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La vraie prise de risque, ou disons la prise de risque per-
tinente, suppose d’être relevée de tous les autres risques,
en tout cas du risque matériel. [...] Si l’on veut jouer
gros sur un certain front, le front de la création par
exemple, il est préférable d’être un peu tranquille sur les
autres.

Frédéric Lordon, Les Figures du Communisme, 2021
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Introduction
Qu’est-ce que l’atomisation des jets liquides ? En première approche, l’atomisation, ou frag-
mentation, des jets liquides est un phénomène physique durant lequel un volume initial de
liquide subit des déformations et des ruptures du fait d’instabilités hydrodynamiques ou des
interactions aérodynamiques avec le milieu ambiant. Cette fragmentation génère une popula-
tion de gouttes ayant chacune d’elles une taille et une vitesse donnée. La compréhension de ce
phénomène reste incomplète bien qu’il joue un rôle important dans le contrôle et la compréhen-
sion de la taille des gouttes dans de nombreuses applications industrielles et naturelles.

Figure 1: Déferlement d’une
vague, Vallon des Auffes, Mar-
seille.

Du côté des applications industrielles, générer une pop-
ulation de gouttes homogène en taille est nécessaire afin
d’optimiser l’injection dans les moteurs thermiques pour
le transport terrestre (Saidur et al., 2011) ou les moteurs
cryogéniques pour le transport aérospatial. Pour l’irrigation
agricole à l’aide d’asperseurs ou l’épandage des pesticides,
les plus petites gouttes sont soumises aux courants de dérive
dus au vent (Al Heidary et al., 2014). Ceci induit des
pertes d’eau pouvant aller jusqu’à 30% (Yazar, 1984), des
pollutions indésirables des zones résidentielles environnantes
(Gil & Sinfort, 2005) ou une pression croissante sur les ter-
res arables avec l’imposition de cordons sanitaires (Hilz &
Vermeer, 2013). Comprendre la création des plus petites
gouttes et influencer leur taille se révèle ainsi essentiel pour

limiter ces effets. Du côté des applications naturelles, la fragmentation se trouve joliment il-
lustrée par les embruns, par exemple lors du déferlement des vagues sur la côte, voir Fig. 1.
La formation d’embruns à travers les océans joue un rôle déterminant pour les écoulements
atmosphériques (Kudryavtsev & Makin, 2011), la formation des ouragans (Perrie et al., 2004)
et le forçage radiatif dû aux aérosols, élément clé de la physique du climat (Witek et al., 2016).
Autrement, la taille des gouttes produites lors d’un éternuement (Fig. 2a) détermine la nature
de leur trajectoire, balistique ou brownienne, et leur durée de persistance dans l’air (Duguid,
1946; Bourouiba, 2016), deux critères cruciaux pour la propagation des maladies aéroportées
comme la COVID 19 (Mittal et al., 2020). La fragmentation se retrouve aussi dans le contexte
de la lutte contre les incendies (Kamluk et al., 2020), de l’administration de médicaments (Fig.
2b), des revêtements, de l’impression à jet d’encre ou encore de la peinture par spray. Bien que
les applications soient très diverses, l’objectif reste sensiblement le même : mieux comprendre
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la formation des gouttes et déterminer les paramètres contrôlant leurs tailles.

(a) (b)

Figure 2: (a) Éternuement enregistré à 1000 images par seconde (Bourouiba et al., 2014). (b)
Superposition de photographies expérimentales d’un nuage de gouttelettes d’eau produit par
un spray commercial de 10 centimètres de haut (Courtoisie de Lucas Rotily).

Dans ce contexte, cette thèse se concentre sur l’étude expérimentale et numérique des jets
ronds afin de caractériser la population de gouttes proche et loin de la buse. L’étude expérimen-
tale porte sur le champ lointain, à des distances de plusieurs centaines de diamètres de buse
de l’injection, et reprend les données mesurées par vélocimétrie par suivi de gouttes (DTV)
produites par Felis et al. (2020). L’étude numérique se concentre sur le champ proche, à des
distances de plusieurs dizaines de diamètres de buse, et utilise les données générées par Simula-
tions Numériques Directes (DNS) d’un écoulement diphasique à l’aide du logiciel libre Basilisk.
Dans les deux cas, les configurations d’étude sont choisies telles qu’elles soient proches de celles
observées pour les asperseurs utilisés en irrigation agricole. Deux théories de fragmentation
de natures très différentes sont comparées dans les champs proche et lointain. La première
repose sur la mécanique fine des ligaments formés lors de la fragmentation (Villermaux et al.,
2004; Kooij et al., 2018), Sec. 1.3 et 1.5.2. La seconde repose quant à elle sur une approche
statistique développée dans le cadre de la turbulence intermittente (Novikov, 1994; Novikov
& Dommermuth, 1997), Sec. 1.4 et 1.5.1. Par la suite, les phases liquides et gazeuses sont
indiquées par les indices l et g. Les paramètres adimensionnés gouvernant l’écoulement, Sec.
1.2.1 sont les nombres de Reynolds, de Weber et d’Ohnesorge définis tels que :

Rei = ρiUinjdn

µi

, Wei =
ρiU

2
injdn

σ
, Oh = µl√

ρlσdn

(1)

avec dn le diamètre de la buse d’injection, Uinj la vitesse d’injection, σ la tension de surface
entre les deux phases, ρi la masse volumique de la phase i et µi la viscosité dynamique de la
phase i. Les configurations choisies placent les jets étudiés dans le régime second wind induced,
pour lequel 13 ⩽ Weg ⩽ 40.3, et le régime dit d’atomisation, pour lequel Weg ⩾ 40.3, Sec.
1.2.2.
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Méthodes expérimentales et numériques
L’étude expérimentale de cette thèse repose sur l’analyse approfondie des données de la phase
dispersée produites par Felis et al. (2020). Ce dernier a réalisé une campagne de mesures simul-
tanées du diamètre et de la vitesse des gouttes générées par un jet d’eau injecté dans l’air au
repos. La configuration choisie fixe le Weber gaz à 24 et place le jet dans le régime de fragmen-
tation second wind induced. Les mesures simultanées du volume et de la vitesse des gouttes
ont été réalisées à l’aide de la technique de vélocimétrie par suivi de gouttes par ombroscopie,
Sec. 2.2. Pour la mesure du volume V , les gouttes sont supposées être des sphéroïdes. Leur di-
amètre équivalent est ensuite calculé tel que d[30] = 3

√
6V/π. L’ombroscopie est réalisée à l’aide

d’une lumière de fond non cohérente générée par une source laser pulsée et un collimateur. Cette
source lumineuse permet de projeter l’ombre de l’écoulement sur le plan de prise d’une caméra
rapide qui, à chaque déclenchement, capture deux instants consécutifs. Le temps d’exposition
est fixé à 4 ns et la fréquence entre deux déclenchements est fixée à 5 Hz. La durée séparant
les deux instants consécutifs est choisie par rapport à la vitesse moyenne de l’écoulement dans
le champ de prise, afin de capturer correctement sa dynamique, et fixée à quelques µs. Une
fois les prises par ombroscopie réalisées, l’objectif est de détecter correctement les gouttes dans
chaque image et de déterminer leur déplacement entre les deux instants consécutifs. Les images
sont segmentées à l’aide d’un algorithme de calibration d’ombres (shadow sizer) développé par
Felis-Carrasco (2017) et implémenté à l’aide des outils de traitement d’image de Matlab. La
procédure de calibration d’ombres est séquencée en 4 étapes : transformation en ondelettes,
analyse locale de chaque objet, extraction de contour et estimation de la vitesse. Bien que
cette procédure assure une bonne détection des gouttes dans le champ et hors champ, la dé-
tection des gouttes hors champ présente deux limites principales. La mesure de leur taille et la
détermination de leur position dans le plan de prise 2D peuvent être biaisées. L’erreur induite
lors de la mesure du diamètre d[30] des gouttes peut être corrigée à l’aide de la fonction de
correction empirique suivante (Felis et al., 2020) : d0/dm = 0.9629C0.2166 avec d0 le diamètre
vrai, dm le diamètre mesuré et C le ratio de contraste. Concernant l’erreur induite lors de la
détermination de la position dans le plan de prise, et par conséquent sur la vitesse des gouttes,
il est possible de mettre de côté les gouttes étant trop en avant ou en arrière du plan de prise.
Ce filtrage est fait sur la valeur de profondeur de champ (Depth Of Field, DOF) calculé pour
chaque goutte : DOF = 0.08153d0.9321

0 . Seules les gouttes telles que DOF = DOFmin sont
conservées pour l’analyse, avec DOFmin déterminé expérimentalement et égale à 1.61 mm. Les
mesures de vélocimétrie par suivi de gouttes expliquées ici sont réalisées sur 5 positions ex-
périmentales le long de l’axe du jet, x/dn ∈ {400, 500, 600, 700, 800}, avec un champ de prise
de 14.73 × 14.73mm2. Enfin, pour chaque position x/dn, la dimension perpendiculaire est dé-
coupée en 5 champs de prise de 2.95 mm de hauteur. Le volume de mesure DTV est ainsi égal
à 14.73× 2.95× 1.61mm3 pour chaque position (x/dn, y).

Pour sa part, l’étude numérique repose sur une campagne de Simulations Numériques Di-
rectes (Direct Numerical Simulations, DNS) réalisées à l’aide du logiciel libre Basilisk. Parmi
les différentes approches numériques pour simuler les écoulements fluides, l’approche DNS est
celle qui offre la meilleure approximation, Sec. 2.3.1. En effet, comparé à l’approche RANS
(Reynolds Averaged Navier Stokes) ou LES (Large Eddy Simulation), les DNS ne reposent
sur aucune modélisation physique, notamment pour la turbulence, et résolvent directement les
équations de Navier Stokes :
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∂tρ+∇ · (ρu) = 0, (2)
ρ(∂tu + u · ∇u) = −∇p+∇ · (2µD) + σκδSn, (3)

avec p la pression, D le tenseur de déformation, κ la courbure de l’interface, δS la fonction de
Dirac non nulle le long de l’interface et n la normale de l’interface, dirigée vers la phase gazeuse.
L’approximation faite par ces simulations découle seulement de la discrétisation des équations
de comportement et sa qualité dépend de la précision et de la robustesse des schémas de
discrétisation choisis. En outre, les simulations DNS peuvent résoudre l’ensemble des échelles
spatiales et temporelles, dans la limite des ressources de calcul disponibles. L’outil Basilisk
utilisé pour la campagne de simulation est un langage haut niveau libre basé sur le langage C++
développé par S. Popinet et ses collaborateurs dans la suite du logiciel Gerris (Popinet, 2003)
dont il reprend les derniers développements en les améliorant, Sec. 2.3.2. Basilisk permet de
développer des solveurs d’équations aux dérivés partielles, ce qui élargit sa gamme d’application
à la modélisation des tsunamis, des milieux poreux ou des écoulements multiphasiques. De
plus, la versatilité de ce langage facilite l’implémentation de nouveaux solveurs pour résoudre
d’autres équations aux dérivés partielles. Côté technique, Basilisk propose un spectre large
de fonctions de traitement et d’automatisation, par exemple pour la gestion de la mémoire.
Un avantage majeur de Basilisk par rapport à son prédécesseur Gerris est que les routines
sont facilement accessibles et modifiables. En complément de sa versatilité, l’implémentation
des schémas numériques et des discrétisations font de Basilisk un langage efficace en terme de
temps de calcul et d’usage mémoire, notamment grâce à l’usage de grilles cartésiennes octree,
voir le cas 2D en Fig. 3 et Sec. 2.4.2, couplées avec un raffinement adaptatif, Sec. 2.4.3.

Figure 3: Exemple d’une
discrétisation quadtree.

L’utilisation des routines de parallélisation, basée sur la li-
brairie C++ Message Passing Interface (MPI), implémentées
dans Basilisk permet de réduire encore le temps de calcul. En-
fin, l’implémentation d’un solveur précis et adaptatif pour les
écoulements à tension de surface, Sec. 2.4.4 et 2.4.5, ouvre la
voie au calcul de DNS de fragmentation de jets liquides incom-
pressibles avec Gerris (Agbaglah et al., 2011) puis avec Basilisk
avec les travaux de Chen et al. (2013) et Ling et al. (2017b)
respectivement sur l’atomisation des jets à collision (impinging
jets) et des jets biodiesel. Dans l’implémentation de ce solveur,
les deux phases sont considérées comme composant un fluide

monophasique à viscosité et masse volumique variable, Sec. 4.2.1. Dans ce cadre, l’indicatrice
de phase α est égale à 0 dans la phase gazeuse et à 1 dans la phase liquide tandis que toutes
les cellules pour lesquelles α ∈]0, 1[ contiennent l’interface séparant les phases. La viscosité et
la masse volumique du fluide monophasique s’expriment alors telles que µ = αµl + (1 − α)µg

et ρ = αρl + (1 − α)ρg. Dans ce contexte, l’équation de continuité, Eq. (4), peut aussi être
réécrite en fonction de α telle que :

∂tα +∇ · (αu) = 0. (4)

Afin de calculer l’advection de l’interface, cette forme de l’équation de continuité est résolue à
l’aide d’un schéma Volume-Of-Fluid (VOF) géométrique et linéaire par morceaux, Sec. 2.5.1.
Ce type de schéma se scinde généralement en deux parties : reconstruction de l’interface et
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calcul des flux géométriques le long de l’advection de l’interface. Une fois l’interface advectée,
il est nécessaire de calculer le terme de tension de surface σκδSn intervenant dans l’équation
de conservation de quantité de mouvement, Eq. (3), ce qui est toujours un défi à ce jour
(Gorokhovski & Herrmann, 2008). La résolution de ce terme dans Basilisk suit l’approche de
force surfacique continue (Continuum-Surface-Force, CSF), Sec 2.5.2, proposée par Brackbill
et al. (1992) pour laquelle les approximations suivantes sont faites :

σκδSn ≈ σκα, (5)
κ ≈ ∇ · ñ, (6)

ñ = ∇α
∥∇α∥

. (7)

Cependant, cette méthode est connue pour générer de courants non physiques dans le cas de
gouttes stationnaires. Afin de dépasser cette limite, deux conditions doivent être respectées.
Premièrement, le calcul des gradients de pression et d’indicatrice de phase, intervenant respec-
tivement dans les Eq. (3) et (7), doit être compatible. Cette première condition est respectée
en implémentant la même procédure pour les deux gradients. Deuxièmement, l’approximation
de la courbure κ de l’interface doit être constante. Cette condition dépend de la qualité de
l’estimation de κ et peut être respectée à l’aide des fonctions de hauteur généralisées (gener-
alised height function), Sec. 2.5.3.

h

Figure 4: Schéma d’une in-
terface avec une courbure im-
portante capturée par un sten-
cil asymétrique. La grille en
pointillé représente un stencil
symétrique de taille 3 × 7. Les
traits gras indiquent la cellule
pour laquelle on cherche la cour-
bure. Les flèches représentent la
hauteur h.

Cette approche peut être complétée par l’utilisation de
stencils asymétriques, voir Fig. 4, afin de capturer cor-
rectement les morceaux d’interface présentant une courbure
importante tout en évitant de fixer la taille des stencils
en amont de la simulation et en minimisant l’usage mé-
moire lors des calculs. Les fonctions de hauteur généralisées
présentent toutefois deux limites. Même pour des interfaces
moyennement courbées, ces fonctions peuvent générer des
hauteurs inconsistantes. Leur performance s’écroule pour
calculer la courbure d’une interface faiblement résolue, c-à-d
lorsque le rayon de courbure est du même ordre de grandeur
que la taille du maillage. Ces deux écueils peuvent être
évités en conservant les hauteurs consistantes et en les util-
isant pour interpoler l’interface par une parabole (2D) ou
un paraboloïde (3D). La courbure peut ensuite être calculée
en différenciant la fonction analytique de l’interpolation.
Finalement, une fois la courbure correctement calculée et
l’interface correctement advectée, l’écoulement peut évoluer,
se fragmenter et générer des gouttes qu’il est possible de dé-
tecter. Cette dernière opération peut-être faite à l’aide de
la routine tag de Basilisk, Sec. 2.5.4. À partir du champ
d’indicatrice de phase α, cette routine parcourt les cellules
composant la phase liquide, c-à-d pour lesquelles α ⩾ 10−6,
et affecte un même indice aux cellules faisant partie du même voisinage, c-à-d les cellules in-
cluses dans un volume de liquide défini par une interface. Le volume, la position du barycentre
et la vitesse d’une goutte j peuvent alors être déterminés en calculant la moyenne de chaque
variable pondérée par le volume des cellules ayant le même indice j.
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ρl (kg/m3) ρg (kg/m3) νl (m2/s) νg (m2/s) σ (N/m)
998.3 1.205 1.004× 10−6 15.11× 10−6 0.073

Table 1: Propriétés physiques considérées par Felis et al. (2020) en conditions normales.

Distributions multimodales pour les jets agricoles :
une analyse statistique de la population de gouttes d’un spray atomisé par pression

L’étude des jets agricoles, ou dans des configurations proches, est un défi en soi du fait de
la présence d’une turbulence intense, de l’existence d’une grande variété de mécanismes de
fragmentation une fois le cœur liquide pincé (Guildenbecher et al., 2009) et du développement
du jet sur de grandes distances, typiquement plusieurs centaines de diamètres de buse (Felis-
Carrasco, 2017). La configuration dans laquelle un jet liquide est injecté dans du gaz au repos
à une vitesse suffisante pour se placer dans le régime de fragmentation second wind induced ou
d’atomisation correspond aux sprays atomisés par pression (pressure atomised jets). À partir des
mesures expérimentales réalisées par Felis et al. (2020) sur un spray de cette sorte, une analyse
statistique de la population de gouttes générées par la fragmentation est faite. Cette analyse
met en lumière la nature multimodale des distributions en taille et en vitesse axiale des gouttes
ainsi que la bonne correspondance entre les distributions en taille et la description théorique
développée par Novikov & Dommermuth (1997) dans le cadre de la turbulence intermittente.
Il est aussi montré que le modèle quadratique de Lee & An (2016) offre une bonne description
qualitative de la ligne centrale de la distribution jointe en taille et en vitesse axiale. En outre,
sur la base des propriétés des distributions marginales, cinq sous-groupes de gouttes peuvent
être définis à partir de la distribution jointe, chacun des sous groupes présentant une taille et
une vitesse caractéristique. Cette analyse a été publiée dans la revue Physical Review Fluids
en février 2021, Sec. 3.2.

DTV

y

x

g

(d,u,v)

Figure 5: Schéma de l’expérience mise
en place par Felis et al. (2020) avec g⃗
la gravité, d le diamètre et (u, v) les
vitesses axiale et transversale, suivant
x et y, d’une goutte.

Le principe de l’expérience mise en place par Felis et
al. (2020) est illustré par la Fig. 5. Dans cette expéri-
ence, la buse est circulaire de diamètre dn = 1.2 mm et
de longueur Ln/dn = 50, ce qui assure une turbulence
développée dans la conduite. La buse est orientée selon
la verticale et pointe vers le bas. L’eau est injectée dans
l’air à une vitesse uinj = 35m/s dans des conditions
normales (297 K, 1 atm) et les conditions d’injection
assurent qu’il n’y ait pas de cavitation dans la buse.
Les propriétés physiques des phases sont résumées dans
la Table 1. Pour cette configuration, les nombres adi-
mensionnés sont tels que Rel = 41833, Wel = 20158,
Weg = 24 et Oh = 0.0034, ce qui place le jet dans le
régime de fragmentation second wind induced.

Trois techniques de mesure sont utilisées. Une
mesure par sonde optique permet d’obtenir les fractions
massique et volumique moyennes de liquide. Un dis-
positif de vélocimétrie laser par effet Doppler (Laser
Doppler Velocimetry, LDV) mesure séparément les
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vitesses de la phase gazeuse et liquide. Enfin, la vélocimétrie par suivi de gouttes (Droplet
Tracking Velocimetry, DTV) permet de mesurer simultanément le volume ainsi que les vitesses
axiale et transversale des gouttes dans la zone dispersée du spray. Les mesures DTV sont
réalisées loin de la buse : x/dn ∈ {400, 500, 600, 700, 800}. Cette section présente l’analyse
statistique de ce dernier jeu de mesures et met en lumière la nature multimodale de la distribu-
tion jointe en taille et vitesse ainsi que l’existence de différents sous-groupes de gouttes. Deux
descriptions théoriques, de natures très différentes, de la distribution en taille des gouttes issues
de la fragmentation d’un jet sont testées. La première repose sur sur la mécanique fine prenant
place lors de la rupture des ligaments et a été proposée par Villermaux et al. (2004). Dans le
cadre de cette description, les gouttes pouvant se fragmenter prennent une forme de ligaments
du fait des interactions aérodynamiques et de la tension de surface. Les gouttes produites par
la fragmentation d’un ligament présentent des tailles dont la distribution suit une loi Γ, qui
est fonction de l’ordre de corrugation n du ligament (Villermaux et al., 2004; Marmottant &
Villermaux, 2004):

p(x = d/⟨d⟩) = nn

Γ(n)
xn−1e−nx (8)

Lorsque les ligaments subissant une fragmentation présentent différents diamètres, ceux-ci sont
aussi Γ distribués et les gouttes issues de leur fragmentation suivent alors une loi Γ composée
(Kooij et al., 2018):

p(x = d/⟨d⟩) = 2(mn)(m+n)/2x(m+n)/2−1

Γ(m)Γ(n)
Km−n(2

√
nmx) (9)

La seconde description repose sur la description statistique de la turbulence intermittente. À la
suite des travaux de Novikov (1990, 1994) sur l’intermittence des petites échelles de la turbulence
et les distributions infiniment divisables, Novikov & Dommermuth (1997) ont proposé une forme
analytique du coefficient d’intermittence ainsi qu’une distribution en taille de gouttes pour les
sprays turbulents :

p
(
y = − ln(l/l1)

)
= 1√

2πσ
exp

{
− a

2σ2 (ay−1/2 − y1/2)2
}

(10)

où l1 est la taille de l’élément à l’origine de la cascade, l est la taille d’un élément issu de la
cascade, a = ⟨y⟩ et σ2 = ⟨(y − a)2⟩. Dans cette description, les gouttes sont supposées suivre
une cascade de fragmentation, comme la cascade de Richardson (1922), avec toute fois une
correction pour prendre en compte l’intermittence de leur formation.

Concernant la description statistique de la distribution jointe en taille et vitesse axiale des
gouttes à x/dn = O(100), l’approche intégrale de Lee & An (2016) dérivée dans le contexte
de la combustion et proche de la buse, x/dn = O(10), est testée. Cette approche permet
d’obtenir une formule quadratique du diamètre moyen de Sauter1 d[32] en fonction de la vitesse
des gouttes en faisant deux hypothèses. Premièrement, la phase liquide est supposée être
complètement fragmentée. Deuxièmement, d’une manière similaire aux développements de
Tennekes & Lumley (1972), le terme de dissipation visqueuse est supposé pouvoir être exprimé
comme le ratio de la vitesse et du diamètre d[32] des gouttes. Il reste alors un paramètre libre
K et la relation quadratique s’écrit telle que :

1Celui-ci représente le diamètre d’une sphère ayant le même rapport volume / surface que la goutte d’intérêt.
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d[32] =
3σ +

√
9σ2 +Kρlµlū

u2
inj−ū2

2

ρl
u2

inj−ū

2

(11)

Celle-ci offre une bonne description de la ligne centrale des distributions jointes obtenues pour
des sprays atomisés par pression (pressure atomised sprays) avec et sans rotation.

Pour chaque position axiale, les mesures DTV ont été réalisées sur plusieurs positions
transversales, y/dn ∈ [−20, 20] pour x/dn = 400 et y/dn ∈ [−32, 32] pour x/dn = 800. Dans la
suite, les statistiques données à une position x/dn agrègent l’ensemble des positions transver-
sales y/dn, sauf mention contraire. Par souci de clarté, la PDF en nombre d’une variable
quelconque ζ est dénotée Pζ . En outre, entre la moyenne algébrique et la moyenne pondérée
en volume, la seconde est retenue et a pour expression ⟨ζ⟩V = ∑Ntot

i=1 Viζi/
∑Ntot

i=1 Vi avec Ntot le
nombre total de gouttes, i l’indice d’une goutte, Vi son volume et ζi la valeur de ζ pour cette
goutte. La Fig. 6 donne les distributions Pd/⟨d⟩V , Pu/⟨u⟩V et Pv/⟨u⟩V . Étant donné que la vitesse
transversale v est à moyenne nulle du fait de la symétrie de l’écoulement, elle est normalisée
par la moyenne de la vitesse axiale u.

(a)

(b) (c)

Figure 6: Distributions de (a) d/⟨d⟩V , (b) u/⟨u⟩V et (c) v/⟨u⟩V pour les données DTV de Felis
et al. (2020). La distribution en taille est donnée en échelle logarithmique et les distributions
en vitesse en échelle semi logarithmique.

La distribution Pd/⟨d⟩V présente un skewness et un kurtosis importants. Le premier diminue
avec x/dn de 10 à 5 et le second diminue de 155 à environ 35. De telles valeurs reflètent le fait
que la distribution s’étend sur deux décades, d/⟨d⟩V ∈ [0.1, 40], et que la majorité des tailles
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sont contenues dans la première décade, ce qui est corroboré par la médiane de d/⟨d⟩V égale
à 0.51 en moyenne. En outre, la déviation standard est constante selon x/dn. Elle est égale
à 0.93 en moyenne, caractéristique d’une concentration importante des données. En outre,
⟨d⟩V est compris entre 121.7 et 129.3 µm pour les cinq positions expérimentales. Du côté des
grandes tailles, la décroissance de la distribution suit une loi d’échelle (d/⟨d⟩V)−2.7, ce qui diffère
de la décroissance exponentielle déterminée par Simmons (1977). De plus, deux modes sont
visibles à chaque position x/dn, d/⟨d⟩V ∈ {0.2, 0.4}. À x/dn = 400, un troisième mode est
visible pour d/⟨d⟩V = 1. Le deuxième correspond à l’échelle caractéristique de l’instabilité de
Kelvin Helmholtz (Hoyt & Taylor, 1977) : λKH = σ/ρgu

2
inj = dn/Weg = 49.6 µm, notée λ+

KH

une fois normalisée par ⟨d⟩V et λ+
KH ≈ 0.4. La distribution Pu/⟨u⟩V présente aussi deux modes

pour tous les x/dn, u/⟨u⟩V ∈ {0.2, 1.4}. Mise à part une légère différence pour la décroissance
vers les grandes tailles, les cinq distributions montrent une bonne similarité. Cette fois, les
valeurs du skewness et du kurtosis sont quasiment constantes et faibles comparées à celles de
Pd//⟨d⟩V , respectivement égales en moyenne à 0.58 et 2.14. La première s’explique par la légère
dissymétrie de la distribution due à la prédominance du mode de basse vitesse. La seconde
s’explique par la faible longueur du domaine de définition, du fait des conditions aux limites sur
la vitesse des gouttes. En effet, le jet est globalement advecté vers les grands x/dn, u/⟨u⟩V ⩾ 0,
et, à x/dn fixé, il existe un maximum de vitesse au niveau du centre du jet, u/⟨u⟩V ⩽ Uinj/⟨u⟩V .
Enfin, les valeurs du skewness et du kurtosis diffèrent des valeurs d’un jet monophasique, -0.5 et
2.8, qui ont des distributions quasi gaussiennes. Ici, la distribution a une dissymétrie inversée
et un étalement plus faible. La distribution Pv/⟨u⟩V présente quant à elle un seul mode pour
v/⟨u⟩V = 0 et est symétrique avec un skewness égal à -0.05 en moyenne. Son kurtosis diminue
avec x/dn et est égal à 9.39 en moyenne, caractérisant une grande dispersion des ailes de
la distribution et un écart important avec la distribution gaussienne. Cette distribution se
comporte d’une manière plus classique que les deux distributions précédentes et est similaire à
celles de la littérature de la turbulence.

(a) (b)

Figure 7: Ajustement de la distribution expérimentale Pd/⟨d⟩V à x/dn = 800 par (a) la distri-
bution de Kooij et al. (2018), Eq. (9), et par (b) celle de Novikov & Dommermuth (1997), Eq
(10).

Les deux descriptions théoriques de la distribution en taille sont testées sur les données
expérimentales. Celles-ci montrant deux modes, la fonction d’ajustement choisie dans chaque
cas est une combinaison linéaire de deux fonctions de référence. La Fig. 7 montre le résultat
obtenu pour la distribution dérivée par Kooij et al. (2018) et Novikov & Dommermuth (1997) à
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l’issue de la campagne systématique de test d’ajustement. Ici, l’accent est mis sur la région des
modes, c-à-d des petites tailles. Ainsi, les ajustements sont testés par rapport à la distribution
expérimentale pour d/⟨d⟩V ⩽ 7 et sont calculés en mode linéaire. Leur performance est mesurée
par le carré du coefficient de corrélation, r2. Entre les deux fonctions d’ajustement, celle de
Kooij et al. (2018) échoue systématiquement à capturer le pic à d/⟨d⟩V ≈ 0.2 bien que r2 = 1.04,
contrairement à celle de Novikov & Dommermuth (1997) qui capture le pic et pour laquelle
r2 = 0.97. Cette dernière capture correctement la distribution expérimentale pour les cinq
positions x/dn.

1

2

3

4

5

(a) (b)

Figure 8: Distribution jointe en taille et en vitesse axiale à x/dn = 600 avec (a) les sous-groupes
de gouttes définis par les caractéristiques des distributions marginales et (b) l’ajustement de la
ligne centrale par la fonction de Lee & An (2016).

Les distributions Pd/⟨d⟩V et Pu/⟨u⟩V sont toutes deux bimodales. Afin de connaître comment
les modes sont corrélés, il est judicieux d’étudier la distribution jointe en taille et en vitesse
axiale, donné par la Fig. 8 à x/dn = 600. Deux tendances principales se détachent : les
petites tailles montrent une dispersion importante en vitesse tandis que la dispersion en vitesse
est beaucoup plus faible pour les grandes tailles, qui atteignent une asymptote en vitesse.
De plus, il est possible d’observer un «chemin» de probabilités relativement larges liant ces
deux régions. Sachant que chaque mode en taille et en vitesse est potentiellement marqueur
de comportements physiques différents, reporter les caractéristiques de Pd/⟨d⟩V et Pu/⟨u⟩V sur
la distribution jointe pourrait permettre de définir des sous-groupes de gouttes soumis à ces
différents comportements. Les caractéristiques en question sont les domaines de définition de
chaque distribution marginale, leur dispersion et les limites entre les modes. Prenons l’exemple
à x/dn = 600 donné par la Fig. 8a. Les domaines de définition délimitent directement les
bords extérieurs des sous-groupes : d/⟨d⟩V ∈ [0, 20] et u/⟨u⟩V ∈ [−0.1, 2]. La limite entre les
modes de vitesse est fixée à u/⟨u⟩V = 1 et celle entre les modes de tailles à d/⟨d⟩V = 0.3. En
complément, la séparation entre les deux modes en taille et la queue de la distribution est fixée
à 3σd ≈ 3 où σd est la déviation standard de la distribution en taille. Les gouttes dont les tailles
sont comprises entre 0 et 3σd représentent 96% du total de la distribution, une valeur proche
de celle d’une distribution gaussienne. Ces délimitations font ainsi ressortir l’existence de 5
sous-groupes de gouttes dont le nombre de Stokes St, la répartition en nombre et en volume
sont donnés dans la Table 2. Le nombre de Stokes est calculé avec la formule de Ferrand et al.
(2003).

L’expression analytique de la ligne centrale de la distribution jointe proposée par Lee & An
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(2016) dans le contexte de la combustion doit être légèrement adaptée. En effet, au lieu de
considérer la vitesse d’injection, il est nécessaire d’utiliser une autre vitesse de référence pour
capturer la tendance expérimentale loin de la buse : la vitesse du jet sur son axe. La Fig. 8b
compare la distribution jointe expérimentale et l’ajustement obtenu avec l’expression de Lee
& An (2016). Cette dernière offre une bonne description qualitative pour plusieurs valeurs du
paramètre libre K. Le choix de K peut être affiné en comparant la distribution expérimentale
en taille et celle reconstruite à partir de l’expression de la ligne centrale. De la sorte, on obtient
K = 7⟨u⟩6V × 10−3.

(a)

(b)

Figure 9: Photographie expéri-
mentale (a) de ligaments le long
du cœur liquide (3dn × 3dn) et
(b) d’une rupture par sac (12dn×
12dn) dans la zone dispersée
(Felis-Carrasco, 2017).

Pour finir, il est possible de s’intéresser au transfert de
volume entre les sous-groupes en les associant aux différents
mécanismes de fragmentation, Sec. 3.3.1. En effet, étant
donné que chaque sous-groupe est associé à une vitesse et
une taille moyenne, il est légitime de considérer que les
gouttes perçoivent une physique différente ou sont issues de
mécanismes de fragmentation différents. Les deux mécan-
ismes de fragmentation observés expérimentalement dans
le spray sont la rupture ligamentaire et la rupture par sac
(bag breakup). La seconde fragmentation se produit sur des
gouttes de grande taille ayant une vitesse importante qui
prennent la forme d’un sac avec un bourrelet au niveau de
l’ouverture. Une fois la goutte déformée, la fragmentation
de ces gouttes se déroule en deux temps : perçage et frag-
mentation de l’enveloppe puis fragmentation du bourrelet
toroïdal. La Fig. 9 illustre ces deux mécanismes de frag-
mentation. Le sous-groupe 5 contenant les gouttes les plus
grandes et les plus rapides, il peut être vu comme un réser-
voir de liquide qui se déverse dans les autres sous-groupes.
On peut conjecturer que ces gouttes subissent des ruptures
par sac. D’après Rimbert & Castanet (2011), les gouttes
produites par la rupture de l’enveloppe sont bien plus pe-
tites que celles produites par le bourrelet. Dans un second
temps, il est possible de conjecturer que les nouvelles gouttes
produites ont la même vitesse que la goutte qui se fragmente.
Les gouttes produites par bag breakup se situent alors dans
les sous groupes 3 et 4 en fonction de leur taille. Celles

# u/⟨u⟩V d⟨d⟩V volume (%) nombre (%) St
1 [0, 1] [0, 0.3] O(10−2) 25.2 0.83
2 [0, 1] [0.3, 3] 3.69 48.8 7.92
3 [1, 2] [0, 0.3] O(10−3) 1.20 0.39
4 [1, 2] [0.3, 3] 10.8 22.2 7.61
5 [1, 2] [3, 20] 85.5 2.55 44.0

Table 2: Répartition des sous-groupes en volume et en nombre de gouttes et leur nombre de
Stokes (Ferrand et al., 2003) pour la distribution jointe à x/dn = 600.
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du sous-groupe 3 ne subissent plus de fragmentation mais
ralentissent et se retrouvent alors dans le sous-groupe 1. Les gouttes du sous-groupe 4 sont
ralenties et se fragmentent par rupture ligamentaire. En fonction de la taille et de la vitesse
de la goutte de ce sous-groupe, les nouveaux éléments produits se retrouveront dans les sous-
groupes 1 ou 2. En complément, il est possible de regarder les distributions en taille de chaque
sous-groupe, Sec. 3.3.2. Celles des sous-groupes 2, 4 et 5 montrent une décroissance exponen-
tielle correspondant à l’argument de random stripping de Villermaux (2020) et indiquent que
la décroissance en (d/⟨d⟩V)−2.7 observée en Fig. 6a est une composition de ces décroissances
exponentielles.

La dépendance de la fragmentation des jets au nombre de Weber :
Simulations Numériques Directes

Les écoulements de fragmentation à grands nombres de Reynolds et de Weber présentent
une grande diversité d’échelles et d’objets dont la dynamique est en partie fixée par la tension de
surface et les caractéristiques de la turbulence, ce qui rend ces écoulements complexes. Réaliser
des Simulations Numériques Directes (Direct Numerical Simulations, DNS) de ces écoulements
requiert de résoudre les équations de Navier Stokes en incluant la tension de surface, Eq. (2) et
Eq. (3), pour l’injection d’une phase dense dans une phase légère, Sec. 4.2.1. Une résolution fine
de l’interface est cruciale et peut être obtenue à l’aide d’une utilisation optimisée des ressources
de calcul, notamment grâce aux maillages adaptatifs, Sec. 4.2.2. Les phases sont dénotées par
l’indice i ∈ {1, 2}, respectivement dense et légère. La phase 1 correspond au liquide et est
injectée par une buse de diamètre dn dans la phase 2 qui correspond au gaz au repos. L’objectif
est de simuler la fragmentation d’un jet rond dans des configurations proches de la configuration
expérimentale de Felis et al. (2020), en ciblant les régimes de fragmentation second wind induced,
We2 ∈ [13, 40.3] et d’atomisation, We2 ⩾ 40.3. Afin de compléter l’étude expérimentale de
Felis et al. (2020) qui porte sur le champ lointain, x/dn ⩾ 400, l’étude numérique se concentre
sur le champ proche de la buse, jusqu’à x/dn ≈ 28. Étant donné que la simulation d’un jet
d’eau dans l’air est trop gourmande en ressources informatiques, il est nécessaire de déterminer
d’autres valeurs des paramètres physiques permettant de réaliser des simulations dans des
temps raisonnables et en respectant les conditions sur les nombres adimensionnels définissant
les régimes de fragmentation. En complément, la fragmentation peut être accélérée en excitant
le mode le plus instable du jet. Cette section présente le choix des paramètres physiques et la
détermination du mode le plus instable avant d’analyser les données. L’analyse des données
et la comparaison des simulations, entre elles et avec l’expérience, est faite en trois temps :
statistiques des gouttes, statistiques jointes en taille et en vitesse et reformulation dans l’espace
des phases (Rep, Ohp), où Rep et Ohp sont basés sur le diamètre d’une particule et sa vitesse
relative par rapport au gaz.

Le domaine est une boîte cubique de longueur Lx = 28 dn. Un jet rond de liquide est
injecté à une vitesse moyenne Uinj dans du gaz au repos le long de l’axe x à travers un disque
de longueur lx et de diamètre dn, dénommé «buse» par la suite. Un signal sinusoïdal est
imposé à l’injection pour exciter l’instabilité de Kelvin Helmholtz et accélérer la fragmentation.
La vitesse d’injection est alors telle que uinj = Uinj

(
1 + A sin(2πft)

)
, (A, f) ∈ R2. Le temps

d’advection est tel que Ta = dn/Uinj. Pour simuler des configurations proches de la configuration
expérimentale, les valeurs des paramètres physiques sont adaptées, Sec. 4.2.3. Par exemple, un
écoulement avec un rapport de densité de l’ordre de 103 serait très coûteux, voire inaccessible.

xx



Synthèse

ρ1 (kg/m3) ρ2 (kg/m3) ν1 (m2/s) ν2 (m2/s) σ (N/m) dn (m) Oh

1 1/55 10−6 10−6 10−5 4.48× 10−3 4.725× 10−3

Table 3: Paramètres fixes et nombre d’Ohnesorge correspondant.

DNS 1 2 3 4 5 6 7 8 9 10
Uinj (m/s) 1.357 1.567 1.787 1.919 2.073 2.216 3.0 3.5 4.0 4.5
We2 (×101) 1.5 2.0 2.6 3.0 3.5 4.0 7.33 9.98 13.03 16.5
Re1 (×103) 6.1 7.0 8.0 8.6 9.3 10.0 13.4 15.7 17.9 20.2

Table 4: Vitesses d’injection et nombres de Weber gaz et de Reynolds liquide correspondants.

Les contraintes numériques imposent ρ1/ρ2 ⩽ 100, max(Re) = O(104) et σ = O(10−5)N/m,
respectivement dénotées C0, C1 et C2. De plus, l’attention est portée sur l’obtention de nombres
adimensionnels proches des valeurs expérimentales, même si les paramètres physiques sont
très différents. Afin de simuler une fragmentation dans les régimes second wind induced et
d’atomisation, We2 est respectivement tel que We2 ∈ [13, 40.3] et We2 ⩾ 40.3, ce qui fait
une contrainte supplémentaire C3. En complément des régimes de fragmentation, reproduire
des déformations de gouttes, définies par Oh, similaires à l’expérience est intéressant, soit
C4 : Oh = O(10−3). Du côté du rapport de viscosité, reproduire la valeur expérimentale
ν2/ν1 = 15 ralentirait le processus de fragmentation, ce qui va à l’encontre de l’optimisation
des ressources de calcul. À la place, il est possible de conserver le rapport des viscosités
dynamiques µ1/µ2 = (ρ1ν1)/(ρ2ν2) = Ca1/Ca2 où ρiνidn est homogène à un débit massique et
Cai dénote le nombre capillaire de la phase i. Expérimentalement, µ1/µ2 = 55, ce qui impose
la dernière contrainte physique C5. La liste des contraintes est telle que :

{
C0 : ρ1/ρ2 < 100
C1 : max(Re) = O(104) ,

{
C2 : σ = O(10−5) N/m
C3 : We2 ⩾ 13 ,

{
C4 : Oh = O(10−3)
C5 : ρ1ν1/ρ2ν2 = 55 .

(12)
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Figure 10: Taux de croissance temporel
normalisé (α∗

r)0 pour Uinj = 3.0 m/s avec
a = dn.

Une fois ceci posé, les paramètres ρ1, ρ2, ν1, σ,
Uinj et dn sont libres. La géométrie est fixée pour
les différentes simulations et seule Uinj varie. La
table 3 donne les valeurs des paramètres fixes et la
table 4 les valeurs des vitesses d’injection choisies
et les nombres de Weber gaz et de Reynolds liquide
correspondants.

Le nombre d’Ohnesorge étant constant pour les
10 DNS, le nombre de Weber critique pour lequel
la fragmentation d’une goutte se déclenche est fixe
(Hinze, 1955) et les régimes de fragmentation des
gouttes durant l’atomisation secondaire sont défi-
nis sur la même gamme de Weber gaz (Faeth et
al., 1995). Afin d’accélérer la fragmentation, il est

intéressant de déclencher l’instabilité de Kelvin Helmholtz en excitant le mode axisymétrique
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le plus instable du jet, Sec. 4.2.4. Les travaux de Yang (1992) permettent de calculer le taux
de croissance temporel en fonction de la fréquence des modes de déformation d’un jet. La
fréquence du mode le plus instable correspond au taux de croissance maximum et est notée
f . La fig 10 illustre l’évolution du taux de croissance temporel normalisé (α∗

r)2
0 du mode ax-

isymétrique d’un jet rond en fonction de son nombre d’onde. La fréquence du mode le plus
instable est déterminée pour chaque vitesse d’injection.

La configuration numérique et les performances des calculs sont données dans la Sec. 4.2.5.
Le niveau de raffinement du maillage est fixé à 12, ce qui donne une taille de cellule minimale
telle que ∆min = Lx/212 = 30.5 µm et dn/∆min = 146.8. Par conséquent, les gouttes les
plus petites ayant un sens physique ont un volume V tel que V ⩾ ∆3

min. Cette limite impose
un diamètre minimum pour les gouttes dmin = 3

√
6/π∆min ≈ 37.8 µm, soit environ 3 fois le

diamètre minimum obtenu expérimentalement (Vallon et al., 2021). Le pas de temps est fixé
par la condition CFL avec le nombre de Courant égal à 0.8. 431 256 heures scalaires ont
été nécessaires pour calculer les 10 simulations. Les DNS 3 à 10 ont nécessité 50 400 heures
chacune et les DNS 1 et 2 uniquement 12 600 et 15 456 heures. Toutes les DNS ont été calculées
sur le supercalculateur Occigen du Centre Informatique National de l’Enseignement Supérieur
(CINES).

La stationnarité de l’écoulement est démontrée par l’étude de l’énergie cinétique turbulente,
Sec. 4.3.1. L’étude de l’interface du jet permet de comparer le développement du mode instable
et du front du jet pour les 10 DNS, Sec. 4.3.2. Les moments statistiques des populations de
gouttes générées par les DNS sont analysés et comparés en Sec. 4.3.3. Parmi eux, l’évolution
temporelle du moment d’ordre 0, c-à-d le nombre total d’éléments Ntot, est illustré pour chaque
DNS en Fig 11a. Avant toute chose, il est à noter que moins de 1000 gouttes sont produites dans
les DNS 1 et 2, ce qui est insuffisant pour étudier les statistiques de ces deux populations. Ces
deux DNS sont ainsi mises de côté par la suite. A contrario, le nombre de gouttes générées pour
les DNS 3 à 10 est suffisant pour faire une étude statistique. L’évolution de Ntot se distingue
pour les deux régimes de fragmentation du jet, second wind induced et d’atomisation, avec
Ntot = O(103) et Ntot = O(104) respectivement. Cependant, ces évolutions collapsent une fois
le nombre de gouttes normalisé par We1.8

2 et tendent vers NtotWe−1.8
2 = 6.

Une fois les moments statistiques étudiés, il est possible de passer à l’étude des distributions
des tailles et des vitesses, Sec. 4.3.4. Comme précédemment, la distribution d’une variable ζ
est dénotée Pζ et les distributions des variables normalisées par leur moyenne sont étudiées.
Du fait de la symétrie de l’écoulement, ⟨uy⟩ ≈ 0 et ⟨ux⟩ est utilisé pour normaliser la vitesse
transversale uy. La Fig 11 donne les distributions de d/⟨d⟩, ux/⟨ux⟩ et de uy/⟨ux⟩ à t/Ta =
15. Puy/⟨ux⟩ collapse pour les deux régimes de fragmentation tandis que Pd/⟨d⟩ et Pux/⟨ux⟩
montrent un collapse différent pour chacun des régimes. Les ailes de Puy/⟨ux⟩ suivent une loi
exponentielle de coefficient ±3 en régime second wind induced et de coefficient ±6 en régime
d’atomisation. La différence entre ces deux coefficients, et par conséquent l’épaisseur des ailes
entre les deux régimes, peut s’expliquer par l’augmentation du cisaillement entre les deux phases
avec l’augmentation de We2. Pd/⟨d⟩ présente des modes très différents entre les deux régimes.
Pour le régime d’atomisation, un seul mode existe, d/⟨d⟩ = 0.5, tandis qu’il en existe 3 pour le
second régime, d/⟨d⟩ ∈ {0.2, 1, 2}. Bien que le mode principal semble translaté vers les petits
d/⟨d⟩ lorsque We2 augmente, il correspond à la même gamme de tailles, d ∈ [47, 58] µm. Dans
le régime d’atomisation, la distribution décroît en suivant une loi puissance de coefficient −2.7,
identiquement à la distribution expérimentale (Vallon et al., 2021), ce qui va à l’encontre de la
décroissance en loi exponentielle observée expérimentalement par Simmons (1977). Le passage
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Figure 11: (a) Évolution temporelle du nombre de gouttes et distributions numériques (b)
des tailles d/⟨d⟩, (c) des vitesses axiales ux/⟨ux⟩ et (d) des vitesses transversales uy/⟨ux⟩ à
t/Ta = 15. Les DNS dans le régime second wind induced sont indiquées par les points bleus et
celles dans le régime d’atomisation par les losanges rouges.

en échelle loglog indique l’existence de deux décroissances exponentielles avec une transition
entre les deux suivant (d/⟨d⟩)−2.7, ce qui permet de retrouver le résultat de la littérature. En
outre, les distributions théoriques en taille, Eq (8) à (10), sont testées, Sec. 4.3.5. Il ressort que,
sur les données disponibles, la distribution de Kooij et al. (2018) offre la meilleure description
quantitative tandis que celle de Novikov & Dommermuth (1997) offre une meilleure description
qualitative. Pux/⟨ux⟩ montre des spécificités inattendues. En fragmentation des jets, la vitesse
axiale des gouttes est positive, le spray étant globalement advecté vers les x/dn croissants, et
inférieure à Uinj. Ici, la distribution présente un pic pour ux/⟨ux⟩ = 0 et des probabilités non
négligeables pour ux/⟨ux⟩ ∈ [−2, 0]. Dans le régime second wind induced, la distribution est
centrée sur ux/⟨ux⟩ = 1. En outre, l’aile droite de la distribution correspond à des vitesses
supérieures à Uinj. Par exemple, pour la DNS 6 où We2 = 40, P

(
ux/⟨ux⟩ ∈ [2, 3]

)
≥ 0. Or

⟨ux⟩ ≈ 1 m/s soit ⟨ux⟩ ≈ 0.5 × Uinj, donc P
(
ux/Uinj ∈ [1, 1.5]

)
≥ 0. Concernant les ailes de

la distribution, celles-ci suivent une loi exponentielle de même coefficient, ±4, dans le régime
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d’atomisation mais de coefficients différents, 7 et -2.5, dans le régime second wind induced.
Les vitesses négatives et supérieures à Uinj correspondent principalement aux gouttes localisées
dans la zone de recirculation, derrière le front du jet. Les développements de Saffman (1992)
sur les anneaux de vorticité permettent de quantifier la vitesse de rotation de la recirculation
et par conséquent d’expliquer ces vitesses de gouttes particulières, Sec. 4.4.1.
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Figure 12: (a) Distribution jointe en taille et vitesse axiale pour We2 = 130.3 (DNS 9) à
t/Ta = 15 et (b) évolution spatiale des probabilités P(d/dn ⩾ 0.075, ux/Uinj) ⩽ 0.4 (bleu) et
P(d/dn ⩾ 0.075, ux/Uinj) ⩾ 0.4 (rouge) pour We2 = 99.8 (DNS 8) à t/Ta = 15 en coordonnées
cylindriques. Pour ce dernier, les probabilités sont intégrées le long de la direction orthoradiale
θ et le contour gris représente l’interface moyenne du jet, voir Sec. 4.3.2.

