
HAL Id: tel-03591837
https://hal.science/tel-03591837

Submitted on 28 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Propagation Phenomena in Population Dynamics
Quentin Griette

To cite this version:
Quentin Griette. Propagation Phenomena in Population Dynamics. Analysis of PDEs [math.AP].
Université de Bordeaux, 2022. �tel-03591837�

https://hal.science/tel-03591837
https://hal.archives-ouvertes.fr


Mémoire d’Habilitation à Diriger des Recherches

Réalisé à l’Institut de Mathématiques de Bordeaux, Université de Bordeaux.
Spécialité: Mathématiques Appliquées et Calcul Scientifique

Phénomènes de propagation en dynamique
des populations

par

Quentin GRIETTE

Thèse soutenue publiquement le 27 Janvier 2022 devant un jury composé de

Vincent Calvez Université Claude Bernard Lyon 1 Examinateur

Jacques Demongeot Université Joseph Fourier Président

Laurent Desvillettes Université de Paris Examinateur

Pierre Magal Université de Bordeaux Examinateur

Alain Miranville Université de Poitiers Rapporteur

Glenn Webb Vanderbilt University Rapporteur

Xiaoqiang Zhao Memorial University of Newfoundland Rapporteur

après avis de Alain Miranville, Glenn Webb et Xiaoqiang Zhao.









iii

Acknowledgements

I would like to start by expressing my gratitude to the members of the jury. They are leading scientific
figures who are an inspiration to the (still) young scientist that I am. In the first place, I thank Alain
Miranville, Glenn Webb, and Xiaoqiang Zhao, who have accepted to write a report on this thesis. I am
greatly honored that they took the time to discover my work and particularly grateful for their positive
comments and feedback. I warmly thank Vincent Calvez, Jacques Demongeot, and Laurent Desvillettes for
taking part in the jury. Although we did not collaborate (yet), Vincent Calvez was of particular importance
to the development of my career, since he referred me to my Ph.D. advisors in the first place. It is also
the second time he agrees to examine my work. I have the pleasure of counting Jacques Demongeot as an
examiner of my thesis, who continually impresses me by his culture and scientific spectrum - as well as his
cheerful friendliness. I am very grateful to Laurent Desvillettes to bring his expertise to this committee. I
deeply regret not being able to welcome all of them because of the COVID situation.

Pierre Magal deserves a special place in this section, not only for his participation in the jury but for his
involvement and constant support since I came to Bordeaux in 2018. To me, he has been nothing less than
a mentor scientifically and, to some extent, personally, and I continue to learn a lot from our interactions.

My scientific story starts with my Ph.D. and I take the opportunity of this second thesis to thank again
my advisors, Matthieu Alfaro, Gaël Raoul, and Sylvain Gandon, who launched me on this amazing (and
slightly reckless) adventure, of keeping a strong connection with the biology while doing mathematics. I
am deeply indebted and immensely grateful to Hiroshi Matano, who welcomed me many times in Japan
including at the occasion of my post-doctorate. I owe him a lot of my understanding of the qualitative
behavior of solutions to reaction-diffusion equations. Arnaud Ducrot has a great influence on my view of
dynamical systems and he has always been a huge support as well as an inspiration; he has all my gratitude.
I also thank Jean-Baptiste Burie for his friendliness and team spirit. I also wish to thank Seb Motsch for
his friendliness and warm welcome at ASU.

This work has been built thanks to many collaborations and interactions. This is the place to thank
Xiaoming Fu who entrusted me to act as an informal advisor, and who contributed to a substantial part of
this thesis. I also want to thank Léo Girardin with whom I share many scientific interests and has proved
to be of great help. This is also the place to thank Zhihua Liu, Quentin Richard, Denis Roze, Benoît Sarels,
and Robin Thompson for their collaboration. I take this opportunity to thank Grégory Faye who has trusted
me to be a part of his group, I’m sure that it will lead to great science! I also want to thank here Olivier
Dordan and Mostafa Bendahmane along whom it is a pleasure to teach, as well as the colleagues at IMB for
their welcome.

I don’t have enough space here to thank all those who should be thanked. But let me end by sending a
warm thought to my family and friends. And all my love to Rosmeliz, who has been my α and ω for almost
ten years now.



iv



v

La vida te da sorpresas
Sorpresas te da la vida



vi



Contents

Contents vii

1 General presentation 1
1.1 Reaction-diffusion systems as models in population dynamics . . . . . . . . . . . . . . . . . . 2
1.2 A hyperbolic cell-cell repulsion model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Long-time dynamics in epidemic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Parameter identification in epidemiological models and applications to the COVID-19 epidemic 17
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Reaction-diffusion systems as models in population dynamics 29
2.1 Existence and qualitative properties of travelling waves for an epidemiological model with

mutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Pulsating fronts for Fisher-KPP systems with mutations as models in evolutionary epidemiology 58
2.3 Propagation dynamics of solutions to spatially periodic reaction-diffusion systems with hybrid

nonlinearity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2.4 Singular measure traveling waves in an epidemiological model with continuous phenotypes . . 138
2.5 A Liouville-type result for some non-cooperative Fisher–KPP systems and nonlocal equations

on cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
2.6 The spatio-temporal dynamics of interacting genetic incompatibilities . . . . . . . . . . . . . 186

3 A hyperbolic cell-cell repulsion model 207
3.1 A cell-cell repulsion model on a hyperbolic Keller-Segel equation . . . . . . . . . . . . . . . . 207
3.2 Existence and uniqueness of solutions for a hyperbolic Keller–Segel equation . . . . . . . . . . 241
3.3 Sharp discontinuous traveling waves in a hyperbolic Keller–Segel equation . . . . . . . . . . . 270

4 Long-time dynamics in epidemic models 303
4.1 Concentration estimates in a multi-host epidemiological model structured by phenotypic traits 303
4.2 On the competitive exclusion principle for continuously distributed populations . . . . . . . . 333

5 Parameter identification in epidemiological models and application to the COVID-19
epidemic 367
5.1 Real-time prediction of the end of an epidemic wave: COVID-19 in China as a case-study . . 367
5.2 Unreported Cases for Age Dependent COVID-19 Outbreak in Japan . . . . . . . . . . . . . . 381
5.3 Clarifying predictions for COVID-19 from testing data: the example of New York State . . . 398
5.4 SI epidemic model applied to COVID-19 data in mainland China . . . . . . . . . . . . . . . . 408
5.5 A robust phenomenological approach to investigate COVID-19 data for France . . . . . . . . 425
5.6 What can we learn from COVID-19 data by using epidemic models with unidentified infectious

cases? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

Bibliography 481

vii



viii CONTENTS



Chapter 1

General presentation

Since the beginning of my Ph.D., my main research interest has been the mathematical study of population
dynamics models. In my work, I have tried to diversify as much as possible the type of mathematical problem
while keeping the biological applications as a central topic. In particular, my work as a Ph.D. student (2014-
2017) has been focused on the qualitative properties of solutions of reaction-diffusion equations modeling the
spread of an evolving pathogen. I have pursued this line of investigation in my research as a post-doctoral
student and as an associate professor, since 2018. But I have also started to investigate models from other
fields, namely, a novel hyperbolic problem (in collaboration with Pierre Magal and Xiaoming Fu, see section
1.2), and different mathematical questions, for instance, the precise description of the stationary solutions
of a model with phenotypic structure (see section 1.3). Last but not least, I have recently participated in
the development of new methods that bridge the epidemiological models and the real data in the context of
the COVID-19 epidemic (see section 1.4).

Except for the articles which I began during my Ph.D. [P1, P2, P3, P4], the works presented in this thesis
have been realized between 2017 and 2021. They are summarized in the present chapter and presented in
detail later in the thesis.

Section 1.1 and chapter 2 are devoted to my work on the qualitative properties of reaction-diffusion
equations and systems. In section 1.1.1, I summarize the core of my Ph.D. on the construction of traveling
waves (collaboration with Gael Raoul [P2]) and pulsating fronts (collaboration with Matthieu Alfaro [P3])
for a non-monotone system of reaction-diffusion equations. This section is supplemented with a very recent
preprint with Hiroshi Matano [P19]. In this work, we answer similar questions in a more general setting
but also deal with spreading speed and several singular limits (homogenization, strong coupling). We also
reveal a non-isotropic propagation phenomenon specific to systems. In section 1.1.2, I present a work that
began at the end of my Ph.D. [P4] and concerns the construction of a singular measure traveling waves
in a model of mixed type (spatial diffusion, non-local dispersion, and competition in phenotype). Section
1.1.3 is concerned with a collaboration with Léo Girardin [P9] in which we proved the convergence to the
equilibrium for a family of reaction-diffusion systems and non-local equations thanks to a well-constructed
Lyapunov functional. Finally, section 1.1.4 is devoted to a recent preprint in collaboration with Matthieu
Alfaro, Denis Roze, and Benoît Sarels [P17], in which we prove the existence and stability of traveling waves
(clines) in a model of heterozygote incompatibility which involves a nonlinear gradient term.

Section 1.2 and chapter 3 describe the study of a hyperbolic model of cell-cell repulsion. The works
presented in this section are the result of a collaboration with Xiaoming Fu and Pierre Magal. Section 1.2.1
presents the principle of the equation which models the growth and repulsion of cells in a circular two-
dimensional model (Petri dish). This study [P8] was motivated by co-culture experiments done by Pasquier
and collaborators [318] in the context of breast cancer research. In sections 1.2.2 and 1.2.3, we focused on the
qualitative properties of the solutions to a related model in one dimension, to understand the propagation
behavior of the solutions to the equation. In section 1.2.2, we establish the well-posedness of the Cauchy
problem of this hyperbolic equation on the whole line thanks to the reduction of the problem along the
characteristics [P11]. In section 1.2.3, we focused on the qualitative properties of solutions. In particular,
we prove that a jump discontinuity is forming at the propagating edge of the solutions. We also prove the
existence of discontinuous traveling waves and give bounds on their speed.

Section 1.3 contains two works on the asymptotic behavior and stationary solutions of a nonlocal model
for epidemics caused by a spore-producing pathogen. The first is described in section 1.3.1 and corresponds
to a collaboration with Arnaud Ducrot, Jean-Baptiste Burie, and Quentin Richard [P6]. We study a non-
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local model of pathogen evolution with two hosts and give a precise description of the stationary states
when the mutation kernel is sharply concentrated (i.e. close to a Dirac mass). Section 1.3.2 is concerned
with a recent preprint with Arnaud Ducrot and Jean-Baptiste Burie [P18] in which we focus on the pure
competition limit for the same model. We describe the concentration of the time-dependent solutions to
singular measures concentrated on the maxima of the fitness function. We give precise examples in which the
asymptotic support of the measure depends on the initial condition (and not only on the fitness function).

Finally, Section 1.4 and chapter 5 are concerned with the modeling and parameter identification of the
COVID-19 epidemic. In section 1.4.1 we identify the parameters of a mathematical model with unreported
cases. We use its output as the input of a stochastic model to predict the last day of the epidemic if
a rigorous lockdown is maintained (preprint in collaboration with Zhihua Liu, Pierre Magal, and Robin
Thompson 1.4.1). Section 1.4.2 presents a collaboration with Pierre Magal and Ousmane Seydi in which we
construct an epidemic model which is structured by age. We developed a method to identify the parameters
of this model by using the Japanese age-structured reported cases data. In section 1.4.3, we clarify the
predictions made by reported cases data by using a new model which takes into account the daily number
of tests. Section 1.4.4 is devoted to the identification of the time-dependent transmission rate of a SIUR
model in a single epidemic wave by matching a phenomenological model to the data [P7]. In section 1.4.5,
we extend the method to multiple epidemic waves and apply it to the French data [P13]. Finally, in section
1.4.6, we extend the method to model with exposed cases and identify the parameters in eight different
regions [P15]. We also reconstruct two notions of reproduction numbers and compare our results to other
statistical methods. These last three works are collaborations with Pierre Magal and Jacques Demongeot.

Some of my published works and projects have not been included in this thesis but should be mentioned
here briefly. It is the case for the first paper of my Ph.D. (collaboration with Gael Raoul and Sylvain
Gandon [P1]) in which we analyzed the biological implications of the model in Griette and Raoul [P2]. On
this occasion, I had written (in C++) a simulation code for a stochastic microscopic model corresponding to
this system, based on the Gillespie algorithm, in one and two dimensions of space. We explored the effect of
stochasticity on the propagation speed. In a collaboration with Sebastien Motsch [P5], we built a numerical
finite-difference framework for the simulation of a kinetic model close to the Vicsek model. We observed
numerically the formation of self-organized bands. Last but not least, I am the co-author of a book with
Arnaud Ducrot, Zhihua Liu, and Pierre Magal, entitled “Differential Equations and Population Dynamics
I: Introductory Approaches”. It has been accepted in the “Lecture Notes on Mathematical Modelling in the
Life Sciences” series at Springer. A second volume is currently in preparation.

1.1 Reaction-diffusion systems as models in population dynamics

Reaction-diffusion equations are popular in the modeling of population dynamics and have a history of
almost one hundred years, considering the seminal works of Kolmogorov, Petrovskii, and Piskunov [238],
and Fisher [170], in 1937. It so happens that my early work, including my work as a Ph.D. student, was
concerned with reaction-diffusion models for evolutionary epidemiology.

Section 1.1.1 summarizes this early work, consisting in the core of my Ph.D. thesis, in collaboration
with my advisors Matthieu Alfaro, Gaël Raoul, and Sylvain Gandon [P1, P2, P3]. I also include a later
development that began during my post-doctoral fellowship hosted by Hiroshi Matano, and which is currently
released in the form of a preprint [P19]. The collaboration with Sylvain Gandon and Gaël Raoul [P1] is
mostly concerned with the biological implications and the derivation of a reaction-diffusion system of two
equations in evolutionary epidemiology. In [P2], we analyze the same model mathematically to prove the
existence of traveling waves traveling at the expected minimal speed. We also describe the shape of those
waves. In [P3], we focus on a similar system with a periodic heterogeneity in the coefficients and construct
a nontrivial stationary solution and minimal speed pulsating fronts for this system (the fronts are obtained
by a vanishing viscosity method). In [P19], we study general reaction-diffusion systems with an arbitrary
number of components with periodic coefficients which are monotone in a neighborhood of the boundary
of the positive cone of Rd. We prove a spreading property for the solutions of those systems and construct
both minimal speed and super-critical pulsating fronts. We also prove some homogenization formulas for the
speed. Finally, going back to the two-components system studied in [P2], we prove the global asymptotic
stability of the unique equilibrium for a wide range of coefficients and propagate this result to systems with
rapidly oscillating coefficients. Finally, we discover an unexpected phenomenon: when the matrix field giving
the order-zero term of the system is asymmetric, the propagation speed of the solutions might depend on
the direction of propagation, even in the absence of an advection term. This phenomenon cannot occur for
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scalar equations and is therefore specific to reaction-diffusion systems. We construct a non-trivial example
for this phenomenon.

In section 1.1.2, I summarize the results that I obtained in an independent work [P4] begun at the end
of my Ph.D. I study a reaction-diffusion equation with spatial and phenotypic structure; the spatial motion
of individuals is modeled by a diffusion and the mutation-selection at every point of space by nonlocal
operators. It is known that the non-local operators in the homogeneous case (without spatial structure)
have a singular measure as a principal eigenvector and therefore have no regularizing effect. I construct
stationary solutions for the homogeneous equation and establish a sufficient condition to observe a singular
measure in the constructed stationary solution. Then I focus on the traveling wave problem and construct
a traveling wave with the expected minimal speed by the vanishing viscosity method.

Section 1.1.3 presents a collaboration with Léo Girardin [P9], in which we focus on a certain type of
reaction-diffusion systems having the constant state 1 as their unique stationary solution. We prove the
convergence of the traveling waves to the unique stationary solution at the back of the wave by constructing
a Lyapunov functional. We extend this result to reaction-diffusion equations on cylinders with non-local
competition in the local part of the cylinder.

Finally, section 1.1.4 is concerned with a collaboration with Matthieu Alfaro, Denis Roze, and Benoît
Sarels [P17] (preprint). We derive a reaction-diffusion model for the time evolution of the fractions of
haploid individuals carrying certain genes in the presence of a heterozygote incompatibility on two loci and
recombination occurring during sexual reproduction. The individuals live and diffuse in a continuous linear
habitat. In the symmetric case when the two loci have equal contributions to the fitness, the existence of
stationary clines was studied by Barton [36]; we prove rigorously that the stationary cline is stable, i.e. that
a small perturbation of the stationary cline converges to a possibly shifted stationary cline. We also study
the asymmetric case and show that, when there is a small difference in the contribution of the two loci to
the fitness, the cline starts to move. We also provide an analytic approximation of the speed.

1.1.1 Reaction-diffusion systems and application in evolutionary epidemiology
A large part of my early work was concerned with reaction-diffusion systems as models of pathogen evolution.
The corresponding part of my work was done in collaboration with Matthieu Alfaro, Sylvain Gandon, and
Gaël Raoul [P1, P2, P3], and more recently in a preprint with Hiroshi Matano [P19].

The original motivation for this line of works is the following model of pathogen evolution
wt(t, x) = wxx(t, x) + w(t, x)

(
1− (w(t, x) +m(t, x))

)
+ µ

(
m(t, x)− w(t, x)

)
,

mt(t, x) = mxx(t, x) + rm(t, x)
(

1− w(t, x) +m(t, x)
K

)
− µ

(
m(t, x)− w(t, x)

)
.

(1.1.1)

In this model, two types of pathogens coexist in a population of hosts which live on a one-dimensional
habitat: wild-type pathogens, which are assumed to adopt a moderate strategy with respect to their hosts,
and mutant pathogens, which are assumed to adopt an aggressive strategy. w(t, x) stands for a density of
hosts infected with a wild-type pathogen at time t > 0 and position x ∈ R, and m(t, x) stands for the density
of hosts infected by a mutant pathogen. There are three parameters involved in this model: the reproduction
rate of the mutant r > 1, its carrying capacity K < 1, and the mutation rate µ > 0; the assumptions that
r > 1 and K < 1 reflect the difference in strategy of the two types.

In [P2], we constructed minimal speed traveling waves for system (1.1.1) by a topological degree argument
and established a formula for the speed of those waves. An example of the fronts is presented in Figure 1.1.1.
We also described precisely the shape of the waves and showed the non-monotonicity when the mutation rate
µ > 0 is sufficiently small and showed the convergence to a super-critical Fisher-KPP wave when µ→ 0. In
the companion paper [P1], we studied the biological implication and constructed a related stochastic model,
to investigate numerically the dependency of the propagation speed on the local population size.

In [P3], we investigate an extension of (1.1.1) to heterogeneous environments:{
ut(t, x) = uxx(t, x) + u(t, x)

(
ru(x)− γu(x)(u(t, x) + v(t, x))

)
+ µ

(
v(t, x)− u(t, x)

)
,

vt(t, x) = vxx(t, x) + v(t, x)
(
rv(x)− γv(x)(u(t, x) + v(t, x))

)
+ µ

(
u(t, x)− v(t, x)

)
,

(1.1.2)

where u(t, x) and v(t, x) stand for population densities at time t > 0 and x ∈ R, ru(x) and rv(x) are
L−periodic functions for some L > 0, γu(x) > 0 and γv(x) > 0 are L-periodic functions which characterize
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Figure 1.1.1: Traveling wave for the system (1.1.1). The blue curve represents the wild-type component w
and the red curve the mutant m.

the strength of the competition between the species, and µ > 0 is a mutation rate. Here, because of the
periodic heterogeneity of the environment, the appropriate notion that serves to describe the long-term
dynamics of the solutions to the initial value problem is the one of pulsating waves, which are special entire
solutions satisfying (

u

(
t+ L

c
, x

)
, v

(
t+ L

c
, x

))
=
(
u(t, x− L), v(t, x− L)

)
,

for some c > 0, along with conditions at infinity

lim sup
x→+∞

max
(
u(t, x), v(t, x)

)
= 0, lim inf

x→+∞
min

(
u(t, x), v(t, x)

)
> 0.

We show the existence of a positive stationary solution to (1.1.2) by a global bifurcation argument adapted
from the theory of bifurcation from simple eigenvalues of Crandall and Rabinowitz [123], and related to the
work of Krasnosel’skii [244]. Next, we prove the existence of pulsating traveling waves by using the change
of variable (s, x) = (x− ct, x) and studying the resulting equation,

−uxx − 2uxs − uss − cus = u(ru − γu(u+ v)) + µv − µu in R2

−vxx − 2vxs − vss − cvs = v(rv − γv(u+ v)) + µu− µv in R2

(u, v)(s, ·) is L-periodic.

(1.1.3)

Since the differential operator in (1.1.3) is degenerate elliptic, we first regularize it by adding a small viscosity
term −ε∂ss to the left-hand side, construct the fronts for the regularized problem, and let ε→ 0 to recover
a solution to the original problem. The vanishing viscosity argument ε → 0 requires some regularity to
be preserved to make the argument work; this regularity is obtained by a Bernstein-type estimate on the
gradient.

The last work in this line of works and probably the most complete is the recent preprint with Hiroshi
Matano [P19], in which we study parabolic reaction-diffusion systems with hybrid nonlinearity{

ut(t, x) = Lu(t, x) + f(x, u), t > 0, x ∈ R,
u(t = 0, x) = u0(x), x ∈ R.

(1.1.4)

Here u(t, x) ∈ Rd is a vector representing a population density composed of several genotypes; L is a
differential second-order uniformly elliptic operator (with no zero-order term), and f(x, u) is L-periodic with
respect to x and hybrid with respect to u, in the sense that it is monotone in a vicinity of the boundary
of the positive cone (i.e. the set of u = (u1, . . . , ud)T such that 0 ≤ ui ≤ ε for some i), but not necessarily
in the whole positive cone. We also assume that f is sublinear in the sense that f(x, u) ≤ Duf(x, 0)u for
all u ∈ Rd, and that the partial Jacobian matrix of f with respect to u, Duf(x, 0), is cooperative and
irreducible. Under these assumptions, we first study the principal eigenvalue problem

−eλxL
(
e−λxϕλ(x)

)
= Duf(x, 0)ϕλ(x) + k(λ)ϕλ(x),
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where λ > 0 is a parameter, and (k(λ), ϕλ(x) > 0) is the principal eigenpair of the above problem with
L-periodic boundary conditions. We show that λ 7→ k(λ) is strictly concave, which gives a meaning to the
expected formula for the minimal speed of traveling waves

c∗ := inf
λ>0

−k(λ)
λ

. (1.1.5)

When the nonlinearity f can be controlled from below by a monotone function f− which shares the same
Jacobian matrix at 0: Duf(x, 0) = Duf

−(x, 0), we show that the spreading speed of solutions starting from
front-like initial conditions,

u0(x) > 0 for x < 0, u0(x) = 0 for x > 0,

is equal to c∗. We also show the existence of traveling waves for any c ≥ c∗ by using a fixed-point argument
on the map u0(x) 7→ u(Lc , x+ L).

Surprisingly, the spreading speed for compactly supported initial data might be different in general from
the one of front-like initial data given by (1.1.5), even when the differential operator L has no first-order
term. The reason is that the matrix Duf(x, 0) might not be symmetric, and the antisymmetric part of
Duf(x, 0) can induce an asymmetry in the map λ 7→ k(λ). This, in turn, might induce a different value for
the rightward spreading speed (given by (1.1.5)) and the leftward spreading speed

c∗left := inf
λ>0

−k(−λ)
λ

.

We provide an example of a two-component system for which the rightward and leftward spreading speeds
are indeed different. It is constructed as a strongly coupled system whose singular limit is a scalar reaction-
diffusion equation with a first-order term.

We also investigate the existence of a weak hair-trigger effect for time-dependent solutions to (1.1.4),
in the sense that positive non-trivial initial data become eventually locally uniformly positive. There is a
sharp criterion for such a weak hair-trigger effect, which is that the Dirichlet principal eigenvalue, defined
as λ∞1 := limR→+∞ λR1 , is negative, where λR1 is the principal eigenvalue for the Dirichlet problem on the
interval (−R,R), {

− Lϕ(x) = Duf(x, 0)ϕ(x) + λR1 ϕ(x), x ∈ (−R,R),
ϕ(−R) = ϕ(R) = 0,

and ϕ(x) > 0 for all x ∈ (−R,R). We show that

λ∞1 = max
λ∈R

k(λ),

and since the function k(λ) is not necessarily even, there might be a positive gap between the Dirichlet
principal eigenvalue λ∞1 and the periodic principal eigenvalue λper1 := k(0) even in the absence of a first-order
term in L. The strongly coupled system mentioned above, in particular, is an example of a two-components
system with such a positive gap.

However, the situation for systems is similar to the scalar case when there is no first-order term (i.e. the
leftward and rightward speeds are equal, and the weak hair-trigger effect holds as soon as k(0) < 0) provided
there is no first-order term in L and we are in one of the two following cases:

1. both L and the matrix Duf(x, 0) are self-adjoint, or

2. both L and Duf(x, 0) are even in x.

Other results are also established in [P19]: a formula for the speed in the case of rapidly oscillating
coefficients (by a homogenization argument) and a more precise description of the long-time behavior of
(1.1.1) and (1.1.2) in the case of homogeneous coefficients. In particular, we prove the convergence of the
time-dependent problem for the spatially homogeneous problem under some assumptions of the coefficient
and extend it to the case of rapidly oscillating coefficients. The local asymptotic stability is proved in the
homogeneous case without restrictive assumptions.
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1.1.2 Singular measure traveling waves
In [P4], I introduced the following equation to model the spatial spread of an evolving species with a
continuous phenotypic structure,

ut(t, x, y) = uxx(t, x, y)+µ
(∫

Ω
M(y, z)u(t, x, z)dz − u(t, x, y)

)
+ u(t, x, y)

(
a(y)−

∫
Ω
K(y, z)u(t, x, z)dz

)
, (1.1.6)

where u(t, x, y) stands for the density of population at time t > 0, position x ∈ R, and phenotypic value y ∈ Ω
where Ω ⊂ Rn is a bounded domain; a(y) ∈ Cα(Ω) is a fitness function which depends only on the phenotypic
value y, µ > 0 is the mutation rate, M(y, z) ∈ Cα(Ω2) is a mutation kernel, and K(y, z) ∈ Cα(Ω2) is a
competition kernel (α ∈ (0, 1]). It had been noted previously by Coville [119] that the linearized equation
corresponding to (1.1.6),

µ

(∫
Ω
M(y, z)ϕ(z)dz − ϕ(y)

)
+ ϕ(y)a(y) + λϕ(y) = 0, (1.1.7)

for λ ∈ R and ϕ(y) > 0 (in a sense to be precised) might have some singular measure solutions under the
condition that

1
supz∈Ω a(z)− a(y) ∈ L

1(Ω). (1.1.8)

The first result in the article [P4] is extending the result of Coville by showing that, when the assumption
(1.1.8) holds, there is a unique λ (the principal eigenvalue) which is associated with a nonnegative Radon
measure solution to (1.1.7) (even if that measure is singular). Next, it is specified under which condition
(involving µ, M , and a) the equation (1.1.7) actually has a nonnegative singular measure solution. In
addition to (1.1.8), there exists a µ0 = µ0(M,a) > 0 such that the equation (1.1.7) has a singular measure
solution precisely when µ < µ0, and µ0 can be determined by a related principal eigenproblem. When
µ < µ0, the principal eigenvalue is given by the formula

λ1 = −
(

sup
z∈Ω

a(z)− µ
)
,

and there exists a nonnegative singular measure ϕ(dy) solution to (1.1.7); and finally any solution to (1.1.7)
has a singularity concentrated on

Ω0 :=
{
y ∈ Ω : a(y) = sup

z∈Ω
a(z)

}
.

Once the linearized problem is understood, the nonlinear problem is investigated. In particular, it is
shown that there exists a nonnegative stationary solution p(dy) to (1.1.6) (in the sense of measures) which
is independent of x, under the assumption (1.1.8) and µ < µ0, provided that the principal eigenvalue has
the correct sign: λ1 < 0. This stationary solution is constructed by a vanishing viscosity argument. Under
an additional assumption on the competition kernel,

K(z0, z) ≤ K(y, z) for some z0 ∈ Ω0 and for all y, z ∈ Ω,

it can be shown that the stationary measure p(dy) has a singularity which is concentrated on a subset of Ω0.
Last but not least, we focus on traveling wave solutions to (1.1.6), which are entire solutions satisfying

u(t, x, y) = u(x − ct, y) for all t ∈ R, x ∈ R, and y ∈ Ω (with a small abuse of notation) and the following
conditions at infinity:

lim inf
x̄→+∞

∫
R×Ω

ϕ(x+ x̄, y)u(dx, dy) > 0,

lim sup
x̄→−∞

∫
R×Ω

ϕ(x+ x̄, y)u(dx, dy) = 0,
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for any compactly supported test function ϕ ∈ Cc(R×Ω). It is shown that there exist such traveling waves
travelling at a speed

c∗ := 2
√
−λ1,

when the principal eigenproblem has a singular measure solution and the principal eigenvalue is negative
λ1 < 0. The proof is rather technical and involves the construction of travelling fronts for a regularized
problem with small viscosity, and then a vanishing viscosity argument.

1.1.3 Convergence to equilibrium for KPP-type traveling waves on cylinders
In a work in collaboration with Léo Girardin [P9], we investigated elliptic systems of the type

− cux(x)−Duxx(x) = Mu(x) + u(x)− u(x) ◦ Cu(x), (1.1.9)

where c ∈ R, u(x) ∈ RN is a vector-valued function of x ∈ R, D is a diagonal matrix with positive entries; M
is a mutation matrix which is assumed to be cooperative, irreducible, line-sum-symmetric (namely, M1 =
MT 1) and satisfies M1 = 0; C is a normal matrix which is positive and satisfies C1 = 1; finally, the symbol
◦ denotes the componentwise (sometimes called Hadamard) vector product. Under those assumptions, we
show that (1.1.9) satisfies a Liouville property: if p(x) is a solution to (1.1.9) satisfying

inf
x∈R

min
i=1,...,N

pi(x) > 0,

then in fact p(x) ≡ 1. As a consequence, if u is a traveling wave solution to (1.1.9), i.e. a nonnegative
solution satisfying

lim
x→+∞

u(x) = 0 and lim inf
x→−∞

u(x) > 0,

then in fact we can prove
lim

x→−∞
u(x) = 1.

The importance of this result lies in the fact that, if we relax the assumptions made on the matrices M
and C, then in general it is difficult to determine the asymptotic behavior of the traveling waves solutions
to (1.1.9). Here we have determined a large class of problems for which this behavior can be completely
determined.

Similar arguments allow us to extend the Liouville property and the convergence on the back of the waves
to equations set on cylinders which can be written as

−d(y)uxx(x, y)− cux(x, y) = ∇y
(
σ(y)∇u(x, y)

)
+
∫

Ω
m(y, z)

(
u(x, z)− u(x, y)

)
dz

+ u(x, y)
(

1−
∫

Ω
k(y, z)p(x, z)dz

)
,

with homogeneous Neumann boundary conditions on R × ∂Ω. Here the function m is continuous on Ω2,
positive, and satisfies ∫

Ω
m(y, z)dz =

∫
Ω
m(z, y)dz.

The function k is continuous on Ω2, positive, and the induced operator on L2(Ω):

K[p] :=
∫

Ω
k(y, z)p(z)dz

is normal. Moreover K[1] = 1. If those assumptions are satisfied, it is also possible to state a Liouville
property and to determine the asymptotic behavior of travelling waves.
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1.1.4 A model of genetic incompatibilities in parapatry
In a recent preprint with Matthieu Alfaro, Denis Roze, and Benoît Sarels [P17], we investigate the interaction
between two genetic incompatibilities in a spatial context via a population genetic model. More precisely,
we focus on a simple situation involving two coupled underdominant loci, with alleles A and a at the first
locus and B and b at the second locus. In other words, at each locus, heterozygotes (say Aa) have lower
fitness than homozygotes, while the two homozygotes AA and aa have equal fitness. This form of symmetric
selection against heterozygotes can maintain stable clines in allele frequencies [41, 35], separating regions
where AA and aa individuals are abundant. When two such clines overlap in space (one separating regions
where AA and aa are abundant, and the other separating regions where BB and bb are abundant), they
tend to attract each other until they coincide, and then become motionless. This process was studied by
Barton [36] in the case of a continuous linear habitat.

Here we study the situation when the fitness of the homozygote AB|AB becomes slightly larger than
the one of ab|ab. In this asymmetric situation, it is not a priori obvious whether the stationary cline
stays stationary or begins to move. When the difference in fitness between homozygotes has a low order of
magnitude (measured by a parameter 0 < ε� 1) compared to the fitness cost of heterozygotes, we show that
a front traveling at speed cε > 0 of stacked clines emerges from the stationary cline of the symmetric case.
The proof involves a rather intricate perturbation analysis and allows us to give an explicit approximation
of the speed cε.

After a series of approximations which are detailed in the article, the equation for the stacked clines in
the asymmetric case under the assumption that the clines remain stacked can be written as

ut(t, x) = uxx(t, x) + Sf(u(t, x)) + εg(u(t, x)) + 2
r

(
S(2u(t, x)− 1) + ε

)
(ux(t, x))2. (1.1.10)

Here u(t, x) stands for the density of individuals possessing the allele A, S > 0 is the penality in fitness of
heterozygotes, r is the rate of recombination, and ε measures the difference in fitness between homozygotes
AB|AB and ab|ab; the functions f and g are given by

f(u) = u(2u− 1)(1− u), g(u) = u(1− u).

Note that the equation (1.1.10) involves a gradient nonlinearity, which contributes to the difficulty of the
study.

In the case when ε = 0, we recover the symmetric case and prove mathematically the existence of and
uniqueness of a standing wave for (1.1.10), i.e. a function u0 satisfying

u′′0(x) + Sf(u0(x)) + 2
r
S(2u0(x)− 1)(u′0(x))2 = 0,

u0(−∞) = 1, u0(+∞) = 0.
(1.1.11)

By using the ideas of Sattinger [349], we prove the local stability of the standing wave as a solution to the
Cauchy problem (1.1.10) (with ε = 0) for the L∞ topology.

Next, we focus on the full problem (1.1.10) with ε > 0 small. We prove the existence of travelling waves
traveling at a positive speed cε > 0, i.e. positive solutions to the problem

u′′(x) + cu′(x) + Sf(u(x)) + εg(u(x)) + 2
r

(
S(2u(x)− 1) + ε

)
(u′(x))2 = 0,

u(−∞) = 1, u(+∞) = 0.
(1.1.12)

This is done by using the implicit function theorem in the adequate space, and we get an approximation
formula for the speed of the traveling wave:

cε = −

∫
R

(
g(u0) + 2

r
(u′0)2

)
u′0e

4S
4 (u2

0−u0)∫
R

(u′0)2e
4S
4 (u2

0−u0)
ε+ o(ε), (1.1.13)

where u0 is the standing wave solving (1.1.11). While this expression allows In order to apply the implicit
functions theorem we had to show the bijectivity of the Fréchet differential of the left-hand side of (1.1.12)
with respect to u, which is a uniformly elliptic operator; this part is done by combining a priori estimates
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on u0 and the computation of the Fredholm index of elliptic operators described by Volpert, Volpert, and
Collet [386] and described in the book of Volpert [384].

While (1.1.13) already permits the computation of cε at the order 1 in ε, it still depends on the knowledge
of u0. It turns out that this formula can still be simplified as

cε = c1ε+ o(ε), where c1 =

∫ 1

0

r

4S

(
1− e− 4S

r (u−u2)
)

du∫ 1

0

(
r2

8S e
4S
r (u−u2) − r

2(u− u2)− r2

8S

) 1
2

e−
4S
r (u−u2)du

.

Hence we recover an explicit approximation for cε (independent of u0).

1.2 A hyperbolic cell-cell repulsion model

This part of my work was done in collaboration with Xiaoming Fu, and Pierre Magal [P8, P11, P12]. These
articles are all part of the Ph.D. thesis of Xiaoming Fu, to which I participated as an informal advisor.

In section 1.2.1, we derive a model for a population of cells living in a Petri dish [P8]. We work on a
circular domain of R2 representing the Petri dish. Since cells do not move by themselves, we do not include
a diffusion operator in the equation but only model the cell-cell repulsion forces (“pressure”) acting on the
cells. The pressure itself is determined by the local density of the cells through a non-local kernel. Thus
we obtain a hyperbolic model. We prove mathematically the local well-posedness of the Cauchy problem
when a single species exists in the Petri dish. When two species exist in the Petri dish with comparable
susceptibility to the pressure, we prove that initially segregated initial data will stay segregated at later times.
This preservation of segregation is one of the most important features of the model. Last, we developed a
numerical code to simulate the behavior of the cells and tested various scenarios.

Section 1.2.2 and section 1.2.3 contain the continuation of this work, which concerns a refined study of
the qualitative properties of the same model set on the line instead of the disk [P11, P12].

1.2.1 A cell-cell repulsion model on a hyperbolic Keller-Segel equation
In [P8], we presented a new mathematical model for cell-cell repulsion in a Petri dish. Our aim was to
describe the cell growth in the co-culture experiments of Pasquier et al [318], with a particular focus on the
segregation property observed in those experiments. Rather than turning to existing models of nonlinear
diffusion or strong competition, we developed a new model in the inviscid case, i.e. when the motion of the
cells is not subject to random motion. A simulation using our code is presented in Figure 1.2.1.

We first consider the following model for a single cell species,{
∂tu(t, x)− d∇ ·

(
u(t, x)∇P (t, x)

)
= u(t, x)h(u(t, x)), t ∈ (0, T ], x ∈ Ω,

u(0, x) = u0(x), x ∈ Ω,
(1.2.1)

where the pressure P (t, x) satisfies the following equation{
P (t, x)− χ∆P (t, x) = u(t, x), t ∈ (0, T ], x ∈ Ω,
∇P (t, x) · ν(x) = 0, t ∈ [0, T ], x ∈ ∂Ω.

(1.2.2)

Figure 1.2.1: Solution of the multi-species model (1.2.5) through time. The red and green areas represent
different types of cells who live in a circular domain.
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Here Ω ⊂ R2 is the disk centered at x = 0 and with radius r = 1, ν(x) is the outward normal vector
for x ∈ ∂Ω, d > 0 is the dispersion coefficient, and χ > 0 is a sensing coefficient. Note that there is no
second-derivative of u in space in the model (1.2.1)–(1.2.2): the motion of the cells is completely determined
by the gradient of the pressure P (t, x).

In order to give a precise meaning to the solutions to (1.2.1)–(1.2.2), we introduce the characteristic flow
associated with (1.2.1), 

∂

∂t
Π(t, s;x) = −d∇P (t,Π(t, s;x)), t, s ≥ 0, x ∈ Ω

Π(s, s;x) = x, x ∈ Ω.
(1.2.3)

If ∇P (t, x) is sufficiently smooth (i.e. continuous and Lipschitz continuous in the x variable) then (1.2.3)
defined a unique characteristic flow. In this case, we can rigorously prove the invariance of Ω for the flow
of (1.2.3). This allows us to introduce an auxiliary variable w(t, x) := u

(
t,Π(t, 0;x)

)
, which satisfies a

differential equation in time only:

∂tw(t, x) = w(t, x)
(
1 + ∆P (t,Π(0, t;x))− w(t, x)

)
. (1.2.4)

Therefore the knowledge of P (t, x) allows us to reconstruct u(t, x) by integrating (1.2.3) and the ordinary
differential equation (1.2.4). This remark allows us to write (u(t, x), P (t, x)) as the solution of a fixed-point
problem and prove the existence and uniqueness of the solution to (1.2.1)–(1.2.2) locally in time, provided
u0(x) is sufficiently smooth. The solutions obtained by this method are a new notion of solutions which we
call solution integrated along the characteristics.

We also consider the multi-species model, which can be written as follows

∂tu1(t, x)− d1∇ ·
(
u1(t, x)∇P (t, x)

)
= u1(t, x)h1(u1(t, x), u2(t, x)), t ∈ (0, T ], x ∈ Ω,

∂tu2(t, x)− d2∇ ·
(
u2(t, x)∇P (t, x)

)
= u2(t, x)h2(u1(t, x), u2(t, x)), t ∈ (0, T ], x ∈ Ω,

P (t, x)− χ∆P (t, x) = u1(t, x) + u2(t, x), t ∈ (0, T ], x ∈ Ω,
∇P (t, x) · ν(x) = 0, t ∈ [0, T ], x ∈ ∂Ω,
u1(0, x) = u10(x), u2(0, x) = u20(x), x ∈ Ω.

(1.2.5)

In the important case when d1 = d2 = d, we can use the characteristic flow to prove that solutions starting
from initially segregated initial solutions stay segregated for all positive time t > 0. An illustration of this
property is presented in Figure 1.2.2. This property has been observed in mono-layered cultured experiments
and is one of the reasons why we introduced the inviscid model.

t0

t

Π(t0, 0; x0)−L L

t1

Π(t, 0; x0)

Figure 1.2.2: Illustration of the preservation of the segregation.

Finally, we studied numerical simulations of (1.2.5) to study the influence of the spatial structure imposed
by the Petri dish on the population dynamics of the cells. The result of a simulation at different times is
shown in Figure 1.2.1. We tested more specifically two factors that may have an influence on the eventual
population ratios. The first factor is the initial cell distribution, measured by the initial number of cell
clusters and the law of the initial distribution. We found that the most significant factor in the eventual
distribution of the cells is the initial number of clusters and that the law of the initial repartition of the
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clusters has a limited effect. The second factor is the motility of the cells, measured by the coefficients d1
and d2. We found that the influence of the motilities of the cells is most important at the beginning of the
simulation when the cells are invading the Petri dish; but the dynamics of the cells uihi(u1, u2) become the
key factors at larger time scales.

1.2.2 Existence and uniqueness of solutions for a hyperbolic Keller–Segel equation
In [P11, P12], we studied more precisely the mathematical properties and the qualitative behavior of the
solutions to a hyperbolic equation similar to (1.2.1)–(1.2.2) but set on a one-dimensional space. We study
the equation {

ut(t, x)− χ∂x(u(t, x)∂xp(t, x)) = u(t, x)
(
1− u(t, x)

)
, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,
(1.2.6)

where p(t, x) solves the equation
p(t, x)− σ2∂xxp(t, x) = u(t, x). (1.2.7)

In [P11], we study the Cauchy problem for the solutions to (1.2.6)–(1.2.7). We take advantage of the spatial
derivative in x by introducing the characteristic flow associated with (1.2.6):{

∂th(t, s;x) = −χ(ρx ? u)(t, h(t, s;x),
h(s, s;x) = x.

(1.2.8)

Here ρ is the Green function associated with the equation (1.2.7) on p(t, x), which can be explicitly computed
as ρ(x) = 1

2σ e
− |x|σ , and ? is the usual convolution. In particular, p(t, x) = (ρ ? u)(t, x) and px(t, x) =

(ρx?u)(t, x). Note that, thanks to the explicit formula for ρ, the function (ρ?u)(t, x) :=
∫
R ρx(x−y)u(t, y)dy

is uniformly Lipschitz continuous in x as soon as u(t, ·) is in L∞(R).
By using the characteristic flow (1.2.8) we can introduce the notion of solution integrated along the

characteristics as a function u(t, x) such that (1.2.8) has a classical solution for all x ∈ R and the rescaled
equation {

∂tu(t, h(t, 0;x)) = u(t, h(t, 0;x))
(
1 + χ̂p(t, h(t, 0;x))− (1 + χ̂)u(t, h(t, 0;x))

)
u(0, x) = u0(x),

also has a classical solution in t for all x ∈ R, where χ̂ := χ
σ2 and p(t, x) = (ρ ? u)(t, x). Importantly, the

notion of solution integrated along the characteristics does not require any regularity in x. We showed that
the problem (1.2.6)–(1.2.7) is well-posed for the notions of solutions integrated along the characteristics
when u0 ∈ L∞(R), in the sense that the Cauchy problem admits a unique solution for all u0 ∈ L∞, and the
semiflow t 7→ u(t, ·) is continuous for the weighted L1 topology induced by the norm

‖f‖L1
η(R) :=

∫
R
|f(x)|e−η|x|dx, for some η ∈ (0, 1).

Moreover the map u0 ∈ L∞(R) 7→ u(t, ·) ∈ L1
η(R) is also continuous. The maximal time of existence

associated with an initial condition u0 ∈ L∞ can then be properly defined, and when u0(x) ∈ [0, 1] for
almost every x ∈ R, the maximal solution exists for all t ∈ (0,+∞) and we have u(t, ·) ∈ [0, 1] almost
everywhere.

We also show that the map u0 7→ u(t, ·) preserves some of the properties of u0; in particular, the
continuity, C1 and higher regularity, and monotony of the initial condition are all preserved by the semiflow.
When the initial data is C1, we can prove that the solution integrated along the characteristics is a classical
solution to the original equation (1.2.6)–(1.2.7).

Finally, when u0(x) ∈ [0, 1] is uniformly positive in the sense that there exists δ > 0 such that u0(x) ≥ 0
for almost all x ∈ R, then we can prove that the solution u(t, x) to (1.2.6)–(1.2.7) converges to 1 uniformly
as t→ +∞.

1.2.3 Sharp discontinuous traveling waves in a hyperbolic Keller–Segel equation
In [P12], we focused on the qualitative properties of the time-dependent solutions to (1.2.6) and (1.2.7), as
well as on the existence of particular traveling waves for this model. When u0(x) is compactly supported, it
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is possible to show that the solution integrated along the characteristics u(t, x) is also compactly supported
for all t > 0. More precisely, the position of the interfaces between {u(t, ·) > 0} and {u(t, ·) = 0} are given
by particular characteristic curves.

Suppose for simplicity that u0(x) is front-like, i.e u0(x) > 0 for all x < 0 and u0(x) = 0 for all x ≥ 0.
Then the interface between {u(t, ·) > 0} and {u(t, ·) = 0} is reduced to a single point which position is given
by the characteristic curve t 7→ h(t, 0; 0) called the separatrix. When u0 does not vanish too fast near the
boundary of its support (namely, u0 is controlled from below by a polynomial), then it is possible to give
precise asymptotics on the behavior of the level sets in the vicinity of u = 0. We show that the level set
ξ(t, β), defined by sup{ξ : u(t, ξ) = β}, satisfies

h∗(t)−
(
β

γ

) 1
α

e−
η

2α t ≤ ξ(t, β) ≤ h∗(t),

when β ≤ 1
1+χ̂+αχ , where h∗(t) := h(t, 0; 0) is the separatrix, α, γ are such that u0(x) ≥ γ|x|α for all x < 0

sufficiently small, and η := 1− 1+χ̂+αχ
β . In other words, even if u0 is continuous (and in this case so is u(t, ·)

for all t > 0), a jump discontinuity is forming at the interface in infinite time. A comparison between the
behavior of the solutions starting from two different initial conditions is presented in Figure 1.2.3.

-20 -15 -10 -5 0 5
0

0.2
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Figure 1.2.3: Comparison of the solutions of equation (1.2.1)–(1.2.2) for two different initial condition. We
only plot u(t, x). The solutions look like they approach the same asymptotic shape, which has a steep
transision between the level u ≈ 0.73 and u = 0.

This suggests that the spatial behavior of the solution to (1.2.6)–(1.2.7) might be described by sharp
discontinuous traveling wave profiles, i.e. particular entire solutions integrated along the characteristics
satisfying

u(t, x) = U(x− ct) for all x ∈ R and t ∈ R,
for a speed c ∈ R and a profile U ∈ L∞(R) such that U(x) ≡ 0 for all x > 0. We show the existence of
such a profile for a parameter range χ̂ ∈ (0, χ̄) for some χ̄ > 1. It is obtained as a solution to the following
ordinary differential equation

−cU ′(x)− (U(x)P ′(x))′ = U(x)
(
1− U(x)

)
for x < 0,

where P = ρ?U . Moreover, the constructed profile is continuous and C1 except at the singularity, decreasing
and we have an estimate of the size of the jump:

U(0−)− U(0+) = 2
2 + χ̂

,

if the jump is located at 0 (i.e. U(x) > 0 for x < 0, and U(x) = 0 for x > 0). Because of the estimate on
the jump size, we can obtain bounds on the speeds for which a profile exists:

c ∈
(

σχ̂

2 + χ̂
,
σχ̂

2

)
.
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Finally, we can show that the discontinuous traveling waves are the only sharp traveling waves (i.e. whose
profile is equal to zero on the positive half-line) for our system of equations (1.2.6)–(1.2.7). More precisely
we show that continuous traveling wave profiles U are necessarily smooth and satisfy

−χ(ρx ? U)(x) < c for all x ∈ R.

But if U is sharp then the speed of the traveling wave is precisely given by c = −χ(ρ ? U)(0) = ∂th(t, 0; 0).
Thus U cannot be sharp and continuous.

1.3 Long-time dynamics in epidemic models

In this section, I present a collaboration with Jean-Baptiste Burie, Arnaud Ducrot, and Quentin Richard [P6],
in which we describe the stationary solutions of an epidemic model caused by a spore-producing pathogen.
More precisely we consider a situation in which the population of pathogens is structured by a continuous
variable and subject to mutations; the pathogen can potentially infect two different hosts with different
fitnesses. We describe precisely the shape of the stationary solutions for this system when the mutation
kernel is concentrated and prove the uniqueness by a topological degree method. In a more recent preprint
in collaboration with Jean-Baptiste Burie and Arnaud Ducrot [P18], we focus on the mutation-less model
for a single host and describe the asymptotic behavior of the solutions in a space of measures. We interpret
our findings in the light of the competitive exclusion principle. This study can be considered as the first
step towards a refined description of the transient and asymptotic behavior of the time-dependent problem
in the presence of a sharply concentrated mutation kernel.

1.3.1 Concentration estimates in a multi-host epidemic model structured by trait
In our work [P6], we focus on the stationary solutions for a multi-host epidemiological model structured by
continuous trait, which represents the infection of plants by a fungal disease. We consider two types of host
plants, which can be infected by a pathogen whose characteristics depend on a phenotypic trait x ∈ RN .
We consider that hosts are represented by a density of plant tissue denoted S1(t) and S2(t) respectively. In
the absence of the pathogen, there is a continuous influx of hosts at rate ξkΛ (k = 1, 2) because the plant
constantly renews its tissue, and the cells die at rate θ. The density of tissue of the host k which is infected
by a pathogen of trait x ∈ RN at time t > 0 is denoted Ik(t, x). The pathogen we consider has to produce
spores in order to infect new hosts, and the density of spores is denoted A(t, x). The infectivity of a spore
depends on its phenotypic value and on the host, we denote it βk(x); the additional mortality due to infection
is denoted dk(x), and the rate of spore production is denoted rk(x). Spores become inactive at rate δ > 0.
Finally, we take into account mutations occurring during reproduction with a kernel mε(x) := 1

εN
m
(
x
ε

)
for

m ∈ L1(RN ) and a parameter ε > 0. The equations for our model are as follows.

dSk
dt = ξkΛ− θSk(t)− Sk(t)

∫
RN

βk(y)Ak(t, y)dy, k = 1, 2,

∂

∂t
Ik(t, x) = β(x)S(t)A(t, x)−

(
θ + dk(x)

)
Ik(t, x), k = 1, 2,

∂

∂t
A(t, x) = −δA(t, x) +

∫
RN

mε(x− y)
[
r1(y)I1(t, y) + r2(y)I(t, y)

]
dy.

(1.3.1)

This model has been proposed in [263] to study the impact of resistant plants on the evolutionary adaptation
of a fungal pathogen, and the stationary solutions for the single-host model have been described with precision
in [145]. The asymptotic and transient behavior of this single-host model are studied in [85]. A simulation
of the stationary solution of this model is presented in Figure 1.3.1.

Here we focus on the stationary solutions to (1.3.1), which we rewrite as the following equation on A
only:

Aε = T ε(Aε) (1.3.2)

where Aε = Aε(x) ∈ L1
+(RN ) is the stationary density of spores, and the nonlinear operator T ε(ϕ) is given

by

T ε(ϕ) := T ε1 (ϕ) + T ε2 (ϕ) =: Lε1(ϕ)
1 + θ−1

∫
RN β1(z)ϕ(z)dz + Lε2(ϕ)

1 + θ−1
∫
RN β2(z)ϕ(z)dz ,
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Figure 1.3.1: Stationary solution of system (1.3.1). The pathogen survives in both hosts at different fitness
maxima.

wherein Lεk is the linear operator given by

Lεk(ϕ) = Λξk
θ
mε ?

(
Ψkϕ

)
, Ψk(x) := βk(x)rk(x)

(δθ + dk(x))

and ? stands for the standard convolution. Under some additional assumptions on the coefficients, we first
investigate the existence of a positive stationary solution and show that, when the spectral radius rσ(Lε) ≤ 1,
the extinct stationary state A ≡ 0 is the only solution to (1.3.2), where Lε := Lε1 + Lε2. When rσ(Lε) > 1,
we construct a positive stationary solution by using the uniform persistence theory of Magal and Zhao [276].

Next, we can be more precise about the number and shape of the solutions to (1.3.2) when the spectral
gap of the operators Lεk (k = 1, 2) is bounded below by a polynomial:

lim inf
ε→0

λε,1k − λ
ε,2
k

εn
> 0, (1.3.3)

for some n ∈ N, where λε,1k (respectively, λε,2k is the largest (respectively, second largest) eigenvalue of the
operator Lεk. It is a natural assumption as it can be shown to hold for operators of the type of Lεk when
the mutation kernel decreases sufficiently fast when ‖x‖ → +∞ and function Ψk is sufficiently regular, has
a finite number of global maxima and a negative definite Hessian matrix at those maxima (among other
assumptions on m and Ψk, see [145, Proposition 5.1] for a precise statement).

Another crucial assumption in our analysis is that the supports of β1 and β2 are compact and separated
by a positive distance.

When our assumptions hold, we can show that any solution to (1.3.2) actually looks like the sum of two
stationary solutions for the uncoupled problem,

T ε1 (Aε1) = Aε1, T ε2 (Aε2) = Aε2,
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in the sense that
‖Aε −Aε1 +Aε2‖L1(RN ) = o(ε∞).

In other words the distance between a solution Aε to (1.3.2) and Aε1 +Aε2 in the space L1(Rn) decreases to 0
faster than any polynomial in ε when ε→ 0. In particular, when both Ψ1 and Ψ2 have a unique maximum
xk (k = 1, 2), the limit as ε→ 0 is explicit:

lim
ε→0

Aε(x)dx = θ

β(x1) (R0,1 − 1)δx1(dx) + θ

β(x2) (R0,2 − 1)δx2(dx),

where the limit holds in the sense of the weak convergence of measures, δy(dx) is the Dirac mass concentrated
at y ∈ RN and the numbers R0,k := ξk

θ
‖Ψk‖L∞(RN ) are supposed to be strictly greater than 1 for k = 1, 2.

Finally, under the above assumptions and one additional assumption (which is automatically satisfied
when both R0,1 > 1 and R0,2 > 1) we prove the uniqueness of the positive solution to (1.3.2) for ε > 0
sufficiently small. The proof is based on a computation of the Leray-Schauder degree in the positive cone of
the appropriate space of continuous functions; indeed we can prove that the degree in the positive cone is
equal to one, and since any equilibrium is stable (for ε > 0 sufficiently small), the degree in a neighborhood
of any stationary solution is also equal to one. Since the degree in the positive cone is equal to the sum of
the degrees in the neighborhood of all stationary solutions, the uniqueness of the stationary solution follows.

1.3.2 On the competitive exclusion principle for continuously distributed
populations

This section concerns a joint work with Jean-Baptiste Burie and Arnaud Ducrot [P18], which is currently
submitted for publication.

We investigate a single-host epidemiological model which can be considered as a limit of the single-host
model in (1.3.1) under vanishing mutation and fast spore dynamics,

dS
dt = Λ− θS(t)− S(t)

∫
RN

α(y)γ(y)I(t, y)dy,

d
dtI(t, x) = γ(y)

(
α(x)S(t)− 1

)
I(t, x).

(1.3.4)

Notice that we changed the names of some parameters of the model (α(x) and γ(x)), in order to express
our results more easily. Our objective was to provide a description of the long-time dynamics of (1.3.4) as
a first step towards understanding the behavior of the time-dependent solutions to (1.3.1).

It can be easily seen that the natural candidates for the stationary solutions to (1.3.4) all satisfy α(x) =
1
S∞ , where S∞ > 0 is a real number. Therefore if α is regular (for instance, α(x) = 1− |x|2) the stationary
solutions to (1.3.4) cannot be functions (not even measurable functions) but should be looked for in some
appropriate space of measure. Indeed it has been proved in many different contexts related to (1.3.4) (see,
for instance, [139]) that, when α has a single maximum, the natural candidate for a stationary solution to
(1.3.4) is precisely the Dirac mass located at the point that maximizes α.

However, since we aim at characterizing the transient behavior of solutions to (1.3.1) under vanishing
mutations among other things, it is not sufficient to restrict the problem to functions α that possess a single
maximum. This is particularly true as we want to consider compactly supported initial conditions in (1.3.4):
there is no particular reason why the support of I0 would include the supremum of α. Keeping this situation
in mind, we should include in our analysis cases when α has a finite number of maxima which may lie in the
boundary of the support of I0, or even a continuum of maxima. The situation of a fitness function having a
maximizing set of positive measure is presented in Figure 1.3.2.

Therefore in our minimal setting, we assume that γ(x) > 0 is a bounded continuous function, I0 is a
nonnegative Radon measure and α(x) is a bounded continuous function. To avoid losing mass at infinity we
assume moreover that the superlevel sets,

Lε(I0) := {y ∈ supp I0 : α(y) ≥ α∗ − ε} , with α∗ := sup
z∈supp I0

α(z),

are bounded when ε > 0 is sufficiently small. Letting

R0(I0) := Λ
θ
α∗,
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(a) (b) (c)

Figure 1.3.2: Numerical solution of the system (1.3.4) when the fitness function attains its maxima on a set
of positive measures. (a) Fitness function. (b) Initial condition. (c) Solution at t = 50.

we first remark that the solution (S(t), I(t, dx)) to (1.3.4) converges towards the disease-free equilibrium
(Λ
θ , 0) when R0(I0) < 1. Therefore in what follows we also assume that R0(I0) > 1.
When the initial mass on the maximizing set of α is positive, namely,

I0
(
{α(y) = α∗}

)
=
∫
α(y)=α∗

I0(dy) > 0,

we can completely characterize the long-time behavior of the equation. More precisely, we show that

S(t) −−−−→
t→+∞

1
α∗

and I(t,dx) −−−−→
t→+∞

1α(x)=α∗e
τγ(x)I0(dx),

where the convergence of I(t, dx) holds in total variation and the constant τ can be characterized as the
solution of an implicit equation. When I0({α(y) = α∗}) = 0, the situation is more intricate. In all generality
we can prove that S(t) converges to 1

α∗ and that the population of pathogen survives (i.e. lim inf
∫
I(t, dx) >

0) and becomes concentrated on

L0(I0) = {y ∈ supp I0 : α(y) = α∗},

in the sense of the Kantorovitch-Rubinstein metric. We can achieve a slightly more precise description if we
assume that the initial measure puts some mass around the maximizing set of γ(x). This assumption can
be expressed as ∫

γ(x)∈[γ,γ∗]
I0(y,dx) ≥ m > 0 for A− almost every y ∈ (α∗ − δ, α∗), (1.3.5)

where γ∗ := supα(y)=α∗ γ(y), γ < γ∗, and I0(y,dx), A(dy) is a disintegration of I0(dy) with respect to α:∫
RN

f(x)I0(dx) =
∫
R

∫
α−1(y)

f(x)I0(y,dx)A(dy), for all f ∈ BC(RN ),

with
∫
RN I0(y,dx) = 1 for almost every y and supp I0(y,dx) ⊂ α−1(y). Under the assumption (1.3.5) we

can prove that the mass I(t,dx) eventually concentrates on the set α−1(α∗)∩γ−1(γ∗), and we can determine
the asymptotic mass of I:

I(t,dx) −−−−→
t→+∞

θ

α∗γ∗
(
R0(I0)− 1

)
.

Finally, we focus on the case when α has a finite number of regular maxima x1, . . . , xp, i.e. α is C2

with a negative definite Hessian matrix around each maximum. If moreover I0(x) behaves like a polynomial
I0 � |x− xi|κi around each maximum xi for i = 1, . . . , p, then we can determine the asymptotic behavior of
I(t,dx) near each maximum as∫

|x−xi|≤ε
I(t,dx) � tγ(xi)ρ−

N+κi
2 , i = 1, . . . , p, where ρ := min

i=1,...,p

N + κi
2γ(xi)

.
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Therefore I(t, dx) does not necessarily concentrate on α−1(α∗)∩ γ−1(γ∗) as could have been suspected, but
on the set

{xi, i ∈ J} where J :=
{

1 ≤ i ≤ p : N + κi
2γ(xi)

= ρ

}
.

In particular the asymptotic behavior of I(t, dx) does not only depend on the support of I0 but also on the
precise behavior of I0(dx) close to the maximum of α. To the extent of our knowledge, this kind of behavior
has never been observed before in pure competition models.

1.4 Parameter identification in epidemiological models and applications to the
COVID-19 epidemic

The works described in this section are collaborations with several co-authors and correspond to several
explorations around the links between models and data in the context of the COVID-19 pandemic. The
common ancestor of these models is the SIUR model introduced by Liu, Magal, Seydi, and Webb in February
2020 in the context of the COVID-19 outbreak in Wuhan [261]. This model can be written as follows:

S′(t) = −τ(t)S(t)[I(t) + U(t)],
I ′(t) = τ(t)S(t)[I(t) + U(t)]− νI(t),
R′(t) = νfI(t)− ηR(t),
U ′(t) = ν(1− f)I(t)− ηU(t).

(1.4.1)

Here t ≥ t0 is time in days, t0 is the beginning date of the model of the epidemic, S(t) is the number of
individuals susceptible to infection at time t, I(t) is the number of asymptomatic infectious individuals,
R(t) is the number of reported symptomatic infectious individuals and U(t) is the number of unreported
symptomatic infectious individuals. The transmission rate at time t is τ(t), the average infectious period for
an asymptomatic individual I is 1/ν days, and the average infectious period for a symptomatic individual
R or U is 1/η days. We assume that reported symptomatic infectious individuals R(t) are reported and
isolated immediately and cause no further infections. The asymptomatic individuals I(t) can also be viewed
as having a low-level symptomatic state. All infections are acquired from either I(t) or U(t) individuals.
The fraction f of asymptomatic infectious become reported symptomatic infectious, and the fraction 1− f
become unreported symptomatic infectious. The rate asymptomatic infectious become reported symptomatic
is ν1 = f ν, the rate asymptomatic infectious become unreported symptomatic is ν2 = (1− f) ν.

S I

R

U

Removed
τS[I + U ]

ν1I

ν2I

ηR

ηU

Asymptomatic Symptomatic

Figure 1.4.1: Flow chart for the SIUR model

A method to identify the initial state and some of the parameters in the equation (1.4.1) from cumulative
reported case data and the knowledge of some of the parameters was developed by Liu, Magal, Seydi and
Webb [261].

In what follow I summarize my contributions to the mathematical modeling of the COVID-19 epidemic.
There are 6 papers in total; the first [P16] presents a bridge between stochastic models and deterministic
models to issue a prediction of the last day of the epidemic; two later works [P10] and [P14] present original
models to take into account the age structure of the population, and the variability of the daily number of
tests, respectively; the last three [P7, P13, P15] present – among other things – an innovative method to
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reconstruct the time-dependent transmission rate from the cumulative reported cases data in the context
of a single [P7] or multiple [P13] waves for the SIR model, the SIUR model (1.4.1), and the SEIUR model
(with an additional exposed state) [P15].

1.4.1 Real-time prediction of the end of an epidemic wave: COVID-19 in China as
a case-study

In a joint work with Zhihua Liu, Pierre Magal, and Robin Thompson [P16], which was done during the
first COVID-lockdown in France, we developed a mathematical model to estimate the total duration of
the COVID-19 outbreak in Wuhan, assuming that the strong lockdown measures imposed by the Chinese
government were perfectly effective and maintained until the recovery of the last infected. We first used
the method described in [261] to identify the unknown parameters in (1.4.1) under the assumption that
the parameters S0, ν, f , and η were known (the values were taken from the literature). More precisely, we
assumed that the transmission rate is given as

τ(t) =
{
τ0 if t ≤ N,
τ0 exp(−µ(t−N)) if t > N.

We fitted the initial date of the epidemic t0, as well as I0, U0, R0, and τ0 to the exponential phase of the
epidemic, and then chose the values of N and µ to obtain the best fit to the data at later times. These
parameter values were used to estimate the state of the epidemic at any date t.

Next, we introduced a date t1 at which strong lockdown measures are taken by the authorities. We assume
that the lockdown is perfect, i.e. we assume that the flux of newly infected individuals can be effectively
neglected. Therefore the period of stay of each infected individual in state I follows an exponential law of
rate ν and the length of stay in the state U follows an exponential law of rate η. In particular, the total
number of individuals in the states I or U is analytically tractable and it becomes possible to derive an
analytic formula for the last date of the epidemic, i.e. the date at which the sum of the two quantities I+U
reach the number 0,

P(I(s) + U(s) = 0 for s ≥ t | I(t1) = I1, U(t1) = U1)

=
(

1− e−η(t−t1)
)U1
×
(

1− e−ν(t−t1) − (1− f)ν(t− t1)e−η(t−t1)
)I1

, (1.4.2)

where I1 = I(t1) and U1 = U(t1) are estimated by the ordinary differential model (1.4.1). This formula
allows us to give three estimates of the last date of the epidemic, given a risk level which we chose at 10%, 5%
and 1%, respectively. We also tested different value of the parameter f . We estimated that the extinction
date between May 19, 2020 (for f = 0.8 and a risk level of 10%) and June 24, 2020 (for f = 0.2 and a risk
level of 1%), when t1 is set on March 15, 2020. We also simulated an individual-based model (IBM) by the
Gillespie direct method [188] to confirm our analytic prediction.

1.4.2 Unreported Cases for Age Dependent COVID-19 Outbreak in Japan

In a joint work with Pierre Magal and Ousmane Seydi [P10], we were interested in the influence of the
age structure on the epidemiological dynamics and developed a method to identify the parameters of an
age-dependent epidemic model with the age-structured data from Japan. We used a model with 10 age
classes (0-9 years old, 10-19, etc.) where each age class interacts with other age classes via a contact matrix
φ: 

S′1(t) = −τ1(t)S1(t)
[
φ1,1

(I1(t) + U1(t))
N1

+ . . .+ φ1,10
(I10(t) + U10(t))

N10

]
,

...

S′10(t) = −τ10(t)S10(t)
[
φ10,1

(I1(t) + U1(t))
N1

+ . . .+ φ10,10
(I10(t) + U10(t))

N10

]
,

(1.4.3)
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Figure 1.4.2: Age-structured data from Japan (black dots) and the corresponding solution of the mathemat-
ical model (colored curves).

and similarly, for i = 1, . . . , 10,
I ′i(t) = −τi(t)Si(t)

[
φi,1

(I1(t) + U1(t))
N1

+ . . .+ φi,10
(I10(t) + U10(t))

N10

]
,

R′i(t) = νifiIi(t)− ηRi(t),

U ′i(t) = νi(1− fi)Ii(t)− ηUi(t),

(1.4.4)

whereNi is the number of individuals in each age class. We adapted data from an existing study (POLYMOD,
Mossong et al [292], extrapolated to Japan in Prem et al. [325]) to construct a matrix φ adapted to our
framework. We managed to identify the initial state of (1.4.3)–(1.4.4) by a similar method as in [261, P16].
To obtain the transmission rates τ1, . . ., τ10, we minimized the error between the left-hand side and the
right-hand side of the I equation in (1.4.4) during the exponential growth phase of the epidemic. It does
not seem possible, however, to estimate directly the coefficients of φ from the data, since our procedure can
be applied for any φ. To match the behavior of the epidemic in later times, we used the following form for
the transmission rate τi(t):

τi(t) = τ0
i exp(−µi(t−Di)+),

where τ0
i is the rate identified in the exponential growth phase, Di is the first day at which the individuals

begin to change their behavior in response to the epidemic and µi is a shape parameter. Importantly, µi
and Di depend on the age class. A plot of the result of the simulation compared with the original data is
presented in Figure 1.4.2. We managed to find parameters so that the model stays in good agreement with
the age-structured data between the beginning of March 2020 and the end of April 2020 (the date at which
we did the investigation).

1.4.3 Clarifying predictions for COVID-19 from testing data: the example of New
York State

Last, in collaboration with Pierre Magal [P14], we investigated the inclusion of testing data in epidemiological
models. The main idea behind this study is to propose a mechanism to compensate for the bias induced
by the daily number of tests in deterministic models. Such a correction is naturally present in Bayesian
mechanistic models by the necessity of an observation model, but previous deterministic models did not
necessarily acknowledge this bias. It is all the more important to take into account the daily number of
tests that, at the beginning of the epidemic, shortages in chemical components have limited the realization
of PCR tests and might therefore have induced an underreporting of COVID-19 cases.

Here we use a SEIUR model (an “exposed” class was added compared to (1.4.1)) with an additional
compartment to model the COVID-19 epidemic in New York. The model consists of the following ordinary
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differential equation 

S′(t) = −τS(t)[I(t) + U(t) +D(t)],

E′(t) = τS(t)[I(t) + U(t) +D(t)]− αE(t),

I ′(t) = αE(t)− νI(t),

U ′(t) = ν (1− f) I(t) + n(t) (1− σ) g D(t)− ηU(t),

D′(t) = ν f I(t)− n(t) g D(t)− ηD(t),

R′(t) = n(t)σ gD(t)− ηR(t).

(1.4.5)

A flow chart of the model is presented in Figure 1.4.3. The time t1 corresponds to the time where the tests
started to be used constantly. Therefore the epidemic started before t1. Here t ≥ t1 is the time in days.
S(t) is the number of individuals susceptible to infection. E(t) is the number of exposed individuals (i.e.
who are incubating the disease but not infectious). I(t) is the number of individuals incubating the disease,
but already infectious. U(t) is the number of undetected infectious individuals (i.e. who are expressing mild
or no symptoms), and the infectious that have been tested with a false negative result, are therefore not
candidates for testing. D(t) is the number of individuals who express severe symptoms and are candidates
for testing (“detectables”). R(t) is the number of individuals who have been tested positive for the disease.

Susceptible (S)

Exposed (E)

Asymptomatic infectious (I)

Undetected Infectious (U) Detectable Infectious (D)

Reported (R)Removed

τS(I +U +D)

αE

ν(1 − f)I νfI

ηU
ηD

n(t)σgD

n(t)(1 − σ)gD

ηR

Figure 1.4.3: Flow chart for the model (1.4.5) with partial reporting and variable testing.

The length of the exposed period is 1/α days. After the exposure period, individuals are becoming
asymptomatic infectious I(t). The average length of the asymptomatic infectious period is 1/ν days. After
this period, individuals are becoming either mildly symptomatic individuals U(t) or individuals with severe
symptoms D(t). The average length of this infectious period is 1/η days. Some of the U -individuals may
show no symptoms at all.

In our study, we provide a new method for the identification of parameters for our model (1.4.5) based
on the identification of a time frame during which the daily number of tests increases linearly. The method
was applied to the data corresponding to the State of New York, and provides a good match between the
cumulative reported case data and the corresponding curve produced by the model. As an application, we
computed the outcome of the epidemic for different scenarios of testing, based on the parameters found from
the data. We found that increasing the daily number of tests can have a surprising non-monotone effect
on the cumulative reported cases data. When multiplying the daily number of tests by positive constants,
we first observe that the cumulative number of cases increases, which might seem natural since it increases
our ability to recognize infected individuals. However, there we observe an inversion of the tendency for a
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multiplicative factor between 5 and 10 in the case of New York, with the number of reported cases being
lower with 10 times more tests than in the case of 5 times more. Therefore there must be a threshold above
which the testing policy becomes to significantly impact the epidemiological dynamics, to the point that it
actually reduces the number of infections.

1.4.4 SI epidemic model applied to COVID-19 data in mainland China

In the previous works on parameter identification for epidemiological models, the focus was on the modeling
of different features to achieve a better description of the COVID-19 epidemic. A recurrent approach to take
into account the awareness of the population of the virus, which yields a non-constant transmission rate, is
to impose a predefined parameterized shape for the transmission coefficient, and to identify the parameters
via a nonlinear least-square minimization method.

In the following works in collaboration with Jacques Demongeot and Pierre Magal [P7, P13, P15], we
looked for a more intrinsic relation between the reported case data and the time-dependent transmission
coefficient of the models used to reconstruct the epidemic.

In [P7], we focused on the SIR model with time-dependent transmission rate
S′(t) = −τ(t)S(t)I(t)
I ′(t) = τ(t)S(t)I(t)− νI(t),
S(t0) = S0, I(t0) = I0,

(1.4.6)

when the observable data (cumulative reported cases) has the form

CR′(t) = νfI(t)

for some f ∈ (0, 1) which characterized the probability of observing an infection. Our first result is the
identifiability of τ(t) and the initial state I0 with respect to CR: given any increasing twice differentiable
function ĈR and the parameters S0, ν and f , there is at most one set of parameters (I0, τ(t)) so that the
solution CR to (1.4.4) satisfies CR(t) = ĈR(t) for all t ≥ t0, and these parameters are given by


I0 := ĈR(t)

νf

τ(t) :=
νf
(

ĈR
′′
(t)/ĈR

′
(t) + ν

)
νf(I0 + S0)− ĈR

′
(t)− ν(ĈR(t)− ĈR(t0))

.

(1.4.7)

Moreover, if the denominator in (1.4.7) is positive for all t ≥ t0, then we have in fact ĈR(t) = CR(t) for all
t ≥ t0. This means that τ(t) and I0 are indeed identifiable, provided the data is sufficiently regular.

Real data, on the other hand, is usually very irregular, due to many factors which include the inherent
stochasticity of the contamination process and the multiple human errors or delays in the reporting. There-
fore it is another challenge to find a proper way to use our formula (1.4.7) in the context of real data. In this
work we focused on a single epidemic wave and found that the solutions to the Bernoulli-Verhulst equation,

CR′(t) = χCR(t)
(

1−
(

CR(t)
CR∞

)θ)
,

where χ, CR0 = CR(t0), CR∞ and θ are five parameters, can be matched closely to cumulative reported
cases data. The Bernoulli-Verhulst equation has explicit solutions,

CR(t) = eχ(t−t0)CR0[
1 + CRθ

0/CRθ
∞(eχθ(t−t0) − 1)

]1/θ , (1.4.8)
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Figure 1.4.4: (a) Comparison between reported cases data from Mainland China (black dots) and the best
fit Bernoulli-Verhulst curve (orange curve). (b) The corresponding transmission rate.

and it makes it possible to write the explicit formula for τ(t) and I0 without derivatives:

I0 = χ

νf
CR0

(
1−

(
CR0
CR∞

)θ)
, (1.4.9)

τ(t) =
ν f

(
χ2

(
1− (1 + θ)

(
CR(t)
CR∞

)θ)
+ ν

)

ν f (I0 + S0) + νCR0 − CR(t)
(
χ2

(
1−

(
CR(t)
CR∞

)θ)
+ ν

) , (1.4.10)

where CR(t) is given by the formula (1.4.8).
This given us a method for reconstructing the instantaneous transmission rate from real data. First, we

fit a solution to the Bernoulli-Verhulst equation to the cumulative reported cases data by a standard curve-
fitting method, i.e. we find the parameters χ, CR0 = CR(t0), CR∞ and θ that best match the data. Then
we use formula (1.4.9)–(1.4.10) to recover the parameters of the underlying epidemic model. An example
of Bernoulli-Verhulst curve matched with real data and the corresponding transmission rate are presented
in Figure 1.4.4. This method also provides additional information on non-identifiable parameters, because
parameters which induce a negative transmission rate cannot be realistic.

Alternatively, we developed a discrete-time algorithm based on the monotony of the cumulative cases for
the solution to (1.4.6) to compute τ(t) on a daily basis, based on the reported data.

We tested this method on the data of the first wave of COVID-19 in mainland China and compared
it with several other regularization of the data. In the end, because of the lack of regularity of the data,
weekly average and Gaussian filter applied on the data yield an unrealistic transmission rate, strongly
impacted by the noise and which can become negative. The transmission rate obtained by Bernoulli-Verhulst
regularization, however, yields a monotonic and smooth transmission rate.

1.4.5 A robust phenomenological approach to investigate COVID-19 data for France
In [P13], we generalized the Bernoulli-Verhulst phenomenological models to multi-wave epidemics. Using
the data for France, we found that the Bernoulli-Verhulst phenomenological model works for the successive
waves independently, but the transition period between two epidemic curves is somewhat difficult to handle.
This is linked to the fact that our phenomenological model works well to match the data corresponding to
an epidemic with population awareness of the disease followed possibly by a lockdown; however, the release
of a lockdown is accompanied by a sharp transition in the epidemiological dynamics, and the new infections
look like a completely random process for a short period of time. Therefore, to match the dynamics of the
cases after a lockdown, we use an affine function (straight line) rather than a Bernoulli-Verhulst curve.

Therefore our phenomenological model is defined piecewise on different intervals - a Bernoulli-Verhulst
phenomenological model during an epidemic wave, a straight line between epidemic waves. To regularize the
model and avoid differentiability issues at the transition, we apply a Gaussian filter with a small variance
to get a smooth curve. Then we apply the formula (1.4.7) to recover the initial state and the transmission
coefficient.
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(a) (b)

Figure 1.4.5: (a) Best fit of the phenomenological model (orange curve) and the reported cases data (black
dots) for the French epidemic. The background color indicates the type of phenomenological used for the
curve fitting. (b) The corresponding effective reproduction number.

In particular, the transmission rate is linked to the instantaneous basic reproduction number by the
formula

R0(t) = τ(t)S(t)
ν

.

Therefore by solving the S-equation in (1.4.6), we can compute the basic reproduction number for our
system. The result is a smooth, easily tractable basic reproduction number. In Figure 1.4.5 we plot the
comparison between the phenomenological model and the basic reproductive number corresponding to the
phenomenological model.

Thanks to our method, we compared the data to a theoretical situation in which the social distancing
and mitigation measures would have been better respected during the transition between the first and second
wave in France, reducing the rate of increase of the affine phenomenological model in the transition between
the waves (without changing the τ(t) during the second wave). This impacts mostly the starting point for
the second wave. We assumed that the infections were reduced by a factor 10 during the transition, and
observed that the magnitude of this reduction factor is kept throughout the second wave (reduction by a
factor 10). Thus an increased vigilance between the waves would have resulted in a much less severe second
wave.

1.4.6 What can we learn from COVID-19 data by using epidemic models with
unidentified infectious cases?

In the last collaboration with Pierre Magal and Jacques Demongeot [P15], we generalized the method to
the SEIUR model (with an additional “exposed” compartment) and applied it to the data from 8 different
geographic areas: California, France, India, Israel, Japan, Peru, Spain, and United Kingdom. More precisely
we used the model 

S′(t) = −τ(t)
[
I(t) + κU(t)

]
S(t),

E′(t) = τ(t)
[
I(t) + κU(t)

]
S(t)− αE(t),

I ′(t) = αE(t)− ν I(t),

U ′(t) = ν (1− f) I(t)− η U(t),

R′(t) = ν f I(t)− η R(t),

(1.4.11)

where E is the added exposed case and 1/α is the duration of the exposed state. A flow chart of the model is
presented in Figure 1.4.6. Among the difficulties of the paper, the addition of the exposed case complicates
the algebra when computing the link between CR(t) and τ(t) in (1.4.11). The formula can be written as

τ(t) = 1
I(t) + κU(t) ×

CE′′(t) + αCE′(t)
E0 + S0 − CE′(t)− αCE(t)

, (1.4.12)
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Figure 1.4.6: Flow chart for the model (1.4.11)

where CE(t) =
∫ t
t0
E(s)ds. Note that, because of the relations

I(t) = CR′(t)
ν f

, (1.4.13)

CE(t) = 1
αν f

[
CR′(t)− ν f I0 + ν (CR(t)− CR0)

]
, (1.4.14)

U(t) = e−η(t−t0)U0 +
∫ t

t0

e−η(t−s) (1− f)
f

CR′(s)ds, (1.4.15)

the transmission rate is still identifiable from the data CR(t). The other identifiable parameters are I0 = I(t0)
(from (1.4.13)) and E0 = E(t0) (from (1.4.14)). Unfortunately (1.4.15) cannot be used to identify U0, so
this parameter has to be assumed.

Finally, as in [P13], our method allows us to compute the so-called instantaneous reproduction number,

Re(t) = τ(t)S(t)
ην

(η + ν(1− f)), (1.4.16)

from our reconstruction of τ(t). For the 8 geographic area considered, we were thus able to provide a real
epidemic model with exposed period which matches the data from the beginning to the end of the period
considered (which contains several epidemic waves), and provide an alternative method to compute the in-
stantaneous reproduction number. In Figure 1.4.7 we plot the reported cases data and the phenomenological
model in four of the eight countries considered, and in Figure 1.4.8 the corresponding effective reproduction
numbers compared to other related notions.
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Figure 1.4.7: Phenomenological model applied to the data from California, France, India, and Israel.
Top row: Cumulative reported cases data (black dots) and the phenomenological model (blue curve).
Bottom row: Daily reported cases (black dots) and the first derivative of the phenomenological model.
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Figure 1.4.8: Effective reproduction number from the phenomenological model for California, France, India,
and Israel.
Top row: Re(t) (grey curve) compared with R0

e(t) := τ(t)S0
ην (η + ν(1− f)) (green curve).

Bottom row: Re(t) (grey curve) compared with the statistical effective reproduction number described in
Cori et al [116] (green curve).
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Chapter 2

Reaction-diffusion systems as models in
population dynamics

2.1 Existence and qualitative properties of travelling waves for an
epidemiological model with mutations

2.1.1 Introduction
Epidemics of newly emerged pathogen can have catastrophic consequences. Among those who have infected
humans, we can name the black plague, the Spanish flu, or more recently SARS, AIDS, bird flu or Ebola.
Predicting the propagation of such epidemics is a great concern in public health. Evolutionary phenomena
play an important role in the emergence of new epidemics: such epidemics typically start when the pathogen
acquires the ability to reproduce in a new host, and to be transmitted within this new hosts population.
Another phenotype that can often vary rapidly is the virulence of the pathogen, that is how much the parasite
is affecting its host; Field data show that the virulence of newly emerged pathogens changes rapidly, which
moreover seems related to unusual spatial dynamics observed in such populations ([204, 324], see also [256,
206]). It is unfortunately difficult to set up experiments with a controlled environment to study evolutionary
epidemiology phenomena with a spatial structure, we refer to [43, 235] for current developments in this
direction. Developing the theoretical approach for this type of problems is thus especially interesting. Notice
finally that many current problems in evolutionary biology and ecology combine evolutionary phenomena
and spatial dynamics: the effect of global changes on populations [317, 132], biological invasions [355, 234],
cancers or infections [185, 176].

In the framework of evolutionary ecology, the virulence of a pathogen can be seen as a life-history trait
of the pathogen [336, 174]. To explain and predict the evolution of virulence in a population of pathogens,
many of the recent theories introduce a trade-off hypothesis, namely a link between the parasite’s virulence
and its ability to transmit from one host to another, see e.g. [10]. The basic idea behind this hypothesis is
that the more a pathogen reproduces (in order to transmit some descendants to other hosts), the more it
”exhausts” its host. A high virulence can indeed even lead to the premature death of the host, which the
parasite within this host rarely survives. In other words, by increasing its transmission rate, a pathogen
reduces its own life expectancy. There exists then an optimal virulence trade-off, that may depend on the
ecological environment. An environment that changes in time (e.g. if the number of susceptible hosts is
heterogeneous in time and/or space) can then lead to a Darwinian evolution of the pathogen population.
For instance, in [56], an experiment shows how the composition of a viral population (composed of the phage
λ and its virulent mutant λcl857, which differs from λ by a single locus mutation only) evolves in the early
stages of the infection of an E. Coli culture.

The Fisher-KPP equation is a classical model for epidemics, and more generally for biological invasions,
when no evolutionary phenomenon is considered. It describes the time evolution of the density n = n(t, x)
of a population, where t > 0 is the time variable, and x ∈ R is a space variable. The model writes as follows:

∂tn(t, x)− σ∆n(t, x) = rn(t, x)
(

1− n(t, x)
K

)
. (2.1.1)

It this model, the term σ∆n(t, x) = σ∆xn(t, x) models the random motion of the individuals in space, while
the right part of the equation models the logistic growth of the population (see [381]): when the density
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of the population is low, there is little competition between individuals and the number of offsprings is
then roughly proportional to the number of individuals, with a growth rate r ; when the density of the
population increases, the individuals compete for e.g. food, or in our case for susceptible hosts, and the
growth rate of the population decreases, and becomes negative once the population’s density exceeds the
so-called carrying capacity K. The model (2.1.1) was introduced in [170, 238], and the existence of travelling
waves for this model, that is special solutions that describe the spatial propagation of the population, was
proven in [238]. Since then, travelling waves have had important implications in biology and physics, and
raise many challenging problems. We refer to [406] for an overview of this field of research.

In this study, we want to model an epidemics, but also take into account the possible diversity of the
pathogen population. It has been recently noticed that models based on (2.1.1) can be used to study this
type of problems (see [72, 7, 71]). Following the experiment [56] described above, we will consider two
populations: a wild type population w, and a mutant population m. For each time t > 0, w(t, ·) and m(t, ·)
are the densities of the respective populations over a one dimensional habitat x ∈ R. The two populations
differ by their growth rate in the absence of competition (denoted by r in (2.1.1)) and their carrying capacity
(denoted by K in (2.1.1)). We will assume that the mutant type is more virulent than the wild type, in the
sense that it will have an increased growth rate in the absence of competition (larger r), at the expense of
a reduced carrying capacity (smaller K). We assume that the dispersal rate of the pathogen (denoted by σ
in (2.1.1)) is not affected by the mutations, and is then the same for the two types. Finally, when a parent
gives birth to an offspring, a mutation occurs with a rate µ, and the offspring will then be of a different
type. Up to a rescaling, the model is then: ∂tw(t, x)−∆xw(t, x) = w(t, x) (1− (w(t, x) +m(t, x))) + µ(m(t, x)− w(t, x)),

∂tm(t, x)−∆xm(t, x) = rm(t, x)
(

1−
(
w(t,x)+m(t,x)

K

))
+ µ(w(t, x)−m(t, x)),

(2.1.2)

where t ≥ 0 is the time variable, x ∈ R is a spatial variable, r > 1, K < 1 and µ > 0 are constant
coefficients. In (2.1.2), r > 1 represents the fact that the mutant population reproduces faster than the
wild type population if many susceptible hosts are available, while K < 1 represents the fact that the wild
type tends to out-compete the mutant if many hosts are infected. Our goal is to study the travelling wave
solutions of (2.1.2), that is solutions with the following form :

w(t, x) = w(x− ct), m(t, x) = m(x− ct),

with c ∈ R. (2.1.2) can then be re-written as follows, with x ∈ R: −cw′(x)− w′′(x) = w(x) (1− (w(x) +m(x))) + µ(m(x)− w(x)),

−cm′(x)−m′′(x) = rm(x)
(

1−
(
w(x)+m(x)

K

))
+ µ(w(x)−m(x)).

(2.1.3)

The existence of planar fronts in higher dimension (x ∈ RN ) is actually equivalent to the 1D case (x ∈ R),
our analysis would then also be the first step towards the understanding of propagation phenomena for
(2.1.2) in higher dimension.

There exists a large literature on travelling waves for systems of several interacting species. In some
cases, the systems are monotonic (or can be transformed into a monotonic system). Then, sliding methods
and comparison principles can be used, leading to methods close to the scalar case [383, 385, 338]. The
combination of the inter-specific competition and the mutations prevents the use of this type of methods
here. Other methods that have been used to study systems of interacting populations include phase plane
methods (see e.g. [369, 167]) and singular perturbations (see [181, 180]). More recently, a different approach,
based on a topological degree argument, has been developed for reaction-diffusion equations with non-local
terms [46, 7]. The method we use here to prove the existence of travelling wave for (2.1.3) will indeed be
derived from these methods. Notice finally that we consider here that dispersion, mutations and reproduction
occur on the same time scale. This is an assumption that is important from a biological point of view (and
which is satisfied in the particular λ phage epidemics that guides our study, see [56]). In particular, we
will not use the Hamilton-Jacobi methods that have proven useful to study this kind of phenomena when
different time scales are considered (see [286, 72, 71]).

This mathematical study has been done jointly with a biology work, see [P1]. We refer to this article for
a deeper analysis on the biological aspects of this work, as well as a discussion of the impact of stochasticity
for a related individual-based model (based on simulations and formal arguments).
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We will make the following assumption,

Assumption 2.1.1. We assume that

r ∈ (1,∞), µ ∈
(

0,min
(
r

2 , 1−
1
r
, 1−K,K

))
and K ∈

(
0,min

(
1, r

r − 1

(
1− µ

1− µ

)))
.

This assumption ensures the existence of a unique stationary solution of (2.1.2) of the form (w,m)(t, x) ≡
(w∗,m∗) ∈ (0, 1)× (0,K) (see [P2, Appendix]). It does not seem very restrictive for biological applications,
and we believe the first result of this study (Existence of travelling waves, Theorem 2.1.2) could be obtained
under a weaker assumption, namely:

r ∈ (1,∞), K ∈ (0, 1), µ ∈ (0,K).

Throughout this document we will denote by fw and fm the terms on the left hand side of (2.1.3):

fw(w,m) := w(1− (w +m)) + µ(m− w),

fm(w,m) := rm
(
1−

(
w+m
K

))
+ µ(w −m).

(2.1.4)

The structure of section 2.1 is as follows: in section 2.1.2, we will present the main results of this section
2.1, which are three fold: Theorem 2.1.2 shows the existence of travelling waves for (2.1.3), Theorem 2.1.3
describes the profile of the fronts previously constructed, and Theorem 2.1.4 relates the travelling waves for
(2.1.3) to travelling waves of (2.1.1), when µ and K are small. Sections 2.1.3, 2.1.4 and 2.1.5 are devoted to
the proof of the three theorems stated in section 2.1.2.

2.1.2 Main results
The first result is the existence of travelling waves of minimal speed for the model (2.1.2), and an explicit
formula for this minimal speed. We recall that the minimal speed travelling waves are often the biologically
relevant propagation fronts, for a population initially present in a bounded region only ([74]), and it seems to
be the one that is relevant when small stochastic perturbations are added to the model ([294]). Although we
expect the existence of travelling waves for any speed higher than the minimal speed, we will not investigate
this problem here - we refer to [46, 7] for the construction of such higher speed travelling waves for related
models. Notice also that the convergence of the solutions to the parabolic model (2.1.2) towards travelling
waves, and even the uniqueness of the travelling waves, remain open problems.

Theorem 2.1.2. Let r, K, µ satisfy Assumption 2.1.1. There exists a solution (c, w,m) ∈ R× C∞(R)2 of
(2.1.3), such that

∀x ∈ R, w(x) ∈ (0, 1), m(x) ∈ (0,K),

lim inf
x→−∞

(w(x) +m(x)) > 0, lim
x→∞

(w(x) +m(x)) = 0,

c = c∗,

where

c∗ :=
√

2
(

1 + r − 2µ+
√

(r − 1)2 + 4µ2
)

(2.1.5)

is the minimal speed c > 0 for which such a travelling wave exists.

The difficulty of the proof of Theorem 2.1.2 has several origins:

• The system cannot be modified into a monotone system (see [369, 66]), which prevents the use of
sliding methods to show the existence of traveling waves.

• The competition term has a negative sign, which means that comparison principles often cannot be
used directly.
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As mentioned in the introduction, new methods have been developed recently to show the existence
of travelling wave in models with negative nonlocal terms (see [46, 7]). To prove Theorem 2.1.2, we take
advantage of those recent progress by considering the competition term as a nonlocal term (over a set
composed of only two elements : the wild and the virulent type viruses). The method of [46, 7] are however
based on the Harnack inequality (or related arguments), that are not as simple for systems of equations (see
[87]). We have thus introduced a different localized problem, which allowed us to prove our result without
any Harnack-type argument.

Our second result describes the shape of the travelling waves that we have constructed above. We show
that three different shapes at most are possible, depending on the parameters. In the most biologically
relevant case, where the mutation rate is small, we show that the travelling wave we have constructed in
Theorem 2.1.2 is as follows: the wild type density w is decreasing, while the mutant type density m has a
unique global maximum, and is monotone away from this maximum. In numerical simulations of (2.1.2), we
have always observed this situation (represented in Figure 2.1.1), even for large µ. This result also allows us
to show that behind the epidemic front, the densities w(x) and m(x) of the two pathogens stabilize to w∗,
m∗, which is the long-term equilibrium of the system if no spatial structure is considered. For some results
on the monotony of solutions of the non-local Fisher-KPP equation, we refer to [163, 6]. For models closer
to (2.1.2) (see e.g. [7, 72]), we do not believe any qualitative result describing the shape of the travelling
waves exists.
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Figure 2.1.1: Numerical simulation of (2.1.2) with r = 2, K = 0.5, µ = 0.01, with a heaviside initial condition
for w and null initial condition for m. The numerical code is based on an implicit Euler scheme. For large
times, the solution seems to converge to a travelling wave, that we represent here, propagating towards large
x. In the initial phase of the epidemics, the mutant (m, red line) population is dominant, but this mutant
population is then quickly replaced by a population almost exclusively composed of wild types (w, green
line).

Theorem 2.1.3. Let r, K, µ satisfy Assumption 2.1.1. There exists a solution (c, w,m) ∈ R+×C∞(R)2 of
(2.1.3) such that

lim
x→−∞

(w(x),m(x)) = (w∗,m∗), lim
x→∞

(w(x),m(x)) = (0, 0),

where (w∗,m∗) is the only solution (w∗,m∗) ∈ (0, 1]× (0,K] of fw(w,m) = fm(w,m) = 0.
The solution (c, w,m) ∈ R+ × C∞(R)2 satisfies one of the three following properties:

(a) w is decreasing on R, while m is increasing on (−∞, x̄] and decreasing on [x̄,∞) for some x̄ < 0,

(b) m is decreasing on R, while w is increasing on (−∞, x̄] and decreasing on [x̄,∞) for some x̄ < 0,

(c) w and m are decreasing on R.

Moreover, there exists µ0 = µ0(r,K) > 0 such that if µ < µ0, then there exists a solution as above which
satisfies (a).

Finally, we consider the special case where the mutant population is small (due to a small carrying
capacity K > 0 of the mutant, and a mutation rate satisfying 0 < µ < K). If we neglect the mutants
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completely, the dynamics of the wild type would be described by the Fisher-KPP equation (2.1.1) (with
σ = r = K = 1), and they would then propagate at the minimal propagation speed of the Fisher-KPP
equation, that is c = 2. Thanks to Theorem 2.1.2, we know already that the mutant population will indeed
have a major impact on the minimal speed of the population which becomes c∗ = 2

√
r+O(µ) > 2, and thus

shouldn’t be neglected. In the next theorem, we show that the profile of w is indeed close to the travelling
wave of the Fisher-KPP equation with the non-minimal speed 2

√
r, provided the conditions mentioned above

are satisfied (see Figure 2.1.2). The effect of the mutant is then essentially to speed up the epidemics.
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Figure 2.1.2: Comparison of the travelling wave solutions of (2.1.2) and the travelling wave solution of the
Fisher-KPP equation of (non-minimal) speed 2

√
r. These figures are obtained for r = 2, µ = 0.001, and

three values of K: K = 0.05, 0.25, 0.75. We see that the agreement between the density of the wild type (w,
green line) and the corresponding solution of the Fisher-KPP equation (u, dashed blue line) is good as soon
as K ≤ 0.25. The travelling waves solutions of (2.1.2) are obtained numerically as long-time solutions of
(2.1.2) (based on an explicit Euler scheme), while the travelling waves solutions of the Fisher-KPP equations
(for a the given speed 2

√
r that is not the minimal travelling speed for the Fisher-KPP model) is obtained

thanks to a phase-plane approach, with a classical ODE numerical solver.

Theorem 2.1.4. Let r ∈ (1,∞), K ∈ (0, 1), µ ∈ (0,K) and (c∗, w,m) ∈ R × C0(R)2 (see Theorem 2.1.2
for the definition of c∗), w, m > 0, a solution of (2.1.3) such that

lim inf
x→−∞

(w(x) +m(x)) > 0, lim
x→∞

(w(x) +m(x)) = 0.

There exists C = C(r) > 0, β ∈
(
0, 1

2
)
and ε > 0 such that if 0 < µ < K < ε, then

‖w − u‖L∞ 6 CKβ ,

where u ∈ C0(R) is a traveling wave of the Fisher-KPP equation, that is a solution (unique up to a transla-
tion) of  −cu

′ − u′′ = u(1− u),

lim
x→−∞

u(x) = 1, lim
x→∞

u(x) = 0,
(2.1.6)

with speed c = c0 = 2
√
r.

The Theorem 2.1.4 is interesting from an epidemiological point of view: it describes a situation where
the spatial dynamics of a population would be driven by the characteristics of the mutants, even though the
population of these mutants pathogens is very small, and thus difficult to sample in the field.
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2.1.3 Proof of Theorem 2.1.2
We will prove Theorem 2.1.2 in several steps. We refer to Remark 2.1.19 for the conclusion of the proof.

2.1.3.1 A priori estimates on a localized problem

We consider first a restriction of the problem (2.1.3) to a compact interval [−a, a], for a > 0. More precisely,
we consider, for c ∈ R, 

w, m ∈ C0([−a, a]),

−cw′ − w′′ = fw(w,m)χw≥0χm≥0,

−cm′ −m′′ = fm(w,m)χw≥0χm≥0,

w(−a) = w∗, m(−a) = m∗, w(a) = m(a) = 0,

(2.1.7)

where we have used the notation (2.1.4), and (w∗,m∗) are defined in the Appendix, see section 2.1.6.2.

Regularity estimates on solutions of (2.1.7) The following result shows the regularity of the solutions
of (2.1.7).

