as image or video. The architecture itself opens up a range
of potential sonic applications such as playing style conditioning, transfers between acoustical and
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Many-to-Many MoVE reconstruction & transfer scores.

Conclusion

We introduced the Modulated Variational auto-Encoders (MoVE), which perform many-to-

many domain transfer within a single architecture and without adversarial training while

providing high-level control over the generation. We effectively adapted this technique to

musical timbre transfer and showed the successes of our method for audio synthesis. As

our technique is generic, it could be applied to other types of data such as image or video.

The architecture itself opens up a range of potential sonic applications such as playing style

conditioning, transfers between acoustical and electronic instruments, and even with non-

musical sound domains. Another avenue of research to be investigated is controlling the

amount of transfer performed by the model.
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5.2 Learning Representations of Timbre

Timbre representations by conditioning. Implicit timbre models such as those

presented in the field of domain translation treat timbre as a categorical class repre-

sented by distinct datasets across which we learn a generative mapping. While this

effectively assesses the task of unpaired conversion for input samples drawn from the

source distribution, it does not offer explicit controls on the sampling process of timbre

features besides the provided input data example and the categorical domain target. To

this extent, we carried experiments in learning generative latent timbre representations

which are invertible spaces of analysis and synthesis. One approach for controllable se-

mantic manipulations was proposed with the Fader Networks [156] which comprise an

auto-encoder and an adversarial latent regularizer to disentangle semantic controls in

the learned representation. As suggested by the name, we train specific dimensions to

account for specific attributes of the data which can be intuitively controlled as sliding

faders while sampling the remaining latent dimensions. This is achieved by training

a latent classifier at predicting attributes from the encoder output latent codes, while

the encoder competes at fooling the classifier discriminator. In this setting, the reg-

ularised features cannot account for the attributes and the decoder must use specific

conditioning dimensions to reconstruct semantically correct data.

We propose a musical note sampler with semantic controls over pitch, instrument

timbre and playing style as fader dimensions, using the annotations available in the SOL

database. We choose the Wasserstein Auto-Encoder (WAE) as baseline for learning a

latent representation of Mel-scaled magnitude spectrograms, which uses the MMD as

regularisation between the aggregated encoder posterior and the isotropic gaussian prior

distribution from which we perform ancestral sampling. This alternative of the VAE

with Kullback-Leibler divergence is expected to generate more accurate reconstructions

by allowing a flexible aggregated regularisation rather than minimising the sample-wise

divergence. Each note is down-sampled to 22050Hz, trimmed at the attack and trans-

formed into log-magnitude spectrograms with 128 frames (about 1.6 second duration)

and 500 Mel bins. The encoder output latent codes are adversarially trained at being

invariant to the fader attributes which are provided as conditioning dimensions to the

decoder via FiLM layers on its normalised hidden activations. To prevent checkerboard

artefacts of transposed convolutions, we apply up-sampling in the decoder with nearest-

neighbour interpolation followed by regular convolutions with unit stride. In the first
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place, we perform audio inversion using the Griffin-Lim algorithm which prevents from

fast rendering because of its iterative procedure. In the second place we pretrain a

Multi-head CNN (MCNN [9]) which is a feed-forward neural vocoder that generates

waveform in a single pass and use a larger database of musical notes as training data

for the inversion model (subset of the Vienna Symphonic Library 12). In this setting

we can pipeline the output samples from the WAE decoder to the MCNN and generate

audio in a single pass. However the model is not trained end-to-end to the waveform

and reconstruction errors of the decoder may compound with those of the MCNN, a

phenomenon which also happens with GLA approximate phase reconstruction.

In order to evaluate the accuracy of the conditioning on the generated output

samples, we pretrain data classifiers as references to predict the attribute targets, ei-

ther the note classes (semitone and octave) or the style classes (instrument or playing

style). We sample the prior of conditional WAEs with random attribute targets, de-

code and rate by classification, a high average accuracy means that the generated

samples corresponded to the correct semantic targets. We observe that the Fader reg-

ularisation leads to a more accurate conditioning by a large margin, although this

is traded-off with a decreased spectrogram reconstruction accuracy compared to the

WAE baseline and conditional WAEs without adversarial latent classification. We

also measure the correlation of the learned representation with respect to attribute

classes by MMD between latent encodings of each class. As expected the effect of

the Fader regularisation tends to produce a latent space with lower separation be-

tween class distributions which in turns leads to a more effective conditioning. Some

additional visualisations and audio samples are hosted on the dedicated online repos-

itory: https://github.com/acids-ircam/Expressive_WAE_FADER. This work was

submitted to the 22nd International Conference on Digital Audio Effects (DAFx-19)

and presented as an oral.

12https://www.vsl.co.at/en
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Assisted Sound Sample Generation with Musical

Conditioning in Adversarial Auto-Encoders

Adrien Bitton, Philippe Esling, Antoine Caillon & Martin Fouilleul

(original publishing template of DAFx 2019 available at

https://arxiv.org/abs/1904.06215)

Deep generative neural networks have thrived in the field of computer vision, enabling

unprecedented intelligent image processes. Yet the results in audio remain less advanced and

many applications are still to be investigated. Our project targets real-time sound synthesis

from a reduced set of high-level parameters, including semantic controls that can be adapted to

different sound libraries and specific tags. These generative variables should allow expressive

modulations of target musical qualities and continuously mix into new styles.

To this extent we train auto-encoders on an orchestral database of individual note samples,

along with their intrinsic attributes: note class, timbre domain (an instrument subset) and

extended playing techniques. We condition the decoder for explicit control over the rendered

note attributes and use latent adversarial training for learning expressive style parameters that

can ultimately be mixed. We evaluate both generative performances and correlations of the

attributes with the latent representation. Our ablation study demonstrates the effectiveness of

the musical conditioning.

The proposed model generates individual notes as magnitude spectrograms from any proba-

bilistic latent code samples (each latent point maps to a single note), with expressive control

of orchestral timbres and playing styles. Its training data subsets can directly be visualized

in the 3-dimensional latent representation. Waveform rendering can be done offline with the

Griffin-Lim algorithm. In order to allow real-time interactions, we fine-tune the decoder with

a pretrained magnitude spectrogram inversion network and embed the full waveform generation

pipeline in a plugin. Moreover the encoder could be used to process new input samples, after

manipulating their latent attribute representation, the decoder can generate sample variations

as an audio effect would. Our solution remains rather light-weight and fast to train, it can

directly be applied to other sound domains, including an user’s libraries with custom sound

tags that could be mapped to specific generative controls. As a result, it fosters creativity and

intuitive audio style experimentations.
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Introduction

Modern music production techniques rely on large and heterogeneous sound sample libraries

along with diverse digital instruments and effects. It opens to a great variety of sound de-

sign possibilities and limitless contents to compose with, however principled interactions and

scaled visualisations are still lacking in order to efficiently explore such potential and use it

to generate target sound qualities.

Unsupervised generative models learn an underlying data distribution solely based on the

observation of examples, in order to consistently generate novel content. They have been suc-

cessfully applied to complex computer vision tasks such as processing facial expressions, land-

scapes, visual styles and paintings. Some solutions to audio emerged more recently, including

pioneer musical systems such as NSynth (Neural Synthesizer [71]) for real-time high-quality

sound synthesis. However, the heavy model architecture and prohibitive training time restrict

its dissemination. The learned internal representation remains mostly uninformative and its

many generative parameters are still too little correlated to explicit semantic qualities.

In this paper, we develop a high-level sound synthesis system with meaningful data visual-

isations and explicit musical controls. It is a lighter non-autoregressive model that can be

trained fast on small datasets, including an user’s personal libraries. Our goal is to learn

expressive style variables from any sound tags, so that the model fosters creativity and assists

digital interactions in music production. Considering note samples of orchestral instruments,

we could for instance synthesise novel timbres or playing style hybrids.
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Figure 30: High-level note sample generation from the latent representation and musical con-
ditioning in the decoder with FiLM. Intermediate features are modulated by the note targets
and expressive style controls in order to synthesize new timbres and effects.

We train Wasserstein Auto-Encoders (WAEs [263][303]) on Mel- spectrogram magnitudes to
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organise a generative latent representation of individual note samples spanning the tessitura

of 12 orchestral instruments. The considered database has intrinsic attributes: note classes,

playing styles and timbres (each instrument subset), that we wish to control when generating

new notes from the latent space. Thus we extend the WAE model with musical condition-

ing in the decoder and Adaptive Instance Normalization (AdaIN [121]). Using Feature Wise

Linear Modulation (FiLM [204]) and adversarial training with a Fader latent discriminator

[156], our WAE-Fader model effectively learns these generative controls along with expressive

style variables that can be mixed continuously.

We evaluate these features in terms of generative performances and representation. We per-

form an ablation study and show that the model can sustain a good test reconstruction quality

while achieving an accurate attribute-conditional generation. The success of the method relies

on an attribute-free latent representation so that the decoder is pushed to learn the condition-

ing. These distributions can be visualized directly in the 3-dimensional latent space where

clusters denote an undesired attribute encoding. We measure it with inter-class statistics

and latent post-classification. The experiment validates correlations between low attribute

encoding and effective conditioning.

We obtain an expressive note sample generator with 3-dimensional representations of the

training sound domains, decoding probabilistic latent samples with explicit control over the

rendered note qualities. The learned style variables of the orchestra can ultimately be mixed

continuously, as faders do, in order to intuitively explore new musical effects. Generated spec-

trogram magnitudes can approximately be inverted to waveform with the Griffin-Lim iterative

algorithm (GLA [100]). Ultimately we fine-tune the decoder with a pretrained inversion net-

work [9] for real-time waveform synthesis. We embed the resulting generative system in a

plugin allowing for MIDI mapping, live exploration and Digital Audio Workstation (DAW)

integration.

State-of-art

Generative models and regularized auto-encoders. Generative models aim to

find the underlying probability distribution of the data p(x) based on a set of examples

in x ∈ Rdx . To do so, we consider latent variables defined in a lower-dimensional space

z ∈ Rdz (dz � dx), a higher-level representation that could have led to generate any given

example. The latent variable generative model is defined by the joint probability distribution

p(x, z) = p(x|z)p(z), where the prior p(z) is usually modelled with simpler distributions such

as Gaussian or uniform while a complex conditional distribution p(x|z) maps latent codes to

the data space. The model could be evaluated with the maximum marginal likelihood over
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the considered dataset. However for complex distributions that could model real-world data,

integration cannot be computed in closed form.

Regularized auto-encoders have been used to reformulate the problem as an optimization by

jointly learning the generative mapping pθ(x|z) ∈ G and an encoding distribution qφ(z|x) ∈ Q
from families G,Q of approximate densities both parameterized with neural networks. This

was initially proposed through Variational Inference in the Variational Auto-Encoder (VAE

[145]) that maximizes a lower bound of the data log-likelihood:

Eqφ(z|x)

[
log pθ(x|z)

]
−DKL

[
qφ(z|x) ‖ pθ(z)

]
≤ log pθ(x)

This amounts to optimizing the Evidence Lower Bound Objective (ELBO) that can be inter-

preted as follow, the first term is the Negative Log-Likelihood (NLL) data reconstruction cost

and the second is the Kullback-Leibler Divergence (KLD) that quantifies the error made by

using the approximate qφ(z|x) rather than the true pθ(z). This latent regularization pushes

the encoder to remain close to the prior latent density and can be weighted with a β parameter

that balances these two objectives.

LELBO
θ,φ = −Eqφ(z|x)

[
log pθ(x|z)

]
+ β ·DKL

[
qφ(z|x) ‖ pθ(z)

]

The VAE is implemented with a stochastic encoder that parameterises an isotropic Gaussian

latent distribution qφ(z|x)

∼ N (µφ(x), σφ(x)) regularized against an unit variance prior. These assumptions allow an-

alytical KLD computation and differentiable latent sampling for direct optimization of the

ELBO.

The KLD forces each individual latent code to resemble the prior, which implicitly matches

the whole encoded distribution. However a fitted ELBO value does not always result in an

effective inference. Since the latent codes of different inputs are individually regularized, the

KLD may prevent the encoder from learning any useful features (posterior collapse [302])

while the decoder only produces pθ(x) regardless of the encoded information. Other conflict-

ing solutions of the ELBO lead to undesired solutions and known limitations of VAEs such as

blurriness of generated samples or uninformative latent dimensions ([296]).

With justifications stemming both from Likelihood-free Optimization (InfoVAE [303]) and the

theory of Optimal Transport (WAE [263]), a more general framework for training regularized

auto-encoders was recently proposed and that we call Wasserstein Auto-Encoders (WAEs).

Considering a deterministic decoder Gθ : z → x and any family of conditional encoder dis-

tribution Qφ(z|x) ∈ Q, it is sufficient that the marginal QZ(z) := EX
[
Q(z|x)

]
matches any

prior PZ . In comparisons with VAEs, WAEs can optimize any non-negative cost function C

and any divergence measure DZ between latent distributions, without requiring a stochastic
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encoder nor restricting the latent model to Gaussian prior:

LWAE := inf
Q(z|x)∈Q

EXEQ(z|x)

[
C(x, G(z))

]
+ β ·DZ(QZ(z), PZ)

Thus we set our experiment in the more flexible WAE framework. These regularized auto-

encoders are powerful unsupervised representation learning models, rather light-weight and

fast to train, performing both inference (encoder) and generation (decoder). They are effective

on small datasets (hundreds of training examples), learning a structured latent representation

with disentangling capacities encouraged when β > 1. Once trained, probabilistic samples of

the latent prior are consistently decoded into new samples and latent interpolations map to

smooth data variations.

Maximum Mean Discrepancy Regularization. As shown for VAEs, the choice of

latent divergence heavily impacts the resulting model performances. Since the point-wise KLD

has strong intrinsic limitations, a more flexible regularization is required for WAEs. Such

differentiable divergence on latent distributions was developed in the Reproducing Kernel

Hilbert Space (RKHS) as a distance between probabilistic moments µp,q computed with a

non-parametric kernel k:

||µp − µq||2H = 〈µp − µq, µp − µq〉 = Ep,pk(x, x′) + Eq,qk(y, y′)− 2Ep,qk(x, y)

It defines the Maximum Mean Discrepancy (MMD [97]) between two distributions x ∼ p(x)

and y ∼ q(y), where Ep,q is the expectation that can be evaluated with the Radial Basic

Function (RBF) kernel of free parameter Σ:

k(RBF)(x, y) = exp

( ||x− y||2
−2Σ2

)

To the extent of latent regularization, MMD can be computed between every deterministic

mini-batch encoding zencoder = Q(x) and random samples from any latent prior zprior ∼ PZ .

Throughout the model optimization, MMD is thus matching the aggregated encoder posterior

to the prior rather than regularizing each latent point individually. In comparisons with

KLD, WAE-MMD allows for less constrained inference and richer latent representations. For

instance, increasing β to two orders of magnitude above the reconstruction cost does not

impede the decoder training. Since the WAE objective does not optimize the bounded NLL,

the overall generative performances can be improved.

Other kernel functions can be used, which may be more discriminating at the expense of

heavier computations. Alternatively to MMD, the WAE-GAN uses an adversarial latent
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discriminator to assess the divergence, thus optimizing a parametric function that could match

even closer the encoder to the prior. However, since we consider a low-dimensional latent

space of only 3 dimensions and remain with a simple isotropic Gaussian prior, MMD-RBF is

sufficient yet light and stable to train on.

Conditioning and feature normalizations. Regularization in auto-encoders encour-

ages disentanglement of independent generative factors onto separate latent dimensions that

would in turn control the corresponding decoded data variations. However this is only partly

achieved on toy datasets (β-VAE [111]) and in most cases the unsupervised latent dimensions

are hardly related to explicit generative parameters. An additional supervision signal may be

applied to the generative neural network in order to control and render specific attributes of

the data. Thus we consider observations x paired with attribute annotations y, and condition

the decoder as G : {z,y} → x.

The simplest conditioning for categorical attributes is to encode them into one-hot vectors

that are concatenated to the latent codes before being processed by the decoder. However

more advanced conditioning techniques have been developed as for visual style transfer, using

full images as conditions (conditional style transfer [90]). In the Feature-wise Linear Modu-

lation (FiLM [204]) approach, a separate generator learns a mapping from any style inputs

to adaptive biases βFiLM(y) and scales γFiLM(y) applied to the conditional network compu-

tations. This modulation may be placed anywhere within the architecture and proved to be

particularly suited to Adaptive Instance Normalization (AdaIN [121]). Considering the l-th

hidden layer output activations hl = gl(hl−1) of a generative neural network, the conditional

modulation is thus be computed as:

AdaIN(hl,y) = γlFiLM(y)

[
hl − µ(hl)

σ(hl)

]
+ βlFiLM(y)

in which mean and standard deviation {µ,σ} are computed across features, independently for

each channel and each sample. In the context of style transfer, it can be interpreted as aligning

the mean and variance of the content features with those of the style condition. It is a versatile

conditioning technique, requiring little additional computations (particularly when applied

channel-wise in convolution layers). It also suits well to handling multiple conditions that

may more efficiently be mapped throughout the network rather than arbitrarily concatenated

to the input. Thus we will use FiLM and AdaIN for conditioning the decoder on both note and

style classes. However, such normalization is not suited to classification tasks since content

features are individually normalized. In order to preserve its inference power, we will use

Batch Normalization (BN) on the encoder’s hidden activations.
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Adversarial latent training. Adversarial regularization was proposed as an alternative

to MMD in the WAE-GAN. For simple low-dimensional latent distributions, the expense of

an additional parametric adversarial regularizer is not required. Nonetheless, adversarial la-

tent training remains relevant for expressive conditioning. As detailed in the previous section,

adaptive conditioning techniques paired with specific feature normalizations substantially im-

proved feed-forward style transfer. However, in an auto-encoder setting, if the latent space

implicitly encodes the attributes of interest, the decoder bypasses the conditioning and does

not learn any effective generative controls. This problem was tackled in image generation

with the introduction of an adversarial Fader latent discriminator F (Fader Networks [156])

that competes with the non-conditional encoder in order to prevent correlations between at-

tributes and latent distributions. As for the conditional models, we consider annotated data

samples {x,y} and for simplicity, a categorical one-hot representation y ∈ {0, 1}n with a

single yi = 1 and its opposite ȳ := 1n − y. Such attribute-free latent representation is im-

plemented in two separate optimization steps, first latent classification of the true attribute

F : z → ŷ ∼ pψ(y|Q(x)), then adversarial confusion of the latent classifier at predicting the

opposite:

Lclass.(ψ|φ) = −
∑

x,y

log(pψ(y|Q(x)))

Ladv.(φ|ψ) = −
∑

x,y

log(pψ(ȳ|Q(x)))

As the encoder is pushed to remain invariant to attributes, the decoder is forced to learn the

conditioning in order to reconstruct every input samples along with their source attributes.

Thus it replaces adversarial training in the high-dimensional pixel space with latent attribute

confusion in the low-dimensional latent space in order to efficiently learn style transfer vari-

ables. Applied to facial expressions, these Fader variables can continuously modulate complex

visual features such as gender (female↔ male) or age (younger↔ older). Moreover, in mixing

several attributes, one could generate new style qualities.

Audio synthesis. Neural networks can be trained on spectrogram magnitudes (and other

spectral features) for audio analysis purpose. It eases the subsequent modelling task, often

involving pattern detection, from a pre-processed structured sound representation. However,

for generative purpose, an inversion from magnitude to waveform is required since the complex

phase information was discarded. It is commonly done offline with GLA [100]. Further ad-

vances in generative neural networks for audio have targeted raw waveform modelling through

specific architecture design. Wavenet [268][71] is amongst them the most popular solution.

It uses several stacks of dilated causal convolutions in order to aggregate multiple temporal
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granularities and structure long-term dependencies, which is challenging at the high audio

sample rate. The output is a single auto-regressive sample prediction given all the previous

sample context p(xt|x1..xt−1). It results in high-quality real-time audio synthesis. However

this sample level modelling requires long training times, heavy architectures that offer little

knowledge over their learned features.