Une fois les spécificités de Pux/⟨ux⟩ expliquées, il est intéressant de regarder les distributions
jointes en taille et en vitesse axiale, Sec. 4.4.2. La Fig. 12a donne la distribution jointe
pour We2 = 130.3 à t/Ta = 15. Contrairement à l’expérience, Fig. 8, la distribution jointe
est moins régulière. Les excursions de la distribution jointe vers les vitesses négatives et les
grandes valeurs de vitesses ont été expliquées précédemment. En revanche, là où l’expérience
ne montre qu’une asymptote vers les grandes tailles, il existe deux asymptotes pour les données
numériques, ce qui est à expliquer. Ces deux asymptotes sont observables pour toutes les DNS
du régime d’atomisation, existent pour d/dn ⩾ 0.075 et se scindent à ux/Uinj = 0.4. La Fig.
12b donne l’évolution spatiale des probabilités jointes des gouttes ayant un diamètre supérieur
à 0.075 dn. Il apparaît que les gouttes telles que ux/Uinj ⩾ 0.4, asymptote supérieure, sont
générées par la fragmentation au niveau de la buse et sont localisées dans la couche limite du
jet. Les gouttes telles que ux/Uinj ⩽ 0.4 sont quant à elles localisées à l’arrière de la nappe de
front et préférentiellement au niveau de son extrémité. Enfin, les deux groupes de gouttes se
recouvrent en partie dans la région de recirculation. Ceci permet de montrer que chacune des
asymptotes correspond à une source de fragmentation distincte : celle de la nappe de front et
celle due au forçage du mode le plus instable.

Les distributions jointes donnent des informations sur la dynamique des gouttes. Cependant,
comparées à l’expérience, les tendances sont différentes, plus complexes et ne permettent pas de
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Figure 13: (a) Histogramme joint en Rep et Ohp pour We2 = 40 (DNS 6) à t/Ta = 30 avec le
contour de l’histogramme joint pour We2 = 165 (DNS 10) et (b) superposition des contours des
histogrammes joints normalisés à t/Ta = 15. Les DNS dans le régime second wind induced sont
indiquées par les points bleus et celles dans le régime d’atomisation par les losanges rouges. Les
3 modes en taille observés pour le régime second wind induced sont numérotés de 1 à 3 dans le
sens de d croissant. Oh∆min

correspond au Ohnesorge calculé sur la taille minimale de maille.

distinguer différents sous-groupes de gouttes comme en Fig. 8a. Afin d’obtenir des informations
sur l’écoulement perçu par les gouttes, il est possible de s’intéresser aux nombres de Reynolds
et d’Ohnesorge particulaires, Sec. 4.4.3 s’écrivant tels que :

Rep = |up,x − Ug,x| d
νl

, Ohp = µl√
ρlσd

(13)

avec d le diamètre de la goutte, up,x sa vitesse axiale et |up,x − Ug,x| sa vitesse relative par rapport
à Ug,x, la vitesse moyenne de la phase gazeuse selon x. La Fig 13a donne l’histogramme en
volume joint en Rep et Ohp en régime second wind induced pour We2 = 40 (DNS 6) à t/Ta = 30.
Cet histogramme présente des frontières marquées et un comportement plus régulier que les
distributions jointes précédentes, aussi bien pour cette valeur de We2 que pour les autres.
En complément, lorsque le contour de l’histogramme obtenu en régime d’atomisation pour
We2 = 165 à t/Ta = 15 est reporté sur cet histogramme, il apparaît que les deux existent
dans le même espace (Rep, Ohp) bien que les régimes de fragmentation du jet soient différents.
Afin d’approfondir la comparaison des histogrammes joints en fonction de We2, la Fig. 13b
montre la superposition des contours obtenus pour les 10 valeurs de We2. Ici, les données
sont observées dans l’espace (Rep/Reaxis, Ohp/Oh1) avec Reaxis le nombre de Reynolds liquide
calculé avec la vitesse axiale du jet sur l’axe et Oh1 le nombre d’Ohnesorge liquide. Cette
normalisation permet d’obtenir le collapse des contours. Quelque soit la valeur de We2, les
contours existent sur la même gamme Ohp/Oh1 =

√
dn/d. Le long de l’axe Rep/Reaxis, la

dispersion vers les petites valeurs augmente avec We2 pour (Ohp/Oh1) ∈ [4, 10], ce qui peut
s’expliquer par l’augmentation du cisaillement entre les phases avec la vitesse d’injection. Cette
dispersion mise à part, les histogrammes existent dans le même espace (Rep/Reaxis, Ohp/Oh1)
pour les deux régimes de fragmentation. En outre, deux segments des contours suivent des lois

xxv



Synthèse

puissance de coefficient -2 et -3. Étudier l’histogramme joint en Rep/Re1 et Ohp/Oh1 permet
d’obtenir des frontières régulières et indépendantes de We2 bien qu’il existe une dynamique
complexe et que les histogrammes évoluent au sein de ces frontières.
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Figure 14: (a) Histogramme expérimental joint en Rep/Reaxis et Ohp/Oh1 à x/dn = 800 et (b)
superposition du contour des histogrammes joints numériques, pour les 10 valeurs de We2, et
expérimentaux, pour les 5 positions x/dn. Ces derniers sont translatés d’un offset multiplicatif
de 3. Les DNS dans le régime second wind induced sont indiquées par les points bleus, celles dans
le régime d’atomisation par les losanges rouges et les données expérimentales par les triangles
verts.

Afin d’aller plus loin dans l’analyse de ces histogrammes joints, il est possible de les com-
parer avec les données expérimentales, Sec. 4.4.4. La Fig. 14a donne l’histogramme joint
en Rep/Reaxis et Ohp/Oh1 calculé sur les données expérimentales de Felis et al. (2020) à
x/dn = 800. Comme pour les données numériques, les frontières de l’histogramme sont bien
définies. Il est possible de les décrire par des lois puissances dont le coefficient évolue entre
−2 et −2.61 pour Rep/Reaxis ⩾ 10−2 et par des lois exponentielles pour Rep/Reaxis ⩽ 10−2.
Dans la région Rep/Reaxis ⩾ 10−2, le Reynolds particulaire évolue tel que Rep = C Oh−2−α

p ,
(C, α) ∈ R2. Or Rep = σ−1µl |up,x − Ug,x|Oh−2

p . Ainsi, on obtient |up,x − Ug,x| = σC Oh−α
p soit

|up,x − Ug,x| ∝ dα/2, ce qui donne, dans cette région, la loi d’évolution de la vitesse relative des
gouttes par rapport à leur diamètre. Sachant que la vitesse relative augmente lorsque le di-
amètre augmente, α appartient nécessairement à R+. La frontière supérieure, évoluant telle que
Rep/Reaxis = 0.215(Ohp/Oh1)−2, résulte de cette contrainte, représente une limite dynamique
et correspond aux gouttes se comportant comme des traceurs, c-à-d telles que |up,x − Ug,x| ≈ 0.

La Fig. 14b compare les contours des histogrammes joints issus des DNS et de l’expérience.
Il est important d’avoir à l’esprit que les premiers sont calculés pour différents We2 dans le
champ proche de la buse tandis que les seconds sont calculés pour We2 = 24 à différentes
positions x/dn dans le champ lointain, c-à-d la zone dispersée. En outre, les contours expéri-
mentaux sont multipliés par 3, ce qui les translatent vers les Rep croissants et permet d’obtenir
le collapse entre les contours numériques et expérimentaux. Un premier fait marquant est que,
avec ou sans offset multiplicatif, les histogrammes joints sont similaires et s’expriment tous sur
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le segment Ohp/Oh1 ∈ [1, 10]. En suite, du fait de l’offset multiplicatif, les contours vérifient
(Rep/Reaxis)num = C × (Rep/Reaxis)exp avec C ≈ 3. Ceci se réécrit tel que

|up,x − Ug,x|num dnum

|up,x − Ug,x|exp dexp

= C
dn,num × ux,axis,num

dn,exp × ux,axis,exp

(14)

et donne |up,x − Ug,x|num dnum ≈ 1.8 |up,x − Ug,x|exp dexp avec ux,axis,exp = 0.8×Uinj,exp = 28 m/s
et ux,axis,num = Uinj,num = 4.5 m/s. De plus, les contours s’expriment sur la même gamme
Ohp/Oh1 donc dexp/dn,exp ≈ dnum/dn,num, ce qui permet de calculer

dnum

dexp

≈ 3.73, |up,x − Ug,x|num

|up,x − Ug,x|exp

≈ 0.48. (15)

Les tailles moyennes expérimentale et numérique sont respectivement ⟨d⟩exp = 95 µm, moyen-
née sur les 5 positions x/dn, et ⟨d⟩num ≈ 300 µm, à t/Ta = 34 en régime second wind induced.
Le ratio des moyennes est égal à 3.16, ainsi ⟨d⟩num/⟨d⟩exp ≈ dnum/dexp et vérifie le résultat
précédent. L’interprétation du ratio de tailles et de vitesses relatives doit être faite avec pré-
caution du fait des différences dans la manière de mesurer la taille et la vitesse des gouttes
numériquement et expérimentalement et aussi du fait que les données numériques et expéri-
mentales correspondent à deux régions de l’écoulement qui sont radicalement différentes, le
champ proche (x/dn ⩽ 28dn) et la zone dispersée (x/dn ∈ [400, 800]). L’offset multiplicatif
entre les contours des deux régions spatiales pourrait révéler l’existence d’une dynamique à
l’échelle du jet, comme par exemple le ralentissement global du spray le long de l’axe. Même
avec ces considérations en tête, il semble correct de conclure que les contours numériques et
expérimentaux sont autosimilaires. Enfin, la différence au niveau de l’asymptote vers les petits
Ohp/Oh1 et grands Rep/Reaxis pourrait s’expliquer par la présence de ruptures par sac dans
l’expérience alors que ce type de rupture n’est pas observé dans les DNS. Une estimation de la
vitesse de glissement entre les phases est aussi proposée, Sec. 4.4.5, et s’élève à environ 90%
de la vitesse d’injection.

Conclusions et perspectives

L’objectif de cette thèse est l’étude de la population de gouttes générées par la fragmentation
d’un jet rond liquide dans les régions proche et lointaine de la buse. Pour ce faire, des mesures
expérimentales jointes de la taille et de la vitesse des gouttes ont été réalisées par DTV dans le
champ lointain. Le champ proche est quant à lui étudié numériquement à l’aide de DNS utilisant
le solveur des équations de Navier Stokes implémenté dans le langage Basilisk, libre et de haut
niveau, développé en C++. Pour chaque champ, l’attention est portée sur la distribution en
taille et en vitesse des gouttes. Deux modèles théoriques de natures très différentes, dérivés de la
turbulence intermittente (Novikov & Dommermuth, 1997) et de la fragmentation ligamentaire
(Villermaux et al., 2004), sont testés dans les deux champs pour décrire la distribution en taille.

L’analyse des mesures DTV de Felis et al. (2020) illustre la nature multimodale des dis-
tributions en taille et en vitesse pour les jets proches des configurations agricoles en régime
second wind induced, We2 = 24, loin de la buse, x/dn ∈ [400, 800]. Une fois les statistiques
des gouttes décrites, la campagne systématique d’ajustement indique que la distribution en
taille issue de l’intermittence de la turbulence offre une meilleure description quantitative. En
outre, un modèle est aussi proposé pour la distribution en vitesse. À partir de la distribution
jointe en taille et en vitesse et des propriétés statistiques des distributions marginales, il est
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possible de définir 5 sous-groupes de gouttes présentant une vitesse et une taille caractéristique
et représentant un pourcentage en volume ou en nombre de gouttes conséquent. Enfin, la ligne
centrale de la distribution jointe est modélisée par la relation quadratique proposée par Lee &
An (2016), qui permet aussi de retrouver la tendance de la distribution en taille.

La campagne DNS se concentre sur les jets ronds liquides jusqu’à x/dn = 28 pour différents
We2, ce qui permet de parcourir les régimes second wind induced et d’atomisation. Aussi bien
la distribution en taille que les distributions en vitesse diffèrent entre les deux régimes. Pour
les tailles, le premier régime montre une distribution trimodale tandis que la distribution est
unimodale pour le second. De nouveau, les statistiques et les distributions sont détaillées et une
campagne d’ajustement est menée pour tester les deux distributions théoriques. Il en ressort que
la distribution issue de la fragmentation ligamentaire offre la meilleure description quantitative.
Celle issue de la turbulence intermittente offre une moins bonne description quantitative mais
sa description qualitative de la distribution, notamment pour les petites tailles, est meilleure.
Les spécificités, à première vue, inattendues de la distribution marginale en vitesse et de la
distribution jointe en taille et vitesse sont respectivement expliquées par la théorie des anneaux
de vorticité de Saffman (1992) et par l’existence de deux sources de fragmentation, l’une au
niveau de la buse et l’autre à l’extrémité de la nappe de front. L’histogramme en volume
joint en nombres de Reynolds et d’Ohnesorge particulaires montre des frontières bien définies,
invariantes avec le nombre de Weber du gaz et vérifiées par les données expérimentales. Enfin,
la vitesse de glissement entre les phases est estimée s’élever à 90% de la vitesse d’injection.

La Sec. 5.2 propose plusieurs pistes pour étendre le travail fait ici et la Sec. 5.3 le conclut.
Entre autres, des éléments sont apportés pour différencier la fragmentation continue d’une
goutte ou ligament et la fragmentation complète d’un jet qui pourrait, dans certaines circon-
stances, montrer une forme d’intermittence. Enfin, des références sont données pour l’étude
de l’écoulement perçu par les gouttes et la possibilité de faire le suivi lagrangien des ligaments
toroïdaux observés à We2 = 40 est démontrée.
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Chapter 1. Introduction

1.1 What is liquid jet atomisation?

Figure 1.1: 100 cycle averages
(left) and rms (right) at the
beginning of the fuel injection
(Smith & Sick, 2006).

At first blush, those three words let think of a mass of liquid
which, in a way or another, breaks into pieces and poten-
tially produces elements of the atomic size. Fluids and solids
are constituted by millions of molecules and atoms, each of
them interact locally with its neighbours in a play of attrac-
tion and repulsion, described by the van der Waals forces.
Those interactions have for consequence the existence of co-
hesive forces within a material. For solids, those forces are
of such amplitudes that no internal motion is possible. In
fluids, the molecules can move freely, more or less easily
depending on the internal friction.

Those cohesive forces also lead to the formation of an
interface between two immiscible fluids, like water in air or
oil in water. Waves or droplets are typical examples. Under
some conditions, a mass of liquid can have a motion leading
some fluid particles to burst through the interface. If the
ejection energy is sufficient, the particles will detach from
the main core and create new liquid fragments. It is very
unlikely that the fragments will be of the atomic scale, as
the energy needed for breaking the chemical bonds in a molecule are of order of hundreds
of kJ/mol, or of the molecule scale as the cohesive forces between molecules is of order of
10 kJ/mol for the hydrogen bonds and of 1 kJ/mol for the van der Waals forces. For instance,
the chemical bond between the atoms of hydrogen and oxygen in a water molecule (H2O) has
an averaged energy of 429.76 ± 0.03 kJ/mol (Haynes, 2017). Let us consider 1 litre of water,
representing 55.6 mol, knowing that 1 ton of petroleum is equivalent to 4.186×1010J (European
Union et al., 2019) or 7.33 barrels of 159 litres, dissociating all the atoms requires a theoretical
energy approximately equivalent to 0.67 litres of petroleum. Compared to this, the energy
bonding the water molecules to each other is negligible. Following the thoughts of Néel (2018),
“fragmentation” might be a more appropriate wording than atomisation. Even so, two main
questions arise here: what sizes the newly created fragments have? Why so?

Figure 1.2: A wave crashing on
the rocky shore at Vallon des
Auffes, Marseilles.

Researching an answer absorbed a large number of sci-
entists across the globe for decades. Far from being only
theoretical, those two questions are of most importance in
the large spectrum of processes in which fragmentation takes
place. In classic combustion engines or cryogenic combus-
tion engines, in rockets for instance, the fuel is injected at
high pressure in a gas chamber, Fig. 1.1. The smaller and
the more homogeneous are the droplet sizes the more effi-
cient the explosion is, e.g. through droplet micro explosions
in bio fuels (Saidur et al., 2011; Wang & Lee, 2007). In
agricultural farming or pesticide spraying, smaller droplets
are subjected to wind drift (Al Heidary et al., 2014) which
can lead to 30% of water losses (Yazar, 1984) in a context
of increasing worldwide population and water use (Jiménez
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1.1. What is liquid jet atomisation?

Cisnero et al., 2014) or to pollute neighbour residential or agricultural areas (Gil & Sinfort,
2005) and impose no-spray buffer zones which increases the pressure on land use (Hilz & Ver-
meer, 2013). Ocean sprays play an important role at the scale of the planet, for example by
influencing either the dynamics of the marine atmospheric boundary layer (Kudryavtsev &
Makin, 2011), the radiative forcing of aerosol and its impact on climate (Witek et al., 2016)
or the heat and momentum fluxes in hurricanes (Perrie et al., 2004). Finally, while sneezing,
Fig. 1.3a, the droplet size sets, among other, the nature of the trajectory which can Brownian
or ballistic, i.e. rather random or fully determined, and the air carriage duration in the at-
mosphere (Duguid, 1946; Bourouiba et al., 2014), two parameters being relevant for airborne
disease transmission, like for COVID 19 (Mittal et al., 2020). This list of processes where frag-
mentation takes part is far from being exhaustive and includes many other applications like
firefighting (Kamluk et al., 2020), medical drug delivery, similarly to Fig. 1.3b, small and large
scale coatings, inkjet printing or spray painting. Thus, liquid jet “atomisation” or fragmenta-
tion globally depicts a liquid core in a gaseous medium undergoing break-ups which eventually
generate droplets of different sizes.

(a) (b)

Figure 1.3: (a) High-speed images of a sneeze recorded at 1000 frames per second (Bourouiba
et al., 2014), (b) Superposition of experimental photographs of a water droplet cloud produced
by a commercial spray of 10 centimetres height (Courtesy of Lucas Rotily).

In this work, the focus will be given to cylindrical round jets studied both experimentally and
numerically. The study of the former jet will be carried out far away from the nozzle, typically
at distances around several hundreds of nozzle diameters dn. The latter jet is investigated close
to the nozzle at distances around dozens of nozzle diameters. In both cases, the configurations
are chosen to reproduce as much as possible those observed for sprinklers in farming irrigation.
In the following, Sec. 1.2 tackles the question of the description of fragmentation flows. Sec. 1.3
and 1.4 recall the theory relative to hydrodynamic instabilities and turbulence while Sec. 1.5
introduces two theories for modelling the droplet size distribution resulting from fragmentation
flows. The first one being based on turbulence cascade whilst the second one on aggregation
dynamics, they both will be the red line of this work. Finally, Sec. 1.6 gives the objectives and
the outlines of the thesis.
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Chapter 1. Introduction

1.2 Describing fragmentation flows
Fragmentation generates new elements from one, or potentially several, source core. If each
source core is immiscible, several phases will then coexist in the form of a multiphase flow. For
liquid jet fragmentation in the context of this thesis, a biphasic flow is considered and composed
of a liquid phase denoted with the subscript l and a gas phase denoted with the subscript g,
the former being injected into the latter through a nozzle. Due to its fragmentation, the
liquid phase becomes disperse. Beside, the newly generated fragments of the disperse phase
can show properties, like their size or velocity, being different from each others, making the
liquid phase polydisperse (Marchisio & Fox, 2013). Fragmentation flows are mainly governed by
three dimensionless parameters: the Reynolds number, the Weber number and the Ohnesorge
number. Each of them characterizes the balance between specific forces.

1.2.1 Governing parameters of the flow 
Forces at play
Before explaining the role of the governing dimensionless parameters of the flow, it is worth
recalling what forces are relevant in a fragmentation flow. Obviously, all possible forces act
and interact in a flow, starting from quantum effects to the sun or galaxy gravitational forces,
passing by large scale magnetic interactions or the previously mentioned intermolecular van der
Waals forces. However, only a short range of forces are relevant to the description of the main
fragmentation flow physics:

• the inertial forces derived from the injection of the liquid phase,
• the viscous forces resulting from each fluid viscosity,
• the aerodynamic interactions related to the surface tension and the interface deformation.

Inertia can be seen as the tendency of a body to keep its velocity and is directly related to
its mass, or its density in a volume based approach. Conversely, viscosity can be seen as the
tendency of a fluid to resist to internal motion or motion induced by contact with an interface
or other external surface. While inertia and viscosity are quite common and straight forward
to understand, surface tension is slightly more complex. The surface tension between two
immiscible fluids, or a fluid and a solid, results from the intermolecular van der Waals forces,
i.e. the internal cohesive forces of the fluid, as a macroscopic effect with an action range of
several centimetres Surface tension is the key element to explain the shape of a liquid interface
in capillary tubes or the wetting angle of a droplet on a solid. Depending on the intensity of
each force relatively to the others, the flow evolves differently, if not dramatically differently.
Using dimensionless numbers helps to quantify relevant forces relatively to each other and to
define general flow regimes.

Reynolds number
The Reynolds number is defined such that:

Rei = ρiUiLi

µi

= UiLi

νi

(1.1)

where ρi, µi and νi denote the density, the dynamic viscosity and the kinematic viscosity, Ui

and Li are the characteristic velocity and length scales of the phase i. Here, both scales are
free to choose and “characteristic” denotes the idea of relevance of the scales. For Re to be
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1.2. Describing fragmentation flows

meaningful, each scale has to be chosen carefully and be representative of the flow physics,
or at least part of it. In his seminal papers, Osborne Reynolds (1883) studied laminar and
turbulent flows in a pipe and used the aforementioned ratio to assess the transition between
the two regimes. This ratio was later named after Osborne Reynolds by Sommerfeld (1908)
(Rott, 1990) and quantifies the ratio of the inertial forces, ρiUiLi, over the viscous forces, µi,
and thus enables to characterise the regime of the flow under consideration. Low Reynolds
numbers, Re ≪ 1, indicate flows for which viscosity is dominant and inertia negligible. These
flows are typically experienced by micro swimmers. The flow physics is radically different from
what a human experiences while swimming (Purcell, 1976) and specific strategies like helical
propulsion or wave like beating flagellum are the keys to motility (Lauga, 2016; Rode et al.,
2019). Conversely, high Reynolds numbers, Re ≫ 1 , indicate that inertial forces dominate
viscous forces and are commonly found in aerodynamics research, e.g. for drag reduction of
cars (Katz, 2006; Choi et al., 2014) or aircraft (Cattafesta & Sheplak, 2011; Corke et al., 2010).

Weber number
The Weber number is defined such that:

Wei = ρiU
2
i Li

σ
(1.2)

where σ is the surface tension between the liquid and gas phases and the other parameters are
the same as for the Reynolds number. Introduced by Constantin Weber (1931) (Villermaux,
2020), this number quantifies the ratio between the inertial forces and the superficial forces
resulting from the surface tension. Low Weber objects would thus be almost not deformable,
if not at all, as in some high Reynolds bubbly flows (Kumaran & Koch, 1993) or in the con-
text of fragmentation with weak aerodynamic forces (Dumouchel et al., 2005a,b). Conversely,
still in the context of jet fragmentation, a large Weber number indicates strong aerodynamic
interactions between the gas phase and the liquid phase, either disperse or not, as in so called
the bag break-up regime of fragmentation in which the droplets take a bag-like shape before
bursting (Rimbert & Castanet, 2011).

Ohnesorge number
The Ohnesorge number is defined such that:

Oh = µl√
ρlσLl

(1.3)

Introduced by Ohnesorge (1936) in his doctoral thesis, this number quantifies the ratio of
the viscosity forces over the ratio of the inertial forces and the surface tension and rewrites
as: Oh =

√
Wel/Rel. Even if it is dependent on the last two dimensionless parameters, the

Ohnesorge number helps to quantify the deformation of droplets and bubbles. Lefebvre (1989)
& Lefebvre & McDonell (2017) also describe it as an indicator of the jet stability. Variations
in the Ohnesorge number lead to significant changes in fluid fragment dynamics like for the
droplet fragmentation (Marcotte & Zaleski, 2019; Radhakrishna et al., 2021) or the ligament
retraction (Notz & Basaran, 2004; Hoepffner & Paré, 2013; Constante-Amores et al., 2020).

Choosing the relevant scales
Now that the definitions of the governing dimensionless parameters are given, the characteristic
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Chapter 1. Introduction

velocity and length scales Ui and Li remain to be chosen. A common choice is to pick the scales
related to the injection: the injection velocity Uinj and the nozzle diameter dn. Doing so enables
to compare directly the injection conditions of different flows. Note that for a liquid jet with a
coaxial gas stream, it is more appropriate to pick the difference between the injection velocities
of the gas and liquid phases. In this thesis, the experimental and numerical liquid jets are both
injected in a quiescent gaseous medium and the velocity difference between the phases is equal
to Uinj. The injection dimensionless parameters then give global information on the flow and
write as:

Rei = Uinjdn

νi

, Wei = ρiUinjdn

σ
, Oh = µl√

ρlσdn

, ∀i ∈ {l, g} (1.4)

Note that, it is possible to refine their interpretation by picking scales related to specific
phenomenology, like the Kolmogorov scale for turbulence. At last, computing the particulate
dimensionless numbers can also be relevant in order to characterize the flow locally or the flow
perceived by the elements of the disperse phase. The relevant velocity and length scales are
then the droplet size and relative velocity compared to the gas phase. More details about
the particulate dimensionless parameters and their relevant scales are given in the following
chapters.

1.2.2 Breakup regimes
This section is largely inspired by the work of Lefebvre (1989) and Lefebvre & McDonell (2017).

Consider a liquid round jet injected into a quiescent gaseous medium, the two phase flow
resulting from the injection undergoes fragmentation once the conditions are met to get out of
the dripping regime. This fragmentation is not unique and depends on the flow configuration
and relevant dimensionless parameters. For instance, the jet length, defined as the length of
the continuous portion of the jet measured from the nozzle to the break-up point where drop
formation occurs, depends on the injection velocity. This dependency is a first key for defining
different fragmentation regimes and was extensively studied. The evolution of the jet length
with the injection velocity is called the jet stability curve and is given in Fig. 1.4. The dashed
portion below the point A corresponds to drip flows and point A denotes the lower critical
velocity at which the drip flow changes to jet flow. From A to B, the break-up length increases
linearly with the velocity. This portion corresponds to the fragmentation of the jet due to
surface forces as studied by Rayleigh and Weber. Point B corresponds to the change in the
break-up mechanism from varicose to sinuous and opens a transition region towards turbulent
jets, point C to point D, and fully developed sprays, from point D towards larger jet velocities.
Lin & Reitz (1998) state that it is generally believed that the break-up length, or core length,
depends on the liquid gas density ratio and only weakly on the fluid properties and the jet
velocity. They back up their argument with the analysis of Taylor (1940) of high-speed liquid
jet break-up for which he derived an expression of the break-up length L:

L/dn = B(ρl/ρg)1/2 / f(T ) (1.5)

where T is the Taylor parameter and writes as T = (ρl/ρg)(Rel/Wel)2 = (ρl/ρg)[σ/(µlUinj)]2,
the function f(T ) has been approximated from Taylor’s numerical results as f(T ) =

√
3/6

[
1−
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1.2. Describing fragmentation flows

exp(−10T )
]

by Dan et al. (1997) and B is a constant equal to 4.04 for diesel spray nozzles
(Chehroudi et al., 1985).

(a) (b)

Figure 1.4: (a) Jet stability curve (Lefebvre & McDonell, 2017) and (b) photographs of jets
respectively in the laminar flow, transition, turbulent flow and fully developed spray regions
(Dumouchel, 2008).

Based on his analysis on diesel sprays, Reitz (1978) listed the different break-up regimes
encountered when the injection velocity is increased:

1. Rayleigh jet break-up, caused by the growth of axisymmetric instabilities due to surface
tension.

2. First wind-induced break-up, the relative velocity between the phases strengthens the
surface tension effects, thus producing a static pressure distribution across the jet.

3. Second wind-induced break-up, the relative velocity between the phases induces the un-
stable growth of short-wavelength surface waves on the jet interface.

4. Atomization, the jet disrupts completely at the nozzle exit and the spray properties are
strongly influenced by the development of the turbulence in the nozzle.

Concatenating the work of Miesse (1955), Ranz (1956), Sterling & Sleicher (1975), Reitz (1978),
& Dan et al. (1997), Chigier & Reitz (1996) and Lin & Reitz (1998) reviewed the criteria for
predicting the onset of break-up regimes, latter recalled in a review by Dumouchel (2008).
The different regimes and the related onset criteria are given in Table 1.1. Note that, for the
atomisation regime, the parameter K empirically accounts for the effect of initial disturbances
in the flow caused by the internal nozzle walls and depends on the aspect ratio of the nozzle
ln/dn, with ln is the nozzle length. Note that, typical configurations for farming irrigation or
pesticide spraying lead to a second wind-induced or an atomisation regime (Stevenin et al.,
2016; Felis et al., 2020).
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Breakup regimes Jet velocity range Criteria
Dripping 0− A Wel < 8

Rayleigh A−B

Wel > 8,
Weg < 0.4 or Weg < 1.2 + 3.41 Oh

First wind-induced B − C 1.2 + 3.41 Oh < Weg < 13

Second wind-induced C −D 13 < Weg < 40.3

Atomisation D −∞


40.3 < Weg,

ρg/ρl > Kf(T )−2,

K = (0.53
√

3 + ln/dn − 1.15)/744
 

Table 1.1: Breakup regimes and related transition criteria (Lin & Reitz, 1998) where f(T ) =√
3/6

[
1− exp(−10T )

]
(Dan et al., 1997).
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1.3. Hydrodynamic instabilities

1.3 Hydrodynamic instabilities
Sec. 1.2.2 introduced the different break-up regimes which can occur during jet fragmentation,
each of them relying on hydrodynamic instabilities. Far from describing all the details of linear
stability of jets, this section recalls the theoretical background of the stability of an interface
between two fluids before detailing three very classic hydrodynamic instabilities taking place in
fragmentation flows: the Kelvin Helmholtz, Rayleigh Taylor and Rayleigh Plateau instabilities.
This section follows the work of Drazin & Reid (2004), Charru (2007), Guyon et al. (2012), &
Abid et al. (2017).

1.3.1 Stability of an interface between two fluids
Consider the unidirectional flow of two incompressible inviscid fluids with densities ρ1 and ρ2
and uniform velocities U1 for y < 0 and U2 for y > 0 under an acceleration field g⃗, as depicted
in Fig. 1.5.

U2

U1

y

0
x

~g

η

Figure 1.5: Schema of an unidirectional flow of two fluids with an interface.

The base flow is described by:

U =

U1x
U2x

, ρ =

ρ1

ρ2
, P =

P0 − ρ1gy, y < 0
P0 − ρ2gy, y > 0

, (1.6)

where P0 is the pressure at the interface. Over this base flow, it is possible to superimpose
small unsteady disturbances u. For the sake of simplicity and following the initial work of
Kelvin (1871), let us consider an irrotational initial disturbance. Drazin & Reid (2004) state
that it is possible to do so while keeping in mind that it allows a proof of instability but not a
proof of stability as no conclusion about rotational disturbances can be drawn. Even so, this
condition is necessary as well as sufficient for instability. Charru (2007) recalls the results of
Batchelor (1967) that, in the case of inviscid fluids, the vorticity field related to a rotational
disturbance respects the linearised Helmholtz equation and then is advected by the base flow,
thus the rotational part of any disturbance is neutral. Under the assumption of an irrotational
initial disturbance, it exists a velocity potential Φ such that u = ∇Φ. The interface elevation is
measured relatively to the undisturbed interface, y = 0, and is such that y = η(x, t) with η being
infinitesimal. Due to incompressibility, the velocity potentials satisfy the Laplace equation:
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Chapter 1. Introduction

∆Φ1 = 0, y < η

∆Φ2 = 0, y > η
(1.7)

The boundary conditions are:
(a) the initial disturbance occurs in a finite region at any time instant, implying Eq. (1.8).
(b) the fluid particles at the interface must move with the interface without crossing it, which

implies the kinematic equation (1.9).

∇Φ −→
y→±∞

U (1.8)

∂Φi

∂y
= Dη

Dt = ∂η

∂t
+ ∂Φi

∂x

∂η

∂x
, y = η, i = {1, 2} (1.9)

Complementary to those two boundary conditions, the dynamic pressure condition has
to be satisfied as well. For small disturbances of the interface, the pressure difference on
each side of the interface balances with the capillary pressure: P2 − P1 = σ/R for y = η,
where σ is the surface tension and R the interface radius of curvature expressed as R−1 =
ηxx/(1+η2

x)3/2. Knowing that the disturbances are infinitesimal, the radius of curvature becomes
R ≈ ηxx. Furthermore, the pressures Pi are given by the Bernoulli’s theorem for irrotational
flows, therefore

ρ1
[
gy + 1

2
(∇Φ1)2 + ∂Φ1

∂t
+ C1

]
− ρ2

[
gy + 1

2
(∇Φ2)2 + ∂|Φ2

∂t
+ C2

]
= σηxx (1.10)

Also, the dynamic condition relates the constants C1 and C2 such that

ρ1
(1

2
U2

1 + C1
)

= ρ2
(1

2
U2

2 + C2
)
. (1.11)

Here, the non linear problem of instability of the base flow is set. For the linear stability,
we assume that the velocity potentials followΦ1 = U1x+ ϕ1, y < η

Φ2 = U2x+ ϕ2, y > η
(1.12)

and neglect the products of the small increments ϕ1, ϕ2 and η. Note that ϕi is the potential due
to the velocity disturbance in the fluid i. Such a linearisation can be justified if the interface
displacement and its slope are small, i.e. ∂η/∂x≪ 1 and gη ≪ U2

1 , U
2
2 . Equations (1.7)–(1.10)

then rewrite as

∆ϕi = 0, (1.13)
∇ϕi −→

y→±∞
0, (1.14)

∂ϕi

∂t
= ∂η

∂t
+ Ui

∂η

∂x
, y = 0, i{1, 2}, (1.15)

ρ1(U1
∂ϕ1

∂x
+ ∂ϕ1

∂x
+ gη) = ρ2(U2

∂ϕ2

∂x
+ ∂ϕ2

∂x
+ gη), y = 0. (1.16)
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All the coefficients in this linear partial differential system are constant. It is then possible
to use the method of normal modes assuming that the disturbances respect:

(η, ϕ1, ϕ2) = (η̂, ϕ̂1, ϕ̂2)eikx+st (1.17)

and Eqs. (1.13) give: ϕ̂1 = B1e
ky,

ϕ̂2 = B2e
−ky

(1.18)

Using the kinematic equations (1.15) leads to the following expression for B1 and B2B1 = (s+ ikU1)η̂/k,
B2 = −(s+ ikU2)η̂/k

(1.19)

while the linearised dynamic equation (1.16) gives the eigenvalue relation,

s(ρ1B1 − ρ2B2) + ik(ρ1U1B1 − ρ2U2B2) + (ρ1 − ρ2)gη̂ = −σk2η̂. (1.20)

The resolution of this quadratic relation gives two modes s = isi ± |sr| with:

si = −kρ1U1 + ρ2U2

ρ1 + ρ2
, (1.21)

s2
r = −σk3

ρ1 + ρ2
+ k2ρ1ρ2(U1 − U2)2

(ρ1 + ρ2)2 − (ρ1 − ρ2)gk
ρ1 + ρ2

(1.22)

and the general instability condition then writes as s2
r > 0, i.e.:

kρ1ρ2(U1 − U2)2

ρ1 + ρ2
> (ρ1 − ρ2)g + σk2 (1.23)

where the phase velocity is such that c = (ρ1U1 + ρ2U2)/(ρ1 + ρ2). Now that the general
instability condition for an interface with surface tension between two fluids with a relative
motion and submitted to the gravitational acceleration is derived, we can focus on the Kelvin
Helmholtz, Rayleigh Taylor and Rayleigh Plateau instabilities. The following subsections use
the same configuration and notations as the ones of this section.

1.3.2 Classic hydrodynamic instabilities
This section details three classic hydrodynamic instabilities by considering them independently
from each other. In the context of fragmentation flows, it is very unlikely that those instabilities
are truly independent and it is more common to observe their superposition, like in Fig. 1.6b.
Even so, the independent evaluation of each one helps to understand the underlying physics.
Note that all the relevant quantities related to these instabilities and fragmentation are recalled
by Villermaux (2020). The reader interested into a more detailed historical timeline of the
research progress about these three instabilities, in relation with fragmentation flows, could
also find satisfaction with the latter reference.
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(a) (b) (c)

Figure 1.6: (a) Kelvin Helmholtz instability on a cloud sheet, Jervis Bay, New South Wales,
Australia by G. Goloy taken from Guyon et al. (2012). (b) Rayleigh Taylor instability with
Kelvin Helmholtz instability at latter stages (Wilkinson & Jacobs, 2007). (c) Rayleigh Plateau
instability during the fragmentation of a ligament (Eggers & Villermaux, 2008).

1.3.2.1 Kelvin Helmholtz instability

Roaming around outdoor, the Kelvin Helmholtz instability can be observed in a large variety
of flows, from clouds (Dalin et al., 2010), particularly visible in Fig. 1.6a, to geophysical flows
(Wilson et al., 2012; Li et al., 2018). Initially remarked and described by Helmholtz (1868),
the formulation of the instability problem was first posed by Kelvin (1871). This instability is
said to be convective, i.e. the disturbances develop or attenuate in a finite size area while being
convected by the base flow.

Consider the two fluids with the heavier fluid being below and without any acceleration
field g⃗ nor surface tension: ρ1 > ρ2, g⃗ = 0⃗ and σ = 0. The general instability condition, Eq.
(1.23), and the instability growth rate, Eq. (1.22) then reduce to:

(U1 − U2)2 > 0, (1.24)

sr =
k|U1 − U2|

√
ρ1ρ2

ρ1 + ρ2
, (1.25)

and thus the flow is always unstable for any non zero velocity difference between the two
fluids and for any disturbance of wavenumber k, with a growth rate increasing linearly with k.
Note that this conclusion does not hold for a viscous fluid. Indeed, due to viscosity, the large
wavenumbers, such that k ⩾ (U1 − U2)/2ν, or equivalently the small wavelengths, are fully
attenuated and the analysis does not hold for such values of k.

1.3.2.2 Rayleigh Taylor instability

Initially described by Rayleigh (1883) in the development of his theory of stability of stratified
fluids submitted to gravity, it was generalised to any acceleration perpendicular to the interface
by Taylor (1950). An illustration of a developing Rayleigh Taylor instability is given in Fig.
1.6b. Consider the two fluids at rest without surface tension: U1 = U2 = 0 and σ = 0. The
general instability condition, Eq. (1.23), and the instability growth rate, Eq. (1.22) then reduce
to:
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ρ2 > ρ1, (1.26)

sr = ρ2 − ρ1

ρ1 + ρ2
gk, (1.27)

and thus lead to the trivial conclusion that the configuration is unstable when the heavier fluid
is above the lighter one. What is more interesting here is to generalize the idea of acceleration
field from gravity to the combination of accelerations resulting from various motions, e.g. while
considering the acceleration of a liquid sheet in the gravitational field. Note that in such
cases, only the apparent acceleration perpendicular to the interface accounts for triggering the
instability.

1.3.2.3 Rayleigh Plateau instability

Consider the two fluids at rest with non zero surface tension and the heavier fluid below while
there is no acceleration field: σ ̸= 0, ρ1 > ρ2 and g⃗ = 0⃗. The general instability condition and
the instability growth rate, Eqs. (1.23) and (1.22) then reduce to:

−σk2 > 0, (1.28)

sr = i

√
σk3

ρ1 + ρ2
, i ∈ C, (1.29)

and thus the configuration is stable as the instability condition can not be realised. The surface
tension stabilises the plane interface between the two fluids. Even so, the perturbation induced
by an initial disturbance is proportional to est = eiωt with ω =

√
σk3

ρ1+ρ2
and the interface

oscillates at the pulsation ω.

Lc

h(z) h0

z

r

θ

Figure 1.7: Schema of the evolution from a cylinder (dashed line) to a varicose (solid line)
cross-section due to surface tension.

In the case of a plane interface, Fig. 1.5, the Rayleigh Plateau instability cannot be captured
as there is no characteristic scale. Looking at the water jet coming from a tap with a low
injection velocity, typically in the Rayleigh regime described in Sec. 1.2.2, one can notice the
interface deformation leading to the pinching of the water jet and the generation of droplets,
the three of them being the consequence of the capillary instability. Fig. 1.6c illustrates the
development of the Rayleigh Plateau instability in the case of a liquid ligament. Let us consider
the destabilisation of a ligament showing a characteristic scale h0, see Fig. 1.7. Villermaux
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(2020) explains that, when distorted by a long wavelength varicose modulation of its cross-
section a cylinder lowers its surface area at constant volume and, consequently the energy
associated to the surface, until it reaches a minimum and eventually fragment. In the case of a
cylinder, the perturbation can be of two kinds: longitudinal, i.e. along the z axis, or azimuthal,
i.e. along the θ axis. Chandrasekhar (1961) recalls the result of Plateau that the liquid jet is
stable for all purely non axisymmetric deformations but it is unstable for symmetric varicose
deformations with wavelengths exceeding the circumference of the cylinder. Thus azimuthal
disturbances are stable and the perturbation can be written in term of longitudinal deformation,
such that: h(z) = ⟨h⟩ + ϵ cos (kz). Let us as well denote Vc = pih2

0Lc the volume of the initial
cylinder.

The energy associated to the surface is given by:

E = 2πσ
∫

Lc

h
√

1 + h′2dz (1.30)

Furthermore, in order to respect the volume conservation, the mean radius ⟨h⟩ follows:

Vc =
∫

Lc

πh2dz = πh2
0

∫
Lc

dz (1.31)

which leads to:

⟨h⟩ = h0 −
ϵ2

4h0
, (1.32)

meaning that the mean radius of the disturbed cylinder is smaller than the initial cylinder
radius h0. Let us denote the mode wavelength λ = 2π/k. The difference of energy between the
disturbed and undisturbed states is then ∆E = E − E0 with E0 = 2πh0σ

∫
dz:

∆E
E0

= ϵ2

4h2
0

[
(kh0)2 − 1

]
(1.33)

(1.34)

The surface energy decreases for ∆E/E0 < 0, i.e. for λ > 2πh0. This indicates that the modes
of wavelengths larger than the cylinder perimeter are potentially unstable. In the inviscid
limit, the most amplified wavelength is λ ≈ 9h0. More details about the determination of this
wavelength and the mode stability can be found in Villermaux (2020). Finally, the inviscid
growth rate of the Rayleigh Plateau instability writes (Chandrasekhar, 1961)

s2
r = σ

ρlh3
0

I1(kh0)
I0(kh0)

(
1− (kh0)2

)
(1.35)

where I0 and I1 are the modified Bessel functions of zero and first order. Note as well that the
characteristic time of the Rayleigh Plateau stability is given by τc =

√
ρlh0/σ.
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1.4 Turbulence

The hydrodynamic instabilities previously introduced, Sec. 1.3, are fundamental in the frag-
mentation of a jet. Typically, the droplet formation in the Rayleigh regime, defined in Sec.
1.2.2, is fully determined by the Rayleigh Plateau instability. However, the complexity of
the fragmentation mechanisms increases with the break-up regimes. For instance, the sec-
ond wind-induced and the atomisation regimes imply strong aerodynamic interactions between
the gas phase and either the liquid core or the droplets. They can turn out to be turbulent.
Sec. 1.4.1 quantifies the turbulence in jet flows in typical irrigation configuration while Sec.
1.4.2 and 1.4.3, respectively, introduce the predictions of Kolmogorov and the intermittency of
turbulence.

1.4.1 Fragmentation flows and turbulence 

To quantify the turbulence engendered in regimes like the second wind-induced or the atomi-
sation regime, it is necessary to have a look at the liquid Reynolds number based on the Taylor
micro scale. The Taylor micro scale, denoted λ, expresses such that λ−2 = ⟨(∂xux)2⟩/u2

rms. It
was first defined by Taylor (1935b) who interpreted it as the length that determines the scale of
the eddies responsible for the dissipation of energy. While the definition is of most relevance for
experimental measurements of the strain rate si,j or the energy dissipation rate ϵ in turbulent
flows, the interpretation appears wrong. Tennekes & Lumley (1972) stated that λ is not a
characteristic length scale of the strain rate field, does not represent a group of eddy sizes in
which dissipative effects are strong nor is a dissipation scale. Indeed, the definition of λ relies
on the chosen velocity scale urms with “no physical reason at all for this choice” (Tennekes &
Lumley, 1972). Nonetheless, the Taylor micro scale enables a better understanding of turbu-
lence, notably with the Reynolds number based on λ writing as Reλ = urmsλ/ν and which can
be seen as the ratio of the large eddy time scale and the time scale of the strain rate fluctuation
(Corrsin, 1959; Tennekes & Lumley, 1972). Under the assumption of isotropic turbulence, Reλ

rewrites as Reλ = (10/3)1/2E/(Ω1/2ν) where E and Ω are the mean energy and enstrophy, the
energy related to vorticity, of the flow. A second scale of importance in turbulent flows is the
integral scale L, commonly defined as the scale at which the energy is injected in the flow and
firstly introduced by Taylor (1935a).

