
HAL Id: tel-03593606
https://hal.science/tel-03593606v2

Submitted on 19 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Landscape-Aware Selection of Metaheuristics for the
Optimization of Radar Networks

Quentin Renau

To cite this version:
Quentin Renau. Landscape-Aware Selection of Metaheuristics for the Optimization of Radar Net-
works. Other [cs.OH]. Institut Polytechnique de Paris, 2022. English. �NNT : 2022IPPAX002�. �tel-
03593606v2�

https://hal.science/tel-03593606v2
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
2I

P
PA

X
00

2

Landscape-Aware Selection of
Metaheuristics for the Optimization of

Radar Networks
Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à l’École Polytechnique

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Palaiseau, le 24/01/2021, par

QUENTIN RENAU

Composition du Jury :

Marc Schoenauer
Directeur de Recherches, INRIA Saclay - Île-de-France (TAU) Président du jury

Bilel Derbel
Maı̂tre de Conférences, Université de Lille (CRIStAL) Rapporteur

Günter Rudolph
Professeur, Technical University of Dortmund (LS XI) Rapporteur

Rémy Chevrier
Chef de projets R&D, SNCF Innovation & Recherche Examinateur

Claudia D’Ambrosio
Directrice de Recherches, CNRS et École Polytechnique (LIX) Examinatrice

Benjamin Doerr
Professeur, École Polytechnique (LIX) Directeur de thèse

Carola Doerr
Chargée de recherche, CNRS et Sorbonne Université (LIP6) Co-directrice de thèse

Johann Dreo
Ingénieur-Chercheur, Institut Pasteur Invité

Yann Semet
Ingénieur-Chercheur, Thales Research & Technology Invité

Contents

I Introduction 7

1 Introduction 8
1.1 Motivation . 8
1.2 Automated Algorithm Selection . 9
1.3 Our Key Findings . 9
1.4 Thesis Outline . 10

II Landscape-Aware Selection of Metaheuristics 12

2 Continuous Black-Box Optimization Algorithms 13
2.1 Black-Box Optimization . 14
2.2 Evolutionary Computation . 14
2.3 The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) 18
2.4 Differential Evolution (DE) . 22
2.5 Particle Swarm Optimization (PSO) . 23
2.6 Direct Search Methods . 26
2.7 L-BFGS-B Algorithm . 28
2.8 Automated Algorithm Configuration . 29

3 Landscape-Aware Algorithm Selection 31
3.1 Motivation . 31
3.2 Landscape-Aware Algorithm Selection . 32
3.3 Landscape-Aware Algorithm Selection Pipeline . 33

4 Characterizing Problem Instances via Landscape Features 37
4.1 Fitness Landscape Analysis . 38
4.2 Exploratory Landscape Analysis . 40

III Analysis of Landscape Features 49

5 Exploratory Landscape Features Properties 50
5.1 Design of Experiments . 51
5.2 Stability . 52

1

CONTENTS

5.3 Influence of Sampling Strategy . 53
5.4 Expressiveness . 55
5.5 Robustness . 56
5.6 Invariance to Transformations . 58
5.7 Sensitivity to Noise . 60
5.8 Discussion . 62

IV Optimization of Radar Networks 65

6 Background on Radar Operation 66
6.1 Introduction . 66
6.2 History of Radar Development . 66
6.3 Basic Principle . 67
6.4 Radar Equation . 67
6.5 Radar Cross Section . 68
6.6 Swerling Models . 68
6.7 Probability of Detection . 69

7 Radar Network Modeling 71
7.1 Ægis: Radar Network Modeling Framework . 71
7.2 Target Characteristics . 72
7.3 Radar Models and Parameters . 73
7.4 Radar Network Use-Cases . 74
7.5 Thesis Use-Cases . 77
7.6 Geographical Data . 77

8 Solving the Radar Network Configuration Problem 80
8.1 Problem Instances . 81
8.2 Algorithm Portfolio . 82
8.3 Experimental Setup . 84
8.4 Results for the Unconstrained Use-Case . 84
8.5 Results for the Constrained Use-Case . 93
8.6 Comparison with Manual Optimization . 98

9 Landscape-Aware Algorithm Selection on the Unconstrained Use-Case 103
9.1 Design of the Selector . 103
9.2 Problem Characteristics . 105
9.3 Definition of the SBS . 106
9.4 Selector Performances . 107
9.5 Discussion . 110

V Conclusions 111

Conclusions 112
10.1 Summary of Contributions . 112
10.2 Perspectives . 113

2

CONTENTS

A Summary of Papers and Industrial Achievements 115
A.1 Academic Papers and Presentations . 115
A.2 Industrial Achievements . 116

B Best Performing Algorithm for each Instance 117
B.1 Best Performing Algorithm in Median . 117
B.2 Best Performing Algorithm for the 2% Quantile . 120

C Radar Network Configuration Contest 125
C.1 Radar Network Configuration Contest Results . 125
C.2 Radar Network Configuration Contest Poster . 125

3

Acknowledgments

I am thankful to my supervisors Benjamin Doerr, Carola Doerr and Johann Dreo for these three
years. Thank you for your guidance, your advice and for cheering me up in hard times. I had a
lot of fun working with you during my PhD. I would also like to thank Yann Semet for doing his
best entering the supervision team after two years.

I would like to thank Bilel Derbel and Günter Rudolph for agreeing to be reviewers of my
manuscript. Also, I would like to thank Claudia D’Ambrosio, Rémy Chevrier and Marc Schoenauer
for being part of my jury.

I would like to address special thanks to Alain Peres and Stéphane Brisson. Thank you Alain
for all that you have done on the application part of this thesis which could not have existed
without you. Thank you for still coming in our meetings and still showing a great interest even
if we did not talk about radars. Thank you Stéphane for all that you have done for me so that
I could work in a less difficult environment. 80% of data presented in this thesis would not have
existed without your help.

I am grateful to Claire Laudy, Nicolas Museux, Cédric Buron, Yann Briheche and, Simon
Fossier for their help with my work, our coffee breaks and discussions. I am grateful for all gaming
sessions organized by Bruno Marcon or Martin Krejca which really helped me escaping my work.

Thanks to all my fellow PhD students: Anja, Roman, Douae, Erwann, Paul, Adam, Océane,
Mara and, François. I started this journey at the same time as most of you and it is been a real
pleasure to do it with you.

Thanks to all members of the labs in Thales, LIX and LIP6 that I may have forgot. I really
enjoyed working with all of you.

Finally, I would also like to thank my family who was always supportive whatever I was doing
during my studies.

4

Synthèse

Contexte

Des réseaux de radars sont positionnés en vue de former des barrières de détection dont l’efficacité
doit être optimisée. Cette efficacité peut se visualiser en mesurant la couverture radar ou la
probabilité de détection d’une cible. L’optimisation des réseaux de radars doit prendre en compte
des contraintes systémiques et environnementales telles que des zones à défendre ou des zones
d’exclusion.

Un réseau est composé de plusieurs radars. Ces radars diffèrent par leur type et possèdent
plusieurs paramètres à configurer. Optimiser un réseau de radars, c’est donc choisir une localisation
et des paramètres internes du radar. En plus de ces paramètres, il est possible d’avoir pour
certains radars des contraintes supplémentaires telles que des zones interdites dans le domaine
ou une obligation d’intervisibilité entre radars. L’optimisation de la configuration de réseaux de
radars est donc un problème complexe, non-convexe et non-différentiable ce qui rend très difficile
sa description analytique.

La résolution de ce problème s’appuie sur l’optimisation bôıte noire. Le problème n’est pas
explicitement donné, mais les valeurs de la fonction objectif f sont accessibles en utilisant un
simulateur dont l’entrée est une solution x représentant une configuration du réseau.

Dans la littérature et dans un contexte industriel, le développement et l’emploi des
métaheuristiques ont été grandement étudiés pour résoudre des problèmes d’optimisation bôıte
noire continus. Les métaheuristiques sont des méthodes stochastiques et itératives ne nécessitant
pas d’informations a priori sur le problème à résoudre. Ces méthodes n’ont pas de garanties
d’optimalité, toutefois elles se sont révélées performantes pour différents types de problèmes, de la
résolution de problèmes d’embouteillages [BSF+21] au design d’ARN [MS21].

De nombreuses métaheuristiques ont été développées et montrent des performances
complémentaires sur différents types de problèmes. Un exemple de cette complémentarité est no-
tamment visible pour des algorithmes de recherche locale. Ces derniers sont souvent très efficaces
et atteignent des solutions de bonne qualité sur des problèmes convexes, mais la recherche locale
peut obtenir de faibles performances sur des problèmes complexes. De fait, choisir l’algorithme
le plus adapté pour un problème donné est compliqué. Les algorithmes ayant des forces et des
faiblesses complémentaires, choisir le bon algorithme afin de résoudre un problème d’optimisation
est une tâche difficile et cruciale.

5

CONTENTS

Résultats clés

L’objectif de cette thèse est d’appliquer une méthode de sélection automatique de métaheuristique
guidée par le paysage de recherche à un problème de configuration de réseau de radars. Les
travaux de cette thèse sont divisés en deux parties, une première partie concernant l’étude des
mesures permettant de caractériser un problème d’optimisation bôıte noire. La deuxième partie
concerne l’application de la sélection automatique de métaheuristique guidée par le paysage de
recherche au problème radar.

L’étude des mesures permettant de caractériser un problème d’optimisation bôıte noire nous a
menée à définir six propriétés et à étudier si les mesures satisfaisaient ces propriétés. Ces mesures
sont obtenues à partir d’un échantillonnage et les six propriétés définies correspondent à :

Expressivité : capacité d’une mesure à différentier plusieurs problèmes d’optimisation ;

Stabilité : capacité d’une mesure à garder des valeurs similaires lors de différents échantillonnages
indépendants de même taille ;

Sensibilité au bruit : capacité d’une mesure à garder des valeurs similaires lorsque que
l’échantillon de départ est modifié par du bruit ;

Robustesse : capacité d’une mesure à garder des valeurs similaires lorsque la taille de
l’échantillonnage est réduite ;

Sensibilité à la méthode d’échantillonnage : capacité d’une mesure à garder des valeurs sim-
ilaires lorsque différentes méthodes d’échantillonnage sont utilisées ;

Sensibilité aux transformations : capacité d’une mesure à garder des valeurs similaires lorsque
que des transformations sont appliquées à la fonction ou aux échantillons.

L’étude des mesures montre qu’aucune d’entre elles ne satisfait les six propriétés. Contrairement
aux préconisations dans la littérature, nous avons remarqué que la méthode d’échantillonnage
importait car une grande partie des mesures y est sensible. Nous avons trouvé d’importantes
différences entre les distributions des mesures provenant de différentes méthodes d’échantillonnage.
De plus, il semblerait qu’échantillonner avec la méthode de Soboĺ donne de meilleures performances
en terme d’expressivité.

La résolution du problème de configuration de réseau de radars par des métaheuristiques a
révélé que la différence de performance entre le meilleur algorithme sur les instances d’entrâınement
(SBS) et le sélecteur parfait (VBS) était faible. De fait, il est difficile d’obtenir des performances
supérieures au SBS. L’application de la sélection automatique de métaheuristique guidée par le
paysage de recherche a montré des performances similaires au SBS.

Les problèmes radars considérés dans cette thèse sont intentionnellement simplifiés. Les modèles
très réalistes comportent plus de paramètres et des fonctionnement radar plus complexes. Sur ces
modèles plus complexe, la complémentarité entre les différentes métaheuristiques pourrait être
accrue et donc cette complémentarité impliquerait un plus grand écart VBS-SBS.

6

Part I

Introduction

7

Chapter 1
Introduction

Contents
1.1 Motivation . 8

1.2 Automated Algorithm Selection . 9

1.3 Our Key Findings . 9

1.4 Thesis Outline . 10

1.1 Motivation

Radar networks are placed to form detection barriers with the goal to detect targets. The efficiency
of these barriers, i.e., the network coverage or the detection probability has to be optimized taking
into account several systemic and environmental constraints such as areas to defend and exclusion
areas in the domain.

A radar network is composed of several radars. The radars may differ in type, and are typi-
cally configurable, e.g., one classical parameter is the angle between the horizontal plane and the
antenna axis, which is called tilt. Optimizing a radar network therefore compromises the choice of
the locations of the radars and their specific configuration. On top of that, several operational con-
straints can be defined for the network such as intervisibility between radars or forbidden locations
in the domain. The number of parameters and these non-linear constraints cause the problem to
be non-convex, non-differentiable and too complex to be analytically described.

Solving the radar network configuration problem therefore relies on black-box optimization,
where the problem is not explicitly modeled and can be accessed only through a simulator. The
quality of a configuration is assessed through simulations which assign a value to each solution
candidate x. In black-box optimization, this assignment is called a fitness function f .

In the literature and in industrial context, metaheuristics have been widely investigated and
used to solve numerical black-box optimization problems. Metaheuristics are stochastic methods
that do not need a priori information on the function to solve. Even if these methods have no
optimality guarantee, they have been well performing on different types of problems, from traffic
congestion [BSF+21] to RNA design [MS21].

Over the years, many metaheuristics have been developed but, a complementarity between
algorithms have been observed, i.e., no algorithm will perform best on all possible optimization
problems. Local search algorithms and methods that estimate the gradient typically perform well

8

CHAPTER 1. INTRODUCTION

on convex problems, but may perform very badly on more complex problem types. Therefore,
choosing the right algorithm to solve an optimization problem is a challenging task. As solvers
have complementary strengths and weaknesses, finding the good algorithm to solve the optimization
problem at hand is crucial.

1.2 Automated Algorithm Selection

Metaheuristics are classically introduced as frameworks within which a user can gather some mod-
ules to instantiate an algorithm. For instance, the design of an evolutionary algorithm requires to
choose the population size, the variation and selection operators in use, the encoding structure,
fitness function penalization weights, etc. This highly flexible design of metaheuristics allows for
efficient abstractions but comes at the burden of having to solve an additional (meta-)optimization
problem.

The impressive advances of machine learning (ML) techniques are currently shaking up literally
every single scientific discipline, often in the function to support decisions previously requiring sub-
stantial expert knowledge by recommendations that are derived from automated data-processing
techniques. Computer science is no exception to this, and an important application of ML is
the selection and configuration of metaheuristics [HKV19, KHNT19, SM09], where automated
techniques have proven to yield tremendous efficiency gains in several classic optimization tasks,
including SAT solving [XHHL11], AI planning [VHCM15], and Traveling Salesperson Problem
solving [KKB+18].

In the context of numerical optimization, supervised learning approaches are particularly com-
mon for the automated selection of algorithms [KT19a, BDSS17, MSKH15]. These methods often
build on features developed in the context of fitness landscape analysis [ME13, PA12], which aims
at quantifying the characteristics of an optimization problem through a set of features. More pre-
cisely, a feature maps a function (the optimization problem) to a real number. Such a feature could
measure, for example, the skewness of f , its multi-modality, or its similarity to a quadratic func-
tion. In black-box optimization, the feature values need to be approximated from a set of (x, f(x))
pairs. The approximation of feature values through such samples is studied under the notion of
exploratory landscape analysis (ELA [MBT+11]). ELA has been successfully applied, for example,
in per-instance hyperparameter optimization [BDSS17] and in algorithm selection [KT19a].

1.3 Our Key Findings

In this thesis, we define six properties that feature should satisfy to be efficient:

• stability, i.e., ability of a feature to keep the same values with independent samples of same
size;

• robustness to noise, i.e., ability of a feature to keep the same values with when uniform noise
is applied to original samples;

• robustness to the sampling strategy, i.e., ability of a feature to keep the same values with
different sampling strategies;

• expressiveness, i.e., ability of a feature to distinguish between different optimization prob-
lems;

• robustness: ability of a feature to keep the same values with different number of samples;

9

CHAPTER 1. INTRODUCTION

• transformation invariance, i.e., ability of a feature to keep the same values when transfor-
mations are applied to the fitness function or to the samples.

We found that none of the feature analyzed fully satisfies the six properties. One of the six
properties is the invariance to the sampling strategy. We found that, surprisingly to what was
recommended in the literature, the sampling strategy actually matters. We found important
discrepancies in the feature values computed from different sampling strategies. In particular,
distributions of nearest better clustering feature values computed with different sampling strategies
are non-overlapping. Overall, feature values based on Soboĺ sampling have a better expressiveness.

We analyze the performance of 13 algorithms on two radar use-cases. Among the 13 algorithms,
we consider five variants of the CMA-ES [vRWvLB16], Particle Swarm Optimization (PSO) [KE95]
or the Nelder-Mead [NM65]. The use-cases are solved for two budgets of function evaluations. A
small budget of 500 function evaluations and a large budget of 2,500 function evaluations. In
our analysis, we found a complementarity of algorithms depending on the budget, i.e., different
algorithms are performing best depending on the number of function evaluations. Considering
CMA-ES variants, we found that elitist variants are more suitable for low budget settings while
non elitist variants are performing better when the number of function evaluations available is
larger.

On the two use-cases, we found that the difference between the single best solver (SBS1) and
the virtual best solver (VBS2) is actually quite small, and thus, it is difficult to obtain better
performances than those of the SBS. Yet, we found that the landscape-aware algorithm selection
has similar performances to the single best solver (SBS).

1.4 Thesis Outline

This thesis is composed of four parts. Part I introduces the context of the thesis.
Part II surveys the background on black-box optimization and landscape-aware selection of

metaheuristics.
Part III presents and analyzes the properties of landscape features. These landscape features

and their properties constitutes the central part of a landscape-aware selection of metaheuristics.
In Part IV, we describe the optimization of radar networks. We define here the main use-

cases of the thesis, we describe the results of different metaheuristics and compare them to the
performance of a landscape-aware selection of algorithms.

We conclude this thesis in Part V with an overview of results from this thesis and an outlook
for promising research directions.

Within the four parts, this thesis is composed of ten chapters. Chapter 2 introduces black-box
optimization and presents a list state-of-the-art algorithms for numerical black-box optimization
problems. The algorithms in this chapter are those that will later be used in this thesis.

In Chapter 3, the algorithm selection problem is introduced. We also introduce a method
to tackle this problem, the landscape-aware algorithm selection. The landscape-aware algorithm
selection allows to link data obtained by algorithms presented in Chapter 2 and feature data
presented in Chapter 4 with the objective to find the best suited algorithm.

Chapter 4 gives an introduction of continuous optimization problems’ properties and ways
to describe them. This chapter introduces both high-level properties that defines optimization
problems and also low-level, cheap methods to gain insight on an optimization problem at hand. We
focus particularly in this chapter on the exploratory landscape analysis technique. This technique

1Best solver on training instances
2Perfect selector, i.e., select the best solver on each instance

10

CHAPTER 1. INTRODUCTION

will be used in the thesis in order to characterize problems characteristics. In this chapter, we also
introduce new features based on existing ones in the Principal Component Analysis feature set
(see Section 4.2.6).

Chapter 5 focuses on the computation of cheap problem features in order to efficiently charac-
terize the optimization problems. This chapter defines six properties of features that are important
to take into account when features are computed in order to maximize their efficiency. We also
analyze in this chapter to what degree landscape features satisfy these properties.

Chapter 6 describes the basic principles of radar operations. This chapter contains some key
radar equations and processing that will influence the objective function.

Chapter 7 introduces the components of the radar network configuration problem such as
radar parameters and the target model. Chapter 7 also introduces the use-cases and the objective
function that will be used in this thesis. We also introduce here the key functionalities of our Ægis
framework: aggregation of radars into networks, constraint handling, handling of geographical
data, etc.

Chapter 8 presents the results of a portfolio of optimization algorithms on the use-cases. This
chapter also compares the performances of optimization algorithms to manually designed solu-
tions. We show in this chapter that human-designed solutions are worse than the best performing
algorithms and are close to the performances of random search.

Chapter 9 empirically investigates the application of landscape-aware algorithm selection on
the radar network configuration problem and compares it to classical state-of-the-art solvers. This
approach has similar performances to the single best solver on our use-cases.

We conclude this thesis with Chapter V with a summary of our results. We also share some
promising research directions such as dynamic algorithm selection or artificially created benchmark
instances for real-world applications.

11

Part II

Landscape-Aware Selection of
Metaheuristics

12

Chapter 2
Continuous Black-Box Optimization
Algorithms

Contents
2.1 Black-Box Optimization . 14

2.2 Evolutionary Computation . 14

2.2.1 History . 14

2.2.2 Metaphor from Biology . 14

2.2.3 Canvas of an Evolutionary Algorithm (EA) 15

2.2.4 Evolution Strategies . 17

2.3 The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) 18

2.3.1 Vanilla CMA-ES . 18

2.3.2 Modular CMA-ES Framework . 20

2.4 Differential Evolution (DE) . 22

2.4.1 Initialization and Mutation . 22

2.4.2 Crossover . 22

2.4.3 Template of a Differential Evolution Algorithm 23

2.5 Particle Swarm Optimization (PSO) 23

2.5.1 Parameters . 24

2.5.2 Neighborhood Topologies . 24

2.5.3 Algorithm Pseudo-Code . 26

2.6 Direct Search Methods . 26

2.6.1 Nelder-Mead Downhill Simplex . 26

2.6.2 Powell’s Method . 28

2.7 L-BFGS-B Algorithm . 28

2.8 Automated Algorithm Configuration 29

2.8.1 Motivation . 29

2.8.2 Automated Algorithm Configuration Methods 29

13

CHAPTER 2. CONTINUOUS BLACK-BOX OPTIMIZATION ALGORITHMS

In this chapter, we present the general context of this thesis, i.e., black-box optimization. We
also present a list of algorithms that are often used to solve black-box optimization problems.
These algorithms will be used later in this thesis in order to solve a real-world radar configuration
problems (see Chapter 8).

In Section 2.1, we present the context of black-box optimization. Section 2.2 introduces the
paradigm of evolutionary computation while Sections 2.3 to 2.7 describe the different optimization
algorithms that will be used later in this thesis.

2.1 Black-Box Optimization

The general context of this work is that of black-box optimization where the goal is to minimize an
objective function on a continuous search space

f : Ω ⊆ Rd → R.

No information is known about the characteristics of the objective function f (e.g., separability,
differentiability, smoothness, ...) in black-box optimization. The only information available is the
value of f(x) given a solution x = (x0, x1, . . . , xd) ∈ Ω ⊆ Rd. Through the optimization process,
the goal is to find one or multiple as good as possible solutions using as few evaluations as possible.

Many complex problems or real-world problems do not have any known analytic expression of
their objective function. The values of the objective function are only reachable through experi-
mentation or simulation. Black-box optimization is used to find sufficiently good solutions within
a reasonable number of evaluations.

In order to find these solutions, metaheuristics were developed throughout the years. Within
metaheuristics, evolutionary computation techniques are widely used and proven effective. In the
next sections, the paradigm of evolutionary computation is described along with all the algorithms
that will be used in this thesis.

2.2 Evolutionary Computation

2.2.1 History

The idea of Evolutionary Computation (EC) came up first in the 1940s as Turing proposed a
“genetical or evolutionary search”. In the 1960s, three different interpretations of this idea were si-
multaneously developed: Fogel in the US in the 90s introduced Evolutionary Programming [Fog98]
while Holland in the 70s presented Genetic Algorithm (GA) [Hol73]. Meanwhile, in Germany,
Rechenberg and Schwefel introduced in the 60s Evolution Strategies (ES) [RTE65, Sch65]. In the
1990s, these three interpretations were merged into one technology called Evolutionary Computa-
tion while a fourth inspiration had emerged: Genetic Programming (GP) [Koz94].

2.2.2 Metaphor from Biology

As the name Evolutionary Computation suggest, bio-inspired algorithm are developed with the
main inspiration coming from the natural evolution as described by Darwin. Solution candidates
of a population are generated in an environment and endeavor to survive. Their ability to survive,
i.e., their fitness is determined by the environment. The process of solving a problem results in a
stochastic trial-and-error where a population is evolved in order to fit the environment best. This
phenomenon is coined survival of the fittest. Fitter solution candidates survive and reproduce when
the others die. As in the Darwinian theory, some modifications can occur through reproduction.

14

CHAPTER 2. CONTINUOUS BLACK-BOX OPTIMIZATION ALGORITHMS

Evaluation

Variation

Selection

Stop. criteria?

Replacement

Best solution

Parents

Genitors

O
ffs

pr

ing
s

Initialization

Figure 2.1: General diagram of an Evolutionary Algorithm, taken from [DLV+21]. Red and yellow
blocks are encoding-dependent while green blocks are encoding-independent.

As the evolution process goes by, the constitution of the population is modified towards the
fittest solution candidates. This process is captured by the analogy of a landscape. On this land-
scape, d dimensions represents the biological traits of the solution candidates when an additional
dimension represents the fitness of each candidate solution. Hence, each peak in the landscape
represents an area of fit trait combinations.

These analogies correspond to classical optimization concepts. Each solution candidates are a
candidate solution and the population represents a set of these candidates solutions. The envi-
ronment of these solution candidates is represented by the search space Ω ⊆ Rd. The quality of
the solution candidates x ∈ Ω is assessed by the fitness function f : Ω → R which is named the
objective function in classical problem solving.

2.2.3 Canvas of an Evolutionary Algorithm (EA)

There are multiple branches in EC but it is possible to define a general scheme that correspond to
every evolutionary algorithm. A general diagram of an EA can be found in Figure 2.1. By definition
and construction, EAs are are stochastic and population-based, i.e., they process a collection of
candidate solutions concurrently. The following sections present the main building blocks of an
EA.

15

CHAPTER 2. CONTINUOUS BLACK-BOX OPTIMIZATION ALGORITHMS

2.2.3.1 Initialization

In most EAs, the initialization is kept simple as a population is often generated at uniformly
random. Quasi-random initialization procedure are also possible such as latin hypercube sam-
pling [MBC79] or low-discrepancy sequences such as Soboĺ [Sob67] or Halton [Hal64] sequences.
If one possesses knowledge on the underlying problem to solve, a heuristic could be applied in order
to start with a population with greater fitness.

2.2.3.2 Evaluation

The evaluation part is where the fitness function is considered. The candidate solutions are evalu-
ated. This part forms the basis for all the following blocks as all they will all need the results from
the evaluation part.

2.2.3.3 Replacement

The replacement operator permits to update the actual population. At this stage, quite often,
the number of solution candidates may exceed the authorized population size. Hence, the solution
candidates that will form the next generation have to be chosen in both the offsprings and/or
parents solution candidates. The ones not selected will die while the others become the parents of
the next generation. Different replacement strategies have been introduced such as generational
replacement (e.g., no parents survive), steady-state replacement (e.g., one offspring replace the
worst parent in the population), and all possibilities between these two strategies.

2.2.3.4 Stopping Criterion

Choosing a stopping criterion may depend on the knowledge available on the problem at hand.
If there is a known global optimum x∗, a stopping condition may be obtaining a solution x with
fitness1 value f(x) ≤ f(x∗) + ε for some user-defined ε > 0. This stopping criterion is coined
fixed-target. If no global optimum is known, which is often the case for real-word problems, there
exist two main categories of stopping criteria: one based on time, the other based on fitness. The
classical criteria used are:

• cap the CPU computation time;

• cap the number of fitness evaluation;

• fitness improvement is under a threshold for too many generations;

• diversity of the population drops under a threshold;

• the population distribution is ill-formed.

Capping the CPU computation time or the maximum number of fitness evaluation is called fixed-
budget.

2.2.3.5 Selection

Selection is a mechanism that permits to define the solution candidates of a population that will
become the genitors of the next generation. That will determine the distribution from which the
next solution candidates are sampled. This selection is often based on quality, i.e., fitter solution

1to be minimized

16

CHAPTER 2. CONTINUOUS BLACK-BOX OPTIMIZATION ALGORITHMS

candidates stand better chances to get selected than low quality solution candidates. Allowing
to select low quality solution candidates prevent the algorithm getting stuck in local optimum.
Different selection mechanisms can be used such as elitism (i.e., only fittest candidate solutions
are selected), deterministic or stochastic tournaments, random selection, rank-based selection (i.e.,
solution candidates are selected using their rank, not their directly their fitness values) or roulette
wheel (i.e., the selection probability of a solution candidate is proportional to its relative fitness).

2.2.3.6 Variation

Variation operators aim at creating new solution candidates, i.e., offsprings, from parents. These
operators are of two types: mutation that are unary operators and recombination that are n-ary
operators where n represent the number of solution candidates used for recombination.

Mutation A mutation is stochastic and unbiased transformation of a candidate solution. This
operator has also a theoretical role as mutation can guarantee the ergodicity of the algorithm, i.e.,
that the algorithm can visit the whole search space. However, it is important to note that this
property is realized only when the mutation operator allows to jump anywhere in the search space
with a non-zero probability which is not always the case for all mutation implementations. Muta-
tion for continuous variables is often achieved by modifying randomly some candidate solutions in
the population. Any probability distribution can be chosen to perform the modifications such as
the uniform distribution or the normal distribution.

Recombination A binary operator is called recombination or crossover and merges two or more
parents to create offsprings. As mutation, this operator can be deterministic or stochastic and
the parts inherited from one or another parent are random. Different recombination operators are
available such as one or two points recombination. One cutting point k is defined uniformly at ran-
dom and applied to two parents x, y, i.e., parents are divided in two x = (x1, . . . , xk, xk+1, . . . , xd)
and y = (y1, . . . , yk, yk+1, . . . , yd), d being the dimension of the problem. The new offspring z is
created by taking elements from one or the other parent, i.e., z = (x1, . . . , xk, yk+1, . . . , yd) An-
other possibility is the uniform recombination, i.e., the offspring is created by taken a coordinates
of one or the other parent at uniformly at random.

2.2.4 Evolution Strategies

Evolution Strategies (ES) are probably one of the simplest form of EA. They are mainly used in
continuous optimization and has one variation operator: a mutation operated by a multivariate
Gaussian. As an example, Algorithm 1 shows the pseudo-code of one of the simplest evolutionary
algorithm: the (1 + 1)− ES where there is one parent and one offspring.

Algorithm 1 (1 + 1)− ES for minimizing a black box problem f : Ω ⊆ Rd → R.

Generate the first solution x randomly.
Set σ the step size and C the covariance matrix used in the normal distribution.
while Stopping criterion do

Create y ← x+ σN (0, C). . Mutation
if f(y) ≤ f(x) then . Selection

Replace x by y.
end if

end while

17

CHAPTER 2. CONTINUOUS BLACK-BOX OPTIMIZATION ALGORITHMS

Some parameters are involved in the multivariate Gaussian as the standard deviation or step-
size σ and the covariance matrix C ∈Md×d(R), d being the dimension of the problem. Algorithm 1
has a constant population of one candidate solution but more generic algorithms can have more
parents, noted µ and/or more offsprings, noted λ. In ES, there can be two types of selection that
can be described by a particular notation:

• (µ/ρ+λ)−ES where the µ new parents are selected among the best offsprings only. In this
case, the fitness of the population is allowed to decrease;

• (µ/ρ, λ) − ES where the next generation of parents is created with the µ best solution
candidates contained in the full population, i.e., parents and offsprings. This configuration
is called an elitist selection as the fitness values in the population can only increase. The
(1 + 1)− ES is the simplest example of an elitist ES where the best solution is kept for the
next iteration.

The parameter ρ represents the number of parents used for recombination, i.e., ρ ≤ µ parents are
used for recombination.

2.3 The Covariance Matrix Adaptation Evolution Strategy
(CMA-ES)

In this section, we present the Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) [HO01] algorithm and many of its variants. Section 2.3.1 introduces the algorithm while
Section 2.3.2 presents the different variants.

2.3.1 Vanilla CMA-ES

The (µ/µw, λ)−ES or more commonly called CMA-ES [HO01] is an evolutionary algorithm that
was proposed by Hansen et al. in 2001. The parameter µ represents the number of parents, µw
the number of parents used in recombination and λ the number of offsprings. CMA-ES uses a
multivariate normal distribution N (m,C) to sample candidate solutions with m the mean of the
distribution and C, the covariance matrix. In the algorithm, the solution candidates are ranked by
fitness value, hence xi:λ is the i-th solution such that f(x1:λ) ≤ · · · ≤ f(xλ:λ). The new candidate
solutions, the λ offsprings, are generated with xi:λ ∼ m+ σN (0, C)2 where

• m ∈ Rd;

• σ ∈ R+, the standard deviation or step-size;

• C ∈Md×d(R) the covariance matrix, with d the dimension of the problem.

The goal of CMA-ES is to adapt the mean, the step-size and the covariance matrix in order to
guide the search, which takes the form of a sequence of sampling that evolves toward best solutions.

2.3.1.1 Evolution Paths

In general, the information about the evolution of parameters are lost over several generations. The
evolution path is a way to keep track of the evolution of a parameter over multiple generations.
Evolution path is a sequence of the successive steps that gives information about the search.

2∼ means “drawn” from

18

CHAPTER 2. CONTINUOUS BLACK-BOX OPTIMIZATION ALGORITHMS

The length of the evolution path can be measured: a long path results in consecutive steps in
the same directions whereas short paths results in steps that cancel out. This can be used to
update parameters, consecutive steps in the same directions could be replaced by a longer step
whereas steps that cancel out could be replaced by a shorter step [HO01]. The evolution path
can also be expressed as the sum of the length of its consecutive steps. This process is called
cumulation [OGH94].

2.3.1.2 Covariance Matrix Adaptation

Rank-one Update Rank-one is used to update the covariance matrix. The rank-one update
adaptation modifies the covariance matrix by adding a rank one matrix. To do so, a weighted sum
of the yi:λ is computed yw =

∑µ
i=1 wiyi:λ with yi ∼ N (0, C), xi = m + σyi, and using the µ best

candidate solutions. The weights wi are defined such as w1 ≥ · · · ≥ wµ > 0 and
∑µ
i=1 wi = 1.