The Multi-head Convolutional Neural Network (MCNN [9]), a recent alternative for audio

waveform modelling, was designed as a feed-forward real-time magnitude spectrogram inver-

sion system that is not restricted to linear frequency scale. It proved to outperform GLA

quality for speech. The use of differentiable GPU-based STFT computations enables a faster

optimization onto spectral losses, rather than auto-regressive sample predictions:

x
|STFT|−−−−→ |S| MCNN−−−−→ x̂

STFT−−−→ Ŝ =⇒ LMCNN(S, Ŝ)

LMCNN = λ0 · LSC + λ1 · LlogSC + λ2 · LIF + λ3 · LWP

where |S| can be any spectrogram magnitude (including Mel-scaled frequencies). The model is

well tailored to audio with multiple heads of 1-dimensional temporal up-sample convolutions.

These heads focus on different spectral components and sum into waveform. It remains

light-weight and could be adapted in an end-to-end waveform auto-encoder. Four objectives

were originally proposed, using the complex STFT for the Instantaneous Frequency (IF) and

Weighted Phase (WP) losses, that we could not optimize successfully. Hence we will only use

the Spectral Convergence (SC) and log-scale magnitude (logSC) losses:

LSC(S, Ŝ) = ‖|S| − |Ŝ|‖F /‖|S|‖F with ‖.‖F the Frobenius norm

LlogSC(S, Ŝ) = ‖ log(|S|+ ε)− log(|Ŝ|+ ε)‖1

Method

Our experiment begins with the WAE-MMD, isotropic unit variance Gaussian prior zprior ∼
N (0, 1), RBF kernel and BN in both encoder and decoder in order to structure a 3-dimensional

generative latent sound representation. Given a magnitude spectrogram |S| and a correspond-

ing set of annotated attributes y, we are learning Q : |S| → z and G : z → |Ŝ| such as

|S| ≈ |Ŝ| = G(Q(|S|)) with Binary Cross-Entropy (BCE) reconstruction cost:

LWAE = BCE(|S|, |Ŝ|) + β ·MMDRBF(z, zprior)

BCE(x, x̂) = −
[
x log x̂+ (1− x) log(1− x̂)

]
; |x| < 1
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Figure 31: How information flows in the adversarial optimization of the WAE-Fader

We can sample random codes from the latent prior and consistently decode new magnitude

samples, however there is no control on the output features. For the orchestra, we consider

y = {ynote,ystyle} with ynote = {semitone, octave}. We define the timbre attribute as the

class of an instrument subset, which comprises the Ordinario mode as well as diverse extended

playing techniques such as Staccato, Flatterzunge or Pizzicato. When considering a single

subset, we thus aim at controlling the playing techniques of the considered instrument as

ystyle. When considering multiple instruments, instead we aim at controlling the different

timbres, either in Ordinario or with mixed playing styles within each instrument subset.

For explicit controls over the rendered attributes, we condition the decoder as G : {z,y} →
|Ŝ| using AdaIN. An additional FiLM generator is fed with concatenated one-hot vectors

of the three attribute classes (semitone, octave and style). It learns an adaptive mapping

to biases βFiLM(y) and scales γFiLM(y) that are used to modulate the normalized decoder

activations. In order to effectively learn the style conditioning and expressively modulate

timbres or playing techniques, we use adversarial training with a Fader latent discriminator

F : z → ŷstyle ∼ pclass.(ystyle|Q(|S|)) that competes with the non-conditional encoder in

classifying the considered styles from latent codes:

Lclass. = − log pclass.(ystyle|Q(|S|))
LWAE-Fader = LWAE − α · log pclass.(ȳstyle|Q(|S|))

with ȳstyle := 1−ystyle and α that weights the adversarial loss in the encoder. Classification is

optimized on the NLL with Softmax probilities. The resulting attribute confusion prevents the

latent space from implicitly encoding the style distributions, thus the decoder is forced to use

the conditioning to reconstruct the source features from the attribute-free code. Ultimately

these learned style variables can continuously be mixed, as actual faders do. We refer to this
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final model as WAE-Fader, that still uses MMD regularization. It allows for controlling the

strength of each rendered attribute and intuitively exploring hybrid sound effects from any

custom tags, here either chosen from extended playing techniques or from diverse orchestral

timbre domains.

The resulting generative system maps any latent coordinate z ∼ N (0, 1) ∈ R3 to target note

spectrograms with expressive musical style controls. Inversion from spectrogram magnitudes

to audio waveforms can be done offline with GLA. Alternatively, we pretrain a MCNN on a

larger corpus of musical note samples to allow real-time rendering. In order to improve the

final audio quality, we fine-tune the full generative model by freezing the encoder parameters

and jointly optimizing the learned decoder with the pretrained MCNN as:

x
STFT−−−→ S

|Mels|−−−→ |S| Q−→ z
G◦MCNN−−−−−−→ x̂

STFT−−−→ Ŝ =⇒ LMCNN(S, Ŝ)

This waveform pipeline {G ◦ MCNN} is embed in a plugin for live interactions and DAW

integration. Using a MIDI interface, we can for instance trigger target note classes ynote with

keys and map the continuous generative parameters to faders. These are the latent dimensions

z, that can also be randomly sampled, and most interestingly the adversarially learned style

variables ystyle that can be mixed to explore new sound effects.

Experiment

Dataset. We use the Studio-On-Line (SOL [12]) library of around 15000 individual note

samples, across the tessitura of 12 orchestral instruments grouped in 4 families and with many

extended playing techniques, that may be specific or shared across instrument families. These

are Wind (Alto-Saxophone, Bassoon, Clarinet, Flute, Oboe), Brass (English-Horn, French-

Horn, Tenor-Trombone, Trumpet), String (Cello, Violin) and Keyboard (Piano). Notes are

consistently tagged with the intrinsic attributes of the dataset: note classes (12 semitones

across 9 octaves), several dynamics and playing styles of every instrument. We define two

style experiments for the orchestra. If training on a single instrument, we aim for expressive

synthesis of its playing styles. If training on multiple instruments, we aim for timbre control.

Each instrument subset defines a timbre domain, either in Ordinario (its common mode) or

with all styles mixed.

Audio files are down-sampled to 22050Hz and pre-processed into Mel-spectrograms with a

FFT size of 2048, hop size of 256 and 500 bins ranging the full spectrum. As we consider

a generator of individual notes, we set a common audio length of 34560 samples (∼1.6s)

from the attack which amounts to 128 STFT frames. We choose this duration as a trade-off

between input and latent dimensionality, limiting the amount of silence after shorter playing
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modes (eg. Pizzicato) while keeping some sustain for longer notes (from which some sustain

and decay may have been cropped). Magnitudes are floored to 1e-3 and log-scaled in [0,1]

according to the BCE range. Each playing style subset of each instrument is split into 80%

training, 10% validation and 10% test notes. In average each instrument has 10 playing styles

and 100 to 200 notes for each.

Implementation details. Architecture of the WAE-Fader: Our experiments have

been implemented in the PyTorch environment and our codes will be shared with this de-

pendency. All convolution layers use 2-d. square kernels, an input zero-padding of half the

kernel size and are followed by 2-dimensional feature normalization. All fully-connected linear

layers are followed by 1-dimensional feature normalization. The non-linear activation used

after every normalization is CELU. The deterministic encoder has 5 convolution layers with

[12, 24, 48, 96, 128] output channels, kernel size 5 and stride 2, that down-sample the input

spectrograms into 128 output maps that are flattened into an intermediate feature vector of

size 8192. It is followed with a bottleneck of 3 linear layers of output sizes [1024, 512, 3]

mapping to the latent space. For input Mel-spectrograms of size (500,128), it amounts to

a dimensionality reduction of more that 5 orders of magnitude. All normalizations are BN.

The decoder mirrors this structure with 3 linear layers of output sizes [512, 1024, 8192]. This

vector is then reshaped into 128 maps. To avoid the known checkerboard artifacts [193] of

the transposed convolution, we use nearest neighbor up-sampling followed with convolution

of stride 1. These maps are processed with 4 up-sampling of ratios 3, the last one directly

mapping to the input dimensionality of (500,128), and 5 convolutions with [96, 48, 24, 12, 1]

output channels and kernel sizes [5, 5, 7, 9, 7]. All normalizations are AdaIN and the decoder

output activation is sigmoid, bounded in [0,1] according to the BCE range. The FiLM con-

ditioning is applied feature-wise at the output of the first two linear layers and channel-wise

after. It amounts to 3688 modulation weights computed by an additional FiLM generator

of 3 linear layers of output sizes [512, 1024, 3688]. Its output is split into biases and scales

of sizes [512, 1024, 128, 96, 48, 24, 12]. The Fader latent discriminator has 3 linear layers

of output sizes [1024, 1024, nstyle] with LeakyReLU activations and a dropout ratio of 0.3,

mapping latent codes to probabilities of the nstyle classes.

Training parameters: We train our models with the Adam optimizer, an initial learn-

ing rate of 5e-4 and a batch size of 90. All model weights are initialized with Xavier uniform

distribution. Depending on the considered data subset size, between 200 and 800 epochs are

needed. A single instrument (1000-1500 notes) can be modelled in less than 2 hours on one

NVIDIA TITAN Xp GPU. Training over all instruments and styles at once (around 11000
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Figure 32: The Fader latent discriminator tries to infer the true style attribute while the
encoder adversarially aims at fooling it. It encourages attribute invariance in the latent rep-
resentation and learning of continuous generative controls in the decoder.

notes) takes less than 12 hours. In the first part of the training (30 to 100 epochs), we only

optimize the reconstruction and classification objectives. Then we gradually introduce the

MMD regularization (β-warmup) and the adversarial feedback in the encoder (α-warmup)

until the first half of training epochs. The rest of the training jointly optimizes all training

objectives at their target strengths β = 40 and α = 4. These value were estimated in order

to approximately balance the gradient magnitudes back-propagated by each loss. However,

for the baseline WAE-MMD models we warmup β to 500 since it does not prevent from op-

timizing the reconstruction cost.

Signal reconstruction: The above described model trains on inputs with 128 frames of

Mel-spectrogram, which amount to 34560 waveform samples according to our STFT set-

tings. The generated Mel-magnitudes can be approximated back to the linear frequency scale

and iteratively inverted with GLA for 100 to 300 iterations. To allow real-time rendering

and a possibly improved audio quality, we reproduce the original MCNN architecture for

Mel-spectrogram magnitudes inversion. We use 8 heads, λ0 = 1 and λ1 = 6. We could not

successfully optimize the complex losses, however, we compute these magnitude losses on both

the linear and Mel frequency scales. We pretrain this model on a larger dataset of around 50

hours audio comprising SOL and subsets of the Vienna Symphonic Library (VSL). Ultimately,

we fine-tune the trained decoder with this pretrained MCNN. To do so, we freeze the encoder

weights and optimize G◦MCNN on the model train set. The auto-encoder pair G,Q maps to

Mel-spectrogram magnitudes |S| which are inverted to signals by the MCNN. However, the
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loss computation LMCNN(S, Ŝ) is not necessarily restricted to this frequency scale. Thus we

evaluate and sum LSC LlogSC on both linear and Mel frequency scaled magnitudes.

classified attribute (nstyle) train set validation test

Semitone (12) 1.00 0.99 0.99
Octave (9) 1.00 0.99 1.00

Ordinario timbres (12) 1.00 1.00 1.00
Extended timbres (12) 1.00 1.00 1.00

Violin playing styles (10) 1.00 0.97 0.95
Clarinet playing styles (10) 1.00 0.96 0.94
Piano playing styles (10) 1.00 0.92 0.95

Trumpet playing styles (10) 1.00 0.92 0.94
Alto-Saxophone pl. styles (10) 1.00 0.98 1.00
Tenor-Trombone pl. styles (11) 1.00 0.90 0.90

Reference F1-scores of the pretrained data classifiers used for the evaluation of conditional
note generations

Evaluations. Generative performances: First, we evaluate the ability of our models to

produce accurate spectrograms by computing the reconstruction scores on the test set with

Root-Mean Squared Error (RMSE) and Log-Spectral Distance LSD =
√∑[

10 log10(|S|/|Ŝ|)
]2

.

Regarding the conditioning aspects, we first pretrain data classifiers to reliably discriminate

the different attribute classes and report their performances. These classifiers share the same

architecture as the encoder but map to the nstyle classes of interest. We use them as references

to evaluate the effectiveness of the conditioning. Then, we sample an evaluation batch of 1000

random latent points from the prior, along with random semitone and octave targets. This

evaluation batch is decoded to each attribute of the model (either playing styles or timbres)

and classified with the corresponding reference classifier. A high accuracy means an effective

conditioning for the task of musical note generation. We report the average accuracy for all

the target conditions, with random octaves both in [0-8] (full orchestral range) or in [3-4]

where models train on the overlap of every instrument tessitura.

Latent space structure: The effectiveness of the conditioning relies on learning an attribute-

free latent representation of the data. If the attribute distributions are clustered, the decoder

may learn their correlations with latent dimensions and bypass the conditioning signal. This

phenomenon is alleviated with adversarial training of the non-conditional encoder against a

Fader latent discriminator. As we map to 3-dimensional spaces, we can directly visualize this

latent organization. We also propose two evaluations of the attribute representations. First,
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model test rec. note cond. acc. style cond. acc.
MSE LSD st.34 oct.34 st.08 oct.08 style34 style08

Violin playing styles (nstyle=10) 1475 training note samples
WAE-MMD 0.76 68.2 NA NA NA NA NA NA
WAE-note 0.69 55.4 0.73 0.72 0.47 0.43 NA NA
WAE-style 0.74 59.6 0.47 0.39 0.30 0.22 0.20 0.17
WAE-Fader 0.80 91.1 0.96 0.77 0.97 0.48 0.88 0.93

Ordinario timbres (nstyle=12) 1784 training note samples
WAE-MMD 1.04 88.3 NA NA NA NA NA NA
WAE-note 0.84 71.6 0.99 0.96 0.62 0.53 NA NA
WAE-style 0.80 65.7 0.64 0.58 0.30 0.24 0.33 0.19
WAE-Fader 1.01 105 1.00 1.00 0.94 0.68 0.95 0.70

Extended timbres (nstyle=12) ¿11000 training note samples
WAE-MMD 0.93 175 NA NA NA NA NA NA
WAE-note 0.69 173 0.99 0.98 0.72 0.64 NA NA
WAE-style 0.65 172 0.84 0.83 0.44 0.39 0.61 0.34
WAE-Fader 1.32 182 1.00 1.00 0.90 0.71 0.95 0.64

The ablation study confirms the effectiveness of the WAE-Fader conditioning, both on target
notes and playing styles or timbres. The conditional latent sampling is either performed with
random octaves in [3,4] (the overlap of every tessitura) and [0-8] (the full orchestra range),
we report the accuracy of the conditioning with respect to the targets note34,08 (st. is semitone
classe and oct. is octave classe) and style34,08.

we compute the average inter-class latent statistics with MMD. In this case, low values mean

that the attribute distributions blend in the final representation. Second, we also perform

a post-classification task by training classifiers at predicting the attributes from the learned

latent representation. These models use the same architecture as the Fader discriminator, and

we report their final accuracy. In this case, low scores mean that the latent representation

did not encode the attributes.

Results

Ablation study. We defined both generative and representation evaluations to assess

the effectiveness of our proposed musical conditioning. To study the benefits and compro-

mises of each model feature, we train the base WAE-MMD and compare it with ablations

of the WAE-Fader. The incremental model comparisons are WAE-MMD (no conditioning),

WAE-note (semitone and octave conditioning), WAE-style (note and style conditioning) and
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WAE-Fader. In order to simplify the notation, we do not specify the MMD but this regular-

ization is used for all models. We performed this ablation study on the violin subset that has

the following annotated playing styles: Ordinario, Sustained, Short, Non-vibrato, Staccato,

Pizzicato-secco, Medium-vibrato-short, Tremolo, Medium-vibrato-sustained and Pizzicato-l-

vib. We also compare the WAE-Fader on instrument timbres, either in ordinario or for all

extended techniques mixed per instrument subset. It confirms the effectiveness of the expres-

sive conditioning when the attribute-invariance assumption is achieved.

As we can see, conditioning WAE-note on the semitone and octave classes shows that the

WAE-MMD model can partly learn the note controls with FiLM conditioning. Accordingly,

the latent space structure does not exhibit strong correlations with the note classes anymore

but with the style attributes that become the main unsupervised data feature. We also notice

that this additional supervision improves the reconstruction quality. However, when adding

the style conditioning in WAE-style, it seems that most performances drop. Indeed, the over-

all conditioning becomes little effective, both for the target note and style conditions. The

final results show that the adversarial latent training enables the WAE-Fader model to effec-

tively learn the complete conditioning, at the expense of a possible drop in its reconstruction

accuracy.

It also seems that the task of modelling the playing styles when learning on a single instru-

ment is more challenging than changing the timbres across multiple instruments. This can be

seen in the lower performance of the WAE-style model applied to the violin. This may also

be explained by the reduced size of the training data when the learning is restricted to single

instrument subsets. These observations are supported by the resulting audio outputs of the

conditional note generations. Indeed, it appears that meaningful and expressive variations

when switching to any attribute conditions are only achieved with our proposed WAE-Fader

model. This is successful for conditioning applied on both timbre attributes or playing styles.

Expressive note sample generations. In this section, we report additional exper-

iments on the WAE-Fader models when conditioned on the playing styles of different in-

struments and families. Our model seems to train successfully on playing styles in every

instrument families, as well as across the 12 instrument timbres of the orchestra as shown

in the previous ablation study. This amounts to a great variety of sound qualities spanning

extended modes of the orchestra, and let us hypothesize that the model could be applied to

other sound domains as long as the tags are consistent with the data. Furthermore, the style

variables learned with the Fader latent discriminator are continuous independent controls

that can be mixed. Hence, this can allow our system to modulate the strength of rendered
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model inter-class MMD post-class. acc.
st. oct. style st. oct. style

Violin playing styles (nstyle=10) 1475 training note samples
WAE-MMD 0.25 0.26 0.30 0.92 0.94 0.56
WAE-note 0.03 0.10 0.50 0.04 0.49 0.82
WAE-style 0.12 0.16 0.35 0.25 0.55 0.59
WAE-Fader 0.02 0.01 0.46 0.08 0.34 0.64

Ordinario timbres (nstyle=12) 1784 training note samples
WAE-MMD 0.12 0.38 0.28 0.75 0.87 0.59
WAE-note 0.02 0.28 0.51 0.33 0.57 0.83
WAE-style 0.04 0.40 0.35 0.13 0.60 0.63
WAE-Fader 0.33 0.08 0.03 0.17 0.25 0.23

Extended timbres (nstyle=12) ¿11000 training note samples
WAE-MMD 0.02 0.41 0.12 0.71 0.89 0.48
WAE-note 5e-3 0.30 0.22 0.07 0.49 0.71
WAE-style 4e-3 0.32 0.18 0.07 0.56 0.55
WAE-Fader 3e-3 0.20 0.11 0.11 0.46 0.43

The ablation study allows to monitor the latent organization in the different models and
throughout their training. We use both inter-class statistics and latent post-classification to
estimate the final attribute invariance in the learned representation.

styles and create new effects by combining multiple attributes. Our model can also be used

for sample modifications, akin to traditional audio effects, by encoding a given sample and

manipulating the attribute conditions in order to decode different sample transformations.

Audio outputs and plugin development. As discussed previously, our proposed mod-

els can generate magnitude spectrograms, while controling their expressive qualities. These

spectrograms can be either inverted to waveform offline with GLA or real-time if paired with

MCNN. When fine-tuning the learned decoders with the pretrained MCNN on magnitude

losses, we obtain a quality almost equivalent to the GLA approximation. We provide audio

examples of test set reconstructions and conditional note generations inverted with both GLA

and MCNN for individual listening evaluation on the companion webpage. While the audio

quality of these results can still be improved, we can already confirm the ability of the model

to provide semantic controls. As the learned style variables of WAE-Fader can be mixed con-

tinuously, we also provide some sound examples that were generated when modifying multiple

orchestral attributes.