Proposition 2.1.5. Let r, K, µ satisfy Assumption 2.1.1 and a > 0. If (w,m) ∈ L∞([−a, a]) satisfies −cw′ − w′′ = fw(w,m),

−cm′ −m′′ = fm(w,m),
(2.1.8)

on [−a, a], where fw, fm are defined by (2.1.4), and c ∈ R, then w,m ∈ C∞([−a, a]).

Proof of Proposition 2.1.5. Since fw(w,m), fm(w,m) ∈ L∞([−a, a]) ⊂ Lp([−a, a]) for any p > 1, the classi-
cal theory ([187], theorem 9.15) predicts that the solutions of the Dirichlet problem associated with (2.1.8)
lies in W 2,p. This shows that w,m ∈ W 2,p((−a, a)) for any p > 1. But then w,m ∈ C1,α((−a, a)) for any
0 6 α < 1 (thanks to Sobolev embeddings). It follows that f(w,m) is a C1,α((−a, a)) function of the
variable x ∈ (−a, a) (see (2.1.4) for the definition of f). Let us choose one such α ∈ (0, 1). Now we can apply
classical theory ([187], theorem 6.14) to deduce that w,m ∈ C2,α((−a, a)). But then w′′ and m′′ verify some
uniformly elliptic equation of the type

−c(w′′)′ − (w′′)′′ = g,

−c(m′′)′ − (m′′)′′ = h,

with g, h ∈ C0,α((−a, a)), and we can apply again ([187], theorem 6.14). This argument can be used
recursively to show that w,m ∈ C2n,α((−a, a)) for any n ∈ N, so that finally, w,m ∈ C∞((−a, a)).

Positivity and L∞ bounds for solutions of (2.1.7) In this section, we prove the positivity of the
solutions of (2.1.7), as well as some L∞ bounds.

Proposition 2.1.6. Let r, K, µ satisfy Assumption 2.1.1, a > 0, and c ∈ R. If (w,m) ∈ C0([−a, a])2 is a
solution of (2.1.7), then w and m satisfy are positive, that is w(x) > 0 and m(x) > 0 for all x ∈ [−a, a).

Proof of Proposition 2.1.6. We observe that

fw(w,m) = w(1− (w +m)) + µ(m− w) = w(1− µ− w) +m(µ− w),

so that if w 6 min(µ, 1− µ), then fw(w,m)χw>0χm>0 > 0. Let x0 ∈ [−a, a] such that w(x0) 6 0, and [α, β]
the connex compound of the set {w 6 min(µ, 1−µ)} that contains x0. Since −cw′−w′′ > 0 over (α, β) and
w(α), w(β) > 0, the weak minimum principle imposes inf

(α,β)
w > 0, and thus w(x0) = 0. But then w reaches

its global minimum at x0, so the strong maximum principle imposes that x0 ∈ {α, β}, or else w would be
constant. We deduce then from our hypothesis (w(−a) > 0, w(a) = 0) that x0 = β = a. That shows that
w > 0 in [−a, a).
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To show that m > 0, we notice that

fm(w,m) = rm

(
1− w +m

K

)
+ µ(w −m)

= m
(
r − µ− r

K
m
)

+ w
(
µ− r

K
m
)
,

so that if m 6 min
(
K
r µ,K

(
1− µ

r

))
, then fm(w,m)χw>0χm>0 > 0. The end of the argument to show the

positivity of w can the n be reproduced to show that m > 0.

Proposition 2.1.7. Let r, K, µ satisfy Assumption 2.1.1, a > 0, and c ∈ R. If (w,m) ∈ C0([−a, a])2 is a
positive solution of (2.1.7), then w and m satisfy

∀x ∈ (−a, a), w(x) < 1,

∀x ∈ (−a, a), m(x) < K.

Proof of Proposition 2.1.7. Let (w,m) a positive solution of (2.1.7).

• We assume that there exists x0 ∈ (−a, a) such that w(x0) > 1. Let then [a1, a2] the connex compound
of the set {w > 1} that contains x0. Then in (a1, a2) we have

−cw′ − w′′ = w(1− µ− w −m) + µm 6 w(−µ−m) + µm

= m(µ− w)− µw 6 0,

along with w(a1) = w(a2) = 1, so that the weak maximum principle states w 6 1 in (a1, a2), which is
absurd because w(x0) > 1. Therefore, w(x) 6 1 for all x ∈ (−a, a)

• We assume that there exists x0 ∈ (−a, a) such that m(x0) > K. Let then [a1, a2] the connex compound
of the set {m > K} that contains x0. Then in (a1, a2) we have

−cm′ −m′′ = m
(
r − µ− r

K
(w +m)

)
+ µw 6 m

(
−µ− rw

K

)
+ µw

= w
(
µ− r

K
m
)
− µm 6 0,

Thanks to Assumption 2.1.1. Since m(a1) = m(a2) = K, the weak maximum principle states m 6 K
in (a1, a2), which is absurd because m(x0) > K. Therefore, m(x) 6 K for all x ∈ (−a, a).

• Now if w(x) ∈ (max(µ, 1− µ), 1], we still have the estimate

−cw′(x)− w′′(x) 6 m(x)(µ− w(x)) + w(x)(1− µ− w(x)) 6 0,

so that if there exists x0 ∈ (−a, a) such that w(x0) = 1, then w is locally equal to 1 thanks to the
strong maximum principle. But in that case

0 = (−cw′ − w′′)(x0) = −m(x0) + µ(m(x0)− 1) < 0,

which is absurd. Hence, w < 1. Similarly, if m(x0) = K, we get

0 = (−cm′ −m′′)(x0) = −Kµ+ w(x0)(µ− r) < 0,

which is absurd, and thus m < K.
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Estimates on solutions of (2.1.7) when c ≥ c∗ or c = 0 The next result shows that the solutions of
(2.1.7) degenerate when a→ +∞ if the speed c is larger than a minimal speed c∗ (see Theorem 2.1.2 for the
definition of c∗).

Proposition 2.1.8 (Upper bound on c). Let r, K, µ satisfy Assumption 2.1.1. There exists C > 0 such
that for a > 0 and c > c∗, any solution (w,m) ∈ C0([−a, a])2 of (2.1.7) satisfies

∀x ∈ [−a, a], max (w(x),m(x)) ≤ Ce
−c−
√
c2−c2∗

2 (x+a).

Proof of Proposition 2.1.8. Let c > c∗, and

M :=

1− µ µ

µ r − µ

 .

SinceM +µ Id is a positive matrix, the Perron-Frobenius theorem implies thatM has a principal eigenvalue
h+ and a positive principal eigenvector X (that is Xi > 0 for i = 1, 2), given by

h+ = 1+r−2µ+
√

(1−r)2+4µ2

2 , X =

1− r +
√

(1− r)2 + 4µ2

2µ

 . (2.1.9)

The function ψη(x) := ηXeλ−x with λ− := −c−
√
c2−c2∗

2 and η > 0 is then a solution of the equation

−cψ′η − ψ′′η = Mψη = h+ψη.

We can define A = {η, (ψη)1 > w on [−a, a]} ∩ {η, (ψη)2 > m on [−a, a]}, which is a closed subset of R+. A
is non-empty since w and m are bounded while

(
Xeλ−x

)
i
≥ Xie

λ−a > 0 for i = 1, 2.
Consider now η0 := inf A. Then (ψη)1 ≥ w, (ψη)2 ≥ m, and there exists x0 ∈ [−a, a] such that either

(ψη)1(x0) = w(x0) or (ψη)2(x0) = m(x0). We first consider the case where (ψη)1(x0) = w(x0). Then

−c(w − (ψη)1)′(x0)− (w − (ψη)1)′′(x0) 6 −w(x0) (w(x0) +m(x0)) 6 0

over [−a, a]. The weak maximum principle ([187], theorem 8.1) implies that

sup
[−a,a]

(w − (ψη)1) = max((w − (ψη)1)(−a), (w − (ψη)1)(a)),

and then, thanks to the definition of η0, sup
[−a,a]

(w − (ψη)1) = 0. Since w(a) = 0 < (ψη)1(a), this means that

(ψη)1(−a) = w(−a), and thus

η0 = b−w

1− r +
√

(1− r)2 + 4µ2
eλ−a.

The argument is similar if (ψη)2(x0) = m(x0), which concludes the proof.

The following Proposition will be used to show that c 6= 0.

Proposition 2.1.9. Let r, K, µ satisfy Assumption 2.1.1, and a > a0 := π√
2(1−µ)

. Every positive solution
(w,m) ∈ C0([−a, a])2 of (2.1.7) with c = 0 satisfies the estimate

max
[−a0,a0]

(w +m) > K

2 (1− µ). (2.1.10)
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Proof of Proposition 2.1.9. We assume that c = 0, a > a0, and that (2.1.10) does not hold. We want to
show that those assumptions lead to a contradiction. For A > 0, the function defined by

ψA(x) = A cos
(√

1− µ
2 x

)
,

is a solution of the equation −ψ′′A = 1−µ
2 ψA over [−a0, a0]. Since w,m > 0 over [−a0, a0] and are bounded,

the set A := {A,∀x ∈ [−a0, a0], ψA(x) 6 min(w(x),m(x))} is a closed bounded nonempty set in (0,+∞).
Let now A0 := maxA. We still have ψA0 6 min(w,m) over [−a0, a0], and then, since (2.1.10) does not hold
and K < 1,

−(w − ψA0)′′ > (1− max
[−a0,a0]

(w +m)− µ)w − 1− µ
2 ψA0 (2.1.11)

>
1− µ

2 (w − ψA0) > 0.

Similarly, using additionally that r > 1,

−(m− ψA0)′′ > 1− µ
2 (m− ψA0) > 0.

The weak minimum principle ([187], theorem 8.1) then imposes

min
(

inf
[−a0,a0]

(w − ψA0), inf
[−a0,a0]

(m− ψA0)
)

= min((w − ψA0)(−a0), (w − ψA0)(a0), (m− ψA0)(−a0), (m− ψA0)(a0)).

But the left side of the equation is 0 by definition of A0, while the right side is strictly positive since
ψA0(−a0) = ψA0(a0) = 0. This contradiction shows the result.

Remark 2.1.10. Notice that Propositions 2.1.5, 2.1.6,2.1.7, 2.1.8 and 2.1.9 also holds if (c, w,m) ∈ R ×
C0([−a, a]) is a solution of

w, m ∈ C0([−a, a]),

−cw′ − w′′ = (w(1− (w + σm)) + µ(σm− w))χw≥0χm≥0,

−cm′ −m′′ =
(
rm
(
1−

(
σw+m
K

))
+ µ(σw −m)

)
χw≥0χm≥0,

w(−a) = w∗, m(−a) = m∗, w(a) = m(a) = 0,

(2.1.12)

where σ ∈ [0, 1].

2.1.3.2 Existence of solutions to a localized problem

To show the existence of travelling waves solutions of (2.1.3), we will follow the approach of [7]. The
first step is to show the existence of solutions of (2.1.7) satisfying the additional normalization property
max

[−a0,a0]
(w +m) = ν0, that is the existence of a solution (c, w,m) to



(c, w,m) ∈ R× C0([−a, a])2,

−cw′ − w′′ = fw(w,m)χw>0χm>0,

−cm′ −m′′ = fm(w,m)χw>0χm>0,

w(−a) = w∗, m(−a) = m∗, w(a) = m(a) = 0,

max
[−a0,a0]

(w +m) = ν0,

(2.1.13)

where fw, fm are defined by (2.1.4), ν0 = min
(
K
4 (1− µ), w∗+m∗2

)
and w∗, m∗ are defined in Appendix

2.1.6.2.
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We introduce next the Banach space (X, ‖ · ‖X), with X := R × C0([−a, a])2 and ‖(c, w,m)‖X :=
max(|c|, sup

[−a,a]
|w|, sup

[−a,a]
|m|). We also define the operator

Kσ : X −→ X,

(c, w,m) 7−→ (c+ max
[−a0,a0]

(w̃ + m̃)− ν0, w̃, m̃)
(2.1.14)

where (w̃, m̃) ∈ C0([−a, a])2 is the unique solution of
−cw̃′ − w̃′′ = [w(1− (w + σm)) + µ(σm− w)]χw>0χm>0 on (−a, a),

−cm̃′ − m̃′′ =
[
rm
(
1−

(
σw+m
K

))
+ µ(σw −m)

]
χw>0χm>0 on (−a, a),

w̃(−a) = w∗, m̃(−a) = m∗, w̃(a) = m̃(a) = 0.

The solutions of (2.1.13) with c > 0 are then the fixed points of K1 in the domain {(c, w,m), 0 6 w 6
1, 0 6 m 6 K, c > 0}.

We define

Ω :=
{

(c, w,m) ∈ R+ × C0([−a, a])2; c ∈ (0, c∗), ∀x ∈ [−a, a],

− 1 < w(x) < 1, −K < m(x) < K
}
,

where c∗ is defined by (2.1.5).

Lemma 2.1.11. Let r, K, µ satisfy Assumption 2.1.1, and a > 0. Then, (Kσ)σ∈[0,1], defined by (2.1.14),
is a family of compact operators on (X, ‖ · ‖X), that is continuous with respect to σ ∈ [0, 1].

Proof of Lemma 2.1.11. We can write Kσ = (LD)−1 ◦ Fσ where (LD)−1 is defined by

(LD)−1(c, g, h) = (c̃, w̃, m̃),

where (c̃, w̃, m̃) is the unique solution of

−cw̃′ − w̃′′ = g on (−a, a),

−cm̃′ − m̃′′ = h on (−a, a),

w̃(−a) = w∗, m̃(−a) = m∗, w̃(a) = m̃(a) = 0,

c̃ = c+ max
[−a0,a0]

(w̃ + m̃)− ν0,

and Fσ is the mapping

Fσ(c, w,m) =
(
c, w(1− (w + σm)) + µ(σm− w), rm

(
1− σw +m

K

)
+ µ(σw −m)

)
.

σ 7→ Fσ is a continuous mapping from [0, 1] to C0(Ω, X), and (LD)−1 is a continuous application from
(X, ‖ · ‖X) into itself (see Lemma 2.1.28), it then follows that σ 7→ Kσ = (LD)−1 ◦ Fσ is a continuous
mapping from [0, 1] to C0(Ω, X). Finally, the operator (LD)−1 is compact (see Lemma 2.1.28), which
implies that Kσ is compact for any fixed σ ∈ [0, 1].

We now introduce the following operator, for σ ∈ [0, 1]:

Fσ := Id−Kσ. (2.1.15)

Similarly, we introduce the operator

Kτ : X −→ X,

(c, w,m) 7−→ (c+ max
[−a0,a0]

(w̃ + m̃)− ν0, w̃, m̃)
(2.1.16)
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where (w̃, m̃) ∈ C0([−a, a])2 is the unique solution of
−cw̃′ − w̃′′ = τw(1− µ− w)χw>0χm>0 on (−a, a),

−cm̃′ − m̃′′ = τrm
(
1− µ

r −
m
K

)
χw>0χm>0 on (−a, a),

w̃(−a) = w∗, m̃(−a) = m∗, w̃(a) = m̃(a) = 0.

(2.1.17)

The argument of Lemma 2.1.11 can be be reproduced to prove that (Kτ )τ∈[0,1] is also a continuous family
of compact operators on (X, ‖ · ‖X), and we can define, for τ ∈ [0, 1], the operator

Fτ := Id−Kτ . (2.1.18)

Finally, we introduce, for some c̄ < 0 that we will define later on,

Ω̃ :=
{

(c, w,m) ∈ R+ × C0([−a, a])2; c ∈ (c̄, c∗), ∀x ∈ [−a, a],

− 1 < w(x) < 1, −K < m(x) < K
}
.

In the next Lemma, we will show that the Leray-Schauder degree of F0 in the domain Ω̃ is non-zero as
soon as a > 0 is large enough. We refer to chapter 12 of [364] or to chapter 10-11 of [82] for more on the
Leray-Schauder degree.

Lemma 2.1.12. Let r, K, µ satisfy Assumption 2.1.1. There exists ā > 0 such that the Leray-Schauder
degree of F0 in the domain Ω̃ is non-zero as soon as a > ā.

Proof of Lemma 2.1.12. We first notice that for τ = 0, the solution (w̃, m̃) of (2.1.17) is independent of
(w,m), and then,

F0(c, w,m) =
(
ν0 − max

[−a0,a0]
(wc +mc), w − wc,m−mc

)
,

where (wc,mc) is the solution of (2.1.17) with τ = 0, that is

(wc,mc) (x) :=
(
w∗
(
e−cx − e−ca

eca − e−ca

)
,m∗

(
e−cx − e−ca

eca − e−ca

))
,

for c 6= 0, and (wc,mc)(x) = (a−x2a w
∗, a−x2a m

∗) for c = 0. The solutions of F0(c, w,m) = 0 then satisfy
w = wc and m = mc. In particular, the solutions of F0(c, w,m) = 0 satisfy 0 < w < 1 and 0 < m < K on
[−a, a), and then,

(c, w,m) /∈
{

(c̃, w̃, m̃) ∈ R× C0([−a, a])2; ∃x ∈ [−a, a], w̃(x) ∈ {−1, 1}
}

∪
{

(c̃, w̃, m̃) ∈ R× C0([−a, a])2; ∃x ∈ [−a, a], m̃(x) ∈ {−K,K}
})

.

The solutions of F0(c∗, w,m) = 0 also satisfy

max
[−a0,a0]

(wc∗ +mc∗) ≤ 2 ec∗a0

ec∗a − 1 ,

so that max
[−a0,a0]

(wc∗ + mc∗) < ν0 if a > ā for some ā > 0. It follows that F0 = 0 has no solution in

Ω̃ ∩
(
{c∗} × C0([−a, a])2), provided a > ā. Finally, for c ≤ 0, the solutions of F0(c, w,m) = 0 satisfy

(wc,mc)(x) ≥ (w0,m0)(x) =
(
−w

∗

2a x+ w∗

2 ,−
m∗

2a x+ m∗

2

)
, so that

max
[−a0,a0]

(wc +mc) > max
[−a0,a0]

(w0 +m0) = w∗ +m∗

2

(
1 + a0

a

)
>
w∗ +m∗

2 ≥ ν0,

and F0 = 0 has no solution in Ω̃ ∩
(
R− × C0([−a, a])2).
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We notice next that since c 7→ max
[−a0,a0]

(wc +mc) is decreasing, there exists a unique c0 ∈ (0, c∗) such that

max
[−a0,a0]

(wc0 +mc0) = ν0. We can then define

Φτ (c, w,m) =
(
ν0 − max

[−a0,a0]
(wc +mc), w − ((1− τ)wc + τwc0) ,m− ((1− τ)mc + τmc0)

)
,

which connects continuously F0 = Φ0 to

Φ1(c, w,m) =
(
ν0 − max

[−a0,a0]
(wc +mc), w − wc0 ,m−mc0

)
.

Notice that Φτ (c, w,m) = 0 implies max
[−a0,a0]

(wc + mc) = ν0, which in turn implies that c = c0. For any

τ ∈ [0, 1], the only solution of Φτ (c, w,m) = 0 is then (c0, wc0 ,mc0) 6∈ ∂Ω̃, which implies that the Leray-
Schauder degree deg(F0, Ω̃) of F0 is equal to deg(Φ1, Ω̃), which can easily be computed since its variables
are separated :

deg(Φ1,Ω) = deg
(
ν0 − max

[−a0,a0]
(wc +mc), (c̄, c∗)

)
deg

(
w − wc0 ,

{
w̃ ∈ C0([−a, a]); −1 < w̃(x) < 1

})
deg

(
m−mc0 ,

{
m̃ ∈ C0([−a, a]); −K < m̃(x) < K

})
= 1.

Next, we show that the Leray-Schauder degree of F 0 in the domain Ω is also non-zero, as soon as a > 0
is large enough.

Lemma 2.1.13. Let r, K, µ satisfy Assumption 2.1.1. There exists ā > 0 such that the Leray-Schauder
degree of F 0 in the domain Ω is non-zero as soon as a > ā.

Proof of Lemma 2.1.13. Thanks to Proposition 2.1.9 and Remark 2.1.10, any triplet solution (c, w,m) ∈ Ω̃
of (2.1.12), and thus any solution (c, w,m) ∈ Ω̃ of F 0(c, w,m) = 0 satisfies c > 0, that is (c, w,m) ∈ Ω.
Then,

deg(F 0,Ω) = deg(F 0, Ω̃) = deg(F1, Ω̃). (2.1.19)
For τ ∈ [0, 1], any solution (c, w,m) ∈ Ω̃ of Fτ (c, w,m) = 0 satisfies

−cw′ − w′′ ≥ −µw, −cm′ −m′′ ≥ −µm,

and then w,m ≥ φc, where φc is the solution of −cφ′c − φ′′c = −µφc with φc(−a) = K, φc(a) = 0. This
solution can easily be computed explicitly, and satisfies (for any fixed a > 0)

lim
c→−∞

φc(0) = K.

we can then choose −c̄ > 0 large enough for φc̄(0) ≥ ν0 to hold (note that the constant c̄ ∈ R is not
independent of a). Then, Fτ (c̄, w,m) = 0 implies max

[−a0,a0]
(w + m) ≥ 2φc̄(0) > ν0, which implies in turn

that Fτ (c, w,m) = 0 has no solution on
(
{c̄} × C0([−a, a])2) ∩ Ω̃, for any τ ∈ [0, 1]. If Fτ (c, w,m) = 0 with

(c, w,m) ∈ Ω̃, a classical application of the strong maximum principle shows that 0 < w < 1 and 0 < m < K
on (−a, a) (notice that w and m are indeed solutions of two uncoupled Fisher-KPP equations on [−a, a]).
Moreover, the proof of Proposition 2.1.8 applies to solutions of Fτ (c∗, w,m) = 0, which implies that (for any
τ ∈ [0, 1]),

max
[−a0,a0]

(w +m) ≤ Ce−c∗
a−a0

2 ,

and thus, Fτ (c, w,m) = 0 has no solution on
(
{c∗} × C0([−a, a])2) ∩ Ω̃ as soon as a > 0 is large enough

(uniformly in τ ∈ [0, 1]).
We have shown that Fτ (c, w,m) = 0 has no solution on ∂Ω̃ for τ ∈ [0, 1]. Since τ 7→ Fτ is a continuous

familly of compact operators on Ω̃, this implies that

deg(F1, Ω̃) = deg(F0, Ω̃),

which, combined to (2.1.19) and Proposition 2.1.12, concludes the proof.
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Proposition 2.1.14. Let r, K, µ satisfy Assumption 2.1.1. There exists ā > 0 such that for a > ā, there
exists a solution (c, w,m) ∈ R× C0([−a, a])2 of (2.1.13) with c ∈ (0, c∗).

Proof of Proposition 2.1.14. The first step of the proof is to show that there exists no solution (c, w,m) ∈ ∂Ω
of Fσ(c, w,m) = 0 with σ ∈ [0, 1].

If such a solution exists, then Proposition 2.1.9 (see also Remark 2.1.10) implies that c 6= 0, and if c = c∗,
then Proposition 2.1.8 (see also Remark 2.1.10) implies that

max
[−a0,a0]

(w +m) 6 Ce−c∗
a−a0

2 , (2.1.20)

where C > 0 is a positive constant independent from σ ∈ [0, 1]. If a is large enough (more precisely if
a ≥ a0 + 2

c∗
ln
(

2C
ν0

)
), then max

[−a0,a0]
(w + m) ≤ ν0

2 , which is a contradiction. Any solution (c, w,m) ∈ Ω of

Fσ(c, w,m) = 0 then satisfies c ∈ (0, c∗), as soon as a > 0 is large enough.
Any solution (c, w,m) ∈ Ω of Fσ(c, w,m) = 0 is a solution of (2.1.12), Proposition 2.1.6 and Proposi-

tion 2.1.7 (see also Remark 2.1.10) then imply that for any x ∈ (−a, a), 0 < w(x) < 1 and 0 < m(x) < K.
We have shown that Fσ(c, w,m) = 0 had no solution (c, w,m) ∈ ∂Ω, for σ ∈ [0, 1]. Since moreover

(Fσ)σ∈[0,1] is a continuous family of compact operators (see Lemma 2.1.11) this is enough to show that
deg(Fσ,Ω) is independent of σ ∈ [0, 1], and then, thanks to Lemma 2.1.13, as soon as a > 0 is large enough,

deg(F 1,Ω) = deg(F 0,Ω) 6= 0.

which implies in particular that there exists at least one solution (c, w,m) ∈ Ω of F 1(c, w,m) = 0, that is a
solution (c, w,m) of (2.1.13) in Ω.

2.1.3.3 Construction of a travelling wave

Proposition 2.1.15. Let r, K, µ satisfy Assumption 2.1.1. There exists a solution (c, w,m) ∈ (0, c∗] ×
C0(R)2 of problem (2.1.3) that satisfies 0 < w(x) < 1 and 0 < m(x) < K for x ∈ R, as well as (w+m)(0) =
ν0.

Proof of Proposition 2.1.15. For n ≥ 0, let an := ā + n (where ā > 0 is defined in Proposition 2.1.14), and
(cn, wn,mn) a solution of (2.1.13) provided by Proposition 2.1.14. We denote by (wkn,mk

n) the restriction
of (wn,mn) to [−ak, ak] (k < n). From interior elliptic estimates (see e.g. Theorem 8.32 in [187]), we know
that there exists a constant C > 0 independent of k > 0, such that for any n ≥ k + 1,

max
(∥∥wn|[−ak,ak]

∥∥
C1([−ak,ak]) ,

∥∥mn|[−ak,ak]
∥∥
C1([−ak,ak])

)
6 C,

Since cn ∈ [0, c∗] for all n ∈ N, we can extract from (cn, wn,mn) a subsequence (that we also denote
by (cn, wn,mn)), such that cn → c0 for some c0 ∈ [0, c∗]. Since cn ∈ (0, c∗) for all n ≥ 3, the limit speed
satisfies c0 ∈ [0, c∗]. Thanks to Ascoli’s Theorem, C1([−ak, ak]) is compactly embedded in C0([−ak, ak]).
We can then use a diagonal extraction, to get a subsequence such that wn and mn both converge uniformly
on every compact interval of R. Let w0, m0 ∈ C0(R) the limits of (wn)n and (mn)n respectively. Then,
thanks to the uniform convergence, we get that

∀x ∈ R, 0 6 w0(x) 6 1, 0 6 m0(x) 6 K,

−c0w′0 − w′′0 = fw(w0,m0) on R,

−c0m′0 −m′′0 = fm(w0,m0) on R,

in the sense of distributions. Thanks to Proposition 2.1.5, these two functions are smooth and are thus
classical solutions of (2.1.3). Moreover, max

[−a0,a0]
(w0 + m0) = ν0, and Lemma 2.1.9 implies that c0 6= 0.

Finally, up to a shift, w0(0) +m0(0) = ν0.

In the next proposition, we show that the solution of (2.1.3) obtained in Proposition 2.1.15 are indeed
propagation fronts.
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Proposition 2.1.16. Let r, K, µ satisfy Assumption 2.1.1 and (c, w,m) ∈ R×C0(R)2 a solution of (2.1.3)
such that (w +m)(0) = ν0. Then w +m is decreasing on (0,+∞),

lim
x→∞

w(x) = lim
x→∞

m(x) = 0,

and w(x) +m(x) ≥ ν0 on (−∞, 0].

Proof of Proposition 2.1.16. Assume that w(x) +m(x) < K, and w′(x) +m′(x) ≥ 0. Then,

− c(w +m)′(x)− (w +m)′′(x) = w(x)(1− (w(x) +m(x))) + rm(x)
(

1− w(x) +m(x)
K

)
, (2.1.21)

with the right side positive, and then (w+m)′′(x) < 0. If there exists x0 ∈ R satisfying w(x0)+m(x0) < K,
and w′(x0) + m′(x0) ≥ 0, then we can define C = {x 6 x0,∀y ∈ [x, x0], (w + m)′′(y) 6 0}. Then C 6= ∅
and C is closed since (w + m)′′ is continuous. Let x1 ∈ C. Then (w + m)′ is decreasing on [x1, x0], so that
(w+m)′(x1) > (w+m)′(x0) > 0 and (w+m)(x1) 6 (w+m)(x0). (2.1.21) then implies that (w+m)′′(x1) < 0,
which proves that C is open, and thus C = (−∞, 0). This implies in particular that w(x) + m(x) < 0 for
some x < x0, which is a contradiction. We have then proven that x 7→ w(x) +m(x) is decreasing on [x0,∞)
as soon as w(x0) + m(x0) ≤ K. It implies that w(x) + m(x) ≥ ν0 for x ≤ 0, and that x 7→ w(x) + m(x) is
decreasing on [0,∞).

Then, limx→∞ w(x)+m(x) = l ∈ [0,K) exists, which implies that limx→∞ w′(x)+m′(x) = limx→∞ w′′(x)+
m′′(x) = 0, since w and m are regular. Then,

lim
x→∞

(−c(w +m)′(x)− (w +m)′′(x)) = 0,

which, combined to (2.1.21), proves that limx→∞ w(x) +m(x) = 0.

2.1.3.4 Characterization of the speed of the constructed travelling wave

Lemma 2.1.17. Let r, K, µ satisfy Assumption 2.1.1 and (c, w,m) ∈ R×C0(R)2 a solution of (2.1.3) such
that (w +m)(0) = ν0. Then there exists x0 ∈ R and C > 0 such that

∀x > x0, w(x) +m(x) 6 C min(w(x),m(x)).

Proof of Lemma 2.1.17. Let S(x) := w(x) +m(x), and α > 0. Then

−c(S − αw)′ − (S − αw)′′ = ((1− S)− (1− S − µ)α)w + (S − w)
(
r

(
1− S

K

)
− αµ

)
.

Let x1 ∈ R such that S(x) 6 1−µ
2 for all x ≥ x1 (x1 exists thanks to Proposition 2.1.16). Then, for

α > α0 := max
(

2
1−µ ,

r
µ

)
and x > x1,

−c(S − αw)′(x)− (S − αw)′′(x) 6 0.

Let α1 := max
(
S(x1)
w(x1) , α0

)
+ 1. Then −c(S − α1w)′ − (S − α1w)′′ 6 0 over (x1,+∞). We can then apply

the weak maximum principle to show that for any x2 > x1,

max
[x1,x2]

(S − α1w)(x) = max ((S − α1w)(x1), (S − α1w)(x2)) .

Since (S−α1w)(x1) 6 0 and lim
x2→+∞

(S−α1w)(x2) = 0, we have indeed shown that sup[x1,∞)(S−α1w)(x) = 0,
and then,

∀x ≥ x1, w(x) +m(x) ≤ α1w(x).
A similar argument can be used to show that there exists x2 ∈ R and α2 > 0 such that w(x)+m(x) 6 α2m(x)
for x > x2, which concludes the proof of the Lemma.

Proposition 2.1.18. Let r, K, µ satisfy Assumption 2.1.1 and (c, w,m) ∈ R+×C0(R)2 a solution of (2.1.3)
such that (w +m)(0) = ν0 and c ≤ c∗. Then, c = c∗.
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Remark 2.1.19. Combined to Proposition 2.1.15 and Proposition 2.1.16, this proposition completes the
proof of Theorem 2.1.2.

Proof of Proposition 2.1.18. Let (c, w,m) ∈ [0, c∗]×C0(R)2 a solution of (2.1.3) such that (w+m)(0) = ν0.
Thanks to Lemma 2.1.17, there exists x0 > 0 and C > 0 such that −cw′ − w′′ ≥ w(1− µ− Cw) + µm,

−cm′ −m′′ ≥ m(r − µ− Cm) + µw.

Let now ϕη(x + x1) := ηe−
c
2x sin

(√
4h−c2

2 x
)
, where η > 0, h ≥ c2/4 and x1 > x0. ϕη then satisfies

ϕη(x1) = ϕη
(
x1 + 2π/

√
4h− c2

)
= 0, and −cϕ′η − ϕ′′η = hϕη on

[
x1, x1 + 2π/

√
4h− c2

]
. ψη := ϕηX (X is

defined by (2.1.9)) is then a solution of

−cψ′η − ψ′′η = (M + (h− h+)Id)ψη,

where h+ is defined by (2.1.9), and we can also write this equality as follows −c(ψη)′1 − (ψη)′′1 = (ψη)1 (1− µ+ (h− h+)) + µ(ψη)2,

−c(ψη)′2 − (ψη)′′2 = (ψη)2 (r − µ+ (h− h+)) + µ(ψη)1.

Assume now that c < c∗. Then, we can choose c2/4 < h < c2∗/4 = h+, and define

η̄ = max
{
η > 0; ∀x ∈

[
x1, x1 + 2π/

√
4h− c2

]
, (ψη)1(x) ≤ w(x), (ψη)2(x) ≤ m(x)

}
.

Since w and m are positive bounded function, η̄ > 0 exists, and since

(ψη)i(x1) = (ψη)i
(
x1 + 2π/

√
4h− c2

)
= 0,

there exists x̄ ∈
(
x1, x1 + 2π/

√
4h− c2

)
such that either (ψη)1(x̄) = w(x̄) or (ψη)2(x̄) = m(x̄). Assume

w.l.o.g. that (ψη)1(x̄) = w(x̄). Then w − (ψη)1 has a local minimum in x̄, which implies that

0 ≥ −c(w − (ψη̄)1)′(x̄)− (w − (ψη̄)1)′′(x̄)
≥ [w(x̄)(1− µ− Cw(x̄)) + µm(x̄)]− [(ψη̄)1(x̄) (1− µ+ (h− h+)) + µ(ψη̄)2(x̄)]
≥ (ψη̄)1(x̄) [(h+ − h)− C(ψη̄)1(x̄)] ,

and then η̄ ≥ (h+ − h)/(CX1). A similar argument holds if (ψη)2(x̄) = m(x̄), so that in any case, η̄ ≥
(h+ − h)/(C max(X1, X2)), and ψη̄(x1 + ·) ≤ m, ψη̄(x1 + ·) ≤ m on

[
x1, x1 + 2π/

√
4h− c2

]
, as soon as

x1 ≥ x0. In particular, for any x1 ≥ x0,

w
(
x1 + π/

√
4h− c2

)
≥ h+ − h
C max(X1, X2)e

− cπ

2
√

4h−c2 X1 > 0,

which is a contradiction, since w(x)→x→∞ 0 thanks to Proposition 2.1.16.

2.1.4 Proof of Theorem 2.1.3
2.1.4.1 General case

The proof of the next lemma is based on a phase-plane-type analysis, see Figure 2.1.3

Lemma 2.1.20. Let r, K, µ satisfy Assumption 2.1.1. Let (c, w,m) ∈ R+ × C0([−a, a])2 be a solution of
(2.1.7). Then there exists x̄ ∈ [−a, 0) such that one of the following properties is satisfied:

• w is decreasing on [−a, a], while m is increasing on [−a, x̄] and decreasing on [x̄, a],

• m is decreasing on [−a, a], while w is increasing on [−a, x̄] and decreasing on [x̄, a].
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Figure 2.1.3: Phase-plane-type representation of a solution of (2.1.7): we represent (dark line) x 7→
(w(x),m(x)) ∈ [0, 1] × [0,K]. Note that the usual phase-plane for (2.1.7) is of dimension 4. The blue
line represents the set of (w,m) such that fw(w,m) = 0 (see (2.1.4)), fw(w,m) > 0 for (m,w) on the
left of the blue curve. The green line represent the set of (w,m) such that fm(w,m) = 0 (see (2.1.4)),
fm(w,m) > 0 for (m,w) under the green curve. the gray lines represent several other solutions of (2.1.3)
such (w(−a),m(−a)) = (w∗,m∗). The dashed dark lines separate this phase plane into four compartiments
that will be used in the third step of the proof of Lemma 2.1.20. Finally, the solid black line corresponds to
the travelling wave.

Proof of Lemma 2.1.20. Step 1: sign of fw and fm.
We recall the definition (2.1.4) of fw, fm. The inequality fw(w,m) ≥ 0 is equivalent, for w ∈ [0, 1] and

m ∈ [0,K], to

w ≤ φw(m) := 1
2

[
1− µ−m+

√
(1− µ−m)2 + 4µm

]
. (2.1.22)

Notice that m ∈ [0,K] 7→ φw(m) is a decreasing function (see Lemma 2.1.29), that divides the square
{(w,m) ∈ [0, 1]× [0,K]} into two parts.

Similarly, fm(w,m) ≥ 0 is equivalent, for w ∈ [0, 1] and m ∈ [0,K], to

m ≤ φm(w) := 1
2

K − µK

r
− w +

√(
K − µK

r
− w

)2
+ 4µK

r
w

 . (2.1.23)

Here also, w ∈ [0, 1] 7→ φm(w) is a decreasing function (see Lemma 2.1.29), since µ ≤ 1/2 (see Assumption
2.1.1), that divides the square {(w,m) ∈ [0, 1]× [0,K]} into two parts.

Step 2: possible monotony changes of w(x), m(x). Let (c, w,m) ∈ R+×C0([−a, a])2 be a solution of (2.1.7).
If w′(x) ≥ 0 for some x > −a, we can define x̄ := inf{y ≥ x; w′(y) < 0}. Then w′(x̄) = 0, and w′′(x̄) ≤ 0,
which implies

fw(w(x̄),m(x̄)) = −cw′(x̄)− w′′(x̄) ≥ 0,

that is w(x̄) ≤ φw(m(x̄)). The symmetric property also holds: if w′(x) ≤ 0 for some x > −a, we can define
x̄ := inf{y ≥ x; w′(y) > 0}, and then, w(x̄) ≥ φw(m(x̄)).

We repeat the argument for the function m: let (c, w,m) ∈ R+×C0([−a, a])2 be a solution of (2.1.7). If
m′(x) ≥ 0 for some x > −a, we can define x̄ := inf{y ≥ x; m′(y) < 0}, and then, m(x̄) ≤ φm(w(x̄)). Finally,
if m′(x) ≤ 0 for some x > −a, we can define x̄ := inf{y ≥ x; m′(y) > 0}, and then, m(x̄) ≥ φm(w(x̄)).

Step 3: phase plane analysis Notice that (w(−a),m(−a)) = (w∗,m∗), and then,

m(−a) = φm(w(−a)), w(−a) = φw(m(−a)). (2.1.24)

We will consider now consider individually the four possible signs of w′(−a), m′(−a) (the cases where
w′(−a) = 0 or m′(−a) = 0 will be considered further in the proof):
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(i) Assume that w′(−a) > 0 andm′(−a) > 0. We define x̄ := inf{y ≥ −a; w′(y) < 0 or m′(y) < 0}. Since
w and m are increasing on [−a, x̄], (2.1.24) holds and w 7→ φm(w), m 7→ φw(m) are decreasing functions,
we have

w(x̄) > w(−a) = φw(m(−a)) ≥ φw(m(x̄)),
m(x̄) > m(−a) = φm(w(−a)) ≥ φm(w(x̄)).

Then, fw(w(x̄),m(x̄)) < 0 and fm(w(x̄),m(x̄)) < 0. It then follows from Step 2 that x̄ = a, which means
that w and m are increasing on [−a, a]. It is a contradiction, since 0 = w(a) < w(−a) = w̄.

Notice that the same argument would also work on [x, a], for any (w(x),m(x)) that satisfies w(x) >
Φw(m(x)), m(x) > Φm(w(x)), w′(x) > 0 and m′(x) > 0.

(ii) Assume that w′(−a) < 0 and m′(−a) < 0. Let x̄ := inf{y ≥ −a; w′(y) > 0 or m′(y) > 0}. Since w
and m are decreasing on [−a, x̄], (2.1.24) holds and w 7→ φm(w), m 7→ φw(m) are decreasing functions, we
have

w(x̄) < w(−a) = φw(m(−a)) ≤ φw(m(x̄)),
m(x̄) < m(−a) = φm(w(−a)) ≤ φm(w(x̄)).

It then follows from Step 2 that x̄ = a, which means that w and m are non-increasing on [−a, a]. Notice
that this is not a contradiction, since w(a) = 0 < w∗ = w(−a), m(a) = 0 < m∗ = m(−a).

Notice that the same argument would work on [x, a], for any (w(x),m(x)) that satisfies Φw(m(x)) > w(x),
m(x) < Φm(w(x)), w′(x) < 0 and m′(x) < 0.

(iii) Assume that w′(−a) < 0 and m′(−a) > 0. We define x̄ := inf{y ≥ −a; w′(y) > 0 or m′(y) < 0}.
The argument used in the two previous cases cannot be employed here. We know however that w(x̄) < w∗,
m(x̄) > m∗. Since m(a) = 0 < m∗, it implies in particular that x̄ < a, and, with the notations of
Lemma 2.1.33, (w(x̄),m(x̄)) ∈ Dl.

If w′ changes sign in x̄, then Step 2 implies that w(x̄) ≥ φw(m(x̄)), that is, with the notations of
Lemma 2.1.33, (w(x̄),m(x̄)) ∈ Z−w . Thanks to Lemma 2.1.33, it follows that (w(x̄),m(x̄)) ∈ Z−w ∩Dl ⊂ Z−m,
and then m(x̄) > φm(w(x̄)), which implies −cm′(x̄) − m′′(x̄) = fm(w(x̄),m(x̄)) < 0. If m′(x̄) = 0, then
m′′(x̄) > 0, which is incompatible with the fact that m′ ≥ 0 on [−a, x̄) and m′(x̄) = 0. We have thus
shown that m′(x̄) > 0. Thanks to the definition of x̄, either w is locally increasing near x̄+, or there exists
a sequence (xn) → x̄+ such that w′(x2n) > 0 and w′(x2n+1) < 0. In the first case, for ε > 0 small enough,
w(x̄ + ε) > w(x̄) ≥ Φw(m(x̄)) ≥ Φw(m(x̄ + ε)) along with w′(x̄ + ε) > 0. In the second case, w′′(x̄) = 0,
then fw(w,m)(x̄) = 0, and a simple computation shows that for ε > 0 small enough,

fw (w(x̄+ ε),m(x̄+ ε)) = (µ− w(x̄))εm′(x̄) + o(ε) < 0,

where we have used the fact that µ − w(x̄) < 0 (since w(x̄) ≥ φw(m(x̄)) ⊂ φw([0,K]) ⊂ (µ,∞), see
Lemma 2.1.29). In any case, for some ε > 0 arbitrarily small, w(x̄ + ε) > φw(m(x̄ + ε)), m(x̄ + ε) >
φm(w(x̄+ε)), along with w′(x̄+ε) > 0 and m′(x̄+ε) > 0. argument (i) can now be applied to (w,m)|[x̄+ε,a],
leading to a contradiction.

If m′ changes sign in x̄, then Step 2 implies that m(x̄) ≤ φm(w(x̄)), that is, with the notations of
Remark 2.1.34, (w(x̄),m(x̄)) ∈ Z+

m. Thanks to Remark 2.1.34, it follows that (w(x̄),m(x̄)) ∈ Z+
m∩Dl ⊂ Z+

w ,
and then w(x̄) < φw(m(x̄)), which implies −cw′(x̄) − w′′(x̄) = fw(w(x̄),m(x̄)) > 0. If w′(x̄) = 0, then
w′′(x̄) < 0, which is incompatible with the fact that w′ ≤ 0 on [−a, x̄) and w′(x̄) = 0. We have thus shown
that w′(x̄) < 0. Thanks to the definition of x̄, either m is locally decreasing near x̄+, or there exists a
sequence (xn) → x̄+ such that m′(x2n) > 0 and m′(x2n+1) < 0. In the first case, for ε > 0 small enough,
m(x̄ + ε) < m(x̄) ≤ Φm(w(x̄)) ≤ Φm(w(x̄ + ε)) along with m′(x̄ + ε) > 0. In the second case, m′′(x̄) = 0,
then fm(w,m)(x̄) = 0, and a simple computation shows that for ε > 0 small enough,

fm (w(x̄+ ε),m(x̄+ ε)) =
(
µ− r

K
m(x̄)

)
εw′(x̄)) + o(ε) > 0,

where we have used the fact that µ − r
Km(x̄) < 0 (since m(x̄) > m∗ = φm(w∗) ⊂ φm([0, 1]) ⊂ (µK/r,∞),

see Lemma 2.1.29). In both cases, argument (ii) can now be applied to (w,m)|[x̄+ε,a], which is not a
contradiction, since w(a) = 0 < w(x̄), m(a) = 0 < m(x̄).

(iv) Assume that w′(−a) > 0 and m′(−a) < 0. We define x̄ := inf{y ≥ −a; w′(y) < 0 or m′(y) > 0}.
Then w(x̄) > w∗, m(x̄) < m∗. Since m(a) = 0 < m∗, it implies in particular that x̄ < a, and, with the
notations of Lemma 2.1.33, (w(x̄),m(x̄)) ∈ Dr.

If w′ changes sign in x̄, then Step 2 implies that w(x̄) ≤ φw(m(x̄)), that is, with the notations of
Remark 2.1.34, (w(x̄),m(x̄)) ∈ Z+

w . Thanks to Remark 2.1.34, it follows that (w(x̄),m(x̄)) ∈ Z+
w ∩Dr ⊂ Z+

m,
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and then m(x̄) < φm(w(x̄)), which implies −cm′(x̄) − m′′(x̄) = fm(w(x̄),m(x̄)) > 0. If m′(x̄) = 0, then
m′′(x̄) < 0, which is incompatible with the fact that m′ ≤ 0 on [−a, x̄) and m′(x̄) = 0. We have thus shown
that m′(x̄) < 0. Thanks to the definition of x̄, either w is locally decreasing near x̄+, or there exists a
sequence (xn) → x̄+ such that w′(x2n) > 0 and w′(x2n+1) < 0. In the first case, for ε > 0 small enough,
w(x̄ + ε) < w(x̄) ≤ Φw(m(x̄)) ≤ Φw(m(x̄ + ε)) along with w′(x̄ + ε) < 0. In the second case, w′′(x̄) = 0,
then fw(w,m)(x̄) = 0, and a simple computation shows that for ε > 0 small enough,

fw(w,m)(x̄+ ε) = (µ− w(x̄))εm′(x̄) + o(ε) > 0,

where we have used the fact that µ − w(x̄) < 0 (since w(x̄) > w∗ = φw(m∗) ⊂ φw([0, 1]) ⊂ (µ,∞),
see Lemma 2.1.29). In both cases, argument (ii) can now be applied to (w,m)|[x̄+ε,a], which is not a
contradiction, since w(a) = 0 < w(x̄), m(a) = 0 < m(x̄).

If m′ changes sign in x̄, then Step 2 implies that m(x̄) ≥ φm(w(x̄)), that is, with the notations of
Lemma 2.1.33, (w(x̄),m(x̄)) ∈ Z−m. Thanks to Lemma 2.1.33, it follows that (w(x̄),m(x̄)) ∈ Z−m ∩Dr ⊂ Z−w ,
and then w(x̄) > φw(m(x̄)), which implies −cw′(x̄) − w′′(x̄) = fw(w(x̄),m(x̄)) < 0. If w′(x̄) = 0, then
w′′(x̄) > 0, which is incompatible with the fact that w′ ≥ 0 on [−a, x̄) and w′(x̄) = 0. We have thus shown
that w′(x̄) > 0. Thanks to the definition of x̄, either m is locally increasing near x̄+, or there exists a
sequence (xn) → x̄+ such that m′(x2n) > 0 and m′(x2n+1) < 0. In the first case, for ε > 0 small enough,
m(x̄ + ε) > m(x̄) ≥ Φm(w(x̄)) ≥ Φm(w(x̄ + ε)) along with m′(x̄ + ε) > 0. In the second case, m′′(x̄) = 0,
then fm(w,m)(x̄) = 0, and a simple computation shows that for ε > 0 small enough,

fm(w,m)(x̄+ ε) =
(
µ− r

K
m(x̄)

)
εw′(x̄) + o(ε) < 0,

where we have used the fact that µ − r
Km(x̄) < 0 (since m(x̄) ≥ φm(w(x̄)) ⊂ φm([0, 1]) ⊂ (µK/r,∞), see

Lemma 2.1.29). In both cases, argument (i) can now be applied to (w,m)|[x̄+ε,a], leading to a contradiction.

Let consider now the case where w′(−a) = 0 or m′(−a) = 0. If w′(−a) = m′(−a) = 0, then w ≡ w∗,
m ≡ m∗, which is a contradiction. Assume w.l.o.g. that w′(−a) 6= 0. If there exists ε > 0 such that for any
x ∈ [−a,−a+ ε], m′(x) = 0, then m is constant on the interval [−a,−a+ ε], and then fm(w(x),m(x)) = 0
for x ∈ [−a,−a + ε]. This implies in turn that m(x) = φm(w(x)), and then w is constant on [−a,−a + ε],
since φm is a decreasing function, which is a contradiction. There exists thus a sequence xn → −a, xn > −a,
such that w(xn) 6= w∗, and sgn(m(xn)−m∗) = sgn(m′(xn)) 6= 0, while sgn(w(xn)− w∗) = sgn(w′(0)) 6= 0.
The above argument (i-iv) can therefore be reproduced for (w,m)|[xn,a].

Finally, the fact that x̄ ≤ 0 is a consequence of w(0) +m(0) < min(w∗,m∗).

Proposition 2.1.21. Let r, K, µ satisfy Assumption 2.1.1. Let (c, w,m) ∈ R+ × C0(R)2 be a solution of
(2.1.3) constructed in Theorem 2.1.2. Then, there exists x̄ ∈ [−∞, 0) such that

• either w is decreasing on R, while m is increasing on (−∞, x̄] and decreasing on [x̄,∞),

• or m is decreasing on R, while w is increasing on (−∞, x̄] and decreasing on [x̄,∞),

Moreover,
w(x)→ w∗, m(x)→ m∗ as x→ −∞.

Proof of Proposition 2.1.21. The travelling wave (c, w,m) constructed in Theorem 2.1.2 is obtained as a limit
(in L∞loc(R)) of solutions (wn,mn, cn) ∈ R+ × C0([−an, an])2 of (2.1.7) on [−an, an], with an −→

n→∞
∞. Each

of those solutions then satisfy one of the two the monotonicity properties of Lemma 2.1.20. In particular,
there is at least one of those properties that is satisfied by an infinite sequence of solutions (wn,mn, cn).
We may then assume w.l.o.g. that all the solutions (wn,mn, cn) satisfy the first monotonicity property in
Lemma 2.1.20. We assume therefore that for all n ∈ N, there exists x̄n ∈ [−an, 0) such that wn is decreasing
on [−an, an], while mn is increasing on [−an, x̄n] and decreasing on [x̄n, an]. Up to an extraction, we can
define x̄ := limn→∞ an ∈ [−∞, 0]. Then, w is a uniform limit of decreasing function on any bounded
interval, and is thus decreasing. Let now x̃ > x̄. mn is then a decreasing function on [x̃,∞) ∩ [−an, an]
for n large enough, and m|[x̃,∞) is thus a uniform limit of decreasing functions on any bouded interval of
[x̃,∞). This implies that m is decreasing on [x̄,∞). A similar argument shows that m is increasing on
(−∞, x̄], if x̄ > −∞. the case where all the solutions (wn,mn, cn) satisfy the second monotonicity property
in Lemma 2.1.20 can be treated similarly.
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We have shown in particular that w, m are monotonic on (−∞, x̃), for some x̃ < 0 (x̃ = x̄ if x̄ > −∞,
x̃ = 0 otherwise). Since w and m are regular bounded functions, it implies that

fw(w(x),m(x)) = −cw′(x)− w′′(x)→ 0,

fm(w(x),m(x)) = −cm′(x)−m′′(x)→ 0,

as x → −∞. This combined to lim infx→−∞ w(x) + m(x) > 0 and (w,m) ∈ [0, 1] × [0,K] implies that
w(x)→ w∗ and m(x)→ m∗ as x→ −∞.

2.1.4.2 Case of a small mutation rate

The result of this section shows that if µ > 0 is small, then only the first situation described in Lemma
2.1.20, with x̄ > −∞, is possible.

Proposition 2.1.22. Let r, K, µ satisfy Assumption 2.1.1. Let (c, w,m) ∈ R+ × C0(R) be a solution of
(2.1.3) constructed in Theorem 2.1.2. There exists µ̄ = µ̄(r,K) > 0 such that µ < µ̄ implies that w is
decreasing on R, while m is increasing on (−∞, x̄] and decreasing on [x̄,∞), for some x̄ ∈ R−.

Proof of Proposition 2.1.22. Notice that the solution (c, w,m) satisfies the assumptions of Proposition 2.1.21.
Let us assume that ‖m‖∞ ≤ m∗. We will show that this assumption leads to a contradiction if µ > 0

is small. Let x̄ = max {x > −∞; w(x) ≥ m∗}. Then w satisfies −cw′ − w′′ ≤ (1− µ)w + µm∗ on (−∞, x̄].
Since (c, w,m) satisfies the assumptions of Proposition 2.1.21 and w(x̄) = m∗ < w∗, we have that w(x) ≥ m∗
for all x ≤ x̄. w thus satisfies −cw′ − w′′ ≤ w on (−∞, x̄]. We define now

w̄(x) = m∗ e
c−
√
c2−4
2 (x̄−x),

which satisfies −cw̄′ − w̄′′ = w̄ on (−∞, x̄], w̄(x̄) = w(x̄), and w̄(y) ≥ 1 ≥ w(y) for y << 0. Since w is
bounded, αw̄ > w for α > 0 large enough. We can then define α∗ := min{α > 0; αw̄ > w on (−∞, x̄)}.
If α∗ > 1, there exists x∗ ∈ (−∞, x̄) such that α∗w̄(x∗) = w(x∗), and then, −c(α∗w̄ − w)′(x∗) − (α∗w̄ −
w)′′(x∗) > α∗w̄(x∗)− w(x∗) = 0, which is a contradiction, since α∗w̄ > w implies that −c(α∗w̄ − w)′(x∗)−
(α∗w̄ − w)′′(x∗) ≤ 0. Thus,

w(x) ≤ w̄(x), for x ∈ (−∞, x̄]. (2.1.25)

In particular, if we define

x̃ := x̄− 2
c−
√
c2 − 4

ln
(
K

m∗

(
1
2 −

µ

r
− 1

2r

)
− 1
)
, (2.1.26)

then w(x) ≤ K
( 1

2 −
µ
r −

1
2r
)
−m∗ on [x̃, x̄]. Notice that m∗ → 0 as µ→ 0 (see Lemma 2.1.35), and then

K
m∗

( 1
2 −

µ
r −

1
2r
)
→∞ as µ→ 0; x̃ is then well defined as soon as µ > 0 is small enough, and x̃− x̄→ −∞

as µ→ 0. This estimate applied to the equation on m (see (2.1.3)), implies, for x ∈ [x̃, x̄], that

−cm′(x)−m′′(x) ≥ r
(

1− µ

r
− m∗ + w(x)

K

)
m(x) + µw ≥ 1 + r

2 m+ µm∗, for x ∈ (x̃, x̄],

where we have also used the fact that w ≥ m∗ on (−∞, x̄].

We define next
m̄1 := −µm

∗

c+ 2(x− x̄) (x− (x̄− 1)) ,

which satisfies −cm̄′1 − m̄′′1 ≤ µm∗ as well as m̄1 (x̄− 1) = 0 ≤ m (x̄− 1) and m̄1(x̄) = 0 ≤ m(x̄). The
weak maximum principle ([187], Theorem 8.1) then implies that m(x) ≥ m̄1(x) for all x ∈ [x̄− 1, x̄], and in
particular,

m(x̄− 1/2) ≥ µm∗

4(c+ 2) .

We define (we recall the definition (2.1.26) of x̃)

m̄2 := µm∗

4(c+ 2)e
c−
√
c2−2(1+r)

2 (x̄−1/2−x) −Ae c2 (x̄−1/2−x),
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with A = µm∗

4(c+2)e
−
√
c2−2(r+1)

2 (x̄−1/2−x̃), so that m̄2(x̃) = 0. m̄2 then satisfies −cm̄′2 − m̄′′2 <
(1+r)

2 m̄2, since
c(c/2)− (c/2)2 > 1+r

2 (see (2.1.5)). Let now

α∗ := max{α;m(x) ≥ αm̄2(x), ∀x ∈ [x̃, x̄− 1/2]}.

α∗ > 0, since min[x̃,x̄−1/2]m > 0. If α∗ < 1, then α∗m̄2(x̄− 1/2) < µm∗

4(c+2) ≤ m(x̄− 1/2), while α∗m̄2(x̃) =
0 < m(x̃). Then α∗m̄2 ≤ m on [x̃, x̄− 1/2], and there exists x∗ ∈ [x̃, x̄− 1/2] such that α∗m̄2(x∗) = m(x∗),
and

0 ≤ −c(m̄2 −m)′(x∗)− (m̄2 −m)′′(x∗) < (1 + r)
2 (m̄2 −m)(x∗) = 0,

which is a contradiction. We have thus proven that m ≥ m̄2 on [x̃, x̄ − 1/2], and in particular, for µ > 0
small enough,

‖m‖∞ ≥ m̄2

(
x̃+ 2 ln(2)√

c2 − 2(1 + r)

)
= µm∗

4(c+ 2)e
c ln 2√

c2−2(1+r) e
c−
√
c2−2(1+r)

2 (x̄−1/2−x̃).

We recall indeed that x̃ − x̄ → −∞ as µ → 0, and then x̃ + 2 ln(2)√
c2−2(1+r)

∈ [x̃, x̄ − 1/2] if µ > 0 is small
enough. Thanks to the definition of x̃, this inequality can be written

ln
(

4(c+ 2)‖m‖∞
µm∗

)
− c ln 2√

c2 − 2(1 + r)

≥
c−

√
c2 − 2(1 + r)

2

(
−1/2 + 2

c−
√
c2 − 4

ln
(
K

m∗

(
1
2 −

µ

r
− 1

2r

)
− 1
))

.

We have assumed that ‖m‖∞ = m∗, thus, if we denote by Oµ∼0+(1) a function of µ > 0 that is bounded
for µ small enough, we get

ln
(

1
µ

)
+Oµ∼0+(1) ≥ c−

√
c2 − 2(1 + r)

c−
√
c2 − 4

ln
(

1
m∗

)
.

Moreover, we know that m∗ ≤ Cµ for some C > 0, see Lemma 2.1.35. Then,

ln
(

1
µ

)
+Oµ∼0+(1) ≥ c−

√
c2 − 2(1 + r)

c−
√
c2 − 4

ln
(

1
µ

)
,

which is a contradiction as soon as µ > 0 is small, since r > 1.

We have thus proved that for µ > 0 small enough, we have ‖m‖∞ > m∗. This estimate combined to
Proposition 2.1.21 proves Proposition 2.1.22.

2.1.5 Proof of Theorem 2.1.4
Notice first that if we chose ε > 0 small enough, then 0 < µ < K < ε implies that Assumption 2.1.1 is
satisfied.

We will need the following estimate on the behavior of travelling waves of (2.1.3):

Proposition 2.1.23. Let r, K, µ satisfy Assumption 2.1.1. Let (c, w,m) be a smooth solution of (2.1.3),
such that c ≥ 0 and lim infx→−∞(w(x) +m(x)) > 0. Then,

lim inf
x→−∞

w(x) ≥ 1− µ−K.

Moreover, if w(x̄) < 1−K − µ for some x̄ ∈ R, then w is decreasing on [x̄,∞).

Proof of Proposition 2.1.23. Since m(x) < K for all x ∈ R, any local minimum x̄ of w satisfies

0 ≥ −cw′(x̄)− w′′(x̄) = (1− µ− w(x̄)−m(x̄))w(x̄) + µm(x̄)
> (1− µ−K − w(x̄))w(x̄), (2.1.27)
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and then w(x̄) ≥ 1− µ−K.
Assume that lim infx→−∞ w(x) < 1 − µ − K. Then, x 7→ w(x) can not have a minimum for x << 0,

and is thus monotonic for x << 0. Then l := limx→−∞ w(x) ∈ [0, 1 − µ −K] exists and w′(x) →x→−∞ 0,
w′′(x)→x→−∞ 0. This implies −cw′(x)− w′′(x)→x→∞ 0, which, coupled to (2.1.27) implies that l = 0 or
l = 1 − µ −K. l = 0 leads to a contradiction, since lim infx→−∞(w(x) + m(x)) > 0, which proves the first
assertion.

To prove the second assertion, we notice that since w cannot have a minimum x̃ ∈ R such that w(x̃) <
1−K−µ, w is monotonic on {x ∈ R; w(x) < 1−K−µ}. This monotony combined to lim infx→−∞ w(x) ≥
1− µ−K > w(x̄) implies that w is decreasing on [x̄,∞).

The main idea of the proof of theorem 2.1.4 is to compare w to solutions of modified Fisher-KPP
equations, which we introduce in the following lemma:

Lemma 2.1.24. Let r, K, µ satisfy Assumptions 2.1.1. Let (c, w,m) ∈ R+ × C∞(R)× C∞(R) be a solution
of (2.1.3), with c ≥ 2 +K. Let also w ∈ C∞(R), w ∈ C∞(R) solutions of −cw′ − w′′ = w(1− w) +K,

w(x)→x→−∞
1+
√

1+4K
2 , w(x)→x→+∞ −

√
1+4K−1

2 ,
(2.1.28)

 −cw′ − w′′ = w(1− 2K − w),

w(x)→x→−∞ 1− 2K, w(x)→x→+∞ 0.
(2.1.29)

Assume w(0) 6 w(0) 6 w(0). Then

∀x 6 0, w(x) 6 w(x) 6 w(x).

Remark 2.1.25. Notice that w+
√

1+4K−1
2 and w are solution of a classical Fisher-KPP equation−cu′−u′′ =

u(a− bu) with a ∈ (0, 1 + 2K), b > 0, and a speed c ≥ 2
√
a. The existence, uniqueness (up to a translation)

and monotony of w and w are thus classical results (see e.g. [238]). Thanks to those relations, the argument
developed in this section can indeed be seen as a precise analysis on the profile of x 7→ u(x) for x > 0 large.

Proof of Lemma 2.1.24. To prove this lemma, we use a sliding method.

• Let wη(x) := w(x+ η). Thanks to Proposition 2.1.23, there exists x0 ∈ R such that w(x) > 1− 2K =
supR wη for all x ≤ x0 (we recall that µ < K). Since limx→∞ w(x) = 0, there exists x0 > 0 such that
w(x) < min[x0,0] w for all x > x0. Then, for η ≥ x0 + x0,

wη(x) < w(x), ∀x 6 0.

We can then define η := inf{η,∀x 6 0, wη(x) 6 w(x)}. We have then wη(x) 6 w(x) for all x ≤ 0. If
η > 0, since inf(−∞,x0] w > 1 − 2K = supR wη and wη(0) = w(η) < w(0) ≤ w(0) (we recall that w is
decreasing, see Remark 2.1.25), there exists x ∈ (x0, 0) such that wη(x) = w(x). x is then a minimum
of w − wη, and thus

0 ≥ −c(w − wη)′(x)− (w − wη)′′(x)
= w(x)(1− µ−m(x)− w(x)) + µm(x)− wη(x)(1− 2K − wη(x))
> w(x)(1− 2K − w(x))− wη(x)(1− 2K − wη(x)) = 0, (2.1.30)

where we have used the estimate ‖m‖∞ ≤ K obtained in Proposition 2.1.7. (2.1.30) is a contradiction,
we have then shown that η̄ ≤ 0, and thus, for all x ≤ 0, w(x) ≤ w(x).

• Similarly, let wη(x) := w(x − η). Since limx→−∞ w(x) > 1 and w satisfies the estimate of Proposi-
tion 2.1.7, we have, for η ∈ R large enough,

∀x 6 0, w(x) < 1 < wη(x).
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We can then define η := inf{η,∀x 6 0, w(x) 6 wη(x)}.We have then w(x) 6 wη for all x ≤ 0. If η > 0,
since supR w < 1 < limx→−∞ w(x) and w(0) ≤ w(0) < w(−η̄) = wη̄(0) (we recall that w is decreasing,
see Remark 2.1.25), there exists x̄ < 0 such that w(x) = wη(x). x̄ is then a minimum of wη − w, and
thus

0 ≥ −c(wη − w)′(x̄)− (wη − w)′′(x̄)
= wη(x̄)(1− wη(x̄)) +K − w(x̄)(1− µ− w(x̄)−m(x̄))− µm(x̄)
> wη(x̄)(1− wη(x̄))− w(x̄)(1− w(x̄)) = 0,

which is a contradiction. We have then shown that η̄ ≤ 0, and thus, for all x ≤ 0, w(x) ≤ w(x).

We also need to compare the solution of the Fisher-KPP equation with speed c to the solutions of the
modified Fisher-KPP equations introduced in Lemma 2.1.24.

Lemma 2.1.26. Let r, K, µ satisfy Assumption 2.1.1, and c ≥ 2 + K. Let (c, u), with u ∈ C∞(R), be a
travelling wave of the Fisher-KPP equation, see (2.1.6). Let also w, w solutions of (2.1.28) and (2.1.29)
respectively. Assume w(0) 6 u(0) 6 w(0). Then

∀x 6 0, w(x) 6 u(x) 6 w(x).

classical

The arguments of the proof of Lemma 2.1.24 can be used to prove Lemma 2.1.26. We omit the details.

We can now prove theorem 2.1.4.

Proof of Theorem 2.1.4. Notice first that c∗ > 2 + K, provided K, µ > 0 are small enough. Let w ∈
C∞(R) and w ∈ C∞(R) satisfying (2.1.28) and (2.1.29) respectively. w and w are then decreasing (see
Remark 2.1.25), and we may assume (up to a translation) that they satisfy w(0) = w(0) = u(0) = w(0).
Then Lemma 2.1.24 and 2.1.26 imply that w(x) 6 w(x), u(x) 6 w(x) for x ≤ 0, and then, ‖w−u‖L∞(−∞,0] 6
‖w − w‖L∞(−∞,0].

Let w̃ = w − w > 0, which satisfies

−cw̃′ − w̃′′ = w̃(1− (w + w)) +K + 2Kw.

We estimate first the maximum of w̃ over {x ∈ R; w(x) 6 3/4−K} to prove the estimate on ‖w̃‖L∞(−∞,0]
stated in Theorem 2.1.4. If w 6 3/4−K, then

− cw′ − w′′ > w(1/4−K). (2.1.31)

Let

λ+ := c+
√
c2 − 4(1/4−K)

2 , λ− := c−
√
c2 − 4(1/4−K)

2 ,

and ϕ(x) := e−λ−x − e−λ+x. Then ϕ satisfies −cϕ′ − ϕ′′ = (1/4 − K)ϕ, ϕ(−∞) = −∞ and ϕ(+∞) = 0.
Moreover, ϕ is positive when x > 0 and negative when x < 0. Finally, the maximum of ϕ is attained at
x := lnλ+−lnλ−

λ+−λ− > 0. One can show that ϕ(x̄) is a continuous and positive function of c and K, which is
uniformly bounded away from 0 for K ∈ (0, 1/8) and c ∈ [2,∞). There exists thus a universal constant
C > 0 such that ϕ(x̄) > C > 0, for any K ∈ (0, 1/8), c ∈ [2,∞). Let γ ∈ (0, 3/4−K) and ϕγ defined by

ϕγ(x) := γ
ϕ(x)
ϕ(x̄) ,

and ϕγη(x) := ϕγ(x+ η) for η ∈ R. Since (for K > 0 small) maxR ϕ
γ ≤ 3/4−K < 1− 2K = limx→−∞ w(x)

and limη→∞ ϕγη(0) = limx→∞ ϕγ(x) = 0 < w(0), we have that for η > 0 large enough,

∀x 6 0, ϕγη(x) 6 w(x).
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Let η̃ := inf{η ∈ R; ∀x 6 0, ϕγη(x) 6 w(x)}. Then ϕγη̃ ≤ w on (−∞, 0], and since ϕγη̃(x) < 0 for x << 0,
either w(0) = ϕγη̃(0), or there exists x̃ ∈ (−∞, 0) such that w(x̃) = ϕγη̃(x̃). In the latter case, x̃ is the
minimum of w − ϕγη̃ , and then

0 ≥ −c(w − ϕγη̃)′(x̃)− (w − ϕγη̃)′′(x̃)
= (1− 2K − w(x̃))w(x̃)− (1/4−K)ϕγη̃(x̃)
≥ (3/4−K − w(x̃))w(x̃) > 0,

since w(x̃) = ϕγη̃(x̃) ≤ γ < 3/4 − K. The above estimate is a contradiction, which implies w(0) = ϕγη̃(0).
Then

(e−λ−η̃ − e−λ+η̃) = w(0)
γ

(
e−λ−x − e−λ+x

)
,

and then
−λ−η̃ ≥ ln

(
w(0)
γ

(
e−λ−x − e−λ+x

))
,

which implies ϕγη(x) ≤ w(x) for all x ∈ (−∞, 0], where the constants γ and η satisfy γ ∈ (0, 3/4 −K) and
η = − 1

λ−
ln
(
w(0)
γ (e−λ−x − e−λ+x)

)
. Passing to the limit γ → 3/4−K, we then get that ϕ3/4−K

η̄ (x) ≤ w(x)
for all x ∈ (−∞, 0], with

η̄ := − 1
λ−

ln
(

w(0)
3/4−K

(
e−λ−x − e−λ+x

))
.

In particular, ϕ3/4−K
η̄ ≤ w implies that {x ∈ (−∞, 0]; w(x) 6 3/4−K} ⊂ [min(0, x− η̄), 0] ⊂ [min(0,−η̄), 0]

(indeed, −η̄ < 0 if w(0) is small enough).
Since supR w = 1− 2K, we have

−cw̃′ − w̃′′ = w̃(1− (w + w)) +K + 2Kw < w̃ +K(3− 4K),

and w̃(0) = 0. We can then introduce ψ(x) = K(3 − 4K) (e−αx − 1), with α = c−
√
c2−4
2 which satisfies

−cψ′ − ψ′′ = ψ +K(3− 4K). A sliding argument (that we skip here) shows that

∀x ≤ 0, w̃(x) 6 ψ(x) = K(3− 4K)
(
e−αx − 1

)
.

This estimate implies that

max
[−η̄,0]

w̃ 6 K(3− 4K) exp
(
− α

λ−
ln
(

w(0)
3/4−K

(
e−λ−x − e−λ+x

)))
6 C Kw(0)−

α
λ− ,

where C > 0 is a universal constant.
We consider now the case where the maximum of w̃ is reached on [−∞, 0) \ {x ∈ R; w(x) 6 3/4 −K}.

If this supremum is a maximum attained in x̄, then w(x̄) +w(x̄) ≥ 3
2 − 2K > 1 (this last inequality holds if

K is small enough), and −cw̃′(x̄)− w̃′′(x̄) > 0, which implies

(w + w − 1)w̃(x) 6 K + 2Kw 6 K(3− 4K),

that is w̃(x) 6 K(3−4K)
1/2−2K ≤ CK for some constant C > 0, provided K > 0 is small enough. If the supremum

is not a maximum, it is possible to obtain a similar estimate, we skip here the additional technical details.
We have shown that

sup
[−∞,0]

w̃ ≤ max
(
CK,CKw(0)−

α
λ−

)
,

We choose now β = (1 + α/λ−)−1 ∈ (0, 1/2) and w(0) = Kβ (we recall that the solution (c, w,m) is still a
solution when w and m are translated). Then, sup[−∞,0] w̃ 6 CKβ , and thus

‖w − u‖L∞((−∞,0]) 6 ‖w̃‖L∞((−∞,0]) 6 CKβ .

Furthermore, w and u are decreasing for x > 0 thanks to Proposition 2.1.23, which implies that

∀x > 0, |w − u|(x) 6 w(x) + u(x) 6 w(0) + u(0) 6 2Kβ .
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From [187], theorem 8.33, there exists a universal constant that we denote C > 0 such that

‖v‖C1,α 6 C, (2.1.32)

where v is a solution of (2.1.6), and this constant C is uniform in the speed c in the neighbourhood of
c0 = 2

√
r. In particular, u satisfies

− c0u′ − u′′ = (c∗ − c0)u′ + u(1− u) = u(1− u) +O(K). (2.1.33)

Let v the solution of (2.1.6) with speed c0 and v(0) = u(0), the above argument can then be reproduced to
show that

‖u− v‖L∞ ≤ CKβ , (2.1.34)

where C is a universal constant and β depend only on r, which finishes the proof.

2.1.6 Appendix
2.1.6.1 Compactness results

We provide here two results that are used in the proof of Theorem 2.1.2.

Lemma 2.1.27 (Elliptic estimates). Let a, b−, b+ ∈ R∗+, g ∈ L∞(−a, a), and γ > 0. For any b+, b− ∈ R
and c ∈ [−γ, γ], the Dirichlet problem  −cw′ − w′′ = g, (−a, a),

w(−a) = b−, w(a) = b+,

has a unique weak solution w. In addition we have w ∈ C1,α([−a, a]) for all α ∈ [0, 1), and there is a constant
C > 0 depending only on a and γ such that

‖w‖C1,α([−a,a]) 6 C(max(|b+|, |b−|) + ‖g‖L∞),

Proof of Lemma 2.1.27. As the domain lies in R, we are not concerned with the regularity problem near the
boundary. Since

L∞(−a, a) ⊂
⋂
p>1

Lp(−a, a),

theorem 9.16 [187] gives us existence and uniqueness of a solution w ∈W 2,p, for all p > 1. We deduce from
Sobolev imbedding that w ∈ C1,α([−a, a]) for all α < 1.

The classical theory ([187], theorem 3.7) gives us a constant C ′ > 0 depending only on a and γ such that

‖w‖L∞ 6 max(b+, b−) + C ′‖g‖L∞ .

The estimate on the Hölder norm of the first derivative comes now from [187], theorem 8.33, which states
that whenever w is a C1,α solution of −cw′ − w′′ = g with g ∈ L∞, then

‖w‖C1,α([−a,a]) 6 C ′′(‖w‖C0([−a,a]) + ‖g‖L∞),

with a constant C ′′ = C ′′(a, γ) depending only on a and γ. That proves the theorem.

Lemma 2.1.28. Let a, b−, b+ ∈ R∗+. The operator (L)−1
D : R× C0([−a, a]) −→ C0([−a, a]) defined by

L−1
D (c, g) = w,

where w is the unique solution of  −cw′ − w′′ = g, (−a, a),

w(−a) = b+, w(a) = b−,

is continuous and compact.
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Proof of Lemma 2.1.28. Let (c, g), (c̃, g̃) ∈ R× C0([−a, a]), γ > 0 and w, w̃ ∈ C0([−a, a]) such that c, c̃ 6 γ
and  −cw′ − w′′ = g on (−a, a),

w(−a) = b+, w(a) = b−, −c̃w̃′ − w̃′′ = g̃ on (−a, a),

w̃(−a) = b+, w̃(a) = b−.

Then w − w̃ satisfies  −c(w − w̃)′ − (w − w̃)′′ = g − g̃ + (c− c̃)w̃′ on (−a, a),

(w − w̃)(−a) = 0, (w − w̃)(a) = 0.

We deduce from Lemma 2.1.27 that there exists a constant C depending only on a > 0 such that

‖w − w̃‖C0 6 C(‖g − g̃‖C0 + |c− c̃|(‖g̃‖C0 + max(b+, b−))),

which shows the pointwise continuity of L−1
D .

Now let (cn, gn) a bounded sequence in R×C0. Let γ = lim sup |cn|. From Lemma 2.1.27 we deduce the
existence of a constant C > 0 depending only on a and γ such that

‖un‖C1 6 C(max(b+, b−) + ‖gn‖C0),

where un = L−1
D (cn, gn), which shows that (gn) is bounded in C1. Since C1 is compactly embedded in C0,

there exists a w ∈ C0 such that ‖un − w‖C0 → 0. This shows the compactness of L−1
D .

2.1.6.2 Properties of the reaction terms

The proofs of Theorem 2.1.3 requires precise estimates on the reaction terms fw and fm. Here we prove a
number of technical lemmas that are necessary for our study.

Lemma 2.1.29. Let r, K, µ satisfy Assumption 2.1.1, and φw, φm defined by (2.1.22) and (2.1.23) respec-
tively. Then, φw, φm : R+ → R are decreasing functions such that

φw([0,K]) ⊂ (µ,∞), φm([0, 1]) ⊂ (µK/r,∞).

Proof of Lemma 2.1.29. We prove the lemma for φm. The results on φw follow since both functions coincide
when r = K = 1. The fact that φm is decreasing simply comes from the computation of its derivative:

φ′m(w) = 1
2

−1 +
−2
(
K − µK

r − w
)

+ 4µKr

2
√(

K − µK
r − w

)2
+ 4µKr w

 ,
one can check that φ′m(w) < 0 for all w ≥ 0 as soon as µ < r

2 . Next, we can estimate φm(w) for w > 0 large:

φm(w) =
w + µK

r −K
2

−1 +
√√√√1 + 4µKw

r
(
w + µK

r −K
)2


=

w + µK
r −K
2

 2µKw

r
(
w + µK

r −K
)2 + o(1/w)


= µK

r
+ o(1),

that is limw→∞ φm(w) = µK
r , which, combined to the variation of φw, shows that φm([0, 1]) ⊂ (µK/r,∞).
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Lemma 2.1.30. Let r, K, µ satisfy Assumption 2.1.1, φw, φm defined by (2.1.22) and (2.1.23) respectively.

Zw = {(w,m) ∈ (0, 1)× (0,K)/fw(w,m) = 0},

Zm = {(w,m) ∈ (0, 1)× (0,K)/fm(w,m) = 0},

and denote
D = (0, 1)× (0,K). (2.1.35)

Then:

1. Zw can be described in two ways:

Zw = {(φw(m),m) ,m ∈ (0,K)} , (2.1.36)

and
Zw = {(w,ϕw(w)) , w ∈ (µ, 1)} ∩ D, (2.1.37)

where ϕw(w) = w(1−µ−w)
w−µ .

2. Similarly, Zm can be described as:

Zm = {(w, φm(w)) , w ∈ (0, 1)} , (2.1.38)

and
Zm =

{
(ϕm(m),m) ,m ∈

(
µK

r
,K

)}
∩ D, (2.1.39)

where ϕm(m) := m(K−µKr −m)
m−µKr

.

Proof of Lemma 2.1.30. Notice that point 1 can be obtained from point 2 by setting r = K = 1. Thus, we
are only going to prove point 2. We write

fm(w,m) = rm

(
1− w +m

K

)
+ µ(w −m) = − r

K
m2 +

(
r − µ− r

K
w
)
m+ µw.

Since ∆ =
(
r − µ− r

Kw
)2 + 4µrK w > 0 for any w ≥ 0, fm(w,m) = 0 admits only two solutions for w ≥ 0

fixed. Those write:
1
2

(
(K − µK

r
− w)±

√
(K − µK

r
− w)2 + 4µK

r
w

)
,

one of those two solutions is negative for all w 6= 0, so that fm(w,m) = 0 with (w,m) ∈ D implies that
m = φm(w), which leads to (2.1.38).

Thanks to Lemma 2.1.29, m > µK/r on Zm, f(w,m) = 0 with (w,m) ∈ D then implies w = ϕm(m).
For m ∈

(
0, µKr

)
, ϕm(m) is decreasing and


ϕm(0) = 0,

lim
m→(µKr )−

ϕm(m) = −∞,

so that ϕm(m) < 0 for m ∈
(

0, µKr
)
. That proves (2.1.39).

The next lemma proves that f admits only one zero in D, and proves some inclusions between fm > 0
and fw > 0.

Lemma 2.1.31. Let r, K, µ satisfy Assumption 2.1.1, φw, φm, ϕw, ϕm defined by (2.1.22), (2.1.23), (2.1.37)
and (2.1.39) respectively. Then φw and ϕm are convex, strictly decreasing functions over (0,K) and

(
µK
r ,K

)
respectively.
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Proof of Lemma 2.1.31. We have already shown that φw is decreasing on (0,K). We compute:

φ′w(m) = −1
2

(
1 + 1− 3µ−m√

(1− µ−m)2 + 4µm

)
.

Computing the second derivative, we find:

φ′′w(m) = (1− µ−m)2 + 4µm− (1− 3µ−m)2

2 ((1− µ−m)2 + 4µm)
3
2

= 2µ(1− 2µ)
((1− µ−m)2 + 4µm)

3
2
> 0,

so that φw is convex over R+. Thanks to polynomial arithmetics, we compute:

ϕm(m) =
m
(
K
(
1− µ

r

)
−m

)
m− µK

r

= K

(
1− 2µ

r

)
−m+

µK2

r

(
1− 2µ

r

)
m− µK

r

,

which makes ϕm obviously convex and strictly decreasing on
(
µK
r ,K

)
.

Lemma 2.1.32. There exists a unique solution to the problem:

fw(w,m) = fm(w,m) = 0, (2.1.40)

with (w,m) ∈ (0, 1)× (0,K).

Proof of Lemma 2.1.32. We write:

fw = w(1− µ− w) +m(µ− w).

Since µ < 1
2 , we have

fw(µ,m) = µ(1− 2µ) > 0,

so that there cannot be a solution of fw(w,m) = 0 with w = µ. Thus, fw(w,m) = 0 if and only if

m = w(1− µ− w)
w − µ

. (2.1.41)

Substituting (2.1.41) in fm(w,m) = 0, we get:

(2.1.40)⇒ r
w(1− µ− w)

w − µ

(
1−

w(1−µ−w)
w−µ + w

K

)
︸ ︷︷ ︸

A

+ µ

(
w − w(1− µ− w)

w − µ

)
︸ ︷︷ ︸

B

= 0.

We compute:
A = rw(1− µ− w)

K(w − µ)2 (w(K + 2µ− 1)− µK) ,

B = µ
w(2w − 1)
w − µ

.

From now on we assume w 6= 0. Then:

(2.1.40)⇒ C(w) := r

K
(1− µ− w)(w(K + 2µ− 1)− µK) + µ(2w − 1)(w − µ) = 0.

Now C is a polynomial function of degree at most 2. We compute:

C(0) = µ(1− r(1− µ)) < 0,

C(1) = µ
(

1− µ+ r

K
((1− µ)(1−K)− µ)

)
> 0,
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under the following assumptions:
µ < 1− 1

r
,

K <
r

r − 1

(
1− µ

1− µ

)
.

That proves the uniqueness of a solution of (2.1.40) with w ∈ (0, 1).
Now recall the notations of lemmas 2.1.30 and 2.1.31. The existence of a solution to problem (2.1.40) is

equivalent to showing Zm ∩ Zw 6= ∅. Since:

Φw
(
µK

r

)
∈ R,

lim
m→(µKr )+

ϕm(m) = +∞,

Φw(K) = 1
2

(
1− µ−K +

√
(1− µ−K)2 + 4µK

)
> 0,

ϕm(K) = − µ

r − µ
< 0,

and since Φw and ϕm are continuous over
(
µK
r ,K

)
, there exists a solution to ϕm(m) = Φw(m) with

m ∈
(
µK
r ,K

)
.

Since ∀m ∈ (0,K), 0 < Φw(m) < 1, that gives us a solution to (2.1.40), and proves Lemma 2.1.32.

Lemma 2.1.33. Let D = (0, 1)× (0,K),

Zw = {fw = 0} ∩ D = {w = φw(m)} ∩ D, Z−w = {fw < 0} ∩ D = {w > φw(m)} ∩ D,

Zm = {fm = 0} ∩ D = {m = φm(w) = 0} ∩ D, Z−m = {fm < 0} ∩ D = {m > φm(w) < 0} ∩ D,
and

Dl = {(w,m) ∈ D, w ≤ w∗,m ≥ m∗},
Dr = {(w,m) ∈ D, w ≥ w∗,m ≤ m∗},

where (w∗,m∗) is the only solution of fm = fw = 0 in D. Then

Zm ∪ Zw ⊂ Dl ∪ Dr. (2.1.42)

Moreover,
Z−w ∩ Dl ⊂ Z−m, (2.1.43)
Z−m ∩ Dr ⊂ Z−w . (2.1.44)

Remark 2.1.34. Let

Z+
w = {fw > 0} ∩ D = {w < φw(m)} ∩ D, Z+

m = {fm > 0} ∩ D = {m < φm(w)} ∩ D.

Lemma 2.1.33 implies that
Z+
m ∩ Dl ⊂ Z+

w , Z+
w ∩ Dr ⊂ Z+

m.

Proof of Lemma 2.1.33. Assertion (2.1.42) comes from the fact that Φw and ϕm are decreasing.
Assertion (2.1.43) comes from the fact that Φw − ϕm is negative for m close to

(
µK
r

)+
and does not

change sign in
(
µK
r ,m

∗
)
since (w∗,m∗) is the only solution of (2.1.40). A similar argument proves assertion

(2.1.44)

The last thing we need here is an estimate of the behaviour of m∗(µ, r,K) when µ→ 0:

Lemma 2.1.35. For µ < 1−K, we have

m∗(µ, r,K) ≤
µK
r (1− µ)

1− µ−K
(
1− 2µ

r

) . (2.1.45)
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Proof of Lemma 2.1.35. Recall the notations of Lemma 2.1.31. From Lemma 2.1.32 we know that m∗ is the
only solution of Φw = ϕm that lies in (0,K). Since m 7→

√
m is increasing and 1− µ−K > 0, we have:

Φw(m) ≥ 1− µ−m. (2.1.46)

We deduce then:
ϕm(m)− Φw(m) ≤ ϕm(m)− (1− µ−m).

Now ϕm − Φw is positive near
(
µK
r

)+
, and for w ∈

(
µK
r ,m

∗
)
,

0 < ϕm(w)− Φw(w) ≤ ϕm(w)− (1− µ−m),

which means that if m̄ satisfies
ϕm(m̄) = 1− µ− m̄. (2.1.47)

then m̄ ≥ m∗. A simple computation shows that the only solution of (2.1.47) is:

m̄ =
µK
r (1− µ)

1− µ−K
(
1− 2µ

r

) ,
which finishes to prove Lemma 2.1.35
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2.2 Pulsating fronts for Fisher-KPP systems with mutations as models in
evolutionary epidemiology

2.2.1 Introduction
This work is concerned with the heterogeneous reaction diffusion system∂tu = ∂xxu+ u [ru(x)− γu(x)(u+ v)] + µ(x)v − µ(x)u, t > 0, x ∈ R,

∂tv = ∂xxv + v [rv(x)− γv(x)(u+ v)] + µ(x)u− µ(x)v, t > 0, x ∈ R,
(2.2.1)

where ru, rv are periodic functions and γu, γv, µ are periodic positive functions. After discussing the
existence of nontrivial steady states via bifurcation technics, we construct pulsating fronts, despite the lack
of comparison principle for (2.2.1). Before going into mathematical details, let us describe the relevance of
the the above system in evolutionary epidemiology.

System (2.2.1) describes a theoretical population divided into two genotypes with respective densities
u(t, x) and v(t, x), and living in a one-dimensional habitat x ∈ R. We assume that each genotype yields
a different phenotype which also undergoes the influence of the environment. The difference in phenotype
is expressed in terms of growth rate, mortality and competition, but we assume that the diffusion of the
individuals is the same for each genotype. Finally, we take into account mutations occuring between the two
genotypes.

The reaction coefficients ru and rv represent the intrinsic growth rates, which depend on the environment
and take into account both birth and death rates. Notice that ru and rv may take some negative values,
in deleterious areas where the death rate is greater than the birth rate. Function µ corresponds to the
mutation rate between the two species. It imposes a truly cooperative dynamics in the small populations
regime, and couples the dynamics of the two species. In particular, one expects that, at least for small
mutation rates, mutation aids survival and coexistence. We also make the assumption that the mutation
process is symmetric. From the mathematical point of view, this simplifies some of the arguments we use
and improves the readability of section 2.2. We have no doubt that similar results hold in the non-symmetric
case, though the proofs may be more involved.

In this context, the ability of the species to survive globally in space depends on the sign of the principal
eigenvalue of the linearized operator around extinction (0, 0), as we will show further, which involves the
coefficients ru, rv, µ.

Finally, γu and γv represent the strength of the competition (for e.g. a finite resource) between the two
strains. The associated dynamics arises when populations begin to grow. It has no influence on the survival
of the two species, but regulates the equilibrium densities of the two populations.

Such a framework is particularly suited to model the propagation of a pathogenic species within a
population of hosts. Indeed system (2.2.1) can easily be derived from a host-pathogen microscopic model
[P1] in which we neglect the influence of the pathogen on the host’s diffusion.

In a homogeneous environment the role of mutations, allowing survival for both u and v, has recently
been studied by Griette and Raoul [P2], through the system

∂tu = ∂xxu+ u(1− (u+ v)) + µ(v − u)

∂tv = ∂xxv + rv

(
1− u+ v

K

)
+ µ(u− v).

On the other hand, it is known that the spatial structure has a great influence on host-parasites systems,
both at the epidemiological and evolutionary levels [62], [22], [257]. In order to understand the influence of
heterogeneities, we aim at studying steady states and propagating solutions, or fronts, of system (2.2.1).
Traveling fronts in homogeneous environments. In a homogeneous environment, propagation in reaction
diffusion equations is typically described by traveling waves, namely solutions to the parabolic equation
consisting of a constant profile shifting at a constant speed. This goes back to the seminal works [170], [238]
on the Fisher-KPP equation

∂tu = ∆u+ u(1− u),
a model for the spreading of advantageous genetic features in a population. The literature on traveling
fronts for such homogeneous reaction diffusion equations is very large, see [170], [238], [19, 20], [169], [181],
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[53] among others. In such situations, many techniques based on the comparison principle — such as some
monotone iterative schemes or the sliding method [47]— can be used to get a priori bounds, existence and
monotonicity properties of the solution.

Nevertheless, when considering nonlocal effects or systems, the comparison principle may no longer be
available so that the above techniques do not apply and the situation is more involved. One usually uses
topological degree arguments to construct traveling wave solutions: see [46], [163], [6], [200] for the nonlocal
Fisher-KPP equation, [8] for a bistable nonlocal equation, [7] for a nonlocal equation in an evolutionary con-
text, [P2] for a homogeneous system in an evolutionary context... Notice also that the boundary conditions
are then typically understood in a weak sense, meaning that the wave connects 0 to “something positive”
that cannot easily be identified: for example, in the nonlocal Fisher-KPP equation the positive steady state
u ≡ 1 may present a Turing instability.

In a heterogeneous environment, however, it is unreasonable to expect the existence of such a solution.
The particular type of propagating solution we aim at constructing in our periodic case is the so called
pulsating front, first introduced by [354] in a biological context, and by Xin [408, 407, 405] in the framework
of flame propagation.
Pulsating fronts in heterogeneous environments. The definition of a pulsating front is the natural extension,
in the periodic framework, of the aforementioned traveling waves. We introduce a speed c and shift the origin
with this speed to catch the asymptotic dynamics. Technically, a pulsating front (with speed c) is then a
profile (U(s, x), V (s, x)) that is periodic in the space variable x, and that connects (0, 0) to a non-trivial
state, such that (u(t, x), v(t, x)) := (U(x− ct, x), V (x− ct, x)) solves (2.2.1). Equivalently, a pulsating front
is a solution of (2.2.1) connecting (0, 0) to a non-trivial state, and that satisfies the constraint(

u

(
t+ L

c
, x

)
, v

(
t+ L

c
, x

))
= (u(t, x− L), v(t, x− L)), ∀(t, x) ∈ R2.

As far as monostable pulsating fronts are concerned, we refer among others to the seminal works of Wein-
berger [398], Berestycki and Hamel [48]. Let us also mention [221], [50], [197], [199] for related results.

One of the main difficulties we encounter when studying system (2.2.1) is that two main dynamics co-
exist. On the one hand, when the population is small, (2.2.1) behaves like a cooperative system which enjoys
a comparison principle. On the other hand, when the population is near a non-trivial equilibrium, (2.2.1) is
closer to a competitive system. Since those dynamics cannot be separated, our system does not admit any
comparison principle, and standard techniques such as monotone iterations cannot be applied. As far as we
know, the present work is the first construction of pulsating fronts in a KPP situation (see [113], [207] for
an ignition type nonlinearity and a different setting) where comparison arguments are not available.

2.2.2 Main results and comments
2.2.2.1 Assumptions, linear material and notations

Periodic coefficients. Throughout this work, and even if not recalled, we always make the folllowing
assumptions. Functions ru, rv, γu, γv, µ : R → R are smooth and periodic with period L > 0. We assume
further that γu, γv and µ are positive. We denote their bounds

0 < γ0 ≤ γu(x), γv(x) ≤ γ∞

0 < µ0 ≤ µ(x) ≤ µ∞

r0 ≤ ru(x), rv(x) ≤ r∞,

for all x ∈ R. Notice that ru and rv are allowed to take negative values, which is an additional difficulty,
in particular in the proofs of Lemma 2.2.13 and Lemma 2.2.21. The fact that ru, rv do not have a positive
lower bound is the main reason why we need to introduce several types of eigenvalue problems, see (2.2.19)
and (2.2.34), to construct subsolutions of related problems.
On the linearized system around (0, 0). We denote by A the symmetric matrix field arising after
linearizing system (2.2.1) near the trivial solution (0, 0), namely

A(x) :=

ru(x)− µ(x) µ(x)

µ(x) rv(x)− µ(x)

 . (2.2.2)
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Since A(x) has positive off-diagonal coefficients, the elliptic system associated with the linear operator
−∆−A(x) is cooperative, fully coupled and therefore satisfies the strong maximum principle as well as other
convenient properties [87].

Remark 2.2.1 (Cooperative elliptic systems and comparison principle). Cooperative systems enjoy similar
comparison properties as scalar elliptic operators. In particular, [87] and [127] show that the maximum
principle holds for cooperative systems if the principal eigenvalue is positive. Moreover, Section 13 (see also
the beginning of Section 14) of [87] shows that, for so-called fully coupled systems (which is the case of all the
operators we will encounter since µ(x) ≥ µ0 > 0), the converse holds. These facts will be used for instance
in the proof of Lemma 2.2.12.

Let us now introduce a principal eigenvalue problem that is necessary to enunciate our main results.

Definition 2.2.2 (Principal eigenvalue). We denote by ł the principal eigenvalue of the stationary operator
−∆−A(x) with periodic conditions, where A is defined in (2.2.2).

In particular, we are equipped through this work with a principal eigenfunction Φ :=

ϕ
ψ

 satisfying

{
−Φxx −A(x)Φ = łΦ
Φ is L-periodic, Φ is positive, ‖Φ‖L∞ = 1.

(2.2.3)

For more details on principal eigenvalue for systems, we refer the reader to [87], in particular to Theorem
13.1 (Dirichlet boundary condition) which provides the principal eigenfunction. Furthermore, in the case of
symmetric (self-adjoint) systems as the one we consider, the equivalent definition [127, (2.14)] provides some
additional properties, in particular that the eigenfunction minimizes the Rayleigh quotient.

Function spaces. To avoid confusion with the usual function spaces, we denote the function spaces on
a couple of functions with a bold font. Hence Lp(Ω) := Lp(Ω) × Lp(Ω) for p ∈ [1,∞] and Hq(Ω) :=
Hq(Ω)×Hq(Ω) for q ∈ N are equipped with the norms∥∥∥∥∥∥

u
v

∥∥∥∥∥∥
Lp

:=

∥∥∥∥∥∥
‖u‖Lp
‖v‖Lp

∥∥∥∥∥∥
p

,

∥∥∥∥∥∥
u
v

∥∥∥∥∥∥
Hq

:=

∥∥∥∥∥∥
‖u‖Hq
‖v‖Hq

∥∥∥∥∥∥
2

.

Similarly, Cα,β := Cα,β×Cα,β for α ∈ N and β ∈ [0, 1] is equipped with

∥∥∥∥∥∥
u
v

∥∥∥∥∥∥
Cα,β

:= max (‖u‖Cα,β , ‖v‖Cα,β )

and Cα := Cα,0. The subscript of those spaces denotes a restriction to a subspace : Lpper, Hq
per, C0

per, C0,1
per,

C1
per for L-periodic functions, H1

0 for functions that vanish on the boundary, etc. Those function spaces are
Banach spaces, and H1, H1

per, H1
0, L2 and L2

per have a canonical Hilbert structure.

2.2.2.2 Main results

As well-known in KPP situations, the sign of the principal eigenvalue ł is of crucial importance for the fate of
the population: we expect extinction when ł > 0 and propagation (hence survival) when ł < 0. To confirm
this scenario, we first study the existence of a nontrivial nonnegative steady state of problem (2.2.1), that is
a nontrivial nonnegative L-periodic solution to the system

−p′′ = (ru(x)− γu(x)(p+ q))p+ µ(x)q − µ(x)p

−q′′ = (rv(x)− γv(x)(p+ q))q + µ(x)p− µ(x)q.
(2.2.4)

Theorem 2.2.3 (On nonnegative steady states). If ł > 0 then (0, 0) is the only nonnegative steady state of
problem (2.2.1).

On the other hand, if ł < 0 then there exists a nontrivial positive steady state (p(x) > 0, q(x) > 0) of
problem (2.2.1).
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Next we turn to the long time behavior of the Cauchy problem associated with (2.2.1). First, we prove
extinction when the principal eigenvalue is positive.

Proposition 2.2.4 (Extinction). Assume ł > 0. Let a nonnegative and bounded initial condition (u0(x), v0(x))
be given. Then, any nonnegative solution (u(t, x), v(t, x)) of (2.2.1) starting from (u0(x), v0(x)) goes extinct
exponentially fast as t→∞, namely

max
(
‖u(t, ·)‖L∞(R), ‖v(t, ·)‖L∞(R)

)
= O(e−łt).

The proof of Proposition 2.2.4 is rather simple so we now present it. The cooperative parabolic system∂tū = ∂xxū+ (ru(x)− µ(x))ū+ µ(x)v̄

∂tv̄ = ∂xxv̄ + (rv(x)− µ(x))v̄ + µ(x)ū,
(2.2.5)

enjoys the comparison principle, see [171, Theorem 3.2]. On the one hand, any nonnegative (u(t, x), v(t, x))
solution of (2.2.1) is a subsolution of (2.2.5). On the other hand one can check that (Mϕ(x)e−łt,Mψ(x)e−łt)
— with (ϕ,ψ) the principal eigenfunction satisfying (2.2.3)— is a solution of (2.2.5) which is initially larger
than (u0, v0), if M > 0 is sufficiently large. Conclusion then follows from the comparison principle.