The mean and the covariance matrix are then updated using yw and a learning rate c1 [AH21]

m←− m+ σyw (2.1)

C ←− (1− c1)C + c1µwywy
T
w ,whereµw =

1∑µ
i=1 w

2
i

≥ 1. (2.2)

An evolution path pc can be computed and used to update the covariance matrix

pc ←− (1− cc)pc +
√

1− (1− cc)2
√
µwyw (2.3)

C ←− (1− c1)C + c1pcp
T
c . (2.4)

Rank-µ Update Rank-µ update is an extension preferred for large population sizes and uses
the weighted empirical covariance matrix Cµ to update the matrix C and the learning rate cµ

Cµ =

µ∑
i=1

wiyi:λy
T
i:λ (2.5)

C ←− (1− cµ)C + cµCµ. (2.6)

The adaptation of the matrix have several properties [AH21]

• adaption of the covariance matrix learns pairwise dependencies between variables;

• adaption of the covariance matrix performs an iterative Principal Component Analysis (PCA)
where the principal components are the eigenvectors of the covariance matrix;

• adaption of the covariance matrix updates of the mean and covariance matrix can be inter-
preted as gradient descent;

• the rank-µ update can increase the learning rate for large populations.

The main difference between rank-one and rank-µ updates is the number of vectors used to up-
date the covariance matrix. In the algorithm, both rank-one and rank-µ updates can be combined
as in Algorithm 2.

19

CHAPTER 2. CONTINUOUS BLACK-BOX OPTIMIZATION ALGORITHMS

2.3.1.3 Step-Size Adaptation

On top of the adaptation of the covariance matrix, the step-size σ is also adapted during the
search. The adaptation is done using an evolution path to decide if the step-size should increase
or decrease based on its length. In order to decide if the evolution path is either too long or too
short, the path length is compared to its expected length. The expected length is computed as
every selection of solution candidate was made uniformly at random.

When the path is longer than expected, it means that most of the steps are in the same direction
and so σ will be increased. Conversely, if the path is shorter, σ will be decreased. The evolution
path pσ and the update of the step-size are computed as [AH21]:

pσ ←− (1 + cσ)pσ +
√

1− (1− cσ)2
√
µwyw (2.7)

σ ←− σ exp

(
cσ
dσ

(
‖pσ‖

E(‖N (0, I)‖)
− 1

))
, (2.8)

with I the identity matrix, cσ < 1 such that 1/cσ is the backward time horizon of the evolution
path and dσ the damping parameter.

2.3.1.4 Pseudo-Code of the CMA-ES Algorithm

By combining the evolution paths, rank-one and rank-µ updates and the step-size adaptation, the
pseudo-code of the (µ/µw, λ)-CMA-ES algorithm is given by Algorithm 2.

Algorithm 2 CMA-ES algorithm [AH21] for minimizing a black-box problem f : Ω ⊆ Rd → R.

Initialize C = I and pc = pσ = 0.
Set cc, cσ, cµ, c1, dσ and wi=1,...,λ.
repeat

for i = 1, . . . , λ do
xi ← m+ σyi, yi ∼ Ni(0, C) . Sampling

end for
m← m+ σyw . Mean update
pc ← (1− cc)pc +

√
1− (1− cc)2√µwyw . Covariance cummulation

pσ ← (1 + cσ)pσ +
√

1− (1− cσ)2√µwyw . σ cummulation
C ← (1− c1 − cµ)C + c1pcp

T
c + cµCµ . C update

σ ← σ × exp
(
cσ
dσ

(
‖pσ‖

E(‖N (0,I)‖) − 1
))

. σ update

until Stopping criterion

For more details, the interested reader can refer to this tutorial [Han16].

2.3.2 Modular CMA-ES Framework

Over the years, many variants of the CMA-ES algorithm were introduced. The Modular CMA-ES
framework [vRWvLB16] (ModCMA) comes with the idea to unify in the same framework most of
the CMA-ES variations introduced in the literature. In the framework, these variations are called
modules and compose the different variants of the CMA-ES algorithm. The general scheme of
the algorithm presented in Section 2.3 is the same but the way some components behave might be
modified, i.e., a different way to perform selection, to initialize parameters, to mutate or recombine
solution candidates, etc.

20

CHAPTER 2. CONTINUOUS BLACK-BOX OPTIMIZATION ALGORITHMS

The authors described 11 modules with two or three options available for each which results
in 4, 608 possible variants. These variants are labeled using a bit string of length 11, each bit
representing one module. Hence, the representation 00000000000 labels the vanilla CMA-ES (Al-
gorithm 2) while 11111111122 labels the variant with every module activated and the second choice
for the two last modules. The 11 modules are the following:

1. Active Update: [JA06] instead of updating the covariance matrix C with only the most suc-
cessful mutations, this module updates the matrix by also considering the least successful
solution candidates;

2. Elitism: the common selection strategies: comma-selection (µ, λ) and plus-selection (µ+ λ)
are available. The default option is the non-elitist comma-selection;

3. Mirror Sampling: [BAH+10] originally, all new samples are drawn from the normal distri-
bution. When this module is activated, a number of vectors corresponding to half of the
population is drawn from a Gaussian distribution. These vectors are then added or sub-
tracted to the parents to create symmetric offsprings;

4. Orthogonal Sampling: [WEB14] this module was later added to mirror sampling. First, the
samples are drawn from a normal distribution (or using mirror sampling). Then, the Gram-
Schmidt process is applied to the samples. This method is used for orthonormalizing a set
of vectors.

5. Sequential Selection: [BAH+10] instead of evaluating all λ offsprings, this module evaluates
sequentially the new solution candidates and stops when any improvement has been found;

6. Threshold Convergence: [PER+15] in order to prevent the search from ending in a local
optimum, this module forces the algorithm to stay in the exploration phase by defining a
length threshold that new vectors need to reach. This threshold is then decreased after every
generation to transition in a exploitation phase;

7. Two-Point Step-Size Adaptation (TPA): [Han08] in the two-point adaptation variant, two
solution candidates are evaluated right after the mean has been updated using a test width
parameter. Usually these solution candidates are chosen to be symmetrical to the mean.
Depending on their relation, the step-size is either increased or decreased;

8. Pairwise Selection: [ABH11] in mirror sampling, there can be a bias as two mirrored vectors
can cancel each other in recombination. To avoid this bias, pairwise selection was introduced
and select the best offspring out of each mirror pairs;

9. Recombination Weights: [vRWvLB16] instead of the traditional weight vector w, the arith-
metic mean is used wi = 1/µ;

10. Quasi-Gaussian Sampling: [AJT05] instead of drawing samples from a Gaussian distribution,
new solutions are generated by a quasi-random uniform sequence and then transformed into
a normal distribution. The two alternatives proposed are a Soboĺ sequence or a Halton
sequence;

11. Increasing Population Size: during a restart, using the remaining budget more effectively
can be achieved by increasing the population size (IPOP) [AH05]. Then, a bi-population
(BIPOP) [Han09] alternative was proposed which alternates with larger and smaller popula-
tion sizes.

21

CHAPTER 2. CONTINUOUS BLACK-BOX OPTIMIZATION ALGORITHMS

2.4 Differential Evolution (DE)

Differential Evolution was first proposed by Storn and Price [SP97] in the late 1990s, especially
for continuous optimization. DE evolves a population of n solution candidates, denoted NP . The
population is represented by d-dimensional vectors, d being the dimension of the problem. The
main idea in DE is to create a new mutation operator based on vector differences in order to
perturb the population.

2.4.1 Initialization and Mutation

An initial population p0 of k ≥ 4 solutions is generated uniformly at random. Its i-th candidate
solution is denoted xi = (x1, . . . , xd) A mutant solution x′ is then generated by adding a pertur-
bation vector τ where τ = F × (y − z), with F ∈ [0, 2] the scaling factor, and y, z two solutions
in the population different from x. Different variants have been proposed to do this perturbation,
some variants propose to choose the best candidate solution found so far to be the mutant instead
of a random one, other variants will use five solution candidates instead of three. Put differently,
four candidate solutions will be used to create the mutant instead of two. In DE algorithms these
choice are coined a strategy which is denoted by DE/x/y/z where:

• x is the way the mutant vector is chosen, i.e., randomly or using the best found so far;

• y is the number of candidate solutions used in the mutation, i.e., 1 stands for three candidate
solutions and 2 for five candidate solutions;

• z denotes the crossover scheme, e.g., binomial (bin) or exponential (exp). For the binomial
crossover, each coordinate of the offspring may be coming from one or the other parent. For
the exponential crossover, blocks of consecutive coordinates of the offspring belong to the
first or second parent. See below for further explanations.

2.4.2 Crossover

In DE algorithms, the crossover probability is noted CR ∈ [0, 1]. To avoid that the result of the
crossover creates just a copy of the second parent, at least one coordinate, chosen at random, is
modified with probability 1. Other coordinates are modified with probability CR. This crossover
scheme is named binomial crossover in DE framework and is the classical uniform crossover in
evolutionary algorithms [Zah06]. Algorithm 3 presents the pseudo-code of this crossover type.

Algorithm 3 Binomial Crossover [Zah06].

Perform crossover between x and y.
Choose k randomly in {1, . . . , d}.
for j = 1, . . . , d do

if rand(0, 1) < CR or j = k then
zj ← yj

else
zj ← xj

end if
end for

Another type of crossover is often used in DE, the exponential crossover. Exponential crossover
can be seen as a two-point crossover [Zah06]. The offspring is first composed of the elements of the

22

CHAPTER 2. CONTINUOUS BLACK-BOX OPTIMIZATION ALGORITHMS

first parent. Starting from a random point k ∈ {1, . . . , d}, elements of the second parents replace
the elements of the first parent with probability CR. Algorithm 4 displays the pseudo-code of this
crossover type where 〈j + 1〉n is j + 1 if j < n and is 1 if j = n.

Algorithm 4 Exponential Crossover [Zah06].

Perform crossover between x and y.
Choose k randomly in {1, . . . , d}, z = x, j = k, L = 0.
z ← x
repeat

zj ← yj
j ← 〈j + 1〉n
L← L+ 1

until rand(0, 1) > CR or L = d

2.4.3 Template of a Differential Evolution Algorithm

Using the definition of mutation and crossover above, Algorithm 5 displays a general template for
a DE algorithm. The keyword strategy denotes the mutation type whereas crossover defines the
crossover type.

Algorithm 5 Differential Evolution [SP97]for minimizing a black-box problem f : Ω ⊆ Rd → R.

Choose F ∈ [0, 2], CR ∈ [0, 1].
Choose a mutation strategy and a crossover type.
Generate randomly a population P of NP solution candidates, g = 0.
repeat

for i = 1, . . . ,NP do
Vi,g ← strategy . Mutation

end for
for i = 1, . . . ,NP do

Ui,g ← crossover . Crossover
end for
for i = 1, . . . ,NP do

if f(Ui,g) ≤ f(Xi,g) then
Xi,g+1 ← Ui,g . Selection

end if
if f(Ui,g) ≤ f(Xbest,g) then

Xbest,g ← Ui,g
end if

end for
g ← g + 1

until Stopping criterion

2.5 Particle Swarm Optimization (PSO)

Particle Swarm Optimization is a population-based, stochastic search algorithm introduced in the
late 1990s by Kennedy, Eberhart, and Shi [KE95, SE98]. PSO was first developed to solve con-

23

CHAPTER 2. CONTINUOUS BLACK-BOX OPTIMIZATION ALGORITHMS

tinuous, multi-dimensional, boundary constrained and single objective problems. The population
is represented by a swarm of particles where each particles is a candidate solution. The position
updates of particle i at a time step t+ 1 is computed as follows

xi(t+ 1) = xi(t) + vi(t+ 1), (P)

where v is the velocity or the step size and the first particles are generated uniformly at random.

2.5.1 Parameters

The performance of PSO is sensitive to the different control parameters of the algorithm [EC21].
The velocity is the mechanism that drives the optimization process, velocity is updated by

dimension j [SE98]

vij(t+ 1) = wvij(t) + c1r1j(t)[yij(t)− xij(t)] + c2r2j(t)[ŷij(t)− xij(t)], (V)

with w ∈ R is called the inertia weight, c1, c2 ∈ R>0 are positive acceleration coefficients, and
r1j(t), r1j(t) ∼ U(0, 1). yi(t) is the best position for particle i whereas ŷi(t) is the best position in
the neighborhood of yi(t). The best position in the neighborhood depends on the neighborhood
topology (see Section 2.5.2). The previous velocity wvi(t) has an inertia component and represents
the memory of previously chosen direction. The inertia component also prevents the swarm from
changing completely of direction [EC21].

The inertia weight w is used to control the step sizes and is usually used to balance the trade-off
between exploration and exploitation, i.e., large values will favor exploration whereas small values
will encourage exploitation.

The acceleration weights c1 and c2 are called the cognitive and social components, respectively.
The cognitive component represents the nostalgia as it reflects the memory of previous best po-
sitions. The social component reflects the envy as it is related to the performances of relative
neighbors. Depending the relation between these two components, some behavior of the algorithm
are known [EC21]:

• c1 > 0, c2 = 0: particles are hill-climbers and perform a local search;

• c1 = 0, c2 > 0: the swarm is a hill-climber;

• c1 = c2 > 0: particles are attracted towards ŷi;

• c1 > c2: promotes exploration;

• c1 < c2: promotes exploitation.

2.5.2 Neighborhood Topologies

In PSO, the neighborhood topologies are components that guide the search [Ken99]. They deter-
mine the parts of the search space that is used to determine best positions and control the speed
of the information given to the swarm [EC21]. These neighborhood are based on particle indices
and not spatial information. While many topologies have been proposed throughout the years, the
three most popular are the star topology, the ring topology and the Von Neumann topology (see
Figure 2.2 for a graphical representation of these topologies).

24

CHAPTER 2. CONTINUOUS BLACK-BOX OPTIMIZATION ALGORITHMS

Figure 2.2: Popular neighborhood topologies: star (left), ring (center) and Von Neumann (right),
taken from [EC21]. Topologies define neighborhood based on particle indices and not spatial
information.

Algorithm 6 Particle Swarm Optimization for minimizing a black-box problem f : Ω ⊆ Rd → R.

Generate a swarm of x ∈ Rd.
Set the best known position for each candidate solution yi to the initial solution xi.
while Stopping criterion do

for i = 1, . . . , n do
if f(xi) ≤ f(yi) then

yi ← xi
end if
for particles î with i in its neighborhood do

if f(yi) ≤ f(ŷî) then
ŷî ← yi

end if
end for

end for
for i = 1, . . . , n do

Update velocity using (V).
Update position using (P).

end for
end while

25

CHAPTER 2. CONTINUOUS BLACK-BOX OPTIMIZATION ALGORITHMS

2.5.3 Algorithm Pseudo-Code

Given the choices of parameters (inertia, cognitive and social components) and the choice of neigh-
borhood topology, the pseudo-code of a Particle Swarm Optimization algorithm is shown on Al-
gorithm 6.

2.6 Direct Search Methods

2.6.1 Nelder-Mead Downhill Simplex

The Nelder-Mead algorithm was published in 1965 [NM65] and is a geometrical method to find a
minimum of a function without derivatives. The algorithm is transforming a simplex S until the
simplex is small enough to pass a termination criterion and outputs the best fitness value of one
vertex of the simplex.

The Nelder-Mead algorithm is a generalization of the method proposed by Spendley et
al. [SHH62] where only two transformations were available: reflection and shrinkage which al-
lowed the simplex to change size but not shape Nelder and Mead then allowed two other possible
transformations: expansion and contraction which also allow the sample to have another shape.

Algorithm 7 Nelder-Mead Downhill Simplex [NM65] for minimizing a black-box problem f : Ω ⊆
Rd → R.

Generate a simplex S of d+ 1 vertices xi around x0.
while Stopping criterion do

Order fitness values and label the worst point xh, the second worst xs and the best point xl.
Compute the centroid c of the best side: c = (

∑
j 6=h xj)/n.

if Contraction, reflection or expansion gives a better point than xh then
Replace xh by the new point.

else
Perform shrinkage towards xl and create d new vertices.

end if
end while

The algorithm is controlled by four parameters, one for each transformation: α (reflection), β
(contraction), γ (expansion) and δ (shrinkage). These parameters should satisfy some constraints:
α > 0, 0 < β < 1, γ > 1, γ > α, 0 < δ < 1. The transformations mentioned in Algorithm 7 are
defined below. In each figure representing the transformation: Figure 2.3a for reflection, Figure 2.3b
for expansion, Figure 2.4 for contraction and Figure 2.5 for shrinkage, the initial simplex S in R2

is represented in red whereas the new simplex formed by the transformation is displayed in blue.

Reflection: compute xr = c+ α(c+ xh), if f(xr) < f(xs), accept xr as new vertex;

Expansion: compute xe = c+ γ(xr − c), if f(xe) < f(xr), accept xe as new vertex;

Contraction: if f(xr) ≥ f(xs), compute xc with the best point between xh and xr, xc = c +
β(xh,r − c. If f(xc) ≤ f(xr), accept xc, if f(xc) < f(xh), accept xc, otherwise perform
shrinkage;

Shrinkage: compute d vertices x such that xj = xl + δ(xj − xl).

The Nelder-Mead algorithm usually stops when almost no improvement is done between two
iterations of the algorithm or when the simplex is too small. It is very common to keep this

26

CHAPTER 2. CONTINUOUS BLACK-BOX OPTIMIZATION ALGORITHMS

xxhh
xxll

xxss

cc

xxrr

(a) Reflection

xxhh
xxll

xxss

cc

xxrr

xxee

(b) Expansion

Figure 2.3: Example of simplex reflection and expansion.

xxhh
xxll

xxss

cc

xxrr

xxcc

(a) Contraction inside initial simplex

xxhh
xxll

xxss

cc

xxrr

xxcc

(b) Contraction outside initial simplex.

Figure 2.4: Example of simplex contraction.

xxhh
xxll

xxss

Figure 2.5: Example of simplex shrinkage.

27

CHAPTER 2. CONTINUOUS BLACK-BOX OPTIMIZATION ALGORITHMS

termination criterion even if the total budget of the search is not spent as direct search methods
usually finish the search in a basin of attraction of a local or global optimum. The strategy to
spend efficiently the whole budget is to perform random restarts of the algorithm, i.e., when no
improvement is found, the algorithm starts again with a new simplex sampled randomly in the
search space.

2.6.2 Powell’s Method

Powell’s conjugate direction method, abbreviated in Powell’s method is a direction set method
introduced in 1963 [Pow64] to find local minimum in functions with no assumption on the
function. The basic idea of the algorithm is to perform successive one-dimensional optimiza-
tions along well chosen directions. If we denote ei the vectors of the orthonormal basis, i.e,
ei = {0, . . . , 1︸︷︷︸

i

, 0, . . . , 0}, the first directions are vectors of the basis and new directions are

chosen using the current best point. Different choices can be made for the one-dimensional opti-
mization but usually this optimization is performed using either the Golden-section search [Kie53]
or Brent’s method [Bre71]. The pseudo-code of the method is displayed in Algorithm 8.

Algorithm 8 Powell’s method [Pow64] for minimizing a black-box problem f : Ω ⊆ Rd → R.

Choose a random candidate solution x0.
Set current solution x← x0.
Set the cycle of direction C with ci = ei, i = 0, . . . , d.
while Stopping criterion do

for i = 1, . . . , d do
Perform a one-dimensional optimization along the direction ci starting from x.
x← xi

end for
Remove the direction cj that lead to the best fitness improvement.
Add the direction xd − x0 at the end of the cycle C.

end while

As the Nelder-Mead algorithm, when no improvement is found, a restart strategy can be done
by starting the method with another random point.

2.7 L-BFGS-B Algorithm

The L-BFGS-B algorithm is a variant of the Broyden–Fletcher–Goldfarb–Shanno algorithm
(BFGS) [Fle87] for limited computer memory and box constrained problems. L-BFGS-B is an
algorithm from the quasi-Newton methods that aims at finding the minimum of objective func-
tions.

The algorithm works by performing a gradient descent in order to estimate the Hessian matrix
to guide the search towards promising areas. As we are in a black-box optimization context, the
function f may not be differentiable and no information on the gradient is known. To cope with this
non-differentiability, the BFGS algorithm is estimating the gradient using forward finite differences,
a numerical method often used to approximate derivative and solve differential equations.

28

CHAPTER 2. CONTINUOUS BLACK-BOX OPTIMIZATION ALGORITHMS

2.8 Automated Algorithm Configuration

2.8.1 Motivation

The main motivation for automatic algorithm configuration (AC) comes from the idea that, in
various domains, algorithms generally have parameters and humans do not have good intuitions
to find good parameter settings. Algorithms presented above in this section are no exceptions as
they possess different design choices. Three different types of design choices and parameters can
be defined [SL21]:

Numerical: integer or real valued parameters such as the population size, the mutation and the
crossover probability in Differential Evolution 2.4;

Categorical: parameters that describe different design choices. For instance, in Differential Evo-
lution (Section 2.4), the crossover type is a categorical parameter, either binomial or expo-
nential crossover;

Ordinal: parameters that have ranks but are not numerical, i.e., different sizes of neighborhoods
such as small, medium or large.

Some of these parameters may be conditional, i.e., activated only if needed. Hence, as the pa-
rameter space can be large, finding a set of parameters that achieve good performances may be
difficult. The traditional approaches to tune parameters of an algorithm are of three kinds: trial-
and-error, theoretical based or grid search. The trial-and-error is mostly guided by one’s expertise
or intuition and thus, is limited in the exploration of the parameter space. Tuning an algorithm
based on theoretical results may not be preferable for complex or real-world problems. Theoretical
analyses are restricted to synthetic benchmarks. The transfer of these results to complex real-world
problems is not straightforward. Grid search is in between manual and automatic configuration
but is often limited when the parameter space is large. Instead of doing the search manually, it is
worth exposing parameters and design choices and let automatic procedures search the parameter
space to find good configurations.

2.8.2 Automated Algorithm Configuration Methods

The automated algorithm configuration operates as showed in Figure 2.6 regardless of the param-
eter type. First the configurator samples a configuration for a target algorithm. The configuration
is evaluated on a set of instances of the problem at hand and returns a solution cost. The cost can
be the average running time of the algorithm, the average solution quality obtained or any cost
function that fits the purposes of the user. Given this cost, the configurator will sample a new
configuration to be evaluated. Over the years, many methods based on different underlying ideas
were introduced to implement the configurator part of the workflow. Algorithm configuration is
itself an offline stochastic black-box optimization problem which can be discrete, continuous, or
mixed discrete-continuous. Among the common methods for algorithm configuration are iterated
local searches in the parameter space such as ParamILS [HHLS09], methods based on surrogate
models to predict performances such as SMAC [HHL11], racing methods like F-race [BSPV02]
or irace [LDLP+16] where worst algorithm are discarded based on statistical testing, and bandit-
based approaches such as hyperband [LJD+17]. More details about configurators can be found
in [SL21].

In this thesis, automated algorithm configuration is used in Chapter 8 to create instance specific
solvers. Surprisingly, we found difficult to obtain configured algorithms that were performing better
than their default configuration.

29

CHAPTER 2. CONTINUOUS BLACK-BOX OPTIMIZATION ALGORITHMS

Algorithm

Instances
Evaluating Configuration

Configurator

Create parameter
settingsPerformance

measure of the
configuration

Figure 2.6: Algorithm Configuration workflow.

30

Chapter 3
Landscape-Aware Algorithm Selection

Contents
3.1 Motivation . 31

3.2 Landscape-Aware Algorithm Selection 32

3.3 Landscape-Aware Algorithm Selection Pipeline 33

3.3.1 Training Phase . 34

3.3.2 Testing Phase . 35

This chapter present the background on landscape-aware algorithm selection, also called Per-
Instance Algorithm Selection (PIAS). In Section 3.1, we motivate the use of a landscape-aware al-
gorithm selection. Section 3.2 presents the algorithm selection problem introduced by Rice [Ric76]
while Section 3.3 describes the different components required to perform landscape-aware algo-
rithm selection. Finally, Section 8.2.2 introduces automatic algorithm configuration and how can
algorithm configuration can interconnect with landscape-aware algorithm selection.

3.1 Motivation

Automated algorithm selection is a broad domain composed of several techniques such as landscape-
aware algorithm selection. Landscape-aware algorithm selection is at the boundary between black-
box optimization and Machine Learning. Landscape-aware algorithm selection aims to learn a
mapping between features measures and the performances of algorithms.

The idea of this approach is based upon the performance complementarity of solvers. This
complementarity has been observed for most of NP-hard optimization problems such as satisfiabil-
ity [XHHL11], planning [VHCM15], traveling salesperson problem [KKB+18] and also continuous
optimization problems [KHNT19].

Hence, it is likely that the best performing algorithm on the sphere function (Figure 3.1a) which
is unimodal, highly symmetric and convex will not be the same as the best algorithm solving the
Gallagher’s Gaussian 21-hi Peaks Function (Figure 3.1b). The latter is composed of 21 local optima
randomly chosen where only one is global and located in a basin with high conditioning, i.e., points
around the optimum are solutions with high fitness values.

31

CHAPTER 3. LANDSCAPE-AWARE ALGORITHM SELECTION

(a) Shpere function (b) Gallagher’s Gaussian 21-hi Peaks Function

Figure 3.1: Example of two objective functions from the Black-Box Optimization Benchmark
(BBOB), taken from [HAR+21].

3.2 Landscape-Aware Algorithm Selection

The algorithm selection problem was first introduced in 1976 by Rice [Ric76]. Given a problem,
algorithms to solve this problem, and a specific instance of this problem to solve, the goal is to
determine which algorithm can be expected to solve the instance.

To formulate the landscape-aware algorithm selection problem in a black-box optimization
context, we need:

• a set of instances of an optimization problem I ⊂ P;

• a set of k algorithms solving the problem, A = {A1, . . . , Ak};

• a set of l features characterizing the problem, Φ = {ϕ1, . . . , ϕl} (see Chapter 4);

• a performance measure providing the quality of an algorithm on a particular instance, m :
A× I → R.

Using these elements, a selector S is constructed. The selector is a function that outputs an al-
gorithm given a problem instance, S : I → A. For each instance i ∈ I, the selector outputs an
algorithm to solve the instance by minimizing the performance measure m. To choose the appro-
priate algorithm, the selector relies on features. These features help the selector to discriminate
between different problem instances. The goal is to find a selector that has the closest possible
performances to the perfect selector.

In practice, the selector does not have a perfect efficiency. To measure the quality of a selector,
two bounds are defined [KHNT19]. The lower bound is defined by the performances of the perfect
selector, also called the oracle selector or Virtual Best Solver (VBS) [KHNT19] This selector
chooses the best performing algorithm in the portfolio given any instance. The upper bound is
established by the performances of the Single Best Solver (SBS) [KHNT19], i.e., the algorithm
A′ ∈ A with the best performances among the k algorithms in A. Worse performances than the

32

CHAPTER 3. LANDSCAPE-AWARE ALGORITHM SELECTION

SBS implies that there is no need to perform an automated selection as a single algorithm obtain
better results.

Moreover, the ratio between performances of the SBS and VBS gives the amount of gain that
can be achieved by performing an automated algorithm selection. This ratio is linked to the
performance complementarity of the algorithms in the portfolio. This ratio is also called the VBS-
SBS gap [KHNT19]. Put differently, a small gap indicate that performances of the SBS are close
to those of the VBS and thus suggests that there is only a small complementarity in the portfolio.
The performance of the selector Ps can be evaluated using a measure of merit [CDL+21] that
compares the performance of the selected solvers to both the SBS PSBS and VBS PVBS. First the
difference between the recommended solver performance and the VBS performance as such as the
difference between the SBS performance and the VBS performance. the merit computes the ratio
between these two differences

merit =
Ps − PVBS

PSBS − PVBS
.

3.3 Landscape-Aware Algorithm Selection Pipeline

The landscape-aware algorithm selection pipeline is divided into two distinct parts:

1. a Train part which correspond to the phase where the selector is built;

2. a Test part where the selector is actually used to solve an unknown instance of the problem.

Figure 3.2 regroups all the steps needed in order to perform an automated algorithm selection
procedure. In the following sections, we will describe practically the steps of this pipeline for both
the Train (Section 3.3.1) and Test 3.3.2) parts.

Features

Training
Instances

Performances

Algorithms

Perf.-Design
Mapping

Algorithm

Real Problem

Solution

Design of
Experiments

Learn Select

Run

Train Test

Extract

Figure 3.2: Landscape-aware algorithm selection pipeline.

33

CHAPTER 3. LANDSCAPE-AWARE ALGORITHM SELECTION

3.3.1 Training Phase

3.3.1.1 Algorithms

To define the landscape-aware algorithm selection pipeline, we need to select which algorithms are
going to compose the portfolio of available algorithms. In general, we can expect from a diverse
portfolio of algorithms favor better performances of the approach than a portfolio composed of
similar algorithms.

3.3.1.2 Training Instances

Creating a set of training instances is a crucial and often difficult part, especially when real-world
problems are involved. In order to be able to generalize to test instances, the training instances have
to be both diverse and representative [BDB+20]. When the training instances have no diversity,
then the automated algorithm selection is no use as the selection process is done on similar instances
and might not be able to generalize to the test instances.

There are techniques that permits to visualize the diversity of training instances [BDB+20].
The first way is to look at the feature space of the training instances, i.e., when the distribution
of instances in the feature space is dense, the set is not diverse. Another possibility is to look at
the performance space of the portfolio. Different algorithms performing best on different instances
might indicate that the benchmark set is diverse. Finally, one can look at the instance space [ST12]
which combines the information of the feature space and the performance space as regions of the
feature space are associated with the algorithm performing best on these regions.

Moreover, the instances have to be representative of the type of instances that can be found in
the test set. In general, the application or the problem is known in advance. For example, before
solving the problem, we know that the instance to solve will be a Traveling Salesperson Problem
(TSP) instance or radar network configurations instance. Therefore, we can build a training set
by instantiating some instances of the appropriate problem type.

3.3.1.3 Performance Measures

The choice of the performance measure can have a huge impact on the selection and should be
chosen carefully to match the user’s goal. Commonly, performance is measured by the solution
quality (fixed-target), or related to time (fixed-budget).

Fixed-target performance measures are mostly used when the global optimum is known or when
the end user have some criteria that has to be met, to match a regulation for example. Different
measures can be designed such as the proportion of runs reaching the target or the average time
an algorithm takes to reach the target.

Fixed-budget performances are usually measured based on CPU time or number of function
evaluations. The CPU time makes comparisons difficult between different hardware configuration
but is easier to grasp. For some particular cases, the user might have time restriction, such as,
“an algorithm should run no more than 10 minutes”. In this case, CPU time is a well suited
measure. The number of function evaluations is more standard when we want to compare different
algorithms. As metaheuristic solvers are stochastic, multiple runs are performed to gather their
performances. Different methods may be used to gather performances as Expected Running Time
(ERT) [HAR+21], Empirical Attainment Function (EAF) [LPS10] or Expected Target Value. The
way these performances are aggregated may have an impact on the selection, i.e, an expected
target value taking the median or the 2% quantile of the runs may differ a lot.

34

CHAPTER 3. LANDSCAPE-AWARE ALGORITHM SELECTION

3.3.1.4 Features

Features characterize problem instances. They can be of three types:

1. Measurements: real numbers coming from generic computations such as exploratory land-
scape analysis. As samples that are used to compute features are not deterministic, multiple
independent runs are performed. See Chapter 4 for more details;

2. Modeled: problem specific values. This type of feature represents information about the
problem instances such as the dimension or the computational resources to solve the problem;

3. Indirect: features from the analysis of the source code of software [PK20].

3.3.1.5 Mapping between Features and Algorithm Performance

The goal of the mapping is to learn the dependencies between feature vectors and algorithm data
on each instance. The algorithm data can refer to the best performing algorithm by instance or to
the performance of algorithms on each instance. The mapping is often inferred through machine
learning and represent the core part of the selector. Building the mapping can be seen as learning
a function where the inputs are information on an instance, i.e., feature vectors and algorithm
performance. The output of this function is the best performing algorithm on this instance.

Over the years, different techniques have been used to create this mapping as classification,
regression, and clustering [LHHS15, Tan21a].

Classification: Usually, a multiclass classification model [KHNT19, BMTP12] is built in order
to predict the best algorithm A∗ ∈ A for a given instance. The instance is represented by a feature
vector.

We can also possible perform a pairwise classification [XHHL11] where models for each pair of
algorithms are built. The output of the selector is the algorithm that was the most selected in all
pairs for the instance to solve. Nevertheless, the major drawback of using classification is that the
ranking of the non selected solvers and their performances are not considered.

Regression: One way to cope with the drawback of classification is to perform regression to
construct the mapping [XHHLB08, BDSS17, JPED21]. By building k models, one by algorithm,
one can select the algorithm that has the best predicted performance. Using regression, we know
the ranking of best performing algorithms by instance. Knowing this ranking, the selector can
recommend the a, a ≤ k first algorithms instead of only one.

As for classification, pairwise regression models that predict the performance differences be-
tween pairs of solvers on one instance can be constructed. The best algorithm is chosen based on
the sum of the predicted performances [KHNT19].

Clustering: Clustering is used in [KMST10]. Clusters of training instances are created based on
feature values using a k-means algorithm [HE03]. The best performing algorithm is selected based
on the performances of algorithms on each cluster of instances.

3.3.2 Testing Phase

3.3.2.1 Real Problem

The “real” problem is a new unknown instance to solve for which we need to find the appropriate
solver.

35

CHAPTER 3. LANDSCAPE-AWARE ALGORITHM SELECTION

3.3.2.2 Features

Landscape features are computed on the optimization problem at hand. The vector of features of
the real problem to solve is then fed to the mapping in order to compare it to the instance vectors
of features in the benchmark. In contrast to the learning phase, computing features based on one
sample is common to gain computation time.

3.3.2.3 Algorithm and Solution

The algorithm is the output of the mapping, i.e., it is the algorithm that the mapping supposes
best suited to solve the problem. The solution obtained is the result of the run of the algorithm
given by the mapping or the result of the best run if multiple runs can be performed.

36

Chapter 4
Characterizing Problem Instances via
Landscape Features

Contents
4.1 Fitness Landscape Analysis . 38

4.1.1 Motivation . 38

4.1.2 Fitness Landscape Characteristics . 38

4.1.3 Fitness Landscape Techniques . 39

4.2 Exploratory Landscape Analysis . 40

4.2.1 y-Distribution Feature Set (yD) . 40

4.2.2 Meta Model Feature Set (mm) . 41

4.2.3 Nearest Better Clustering Feature Set (nbc) 43

4.2.4 Dispersion Feature Set (disp) . 44

4.2.5 Information Content Feature Set (ic) . 45

4.2.6 Principal Component Analysis Feature Set (pca) 46

4.2.7 Level Set Feature Set (ls) . 47

4.2.8 Cell-Mapping Feature Sets . 47

4.2.9 SOO Feature Set . 47

4.2.10 Expensive Feature Sets . 48

In this chapter, we present methods introduced in the literature that characterize problem
instances.