In the literature, turbulence is classically considered as fully developed when Reλ > 250−300
(Pearson & Antonia, 2001). The Taylor micro scale Reynolds number is related to the integral
scale Reynolds number ReL such that Reλ ∼ Re

1/2
L (Frisch, 1995). Even if this relation seems

handy, the integral scale and the rms fluctuation velocity cannot be directly estimated from
the injection Reynolds number Rel, defined in Eq. (1.4), and further work is required to do so.
Complementary, Ruffin et al. (1994) derived an analytical relation between the Taylor micro
scale Reynolds number and the injection scale Reynolds number for round jet flows. When
considering the turbulence in the liquid phase composed of a monofluid, the relation reduces
to Reλ = A × Re

1/2
l and the experiments give A ≈ 1.3. Using this result and knowing that

the injection Reynolds numbers for typical irrigation configurations in second wind-induced or
atomisation regimes are larger than 40 000 (Felis et al., 2020), it comes first that the lower
bound of Rel ensuring fully developed turbulence, Reλ > 250, is equal to 3.6× 104 and second
that turbulence cannot be discarded in the study of fragmentation in agricultural like jets.
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1.4.2 Predictions of Kolmogorov

Big whirls have little whirls that feed on their velocity,
and little whirls have lesser whirls and so on to viscosity
– in the molecular sense.

Lewis Fry Richardson, 1922

...
...

...

L

η

Injection
of energy ε

Dissipation
of energy ε

Flux
of energy ε

Figure 1.8: Schema of the turbulent energy cascade.

Following the idea of Richardson (1922), Kolmogorov (1941a,c) theorized the idea of vortex
cascade, illustrated in Fig. 1.8, in the context of isotropic turbulence. Complementarily to the
Taylor micro scale λ and the integral scale L introduced in Sec. 1.4.1, a third scale characterizes
turbulent flows: the Kolmogorov scale η. This scale is the typical size of the energy dissipating
scales, defined by η = (ν3/ϵ)1/4 (Kolmogorov, 1941c), at which the eddies die away because
of viscosity. In those seminal papers, Kolmogorov defined the mean energy dissipation rate
⟨ϵ⟩ between the different flow scales and proposed two hypotheses of similarity for describing
isotropic turbulence. These hypotheses read as (Anselmet et al., 2001):

1. The Reynolds number is very large, presumably infinite.
2. In the limit of infinite Reynolds number, turbulence properties are universal since the

hierarchy of scales is then sufficiently large to generate a range of small scales whose
properties are no longer influenced by the way energy is produced by the large scales,
at which the energy is injected and which are specific to the flow configuration. These
small scales are isotropic since their properties do not depend on any particular direction
within the flow.

3. For this range of scales with universal properties, two subranges can be drawn:
(a) a subrange of scales whose properties only depend on ⟨ϵ⟩ which equals the rate of

energy finally dissipated by the kinematic viscosity ν, referred to as the inertial
range scale

(b) smaller scales which properties depend on both ν and ⟨ϵ⟩, referred to as the dissipa-
tion range.

The assumptions (2) and (3) are respectively called the first and second hypotheses of similarity.
Several predictions can be derived from the latter hypotheses. Let us consider a scale l in

the inertial range, i.e. η ≪ l ≪ L. In order to capture the phenomenology of interest, new
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key observables have to be introduced here: the velocity increments δu(r, l, t) and the velocity
structure function Sp(l) defined as

δu(r, l, t) = u(l + r, t)− u(r, t), (1.36)
Sp(l) = ⟨∥δu(r, l, t)∥p⟩r,t. (1.37)

where δu(r, l) is the difference of velocity between two points of space separated by a scale l
while Sp(l) is a function of p ∈ R∗ with l = ∥l∥ and represents the statistical moment of order p
of the distribution of velocity increments. The subscript || is commonly used to indicate when
a longitudinal separation is considered, typically the longitudinal velocity increment δu||(r, l).
In addition, the superscript ∗ denotes the normalisation by η and/or the Kolmogorov velocity
scale defined by Uk ≡ (ν⟨ϵ⟩)1/4, then δu∗

|| ≡ δu||/Uk and l∗ ≡ l/η. A first prediction regards the
variance of the longitudinal velocity increments, i.e. its statistical moment of order 2, S2(l). It
is predicted to follow a power law in the physical space such that

⟨(δu∗
||)2⟩r,t = C2 l

∗ 2/3 (1.38)

where C2 is the Kolmogorov constant. This indicates that larger scales have more dispersed
velocity increments than the smaller scales or, equivalently, that the velocity increments of the
small scales relatively to the ones of the large scales are more grouped around their mean value.
The homologue of Eq. (1.38) in the spectral space relates the one dimensional energy spectrum
E(k||) of u|| with the one dimensional wavenumber k|| as

E∗(k∗
||) = αu||k

∗ −5/3
|| (1.39)

which is the well-known −5/3 decay of the Kolmogorov cascade spectrum. It is classically
considered in the turbulence community that C2 has a magnitude of about 2 (Yaglom, 1981).
The constant αu|| is related to C2 via the isotropic relation C2 = 4.02αu|| (Monin et al., 1975).
A third prediction from the theory of isotropic turbulence extends Eq. (1.38) and gives the
expression of the statistical moments of higher order of the longitudinal velocity increments
which writes as:

⟨(δu∗
||)p⟩ = Cpl

∗ p/3 (1.40)

Note that the Kolmogorov (1941a) four-fifths law is retrieved from (1.40) for p = 3 and
C3 = −4/5, which is a truly universal constant as the fourth-fifth law is directly derived from
the Navier Stokes equation. Conversely to C3, the universality of the coefficients Cp, p ̸= 3, is
questioned by Landau & Lifshitz (1959) and Frisch (1995) pointed out that they may depend
on the flow if the turbulence production mechanism of the latter implies at least two scales.
Finally, it is worth taking notice of the possibility to consider an assumption of scale invariance
to avoid the pitfall of the coefficient universality (Frisch, 1995), §6.4.3. More details on the
phenomenology of isotropic turbulence and the K41 theory can be found in the work of Monin
et al. (1975) & Frisch (1995). For an English translation of the seminal papers of Kolmogorov,
the reader can refer to Kolmogorov (1991a,b).

Nonetheless, some limits exist to the K41 theory. The following ones are the ones summa-
rized by Anselmet et al. (2001). First of all, the assumption that the Reynolds number should
be very large is not verified under most laboratory conditions. Some experimental data indicate
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that the magnitude of the scaling exponent ζp, such that Sp(l) ∝ lζp , decreases for increasing
values of l, meaning that an inertial range of scales in the sense of K41 cannot be unambigu-
ously defined. Local isotropy is also not strictly satisfied over the so called scaling-range and
could only be valid asymptotically, as for the inertial range. Finally, ϵ is a random function and
the use of ⟨ϵ⟩ is not sufficient to describe the cascade of energy and its inherent intermittency.
While equations (1.38) and (1.39) are slightly affected by small-scale intermittency, equation
(1.40) becomes poorer for increasing order.

1.4.3 Intermittency
Internal intermittency is a key feature of fully turbulent flows. At first sight, it can be seen as
the non-uniform distribution of eddy formations in a stream and can be depicted by indicators
like the square of the vortex field or the energy dissipation velocity (Novikov, 1970). Two
kinds of intermittency can be observed and have to be distinguished: the intermittency in a
sporadically turbulent stream, for example at the limit between turbulent and non turbulent
regions in a jet flow (Corrsin & Kistler, 1955; Borrell & Jiménez, 2016), and the intermittency
in a developed turbulent stream, which is under consideration here.

1.4.3.1 The historical logarithmic model (Kolmogorov, 1962)

Following the theoretical remarks of Landau & Lifshitz (1959) on the universality of scale
properties in the inertial and dissipation ranges, reformulated in its accepted modern form
by Kraichnan (1974), and the work of Obukhov (1962), Kolmogorov (1961, 1962) introduced
a third hypothesis, known as the refined similarity hypothesis, where ⟨ϵ⟩ is replaced by the
local average of ϵ over a sphere of radius r and of volume V . The new fluctuating quantity,
ϵr ≡ (1/V )

∫
ϵ(x)dx, is such that the stochastic variable xu|| ≡ δu||(r)/(rϵr)1/3 is universal for

sufficiently small r in the limit of infinitely large Reynolds number. Furthermore, the author
also assumed that ϵr follows a logarithmic normal distribution and that the variance of ln(ϵr)
is given by:

σ2
ln ϵr

= A+ µ ln
(
L

r

)
(1.41)

where µ is the intermittency parameter, assumed to be universal, and A is a constant likely to
depend on the flow macro structure.

To explain the assumption of a logarithmic distribution for ϵr, let us consider the energy
cascade depicted in Sec. 1.5.2 and assume that it undergoes n break-ups with n → +∞.
In addition, consider that it is a random cascade such that the size ln at the step n equals
ln−1× bn−1 where bn−1 is a random breakdown coefficient. Thus, ln can be expressed depending
on the initial size l0

ln = l0
n∏

i=1
bi−1 (1.42)

and, according to the Central Limit Theorem, the distribution of the breakdown coefficients bi

should follow a logarithmic normal density.
However the logarithmic normal model raises two major inconsistencies. Firstly, Novikov

(1970) showed that the logarithmic normal model implies a quadratic dependence of ζp over the
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order of moment p, which violates properties of the scaling exponent and mass conservation,
see Eq. (1.50) and 1.61. Secondly, this model implies supersonic velocities at high Reynolds
number (Frisch, 1995). Frisch (1995) also recalled that random cascade models fail to respect
the inequality of Novikov because of the non conservative character of the cascade and questions
the logarithmic model by asserting that “a mere product of a large number of independently
and equally distributed positive random variables does not have an approximately logarithmic
normal distribution”. Furthermore, Kraichnan (1974) stated as well that it is doubtful that
small scales exhibit asymptotic logarithmic normal distribution because of the non linearity of
the dynamical processes and because the sum of independent logarithmic normal variables is
not logarithmic normal. Thus, although the distribution of the breakdown coefficients tends
toward the logarithmic normal distribution, the moments do not tend towards the expression
which results from the asymptotic distribution. Last but not least, even if the moments cannot
be calculated from the asymptotic distribution, under the assumption of scale similarity and
thanks to the Carleman condition Eq. (1.52), Novikov (1970) pointed that the distribution of
the breakdown coefficients is uniquely defined by its moments.

1.4.3.2 Going beyond the shortcomings of the logarithmic normal model

In order to overcome the two inconsistencies of the logarithmic normal model, a large range of
models has been developed to attempt to describe the intermittency of turbulence. Among the
consequent list, let us mention several: the most famous β-model of Frisch et al. (1978), the
multifractal model of Parisi & Frisch (1985) following the pioneer work of Novikov & Stewart
(1964), the shell model of Desnyansky & Novikov (1974), the model of Jiménez (1998) based
on the geometry of the vortex filaments and the multifractal model in connection with vortex
filaments of She & Leveque (1994). Fig. 1.9 recalls the agreement of several models tested
against the experimental measurements of ζp from Anselmet et al. (1984). It is worth noting
that the logarithmic Poisson model, which agrees remarkably well with the extended scale
similarity data of Benzi et al. (1995), directly comes from the model of She & Leveque (1994)
who derived a relation for ζp without any adjustable parameters: ζp = p/9 + 2− 2(2/3)p/3. It
is named so because the latter relation of ζp corresponds to a logarithmic Poisson distribution
(Dubrulle, 1994). Finally, bridging the gap between the multifractal approach and the vortex
filament point of view seems possible by coming back to the circulation of vorticity, notably
with the formalism of Migdal (1994). Proposing a comprehensive review of the previously
mentioned intermittency models outreaches the scope of this thesis. Instead, the focus will be
given to the logarithmic model of Novikov (1970) and its connection with drop size modelling
(Novikov & Dommermuth, 1997), both laid out in Sec. 1.5.2.
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Figure 1.9: Exponent ζp of the structure functions in the time domain of order p vs p. ▽:
data from Van Atta & Park (1972); •, □ and ▲: data from Anselmet et al. (1984) with
Reλ ∈ {515, 536, 852}; +: data processed by extended self similarity (Benzi et al., 1995);
Straight chain line: ζp = p/3 (K41); dashed line: β-model with D = 2.8; solid line: logarithmic
normal model with µ = 0.2, Eq. (1.41); dotted line: logarithmic Poisson model. Taken from
Frisch (1995).
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1.5 Aggregation & cascade: two theories of fragmenta-
tion for the drop size distribution

At first sight, the fragmentation of a jet or a droplet conveys the idea of a straightforward
cascade from a source object to a population of smaller elements, in a similar fashion to the
Richardson (1922) cascade, see Fig. 1.8, or to solid particle grinding as described by Kolmogorov
(1941b). Looking closer to the dynamics of liquid ligaments in fragmentation flows though
highlighted that those ligaments undergo a reverse cascade before their break-up, i.e. some
parts of the ligament aggregate before the ligament breaks (Marmottant & Villermaux, 2004).
Numerous studies and droplet size models were carried over the last decades, a large part being
reviewed in Villermaux (2007, 2020) and presented in the references therein. Among those,
the focus is given here on two models of very different, opposite nature respectively relying on
aggregation dynamics and intermittency of the turbulence cascade.

Taking benefits from the analytical framework of hydrodynamic instabilities, notably the
ones introduced in Sec. 1.3.2, and the experimental observations of aggregation dynamics during
the fragmentation of a liquid ligament, the aggregation based model enables to derive a universal
law for the size distribution of droplets generated by a ligament break-up and, on this basis,
proposes a droplet size distribution for the overall spray. Conversely, the intermittency based
model is a purely statistical model derived from the scope of turbulence intermittency modelling
and proposes a size distribution in tight connection with the distribution of energy breakdown
coefficients in a mathematical framework which overcomes the shortcomings of random cascade
models presented in Sec. 1.4.3. To encapsulate concisely the difference between the two, let
us say that the intermittency based model derives from the statistical framework of turbulence
cascade with intermittency correction of fine scale structures while the aggregation based model
derives from the analytical framework of hydrodynamic instabilities and aggregation dynamics.
Each of them is respectively introduced in Sec. 1.5.1 and 1.5.2.

1.5.1 From internal turbulence intermittency to the droplet sizes
Novikov & Dommermuth (1997) pointed out the effect of intermittency on the size of droplets
generated by a turbulent spray. By implementing an intermittency correction they observed an
increase of 18% in the typical drop size in the spray and, thus, highlighted the close connection
between the distribution of the droplet sizes and of the energy dissipation in a fully turbulent
spray. On the basis of this claim, the authors derived a droplet size distribution from the
framework of intermittency in turbulence cascade relying on breakdown coefficients similar
to what is introduced in Sec. (1.4.3), however with a mathematical apparatus overcoming
the shortcomings of random cascades. The following sections introduce the developments of
Novikov and co-workers to model the turbulence intermittency and its connection with drop
size distribution in a turbulent spray.

1.5.1.1 Modelling intermittency with the breakdown coefficients

Let us consider a scale r in the inertial range of scales : l∗ ≪ r ≪ L, where l∗ is an inertial
scale which can differ from the Kolmogorov scale due to the intermittency correction. Three
segments of size r, ρ and l are chosen from the inertial range such that they are inserted in one
another and r < ρ < l. Let us consider the breakdown coefficients as defined by Novikov (1970)
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and consider a non negative random function y(x), which could be the square of the vorticity
or the square of the longitudinal derivative along the streamwise direction. The definition of
the breakdown coefficient between the scale r and l is then

qr,l(h, x) = yr(x′)/yl(x), r < l, (1.43)

yl(x) = 1
l

∫ x+l/2

x−l/2
y(x1)dx1, (1.44)

|h| ⩽ 1
2
, h = x′ − x

l − r
(1.45)

where the condition on h implies that the smaller section is included in the larger one. Indeed
the left and the right hand sides of the inequality respectively rewrite as x− l/2 ⩽ x′ + r/2 and
x′ + r/2 ⩽ x+ l/2. h accounts for the non homogeneity of the breakdown but can be discarded
by assuming an homogeneous breakdown (Novikov, 1970). Two consequences arise from this
definition. Firstly, by construction, the coefficients verify qr,l = qr,ρqρ,l. Secondly, knowing that
y is non negative, the breakdown coefficients also respect

qr,l ⩽ l/r. (1.46)
In addition, let us define the moments of the distribution of the breakdown coefficients such
that

ap(r, l, h) = ⟨qp
r,l(h, x)⟩ (1.47)

In order to take benefit of a scale similarity hypothesis, two conditions have to be respected:
(i) the probability distribution of the breakdown coefficients depends only on the ratio of the
corresponding scales, (ii) qr,ρ and qρ,l are statistically independent. From those conditions and
Eq. (1.47), it comes that the moments of the breakdown coefficient distribution follow a power
law in l/r scaling as

ap(l/r) =
(
l

r

)µ(p)
(1.48)

Additional constraints on µ(p) can be derived. Combining Eq. (1.46) and Eq. (1.48) gives

µ(p)− µ(p+ δ) ⩽ δ, δ ⩾ 0, (1.49)
which leads to a first constraint on µ(p), setting that by definition µ(0) ≡ 0, such that

µ(p) ⩽ p (1.50)
Furthermore, disregarding the non homogeneity of the breakdown implies that µ(1) = 0 and
0 < µ(2) < 1 (Novikov, 1970) with µ(2) = µ the intermittency coefficient of the logarithmic
normal model, Eq. (1.41) (Kolmogorov, 1962). Thus, Eq. (1.49) gives a stronger constraint on
µ(p)

µ(p) ⩽ µ+ p− 2, p ⩾ 2 (1.51)
Novikov (1970) noted that the inequality (1.50) ensures the fulfilment of the Carleman condi-
tion, given by
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+∞∑
p=1

(a2p)−1/2p = +∞ (1.52)

which is a sufficient condition for the breakdown coefficient distribution to be uniquely defined
by moments of integer orders, property that the limiting logarithmic normal distribution from
the Central Limit Theorem does not have. Using the early experimental measurement set
of atmospheric surface layer of Wyngaard & Pao (1972), Atta & Yeh (1973) investigated the
accuracy of the predictions drawn by Novikov (1970) and found out a systematic departure
between the predicted statistics and the experimental data.

Now that general considerations were drawn about µ(p), let us say that y is the energy
dissipation at the scale r, denoted ϵr. The distribution of the breakdown coefficient is denoted
W (q, l/r) and the coefficients now express as

qr,l = ϵr/ϵl (1.53)

Let also Q
(

ln qr,l

)
be the probability density of the breakdown coefficient logarithm and

ψ(s, l/r) be the corresponding characteristic function, defined by ψ(s, l/r) = ⟨exp(is ln qr,l)⟩.
Q and ϕ are related such that ψ(s, l/r) =

∫ l/r
0 Q

(
ln qr,l

)
dq. Note as well that Q and W respect

Q
(

ln q
)

= qW
(
q
)

(Feller, 1971). If µ(p) has analytical continuation in the complex domain,
then ψ(s, l/r) and W (q, l/r) are related by (Novikov, 1994)

ψ(s, l/r) =
∫ l/r

0
qisW (q, l/r)dq = (l/r)µ(is)

W (q, l/r) = 1
2πq

∫ +∞

−∞
exp

[
− is ln(q) + µ(is) ln(l/r)

]
ds

(1.54)

where the expression of W (q, l/r) is the inverse Fourier transform of ψ(s, l/r). One could
then calculate W (q, l/r) from Eq. (1.54). However, in order to ensure that the model has a
physical and mathematical meaning, the probability density W (q, l/r) has to be non negative
and properly normalized by integration over the finite interval [0, l/r] for arbitrary l/r (Novikov,
1994). Generally speaking, verifying those conditions analytically or numerically is not easy.

To overcome this issue, Novikov (1994) proposed to embed the concept of scale similarity
into the theory of infinitely divisible probability distributions, opening up the opportunity to
use the related mathematical apparatus. Novikov observed that, for arbitrary l/r and arbitrary
integer n, Eq. (1.54) verifies

ψ
(
s, l/r

)
= ψn

(
s, (l/r)1/n

)
(1.55)

meaning that the random variable ln qr,l has an infinitely divisible probability distribution.
The Lévy-Baxter-Shapiro theorem gives the general form of the characteristic function of an
infinitely distribution concentrated on [0,+∞[

χ(s) = exp
[
ibs−

∫ +∞

0

1− eisx

x
P (dx)

]
, b ≥ 0, (1.56)

where P is a measure on the open interval ]0,+∞[ such that (1+x)−1 is integrable in respect to
P . The definition of an infinitely divisible distribution and the Lévy-Baxter-Shapiro theorem
can be found in Chapter 17 of Feller (1971). Let us consider the variable zr,l = − ln[(r/l)qr,l]
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and denote p = −is. Replacing qr,l by zr,l in the definition of ψ and using Eqs. (1.54) and
(1.56) gives:

µ(p) = κp−
∫ +∞

0

1− e−px

x
F (dx) (1.57)∫ +∞

0

1− e−x

x
F (dx) = κ, κ ⩽ 1 (1.58)

where κ = 1 − b/ ln(l/r) and F (dx) = P (dx)/ ln(l/r) has the same properties as P . The
condition (1.58), derives from the assumption of homogeneity of the breakdowns, which imposes
µ(1) = 0 and 0 < µ(2) < 1. Thus, the intermittency coefficient can be modelled differently
by choosing a measure F . For example, choosing F ′(x) = Axα−1 exp(−x/σ) with A, α and σ
three positive constants, Novikov (1994) derived:

µ(p) = κ

[
p− (pσ + 1)1−α − 1

(σ + 1)1−α − 1

]
, α ̸= 1 (1.59)

µ(p) = κ

[
p− ln(pσ + 1)

ln(σ + 1)

]
, α = 1 (1.60)

Finally, once µ(p) is modelled, it is possible to derive the corresponding energy distribution
W (q, l/r) using equation (1.54) without making any assumption on W . This was done by Saito
(1992) and Vanyan (1996) who respectively considered (α, κ, σ) = (1, 1, 0.283) and (α, κ) =
(1, 1/2) and obtained satisfactory agreement with experimental data. Note that considering
(κ, α) = (1, 1) gives a Γ distribution of the logarithm of the breakdown coefficients, zr,l =
− ln[(r/l)qr,l].

1.5.1.2 Connecting the intermittency model with the droplet size distribution

Novikov & Dommermuth (1997) showed the effect of the intermittency correction on the eval-
uation of the typical droplet size in turbulent spray and stated that there is a close connection
between the drop size and the energy dissipation. Assuming that the droplets in a turbulent
spray undergo a sequential break-up cascade and that this process can be described similarly
to the energy dissipation in a turbulent flow, the authors propose a law to describe the drop
size distribution. Let us consider a disintegrating water fragment of size l1 which undergoes
a sequential cascade of break-ups. At the stage n, the final size l of an individual droplet is
l ≡ ln+1 = l1

∏n
k=1 bk where bk = lk+1/lk are random break-up coefficients. We can then define

a non negative random variable y such that y ≡ − ln(l/l1) = −∑n
k=1 ln bk whose distribution

and characteristic function are denoted P and ψy. As shown in the context of energy dissipa-
tion (Novikov, 1970), it cannot be concluded that, for large n, the drop size distribution is a
logarithmic normal distribution. In fact, the moments given by a such a law are:

⟨(l/l1)p⟩ = exp(−ap+ σ2p2) (1.61)

and, for large p, this equality exceeds unity, contradicts the condition bk ≤ 1 and breaches
the mass conservation. By choosing a measure F ′(x) = ∑

i AiΓ(αi)(x/σi)αi−1 exp(−x/σi) +∑
j Bjxjδ(x − xj) with Ai, αi, σi, Bj and xj being positive constants, thus ensuring the non
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negativity of F ′(x), and substituting this expression in Eq. (1.57), Novikov & Dommermuth
(1997) were able to derive an analytical expression of µ(p)

µ(p) = κp−
∑

i

Ai

[
(pσi + 1)1−αi − 1

1− αi

]
−
∑

j

Bj(1− e−pxj ) (1.62)

For αi = 1, the expression in the square brackets must be replaced by ln(pσi + 1). The
probability density P of y is then given by the inverse Fourier transform of the characteristic
function ψy, in the same fashion as Eq. (1.54). In the case α1 = 1/2, the distribution of y
writes as:

P (y) = a3/2
√

2πσy3/2
exp

(
− a

2σ2 (ay−1/2 − y1/2)2
)
, y ≥ 0 (1.63)

where a = ⟨y⟩ and σ2 = ⟨(y − a)2⟩. Hence, this directly connects the droplet size distribution
in a fully turbulent spray and the internal intermittency of turbulence. A decade after the
developments of Novikov, Rimbert & Sero-Guillaume (2004) simplified the approach of infinitely
divisible distributions by considering log-stable distributions for high Weber sprays. Using this
simplified way, but still offering a wide mathematical apparatus, Rimbert & Castanet (2011)
were able to model the multimodal distribution resulting from the droplet fragmentation in the
bag break-up regime, a regime where the droplets deform in a bag-like shape before bursting,
with a crossover between the Rayleigh Taylor instability and the turbulent cascade mechanism.

1.5.2 Aggregation scenarii
Contrary to the well know cascade process, a close look to the dynamics of liquid ligaments
points out a process of aggregation during the ligament break-up, and this in a large variety
of configurations, as for ligaments modelled by magnetic necklaces (Vledouts A. et al., 2015,
2016) or produced by a fragmenting coaxial jet (Marmottant & Villermaux, 2004; Villermaux
et al., 2004), by a conical sheet (Kooij et al., 2018) or during the impact of a drop on a solid
surface (Villermaux & Bossa, 2009; Villermaux & Bossa, 2011). After a general introduction
on the aggregation dynamics, the description of the drop size distribution in the context of
ligament-mediated spray formation is presented.

1.5.2.1 Introduction to aggregation dynamics

Let us consider an initial population of small elements which undergoes an aggregation process.
Those elements can coalesce and form clusters, whose sizes increase timewise in average. The
detailed description of the dynamics of such processes was given for the first time by von
Smoluchowski (1917). The number of clusters with a volume between v and v + dv is denoted
n(v, t) while the aggregation frequency between the clusters of volume v and v′ is denoted
K(v, v′). The total number of clusters is N(t) =

∫+∞
0 n(v, t)dv and the aggregation kinetics

respects a population balance equation (PBE) without advection term:

∂tn(v, t) = −n(v, t)
∫ ∞

0
K(v, v′)n(v′, t)dv′ + 1

2

∫ v

0
K(v′, v − v′)n(v′, t)n(v − v′, t)dv′ (1.64)

The first integral describes the loss rate of particles of volume v, which disappear because they
aggregate with other elements. The second integral describes the growth rate of particles of
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volume v resulting from the aggregation of particles of volume v′ and v−v′. Friedlander (2000)
defines the collision rate between elements by K(v, v′)n(v)n(v′)dvdv′.

1.5.2.2 Spray formation

When a jet is injected into a gaseous medium, the shear between the two phases triggers in-
stabilities of Kelvin Helmholtz and forms waves on the jet interface, see Sec. 1.3.2.1. The
amplitude of those undulations grows until it reaches a tipping value at which they undergo
a transverse Rayleigh Taylor destabilization, see Sec. 1.3.2.2, due to the acceleration of the
Kelvin Helmholtz waves pointing towards the gas phase and perpendicularly to the interface
(Marmottant & Villermaux, 2004). The corrugations issuing from the Rayleigh Taylor instabil-
ity then elongate to form ligaments which detach from the core and break instantly due to the
capillary instability (Villermaux et al., 2004; Eggers & Villermaux, 2008). In the aggregation
scenarii, those ligaments are the fundamental cornerstone of the generation of droplets and the
control of their size.

Lc

B2,4,6

B1

z

r

θ

B3 B5 B9

B7

B8 B10

Figure 1.10: Schema of a ligament and its composing blobs. The black and blue arrows respec-
tively indicate the direction of the surface tension forces and the direction of the liquid motion.
The blue dots represent the centres of the liquid bridges. The red and blue colours for the blobs
respectively indicate stable and unstable configurations.

Before diving in the dynamics of ligament break-ups, let us first have a look on their
composition. It is possible to consider the ligaments to be constituted of blobs having different
sizes. Here, the designation “blob” corresponds to a volume encapsulated between the interface
corrugations and which can be seen as a candidate droplet. We call it candidate droplet as,
depending on the evolution of the ligament, it could eventually lead to the generation of a
droplet when the ligament breaks. While all the droplets originate from a blob, all the blobs do
not necessarily generate a droplet. Fig. 1.10 illustrates the case of a simple ligament composed
of ten blobs Bi, i ∈ [[1, 10]]. During the ligament break-up, the blobs can interact with each
other by aggregating or detaching. Two kinds of blobs can be distinguished, hinging on their
position relatively to the interface curvature. Depending on the sign of the curvature, positive
or negative, the blobs are coloured and numbered differently, respectively in red with odd
indices and in blue with even indices. The sections of negative curvature are liquid bridges
connecting the maxima of the varicose undulation. Due to the Rayleigh Plateau instability, see
Sec. 1.3.2.3, the surface tension forces, indicated by the black arrows, are directed towards the
centre of the liquid bridges, making them unstable and directing the liquid motion, indicated
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by the blue arrows, outwards the bridges. As a consequence, the blue blobs pour into the
neighbouring red blobs, the liquid bridges pinch off and the remaining blobs become actual
droplets. The case of the blobs B5 and B7 requires a little more attention. On a first step of
the ligament break-up, they will absorb part of the volume of the neighbouring blue blobs B8,10
and eventually merge together. On a second step, depending on the force equilibrium during
the break-up, they could generate a droplet or merge with a larger, neighbour red blob. If both
liquid bridges pinch off at some point, B5,7 could generate a droplet. If one of the liquid bridge
remains, then B5,7 would pour into the larger blob they are still connected to. Besides, not
only it is possible to consider the ligaments to be composed of blobs but also to be composed of
several independent, adjacent layers of sub-blobs covering all the ligament volume (Villermaux
et al., 2004).

Let us denote n(d, t) the number PDF of blobs of size d and n(d, t)dd the number of blobs
of size between d and d+ dd at an instant t. The total number of blobs in a ligament N(t), the
ligament length L(t) and the ligament volume V (t) then write as:

N(t) =
∫ +∞

0
n(d, t)dd, L(t) =

∫ +∞

0
dn(d, t)dd, V (t) =

∫ +∞

0
d3n(d, t)dd (1.65)

and the initial volume of a ligament is denoted V0 = d3
0. The random motion in the ligament

is supposed to result in Λ independent layers composed of sub-blobs, where Λ reads as a
quantification of the ligament corrugation: Λ = O(1) for a very corrugated interface whilst
Λ tends to +∞ for a perfectly smooth interface. The size of the sub-blobs in the Λ layers is
denoted d′ and the sub-blob size distribution in each layer is denoted q(d′, t), with q satisfying∫+∞

0 q(d′, t)dd′ = 1. During the evolution of the ligament, the sub-blobs of the different layers
can interact with each other, similarly to the simple case described in Fig. 1.10. Under the
assumption of random interactions between the sub-blobs of the Λ layers, the evolution of
q(d′, t) follows a convolution process (Friedlander, 2000). Consequently, the distribution of the
blob sizes d derives from the convolution of the distribution q by itself as many times as there
are layers in the ligaments, i.e. Λ times, and writes as n(d, t) = N(t) · q(d′, t)⊗Λ, where ⊗
denotes the convolution product. Subsequently, the evolution equation of n(d, t) is given by

∂tn(d, t) = −n(d, t)N(t)γ−1 + 1
3γ − 2

n(d, t)⊗γ (1.66)

where γ = 1 + 1/Λ. In his work, von Smoluchowski (1917) noted that processes evolving by
self-convolution, as the one discussed here, generate exponential distributions. This implies
that Eq. (1.66) admits a Γ distribution as asymptotic solution (Villermaux et al., 2004).
Let us detail this non trivial result. Recalling that the ligament break-up is governed by the
auto convolution process of n(d, t) and that the distributions q(d′, t) in the ligament layers are
supposed independent, the size distribution pB = n(d, t)/N(t) of the droplets at the instant tb
of the ligament break-up can be expressed as the Λ-convolution of an elementary distribution
p1(d) = q(d, tb):

pB(d) = p1(d)⊗Λ (1.67)

Choosing a kernel K(v, v′), homogeneous in v and v′, to solve the equation of the aggregation
kinetics (1.64), leads to an exponential function for the asymptotic solution when t tends
towards +∞ (Friedlander & Wang, 1966; van Dongen & Ernst, 1985; Friedlander, 2000). Also,
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this solution is attractive whatever is the initial distribution. Furthermore, when a ligament
detaches from the liquid core, the only known parameter is its diameter at break-up ξB. Besides,
ξB characterizes the average size of the subsequent droplets (Villermaux et al., 2004) and it
makes it a good candidate to parametrise the droplet distribution resulting from the ligament
break-up. Having those arguments in mind, it is possible to model p1 as an exponential function
parametrised by ξB

p1(d) = 1
ξB

exp
(
− d

ξB

)
. (1.68)

The size distribution pB of the droplets after the ligament break-up then rewrites as (Feller,
1971)

pB(d/⟨d⟩) = 1
⟨d⟩

ΛΛ

Γ(Λ)
xΛ−1e−Λx (1.69)

where ⟨d⟩ = 1
N(t)

∫+∞
0 d n(d, t)dd is the instantaneous average drop size and ⟨d⟩ = ΛξB. The

distribution given by (1.69) is a Γ distribution parametrized by Λ, the number of independent
layers composing a ligament. Such a distribution illustrates that the subsequent droplet pop-
ulation is monodisperse with a narrow size distribution when the ligament shows a smooth
envelope, Λ → ∞. Conversely, when the ligament envelope is corrugated, Λ = O(1), the
population is polydisperse with a broad size distribution. This description of the drop size
distribution pB after the break-up of a ligament is claimed to be universal (Villermaux et al.,
2004; Marmottant & Villermaux, 2004).

Eq. (1.69) models the sizes of the droplets generated at a ligament break-up on the basis
of the ligament diameter ξB. But, depending on the flow configuration, the ligaments are not
necessarily monodisperse in size and can show a narrow or broad distribution of diameters
ξB. In order to describe the size distribution p(d) of the droplets produced overall the jet, the
distribution pB has to be combined with the size distribution of the ligaments, pL, such that:

p(d) =
∫ +∞

0
pL(d0)pB(d/d0)

dd0

d0
(1.70)

In order to explore the distribution of the ligament sizes pL during fragmentation, Villermaux
& Bossa (2011) carried out complementary analyses on drop impact. In the case of a drop
impacting a solid surface, the drop creates a sheet and ligaments are expelled from the sheet
outer rim. Stating that the rim is a toroidal ligament, the authors argue that the ligament size
distribution follows the distribution of the rim corrugations and conclude that pL is gamma
distributed. The distributions pL and pB thus express as:

pL(d0/⟨d0⟩) = 1
⟨d0⟩

PΓ(m, d0/⟨d0⟩), pB(d/d0) = 1
d0

PΓ(n, d/d0) (1.71)

where PΓ represents the Γ distribution given in Eq. (1.69). The parameters m and n represent
the order of the size distribution of respectively the ligaments and the droplets resulting from the
ligament break-ups. n also denotes the ligament corrugation, previously denoted Λ. Injecting
those two distributions into (1.70) gives the global size distribution of the droplets generated
by the fragmentation flow (Villermaux & Bossa, 2011):

p(x = d/⟨d⟩) = 2mmn(m+n)/2(mx)(n−m)/2xm−1

Γ(m)Γ(n)
Km−n(2

√
nmx) (1.72)
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where Km−n is the modified Bessel function of second kind of order m − n. Even if this
distribution is derived in the context of drop impact, a configuration radically different from
the one of jet fragmentation, the underlying mechanism selecting the sizes of the ligament is
considered to be universal. Assuming that the size of the ligaments are Γ distributed, Kooij
et al. (2018) obtained a good agreement between this model and the experimental droplet size
distribution for the fragmentation of conical and flat sheets produced by commercial nozzles.
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1.6 Objectives and outlines of the thesis 
We have seen in the previous sections how to describe the fragmentation flows in different
regimes using the three dimensionless numbers of Reynolds, Weber and Ohnesorge as well as
the main concepts of the hydrodynamic instabilities and turbulence which underlie jet fragmen-
tation. Furthermore, the extensive presentation of the theory of ligament-mediated fragmenta-
tion and intermittency driven sprays highlighted two different, conceptually opposed ways for
modelling the size distribution of the subsequent droplets. Now that the general frame of the
thesis is set, it is possible to draw the questions we will try to answer.

Focusing on agricultural like configurations, the aim is to explore fragmentation of a round
liquid jet in a quiescent gaseous medium in the fields far away from and close to the nozzle,
respectively experimentally and numerically with the help of Direct Numerical Simulations
(DNS). For each region, the analysis is carried out in three parts. Firstly, the question of
the droplet size modelling will be tackled by testing the ligament-mediated and intermittency
driven spray theories with the objective of discussing their relevance of application along the
spray evolution. Secondly, complementary to the droplet size distribution, attention is also
paid to the droplet velocity distribution in order to model it and bring further elements to the
question of the flow regime perceived by the elements of the disperse phase.

To do so, the thesis is structured as follows. Chapter 2 introduces the methods used for the
experimental and DNS campaigns. The results obtained from the analysis of the experimental
measurements are presented in Chapter 3 while those obtained from the analysis of the numer-
ical campaign are presented in Chapter 4. Finally, Chapter 5 highlights the main results of the
thesis and opens the way for further research work.
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2.1 Introduction
This PhD thesis is dedicated to the analysis of experimental data and numerical experiments of
liquid jet fragmentation. Detailing the tool and the methods behind it is of utmost importance
to frame their robustness and accuracy in order to set the validity perimeter of the experiments
and of the subsequent conclusions. This chapter is dedicated to the presentation on the first
hand of the Droplet Tracking Velocimetry (DTV) by shadowgraphy and on the second hand
of the discretisation of the flow equations and the numerical methods used in the Basilisk’s
solver for the Navier Stokes equations. Note that the latter presentation does not provide
a review of the existing methods to simulate multiphase flows with surface tension nor gives
an extensive introduction to Computational Fluid Dynamics (CFD) but limits itself to the
schemes implemented in Basilisk. The presentation of the basics of CFD can be found in the
handbooks of Anderson (1995) and Lomax et al. (2001). An extended presentation of the
finite volume method can be found in the book of Versteeg & Malalasekera (2007) while the
numerical methods for Direct Numerical Simulations in the context of gas liquid multiphase
flows are detailed in the one of Tryggvason et al. (2011).
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2.2 Droplet Tracking Velocimetry by shadowgraphy
This section presents the underlying experimental apparatus and protocol used to carry out
the DTV measurements achieved by Felis et al. (2020) and further analysed in the present
thesis. The presentation largely follows the details given in Felis-Carrasco (2017) and Felis et
al. (2020).

In order to measure the diameter and velocity of the droplets in the disperse region, one
can run a Droplet Tracking Velocimetry (DTV) algorithm on shadow images. Shadow images
result from the shadowgraphy technique in which a non coherent background light is used to
project the flow shadows on a camera. The background light is generated by a double-pulsed
laser source and conducted via an optical fiber to a diffuser / collimator which generates the
non-coherent uniform background. The system captures two consecutive image frames at high
speed which will be used to compute the velocity of the objects. While the exposition time is
roughly 4 ns and the frequency between the instant when two consecutive frames are captured
is set to 5 Hz, extra care is required to set the time between the capture of the two frames,
named time between pulses and denoted tbp. This time should not be too small in order to let
the objects evolve in space nor too large in order to limit the changes of the overall form and
location of the objects. The time between pulses is typically of O(µs) and is set depending on
the mean velocity of the objects inside the frame. The space orientation on the picture is such
that the z-axis is perpendicular to the photographs and the x axis is parallel to the jet axis
and included in the photograph.

Once the region where the liquid core pinches off is determined, it is possible to carry out
DTV measurements in the disperse region, i.e. after the core pinch off. The objective is then
to accurately detect the droplets in the shadow images and compute their velocity using the
double frame acquisition. To do so, the shadow images are segmented thanks to a custom
shadow sizer algorithm developed and implemented by Felis-Carrasco (2017) with the Image
Processing Toolbox of Matlab. The shadow sizer procedure is split into four main steps which
are a wavelet transform operation, a local analysis of each object, the contour extraction and
the velocity estimation.

Starting from the shadow image, the wavelet transform operation detects the changes in the
image gradient thanks to a Mexican-hat kernel and amplifies the droplet boundaries without
considering defocusing issues. A binary mask is used on the top of this to detect the objects
and segment them. The detected objects are then candidate droplets. Each candidate droplet
is isolated in a sub-image and locally analysed. The local analysis mainly corresponds to the
computation of the contrast ratio C defined as the difference between the contrast extrema over
their sum. The candidate droplets are kept only if C ⩾ 0.1. Once the contrast filter passed,
the contrast of the local image is first normalised and the grey contours for the values in
{0.25, 0.5, 0.61, 0.77} are extracted. Using the 0.61 contour and assuming that all the droplets
are ellipsoids, it is possible to compute the droplet volume V0.61 and then to compute the
diameter d[30] based on this volume such that d[30] = 3

√
6V0.61/π. The positions of the droplet

centroids in the two consecutive frames are then matched by using a point matching algorithm.
This algorithm does not match nearest neighbours together as it leads to inconsistency for
small droplets clustered together. Instead, it minimises a target cost function by applying 2D
shear, rotation and translation to the cloud of points detected between the frames. Finally, the
droplet velocities are computed knowing the distance between the successive centroid positions,
the time between pulses and the scale resolution, equal to 7.194 µm by pixel.
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Even if the shadow sizer procedure well detects the objects being out of focus, detecting
such objects has some limits. Firstly, their size can be misestimated. Secondly, the out-of-focus
droplets in the background and the foreground can be far from the measurement plane. Hence,
the 2D (x, y) location of their projection will not correspond to the actual 3D (x, y, z) location of
the droplet and be biased. If not accounted for, those two limits can infer consequent biases in
the measurements of the granulometry and the velocimetry of the jet. The misestimation of the
droplet size can be corrected thanks to a size correction function. This correction function can
be derived experimentally by measuring the size of round objects which nominal diameters d0
are known. The calibration measures can be fitted by the function d0/dm = 0.9629 C 0.2166 with
dm the measured diameter and C the contrast ratio (Felis et al., 2020). The latter function is
used to correct the measured diameter d[30]. Additionally, it is possible to filter out the detected
droplets being too far from the measurement plane by computing the depth of field (DOF )
such that DOF = 0.08153 d 0.9321

0 (Felis et al., 2020). The minimum DOF is set by the smallest
particle which can be detected by the DTV system, experimentally DOFmin = 1.61 mm (Felis-
Carrasco, 2017). Lastly, the droplets are validated only if their locations are included in the thin
slice such that DOF = DOFmin. The latter condition ensures that all the droplets detected by
the DTV apparatus belong to the same virtual measurement environment.

The DTV measurements depicted are carried out on 5 positions along the jet axis, x/dn =
{400, 500, 600, 700, 800} with dn the diameter of the injection nozzle. 1000 pairs of frames are
acquired for each measurement position with a Field-Of-View (FOV) of 14.73 × 14.73 mm2.
Each frame pair at each position is treated as an independent event. Finally, the images are
split into 5 stripes of width equal to 2.95 mm along y. Doing so enables a better resolved
analysis in the y direction as well as sets the effective measurement volume of the DTV to
14.73× 2.95× 1.61 mm3.
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2.3 How to simulate flow dynamics?
2.3.1 Numerical simulations for fluid dynamics
Several types of simulations exist nowadays, the three most common being the Reynolds Av-
eraged Navier Stokes (RANS) simulations, the Large Eddy Simulations (LES) and the Direct
Numerical Simulations (DNS). All of them aim to simulate flows under specific configurations
but with very different strategies and outcomes. Both RANS simulations and LES rely on
modelling part of the flow physics. For the former, the flow quantities are expressed following
the Reynolds decomposition, i.e. as the sum of a mean and a fluctuating part. For instance,
the Reynolds decomposition of the velocity would be such that u = U + u′ with U and u′

the velocity mean and fluctuations. Using this decomposition, the Navier Stokes equations can
then be written in terms of mean quantities and simulations can be run. The strong limitation
of this strategy is that the Reynolds stresses, writing as ρu′

iu
′
j with (i, j) indicating the spatial

directions, require to be modelled in order to close the system of equations and actually run
any simulation. Specifically, the description of turbulence strongly relies on the closure of the
Reynolds stress which led to the development of a wide range of models with their respecting
closure parameters, among them are the famous standard k − ϵ (Launder & Spalding, 1974)
and k− ω (Wilcox, 1993) models. The major drawbacks of the RANS approach are the strong
dependence on the model closure, the exploration work which is needed to figure out the correct
closure parameters for the configuration of interest and the fact that the flow turbulence is fully
modelled. However, that kind of simulations can be run efficiently and be useful to get some
insights on the global flow structure, particularly for flows showing a low turbulence intensity
or applications for which the knowledge of time averaged properties is sufficient.

Initially proposed by Smagorinsky (1963), Large Eddy Simulations partly overcome the
main issues of the RANS simulations. Instead of modelling the overall turbulent behavior of
the flow, the large scales of turbulence are resolved while the small scales are spatially filtered
out and taken into account through sub-grid-scales stresses (Versteeg & Malalasekera, 2007).
This enables to let the turbulent large scales evolve naturally while cutting off the computational
cost related to the resolution of the small scales. However, those small scales are key dynamical
elements for reactive flows (Pitsch, 2006), multiphase flows (Fox, 2012) or in near wall regions
(Agostini & Leschziner, 2018). As a consequence, LES represent with a better accuracy the
macro structure of turbulence but require the modelling of turbulent small scales when they are
relevant for the flow dynamics. Even so, it can be an interesting compromise for engineering
applications.

Contrary to the latter two, Direct Numerical Simulations (DNS) aim to resolve all the spatial
and time scales of the flow and thus do not model any dynamics. Even if no physical models are
used, limitations can arise from the mathematical models needed to operate the discretisation
of the Navier Stokes equations. For instance, the simulation of surface-tension driven flows still
relies on ongoing algorithm challenges (Gorokhovski & Herrmann, 2008). Even if limitations
exist, this approach enables to finely resolve the flow dynamics in various configurations like
turbulent MHD flows in the Von Kármán Sodium experiment (Nore et al., 2016), fully turbulent
channel flows down to the Kolmogorov scale (Agostini & Leschziner, 2014) or turbulent flows in
porous media down to scales smaller than the Kolmogorov’s one (Jin et al., 2015). Note that the
gain of accuracy in the flow description goes along with a consequent increase of computational
resources, making DNS not practical for industrial needs but of great relevance for research
purposes.
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In this work, the simulations which are carried out are DNS based on the open-source C-
based high-level programming language Basilisk (Popinet & collaborators, 2013–2021). After
introducing the Basilisk language, the numerical methods implemented to solve the Navier
Stokes equations and to account for the interface dynamics are detailed.

2.3.2 Basilisk: a C-based high level language for the computational
dynamics of fluid

Basilisk is an open source programming langage initially developed by Popinet & collaborators
(2013–2021). It is implemented for resolving partial difference equations over adaptative Carte-
sian grids, i.e. grids which can be dynamically refined during the simulations. This language
takes over from the free and open source software Gerris (Popinet, 2003) from which it takes
most of the developments and improves them. The application range of Basilisk is relatively
large with solvers enabling the simulation of tsunamis, flows in porous medium or multiphase
flows and it can grow in the future with the implementation of new solvers by the Basilisk
community. Indeed, contrary to Gerris, the versatility of the language enables to implement
relatively easily solvers for any kind of partial derivative equations. Based on the C++ pro-
gramming language, Basilisk offers a wide spectrum of processing functions and automation
routines, as for memory management or parallel computation, making this language high-level
and handy for developing simulation cases. An important plus of Basilisk compared to Gerris
is that all the routines are accessible and can be easily adapted, e.g. to new mathematical
formulations or flow configurations.