The reverse situation ł < 0 is much more involved. Since in this case we aim at controlling the solution
from below, the nonlinear term in (2.2.1) has to be carefully estimated. When ł < 0, as a strong indication
that the species does invade the whole line, we are going to construct pulsating fronts for (2.2.1).

Definition 2.2.5 (Pulsating front). A pulsating front for (2.2.1) is a speed c > 0 and a classical positive
solution (u(t, x), v(t, x)) to (2.2.1), which satisfy the constraintu(t+ L

c , x)

v(t+ L
c , x)

 =

u(t, x− L)

v(t, x− L)

 , ∀(t, x) ∈ R2, (2.2.6)

and supplemented with the boundary conditions

lim inf
t→+∞

u(t, x)

v(t, x)

 >

0

0

 , lim
t→−∞

u(t, x)

v(t, x)

 =

0

0

 , (2.2.7)

locally uniformly w.r.t. x.

Following [50], we introduce a new set of variables that correspond to the frame of reference that follows
the front propagation, that is (s, x) := (x− ct, x). In these new variables, system (2.2.1) transfers into

−(uxx + 2uxs + uss)− cus = (ru(x)− γu(x)(u+ v))u+ µ(x)v − µ(x)u

−(vxx + 2vxs + vss)− cvs = (rv(x)− γv(x)(u+ v))v + µ(x)u− µ(x)v,
(2.2.8)

and the constraint (2.2.6) is equivalent to the L-periodicity in x of the solutions to (2.2.8). An inherent
difficulty to this approach is that the underlying elliptic operator, see the left-hand side member of system
(2.2.8), is degenerate. This requires to consider a regularization of the operator and to derive a series of
a priori estimates that do not depend on the regularization, see [48] or [50]. In addition to this inherent
difficulty, the problem under consideration (2.2.1) does not admit a comparison principle, in contrast with
the previous results on pulsating fronts. Nevertheless, as in the traveling wave case, if we only require
boundary conditions in a weak sense — see (2.2.7) in Definition 2.2.5— then we can construct a pulsating
front for (2.2.1) when the underlying principal eigenvalue is negative. This is the main result of section
2.2 since, as far as we know, this is the first construction of a pulsating front in a KPP situation without
comparison principle.

Theorem 2.2.6 (Construction of a pulsating front). Assume ł < 0. Then there exists a pulsating front
solution to (2.2.1).
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As clear in our construction through the section 2.2, the speed c∗ > 0 of the pulsating front of Theorem
2.2.6 satisfies the bound

0 < c∗ ≤ c̄0 := inf{c ≥ 0 : ∃λ > 0, µc,0(λ) = 0},

where µc,0(λ) is the first eigenvalue of the operator

Sc,λ,0Ψ := −Ψxx + 2λΨx + [λ(c− λ)Id−A(x)] Ψ

with L-periodic boundary conditions. In previous works on pulsating fronts [398], [48], [50], it is typically
proved that c̄0 is actually the minimal speed of pulsating fronts (and that faster pulsating fronts c > c̄0 also
exist). Nevertheless, those proofs seem to rely deeply on the fact that pulsating fronts, as in Definition 2.2.5,
are increasing in time, which is far from obvious in our context without comparison. We conjecture that
this remains true but, for the sake of conciseness, we leave it as an open question.

The section 2.2 is organized as follows. Section 2.2.3 is concerned with the proof of Theorem 2.2.3 on
steady states. In particular the construction of nontrivial steady states requires an adaptation of some
bifurcations results [329, 330], [123] that are recalled in Appendix, Section 2.2.6.1. The rest of the section
2.2 is devoted to the proof of Theorem 2.2.6, that is the construction of a pulsating front. We first consider
in Section 2.2.4 an ε-regularization of the degenerate problem (2.2.8) in a strip, where existence of a solution
is proved by a Leray-Schauder topological degree argument. Then, in Section 2.2.5 we let the strip tend to
R2 and finally let the regularization ε tend to zero to complete the proof of Theorem 2.2.6. This requires,
among others, a generalization to elliptic systems of a Bernstein-type gradient estimate performed in [49],
which is proved in Appendix, Section 2.2.6.2.

2.2.3 Steady states
This section 2.2.3 is devoted to the proof of Theorem 2.2.3. The main difficulty is to prove the existence of
a positive steady state to (2.2.1) when ł < 0. To do so, we shall use the bifurcation theory introduced in the
context of Sturm-Liouville problems by Crandall and Rabinowitz [123], [329, 330]. Though an equivalent
result may be obtained using a topological degree argument, this efficient theory shows clearly the relationship
between the existence of solutions to the nonlinear problem and the sign of the principal eigenvalue of the
linearized operator near zero.

We shall first state and prove an independent theorem that takes advantage of the Krein-Rutman theorem
in the context of a bifurcation originating from the principal eigenvalue of an operator. We will then use
this theorem to show the link between the existence of a non-trivial positive steady state for (2.2.1), and the
sign of the principal eigenvalue defined in (2.2.3).

2.2.3.1 Bifurcation result, a topological preliminary

We first prove a general bifurcation theorem, interesting by itself, which will be used as an end-point
of the proof of Theorem 2.2.3. It consists in a refinement of the results in [123], [330, 329], under the
additional assumption that the linearized operator satisfies the hypotheses of the Krein-Rutman Theorem.
Our contribution is to show that the set of nontrivial fixed points only “meets” R × {0} at point ( 1

ł(T ) , 0),
with ł(T ) the principal eigenvalue of the linearized operator T : as shown in the proof of Theorem 2.2.7, the
only trivial solution (in R× {0}) which is also in the closure of the set of positive solutions is ( 1

λ1(T ) , 0).
This theorem is independent from the rest of the section 2.2 and we will thus use a different set of

notations.

Theorem 2.2.7 (Bifurcation under Krein-Rutman assumption). Let E be a Banach space. Let C ⊂ E be
a closed convex cone with nonempty interior IntC 6= ∅ and of vertex 0, i.e. such that C ∩ −C = {0}. Let

F : R× E → E

(α, x) 7→ F (α, x)

be a continuous and compact operator, i.e. F maps bounded sets into relatively compact ones. Let us define

S := {(α, x) ∈ R× E\{0} : F (α, x) = x}
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the closure of the set of nontrivial fixed points of F , and

PRS := {α ∈ R : ∃x ∈ C\{0}, (α, x) ∈ S}

the set of nontrivial solutions in C.
Let us assume the following.

1. ∀α ∈ R, F (α, 0) = 0.

2. F is Fréchet differentiable near R × {0} with derivative αT locally uniformly w.r.t. α, i.e. for any
α1 < α2 and ε > 0 there exists δ > 0 such that

∀α ∈ (α1, α2), ‖x‖ ≤ δ ⇒ ‖F (α, x)− αTx‖ ≤ ε‖x‖.

3. T satisfies the hypotheses of Theorem 2.2.23 (Krein-Rutman), i.e. T (C\{0}) ⊂ IntC. We denote by
ł(T ) > 0 its principal eigenvalue.

4. S ∩ ({α} × C) is bounded locally uniformly w.r.t. α ∈ R.

5. There is no fixed point on the boundary of C, i.e. S ∩ (R× (∂C\{0})) = ∅.

Then, either
(
−∞, 1

λ1(T )

)
⊂ PRS or

(
1

λ1(T ) ,+∞
)
⊂ PRS.

Proof. Let us first give a short overview of the proof. Since ł is a simple eigenvalue, we know from Theorem
2.2.24 that there exists a branch of nontrivial solutions originating from

( 1
ł , 0
)
. We will show that this

branch is actually contained in R × C, thanks to Theorem 2.2.25. Since it cannot meet R × {0} except at( 1
ł , 0
)
, it has to be unbounded, which proves our result.

Let us define
SC := {(α, x) ∈ R× (C\{0}) : F (α, x) = x}

which is a subset of S, and α1 := 1
λ1(T ) . We may call (α, x) ∈ SC a degenerate solution if x ∈ ∂C, and a

proper solution otherwise.
Our first task is to show that the only degenerate solution is {(α1, 0)}. We first show SC ∩ (R× ∂C) ⊂

{(α1, 0)}. Let (α, x) ∈ SC ∩ (R× ∂C) be given. By item 5 we must have x = 0. Let (αn, xn)→ (α, 0) such
that xn ∈ C \ {0} and F (αn, xn) = xn. Let us define yn = xn

‖xn‖ ∈ C \ {0}. On the one hand since yn is a
bounded sequence and T is a compact operator, up to an extraction the sequence (Tyn) converges to some
z which, by item 3, must belong to C. On the other hand

yn = xn
‖xn‖

= αnTyn + F (αn, xn)− αnTxn
‖xn‖

= αz + o(1)

in virtue of items 1 and 2, so that in particular z 6= 0 and α 6= 0. Since yn → αz and Tyn → z we have
z = αTz. Hence z ∈ C \{0} is an eigenvector for T associated with the eigenvalue 1

α so that Theorem 2.2.23
(Krein-Rutman) enforces α = 1

ł(T ) = α1.
Next we aim at showing the reverse inclusion, that is {(α1, 0)} ⊂ SC ∩ (R × ∂C). We shall use the

topological results of Appendix 2.2.6.1, namely Theorem 2.2.24 and Theorem 2.2.25. Let z ∈ C be the
eigenvector of T associated with λ1(T ) such that ‖z‖ = 1, T ∗ the dual of T , and l ∈ E′ the eigenvector1 of
T ∗ associated with λ1(T ) such that 〈l, z〉 = 1, where 〈·, ·〉 denotes the duality between E and its dual E′.

Now, for ξ > 0 and η ∈ (0, 1), let us define

K+
ξ,η := {(α, x) ∈ R× E : |α− α1| < ξ, 〈l, x〉 > η‖x‖}.

The above sets are used to study the local properties of S near the branching point (α1, 0). More precisely,
it follows from Theorem 2.2.25 that S\{(α1, 0)} contains a nontrivial connected component C+

α1
which is

included in K+
ξ,η and near (α1, 0) :

∀ξ > 0,∀η ∈ (0, 1),∃ζ0 > 0,∀ζ ∈ (0, ζ0), (C+
α1
∩Bζ) ⊂ K+

ξ,η,

1Let us recall that according to the Fredholm alternative, we have dim ker(I − λT ) = dim ker(I − λT ∗) < ∞ so that each
eigenvalue of T is an eigenvalue of T ∗ with the same multiplicity.
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where
Bζ = {(α, x) ∈ R× E : |α− α1| < ζ, ‖x‖ < ζ}.

Moreover, C+
α1

satisfies either item 1 or 2 in Theorem 2.2.24. Let us show that (C+
α1
∩Bζ) ⊂ R×C for ζ > 0

small enough, i.e.
∃ζ > 0, (C+

α1
∩Bζ) ⊂ R× C. (2.2.9)

To do so, assume by contradiction that there exists a sequence (αn, xn)→ (α1, 0) such that

∀n ∈ N, (αn, xn) ∈ C+
α1

and xn /∈ C.

Writing xn
‖xn‖ = αnT xn

‖xn‖ + F (αn,xn)−αnTxn
‖xn‖ and reasoning as above, we see that (up to extraction) the

sequence
(

xn
‖xn‖

)
converges to some w such that Tw = 1

α1
w = ł(T )w. As a result w = z or w = −z (recall

that z is the unique eigenvector of T such that z ∈ C and ‖z‖ = 1). But the property 〈l, xn〉 ≥ η‖xn‖
enforces xn

‖xn‖ → z. Since xn
‖xn‖ 6∈ C and z ∈ IntC, this is a contradiction. Hence (2.2.9) is proved.

Since C+
α1

is connected and C+
α1
∩ (R × ∂C) = ∅ by item 5, we deduce from (2.2.9) that C+

α1
⊂ SC .

Moreover, since by definition {(α1, 0)} ∈ C+
α1 and SC is closed, we have

{(α1, 0)} ⊂ SC ∩ (R× ∂C).

We have then established that {(α1, 0)} is the only degenerate solution in C i.e. SC∩(R×∂C) = {(α1, 0)}.
As stated above, there exists a branch C+

α1
of solutions such that {(α1, 0)} ⊂ C+

α1 , and such that C+
α1
⊂ SC .

Since C+
α1

cannot meet R × {0} at (α, 0) 6= (α1, 0), it follows from Theorem 2.2.25 that C+
α1

is unbounded.
It therefore follows from item 4 that there exists a sequence (αn, xn) ∈ C+

α1
with |αn| → ∞. Since C+

α1
contains only proper solutions (i.e. C+

α1
∩ (R × ∂C) = ∅), the projection PR(C+

α1
) of C+

α1
on R is included

in PRS. Finally, the continuity of the projection PR and the fact that C+
α1

is connected show that either
(α1, α

n) ⊂ PR(C+
α1

) or (αn, α1) ⊂ PR(C+
α1

), depending on α1 ≤ αn or αn ≤ α1. Letting n → ∞ proves
Theorem 2.2.7.

2.2.3.2 A priori estimates on steady states

In order to meet the hypotheses of Theorem 2.2.7 in section 2.2.3.3, we prove some a priori estimates on
stationary solutions. We have in mind to apply Theorem 2.2.7 in the cone of nonnegativity of L∞per(R).
Specifically, Lemma 2.2.8 will be used to meet item 4 (the solutions are locally bounded), and Lemma 2.2.9
will be used to meet item 5 (there is no solution on the boundary of the cone).

Lemma 2.2.8 (Uniform upper bound). There exists a constant C = C(r∞, µ∞, γ0) > 0 such that any
nonnegative periodic solution (p, q) to (2.2.4) satisfies p(x) ≤ C and q(x) ≤ C, for all x ∈ R.

Proof. Let

p
q

 be a solution to system (2.2.4), so that

 −p′′ ≤ p(ru − γup) + q(µ− γup)

−q′′ ≤ q(rv − γvq) + p(µ− γvq).
(2.2.10)

Let us define C := max
(
r∞

γ0 ,
µ∞

γ0

)
> 0. Denote by x0 a point where p reaches its maximum, so that

−p′′(x0) ≥ 0. Assume by contradiction that p(x0) > C. Then, in virtue of (2.2.10), one has −p′′(x0) ≤
p(x0)(ru(x0) − γu(x0)C) < 0, which is a contradiction. Thus p ≤ C. Inequality q ≤ C is proved the same
way.

Lemma 2.2.9 (Positivity of solutions). Any nonnegative periodic solution (p, q) to (2.2.4) such that (p, q) 6≡
(0, 0) actually satisfies p(x) > 0 and q(x) > 0, for all x ∈ R.

Proof. Write  −p′′ ≥ p(ru − µ− γu(p+ q))

−q′′ ≥ q(rv − µ− γv(p+ q)),
and the result is a direct application of the strong maximum principle.
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2.2.3.3 Proof of the result on steady states

We are now in the position to prove Theorem 2.2.3.
The ł > 0 case is an immediate consequence of the extinction result, namely Proposition 2.2.4.
The reverse situation ł < 0, where we need to prove the existence of a nontrivial steady state, is more

involved. We shall combine our a priori estimates of section 2.2.3.2 with our bifurcation result, namely
Theorem 2.2.7. We will also use the ł > 0 case. We want to stress eventually that we will use the notations
introduced in section 2.2.2.1, in particular for functional spaces.

Before starting the proof itself, we would like to present briefly the core of the argument we use. We
introduce a new parameter β ∈ R and look at the modified system −p′′ = p(ru + β − γu(p+ q)) + µ(q − p)

−q′′ = q(rv + β − γv(p+ q)) + µ(p− q)
(2.2.11)

which is system (2.2.4) with ru (resp. rv) replaced by ru + β (resp. rv + β). We apply Theorem 2.2.7 to
system (2.2.11) with the bifurcation parameter β. There exists then a branch of solutions originating from
β = ł, and which spans to β → +∞ since the eigenvalue of the linearization of system (2.2.11) is positive
for β < ł (i.e. no solution exists for β ∈ (−∞, ł)). In particular there exists a solution for β = 0 since ł < 0.
Let us make this argument rigorous.

The ł < 0 case. We start with the following lemma.

Lemma 2.2.10 (Fréchet differentiability). Let

f

p
q

 :=

−γu(p+ q)p

−γv(p+ q)q

 .

Then, the induced operator L∞per(R) −→ L∞per(R) is Fréchet differentiable at

0

0

 with derivative 0L∞ .

Proof. We need to show that ∥∥∥∥∥∥f
p
q

∥∥∥∥∥∥
L∞per(R)

= o


∥∥∥∥∥∥
p
q

∥∥∥∥∥∥
L∞per(R)



as

∥∥∥∥∥∥
p
q

∥∥∥∥∥∥
L∞per(R)

→ 0. We have

∥∥∥∥∥∥f
p
q

∥∥∥∥∥∥
L∞per(R)

≤ γ∞
∥∥∥∥∥∥
p
q

∥∥∥∥∥∥
L∞per(R)

‖p+ q‖L∞per(R) ≤ 2γ∞
∥∥∥∥∥∥
p
q

∥∥∥∥∥∥
2

L∞per(R)

which proves the lemma.

We are now in the position to complete the proof of Theorem 2.2.3. It follows from classical theory that,
for M > 0 large enough, the problem

−

p̃
q̃

′′ −A(x)

p̃
q̃

+M

p̃
q̃

 =

p
q

p̃
q̃

 ∈ H1
per

(2.2.12)
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has a unique weak solution

p̃
q̃

, for each

p
q

 ∈ L2
per. Let us call L−1

M the associated operator, namely

L−1
M : L2

per → H1
perp

q

 7→

p̃
q̃

 .

Notice that, assumingM > −λ1, the principal eigenvalue associated with problem (2.2.12) is ł′ := ł+M > 0,
and recall that the actual algebraic eigenvalue ł(L−1

M ) of the operator L−1
M is given by

λ1(L−1
M ) = 1

ł′ > 0.

From elliptic regularity, the restriction of L−1
M to L∞per(R) maps L∞per(R) into C0,θ

per(R), 0 < θ < 1, and
L−1
M is therefore a compact operator on L∞per(R). Hence,

F : R× L∞per(R) → L∞per(R)α,
p
q

 7→ L−1
M

f
p
q

+ α

p
q


is a continuous and compact map, to which we aim at applying Theorem 2.2.7. Let us recall that the cone
of nonegativity

C :=


p
q

 ∈ L∞per(R) :

p
q

 ≥
0

0


is, as required by Theorem 2.2.7, a closed convex cone of vertex 0 and nonempty interior in L∞per. Finally,

we want to stress that solutions to F

α,
p
q

 =

p
q

 are classical solutions to the system

−

p
q

′′ −A(x)

p
q

 = f

p
q

+ (α−M)

p
q

 (2.2.13)

which is equivalent to system (2.2.11) with β = α−M , where α is the bifurcation parameter. Let us check
that all assumptions of Theorem 2.2.7 are satisfied.

1. Clearly we have ∀α ∈ R, F

α,
0

0

 =

0

0

.

2. From Lemma 2.2.10 and the composition rule for derivatives, F is Fréchet differentiable near R ×
0

0

 with derivative αL−1
M locally uniformly w.r.t. α.

3. From the comparison principle (available for L−1
M since ł′ > 0, see [87]), L−1

M satisfies the hypotheses
of the Krein-Rutman Theorem, namely L−1

M (C \ {0}) ⊂ IntC.

4. Lemma 2.2.8 shows that, for any α∗ < α∗, S ∩ (α∗, α∗) × C is bounded (in view of system (2.2.11),
the constant C defined in the proof of Lemma 2.2.8 is locally bounded w.r.t. α).

5. From Lemma 2.2.9, any nonnegative fixed point is positive, i.e. S ∩ (R× (∂C\{0})) = ∅.
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We may now apply Theorem 2.2.7 which states that either S∩({α}×(C \{0})) 6= ∅ for any α ∈ (ł′,+∞)
or S ∩ ({α}× (C \{0})) 6= ∅ for any α ∈ (−∞, ł′). Invoking the case of positive principal eigenvalue (see the
begininning of the present section), we see that there is no nonnegative nontrivial fixed points when α < ł′.
As a result we have

∀α ∈ (ł′,+∞),S ∩ ({α} × (C \ {0})) 6= ∅.

In particular, since ł′ = M + ł < M , there exists a positive fixed point for α = M , which is a classical
solution of (2.2.13). This completes the proof of Theorem 2.2.3.

2.2.4 Towards pulsating fronts: the problem in a strip
We have established above the existence of a nontrivial periodic steady state (p(x) > 0, q(x) > 0) when the
first eigenvalue of the linearized stationary problem ł is negative. The rest of the section 2.2 is devoted to
the construction of a pulsating front, see Definition 2.2.5, when ł < 02.

In order to circumvent the degeneracy of the elliptic operator in (2.2.8) we need to introduce a regular-
ization via a small positive parameter ε. Also, in order to gain compactness, the system (2.2.8) posed in
(s, x) ∈ R2 (recall that s = x − ct) is first reduced to a strip (s, x) ∈ (−a, a) × R (recall the periodicity in
the x variable).

More precisely, let us first define the constants a∗0 > 0 (minimal size of the strip in the s variable on
which we impose a normalization), ν0 > 0 (maximal normalization), and K0 > 0 by

a∗0 := 2
√

5
−ł , ν0 := min

(
1, −ł

4γ∞ ,min
x∈R

(p(x), q(x))
)
,

K0 := max
(

8γ∞maxx∈R(p(x) + q(x))
−ł , 1 + max

x∈R

(
p(x)
q(x) ,

q(x)
p(x)

))
.

Also we define the strip Ω0 := (−a0, a0)×R for a0 ≥ a∗0. We keep a0 as a degree of freedom since it is crucial
in the proof of Theorem 2.2.18 to impose a normalization on a wide enough set.

Theorem 2.2.11 (A solution of the regularized problem in a strip). Assume ł < 0. Let a0 > a∗0, 0 < ν < ν0
and K > K0 be given. Then there is C > 0 such that, for any ε ∈ (0, 1), there is ā = āε > 0 (whose
definition can be found in Lemma 2.2.13 item 4) such that: for any a ≥ a0 + ā, there exist a L-periodic
in x and positive (u(s, x), v(s, x)), bounded by C, and a speed c ∈ (0, c̄ε + ε), solving the following mixed
Dirichlet-periodic problem on the domain Ω := (−a, a)× R

Lεu− cus = u(ru − γu(u+ v)) + µv − µu in Ω

Lεv − cvs = v(rv − γv(u+ v)) + µu− µv in Ω

(u, v)(−a, x) = (Kp(x),Kq(x)), ∀x ∈ R

(u, v)(a, x) = (0, 0), ∀x ∈ R

sup
Ω0

(u+ v) = ν,

(2.2.14)

where Lε := −∂xx − 2∂xs − (1 + ε)∂ss and the speed c̄ε ≥ 0 is defined in Lemma 2.2.12.

This whole section 2.2.4 is concerned with the proof of Theorem 2.2.11. In order to use a topological
degree argument, we transform continuously our problem until we get a simpler problem for which we know
how to compute the degree explicitely.

Our first homotopy allows us to get rid of the competitive behaviour of the system. Technically we
interpolate the nonlinear terms −γuuv, −γvuv with the linear terms −γuu q

K , −γvv pK respectively, to obtain
system (2.2.20) which is truly cooperative. In particular, since the boundary condition at s = −a is a super-
solution to (2.2.20), we can prove the existence of a unique solution to (2.2.20) for each c ∈ R via a monotone
iteration technique, the monotonicity of the constructed solutions and further properties. Nevertheless we
still need to compute the degree explicitely, to which end we use a second homotopy that interpolates the
right-hand side of (2.2.20) with a linear term, and then a third homotopy to get rid of the coupling between

2In Section 2.2.4 and Section 2.2.5 even if not stated we always assume ł < 0.
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the speed c and the profiles u and v. At this point we are equipped to compute the degree. For related
arguments in a traveling wave context, we refer the reader to [46], [7, 8], [P2].

The role of the a priori estimates in sections 2.2.4.1, 2.2.4.2 and 2.2.4.3 is to ensure that there is no
solution on the boundary of the open sets that we choose to contain our problem, and thus that the degree
is a constant along our path. In section 2.2.4.4, we complete the proof of Theorem 2.2.11.

Before that, we need to establish some properties on the upper bound c̄ε for the speed in Theorem 2.2.11.

Lemma 2.2.12 (On the upper bound for the speed). Let

Sc,λ,εΨ := −Ψxx + 2λΨx + [λ(c− (1 + ε)λ)Id−A(x)] Ψ,

and define
c̄ε = inf {c ≥ 0,∃λ > 0, µc,ε(λ) = 0} , (2.2.15)

where µc,ε(λ) is the first eigenvalue of the operator Sc,λ,ε with L-periodic boundary conditions. Then the
following holds.

1. For any ε ∈ (0, 1), we have c̄ε < +∞.

2. We have c̄ε = min {c ≥ 0,∃λ > 0, µc,ε(λ) = 0}.

3. ε 7→ c̄ε is nondecreasing.

Proof. 1. We need to prove that the set in the right-hand side of (2.2.15) is non-empty. We first notice

that µc,ε(0) = ł < 0 for any c > 0. Next, for the eigenfunction Φ :=

ϕ
ψ

 solving (2.2.3), we have

Sc,λ,εΦ = łΦ + 2λΦx + λ(c− (1 + ε)λ)Φ. In particular for λ = c
2 , we have

Sc, c2 ,εΦ ≥ (ł + c2

4 (1− ε))Φ + cΦx ≥

0

0


as soon as c ≥ c∗ where c∗ > 0 depends only on the quantities min(ϕ,ψ), ‖Φx‖L∞ and −ł. Recalling,
see [87], that the eigenvalue is given by

µc∗,ε

(c∗
2

)
= sup

{
ρ ∈ R : ∃Ψ ∈ C2

per,Ψ > 0, Sc, c2 ,εΨ− ρΨ ≥ 0
}
,

it follows from the above that µc∗,ε
(
c∗
2
)
≥ 0. Since the principal eigenvalue of Sc,λ,ε is continuous3

with respect to λ (and c), there exists λ ∈ (0, c∗2 ] such that µc∗,ε(λ) = 0, which proves that (2.2.15) is
well-posed.

2. For the eigenfunction Φ solving (2.2.3), we have

Sc,λ,εΦ ≤ 2λΦx − λ2
(

1 + ε− c

λ

)
Φ <

0

0


as soon as λ ≥ λ∗ where λ∗ > 0 depends only on min(ϕ,ψ), ‖Φx‖L∞ , and an upper bound for c.
Hence the maximum principle does not hold for Sc,λ,ε, and it follows from [87, Theorem 14.1] that
µc,ε(λ) ≤ 0.
Now, we consider sequences cn ↘ c̄ε, and λn ≥ 0 such that µcn,ε(λn) = 0. From the above, we have
λn ≤ λ∗ so that, up to extraction, λn → λ∞. From the continuity of the principal eigenvalue, we
deduce that µc̄ε,ε(λ∞) = 0, and the infimum in (2.2.15) is attained.

3This property is potentially false in general but has a simple proof in our setting. Take a sequence of operators Tn → T
that send a proper cone C into K ⊂ Int C with K compact, i.e. Tn(C) ⊂ K and T (C) ⊂ K. Assume that the series of
normalized eigenvectors xn ∈ C s.t. Tnxn = λnxn diverges, then we can extract to sequences x1

n → y ∈ C and x2
n → z ∈ C

with y 6= z. Extracting further, there exists µ and ν s.t. Ty = µy and Tz = νz which is a contradiction since y 6= z. Hence the
continuity of the eigenvalue.
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3. Let ε′ ≤ ε and c > 0 such that there is a positive solution Θ to Sc,λ,εΘ =

0

0

. Then Sc,λ,ε′Θ =

(ε− ε′)λ2Θ ≥

0

0

 so that, as in the proof of item 1, there exists 0 < λ′ ≤ λ such that µc,ε′(λ′) = 0.

Thus
{c ≥ 0,∃λ > 0, µc,ε(λ) = 0} ⊂ {c ≥ 0,∃λ > 0, µc,ε′(λ) = 0}.

Taking the infimum on c yields c̄ε′ ≤ c̄ε.
Lemma 2.2.12 is proved.

2.2.4.1 Estimates along the first homotopy

Let us recall that the role of the first homotopy is to get rid of the competition of our original problem
(τ = 1), so that the classical comparison methods become available for τ = 0. Notice that it is crucial
that the Dirichlet condition at s = −a is a supersolution for the τ = 0 problem, in order to apply a sliding
method in the following section. Hence, for 0 ≤ τ ≤ 1, we consider the problem

Lεu− cus = u[ru − γu(u+ (τv + (1− τ) qK ))] + µv − µu

Lεv − cvs = v[rv − γv((τu+ (1− τ) pK ) + v)] + µu− µv

(u, v)(−a, x) = (Kp(x),Kq(x)), ∀x ∈ R

(u, v)(a, x) = (0, 0), ∀x ∈ R,

(2.2.16)

complemented with the normalization condition

sup
Ω0

(u+ v) = ν, (2.2.17)

whose role is to bound the admissible speeds (see for instance item 4 below).

Lemma 2.2.13 (A priori estimates along the first homotopy). Let a nonnegative (u, v) ∈ C1
per(Ω) (where

Ω = (−a, a) × R and the periodicity is understood only w.r.t. the x ∈ R variable) and c ∈ R solve (2.2.16),
with 0 ≤ τ ≤ 1. Then

1. (u, v) is a classical solution to (2.2.16), i.e. (u, v) ∈ C2(Ω).

2. The positive constant C := max( 2r∞
γ0 ,K max(p+ q)) is such that

u(s, x) + v(s, x) ≤ C, ∀(s, x) ∈ Ω = [−a, a]× R.

3. (u, v) is positive in Ω.

4. Let λ0 > 0 and Φ0(x) =

Φu(x)

Φv(x)

 >

0

0

 be such that Sc̄ε,λ0,εΦ0 = 0 and ‖Φ0‖L∞per(R) = 1. Define

ā = āε := max(− 1
λ0

ln
(
νmin(Φu,Φv)
4Kmax(p,q)

)
, 1). Then if a ≥ a0 + ā and c ≥ c̄ε, we have sup

Ω0

(u+ v) < ν
2 .

5. If c = 0 and a ≥ a0 + 1 then

sup
Ω0

(u+ v) ≥ −λ
ε
1

γ∞
− max(p+ q)

K
, (2.2.18)

where λε1 is the principal eigenvalue of the operator Lε −A(x) defined in (2.2.19).

Proof. 1. This is true from classical elliptic regularity. We omit the details.
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2. In view of (2.2.16), the sum S := u+ v satisfies

LεS − cSs = ruu+ rvv − γuu(u+ (1− τ) qK + τv)− γvv(v + (1− τ) pK + τu)

≤ r∞S − γ0(u2 + v2).

Since S2 = u2 + 2uv + v2 ≤ 2(u2 + v2), we have

LεS − cSs ≤
γ0

2 S
(

2r∞
γ0 − S

)
.

Since the maximum principle holds for the operator Lε − c∂s independently of c and ε > 0, S cannot
have an interior local maximum which is greater than 2r∞

γ0 . This along with the boundary conditions
S(−a, x) = K(p(x) + q(x)), S(a, x) = 0 proves item 2.

3. Assume that there exists (s0, x0) ∈ (−a, a)× R such that u(s0, x0) = 0. Since

Lεu− cus ≥ u
[
ru (x)− γu (x)

(
u+

(
τv + (1− τ) q

K

))
− µ (x)

]
,

the strong maximum principle enforces u ≡ 0 which contradicts the boundary condition at s = −a.
The same argument applies to v.

4. Let ζ(s, x) := Be−λ0sΦ0(x), B > 0. Then we have

Lεζ − cζs = Be−λ0s (Sc̄ε,λ0,εΦ0 +A(x)Φ0 + λ0(c− c̄ε)Φ0) = A(x)ζ + λ0(c− c̄ε)ζ ≥ A(x)ζ

so that ζ is a strict supersolution to problem (2.2.16). By item 2, one can define

B0 := inf

B > 0,∀(s, x) ∈ [−a, a]× R,

u(s, x)

v(s, x)

 ≤ ζ(s, x)

 > 0

and ζ0(s, x) =

ζu(s, x)

ζv(s, x)

 := B0e−λ0sΦ0(x). From the strong maximum principle in (−a, a)×R, and

the s = a boundary condition, the touching point — between

u
v

 and

ζu
ζv

— has to lie on s = −a.

Thus there exists x0 such that either ζu(−a, x0) = u(−a, x0) or ζv(−a, x0) = v(−a, x0). In any case
one has B0 ≤ Ke−λ0a max(p,q)

min(Φu,Φv) , which in in turn implies

sup
Ω0

(u+ v) ≤ 2B0e
λ0a0 ≤ 2K max(p, q)

min(Φu,Φv)
e−λ0(a−a0) ≤ 2K max(p, q)

min(Φu,Φv)
e−λ0ā ≤ ν

2 ,

in view of the definition of ā. This proves item 4.

5. Assume by contradiction that sup
Ω0

(u + v) < −λε1
γ∞ −

max(p+q)
K (which in particular enforces λε1 < 0).

Then, in (−a0, a0)× R, we have Lεu = (ru − µ− γu(u+ τv + (1− τ) qK ))u+ µv ≥ (ru − µ+ λε1)u+ µv

Lεv = (rv − µ− γv(v + τu+ (1− τ) pK ))v + µu ≥ (rv − µ+ λε1)v + µu.

Denote by Φε(s, x) :=

ϕ̄(s, x)

ψ̄(s, x)

 the principal eigenvector associated with λε1 (vanishing at s = ±a0,

L periodic in x) normalized by ‖Φ̄ε‖L∞per(R) = 1, see problem (2.2.19). Define

A0 := max{A > 0 : Aϕ̄(s, x) ≤ u(s, x) and Aψ̄(s, x) ≤ v(s, x),∀(s, x) ∈ [−a0, a0]× R}.
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Then we have A0ϕ̄ ≤ u, A0ψ̄ ≤ v, with equality at at least one point for at least one equation, say
A0ϕ̄(s0, x0) = u(s0, x0) for some −a0 < s0 < a0 and x0 ∈ R. But

Lε(u−A0ϕ̄)− (ru − µ+ λε1)(u−A0ϕ̄) ≥ µ(v −A0ψ̄) ≥ 0,

so that the strong maximum principle enforces u ≡ A0ϕ̄, which is a contradiction since u is positive
on (−a, a)×R and ϕ̄ vanishes on {±a0} ×R. A similar argument leads to a contradiction in the case
v(s0, x0) = A0ψ̄(s0, x0). This proves item 5.

Lemma 2.2.13 is proved.

Item 5 of the above lemma is relevant only when λε1 < 0, which is actually true if a0 > 0 is large enough,
as proved below. Let us denote by λε1, Φε(s, x) the principal eigenvalue, eigenfunction solving the mixed
Dirichlet-periodic eigenproblem

LεΦε = A(x)Φε + λε1Φε in Ω0 = (−a0, a0)× R

Φε(−a0, x) = Φε(a0, x) = 0 ∀x ∈ R

Φε(s, x) is periodic w.r.t. x

Φε >

0

0

 in Ω0 = (−a0, a0)× R.

(2.2.19)

Lemma 2.2.14 (An estimate for λε1). We have λε1 ≤ ł + 5
2a2

0
(1 + ε).

Proof. Since the matrix A(x) is symmetric, we are equipped with the Rayleigh quotient

λε1 = inf
w∈H1

0,per×H1
0,per

∫
(−a0,a0)×(0,L) ( twxwx + 2 twxws + (1 + ε) twsws − twA(x)w) dsdx∫

(−a0,a0)×(0,L)
tww dsdx .

Let us denote Φ(x) =

ϕ(x)

ψ(x)

 the principal eigenvector solving (2.2.3), and define

Φ̄ := ‖Φ‖−1
L2
per

Φ.

We define the test function w(s, x) := η(s)Φ̄(x), with η(s) :=
√

15
16a5

0
(a0−s)(a0+s), so that

∫
(−a0,a0) η

2(s)ds =
1. Noticing that

∫
twxwsdxds = 0, we get

λε1 ≤
∫

(0,L)
( tΦ̄xΦ̄x − tΦ̄A(x)Φ̄)(x)dx+

∫
(−a0,a0)

(1 + ε)η2
s(s)ds = ł + 5

2a2
0

(1 + ε),

which shows the result.

Remark 2.2.15 (Consistency of the choice of parameters in Theorem 2.2.11). Let us say a word on the
choice of the positive parameters (a∗0, ν0, K0) in Theorem 2.2.11. First, the choice of a∗0 and Lemma 2.2.14
imply that λε1 ≤ 3ł

4 for any ε ∈ (0, 1) and a0 ≥ a∗0. Then, (2.2.18) and the choices of K0, ν0 imply that, for
c = 0,

sup
Ω0

(u+ v) ≥ −ł
2γ∞ ≥ 2ν0.

In particular, item 5 in Lemma 2.2.13 gives a true lower bound for sup
Ω0

(u+ v) in the case c = 0.
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2.2.4.2 Estimates for the end-point τ = 0 of the first homotopy

We introduce the problem 

Lεu− cus = u(ru − γu(u+ q
K )) + µv − µu

Lεv − cvs = v(rv − γv( pK + v)) + µu− µv

(u, v)(−a, x) = (Kp(x),Kq(x)), ∀x ∈ R

(u, v)(a, x) = (0, 0), ∀x ∈ R,

(2.2.20)

which corresponds to (2.2.16) with τ = 0 and for which comparison methods are available. In this section
we derive refined estimates for (2.2.20) that will allow us to enlarge the domain on which the degree is
computed, which is necessary for the second homotopy that we will perform.

Lemma 2.2.16 (On problem (2.2.20)). 1. For each c ∈ R, there exists a unique nonnegative solution
(u, v) to (2.2.20), which satisfies

∀(s, x) ∈ Ω, 0 < u(s, x) < Kp(x) and 0 < v(s, x) < Kq(x). (2.2.21)

2. Let c ∈ R and (u, v) the nonnegative solution to (2.2.20). Then u and v are nonincreasing in s.

3. The mapping c 7→

u
v

 is decreasing, where (u, v) is the unique nonnegative solution to (2.2.20).

Proof. In this proof we denote

f :

x,
u
v

 7→
u(ru(x)− γu(x)(u+ q

K )) + µ(x)v − µ(x)u

v(rv(x)− γv(x)( pK + v)) + µ(x)u− µ(x)v

 (2.2.22)

so that (2.2.20) is recast Lε

u
v

 − c

u
v


s

= f

x,
u
v

. We select M > 0 large enough so that

f(x, ·) +MId is uniformly nondecreasing on [0, C]2, with C the constant from Lemma 2.2.13, that is0

0

 ≤
u1

v1

 ≤
u2

v2

 ≤
C
C

⇒ f

x,
u2

v2

− f
x,

u1

v1

 ≥ −M
u2 − u1

v2 − v1

 ,

for all x ∈ R.

1. We first claim that (s, x) 7→ (Kp(x),Kq(x)) is a strict supersolution to problem (2.2.20). Since
K ≥ K0, we have p+ q < Kp ≤ Kp+ q

K so that

Lε(Kp)− c(Kp)s = −(Kp)′′

= (Kp)(ru(x)− γu(x)(p+ q)) + µ(x)Kq − µ(x)Kp

> (Kp)(ru(x)− γu(x)(Kp+ q
K )) + µ(x)(Kq)− µ(x)(Kp),

and similarly

Lε(Kq)− c(Kq)s > (Kq)(rv(x)− γv(x)( pK +Kq)) + µ(x)(Kp)− µ(x)(Kq),

which proves the claim. Obviously, (s, x) 7→

0

0

 is a strict subsolution to problem (2.2.20) because

of the boundary condition at s = −a. Since system (2.2.20) is cooperative, the classical monotone
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iteration method shows that, for any c ∈ R, there exists at least a solution (u, v) to problem (2.2.20)
which satisfies (2.2.21).
Next, in order to prove uniqueness, let (u, v) and (ũ, ṽ) be two nonnegative solutions to (2.2.20), such
that (u, v) 6= (ũ, ṽ). Then, for any 0 < ζ < 1, (Uζ , V ζ) := (ζu, ζv) satisfies

LεU
ζ − cUζs = Uζ(ru − γu q

K − µ−
γu(x)
ζ Uζ) + µ(x)V ζ

< Uζ(ru − γu q
K − µ− γu(x)Uζ) + µ(x)V ζ

LεV
ζ − cV ζs = V ζ(rv − γv pK − µ−

γv(x)
ζ V ζ) + µ(x)Uζ

< V ζ(rv − γv pK − µ− γv(x)V ζ) + µ(x)Uζ

(Uζ , V ζ)(−a, x) = (ζKp(x), ζKq(x)) ≤ (Kp(x),Kq(x))

(Uζ , V ζ)(a, x) = (0, 0),

and is therefore a strict subsolution to problem (2.2.20). From Hopf lemma we know that (ũs, ṽs)(a, x) <
(0, 0) so that we can define

ζ0 := sup{ζ > 0 : (Uζ , V ζ)(s, x) < (ũ, ṽ)(s, x),∀(s, x) ∈ Ω} > 0.

Then we have (0, 0) ≤ (Uζ0 , V ζ0) ≤ (ũ, ṽ) ≤ (C,C). Assume by contradiction that ζ0 < 1. Then we
have 

Lε(ũ− Uζ0)− c(ũ− Uζ0)s +M(ũ− Uζ0) ≥ 0

Lε(ṽ − V ζ0)− c(ṽ − V ζ0)s +M(ṽ − V ζ0) ≥ 0

(ũ− Uζ0 , ṽ − V ζ0)(−a, x) ≥ (0, 0)

(ũ− Uζ0 , ṽ − V ζ0)(a, x) = (0, 0).

From Hopf lemma we deduce

((ũ− Uζ0)s, (ṽ − V ζ0)s)(a, x) < (0, 0)

so that there exists (s0, x0) ∈ (−a, a) × R such that, say, ũ(s0, x0) = Uζ0(s0, x0). From the strong
maximum principle we deduce ũ ≡ Uζ0 , which is a contradiction in view of the boundary condition
at s = −a. We conclude that ζ0 ≥ 1 and thus (u, v) ≤ (ũ, ṽ). Then exchanging the roles of (u, v)
and (ũ, ṽ) in the above argument, we get that (ũ, ṽ) ≤ (u, v) so that finally (ũ, ṽ) = (u, v). This is
in contradiction with our initial hypothesis. We conclude that the nonnegative solution to equation
(2.2.20) is unique.

2. For given c ∈ R, let (u, v) be the solution to (2.2.20). In order to use a sliding technique, we define

(ut(s, x), vt(s, x)) := (u(s+ t, x), v(s+ t, x))

for t > 0 and (s, x) ∈ [−a, a− t]× R. From the boundary conditions, there is δ > 0 such that

∀t ∈ (2a− δ, 2a),∀(s, x) ∈ (−a, a− t)× R, ut(s, x) < u(s, x) and vt(s, x) < v(s, x).

In particular, one can define

t0 := inf{t > 0,∀(s, x) ∈ [−a, a− t], ut(s, x) ≤ u(s, x) and vt(s, x) ≤ v(s, x)}.

Assume by contradiction that t0 > 0. Then there exists (s0, x0) ∈ (−a, a − t0) × R such that, say,
ut0(s0, x0) = u(s0, x0) (notice that s0 = −a and s0 = a− t0 are prevented by (2.2.21)). Since we have

Lε

ut0 − u
vt0 − v

− c
ut0 − u
vt0 − v


s

+M

ut0 − u
vt0 − v

 = (f +M)

ut0
vt0

− (f +M)

u
v

 ≤ 0

and

ut0 − u
vt0 − v

 ≤ 0, the strong maximum principle implies ut0 ≡ u, which contradicts 0 < u < Kp.

We conclude that t0 = 0, which means that u and v are nonincreasing in s.
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3. Let (c, u, v) and (c̃, ũ, ṽ) two solutions of equation (2.2.20) with c < c̃. As above, we define

(ũt(s, x), ṽt(s, x)) := (ũ(s+ t, x), ṽ(s+ t, x)),

and
t0 := inf{t > 0,∀(s, x) ∈ [−a, a− t], ũt(s, x) ≤ u(s, x) and ṽt(s, x) ≤ v(s, x)}.

Assume by contradiction that t0 > 0. Then there again exists (s0, x0) ∈ (−a, a − t0) × R such that,
say, ũt0(s0, x0) = u(s0, x0). Moreover we have

Lε

ũt0 − u
ṽt0 − v

− c
ũt0 − u
ṽt0 − v


s

+M

ũt0 − u
ṽt0 − v


= (f +M)

ũt0
ṽt0

− (f +M)

u
v

+ (c̃− c)

ũt0
ṽt0


s

≤

0

0

 ,

since ũs ≤ 0 and ṽs ≤ 0 (recall that ũ and ṽ are decreasing), so that we again derive a contradiction.

As a result t0 = 0 , that is

ũ
ṽ

 ≤
u
v

 and then

ũ
ṽ

 <

u
v

 from the strong maximum principle.

The lemma is proved.

2.2.4.3 Estimates along the second homotopy

The second homotopy allows us to get rid of the nonlinearity and the coupling in u and v at the expense of
an increased linear part. For 0 ≤ τ ≤ 1, we consider

Lεu− cus = τ
(
u
(
ru − γu q

K − µ− γuu
)

+ µv
)
− (1− τ)Cu

Lεv − cvs = τ
(
v
(
rv − γv pK − µ− γvv

)
+ µu

)
− (1− τ)Cv

(u, v)(−a, x) = (Kp(x),Kq(x)), ∀x ∈ R

(u, v)(a, x) = (0, 0), ∀x ∈ R,

(2.2.23)

with

C := −min
x∈R

(
ru(x)− γu(x)

(
q(x)
K

+ C

)
− µ(x), rv(x)− γv(x)

(
p(x)
K

+ C

)
− µ(x), 0

)
(2.2.24)

where C is as in Lemma 2.2.13 item 2.

Lemma 2.2.17 (A priori estimates along the second homotopy). Let a nonnegative (u, v) ∈ C1
per(Ω) (where

Ω = (−a, a) × R and the periodicity is understood only w.r.t. the x ∈ R variable) and c ∈ R solve (2.2.23),
with 0 ≤ τ ≤ 1. Then

1. (u, v) is a classical solution to (2.2.23), i.e. (u, v) ∈ C2(Ω).

2. We have
u(s, x) + v(s, x) ≤ C, ∀(s, x) ∈ Ω̄ = [−a, a]× R.

3. (u, v) is positive in Ω.

4. If a ≥ a0 + ā and c ≥ c̄ε, we have sup
Ω0

(u+ v) < ν
2 , where ā is as in Lemma 2.2.13 item 4.

5. There exists c = c(a) ≥ 0 such that if c ≤ −c(a) then sup
Ω0

(u+ v) > ν.
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Proof. Items 1, 2, 3 and 4 can be proved as in Lemma 2.2.13. We therefore omit the details, and only focus
on item 5.

From item 2 and the choice of C we see that, for any 0 ≤ τ ≤ 1,

Lεu− cus + Cu ≥ 0, u(−a, x) = Kp(x), u(a, x) = 0.

Now, let α± := −c±
√
c2+4(1+ε)C

2(1+ε) and m := Kmin
x∈R

(p(x), q(x)) > 0. Then the function θ(s, x) = θ(s) :=

m eα−s+α+a−eα+s+α−a

e(α+−α−)a−e(α−−α+)a solves

Lεθ − cθs + Cθ = 0, θ(−a) = m, θ(a) = 0.

From the comparison principle, we infer that u(s, x) ≥ θ(s), and similarly v(s, x) ≥ θ(s), for all (s, x) ∈
(−a, a)× R. As a result sup

Ω0

(u+ v) ≥ 2 sup(−a0,a0) θ ≥ 2θ(0).

Next, for c ≤ −c1(a) := − 1+ε
a ln 4 one has e(α−−α+)a ≤ 1

4 so that

θ(0) ≥ meα+a − eα−a

e(α+−α−)a = meα−a
(

1− e(α−−α+)a
)
≥ m3eα−a

4 .

Next, thanks to a Taylor expansion, we have

α− = −c
2(1 + ε)

(
1−

√
1 + 4(1 + ε)C

c2

)
= −c

2(1 + ε)

(
−2(1 + ε)C

c2
+ o

(
1
c2

))
= C
c

+ o

(
1
|c|

)
so that there exists c2 = c2(a) > 0 such that for any c ≤ −c2(a) we have eα−a > 2

3 . As a result when
c ≤ −c(a) := −max(c1(a), c2(a)), we have

sup
Ω0

(u+ v) ≥ m ≥ ν0 > ν,

which proves item 5.

2.2.4.4 Proof of Theorem 2.2.11

Equipped with the above estimates, we are now in the position to prove Theorem 2.2.11 using three ho-
motopies and the Leray Schauder topological degree. To do so, let us define the following open subset of
R×C1

per(Ω)

Γ :=


c,

u
v

 ∈ R×C1
per(Ω) : c ∈ (0, c̄ε + ε),

0

0

 <

u
v

 <

C
C

 in Ω


where Ω = (−a, a)× R, and C > 0 is the constant defined in Lemma 2.2.13 item 2.
• We develop the first homotopy argument. For 0 ≤ τ ≤ 1, let us define the operator

Fτ : R×C1
per(Ω) → R×C1

per(Ω)

where Fτ

c,
u
v

 =

c̃,
ũ
ṽ

, with

c̃ = c+ sup
Ω0

(ũ+ ṽ)− ν

and

ũ
ṽ

 is the unique solution in C1
per(Ω) of the linear problem



Lεũ− cũs = u(ru − γu(u+ (τv + (1− τ) qK ))) + µv − µu

Lεṽ − cṽs = v(rv − γv((τu+ (1− τ) pK ) + v)) + µu− µv

(u, v)(−a, x) = (Kp(x),Kq(x)), ∀x ∈ R

(u, v)(a, x) = (0, 0), ∀x ∈ R.
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From standard elliptic estimates, for any 0 ≤ τ ≤ 1, Fτ maps C1
per(Ω) into C2

per(Ω), which shows that Fτ
is a compact operator in C1

per(Ω). Moreover Fτ depends continuously on the parameter 0 ≤ τ ≤ 1. The
Leray-Schauder topological argument can thus be applied: in order to prove that the degree is independent
of the parameter τ , it suffices to show that there is no fixed point of Fτ on the boundary ∂Γ, which will be

a consequence of estimates in section 2.2.4.1. Indeed, let

c,
u
v

 = (c, u, v) be a fixed point of Fτ in Γ.

1. From Lemma 2.2.13, Lemma 2.2.14 and Remark 2.2.15 we know that if c = 0 then sup
Ω0

(u+ v) > ν so

that c̃ > c, which is absurd. That shows c 6= 0 .

2. From Lemma 2.2.13 we know that if c ≥ c̄ε then sup
Ω0

(u+ v) < ν so that c̃ < c, which is absurd. That

shows c < c̄ε + ε.

3. From Lemma 2.2.13 we know that u < C and v < C.

4. From Lemma 2.2.13 and the boundary condition at s = −a, we know that u > 0 and v > 0 in
[−a, a)× R. Moreover, we know from Hopf lemma that ∀x ∈ R, us(a, x) < 0 and vs(a, x) < 0.

As a result, (c, u, v) /∈ ∂Γ so that

deg(Id− F1,Γ, 0) = deg(Id− F0,Γ, 0). (2.2.25)

• We now consider the second homotopy. For 0 ≤ τ ≤ 1, let us define the operator

Gτ : R×C1
per(Ω) → R×C1

per(Ω)c,
u
v

 7→

c̃,
ũ
ṽ


with again

c̃ = c+ sup
Ω0

(ũ+ ṽ)− ν

and

ũ
ṽ

 is the unique solutions in C1
per(Ω) of the linear problem



Lεũ− cũs + (1− τ)Cũ = τ
(
u
(
ru − γu q

K − µ− γuu
)

+ µv
)

Lεṽ − cṽs + (1− τ)Cṽ = τ
(
v
(
rv − γv pK − µ− γvv

)
+ µu

)
(u, v)(−a, x) = (Kp(x),Kq(x)), ∀x ∈ R

(u, v)(a, x) = (0, 0), ∀x ∈ R,

and C is defined by (2.2.24). Notice that Gτ is a continuous family of compact operators and that G1 = F0.
From Lemma 2.2.13 and Lemma 2.2.16, we see that there is no fixed point of F0 such that c ≤ 0 since

c 7→

u
v

 is nonincreasing. As a result enlarging Γ into

Γ̃ :=


c,

u
v

 ∈ R×C1
per(Ω) : c ∈ (−c(a), c̄ε + ε),

0

0

 <

u
v

 <

C
C

 in Ω

 ,

with c(a) ≥ 0 as in Lemma 2.2.17, does not alter the degree, that is

deg(Id− F0,Γ, 0) = deg(Id− F0, Γ̃, 0) = deg(Id−G1, Γ̃, 0). (2.2.26)
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Next, using the estimates of Lemma 2.2.17 and Hopf lemma as above, we see that there is no fixed point of
Gτ on the boundary ∂Γ̃. We have then

deg(Id−G1, Γ̃, 0) = deg(Id−G0, Γ̃, 0). (2.2.27)

Now G0 is independent of (u, v). Since Lε − c∂s + CId is invertible for each c ∈ R, there exists exactly one
solution of (2.2.23) with τ = 0 for each c ∈ R, which we denote (uc, vc). Thanks to a sliding argument, which
we omit here, the solutions to (2.2.23) with τ = 0 are nonincreasing in s and c 7→ (uc, vc) is decreasing, so
that there exists a unique c ∈ (−c(a), c̄ε + ε), which we denote c0, such that (c0, uc0 , vc0) is a fixed point to
G0.
• Finally a third homotopy allows us to compute the degree. For 0 ≤ τ ≤ 1, let us define the operator

Hτ : R×C1
per(Ω)→ R×C1

per(Ω) by

Hτ (c, u, v) =
(
c+ sup

Ω0

(uc + vc)− ν, τuc + (1− τ)uc0 , τvc + (1− τ)vc0
)
.

Noticing that H1 = G0 and that, again, Hτ has no fixed point on the boundary ∂Γ̃, we obtain

deg(Id−G0, Γ̃, 0) = deg(Id−H1, Γ̃, 0) = deg(Id−H0, Γ̃, 0). (2.2.28)

Then since H0 has separated variables and c 7→ sup
Ω0

(uc + vc) is decreasing, we see that

deg(Id−H0, Γ̃, 0) = 1. (2.2.29)

• Combining (2.2.25), (2.2.26), (2.2.27), (2.2.28) and (2.2.29), we get deg(Id−F1,Γ, 0) = 1, which shows
the existence of a solution to (2.2.14) in C1

per(Ω). Theorem 2.2.11 is proved.

2.2.5 Pulsating fronts
From the previous section 2.2.4.4, we are equipped with a solution to (2.2.14) in the strip (−a, a) × R.
From the estimates of Theorem 2.2.11 and standard elliptic estimates, we can — up to a subsequence—
let a → ∞ and then recover, for any 0 < ε < 1, a speed 0 ≤ c = cε < c̄ε + ε and smooth profiles
(0, 0) < (u(s, x), v(s, x)) = (uε(s, x), vε(s, x)) < (C,C) solving

−uxx − 2uxs − (1 + ε)uss − cus = u(ru − γu(u+ v)) + µv − µu in R2

−vxx − 2vxs − (1 + ε)vss − cvs = v(rv − γv(u+ v)) + µu− µv in R2

(u, v)(s, ·) is L-periodic

sup
Ω0

(u+ v) = ν.

(2.2.30)

Notice that, by reproducing the proof of item 5 in Lemma 2.2.13, it is immediately seen that 0 < c = cε.
Let us mention again that, because of the lack of comparison, we do not know that the above solution is
decreasing in s, in sharp contrast with the previous results on pulsating fronts [398], [48], [221], [50], [197],
[199]. To overcome this lack of monotony, further estimates will be required.

Now, the main difficulty is to show that, letting ε→ 0, we recover a nonzero speed and thus a pulsating
front. To do so, it is not convenient to use the (s, x) variables, and we therefore switch to functions

ũ(t, x) := u(x− ct, x), ṽ(t, x) := v(x− ct, x), (t, x) ∈ R2,

which are consistent with Definition 2.2.5 of a pulsating front. Hence, after dropping the tildes, (2.2.30) is
recast 

− ε
c2utt − uxx + ut = u(ru − γu(u+ v)) + µv − µu in R2

− ε
c2 vtt − vxx + vt = v(rv − γv(u+ v)) + µu− µv in R2

sup
x−ct∈(−a0,a0)

u(t, x) + v(t, x) = ν.

(2.2.31)
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Also the L periodicity for (2.2.30) is transferred into the constraint (2.2.6) for (2.2.31). Moreover, up to a
translation, we can assume w.l.o.g. that the solution to (2.2.31) satisfies

sup
x∈(−a0,a0)

(u(0, x) + v(0, x)) = ν. (2.2.32)

Also, though t can be interpreted as a time, we would like to stress out that (2.2.31) is not a Cauchy problem.
Our first goal in this section 2.2.5 is to let ε→ 0 in (2.2.31) and get the following.

Theorem 2.2.18 (Letting the regularization tend to zero). There exist a speed 0 < c ≤ c̄0 := limε→0 c̄
ε (see

Lemma 2.2.12) and positive profiles (u, v) solving, in the classical sense, ut − uxx = u(ru − γu(u+ v)) + µ(v − u) in R2

vt − vxx = v(rv − γv(u+ v)) + µ(u− v) in R2,
(2.2.33)

satisfying the constraint (2.2.6) and, for some a0 > 0, the normalization

sup
x−ct∈(−a0,a0)

(u+ v) = ν.

The present section 2.2.5 is organized as follows. After proving further estimates on solutions to (2.2.31)
in section 2.2.5.1, we prove Theorem 2.2.18 in section 2.2.5.2, the main difficulty being to exclude the
possibility of a standing wave. Finally, in section 2.2.5.3 we conclude the construction of a pulsating front,
thus proving our main result Theorem 2.2.6.

2.2.5.1 Lower estimates on solutions to (2.2.31)

We start by showing a uniform lower bound on the solutions to (2.2.31) that have a positive lower bound. The
argument relies on the sign of the eigenvalue ł, or more precisely that of the first eigenvalue to the stationary

Dirichlet problem in large bounded domains. For b > 0, we denote (λb1,Φb) with Φb(x) :=

ϕb(x)

ψb(x)

 the

unique eigenpair solving 
−Φbxx −A(x)Φb = λb1Φb

ϕb(x) > 0, ψb(x) > 0, x ∈ (−b, b)

ϕb(±b) = ψb(±b) = 0,

(2.2.34)

and ‖Φb‖L∞(−b,b) = 1. From Lemma 2.2.27, we know that λb1 → ł < 0 when b → ∞. We can thus select
a1 > a∗0, with a∗0 as in Theorem 2.2.11, large enough so that

b ≥ a1 ⇒ λb1 ≤
3ł
4 . (2.2.35)

Also, from Hopf lemma we have Cb := sup
x∈(−b,b)

(
ϕb(x)
ψb(x) ,

ψb(x)
ϕb(x)

)
< +∞.

Lemma 2.2.19 (A uniform lower estimate). Let (u(t, x), v(t, x)) be a classical positive solution to βut − κutt − uxx = u(ru − γu(u+ v)) + µv − µu in R2

βvt − κvtt − vxx = v(rv − γv(u+ v)) + µu− µv in R2,
(2.2.36)

with κ ≥ 0 and β ∈ R. Let also b ≥ a1 and Φb the solution to (2.2.34).
Then there exists a constant α0 = α0(µ0, γ∞, λb1, C

b) > 0 such that if

inf
(t,x)∈R×(−b,b)

min(u(t, x), v(t, x)) > 0

then

∀(t, x) ∈ R× (−b, b),

u(t, x)

v(t, x)

 ≥ α0Φb(x).
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Proof. Let 0 < η ≤ 1 be given. For α > 0, we defineUα,η(t, x)

V α,η(t, x)

 := α(1− ηt2)

ϕb(x)

ψb(x)

 .

Then for small α < min
(

inf
(t,x)∈R×(−b,b)

u, inf
(t,x)∈R×(−b,b)

v

)
we have

Uα,η(t, x)

V α,η(t, x)

 ≤
u(t, x)

v(t, x)

 for all (t, x) ∈

R× (−b, b), whereas for large α > max(u(0,0),v(0,0))
min(ϕb(0),ψb(0)) one has

Uα,η(0, 0)

V α,η(0, 0)

 >

u(0, 0)

v(0, 0)

. Thus we can define

αη0 = α0 := sup

α > 0,∀(t, x) ∈ R× (−b, b),

Uα,η(t, x)

V α,η(t, x)

 ≤
u(t, x)

v(t, x)

 > 0.

Assume by contradiction that

α0 ≤ α∗0 := min
(

1, µ0

2γ∞ ,
−λb1

2(1 + 2Cb)γ∞

)
.

There exists a touching point (t0, x0) ∈ (−√η,√η) × (−b, b) such that either u(t0, x0) = Uα0,η(t0, x0) or
v(t0, x0) = V α0,η(t0, x0). Assume u(t0, x0) = Uα0,η(t0, x0) for instance. Then u − Uα0,η reaches a zero
minimum at (t0, x0) so that

0 ≥ β (u− Uα0,η)t − κ (u− Uα0,η)tt − (u− Uα0,η)xx
= (βut − κutt − uxx) + α0(1− ηt20)ϕbxx + 2α0βηt0ϕ

b − 2α0κηϕ
b

at point (t0, x0). Using (2.2.34) and (2.2.36) yields

0 ≥ u(ru − µ− γu(u+ v)) + µv − α0(1− ηt20)(ϕb(ru − µ+ λb1) + µψb) + 2α0ηϕ
b(βt0 − κ)

at point (t0, x0), and since u(t0, x0) = α0(1− ηt20)ϕb(x0) we end up with

0 ≥ u0[−λb1 − γu(x0)(u0 + v0)] + µ(x0)[v0 − α0(1− ηt20)ψb(x0)] + 2α0ηϕ
b(x0)(βt0 − κ), (2.2.37)

with the notations u0 = u(t0, x0), v0 = v(t0, x0). Now two cases may occur.
• Assume first that v0 ≤ 2α0(1− ηt20)ψb(x0). Then we have

v0 ≤ 2α0(1− ηt20)ψ
b(x0)

ϕb(x0)ϕ
b(x0) ≤ 2Cbu0,

and since v0 − α0(1− ηt20)ψb(x0) ≥ 0, we deduce from (2.2.37) that

γu(x0)(1 + 2Cb)u2
0 ≥ −λb1u0 + 2α0ηϕ

b(x0)(βt0 − κ),

which in turn implies

γ∞(1 + 2Cb)α0 ≥ γu(x0)(1 + 2Cb)u0 ≥ −λb1 + 2α0ηϕ
b(x0)(βt0 − κ)
u0

≥ −λb1 −
2η

inf u (|β||t0|+ κ),

since α0 ≤ 1 and ϕb ≤ 1. Since |t0| ≤ 1√
η , one then has

α0 ≥
−λb1

(1 + 2Cb)γ∞ − 2√η |β|+ κ

(1 + 2Cb)γ∞ inf u. (2.2.38)

• On the other hand, assume v0 ≥ 2α0(1− ηt20)ψb(x0). Then we deduce from (2.2.37) that

γu(x0)u2
0 ≥ −λb1u0 + µ(x0)

2 (v0 − 2α0(1− ηt20)ψb(x0)) + v0

(
µ(x0)

2 − γu(x0)u0

)
+2α0ηϕ

b(x0)(βt0 − κ)
≥ −λb1u0 + 2α0ηϕ

b(x0)(βt0 − κ),
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since γuu ≤ γuα∗0 ≤ µ0

2 . Arguing as in the first case, we end up with

α0 ≥
−λb1
γ∞
− 2√η |β|+ κ

γ∞ inf u. (2.2.39)

From (2.2.38) , (2.2.39) and the symmetric situation where v(t0, x0) = V α0,η(t0, x0), we deduce that, in
any case,

α0 ≥
−λb1

(1 + 2Cb)γ∞ − 2√η |β|+ κ

γ∞ inf(u, v) . (2.2.40)

One sees that for

0 < η < η∗ := min
(

1,
(

−λb1 inf(u, v)
4(|β|+ κ)(1 + 2Cb)

)2)
,

inequality (2.2.40) is a contradiction since it implies α0 > α∗0. Hence we have shown that for any 0 < η < η∗

one has α0 = αη0 > α∗0. In particular

∀η ∈ (0, η∗),∀(t, x) ∈ R× (−b, b),

u(t, x)

v(t, x)

 ≥ α∗0(1− ηt2)

ϕb(x)

ψb(x)

 .

Taking the limit η → 0, we then obtain

∀(t, x) ∈ R× (−b, b),

u(t, x)

v(t, x)

 ≥ α∗0Φb(x),

which concludes the proof of Lemma 2.2.19.

Next we establish a forward-in-time lower estimate for solutions of the (possibly degenerate) problem
(2.2.41). The proof is based on the same idea as in Lemma 2.2.19, but it is here critical that the coefficient
β of the time-derivative has the right sign. Roughly speaking, the following lemma asserts that once a
population has reached a certain threshold on a large enough set, it cannot fall under that threshold at a
later time.

Lemma 2.2.20 (A forward-in-time lower estimate). Let (u(t, x), v(t, x)) be a classical positive solution to βut − κutt − uxx = u(ru − γu(u+ v)) + µv − µu in R2

βvt − κvtt − vxx = v(rv − γv(u+ v)) + µu− µv in R2,
(2.2.41)

with κ ≥ 0 and β ≥ 0. Let also b ≥ a1 and Φb the solution to (2.2.34).
Then there exists a constant α0 = α0(µ0, γ∞, λb1, C

b) > 0 such that if 0 < α < α0 and

∀x ∈ (−b, b), αΦb(x) <

u(0, x)

v(0, x)

 , (2.2.42)

then

∀t > 0,∀x ∈ (−b, b), αΦb(x) ≤

u(t, x)

v(t, x)

 .

Proof. Let

0 < α < α0 := min
(

1, −λb1
2(1 + 2Cb)γ∞ ,

µ0

2γ∞

)
and assume (2.2.42). For η > 0 we define

ζ(t, x) =

ζu(t, x)

ζv(t, x)

 := α(1− ηt)

ϕb(x)

ψb(x)

 .
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From (2.2.42), we can define

η0 := inf

η ∈ R : ∀t ≥ 0,∀x ∈ [−b, b],

u(t, x)

v(t, x)

 ≥ ζ(t, x)

 .

Assume by contradiction that η0 > 0. Then there exists t0 > 0 and x0 ∈ (−b, b) such that, say, u(t0, x0) =
ζu(t0, x0). Then at point (t0, x0) we have

0 ≥ β(u− ζu)t − κ(u− ζu)tt − (u− ζu)xx = u(ru − γu(u+ v)) + µ(v − u) + ζuxx + βαηϕb.

Using (2.2.34) and u(t0, x0) = α(1− η0t0)ϕb(x0), we end up with

0 ≥ u0(−λb1 − γu(x0)(u0 + v0)) + µ(x0)(v0 − ζv(t0, x0)), (2.2.43)

with the notations u0 = u(t0, x0), v0 = v(t0, x0) and thanks to β ≥ 0. Now two cases may occur.
• Assume first that v0 ≤ 2ζv(t0, x0). Then v0 ≤ 2 ζv(t0,x0)

ζu(t0,x0)ζu(t0, x0) ≤ 2Cbζu(t0, x0) = 2Cbu0, so that
(2.2.43) yields (recall that v0 ≥ ζv(t0, x0))

γu(x0)(1 + 2Cb)u2
0 ≥ γu(x0)(u0 + v0)u0 ≥ −λb1u0.

As a result u0 > α0, which is a contradiction.
• Assume now that v0 ≥ 2ζv(t0, x0). Then we deduce from (2.2.43) that

γu(x0)u2
0 ≥ −λb1u0 + v0

(
µ(x0)

2 − γu(x0)u0

)
+ µ(x0)

2 (v0 − 2ζv(t0, x0))

≥ −λb1u0 + 1
2µ(x0)(v0 − 2ζv(t0, x0)),

since u0 ≤ α0 ≤ µ0

2γ∞ . As a result u0 ≥ −λ
b
1

γ∞ > α0, which is also a contradiction.
Thus η0 ≤ 0 and in particular

∀t > 0,∀x ∈ (−b, b),

u(t, x)

v(t, x)

 ≥ α
ϕb(x)

ψb(x)

 ,

which concludes the proof of Lemma 2.2.20.

2.2.5.2 Proof of Theorem 2.2.18

In this section 2.2.5.2, we prove that a well-chosen series of solutions to equation (2.2.31) cannot converge, as
ε→ 0, to a standing wave (c = 0). In other words, we prove Theorem 2.2.18, making a straightforward use
of the crucial Lemma 2.2.21. The rough idea of the proof of Lemma 2.2.21 is that a standing wave cannot
stay in the neighborhood of 0 for a long time. Hence the normalization allows us to prevent a sequence
of solutions from converging to a standing wave, provided ν is chosen small enough. Notice also that the
interior gradient estimate for elliptic systems of Lemma 2.2.26 will be used.

In the sequel we select a1 > a∗0 as in (2.2.35), recall that λa1
1 denotes the eigenvalue of problem (2.2.34)

in the domain (−a1, a1), and define
ν∗ := 1

2 min (ν0, ν) > 0,

where ν := α0 inf
x∈(−a∗0 ,a∗0)

min(ϕa1(x), ψa1(x)), with α0 > 0 the constant in Lemma 2.2.19 in the domain

(−a1, a1).

Lemma 2.2.21 (Nonzero limit speed). Let (εn, cn, un(t, x), vn(t, x)) be a sequence such that εn > 0, εn → 0,
cn 6= 0, (un, vn) is a positive solution to problem (2.2.31) with ε = εn, c = cn, 0 < ν < ν∗ and a0 > a1.
Then

lim inf
n→∞

cn > 0. (2.2.44)
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Proof. Assume by contradiction that there is a sequence as in Lemma 2.2.21 with lim cn = 0. Define the
sequence κn := εn

c2n
> 0 which, up to an extraction, tends to +∞, or to some κ ∈ (0,+∞) or to 0. In each

case we are going to construct a couple of functions (u, v) that shows a contradiction. We refer to [48] or to
[50] for a similar trichotomy.

Case 1: κn → +∞. Defining (ũn, ṽn)(t, x) := (un, vn)(√κnt, x), problem (2.2.31) is recast
−untt − unxx + 1√

κn
unt = un(ru − γu(un + vn)) + µvn − µun

−vntt − vnxx + 1√
κn
vnt = vn(rv − γv(un + vn)) + µun − µvn

sup
x−√εnt∈(−a0,a0)

un(t, x) + vn(t, x) = ν,

(2.2.45)

where we have dropped the tildes. From standard elliptic estimates, this sequence converges, up to an
extraction, to a classical nonnegative solution (u, v) of −utt − uxx = u(ru − γu(u+ v)) + µv − µu

−vtt − vxx = v(rv − γv(u+ v)) + µu− µv,
(2.2.46)

and since (un, vn) satisfies the third equality in (2.2.45) together with (2.2.32), (u, v) satisfies sup
(t,x)∈R×(−a0,a0)

(u+

v) = ν. In particular, (u, v) is nontrivial and thus positive by the strong maximum principle.

Now, applying Lemma 2.2.20 to (u, v) with α := 1
2 min

(
inf

x∈(−a0,a0)
(u(0, x), v(0, x)), α0

)
> 0, we get

∀t > 0,∀x ∈ (−a0, a0),

u(t, x)

v(t, x)

 ≥ αΦa0(x).

Next, thanks to standard elliptic estimates, the sequence

(ūn(t, x), v̄n(t, x)) := (u(t+ n, x), v(t+ n, x))

converges, up to an extraction, to a solution of (2.2.46) — that we denote again by (u, v)— which satisfies

sup
(t,x)∈R×(−a0,a0)

(u+ v) ≤ ν, (2.2.47)

and

∀(t, x) ∈ R× (−a0, a0),

u(t, x)

v(t, x)

 ≥ αΦa0(x).

In particular, since a0 > a1, the latter implies

inf
(t,x)∈R×(−a1,a1)

min(u, v) > 0. (2.2.48)

Case 2: κn → κ ∈ (0,+∞). Thanks to standard elliptic estimates, the sequence (un, vn) converges, up to
an extraction, to a solution (u, v) of −κutt − uxx + ut = u(ru − γu(u+ v)) + µv − µu

−κvtt − vxx + vt = v(rv − γv(u+ v)) + µu− µv,
(2.2.49)

and since (un, vn) satisfies the third equality in (2.2.31) together with (2.2.32), (u, v) satisfies sup
(t,x)∈R×(−a0,a0)

(u+

v) = ν. In particular, (u, v) is nontrivial and thus positive by the strong maximum principle.
Now, using Lemma 2.2.20 and a positive large shift in time exactly as in Case 1, we end up with a

solution (u, v) to (2.2.49) which satisfies (2.2.47) and (2.2.48).
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Case 3: κn → 0. In this case, the elliptic operator becomes degenerate as n → ∞, so that we cannot
use the standard elliptic theory. The idea is then to use a Bernstein interior gradient estimate for elliptic
systems that we present and prove in Appendix 2.2.6.2.

Applying Lemma 2.2.26 to the series (un, vn) solving (2.2.31), we get a uniform L∞ bound for (unx , vnx ).
Furthermore by differentiating (2.2.31) with respect to x, we see that (unx , vnx ) solves a system for which
Lemma 2.2.26 still applies. As a result, we get a uniform L∞ bound for (unxx, vnxx).

Let us show that there is also a uniform L∞ bound for (unt , vnt ). From the uniform bounds found above,
we can write

unt − κnuntt = Fn(t, x).

Let F := max(1, supn ‖Fn‖L∞(R2)) < +∞. Assume by contradiction that there is a point (t0, x0) where
unt (t0, x0) > 2F . From the above equation we deduce that unt (t, x0) > 2F remains valid for t ≥ t0, and thus

κnu
n
tt(t, x0) > F, ∀t ≥ t0.

Integrating twice, we get

un(t, x0) ≥ F (2(t− t0) + 1
2κn

(t− t0)2)− ‖un‖L∞ , ∀t ≥ t0.

Letting t → ∞ we get that un is unbounded, a contradiction. Thus, unt (t, x) ≤ 2F for any (t, x) ∈ R2 and,
in a straightforward way, |unt (t, x)|, |vnt (t, x)| ≤ 2F for any (t, x) ∈ R2.

Since we have uniform L∞ bounds for (un, vn), (unx , vnx ) and (unt , vnt ), there are u and v in H1
loc(R2) such

that, up to a subsequence,

(un, vn)→ (u, v) in L∞loc(R2), (unx , vnx , unt , vnt ) ⇀ (ux, vx, ut, vt) in L2
loc(R2) weak.

As a result, letting n→∞ into (2.2.31) yields ut − uxx = u(ru − γu(u+ v)) + µv − µu

vt − vxx = v(rv − γv(u+ v)) + µu− µv
(2.2.50)

in a weak sense. From parabolic regularity, (u, v) is actually a classical solution to (2.2.50). Since the
convergence occurs locally uniformly and since (un, vn) satisfies the third equality in (2.2.31) together with
(2.2.32), (u, v) satisfies sup

(t,x)∈R×(−a0,a0)
(u+ v) = ν. In particular, (u, v) is nontrivial and thus positive by the

strong maximum principle.
Now, using Lemma 2.2.20 and a positive large shift in time as in Case 1 (parabolic estimates replacing

elliptic estimates), we end up with a solution (u, v) to (2.2.50) which satisfies (2.2.47) and (2.2.48).

Conclusion. In any of the three above cases, we have constructed a classical solution (u, v) to (β ≥ 0,
κ ≥ 0)  βut − κutt − uxx = u(ru − γu(u+ v)) + µv − µu

βvt − κvtt − vxx = v(rv − γv(u+ v)) + µu− µv,

which satisfies (2.2.47) and (2.2.48). Applying Lemma 2.2.19, we find that (recall that a1 > a∗0)

inf
R×(−a∗0 ,a∗0)

(u, v) ≥ α0 inf
(−a∗0 ,a∗0)

(ϕa1 , ψa1) = ν.

But, since a0 > a∗0 the above implies

sup
R×(−a0,a0)

(u+ v) ≥ 2 inf
R×(−a∗0 ,a∗0)

(u, v) ≥ 2ν > ν∗ > ν,

which contradicts (2.2.47). Lemma 2.2.21 is proved.

We are now in the position to prove Theorem 2.2.18.
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Proof of Theorem 2.2.18. From the beginning of Section 2.2.5 and Lemma 2.2.21 we can consider a sequence
(εn, cn, un(t, x), vn(t, x)) such that εn > 0, εn → 0, 0 < cn ≤ c̄εn + εn, (un, vn) is a positive solution to
problem (2.2.31) with ε = εn, c = cn, ν < ν∗ and a0 > a1, satisfying the constraint (2.2.6), and the crucial
fact

lim
n→∞

cn > 0. (2.2.51)

Notice that, as a by-product, this shows that c̄0 := limε→0 c̄
ε > 0 (see Lemma 2.2.12). We can now repeat

the argument in the proof of Lemma 2.2.21 Case 3 and extract a sequence (un, vn) which converges to a
classical solution (u, v) of equation (2.2.33), satisfying the normalization

sup
x−ct∈(−a0,a0)

(u+ v) = ν

as well as the constraint (2.2.6). Theorem 2.2.18 is proved.

2.2.5.3 Proof of Theorem 2.2.6

We are now close to conclude the proof of our main result of construction of a pulsating front, Theorem
2.2.6. From Theorem 2.2.18, it only remains to prove the boundary conditions (2.2.7), namely

lim inf
t→+∞

u(t, x)

v(t, x)

 >

0

0

 , lim
t→−∞

u(t, x)

v(t, x)

 =

0

0

 , locally uniformly w.r.t. x,

to match Definition 2.2.5 of a pulsating front. The former is derived by another straighforward application
of Lemma 2.2.20, while the latter is proved below. Hence, Theorem 2.2.6 is proved.

Lemma 2.2.22 (Zero limit behavior). For a1 > a∗0 and ν∗ > 0 as in section 2.2.5.2, let c > 0 and (u, v)
be as in Theorem 2.2.18, satisfying in particular the normalization sup

x−ct∈(−a0,a0)
(u+ v) = ν with ν < ν∗ and

a0 > a1. Then
lim

t→−∞
max(u, v)(t, x)→ 0, locally uniformly w.r.t. x.

Proof. We first claim that inf
R×(−a0,a0)

min (u, v) = 0. Indeed if this is not the case then, in particular,

inf
R×(−a1,a1)

min (u, v) > 0, and we derive a contradiction via Lemma 2.2.19 by a straightforward adaptation

of the Conclusion of the proof of Lemma 2.2.21, because R× (−a1, a1) intersects {(t, x) : x− ct ∈ (−a0, a0)}.
Now let a > a0 be given and assume by contradiction that there is m > 0 and a sequence tn → −∞

such that sup
x∈(−a,a)

max (u, v)(tn, x) ≥ m. Thanks to the Harnack inequality for parabolic systems, see [171,

Theorem 3.9], there is C > 0 such that

∀n ∈ N, inf
x∈(−a,a)

min (u, v)(tn + 1, x) ≥ 1
C

sup
x∈(−a,a)

max (u+ v)(tn, x) ≥ m

C
.

We now use our forward-in-time lower estimate, see Lemma 2.2.20, in (−a, a) and with α := 1
2 min(α0,

m
C ) > 0

to get

∀n ∈ N, ∀t > tn + 1, ∀x ∈ (−a, a),

u(t, x)

v(t, x)

 ≥ α
ϕa(x)

ψa(x)

 .

Since tn → −∞ and a > a0, the above implies

inf
(t,x)∈R×(−a0,a0)

min (u, v)(t, x) ≥ α inf
x∈(−a0,a0)

(ϕa, ψa)(x) > 0.

This is a contradiction and the lemma is proved.
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2.2.6 Appendix
2.2.6.1 Topological theorems

Let us first recall the classical Krein-Rutman theorem.

Theorem 2.2.23 (Krein-Rutman theorem). Let E be a Banach space. Let C ⊂ E be a closed convex cone
of vertex 0, such that C ∩−C = {0} and IntC 6= ∅. Let T : E → E be a linear compact operator such that
T (C\{0}) ⊂ IntC.

Then, there exists u ∈ IntC and ł > 0 such that Tu = łu. Moreover, if Tv = µv for some v ∈ C\{0},
then µ = ł. Finally, we have

ł = max{|µ|, µ ∈ σ(T )},
and the algebraic and geometric multiplicity of ł are both equal to 1.

We now quote some results on the structure of the solution set for nonlinear eigenvalue problems in a
Banach space, more specifically when bifurcation occurs. For more details and proofs, we refer the reader
to the works of Rabinowitz [329, 330], Crandall and Rabinowitz [123]. See also earlier related results of
Krasnosel’skii [244] and the book of Brown [82].

Theorem 2.2.24 (Bifurcation from eigenvalues of odd multiplicity). Let E be a Banach space. Let F :
R× E → E be a (possibly nonlinear) compact operator such that

∀λ ∈ R, F (λ, 0) = 0.

Assume that F is Fréchet differentiable near (λ, 0) with derivative λT . Let us define

S := {(λ, x) ∈ R× E\{0} : F (λ, x) = x}.

Let us assume that 1
µ ∈ σ(T ) is of odd multiplicity.

Then there exists a maximal connected component Cµ ⊂ S such that (µ, 0) ∈ Cµ and either

1. Cµ is not bounded in R× E, or

2. there exists µ∗ 6= µ with 1
µ∗ ∈ σ(T ) and (µ∗, 0) ∈ Cµ.

When the eigenvalue is simple, one can actually refine the above result as follows.

Theorem 2.2.25 (Bifurcation from simple eigenvalues). Let the assumptions of Theorem 2.2.24 hold. As-
sume further that 1

µ ∈ σ(T ) is simple. Let T ∗ be the dual of T , and l ∈ E′ an eigenvector of T ∗ associated
with 1

µ with ‖l‖ = 1 (recall that 1
µ is of multiplicity 1 for both T and T ∗). Let us define

K+
ξ,η := {(λ, u) ∈ R× E, |λ− µ| < ξ, 〈l, u〉 > η‖u‖}, K−ξ,η := −K+

ξ,η.

Then Cµ\{(µ, 0)} contains two connected components C+
µ and C−µ which satisfy

∀ν ∈ {+,−},∀ξ > 0,∀η ∈ (0, 1),∃ζ0 > 0,∀ζ ∈ (0, ζ0), (Cνµ ∩Bζ) ⊂ Kν
ξ,η,

where Bζ := {(λ, u) ∈ R × E, |λ − µ| < ζ, ‖u‖ < ζ} is the ball of center (µ, 0) and radius ζ. Moreover, C+
µ

and C−µ satisfy either item 1 or 2 in Theorem 2.2.24.

2.2.6.2 A Bernstein-type interior gradient estimate for elliptic systems

We present here some L∞ gradient estimates for regularizations of degenerate elliptic systems, which are
uniform with respect to the regularization parameter κ ≥ 0. The result below generalizes the result of
Berestycki and Hamel [49], which is concerned with scalar equations.

Lemma 2.2.26 (Interior gradient estimates). Let Ω be an open subset of R2. Let f, g : Ω×R2 → R be two
C1 functions with bounded derivatives. Let 0 ≤ κ ≤ 1 and (u(y, x), v(y, x)) be a solution of the class C3 of
the system  −κuyy − uxx + uy = f(y, x, u, v) in Ω,

−κvyy − vxx + vy = g(y, x, u, v) in Ω.
(2.2.52)



86

Then, for all (y, x) ∈ Ω,

|ux(y, x)|2 + |vx(y, x)|2 + κ|uy(y, x)|2 + κ|vy(y, x)|2 ≤ C
(

1 + 1
(dist((y, x), ∂Ω))2

)
where

C = C(‖u‖L∞(B) + ‖v‖L∞(B), oscBu, oscBv, ‖f‖C0,1(B×[u,u]×[v,v]), ‖g‖C0,1(B×[u,u]×[v,v])),

with B the ball of center (y, x) and radius dist((y,x),∂Ω)
2 in R2, u := infB u, u := supB u, v := infB v,

v := supB v. In particular, this estimate is independent on the regularization parameter 0 ≤ κ ≤ 1.

Proof. Let h be the smooth function defined on R by

h(z) :=

 exp
(

z2

z2−1

)
|z| < 1

0 |z| ≥ 1.

Let us then define C0 := max(‖h‖L∞ , ‖h′‖L∞ , ‖h′′‖L∞) and ζ(Y,X) := h
(√

Y 2+X2

2

)
.

Let (y0, x0) ∈ Ω be a given point, d0 := dist((y0, x0), ∂Ω), d := min
(
d0
2 , 1

)
, B0 the ball of center (y0, x0)

and radius d. Let χ be the function defined by

∀(y, x) ∈ R2, χ(y, x) := ζ

(
y − y0
d

,
x− x0
d

)
.

Finally, let Pu and P v be defined in Ω by

Pu(y, x) := χ2(y, x)(u2
x(y, x) + κu2

y(y, x)) + λu2(y, x) + ρex−x0

P v(y, x) := χ2(y, x)(v2
x(y, x) + κv2

y(y, x)) + λv2(y, x) + ρex−x0 ,

where λ > 0 and ρ > 0 are constants to be fixed later. Our goal is to apply the maximum principle to the
function P := Pu + P v for convenient values of λ and ρ. We present below the computations on Pu only
and reflect them on P v.

We first compute the partial derivatives of Pu and get

Puy = 2χyχu2
x + 2χ2uxyux + 2κ(χyχu2

y + χ2uyyuy) + 2λuyu
Puyy = 2(χyyχ+ χ2

y)u2
x + 8χyχuxyux + 2χ2(uxyyux + u2

xy)
+κ[2(χyyχ+ χ2

y)u2
y + 8χyχuyyuy + 2χ2(uyyyuy + u2

yy)]
+2λ(uyyu+ u2

y)
Puxx = 2(χxxχ+ χ2

x)u2
x + 8χxχuxxux + 2χ2(uxxxux + u2

xx)
κ[2(χxxχ+ χ2

x)u2
y + 8χxχuxyuy + 2χ2(uyxxuy + u2

yx)]
+2λ(uxxu+ u2

x) + ρex−x0 .

Let M := ∂y − κ∂yy − ∂xx. Then we have

MPu = 2
[
χyχ− κ(χyyχ+ χ2

y)− (χxxχ+ χ2
x)
]
u2
x

+2κ
[
χyχ− κ(χyyχ+ χ2

y)− (χxxχ+ χ2
x)
]
u2
y

+2χ2 [uxy − κuxyy − uxxx]ux
+2κχ2 [uyy − κuyyy − uyxx]uy
−2
[
κ(χ2u2

xy + 4χyχuxyux) + (χ2u2
xx + 4χxχuxxux)

]
−2κ[κ(4χyχuyuyy + χ2u2

yy) + (4χxχuyuxy + χ2u2
xy)]

+2λ
[
(uy − κuyy − uxx)u− κu2

y − u2
x

]
−ρex−x0 .
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We now reformulate some of the lines of the above equality, starting with lines three and four. We differentiate
the first equation of system (2.2.52) with respect to x to obtain

2χ2 [uxy − κuxyy − uxxx]ux = 2χ2(fx + uxfu + vxfv)ux
≤ χ2(u2

x + f2
x) + 2χ2u2

x|fu|+ χ2(u2
x + v2

x)|fv|,

and then with respect to y to get

2χ2 [uyy − κuyyy − uyxx]uy = 2χ2(fy + uyfu + vyfv)uy
≤ χ2(u2

y + f2
y ) + 2χ2u2

y|fu|+ χ2(u2
y + v2

y)|fv|.

As far as lines five and six are concerned, we use the factorizations

χ2u2
xy + 4χyχuxyux = (χuxy + 2χyux)2 − 4χ2

yu
2
x

χ2u2
xx + 4χxχuxxux = (χuxx + 2χxux)2 − 4χ2

xu
2
x

χ2u2
yy + 4χyχuyyuy = (χuyy + 2χyuy)2 − 4χ2

yu
2
y

χ2u2
xy + 4χxχuxyuy = (χuxy + 2χxuy)2 − 4χ2

xu
2
y.

For line seven, we use the first equation in (2.2.52) to write (uy −κuyy −uxx)u = fu. As a result, we collect

MPu ≤ 2
[
χyχ− κχyyχ− χxxχ+ 3χ2

x + 3κχ2
y + χ2

(
|fu|+ 1+|fv|

2

)
− λ
]

(u2
x + κu2

y)

+2λfu+ χ2(v2
x + κv2

y)|fv|+ χ2(f2
x + κf2

y )− ρex−x0 ,

and, similarly,

MP v ≤ 2
[
χyχ− κχyyχ− χxxχ+ 3χ2

x + 3κχ2
y + χ2

(
|gv|+ 1+|gu|

2

)
− λ

]
(v2
x + κv2

y)

+2λgv + χ2(u2
x + κu2

y)|gu|+ χ2(g2
x + κg2

y)− ρex−x0 .

Notice that |χ| ≤ C0, |χx|, |χy| ≤ C0
d , |χxx|, |χyy| ≤ C0

d2 and recall that κ, d ≤ 1. Hence, putting everything
together, we arrive at

MP ≤
(

20C
2
0
d2 + 4C2

0 (‖f‖C0,1 + ‖g‖C0,1) + C2
0 − λ

)
(u2
x + v2

x + κu2
y + κv2

y)

+2λ(‖f‖L∞ + ‖g‖L∞)(‖u‖L∞ + ‖v‖L∞) + 2C2
0 (‖f‖2C0,1 + ‖g‖2C0,1)− 2ρex−x0 .

It is now time to specify λ = 20C
2
0
d2 + 4C2

0 (‖f‖C0,1 + ‖g‖C0,1) + C2
0 > 0

ρ = e
2
[
2λ(‖f‖L∞ + ‖g‖L∞)(‖u‖L∞ + ‖v‖L∞) + 2C2

0 (‖f‖2C0,1 + ‖g‖2C0,1) + 1
]
> 0.

As a result we have MP (y, x) < 0 for all (y, x) ∈ B0 (since then x − x0 ≥ −1). The maximum principle
then implies

P (y0, x0) ≤ max
(y,x)∈∂B0

P (y, x).

Since χ(y0, x0) = 1 and χ(y, x) = 0 when (y, x) ∈ ∂B0, the above inequality implies

(u2
x + v2

x + κu2
y + κv2

y)(y0, x0) ≤ λ(‖u‖2L∞ + ‖v‖2L∞)− λ(u2 + v2)(y0, x0) + 2ρe
≤ 2λ(‖u‖L∞oscB0(u) + ‖v‖L∞oscB0(v)) + 2ρe
≤ K{(‖u‖L∞ + ‖v‖L∞)(oscB0(u) + oscB0(v)

+‖f‖C0,1 + ‖g‖C0,1) + ‖f‖2C0,1 + ‖g‖2C0,1 + 1}
(

1 + 1
d2

)
using the expressions of λ and ρ above, for a universal positive constant K > 0 and where the C0,1 norms
of f , g are taken on B0 × [infB0 u, supB0 u]× [infB0 v, supB0 v]. This proves the lemma.
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2.2.6.3 Dirichlet and periodic principal eigenvalues

We prove here that the principal eigenvalue with Dirichlet boundary conditions in a ball converges to the
principal eigenvalue with periodic boundary conditions, when the radius tends to +∞.

Lemma 2.2.27 (Dirichlet and periodic principal eigenvalues). Let A ∈ L∞(R;S2(R)) be a symmetric
cooperative matrix field that is periodic with period L > 0. Let ł be the principal eigenvalue of the operator
−∂xx −A(x) with periodic boundary conditions, that is

−

ϕ
ψ

′′ −A(x)

ϕ
ψ

 = ł

ϕ
ψ

 , (2.2.53)

with ϕ,ψ ∈ H1
per and ϕ > 0, ψ > 0. For R > 0, let λR1 be the principal eigenvalue of the operator −∂xx−A(x)

with Dirichlet boundary conditions on (−R,R), that is

−

ϕR
ψR

′′ −A(x)

ϕR
ψR

 = λR1

ϕR
ψR

 , (2.2.54)

with ϕR, ψR ∈ H1
0 (−R,R) and ϕR > 0, ψR > 0. Then, there exists C > 0 depending only on A such that,

for all R > 0,
ł ≤ λR1 ≤ ł + C

R
.

Proof. Without loss of generality we assume L = 1. Inequality ł ≤ λR1 is very classical, see [51, Proposition
4.2] or [4, Proposition 3.3] for instance, and we omit the details. Also, the same classical argument yields
that R 7→ λR1 is nonincreasing so it is enough to prove λR1 ≤ ł + C

R when R = 2, 3, ....
We consider a smooth auxiliary function η : R→ R satisfying

η ≡ 1 on (−∞, 0], 0 < η < 1 on (0, 1), η ≡ 0 on [1,∞).

Since the operator in (2.2.54) is self-adjoint in the domain (−R,R), the principal eigenvalue λR1 is given by
the Rayleigh quotient

λR1 = inf
Ψ∈H1

0(−R,R),Ψ6=0
Q(Ψ,Ψ), Q(Ψ,Ψ) :=

∫ R
−R( tΨxΨx − tΨA(x)Ψ)dx∫ R

−R
tΨΨdx

.

In particular we have λR1 ≤ Q(Θ,Θ), with Θ the H1
0(−R,R) test function defined by

Θ(x) := η(−R+ 1− x)η(−R+ 1 + x)Φ(x), Φ(x) :=

ϕ(x)

ψ(x)

 ,

where ϕ,ψ are as in (2.2.53), with the normalization
∫ 1

0
tΦΦdx = 1. We then haveQ(Θ,Θ) = Q1(Θ)+Q2(Θ),

where

Q1(Θ) :=
∫
|x|≤R−1( tΘxΘx − tΘA(x)Θ)dx∫ R

−R
tΘΘdx

, Q2(Θ) :=
∫
R−1≤|x|≤R( tΘxΘx − tΘA(x)Θ)dx∫ R

−R
tΘΘdx

.

We write

Q1(Θ) =
∫
|x|≤R−1( tΘxΘx − tΘA(x)Θ)dx∫

|x|≤R−1
tΘΘdx

∫ R−1
−(R−1)

tΘΘdx∫ R
−R

tΘΘdx
= λ1

∫ R−1
−(R−1)

tΘΘdx∫ R
−R

tΘΘdx
,

thanks to Θ ≡ Φ ≡

ϕ
ψ

 on (−(R−1), R−1) and the 1-periodicity of ϕ, ψ (recall that R−1 is an integer).

As a result

|Q1(Θ)− λ1| = |λ1|

∫
R−1<|x|<R

tΘΘdx∫ R
−R

tΘΘdx
≤ |λ1|

∫
R−1<|x|<R

tΦΦdx∫ R−1
−(R−1)

tΦΦdx
= |λ1|

1
R− 1 ,
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since 0 ≤ η ≤ 1. On the other hand one can see that, for a constant C2 > 0 depending only on ‖η′‖L∞(R)
and ‖A‖L∞(R;S2(R)),∣∣∣∣∣

∫
R−1<|x|<R

( tΘxΘx − tΘA(x)Θ)dx
∣∣∣∣∣ ≤ C2

∫
R−1<|x|<R

(tΦΦ +t ΦxΦx)dx

= 2C2

∫
0<|x|<1

(tΦΦ +t ΦxΦx)dx =: C ′2

so that
|Q2(Θ)| ≤ C ′2∫ R

−R
tΘΘdx

≤ C ′2∫ R−1
−(R−1)

tΦΦdx
= C ′2

(2R− 2)
∫ 1

0
tΦΦdx

= C ′2
(2R− 2) .

This concludes the proof of the lemma.
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2.3 Propagation dynamics of solutions to spatially periodic reaction-diffusion
systems with hybrid nonlinearity.

2.3.1 Introduction
In this section 2.3 we are interested in the following reaction-diffusion system:{

ut = Lu+ f(x, u), t > 0, x ∈ R,
u(t = 0, x) = u0(x), x ∈ R,

(2.3.1)

where u(t, x) ∈ Rd is a nonnegative vector-valued function of a space variable x ∈ R and a time variable t ≥ 0;
L is a diagonal matrix of second-order elliptic differential operators with spatially L-periodic coefficients and
f(x, u) is a reaction term that is L-periodic in x ∈ R. We will assume throughout the section 2.3 that f(x, u)
is cooperative when u lies in the vicinity of the boundary of the positive cone of Rd. An important example,
which has motivated the current study, is the following two-components system{

ut = σu(x)uxx + (ru(x)− κu(x)(u+ v))u+ µv(x)v − µu(x)u, t > 0, x ∈ R,
vt = σv(x)vxx + (rv(x)− κv(x)(u+ v))v + µu(x)u− µv(x)v, t > 0, x ∈ R.

(2.3.2)

Here u(t, x), v(t, x) stand for the density of a population of individuals living in a periodically heterogeneous
environment. We assume that the reproduction rates ru(x) and rv(x) are L-periodic functions, and that
the competition coefficients κu(x) and κv(x) are L-periodic and positive. Finally, the coefficients µu(x) > 0,
µv(x) > 0 (also L-periodic) denote the mutation rates between the two populations, which creates an effect
of cooperative coupling in the region where both u and v are small.

In the context of epidemiology, System (2.3.2) describes the propagation of a genetically unstable
pathogen in a population of hosts which exhibits heterogeneity in space. This heterogeneity may sim-
ply come from a heterogeneous repartition of the host population [348]. Spatial heterogeneity in the use of
antibiotics, fungicides or insecticides affects the transmission of pathogens and pests and is explored as a
way to minimize the risk of emergence of drug resistance [134]. Beaumont et al [42] study a related model
of propagation of salmonella in an industrial hen house. In their study the heterogeneity comes from the
alignment of cages separated by free space that allow farmers to take care of the animals.