Section 4.1 describes the general concept of fitness landscape analysis and some techniques that
can be used to characterize problem instances.

Section 4.2 presents one particular technique, i.e., exploratory landscape analysis (ELA). This
technique is widely used for characterizing black-box optimization problems via features. In this
section, we present a list of most features from ELA. These features will be studied in Chapter 5
and used to solve the radar network configuration problem in Chapter 9.

37

CHAPTER 4. CHARACTERIZING PROBLEM INSTANCES VIA LANDSCAPE FEATURES

4.1 Fitness Landscape Analysis

4.1.1 Motivation

The concept of a fitness landscape was first introduced in the 30’s by Wright in biology [Wri32] to
study the evolution of species. It has been extended to other numerous domains such as statistical
physics, molecular evolution, and ecology. The idea behind fitness landscape is to visualize the
distribution of genotypes and to describe how easily one genotype is reached from another one.

In our context of black-box optimization, a genotype represents a candidate solution. A fitness
landscape combines three elements [Sta02]:

1. a set X ⊆ Ω of candidate solutions x;

2. a notion of distance or neighborhood on Ω;

3. a fitness function f : Ω→ R.

For instance, in the case of continuous optimization problems, the set Ω ⊆ Rd, where d is
the dimension of the problem, represents the search space and is commonly equipped with the
Euclidean distance. The fitness function f is represented by the objective function to minimize.
Here, we took the example of numerical optimization but the same approach is also valid with
combinatorial optimization, search spaces of programs (as in Genetic Programming) and so on.
Fitness landscape has also been extended from the original definition to multiobjective landscapes,
violation landscapes (i.e., landscapes characterizing constraints applied on objective functions),
dynamic landscapes, and many more [Mal21].

4.1.2 Fitness Landscape Characteristics

The goal of fitness landscape analysis is to find characteristic properties of optimization problems
that could influence the performance of algorithms solving these problems. While some character-
istics are linked to the objective function only (e.g., number of local optima, separability), others
may directly influence the performance of algorithms (i.e., localization of optima in the search
space). Some characteristics are presented in sections below and more can be found in [ME13].

4.1.2.1 Local Optima

A candidate solution x̄ is said to be a local optimum when in a neighboring set of candidate
solutions x̄ = {x ∈ Ω | f(x) ≤ f(y)∀y ∈ Nδ(x)} with Nδ(x) = {z ∈ Ω | ∆(x, z) ≤ δ}. An optimum
x∗ is said to be global when in the set of local optima f(x∗) ≤ f(x̄). While unimodal functions
possess only one local optimum, which is also the global optimum, multimodal functions have more
than one local optima. The number and localization of local optima in the search space can have
an impact on the search.

The distribution of these local optima is referred as ruggedness: a rugged landscape consists in
neighboring points with very different fitness. As mentioned in [MF04], ruggedness of a landscape
may affect the search as it is possible for an algorithm to get stuck in a local optimum which can
slow down or compromise the search for global optimum.

4.1.2.2 Basins of attraction

The notion of basin of attraction is related to an attractor. In our case, we will focus on the basins
of attraction where the attractor is a local optimum. That is, the set of solutions for which there

38

CHAPTER 4. CHARACTERIZING PROBLEM INSTANCES VIA LANDSCAPE FEATURES

exists a sequence of neighbors starting from a local optimum, that is monotonic in the objective
function. Both size and depth of the basin can affect the search. A needle-in-a-haystack problem
will have one global optimum with a very small and deep basin that will be hard to reach, whereas
problems with large basins around the global optimum are easier to solve.

4.1.2.3 Separability

A function f is called separable when it can be additively or multiplically decomposed as such

f(x1, . . . , xn) =

n∑
k=1

fk(xk),

or,
n∏
k=1

fk(xk).

(4.1)

When a function f is separable, the global optimum can be reached by optimizing each coordi-
nate independently. Thus, separable functions are easier to optimize since line search is an easy task
that can be performed for instance with a Newton’s method or the Nelder-Mead method [NM65].

In real-world problems, fully separable functions are quite rare. Nevertheless, it is possible to
encounter a partially separable function. Partially separable functions can be written as a sum
or multiplication of sub-functions that depend on disjoint sets of variables. Hence, finding the
optimum can be achieved by optimizing independent coordinates separately.

4.1.2.4 Neutrality/Plateaus

Neutrality corresponds to the degree to which a landscape contains areas of equal fitness that
are connected. Neutrality was first introduced by Kimura [Kim68] in biology. If a considerable
number of mutations have no effect on fitness values, the result is a neutral landscape represented
by plateaus.

4.1.2.5 Deception

Deception is known as the presence of misleading information in the landscape [ME13]. Deception
is related to the structure of the distribution of optima and is related to the fact that misleading
information can be present and guide the search in an unsuccessful direction. Deception is linked
to a particular algorithm, i.e., a problem can be deceptive for some algorithms but not for others.

4.1.3 Fitness Landscape Techniques

Fitness landscape techniques aim at measuring via features the fitness landscape characteristics.
Fitness landscape techniques were developed in order to create features that can measure different
characteristics of an optimization problem. For instance, the correlation length [Wei90] seeks
to measure the ruggedness of the landscapes. Fitness distance correlation [JF95] is designed to
measure the deception property. Local Optima Networks [OTVD08] (LON) are designed to give
an insight on the global structure of the landscape.

The most common drawbacks of these techniques are the following:

• Some of these techniques such as fitness distance correlation, require the knowledge of the
global optima, which is unlikely in a black-box optimization context;

• some techniques (e.g., LONs) require the evaluation of the whole search space;

39

CHAPTER 4. CHARACTERIZING PROBLEM INSTANCES VIA LANDSCAPE FEATURES

• the code to compute these features is often not available: most of the proposed features lack
an open-source implementation to compute them.

Different fitness landscape techniques have been introduced over the years and most of them
are described in [ME13] or [Mal21].

In continuous single-objective optimization, several properties are relevant to characterize a
problem such as its separability, its multimodality, its global structure or plateaus. However, these
high-level properties [MBT+11] are difficult to quantify as some require knowledge of the entire
problem a requirement typically not met in a black-box optimization context. To overcome this
difficulty, Mersmann et al. [MBT+11] introduced low-level properties. We compute low-level prop-
erties using sample observations of the underlying problem. Low-level properties are expressed by
numerical values computed using sample observations of the underlying problem.

4.2 Exploratory Landscape Analysis

Exploratory Landscape Analysis (ELA) is a practical way to characterize and quantify problem in-
stance properties. ELA features represent black-box optimization problems by means of numerical
values.

To characterize optimization problems, several landscape features were introduced to such as
dispersion [LW06], ELA features [MBT+11], information content [MKH15], nearest better cluster-
ing [KPWT15], principal component analysis [KT19b], and SOO-based features [DLV+19].

To be computed, these features relies on n sample points x of dimension d. Some of them may
also rely on the fitness values associated with these sample points f(x).

A lot of these features can be computed via the R package flacco [KT19b]. Recent development
of landscape analysis methods can be found in [Mal21]. In the following we describe the most
relevant landscape features for our study.

Features presented in Sections 4.2.1 to 4.2.6 will be further investigated while features presented
in Sections 4.2.7 to 4.2.10 will be disregarded.

4.2.1 y-Distribution Feature Set (yD)

This feature set was introduced by Mersmann et al. in [MBT+11] to measure the degree of
peakedness of the fitness values distribution. All features from this set are computed using the
fitness values only, i.e., features from this set ignore explicit consideration of the search points
that have been used to sample these fitness values. y-distribution feature set is composed of three
features, kurtosis, skewness and number of peaks.

4.2.1.1 Kurtosis

The kurtosis is a measure of sharpness of a distribution. Kurtosis is often measured using the
excess of kurtosis. In flacco, the excess of kurtosis is computed by the following formula, originally
suggested in [JG98]

b2 =
m4

s4
− 3 =

g2 + 3

(1− 1/n)2
− 3,

where s is the standard deviation of the fitness values, mi are the ith order moments of the fitness
values and

g2 =
m4

m2
2

− 3.

40

CHAPTER 4. CHARACTERIZING PROBLEM INSTANCES VIA LANDSCAPE FEATURES

The meanings of these computations are

b2 = 0 Misokurtic distribution such as normal distribution;

b2 < 0 Platykurtic distribution, i.e., the distribution has thinner tails

than the normal distribution (example : uniform distribution);

b2 > 0 Leptokurtic distribution, i.e., the distribution has fatter tails

than the normal distribution (example : Student t-distribution).

4.2.1.2 Skewness

The skewness is a measure of asymmetry of a distribution.
In flacco, the skewness is computed by [JG98]:

b1 =
m3

s3
= g1

(
n− 1

n

)3/2

,

where
g1 =

m3

m
3/2
2

,

s is the standard deviation of the fitness values, mi are the ith order moments of the fitness values.
When skewness = 0, then the distribution is symmetric. When skewness > 0 (resp. skewness <

0), the central tendency of the distribution is concentrated on the left (resp. on the right).

4.2.1.3 Number of peaks

The number of peaks feature is an indicator for multi-modality. The number of peaks are computed
by estimating the distribution density of fitness values using a Kernel Density Estimation [Par62].
Potential peaks are represented by the masses in valleys within the estimated distribution. These
potential peaks are then accepted if they are greater than a threshold.

4.2.2 Meta Model Feature Set (mm)

The meta model feature set aims at fitting a linear and a quadratic model to the data respectively.
The meta model feature set was introduced by Mersmann et al. in [MBT+11]. In this section, let
f (i) be the fitness values of the point x(i), i ∈ [1, n], n being the sample size and d the dimension
of the samples. Let y(i) be the predicted fitness values of one of the models below and let f̄ i be
the mean of the computed fitness values.

In this set, features are extracted using four regression models: a simple linear model (LM), a
linear model with a two-way interaction (LMI), a quadratic model (QM), and a quadratic model
with a two-way interaction (QMI). βj , j ∈ [0, 3d] are the coefficients of linear and quadratic
models.

41

CHAPTER 4. CHARACTERIZING PROBLEM INSTANCES VIA LANDSCAPE FEATURES

y(i) = β0 + β1x
(i)
1 + · · ·+ βdx

(i)
d , (LM)

y(i) = β0 + β1x
(i)
1 + · · ·+ βdx

(i)
d + βd+1x

(i)
1 x

(i)
2 + · · ·+ β2d−1x

(i)
d−1x

(i)
d−1, (LMI)

y(i) = β0 + β1x
(i)
1 + · · ·+ βdx

(i)
d + βd+1(x

(i)
1)2 + · · ·+ β2d(x

(i)
d)2, (QM)

y(i) = β0 + β1x
(i)
1 + · · ·+ βdx

(i)
d (QMI)

+ βd+1(x
(i)
1)2 + · · ·+ β2d(x

(i)
d)2

+ β2d+1x
(i)
1 x

(i)
2 + · · ·+ β3d−1x

(i)
d−1x

(i)
d−1.

Multiple features are defined below using the coefficient of determination R2. This coefficient
of determination is computing using the following formulas

SSres =

n∑
i=1

(y(i) − f (i))2, the sum of squares of the residuals,

SSreg =

n∑
i=1

(y(i) − f̄ (i))2, the regression sum of squares,

SStot = SSres + SSreg, the total sum of squares,

R2 = 1− SSres

SStot
.

From this definition of the R2, the adjusted R2, denoted R̄2, is computed as follow

R̄2 = 1− (1−R2)
n− 1

n− p− 1
,

where p is the number of explanatory variables in the model, i.e., the number of independent
variables which correspond to p = d in this case.

4.2.2.1 Adjusted R2

This feature computes the adjusted R2 of the model (LM), (LMI), (QM) and (QMI), respectively.

4.2.2.2 Intercept coefficient of (LM)

This feature return the value of the intercept coefficient β0.

4.2.2.3 Minimum coefficient of (LM)

This feature return the smallest coefficient of the model (LM) in absolute value:

cmin = min
i,i 6=0
|βi|.

4.2.2.4 Maximum coefficient of (LM)

This feature return the greatest coefficient of the model (LM) in absolute value:

cmax = max
i,i6=0
|βi|.

42

CHAPTER 4. CHARACTERIZING PROBLEM INSTANCES VIA LANDSCAPE FEATURES

4.2.2.5 Ratio of the maximum and minimum coefficients of (LM)

This feature computes the ratio between the greatest and smallest coefficients:

cr =
cmax

cmin
.

4.2.2.6 Condition of (QM)

This feature computes the condition (QM), i.e., condition is define as the ratio between the
absolute biggest and smallest coefficients of (QM).

4.2.3 Nearest Better Clustering Feature Set (nbc)

Nearest better clustering features were introduced by Kerschke et al. in [KPWT15] in order to
detect funnels. Funnels are peaked structures containing a global optimum and several local optima
such as the Rastrigin function Nearest better clustering features extract information based on the
comparison of the sets of distances that are computed from:

1. all observations towards their nearest neighbors;

2. their nearest better neighbor.

Neighbors are defined as the set of the p closest points in the sample. These features are based on
a kd-tree to find the p closest neighbors for each points. kd-trees are binary trees that are used for
organizing points in a k-dimensional space, in our case k = d. The quick version of the algorithm
that finds closest neighbors in flacco computes the 0.05× d closest neighbors.

In [KPWT15], Kerschke et al. define P as the population of sampled points. They define the
distance to the nearest neighbor of a search point x as

dnn(x,P) = min({dist(x, y) | y ∈ P \ {x}}),

and the distance to the nearest better neighbor as

dnb(x,P) = min({dist(x, y) | f(y) ≤ f(x) ∧ y ∈ P \ {x}}).

Then, they defined the sets of nearest neighbors distances Dnn = {dnn(x,P) |x ∈ P}, the set of
nearest-better distances Dnb = {dnb(x,P) |x ∈ P} and the set of quotient of nearest neighbor and
nearest-better neighbor distances:

Qnn/nb =

{
dnn(x,P)

dnb(x,P)

∣∣x ∈ P} .
4.2.3.1 Mean and standard deviation ratios

This two features compute ratios of the average values (resp. the standard deviation) of the nearest
points and the nearest better points

mean(Dnn)

mean(Dnb)
(resp. sd).

These features aim at recognizing multimodal problems from unimodal ones. In case of multimodal
problems, sd(Dnb) should be larger than sd(Dnn) whereas the ratio should be close to 1 for unimodal
problems [KPWT15].

43

CHAPTER 4. CHARACTERIZING PROBLEM INSTANCES VIA LANDSCAPE FEATURES

4.2.3.2 Correlation

This feature computes the Pearson correlation between the distance of the closest neighbors and
the closest better neighbors

cor(Dnn,Dnb).

The intuition behind this feature is that the correlation on landscape composed of random peaks
should be much lower than the correlation of landscape with a funnel [KPWT15].

4.2.3.3 Coefficient of variation

This feature computes the following ratio:

sd(Qnn/nb)
mean(Qnn/nb)

.

This represent the coefficient of variation of the set Qnn/nb which should be larger for random
peaked landscape [KPWT15].

4.2.3.4 Fitness correlation

To compute this feature, let us consider the directed graph of the nearest better points. The
vertices are the search points and the edges represents the nearest better points, i.e., there is an
edge from point x to point y if y is the nearest better neighbor of x. Let deg−(x) be the indegree
of vertex x. Then the fitness correlation feature computes

−cor({(deg−(x), f(x)) |x ∈ P})).

In a funnel landscape, the global optimum should have more incoming edges than a random peak
landscape, thus a greater indegree [KPWT15].

4.2.4 Dispersion Feature Set (disp)

The features presented in this section were introduced by Lunacek and Whitley in [LW06]. Subsets
of the fitness values are created with predefined thresholds. These thresholds represents the best
X% of the search space.

For each threshold, the mean m̄ and the median M of all distances among the points of the
subset are computed and compared to the distances of all the points of the sample.

Fig. 4.1 is an example of the dispersion features for a given threshold. Distances between round
points, under the red line, are computed and then compared with distances computed between
triangle point, above the threshold.

The features below are available for the following thresholds: 2%, 5%, 10% and 25% and both
for mean and median:

Ratio: The comparison of the two subsets is done using the ratio m̄subset/m̄all and Msubset/Mall.

Difference: The comparison of the two subsets is done using the difference m̄subset − m̄all and
Msubset −Mall

The combination of all possibilities results in 16 features composing this set.

44

CHAPTER 4. CHARACTERIZING PROBLEM INSTANCES VIA LANDSCAPE FEATURES

Figure 4.1: Example of the dispersion features [LW06].

4.2.5 Information Content Feature Set (ic)

The features shown in this section were first introduced by Vassilev et al. [VFM00] and then
redefined and enhanced by Munõz et al. [MKH15].

First, the sequence of the search points (x1, . . . , xn) is sorted. The sequence can be sorted
at random or by nearest neighbors. In flacco, the default sorting is by nearest neighbors. A
path through the landscape is constructed starting with an initial observation (usually the last
observation) and walking (greedily) from an observation to its nearest not-yet-visited neighbor.

Assuming that (x1, . . . , xn) are already sorted this way, let yi = f(xi), S = {y1, . . . , yn}, and
Φ(ε) = {Φ1, . . . ,Φn−1}, where Φi ∈ {1̄, 0, 1}. Φi is defined as

Φi =

1̄ if yi+1 − yi < −ε
0 else if yi+1 − yi ≤ ε
1 if yi+1 − yi > ε

.

Information Content (IC) is defined as a measure of the variety of the objects in the landscape as

H(ε) = −
∑
a6=b

pab log6 pab ; a, b ∈ {1̄, 0, 1};H(ε) ∈ [0, 1].

with pab the probability of finding the block of symbols ab in the sequence. The log6 is used because
there are 3! = 6 possibilities of blocks ab where a, b ∈ {1̄, 0, 1}.

By defining Φ′ as a part of Φ removing the zeros and the consecutive identical symbols, we can
define the Partial Information Content (PIC) by

M(ε) =
|Φ′(ε)|
n− 1

.

The main hypothesis here is to assume a statistically isotropic fitness landscape. In order to do
that, we must have an unbiased sample. Moreover, Φ′ represents the change of concavity during
the random walk.

4.2.5.1 Hmax and εmax

Hmax feature gives us the maximum number of rugged elements

Hmax = max
ε
H(ε).

45

CHAPTER 4. CHARACTERIZING PROBLEM INSTANCES VIA LANDSCAPE FEATURES

εmax is the value of ε where
H(εmax) = Hmax.

4.2.5.2 εs

εs gives us the maximum change of fitness found during the sequence of observations. At this
point, the sequence is almost composed of 0 only

εs = log10

(
min
ε
{ε|H(ε) < 0.05}

)
.

4.2.5.3 M0

This feature represents the maximum inflexion points normalized over the number of sample points

M0 = M(ε = 0).

4.2.5.4 εratio

This feature corresponds to the ratio of partial information

εratio = log10

(
max
ε
{ε : H(ε) > rM0}

)
.

Usually, we compute this feature for r = 0.5. At εr=0.5, the number of inflexion points is half the
number at M0.

4.2.6 Principal Component Analysis Feature Set (pca)

Features of this set are computed using a Principal Component Analysis (PCA) to the data. They
try to describe the variable scaling of a continuous problem.

The PCA is performed using either the covariance or the correlation matrix. In this context,
data can mean the matrix of sample points and associated fitness values or the matrix of the sample
points only.

4.2.6.1 Default Features

Hence, four different settings are available to perform the PCA: covariance/correlation matrix on
the full design/sample points only.

On these four different settings, two values are computed as features: the relative amount of
principal components that are required to explain 90% of the variance and the importance of the
first principal component. Hence, with all the possibilities, this set regroups 8 features.

4.2.6.2 Additional Features

In addition of the existing features in this set, we add new features applying the same procedure
as for the Dispersion features described in Section 4.2.4, i.e., by filtering the data based on the
best fitness values. We add three thresholds at which the sample points are filtered based on
their fitness values, i.e., we compute the existing features but for X% of the best points only. We
originally experimented as threshold 25%, 50%, and 75% of the best points of the samples. We
found that these three thresholds contained similar information and that we can consider only one
of them: we kept the 25% threshold.

46

CHAPTER 4. CHARACTERIZING PROBLEM INSTANCES VIA LANDSCAPE FEATURES

4.2.7 Level Set Feature Set (ls)

Level sets features were introduced by Mersmann et al. [MBT+11]. The features in this set are
based on Linear, Quadratic or Mixture Discriminant Analysis (LDA, QDA or MDA) that are used
to predict if the distribution of the objective values are below or above a calculated threshold.

The properties of these features were not investigated for two main reasons:

1. their computation time. Even if level sets features are coined “cheap”1 features, their com-
putation time exceed by far the computation time of every other set of features [Tan21b];

2. their low robustness. The implementation of some features of this set output NaN results
even with the recommended number of search points, i.e., 50d [KPWT16]. When we reduce
the sampling budget further, most of the features output NaN results.

Both the computation time and the low robustness of these features lead us to discard them
and do not analyze their properties.

4.2.8 Cell-Mapping Feature Sets

Cell mapping feature sets [KPH+14] were introduced by Kerschke et al.. The idea behind all cell
mapping features is to divide the search space into hypercubes. Then, some measures are computed
in each hypercube and aggregated over all the cells. Three sets of features use cells: cell mapping,
generalized cell mapping, and barrier trees.

An example of such a feature is the angle feature which computes for each cell the angle between
the worst and the best point of the cell. This value is then aggregated with other cells using the
mean or the standard deviation.

Nevertheless, there are some drawbacks to the use of these feature sets. First, it is not easy to
decide the size of the discretization a priori. Moreover, the number of cells have a direct impact
on the number of search points needed to compute features as sufficient number of points need to
be in each cell. In the example of the angle feature, one needs to ensure at least two points by cell.

Finally, the authors of [KPH+14] point out that these techniques may not be suited to represent
complex problems, especially in high dimension. For all these reasons, cell mapping features are
not widely used and are therefore not included in this study.

4.2.9 SOO Feature Set

SOO features are based on the Simultaneous Optimistic Optimization algorithm [Mun11]. The
idea behind this algorithm is a divide-and-conquer method that iteratively expands a tree. A more
detailed explanation of this algorithm can be found in [Mun11, DLV+19].

The idea of SOO features is to extract information from the tree shape in order to characterize
optimization problems. For the sake of reasonable computation time, only simple statistics are
extracted from the tree such as the number of nodes, number of leaves, the average heights of
leaves, etc.

Overall, Derbel et al. introduce 214 tree-based features divided in five groups: tree shape,
tree fitness, global deviation, derivative and Lipschitz and tree dynamics features [DLV+19]. Since
there is no open-source code for these features and because these features are not based on sample
points, we rule them out of our studies.

1Being computed on a fixed sample, without additional calls to the objective function, see Section 4.2.10.

47

CHAPTER 4. CHARACTERIZING PROBLEM INSTANCES VIA LANDSCAPE FEATURES

4.2.10 Expensive Feature Sets

Features introduced by Mersmann et al. [MBT+11] have been divided into two types of sets
in [Bel17, BDSS17], cheap and expensive sets.

The main difference between cheap and expensive sets resides in the number of search points
that are needed. Cheap sets requires only any fixed number of search points to be computed.
Expensive sets may also require an additional number of point to be computed For instance,
convexity features requires 1000 repetitions of the features computation or features from the local
search set require multiple runs of a Nelder-Mead algorithm.

The extra number of points needed in order to compute the features are a major obstacle to
the use of these sets in a black-box optimization context, especially when the evaluation of the
objective function is quite expensive.

This may explain why in many applications, only cheap features are used and expensive ones are
rejected. In this study, as previously done in other studies [BDSS17, JPED21, KPWT16, SEK20],
we will not use expensive features and concentrate only on cheap feature sets.

48

Part III

Analysis of Landscape Features

49

Chapter 5
Exploratory Landscape Features
Properties

Contents
5.1 Design of Experiments . 51

5.2 Stability . 52

5.2.1 Definition . 52

5.2.2 Graphical visualization . 52

5.3 Influence of Sampling Strategy . 53

5.3.1 Definition . 53

5.3.2 Graphical visualization . 54

5.4 Expressiveness . 55

5.4.1 Definition . 55

5.4.2 Measure . 55

5.4.3 Graphical visualization . 55

5.5 Robustness . 56

5.5.1 Definition . 56

5.5.2 Graphical visualization . 56

5.6 Invariance to Transformations . 58

5.6.1 Transformation of the fitness function 58

5.6.2 Normalization of the search space . 60

5.7 Sensitivity to Noise . 60

5.7.1 Definition . 60

5.7.2 Graphical visualization . 60

5.8 Discussion . 62

ELA features have been successfully used for many applications [Bel17, XHHL11, KKB+18,
KHNT19] but our understanding of features properties is rather weak.

As landscape features are computed using sample points, the numerical value obtained as an
output of the computation is not the true value of the feature but only a sample of the feature
values’ distribution.

The distribution of features values may be impacted by several factors:

50

CHAPTER 5. EXPLORATORY LANDSCAPE FEATURES PROPERTIES

• the randomness of different samples. Given n sample points, feature values may differ between
two samples as the search space is sampled slightly differently;

• the method used to sample search points. Different ways of sampling points may result in
different part of the search space sampled;

• the number of search points. An increasing or decreasing number of search point may impact
the feature values. More or fewer parts of search space could be sampled;

• transformations of the fitness function or transformations of the search space. Rotations
and translations of the fitness function as long as a normalization of the search space could
impact the feature values;

• the addition of noise in samples. Features values may be impacted if the original sample
points are slightly modified from their original coordinates.

In this chapter, we define six properties features should satisfy. Five are based on the fac-
tors that could impact the distributions of feature values and one corresponds to the ability to
differentiate optimization problems. We also study the distributions of feature values in order to
determine to what degree features satisfy the six properties.

As most properties can be visualized directly using the distributions of feature values, we do
not quantify to what degree a feature satisfies a property. Nevertheless, we give a measure of the
ability of features to differentiate optimization problems. The measure is based on classification
as features are often used in a machine learning context to differentiate optimization problems.

Section 5.1 presents the way features are computed while Sections 5.2 to 5.7 define and study
the different properties. Section 5.8 discusses the results of previous sections.

5.1 Design of Experiments

In this section, we describe the different computations performed in order to analyze the differ-
ent properties presented below. We selected as test suite the noiseless functions of the Black-
Box Optimization Benchmark (BBOB) [FHRA10] from the COCO (Comparing Continuous Op-
timizers) platform [HAR+21]. Landscape features need to be approximated using sample points.
For their value approximation, we sample for each of the 24 functions f a number n of points
x(1), . . . , x(n) ∈ [−5, 5]d 1, and we evaluate their function values f(x(1)), . . . , f(x(n)). The set of
pairs {(x(i), f(x(i))) | i = 1, ..., n} is then fed to the flacco package2 [KT19b], which returns a
vector of features. For each function, we create 100 independent samples of n search points which
results in 100 feature vectors for each of the 24 BBOB functions. We repeat the same procedure
for each of the first five instances of BBOB functions.

The flacco package covers a total number of 343 features [KHNT19], which are grouped into
17 feature sets. However, some of these features are often omitted in practice because they require
adaptive sampling, see [BDSS16, KT19a, MG14, PRH19] for a discussion. Thus, we compute
7 feature sets from the flacco package: dispersion [LW06], information content [MKH15], nearest
better clustering [KPWT15], level set [MBT+11], meta model [MBT+11], y-distribution [MBT+11],
and principal component analysis [KT19b]. Overall, we compute 62 features: 46 from flacco and
16 new PCA features introduced in Section 4.2.6.

The value of each feature may be normalized between 0 and 1 where 0 (resp. 1) correspond to
the smallest (resp. largest) value encountered in the approximated feature values.

Most of the data presented in this paper can be found in [RDDD20a] or [RDDD21b].

1The BBOB functions are traditionally studied over the search domain [−5, 5]d
2version 1.8

51

CHAPTER 5. EXPLORATORY LANDSCAPE FEATURES PROPERTIES

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0 5 10 15 20 25 30 35
Values of the feature

24

(a) y-distribution skewness feature

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

2 3 4 5 6 7 8 9
Values of the feature

24

(b) Information Content εs feature
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0.295 0.300 0.305 0.310 0.315 0.320 0.325
Values of the feature

24

(c) PCA covariance of the first principal component
of the samples feature

Figure 5.1: Distributions of a y-distribution, an Information Content, and a PCA features for 3,125
search points in d = 5.

5.2 Stability

5.2.1 Definition

We define the stability of a feature as its ability to keep the same values with independent samples
of same size. Put differently, we would like the distributions of feature values to have a small
variance when the n search points are sampled multiple times. Hence, a stable feature will have a
narrow distribution contrary to very unstable features.

5.2.2 Graphical visualization

Figure 5.1 presents the distributions of three features on the 24 BBOB functions. Each row
correspond to function of the test suite. Feature values are not normalized for these visualizations.

52

CHAPTER 5. EXPLORATORY LANDSCAPE FEATURES PROPERTIES

Of the three features presented in Figure 5.1, two of them display a great stability, the informa-
tion content feature (Figure 5.1b), and the PCA feature (Figure 5.1c). Even if Figure 5.1c seems
to show a large dispersion, the minimum and maximum values of the feature are separated by
0.03 which make this feature stable. This stability is reflected by a low average standard deviation
across all functions of the benchmark.

Conversely, the y-distribution feature displays a huge variation of values between the 100 runs.
This can be easily seen on Figure 5.1a, especially on function 12 where the standard deviation of
the distribution on this function is the greatest.

Overall, most feature are quite stable. Only some Meta-model and y-distribution features
exhibit a large variance and thus are unstable.

5.3 Influence of Sampling Strategy

5.3.1 Definition

As mentioned previously, exploratory landscape analysis [MBT+11] relies on sampled points in
the search space. To analyze whether the sensitivity of the random feature value approximations
depend on the strategy, we investigate a total number of five different sampling strategies from
three categories: uniform sampling, Latin Hypercube Sampling and extracting samples from a
low-discrepancy sequence.

Uniform Sampling We compare uniform random sampling based on two different pseudo-
random number generators:
- random: We report under the name random results for the Mersenne Twister [MN98] random
number generator. This generator is commonly used by several programming languages, including
Python, C++, and R. It is widely considered to be a reliable generator.
- RANDU: we compare the results to those for the linear congruential number generator RANDU.
This generator is known to have several deficits such as an inherent bias that results in the numbers
falling into parallel hyper-planes [Knu98]. We add this generator to investigate whether the quality
of the random sampling has an influence on the feature value approximations.

Latin Hypercube Sampling (LHS) LHS [MBC79] is a commonly used quasi-random method
to generate sample points for computer experiments. In LHS, new points are sampled avoiding the
coordinates of the previously sampled points. More precisely, the range of each coordinate is split
into n equally-sized intervals. From the resulting n × . . . × n grid the points are chosen in a way
that each one-dimensional projection has exactly one point per interval.
- LHS: Our first LHS designs are those provided by the pyDOE Python package (version 0.3.8).
We use the centered option, which takes the middle point of each selected cube as sample.
- iLHS: The “improved” LHS (iLHS) designs available in flacco. This strategy builds on work
of Beachofski et Grandhi [BG02]. Essentially, it implements a greedy heuristic to choose the next
points added to the design. At each step, it first samples a few random points, under the condition
of not violating the Latin Hypercube design. From these candidates the algorithm chooses the one
whose distance to its nearest neighbor is closest to the ideal distance n/ d

√
n.

Soboĺ low-discrepancy sequence We add to our investigation a third type of sampling strate-
gies, the sequences suggested by Soboĺ in [Sob67]. Soboĺ sequences are known to have small star
discrepancy, a property that guarantees small approximation errors in several important numerical
integration tasks. They are also commonly used in Design of Experiment (DoE) tasks and in

53

CHAPTER 5. EXPLORATORY LANDSCAPE FEATURES PROPERTIES

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Values of the feature

24

(a) [Dispersion ratio of the mean with a 2% thresh-
old feature

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0.10 0.15 0.20 0.25 0.30 0.35 0.40

Values of the feature

24

(b) Nearest Better Clustering coefficient of varia-
tion feature

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

5 0 5 10 15 20 25 30 35

Values of the feature

24

(c) y-distribution skewness feature

Figure 5.2: Distributions of a Dispersion, a Nearest Better Clustering, and a y-distribution features
for 3,125 search points in d = 5. The sampling strategies are Soboĺ (yellow), uniform sampling
(red) and Latin Hypercube sampling (blue).

the initialization of Bayesian Optimization techniques [SWN03]. The interested reader is referred
to [DP10, Mat09] for an introduction to these important families of quasi-random sampling strate-
gies. For our experiments we generate the Soboĺ sequences from the Python package sobol seq
(version 0.1.2), with randomly chosen initial seeds.

5.3.2 Graphical visualization

Figure 5.2 presents the distributions of three features on the 24 BBOB functions. Each row
correspond to function of the test suite. Feature values are not normalized for these visualizations.
We compare on this figure three sampling strategies: Soboĺ low discrepancy sequence, uniform
sampling and Latin Hypercube sampling.

On Figure 5.2, two features are sensitive to the sampling strategy. The nearest better clus-
tering feature (Figure 5.2b) seems to be the more sensitive as there is no overlapping between
distributions of each sampling strategy. Though, some kind of pattern seems to emerge as it looks

54

CHAPTER 5. EXPLORATORY LANDSCAPE FEATURES PROPERTIES

like distribution of values seems to be translated from one sampling strategy to another. The
dispersion feature (Figure 5.2a) is also sensitive to the sampling strategy. Nevertheless, not in the
same way as the nearest better clustering one. Here, for most functions, the three distributions are
overlapping. For instance, distribution are almost the same for functions 16 and 23 or are widely
overlapping for functions 2 or 19. For this feature, distribution coming from Soboĺ and uniform
samples often overlap which is not the case for distributions coming from LHS samples .