Additionally of being versatile, the strength of Basilisk also lies in the implementation of
numerical schemes and discretisation improving the overall efficiency of the simulations in terms
of time and memory usage. Particularly, the use of octree Cartesian grids with an adaptative
mesh refinement (Popinet, 2003) reduces drastically the memory usage and the computational
time by refining the mesh in the region of interest, like along an interface, and keeping a coarse
grid elsewhere. The computational time can be further reduced with parallel computation
using the Message Passing Interface (MPI) C library, and this without more development
work as a consequent part of the Basilisk routines include a MPI implementation. Finally,
the implementation of an accurate adaptative solver for surface-tension-driven interfacial flows
(Popinet, 2009) opens the way to carry out DNS of incompressible liquid jet fragmentation.
This way started to be explored by Agbaglah et al. (2011) on Gerris with the air-assisted
atomisation of planar liquid sheet (ρl/ρg = 833.3, Rel = 1730, Weg = 3.52). It continued
on Basilisk with the works of Chen et al. (2013) and Ling et al. (2017b) who carried out high
fidelity simulations respectively of impinging jets (ρl/ρg = 828.5, Rel = 11724, Weg = 3.61) and
atomizing biodiesel jets (ρl/ρg = 78.2, Rel = 1450, Weg = 12.9) which validate the accuracy of
the numerical schemes. As a comparison and reminder, the experimental configuration studied
by Felis et al. (2020) is characterised by ρl/ρg = 828.5, Rel = 41833 and Weg = 24, which
highlights the difficulty to simulate experimental configurations of diphasique turbulent flows
even with today’s state of the art methods. With this in mind, the open source code for liquid
jet fragmentation implemented with the Basilisk language was chosen to carry out the Direct
Numerical Simulations considered in this work.
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2.4 A numerical description of multiphase flows with
surface tension

The following sections largely follow the work of Popinet (2003) and Popinet (2009).

2.4.1 Flow configuration and governing equations
In the frame of this thesis, we aim to numerically study the injection of a liquid round jet
injected into a quiescent gaseous medium, respectively the dense and light phases denoted 1
and 2, at different injection Weber numbers. Both fluids are assumed to be incompressible,
viscous and immiscible. An interface then exists between the two phases and its dynamics
is partly governed by the surface tension forces. Additionally, gravity is neglected and the
gravitational forces are set to zero. Instead of considering the two phases apart from each
other, a way to handle this kind of configuration is to assimilate the biphasic flow to a single
phase flow with a spatially and timewise variable density. The Navier Stokes equations, namely
the continuity and momentum equations, can be respectively written as

∂tρ+∇∇∇ · (ρu) = 0, (2.1)

ρ(∂tu + u · ∇∇∇u) = −∇∇∇p+∇∇∇ · (2µD) + σκδSn, (2.2)

with u = (u1, u2, u3) the fluid velocity, p the pressure, ρ = ρ(x, t) the fluid density at the
location x and time instant t, µ = µ(x, t) the fluid dynamic viscosity and the deformation
tensor Di,j = (1/2)(∂iuj + ∂jui), (i, j) ∈ {1, 2, 3}2. The last term on the right hand side
of the momentum equation depicts the interfacial forces acting along the normal direction n
of the interface and deriving from the surface tension σ and the interface curvature κ. The
Dirac function δS is used here to depict that the surface tension forces are concentrated on the
interface and zero elsewhere. In addition to the two Navier Stokes equations, the assumption
of the flow incompressibility leads to

∇∇∇ · u = 0, (2.3)

In order to account for the biphasic nature of the flow, an additional quantity has to be added
to the single fluid approach: the phase volume fraction α(x, t) of the phase 1. This quantity
enables to depict the presence of each phase across the computational domain. When α(x, t) = 1
only the phase 1 is present and only the phase 2 is present when α(x, t) = 0. It also defines
both the density ρ and the viscosity µ of the single fluid as

ρ(α̃) = α̃ρ1 + (1− α̃)ρ2, (2.4)
µ(α̃) = α̃µ1 + (1− α̃)µ2 (2.5)

where ρi and µi are the density and the viscosity of the phase i, i ∈ {1, 2}. Here the field α̃ is
a numerical variable which is either identical to α or resulting from a smoothing spatial filter
applied on α. Using a smoothed field can improve the outcomes of the simulations (Popinet,
2009). Injecting the expression of ρ and µ in the continuity equation (2.1) and noting that
∂tρ1 = ∂tρ2 = 0 leads to a formulation of the continuity equation in terms of α
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∂tα +∇∇∇ · (αu) = 0 (2.6)
which can also be seen as the advection equation of the volume fraction. The initial problem of
biphasic flows is now written in terms of a single phase flow with variable density and viscosity.
It is worth noting here that instead of resolving the Navier Stokes equations for each phase, this
approach ables to resolve one set of equations. This, though, implies the implicit assumption
that the velocity field u evolves continuously in space. In order to run numerical simulations, it
is necessary to be able to compute the flow quantities step by step both timewise and spatially.
To do so, the partial derivatives constitutive of the governing equations have to be discretised,
for instance thanks to the finite volume method for the spatial derivatives.

2.4.2 Discretisation of the physical space: a hierarchical octree mesh

The domain is spatially discretised using cubic finite volumes organised hierarchically as an
octree. Fig. 2.1 gives the representation of the 2D equivalent of this 3D discretisation with
square finite volumes organised as a quadtree. Each finite volume is further called a cell and
the size of the cell edge is denoted ∆. One cell can be refined by splitting it into 8 children
cells (4 in 2D). The base of the hierarchical tree is called the root cell. It has no parent cell
and it is the unique ancestor of all the cells of the tree. On the other side, the cells without
child, the ones at the tip of each branch, are called leaf cells. As we descend in the tree, the
grid is more refined. The level of the cells in the tree is defined relatively to the root cell, whose
level is conventionally set to 0. The cell level increases by one for each new generation of cells.
The refinement level of the grid is equal to the maximum cell level. In the case example of Fig.
2.1, the level of refinement is equal to 3. The neighbours of each cell can be accessed through
the cell faces. In order to deal with interfaces, we also define mixed cells which are cells cut
by an interface. Additional constraints are set on the grid structure in order to simplify the
calculations at the cell boundaries:

1. the levels of direct neighbouring cells cannot differ by more than one,
2. the levels of diagonally neighbouring cells cannot differ by more than one neither,
3. all the cells directly neighbouring a mixed cell must be at the same level.

0

1

2

3

Figure 2.1: Example of a quadtree discretisation and its corresponding tree representation.

The constraints (1) and (2) have little impact on the discretisation flexibility but the constraint
(3) imposes a tighter restriction by forcing all the cells cut by an interface to be at the same level,
thus enforcing the same resolution all along the interface. Complementary, a major restriction
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of octree structures is the spatially isotropic refinement that it imposes locally, which can be
limiting for highly anisotropic flows but overcome with rectangular cells.

Practically, the data structure to choose for representing the tree has to respect several
requirements:

1. for any given cell, the access to the neighbouring cells has to be efficient,
2. for any given cell, the access to the level and the spatial coordinates of the cell must be

efficient,
3. the traversal of all the leaf cells, the cells at a given level and the mixed cells must be

efficient.
To ensure so, the structure of fully threaded tree introduced by Khokhlov (1998) was imple-
mented in the Basilisk routines. This structure enables the requirements (a) and (b) to be
done in O(1) operations instead of O(log(N)) operations with a standard pointer based tree,
where N is the number of cells traversed. For its part, the requirement (c) is performed in
O(N log(N)) operations with a standard pointer based tree.

Finally, all the variables are collocated at the center of each discretisation volume. The
interface in the mixed cells is defined through the Volume-Of-Fluid (VOF) approach based on
the volume fraction field α, see Sec.2.5.1. Consistently with the finite volume formulation, the
variables are taken as the values averaged over the cell volume. Using collocated variables is a
necessary choice in order to use the Godunov momentum advection scheme of Bell et al. (1989)
and simplifies the implementation of the Crank-Nicholson discretisation of the viscous terms.
However, extra care needs to be paid to avoid the decoupling of the pressure and velocity field,
see Sec. 2.4.5.

2.4.3 Adaptative mesh refinement
One key feature of Basilisk is its ability to refine the mesh while running a simulation. The
adaptative mesh refinement used in this work is the same as the one implemented by Popinet
(2015) and used by van Hooft et al. (2018) for atmospheric boundary layer simulations. Formally
based on the theory of wavelet thresholding used for fluid dynamics simulations (Schneider &
Vasilyev, 2009), the implementation relies on the estimation of the discretisation error to decide
if a cell has to be refined or coarsened. Consider a 1D signal f and its discretisation fN over
an even number N of elements. The value of f taken at the i-th element of the discretisation
is denoted f i

N . Let us denote D and U a downsampling and an upsampling operator. D
approximates a signal on a coarser grid made of N/2 elements while U approximates a signal
on a discretisation with the same number of elements as fN . In Basilisk, the downsampling
operation is defined as the local volume average of the signal value over the cells related to one
ascendant, i.e. contained in the next coarser level cell. For its part, the upsampling operation
is defined as a linear interpolation between the grid point at the coarse level, which ensures the
operation to be second-order accurate, consistently with the accuracy of the solver.

Applying first D and then U on the discretised signal fN leads to a new signal gN :

gN = U ◦ D(fN) (2.7)
where D(fN) = fN/2. In the general case, the signals fN and gN are different. It is possible to
define the discretisation error χ for each cell i in a grid of N elements as:

χi
N =

∥∥∥f i
N − gi

N

∥∥∥ . (2.8)
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Given an error threshold ι, named refinement criterion latter on, van Hooft et al. (2018) set
the following rules to control the grid adaptation:

if ι < χi
N then the i-th cell is too coarse.

2ι
3
< χi

N < ι fine.

χi
N <

2ι
3

too fine.

where ι has the same units as f . Using those rules, the grid can be refined dynamically in
respect of the refinement criterion. The different field values in the newly refined or coarsened
cells can be computed using the operators D and U defined above. Even if the explanations were
given for a 1D signal, the method generalised to 2D and 3D signals is similar. Finally, adapting
the grid while running a simulation in parallel imposes to balance the computation load by
modifying the domain decomposition between the processors, which is done with a natural
decomposition of a Z-ordering space-filling curve applied to the octree structure (Griebel &
Zumbusch, 2002).

2.4.4 Time discretisation of the governing equations
Let us consider two time instants n and n + 1 separated by a time step ∆t which can vary
during the simulation, under the constraint of the Courant–Friedrichs–Lewy (CFL) condition.
A classic way to compute an approximation of the first time derivative of a quantity ζ at the
time instant n+ 1 is to consider the first order backward finite difference

∂tζ = ζn+1 − ζn

∆t
. (2.9)

The term backward relates here to the fact that the time derivative at n+1 is evaluated with the
knowledge of ζ at n+ 1 and the previous time instant n. The time discretisation implemented
in Basilisk relies on a discretisation staggered in time for the volume fraction and the pressure.
While “stagger” would be familiar to the English readers, it might not be for those who English
is not their mother tongue. Here, “staggered” in time means that some flow quantities are
evaluated in between two time steps. Let us denote n+ 1/2 the moment when this evaluation
is done. Note that n + 1/2 is not an actual time instant but only a numerical construction
representing the computation, or the update, of some flow quantities between two actual time
steps. With this choice of staggering, the time derivative of α in Eq. (2.6) writes as

∂tα =
αn+1/2 − αn−1/2

∆t
(2.10)

Complementary, the deformation tensor is evaluated as its average between the instants n and
n+ 1: D = (Dn + Dn+1)/2. As a result, the time discretisation of the Navier Stokes equations
is second-order accurate (Popinet, 2009). The equations and the incompressibility conditions
are discretised as

αn+1/2 − αn−1/2

∆t
+∇∇∇ · (αnuuun) = 0, (2.11)
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ρn+1/2

[
un+1 − un

∆t
+ un+1/2 · ∇∇∇un+1/2

]
(2.12)

= −∇∇∇pn+1/2 +∇∇∇·
[
µn+1/2(Dn + Dn+1)

]
+ (σκδSn)n+1/2.

∇∇∇ · un = 0 (2.13)
It is possible to further simplify this system of equations thanks to a classic time-splitting
projection method. Instead of resolving directly the velocity at the instant n + 1 issuing from
both the velocity and the pressure fields, that kind of method splits the convective and diffusive
momentum terms from the pressure gradient. Practically, a provisional velocity u⋆ is defined
following the Hodge decomposition as

u⋆ = un+1 + ∆t
ρn+1/2

∇∇∇pn+1/2 (2.14)

The provisional velocity u⋆ can be seen as a general solution of the velocity field. The velocity
at the time instant n + 1 is then the sum of the solution from the velocity field to which the
pressure gradient is subtracted. The wording “projection” refers here to the projection of the
provisional velocity onto the space of the divergence free velocities. The discretisation then
rewrites as

un+1 = u⋆ −
∆t

ρn+1/2
∇∇∇pn+1/2 (2.15)

αn+1/2 − αn−1/2

∆t
+∇∇∇ · (αnuuun) = 0, (2.16)

ρn+1/2

[
u⋆ − un

∆t
+ un+1/2 · ∇∇∇un+1/2

]
=∇∇∇ ·

[
µn+1/2(Dn + D⋆)

]
+ (σκδSn)n+1/2, (2.17)

∇∇∇ · un+1 = 0. (2.18)
Ensuring that un+1 is divergent free, i.e. taking the divergence of Eq. (2.15) and considering
Eq. (2.18), leads to the Poisson equation:

∇∇∇ ·
[ ∆t
ρn+1/2

∇∇∇pn+1/2
]

=∇∇∇ · u⋆ (2.19)

This splitting method enables to compute the provisional velocity field u⋆ with Eq. (2.17),
then to compute the pressure field thanks to Eq. (2.19) and finally get the divergence free
velocity un+1 by applying the pressure correction on the provisional velocity field using Eq.
(2.15). Eq. (2.17) can be reorganised by grouping the terms evaluated at the fractional time
instant

ρn+1/2

∆t
u⋆ −∇∇∇ ·

[
µn+1/2D⋆

]
=∇∇∇ ·

[
µn+1/2Dn

]
+ (σκδSn)n+1/2 + ρn+1/2

[
un

∆t
− un+1/2 ·∇∇∇un+1/2

]
(2.20)
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and the quantities at the fractional time step can be computed with the knowledge of the
quantities at the time steps n and n + 1/2. The momentum equation is then an Helmholtz
type equation. Note that the Crank-Nicholson discretisation of the viscous term is formally
second-order accurate and unconditionally stable. In Basilisk, both Eq. (2.19) and (2.20) are
solved using an octree based multilevel solver with a V-cycle implementation. The reader can
refer to Popinet (2003) for a detailed presentation of the multilevel solver. For its part, once
spatially discretised, the velocity advection term is estimated using the numerical scheme of
Bell et al. (1989). This scheme relies on a Godunov procedure, i.e. uses the leading terms, up
to order one in space and time, of a Taylor series of the velocity. The time and space derivatives
taking part in the series are discretised by using upwind finite differences. In the last steps of
the advection scheme implemented in Basilisk, a pressure correction is applied to ensure that
the resulting velocity field is divergence free, thus respecting the incompressibility condition,
before estimating the velocity advection term.

2.4.5 Spatial discretisation of the governing equations
Sec. 2.4.2 concludes on the attention needed to avoid the decoupling between the velocity
and the pressure fields. To circumvent such a situation, an approximation projection method
(Popinet, 2003) can be used for the spatial discretisation of Eq. (2.15) and the associated
divergence in the Poisson equation (2.19). At first, Eq. (2.20) is used to compute the auxiliary
cell centered velocity field uc

⋆. Then, the auxiliary face centered velocity field uf
⋆ is computed by

averaging the cell centered values on all the faces of the discretisation volume, while guarantying
the consistency of the volume fluxes between the cells of different level. On a third step, the
divergence of the auxiliary velocity field taking part in the Poisson equation is discretised like
the finite volume approximation

∇∇∇ · u⋆ = 1
∆
∑

f

uf
⋆ · nf (2.21)

where nf is the normal unit vector to the face f and ∆ is the edge cell size. After solving the
Poisson equation with the multilevel solver, the pressure correction can be applied to both the
face centered and cell centered auxiliary velocities

uf
n+1 = uf

⋆ −
∆t

ρf
n+1/2

∇∇∇fpn+1/2 (2.22)

uc
n+1 = uc

⋆ −
∣∣∣∣∣ ∆t
ρf

n+1/2
∇∇∇fpn+1/2

∣∣∣∣∣
c

(2.23)

with∇∇∇f being a simple face centered gradient operator and | · |c being the average operator over
all the faces delimiting the control volume. As a consequence, the resulting face centered velocity
uf

n+1 is exactly non divergent and the resulting cell centered velocity uc
n+1 is approximately

divergence free.
At this stage of the discretisation, one important point stayed in the corner. The Poisson

equation (2.19), the advection diffusion equation (2.20) and the pressure corrections (2.22) and
(2.23) rely on the estimation of the face centered density ρf

n+1/2 and viscosity µf
n+1/2 from Eq.

(2.4) and (2.5), themselves depending upon the volume fraction αf
n+1/2. The latter is estimated

differently hinging on the configuration of the grid. If the face delimits two cells of the same
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level, the volume fraction is computed as the average of the cell centered values. If the face
delimits two cells with different level, the volume fraction field is computed thanks to a second
order interpolation.
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2.5 A numerical description of the interface
The following sections largely follow the work of Popinet (2009).

2.5.1 Tracking the interface with a Volume-Of-Fluid approach
In order to solve the advection equation (2.6) of the volume fraction field α, a piecewise lin-
ear geometrical Volume-Of-Fluid (VOF) scheme is implemented in Basilisk for octree spatial
discretisations. Such schemes classically proceed in two steps with, first, reconstructing the
interface and, second, computing the geometrical flux along with the interface advection. The
main focus is given here on the first step. More details about the second step can be found in
the work of Popinet (2009).

For piecewise linear geometrical VOF schemes, the interface is represented by a plane in 3D
and a line in 2D described by

n · x = a (2.24)
with n the local normal to the interface at the position x. When both n and the volume fraction
α are known, if the volume contained in the cell and lying below the interface plane is equal to
α, then the coefficient a is uniquely defined. In the implementation of this scheme in Basilisk,
it is assumed that given a normal n, a volume fraction α and a coefficient a in a coordinate
system centered on the cell and of unit length the cell size, those three quantities are related
by a bijective function V such that

α = V(n, a), (2.25)
a = V−1(n, α). (2.26)

Practically, the routines of Scardovelli & Zaleski (2000) are used to implement V and V−1.
Generally speaking, the schemes for estimating the interface normal only need information
in a compact neighbourhood of the cell, for instance regular Cartesian stencils of size 3 ×
3 × 3. With this stencil, the normal can be estimated by using finite difference estimates or
minimisation techniques. The generalisation of those schemes to octree grid is straightforward
if the discretisation in the compact neighbourhood reduces to a regular Cartesian discretisation.
Thus, reconstructing such regular discretisation when the cells in the stencil vary in size is a key
element. For the sake of simplicity, the following algorithms are explained for a 2D quadtree
discretisation.

Consider a cell C centered on x0 of size ∆ and containing the interface, 0 < α < 1. The
notation N denotes a neighbouring cell of C. Algorithm 1 gives the procedure for the stencil
computation. For setting the volume fraction αi,j of the cell N∆ on line 6 of Algorithm 1,
several cases must be considered depending if the neighbour cells are of the same size as or
larger than C.

Algorithm 2 gives the procedure to set αi,j for both cases. In this algorithm, when N and
C have the same size, N is not necessarily a leaf cell. Even so, the volume fraction can be
computed at all the levels of the tree by defining the cell volume fraction as the average of
the volume fraction of the children cells. For processing the case when the cell N is larger
than C and contains the interface, the interface equation (2.24) is assumed to be known for the
fragment of interface in N , then n ·x = aN . Prior to computing the equivalent volume fraction
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of the virtual cell N∆, the interface equation has to be transformed into the coordinate system
centered on N∆ using

x′ = n∆x + xN − xi,j

∆
(2.27)

where n∆ and xN are the size and the position of N . Eq. (2.24) then rewrites as

n · x′ = n aN + n
∆
· (xN − xi,j) (2.28)

and the corresponding stencil volume fraction writes as

αi,jV(n, n aN + n
∆
· (xN − xi,j)). (2.29)

In the description of the physical space discretisation, Sec. 2.4.2, several requirements and
constraints were set on the grid. Among them, the difference of level between neighbour cells
cannot be larger than 1, thus setting n to 2 in the later expression of αi,j.

Now that αi,j is known over the stencil, the Mixed Youngs Centered (MYC) implementation
of Aulisa et al. (2007) is used to compute the normal m and the interface is reconstructed by
evaluating a = V−1(m, α0,0). Finally, the interface reconstruction can be achieved by following
the procedure given in Algorithm 3.

Regarding the interface advection, its implementation relies on the direction-split scheme
from DeBar (1974). A major question to consider in the interface advection is the one of the
computation of the volume fluxes of the first phase through the cell boundaries. The classic
analytical schemes could be used but, in practice, they lead to the numerical diffusion of the
interface. In order to compensate this diffusion, the initial VOF scheme developed by Hirt &
Nichols (1981) included diffusive / non diffusive advection schemes. Contrary to the analytical
approach, the volume fluxes can be estimated thanks to the geometry of the reconstructed
interface. This method is efficient and simple to implement on a Cartesian grid or to generalise
to octree structures. However, this geometrical scheme is not strictly conservative due to the
occurrence of small over- or undershoots of the volume fraction. In order to keep the consistency
of the volume fraction field, and mainly ensure that α ∈ [0, 1], any volume fraction violating
the field bounds has to be reset, which can lead to the loss of exact mass conservation. The
tests of the implementation of a geometrical scheme, and of the above mentioned limits, for
the volume fraction fluxes in an octree structure carried out by Popinet (2009) indicated that
mass conservation is not an issue.
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Algorithm 1 Stencil computation (C)
Require: (i, j) ∈ Z2

Require: (i, j) ∈ [−1, 1]2
1: X← (1, 0)
2: Y← (0, 1)
3: for each pair (i, j) do
4: Set the position xi,j ← x0 + ∆(iX + jY).
5: Locate the smallest cell N of size larger than or equal to ∆ containing xi,j.
6: Set the stencil volume fraction αi,j to the volume fraction of a (virtual) cell N∆ of size

∆ centered on xi,j and entirely contained in N .

Algorithm 2 Equivalent volume fraction (C,xi,j,N )
1: if N has the same size as C then
2: N∆ ← N
3: αi,j ← the value of α in N
4: else if N is larger than C then ▷ Case when N is a leaf cell coarser than C.
5: if N does not contain the interface then
6: αi,j ← the value of α in N (0 or 1)
7: else if N contains the interface then
8: By definition, N∆ does not exist and volume fraction has to be computed from the

interface reconstructed cell N .

Algorithm 3 Interface reconstruction
1: for each non leaf cell (traversing from leaf to root) do
2: α← average of the children’s volume fractions
3: for each cell C containing the interface (traversing from root to leaf) do
4: Compute αi,j over the stencil using Algo. 1.
5: Compute n using αi,j and the MYC scheme.
6: Compute a = V−1(n, α0,0).
7: Store n and a as state variables of C.

2.5.2 Computing the interfacial forces: a balanced force surface ten-
sion calculation

Estimating accurately the surface tension term (σκδSn)n+1/2 in the momentum equation (2.2)
is an ongoing challenge for the VOF method in the context of surface-tension-driven flows
(Gorokhovski & Herrmann, 2008). The two major scheme families are the front tracking meth-
ods (Popinet & Zaleski, 1999) and level set with the Ghost Fluid Methods (GFM) (Kang et al.,
2000; Hong et al., 2007). However, both families present major drawbacks. The front tracking
methods cannot deal simply with topology changes while the level set methods show difficulties
to ensure mass conservation (Popinet, 2009).
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One of the original ideas proposed to deal with the surface term in the context of VOF
methods was introduced by Brackbill et al. (1992) who proposed a Continuum-Surface-Force
(CSF) approach based on an approximation of the surface tension term and of the curvature κ
such that

σκδSn ≈ σκ∇∇∇α̃, (2.30)
κ ≈∇∇∇ · ñ, (2.31)

ñ = ∇∇∇α̃
∥∇∇∇α̃∥

, (2.32)

where α̃ is a spatially filtered volume fraction field. The CSF approach suffers from spurious cur-
rents when it is applied to the case of a stationary droplet in theoretical equilibrium (Scardovelli
& Zaleski, 1999). In the case of a stationary droplet, the discretised momentum equation re-
duces to (Renardy & Renardy, 2002; Francois et al., 2006)

−∇∇∇pn+1/2 + σκ(δSn)n+1/2 = 0 (2.33)

and, when using the CSF approximations, becomes

−∇∇∇pn+1/2 + σκ(∇∇∇α)n+1/2 = 0. (2.34)

Even if spurious currents appear around the interface of the droplet, the exact discrete equi-
librium between the surface tension and the pressure gradient can be recovered if

1. the discrete approximations of both gradients taking part in Eq. (2.34) are compatible.
2. the estimated curvature κ is constant.
Respecting those two conditions leads to the exact discrete equilibrium solution pn+1/2 =

σκαn+1/2 + constant. In the actual scheme, the computation of the cell centered pressure
gradient is done by averaging the face centered pressure gradient, see Eq. (2.23). To make
the gradient operators compatible and respect the condition 1, it is required first to apply the
surface tension force to the auxiliary face centered velocity field uf

⋆ as

uf
⋆ = uf

⋆ +
∆t σκf

n+1/2

ρ(αf
n+1/2)

∇∇∇fαn+1/2 (2.35)

and second to apply the corresponding cell centered surface tension force to uc
⋆ as

uc
⋆ = uc

⋆ +
∣∣∣∣∣∆tσκ

f
n+1/2

ρ(αf
n+1/2)

∇∇∇fαn+1/2

∣∣∣∣∣
c

(2.36)

On the practical side, the implementation of the last two conditions is identical to the
implementation of the pressure corrections, Eq. (2.22) and (2.23). Thus, the routines used to
compute the pressure corrections and the surface tension corrections are the same in Basilisk.
Now that the condition 1 is respected, it is possible to focus on the condition 2. The second
one depends on the accuracy of the curvature estimation which raised numerous difficulties
regarding the developments of VOF methods. The next section details how the calculation of
the curvature with a generalised height function can provide an accurate estimation.
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2.5.3 Computing the interface curvature
Once again, several methods exist to estimate the curvature of the interface. Complementary
to the approximation of Brackbill et al. (1992), Eq. (2.31), it was proposed to estimate the
curvature thanks to the differentiation of exact level set functions (Cummins et al., 2005) or high
order methods based on parabolic fitting, like the PROST method (Renardy & Renardy, 2002),
or on spline interpolation (Ginzburg & Wittum, 2001). Following the curvature calculation
based on height functions (HF) proposed by Torrey et al. (1985), the curvature estimation is
done in Basilisk thanks to a height function calculation generalised to octree structure. HF
calculations demonstrated inconsistency in cases for which the radii of the interface curvature
is of the order of the mesh size. Thus, extra care is required to handle under-resolved interfaces
which can occur during topology changes. The following introduces first the HF calculation
for octree structures and then the procedure for estimating the curvature of under-resolved
interfaces. The algorithms presented here are those of Popinet (2009). Further information
about surface tension models is available in the review of Popinet (2018).

h

(a)

h

(b)

Figure 2.2: Scheme of an interface with a small curvature captured by a 3 × 3 symmetric
stencil (a) and with a stronger curvature captured by an asymmetric stencil (b). The doted
grids represent a 3 × 7 stencil, the thick lines cell represent the target cell C and the arrows
correspond to the interface height h in a stencil column.

2.5.3.1 Height function and octree structures

The classic height function calculation on a 2D Cartesian grid (Cummins et al., 2005) relies on
3× 7 or 7× 3 stencils from which a discrete estimation of the interface height h is derived. The
curvature κ is then computed thanks to the derivatives of h: κ = h′′/(1 + h′2)3/2. Algorithm
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1 could be used to reconstruct similar symmetric stencil in octree grids but several limitations
raise here. Symmetric stencils with predefined size are not the most suitable to evaluate the
curvature interface. For instance, depending on the interface topology, some columns within a
same stencil might need to be higher or could be smaller than 7 cells, leading to reconstruct ill
calibrated symmetric stencils. Considering instead local asymmetric stencils for which the size
of each column can be adapted to the topology of the interface overcomes the latter issue. Fig.
2.2 illustrates the benefits of not predefining the stencil size as well as the difference between a
symmetric and asymmetric stencil. For both stencils, the interface is captured and their sizes
are smaller than a 3× 7. While the symmetric stencil can capture the weakly curved interface,
the asymmetric stencil can capture stronger curvature requiring less cells than a symmetric
stencil, and reducing pressure on the memory usage. Evaluating the interface height in a
stencil column is then the elementary operation of the HF procedure. This operation is done
by the Algorithm 4.

In this algorithm, C can be understood as an initial guess of the interface location. Then,
starting from C, it is possible to explore the cells in the top and the bottom directions, i.e. the
cells above and below, until the interface is captured. Those directions are defined relatively to
the interface orientation. The interface is said to be consistent when the top cells of the column
are empty, α = 0, while the bottom cells are filled, α = 1. The first part of the algorithm,
the first while loop from line 8 to line 13, consists of summing the volume fraction in the top
direction until the interface is found, I = true, and a full or empty cell, α ∈ [[0, 1]], is reached.
If the lastly explored cell is full, α = 1, then a consistent interface cannot be computed with
the current stencil and an error is returned, line 14. In the second part, the second while loop
from line 21 to line 26, the operation is repeated along the bottom direction, this time looking
for a full cell. With a correct guess of the initial cell C, the algorithm is equivalent to using
optimal local asymmetric stencils (Popinet, 2009). Additionally, no prior assumption on the
stencil height is required. The generalisation of Algorithm 4 is achieved by considering virtual
cells in the case of coarse-fine neighbours, as in Algorithm 1.

Once the local asymmetric stencil is computed, it is possible to compute the curvature with
the full height function curvature estimation given in Algorithm 5. Setting a common origin at
line 5 is most needed as the stencils columns are formed independently and do not necessarily
have the same origin. Note that the function h(C) returns the absolute height of the center of
C and that P⊥ denotes the plane perpendicular to the top direction.

2.5.3.2 Handling the case of under-resolved interfaces

As mentioned in the introductory paragraph of the subsection, height functions show difficulty
to compute the interface curvature when the curvature radii are of the order of the mesh size.
Besides, even moderately curved interfaces can lead to inconsistent interface heights (Popinet,
2009). To overcome this issue, a solution is to use the heights which are consistent, returned by
Algorithm 5 on line 9, and perform a parabola (2D) or a paraboloid (3D) fitting through those
heights. The resulting analytical fit function can then be differentiated in order to estimate the
interface curvature κ. Generally speaking, consider a cell C and N estimated interface positions
{x1,x2, . . . ,xN}, the curvature of the under-resolved interface can be estimated with Algorithm
6.

The first condition of Algorithm 6, line 1, considers the number of independent interface
positions instead of the total number of positions N . Two positions xi and xj are said indepen-
dent when ∥xi − xj∥ ⩾ ∆. This is necessary in order to have a well conditioned minimisation
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Algorithm 4 Interface height (C, top direction)
1: H ← α(C) ▷ Initialise height.
2: N ← C
3: αtop ← α(C)
4: if αtop < 1 then ▷ Test if the cell contains the interface.
5: I ← true
6: else
7: I ← false

8: while I = false or N contains the interface do ▷ Process the cells above C.
9: Replace N with its top neighbour.

10: αtop ← α(N )
11: H ← H + αtop

12: if N contains the interface then
13: I ← true
14: if αtop ̸= 0 then return inconsistent height.
15: N ← C
16: αbottom ← α(C)
17: if αbottom>0 then ▷ Test if the cell contains the interface.
18: I ← true
19: else
20: I ← false

21: while I = false or N contains the interface do ▷ Process the cells below C.
22: Replace N with its bottom neighbour.
23: αbottom ← α(N )
24: H ← H + αbottom

25: if N contains the interface then
26: I ← true
27: if αbottom ̸= 0 then return inconsistent height.

return H and N

Algorithm 5 Height function curvature (C, top direction)
1: h0, N0 ← Interface height(C, top direction) ▷ Process the column of C
2: for each column i neighbouring C do ▷ Process the other stencil columns
3: Define N as the closest neighbouring (virtual) cell to C in P⊥.
4: hi, Ni ← Interface height (N , top direction)
5: Set a common origin hi ← hi + h(Ni)− h(N0).
6: if all heights are consistent then
7: κ ← estimation using the finite difference approximations of the derivatives of the

discretised height function hi

8: return κ
9: else

10: return all the interface positions deduced from the consistent heights.
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Algorithm 6 Parabola fitted curvature (C, {x1,x2, . . . ,xN})
1: if there is not enough independent positions (N < 3 (2D), N < 6 (3D)) then
2: a meaningful least squares fit cannot be achieved, return an error
3: Retrieve the normal n to the interface in C, precomputed with Algo. 3.
4: O ← coordinates of the barycentre of the reconstructed interface fragment in C.
5: Define an orthonormal coordinates system R = {O, (i,m)} (R = {O, (i, j,m)} in 3D)
6: {x′

1,x′
2, . . . ,x′

n} ← transformed coordinates of the interface positions in R.
7: fit a parabola (a paraboloid in 3D) by minimising

F(ci) =
N∑

j=1

[
z′

j − f(ci,x′
j)
]2

(2.37)

f(ci,x) =

c0x
2 + c1x+ c2 (2D)

c0x
2 + c1y

2 + c2xy + c3x+ c4y + c5 (3D)
(2.38)

return the mean curvature κ at the origin O of R such that:

κ =

2c0
[
1 + c2

1

]−3/2
(2D)

2
[
c0(1 + c2

4) + c1(1 + c2
3) + c2c3c4

][
1 + c2

3 + c2
4

]−3/2
(3D)

(2.39)

problem. Additionally, the minimum number of independent interface positions is set to 3 (2D)
or 6 (3D) because the minimisation problem requires the solution of 3× 3 (2D) or 6× 6 (3D)
linear systems. Even if this procedure is sufficient to compute the curvature of most under
resolved interfaces, it can happen that the number of independent positions is too small, like
for complicated topology at coarse resolution. In this case, a new set of interface positions is
constructed by computing the barycentres of the reconstructed interface fragments in each cell
of a 3× 3 (2D) or 3× 3× 3 (3D) stencil. If this approach fails as well to provide enough inde-
pendent positions xi, the considered cell probably contains an isolated or degenerate interface
fragment. Its curvature is then simply set to 0. With the previous considerations in mind, the
mean curvature of the interface contained in a cell C can be computed by following Algorithm
7.

In terms of performance, the parabola fitting step is more expensive than the standard
HF method. Even though, most of the cases will be dealt within the for loop, line 3 to 7, in
couples of iterations. A large part of the remaining cases will be dealt within the parabola
fitting procedure and seldom cases will be dealt using the barycentre construction on line 11.
Thus the computational cost is mainly dominated by the cost of the standard HF method. The
balanced force surface tension given in Eq. (2.35) requires the face centered interface curvature
estimates. Those values are computed either by averaging the cell centered curvatures of the
neighbouring cells when they both contain the interface or by taking the value of the cell
centered curvature in either cell containing the interface.
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Algorithm 7 Curvature (C)
1: Retrieve the normal n to the interface in C, precomputed with Algo. 3.
2: S ← set of 2 spatial directions (3 in 3D) in decreasing order of alignement with n.
3: for each top direction in S do
4: κ← Height function curvature(C, top direction)
5: if κ is consistent then return κ
6: else
7: I ← I + set of the interface positions deduced from the consistent heights
8: N ← number of independent positions in I.
9: if N < 3 in 2D or N < 6 in 3D then

10: reset I
11: I ← set of interface positions built from the barycentres of the reconstructed interface

fragments in a 3× 3 (2D) or 3× 3× 3 stencil centered on C.
12: N ← the number of independent positions in I
13: if N is still too small then return 0

return Parabola fitted curvature (C, I)

2.5.4 Droplet detection
Once the surface tension term is correctly discretised and estimated, the multiphase flow can
evolve and potentially presents a disperse phase, i.e. a phase which would be split into different
volumes like droplets in gas or bubbles in a liquid. Consider the volume fraction field α. By
choosing a threshold value, one can filter the computational domain and separate the two
phases. However, nothing would be known about the droplets as the filtering only results in a
group of gas cells and a second group of liquid cells, without more distinction. Complementary
to solver’s routines for solving the governing equations, a routine in Basilisk enables to detect
the cells connected into neighbourhoods. Not only the detection is carried out but also the cells
of the same neighbourhood are tagged with an unique index, which can be seen as the index
of the neighbourhood. The scheme to do so follows Algorithm 8 where NN and αf denote the
total number of neighbourhoods and the filtered volume fraction field in which all the values
less than a chosen threshold are set to 0. At the beginning of the procedure, the indices of
the cells are used to initialise the tag values. The cells see their tag value being refined first
by setting it as the tag of its parent cell and second by setting it as the minimum tag of the
neighbouring cells. The operation is repeated until all the cells of the same neighbourhood
have the same index, i.e. when the list of tag stops evolving. The resulting indices can then
range from one to the total number of leaf cells. They need to be reduced so they range from
1 to the total number of neighbourhoods. Finally, it is possible to compute quantities of the
neighbourhood such as its volume by adding the volume of the contained cells weighted by the
volume fraction or the coordinates of its velocity by adding the velocities in the contained cells
weighted by the cell volume and volume fraction.
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Algorithm 8 Tag (αf )
1: for each leaf cell do ▷ Initialise the tag values.
2: if αf ̸= 0 then
3: tag ← cell index
4: else
5: tag ← 0
6: while the tag values change do ▷ Set a unique index to neighbouring cells.
7: for each cell (traverse from root to leaves) do
8: if the parent cell’s tag ̸= 0 then ▷ First tag refinement
9: children’s tag ← parent’s tag.

10: if tag > neighbours’ tag then ▷ Second tag refinement
11: tag ← minimum tag of the neighbour cells.
12: Reduce the range of tag indices to [[1, NN ]].
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2.6 Conclusion
Among the three main types of simulations, Direct Numerical Simulations were retained to
carry out numerical experiments in this Ph.D thesis due to their ability to reproduce natu-
ral phenomena with a satisfying accuracy. Additionally, the open source C-based high level
programming language Basilisk was chosen to simulate the fragmentation of liquid round jets.
Explaining the numerical methods used in Basilisk is of utmost importance in order to picture
their accuracy as well as to frame the limits of the DNS and of the subsequent conclusions.

The fragmentation mechanism under consideration occurs at low Mach numbers without
any gravitational forces and involves two immiscible, viscous, incompressible fluids. The flow
dynamics is then governed by the unsteady Navier-Stokes equations with surface tension. The
governing equations can be expressed in the theoretical framework of a single fluid flow with
variable density and viscosity in which the two phases are taken into account through the
volume fraction field.

The Navier-Stokes equations are solved for a biphasic flow with a constant surface tension
using numerical schemes similar to Popinet (2003) & Lagrée et al. (2011). The resolution of
the equations relies on time steps limited by the Courant-Friedrichs-Lewy (CFL) condition, the
advection scheme of Bell-Collela-Glaz (Bell et al., 1989) and a multilevel solver for the Poisson
equation. The gas-liquid interface is tracked with a Volume-Of-Fluid (VOF) scheme which is
geometric, conservative and non diffusive (Lòpez-Herrera et al., 2015). Regarding the surface
tension, the interfacial forces are estimated thanks to the Continuum-Surface-Force (CSF)
method of Brackbill et al. (1992) and an estimation of the interface curvature based on height
functions (Popinet, 2009, 2018). A projection method is used to compute the centered pressure
gradient. The VOF scheme is combined with an octree adaptative grid (Agbaglah et al., 2011)
while the grid adaptation algorithm relies on a wavelet estimated discretisation error, described
by Popinet (2015) and used for atmospheric boundary layer simulations by van Hooft et al.
(2018). Such grids present the advantage of finely resolving the gas-liquid interface while having
a coarser resolution away from the interfaces, and thus enable an increase of the computational
velocity. Finally, the droplet detection is achieved by a tag function which associates a different
tag to each neighbourhood of connected cells respecting a threshold condition on the fraction
field and opens the way for studying bubbles or droplets numerically.
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Chapter 3. Multimodal distributions of agricultural-like sprays: A statistical analysis of
drop population from a pressured-atomized spray

3.1 Preamble
Studying agricultural-like sprays is a challenging task because of the intense flow turbulence,
see Sec. 1.4.1, the multiplicity of fragmentation mechanisms once the liquid core pinched off
(Guildenbecher et al., 2009) and the large distances on which the jet and spray can evolve,
typically up to several meters (Felis-Carrasco, 2017). The classic case of jet fragmentation
involving the injection of a liquid at high velocity - high enough to make the configuration lie in
the second wind induced or atomisation regime, see Sec. 1.2.2 - in a quiescent gaseous medium
is called a pressure atomized spray (Lefebvre, 1989). Using the experimental measurements
of Felis et al. (2020) performed on such sprays, we carry out a statistical analysis on the
resulting droplet population. The multimodal nature of the size and axial velocity distributions
is highlighted as well as the good agreement with the experimental data of the intermittency
based size distribution of Novikov & Dommermuth (1997). Furthermore, a quadratic model is
shown to describe qualitatively well the trend of the size-velocity joint distribution and, based
on the marginal distribution properties, several droplet subsets with a characteristic size and
velocity are derived from the latter joint distribution.

This analysis was published as an article in Physical Review Fluids. Sec. 3.2 reproduces the
article and Sec. 3.3 proposes further connections between the droplet population distributions
and the fragmentation mechanisms.
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3.2. Multimodal distributions of agricultural-like sprays

3.2 Multimodal distributions of agricultural-like sprays
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This paper focuses on the statistical analysis of a droplet population produced by a
pressure-atomized jet spray, laying in the second-wind-induced regime, far behind the
nozzle. The droplet size and axial velocity derived from droplet tracking velocimetry
measurements are shown to follow bimodal distributions and their modeling is tackled
in the framework of turbulence and of combustion applications, respectively. In addition,
the existence of subsets of droplets showing specific behaviors is brought to light from the
analysis of the experimental droplet-size–velocity joint probability distribution function
(PDF). Such subsets can be precisely defined using the properties of the size and axial-
velocity distributions. Finally, the trend of the joint PDF is depicted due to a quadratic
relationship which is derived in the context of combustion and shown to work here as well,
far behind the nozzle.

DOI: 10.1103/PhysRevFluids.6.023604

I. INTRODUCTION

Liquid jet atomization is at the heart of numerous natural and industrial systems such as ocean
sprays, medication administration, and farming irrigation by aspersion. Widely used across Europe,
the latter application would benefit performance gain by better understanding the atomization
phenomenon. This application relies on the injection in quiescent air of a round water jet at a
velocity uin j through a nozzle of diameter dn and falls in the scope of both multiphase flows and
polydisperse sprays. The phases are denoted by the subscript k, which takes the value l for the liquid
phase and g for the gas phase. Classically, atomization flows are controlled by the Reynolds, Weber,
and Ohnesorge numbers

Rek = ρkuin jdn

μk
, Wek = ρku2

in jdn

σl-g
, Oh = μl√

ρl dnσl-g
, (1)

where ρk and μk represent the density and the dynamic viscosity of the phase k, respectively, while
σl-g is the surface tension between the two phases.

Previous experiments showed the existence of five different regimes for nonassisted cylindrical
liquid jets [1]. Among those, the second-wind-induced regime is not too far from the industrial
application of aspersion irrigation and offers a more controlled environment for laboratory research.
This high gas Weber regime is characterized by a large nozzle diameter dn > 1 mm and sharp
limits on the gas Weber number 13 < Weg < 40.3. Physically, jets belonging to this regime show
a characteristic primary atomization for which small droplets are peeled off the interface near the
nozzle exit. Studies have been carried out to extensively characterize this primary breakup along
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FIG. 1. Schematic of the experimental setup used by Felis et al. [8], with �g the gravity field, d the droplet
diameter, and (u, v) the droplet axial and transversal velocities, respectively, along x and y.

the jets, before the breakup of the liquid core, including work of great importance by Faeth and
co-workers [2–6], who particularly emphasized the role of turbulence by deriving a correlation for
the Sauter mean diameter d3,2 as a function of the distance to the nozzle x, its diameter dn, the liquid
Weber number Wel , and the integral length scale of turbulence L. Several subregimes with different
characteristic behaviors have been precisely depicted using the jet density ratio ρl/ρg, the liquid
Weber number Wel , the ratio between the Rayleigh breakup time and the aerodynamic secondary
breakup time, and the degree of development of turbulence, quantified by the ratio of the nozzle
length Ln and the nozzle diameter dn.

Following along the lines of Faeth and co-workers, later works focused on the region away from
the nozzle, between the breakup of the jet liquid core and the jet dispersion zone, to study the
polydisperse droplet population produced by atomization. A specific droplet tracking velocimetry
(DTV) technique was used by Stevenin et al. [7] to obtain original joint size-velocity measurements
which include at the same time two velocity components and the diameter, covering a large size
range, for each droplet. Insights into the turbulent multiphase flow common in the irrigation problem
were derived that allow a comparison between the Reynolds stresses from the DTV and the turbulent
kinetic energy from a turbulent Reynolds-averaged Navier-Stokes model. Felis et al. [8] further
developed this method by establishing a reproducible study case and by coupling this technique
with laser Doppler velocimetry (LDV) and optical probe (OP) techniques.

The latter experimental setup implements a circular nozzle of diameter dn = 1.2 mm and length
Ln/dn = 50, which ensures a fully developed turbulent pipe flow. The nozzle is made of borosilicate
glass and the interior wall roughness is considered negligible. A vertical liquid water jet is injected
with an average bulk velocity uin j = 35 m/s pointing downward into quiescent air (see Fig. 1).
The campaign was made under normal conditions (297 K and 1 atm); the corresponding physical
properties are given in Table I. The chosen injection velocity ensures that there is no cavitation in the
nozzle. The dimensionless numbers of the case-study conditions are Rel = 41 833, Wel = 20 158,
Weg = 24.3, and Oh = 0.0034, which makes the jet lie in the second-wind-induced regime detailed
above. An estimation of the Taylor-scale Reynolds number at the nozzle exit, based on the results
from Ruffin et al. [9], gives Reλ = 400, typical for fully developed turbulence in monophasic flow.
The OP provides the mean liquid mass fraction and volume fraction. A specific LDV apparatus
allows us to measure separately the liquid and gas velocities. Finally, a custom DTV algorithm
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TABLE I. Physical properties considered by Felis-Carrasco [10], under normal conditions and in SI units.

Property Definition Value

ρl water density 998.3 kg/m3

ρg air density 1.205 kg/m3

νl water kinematic viscosity 1.004 × 10−6 m2/s
νg air kinematic viscosity 15.11 × 10−6 m2/s
σl-g water-air surface tension 0.073 N/m

can capture the liquid velocity in the dispersion area of the spray. The DTV measurements are
carried out to determine the radial profiles for x/dn ∈ [400, 800] while paying special attention to
the depth-of-field estimations to reduce the bias on the droplet-size–velocity correlation. Details are
given in [10].