System (2.3.2) has some similarity with Fisher-KPP equations. In their seminal work of 1937, Fisher [170]
and Kolmogorov, Petrovsky, and Piskunov [238] introduced the following model, later called Fisher-KPP
equation,

ut − duxx = ru(1− u). (2.3.3)
They observed that there exists traveling wave solutions of speed c for c ≥ c∗ := 2

√
dr. They claimed

that the spreading speed from localized initial data should coincide with c∗, the minimal speed of traveling
waves. The spreading property starting from localized initial data was analysed more rigorously by Aronson
and Weinberger [19, 20] and Weinberger [397]. Not long after, people started to consider equations in
periodically heterogeneous environments; among others, the paper of Shigesada, Kawasaki and Teramoto
[354] was a pioneer. A more systematic mathematical theory was developed later (see Xin [405], Berestycki
and Hamel [48] and Weinberger [398]).

It is sometimes possible to compute the propagation speed of initially localized solutions to a reaction-
diffusion equation by analyzing the one of the linearized equation in a neighborhood of zero. When this
happens, the equation is said to be linearly deteminate, or we say that linear determinacy holds. This
property has been studied for scalar equations (see, for instance, [397]) but also in the context of homogeneous
systems (see Lui [269] and Weinberger, Lewis and Li [399]). In the case of systems, it is required that
both the nonlinear and the linear equations be order-preserving in time. An important example equations
that are monotone in time are reaction-diffusion systems which are coupled only in their zero-order term,
and which coupling is cooperative. In the case of matrices, this means that all off-diagonal entries are
nonnegative. Traveling wave for cooperative systems have also been studied, by Volpert, Volpert and Volpert
[383] and Ogiwara and Matano [309, 310], among others. Spreading speeds and linear determinacy have
been generalized to Banach lattices in the work of Liang and Zhao [254].

In the case of System (2.3.2) with homogeneous coefficients, it can be seen that it is cooperative near
0 because the quadratic term can be neglected. However, far away from the unstable equilibrium 0, the
nonlinearity becomes competitive in general (that is, if µu and µv are not too big). This means that
equation (2.3.2) is of hybrid nature, so that the theory developed in [269, 399] cannot be used directly. In
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fact, solutions to System (2.3.2) actually reach a non-monotone regime (see, in particular, [P2] in which
non-monotone waves are constructed). Several other models consider traveling waves in a non-monotone
setting. Hsu and Zhao [219], for instance, considered a non-monotone integro-difference equation that is
different from ours and proved the existence of traveling waves of speed c for any c greater than a minimal
speed c∗ — as is the case in many KPP situations. Their idea is to construct super and sub-solutions by
replacing the nonlinearity by its monotone envelope from above and from below. Such a method cannot be
applied directly to our system, unfortunately, since our equation is vector-valued.

In a spatially homogeneous setting, several results exist already for systems of reaction-diffusion equations
for which the monotone theory does not apply directly. Let us mention the work of Wang [388], who studied
spreading speeds and traveling waves for non-monotone systems in a case where the nonlinearity can be
framed by two cooperative functions. Morris, Börger and Crooks [291] studied a two-component system
quite similar to (2.3.2) and gave precise estimates on the tails of the fronts. Girardin [190, 189] proved the
existence of traveling waves and studied their asymptotic behavior in a quite general setting of homogeneous
KPP-type systems similar to (2.3.1). Our approach here is different, since we want our argument to work
for periodic coefficients and the canonical equation for traveling waves is not elliptic in this context. We
use the Poincaré map of the time-dependent problem and a fixed-point theorem to construct the traveling
waves. In the process we use a monotone subsystem to obtain a lower estimate on the solution.

In the case of a system with spatially homogeneous coefficients, we can further prove the convergence of
the traveling waves and time-dependent problem to the unique constant stationary solution in many cases
(Theorem 2.3.33). Previously there were results on the existence of traveling waves [P2, 190] and their
qualitative behavior [189, 291] but the long-time convergence to a stationary solution was only studied in a
bounded domain [100].

In the case of periodically heterogeneous equations, pulsating traveling waves for (2.3.2) traveling at the
candidate minimal speed were constructed in [P3] by a vanishing viscosity method applied to the equation
in the moving frame, but the minimality of the speed was not known. Here we not only show that this speed
is indeed minimal, but also prove that it corresponds to the spreading speed of front-like initial data and
construct traveling waves for larger speeds. The crucial remark which allows such a construction is that one
can identify a cooperative system to which any solution of (2.3.2) is a supersolution, which provides a way
to estimate the solutions to (2.3.2) from below.

Before stating our results, let us discuss some technical notions. One of the first natural questions that
one might ask when investigating models like (2.3.1) is whether a population can survive in time. Indeed,
in equation (2.3.2) for instance, taking ru(x) ≤ −δ < 0 and rv(x) ≤ −δ leads to the global extinction of any
solution starting from a bounded initial data. It turns out that, for our class of problems, the answer to
this question only depends on the linearization of (2.3.1) and, more precisely, on the generalized principal
eigenvalue λ∞1 defined as the limit, as R→∞, of the principal eigenvalue in the bounded domain (−R,R),{

− LϕR = Df(x, 0)ϕR + λR1 ϕ
R,

ϕR(−R) = ϕ(R) = 0,
(2.3.4)

where Df(x, u) is the Jacobian matrix of f in the variable u only, under the requirement that ϕR(x) > 0
componentwise on (−R,R). That λR1 is unique and that it admits a limit when R→ +∞ is classical but will
be recalled in the present section 2.3 (Proposition 2.3.4). To distinguish it from other notions of principal
eigenvalues (see Berestycki and Rossi [54, 55] and Nadin [298] for an overview of these notions) we will often
call λ∞1 the generalized Dirichlet principal eigenvalue.

The generalized Dirichlet principal eigenvalue characterizes the survival of compactly supported initial
data. More precisely, any solution starting from nontrivial compactly supported initial data becomes uni-
formly positive as t→ +∞ when λ∞1 < 0, and some solution gets extinct when λ∞1 > 0. Another important
notion of principal eigenvalue that will be used in the present section 2.3 is the periodic principal eigenvalue,
defined as the solution to {

− Lϕper = Df(x, 0)ϕper + λper1 ϕper,

ϕper is L-periodic,
(2.3.5)

under the requirement that ϕper(x) > 0 componentwise on R. This notion characterizes the survival of
periodic initial data. More precisely, any solution starting from nontrivial periodic initial data becomes
uniformly positive as t → +∞ when λper1 < 0, and any bounded solution gets extinct when λper1 > 0. In
a way, λ∞1 characterizes the survival of the species in an initially empty space (compactly supported initial
data) and λper1 characterizes the survival of the species in an already invaded space (periodic initial data).
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There is no necessity in general that these two notions be equal; the most that can be said is that

λper1 ≤ λ∞1 .

An interpretation of this inequality is that it is more difficult to survive in an empty space than in an already
invaded space. It turns out that, for scalar reaction-diffusions without a first-order (advection) term, the
equality λper1 = λ∞1 is always true. This fact was remarked by Nadin [298, Proposition 3.2]. As we will see in
the present section 2.3 (Proposition 2.3.43), the situation for systems is in sharp contrast with what happens
for scalar equations, as it is possible to construct a system with no advection and λper1 < λ∞1 . We recover
the equality λper1 = λ∞1 between the two notions under some symmetry assumption on the coefficients of the
equation, detailed in Assumption 2.3.5 (in particular, it is true for constant coefficients).

Next we turn to the formula for the propagation speed. It involves again spectral notions related to the
linearized problem, this time the function k(λ) defined as{

− eλxL
(
ϕλe−λx

)
= Df(x, 0)ϕλ + k(λ)ϕλ,

ϕλ is L-periodic,
(2.3.6)

under the requirement that ϕλ(x) > 0 componentwise on R. This function will be extensively studied
in Proposition 2.3.6. The propagation speed towards +∞ of solutions starting from front-like initial data
supported in (−∞, 0) to (2.3.1) can then be expressed as

c∗ = inf
λ>0

−k(λ)
λ

, (2.3.7)

which is a well-known formula in the scalar case [405, 398, 48, 50]. However, once again, systems do not
behave exactly like scalar equations. When investigating the speed of towards −∞ of solutions starting from
front-like initial data supported in (+∞, 0) to (2.3.1), we naturally arrive at the formula

c∗left = inf
λ>0

−k(−λ)
λ

, (2.3.8)

which is not necessarily equal to c∗right defined by (2.3.7). For scalar equations without advection, it turns our
that the equality c∗left = c∗right is always true, because the function k(λ) is even (this can be seen from [298,
proof of Proposition 3.2]). In the context of systems it is possible to construct counterexamples in which
c∗left 6= c∗right even though there is no advection (Remark 2.3.44). Thus the situation for systems is, once
again, in sharp contrast with the one of scalar equations. We recover the equality c∗left = c∗right (Proposition
2.3.10) under an additional symmetry assumption on the coefficients of the equation (Assumption 2.3.5).

Among other main results of the section 2.3, we show the linear determinacy (Theorem 2.3.19) and
existence of traveling waves (Theorem 2.3.21) for solutions to (2.3.1) with sublinear nonlinearity, under some
additional requirements. We require in particular that the Jacobian matrix be cooperative and irreducible.
We also study the case of rapidly oscillating coefficients and show that the qualitative properties of such
systems are very close to the ones of homogeneous systems. Regarding the general system (2.3.1), we prove
a homogenization formula for the speed (Theorem 2.3.11). The homogenization limit allows us to study
the particular case of (2.3.2) in more details. In particular, we prove the existence, uniqueness and global
stability of the equilibrium for rapidly oscillating coefficients under some conditions, by using dynamical
system arguments (see Theorem 2.3.34). This gives a non-trivial example of non-homogeneous systems for
which the global behavior can be determined. This part of the study is based on the homogenization theory
for elliptic and parabolic operators, see e.g. [45] for an introduction to the theory. In the case of scalar
equations, the homogenization limits of spreading speeds and pulsating traveling waves have been studied
by El Smaily [159, 160] and El Smaily, Hamel and Roques [161].

The structure of the section 2.3 is as follows. In section 2.3.2 we state our main results, concerning the
original system (2.3.1) with sub-linear nonlinearity and the particular case (2.3.2). In section 2.3.3 we prove
the results in the general framework of KPP-type nonlinearities for d-dimensional systems. In section 2.3.4
we propose two singular limits of our systems. In section 2.3.5, we prove the results which are specific to the
model (2.3.2), including the local stability of the constant equilibrium, global stability under more restrictive
assumptions and the homogenization limit.
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2.3.2 Main results
In this section 2.3.2 we state the main results presented in the section 2.3. We first state the results we
obtain on the specific equation (2.3.2), then present the more general results on generic one-dimensional
systems.

Our interest lies in systems of the form

ut = Lu+ f(x, u), (2.3.9)

set on the real line, where L is an elliptic differential operator written either in divergence form

Lu = Ldu := (σ(x)ux)x + q(x)ux, (2.3.10)

or in nondivergence form
Lu = Lndu := σ(x)uxx + q(x)ux, (2.3.11)

where σ ∈ C1,α
per(R,Md(R)) is a positive diagonal matrix field, q ∈ Cαper(R,Md(R)) is a diagonal matrix field,

and f ∈ Lip(R×Rd,Rd) are L-periodic in the variable x. First we introduce some definitions and notations.

Order on Rd Let u = (u1, . . . , ud)T ∈ Rd and v = (v1, . . . , vd)T ∈ Rd. We denote by u ≤ v the component-
wise order of Rd, that is to say

u ≤ v ⇐⇒ (ui ≤ vi for all i ∈ {1, . . . , d}) .

Recall that (Rd,≤) is a Banach lattice which positive cone is Rd+ := {u ∈ Rd |u ≥ 0}. We will use the
notation u� v to denote the component-wise strict order

u� v ⇐⇒ (ui < vi for all i ∈ {1, . . . , d}) .

When u and v are two vectors, then min(u, v) and max(u, v) are the usual component-wise minimum and
maximum of u and v:

min(u, v) =
(

min(u1, v1), . . . ,min(ud, vd)
)T
, max(u, v) =

(
max(u1, v1), . . . ,max(ud, vd)

)T
.

Finally we denote 1 := (1, 1, . . . , 1)T ∈ Rd the d-dimensional vector with all components equal to 1.

2.3.2.1 The linear problem. Principal eigenvalues and spreading speeds.

We first focus on the linear part of System (2.3.9), that is when f(x, u) is a linear function of u. Our interest
lies in systems which preserve the canonical partial order on Rd.

Definition 2.3.1 (Cooperative matrix). Let A(x) = (aij(x))1≤i,j≤d be a matrix-valued function (from R
to Md(R)). A(x) is cooperative if aij(x) ≥ 0 for all i 6= j and x ∈ R.

Next we introduce the notion of fully coupled system. This corresponds, in a way, to systems that cannot
be split into two independent subsystems.

Definition 2.3.2 (Fully coupled matrix.). Let A(x) = (aij(x))1≤i,j≤d be a matrix-valued function (from R
to Md(R)). We say that A(x) fully coupled if there exists ν > 0 and r > 0 such that for any non-trivial
partition I, J ⊂ {1, . . . , d} (i.e. I ∪ J = {1, . . . , d} and I ∩ J = ∅), there exists i ∈ I, j ∈ J , and a ball
B(xij , r) for some xij ∈ R, such that

inf
x∈B(xij ,r)

aij(x) ≥ ν > 0. (2.3.12)

Note that, if A(x) is a constant matrix, then it is fully coupled in the sense introduced above if and only
if it is cooperative and irreducible.

We suspect that the ball B(x0, r) above could be replaced by a measurable set of positive Lebesgue
measure, as is done in [87], but we will not pursue such generality as it would add unnecessary complexity
to the proofs; moreover it is not essential in our analysis.

As usual in sublinear situations, the principal eigenvalue of the system under consideration plays a crucial
role in the survival of the population. We define the notion of periodic principal eigenvalue in the case of
systems with d components
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Definition 2.3.3 (Principal eigenpairs). Let A(x) be a fully coupled cooperative matrix function and L be
a diagonal uniformly elliptic operator.

By a periodic principal eigenpair associated with system (2.3.9), we refer to a solution pair (λper1 , ϕper(x))
to the system

− Lϕper = A(x)ϕper(x) + λper1 ϕper(x) (2.3.13)
under the L-periodic boundary conditions, satisfying ϕper(x)� 0. Here λper1 is called the periodic principal
eigenvalue and ϕper(x) a periodic principal eigenfunction or periodic principal eigenvector.

Similarly, by Dirichlet principal eigenpair associated with system (2.3.9) in the interval of radius R > 0
we refer to a solution pair (λR1 , ϕR(x)) to the system

− LϕR = A(x)ϕR(x) + λR1 ϕ
R(x) in (−R,R), (2.3.14)

satisfying the Dirichlet boundary conditions ϕR(−R) = ϕR(R) = 0 and ϕR(x)� 0 in (−R,R). Here λR1 is
called the Dirichlet principal eigenvalue and ϕR(x) a Dirichlet principal eigenfunction or Dirichlet principal
eigenvector. We denote

λ∞1 := lim
R→∞

λR1 . (2.3.15)

The existence of the principal eigenpairs (λper1 , ϕper) and (λR1 , ϕR) and the uniqueness of λper1 and λR1
follow immediately from the Krein-Rutman Theorem. Moreover there always holds λR′1 > λR1 > λper1 for
0 < R′ < R. Consequently, we have

λ∞1 ≥ λ
per
1 . (2.3.16)

The above two notions of principal eigenvalue correspond to very different qualitative properties of the
solutions to (2.3.9). The Dirichlet eigenvalue λR1 gives a criterion for the survival in the bounded domain
(−R,R) under the Dirichlet boundary conditions, and λ∞1 = limR→∞ λR1 characterizes, in a sense, the
survival of solutions with compactly supported initial conditions on the real line. More precisely, the species
does not get extinct if λ∞1 < 0 (see Theorem 2.3.17 below), while it converges to 0 (extinction) as t → ∞
if λ∞1 > 0. On the other hand, λper1 characterises the survival of solutions starting from positive periodic
initial conditions or, more generally, the sustainability of an already invaded space. We will state a condition
under which both eigenvalues have the same sign in Proposition 2.3.9.

Whether or not equality holds in (2.3.16) depends on the situation. Proposition 2.3.43 provides a coun-
terexample to the equality in (2.3.16) in the case of a system of two equations with no advection term and
strong coupling. These properties, along with some other properties of those eigenpairs, will be proved in
section 2.3.3.2 and in Appendix B. Here we collect some useful properties of the principal eigenvalues.

Proposition 2.3.4 (On the Dirichlet principal eigenvalue for cooperative systems). Let A(x) be a cooperative
and fully coupled d-dimensional L-periodic matrix field, L be a L-periodic diagonal uniformly elliptic operator.
Then:

(i) For any R ∈ (0,+∞), there exists a principal eigenfunction ϕR > 0 associated with λR1 , which is unique
up to the multiplication by a positive scalar.

(ii) For any R ∈ (0,+∞), we have

λR1 := sup{λ ∈ R | ∃φ ∈ C2((−R,R),Rd) ∩ C1([−R,R],Rd), φ > 0,−Lφ−A(x)φ− λφ ≥ 0}. (2.3.17)

(iii) The mapping R 7→ λR1 is decreasing.

(iv) There exists a positive eigenfunction associated with λ∞1 .

(v) For R ∈ (0,+∞], we have

λR1 = max
φ>0

inf
x∈(−R,R)

min
1≤i≤d

(−Lφ−A(x)φ)i
φi

(2.3.18)

Next we introduce an important object for the study of the spatial behavior of the solutions to (2.3.9).
Given λ ∈ R, we let Lλφ(x) := eλxL(e−λxφ(x)) and k(λ) be the principal eigenvalue of the operator
−Lλ −A(x) restricted on L-periodic functions. Equivalently, we have

Lλφ = (σ(x)φx)x + (−2λσ(x) + q(x))φx + (−λσx(x)− λq(x) + λ2σ(x))φ,
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if L is written in divergence form, or

Lλφ = σ(x)φxx + (−2λσ(x) + q(x))φx + (−λq(x) + λ2σ(x))φ,

if L is written in nondivergence form, and k(λ) is the unique real number for which there exists a solution
φ > 0 to {

− Lλφ(x)−A(x)φ(x) = k(λ)φ(x), x ∈ R,
φ > 0, φ is L-periodic.

(2.3.19)

The map k(λ) plays a crucial role regarding the spatial properties of (2.3.9) as it the center of a formula for
the spreading speed associated with (2.3.9). It also provides a connection between the generalized Dirichlet
an periodic principal eigenvalue, as will be stated in the next Proposition. However, in order to state our
results, we first need to introduce an assumption which ensures that the dynamics of the model is the same
in both directions of R.

Assumption 2.3.5 (Isotropic behavior). We assume that the operator L has no advection: q(x) ≡ 0.
Furthermore, we assume that either of the following conditions is satisfied.

a) Both σ(x) and A(x) are even in x,

b) L = Ld is written in divergence form (2.3.10) and A(x) is a symmetric matrix.

Proposition 2.3.6 (On k(λ)). Let L be a L-periodic diagonal uniformly elliptic operator, A(x) be a coop-
erative and fully coupled L-periodic matrix field. Then:

(i) For each λ ∈ R, there exists a principal eigenpair (k(λ), φλ(x)) with φλ � 0 which solves (2.3.19), and
φλ is unique up to the multiplication by a positive scalar.

(ii) The following characterization of k(λ) is valid:

k(λ) = max
φ>0

φ∈C2
per(R),Rd

inf
x∈R

min
1≤i≤d

(−Lλφ−A(x)φ)i
φi

(2.3.20)

(iii) The map λ 7→ k(λ) is analytic and strictly concave. Furthermore, there exist constants α > 0 and
β > 0 such that

k(λ) ≤ α− βλ2 for all λ ∈ R. (2.3.21)

(iv) The following equality holds:
λ∞1 = max

λ∈R
k(λ).

(v) If L satisfies Assumption 2.3.5, then the mapping λ 7→ k(λ) is even.

Finally, we introduce a formula which gives the minimal speed of traveling waves to (2.3.9), and show
some related properties.

Proposition 2.3.7 (On the formula for the minimal speed). Let L be a L-periodic diagonal uniformly
elliptic operator, A(x) be a cooperative and fully coupled L-periodic matrix field. Suppose that λper1 < 0 and
let

c∗ := inf
λ>0

−k(λ)
λ

. (2.3.22)

Then:

(i) if c < c∗, then for any λ > 0, we have cλ < −k(λ),

(ii) if c = c∗, then there exists a unique λ∗ > 0 such that λ∗c∗ = k(λ∗), and for any λ > 0 with λ 6= λ∗ we
have λc∗ < −k(λ),

(iii) if c > c∗, there exists λ∗1 < λ∗2 such that λ∗1c = −k(λ∗1) and λ∗2c = −k(λ∗2). For λ ∈ (λ∗1, λ∗2) we have
λc > −k(λ), while for λ 6∈ [λ∗1, λ∗2] we have λc < −k(λ).

(iv) c∗ is continuous in A with respect to the supremum norm.
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As we will discuss in Theorem 2.3.19, the speed c∗ defined by (2.3.22) is the natural speed of propagation of
solutions to (2.3.9) starting from front-like initial data u0 supported in (−∞, 0] and with lim infx→−∞ u0(x) >
0. In order to catch the propagation speed of solutions starting from initial data supported in [0,+∞) and
with lim infx→+∞ u0(x) > 0, it suffices to introduce the quantity

c∗left := inf
λ<0

k(λ)
λ

= inf
λ>0

−k(−λ)
λ

. (2.3.23)

Whether the rightward speed c∗ and the leftward speed c∗left are equal depends, again, on the situation.
In many cases, including the case of constant coefficients, such a property is true. A sufficient condition
for this property to hold is given in Assumption 2.3.5. However it is false in general as can be seen as a
straightforward consequence of Proposition 2.3.43; see Remark 2.3.44.

A consequence of the above results is the following Proposition.

Proposition 2.3.8. Suppose that λper1 < 0 and that the rightward speed c∗ =: c∗right (defined by (2.3.22))
and the leftward speed (defined by (2.3.23)) are both positive. Then

λ∞1 < 0.

The proof is immediate so we sketch it here. When c∗right > 0, it follows from the definition of c∗right that
0 > −λc∗ ≥ k(λ) for all λ > 0. Similarly since c∗left > 0 there holds that 0 > λc∗ ≥ k(λ) for all λ < 0.
Finally since k(0) = λper1 < 0, we have that k(λ) < 0 for all λ ∈ R and it follows from (2.3.21) that

λ∞1 = max
λ∈R

k(λ) < 0.

Proposition 2.3.8 is proved.
When λper1 = 0, it is known that the hair-trigger property may fail for nonlinear problems even in the

case of a scalar equation. This can be shown by considering the following Fisher-KPP equation :

ut(t, x) = uxx(t, x) + u(t, x)
(
r − u(t, x)

)
.

When r = 0, any bounded nonnegative solution to the above equation converges to 0 as t→∞. The proof
results from a comparison with the ODE ut = −u2.

Next we derive a condition under which there is equality between the periodic principal eigenvalue and
the generalized Dirichlet principal eigenvalue. As in the scalar case (see [298, 299]), it may happen that
the two principal eigenvalues λper1 and λ∞1 are different, for instance in the presence of a first-order term.
Similarly, because of the dependency in x in the diffusion coefficient, the speed of propagation may differ
when looking at solutions spreading to the right or to the left.

Proposition 2.3.9 (Dirichlet and periodic principal eigenvalues). Let Assumption 2.3.5 hold. Then

λ∞1 := lim
R→∞

λR1 = λper1 . (2.3.24)

Since λper1 is sometimes easier to estimate than λ∞1 , the above proposition gives a useful criterion for the
survival of solutions whose initial data is compactly supported in view of Theorem 2.3.17.

Proposition 2.3.10. Under Assumption 2.3.5, the rightward and leftward spreading speeds are the same.

If Assumption 2.3.5 fails to hold, the rightward speed and the leftward speed may not be the same,
even if there is no advection, i.e. q(x) ≡ 0. As explained in Remark 2.3.44, Proposition 2.3.43 provides a
counterexample in the case of strong coupling. This is in sharp contrast with the scalar case, where it is
known that the two speeds are always the same in the absence of an advection.

Last we turn our interest to systems with rapidly oscillating coefficients and give a description of the
asymptotic behavior of the spreading speed.

Theorem 2.3.11 (The speed of rapidly oscillating systems). Let σ(x) > 0, q(x) and A(x) be 1-periodic.
For each ε ∈ (0, 1), let

Lεu := (σε(x)ux)x + qε(x)u =
(
σ
(x
ε

)
ux

)
x

+ q
(x
ε

)
u



97

be a uniformly elliptic operator and Aε(x) := A
(
x
ε

)
be a cooperative fully coupled matrix field. We let c∗ε be

the spreading speed associated with Lε and Aε(x). Then, we have

lim
ε→0

c∗ε = c∗(LH +A), (2.3.25)

where:
LHu := σHuxx + qHux,

σHi :=
(∫ 1

0

1
σi(z)

dz
)−1

, qHi := σHi

∫ 1

0

qi(z)
σi(z)

dz, A :=
∫ 1

0
A(z)dz,

and c∗(LH +A) is given by:

c∗(LH +A) = inf
λ>0

λPF
(
λ2σH − λqH +A

)
λ

where λPF (X) is the Perron-Frobenius eigenvalue of an constant irreducible cooperative matrix X.

2.3.2.2 Spreading in equations of hybrid nature and traveling waves.

In this section 2.3.2.2 we derive some proerties of the solutions to the nonlinear equation (2.3.9). We first
recall some notions that we will use in the statement of our results.

Lipschitz continuity Let U ⊂ Rd be given. We say that f(x, u) = (f1(x, u), . . . , fd(x, u)) : R× U → Rd
is locally Lipschitz continuous with respect to u if, for all M > 0, there is a constant K > 0 such that

‖f(x, u)− f(x, v)‖ ≤ K‖u− v‖ for all x ∈ R and u, v ∈ U with ‖u‖ ≤M and ‖v‖ ≤M.

Definition 2.3.12 (Cooperative function). Let U ⊂ Rd and f : R×U → Rd. The function f = (f1, . . . , fd)
is cooperative (or equivalently, quasi-monotone) on U if there is a real number γ > 0 such that f(x, u) + γu
is monotone non-decreasing with respect to u for the usual component-wise order.

Remark 2.3.13. The notion of cooperative function is equivalent to the notion of quasi-monotonicity, which
is more commonly used in the dynamical systems community.

Alternatively, a function f is cooperative if, and only if, for any x ∈ R, u = (u1, . . . , ud) ∈ U , 1 ≤ i, j ≤ d
such that i 6= j, the function v 7→ fi(x, u1, . . . , uj−1, v, uj+1, . . . , ud) is nondecreasing.

Next we define the notion of sublinear nonlinearity that we will use throughout the section 2.3:

Definition 2.3.14 (Sublinear nonlinearity). We say the nonlinearity f(x, u) = (f1(x, u), . . . , fd(x, u)) is
sublinear provided it is continuous in both variables, Lipschitz continuous with respect to u and

(i) for all x ∈ R, f(x, 0) = 0.

(ii) f(x, u) is differentiable at u = 0 uniformly in x.

(iii) for each x ∈ R and each u ≥ 0, we have

f(x, u) ≤ Df(x, 0)u.

Finally, in order to compute the spreading speed, we need an additional regularity assumption on the
properties of the nonlinearity in a vicinity of 0.

Assumption 2.3.15 (Regularity in a neighborhood of 0). We assume that f is a sublinear nonlinearity and
that the differential matrix field Df(x, 0) is cooperative and fully coupled. Moreover, we assume that there
exists a family of cooperative and fully coupled matrix fields (Aδ(x))δ∈(0,1) satisfying

sup
x∈R
‖Aδ(x)−Df(x, 0)‖Md(R) → 0 as δ → 0,

and for each δ ∈ (0, 1) there exists η > 0 such that whenever ‖u‖ ≤ η and u > 0, we have

f(x, u) ≥ Aδ(x)u.
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As an example of nonlinearity satisfying Assumption 2.3.15, one can remark that if the Jacobian matrix
Df(x, 0) has only positive coefficients, then f satisfies Assumption 2.3.15 with Aδ(x) = (1− δ)Df(x, 0).

Definition 2.3.16 (Monotone lower barrier). Let f = (f1, . . . , fd) ∈ Lip(R × Rd,Rd) be a L-periodic
function. We say that f− ∈ Lip(R×Rd,Rd) is a monotone lower barrier of f if there exists a constant η > 0
such that

1. f(x, u) ≥ f−(x, u) for all u = (u1, . . . , ud) ≥ 0 with ui ≤ η for some i ∈ {1, . . . , d}.

2. Df−(x, 0)u = Df(x, 0)u for all (x, u) ∈ R× Rd.

3. for all i, j ∈ {1, . . . , d} with j 6= i, the function uj 7→ f−i (x, u1, . . . , ud) is non-decreasing whenever
|ui| ≤ η.

Note that the above assumptions imply, in particular, that f− is cooperative (or equivalently, quasi-
monotone) in a neighborhood of 0, more precisely on the domain R × B+

∞(0, η) (where B∞(0, η) := {u ≥
0 | ‖u‖∞ ≤ η}).

Equipped with these notions, we now state the first result on nonlinear equations of this section 2.3.
Theorem 2.3.17 showed that there is a hair-trigger effect when the Dirichlet principal eigenvalue λ∞1 is
negative. More precisely, any solution starting from a non-trivial initial data becomes locally uniformly
positive when t→ +∞.

Theorem 2.3.17 (Hair-Trigger effect). Let L be a diagonal uniformly elliptic operator and f be a sublinear
function. Assume that f admits a monotone lower barrier in the sense of Definition 2.3.16 and suppose
finally that λ∞1 < 0. Then there exists δ > 0 with such that whenever u(t, x) is a solution of (2.3.9) with an
initial condition u(0, x) := u0(x) which is non-negative and non-trivial, then

lim inf
t→+∞

u(t, x) ≥ δ1,

uniformly in bounded sets of R.

Next we introduce our notion of spreading speed.

Definition 2.3.18 (Spreading speed). The real number c∗ is the spreading speed associated with system
(2.3.9) if all non-negative solutions u(t, x) of (2.3.9) satisfy

(i) if lim infx→−∞ u� 0, then for each c < c∗ we have

lim inf
t→+∞

inf
x≤ct

u(t, x)� 0.

(ii) if there is K ∈ R such that u(0, x) ≡ 0 for all x ≥ K, then for all c > c∗ we have

lim sup
t→+∞

[
sup
x≥ct
‖u(t, x)‖

]
= 0.

Note the we impose by convention that the propagation happens towards the right. It may happen that
the rightward and leftward spreading speeds differ, as remarked in the previous section 2.3.2.1.

Next we prove the linear determinacy of sublinear systems which have a monotone lower barrier. Such
systems need not possess a comparison principle (system (2.3.2), in particular, does not), therefore the
classical theory cannot be applied directly.

Theorem 2.3.19 (Linear determinacy). Let L be a L-periodic elliptic operator, and f ∈ Lip(R×Rd,Rd) is
L-periodic in x, admits a monotone lower barrier as defined in Definition 2.3.16 and satisfies Assumption
2.3.15. We denote A(x) := Df(x, 0) and assume that the periodic principal eigenvalue λper1 is negative.
Then:

(i) System (2.3.9) has a spreading speed c∗ as in Definition 2.3.18.
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(ii) We have

c∗ = inf
λ>0
−k(λ)

λ
, (2.3.26)

where (k(λ), ϕλ(x)� 0) is defined by (2.3.19).

We finally specify what we mean by traveling wave:

Definition 2.3.20 (Traveling wave). A traveling wave u with speed c > 0 and period L for equation (2.3.9)
is a nonnegative entire solution to (2.3.9) which satisfies the following condition:

∀x ∈ R,∀t ∈ R, u
(
t+ L

c
, x

)
= u(t, x− L),

as well as the boundary conditions at ±∞ for all t ∈ R:

lim
x→+∞

u(t, x) = 0,

lim inf
x→−∞

u(t, x)� 0.

With a little more regularity on f we get the existence of traveling waves for c ≥ c∗.

Theorem 2.3.21 (Existence of traveling waves). In addition to the assumptions of Theorem 2.3.19, suppose
that there exist constants M > 0 and β > 0 such that

‖f−(x, u)−A(x)u‖∞ ≤M‖u‖1+β
∞ for all x ∈ R and ‖u‖∞ ≤ η. (2.3.27)

Then, there exists a traveling wave for (2.3.9) for all c ≥ c∗.

Remark 2.3.22 (On monotone sub-solutions of (2.3.2)). Theorem 2.3.19 allows us to compute the spreading
speed and construct traveling waves for system (2.3.2). Indeed the modified system{

ut = σu(x)uxx +
(
ru(x)− µu(x)− κu(x)u− βu

)
u+ v

(
µv(x)− κu(x)u

)
,

vt = σv(x)vxx +
(
rv(x)− µv(x)− κv(x)v − βv

)
v + u

(
µu(x)− κv(x)

)
,

(2.3.28)

is a monotone lower barrier for the original system (which corresponds to β = 0). The original system itself
is a monotone lower barrier in the region{

0 ≤ u ≤ inf
x∈R

(
µv(x)
κu(x)

)}
×
{

0 ≤ v ≤ inf
x∈R

(
µu(x)
κv(x)

)}
.

However, in order to estimate solutions to (2.3.28) when t becomes large, we need to construct a monotone
lower barrier which leaves the interval [0, η1] := {u | 0 ≤ u ≤ η1} invariant. This is precisely achieved for
β > 0 sufficiently large.

In particular, Theorem 2.3.24 below is a direct consequence of Theorem 2.3.19.

2.3.2.3 On System (2.3.2)

Our first result concerns the formula for the spreading speed of (2.3.2), which provides a way to compute
the speed of traveling waves for (2.3.2). The framework in which we prove this linear determinacy property
is the following.

Assumption 2.3.23 (Cooperative-competitive system). We let σu(x) > 0, σv(x) > 0, κu(x) > 0, κv(x) > 0,
µv(x) > 0, µu(x) > 0, be L-periodic positive continuous functions and ru(x), rv(x) be L-periodic continuous
functions of arbitrary sign.

Our first result concerns the propagation of solutions to the parabolic equations (2.3.2).

Theorem 2.3.24 (Spreading speed for (2.3.2)). Let Assumption 2.3.23 be satisfied. Assume that the prin-
cipal eigenvalue of the linearised system is negative. Then, there exists a real number c∗ such that for any
nonnegative initial condition (u0(x) ≥ 0, v0(x) ≥ 0),
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(i) if infx≤K min(u0(x), v0(x)) > 0 for some K ∈ R, then

lim inf
t→∞

[
inf

K≤x≤ct
min(u(t, x), v(t, x))

]
> 0, for all 0 < c < c∗,

(ii) if there is K > 0 such that u0(x) ≡ 0 and v0(x) ≡ 0 for all x ≥ K, then

lim sup
t→∞

[
sup
x≥ct

max(u(t, x), v(t, x))
]

= 0, for all c > c∗,

where (u(t, x), v(t, x)) is the solution to the Cauchy problem (2.3.2) starting from the initial condition
(u0(x), v0(x)).

Moreover, we have the formula
c∗ = inf

λ>0

−k(λ)
λ

,

where k(λ) is defined in (2.3.19).

Remark 2.3.25. As shown in Remark 2.3.44, with some particular choice of the parameters, the spatial
behavior of System (2.3.2) approaches the one of a scalar KPP-type equation with an arbitrary first-order
advection term. In particular, we expect that the spreading speed to the right is different than the spreading
speed to the left. One may even reach a situation in which the speed to the right is positive, but the speed
to the left is negative. In such a situation, compactly supported initial data would propagate to the right
but also regress in the same direction, causing a pulse-like behavior with variable width that doesn’t achieve
a positive infimum in any bounded interval in the long run, even when the periodic principal eigenvalue is
positive. Therefore we have no hope to have a hair-trigger effect in general for our kind of system when
λper1 < 0. The correct notion of principal eigenvalue for a hair-trigger effect is the generalized Dirichlet
principal eigenvalue λ∞1 , which will be introduced in Definition 2.3.3 in the section 2.3.2.1. We refer to
Theorem 2.3.17 for a precise statement of the hair-trigger effect.

Next we introduce the notion of traveling wave solutions, which are entire solutions propagating at a
fixed speed c.

Definition 2.3.26 (Traveling wave solutions). Let (u(t, x), v(t, x)) be an entire solution to (2.3.2), i.e. a
solution that is defined for all t ∈ R and x ∈ R. We say that (u(t, x), v(t, x)) is a traveling wave solution
traveling at speed c if it satisfies

u

(
t+ L

c
, x

)
= u(t, x− l), v

(
t+ L

c
, x

)
= v(t, x− l), for all (t, x) ∈ R2, (2.3.29)

as well as the boundary conditions

lim
x→+∞

u(t, x) = 0, lim
x→+∞

v(t, x) = 0, for all t ∈ R,

lim inf
x→−∞

u(t, x) > 0, lim inf
x→−∞

v(t, x) > 0, for all t ∈ R.

Theorem 2.3.27 (Existence of traveling waves). Let Assumption 2.3.23 hold. There exists a traveling wave
for (2.3.2) with speed c if, and only if, c ≥ c∗.

Remark 2.3.28. Just as in the case with the spreading speed, the above theorem implies that the minimal
speed of the traveling wave propagating to the right direction coincides with the spreading speed. The speed
to the left may not be the same (see Remark 2.3.44) and might even be negative.

As we will see, Theorems 2.3.24 and 2.3.27 are direct consequences of results on more general cooperative-
competitive systems, namely Theorems 2.3.19 and 2.3.21.

Next we turn to the long-time behavior of the solutions to the Cauchy problem (2.3.2), starting from a
bounded nonnegative nontrivial initial condition. In the case where the coefficients are independent of x, we
were able to show convergence to a unique stationary state. More precisely, we consider the homogeneous
problem {

ut − σuuxx = (ru − κu(u+ v))u+ µvv − µuu
vt − σvvxx = (rv − κv(u+ v))v + µuu− µvv,

(2.3.30)
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where ru ∈ R, rv ∈ R, κu > 0, κv > 0, µu > 0, µv > 0. The linearization of the right-hand side of (2.3.30)
around (u, v) = (0, 0) is given by the matrix

A :=

ru − µu µv

µu ru − µv

 . (2.3.31)

Since the off-diagonal entries of A are positive, we easily see that A has real eigenvalues. Let λA denote the
largest eigenvalue of A

λA := max{λ ∈ R |λ is an eigenvalue of A}. (2.3.32)

Then by the Perron-Frobenius theory, the eigenvector corresponding to λA is positive: (ϕuA, ϕvA)T , ϕuA > 0,
ϕvA > 0.

Assumption 2.3.29. We assume that (0, 0) is linearly unstable for the ODE problem (2.3.33),{
ut = (ru − κu(u+ v))u+ µvv − µuu
vt = (rv − κv(u+ v))v + µuu− µvv.

(2.3.33)

i.e. λA > 0.

It can be seen that the condition λA > 0 is always satisfied when ru > 0 and rv > 0, and always fails
when ru < 0 and rv < 0. The situation when ru and rv do not have the same sign is more intricate. In
this case, there may exist a threshold depending on the values of µu, µv, such that (0, 0) is stable for small
values of µu, µv, and unstable for larger values. We discuss this threshold later in the section 2.3, in Lemma
2.3.47.

Since system (2.3.30) has a sublinear nonlinearity, the sign of the eigenvalue λA is a sharp condition
for the existence of a non-trivial non-negative stationary solution. Indeed, the matrix A is cooperative and
therefore admits a unique eigenpair with a positive eigenvector (λA, ϕA); if λA < 0, then for all M > 0
(ū(t), v̄(t)) := MeλAt(ϕuA, ϕvA) is a super-solution to (2.3.30) which converges to 0, and a direct application
of the maximum principle shows that the solution (u, v) satisfies (u(t, x), v(t, x)) ≤ (ū(t), v̄(t)) if M >
max(‖u(0, ·)‖L∞ , ‖v(0, ·)‖L∞). The non-existence of a stationary solution when λA = 0 was treated in [190,
Theorem 1.4 (ii)] and can also be seen as a direct consequence of [87, Theorem 13.1 (c)].

Before turning to the PDE problem (2.3.30), we first describe the long-time behavior of the associated
ODE system (2.3.33). Note that elements of the proof of the next Proposition can be found in the work of
Cantrell, Cosner and Yu [100].

Proposition 2.3.30 (Long-time behavior of the ODE system). Let (u(t), v(t)) be the solution of (2.3.33)
starting from a non-negative non-trivial initial condition (u0, v0).

(i) If λA > 0, there is a unique positive equilibrium (u∗, v∗) for (2.3.33), and (u(t), v(t)) converges to
(u∗, v∗) as t→∞.

(ii) If λA ≤ 0, then (u(t), v(t)) converges to (0, 0) as t→ +∞.

Next we turn to the local asymptotic stability of the PDE, i.e. the long-time convergence of the solution
to the parabolic equation (2.3.30) starting from an initial condition in a vicinity of the constant stationary
solution.

Theorem 2.3.31 (Local stability of the constant stationary solution). Assume that λA > 0 and let (u∗, v∗)
be the unique stationary solution for the ODE (2.3.33). Then (u∗, v∗) is locally asymptotically stable as a
stationary solution to (2.3.30) in the space BUC(R)2. More precisely, (u∗, v∗) is stable and there exists δ > 0
such that for any (u0(x), v0(x)) ∈ BUC(R)2 satisfying ‖u0 − u∗‖BUC(R) ≤ δ and ‖v0 − v∗‖BUC(R) ≤ δ, then

lim
t→+∞

sup
x∈R
|u(t, x)− u∗| = 0 and lim

t→+∞
sup
x∈R
|v(t, x)− v∗| = 0,

and the convergence is exponential in time.
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Note that the difficulty in this result is to overcome the absence of a comparison principle, even asymp-
totically (in the case where σ1 6= σ2 and Assumption 2.3.32 does not hold). To this end we had to introduce
an argument coming from semigroup theory [274, 107].

While Assumption 2.3.29 is sufficient to describe the long-time behavior of the ODE problem, we require
a little more for the study of the PDE problem (2.3.30). We extend the Lyapunov argument which was
used for the ODE system in the non-cooperative case, though only when σu = σv, and in the remaining
cases the long-time behavior may be determined by using the comparison principle for either cooperative or
two-component competitive systems. The cases under which global stability can be shown are summarized
in Assumption 2.3.32.

Assumption 2.3.32. We assume that either max(ru−µu, rv−µv) ≤ 0, min(ru−µu−µv, rv−µv−µu) > 0,
or σu = σv.

Under this assumption, we can prove that the solutions to the Cauchy problem associated with (2.3.30)
converge in long time to the unique nonnegative nontrivial stationary solution.

Theorem 2.3.33 (Long-time behavior of the homogeneous problem). Let Assumptions 2.3.29 and 2.3.32
be satisfied. Let (u0(x) ≥ 0, v0(x) ≥ 0) be bounded continuous nontrivial functions, and c∗ be the spreading
speed associated with (2.3.30). Then, the solution (u(t, x), v(t, x)) to the Cauchy problem (2.3.30) converges
as t→∞ to the unique stationary solution (u∗, v∗) to (2.3.30), uniformly in the sense that for each 0 < c < c∗

we have:
lim

t→+∞
sup
|x|≤ct

max(|u(t, x)− u∗|, |v(t, x)− v∗|) = 0.

Finally, we were able to extend this result to the case of rapidly oscillating coefficients by using arguments
from the theory of dynamical systems and the homogenization of solutions to parabolic equations with
rapidly oscillating coefficients. To this end it is more convenient to write the heterogeneous system (2.3.2)
in divergence form (2.3.35).

In order to state our results for the homogenization limit of parabolic systems, we restrict ourselves to
the case L = 1, without loss of generality. For each 1-periodic function σu(x), σv(x), ru(x), rv(x), κu(x),
κv(x), µu(x), µv(x), we denote:

ru :=
∫ 1

0
ru(x)dx, κu :=

∫ 1

0
κu(x)dx, µu :=

∫ 1

0
µu(x)dx, (2.3.34)

rv :=
∫ 1

0
rv(x)dx, κv :=

∫ 1

0
κv(x)dx, µv :=

∫ 1

0
µv(x)dx,

and finally:

σu
H :=

(∫ 1

0

1
σu(x)dx

)−1

, σv
H :=

(∫ 1

0

1
σv(x)dx

)−1

.

Theorem 2.3.34 (Homogenisation). Let σu(x), σv(x), ru(x), rv(x), κu(x), κv(x), µu(x) and µv(x) be 1-
periodic functions such that σuH , σvH , ru, rv, κu, κv, µu and µv satisfy Assumption 2.3.29 and Assumption
2.3.32. Consider {

ut = (σεu(x)ux)x + (rεu(x)− κεu(x)(u+ v))u+ µεv(x)v − µεu(x)u
vt = (σεv(x)vx)x + (rεv(x)− κεv(x)(u+ v))v + µεu(x)u− µεv(x)v.

(2.3.35)

Then, there is ε̄ > 0 such that for each 0 < ε < ε̄,

(i) there exists a unique positive nontrivial stationary solution (u∗ε(x), v∗ε (x)) to (2.3.35),

(ii) the ω-limit set of any (uε(t, x), vε(t, x)) solution to (2.3.35) starting from a nonnegative nontrivial
bounded initial condition is {(u∗ε(x), v∗ε (x))}.

(iii) any solution to the Cauchy problem (2.3.35) starting from a nonnegative bounded initial condition
converges as t→ +∞ to (u∗ε(x), v∗ε (x)), uniformly in the sense that for any 0 < c < c∗ε we have

lim
t→+∞

sup
|x|≤ct

max(|u(t, x)− u∗ε(x)|, |v(t, x)− v∗ε (x)|) = 0,

where c∗ε is the minimal speed defined in (2.3.7).
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2.3.3 Proofs of the results on general cooperative-competitive systems
In section 2.3.3.1, we show that solutions to equations can be estimated from below by a monotone lower
barrier. In section 2.3.3.2 we prove some properties on principal eigenproblems for periodic system, including
the equivalence between the various notions of principal eigenvalue on the real line for operators satisfying
Assumption 2.3.5. In section 2.3.3.3 we prove the linear determinacy for sublinear functions satisfying
Assumption 2.3.15 (Theorem 2.3.19) by adapting an argument of Weinberger [398]. In section 2.3.3.4 we
prove and the existence of traveling waves, Theorem 2.3.21. Finally in section 2.3.4.1 we prove Theorem
2.3.11.

Before resuming the proofs, let us mention two important conventions. The constant d > 0 stands for the
dimension of the system being investigated. Also, whenever u is a vector, we denote (u)i the i-th component
of u, or simply ui if the context is clear.

2.3.3.1 A comparison principle for systems with a monotone lower barrier.

In this section 2.3.3.1 we prove that a function that admits a monotone lower barrier generates a semiflow
that remains above the one generated by the lower barrier. More precisely, we show that as long as the
solution u(t, x) of the equation corresponding to the lower monotone barrier stays in the quasi-monotone
area, then the solution v(t, x) is componentwise greater than u(t, x) (even if it leaves the quasi-monotone
domain).

Theorem 2.3.35 (Comparison principle). Let f be a given sublinear function and L be a d-dimensional
diagonal uniformly elliptic operator. We assume that Df(x, 0) is cooperative and fully coupled and that f
admits a monotone lower barrier f− in the sense of Definition 2.3.16.

Let T ∈ (0,+∞] and u(t, x) and v(t, x) solve{
ut(t, x)− Lu(t, x) = f(x, u(t, x))
u(0, x) = u0(x),

and
{
vt(t, x)− Lv(t, x) = f−(x, v(t, x))
v(0, x) = v0(x),

for t ∈ [0, T ] and x ∈ R, u0, v0 ∈ BUC(R).
Suppose that ‖v(t, x)‖∞ < η for all t ∈ [0, T ]. Then u(t, x) satisfies

v(t, x) ≤ u(t, x) for any t ∈ [0, T ] and x ∈ R.

Proof. We show the result under the assumption that u0(x) ≥ v0(x) + δ1 and ‖v(t, x)‖ ≤ η − δ for some
δ ∈ (0, η). The general result is obtained by taking the limit δ → 0. Since t 7→ u(t, x) is continuous at t = 0,
there exists t0 > 0 such that v(t, x) ≤ u(t, x) for all t ∈ [0, t0] and x ∈ R.

We define
t∗ := sup{t > 0 | v(t, x) ≤ u(t, x) for all x ∈ R}.

Then by definition t∗ ≥ t0. Assume by contradiction that t∗ < T . Then, because of the definition of t∗,
there exists a sequence (tn, xn) ∈ [0, T ]× U and i ∈ {1, . . . , d} such that tn → t∗, tn ≥ t∗ and

vi(tn, xn)→ ui(tn, xn) and vj(tn, xn) ≤ uj(tn, xn) for all j 6= i.

If xn is bounded, then we may extract a subsequence such that xn → x. By the continuity of vi and
ui we have then vi(t∗, x) = ui(t∗, x). Since moreover vi(t, x) ≤ ‖v(t, x)‖∞ ≤ η we have f−

(
x, v(t, x)

)
≤

f−
(
x, u(t, x)

)
≤ f(x, u(t, x)). Testing the i-th equation we get

(vi)t(t, x)− Lvi(t, x) = (f−)i(x, v(t, x)) ≤ fi(x, u(t, x)) = (ui)t − Lui(t, x),

and there is a contradiction by the strong maximum principle. If (tn, xn) is unbounded we get a similar
contradiction by extracting a converging subsequence from the sequence of functions u(t + tn, x + xn) and
v(t+ tn, x+ xn). This proves that t∗ = T , therefore the result holds.

Proposition 2.3.36. Let f = (f1, . . . , fd)T be a given sublinear function and L be a d-dimensional diagonal
uniformly elliptic operator. We assume that Df(x, 0) is cooperative and fully coupled, that λper1 < 0 and
that f admits a monotone lower barrier f− in the sense of Definition 2.3.16. Let η > 0 be as in Definition
2.3.16.

There exists a monotone lower barrier f∗−(x, u) for f with the properties that



104

1. we have
f∗−(x, u) ≤ f−(x, u) for all x ∈ R and u ≥ 0.

2. there exists a L-periodic equilibrium p(x) = (p1(x), . . . , pd(x)) such that 0 ≤ p(x) ≤ η1,

−Lp(x) = f∗−
(
x, p(x)

)
,

and p attracts every nontrivial periodic initial condition u0(x) satisfying 0 ≤ u0(x) ≤ p(x) for all
x ∈ R.

Proof. Let β > 0 be given and define

f−β (x, u) := f−(x, u)− βu2 = (f−1 (x, u)− βu2
1, . . . , f

−
d (x, u)− βu2

d)T .

It is clear that f−β (x, u) ≤ f−(x, u) for all x ∈ R and u ∈ Rd, and that f−(x, u) and f−β (x, u) have the same
Jacobian matrix near u = 0, Df−(x, 0) = Df−β (x, 0) =: A(x).

We investigate the equation
ut − Lu = f−β (x, u). (2.3.36)

If

β ≥ β∗ :=
supx∈R maxi∈{1,...,d}

∑d
j=1 aij(x)

η
,

where η > 0 is the constant from Definition 2.3.16, then the constant vector η1 satisfies

f−β (x, η1) ≤ A(x)η1− βη21 ≤ η
(

sup
x∈R

max
i∈{1,...,d}

d∑
i=1

aij(x)− βη
)
,

therefore η1 is a super-solution to (2.3.36).
Next we look for a sub-solution to (2.3.36). Recall that we denote (λper1 , ϕper(x) > 0) the periodic

principal eigenpair as in Definition 2.3.3, with ‖ϕper‖L∞(R)d = 1, and recall that λper1 < 0. Define

κ := inf
x∈R

min
1≤i≤d

ϕperi (x)
‖ϕper(x)‖∞

,

which is finite and positive by the elliptic strong maximum principle. Because of the differentiability of
u 7→ f−β (x, u), there exists ε0 > 0 such that for each u ≥ 0 with ‖u‖ ≤ ε0, we have

‖f−β (x, u)−A(x)u‖∞ ≤ −λper1 κ‖u‖∞.

Reducing ε0 if necessary, we may assume that ε0 < η. Then for 0 < ε ≤ ε0, εϕper(x) is a sub-solution to
(2.3.36). Indeed,

−Lεϕper(x) = A(x)εϕper(x) + λper1 εϕper(x) ≤ A(x)ϕper(x) + λper1 κ‖εϕper‖∞
≤ A(x)εϕper + f−β

(
x, εϕper(x)

)
−A(x)εϕper(x) = f−β

(
x, εϕper(x)

)
.

Let ε > 0 be fixed and uε(t, x) be the solution to the initial-value problem (2.3.36) with uε(0, x) =
εϕper(x). It follows from the parabolic comparison principle and the strong maximum principle that
uε(t, x) � εϕper(x) for all t > 0 and x ∈ R. Next, fix τ > 0. Then uε(τ, x) > εϕR(x) = uε0(x) and
therefore

uε(t+ τ, x) > uε(t, x),

in other words, uε(t, x) is strictly increasing in time. Thus the limit

V ε := lim
t→+∞

uε(t, x)

exists and is an equilibrium of (2.3.36). It is not difficult to show, by using Serrin’s sweeping method, that

V ε(x) ≥ ε0ϕ
per(x).
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Indeed, define
ε1 := sup{ε′ ≥ 0 | ε′ϕper(x) ≤ V ε(x)}.

Then clearly ε1 ≥ ε (by the parabolic comparison principle). If ε1 < ε0, then there exists a contact point
x0 such that ε1ϕ

per(x0) ≤ V ε(x0) and ε1ϕ
per
i (x0) = V εi (x0) for some i ∈ {1, . . . , d}. We find a contradiction

by applying the elliptic strong maximum principle in the i-th equation of the system. Since V ε(x) is an
equilibrium and V ε(x) ≥ ε0ϕ

per(x), we conclude that

V ε(x) ≥ V ε0(x).

Define pβ(x) := V ε0(x) and let u0(x) ≤ pβ(x) be a nontrivial L-periodic initial data. Let u(t, x) be the
solution of (2.3.36) satisfying u(0, x) = u0(x). Fix some t0 > 0. Then u(t0, x) > 0 for all x ∈ R. Since
u(t0, x) is periodic in x, there exists ε > 0 sufficiently small, so that εϕper(x) ≤ u(t0, x). It follows from the
comparison principle that

pβ(x) = V ε0(x) ≤ V ε(t, x) ≤ lim
t→+∞

u(t, x) ≤ pβ(x).

Therefore we have found f∗−(x, u) := f−β (x, u) satisfying the requirements of Proposition 2.3.36.

2.3.3.2 The principal eigenvalue of cooperative systems with periodic coefficients

In this section 2.3.3.2 we focus on the principal eigenvalue problem for general cooperative elliptic systems
with periodic coefficients. For 1 ≤ i ≤ d and α > 0, let σ(x) ∈ C1+α

per (R,Rd) be positive, and q(x) ∈
Cαper(R,Rd) be given. We recall that:

Liu := (σi(x)ux)x + qi(x)ux, 1 ≤ i ≤ d ; Lu =
(
Liui)1≤i≤d,

if L is written in divergence form, and

Liu := σi(x)uxx + qi(x)ux, 1 ≤ i ≤ d ; Lu =
(
Liui)1≤i≤d

if L is written in non-divergence form. The particular choice of writing the operator in divergence form or
non-divergence form makes little difference for the principal eigenproblem, except when a symmetry property
is involved; non-divergence form systems are better suited for systems which are composed of even functions,
and systems in divergence form are most convenient when a symmetry for the canonical H1 scalar product
is needed.

We start with some elementary properties of the Dirichlet principal eigenvalue.

Proof of Proposition 2.3.4. We prove each statement separately.
Step 1: Existence of a principal eigenfunction.
The existence and uniqueness of a principal eigenfunction associated with λR1 in the case R < +∞ is an

immediate consequence of the Krein-Rutman Theorem.
Step 2: Proof of (2.3.17).
Assume by contradiction that there exists λ ∈ R and φ ∈ C2((−R,R),Rd) ∩ C1([−R,R],Rd), φ > 0,

such that
−Lφ−A(x)φ− λφ ≥ 0,

and λ > λR1 . On the one hand, it follows from Hopf’s Lemma that, for each i ∈ {1, . . . , d}, we have
dϕRi
dx (−R) > 0 and dϕRi

dx (R) < 0. On the other hand, for each i ∈ {1, . . . , d}, either φi(±R) > 0 or ±φi(±R) <
0 by Hopf’s Lemma. Therefore, the set {ζ > 0 | ζϕR ≤ φ} is nonempty and admits a supremum η > 0. We
remark that, by definition of η, the inequality in ζϕR ≤ φ is an equality for a x0 ∈ [−R,R]. Moreover, we
have:

−L(φ− ηϕR)−A(x)(φ− ηϕR)− λ(φ− ηϕR) ≥ (λ− λ1)ηϕR ≥ 0,

thus for 1 ≤ i ≤ d, either φi(±R)−ηϕRi (±R) > 0 or, by Hopf’s Lemma, ±d(φi−ηϕRi )
dx (±R) < 0. In particular,

we have x0 ∈ (−R,R) and there exists j ∈ {1, . . . , d} such that φj(x0) = ηϕRj (x0). At this point, we have

0 ≥ −L(φj − ηϕRj )(x0)− (A(x0)(φ− ηϕR)(x0))j
= λφj(x0)− λR1 ϕRj (x0) = φj(x0)(λ− λR1 ),
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which shows λ ≤ λR1 . This is a contradiction. We conclude that λ ≤ λR1 . Since λ and φ are arbitrary, we
have shown

λR1 ≥ sup{λ ∈ R | ∃φ ∈ C2((−R,R),Rd) ∩ C1([−R,R],Rd), φ > 0,−Lφ−A(x)φ− λφ ≥ 0}.

Finally, the equality in (2.3.14) shows the reverse inequality. Statement (ii) is proved.

Step 3: R 7→ λR is decreasing.
Let R < R′. Then, the function ϕR

′ is a valid test function in the characterization (2.3.17) of λR1 .
Therefore λR′1 ≤ λR1 . Since the equalities λ1(R′) = λR

′

1 and λR1 = λR1 hold, we have λR1 ≥ λR
′

1 . A direct
application of the strong maximum principle shows that equality cannot be achieved. Statement (iii) is
proved.

Step 4: Existence of a principal eigenfunction for λ∞1 and limit of λR1 .
Let Rn → +∞, then λRn1 is a nonincreasing sequence and thus converges to λ∞1 . Let ϕn be the associated

principal eigenfunction satisfying ϕn1 (0) = 1. Then, by the classical Schauder estimates and the Harnack in-
equality for fully coupled elliptic systems [87, Theorem 8.2], the sequence (ϕn)n>0 converges locally uniformly
to a limit ϕ∞ which satisfies −Lϕ∞ −A(x)ϕ∞ = λ∞1 ϕ

∞ (up to the extraction of a subsequence).
Let us show that λ∞1 = λ1(+∞). Let (λ, φ) be such that −Lφ− A(x)φ− λφ ≥ 0. Then by (2.3.17), for

any n ∈ N we have λ ≤ λRn1 . Taking the limit in the inequality, we find λ1(+∞) ≤ λ∞1 . Since (λ∞1 , ϕ∞)
satisfies the equality −Lϕ∞ −A(x)ϕ∞ = λ∞1 ϕ

∞, we have λ∞1 ≤ λ1(+∞). Statement (iv) is proved.

Step 5: We prove the minimax formula (2.3.18).
Using ϕR as a test function in (2.3.18), we find that

λR1 ≤ λ∗ := sup
φ>0

inf
x∈(−R,R)

min
1≤i≤d

(−Lφ−A(x)φ)i
φi

.

Let us show the converse inequality. Let ε > 0 be given, then by definition of λ∗ there exists φ > 0 such that

∀x ∈ (−R,R),∀i ∈ {1, . . . , d}, (−Lφ(x)−A(x)φ(x))i
φi(x) ≥ λ∗ − ε,

and thus for all x ∈ R we have −Lφ(x) − A(x)φ(x) − (λ∗ − ε)φ(x) ≥ 0. By (2.3.17), we have λ∗ − ε ≤ λR1 .
Since ε > 0 is arbitrary, λ∗ ≤ λR1 . Finally, since λ∗ = λR1 , the supremum is attained for the principal
eigenfunction. Statement (v) is proved.

Proof of Lemma 2.3.6. Statement (i) is a direct consequence of the Krein-Rutman Theorem, and statement
(ii) is a consequence of Lemma 2.3.4 statement (v) (by modifying the elliptic operator L). Therefore we
concentrate on the remaining statements.

Proof of Statement (iii). We first note that the analyticity of k(λ) is classical. In the terminology
of Kato [228], the family Lλ is a holomorphic family of type (A) [228, Paragraph 2.1 on page 375] and
the principal eigenvalue is isolated in the spectrum by the Krein-Rutman Theorem; therefore the spectral
projection and the principal eigenvalue are analytic (see [228, Remark 2.9 on page 379]. The analyticity of
k(λ) and a well-chosen parameterization of the principal eigenvector φλ with respect to λ follow.

Let us prove (2.3.21). Let (k(λ), φλ) be a solution to (2.3.19). Because φλ is periodic, there exists a point
x ∈ R and an index i ∈ {1, . . . , d} such that φλi (x) minimizes (y, j) 7→ φλj (y) with y ∈ R and j ∈ {1, . . . , d}.
Therefore

k(λ)φλi (x) = −
(
Lλφ

λ
)
i
−
(
A(x)φλ(x)

)
i
≤ +λqi(x)φλi (x)− λ2σi(x)φλi (x)−

d∑
j=1

aij(x)φλj (x)

≤ λq∞φλi (x)− λ2σ0φ
λ
i (x)− a0φ

λ
i (x),

where q∞ := supy∈R,j∈{1,...,d} |qj(y)|, σ0 := infy∈R,j∈{1,...,d} σj(x) and a0 := infy∈R,j∈{1,...,d} aj(y). This
proves (2.3.21).

Next we follow [298, Proposition 2.10] to prove the concavity of λ 7→ k(λ). By the assumption that
σ ∈ C1,α(R,Md(R)), we need only consider the non-divergence case.



107

We first remark that (2.3.20) can be rewritten as:

k(λ) = max
ψ>0

eλxψ(x) is L−periodic

inf
x∈R

min
1≤i≤d

(−Lψ(x)−A(x)ψ(x))i
ψi(x) .

Let λ1 < λ2 and r ∈ (0, 1). Let ψ1 and ψ2 be such that eλ1xψ1(x) and eλ2xψ2(x) are L-periodic in x. Define
further z1 = (ln(ψ1

i ))1≤i≤d, z2 = (ln(ψ2
i ))1≤i≤d, z(x) = rz1 + (1− r)z2(x), and finally λ = rλ1 + (1− r)λ2.

Elementary computations then show that ψ(x) := ez(x) := (ezi(x))1≤i≤d is a valid test function for k(λ) since
eλxψ(x) is L-periodic. Thus:

k(λ) ≥ inf
x∈R

min
1≤i≤d

(−Lψ −A(x)ψ)i
ψi(x) .

We compute:

−Liψi(x)
ψi(x) = 1

ψi(x)

[
σi(x)

(
−r

ψ1
i,xx(x)
ψ1
i (x) − (1− r)

ψ2
i,xx(x)
ψ2
i (x) + r(1− r)

(
ψ1
x(x)
ψ1(x) −

ψ2
x(x)
ψ2(x)

)2)

−qi(x)
(
r
ψ1
i,x(x)
ψ1
i (x) + (1− r)

ψ2
i,x(x)
ψ2
i (x)

)]
ezi(x)

≥

[
r
−Liψ1

i (x)
ψ1
i (x) + (1− r)−Liψ

2
i (x)

ψ2
i (x) + σi(x)r(1− r)

(
ψ1
x(x)
ψ1(x) −

ψ2
x(x)
ψ2(x)

)2]
ezi(x)

ψi(x) . (2.3.37)

Then, we remark that
d∑
j=1

aij(x)ψj(x)
ψi(x) =

d∑
j=1

aij(x)
exp

(
r ln(ψ1

j (x)) + (1− r) ln(ψ2
j (x))

)
exp (r ln(ψ1

i (x)) + (1− r) ln(ψ2
i (x)))

=
d∑
j=1

aij(x) exp
(
r ln

(
ψ1
j (x)
ψ1
i (x)

)
+ (1− r) ln

(
ψ2
j (x)
ψ2
i (x)

))

≤
d∑
j=1

aij(x)
[
r

(
ψ1
j (x)

ψ1
i (x)

)
+ (1− r)

(
ψ2
j (x)
ψ2
i (x)

)]
(2.3.38)

= r

d∑
j=1

aij(x)ψ1
j (x)

ψ1
i (x) + (1− r)

d∑
j=1

aij(x)ψ2
j (x)

ψ2
i (x) ,

where the last inequality holds by the convexity of x 7→ ex. The inequality (2.3.38), together with (2.3.37),
implies

(−Lψ −A(x)ψ)i
ψi(x) ≥ r (−Lψ1 −A(x)ψ1)i

ψ1
i (x) + (1− r) (−Lψ2 −A(x)ψ2)i

ψ2
i (x) .

Taking the infimum over x and the supremum over all admissible ψ1 and ψ2 leads to the concavity of k(λ),
as in [298, Proposition 2.10].

To get the strict concavity, we observe that the particular choice ψ1(x) = φλ1(x)e−λ1x, ψ2(x) =
φλ2(x)e−λ2x and consequently ψ(x) = φ(x)eλx, where φ1 and φ2 are the corresponding solutions to (2.3.19)
and φ(x) = exp(r ln(φ1(x)) + (1− r) ln(φ2(x))), also leads to

k(λ) ≥ inf
x∈R

min
1≤i≤d

−Lλφ(x)−A(x)φ(x)
φi(x) = inf

x∈R
min

1≤i≤d

(−Lψ −A(x)ψ)i
ψi(x) ≥ rk(λ1) + (1− r)k(λ2),

and the first inequality is strict unless φ = φλ is the periodic principal eigenfunction associated with k(λ).
In this case, recalling (2.3.37) and (2.3.38), one must have (ψ1

i )x
ψ1
i
≡ (ψ2

i )x
ψ2
i

for all 1 ≤ i ≤ d, which (after
integration) results in ψ1 ≡ ψ2 (up to a multiplicative factor). This is a contradiction.

Statement (iii) is proved.
Proof of Statement (iv). The proof is inspired by [298, Theorem 2.11]. Again, since we allow q to be

non-zero, we need only prove the result in the non-divergence case.
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We first remark that for any λ ∈ R, the function e−λxϕλ(x), where ϕλ solves (2.3.19), satisfies

−L(ϕ(x)e−λx)−A(x)e−λxϕλ(x)− k(λ)e−λxϕλ(x) = 0,

hence λ∞1 ≥ k(λ) for all λ ∈ R. Therefore λ∞1 ≥ supλ∈R k(λ).
Let ϕ > 0 be a principal eigenfunction associated with λ∞1 . We let

ψ(x) :=
(
ϕi(x+ L)
ϕi(x)

)
1≤i≤d

.

Then, applying the Harnack inequality for fully coupled elliptic systems [87, Theorem 8.2] to ϕ, the function
ψ(x) is uniformly bounded. We let

m := sup
x∈R

max
1≤i≤d

ψi(x) < +∞.

Let k ∈ {1, . . . , d} be such that supx∈R ψk(x) = m and xn be a sequence such that limn→∞ ψk(xn) = m.
Define ψn(x) := ψ(x+ xn), and ϕn(x) := 1

ϕk(xn)ϕ(x+ xn).
We remark that ψ satisfies the equation:

Liψi(x) = Liϕi(x+ L)
ϕi(x) − ψi(x)Liϕi(x)

ϕi(x) − 2σi(x)ϕi,x(x)
ϕi(x) ψi,x(x)

= −2σi(x)ϕi,x(x)
ϕi(x) ψi,x(x) +

d∑
j=1

aij(x)ϕj(x)
ϕi(x) (ψj(x)− ψi(x)).

Using the classical elliptic estimates, and up to the extraction of a subsequence, the sequence ψn converges
locally uniformly to a limit function ψ∞, and ϕn converges to ϕ∞. Extracting further, there exists x ∈ [0, L]
such that xn → x∞ mod L. Then, the function ψ∞ satisfies the equation:

−Liψ∞i (x) + 2σi(x+ x∞)
ϕ∞i,x(x)
ϕ∞i (x) ψ

∞
i,x(x)−

d∑
j=1

aij(x+ x∞)
ϕ∞j (x)
ϕ∞i (x) (ψ∞j (x)− ψ∞i (x)) = 0.

Then, defining L̃iφ(x) := Liφ(x)+2σ(x+x∞)ϕ
∞
i,x(x)
ϕ∞
i

(x) φ and the cooperative matrix field Ã(x) :=
(
aij(x+ x∞)ϕ

∞
j (x)
ϕ∞
i

(x)

)
1≤i,j≤d

,
we have

−L̃ψ(x)− Ã(x)ψ̃(x) ≤ 0.

Since Ã(x) is fully coupled, and the global maximum of ψ is attained at x = 0, the strong maximum principle
[87, Proposition 12.1] implies ψ∞(x) ≡ ψ(0) ≡ m. Then, define λ = − lnm. Since ϕ∞i (x+L)

ϕ∞
i

(x) = ψ∞i (x) ≡ m

for x ∈ R, the function ϕ∞(x)eλx is L-periodic. Since −Lϕ∞ −A(x)ϕ∞ = λ∞1 ϕ
∞, we have

−Lλ(eλxϕ∞(x))−A(x)eλxϕ∞(x) = eλx (−Lϕ∞ −A(x)ϕ∞) = λ∞1 e
λxϕ∞,

hence ϕ∞(x)e−λx is the periodic principal eigenfunction of −Lλ − A(x). By the uniqueness of the periodic
principal eigenvalue, λ∞1 = k(λ). This shows λ1 = maxλ∈R k(λ), which finishes the proof of Statement (iv)

Proof of Statement (v): We first deal with Assumption 2.3.5 case a), i.e. the case where both σ and
A are even. We write the proof for L written in nondivergence form, however the computations are similar
in the case L is written in divergence form. Recalling the formula (2.3.20),

k(λ) = max
φ>0

φ∈C2
per(R,Rd)

inf
x∈R

min
1≤i≤d

(−Lλφ−A(x)φ)i
φi

,

we notice that the set of admissible test functions is invariant by the change of variables x ← −x. More
precisely, for any φ ∈ C2

per(R,Rd) with φ > 0, there exists φ̌(x) := φ(−x) satisfying φ̌ ∈ C2
per(R,Rd), φ̌ > 0

and Lλφ(x) = ( ˇL−λφ̌)(−x) = L−λφ̌(−x), so that:

inf
x∈R

min
1≤i≤d

(−Lλφ(x)−A(x)φ(x))i
φi(x) = inf

x∈R
min

1≤i≤d

(−L−λφ̌(−x)−A(x)φ̌(−x))i
φ̌i(−x)

.
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Hence, for all φ ∈ C2
per(R,Rd) satisfying φ > 0:

inf
x∈R

min
1≤i≤d

(−Lλφ(x)−A(x)φ(x))i
φi(x) ≤ max

φ′>0
φ′∈C2

per(R),Rd

inf
x∈R

min
1≤i≤d

(−L−λφ′ −A(x)φ′)i
φ′i

= k(−λ).

Taking the supremum on φ, we get k(λ) ≤ k(−λ). Changing λ into −λ, we similarly get k(−λ) ≤ k(λ),
which shows that the equality k(−λ) = k(λ) holds.

Next we consider that Assumption 2.3.5 case b) holds, i.e., L = Ld is in divergence form (2.3.10) and A
is a symmetric matrix (i.e. equals its transpose for all x ∈ R), then the operator L−λ is the adjoint of the
operator Lλ for the canonical scalar product in L2

per(R)d:

〈ϕ,ψ〉 := 〈ϕ,ψ〉L2
per(R)d =

d∑
i=1

∫ 1

0
ϕi(x)ψi(x)dx,

and it follows easily from the Krein-Rutman Theorem [413, Theorem 7.C] that k(−λ) = k(λ).
This finishes the proof of Statement (v).

We are now in a position to prove Proposition 2.3.9.

Proof of Proposition 2.3.9. We first notice that λper1 = k(0). Since the operator L in Proposition 2.3.9
satisfies Assumption 2.3.5, Lemma 2.3.6 statement (v) implies that k(λ) is even, and Lemma 2.3.6 statement
(iii) implies that it is concave and continuous. Hence,

λper1 = k(0) = max
λ∈R

k(λ).

Finally, by Lemma 2.3.6 statement (iv) we have λ1 = maxλ∈R k(λ), and by Lemma 2.3.4 statement (iv) we
have λ1 = limR→+∞ λR1 . This ends the chain of equalities:

λper1 = k(0) = max
λ∈R

k(λ) = λ1 = lim
R→+∞

λR1 ,

which proves Proposition 2.3.9.

Last, we prove our statements on the formula for the minimal speed.

Proof of Proposition 2.3.7. Statement (i) is a direct consquence of the definition of c∗ in (2.3.22). Next, by
the fact that k(0) = λper1 < 0 and (2.3.21), the infimum on the right-hand side of (2.3.22) is attained by some
λ∗ > 0. Furthermore, since k(λ) is strictly concave, λ∗ is the only solution of the equation λc∗ = k(λ). This
proves (ii). Statements (ii) and (iii) follow directly from the strict concavity of λ 7→ k(λ). The continuity with
respect to A follows easily from the sequential characterisation of continuity and the regularising properties
of elliptic operators.

2.3.3.3 Speed of sublinear systems

Our main goal is to prove Theorem 2.3.19. This theorem follows as a direct consequence of Lemma 2.3.37
and Lemma 2.3.38 below.

Lemma 2.3.37 (Lower spreading speed). Let L be a diagonal uniformly elliptic L-periodic operator, and
f = (f1, . . . , fd) be a cooperative sublinear nonlinearity satisfying Assumption 2.3.15. Assume that there is
a periodic function p(x)� 0 solution to the equation

pt − Lp = f(x, p(x))

which attracts every nontrivial periodic initial condition p(x) ≥ u0(x) ≥ δ1� 0.
Let u(t, x) be a solution of (2.3.9) associated with an initial condition which is positive on a half-line

inf
x≤−K

min
1≤i≤d

ui(0, x) > 0

for some K > 0. Then for any c < c∗, we have

lim sup
t→+∞

sup
x≤ct
‖u(t, x)− p(x)‖ = 0,

where c∗ = infλ>0−k(λ)
λ is defined by (2.3.22) in Proposition 2.3.7.
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Proof. Let H :=
⋃

1≤i≤d
R × {i} ⊂ R2. We remark that any continuous function u : R × R → Rd can be

represented as a function u : R × H → R by letting u(t, x, i) = ui(t, x). Hence a vector function can be
represented by a scalar function on the habitat H. In particular, system (2.3.9) makes sense as an equation
on u ∈ BUC(H).

Let δ > 0, τ > 0 be given and let Q : BUC(H)→ BUC(H) be defined by

Q[v0](x) := v(τ, x).

where v(t, x) is the solution to (2.3.9) satisfying v(0, x) = v0(x). It follows from standa rd arguments that
Q is monotone.

Let us now check that the Hypothesis 2.1 in [398] are satisfied for H and Qδ. L et us mention at this
point that our setting is a little different from the one of the paper of Weinberger [398], since H is not left
invariant by a 2-dimensional lattice, as it is bounded in one direction. In our case, H is periodic with respect
to the 1-dimensional lattice LZ × {0} (for which Qδ is periodic). However, as stated in section 8 of [398]
(Partially bounded habitats), all the results in [398] can be adapted in directions ξ which are not orthogonal
to all members of our lattice LZ × {0} (which are the directions in which the spreading happens). In the
rest of the proof we will use those results.

Let us now check point by point that Hypothesis 2.1 is satisfied:

i. H is not contained in any 1-dimensional subset of R2.

ii. Q is monotone because f is quasi-monotone.

iii. H is invariant under translation by elements of LZ×{0}, and Qδ is periodic with respect to LZ×{0}.
Moreover there is a bounded subset P := [0, 1) × {1, . . . .d} ⊂ H, such that any x ∈ H has a unique
representation of the form x = l + p with l ∈ LZ× {0} and p ∈ P .

iv. Q(0) = π0 :≡ 0, and there exists π1 := p(x) > 0 which is the unique nonnegative nontrivial fixed point
of Qδ.

v. Q is continuous.

vi. Due to the classical parabolic estimates, Q is sequentially compact for the topology of th e local uniform
convergence on BUC(H).

In particular, [398, Theorem 2.1] applies to Q and there exists a spreading speed c∗ associated with Qδ.
Moreover, because of Assumption 2.3.15, [398, Theorem 2.4] implies

c∗(Q) ≥ inf
λ>0

−kδ(λ)
λ

=: c∗δ ,

where (kδ(λ), ϕδ,λ(x)) is the periodic principal eigenvalue solution to

−eλxL(ϕδ,λ(x)e−λx)−Aδ(x)ϕδ,λ(x) = kδ(λ)ϕδ,λ(x).

Since Aδ(x)→ A(x) as δ → 0, it follows from classical arguments that c∗δ → c∗ as δ → 0.
This completes the proof of Lemma 2.3.37.

Let us turn to the upper estimates of the spreading speed:

Lemma 2.3.38 (Upper spreading speed). Let L be a uniformly elliptic L-periodic operator, and f be a
L-periodic sublinear nonlinearity. Assume that Df(x, 0) =: A(x) is cooperative and fully coupled. Then, for
any c > c∗(L+A(x)), we have:

lim sup
t→+∞

sup
x≥ct

max
1≤i≤d

ui(t, x) = 0,

for any u(t, x) solution to (2.3.9), provided there is K > 0 such that u(0, x) ≡ 0 for all x ≥ K.

Proof. The result is an immediate consequence of the comparison principle applied to u(t, x) and the function
Mϕλ∗(x)e−λ∗(x−ct), where λ∗ > 0 is a minimizer for −k(λ)

λ , ϕλ∗ is the associated 1-periodic principal
eigenfunction, and M > 0 is a large constant satisfying

u0(x) ≤Mϕλ∗(x)e−λ∗x.
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Proof of Theorem 2.3.19. Let c∗ be the number defined as

c∗ := inf
λ>0

−k(λ)
λ

,

where k(λ) is defined in Lemma 2.3.6 Statement (i) with A(x) = Df(x, 0). Recall that c∗ is well-defined by
Proposition 2.3.7.

Let u0 ∈ BUC(R,Rd+) be given and u(t, x) be the solution to (2.3.9) satisfying u(0, x) = u0(x). We
assume that u0(x) = 0 for all x ≥ 0 and that

lim inf
x→−∞

‖u0(x)‖ > 0.

It has been shown in Lemma 2.3.38 that

lim sup
t→+∞

sup
x≥ct
‖u(t, x)‖∞ = lim sup

t→+∞
sup
x≥ct

max
1≤i≤d

ui(t, x) = 0,

therefore Statement (ii) in Definition 2.3.18 holds.
Let η > 0 and f− be as in Definition 2.3.16. Recall that, by Proposition 2.3.36, f− can be chosen so that

the equation −Lp = f−(x, p) admits a positive periodic fixed point p(x) which attracts any periodic initial
condition 0 ≤ u0(x) ≤ p(x), and ‖p‖L∞(R)d ≤ η.

We define u(t, x) as the unique solution to{
ut(t, x)− Lu(t, x) = f−(x, u(t, x)),
u(0, x) = min

(
u0(x), p(x)

)
.

(2.3.39)

By Proposition 2.3.36, the interval

[0, p(x)] := {v(x) ∈ BUC(R)d | 0 ≤ v(x) ≤ p(x)},

is positively invariant by the semiflow generated by (2.3.39). Therefore u(t, x) ≤ p(x) for all t ≥ 0 and
x ∈ R. By Theorem 2.3.35, we have then

u(t, x) ≥ u(t, x) for all t ≥ 0 and x ∈ R.

Applying Lemma 2.3.37 to u and u, we find that

lim
t→+∞

inf
x≤ct

u(t, x) ≥ lim
t→+∞

inf
x≤ct

u(t, x) ≥ p(x) ≥ δ1� 0,

for all c < c∗ and δ > 0 sufficiently small, hence we have shown Item (i) in Definition 2.3.18.

2.3.3.4 Traveling waves: proof of Theorem 2.3.21

We now prove Theorem 2.3.21 and the existence of traveling waves. The proof is done by constructing an
upper barrier and a lower barrier. The construction of the upper barrier is rather simple as the following
Lemma shows:

Lemma 2.3.39 (Upper barrier). Let λ > 0 and c > 0 be such that λc+ k(λ) ≥ 0. Define

u(t, x) := e−λ(x−ct)ϕλ(x) (2.3.40)

where ϕλ is the solution to (2.3.19) associated with λ, and satisfies ‖ϕλ‖L∞ = 1. Any solution u(t, x) of
(2.3.9) starting from below u(t, x) at t = 0 stays below u(t, x) at later times. More precisely, if the inequality

0 ≤ u(0, x) ≤ u(0, x)

holds componentwise for all x ∈ R, then for all t > 0 the inequality

0 ≤ u(t, x) ≤ u(t, x)

holds componentwise for all x ∈ R.
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Proof. We remark that
ut(t, x)− Lu(t, x) =

(
λc+A(x) + k(λ)

)
u(t, x) (2.3.41)

Since λc+ k(λ) ≥ 0, we have

ut(t, x)− Lu(t, x) = f(x, u(t, x)) ≤ A(x)u(t, x) ≤
(
λc+ k(λ) +A(x)

)
u(t, x).

Therefore u(t, x) is a subsolution to (2.3.41). By the comparison principle for cooperative parabolic systems,
we have

u(t, x) ≤ u(t, x)
for all t > 0 whenever u(0, x) ≤ u(0, x).

Next we construct a lower barrier. The function ξ in the following Lemma will play an important role in
this construction for the case c > c∗.

Lemma 2.3.40. Under the assumptions of Theorem 2.3.21, let c > c∗ and λ > 0 be such that −k(λ)
λ = c.

Define
ξ(t, x) = e−λ(x−ct)ϕλ(x)− ωe−µ(x−ct)ϕµ(x), (2.3.42)

where µ > 0 satisfies k(µ) + µc > 0 and λ < µ < λ(1 + β) where β > 0 is the constant defined in the
assumptions of Theorem 2.3.21. There exists ω∗ > 0 such that, for all ω ≥ ω∗, the function ξ(t, x) satisfies
the differential inequality

(ξi)t(t, x)− Liξi(t, x) ≤ f−i (x, ξ(t, x)) (2.3.43)
as well as ‖ξ(t, x)‖∞ ≤ η, whenever there is i ∈ {1, . . . , d} such that ξi(t, x) > 0, where f− and η are as in
Definition 2.3.16.

In particular, if ω > ω∗, any solution u(t, x) of (2.3.9) satisfying the inequality u(0, x) ≥ max
(
ξ(0, x), 0

)
also satisfies

u(t, x) ≥ max
(
ξ(t, x), 0

)
for all t > 0 and x ∈ R. (2.3.44)

Proof. The existence of µ as defined in the statement of the Lemma is a consequence of c > c∗ and the
properties of the principal eigenvalue k, see Proposition 2.3.7. Our goal is to find ω > 0 such that

ξt(t, x)− Lξ(t, x) ≤ f−(x, ξ(t, x)) whenever ξ(t, x) > 0. (2.3.45)

Let us select (t, x) such that ξ(t, x) > 0. Recall that, for all ν > 0, we have the equation −L(ϕν(x)e−νx) =
(A(x) + k(ν))e−νxϕν(x) by definition of k(ν). We compute

ξt − Lξ = (A(x) + k(λ) + λc) e−λ(x−ct)ϕλ(x)−
(
A(x) + k(µ) + µc

)
e−µ(x−ct)ωϕµ(x)

= A(x)ξ(t, x)− (k(µ) + µc)ωe−µ(x−ct)ϕµ(x).

It follows from our assumption in the statement of Theorem 2.3.21 that

‖f−(x, u)−A(x)u‖∞ ≤M‖u‖1+β
∞ ,

for some constant M > 0.

‖f−(x, ξ(t, x))−A(x)ξ(t, x)‖∞ ≤M‖ξ(t, x)‖1+β
∞

≤M
(

sup
y∈R

max
1≤i≤d

(ϕλ)i(y)
)1+β

e−(1+β)λ(x−ct),

and it follows that
(k(µ) + µc)ωe−µ(x−ct)ϕµ(x) ≥ A(x)ξ(t, x)− f−(x, ξ(t, x))

for all x − ct ≥ 1
(1+β)λ−µ

[
ln
(

M supy∈R max1≤i≤d(ϕλ)1+β
i

(y)
(k(µ)+µc) infy∈R min1≤i≤d(ϕµ)i(y)

)
− lnω

]
. On the other hand, because of the

specific form of ξ, we have ξ(t, x)� 0 for all x− ct ≤ −1
µ−λ ln

(
supy∈R max1≤i≤d(ϕλ)i(y)
infy∈R min1≤i≤d(ϕµ)i(y)

)
+ 1

µ−λ lnω. Therefore
if ω is sufficiently large, namely

lnω > µ− λ
βλ

ln
(

M supy∈R max1≤i≤d(ϕλ)1+β
i (y)

(k(µ) + µc) infy∈R min1≤i≤d(ϕµ)i(y)

)
− (1 + β)λ− µ

βλ
ln
( supy∈R max1≤i≤d(ϕλ)i(y)

infy∈R min1≤i≤d(ϕµ)i(y)

)
,
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then ξ(t, x) > 0 implies that (k(µ) + µc)ωe−µ(x−ct)ϕµ(x) ≥ A(x)ξ(t, x)− f−(x, ξ(t, x)) and therefore

ξt − Lξ(t, x) ≤ A(x)ξ(t, x)− (k(µ) + µc)ωe−µ(x−ct)ϕµ(x)
≤ A(x)ξ(t, x)−

(
A(x)ξ(t, x)− f−(x, ξ(t, x))

)
= f−(x, ξ(t, x)).

We have shown that (2.3.45) holds for ω > 0 sufficiently large. Finally

sup
x∈R

ξ(t, x) ≤ sup
x∈R

(
e−λx sup

y∈R
ϕλ(y)− ωe−µx inf

y∈R
ϕµ(y)

)

≤ sup
y∈R

ϕλ(y)
(
λ supy∈R ϕλ(y)
µ infy∈R ϕµ(y)

) λ
µ−λ

ω−
λ

µ−λ ,

therefore the supremum of ξ(t, x) is arbitrarily small for ω sufficiently large.
To finish our argument we remark that (if ω ≥ ω∗) ξ(t, x) and u(t, x) are respectively a sub-solution and

a super-solution to the cooperative system

vt(t, x)− Lv(t, x) = f−(x, v(t, x)),

which admits a comparison principle. Therefore if u(0, x) ≥ ξ(0, x) for all x ∈ R, then u(t, x) ≥ ξ(t, x) for
all t > 0 and x ∈ R. The Lemma is proved.

In the critical case c = c∗, we need to define ξ differently. Recall that, by Proposition 2.3.7, there exists
a unique λ∗ such that c∗ = k(λ∗)

λ∗ . By lemma 2.3.6, k(λ) is strictly concave and analytic, therefore there
exists a nonnegative integer m ≥ 0 such that the multiplicity of k(λ) + c∗λ is 2m+ 2, in the sense that

λ∗c∗ + k(λ∗) = 0, c∗ + k′(λ∗) = 0, k(i)(λ∗) = 0 for 2 ≤ i ≤ 2m+ 1, and k(2m+2)(λ∗) < 0.

Lemma 2.3.41. Let the assumptions of Theorem 2.3.21 hold. Define

ξ(t, x) =

max
(
∂2m+2

∂λ2m+2

(
e−λ(x−c∗t)ϕλ(x)

)∣∣
λ=λ∗ − ωe

−λ∗(x−c∗t)ϕλ∗(x), 0
)

if x− c∗t ≥
(
ω
2
) 1

2m+2 ,

0 if x− c∗t <
(
ω
2
) 1

2m+2

(2.3.46)
where the maximum is taken componentwise, then there exists ω∗ > 0 such that, for all ω ≥ ω∗, the function
ξ(t, x) satisfies the differential inequality

(ξi)t(t, x)− Liξi(t, x) ≤ f−i (x, ξ(t, x)) (2.3.47)

as well as ‖ξ(t, x)‖∞ ≤ η whenever ξi(t, x) > 0 for some i ∈ {1, . . . , d}, where f− and η are as in Def-
inition 2.3.16. In particular, if ω ≥ ω∗, any solution u(t, x) of (2.3.9) satisfying the inequality u(0, x) ≥
max

(
ξ(0, x), 0

)
also satisfies

u(t, x) ≥ max(ξ(t, x), 0) for all t > 0 and x ∈ R. (2.3.48)

Proof. Let us define the function Ξ(t, x) := e−λ(x−c∗t)ϕλ(x) for λ > 0, ω > 0 and (t, x) ∈ R. We have

Ξt(t, x)− L Ξ(t, x) = A(x)Ξ(t, x) +
(
λc∗ + k(λ)

)
Ξ(t, x), (2.3.49)

then by the analyticity of k(λ) and ϕλ with respect to λ we have, taking (2m + 2) times the derivative in
the above expression:

∂t

(
∂2m+2

∂λ2m+2 Ξ(t, x)
)
− L

(
∂2m+2

∂λ2m+2 Ξ(t, x)
)

= A(x)
(
∂2m+2

∂λ2m+2 Ξ(t, x)
)

+
2m+2∑
j=0

(
2m+ 2

j

)
(λc∗ + k(λ))(j)(λ)(e−λ(x−c∗t)ϕλ(x))(2m+2−j).

If λ = λ∗ we have

∂t

(
Ξ(2m+2)(t, x)

)
− L

(
Ξ(2m+2)(t, x)

)
= A(x)

(
Ξ(2m+2)(t, x)

)
+ k(2m+2)(λ∗)e−λ(x−c∗t)ϕλ(x), (2.3.50)
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where k(2m+2)(λ∗) < 0 (because of the concavity of k) and Ξ(2m+2)(t, x) := ∂2m+2

∂λ2m+2 Ξ(t, x). Next the leading
term in Ξ(2m+2)(t, x) when x− c∗t→ +∞ is (x− c∗t)2m+2e−λ(x−c∗t)ϕλ(x), therefore

Ξ(2m+2)(t, x) ∼ (x− c∗t)2m+2e−λ(x−c∗t)ϕλ(x) when x− c∗t→ +∞,

and there is s0 ∈ R such that

1
2(x− c∗t)2m+2e−λ(x−c∗t)ϕλ(x) ≤ Ξ(2m+2)(t, x) ≤ 2(x− c∗t)2m+2e−λ(x−c∗t)ϕλ(x) ≤ η if x− c∗t ≥ s0.

(2.3.51)
Now, we define ξ(t, x) := Ξ(2m+2)(t, x)−ωe−λ∗(x−c∗t)ϕλ∗(x). Since e−λ∗(x−c∗t)ϕλ∗(x) is a solution of (2.3.49)
with λ = λ∗, (2.3.50) implies the following:

∂t (ξ(t, x))− L (ξ(t, x)) = A(x) (ξ(t, x)) + k(2m+2)(λ∗)e−λ(x−c∗t)ϕλ(x). (2.3.52)

Next, since ϕλ∗(x) is uniformly positive on R, for ω sufficiently large, we have ξ(t, x) < 0 for all x − c∗t ∈(
0, s0

]
, and (2.3.51) implies[

1
2(x− c∗t)2m+2 − ω

]
e−λ

∗(x−c∗t)ϕλ∗(x) ≤ ξ(t, x) ≤
[
2(x− c∗t)2m+2 − ω

]
e−λ

∗(x−c∗t)ϕλ∗(x)

if x−c∗t > s0. In particular, if x−c∗t ≤ max
((

ω
2
) 1

2m+2 , s0

)
, then ξ(t, x) ≤ 0. If x−c∗t ≥ max

((
ω
2
) 1

2m+2 , s0

)
,

we have

‖ξ(t, x)‖ ≤ max
[
ω − (x− c∗t)2m+2

2 , 2(x− c∗t)2m+2 − ω
]
e−λ

∗(x−c∗t)‖ϕλ∗(x)‖

In order to estimate the right-hand side of the above inequality, we first consider the case when
(
ω
2
) 1

2m+2 ≤
(x− c∗t) ≤ (2ω) 1

2m+2 . Then we have

‖ξ(t, x)‖ ≤ 3ωe−λ
∗(x−c∗t)‖ϕλ∗(x)‖

≤ 3ωe−
β

1+β λ
∗(x−c∗t)‖ϕλ∗(x)‖

β
1+β × e−

1
1+β λ

∗(x−c∗t)‖ϕλ∗(x)‖
1

1+β

≤ 3ωe−λ
∗ β

1+β (ω2 ) 1
2m+2 ‖ϕλ∗(x)‖

β
1+β × e−

1
1+β λ

∗(x−c∗t)‖ϕλ∗(x)‖
1

1+β

≤ K1(ω)e−
1

1+β λ
∗(x−c∗t)‖ϕλ∗(x)‖

1
1+β ,

where
K1(ω) := 3ωe−λ

∗ β
1+β (ω2 ) 1

2m+2 max
x∈R
‖ϕλ∗(x)‖

β
1+β

and β > 0 is the constant from (2.3.27). Next we consider the case when (x− c∗t) ≥ (2ω) 1
2m+2 . We have

‖ξ(t, x)‖ ≤ 2(x− c∗t)2m+2e−λ
∗(x−c∗t)‖ϕλ∗(x)‖

≤ 2(x− c∗t)2m+2e−
β

1+β λ
∗(x−c∗t)‖ϕλ∗(x)‖

β
1+β × e−

1
1+β λ

∗(x−c∗t)‖ϕλ∗(x)‖
1

1+β

≤ 2(x− c∗t)2m+2e−
β

1+β λ
∗(x−c∗t)‖ϕλ∗(x)‖

β
1+β × e−

1
1+β λ

∗(x−c∗t)‖ϕλ∗(x)‖
1

1+β

≤ K2(ω)e−
1

1+β λ
∗(x−c∗t)‖ϕλ∗(x)‖

1
1+β ,

where
K2(ω) := 2 sup

s≥(2ω)
1

2m+2

s2m+2e−
β

1+β λ
∗s max

x∈R
‖ϕλ∗(x)‖

β
1+β .

Let κ > 0 be a constant such that ϕλ∗(x) ≥ κ‖ϕλ∗(x)‖∞1 for any x ∈ R and let M > 0 be the constant that
appears in (2.3.27). Since K1(ω) and K2(ω) converge to 0 as ω → +∞, the following holds if ω is chosen
sufficiently large:

‖ξ(t, x)‖ ≤
(
κ
(
− k(2m+2)(λ∗)

)
M

) 1
1+β

e−
λ∗

1+β (x−c∗t)‖ϕλ∗(x)‖
1

1+β
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for all x− c∗t ≥
(
ω
2
) 1

2m+2 . Combining this inequality with ϕλ∗(x) ≥ κ‖ϕλ∗(x)‖∞1 and (2.3.27), we obtain

− k(2m+2)(λ∗)e−λ
∗(x−c∗t)(ϕλ∗)i(x) ≥ κ

(
− k(2m+2)(λ∗)

)
e−λ

∗(x−c∗t)‖ϕλ∗(x)‖
≥M‖ξ(t, x)‖1+β ≥ ‖f−(t, ξ(t, x))−A(x)ξ(t, x)‖∞ ≥

(
A(x)ξ(t, x)

)
i
− f−i (x, ξ(t, x))

for all i ∈ {1, . . . , d} whenever ξj(t, x) > 0 for some j ∈ {1, . . . , d}. Recalling (2.3.52), we have shown that

ξt(t, x)− Lξ(t, x) ≤ f−(t, ξ(t, x))

whenever ξi(t, x) > 0 for some i ∈ {1, . . . , d}. This completes the proof of Lemma 2.3.41.

Now we are ready to construct a lower barrier. If c > c∗, we define u(t, x) as

u(t, x) = max
n∈N

ξ(t, x+ nL),

where ξ is defined by (2.3.42), ω > ω∗, and the maximum is taken componentwise. It follows immediately
from the periodicity of the equation (2.3.9) that the functions (t, x) 7→ ξ(t, x + nL) for n ∈ N are lower
barriers for (2.3.9); therefore u(t, x) is also a lower barrier. Since ξ(t, x) > 0 for x > 0 sufficiently large, u is
uniformly positive when x→ −∞. Moreover, ξ(t, x) < u(t, x) and

ξ(t, x+ nL) ≤ u(t, x+ nL) = e−λ(x+nL−ct)ϕλ(x+ nL) = e−λnLu(t, x) ≤ e−λLu(t, x) < u(t, x),

for all n ∈ N and n ≥ 1, therefore

u(t, x) < u(t, x) for all (t, x) ∈ R2. (2.3.53)

If c = c∗ we need to modify the process slightly. We let ξ(t, x) be defined by (2.3.46) and pick λ < λ∗,
so that λc∗ + k(λ) > 0. Since the leading term in (2.3.46) is controlled by (x− c∗t)2m+2e−λ

∗(x−c∗t), there is
s∗ ≥ 0 such that

ξ(t, x+ s∗) < u(t, x) := e−λ(x−c∗t)ϕλ∗(x) for all x ∈ R and t ≥ 0,
therefore we define

u(t, x) = max
n∈N

ξ(t, x+ s∗ + nL). (2.3.54)

Reasoning as above, we obtain that u(t, x) is a lower barrier and satisfies (2.3.53).
We are now in a position to prove Theorem 2.3.21.

Proof of Theorem 2.3.21. The fact that there exists no traveling wave for c < c∗ is a direct consequence of
the spreading property (Theorem 2.3.19). In order to construct a traveling wave for c ≥ c∗, we first deal
with the case c > c∗ and apply the Schauder fixed-point Theorem to construct the traveling wave. We finally
send c to c∗ the minimal speed in order to construct the minimal speed traveling wave.

Let us select c > c∗, and let λ be the smallest positive solution to λc = −k(λ) (which exists by Proposition
2.3.7). We let u(t, x) be the function defined in Lemma 2.3.39 and u(t, x) be the function defined in equation
(2.3.53).