The y-distribution feature (Figure 5.2c) is not much influenced by the sampling method as
almost all distributions fully coincide for all functions.

Overall, the only features not impacted by the sampling strategy are those based on fitness
values only, i.e., y-distribution features. Most of the features are impacted as the Dispersion feature
presented in Figure 5.2a is. Only Nearest Better Clustering features present massive differences
between sampling strategies. We also observe in [RDDD20b] that sampling strategies does not
give the same levels of performance when used with machine learning. The Soboĺ low-discrepancy
sequence seems to give better performances than the others in the machine learning context.

5.4 Expressiveness

5.4.1 Definition

We define the expressiveness of a feature as its ability to distinguish between several optimization
problems [RDDD19]. Hence, the more expressive a feature is, the more problems it can distinguish.

5.4.2 Measure

In this thesis, we measure the expressiveness of a feature as the accuracy of classification of the 24
BBOB functions. We perform this analysis in dimension d = 5 and we use 50d = 250 search points
to compute the feature values. We sample these points from Soboĺ sequence. This is different
from our previous work [RDDD19], where we have used Halton points instead.

For each feature, we use 80 uniformly chosen feature value (per function) out of 100 independent
runs for training a classifier that, given a previously unseen feature value, shall output which of
the 24 functions it is faced with. We test the classifier with all 20 feature values that were not
chosen for the training, and we record the average classification accuracy, which we measure as
the fraction of correctly attributed function labels. We apply 20 independent runs of this uniform
random sub-sampling validation, i.e., we repeat the process of splitting the 24× 100 feature values
into 24× 80 training instances and 24× 20 test instances 20 independent times.

We use the scikit learn [PVG+11, version 0.21.3] implementation of a K Nearest Neighbors
(KNN) (we use K = 5) classifier to perform the classification.

5.4.3 Graphical visualization

Figure 5.1 can also be used to visualize expressiveness.
For every function in figure 5.1c, the distribution is the same which makes impossible to dis-

tinguish one function from another which is reflected by a really low accuracy of classification of
1.8%.

Conversely, both features in figures 5.1a and 5.1b displays more scattered distributions across
the possible feature values. This makes it easier to distinguish optimization problems even with
a graphical visualization. Nevertheless, the information content feature seems to be more expres-
sive than the y-distribution feature. The ability to distinguish optimization problems seen with

55

CHAPTER 5. EXPLORATORY LANDSCAPE FEATURES PROPERTIES

the distributions is reflected with the accuracy of classification. The y-distribution feature, i.e.,
skewness, has an accuracy of classification of 40.3% while the εs feature reaches 72.4% accuracy.

Overall, almost all features show some expressiveness excepted PCA features based on samples
only. The most expressive features belong to the meta-model and the information content feature
sets. In the information content set, the most expressive feature is εs. The most expressive feature
of the meta-model set is also the most expressive feature overall. It is the intercept feature with
97.3% of accuracy.

5.5 Robustness

5.5.1 Definition

We define the robustness [RDDD19] of a feature as its ability to keep the same values with differ-
ent number of search points. Put differently, a robust feature has distributions of feature values
extracted with different number of search points that are close. It is quite natural that the distri-
butions’ variances should increase as the number of samples is reduced but robust feature should
display small increase of their variance.

5.5.2 Graphical visualization

Figure 5.3 presents the distributions of three features on the 24 BBOB functions. Each row
correspond to function of the test suite and the three columns by feature represents the three
different sample sizes. Feature values are not normalized for these visualizations.

As expected, nearly all features suffer from a standard deviation increase when the number or
search points decreases. This subsampling estimation error behavior was expected as it gets more
and more difficult to evaluate precisely one fitness function property when less samples of search
space are available, i.e., fewer parts of the search space are explored and might not be the same
for two independent runs.

Nevertheless, some features are less sensitive to this phenomenon. For instance, the PCA
feature (Figure 5.3b) displays a low variation of its distribution standard deviation. On most
BBOB functions, the standard deviation increases only slightly. The larger growths can be found
on functions 21, 22 and 23 and even if larger standard deviation can be observed, the center of
mass of the distribution is still roughly the same.

Contrariwise, both dispersion (Figure 5.3a) and meta-model (Figure 5.3c) features have growing
standard deviations and a moving center of mass for nearly all functions. The only exception can be
found for function 5 on the meta-model feature. This function is the linear slope and the adjusted
R2 of (LM) feature can recognize this function whatever the number of search points used.

The main difference between the dispersion and the meta-model features is the growth of the
standard deviation. In the case of the ratio of the median with a 5% threshold feature, distributions
for every functions on the lowest setting are almost as wide as the range of possible values taken
by the functions in the BBOB benchmark which is not the case on the meta-model feature.

Some features show no increase in the dispersion of feature values and thus are really robust:
the PCA features. For most features, we observe an increasing variance as the number of points
decreases. Surprisingly, on some functions, y-distribution features show a decreasing variance as
the number of points decreases. For some of them, the center of mass of the distribution is also
moving and can be quite different for two different sample sizes. It is in particular the case for all
dispersion features.

56

CHAPTER 5. EXPLORATORY LANDSCAPE FEATURES PROPERTIES

1
30 search points

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0.25 0.50 0.75 1.00 1.25 1.50

Values of the feature

24

300 search points

0.25 0.50 0.75 1.00 1.25 1.50

Values of the feature

3125 search points

0.25 0.50 0.75 1.00 1.25 1.50

Values of the feature

(a) Dispersion ratio of the median with a 5% thresh-
old feature

1
30 search points

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0.5 0.6 0.7 0.8 0.9 1.0

Values of the feature

24

300 search points

0.5 0.6 0.7 0.8 0.9 1.0

Values of the feature

3125 search points

0.5 0.6 0.7 0.8 0.9 1.0

Values of the feature

(b) PCA covariance of the first principal component
of full design feature

1
30 search points

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0.2 0.0 0.2 0.4 0.6 0.8 1.0

Values of the feature

24

300 search points

0.2 0.0 0.2 0.4 0.6 0.8 1.0

Values of the feature

3125 search points

0.2 0.0 0.2 0.4 0.6 0.8 1.0

Values of the feature

(c) Meta-model adjusted R2 of (LM) feature

Figure 5.3: Distributions of a Dispersion, a Principal Component Analysis, and a Meta-Model
features for 30, 300 and 3,125 search points in d = 5.

57

CHAPTER 5. EXPLORATORY LANDSCAPE FEATURES PROPERTIES

5.6 Invariance to Transformations

In this section, we differentiate two types of transformations. The first type is directly related to
the BBOB test bed where multiple instances of each function can be generated. These instances
are generated using transformation of the fitness function such as translation, rotation and/or
scaling. In this section, we both study the impact of these transformations and the impact of the
search space normalization on feature values.

5.6.1 Transformation of the fitness function

5.6.1.1 Definition

To visualize the impact of the transformation of the fitness function, we compute feature values
for the first five instances of the BBOB test bed and compare them. In [SEK20], the authors also
look at the impact of scaling and translations on feature values but applied these transformations
directly without taking BBOB instances.

5.6.1.2 Measure

The measure of invariance is computed as follow. We record the standard deviation of distributions
for the first five instances of each 24 BBOB functions in dimension d = 25 for a budget of 2,500
search points. For each instance, we compute the distance to the median value of the first instance
distribution. The measure is given by the average distance of instance two to five to the distribution
of the first instance. A greater value will imply that instances two to five are quite different from
the first.

5.6.1.3 Graphical visualization

Figure 5.4 presents the distributions of three features on the 24 BBOB functions. Each row
correspond to function of the test suite. We compare on this figure the first five BBOB function
instances.

In Figure 5.4, two features are not invariant to transformations. Both the dispersion feature in
Figure 5.4c and the meta-model feature in Figure 5.4a exhibit non overlapping distributions on all
instances for some functions. Interestingly, it seems that this result also depends on the objective
function. In Figure 5.4c, while no distribution are overlapping for function 8, distributions for the
five instances are almost identical for functions 5, 6, 9, 13, 16, 19, 23 and 24. On other function,
at least one instance is different from the others.

We observe the same behavior in Figure 5.4a but for different functions. Feature values are
invariant on functions 1, 2, 5, 9, 16, 19, 20 and 23. On the contrary, distributions are far apart on
functions 10 and 11.

Distributions displayed in Figure 5.4b are all overlapping and thus, this feature is invariant to
the transformations for all functions.

Overall, most of the features have similar behavior as the dispersion and meta-model features.
These features are often invariant to transformations for some functions but not all of them. Only
Nearest Better Clustering features seems to be invariant for all functions.

58

CHAPTER 5. EXPLORATORY LANDSCAPE FEATURES PROPERTIES

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0.0 0.2 0.4 0.6 0.8 1.0
Values of the feature

24

(a) Meta-model adjusted
R2 of (QM) feature

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0.72 0.74 0.76 0.78 0.80 0.82 0.84
Values of the feature

24

(b) Nearest Better Clustering correlation feature

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Values of the feature

24

(c) Dispersion ratio of
the mean with a 5% threshold feature

Figure 5.4: Distributions of a Meta-Model, a Nearest Better Clustering, and a Dispersion features
for 2,500 search points in d = 25. Colors represent the BBOB instance: black for instance 1, red
for instance 2, blue for instance 3, yellow for instance 4 and green for instance 5.

59

CHAPTER 5. EXPLORATORY LANDSCAPE FEATURES PROPERTIES

5.6.2 Normalization of the search space

5.6.2.1 Definition

In this part, we study the impact of the normalization of the search space. Here, the fitness function
remains the same but we normalize the search space.

To do so, we generate n search points x(1), . . . , x(n) ∈ [−5, 5]d and compute the fitness
value f(x(1)), . . . , f(x(n)) associated to every points. Then, we normalize the x(i) to obtain
x̄(1), . . . , x̄(n) ∈ [0, 1]d and we keep the same fitness values f(x(1)) = f(x̄(1)), . . . , f(x(n)) = f(x̄(n)).
Thus, we compute feature values using x̄(i) as sample points and investigate the differences with
feature approximations obtained with the x(i).

5.6.2.2 Graphical visualization

Figure 5.5 presents the distributions of three features on the 24 BBOB functions. Each row
correspond to function of the test suite. We compare on this figure the distribution obtained with
normalized samples to the original distribution.

We can observe in Figure 5.5c and 5.5b that the normalized samples have almost no effect on
these two features. It is nearly impossible to differentiate the distributions coming from one set of
points from another.

Conversely, the dispersion feature in Figure 5.5a exhibits a huge sensitivity to normalization as
the distributions are quite far apart. Moreover, we also find that the variance of distribution was
reduced when the normalization was applied.

Overall, most feature are insensitive to normalization. The only features that have different
distributions of feature values when we applied normalization are Dispersion features based on
differences and not on ratios. Information Content features based on ε (i.e., εmax, εratio, εs) are
also sensitive to the normalization.

5.7 Sensitivity to Noise

5.7.1 Definition

In this part, we examine the feature approximations when noise is applied to sample points. Noisy
inputs are generated using the points from the Soboĺ sampling and by adding a uniform noise
U(−0.5, 0.5) on each coordinate: x̃i = xi + a, a ∼ U(−0.5, 0.5). These new sample points are
associated with the corresponding fitness values, i.e., f(x̃i) = f(xi) As in Sec. 5.1, we generate
100 independent feature vectors by function in order to compare their distribution with the true
feature value.

We expect that feature non-sensitive to this noise to have distributions close to the initial one.

5.7.2 Graphical visualization

Figure 5.6 presents the distributions of three features on the 24 BBOB functions. Each row
correspond to function of the test suite. We compare on this figure the distribution obtained with
noisy samples to the true distribution.

As seen in Figure 5.6, the addition of noise does not have a strong impact on feature values’
distributions. For both features, distributions are widely overlapping with medians relatively
unchanged. While the variance of distributions coming from noisy samples are similar to the
original samples in Figure 5.6b, it is not the case for Figure 5.6a on some functions. The variance

60

CHAPTER 5. EXPLORATORY LANDSCAPE FEATURES PROPERTIES

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

5 4 3 2 1 0

Values of the feature

24

(a) Dispersion feature difference of the mean with a
2% threshold

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0.30 0.32 0.34 0.36 0.38 0.40 0.42

Values of the feature

24

(b) Nearest Better Clustering coefficient of variation
feature

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0.650 0.675 0.700 0.725 0.750 0.775 0.800 0.825 0.850

Values of the feature

24

(c) Information content Hmax feature

Figure 5.5: Distributions of a Dispersion, a Nearest Better Clustering, and an Infomation Content
features for 3,250 search points in d = 5. Red distributions correspond to the original data while
blue distributions correspond to normalize data.

61

CHAPTER 5. EXPLORATORY LANDSCAPE FEATURES PROPERTIES

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0.2 0.0 0.2 0.4 0.6 0.8 1.0

Values of the feature

24

(a) Meta-model adjusted R2 of (QMI) feature.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0.40 0.45 0.50 0.55 0.60 0.65 0.70

Values of the feature

24

(b) Information content M0 feature.

Figure 5.6: Distributions of a Meta-Model and an Information Content features for 3,250 search
points in d = 5. Noisy samples are generated using random uniform variation. Red corresponds
to the original sample while blue corresponds to noisy samples.

of noisy distributions is greater than the original ones for functions 4, 8 and 24. Moreover, function
24 exhibits feature values that are very different when computed with noisy samples.

Overall, most features have the same behavior as the Information Content feature presented in
Figure 5.6b.

5.8 Discussion

We found that no feature fully satisfy the six properties. Table 5.1 shows the features and if
they satisfy the different properties. Out of the six properties, one is key: expressiveness, as the
property it focuses on is distinguishing between different optimization problems. As the main goal
of ELA features is distinguishing between different optimization problems, a feature not satisfying
this property will be hard to use in any context.

The other five properties characterize the sensitivity of landscape features to its inputs: the
sample points and fitness values. The characterization of the sensitivity to the inputs helps the
user to know when to use a certain type of features. In any applications, one would favor expressive
features but other properties are not always necessary:

• stability is useful when few independent samples are used;

• invariance to noisy samples is only important when for some reasons sample points may be
affected by some minor transformations;

• the influence of the sampling strategy should be kept in mind in order to not change the
chosen sampling method or if the user decides to use the points sampled during the run of
an optimization algorithm;

• robustness should be disregarded if a large number of sample points can be afforded. When
fewer sample points are required by the time consuming evaluation of the fitness function,
the robustness becomes a key property for a feature;

62

CHAPTER 5. EXPLORATORY LANDSCAPE FEATURES PROPERTIES

• the invariance to transformation of the fitness function is not needed when the user only have
one instance. The same holds if we are not performing any normalization.

For example, in a case where we have no transformation of the fitness function, no noisy sample,
an identical sampling strategy for all samples, 100 independent runs and an expensive evaluation
of the objective function, we should only look at robust features. In this case, we need to have
features that are still expressive when the number of sample points is low.

Overall, the practitioner should use feature properties regarding what is needed for her appli-
cation.

63

CHAPTER 5. EXPLORATORY LANDSCAPE FEATURES PROPERTIES

Table 5.1: Exploratory Landscape Analysis feature properties. Expressivenes is given with the
accuracy of classification. Other properties are marked with 3when a feature satisfies a property
and 7otherwise.

Set Feature Expressiveness Stability Robustness

Invariance Invariance Invariance Invariance
to to to to

transformations normalization noise sampling
strategy

yD Kurtosis 22.4 7 3 3 3 3 3

yD Skewness 40.3 7 3 3 3 3 3

yD # of peaks 13.6 7 3 3 3 3 3

mm (LM) R2 36.9 3 7 7 3 3 7

mm (LMI) R2 44 3 7 7 3 3 7

mm (QM) R2 48.4 3 7 7 3 3 7

mm (QMI) R2 55 3 7 7 3 3 7

mm Intercept (LM) 97.3 7 7 7 7 3 7

mm Minimum (LM) 35.7 7 7 3 7 3 7

mm Maximum (LM) 75.1 7 7 7 7 3 7

mm Ratio max/min (LM) 17.2 7 7 7 7 3 7

mm Conditionning (QM) 22.9 7 7 3 7 3 7

nbc Mean ratio 10.5 7 7 3 3 3 7

nbc sd ratio 13.4 7 7 3 3 3 7

nbc Correlation 8.4 7 7 3 3 3 7

nbc Coeff of variation 8.8 7 7 3 3 3 7

nbc Fitness correlation 25.1 7 7 3 3 3 7

disp Ratio mean 2% 10.8 7 7 7 3 3 7

disp Ratio mean 5% 16.6 7 7 7 3 3 7

disp Ratio mean 10% 16 7 7 7 3 3 7

disp Ratio mean 25% 20.7 7 7 7 3 3 7

disp Ratio median 2% 10 7 7 7 3 3 7

disp Ratio median 5% 14.2 7 7 7 3 3 7

disp Ratio median 10% 16.3 7 7 7 3 3 7

disp Ratio median 25% 16.5 7 7 7 3 3 7

disp Diff mean 2% 10.7 7 7 7 7 7 7

disp Diff mean 5% 15.4 7 7 7 7 7 7

disp Diff mean 10% 16.9 7 7 7 7 7 7

disp Diff mean 25% 18.8 7 7 7 7 7 7

disp Diff median 2% 9.6 7 7 7 7 7 7

disp Diff median 5% 15.2 7 7 7 7 7 7

disp Diff median 10% 15.7 7 7 7 7 7 7

disp Diff median 25% 13.8 7 7 7 7 7 7

ic Hmax 13.7 7 7 3 7 3 7

ic εmax 48.75 3 7 7 7 3 7

ic εs 72.4 3 3 7 7 3 7

ic M0 10.6 7 7 3 7 3 7

ic εratio 55.8 3 3 7 7 3 7

pca Cov x 4.3 3 3 3 3 3 7

pca Cor x 4.2 3 3 3 3 3 7

pca Cov init 12.5 3 3 3 3 3 7

pca Cor init 5.3 3 3 3 3 3 7

pca PC1 cov x 1.8 3 3 3 3 3 7

pca PC1 cor x 1.7 3 3 3 3 3 7

pca PC1 cov inti 87.2 3 7 7 3 3 7

pca PC1 cor init 18.3 3 7 7 3 3 7

pca Cov x 25% 8.3 3 3 7 3 3 7

pca Cor x 25% 8.1 3 3 7 3 3 7

pca Cov init 25% 27.3 3 7 7 3 3 7

pca Cor init 25% 11.4 3 7 7 3 3 7

pca PC1 cov x 25% 26.5 3 7 7 3 3 7

pca PC1 cor x 25% 25.8 3 7 7 3 3 7

pca PC1 cov inti 25% 86.8 3 7 7 3 3 7

pca PC1 cor init 25% 27.8 3 7 7 3 3 7

64

Part IV

Optimization of Radar Networks

65

Chapter 6
Background on Radar Operation

Contents
6.1 Introduction . 66

6.2 History of Radar Development . 66

6.3 Basic Principle . 67

6.4 Radar Equation . 67

6.5 Radar Cross Section . 68

6.6 Swerling Models . 68

6.7 Probability of Detection . 69

6.1 Introduction

Part II of this thesis presented the background on landscape-aware algorithm selection and contri-
butions on exploratory landscape analysis features.

This part of the thesis focus on the application of the landscape-aware approach on a real-world
problem. The problem to solve is a radar network configuration problem. The goal is to find a
good set of parameters for radars in order to maximize some criterion.

This part first introduces in Chapter 6 the basic principles of radar processing. In Chapter 7,
we describe the radar modeling and the use-cases to solve in this thesis. The objective function in
these use-cases is directly based on the basic principles presented in Chapter 6.

Chapter 8 and Chapter 9 focus on the resolution of the problem. The former presents the
performances of optimization algorithms on the use-cases while the latter presents the results of
the landscape-aware approach.

6.2 History of Radar Development

The term RADAR is an acronym for RAdio Detecting And Ranging. Radar working principle
with electromagnetic waves is very similar to sound waves reflection. When a pulse is sent by the
system, a small part is sent back by the target: the echo. Radars use the echo in order to find the
direction and location of a target.

66

CHAPTER 6. BACKGROUND ON RADAR OPERATION

The development of the radar technology was done by several researchers and inventions over
many years. The first experiments were conducted by Heinrich Hertz in 1886 visualizing Maxwell’s
theory of electromagnetism by using an antenna and actually demonstrating the presence of mag-
netic fields. The first detection of an object using electromagnetic waves was performed by Chris-
tian Hülsmeyer in 1904 following Tesla’s suggestion to detect objects using electromagnetic waves in
1900. His Telemobiloskop permitted to detect a metal boat in the sea. Technological breakthroughs
that appeared right after World War I lead researchers from the Naval Research Laboratory (USA)
to detect a wooden boat in 1922 and an aircraft in 1930. Many improvements on sensing and track-
ing targets were done with the upcoming World War II and the Cold War. These improvements
led to the deployment of many radars, especially in Europe around Germany borders. Nowadays,
radars are assets for both military defense and civilian applications such as flight control, weather
forecasting, topography or even geology.

6.3 Basic Principle

As mentioned before, a radar can detect objects by using electromagnetic waves and can infer from
these waves some information such as the direction, i.e., the object radial speed, and the distance
of an object. This process can be divided into three parts [Bri17]:

1. an electromagnetic wave is sent in a scanning direction;

2. a small part of the wave is propagated back to the antenna: the echo;

3. the radar processes the echo and estimates the distance and the radial speed of the object.

However, the signal is often polluted with noise that can come from other objects or from the
environment. The signal can also have some ambiguity is distance or in speed which can make the
detection harder. An aspect of the electronic warfare is to make the target create these ambiguities
in order to perturb the detection system. For the sake of simplicity, we will not explain in detail
these ambiguities but the interested reader can take a look at [Car19, Sko01, Bri17].

6.4 Radar Equation

The radar equation describes the relationship between range, the wave propagation and radar
characteristics. It is given by the relation [Sko01]

R4 =
PrG

2σλ2

Pt(4π)3
, (6.1)

with:

• R the distance antenna-target in meters (m);

• Pt the transmitted power in watts (W);

• G the antenna gain in decibel (dB);

• σ the radar cross section in square meters (m2);

• λ the signal wavelength in meters (m);

• Pr the power received in watts (W).

67

CHAPTER 6. BACKGROUND ON RADAR OPERATION

In this equation, the power transmitted Pt, the antenna gain G and the wavelength λ depends
on the radar type and can be replaced by a constant V .

In order to compare the power of the signal with the power of the noise, we can compute the
signal-to-noise ratio. This value directly impacts the ability of a radar to detect a target.

The signal-to-noise ratio is obtained by introducing the power of the noise Pn in (6.1). The
power of noise depends only on the radar and is constant. We can regroup all constants in (6.1)
and the power of the noise under K to obtain

S

N
=
Pr
Pn

= K
σ

R4
. (6.2)

6.5 Radar Cross Section

The Radar Cross Section (RCS), denoted as σ, is a property of a target that is included in the
radar equation. It is measured in square meters (m2). The RCS represents the amount of signal
returned to the antenna by the target. Put differently, it is a measure of how detectable a target
is. Its a priori computation is quite complicated and only possible for simple targets. In practice,
for complex targets, the value of the RCS is estimated when the radar detect the target.

The RCS depends on four characteristics:

1. the target size and geometry: bigger targets will present a bigger detectable surface and
hence a bigger RCS;

2. the direction of the radar beam: it is harder for a radar to sense a plane facing it than a plane
on the side at the same distance. This is mainly because the plane exhibits more fuselage
when it is on the side and, is thus easier to detect;

3. the radar frequency;

4. the target materials: reflective materials will increase the RCS as they propagate more echo.

Figure 6.1 represents an example of a plane RCS. At each angle, a radar beam is sent to the plane
and the value of the cross section is plotted in red. On this figure, we can see that the cross section
is very sensitive to noise but also to the shape of the plane, i.e., the RCS is bigger for beams
coming to the sides of the plane than for those coming to the front or to the back.

In this thesis, in order to keep the model simple, we define the RCS of the target as a simple
function of its direction and radar locations.

6.6 Swerling Models

As a target moves, the reflected signal may fluctuate depending on the RCS. Peter Swerling devel-
oped five statistical models [Swe54] to describe the different properties of RCS of complex surfaces
and target dynamics:

• Swerling 0 or Swerling V is a toy model where the RCS is constant, i.e., a sphere with no
fluctuations;

• Swerling I describes slow fluctuations, i.e., the RCS is assumed constant during a scan where
a scan is composed of several radar beam pulses;

• Swerling II is similar to Swerling I but describes faster fluctuations, from pulse to pulse this
time. Pulses are components of a radar scan;

68

CHAPTER 6. BACKGROUND ON RADAR OPERATION

Figure 6.1: Example of RCS of a plane [Sko01].

• Swerling III is also similar to Swerling I but assumes that targets are more complicated
objects such as one big reflective area and multiple small ones;

• Swerling IV is similar to Swerling III but for faster fluctuations.

Swerling I and II usually represents aircraft where Swerling III and IV may represents ships. For
a more detailed presentation of Swerling models, the interested reader may consult [Sko01, Car19].

In this work, we wanted a more realistic target than a sphere but without any fluctuations. We
made the choice to have a target in between Swerling 0 and Swerling I, i.e, a shape more complex
than a sphere but excluding all noises that come with Swerling I. A complete description of the
target used in this thesis can be found in Section 7.2.

6.7 Probability of Detection

Given that the signal is polluted with noise and/or ambiguities, detecting a target is not a binary
task, i.e., this is not a situation where the target is either detected or not detected. The detection
relies on a performance indicator which is called the probability of detection.

The instantaneous probability of detection Pd depends on five characteristics:

1. the target RCS σ;

2. the target Swerling model, i.e., its fluctuation law;

3. the signal-to-noise ratio;

4. a false alarm probability Pfa, i.e., a false alarm corresponds to a fake detection by the radar
due to noise;

5. radar processing.

69

CHAPTER 6. BACKGROUND ON RADAR OPERATION

Ultimately, the probability of detection depends also on the position of the target and its radial
speed. In general, the computation of the probability of detection is very complex and depends
very much on the radar. In a case of a non-fluctuating target, i.e., Swerling 0, the probability of
detection looks like the curve in Figure 6.2 depending on the signal-to-noise ratio.

In our model, we consider no ambiguities and the probability of detection is a function of the
signal-to-noise ratio, the false alarm probability and the RCS.

Figure 6.2: Example of a probability detection curve for a Swerling 0 target.

70

Chapter 7
Radar Network Modeling

Contents
7.1 Ægis: Radar Network Modeling Framework 71

7.2 Target Characteristics . 72

7.3 Radar Models and Parameters . 73

7.3.1 Radar Tunable Parameters . 73

7.3.2 Radar Varying Parameters . 73

7.4 Radar Network Use-Cases . 74

7.4.1 Domain Definition . 74

7.4.2 Radar Network . 75

7.4.3 Objective Function: Coverage Scenario 76

7.4.4 Constraints: Definition and Handling . 76

7.5 Thesis Use-Cases . 77

7.5.1 Unconstrained Use-Case . 77

7.5.2 Constrained Use-Case . 77

7.6 Geographical Data . 77

We summarize in this section the modeling of radars and the use-cases that we considered to
train and to test our approach. Section 7.1 presents the framework used to model radars in this
thesis while Sections 7.2 and 7.3 summarize the modeling of the target and radars. Section 7.4
presents the use-cases of this thesis. Finally, Section 7.6 presents the geographical data used to
place radars.

7.1 Ægis: Radar Network Modeling Framework

Ægis is a framework developed within Thales in order to easily simulate radar networks. Thales
possesses more elaborated simulators but these ones are too costly in evaluation time.

The purpose of Ægis is to produce a quick and approximated version of Thales’ simulators.
Part of this thesis was to expand this framework to add new radar models and new functionalities.
In order to have an intuition of how much this framework was enhanced during the thesis, we
give the evolution of the framework in regard to the number of code lines. At the beginning, the
number of code lines was around 5,000 to reach more than 17,000 at the end.

71

CHAPTER 7. RADAR NETWORK MODELING

The implementation of these 12,000 new lines of code concerns mainly:

• the definition of the target for this thesis (see Section 7.2);

• the radar models of this thesis (see Section 7.3);

• new ways to aggregate radars in networks (see Section 7.4.2);

• handling of constraints (see Section 7.4.4);

• modifications in the handling of geographical data (see Section 7.6);

• some visualizations that are used in this thesis.

7.2 Target Characteristics

For the sake of simplicity, we consider a simple target model to be detected by radars. The speed
of the target is supposed to be constant. The target altitude above ground level h is also supposed
to be constant, i.e., if the ground altitude above sea level is z, then the target is flying above the
ground at altitude z + h.

The RCS of the target does not belong to any Swerling models but stays relatively simple.
It is modeled with a cross section (Figure. 7.1) that takes into account a simple geometry of a
target, i.e., the target has a lower RCS when it is facing the radar and a higher RCS when it is
perpendicular to the radar beam. Nevertheless, an assumption of a Swerling 0 target is made for
the computation of the probability of detection, i.e., we consider no noise and no fluctuations.

Moreover, we define the target angle θ as the angle between the target direction and the North.
This angle is called the azimuth.

Figure 7.1: RCS model of the target.

72

CHAPTER 7. RADAR NETWORK MODELING

7.3 Radar Models and Parameters

In this thesis, multiple radars are gathered into a network. A network is used to aggregate the
probabilities of detection for each radars. Possible ways of aggregation are further discussed in
Section 7.4. The network can be composed by two types of radars: rotating or staring radars.
These two types only differ by the angles that the radar can sense. We make the hypothesis that
radars with rotating antennas can sense all around them at any time, whereas radars with staring
antennas can only sense predefined regions around their staring direction (see Figure 7.2).

R R

Staring direction

Rotating
radar

Staring
radar

Figure 7.2: Diagram of a rotating and a staring radar.

7.3.1 Radar Tunable Parameters

The number of tunable parameters depends on the types of radars. In our model, staring radars
have four parameters that can be modified:

1. the x (≈ longitude) location in the domain;

2. the y (≈ latitude) location in the domain;

3. the tilt, i.e., the angle between the antenna and the horizontal plane;

4. the staring angle, i.e., the direction the radar will look to.

For rotating radars, the staring angle is not needed and we therefore have three parameters to
tune.

7.3.2 Radar Varying Parameters

In addition to the tunable parameters, radars have settings that can change depending on the
target position and its elevation angle, i.e., the angle between the antenna and the target. This
elevation angle has an impact on several parameters:

• ranges can be affected and modify the distance to which radars can sense;

• a radar constant affecting the detection probability can be changed;

• the transmitted waveform of the radar can be modified;

73

CHAPTER 7. RADAR NETWORK MODELING

• the radial speed coverage can be modified which implies that slower targets might not be
sensed.

All these parameters have an impact on a target detection probability. This probability can be
seen in an example for one radar in Figure. 7.4 on a landscape in Brasil. Figure. 7.3 represents
the 2d+ θ visualization where the axis Oxy represent the position x, y on the landscape and axis
Oz is the target direction θ, i.e., it is the angle between the longitudinal axis of the target and the
radar-to-target direction. The coiled shape of the cylinder is a direct effect of the target RCS as
for some angles, the target exhibits more fuselage and thus a bigger RCS. If we fix θ, we obtain a
slice of the cylinder that we can project onto the digital elevation model.

The holes in the probability of detection are caused by a relief in front of the radar, or by the
radar altitude as it cannot sense lower than its altitude.

Figure 7.3: 2d+ θ visualization, θ (vertical axis) is the azimuth.

7.4 Radar Network Use-Cases

7.4.1 Domain Definition

The terrain to cover is a square of δ × δ kilometers and for each point, the target can face in
any direction. Therefore, the domain ∆ to cover is represented by (x, y, θ), where θ is the target
azimuth. Each axis of ∆ is then split into D equal parts resulting in D3 voxels.

74

CHAPTER 7. RADAR NETWORK MODELING

Figure 7.4: Probability of detection for a fixed target azimuth θ.

7.4.2 Radar Network

To cover this domain ∆, k radars R are available: r rotating and s staring, hence the dimension
d of the problem, based on Section 7.3, is d = 4r + 3s. These radars compose a network ξ in the
set of possible networks Ξ. A network aggregates radars’ probability of detection in one of the
following ways:

Additive: the probability of detection of the network on a location is the addition of the proba-
bility of detection for each radar on this point, capped at 1:

P ξd (x, y, θ) = min

(
1,

k∑
i=1

PRid (x, y, θ)

)
;

Multiplicative: the probability of detection of the network on a location is the multiplication of
the probability of detection for each radar on this point, capped at 1:

P ξd (x, y, θ) = min

(
1,

k∏
i=1

PRid (x, y, θ)

)
;

Minimum: the probability of detection of the network on a location is the minimum probability
of detection of a radar on this point:

P ξd (x, y, θ) = min
i=1,...,k

(
PRid (x, y, θ)

)
;

Maximum: the probability of detection of the network on a location is the maximum probability
of detection of a radar on this point:

P ξd (x, y, θ) = max
i=1,...,k

(
PRid (x, y, θ)

)
;

Binary: the probability of detection of the network is 1 if one of the radar probability of detection
if above a threshold, 0 otherwise:

P ξd (x, y, θ) =

{
1 if mini=1,...,k

(
PRid (x, y, θ)

)
≥ threshold

0 otherwise
;

75

CHAPTER 7. RADAR NETWORK MODELING

Union: the probability of detection of the network is given by multiplying the probabilities of
non-detection for each radar and returning the corresponding probability of detection. We
assume that each radars are independent and compute

P ξd (x, y, θ) = 1−
k∏
i=1

(
1− PRid (x, y, θ)

)
.

Union networks can be used when probabilities are involved whereas additive networks may be
used in use-cases considering coverage.

7.4.3 Objective Function: Coverage Scenario

The objective function aims at maximizing the coverage of ∆. For a given network ξ, we want to
find the location and configuration of the radars such that the number of covered voxels is as large
as possible. We consider a voxel covered if the probability of detection p is greater or equal to a
predefined fixed threshold. The objective function for the coverage scenario is defined as follow:
f : Ξ→ [0, D3] (see Section 7.4.2). We want to find ξ∗ such

ξ∗ = arg max
ξ∈Ξ

f(ξ).