Our proposal provides intuitive sound synthesis of target sound qualities with learned style
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TSNE → 2D
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epoch 24 epoch 674

Figure 33: Latent organization as the WAE-Fader model trains on the ordinario timbres, each
instrument domain being represented by a separate color. In A, at epoch 24, the encoder does
not optimize the adversarial loss yet. Its unsupervised representation exhibits the attribute
classes. In B, at epoch 674, the α-warmup is finished and the adversarial latent training
had blended the attribute distributions. The 2-dimensional projections are performed with
t-Distributed Stochastic Neighbor Embedding (TSNE).

model test rec. note cond. acc. style cond. acc. inter-class MMD post-class. acc.
MSE LSD st.34 oct.34 st.08 oct.08 style34 style08 st. oct. style st. oct. style

Clarinet 0.87 116 0.96 0.99 0.98 0.45 0.97 0.92 0.05 0.58 0.12 0.15 0.76 0.41
Piano 0.99 113 0.53 0.91 0.47 0.72 0.72 0.64 0.03 0.03 0.08 0.16 0.20 0.43

Trumpet 0.90 107 0.91 0.93 0.96 0.37 0.90 0.87 0.60 0.11 0.02 0.42 0.50 0.29
Alto-Sax. 1.22 131 0.96 0.99 0.98 0.40 0.76 0.71 0.14 0.09 0.50 0.08 0.48 0.48

T. Trombone 0.96 100 1.00 1.00 0.92 0.41 0.83 0.77 0.04 0.14 0.34 0.06 0.55 0.47

Additional WAE-Fader results on the playing techniques of instruments in other orchestral
families

variables that can be modulated and combined. The unsupervised latent dimensions organize

remaining data features, which can be directly visualized in a 3-d. space, in order to perform

sampling or explicit control. These features allow to generate timbres, playing styles and hy-

brid effects across multiple attribute combinations through intuitive interactions. We provide

a real-time implementation of our models by relying on the fine-tuned {G ◦MCNN} genera-

tion. This implementation relies on the LibTorch C++ API, which converts trained PyTorch

models, that we further embed in a PureData external. This plugin can be mapped to a MIDI

controller or integrated in a DAW for composition and musical performance. This allows to

play notes with a keyboard, while using continuous faders to control latent coordinates and

mix style conditions.
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Conclusion

We developed an expressive musical conditioning of the Wasserstein Auto-Encoders able to

model a collection of orchestral note samples. The model learns effective target semitone

and octave controls as well as continuous style variables. We considered extended playing

techniques and timbre subsets as attributes, and used adversarial latent training to encourage

an attribute-invariant representation in the WAE-Fader. Our ablation study validates the

effectiveness of style conditioning when this invariance condition is obtained.

We fine-tuned the decoders with a Mel magnitude spectrogram inversion network that allows

real-time waveform rendering and are currently working on refining the audio quality. This

results in a note sample generator with meaningful data visualizations and intuitive controls

of audio styles. These parameters can be mixed, as faders, in order to explore hybrid sound ef-

fects. Our final generative model is embed in a plugin for MIDI mapping and live interactions.

This system provides assisted music production and fosters creative sound experimentations.

We provide sound examples from our orchestral models, either inverted offline with GLA or

with the fine-tuned waveform generation pipeline. These sounds allow for subjective evalua-

tion of both semantic and audio qualities of our solution.

Although we used clearly defined metadata attributes pertaining to instrumental playing

styles, the model can potentially be applied to any sound domain. For instance, a user li-

brary with custom tags could be mapped to sound synthesis parameters. Furthermore, as

the architecture is rather light and scales to small datasets, it could be trained on user li-

braries. Future experiments will target the quality of the waveform modelling systems for

variable note lengths and real-time synthesis. Ultimately, our models could be implemented

as a standalone instrument with physical controls that can be mapped to pretrained style

variables. This would allow an intuitive and creative exploration across a vast amount of

sound variations with a reduced set of adaptive parameters.
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Hierarchical timbre representations. Building on the recent advances in raw

waveform modelling, the overlap-add synthesis approach with spectrogram reconstruc-

tion loss in SING [52] and the use of efficient DDSP [70] components, we propose a

hierarchical VAE model which learns representations of both local acoustic features

and longer temporal structure in an end-to-end architecture. We refer to this approach

as Neural Granular Sound Synthesis as we draw inspiration from concatenative granular

synthesizers such as [233] which we extend with probabilistic generative modelling. The

bottom level VAE learns a continuous grain latent space by auto-encoding individual

waveform windows of short fixed length (grains of about 90 milliseconds), whereas clas-

sical approaches to granular synthesis use hand-crafted audio descriptors to visualise

the acoustic relationships within a given audio grain library. The advantage of our ap-

proach is two-fold as it learns analysis dimensions from the data observations and that

these latent dimensions are continuously invertible, meaning that we can generate audio

grains and interpolations from any coordinate in the VAE prior rather than perform-

ing nearest neighbour look-up in the pre-recorded grain library. Distances in the grain

latent space reflect the degree of acoustic similarity between grains but do not account

for the temporal dependencies in natural sounds, for instance a series of grains which

result in the attack, decay and frequency modulations of instrument notes. To that end

we train an upper level recurrent VAE on ordered series of grains encoded in the bot-

tom latent space. This hierarchical model learns to embed the temporal relationships

of grain features as a single code in the upper latent space which can be sampled and

decoded into structured series of latent grain features. The resulting series of features

is then decoded into individual waveform grains that are assembled by overlap-add.

The model training is performed in two stages by first training the bottom VAE

in isolation to learn the acoustic representation of individual grains. Then we add the

recurrent VAE embedding that is trained along with the bottom VAE, resulting in

multiple training objectives jointly optimised during the second training phase:

L =

g∑

i=1

DKL
[
qφ(zi|xi) ‖ pθ(z)

]
+DKL

[
qφ(e|sz) ‖ pθ(e)

]

+
1

g

g∑

i=1

(zi − ẑi)
2 +

N∑

n=1

||ln(x)− ln(x̂)||1.
(63)

. Grain latent space regularisation: we apply the KLD between the bottom encoder
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posterior qφ(zi|xi) and the isotropic Gaussian prior pθ(z) over individual grains

xi. For a series of g grains, the bottom encoder outputs the corresponding series

of latent features sz = {z1, . . . , zg}.

. Temporal embedding regularisation: we apply the KLD between the recurrent

encoder posterior qφ(e|sz) and the isotropic Gaussian prior pθ(e) over fixed-length

ordered series of latent grain features. Here e is a single vector embedding for the

whole series of grain features.

. Reconstruction in the grain latent space: we apply the MSE distance between the

bottom encoder output sz and the recurrent decoder output ŝz series of latent

grain features.

. Audio reconstruction: we apply the multi-scale distance [280] between magnitude

spectrograms ln(.) which are computed for several STFT settings n ∈ [1, N ] by

increasing hop and window sizes (i.e. decreasing the temporal resolution while

increasing the frequency resolution). Here x̂ is the overlap-add output of the

bottom decoder provided with latent features ŝz and x is the input waveform

before slicing the grains xi.

Each waveform window is synthesised by spectral domain noise filtering such that the

bottom VAE decoder outputs coefficients of the subtractive synthesizer, a method that

we adapt from [70]. While the original DDSP filter module is used to generate the

stochastic residual component of the audio as short non-overlapping windows, our

module aims at jointly modelling both deterministic and stochastic components us-

ing a larger window size with 75% overlap for an increased spectral resolution and

smooth output audio. In addition, we train an output convolution for post-processing

of the generated audio similarly to [59]. We choose this approach for the flexibility

to model non-harmonic and unpitched sounds such as drum kits, to that end we run

experiments on several diverse datasets including SOL strings (sr=22050Hz), one-shots

in 8 drum classes (sr=16000Hz) and the 10 animal sound classes of the ESC-50 dataset

(sr=22050Hz). For datasets sampled at 22050Hz, we choose a window size of 2048 and

a sample duration of about 1.6 second (overlap-add of 65 grains). For datasets sampled

at 16000Hz, we choose a window size of 1024 and a sample duration of one second (the

trimmed one-shot length).
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We evaluate several variations of the model, the baselines use a waveform decoder

with either 1-dimensional transposed convolutions or nearest-neighbour interpolation

followed by regular unit stride convolutions. We compare the baselines reconstruc-

tion accuracy against the decoder with subtractive noise filtering and with the added

post-processing module. We observe that the DDSP-inspired decoders consistently

outperform regular convolution based decoders while training about 6 times faster and

sampling one second of audio in around 25 milliseconds. Based on our best performing

model with subtractive noise filtering and learned post-processing output convolution,

we propose several interactions for neural audio synthesis. In the first place, we can

generate variable-length audio as continuous interpolations in the grain latent space

of the bottom VAE. This resembles some of the usual techniques of granular sound

synthesis and generates smooth acoustic textures (no specific temporal structure), with

the benefit of a continuously invertible grain space from which we can freely sample at

any position and step size along the user-specified latent trajectories. One such exam-

ple is to use looped trajectories (e.g. circle on a n-sphere or forward-backward along a

vector) which give a sense of motion to the synthesised audio and that can be repeated

seamlessly. In the second place, we take advantage of the learned temporal embed-

ding to sample grain series with conditioning on either note classes or drum classes

which are decoded into fixed-length audio with spectro-temporal structures such as the

attack, decay and dynamic spectrum of one-shot drum samples. Moreover it allows

morphing audio samples by linear interpolation between temporal embedding vectors

eα = α ∗ e2 + (1− α) ∗ e1 ∀α ∈ [0, 1], for instance generating kick drums with varying

amounts of sustain.

As a demonstration prototype, we implement the drum class conditional model into

a neural drum machine with a multi-track step sequencer in MaxMSP13 and Python

OSC14. Some additional visualisations, audio samples and videos are hosted on the

dedicated online repository: https://adrienchaton.github.io/neural_granular_

synthesis/. This work was accepted to the International Computer Music Conference

(ICMC-2020), however due to the current pandemic the conference is re-scheduled in

2021 and should feature selected works from both years15.

13https://cycling74.com
14https://pypi.org/project/python-osc/
15http://icmc2021.org

141

https://adrienchaton.github.io/neural_granular_synthesis/
https://adrienchaton.github.io/neural_granular_synthesis/
https://cycling74.com
https://pypi.org/project/python-osc/
http://icmc2021.org


Neural Granular Sound Synthesis

Adrien Bitton, Philippe Esling & Tatsuya Harada

(original publishing template of ICMC 2020 available at

https://arxiv.org/abs/2008.01393)

Granular sound synthesis is a popular audio generation technique based on rearranging

sequences of small waveform windows. In order to control the synthesis, all grains in a given

corpus are analyzed through a set of acoustic descriptors. This provides a representation re-

flecting some form of local similarities across the grains. However, the quality of this grain

space is bound by that of the descriptors. Its traversal is not continuously invertible to signal

and does not render any structured temporality.

We demonstrate that generative neural networks can implement granular synthesis while al-

leviating most of its shortcomings. We efficiently replace its audio descriptor basis by a

probabilistic latent space learned with a Variational Auto-Encoder. A major advantage of

our proposal is that the resulting grain space is invertible, meaning that we can continuously

synthesize sound when traversing its dimensions. It also implies that original grains are not

stored for synthesis. To learn structured paths inside this latent space, we add a higher-level

temporal embedding trained on arranged grain sequences.

The model can be applied to many types of libraries, including pitched notes or unpitched drums

and environmental noises. We experiment with the common granular synthesis processes and

enable new ones.

Introduction

The process of generating musical audio has seen a continuous expansion since the advent

of digital systems. Audio synthesis methods relying on parametric models can be derived

from physical considerations, spectral analysis (sinusoids plus noise [238] models) or signal

processing operations (frequency modulation). Alternatively to those signal generation tech-

niques, samplers provide synthesis mechanisms by relying on stored waveforms and sets of

audio transformations. However, when tackling large audio sample libraries, these methods

cannot scale and are also unable to aggregate a model over the whole data. Therefore, they

cannot globally manipulate the audio features in the sound generation process. To this ex-

tent, corpus-based synthesis has been introduced by slicing sets of signals in shorter audio

segments, which can be rearranged into new waveforms through a selection algorithm.

An instance of corpus-based synthesis, named granular sound synthesis [224], uses short
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Figure 34: Left: A grain library is analysed and scattered (+) into the acoustic dimensions. A
target is defined, by analysing an other signal (o) or as a free trajectory, and matched to the
library through the acoustic descriptors. Subsequently, grains are selected and arranged into a
waveform. Right: The grain latent space can continuously synthesize waveform grains. Latent
features can be encoded from an input signal, sampled from a structured temporal embedding
or freely drawn. Explicit controls can be learned as target conditions for the decoder.

waveform windows of a fixed length. These units (called grains) usually have a size ranging

between 10 and 100 milliseconds. For a given corpus, the grains are extracted and can

be analyzed through audio descriptors [203] in order to facilitate their manipulation. Such

analysis space provides a representation that reflects some form of local similarities across

grains. The grain corpus is displayed as a cloud of points whose distances relate to some of their

acoustic relationships. By relying on this space, resynthesis can be done with concatenative

sound synthesis [234]. To a certain extent, this process can emulate the spectro-temporal

dynamics of a given signal. However, the perceptual quality of the audio similarities, assessed

through predefined sets of acoustic descriptors, is inherently biased by their design. These

only offer a limited consistency across many different sounds, within the corpus and with

respect to other targets. Furthermore, it should be noted that the synthesis process can only

use the original grains, precluding continuously invertible interpolations in this grain space.

To enhance the expressivity of granular synthesis, grain sequences should be drawn in

more flexible ways, by understanding the temporal dynamics of trajectories in the acoustic

descriptor space. However, current methods are only restricted to perform random or simple

hand-drawn paths. Traversals across the space map to grain series that are ordered according
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to the corresponding feature. However, given that the grain space from current approaches is

not invertible, these paths do not correspond to continuous audio synthesis, besides that of

each of the scattered original grains. This could be alleviated by having a denser grain space

(leading to smoother assembled waveform), but it would require a correspondingly increasing

amount of memory, quickly exceeding the gigabyte scale when considering nowadays sound

sample library sizes. In a real-time setting, this causes further limitations to consider in a

traditional granular synthesis space. As current methods only account for local relationships,

they cannot generate the structured temporal dynamics of musical notes or drum hits without

having a strong inductive bias, such as a target signal. Finally, the audio descriptors and the

slicing size of grains are critical parameters to choose for these methods. They model the

perceptual relationships across elements and set a trade-off: shorter grains allow for a denser

space and faster sound variations at the expense of a limited estimate of the spectral features

and the need to process larger series for a given signal duration.

In this paper, we show that we can address most of the aforementioned shortcomings by

drawing parallels between granular sound synthesis and probabilistic latent variable models.

We develop a new neural granular synthesis technique that refines granular synthesis and is

efficiently solved by generative neural networks. Through the repeated observation of grains,

our proposed technique adaptively and unsupervisedly learns analysis dimensions, structuring

a latent grain space, which is continuously invertible to signal domain. Such space embeds the

training dataset, which is no longer required in memory for generation. It allows to continu-

ously generate novel grains at any interpolated latent position. In a second step, this space

serves as basis for a higher-level temporal modeling, by training a sequential embedding over

contiguous series of grain features. As a result, we can sample latent paths with a consis-

tent temporal structure and moreover relieve some of the challenges to learn to generate raw

waveforms. Its architecture is suited to optimizing local spectro-temporal features that are

essential for audio quality, as well as longer-term dependencies that are efficiently extracted

from grain-level sequences rather than individual waveform samples. The trainable modules

used are well-grounded in digital signal processing (DSP), thus interpretable and efficient for

sound synthesis. By providing simple variations of the model, it can adapt to many audio

domains as well as different user interactions. With this motivation, we report several exper-

iments applying the creative potentials of granular synthesis to neural waveform modeling:

continuous free-synthesis with variable step size, one-shot sample generation with controllable

attributes, analysis/resynthesis for audio style transfer and high-level interpolation between

audio samples.
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State of the art

Generative neural networks. Generative models aim to understand a given set x ∈ Rdx

by modeling an underlying probability distribution p(x) of the data. To do so, we consider

latent variables defined in a lower-dimensional space z ∈ Rdz (dz � dx), as a higher-level

representation generating any given example. The complete model is defined by p(x, z) =

p(x|z)p(z). However, a real-world dataset follows a complex distribution that cannot be eval-

uated analytically. The idea of variational inference (VI) is to address this problem through

optimization by assuming a simpler distribution qφ(z|x) ∈ Q from a family of approximate

densities [145]. The goal of VI is to minimize differences between the approximated and real

distribution, by using their Kullback-Leibler (KL) divergence

q∗φ(z|x) = argmin
qφ(z|x)∈Q

DKL
[
qφ (z|x) ‖ pθ (z|x)

]
.

By developing this divergence and re-arranging terms (detailed development can be found in

[145]), we obtain

log p(x)−DKL
[
qφ(z|x) ‖ pθ(z|x)

]
= Ez

[
log p(x|z)

]
−DKL

[
qφ(z|x) ‖ pθ(z)

]
.

This formulation of the Variational Auto-Encoder (VAE) relies on an encoder qφ(z|x), which

aims at minimizing the distance to the unknown conditional latent distribution. Under this

assumption, the Evidence Lower Bound Objective (ELBO) is optimized by minimization of a

β weighted KL regularization over the latent distribution added to the reconstruction cost of

the decoder pθ(x|z)

Lθ,φ = −Eqφ(z)

[
log pθ(x|z)

]
︸ ︷︷ ︸

reconstruction

+β ∗ DKL
[
qφ(z|x) ‖ pθ(z)

]
︸ ︷︷ ︸

regularization

.

The second term of this loss requires to define a prior distribution over the latent space,

which for ease of sampling and back-propagation is chosen to be an isotropic gaussian of unit

variance pθ(z) = N (0, I). Accordingly, a forward pass of the VAE consists in encoding a given

data point qφ : x −→ {µ(x),σ(x)} to obtain a mean µ(x) and variance σ(x). These allow us

to obtain the latent z by sampling from the Gaussian, such that z ∼ N (µ(x),σ(x)).

The representation learned with a VAE has a smooth topology [111] since its encoder is

regularized on a continuous density and intrinsically supports sampling within its unsupervised

training process. Its latent dimensions can serve both for analysis when encoding new samples,

or as generative variables that can continuously be decoded back to the target data domain.
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Furthermore, it has been shown [72] that it could be successfully applied to audio generation.

Thus, it is the core of our neural model for granular synthesis of raw waveforms.

Neural waveform generation. Applications of generative neural networks to raw audio

data must face the challenge of modeling time series with very high sampling rates. Hence,

the models must account for both local features ensuring the generated audio quality, as well

as longer-term relationships (consistent over tens of thousands of samples) in order to form

meaningful signals. The first proposed approaches were based on auto-regressive models,

which exploit the causal nature of audio. Given the whole waveform x = {x1, . . . , xT }, these

models decompose the joint distribution into a product of conditional distributions. Hence,

each sample is generated conditionally on all previous ones

p(x) =
T∏

t=1

p(xt|x1, . . . , xt−1).

Amongst these models, WaveNet [268] has been established as the reference solution for high-

quality speech synthesis. It has also been successfully applied to musical audio with the

Nsynth dataset [71]. However, generating a signal in an auto-regressive manner is inherently

slow since it iterates one sample at a time. Moreover, a large convolutional structure is needed

in order to infer even a limited context of 100ms. This results in heavy models, only adapted

to large databases and requiring long training times.