For M > 0, we define the (convex) space

EM :=
{
v ∈ BUC([−M,+∞),Rd) |u(0, x) ≤ v(x) ≤ u(0, x)

}
,

and the operator QM : EM → BUC([−M,+∞),Rd) by QM (v)(x) = ṽ(x + L), where ṽ is the solution at
time t = L

c to 
ṽt − Lṽ = f(x, ṽ), x ∈ R,

ṽ(t = 0, x) =
{
v(x) if x ≥ −M
max

(
min

(
v(−M), u(t, x)

)
, u(t, x)

)
if x ≤ −M.

Then, it follows from Lemma 2.3.39 that QM (v) ≤ u(t + L
c , x + L) = u(t, x) for each v ∈ EM , and from

Lemma 2.3.40 and Theorem 2.3.35 (recall that u(t, x) ≤ η) that QM (v) ≥ u for each v ∈ EM . Thus EM is left
stable by QM . Moreover, by the regularizing properties of parabolic operators, QM is compact. Thus, the
Schauder fixed-point Theorem implies the existence of a fixed-point uM ∈ EM such that QM (uM ) = uM . By
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the classical elliptic regularity, there exists a sequenceMn → +∞ such that uMn converges locally uniformly
to a solution u∞ to Q∞(u∞) = u∞, and which belongs to

E∞ :=
{
v ∈ BUC((−∞,+∞),Rd) |u(0, x) ≤ v(x) ≤ u(0, x)

}
.

uc := u∞ is the expected traveling wave.
If c = c∗ we can repeat the same procedure, but by replacing the above u(t, x) by u(t, x) := e−λ(x−c∗t)ϕλ(x)

for some λ ∈ (0, λ∗) (where λ∗ is the unique solution of λ∗c∗+ k(λ∗) = 0) and u(t, x) by (2.3.54). This leads
to the existence of the minimal speed traveling wave uc∗(t, x), which then satisfies

u(t, x) ≤ uc∗(t, x) ≤ u(t, x).

The theorem is proved.

Remark 2.3.42 (Exponential behavior of traveling waves). Since the function ωe−µ(x−ct)ϕµ(x) in the
definition of ξ(t, x) above is dominated by the term e−λ(x−ct)ϕλ(x) as x → +∞, we have u(t, x) ≈ u(t, x)
for large x, in the sense that ui/ui → 1 as x → +∞. Consequently, for each c > c∗, the traveling wave uc
which we constructed above satisfies uc(t, x) ≈ u(t, x) for large x. This implies, in particular,

0 < lim inf
x→+∞

min
1≤i≤d

ui(t, x)
e−λcx

≤ lim sup
x→+∞

max
1≤i≤d

ui(t, x)
e−λcx

< +∞,

where λc > 0 is the minimal root of λc + k(λ) = 0. Thus the asymptotic profile of the traveling wave
uc along the leading edge is well approximated by that of u, which is a solution of the linearized equation
around u = 0. However, from the analogy of the scalar KPP type equations (see, e.g., [197]) it is likely that
the minimal speed traveling wave uc∗ does not have the same asymptotics; more precisely we suspect that
uc∗(t, x) 6= O(e−λcx) as x→ +∞ because of the degeneracy of the characteristic equation λc+ k(λ) = 0 for
c = c∗.

2.3.3.5 Hair-Trigger effect

In this section 2.3.3.5 we prove the hair-trigger effect (Theorem 2.3.17) when the Dirichlet principal eigenvalue
is negative, λ∞1 < 0.

Proof of Theorem 2.3.17. First we note that, by Proposition 2.3.36, we may assume without loss of generality
that the constant function x 7→ η1 is a super-solution of the equation −Lu ≥ f−(x, u). In the following
proof we will work under this assumption.

Let R > 0 be sufficiently large, so that the Dirichlet principal eigenvalue λR1 is negative (recall the
definition of (λR1 , ϕR(x)) in Definition 2.3.3) and let ϕR be the associated principal eigenfunction, normalized
with ‖ϕR‖L∞(−R,R)d = 1. Define

κ := inf
x∈(−R,R)

min
1≤i≤d

ϕRi (x)
‖ϕ(x)‖∞

,

which is finite and positive by the elliptic strong maximum principle and Hopf’s Lemma. Then, because of
the differentiability of u 7→ f−(x, u), there exists ε0 > 0 such that for each u ≥ 0 with ‖u‖ ≤ ε0, we have

‖f−(x, u)−A(x)u‖∞ ≤ −λR1 κ‖u‖∞.

Reducing ε0 if necessary so that ε0 ≤ η (where η is as in Definition 2.3.16), this shows that, for 0 < ε ≤ ε0,
εϕR(x) is a lower barrier for (2.3.9). Indeed,

−LεϕR(x) = A(x)εϕR(x) + λR1 εϕ
R(x) ≤ A(x)ϕR(x) + λR1 κ‖εϕR‖∞

≤ A(x)εϕR + f−
(
x, εϕR(x)

)
−A(x)εϕR(x) = f−

(
x, εϕR(x)

)
.

Let uR,ε(t, x) be the solution to the initial-value problem{
uR,εt − LuR,ε = f−(x, uR,ε),
uR,ε(0, x) = uR,ε0 (x),
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where uR,ε0 (x) = εϕR(x) if x ∈ (−R,R), and uR,ε0 (x) = 0 otherwise. It follows from the parabolic strong
maximum principle that uR,ε(t, x) > 0 for all t > 0 and x ∈ R, so that in particular uR,ε(t,±R) > 0. Then,
we deduce from the parabolic comparison principle that

uR,ε(t, x) > εϕR(x), for all t > 0 and x ∈ R. (2.3.55)

Next, fix τ > 0. Then it follows from (2.3.55) that uR,ε(τ, x) > εϕR(x) = uR,ε0 (x). We deduce from the
parabolic comparison principle that

uR,ε(t+ τ, x) > uR,ε(t, x),

in other words, uR,ε(t, x) is strictly increasing in time. Thus the limit

V R,ε := lim
t→+∞

uR,ε(t, x)

exists and is an equilibrium of the equation involving f−. It is not difficult to show, by using Serrin’s
sweeping method, that

V R,ε(x) ≥ ε0ϕ
R(x).

Indeed, define
ε1 := sup{ε′ ≥ 0 | ε′ϕR(x) ≤ V R(x)}.

Then clearly ε1 ≥ ε (by the parabolic comparison principle). If ε1 < ε0, then there exists a contact point x0
such that ε1ϕ

R(x0) ≤ V R,ε(x0) and ε1ϕ
R
i (x0) = V R,εi (x0) for some i ∈ {1, . . . , d}. We find a contradiction

by applying the elliptic strong maximum principle in the i-th equation of the system.
Let u0 be any nontrivial initial data and fix t0 > 0 and u(t, x) be the solution to (2.3.9) satisfying

u(0, x) = u0(x). Then u(t0, x) > 0 for all x ∈ R. Therefore, for any k ∈ Z, we can find εk ∈ (0, ε0] such that

u(t0, x) ≥ εkϕR(x+ kL).

Now we compare u(t, x) and the solution u(t, x) with initial data u0(x) := εkϕ
R(x + kL) inside (−kL −

R,−kL+R) and 0 outside. Then by the result (4), we see that

lim inf
t→∞

u(t, x) ≥ ε0ϕ
R(x+ kL) in (−kL−R,−kL+R)

for any k ∈ Z. This implies that there exists δ > 0 (independent of u0) such that

lim inf
t→∞

u(t, x) ≥ δ1

for all x ∈ R.

2.3.4 Singular limits
2.3.4.1 Spreading speed for rapidly oscillating coefficients

In this section 2.3.4.1 we prove Theorem 2.3.11.

Formal computations to get the formula for the speed. Here we present the classical computations
that allow to retrieve the correct result, though without the correct mathematical justification. The basic idea
is to apply known results from homogenization theory to the eigenvalue problem involved in the definition
of the minimal speed (2.3.19), i.e.

−Lελϕ = −(σε(x)ϕx)x + (2λσε(x)− qε(x))ϕx + (λσεx(x) + λqε(x)− λ2σε(x)−Aε(x))ϕ = kε(λ)ϕ. (2.3.56)

We follow the approach of Bensoussan, Lions and Papanicolaou [45] and introduce an asymptotic expansion
in ε:

ϕ(x) = φ
(
x,
x

ε

)
= φ0

(
x,
x

ε

)
+ εφ1

(
x,
x

ε

)
+ ε2φ2

(
x,
x

ε

)
+ · · · (2.3.57)
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where the functions φ(x, y), φ0(xy), φ1(x, y) and φ2(x, y) and are 1-periodic in y. We substitute (2.3.57)
into (2.3.56) and rewrite it in terms of the variables x and y.

ε−2 [−(σ(y)φy)y] + ε−1 [−(σ(y)φx)y − (σ(y)φy)x + (2λσ(y)− q(y))φy + λσy(y)φ]
+ ε0 [−(σ(y)φx)x + (2λσ(y)− q(y))φx + (λq(y)− λ2σ(y)−A(y)− kε(λ)I)φ

]
= ε−2 [−(σ(y)φ0

y)y
]

+ ε−1 [−(σ(y)φ1
y)y − (σ(y)φ0

y)x − (σ(y)φ0
x)y + (2λσ(y)− q(y))φ0

y + λσy(y)φ0]
+ ε0 [−(σ(y)φ2

y)y − (σ(y)φ1
y)x − (σ(y)φ1

x)y + (2λσ(y)− q(y))φ1
y + λσy(y)φ1

−(σ(y)φ0
x)x + (2λσ(y)− q(y))φ0

x + (λq(y)− λ2σ(y)−A(y)− kε(λ)I)φ0]
+O(ε)

= 0.

(2.3.58)

In (2.3.58), the coefficients of ε−2 and ε−1 must be zero. In particular, we have:

−(σ(y)φ0
y(x, y))y = 0,

which yields φ0
y(x, y) = σ−1(y)φ̃0(x), however since φ is 1-periodic in y we have

∫ 1
0 φ

0
y(x, y)dy =

∫ 1
0 σ
−1(y)dyφ̃0(x) =

0 and therefore φ̃0(x) = 0 for all x ∈ R. Thus, integrating again, we get:

φ0(x, y) = ϕ(x), for all x ∈ R. (2.3.59)

Next we focus on the coefficient in ε−1 term in (2.3.58). Using (2.3.59), we rewrite the ε−1 coefficient as:

−(σ(y)φ1
y)y = σy(y)(ϕx(x)− λϕ(x)).

We remark that χ(y) :=
∫ y

0

(∫ 1
0 σ
−1(z′)dz′

)−1
σ−1(z)− 1dz is a particular solution to:

−(σ(y)χy(y))y = −σy(y).

Therefore we can write:
φ1(x, y) = χ(y)(ϕx(x)− λϕ(x)) + φ̃1(x). (2.3.60)

Last, integrating the coefficient in ε0 in (2.3.58) gives us the homogenization limit for (2.3.56). We get:

0− σχy(ϕxx − λϕx)− 0 + (2λσχy − qχy)(ϕx − λϕ) + λσyχ(ϕx − λϕ)
− (σϕx)x + (2λσ − q)ϕx + (λq − λ2σ −A− kε(λ)I)ϕ = 0,

where u denotes the average of a function u over one period. Using the fact that

χy(y) =
(∫ 1

0
σ−1(z)dz

)−1

σ−1(y)− 1

and integrating by parts, we get:

−σ−1−1
ϕxx +

(
2λσ−1−1

− σ−1−1
σ−1q

)
ϕx +

(
λσ−1−1

σ−1q − λ2σ−1−1
−A− k0(λ)I

)
ϕ = 0.

By the uniqueness of the periodic principal eigenvalue, ϕ is equal to the Perron-Frobenius eigenvector of the
matrix λσ−1−1

σ−1q − λ2σ−1−1
−A− k0(λ)I. We retrieve (2.3.25) indeed.

Proof of Theorem 2.3.11. We divide the proof in two steps.
Step 1: We show that kε(λ) converges locally uniformly to

k0(λ) := λPF
(
λqH − λ2σH −A

)
in (0,+∞), where we recall that σH := σ−1−1, qH := σ−1−1

σ−1q,

Lελφ
ε
λ −Aε(x)φελ = kε(λ)φελ (2.3.61)



119

and Lελϕ := eλxLε(e−λxϕ) for all ϕ.
We argue by contradiction and assume that there exists a bounded interval

[ 1
R , R

]
, δ > 0 and εn > 0

such that sup 1
R≤λ≤R

|kεn(λ)−k0(λ)| ≥ δ. Since
[ 1
R , R

]
is bounded, for each n ∈ N there exists λεn ∈

[ 1
R , R

]
such that sup 1

R≤λ≤R
|kεn(λ) − k0(λ)| = |kεn(λεn) − k0(λεn)|. Up to the extraction of a subsequence we

assume that λε → λ0 ∈
[ 1
R , R

]
. For simplicity in the rest of the proof we will omit the subscript n and write

ε instead of εn.
Let φε := φελε(x) > 0 be a sequence of solutions to Lελεφε = kε(λ)φε with ε → 0 and λε → λ0, which

satisfies ‖φε‖2L2(0,1)d =
∫ 1

0
∑d
i=1(φεi )2(x)dx = 1. Testing (2.3.61) at a maximum and minimum point of φε,

respectively, we find that

−(λε)2 − sup
1≤i≤d
x∈R

d∑
j=1

aij(x) ≤ kε(λε) ≤ −(λε)2 − inf
1≤i≤d
x∈R

d∑
j=1

aij(x).

In particular, kε(λε) is uniformly bounded in n and we may extract a subsequence such that kε(λε)→ k0.
Let us show that φε is uniformly bounded in H1(0, 1)d. Indeed, we have

σ‖φεx‖2L2(0,ε)d ≤
d∑
i=1

∫ ε

0
σi
(
ε−1x

)
(∂xφεi (x))2dx

=
d∑
i=1

∫ ε

0
qεi (x)(∂xφεi (x))φεi (x)dx+

∫ ε

0
(λεqεi (x) + (λε)2σεi (x) + kε(λε))φεi (x)2dx

+
d∑
i=1

d∑
j=1

∫ ε

0
aεij(x)φεi (x)φεj(x)dx

≤ ‖q‖L∞‖φεx‖L2(0,ε)d‖φε‖L2(0,ε)d

+ C
(
λε‖q‖L∞ + (λε)2‖σ‖L∞ + kε(λε) + ‖A‖L∞

)
‖φε‖2L2(0,ε)d ,

and by periodicity
bε−1c‖φεx‖L2(0,ε)d ≤ ‖φεx‖L2(0,1)d ≤ (bε−1c+ 1)‖φεx‖L2(0,ε)d ,

where bε−1c is the lower integer part of ε−1, and therefore

σ‖φεx‖2L2(0,1)d ≤
bε−1c+ 1
bε−1c

C‖φε‖2L2(0,1)d

where C is independent of ε and ‖φε‖L2(0,1)d = 1. Therefore, (up to the extraction of a subsequence) there
is φ ∈ H1(0, 1)d such that φε → φ strongly in L2(0, 1)d and φε ⇀ φ weakly in H1(0, 1)d. Next we remark
that, rewriting (2.3.56) as:

− (σε(φεx − λεφε))x + (λεσε − qε)(φεx − λεφε) = Aεφε + kε(λε)φε, (2.3.62)

the function ξε := σεφεx − λεφε is uniformly bounded in H1(0, 1)d. Indeed multiplying (2.3.62) by ξεx and
integrating, we get∫ ε

0
σε
∣∣ξεx∣∣2 =

∫ ε

0

[
(qε − λεσε)(φεx − λεφε)

]
· ξεx +

∫ ε

0

[(
Aε + kε(λε)I

)
φε
]
· ξεx

≤ ‖qε − λεσε‖L∞(0,ε)d‖φεx − λεφε‖L2(0,ε)d‖ξεx‖L2(0,ε)d + ‖Aε + kε(λε)I‖L∞(0,ε)d‖φε‖L2(0,ε)d‖ξx‖L2(0,ε)d .

By the periodicity of ξε we easily conclude that ξεx is uniformly bounded in L2(0, 1)d. Therefore (up to the
extraction of a subsequence), there is ξ ∈ H1(0, 1)d such that ξε → ξ strongly in L2(0, 1)d and ξε ⇀ ξ weakly
in H1(0, 1)d. In particular φεx − λεφε = σ−1ξε ⇀ σ−1ξ in L2(0, 1)d weakly and therefore ξ = σH(φx − λ0φ).
This allows us to determine the limits of each term in (2.3.62) by using the convergence of ξε:

σε(φεx − λεφε) = ξε → ξ = σH(φx − λ0φ), in L2(0, 1)d strong,
(σε(φεx − λεφε))x ⇀ (σH(φx − λ0φ))x, in H1(0, 1)d weak,

qε(φεx − λεφε) = (σε)−1qεξε ⇀ σ−1qξ = qH(φx − λ0φ), in L2(0, 1)d weak,
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and (2.3.62) becomes:

−σH((φx − λ0φ))x + (λ0σ
H − qH)(φx − λ0φ) = Aφ+ k0φ.

Note that because of the periodicity of φε, the convergence in L2(0, 1)d or H1(0, 1)d, weak or strong, implies
the same convergence for the L2 or H1 local uniform topology on R. Thus φ satisfies (2.3.56) with σε

replaced by σH and qε replaced by qH . By the uniqueness of the principal eigenvector, we find that φ is a
positive constant vector satisfying:

(−λ2
0σ
H + λ0q

H −A)φ = k0φ,

therefore k0 = λPF (−λ2
0σ
H + λ0q

H −A) = k0(λ0). This is a contradiction.

Step 2: We show that the minimum of k
ε(λ)
λ converges to the one of k

0(λ)
λ .

It is well-known, in the scalar matrix case, that λ 7→ λPF
(
λ2〈σ〉A + 〈A〉A

)
= k0(λ) is a strictly concave

function, and that −k
0(λ)
λ has a unique minimum for λ > 0. We have extended this property to the case of

systems in Proposition 2.3.7. From the local uniform convergence of kε(λ) to k0(λ), we conclude the local
uniform convergence of −k

ε(λ)
λ to k0(λ)

λ and λ∗ε := arg min
(
−k

ε(λ)
λ

)
to λ∗0 := arg min

(
−k

0(λ)
λ

)
. This finishes

the proof of Theorem 2.3.11.

2.3.4.2 Strong coupling

In this section 2.3.4.2 we study the singular limit of the following system, which is a modified version of
system (2.3.2) with strong coupling

ut = (σu(x)ux)x +
(
ru(x)− κu(x)(u+ v)

)
u− 1

ε

(
p(x)u−

(
1− p(x)

)
v
)
,

vt = (σv(x)vx)x +
(
rv(x)− κv(x)(u+ v)

)
v + 1

ε

(
p(x)u−

(
1− p(x)

)
v
)
,

(2.3.63)

where p(x) ∈ (0, 1) is smooth (at leat C2) and ε > 0, with a particular interest in the limit ε→ 0. A formal
way to compute the limit is to consider asymptotic expansions of u and v

u(t, x) = u0(t, x) + εu1(t, x) + ε2u2(t, x) + · · · ,
v(t, x) = v0(t, x) + εv1(t, x) + ε2v2(t, x) + · · · ,

and this method has the advantage of allowing an arbitrary degree of precision in the asymptotic behavior
of the solution when ε → 0. However, since we are presently concerned with the zero-order term only, we
present an easier way to compute the limit. We let P (t, x) := p(x)u(t, x) −

(
1 − p(x)

)
v(t, x) and remark

that, for a limit to exist, one must have P (t, x)→ 0 as ε→ 0. Therefore the limit (u0, v0) satisfies

p(x)u0 =
(
1− p(x)

)
v0

and the sum S := u0+v0 is the solution of a closed scalar reaction-diffusion equation which can be determined
explicitly by the relations u0 =

(
1− p(x)

)
S, v0 = p(x)S,

ux = −pxS + (1− p)Sx,
vx = pxS + pSx,

and therefore

St =
(
(1− p(x))σu(x) + p(x)σv(x)Sx

)
x

+ ((σv(x)− σu(x))pxS)x +
(
r(x)− κ(x)S

)
S

=
(
σ(x)Sx

)
x

+ q(x)Sx +
(
r(x) + qx(x)− κ(x)S

)
S,

where

σ(x) = (1− p(x))σu(x) + p(x)σv(x),
r(x) = (1− p(x))ru(x) + p(x)rv(x),
κ(x) = (1− p(x))κu(x) + p(x)κv(x),
q(x) = (σv(x)− σu(x))px.



121

In particular, σu(x), σv(x) and p(x) can be chosen so that the sign of σv(x)− σu(x) is the same as the sign
of px(x), in which case q(x) > 0 and ∫ L

0

q(x)
2σ(x)dx > 0.

In this case it is known (see (2.3.75) in Appendix 2.3.6) that the leftward and rightward speeds are different.
Since there is a strict sign between c∗left and c∗right, the same holds for the original system (2.3.63) with ε > 0
sufficiently small.

For the sake of concision, we will not make this entire argument rigorous but focus on the limit of the
principal eigenproblem, which implies the convergence of the minimal speed.

Proposition 2.3.43. Let λ ∈ R and ε > 0 be given. Denote kε(λ), ϕελ(x), ψελ(x) the principal eigenpair
associated with the problem
−
(
σu(x)(ϕελ)x

)
x

+ 2λσu(x)(ϕελ)x +
(
λ(σu)x(x)− λ2σu(x)− ru(x)

)
ϕελ + 1

ε

(
p(x)ϕελ −

(
1− p(x)

)
ψελ
)

= kε(λ)ϕελ,

−
(
σv(x)(ψελ)x

)
x

+ 2λσv(x)(ψελ)x +
(
λ(σv)x(x)− λ2σv(x)− rv(x)

)
ψελ −

1
ε

(
p(x)ϕελ −

(
1− p(x)

)
ψελ
)

= kε(λ)ψελ,
(2.3.64)

with L-periodic boundary conditions and ‖ϕελ‖L2
per

= ‖ψελ‖L2
per

= 1. Then, as ε → 0, the function kε(λ)
converges locally uniformly to k0(λ), the principal eigenvalue of the problem

−
(
σ(x)(ϕ)x

)
x

+
(
2λσ(x)− q(x)

)
ϕx +

(
λσx(x) + λq(x)− λ2σ(x)− r(x)− qx(x)

)
ϕ = k0(λ)ϕ,

for a L-periodic positive scalar function ϕ, where

σ(x) = (1− p(x))σu(x) + p(x)σv(x), r(x) = (1− p(x))ru(x) + p(x)rv(x), q(x) = (σv(x)− σu(x))px.

Proof. We argue by contradiction and assume that there exists a bounded interval [−R,R], δ > 0 and
εn > 0 such that sup−R≤λ≤R |kεn(λ) − k0(λ)| ≥ δ. Since [−R,R] is bounded, for each n ∈ N there exists
λεn ∈ [−R,R] such that sup−R≤λ≤R |kεn(λ) − k0(λ)| = |kεn(λεn) − k0(λεn)|. Up to the extraction of a
subsequence we assume that λε → λ0 ∈ [−R,R]. For simplicity in the rest of the proof we will omit the
subscript n and write ε instead of εn. We will also omit the subscripts and superscripts, when there is no
ambiguity, for the solutions (ϕ,ψ) of (2.3.64).

Let us show that ϕ and ψ are bounded in H1
per when ε→ 0. Indeed, multiplying the first line of (2.3.64)

by p(x)ϕ(x), we get∫
σu(x)p(x)ϕ2

x +
∫
σu(x)px(x)ϕxϕ+ 2λ

∫
σu(x)p(x)ϕϕx =

∫ (
− λ(σu)x(x) + λ2σu(x) + ru(x) + kε(λ)

)
p(x)ϕ2

− 1
ε

(∫
p(x)2ϕ2 −

∫
p(x)

(
1− p(x)

)
ϕψ

)
,

and multiplying the second line by
(
1− p(x)

)
ψ(x) we get∫

σv(x)
(
1− p(x)

)
ψ2
x −

∫
σv(x)px(x)ψψx + 2λ

∫
σv(x)

(
1− p(x)

)
ψψx

=
∫ (
− λ(σv)x(x) + λ2σv(x) + rv(x) + kε(λ)

)(
1− p(x)

)
ψ2

+ 1
ε

(∫
p(x)

(
1− p(x)

)
ϕψ −

∫ (
1− p(x)

)2
ψ2
)
,

and finally the sum of the two equations above yields∫
p(x)ϕ2

x +
∫ (

1− p(x)
)
ψ2
x ≤ C1

(
‖ϕ‖2L2

per
+ ‖ψ‖2L2

per

)
,

where C1 is independent of ε. Since p(x) and (1− p(x)) are bounded below, we conclude that ϕ and ψ are
indeed bounded in H1

per uniformly when ε→ 0.
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Therefore, up to the extraction of a subsequence, ϕ and ψ converge respectively to ϕ̄ and ψ̄ as ε → 0,
weakly in H1

per and strongly in L2
per. Let f ∈ C2

per be a smooth test function, then multiplying the first line
of (2.3.64) by f leads to∫

f(x)
(
p(x)ψ −

(
1− p(x)

)
ψ
)

= ε
[
−
∫
σu(x)ϕxfx(x)− 2λ

∫
ϕxf(x)

+
∫ (
− λ(σu)x(x) + λ2σu(x) + ru(x) + kε(λ)

)
ϕf(x)

]
−−−→
ε→0

0,

which shows that, since f(x) is arbitrary,

p(x)ϕ̄(x) =
(
1− p(x)

)
ψ̄(x).

By elementary computations, we find that S(x) := ϕ(x) + ψ(x) converges weakly to a function S̄ ∈ H1
per

which solves

−
(
σ(x)(S̄)x

)
x

+
(
2λ0 − q(x)

)
(S̄)x +

(
λ0σx(x) + λ0q(x)− λ2

0σ(x)− r(x)− qx(x)
)
S̄ = k̄S̄,

where k̄ = lim kε(λ) and σ(x), q(x), r(x) are as in the statement of the proposition. Note that S̄ is non-trivial
because ‖ϕ̄‖L2

per
= ‖ψ̄‖L2

per
= 1, and is non-negative as a consequence of Morrey’s inequality. Therefore

k̄ = k0(λ0), which is a contradiction. Proposition 2.3.43 is proved.

Remark 2.3.44. In particular, with the notations of Proposition 2.3.43, assume that

0 > λ∞1 = max
λ∈R

k(λ).

Then the left- and rightward propagation speeds for the limit problem and the corresponding notions for
the approximating problem,

c0left := inf
λ>0

−k0(−λ)
λ

, c0right := inf
λ>0

−k0(λ)
λ

,

cεleft := inf
λ>0

−kε(−λ)
λ

, cεright := inf
λ>0

−kε(λ)
λ

,

are well-defined for ε > 0 and

lim
ε→0

cεleft = c0left, lim
ε→0

cεright = c0right.

In particular, under the framework described at the beginning of the section 2.3.4.2 (see also the Appendix
2.3.6), it is not difficult achieve c0left 6= c0right by a careful selection of the coefficients of the problem.

2.3.5 Long-time behavior of the original model
In this section 2.3.5 we focus on the original problem (2.3.2). In section 2.3.5.1 we study a related ODE
problem and show local asymptotic stability and the uniqueness of stationary solutions. We then extend
those results to problems with homogeneous coefficients, in section 2.3.5.2, provided Assumption 2.3.29 is
satisfied. In the same section we show Theorem 2.3.33. Finally we prove Theorem 2.3.34 in section 2.3.5.3.

2.3.5.1 A complete study of the ODE problem

Let us look into the stationary states for the ODE system (2.3.33):{
ut = (ru − κu(u+ v))u+ µvv − µuu =: fu(u, v),
vt = (rv − κv(u+ v))v + µuu− µvv =: fv(u, v).

In this section 2.3.5.1 we work under the assumption that every coefficient in the above equation is positive.
Surprisingly, it is possible to show that the solution converges to a unique equilibrium in all cases. To achieve
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this goal, two different methods are to be employed, depending on the sign of ru − µu and rv − µv. If one
is positive, the system admits a Lyapunov functional, which will be our main tool to study the long-time
behavior of the system; whereas in the case where both are nonpositive, the system is ultimately cooperative
and the long-time behavior can be determined by monotonicity arguments (here the method of super- and
subsolutions). Note that both arguments were inspired by the paper of Cantrell, Cosner and Yu [100]. We
still include the proofs for the sake of completeness.

Lemma 2.3.45 (Stability of stationary states). Let ru, rv ∈ R, κu > 0, κv > 0, and µ > 0. Let (u∗ ≥
0, v∗ ≥ 0) be a nontrivial stationary state for (2.3.33). Then (u∗, v∗) is locally asymptotically stable.

More precisely, the Jacobian matrix of the nonlinearity at (u∗, v∗) is

D(u∗,v∗)f =

ru − µu − κu(2u+ v) µv − κuu

µu − κvv rv − µv − κv(u+ 2v)

 =:

a b

c d

 (2.3.65)

and we have a = −
(
κuu

∗ + µv
v∗

u∗

)
< 0, d = −

(
κvv
∗ + µu

u∗

v∗

)
< 0 and

tr(D(u∗,v∗)f) = a+ d < 0,
det(D(u∗,v∗)f) = ad− bc > 0.

Proof. We divide the proof in three steps.
Step 1: We show that u∗ > 0 and v∗ > 0.
Assume by contradiction that u∗ = 0. Then, by our assumption that (u∗, v∗) is non-trivial, we have

v∗ > 0. Evaluating the first line of (2.3.33), we find 0 = µv∗ > 0, which is a contradiction.
The assumption that v∗ > 0 leads to a similar contradiction. We conclude that u∗ > 0 and v∗ > 0.
Before resuming the proof, let us remark the following formula, which is a consequence of (2.3.33):

ru − µu − κu(u∗ + v∗) = −µv
v∗

u∗
,

rv − µv − κv(u∗ + v∗) = −µu
u∗

v∗
.

Step 2: We show that tr(D(u∗,v∗)f) < 0.
Using the fact that (u∗, v∗) is a stationary state for (2.3.33), we have

tr(D(u∗,v∗)f) = ru − µu − κu(2u∗ + v∗) + rv − µv − κv(u∗ + 2v∗) = −µv
v∗

u∗
− µu

u∗

v∗
− κuu∗ − κvv∗ < 0.

Step 3: We show that det(D(u∗,v∗)f) > 0.
We compute:

det(D(u∗,v∗)f) = (ru − µu − κu(2u∗ + v∗))(rv − µv − κv(u∗ + 2v∗))− (µv − κuu∗)(µu − κvv∗)

=
(
µv
v∗

u∗
+ κuu

∗
)(

µu
u∗

v∗
+ κvv

∗
)
− (µv − κuu∗)(µu − κvv∗)

= µuµv + µvκv
(v∗)2

u∗
+ µuκu

(u∗)2

v∗
+ κuκvu

∗v∗ − µuµv + µvκvv
∗ + µuκuu

∗ − κuκvu∗v∗

= µvκv
(v∗)2

u∗
+ µuκu

(u∗)2

v∗
+ µvκuu

∗ + µuκvv
∗ > 0.

This finishes the proof of Lemma 2.3.45

Lemma 2.3.46 (Existence and uniqueness of stationary state). Let ru, rv ∈ R, κu > 0, κv > 0, and
µu, µv > 0. Then, there exists at most one nonnegative nontrivial stationary state for (2.3.33). If Assumption
2.3.29 is met, then there is a positive stationary state (u∗, v∗), which satisfies:

(i) if ru − µu > 0 (resp. rv − µv > 0), then
min (µv, ru − µu)

κu
≤ u∗ ≤ max (µv, ru − µu)

κu

resp. min (µu, rv − µv)
κv

≤ v∗ ≤ max (µu, rv − µv)
κv

.

Moreover, equality happens in the above inequalities if, and only if µv = ru − µu (resp. rv − µv = µu).
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(ii) if ru − µu ≤ 0 (resp. rv − µv ≤ 0), then 0 < u∗ < µv
κu

(resp. 0 < v∗ < µu
κv

)

Proof. Let (u, v) be a nonnegative nontrivial stationary state for (2.3.33). Then (u, v) satisfies{
u(ru − κu(u+ v)) + µvv − µuu = 0,
v(rv − κv(u+ v)) + µuu− µvv = 0.

As remarked in the proof of Lemma 2.3.45, since (u, v) is nonegative and nontrivial, we have in fact u > 0
and v > 0. Let us change the variables: S = u+ v,

Q = u

v
.

Then the new variables (S,Q) satisfy the system:{
Q(ru − κuS) + µv − µuQ = 0,
rv − κvS + µuQ− µv = 0,

⇔


Q(ru − κuS) + µv − µuQ = 0,

S = rv + µuQ− µv
κv

,

⇔


− µu

κu
κv
Q2 +

(
ru − µu

κu
κv

(rv − µv)
)
Q+ µv = 0,

S = rv + µuQ− µv
κv

.

The first line of the latter system has a unique positive solution:

Q = κv
2µuκu

ru − µu − κu
κv

(rv − µv) +

√(
ru − µu −

κu
κv

(rv − µv)
)2

+ 4κu
κv
µuµv

 .

Since the change of variables is reversible, there cannot exist two nonnegative nontrivial solutions for the
original system.

The proof of existence of a stationary solution is quite straightforward by using a global bifurcation
argument; we refer to an earlier work [P3, Theorem 2.3] for a proof in a periodic setting.

Next we focus on the estimates on nontrivial stationary states. Since the statement is symmetric with
respect to the variable u or v, we only prove the result for u∗. Assume first that ru − µu > µv > 0. Then
u∗ satisfies:

0 = u∗(ru − µu − κuu∗) + v∗(µv − κuu∗). (2.3.66)
If u∗ < µv

κu
, then both terms in the right-hand side of (2.3.66) are positive, which is a contradiction.

Similarly, if u∗ > ru−µu
κu

, then both terms are negative, which is also a contradiction. We conclude that
µv
κu
≤ u∗ ≤ ru−µu

κu
. Finally, if equality is achieved in the latter inequality, then one of the terms in (2.3.66)

is 0 and the other is positive, which is a contradiction. Thus
µv
κu

< u∗ <
ru − µu
κu

.

In the case 0 < ru − µu < µv, a similar argument shows that
ru − µu
κu

< u∗ <
µv
κu
.

Finally, if ru−µu = µv, then both terms in the right-hand side of (2.3.66) have the same sign independently
of u∗, hence the only possibility is

u∗ = ru − µu
κu

= µv
κu
.

Statement (i) is proved. To show Statement (ii), since ru − µu ≤ 0, we simply rewrite (2.3.66) as:

u∗ = µv
κu

+ u∗

κuv∗
(ru − µu − κuu∗) <

µv
κu
.

Lemma 2.3.46 is proved.
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Next we study the stability of the trivial steady state:

Lemma 2.3.47 (Stability of 0). Let ru, rv ∈ R and µu > 0, µv > 0. Define

A :=

ru − µu µv

µu rv − µv

 .

Then, the matrix A has two simple real eigenvalues:

λ1 = ru − µu + rv − µv +
√

(ru − µu − rv + µv)2 + 4µuµv
2 ,

λ2 = ru − µu + rv − µv −
√

(ru − µu − rv + µv)2 + 4µuµv
2 .

Moreover the eigenvector associated with λ1 lies in the first quadrant:

ϕ1 :=

ru − µu − (rv − µv) +
√

(ru − µu − (rv − µv))2 + 4µuµv
2µu

 .

Finally, if µv
µu+µv ru + µu

µu+µv rv > 0, then λ1 > 0.

Proof. The characteristic polynomial associated with A is:

χA(X) = X2 − (ru − µu + rv − µv)X + rurv − µurv − µvru.

The roots of this second-order polynomial can be computed thanks to its discriminant ∆:

∆ = (ru + rv − µu − µv)2 − 4(rurv − µvru − µurv)
= r2

u + r2
v + µ2

u + µ2
v + 2rurv − 2ruµu − 2ruµv − 2rvµu − 2rvµv + 2µuµv

− 4rurv + 4µvru + 4µurv
= r2

u + r2
v + µ2

u + µ2
v − 2rurv − 2ruµu + 2ruµv + 2rvµu − 2rvµv + 2µuµv

=
(
ru − µu − (rv − µv)

)2 + 4µuµv.

In particular, ∆ > 0 and thus χA always has two real roots:

λ1 :=
ru − µu + rv − µv +

√(
ru − µu − (rv − µv)

)2 + 4µuµv
2 ,

λ2 :=
ru − µu + rv − µv −

√(
ru − µu − (rv − µv)

)2 + 4µuµv
2 .

The eigenvector associated with λ1 can be easily computed and is always positive:

ϕ1 :=

ru − µu − (rv − µv) +
√

(ru − µu − (rv − µv))2 + 4µuµv
2µu

 .

It follows easily from the Perron-Frobenius Theorem that ϕ1 is the unique positive eigenvector of the matrix
A.

Next we investigate the sign of λ1. To this end we introduce for α ≥ 0:

λ1(α) :=
ru − αµu + rv − αµv +

√(
ru − αµu − (rv − αµv)

)2 + 4α2µuµv

2 .
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Notice that λ1 = λ1(α = 1), the mapping α 7→ λ1(α) is convex (as we will show below) and λ1(0) =
max(ru, rv) > 0. To catch the behavior of the function as α→ +∞, we rewrite λ1(α) as

λ1(α) = 1
2

(
ru − αµu + rv − αµv

+
√
r2
u + r2

v − 2rurv + 2α(−ruµr + ruµv + rvµu − rvµv) + α2(µ2
u + µ2

v + 2µuµv)
)

= 1
2

(
ru − αµu + rv − αµv +

√
(ru − rv)2 + 2α(rv − ru)(µu − µv) + α2(µu + µv)2

)
= 1

2

(
ru + rv − α(µu + µv) + α(µu + µv)

√
1 + 2(rv − ru)(µu − µv)

α(µu + µv)2 + oα→+∞

(
1
α

))

= 1
2

(
ru + rv + (rv − ru)(µu − µv)

µu + µv
+ oα→+∞(1)

)
= µv
µu + µv

ru + µu
µu + µv

rv + oα→+∞(1).

Thus, λ1(α) > 0 for all α > 0, and in particular λ1 = λ1(α = 1) > 0.
To show the convexity of α 7→ λ1(α), we simply notice that

d2

dx2λ1(α) = 4A2α2 + 4ABα+ 8AC −B2

16 (Aα2 +Bα+ C)
3
2

,

with

A : = (µu + µv)2,

B : = 2(rv − ru)(µu − µv),
C : = (ru − rv)2.

Hence the roots of d2

dx2λ1(α) are determined by the quantity

∆ := 32A2B2 − 128A3C = 32A2(B2 − 4AC).

Since:

B2 − 4AC = 4(ru − rv)2(µu − µv)2 − 4(ru − rv)(µu + µv)
= 4(ru − rv)2 ((µu − µv)2 − (µu + µv)2)
= −16(ru − rv)2µuµv ≤ 0,

then for all α > 0 we have d2

dx2λ1(α) ≥ 0, hence λ1(α) is convex. This finishes the proof of Lemma 2.3.47.

Remark 2.3.48 (Stability of 0). The previous computation can be carried out the same way independently
of the sign of ru and rv. This gives a criterion for the instability of 0 in the case min(ru, rv) < 0: if
µv

µu+µv ru + µu
µu+µv rv ≥ 0 then 0 is always unstable, whereas if µv

µu+µv ru + µu
µu+µv rv < 0 the stability of 0

depends on the size of the mutation rate. In the latter case, the ratio µu
µv

being fixed, 0 is always unstable if
µu, µv are sufficiently small, and always stable if µu, µv are sufficiently large.

We are now in a position to give our arguments for the long-time behavior of the ODE problem. We
begin with the case where there exists a Lyapunov functional for the system. We introduce the functionals:

Fu(u) := u− u∗ − u∗ ln
( u
u∗

)
, Fv(v) := v − v∗ − v∗ ln

( v
v∗

)
. (2.3.67)

Note that this Lyapunov functional is rather classical and has been used for instance by Hsu [217] in a
competitive context. The present argument was inspired by the more recent article of Cantrell, Cosner and
Yu [100].
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Lemma 2.3.49 (Lyapunov functional). Let Assumption 2.3.29 hold and assume max(ru−µu, rv−µv) > 0.
Then, there is K > 0 such that the functional FK(u, v) := Fu(u) + KFv(v) is a Lyapunov functional for
(2.3.33), i.e.

d
dtF

K(u(t), v(t)) ≤ 0,

along any positive trajectory (u(t), v(t)). Moreover, the inequality is strict unless (u(t), v(t)) = (u∗, v∗).

Proof. Since it is clear that F(u∗, v∗) = 0, we will focus on the case of an orbit starting from a positive
initial condition (u0, v0). We first compute:

d
dtFu(u(t)) = ut

(
1− u∗

u

)
= (u− u∗)ut

u

= (u− u∗)
(
ru − µu − κu(u+ v) + µv

v

u

)
= (u− u∗)

(
κu(u∗ + v∗)− µv

v∗

u∗
− κu(u+ v) + µv

v

u

)
= −κu(u− u∗)2 − κu(u− u∗)(v − v∗) + µv(u− u∗)

(
u∗v − uv∗

uu∗

)
= −

(
κu + µv

v∗

uu∗

)
(u− u∗)2 −

(
κu −

µv
u∗

)
(u− u∗)(v − v∗)

≤ −κu(u− u∗)2 −
(
κu −

µv
u∗

)
(u− u∗)(v − v∗),

and the inequality is strict unless u = u∗. Similarly,

d
dtFv(y) ≤ −κv(v − v∗)2 −

(
κv −

µu
v∗

)
(u− u∗)(v − v∗),

and the inequality is strict unless v = v∗. Since (u, v) 6= (u∗, v∗), we have for all K > 0:

d
dtF

K(u, v) < −κu(u − u∗)2 −
(
κu −

µv
u∗

+K
(
κv −

µu
u∗

))
(u − u∗)(v − v∗) − Kκv(v − v∗)2.

Next we prove that the right-hand side can be made nonpositive for all (u, v) > (0, 0) for a well-chosen value
of K. We remark that the right-hand side is a quadratic form in (U := u− u∗, V := v − v∗), which can be
written as −Q(U, V ) where:

Q(U, V ) := AU2 + (B +KC)UV +KDV 2,

and U = u− u∗, V = v − v∗, A = κu, B = κu − µv
u∗ , C = κv − µu

v∗ and D = κv. We claim that Q(U, V ) can
be made positive definite by a proper choice of K > 0. Indeed, algebraic computations lead to

Q(U, V ) = A

(
U + B +KC

2A V

)2
+
(
KD − (B +KC)2

4A

)
V 2,

and therefore it suffices to find K > 0 such that

0 < KD − (B +KC)2

4A = −C
2K2 + (4AD − 2BC)K −B2

4A =: −P (K)
4A .

Now P (K) is a second-order polynomial and its number of roots is determined by the sign of the quantity

∆ = (4AD − 2BC)2 − 4B2C2 = 16AD(AD −BC) > 0.

If BC < AD, the polynomial P has two roots, and those roots have to be nonnegative since P (K) < 0 for
all K < 0. This shows that there exists K > 0 with P (K) < 0, which proves our claim and consequently
finishes the proof of Lemma 2.3.49.

Our last task is therefore to check that BC < AD. Assume first that ru − µu > 0 and rv − µv > 0, then
B = κu − µv

u∗ > 0 and C = κv − µu
v∗ > 0 are both positive by Lemma 2.3.46. Thus,

BC =
(
κu −

µv
u∗

)(
κv −

µu
v∗

)
≤ κuκv = AD.
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Next assume that ru − µu ≤ 0 and rv − µv > 0 (the case rv − µv ≤ 0 and ru − µu > 0 can be treated
similarly). In this case, κu − µv

u∗ ≤ 0 and κv − µu
v∗ > 0 and thus

BC =
(
κu −

µv
u∗

)(
κv −

µu
v∗

)
≤ 0 < κuκv = AD.

Hence BC < AD always holds under our hypotheses. Lemma 2.3.49 is proved.

Notice in particular that Proposition 2.3.30 follows directly from Lemma 2.3.49 in the case max(ru −
µu, rv − µv) > 0. Next we consider the case max(ru − µu, rv − µv) ≤ 0. In this case, we show that the
dynamics is eventually cooperative and we use the method of monotone iteration to conclude.

Lemma 2.3.50 (Ultimately cooperative dynamics). Let Assumption 2.3.29 hold and assume max(ru −
µu, rv − µv) ≤ 0. Then, we have

lim
t→+∞

(u(t), v(t)) = (u∗, v∗).

Proof. Let (u(t), v(t)) be a positive solution to (2.3.33). Then (u(t), v(t)) is a subsolution to the cooperative
system: {

ūt = ū(ru − µu − κuū) + v̄max(µv − κuū, 0),
v̄t = v̄(rv − µv − κv v̄) + ūmax(µu − κv v̄, 0),

and in particular u(t) ≤ ū(t) and v(t) ≤ v̄(t). Since ū, v̄ eventually enters the cooperative region 0 < ū < µv
κu

and 0 < v̄ < µu
κv

, so does (u, v). Next we use the method of sub- and supersolutions to show the convergence
of (u(t), v(t)) starting from (u0, v0) ∈

(
0, µvκu

)
×
(

0, µuκv
)
. We remark that (ū, v̄) := (µvκu ,

µu
κv

) is a strict
supersolution: {

ū(ru − µu − κuū) + v̄(µv − κuū) < 0,
v̄(rv − µv − κv v̄) + ū(µu − κv v̄) < 0,

while for α > 0 sufficiently small the vector (u, v) := αϕ1 (where ϕ1 is defined in Lemma 2.3.47) is a strict
subsolution: {

u(ru − µu − κuu) + v(µv − κuu) = λ1u+ o(α) > 0,
v(rv − µv − κvv) + u(µu − κvv) = λ1v + o(α) > 0.

Then, the technique of monotone iterations gives us a maximal stationary solution (u∗, v∗) < (ū, v̄) and a
minimal stationary solution (u∗, v∗) > (u, v) such that:

(u∗, v∗) ≤ lim inf
t→+∞

(u(t), v(t)) ≤ lim sup
t→+∞

(u(t), v(t)) ≤ (u∗, v∗).

Finally since (u∗, v∗) is the unique stationary solution to (2.3.33), we have indeed:

(u∗, v∗) ≤ lim inf
t→+∞

(u(t), v(t)) ≤ lim sup
t→+∞

(u(t), v(t)) ≤ (u∗, v∗),

hence (u(t), v(t)) converges to the stationary solution as t→ +∞. Lemma 2.3.50 is proved.

We are now in a position to prove Proposition 2.3.30 and conclude this section 2.3.5.1:

Proof of Proposition 2.3.30. If λA > 0, the existence and uniqueness of a stationary solution (u∗, v∗) has
been shown in Lemma 2.3.46. The convergence of (u(t), v(t)) when t → +∞ has been shown in Lemma
2.3.49 if max(ru−µu, rv−µv) > 0 by the means of a Lyapunov argument, and in Lemma 2.3.50 if max(ru−
µu, rv − µv) ≤ 0 by the means of a monotone iteration sequence. This covers all the possibilities and hence
finishes the proof of the statement in Proposition 2.3.30 when λA > 0.

Let λA < 0, and let (u(t), v(t)) be a solution to (2.3.33). Then (u(t), v(t)) is a sub-solution for the
cooperative system {

ūt = (ru − µu)ū+ µv v̄,

v̄t = µuū+ (rv − µv)v̄,

hence for M > max(u(0), v(0)) and (ū(t), v̄(t)) := MeλAt(ϕuA, ϕvA) we have

(u(t), v(t)) ≤ (ū(t), v̄(t))
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for all t > 0, and in particular limt→∞max(u(t), v(t)) ≤ limt→∞max(ū(t), v̄(t)) = 0.
Let λA = 0, and let (u(t), v(t)) be a solution to (2.3.33). Then (u(t), v(t)) is a sub-solution for the

cooperative system {
ūt = (ru − µu −min(κu, κv)ū)ū+ µv v̄,

v̄t = µuū+ (rv − µv −min(κu, κv)v̄)v̄.

Let (ū(0), v̄(0)) := M0(ϕuA, ϕvA) where (ϕuA, ϕvA) is the principal eigenvector of the matrix A as defined in
Assumption 2.3.29. Then (ū(t), v̄(t)) = M(t)(ϕuA, ϕvA) and the function M(t) satisfies

d
dtM(t) = −min(κu, κv)M(t)2.

In particular, limt→∞M(t) = 0. Since M0 can be chosen so that (u(0), v(0)) ≤ (ū(0), v̄(0)), we deduce that
limt→∞(u(t), v(t)) = (0, 0). Proposition 2.3.30 is proved.

2.3.5.2 Long-time behavior for the solutions to the homogeneous problem

We aim at showing that the ω-limit set of a positively bounded from below initial condition is reduced to a
single element {(u∗, v∗)}, where (u∗, v∗) is the unique stationary state for (2.3.33). As shown below, we can
prove such a result only for a subset of the set of parameters.

Theorem 2.3.51 (Entire solutions). Let Assumption 2.3.29 and 2.3.32 hold. Let (u(t, x), v(t, x)) be an
nonnegative bounded entire solution to (2.3.30). Assume that (u, v) is bounded from below, i.e. that there
exists δ > 0 such that for all t ∈ R and x ∈ R we have:

u(t, x) ≥ δ > 0 and v(t, x) ≥ δ > 0,

then (u, v) ≡ (u∗, v∗).

Proof. We divide the proof in three steps.
Step 1: The ultimately cooperative case: max(ru − µu, rv − µv) ≤ 0, with (σ1, σ2) > (0, 0).
In this case, our argument is very similar to the one in Lemma 2.3.50. We first notice that (u(t, x), v(t, x))

is a sub-solution to the cooperative ODE system:{
ūt = (ru − µu − κuū)ū+ v̄max(µv − κuū, 0),
v̄t = (rv − µv − κv v̄)v̄ + ūmax(µu − κv v̄, 0),

(2.3.68)

and in particular u(t, x) ≤ ū(t) and v(t, x) ≤ v̄(t). Since ū, v̄ eventually enters the cooperative region
0 < ū < µv

κu
and 0 < v̄ < µu

κv
, so does (u, v). Moreover, since (u(t, x), v(t, x)) is defined for all t ∈ R, we

deduce that

sup
(t,x)∈R2

u(t, x) < µv
κu
,

sup
(t,x)∈R2

v(t, x) < µu
κv
.

Hence, the entire solution (u(t, x), v(t, x)) of the reaction-diffusion system (2.3.30) stays in the cooperative
region and can thus be compared with the solution to the ODE system (2.3.33). More precisely, for all t ∈ R
and x ∈ R, we have:

u(t0, t) ≤ u(t, x) ≤ ū(t0, t),
v(t0, t) ≤ v(t, x) ≤ v̄(t0, t),

where (u(t0, t), v(t0, t)) is the solution to (2.3.33) at time t starting from the initial condition (u(t0), v(t0)) =
(δ, δ), and (ū(t0, t)v̄(t0, t)) is the solution to (2.3.33) at time t starting from the initial condition (ū(t0), v̄(t0)) =(
µv
κu
, µuκv

)
. Since:

lim
t0→−∞

(u(t0, t), v(t0, t)) = lim
t0→−∞

(ū(t0, t), v(t0, t)) = (u∗, v∗),

we have indeed (u(t, x), v(t, x)) ≡ (u∗, v∗) and Theorem 2.3.51 is proved in this case.
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Step 2: The ultimately competitive case: min(ru − µu − µv, rv − µv − µu) > 0, with (σ1, σ2) > (0, 0).
First notice that, as in Step 1, the solution (u(t, x), v(t, x)) can be controlled from above by the solution

to the ODE (2.3.68), and hence we have the upper estimate:

u(t, x) < ru − µu
κu

, v(t, x) < rv − µ
κv

.

Next we remark that (u(t, x), v(t, x)) is a supersolution to the cooperative system:
ut = u

(
ru − µu − κu

(
ru − µu
µv

)
u

)
+ δ(µv − κuu),

vt = v

(
rv − µv − κv

(
rv − µv
µu

)
v

)
+ δ(µu − κvv).

In particular, we have for all t ∈ R and x ∈ R:
µv
κu
≤ u(t, x), µu

κv
≤ v(t, x).

Hence (u(t, x), v(t, x)) stays in the invariant rectangle
[
µv
κu
, ru−µuκu

]
×
[
µu
κv
, rv−µvκv

]
, where system (2.3.30) is

competitive. In particular, system (2.3.30) is order-preserving for the non-classical order ≤c on R2 (see e.g.
[361, Proposition 5.1]):

(u, v) ≤c (ũ, ṽ)⇐⇒ u ≤ ũ and v ≥ ṽ,

in this rectangle. Thus,

u(t0, t) ≤c u(t, x) ≤c ū(t0, t),
v(t0, t) ≤c v(t, x) ≤c v̄(t0, t),

where (u(t0, t), v(t0, t)) is the solution to (2.3.33) at time t starting from the initial condition (u(t0), v(t0)) =(
µu
κu
, rv−µvκv

)
, and (ū(t0, t)v̄(t0, t)) is the solution to (2.3.33) at time t starting from the initial condition

(ū(t0), v̄(t0)) =
(
ru−µ
κu

, µuκv

)
. Since:

lim
t0→−∞

(u(t0, t), v(t0, t)) = lim
t0→−∞

(ū(t0, t), v(t0, t)) = (u∗, v∗),

we have indeed (u(t, x), v(t, x)) ≡ (u∗, v∗) and Theorem 2.3.51 is proved in this case.

Step 3: The Lyapunov case: σu = σv =: σ and max(ru − µu, rv − µv) ≥ 0.
In this case the system is mixed quasimonotone and, to the extent of our knowledge, monotonicity

arguments cannot be employed. We therefore turn to a generalisation of the Lyapunov argument which
was used in Lemma 2.3.49. Let Fu, Fv be the functions defined in (2.3.67) and K be the constant given
by Lemma 2.3.49, so that FK(u, v) := Fu(u) + KFv(v) is a Lyapunov functional for the flow of the ODE
(2.3.33). Define w(t, x) = FK(u(t, x), v(t, x)). Then w satisfies:

wt − σwxx = (ut − σuxx)F ′u(u) +K(vt − σvxx)F ′v(v)− σ(u2
xF ′′u (u) +Kv2

xF ′′v (v))

≤ −κu(u− u∗)2 −
(
κu −

µv
u∗

+K
(
κv −

µu
v∗

))
−Kκv(v − v∗)2 =: Q(u, v).

Indeed Fu and Fv are convex functions, hence F ′′u (u) ≥ 0 and F ′′v (v) ≥ 0 for all u, v. Since Q(u, v) ≤ 0,
w is a bounded entire subsolution to the heat equation, therefore has to be a constant. Since Q(u, v) < 0
whenever (u, v) 6= (u∗, v∗), the only possibility is w(t, x) ≡ 0 and therefore (u(t, x), v(t, x)) ≡ (u∗, v∗). This
finishes the proof of Theorem 2.3.51 in the case max(ru − µu, rv − µv) ≥ 0 and σu = σv.

Since all the possible cases have been covered, Theorem 2.3.51 is proved.

Proof of Theorem 2.3.33. Let (u0(x) ≥ 0, v0(x) ≥ 0) be a nontrivial initial condition and (u(t, x), v(t, x)) be
the corresponding solution to (2.3.2). We argue by contradiction and assume that there exists ε > 0 and a
sequences tn → +∞ and xn ∈ R such that |xn| ≤ ctn and

|u(tn, xn)− u∗| ≥ ε > 0.
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Then, due to the classical parabolic estimates, the sequence (u(t + tn, x), v(t + tn, x) converges locally
uniformly and up to an extraction to an entire solution (u∞(t, x), v∞(t, x)) which satisfies |u∞(0, 0)−u∗| ≥ ε.
By Theorem 2.3.24, there exists δ > 0 such that (u∞(t, x), v∞(t, x)) ≥ (δ, δ). Hence Theorem 2.3.51 applies
and we have (u∞(t, x), v∞(t, x)) ≡ (u∗, v∗). This is a contradiction. If |v(tn, xn)− v∗| ≥ ε, we easily derive
a similar contradiction. Therefore, we have

lim
t→∞

sup
|x|≤ct

max(|u(t, x)− u∗|, |v(t, x)− v∗|) = 0,

and Theorem 2.3.33 holds.

In the case when Assumption 2.3.32 fails to hold, we can no longer prove the global stability of the
stationary solution, however, since the spectrum of the linearized operator is included in the nonpositive
complex plane, we can still prove local stability by studying the semigroup associated with the system (in
particular, no Turing bifurcation is occurring with our system). This is the content of Theorem 2.3.31.

Proof of Theorem 2.3.31. We divide the proof in two steps. Our strategy is as follows: in the first step we
show that the constant stationary solution is linearly stable for the elliptic PDE, meaning that the spectrum
of the linearized operator lies in the complex half-plane of negative real parts. In the second step we show
how this linear stability leads to nonlinear stability, by using semigroup theory.

Step 1: We show that the spectrum of the linearized operator is included in the negative complex plane.
In this Step we investigate the operator:

A

g
h

 :=

σugxx
σvhxx

+

(ru − µu − 2κuu∗ − κuv∗)g + (µv − κuv∗)h

(µu − κvu∗)h+ (rv − µv − κvu∗ − 2κvv∗)g

 ,

considered as an unbounded operator acting on (g, h) ∈ BUC(R)2, BUC(R) being the space of bounded
and uniformly continuous functions on R equipped with the supremum norm (this is classically a Banach
space), with domain D(A) = C2

b (R)2.
Let λ ∈ C and (ϕ,ψ) ∈ BUC(R)2 be given and consider the resolvent equation

(λI −A)

g
h

 =

ϕ
ψ

 . (2.3.69)

The set of solutions of the latter equation can be computed explicitly by the variation of constants formula.
More precisely, we let Y (x) = (g, gx, h, hx)T and rewrite (2.3.69) as an ODE on R4:

d
dxY (x) =


0 1 0 0

σ−1
u (λ− (ru − µu − 2κuu∗ − κuv∗)) 0 −σ−1

u (µv − κuu∗) 0

0 0 0 1

−σ−1
v (µu − κvv∗) 0 σ−1

v (λ− (rv − µv − κvu∗ − 2κvv∗)) 0

Y −


0

ϕ

0

ψ


=: BλY (x) + Z(x).

We first investigate the bounded eigenvectors of the ODE Y ′ = BλY . These correspond to the imaginary
eigenvalues of the matrix Bλ, i.e. the imaginary roots of the polynomial

χλ(X) := X4 +
(
σ−1
u a+ σ−1

v d− λ(σ−1
u + σ−1

v )
)
X2 + σ−1

u σ−1
v

(
λ2 − (a+ d)λ+ ad− bc

)
,

where it is convenient to use the notation a, b, c, d introduced to denote the coefficients of the Jacobian
matrix of the nonlinearity at the equilibrium point:

a := ru − µu − 2κuu∗ − κuv∗ = −
(
κuu

∗ + µv
v∗

u∗

)
, b := µv − κuu∗,

d := rv − µv − κvu∗ − 2κvv∗ = −
(
κvv
∗ + µu

u∗

v∗

)
, c := µu − κvv∗.
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We show that there exists a curve C ⊂ C, which is contained in the half-plane <(z) ≤ −ω for z ∈ C, where

ω := min
(
−a+ d

2 ,−σ
−1
u a+ σ−1

v d

σ−1
u + σ−1

v

)
, (2.3.70)

and such that Bλ has no imaginary eigenvalue if λ is in the connected compound C+ of C\C which contains
the positive real axis. Moreover C asymptotically looks like straight lines:

=(z) ∼ ±
∣∣∣∣2 σ−1

u σ−1
v

σ−1
u + σ−1

v

−
√
σ−1
u σ−1

v

∣∣∣∣<(z), for z ∈ C with <(z)→ −∞.

Indeed, investigating the values taken by χλ(iX) for real values of X, we find that

χλ(iX) = X4 +
(
− (σ−1

u a+ σ−1
v d) + λ(σ−1

u + σ−1
v )
)
X2 + σ−1

u σ−1
v

(
λ2 − (a+ d)λ+ ad− bc

)
.

Since a < 0, d < 0 and ad− bc > 0 (see Lemma 2.3.45 and note that our notation coincides with (2.3.65)),
we immediately see that χλ(iX) > 0 if λ is real and λ ≥ max

(
a+ d,

σ−1
u a+σ−1

v d

σ−1
u +σ−1

v

)
. If =(λ) 6= 0, we remark

that
=(χλ(iX)) = =(λ)

[
(σ−1
u + σ−1

v )X2 + σ−1
u σ−1

v (2<(λ)− (a+ d))
]
,

therefore if <(λ) > a+d
2 the polynomial χλ(iX) cannot have a real root. If <(λ) ≤ a+d

2 there are two
candidates

X± := ±

√
σ−1
u σ−1

v

σ−1
u + σ−1

v

(a+ d− 2<(λ)),

and for those values of X we have

<(χλ(X)) =
(

σ−1
u σ−1

v

σ−1
u + σ−1

v

(a+ d− 2<(λ))
)2

− (σ−1
u a+ σ−1

v d) σ−1
u σ−1

v

σ−1
u + σ−1

v

(a+ d− 2<(λ))

+ ad− bc+ <(λ)σ−1
u σ−1

v (a+ d− 2<(λ)) + σ−1
u σ−1

v

(
<(λ)2 −=(λ)2 − (a+ d)<(λ)

)
.

We conclude that χλ(iX) cannot have a real root in this case either, provided =(λ)2 is bounded from below
by a polynomial of degree two in <(λ). Hence we have found our curve C.

When λ ∈ C+ (i.e. lies in the connected component of C\C containing R+) we show that Y is uniquely
determined and depends continuously on Z. Indeed, the set of solutions to the equation Y ′ = BλY +Z can
be determined by the variation of constants formula

Y (x) = exBλY0 +
∫ x

0
e(x−s)BλZ(s)dz, (2.3.71)

for arbitrary Y0 ∈ R4. We show that there exists a unique choice of Y0 such that Y (x) remains bounded on
R. Indeed, because of the specific form of χλ(X), the matrix Bλ has either four or two distinct eigenvalue.
The latter case occurs exactly when the discriminant of the characteristic polynomial χλ(X) is null, namely(

σ−1
u a+ σ−1

v d− λ(σ−1
u + σ−1

v )
)2 − 4σ−1

u σ−1
v

(
λ2 − (a+ d)λ+ ad− bc

)
= 0.

The left-hand polynomial D(λ) of the former equation can be written as

D(λ) = σ−2
u a2 + σ−2

v d2 + λ2(σ−1
u + σ−1

v )2 + 2σ−1
u σ−1

v ad− 2σ−1
u aλ(σ−1

u + σ−1
v )− 2σ−1

v dλ(σ−1
u + σ−1

v )
− 4σ−1

u σ−1
v λ2 + 4σ−1

u σ−1
v (a+ d)λ− 4σ−1

u σ−1
v (ad− bc)

= λ2(σ−1
u − σ−1

v

)2 + λ
(
− 2(σ−1

u a+ σ−1
v d)(σ−1

u + σ−1
v ) + 4σ−1

u σ−1
v (a+ d)

)
+ (σ−1

u a− σ−1
v d)2 + 4bc

= λ2(σ−1
u − σ−1

v

)2 + λ
(
2σ−1

u σ−1
v (a+ d)− 2(σ−2

u a+ σ−2
v d)

)
+ (σ−1

u a− σ−1
v d)2 + 4bc

= λ2(σ−1
u − σ−1

v

)2 + 2λ(σ−1
v − σ−1

u )(σ−1
u a− σ−1

v d) + (σ−1
u a− σ−1

v d)2 + 4bc

=
(
λ(σ−1

u − σ−1
v ) + σ−1

u a− σ−1
v d

)2 + 4bc.

The roots are determined by the sign of bc:

λ± = σ−1
v d− σ−1

u a± 2
√
−bc

σ−1
u − σ−1

v

if bc < 0, λ± = σ−1
v d− σ−1

u a± 2i
√
bc

σ−1
u − σ−1

v

if bc > 0. (2.3.72)
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Note that, since

B2
λ =


σ−1
u (λ− a) 0 −σ−1

u b 0

0 σ−1
u (λ− a) 0 −σ−1

u b

−σ−1
v c 0 σ−1

v (λ− d) 0

0 −σ−1
v c 0 σ−1

v (λ− d)

 ,

there is no hope that the matrix Bλ is diagonalizable when the characteristic polynomial has only two roots
(because the minimal polynomial has degree > 2; see also the Motzkin-Taussky Theorem [228, Theorem 2.6
p.85]).

Therefore we distinguish two cases.
Case 1. The matrix Bλ is diagonalizable.
In this case there exists λ0, λ1 ∈ C such that 0 < <(λ0) ≤ <(λ1) and an invertible matrix P ∈ M4(R) such
that

Bλ = P diag(λ1, λ0,−λ0,−λ1)P−1.

In this case solving equation (2.3.71) on each eigenspace yields

Y0 = P


−
∫ +∞

0 e−λ1sZ̃1
+(s)ds

−
∫ +∞

0 e−λ0sZ̃0
+(s)ds∫ 0

−∞ eλ0sZ̃0
−(s)ds∫ 0

−∞ eλ1sZ̃1
−(s)ds

 , where Z̃(x) :=


Z̃1

+(x)

Z̃0
+(x)

Z̃0
−(x)

Z̃1
−(x)

 = P−1Z(x).

Therefore Y0 is a continuous function of Z and (2.3.71) is recast

Y (x) = P


−
∫ +∞
x

eλ1(x−s)Z̃1
+(s)ds

−
∫ +∞
x

eλ0(x−s)Z̃0
+(s)ds∫ x

−∞ e−λ0(x−s)Z̃0
−(s)ds∫ x

−∞ e−λ1(x−s)Z̃1
−(s)ds

 .

We have found that λ−A admits a bounded inverse in BUC(R)2.
Case 2. The matrix Bλ is not diagonalizable (i.e. λ = λ± given by (2.3.72)).
In this case, there is λ0 ∈ C with <(λ0) > 0 and an invertible matrix P ∈M4(R) such that Bλ is equivalent
to its Jordan normal form:

Bλ = P


λ0 1 0 0

0 λ0 0 0

0 0 −λ0 1

0 0 0 −λ0

P−1,

and therefore

exBλ = P


eλ0x xeλ0x 0 0

0 eλ0x 0 0

0 0 e−λ0x xe−λ0x

0 0 0 e−λ0x

P−1.

In this case solving equation (2.3.71) on each eigenspace yields

Y0 = P


−
∫ +∞

0 e−λ0s
(
Z̃1

+(s)− sZ̃0
+(s)

)
ds

−
∫ +∞

0 e−λ0sZ̃0
+(s)ds∫ 0

−∞ eλ0s
(
Z̃0
−(s)− sZ̃1

−(s)
)
ds∫ 0

−∞ eλ1sZ̃1
−(s)ds

 , where Z̃(x) :=


Z̃1

+(x)

Z̃0
+(x)

Z̃0
−(x)

Z̃1
−(x)

 = P−1Z(x).
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Once again we have found that Y0 depends continuously on Z and therefore λ − A admits a continuous
inverse on BUC(R)2 given by the formula

Y (x) = P


−
∫ +∞
x

eλ0(x−s)(Z̃1
+(s) + (x− s)Z̃0

+(s)
)
ds

−
∫ +∞
x

eλ0(x−s)Z̃0
+(s)ds∫ x

−∞ e−λ0(x−s)(Z̃0
−(s) + (x− s)Z̃1

−(s)
)
ds∫ x

−∞ e−λ0(x−s)Z̃1
−(s)ds

 .

To finish our first Step we remark that the operator A is sectorial and generates an analytic semigroup
on BUC(R)2. Indeed, A is a bounded perturbation of the unbounded operator (σu∂xx, σv∂xx)T (acting on
D(A) = C2

UC(R)2 in BUC(R)2), which is sectorial and generates an analytic semigroup on BUC(R)2 [270,
Corollary 3.1.9 p. 81]. In particular, etA can be computed by the Dunford-Taylor integral

etA = 1
2iπ

∫
Γ
eλt(λI −A)−1dλ,

where Γ is a curve in C+ joining a straight line {ρe−iθ, ρ > 0} for some θ ∈
[
π
2 , π

)
to the straight line

{ρe−iθ : ρ > 0} and oriented so that =(λ) increases on Γ. From the above computations it is clear that Γ
can be chosen so that <(λ) ≤ −ω2 (where ω is given by (2.3.70)) for all λ ∈ Γ, in which case

etA = e−
ω
2 t · 1

2iπ

∫
Γ
e(λ+ω

2 )t(λ−A)−1dλ

therefore

‖etA‖BUC(R)2 ≤ e−ω2 t · 1
2π

∫
Γ
e−(<(λ)+ω

2 )t‖(λ−A)−1‖L(BUC(R)2)dλ

≤ Ce−ω2 t,

for all t > 0, where C depends only on A and ω.

Step 2: We show the nonlinear stability.
Let (u(t, x), v(t, x)) be the solution of (2.3.30) starting from (u0, v0) ∈ BUC(R)2. We remark thatu− u∗

v − v∗


t

−A

u− u∗
v − v∗

 = o


∥∥∥∥∥∥
u− u∗
v − v∗

∥∥∥∥∥∥
BUC(R)2

 ,

that our original equation (2.3.30) is a Lipschitz perturbation of the semigroup T (t) generated by A, and
that it has been shown in Step 1 that eω2 tT (t) is bounded, with ω > 0 defined by (2.3.70). In this context, it
has been shown in [107, Theorem 10.2.2 p.157] (as a consequence of Gronwall’s inequality) that there exists
a ε0 > 0 and a constant M > 0 such that∥∥∥∥∥∥

u(t, ·)

v(t, ·)

−
u∗
v∗

∥∥∥∥∥∥
BUC(R)2

≤M

∥∥∥∥∥∥
u0

v0

−
u∗
v∗

∥∥∥∥∥∥
BUC(R)2

e−
ω
2 t, if

∥∥∥∥∥∥
u0 − u∗

v0 − v∗

∥∥∥∥∥∥
BUC(R)2

≤ ε0.

This finishes the proof of Theorem 2.3.31.

2.3.5.3 Homogenization

In this section 2.3.5.3 we extend the results obtained for the homogeneous systems to the class of systems
with rapidly oscillating coefficients.

Recall that we are concerned with system (2.3.35):{
ut = (σεu(x)ux)x + (rεu(x)− κεu(x)(u+ v))u+ µεv(x)v − µεu(x)u
vt = (σεv(x)vx)x + (rεv(x)− κεv(x)(u+ v))v + µεu(x)u− µεv(x)v,
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where σεu(x) := σu
(
x
ε

)
, σεv(x) := σv

(
x
ε

)
, rεu(x) := ru

(
x
ε

)
, rεv(x) := rv

(
x
ε

)
, κεu(x) := κu

(
x
ε

)
, κεv(x) := κv

(
x
ε

)
,

µεu(x) := µu
(
x
ε

)
, µεv(x) := µv

(
x
ε

)
and ru, rv, κu, κv are periodic with period 1. We also recall the definitions

of the mean coefficients as in (2.3.34):

ru :=
∫ 1

0
ru(x)dx, κu :=

∫ 1

0
κu(x)dx, µu :=

∫ 1

0
µu(x)dx,

rv :=
∫ 1

0
rv(x)dx, κv :=

∫ 1

0
κv(x)dx, µv :=

∫ 1

0
µv(x)dx,

and finally:

σu
H :=

(∫ 1

0

1
σu(x)dx

)−1

, σv
H :=

(∫ 1

0

1
σv(x)dx

)−1

.

Lemma 2.3.52 (The homogenisation limit of entire solutions). Let σuH , σvH , ru, rv, κu, κv, µu and µv
satisfy Assumption 2.3.29 and 2.3.32. Let ε > 0 and (uε(t, x), vε(t, x)) be a nonnegative nontrivial entire
solution to (2.3.35) which is bounded from above and from below by positive constants. Then, as ε→ 0, the
functions (uε(t, x), vε(t, x)) converge locally uniformly to the unique nonnegative nontrivial stationary state
(u∗, v∗) of the homogenised problem (2.3.30) with σu, σv, ru, rv, κu, κv, µu, µv replaced by σuH , σvH , ru,
rv, κu, κv, µu, µv.

Proof. We divide the proof in three steps.
Step 1: We show that (uε(t, x), vε(t, x)) does not vanish.
Let

(
λε1, (ϕε(x) > 0, ψε(x) > 0)

)
be the principal eigenpair associated with the eigenproblem:{

− (σεu(x)ϕεx)x = (rεu(x)− µεu(x))ϕε(x) + µεv(x)ψε(x) + λε1ϕ
ε(x)

− (σεv(x)ψεx)x = µεu(x)ϕε(x) + (rεv(x)− µεv(x))ψε(x) + λε1ψ
ε(x),

with ε-periodic boundary conditions, and normalised with maxx∈R sup max(ϕε(x), ψε(x)) = 1. Since (uε, vε)
is bounded from below, there exists α > 0 such that α(ϕε(x), ψε(x)) ≤ (uε(t, x), vε(t, x)). Let us define

A := sup {α > 0,∀x ∈ R, α(ϕε(x), ψε(x)) ≤ (uε(t, x), vε(t, x))} .

Then by definition of A > 0 (and up to a shift and limiting process), there exists t, x ∈ R such that either
uε(t, x) = Aϕε(x) or vε(t, x) = Aψε(x). Let us assume that the former holds. Then, we have

0 ≥ −κεu(x)u(t, x)(u(t, x) + v(t, x))− λε1Aϕε(x) = −A2κεu(x)ϕ(x)(ϕ(x) + ψ(x))− λε1Aϕε(x)
≥ Aϕε(x)(−2A sup

y∈R
κu(y)− λε1),

which implies that A ≥ −λε1
2 supy∈R κu(y) . We get a similar estimate in the case vε(x) = Aψε(x), which shows

the inequality
A ≥ −λε1

2 maxx∈R
(

max(κu(x), κv(x))
) .

Then, it is classical (and has been proved in the proof of Theorem 2.3.11) that (λε1, (ϕε(x), ψε(x)))→ (λ0
1 <

0, (ϕ0, ψ0)) uniformly as ε→ 0, where (λ0
1, (ϕ0, ψ0)) is the principal eigenpair of the homogenised problem.

Note that in particular, there exists ε > 0 such that for 0 < ε ≤ ε, we have a true uniform lower bound
on (uε(x), vε(x)):

inf
(t,x)∈R2

min(u(t, x), v(t, x)) ≥ 1
2 ·

−λ0
1

2 maxx∈R
(

max(κu(x), κv(x))
) min(ϕ0, ψ0) > 0.

Step 2: We show that uε(t, x) and vε(t, x) are uniformly bounded.
Indeed, since (uε, vε) is bounded, it follows directly from the maximum principle that

sup
(t,x)∈R2

max(u(t, x), v(t, x)) ≤ max
(

maxx∈R ru(x)
minx∈R κu(x) ,

maxx∈R rv(x)
minx∈R κv(x)

)
.
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Step 3: We derive the limit of (uε, vε).

We first remark that, since (uε, vε) is uniformly bounded, the classical estimates for parabolic equations in
divergence form with discontinuous coefficients (see e.g. [246, Chapter II Theorem 10.1]) imply that (Uε, vε)
is locally uniformly bounded in Cα(R×R), i.e. for any T > 0 an R > 0 there exists C > 0 (independent of
ε) such that

max
(
‖uε‖Cα([−T,T ]×[−R,R]), ‖vε‖Cα([−T,T ]×[−R,R])

)
≤ C.

Then, a classical diagonal extraction process allows us to extract a subsequence along which (uε, vε) converges
locally uniformly in Cα/2(R2) to a limit (u, v). It is then classical (see e.g. Remark 1.3 in Chapter 2 of [45])
that (u, v) satisfies weakly: {

ut = σu
Huxx + (ru − κu(u+ v))u+ µvv − µuu

vt = σv
Hvxx + (rv − κv(u+ v))v + µuu− µvv.

Then the Schauder estimates imply that (u(x), v(x)) is in fact a classical solution to (2.3.30). Since
(u(x), v(x)) is nontrivial and bounded from below (by Step 1), Theorem 2.3.51 shows that u(t, x) ≡ u∗

and v(t, x) ≡ v∗.

Lemma 2.3.53 (Uniqueness of rapidly oscillating entire solution). Let ru, rv, κu, κv, µu and µv satisfy
Assumption 2.3.29. There exists ε such that if 0 < ε ≤ ε, there exists a unique nonnegative nontrivial entire
solution (uε(x), vε(x)) associated with (2.3.35), which is bounded from above and from below.

Proof. We argue by contradiction and assume there exists a sequence εn > 0 and two sequences (uεn1 (t, x), vεn1 (t, x)) 6≡
(uεn2 (t, x), vεn2 (t, x)) of bounded nonnegative nontrivial stationary solutions to (2.3.35). We define δn :=
max

(
‖uεn2 (t, x)− uεn1 (t, x)‖BUC(R)2 , ‖vεn2 (t, x)− vεn1 (t, x)‖BUC(R)2

)
and:

ϕεn(t, x) := 1
δn

(uεn2 (t, x)− uεn1 (t, x))

ψεn(t, x) := 1
δn

(vεn2 (t, x)− vεn1 (t, x)).

Up to a shift in time and space we assume that

δn
2 ≤ sup

x∈(0,L)

(
max(|uεn2 (0, x)− uεn1 (0, x)|, |vεn2 (0, x)− vεn1 (0, x)|)

)
≤ δn. (2.3.73)

Then (ϕεn(t, x), ψεn(t, x)) satisfy:{
ϕt − σεnu (x)ϕεnxx = (rεnu (x)− µεn(x))ϕεn + µεnv (x)ψεn − κεnu (x)(2uεn2 + vεn2 )ϕεn − κεnu (x)uεn2 ψεn + o(1)
ψt − σεnv (x)ψεnxx = µεnu (x)ϕεn + (rεnv (x)− µεnv (x))ψεn − κεnv (x)vεn2 ϕεn − κεnv (x)(uεn2 + 2vεn2 )ψεn + o(1)

Indeed, owing to Lemma 2.3.52, there holds

(uεn1 , vεn1 )→ (u∗, v∗) and (uεn2 , vεn2 )→ (u∗, v∗) in BUC(R).

Since ϕεn(t, x) and ψεn(t, x) are bounded, classical homogenisation theory (see the proof of Theorem 2.3.11
where a similar argument is sketched) then leads to the convergence (up to an extraction) of (ϕεn(t, x), ψεn(t, x))
to (ϕ(t, x), ψ(t, x)) solving{

ϕt − σuHϕxx = (ru − µu)ϕ+ µvψ − κu(2u∗ + v∗)ϕ− κuu∗ψ
ψt − σvHψxx = µuϕ+ (rv − µv)ψ − κvv∗ϕ− κv(u∗ + 2v∗)ψ,

and the convergence holds (at least) locally uniformly. Because of our normalisation (2.3.73), the limit is
non-trivial. Moreover, (ϕ(t, x), ψ(t, x)) is bounded, which not possible since (u∗, v∗) is locally asymptotically
stable by Theorem 2.3.31. The Lemma is proved.
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Proof of Theorem 2.3.34. Theorem 2.3.34 is a direct consequence of the two previous Lemma. Statements
(i) and (ii) are a direct consequence of Lemma 2.3.53. As for Statement (iii), it is also a consequence of
Lemma 2.3.53.

Indeed, let ε > 0 be sufficiently small, so that there exists a unique entire solution to (2.3.35) which is uni-
formly bounded from below. Let (u0(x) ≥ 0, v0(x) ≥ 0) be a nontrivial initial condition and (u(t, x), v(t, x))
be the corresponding solution to (2.3.35). We argue by contradiction and assume that there exists ε > 0,
0 < c < c∗ε and a sequences tn → +∞ and xn ∈ R such that |xn| ≤ ctn and

|u(tn, xn)− u∗| ≥ ε > 0.
Then, due to the classical parabolic estimates, the sequence (u(t + tn, x), v(t + tn, x) converges locally
uniformly and up to an extraction to an entire solution (u∞(t, x), v∞(t, x)) which satisfies |u∞(0, 0)−u∗| ≥ ε.
By Theorem 2.3.24, there exists δ > 0 such that (u∞(t, x), v∞(t, x)) ≥ (δ, δ). Hence Theorem 2.3.51 applies
and we have (u∞(t, x), v∞(t, x)) ≡ (u∗, v∗). This is a contradiction. If |v(tn, xn)− v∗| ≥ ε, we easily derive
a similar contradiction. Therefore, we have

lim
t→∞

sup
|x|≤ct

max(|u(t, x)− u∗|, |v(t, x)− v∗|) = 0.

This shows Statement (iii) and finishes the proof of Theorem 2.3.34.

2.3.6 Appendix: On the spreading speed in the presence of a drift
Let us consider the equation:

ut = Lu− κ(x)u2 (2.3.74)
Lu : = (σ(x)ux)x + q(x)ux + r(x)u,

where σ(x) > 0, κ(x) > 0, r(x) and q(x) are 1-periodic functions. It is known (see Nadin [298, 398] that the
rightward and leftward spreading speeds associated with (2.3.74) are given by the following minimization
formula

c∗right := inf
λ>0

−k(λ)
λ

and c∗left := inf
λ>0

−k(−λ)
λ

.

If q ≡ 0 then, as a consequence of the Fredholm alternative, the function k(λ) is even and c∗right = c∗left,
but this is also the case if

∫ 1
0

q(x)
2σ(x)dx = 0 [298, Proposition 2.14], because the advection term can then be

“absorbed” by a change of function. Further dependencies of the speed on the various coefficients involved
in (2.3.74) are studied in [300]. Here we are interested in a sufficient condition for the speeds c∗right and c∗left
to be different, c∗right 6= c∗left.

It turns out that this can be achieved by considering the function

Q(x) :=
∫ x

0

q(y)
2σ(y)dy − x

∫ 1

0

q(y)
2σ(y)dy for all x ∈ R.

Indeed, writing

Lu = e
−Q(x)−x

∫ 1

0
q(y)

2σ(y) dy
(
σ(x)

(
e
Q(x)+x

∫ 1

0
q(y)

2σ(y) dy
u

)
x

)
x

+
[
−qx(x)

2 − q(x)2

4σ(x) + r(x)
]
u,

and computing the principal periodic eigenvalue of the operator u 7→ eλxL(e−λxu), we find that

k(λ) = k̃

(
λ−

∫ 1

0

q(y)
2σ(y)dy

)
,

where k̃(λ) is associated with the operator

L̃u = e−Q(x)
(
σ(x)

(
eQ(x)u

)
x

)
x

+
[
−qx(x)

2 − q(x)2

4σ(x) + r(x)
]
u,

which is self-adjoint for the weighted scalar product 〈u, v〉Q =
∫ 1

0 u(x)v(x)eQ(x)dx, and satisfies therefore
k̃(λ) = k̃(−λ).

In particular, it is not difficult to see that

c∗right > c∗left if
∫ 1

0

q(x)
2σ(x)dx < 0 and c∗right < c∗left if

∫ 1

0

q(x)
2σ(x)dx > 0. (2.3.75)
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2.4 Singular measure traveling waves in an epidemiological model with
continuous phenotypes

2.4.1 Introduction
In this work we consider the reaction-diffusion equation:

ut = uxx + µ(M ? u− u) + u(a(y)−K ? u), (2.4.1)

where t > 0, x ∈ R, y ∈ Ω for a bounded domain Ω ⊂ Rn, u = u(t, x, y), µ > 0 is a positive constant,
a = a(y) is a continuous function, M = M(y, z) and K = K(y, z) are integration kernels, and the ?
operation is defined by (2.4.7). After discussing the existence of stationary states for (2.4.1), we construct
measure-valued traveling waves and show the existence of a singularity for a subclass of parameters.

Equation (2.4.1) describes an asexual population living on a linear space, represented by the variable x.
Several genotypes exist in the population, yielding a continuum of phenotypes, represented by the y variable.
We denote Ω ⊂ Rn the set of all reachable phenotypes. Our basic assumption is that the fitness (or intrinsic
growth rate) of each individual is a function a(y) of its phenotype. We also assume the existence of an
underlying mutation process, by which an individual of phenotype z ∈ Ω may give birth to an individual of
phenotype y ∈ Ω, with probability M(y, z). Such mutations are expected to occur at rate µ > 0. Finally,
the individuals are in competition for e.g. a finite resource, and we denote K(y, z) the cost on the fitness of
y caused by the presence of z.

In the context of epidemiology, u(t, x, y) can be thought as a density of hosts at point x, infected with
a pathogen of trait y. Equation (2.4.1) is particularly relevant in this context, since evidences suggest that
pathogens (like e.g. viruses [211]) can be subject to rapid evolution, which may then occur at the same
time scale as the propagation of the epidemic [322, 324]. Moreover, equation (2.4.1) can easily be derived
from a host-pathogen microscopic model [P1] in which we neglect the influence of the pathogen on the hosts’
motility.

The study of asymptotic propagation in biological models can be traced back to the seminal works of
Fisher [170] and Kolmogorov, Petrovsky, and Piskunov [238], who investigated simultaneously the equation:

ut = uxx + u(1− u), (2.4.2)

where u = u(t, x) stands for the density of a spatially structured theoretical population. They have shown,
in particular, that for any compactly supported initial condition, the solution u(t, x) invades the whole
space with constant speed c = 2 (such a result is often called spreading); and that there exists a particular
solution to (2.4.2), which consists of a fixed profile shifting along the axis at speed c, u(t, x) = ũ(x− ct), and
connecting the unstable state 0 near +∞ to the stable state 1 near −∞ (such a particular solution is called
traveling wave). Since then, these results have been generalized to a variety of related models: see e.g. [405,
48, 398], and the references therein.

In the last decades, there has been an increasing interest in propagation models that take into account
a multiplicity of different species. The main problems in the field include the replacement of a species by
competitive interaction (see e.g. [181]), predation [255], adaptation to climate change [7], or cooperation
[269, 399]. This last class of cooperative reaction-diffusion system has lead to particularly strong results,
since its properties are somewhat comparable to those of scalar equations.

In a recent work [P2], the authors investigated the existence of traveling waves in the spatially homoge-
neous epidemiological model:

rclwt = wxx + w(1− (w +m)) + µ(m− w)

mt = mxx + rm

(
1− w +m

K

)
+ µ(w −m),

(2.4.3)

where w and m stand for a density of hosts infected by a wild type and mutant pathogen, respectively.
Though this system is not globally cooperative, the authors managed to prove the existence and to compute
the minimal speed of traveling waves as a function of the principal eigenvalue λ of the associated principal
eigenvalue problem: 1− µ µ

µ r − µ

w
m

+ λ

w
m

 = 0,
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via the formula c = 2
√
−λ. Intuitively, the spatial dynamics is then guided by the linearized system far

away from the front (such a traveling wave is sometimes called a pulled front [182, 366]). Since then, these
results have been extended to a more general class of systems in [190].

Equation (2.4.1) can be seen as the continuous limit of system (2.4.3) with a large number of equations.
Since we aim at computing the propagation speed for this equation, we turn to the associated principal
eigenvalue problem:

µ(M ? u− u) + u(a(y) + λ) = 0. (2.4.4)

This problem has been investigated in [118] and [119], where the author shows an unexpected concentration
phenomenon occurring for very natural fitness functions: if

1
supz∈Ω a(z)− a(y) ∈ L

1(Ω), (2.4.5)

and µ is small enough, there exists no continuous eigenfunction associated to (2.4.4), but rather singular
measure eigenvectors with a singularity concentrated on the maximum of fitness Ω0 := {y ∈ Ω | a(y) =
supz∈Ω a(z)}. According to (2.4.5), this phenomenon happens when a(y) is sufficiently steep near its global
maximum, and is highly dependant on the Euclidean dimension of Ω. For instance, if n = 1, a concentration
may appear at the optimum y = 0 for the particular fitness function a(y) = 1 −

√
|y|, when a(y) = 1 − |y|

always yields continuous eigenfunctions; if n = 2, a(y) = 1−|y| may induce concentration, but a(y) = 1−|y|2
cannot. In dimension n = 3 or higher, smooth fitness functions such as a(y) = 1 − |y|2 may induce
concentration. A similar phenomenon, and in particular the critical mutation rate under which concentration
appears for a sufficiently steep fitness function, has been discussed by Waxman and Peck [394, 395].

The nonlocal competition term −K ? u(y) in (2.4.1) is quite standard in models involving competition
between different phenotypes. Many models focus on the case where the competition is simply the integral
of the distribution — this corresponds to K(y, z) = 1. As an example, the nonlocal Fisher-KPP equation

ut −∆u = µu(1− Φ ∗ u), (2.4.6)

where Φ(y) is usually in L1(Rn) with possibly additional restrictions, has attracted a lot of attention in the
past [193, 184, 46, 200, 165, 203]. Nonlocal competition also appears in numerous other studies in population
genetics and population dynamics [4, 186, 5, 72, 52]. In general, the qualitative behavior of traveling waves,
and the long-time behavior of the solutions to the parabolic equation, are still difficult to handle. Recent
advances have been made towards a better understanding of the asymptotic location of the front for the
solutions to the parabolic equations, see [200, 70, 321, 3] for the nonlocal Fisher-KPP equation; [69] for the
cane toads equation. In the case of the nonlocal Fisher-KPP equation (2.4.6), the existence of traveling
waves has been established and the associated minimal speed characterized in [46, 200]. The convergence
towards a stationary state on the back of the wave, has been shown in [46] for small µ or when the Fourier
transform of the competition kernel is positive (in which cases one can prove the stability of the constant
steady state u ≡ 1); and more recently, in a perturbative case [3], the convergence in long time has been
shown for solutions to the parabolic equation. In the general case, the convergence towards a stationary
solution on the back of the wave is far from being clear. The situation is similar in the case of many other
models involving nonlocal competition.

As an indication that spreading happens, in the present section 2.4 we construct traveling waves for
equation (2.4.1) which travel at the expected spreading speed. One of the main difficulties we encountered
studying equation (2.4.1) is the lack of a regularizing effect in the mutation operatorM?u. This phenomenon
is confirmed by the existence of traveling waves having a nontrivial singular part — in particular, there is
no hope for asymptotic regularity. This lack of regularity also makes it more difficult to apply some of
the techniques commonly used in the study of reaction-diffusion equations (in particular, taking the limit
of a subsequence of large shifts of a solution). Finally, the non-compactness of the time-1 map prevents
an application of the spreading results of Weinberger [398]. One other challenging issue is the absence of a
comparison principle for equation (2.4.1), because of the nonlocal competition term. As in many other studies
involving a nonlocal competition, this prevents a precise study of the long-time behavior of the solutions to
the Cauchy problem and the behavior at the back of the waves (see also the above paragraph). To show
that the traveling waves stay away from 0 on the back, we introduce a secondary problem, constructed by
increasing self-competition in equation (2.4.1), which satisfies a comparison principle and serves as a sub-
solution factory. To overcome the lack of regularity, we approximate the solutions of (2.4.1) by a vanishing
viscosity method. We choose the zero Neumann boundary conditions for the approximating problem because
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they behave well with respect to the integration across the domain. Finally, we introduce a weak notion of
traveling waves which admit singularities. As we will see below, there is little hope to obtain more regularity
in general, since there exist traveling waves for equation (2.4.1) which present an actual singularity. As
far as we know, the present work constitutes the first construction of a measure-valued traveling wave in a
reaction-diffusion equation.

2.4.2 Main results and comments
2.4.2.1 Function spaces and basic notions

Throughout this document we use a number of function spaces that we make precise here to avoid any
confusion. Whenever X is a subset of a Euclidean space, we will denote C(X), Cb(X), C0(X), Cc(X)
the space of continuous functions, bounded continuous functions, continuous functions vanishing at ∞ and
continuous functions with compact support over X, respectively. Notice that if X is compact, then those four
function spaces coincide. Whenever X ⊂ Rd is a Borel set, we define M1(X) as the set of all Borel-regular
measures over X. Let us recall that M1(X) is the topological dual of C0(X), by Riesz’s representation
theorem [343]. In our context, M1(X) coincides with the set of Borel measures that are inner and outer
regular [343, 63]. We will thus call Radon measure an element of M1(X).

When p ∈M1(X), we say that the equality p = 0 holds in the sense of measures if

∀ψ ∈ Cc(X),
∫
X

ψ(x)p(dx) = 0.

We now define the notion of transition kernel (see [63, Definition 10.7.1]), which is crucial for our notion
of traveling wave:

Definition 2.4.1 (Transition kernel). We say that u ∈M1(R×X) has a transition kernel if there exists a
function k(x, dy) such that

1. for any Borel set A ⊂ X, k(·, A) is a measurable function, and

2. for almost every x ∈ R (with respect to the Lebesgue measure on R), k(x, ·) ∈M1(X)

and u(dx, dy) = k(x, dy)dx in the sense of measures, i.e. for any ϕ ∈ Cc(R×X), the following equality holds∫
R×X

ϕ(x, y)u(dx, dy) =
∫
R

∫
X

ϕ(x, y)k(x, dy)dx.

For simplicity, if the measure u has a transition kernel, we will often say that u is a transition kernel and
use directly the notation u(dx, dy) = u(x, dy)dx.

We denote f ? g the function:
f ? g(y) :=

∫
Ω
f(y, z)g(dz) (2.4.7)

whenever f : Ω2 → R and g is a measure on Ω. If g is continuous or L1(Ω) we use the convention
g(dz) := g(z)dz in the above formula. Remark that the operation ? is not the standard convolution, though
both notions share many properties.

Finally, for y ∈ ∂Ω we will call ν(y) or simply ν the outward normal unit vector of Ω.

2.4.2.2 Main results

Our main result is the existence of a measure traveling wave, possibly singular, for equation (2.4.1). Before
stating the result, let us give our assumptions, as well as subsidiary results.

Assumption 2.4.2 (Minimal assumptions). 1. Ω ⊂ Rn is a bounded connected open set with C3 bound-
ary. For simplicity we assume 0 ∈ Ω.

2. M = M(y, z) is a Cα positive function Ω× Ω→ R satisfying

∀z ∈ Ω,
∫

Ω
M(y, z)dy = 1.

In particular, 0 < m0 ≤M(y, z) ≤ m∞ < +∞ for any (y, z) ∈ Ω× Ω.
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3. K = K(y, z) is a Cα positive function Ω×Ω→ R. In particular, we have 0 < k0 ≤ K(y, z) ≤ k∞ < +∞
for any (y, z) ∈ Ω× Ω.

4. a = a(y) ∈ Cα(Ω) is a non-constant function with supy∈Ω a(y) > 0. We assume that a(0) = sup a. In
particular, −∞ < inf a < sup a < +∞ holds.

5. We let Ω0 :=
{
y ∈ Ω | a(y) = a(0) = supz∈Ω a(z)

}
be the set of maximal value for a and assume Ω0 ⊂⊂

Ω.

6. 0 < µ < sup a− sup
z∈∂Ω

a+(z).

We are particularly interested in a more restrictive set of assumptions, under which we hope to see a
concentration phenomenon in (2.4.1):

Assumption 2.4.3 (Concentration hypothesis). In addition to Assumption 2.4.2, we suppose

y 7→ 1
supz∈Ω a(z)− a(y) ∈ L

1(Ω).

Let us introduce the principal eigenvalue problem that guides our analysis:

Definition 2.4.4 (Principal eigenvalue). We call principal eigenvalue associated with (2.4.1) the real num-
ber:

λ1 := sup{λ | ∃ϕ ∈ C(Ω), ϕ > 0 s.t. µ(M ? ϕ− ϕ) + (a(y) + λ)ϕ ≤ 0}. (2.4.8)

Clearly, λ1 is well-defined and we have λ1 ≤ −(sup a − µ) by evaluating (2.4.8) at y = 0. Though we
call λ1 the principal eigenvalue, we stress that λ1 is not always associated with a usual eigenfunction. In
particular, Coville, in his work [119, 118], gives conditions on the coefficients of (2.4.1) under which there
exists no associated eigenfunction. We will recall and extend these results in section 2.4.3.1.

Proposition 2.4.5 (On the principal eigenvalue). Under Assumption 2.4.2, there exists a unique λ ∈ R
such that the equation

µ(M ? ϕ− ϕ) + (a(y) + λ)ϕ = 0 (2.4.9)
has a nonnegative nontrivial solution in the sense of measures, and λ = λ1.

Moreover, under Assumption 2.4.3, there exists µ0 > 0 such that if µ < µ0, we have

λ1 = −(sup a− µ)

and, in this case, there exists a nonnegative measure ϕ solution to (2.4.9) with a non-trivial singular part
concentrated in Ω0.

The most part of Proposition 2.4.5 comes from the work of Coville [118, 119]. Our contribution to the
result is the uniqueness of the real number λ such that there exists a nonnegative nontrivial measure solution
to (2.4.9). We use this uniqueness result several times in the section 2.4.2.2, in particular, in many of the
arguments involving a vanishing viscosity; for instance in the proofs of Theorem 2.4.15 and Theorem 2.4.6.

As well-known in KPP situations, we expect the sign of λ1 to dictate the long-time persistence of solutions
to equation (2.4.1). In particular, when λ1 > 0, we expect that any nonnegative solution to the Cauchy
problem (2.4.1) starting from a positive bounded initial condition goes to 0 as t→∞. Indeed, in this case
there exists a positive continuous function ψ > 0 such that

µ(M ? ψ − ψ) +
(
a+ λ1

2

)
ψ ≤ 0.

One can check that Ce−
λ1
4 tψ(y) and u(t, x, y) are respectively a super- and subsolution of the equation

ut = uxx + µ(M ? u− u) + a(y)u.

with ordered initial data (for C large enough). The result is then a consequence of the comparison principle
satisfied by the (linear) above equation.