7.4.4 Constraints: Definition and Handling

On top of this problem, two sets of constraints can be added simultaneously or separately: areas
to defend and exclusion areas.

An area to defend Γ ⊂ ∆ is a region where at least one radar needs to be located. It is a
polygon that can be anywhere in the domain and of any shape (Figure 7.5). Moreover, multiple
areas to defend can be added as long as their number is lower or equal to the number of radars
available.

An exclusion area Λ ⊂ ∆ is a region where no radar should be located. Similarly to areas
to defend, they are polygons of any shapes but their number can be greater than the number of
radars (Figure 7.5). Both areas to defend and exclusion areas can be combined in the domain.

Unconstrained
Area

to defend
Exclusion

area

Figure 7.5: Diagrams of the problem and possible constraints.

In Ægis, constraints are handled following this procedure:

1. for each radar, we define its distance to the border of the constraint. This distance is 0 if the
radar does not violate the constraint;

2. all radar constraints are aggregated in one constraint either by summing, multiplying or
taking the minimum of each constraints;

3. the aggregated value is added to the objective function as penalty.

76

CHAPTER 7. RADAR NETWORK MODELING

7.5 Thesis Use-Cases

In this thesis, we focus on two particular use-cases: an unconstrained and a constrained one, both
defined in the following sections.

7.5.1 Unconstrained Use-Case

We consider a terrain of 50 × 50km. The discretization of the domain is fixed to 30 pixels. On
each pixel, we consider a target facing successively in all directions. The angle of the target is also
discretized using 30 pixels. The domain ∆ to cover is hence composed of 303 = 27,000 voxels.

In order to cover this domain, four radars are available: one rotating radar and three staring
radars. The dimension of the problem is thus d = 3 + 3 × 4 = 15. In this use-case, radars are
gathered into a network using the union aggregation defined in Section 7.4.2.

This use-case remains unconstrained, i.e., there is no area to defend nor exclusion areas, so
radars can be placed anywhere in the domain. The target has the characteristics described in
Section 7.2 and is flying at a constant altitude above the ground h. The goal of the problem is to
find a configuration that maximizes the number of voxels covered of the network. Since most off-
the-shelf optimization algorithms are implemented for minimization problems, we seek to minimize
the number of voxels that are not covered.

7.5.2 Constrained Use-Case

The constrained use-case has the same characteristics as the unconstrained one presented above.
In addition of these characteristics, the problem has an area to defend where at least one radar of
the network should be located.

The area to defend is a square located in the center of the domain ∆ of dimension 2 × 2km.
The aggregation used for constraints is the minimum, i.e., the minimum distance of the radars to
the border is added to the value of the objective function.

7.6 Geographical Data

In order to place and configure radar networks, we need to have geographical data to actually locate
radars. In this thesis, we use data from the NASA Shuttle Radar Topography Mission [HKP+01]
(SRTM). SRTM data were sampled at 3 arc-seconds, which is 1/1200th of a degree of latitude and
longitude, or about 90 meters at the equator. These Digital Elevation Models (DEM) cover the
entire globe and are provided in mosaics of 5 degrees by 5 degrees tiles. The mission provided
digital elevation models for 80% of the globe with a vertical error reported to be less than 16
meters.

The original data from NASA contains data voids due to water (lake and rivers), areas with
snow or heavy shadow which prevented the quantification of elevation. For instance, the Himalayas
region is the one containing the most data voids. In order to use complete data without holes,
we used digital elevation models that were post-processed with interpolation in [JRNG08]. The
resulted files have the same sizes and properties as the original data but without holes. As a result
of post-processing, peaks in high-mountain areas are interpolated which might result into peaks
slightly lower than they are in reality.

Figure 7.6 and Figure 7.7 show an example of data recovered from the CGIAR website1 that
is for a region close to Calgary, in Canada.

1Data available at https://srtm.csi.cgiar.org.

77

https://srtm.csi.cgiar.org

CHAPTER 7. RADAR NETWORK MODELING

The objective function defined in Section 7.4.3 will be applied on a collection of DEMs to create
different instances of the radar network configuration problems.

Figure 7.6: 2D Digital Elevation Model tile in Canada.

78

CHAPTER 7. RADAR NETWORK MODELING

Figure 7.7: 3D Digital Elevation Model tile in Canada.

79

Chapter 8
Solving the Radar Network Configuration
Problem

Contents
8.1 Problem Instances . 81

8.2 Algorithm Portfolio . 82

8.2.1 Default Algorithms . 82

8.2.2 Specifically Configured Algorithms . 83

8.3 Experimental Setup . 84

8.4 Results for the Unconstrained Use-Case 84

8.4.1 Individual Runs . 84

8.4.2 Statistical Significance . 85

8.4.3 Algorithm Median Objective Value . 86

8.4.4 Discussion . 90

8.5 Results for the Constrained Use-Case 93

8.5.1 Individual Runs . 93

8.5.2 Algorithm Median Objective Value . 94

8.5.3 Discussion . 98

8.6 Comparison with Manual Optimization 98

8.6.1 Problem Instance . 99

8.6.2 Algorithm Performances on canada0 . 99

8.6.3 Radar Network Configuration Contest 99

8.6.4 Comparison of Hand-Designed Configurations with Algorithms 102

In this chapter, we present the optimization results on the radar network configuration problem.
We first describe in Section 8.1 how the different instances of use-cases (see Section 7.5) are
produced. Section 8.2 presents the different optimization algorithms used to solve the use-cases.
Sections 8.4 and 8.5 show the performances of the algorithms on both use-cases. Finally, in
Section 8.6 we compare the results of algorithms to human-designed solutions.

80

CHAPTER 8. SOLVING THE RADAR NETWORK CONFIGURATION PROBLEM

0

1

2

3

4

5

67

8

Figure 8.1: Uniform subsampling of DEM tiles. The large area correspond to the DEM tile while
smaller numbered squares represent the samples.

8.1 Problem Instances

The network of radars computed by our algorithms will be evaluated on several instances. Each
instance is defined by an individual terrain (see Section 7.6). Overall, we consider 17 different tiles
of digital elevation model (DEM) from all around the world in order to have a large variety of
terrains. The tiles represent large areas of geographical data.

The size of the use-cases presented in Section 7.5 are smaller than the area of the DEM tiles.
To match the dimensions of the use-cases, we subsample the original tiles with domains of 50× 50
kilometers. As there is no particular reason to favor one area over another, we perform the
downsampling via the mask presented in Figure 8.1. Eight subsquares were chosen uniformly at
random and added to the condition that they are non-overlapping. These eight sets represent
together with the top left square the subsamples chosen for each terrain. The result is a total
number of 9× 17 = 153 instances.

The instances are labeled by the region name of the DEM tile and by the number of its sample
in the mask, i.e., the first sample in the mask for the Brasil region has the instance name brasil0.

The difference between the highest and the lowest points in each instance can be found in
Table 8.1. This information gives a hint of the actual landscape of the terrain. It may also give an
an idea of which problems might be easier to solve than others as flat areas may be easier to cover
than mountainous areas.

We define flat instances to be instances where the difference between the highest and the lowest
point is below 100 meters. As the target to detect is always 50 meters above ground level (see
Section 7.5, it implies that it might be visible from almost any point in the domain. Mountainous
instances have a difference between the highest and the lowest points greater than 1,000 meters.

81

CHAPTER 8. SOLVING THE RADAR NETWORK CONFIGURATION PROBLEM

Table 8.1: Difference between the highest and lowest altitudes (in meters) of each instance.
Columns represent the subsample in the DEM tile and rows corresponds the region of the DEM
tile.

Instances
0 1 2 3 4 5 6 7 8

afghanistan 1616 1266 1152 1161 1534 1177 1085 1144 1023
argentina 24 24 24 24 27 22 26 26 27
australia 189 181 117 67 376 93 203 384 90
belarus 166 196 145 158 135 187 154 166 147
brasil 61 79 85 108 89 90 129 58 107
canada 1494 1571 1419 1452 1528 1194 1474 1515 1387
chile 1408 1311 1555 2625 1252 2469 1869 1330 2523
china 1417 1439 1462 893 1398 1039 924 1271 956
congo 66 70 68 84 64 74 88 64 87
france 161 329 300 325 331 177 189 186 307
india 3828 2111 3821 2224 1983 3195 3175 2070 3755
iran 914 487 841 929 788 788 986 319 979
moldavia 111 245 241 235 257 166 170 187 229
nepal 1439 1753 1232 1656 1723 1367 1529 1644 1264
russia 341 302 341 343 302 327 355 330 322
sahara 25 25 24 43 20 28 25 27 29
usa 1161 1486 1518 1300 1321 1049 1173 1393 1228

8.2 Algorithm Portfolio

In this section, we present the algorithms used to solve the use cases (see Section 8.1. Section 8.2.1
present the portfolio of default algorithms used while Section 8.2.2 present the automatic configu-
ration of some algorithms.

8.2.1 Default Algorithms

The portfolio of algorithms is composed of 12 of the algorithms presented in Chapter 2:

• Differential Evolution [VGO+20]1 with default scipy parameters;

• Nelder-Mead [VGO+20] with default scipy parameters;

• Powell’s method [VGO+20] with default scipy parameters;

• L-BFGS-B [VGO+20] with default scipy parameters and a finite differences step of 0.01;

• PSO with global best topology [Mir18]2 and default pyswarms parameters;

• Random Search with uniform sampling;

• Quasi-Random Search with Soboĺ low-discrepancy sequences;

• Five CMA-ES variants from the ModCMA framework [vRWvLB16]:

1version 1.5.4
2version 1.3.0

82

CHAPTER 8. SOLVING THE RADAR NETWORK CONFIGURATION PROBLEM

– Vanilla CMA-ES [HO01] (denoted 00000000000 in ModCMA),

– CMA-ES with mirror sampling [BAH+10] and pairwise selection [ABH11] (denoted
00100001000 in ModCMA),

– CMA-ES with elitism (denoted 01000000000 in ModCMA),

– CMA-ES with active update [JA06] (denoted 10000000000 in ModCMA),

– CMA-ES with active update, elitism and BIPOP increasing population [Han09] (denoted
11000000002 in ModCMA).

8.2.2 Specifically Configured Algorithms

We expand our portfolio of algorithms by performing algorithm configuration (see Section 2.8)
on some instances in order to create specific solvers. This expansion is done to increase the
complementarity in the algorithms from our portfolio. All configured algorithms that may perform
better than their default configuration will be added in our portfolio.

We use the irace [LDLP+16]3 configurator with default parameters and the lowest budget
possible of runs: 180. This choice of number of runs is motivated by the expensive computation
time of the objective function (see Chapter 7).

The configuration is done on four sets of instances for the large budget of 2,500 function
evaluations:

• one flat instance, belarus0 ;

• three flat instances, belarus0, congo0 and sahara0 ;

• one mountainous instance,chile0 ;

• three mountainous instances, chile0, canada0 and india0.

The algorithms and parameters used for the configuration were:

• Differential Evolution: population size (between 4 and 100), the mutation (between 0 and 2)
and recombination constants (between 0 and 1);

• PSO: population size (between 1 and 100), acceleration coefficients c1, c2 (both between 0
and 4) and the inertia weight w (between 0 and 1);

• vanilla CMA-ES: population sizes λ (between 4 and 100) and µ (a proportion of λ between
0 and 1).

Most of the configurations given by irace performed similarly to the default version of algo-
rithms. But, one stands out by outperforming its default configuration: Differential Evolution
tuned on the chile0 instance. Parameters of both default and tuned DE algorithm can be found
in Table 8.2.

The main differences between the two set of parameters resides in a population size reduced
more than twice in the tuned version and lower mutation constant. In the default algorithm, for
each generation the mutation constant is taken uniformly at random between the bounds. These
bounds are much larger than the mutation constant of the tuned version.

As the tuned Differential Evolution seems to have good performance, it was added to our
portfolio of algorithms so that the total number of algorithms in our portfolio is 13.

3version 3.4.1

83

CHAPTER 8. SOLVING THE RADAR NETWORK CONFIGURATION PROBLEM

Table 8.2: Differential Evolution population size, mutation and recombination parameters. Com-
parison of default algorithm parameters with tuned algorithm parameters.

DE DE 2500 chile
popsize 15 6
mutation U(0.5,1) 0.1
recombination 0.7 0.58

8.3 Experimental Setup

The experimental setup presented in this section is used to solve the two use-cases.
For each algorithm, 30 runs are performed on each of the problem instances. We log the whole

performance trajectory, i.e, we log all the improvements achieved by the algorithms up to a budget
of 2,500 function evaluations. But, for the presented analyses in this thesis, we will focus on
one low-budget setting with 500 evaluations and one large-budget setting with 2,500
evaluations.

We look at the 30 individual runs separately in Section 8.4.1. In Section 8.4.3, we assess and
compare the performances of the algorithms using the median of the best objective function values
found in each run runs only.

8.4 Results for the Unconstrained Use-Case

In this section, we will focus on the performances of the algorithms from our portfolio applied to
the unconstrained use-case presented in Section 7.5.1.

8.4.1 Individual Runs

Figures 8.2 and 8.3 show the histograms of the objective values of the 30 runs for all algorithms.
Figure 8.2 shows the results for 500 function evaluations while Figure 8.3 are for 2,500 function
evaluations The bins used in the histograms and the scaling of the x axis are the same for each
algorithm.

We observe that on the low budget, the algorithm reaching most often the best quality of
solution found on both instances is Powell’s method. On the sahara0 instance (see Figure 8.2a),
Powell’s method is the only algorithm reaching this quality of solution. Nevertheless, given the
dispersion of fitness values on the runs, Powell’s method is not the best performing algorithm
in median on either instances. On the sahara0 instance (see Figure 8.2a), it is the fourth best
performing algorithm in median after 11000000002 (best performing in median), Nelder-Mead
(second best performing in median), and 01000000000 (third best performing in median). For the
nepal3 instance, it is also the fourth best performing algorithm in median after DE 2500 chile (best
performing in median), 01000000000 (second best performing in median), and 11000000002 (third
best performing in median).

For the larger budget, on the sahara0 instance (see Figure 8.3a), 00100001000 is reaching the
best objective value found among all algorithms once on both instances. 00000000000 is reaching
the best performance twice on the nepal3 but never on the sahara0 instance. The best performing
algorithm in median is also the 00100001000 CMA-ES variant. Even if 00000000000 reaches the best
objective value twice on nepal3 instance, given its dispersion, it is only the fourth best performing
algorithm in median behind 00100001000, DE 2500 chile and 10000000000.

84

CHAPTER 8. SOLVING THE RADAR NETWORK CONFIGURATION PROBLEM

0.6e+4 0.8e+4 1e+4
0

5

10

15

0.6e+4 0.8e+4 1e+4
0

5

10

15

0.6e+4 0.8e+4 1e+4
0

5

10

15

0.6e+4 0.8e+4 1e+4
0

5

10

15

0.6e+4 0.8e+4 1e+4
0

5

10

15

0.6e+4 0.8e+4 1e+4
0
5

10
15

0.6e+4 0.8e+4 1e+4
0
5

10
15
20

0.6e+4 0.8e+4 1e+4
0

5

10

0.6e+4 0.8e+4 1e+4
0

5

10

0.6e+4 0.8e+4 1e+4
0

5

10

0.6e+4 0.8e+4 1e+4
0

5

10

0.6e+4 0.8e+4 1e+4
0

5

10

0.6e+4 0.8e+4 1e+4
0

5

10

Target Values Target Values

Target Values

R
u
n
s

R
u
n
s

R
u
n
s

R
u
n
s

R
u
n
s

000000000000000000000000000000000 001000010000010000100000100001000 010000000000100000000001000000000

100000000001000000000010000000000 110000000021100000000211000000002 DEDEDE

BFGS-BL-BFGS-BL-BFGS-B Nelder-MeadNelder-MeadNelder-Mead

PowellPowellPowell PSO_gbestPSO_gbestPSO_gbest RandomSearchRandomSearchRandomSearch

QuasiRandomSearchQuasiRandomSearchQuasiRandomSearch

DE_2500_chile

(a) sahara0

2e+4 2.2e+4 2.4e+4
0

5

10

15

2e+4 2.2e+4 2.4e+4
0

5

10

15

2e+4 2.2e+4 2.4e+4
0

2

4

6

8

2e+4 2.2e+4 2.4e+4
0

5

10

2e+4 2.2e+4 2.4e+4
0
2
4
6
8

2e+4 2.2e+4 2.4e+4
0

5

10

2e+4 2.2e+4 2.4e+4
0

5

10

2e+4 2.2e+4 2.4e+4
0
2
4
6
8

2e+4 2.2e+4 2.4e+4
0

2

4

6

2e+4 2.2e+4 2.4e+4
0
2
4
6
8

2e+4 2.2e+4 2.4e+4
0

5

10

2e+4 2.2e+4 2.4e+4
0
5

10
15
20

2e+4 2.2e+4 2.4e+4
0

5

10

15

Target Values Target Values

Target Values

R
u
n
s

R
u
n
s

R
u
n
s

R
u
n
s

R
u
n
s

000000000000000000000000000000000 001000010000010000100000100001000 010000000000100000000001000000000

100000000001000000000010000000000 110000000021100000000211000000002 DEDEDE

L-BFGS-BL-BFGS-BL-BFGS-B Nelder-MeadNelder-MeadNelder-Mead

PowellPowellPowell PSO_gbestPSO_gbestPSO_gbest RandomSearchRandomSearchRandomSearch

QuasiRandomSearchQuasiRandomSearchQuasiRandomSearch

DE_2500_chile

(b) nepal3

Figure 8.2: Histograms of the values reached by the 30 runs, for sahara0 and nepal3 instances, for
the 13 algorithms of our portfolio for 500 function evaluations on the unconstrained use-case.

Looking at the dispersion of objective values, we observe that overall and especially on these
two instances, the Nelder-Mead algorithm is the one with the greatest variance. This behavior may
be due to the mechanisms of the algorithm. The Nelder-Mead acts as local search algorithm and
very much depends on the starting point. Moreover, as mountainous instances are more peaked
than flat instances, they may contain more local optima. The dispersion of reached objective values
by the algorithm tends to often be larger on mountainous instances. In contrast, the algorithms
that have, overall, the smallest dispersion are both DE 2500 chile and DE.

Tables of algorithms performing best on the instances in median and for the 2% quantile as well
as the best performance reached in median and for the 2% quantile can be found in appendix B.
With 30 runs, the 2% quantile of the distribution represent the best run achieved.

8.4.2 Statistical Significance

All algorithms seem to have similar performances. To confirm this behavior, we perform a
Kolmogorov-Smirnov test to determine if one algorithm outperforms all others on each instance.
We perform this test for each pair of algorithms with a confidence level α = 0.01.

The results are presented as a network in Figure 8.4 and Figure 8.5 for sahara0 and nepal3
respectively. In these plots, if an arrow goes from an algorithm A to an algorithm B, it indicates
that A is significantly better than B.

In the nepal3 instance, for a budget of 500 function evaluations, the best performing algorithm,
i.e., DE 2500 chile is statistically better than the majority of algorithms except for Powell, and
the 11000000002 and 01000000000 CMA-ES variants (Figure 8.5a).

For a larger budget of 2,500 function evaluation, Powell, DE 2500 chile and all CMA-ES
variants perform better than other algorithms but are performing statistically the same between
each other (Figure 8.5b).

85

CHAPTER 8. SOLVING THE RADAR NETWORK CONFIGURATION PROBLEM

0.6e+4 0.8e+4 1e+4
0

5

10

15

0.6e+4 0.8e+4 1e+4
0

5

10

0.6e+4 0.8e+4 1e+4
0

5

10

0.6e+4 0.8e+4 1e+4
0

5

10

0.6e+4 0.8e+4 1e+4
0

5

10

0.6e+4 0.8e+4 1e+4
0

5

10

15

0.6e+4 0.8e+4 1e+4
0
2
4
6
8

0.6e+4 0.8e+4 1e+4
0

5

10

0.6e+4 0.8e+4 1e+4
0
2
4
6
8

0.6e+4 0.8e+4 1e+4
0

5

10

0.6e+4 0.8e+4 1e+4
0
1
2
3
4

0.6e+4 0.8e+4 1e+4
0
2
4
6

0.6e+4 0.8e+4 1e+4
0

2

4

6

8

Target Values Target Values

Target Values

R
u
n
s

R
u
n
s

R
u
n
s

R
u
n
s

R
u
n
s

000000000000000000000000000000000 001000010000010000100000100001000 010000000000100000000001000000000

100000000001000000000010000000000 110000000021100000000211000000002 DEDEDE

L-BFGS-BL-BFGS-BL-BFGS-B Nelder-MeadNelder-MeadNelder-Mead

PowellPowellPowell PSO_gbestPSO_gbestPSO_gbest RandomSearchRandomSearchRandomSearch

QuasiRandomSearchQuasiRandomSearchQuasiRandomSearch

DE_2500_chile

(a) sahara0

1.8e+4 2e+4 2.2e+4 2.4e+4
0

5

10

1.8e+4 2e+4 2.2e+4 2.4e+4
0

5

10

1.8e+4 2e+4 2.2e+4 2.4e+4
0

2

4

6

1.8e+4 2e+4 2.2e+4 2.4e+4
0

5

10

1.8e+4 2e+4 2.2e+4 2.4e+4
0

5

10

1.8e+4 2e+4 2.2e+4 2.4e+4
0

5

10

15

1.8e+4 2e+4 2.2e+4 2.4e+4
0

5

10

1.8e+4 2e+4 2.2e+4 2.4e+4
0
2
4
6
8

1.8e+4 2e+4 2.2e+4 2.4e+4
0

2

4

6

1.8e+4 2e+4 2.2e+4 2.4e+4
0
2
4
6
8

1.8e+4 2e+4 2.2e+4 2.4e+4
0

5

10

15

1.8e+4 2e+4 2.2e+4 2.4e+4
0

5

10

15

1.8e+4 2e+4 2.2e+4 2.4e+4
0

5

10

Target Values Target Values

Target Values

R
u
n
s

R
u
n
s

R
u
n
s

R
u
n
s

R
u
n
s

000000000000000000000000000000000 001000010000010000100000100001000 010000000000100000000001000000000

100000000001000000000010000000000 110000000021100000000211000000002 DEDEDE

-BFGS-BL-BFGS-BL-BFGS-B Nelder-MeadNelder-MeadNelder-Mead

PowellPowellPowell PSO_gbestPSO_gbestPSO_gbest RandomSearchRandomSearchRandomSearch

QuasiRandomSearchQuasiRandomSearchQuasiRandomSearch

DE_2500_chile

(b) nepal3

Figure 8.3: Histograms of the objective values reached by the 30 runs, for sahara0 and nepal3
instances, for the 13 algorithms of our portfolio for 2,500 function evaluations on the unconstrained
use-case.

This tendency of multiple algorithms having similar performances can also be seen for sahara0
instance (Figure 8.4a and Figure 8.4b) and all other instances in the benchmark.

8.4.3 Algorithm Median Objective Value

Figure 8.6 presents convergence plots of the algorithms from our portfolio. Figure 8.6a shows the
results for a flat instance sahara0, while Figure 8.6b presents results for a mountainous instance
nepal3.

These plots represent the median objective value of the 30 runs for each algorithm. On both
instances, the CMA-ES variant 00100001000 seems to perform best after 2,500 function evalua-
tions. Nevertheless, the difference among the algorithms from the portfolio on the sahara0 instance
is small, i.e., around a 300 voxels difference between the best performing algorithm and the fifth
best.

All algorithms perform better than random search for the flat sahara0 instance. This is not the
case on the nepal3 instance. On this instance, both the Nelder-Mead and the L-BFGS-B perform
far worse than random search. This may be explained by the characteristics of the algorithms and
the instances. The Nelder-Mead and the L-BFGS-B perform a local search around the current
solution. As flat instances reveal some convexity towards the center of domain, i.e., the area where
radars can see the most, local search often performs well on this type of instance. On the contrary,
mountainous instances may be are composed of lots of peaks caused my mountains. This implies
that local search algorithms may get stuck in these peaks.

86

CHAPTER 8. SOLVING THE RADAR NETWORK CONFIGURATION PROBLEM

(a) 500 function evaluations (b) 2,500 function evaluations

Figure 8.4: Partial order resulted from the Kolmogorov-Smirnov statistical test visualized as a
network on sahara0 instances. The tests are for low and large budget with a significance level
α = 0.01. An arrow from algorithm A to B indicates A is significantly better than B.

(a) 500 function evaluation (b) 2,500 function evaluation

Figure 8.5: Partial order resulted from the Kolmogorov-Smirnov Statistical test visualized as a
network on nepal3 instances. The tests are for low and large budget with a significance level
α = 0.01. An arrow from algorithm A to B indicates A is significantly better than B.

87

CHAPTER 8. SOLVING THE RADAR NETWORK CONFIGURATION PROBLEM

0 500 1000 1500 2000 2500

0.6e+4

0.7e+4

0.8e+4

0.9e+4

1e+4

1.1e+4

1.2e+4

1.3e+4

1.4e+4

00000000000 00100001000 01000000000 10000000000 11000000002 DE DE_2500_chile

L-BFGS-B Nelder-Mead Powell PSO_gbest QuasiRandomSearch RandomSearch

Function Evaluations

B
e
st

-s
o
-f

a
r

f(
x
)-

v
a
lu

e

(a) sahara0

0 500 1000 1500 2000 2500

1.9e+4

2e+4

2.1e+4

2.2e+4

2.3e+4

2.4e+4

2.5e+4

00000000000 00100001000 01000000000 10000000000 11000000002 DE DE_2500_chile

L-BFGS-B Nelder-Mead Powell PSO_gbest QuasiRandomSearch RandomSearch

Function Evaluations

B
e
st

-s
o
-f

a
r

f(
x
)-

v
a
lu

e

(b) nepal3

Figure 8.6: Median objective values over time, for 30 runs, for sahara0 and nepal3 instances, for
the 13 algorithms of our portfolio.

88

CHAPTER 8. SOLVING THE RADAR NETWORK CONFIGURATION PROBLEM

00000000000

00100001000

01000000000

10000000000

11000000002 DE

DE_2500_chile
L-BFGS-B

Nelder-M
ead

PSO_gbest
Powell

QuasiR
andomSearch

RandomSearch

0

10

20

30

40

50

60

70

Pe
rc

e
n
ta

g
e
 o

f
p
e
rf

o
rm

a
n
ce

 l
o
ss

 t
o
 t

h
e
 V

B
S

(a) 500 function evaluations

00000000000

00100001000

01000000000

10000000000

11000000002 DE

DE_2500_chile
L-BFGS-B

Nelder-M
ead

PSO_gbest
Powell

QuasiR
andomSearch

RandomSearch

0

20

40

60

80

100

Pe
rc

e
n
ta

g
e
 o

f
p

e
rf

o
rm

a
n
ce

 l
o
ss

 t
o
 t

h
e
 V

B
S

(b) 2,500 function evaluations

Figure 8.7: Boxplots of median performance loss on the best performing solver on all problem
instances for low and large budget of function evaluations.

8.4.3.1 Single Best Solvers (SBS)

We look at our two budgets of interest, i.e., 500 and 2,500 function evaluations to extract the
best performing solver on all instances. The best performing solver for the low budget is denoted
SBS 500 whereas the one for the large budget is denoted SBS 2,500

To extract the two SBS, we record for each instance the best performing algorithm and its
median objective performance for both budgets. We compare all other algorithm median objective
performances to the best one and record the difference in percentage.

Figure 8.7 aggregates this data and plots the difference in percentage to the best algorithm
for each problem instances. In the boxplots, a median value of an algorithm illustrates that this
algorithm performs X% worse than the best algorithm for half of the instances.

Figure 8.8 presents the number of instances that are solved within X% of the best algorithm.
Figure 8.7a presents the results for the low budget. The best performing algorithm, and thus

the SBS 500 is DE 2500 chile with a median difference with the best algorithms for each instance
of 0.39%. On top of that, it is also the best algorithm for 69 out of the 153 problems and never
has performances worse by more than 15% than the instances best solver.

For the low budget setting, four algorithms outperform the others significantly in median per-
formances and are also the only to reach the best performance found on some instances. Alongside
DE 2500 chile , 11000000002 CMA-ES variants is best on 35 instances, 01000000000 on 23 and
Powell on 17.

One of the worst performing algorithms in median is the Nelder-Mead, performing 24.4% worse
than the best solver. However, even if it performs worse than random search in median, the Nelder-
Mead algorithm exhibits one of the largest complementarity on the instances. It performs best on
9 instances but also performs worse than 25% of the best algorithm on 76 instances.

When the budget is larger (see Figure 8.7b), algorithms from our portfolio start to have similar
performances. Six algorithms have a median difference to the best algorithm around 5% and
seven of them are the best algorithm on at least one instance. The SBS 2,500 is the CMA-ES
variant 00100001000 with a median performance loss of 0% and performing best on 86 of the 153
instances.

89

CHAPTER 8. SOLVING THE RADAR NETWORK CONFIGURATION PROBLEM

00
00

00
00

00
0

00
10

00
01

00
0

01
00

00
00

00
0

10
00

00
00

00
0

11
00

00
00

00
2

D
E

D
E_

25
00

_c
hi

le
L-

BF
G

S-
B

N
el

de
r-
M

ea
d

PS
O

_g
be

st
Po

w
el

l
Q

ua
si

Ra
nd

om
Se

ar
ch

Ra
nd

om
Se

ar
ch

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f
In

st
a
n
ce

s

0%

<=2%

<=5%

<=10%

<=15%

<=25%

>25%

(a) 500 function evaluations

00
00

00
00

00
0

00
10

00
01

00
0

01
00

00
00

00
0

10
00

00
00

00
0

11
00

00
00

00
2

D
E

D
E_

25
00

_c
hi

le
L-

BF
G

S-
B

N
el

de
r-
M

ea
d

PS
O

_g
be

st
Po

w
el

l
Q

ua
si

Ra
nd

om
Se

ar
ch

Ra
nd

om
Se

ar
ch

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f
In

st
a
n
ce

s

0%

<=2%

<=5%

<=10%

<=15%

<=25%

>25%

(b) 2,500 function evaluations

Figure 8.8: Percentages of instances solved within X% of the best algorithm performance.

8.4.3.2 Low Budget Performances versus Large Budget Performances

Figure 8.9 presents the evolution of the median performance on all instances for each algorithm
in our portfolio. Most algorithms improve their performance by around 10% with the 2,000 sup-
plementary evaluations. That is the case for DE 2500 chile , L-BFGS-B, PSO, Powell and quasi
random search. DE achieves one of the biggest improvements with 19.5% while the Nelder-Mead
algorithm does not improve at all.

Concerning CMA-ES variants, algorithms that were performing well on the low budget only
improve by 6%. Other variants really benefit from these 2,000 additional evaluations by improving
their performances up to 20%.

8.4.4 Discussion

In this section, we study in Section 8.4.4.1 the impact of the budget on the performances of
the elitist module in CMA-ES variants. In Section 8.4.4.2, we observe the impact of the physical
landscape on algorithm performances. Finally, in Section 8.4.4.3, we study the benefit of automated
algorithm configuration over default parameters of algorithms.

8.4.4.1 Budget and Elitism

The results presented in Section 8.4.3.2 seem to show that some CMA-ES variants are preferable
for small budgets whereas others perform well on large budgets.

The main differences between these variants are their respective selection mechanism. Variants
that perform well for the low budget are elitist (see Section 2.3.2), i.e., they use plus-selection,
whereas variants that perform well for the larger budget are non-elitist, i.e., they use comma-
selection.

Figure 8.10 illustrates this behavior on the sahara0 (Figure 8.10a) and the nepal3 instance (Fig-
ure 8.10b) of two CMA-ES variants. One variant is the non-elitist vanilla CMA-ES (00000000000)
and the other variant uses the elitism module (0100000000). On both instances, we observe that
the elitist variant performs better on lower budgets. In contrast, the non-elitist variant is perform-
ing better for larger budgets. On all instances, there is a number of function evaluations where
the non-elitist performance curve crosses the elitist one.

90

CHAPTER 8. SOLVING THE RADAR NETWORK CONFIGURATION PROBLEM

00
00

00
00

00
0

00
10

00
01

00
0

01
00

00
00

00
0

10
00

00
00

00
0

11
00

00
00

00
2 DE

DE_
25

00
_c

hi
le

L-
BFG

S-
B

Nel
de

r-M
ea

d

Po
wel

l

PS
O_g

be
st

Qua
siR

an
do

m
Se

ar
ch

Ran
do

m
Se

ar
ch

10000

11000

12000

13000

14000

15000

16000

17000

M
e
d

ia
n
 #

 o
f

p
ix

e
ls

 N
O

T
 c

o
v
e
re

d

500

2500

Figure 8.9: Median number of voxels not covered on all instances for low and large budget. Black
bars represent standard deviations over instances.

The crossing point occurs around the 900 evaluations on the sahara0 and around 1,300 evalu-
ations on nepal3. Overall, this crossing occurs on all instances between 500 and 1,650 evaluations.
Nevertheless, the crossing seems not to depend of the landscape of the terrain, i.e., the variants
performances may cross each other later on some flat instances than mountainous instances and
vice versa. As an example, the crossing occurs around 1,300 evaluations on the brasil1 instance
which is rather flat and around 750 evaluations on the chile6 instance.

8.4.4.2 Flat Instances versus Mountainous Instances

An easy division of the instances of our benchmark is to split them into flat instances and into
mountainous instances. Of course, some instances are neither entirely flat, nor particularly moun-
tainous but have just some minor elevations. We focus in this section only on the performance of
solvers on the two extreme types of instances: flat and mountains.

Figure 8.11 shows the median performances for each solver on each instance for the lower budget
(Figure 8.11a) and the larger budget (Figure 8.11b). For both budgets, we can clearly see that the
number of voxels not covered is lower on flat instances than mountain instances. This could be
expected before any optimization as mountains are more difficult to cover as they block the radar
view.

The convergence between flat and mountainous instances is also different. We compare the
solutions obtained after 500 and 2,500 evaluations for 27 flat instances (Argentina, Congo and
Sahara instances) and 27 mountain ares (Nepal, India and USA instances).