Specifically for musical audio generation, the Symbol-to-Instrument Neural Generator

(SING) proposes an overlap-add convolutional architecture [52] on top of which a sequential

embedding S is trained on frame steps F1...f , by conditioning over instrument, pitch and

velocity classes (I,P,V). The model processes signal windows of 1024 points with a 75%

overlap, thus reducing the temporal dimension by 256 before the forward pass of the up-

sampling convolutional decoder D. Given an input signal with log-magnitude spectrogram

l(x) = log(ε+ |STFT[x]|2), the decoder outputs a reconstruction x̂, in order to optimize

argmin
D,S

||l(x)− l(x̂)||1

for x̂ = D(S(F, I,P,V)). This approach removes auto-regressive computation costs and offers

meaningful controls, while achieving high-quality synthesis. However, given its specific archi-

tecture, it does not generalize to generative tasks other than sampling individual instrumental

notes of fixed duration in pitched domains.

Recently, additional inductive biases arising from digital signal processing have allowed
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to specify tighter constraints on model definitions, leading to high sound quality with lower

training costs. In this spirit, the Neural Source-Filter (NSF) model [280] applies the idea

of Spectral Modeling Synthesis (SMS) [238] to speech synthesis. Its input module receives

acoustic features and computes conditioning information for the source and temporal filtering

modules. In order to render both voiced and unvoiced sounds, a sinusoidal and gaussian noise

excitations are fed into separate filter modules. Estimation of noisy and harmonic components

is further improved by relying on a multi-scale spectrogram reconstruction criterion.

Similar to NSF, but for pitched musical audio, the Differentiable Digital Signal Processing

[70] model has been proposed. Compared to NSF, this architecture features an harmonic

additive synthesizer that is summed with a subtractive noise synthesizer. Envelopes for the

fundamental frequency and loudness as well as latent features are extracted from a waveform

and fed into a recurrent decoder which controls both synthesizers. An alternative filter design

is proposed by learning frequency-domain transfer functions of time-varying Finite Impulse

Response (FIR) filters. Furthermore, the summed output is fed into a reverberation module

that refines the acoustic quality of the signal. Although this process offers very promising

results, it is restricted in the nature of signals that can be generated.

Neural granular sound synthesis

In this paper, we propose a model that can learn both a local audio representation and mod-

eling at multiple time scales, by introducing a neural version of the granular sound synthesis

[234]. The audio quality of short-term signal windows is ensured by efficient DSP modules

optimized with a spectro-temporal criterion suited to both periodic and stochastic compo-

nents. We structure the relative acoustic relationships in a latent grain space, by explicitly

reconstructing waveforms through an overlap-add mechanism across audio grain sequences.

This synthesis operation can model any type of spectrogram, while remaining interpretable.

Our proposal allows for analysis prior to data-driven resynthesis and also performs continuous

variable length free-synthesis trajectories. Taking advantage of this grain-level representation,

we further train a higher-level sequence embedding to generate audio events with meaning-

ful temporal structure. In its less restrictive definition, our model allows for unconditional

sampling, but it can be trained with additional independent controls (such as pitch or user

classes) for more explicit interactions in composition and sound transfer.

Latent grain space. Formally, we consider a set X of audio grains xi ∈ Rdx extracted

from audio waveforms x in a given sound corpus, with fixed grain size dx. This set of grains
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Figure 35: Overview of the neural granular sound synthesis model.

follows an underlying probability density p(xi) that we aim to approximate through a paramet-

ric distribution pθ. This would allow to synthesize consistent novel audio grains by sampling

x̂j ∼ pθ(xi). This likelihood is usually intractable, we can tackle this process by introducing a

set of latent variables z ∈ Rdz (dz � dx). This low-dimensional space is expected to represent

the most salient features of the data, which might have led to generate a given example. In our

case, it will efficiently replace the use of acoustic descriptors, by optimizing continuous gener-

ative features. This latent grain space is based on an encoder network that models qφ(zi|xi)
paired with a decoder network pθ(xi|zi) allowing to recover x̂i for every grains xi ∈ X . We

use the Variational Auto-Encoder [145] with a mean-field family and Gaussian prior to learn

a smooth latent distribution p(z).

Latent path encoder. As we will perform overlap-add reconstruction, our model pro-

cesses series of g grains sx = {x1, . . . ,xg} extracted from a given waveform x. The down-

sampling ratio between the waveform duration T and number of grains g is given by the hop

size separating neighboring grains. Each of these grains xi is analyzed separately by the en-

coder in order to produce qφ(zi|xi) = N (µ(xi),σ(xi)). Hence, the successive encoded grains

form a corresponding series sz = {z1, . . . , zg} of latent coordinates such that

zi = µ(xi) + ε ∗ σ(xi)

with ε ∼ N (0, I). The layers of the encoder are first strided residual convolutions that

successively down-sample the input grains through temporal 1-dimensional filters. The output
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of these layers is then fed into several fully-connected linear layers that map to Gaussian means

and variances at the desired latent dimensionality dz.

Spectral filtering decoder. Given a latent series sz, the decoder must first synthesize

each grain prior to the overlap-add operation. To that end, we introduce a filtering model that

adapts the design of [70] to granular synthesis. Hence, each zi is processed by a set of residual

fully-connected layers that produces frequency domain coefficients Hi ∈ Rdh of a filtering

module that transforms uniform noise excitations ni ∼ Udx[−1,1] into waveform grains. We

replace the recurrence over envelope features proposed in [70] by performing separate forward

passes over overlapping grain features. Denoting the Discrete Fourier Transform DFT and its

inverse iDFT, this amounts to computing

X̂i = Hi ∗DFT(ni)

x̂i = iDFT(X̂i).

Since the DFT of a real valued signal is Hermitian, symmetry implies that for an even grain

size dx, the network only filters the dh = dx/2 + 1 positive frequencies.

These grains are then used in an overlap-add mechanism that produces the waveform,

which is passed through a final learnable post-processing inspired from [59]. This module

applies a multi-channel temporal convolution that learns a parallel set of time-invariant FIR

filters and improves the audio quality of the assembled signal x̂.

Sequence trajectories embedding. As argued earlier, generative audio models need

to sample audio events with a consistent long-term temporal structure. Our model provides

this in an efficient manner, by learning a higher-level distribution of sequences sψ(sz) that

models temporal trajectories in the granular latent space sz ∈ Rdz∗g. This allows to use

the down-sampling of an intermediate frame-level representation in order to learn longer-

term relationships. This is achieved by training a temporal recurrent neural network on

ordered sequences of grain features sz. This process can be applied equivalently to any

types of audio signals. As a result, our proposal can also synthesize and transfer meaningful

temporal paths inside the latent grain space. It starts by sampling e ∈ Rde from the Gaussian

e ∼ N (0, I), then sequentially decoding sψ(sz|e) and finally generating the grains and overlap-

add waveform with pθ(x̂|sz).
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Multi-scale training objective. To optimize the waveform reconstruction, we rely on

a multi-scale spectrogram loss [280, 70], where STFTs are computed with increasing hop

and window sizes, so that the temporal scale is down-sampled while the spectral accuracy is

refined. We use both linear and log-frequency STFT [36] on which we compare log-magnitudes

l(x) = log(ε+|STFT[x]|2) with the L1 distance ||.||1. In addition to fitting multiple resolutions

of STFT1...N , we can explicitly control the trade-off between low and high-energy components

with the ε floor value [52]. In order to optimize a latent grain space, KL regularization and

sampling are performed for each latent point zi, thus we extend the original VAE objective

as

Lθ,φ =
N∑

n=1

||ln(x)− ln(x̂)||1
︸ ︷︷ ︸

reconstructions

+β ∗
g∑

i=1

DKL
[
qφ(zi|xi) ‖ pθ(z)

]

︸ ︷︷ ︸
regularizations

whereN is the number of scales in the spectrogram loss and g is the number of grains processed

in one sequence.

Experiments

Datasets. In order to evaluate our model across a wide variety of sound domains, we train

on the following datasets

1. Studio-On-Line provides individual note recordings sampled at 22050 Hz with labels

(pitch, instrument, playing technique) for 12 orchestral instruments. The tessitura for

Alto-Saxophone, Bassoon, Clarinet, Flute, Oboe, English-Horn, French-Horn, Trom-

bone, Trumpet, Cello, Violin, Piano are in average played in 10 different extended

techniques. The full set amounts to around 15000 notes [12].

2. 8 Drums around 6000 one-shot recordings sampled at 16000 Hz in Clap, Cowbell, Crash,

Hat, Kick, Ride, Snare, Tom instrument classes16.

3. 10 animals contains around 3 minutes of recordings sampled at 22050 Hz for each of

Cat, Chirping Birds, Cow, Crow, Dog, Frog, Hen, Pig, Rooster, Sheep classes of the

ESC-50 dataset17.

For datasets sampled at 22050 Hz, we use a grain size dx = 2048, which subsequently sets the

filter size dh = 1025, and compute spectral losses for STFT window sizes [128, 256, 512, 1024, 2048].

16https://github.com/chrisdonahue/wavegan
17https://github.com/karolpiczak/ESC-50
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For datasets sampled at 16000 Hz, dx = 1024 and STFT window sizes range from 32 to

1024. Hop sizes for both grain series and STFTs are set with an overlap ratio of 75%. Log-

magnitudes are computed with a floor value ε = 5e−3. Dimensions for latent features are

dz = 96 and de = 256.

Models. Since datasets provide some labels, we both train unconditional models and vari-

ants with decoder conditioning. For instance Studio-On-Line can be trained with control

over pitch and/or instrument classes when using multiple instrument subsets. Otherwise for a

single instrument we can instead condition on its playing styles (such as Pizzicato or Tremolo

for the violin). To do so, we concatenate one-hot encoded labels ohclass to the latent vectors

at the input of the decoder. During generation we can explicitly set these target conditions,

which provide independent controls over the considered sound attributes

pθ : (sz,ohclass) −→ ŝcond.
x −→ x̂cond..

Training. In the first epochs only the reconstruction is optimized, which amounts to β = 0.

This regularization strength is then linearly increased to its target value, during some warm-

up epochs. The last epochs of training optimize the full objective at the target regularization

strength, which is roughly fixed in order to balance the gradient magnitudes when individ-

ually back-propagating each term of the objective. The number of training iterations vary

depending on the datasets, we use a minibatch size of 40 grain sequences, an initial learning

rate of 2e−4 and the ADAM optimizer. In this setting, a model can be fitted within 10 hours

on a single GPU, such as an Nvidia Titan V.

Results

The model performance is first compared to some baseline auto-encoders. To assess the

generative qualities of the model, we provide audio samples of data reconstructions as well

as examples of neural granular sound synthesis. These are generations based on its common

processes as well as novel interactions enabled by our proposed neural architecture.

Baseline comparison. In the first place, the granular VAE could be implemented using

a convolutional decoder that symmetrically reverts the latent mapping of the encoder we

use. Strided down-sampling convolutions can be mirrored with transposed convolutions or

up-sampling followed with convolutions. We will refer to these baselines as VAEtr and VAEup
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while our model with spectral filtering decoder is VAEfi and with the added learnable post-

processing is VAEfi+pp. We train these models on the Studio-On-Line dataset for the full

orchestra in ordinario and the strings in all playing modes as well as the 8 Drums dataset,

keeping all other hyper-parameters identical. We report their test set spectrogram reconstruc-

tion scores for the Root Mean Squared Error (RMSE), Log-Spectral Distance (LSD) and their

average time per training iteration. Each model was trained for about 10 hours. Accordingly,

we can see that our proposal globally outperforms the convolutional decoder baselines, while

training and generating fast. The latency of our model to synthesize 1 second of audio is

about 19.7 ms. on GPU and 25.0 ms. on CPU.
4.2 Models

Since datasets provide some labels, we both train uncondi-
tional models and variants with decoder conditioning. For
instance Studio-On-Line can be trained with control over
pitch and/or instrument classes when using multiple instru-
ment subsets. Otherwise for a single instrument we can in-
stead condition on its playing styles (such as Pizzicato or
Tremolo for the violin). To do so, we concatenate one-hot
encoded labels ohclass to the latent vectors at the input of
the decoder. During generation we can explicitly set these
target conditions, which provide independent controls over
the considered sound attributes

p✓ : (sz,ohclass) �! ŝcond.
x �! x̂cond.. (10)

4.3 Training

The model is trained according to eq. 9. In the first epochs
only the reconstruction is optimized, which amounts to
� = 0. This regularization strength is then linearly in-
creased to its target value, during some warm-up epochs.
The last epochs of training optimize the full objective at the
target regularization strength, which is roughly fixed in or-
der to balance the gradient magnitudes when individually
back-propagating each term of the objective. The num-
ber of training iterations vary depending on the datasets,
we use a minibatch size of 40 grain sequences, an initial
learning rate of 2e�4 and the ADAM optimizer. In this
setting, a model can be fitted within 10 hours on a single
GPU, such as an Nvidia Titan V.

5. RESULTS

The model performance is first compared to some baseline
auto-encoders in Table 1. To assess the generative qual-
ities of the model, we provide audio samples of data re-
constructions as well as examples of neural granular sound
synthesis 3 . These are generations based on its common
processes as well as novel interactions enabled by our pro-
posed neural architecture.

5.1 Baseline comparison

In the first place, the granular VAE could be implemented
using a convolutional decoder that symmetrically reverts
the latent mapping of the encoder we use. Strided down-
sampling convolutions can be mirrored with transposed con-
volutions or up-sampling followed with convolutions. We
will refer to these baselines as VAEtr and VAEup while
our model with spectral filtering decoder is VAEfi and
with the added learnable post-processing is VAEfi+pp. We
train these models on the Studio-On-Line dataset for the
full orchestra in ordinario and the strings in all playing
modes as well as the 8 Drums dataset, keeping all other
hyper-parameters identical. We report their test set spec-
trogram reconstruction scores for the Root Mean Squared
Error (RMSE), Log-Spectral Distance (LSD) and their av-
erage time per training iteration. Each model was trained
for about 10 hours. Accordingly, we can see that our pro-
posal globally outperforms the convolutional decoder base-
lines, while training and generating fast. The latency of our

3 https://adrienchaton.github.io/neural_granular_synthesis/

model to synthesize 1 second of audio is about 19.7 ms. on
GPU and 25.0 ms. on CPU.

VAEtr VAEup VAEfi VAEfi+pp

Studio-On-Line ordinario
RMSE 6.86 6.65 6.22 4.86
LSD 1.60 1.62 1.29 1.17

Studio-On-Line strings
RMSE 5.68 5.78 5.29 4.07
LSD 1.39 1.43 1.19 1.05

8 Drums
RMSE 3.85 4.39 2.65 2.79
LSD 0.94 0.66 0.52 0.52

sec./iter 2.32 2.87 0.54 0.58

Table 1. Report of the baseline model comparison. Bold denotes the best
model for each evaluation.

5.2 Common granular synthesis processes

The audio-quality of the models trained in different sound
domains can be judged by data reconstructions. It gives a
sense of the model performance at auto-encoding various
types of sounds. This extends to generating new sounds
by sampling latent sequences rather than encoding features
from input sounds. For structured one-shot samples, such
as musical notes and drum hits, latent sequences are gen-
erated from the higher-level sequence embedding. For use
in composition (e.g. MIDI score), this sampling can be
done with conditioning over user classes such as pitch and
target instrument (eq. 10). Since the VAE learns a continu-
ously invertible grain space, it can as well be explored with
smooth interpolations that render free-synthesis trajecto-
ries. Some multidimensional latent curves that are mapped
to overlap-add grain sequences, including linear interpo-
lations between random samples from the latent Gaussian
prior, circular paths and spirals. When repeating forward
and backward traversals of a linear interpolation or looping
a circular curve, we can modulate non-uniformly the steps
between latent points in order to bring additional expres-
sivity to the synthesis. Free-synthesis can be performed at
variable lengths (in multiples of g) by concatenating sev-
eral contiguous latent paths.

5.3 Audio style and temporal manipulations

To perform data-driven resynthesis, a target sample is ana-
lyzed by the encoder. Its corresponding latent features are
then decoded, thus emulating the target sound in the style
of the learned grain space. A conditioning over multiple
timbres (e.g. instrument classes) allows for finer control
over such audio transfer between multiple target styles. To
perform resynthesis of audio samples longer than the grain
series length g, we auto-encode several contiguous seg-
ments that are assembled with fade-out/fade-in overlaps.
Since the model can also learn a continuous temporal em-
bedding, by interpolating this higher-level space, we can
generate successive latent series in the grain space that are
decoded into signals with evolving temporal structures. We
illustrate this feature in Figure 3.

Report of the baseline model comparison. Bold denotes the best model for each evaluation.

Common granular synthesis processes. The audio-quality of the models trained in

different sound domains can be judged by data reconstructions. It gives a sense of the model

performance at auto-encoding various types of sounds. This extends to generating new sounds

by sampling latent sequences rather than encoding features from input sounds. For structured

one-shot samples, such as musical notes and drum hits, latent sequences are generated from

the higher-level sequence embedding. For use in composition (e.g. MIDI score), this sampling

can be done with conditioning over user classes such as pitch and target instrument. Since the

VAE learns a continuously invertible grain space, it can as well be explored with smooth in-

terpolations that render free-synthesis trajectories. Some multidimensional latent curves that

are mapped to overlap-add grain sequences, including linear interpolations between random

samples from the latent Gaussian prior, circular paths and spirals. When repeating forward

and backward traversals of a linear interpolation or looping a circular curve, we can modu-
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late non-uniformly the steps between latent points in order to bring additional expressivity

to the synthesis. Free-synthesis can be performed at variable lengths (in multiples of g) by

concatenating several contiguous latent paths.

Audio style and temporal manipulations. To perform data-driven resynthesis, a

target sample is analyzed by the encoder. Its corresponding latent features are then decoded,

thus emulating the target sound in the style of the learned grain space. A conditioning over

multiple timbres (e.g. instrument classes) allows for finer control over such audio transfer

between multiple target styles. To perform resynthesis of audio samples longer than the grain

series length g, we auto-encode several contiguous segments that are assembled with fade-

out/fade-in overlaps. Since the model can also learn a continuous temporal embedding, by

interpolating this higher-level space, we can generate successive latent series in the grain space

that are decoded into signals with evolving temporal structures.
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Figure 36: An interpolation in the continuous temporal embedding generates series of latent
grain features corresponding to waveforms with evolving temporal structure. Here three drum
sounds with increasingly sustained envelope. The point eα is set half-way from e1 and e2.

Real-time sound synthesis. With GPU support, for instance a sufficient dedicated

laptop chip or an external thunderbolt hardware, the models can be ran in real-time. In

order to apply trained models to these different generative tasks, we currently work on some

prototype interfaces based on a Python OSC 18 server controlled from a MaxMsp19 patch. For

instance a neural drum machine featuring a step-sequencer driving a model with sequential

embedding and conditioning trained over the 8 Drums dataset classes.

18https://pypi.org/project/python-osc/
19https://cycling74.com
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Conclusions

We propose a novel method for raw waveform generation that implements concepts from

granular sound synthesis and digital signal processing into a Variational Auto-Encoder. It

adapts to a variety of sound domains and supports neural audio modeling at multiple temporal

scales. The architecture components are interpretable with respect to its spectral reconstruc-

tion power. Such VAE addresses some limitations of traditional techniques by learning a

continuously invertible grain latent space. Moreover, it enables multiple modes of generation

derived from granular sound synthesis, as well as potential controls for composition purpose.

By doing so, we hope to enrich the creative use of neural networks in the field of musical

sound synthesis.
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Discrete timbre representations. Another common approach in granular sound

processing [232] relies on re-synthesising a source audio with grains belonging to another

library. In this process the input audio is sliced and analysed with acoustic descriptors

which provide a series of target features. Given the corresponding analysis features

computed over the grain library, the re-synthesis algorithm matches the input slices with

grains that are assembled into an output waveform that follows the acoustic descriptor

target. This concept may be seen as mosaicing [63] a library of audio grains to emulate

the source audio, given a dynamic criterion computed by acoustic descriptors. To some

extent, this process relates to the implicit acoustic models of timbre presented in section

4.3 which extract a compressed acoustic representation, the fundamental frequency and

loudness envelopes, that is decoded into an audio with the spectral distribution of the

learned timbre. These models are applied to timbre transfer by extracting acoustic

envelopes from another source audio that are provided to the model as targets for the

re-synthesis. However, these processes differ in the choice of the acoustic representation

which the synthesis relies on. On the one hand, the implicit acoustic models use a

timbre invariant representation (i.e. fundamental frequency and loudness) that can be

extracted in other pitched sources and fed to the synthesis model of the learned timbre.