In the λ1 = 0 case, we expect extinction as in the λ1 > 0 case. This is generally the case for scalar
reaction-diffusion equations, as well as in the case of some systems (see in particular [190, Proposition 5.2]).
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However, the usual strategy, which consists in establishing a contradiction by studying the least multiple of
the principal eigenfunction which lies above the ω-limit set of a solution to (2.4.1), seems difficult to apply
here. Indeed we lack three of the main ingredients for this argument: a Harnack inequality, compactness,
and a L∞ bound on the orbit which would allow us to place a multiple of the principal eigenvector above
the ω-limit set. Thus, in the present section 2.4, we leave this particular point open. Note however that,
in the case where M is symmetric (M(y, z) = M(z, y)), an argument similar to the one employed in [67,
Section 5] may lead to an actual proof, by working directly on the parabolic problem.

In the present section 2.4 we focus on the λ1 < 0 case, in which we expect survival of the population. To
confirm this scenario, we first prove the existence of a nonnegative nontrivial stationary state for equation
(2.4.1).

Theorem 2.4.6 (Survival of the population). Let Assumption 2.4.2 hold and assume further λ1 < 0. Then,
there exists a nonnegative nontrivial stationary state for equation (2.4.1), i.e. a nonnegative nontrivial
measure p ∈M1(Ω) which satisfies

µ(M ? p− p) + p(a(y)−K ? p) = 0 (2.4.10)

in the sense of measures.

Under the hypothesis for concentration (Assumption 2.4.3) and in the special case where the competition
kernelK(y, z) is independent of the trait y, Bonnefon, Coville and Legendre [64] have shown that the solution
to (2.4.10) has a singularity concentrated in Ω0 when µ is small. A key argument was a separation of variables
method, allowed by the assumption K(y, z) = K(z). Here we show that the concentration phenomenon
occurs under a more general hypothesis on K, namely that the trait y ∈ Ω0 suffers less from the competition
than any other trait. Since Ω0 also maximizes the basic reproductive ratio a(y), it seems natural to expect
concentration in Ω0 in this case.

Assumption 2.4.7 (Nonlinear concentration). In addition to Assumption 2.4.3, we suppose that

∀(y, z) ∈ Ω× Ω, K(0, z) ≤ K(y, z).

Theorem 2.4.8 (Concentration on dominant trait). Let Assumption 2.4.7 hold, and assume λ1 < 0. Then,
there exists µ0 > 0 such that, for any µ < µ0, the measure p, constructed in Theorem 2.4.6, has a singular
part concentrated in Ω0.

To better characterize the spatial dynamics of solutions to (2.4.1), we are going to construct traveling
waves for (2.4.1).

Definition 2.4.9 (Traveling wave). A traveling wave for equation (2.4.1) is a couple (c, u) where c ∈ R and
u is a locally finite transition kernel (see Definition 2.4.1) defined on R×Ω. We require that (c, u) satisfies:

− cux − uxx = µ(M ? u− u) + u(a−K ? u) (2.4.11)

in the sense of distributions, and that the measure u satisfies the limit conditions:

lim inf
x̄→+∞

∫
R×Ω

ψ(x+ x̄, y)u(dx, dy) > 0, (2.4.12)

lim sup
x̄→−∞

∫
R×Ω

ψ(x+ x̄, y)u(dx, dy) = 0 (2.4.13)

for any positive test function ψ ∈ Cc(R× Ω).

Condition (2.4.12) differs from the usual behavior of traveling waves as defined, for instance, in [397,
48, 309], in which the convergence to a stationary state is required. Because of the nonlocal competition,
indeed, it is very difficult to prove that a solution to equation (2.4.1) converges to a stationary state when
t→∞. Imposing a weak condition like (2.4.12) on the back of the wave is the usual way to go around this
issue. One can refer for instance to [46, 7, 65, 190], where a similar condition is imposed on the back of
traveling waves.

We are now in the position to state our main result, which concerns the existence of a traveling wave for
(2.4.1).
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Theorem 2.4.10 (Existence of a traveling wave). Under Assumption 2.4.2 and if λ1 < 0, there exists a
traveling wave (c, u) for (2.4.1) with c = c∗ := 2

√
−λ1.

As it is the case in many nonlocal problem, the uniqueness and stability of the traveling waves are
unknown. In this section 2.4, we focus on the construction of a traveling wave for c = c∗. Altough this is
expected, we leave the construction of traveling waves for c > c∗ for future work, as well as a proof of the
non-existence of traveling waves for c < c∗. In the general case, it seems very involved to determine whether
u has a singular part or not. Nevertheless, there are some particular cases where singular traveling waves
do exist.

Remark 2.4.11 (Traveling waves with a singular part). In the special case where K is independent from
y (K(y, z) = K(z)), a separation of variables argument — see [52] for a related argument— allows us to
construct traveling waves that actually have a singular part in Ω. From Proposition 2.4.5, under Assumption
2.4.3, there is µ0 > 0 such that, for any µ < µ0, there exists a measure eigenvector ϕ ∈M1(Ω) with a singular
part concentrated in Ω0. We choose such a ϕ with normalization

∫
ΩK(z)ϕ(dz) = 1. If moreover λ1 < 0,

then there exists a positive front ρ, connecting −λ1 to 0, for the Fisher-KPP equation

− ρxx − cρx = ρ(−λ1 − ρ) (2.4.14)

for any c ≥ 2
√
−λ1. If we define u(x, dy) := ρ(x)ϕ(dy), we see that u matches the definition of a traveling

wave. Hence for any x ∈ R, u(x, ·) possesses a singular part concentrated in Ω0.

The organization of the section 2.4 is as follows. In Section 2.4.3 we study related eigenvalue problems
for which concentration may occur. Section 2.4.4 is devoted to the construction of stationary states through
a bifurcation method. Last, we construct a (possibly singular) measure traveling wave in Section 2.4.5.

2.4.3 On the principal eigenvalue problem
In this section 2.4.3, we prove Proposition 2.4.5, which allows an approximation by an elliptic Neumann
eigenvalue problem in Theorem 2.4.15 of crucial importance for the construction of steady states in Section
2.4.4.

2.4.3.1 The principal eigenvalue of nonlocal operators

Under Assumption 2.4.2, Coville et al. [118, 119, 120] have extensively studied the principal eigenvalue
problem associated with (2.4.1). We summarize and extend the results in [119]. Our contribution is to show
the uniqueness of the principal eigenvalue as a solution to (2.4.9) in the sense of measures.

Theorem 2.4.12 (On the principal eigenproblem (2.4.9)). 1. Let Assumption 2.4.2 be satisfied. Then,
there exists a unique λ ∈ R such that (2.4.9) admits a nonnegative nontrivial Radon measure solution,
and λ = λ1.

2. Let Assumption 2.4.3 hold, and let −γ1 be the principal eigenvalue4of the operator

M[ψ] :=
∫

Ω
µM(y, z) ψ(z)

sup a− a(z)dz,

acting on ψ ∈ Cb(Ω). Then the following holds:

(i) γ1 > 1 if, and only if, λ1 < −(sup a − µ). In this case, any solution to (2.4.9) in the sense of
measures is a pointwise solution.

(ii) γ1 = 1 if, and only if, λ1 = −(sup a − µ) and there exists a nonnegative nontrivial function
ϕ ∈ L1(Ω) solution to (2.4.9) almost everywhere. In this case, ϕ is unique (up to multiplication
by a positive constant).

(iii) γ1 < 1 if, and only if, λ1 = −(sup a − µ) and there exists a nonnegative singular measure
ϕ ∈ M1(Ω) solution to (2.4.9). In this case, any nonnegative nontrivial solution to (2.4.9) has a
singularity concentrated in Ω0.

4We use the "minus" sign for consistency between Definition 2.4.4 and the algebraic notion generally used in the Krein-
Rutman Theorem : M[Φ] = γ1

1Φ.
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Proof. The existence of a measure-valued solution to (2.4.9) has been shown in [119, Theorem 1.2]. Here we
focus on the uniqueness of λ. We first prove the uniqueness of λ when the complement of Assumption 2.4.3
holds, by showing that any eigenvector is in fact a continuous eigenfunction. Then, we show that uniqueness
holds under Assumption 2.4.3. Finally we prove the trichotomy in item 2.

Step 1: Let the complement of Assumption 2.4.3 hold, i.e. 1
sup a−a(y) 6∈ L

1(Ω). Let ϕ ∈ M1(Ω) be a
nonnegative nontrivial Radon measure solution to (2.4.9). Then by the Lebesgue-Radon-Nikodym Theorem
[343, Theorem 6.10], there exists a nonnegative ϕac ∈ L1(Ω) and a nonnegative measure ϕs ∈M1(Ω), which
is singular with respect to the Lebesgue measure on Ω, such that:

ϕ = ϕacdy + ϕs.

Equation (2.4.9) is then equivalent to the following system:{
lrµM ? ϕ+ (a(y)− µ+ λ)ϕac = 0 a.e.(dy)

a(y)− µ+ λ = 0 a.e.(ϕs).
(2.4.15)

This readily shows that (a(y) − µ + λ)ϕac = −µM ? ϕ is a continuous negative function and in particular
λ ≤ −(sup a− µ).

We distinguish two cases:
Case 1: Assume first that λ < −(sup a − µ). Then the second line of (2.4.15) implies suppϕs = ∅, i.e.

ϕs ≡ 0. In this case we have ϕac(y) = µM?ϕac(y)
−λ−(a(y)−µ) , which is a positive continuous function since the kernel

M(y, z) is itself continuous. A classical comparison argument (such as the one presented below on Step 2
case 1) then shows λ = λ1.

Case 2: Assume λ = −(sup a− µ). Then

ϕac(y) = µM ? ϕ

sup a− a(y) ,

and since µ(M ? ϕ)(y) ≥ µm0
∫

Ω ϕ(dz) > 0, this implies ϕac 6∈ L1(Ω), which contradicts the definition of
ϕac.

We have thus shown the uniqueness of the real number λ such that there exists a solution (λ, ϕ) to
(2.4.9).

Step 2: Let Assumption 2.4.3 hold. We first establish that γ1 is well-defined, then resume the proof.
The operator M defined above is compact by virtue of the Arzelà-Ascoli Theorem [79, Theorem 4.25].

Since for any ψ ≥ 0, ψ 6≡ 0, we have

∀y ∈ Ω, M[ψ](y) =
∫

Ω
µM(y, z) ψ(z)

sup a− a(z)dz

≥ µm0

∫
Ω

ψ(z)
sup a− a(z)dz > 0,

M satisfies the hypotheses of the Krein-Rutman Theorem [79, Theorem 6.13], which ensures that the real
number γ1, defined byM[Ψ] = γ1Ψ for a positive Ψ ∈ Cb(Ω), is well-defined and positive.

Let us resume the proof. Let (λ, ϕ) be a solution to (2.4.9) in the sense of measures. Then, as above,
by Lebesgue-Radon-Nikodym Theorem [343, Theorem 6.10], there exists a nonnegative ϕac ∈ L1(Ω) and a
nonnegative measure ϕs ⊥ dy, such that ϕ = ϕacdy + ϕs. In this context, equation (2.4.9) is equivalent to
system (2.4.15), and in particular we have λ ≤ −(sup a−µ). We subdivide the rest of the proof in two cases.

1. Let us first assume λ < −(sup a− µ). Then it follows from equation (2.4.15) that ϕs ≡ 0. Moreover,
ϕac(y) = µ(M?ϕ)(y)

−λ−(a(y)−µ) is then a positive bounded continuous function and satisfies:

µ(M ? ϕac − ϕac) + (a(y) + λ)ϕac = 0

in the classical sense.
Let us show that λ = λ1. Let (λ, ϕ) ∈ R× C(Ω) be a supersolution to (2.4.9), i.e. ϕ > 0 and

µM ? ϕ+ ϕ(a(y)− µ+ λ) ≤ 0.
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Then ϕ(0)(−a(0) + µ− λ) ≥ µM ? ϕ > 0 and thus λ < −(a(0) − µ) = −(sup a − µ). Moreover ϕ(y) ≥
µM?ϕ(y)
µ−a(y)−λ

≥
µm0

∫
ϕ

−(inf a+λ−µ)
> 0 and thus ϕ is uniformly bounded from below. In particular, α := sup{ζ >

0 | ∀y ∈ Ω, ζϕac(y) ≤ ϕ(y)} is well-defined and positive. By definition of α we have αϕac(y) ≤ ϕ(y) for any
y ∈ Ω, and there exists a converging sequence Ω 3 yn → y ∈ Ω such that αϕac(yn) − ϕ(yn) → 0. Up to
further extraction ϕac(yn) converges to a positive limit that we denote ϕac(y). We have then

0 ≥ µ
∫

Ω
M(yn, z)

(
ϕ(z)− αϕac(z)

)
dz

+
(
ϕ(yn)− αϕac(yn)

)
(a(yn)− µ) + λϕ(yn)− λαϕac(yn)

≥ 0 +
(
ϕ(yn)− αϕac(yn)

)
(a(yn)− µ) + λϕ(yn)− λαϕac(yn)

= (λ− λ)αϕac(y) + on→∞(1).

Taking the limit n→∞, we have shown λ ≤ λ. Hence,

λ ≥ sup{λ | ∃ψ ∈ C(Ω), ψ > 0 s.t. µ(M ? ψ − ψ) + ψ(a(y) + λ) ≤ 0} = λ1.

The reverse inequality λ ≤ λ1 is clear since ϕac is a supersolution to (2.4.9). Thus λ = λ1.
In this case, we notice that

M[(sup a− a(y))ϕac] = µM ? ϕac > (sup a− a(y))ϕac.

Hence, by a classical comparison argument, γ1 > 1.

2. Let us assume now λ = −(sup a− µ).
We define the auxiliary function Ψ(y) := ϕac(y)(sup a−a(y)) = µ(M?ϕ). Then Ψ is a nontrivial positive

bounded continuous function which satisfies:

M[Ψ]−Ψ = µ(M ? ϕac − ϕac) + (a(y) + λ)ϕac = −µM ? ϕs ≤ 0.

Thus, by a classical comparison argument, γ1 ≤ 1.
We claim that λ1 = λ. As above, ϕac is a supersolution to (2.4.9), and thus λ ≤ λ1. Assume by

contradiction that λ1 < λ. By the existence property [119, Theorem 1.1], there exists a continuous function
ϕ1 > 0 associated with λ1. Since λ1 < λ = −(sup a−µ), point 1 above then applies to (λ1, ϕ1) and we have
γ1 > 1. This is a contradiction. Hence λ = λ1.

Step 3: We show (i), (ii), and (iii).
Assume λ1 < −(sup a − µ). Then, γ1 > 1, and the fact that any measure eigenvector is a continuous

eigenfunction has been shown in Step 2.
Assume λ1 = −(sup a − µ) and ϕs ≡ 0. Let Ψ(y) := (sup a − a(y))ϕac(y). Then, by a straightforward

computation, Ψ satisfies Ψ(y) = µM ? ϕ(y), which shows that Ψ is bounded and continuous. We remark
that:

M[Ψ]−Ψ = µM ? ϕac − (sup a− a)ϕac = −µM ? ϕs = 0.
By the Krein-Rutman Theorem, we have γ1 = 1 and ϕ ≡ ϕac is unique up to multiplication by a scalar.

Assume that λ1 = −(sup a− µ) and ϕs 6≡ 0. Let Ψ(y) := (sup a− a(y))ϕac(y), then

M[Ψ]−Ψ = −µM ? ϕs < 0

and thus γ1 < 1. Notice that in this case, the second line in equation (2.4.15) implies by definition
ϕs
(
{y ∈ Ω | a(y) 6= sup a}

)
= 0, hence supp ϕs ⊂ Ω0.

Since we have investigated all the possibilities (recall λ ≤ −(sup a − µ)), the equivalence holds in each
case. This finishes the proof of Theorem 2.4.12.

2.4.3.2 The critical mutation rate

In this section 2.4.3.2 we investigate further the linear eigenvalue problem (2.4.9), with λ = λ1 as compelled
by Theorem 2.4.12, under Assumption 2.4.3.

We introduce the notion of critical mutation rate, which distinguishes between the existence of a bounded
continuous eigenfunction for equation (2.4.9) and the existence of a singular measure.
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Theorem 2.4.13 (Critical mutation rate). Let Assumption 2.4.3 hold. Then, there exists a threshold
µ0 = µ0(Ω,M, sup a− a) such that for any 0 < µ < µ0, problem (2.4.9) has only singular measures solutions
with a singularity concentrated in Ω0 (in which case λ1 = −(sup a − µ) from Theorem 2.4.12), whereas for
µ > µ0 equation (2.4.9) has only bounded continuous eigenfunctions.

Finally, µ0 = 1
γ1

1
where −γ1

1 is the principal eigenvalue of the operator

M1[ψ] =
∫

Ω
M(y, z) ψ(z)

sup a− a(z)dz,

acting on bounded continuous functions.

Proof. Let us define, for ψ ∈ Cb(Ω),Mµ[ψ] = µ
∫

ΩM(y, z) ψ(z)
sup a−a(z)dz. Then by the Krein-Rutman Theorem

there exists a unique principal eigenpair (−γµ1 ,Φµ) satisfying γµ1 > 0, Φµ(y) > 0, sup Φµ = 1 andMµ[Φµ] =
γµ1 Φµ. Since Mµ = µM1, we deduce from the uniqueness of (−γµ1 ,Φµ) that the equalities γµ1 = µγ1

1 and
Φµ = Φ1 hold for any µ > 0. The result then follows from the trichotomy in Theorem 2.4.12

We can now summarize our findings and prove Proposition 2.4.5.

Proof of Proposition 2.4.5. The first part, under Assumption 2.4.2, follows from Proposition 2.4.12, while
the second part, under Assumption 2.4.3, follows from Theorem 2.4.13.

We prove below that µ0 is linked to the steepness of the fitness function a near its maximum. This
property will be used in the proof of Theorem 2.4.8.

Corollary 2.4.14 (Monotony of µ0). Let Assumption 2.4.3 hold and b be a continuous function on Ω,
satisfying

∀y ∈ Ω, sup a− a(y) ≤ sup b− b(y).

Then we have
µ0(Ω,M, sup a− a) ≤ µ0(Ω,M, sup b− b),

where µ0 is defined in Theorem 2.4.13.

Proof. It follows from our assumptions that, for y ∈ Ω:

0 < 1
sup b− b(y) ≤

1
sup a− a(y) . (2.4.16)

In particular y 7→ 1
sup b−b(y) ∈ L

1(Ω). Thus Theorem 2.4.13 can be applied with both a and b.
We claim that γb1 ≤ γa1 , where γb1, γa1 denote the first eigenvalue of the nonlocal operator Mb[ψ] =∫

ΩM(y, z) ψ(z)
sup b−b(z)dz andMa[ψ] =

∫
ΩM(y, z) ψ(z)

sup a−a(z)dz acting on the function ψ ∈ Cb(Ω), respectively.
Indeed, let ϕa ∈ Cb(Ω), ϕa > 0 satisfy

∫
ΩM(y, z) ϕa(z)

sup a−a(z)dz = γa1ϕ
a(y) and ϕb ∈ Cb(Ω), ϕb > 0 respectively

satisfy
∫

ΩM(y, z) ϕb(z)
sup b−b(z)dz = γb1ϕ

b(y). Up to multiplication by a positive constant, we assume without
loss of generality that ϕb ≤ ϕa and that there exists y ∈ Ω satisfying ϕb(y) = ϕa(y) = 1. At this point, we
have

γb1 =
∫

Ω
M(y, z) ϕb(z)

sup b− b(z)dz ≤
∫

Ω
M(y, z) ϕa(z)

sup a− a(z)dz = γa1 .

We conclude that
µ0(Ω,M, sup a− a) = 1

γa1
≤ 1
γb1

= µ0(Ω,M, sup b− b)

which finishes the proof of Corollary 2.4.14.
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2.4.3.3 Approximation by a degenerating elliptic eigenvalue problem

Here we show that the previously introduced principal eigenvalue can be approximated by an elliptic Neu-
mann eigenvalue.

Theorem 2.4.15 (Approximating λ1 by vanishing viscosity). Let Assumption 2.4.2 hold, and (λε1, ϕε(y) > 0)
be the solution to the principal eigenproblem:

lr − ε∆ϕε − µ(M ? ϕε − ϕε) = a(y)ϕε + λε1ϕ
ε in Ω

∂ϕε

∂ν
= 0 on ∂Ω,

(2.4.17)

with
∫

Ω ϕ
ε(z)dz = 1, where ν is the unit normal vector.

Then limε→0 λ
ε
1 = λ1, where λ1 is the principal eigenvalue defined by (2.4.8).

Proof. We divide the proof into three steps.
Step 1: We show that λε1 is bounded when ε→ 0.
Integrating equation (2.4.17) by parts, we have 0 =

∫
Ω(λε1 + a(y))ϕεdy. In particular, the function

a(y) + λε1 takes both nonnegative and nonpositive values. Hence, we have − sup a ≤ λε1 ≤ − inf a, and
(λε1)ε>0 is bounded.

Step 2: We identify the limit of converging subsequences.
Let λεn1 be a converging sequence and λ0

1 := limλεn1 . Then ϕεn satisfies, for any ψ ∈ C2(Ω),∫
Ω
−εnϕεn∆ψdy − εn

∫
∂Ω
ϕεn

∂ψ

∂ν
dS −

∫
µ(M ? ϕεn − ϕεn)ψ − a(y)ϕεnψ = λεn1

∫
ϕεnψ.

Let

F0 :=
{
ψ ∈ C2(Ω) | ∀y ∈ ∂Ω, ∂ψ

∂ν
(y) = 0

}
(2.4.18)

denote the space of functions in C2(Ω) with zero boundary flux as in Lemma 2.4.35 item (i). For ψ ∈ F0,
this equation becomes:∫

Ω
−εnϕεn∆ψdy −

∫
µ(M ? ϕεn − ϕεn)ψ − a(y)ϕεnψ = λεn1

∫
ϕεnψ.

Since
∫

Ω ϕ
εn(y)dy = 1 and Ω is compact and by Prokhorov’s Theorem [63, Theorem 8.6.2], the sequence

(ϕεn) is precompact for the weak topology inM1(Ω), and there exists a weakly convergent subsequence ϕε′n ,
which converges to a nonnegative Radon measure ϕ. Since 1 ∈ Cc(Ω), we have lim

∫
Ω ϕ

ε′n =
∫

Ω ϕ(dy) = 1.
Hence ϕ is non-trivial. Moreover, we have

µ

∫
Ω

∫
Ω
M(y, z)dϕ(z)ψ(y)dy +

∫
Ω

(a(y)− µ)ψ(y)dϕ(y) + λ0
1

∫
Ω
ψ(y)dϕ(y) = 0 (2.4.19)

for any test function ψ ∈ F0. Since F0 is densely embedded in Cb(Ω) by Lemma 2.4.35, (2.4.19) holds for
any ψ ∈ Cb(Ω). Applying Proposition 2.4.5, we have then λ0

1 = λ1.

Step 3: Conclusion.
We have shown that for any sequence εn → 0, there exists a subsequence ε′n → 0 such that λε

′
n

1 → λ1.
Thus λε1 → λ1 when ε→ 0.

2.4.4 Stationary states in trait
This section 2.4.4 deals with stationary states for (2.4.1). In particular, we prove Theorem 2.4.6 and Theorem
2.4.8 via a bifurcation argument.
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2.4.4.1 Regularized solutions

We investigate the existence of positive solutions p = p(y) to the following problem
ll − ε∆p− µ(M ? p− p) = p(a(y)−K ? p− βp) in Ω

∂p

∂ν
= 0 on ∂Ω,

(2.4.20)

for any β ≥ 0. We prove the existence of positive solutions for (2.4.20) when λε1 < 0. We plan to let ε→ 0
with β = 0 in Section 2.4.4.2, in order to prove the existence of stationary solutions to (2.4.1). The reason
why we include a weight β ≥ 0 on the competition term in equation (2.4.20) is that solutions to the latter
will be used as subsolutions in the construction of traveling waves in Section 2.4.5.

Throughout this section 2.4.4.1 we denote (λε1, ϕε) the eigenpair of the regularized problem, solving
(2.4.17). Notice that (λε1, ϕε) is independent from β. Our main result is the following:

Theorem 2.4.16 (Regularized steady states). Let Assumption 2.4.2 hold, ε > 0, (λε1, ϕε) be defined by
(2.4.17), and β ≥ 0.

(i) Assume λε1 > 0. Then 0 is the only nonnegative solution to (2.4.20).

(ii) Assume λε1 < 0. Then there exists a positive solution to (2.4.20) for any β ≥ 0.

Item (i) is rather trivial and we will discuss it later in the proof of Theorem 2.4.16. The actual construction
in the case λε1 < 0 is more involved. Our method is inspired by the similar situation in [P3]. We start by
establishing a priori estimates on the solutions p to (2.4.20).

Lemma 2.4.17 (A priori estimates on p). Let Assumption 2.4.2 hold, let ε > 0, β ≥ 0 and p be a nonnegative
nontrivial solution to (2.4.20). Then:

(i) p is positive.

(ii) If β = 0, there exists a positive constant C = C(Ω, ε, µ, ‖a‖L∞ ,m∞, k0, k∞) such that ‖p‖L∞ ≤ C. If
β > 0 then we have sup p ≤ sup a

β .

Proof. Point (i) follows from the strong maximum principle. We turn our attention to point (ii).
Assume first β > 0. Let y ∈ Ω such that p(y) = supz∈Ω p(z) and assume by contradiction that p(y) >

sup a
β . If y ∈ Ω, then we have

0 ≤ −ε∆yp(y)− µ(M ? p− p) = p(a(y)−K ? p− βp) < 0

which is a contradiction. If y ∈ ∂Ω, then µ(M ? p − p) ≤ 0 and a −K ? p − βp ≤ 0 in a neighbourhood of
y, and thus −ε∆p− (a(y)−K ? p− βp)p ≤ 0 in a neighbourhood of y. It follows from Hopf’s Lemma that
∂p
∂ν (y) > 0, which contradicts the Neumann boundary conditions satisfied by p. Hence sup p ≤ sup a

β .

We turn our attention to the case β = 0, which is more involved. We divide the proof in four steps.
Step 1: We establish a bound on

∫
Ω p(y)dy.

Integrating over Ω, we have∫
Ω
a(y)p(y)dy −

∫
Ω

∫
Ω
p(y)K(y, z)p(z)dydz = β

∫
Ω
p2(y)dy ≥ 0.

Thus
∫
a(y)p(y)dy ≥ k0

(∫
Ω p(y)dy

)2 and ∫
Ω
p(y)dy ≤ sup a

k0
. (2.4.21)

Step 2: We reduce the problem to a boundary estimate.
By a direct application of the local maximum principle [187, Theorem 9.20], for any ball BR(y) ⊂ Ω,

there exists a constant C = C(R, ε, ‖a‖L∞ , k0, k∞, µ,m∞) > 0 such that sup
BR/2(y)

p ≤ C. This shows an

interior bound for any point at distance R from ∂Ω.
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To show that this estimate does not degenerate near the boundary, we use a coronation argument. Let
d(y, ∂Ω) := infz∈∂Ω |y − z|, and

ΩR := {y ∈ Ω | d(y, ∂Ω) < R}
for any R > 0. As noted in [172], the function y 7→ d(y, ∂Ω) has C3 regularity on a tubular neighbourhood of
∂Ω. In particular, ∂ΩR\∂Ω is C3 for R small enough, since ∇d 6= 0 in this neighbourhood. Moreover, by the
comparison principle in narrow domains [47, Proposition 1.1], the maximum principle holds for the operator
−ε∆v− (a(y)−µ)v in ΩR provided |ΩR| is small enough, meaning that if v satisfies −ε∆v− (a(y)−µ)v ≥ 0
in ΩR and v ≥ 0 on ∂ΩR, then v ≥ 0. In particular, we choose R small enough for this property to hold.

At this point, p ≤ C in Ω\ΩR and comparison holds in ΩR.
Step 3: We construct a supersolution.
Notice that, in contrast with [7] where Dirichlet boundary conditions are used, we need an additional

argument to deal with the Neumann boundary conditions. Since the comparison principle holds in the
narrow domain ΩR, the Fredholm alternative implies that, for any δ ∈ (0, 1], there exists a unique (classical)
solution to the system: 

ll − ε∆vδ − (a(y)− µ)vδ = µm∞
sup a
k0

in ΩR

vδ = C on ∂ΩR\∂Ω

δvδ + (1− δ)∂v
δ

∂ν
= δ on ∂Ω.

As a result of the classical Schauder interior and boundary estimates, the mapping δ 7→ vδ is continuous
from (0, 1] to Cb(ΩR). Moreover, vδ is positive for δ ∈ (0, 1] by virtue of the maximum principle.

Next, still by a direct application of the Schauder estimates, (vδ)0<δ≤1 is precompact and there exists a
sequence δn → 0 and v ∈ C2 such that vδn → v in C2

loc(ΩR) ∩ C1(ΩR). Then v ≥ 0 satisfies:
ll − ε∆v − (a(y)− µ)v = µm∞

sup a
k0

in ΩR

v = C on ∂ΩR\∂Ω
∂v

∂ν
= 0 on ∂Ω.

By a direct application of the strong maximum principle and Hopf’s Lemma, we have v > 0 on ΩR.
Step 4: We show that p ≤ v on ΩR.
Let p be a solution to (2.4.20) and select α := inf{ζ > 0 | ζv ≥ p in ΩR}.
Assume by contradiction that α > 1. Then there exists y0 ∈ ΩR such that the equality p(y0) = αv(y0)

holds, and αv− p ≥ 0. In particular y0 is a zero minimum for the function αv− p. Because of the boundary
conditions satisfied by p and v, y0 cannot be in ∂ΩR. y0 is then an interior local minimum to αv − p and
thus

0 ≥ −ε∆(αv − p)(y0) = (a(y0)− µ)(αv − p)(y0) + αµm∞
sup a
k0

− µ(M ? p)(y0) + p(y0)(K ? p)(y0)

> αµm∞
sup a
k0
− µ(M ? p)(y0) ≥ 0,

using estimate (2.4.21), which is a contradiction. Thus α ≤ 1.
This shows that p ≤ v. Since v is a bounded function, we have our uniform bound for p in ΩR. In Ω\ΩR,

we have p ≤ C. This ends the proof of Lemma 2.4.17.

In order to proceed to the proof of Theorem 2.4.16, we yet need an additional technical remark.

Lemma 2.4.18 (Fréchet differentiability at 0). Let Assumption 2.4.2 hold, β ≥ 0 and

G : Cb(Ω) → Cb(Ω)

p(y) 7→ p(y)(K ? p)(y) + βp2(y),

then G is Fréchet differentiable at p = 0 and its derivative is DG(p) = 0.
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Proof. This comes from the remark∣∣∣∣∫
Ω
K(y, z)p(z)dzp(y) + p2(y)

∣∣∣∣ ≤ ∫
Ω
K(y, z)|p(z)|dz|p(y)|+ βp2(y)

≤ k∞|Ω|‖p‖2Cb(Ω) + β‖p‖2Cb(Ω)

Proof of Theorem 2.4.16. Step 1: We prove item (i).
We assume λε1 > 0. We recall that (λε1, ϕε) is the solution to (2.4.17) with the normalization

∫
Ω ϕ

ε(y)dy =
1. Let p > 0 be a nonnegative solution to (2.4.20) in Ω. Since p is bounded and ϕε is positive on Ω,
the quantity α := inf{ζ > 0 | ζϕε > p} is well-defined and finite. Then, there exists y0 ∈ Ω such that
p(y0) = αϕε(y0). Remark that y0 is a minimum to the nonnegative function αϕε − p. If y0 ∈ ∂Ω, then
Hopf’s Lemma implies ∂(αϕε−p)

∂ν (y0) < 0, which contradicts the Neumann boundary conditions satisfied by
p and ϕε. Thus y0 ∈ Ω. Evaluating equation (2.4.20), we have:

0 ≥ −ε∆(αϕε − p)(y0) = µ
(
M ? (αϕε − p)− (αϕε − p)

)
+ a(y0)

(
αϕε(y0)− p(y0)

)
+ p(y0)(K ? p)(y0) + βp2(y0) + λε1αϕ

ε

≥ p(y0)(K ? p)(y0) + βp2(y0) + λε1αϕ
ε > 0

which is a contradiction.
Step 2 : We prove item (ii).
We assume λε1 < 0. We argue as in [P3]: if the nonlinearity is negligible near 0 and we can prove local

boundedness of the solutions in L∞, then we can prove existence through a bifurcation argument. This
requires a topological result stated in Appendix 2.4.5.6.

More precisely, for α ∈ R and p ∈ Cb(Ω), we let F (α, p) = p̃ where p̃ is the unique solution to:
ll − ε∆p̃+ (sup a− a(y))p̃− µ(M ? p̃− p̃) = αp−G(p) in Ω

∂p̃

∂ν
= 0 on ∂Ω

where G is as in Lemma 2.4.18. Notice that sup a− a(y) ≥ 0, so comparison applies and the operator F is
well-defined due to the Fredholm alternative. In particular, for each α ∈ R, F (α, ·) is Fréchet differentiable
near 0 and its derivative is the linear operator αT , where Tp = p̃ and p̃ is defined by:

ll − ε∆p̃+ (sup a− a(y))p̃− µ(M ? p̃− p̃) = p in Ω
∂p̃

∂ν
= 0 on ∂Ω.

Let C := {p ∈ Cb(Ω) | p ≥ 0}. By a classical comparison argument, T maps the cone C\{0} into Int C =
{p ∈ Cb(Ω) | p > 0}. By virtue of the Krein-Rutman Theorem [79, Theorem 6.13], T has a first5 eigenvalue
λ(T ) (satisfying Tψ = λ(T )ψ for a ψ > 0) and we have the formula λ(T ) = 1

λε1+sup a .
We now check one by one the hypotheses of Theorem 2.4.36:
1. Clearly we have F (α, 0) = 0 for any α ∈ R.
2. It follows from Lemma 2.4.18 that G is Fréchet differentiable near 0 with derivative 0. As a conse-

quence, F (α, ·) is Fréchet differentiable near 0 with derivative αT .
3. T satisfies the hypotheses of the Krein-Rutman Theorem.
4. It follows from Lemma 2.4.17 that the solutions to F (α, p) = p are locally uniformly bounded in α.
5. Since any nontrivial nonnegative fixed point p is positive, there is no nontrivial fixed point in the

boundary of C.
Thus, applying Theorem 2.4.36, there exists a branch of solutions C connecting α = 1

λ(T ) to either
α→ +∞ or α→ −∞.

By the uniqueness in the Krein-Rutman Theorem, if λα denotes the principal eigenvalue associated with
F (α, p) = p, we have λα = λε1 + sup a− α = 1

λ(T ) − α. In particular, for α < − sup a− λε1, we deduce from
Step 1 that there cannot exist a solution to F (α, p) = p in C. Thus C connects 1

λ(T ) to +∞. In particular,
there exists a positive solution for α = sup a = 1

λ(T ) − λ
ε
1 >

1
λ(T ) , which solves (2.4.20). This ends the proof

of Theorem 2.4.16.
5We stress that this first eigenvalue is not the principal eigenvalue of the problem F (α, p) = p, but the algebraic eigenvalue.



151

We now prove a lower estimate for solutions to (2.4.20), which is crucial for the construction of traveling
waves, but will not be used in the meantime. We stress that in the lemma below, the constant ρβ is
independent from ε.

Lemma 2.4.19 (pε,β does not vanish). Let Assumption 2.4.2 be satisfied, let β > 0 and λ1 < 0. Let finally
pε,β be a solution to (2.4.20). Then, there exists constants ε0 = ε0(Ω, µ,M, a) > 0 and ρβ = ρβ(Ω,M, a, β) >
0 such that if ε ≤ ε0, then

inf
Ω
pε,β ≥ ρβ .

Proof. This proof is inspired by the one of [120, Lemma 5.2].

Step 1: Setting of an approximating eigenvalue problem.
Here we introduce an approximating eigenvalue problem, that will be used to estimate from below the

solutions to (2.4.20).
Let δ > 0, ε > 0, aδ(y) := min(a(y), sup a − δ) and (λδ,ε, ϕδ,ε) be the principal eigenpair solving the

problem 
llε∆ϕδ,ε + µ(M ? ϕδ,ε − ϕδ,ε) + (aδ(y) + λδ,ε)ϕδ,ε = 0 in Ω

∂ϕδ,ε

∂ν
= 0 on ∂Ω,

(2.4.22)

with
∫

Ω ϕ
δ,ε(y)dy = 1. It follows from Theorem 2.4.15 that λδ,ε converges to the principal eigenvalue λδ,0

of the operator ψ 7→ µ(M ? ψ − ψ) + aδ(y)ψ when ε → 0. λδ,0, in turn, converges to λ1 when δ → 0 by
Lipschitz continuity [118, Proposition 1.1]. Thus we may approximate λ1 by λδ,ε for δ > 0 and ε > 0 small
enough.

Since y 7→ 1
sup aδ−aδ(y) 6∈ L

1(Ω), it follows from [118, Theorem 1.1] (which can be adapted in our context;
see [119]) that there exists a continuous eigenfunction associated with λδ,0. In this case [119, Theorem 1.1]
shows the strict upper bound λδ,0 < − sup aδ + µ = − sup a+ δ + µ.

In what follows we fix the real number δ > 0 small enough so that the inequality

δ <
1
2 min

(
µ, sup a− inf a, sup a− sup

∂Ω
a+ − µ

)
holds, together with λδ,0 ≤ 3λ1

4 . We define η := −λδ,0 − sup a + δ + µ > 0. Since λδ,ε → λδ,0 as ε → 0, we
fix ε0 > 0 such that for any 0 < ε < ε0, |λδ,ε − λδ,0| ≤ −λ1

4 , and λδ,ε ≤ λδ,0 + η
2 .

Finally, integrating equation (2.4.22), we have 0 =
∫

Ω(aδ(y)+λδ,ε)ϕδ,ε(y)dy, thus the function aδ(y)+λδ,ε
takes nonpositive and nonnegative values. This shows

inf a = inf aδ ≤ −λδ,ε ≤ sup aδ = sup a− δ.

Step 2: Estimates from above and from below of ϕδ,ε.
Let us establish some upper and lower bounds for ϕδ,ε. Since ϕδ,ε is continuous on Ω, there exists y0 ∈ Ω

such that ϕδ,ε(y0) = infz∈Ω ϕ
δ,ε(z). If y0 ∈ ∂Ω, then it follows from Hopf’s Lemma that ∂ϕδ,ε

∂ν (y0) < 0, which
contradicts the Neumann boundary conditions satisfied by ϕδ,ε (recall that a(y0) + λδ,ε < 0 for y0 ∈ ∂Ω).
We conclude that y0 ∈ Ω. Thus we can evaluate equation (2.4.22):

0 ≥ −ε∆ϕδ,ε(y0) = µ
(
M ? ϕδ,ε − ϕδ,ε

)
+
(
aδ(y0) + λδ,ε

)
ϕδ,ε,

(sup a− inf a+ µ)ϕδ,ε(y0) ≥
(
− λδ,ε − aδ(y0) + µ

)
ϕδ,ε(y0) ≥ µm0

∫
Ω
ϕδ,ε,

min
z∈Ω

ϕδ,ε(z) ≥ µm0
sup a− inf a+ µ

.

Similarly, there exists y0 ∈ Ω such that ϕδ,ε(y0) = maxz∈Ω ϕ
δ,ε(z). Evaluating equation (2.4.22), we get

(recalling aδ(y0)− µ+ λδ,ε ≤ −η2 < 0):

0 ≤ −ε∆ϕδ,ε = µM ? ϕδ,ε +
(
aδ(y0)− µ+ λδ,ε

)
ϕδ,ε(y0),

η

2ϕ
δ,ε ≤ µm∞

∫
Ω
ϕδ,ε = µm∞,

max
z∈Ω

ϕδ,ε(z) ≤ 2µm∞
η

.
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Hence, for 0 < ε ≤ ε0 and y0 ∈ Ω, we have shown that

µm0
sup a− inf a+ µ

≤ ϕδ,ε(y0) ≤ 2µm∞
η

.

Step 3: Lower estimate for pε,β .
We are now in a position to derive a lower bound for pε,β . Since pε,β > 0 in Ω, we can define α :=

sup
{
ζ > 0 | ∀y ∈ Ω, ζϕδ,ε(y) ≤ pε,β(y)

}
.

Assume by contradiction that α < α0 := min
(

m0η
2k∞m∞ ,

−λδ,εη
2βµm∞+ηk∞

)
. By definition of α there exists y0 ∈

Ω such that αϕδ,ε(y0) = p(y0). Assume y0 ∈ ∂Ω, then it follows from Hopf’s Lemma that ∂(pε,β−αϕδ,ε)
∂ν (y0) <

0, which contradicts the Neumann boundary conditions satisfied by pε,β and ϕδ,ε. Thus y0 ∈ Ω. We have:

0 ≥ −ε∆(pε,β − αϕδ,ε)(y0) = µ
(
M ? (pε,β − αϕδ,ε)− (pε,β − ϕδ,ε)

)
+ pε,β

(
a(y0)−K ? pε,β − βpε,β

)
−
(
λδ,ε + aδ(y0)

)
αϕδ,ε

=
∫

Ω

(
µM(y0, z)− αϕδ,ε(y0)K(y0, z)

)(
pε,β(z)− αϕδ,ε(z)

)
dz

− αϕδ,ε(y0)
∫

Ω
K(y0, z)

(
αϕδ,ε(z)

)
dz

+ αϕδ,ε
(
a(y0)− aδ(y0)

)
− β

(
pε,β

)2 − λδ,εαϕδ,ε(y0).

By definition, µM(y0, z)−αϕδ,ε(y0)K(y0, z) ≥ µm0−k∞ m0η
2k∞m∞

2µm∞
η = 0 for any z ∈ Ω, and thus, recalling

a(y0) ≥ aδ(y0),

0 ≥ −αλδ,εϕδ,ε(y0)− α2ϕδ,ε(y0)
(
βϕδ,ε +

∫
Ω
K(y0, z)ϕδ,ε(z)dz

)
,

(
2βµm∞

η
+ k∞

)
α ≥ α

(
βϕδ,ε(y0) +

∫
Ω
K(y0, z)ϕδ,ε(z)dz

)
≥ −λδ,ε,

which is a contradiction since α < α0 = min
(

m0η
2k∞m∞ ,

−λδ,εη
2βµm∞+ηk∞

)
.

We conclude that α ≥ α0 and thus (recalling λδ,ε ≤ λ1
2 )

min
y∈Ω

pε,β(y) ≥ α0 min
y∈Ω

ϕδ,ε(y)

≥ min
(

m0η

2k∞m∞
,

(−λ1)η
4βµm∞ + 2ηk∞

)
µm0

sup a− inf a+ µ
> 0.

Since this lower bound is independent from ε, this ends the proof of Lemma 2.4.19.

2.4.4.2 Construction of a stationary solution at ε = 0

In this section 2.4.4.2 we assume λ1 < 0. Then, Theorem 2.4.16 guarantees the existence of a positive
solution to (2.4.20) for ε small enough, since λε1 → λ1 as ε→ 0 (recall Theorem 2.4.15). In this context, we
expect the solution constructed in Theorem 2.4.16 with β = 0 to converge weakly to a (possibly singular)
Radon measure, solution to (2.4.10). Here we prove this result, and complete the proof of Theorem 2.4.6.
In particular, in this section 2.4.4.2 we assume β = 0.

Before we can prove Theorem 2.4.6, we need a series of estimates on the previously constructed solutions
pε := pε,0.

Lemma 2.4.20 (Estimates on the mass). Let Assumption 2.4.2 hold, let ε > 0, λε1 < 0, and pε be a solution
to equation (2.4.20) with β = 0. Then

−λε1
k∞
≤
∫

Ω
pε(y)dy ≤ sup a

k0
. (2.4.23)

Proof. The upper bound in equation (2.4.23) has been established in Lemma 2.4.17. We turn our attention
to the lower estimate.
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We assume by contradiction that λε1 + k∞
∫

Ω p
ε(y)dy < 0. Let (λε1, ϕε > 0) be the solution to the

eigenproblem (2.4.17), normalized with
∫
ϕε = 1. Then, we define the real number α := sup{ζ > 0 | ∀y ∈

Ω, ζϕε ≤ pε} > 0, which is then well-defined since pε > 0 and ϕε is bounded.
By definition of α we have αϕε ≤ pε and there exists a point y0 ∈ Ω such that pε(y0) = αϕε(y0). If

y0 ∈ ∂Ω, since y0 is a maximum point for the function αϕε − pε, then it follows from Hopf’s Lemma that
∂αϕε−pε

∂ν (y0) > 0, which contradicts the Neumann boundary conditions satisfied by pε and ϕε. Thus y0 ∈ Ω
and we compute

0 ≤ −µ
(
M ? (αϕε − pε)− (αϕε − pε)

)
− ε∆(αϕε − pε)

= λε1αϕ
ε + (K ? pε)pε + a(y0)(αϕε − pε) =

(
λε1 + (K ? pε)(y0)

)
pε(y0),

which is a contradiction since λ1 + (K ? p)(y0) ≤ λ1 + k∞
∫

Ω p
ε(y)dy < 0. This finishes the proof of Lemma

2.4.20.

Proof of Theorem 2.4.6. It follows from Lemma 2.4.20 that the family (pε)0<ε≤1 of solutions to (2.4.20) with
ε > 0 and β = 0 is uniformly bounded inM1(Ω). Hence, applying Prokhorov’s Theorem [63, Theorem 8.6.2],
(pε)0<ε<1 is precompact for the weak topology in M1(Ω), and there exists a sequence pεn (with εn → 0)
and a measure p such that pεn ⇀ p in the sense of measures. In particular, taking ψ = 1, we recover the
estimate of Lemma 2.4.20: 0 < −λ1

k∞
≤
∫

Ω p(dy) ≤ sup a
k0

. Hence p is non-trivial.
Let us show that p is indeed a solution to (2.4.10). Multiplying equation (2.4.20) by ψ ∈ F0, where F0

is the set of functions with zero boundary flux as defined in (2.4.18), and integrating by parts, we get

−εn
∫

Ω
pεn∆ψdy =

∫
Ω
µ(M ? pεn − pεn)ψ + a(y)pεnψdy (2.4.24)

−
∫

Ω
(K ? pεn)(y)ψ(y)pεn(y)dy.

Since ∆ψ ∈ Cb(Ω) and
∫

Ω p
εn is bounded uniformly in n, the left-hand side of (2.4.24) goes to 0 when n→∞.

Moreover since ψ(y)(a(y)−µ) ∈ C(Ω), then by definition the convergence
∫

Ω ψ(y)(a(y)−µ)pεn(y)dy →n→∞∫
Ω ψ(y)(a(y)− µ)p(dy) holds.

We turn our attention to the term
∫

ΩM ? pεn(y)ψ(y)dy. We notice that∫
Ω

∫
Ω
M(y, z)pεn(z)dzψ(y)dy =

∫
Ω
pεn(z)

∫
Ω
M(y, z)ψ(y)dy =

∫
Ω
pεn(z)M̌ ? ψ(z)dz,

where M̌(y, z) = M(z, y). Since M̌ ? ψ(z) is a valid test function, we have indeed
∫

ΩM ? pεn(y)ψ(y)dy →∫
ΩM ? p(y)ψ(y)dy.

We turn to the convergence of the nonlinearity
∫

Ω(K ? pεn)(y)ψ(y)pεn(y)dy. Since the sequence pεn
appears twice in this term, the above argument cannot be used directly. Therefore, we first show a stronger
convergence for K ? pεn , namely that it converges uniformly to a continuous limit. We notice that

|(K ? pεn)(y)− (K ? pεn)(y′)| =
∣∣∣∣∫

Ω

(
K(y, z)−K(y′, z)

)
pεn(z)dz

∣∣∣∣
≤2‖K(y, ·)−K(y′, ·)‖Cb(Ω)

sup a
k0

.

Thus, the modulus of continuity of K ? pεn is uniformly bounded. Up to the extraction of a subsequence,
K ? pεn converges in Cb(Ω) to a limit which we identify as K ? p (by using another test function and the
weak convergence pεn ⇀ p). Along this subsequence, we have then

lim
n→∞

∫
Ω

(K ? pεn)(y)ψ(y)pεn(y)dy =
∫

Ω
(K ? p)ψ(y)p(dy).

We have shown that equation (2.4.24) is satisfied for any ψ ∈ F0. Applying Lemma 2.4.35, F0 is densely
embedded in Cb(Ω). Equation (2.4.24) is thus satisfied for any ψ ∈ Cb(Ω). This ends the proof of Theorem
2.4.6.
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2.4.4.3 Proof of Theorem 2.4.8

Under Assumption 2.4.7 and if µ is small enough according to Theorem 2.4.13, we can actually prove that
the measure solution to (2.4.10) is concentrated in Ω0 (Theorem 2.4.8). To do so, we write a solution p to
(2.4.10) as an eigenvector for a problem similar to (2.4.9), and make use of Theorem 2.4.12.

Proof of Theorem 2.4.8. Let p ∈ M1(Ω), p 6≡ 0 be a nonnegative solution to (2.4.10). Define b(y) :=
a(y)− (K ? p)(y). Then b is a continuous function and we have

∀y ∈ Ω, b(y) = a(y)−
∫

Ω
K(y, z)p(dz) ≤ a(0)−

∫
Ω
K(0, z)p(dz) = b(0),

as a result of Assumption 2.4.7. This shows that sup b = b(0). Next we compute:

b(0)− b(y) = a(0)− a(y) +
∫

Ω

(
K(y, z)−K(0, z)

)
p(dz) ≥ a(0)− a(y).

Thus, b satisfies Assumption 2.4.3.
We remark that p solves

µ(M ? p− p) + b(y)p = 0 (2.4.25)

in the sense of measures. Thus p is a solution to (2.4.9) with a replaced by b. Applying Corollary 2.4.14,
since µ < µ0(Ω,M, sup a − a), then µ < µ0(Ω,M, sup b − b) and thus the only solutions to (2.4.25) are
singular measures which singular part is concentrated in {y ∈ Ω | b(y) = sup b}. Let us show that {y | b(y) =
sup b} ⊂ Ω0. Let y ∈ Ω such that y 6∈ Ω0. Then a(y) < a(0) and

b(y) = a(y)− (K ? p)(y) < a(0)− (K ? p)(y) ≤ a(0)− (K ? p)(0) = sup b,

which shows that y 6∈ {y | b(y) = sup b}. This ends the proof of Theorem 2.4.8.

2.4.5 Construction of traveling waves
In this section 2.4.5, we prove our main result Theorem 2.4.10. To construct the desired measure traveling
wave, we first consider a regularized problem in a box −l ≤ x ≤ l, y ∈ Ω.

2.4.5.1 Construction of a solution in a box

Here we aim at constructing solutions (c, u = u(x, y)) to

ll − ε∆yu− uxx − cux = µ(M ? u− u)
+u(a(y)−K ? u− βu) in (−l, l)× Ω

∇yu(x, y) · ν = 0 on (−l, l)× ∂Ω
u(l, y) = 0 in Ω

u(−l, y) = p(y) in Ω,

(2.4.26)

for β ≥ 0 and p solving (2.4.20). Notice that any solution to (2.4.26) with β > 0 is a subsolution to (2.4.26)
with β = 0. In particular, we will use some solutions to (2.4.26) with β > 0 to get lower estimates on
solutions to (2.4.26) with β = 0.

In contrast with [53, 46, 7, P2], we use a global continuation theorem (in the proof of Theorem 2.4.21
below) instead of a topological degree to construct solutions to the local problem (2.4.26). Though both
arguments have the same topological basis, we believe that this is an improvement of the usual method,
since it spares the need to explicitly compute the topological degree associated with (2.4.26).

Let us also introduce the following quantity, which is the minimal speed for traveling waves (as we will
show later):

c∗ε := 2
√
−λε1. (2.4.27)

Our result is the following:
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Theorem 2.4.21 (Existence of solutions in the box). Let Assumption 2.4.2 hold, ε > 0 be such that
λε1 < 0, and β ≥ 0. Then, there exists a nonnegative solution to (2.4.26). Moreover, let l0 := π√

−λε1
> 0,

τ0 := −λε1
2 > 0. Then, for any 0 < τ < τ0, there exists l̄(τ) ≥ l0 + 1 such that if l > l̄(τ), there exists a

nonnegative solution (c, u) to (2.4.26) with 0 < c ≤ c∗ε, which also satisfies the normalization condition

sup
(x,y)∈(−l0,l0)×Ω

(∫
Ω
K(y, z)u(x, z)dz + βu(x, y)

)
= τ. (2.4.28)

Before we prove Theorem 2.4.21, we need to establish some a priori estimates on the solutions to (2.4.26).
For technical reasons, we actually study the solutions to

ll − ε∆yu− uxx − cux = σ
(
µ(M ? u− u)

+uχu≥0(a(y)−K ? u− βu)
)
in (−l, l)× Ω

∇yu(x, y) · ν = 0 on (−l, l)× ∂Ω
u(l, y) = 0 in Ω

u(−l, y) = p(y) in Ω,

(2.4.29)

where χu≥0 = 0 if u ≤ 0, χu≥0 = 1 if u > 0, and σ ∈ (0, 1]. We introduce the positive-part cutoff involving
χ in Problem (2.4.29) in order to ensure that the nontrivial solutions to this problem are positive.

Lemma 2.4.22 (A priori estimates on the solutions to (2.4.29)). Let Assumption 2.4.2 hold, ε > 0 such
that λε1 < 0, β ≥ 0, and |c| ≤ c∗ε. We define l0 := π√

−λε1
. Let u be a solution to (2.4.29), then

(i) u ∈ C2
loc

(
(−l, l)× Ω

)
∩ C1

loc

(
(−l, l)× Ω

)
∩ Cb

(
[−l, l]× Ω

)
.

(ii) u is positive in (−l, l)× Ω.

(iii) For any x ∈ [−l, l], we have
∫

Ω u(x, y)dy ≤ sup a
k0

.

(iv) There exists a positive constant Cε, independent from c, l and σ, such that we have ‖u‖Cb((−l,l)×Ω) ≤
Cε. If β > 0, then we have the estimate ‖u‖Cb((−l,l)×Ω) ≤ sup a

β .

(v) If σ = 1, c = 0, and l > l0, then

sup
(x,y)∈(−l0,l0)×Ω

(∫
Ω
K(y, z)u(x, z)dz + βu(x, y)

)
>
−λε1

2 .

Remark that for this result to hold, u needs only be defined on (−l0, l0)× Ω.

(vi) If σ = 1 and c = c∗ε, then there exists a constant A (independent from l) and λ := c∗ε
2 > 0 such that

∀(x, y) ∈ (−l, l)× Ω, u ≤ Ae−λ(x+l).

In particular for any l ≥ l̄(τ) := 1
λ ln

(
τ

2A(k∞
∫

Ω
ϕε+β supΩ ϕ

ε)

)
− l0 and 0 < τ ≤ τ0 = −λε1

2 , we have

sup
(x,y)∈(−l0,l0)×Ω

(∫
Ω
K(y, z)u(x, z)dz + βu(x, y)

)
< τ.

Proof. Item (i) holds by a direct application of [47, Lemma 7.1], and item (ii) by a classical comparison
argument. Let us resume to the remaining items.

Item (iii): By the estimate in Lemma 2.4.20, we have
∫

Ω p(y)dy ≤ sup a
k0

. Assume that the function
x 7→

∫
Ω u(x, y)dy has a maximal value at x0 ∈ (−l, l), then integrating (2.4.29) over Ω we have

0 ≤ −
d2 ∫

Ω u(x0, y)dy
dx2 − c

d
∫

Ω u(x0, y)dy
dx

= σ

∫
Ω
a(y)u(x0, y)− (K ? u)(x0, y)u(x0, y)dy,
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and thus:

k0

(∫
Ω
u(x0, y)dy

)2
≤
∫

Ω

∫
Ω
K(y, z)u(x0, z)u(x0, y)dydz

=
∫

Ω
a(y)u(x0, y)dy ≤ sup a

∫
Ω
u(x0, y)dy.

This shows item (iii).
Item (iv): Assume first β > 0 and let u(x0, y0) = supu at (x0, y0) ∈ [−l, l]×Ω. Assume by contradiction

that u(x0, y0) > sup a
β . If x0 = −l, since p satisfies the upper bound sup p ≤ sup a

β by the estimate in Lemma
2.4.17 item (ii), we have a contradiction. If x0 = +l, since u(x0, y0) = 0, we have a contradiction. Assume
x0 ∈ (−l, l). If y0 ∈ ∂Ω, then it follows from Hopf’s Lemma that ∂u

∂ν (x0, y0) > 0, which is a contradiction.
Thus y0 ∈ Ω. Now, testing (2.4.29) at (x0, y0), we have

0 ≤ −ε∆yu(x0, y0)− uxx(x0, y0)− cux(x0, y0)− σµ
(
(M ? u)− u

)
(x0, y0)

= σu(x0, y0)
(
a(y0)− (K ? u)(x0, y0)− βu(x0, y0)

)
< 0

which is a contradiction. Thus u ≤ sup a
β .

We turn our attention to the case β = 0. In this case, we construct a supersolution as in Lemma 2.4.17.
Recalling that u satisfies Dirichlet boundary conditions at x = ±l, the local maximum principle up to the
boundary [187, Theorem 9.26] shows the existence of C = C(Ω, R, ε, ‖a‖L∞ , k0, k∞, µ, c

∗
ε) such that for any

x ∈ [−l, l], y ∈ Ω with d(y, ∂Ω) ≥ R, we have the estimate sup
BR/2(x,y)

u ≤ C.

To show that this estimate does not degenerate near the boundary, we use the same kind of supersolution
as in Lemma 2.4.17. Let

ΩR := {y ∈ Ω | d(y, ∂Ω) < R}
for any R > 0. We select R small enough so that ΩR has a C3 boundary and the comparison principle
[47, Proposition 1.1] holds in the narrow domain ΩR. Let us stress that since σ ∈ (0, 1), R can be chosen
uniformly in σ.

This allows us to construct a positive solution to
ll − ε∆v − σ(a(y)− µ)v = µm0

m∞ sup a
k0

in Ω

v = C on ∂ΩR\∂Ω
∂v

∂ν
= 0 on ∂Ω,

which is bounded uniformly in σ, as we did in the proof of Lemma 2.4.17. Now we select α := inf{ζ >
0 | ∀x ∈ (−l, l),∀y ∈ Ω, ζv(y) ≥ u(x, y)}. Assume by contradiction that α > 1. Then there exists (x0, y0) ∈
[−l, l] × Ω such that u(x0, y0) = αv(y0). If x0 = l then u = 0, which is a contradiction. If x0 = −l, since
u(−l, y0) = p(y0) solves (2.4.20), we argue as in Lemma 2.4.17 and get a contradiction. We are left to
investigate the case x0 ∈ (−l, l). If y0 ∈ ∂Ω, since (x0, y0) is a minimum to the function αv − u, then by
Hopf’s Lemma we have ∂(αv−u)

∂ν (x0, y0) < 0 which is a contradiction. Thus y0 6∈ ∂Ω. Since α > 1 and u ≤ C
on ∂ΩR\∂Ω, then y0 ∈ ΩR. Now (x0, y0) is a local minimum to αv − u and thus

0 ≥ −ε∆(αv − u)(x0, y0) = σ(a(y0)− µ)(αv − u)(x0, y0) + αµm0
m∞ sup a

k0

− σµ(M ? u)(x0, y0) + u(x0, y0)(K ? u)(x0, y0)

> αµm0
m∞ sup a

k0
− σµ(M ? u)(x0, y0) ≥ 0

which is a contradiction. Thus α ≤ 1.
This shows that u(x, y) ≤ v(y) in (−l, l)× ΩR. Since v is bounded uniformly in σ, we have our uniform

bound for u in [−l, l]× ΩR. In the rest of the domain (−l, l)× Ω\ΩR, we have u ≤ C.
This proves item (iv), with Cε := max(supy∈ΩR v(y), C).
Item (v): This proof is similar to the one in [7]. Assume by contradiction that sup(x,y)∈(−l0,l0)×Ω

(∫
ΩK(y, z)u(x, z)dz + βu(x, y)

)
≤

τ0. Then u satisfies:

− uxx − ε∆yu− µ(M ? u− u)− a(y)u ≥ −τ0u in (−l0, l0). (2.4.30)
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Define ψ(x, y) := cos
(
π

2l0x
)
ϕε(y), where ϕε is the principal eigenfunction solution to (2.4.17) satisfying

supy∈Ω ϕ
ε = 1. Since u is positive in [−l0, l0]× Ω, we can define the real number α := sup{ζ > 0 | ∀(x, y) ∈

(−l0, l0)× Ω, ζψ(x, y) ≤ u(x, y)}, and we have α > 0.
Then, there exists (x0, y0) ∈ [−l0, l0] × Ω such that αψ(x0, y0) = u(x0, y0). Because of the boundary

conditions satisfied by u and ψ, (x0, y0) has to be in (−l0, l0)×Ω. Since (x0, y0) is the minimum of u− αψ,
we have

0 ≥ −ε∆y(u− αψ)(x0, y0)− (u− αψ)xx(x0, y0)
− µ

(
M ? (u− αψ)− (u− αψ)

)
(x0, y0)− a(y0)(u− αψ)(x0, y0)

≥ −τ0u(x0, y0) + α

(
−λε1 −

(
π

2l0

)2
)
ψ(x0, y0)

=
(
−3λε1

4 − τ0
)
u(x0, y0) > 0,

since −τ0 = λε1
2 . This is a contradiction.

This proves item (v).
Item (vi): Let ψ(x, y) := e−

c∗ε
2 xϕε(y) with (λε1, ϕε) solution to (2.4.17). Then ψ satisfies:

−c∗εψx − ψxx − ε∆yψ − µ(M ? ψ − ψ) = a(y)ψ.

Since ψ > 0 on [−l, l] × Ω, there exists ζ > 0 such that ζψ ≥ u on (−l, l) × Ω. Let us select α :=
inf{ζ > 0 | ∀(x, y) ∈ (−l0, l0) × Ω, ζψ(x, y) ≥ u(x, y)}. By definition of α we have αψ ≥ u and there exists
(x0, y0) ∈ [−l, l] × Ω such that αψ(x0, y0) = u(x0, y0). Because of the boundary conditions satisfied by u
and ψ, (x0, y0) has to be in [−l, l)× Ω. If x0 ∈ (−l, l), we have:

0 ≤ −ε∆y(u− αψ)(x0, y0)− (u− αψ)xx(x0, y0)
− µ

(
M ? (u− αψ)− (u− αψ)

)
(x0, y0)− a(y0)(u− αψ)(x0, y0)

< 0

which is a contradiction. We conclude that x0 = −l0 and thus α ≤ supΩ p
infΩ ϕε e

− c
∗
ε
2 l. By definition of α, we can

then write:
u(x, y) ≤ αe−

c∗ε
2 xϕε(y) ≤ supΩ p

infΩ ϕε
e−

c∗ε
2 (x+l)ϕε(y)

which concludes the proof of item (vi).

We are now in the position to prove Theorem 2.4.21, by using the global continuation principle [413,
Theorem 14 C].

Proof of Theorem 2.4.21. For c ∈ R and u ∈ Cb
(
(−l, l)× Ω

)
. We define F (c, u) = ũ where ũ solves:

ll − ũxx − cũx − ε∆yũ = µM ? u

+uχu≥0(a(y)− µ−K ? u− βu) in (−l, l)× Ω
∂ũ

∂ν
(x, y) = 0 on (−l, l)× ∂Ω

ũ(l, y) = 0 in Ω
ũ(−l, y) = p(y). in Ω.

(2.4.31)

It follows from [47, Lemma 7.1] that for any u the function ũ is well-defined and belongs to the space
Cb([−l, l]× Ω) ∩W 2,p

loc ([−l, l]× Ω\{−l, l} × ∂Ω) for any p > 0.
Step 1: Let us briefly show that F is in fact a compact operator. Since the right-hand side of the first

equation in (2.4.31) is bounded, it is easily seen that the function (x, y) 7→
(
1 + γ(x + l)α

)
p(y) is a local

supersolution to equation (2.4.31) near x = l for 0 ≤ α < α0, γ ≥ γ0 > 0, where α0 and γ0 depend only on
‖u‖Cb((−l,l)×Ω), a bound for c and the data and coefficients of the problem. Similarly, (1− γ(x+ l)α

)
p(y) is

a local subsolution, provided α is chosen small enough. Thus the inequality
(
1− γ(x+ l)α

)
p(y) ≤ ũ(x, y) ≤
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(
1+γ(x+l)α

)
p(y) holds for α > 0 small enough. In particular, the function x ∈ [−l, 0] 7→ ũ(x, y) is uniformly

in Cα for y ∈ Ω. It then follows from [187, Corollary 9.28] (and the classical interior Sobolev embeddings)
that ũ ∈ Cα([−l, 0]×Ω). Regularity near x = l can be shown the same way. Thus ũ ∈ Cα([−l, l]×Ω) where
α depends only on a bound for ‖u‖Cb((−l,l)×Ω) and c, and the data and coefficients of problem (2.4.31). In
particular, F maps bounded sets of R× Cb((−l, l)× Ω) into relatively compact sets in Cb((−l, l)× Ω).

Step 2: We aim at applying the Leray-Schauder fixed-point theorem [413, Corollary 13.1 item (iii)] to
F (0, ·). We remark that the solutions to u = σF (0, u) for σ ∈ (0, 1] are in fact the solutions to (2.4.29). In
particular, Lemma 2.4.22 gives us a positive constant C > 0 such that any solution to (2.4.29) satisfies the
inequality ‖u‖Cb(−l,l)×Ω ≤ C. Let G := {u ∈ Cb((−l, l)× Ω) | ‖u‖Cb((−l,l)×Ω) ≤ 2C}, then

1. G is a bounded open subset of the Banach space Cb((−l, l)× Ω),

2. 0 ∈ G,

3. F (0, ·) : G→ Cb((−l, l)× Ω) is a compact mapping, and

4. applying Lemma 2.4.22, there is no solution to u = σF (0, u) with u ∈ ∂G and σ ∈ (0, 1].

Thus the Leray-Schauder fixed-point Theorem [413, Corollary 13.1 item (iii)] applies and we have ind(F (0, ·), G) =
1, where ind is the Leray-Schauder fixed-point index.

Step 3: Let us now check that the hypotheses of the global continuation principle [413, Theorem 14 C]
are satisfied. We have:

1. F is a compact mapping from (0, c∗ε)×G into Cb((−l, l)× Ω),

2. applying Lemma 2.4.22, there is no solution to u = F (c, u) with u ∈ ∂G and c ∈ [0, c∗ε], and

3. ind(F (0, ·), G) = 1.

Thus, the global continuation principle applies and there exists a connected set of solutions C to u = F (c, u)
connecting {0} ×G to {c∗ε} ×G. In particular, there exists a solution to (2.4.26) for any c ∈ [0, c∗ε].

Step 4: Now let us assume l ≥ l̄(τ) (where l̄(τ) is given by Lemma 2.4.22, item 5). Since the mapping

u ∈ Cb((−l, l)× Ω) N7−→ sup
(x,y)∈(−l0,l0)×Ω

∫
Ω
K(y, z)u(x, z)dz + βu(x, y)

is continuous, then N(C) is a connected subset of R, i.e. an interval. Applying Lemma 2.4.22, we have:

– From point (v), if (c, u) ∈ C and c = 0, then N(u) > τ .

– From point (vi), if (c, u) ∈ C and c = c∗ε then N(u) < τ .

Thus there exists c ∈ (0, c∗ε) and u such that (c, u) ∈ C and N(u) = τ . This finishes the proof of Theorem
2.4.21.

An immediate consequence is the following:

Corollary 2.4.23 (Existence of a solution on the line). Let Assumption 2.4.2 hold, ε > 0 be such that
λε1 < 0, β ≥ 0 and 0 < τ ≤ −λ

ε
1

2 . Then there exists a classical positive solution to
ll − uxx − cux = ε∆yu+ µ(M ? u− u)

+u(a(y)−K ? u− βu) on R× Ω
∂u

∂ν
= 0 on R× ∂Ω,

(2.4.32)

with 0 < c ≤ c∗ε. Moreover u ∈ Cb(R× Ω) ∩ C2(R× Ω), satisfies (2.4.28) and

∀x ∈ R,
∫

Ω
u(x, y)dy ≤ sup a

k0
.
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Proof. Let 0 < τ ≤ τ0 and l̄ = l̄(τ) as in Theorem 2.4.21. Then it follows from the existence theorem (The-
orem 2.4.21), that for any n ∈ N, there exists a positive classical solution (cn, un) ∈ (0, c∗ε)× C2((−ln, ln)×
Ω)∩C1((−ln, ln)×Ω) to (2.4.26) which satisfies (2.4.28), where ln := l̄+n. By the uniform bound satisfied
by supun (Lemma 2.4.22 point (iv)), the classical Schauder interior estimates [187, Theorem 6.2] and the
boundary Schauder estimates [187, Theorem 6.29], there exists a constant Ck > 0, independent from n such
that ‖un‖C2,α((−lk,lk)×Ω) ≤ Ck for any k < n. Using a classical diagonal extraction process, there exists u,
c0 and a subsequence such that cn → c0, and ‖un − u‖C2((−lk,lk)×Ω) → 0 for any k ∈ N. Since u solves
(2.4.28) with τ > 0, it is a nontrivial solution to (2.4.32). Then, by a direct application of Lemma 2.4.22
point (v), c0 > 0 (indeed Lemma 2.4.22 point (v) also applies to solutions defined on the whole line).

Finally we have ∀x ∈ R,
∫

Ω u(x, y)dy ≤ sup a
k0

by the estimate in Lemma 2.4.22 point (iii). This finishes
the proof of Corollary 2.4.23.

2.4.5.2 Proof of minimality for β ≥ β0

In the case β ≥ β0 := k∞ sup a
µm0

, we recover the comparison principle. Indeed, the increased self-competition
(via large β) enforces the solution to remain in the region “u small” where the system is cooperative (see
Lemma 2.4.25). We can then retrieve many of the classical properties satisfied by traveling waves in a KPP
situation.

Theorem 2.4.24 (Minimal speed traveling waves for β ≥ β0). Let Assumption 2.4.2 hold, 0 < ε ≤ ε0 —
where ε0 is as in Lemma 2.4.19— be such that λε1 < 0, and β ≥ β0 = k∞ sup a

µm0
. Then, there exists a solution

(c, u) to (2.4.32) satisfying c = c∗ε and the limit conditions

lim inf
x→−∞

inf
y∈Ω

u(x, y) > 0, lim
x→+∞

sup
y∈Ω

u(x, y) = 0. (2.4.33)

Moreover, u is nonincreasing in x, and there exists no positive solution to (2.4.32) satisfying (2.4.33) and
0 ≤ c < c∗ε.

Finally, we have
lim

x→−∞
inf
y∈Ω

u(x, y) ≥ ρβ

where ρβ is the constant defined in Lemma 2.4.19.

Our main tool is the following comparison principle for small densities.

Lemma 2.4.25 (Comparison principle). Let Assumption 2.4.2 hold and β ≥ 0. Let u ∈ C2 be a supersolution
to

− cux − uxx − ε∆yu− µ(M ? u− u)− u(a(y)−K ? u− βu) ≥ 0 (2.4.34)
and v ∈ C2 be a subsolution to

− cvx − vxx − ε∆yv − µ(M ? v − v)− v(a(y)−K ? v − βv) ≤ 0. (2.4.35)

If there exists (x0, y0) ∈ R × Ω such that 0 < u(x0, y0) ≤ µm0
k∞

, u ≥ v in a neighbourhood of {x0} × Ω, and
u(x0, y0) = v(x0, y0), then u ≡ v.

Proof. Let (x0, y0) as in Lemma 2.4.25. Then (x0, y0) is a local zero minimum to u− v. We have:

−c(u− v)x(x0, y0)− (u− v)xx(x0, y0)− ε∆y(u− v)(x0, y0) ≤ 0

and thus:
µ
(
M ? (u− v)− (u− v)

)
+ a(y)(u− v)− uK ? u+ vK ? v − βu2 + βv2 ≤ 0. (2.4.36)

Using the fact that u(x0, y0) = v(x0, y0), we rewrite (2.4.36) as∫
Ω

(
µM(y0, z)− u(x0, y0)K(y0, z)

)((
u(x0, z)− v(x0, z)

)
−
(
u(x0, y0)− v(x0, y0)

))
dz

≤ 0.

Since µM(y0, z)− u(x0, y0)K(y0, z) > 0 for any z ∈ Ω and u(x0, y)− v(x0, y) is nonnegative for any y ∈ Ω,
we conclude that u(x0, y) = v(x0, y) for any y ∈ Ω. Applying the strong maximum principle, we have then
u− v ≡ 0. This ends the proof of Lemma 2.4.25.
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Lemma 2.4.26 (Estimates for β ≥ k∞ sup a
µm0

). Assume β ≥ β0 = k∞ sup a
µm0

. Then there exists a unique solution
to (2.4.26). Moreover, the solution to (2.4.26) is decreasing in x, and the mapping c 7→ u is decreasing.

Proof. We divide the proof in four steps. Recall that, due to Theorem 2.4.21, there exists a solution to
(2.4.26).

Step 1: We show that any solution satisfies u(x, y) < p(y) at any interior point.
Let us define α := sup{ζ > 0 | ζu ≤ p}. Since u is bounded and p is positive on Ω, α is well-defined and

positive. Assume by contradiction that α < 1. By definition of α, there exists (x0, y0) ∈ [−l, l]×Ω such that
p(y0) = αu(x0, y0). Testing at x = ±l, we have αu(−l, y0) = αp(y0) < p(y0) and αu(l, y0) = 0 < p(y0); thus
x0 ∈ (−l, l). If y0 ∈ ∂Ω, then it follows from Hopf’s Lemma that ∂p−αu

∂ν (x0, y0) < 0, which contradicts the
Neumann boundary conditions satisfied by u and p. Thus y0 ∈ Ω. Next we remark that

− c(αu)x − (αu)xx − ε∆y(αu)− µ
(
M ? (αu)− (αu)

)
− a(y0)(αu)

= (αu)(−K ? u− βu) < αu
(
−K ? (αu)− β(αu)

)
,

since α < 1. Hence αu is a subsolution to (2.4.35). Moreover p is a supersolution to (2.4.34). Finally, by the
estimate in Lemma 2.4.22 point (iv) and the condition β ≥ β0, we have the inequality ‖u‖L∞ ≤ sup a

β ≤ µm0
k∞

,
and by definition (x0, y0) is the global minimum of (p−αu). Thus Lemma 2.4.25 applies and αu = p, which
is a contradiction.

Thus α ≥ 1, which shows that u ≤ p. Assume now that u(x, y) = p(y) for some (x, y) ∈ (−l, l)×Ω, then
Lemma 2.4.25 applies and we have u = p in (−l, l) × Ω, which is again a contradiction. We conclude that
the strict inequality holds:

∀(x, y) ∈ (−l, l)× Ω, u(x, y) < p(y).
Step 2: We show that the solution u is unique. Here we use a sliding argument. Let u, v be two solutions

to (2.4.26), and define:

x̄ := inf{γ > 0 | ∀(x, y) ∈ (−l, l)× Ω, u(x+ γ, y) ≤ v(x, y)}.

Because of the boundary conditions satisfied by u and v, we have 0 ≤ x̄ < 2l. Assume by contradiction that
x̄ > 0. We remark that (x, y) 7→ u(x + x̄, y) is a subsolution to (2.4.35). By definition of x̄, there exists
(x0, y0) ∈ (−l, l − x̄)× Ω such that the equality u(x0 + x̄, y0) = v(x0, y0) holds. In view Lemma 2.4.25, this
leads to a contradiction. Thus x̄ ≤ 0 and u ≤ v. Exchanging the roles of u and v, we have in turn v ≤ u.
This shows the uniqueness of u.

Step 3: We show that x 7→ u(x, y) is decreasing. Repeating the sliding argument in Step 2 with u = v,
we have u(x+ x̄, y) ≤ u(x, y) for any x̄ > 0, which shows that u is nonincreasing. Moreover, equality cannot
hold at an interior point in the above inequality, for Lemma 2.4.25 would lead to a contradiction. This shows
that x 7→ u(x, ·) is decreasing.

Step 4: We show that c 7→ u is decreasing. Let c̄ ≤ c, u (resp. v) be the solution to (2.4.26) associated
with the speed c (resp. c̄). Let also:

x̄ := inf{γ > 0 | ∀y ∈ Ω, u(x+ γ, y) ≤ v(x, y)}

and assume by contradiction that x̄ > 0. Then

−cvx − vxx − ε∆yv = µ(M ? v − v) + v(a−K ? u− βu) + (c̄− c)vx
≥ µ(M ? v − v) + v(a−K ? u− βu),

since, as shown above, vx ≤ 0. Then, v is a supersolution to (2.4.34) and Lemma 2.4.25 leads to a contradic-
tion. Thus c 7→ u is nonincreasing. Moreover if c̄ < c, then we deduce from the above argument that v > u.
Hence c 7→ u is in fact decreasing.

This ends the proof of Lemma 2.4.26.

In particular, we notice that:

Corollary 2.4.27 (Existence of monotone fronts). Let β ≥ β0 = k∞ sup a
µm0

. Then the solution constructed in
Corollary 2.4.23 is decreasing in x.

The next results shows that if u is a traveling wave, then c ≥ c∗ε.
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Lemma 2.4.28 (c∗ε is the minimal speed). Let Assumption 2.4.2 hold, ε > 0 be such that λε1 < 0, and u be
a positive solution to (2.4.32) with 0 ≤ c ≤ c∗ε and either

(i) β > 0 and limx→+∞ supy∈Ω u(x, y) = 0, or

(ii) β = 0 and limx→+∞
∫

Ω u(x, y)dy = 0.

Then c = c∗ε.

Proof. It follows from our hypothesis (i) or (ii) that we can find arbitrary large intervals [x̄− L, x̄+ L] on
which

sup
(x,y)∈(x̄−L,x̄+L)×Ω

(∫
Ω
K(y, z)u(x, z)dz + βu(x, y)

)
≤ δ, (2.4.37)

for arbitrarily small δ > 0. Since equation (2.4.32) is invariant by translation in x, we may assume without
loss of generality that x̄ = 0.

Assume by contradiction that c < c∗ε. Let θ :=
√

(c∗ε)2−c2
8 , L := π

2θ , δ := −λε1
4 > 0, and ψ(x, y) :=

e−
c
2x cos(θx)ϕε(y), where ϕε is the principal eigenfunction solution to (2.4.17) satisfying supy∈Ω ϕ

ε = 1. ψ
satisfies

−cψx − ψxx − ε∆yψ − µ(M ? ψ − ψ) = a(y)ψ +
(
c2

4 + θ2 + λε1

)
ψ.

Since u is positive in [−L,L]×Ω, we can define α := sup{ζ > 0 | ζψ ≤ u}. By definition of α there exists
(x0, y0) ∈ [−L,L] × Ω such that αψ(x0, y0) = u(x0, y0). Because of the boundary conditions satisfied by u
and ψ, (x0, y0) cannot lie on the boundary of [−L,L]× Ω. Thus (x0, y0) belongs to (−L,L)× Ω and, since
u satisfies (2.4.37) we have

0 ≥ −ε∆y(u− αψ)(x0, y0)− (u− αψ)xx(x0, y0)
− µ

(
M ? (u− αψ)− (u− αψ)

)
(x0, y0)− a(y0)(u− αψ)(x0, y0)

≥ −δu(x0, y0)− α
(
c2

4 + θ2 + λε1

)
ψ(x0, y0)

=
(
−δ − c2

8 −
3λε1
4

)
u(x0, y0) ≥

(
−δ − λε1

2

)
> 0,

since δ = −λε1
4 . This is a contradiction.

Lemma 2.4.29 (Lower estimate on positive infima). Let Assumption 2.4.2 be satisfied, let 0 < ε ≤ ε0 and
β ≥ 0, where ε0 is as in Lemma 2.4.19. Assume λε1 < 0. Let u be a solution to (2.4.32) which satisfies
inf(x,y)∈R×Ω u(x, y) > 0. Then

inf
(x,y)∈R×Ω

u(x, y) ≥ ρmax(β,β0)

where ρβ is the constant from Lemma 2.4.19.

Proof. For any B ≥ 0, let pB be a nonnegative nontrivial solution to (2.4.20) (substituting β with B). Since
inf u > 0 and sup pB ≤ sup a

B (by the estimate in Lemma 2.4.17 item (ii)), there exists a constant β′ > 0
such that

β′ = inf{B > 0 | pB ≤ u}.

Assume by contradiction that β′ > max(β, β0). Then two cases may occur:
Case 1: Assume there exists (x0, y0) ∈ R×Ω such that u(x0, y0) = pβ

′(y0). Assume by contradiction that
y0 ∈ ∂Ω. Then y0 is the minimum of u− pβ′ and, by applying Hopf’s Lemma, we have ∂(u−pβ

′
)

∂ν (x0, y0) < 0,
which contradicts the Neumann boundary conditions satisfied by u and pβ′ . Thus y0 ∈ Ω.

Then, since β′ > β, pβ′ is a subsolution to (2.4.32), u ≥ pβ′ and since β′ > β0 we have ‖pβ′‖Cb(Ω) <
µm0
k∞

.
Thus Lemma 2.4.25 applies and u = pβ

′ . Since β′ 6= β, this is a contradiction.
Case 2: If the latter does not hold, then by definition of β′ there exists a sequence (xn, yn) such

that u(xn, yn) − pβ
′(yn) → 0. Since Ω is bounded, up to an extraction we have yn → y0 ∈ Ω. Then

u(xn, yn)→n→∞ pβ
′(y0).
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Since equation (2.4.32) is invariant by translation in x, we consider the shifted functions un(x, y) :=
u(x+ xn, y) which also satisfy (2.4.32). Then from the standard elliptic estimates and up to an extraction,
un converges locally uniformly to u∞, which is a classical solution to (2.4.32) and also satisfies u∞(0, y0) =
pβ
′(y0) and ∀x, y, u∞(x, y) ≥ pβ′(y). Applying Case 1 to (u∞, pβ′) leads to a contradiction.
We have shown that either case leads to a contradiction if β′ > max(β, β0). Hence β′ ≤ max(β, β0) and

we conclude by the estimate in Lemma 2.4.19 that the inequality u ≥ ρmax(β,β0) holds.

Proof of Theorem 2.4.24. Let τ := 1
2 min ((k0|Ω|+ β)ρβ ,−λε1), where ρβ is the constant from Lemma 2.4.19,

and u be the corresponding solution to (2.4.32), i.e. a solution to (2.4.32) constructed in Corollary 2.4.23,
which satisfies

sup
(x,y)∈(−l0,l0)×Ω

(∫
Ω
K(y, z)u(x, z)dz + βu(x, y)

)
= τ ≤ 1

2(k0|Ω|+ β)ρβ . (2.4.38)

Recall that, as stated in Corollary 2.4.27, x 7→ u(x, y) is decreasing.
We divide the proof in three steps.
Step 1: We show that inf(x,y)∈R×Ω u(x, y) = 0.
Indeed, recalling (2.4.38), we have

(k0|Ω|+ β)u(0, 0) ≤ sup
(x,y)∈(−l0,l0)×Ω

∫
Ω
K(y, z)u(x, z)dz + βu(x, y)

≤ 1
2(k0|Ω|+ β)ρβ ,

and thus u(0, 0) ≤ 1
2ρβ < ρβ . The contrapositive of Lemma 2.4.29 concludes.

Step 2: We show that limx→+∞ supy∈Ω u(x, y) = 0.
We proved in Step 1 that inf u = 0. Since u(x, y) > 0 for (x, y) ∈ R × Ω and u is decreasing in x, we

must then have limx→+∞ infy∈Ω u(x, y) = 0.
Let un(x, y) := u(x − n, y) and yn such that un(0, yn) = infy∈Ω u

n(0, y). Since Ω is bounded, up to
the extraction of a subsequence there exists y ∈ Ω such that yn → y0. It follows from the classical elliptic
estimates that we then extract from (un) a subsequence which converges locally uniformly on R × Ω to a
limit function u0, which is still a classical solution to (2.4.32).

Since u is decreasing, the equalities

lim
x→+∞

sup
y∈Ω

u(x, y) = sup
y∈Ω

u0(0, y) and 0 = lim
x→+∞

inf
y∈Ω

u(x, y) = inf
y∈Ω

u0(0, y) = u(0, y0)

hold. If y0 ∈ ∂Ω and u0 6≡ 0, then it follows from Hopf’s Lemma that ∂u0

∂ν (y0) < 0, which contradicts the
Neumann boundary conditions satisfied by u0. If y ∈ Ω then the strong maximum principle imposes u0 ≡ 0.
In either case, we have u0 ≡ 0 and thus limx→+∞ supy∈Ω u(x, y) = 0.

Step 3: We show that limx→−∞ infy∈Ω u(x, y) ≥ ρβ .
Let un(x, y) := u(x + n, y). Using the classical elliptic estimates, we extract from (un) a subsequence

that converges locally uniformly on R×Ω to a limit function u0, which is still a classical solution to (2.4.32).
Since u is decreasing, we have limx→−∞ infy∈Ω u(x, y) = infy∈Ω,x∈R u

0(x, y). In particular, we have
inf(x,y)∈R×Ω u

0(x, y) > 0. Applying Lemma 2.4.29, we conclude that

lim
x→−∞

inf
y∈Ω

u(x, y) = inf
(x,y)∈R×Ω

u0(x, y) ≥ ρβ .

To conclude the proof of Theorem 2.4.24, we remark that Lemma 2.4.28 states that 0 ≤ c < c∗ε is
incompatible with limx→+∞ supy∈Ω u(x, y) = 0. This shows that c = c∗ε. This finishes the proof of Theorem
2.4.24.

2.4.5.3 Minimal speed traveling wave for β = 0

Here we construct traveling waves for our initial regularized problem
ll − ε∆yu− uxx − cux = µ(M ? u− u) + u(a(y)−K ? u) in R× Ω

∂u

∂ν
= 0 on R× ∂Ω.

(2.4.39)
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Notice that (2.4.39) is exactly the equation (2.4.32) in the special case β = 0. In particular, our results
obtained in Corollary 2.4.23 and Lemmas 2.4.25, 2.4.28 and 2.4.29 still apply to the solutions of (2.4.39).

Our result is the following:

Theorem 2.4.30 (Regularized minimal speed traveling waves). Let Assumption 2.4.2 hold, 0 < ε ≤ ε0
(where ε0 is as in Lemma 2.4.19) and assume λε1 < 0. Then, there exists a nonnegative nontrivial traveling
wave (c, u) for (2.4.39) with c = c∗ε, i.e. a bounded classical solution which satisfies:

lim inf
x→−∞

inf
y∈Ω

u(x, y) > 0, lim sup
x→+∞

∫
Ω
u(x, y)dy = 0. (2.4.40)

Moreover, c∗ε is the minimal speed for traveling waves in the sense that there exists no traveling wave for
equation (2.4.39) with 0 ≤ c < c∗ε.

Finally, u can be chosen so that supx∈R
∫

Ω u(x, y)dy ≤ sup a
k0

and

lim inf
x→−∞

inf
y∈Ω

u(x, y) ≥ ρβ0 ,

where β0 = k∞ sup a
µm0

and ρβ0 is given by Lemma 2.4.19.

Two key elements for the proof of Theorem 2.4.30 are the following Harnack-type inequality, and the
following Lemma 2.4.32, which states that infy∈Ω u(x, y) and

∫
Ω u(x, y)dy are locally comparable.

Lemma 2.4.31 (Harnack inequality for the mass). Let Assumption 2.4.2 hold and ε > 0. Let c̄ > 0, R > 0
and W > 0 be given. Let (c, u) be a solution to (2.4.39) with |c| ≤ c̄, u ≥ 0 and

∫
Ω u(x, y)dy ≤ W for

x ∈ (−R,R). Then, there exists a constant H > 0 depending only on R, ‖a‖L∞ , W , k∞ and c̄ such that

sup
|x|≤R

∫
Ω
u(x, z)dz ≤ H inf

|x|≤R

∫
Ω
u(x, z)dz.

Proof. Let I(x) :=
∫

Ω u(x, y)dy, then I solves

− cIx − Ixx =
∫

Ω
a(y)u(x, y)dy −

∫
Ω

(K ? u)(y)u(x, y)dy

=
(∫

Ω
a(y) u(x, y)∫

Ω u(x, z)dz dy −
∫

Ω
K ? u(x, y) u(x, y)∫

Ω u(x, z)dz dy
)
I.

Now we remark that
∣∣∣∣∫Ω a(y) u(x,y)∫

Ω
u(x,z)dz

dy

∣∣∣∣ ≤ ‖a‖L∞ and

0 ≤
∫

Ω
K ? u(x, y) u(x, y)∫

Ω u(x, z)dz dy ≤ ‖K ? u‖L∞ ≤ k∞
∫

Ω
u(x, y)dy ≤ k∞W,

for any x ∈ R, so that the classical Harnack inequality [187, Corollary 9.25] applies.

Lemma 2.4.32 (Integral-infimum comparison). Let Assumption 2.4.2 hold and ε > 0. Let c̄ > 0, x0 ∈ R,
κ > 0 and W > 0 be given. Let (c, u) be a solution to (2.4.39) with |c| ≤ c̄, u ≥ 0 and

∫
Ω u(x, y)dy ≤W for

|x− x0| ≤ 1. Assume ∫
Ω
u(x0, y)dy ≥ κ.

Then, there exists a positive constant κ̄ depending only on ‖a‖L∞ , µ, m0, k∞, c̄, W and κ such that

inf
y∈Ω

u(x0, y) ≥ κ̄.

Proof. Since (2.4.39) is translation-invariant in x, we will assume without loss of generality that x0 = 0.
Step 1: We construct a local subsolution.
From Lemma 2.4.31 there exists a constant H > 0 such that

κ ≤ sup
x∈(−1,1)

∫
Ω
u(x, z)dz ≤ H inf

x∈(−1,1)

∫
Ω
u(x, z)dz ≤ Hκ.
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Thus u satisfies:
−cux − uxx − ε∆yu ≥ µm0

κ

H
+
(

inf
Ω
a− µ− k∞W

)
u.

In particular there exists constants γ > 0 and α > 0 depending only on ‖a‖L∞ , µ, m0, k∞, W and κ such
that

− cux − uxx − ε∆yu ≥ γ − αu (2.4.41)

We define, for θ := 2√
c2+4αatanh

(
c√

c2+4α

)
,

fδ(x) := γ

α
− δe− c2 (x−θ) cosh

(
x− θ

2
√
c2 + 4α

)
.

Then fδ satisfies
−cfδx − fδxx = γ − αfδ.

In particular, fδ satisfies the equality in (2.4.41). Moreover for any δ > 0, fδ has a unique maximum located
at 0 and fδ → −∞ as x→ ±∞. Finally, the mapping δ 7→ fδ is decreasing.

Step 2: We identify δ0 such that u ≥ fδ0 .
Let δ0 := inf{δ > 0 | ∀x ∈ (−1, 1), fδ ≤ u}. We claim that we have either fδ0(1) ≥ 0 or fδ0(−1) ≥ 0.

Indeed, assume by contradiction that the inequalities fδ0(−1) < 0 and fδ0(1) < 0 hold. Then there exists
x0 ∈ (−1, 1), y0 ∈ Ω such that u(x0, y0) = fδ0(x0). If y0 ∈ ∂Ω, then it follows from Hopf’s Lemma that
∂(u−fδ0 )

∂ν (x0, y0) < 0 since 0 is a minimum for the function u− fδ0 . This contradicts the Neumann boundary
condition satisfied by u since ∂fδ0

∂ν (x0, y0) = 0. If y0 ∈ Ω, we have

− c(u− fδ0)x(x0, y0)− (u− fδ0)xx(x0, y0)− ε∆y(u− fδ0)(x0, y0)
≥
(
γ − αu(x0, y0)

)
−
(
γ − αfδ0(x0, y0)

)
= 0.

By a direct application of the strong maximum principle, we have then u = fδ0 in (−1, 1) × Ω, which is a
contradiction since fδ0 is not positive in (−1, 1).

Step 3: We show that δ0 is bounded by a constant depending only on c̄, α and γ.
Let us define δc1 := inf{δ > 0 | fδ(−1) < 0 and fδ(1) < 0}. δc1 is well-defined since limδ→+∞ fδ(±1) = −∞

and limδ→0 f
δ(±1) = γ

α > 0. Moreover, we have either fδc1(1) = 0 or fδc1(−1) = 0. Thus

δc1 = γ

α
max

(
e
c
2 (1−θ)

cosh
( 1−θ

2
√
c2 + 2α

) , e
c
2 (−1−θ)

cosh
(−1−θ

2
√
c2 + 2α

)) .
Since θ depends continuously on c, the mapping c 7→ fδ

c
1(0) is continuous. Moreover for any |c| ≤ c̄,

fδ
c
1(0) > 0 since x = 0 is the strict maximum of fδc1 . Finally δ0 ≤ δc1 since the mapping δ 7→ fδ is decreasing.

We have then
inf
y∈Ω

u(0, y) ≥ inf
|c|≤c̄

fδ
c
1(0) > 0

where the right-hand side depends only on c̄, α and γ. This finishes the proof of Lemma 2.4.32.

Lemma 2.4.33 (Infimum estimate on the left). Let Assumption 2.4.2 be satisfied, let 0 < ε ≤ ε0 be such
that λε1 < 0 (where ε0 is given by Lemma 2.4.19), let finally β′ ≥ β0 = k∞ sup a

µm0
and u be a solution to

(2.4.39) with 0 ≤ c ≤ c∗ε and β = 0. Suppose

∀y ∈ Ω, u(0, y) ≥ 2sup a
β′

.

Then,
∀x ≤ 0, y ∈ Ω, u(x, y) ≥ ρβ′

where ρβ′ is given by Lemma 2.4.19.



165

Proof. We divide the proof in two step.
Step 1: We show that infx≤0,y∈Ω u(x, y) > 0.
Let ϕε be a positive solution to (2.4.17), normalized so that

sup
y∈Ω

ϕε(y) = 1
2 min

(
inf
y∈Ω

u(0, y), −λ
ε
1

|Ω|k∞
,
µm0
k∞

)
> 0.

We define α := inf{ζ > 0 | ∀x ∈ (−∞, 0), y ∈ Ω, (1 + ζx)ϕε(y) ≤ u(x, y)}. Remark that, since u is positive
and ϕε(y) < u(0, y) for any y ∈ R, α is well-defined.

Assume by contradiction that α > 0. Then by definition of α there exists a point (x0, y0) ∈
(
− 1
α , 0

)
×Ω

such that u(x0, y0) = (1 + αx0)ϕε(y0). Because of the boundary conditions satisfied by u and (1 + αx)ϕ,
(x0, y0) cannot be in the boundary of

[−1
α , 0

]
× Ω. Letting v(x, y) := (1 + αx)ϕε(y), we remark that, since

x0 < 0, we have

−cvx(x0, y0)− vxx(x0, y0)−ε∆yv(x0, y0)− µ(M ? v − v)(x0, y0)
−v
(
a(y0)−K ? v

)
(x0, y0) = −cαϕ(y0) + λε1v(x0, y0)

+ v(x0, y0)(K ? v)(x0, y0)

≤ λε1
2 < 0,

since v(x0, y0) ≤ −λε1
2|Ω|k∞ (recall that v is increasing in x). Hence v is a local subsolution to (2.4.35) near

(x0, y0), and Lemma 2.4.25 leads to u ≡ v, which is a contradiction.
Thus α = 0 and we have shown that ∀x < 0, ϕε(y) ≤ u(x, y). In particular we have the lower estimate

infx<0,y∈Ω u(x, y) ≥ infy∈Ω ϕ
ε(y) > 0.

Step 2: We remove the dependency in ε.
Let v be a decreasing solution to (2.4.32) with c = c∗ε constructed in Theorem 2.4.24. Define ṽ(x, y) =

v(−x, y). Then ṽ satisfies:

c∗ε ṽx − ṽxx − ε∆y ṽ − µ(M ? ṽ − ṽ) = ṽ(a(y)−K ? ṽ − β′ṽ).

In particular,

−cṽx − ṽxx − ε∆y ṽ − µ(M ? ṽ − ṽ) =ṽ(a(y)−K ? ṽ − β′ṽ)− (c+ c∗ε)ṽx
≤ṽ(a(y)−K ? ṽ),

since ṽx ≥ 0. Moreover, sup v ≤ sup a
β′ by the estimate in Theorem 2.4.24. Using Lemma 2.4.25 will then

allow us to compare ṽ with u.
Since ṽ → 0 when x→ −∞ and as a result of Step 1 above, there exists a positive shift ζ > 0 such that

ṽ(x+ ζ, y) ≤ 1
2 inf x̄<0,ȳ∈Ω u(x̄, ȳ) for any (x, y) ∈ (−∞, 0)× Ω. Using a sliding argument simliar to the one

in Step 2 of Lemma 2.4.26, then for any ζ ∈ R, x < 0 and y ∈ Ω, we have u(x, y) ≥ ṽ(x+ ζ, y). Taking the
limit ζ → +∞, we get that infx<0,y∈Ω u(x, y) ≥ limx→+∞ infy∈R ṽ(x, y) ≥ ρβ′ , by the estimate in Theorem
2.4.24.

This finishes the proof of Lemma 2.4.33.

We are now in a position to prove Theorem 2.4.30.

Proof of Theorem 2.4.30. We divide the proof in two steps.
Step 1: We construct a solution with lim supx→+∞

∫
Ω u(x, y)dy = 0.

Let (c, u) be the solution constructed in Corollary 2.4.23 with β = 0 and the normalization τ =
1
2 min

(
ρβ0k0|Ω|, −λ

ε
1

2

)
, where β0 = k∞ sup a

µm0
and ρβ0 is given by Lemma 2.4.19. Assume by contradiction

that lim supx→+∞
∫

Ω u(x, y)dy > 0. Then by definition there exists a positive number κ > 0 and a sequence
xn → +∞ such that

∫
Ω u(xn, y)dy ≥ κ. By the estimate in Lemma 2.4.32, there exists κ̄ > 0 such that

for any n ∈ N, infy∈Ω u(xn, y) ≥ κ̄. Let β := max
(
2 sup a

κ , β0
)
, then a direct application of Lemma 2.4.33

shows that for any n ∈ N, we have infx<xn,y∈Ω u(x, y) > ρβ > 0. In particular, taking the limit n→∞, we
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get inf(x,y)∈R×Ω u(x, y) ≥ ρβ > 0. By the estimate in Lemma 2.4.29, this shows inf(x,y)∈R×Ω u(x, y) ≥ ρβ0 .
However, due to the normalization satisfied by u (2.4.28), we have

k0|Ω|ρβ0 ≤ (K ? u)(x, 0) ≤ 1
2k0|Ω|ρβ0 ,

which is a contradiction. We conclude that lim supx→+∞
∫

Ω u(x, y)dy = 0.
Step 2: We show that u satisfies the other properties required by Theorem 2.4.30.
Since u is given by Corollary 2.4.23, u naturally satisfies

∫
Ω u(x, y)dy ≤ sup a

k0
.