For both flat and mountainous instances, the Nelder-Mead algorithm has already converged
after 500 evaluations and does not improve with more evaluations. Overall, for the other algorithms
from our portfolio, we observe a bigger gain on flat instances. The median gain on flat instances
from letting the algorithms go to 2,500 function evaluations is 9.1%. This gain is only 4.3% on
mountainous instances. Again, this may be explained by the rugged landscape of the terrain and

91

CHAPTER 8. SOLVING THE RADAR NETWORK CONFIGURATION PROBLEM

0 500 1000 1500 2000 2500

0.6e+4

0.7e+4

0.8e+4

0.9e+4

1e+4

1.1e+4

1.2e+4

1.3e+4

1.4e+4

00000000000 01000000000

Function Evaluations

Be
st

-s
o-

fa
r f

(x
)-v

al
ue

(a) sahara0

0 500 1000 1500 2000 2500

2e+4

2.1e+4

2.2e+4

2.3e+4

2.4e+4

2.5e+4

00000000000 01000000000

Function Evaluations

Be
st

-s
o-

fa
r f

(x
)-v

al
ue

(b) nepal3

Figure 8.10: Median objective values over time, for 30 runs of vanilla (red) and elitist (orange)
CMA-ES variants with different selection mechanism.

92

CHAPTER 8. SOLVING THE RADAR NETWORK CONFIGURATION PROBLEM

7500

10000

12500

15000

17500

20000

22500

M
e
d

ia
n
 #

 o
f

p
ix

e
ls

 N
O

T
 c

o
v
e
re

d

Algorithms
00000000000

00100001000

01000000000

10000000000

11000000002

DE

DE_2500_parag

L-BFGS-B

Nelder-Mead

Powell

PSO_gbest

QuasiRandomSearch

RandomSearch

Flat Mountains

(a) 500 function evaluations

10000

12500

15000

17500

20000

22500

M
e
d

ia
n
 #

 o
f

p
ix

e
ls

 N
O

T
 c

o
v
e
re

d

Algorithms
00000000000

00100001000

01000000000

10000000000

11000000002

DE

DE_2500_parag

L-BFGS-B

Nelder-Mead

Powell

PSO_gbest

QuasiRandomSearch

RandomSearch

Flat Mountains

(b) 2,500 function evaluations

Figure 8.11: Median performances of solvers on each problem instance for low and large budget
of function evaluations. Instances are sorted by the elevations in Table 8.1. Flat instances on the
left, mountainous instances on the right.

thus, it is more difficult to improve the current solution.

8.4.4.3 Contribution of Algorithm Configuration

Algorithm Configuration has a huge impact on the performances of the performances of the DE
algorithm. The tuned version of DE is statistically performing better than the default algorithm
in a great number of instances, especially on low budgets. As a matter of fact, DE 2500 chile is
even the SBS for the low budget setting.

Even if the default DE gains a lot in performance with a larger budget, DE 2500 chile is still
performing best on more instances and is statistically better

8.5 Results for the Constrained Use-Case

The number of instances for the constrained use-case was reduced in order to save computation
time. We used only the instances 0 and 3 of every region. Moreover, there is also two fewer
algorithms in the portfolio:

• we do not consider the quasi random search as it has the same performances as random
search for all instances on the unconstrained use-case;

• DE 2500 chile was not considered as it was specially tuned for the unconstrained use-case.

Hence, our portfolio is composed of 11 algorithms.

8.5.1 Individual Runs

Analogous to the unconstrained use-case, Figures 8.12 and 8.13 show the histograms of the reached
objective values on the 30 runs for the constrained use-case. These histograms concern 11 algo-
rithms of our portfolio for a low budget of 500 function evaluations and a large budget of 2,500
function evaluations. The bins used in the histograms and the x axis are the same for each algo-
rithm.

93

CHAPTER 8. SOLVING THE RADAR NETWORK CONFIGURATION PROBLEM

On the lower budget, as for the unconstrained use-case, Powell’s method is reaching more often
the best objective found on both instances. Powell’s method is reaching the best objective value
found on one run on the sahara0 instance and on eight runs on the nepal3 instance. On top of
reaching the best objective value found, Powell’s method is also the best performing algorithm in
median on both instances before the 11000000002 CMA-ES variant on both instances.

For larger budgets, Powell’s method is still reaching the best objective found value five times on
the sahara0 instance and once on the nepal3 instance. On the nepal3 instance, Powell’s method
is the only algorithm reaching the best objective value reached On the sahara0 instance, the
11000000002 CMA-ES variant along with Powell’s method is reaching the best objective value
reached once.

Powell’s method is also the best performing algorithm in median on the nepal3 before the
PSO algorithm. On the sahara0 instance, given its dispersion Powell’s method is not the best
performing algorithm in median. The 00100001000 CMA-ES variant is not achieving the best
objective reached but obtain a good performance with a low variance over the runs. Thus the
00100001000 CMA-ES variant is the best performing algorithm on the sahara0 instance before
vanilla CMA-ES and Powell’s method.

Overall, as for the unconstrained use-case, the Nelder-Mead and BFGS algorithms have the
wider range of objective values attained on 30 runs.

The addition of the constraint tends to worsen the objective value obtained for all instances.
The median value obtained by 00100001000 on the constrained use-case is 14% worse than the
median value obtained on the unconstrained problem on the sahara0 instance. Powell’s method
has a median value 2.5% worse on the nepal3 instance when the constraint is added.

In the rest of the study of this use-case, we choose to aggregate runs using the median objective
value of the 30 runs.

Tables of algorithms performing best on the instances in median and for the 2% quantile as well
as the best performance reached in median and for the 2% quantile can be found in appendix B.

8.5.2 Algorithm Median Objective Value

As in Section 8.4.3, Figure 8.14 presents the convergence plot of the portfolio on the sahara0
instance (Figure 8.14a) and the nepal3 instance (Figure 8.14b).

Powell’s method performs best for the low and the large budget on the nepal3 instance. Powell’s
method is also performing better on the low budget for the sahara0 instance. On the large budget
for the sahara0 instance, the 00100001000 CMA-ES variant is performing better but by a small
margin, i.e., by around 100 voxels. Even if the difference with other algorithms is significant on the
nepal3 instance for the low budget, it is not the case for the other instance or with larger budgets.

Compared to the performances on the unconstrained use-case, algorithms tend to perform worse
when the constraint is added. The main factor to explain this behavior is the location of the area
to defend. Depending on the landscape of the terrain, this location forces to have bad solutions,
i.e., if the area to defend have an high altitude, then the radar located there will sense almost
nothing.

8.5.2.1 Statistical Significance

In the constrained use-case, algorithms tend to have similar performances more often than in the
unconstrained use-case. This is especially the case for the lower budget of evaluations. This can
be seen in the networks, as Figure 8.15a and Figure 8.16a are more sparse. Again, this is a direct
effect of the area to defend as it might take several evaluations to put a radar in this area.

Otherwise, we observe the same behavior for both use-cases.

94

CHAPTER 8. SOLVING THE RADAR NETWORK CONFIGURATION PROBLEM

0.6e+4 0.8e+4 1e+4
0

5

10

0.6e+4 0.8e+4 1e+4
0

5

10

0.6e+4 0.8e+4 1e+4
0

2

4

6

8

0.6e+4 0.8e+4 1e+4
0

5

10

0.6e+4 0.8e+4 1e+4
0

5

10

0.6e+4 0.8e+4 1e+4
0

5

10

0.6e+4 0.8e+4 1e+4
0

5

10

0.6e+4 0.8e+4 1e+4
0

1

2

3

4

0.6e+4 0.8e+4 1e+4
0

5

10

0.6e+4 0.8e+4 1e+4
0

5

10

0.6e+4 0.8e+4 1e+4
0

2

4

6

Target Values

Target Values Target Values

R
u
n
s

R
u
n
s

R
u
n
s

R
u
n
s

110000000021100000000211000000002 100000000001000000000010000000000 010000000000100000000001000000000

001000010000010000100000100001000 000000000000000000000000000000000 Nelder-MeadNelder-MeadNelder-Mead

PowellPowellPowell PSO_gbestPSO_gbestPSO_gbest RandomSearchRandomSearchRandomSearch

DEDEDE L-BFGS-BL-BFGS-BL-BFGS-B

(a) sahara0

2e+4 2.2e+4 2.4e+4 2.6e+4
0

2

4

6

2e+4 2.2e+4 2.4e+4 2.6e+4
0

5

10

2e+4 2.2e+4 2.4e+4 2.6e+4
0

2

4

6

8

2e+4 2.2e+4 2.4e+4 2.6e+4
0

5

10

2e+4 2.2e+4 2.4e+4 2.6e+4
0

5

10

2e+4 2.2e+4 2.4e+4 2.6e+4
0

2

4

6

2e+4 2.2e+4 2.4e+4 2.6e+4
0

2

4

6

8

2e+4 2.2e+4 2.4e+4 2.6e+4
0

2

4

6

8

2e+4 2.2e+4 2.4e+4 2.6e+4
0

2

4

6

8

2e+4 2.2e+4 2.4e+4 2.6e+4
0

5

10

2e+4 2.2e+4 2.4e+4 2.6e+4
0

2

4

6

Target Values

Target Values Target Values

R
u
n
s

R
u
n
s

R
u
n
s

R
u
n
s

110000000021100000000211000000002 100000000001000000000010000000000 010000000000100000000001000000000

001000010000010000100000100001000 000000000000000000000000000000000 Nelder-MeadNelder-MeadNelder-Mead

PowellPowellPowell PSO_gbestPSO_gbestPSO_gbest RandomSearchRandomSearchRandomSearch

DEDEDE L-BFGS-BL-BFGS-BL-BFGS-B

(b) nepal3

Figure 8.12: Histograms of the values reached by the 30 runs, for sahara0 and nepal3 instances,
for the 11 algorithms of our portfolio for 500 function evaluations on the constrained use-case.

0.8e+4 1e+4
0

2

4

6

8

0.8e+4 1e+4
0

5

10

0.8e+4 1e+4
0

2

4

6

0.8e+4 1e+4
0

5

10

0.8e+4 1e+4
0

5

10

0.8e+4 1e+4
0

2

4

6

8

0.8e+4 1e+4
0

2

4

6

8

0.8e+4 1e+4
0

2

4

0.8e+4 1e+4
0

2

4

6

8

0.8e+4 1e+4
0

5

10

0.8e+4 1e+4
0

2

4

Target Values

Target Values Target Values

R
u
n
s

R
u
n
s

R
u
n
s

R
u
n
s

110000000021100000000211000000002 100000000001000000000010000000000 010000000000100000000001000000000

001000010000010000100000100001000 000000000000000000000000000000000 Nelder-MeadNelder-MeadNelder-Mead

PowellPowellPowell PSO_gbestPSO_gbestPSO_gbest RandomSearchRandomSearchRandomSearch

DEDEDE L-BFGS-BL-BFGS-BL-BFGS-B

(a) sahara0

2e+4 2.2e+4 2.4e+4 2.6e+4
0

5

10

2e+4 2.2e+4 2.4e+4 2.6e+4
0

2

4

6

8

2e+4 2.2e+4 2.4e+4 2.6e+4
0

2

4

6

8

2e+4 2.2e+4 2.4e+4 2.6e+4
0

5

10

2e+4 2.2e+4 2.4e+4 2.6e+4
0

5

10

2e+4 2.2e+4 2.4e+4 2.6e+4
0

2

4

6

2e+4 2.2e+4 2.4e+4 2.6e+4
0

5

10

2e+4 2.2e+4 2.4e+4 2.6e+4
0

2

4

6

2e+4 2.2e+4 2.4e+4 2.6e+4
0

5

10

2e+4 2.2e+4 2.4e+4 2.6e+4
0

2

4

6

8

2e+4 2.2e+4 2.4e+4 2.6e+4
0

5

10

Target Values

Target Values Target Values

R
u
n
s

R
u
n
s

R
u
n
s

R
u
n
s

110000000021100000000211000000002 100000000001000000000010000000000 010000000000100000000001000000000

001000010000010000100000100001000 000000000000000000000000000000000 Nelder-MeadNelder-MeadNelder-Mead

PowellPowellPowell PSO_gbestPSO_gbestPSO_gbest RandomSearchRandomSearchRandomSearch

DEDEDE L-BFGS-BL-BFGS-BL-BFGS-B

(b) nepal3

Figure 8.13: Histograms of the values reached by the 30 runs, for sahara0 and nepal3 instances,
for the 11 algorithms of our portfolio for 2,500 function evaluations on the constrained use-case.

95

CHAPTER 8. SOLVING THE RADAR NETWORK CONFIGURATION PROBLEM

0 500 1000 1500 2000 2500

1e+4

1.5e+4

2e+4

2.5e+4

00000000000 00100001000 01000000000 10000000000 11000000002 DE L-BFGS-B

Nelder-Mead Powell PSO_gbest RandomSearch

Function Evaluations

Be
st

-s
o-

fa
r f

(x
)-v

al
ue

(a) sahara0

0 500 1000 1500 2000 2500

2e+4

2.2e+4

2.4e+4

2.6e+4

2.8e+4

3e+4

3.2e+4

3.4e+4

3.6e+4

00000000000 00100001000 01000000000 10000000000 11000000002 DE L-BFGS-B

Nelder-Mead Powell PSO_gbest RandomSearch

Function Evaluations

Be
st

-s
o-

fa
r f

(x
)-v

al
ue

(b) nepal3

Figure 8.14: Median objective values over time, for 30 runs, for sahara0 and nepal3 instances, for
the 11 algorithms of our portfolio.

96

CHAPTER 8. SOLVING THE RADAR NETWORK CONFIGURATION PROBLEM

(a) 500 function evaluation
(b) 2,500 function evaluation

Figure 8.15: Partial order resulted from the Kolmogorov-Smirnov statistical test visualized as a
network on sahara0 instances on the constrained use-case. The tests are for low and large budget
with a significance level α = 0.01. An arrow from algorithm A to B indicates A is siginicantly
better than B.

(a) 500 function evaluations (b) 2,500 function evaluations

Figure 8.16: Partial order resulted from the Kolmogorov-Smirnov statistical test visualized as a
network on nepal3 instances on the constrained use-case. The tests are for low and large budget
with a significance level α = 0.01. An arrow from algorithm A to B indicates A is significantly
better than B.

97

CHAPTER 8. SOLVING THE RADAR NETWORK CONFIGURATION PROBLEM

00000000000

00100001000

01000000000

10000000000

11000000002 DE

L-BFGS-B

Nelder-M
ead

PSO_gbest
Powell

RandomSearch

0

10

20

30

40

50

Pe
rc

e
n
ta

g
e
 o

f
p
e
rf

o
rm

a
n
ce

 l
o
ss

 t
o
 t

h
e
 V

B
S

(a) 500 function evaluations

00000000000

00100001000

01000000000

10000000000

11000000002 DE

L-BFGS-B

Nelder-M
ead

PSO_gbest
Powell

RandomSearch

0

10

20

30

40

50

60

70

Pe
rc

e
n
ta

g
e
 o

f
p
e
rf

o
rm

a
n
ce

 l
o
ss

 t
o
 t

h
e
 V

B
S

(b) 2,500 function evaluations

Figure 8.17: Boxplots of all algorithm performances on all problem instances for low and large
budget of function evaluations on the constrained use-case.

8.5.2.2 Single Best Solvers (SBS)

As for the unconstrained use-case, we can determine the SBS for each budget of function evaluation.
As can be seen in Figure 8.17a, when we consider 500 evaluations, the SBS 500 is the Powell

algorithm. The median difference to the best solver by instance of the SBS 500 is 0%. Powell’s
method also performs best on 21 out of 34 instances evaluated (Figure 8.18a).

When the number of evaluations is larger, the SBS is the same as for the unconstrained use-
case, i.e., the CMA-ES variant 00100001000 (Figure 8.17b). The median difference to the best
solver by instance is also 0%. This variant performs best on 19 instances while the second best
algorithm, Powell’s method solves 10 instances (Figure 8.18b).

8.5.3 Discussion

The discussion in Section 8.4.4 on the unconstrained use-case still holds when the area to defend
is added as algorithm performances have a similar behavior.

Elitists variants of CMA-ES still outperform non-elitist variants for lower budgets (Figure 8.17)
We can also still observe that flat areas are easier to cover than mountainous areas. Further-

more, it is also easier to gain performance on flat areas with more function evaluations than it is
for mountainous areas.

8.6 Comparison with Manual Optimization

Configuration of radar networks is often hand-designed by experts with the help of a simulator.
The objective of this section is to compare hand-designed solutions with those of the 13 algorithms
from our portfolio.

The evaluation of hand-designed configurations also allows to assess how difficult the problem
is to solve and to evaluate how good are solutions computed by algorithms.

The following sections present the instance selected to be solved by hand, the performances of
the portfolio on this particular instance and a comparison of human-generated results to those of
the algorithms.

98

CHAPTER 8. SOLVING THE RADAR NETWORK CONFIGURATION PROBLEM

00
00

00
00

00
0

00
10

00
01

00
0

01
00

00
00

00
0

10
00

00
00

00
0

11
00

00
00

00
2 DE

L-B
FG

S-B
Ne

lde
r-M

ea
d

PS
O_

gb
es

t
Po

we
ll

Ra
nd

om
Se

arc
h

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f I
ns

ta
nc

es

0%
<=2%
<=5%
<=10%
<=15%
<=25%
>25%

(a) 500 function evaluations

00
00

00
00

00
0

00
10

00
01

00
0

01
00

00
00

00
0

10
00

00
00

00
0

11
00

00
00

00
2 DE

L-B
FG

S-B
Ne

lde
r-M

ea
d

PS
O_

gb
es

t
Po

we
ll

Ra
nd

om
Se

arc
h

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f I
ns

ta
nc

es

0%
<=2%
<=5%
<=10%
<=15%
<=25%
>25%

(b) 2,500 function evaluations

Figure 8.18: Percentages of instances solved within X% of the best instance algorithm for the
portfolio on the constrained use-case.

8.6.1 Problem Instance

The problem considered to be solved by hand here is the canada0 instance which is situated in
Canada, near the region of Calgary. This instance has its lowest point at 627 meters and its highest
point at 2,121 meters. The shape of the landscape is given by Figure 8.19. The landscape can be
divided into two areas: a rather flat area on the left and a peaked area with mountains on the
right.

8.6.2 Algorithm Performances on canada0

The best performing algorithm on this problem is vanilla CMA-ES (00000000000) with a median
fitness of 15,320 voxels not covered and a best run of 14,125 voxels not covered for 2,500 function
evaluations. This solution can be observed on Figure 8.20 with the white mesh representing the
covered areas.

For a smaller budget of 500 function evaluations, the CMA-ES variant 11000000002 (variant
with active update, elitism and BIPOP activated, see Section 2.3.2) achieve the best median
performance with a fitness of 16,518. Powell’s method performs the best run with a value of
15,841.

As a comparison, the median value of random search for a large budget is 17,865 and 18,545
for a small budget. Median objective values over time for 30 runs for the 13 algorithms in the
portfolio can be seen in Figure 8.21.

8.6.3 Radar Network Configuration Contest

In order to gather a sufficient amount of data to compare hand-designed solutions to algorithms,
we launched a contest to solve the canada0 instance.

8.6.3.1 Panel

The panel was composed of the following 13 people:

• 2 interns;

99

CHAPTER 8. SOLVING THE RADAR NETWORK CONFIGURATION PROBLEM

Figure 8.19: Altitude profile of the canada0 instance.

Figure 8.20: Coverage of the best solution found by the vanilla CMA-ES algorithm for 2,500
function evaluations on the canada0 instance. The white mesh represents the area covered.

100

CHAPTER 8. SOLVING THE RADAR NETWORK CONFIGURATION PROBLEM

0 500 1000 1500 2000 2500 3000

1.6e+4

1.8e+4

2e+4

2.2e+4

2.4e+4

00000000000 00100001000 01000000000 10000000000 11000000002 DE DE_2500_parag

L-BFGS-B Nelder-Mead Powell PSO_gbest QuasiRandomSearch RandomSearch

Function Evaluations

Be
st

-s
o-

fa
r f

(x
)-v

al
ue

Figure 8.21: Median objective values over time, for 30 runs, for canada0 instance, for the 13
algorithms of our portfolio.

101

CHAPTER 8. SOLVING THE RADAR NETWORK CONFIGURATION PROBLEM

Table 8.3: Difference of performance between solvers and human results in percentage. fevals refers
to function evaluations. Negative values indicate that human was less efficient.

Human best Human median
Best algorithm run (500 fevals) -4% -10%
Best algorithm run (2500 fevals) -16% -24%
Median of best algorithm (500 fevals) +0.6% -6%
Median of best algorithm (2500 fevals) -8% -15%

• 3 PhD students with one having some knowledge on optimization;

• 1 Postdoctoral student having some knowledge on optimization;

• 7 engineers, one having a radar expertise, two having some knowledge on optimization and
one with both.

8.6.3.2 Solving Conditions

At first, we presented the landscape of the instance to the contestant. Then, we introduced them
the goal, i.e., covering as much space as possible and the resources to reach that goal, i.e., the four
radars and their corresponding parameters.

We set the resolution time at 30 minutes with as many solution evaluations as required. As a
comparison, the average algorithm wallclock time for is around five minutes. For each contestant,
we log the best value found and the improvements done during the resolution.

8.6.4 Comparison of Hand-Designed Configurations with Algorithms

The median value obtained as a group is 17,495 voxels not covered when the human best designed
configuration reached the value of 16,425. The comparison between the algorithm performances
and human-designed solutions can be found in Table 8.3.

Overall, only the best configuration found by the panel can outperformed solutions proposed
by the best algorithms. Moreover, when the human-designed configuration outperforms the opti-
mization algorithm, it is only by a small margin, i.e, less than 1%.

In these results, the median performance of the human-designed configuration has a difference
around 2% with the random search. Given these results, optimization algorithms tend to perform
better than humans at designing radar network configurations. Moreover, the canada0 instance
seems hard to solve manually as human performances are close to those of the random search.

102

Chapter 9
Landscape-Aware Algorithm Selection on
the Unconstrained Use-Case

Contents
9.1 Design of the Selector . 103

9.1.1 Training and Testing Sets . 104

9.1.2 Feature Computation . 104

9.1.3 Building the Mapping between Feature Data and Algorithm Performances105

9.2 Problem Characteristics . 105

9.3 Definition of the SBS . 106

9.4 Selector Performances . 107

9.4.1 Recommending One Algorithm . 108

9.4.2 Recommending Multiple Algorithms . 108

9.4.3 Performances of Sradar versus SDEM . 108

9.5 Discussion . 110

In this chapter, we describe the different steps and design choices to perform a landscape-aware
algorithm selection on the two radar network configuration use-cases introduced in Section 9.1.
We present the characteristics of the unconstrained use-case problems in Section 9.2. Results for
this use-case are summarized in Section 9.4. A discussion of the results is offered in Section 9.5.

9.1 Design of the Selector

Our landscape-aware algorithm selection pipeline is composed of the following components:

• creation of training and testing sets (Section 9.1.1);

• features extraction (Section 9.1.2);

• algorithm performances presented in Chapter 8;

• creating the mapping between feature data and algorithm performances (Section 9.1.3).

103

CHAPTER 9. LANDSCAPE-AWARE ALGORITHM SELECTION ON THE
UNCONSTRAINED USE-CASE

9.1.1 Training and Testing Sets

Training and testing sets are created randomly using all 153 instances available. The training set
is composed of 80% of the instances, the remaining 20% compose the testing set.

As a random selection of the benchmark instances can be biased and not representative of the
full set of instances, five independent runs are performed to assess the selector.

9.1.2 Feature Computation

We describe the two ways that we used to compute features. One is traditional and computes
features on the objective function (Figure 9.1a), while the other computes features on the DEM
(Figure 9.1b). These two approaches lead to two different selectors that will be compared in the
following sections.

9.1.2.1 Objective Function

The feature computation on the objective function is done as described in Section 4.2. All cheap
features available in flacco are computed. We excluded the PCA features as most of them do not
provide sufficient information (see Section 5.4 for a discussion). This leaves us with 38 features
in total. The Soboĺ low discrepancy sequence (defined in Section 5.3) is used to sample the
radar network configurations. Following common recommendation from the literature, we base
the computation of features on 50d = 750 samples. To compensate for the randomness in the
sampling, we perform this feature extraction step 100 independent times. The 100 runs of the
features computed on the objective function are aggregated using their median value. Hence, for
each problem, one vector corresponding to the median values of each feature is used to construct
the mapping.

9.1.2.2 Digital Elevation Model (DEM)

Instead of computing features on the objective function, they also can be computed on the DEM.
This comes with the idea that the structure of the physical landscape is the factor that has the
biggest impact on the objective function.

In order to compute features, we need to have an objective function. In this case, we take the
altitude as a function, i.e., we define a function g(x, y) = z, where z is the altitude of the point
(x, y) in the domain. Hence, unlike the radar network configuration problem, the dimension of
this problem is d = 2. On top of that, the domain is discretized, which implies that the number
of different altitudes that we can use for the feature computation is at most the number of pixels
which is equal to 30× 30 = 900.

This approach has two main benefits: first, it avoids the rather expensive evaluation of the
objective function. Another advantage, as the domain is discretized, we can fully sample the
search space. Doing so, we can remove the randomness of the sampling.

The drawback of this approach is the loss of information. Even though the altitude seems to
be the factor that has the biggest impact on the objective function, it is not the only one. While
computing features using the objective function consider all radar parameters (tilt, staring angle,
and internal processing), computing features on DEM focus on the elevation profile of the instance.
Disregarding radar parameters may imply some loss of information on the problem to solve.

The second loss of information resides in the number of features we can use. Nearest Better
Clustering features (see Section 4.2.3) are sensitive to grid sampling and cannot be computed in
this case. Having less features available may imply having less information to distinguish between
instances.

104

CHAPTER 9. LANDSCAPE-AWARE ALGORITHM SELECTION ON THE
UNCONSTRAINED USE-CASE

Features

Training
Instances

Performances

Algorithms

Perf.-Design
Mapping

Algorithm

Real Problem

Solution

Design of
Experiments

Learn Select

Run

Train Test

Extract

(a) Radar use-case

Features

Training
Instances

Performances

Algorithms

Perf.-Design
Mapping

Algorithm

Real Problem

Solution

Design of
Experiments

Learn Select

Run

Train Test

Extract
DEM

(b) DEM

Figure 9.1: Landscape-aware algorithm selection pipelines: feature extraction on DEM or on the
radar use-case.

In the following, the features computed on the DEM are referred by DEM features.

9.1.3 Building the Mapping between Feature Data and Algorithm Per-
formances

The mapping aims at identifying a function f : R|Φ| → R that link the performances of algorithms
with feature data.

One vector of feature is representing an instance by using the median value of the 100 runs on the
objective functions (Section 9.1.2.1) or directly the DEM features (Section 9.1.2.2). The algorithms
performances are represented for each problem by the median value of the 30 independent runs
for a given budget. This setting corresponds to the Per-Instance Algorithm Selection introduced
in Chapter 3.

We denote with Sradar the selector built with features computed on the objective function and
by SDEM, we denote the selector built with features extracted from the DEM.

As previously done in the literature [Bel17, JD20], we build the mapping between feature data
and algorithm performances with default scikit-learn Random Forests [PVG+11] using regression.
For each algorithm, we create one Random Forests regression model.

Each regression model learns the performances of the associated algorithm for a given feature
vector. The selector is composed of all the regression models. When the selector has an unknown
feature vector as input, every regression model predicts the performance of its associated algorithm,
and the selector then ranks the algorithms by their predicted performance. Hence, the selector can
be used to recommend one or multiple algorithms.

9.2 Problem Characteristics

Figure 9.2 is a projection in two dimensions with a Principal Component Analysis [Pea01]. Fig-
ure 9.2a is a projection of 38 features extracted from the 24 BBOB function and the radar use-case
only. Figure 9.2b is a projection of 33 features excluding nearest better clustering features. The
features are computed on the 24 BBOB functions, the radar use-cases, and the DEM features.

105

CHAPTER 9. LANDSCAPE-AWARE ALGORITHM SELECTION ON THE
UNCONSTRAINED USE-CASE

1.0 0.5 0.0 0.5 1.0 1.5
Component 1

3

2

1

0

1

2

3

C
o
m

p
o
n
e
n
t

2

F16

(a) Projection of 38 features extracted from 24
BBOB functions (blue stars) and from the radar
objective function (red dots).

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Component 1

3

2

1

0

1

2

3

C
o
m

p
o
n
e
n
t

2

F16

(b) Projection of 33 features extracted from 24
BBOB functions (blue stars), from the radar objec-
tive function (red dots), and from the DEM. (black
crosses).

Figure 9.2: Projection of features extracted from 24 BBOB functions (blue stars), from the radar
objective function (red dots), and from the DEM (black crosses). Nearest better clustering features
are ruled out for the projection using the DEM.

Even if all three sets of functions are apart from each other, it is important to note that the
cluster of both radar and DEM functions set are more dense than the BBOB function set, i.e.,
elements from radar clusters have a smaller distance between each other than elements from the
BBOB functions cluster. This suggests that radar configuration problems are more similar to one
another than functions from the BBOB benchmark suite. This may impact the performances of
the selector as similar instances may be difficult to differentiate.

The 24 BBOB functions that have features close to the radar-use are the five instances of
function 16, the Weierstrass function.

Figure 9.3 shows feature values for a y-distribution and a meta-model feature on the first
instance of the 24 BBOB functions and the radar instances 0. In Figure 9.3a, we can observe that
radar problem features and BBOB functions features are not so different. Radar problem features
are similar to 13 out of the 24 BBOB function features. Nevertheless, the general trend in the
one observed in Figure 9.3b, i.e., radar problem features and BBOB functions features forming
two different sets. Occasionally, some BBOB functions feature values are close to radar instances
feature values such as functions 16 and 23 in Figure 9.3b

9.3 Definition of the SBS

To perform a landscape-aware algorithm selection, we need to split our 153 instances into a training
and a testing set (see Section 9.1.1). The splitting can have an impact on the definition of the
SBS. Training splits composed of a majority of mountainous instances may have a different SBS
than training splits composed of a majority flat instances.

To visualize the impact of the splits, we create 1,000 independent splits of training instances
and record the SBS on both budgets. On the lower budget of evaluations, three algorithms were
SBS on the splits. 11000000002 was SBS on 503 splits, DE 2500 chile was SBS on 394 splits, and
01000000000 on 103 splits. On the use-cases, we will consider as SBS 500 the 11000000002 CMA-ES

106

CHAPTER 9. LANDSCAPE-AWARE ALGORITHM SELECTION ON THE
UNCONSTRAINED USE-CASE

Fe
a
tu

re
 V

a
lu

e

1
_1

2
_1

3
_1

4
_1

5
_1

6
_1

7
_1

8
_1

9
_1

1
0

_1
1

1
_1

1
2

_1
1

3
_1

1
4

_1
1

5
_1

1
6

_1
1

7
_1

1
8

_1
1

9
_1

2
0

_1
2

1
_1

2
2

_1
2

3
_1

2
4

_1
ir

a
n
0

a
u
st

ra
lia

0
b
ra

si
l0

ca
n
a
d
a
0

ch
in

a
0

co
n
g
o
0

b
e
la

ru
s0

fr
a
n
ce

0
n
e
p
a
l0

in
d
ia

0
ch

ile
0

sa
h
a
ra

0
u
sa

0
a
fg

h
a
n
is

ta
n
0

a
rg

e
n
ti

n
a
0

m
o
ld

a
v
ia

0
ru

ss
ia

0

2

0

2

4

6

(a) y-distribution skewness feature
1

_1
2

_1
3

_1
4

_1
5

_1
6

_1
7

_1
8

_1
9

_1
1

0
_1

1
1

_1
1

2
_1

1
3

_1
1

4
_1

1
5

_1
1

6
_1

1
7

_1
1

8
_1

1
9

_1
2

0
_1

2
1

_1
2

2
_1

2
3

_1
2

4
_1

ir
a
n
0

a
u
st

ra
lia

0
b
ra

si
l0

ca
n
a
d
a
0

ch
in

a
0

co
n
g
o
0

b
e
la

ru
s0

fr
a
n
ce

0
n
e
p
a
l0

in
d
ia

0
ch

ile
0

sa
h
a
ra

0
u
sa

0
a
fg

h
a
n
is

ta
n
0

a
rg

e
n
ti

n
a
0

m
o
ld

a
v
ia

0
ru

ss
ia

0

0.0

0.2

0.4

0.6

0.8

1.0

Fe
a
tu

re
 V

a
lu

e

(b) Meta-model R2 of (LM) feature

Figure 9.3: Feature values of a y-distribution and a meta-model feature. Values for the first
instance of the 24 BBOB functions and the radar instances 0.

variant as this algorithm was more often SBS on the different splits. This choice is different from
the global SBS 500 from Section 8 where DE 2500 chile was the best performing algorithm.

Concerning the larger budget, two algorithms were SBS on the splits. The CMA-ES variant
00100001000 on 986 runs and DE 2500 chile on the remaining 14 runs. The SBS 2,500 is the same
for the different splits and for all the instances.

When two algorithms are proposed, the SBS correspond to the best pair of algorithms, i.e., the
pair of algorithms that has the best complementarity on all instances. The overall SBS pair for
this problem is given by the couple of algorithms DE 2500 chile , 11000000002 for the low budget.
Concerning the large budget, the overall SBS pair is composed of DE 2500 chile , 00100001000.
For both budgets, the overall pairs are also the best pairs for each splits.

9.4 Selector Performances

We will show in this section the results of our two selectors and how they compare to the VBS,
the SBS, and a baseline: the vanilla CMA-ES (from the ModCMA framework [vRWvLB16]). We
have chosen the vanilla CMA-ES as baseline as we expect that vanilla CMA-ES will be tried in
the industrial context.

From Section 9.2, we know that radar problem instances have similar feature data which can
harden the task of distinguishing between instances. Moreover, we have seen in Section 8.5 that
algorithms have similar performances. This implies that the VBS-SBS gap is small and that the
margin to perform landscape-aware algorithm selection is small.