Among the results from this study, it appears that the droplet-size distribution greatly impacts the
mean velocity and the Reynolds stress field. This opens the way for a possible segregation of the
droplets into several subgroups, as the Reynolds stress tensor shows different behaviors depending
on the droplet size. A size class repartition highlights that small droplets tend to show large velocity
fluctuations and a Stokes number of O(1), like passive tracers in turbulence, while bigger droplets
show a high axial mean velocity with almost zero fluctuations with a Stokes number of O(100), like
ballistic objects. However, the statistical analysis is not fine enough to depict precisely any specific
group in the overall population.

Furthermore, the question of the drop size and velocity joint distribution remains open for this
kind of flow. On the one hand, Villermaux [11] alleged that drop-size distributions are described by
a universal � law, derived from a fine analysis of the ligament dynamics in low-turbulence fragmen-
tation flows. While this law showed good agreement with experiments showing unimodal [12,13]
or bimodal size distributions [14], it is legitimate to question its validity in fragmentation flows
where turbulence plays a major role. On the other hand, Novikov and Dommermuth [15] used a
phenomenological approach based on turbulence to describe the droplet-size distribution. Starting
from the idea of similarity, i.e., the cascade process, they proposed a size distribution for turbulent
flows based on infinitely divisible distributions [16] and turbulence intermittency [17]. Later on,
Rimbert and Sero-Guillaume [18] simplified this approach by considering log-stable distributions,
which are easier to handle than infinitely divisible distributions, and Rimbert and Castanet [19] were
able to describe the multimodal size distribution produced in a bag-breakup regime with a crossover
between Rayleigh-Taylor instability and the turbulent cascading atomization mechanism. Finally, in
the context of combustion, Lee and An [20] derived, from the energy balance of a pressure-atomized
spray, a quadratic formula for the droplet size as a function of the liquid velocity. Given the short
distances over which jets develop in combustion applications, it is natural to wonder about the
performance of this formula for agricultural-like configurations.

The present paper focuses on the DTV measurements by Felis et al. [8] and Felis-Carrasco [10].
It offers an analysis of the multimodal size-velocity joint probability distribution function (PDF) and
a determination of different subgroups among the overall droplet population. Section II presents the
three models cited above. Section III is dedicated to the analysis of the size and velocity distributions
and their modeling. Section IV focuses on the determination of the droplet subgroups based on the
size-velocity joint PDF and on the investigation of the validity of the quadratic formula proposed by
Lee and An [20] for x/dn between 400 and 800.

II. MODELING THE SIZE DISTRIBUTION OF SPRAY-GENERATED DROPLETS

In the context of multiphase flows, the governing equations must be derived using a phase
indicator αk , which indicates the presence of the phase k at any position x and instant t . Assuming
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there is no mass exchange between the phases, the governing equations for a phase k are then [21]

∂ρkαk

∂t
+ ∂ρkαku j,k

∂x j
= 0, (2a)

∂ρkαkui,k

∂t
+ ∂ρkαkui,ku j,k

∂x j
= ∂αkσi j,k

∂x j
+ fs,i,k−k′σ s

k , (2b)

where uj,k stands for the j-velocity component of phase k, fs,i,k−k′ represents the friction force
between the phases k and k′ which applies on the interface s of volumetric density σ s

k , and σi j,k

stands for the Cauchy stress tensor associated with phase k. Deriving the droplet-size distribution
directly from Eqs. (2) is not possible yet and models are needed in order to depict and predict
such a distribution. The following sections introduce the different approaches and corresponding
droplet-size distributions of Villermaux et al. [22], Novikov and Dommermuth [15], and Lee and
An [20].

A. Ligament-mediated spray formation

In contrast to the classical cascade process in which large elements generate smaller ones,
Villermaux et al. [22] proposed an aggregation scenario in which ligaments are the cornerstone.
This processus relies on the aggregation kinematics developed by Smoluchowski [23] for solid
colloidal particles in Brownian motion. Let n(v, t ) be the number of clusters of volume between
v and v + dv at the instant t . In addition, N (t ) is the total number of clusters and K (v, v′) is the
frequency of aggregation between clusters of volumes v and v′. The aggregation kinetics is then
governed by

∂t n(v, t ) = −n(v, t )
∫ ∞

0
K (v, v′)n(v′, t )dv′ + 1

2

∫ v

0
K (v′, v − v′)n(v′, t )n(v − v′, t )dv′. (3)

When talking about droplets, it is common to assume that the elements are spherical. The
element size is then given by the diameter d and one can consider n(d, t ) instead of n(v, t ).
In [12,22] the ligaments were supposed to consist of ν independent sublayers resulting from a
random particulate motion. Each sublayer consisted of subblobs of size d ′ and their size distribution
was denoted by q(d ′, t ). The interaction between the sizes was assumed to be both random and
uncorrelated. According to [24], the evolution of q(d ′, t ) was governed by a convolution process and
the distribution of size d was such that n(d, t ) = N (t )q(d ′, t )⊗ν , where ⊗ denoted the convolution
product. Equation (3) then becomes

∂t n(d, t ) = −n(d, t )N (t )γ−1 + 1

3γ − 2
n(d, t )⊗γ , (4)

where γ = 1 + 1/ν, with ν the number of ligament layers. Knowing that the process is governed
by successive autoconvolutions and that the distribution q(d, t ) in each layer is assumed to be
independent, the droplet-size distribution pB along the ligament after detachment from the bulk
flow is thus described by a ν convolution

pB(d ) = p1(d )⊗ν, (5)

where p1(d ) is an elementary distribution corresponding to the size distribution along a ligament
layer, once the ligament is detached from the bulk flow. It can be chosen as an exponential
distribution characterized by the diameter ξB of the detached ligament before its breakup [22]. The
distribution pB is rewritten as

pB(x = d/〈d〉) = νν

�(ν)
x(ν−1)e−νx, (6)

where 〈d〉 = 1
N (t )

∫
dn(d, t )dd is the instantaneous mean droplet diameter. Finally, the droplet-size

distribution of the spray is given by the composition of the ligament size distribution pL(d0), with
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d0 the size of a ligament, and the droplet-size distribution after the ligament breakup pB(d/d0),

p(d ) =
∫ ∞

0
pL(d0)pB

(
d

d0

)
dd0

d0
. (7)

Furthermore, the distribution pL of the ligament size is also � distributed [25] and Kooij et al. [26]
derived the droplet-size distribution of a spray as

p(x = d/〈d〉) = 2(mn)(m+n)/2x(m+n)/2−1

�(m)�(n)
Km−n(2

√
nmx), (8)

with Km−n the modified Bessel function of the second kind. The parameter m sets the order of the
ligament size distribution and n the ligament corrugation, previously denoted by ν.

B. Small-scale intermittency and droplet size

In his seminal work, Kolmogorov [27,28] stated two main assumptions about isotropic turbu-
lence, which are the scale invariance of eddies and the scale localness of interaction, allowing
quantitative predictions for the energy distribution among the scales of the flow. This led to the
image of the turbulent process as a cascading process where the turbulent energy injected at a rate ε

at larger scales cascades down the smaller scales before being eventually removed due to dissipation,
still at a rate ε. Following the theoretical remark of Landau and Lifshitz [29], a refinement of the
hypothesis on the local structure of turbulence was proposed to take into account the small-scale
intermittency of turbulence [30–32]. More details about intermittency are given in [33] and a review
of intermittency models is available in [34].

Novikov and Dommermuth [15] proposed a statistical description of droplets in turbulent spray
connected with the turbulent dissipation resulting from small-scale intermittency. Similarly to the
context of turbulent energy dissipation, the authors proposed that liquid fragments go through a
sequential cascade mechanism such that

l ≡ lN+1 = l1

N∏
k=1

bk, bk = lk+1

lk
� 1, (9)

where l1 is the initial size of a liquid fragment, N the number of breakups, and l the final size of a
droplet at the end of the process. Equation (9) is rewritten as

y ≡ − ln

(
l

l1

)
= −

N∑
k=1

ln(bk ). (10)

Assuming that the coefficients bk are independent or weakly dependent, if N is large enough,
then it follows from the central limit theorem [35] that the distribution of y is normal. Thus the
moments of the distribution of l/l1 are given by〈(

l

l1

)p〉
= exp(−ap + σ 2 p2). (11)

Note that the right-hand side of Eq. (11) is larger than 1 when p tends towards +∞, which
contradicts Eq. (9). Physically speaking, this implies that Eq. (10) breaks the mass conservation.
Mathematically speaking, in this situation, the properly normalized characteristic function of the
probability function will tend to normal, but not the probability function [15]. Thus, even if the
fragmentation process is supposed to be a sequential breakup cascade, the distribution of l/l1 is not
log-normal.

It follows from the refinement of Kolmogorov hypotheses that the turbulent energy dissipation
is not uniformly distributed among the scales. The dissipation average rate over the distance r is
denoted by εr . Consider the inertial range of scales L � r � l∗, where L is the integral scale and
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l∗ is an inertial scale which can differ from the Kolmogorov internal scale because of intermittency
correction. For three scales r, ρ, and l in this range such that r < ρ < l , we can introduce the
corresponding breakdown coefficients (BDCs)

qr,l = εr

εl
, qr,l �

l

r
, qr,l = qr,ρqρ,l . (12)

The scale similarity in a turbulent flow is determined by the following conditions: (i) The
probability distribution of BDCs depends only on the ratio of the corresponding scales and (ii) qr,ρ

and qρ,l are statistically independent. From those conditions and Eq. (12) we have, for the moments
of the BDCs,

〈qp
r,l〉 =

(
l

r

)μ(p)

, μ(0) = 0, (13)

with the quantity μ(p) respecting additional properties given in [17]. Note that μ(2) = μ, with μ

the classic intermittency coefficient [34]. By definition, the characteristic function for ln(qr,l ) is
ψ (s, l/r) = 〈exp[is ln(qr,l )]〉. By inverting this formula, it could be possible to determine directly
the probability distribution of qr,l , but it requires costly verifications to ensure the non-negativity of
the distribution in order to enforce physical and mathematical meaning [16].

Deriving the distribution of qr,l can be achieved by noting that, for arbitrary ratio l/r and arbitrary
integer n, Eq. (13) can be written in the form

ψ

(
s,

l

r

)
= ψn

(
s,

(
l

r

)1/n)
, (14)

which defines infinitely divisible distribution. The Lévy-Baxter-Shapiro theorem [35] gives the
general form of such distributions concentrated on [0,+∞[. Using this theorem allows us to derive
a general form of μ(p) [16],

μ(p) = κ p −
∫ +∞

0

1 − e−px

x
F (dx), (15)

where F is a measure on the open interval [0,+∞[ such that (1 + x)−1 is integrable with respect to
F . Knowing μ(p), it is thus possible to reconstruct the distribution W of qr,l from

W

(
q,

l

r

)
= 1

2πq

∫ +∞

−∞
exp

[
− is ln(q) + μ(is) ln

(
l

r

)]
ds. (16)

Note that the distribution of ln(qr,l ) is Q[ln(q)] = qW (q). Keeping in mind that rεr/LεL is analogous
to l/l1 in Eq. (9), it is possible to use the distribution of εr/εl to model the distribution of l/l1. Doing
so, Novikov and Dommermuth [15] gave one example of a distribution for y = ln(l/l1) which only
depends on the average a = 〈y〉 and the standard deviation σ 2 = 〈(y − a)2〉 of the population:

p(y) = a3/2

√
2πσy3/2

exp

{
− a

2σ 2
(ay−1/2 − y1/2)2

}
, y � 0. (17)

C. Integral approach from combustion

Lee and An [20] followed an integral approach in order to derive a relationship between the
droplet diameter and velocity. This approach allowed them to relate the physical quantities at the
nozzle exit to the ones downstream, in the jet dispersion zone where atomization is achieved.
Consider a control volume Vs enveloping the overall spray volume. The argumentation relies on two
main assumptions. First, the liquid phase is assumed to achieve the transition from its initial state
to the final state of a fully atomized group of spherical droplets within the specified control volume.
Second, it is assumed that the viscous dissipation can be written in terms of known parameters such
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as the liquid velocity and dissipation length scale. The integral form of the conservation equations
of mass and energy for the liquid phase in the control volume are given by

ρl uin jAin j =
∫∫

ρl
πd3

6
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where Vs is the spray volume. The mass conservation is achieved by equating the injected mass
flow rate with the mass of the droplets contained in a volume swept by the mean velocity ū over a
spray area A. The velocity distribution is simplified to an average drop velocity. The cross-sectional
area A represents the physical extent of the spray at a plane where full atomization is achieved and
can be calculated from the spray cone angle. The quantities n, di, p(di ), and �di denote the droplet
number density, the droplet diameter, the droplet-size distribution, and the droplet-size bin width,
respectively. The authors considered that the fragmentation of the jet liquid core into droplets occurs
at some velocity scale, taken as the mean liquid velocity ū, and at the length scale of the droplets,
taken as the Sauter mean diameter d3,2 since it is the scale at which droplets are created. This
approach is similar to the classic one of Tennekes and Lumley [36] in which (∂u/∂y)2 is linked
to the Taylor microscale, taken here as d3,2. This leads to the estimation of the average viscous
dissipation as
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Finally, the model has one adjustable parameter K ′, as the exact relationship between the viscous
dissipation term and the spray volume is approximated. After solving Eq. (18a) for n, substituting
Eq. (19) into Eq. (18b) gives a quadratic equation for the d3,2-velocity relationship
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where K absorbs the spray volume term for the sake of simplicity. After discarding the negative
solution, this leads to a quadratic relationship between d3,2 and the velocity
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Equation (21) shows good agreement with the literature for pressure-atomized sprays with and
without swirl and allow Lee and An [20] to reconstruct the droplet-size distribution from the droplet
velocity distribution.

III. BIMODAL SIZE AND VELOCITY DISTRIBUTIONS

This section first gives a statistical description and the number PDF of the data from
Felis-Carrasco [10] and then tackles their modeling in the framework of turbulence. The
DTV measurements were obtained from positions along the jet axis located at x/dn =
{400, 500, 600, 700, 800}. At each axial position, measurements were made at different positions
perpendicular to the jet. In order to capture all the spray development, the limit radial positions are
different between the axial positions. At x/dn = 400, the radial positions span from y/dn = −20
to y/dn = 20 and they span from y/dn = −32 to y/dn = 32 at x/dn = 800. The measurements
give access to the diameter d , the axial velocity u, and the radial velocity v of every droplet over
a large section of the dispersion zone. Technically, the droplets are assumed to be spheroids and
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TABLE II. Mean values of the distributions of d , u, and v.

x/dn 400 500 600 700 800

〈d〉 (μm) 96.82 91.22 95.60 93.63 97.89
〈d〉V (μm) 125.0 126.2 129.3 125.0 121.7
〈·〉V/〈·〉 1.29 1.38 1.35 1.33 1.24
〈u〉 (m/s) 12.48 13.20 12.97 12.01 12.00
〈u〉V (m/s) 21.53 20.35 19.78 18.17 16.72
〈·〉V/〈·〉 1.72 1.54 1.52 1.51 1.39
〈v〉 (mm/s) 2.1 −38.9 −16.7 −40.3 −2.9
〈v〉V (mm/s) −161.5 −210.4 −84.4 −129.6 −54.3
〈·〉V/〈·〉 −76.9 5.41 5.05 32.2 18.7

the droplet volume V is estimated from the semiaxes given by the DTV measurements. Then the
droplet diameter d is calculated as the diameter of the sphere of the same volume. Unless otherwise
mentioned, the statistics given at a position x/dn aggregate all the data over the positions y/dn. For
the sake of clarity, the number PDF of any variable ζ will be denoted by Pζ in the following.

A. Experimental distributions

As a first step, one could look at the mean values of the velocity distributions and the size
distribution. Table II gives the algebraic mean 〈·〉, the volume weighted mean 〈·〉V , and the ratio
of the two for each distribution and each axial position. For any variable ζ , the volume-weighted
average reads 〈ζ 〉V = ∑Ntot

i=1 Viζi/
∑Ntot

i=1 Vi, where i is the droplet index, Ntot the total number of
droplets, Vi the volume, and ζi the ζ value of the ith droplet. While the ergodic condition can often
be assumed, it is important to note here that both means systematically depart from each other for
the three distributions. For the distribution of d , the volume-weighted mean is at least 24% larger
than the algebraic mean, while this difference decreases from 72% to 39% for the distribution of
u. Note as well that the means of u decrease along x/dn. Concerning the distribution of v, the ratio
of the two means shows a consequent variability, due to the proximity to zero of the mean values.
Even if the variability is large, the means show at least one order of magnitude of difference. In
the prospect of working with properly normalized variables, this systematic departure has to be
accounted for in the choice of the mean to use for the normalizing procedure. The mass and energy
conservation equations for the two-phase jet, introduced in Sec. II, rely on the phase indicator
αk . To ensure mass conservation in this context, the average of a variable ζ in the phase k must
be expressed as 〈αkζ 〉, which practically is equivalent to the volume-weighted mean. Thus, we
choose the volume-weighted mean 〈ζ 〉V as the normalizing quantity of ζ . Doing so is equivalent to
normalizing the droplet diameter by d4,3 and the velocities by the bulk velocity of the dispersion
phase. In the following, normalization is achieved by using the mean weighted by the droplet
volume, except for the radial velocity v. Because 〈v〉V is close to 0 and could be misevaluated
from the experimental measurements, the radial velocity v is normalized by 〈u〉V .

Knowing how to properly normalize the present data, it is possible to compute the PDF of
d/〈d〉V , u/〈u〉V , and v/〈u〉V (see Fig. 2). The size distribution is computed over 1730 bins and
the velocity distributions over 80 bins, with a total number of occurrences close to 400 000 on
average. In addition to the mean, the three distributions are characterized by higher-order statistical
moments. Figure 3 gives the evolution of the statistical moments up to the order 4 over the available
x/dn positions. The high-order moments under consideration here are the standard deviation σ , the
skewness S, and the kurtosis κ , also referred to as flatness.

The size distribution Pd/〈d〉V presents an important skewness and a very large kurtosis. The
former decreases along x from 10 to 5 and the latter decreases from 155 to roughly 35. Such values
of skewness represent the fact that the distribution spans two decades d/〈d〉V ∈ [0.1, 40] and that
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(a)

(b) (c)

FIG. 2. Distributions of (a) d/〈d〉V , (b) u/〈u〉V , and (c) v/〈u〉V for experimental data provided by Felis-
Carrasco [10]. (a) A logarithmic scale and (b), (c) a semilogarithmic scale are used.

most of the droplets lie in the first decade, with the median value of d/〈d〉V being equal to 0.51
on average. Regarding the kurtosis values, they are representative of the presence of large values,
relative to the mean, in the tail of the distribution. Finally, the value of the standard deviation is
almost constant over the five axial positions and equal to 0.93 on average, typical of distributions
showing a region with concentrated data. Indeed, on average, the 25% and 75% quartiles are equal
to 0.29 and 0.86 and the average interquartile is then 0.57, a range in which 50% of the droplets
lie. Concerning the tail behavior, the distributions show a power-law decay scaling as d/〈d〉−2.7

V ,

(a)

(b) (c)

FIG. 3. Statistical moments of (a) d/〈d〉V , (b) u/〈u〉V , and (c) v/〈u〉V for experimental data provided by
Felis-Carrasco [10]. The blue lines represent 〈·〉 (+), 〈·〉V (×), and σ (∗). The red lines represent S (�) and κ

(◦).
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which departs from the exponential decay found by Simmons [37]. Furthermore, two modes can
be seen on the distribution at each x/dn: one for d/〈d〉V ≈ 0.2 and the other for d/〈d〉V ≈ 0.4.
At the location x/dn = 400, a third mode is also visible for d/〈d〉V ≈ 1.0. Here it is worth
noting that the second mode corresponds to the characteristic length scale of the Kelvin-Helmholtz
instability [38]: λKH = σ/ρgu2

in j = 49.6 μm. Once normalized, this length scale is denoted by λ+
KH

and λ+
KH ≈ 0.4. We recall that λKH also respects Weg = dn/λKH. Finally, close similarity is achieved

for the distributions between x/dn = 500 and x/dn = 800 and characterizes a converged behavior
with steady mechanisms in this range.

The distribution Pu/〈u〉V presents two modes for every x/dn position as well. They are located
around u/〈u〉V ≈ 0.2 and 1.4. In contrast to Pd/〈d〉V , this distribution presents a slight departure
between the tails on the right side and does not show any additional mode at x/dn = 400. Except for
this modest departure, the similarity is close for the five axial positions. Concerning the statistical
moments, this PDF is characterized by lower skewness and kurtosis values than previously. Both are
almost constant and on average are equal to 0.58 and 2.14, respectively. This is representative of the
fact that the distribution shows a minor asymmetry, due to a difference of predominance between
the two modes, and that the distribution tails are short. The limited spanning of the distribution over
u/〈u〉V can be understood as a preponderant effect of the boundary conditions. The right limit might
be enforced by the fact that the droplet velocity reaches a maximum on the centerline, close to the
mean liquid velocity on the jet axis. The left limit might be enforced by the overall advection of the
liquid phase towards increasing x/dn, which prevent droplets from reaching negative values for u,
i.e., moving back to the nozzle. As for the skewness and the kurtosis, the standard deviation of the
distribution is almost constant and equal to 0.45, characteristic once again of the data concentration.
On average, the 25% and 75% quartiles are equal to 0.27 and 1.00, and thus the average interquartile
is 0.73. Finally, the values of S and κ depart from the ones obtained in the case of a monophasic jet.
The distribution of axial velocity for such jet is characterized by a skewness of −0.5 and a flatness
of 2.8, which is almost Gaussian. Here the present u distribution shows a reverse asymmetry and a
shorter spanning.

The distribution Pv/〈u〉V presents only one maximum located at 0. Its skewness is −0.05 on
average and the distribution can be considered symmetric. The distribution kurtosis seems to tend to
5 but is equal to 9.39 on average as its value at x/dn = 400 is relatively large, which is characteristic
of a large tail span and a strong departure from Gaussianity. Finally, the standard deviation is
almost constant over the axial positions with an averaged value of 0.069, which shows a constant
distribution width along x. This distribution seems to behave in a more classic manner than the
distribution of u/〈u〉V and d/〈d〉V as it shows only one mode and characteristics similar to what can
be found in the turbulence literature.

B. Modeling

Multiphase flows are inherently multidimensional. Their multidimensionality originates not only
in the physical space but also in the phase space. Typically, every droplet of the present jet flow
is, at first sight, characterized by three parameters: its size and two velocity components. Thus, in
order to depict this population, one would need to propose a model able to capture the behavior of
a three-dimensional joint PDF over the available axial positions. Doing so is very complex and it is
easier to first have a closer look at the PDF of each parameter. This section proposes a model for the
droplet-size distribution and the axial-velocity distribution.

1. Drop-size distribution

Sections II A and II B introduce two models of droplet distributions derived from different
backgrounds. The first one, given by Eq. (8), is derived from a fine analysis of the ligament
mechanics [22] experimentally studied in configurations like impacting droplets [25] or coaxial
jet [12], close to the nozzle. The second one, given by Eq. (17), is derived from a phenomenological
approach taking place in the framework of intermittent turbulence [16] and was initially developed
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(a) (b)
Expt.

FIG. 4. Fit of the marginal distribution of d/〈d〉V at the axial position x/dn = 800 by the distributions from
(a) Kooij et al. [26] and (b) Novikov and Dommermuth [15].

for turbulent spray around ships [15]. Those distributions will be respectively denoted by Prob� and
Probε in this section.

A test campaign was carried out to compare the performance of each distribution to model the
bimodal distribution obtained in Fig. 2. In order to reproduce the two modes of the experimental
distribution, the fitting functions are defined as a linear combination of two reference distributions
such that

f� (x) = α1Prob� (x, m1, n1) + α2Prob� (x, m2, n2), (22a)

fε (x) = α1Probε (x, a1, σ1) + α2Probε (x, a2, σ2), (22b)

where αi, mi, ni, ai, and σi are the fitting parameters. Note that both fit functions present the same
number of fit parameters. The fitting algorithm used is the one of the EZYFIT toolbox developed by
Moisy on MATLAB [39]. This algorithm is said to be able to capture a reference signal if the set of
initial guesses is of the order of the set of converged parameters.

A fit is said to show good agreement with a given reference when the Pearson correlation
coefficient, denoted by r, is close to 1. For a more discriminating criterion, one can use r2. The
performance of the fitting functions to capture the experimental distribution is measured with r2.
Both distributions are tested over 19 different initial guesses. The focus is on the region showing the
two experimental modes, while the tail of the distribution is omitted. Thus the fitting procedure uses
as reference the experimental distribution truncated at d/〈d〉V = 7 and the fitting is computed in the
linear mode. Figure 4 gives the best results obtained from this campaign for each fitting function.
The initial guesses, the final parameter values, and r2 are given in Table III. The main difference
between the two fitting functions is their ability to capture both peaks of the distribution. Using the
algorithm from the EZYFIT toolbox, f� systematically fails to capture the mode at d/〈d〉V ≈ 0.2,

TABLE III. Initial guesses, final parameters, and r2 for (a) Eq. (22a) and (b) Eq. (22b) given in Fig. 4. The
parameter values are truncated at the third decimal.

(a)
f� α1 m1 n1 α2 m2 n2 r2

initial 1 1 1 0.9 0.9 0.9
final 5.26 1.04 1.20 −10.86 0.10 11.78 1.04

(b)
fε α1 a1 σ1 α2 a2 σ2 r2

initial 1 1 1 0.5 0.5 0.5
final 0.99 0.79 0.66 0.05 0.22 0.01 0.97
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(a) (b)

FIG. 5. Fit of the marginal distributions of d/〈d〉V at the axial position (a) x/dn = 400 and (b) x/dn = 600
by the droplet-size distribution from Novikov and Dommermuth [15].

while fε is able to capture it for one set of initial guesses. One of the two amplitudes for the
fitting f� is negative. The fit is then not physical, as the objective is to model each mode with one
distribution. This behavior is observed for a large part of the chosen sets of initial guesses. It could
result from the optimization procedure for which a configuration with two modes does not perform
as well as the one in Fig. 4. Improvements of the fitting algorithm could be done to implement,
for example, parameter constraint or point weighting, to balance the weight of the points regarding
their experimental importance. So far, under previous considerations and limits, the fitting function
fε shows a better performance than f� .

In order to test the reproducibility of this result, the function (22b) is tested over the four other
x/dn positions using the set of final parameters given in Table III as the initial guess. The fits for the
positions x/dn = 400 and 600 are given in Fig. 5. Their respective Pearson correlation coefficient
values are 0.966 87 and 1.0026. In both cases, the two modes located at d/〈d〉V ≈ 0.2 and 0.4
are captured. The third mode of the distribution for x/dn = 400 is not captured, which can be
expected as fε is the combination of two distributions Probε . The distributions for x/dn ∈ {500, 700}
show behavior similar to the one at x/dn = 600, which is consistent with the distribution similarity
observed for x/dn � 500.

The distribution derived by Novikov and Dommermuth [15] seems to model well the present
experimental distribution, obtained from a turbulent flow, particularly for capturing both modes
located at small d/〈d〉V . Conversely, under the limitations of the present campaign scope and
methodology, the distribution from Kooij et al. [26] did not capture the higher and thinner peak
of the experimental distribution.

2. Axial-velocity distribution

Similarly to the size distribution, the axial-velocity distribution shows two distinct modes.
Looking at the distributions Pu/〈u〉V for different y/dn positions, Fig. 6 reveals that only the mode
for u/〈u〉V ≈ 0.2 remains in the dispersion zone of the jet, while the mode for u/〈u〉V ≈ 1.4 has
importance only in the region close to the jet axis, i.e., for y/dn = ±8. In addition, the distributions
over the radial positions show symmetry with respect to the jet axis. The exploration of modeling
is thus carried out differently in this section. The focus is first on modeling the axial-velocity
distribution in the dispersion region of the jet. We choose the position y/dn = 20 as it is the position
farther away from the jet axis which is available for all x/dn positions. The exploration is performed
by testing the distributions considered in the study of Yoon [40] on the effects of the Weber number
on the droplet-size distribution in a turbulent flow developing up to x/dn = 24. Then the insights
from this step are used to model the velocity mode u/〈u〉V ≈ 0.2, while another distribution is
proposed for the second mode, in order to depict the overall axial-velocity distribution.
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(a) (b)

(c) (d)

FIG. 6. Distributions of u/〈u〉V for x/dn = 800 at the radial positions (a) y/dn = 0, (b) y/dn = −8,
(c) y/dn = −20, and (d) y/dn = −32.

In the aforementioned study, Yoon [40] considers three different PDFs to model the droplet
velocity distributions: the Rosin-Rammler distribution fRR, the log-normal distribution fLN, and the
Nukiyama-Tanasawa distribution fNT. They are respectively defined by

fRR(u) = qX q−1

X q
exp

[
−

(
u

X

)q
]
, (23a)

fLN(u) = 1√
2πσu

exp

(
− [ln(u) − μ]2

2σ 2

)
, (23b)

fNT(u) = a × up exp(−buc) (23c)

and show good agreement with experimental and numerical data for a round jet injected in quiescent
air at high liquid Weber number, in the so-called atomization regime [1].

In order to model the axial-velocity distribution in the dispersion zone of the jet, the three
distributions of Eq. (23) are tested at the radial position y/dn = 20 over the five axial positions.
To ensure the collapse of the PDF, the data have to be normalized by the averaged velocity at
y/dn = 20, denoted by 〈u〉y/dn=20

V . The fitting procedure is carried out in both the linear mode and
logarithmic mode. Fitting with the log-normal distribution or the Nukiyama-Tanasawa distribution
offers accurate results on the first try with initial guesses set as unity. However, several sets of initial
guesses have to be tried for the Rosin-Rammler distribution to explore the performance of the fitting
function.

The discriminating criterion used here is the average of r2 over the x/dn positions. The fitting
function offering the r2 value the closest to unity, on average, is the log-normal distribution fLN

computed in the linear mode. The fitting procedure gives μ = 0.78 and σ = 0.75 as final parameter
values. Over the five x/dn positions, the correlation coefficient is such that |r2 − 1| ∈ [0.03, 0.28]
and the mean r2 is equal to 0.97. The upper bound of |r2 − 1| is obtained for x/dn = 400. The fitting
of the experimental data by fLN is given in Fig. 7.

When looking closely at the distribution of u/〈u〉V over the y/dn positions, it appears that only
the mode for u/〈u〉V ≈ 0.2 remains in the dispersion zone of the jet. The previous tests show that the
log-normal distribution fits well the experimental data at y/dn = 20. In order to fit the distribution
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(a) (b)

FIG. 7. (a) Fit of the distribution of u/〈u〉y/dn=20
V at the radial position y/dn = 20 by a log-normal distribu-

tion (23b) and (b) fit of the distribution Pu/〈u〉V over all the radial positions by the model f (u). The dotted lines
represent the experimental data and the solid line represents the models. Both graphs use a semilogarithmic
scale.

of u/〈u〉V for each x/dn position, as it was performed in the preceding section, it is possible to build
a fitting function as a linear combination of the two distributions. Knowing the performance of fLN

to fit the mode u/〈u〉V ≈ 0.2 in the dispersion region, we choose one of the two distributions to be a
log-normal distribution with μ = 0.78 and σ = 0.75. To be able to reproduce the right asymmetry
of the mode for u/〈u〉V ≈ 1.4, the second distribution is chosen to be a skewed normal distribution.
This distribution is denoted by fSN and is defined by

fSN = 1√
2πσ

e−[(x−μ)/
√

2σ ]2

[
1 + erf

(
S

x − μ√
2σ

)]
, (24)

where μ, σ , and S are the mean, the standard deviation, and the skewness of the distribution,
respectively. The fitting function is then

f (u) = α1 fLN(u) + α2 fSN(u). (25)

The fit of the experimental data over all the radial positions by Eq. (25) is given in Fig. 7. As
expected, the mode for u/〈u〉V ≈ 0.2 is well captured by f and the fitting function reproduces the
left boundary for u/〈u〉V = 0. Regarding the mode for u/〈u〉V ≈ 1.4, the fitting function is able to
capture the peak but fails to reproduce the right boundary for u/〈u〉V � 1.5. The overestimation of
the distribution tail towards +∞ is due to the participation of the log-normal distribution which does
not decay fast enough. As a consequence, the fitting function f correctly captures the experimental
axial velocity only over the range u/〈u〉V ∈ [0, 1.50]. As a reminder, the average interquartile range
of Pu/〈u〉V , given in Sec. III A, is u/〈u〉V ∈ [0.27, 1.00]. The validity range of f not is only larger
than the average interquartile range but also contains it. So the fitting function f accurately depicts
more than 50% of the droplet population.

Using the ability of the log-normal distribution to describe accurately the axial-velocity PDF in
the dispersion region of the jet, a fitting function was built up as a linear combination of log-normal
and skewed normal distributions to depict Pu/〈u〉V over all the radial positions. This fitting function
captures both modes and accurately depicts more than 50% of the droplet population but fails to
depict the distribution tail towards +∞ and so the right boundary on the axial velocity.

IV. DROPLET-SIZE–VELOCITY JOINT DISTRIBUTION AND POPULATION SUBGROUPS

The presence of bimodal distributions for the droplet size and axial velocity was highlighted
in the preceding section. The modes of each distribution could naturally represent a subgroup of
droplets characterized by a given size or axial-velocity range. Thus, the present droplet population
would present two subgroups with distinct velocities, u/〈u〉V around 0.2 and 1.4, and two other
subgroups with specific sizes, d/〈d〉V around to 0.2 and 0.3 (see Fig. 2). However, the PDFs of
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(a) (b)

FIG. 8. Droplet-size–velocity joint PDF at (a) x/dn = 400 and (b) x/dn = 800.

u/〈u〉V and d/〈d〉V do not give any information about the correlation between the modes and thus
the subgroups. In Sec. IV A the focus is on the droplet-size–velocity joint PDF to determine droplet
subgroups. The validity of the quadratic formula given by Lee and An [20] to model the joint PDF
for x/dn � 400 is investigated in Sec. IV B.

A. Characterization of size-velocity subgroups

In a previous study, Felis et al. [8] highlighted the existence of different droplet behaviors
depending on the droplet size and velocity. The Reynolds stress field, computed for different size
classes, arbitrarily set, emphasizes that small droplets tend to show large velocity fluctuations while
bigger droplets show a high axial mean velocity with almost zero fluctuations. The distributions of
the droplet size and axial velocity presented in Sec. III show several modes, indicating the potential
existence of droplet subgroups within the overall population. However, no information regarding
the mode correlation is yet available. The influence of the size on the axial velocity and vice versa
is given by the joint PDF of the droplet size and axial velocity, presented in Fig. 8 for the axial
positions x/dn = 400 and 800.

First and foremost, a comment must be made on the joint PDF values being larger than one.
Those quantities are computed with a regular sampling such that the axis along d/〈d〉V is sampled
in 340 sets and the axis along u/〈u〉V in 150 sets. Consider the joint PDF at x/dn = 400. Each axis
respectively spans [0.10, 33.59] and [−0.92, 2.58]. Thus the bin widths along d/〈d〉V and u/〈u〉V
are equal to �x = 9.85 × 10−2 and �y = 2.33 × 10−2, respectively. In a given bin, the value of the
joint PDF is calculated as the product of the probability in this bin and the inverse of the bin area. As
probabilities are truly between 0 and 1, the PDF values lie between 0 and (�x�y)−1 = 4.36 × 102.
For x/dn = 400, the maximum value of the joint probability is 7.9 × 10−3. Then it is natural that
the joint PDF values in Fig. 8 span up to around 3.

Both joint PDFs present a limited extension along the axis u/〈u〉V , included within [−0.1, 2],
while the extension along d/〈d〉V is limited on 0 but spans towards large positive values, up to
30 for x/dn = 400. This characterizes a data set with little dispersion along the velocity axis and
important dispersion along the size axis, which corresponds to the behavior of the PDF of u/〈u〉V
and the one of d/〈d〉V . The maximum joint PDF values are concentrated in a relatively limited
region located at small sizes and low axial velocities. The tail expansion along d/〈d〉V is specific in
the sense that it exists only for high axial velocities.

For both axial locations, the joint PDF tail tends toward a velocity asymptote located between
1.5 and 2. For x/dn = 400, the tail reaches large values up to d/〈d〉V = 30 and is concentrated
near this asymptote. For x/dn = 800, the tail spans only up to d/〈d〉V = 20 and seems more
dispersed near the asymptote. The reduction of the droplet-size maxima from 30 to 20 can be
explained by the ongoing fragmentation process, which globally reduces the size of the water
fragments and specifically the largest ones issued from the liquid core breakup. Regarding the
velocity dispersion near the asymptote, one has to consider the non-normalized joint PDF in order to
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FIG. 9. Size-velocity joint PDF for x/dn = 600 and droplet subsets discriminated with the characteristics
of the size and axial-velocity distributions.

draw a conclusion independent of the evolution of 〈u〉V along x/dn, given in Fig. 3. Furthermore, it
is possible to observe a “path” of relatively large PDF values, colored in light blue, leaving from the
maximum values of the joint PDF, leading to its tail, and following the elbow shape. A close look
at the joint PDF for x/dn = 400 even allows us to observe two paths. Concerning the correlation
between d/〈d〉V and u/〈u〉V , the large-size droplets show little correlation to their velocity and the
low-velocity droplets show little correlation to their size, as both sets present a small dispersion
along each axis, respectively. However, the in-between range of droplets seems to indicate a strong
correlation between the size and the axial velocity.

Different droplet subsets can be derived from the description of the joint PDF. The maximum
values of the joint PDF are representative of the most probable pairs (d/〈d〉V , u/〈u〉V ) and are
concentrated in the region of low velocities and small sizes. Thus, it naturally depicts a first subset
of droplets which are likely to behave like passive tracers. A second subset can be drawn by the tail
expansion along the d/〈d〉V axis. The tail along this axis exists only for high velocities and depicts
the existence of a group of droplets characterized, at the same time, by a high velocity and a large
size, which are likely to behave like ballistic objects. In addition, the joint PDFs show a third region
of relatively high PDF values corresponding to the corner of the elbow. This region depicts a subset
of droplets characterized by a high velocity and a small or intermediate size. While the first two
droplet subsets cross-check the conjecture of Felis et al. [8], the existence of a third droplet subset
is brought to light.

Knowing that subgroups with different physical behavior exist in the present droplet population,
it could be possible to define them using some characteristics of the PDF of d/〈d〉V and u/〈u〉V like
the spanning limits, the mode limits, and the dispersion. Consider the joint PDF for x/dn = 600 as
an example. In a straightforward manner, the spanning limits of the PDFs Pd/〈d〉V and Pu/〈u〉V give
the outward limits of the possible droplet subsets: 0 < d/〈d〉V < 20 and −0.1 < u/〈u〉V < 2. The
modes of Pd/〈d〉V and Pu/〈u〉V depict specific sizes and velocities, potentially connected to distinct
physical behaviors, and their delimitations can be used to discriminate subsets of the joint PDF.
The value u/〈u〉V = 1 is chosen to delimit the axial-velocity modes, while the value d/〈d〉V = 0.3
is chosen to delimit the size modes. Finally, the delimitation of the size modes and the dispersion
zone of Pd/〈d〉V , i.e., its tail, is taken as 3σd ≈ 3. It is worth noting that the droplets whose size
is between 0 and 3σd represent around 96% of the overall population, a percentage close to the
Gaussian dispersion property. The delimitations detailed here are shown on the size-velocity joint
PDF for x/dn = 600 in Fig. 9.

Five subsets appear from those delimitations. Consider first the droplets showing a low axial
velocity, i.e., a velocity corresponding to the first velocity mode u/〈u〉V ≈ 0.2. Those droplets are
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TABLE IV. Repartition of the droplet volume, number, and Stokes number of the joint PDF subsets at
x/dn = 600.

No. u/〈u〉V d/〈d〉V Volume (%) Number (%) St

1 [0, 1] [0, 0.3] O(10−2) 25.2 0.83
2 [0, 1] [0.3, 3] 3.69 48.8 7.92
3 [1, 2] [0,0.3] O(10−3) 1.20 0.39
4 [1, 2] [0.3, 3] 10.8 22.2 7.61
5 [1, 2] [3, 20] 85.5 2.55 44.0

located in the bottom left corner of the joint PDF, u/〈u〉V < 1, and are depicted by two subsets:
(d/〈d〉V , u/〈u〉V ) in [0, 0.3] × [−0.1, 1] and [0.3, 3] × [−0.1, 1]. Two droplet populations seem to
coexist in this range of velocities. Each of them is respectively characterized by a size d/〈d〉V ≈ 0.2
with a little dispersion and a size d/〈d〉V ≈ 0.4 with a larger dispersion. Thus the droplet set of low
velocity and small size pointed out in [8] not only can be defined but is also made of two distinct
droplet populations showing different characteristic sizes.

Now consider the droplets showing a high axial velocity, i.e., a velocity corresponding to
the second velocity mode u/〈u〉V ≈ 1.4. Those droplets are located in the upper part of the
joint PDF, u/〈u〉V > 1, and are depicted by three subsets: (d/〈d〉V , u/〈u〉V ) in [0, 0.3] × [1, 2],
[0.3, 3] × [1, 2], and [3, 20] × [1, 2]. The top right subset presents a droplet population showing
little dispersion in velocity, which increases slightly when the droplet size decreases. That is to say,
the droplet size has little impact on the droplet axial velocity. Thus, the fragments of this population
tend to decrease in size with an almost constant velocity, which cross-checks the existence of a
group of droplets showing a ballisticlike behavior highlighted in [8]. The middle top subset presents
relatively high joint PDF values, around 1. These values highlight the presence of a preferential
droplet population. This population is characterized by a high axial velocity u/〈u〉V ≈ 1.5 and an
intermediate size d/〈d〉V ≈ 1. Such velocity and size values respectively correspond to the second
velocity mode and the third size mode, clearly visible for x/dn = 400 in Fig. 2. In addition, this
means as well that the third mode of Pd/〈d〉V , visible for x/dn = 400, also has importance for higher
values of x/dn. Finally, the last subset drawn by the chosen delimitations is the one on the top left
corner. This subset presents joint PDF values less than 0.5. Such values are relatively low compared
to the values of the nearby subsets, which are 1.5–3 for the bottom left subset and around 1 for the
middle top subset. Thus, this subset could be considered as the expression of the tails of the nearby
populations instead of depicting a droplet population characterized by a specific size and velocity.

Table IV gives for x/dn = 600 the repartition of the droplet volume and number in the joint PDF
subsets as well as the Stokes number associated with each subset. The low-velocity subsets in Fig. 9,
u/〈u〉V � 1, are denoted by 1 and 2. The upper subsets are denoted by 3, 4, and 5. The ordering
reads from left to right. The low-velocity subsets 1 and 2 represent 74% of the droplets but only
3.7% of the overall droplet volume. In contrast, for the high-velocity subgroups, subset 5 represents
85% of the overall droplet volume for only 2.55% of the droplets. Subset 4 aggregates 22.2% of
the droplet population and 10.8% of the total volume. Such values are modest, but balanced, and
could highlight the role played by this subset to link the populations of large and small droplet size.
Finally, subset 3 only represents 1.2% of the population and a relative volume of O(10−3). Such
values are negligible compared to the other subsets and they support the interpretation of a subset
being the “tail” of its neighbors.

The Stokes number St of each subset is calculated with the formulation from [10,41], using the
Schiller-Naumann relation for the drag coefficient and the averaging operator 〈·〉V , which is written
as

St = τd

τt
, τd = ρl d2

18μg(1 + 0.15 Re0.687
d )

, τt = y0.5u√
R̄11,g

, Red = |u − ūg|d
νG

, (26)
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TABLE V. Mean velocity values on the jet axis from the DTV
measurements.

x/dn uaxis (m/s)

400 33.2
500 31.8
600 30.4
700 29.0
800 28.0

where Red is the Reynolds number seen by the droplet calculated using the gas mean velocity ūg,
τd is the droplet aerodynamic time constant, and τt is a turbulent timescale estimated from the axial

standard deviation for the velocity fluctuations in the gas phase
√

R̄11,g and the radial position y0.5u

at which the fluid velocity is half the fluid velocity on the jet axis. The five droplet subsets are
distributed over two decades of St and show three different trends. The Stokes number of subset 5,
containing the droplets of high velocity and large size, reaches 44 and is representative of a ballistic
behavior. The Stokes-number values for subsets 2 and 4 are between 7 and 8. As these values are
larger than but close to unity, the droplets belonging to those subsets are in a ballistic regime but
might be sensitive to large velocity fluctuations due to turbulence. Subsets 1 and 3 show a Stokes
number less than unity, which makes those droplets the most sensitive to turbulence fluctuations.
However, the droplets of this range might be unresponsive to the smallest scales of turbulence, as
both Stokes numbers are relatively close to 1. It is important to note here that the velocity has
little influence on the Stokes number. For example, subsets 2 and 4 present similar Stokes numbers
whereas they are characterized by different velocities. The observation holds for subsets 1 and 3 as
well, even if a slight departure due to the velocity difference is noticeable.

In addition to validating the conjecture drawn by Felis et al. [8] regarding the existence of two
different droplet subgroups, this section precisely depicts and characterizes such groups among
the overall droplet population. Specifically, a precise criterion is given for the low-velocity droplets
which leads to the discrimination of two populations with different characteristic sizes. Furthermore,
a subset of droplets showing high axial velocity and intermediate size is depicted and characterized.
Complementarily, the weight of each subset in terms of droplet number and volume is given along
with their Stokes number. Knowing the different subsets in the present droplet population now opens
the way to understanding the underlying mechanisms leading to their existence.

B. Quadratic formula for joint PDF modeling

Section II C presented the work of Lee and An [20] and the quadratic formula (21) they derived
to depict the relationship between the droplet velocity and the Sauter mean diameter d3,2 for x/dn �
100. In their study, the authors concluded that the good performance of the relationship enabled them
to reproduce experimental and numerical data. In particular, this relationship is said to perform a
good fitting of the centerline of a droplet-size–velocity joint PDF from Rimbert and Castanet [42],
even if no mathematical definition of a joint PDF centerline is given. Finally, the authors claimed
that the droplet-size PDF can be reconstructed from the diameters computed due to the quadratic
formula. This section investigates the ability of this quadratic formula to fit the centerline of the
present size-velocity joint PDF and the possibility to reconstruct the droplet-size distribution for
x/dn � 400. This investigation will consider the diameter d instead of d3,2, as it is the available
quantity in the present study for characterizing the droplet diameter. In addition, two reference
velocities will be compared: the injection velocity uin j and the mean liquid velocity on the jet axis
at each x/dn, denoted by uaxis. The values of the latter for each axial position are given in Table V.
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(a) (b)

FIG. 10. (a) Comparison of two reference velocities for fitting the centerline of the size-velocity joint PDF
at x/dn = 600 by Eq. (27) where the fit parameter K is set to 3.15〈u〉6

V × 10−3. (b) Comparison of different
values of K for fitting the centerline of the size-velocity joint PDF for x/dn = 600 by Eq. (27). The arrow
indicates increasing values of the fitting parameter K .

The reference velocity is denoted by ure f and Eq. (21) is rewritten as

d =
3σl-g +

√
9σ 2

l-g + Kρlμl ū2 u2
re f −u2

2

ρl
u2

re f −u2

2

. (27)

Let us tackle first what the centerline of a joint PDF is. Considering the fitting of the joint PDF
from Lee and An [20], the centerline of a joint PDF seems to be a line of PDF values such that
it describes the main trend of the two-dimensional map. Here the centerline would correspond to
the path of relatively large PDF values, visible in Fig. 8 and mentioned in the preceding section.
The centerline would then correspond to local maximum values along each direction and could be
defined by the zero values of the joint PDF gradient. As this path of relatively large PDF values
spans large values of d , the gradient should be computed along d to capture all of the centerline.
Thus, it could be possible to define the joint PDF centerline as the zero isoline of the joint PDF
gradient computed along d .