Let us show briefly that lim infx→−∞ infy∈Ω u(x, y) ≥ ρβ0 . Applying the previously proved Lemma 2.4.33
we have lim infx→−∞ infy∈Ω u(x, y) > 0. Let (xn, yn) be a minimizing sequence. By the classical elliptic
estimates, u(x + xn, ·) converges locally uniformly to a solution ū of (2.4.39) with inf(x,y)∈R×Ω ū(x, y) >
0. Then by the estimate in Lemma 2.4.29, inf(x,y)∈R×Ω ū(x, y) ≥ ρβ0 . We conclude by remarking that
lim infx→−∞ infy∈Ω u(x, y) = inf(x,y)∈R ū(x, y) ≥ ρβ0 .

We finally remark that Lemma 2.4.28 item (ii) gives the minimality property of the speed c∗ε. In particular
c = c∗ε for the solution (c, u) constructed here.

This ends the proof of Theorem 2.4.30.

Next we prove an upper estimate on the limit of
∫

Ω u(x, y)dy when x is in the vicinity of +∞, which is
independent of ε.

Lemma 2.4.34 (
∫

Ω u(x, y)dy → 0 when x→ +∞). Let Assumption 2.4.2 hold, and suppose λ1 < 0. There
exists ε̄ > 0, τ > 0 and a sequence (xn)n∈N independent from ε, such that if u solves (2.4.39) with 0 < ε ≤ ε̄,
c = c∗ε and satisfies

∫
Ω u(x, z)dz ≤ τ for any x ≥ 0, then

∀n ∈ N,∀x ≥ xn,
∫

Ω
u(x, z)dz ≤ τ

2n .

Proof. We divide the proof into three steps.
Step 1: Definition of auxiliary parameters.
Since a(0) = sup a, by the continuity of a and Assumption 2.4.2 item 6, there exists r > 0 such that for

any |y| ≤ r, a(y)− µ ≥ 3
4 (sup a− µ). In the rest of the proof we fix r > 0 such that this property holds and

Br(y) ⊂ Ω. Notice that for |y| ≤ r, we have a(y)− µ ≥ 3
4 (sup a− µ) > 0.

We define ε̄ := min
(
ε0,

r2(sup a−µ)
2nπ2

)
, where ε0 > 0 is given by Lemma 2.4.19. We let

τ := min
(

1
2ρβ0k0|Ω|,

sup a− µ
4k∞

)
,

where β0 = k∞ sup a
µm0

and ρβ0 is given by Lemma 2.4.19. In particular, arguing as in the proof of Theorem
2.4.30, any solution u to (2.4.39) with 0 < ε ≤ ε̄ which satisfies

∫
Ω u(0, y)dy ≤ τ has limit 0 near +∞, i.e.∫

Ω u(x, y)dy →x→+∞ 0.
By Lemma 2.4.32 and 2.4.33, there exists ρ > 0 such that if

∫
Ω u(x, y)dy ≥ τ

2 holds, then for any x′ ≤ x
we have the estimate infy∈Ω u(x′, y) ≥ ρ.

We let α0 := max
(

τ∫
|y|≤r

cos
(
π|y|
2r

)
dy
, 2ρ
)
, γ := min

(
1,
(

sup a−µ
8(c∗ε
√
α0+1)ρ

)2
)
. Notice in particular that

2c∗ε
√
γα0 + 2γ − sup a−µ

4 ρ ≤ 0. Finally we define x̄ :=
√

α0
γ . Remark that, since c∗ε → 2

√
−λ1 > 0 when

ε→ 0 (by Theorem 2.4.15), x̄ is uniformly bounded when ε→ 0.
Since (2.4.39) is invariant by translation in x we will assume without loss of generality that

∫
Ω u(x, y)dy ≤

τ for x ≥ −x̄ instead of x ≥ 0.
Step 2: We show that if

∫
Ω u(x, y)dy ≤ τ for x ≥ −x̄ then

∫
Ω u(x̄, y)dy ≤ τ

2 .
Here we let u be a solution to (2.4.39) with 0 < ε ≤ ε̄, c = c∗ε and the upper estimate

∫
Ω u(x, y) ≤ τ for

x ≥ −x̄. We assume by contradiction that
∫

Ω u(x̄, y)dy > τ
2 . We will first use another proof by contradiction

to show that, in that case, the mass of u can be controlled from below.
Since u > 0 on (−x̄, x̄)× Ω, we define:

α := sup
{
ζ > 0 | ∀x ∈ (−x̄, x̄),∀|y| ≤ r, (ζ − γx2) cos

(
π|y|
2r

)
≤ u(x, y)

}
.
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Assume by contradiction that α < α0. Then for any (x, y) ∈ [−x̄, x̄]×Ω we have (α−γx2) cos
(
π|y|
2r

)
≤ u(x, y),

and there exists a point x0 ∈ [−x̄, x̄] and y0 with |y0| ≤ r such that u(x0, y0) = (α − γx2
0) cos

(
π|y0|

2r

)
. Let

v := (α− γx2) cos
(
π|y|
2r

)
. We have:

0 ≤ −c∗ε(v − u)x(x0, y0)− (v − u)xx(x0, y0)− ε∆y(v − u)(x0, y0)

= 2c∗εγx0 + 2γ + nε
( π

2r

)2
v(x0, y0)− µ(M ? u)(x0, y0)

− u(x0, y0)
(
a(y0)− µ− (K ? u)(x0, y0)

)
< 2 (c∗ε

√
α0 +√γ)√γ + nε

( π
2r

)2
+ 0

−
(

3(sup a− µ)
4 − k∞

∫
Ω
u(x0, z)dz

)
u(x0, y0)

=
[
2 (c∗ε
√
α0 +√γ)√γ − sup a− µ

4 ρ

]
+
(
ε
( π

2r

)2
− sup a− µ

4

)
u(x0, y0)

≤ 0,

recalling that infy u(x0, y) ≥ ρ since x0 ≤ x̄.
Hence, we have a contradiction and α ≥ α0 ≥ τ∫

|y|≤r
cos
(
π|y|
2r

)
dy
. In particular, we have (α0−γx2) cos

(
π|y|
2r

)
≤

u(x, y) and

τ ≤ α0

∫
|y|≤r

cos
(
π|y|
2r

)
dy <

∫
Ω
u(0, y)dy,

where the strict inequality holds because u(0, y) > 0 on Ω\B(0, r). This contradicts our hypothesis∫
Ω u(x, y)dy ≤ τ when x ≥ −x̄. We conclude that

∫
Ω u(x̄, y)dy ≤ τ

2 .

Step 3: Bootstrapping
In Step 2 we have shown that for a x̄ which is uniformly bounded in ε, we have(

∀x ≥ −x̄,
∫

Ω
u(x, y)dy ≤ τ

)
⇒
(∫

Ω
u(x̄, y)dy ≤ τ

2

)
.

Since (2.4.39) is invariant by translation, this implication still holds for u(x, y) replaced by u(x + δ, y) for
any δ > 0. In particular,(

∀x ≥ −x̄,
∫

Ω
u(x, y)dy ≤ τ

)
⇒
(
∀x ≥ x̄,

∫
Ω
u(x, y)dy ≤ τ

2

)
.

Thus we can reproduce Step 1 and 2 replacing τ by τ
2 and u(x, y) by its shift u(x+ x̄, y). We thus find by

an elementary recursion a sequence of points xn such that for x ≥ xn,
∫

Ω u(x, y)dy ≤ τ
2n .

This ends the proof of Lemma 2.4.34.

2.4.5.4 Proof of Theorem 2.4.10

We are now in a position to let ε→ 0 and construct a traveling wave for equation (2.4.1), thus proving our
main result Theorem 2.4.10.

Proof of Theorem 2.4.10. We divide the proof in three steps.
Step 1: Construction of a converging sequence to a transition kernel.
Let εn be a decreasing sequence with lim εn = 0 and ε0 ≤ ε̄ (where ε̄ is given by Lemma 2.4.34) such that

for any 0 < ε ≤ ε0, λε1 < 0 (such a ε0 exists by Theorem 2.4.15). Since (2.4.39) is invariant by translations
in x, for each εn we can choose un given by Theorem 2.4.30 (with ε = εn), which satisfies moreover∫

Ω
un(0, y)dy = min

(ρβ0

2 , τ
)
, ∀x ≥ 0,

∫
Ω
un(x, y)dy ≤ τ, (2.4.42)

where τ is given by Lemma 2.4.34, β0 = k∞ sup a
µm0

and ρβ0 is given by Lemma 2.4.19.
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For any k ≤ n, let unk be the restriction of un to the set [−k, k]×Ω. Then unk belongs toM1([−k, k]×Ω) =
(Cb([−k, k]× Ω))∗. Since

∫
Ω u

n(x, y)dy ≤ sup a
k0

for x ∈ R, we have
∫ k
−k
∫

Ω u
n(x, y)dydx ≤ 2k sup a

k0
, and thus

the sequence (unk )n>k is uniformly bounded in variation norm. Moreover [−k, k] × Ω is compact, and thus
(unk )n>k is uniformly tight. Applying Prokhorov’s Theorem [63, Theorem 8.6.2], the sequence (unk )n>k is
relatively compact in (Cb([−k, k] × Ω))∗. Then, by a classical diagonal extraction process, there exists a
subsequence, still denoted un, and a measure u ∈M1(R× Ω) such that un ⇀ u, in the sense that

∀ψ ∈ Cc(R× Ω),
∫
R×Ω

ψ(x, y)un(x, y)dydx→
∫
R×Ω

ψ(x, y)u(dx, dy). (2.4.43)

Finally, for a < b, by a classical result [63, Theorem 8.2.3], for any Borel set ω ⊂ Ω we have

u
(
(a, b)× ω

)
≤ u

(
(a, b)× Ω

)
≤ lim inf

n→∞

∫ b

a

∫
Ω
un(x, y)dydx ≤ |b− a| sup a

k0
.

Hence, Lemma 2.4.37 applies and u is a transition kernel, satisfying the equation u(dx, dy) = u(x, dy)dx.
Let us stress at this point that the possibility to think of u as a transition kernel, i.e. a function

which takes values in a measure space, is important for the rest of the proof, as it allows us to consider
M ? u(x, y) =

∫
ΩM(y, z)u(x, dz) and K ? u(x, y) =

∫
ΩK(y, z)u(x, dz) as real functions of x and y, even for

singular traveling waves. Handling a term like
∫

ΩM(y, z)u(dx, dy) would indeed be quite difficult, if ever
possible – let aside (K?u)u, which would involve the product of two measures. Also, it is the only regularity
that we can get on the solution at the present time.

Step 2: We show that u satisfies the limit conditions (2.4.12) and (2.4.13) of Definition 2.4.9.
By construction, the function un satisfies

∫
Ω u

n(0, y)dy = min
(
τ,

ρβ0
2
)
. Applying Lemma 2.4.32 and

Lemma 2.4.33, there exists a positive constant ρ > 0 (independent from n) such that infy∈Ω u
n(x, y) ≥ ρ for

any x ≤ 0. In particular, taking the limit n→∞, we have for any positive ψ ∈ Cc
(
(−∞, 0)× Ω

)
∫
R×Ω

ψ(x, y)u(x, dy)dx = lim
n→∞

∫
R×Ω

ψ(x, y)un(x, y)dxdy

≥ ρ
∫
R×Ω

ψ(x, y)dxdy > 0.

Hence lim inf x̄→+∞
∫
R×Ω ψ(x+ x̄, y)u(x, dy)dx ≥ ρ

∫
R×Ω ψ(x, y)dxdy > 0, and u satisfies (2.4.12).

Let us show that u satisfies (2.4.13), i.e. vanishes near +∞. Applying Lemma 2.4.34, there exists a
sequence xk independent from n such that we have

∫
Ω u

n(x, y)dy ≤ τ
2k for any x ≥ xk. In particular for any

positive ψ ∈ Cc
(
(xk,+∞)× Ω

)
, we have∫

R×Ω
ψ(x− xk, y)u(x, dy)dx = lim

n→∞

∫
R×Ω

ψ(x− xk, y)un(x, y)dxdy

≤ τ

2k diam supp ψ sup
(x,y)∈R×Ω

ψ(x, y),

where diam supp ψ = sup
{
d
(
(x, y), (x′, y′)

)
|ψ(x, y) > 0 and ψ(x′, y′) > 0

}
is the diameter of the support

of ψ. Thus

lim sup
x̄→+∞

∫
R×Ω

ψ(x− x̄, y)u(x, dy)dx = lim sup
k→+∞

∫
R×Ω

ψ(x− xk, y)u(x, dy)dx = 0,

and u satisfies indeed (2.4.13).
Let us stress that, since u satisfies (2.4.12) and (2.4.13), u is neither 0 nor a nontrivial stationary state

to (2.4.1).
Step 3: We show that u satisfies (2.4.11) in the sense of distributions.
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Let F y0 :=
{
ψ ∈ C2

c (R× Ω) | ∀x ∈ R,∀y ∈ ∂Ω, ∂ψ∂ν (x, y) = 0
}

as in Lemma 2.4.35. We fix ψ ∈ F y0 . Our
goal here is to show that

c∗
∫
R×Ω

ψxu(x, dy)dx−
∫
R×Ω

ψxxu(x, dy)dx

=
∫
R×Ω

∫
Ω
M(y, z)u(x, dz)ψ(x, y)dxdy +

∫
R×Ω

(a(y)− µ)ψ(x, y)u(x, dy)dx

−
∫
R×Ω

∫
Ω
ψ(x, y)K(y, z)u(x, dz)u(x, dy)dx, (2.4.44)

where c∗ = 2
√
−λ1. Multiplying (2.4.39) by ψ and integrating by parts, we have

c∗εn

∫
R×Ω

ψx(x, y)un(x, y)dxdy −
∫
R×Ω

ψxx(x, y)un(x, y)dxdy

= εn

∫
R×Ω

∆yψ(x, y)un(x, y)dxdy +
∫
R×Ω

(a(y)− µ)ψ(x, y)un(x, y)dxdy

+
∫
R×Ω

ψ(x, y)
∫

Ω
M(y, z)un(x, z)dzdxdy

−
∫
R×Ω

ψ(x, y)
∫

Ω
K(y, z)un(x, z)dzun(x, y)dxdy. (2.4.45)

Clearly, the difficulty here resides in the last two lines of equation (2.4.45) (recall the formula c∗ε = 2
√
−λε1 →

ε→0
2
√
−λ1 = c∗). Let us focus on those.
We first remark that∫
R×Ω

ψ(x, y)(M ? un)(x, y)dxdy =
∫
R×Ω

M̌ ? ψ(x, z)un(x, z)dxdz

−→
n→∞

∫
R×Ω

M̌ ? ψ(x, z)u(x, dz)dx =
∫
R×Ω

ψ(x, y)
∫

Ω
M(y, z)u(x, dz)dxdy,

where M̌(y, z) = M(z, y), since M̌ ? ψ(x, y) is a valid test function.
The convergence of the nonlinear term requires more work. For i ∈ N, let Ki(y, z) ∈ F 2

0 be such that
‖K−Ki‖Cb(Ω×Ω) ≤

1
i and ‖Ki‖Cα(Ω×Ω) ≤ C, where F 2

0 is the set of smooth kernels with null boundary flux
in z, and C is independent from i (see Lemma 2.4.35 item (iii)). We want to complete, up to extractions,
the informal diagram

vni (x, y) :=
∫

ΩK
i(y, z)un(x, z)dz ?−→

n→+∞
vi(x, y) :=

∫
ΩK

i(y, z)u(x, z)dz

↓ i→∞ ↓ i→∞

vn(x, y) :=
∫

ΩK(y, z)un(x, z)dz ?−→
n→+∞

v(x, y) :=
∫

ΩK(y, z)u(x, z)dz.

We first show that vni (x, y) → vi(x, y) when n → ∞ in Cb
(
[−R,R] × Ω

)
for arbitrary R > 0. We fix R

so that supp ψ ⊂ [−R,R]× Ω. Substituting z to y, multiplying equation (2.4.39) by Ki and integrating in
z, we have

−c∗εn(vni )x − (vni )xx = Rn(x, y)
where Rn(x, y) is bounded in L∞ uniformly in n:

|Rn(x, y)| =
∣∣∣∣εn ∫

Ω
∆zK

i(y, z)un(x, z)dz + µ

∫
Ω
Ki(y, z)(M ? un)(x, z)dz

+
∫

Ω
Ki(y, z)(a(z)− µ−K ? un)un(x, z)dz

∣∣∣∣
≤ εn‖Ki‖Cb(Ω,C2(Ω))

sup a
k0

+ µm∞|Ω|
sup a
k0
‖Ki‖Cb(Ω×Ω)

+
(

sup a+ µ+ k∞
sup a
k0

)
sup a
k0
‖Ki‖Cb(Ω×Ω).
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For n large enough so that εn ≤ 1
‖Ki‖

Cb(Ω,C2(Ω))
, by the estimate in [187, Theorem 9.11] and the classical

Sobolev embeddings, ‖vni (·, y)‖Cα([−R,R]) is uniformly bounded by a constant independent from n, i and
y ∈ Ω. Since we have Ki ∈ Cα(Ω× Ω) uniformly in i, vni is then uniformly Hölder in x and y and we have
‖vni ‖Cα([−R,R]×Ω) ≤ CR with CR independent from n and i. In particular, there exists an extraction ϕi(n)
such that

– ‖vϕ
i(n)

i ‖Cα([−R,R]×Ω) ≤ CR, and

–‖vϕ
i(n)

i − ṽi‖Cα/2([−R,R]×Ω) →n→∞ 0,
for a function ṽi(x, z) ∈ Cα/2

(
[−R,R]×Ω

)
. Notice that we can assume without loss of generality that ϕi(n)

is extracted from ϕi−1(n). Finally, for any test function ξ(x) ∈ Cc
(
[−R,R]

)
, we have

∫ R

−R
ξ(x)vϕ

i(n)
i (x, y)dx =

∫ R

−R

∫
Ω
ξ(x)Ki(y, z)uϕ

i(n)(x, z)dzdx

→n→∞

∫ R

−R

∫
Ω
ξ(x)Ki(y, z)u(x, dz)dx =

∫ R

−R
ξ(x)vi(x, z)dx,

since un converges to u in the sense of measures. This shows ṽi(x, y) = vi(x, y) for almost every x ∈ [−R,R].
Moreover since ‖vi‖Cα/2([−R,R]×Ω) ≤ C ′R, there exists an extraction ζ such that vζ(i) converges in

Cb
(
[−R,R]× Ω

)
to v(x, y) =

∫
ΩK(y, z)u(x, dy), which shows a C0 regularity on v.

We can then construct an extraction ϕ(i) such that
– ‖vϕ(i)

ζ(i) − vζ(i)‖Cb([−R,R]×Ω) →i→∞ 0, and
– ‖vζ(i) − v‖Cb([−R,R]×Ω) →i→∞ 0.

Along this subsequence, we have then:∣∣∣∣∫
Ω
K(y, z)uϕ(i)(x, y)dxdy −

∫
Ω
K(y, z)u(x, dy)

∣∣∣∣
≤
∣∣∣∣∫

Ω

(
K(y, z)−Kζ(n)(y, z)

)
uϕ(i)(x, y)dxdy

∣∣∣∣+
∥∥∥vϕ(i)
ζ(i) − vζ(i)

∥∥∥
Cb([−R,R]×Ω)

+ ‖vζ(i) − v‖Cb([−R,R]×Ω)

≤ ‖K −Kζ(i)‖Cb(Ω×Ω)
sup a
k0

+ oi→∞(1)

which shows that
∫

ΩK(y, z)uϕ(i)(x, y)dy →
∫

ΩK(y, z)u(x, dy) in Cb([−R,R]× Ω).
We are now in a position to handle the nonlinear term, by using the previously constructed subsequence.

We write ∫
R×Ω×Ω

ψ(x, y)K(y, z)uϕ(n)(x, z)uϕ(n)(x, y)dxdydz

=
∫
R×Ω

ψ(x, y)
∫

Ω
K(y, z)u(x, dz)uϕ(n)(x, y)dxdy

+
∫
R×Ω

ψ(x, y)
(∫

Ω
K(y, z)uϕ(n)(x, z)dz −

∫
Ω
K(y, z)u(x, dz)

)
× uϕ(n)(x, y)dxdy

=
∫
R×Ω

ψ(x, y)
∫

Ω
K(y, z)u(x, dz)uϕ(n)(x, y)dxdy

+O
(
‖vϕ(n)(x, y)− v(x, y)‖Cb([−R,R]×Ω)

)
,

where vϕ(n)(x, y) =
∫

ΩK(y, z)uϕ(n)(x, z)dz and v(x, y) =
∫

ΩK(y, z)u(x, dz). Since ψ(x, y)
∫

ΩK(y, z)u(x, dz)
is a continuous, compactly supported function, we have shown that∫

R×Ω×Ω
ψ(x, y)K(y, z)uϕ(n)(x, z)uϕ(n)(x, y)dxdydz →n→∞

∫
R×Ω×Ω

ψ(x, y)K(y, z)u(x, dz)u(x, dy)dx.
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Finally we can take the limit in (2.4.45) along the subsequence ϕ(n). This shows that u satisfies (2.4.11)
in a weak sense, where the test functions are taken in F y0 . Since F y0 is dense in C2

c

(
R, Cb(Ω)

)
, equation

(2.4.44) holds for test functions ψ taken in C2
c (R, Cb(Ω)). In particular, u satisfies (2.4.11) in the sense of

distributions.
This ends the proof of Theorem 2.4.10.

2.4.5.5 Density of the space of functions with null boundary flux

Here we prove elementary results that are crucial to our proofs of Theorem 2.4.15, Theorem 2.4.6 and
Theorem 2.4.10.

Lemma 2.4.35 (Density of spaces of functions with null boundary flux). Let Ω ⊂ Rn be a bounded open
set with C3 boundary.

(i) The function space

F0 :=
{
ψ ∈ C2(Ω) | ∀y ∈ ∂Ω, ∂ψ

∂ν
(y) = 0

}
is dense in Cb(Ω).

(ii) The function space

F y0 :=
{
ψ ∈ C2

c (R× Ω) | ∀x ∈ R,∀y ∈ ∂Ω, ∂ψ
∂ν

(x, y) = 0
}

is dense in C2
c (R, Cb(Ω)).

(iii) The function space

F 2
0 :=

{
ψ ∈ C2(Ω× Ω) | ∀(y, z) ∈ Ω× ∂Ω, ∂ψ

∂νz
(y, z) = 0

}
is dense in Cb(Ω × Ω). Moreover for any α ∈ (0, 1) and any function ψ ∈ C2(Ω × Ω) there exists a
constant C and a sequence ψr → ψ such that we have ‖ψr‖Cα(Ω×Ω) ≤ C‖ψ‖Cα(Ω×Ω).

Proof. Let us denote d(y) := infz∈∂Ω |y − z| the distance function. We recall that there exists R > 0 such
that y 7→ d(y, ∂Ω) is C3 in the tubular neighbourhood ΩR := {y ∈ Ω | d(y, ∂Ω) < R} [172]. We fix a smooth
function θ : R → R such that θ(x) = 0 for x ≤ 0, θ(1) = 1 for x ≥ 1, and ∀k > 0, θ(k)(0) = θ(k)(1) = 0.
Finally for y ∈ Ω, we let P (y) be the projection of y on ∂Ω, which is well-defined and C2 on ΩR.

With these notations, establishing Item (i) and (ii) is elementary by considering (for 0 < r < R) ψr(y) :=(
1− θ

(
d(y)
r

))
ψ(P (y))+θ

(
d(y)
r

)
ψ(y) and similarly ψr(x, y) :=

(
1− θ

(
d(y)
r

))
ψ
(
x, P (y)

)
+θ
(
d(y)
r

)
ψ(x, y)

for a function ψ ∈ C2(Ω) and ψ ∈ C2(R× Ω), respectively. We turn to the proof of Item (iii)

Let ψ ∈ C2(Ω×Ω). Let ψr(y, z) :=
(

1− θ
(
d(z)
r

))
ψ
(
y, P (z)

)
+ θ

(
d(z)
r

)
ψ(y, z) for 0 < r < R

2 . Clearly,
ψr ∈ F 2

0 and ψr → ψ in Cb(Ω). Moreover, for each (y, z) ∈ Ω× Ω we have∣∣∣(ψr(y, z)− ψ(y, z)
)
−
(
ψr(y, z′)− ψ(y, z′)

)∣∣∣
|z − z′|α

≤

∣∣∣θ (d(z)
r

)
− θ

(
d(z′)
r

)∣∣∣
|z − z′|α

(
ψ(y, P (z))− ψ(y, z)

)
+
∣∣∣∣1− θ(d(z′)

r

)∣∣∣∣ ( |ψ(y, P (z))− ψ(y, P (z′))|
|z − z′|α

+ |ψ(y, z)− ψ(y, z′)|
|z − z′|α

)
≤ ‖θ‖Cα([0,1])‖d‖αC0,1(ΩR/2)‖ψ‖Cα(Ω×Ω) + 2‖ψ‖Cα(Ω×Ω),

since |ψ(y, P (z))− ψ(y, z)| ≤ rα‖ψ‖Cα(Ω×Ω). This shows item (iii).
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2.4.5.6 A topological theorem

For the sake of completeness, let us recall a result that we proved in a joint work with M. Alfaro [P3], and
that we use in the construction of stationary states.

Theorem 2.4.36 (Bifurcation under Krein-Rutman assumption). Let E be a Banach space. Let C ⊂ E be
a closed convex cone with nonempty interior IntC 6= ∅ and of vertex 0, i.e. such that C ∩ −C = {0}. Let
F be a continuous and compact operator R× E −→ E. Let us define

S := {(α, x) ∈ R× E\{0} |F (α, x) = x}

the closure of the set of nontrivial fixed points of F , and

PRS := {α ∈ R | ∃x ∈ C\{0}, (α, x) ∈ S}

the set of nontrivial solutions in C.
Let us assume the following.

1. ∀α ∈ R, F (α, 0) = 0.

2. F is Fréchet differentiable near R×{0} with derivative αT locally uniformly with respect to α, i.e. for
any α1 < α2 and ε > 0 there exists δ > 0 such that

∀α ∈ (α1, α2), ‖x‖ ≤ δ ⇒ ‖F (α, x)− αTx‖ ≤ ε‖x‖.

3. T satisfies the hypotheses of the Krein-Rutman Theorem. We denote by λ1(T ) > 0 its principal
eigenvalue.

4. S ∩ ({α} × C) is bounded locally uniformly with respect to α ∈ R.

5. S ∩ (R× (∂C\{0})) = ∅, i.e. there is no fixed point on the boundary of C.

Then, either
(
−∞, 1

λ1(T )

)
⊂ PRS or

(
1

λ1(T ) ,+∞
)
⊂ PRS.

The proof can be found in [P3].

2.4.5.7 Existence of a transition kernel

Our final lemma is crucial for the construction of traveling waves.

Lemma 2.4.37 (Existence of a transition kernel). Let Ω be an open domain Ω ⊂ Rd, and let µ be a
nonnegative measure defined on B(R× Ω). Assume there exists a constant C ≥ 0 such that

∀a < b, ∀ω ∈ B(Ω), µ([a, b]× ω) ≤ C|b− a|.

Then there exists a function ν : R× B(Ω) −→ R+ such that
1. for almost every x ∈ R, ω 7→ ν(x, ω) is a nonnegative finite measure on B(Ω)
2. for every ω ∈ B(Ω), x 7→ ν(x, ω) is a Lebesgue-measurable function in L1

loc(R)
3. µ(dx, dy) = ν(x, dy)dx, in the sense that

∀ϕ ∈ Cc(R× Ω),
∫
R×Ω

ϕ(x, y)µ(dx, dy) =
∫
R×Ω

ϕ(x, y)ν(x, dy)dx.

Finally ν is unique up to a Lebesgue negligible set, and satisfies

ν(x,Ω) ≤ C a.e.

Proof. We divide the proof in four steps.
Step 1: We construct a density for µ(A× ω), ω ∈ B(Ω).
Let us take ω ∈ B(Ω), and define A ∈ B(R) µω7→ µ(A×ω). Then µω is a nonnegative Borel-regular measure

on B(R). Indeed µω is clearly well-defined on B(R), satisfies the σ-additivity property and is finite on any
compact set. Then, for any open set U ⊂ R, we have µω(U) ≤ CL(U). Indeed we can write U =

⋃
n∈N

Kn
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where Kn is an increasing sequence of compact sets of the form Kn =
mn⊔
i=0

[ani , bni ] (with ani < bni < ani+1...),
for which the property holds by assumption. Thus

µω(U) = lim
n→+∞

µω(Kn) ≤ C lim
n→+∞

L(Kn) = CL(U)

Finally, µω � L, where L is the Lebesgue measure on R. Indeed, let us take E ⊂ R bounded such that
L(E) = 0. Then by the regularity of µω [343, Theorem 2.18], we have

µω(E) = inf
U open,U⊃E

µω(U) ≤ C inf
U open,U⊃E

L(E) = 0.

Applying the Radon-Nikodym Theorem [343, Theorem 6.10], there exists then a unique measurable
function hω ∈ L1

loc(R) such that
µω = hωL = hωdx.

Step 2: We show that the density hω is well-defined up to a negligible set independent from ω.
Let ωn be an enumeration of the sets of the form

Ω ∩
d∏
i=1

[ai, bi]

where ai, bi ∈ Q. Clearly, ωn is stable by finite intersections, and the associated monotone class is B(Ω). We
let hn := hωn ∈ L1

loc(R) be the previously constructed density associated with µωn . Then hn is well-defined
on a set Dn satisfying L(R\Dn) = 0. We let D =

⋂
n∈N
Dn, then L(R\D) = 0 and by construction, every hn

is well-defined on D.
We take ω ∈ B(Ω) and show that, up to a redefinition on a negligible set, the function hω is well-defined on

D. If ω is open, then we can write ω =
⊔
n∈N

ω′n for a well-chosen extraction ω′n of ωn. Thus for any A ∈ B(R),

we have the formula µω(A) = µ(A × ω) =
∑
n∈N

µ(A × ω′n) and by the uniqueness in the Radon-Nikodym

Theorem, we have:
hω =

∑
n∈N

hω′n L − a.e.

In the general case we have µ(A×ω) = infU open,U⊃ω µ(A×U) for A ∈ B(R) because of the Borel regularity
of µ, which shows that hω is well-defined on D.

Step 3: We verify that the constructed family of functions form a nonnegative measure on Ω for L-a.e.
x ∈ R.

Let wn ∈ B(Ω) be a countable collection of Borel sets with wi ∩ wj = ∅ if i 6= j. Then

µ(A×
⊔
n∈N

wn) =
∑
n∈N

µ(A× wn)

for any A ∈ B(R), and by the uniqueness in the Radon-Nikodym theorem we have

h⊔
n∈N

wn
=
∑
n∈N

hwn L − a.e.

Thus, for any x ∈ D, the function ω 7→ hω(x) is σ-additive. Since hω is nonnegative by construction,
ω 7→ hω(x) is a nonnegative measure on B(Ω).

We define ν(x, ω) := hω(x). Then ν matches the definition of a transition kernel (Definition 2.4.1).
Step 4: Conclusion.
Since ν(x, dy)dx coincides with µ on the monotone class A× ωn, where A ∈ B(R), we have µ(dx, dy) =

ν(x, dy)dx on B(R× Ω).
Finally, since x 7→ ν(x,Ω) is in L1

loc(R), then almost every point of ν(x,Ω) is a Lebesgue point (see Rudin
[343, Theorem 7.7]) and thus:

ν(x0,Ω) = lim
r→0

1
2r

∫ x0+r

x0−r
ν(x0 + s,Ω)ds ≤ 1

2r (2rC) = C

for L-a.e. x0 ∈ R.
This finishes the proof of Lemma 2.4.37
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2.5 A Liouville-type result for some non-cooperative Fisher–KPP systems
and nonlocal equations on cylinders

2.5.1 Introduction
We investigate the reaction–diffusion system

∂tu−D∂xxu = Mu+ u− u ◦ (Cu), (2.5.1)

where t ∈ R is a time variable, x ∈ R is a space variable, u(t, x) is a nonnegative column vector 6 collecting
N ≥ 2 phenotype densities among a species, D is a diagonal matrix collecting positive diffusion rates, ◦
is the Hadamard product between two vectors and M and C are square matrices collecting respectively
mutation rates and competition rates and satisfying the following standing assumptions (below and in the
whole section, 1 = (1, 1, . . . , 1)T ∈ RN ).

(A1) The matrix M ∈ MN,N (R) is essentially nonnegative (namely, with nonnegative off-diagonal coeffi-
cients), irreducible, line-sum-symmetric (namely, M1 = MT1) and admits (0, 1) as Perron–Frobenius
eigenpair (namely, M1 = 0).

(A2) The matrix C ∈MN,N (R) is positive, normal and admits (1,1) as Perron-Frobenius eigenpair (namely,
C1 = 1). We denote U ∈MN,N (C) the unitary matrix such that UCU−1 = UCU

T is diagonal.

(A3) The spectrum of C is contained in the complex closed right-half plane.

We are interested more specifically in the associated traveling wave equation

−Dp′′ − cp′ = Mp+ p− p ◦ (Cp), (2.5.2)

satisfied by solutions of the system (2.5.1) of the form u : (t, x) 7→ p(x − ct). This equation might be
supplemented with asymptotic conditions for the profile p. The asymptotic conditions of classical traveling
waves (p, c) [190] are

lim
+∞

p = 0, min
i∈[N ]

lim inf
−∞

pi ≥ 0, max
i∈[N ]

lim inf
−∞

pi > 0, (2.5.3)

where [N ] denotes (here and in the rest of the section) the set {1, 2, . . . , N}.
By (A1) and (A2), 1 is a constant steady state of the system (2.5.1).

2.5.2 Main results
Our main result is the following theorem.

Theorem 2.5.1 (Liouville-type result). Assume (A1), (A2) and (A3). Then, for any c ∈ R, 1 is the unique
bounded solution p of (2.5.2) such that mini∈[N ] infR pi > 0.

The main consequences of this theorem are the two following corollaries, deduced from standard elliptic
estimates and limiting procedures [187] as well as a strong positivity property [190, Theorem 1.1].

Corollary 2.5.2 (Uniqueness of the nonzero steady state). Assume (A1), (A2) and (A3). Then 1 is the
unique bounded nonnegative nonzero stationary solution of (2.5.1), namely the unique bounded nonnegative
nonzero solution p of (2.5.2) with c = 0.

Corollary 2.5.3 (Limit behavior of the traveling waves). Assume (A1), (A2) and (A3). Then all solutions
(p, c) of (2.5.2)-(2.5.3) actually satisfy lim−∞ p = 1.

6In the whole section, nonnegativity and positivity of vectors and matrices are understood component-wise.
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2.5.2.1 Extension to nonlocal equations

Those results extend to continuous limits N → +∞, provided the limit equation has a similar structure.
Below we illustrate this principle by focusing on an equation supplemented with Neumann boundary condi-
tions, though it would also be possible to adapt our arguments in the periodic framework with no additional
difficulty.

We consider

− d(y)∂ξξp− c∂ξp = ∇y · (σ(y)∇yp) +M [p(ξ)](y) + p(ξ, y) (1−K[p(ξ)](y)) (2.5.4)

set on (ξ, y) ∈ R×Ω for a smooth domain Ω ⊂ RQ (Q ≥ 1 and ∂Ω is C2) and supplemented with homogeneous
Neumann boundary conditions at y ∈ ∂Ω. Above, d ∈ C

(
Ω, (0,+∞)

)
, σ ∈ C1 (Ω, (0,+∞)

)
,

M [p(ξ)] =
∫

Ω
m(·, ỹ)(p(ξ, ỹ)− p(ξ, ·))dỹ, K[p(ξ)] =

∫
Ω
k(·, ỹ)p(ξ, ỹ)dỹ,

for some m, k ∈ C(Ω2, (0,+∞)). Defining naturally the adjoint operatorsM? and K?, the assumptions (A1),
(A2) and (A3) extend to the continuous equation as follows:

(A′1) The function σ(y) ∈ C1 (Ω) is positive and the function m ∈ C(Ω2) is nonnegative, bounded and
satisfies

∫
Ωm(·, z)dz =

∫
Ωm(z, ·)dz.

(A′2) The function k ∈ C(Ω2) is positive and the induced operator K[p] =
∫

Ω k(·, z)p(z)dz acting on the
Hilbert space L2(Ω) is normal. Moreover, the constant function y ∈ Ω 7→ 1 is an eigenvector of K
associated with the eigenvalue 1 (namely, K[1] = 1).

(A′3) The spectrum of K (considered as an operator acting on L2(Ω)) is contained in the complex closed
right-half plane.

The continuous version of Theorem 2.5.1 reads as follows.

Theorem 2.5.4. Assume (A′1), (A′2) and (A′3). Then, for any c ∈ R, 1 is the unique bounded solution p of
(2.5.4) such that infR×Ω p > 0.

We deduce just as before the uniqueness of the stationary states and the uniform convergence to the
unique stationary state in the wake of the waves for (2.5.4), provided a uniform estimate from below can be
shown.

Corollary 2.5.5. Assume (A′1), (A′2) and (A′3). Then 1 is the unique bounded solution of (2.5.4) with
positive infimum in R× Ω and with c = 0.

Corollary 2.5.6. Assume (A′1), (A′2) and (A′3). Then any bounded classical solution (p, c) of (2.5.4) such
that

lim
ξ→+∞

sup
y∈Ω

p(ξ, y) = 0 and lim inf
ξ→−∞

inf
y∈Ω

p(ξ, y) > 0

actually satisfy
lim

ξ→−∞
sup
y∈Ω
|p(ξ, y)− 1| = 0.

2.5.2.2 Organization of the section

In Section 2, we discuss the assumptions, the results and the literature. In Section 3, we prove Theorem
2.5.1. In Section 4, we prove Theorem 2.5.4.

2.5.3 Discussion
2.5.3.1 The conditions on M

By definition, a matrix is line-sum-symmetric if the sum of coefficients in each of its rows equals the sum of
coefficients in the corresponding column. Cleary, symmetric matrices are line-sum-symmetric (and line-sum-
symmetric matrices in dimension 2 are exactly symmetric matrices), but in general the converse statement
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is false. For instance, the following 3× 3 matrix is line-sum-symmetric but not symmetric:
a 2b 0

b c b

b 0 d

 with a, b, c, d ∈ R.

The study of line-sum-symmetric matrices was initiated by Eaves, Hoffman, Rothblum and Schneider
[157]. Roughly speaking, these matrices conveniently generalize symmetric matrices when what we have in
mind is summation of lines or rows of linear systems [157, Corollary 3], which is the case in this section 2.5
and more generally whenever we want to “integrate by parts” in a discrete variable. As such, they recently
appeared in the literature on reaction–diffusion systems [98, 99].

2.5.3.2 The symmetric case

In the symmetric case, which arises in many applications, our assumption (A1) onM comes down to assuming
that M has an “integration by parts” formula:

〈Mu, v〉 = 1
2
∑

i,j∈[N ]

mi,j (ui − uj)(vj − vi) .

where 〈·, ·〉 is the canonical (Hermitian) scalar product on CN . A particularly natural example is the explicit
Euler scheme for the one-dimensional heat equation with periodic boundary conditions: M = −∇D

TΣ∇D,
Σ = diag(σ1, σ2, . . . , σN ) (σi > 0) and

∇D =



−1 0 0 · · · 1

1 −1 0 0 · · · · · · 0

0 1 −1 0 0 · · ·
...

...
...

...
...

...
...

0 0 · · · 0 1 −1


.

The expanded form of M is

−σ1 − σ2 σ2 0 . . . 0 σ1

σ2 −σ2 − σ3 σ3 0 . . . 0

0 σ3 −σ3 − σ4 σ4 0 . . .
...

...
...

...
...

...

σ1 0 . . . 0 σN −σN − σ1


if N ≥ 3,

(σ1 + σ2)

−1 1

1 −1

 if N = 2.

Neumann boundary conditions can be obtained by replacing the first line in ∇D by zero and also satisfy
(A1). On the contrary, Dirichlet boundary conditions are qualitatively different (in particular, 1 cannot be
a solution anymore) and are therefore outside the scope of this section. Note that non-tridiagonal matrices
can also be obtained in the form −∇T

DΣ∇D by allowing ∇D to be non-square: as an example, discretization
of divergence-form operators in two-dimensional domain such as

M =



−σ1 − σ5 0 σ1 0 σ5

0 −σ2 − σ6 σ2 σ6 0

σ1 σ2 −σ1 − σ2 − σ3 − σ4 σ3 σ4

0 σ6 σ3 −σ3 − σ6 0

σ5 0 σ4 0 −σ4 − σ5
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are not always tridiagonal. In this case ∇D ∈ M10,5(R) corresponds to a discrete gradient operator on a
cell with four boundary points and one interior point, and Σ ∈M10,10(R) encodes the diffusion rates.

In addition to the divergence-form differential part presented above, M might also contain the discretiza-
tion of a nonlocal integral operator, as hinted by (2.5.4).

2.5.3.3 The conditions on C

The assumption that the Perron–Frobenius eigenvalue of C is unitary (λPF(C) = 1) is done without loss of
generality (up to replacing (p, C) by (λPF(C)p, λPF(C)−1C)). However the assumption that 1 is a Perron–
Frobenius eigenvector is a true assumption, not satisfied in general.

The set of real positive normal matrices contains as particular subsets the set of real positive circulant
matrices and the set of real positive symmetric matrices (skew-symmetric and orthogonal matrices are normal
but cannot be positive). The following counter-example shows that there are matrices satisfying (A2) and
(A3) that are neither symmetric nor circulant:

a b c d

b a d c

d c a b

c d b a

 with a, b, c, d > 0, a+ b+ c+ d = 1.

(The eigenvalues of this matrix are 1, a+ b− c− d, a− b± i|c− d| and therefore (A3) is satisfied as soon as
a ≥ b and a+ b ≥ c+ d.)

In fact, a polynomial in any permutation matrix is normal. It is therefore possible to construct such
counterexamples in any dimension N ≥ 4, by selecting a permutation matrix associated with a cycle of
maximal length which is not a power of the circular permutation.

2.5.3.4 The circulant case

In the circulant case, which is of particular interest to us, there exists a positive vector φ ∈ RN such that
the matrix C is written as C = (φi−j)i,j∈[N ], φ being periodically extended by

φi−j =
{
φi−j , if i− j ≥ 1,
φN+i−j , if i− j ≤ 0.

The expanded form of C is then 
φN φN−1 . . . φ1

φ1 φN . . . φ2
...

...
...

...

φN−1 φN−2 . . . φN


and the product Cu can be rewritten as φ ? u, where ? is the discrete circular convolution operator:

(φ ? u)i =
N∑
j=1

φi−juj .

Defining the normalized discrete Fourier transform matrix as

UDFT = 1√
N

(
exp

(
−2iπ
N

(j − 1)(k − 1)
))

j,k∈[N ]
,

we find that UDFT = U for any circulant matrix C. In particular, 1 is automatically a Perron–Frobenius
eigenvector (and the normalization λPF(C) = 1 reads

∑N
i=1 φi = 1). Moreover, the following equalities hold

true:
UCU−1Uu = UCu = U(φ ? u) =

√
N(Uφ) ◦ (Uu).
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It follows easily that the spectrum of C is contained in the closed right-half plane if and only if Uφ, namely
the discrete Fourier transform of φ, is valued in the closed right-half plane.

Last, we point out additional alternative writings of the reaction term:

u− (Cu) ◦ u = u ◦ (1− φ ? u) = −u ◦ (φ ? (u− 1)) ,

2.5.3.5 The case N = 2

In the case N = 2, the matrix M and C can be rewritten as depending on two parameters only:

M =

−σ σ

σ −σ

 , C =

1− γ γ

γ 1− γ

 ,

where σ > 0 and γ ∈ (0, 1). The linear stability of 1 can be decided by computing the eigenvalues λM−C± of
the matrix M − C,

λM−C± = −1− (γ − σ)± |γ − σ|,

while the eigenvalues of C are λC1 = 1 and λC− = 1−2γ. Therefore,M−C has always one negative eigenvalue
λM−C− < 0 and the behavior of λM−C+ depends on the value of γ:

a) if γ ∈ (0, 1/2) (in which case (A3) holds), λM−C1 always stays negative,

b) if γ ∈ (1/2, 1) (in which case (A3) does not hold),

λM−C+ > 0 if 0 < σ < σ∗ := γ − 1
2 ,

λM−C+ < 0 if σ > σ∗.

In the latter case, using σ as a bifurcation parameter, a local bifurcation is occurring when decreasing σ
below σ∗ and two stable equilibria emerge when 1 loses stability. In particular, in this case there are solutions
to (2.5.2) other that the constant 1 which are bounded from below. This is confirmed by the result in [100,
Proposition 3.4].

2.5.3.6 KPP systems

The system (2.5.1) is a particular example of non-cooperative KPP systems. The first author studied these
systems in [190, 189, 192, 191]. The second author studied them with collaborators in [P2, P3] and gave
an epidemiological interpretation in [P2]. Other important mathematical references are [147, 32, 291, 100,
101]. For a detailed overview of the literature, we refer to [190].

These nonlinear, non-cooperative and non-variational reaction–diffusion systems are referred to as “KPP
systems” due to their structural similarity with the scalar Fisher–KPP equation,

∂tu− ∂xxu = u(1− u).

(This scalar equation can actually be understood as a KPP system of dimension 1.) This similarity mainly
concerns the behavior close to u = 0 and it leads to several classical results: a sharp persistence–extinction
criterion [190, 191], the existence of traveling waves for all speeds larger than or equal to a linearly determined
minimal wave speed c? [190, P2, 291], the equality between this minimal wave speed and the asymptotic
speed of spreading for initially compactly supported solutions of the Cauchy problem [32, 190] and an
exponential equivalent of the profile at the leading edge [189, 291].

However, away from u = 0 and in particular in the wake of a traveling wave solution p (x− ct), the
picture is more complicated. For two-component systems, locally uniform convergence of the solutions of
the Cauchy problem to a unique constant steady state can be proved in many cases (and directly implies the
convergence in the wake of the traveling waves) [192, Appendix B], [P2], but bistable cases (corresponding to
strongly competitive systems with weak mutations) still exist [100, 189] and remain elusive – in particular,
traveling waves connecting 0 to an unstable constant steady state exist in some particular bistable cases
[189]. For systems of any size but where d = 1 and C = 1aT, locally uniform convergence of the solutions of
the Cauchy problem to a unique constant steady state can be established [189], but these assumptions are
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in fact so strong that the system is basically reduced to a scalar Fisher–KPP equation projected along the
Perron–Frobenius eigenvector of the linear part of the reaction term. More recent results confirm that, as
soon as there is at least three components, convergence fails in general. In particular, for circulant matrices
M and C, Hopf bifurcations can occur and these typically lead to the formation of limit cycles, periodic
wave trains, pulsating traveling waves and propagating terraces [192].

In this regard, the main result of this section 2.5 provides some sufficient conditions to prevent the
formation of these oscillations in the elliptic and traveling wave problems. In the class of pairs (M,C)
satisfying (A1) and (A2), the sharpness of (A3) (the spectrum of C is in the right-half plane) can be
discussed as follows:

• in view of the Hopf-bifurcating case in [192], the system can be oscillatory if C admits an eigenvalue
with negative real part and nonzero imaginary part;

• in view of the two-component case discussed in Section 2.5.3.5 (see also [100, Proposition 3.4]), there
can be a multiplicity of positive constant equilibria when at least one eigenvalue of C is real and
negative.

In the class of pairs (M,C) satisfying (A2), (A3) and the mere irreducibility of M , the sharpness of (A1) is
unclear. The proof presented here heavily relies on the line-sum-symmetry of M and cannot be extended to
more general matrices M (see Remark 2.5.9 below).

Let us point out that the convergence result here is strikingly new in the sense that it does not require
the equality between all diffusion rates (d = 1), which was required in [189, P2]. The convergence results
for two-component systems presented in [100] do not require such an assumption but use the boundedness
of the domain to overcome this lack of structure; when extending these results to the unbounded setting,
the equality d1 = d2 is useful [192, Appendix B].

2.5.3.7 The nonlocal KPP equation

The spatially homogeneous system
u̇ = Mu+ u ◦ (1− φ ? u)

is, in a way, a discretized version of the nonlocal Fisher–KPP equation:

∂tu = ∂xxu+ u(1− φ ? u).

This nonlocal equation has attracted a lot of attention in the last few years. The existing literature
(e.g., [46, 6, 165, 70, and references therein]) develops new techniques to overcome the default of comparison
principle and these techniques proved to be fruitful when applied to non-cooperative KPP systems [P2, 190].
In the present section 2.5 we will once again import such a technique from [46].

2.5.3.8 The nonlocal cane-toad equation

The diffusive system (2.5.1) is, in a similar way, a discretized version of the nonlocal cane-toad equation:∂tu = d(θ)∂xxu+ α∂θθu+ u(t, x, θ)(1− 1
θ−θ

∫ θ
θ=θ u(t, x, θ′)dθ′),

∂θu(t, x, θ) = ∂θu(t, x, θ) = 0,

where u(t, x, θ) is a population density structured with respect to a phenotypic trait θ ∈ [θ, θ] ⊂ [0,+∞].
This eco-evolutionary model has also attracted attention recently (e.g., [72, 68, 72, 68, 96, 379, 7, 18, 52,
P4]), especially due to an acceleration phenomenon when d(θ) = θ and θ = +∞ but also because, just like
the nonlocal KPP equation, it does not satisfy the comparison principle and requires new techniques.

It turns out that the similarity between our system and this equation is so strong that our proof can
be readily adapted and our result extends to this continuous-trait model (see Theorem 2.5.4 and its two
corollaries).

2.5.3.9 More general reaction terms

In the system (2.5.1), the reaction term has the form (I +M)u − u ◦ (Cu). It is natural to try to extend
the results to reaction terms of the form (diag (r) +M)u − u ◦ (Cu), where diag (r) + M has a positive
Perron–Frobenius eigenvalue, or (diag (r) +M)u − (diag (r)u) ◦ (Cu), where r is positive. However our
proof does not easily extend to such cases. These remain as an open problem.
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2.5.3.10 The Cauchy problem

It would be natural to try to prove that, with the same assumptions (A1)–(A3) or (A′1)–(A′3), the solutions
of the parabolic Cauchy problem converge locally uniformly to 1. However our proof does not easily extend
to this problem. This also remains as an open problem.

2.5.4 Proof of Theorem 2.5.1
Our strategy is to mimic the proof of [46, Theorem 4.1] by taking into account the discrete integration by
parts formula for M . More precisely, we rely upon

N∑
i=1

(Mp)i
pi

≥ 0 with equality iff p ∈ span (1) , (2.5.5)

and upon
N∑
i=1

(pi − 1)(C(p− 1))i ≥ 0. (2.5.6)

The inequality (2.5.5) is a standard property of irreducible line-sum-symmetric matrices (recalled in the forth-
coming Lemma 2.5.7); the inequality (2.5.6) is a direct consequence of (a generalized version of) Plancherel’s
theorem:

N∑
i=1

qi(Cq)i = Re
(

N∑
i=1

qi(Cq)i

)
= Re (〈q, Cq〉)

= Re
(
〈q, UT

UCU
T
Uq〉

)
= Re

(
〈Uq, UCUT

Uq〉
)

≥ min
λ∈sp(C)

(Re(λ))
N∑
i=1
|(Uq)i|

2
,

where 〈·, ·〉 is the canonical (Hermitian) scalar product on CN .

Lemma 2.5.7 (Classification of line-sum-symmetric matrices [157, Corollary 3]). Let A ∈ MN,N (R) be a
nonnegative matrix. Then A is line-sum-symmetric if and only if∑

i,j∈[N ]

ai,juj
ui

≥
∑

i,j∈[N ]

ai,j for all u ∈ (0,+∞)N .

Furthermore, if A is irreducible and line-sum-symmetric, equality above holds if and only if u ∈ span (1).

The inequality (2.5.5) follows then from Lemma 2.5.7 applied to the nonnegative, line-sum-symmetric
and irreducible matrix A = M −mini∈[N ](mi,i)I.

Lemma 2.5.8 (Uniqueness of the nonzero constant solution). The unique nonnegative nonzero solution of
Mu+ u = (Cu) ◦ u is 1.

Proof. Let u be any nonnegative nonzero solution. Recall that u is in fact positive. Denoting u◦−1 =
(1/ui)i∈[N ] and taking the scalar product

〈−Mu− u ◦ (1− Cu) , u◦−1 ◦ (u− 1)〉 = 0,

we get

−〈Mu, u◦−1〉 = 〈C(u− 1), u− 1〉.

On one hand, by (2.5.5), the left-hand side is nonpositive. On the other hand, by (2.5.6), the right-hand
side is nonnegative. Therefore both sides are zero. Using now the case of equality in (2.5.5), we deduce
u ∈ span (1). We deduce subsequently from the right-hand side that u = 1.
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We are now in a position to prove Theorem 2.5.1.

Proof of Theorem 2.5.1. Let (p, c) be a bounded solution of the system (2.5.2) satisfying infR pi > 0 for any
i ∈ [N ].
Step 1: We show that

lim
ξ→±∞

p(ξ) = 1.

At any ξ ∈ R, denoting p◦−1(ξ) = (1/pi(ξ))i∈[N ] and taking the scalar product (in RN )

〈−Dp′′ − cp′ −Mp− p ◦ (1− Cp) , p◦−1 ◦ (p− 1)〉 = 0,

we get
N∑
i=1

[
−(dip′′i + cp′i)

(
pi − 1
pi

)]
= −

N∑
i=1

(Mp)i
pi

−
N∑
i=1

(pi − 1) (C (p− 1))i .

By (2.5.5) and (2.5.6), the right-hand side is nonpositive and therefore

N∑
i=1

[
−(dip′′i + cp′i)

(
pi − 1
pi

)]
≤ 0.

Since this holds true at any ξ ∈ R, we fix R > 0 and integrate by parts in [−R,R]. We get, as in [46,
Proof of Lemma 4.1],

N∑
i=1

di

∫ R

−R

(
p′i
pi

)2
≤

N∑
i=1

[
di
p′i (pi − 1)

pi
+ c ln(pi)− cpi

]R
−R

, (2.5.7)

By the classical elliptic estimates, |p′i(±R)| is bounded by ‖p(±R)‖ up to a multiplicative constant indepen-
dent of R. Recalling that pi is uniformly bounded from below by mini∈[N ] infξ∈R pi(ξ) > 0, the right-hand
side is bounded by a constant independent of R. We deduce that p′i ∈ L2(R) for all i ∈ [N ].

Let now ξn be any sequence such that ξn → −∞ and define pn : ξ 7→ p(ξ + ξn). We remark that, for all
i ∈ [N ], we have ∫ − ξn2

−∞
[(pni )′]2(ξ)dξ =

∫ ξn
2

−∞
(p′i)2(ξ)dξ −−−−−→

n→+∞
0 for all i ∈ [N ],

and therefore (pn)′ converges to 0 locally uniformly in L2. Next, using the classical elliptic estimates, we
extract from (pn)n∈N a subsequence which converges in C2

loc to a limit p∞ ∈ C2(R). Note that p∞ is still
a solution to (2.5.2). Since (pn)′ → 0 in L2

loc, we conclude that p∞ has to be a constant function of the
variable ξ, i.e. a constant solution of Mp+ p = (Cp) ◦ p. By Lemma 2.5.8, p∞ = 1 identically.

Since the sequence ξn is arbitrary, we have shown that

lim
ξ→−∞

p(ξ) = 1.

The limit at +∞ can be established by a similar argument.
Step 2: We show that p is identically equal to 1. Since p converges to 1 on both sides of the real line, the
brackets on the right-hand side of (2.5.7) converge to 0 as R→ +∞. Therefore,

0 ≤
N∑
i=1

∫ +∞

−∞
(p′i)2 = lim

R→+∞

N∑
i=1

∫ R

−R
(p′i)2

≤ lim
R→+∞

mini∈[N ] inf pi
maxi∈[N ]di

N∑
i=1

di

∫ R

−R

(
p′i
pi

)2

≤ C lim
R→+∞

N∑
i=1

[
di
p′i (pi − 1)

pi
+ c ln(pi)− cpi

]R
−R

= 0,

where C is a constant independent of R. We conclude that p has to be a constant function of ξ, and the
only possibility is p = 1.
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Remark 2.5.9. From the proofs of Lemma 2.5.8 and Theorem 2.5.1 above, it is clear that the estimate
〈u◦−1,Mu〉 ≥ 0, together with the equality case, is crucial. Since this estimate fails if M is not line-
sum-symmetric (by Lemma 2.5.7), (A1) is sharp regarding the proof presented here. Note that [157, The-
orem 2] proved that every nonnegative irreducible matrix A has a line-sum-symmetric similarity-scaling
diag (x)Adiag (x)−1, where x is a positive vector, but it seems to us that this property cannot be used to
generalize the above proof to non-line-sum-symmetric matrices M .

Finally we recall briefly the arguments leading to the proof of Corollary 2.5.2 and 2.5.3.

Sketch of the proof of Corollary 2.5.2. Take a standing wave p for equation (2.5.2), i.e. a travelling wave
with speed c = 0. It is known from [190, Theorem 1.3 (ii)] that, if p is nonnegative and nonzero, then p is
bounded uniformly away from 0. Theorem 2.5.1 concludes.

Sketch of the proof of Corollary 2.5.3. Let (p, c) be a traveling wave for (2.5.2) satisfying the boundary con-
ditions (2.5.3). By [190, Theorem 1.5 (iii)], condition (2.5.3) near −∞ immediately transfers to

min
i∈[N ]

lim inf
ξ→−∞

pi(ξ) > 0,

therefore Theorem 2.5.1 can be applied to any local uniform limit of a converging sequence p(ξ + ξn) for
some ξn → −∞. Since the limit is uniquely identified, the claim is proved.

2.5.5 Proof of Theorem 2.5.4
We follow the same steps as for the proof of Theorem 2.5.1, but have to adapt each argument in the correct
functional setting.

Lemma 2.5.10 (Positivity of K). Assume (A′2) and (A′3). Then for all nonzero u ∈ L2(Ω),

〈K[u], u〉L2(Ω) =
∫

Ω2
u(y)k(y, z)u(z)dydz ≥ 0.

Proof. To prove the result, we take advantage of the spectral decomposition of K considered as an operator
acting on the complex Hilbert space L2

C(Ω) equipped with the canonical hermitian product 〈f, g〉L2
C

=
∫

Ω fg.
Clearly K is still normal when considered as an operator on L2

C(Ω). Moreover, by Lemma 2.5.13, K is
compact (and the compactness classically transfers to the complex extension ofK). Since L2

C(Ω) is separable,
by the spectral decomposition theorem (see e.g. [79, Proposition 11.36 p.369]), there exists a Hilbert basis
of L2

C(Ω) composed of eigenvectors of K. Let us denote (en)n∈N such a Hilbert basis and (λn)n∈N the
corresponding sequence of eigenvalues. This decomposition yields

〈K[u], u〉L2
C

=
+∞∑
n=0

λn|〈u, en〉L2
C
|2,

but since 〈K[u], u〉L2
C
is real,

〈K[u], u〉L2
C

= Re
(+∞∑
n=0

λn|〈u, en〉L2
C
|2
)

=
+∞∑
n=0

Re(λn)|〈u, en〉L2
C
|2 ≥ 0.

Lemma 2.5.11 (Characterization of continuous line-sum-symmetric operators [99, Theorem 4]). Let a ∈
C (Ω× Ω, [0,+∞)) be Riemann integrable. Then the following two properties are equivalent:

1.
∫

Ω a(x, y)dy =
∫

Ω a(y, x)dy for all x ∈ Ω;

2.
∫

Ω×Ω
a(x,y)u(y)

u(x) dydx ≥
∫

Ω×Ω a for all u ∈ C
(
Ω, (0,+∞)

)
.

We point out that the equality case of the second property is not presented in the above lemma but was
studied in [99, Theorem 5] under the irreducibility-type assumption that (x, y) 7→ a(x, y) + a(y, x) does not
vanish. Here, we need in any case to include in the mutation operator a nontrivial divergence part (σ > 0),
and this suffices for the irreducibility-type properties we need, so that we do not make any irreducibility-type
assumption on the nonlocal part.
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Lemma 2.5.12 (Uniqueness of the constant solution). Assume (A′1), (A′2) and (A′3). The constant 1 is the
unique nonnegative nonzero classical solution to the equation

∇y · (σ(y)∇yp) +M [p](y) + p(y) (1−K[p](y)) = 0, (2.5.8)

supplemented with homogeneous Neumann boundary conditions on ∂Ω.

Proof. We first remark that, by a direct application of the strong maximum principle and Hopf’s lemma,
the fact that p is nonzero can be reinforced as p(y) > 0 on Ω. Since moreover p is continuous on Ω, p is
bounded from below. In particular, the test function p(y)−1

p(y) is well-defined and (at least) in C1(Ω).
As in the discrete case, we multiply (2.5.8) by p(y)−1

p(y) and integrate over Ω. Integrating by parts the
gradient term, we get:

0 =−
∫

Ω
σ(y)∇yp(y)∇y

(
1− 1

p(y)

)
dy +

∫
Ω×Ω

m(y, z)(p(z)− p(y))dzdy

−
∫

Ω×Ω
m(y, z)(p(z)− p(y)) 1

p(y)dzdy +
∫

Ω
(1−K[p](y)) (p(y)− 1)dy.

Let us show that each of those terms is nonpositive. We first remark that

−
∫

Ω
σ(y)∇yp(y)∇y

(
1− 1

p(y)

)
dy = −

∫
Ω
σ(y) |∇p|

2

p(y)2 dy ≤ 0,

∫
Ω×Ω

m(y, z)(p(z)− p(y))dzdy =
∫

Ω

(∫
Ω
m(y, z)p(z)dz −

∫
Ω
m(y, z)dzp(y)

)
dy

=
∫

Ω

(∫
Ω
m(y, z)p(z)dz −

∫
Ω
m(z, y)dzp(y)

)
dy

=
∫

Ω×Ω
m(y, z)p(z)dzdy −

∫
Ω×Ω

m(z, y)p(y)dzdy

= 0.

Next, by Lemma 2.5.11,∫
Ω×Ω

m(y, z)(p(z)− p(y)) 1
p(y)dydz =

∫
Ω×Ω

m(y, z)p(z)
p(y) dydz −

∫
Ω×Ω

m ≥ 0.

Finally, since K[1] = 1, we have 1−K[p] = K[1− p] and thus, by Lemma 2.5.10,∫
Ω

(1−K[p](y)) (p(y)− 1)dy = −
∫

Ω
K[1− p](y)(1− p(y))dy ≤ 0.

Therefore each of those four terms is in fact equal to 0. From
∫

Ω σ(y) |∇p(y)|2
p(y)2 dy = 0 we deduce that p(y)

is a constant on Ω. Since then

0 =
∫

Ω
K[1− p](1− p)dy = (1− p)2

∫
Ω2
k(y, z)dydz

and
∫

Ω2 k(y, z)dydz > 0, we conclude that p = 1.

We are now in a position to prove Theorem 2.5.4.

Proof of Theorem 2.5.4. As in the discrete case (proof of Theorem 2.5.1), we multiply the equation (2.5.4)
by the test function p(ξ,y)−1

p(ξ,y) and integrate on the cylinder ΩR = [−R,R] × Ω for some R > 0. With the
exact same computations as in the proof of Lemma 2.5.12, we get

−
∫

ΩR
(d(y)∂ξξp(ξ, y) + c∂ξp(ξ, y))p(ξ, y)− 1

p(ξ, y) dξdy ≤ 0.
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After integrations by parts in the ξ variable, we find

∫
ΩR

d(y) |∂ξp(ξ, y)|2
p(ξ, y)2 dξdy

≤
[∫

Ω
d(y)∂ξp(ξ, y)(p(ξ, y)− 1)

p(ξ, y) + c (ln(p(ξ, y))− p(ξ, y)) dy
]R
−R

(2.5.9)

where, by the classical elliptic estimates, |∂ξp(±R, y)| is controlled from above by supy∈Ω,ξ∈[±R−ε,±R+ε] p(ξ, y),
independently of R. Taking the limit R→ +∞, we see that ∂ξp(ξ, y) ∈ L2(R×Ω). Using elliptic regularity,
a translation argument (which is similar to the one developed in the proof of Theorem 2.5.1) and Lemma
2.5.12, we conclude that

lim
ξ→±∞

sup
y∈Ω
|p(ξ, y)− 1| = 0.

Going back to (2.5.9), we easily see that the right-hand side converges to zero as R→ +∞ and therefore∫
R×Ω

d(y) |∂ξp(ξ, y)|2
p(ξ, y)2 dξdy = 0,

thus p is constant in ξ. We conclude by the limit conditions that in fact p = 1 identically.

Corollary 2.5.5 is a direct application of Theorem 2.5.4. As for Corollary 2.5.6, it is proven by an
argument similar to the one that yields the limit of the solution near ±∞ in the proof of Theorem 2.5.4.
Since it is rather classical to adapt this argument for traveling waves, we omit the details.

We end by a technical but necessary Lemma.

Lemma 2.5.13 (Compactness of K). Assume (A′2). Then the operator K : L2(Ω)→ L2(Ω) is compact.

Proof. We aim at applying the Kolmogorov-Riesz-Fréchet Theorem (see e.g. [79, Theorem 4.26 p.111]) to
our operator K. We extend the function k(y, z) to RQ × RQ by setting k(y, z) = 0 for y, z 6∈ Ω. For
f ∈ L2(RQ) we define:

K[f ](y) =
∫
RQ

k(y, z)f(z)dz.

Let ε > 0 and f ∈ L2(Ω), ‖f‖L2(Ω) = 1 be given. We extend f to L2(RQ) by setting f(z) = 0, z 6∈ Ω. We
first remark that, for any h ∈ R,

‖τhK[f ]−K[f ]‖2L2 =
∫
RQ

(∫
RQ

k(y + h, z)f(z)dz −
∫
RQ

k(y, z)f(z)dz
)2

dy

=
∫
RQ

(∫
RQ

(k(y + h, z)− k(y, z))f(z)dz
)2

dy

≤
∫
RQ

∫
RQ

(k(y + h, z)− k(y, z))2dzdy‖f‖L2

=
∫
RQ

∫
RQ

(k(y + h, z)− k(y, z))2dzdy,

where we have used the classical Cauchy–Schwarz inequality in L2(RQ) and τhg(z) := g(z + h). Therefore
there remains only to control the L2 norm of k(y + h, ·)− k(y, ·) when h is small. To this aim we fix δ1 > 0
be such that

|{d(y, ∂Ω) ≤ δ1}| ≤
ε

8‖k‖2L∞(Ω2)|Ω|
,

where d(·, ∂Ω) is the Euclidean distance between y ∈ RQ and the set ∂Ω and |{d(y, ∂Ω) ≤ δ1}| is the
Lebesgue measure of the set of points y ∈ RQ satisfying d(y, ∂Ω) ≤ δ1. Since k is continuous on the compact
set Ω2, there exists δ2 > 0 such that |k(y + h, z)− k(y, z)| ≤ ε√

2|Ω| if y, y + h, z ∈ Ω and |h| ≤ δ2.
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Therefore, if |h| ≤ min(δ1, δ2), we have:

‖τhK[f ]−K[f ]‖2L2 =
∫
d(y,∂Ω)≤δ1

∫
RQ

(k(y + h, z)− k(y, z))2dzdy

+
∫
d(y,∂Ω)>δ1

∫
RQ

(k(y + h, z)− k(y, z))2dzdy

≤ 4|Ω|‖k‖2L∞ |{d(y, ∂Ω) ≤ δ1}|+ |Ω|2
ε2

2|Ω|2

≤ ε2.

We conclude that K is indeed compact on L2(Ω).
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2.6 The spatio-temporal dynamics of interacting genetic incompatibilities

2.6.1 Introduction
Genetic incompatibilities correspond to deleterious interactions between alleles (at the same locus or at
different loci) within the same genome, and are the cause of the reduced fitness of hybrids between species
[122], [183]. Such incompatibilities may be revealed by crosses between divergent populations or species,
which may be performed experimentally [173], but may also occur naturally in hybrid zones resulting from
secondary contacts between genetically divergent populations [39, 40]. Indeed, the offspring of such crosses
carry a mix of alleles from the two parental populations, which may not function well together. Genetic in-
compatibilities may also be widespread within the same species, as suggested by recent data from Drosophila
[115].

How several incompatibilities segregating within the same population interfere with each other has impor-
tant consequences for the evolution of reproductive isolation, and the maintenance of distinct genetic entities
after a secondary contact. Barton & de Cara [37] showed that, in the case of a single population (sympatry),
incompatibilities are expected to couple through the buildup of linkage disequilibrium among them, which
may eventually lead to strong reproductive isolation between two distinct genetic backgrounds. In spatially
structured populations with limited dispersal (parapatry), clines in allele frequencies may form between
regions containing different sets of incompatible alleles [35]. In this case, linkage disequilibria generated by
dispersal generally tend to pull clines together [358], again leading to the coupling of genetic incompati-
bilities which then tend to reinforce each other. This process was explored by Barton [36] in the case of
a continuous, linear habitat, and when genetic incompatibilities are generated by an arbitrary number of
underdominant loci: at each locus, heterozygotes (say Aa) have a lower fitness than homozygotes, while the
two homozygotes (AA and aa) have equal fitness. This form of symmetric selection (against heterozygotes)
can maintain stable clines in allele frequencies [41], [35], separating regions where AA and aa individuals are
abundant (Aa hybrids being generated between these regions). When two such clines overlap in space (one
separating regions where AA and aa are abundant, and the other separating regions where BB and bb are
abundant), they tend to attract each other until they coincide, as illustrated by the numerical simulations
in Figure 2.6.1, and then become motionless.

In the asymmetric situation where one allele has a selective advantage over the other (i.e., one homozygous
genotype, say AA, has a higher fitness than the other, aa), the cline will move in the direction of the less
fit genotype [35]. The interaction between several such asymmetric incompatibilities raises several questions
that remain little explored to date, such as: when clines moving at different speeds come into contact, will
they remain stacked (increasing the degree of reproductive isolation between the two sides of the clines) or
not? If they do remain stacked, what will be the speed of the resulting front? Under which conditions may
an asymmetric incompatibility escape from a hybrid zone in which several incompatibilities are segregating?

The article [P17] corresponding to the present section constitutes a first step in the exploration of
the spatio-temporal dynamics of interacting asymmetric incompatibilities, focusing on a simple situation
involving two coupled underdominant loci (with alleles A, a at the first locus, B, b at the second) with
identical fitness effects. Notice that Barton [36] has considered the situation where heterozygotes present a
cost in fitness and where the fitness of the homozygotes AB|AB and the one of ab|ab are the same, that is
the symmetric case. In Section 2.6.3, we give a mathematical proof of the existence (and uniqueness up to
a shift) of such a cline in this symmetric situation, see Proposition 2.6.2. Such a cline is a solution to the
equation (2.6.12) involving nonlinear gradient terms. We also prove in Proposition 2.6.3 that this stationary
cline is stable, i.e. that small perturbations of the profile may shift its spatial position but essentially do
not alter its shape. In other words, a perturbed stationary cline comes back to a possibly shifted stationary
cline.

When the fitness of the homozygote AB|AB becomes slightly larger than the one of ab|ab, it is not a
priori obvious whether the stationary cline stays stationary or begins to move. Here we answer this question
by showing that invasion does occur even if the difference in fitness between homozygotes has a lower order
of magnitude (measured by 0 < ε � 1) compared to the fitness cost of heterozygotes. By using a rather
involved perturbation analysis, we show in Theorem 2.6.4 that a front traveling at a constant speed cε > 0
emerges from the stationary cline u0 solving (2.6.12) when ε becomes positive. Such a traveling front is a
solution to the reaction-diffusion equation (2.6.11) involving nonlinear gradient terms. We give an explicit
approximation of the speed cε which is, from the modelling point of view, the main contribution of the
present work. Among other implications, it reveals not only that recombination between the two loci tends
to slow down the propagation of the front but also that the stacked clines always travel faster than one cline
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alone.

The organization of the section 2.6 is as follows. In Section 2.6.2 we derive the mathematical model, a
PDE system involving nonlinear gradient terms. Through a phase plane analysis, we construct stationary
solutions in Section 2.6.3. Then, in Section 2.6.4, we construct traveling fronts thanks to a perturbation
argument. In Section 2.6.5, a trick enables us to derive an explicit approximation of the speed cε which
sheds light on the original model. We conclude and present some perspectives in Section 2.6.6.

2.6.2 Derivation of the mathematical model
2.6.2.1 Biological assumptions

The population occupies a one-dimensional space, along which density is supposed uniform and large. We
focus on the variations of the genetic composition of the population. We consider that the fitness of a
(diploid) individual is affected by two loci: a first locus with two alleles A and a and a second locus with
two alleles B and b. We assume that heterozygotes have the lowest fitness (underdominance), the fitness of
the different genotypes at each locus being given in Table 2.6.1.

genotype fitness

AA 1 + 2sA
Aa 1 + sA − SA
aa 1

genotype fitness

BB 1 + 2sB
Bb 1 + sB − SB
bb 1

Table 2.6.1: Fitness of the different genotypes at each locus.

Here the constants sA, sB , SA, SB satisfy 0 ≤ sA < SA, 0 ≤ sB < SB . We then assume multiplicative effects
among loci, so that the fitnesses W of two-locus genotypes are given in Table 2.6.2.

AA Aa aa

BB (1 + 2sB)(1 + 2sA) (1 + 2sB)(1 + sA − SA) 1 + 2sB
Bb (1 + sB − SB)(1 + 2sA) (1 + sB − SB)(1 + sA − SA) 1 + sB − SB
bb 1 + 2sA 1 + sA − SA 1

Table 2.6.2: Fitness of diploid individuals.

Note that, because we will derive expressions to the first order in sA, sB , SA and SB , assuming additive
effects among loci would lead to the same results.

We assume that recombination occurs with probability r, so that AB|ab individuals may produce Ab
and aB gametes. Throughout the section 2.6.2, the population occupying the left-hand side of the linear
habitat will consist mostly of AB|AB individuals, while the right-hand side will be mostly composed of
ab|ab individuals. In the symmetric situation (sA = sB = 0), if the clines of A and B are shifted in
space, linkage disequilibrium will develop between the two loci and will pull both fronts together until they
are stacked [358], [36], as illustrated in Figure 2.6.1. This section 2.6.2 is concerned with the established
regime where the fronts are stacked (this situation may also result from a secondary contact between two
divergent populations, as considered by [36]). Note that in the general case (sA, sB 6= 0), shifted clines may
not necessarily become stacked; however, we postpone the analysis of the conditions for stacking to future
works.

The PDEs describing the dynamics of two underdominant loci in a 1-dimensional continuous habitat can
be obtained by combining the works [35] and [36]. For the self-containedness of the present work, we present
here a derivation of these equations, obtained by approximating a discrete-time model by a continuous-time
model. In Section 2.6.2.2 we present the genetic model that drives the genetic dynamics. In Section 2.6.2.3 we
introduce the spatial structure and the corresponding equations. Finally in Section 2.6.2.4, we make precise
our assumptions on the parameters and their respective magnitudes, as well as our precise objectives.
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2.6.2.2 Recursions on gamete frequencies in a discrete in time setting

We start by considering a single population of diploid, hermaphroditic individuals with nonoverlapping
generations. At the end of a generation (at time t), individuals release gametes and immediately die. The
next generation, at time t + 1, is formed by the random fusion of gametes. Under these hypotheses, it is
sufficient to follow the frequencies of gametes produced at each generation, which completely determine the
next generation of individuals (by the law of large numbers). Denote by yA

B
, yA

b
, ya

B
, ya

b
the frequencies of

the different types of gametes at generation t. The fusion at random of these four combinations gives birth
to sixteen types of individuals (“ordered” in the sense that zi|j 6= zj|i for i 6= j)

zi|j , i, j ∈ {AB ,Ab , aB , ab},

with proportions pi|j . Notice that, for i 6= j, the fusion can be male-female or female-male so that we have
pi|j = 2× 1

2yiyj , thus
pi|j = yiyj .

Each one of these individuals then produces gametes according to its fitness, providing the generation of
gametes y′A

B

, y′A
b

, y′a
B
, y′a

b
at time t+ 1. Here we assume that there is a probability of recombination 0 ≤ r ≤ 1

2
between the two loci. For each of the sixteen diploid genotypes, the process is as one of the three following
examples:
• the individuals zA

B
|A
B
, whose proportion is y2

A
B

, release gametes AB in proportion 1.
• the individuals zA

B
|A
b
, whose proportion is yA

B
yA
b
, release gametes AB in proportion 1

2 and gametes Ab in
proportion 1

2 .
• the individuals zA

B
|a
b
, whose proportion is yA

B
ya
b
, release gametes AB and a

b both in proportion 1−r
2 (no

recombination), and gametes Ab and a
B both in proportion r

2 (recombination).
All these processes are weighted by the fitness of each type of individual, as in the above table. After a

tedious but straightforward analysis, one obtains:

y′A
B

= 1
W

[
(1 + 2sA)(1 + 2sB)y2

A
B

+ (1 + 2sA)(1 + sB − SB)yA
B
yA
b

+ (1 + sA − SA)(1 + 2sB)yA
B
ya
B

+ (1− r)(1 + sA − SA)(1 + sB − SB)yA
B
ya
b

+ r(1 + sA − SA)(1 + sB − SB)ya
B
yA
b

]
y′A
b

= 1
W

[
(1 + 2sA)y2

A
b

+ (1 + 2sA)(1 + sB − SB)yA
b
yA
B

+ (1 + sA − SA)yA
b
ya
b

+ (1− r)(1 + sA − SA)(1 + sB − SB)yA
b
ya
B

+ r(1 + sA − SA)(1 + sB − SB)yA
B
ya
b

]
y′a
B

= 1
W

[
(1 + 2sB)y2

a
B

+ (1 + sB − SB)ya
B
ya
b

+ (1 + sA − SA)(1 + 2sB)ya
B
yA
B

(1− r)(1 + sA − SA)(1 + sB − SB)ya
B
yA
b

+ r(1 + sA − SA)(1 + sB − SB)yA
B
ya
b

]
y′a
b

= 1
W

[
y2
a
b

+ (1 + sA − SA)ya
b
yA
b

+ (1 + sB − SB)ya
b
ya
B

+ (1− r)(1 + sA − SA)(1 + sB − SB)ya
b
yA
B

+ r(1 + sA − SA)(1 + sB − SB)ya
B
yA
b

]
,

where W is the average fitness:

W =
∑

i,j∈{A
B
,A
b
,a
B
,a
B
}

pi|jWi|j

= (1 + 2sA)(1 + 2sB)y2
A
B

+ (1 + 2sA)y2
A
b

+ (1 + 2sB)y2
a
B

+ y2
a
b

+ 2(1 + 2sA)(1 + sB − SB)yA
B
yA
b

+ 2(1 + sA − SA)(1 + 2sB)yA
B
ya
B

+ 2(1 + sA − SA)(1 + sB − SB)yA
B
ya
b

+ 2(1 + sA − SA)(1 + sB − SB)yA
b
ya
B

+ 2(1 + sA − SA)yA
b
ya
b

+ 2(1 + sB − SB)ya
B
ya
b
.

Notice that adding the four above equations, one can check y′A
B

+ y′A
b

+ y′a
B

+ y′a
b

= W
W

= 1.
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For ease of notation, we now let

u := yA
B
, v := yA

b
, w := ya

B
, z := ya

b
, (2.6.1)

so that
u+ v + w + z = 1. (2.6.2)

As in [36], we shall rather work on the three components system satisfied by

p := u+ v, q := u+ w, D := uz − vw, (2.6.3)

where
• p measures the frequency of allele A,
• q measures the frequency of allele B,
• D stands for the linkage disequilibrium, measuring the association between alleles A and B within

gametes (notice that, equivalently, D = u− pq).
Notice that

u = pq +D, v = p (1− q)−D, w = (1− p) q −D, z = (1− p)(1− q) +D. (2.6.4)

Next, we assume that sA, sB , SA, SB , r are small and of the same order of magnitude, that is

sA ← sAα, sB ← sBα, SA ← SAα, SB ← SBα, r ← rα, (2.6.5)

for 0 < α� 1. Taking into account (2.6.1), (2.6.2), (2.6.3), (2.6.4), (2.6.5), one can perform straightforward
(but tedious) computations and obtain to the first order in α:

p′ = p+ α
[

(SA(2p− 1) + sA) p(1− p) + (SB(2q − 1) + sB)D
]

q′ = q + α
[

(SB(2q − 1) + sB) q(1− q) + (SA(2p− 1) + sA)D
]

D′ = D − α
[
r + (2p− 1) (SA(2p− 1) + sA) + (2q − 1) (SB(2q − 1) + sB)

]
D.

(2.6.6)

2.6.2.3 Inserting a spatial structure and switching to continuous time

Finally we consider the associated problem with a spatial structure x ∈ R (corresponding to the position
of individuals along space) and continuous time t ≥ 0. More precisely, we assume that gametes migrate
according to a dispersal kernel centered on 0 and with variance σ2. In the diffusion limit, and from (2.6.6),
the equations for the frequencies p = p(t, x), q = q(t, x) arept = σ2

2 pxx + (SA(2p− 1) + sA) p(1− p) + (SB(2q − 1) + sB)D

qt = σ2

2 qxx + (SB(2q − 1) + sB) q(1− q) + (SA(2p− 1) + sA)D,

where σ > 0. Notice that, since we assumed that the density of individuals is uniform and large, no advection
term appears in the above system. As for the equation for the disequilibriumD = uz−vw, we have additional
gradient terms (e.g. [38], [36]) since

Dt =
(
σ2

2 uxx + · · ·
)
z + u

(
σ2

2 zxx + · · ·
)
−
(
σ2

2 vxx + · · ·
)
w − v

(
σ2

2 wxx + · · ·
)

= σ2

2 (Dxx + 2(−uxzx + vxwx)) + · · ·

= σ2

2 (Dxx + 2(pxqx) + · · ·

where we have used the identity

pxqx = (u+ v)x(u+ w)x = ux(ux + vx + wx) + vxwx = −uxzx + vxwx.

Hence, from (2.6.6), the equation for D = D(t, x) is

Dt = σ2

2 Dxx + σ2pxqx − [r + (2p− 1) (SA(2p− 1) + sA) + (2q − 1) (SB(2q − 1) + sB)]D.



190

2.6.2.4 Conclusion and goals

Hence the system for the allele frequencies p = p(t, x), q = q(t, x) and the linkage disequilibrium D = D(t, x)
is written


pt = σ2

2 pxx + (SA(2p− 1) + sA) p(1− p) + (SB(2q − 1) + sB)D

qt = σ2

2 qxx + (SB(2q − 1) + sB) q(1− q) + (SA(2p− 1) + sA)D

Dt = σ2

2 Dxx + σ2pxqx − [r + (2p− 1) (SA(2p− 1) + sA) + (2q − 1) (SB(2q − 1) + sB)]D,

(2.6.7)

where σ > 0, r > 0, sA > 0, sB > 0, sA > 0 and SB > 0 are given parameters. Observe that, starting from
D ≡ 0 (no disequilibrium) the dynamics of p and q are decoupled but the gradient terms px and qx in the
D-equation cause disequilibrium and thus interaction [36], see Figure 2.6.1.
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Figure 2.6.1: Numerical solutions with parameters sA = sB = 0 (symmetric case), SA = SB = r = 0.1 and
σ2

2 = 1. Left column: p, q and D; the clines are initially uncoupled; next, in a transitory regime, they are
driven closer to each other, and eventually become stacked. Right column: the original unknowns, that is the
frequencies of gametes u, v, w, z. Remark: the partial differential system in (u, v, w, z) is a reaction-diffusion
system for which a standard Strang splitting method was used; numerical simulations were done in python
3.9.2 with the NumPy package version 1.20.1. The code for the simulations and figures is available on the
GitHub repository https://github.com/benoit-sbr/reac-diff-Strang-splitting.

Assuming that recombination r is sufficiently large relative to the strength of selection against heterozy-
gotes (SA, SB , determining the gradients in allele frequencies, e.g. [35]) and homozygotes (sA, sB), one
expects that D approximately follows

Dt ≈
σ2

2 Dxx + σ2pxqx − rD.

In the sequel, we use a quasi-linkage equilibrium approximation [36], meaning that the dynamics on D is

https://github.com/benoit-sbr/reac-diff-Strang-splitting
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much faster than the one of p and q. As a result,

σ2

2 Dxx + σ2pxqx − rD ≈ 0,

whose solution is given by (one may use the Fourier transform to see it)

D(t, x) ≈ σ2

r
ρσ ∗ (pxqx(t, ·))(x), ρα(x) := 1

2

√
2r
σ2 e

−
√

2r
σ2 |x|.

For σ sufficiently small, the kernel ρα “approaches” the Dirac delta function, and thus

D ≈ σ2

r
pxqx. (2.6.8)

As a result, using (2.6.8) and writing (p, q)(t, x) = (p̃, q̃)
(
t,
√

2
σ x
)
, we reach a simplified version of system

(2.6.7), namely p̃t = p̃xx + SAf(p̃) + sAg(p̃) + 2
r (SB(2q̃ − 1) + sB)p̃xq̃x,

q̃t = q̃xx + SBf(q̃) + sBg(q̃) + 2
r (SA(2p̃− 1) + sA)p̃xq̃x,

where
f(u) := u(2u− 1)(1− u), g(u) := u(1− u).

For ease of notation in the mathematical analysis, we now drop the tildes but keep in mind that, when
returning to the original model, the traveling waves speeds we will find have to be multiplied by the factor
σ√
2 . Last, we assume that

SA = SB = S, sA = sB = s =: ε, (2.6.9)

and thus focus on the systempt = pxx + Sf(p) + εg(p) + 2
r (S(2q − 1) + ε)pxqx,

qt = qxx + Sf(q) + εg(q) + 2
r (S(2p− 1) + ε)pxqx.

(2.6.10)

Notice that f is a balanced bistable nonlinearity, which is slightly unbalanced by the term εg.
In the sequel, our goal is to inquire on the situation where the A cline, measured by p, and the B cline,

measured by q, remain stacked together. To do so we look at u = p = q solving the nonlinear equation

ut = uxx + Sf(u) + εg(u) + 2
r

(S(2u− 1) + ε)u2
x. (2.6.11)

We suspect the existence of a stationary solution connecting 1 to 0 for ε = 0 and that of a front connecting
1 to 0 and traveling at a speed cε ∼ c1ε for some c1 > 0 and 0 < ε � 1. These facts are proved in Section
2.6.3 and 2.6.4, while c1 is explicitly identified in Section 2.6.5.

2.6.3 Standing together (ε = 0)
In this section 2.6.3, we construct a stationary solution connecting 1 to 0 in (2.6.11) when ε = 0, and then
prove its stability.

2.6.3.1 Construction of the standing wave

We are here looking after a u0 : R→ R solvingu
′′
0 + Sf(u0) + 2

r
S(2u0 − 1)(u′0)2 = 0 on R,

u0(−∞) = 1, u0(+∞) = 0.
(2.6.12)

Lemma 2.6.1 (A priori estimates). Any standing wave solution of (2.6.12) has to satisfy 0 < u0 < 1 and
u′0(±∞) = 0.
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Figure 2.6.2: Phase plane analysis for (2.6.13). In red, the nullcline x′ = 0, in green the nullcline y′ = 0,
in brown dashed the linear unstable manifold at (1, 0), in blue (an approximation of) the heteroclinic orbit
from (1, 0) to (0, 0). Left: the parameters are S = 0.6, r = 0.25 so that (2.6.14) holds. Right: the parameters
are S = 0.85, r = 0.15 so that (2.6.14) does not hold.

Proof. If u0 ≤ 1 is not true then, from the boundary conditions, u0 has to reach a maximum value strictly
larger than 1 at some point but, testing the equation at this point, this cannot hold. Hence u0 ≤ 1 and,
from the strong maximum principle, u0 < 1. Similarly u0 > 0.

From the equation and the boundary condition, u′′0 > 0 in some (A,+∞), so that u′0 is increasing
on (A,+∞). As a result u′0 has a limit in +∞, which has to be zero since u0 is bounded. Similarly
u′0(−∞) = 0.

Using a phase plane analysis (x, y) = (u0, u
′
0), the equation in (2.6.12) is recastx

′ = y

y′ = −Sf(x)− 2
rS(2x− 1)y2.

(2.6.13)

The phase plane analysis is depicted in Figure 2.6.2. The equilibria (0, 0) and (1, 0) are saddle points, the
eigenvalues of the Jacobian matrix at these points being ±

√
S, whereas the equilibrium ( 1

2 , 0) is a center,
the eigenvalues of the Jacobian matrix at this point being ±i

√
S
2 . At equilibrium (1, 0) the linear unstable

manifold is the line y =
√
S(x − 1). To prove the existence of a heteroclinic orbit from (1, 0) to (0, 0),

we consider the orbit leaving (1, 0) along the unstable manifold. As long as it has not reached x = 1
2 this

trajectory satisfies x′ < 0 and y′ < 0 (south west trajectory). In order to prove that the trajectory does
cross the vertical line x = 1

2 , we need to construct a barrier, from below, preventing the situation x→ l ≥ 1
2 ,

y → −∞. We choose the line y = α(x − 1) with α > 0 to be selected large enough. Choosing α >
√
S

ensures that the trajectory is above the barrier in a neighborhood of (1, 0). We thus need to show that
|y′|
|x′|

< α on the points (x, y) such that y = α(x− 1), 1
2 ≤ x < 1.

After some straightforward computations, this is recast

ϕ(x) := (2x− 1)
∣∣∣∣(1− 2α2

r

)
x+ 2α2

r

∣∣∣∣ < α2

S
, for all 1

2 ≤ x < 1.

Assuming 1− 2α2

r < 0, and evaluating the maximum of ϕ on [ 1
2 , 1], we reach(

2α2

r + 1
)2

8
( 2α2

r − 1
) < α2

S
,
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which can be obtained with α sufficiently large provided

S < 4r. (2.6.14)

Notice that, from the modelling point of view, assumption (2.6.14) is consistent with the asymptotics “S
small” performed in Section 2.6.2 (quasi-linkage equilibrium approximation). On the other hand, even if
(2.6.14) does not hold, the (right) phase plane analysis of Figure 2.6.2 suggests that the heteroclinic orbit
joining (1, 0) to (0, 0) still exists, but the above argument does not apply.

As a result, under assumption (2.6.14), the orbit touches the line x = 1
2 at some point ( 1

2 ,−β) for some
β > 0. Since the problem is symmetric with respect to x = 1

2 , we conclude that the orbit then converges to
the equilibrium (0, 0) along the stable manifold, the linear stable manifold being given by y = −

√
Sx. This

trajectory provides a positive and decreasing solution u0 to (2.6.12).
In other words, we have (nearly) proved the following.

Proposition 2.6.2 (Stationary solution for ε = 0). Let us assume (2.6.14). Then there is a unique u0 :
R→ R solving (2.6.12) and satisfying the normalization condition u0(0) = 1

2 .
Moreover, u0 is positive, decreasing, symmetric in the sense that

u0(−x) = 1− u0(x) for all x ∈ R,

and has the asymptotics

1− u0(x) ∼ Ce
√
Sx as x→ −∞, u0(x) ∼ Ce−

√
Sx as x→ +∞, (2.6.15)

for some C > 0.

Proof. From the above phase plane analysis, we are already equipped with a positive, decreasing and sym-
metric u0 solving (2.6.12). The asymptotics (2.6.15) is rather classical but, for the convenience of the reader,
we sketch a short and direct proof. We work as x → +∞. We know from the phase plane analysis that
u′0(x) ∼ −

√
Su0(x) so that

u0(x) = e−
√
Sx+o(x). (2.6.16)

Now, from the nonlinear ODE, we have, for some K > 0,

−Ku2
0(x) ≤ u′′0(x)− Su0(x) ≤ Ku2

0(x).

Multiplying this by u′0(x) < 0 and integrating from x to +∞, we have,

−K3 u
3
0(x) ≤ −1

2(u′0)2(x) + S

2 u
2
0(x) ≤ K

3 u
3
0(x).

As a result,

|u′0(x) +
√
Su0(x)| =

∣∣∣∣∣−(u′0)2(x) + Su2
0(x)

−u′0(x) +
√
Su0(x)

∣∣∣∣∣ ≤ 2K
3 u2

0(x)∣∣∣−u′0(x)
u0(x) +

√
S
∣∣∣ ≤Mu2

0(x), (2.6.17)

where M := 2K
3
√
S
> 0. From this and (2.6.16) we deduce that e

√
Sx(u′0(x) +

√
Su0(x)) = d

dx

(
e
√
Sxu0(x)

)
must be integrable in +∞. As a result there is C ≥ 0 such that e

√
Sxu0(x)→ C as x→ +∞. Now the left

inequality in (2.6.17) implies

−
√
S ≤ u′0

u0 + M√
S
u2

0
= u′0
u0
−

M√
S
u′0

1 + M√
S
u0
.

Integrating this from 0 to x, we obtain

−
√
Sx ≤ ln

(
u0(x)

1 + M√
S
u0(x)

×
1 + M√

S
u0(0)

u0(0)

)
,

and thus
e
√
Sx ≥

(
1 + M√

S
u0(x)

)
u0(0)

1 + M√
S
u0(0)

≥ u0(0)
1 + M√

S
u0(0)

,



195

so that C > 0 and we are done with (2.6.15).
It remains to prove uniqueness. We use a sliding method argument. Let v0 be “another” solution such

that v0(0) = 1
2 . For K ≥ 0, define the shifted function vK(x) := v0(x −K). Since v0 must also have some

asymptotics of the form (2.6.15), say with some constant C ′ > 0 instead of C, we see that u0 ≤ vK on R for
K > 0 sufficiently large. As a result the real number

K0 := inf {K ∈ R : u0(x) ≤ vK(x),∀x ∈ R}

is well defined and nonnegative. Assume by contradiction that K0 > 0. Then there is a point x0 ∈ R where
u0(x0) = vK0(x0) and u′0(x0) = v′K0

(x0) so that, from Cauchy-Lipschitz theorem, u0 ≡ vK0 on R, which is
excluded by the normalization conditions. As a result K0 = 0 and thus u0 ≤ v0. Similarly v0 ≤ u0 and we
are done.

2.6.3.2 Stability of the standing wave

We prove here that the standing wave constructed in Proposition 2.6.2 is linearly stable in the L∞ norm.
More precisely the following holds.

Proposition 2.6.3 (Stability of standing waves). Let u0 be the standing wave constructed in Proposition
2.6.2. Let h ∈ C1

b (R) be given. Let v solve the parabolic Cauchy problemvt(t, x) = vxx(t, x) + Sf(v(t, x)) + 2
r
S(2v(t, x)− 1)(vx(t, x))2, t > 0, x ∈ R,

v(0, x) = u0(x) + εh(x), x ∈ R.

Then there is λ0 > 0 such that, for any 0 < λ < λ0, the following holds: for sufficiently small ε, there is
a continuous function γ(ε) satisfying

γ(0) =
∫
R
h(x)u′0(x)e 4S

r (u2
0(x)−u0(x))dx,

and a constant K > 0 such that, for all t > 0,

‖v(t, ·)− u0(·+ εγ(ε))‖C1
b
(R) ≤ Ke−λt.

Proof. We aim at applying a result of Sattinger, namely [349, Theorem 4.1]. To do so, we need to show that
the linear operator (obtained by linearizing (2.6.12) around the solution u0)

Lh := h′′ + 4S
r

(2u0 − 1)u′0h′ + S

(
f ′(u0) + 4

r
(u′0)2

)
h,

satisfies the assumptions (i) and (ii) of [349, Lemma 3.4]. Since equation (2.6.12) is a scalar quasilinear
second-order differential equation set on R and with a smooth nonlinearity, the assumption (ii) of [349,
Lemma 3.4] can be readily checked thanks to [349, Lemma 5.4]. As for the assumption (i) of [349, Lemma
3.4], we point out that [349, Corollary 5.7] does not apply to our situation. Indeed, because of the u′0 factor,
the coefficient of the first-order term in L vanishes when x→ ±∞. We thus need to determine the spectrum
of L.

The liner operator L admits u′0 as principal eigenvector with eigenvalue 0. We remark that L can be
written as

Lh = e−
2S
r (u2

0−u0)M
(
he

2S
r (u2

0−u0)
)
,

where
Mk := k′′ +

(
2S2

r
(2u0 − 1)f(u0) + Sf ′(u0)

)
k =: k′′ + c(x)k.

Since the weight function e
4S
r (u2

0−u0) is bounded and uniformly positive, the operators L and M can be
considered as acting on the same space C0

b (R). In particular, λI − L admits a bounded inverse if and only
if λI −M does (where I is the identity mapping on C0

b (R)), and we have

(λI − L)−1 = e−
2S
r (u2

0−u0)(λI −M)−1e
2S
r (u2

0−u0).
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Below, by following ideas of [349], we analyze, for g ∈ C0
b (R), the set of solutions to the resolvent equation

(λI −M)k = −k′′ + (λ− c(x))k = g(x), (2.6.18)

and then determine the spectrum of M .
1. System of fundamental solutions to the homogeneous equation: we first look for a system of
fundamental solutions to

− k′′ + (λ− c(x))k = 0, (2.6.19)
whose behaviour near ±∞ can be determined (see [349, Lemma 5.1] for related arguments) for λ ∈ C such
that λ+ S 6∈ R−.