On the other hand, the granular re-synthesis algorithm queries audio segments in a

fixed library and uses hand-crafted acoustic descriptors as matching targets, which may

entangle various perceptual properties including timbre similarities and the alignment

of pitch and loudness.

Based on these observations, we propose to learn an acoustic representation of

a single timbre in an end-to-end waveform model by vector-quantization of short-term

latent features. The VQ-VAE [270] framework was applied to voice conversion, changing

the perceived speaker identity, as well as unsupervised speech representation learning

[44] so that the learned latent features would strongly correlate with the underlying

phonemes of the trained language. In our work, we apply vector-quantization as a

mean of learning a set of short-term features that decompose the acoustic distribution

of the training timbre domain. We apply the model to timbre conversion (Figure 37)

using the encoder to analyse another source audio that is matched with the discrete

latent timbre features that are re-synthesised by the decoder. Quantisation acts here as

a learned acoustic bottleneck for audio conversion based on spectral similarity, whereas

the implicit acoustic models rely on pre-extracted features that are invariant to timbre.

We relate this work to the granular re-synthesis and mosaicing approaches by learning
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a discrete set of timbre features, which we interpret as short-term spectral patterns that

can be matched and recombined into natural waveforms of the target timbre.
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Figure 37: The proposed VQ-VAE model for variable-length timbre transfer. The source audio
is encoded into series of continuous features zt and spectral gains gt, the learned latent vectors
{q1, . . . ,qK} are used for nearest-neighbour quantisation into series of matched features q∗t
that are passed to the subtractive synthesis decoder module, along with the predicted spectral
gains. Conversion is enforced by the quantisation bottleneck, as the audio is synthesised using
discrete latent features learned from the target timbre.

The model is composed of a waveform encoder with 1-dimensional convolutions

that segment and down-sample series of signal windows of length 2048 with a 75%

overlap ratio. These series of features are passed to two output layers, one for the

continuous latent codes and a second for the spectral gains used in the decoder. The

continuous latent codes are quantised by nearest neighbour lookup in the codebook

embeddings (1024 vectors of 128 dimensions each) which are passed to the decoder

that predicts spectral domain filtering coefficients applied to a noise source. In order

to learn timbral features that are invariant to loudness, we use the additional gains

predicted by the encoder to scale to spectral distributions of the filters predicted by the

decoder. Accordingly, the latent codebook does not need to account for variations in

audio level, although the fundamental frequency information remains embedded in the

latent representation.

We train one model per instrument on variable-length monophonic performances

using the separated tracks of the URMP dataset [160] down-sampled to 22050Hz. Be-

sides the vector-quantization losses, we use the multi-scale spectrogram reconstruction

and the embedding loss of [175] which we re-implemented for compatibility20. We

compare the model against a baseline auto-encoder without vector-quantization by

20https://github.com/adrienchaton/PerceptualAudio_Pytorch
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reconstruction score, transfer classification score and accuracy of the synthesised fun-

damental frequency and loudness envelopes. As we train the models on variable-length

music performances, we pretrain a frame-wise instrument classifier which outputs a

class prediction every non-overlapping frame of 4096 samples (about 185 milliseconds).

Each instrument model is used to convert all the tracks of all other instruments in the

database and the average classification accuracy with respect to the instrument target

is reported. In addition we extract the fundamental frequency and loudness envelopes

of the input audio and synthesised audio that are compared with the dynamic time

warping distance to evaluate how well these features are preserved independently from

timbre conversion. We observe that vector-quantization allows a significant improve-

ment in the timbre transfer task and that the loudness accuracy is mostly improved

thanks to the separate spectral gain prediction. This comes at the expense of a slight

decrease in reconstruction accuracy and fundamental frequency alignment, which is

caused by the discrete embedding of spectral features that comprise the fundamental

frequency information.

We apply the VQ-VAE timbre model to more diverse datasets in order to show

the flexibility and robustness of the approach. In the first place, we train models on

singing voice using the recordings of VocalSet [287] and perform conversion from and

to orchestral instrument timbres. As we do not rely on pre-extracted features such

as a fundamental frequency estimate, as in DDSP that uses the pretrained CREPE

prediction, we are also able to convert from much dissimilar domains which do not

have a musical pitch. As an example, we use vocal imitations from the VocalSketch

database [32] which are converted into performances of orchestral instruments. By this

mean, we experiment with the possibility of voice-driven musical sound synthesis as an

intuitive way of traducing musical ideas into sound. These vocal sketches were crowd-

sourced by asking untrained participants to express diverse sound concepts (e.g. object

noises, moods) simply using their voice, without providing any reference audio. This

process is highly relevant to music creativity as many sound ideas are hardly described

in terms of usual language and notations whereas voice is a natural medium that does

not require a particular music training (e.g. tuning by hand a synthesizer). Thus voice-

driven synthesis appears as an intuitive interaction for musical synthesis and untrained

users that can conveniently mimic a target sound synthesis idea by vocal imitation.

Some additional visualisations and audio samples are hosted on the dedicated online

repository: https://adrienchaton.github.io/VQ-VAE-timbre/.
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Vector-Quantized Timbre Representation

Adrien Bitton, Philippe Esling & Tatsuya Harada

(original publishing template available at https://arxiv.org/abs/2007.06349)

Timbre is a set of perceptual attributes that identifies different types of sound sources.

Although its definition is usually elusive, it can be seen from a signal processing viewpoint

as all the spectral features that are perceived independently from pitch and loudness. Some

works have studied high-level timbre synthesis by analyzing the feature relationships of differ-

ent instruments, but acoustic properties remain entangled and generation bound to individual

sounds. This paper targets a more flexible synthesis of an individual timbre by learning an

approximate decomposition of its spectral properties with a set of generative features. We

introduce an auto-encoder with a discrete latent space that is disentangled from loudness in

order to learn a quantized representation of a given timbre distribution. Timbre transfer can

be performed by encoding any variable-length input signals into the quantized latent features

that are decoded according to the learned timbre. We detail results for translating audio be-

tween orchestral instruments and singing voice, as well as transfers from vocal imitations to

instruments as an intuitive modality to drive sound synthesis. Furthermore, we can map the

discrete latent space to acoustic descriptors and directly perform descriptor-based synthesis.

Introduction

Timbre is a central element in musical expression and sound perception [180], which can be

seen as a set of spectral properties that allows us to distinguish instruments played at the

same pitch and velocity. Synthesis of musical timbre has been studied by analyzing the fea-

ture relationships between instruments. A disentangled representation of pitch and timbre

was proposed in [171] which allows to generate musical notes with instrument control. Percep-

tual timbre relationships were explicitly modeled in [72], and latent timbre synthesis could be

iteratively mapped to target acoustic variations. However, both techniques are not evaluated

in the signal domain and acoustic properties remain entangled. A timbre-invariant represen-

tation of variable-length waveforms is learned in [190] to perform unsupervised translation of

an instrument performance into another, which we refer to as timbre transfer. However, such

representation is not interpretable and does not offer any controls besides selecting a target

instrument class.

This paper introduces a generative model training on an individual timbre domain that

allows variable-length timbre transfer of diverse audio sources and sound synthesis with direct
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acoustic descriptor control. This auto-encoder with a discrete latent space that is disentangled

from loudness learns the feature quantization of a given timbre distribution. Latent features

are decoded into short-term spectral coefficients of a filter applied to overlapping frames of

a noise excitation. This subtractive synthesis technique does not constrain the types and

lengths of signals that can be processed. We perform timbre transfer by encoding any input

signals into this discrete representation. The matched series of latent features is inverted

into a signal which corresponds to the trained timbre domain. Since the model has learned

an approximate decomposition of a timbre into a set of short-term spectral features, we can

individually decode each latent vector and compute the corresponding acoustic properties. It

provides a direct mapping for descriptor-based synthesis. A descriptor target can be matched

with a series of latent features and decoded into a signal with the desired auditory property.

Our timbre transfer experiments apply to orchestral instruments and singing voice. We

pretrain an instrument classifier and evaluate transfer with the predicted accuracy of a model

at translating all other instruments into the trained timbre domain. And we measure the

distances between the input and output fundamental frequency and loudness. These distances

amount to the error of a model at preserving the source pitch and loudness independently

from transforming the timbre. We also perform timbre transfer from vocal imitations to

instruments as an example of voice driven synthesis. Whereas many sound ideas are hardly

described with musical parameters, which require an expert knowledge, human voice control

can be an intuitive medium [300]. For instance, mimicking some moods, objects or actions

that are translated into musical sounds.

State of the art

Generative Modeling. Generative neural networks aim to model a given set of observa-

tions x ∈ Rdx in order to consistently produce novel samples x̃. To this extent, we introduce

latent variables z ∈ Rdz defined in a lower-dimensional space (dz < dx). These latent features

form a simpler representation from which the data can be generated. An unsupervised ap-

proach to learn these variables is the auto-encoder. A deterministic encoder maps observations

to latent codes z = Eφ(x) that are fed to the decoder which in turn reconstructs the input

x̃ = Dθ(z). Their parameters jointly optimize some reconstruction loss

argmin
φ,θ

Lrec. (x, Dθ (Eφ (x))) .

As this approach explicitly performs dimensionality reduction, these latent variables can ex-

tract the most salient features in the dataset. Hence, they also facilitate the generation over
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high-dimensional distributions. However, in this deterministic auto-encoder setting there is

no guarantee that latent inference on unseen data produces meaningful codes for the decoder.

In other words, these latent projections are usually scattered apart from those of the train-

ing observations, and the decoder may fail at reconstructing anything consistent besides its

training domain.

Regularized auto-encoders tackle this problem by introducing constraints over the dis-

tribution of latent codes and generation mechanism. To do so, the Variational Auto-Encoder

(VAE)[145] sets a probabilistic framework by optimizing a variational approximation of the

encoder distribution qφ(z|x) given a continuous prior pθ(z) over latent variables. The model

is trained with a Kullback-Leibler (KL) divergence regularizer added to a reconstruction cost

Lθ,φ = −Eqφ(z)

[
log pθ(x|z)

]
︸ ︷︷ ︸

reconstruction

+DKL
[
qφ(z|x) ‖ pθ(z)

]
︸ ︷︷ ︸

regularization

.

VAEs provide several desirable features such as their interpolation quality, generalization

power from small datasets, and the ease for both high-level visualization and sampling. How-

ever, they tend to produce less detailed low-level features (blurriness effect), and the regular-

ization can degenerate into an uninformative latent representation (a phenomenon known as

posterior collapse [168]).

The Vector-Quantized VAE (VQ-VAE)[270] addresses these issues by learning a discrete

latent representation, defined as a codebook with a fixed number of latent vectors {q1 , . . . ,qK}.
Hence, the output z of the deterministic encoder is matched to its nearest embedding code q∗

q∗ = argmin
j∈[1,K]

‖z− qj‖2

which is passed to the decoder, so that it optimizes generation solely using the current code-

book state. In addition to the latent dimensionality reduction, the amount of information

compression is set by the size K of the discrete embedding. Assuming a uniform prior distri-

bution over the embedding, the amount of information encoded in the representation corre-

sponds to a constant KL divergence of log(K). Since that hyperparameter is not optimized,

the VQ-VAE alleviates posterior collapse. The representation is optimized with a codebook

update loss which matches the selected code to the encoder features

Lcodebook = ‖sg(z)− q∗‖22

where sg denotes a stop gradient operation, bypassing the variable in the back-propagation.
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Symmetrically, the encoder commitment to the selected code is applied as a loss

Lcommit = ‖z− sg(q∗)‖22

in order to bound its outputs and stabilize the training. The complete objective with com-

mitment cost β is then

LVQ-VAE = Lrec.(x, x̃) + Lcodebook + β ∗ Lcommit.

Because of the argmin operator, the nearest-neighbor quantization is not differentiable and

the encoder cannot be directly optimized. However, this issue is circumvented by simply

copying the gradient from q∗ to z (straight-through approximation) and back-propagating this

information in the encoder unaltered with respect to the quantization output. The VQ-VAE

achieves sharper reconstructions than those of the probabilistic VAE, and its discrete latent

representation was successfully applied to speech for unsupervised acoustic unit discovery[44].

In this paper, it was shown that the quantized codebook could extract high-level interpretable

audio features that strongly correlate to phonemes, with applications for voice conversion.

Inference is performed by quantizing every continuous encoder outputs with the learned latent

codebook. Consequently, the decoder is bound to reconstruct the input given this discrete

latent space, whose degrees of freedom can be adjusted with the codebook size K. This

reconstruction with latent quantization may be seen as a transfer when matching any out-of-

domain inputs with a set of features learned from a given dataset.
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Figure 38: Overview of a Vector-Quantization (VQ) layer.

Raw Waveform Modeling. The first methods for neural waveform synthesis have relied

on auto-regressive sample predictions, as in the reference WaveNet model [268]. It achieves

high-fidelity sound synthesis, at the cost of a heavy architecture that is inherently slow to

train and sample from. In more recent developments, waveform models have exploited digital

signal processing knowledge, providing efficient solutions that achieve competitive audio qual-

ity. It results in more interpretable and lighter architectures which consequently require less

data to train on. A sinusoids plus stochastic decomposition[237] is first used in the Neural
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Source Filter (NSF) [280] model. It generates speech from acoustic features and the estimated

fundamental frequency f0, that are used as a conditioning information for the synthesis mod-

ules. These are a sinusoidal source controlled by the f0, a Gaussian noise source and two

separate temporal filters to process each of them. The generated signals are adaptively mixed

in order to render both voiced (periodic) and unvoiced (aperiodic) speech components. More

specific to musical sound synthesis, the Differentiable Digital Signal Processing (DDSP)[70]

model implements a similar decomposition with an additive synthesizer conditioned with f0

summed with a subtractive noise synthesizer, both controlled by the decoder. It predicts the

harmonic amplitudes and the frequency domain coefficients Ht to generate the filtered audio

yt from non-overlapping frames of noise xt

yt = DFT−1(Ht.DFT(xt))

with DFT the Discrete Fourier Transform and DFT−1 its inverse. This model offers promis-

ing results and an interesting modularity that disentangles harmonic, stochastic as well as

reverberation features. However, it is mainly tailored for harmonic sounds and does not allow

end-to-end training as it relies on an external f0 estimator.

The two aforementioned models train on a multi-scale Short-Term Fourier Transform

(STFT) reconstruction objective, that is computed for several resolutions. The distance be-

tween spectrogram magnitudes is an efficient criterion for optimizing waveform reconstruction

as it provides a structured time-frequency representation. However, since the phase is dis-

carded, it may fail at evaluating certain acoustic errors. Based on human ratings to evaluate

just-noticeable distortions, a differentiable audio metric is proposed [175] in order to assess

artifacts at the threshold of perception. Listeners were asked whether pairs of audio were

exactly similar, with one element being applied varying strengths of additive noises, reverber-

ation or equalization. This dataset provides pairs of waveforms along with binary ratings, on

which a convolutional neural network learns a differentiable loss. A deep feature distance d

is trained by forwarding each audio x (clean) and x̃ (altered) into the network. Considering

L layers and Fl ∈ RTl∗Cl the l-th convolution activations, it computes

d(x, x̃) =

L∑

l=1

1

Tl
‖wl � (Fl(x)− Fl(x̃))‖1

with wl a learnable weight for each of the Cl channels of width Tl. Given this deep feature

distance, a low-capacity classifier is trained to infer human ratings of noticeable dissimilarity.

In this setting, the network must efficiently model such just-noticeable differences in order to

allow an accurate prediction. Once trained, this distance can be used as a differentiable audio
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loss. It was shown to improve the performance of speech enhancement systems and may be

added as an additional reconstruction objective.

Musical Timbre Transfer. The task of musical timbre transfer is to convert the identity

of one sound into another, e.g. two instruments, while preserving independent features such

as pitch and loudness. The model in [171] learns a representation that disentangles these

features inside instrument sounds. It offers interesting visualizations and generative controls.

However, it is restricted to processing individual notes of limited duration from spectrogram

magnitudes. As a result, synthesis occurs with an inversion latency and is not evaluated in

the signal domain.

In this work we focus instead on unsupervised transfer for variable-length waveforms, such

as recorded music performances. The Universal Music Translation Network [190] proposes an

architecture for multi-domain transfers, using a shared encoder paired with domain-specific

decoders. The generalization of the learned representation to many domains is achieved with a

latent confusion objective. It uses an adversarial classifier to enforce the domain-invariance of

latent codes. The task is solved in the waveform domain by relying on multiple WaveNet mod-

els. For that reason, both training and synthesis are slow and computationally very intensive.

Although it allows high-quality auto-encoding with domain selection, its latent representation

does not offer more generative controls. On the other hand, more expressive and light-weight

synthesis models can perform timbre manipulations with additional constraints. The DDSP

model was applied to single domain transfer with independent control over pitch and loudness,

but with limitations of its amortized inference.

Vector-Quantized Model for Timbre

In this paper, we introduce a waveform auto-encoder for learning a discrete representation of

an individual timbre that can be used for sound transfer and descriptor-based synthesis. We

merge the VQ-VAE approach with a decoder that performs subtractive noise filtering with

a disentangled gain prediction. As the model is unsupervised, it can train on diverse music

performance recordings and can as well process non-musical audio such as vocal imitations.

The resulting latent representation decomposes spectral timbre properties, while being invari-

ant to loudness. The model performs timbre transfer by encoding any audio sources into the

loudness-invariant feature quantization which is inverted to the learned timbre. The discrete

latent space can be mapped to acoustic descriptors. It allows us to order series of latent

features according to a descriptor target and offers meaningful synthesis controls.
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Figure 39: Architecture of our proposed Vector-Quantized subtractive sound synthesis model.

Model Overview. We define an individual timbre through a corpus of audio files recorded

for a target sound domain, for instance isolated or solo performances of a given instrument.

A dataset of successive overlapping signal windows xt ∈ RL is constructed by slicing input

waveforms w of given duration into series {x1, . . . ,xT }. The encoder E projects each of

the T windows of length L into a continuous latent code E(xt) = zt ∈ Rdz , while reducing

the dimensionality as dz < L. A quantization estimator selects a vector q∗t in the discrete

embedding {q1 , . . . ,qK} ∈ Rdz∗K that is the closest match to zt. The decoder D predicts

filtering coefficients D(q∗t ) = H̃t ∈ RN that are applied to spectral frames Ut of a noise

excitation, with N the number of frequency bins. In order to disentangle loudness from the

latent timbre embedding, the encoder predicts an additional scalar gain gt. The output time

frames are filtered as

X̃t = gt ∗ H̃t.Ut.

The reconstruction is done by inversion of {X̃1, . . . , X̃T } into w̃. This overlap-add uses the

same stride as the encoder and the noise spectrum, and it can be performed for variable-length

signals.

Encoding Modules. The first layer of the encoder slices the input waveform into over-

lapping windows with a convolution of stride S and Hanning kernel of size L set as a power of

2. Every individual window is passed into a stack of downsampling convolutions with stride

2. One output layer predicts the latent features zt and another infers the scalar gains gt. The

latent features are projected into the discrete embedding, yielding the quantization codes q∗t

sent to the decoder.

Decoding Modules. Subtractive synthesis is performed by filtering an excitation with

flat energy distribution. A uniform noise signal of the same length as w is converted into

complex spectrum frames Ut. We use a convolution F with a stride S and N kernels of size

L corresponding to the Fourier basis. The first half of the bins is the real part and the other

is the imaginary part. The series of quantized features q∗t is processed by the decoder which
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predicts the series of filtering coefficients H̃t. The decoder is composed of an input stack

of linear layers, a Recurrent Neural Network (RNN) and an output stack of linear layers.