Technically, there is an ambiguity when using the latter definition as the borders of the joint
PDF also present gradient values close to zero. As a first approach, the centerline of the joint PDF
is defined as the local maximum values of the PDF and is captured by searching for the local
maximum in each bin along the direction d . The centerline produced by this approach is given in
Fig. 10 and is referred to as the line of maxima. It is possible to observe a jump from u/〈u〉V = 0.2
to u/〈u〉V = 1.4 which is due to the existence of a local maximum in the region of low velocity and
small size, corresponding to the bottom right subset in Fig. 9. Even if this estimation of the joint
PDF centerline presents a discontinuity, it depicts well the overall trend of the joint PDF. Using
this estimation, it is possible to compare the two reference velocities uin j and uaxis for fitting the
joint PDF centerline. A fitting procedure is carried out for the fit parameter K and gives a value of
3.15〈u〉6

V × 10−3. It appears in Fig. 10 that using the injection velocity as a reference overestimates
the centerline. In contrast, using the mean liquid velocity on the jet axis leads to a more satisfactory
result. The latter velocity uaxis is then used in the following as the reference velocity. In addition,
it also appears that the quadratic formula proposed by Lee and An [20] performs nicely to capture
the trend of the present joint PDF at large x/dn, while it was initially derived for d3,2 at small x/dn

distances.
Figure 10 presents the droplet-size velocity at x/dn = 600 and Eq. (27) for different values of K .

It can be seen that Eq. (27) qualitatively depicts the trend of the joint PDF for values of K between
1.00 × 10−3〈u〉V and 1.00 × 10−2〈u〉V . This questions the value of K chosen to model the centerline
in Fig. 10, especially under the limitation of discontinuity of the previous estimation.
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FIG. 11. Comparison of the experimental size PDF and the PDF reconstructed from the size given
by Eq. (27) with (a) K = 3.15〈u〉6

V × 10−3 and (b) K = 7.00〈u〉6
V × 10−3. The pluses indicate the relative

difference between the two PDFs. The dotted and dashed lines represent relative differences of 0.3 and 0.1,
respectively.

In order to figure out a physically meaningful value of K , one could have a look at the
reconstruction of the droplet-size PDF from the sizes given by Eq. (27). Figure 11 compares the
experimental droplet-size PDF with the reconstructed PDF for two values of K : 3.15〈u〉6

V × 10−3

and 7.00〈u〉6
V × 10−3. In addition to comparing the experimental and model PDF, Fig. 11 gives the

relative difference between the two, defined as |1 − Pmodel/Pexpt | and represented by the red pluses.
An estimation is commonly considered as acceptable when the relative difference is less than 30%
and considered as relatively good when it is less than 10%. Those two thresholds are indicated in
Fig. 11 as well. On the one hand, the droplet-size PDF reconstructed with K = 3.15〈u〉6

V × 10−3

reproduces a trend similar to the experimental PDF but shows an almost constant offset with a
relative difference systematically larger than 0.3. On the other hand, the PDF reconstructed with
K = 7.00〈u〉6

V × 10−3 reproduces as well a trend similar to the experimental PDF and presents a
smaller offset than previously. The relative difference is less than 0.3 up to d/〈d〉V ≈ 3, where the
distribution tail begins. However, in both cases, the relative difference between the two PDF tails
presents large values, up to 10, and the model PDF is not able to capture the two modes for d/〈d〉V ≈
0.2 and 0.4. The box-and-whisker plot of the relative difference with K = 7.00〈u〉6

V × 10−3 reveals
that almost 50% of the relative difference values are under 0.3. It is worth noting that excluding the
PDF tail would improve this result as most of the large values of relative difference are recorded
in the tail region, whereas it represents only 4% of the total droplet number. Thus, the latter value
of K enables us to estimate a joint PDF centerline which produces a droplet-size PDF close to the
experimental one.

Even if Eq. (27) were derived in the context of turbulent combustion, i.e., for small x/dn

distances, and using the Sauter mean diameter d3,2, good agreement is found by depicting the trend
of the droplet-size–velocity joint PDF under the condition that the mean velocity on the jet axis uaxis

is used as a reference. In addition, this formulation is able to produce a droplet-size PDF with a
trend similar to the experimental one, if the value of the fitting parameter K is chosen in order to
minimize the difference between the model and the experimental PDF. However, the model PDF
fails to capture the first two modes in size.

V. CONCLUSION

In this work, it has been shown that, for agricultural-like jets lying in the second-wind-induced
regime [1], both the droplet-size and axial-velocity distributions present distinct modes. On the
one hand, the size distribution presents three modes for d/〈d〉V ∈ {0.2, 0.4, 1}, the second one
corresponding to the Taylor scale, and a large dispersion towards d/〈d〉V = 30 with a decay
scaling as d/〈d〉−2.7

V . On the other hand, the axial-velocity distribution presents two modes for
u/〈u〉V ∈ {0.2, 1.4} and a little dispersion. The dispersion of the latter is limited by two boundary
conditions: the global advection of the water fragments and the mean axial velocity on the jet axis.
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Regarding the distribution of v/〈u〉V , only one mode appears to exist and the distribution seems to
behave in a more classical manner, similar to what can be found in the turbulence literature. Close
similarity is observed for each distribution over the axial positions. Two theories have been tested
to model the droplet-size distribution. The first one comes from the work of Villermaux et al. [22]
based on a fine analysis of the ligament dynamics in low-turbulence fragmentation flows while the
second one comes from Novikov and Dommermuth [15], who used intermittency in turbulence. In
the limits of this study, it appears that, for x/dn � 400, the distribution proposed by Novikov and
Dommermuth [15] describes better the experimental size distribution and is able to capture the two
modes at small d/〈d〉V . Regarding the modeling of the axial-velocity distribution, only the mode
of low velocity u/〈u〉V ≈ 0.2 exists in the dispersion zone of the jet. Among the three distributions
derived for combustion applications, this mode is better depicted by the log-normal distribution.
Taking benefit from this insight, a model PDF was proposed to depict the overall distribution of
u/〈u〉V at a given x/dn. It does not capture the tails of the experimental distribution but describes
nicely the two velocity modes, i.e., more than 50% of the overall droplet population.

Multimodal distributions suggest that different characteristic groups could exist in the droplet
population. The analysis of the droplet-size–velocity joint PDF highlights the existence of three
different behaviors. Two of them cross-check the conjecture of Felis et al. [8], who highlighted the
existence of droplets behaving like passive tracers, with a small size and high-velocity fluctuations,
or like ballistic objects, with a large size, high mean velocity, and almost zero fluctuations. In
addition, this analysis reveals the existence of a third droplet group, characterized by a high axial
velocity and an intermediary range of size. Using the characteristics of the size and axial-velocity
PDF such as the spanning limits, the mode limits, and the distribution dispersion, it is possible
to characterize precisely five subsets of droplets. Four seem to depict droplet groups with specific
characteristic size and velocity while the last one seems to be the expression of the tails of the
nearby populations. The Stokes numbers of those subsets follow three trends and span from 0.39 to
44, which corroborates the ballistic and passive tracer behaviors. However, this quantity presents
a little dependence on the droplet velocity and is not able to discriminate droplet subsets with
similar characteristic velocities. In the combustion framework, Lee and An [20] derived a quadratic
formula to model the centerline of the joint PDF. After proposing a mathematical definition of such
a centerline, the formula was tested on the present experimental data. It qualitatively described
well the trend of the joint PDF. The size PDF reconstructed from this formula offers an acceptable
description of the experimental data but fails to capture the two small size modes. It appears that
results from combustion studies, developed in the region close to the nozzle, are valid as well in the
dispersion region of agricultural-like configurations, i.e., far away from the nozzle.

Knowing the most probable droplet groups in the present flow opens the way to better understand
the mechanisms at work. Several questions remain open. Which mechanism is responsible of the
small-droplet-size mode? Which mechanism do the largest droplets undergo? Which mechanism
produces such a power-law decay in the droplet-size distribution? Further works could focus on
analyzing the turbulent energy spectra or on characterizing the droplet geometry in each subset
of the size-velocity joint PDF to target such mechanisms. Complementary works could also be
achieved to numerically reproduce similar configurations and investigate the ligament dynamics
close to the nozzle.
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Chapter 3. Multimodal distributions of agricultural-like sprays: A statistical analysis of
drop population from a pressured-atomized spray

3.3 Connecting the size-velocity joint distribution and
the fragmentation mechanisms

The analysis concludes on the existence of different droplet subgroups characterized by specific
pairs of size and velocity and opens the question of the fragmentation mechanisms generating
droplets of such sizes. Consider again the droplet subsets as defined in the article, Sec. IV.A.
Figure 3.1 reproduces Fig. 9 of the article, this time numbering the droplet subgroups. The
subsets 1 and 2 present a low characteristic velocity, u/⟨u⟩V ⩽ 1, and the subsets 3, 4 and
5 a high one, u/⟨u⟩V ⩾ 1. Regarding the sizes, the subset 5 is characterised by large sizes,
d/⟨d⟩V ⩾ 3. The subsets 2 and 4 are characterised by intermediate sizes, 0.3 ⩽ d/⟨d⟩V ⩽ 3,
and the subsets 1 and 3 by small sizes,d/⟨d⟩V ⩽ 0.3. The article notes as well that the subset 5
depletes between x/dn = 400 and x/dn = 800. Now that the groups are defined, it is possible
to look at them separately by considering, for instance, the droplet size as an observable and
computing its distribution. In order to keep some consistency with the size distribution of the
overall droplet distribution, the distribution computed over the subset is slightly adapted by
normalising with the total number of droplets in the spray instead of the number of droplets
in a subset.

1

2

3

4

5

Figure 3.1: Size-velocity joint distribution for x/dn = 600 and the droplets subsets numbered
and discriminated with the characteristics of the size and velocity distributions.

3.3.1 Conjectures for the volume transfer between the droplet sub-
groups

Before diving in the analysis, let us go back to the experimental photographs of the fragmenting
jet. Fig. 3.2 and 3.3 illustrate the two main sorts of break-up observed in the flow: the ligament-
mediated and bag break-up regimes. Both regimes occur on ranges of several hundreds of nozzle
diameters dn. While the bag break-up regime starts to occur only once the liquid core pinched
off and becomes less frequent for x/dn ≳ 600, the ligament-mediated regime can occur all along
the spray until the droplets become stable. This comes from the fact that the bag break-up
regime is observed only on large, fast droplets having a relatively short existence time when
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the ligament-mediated regime is observed on a widespread range of sizes and until the force
equilibrium is such that no perturbation can overcome the surface tension and that no varicose
perturbation can develop. Based on this observation, it is possible to conjecture at first that
the droplets of the subset 5 are very likely to fragment in a bag break-up regime, as they are
the largest and fastest droplets of the population, and that the droplets in the subset 1 are
stable. On a first approximation, it is also possible to go further and conjecture that only the
droplets of the subset 5 undergo bag break-ups while the droplets in the subsets 2, 3 and 4
undergo a ligament-mediated fragmentation.

(a) x/dn = 5 (b) x/dn = 30

(c) x/dn = 600 (d) x/dn = 600

Figure 3.2: Photographs of ligaments (3dn × 3dn).

Complementary to the fragmentation mechanisms, the question of the mass transfer between
the subsets has to be tackled. Any droplet in a given subset which fragments generates smaller
droplets and thus feeds the subset of smaller sizes. The subset 5 could here be seen as a volume
reservoir pouring into the other subsets. During a bag break-up, the droplet takes a bag shape
composed of a rim and a sheet. Rimbert & Castanet (2011) proposed a model to depict droplet
bag break-ups relying on a crossover between the Rayleigh Taylor instability and the turbulent
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cascade, respectively describing the fragmentation of the rim and the sheet. The authors also
observed experimentally that the droplets coming from the sheet are much smaller than the
ones coming from the rim.

(a) x/dn = 210 (b) x/dn = 420

(c) x/dn = 600

Figure 3.3: Photographs of bag break-ups (12dn × 12dn).

With this in mind, it is possible to draw a second conjecture: the fragmentation of the
droplets of the subset 5 generates droplets having the same velocity but of small and inter-
mediate sizes, thus lying in the subsets 3 and 4. Regarding the subset 3, it was noted in the
article that it may be the tail of the neighbouring subsets 1 and 4. This can be accounted for
by adding an hypothesis and saying that the small droplets generated by a break-up undergo a
fast decrease of velocity and, thus, feed the subset 1. The droplets of the subset 1 are assumed
to be stable and cannot undergo further break-up. The droplets in the subset 4 still have a
large velocity and can continue to fragment. Then, one could conjecture that they undergo
ligament-mediated fragmentation and slow down at the same time. Depending of the droplet
location in the size-velocity space, it could then feed the subset 1 or the subset 2. For instance,
the volume of a droplet such that u/⟨u⟩V ≈ 1 and d/⟨d⟩V ≈ 3 is likely to pour into the subset
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2. Conversely, the volume of a droplet such that u/⟨u⟩V ≈ 1.5 and d/⟨d⟩V ≈ 0.3 could pour
into the subset 1. The later conjectures aim to depict the transfer of liquid volume contained
in the large, fast droplets of the depleting subset 5 across the size-velocity space.

3.3.2 Exploring the size distributions of the subgroups 
Now that the volume transfer between the subsets is conjectured, it is possible to test its validity
by looking at each subset separately. To do so, one can consider, for instance, the droplet size
as an observable and compute its distribution. In order to keep some consistency with the size
distribution of the overall droplet distribution given in the article Sec. III.A, the distribution
computed over the subset has to be slightly adapted. The count density, i.e. the number of
occurrence divided by the bin width, is normalised by the total number of droplets in the spray
instead of being normalised by the number of droplets in a subset of consideration. Following
this method for computing the size distribution, Fig. 3.4 gives the droplet size distribution for
each subset in a semi-logarithmic scale.

A striking observation is that the power-law decay observed in Sec. II.A is not visible
anymore. The distributions of the subsets 2, 4 and 5 rather scale as an exponential respectively
with −7/2, −1 and −1/2 as decay coefficient. This recalls at first the experimental observation
made by Simmons (1977) that the tail of the size distribution of sprays commonly show an
exponential decay. In a second time, such decays also recall the argument of random stripping
introduced by Villermaux (2020). The random stripping argument relies on the ligament-
mediated fragmentation. It explains the size distribution of droplets generated by a turbulent jet
by modelling the distribution by the composition of a set of Γ distributions. This composition
then results in a distribution with an exponential decay with a main mode at small sizes,
similarly to Fig. 3.4d. Let us assume that the random stripping mechanism is relevant for our
droplet production. Then, the droplets lying in the subsets 2 and 4 are likely to result from
a ligament-mediated fragmentation, thus validating, in a first approximation, the production
mechanisms conjectured for the subsets 2 and 4.

Checking the conjecture that the droplets of the subset 5 undergo a bag break-up frag-
mentation is straightforward. Indeed, droplets undergo this fragmentation mechanism when
Wep ⩾ 6, with Wep = ρgu

2dV /σ. The gaseous Weber number associated to the points
(u/⟨u⟩V , dV /⟨dV ⟩V) ∈ {(3, 1.6), (8, 1)} respectively equal 7.24 and 6.68. All the droplets above
those points then undergo bag break-up. Thus, at first approximation, part of the subset 5
undergo bag break-up and the related conjecture is partly verified. It could be possible to
improve this verification by considering the relative velocity of the droplet with the gas phase
instead of u in the computation of Wep.

Consequently, part of the droplets in the subsets 2 and 4 are likely to result from the
rim fragmentation during a bag break-up and part of the droplet in the subset 1 from the
sheet fragmentation. This partly verify the conjecture that the rim fragmentation feeds the
subsets 2 and 4 and that the sheet fragmentation feeds the subset 1. Further work has to be
done to pinpoint more precisely the part of the droplets which actually result from the rim
fragmentation and from the sheet fragmentation taking place in a bag break-up. Indeed, as not
all the droplets of the subset 5 undergo a bag break-up, a part of the droplets in the subsets 1,
2 and 4 could also result from a classic ligament-mediated fragmentation.

An extra conclusion, which was not conjectured earlier, can be drawn about the large and
fast droplets, lying in the subset 5. Fig. 3.4e indicates that the size distribution of the droplets
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(e) subset 5

(c) subset 3 (d) subset 4

(a) subset 1 (b) subset 2

Figure 3.4: Size distribution of the droplets separated by subset for the five experimental
positions.

in the subset 5 also follows an exponential decay. Following once again the random stripping
argument, this could point out that the larger droplets of the jet fragmentation, mainly resulting
from the liquid core pinch off, could also be described by a compound Γ distribution. In order
to verify the overall volume transfer proposed above, two ways could be considered, either
programmatically or analytically. Programmatically, one could implement an algorithm that,
from an infinite source distribution as granted, the one of the subset 5 for example, generates
a droplet population by reproducing the conjectured droplet fragmentations. The analytical
way follows a similar logic but, instead of generating a droplet population step by step, one
could compose the parametrised distributions resulting from each fragmentation mechanism
and try to derive the overall population distribution. A strong limitation of the conjectured
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volume transfer is that it aims to explain the distribution in the size velocity space of the
droplets generated from the subset 5. Thus, no considerations are made regarding the droplets
of smaller size existing prior to any bag break-up, for example the droplets generated by the
peeling of the liquid core, Fig. 3.2a and 3.2b, or from large droplets, Fig. 3.2c and 3.2d.

Besides, in Sec. IV. A. of the article, several arguments pointed in the direction that the
subset 3 could simply be the expression of the tail of the neighbouring subsets 1 and 4. In Fig.
3.4c, it is possible to distinguish reminiscences of the features of the size distribution of the
subset 1, like the step at d/⟨d⟩V ≈ 0.24, as well as the trend of the size distribution of the subset
4, for d/⟨d⟩V ∈ [0.25, 0.3]. And the arguments once again seem to point in the direction of a
tail subset. This raises the question of the accuracy of the subset delimitation or the choice of
the observables. While the subset delimitations seem to show some robustness, maybe further
thinking on the observable to use could be advisable as the choice of the size and the velocity
has some limitations. The major limitation related to the size velocity space and the subset
delimitation developed above is that droplets experiencing different flow regimes can be found
in the same subset. For example, two droplets having the same size but different velocities will
interact differently, if not drastically differently, depending on the difference of velocity. Other
observable which could be used are the particulate dimensionless numbers, in other words Re,
We and Oh computed for each droplet with the droplet characteristic velocity and length,
respectively the droplet velocity and its diameter. The use of the particulate Reynolds, Weber
and Ohnesorge numbers is considered in Chap. 4 to describe the droplet phase space.
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Chapter 4. Weber dependency of jet fragmentation: a DNS investigation

4.1 Introduction
We recall that jet fragmentation occurs in numerous natural mechanisms and industrial ap-
plications. It can appear in the form of an ocean spray when waves crash on the shore or a
lava spray during volcanic eruption, yet, it is more common to find this physical mechanism in
medication sprays, fuel injection systems of combustion engines or agricultural sprinkling. Jet
fragmentation can be a challenging configuration to study numerically. Fragmentation flows of
high Reynolds and Weber numbers present a large diversity of scales and fluid objects whose
dynamics are partly governed by the surface tension and the turbulent characteristics, which
gives them a high complexity. Their Direct Numerical Simulation (DNS) requires to solve the
two phase Navier Stokes equations with surface tension. A fine resolution of the interfaces is
of most importance and can be achieved with an optimized use of computing resources thanks
to adaptative grids. Those multiphase flows result from the injection of a dense phase into a
lighter phase through a nozzle of diameter dn and produce a polydisperse spray. The phases
are denoted by the subscript i which takes the value 1 for the injected dense phase and 2 for
the lighter phase. Both phases are respectively renamed liquid and gas in the following. With
the Reynolds (Re) and Weber (We) numbers, the Ohnesorge (Oh) number completes the list
of governing dimensionless numbers. The first one represents the ratio of inertia over viscosity
and the second one the ratio of inertia over surface tension. The latter relates to the droplet
deformation and represents the ratio of viscosity over the product of the surface tension and
inertia. Their respective expressions follow:

Rei = ρiUinjdn

µi

, Wei =
ρiU

2
injdn

σ
, Oh = µ1√

ρ1dnσ
(4.1)

where ρi and µi denote the density and the dynamic viscosity of the phase i and σ the surface
tension between the two phases, taken as constant.

Lefebvre & McDonell (2017) categorized five fragmentation regimes for non assisted frag-
mentation of round jets, whose delimitations mainly depend on the Weber number. The focus
is given here on two of them: the second wind induced regime for which We2 ∈ [13, 40.3] and
the so-called atomisation regime for which We2 > 40.3. Complementary, the jet configurations
are distinguished between large jets, with dn > 1mm, and small jets. In addition, the frag-
mentation of a jet is often split into several breakup types: the primary and the secondary
breakups. The former corresponds to the generation of elements only coming from the dense
core while the latter considers large elements dumped from the core which undergo further
fragmentation. Thus, the physical border of the two breakup types is the location where the
dense core pinches off and generates large scale elements, which are unstable in flows of mod-
erate or large liquid Reynolds number Re1 and gaseous Weber number We2. Numerical studies
of jet fragmentation mainly focus on the primary breakup region, close to the nozzle, due to
limitations on computational resources and numerical challenges (Gorokhovski & Herrmann,
2008; Fuster et al., 2009; Tryggvason et al., 2011; Popinet, 2018). Zandian et al. (2017) realised
DNS to study the evolution of a planar jet and specifically focused on the development of three
dimensional instabilities. Ling et al. (2017a) studied a quasi planar gas-liquid mixing layer
at moderate density ratio (ρ1/ρ2 = 20, Re1 = 160000, We2 = 20) thanks to finely resolved
DNS. They were able to explain precisely the development of instabilities on the sheet interface.
They captured the development of Taylor Culick instabilities as well as the fragmentation of a
ligament into droplets and finally compared the droplet size distribution obtained for different
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grid refinements with the logarithmic normal and Γ laws.
On the side of round liquid jets, the latest studies rely on DNS using the code Basilisk

(Popinet & collaborators, 2013–2021) or the SPH method. Chaussonnet et al. (2018) used the
latter to explore the droplet population produced by a twin-fluid atomizer at high pressure up
to x/dn ≈ 10 (ρ1/ρ2 = 93, Re1 = 1.27× 107, We2 = 1375). Ling et al. (2017b) used Basilisk to
observe the influence of viscosity on the fragmentation of a round biodiesel jet (ρ1/ρ2 = 78.2,
Re1 = 1450, We2 = 12.9) developing up to x/dn ≈ 20 while testing different grid refinements.
Zhang et al. (2020) observed the fragmentation of a round diesel jet injected through a solid
G-spray injector developing up to x/dn ≈ 20 as well (ρ1/ρ2 = 233, Re1 = 13400, We2 = 177).
Through their study, the authors were able to observe the fragmentation of the liquid core
into droplets as well as the vortices spatial repartition along the core. In addition, the authors
modeled the droplet size distribution relative to the azimuthal angle by a hyperbolic tangent
function. Finally, both studies relying on Basilisk compared the logarithmic normal and the Γ
laws, the latter being derived in the context of ligament mediated fragmentation (Villermaux
et al., 2004; Villermaux, 2020), to fit the droplet size distribution and concluded on the better
performance of the fit with the logarithmic normal law in linear mode, i.e. fitting the signal as
it is.

Later experimental studies (Stevenin et al., 2016; Felis et al., 2020) used specific droplet
tracking velocimetry (DTV) and laser Doppler velocimetry (LDV) apparatus to explore the
dispersed zone of agricultural like jets (ρ1/ρ2 = 828.5, Re1 = 41833, We2 = 24). The measure-
ments were carried far away from the nozzle, x ⩾ 400 dn, in the zone where the liquid core is
fully atomized and where only the secondary breakup occurs. Based on those joint size-velocity
measurements, Vallon et al. (2021) highlighted the multimodal nature of the droplet size dis-
tribution along with the existence of droplet subgroups, each of them being characterized by a
specific pair of size and velocity.

The present chapter aims to complete the experimental campaigns by studying numerically
the field close to the nozzle in similar flow conditions up to x/dn = 28 in order to have a more
global view of the fragmentation process that agricultural like jets undergo. To do so, Sec. 4.2
presents the flow modeling and the parameter framing. Sec. 4.3 is dedicated to the analysis
of the overall flow characteristics. Sec. 4.4 focuses on the analysis of the droplet population
statistics and the mechanisms from which they are generated.
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4.2 Flow modeling and parameter framing
This section presents the governing equations, the numerical methods, the choice of the physical
configurations, the numerical configuration and the computation cost. It finally introduces the
selection of the most unstable mode of the jet, in order to stimulate the jet fragmentation.

4.2.1 Governing equations
Direct Numerical Simulations (DNS) aim to resolve all time and length scales by solving the
Navier-Stokes equations. However, this resolution is often limited by the available computa-
tional resources. The fragmentation mechanism under consideration occurs at low Mach num-
bers neglecting gravitational forces and involves two immiscible, incompressible fluids. The
flow dynamics is then governed by the unsteady Navier-Stokes equations and can be expressed
in the theoretical framework of a one fluid flow with variable density and viscosity as:

∂ρu
∂t

+ (u · ∇∇∇)(ρu) = −∇p+∇∇∇ ·
(
µ(∇∇∇u +∇∇∇T u)

)
+ Tσ (4.2)

∂ρ

∂t
+∇∇∇ · (ρu) = 0, (4.3)

∇ · u = 0 (4.4)

where u is the velocity, p the pressure and Tσ the surface tension force, only defined on the
liquid-gas interfaces. The two phases are taken into account in the one fluid framework through
the phase indicator, named fraction field and denoted α in the following. The fraction equals
1 if a cell only contains liquid and 0 if it only contains gas. The one fluid viscosity and
density are computed over the phase quantities by using α and follow µ = αµ1 + (1−α)µ2 and
ρ = αρ1 + (1− α)ρ2.

4.2.2 Numerical methods
The DNS under consideration are computed with the solver developed by the Basilisk commu-
nity. Basilisk is an open source project which aims to develop efficient solvers and methods
which can be adapted to a large range of configurations (Popinet & collaborators, 2016–2021).
This project is mainly led by Stéphane Popinet and benefits from the contribution of all the
Basilisk community. The present study largely relies on the atomisation code available on the
wiki of the project (Popinet & collaborators, 2016–2021).

The Navier-Stokes equations are solved for a biphasic flow with a constant surface tension
using numerical schemes similar to Popinet (2003) & Lagrée et al. (2011). The resolution of
the equations relies on time steps limited by the Courant-Friedrichs-Lewy (CFL) condition, the
advection scheme of Bell-Collela-Glaz (Bell et al., 1989) and an implicit solver for the viscosity.
The gas-liquid interface is tracked with a Volume-Of-Fluid (VOF) scheme which is geometric,
conservative and non diffusive (Lòpez-Herrera et al., 2015). Regarding the surface tension,
the interfacial force is calculated as Tσ = σκnδs, where κ is the interface curvature and δs is
the interface Dirac function. Considering the Continuum-Surface-Force (CSF) method and the
Peskin immersed boundary method, the interfacial force can be approximated by Tσ = σκ∇α
where κ is computed by the use of a height function (Abu-Al-Saud et al., 2018). A projection
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method is used to compute the centered pressure gradient and the acceleration field. The
VOF scheme is combined with an octree adaptative grid (Agbaglah et al., 2011) while the grid
adaptation algorithm relies on a wavelet estimated discretization error, described by Popinet
(2015) and used for atmospheric boundary layer simulations by van Hooft et al. (2018). Such
grids present the advantage of finely resolving the gas-liquid interface while having a coarser
resolution away from the interfaces, and thus enable an increase of the computational velocity.
Finally, the droplet detection is achieved by a tag function which associates a different tag to
each neighbourhood of connected cells respecting a threshold condition on the fraction field,
set to α > 1× 10−3 in our DNS.

4.2.3 Physical configuration and parameters 
The domain is a cubic box of dimension Lx. A liquid round jet is injected into a quiescent gas
at a mean velocity Uinj, directed along the x-axis, through a disc of length lx and diameter dn.
The latter disc is called nozzle in the following. The injection condition is set on the disc face
located at x = 0 while a free stream condition is imposed at the location x = Lx. In addition,
a Neumann condition on the normal velocity is imposed on the lateral faces. A sinusoidal
perturbation is superimposed on the injection velocity in order to accelerate the development
of the Kelvin Helmholtz instability on the interface. The perturbation has an amplitude α and
a frequency f such that the injection velocity follows uinj = Uinj

(
1 +A sin(2πft)

)
. Finally, the

advection time scale is defined by Ta = dn/Uinj.
One aim of this study is to draw comparisons with the experiments of Felis et al. (2020).

First and foremost, the turbulent property of the experimental inlet velocity profile is let aside
and the numerical injection profile is set as laminar. Real world parameter values cannot be
picked because the current computational resources do not allow to compute such configura-
tions. For instance, the numerical contraints prohibit large values for the density ratio, ρ1/ρ2 <
100, the Reynolds number, max(Re) = O(104) and the surface tension, σ = O(10−5)N/m.
Those constraints are denoted C0, C1 and C2. Even if the real world values are unreachable, a
specific attention can be set on reproducing configurations with dimensionless numbers close to
the experimental ones. The latter study carried out DTV and LDV measurements on a water
jet lying in the second wind induced fragmentation regime (Lefebvre & McDonell, 2017). This
regime is characterized by sharp limits on the gas Weber number: 13 < We2 < 40.3. The
atomisation regime is also defined on the basis of the Weber number, We2 > 40.3. The first
priority is thus to make the DNS Weber numbers evolve over this range of values, which defines
a third constraint C3. In order to reproduce similar deformation regimes undergone by the
droplets, focusing on the Ohnesorge number is also relevant. Experimentally Oh = 3.4× 10−3,
reproducing the same order of values makes a fourth constraint C4. Reproducing a density
ratio of O(103), as for water injection in air, is impossible. Conserving the experimental vis-
cosity ratio ν2/ν1 = 15 could also be interesting but it would slow down the fragmentation
process, which goes against the optimisation of computer resources. One could then have
a look at the conservation of the ratio γ = µ1/µ2 = (ρ1ν1)/(ρ2ν2), where it is worth not-
ing that the quantity ρiνidn is homogeneous to a mass flow 1. Furthermore, γ rewrites as
ρ1ρ

−1
2 /(ν2ν

−1
1 ) = We1We−1

2 /(Re1Re
−1
2 ) = We1Re

−1
1 /(We2Re

−1
2 ) = Ca1/Ca2, where Cai is the

Capillary number of the phase i. Experimentally, γ equals 55 and can be seen such that the
mass flow of the liquid phase is 55 times higher than the mass flow of the gas phase or equiva-

1Indeed, [ρiνidn] = kg
m3 × m2

s ×m = kg× s−1. Also, ρiνidn = ρiUinjd2
n/Rei.
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ρ1 (kg/m3) ρ2 (kg/m3) ν1 (m2/s) ν2 (m2/s) σ (N/m) dn (m) Oh

1 1/55 10−6 10−6 10−5 4.48× 10−3 4.725× 10−3

Table 4.1: Fixed parameters and corresponding Ohnesorge number.

DNS 1 2 3 4 5 6 7 8 9 10
Uinj (m/s) 1.357 1.567 1.787 1.919 2.073 2.216 3.0 3.5 4.0 4.5
We2 (×101) 1.5 2.0 2.6 3.0 3.5 4.0 7.33 9.98 13.03 16.5
Re1 (×103) 6.1 7.0 8.0 8.6 9.3 10.0 13.4 15.7 17.9 20.2

Table 4.2: Injection velocities and corresponding gas Weber and liquid Reynolds numbers.

lently Ca1 = 55Ca2. Respecting this ratio makes a fifth constraint C5. The list of constraints
necessary to produce configurations close to the experiments is thus:

C0 : ρ1/ρ2 < 100
C1 : max(Re) = O(104)
C2 : σ = O(10−5) N/m
C3 : We2 ∈ [13, 40.3] or We2 > 40.3
C4 : Oh = O(10−3)
C5 : ρ1ν1/ρ2ν2 = 55

(4.5)

which let the parameters ρ1, ρ2, ν1, σ, Uinj and dn free to choose. In order to keep a constant
geometry between different DNS, the nozzle diameter is set as constant and only the injection
velocity varies to cover the range of Weber and Reynolds of interest. Table 4.1 gives the values
chosen for the parameters along with the corresponding Ohnesorge number. Table 4.2 lists the
chosen injection velocities and the corresponding gaseous Weber and liquid Reynolds numbers.
Note that the Ohnesorge number is constant over all the configurations. Thus, for all the
DNS, the critical breakup Weber number for a given droplet size is constant (Hinze, 1955).
Additionally, the breakup regimes in the secondary atomisation are defined on the same range
of Weber numbers (Faeth et al., 1995) for the 10 DNS. In fine, the breakup regimes of the
droplets are set and identical for any pair (Re1,We1) and the DNS explore different breakup
regimes of the jet by ranging from low to moderate Re and We numbers.

4.2.4 Most unstable modes for triggering the jet fragmentation
In order to trigger the jet fragmentation the earliest and save computational resources, it is
interesting to destabilize the jet interface. Following the work of Yang (1992) on the growth
of waves in round jets, it is possible to characterize the most unstable axisymmetric mode. In
this work, the author studied the stability of an infinitesimal perturbation on the surface of a
round jet of radius a. The notation follows the same convention as the one described below.
In addition, the author considered that the gas phase can be injected at a velocity U2 and that
the fluids are incompressible and non viscous. In this section, Uinj is denoted U1.

The velocity and pressure fields can be split into an averaged part and a fluctuation part:
ui = Ui + u′

i and pi = Pi + p′
i. Injecting this decomposition into the governing equations,
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expressed in cylindrical coordinates (r, θ, z), and applying the divergence operator gives the
pressure disturbance equation :

∇2p′
i = 0, ∇2 = 1

r

∂

∂r
r
∂

∂r
+ 1
r2

∂2

∂θ2 + ∂2

∂z2 (4.6)

Assuming a 3D disturbance with a normalised wavelength number ka and m in the stream-
wise and azimuthal directions, the perturbed quantities are p′

i = p′
i(r)ei(kz+mθ)+αtgt and u′

i =
u′

i(r)ei(kz+mθ)+αtgt, where αtg is the temporal growth rate and m introduces the non axisym-
metric variations of the disturbance. Eq. (4.6) then becomes:(

1
r

∂

∂r
r
∂

∂r
− m2

r2 − k
2
)
pi(r) = 0 (4.7)

Resolving this equation gives a solution for pi(r), Eq. (4.8), depending on the first and second
type modified Bessel functions of order m, respectively denoted Im and Km. This solution can
be used with the mass conservation equation for the linearised perturbation to derive a solution
for u′

i, Eq. (4.9).

pi(r) = Ci,1Im(kr) + Ci,2Km(kr) (4.8)

u′
i = −

∇
(
pi(r)ei(kz+mθ)+αtgt

)
ρi(αtg + ikUi)

(4.9)

where the four constants Ci,1 and Ci,2 have to be derived regarding the boundary conditions.
The pressure is finite in the liquid at r = 0 and in the gas when r → +∞, thus C1,2 = C2,1 = 0.
Let η1 and η2 denote the perturbed displacements of the interface and ∆pσ the pressure jump
due to the surface tension σ. The pressure follows ∆pσ = σ(1/R1 + 1/R2) with R1 and R2 the
principal radii of curvature. The remaining two constants can be derived from the pressure
jump, p1 − p2 = ∆pσ, and the interface displacement, η1 = η2. The perturbed displacements
satisfy:

vi = ∂ηi

∂t
+ Ui

∂ηi

∂x
(4.10)

with vi the velocity component in the radial direction. By letting η = η1 = η2 = η0e
i(kz+mθ)+αtgt,

Yang (1992) showed that to the first order of η, 1/R1 +1/R2 = 1/dn−1/d2
n [1−m2 − (ka)2] η0.

The continuity equations then become:

C11

(
Im(ka)− σ[1−m2 − (ka)2]

a2
I ′

m(ka)
ρ1(αtg + ikU1)2

)
− C22Km(ka) = 0 (4.11)

C11
I ′

m(ka)
ρ1(αtg + ikU1)2 − C22

K ′
m(ka)

ρ2(αtg + ikU2)2 = 0 (4.12)

The latter equation system admits a non trivial solution when its determinant is zero. This
condition gives the following dispersion equation:

(ρ1m +ρ2m)α2
tg +2ikαtg(ρ2mU2 +ρ1mU1)−k2(ρ2mU

2
2 +ρ1mU

2
1 )− kσ

a2 [1−m2− (ka)2] = 0 (4.13)
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with: 

ρ1m = γmρ1

ρ2m = βmρ2

γm = kIm(ka)/I ′
m(ka)

βm = −kKm(ka)/K ′
m(ka)

I ′
m(ka) = dIm(kr)

dr r=a

K ′
m(ka) = dKm(kr)

dr
|r=a

(4.14)

The dispersion equation, Eq. (4.13), is a quadratic equation in αtg and the expression of the
adimensional temporal growth rate for the m-th transversal mode can be derived from it:

(α∗
r)2

m = γmβmQ · (ka)2

(γm + βmQ)2 + ka

We

1−m2 − (ka)2

γm + βmQ
(4.15)

where (α∗
r)2

m = (αr)2
m/[(U1 − U2)2/d2

n], We = [dn(U1 − U2)ρ1]/σ and Q = ρ2/ρ1. Conversely
to the previous developments, the computation of the most unstable mode is straightforward.
Figure 4.1 gives the evolution of (α∗

r)2
m for U1 = 3.0m/s. The wavelength ka of such a mode

corresponds to the wavelength for which the adimensional temporal growth rate is maximum.
The mode pulsation ω is then given by αi and the axisymmetric mode can be selected by
setting m = 0. In addition, U2 is set to 0 and a should be set to dn/2. However, during the
computation, a was set to dn. The difference between the pulsation of the mode computed
for a = dn and a = dn/2 is of O(1rad/s) while the pulsations given by αi are of O(103rad/s),
i.e. the relative difference is of O(10−3). Thus, the mode obtained with a = dn is not the
most unstable mode but lies in the group of the most unstable modes. Table 4.3 lists the most
unstable mode frequencies f for each selected configuration in Sec. 4.2.3, whose frequencies are
used to parametrize the injection velocity of each DNS.
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Figure 4.1: Evolution of the adimensional temporal growth rate (α∗
r)2

m for U1 = 3.0 m/s.
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4.2. Flow modeling and parameter framing

DNS 1 2 3 4 5 6 7 8 9 10
Uinj (m/s) 1.357 1.567 1.787 1.919 2.073 2.216 3.0 3.5 4.0 4.5
ω (103rad/s) 2.137 2.853 3.693 4.247 4.995 5.667 10.471 14.278 18.676 23.441
f (kHz) 0.340 0.454 0.587 0.676 0.795 0.901 1.666 2.272 2.972 3.730

Table 4.3: Pulsation and frequency of the most unstable mode for each jet configuration.

DNS Ctot (106) Vnum (106cells/s) tmax/Ta Lj,max/dn Ntot

1 4.43 0.59 51.3 28 148
2 29.29 0.93 35.3 28 2345
3 53.83 2.23 35.5 28 7069
4 42.15 1.96 36.0 28 7958
5 51.41 1.73 37.7 28 4729
6 34.13 1.92 35.0 28 6180
7 77.45 2.45 24.0 21.5 17144
8 105.6 2.58 19.8 17.5 38538
9 141.7 2.58 17.3 15.2 68555
10 154.4 2.56 16.2 14.3 93755

Table 4.4: Numerical performances.

4.2.5 Numerical configuration and computational cost
The refinement level is set to 12 and the minimum cell size in an adaptative grid is given
by ∆min = Lx/212. Hence the minimum cell size is ∆min = 30.5 µm and dn/∆min = 146.8.
The time step is set by the CFL condition, |umax|∆t/∆min < C, where the Courant number is
initially set to 0.8. Running the 10 DNS summed a total of 431 256 scalar hours of computation.
DNS 3 to 10 ran for 50 400 h while DNS 1 and 2 respectively ran for 12 600 h and 15 456 h.
The computational performances can be tracked by checking the total number of cells used for
each DNS, Ctot, the mean numerical velocity, Vnum, the maximal physical time, tmax/Ta, the
maximum jet elongation, Lj,max/dn and the total number of detected droplets, Ntot. Table 4.4
summarizes the related numerical performances. All the DNS are split into 3 runs and were
computed on the Occigen HPC (CINES, France). An example of atomisation produced by DNS
10 is given in Fig. 4.2.
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Figure 4.2: Atomisation and adaptative grid for We2 = 165 (DNS 10) at t/Ta = 16.2.
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4.3. Overall flow characteristics and droplet statistics

4.3 Overall flow characteristics and droplet statistics
This section characterizes the Turbulent Kinetic Energy (TKE) in the domain, has a glance
on the jet interface and introduces the statistics and PDF of the droplet population. In the
following, the evolution of several variables relatively to t/Ta is analysed.

If the liquid core motion was the one of a solid cylinder, then the jet length would theoret-
ically be Lj,theo = dn × t/Ta, i.e. Lj,theo/dn = t/Ta. However, a lag of the jet tip relatively to
this theoretical position is observed. In order to link t/Ta and the actual jet length Lj, Fig.
4.3 gives the temporal evolution of Lj/Lj,theo. Here, Lj is defined as the 99% quartile of the
axial positions of the interface cells, α ∈]0, 1[, and not the maximum position. Doing so enables
to exclude droplets which would exist on the upstream face of the jet tip as well as smooth
out the effect of the grid refinement. Thus, the length of the jet equals in average 85% of the
theoretical length, Lj/dn ≈ 0.85 × t/Ta and T/Ta = 33 corresponds to the instant when the
jet exits the computational domain. Note that from t/Ta ≈ 5, the ratio Lj/Lj,theo is constant,
which means that the jet front has a velocity equal to Uinj.
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Figure 4.3: Temporal evolution of the jet length Lj compared to the theoretical jet length Lj,theo

for the 10 DNS. The black dashed line represents the mean value Ljet,max/Ljet,theo = 0.853
averaged over t/Ta ∈ [0, 33]. The blue colours denote the DNS in the second wind induced
regime and the red colours the DNS in the atomisation regime.

4.3.1 Turbulent kinetic energy
One aim of this study is to draw conclusions on the statistics of the droplet population. To
ensure converged statistics, the flow needs to reach a statistically steady state. Looking at the
turbulent kinetic energy ki enables to conclude about such a state, primarily the one of the gas
phase. As shown in Table 4.4, the jet extension observed in the DNS 7 to 10 is smaller than the
length Lx of the domain. Thus, a statistically steady state at the scale of the domain cannot

99



Chapter 4. Weber dependency of jet fragmentation: a DNS investigation

be achieved. Even so, it is possible to slice the domain in different sections along the x axis
and conclude on the flow steadiness in each section.
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Figure 4.4: Turbulent kinetic energy in the gas phase for We2 = 40 (DNS 6).

The domain of length Lx is sliced in 5 sections along the x axis. The fifth section represents
the outlet side of the domain and its length is set to dn. The rest of the domain is evenly
sliced with a slice thickness equal to (Lx − dn)/4. The sections are denoted from 1 to 5, going
from the nozzle to the outlet face. The turbulent kinetic energy is computed for both the gas
and the liquid following ki = 1

2
∫

Vs
(u′2

x,i + u
′2
y,i + u

′2
z,i)dV with Vs the volume of the section under

consideration. Figure 4.4 shows the time evolution of the TKE for the DNS 6. The evolution
is similar in each slice: k increases when the jet head enters the section, reaches a maximum,
decreases when the head enters the following section and finally reaches a plateau. The time
sampling is set with a step ∆(t/Ta) = 1/4 and smooths the fluctuations out of the plateau
region. The increase of the k2 maximum and asymptote values between the slices is due to the
ongoing fragmentation and the newly created droplets which increases the gas phase agitation.
Thus, once the jet head fully exits a section, the flow reaches a statistically steady state. One
could expect that the TKE around the jet head, measured from a Lagrangian point of view
would reach an asymptote as well and, thus, a statistically steady state.

4.3.2 Close up on the jet interface
This section explores qualitatively the interface of the jet in two regions of interest: close to the
nozzle where the unstable mode develops and around the tip of the jet where the front extends
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4.3. Overall flow characteristics and droplet statistics

DNS 1 2 3 4 5 6 7 8 9 10
We2 15 20 26 30 35 40 73.3 99.8 130.3 165
Sr (×10−6) 17.9 15.5 13.6 12.7 11.7 11.0 8.07 6.90 6.03 5.41

Table 4.5: Strouhal number based on the forcing and gaseous Weber number for the 10 DNS.

and fragments. It also includes the presentation of the method for computing the mean jet
interface.

4.3.2.1 Development of the unstable mode

In order to check qualitatively the forcing implemented in the simulations and its outcome,
one could have a look on the jet interface in the region of the nozzle, where the unstable mode
excited by the forcing should develop. To compare the interface evolution between the different
DNS, the x coordinate needs to be normalised by the characteristic length scale of the forcing,
i.e. Uinjf

−1. Note here that Uinjf
−1 = Sr/dn, so x/(Uinjf

−1) = (x/dn)Sr, where Sr is the
Strouhal number based on the forcing, given in Table 4.5. Furthermore, the physical times
chosen for the comparison have to be in phase relatively to the sinusoidal perturbation, i.e. the
physical times should be chosen such that the perturbation waves superimpose on each other.
Fig. 4.5 shows the jet interface sliced at z = 0 and for y/dn > 0, normalised as explained.

For the 10 DNS, the perturbation waves collapse well after normalising by Uinjf
−1 and

picking in-phase physical times. Consider first the second wind induced regime. The jet in-
terfaces of the DNS 1 and 2 are represented separately from the DNS 3 to 6, Fig. 4.5a and
4.5b, to highlight the different behavior of the forcing between them, even if DNS 1 to 6 lie in
the second wind induced regime. For the DNS 1 and 2, the development of the mode leads to
waves which only break in large elements in the DNS 2 while they are attenuated in the DNS 1.
Contrarily, the perturbation in the DNS 3 to 6 leads to the development of shorter waves which
break into a wider droplet population. Here, the wave develops in the radial direction. While
the wave extends radially, up to y/dn ≈ 0.8, its outskirt forms a rim and the space between
the liquid core and the outer rim forms a sheet. The sheet becomes thinner the more the wave
extends, before fragmenting for x/(Uinjf

−1) ∈ [5.5, 7]. Once the sheet has fragmented, the rim
destabilizes and fragments as well. A similar wave development can be observed for the DNS
7 to 9, except that the wave extension is smaller than previously, up to y/dn ≈ 0.6, that the
wave sheet fragments earlier, for x/(Uinjf

−1) ∈ [5, 6], and that the rim fragments faster for
DNS 7 or even hardly exists for DNS 8 and 9. Finally, no rim is created in the last DNS.
Specific attention is required for the DNS 10. Fig. 4.5d indicates the presence of interface in
the liquid core, meaning that the core is populated by some volume made of the lighter phase,
i.e. bubbles. The bubbles are generated from t/Ta ≈ 10 and could be generated by a cavitation
effect triggered by the forcing or could originate from a numerical artefact. Note that bubbles
also appear, but later on timewise, in the DNS 9. The presence of bubbles changes the fluid
dynamics inside the core but appears to modify only slightly the interface dynamics in the time
scope of the study and any perturbation would be smoothed out by considering the overall
droplet population.
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Figure 4.5: Superposition of the interface sliced at z = 0 in the region of the nozzle in the second
wind induced regime (a,b) and the atomisation regime (c,d). The blue and red colors indicate
the second wind induced and atomisation regimes respectively. The physical times are chosen
such that the sinusoidal perturbations are in phase. As a reminder, x/(Uinjf

−1) = (x/dn)Sr.