Figures 9.6 and 9.7 show the results of the regression selector for both low and large budget of
function evaluations with features computed on the radar use-case and on the DEM respectively.
The results are given in function of the number of predicted algorithms by the selector.

107

CHAPTER 9. LANDSCAPE-AWARE ALGORITHM SELECTION ON THE
UNCONSTRAINED USE-CASE

SBS CMA-ES Selector DEM Selector Radar

0

5

10

15

20

25

30

35

40

Re
la

tiv
e

lo
ss

 to

 th
e

be
st

 a
lg

or
ith

m
 in

 %

(a) 500 function evaluations

SBS CMA-ES Selector DEM Selector Radar

0

5

10

15

20

25

30

35

Re
la

tiv
e

lo
ss

 to

 th
e

be
st

 a
lg

or
ith

m
 in

 %

(b) 2,500 function evaluations

Figure 9.4: Relative loss in percentage of the SBS, vanilla CMA-ES, and the selectors with respect
to the VBS, assuming that only the best algorithm is proposed.

Figure 9.4 illustrates the results when one algorithm is proposed while Figure 9.5 shows the
results for two recommendations of algorithm.

9.4.1 Recommending One Algorithm

On low budget, the selectors outperform the baseline vanilla CMA-ES by around 7% in median
performance. On larger budget, selectors and vanilla CMA-ES have equivalent performances, i.e.,
at around 2.5% of the VBS in median performance (see Figure 9.4).

This could be expected from what was mentioned in Section 8.4. Vanilla CMA-ES was not
performing well for low budget settings and needed more function evaluations to converge. On the
larger budget, it was one of the best performing algorithm so we expected its performances to be
close to those of our selectors.

Overall, the selector perform worse than the SBS for both budgets at 2.6% from the VBS in
median We recall that for this use-case, the median gap between the SBS and the VBS is 0.39%
on low budget and 0% for the large budget.

9.4.2 Recommending Multiple Algorithms

When two algorithms are proposed by the selectors, performances are within 1.2% of the VBS
performances in median. Given that the SBS pair always has a median performance within 0% of
the VBS performance on both budgets, there is no gap for improvement.

As expected, Figure 9.6 and Figure 9.7 show the performances of the selectors converging to
the VBS performances as the number of recommended algorithms increases. We obtain for both
selectors a median performance equal to the VBS when four algorithms are proposed.

9.4.3 Performances of Sradar versus SDEM

The performances of SDEM and Sradar are similar. The median performance of SDEM is within
0.2% of the median performance of Sradar on both budgets of function evaluations.

Given the small difference in performances, the DEM selector can be preferred to Sradar as its
building and using are almost free in computation time. More precisely, the computation time

108

CHAPTER 9. LANDSCAPE-AWARE ALGORITHM SELECTION ON THE
UNCONSTRAINED USE-CASE

SBS Pair CMA-ES Selector DEM Selector Radar

0

5

10

15

20

25

30

Re
la

tiv
e

lo
ss

 to

 th
e

be
st

 a
lg

or
ith

m
 in

 %

(a) 500 function evaluations

SBS Pair CMA-ES Selector DEM Selector Radar

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Re
la

tiv
e

lo
ss

 to

 th
e

be
st

 a
lg

or
ith

m
 in

 %
(b) 2,500 function evaluations

Figure 9.5: Relative loss in percentage of the SBS, vanilla CMA-ES, and the selectors with respect
to the VBS, assuming that only the best pair of algorithms are proposed.

1 2 3 4 5 6 7 8 9 10 11 12 13
Number of predicted algorithms

0

5

10

15

20

25

30

35

40

R
e
la

ti
v
e
 l
o
ss

 t
o

th
e
 b

e
st

 a
lg

o
ri

th
m

 i
n
 %

(a) 500 function evaluations

1 2 3 4 5 6 7 8 9 10 11 12 13
Number of predicted algorithms

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

R
e
la

ti
v
e
 l
o
ss

 t
o

th
e
 b

e
st

 a
lg

o
ri

th
m

 i
n
 %

(b) 2,500 function evaluations

Figure 9.6: Relative loss in percentage of the selector compared with the VBS. The selector is built
using objective function feature data and the 13 algorithms from our portfolio.

109

CHAPTER 9. LANDSCAPE-AWARE ALGORITHM SELECTION ON THE
UNCONSTRAINED USE-CASE

1 2 3 4 5 6 7 8 9 10 11 12 13
Number of predicted algorithms

0

5

10

15

20

R
e
la

ti
v
e
 l
o
ss

 t
o

th
e
 b

e
st

 a
lg

o
ri

th
m

 i
n
 %

(a) 500 function evaluations

1 2 3 4 5 6 7 8 9 10 11 12 13
Number of predicted algorithms

0

5

10

15

20

25

30

35

R
e
la

ti
v
e
 l
o
ss

 t
o

th
e
 b

e
st

 a
lg

o
ri

th
m

 i
n
 %

(b) 2,500 function evaluations

Figure 9.7: Relative loss in percentage of the selector compared with the VBS. The selector is built
using DEM feature data. the 13 algorithms from our portfolio.

of the selector Sradar is around 2.5 minutes when it only takes one or two seconds to use SDEM.
This difference is a consequence of the evaluation of the objective function samples and the feature
computation.

9.5 Discussion

Performances of our selectors are slightly worse than the SBS. Nevertheless, their performances
are quite close to the VBS, i.e., around 2.5% in median for both budgets.

Performance of selectors may be improved by tuning the Random Forest used for mapping
feature data and algorithm performances. Nevertheless, even if the performances of the selectors
increase, the possible gain is relatively low.

Given the performances of the selectors compared to those of the SBS, it would be beneficial
to use only the SBS to solve this use-case. Selectors are not performing badly but the VBS-SBS
gap is too small and does not benefit an automated algorithm selection procedure.

When there is time to run multiple algorithms, it could be beneficial to run both the SBS and
the algorithm recommended by the selector. For some instances, the algorithm predicted by the
selector may have better performances than the SBS.

110

Part V

Conclusions

111

Conclusions

10.1 Summary of Contributions

In this thesis, we have investigated Per Instance Algorithm Selection (PIAS) on a real-world con-
tinuous black-box optimization problem namely a radar network configuration problem.

The contributions of this thesis can be summarized in two parts. A first part that focuses on
the analysis of ELA (Exploratory Landscape Analysis) features and a second part that investigates
the efficient optimization of two radar use-cases with different computational budgets.

10.1.1 Investigation of Exploratory Landscape Analysis Features

The contributions on landscape features were presented in Chapter 5 and focus on the properties
of ELA features. We defined six properties that features should possess.

We empirically studied these properties and found that even if most features are invariant to
transformations and noise, some of them are not expressive or not robust. We also found that
the sampling strategy matters as most features are sensitive to it and that Soboĺ low-discrepancy
sequence may be outperforming others with respect to expressiveness. Concerning stability, we
found that only a few features are stable to independent samples. Overall, we found that no
feature satisfies the six defined properties.

We also introduced new features that refine the PCA features. The analysis of the properties
of the new introduced features demonstrate that they are more expressive than the PCA features
they are based on.

10.1.2 Optimizing Radar Networks

To optimize radar networks, we extended the Ægis framework developed in Thales. This framework
of sensor modeling has now more than 17,000 code lines. This is more than three times bigger than
the 5,000 code lines from the beginning of this thesis. New functionalities were added, including
new radar models, new ways to aggregate networks, the handling of constraints, a more flexible
handling of geographical data, and an interface for users to visualize the use-cases.

The Ægis framework also acts as the objective function for the radar network use-cases that
we solve in this thesis. The use-cases are radar network configuration problems where we want to
find radar locations and radar parameters in order to maximize the coverage of an area.

Usually, such radar network configuration problems are solved by experts with the help of
simulators. In this thesis, we proposed multiple optimization techniques to solve this problem.

112

The first technique is optimizing the coverage using an optimization algorithm. We showed
that, for most algorithms, the performances of the optimization procedure is often better than
human-designed solution.

Given that we can easily categorize some instances of the use-cases as flat instances or moun-
tainous instances, we created specific solvers by tuning their parameters. Using this procedure,
we found one configuration of Differential Evolution that is better than its default configuration
at solving the use-cases.

As we compare different algorithms, we also found the Single Best Solver (SBS) of our portfolio
to solve the use-cases.

We went one step further by performing a landscape-aware algorithm selection with the goal
to find the best suited algorithm for any given instance. This selection has performances similar
to the SBS which suggests that using the SBS instead of the landscape-aware selection may be
sufficient on the use-cases investigated in this thesis. Nevertheless, we show that the landscape-
aware selection had performances close to the Virtual Best Solver (VBS) and thus, the approach
is still performing well on the use-cases.

Moreover, the use-cases are purposely simplified models of radar network configuration prob-
lems. Highly realistic models are more complex and have more parameters that influence the
search. Consequently, this complexity may increase the difference between the VBS and the SBS
and thus, favor a landscape-aware selection of algorithm.

10.2 Perspectives

In the light of our results, we have identified several promising research directions.
At the center of landscape-aware algorithm selection are ELA features. New features were

developed by other research groups during the thesis time and will probably be developed in the
coming years. The study of the properties of these features is crucial in order to be able to use
them correctly. Moreover, the study of their interconnection is also relevant. There are more than
200 SOO features [DLV+19] and from now on, their interconnection between each other and other
ELA features is unknown.

In this thesis, we perform an offline landscape-aware algorithm selection. A promising research
direction would be to look at a dynamic algorithm selection, i.e., be able to switch algorithm during
the search. Switching algorithms during the search may be done using hybrid metaheuristics [Tal13]
or using memetic algorithms [COLT11]. While memetic algorithms apply a local search after the
mutation operator, hybrid metaheuristics often add a local search algorithm after the run of an
evolutionary algorithm [Tal13]. The addition of the local search is classically done after the run
of the evolutionary algorithm in a static way, i.e., after a fixed number of function evaluations or
when there is no further improvement in new of solutions. In the dual annealing [VGO+20], a local
search is applied after simulated annealing.

One first step would be to consider hybrid algorithms that either favor exploration or exploita-
tion given the landscape of fitness function as in [RY21]. While the algorithm is switched during
the search, the choice of the switching point is done a priori. A more ambitious direction would
be to switch algorithms during the search given the local structure of the landscape [VWBD20].
While dynamic selection has been done for CMA-ES variants [VvRBD19], a broader picture would
be to be able to switch different types of algorithms during the search. In [VvRBD19], the authors
switched the CMA-ES variant once per run. Allowing multiple changes given the local landscape
could improve the performance of the dynamic selection. In [JED21], the authors studied the use
of ELA features computed with the algorithm samples in order to predict the algorithm runtime
with the objective to do dynamic algorithm selection.

113

There is also a promising research direction in training instances creation, especially for real-
world use cases. In this thesis, we are limited by the number of instances for two main reasons,
the expensive computation time of the simulator and the amount of geographical data available.
In order to avoid the computation time needed by the simulator, one could use a similar approach
as proposed in [MS20], i.e., generating analytic versions of real-world problems based on their
feature vectors. Moreover, this approach could also be used to generate new instances that have
similar feature vectors to real radar use-cases and thus expand artificially the training instances
available. Increasing the number of training instances implies having more data to construct a
selector. Compared to classical machine learning or deep learning approaches, the amount of data
used in this thesis is limited. The additional data created may improve and add robustness to the
performance of the selector as more different training instances will be available.

114

Appendix A
Summary of Papers and Industrial
Achievements

A.1 Academic Papers and Presentations

The academic contributions focus on ELA features that characterize optimization problems and in
particular their properties. In this thesis, we exhibit properties that features should possess and
we perform an analysis of the already existing features.

The results presented in this thesis built upon the papers listed below. [RDDD20b] [RDDD19]
[RDDD21a]

A.1.1 International Conferences

• Q. Renau, J. Dreo, C. Doerr, and B. Doerr. Expressiveness and robustness of landscape
features. In Proceedings of the Genetic and Evolutionary Computation Con- ference (Com-
panion), GECCO ’19, pages 2048–2051. ACM, 2019;

• Q. Renau, C. Doerr, J. Dreo, and B. Doerr. Exploratory landscape analysis is strongly
sensitive to the sampling strategy. In Parallel Problem Solving from Nature - PPSN XVI -
16th International Conference, PPSN 2020, Proceedings, Part II, volume 12270 of Lecture
Notes in Computer Science, pages 139-153. Springer, 2020;

• T. Eftimov, G. Popovski, Q. Renau, P. Korošec, and C. Doerr. Linear Matrix Factorization
Embeddings for Single-objective Optimization Landscapes. In 2020 IEEE Symposium Series
on Computational Intelligence (SSCI), 2020, pages 775-782. IEEE, 2020;

• Q. Renau, J. Dreo, C. Doerr, and B. Doerr. Towards Explainable Exploratory Landscape
Analysis: Extreme Feature Selection for Classifying BBOB Functions. In Applications of
Evolutionary Computation - 24th International Conference, EvoApplications 2021, Held as
Part of EvoStar 2021, Proceedings, volume 12694 of Lecture Notes in Computer Science,
pages 17-33. Springer, 2021.

A.1.2 Data Sets

As part of the PhD project, we also produced two open source data sets:

115

APPENDIX A. SUMMARY OF PAPERS AND INDUSTRIAL ACHIEVEMENTS

• Q. Renau, J. Dreo, C. Doerr, and B. Doerr. Experimental Data Set for the study ”Ex-
ploratory Landscape Analysis is Strongly Sensitive to the Sampling Strategy”. In Zenodo,
2020;

• Q. Renau, J. Dreo, C. Doerr, and B. Doerr. Exploratory Landscape Analysis Feature Values
for the 24 Noiseless BBOB Functions. In Zenodo, 2021.

A.2 Industrial Achievements

Industrial achievements are linked to the radar network configuration problem.
To model the use-cases considered in this thesis, we have significantly extended the Ægis frame-

work by adding new functionalities and 12,000 lines of code. Ægis is a C++framework for sensor
network modeling and is the core of the industrial part of this thesis as it permits to create and
simulate the radar networks. Ægis can be interfaced as a black-box with optimization algorithms
in order to evaluate the possible configurations.

Usually, the radar network configuration problem is solved by experts manually with the help
of a simulator. Different methods presented and codes developed in this thesis can be used in order
to solve this problem:

• using an optimization algorithm. As the problem is usually solved by hand, using an off-
the-shelf optimization algorithm is already an upgrade. As no information is known on the
problem or on the behavior of the algorithm on this problem, the result can either be better
or worse than human-designed solutions;

• using Algorithm Configuration. Off-the-shelf optimization algorithms may not be adapted to
the problem at hand and may require some configuration of its parameters. Using algorithm
configuration, the user can expect better results than from an algorithm with no configu-
ration. Nevertheless, if the algorithm is not well adapted to the problem, human-designed
solutions can still be better than the results from the optimization algorithm;

• finding the single best solver (SBS) in a portfolio. Instead of using one off-the-shelf algorithm,
we can find the best performing algorithm in a portfolio of off-the-shelf or custom algorithms.
This solution will find a well adapted algorithm on the use-case if one is present in the
portfolio. As a result, this solution should produce better results than the previous two and
is likely to perform better than human-designed solutions;

• performing a landscape-aware algorithm selection on a portfolio of algorithms. The user can
expect at least equivalent performances with the SBS. When there is a good algorithm’s
complementarity in the portfolio, the user may expect even better performances than the
SBS as algorithms are chosen on the instances particularities;

• creating instance specific solvers. Instead of tuning an algorithm on all instances, we tune
it on some instances only. Creating specific solvers increases the complementarity between
algorithms in a portfolio. As such, one could expect better performances of a landscape-aware
algorithm selection with a portfolio containing specific solvers than the other approaches.

116

Appendix B
Best Performing Algorithm for each
Instance

B.1 Best Performing Algorithm in Median

Instance
Algorithm
500 evaluations

Median value
500 evaluations

Algorithm
2,500 evaluations

Median value
2,500 evalutaions

afghanistan0 11000000002 11855 11000000002 10983
afghanistan1 11000000002 12196 11000000002 11348.5
afghanistan2 11000000002 12386.5 00100001000 11269
afghanistan3 11000000002 13055 00100001000 11310
afghanistan4 11000000002 12160 00100001000 10922.5
afghanistan5 1000000000 12311 00100001000 11076.5
afghanistan6 1000000000 10064 00100001000 8725.5
afghanistan7 11000000002 9233 00100001000 8127.5
afghanistan8 11000000002 11104.5 00000000000 8839.5
arabia0 11000000002 11533 00100001000 10102.5
arabia1 DE 2500 chile 9467.5 DE 2500 chile 8444
arabia2 DE 2500 chile 11192 00000000000 10001.5
arabia3 DE 2500 chile 13380.5 10000000000 12287.5
arabia4 1000000000 10400.5 00100001000 9209.5
arabia5 DE 2500 chile 11551.5 00100001000 10111
arabia6 11000000002 13001.5 00000000000 11268
arabia7 DE 2500 chile 10034.5 00100001000 8789.5
arabia8 DE 2500 chile 12080 00100001000 11064.5
argentina0 1000000000 6619.5 00100001000 5965
argentina1 11000000002 6548 00000000000 6012.5
argentina2 1000000000 6608 00100001000 5918.5
argentina3 11000000002 6633.5 00100001000 6008
argentina4 Powell 6559 00100001000 6031
argentina5 1000000000 6726 00100001000 6031.5
argentina6 Powell 6659.5 00100001000 6072.5

117

APPENDIX B. BEST PERFORMING ALGORITHM FOR EACH INSTANCE

Table B.1: Best performing algorithm in median by instance.

argentina7 11000000002 6809.5 00100001000 6020
argentina8 1000000000 6771.5 00000000000 6063.5
australia0 1000000000 8547.5 10000000000 7202
australia1 11000000002 7141 00100001000 6242
australia2 11000000002 6606 00100001000 5941.5
australia3 Nelder-Mead 6579.5 00100001000 5910.5
australia4 11000000002 10261 10000000000 9087
australia5 1000000000 6645 00100001000 5962.5
australia6 1000000000 7307 00100001000 6466.5
australia7 Powell 10672.5 DE 2500 chile 9886
australia8 Powell 6552 00100001000 6025
brasil0 Powell 7639 00100001000 6527
brasil1 11000000002 7313 00100001000 6391.5
brasil2 Powell 7895 00000000000 6978.5
brasil3 Powell 8470.5 00100001000 7386
brasil4 11000000002 6698 00000000000 5958.5
brasil5 DE 2500 chile 8184 00100001000 7085
brasil6 1000000000 9167 00100001000 8080
brasil7 DE 2500 chile 7302.5 DE 2500 chile 6668.5
brasil8 DE 2500 chile 8503.5 00100001000 7297
canada0 11000000002 16518 00000000000 15169
canada1 Powell 20877 DE 2500 chile 19833
canada2 DE 2500 chile 21387 00100001000 20502.5
canada3 DE 2500 chile 21159 00100001000 20345
canada4 DE 2500 chile 20102.5 DE 2500 chile 19346.5
canada5 DE 2500 chile 18823.5 DE 2500 chile 17832.5
canada6 DE 2500 chile 21213 DE 2500 chile 20381
canada7 DE 2500 chile 18137 DE 2500 chile 17000
canada8 DE 2500 chile 18909 DE 2500 chile 18184.5
china0 DE 2500 chile 19427 DE 2500 chile 18616
china1 DE 2500 chile 19903 00000000000 18654
china2 1000000000 20302.5 00100001000 19140.5
china3 DE 2500 chile 19555.5 DE 2500 chile 18643
china4 DE 2500 chile 20007.5 00000000000 18421.5
china5 DE 2500 chile 20545.5 00100001000 19270.5
china6 DE 2500 chile 19908 DE 2500 chile 18955.5
china7 11000000002 19843 00000000000 18658.5
china8 DE 2500 chile 19776 DE 2500 chile 18834
congo0 11000000002 7346.5 00100001000 6474.5
congo1 DE 2500 chile 8142 00000000000 6814
congo2 11000000002 7241 00100001000 6455
congo3 Powell 7622.5 00100001000 6534.5
congo4 DE 2500 chile 7261.5 00000000000 6324.5
congo5 1000000000 7261 00100001000 6419
congo6 1000000000 7781.5 00100001000 6758.5
congo7 1000000000 7403.5 00100001000 6348.5
congo8 Powell 7646.5 DE 2500 chile 6822

118

APPENDIX B. BEST PERFORMING ALGORITHM FOR EACH INSTANCE

Table B.1: Best performing algorithm in median by instance.

estonia0 DE 2500 chile 9442.5 DE 2500 chile 8274.5
estonia1 DE 2500 chile 9772.5 00100001000 8604.5
estonia2 11000000002 8736.5 DE 2500 chile 7501
estonia3 1000000000 9116 00100001000 7797.5
estonia4 DE 2500 chile 7909.5 00100001000 6963.5
estonia5 Powell 10674.5 Powell 9579
estonia6 1000000000 8628 00100001000 7553
estonia7 1000000000 9329 00100001000 7913.5
estonia8 DE 2500 chile 11164.5 00100001000 9181.5
france0 11000000002 9652.5 00100001000 8621
france1 Powell 12292 00000000000 11323
france2 Powell 11093.5 00100001000 10255
france3 11000000002 9474 00000000000 8403
france4 DE 2500 chile 14913.5 DE 2500 chile 13937
france5 Powell 13048 DE 2500 chile 11983
france6 DE 2500 chile 12462 DE 2500 chile 11361.5
france7 DE 2500 chile 13149 DE 2500 chile 11913
france8 1000000000 10909 00100001000 9770.5
moldavia0 DE 2500 chile 11097.5 DE 2500 chile 9739
moldavia1 DE 2500 chile 12062 DE 2500 chile 10747
moldavia2 11000000002 9187 00000000000 8220.5
moldavia3 DE 2500 chile 10013 00100001000 9150.5
moldavia4 DE 2500 chile 13244 00100001000 11895.5
moldavia5 Powell 10230 00100001000 9266.5
moldavia6 1000000000 9553.5 00100001000 8043.5
moldavia7 DE 2500 chile 9095 DE 2500 chile 8002.5
moldavia8 DE 2500 chile 8948 00100001000 8230.5
mongolia0 DE 2500 chile 13963 00100001000 12217.5
mongolia1 DE 2500 chile 14641.5 00100001000 13015.5
mongolia2 DE 2500 chile 16752.5 DE 2500 chile 15445.5
mongolia3 DE 2500 chile 14830 DE 2500 chile 13588
mongolia4 Powell 15973 DE 2500 chile 14613
mongolia5 DE 2500 chile 13940 00100001000 12405
mongolia6 DE 2500 chile 17839.5 00100001000 16245
mongolia7 Powell 14596 DE 2500 chile 13406
mongolia8 DE 2500 chile 13626.5 00100001000 11895.5
nepal0 11000000002 19420 00100001000 18490
nepal1 DE 2500 chile 18796 00100001000 17998
nepal2 DE 2500 chile 20307.5 00100001000 19007
nepal20 11000000002 21099.5 00000000000 20376.5
nepal21 DE 2500 chile 21334.5 DE 2500 chile 20512
nepal22 DE 2500 chile 20728.5 DE 2500 chile 19806
nepal23 DE 2500 chile 20485 DE 2500 chile 19715.5
nepal24 DE 2500 chile 21616 DE 2500 chile 20894.5
nepal25 DE 2500 chile 21355 00100001000 20602.5
nepal26 DE 2500 chile 21417 DE 2500 chile 20775.5
nepal27 DE 2500 chile 21463.5 00000000000 20795

119

APPENDIX B. BEST PERFORMING ALGORITHM FOR EACH INSTANCE

Table B.1: Best performing algorithm in median by instance.

nepal28 11000000002 21213 00100001000 20453
nepal3 DE 2500 chile 20416 00100001000 19204
nepal4 1000000000 20251 00100001000 19450
nepal5 11000000002 19464.5 Powell 18144
nepal6 DE 2500 chile 17060.5 00100001000 15610.5
nepal7 DE 2500 chile 19154.5 00100001000 18229.5
nepal8 DE 2500 chile 18049 DE 2500 chile 17132
chileuay0 11000000002 14416 00100001000 13323.5
chileuay1 11000000002 12926.5 00100001000 11491
chileuay2 1000000000 12444.5 00100001000 11077.5
chileuay3 1000000000 12637.5 00100001000 11684
chileuay4 DE 2500 chile 13114.5 DE 12090.5
chileuay5 11000000002 13024 10000000000 12283.5
chileuay6 DE 2500 chile 16221 10000000000 14402
chileuay7 DE 2500 chile 14785 DE 2500 chile 13822
chileuay8 11000000002 13011 00100001000 12031.5
sahara0 11000000002 6580.5 00100001000 5886.5
sahara1 Nelder-Mead 6409.5 00100001000 5881.5
sahara2 Nelder-Mead 6385.5 00000000000 5892
sahara3 Nelder-Mead 6524 00100001000 5921.5
sahara4 Nelder-Mead 6442.5 00100001000 5899.5
sahara5 Nelder-Mead 6449 00100001000 5897.5
sahara6 Nelder-Mead 6441.5 00100001000 5837.5
sahara7 Nelder-Mead 6490 00100001000 5913
sahara8 Nelder-Mead 6451 00100001000 5793
usa0 DE 2500 chile 17709.5 00100001000 15968.5
usa1 DE 2500 chile 19126 00100001000 17735
usa2 11000000002 17351 00000000000 16445
usa3 DE 2500 chile 17565.5 00000000000 16403
usa4 DE 2500 chile 19858 DE 2500 chile 18887.5
usa5 DE 2500 chile 17781 00100001000 16348
usa6 DE 2500 chile 17666 DE 2500 chile 16505
usa7 DE 2500 chile 19450.5 DE 2500 chile 18378
usa8 DE 2500 chile 17483 00100001000 16141.5

B.2 Best Performing Algorithm for the 2% Quantile

Instance
Algorithm
500 evaluations

2% quantile
500 evaluations

Algorithm
2,500 evaluations

2% quantile
2,500 evalutaions

afghanistan0 01000000000 10535.98 00000000000 9378.4
afghanistan1 Powell 11140.56 00100001000 9737.76
afghanistan2 Nelder-Mead 10784.02 00100001000 9534.96
afghanistan3 Powell 11676.4 10000000000 10709.02
afghanistan4 11000000002 10345.16 00000000000 9473.5
afghanistan5 Powell 10081.84 00000000000 9562.38
afghanistan6 Powell 9204.86 00100001000 8365.9

120

APPENDIX B. BEST PERFORMING ALGORITHM FOR EACH INSTANCE

Table B.2: Best performing algorithm at the 2% quantile by instance.

afghanistan7 01000000000 8435.02 00100001000 7586.54
afghanistan8 11000000002 9286.76 00100001000 8342.58
arabia0 Powell 10185.22 Powell 9483.96
arabia1 11000000002 7973.16 DE 2500 chile 7292.9
arabia2 Powell 9801.96 10000000000 8922.34
arabia3 11000000002 12165.5 00000000000 11335.58
arabia4 01000000000 9134.12 00000000000 7914.02
arabia5 01000000000 10059.56 00100001000 8670.52
arabia6 11000000002 11611.56 00100001000 10725.42
arabia7 11000000002 8906.8 00000000000 7749.96
arabia8 11000000002 11071.24 00000000000 9734.66
argentina0 Powell 5923.04 00000000000 5566.4
argentina1 Powell 6220.8 00100001000 5609.1
argentina2 Powell 5994.84 Powell 5650.72
argentina3 Powell 5981.58 Powell 5700.12
argentina4 Powell 5900.36 Powell 5553.04
argentina5 Powell 6205.68 10000000000 5725.74
argentina6 Powell 6006.68 Powell 5605.96
argentina7 Powell 5846.72 Powell 5662.14
argentina8 11000000002 6323.78 00000000000 5790.2
australia0 01000000000 7481.16 00100001000 6675.94
australia1 Powell 6123.5 00000000000 5839.82
australia2 Powell 6139.46 Powell 5627.84
australia3 Powell 5873.02 Powell 5590.92
australia4 Powell 9427.52 10000000000 8526.82
australia5 Nelder-Mead 5980.94 00100001000 5711.86
australia6 Nelder-Mead 6340.88 Powell 5797.16
australia7 Powell 9613.76 Powell 9070.56
australia8 Powell 5911.5 Powell 5476.18
brasil0 Powell 6817.6 00100001000 6068.5
brasil1 11000000002 6564.96 10000000000 6023.58
brasil2 Powell 6765.48 00000000000 6225
brasil3 Powell 7116.44 Powell 6537.78
brasil4 Powell 6033.98 Powell 5639.7
brasil5 Powell 6951.18 01000000000 6380.1
brasil6 11000000002 7889.06 00000000000 7046.08
brasil7 Powell 6649.1 00000000000 6109.56
brasil8 Powell 7022.24 DE 2500 chile 6623.12
canada0 11000000002 15600.64 00100001000 14259.28
canada1 Powell 19155.64 Powell 18832.1
canada2 11000000002 20648.84 DE 2500 chile 19917.06
canada3 DE 2500 chile 20261.58 00100001000 19273.44
canada4 01000000000 19185.5 DE 2500 chile 18641.62
canada5 DE 2500 chile 17735.06 00100001000 16936.26
canada6 Powell 20317.92 Powell 19487.16
canada7 Powell 17117.12 Powell 16360.76
canada8 Powell 18056.76 Powell 17373.44

121

APPENDIX B. BEST PERFORMING ALGORITHM FOR EACH INSTANCE

Table B.2: Best performing algorithm at the 2% quantile by instance.

china0 DE 2500 chile 18706.78 00000000000 17714.36
china1 01000000000 18978.5 00000000000 17638.3
china2 11000000002 19335.6 00000000000 18281.68
china3 DE 2500 chile 18623.54 00000000000 17826.56
china4 Powell 18437.9 00000000000 17844.98
china5 DE 2500 chile 19508.98 00100001000 18258
china6 DE 2500 chile 19026.56 DE 2500 chile 18221.22
china7 11000000002 18588.72 00100001000 17732.9
china8 DE 2500 chile 18852.58 DE 2500 chile 18004.16
congo0 Powell 6478.4 Powell 5982.38
congo1 Powell 6905.74 00100001000 6098.52
congo2 Powell 6514.38 00100001000 5913.14
congo3 Powell 6264.46 00100001000 6088.9
congo4 Powell 6319 00000000000 5890.4
congo5 11000000002 6619.58 00100001000 6059.02
congo6 Powell 6859.86 00000000000 6128.18
congo7 11000000002 6629.62 00100001000 5932.16
congo8 Powell 6688.06 00000000000 6172.28
estonia0 Powell 7972.42 Powell 7272.56
estonia1 Powell 8280.72 11000000002 7567.58
estonia2 11000000002 7228.74 Powell 6632.3
estonia3 11000000002 7725.58 00000000000 7204.08
estonia4 Powell 6871.58 00100001000 6297.42
estonia5 DE 2500 chile 9530.38 DE 2500 chile 8700.02
estonia6 01000000000 7265.92 01000000000 6858.76
estonia7 DE 2500 chile 8141.5 00100001000 7143.42
estonia8 01000000000 9307.04 10000000000 8026.2
france0 Powell 8865.18 00100001000 7917.48
france1 01000000000 11100.06 10000000000 10544.68
france2 Powell 10059.5 00100001000 9481.22
france3 01000000000 8289.28 Powell 7674.72
france4 01000000000 13959.3 00100001000 13125.54
france5 DE 2500 chile 12581.38 DE 2500 chile 11103.04
france6 Powell 11067.34 00100001000 10424.74
france7 Powell 11805.18 Powell 11057.82
france8 11000000002 9909.16 00100001000 9030.04
moldavia0 Powell 9763.26 DE 2500 chile 8838.36
moldavia1 Powell 10591.88 Powell 9697.8
moldavia2 Powell 8263.46 00100001000 7572.12
moldavia3 11000000002 9071.12 10000000000 8459.28
moldavia4 DE 2500 chile 11481.26 00100001000 10770.54
moldavia5 Powell 8548.5 Powell 8082.12
moldavia6 11000000002 8367.78 00000000000 7474.44
moldavia7 Powell 7747.6 Powell 7195.4
moldavia8 DE 2500 chile 8000.32 DE 2500 chile 7607.96
mongolia0 Powell 12591 00100001000 11404.6
mongolia1 DE 2500 chile 12997.76 00100001000 11719.3

122

APPENDIX B. BEST PERFORMING ALGORITHM FOR EACH INSTANCE

Table B.2: Best performing algorithm at the 2% quantile by instance.

mongolia2 DE 2500 chile 15560.34 DE 2500 chile 14422.3
mongolia3 DE 2500 chile 13893.7 00100001000 12746.66
mongolia4 Powell 14541.4 00000000000 12912.2
mongolia5 Powell 12380.04 00100001000 11540.62
mongolia6 Powell 16450.28 00000000000 15109.88
mongolia7 Powell 13337.04 Powell 12598.88
mongolia8 Powell 12288 00100001000 11225.88
nepal0 11000000002 18685.04 10000000000 17922.72
nepal1 11000000002 17782.46 00100001000 17372.42
nepal2 DE 2500 chile 19214.68 00100001000 18188.12
nepal20 DE 2500 chile 20022.44 10000000000 19478.68
nepal21 DE 2500 chile 20641.92 00100001000 19923.64
nepal22 01000000000 20083.44 00100001000 19166.56
nepal23 Powell 19246.18 DE 2500 chile 18519.04
nepal24 11000000002 20692.14 DE 2500 chile 20233.96
nepal25 11000000002 20416.8 DE 2500 chile 20031
nepal26 Powell 20809.92 00100001000 20027
nepal27 Powell 20685.62 00100001000 19673.78
nepal28 Powell 20379.3 Powell 19886.64
nepal3 01000000000 19201.32 00000000000 18286.14
nepal4 01000000000 19619.16 00100001000 18622.08
nepal5 11000000002 17779.64 00100001000 16936.78
nepal6 DE 2500 chile 15839.98 00000000000 14765.72
nepal7 01000000000 18059.36 00000000000 17349.1
nepal8 DE 2500 chile 17095.82 DE 2500 chile 16058.12
chileuay0 01000000000 13178.54 01000000000 11713.46
chileuay1 01000000000 11512.44 10000000000 10518.42
chileuay2 11000000002 11163.24 00100001000 10226.76
chileuay3 DE 2500 chile 11570.12 10000000000 10771.38
chileuay4 DE 2500 chile 11875.4 00100001000 10601.76
chileuay5 Powell 12450.76 11000000002 11724.32
chileuay6 01000000000 14295.9 10000000000 13216.54
chileuay7 DE 2500 chile 13735.3 DE 2500 chile 13007.14
chileuay8 11000000002 11793.08 00000000000 10958.66
sahara0 Powell 5971.98 00100001000 5375.32
sahara1 Nelder-Mead 5884.46 00100001000 5497.94
sahara2 Nelder-Mead 5857.72 00100001000 5621.32
sahara3 Nelder-Mead 5963.54 00100001000 5673.98
sahara4 Powell 5979.68 Powell 5560.56
sahara5 Nelder-Mead 5971.02 00100001000 5656.96
sahara6 Nelder-Mead 6021.56 00100001000 5499.1
sahara7 Powell 5848.82 Powell 5403.86
sahara8 Nelder-Mead 6035.76 00100001000 5395.6
usa0 Powell 15862.6 00100001000 15028.94
usa1 Powell 17399.8 00100001000 16433.56
usa2 Powell 16377.24 Powell 15582.3
usa3 Powell 15832.56 00100001000 15187.36

123

APPENDIX B. BEST PERFORMING ALGORITHM FOR EACH INSTANCE

Table B.2: Best performing algorithm at the 2% quantile by instance.

usa4 DE 2500 chile 19019.76 00000000000 18010.68
usa5 11000000002 16266.48 00000000000 15371.74
usa6 01000000000 16178.24 10000000000 15244.48
usa7 Powell 18260.84 Powell 17424.56
usa8 Powell 16228.66 00100001000 15212.4

124

Appendix C
Radar Network Configuration Contest

C.1 Radar Network Configuration Contest Results

The table below presents the best result found for each contestant.