The predicted filters are scaled with the disentangled gains as gt ∗ H̃t and applied to the

noise spectrum. Synthesis from the filtered frames X̃t is done by overlap-add. We use a

transposed convolution I of stride S and N kernels of size L corresponding to the inverse

Fourier basis. Such use of convolutional neural networks for time-frequency analysis and

synthesis has previously been detailed for both music information retrieval[36] and source

separation[197] tasks.

Model Objectives. Our proposed model jointly optimizes waveform reconstruction and

vector quantization with encoder commitment and codebook update losses. In order to eval-

uate the reconstruction, we use a multi-scale spectrogram loss over several STFT resolutions

of magnitudes ln and the deep feature distance d. The different loss contributions are scaled

by hyperparameters λ0,1 for reconstruction terms and λ2 for latent optimization, as

L = λ0 ∗
∑

n

‖ln(w)− ln(w̃)‖1 + λ1 ∗ d(w, w̃) + λ2 ∗ (Lcodebook + β ∗ Lcommit).

scores classification accuracy DTW f0 DTW loudness LSD
targets | models baseline VQ-VAE baseline VQ-VAE baseline VQ-VAE baseline VQ-VAE

bassoon 0.4256 0.6456 4.8e-4 4.7e-4 2.5e-4 2.5e-4 0.4193 0.4387
cello 0.3182 0.5896 4.7e-4 5.5e-4 2.2e-4 1.9e-4 0.4500 0.4853

clarinet 0.3962 0.6811 4.1e-4 4.6e-4 3.8e-4 2.4e-4 0.4341 0.4303
double-bass 0.1190 0.4298 6.6e-4 6.0e-4 2.5e-4 3.0e-4 0.4313 0.4346

flute 0.4999 0.6765 6.5e-4 8.8e-4 2.5e-4 2.7e-4 0.3623 0.3735
horn 0.4104 0.5861 4.4e-4 5.2e-4 2.4e-4 1.8e-4 0.3910 0.4409
oboe 0.6610 0.7441 6.3e-4 6.5e-4 3.1e-4 3.3e-4 0.3679 0.3840

trumpet 0.5126 0.6041 3.7e-4 4.0e-4 5.8e-4 3.7e-4 0.3625 0.3719
viola 0.6409 0.5689 4.1e-4 4.2e-4 2.4e-4 2.3e-4 0.4606 0.3946
violin 0.7434 0.7960 3.7e-4 4.5e-4 4.1e-4 2.8e-4 0.5546 0.5500

instrument average 0.4727 0.6321 4.8e-4 5.4e-4 3.1e-4 2.6e-4 0.4233 0.4303

singing N.A. N.A. 3.2e-4 3.6e-4 2.7e-4 2.8e-4 0.5477 0.5523

Table 1. Score comparison of the VQ-VAE model against the baseline auto-encoder. Classification accuracy assesses the
transfer to the instrument target of each model. DTW measures the distance between the source and audio transfer curves
of f0 and loudness. LSD evaluates the test set reconstruction error in the target domain. Bold denotes the best score.

The model is defined with window size L = 2048,
stride S = 512 and N = L + 2 which corresponds to the
real and imaginary parts of the halved complex spectrum.
The encoder has 7 downsampling convolutions of stride 2,
with increasing output channel dimension from 32 to 256
and kernel size 13. One output layer maps to latent features
of size dz = 128 and another pair of linear layers outputs
the scalar gains. The vector quantization space is a code-
book of size K = 1024. The decoder has two blocks of 4
linear layers with a constant hidden dimension of 768 that
are interleaved with intermediate Gated Recurrent Units of
the same feature size. The output of the decoder is a lin-
ear layer that produces N filtering coefficients which are
passed into a sigmoid activation and log1p compression.
The convolutions F and I are initialized as the linear STFT
and its inverse, future experiments could include using dif-
ferent frequency scales or training their kernels. The multi-
scale sprectrogram reconstruction is computed for STFTs
with a hop ratio of 0.25 and window sizes of [128, 256,
512, 1024, 2048]. We adjust the � strengths in order to
balance the initial gradient magnitudes of each objective,
accordingly �0 = �2 = 1 and �1 = 0.2. The latent loss
uses an encoder commitment strength of � = 0.25.

4.4 Classifier Model
In order to evaluate the timbre transfer task, we train a ref-
erence classifier on the 10 target instruments. We adapt
the baseline proposed in [19] to perform short-term pre-
dictions rather than predicting a single label per file. Our
classifier predicts a label every non-overlapping frame of
4096 samples which amounts to a context of about 185ms.
The model was trained with pitch-shifting data augmen-
tation and achieves 85% test set frame-level accuracy at
predicting the correct instrument label.

4.5 Evaluation
The performance of our VQ-VAE is quantitatively com-
pared against a baseline deterministic auto-encoder with-
out vector quantization. Since its latent space is continu-
ous, the disentangled gain prediction did not improve the

baseline and is as well removed. Besides that, it shares
the same encoder and decoder architectures and only op-
timizes reconstruction costs. We compare the models in
terms of spectrogram reconstruction quality in the learned
timbre domain and transfer quality from other sources.

5. RESULTS

5.1 Comparative Model Evaluation

The test set reconstruction quality of the models is evalu-
ated by comparing the spectrogram magnitudes of the in-
put and output waveforms using the Log-Spectral Distance
(LSD). The instrument timbre transfer accuracy is evalu-
ated by auto-encoding every other instrument subsets from
URMP and Phenicx (besides the trained target) and every
singing excerpts from VocalSet and predicting the instru-
ment label of the synthesized audio with the pretrained ref-
erence classifier. The accuracy is reported with respect to
the target instrument, and aims to be maximized. In ad-
dition, the source f0 and loudness curves are compared
with those of the audio transfer. We use the Dynamic Time
Warping (DTW) distance to measure how well the model
preserves pitch and loudness independently from transfer-
ring timbre. The DTW score is normalized across audio
excerpts by scaling the time series in unit range and averag-
ing by the lengths of the DTW paths. For the model trained
on singing voice, we transfer audio from all the instrument
subsets and only report the average DTW distances.

As detailed in Table 1, the discrete representation of the
VQ-VAE consistently improves the unsupervised timbre
transfer accuracy in comparison with the baseline auto-
encoder. For inference on other source domains, our pro-
posed model solely uses a fixed basis of latent features
learned from the spectral distribution of a given timbre.
As a result, the quantization enforces audio transfer of the
target timbre properties. We also observe that the disentan-
gled gain prediction tends to improve the reconstruction of
loudness, as shown by a lower average DTW distance for
the VQ-VAE model. However, we did not constrain the
model to rely on an explicit estimate of the fundamental

Score comparison of the VQ-VAE model against the baseline auto-encoder. Classification
accuracy assesses the transfer to the instrument target of each model. DTW measures the
distance between the source and audio transfer curves of f0 and loudness. LSD evaluates the
test set reconstruction error in the target domain. Bold denotes the best score.
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Experiments

Datasets. In order to learn the individual timbre of instruments, we rely on multitrack

recordings of music performances from two datasets, namely URMP[160] and Phenicx[201].

They both provide isolated audio for bassoon, cello, clarinet, double-bass, flute, horn, oboe,

trumpet, viola and violin.

To learn the singing voice timbre representation, we use the recordings from the VocalSet

database[287] which provides 9 female and 11 male singers individually performing several

techniques and pitches. We discard the noisiest techniques breathy, inhaled, lip-trill, trillo,

vocal fry and merge all others in the same timbre domain.

To experiment with voice-controlled sound synthesis, we use some examples of the Vo-

calSketch database[32], which were given as source inputs to models pretrained on instruments.

Vocal imitations were not used as training data, but as crowd-sourced examples of untrained

human voices expressing some diverse sound concepts.

Perceptual Audio Loss. Using the dataset of just-noticeable audio differences and hu-

man ratings [175], we re-implemented the deep feature distance in PyTorch (codes and pre-

trained parameters of d are provided21). To use this loss as a reconstruction objective for

music performances recorded at various volumes, we apply a random gain to the training au-

dio pairs so that the learned distance is invariant to audio levels. As this criterion was trained

for several perturbations including additive noises and reverberation, the model optimizes ad-

ditional acoustic cues to generate audio signals that are consistent with the training dataset.

We observe that vocal imitations recorded in uncontrolled conditions can be transferred into

musical sounds which do not exhibit the input noise found in VocalSketch.

Training Details. All audio examples are first downsampled to 22kHz in mono format.

The subsets corresponding to each individual timbre, either instrumental or singing voice, are

split into training and test data (15%). We remove silences and concatenate the trimmed

audio. Segments w of 1.5 seconds are randomly sampled in the training data and collated

into mini-batches of size 20 for training the VQ-VAE. We optimize the model for 150,000

iterations with the ADAM optimizer and a learning rate of 2e-4.

The model is defined with window size L = 2048, stride S = 512 and N = L + 2 which

corresponds to the real and imaginary parts of the halved complex spectrum. The encoder has

21https://github.com/adrienchaton/PerceptualAudio_Pytorch
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7 downsampling convolutions of stride 2, with increasing output channel dimension from 32 to

256 and kernel size 13. One output layer maps to latent features of size dz = 128 and another

pair of linear layers outputs the scalar gains. The vector quantization space is a codebook of

size K = 1024. The decoder has two blocks of 4 linear layers with a constant hidden dimension

of 768 that are interleaved with intermediate Gated Recurrent Units of the same feature size.

The output of the decoder is a linear layer that produces N filtering coefficients which are

passed into a sigmoid activation and log1p compression. The convolutions F and I are

initialized as the linear STFT and its inverse, future experiments could include using different

frequency scales or training their kernels. The multi-scale sprectrogram reconstruction is

computed for STFTs with a hop ratio of 0.25 and window sizes of [128, 256, 512, 1024, 2048].

We adjust the λ strengths in order to balance the initial gradient magnitudes of each objective,

accordingly λ0 = λ2 = 1 and λ1 = 0.2. The latent loss uses an encoder commitment strength

of β = 0.25.

Classifier Model. In order to evaluate the timbre transfer task, we train a reference

classifier on the 10 target instruments. We adapt the baseline proposed in [287] to perform

short-term predictions rather than predicting a single label per file. Our classifier predicts

a label every non-overlapping frame of 4096 samples which amounts to a context of about

185ms. The model was trained with pitch-shifting data augmentation and achieves 85% test

set frame-level accuracy at predicting the correct instrument label.

Evaluation. The performance of our VQ-VAE is quantitatively compared against a base-

line deterministic auto-encoder without vector quantization. Since its latent space is contin-

uous, the disentangled gain prediction did not improve the baseline and is as well removed.

Besides that, it shares the same encoder and decoder architectures and only optimizes recon-

struction costs. We compare the models in terms of spectrogram reconstruction quality in

the learned timbre domain and transfer quality from other sources.

Results

Comparative Model Evaluation. The test set reconstruction quality of the models is

evaluated by comparing the spectrogram magnitudes of the input and output waveforms using

the Log-Spectral Distance (LSD). The instrument timbre transfer accuracy is evaluated by

auto-encoding every other instrument subsets from URMP and Phenicx (besides the trained

target) and every singing excerpts from VocalSet and predicting the instrument label of the
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Figure 40: The spectrogram and centroid of an audio synthesized with an increasing centroid
target in the violin representation. The corresponding series of embedding indexes q? does not
exhibit any structure but can be arranged consistently with the acoustic descriptor target.

synthesized audio with the pretrained reference classifier. The accuracy is reported with

respect to the target instrument, and aims to be maximized. In addition, the source f0

and loudness curves are compared with those of the audio transfer. We use the Dynamic

Time Warping (DTW) distance to measure how well the model preserves pitch and loudness

independently from transferring timbre. The DTW score is normalized across audio excerpts

by scaling the time series in unit range and averaging by the lengths of the DTW paths. For

the model trained on singing voice, we transfer audio from all the instrument subsets and

only report the average DTW distances.

The discrete representation of the VQ-VAE consistently improves the unsupervised tim-

bre transfer accuracy in comparison with the baseline auto-encoder. For inference on other

source domains, our proposed model solely uses a fixed basis of latent features learned from the

spectral distribution of a given timbre. As a result, the quantization enforces audio transfer

of the target timbre properties. We also observe that the disentangled gain prediction tends

to improve the reconstruction of loudness, as shown by a lower average DTW distance for the

VQ-VAE model. However, we did not constrain the model to rely on an explicit estimate of

the fundamental frequency. Since it is not disentangled from the representation, we observe

that quantization comes at the expense of a lesser accurate reconstruction of the pitch than

for the continuous baseline model. Notably, in the VQ-VAE this property is bound to the

trained instrument tessitura. The overall reconstruction quality in the target timbre, assessed

with the test set LSD, is similar for both auto-encoders.

Besides the quantitative evaluation of the discrete representation against the baseline

auto-encoder, we note two additional benefits of feature quantization. When processing out-

of-domain audio of lower quality, such as vocal imitations recorded in uncontrolled conditions,

the transfer ability is paired with denoising. Indeed, acoustically inconsistent features are

discarded in the latent projection to a trained domain such as musical studio recordings. This
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facilitates the use of timbre transfer from diverse recording environments such as for voice

controlled synthesis. Moreover, we show that learning a discrete latent representation enables

a direct mapping to acoustic descriptors as an other mean of high-level synthesis control.
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Figure 41: Controlling the sound synthesis of the violin by the f0 (left) and the cello by the
bandwidth (right).

Descriptor-Based Timbre Synthesis. In comparison with the baseline auto-encoder,

the VQ-VAE decoder optimizes generation solely based on a discrete latent codebook. We in-

troduce a mapping method for controllable sound synthesis (detailed in the supplementary ma-

terial). Each embedding vector qk with k ∈ [1,K] approximately corresponds to a short-term

timbre feature and a spectral filter H̃k = D(qk). Given that the decoder has a RNN, some

temporal relationships are introduced in the overlap-add subtractive synthesis. We decode a

series of an individual feature {qk , . . . ,qk} and compute the average acoustic descriptor value

ãk . After analyzing every latent vector, we obtain the mapping {q1 , . . . ,qK} ↔ {ã1 , . . . , ãK}.

We can perform acoustic descriptor-based synthesis from a target ai of any length M

with i ∈ [1,M ] by selecting the nearest values in the discrete mapping ã?i and decoding the

corresponding series of latent features q?i . The mark ? is used here to denote the nearest

embedding elements to the descriptor target, whhich differs from the selection of q∗ done by

matching with the encoder output. Using such mapping, we show that we can control a VQ-

VAE model of violin with an increasing centroid target. The decoded audio has a consistent

spectrogram and synthesized centroid. We also observe that the acoustically ordered series

of latent features corresponds to an unordered traversal of the discrete embedding. In other

words, the index positions in the quantization space do not correlate to acoustic similarities,

which are only provided by our proposed mapping method.

This analysis can be performed for other acoustic descriptors and other instrument rep-
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resentations. We depict the control of the VQ-VAE model by a target defined either with

fundamental frequency for the violin or with bandwidth for the cello. Our proposed model

does not rely on f0 conditioning in order to process diverse audio sources, such as vocal imita-

tions without pitch. However, we show that the fundamental frequency can be controlled by

mapping the unsupervised representation. Our proposed method yields an approximate de-

composition of the acoustic properties of an individual timbre, it allows high-level and direct

controls for sound synthesis.

Conclusion

We have introduced a raw waveform auto-encoder to learn a discrete representation of an in-

dividual timbre that is disentangled from loudness. It can be used for unsupervised transfer of

musical instrument performances and singing voice. The model generates audio by subtractive

sound synthesis, a technique which neither restricts the types of signals nor the duration that

can be processed. The spectral distribution of a timbre is quantized with a set of short-term

latent features that are decoded into noise filtering coefficients. This discrete representation

can be mapped to acoustic properties in order to perform direct descriptor-based synthesis.

Some descriptor targets can be matched with latent features that are decoded into signals with

the desired auditory qualities. For instance, the unsupervised model can be controlled with

the fundamental frequency. In addition, we experiment with transferring vocal imitations into

an instrument timbre as an example of voice-controlled sound synthesis.
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Interfaces for timbre manipulations. As discussed throughout this thesis, pitch

and velocity have a well defined sense in music production whereas the remaining vari-

ations in timbre do not adhere to any commonly established representation besides

that of instrument classes and categories of playing techniques. Digital synthesizers

allow to continuously modulate the synthesis of timbre through hand-crafted signal

processing pipelines, however the interface design remains an open question [235] in or-

der to provide parameters that align with properties of acoustic perception and music

semantic. We approached this problematic by invertible representation learning with

auto-encoders, such that the dimensions of the latent representation would allow visu-

alisation (analysis) and synthesis control with the aim to facilitate interactions using

semantic regularisations, hierarchical and conditional information structures as well

as learned feature quantisation. This raises multiple challenges, including the inter-

pretability of the generative representations as well as the integration of these models

in a common user interface that would allow switching between training datasets and

neural audio synthesis engines while maintaining a generic interaction layout. To this

end, a MaxMSP interface was developed and populated with models created by the

ACIDS team at IRCAM22 (Figure 42). The interface allows analysis and synthesis with

several interactions to manipulate the audio output by controlling latent dimensions,

conditioning variables and interpolating between multiple inputs. As the latent series

remain highly dimensional, we use PCA reduction into a common number of salient

orthogonal dimensions that are ranked and exposed to the user for creative exploration

and empirical fine-tuning based on the rendered output variations.

input audio
loader

model and
dataset

selection

conditioning
and controls

latent series
editing

output audio
player

interpolation
plane

Figure 42: The ACIDS interface for timbre latent space exploration.

22https://acids.ircam.fr
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The ACIDS interface is designed for continuous latent models, amongst which was

integrated the unquantised version of the neural subtractive synthesis model detailed

previously. Besides timbre transfer, we propose another generative application for the

vector-quantization timbre model that takes advantage of the fixed number of learned

latent features. In the first place, we are interested in visualising the distribution of

these unsupervised short-term features with respect to classical acoustic descriptors.

To do so, we individually decode audio from each of the quantisation vectors so that we

can compute the corresponding acoustic quantities such as the spectral centroid. We

use this analysis as a mapping function for descriptor-based synthesis (Figure 43) given

a user provided acoustic target. Accordingly, we can traverse the latent codebook in the

increasing order of the analysed descriptor and validate the acoustic behaviour of the

synthesised audio. We extend this process to user provided targets by mapping each

point of the descriptor curve with its nearest codebook element given the individual

acoustic quantities that have been analysed. The resulting series of quantisation vectors

is decoded into an audio that follows the desired acoustic variation. This work was

submitted to the second international conference on timbre, held virtually and presented

as an online poster. Some additional visualisations, audio samples and videos are

hosted on the dedicated online repository: https://acids-ircam.github.io/timbre_

exploration/.
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Figure 43: Descriptor-based synthesis by analysis and mapping of the learned vector-
quantization codebook with acoustic descriptors, red elements denote the user controls. Each
latent vector qk is individually decoded and analysed with a scalar acoustic descriptor a(.) in
order to obtain paired tables of values {q1, . . . ,qK} ↔ {ã1, . . . , ãK}. Given a user provided
descriptor target {a1, . . . , aM}, the algorithm selects the nearest analysed values {ã?1, . . . , ã?M}
which are mapped to the corresponding codebook vectors {q?1, . . . ,q?M} and decoded along with
a user specified gain envelope {g1, . . . , gM}.
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Introduction

Recent studies show the ability of unsupervised models to learn invertible audio representa-

tions using Auto- Encoders [71]. While they allow high quality sound synthesis and high-level

representation learning, the dimensionality of the latent space and the lack of interpretability

of each dimension preclude their intuitive use. The emergence of disentangled representations

was studied in Variational Auto-Encoders (VAEs) [145][111] and has been applied to audio.

Using an additional perceptual regularization [72] can align such latent representation with

the previously established multi-dimensional timbre spaces, while allowing continuous infer-

ence and synthesis. Alternatively, some specific sound attributes can be learned as control

variables [17] while unsupervised dimensions account for the remaining features. In this paper,

we propose two models and suited interfaces that were developed in collaboration with music

composers in order to explore the potential of VAEs for creative sound manipulations. Besides

sharing a common analysis and synthesis structure, one has a continuous latent representa-

tion and another has a discrete representation, which are applied to learning and controlling

loudness invariant sound features.