4.3.2.2 Development of the jet head

Complementarily to the development of the wave perturbation, it is possible to have a glance
on the head of the jet. Fig. 4.6 presents the jet interface sliced at z = 0 in the region of the head
of the jet for both regimes at the same physical time t/Ta = 15. What appears at first is the
difference of geometry of the front between the two regimes. In the second wind induced regime,
the front is plane while it is parabolic in the atomisation regime. This difference results from the
force equilibrium between the liquid and gas phases depending on the injection velocity. In both
regimes, the head extends up to y/dn ≈ 2 and experiences piercing (data not shown here) which
could be due to the Taylor Culick instability. However, the dynamics of the head extension
is quite different. In the second wind induced regime, the head extension can produce thick
ligaments able to extend over distances of the order of dn while, in the atomisation regime,
the ligaments fragment once they are detached from the head sheet. The difference in the
resulting droplet population is qualitatively visible in Fig. 4.6 where the droplets appear to be
more numerous in the atomisation regime than in the second wind induced regime. Theoretical
developments enable to estimate the thickness of the head to be of O(10−4m), see Appendix A.
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Figure 4.6: Superposition of the interface sliced at z = 0 in the region of the jet head in the
second wind induced regime (a) and in the atomisation regime (b) at t/Ta = 15.

4.3.2.3 Computation of the mean interface

The discussion about the jet interface close to the nozzle and around the jet head were carried
out while considering slices on the plane z = 0. In order to draw more general conclusions
on the jet interface, for instance regarding the positions of the droplets along the jet like in
Sec. 4.4.1 and 4.4.2, it is interesting to gather more global information as, for instance, the
mean interface. Computing the latter is not straightforward and involves a bit of processing.
To extract it, it is first necessary to compute the joint distribution of the interface points in
the physical space (x/dn, r/dn). Once computed, the mean interface can be extracted from the
distribution by filtering out the most probable interface points. This extraction step however
relies on the choice of a threshold. This threshold can be empirically chosen such that it enables
to depict the mean interface while discarding most of the interface related to the droplets.

Fig. 4.7a and 4.7b respectively give the joint distribution of the interface points across the
(x/dn, r/dn) space and the interface filtered from the joint distribution with a threshold of 0.2,
i.e. the interface points with a probability larger than 0.2. A way to refine the mean interface
of the jet would be to consider the interface of the liquid core only, instead of considering all
the interface points in the jet, i.e. the liquid core and all the droplets. The droplets would
be then naturally discarded and the resulting interface would depict more precisely the mean
interface around the jet head. Even so, the method used here is satisfactory for the following
analysis.

4.3.3 Statistics of the droplet population
Figure 4.8 gives the number of droplets detected by the tag function implemented in Basilisk
and denoted Ntot. First and foremost, the droplets produced in the DNS 1 and 2 do not
exceed 1000 elements, which is not enough to draw conclusions on the statistics of those two
populations. Thus, the DNS 1 and 2 are discarded in the following. All the other DNS show
a total number of elements larger than 1000, which enable to carry out a statistical analysis.
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Figure 4.7: Joint distribution of the interface points in the (x/dn, r/dn) space for We2 = 99.8
(DNS 8) at t/Ta = 15 (a) and the interface filtered with a threshold of 0.2 (b).

The two regimes distinguish from each other by the total number of produced droplets. The
total number is of O(103) in the second wind induced regime whereas it is of O(104) in the
atomisation regime, reaching up to 5×104 elements for the DNS 10. Even so, after rescaling by
We1.8

2 the number of elements for the DNS 3 to 10 collapse all together and Ntot tends toward
6 We1.8

2 for both regimes, excepted DNS 1 and 2. The transition to a steady production of
droplets differs between the two regimes. In the second wind induced regime, the total number
of elements quickly increases and drops down before reaching a steady rate. The observed
decrease could be due to the interactions between the jet head development and the corollas
induced by the mode forcing, interactions which bring the droplets back to the liquid core.

The arithmetic mean operator and the standard deviation are respectively denoted ⟨·⟩ and
σ while the skewness and the kurtosis are respectively denoted S and κ. Here, we considered
the kurtosis subtracted by 3 such that the normal distribution has a zero kurtosis. Those four
quantities represent the first four normalised statistical moments. Figure 4.9 gives the temporal
evolution of the mean values of the size, the axial velocity and the radial velocity. Regarding
the size and the axial velocity, after reaching a peak value for t/Ta ∈ [5, 10], the mean values
increase relatively steadily within the time scope under consideration. The time evolution of the
mean of each DNS can be rescaled with We2. On one side, the mean size scaled by We0.6

2 seems
to evolve linearly with t/Ta. On the other side, it is possible to collapse the time evolution of
the mean axial velocity for each regime by considering ⟨ux⟩ We−1

2 for the second wind induced
regime and ⟨ux⟩ We−0.3

2 for the atomisation regime. The evolution of uy is specific in the sense
that the flow is statistically axisymmetric and ⟨uy⟩ should naturally be set to zero, which is
verified here asymptotically. Due to the flow symmetry, the mean of uz behaves the same as
the one of uy. On the side of the standard deviations, those quantities reach a steady state
faster than the mean values for the size and the velocities. Overall, the DNS in the second
wind induced regime are close to a steady regime while the DNS in the atomisation regime are
still evolving towards such a regime. This departure comes from the difference in the physical
time reached by the DNS in each regime, directly depending on the flow complexity and the
corresponding need of computational resources.
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Figure 4.8: Total number of detected droplets, (a) unscaled and (b) scaled by We−1.8
2 . The

blue colours denote the DNS in the second wind induced regime and the red colours the DNS
in the atomisation regime.

Figure 4.10 gives the evolution along We2 of the four first statistical moments along with
the minimum and the maximum values for the size, the axial velocity and the transverse
velocity at the time instants t/Ta = 15 and t/Ta = 25. First of all, the droplet tagging
function implemented in Basilisk can return droplets with a volume V smaller than ∆3

min,
the volume of the smallest grid cell. This behavior is expected and due to the cells having a
volume fraction f between 10−3 and 1 and being disconnected to any liquid neighbourhood. To
ensure physical consistency regarding the grid characteristics, all the droplets with a volume
smaller than or equal to the minimum cell volume are discarded, i.e. any droplets such that
V ⩽ ∆3

min. Assuming spherical droplets, this condition implies a minimum droplet diameter
dmin = 3

√
6/π∆min ≈ 37.8 µm.

Let us consider the statistical moments of the droplet size. Globally, both the mean and
standard deviation decrease with We2 and are of O(100 µm). Similarly, the maximum value
decreases but is one order larger, O(1 mm). Meanwhile, the skewness and the kurtosis slightly
increase and are respectively of O(1) and O(10). An increase in We2 corresponds to an increase
of the inertial forces relatively to the surface tension forces. Then, the larger We2, the more
likely the droplets undergo fragmentation and less sizes are stable. Thus, the mean diameter
and the maximum diameter decrease and more droplets group around the mean diameter which,
as a consequence, reduces the standard deviation. A decrease of the minimum diameter should
also occur but the condition on the minimal droplet volume numerically filters out any diameter
smaller than 37.8 µm. In parallel, the increase in the skewness value, which is positive, points
out that the droplet size distribution is slightly more skewed to the left with higher We2. This
indicates that the right hand tail, towards sizes larger than ⟨d⟩, exists on a size range larger
than the one on which the left hand tail exists. Finally, the positive sign and the increase of the
kurtosis with We2 indicates that the distribution tail increases in length relatively to the mean
and the standard deviation or, equivalently, that the range of rare very large sizes, relatively to
the mean, is both broader with higher We2 and larger than the Gaussian distribution for which
κ = 3. As the flow geometry remains the same for the different values of We2, the increase
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in the kurtosis and the skewness is due to the depletion of large sizes in the benefits of small
sizes, grouped around the mean diameter. However, even if dmax decreases, the large values of
S and κ show that the larger droplet sizes do not disappear completely from the flow and still
exist at higher values of We2.

Regarding the distribution of ux, all the four statistical moments increase with We2. The
increase in the mean and standard deviation indicates that the droplets are accelerated with
We2, which is obvious as Uinj increases meanwhile, and that the dispersion in term of velocity
is larger, which also seems natural as the relative velocity between the injection and the gas
phase velocity increases too. The same observation holds to explain the evolution of umax

x and
umin

x . Concurrently, the skewness is positive and increases with We2, thus the axial velocity
distribution is skewed to the left with an increasing asymmetry. Compared to the skewness of
the size distribution, the skewness of the distribution of ux is much smaller and the distribution
should be moderately skewed. Finally, the kurtosis not only increases but also changes sign
for We2 ∈ [40, 70] . The second wind induced regime is then characterized by a negative
kurtosis, which indicates tails being shorter and a peak being flatter than the ones of the
Normal distribution. Conversely, the kurtosis in the atomisation regime, for the values of We2
under consideration, is positive, indicating larger tails and a sharper peak compared to the
Normal distribution. Furthermore, the kurtosis is smaller than 3 and the distribution has tails
shorter than the ones of the Gaussian distribution. Thus, each fragmentation regime shows a
characteristic tail spanning for the distribution of ux.

The interpretation of the evolution of the statistical moments for the distribution of uy is
straightforward. As discussed previously, the statistical axisymmetry of the flow enforces a
zero mean value as well as a symmetric repartition of uy around its mean, i.e. a zero skewness.
Those two consequences of the flow symmetry are verified for each We2 value and highlighted
by the evolution of umin

y and umax
y . Similarly to the distribution of ux, the standard deviation

increases with the gaseous Weber number because of the increasing relative velocity between
the liquid injection and the gas phase and thus the shear. The kurtosis, the one subtracted
by 3, remains stable around 2 which indicates a steady behavior and tails being smaller than
those of the Gaussian distribution.

Finally, the values of the skewness and the kurtosis of the size distribution are very large
and one order of magnitude larger than the one of the velocity distributions. This indicates
a wider spanning range for the size distribution than for the two velocity distributions, thus
justifying the use of a loglog scale to visualise the size distribution.

4.3.4 Distributions of the size and the velocity
Complementary to the statistical moments, it is worth looking at the distributions of the size
and the velocities of the droplets. For the sake of clarity, the number PDF of any variable ζ is
denoted Pζ in the following. Even if the mean values of the size and the velocities are not fully
converged, we consider the PDF of each variable normalised by its mean. However, uy being
close to zero in average, normalising by ⟨uy⟩ is not relevant and uy/⟨ux⟩ is considered instead.
Figure 4.11 gives the PDF of d/⟨d⟩, ux/⟨ux⟩ and uy/⟨ux⟩ at the time instants t/Ta = 15,
where both regimes are computed, and t/Ta = 25, where only the second wind induced regime
is computed. First of all, it is interesting to note that the PDF in each regime collapse for
the three variables even if the mean values are not converged. From the three distributions,
only that for uy/⟨ux⟩ shows a similar behavior between the two regimes of fragmentation,
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We2 15 20 26 30 35 40 73.3 99.8 130.3 165
λ (10−4m) 10.31 8.93 7.84 7.29 6.75 6.32 4.67 4 3.5 3.11
λ/⟨d⟩t/T a=15 7 3.47 3.36 3.29 2.85 2.83 3.37 3.65 3.52 3.28
λ/⟨d⟩t/T a=25 2.50 2.21 3.28 2.62 2.37 2.37 – – – –

Table 4.6: Estimation of the Taylor micro scale λ and its normalised values at t/Ta = {15, 25}.

excepting for the width and the slope of the tails. For both regimes, the PDF tails scale with
exp(a×uy/⟨ux⟩) where |a| nearly equals 6 in the second wind induced regime and nearly equals
3 in the atomisation regime. The difference in the tail width goes along with the difference
between the exponential coefficient. Indeed, the larger the coefficient is, the smaller the tail
width is. This can be explained once again with the increase of the relative velocity between
the injection and the gas phase, and thus the shear, when We2 increases. Note that, due to
the flow symmetry, Puz/⟨ux⟩ follows a trend similar to that of uy/⟨ux⟩.

Regarding the size distribution, different modes appear clearly between the two fragmenta-
tion regimes. The size PDF derived from the atomisation regime shows one main mode centered
on d/⟨d⟩ = 0.5 while the PDF for the second wind induced regime shows 3 modes centered on
d/⟨d⟩ = {0.2, 1, 2.5}, denoted from 1 to 3 in Fig. 4.11b. Even if the main mode appears to be
shifted towards larger d/⟨d⟩ when We2 increases, it refers to the same range of physical sizes
d between 47 µm and 58 µm with a mean value of 55 µm, considering DNS 3 to 10. Tennekes
& Lumley (1972) derived handy equations to estimate the turbulent Reynolds number Reτ

from the ratio of the extreme scales of the flow and the Taylor micro scale Reynolds number
Reλ: Reτ ∝ (dn/∆min)4/3 and Reλ ≈

√
Reτ where Reλ = uRMSλ/ν2 and ∆min = 30.5 µm, see

Sec. 4.2.5. With the chosen configuration, the estimation gives Reτ ≈ 775 and Reλ ≈ 27.8.
Besides, assuming that the turbulence intensity is around 20% of the injected velocity, i.e.
uRMS = 0.2 Uinj, it is possible to estimate the Taylor micro scale λ. Table 4.6 lists the estima-
tion of λ for the 10 DNS.

The Taylor micro scale decreases with the gaseous Weber number We2, which is expected
as Reλ is set by the configuration and uRMS increases with the injection velocity. Physically,
the root mean square velocity increases with the injection velocity and the Taylor micro scale
decreases. Most importantly, the normalised values of λ correspond to the third mode of Pd/⟨d⟩
at both t/Ta = {15, 25} in the second wind induced regime, We2 < 40.3, and indicate that
the larger droplets observed in the DNS might be related to the most probable vortex size set
by the gas turbulence. Finally, Pd/⟨d⟩ in both regime shows a similar tail evolution scaling as
(d/⟨d⟩)−2.7, which was also observed experimentally (Vallon et al., 2021), see Fig. 2 in Sec.
3.2. This power law scaling goes against the experimental observation of Simmons (1977) who
remarked that the size distribution in industrial jet shows a tail scaling as an exponential. Fig.
4.12 gives the size distribution in a semi-logarithmic scale. The time instant t/Ta = 20 has been
chosen over t/Ta = 25 in order to highlight the trend of the size distribution in the second wind
induced regime thanks to the distribution of the DNS 7. It appears that, at both time instants,
none of the size distribution follows a unique exponential decay. Instead, the distribution in
the atomisation regime follows two exponential scalings, the first one for d/⟨d⟩ ∈ [0.5, 2] and
the second one for d/⟨d⟩ ∈ [4, 8], with a transition region scaling as d/⟨d⟩−2.7 for d/⟨d⟩ ∈ [2, 4].
Following the analysis done in Sec. 3.3.2, the size distributions under consideration could be
composed of several distributions whose decay follows an exponential scaling. The modeling of
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the size PDF by theoretical distributions is achieved in Sec. 4.3.5.
The distribution of the axial velocity of the droplets shows some interesting behaviors. In

jet fragmentation, it is often expected that the droplets show a positive axial velocity less
than or equal to the injection velocity as they are globally advected towards increasing x/dn.
However, the Pux/⟨ux⟩ shows large probabilities for a range of negative velocity, ux/⟨ux⟩ ∈ [−2, 0],
with a sharp peak at ux/⟨ux⟩ = 0. The right hand tail exists in both regimes on a range of
velocities larger than the injection velocity Uinj. For instance, the droplet population from
the DNS 6, We2 = 40, lying in the second wind induced regime at t/Ta = 25 is such that
⟨ux⟩ = 1 m/s and P(2 < u/⟨ux⟩ < 3) > 0, meaning that there exist droplets with an axial
velocity ux/Uinj ∈ [0.9, 1.35], thus being faster than the injection velocity Uinj = 2.216m/s. The
same conclusion can be drawn for the DNS in the atomisation regime. For the DNS 8 where
We2 = 99.8, there is ⟨ux⟩ ≈ 1.2 m/s and P(3.75 < ux/⟨ux⟩ < 5) > 0, then there exists droplets
with an axial velocity such that ux/Uinj ∈ [1, 1.72], with Uinj = 3.5m/s. Astonishingly, for
the atomisation regime, the tail expansions in the regions of negative velocities and velocities
larger than Uinj follow a similar trend scaling as exp(a × ux/⟨ux⟩) with |a| = 4. However, in
the second wind induced regime, the left hand tail and the right hand tail present two different
scalings: the former scales as (ux/⟨ux⟩)7 and the latter as (ux/⟨ux⟩)−2.5. The argument of the
increasing relative velocity between the injection and the gas phase, and consequently in the
standard deviation, could once again be used to explain the difference in the tail expansion
between the two regimes. Finally, complementarily to the sharp peak for zero velocities, the
axial velocity PDF is centered on ux/⟨ux⟩ = 1 in the second wind induced regime and presents
a continuous decrease scaling as exp(−0.7 × ux/⟨ux⟩) in the atomisation regime. The specific
characteristics of the velocity PDF, ux < 0 and ux ⩾ Uinj, are explored in Sec. 4.4.1.

4.3.5 Modeling the droplet size PDF
When it comes to modeling the distribution of the droplet size, one theoretical distribution
is necessary to test: the Γ law derived from the ligament-mediated fragmentation framework
(Villermaux, 2020) along with its refinement exposed by Kooij et al. (2018), here after denoted
fΓ and fΓB. While the former was specifically designed to describe the droplet size PDF result-
ing from the breakup of a ligament, the latter was designed to describe the size PDF resulting
from the overall fragmentation of a jet. A previous study carried out by Vallon et al. (2021)
highlighted the limits of those two distributions for modelling size PDF far away from the noz-
zle, x/dn ∈ [400, 800] in the context of agricultural like sprays, and the satisfying performance
of the law derived by Novikov & Dommermuth (1997) in the framework of turbulence inter-
mittency, denoted fϵ in the following. More details about each law and the related framework
are given in Vallon et al. (2021). The three theoretical laws write as follow:

fΓ : P(x = d/⟨d⟩) = nn

Γ(n)
xn−1e−nx, (4.16)

fΓB : P(x = d/⟨d⟩) = 2(mn)(m+n)/2x(m+n)/1−1

Γ(m)Γ(n)
Km−n(2

√
nmx), (4.17)

fϵ : P(y = − ln(l/l1)) = a3/2
√

2πσy3/2
exp

{
− a

2σ2

(
ay−1/2 − y1/2

)2
}
, y ⩾ 0. (4.18)

In the expression of fΓ, ν represents the corrugations of a ligament before its breakup, corru-
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Regime fΓ fΓB fϵ

C ν r2 C m n r2 C a σ r2

SWI 0.704 0.932 0.919 0.741 2.513 2.513 0.998 0.751 0.921 1.111 0.829
ATO 0.594 1.269 0.930 0.660 2.411 2.411 1.007 0.670 1.058 0.670 0.927

Table 4.7: Final parameters and r2, truncated at the third decimal, for the best fits given by fΓ,
fΓB and fϵ at t/Ta = 15. The abbreviations ATO and SWI stand for atomisation and second
wind induced.

gations which determine the size PDF resulting from the breakup (Villermaux et al., 2004).
The same logic takes place in the expression of fΓB. Additionally, the ligaments can show a
large variety of sizes in the flow. This variety is taken into account by m which sets the order
of the ligament size distribution (Kooij et al., 2018). Finally, the expression is conditioned by
the modified Bessel function of the second kind K whose order is set by m and n. Regarding
fϵ, Novikov & Dommermuth (1997) considered a cascade mechanism and the ratio between the
initial size l1 and the resulting size l of a fragmenting droplet where a = ⟨y⟩ and σ = ⟨(y−a)2⟩.
It is worth noting that, even if fϵ relies on the cascade concept initially derived by Richardson
(1922) and used in the seminal papers of Kolmogorov (1941a,c), the infinitely divisible nature
of this distribution ensures that it is at no point close to a logarithmic normal distribution
resulting from the Central Limit Theorem, see Sec. 1.5.1.1.

A systematic fit campaign is carried out to test the three distributions using the fitting
algorithm of the Ezyfit toolbox developed by Moisy (2020) on Matlab. This algorithm is
said to be able to capture a given signal with a reference function when the parameters are set
with initial values of the same order as the final values. Thus, the space of initial values has
to be explored sufficiently to ensure that the optimum set of parameter values is captured for
each theoretical distribution. To do so, the fit campaign is performed in two phases. In the
first phase, 23 combinations of initial values are explored in linear and logarithmic modes, i.e.
fitting the signal or its logarithmic transform. In the second phase, the best fits in each fitting
mode and at the two time instants t/Ta = {15, 25} are selected and tested a second time in
order to improve the fit quality. Even if Pd/⟨d⟩ shows several modes in the second wind induced
regime, the fit of the size distribution is carried out for the main mode only, i.e. with only one
theoretical distribution at a time. Finally, each theoretical PDF is weighted by a coefficient
C which is let free in the fitting algorithm. Generally speaking, a fit shows a good agreement
with a given signal when the Pearson coefficient r is close to 1. One can also use r2 as a more
discriminating criterion. Figure 4.13 gives the best fits produced by fΓ, fΓB and fϵ in both
fragmentation regimes at the time instant t/Ta = 15 while Table 4.7 gives the corresponding
final parameters and r2.

Qualitatively, the three theoretical distributions capture well the size PDF in both regimes
and describe with a good accuracy the right hand tail on the available range of sizes. No relevant
comment can be drawn about the left hand tail as no physical droplet sizes are available
in the DNS, see Sec. 4.3.3, and this range was discarded in the fit procedure. The light
differences between the distributions then mainly lie in the description of the main mode. In
both regimes, fϵ performs slightly better in capturing the main mode and the short left hand
tail. Quantitatively, the values of r2 bring a sharp light on the performance of each theoretical
distribution. For both regimes, the law exposed by Kooij et al. (2018) shows r2 values the
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closest to 1 with a mean computed over the two better fits equal to 1.00025. Then follows the
Γ law and the distribution derived by Novikov & Dommermuth (1997) with mean r2 values
respectively equal to 0.9245 and 0.878. Thus fΓB better describes the size PDF in the flow
region under consideration, close to the nozzle. Meanwhile fϵ shows a correct performance
close to the nozzle, which completes its good performance for describing multimodal size PDF
far away from the nozzle in the second wind induced regime (Vallon et al., 2021).

110



4.3. Overall flow characteristics and droplet statistics

0 5 10 15 20 25 30 35

t/Ta

0

1

2

3

4

5

〈d
〉

×10−4

(a)

0 5 10 15 20 25 30 35

t/Ta

5

10

15

20

25

〈d
〉·
W
e0
.6 2

×10−4

(b)

0 5 10 15 20 25 30 35

t/Ta

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

〈u
x
〉

(c)

0 5 10 15 20 25 30 35

t/Ta

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
,〈u

x
〉·
W
e−

0.
3

2
〈u

x
〉·
W
e−

1
2

(d)

0 5 10 15 20 25 30 35

t/Ta

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

〈u
y
〉

(e)

Figure 4.9: Temporal evolution of the mean ⟨·⟩, unscaled (left) and scaled by We2 (right) of
the droplet size d (a,b), the axial velocity ux (c,d) and the transverse velocity uy (e). The units
of the variables are the SI base units.
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Figure 4.10: Evolution of ⟨·⟩ (red), σ (blue), S (green), κ (orange), the minimum (purple) and
maximum (brown) against We2 for the size d (a), the axial velocity ux (b) and the transversal
velocity uy (c). The pluses (+) correspond to t/Ta = 15 and the bullets (•) to t/Ta = 25. Note
that S and κ are both dimensionless and that the dimensional variables are expressed with the
SI base units.
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Figure 4.11: Distributions of d/⟨d⟩ (a,b), ux/⟨ux⟩ (c,d) and uy/⟨ux⟩ (e,f) at t/Ta = 15 (left)
and t/Ta = 25 (right). The blue bullets denote the DNS in the second wind induced regime
and the red diamonds the DNS in the atomisation regime.
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Figure 4.12: Distribution of d/⟨d⟩ in semi-logarithmic scale at t/Ta = 15 and t/Ta = 20. The
blue bullets denote the DNS in the second wind induced regime and the red diamonds the DNS
in the atomisation regime. The solid black line corresponds to a power law of coefficient −2.7,
as in Fig. 4.11a and 4.11b.

10−1 100 101

d/〈d〉
10−5

10−4

10−3

10−2

10−1

100

101

P
D
F

(a)

10−1 100 101

d/〈d〉
10−5

10−4

10−3

10−2

10−1

100

101

P
D
F

fΓB

fΓ

fε

(b)

Figure 4.13: Fit of Pd/⟨d⟩ by fΓ, fΓB and fϵ in the second wind induced regime (a) and the
atomisation regime (b) at t/Ta = 15. The fit procedure is carried on the data shown here and
the best fit is represented over d/⟨d⟩ ∈ [10−2, 20].
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4.4. Dynamics of the jet and the droplets: a two speed fragmentation

4.4 Dynamics of the jet and the droplets: a two speed
fragmentation

This section brings explanations about the specific features of the PDF of the droplet axial
velocity in connection with the vortex ring theory and about the joint distribution of the
droplet size and velocity. It also analyses the repartition of the droplets in the Reynolds -
Ohnesorge phase space as well as compares it to the experiments. The section finally concludes
on the drift velocity between the gas and liquid phases.

4.4.1 The axial velocity PDF and the jet head vortex ring
The analysis of the distribution of the axial velocity of the droplets in Sec. 4.3.4 highlighted
the existence of droplets showing negative velocities and velocities larger than Uinj, two seldom
features for a jet fragmentation. In order to investigate those two characteristics, it could be
interesting to have a glance on the spatial repartition of the droplets such that ux/Uinj < 0 or
ux/Uinj > 1. To do so, the cylindrical coordinates (x/dn, r/dn, θ) are preferred to the Cartesian
coordinates.
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Figure 4.14: Spatial evolution of the probabilities P(ux/Uinj < 0) and P(ux/Uinj > 1) for
We2 = 99.8 (DNS 8) at t/Ta = 15 in cylindrical coordinates (x/dn, r/dn, θ). For each 2D
graph, the probabilities are integrated on the third direction. On the (x/dn, r/dn), the gray
bullets represent the interface points with a presence probability larger than 0.2, i.e the mean jet
interface and few droplets. See Sec. 4.3.2 for the computation method for the mean interface.

Figure 4.14 gives the spatial evolution in cylindrical coordinates of the probabilities P(ux/Uinj <
0) and P(ux/Uinj > 1). For each 2D graph, the probabilities are integrated on the third di-
rection, e.g. along the θ direction in the (x/dn, r/dn) graph. Note that the liquid core starts
at r/dn = 0.5 and that the jet extends up to x/dn ≈ 12.5. In the (x/dn, r/dn) space, the
droplets appear to be located in four regions. The ones being faster than Uinj are preferentially
located next to the nozzle (0 < x/dn < 0.5, r/dn = 0.5) and at the backside of the jet head up
to half of the head sheet extension (10 < x/dn < 15, 0.5 < r/dn < 1.5). The former are due to
the jet forcing. Indeed, the forcing described in Sec. 4.2.3 is sinusoidal with a mean equal to

115



Chapter 4. Weber dependency of jet fragmentation: a DNS investigation

Uinj and some droplets issued from the corolla fragmentation can show velocities larger than
Uinj. On the other side, the droplets showing negative velocities are preferentially located at
the backside of the jet head from the half of the head extension up to its edge and located
on a tail expanding over x/dn ∈ [0, 10] and r/dn ∈ [0.5, 2.5]. The negative velocity or the
velocity larger than Uinj of the droplets located at the downstream face of the jet head can be
connected to the recirculation occurring behind it. Finally, the negative velocities along the tail
towards (x/dn = 0, r/dn = 0.5) can correspond to some droplets ejected from the recirculation
region, with r/dn increasing because of the increasing radius of the jet head in the time range
t/Ta ∈ [0, 15]. The spatial repartition in the (r/dn, θ) space shows homogeneity along the θ
direction and a clear distinction between the two droplet groups along the r direction. The
velocities larger than Uinj are concentrated in the boundary layer region, r/dn ∈ [0.5, 1], while
the negative velocities spread over it, r/dn ∈ [1.5, 2.5].

Now that the droplets with, at first sight, unexpected axial velocities, ux/Uinj < 0 and
ux/Uinj > 1, are located in the recirculation region behind the jet head, assessing this recir-
culation would help to explain why such velocities are reached. Looking at the distribution of
ux/Uinj is a time saver for this purpose, as it quantifies in a straightforward manner the range
of velocities relatively to Uinj happening in this region. Pux/Uinj

is given in Figure 4.15 and the
ranges of unexpected velocities are ux/Uinj ∈ [−0.5, 0] and ux/Uinj ∈ [1, 1.5].
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Figure 4.15: Distribution of ux/Uinj at t/Ta = 15. The blue bullets represent the DNS in
the second wind induced regime and the red diamonds represent the DNS in the atomisation
regime.

Assuming that the recirculation observed behind the jet head behaves as a vortex ring
behind a plate, it is possible to use the developments of Saffman (1992) which describe the
dynamics of such unsteady objects. Let us consider a disc of radius a moving at a velocity Ud

in the direction normal to the disc surface, denoted x hereafter, a vortex ring can develop on
the downstream face and the velocity potential ϕ on the upstream face follows:

ϕ = ∓2Ud

π

√
a2 − r2, x = ±0, y2 + z2 = r2 < a2 (4.19)

If the disc dissolutes, the vortex ring remains with a strength κ(r) = 4Ud/π × r/
√
a2 − r2
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and a vorticity ω = κθδ(x). The amplitudes of the hydrodynamic impulse 2 I in the x direction
and the kinetic energy E are thus:

I = 1
2

∫
(x× ω)x dV = 1

2

∫ a

0
2πr2κdr = 8Uda

3/3 (4.20)

E = 1
2

∫
ϕ
∂ϕ

∂n
dS = 4U2

da
3/3 (4.21)

In addition, the circulation Γ containing the disc while starting and ending at the disc center
is such that:

Γ =
∫ a

0
κdr = [ϕ]r=0 = 4Uda/π (4.22)

Let us denote the vortex radius and the vortex core radius R and c and assume the conserva-
tion of the ring circulation and the hydrodynamic impulse. Knowing that the hydrodynamic
impulse equals ΓπR2 (Taylor, 1953), the combination of Eqs. (4.20) and (4.22) results in
R =

√
2/3a. Further calculations give the expression of the vortex ring velocity Uvr and of its

energy depending on Γ, R and c:

Uvr = Γ
4πR

 log
(

8R
c

)
− 1

2
+
∫ c

0

(
Γ(s)

Γ

)2
ds

s
+ o

(
c

R

) (4.23)

E = 1
2

Γ2R

 log
(

8R
c

)
− 2 +

∫ c

0

(
Γ(s)

Γ

)2
ds

s
+ o

(
c

R

) (4.24)

Combining the latter two equations with Eq. (4.21) enables to express the ratio of the vortex
ring velocity Uvr along x and the disc velocity Ud:

Uvr

Ud

= 1
4

+ 1
π2

(
3
2

)3/2

= 0.44 (4.25)

The question of the velocity at the edge of the vortex core remains and is of most importance
as it sets the droplet motion in the recirculation region. For a uniform core, c/R equals 0.19
while it equals 0.14 in the case of a hollow core. The velocity at the core edge, denoted uc, can
be expressed as a function of the circulation Γ, uc = Γ/2πc. Using the expression of Γ given in
Eq. (4.22) and R =

√
2/3a, uc rewrites as:

uc =
(
c

R

)−1 2
π2
√

2/3
Ud (4.26)

With c/R = 0.19 and c/R = 0.14, uc respectively equals 1.31 Ud and 1.77 Ud. Taking c/R =
0.165, the mean value between 0.19 and 0.14, uc = 1.504 Ud. In our flow, the jet head can be
approximated as a disc behind which a vortex ring develops. Experimentally, we observed that
the jet head has the same velocity as Uinj, Ud = Uinj. The velocity at the core edge then equals

2The concept of hydrodynamic impulse has a long history in theoretical hydrodynamics having been described
by Lamb (1932). The advantage of the theory of hydrodynamic impulse is that it describes the physical origin
of hydrodynamic forces and moments in terms of the vorticity generated at the body surface and its subsequent
position in the fluid volume (Holloway & Jeans, 2020).
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±1.5 Uinj and corresponds to the range of unexpected droplet velocities, ux/Uinj ∈ [−0.5, 0]
and ux/Uinj ∈ [1, 1.5]. Thus the negative velocities and velocities larger than Uinj result from
the vortex ring dynamics taking place at the downstream side of the jet head.

4.4.2 Joint distribution of the droplet size and axial velocity
The fragmentation of a jet or droplets is governed by aerodynamic and surface tension forces.
Depending on the equilibrium between those, droplets of a given size and velocity result. Those
two quantities influence each other comparably to a two-way coupling mechanism. Thus, look-
ing at the joint distribution of the size and the axial velocity could bring extra information to
the analysis of the marginal PDF Pd/⟨d⟩ and Pux/⟨ux⟩. Figure 4.16 gives the joint distribution
of d/⟨d⟩ and ux/⟨ux⟩ for the DNS 6 and 9 respectively, in the second wind induced regime and
the atomisation regime.
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Figure 4.16: Joint distributions of the size and the axial velocity of the droplets for (a)We2 = 40
(DNS 6) in second wind induced regime at t/Ta = 30 and for (b) We2 = 130.3 (DNS 9) in
atomisation regime at t/Ta = 15.

It is possible to recover the characteristics of the marginal PDF in the joint distributions.
For instance, in the joint distribution of the DNS 6, three patches are noticeable along the size
axis and correspond to the three modes of Pd/⟨d⟩ for which d/⟨d⟩ ∈ {0.2, 1, 2.5}. In addition,
the negative velocities and velocities larger than Uinj described in Sec. 4.3.4 and explained in
Sec. 4.4.1 are also noticeable. Observing so is expected as the marginal PDF are simply the
projection of the joint PDF on the size or the velocity axes.

In the second wind induced regime, the negative axial velocities and the velocities larger
than Uinj are preferentially observed for the first two size modes while the third size mode is
concentrated around (d/⟨d⟩ = 2.5, ux/⟨ux⟩ ≈ 1.5) and the tail, starting from d/⟨d⟩ ≈ 3, seems
to be centered on ux/⟨ux⟩ = 1. Globally, the smaller droplets appear to have, at the same time,
a dispersion being large along the velocity axis and being short on the size axis. Conversely,
the larger droplets show a large dispersion along the size axis and a short one along the velocity
axis. This corresponds to the literature and the common behaviors of tracers and ballistic
objects which are classically observed. In comparison, even if tracers and ballistic objects are
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visible as well, the aspect of the joint distribution in the atomisation regime is different. Once
again, the negative velocities and the velocities larger than Uinj are preferentially observed for
the smaller droplets. However, the distribution shows two tails along the size axis, one centered
on ux/⟨ux⟩ ≈ 0.75 and the second one centered on ux/⟨ux⟩ ≈ 2. Thus, the smaller and larger
droplets still respectively behave like tracers and ballistic objets, but the ballistic objects show
two traveling velocities. Conversely to the experimental observations (Vallon et al., 2021), the
joint distributions do not show a clear elbow shape. Also, drawing a third group of droplets
showing a similar dispersion along the size and velocity axes, as in the experimental analysis,
seems less manifest here. Such a group could be extrapolated from the joint distribution and
the second size mode, d/⟨d⟩ = 1, in the second wind induced regime and for d/⟨d⟩ ∈ [1.5, 2.5],
while the velocity spans over ux/⟨ux⟩ ∈ [0, 2] in both cases.

Similarly to Sec. 4.4.1, it is possible to check out the spatial repartition of the droplets
corresponding to the tail of the joint distribution P(d/⟨d⟩,ux/⟨ux⟩) of the DNS 9 in the atomisation
regime. Those droplets are such that d/⟨d⟩ > 4 and are distinguished by their axial velocity
being larger or smaller than 1.5⟨ux⟩. Likewise the PDF of the axial velocity of the droplets,
the joint distribution shows the same feature for the larger droplets for all the DNS in the
atomisation regime. Once again, it is more practical to express the conditions on the size and
the velocity independently from the arithmetic average but relatively to the injection conditions.
Thus, the condition on the size writes as d/dn > 0.075 and 0.4 Uinj is considered to be the
threshold to distinguish the two tails. Figure 4.17 gives the spatial evolution in cylindrical
coordinates of the probabilities P(d/dn > 0.075, ux/Uinj < 0.4) and P(d/dn > 0.075, ux/Uinj >
0.4). As for Figure 4.14, the liquid core starts at r/dn = 0.5 and the jet extends up to
x/dn ≈ 12.5. The droplets from each tail appear to exist in specific regions of the space. The
large, fast droplets for which d/dn > 0.075 and ux/Uinj > 0.4 are preferentially located in the
boundary layer region, r/dn ∈ [0.5, 1], from the nozzle to the jet head. The large, slow droplets
for which d/dn > 0.075 and ux/Uinj < 0.4 are located on the downstream side of the jet head
and around the maximal head sheet extension. The two groups show some overlapping in the
recirculation region. It is possible that some droplets are caught in the vortex circulation,
even if they preferentially behave as ballistic objects. In the (r/dn, θ) space, the distributions
are homogeneous along the azimuthal axis, which respects the flow symmetry, and the same
repartition along the r/dn axis appears between the two groups. Thus, the two tails of the joint
distribution of the size and the velocity come from the existence of two sources of fragmentation
in the flow: the head sheet edge and the corollas developing from the jet forcing.

4.4.3 Governing parameters at the droplet scale

The joint distribution of the size and the axial velocity of the droplets give some insights on
the droplet dynamics in the flow. However, compared with the experiments, the numerical
distributions show a slightly more complex trend and do not allow to distinguish droplets
with different behaviors on the basis of the marginal PDF characteristics. Beyond this, it
would be interesting to have a glance on the flow perceived by a droplet as well as the droplet
deformation resulting from the droplet-flow interaction. Without detailing the flow around each
droplet down to the smallest scales, it is possible to characterize such a flow by considering its
governing parameters, the particulate Reynolds number and the particulate Ohnesorge number
respectively expressed as:
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Figure 4.17: Spatial evolution of the probabilities P(d/dn > 0.075, ux/Uinj < 0.4) (blue) and
P(d/dn > 0.075, ux/Uinj > 0.4) (red) for We2 = 99.8 (DNS 8) at t/Ta = 15 in cylindrical
coordinates. For each 2D graph, the probabilities are integrated on the third direction. On
the (x/dn, r/dn) graph, the gray boundary represents the interface points with a presence
probability larger than 0.2, i.e the mean jet interface and few droplets. See Sec. 4.3.2 for the
computation method of the mean interface.

Rep = |up,x − Ug,x|d
νl

, Ohp = µl√
ρlσd

(4.27)

where d, up,x and |up,x − Ug,x| are the particle diameter, the particle axial velocity and its
relative velocity compared to Ug,x, the x component of the gas phase velocity averaged over
the domain. The particulate Reynolds number not only brings light on the balance between
the inertial and viscosity forces at the scale of a droplet but it also brings information on the
product of the droplet relative velocity and its diameter. By concatenating the size and the
velocity of a droplet, the latter quantity could be seen as a potential of fragmentation. The
higher the product d · |up,x − Ug,x| is, the more likely the droplet will fragment in multiple
elements. It also enables to distinguish the droplet-flow interactions between droplets having
the same size but different relative velocities, or equivalently having the same relative velocity
and different sizes. In addition, the particulate Ohnesorge number characterizes the ratio
between the viscosity forces and the product of the inertial and surface tension forces. This
dimensionless number is usually used to characterize droplet deformation in a given flow. The
larger is Ohp, the less deformable is the droplet. Thus, even if they give global information on
the droplet-scale flow, the combinations of Rep and Ohp could help to characterize the droplet
behaviors depending on their possible deformation and potential of fragmentation. Figure 4.18
gives the normalised joint volume histogram of Rep and Ohp of the droplet population of the
DNS 6 and 10 respectively at t/Ta = 30 and t/Ta = 15.

First of all, the Ohp values larger than Oh∆min
correspond to the droplets smaller than the

smallest cell size ∆min and are not physically relevant. Considering the pair (Rep, Ohp) reshapes
drastically the droplet data. Regarding the DNS 10, the two peaks present for the large sizes as
well as the peaks around large velocities and negative velocities for the small sizes in Fig. 4.16 do
not appear any more in the joint volume histogram of the particulate dimensionless numbers.
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Figure 4.18: Joint volume histogram of Rep and Ohp for the droplet population for We2 = 40
(DNS 6) at t/Ta = 30 (a) and for We2 = 165 (DNS 10) at t/Ta = 15 (b). The Ohnesorge
number corresponding to the smallest grid cell, Oh∆min

, is indicated by the vertical blue line.
The vertical red lines indicate the limits between the 3 modes of the size PDF of the DNS 6,
Fig. 4.11b. The orange line represents the isovalue Vbin/Vmax = 0.03 for the DNS 10.

In addition, while the trend of the size-velocity joint distributions are significantly different
between the two fragmentation regimes, the limits of the joint volume histogram appear not
only to be regular but also follow similar trends between the two fragmentation regimes, as
shown by the comparison of the joint histogram of the DNS 6 and the edge contour of the DNS
10. Regarding the histogram values, different modes appear in the joint histogram of each DNS.
For the DNS 6, in the second wind induced regime, it is possible to denote the three size modes,
observed in Sec. 4.3.4, denoted from 1 to 3 and separated at Ohp ∈ {1.35 × 10−2, 2.5 × 10−2}
by the red vertical lines. Each droplet group shows some dispersion along the Rep direction,
dispersion which increases when the droplet size decreases. The population thus shows three
subgroups whose dynamics seems to mainly be governed by their size. From those three size
subgroups, only the modes 1 and 2 remain in the joint volume histogram of the DNS 10, in
the atomisation regime. The mode of large sizes, mode 3, does not exist in the atomisation
regime because the corolla issued from the forcing cannot develop nor create rim leading to the
generation of such droplet sizes. For the latter DNS, the mode 1, existing at large Ohp and
indicated by the red region in Fig. 4.18b, gains in importance and is the main size mode in the
atomisation regime, existing for Ohp ∈ [2.5, 5] × 10−2 and Rep ∈ [30, 400]. Additionally, the
dispersion of the modes for moderate and small Ohp increases between the two regimes while
respecting the same outer limits, as the droplet data spread over all the space delimited by the
edge contour of the DNS 10. Finally, it is worth noting the absence of droplets in the region
of large particulate Reynolds and small particulate Ohnesorge, (Rep, Ohp) ∈ ([103, 104], [1, 7]×
10−3), i.e. droplets whose size and axial velocity are of the order of dn and Uinj.

The comparison of the edge contour of the DNS 10 with the joint volume histogram of the
DNS 6 given by Fig. 4.18 suggests that the joint histograms follow similar borders regardless
of the fragmentation regime. Figure 4.19 dives in a more detailed comparison of the joint
histogram borders by superposing the edges for all the DNS and proposes a normalisation of
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the two dimensionless numbers. The edges are obtained by sampling each joint histogram along
the Ohp direction and keeping for each sample the maximum of the ordinates and the ordinate
of the percentile at 7 %. This technique enables to discard the outlier points existing at small
Rep. From the edges of the non normalised joint histograms, it appears clearly that the joint
histograms evolve in the same phase space for both fragmentation regimes and that the borders
only show a slight evolution with the gaseous Weber number We2. Note that the isolated points
on the top left corner are the Rep and Ohp values correspond to the liquid core. Those points
depart from Re1 and Oh1 because the liquid core has a volume larger than that of a sphere of
diameter dn. As a reminder, the injection dimensionless numbers are given Table 4.2
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Figure 4.19: Edges of (a) the joint volume histograms and of (b) the normalised joint volume
histograms at t/Ta = 15. The blue bullets represent the DNS in the second wind induced
regime and the red diamonds the DNS in the atomisation regime.

In order to normalise Rep and Ohp, one can choose the Reynolds number on the jet axis
Reaxis, computed with the nozzle diameter dn and ux,axis the jet velocity on the x axis, and the
injection Ohnesorge number Oh1 computed with dn. In our simulation, the velocity of the jet
along the x-axis does not show any diminution, thus ux,axis = Uinj and Reaxis = Re1. Making
the distinction between the injection velocity and the jet velocity on the axis might appear
auxiliary here but is relevant for comparing the numerical data with the experiments. Once
normalised, all the upper borders and the lower borders of the joint histograms collapse. Not
only those borders collapse but also show a power law dependency. The former scales such that
Rep/Reaxis = 1.35(Ohp/Oh1)−2 and the latter scales such that Rep/Reaxis = 0.37(Ohp/Oh1)−3.
The collapse however does not hold for the lower borders on the range Ohp/Oh1 ∈ [4, 10], which
could simply result from the difference in the relative velocity and the extreme values along the
Rep axis. Additionally, not only the isolated points corresponding to the liquid core collapse, but
also they lie within the space delimited by the two power laws. Thus, a more developed spray in
the same configuration could show a phase space delimited by those power laws and spreading
from the liquid core towards the smallest droplets. Finally, as all the contours collapse in Fig.
4.19b, it could be possible to add that this cascade in the phase space (Rep/Reaxis, Ohp/Oh1)
is independent from the gaseous weber number We2.

122



4.4. Dynamics of the jet and the droplets: a two speed fragmentation

Overall, the comparison of the joint volume histogram in the second wind induced regime,
DNS 6, and in the atomisation regime, DNS 10, indicates that the dominant modes of the
droplet population evolve with We2. Particularly, the mode for small Ohp, i.e. large droplet
sizes, does not exist in the atomisation regime. Also, the atomisation regime presents a larger
dispersion in Ohp and Rep. This is expected as the increase in We2 creates aerodynamic
conditions in which large droplets are very unlikely to survive, or even be generated, and
the increase of the relative velocity between the gas and the liquid induces an increase of
the deviation of the size and the axial velocity, see Sec. 4.3.4. This analysis highlights the
possibility to reshape the size and velocity data of the droplets into a regular shape even if the
size-velocity joint distribution shows irregular boundaries and specific features. Additionally, it
indicates that the values of the joint histogram of the particulate dimensionless numbers evolve
with We2 while respecting outer borders which are largely independent from We2. Normalising
the particulate dimensionless numbers by the injection dimensionless numbers shows that the
droplets exist over a steady phase space, delimited by power and exponential laws. Finally,
this joint volume histogram opens the way for qualifying the different flow regimes undergone
by the droplets and the consequent fragmentation mechanisms.

4.4.4 Droplet phase space: simulations and experiments
Vallon et al. (2021) proposed, among others, a detailed analysis of the experimental joint
distribution of the size and axial velocity of the droplets in the case of a water jet injected into
quiescent air at We2 = 24 and lying in the second wind induced regime. The experimental
apparatus used to perform simultaneous measurements of the size and the velocity of the
droplets is detailed by Felis et al. (2020). The originality of that experimental campaign lies in
the simultaneity of the DTV measurements and the distance where they were carried out: from
400 to 800 nozzle diameters along the jet axis. Complementarily, and following the insights of
Sec. 4.4.3, it is possible to look at the experimental joint volume histogram of the particulate
Reynolds and Ohnesorge numbers. Figure 4.20 gives the joint volume histogram for Rep/Reaxis

and Ohp/Oh1 derived from the experimental measurements of Felis et al. (2020). Note that
the mean velocity of the liquid phase on the jet axis ux,axis is no longer equal to the injection
velocity at such x/dn but decreases by 20% at x/dn = 800.