Table C.1: Best objective value found by contestants.

Objective value
Contestant #1 16,585
Contestant #2 16,425
Contestant #3 16,839
Contestant #4 18,513
Contestant #5 17,731
Contestant #6 17,495
Contestant #7 17,945
Contestant #8 19,024
Contestant #9 16,430
Contestant #10 16,756
Contestant #11 18,282
Contestant #12 16,779
Contestant #13 18,785

C.2 Radar Network Configuration Contest Poster

125

APPENDIX C. RADAR NETWORK CONFIGURATION CONTEST

Figure C.1: Poster of the radar network configuration contest.

126

Bibliography

[ABH11] A. Auger, D. Brockhoff, and N. Hansen. Mirrored sampling in evolution strate-
gies with weighted recombination. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’11, pages 861–868. ACM, 2011.

[AH05] A. Auger and N. Hansen. A restart CMA evolution strategy with increasing pop-
ulation size. In IEEE Congress on Evolutionary Computation, CEC 2005, pages
1769–1776. IEEE, 2005.

[AH21] Y. Akimoto and N. Hansen. Cma-es and advanced adaptation mechanisms. In
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’21
(Companion), page 636–663. ACM, 2021.

[AJT05] A. Auger, M. Jebalia, and O. Teytaud. Algorithms (x, sigma, eta): Quasi-random
mutations for evolution strategies. In Artificial Evolution, 7th International Confer-
ence, Evolution Artificielle, EA 2005, October 26-28, 2005, Revised Selected Papers,
volume 3871 of Lecture Notes in Computer Science, pages 296–307. Springer, 2005.

[BAH+10] D. Brockhoff, A. Auger, N. Hansen, D. V. Arnold, and T. Hohm. Mirrored sampling
and sequential selection for evolution strategies. In Parallel Problem Solving from
Nature - PPSN XI, 11th International Conference, September 11-15, 2010, Pro-
ceedings, Part I, volume 6238 of Lecture Notes in Computer Science, pages 11–21.
Springer, 2010.

[BDB+20] T. Bartz-Beielstein, C. Doerr, J. Bossek, S. Chandrasekaran, T. Eftimov, A. Fis-
chbach, P/ Kerschke, M. López-Ibáñez, K.M. Malan, J.H. Moore, B. Naujoks,
P. Orzechowski, V. Volz, M. Wagner, and T. Weise. Benchmarking in optimiza-
tion: Best practice and open issues. CoRR, abs/2007.03488, 2020.

[BDSS16] N. Belkhir, J. Dréo, P. Savéant, and M. Schoenauer. Surrogate assisted feature com-
putation for continuous problems. In Learning and Intelligent Optimization - 10th
International Conference, LION 10. Revised Selected Papers, pages 17–31. Springer,
2016.

[BDSS17] N. Belkhir, J. Dréo, P. Savéant, and M. Schoenauer. Per instance algorithm config-
uration of CMA-ES with limited budget. In Proceedings of the Genetic and Evolu-
tionary Computation Conference, GECCO ’17, pages 681–688. ACM, 2017.

127

BIBLIOGRAPHY

[Bel17] N. Belkhir. Per Instance Algorithm Configuration for Continuous Black Box Opti-
mization. phdthesis, Université Paris-Saclay, November 2017.

[BG02] B. Beachkofski and R. Grandhi. Improved Distributed Hypercube Sampling. In
43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Mate-
rials Conference. American Institute of Aeronautics and Astronautics, 2002.

[BMTP12] B. Bischl, O. Mersmann, H. Trautmann, and M. Preuß. Algorithm selection based
on exploratory landscape analysis and cost-sensitive learning. In Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO ’12, pages 313–320.
ACM, 2012.

[Bre71] R. P. Brent. An algorithm with guaranteed convergence for finding a zero of a
function. The Computer Journal, 14(4):422–425, 01 1971.

[Bri17] Y. Briheche. Optimization of search patterns for fixed-panel tridimensional scanning
radars. Theses, École centrale de Nantes, November 2017.

[BSF+21] M. Böther, L. Schiller, P. Fischbeck, L. Molitor, M.S. Krejca, and T. Friedrich.
Evolutionary minimization of traffic congestion. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO ’21, pages 937–945. ACM, 2021.

[BSPV02] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algorithm for
configuring metaheuristics. In Proceedings of the Genetic and Evolutionary Compu-
tation Conference, GECCO ’02, pages 11–18, 2002.

[Car19] R. Cariou. Le traitement du signal radar. Dunod, March 2019.

[CDL+21] R. Cosson, B. Derbel, A. Liefooghe, H.E. Aguirre, K. Tanaka, and Q. Zhang.
Decomposition-based multi-objective landscape features and automated algorithm
selection. In Evolutionary Computation in Combinatorial Optimization - 21st Euro-
pean Conference, EvoCOP 2021, Held as Part of EvoStar 2021, Proceedings, volume
12692 of Lecture Notes in Computer Science, pages 34–50. Springer, 2021.

[COLT11] X. Chen, Y-S. Ong, M-H Lim, and K.C. Tan. A multi-facet survey on memetic com-
putation. IEEE Transactions on Evolutionary Computation, 15(5):591–607, 2011.

[DLV+19] B. Derbel, A. Liefooghe, S. Vérel, H. Aguirre, and K. Tanaka. New features for
continuous exploratory landscape analysis based on the SOO tree. In Proceedings of
Foundations of Genetic Algorithms (FOGA) ’19, pages 72–86. ACM, 2019.

[DLV+21] J. Dreo, A. Liefooghe, S. Verel, M. Schoenauer, J.J. Merelo, A. Quemy, B. Bouvier,
and J. Gmys. Paradiseo: From a modular framework for evolutionary computation
to the automated design of metaheuristics: 22 years of paradiseo. In Proceedings of
the Genetic and Evolutionary Computation Conference, GECCO ’21, (Companion),
page 1522–1530. ACM, 2021.

[DP10] J. Dick and F. Pillichshammer. Digital Nets and Sequences. Cambridge University
Press, 2010.

[EC21] A.P. Engelbrecht and C.W Cleghorn. Recent advances in particle swarm optimization
analysis and understanding 2021. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’21 (Companion), page 341–368. ACM, 2021.

128

BIBLIOGRAPHY

[FHRA10] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-Parameter Black-Box
Optimization Benchmarking 2010: Presentation of the Noiseless Functions.
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf, 2010.

[Fle87] R. Fletcher. Practical Methods of Optimization; (2nd Ed.). Wiley-Interscience, USA,
1987.

[Fog98] D.B. Fogel. Artificial Intelligence through Simulated Evolution, pages 227–296. 1998.

[Hal64] J. H. Halton. Algorithm 247: Radical-inverse quasi-random point sequence. Com-
mun. ACM, 7(12):701–702, dec 1964.

[Han08] N. Hansen. CMA-ES with two-point step-size adaptation. CoRR, abs/0805.0231,
2008.

[Han09] N. Hansen. Benchmarking a bi-population CMA-ES on the BBOB-2009 function
testbed. In Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO ’09 (Companion), pages 2389–2396. ACM, 2009.

[Han16] N. Hansen. The CMA evolution strategy: A tutorial. CoRR, abs/1604.00772, 2016.

[HAR+21] N. Hansen, A. Auger, R. Ros, O. Mersmann, T. Tusar, and D. Brockhoff. COCO: a
platform for comparing continuous optimizers in a black-box setting. Optimization
Methods and Software, 36(1):114–144, 2021.

[HE03] G. Hamerly and C. Elkan. Learning the k in k-means. In Advances in Neural
Information Processing Systems 16 Neural Information Processing Systems, NIPS,
pages 281–288. MIT Press, 2003.

[HHL11] F. Hutter, H.H. Hoos, and K. Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In Learning and Intelligent Optimization - 5th
International Conference, LION 5. Selected Papers, pages 507–523, 2011.

[HHLS09] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle. Paramils: An auto-
matic algorithm configuration framework. Journal of Artificial Intelligence Research,
36:267–306, 2009.

[HKP+01] T. Hennig, J. Kretsch, C. Pessagno, P. Salamonowicz, and W. Stein. The shuttle
radar topography mission. In Proceedings of the First International Symposium on
Digital Earth Moving, DEM ’01, page 65–77. Springer, 2001.

[HKV19] F. Hutter, L. Kotthoff, and J. Vanschoren. Automated Machine Learning - Methods,
Systems, Challenges. Springer, 2019.

[HO01] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation, 9(2):159–195, 2001.

[Hol73] J. H. Holland. Genetic algorithms and the optimal allocation of trials. SIAM Journal
of Computing, 2:88–105, 1973.

[JA06] G.A. Jastrebski and D.V. Arnold. Improving evolution strategies through active
covariance matrix adaptation. In IEEE International Conference on Evolutionary
Computation, CEC 2006, part of WCCI 2006, pages 2814–2821. IEEE, 2006.

129

BIBLIOGRAPHY

[JD20] A. Jankovic and C. Doerr. Landscape-aware fixed-budget performance regression for
modular cma-es variants. In Proceedings of the Genetic and Evolutionary Computa-
tion Conference, GECCO ’20, 2020. To appear.

[JED21] A. Jankovic, T. Eftimov, and C. Doerr. Towards feature-based performance regres-
sion using trajectory data. In Applications of Evolutionary Computation - 24th Inter-
national Conference, EvoApplications 2021, Held as Part of EvoStar 2021, Proceed-
ings, volume 12694 of Lecture Notes in Computer Science, pages 601–617. Springer,
2021.

[JF95] T. Jones and S. Forrest. Fitness distance correlation as a measure of problem diffi-
culty for genetic algorithms. In Proceedings of the 6th International Conference on
Genetic Algorithms, pages 184–192. Morgan Kaufmann, 1995.

[JG98] D.N Joanes and C.A. Gill. Comparing measures of sample skewness and kurtosis.
Journal of the Royal Statistical Society: Series D (The Statistician), 47(1):183–189,
1998.

[JPED21] A. Jankovic, G. Popovski, T. Eftimov, and C. Doerr. The impact of hyper-parameter
tuning for landscape-aware performance regression and algorithm selection. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference, GECCO ’21,
pages 687–696. ACM, 2021.

[JRNG08] A. Jarvis, H.I. Reuter, A. Nelson, and E. Guevara. Hole-filled seamless SRTM data
V4. International Centre for Tropical Agriculture (CIAT), 2008.

[KE95] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of
ICNN’95 - International Conference on Neural Networks, volume 4, pages 1942–
1948 vol.4, 1995.

[Ken99] J. Kennedy. Small worlds and mega-minds: effects of neighborhood topology on
particle swarm performance. Proceedings of the 1999 Congress on Evolutionary
Computation-CEC 1999, 3:1931–1938 Vol. 3, 1999.

[KHNT19] P. Kerschke, H.H. Hoos, F. Neumann, and H. Trautmann. Automated Algorithm
Selection: Survey and Perspectives. Evolutionary Computation, 27(1):3–45, March
2019.

[Kie53] J. Kiefer. Sequential minimax search for a maximum. Proceedings of the American
Mathematical Society, 4(3):502–506, 1953.

[Kim68] N. Kimura. Evolutionary Rate at the Molecular Level. Nature, 217(5129):624–626,
February 1968.

[KKB+18] P. Kerschke, L. Kotthoff, J. Bossek, H.H. Hoos, and H. Trautmann. Leveraging TSP
solver complementarity through machine learning. Evolutionary Computation, 26(4),
2018.

[KMST10] S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney. ISAC - instance-specific
algorithm configuration. In Proceedings of ECAI 2010 - 19th European Conference
on Artificial Intelligence, volume 215 of Frontiers in Artificial Intelligence and Ap-
plications, pages 751–756. IOS Press, 2010.

130

BIBLIOGRAPHY

[Knu98] D. Knuth. The Art of Computer Programming: Seminumerical Algorithms. Addison-
Wesley, 1998.

[Koz94] J.R. Koza. Genetic programming 2 - automatic discovery of reusable programs. Com-
plex adaptive systems. MIT Press, 1994.

[KPH+14] P. Kerschke, M. Preuss, C. Hernández, O. Schütze, J-Q. Sun, C. Grimme,
G. Rudolph, B. Bischl, and H. Trautmann. Cell Mapping Techniques for Exploratory
Landscape Analysis. In EVOLVE - A Bridge between Probability, Set Oriented Nu-
merics, and Evolutionary Computation V, volume 288, pages 115–131. Springer,
2014.

[KPWT15] P. Kerschke, M. Preuss, S. Wessing, and H. Trautmann. Detecting Funnel Structures
by Means of Exploratory Landscape Analysis. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO ’15, pages 265–272. ACM, 2015.

[KPWT16] P. Kerschke, M. Preuss, S. Wessing, and H. Trautmann. Low-Budget Exploratory
Landscape Analysis on Multiple Peaks Models. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO ’16, pages 229–236. ACM, 2016.

[KT19a] P. Kerschke and H. Trautmann. Automated algorithm selection on continuous black-
box problems by combining exploratory landscape analysis and machine learning.
Evolutionary Computation, 27(1):99–127, 2019.

[KT19b] P. Kerschke and H. Trautmann. Comprehensive feature-based landscape analysis of
continuous and constrained optimization problems using the r-package flacco. In Ap-
plications in Statistical Computing: From Music Data Analysis to Industrial Quality
Improvement, pages 93–123. Springer, 2019.

[LDLP+16] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, M. Birattari, and T. Stützl.
The irace package: Iterated racing for automatic algorithm configuration. Operations
Research Perspectives, 3:43 – 58, 2016.

[LHHS15] M. Lindauer, H.H. Hoos, F. Hutter, and T. Schaub. Autofolio: An automatically
configured algorithm selector. Journal of Artificial Intelligence Research, 53:745–778,
2015.

[LJD+17] L. Li, K.G. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. Journal of Machine
Learning Research., 18:185:1–185:52, 2017.

[LPS10] M. López-Ibáñez, L. Paquete, and T. Stützle. Exploratory analysis of stochastic
local search algorithms in biobjective optimization. In Experimental Methods for the
Analysis of Optimization Algorithms, pages 209–222. Springer, 2010.

[LW06] M. Lunacek and D. Whitley. The dispersion metric and the CMA evolution strategy.
In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
’06, 2006.

[Mal21] K.M. Malan. A survey of advances in landscape analysis for optimisation. Algorithms,
14(2):40, 2021.

[Mat09] J. Matoušek. Geometric Discrepancy. Springer, 2nd edition, 2009.

131

BIBLIOGRAPHY

[MBC79] M. D. McKay, R. J. Beckman, and W. J. Conover. A Comparison of Three Methods
for Selecting Values of Input Variables in the Analysis of Output from a Computer
Code. Technometrics, 21(2):239–245, 1979.

[MBT+11] O. Mersmann, B. Bischl, H. Trautmann, M. Preuss, C. Weihs, and G. Rudolph.
Exploratory Landscape Analysis. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’11, pages 829–836. ACM, 2011.

[ME13] K. Malan and A.P. Engelbrecht. A survey of techniques for characterising fitness
landscapes and some possible ways forward. Information Sciences, 241:148–163,
2013.

[MF04] Z. Michalewicz and D.B. Fogel. How to Solve It: Modern Heuristics. Springer, 2
edition, 2004.

[MG14] R. Morgan and M. Gallagher. Sampling Techniques and Distance Metrics in High
Dimensional Continuous Landscape Analysis: Limitations and Improvements. IEEE
Transactions on Evolutionary Computation, 18(3):456–461, June 2014.

[Mir18] L.J.V. Miranda. Pyswarms: a research toolkit for particle swarm optimization in
python. Journal of Open Source Software, 3(21):433, 2018.

[MKH15] M.A. Muñoz, M. Kirley, and S.K. Halgamuge. Exploratory Landscape Analysis of
Continuous Space Optimization Problems Using Information Content. IEEE Trans-
actions on Evolutionary Computation, 19(1):74–87, February 2015.

[MN98] M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-dimensionally Equidis-
tributed Uniform Pseudo-random Number Generator. ACM Transactions on Mod-
eling and Computer Simulation, 8(1):3–30, January 1998.

[MS20] M.A. Muñoz and K. Smith-Miles. Generating new space-filling test instances for
continuous black-box optimization. Evolutionary Computation, 28(3):379–404, 2020.

[MS21] N. S. C. Merleau and M. Smerlak. A simple evolutionary algorithm guided by local
mutations for an efficient RNA design. In Genetic and Evolutionary Computation
Conference, GECCO ’21, pages 1027–1034. ACM, 2021.

[MSKH15] Mario A. Muñoz, Yuan Sun, Michael Kirley, and Saman K. Halgamuge. Algorithm
selection for black-box continuous optimization problems: A survey on methods and
challenges. Information Sciences, 317:224–245, 2015.

[Mun11] R. Munos. Optimistic optimization of a deterministic function without the knowledge
of its smoothness. In Advances in Neural Information Processing Systems 24: 25th
Annual Conference on Neural Information Processing Systems 2011., pages 783–791,
2011.

[NM65] J. A. Nelder and R. Mead. A Simplex Method for Function Minimization. The
Computer Journal, 7(4):308–313, 01 1965.

[OGH94] A. Ostermeier, A. Gawelczyk, and N. Hansen. Step-size adaption based on non-
local use of selection information. In Parallel Problem Solving from Nature - PPSN
III, International Conference on Evolutionary Computation., volume 866 of Lecture
Notes in Computer Science, pages 189–198. Springer, 1994.

132

BIBLIOGRAPHY

[OTVD08] G. Ochoa, M. Tomassini, S. Vérel, and C. Darabos. A study of NK landscapes’
basins and local optima networks. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’08, pages 555–562. ACM, 2008.

[PA12] E. Pitzer and M. Affenzeller. A comprehensive survey on fitness landscape analysis.
In Recent Advances in Intelligent Engineering Systems, volume 378 of Studies in
Computational Intelligence, pages 161–191. Springer, 2012.

[Par62] E. Parzen. On Estimation of a Probability Density Function and Mode. The Annals
of Mathematical Statistics, 33(3):1065 – 1076, 1962.

[Pea01] K. Pearson. On lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
2(11):559–572, 1901.

[PER+15] A. Piad-Morffis, S. Estevez-Velarde, A. Bolufé Röhler, J. Montgomery, and S. Chen.
Evolution strategies with thresheld convergence. In IEEE Congress on Evolutionary
Computation, CEC 2015, pages 2097–2104. IEEE, 2015.

[PK20] D. Pulatov and L. Kotthoff. Opening the black box: Automatically characterizing
software for algorithm selection (student abstract). In The Thirty-Fourth AAAI Con-
ference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applica-
tions of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2020, pages 13899–13900.
AAAI Press, 2020.

[Pow64] M. J. D. Powell. An efficient method for finding the minimum of a function of several
variables without calculating derivatives. The Computer Journal, 7(2):155–162, 01
1964.

[PRH19] Z. Pitra, J. Repický, and M. Holena. Landscape analysis of Gaussian process sur-
rogates for the covariance matrix adaptation evolution strategy. In Proceedings of
the Genetic and Evolutionary Computation Conference, GECCO ’19, pages 691–699,
2019.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[RDDD19] Q. Renau, J. Dréo, C. Doerr, and B. Doerr. Expressiveness and robustness of land-
scape features. In Proceedings of the Genetic and Evolutionary Computation Con-
ference, GECCO ’19 (Companion), pages 2048–2051. ACM, 2019.

[RDDD20a] Q. Renau, C. Doerr, J. Dreo, and B. Doerr. Experimental Data Set for the study
”Exploratory Landscape Analysis is Strongly Sensitive to the Sampling Strategy”,
June 2020.

[RDDD20b] Q. Renau, C. Doerr, J. Dréo, and B. Doerr. Exploratory landscape analysis is
strongly sensitive to the sampling strategy. In Parallel Problem Solving from Nature
- PPSN XVI - 16th International Conference, PPSN 2020, Leiden, The Nether-
lands, September 5-9, 2020, Proceedings, Part II, volume 12270 of Lecture Notes in
Computer Science, pages 139–153. Springer, 2020.

133

BIBLIOGRAPHY

[RDDD21a] Q. Renau, J. Dréo, C. Doerr, and B. Doerr. Towards explainable exploratory land-
scape analysis: Extreme feature selection for classifying BBOB functions. In Applica-
tions of Evolutionary Computation - 24th International Conference, EvoApplications
2021, Held as Part of EvoStar 2021, Proceedings, volume 12694 of Lecture Notes in
Computer Science, pages 17–33. Springer, 2021.

[RDDD21b] Q. Renau, Johann Dreo, C. Doerr, and B. Doerr. Exploratory Landscape Analysis
Feature Values for the 24 Noiseless BBOB Functions, 2021.

[Ric76] J.R. Rice. The algorithm selection problem. Advance Computing, 15:65–118, 1976.

[RTE65] I. Rechenberg, B.F. Toms, and Royal Aircraft Establishment. Cybernetic Solution
Path of an Experimental Problem:. Library translation / Royal Aircraft Establish-
ment. Ministry of Aviation, 1965.

[RY21] A. Bolufé Röhler and Y. Yuan. Machine learning for determining the transition
point in hybrid metaheuristics. In IEEE Congress on Evolutionary Computation,
CEC 2021, pages 1115–1122. IEEE, 2021.

[Sch65] H-P Schwefel. Kybernetische evolution als strategie der experimentellen forschung
in der stromungstechnik. Diploma thesis, Technical Univ. of Berlin, 1965.

[SE98] Y. Shi and R. Eberhart. A modified particle swarm optimizer. In IEEE International
Conference on Evolutionary Computation Proceedings 1998, pages 69–73, 1998.

[SEK20] U. Skvorc, T. Eftimov, and P. Korosec. Understanding the problem space in single-
objective numerical optimization using exploratory landscape analysis. Applied Soft
Computing, 90:106138, 2020.

[SHH62] W. Spendley, G. R. Hext, and F. R. Himsworth. Sequential application of simplex
designs in optimisation and evolutionary operation. Technometrics, 4(4):441–461,
1962.

[Sko01] M.I. Skolnik. Introduction to radar systems. McGraw-Hill international editions.
Electrical engineering series. McGraw-Hill, Boston, [Mass.] ;, 3rd ed. edition, 2001.

[SL21] T. Stützle and M. López-Ibáñez. Automated algorithm configuration and design. In
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’21,
pages 959–982. ACM, 2021.

[SM09] K. Smith-Miles. Cross-disciplinary perspectives on meta-learning for algorithm se-
lection. ACM Comput. Surv., 41(1), January 2009.

[Sob67] I.M. Sobol’. On the distribution of points in a cube and the approximate evaluation
of integrals. USSR Computational Mathematics and Mathematical Physics, 7(4):86–
112, January 1967.

[SP97] R. Storn and K.V. Price. Differential evolution - A simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global Optimization,
11(4):341–359, 1997.

[ST12] K. Smith-Miles and T.T. Tan. Measuring algorithm footprints in instance space. In
IEEE Congress on Evolutionary Computation, CEC 2012, pages 1–8. IEEE, 2012.

134

BIBLIOGRAPHY

[Sta02] P.F. Stadler. Fitness landscapes. In Biological Evolution and Statistical Physics,
volume 585, pages 183–204. Springer, 2002.

[Swe54] P. Swerling. Probability of Detection for Fluctuating Targets. RAND Corporation,
1954.

[SWN03] T.J. Santner, B.J. Williams, and W.I. Notz. The Design and Analysis of Computer
Experiments. Springer Series in Statistics. Springer, 2003.

[Tal13] E.G. Talbi. Hybrid Metaheuristics, volume 434 of Studies in Computational Intelli-
gence. Springer, 2013.

[Tan21a] R. Tanabe. Benchmarking feature-based algorithm selection systems for black-box
numerical optimization. CoRR, abs/2109.08377, 2021.

[Tan21b] R. Tanabe. Towards exploratory landscape analysis for large-scale optimization: a
dimensionality reduction framework. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’21, pages 546–555. ACM, 2021.

[VFM00] V. K. Vassilev, T. C. Fogarty, and J. F. Miller. Information characteristics and the
structure of landscapes. Evolutionary Computation, 8(1):31–60, 2000.

[VGO+20] P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett,
J. Wilson, K.J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson,
C J Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perk-
told, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald,
A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors. SciPy
1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods,
17:261–272, 2020.

[VHCM15] M. Vallati, F. Hutter, L. Chrpa, and T. McCluskey. On the effective configuration
of planning domain models. In ProcProceedings of International Joint Conferences
on Artificial Intelligence (IJCAI) ’15. AAAI, 2015.

[vRWvLB16] S. van Rijn, H. Wang, M. van Leeuwen, and T. Bäck. Evolving the structure of
evolution strategies. In 2016 IEEE Symposium Series on Computational Intelligence,
SSCI 2016, pages 1–8. IEEE, 2016.

[VvRBD19] D. Vermetten, S. van Rijn, T. Bäck, and C. Doerr. Online selection of CMA-ES
variants. In Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO ’19, pages 951–959. ACM, 2019.

[VWBD20] D. Vermetten, H. Wang, T. Bäck, and C. Doerr. Towards dynamic algorithm se-
lection for numerical black-box optimization: investigating BBOB as a use case. In
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’20,
pages 654–662. ACM, 2020.

[WEB14] H. Wang, M. Emmerich, and T. Bäck. Mirrored orthogonal sampling with pairwise
selection in evolution strategies. In Symposium on Applied Computing, SAC 2014,
pages 154–156. ACM, 2014.

[Wei90] E. Weinberger. Correlated and Uncorrelated Fitness Landscapes and How to Tell
the Difference. Biological Cybernetics, 63:325–336, September 1990.

135

BIBLIOGRAPHY

[Wri32] S. Wright. The roles of mutation, inbreeding, crossbreeding, and selection in evolu-
tion, volume 1. 1932.

[XHHL11] L. Xu, F. Hutter, H.H. Hoos, and K. Leyton-Brown. Satzilla: Portfolio-based algo-
rithm selection for SAT. CoRR, abs/1111.2249, 2011.

[XHHLB08] L. Xu, F. Hutter, H.H. Hoos, and K. Leyton-Brown. SATzilla: Portfolio-based
algorithm selection for SAT. Journal of Artificial Intelligence Research, 32:565–606,
2008.

[Zah06] D. Zaharie. A comparative analysis of crossover variants in differential evolution.
pages 171–181, 05 2006.

136

Titre : Sélection de Métaheuriques Guidée par le Paysage de Recherche pour l’Optimisation de Réseaux de
Radars

Mots clés : Optimisation, Métaheuristiques, Sélection Automatique d’Algorithmes, Réseaux de Radars

Résumé : Les réseaux de radars sont des systèmes
complexes dont l’efficacité doit être optimisée. L’opti-
misation du réseau se fait par la maximisation de la
couverture radar ou par la maximisation de la proba-
bilité de détection d’une cible. Configurer un réseau
de radars est une tâche complexe souvent réalisée
par des experts à l’aide de simulateurs.
La résolution de ce type de problème s’ap-
puie sur l’optimisation boı̂te noire. De nombreuses
métaheuristiques ont été développés dans le but
de résoudre des problèmes d’optimisation boı̂te
noire. Ces métaheuristiques ont montré une certaine
complémentarité dans leur performance qui est liée
à la structure du problème à résoudre. Choisir l’algo-
rithme le plus approprié pour résoudre un problème
est donc crucial.
L’objectif de cette thèse CIFRE est de réaliser une
sélection automatique de métaheuristiques guidée
par le paysage de recherche dans le but d’optimiser
un problème de configuration de réseau de radars.
Les contributions de cette thèse sont doubles. Dans

un premier temps, nous avons défini six propriétés
que les mesures caractérisant un problème d’opti-
misation boı̂te noire devraient satisfaire. Nous avons
également étudié à quel point les mesures satisfont
ces propriétés. L’une de ces propriétés est la sensi-
bilité à la méthode d’échantillonnage. Contrairement
aux préconisations dans la littérature, nous avons re-
marqué que la méthode d’échantillonnage importait
car une grande partie des mesures y est sensible.
Nous avons trouvé d’importantes différences entre les
distributions des mesures provenant de différentes
méthodes d’échantillonnage. Globalement, aucune
des mesures ne satisfait les six propriétés.
La résolution des problèmes radar avec différentes
métaheuristiques montre ces dernières ont des per-
formances similaires. Le gain d’une sélection automa-
tique de métaheuristiques est par conséquent faible.
Les performances de notre sélection automatique de
métaheuristiques guidée par le paysage de recherche
sont similaires aux performances du meilleur algo-
rithme sur les instances d’entraı̂nement (SBS).

Title : Landscape-Aware Selection of Metaheuristics for the Optimization of Radar Networks

Keywords : Optimization, Metaheuristics, Automated Algorithm Selection, Radar Networks

Abstract : Radar networks are complex systems that
need to be configured to maximize their coverage or
the probability of detection of a target. The optimiza-
tion of radar networks is a challenging task that is typi-
cally performed by experts with the help of simulators.
Alternatively, black-box optimization algorithms can
be used to solve these complex problems. Many heu-
ristic algorithms were developed to solve black-box
optimization problems and these algorithms exhibit
complementarity of performance depending on the
structure of the problem. Therefore, selecting the ap-
propriate algorithm is a crucial task.
The objective of this CIFRE PhD is to perform a
landscape-aware algorithm selection of metaheuris-
tics in order to optimize radar networks. The main
contributions of this PhD thesis are twofold. In this
thesis, we define six properties that landscape fea-
tures should satisfy and we study to what degree land-

scape features satisfy these properties. One of the six
properties is the invariance to the sampling strategy.
We found that, surprisingly to what was recommen-
ded in the literature, the sampling strategy actually
matters. We found important discrepancies in the fea-
ture values computed from different sampling strate-
gies. Overall, we found that none of the features sa-
tisfy all defined properties. These features represent
the core of a landscape-aware algorithm selection.
We applied the landscape-aware algorithm selection
of metaheuristics on the optimization of radar network
use-cases. On this use-cases, algorithms have similar
performances and the gain to perform an automated
selection of algorithms is small. Nevertheless, the per-
formance of the landscape-aware algorithm selection
of metaheuristics is similar to the performance of the
single best solver (SBS).

Institut Polytechnique de Paris
91120 Palaiseau, France

	I Introduction
	Introduction
	Motivation
	Automated Algorithm Selection
	Our Key Findings
	Thesis Outline
	II Landscape-Aware Selection of Metaheuristics
	Continuous Black-Box Optimization Algorithms
	Black-Box Optimization
	Evolutionary Computation
	The Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
	Differential Evolution (DE)
	Particle Swarm Optimization (PSO)
	Direct Search Methods
	L-BFGS-B Algorithm
	Automated Algorithm Configuration
	Landscape-Aware Algorithm Selection
	Motivation
	Landscape-Aware Algorithm Selection
	Landscape-Aware Algorithm Selection Pipeline
	Characterizing Problem Instances via Landscape Features
	Fitness Landscape Analysis
	Exploratory Landscape Analysis

	III Analysis of Landscape Features
	Exploratory Landscape Features Properties
	Design of Experiments
	Stability
	Influence of Sampling Strategy
	Expressiveness
	Robustness
	Invariance to Transformations
	Sensitivity to Noise
	Discussion

	IV Optimization of Radar Networks
	Background on Radar Operation
	Introduction
	History of Radar Development
	Basic Principle
	Radar Equation
	Radar Cross Section
	Swerling Models
	Probability of Detection

	Radar Network Modeling
	Ægis: Radar Network Modeling Framework
	Target Characteristics
	Radar Models and Parameters
	Radar Network Use-Cases
	Thesis Use-Cases
	Geographical Data

	Solving the Radar Network Configuration Problem
	Problem Instances
	Algorithm Portfolio
	Experimental Setup
	Results for the Unconstrained Use-Case
	Results for the Constrained Use-Case
	Comparison with Manual Optimization

	Landscape-Aware Algorithm Selection on the Unconstrained Use-Case
	Design of the Selector
	Problem Characteristics
	Definition of the SBS
	Selector Performances
	Discussion

	V Conclusions
	Conclusions
	Summary of Contributions
	Perspectives
	Summary of Papers and Industrial Achievements
	Academic Papers and Presentations
	Industrial Achievements
	Best Performing Algorithm for each Instance
	Best Performing Algorithm in Median
	Best Performing Algorithm for the 2% Quantile
	Radar Network Configuration Contest
	Radar Network Configuration Contest Results
	Radar Network Configuration Contest Poster