Models

We consider a dataset of audio samples, such as performance recordings of an instrument. A

variable-length audio x can be processed by analyzing series {x0, . . . ,xL} of signal windows

xi ∈ Rdx with an encoder Eφ mapping each frame into a latent code as Eφ : xi → zi ∈ Rdz .
This encoder is paired with a decoder Dθ that inverts these features as Dθ : zi → x̂i. The

vanilla auto-encoder optimizes its parameters {θ, φ} on a reconstruction objective such that

x̂i ≈ xi.

Usually, we choose dz � dx so that the latent variables embed a compressed repre-

sentation of the data from which we can synthesize new samples. However, this continuous

23equal contributions, with Antoine’s work on the continuous model
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Introduction 
Recent studies show the ability of unsupervised models to learn invertible audio representations using Auto-
Encoders (Engel et al., 2017). While they allow high quality sound synthesis and high-level representation 
learning, the dimensionality of the latent space and the lack of interpretability of each dimension preclude 
their intuitive use. The emergence of disentangled representations was studied in Variational Auto-
Encoders (VAEs) (Kingma et al., 2014, Higgins et al., 2017) and has been applied to audio. Using an 
additional perceptual regularization (Esling et al., 2018) can align such latent representation with the 
previously established multi-dimensional timbre spaces, while allowing continuous inference and synthesis. 
Alternatively, some specific sound attributes can be learned as control variables (Bitton et al., 2019) while 
unsupervised dimensions account for the remaining features. In this paper, we propose two models and 
suited interfaces that were developed in collaboration with music composers in order to explore the potential 
of VAEs for creative sound manipulations2. Besides sharing a common analysis and synthesis structure, 
one has a continuous latent representation and another has a discrete representation, which are applied to 
learning and controlling loudness invariant sound features. 
Models 
We consider a dataset of audio samples, such as performance recordings of an instrument. A variable-length 
audio ! can be processed by analyzing series {!!, . . . , !"} of signal windows !# ∈ '$! 	with an encoder )% 
mapping each frame into a latent code as )%: !# ↦ ,# ∈ '$". This encoder is paired with a decoder -& that 
inverts these features as -&: ,# ↦ !.#. The vanilla auto-encoder optimizes its parameters {/, 0} on a 
reconstruction objective such that !. ≈ ! (Figure 1).  

Figure 1. Block diagram of a VAE with optional pre and post audio processing. 
 
Usually, we choose 2' ≪ 2( so that the latent variables embed a compressed representation of the data 
from which we can synthesize new samples. However, this continuous representation often remains highly-
dimensional and does not disentangle data properties on separate latent dimensions. The usability of such 
representation and its quality for sampling or interpolation are thus limited. These considerations highlight 
the need for additional training objectives that enforce useful properties in the latent representation. We 

 
1
 These authors contributed equally 

2
 See https://acids-ircam.github.io/timbre_exploration/ for additional information about models, interfaces and sound 

examples. 
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Figure 44: Block diagram of a VAE with optional pre and post audio processing.

representation often remains highly- dimensional and does not disentangle data properties

on separate latent dimensions. The usability of such representation and its quality for sam-

pling or interpolation are thus limited. These considerations highlight the need for additional

training objectives that enforce useful properties in the latent representation. We consider

two separate models, comparable in their overall encoder-decoder structure, but different in

how the representation is regularized during training.

Continuous model. The first model aims to construct a latent space that is invariant

to loudness in order to embed features that mainly account for the instrument timbre. It

is achieved with an adversarial domain adaptation, where a latent regressor is trained at

predicting loudness, and a gradient reversal optimization [85] leads to a loudness-invariant

encoder representation. Besides this objective, the VAE latent space is regularized on a

Gaussian prior distribution N (0, 1) which ensures local smoothness and favors independence

between latent variables.

Discrete model. The second model is based on the Vector-Quantized VAE (VQ-VAE)

proposed in [270]. It optimizes a discrete set of latent features qj . Each encoder output

is matched to its nearest codebook element q∗i ∈ {q0, . . . ,qK}, before being decoded. This

latent space is disentangled from a gain applied to the decoder output, which produces short-

term features that are invariant to audio levels. Given that the set of latent features qj is

finite, we can analyze and map this codebook with acoustic descriptors.

Both models are intended to learn latent audio features that are invariant to loudness.

The continuous model offers unconstrained and smooth feature manipulations. The discrete

model can be analyzed in order to predict the output acoustic features embedded in the

representation.
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Experiments

Descriptor-based synthesis. Each vector of the discrete representation is individually

decoded and the output signal is analyzed with a descriptor. It is thus possible to compute

the mapping between a descriptor curve and the series of nearest latent features (details in

[18]). Latent synthesis can be directly controlled by following a user-defined descriptor target,

as shown in the following figure. The codebook can be ordered and traversed according to

different properties, such as centroid or fundamental frequency.
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consider two separate models, comparable in their overall encoder-decoder structure3, but different in how 
the representation is regularized during training. 
 
Continuous model. The first model aims to construct a latent space that is invariant to loudness in order to 
embed features that mainly account for the instrument timbre. It is achieved with an adversarial domain 
adaptation, where a latent regressor is trained at predicting loudness, and a gradient reversal optimization 
(Ganin et al., 2015) leads to a loudness-invariant encoder representation. Besides this objective, the VAE 
latent space is regularized on a Gaussian prior distribution n 4(0,1) which ensures local smoothness and 
favors independence between latent variables. 

Discrete model. The second model is based on the Vector-Quantized VAE (VQ-VAE) proposed in van den 
Oord et al. (2017). It optimizes a discrete set of latent features 9). Each encoder output is matched to its 
nearest codebook element 9#∗ ∈ {9!, . . . , 9+}, before being decoded. This latent space is disentangled from 
a gain applied to the decoder output, which produces short-term features that are invariant to audio levels. 
Given that the set of latent features 9)is finite, we can analyze and map this codebook with acoustic 
descriptors. 

Both models are intended to learn latent audio features that are invariant to loudness. The continuous model 
offers unconstrained and smooth feature manipulations. The discrete model can be analyzed in order to 
predict the output acoustic features embedded in the representation. 

Experiments 
Descriptor-based synthesis. Each vector of the discrete representation is individually decoded and the 
output signal is analyzed with a descriptor. It is thus possible to compute the mapping between a descriptor 
curve and the series of nearest latent features (details in Bitton et al., 2020). Latent synthesis can be directly 
controlled by following a user-defined descriptor target, as shown in figure 2. The codebook can be ordered 
and traversed according to different properties, such as centroid or fundamental frequency. 
 

 
Figure 2. The discrete representation can be analyzed with the spectral centroid and traversed in the 
increasing order (A). A control target can be synthesized by selecting the nearest latent features, the 
decoded audio approximately follows the curve provided (B). 
 
Continuous latent interpolations. In order to display the local smoothness of the continuous model, 
we consider the time variant linear interpolation !!"#$%& between two latent series !'	#$%	!( of the 
same size inferred from two audio samples A and B. Decoding !!"#$%& results in an audio sample 
smoothly interpolating between sample A and sample B, as shown in figure 3. 

 
3 Architectural differences are not detailed in this paper since we focus on discussing the representation properties. 
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Figure 45: The discrete representation can be analyzed with the spectral centroid and traversed
in the increasing order (A). A control target can be synthesized by selecting the nearest latent
features, the decoded audio approximately follows the curve provided (B).

Continuous latent interpolations. In order to display the local smoothness of the

continuous model, we consider the time variant linear interpolation zinterp between two latent

series za and zb of the same size inferred from two audio samples A and B. Decoding zinterp

results in an audio sample smoothly interpolating between sample A and sample B (last

figure). In order to facilitate a creative use of this model, we present two interfaces designed

to circumvent the problem of identifying latent dimensions by facilitating their exploration.
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Figure 3. Linear interpolation in the latent space between two audio samples. We can see that the centroid 
and the bandwidth of the interpolated audio sample performs a smooth transition between those of the two 
original audios. 

 
In order to facilitate a creative use of this model, we present two interfaces designed to circumvent the 
problem of identifying latent dimensions by facilitating their exploration. 

Continuous model interfaces 
The first interface is a Max/MSP application that is a graphical equivalent4 to the command line tools we 
usually have to test the model. It features several high-level interactors such as mathematical operators on 
the latent series, manual editing, and an interpolation plane. We have built this application in collaboration 
with A. Schubert5, aligning with his remarks on how to improve visualization and control over the 
generation. This interface is intended to be used in order to grasp the main characteristics of a model trained 
on a specific dataset. 

This stand-alone interface has built-in interactions but a limited integration and restrictions in the possible 
operations. We have thus developed a second interface built in collaboration with B. Gatinet, implementing 
the encoder and the decoder as PureData abstractions that can be combined with any other regular objects. 
New aspects of the continuous model emerge from this interface, as it allows uninterrupted exploration 
with realtime rendering, enabling the use of complex signal processing techniques on both the audio and 
latent series. As this interface can be integrated in real time inside a digital audio workstation, it is more 
suited for composition workflows. It is furthermore a strict superset of the first interface in terms of 
functionalities. 

The use of these interfaces has brought to light new ways of generating audio signals, whether by explicit 
control of an audio descriptor, or by morphing between different existing sounds. Training a model on an 
audio domain and using it to resynthesize an audio sample from a different domain can also lead to an 
implicit synthesis method. Additional results on audio conversion of instrument sounds can be found in 
Bitton et al., (2020). 

Conclusion 
This research has studied VAEs with continuous and discrete latent sound representations as creative tools 
to explore timbre synthesis. The discrete model allows the generation of a new audio signal by directly 
controlling acoustic descriptors. Manipulations of the continuous model are eased by developing specific 
interfaces and real-time rendering, which greatly enrich composition and sound design possibilities. And in 
turn, it gives further insights on the generative qualities found in the learned representations, as well as the 
relevance of their different parameters and controls with respect to the new timbres that are synthesized.  

 
4 See our website for a screenshot of the interface 
5 See http://www.alexanderschubert.net/ 
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Figure 46: Linear interpolation in the latent space between two audio samples. We can see that
the centroid and the bandwidth of the interpolated audio sample performs a smooth transition
between those of the two original audios.
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Continuous model interfaces

The first interface is a Max/MSP application that is a graphical equivalent to the command

line tools we usually have to test the model. It features several high-level interactors such as

mathematical operators on the latent series, manual editing, and an interpolation plane. We

have built this application in collaboration with A. Schubert 24, aligning with his remarks on

how to improve visualization and control over the generation. This interface is intended to

be used in order to grasp the main characteristics of a model trained on a specific dataset.

This stand-alone interface has built-in interactions but a limited integration and restric-

tions in the possible operations. We have thus developed a second interface built in collabo-

ration with B. Gatinet, implementing the encoder and the decoder as PureData abstractions

that can be combined with any other regular objects. New aspects of the continuous model

emerge from this interface, as it allows uninterrupted exploration with realtime rendering,

enabling the use of complex signal processing techniques on both the audio and latent series.

As this interface can be integrated in real time inside a digital audio workstation, it is more

suited for composition workflows. It is furthermore a strict superset of the first interface in

terms of functionalities.

The use of these interfaces has brought to light new ways of generating audio signals,

whether by explicit control of an audio descriptor, or by morphing between different existing

sounds. Training a model on an audio domain and using it to resynthesize an audio sample

from a different domain can also lead to an implicit synthesis method. Additional results on

audio conversion of instrument sounds can be found in [18].

Conclusion

This research has studied VAEs with continuous and discrete latent sound representations

as creative tools to explore timbre synthesis. The discrete model allows the generation of a

new audio signal by directly controlling acoustic descriptors. Manipulations of the continuous

model are eased by developing specific interfaces and real-time rendering, which greatly enrich

composition and sound design possibilities. And in turn, it gives further insights on the

generative qualities found in the learned representations, as well as the relevance of their

different parameters and controls with respect to the new timbres that are synthesized.

24See http://www.alexanderschubert.net/
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5.3 Light-weight Neural Audio Processing

Besides the interpretability of the learned representations and the intuitivity of user

interactions, neural audio synthesis models face the challenge of efficiency. This mainly

refers to the computational resources required to train and deploy models, as well as

the amount of data that needs to be collected which is often dependent on the model

complexity. As introduced in section 3.3.5, the early works which aimed at reducing

the complexity of trained models were mainly based on masking the trained weights of

lowest magnitude (i.e. zeroing their activations) and fine-tuning the kept weights. The

pruning and fine-tuning approaches have remained little satisfying due to the drop in

performance and the limited ratio of weights that could be masked. A recent break-

through in model pruning was brought by the lottery ticket hypothesis [80] which

postulates that a randomly initialised network (i.e. before training) already contains

its efficient sparse sub-networks which are called wining tickets. This model compres-

sion algorithm works by iteratively identifying the trained wining tickets (e.g. largest

magnitude), rewinding to the random initialisation state, masking and re-training in

isolation the selected weights until convergence. After several pruning and re-training

steps it is shown that the sparsified models can outperform the original dense model

with unprecedented masking ratios of more than 90%.

In order to effectively reduce the model size (i.e. memory requirement) and number

of operations for inference (i.e. computation requirement) of sparsified models, the

lottery ticket hypothesis is implemented with weight trimming (Figure 47) and applied

to audio synthesis [74] and music information retrieval [73] in a study led by Pr. Esling.

While masking can be applied in an unstructured manner, trimming requires removing

entire structural units (e.g. channels of a convolution) in order to reshape the sparsified

model into its smaller counterpart that is rewound and trained in isolation according

to the algorithm of the lottery ticket hypothesis. The results across multiple audio

processing tasks and architectures, including discriminative and generative ones, show

that for trimming up to 50% the model performance is consistently improved and that

high trimming ratios above 90% can be achieved at the expense of moderate drops in

performance. The study is carried on MIR tasks such as classification, pitch estimation

and transcription as well as on neural audio synthesis models (WaveNet [268], DDSP

[70], SING [52]) that are trimmed according to several weight ranking criteria. The

original ranking is based on a magnitude criterion computed on an entire unit, it is
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Figure 47: Model compression by weight trimming under the lottery ticket hypothesis. After
training, the weights are ranked and removed before reshaping the kept units and rewinding
them to their initial random states. As a result the trained sub-network is effectively reduced
in size and number of operations, as opposed to the sparsification by masking (bottom right).
For simplicity we only show a single step of trimming, in practice the model compression is
progressively done in several iterations of training, trimming and rewinding. The figure is
adapted after [73].

compared with a criterion on the summed unit activations obtained by cumulative

forward pass of the whole training dataset or a criterion based on the learned scaling

parameters of the layer batch-normalisation (if applicable). It appears that across these

tasks, models and datasets, the cumulative activation is the most stable criterion for

weight selection and trimming.

This study is of high-relevance for the general deep learning research as trimming

can drastically reduce the energy consumption of a model throughout its life-long de-

ployment. Moreover, it calls for a more critical approach to model evaluation as it

seems that the race for over-parametrisation could actually hinder greater leaps in per-

formance. Specifically to the field of audio, model compression seems to be one of the

most realistic solutions for real-time processing and integration within usual hardwares

(e.g. laptops, mobile phones, embedded devices) which have been major challenges in

the dissemination of neural audio synthesis models as tools for broader user communities

and musicians.
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6 Conclusion

6.1 List of publications

Here is recapitulated in chronological order the list of authored and co-authored aca-

demic publications during the thesis.

2018

. Adrien Bitton, Axel Chemla-Romeu-Santos and Philippe Esling - Timbre transfer

between orchestral instruments with semi-supervised learning - First International

Conference on Timbre25, Montreal, Canada.

. Axel Chemla-Romeu-Santos, Adrien Bitton, Goffredo Haus and Philippe Esling -

Unsupervised timbre spaces through perceptually-regularized variational learning

- First International Conference on Timbre, Montreal, Canada.

. Philippe Esling, Axel Chemla-Romeu-Santos and Adrien Bitton - Generative tim-

bre spaces: regularizing variational auto-encoders with perceptual metrics - In-

ternational Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal.

. Philippe Esling, Axel Chemla-Romeu-Santos and Adrien Bitton - Bridging au-

dio analysis, perception and synthesis with perceptually-regularized variational

timbre spaces - International Society for Music Information Retrieval Conference

(ISMIR-18), Paris, France.

. Adrien Bitton, Philippe Esling and Axel Chemla-Romeu-Santos - Modulated vari-

ational auto-encoders for many-to-many musical timbre transfer - Arxiv 1810.00222.

2019

. Adrien Bitton, Philippe Esling, Antoine Caillon and Martin Fouilleul - Assisted

sound sample generation with musical conditioning in adversarial auto-encoders

- International Conference on Digital Audio Effects (DAFx-19), Birmingham,

United Kingdom.
25https://www.mcgill.ca/timbre2018/files/timbre2018/timbre2018_proceedings.pdf
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2020

. Adrien Bitton, Philippe Esling and Tatsuya Harada - Neural granular sound syn-

thesis - International Computer Music Conference (ICMC), accepted in 2020,

conference postponed to 202126.

. Adrien Bitton, Philippe Esling and Tatsuya Harada - Vector-Quantized timbre

representation - Arxiv 2007.06349.

. Antoine Caillon, Adrien Bitton, Brice Gatinet and Philippe Esling - Timbre latent

space: exploration and creative aspects - Second International Conference on

Timbre27, Thessaloniki, Greece.

. Philippe Esling, Ninon Devis, Adrien Bitton, Antoine Caillon, Axel Chemla-

Romeu-Santos and Constance Douwes - Diet deep generative audio models with

structured lottery - International Conference on Digital Audio Effects (DAFx-20),

Vienna, Austria.

. Philippe Esling, Théis Bazin, Adrien Bitton, Tristan J. J. Carsault and Ninon

Devis - Ultra-light deep MIR by trimming lottery tickets - International Society

for Music Information Retrieval Conference (ISMIR-20), Montreal, Canada.

. Hayato Sumino, Adrien Bitton, Lisa Kawai, Philippe Esling and Tatsuya Harada

- Automatic music transcription and instrument transposition with differentiable

rendering - The Joint Conference on AI Music Creativity, Stockholm, Sweden.

6.2 Related projects

Besides the experiments carried and published during this thesis, several projects have

been done at the intersection of applied machine learning research and music. These

unique opportunities allowed to combine academic experience with practical skills,

tackle novel problems and interact within broader communities.

In 2018, I applied and was given the opportunity to participate in a week long

26http://icmc2021.org/selected-papers/
27http://timbre2020.mus.auth.gr/assets/papers/Timbre2020_proceedings.pdf
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residency organized by Club Transmediale 28 in Berlin around the topic of artificial

intelligence and music which led to a public performance 29 at the Hebbel am Ufer

theater. Our piece ”The man who never told a lie” questioned the role of the human

performer in the realm of data-driven content generation with machine learning tools. In

that sense, the piece mixed the live audio and video recordings with artificially processed

audio samples and images sampled in real-time from the performance. In order to blur

the boundary between true and synthetic contents, fake gestures were displayed to

hinder the audience discernment. As a result, this improvisation creates an ambiguous

discourse between the performer and the content generation which collaborate (e.g. real-

time sampling and answering) into confusing and surprising the audience judgement.

In 2020, I had the chance to co-organise with Professor Suguru Goto a workshop

on artificial intelligence and music 30 at The Tokyo University of the Arts (Geidai)

which was an opportunity to gather both composers and scientists to share research

works and knowledge across our related communities. The program equally featured

presentations with art and science backgrounds, leading to fruitful debates towards

practical applications of machine learning tools for composers and reflections on the

development of these technologies. This project took place during a seven-month visit

at the Machine Intelligence Laboratory of The University of Tokyo (Todai) thanks to

the support of Professor Tatsuya Harada and a Japan Society for the Promotion of

Science (JSPS) short-term fellowship.