Once again, the borders of the joint volume histogram are well defined and can be easily
modelled. The upper and lower borders split into two scalings. For Rep/Reaxis ⩾ O(10−3),
the borders follow a power law while they follow an exponential scaling for smaller values of
Rep/Reaxis. The upper and lower borders are respectively denoted Bup and Blow and their
scaling is such that:

Bup :


Rep

Reaxis
= 0.215

(
Ohp

Oh1

)−2
, ∀ Ohp/Oh1 ∈ [1, 10]

Rep

Reaxis
= exp

(
− 0.1

(
Ohp

Oh1
+ 45.1

))
− 1.90× 10−3, ∀ Ohp/Oh1 ∈ [10, 20]

(4.28)

Blow :


Rep

Reaxis
= 0.215

(
Ohp

Oh1

)−2.61
, ∀ Ohp/Oh1 ∈ [1, 3]

Rep

Reaxis
= exp

(
− 0.6

(
Ohp

Oh1
+ 3.65

))
− 6.5× 10−3, ∀ Ohp/Oh1 ∈ [3, 5]

(4.29)
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Figure 4.20: Experimental joint volume histogram of Rep/Reaxis and Ohp/Oh1 at x/dn = 800.
The dash-dot lines represent the power law scalings while the solid lines represent the expo-
nential scalings. The insert recalls the joint volume histogram without the modelled borders.

Note that, for a given value of Ohp, the upper border describes the fastest droplets at a given
size while, for a given value of Rep, it describes the smallest droplets at a given velocity. Thus,
the upper border can be seen as the border describing the smallest and fastest droplets in a
given region of the phase space, the reverse logic holds for the lower border. Additionally, two
main “paths” can be distinguished in the joint histogram. The first one lies in the power law
region and the second one in the exponential region, respectively denoted P1 and P2, both of
them follow a power law scaling such that:

P1 : Rep

Reaxis
= 0.215

(
Ohp

Oh1

)−2.175
, ∀ Ohp/Oh1 ∈ [1, 7]

P2 : Rep

Reaxis
= 0.039

(
Ohp

Oh1

)−2
, ∀ Ohp/Oh1 ∈ [7, 14]

(4.30)

Let us focus on the borders scaling as a power law. Starting from the expression of Ohp,
it is possible to rewrite Rep as Rep = σ−1µl|up,x − Ug,x|Oh−2

p . Knowing that in this region
Rep = C Oh−2−α

p with C ∈ R, we then have |up,x − Ug,x| = σC Oh−α
p , which is equivalent

to |up,x − Ug,x| ∝ dα/2. The droplets then show a velocity relative to the gas phase which
increases with the droplet size. The coefficient α necessarily lies in R+. Indeed a negative
α would mean that the relative velocity of a droplet decreases when its size increases and
consequently that larger objects would be more sensitive to the gas phase flow, which goes
against the observation of ballistic objects in fragmentation flows. Consequently, the borders
scaling as Oh−2 seem to result from dynamical limits. Regarding the lower border scaling as a
power law, we have α ∈ {0.4, 0.45, 0.5, 0.56, 0.61} for x/dn ∈ {400, 500, 600, 700, 800}. Inferring
a rule on the evolution of the upper bound of α from the experimental data seems reckless.
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Regarding the exponential scaling of the borders, it is interesting to note the existence of
an offset along Ohp and Rep. The droplets being on the upper border preferentially have a
smaller size and a larger relative velocity while those on the lower border have a larger size
and a smaller relative velocity. In order to have all the droplets lying in a stable configuration,
which corresponds to the region where Rep < O(10−3), the difference in the droplet dynamics
has to be accounted for. This is what the offsets along Ohp and Rep in the exponential scaling
enable to do.
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Figure 4.21: Comparison of the joint volume histograms obtained from the DNS campaign
and from the experimental data of Felis et al. (2020), not corrected (a) and corrected by a
multiplicative factor of 3 (b). The blue bullets and the red diamonds represent the DNS
respectively in the second wind induced regime and the atomisation regime. The green triangles
represent the experimental data.

Figure 4.21 compares the edge contour of the experimental and numerical joint volume
histograms. When comparing the original experimental histograms and the numerical ones,
it appears that the phase spaces in which the droplets evolve show ranges of existence being
very similar between the experiments and the simulations. Even if an offset along the Rep axis
exists, they lie in the same range of sizes. By multiplying the edge contour of the experimental
joint volume histogram by 3, the edges of the numerical and the experimental data collapse.
Thus, we have (Rep/Reaxis)num = C × (Rep/Reaxis)exp, where C ≈ 3, which leads to:

|up,x − Ug,x|num dnum

|up,x − Ug,x|exp dexp

= C
dn,numux,axis,num

dn,expux,axis,exp

(4.31)

and results to |up,x − Ug,x|num dnum ≈ 1.8 |up,x − Ug,x|exp dexp, with ux,axis,exp = 0.8× Uinj,exp =
28 m/s and ux,axis,num = Uinj,num = 4.5 m/s. The numerical and experimental contours lie in
the same range of sizes. Thus, it can be assumed that dexp/dn,exp ≈ dnum/dn,num which implies:

dnum

dexp

≈ 3.73, |up,x − Ug,x|num

|up,x − Ug,x|exp

≈ 0.48. (4.32)

The experimental and numerical mean sizes are respectively ⟨d⟩exp = 95 µm, averaged over
the 5 x/dn positions, and ⟨d⟩num ≈ 300 µm, at t/Ta = 34 in the second wind induced regime.
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The ratio of the means equals 3.16, thus ⟨d⟩num/⟨d⟩exp ≈ dnum/dexp and verifies the previous
result. The interpretation of the last three ratios must be made carefully. On the one hand,
the way the measurements of the size and the velocity of the droplets is carried out greatly
differs between the experiments and the simulations. In the simulations, once a droplet is
detected thanks to the tag function of Basilisk, see Sec. 4.2.2, its volume and velocity are
computed as the volume average in 3D of the cell values contained in the droplet. In the
experiments, the measurements of the droplet size and velocity is carried out with a 2D laser
sheet thanks to DTV. In addition, the measurement of the mean gas phase velocity also differs.
While numerically it results from the velocity average over all the cells in the gas phase, the
experimental mean gas phase velocity is estimated from LDV measurements at different radial
positions and then averaged along those positions. On the other hand, it is important to
keep in mind that the experimental and numerical data correspond to two drastically different
physical spaces. The former were measured for x/dn = 800 and the latter for x/dn ≈ 20. The
difference could then reveal some dynamics occurring at the overall jet scale, for instance the
overall slowdown of the droplet population when the droplet spray moves towards larger x/dn.
Another explanation could also be the choice of the normalisation for the Reynolds number.
Using the Reynolds number computed over dn and the averaged velocity of the dispersed liquid
phase may help to make the numerical and experimental edge of the joint volume histograms
collapse. Finally, the difference along the Rep axis between the experimental and numerical
joint histograms could also raise from the difference of the density ratios used in the simulations
and in the experiments. Notwithstanding those limitations, it still seems legitimate to conclude
that the joint histogram edges are self similar. This conclusion only holds for the edges and
not for the joint histogram values which evolve very differently between the experiments and
the simulations.

Yet, the two jet flows differ in term of fragmentation mechanisms. In the experimental
flow, the bag breakup fragmentation plays an important role while it is totally absent in the
numerical flows. In the experiments, the droplets undergoing bag breakup originate from the
liquid core pinch off and are characterized by a large size and axial velocity. As the liquid core
is still developing in the simulations, the absence of such droplets is expected. Even if the joint
histogram edges are self similar, they slightly differ for large values of particulate Reynolds
and Ohnesorge numbers where the experimental joint histograms exhibit a well defined tail.
Besides, Sec. 4.3.5 shows that the ligament-mediated fragmentation describes well the droplet
fragmentation in the numerical flows. Thus, it is tempting to conclude that the droplets are
likely to undergo a bag breakup fragmentation when Ohp/Oh1 < 2 and a ligament mediated
fragmentation when Ohp/Oh1 ⩾ 2.

4.4.5 Drift between the gas and liquid phases
At last, one could consider the drift velocity between the two phases, which has some importance
regarding the accuracy of turbulent biphasic jet models (Simonin, 1996). Measuring the drift
velocity between the phases is challenging, both experimentally and numerically. In the best
case, one should achieve to measure the drift velocity between each droplet and its gaseous
surrounding. Numerically, this can be done by computing the velocity tensor perceived by the
particle under consideration (Pumir et al., 2013; Loisy & Naso, 2017; Naso, 2019). Otherwise,
a global approach enables to derive in an easier way a first approximation of the drift velocity
between the phases by simply computing the difference between the velocity of each phase
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averaged overall the computational domain or over cylindrical shells centered on the jet axis.
Fig. 4.22 gives the temporal evolution of the averaged drift velocity computed for each gaseous
Weber number We2 along with the evolution of the injection velocity Uinj. First of all, the
comparison of the evolution of the drift velocity for different We2 between the phases is limited
because of the difference in the maximum time evolution of the DNS. The DNS 7 to 10 have
a shorter time evolution than the DNS 1 to 6. With the available data, it appears that the
drift velocity lies between 0.8Uinj and Uinj, which is expected as the liquid jet is injected into a
quiescent gaseous medium. Looking at the domain averaged velocities could here be misleading
as it includes the jet injection. In order to discard the influence of the injection, it might be
interesting to depict the drift velocity between the gaseous phase and disperse phase, i.e. the
droplets, only. This can be achieved by sampling the computational space in cylindrical shells
centered on the jet axis and computing the difference of the gas velocity and the droplet velocity
averaged in each cylindrical shell.
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Figure 4.22: Velocity difference between the liquid and the gas phase averaged over the com-
putational domain not normalised (a) and normalised (b). The color map indicates the time
evolution with increasing values from dark blue to red. The solid lines on (b) indicate isovalues
of t while the ice blue solid line indicates the injection velocity Uinj computed from We2.
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4.5 Conclusion

In this work, the droplet population generated by the fragmentation of a round jet in a quies-
cent gas medium was studied numerically for different gaseous Weber number We2 spanning
the second wind induced regime and part of the atomisation regime. At first, the statistical
moments of the size, the axial velocity and the radial velocity were depicted and their evolution
with We2 was detailed. The study of the distribution of the droplet size shows the existence of
three modes in the second wind induced regime while only one mode exists in the atomisation
regime. Complementary, the size distribution shows two exponential decays connected by a
transition region scaling as a power law. Conversely to Vallon et al. (2021), the size distribution
is better modelled by the law derived by Kooij et al. (2018) in the context of ligament-mediated
fragmentation than by the law derived by Novikov & Dommermuth (1997) in the framework
of turbulence intermittency. This could, at first sight, raise from the difference in the frag-
mentation mechanisms occurring in the region close to the nozzle, studied here, and the region
far away from the nozzle studied previously. On the side of the axial velocity distribution,
additionally to elucidating the scaling of the axial velocity distribution tails, the origin of the
droplet velocities being negative and larger than the injection velocity Uinj is explained thanks
to the vortex ring theory of Saffman (1992), vortex ring which sustains the recirculation region
on the downstream side of the jet head. The existence of a double tail along the size direc-
tion for the size-velocity joint distribution is also explained by spatially separating the droplets
evolving in the boundary layer and those ejected from the jet head.

The analysis also scaled down to the flow perceived by the droplets with the study of the
droplet volume histogram over the phase space of the particulate Reynolds and Ohnesorge
numbers. Properly scaled by the injection Ohnesorge number Oh1 and the Reynolds number
computed on the jet axis Reaxis, the boundaries of the joint volume histograms from the DNS
collapse, thus indicating the weak dependence of the joint histogram boundaries on the gaseous
Weber number. The collapse is also obtained between the numerical and the experimental
joint volume histograms, with a slight correction along the Reynolds axis for the experimental
one. This highlights the existence of a phase space properly bounded which contains the whole
droplet population as well as the jet liquid core. Advantages could be taken from this result for
modeling the turbulent jet fragmentation in terms of particulate dimensionless numbers or for
improving the model of mass transfer proposed in Chap. 3. Finally, the drift velocity between
the phases, averaged over the computational domain, is computed and indicates a difference of
the order of Uinj as expected. A more detailed analysis could enable to estimate the evolution
of this drift velocity along the radial coordinate. Overall, the good accuracy of the statistical
properties of the droplet population with the theoretical models as well as with the experimental
data validate the accuracy of the simulations within the numerical limitations.

Further work could be done regarding the droplet dynamics and geometry. Now that the
interface of the jet and the droplet population are described, it could be possible to focus on
the size distribution resulting from specific fragmentation mechanisms, like the fragmentation
of the rims in the second wind induced regime. This could help to understand the origin of
the 3 modes observed for the size distribution in this regime. Also, performing a Lagrangian
tracking of the rims in the DNS lying in the second wind induced regime would enable to verify
the break-up of such toroidal ligaments and compare the resulting size distribution with the
Γ distribution from the ligament-mediated fragmentation theory. Finally, a statistical analysis
of the ligament geometry in the atomisation regime, specifically in the DNS with the highest
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We2, could help to better describe the ligament size and corrugation distributions over the jet
fragmentation.
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Chapter 5. Conclusions and perspectives

5.1 Main results
This thesis aims at studying the droplet population generated by the fragmentation of a round
liquid jet in the regions far away from and close to the nozzle. While experimental joint
measurements of the droplet sizes and velocities using DTV are carried out in the far field,
the close field is studied numerically thanks to DNS relying on the solver for the Navier-Stokes
equations implemented in the C-based high level programming language Basilisk. For each
study, the focus is given to the size and velocity distributions of the droplets. Two models of
very different nature for the droplet size distribution, derived from the turbulence intermittency
(Novikov & Dommermuth, 1997) and from the ligament-mediated fragmentation (Villermaux
et al., 2004), are tested out in both the far and close fields.

Multimodal distributions of agricultural-like sprays

The analysis of the DTV measurements of Felis et al. (2020) highlights the multimodal
nature of both the size and the velocity distributions for agricultural-like sprays lying in the
second wind induced regime for 400 ⩽ x/dn ⩽ 800. After precisely describing the statistical
properties of both distributions, it appears from the systematic fit campaign that the size
distribution from the intermittency framework performs the best. On the side of the bimodal
velocity distribution, the low velocity mode is fitted with classic fragmentation distributions
adapted to the velocity while a simple model is proposed for the second mode. Based on
the joint distribution of the size and the velocity and the statistical properties of the marginal
distributions, several subgroups of droplets are defined, each of them presenting a characteristic
velocity and size and containing a consequent part either of the droplet number or of the volume
of the disperse phase. Additionally, the main trend of the joint distribution is accurately
described by the quadratic relationship of Lee & An (2016) between the size and the velocity.
It is also possible to reconstruct the trend of the experimental size distribution thanks to this
relationship.

Weber dependency of jet fragmentation

The DNS campaign focuses on round liquid jets in the second wind induced and the atomi-
sation regimes. The distribution of the size and of the velocity differs between the two regimes
up to x/dn = 28. For the size, the former and the latter show a trimodal and a unimodal dis-
tributions respectively. Once again, the statistical properties of the distributions are detailed,
power and exponential behaviours are highlighted and a fit campaign is carried out to test the
distributions from the intermittency and ligament-mediated fragmentation frameworks. The
latter offers a very accurate fit of the size distribution in the atomisation regime with a square
Pearson coefficient r2 of almost 1. The former performs less well quantitatively speaking but of-
fers a better qualitative description of the trend, especially for the smallest sizes. At-first-sight,
unexpected features of the velocity distribution and of the size-velocity joint distribution are
respectively explained by the recirculation region quantified thanks to the vortex ring theory
and by the characterisation of two sources of droplets: the forced corollas and the jet head.
The volume joint histogram of the particulate Reynolds and Ohnesorge numbers shows sharp
delimitations of the phase space in which the droplets evolve. Those limits appear to be inde-
pendent of the gas Weber number and can be recovered experimentally too. Finally, a global
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analysis of the slip velocity between the phases indicates a velocity approximately equal to 0.9
times the injection velocity.
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5.2 Thinking further
Lessons from the fields

The nature of the two models for the size distribution tested out in the far and close
fields is very different. One is derived from the framework of turbulence intermittency and
is purely statistical while the other one is built over the experimental observations of the
ligament dynamics. As said previously, the former shows a good accuracy for describing the
size distribution in the far field region. In the close field region, the latter performs exceptionally
well with a square Pearson coefficient r2 almost equal to 1. However, the distribution derived
from the intermittency framework offers a more satisfying qualitative trend for the smallest
droplets.

In both fields, the size distribution presents a segment which follows a power law of coefficient
−2.7. Additionally, when the droplets are separated in different subgroups, either on the basis
of the statistical properties of the velocity and size distributions or on the basis of the region of
generation, the size distribution of the subgroups follows an exponential decay. Such exponential
laws result from the composition of Γ laws in a way similar to the random stripping mechanism
proposed by Villermaux (2020). Thus, as expected, the ligament mediated fragmentation is
relevant to describe the size distribution of the subgroups in the far field, 400 ⩽ x/dn ⩽ 800,
even if this region away from the nozzle is the theatre of a large spectrum of droplet sizes and
of several different fragmentation mechanisms.

For its part, the numerical study in the close field indicates that the presence of two sources
of fragmentation, the head of the jet and the corollas induced by the forcing, generates a
size distribution with two exponential regimes, potentially resulting from two distinct random
stripping mechanisms, as well as a transition region behaving as a power law of coefficient -2.7.
Complementary, the exponential decay of the size distribution of the subgroups related to the
DNS in the second wind induced regime indicates that each exponential regime observed in the
size distributions derives from a specific source of fragmentation.

In turbulent jet fragmentation like the one studied by Felis et al. (2020), the spectrum
of fragmentation mechanisms is wide and includes among others the peeling and pinching of
the liquid core, bag breakups of large, fast droplets and ligament mediated fragmentation of
intermediate and small droplets. With this in mind, it could be possible to say that the
subgroups observed experimentally result from different sources of fragmentation and, generally
speaking, that the multiplication of fragmentation sources, like the ones listed above, leads to
the combination of Γ compound distributions showing an exponential decay.

Regarding the validity of the distribution from Kooij et al. (2018) and Novikov & Dommer-
muth (1997), it appears that it is not only a question of distance from the nozzle but also of
number of fragmentation sources. Indeed, the distribution from the intermittency framework
performs well in the far field and offers a qualitatively satisfying trend in the close field while
the distribution from the ligament-mediated fragmentation is very accurate in the close field
and shows a good performance in the far field for less complex jets. Chap. 3 showed that
two sources of droplets can be well identified and characterised in the close field. Thus, it is
tempting to say that the intermittency distribution better describes the overall size distribu-
tion when several sources of fragmentation are active in the flow while the distribution from
the ligament mediated fragmentation framework offers a more accurate description up to two
sources of fragmentation.
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Let us try to define more precisely the so-called sources of fragmentation. A source of
fragmentation is, here, thought as a region of the phase space more than a spatial region. It
could be correlated to a specific location in space, as the two sources identified in Chap. 4, but
not necessarily. The example of the droplets studied in Chap. 3 provides a good illustration.
Depending on the size and the velocity of the droplets, they do not experience the same flow
conditions nor the same force balance and thus can fragment differently. Additionally, all the
droplets of a given size do not necessarily fragment in the same region of space. Then, a source
of fragmentation could be identified as a given region of the phase space constructed either over
the size and the velocity of the droplets or the particulate Reynolds and Ohnesorge numbers.

It appears from this study that the distribution of Novikov & Dommermuth (1997) describes
well the size distribution resulting from the combination of several Γ compound distributions
resulting from the random stripping argument of Villermaux (2020). At the same time, the ac-
curacy of the Γ distribution for describing the ligament-mediated distribution is not to be proven
any more. Could an intermittency based fragmentation description improve the modelling of
the size distributions resulting from turbulent jets? The results here suggest so. Furthermore,
considering intermittency in fragmentation has some grounds.

Modelling the intermittency of the fragmentation process in a turbulent jet

A basic way to understand intermittency of small scales of turbulence is to consider it as a
statistical description able to represent the discontinuous presence of the small scales in time
and space, in other words that they are some times in different space locations and some times
not. The example of ligament fragmentation on a fast, large droplet illustrated in Fig. 5.1a
is typical. Similar formation can be found in DNS too, as illustrated by Fig. 5.1b. Contrary
to the peeling occurring continuously on the liquid core from the nozzle until the core pinches
off or the continuous fragmentation of the corollas in the DNS, such fragmentations appears
discontinuously in time and space. Once this is said, two questions arise. What demonstration
would be sufficient to prove that the fragmentation of a turbulent jet is actually intermittent?
If it is intermittent, how can it be modelled? The first one is a fundamental requirement before
searching further. Even so, it is possible to open the second question by looking backwards and
consider the intermittency models developed in the turbulence community.

Without evaporation, the process of fragmentation is conservative. When a droplet breaks,
the sum of the volume of the daughter droplets is equal to the volume of the initial droplet.
There is no thing such as volume dissipation. Let us consider the intermittency models presented
by Frisch (1995): the β-model, the bifractal model and the multifractal model based on the
velocity. The β-model relies on the idea that the number of daughter eddies is set such that the
fraction of volume occupied decreases by a fraction β, 0 < β < 1. Applied to the fragmentation
process, the sum of the volume of the daughter droplets would be smaller than the volume of
the initial droplet. This breaks the volume conservation and makes the β-model unsuitable for
describing droplet fragmentation. In the bifractal model, the physical space R3 is split in two
regions characterised by two different scaling exponents, see 1.4.3, and fractal dimensions. In
our context of fragmentation, this concept could be used. Instead of splitting regions of the
physical space based on the velocity scaling exponent, one could split the phase space built
over the size and the velocity of the droplets by regions in which a fragmentation regime is
predominant. The multifractal model goes beyond by extending the bifractal model. Recalling
that, in the inviscid limit, the Navier-Stokes equation is invariant under infinitely many scaling

135



Chapter 5. Conclusions and perspectives

(a)

0

π/4

π/2

3π/4

π

−3π/4

−π/2

−π/4

(r/dn, θ)

0.2
0.4

0.6
0.8

1.0

(b)

Figure 5.1: Examples of intermittent ligament fragmentation, experimentally at x/dn = 600
(a) and numerically for the DNS 7, We2 = 73, (b), visible at −π/2.

groups labelled by arbitrary scaling exponents, this model considers a continuous infinity of
scaling exponents rather than a finite set. If a similar model could be derived for fragmentation,
listing in an exhaustive manner all the possible fragmentation regimes would not be necessary.
However, in the framework of turbulence, the multifractal model does not account for positive
and negative increments. An equivalent for the droplet fragmentation could then not account
for possible aggregation. This statement is to consider carefully as no one-to-one comparison
can be accurately achieved here. Finally, the probabilistic formulation of the multifractal
model overcomes the latter limit and could inspire a model for the size distribution resulting
from a turbulent jet. It is important to note that those models were derived for describing
the intermittency of the turbulent dissipation. In our context, no variable was identified as
intermittent and we considered so far the intermittency of the fragmentation process, taken
as a general concept. Let us consider two fragmentation mechanisms: the bag-breakup and
ligament-mediated fragmentations. Each mechanism can be tracked in time by using their
characteristics. Due to the existence of piercing, the droplets undergoing bag break-up can be
detected by measuring their Euler characteristic, which is non zero when one or several holes
exist. The droplets undergoing ligament-mediated fragmentation can be detected by computing
their ellipticity which will get close to 1 as they deform into a ligament. Extra work on the
droplet corrugations is however required to detect the formation of ligaments on large droplets,
like in Fig. 5.1a. Once detected, the volume rate actually fragmented by one mechanism can
be tracked in space and time. If this variable shows intermittency, it could potentially be
used in an adaptation of the models for turbulence internal intermittency. Such an approach
would take advantage of using a characteristic common to all, or at least several, fragmentation
mechanisms, which for instance could be related to the ratio of the droplet surface and volume
or related to the flow perceived by the droplets. If one considers a finite set of fragmentation
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regimes, another idea could be to consider the resulting size distribution of a turbulent jet as
the sum of the elementary distributions of each fragmentation regime weighted by its fractal
dimension in the particulate Reynolds Ohnesorge phase space. Whatever the chosen option,
reconstructing the multimodal size distribution obtained experimentally could be a test case for
developing an intermittency based model for fragmentation. Improving the model of volume
transfer proposed in Chap. 3 by using properly parametrised distributions resulting from
specific fragmentation mechanisms could also bring further informations, for example about
the relevance of the chosen fragmentation mechanisms.

The question of the flow perceived by the particles

Depending on the force balance, the aerodynamic conditions can play a critical role in the
fragmentation process. In a turbulent flow, the role of vortices in fragmentation could also be
investigated by looking at the spatial correlation between the droplets and the vortices. Fig.
5.2 illustrates this point. It shows the liquid interface of a fragmenting jet along with the
turbulent vortices detected with the λ2 criterion (Jeong & Hussain, 1995) and highlights two
liquid fragments being spatially correlated with vortices. Following this, a more general way
to explore the flow experienced by the droplets and the role of turbulence would be to study
the velocity gradient tensor, which can be seen as an approximation of the velocity gradient
acting in a small volume, perceived by the particles in numerical experiments. Computing this
tensor experienced by each particle opens the way to depict precisely quantities like the droplet
velocity relatively to the surrounding gas phase, the vorticity or the strain rate perceived by
each droplet. This could be done using the pioneer developments of Pumir et al. (2013) and
in a similar fashion as the study of bubbles in a turbulent flow done by Loisy & Naso (2017)
and of the analysis of scale structures in rotating turbulence done by Naso (2019). Such an
analysis would not only bring information on the flow perceived by each droplet but would also
enable to carry out a statistical analysis to characterise different flow regimes and potentially
connect them with droplet sizes and / or breakup regimes. Particularly, quantifying the vorticity
perceived by the droplet would enable to better know the turbulence intensity and influence at
the droplet scale.

The role of the droplet geometry

Complementary, the question of the geometry of the droplets remains open. Experimentally,
the droplet geometry in 3D is not accessible easily and would require, if possible, several cameras
as well as computationally costly spatial reconstruction. Even so, it is possible to study the
projection of the droplets on the camera plane and compute both the length of the liquid
fragment and its thickness. Numerically, the geometrical informations are much easier to access
as the interfaces of the fragments also correspond to a limited set of spatial positions. The 3D
geometry is then accessible and it would be easy to apply an homographic projection on a plane
along the jet axis to reproduce the experimental data acquisition and compare the data sets.
Doing such a geometrical study enables to better characterise the droplet population and to
point out ligaments from the rest of the population. Once pointed out, it is possible to describe
the statistics of the ligament population, starting by the distribution of their lengths, radii and
corrugations which are missing in the framework of the ligament-mediated fragmentation. In
this work, due to the 2D nature of the experimental data, it would not be possible to derive any
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Figure 5.2: Visualisation of the jet head (2dn × 3dn) in the DNS 10, We2 = 165. The jet axis
is vertical and the jet goes upward. The interface is coloured in red. The vortices, in blue, are
detected with the λ2 criterion (Jeong & Hussain, 1995). The two green lines in the close-up
indicate the spatial correlation between a droplet and several vortices.

precise knowledges about the ligaments but they would serve to validate the numerical data
instead.

Technical developments

On the side of the technique, a major progress in the study of droplets in turbulent jet
fragmentation would be the ability of tracking the droplets and depict the different steps they
undergo from their generation to their breakup. Doing so experimentally might enable to
depict precisely the chain of mechanisms taking place in the fragmentation of large elements
towards the smallest ones. Such tracking could be achieved thanks to time resolved stereo
DTV measurements but a strong focus would be needed to overcome the complexity of 3D
reconstruction (Gay, 2020). On the numerical side, performing a Lagrangian tracking of the
liquid fragments also opens the way to fine observations of droplet fragmentation, under the
classic limits of numerical computations and the difficulty to reach distances in the far field,
typically x/dn = O(100). Combining a Lagrangian tracking with the tag routine of Basilisk
enables to extract the time evolution of the interface. Once this is available, the time evolution
of the fragment geometry and the corrugations developing on its interface can be studied.
Implementing a routine to carry out a Lagrangian tracking of each droplet in Basilisk seems to
be a challenge itself and might largely increase the computational cost. When the physics of
the jet is better known, one could overcome this issue by carrying out a Lagrangian tracking
of specific liquid fragments based on the evolution of some characteristic flow features, as
illustrated by the proof of concept below.

Fig. 5.3 shows the tracking of the corollas induced by the forcing in DNS 6, We2 = 40,
as well as the detection and tracking of the rims resulting from the corolla development. The
former are not formally detected. The travelling velocity of the corolla feet was observed to be
the same as the injection velocity while the inclination angle was observed to be roughly the
same in a given fragmentation regime. The corollas are then tracked based on their estimated
axial displacement and bending. The interface points are then extracted on a slice following
the corolla bending. Deriving such motion properties for the rims is more complicated. A close
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(a)

(b)

Figure 5.3: Illustration of the Lagrangian tracking of (a) the corollas and of (b) the rims for
We2 = 40 (DNS 6). The seven corollas are simultaneously tracked. The rims are detected only
for x/(Uinj · f−1) < 11 and 0.8 < r/dn < 1.2, the region delimited by the blue lines. The black
line in (b) represents the probability distribution of the interface points in the latter region.
The red dots and the green line represent the peak of the distribution and the threshold for
filtering the interface probabilities.
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look at the interface evolution indicates that the rims are generated for r/dn ∈ [0.8, 1.2] and
undergo fragmentation before x/(Uinjf

−1) = 11. Instead of guessing their spatial position, the
rims are detected within the latter delimitations based on the value of the distribution of the
interface points along the x-axis. The idea is to link each local maxima, i.e. each peak, of the
interface point distribution to the presence of a rim. Note that the distribution and the peaks
are represented by the black solid line and the red dots in Fig. 5.3b. Once the rim is detected,
it can be extracted on the slice centred on the axial position of the peak. The distribution of
the interface points can show minor peaks resulting from the presence of droplets in the region
of interest. Those droplets can be discarded from the tracking by setting a threshold on the
interface probability, indicated by the green line in Fig. 5.3b.

An example of tracking is given in Fig. 5.4 which shows the time evolution of one perturba-
tion induced by the velocity forcing from the birth of the corolla until the fragmentation of its
related rim. Using this technique led to detect 52 perturbations for the DNS 6 among which
35 show a complete evolution from the corolla birth to the rim fragmentation. This tracking
method can be further improved by being implemented directly in Basilisk. Doing so would
enable the computation of the time evolution of the ligament properties, such as its volume or
its velocity, and the properties of the corrugations developing on its interface, which would be
of first interest for the ligament-mediated fragmentation.
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Figure 5.4: Time evolution of a corolla (a− c) and the corresponding rim (d− f) in the DNS
6, We2 = 40.
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Transporting the statistical moments

Exploring fragmentation can be done experimentally, numerically or theoretically, since
the objective of describing the distributions of the droplet sizes or velocities remains. Thus,
instead of transporting droplets in the physical space, one could transport the distribution of
the internal variables. Marchisio & Fox (2013) detailed the mathematical framework to trans-
port the moments of the distributions of different internal variables and this for different kinds
of particle population, for example monodisperse or polydisperse phases. The most general
formulation of the transport equation for distribution is the General Population Balance Equa-
tion (GPBE) which describes inertial polydisperse particles and can account for acceleration,
growth, collision, aggregation and fragmentation. Instead of being expressed in terms of dis-
tribution, the GPBE can be rewritten in terms of the distribution moments. The resolution of
such equations can be done thanks to the Quadrature Based Moment Methods (QBMM), like
the ones presented by Fox (2018), or their high order counterparts (Fox, 2009). This approach
has been proved successful in the context of combustion with the work of Fox et al. (2008) and
Massot et al. (2010) for automotive engines and of Essadki et al. (2018) for cryogenic rocket
engines. This approach could be tested out in the framework of agricultural-like sprays and
compared with the DTV measurements and the DNS presented here.
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5.3 Closing words 
A better characterisation and modelling of the physics at play in fragmentation mechanisms are
crucial for deepening our understanding of the processes, either natural or industrial, relying on
it. Research work on fragmentation is necessary to gain knowledges on a widespread number
of scientific fields which are highly relevant in today’s society, like combustion in automotive
engines, spraying in agriculture, sneeze flows for disease transmission or ocean sprays for cli-
mate modelling. Not only they are relevant today but those research topics will also grow in
importance as climate change is catching up along with speeding disease emergence (Smith et
al., 2014; Stephens et al., 2021). The last report of the working group I of the Intergovern-
mental Panel for Climate Change states bluntly that “it is unequivocal that human influence
has warmed the atmosphere, ocean and land. Widespread and rapid changes in the atmo-
sphere, ocean, cryosphere and biosphere have occurred” (Masson-Delmotte et al., 2021). It also
draws the possible incoming climate evolutions along with the global temperature evolution
as a function of the greenhouse gases (GHG) emissions, see Fig. 5.5. The larger the global
average temperature becomes, the wider and deeper the changes and their consequences will
be. A deep understand of fragmentation constitutes a cornerstone to drastically reduce CO2
emissions from combustion processes, efficiently control spraying irrigation under amplifying
drought, quantify more precisely airborne transmission of diseases and better model tomorrow’s
climate dynamics as well as its impacts on future human societies.

Figure 5.5: Relationship between the cumulative CO2 emissions and the increase in global
surface temperature. The top panel shows the historical evolution along with the projected
range for different scenarios. The bottom panel gives the historical and projected cumulative
CO2 emissions for different scenarios. Taken from the work of Masson-Delmotte et al. (2021).
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Appendix A
Estimation of the sheet thickness in the region
of the jet head

This appendix presents the formula and related derivation used in Sec. 4.3.2.2 to estimate
the thickness of the sheet in the region of the jet head. The presentation is split within three
parts. A simple model of the jet head development is presented first, Sec. A.1. Then the sheet
thickness at its foot (the connection region between the sheet and the liquid core) and at its
edge are theoretically derived, respectively in Sec. A.2 and Sec. A.3.
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Chapter A. Estimation of the sheet thickness in the region of the jet head

A.1 A simple model of the jet head development
Fig. A.1 gives a schematic representation of the jet head development. In the initial stage, Fig.
A.1a, the jet is supposed to be a liquid semi infinite cylinder translating at a velocity Uinj in
a quiescent gaseous medium at a pressure P∞. Due to the cylinder motion, an overpressure
region is created at its upstream face and, in order to respect the local pressure equilibrium, is
counterbalanced by an underpressure region surrounding the cylinder lateral face. This pressure
difference compresses the layer of fluid behind the upstream face and imposes a radial motion
to the fluid particles located in this area. The jet head thus deforms and shows a thin radial
corrugation, Fig. A.1b. It appears legitimate here to assume that the corrugation thickness
along the longitudinal direction, x⃗, is only set by the pressure equilibrium and is similar to the
one in the compressed layer of liquid. This corrugation in turn triggers the development of the
vortex ring. At this stage, the radial corrugation can extend with a radial velocity set by the
vorticity of the recirculation region. The recirculation region, or equivalently the vortex ring,
then radially extends along with the head sheet. The extension of both goes together. Due
to the vortex ring, the gas motion is parallel to the head sheet and directed outwards. This
imposes on the sheet some shear directed along the radial direction, r⃗, which benefits to the
sheet extension and makes the ring extend too. During its extension, the sheet gets thinner
until it undergoes piercing due to the Taylor Culick instability. At this development stage, the
expansion stops and both the jet head and the vortex ring reach a steady dynamical behaviour
and a stationary radial size, Fig. A.1c.
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A.1. A simple model of the jet head development

overpressure

underpressure

−−→
Uinj
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e
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Figure A.1: Schematic representation of a simple model for the jet head development: (a)
theoretical initial state, (b) trigger of the head expansion and (c) developed head sheet.
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Chapter A. Estimation of the sheet thickness in the region of the jet head

A.2 Estimation of the sheet thickness at its feet
Consider a control volume V at the initial development stage explained above. This control
volume is located behind the upstream face of the semi-infinite cylinder. Fig. A.2 gives a
schematic representation of V and the pressures applied on its faces. The pressures at play are:

• the Laplace pressure ∆Pσ applying on face 4,
• the dynamic pressure of the gas Pdyn,g applying on face 3 and of the liquid Pdyn,l applying

on faces 1 and 3,
• the total upstream pressure Pup applying on face 3,
• the pressure on the lateral face Plat, applying on face 4.

V−−→
Uinjθ

r

z

1

4

2

3

Pdyn,l Pup

∆Pσ + Plat
gas

liq.

Figure A.2: Schematic representation of the cylinder jet at the stage (a) with the different
pressures at play in the control volume. The dashed line represents the jet axis.

The expression of the liquid dynamic pressure is straightforward and writes as Pdyn,l = 1/2ρlU
2
inj.

The dynamic pressure of the gas corresponds to the overpressure depicted previously and de-
pends on Pdyn,l. It takes into account the drag applied on the upstream face through the drag
coefficient Cx and writes as Pdyn,g = CxPdyn,l. The pressure applied on the upstream face of the
cylinder is then the sum of the two dynamic pressures, Pup = Pdyn,l +Pdyn,g. In order to respect
the local pressure equilibrium, the pressure on the lateral face is such that Plat ∈ [−Pdyn,g, 0].
Finally, the Laplace pressure depends on the surface tension σ and the local curvature set by
the curvature radii along x⃗ and r⃗. It writes as ∆Pσ = σR−1

x for a cylinder along the x-axis
and as ∆Pσ = σ

(
R−1

x + R−1
r

)
when the cylinder is deformed like in Fig. A.3. Note that the

pressures applying on face 2 are compensated due to the axisymmetry of the configuration.
The pressure difference between the faces 1 and 3, along the x-axis, writes as:

∆Pdyn = Pup − Pdyn,l

∆Pdyn = Pdyn,g, (A.1)

thus, imposing a backward motion on the face 3 which, in turn, deforms the face 4 due to the
fluid incompressibility. At the equilibrium, the pressures would verify ∆Pdyn = ∆Pσ + Plat.
The face 4 of the control volume then deforms if

∆Pdyn ≥ ∆Pσ + Plat. (A.2)

Let us denote e the thickness along x of the volume control V . Complementary, assume that
the upstream face is homogeneously pushed backward due to the pressure difference along the
x axis, which creates an initial deformation. We also assume that this initial deformation has
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−−→
Uinj
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θ

r

z

e/2

e

Figure A.3: Schematic representation of the initial deformation of the cylinder jet head.

an annular shape with a circular section of radius e/2, as illustrated in Fig. A.3. The curvature
radii of the disturbed interface are then Rx = dn/2 and Rr = e/2. The inequality A.2 then
becomes

Pdyn,g > σ

(
2
e

+ 2
dn

)
+ Plat

⇔ 1
2
ρgU

2
injCx − Plat > 2σdn + e

edn

⇔ 1
4
ρgU

2
injdn

σ
Cx −

dn

2σ
Plat >

dn + e

e

⇔ 1
4
WegCx −

dn

2σ
Plat >

dn

e
+ 1

⇔ 1
4

WegCx − 4dn

2σ
Plat − 4

 > dn

e

⇔ 4

WegCx −
2dn

σ
Plat − 4

−1

<
e

dn

(A.3)

Consider the corner between the faces 3 and 4. The pressure difference should be maximal
at this position, when the disturbance starts to develop with the lateral pressure respecting
Plat = −Pdyn,g. Meanwhile the lower bound of e/dn is minimal. Using this, Eq. A.3 rewrites asWegCx

2
− 1

−1

<
e

dn

. (A.4)

This condition thus sets an estimation of the minimum thickness e for which the difference of
dynamical pressures overcomes the Laplace pressure and deforms the lateral surface of the cylin-
der. Considering Weg = 100 and Cx = 0.4 gives e/dn = 0.053, i.e. a thickness approximately
equal to 5% of the nozzle diameter dn.

Assume that the jet is in a quasi steady regime. The previous calculation can be modified
by considering the pressure to be at the equilibrium

Pdyn,g = σ

(
2
e

+ 2
dn

)
+ Plat (A.5)

⇔ e

dn

= 4

WegCx −
2dn

σ
Plat − 4

−1

(A.6)
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Chapter A. Estimation of the sheet thickness in the region of the jet head

which gives the evolution of the feet thickness depending on the lateral pressure Plat ∈ [−Pdyn,g, 0].
The normalised thickness is maximum when the lateral pressure is zero and minimum when
the lateral pressure reaches its maximum. When Plat = 0, e/dn equals 0.11 and the thickness of
the disturbance foot can not exceed this value. A limitation of the previous calculation is that
the model does not account for any curvature between the upstream side of the disturbance
and the rest of the jet, while such a curvature is observed experimentally. This results will be
used in the following section to derive an expression of the sheet thickness at its edge.
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A.3 Estimation of the sheet thickness at its edge

O

~r

dr

dθ

~x

(a)

dr

e(r)

e(r + dr)

θ

r

x

(b)

Figure A.4: Scheme of an infinitesimal element in cylindrical coordinates in the (r, θ) plane (a)
and in the (x, r) plane (b).

Let us consider a plane circular sheet of center O with a cylindrical coordinate system
centered on O. Fig. A.4 illustrates an infinitesimal element at a distance r from the center.
The flow is directed from the center toward the edge of the sheet which extends from r = r0
to r = rmax. The disk of center O and radius r0 represents the jet core and r0 = dn/2. The
thickness and surface of face and the velocity at the face are denoted e(r), S(r) and U(r). By
definition, the surfaces read

S(r) = e(r)rdθ, (A.7)
(A.8)

The conservation of mass flow between the two faces imposes

U(r)S(r) = U(r + dr)S(r + dr) (A.9)
⇔ U(r)e(r)rdθ = U(r + dr)e(r + dr)(r + dr)dθ (A.10)

⇔ U(r)
U(r + dr)

e(r)r = e(r + dr)(r + dr). (A.11)

The surface of the flow evolving freely, one can assume that Ui/Uo = 1

re(r) = (r + dr)e(r + dr). (A.12)
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Additionally, (r + dr)e(r + dr) can be expressed thanks to a polynomial approximation at the
first order such that:

(r + dr)e(r + dr) = re(r) +
d
(
re(r)

)
dr

dr, (A.13)

with Eq. A.12 it comes

d
(
re(r)

)
dr

= 0⇔ e(r) = C

r
(A.14)

with C a real constant. Let us denote e the thickness at the sheet foot, r = r0. C can be
expressed as C = er0. The thickness of the sheet edge at r = rmax, denoted eedge, finally writes

eedge

e
= r0

rmax

(A.15)

where r0 = dn/2 by definition. In the numerical experiments, the front sheet shows an unsteady
behavior partly due to the development of Taylor Culick instabilities. If the maximal sheet
extension is assumed to the extension such that the latter instabilities are not yet triggered, rmax

can be estimated to be approximately equal to 3dn/2. Using this estimations gives eedge/e = 1/3.
Combining Eq. A.15 and the expression of e/dn obtained in the last section, Eq. A.6, it is

possible to derive an analytical expression of the sheet thickness depending on dn. It reads

eedge

dn

= 4 r0

rmax

[
WegCx − 2Platdn/σ − 4

] (A.16)

Using the estimated maximal radial extension of the sheet while assuming that Plat = Pdyn,g,
the latter expression becomes:

eedge

dn

= 2/3
WegCx − 2

(A.17)

With Weg = 100 and Cx = 0.4, the sheet thickness in the area where the Taylor Culick
instabilities are triggered is such that e/dn = 0.0175 . In the numerical experiments the nozzle
diameter is such that dn = 4.48 × 10−3 m and then e = 7.88 × 10−5 m which is of the same
order of magnitude as the experimental thickness at which Taylor Culick instabilities can be
observed (Néel, 2018).





Abstract
The fragmentation of liquid jets takes place in numerous processes which can be either natural, like ocean sprays,
sneezing or volcanic eruption, or industrial, like farming irrigation, ink printing or thermal engine injection. This
thesis characterises the droplet population created by the fragmentation of a jet thanks to experimental data
and numerical simulations in configurations close to those of agriculture. Experimentally, the data set comes
from Droplet Tracking Velocimetry (DTV) measurements carried out prior to this thesis on a turbulent water
jet injected into quiescent air. Numerically, a campaign of Direct Numerical Simulations (DNS) is carried out
for different gaseous Weber numbers, i.e. different injection velocities in the same geometrical and physical
configuration. The statistical study of the droplets for the experimental and numerical data shows results which
are rather similar. It pays a specific attention to the joint statistics of the droplet size and velocity. Notably, the
joint statistics enable to point out the existence of 5 well defined subgroups of droplets in the experimental data
set and the existence of 2 sources of fragmentation in the numerical one. The study highlights the possible link
between the subgroups and the different sources of fragmentation identified in the flow. Finally, two theoretical
models of divergent nature are tested out to describe the droplet size distribution. The first one was derived
from the analysis of the fine mechanics occurring at the scale of ligament-shaped droplets while the second one
was derived from the framework of the internal intermittency of turbulence. Both of them propose an accurate
description at different levels. The ligament-based model best describes the droplet size distribution in the
close field and the distribution of the subgroups in the far field. The overall distribution in the far field is well
described by the intermittency-based model, which also describes qualitatively well the size distribution in the
close field. Thus, the validity of each model does not only depend on the distance from the nozzle but also
on the number of fragmentation sources. Besides, it appears that the concept of turbulence intermittency for
modelling the fragmentation process could improve the description of the atomisation of turbulent jets.

Résumé
La fragmentation des jets liquides est au cœur de nombreux processus naturels - création d’embrun, éternue-
ment, éruption volcanique - ou industriels - irrigation agricole, impression à jet ou injection dans les moteurs
thermiques. Cette thèse caractérise à l’aide de données expérimentales et de simulations numériques la popula-
tion de gouttes créée par la fragmentation d’un jet dans des configurations proches de celles de l’agriculture. Du
côté expérimental, les données proviennent de mesures vélocimétriques par suivi de gouttes (DTV) réalisées sur
un jet d’eau turbulent injecté dans de l’air au repos. Du côté numérique, une série de Simulations Numériques
Directes (DNS) a été réalisée pour différents Weber du gaz, c-à-d pour différentes vitesses d’injection avec une
configuration géométrique et physique fixées. L’étude statistique des gouttes dans le cas de l’expérience et des
simulations montre des résultats qui se corroborent. Une attention particulière est apportée aux statistiques
jointes en taille et en vitesse des gouttes. Notamment, les statistiques jointes mettent en évidence l’existence de
5 sous groupes bien définis dans le jeu de données expérimentales et l’existence de 2 sources de fragmentation
dans le jeu numérique. L’étude met en lumière le lien possible entre les différents sous groupes et les sources
de fragmentation qui peuvent être identifiées dans l’écoulement. Enfin, deux modèles théoriques de nature très
éloignée sont testés pour décrire la distribution en taille des gouttes. Le premier découle de la mécanique fine
prenant place au niveau des ligaments et le second de l’intermittence interne de la turbulence. Tous deux se
montrent pertinents à différents niveaux. Le modèle s’appuyant sur la mécanique des ligaments décrit au mieux
la distribution en taille en champ proche et la distribution en taille de chaque sous groupe en champ lointain. La
distribution en taille du jet en champ lointain est bien décrite par le modèle s’appuyant sur l’intermittence de la
turbulence, modèle qui offre aussi une bonne description qualitative de la distribution en taille de la population
en champ proche. Ceci montre que la validité de chaque modèle ne dépend pas seulement de la distance par
rapport à la buse mais aussi du nombre de sources de fragmentation. En outre, il ressort qu’utiliser le concept
d’intermittence de la turbulence pour modéliser le processus de fragmentation pourrait améliorer la description
de l’atomisation des jets turbulents.
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