In 2020, I applied and was given the opportunity to participate in the hackathon on

artificial intelligence and music organized virtually by ARS Electronica 31. I took part

in the team working on the topic of ”Designing user interactions when Humans and

Machine Learning models are together in the musical loop” which was supervised by

Lamtharn Hanoi Hantrakul. In the course of this week, our team developed a generative

music experience for virtual reality 32. This project called ”Exploring Memories” lets

the audience navigates in a 3D point cloud landscape which was mapped to the latent

space of a pre-trained melody generation model and rendered with real-time spatial

audio. By placing objects in this landscape, the audience can discover the melodic

28https://archive2013-2020.ctm-festival.de/archive/festival-editions/

ctm-2018-turmoil/transfer/musicmakers-hacklab/
29https://youtu.be/Tv48dC48UvE?t=817
30https://adrienchaton.github.io/seminar_geidai_AI_Music/
31https://ars.electronica.art/keplersgardens/en/aixmusic-hackathon/
32https://youtu.be/G2jLPT72ko8?t=969
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structures learned by the model (e.g. various note densities) and create a soundscape

which unveils the neural network memory.

6.3 Conclusion and future works

In this thesis, we have focused on the acoustic production of the musical timbre which

entails the perceptual qualities of different instrument sounds by which a given compo-

sition may be rendered in the audio domain. While a common notation system exists

to define music in the symbolic domain, the representations and interactions in the

acoustic domain have remained more elusive. This shortcoming could be understood

by identifying the following limitations. Textual metadata that usually structure audio

sample libraries can only express coarse categories of sounds but do not describe their

subjective values nor their continuous variations and relationships which play a central

role in music production. Analysis spaces built from psychoacoustic studies and lis-

tening tests can represent these relationships but cannot generalise to unrated samples

nor they can be inverted to synthesise new sounds. Digital signal processing techniques

have enabled the development of a great variety of synthesizers which allow continuous

controls for generating diverse timbres. Yet, these systems feature many parameters

with complex non-linear relationships which require a tedious exploration of parameter

configurations. Amongst these techniques, analysis and synthesis models are of great

interest as one may extract parameters from some given samples, visualise and ma-

nipulate them to render new audio variations. Nonetheless, classical sound models are

mostly bound to express low-level signal properties and their representations remain

hard to visualise at a large scale and to manipulate with respect to some target percep-

tual properties. To this end, we adopted a data-driven approach for large scale analysis

and synthesis with auto-encoders in order to learn more meaningful representations

and interactions grounded in the acoustic domain. In this probabilistic setting, the

whole library of audio samples is treated as an empirical observation sampled from the

underlying distribution of perceived sounds we aim to model. Throughout these thesis

experiments, we have applied and refined several machine learning approaches for audio

density estimation which share some common strengths and challenges. Data-driven

models are inherently designed to process data at large scales, by doing so they can

learn underlying relationships of sounds which are the basis of understanding higher-

level data properties. Deep neural network optimization offers a great flexibility in

182



estimating these densities which cannot be evaluated in closed-form while enabling to

define additional modelling constraints by which we aim to structure useful generative

representations. On the other hand, applications of machine learning tools to musical

sound synthesis must achieve an audio fidelity comparable to signal processing tech-

niques while maintaining a commensurate computational cost for integration in the

usual hardware and dissemination to broad audiences. Since the audio signal is sam-

pled at a very high frequency, an ongoing challenge is that of efficiently modelling both

local properties and longer-term relationships which span an humongous number of di-

mensions as we deal with music structures in the order of seconds to minutes. Finally,

the evaluation of these generative models is another ongoing topic as their optimiza-

tion objectives are often not explicitly traducing the perceptual properties of the data

nor they directly assess the creative potential of the learned models besides the training

simulation. Accordingly, we recapitulate our different contributions and draw directions

for future works.

Timbre processing by domain translations. In this first approach, the processing

of timbre was posed as the conversion between two or more libraries of audio samples

which define different perceptual categories. We referred to this technique as an implicit

timbre modelling as we did not explicitly represent the features that describe each of

these domains, nor we annotated which transformation should be applied to a given

sample so that it is translated into the target timbre domain. In this setting, without

ground-truth pairs of samples across domains, we learned such mapping through specific

training objectives which aim at preserving a domain invariant content while altering

the domain specific features to match that of the target. One major challenge is that

of scaling to translations across many domains, mostly because the domain specific

mapping is usually enforced by individual adversarial classifiers in each data domain.

To this end we proposed to use non-parametric kernel distances as the basis of learning

the domain specific distributions, which rely on the two-sample test approach rather

than on the adversarial approach. As we did not need anymore to increase the number

of discriminators as we increase the number of domains, we used domain conditioning

which allows their processing into a single auto-encoder model. This implicit timbre

processing results in a synthesis driven by example, in that sense the user can provide a

sample belonging from one source domain and let the model operate the timbre transfer

to the specified target. As we may want to control the pitch transformation apart from
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the timbre, we as well relied on semi-supervision by conditioning the model with the

semitone and octave classes. We as well proposed to visualise the distributions of

acoustic descriptors in each domain against that of the translated samples. While the

model was not provided any supervision with respect to these features, this evaluation

shows that synthetic samples mapped in the target domains do follow the observed

acoustic distributions.

Timbre representations by conditioning. In order to allow more expressive con-

trols on the audio synthesis, we proposed to learn sampling with conditioning on finer

musical attributes of timbre such as playing styles or any other subjective labels. These

non-invertible features are only partially describing the target timbre, thus we comple-

mented them with an analysis and synthesis representation that captures the remaining

acoustic variations belonging to a given set of attribute targets. One challenge in this

setting is that the unsupervised features extracted by the encoder may embed those

which we wish to condition on, thus the decoder can freely bypass the attribute targets

that ultimately cannot be controlled during sampling. In order to prevent the pathway

memorisation between the encoder features and the decoder reconstruction, we applied

an adversarial regularisation in the latent space which pushes the representation to be

invariant to the target attributes. As the encoder features should not allow classification

of these attributes, the decoder must effectively use the conditioning information which

subsequently enables a controlled sampling. This was evaluated by pre-training data

classifiers on the desired musical attributes and assessing the accuracy of the generated

samples with respect to the provided conditioning targets. In the aforementioned ex-

periments the models were trained on magnitude spectrograms, rather than the raw

waveform, which provide a more compact and structured acoustic representation but

require some approximate phase estimation for audio synthesis. This is commonly

done by Griffin-Lim iterations which cause some latency and a limited audio fidelity.

Alternatively, we adopted the feed-forward neural inversion by training a spectrogram

vocoder model which can directly synthesise waveform at the output of our conditional

spectrogram generator.

Hierarchical timbre representations. Learning musical audio representations is

an ongoing challenge which involves modelling both local acoustic properties which en-

sure a high-quality signal generation and longer-term relationships at multiple scales
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corresponding to increasing musical contexts. This may be facilitated by using short-

term acoustic representations such as magnitude spectrograms, although it prevents

from end-to-end learning for direct waveform synthesis. When combining a spectro-

gram generation model with a phase approximation model, usually trained separately,

we encounter error accumulations and only learn lossy acoustic representations. In-

spired by granular synthesis techniques, we proposed a hierarchical model which learns a

lower-level representation of short waveform windows which are individual audio grains

organised by acoustic similarity. On top of this granular representation, a recurrent

embedding jointly learns the temporal structures of series of grain features to form

audio events such as a note with a vibrato or a drum hit with an attack and release.

We introduced a method for efficient waveform synthesis by subtractive noise filter-

ing for every signal windows that are assembled by overlap-add into the output signal

and refined with a learned post-processing module. We show that this model improves

both the reconstruction quality and synthesis speed in comparison with commonly used

up-sampling convolutions and that it is flexible enough to model both pitched sounds,

drum kit sounds and environmental noises. As the temporal structure is learned on

a down-sampled granular representation, the hierarchical architecture only requires a

shallow recurrent embedding. By performing interpolations in the lower-level grain la-

tent space, we can continuously generate smooth acoustic textures of variable lengths

and extend some of the classical granular synthesis techniques. By sampling the tempo-

ral embedding, we can generate fixed-length audio events and create a spectro-temporal

morphing between features of two samples.

Discrete timbre representations. Another approach to timbre transfer was pro-

posed which relies on learning a discrete representation of a single timbre that is de-

composed into a finite number of learned latent features. For this experiment we took

advantage of the aforementioned short-term waveform processing by noise filtering and

overlap-add, which we train with a gain envelope that is predicted in addition to latent

features and used to scale the output filters. As a result, the discrete representation

does not need to embed the amplitude information but the fundamental frequency and

spectral distribution of the target timbre. By encoding and quantisation of an audio

from another source, we can perform timbre transfer which amounts to reconstruction

with the discrete features learned in the target timbre. In this setting, we do not need

to train on these other domains and can thus convert from unseen sources including
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vocal imitations as a mean of voice-driven synthesis. Moreover this process can be ap-

plied to variable-length audio, as opposed to the usual domain translation techniques.

As the learned discrete representation decomposes the target timbre into a finite set

of features, we proposed a novel method to analyse and control synthesis from the la-

tent space using acoustic descriptors. By individually decoding each latent feature and

computing a given acoustic descriptor, we can visualise the distribution of the discrete

latent space and map a user-specified descriptor envelope to the series of nearest latent

features that are decoded into an audio that follows the provided target. This mapping

allows a direct control for descriptor-based synthesis.

Usability of neural audio processing and synthesis models. In the first place,

we described our experiments with an emphasis on learning strategies, neural network

architectures and analysis/synthesis representations for manipulating timbre and gen-

erating musical audio. We as well proposed some evaluation methods to assess the

effectiveness of our proposed models in terms of both reconstruction quality and accu-

racy of the learned controls. Yet the usability of these tools for music production greatly

depends on two factors which are the interactions and interface design for the user as

well as the efficiency with respect to computational requirements and the ability to

learn from datasets of moderate sizes. In addition to the aforementioned interactions

such as voice-driven and descriptor-based synthesis, we have worked on some proto-

type interfaces which can be run within general music software environments such as

Max/MSP. A drum machine was implemented to run a model conditioned on generating

eight different classes of drum hits that are triggered with a step sequencer. The audio

buffers that are played-back can be randomly sampled with low latency to explore many

variations pertaining to a given drum class. Besides explicit control by conditioning,

an interface for the exploration of unsupervised latent spaces was developed to host

several models of the ACIDS/IRCAM team. Their unsupervised dimensions can be

treated as synthesis parameters, nonetheless the corresponding output variations are

often not predictable and mostly randomly sampled or interpolated. To allow the direct

exploration of these dimensions, the latent spaces are projected onto a common number

of orthogonal dimensions by PCA and different visualisations and operations can be

applied to the encoding of several samples for intuitively generating new variations.

Lastly, the computational efficiency of neural audio processing models could be dra-

matically improved on a large array of tasks including both information retrieval and
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synthesis. In this study we observe that most trained models are over-parameterised

and only a fraction of these parameters ultimately contribute to their accuracy. By

identifying them, trimming unnecessary parameters and retraining the most efficient

sub-networks we can maintain the target performance with down to 10% of the ar-

chitecture capacity. This compression of trained models is a significant step towards

light-weight and real-time applications that can run on general public hardware such

as laptops or embedded devices, as well as a potential solution to deploying machine

learning tools with a reduced energy consumption and environmental footprint.

Future works. In the years spanned by this thesis, we could witness great advances

in neural audio synthesis amongst which the recently published Differentiable Digital

Signal Processing (DDSP) is one of the most promising approach to musical audio

synthesis. This model can generate high-quality audio in a few hours of training on

datasets as small as tens of minutes. This is achieved within a modular architecture that

incorporates elements of classical digital signal processing to efficiently model different

components of sound perception such as harmonic partials, stochastic residuals and

reverberation. The DDSP framework opens many exciting future directions of research

which comprise the development of new modules that can fit more diverse sounds

(e.g. non-harmonic, non-pitched and percussive audio), which was partially investigated

within our proposed noise filtering and overlap-add synthesis approach. Yet much more

techniques may be derived in the DDSP framework by integrating other descriptors than

fundamental frequency and loudness as well as implementing processes inspired from

synthesizer circuits or physical modelling as part of the synthesis engines. Because

the DDSP model can be trained on a short audio duration, it can capture a very

specific timbre and acoustic environment such as the sound of given violinist in a given

recording. Another direction of future works is to integrate the DDSP synthesis as part

of a modular score rendering pipeline, which has already received a certain attention

[134]. In this setting, which is the topic of a current master’s degree internship in

co-supervision, the task is split between a control model that analyzes the quantised

score information and generates expressive acoustic envelopes that are rendered to

audio by the subsequent DDSP synthesizer. Such modular approach for score to audio

is promising in many ways as we can expect much lighter-weight systems than those

found in the earlier literature. Moreover, as the control envelopes processed by the

synthesizer are explicitly traducing the instrument and musician dependent playing
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style we can expect learning much more expressive models which could capture the

whole performance style of given recording, on both acoustic and interpretation levels.
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sive synthesis parameterised by high-level timbral features. In ICASSP 2020 -

2020 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 786–790, 2020.

[216] K. R. Rao and P. Yip. Discrete Cosine Transform: Algorithms, Advantages,

Applications. Academic Press Professional, Inc., USA, 1990.

[217] M. Ravanelli and Y. Bengio. Speaker recognition from raw waveform with sincnet.

In 2018 IEEE Spoken Language Technology Workshop (SLT), pages 1021–1028,

2018.

[218] R. Reed. Pruning algorithms-a survey. IEEE Transactions on Neural Networks,

4(5):740–747, 1993.

[219] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang

Chen, and Xin Wang. A comprehensive survey of neural architecture search:

Challenges and solutions. ACM Comput. Surv., 2021.

213



[220] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing

flows. In Francis Bach and David Blei, editors, Proceedings of the 32nd Inter-

national Conference on Machine Learning, volume 37 of Proceedings of Machine

Learning Research, pages 1530–1538, Lille, France, 07–09 Jul 2015. PMLR.

[221] Eitan Richardson and Yair Weiss. On gans and gmms. In S. Bengio, H. Wallach,

H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances

in Neural Information Processing Systems, volume 31, pages 5847–5858. Curran

Associates, Inc., 2018.

[222] Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio.

Contractive auto-encoders: Explicit invariance during feature extraction. In Pro-

ceedings of the 28th International Conference on International Conference on Ma-

chine Learning, ICML’11, page 833–840, Madison, WI, USA, 2011. Omnipress.

[223] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra. Perceptual eval-

uation of speech quality (pesq)-a new method for speech quality assessment of

telephone networks and codecs. In 2001 IEEE International Conference on Acous-

tics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221), volume 2,

pages 749–752 vol.2, 2001.

[224] C. Roads. Automated granular synthesis of sound. Computer Music Journal,

2:61, 1978.

[225] C. Roads. Introduction to granular synthesis. Computer Music Journal, 12(2):11–

13, 1988.

[226] Fanny Roche, Thomas Hueber, Samuel Limier, and Laurent Girin. Autoencoders

for music sound modeling : a comparison of linear, shallow, deep, recurrent

and variational models. In University of Malaga (UMA), editor, SMC 2019 -

16th Sound & Music Computing Conference, number 1-6 in Proc. of SMC 2019,

Malaga, Spain, May 2019.

[227] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Rad-

ford, Xi Chen, and Xi Chen. Improved techniques for training gans. In D. Lee,

M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural

Information Processing Systems, volume 29, pages 2234–2242. Curran Associates,

Inc., 2016.

214



[228] C. N. D. Santos, Y. Mroueh, I. Padhi, and P. Dognin. Learning implicit genera-

tive models by matching perceptual features. In 2019 IEEE/CVF International

Conference on Computer Vision (ICCV), pages 4460–4469, 2019.

[229] Andy M. Sarroff and Michael A. Casey. Musical audio synthesis using autoen-

coding neural nets. In Music Technology meets Philosophy - From Digital Echos

to Virtual Ethos: Joint Proceedings of the 40th International Computer Music

Conference, ICMC 2014, and the 11th Sound and Music Computing Conference,

SMC 2014, Athens, Greece, September 14-20, 2014. Michigan Publishing, 2014.

[230] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green ai. Com-

mun. ACM, 63(12):54–63, November 2020.

[231] D. Schwarz. Current research in concatenative sound synthesis. In ICMC, 2005.

[232] Diemo Schwarz. Corpus-based concatenative synthesis. IEEE Signal Process.

Mag., 24(2):92–104, 2007.

[233] Diemo Schwarz, Grégory Beller, Bruno Verbrugghe, and Sam Britton. Real-

Time Corpus-Based Concatenative Synthesis with CataRT. In 9th International

Conference on Digital Audio Effects (DAFx), pages 279–282, Montreal, Canada,

September 2006. cote interne IRCAM: Schwarz06c.

[234] Diemo Schwarz, Grégory Beller, Bruno Verbrugghe, and Sam Britton. Real-time

corpus-based concatenative synthesis with catart. In International Conference on

Digital Audio Effects (DAFx), pages 279–282, 2006.

[235] Allan Seago, Simon Holland, and Paul Mulholland. A critical analysis of syn-

thesizer user interfaces for timbre. In Andy Dearden and Leon Watt, editors,

Proceedings of the XVIII British HCI Group Annual Conference HCI 2004, vol-

ume 2, pages 105–108. Research Press International, Bristol, UK, 2004.

[236] Xavier Serra. Musical Sound Modeling with Sinusoids plus Noise, pages 91–122.

Studies on New Music Research. Swets & Zeitlinger, 1997.

[237] Xavier Serra. Musical Sound Modeling with Sinusoids plus Noise, pages 91–122.

Studies on New Music Research. Swets & Zeitlinger, 1997.

215



[238] Xavier Serra and J. Smith. Spectral modeling synthesis: A sound analy-

sis/synthesis based on a deterministic plus stochastic decomposition. Computer

Music Journal, 14:12–24, 1990. SMS.

[239] Kalpana Seshadrinathan, Thrasyvoulos N. Pappas, Robert J. Safranek, Junqing

Chen, Zhou Wang, Hamid R. Sheikh, and Alan C. Bovik. Chapter 21 - image

quality assessment. In Al Bovik, editor, The Essential Guide to Image Processing,

pages 553 – 595. Academic Press, Boston, 2009.

[240] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen, Y. Zhang,

Y. Wang, R. Skerrv-Ryan, R. A. Saurous, Y. Agiomvrgiannakis, and Y. Wu.

Natural tts synthesis by conditioning wavenet on mel spectrogram predictions. In

2018 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 4779–4783, 2018.

[241] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared

Casper, and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter

language models using model parallelism, 2020.

[242] Kai Siedenburg, Ichiro Fujinaga, and S. McAdams. A comparison of approaches to

timbre descriptors in music information retrieval and music psychology. Journal

of New Music Research, 45:27 – 41, 2016.

[243] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. In International Conference on Learning Represen-

tations, 2015.

[244] J. Smith and Xavier Serra. Parshl an analysis/synthesis program for non- har-

monic sounds based on a sinusoidal representation. In International Computer

Music Conference, pages 290–297, Urbana, Illinois, USA, 23/08/1987 1987.

[245] Julius O Smith. Virtual acoustic musical instruments: Review and update. Jour-

nal of New Music Research, 33(3):283–304, 2004.

[246] Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and

Ole Winther. Ladder variational autoencoders. In Proceedings of the 30th Inter-

national Conference on Neural Information Processing Systems, NIPS’16, page

3745–3753, Red Hook, NY, USA, 2016. Curran Associates Inc.

216



[247] Chunfeng Song, Feng Liu, Yongzhen Huang, Liang Wang, and Tieniu Tan. Auto-

encoder based data clustering. In Proceedings, Part I, of the 18th Iberoamerican

Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision,

and Applications - Volume 8258, CIARP 2013, page 117–124, Berlin, Heidelberg,

2013. Springer-Verlag.

[248] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit

models. In International Conference on Learning Representations, 2021.

[249] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of

the data distribution. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
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