Near +∞, this is performed by substituting ϕ1(x) = z1(x)e−γ+x in (2.6.19), where γ+ ∈ C solves
γ2

+ = λ+ S and Re γ+ > 0. We obtain

− z′′1 + 2γ+z
′
1 − (S + c(x))z1 = 0, (2.6.20)

which is recast
−(z′1e−2γ+x)′ − (S + c(x))z1e

−2γ+x = 0,
so that, assuming z′1(+∞) = 0,

z′1(x) =
∫ +∞

x

e−2γ+(y−x)(S + c(y))z1(y)dy, (2.6.21)

and thus, assuming z1(+∞) = 1,

z1(x) = 1 +
∫ +∞

x

e2γ+(x−y) − 1
2γ+

(S + c(y))z1(y)dy. (2.6.22)

Hence z1 is written as the solution of a fixed-point problem (2.6.22) set on C0
b (R+). Notice that the

asymptotic behaviour (2.6.15) of u0 implies y 7→ S + c(y) ∈ L1(R+). As a result, for a given x0 > 0,
the right-hand side operator appearing in (2.6.22) is globally Lipschitz continuous on C0

b ([x0,+∞)) with
Lipschitz constant 1

2|γ+|
∫ +∞
x0
|S+c(y)|dy. Hence, equation (2.6.22) has a unique solution z1 on C0

b ([x0,+∞))
for x0 sufficiently large, and this z1 can be extended to (−∞, x0) by solving the adequate Cauchy problem
associated with (2.6.20). We have therefore constructed a solution ϕ1(x) = z1(x)e−γ+x to (2.6.19) with
z1 ∈ C0

b (R+), z1(+∞) = 1.
By the same procedure, but integrating on [x0, x] instead of [x,+∞) in (2.6.21), we can construct a

solution ϕ2(x) = z2(x)eγ+x to (2.6.19) with z2 ∈ C0
b (R+) provided by the fixed-point problem

z2(x) = 1 +
∫ x

x0

1− e−2γ+(x−y)

2γ+
(S + c(y))z2(y)dy.

By the continuous dependence of the fixed-point with respect to the parameter x0 [413, Proposition 1.2],
and by selecting x0 sufficiently large, z2(x) can be made arbitrarily close to 1. Indeed z2(x + x0) is the
unique fixed point of the operator

Tx0z(x) := 1 +
∫ x

0

1− e−2γ+(x−y)

2γ+
(S + c(x0 + y))z(y)dy,

and Tx0 converges uniformly to the constant operator T+∞z ≡ 1 as x0 → +∞:

‖Tx0z − 1‖C0
b
([0,+∞)) ≤

(
1

2|γ+|

∫ +∞

x0

|S + c(y)|dy
)
‖z‖C0

b
([0,+∞)) −−−−→

x0→∞
0.

Therefore we have found a system of fundamental solutions (ϕ1, ϕ2) to (2.6.19) whose behaviour near
+∞ is known. We can proceed similarly near −∞ and find another system of fundamental solutions (ψ1, ψ2)
whose behaviour near −∞ is known.

Summarizing, for each λ ∈ C \ (−∞,−S], we have

ϕ1(x) ≈+∞ e−γ+x, ϕ2(x) ≈+∞ eγ+x, ψ1(x) ≈−∞ eγ+x, ψ2(x) ≈−∞ e−γ+x, (2.6.23)
ϕ′1(x) ≈+∞ e−γ+x, ϕ′2(x) ≈+∞ eγ+x, ψ′1(x) ≈−∞ eγ+x, ψ′2(x) ≈−∞ e−γ+x, (2.6.24)
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where A(x) ≈+∞ B(x) means 0 < lim infx→+∞
|A(x)|
B(x) ≤ lim supx→+∞

|A(x)|
B(x) < +∞. Notice that, if λ is not

an eigenvalue of M , we further know that ϕ1 is unbounded as x→ −∞ (or else it would be an eigenvector),
and ψ1 is unbounded as x→ +∞. Notice also that the constants involved in the above estimates are locally
uniform in λ.

2. Solving equation (2.6.18) if λ ∈ C \ (−∞,−S] is not an eigenvalue of M : from the behaviours
near −∞, the functions ϕ1 and ψ1 are linearly independent. Therefore, up to redefining ϕ2 = ψ1, we may
consider that (ϕ1, ϕ2) is a system of fundamental solutions satisfying

ϕ1(x) ≈+∞ e−γ+x, ϕ2(x) ≈+∞ eγ+x, ϕ1(x) ≈−∞ e−γ+x, ϕ2(x) ≈−∞ eγ+x,

ϕ′1(x) ≈+∞ e−γ+x, ϕ′2(x) ≈+∞ eγ+x, ϕ′1(x) ≈−∞ e−γ+x, ϕ′2(x) ≈−∞ eγ+x.

We use the method of variation of constants to solve (2.6.18) and straightforwardly reach

k(x) =
(
C1 −

1
W

∫ x

−∞
ϕ2(y)g(y)dy

)
ϕ1(x) +

(
C2 −

1
W

∫ +∞

x

ϕ1(y)g(y)dy
)
ϕ2(x),

where C1 and C2 are arbitrary constants and W is the constant Wronskian W = W (x) = ϕ1(x)ϕ′2(x) −
ϕ′1(x)ϕ2(x). Therefore, there is a unique bounded solution k(x), which corresponds to C1 = C2 = 0.

Hence, for each g ∈ C0
b (R) there exists a unique k ∈ C2

b (R) such that (λI −M)k = g. By the open
mapping theorem, the operator λI −M has a bounded inverse (λI −M)−1 : C0

b (R)→ C2
b (R) ↪→ C0

b (R). In
particular,

if λ ∈ C \ (−∞,−S] is not an eigenvalue of M , then λ is in the resolvent set of M.

3. The eigenvalues in C\ (−∞,−S] of M : if λ ∈ C\ (−∞,−S] is an eigenvalue of M then, from (2.6.23),
the eigenvector must be proportional to both ϕ1 and ψ1, hence ϕ1 and ψ1 are not linearly independent.
Hence the Wronskian ϕ1ψ

′
1−ϕ′1ψ1 must vanish. Since the Wronskian is analytic in λ (see [349, Lemma 5.2])

and not identically zero, the eigenvalues of M in C \ (−∞,−S] are isolated.
Let λ ∈ C \ (−∞,−S] be an eigenvalue of M . Then the associated eigenvector ϕ is a solution to (2.6.18)

and the former analysis applies. In particular, ϕ and ϕ′ converge exponentially fast to 0 near ±∞ (at rate
∓γ+, Re γ+ > 0) and therefore ϕ ∈ H1(R). Since M is symmetric on H1(R), we have in fact λ ∈ R.
Reproducing the argument of [349, Theorem 5.5], we see that there are no positive eigenvalues of M .

We conclude from the above analysis that the eigenvalues ofM in C\(−∞,−S] form a sequence (λn)n∈N
(with λ0 = 0) of isolated values in (−S, 0]. As a result the spectrum of M satisfies

σ(L,C0
b (R)) = σ(M,C0

b (R)) ⊂ (−∞,−S] ∪ {λn, n ≥ 0}.

This shows that the assumption (i) of [349, Lemma 3.4] holds in our case and concludes the proof of
Proposition 2.6.3.

2.6.4 Traveling together (0 < ε� 1)
In this section 2.6.4, we construct a traveling front connecting 1 to 0 in (2.6.11), when 0 < ε � 1, through
a perturbation argument from the case ε = 0 studied above.

We are here looking after a nonnegative profile u : R→ R and a speed c ∈ R solvingu
′′ + cu′ + Sf(u) + εg(u) + 2

r (S(2u− 1) + ε)(u′)2 = 0 on R,

u(−∞) = 1, u(+∞) = 0.
(2.6.25)

Observe that, from the strong maximum principle we have u > 0. Also, as in the proof of Lemma 2.6.1, we
have u < 1. Hence, we a priori know 0 < u < 1.

We use a perturbation technique and look for u in the form

u = u0 + h,
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where u0 is provided by Proposition 2.6.2 and with, typically, h(±∞) = h′(±∞) = 0. Plugging this ansatz
into the equation, we see that we need F(ε, c, h) = 0, where

F : R× R× E → Ẽ

is defined by

F(ε, c, h) := h′′ + cu′0 + ch′ + S(f(u0 + h)− f(u0)) + εg(u0 + h)

+ 2
r

(S(2u0 + 2h− 1) + ε) (u′0 + h′)2 − 2
r
S(2u0 − 1)(u′0)2. (2.6.26)

As for the function spaces, we choose the weighted Hölder spaces

E := C2,α
µ (R), Ẽ := C0,α

µ (R), 0 < α < 1, (2.6.27)

where, for k ∈ N,

Ck,αµ (R) :=
{
f ∈ Ck(R) : ‖f‖Ck,αµ (R) < +∞

}
, ‖f‖Ck,αµ (R) :=

∥∥∥x 7→ eµ
√

1+x2
f(x)

∥∥∥
Ck,α(R)

,

for well-chosen µ ≥ 0. Here, Ck,α(R) denotes the Hölder space consisting of functions of the class Ck, which
are continuous and bounded on the real axis R together with their derivatives of order k, and such that the
derivatives of order k satisfy the Hölder condition with the exponent 0 < α < 1 . The norm in this space is
the usual Hölder norm.

Our main result in this section 2.6.4 then reads as follows.

Theorem 2.6.4 (Traveling waves for 0 < ε � 1). Let 0 ≤ µ <
√
S be given. Let F : R × R × C2,α

µ (R) →
C0,α
µ (R) be defined as in (2.6.26).
Then there is ε0 > 0 such that, for any 0 ≤ ε ≤ ε0, there exists (cε, hε) ∈ R×E such that F(ε, cε, hε) = 0.

Moreover the map ε 7→ (cε, hε) is continuous, the speed cε satisfies

cε =
−
∫
R

(
g(u0) + 2

r
(u′0)2

)
u′0e

4S
r (u2

0−u0)∫
R

(u′0)2e
4S
r (u2

0−u0)
ε+ o(ε), as ε→ 0, (2.6.28)

whereas the perturbation profile hε satisfies∫
R
hεu
′
0 = 0, for all 0 ≤ ε ≤ ε0. (2.6.29)

In what follows we aim at applying the Implicit Function Theorem 2.6.10 to the operator F defined in
(2.6.26), see [14] for a related argument. We straightforwardly compute the derivatives with respect to c
and h at the origin (0, 0, 0):

∂cF(0, 0, 0)(c) = cu′0,

and
Lh := ∂hF(0, 0, 0)(h) = h′′ + 4S

r
u′0(2u0 − 1)h′ + S

(
f ′(u0) + 4

r
(u′0)2

)
h. (2.6.30)

We need to show that ∂c,hF(0, 0, 0) given by

(c, h) 7→ Lh+ cu′0

is bijective from and to a well-chosen pair of function spaces. Our strategy is as follows. In section 2.6.4.1,
thanks to some results of [386], [384] (recalled in Appendix), we show that L is a Fredholm operator and
compute its index (which depends on the choice of µ). Next, in section 2.6.4.2, we determine the kernel
of L. In particular u′0 is the only bounded solution. We also determine the kernel of L∗ thanks to an
algebraic symmetric formulation in a well-chosen weighted L2 space, from which we deduce the surjectivity
of ∂c,hF(0, 0, 0). Then we conclude the proof of Theorem 2.6.4 in section 2.6.4.3.
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2.6.4.1 Fredholm property

Lemma 2.6.5 (Fredholm property). The operator L : C2,α
µ (R) → Cαµ (R), defined in (2.6.30), is Fredholm

if µ 6=
√
S and we have

ind L =
{

0 if 0 ≤ µ <
√
S,

−2 if µ >
√
S.

Proof. In view of Remark 2.6.13 it suffices to study the limiting operators (Lµ)± associated with Lµ defined
as in (2.6.41), namely

(Lµ)±h = h′′ ∓ 2µh′ + (µ2 − S)h,
thanks to Theorem 2.6.12. First since −ξ2 ∓ 2µiξ + µ2 − S = 0, corresponding to (2.6.39), has no real
solution, L is Fredholm. Next, the associated characteristic equation, corresponding to (2.6.40), writes

X2 ± 2µX + (µ2 − S) = 0,

and has the following roots:

X+
1,2 = −µ±

√
S,

X−1,2 = +µ±
√
S.

If 0 ≤ µ <
√
S we deduce that κ+ = 1 and κ− = 1 (in the notations of Theorem 2.6.12), hence ind L = 0; if√

S < µ we have κ+ = 0 and κ− = 2, hence ind L = −2. This completes the proof of Lemma 2.6.5.

2.6.4.2 Kernels of L, L∗ and surjectivity of ∂c,hF(0, 0, 0)

Lemma 2.6.6 (The kernel of L). Two linearly independent solutions to the linear homogeneous ordinary
differential equation

Lh := h′′ + 4S
r
u′0(2u0 − 1)h′ + S

(
f ′(u0) + 4

r
(u′0)2

)
h = 0 (2.6.31)

are given by
u′0 and v0 : x 7→ u′0(x)

∫ x

0

1
(u′0)2(z)e

− 4S
r (u2

0(z)−u0(z))dz.

Among the two, u′0 is the only bounded solution.
As a result, for 0 ≤ µ <

√
S, the kernel of the operator L acting on the space C2,α

µ (R) into C0,α
µ (R) is

given by
kerL = span u′0.

Proof. We investigate the solutions h to (2.6.31). This is a second-order linear homogeneous ordinary
differential equation, and we already know a solution u′0 (as seen by differentiating (2.6.12)). In this case a
second solution v0 can be sought in the form v0(x) = z(x)u′0(x). Indeed plugging this ansatz into (2.6.31)
yields the following first order linear ordinary differential equation for z′:

z′′ +
(

2u
′′
0
u′0

+ 4S
r

(2u0 − 1)u′0
)
z′ = 0,

or, equivalently,

z′′ +
(

ln((u′0)2) + 4S
r

(u2
0 − u0)

)′
z′ = 0.

As a result, we can select the solution

z′(x) = 1
(u′0)2(x)e

− 4S
r (u2

0(x)−u0(x)),

which we integrate to reach z(x), and thus

v0(x) = u′0(x)
∫ x

0

1
(u′0)2(z)e

− 4S
r (u2

0(z)−u0(z))dz. (2.6.32)
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Now, from the analysis in Section 2.6.3, we know that, for some C > 0,

u′0(z) ∼ Ce−
√
Sz, as z → +∞. (2.6.33)

Since u0(+∞) = 0, the integrand in (2.6.32) is equivalent to 1
C2 e

2
√
Sz as z → +∞, and thus

v0(x) ∼ 1
C2
√
S
e
√
Sx, as x→ +∞. (2.6.34)

Thus v0 is unbounded and, in particular, v0 6∈ C2,α
µ (R). Since solutions to (2.6.31) are the linear combinations

of u′0 ∈ C2,α
µ (R) when 0 ≤ µ <

√
S, v0 /∈ C2,α

µ (R), and since L : C2,α
µ (R) → Cαµ (R), we conclude that

kerL = span u′0 when 0 ≤ µ <
√
S.

Lemma 2.6.7 (The kernel of L∗). If 0 ≤ µ <
√
S then the kernel of the adjoint operator L∗ is

kerL∗ = span
(
u′0e

4S
r (u2

0−u0)
)
.

On the other hand, if µ >
√
S then

kerL∗ = span
(
u′0e

4S
r (u2

0−u0), v0e
4S
r (u2

0−u0)
)
,

where v0(x) := u′0(x)
∫ x

0

1
(u′0)2(z)e

− 4S
r (u2

0(z)−u0(z))dz is as in Lemma 2.6.6.

Proof. Our starting point is to notice that the coefficient of the first-order term in the definition of L, that
is u′0(2u0 − 1), is the derivative of u2

0 − u0 so that

Lh = h′′ + 4S
r

(u2
0 − u0)′h′ + S

(
f ′(u0) + 4

r
(u′0)2

)
h,

from which we deduce the formulation

Lh =
(
h′e

4S
r (u2

0−u0)
)′
e−

4S
r (u2

0−u0) + S

(
f ′(u0) + 4

r
(u′0)2

)
h,

which is symmetric in the adequate weighted L2 space:∫
R
k(Lh)e 4S

r (u2
0−u0) = −

∫
R
k′h′e

4S
r (u2

0−u0) +
∫
R
S

(
f ′(u0) + 4

r
(u′0)2

)
hke

4S
r (u2

0−u0)

=
∫
R

(Lk)he 4s
r (u2

0−u0).

In particular, for any k ∈ C2,α
µ (R), we have∫

R
k(Lh) =

∫
R
k
(
h′e

4S
r (u2

0−u0)
)′
e−

4S
r (u2

0−u0) + S

(
f ′(u0) + 4

r
(u′0)2

)
hk

=
∫
R
−
(
ke−

4S
r (u2

0−u0)
)′
h′e

4S
r (u2

0−u0)

+
∫
R
S

(
f ′(u0) + 4

r
(u′0)2

)
h
(
ke−

4S
r (u2

0−u0)
)
e

4S
r (u2

0−u0)

=
∫
R
h
(
L(ke− 4S

r (u2
0−u0))

)
e

4S
r (u2

0−u0).

Therefore, if ve− 4S
r (u2

0−u0) = k ∈ kerL, then we have∫
R
(L∗v)h =

∫
R
v(Lh)

=
∫
R
h
(
L(ve− 4S

r (u2
0−u0))

)
e

4S
r (u2

0−u0) = 0,



201

provided each integral is finite. In particular, since C2,α
µ (R) is dense in C0,α

µ (R), this shows that

span
(
u′0e

4S
r (u2

0−u0)
)
⊂ kerL∗.

Assume 0 ≤ µ <
√
S. Then we deduce from Lemma 2.6.5 and Lemma 2.6.6 that dim kerL∗ = − ind L+

dim kerL = 0 + 1 = 1, and therefore we do have kerL∗ = span
(
u′0e

4S
r (u2

0−u0)
)
.

Assume µ >
√
S. This time, the asymptotics for v0 being given in (2.6.34), terms

∫
R v0he

4S
r (u2

0−u0) are
finite as soon as h ∈ C0,α

µ (R), and therefore

span
(
v0e

4S
r (u2

0−u0)
)
⊂ kerL∗,

by a density argument. Then we deduce from Lemma 2.6.5 and Lemma 2.6.6 that dim kerL∗ = − ind L+
dim kerL = −(−2) + 0 = 2. Since u′0e

4S
r (u2

0−u0) and v0e
4S
r (u2

0−u0) are linearly independent, we do have
kerL∗ = span

(
u′0e

4S
r (u2

0−u0), v0e
4S
r (u2

0−u0)
)
.

Lemma 2.6.8 (Surjectivity of ∂c,hF(0, 0, 0)). Let 0 ≤ µ <
√
S be given. Then, the application

∂c,hF(0, 0, 0) : R× C2,α
µ (R) → C0,α

µ (R)
(c, h) 7→ Lh+ cu′0

is surjective.

Proof. We check that u′0 is not in the range of L. Since L has closed range we have Rg L = (kerL∗)⊥, and
thus Rg L =

(
span

(
u′0e

4S
4 (u2

0−u0)
))⊥

from Lemma 2.6.7. But〈
u′0e

4S
4 (u2

0−u0), u′0

〉
(C0,α
µ (R))∗,C0,α

µ (R)
=
∫
R

(u′0)2e
4S
4 (u2

0−u0) > 0

so that u′0 6∈ Rg L. Since Rg L has codimension 1 by Lemma 2.6.5 and 2.6.6, we have C0,α
µ (R) = Rg L ⊕

span u′0. This shows that ∂c,hF(0, 0, 0) is surjective.

Remark 2.6.9. We present here an alternate way to prove that u′0 /∈ Rg L remains true when µ ≥
√
S. To

do so, let us solve the second-order linear ordinary differential equation

w′′ + 4S
r
u′0(2u0 − 1)w′ + S

(
f ′(u0) + 4

r
(u′0)2

)
w = u′0. (2.6.35)

Recall that the solutions of the associated homogeneous equation are spanned by u′0 and v0 provided by
Lemma 2.6.6. To find a particular solution to (2.6.35), we use the method of variation of constants. We see
that ϕ(x) := λ1(x)u′0(x) + λ2(x)v0(x) solves (2.6.35) as soon as{

u′0λ
′
1 + v0λ

′
2 = 0

u′′0λ
′
1 + v′0λ

′
2 = u′0,

which yields
λ′2
u′0v
′
0 − u′′0v0
u′0

= u′0, λ′1 = − v0
u′0
λ′2.

Since u′0v′0−u′′0v0 is nothing else than the Wronskian, it is equal to θ−1e−
4S
r (u2

0−u0) for some θ 6= 0, and thusλ
′
2(x) = θ(u′0)2(x)e 4S

r (u2
0(x)−u0(x)) ∼ θC2e−2

√
Sx

λ′1(x) = −θv0(x)u′0(x)e 4S
r (u2

0(x)−u0(x)) ∼ − θ
2
√
S
,

where the equivalents are taken as x → +∞ and where we have used (2.6.33) and (2.6.34). Hence, we can
select λ2(x) = −

∫ +∞
x

θ(u′0)2(z)e 4S
r (u2

0(z)−u0(z))dz ∼ θC2

2
√
S
e−2
√
Sx

λ1(x) = −
∫ x

0 θv0(z)u′0(z)e 4S
r (u2

0(z)−u0(z))dz ∼ − θ
2
√
S
x.
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Hence the solutions to (2.6.35) are

w(x) = (C1 + λ1(x))u′0(x) + (C2 + λ2(x))v0(x)

for any C1 ∈ R, C2 ∈ R. If C2 6= 0 then, from all the above asymptotic, w is unbounded. If C2 = 0 then,
from all the above asymptotics,

w(x) ∼ − θC

2
√
S
xe−

√
Sx, as x→ +∞.

This shows that w /∈ C2,α
µ (R) when µ ≥

√
S, and thus u′0 /∈ Rg L.

2.6.4.3 Construction of traveling waves

We are now in the position to complete the proof of Theorem 2.6.4, that is the construction of traveling
waves for (2.6.25) when 0 < ε� 1.

Proof of Theorem 2.6.4. Assume 0 ≤ µ <
√
S. Let us recall that F : R × R × C2,α

µ (R) → C0,α
µ (R) is given

by (2.6.26). It is of the class C1 and the Fréchet derivatives are

∂εF(0, 0, 0) = g(u0) + 2
r

(u′0)2,

∂cF(0, 0, 0) = u′0,

L = ∂hF(0, 0, 0) : h 7→ Lh = h′′ + 4S
r
u′0(2u0 − 1)h′ + S

(
f ′(u0) + 4

r
(u′0)2

)
h.

We have shown, in Lemma 2.6.5, that L is a Fredholm operator with indice 0 and, in Lemma 2.6.6, that the
kernel of L is span u′0 in the considered weighted Hölder space.

Our concern is the derivative ∂c,hF(0, 0, 0) : (c, h) 7→ Lh+ cu′0. It has been shown in Lemma 2.6.8 that
it is surjective. It is not difficult to show that

ker ∂c,hF(0, 0, 0) = {0} × span u′0,

and that the restriction of ∂c,hF(0, 0, 0) to R×N , where

N :=
{
f ∈ C2,α

µ (R) :
∫
R
fu′0 = 0

}
is a topological complement of kerL, is injective and still surjective. Therefore we can apply the Implicit
Function Theorem 2.6.10 to the restriction of F to R×R×N . We deduce the existence of a branch (cε, hε),
0 ≤ ε� 1, of solutions with ε 7→ (cε, hε) continuous and hε satisfying (2.6.29).

It remains to prove (2.6.28). Since F is C1 in all its variables we deduce from F(ε, cε, hε) = 0 and the
chain rule that

∂εF(ε, cε, hε) + dcε
dε

∂cF(ε, cε, hε) + ∂hF(ε, cε, hε)
(
dhε
dε

)
= 0,

which we evaluate at ε = 0 to get

g(u0) + 2
r

(u′0)2 + dcε
dε

∣∣∣∣
ε=0

u′0 + L

(
dhε
dε

∣∣∣∣
ε=0

)
= 0.

Since Rg L = (kerL∗)⊥ =
(

span
(
u′0e

4S
r (u2

0−u0)
))⊥

, multiplying the above by u′0e
4S
r (u2

0−u0) and integrating
over R, we reach

dcε
dε

∣∣∣∣
ε=0

=
−
∫
R

(
g(u0) + 2

r
(u′0)2

)
u′0e

4S
r (u2

0−u0)∫
R
(u′0)2e

4S
r (u2

0−u0)
> 0,

which yields (2.6.28) and concludes the proof of Theorem 2.6.4.
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2.6.5 The speed of the traveling stacked clines
In this section 2.6.5, we obtain an explicit form for c1 = c1(r, S) appearing in the asymptotic formula for the
speed cε = c1ε+ o(ε) as given in (2.6.28). This in turn provides valuable insights on the model for coupled
underdominant clines.

For convenience let us temporarily denote u = u0 the standing wave solution constructed in Proposition
2.6.2. From (2.6.12), we see that v := u′

2 solves the linear first order ODE

v′ + 4S
r

(u2 − u)′v = −2Su′(2u− 1)u(1− u),

which is solved as

u′
2(x) = e−

4S
r (u2−u)(x)

(
C − 2S

∫ x

0
(u2 − u)′(t)e 4S

r (u2−u)(t)(u− u2)(t)dt
)
,

for some constant C. We integrate by parts and, up to changing the value of the constant C, reach

u′
2(x) = e−

4S
r (u2−u)(x)

(
C − r

2

(
e

4S
r (u2−u)(x)(u− u2)(x) +

∫ x

0
e

4S
r (u2−u)(t)(u2 − u)′(t)dt

))
= e−

4S
r (u2−u)(x)

(
C − r

2

(
e

4S
r (u2−u)(x)(u− u2)(x) + r

4S e
4S
r (u2−u)(x)

))
.

Letting for instance x→ +∞ enforces C = r2

8S and, returning to the notation u0, we finally obtain

u′0
2(x) = r2

8S e
4S
r (u0−u2

0)(x) − r

2(u0 − u2
0)(x)− r2

8S . (2.6.36)

The fact that u′0 can be expressed in terms of u0, already observed in [36], enables to obtain an explicit
form c1 = c1(r, S) appearing in cε = c1ε+ o(ε) as given in (2.6.28). Indeed, using (2.6.36) and recalling that
u′0 < 0, we obtain

c1 =
−
∫
R

r

4Su
′
0(x)

(
1− e− 4S

r (u0−u2
0)(x)

)
dx

−
∫
R
u′0(x)

(
r2

8S e
4S
r (u0−u2

0)(x) − r

2(u0 − u2
0)(x)− r2

8S

) 1
2

e−
4S
r (u0−u2

0)(x)dx

.

Performing the change of variable u = u0(x) this is recast

c1 =

∫ 1

0

r

4S

(
1− e− 4S

r (u−u2)
)
du∫ 1

0

(
r2

8S e
4S
r (u−u2) − r

2(u− u2)− r2

8S

) 1
2

e−
4S
r (u−u2)du

.

Expanding with respect to S
r � 1, we reach, after a straightforward computation,

c1 = 1√
S

(
1 + 4

15
S

r
+ 2

45
S2

r2 + · · ·
)
. (2.6.37)

In the sequel we denote
c∗1 := 1√

S

(
1 + 4

15
S

r

)
, (2.6.38)

the first order term of expansion (2.6.37).
To verify the accuracy of our previsions, we ran simulations of the full system (2.6.7), the one established

before simplification thanks to the quasi-linkage equilibrium approximation. We numerically estimate the
instantaneous speed by following the movement of the center of the fronts. The comparison with the
theoretical speed εc∗1 = sc∗1 (let us recall that s appearing in the original model is nothing else than ε,
see (2.6.9)) is shown in Figure 2.6.3. Let us recall that, to go from the full system (2.6.7) to the equation
(2.6.11) under consideration, we used successive approximations, the first one being that “recombination r
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is sufficiently large relative to the strength of selection against heterozygotes”. Indeed, as seen in Figure
2.6.3, the numerics and the theory we developed do not match when r is too small. On the other hand, we
observe that formula (2.6.38) gives a very good approximation of the instantaneous speed when r is not too
small. This validates a posteriori the quasi-linkage equilibrium approximation.

Figure 2.6.3: Comparison of the theoretical speed sc∗1 and of the numerically estimated speed of the stacked
fronts.

When r = 0.5 (free recombination), the linkage disequilibrium stays small and the coupled clines move
at a speed which is close to the one each cline would have if travelling alone, that is s/

√
S (or sσ/

√
2S in

the original spatial scale, as obtained by Barton [35] in a single-locus model). Indeed, without interaction,
we are left with ut = uxx + Sf(u) + sg(u), which is nothing else than the bistable equation (0 < s

S < 1)

ut = uxx + Su(1− u)
(

2u− 1 + s

S

)
,

whose traveling wave, explicitly computed as 1
2 −

1
2 tanh

(√
S

2 (x− s√
S
t)
)
, has speed s/

√
S.

At the other extreme, when r = 0 (no recombination) the system becomes equivalent to a single locus
where one allele has a fitness advantage 2s and with a cost for heterozygotes 2S, leading to a bistable wave
speed of 2s/

√
2S.

When r ∈ (0, 0.5), the speed of the coupled clines decreases monotonously as recombination r increases.
Our concluding remark is as follows: whatever the values of the parameters, interacting and eventually

stacked clines travel faster than one cline alone.

2.6.6 Conclusion and perspectives
In this section 2.6 we have investigated the solutions of equation (2.6.11), describing the dynamics of two cou-
pled, asymmetric genetic incompatibilities (underdominant loci) with identical fitness effects, in a population
whose density is supposed uniform and large, in a quasi-linkage equilibrium regime. Assuming multiplicative
fitness effects among loci and recalling that ε measures the difference in fitness between homozygotes, the
two main results are as follows: first, we have shown that when ε = 0, there is a unique standing wave u0
under a normalization condition; then, in Section 2.6.4, we have shown that when ε > 0 is small enough,
there exists a traveling wave uε defined as a perturbation of u0, and we obtained a simple approximation
for its speed.

Those results were obtained under a series of assumptions that we recall here for discussion:

sA, sB < S (H1)
sA, sB , S � r (H2)

SA = SB , sA = sB (H3)
p = q. (H4)

Assumption (H1) is the frame of this work which was devoted to the heterozygote inferior case. It is
therefore not a hypothesis we want to discuss per se.
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Assumption (H2) expresses that we are in the case of small selective advantages. When it does not hold,
D may not be small, in which case the quasi-linkage equilibrium approximation (that allowed us to reduce
the number of variables) is no longer valid. It can easily be seen that − 1

4 ≤ D ≤ 1
4 always holds, and that,

as shown by the D equation in (2.6.7), positive D is generated whenever p and q travel in the same direction
(that is pxqx > 0), while negative D is generated otherwise. These facts help to understand the kind of
contribution D makes to the coupling between p and q in (2.6.7).

Assumption (H3) is basically a hypothesis of exchangeability between loci. Although this allowed us to
simplify the algebra, different loci should have different fitness effects, and it would thus be of interest to
relax this hypothesis.

Last but not least, assumption (H4) conveys the strong argument that the A cline and the B cline were
stacked in the past and will remain stacked forever in the future. This is indeed a good starting point from
a mathematical perspective. Nevertheless, in the context of population genetics, more interesting questions
arise when (H4) does not hold. In such a situation, the coupling in (2.6.7) can give rise to non-standard
behaviours, such as adaptation of the speed. The questions that arise are such as: can a traveling front be
pinned by a standing front? Will a front traveling at a large speed crossing a slower traveling front adapt its
speed so as to remain stacked with the slower one? A preliminary numerical exploration has confirmed that
convergence to stacked fronts occurs in some situations but has also shown that there can be a vast zoology
of situations. We hope to present them in a future work.

2.6.7 Some useful results and tools
We recall the Implicit Function Theorem, see [413, Theorem 4.B] for instance.

Theorem 2.6.10 (Implicit Function Theorem). Let X, Y and Z be three Banach spaces. Suppose that:

(i) The mapping F : U ⊂ X × Y → Z is defined on an open neighbourhood U of (x0, y0) ∈ X × Y and
F(x0, y0) = 0.

(ii) The partial Fréchet derivative of F with respect to y exists on U and

Fy(x0, y0) : Y → Z is bijective.

(iii) F and Fy are continuous at (x0, y0).

Then, the following properties hold:

(a) Existence and uniqueness. There exist r0 > 0 and r > 0 such that, for every x ∈ X satisfying
‖x− x0‖ ≤ r0, there exists a unique y(x) ∈ Y such that ‖y − y0‖ ≤ r and F(x, y(x)) = 0.

(b) Continuity. If F is continuous in a neighbourhood of (x0, y0), then the mapping x 7→ y(x) is continuous
in a neighbourhood of x0.

(c) Higher regularity. If F is of the class Cm, 1 ≤ m ≤ ∞, on a neighbourhood of (x0, y0), then x 7→ y(x)
is also of the class Cm in a neighbourhood of x0.

In Section 2.6.4 we apply Theorem 2.6.10 to the operator F defined in (2.6.26), with X = R, x = ε,
x0 = 0, Y = R× C2,α

µ (R), y = (c, h), y0 = (0, 0), and Z = C0,α
µ (R).

Next, we quote some results on Fredholm operators. Let us recall that the operator L has the Fredholm
property with index 0 if kerL has a finite dimension, Rg L is closed and has finite codimension and

ind L := dim kerL− codim RgL = 0.

In particular, since its range is closed, such an operator is normally solvable:

∃u 6= 0, Lu = f ⇔ ∀φ ∈ (Rg L)⊥, φ(f) = 0,

and remark that (Rg L)⊥ = kerL∗.
We recall below a theorem from Volpert, Volpert and Collet [386, Theorem 2.1 and Remark p787].
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Theorem 2.6.11 (Fredholm property on the line). For 0 < α < 1, consider the operator L : C2,α(R) →
Cα(R) defined by

Lu := a(x)u′′ + b(x)u′ + c(x)u,

where the coefficients a(x), b(x), c(x) are smooth, and a(x) ≥ a0 for some a0 > 0. Assume further that the
coefficients a(x), b(x), and c(x) have finite limits as x→ ±∞ and denote

a± := lim
x→±∞

a(x), b± := lim
x→±∞

b(x), c± := lim
x→±∞

c(x).

Finally, let us define the limiting operators

L±u := a±u′′ + b±u′ + c±u,

and assume that for any λ ≥ 0, the equation

L±u− λu = 0

has no nontrivial solution in C2,α(R).
Then L is Fredholm with index 0.

Let us also recall a Fredholm property result for second-order ordinary differential equations, see the
monograph of Volpert [384, Chapter 9, Theorem 2.4 p. 366].

Theorem 2.6.12 (Fredholm property for second-order ODEs). With the notations of Theorem 2.6.11, the
operator L is Fredholm provided the two equations

− a±ξ2 + b±iξ + c± = 0 (2.6.39)

has no real solution ξ ∈ R. In this case the index of L is given by the formula

ind L = κ+ − κ−,

where κ± is the number of complex solutions to the characteristic equation

a±X2 − b±X + c± = 0 (2.6.40)

which have a positive real part.

Remark 2.6.13 (Fredholm property in weighted Hölder spaces). We cannot directly apply Theorem 2.6.11
and Theorem 2.6.12 to our situation since we consider the operator L acting from C2,α

µ (R) into Cαµ (R), and
not from C2,α(R) into C0,α(R). To circumvent this, we consider the operator Lµ : C2,α(R)→ Cα(R) defined
by:

Lµ(u) := eµ
√

1+x2
L
(
ue−µ

√
1+x2

)
= a(x)u′′ +

[
−2µx√
1 + x2

a(x) + b(x)
]
u′

+
[(

µ2x2

1 + x2 + µx2

(1 + x2) 3
2
− µ√

1 + x2

)
a(x)− µx√

1 + x2
b(x) + c(x)

]
u. (2.6.41)

Since Tµ : u ∈ C2,α
µ (R) 7→ eµ

√
1+x2

u ∈ C2,α(R) is continuously invertible, and T−1
µ : u ∈ C0,α(R) 7→

e−µ
√

1+x2
u ∈ C0,α

µ (R) is continuously invertible, the map L = T−1
µ LµTµ shares the same Fredholm property

and index as Lµ. As a result, if Lµ satisfies the assumptions of Theorem 2.6.11, or Theorem 2.6.12, then L
is a Fredholm operator with the same index as that of Lµ.



Chapter 3

A hyperbolic cell-cell repulsion model

3.1 A cell-cell repulsion model on a hyperbolic Keller-Segel equation

3.1.1 Introduction

In many recent biological experiments, the co-culture of multiple types of cells has been used to improve our
understanding of cell-cell interactions. Typical examples of such co-culture experiment include the study
of the interaction between cancer cells and normal cells, which plays a crucial role in tumor development,
and comparative studies of the resistance of different types of cancer cells to a chemotherapeutic drugs.
The goal of this work is to introduce a mathematical model taking into account the growth of the cell
population and the physical motion of cells induced by the competition for space in a Petri dish, in order
to better understand the spatial segregation between two types of cells and its potential impact on the
outcome of co-culture experiments. Such a segregation phenomenon was observed by Pasquier et al. [319]
in a study of protein transfer between two types of human breast cancer cell. Over a 7-day cell co-culture, a
spatial competitive exclusion was observed between these two types of cells and a clear boundary was formed
between them on day 7 (see Figure 3.1.1). A segregation property in cell co-culture was also studied recently
by Taylor et al. [370], who compared their experimental results with an individual-based model. They found
that heterotypic repulsion and homotypic cohesion can account for cell segregation and border formation.
A similar segregation property is also found in the mosaic pattern between nections and cadherins in the
experiments of Katsunuma et al. [229].

Early attempts to explain the segregation property by continuum equations date back to 1970s. Shige-
sada, Kawasaki and Teramoto [353] studied segregation with a nonlinear diffusion model and they found
that the spatial segregation acts to stabilize the coexistence of two similar species by relaxing the interspe-
cific competition. Lou and Ni [267] generalized the model of Shigesada et al and studied the steady state
problem for the self/cross-diffusion model. For the nonlinear diffusion model, Bertsch et al. [61] proved
the existence of segregated solutions when the reaction term is of Lotka-Volterra type. Other mechanisms
such as nonlocal competition in the framework of the Lotka-Volterra model leading to the segregation are
considered in [282, 283, 302]. Crooks et al. [124, 128] considered a competition-diffusion system where two
populations spatially segregate as the interspecific competition becomes large. Conti, Terracini and Verzini
[114] considered a reaction–diffusion system in which asymptotic segregation occurs (the steady states are
segregated). One of the main points in the present model is that segregation is achieved directly and not in
the asymptotic limit, contrary to [128, 124] and [114].

207
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Figure 3.1.1: Direct immunodetection of P-gp transfers in co-cultures of sensitive (MCF-7) and resistant
(MCF-7/Doxo) variants of the human breast cancer cell line.

Here instead of using nonlinear diffusion models, we focus on a (hyperbolic) Keller-Segel model. Such
models have been used to describe the attraction and repulsion of cell populations when the motion of the
cells is driven by the concentration gradient of a chemical substance, a phenomenon known as chemotaxis.
Theoretical and mathematical modeling of chemotaxis can be traced back to the pioneering works of Patlak
[320] in the 1950s and Keller and Segel [232] in the 1970s. It has become an important model in the
description of tumor growth or embryonic development. We refer to the review papers of Horstmann [213]
and Hillen and Painter [209] for a detailed introduction about the Keller–Segel model.

As explained in this work, our model can also be regarded as a nonlocal advection model. Recently,
implementing nonlocal advection models for the study of cell-cell adhesion and repulsion has attracted a lot
of attention. As pointed out by many biologists, cell-cell interactions do not only exist in a local scope, but
long-range interactions should also be taken into account to guide the mathematical modeling. Armstrong,
Painter and Sherratt [16] in their early work proposed a model (the APS model) in which cells undergo a local
diffusion process and a nonlocal advection driven by the adhesion forces, in order to describe cell aggregation
and sorting. Based on the APS model, Murakawa and Togashi [296] thought that the population pressure
should come from the cell volume size instead of the linear diffusion, and changed the linear diffusion term
into a nonlinear diffusion in order to capture the sharp fronts and the segregation in cell co-culture. Carrillo
et al. [105] recently proposed a new assumption on the adhesion velocity field and their model showed a
good agreement with the experiments in the work of Katsunuma et al. [229]. The idea of the long-range
attraction and short-range repulsion can also be found in the work of Leverentz, Topaz and Bernoff [250].
They considered a nonlocal advection model to study the asymptotic behavior of swarms. By choosing a
Morse-type kernel which encodes both attractive and repulsive interactions, they found that the solution
can asymptotically spread, contract (blow-up), or reach a steady-state. Burger, Fetecau and Huang [83]
considered a similar nonlocal adhesion model with nonlinear diffusion. They studied the well-posedness
of the model and proved the existence of a compactly supported, non-constant steady state. Dyson et al.
[156] established the local existence of a classical solution for a nonlocal cell-cell adhesion model in spaces
of uniformly continuous functions. For the diffusive model with time delay effect, we refer to Shi et al.
[351, 352] where the authors considered the spatial patterns due to bifurcations. For further Turing and
Turing-Hopf bifurcations due to the nonlocal effect, we refer to Ducrot et al. [151] and Song et al. [365]. We
also refer the readers to Mogliner et al. [288], Eftimie et al. [158], Ducrot and Magal [152], Fu and Magal
[178] for more topics about nonlocal advection equations. The derivation of such models as been done in
Bellomo et al. [44] and Morale, Capasso and Oelschläger [290].

In this work, we consider a two-dimensional bounded domain which represents a flat circular Petri
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dish. We introduce the notion of solution integrated along the characteristics. Thanks to the appropriate
boundary condition of the pressure equation (see Equation (3.1.2)), we deduce that the characteristics stay
in the domain for any positive time. The positivity of solutions, the segregation property and a conservation
law follow from the notion of solutions as well. By using numerical simulations, we investigate the impact
of the seeding condition (as well as the law of initial distributions) on the proportion of each species in the
final population. In the above-mentioned literature, the numerical simulations are restricted to a rectangular
domain with periodic boundary conditions. It is worth mentioning that here the domain is circular and the
pressure satisfies a no-flux boundary condition (see Appendix 3.1.5.4 for numerical scheme).

Section 3.1 is organized as follows. In Section 2, we present the model for the single-species case and
we prove the local existence and uniqueness of solutions as well as the conservation law by considering the
solution integrated along the characteristics. In Section 3, we apply our nonlocal advection model established
in Section 2 to study the cell co-culture. The main goal in this work is to investigate the complexity of the
short-term (6 days) co-cultured cell distribution depending on the initial distribution of each species. In
Section 3.1, we investigate the competitive exclusion principle in our model and compare our spatial model
to an ODE model which is homogeneous in space and has been previously studied by Zeeman [412]. In
Section 3.2, we investigated the impact of the initial distribution on the proportion of each species in the
final population. The spatial competition due to the dispersion coefficients and cell kinetics is considered in
Section 3.3. Section 4 is devoted to discussion and conclusion. We also discuss the case of overlapping (non-
segregated) initial conditions for the two species, and how numerical simulations suggest that asymptotic
segregation occurs.

3.1.2 Mathematical modeling
3.1.2.1 Single species model

Let us consider the following model with one species{
∂tu(t, x)− ddiv

(
u(t, x)∇P (t, x)

)
= u(t, x)h(u(t, x)) in (0, T ]× Ω,

u(0, x) = u0(x) on Ω,
(3.1.1)

where P satisfies the following elliptic equation{(
I − χ∆

)
P (t, x) = u(t, x) in (0, T ]× Ω

∇P (t, x) · ν(x) = 0 on [0, T ]× ∂Ω,
(3.1.2)

We let Ω ⊂ R2 be the unit open disk centered at 0 = (0, 0) with radius r = 1, i.e., Ω = BR2(0, 1). Here ν is
the outward normal unit vector, d is the dispersion coefficient, χ is the sensing coefficient. The divergence,
gradient and Laplacian are taken with respect to x. System (3.1.1)-(3.1.2) can be regarded as a hyperbolic
Keller-Segel equation (with chemotactic repulsion) on a bounded domain.

Remark 3.1.1. Equation (3.1.2) can be derived from the following parabolic equation (which is the classical
case in the Keller-Segel equation [213]) as ε goes to 0:

ε∂tP (t, x) = χ∆P (t, x) + u(t, x)− P (t, x). (3.1.3)

The process of letting ε→ 0 corresponds to the assumption that the dynamics of the chemorepellent is fast
compared to the evolution of the cell density. In the case of chemoattractant a variant of such a model was
considered by Perthame and Dalibard [323], Calvez and Dolak-Struß[95].

Remark 3.1.2. As we mentioned in the introduction, Equation (3.1.2) can be regarded as a nonlocal
integral equation by using the following representation

P (t, x) =
∫

Ω
κ(x, y)u(t, y)dy,

where κ is the Green function of the operator (I − χ∆)−1 with Neumann boundary conditions.
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The invariance of domain Ω and the well-posedness of the model Note that in System (3.1.1)-
(3.1.2) we do not impose any boundary condition directly on u. Instead, the boundary condition here is
induced by ∇P · ν = 0. If we consider the associated characteristics flow of (3.1.1)-(3.1.2){

∂
∂tΠ(t, s;x) = −d∇P (t,Π(t, s;x))
Π(s, s;x) = x ∈ Ω,

(3.1.4)

where Π(t, s;x) is the solution of the non-autonomous ODE, t represents the time variable, s is the initial
time and x is the initial position. Π(s, s;x) = x is our initial condition. We can prove (see Appendix 3.1.5.1)
that the characteristics can not leave the domain Ω (see Figure 3.1.2 for an illustration). In fact, we can
prove that for any t > 0, the mapping x 7→ Π(t, 0;x) is a bijection from Ω to itself (see Lemma 3.1.10). We
consider the solution along the characteristics

w(t, x) := u(t,Π(t, 0;x)) x ∈ Ω, t > 0.

Taking any x ∈ Ω, there exists y ∈ Ω such that x = Π(t, 0; y), and since

w(t, y) = w(t,Π(0, t;x)) = u(t, x),

we can reconstruct the solution u(t, ·) from the knowledge of w(t, ·) and {Π(t, s, ·)}t,s∈[0,T ] on Ω.

x0

Π(t, 0; x0)

ν(x)

∇P (t, x)

Figure 3.1.2: An illustration of the invariance of the domain Ω. The green curve represents the trajectory of
a characteristic.

Assumption 3.1.3. The vector field (t, x) 7→ ∇P (t, x) is continuous in [0, T ]×Ω and Lipschitz continuous
with respect to x ∈ Ω for each fixed t ∈ [0, T ].

Remark 3.1.4. Assumption 3.1.3 is a sufficient condition for the existence and uniqueness of the charac-
teristic flow {Π(t, s; ·)}t,s∈[0,T ] in (3.1.4).

Definition 3.1.5. [162, Section 5.1] Let Ω ⊂ R2 be a bounded domain. If u : Ω → R is bounded and
continuous, we write

‖u‖C(Ω) := sup
x∈Ω
|u(x)|.

For any γ ∈ (0, 1], the γth–Hölder norm of u : Ω→ R is

‖u‖C0,γ(Ω) := ‖u‖C(Ω) + [u]C0,γ(Ω),

where
[u]C0,γ(Ω) := sup

x,y∈Ω
x6=y

{
|u(x)− u(y)|
|x− y|γ

}
.
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The Hölder space Ck,γ(Ω) consists of all functions u ∈ Ck(Ω) having a finite norm

‖u‖Ck,γ(Ω) :=
∑
|α|≤k

‖Dαu‖C(Ω) +
∑
|α|=k

[Dαu]C0,γ(Ω)

where α = (α1, . . . , αn) ∈ Nn and |α| = α1 + . . .+ αn in the sum above.

Lemma 3.1.6. [187, Theorem 6.30 and 6.31] Let Ω ⊂ R2 be the unit open disk. Consider the following
elliptic equation {

(I − χ∆)P (x) = u(x) x ∈ Ω,
∇P (x) · ν(x) = 0 x ∈ ∂Ω,

(3.1.5)

where ν is the outward unit normal vector on ∂Ω. Then for all u ∈ C0,α(Ω), the elliptic problem (3.1.5) has
a unique solution P ∈ C2,α(Ω). Moreover,

‖P‖C2,α(Ω) ≤ C‖u‖C0,α(Ω),

where C = C(α, χ,Ω).

The following theorem tells us if we choose our initial value u0 sufficiently smooth, then Assumption
3.1.3 is automatically satisfied and the existence and uniqueness of solutions follow.

Theorem 3.1.7 (Existence and uniqueness of solutions). Let u0 ∈ W 1,∞(Ω) ∩ C0
+(Ω). There ex-

ists T > 0 such that problem (3.1.1)-(3.1.2) has a unique solution u ∈ C
(
[0, T ];C0

+(Ω)
)
which satisfies

u(0, x) = u0(x). Moreover u is non-negative and for any t ∈ [0, T ], we have u(t, ·) ∈ W 1,∞(Ω) and
supt∈[0,T ] ‖u(t, ·)‖W 1,∞(Ω) <∞.

The proof of Theorem 3.1.7 will be detailed in Appendix 3.1.5.2.

Remark 3.1.8. Since for any t ∈ [0, T ] and for any α ∈ (0, 1), we have u(t, ·) ∈ W 1,∞(Ω) ↪→ C0,α(Ω),
we deduce from Lemma 3.1.6 that P (t, ·) ∈ C2,α(Ω). Therefore, (t, x) → ∇P (t, x) is continuous (since
P ∈ C([0, T ];C1(Ω))) and Lipschitz continuous with respect to x which implies that Assumption 3.1.3 is
satisfied.

Conservation law on a volume If the reaction term h ≡ 0 is null in System (3.1.1)-(3.1.2), we have a
conservation law for u. This can be seen by integrating the solution along the characteristics. In fact, we
have the following conservation law.

Theorem 3.1.9. For each volume A ⊂ Ω and each 0 ≤ s ≤ t we have∫
Π(t,s;A)

u(t, x)dx =
∫
A

exp
(∫ t

s

h (u (l,Π(l, s; z))) dl
)
u(s, z)dz.

In particular, if there is no reaction h = 0, then for any 0 ≤ s ≤ t∫
Π(t,s;A)

u(t, x)dx =
∫
A

u(s, z)dz.

This means that the total number of cells in the volume A is constant along the volumes Π(t, s;A).

Before proving Theorem 3.1.9, we need the following lemma.

Lemma 3.1.10. Let T > 0 and {Π(t, s;x)}t,s∈[0,T ] be the characteristic flow generated by (3.1.4). Then the
map x 7→ Π(t, s;x) is continuously differentiable and the determinant of the Jacobian matrix is given by

det JΠ(t, s;x) = exp
(∫ t

s

d

χ
(u(l,Π(l, s;x))− P (l,Π(l, s;x))) dl

)
, (3.1.6)

where JΠ(t, s;x) is the Jacobian matrix of Π(t, s;x) with respect to x at (t, s;x).
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Proof. From Theorem 3.1.7 and Remark 3.1.8, the mapping (t, x)→ P (t, x) is C([0, T ];C1(Ω)) and P (t, ·) ∈
C2,α(Ω) for any α ∈ (0, 1) if u0 ∈ W 1,∞(Ω). This ensures that the characteristics x→ Π(t, s;x) is continu-
ously differentiable. Taking the partial derivative of Equation (3.1.4) with respect to x yields{

∂tJΠ(t, s;x) = −d J∇P (t,Π(t, s;x))JΠ(t, s;x)
JΠ(s, s;x) = Id,

where J∇P (t,Π(t, s;x)) is the Jacobian matrix of ∇P (t, x) with respect to x at point (t,Π(t, s;x)). For any
matrix-valued C1 function A : t 7→ A(t), the Jacobian formula reads as follows

d
dt detA(t) = detA(t)× Trace

(
A−1(t) d

dt
A(t)

)
.

Hence, we obtain

d
dt det JΠ(t, s;x) = det JΠ(t, s;x)× Trace

(
JΠ(t, s;x)−1J∇P (t,Π(t, s;x))JΠ(t, s;x)

)
= detJΠ(t, s;x)× Trace (J∇P (t,Π(t, s;x)))

and since Trace (J∇P (t,Π(t, s;x))) = (∆P )(t,Π(t, s;x)) = − 1
χ (u(t,Π(t, s;x))− P (t,Π(t, s;x))), we conclude

d
dt det JΠ(t, s;x) = det JΠ(t, s;x)× d

χ

[
u(t,Π(t, s;x))− P (t,Π(t, s;x))

]
det JΠ(s, s;x) = 1.

The result follows.

Proof of Theorem 3.1.9. Let {Π(t, s;x)}t,s∈[0,T ] to be the characteristic flow generated by (3.1.4). Given any
measurable set A ⊂ Ω and any 0 ≤ s ≤ t, we integrate u(t, x) over the volume Π(t, s;A) with respect to x∫

Ω
1Π(t,s;A)(x)u(t, x)dx =

∫
Ω
1A(z)u(t,Π(t, s; z)) detJΠ(t, s; z)dz, (3.1.7)

where we have changed the variable x to Π(t, s; z) on the right-hand-side.
We will prove in (3.1.30) in Appendix 3.1.5.2 that

u(t,Π(t, s; z)) = u(s, z) exp
(∫ t

s

h(u(l,Π(l, s; z))) + d

χ
(P (l,Π(l, s; z))− u(l,Π(l, s; z))) dl

)
.

Combined with (3.1.6), this equality yields

u(t,Π(t, s; z)) detJΠ(t, s; z) = u(s, z) exp
(∫ t

s

h(u(l,Π(l, s; z)))dl
)
,

and substituting into (3.1.7) we get∫
Ω
1Π(t,s;A)(x)u(t, x)dx =

∫
Ω
1A(z)u(s, z) exp

(∫ t

s

h(u(l,Π(l, s; z)))dl
)

dz,

which is equivalent to∫
Π(t,s;A)

u(t, x)dx =
∫
A

exp
(∫ t

s

h (u (l,Π(l, s; z))) dl
)
u(s, z)dz.

The result follows.

Remark 3.1.11. For the PDE with logistic source, the nonlocal advection term div(u(t, x)∇P (t, x)) makes
the uniqueness of the equilibrium non-trivial. In our case, the semiflow associated to the solution is not
monotone. Therefore, comparison arguments fail and more complex dynamical behaviors may occur. How-
ever, from numerical simulations for the single species model with logistic source uh(u) = u(b − au), we
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observe that the solution converges to the constant equilibrium of the corresponding ODE case. Let us
consider a single species one-dimensional model

∂tu(t, x)− div(u(t, x)∇P (t, x)) = u(t, x)(1− u(t, x))
(I −∆)P (t, x) = u(t, x),

[0, T ]× [−1, 1]

with Neumann boundary conditions ∇P · ν = 0 for (t, x) ∈ [0, T ]× {−1, 1}. The behavior of the solution is
illustrated in Figure 3.1.3 by using a compactly supported initial condition.

Figure 3.1.3: In this simulation we show that the solution converges numerically to the constant positive
steady state.

3.1.2.2 Multi-species model

Multi-species ODE model Let us consider the corresponding two species model without the spatial
variable x that is ui = ui(t) for i = 1, 2.

dui
dt = uihi(u1, u2) i = 1, 2,
ui(0) = ui,0 ∈ R+.

(3.1.8)

We adopt the Lotka-Volterra model by setting

hi(u1, u2) = bi − δi −
2∑
j=1

aijuj , i = 1, 2, (3.1.9)

where bi > 0, i = 1, 2 are the growth rates, aij ≥ 0, i 6= j represent the interspecific competition between
the species, aii is the intraspecific competition (the competition of individuals from the same species) and
δi is the additional mortality rate caused by drug treatment. In Section 2.2.1 we will always assume δi = 0
for i = 1, 2 without loss of generality (replacing bi − δi by bi if δi > 0). If we consider (3.1.8) in the absence
of the other species, we can rewrite (3.1.9) as

hi(u1, u2) = bi − aiiui, i = 1, 2.

We always assume that for each i, aii > 0 meaning that each species alone exhibits logistic growth. This
model has been considered by many authors (for example, see [297, 412]). Here we give a short summary of
some qualitative properties of the solution to (3.1.8) in order to compare it with the PDE model.

Equilibrium and stability for (3.1.8)-(3.1.9)
The system has the following equilibria

E0 = (0, 0), E1 = (P1, 0) , E2 = (0, P2) , E∗ = (u∗1, u∗2),

where
P1 := b1

a11
, P2 := b2

a22
, E∗ =

(
a22b1 − a12b2
a11a22 − a12a21

,
a21b1 − a11b2
a12a21 − a11a22

)
. (3.1.10)
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The solution E∗ is only of relevance when a12a21 6= a11a22 and (u∗1, u∗2) is strictly positive, which is equivalent
to either condition


a12
a11

>
P1
P2

a21
a22

>
P2
P1

or


a12
a11

<
P1
P2

a21
a22

<
P2
P1
.

We adapt the main stability results from Zeeman [412] where the author considered a general n–species
extinction case, Murray [297, Chapter 3.5] and Hirsch [210, Chapter 11] to system (3.1.8)-(3.1.9) for the
following fours cases (i)-(iv) and discuss their biological implications.

Proposition 3.1.12. For system (3.1.8)-(3.1.9), suppose for each i = 1, 2, bi > 0, aii > 0 and aij ≥ 0 for
any i 6= j. Let P1 = b1/a11, P2 = b2/a22 be the equilibrium for each species alone and assume the initial
value (u1,0, u2,0) lies strictly in the first quadrant that is u1,0 > 0 and u2,0 > 0. Then for the following four
cases we have

(i). a12/a11 < P1/P2, a21/a22 < P2/P1. This case corresponds to Figure 3.1.4 (a). The system (3.1.8) has
four positive equilibrium, namely E0, E1, E2 and E∗. In such case, only E∗ is globally asymptotically
stable in the region {(u1, u2) ∈ R2 |u1 > 0, u2 > 0}.

(ii). a12/a11 > P1/P2, a21/a22 < P2/P1. This case corresponds to Figure 3.1.4 (b). The system (3.1.8) has
three positive equilibrium, namely E0, E1 and E2. Only E2 is globally stable in the positive quadrant
excepted for the axis u1 = 0.

(iii). a12/a11 < P1/P2, a21/a22 > P2/P1. This case corresponds to Figure 3.1.4 (c). The analysis of the
stability is similar to the case (ii). Only E1 is globally stable in the positive quadrant excepted for the
axis u2 = 0.

(iv). a12/a11 > P1/P2, a21/a22 > P2/P1. This case corresponds to Figure 3.1.4 (d). In this case, system
(3.1.8) has four equilibrium, where E1 and E2 are stable while E∗ is a saddle point. The steady states
E1 and E2 have two non-overlapping domains of attraction, separated by the stable manifold S of the
equilibrium E∗.

Remark 3.1.13. Although among the four cases, (ii) and (iii) always lead to a competitive exclusion
principle and so do (iv) due to the natural perturbation in population levels, case (i) leads to the stable
coexistence of the two species in the long term. As we further develop our PDE model for (3.1.8), we can
show numerically that the competitive exclusion principle occurs even in the case (i). This situation is a
major difference between the PDE and the ODE model (3.1.8).

A scheme of the qualitative behavior of the phase trajectory is given in Figure 3.1.4 by numerical simu-
lations.
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Figure 3.1.4: A scheme of the qualitative behavior of the phase trajectory for various cases. (a) a12/a11 <
P1/P2, a21/a22 < P2/P1. Only the positive steady state E∗ is stable and all trajectories tend to it. (b)
a12/a11 > P1/P2, a21/a22 < P2/P1. Only one stable steady state E2 exists with the whole positive quadrant
its domain of attraction. (c) a12/a11 < P1/P2, a21/a22 > P2/P1. Only one stable steady state E1 exists with
the whole positive quadrant its domain of attraction. (d) a12/a11 > P1/P2, a21/a22 > P2/P1. E1 and E2 are
stable steady states, each of which has a domain of attraction namely I and II, separated by a separatrix S
which is the stable manifold of equilibria E∗.

Multi-species PDE model We study a two species population dynamics model on the unit open disk
Ω ⊂ R2 given as follows

∂tu1(t, x)− d1 div
(
u1(t, x)∇P (t, x)

)
= u1(t, x)h1((u1, u2)(t, x))

∂tu2(t, x)− d2 div
(
u2(t, x)∇P (t, x)

)
= u2(t, x)h2((u1, u2)(t, x))(

I − χ∆
)
P (t, x) = u1(t, x) + u2(t, x)

in [0, T ]× Ω,

∇P (t, x) · ν(x) = 0 on [0, T )× ∂Ω,

(3.1.11)

where ν is the outward normal vector, di is the dispersion coefficient, χ is the sensing coefficient. Recall that
the function hi is given by

hi(u1, u2) = bi − δi −
2∑
j=1

aijuj , i = 1, 2.
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System (3.1.11) is supplemented with the initial condition

u0(·) := (u1(0, ·), u2(0, ·)) ∈ C1(Ω)2. (3.1.12)

Segregation property It has been observed in mono-layer co-culture experiments that once the two cell
populations confront each other, they will stop growing, thus, forming separated islets. We can prove that
our model (3.1.11) preserves such segregation property.

Theorem 3.1.14. Suppose u = (u1, u2)(t, x) is the solution of (3.1.11)-(3.1.12) and assume d1 = d2 = d in
(3.1.11). Then for any initial distribution with u1(0, x)u2(0, x) = 0 for all x ∈ Ω, we have u1(t, x)u2(t, x) = 0
for any t > 0 and x ∈ Ω.

Proof. We argue by contradiction and assume that there exist t∗ > 0, x∗ ∈ Ω such that

u1(t∗, x∗)u2(t∗, x∗) > 0.

Recall that the characteristic flow satisfies the following equation{
∂
∂tΠ(t, s;x) = −d∇P (t,Π(t, s;x))
Π(s, s;x) = x ∈ Ω.

Since x→ Π(t, s;x) is invertible from Ω to itself, there exists some x0 ∈ Ω such that Π(t∗, 0;x0) = x∗. Then
for any i = 1, 2, we have

ui(t∗,Π(t∗, 0;x0)) = ui (0, x0) e
∫ t∗

0
hi((u1,u2)(l,Π(l,0;x0)))+ d

χ (P (l,Π(l,0;x0))−(u1+u2)(l,Π(l,0;x0)))dl
> 0, (3.1.13)

which implies
ui (0, x0) > 0, i = 1, 2.

This is a contradiction.

For the one dimensional case N = 1, suppose u1, u2 are solutions to (3.1.11)-(3.1.12), we give an illustra-
tion (see Figure 3.1.5) of the segregation for the solutions integrated along the characteristics ui(t,Π(t, 0;x))
for i = 1, 2. In fact, if there exists for some x0 such that ui(0, x0) = 0 for i = 1, 2, then from Equation
(3.1.13) we obtain

u1(t,Π(t, 0;x0)) = u2(t,Π(t, 0;x0)) = 0, ∀t > 0.

Therefore, the characteristics t 7→ Π(t, 0;x0) forms a segregation barrier for the two cell populations.

t0

t

Π(t0, 0; x0)−L L

t1

Π(t, 0; x0)

Figure 3.1.5: In this Figure we illustrate the notion of segregation with a one dimensional bounded domain.
Figure (a) shows that the characteristic t 7→ Π(t, 0;x0) forms a segregation “wall". Figure (b) shows the
temporal-spatial evolution of the two species.
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Remark 3.1.15. Our model can be regarded as an alternative to nonlinear diffusion models which also
implements the finite speed propagation property. The local existence and uniqueness of solutions is proved
rigorously in Appendix 5.2. The notion of solution integrated along the characteristics also leads to the
segregation property.

Note that solutions starting from compactly supported initial value stay compactly supported for the
single and multi-species models. This is a consequence of the notion of solution integrated along the char-
acteristics together with the fact that the characteristics cannot blow up in finite time as long as the W 1,∞

norm of the solution u(t, ·) is finite for time t. Therefore, in our case, the finite speed propagation holds,
which is similar to the models with nonlinear diffusion.

Conservation law on a volume If we assume that d1 = d2 = d in system (3.1.11), we have the following
similar conservation law for two species case. Suppose volume A ⊂ Ω and each 0 ≤ s ≤ t:

∫
Π(t,s;A)

ui(t, x)dx =
∫
A

exp
[∫ t

s

hi ((u1, u2) (l,Π(l, s; z))) dl
]
ui(s, z)dz, i = 1, 2.

Therefore, if we assume in addition that hi = 0 for any 0 ≤ s ≤ t

∫
Π(t,s;A)

ui(t, x)dx =
∫
A

ui(s, z)dz, i = 1, 2.

This means the total number of cells for each species ui remains constant along the volume Π(t, s;A).

3.1.3 Numerical simulations

In Section 2, we established a PDE model for two species and we also proved that the solution satisfies some
basic properties such as local existence and uniqueness, positivity, segregation and conservation law. These
properties are ideal to explain the monolayer cell co-culture in the experiments. Based on the data from
experiments in [318], we will fit some parameters in our model. By varying certain parameters such as the
extra mortality rate caused by drug treatment (see [318] for details), we will simulate the evolution of two
populations in the Petri dish and the variation of population number of cells.

3.1.3.1 Impact of the segregation on the competitive exclusion principle

In this section 3.1.3.1, the goal of our simulations is to compare the various cases discussed in Proposition
3.1.12 (ODE case) with our PDE model with segregation. As we will see in the numerical simulations,
the model with spatial structure presents completely different results compared to the ODE model. To
that aim, we consider the case where the drug (doxorubicine) concentration is low in the cell co-culture
for MCF-7 and MCF-7/Doxo (see Figure 3.1.1). The drug treatment causes an additional mortality to the
sensitive population MCF-7 represented by u1 but no extra mortality to the resistant population MCF-
7/Doxo represented by u2 (MCF-7/Doxo is resistant to a small quantity of drug treatment, see Table 3.1.4
in Appendix 3.1.5.3).

We let Ui be the total number of cells in the ui-population at time t = 0,

Ui =
∫

Ω
ui(0, x)dx, i = 1, 2. (3.1.14)

The parameter values used in the simulations and their interpretations are listed in Table 3.1.1. The growth
rate bi and the intraspecific competition aii are fitted to the data (see Appendix 3.1.5.3 for details).
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Symbol Interpretation Value Unit Method Dimensionless value

t time 1 day - 1

r inner radius of the Petri dish 2.62 cm [318] 1

Ui total number of cells at t = 0 105 − [318] 0.01

b1 growth rate of cell u1 0.6420 day−1 fitted 0.6420

b2 growth rate of cell u2 0.6359 day−1 fitted 0.6359

a11 intraspecific competition of u1 1.07× 10−6 cm2/day fitted 1.5588

a22 intraspecific competition of u2 1.06× 10−6 cm2/day fitted 1.5415

d1 dispersion coefficient of u1 13.73 cm4/day fitted 2

d2 dispersion coefficient of u2 13.73 cm4/day fitted 2

χ sensing coefficient 6.86× 10−2 cm2 fitted 0.01

Table 3.1.1: List of parameters, their interpretations, values and symbols. Here u1 represents MCF-7 (sen-
sitive cell) and u2 represents MCF-7/Doxo (resistant cell). From [318], the surface of the Petri dish is
21.5 cm2. Thus the inner radius of the Petri dish r is calculated by r2π = 21.5 cm2.

In the presence of the drug, the equilibrium (3.1.10) of the ODE should be rewritten as

P̄1 = b1 − δ1
a11

, P̄2 = b2 − δ2
a22

. (3.1.15)

Moreover, we assume the drug concentration is low, so that b1 − δ1 > 0 and δ2 = 0, therefore we have

P̄1 < P̄2.

The case when P̄1 > P̄2 is similar and will be discussed in the end of this section 3.1.3.1. We choose our
parameters to satisfy

a12
a11

<
P̄1

P̄2
,

a21
a22

<
P̄2

P̄1
, (3.1.16)

which corresponds to Case (i) in Proposition 3.1.12 for the ODE system. By using (3.1.15), the condition
in (3.1.16) can be interpreted as

a12
a22

<
b1 − δ1
b2 − δ2

,
a21
a11

<
b2 − δ2
b1 − δ1

.

Since we have b1 − δ1 > 0 and δ2 = 0, if the coefficients a12 and a21 are small, then (3.1.16) holds. We give
a possible set of parameters satisfying (3.1.16) :

δ1 = 0.4, δ2 = 0, a12 = 0.2, a21 = 1. (3.1.17)

We assume the initial condition of each species ui is composed of 20 circular cell clusters (represented by the
red/green dots in Figure 3.1.6 (a)), uniformly distributed over the Petri dish Ω. The total number of cells
is initially Ui = 0.01 (recall (3.1.14)) for each species and we assume that each cluster contains the same
quantity of cells. We present the numerical simulation in Figure 3.1.6 from day 0 to day 6. We also plot the
proportions of cells in Figure 3.1.6 (f), which are defined as

Ui(t)
U1(t) + U2(t) , where Ui(t) :=

∫
Ω
ui(t, x)dx, i = 1, 2,

for species i.
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Figure 3.1.6: Spatial-temporal evolution of the two species u1 and u2 and their proportions. Figures (a)-(e)
correspond to the evolution of cell growth form day 0 to day 6 and Figure (f) is the plot of the proportion
of each species in the total population from day 0 to day 6. We fix the parameters δ1 = 0.4, δ2 = 0, a12 =
0.2, a21 = 1 in (3.1.17). The initial condition is composed of 20 cell clusters which are uniformly distributed
over the Petri dish. The initial total number of cells is U1 = U2 = 0.01 for each species and cells are equally
distributed in each cluster. Other parameter values are listed in Table 3.1.1.

If the parameters are set as in (3.1.17) for the ODE system, Proposition 3.1.12 indicates that the two
species are in the stable coexistence regime and the solution converges to the equilibrium

Ē∗ :=
(
a22(b1 − δ1)− a12(b2 − δ2)

a11a22 − a12a21
,
a21(b1 − δ1)− a11(b2 − δ2)

a12a21 − a11a22

)
≈ (0.11, 0.34).

However, as shown in Figure 3.1.6, we can see the population density u1 tends to 0 and u2 tends to 1. In
particular, we observe the competitive exclusion principle for the PDE even though the solutions to the ODE
are in the stable coexistence regime.

One can notice that unlike the ODE system (3.1.8), the segregation property for the PDE model implies
that it is impossible for the two species to coexist at the same position x ∈ Ω. Thus the coefficients a12, a21
do not play any role in the competition because of the segregation principle. This is verified by numerical
simulations: when we vary the coefficient coefficients a12, a21, we obtain identical plots for cell evolution and
cell population ratio. Since the simulations are identical, we omitted them here.

Through the numerical simulations, we observed that the PDE model (3.1.11) undergoes a competitive
exclusion principle. Our numerical simulations strongly indicate that the stable steady states only depend
on the relation between P̄1 and P̄2 (see (3.1.15) for definition). If P̄1 < P̄2 (resp. P̄1 > P̄2), the population
u2 (resp. u1) will dominate and the other species will die out. We also simulated the case when P̄1 > P̄2,
the results showed that Ē1 is the only stable steady state, which verifies our conjecture. As Proposition
3.1.12 shows, the stability of the equilibrium of the ODE system depends on the coefficients a12, a21 which
measure the interspecies competition. However, the stability of the steady states of the PDE system only
depends on P̄1 and P̄2, which do not depend on a12, a21. This is a major difference between the ODE and
PDE models.

3.1.3.2 Impact of the initial distribution on the final proportion of each species

In the previous section 3.1.3.2, we investigated the competitive exclusion principle for two species. By
investigating Figure 3.1.6 (f), we can see that the speed of increase in proportion of the dominant population
u2 (red curve) is varying with time. We remark that the increase of the dominant population u2 is faster
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from day 0 to day 2 than from day 4 to day 6. If we further study the spatial-temporal evolution of the
cell co-culture presented in Figure 3.1.6 (a)-(e), we can observe that from day 0 to day 2 the competition
between the two groups is mainly expressed in terms of competition for spatial resources. However, from
day 4 to day 6, when the surface of the Petri dish is almost fully occupied by cells of either type, the reaction
term uihi(u1, u2) in the equation begins to play a major role in the change of the number of cells. In order
to explore the major factors in cell competition, we investigate the impact on the initial distribution of
cells on the proportion of each species on day 6. We will mainly focus on two factors, namely the initial
number of cell clusters and the law of initial distribution of those clusters in space, which might influence
the proportions for u1 and u2. To that aim, we set the following parameters

δ1 = 0.15, δ2 = 0, a12 = 0, a21 = 0, (3.1.18)

and fix the other parameters as in Table 3.1.1.

Dependency on the initial number of cell clusters In cell culture, the initial number of cell clusters
is an important factor. Bailey et al. [28] study the sphere-forming efficiency of MCF-7 human breast cancer
cell by comparing the cell culture with different initial numbers of cell clusters. Here we consider the impact
of the initial number of cell clusters on the final proportion of each species. To that aim, we assume that
the initial distribution follows the uniform distribution on a disk.

We consider two sets of initial condition, that is

U1 = U2 = 0.005, Nu1 = Nu2 = 10, (3.1.19)
U1 = U2 = 0.1, Nu1 = Nu2 = 200, (3.1.20)

where U1 and U2 are defined in (3.1.14) and Nu1 (respectively Nu2) is the initial number of cell clusters of
species u1 (respectively, of species u2).

The above initial conditions correspond to different types of seeding in the experiment, namely cells are
sparsely seeded or densely seeded. We assume that the total number of cells is proportional to the initial
number of cell clusters, meaning the dilution procedure adopted in the experiment is the same, thus the
number of cells in each cell cluster is a constant. In Figure 3.1.7, we first give a numerical simulation for
the cell growth with parameters in (3.1.19). In Figure 3.1.8, we present the simulation with parameters in
(3.1.20), tracking from day 0 to day 6.

Figure 3.1.7: Cell co-culture for species u1 and u2 over 6 days in the sparsely seeded case, i.e., U1 = U2 =
0.005, Nu1 = Nu2 = 10, for day 0, 2 and 6. Parameter values are listed in (3.1.18) and Table 3.1.1.
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Figure 3.1.8: Cell co-culture for species u1 and u2 over 6 days in the densely seeded case, i.e., U1 = U2 =
0.1, Nu1 = Nu2 = 200, for day 0, 2 and 6. Parameter values are listed in (3.1.18) and Table 3.1.1.

In Figure 3.1.9 we plot the evolution of the total number of cells and the proportion of each species over
6 days.
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Figure 3.1.9: Evolution of the total number of cells (in log scale) and their proportion for species u1 and
u2 over 6 days. Figure (a) corresponds to the sparsely seeded case (with parameter values as in (3.1.19)),
Figure (b) to the densely seeded case (with parameter values as in (3.1.20)) . In Figure (c), the solid lines
represent the proportions of each species when we start with Nu1 = Nu2 = 10 and the dashed lines represent
the proportions of each species when we start with Nu1 = Nu2 = 200. Parameters are listed in Table 3.1.1
and in (3.1.18).

From Figure 3.1.9 (a)-(b), we can also observe a difference in the growth of each cell population. In
Figure (a) we can see that both cell populations are in the regime of exponential growth from day 0 to
day 6 (a base-10 log scale is used for the y-axis). Conversely, in Figure (b) the growth of each population
is slowing down from day 4 to day 6, meaning that the cell co-culture is reaching the carrying capacity.
More importantly, in Figure (c), we observe a significant difference in the development of proportion of each
species. In fact, since the spatial competition is still the dominant factor in the first two days, we can hardly
see any difference between the dashed lines and solid lines. The proportion of the dominant population
grows almost linearly. However, the variation of the proportion of each species in the densely seeded case
changes much slower after day 4, while the sparsely seeded group still varies linearly.

In the above numerical simulations, we considered the case where the total number of cells is proportional
to the number of cell clusters. In the following numerical experiments, we fix the total number of cells, and
vary only the number of cell clusters. By doing so, we intend to show the influence uniquely due to the
number of cell clusters.

We consider two sets of initial condition, that is

U1 = U2 = 0.075, Nu1 = Nu2 = 10, (3.1.21)
U1 = U2 = 0.075, Nu1 = Nu2 = 100, (3.1.22)

where U1 and U2 are defined in (3.1.14) and Nu1 (respectively Nu2) is the initial number of cell clusters of
species u1 (respectively species u2).
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The above initial conditions correspond to different types of seeding in the experiment, namely cells are
sparsely seeded or densely seeded. We assume that the total number of cells is not proportional to the initial
number of cell clusters, meaning that the dilution procedures adopted in the experiment are different, thus
the number of cells in each cell cluster can be different.

In Figure 3.1.10, we first give a numerical simulation for the cell growth with parameters in (3.1.21). In
Figure 3.1.11, we present the simulation with parameters in (3.1.22).

Figure 3.1.10: Cell co-culture for species u1 and u2 over 6 days in the sparsely seeded case, i.e., U1 = U2 =
0.075, Nu1 = Nu2 = 10, for day 0, 1 and 6. Parameter values are listed in (3.1.18) and Table 3.1.1.

Figure 3.1.11: Cell co-culture for species u1 and u2 over 6 days in the densely seeded case, i.e., U1 = U2 =
0.075, Nu1 = Nu2 = 100, for day 0, 1 and 6. Parameter values are listed in (3.1.18) and Table 3.1.1.

In Figure 3.1.12 we plot the evolution of the total number of cells and the proportion of each species u1
and u2 over 6 days of the simulation.
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Figure 3.1.12: Evolution of the total number (in log scale) and the proportion of each species u1 and u2 over
6 days. In Figure (a) we plot the total number of each cell population corresponding to the simulations with
parameters in (3.1.21) while Figure (b) corresponds to the simulations with parameters in (3.1.22). In Figure
(c), the solid lines represent the proportion of each species in the sparsely seeded case Nu1 = Nu2 = 10 and
the dashed lines represent the proportion in the densely seeded case Nu1 = Nu2 = 100. Parameters are listed
in Table 3.1.1 and (3.1.18).

The curves of the growth of the two cell populations in Figure 3.1.12 (a) and (b) are very similar. Both
of them are reaching the carrying capacity (a base-10 log scale is used for the y-axis). However, as Figure
3.1.12 (c) shows, there is still a clear difference in the proportion of each species in the total population
(dashed lines and solid lines) and this difference persists when we change the random seed for the uniform
distribution at t = 0. In fact, as the total number of cells for the two scenarios is the same, the transition
from the first expansion phase (from day 0 to day 1 in Figure 3.1.10 and 3.1.11) to the second phase of the
interspecies competition is very short for both two scenarios. During the first four days, we can hardly see
any difference between the dashed lines and solid lines in Figure 3.1.12 (c). The proportion of the dominant
population grows almost linearly. However, the proportion of the densely seeded group slows down after day
4, while the sparsely seeded group still grows almost linearly. This difference can be more significant if we
increase the difference of the initial number of clusters (See [177, page.119 Figure 3.7 and 3.8]).

Figure 3.1.10 and Figure 3.1.11 show that when we start with the sparsely seeded condition, the species
quickly expand to some large and connected clusters. On the contrary, for the densely seeded case, cells form
small and scattered islets. Thus, even though the curves for the two scenarios are similar in Figure 3.1.12-(a)
and Figure 3.1.12-(b), the interactions of large clusters and small islets are different. This discrepancy can
affect the competition between the two populations and eventually be expressed in the population ratio. As
for the densely seeded case, though the competitive exclusion principle holds in this case, the time for the
extinction of u1 can be very long.

Dependency on the law of the initial distribution In the experiment, the size of the Petri dish can
be a factor to determine the law of the initial distribution for the cell. In general, under the same total
number of cells, a small size Petri dish will lead to a biased initial distribution and cells are more likely to
aggregate at the border. While a big Petri dish will make the cell distribution more homogeneous, closer to
a uniform distribution. Therefore, in this paragraph, we study whether the proportion of each species can
be affected by the law of initial distribution.

We will assume that the center of each cluster in the initial distribution is given by its polar coordinates
(r, θ), that the radius r follows the Beta distribution with parameters α and β, and that the angle θ is
uniformly distributed in [0, 2π]. More precisely,

{rn}n=1,...,N ∼ Beta(α, β), {θn}n=1,...,N ∼ U(0, 2π).

Hence the Cartesian coordinates of the center of each cluster are given by{
xn = √rn cos(θn)
yn = √rn sin(θn)

n = 1, 2, . . . , N. (3.1.23)

In Figure 3.1.13, we plot the density function of the Beta distribution for different α, β

fα,β(r) = 1/B(α, β) rα−1(1− r)β−1,
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where B(α, β) is a normalization constant to ensure that the total mass is 1.
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Figure 3.1.13: Density function of the initial distribution fα,β(r) = 1/B(α, β) rα−1(1− r)β−1 for different α
and β, where B(α, β) is a normalization constant to ensure that the total integral is 1.

Our simulation will mainly compare the following two cases

(α1, β1) = (1, 1), (α2, β2) = (3, 2).

We plot the initial distributions of the two different cases in Figure 3.1.14 where we choose 40 cell clusters
(i.e., Nu1 = 40 and Nu2 = 40 in (3.1.23)) for species u1 and species u2.
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Figure 3.1.14: Spatial distribution of the initial condition when (α, β) = (1, 1) (Figure (a)) and (α, β) = (3, 2)
(Figure (b)). Here red dots and green dots represent cell clusters. The initial condition is composed of
Nu1 = 40 and Nu2 = 40 cell clusters, in both cases.

Suppose that the total number of cells U1 = U2 = 0.02 is equally distributed in each cell cluster.
A typical numerical solution is shown in Figure 3.1.15 when (α1, β1) = (1, 1) and in Figure 3.1.16 when
(α2, β2) = (3, 2).
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Figure 3.1.15: Cell co-culture for species u1 and u2 over 6 days. We plot the case where the initial distribution
follows beta distribution with parameters (α, β) = (1, 1). Parameters are listed in Table 3.1.1 and (3.1.18).

Figure 3.1.16: Cell co-culture for species u1 and u2 over 6 days. We plot the case where the initial distribution
follows beta distribution with parameters (α, β) = (3, 2). Parameters are listed in Table 3.1.1 and (3.1.18).

Now we plot the evolution of the total number of cells for each species u1 and u2 over 6 days.
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Figure 3.1.17: Evolution of the total number of cells (in log scale) for species u1 and u2 and their proportions
over 6 days. In Figure (a) we plot the total number of cells corresponding to the uniform initial distribution
in Figure 3.1.15. In Figure (b) we plot the number of cells corresponding to the initial distribution as in
Figure 3.1.16. In Figure (c), the solid lines represent the proportion when (α, β) = (1, 1) and the dashed
lines represent the proportion in the case (α, β) = (3, 2). From Figure (c), we can see that they overlap.
Parameters are listed in Table 3.1.1 and (3.1.18).

From Figure 3.1.17 we can see that the law of initial distribution has almost no influence on the final
proportion of species. We also tried different scenarios when the total number of cell clusters are 20, 50
and 100 or with different extra mortality rate δ1 = 0, 0.2 and 0.5, and the results are similar. Thus we can
deduce that the final relative proportion is stable under the variation of the law of the initial distribution.

Combining the above numerical experiments in Section 3.2.1 and Section 3.2.2, we can see that under
the competitive exclusion principle, the difference in the initial number of cell clusters can have an influence
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on the interspecific competition. To be more precise, with the same initial number of cells, the interspecific
competition of the densely seeded group is different from the one in the sparsely seeded group.

3.1.3.3 Impact of the dispersion coefficient on the population ratio

In Section 3.2, when the parameters of the model are the same, the competition induced by the cell dynamics
can be reflected by the difference in the spatial resource. Now we assume the spatial resource is the same
and we investigate the role of the dispersion coefficient in the evolution of the species.

To that aim, we let the initial distribution of the two species follow the same uniform distribution and
they are sparsely seeded on the Petri dish. Furthermore, we let the cell dynamics for the two population be
almost the same, the only variable we control here is the dispersion coefficient for the population. We take
the same uniform initial distribution at day 0, with the same initial number of cell clusters and the same
number of cells, i.e.,

U1 = U2 = 0.005, Nu1 = Nu2 = 10, a12 = a21 = 0. (3.1.24)
We compare the following two scenarios in Table 3.1.2 where the only difference is the dispersion parameters.

Parameters d1 d2 δ1 δ2

scenario 1: 2 2 0 0

scenario 2: 2 0.2 0 0

Table 3.1.2: Two sets of dispersion coefficients for u1 and u2.

In scenario 1, the dispersion coefficients of the two species are the same, while in scenario 2 we suppose
the species u1 has an advantage in the spatial competition over its competitor u2.

Figure 3.1.18: Cell co-culture for species u1 and u2 over 6 days. Figures(a)-(c) correspond to scenario 1 (i.e.
with the parameters d1 = 2, d2 = 2, δ1 = δ2 = 0) while Figures (d)-(f) correspond to scenario 2 (i.e. with
d1 = 2, d2 = 0.2, δ1 = δ2 = 0). In both scenarios, the initial number of cell clusters and the total number of
cells are the same and follow (3.1.24) and the same uniform distribution. We plot the simulations for day
1, 3 and day 6. Other parameters are listed in Table 3.1.1.

Now we plot the evolution of the total number of cells and the proportion of each species for species u1
and u2 over 6 days.
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Figure 3.1.19: Evolution of the total number of cells (in log scale) and the proportion in the total population
for species u1 and u2 over 6 days. In Figure (a) we plot the total number of cells corresponding to the
scenario 1. In Figure (b) we plot the total number of cells corresponding to the scenario 2. In Figure (c)
we plot the proportion of each species and the dashed lines corresponds to scenario 1 while the solid lines
corresponds to scenario 2 in 3.1.2. Other parameters are listed in Table 3.1.1 and (3.1.24).

The main result from Figure 3.1.19 is that the dispersion coefficient can have a great impact on the
proportion of each species after 6 days. Next, we consider the following scenario where u1 has the advantage
in dispersion coefficient but is at a disadvantage induced by drug treatment. Therefore

Parameters d1 d2 δ1 δ2

scenario 3: 2 0.2 0.1 0

Table 3.1.3: This scenario corresponds to the case where the species u1 spreads faster than the species u2.
Moreover, due to a drug treatment, the mortality of the species u1 is strictly positive while the mortality of
the species u2 is zero (i.e. the drug treatment does not affect the second species). In the context of cancer
cell, the species u1 would correspond to cells which are sensitive to the drug while u2 would correspond to
the cell resistant to the drug treatment.

Figure 3.1.20: Cell co-culture for species u1 and u2 over 6 days. Figure (a)-(c) corresponds to the scenario
3 with d1 = 2, d2 = 0.2, δ1 = 0.1, δ2 = 0 in Table 3.1.3. The initial number of cell clusters and the total
number of cells follow (3.1.24). Other parameters are listed in Table 3.1.1.
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Figure 3.1.21: Evolution of the total number of cells (in log scale) and the proportion of each species for
species u1 and u2 over 6 days. In Figure (a) we plot the total number of cells in scenario 3 (see Figure
3.1.20). In Figure (b), the dashed lines correspond to the proportion of each species in the total population
in scenario 2 with d1 = 2, d2 = 0.2, δ1 = 0, δ2 = 0 in Table 3.1.2 while the solid lines correspond to scenario
3 with d1 = 2, d2 = 0.2, δ1 = 0.1, δ2 = 0 in Table 3.1.3. Other parameters are listed in Table 3.1.1 and
(3.1.24).

By including now a drug treatment, we can see from Figure 3.1.20 and Figure 3.1.21 that between day 0
and day 2, the population u1 dominates u2 thanks to a larger dispersion rate. After day 2, since the drug is
killing the cell for species u1 while the drug has no effect on the species u2, the species u2 finally takes over
the species u1. It leads to a gradual increase in the proportion of the species u2.

In the numerical simulations for the scenarios 1 and 2 in Table 3.1.2, we let the cell dynamics of the two
species be almost equal. Thus the competition due to the cell dynamics is almost negligible. We have shown
the dispersion coefficient of populations can have a great impact on the population ratio after 6 days.

In the simulation for scenario 3 in Table 3.1.3, we can observe that despite the competitive exclusion
principle, a larger dispersion coefficient can lead to a short-term advantage in the population. In the long
term, the competitive exclusion principle still dominates.

3.1.4 Conclusion and discussion
From the experimental data in the work of Pasquier et al. [318], we modeled the mono-layer cell co-culture
by a hyperbolic Keller-Segel equation (3.1.11). We proved the local existence and uniqueness of solutions
by using the notion of the solution integrated along the characteristics in Theorem 3.1.7 and proved the
conservation law in Theorem 3.1.9. For the asymptotic behavior, we analyzed the problem numerically in
Section 3.

In Section 3.1 we discussed the competitive exclusion principle, indicating that the asymptotic behavior
of the population depends only on the relationship between the steady states P̄1 and P̄2 (see (3.1.15) for
definition) which is different from the ODE case. We found that except for the case P1 = P2, the model
with spatial segregation always exhibits a competitive exclusion principle.

Even though the long term dynamics of cell density is decided by the relative values of the equilibrium,
the short term behavior needs a more delicate description. We studied two factors which may influence
the population ratios. The first factor is the initial cell distribution, as measured by the initial number of
cell clusters and the law of initial distribution. We found that the impact of the initial distribution on the
proportion of each species lies in the initial number of cell clusters but not in the law of initial distribution.

The second factor influencing the population ratio is the cell movement in space, as measured by the
dispersion coefficient di. In the first stage (i.e. before the Petri dish is saturated), the dispersion rate di
is the dominant factor. Once the surface of the Petri dish is saturated by cells, cell dynamics ui h(u1, u2)
becomes the key factor. Note that the coefficients a12, a21 do not play any role in the competition because
of the segregation principle.

We briefly summarize the main factors that can influence the population ratio in cell culture for model
(3.1.11):
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(a). The difference of cell dynamics in the two species (internal factor): if the equilibrium P̄1 > P̄2 (see
(3.1.15) for definition), then u1 will dominate, u2 will die out (and vice-versa when P̄1 < P̄2) (see
Figures 3.1.6);

(b). If the initial number of cells is similar, the interspecific competition of the densely seeded group is
different than the one of the sparsely seeded group (see Figures 3.1.12). We also concluded that the
law of initial distribution has almost no influence on the population ratio (see Figures 3.1.15-3.1.16);

(c). If cells are sparsely seeded at the beginning, the cell competition consists of two stages: the first stage,
where the dispersion rate plays a major role, is for cells to occupy the surface of the Petri dish and the
second stage, where the cell dynamics becomes the key factor, is for each species to reach a saturation
stage (see Figure 3.1.19 and Figure 3.1.21).

3.1.4.1 Mixed initial condition

In this section 3.1, we are mainly focused on applying the model to the monolayer cell co-culture experiments
in [318] where the initial condition is always segregated. However, when the dispersion coefficients are the
same d1 = d2 and the initial condition is mixed in the domain, the two population stay mixed even for large
time, this can be proved by an argument similar to the one in Theorem 3.1.14. By equation (3.1.13),

ui(t,Π(t, 0;x)) = ui (0, x)

exp
(∫ t

0
hi ((u1, u2)(l,Π(l, 0;x))) + d

χ
(P (l,Π(l, 0;x))− (u1 + u2)(l,Π(l, 0;x))) dl

)
.

Therefore, if u1(0, x0)u2(0, x0) > 0, we can deduce u1(t,Π(t, 0;x))u2(t,Π(t, 0;x)) > 0 for any t > 0. To be
more precise, if we take the time derivate of (2.13), we obtain

d
dtui(t,Π(t, 0;x)) = ui(t,Π(t, 0;x))

(
hi((u1, u2)(t,Π(t, 0;x)))

+ d

χ

(
P (t,Π(t, 0;x))− (u1 + u2)(t,Π(t, 0;x))

))
.

Note that both solutions ui(t,Π(t, 0;x)), i = 1, 2 have a common term d
χ (P (t,Π(t, 0;x))−(u1+u2)(t,Π(t, 0;x))).

Therefore, for those mixed (non-segregated) initial condition, it is the term hi((u1, u2)(t,Π(t, 0;x))) that de-
termines the competition between these two species.

When d1 6= d2, it is interesting to show some further numerical simulations with mixed initial condition.
Our numerical simulations suggest that segregation occurs asymptotically. We present numerical results of
asymptotic segregation in Figure 3.1.22, which were obtain by simulating the following toy model


∂tu1(t, x)− d1 div

(
u1(t, x)∇P (t, x)

)
= u1(t, x) (1− u1(t, x)− 2u2(t, x))

∂tu2(t, x)− d2 div
(
u2(t, x)∇P (t, x)

)
= u2(t, x) (1− 2u1(t, x)− u2(t, x))(

I −∆
)
P (t, x) = u1(t, x) + u2(t, x)

in [0, T ]× [−2, 2]

∇P (t, x) · ν(x) = 0 on [0, T ]× {−2, 2},

(3.1.25)

where we set T = 15 and d1 = 2 and d2 = 1.
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Figure 3.1.22: Evolution of two species under a toy model (3.1.25) with mixed initial condition. The disper-
sion rate d1 = 2 while d2 = 1. For t > 15, the distributions u1(t, .) and u2(t, .) are almost independent of t.
The numerical results suggest that asymptotic segregation occurs.
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3.1.5 Appendix
3.1.5.1 Invariance of domain Ω

In this section 3.1.5.1, we prove the invariance of domain Ω for the characteristic equation.

Assumption 3.1.16. Let Ω ⊂ R2 be an open bounded subset with ∂Ω of class C2.

Since Ω is a bounded domain of class C2, there exists U a neighborhood of the boundary ∂Ω such that
the distance function x → dist(x, ∂Ω) := infy∈∂Ω ‖x − y‖ restricted to U has the regularity C2 (see Foote
[172, Theorem 1]). Furthermore, by Foote [172, Theorem 1] and Ambrosio [11, Theorem 1 p.11], we have
the following properties for Ω.

Lemma 3.1.17. Let Assumption 3.1.16 be satisfied. Then

(i). There exists a small neighborhood U of ∂Ω with U ⊂ Ω such that, for every x ∈ U there is a unique
projection P (x) ∈ ∂Ω satisfying dist(x, P (x)) = dist(x, ∂Ω).

(ii). The distance function x 7→ δ(x) := dist(x, ∂Ω) is C2 on U\∂Ω.

(iii). For any x ∈ U , ∇δ(x) = −ν(P (x)) where ν(x) is the outward normal vector.

We consider the following non-autonomous differential equation on Ω{
x′(t) = f(t, x(t)) t > 0
x(0) = x0 ∈ Ω.

(3.1.26)

Assumption 3.1.18. The vector field f : [0,∞)× Ω→ R2 is continuous and satisfies

ν(x) · f(t, x) ≤ 0, ∀t > 0, ∀x ∈ ∂Ω. (3.1.27)
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Moreover, for any T > 0, there exists a constant K = K(T ) such that vector field f satisfies

|f(t, x)− f(t, y)| ≤ K|x− y|, ∀x, y ∈ Ω, t ∈ [0, T ]. (3.1.28)

By (3.1.28), we have the existence and uniqueness of the solutions of (3.1.26) and the solutions may
eventually reach the boundary ∂Ω in finite time. We will prove that (3.1.27) implies that the solutions of
(3.1.26) actually stay in Ω and can not attain boundary ∂Ω in finite time under Assumption 3.1.16.

Theorem 3.1.19. Let Assumption 3.1.16 and 3.1.18 be satisfied. For any T > 0, let x(t) be the solution of
(3.1.26) on [0, T ]. Then x(t) ∈ Ω for any t ∈ [0, T ].

Proof. We prove this theorem by contradiction. Let t∗ ∈ (0, T ] be the first time when x(t) reaches boundary
∂Ω, i.e.,

t∗ = inf{0 < t ≤ T : δ(x(t)) = 0}.

We can find a θ > 0 such that, x(t) ∈ U ∩ Ω for any t ∈ [t∗ − θ, t∗]. Since t → x(t) is C1, the mapping
t 7→ δ(x(t)) is C1 on [t∗ − θ, t∗]. By Lemma 3.1.17 (iii), we have

d

dt
δ(x(t)) = x′(t) · ∇δ(x(t)) = −f(t, x(t)) · ν(y(t)), (3.1.29)

where ν is the outward normal vector and y(t) := P∂Ω(x(t)) is the unique projection of x(t) onto ∂Ω. By
assumption (3.1.27), we have

−f(t, x(t)) · ν(y(t)) =
(
f(t, y(t))− f(t, x(t))

)
· ν(y(t))− f(t, y(t)) · ν(y(t)) ≥

(
f(t, y(t))− f(t, x(t))

)
· ν(y(t)).

Hence (3.1.29) becomes

d

dt
δ(x(t)) =− f(t, x(t)) · ν(y(t))

≥
(
f(t, y(t))− f(t, x(t))

)
· ν(y(t))

≥− |f(t, y(t))− f(t, x(t))| |ν(y(t))|
≥ −K|y(t)− x(t)| = −Kδ(x(t)), t ∈ [t∗ − θ, t∗],

which yields
δ(x(t)) ≥ δ(x(t∗ − θ))e−K(t−t∗+θ), ∀t ∈ [t∗ − θ, t∗],

and δ(x(t∗ − θ)) > 0 implies δ(x(t∗)) > 0 which contradicts our assumption δ(x(t∗)) = 0.

3.1.5.2 Proof of Theorem 3.1.7

The objective of Appendix 5.2 is to give a clear notion of solutions and to prove the local existence and
uniqueness of solution.
Solution integrated along the characteristics. Let us temporarily suppose u ∈ C1 ([0, T ]× Ω), we can
rewrite the first equation in (3.1.1) as

∂tu(t, x)− d∇u(t, x) · ∇P (t, x) = u(t, x)h(u(t, x)) + d u(t, x)∆P (t, x)

= u(t, x)
(
h(u(t, x)) + d

χ
(P (t, x)− u(t, x))

)
.

Moreover, if we differentiate the solution along the characteristic with respect to t then

d
dtu(t,Π(t, 0;x))

= ∂tu(t,Π(t, 0;x)) +∇u(t,Π(t, 0;x)) · ∂tΠ(t, 0;x)
= ∂tu(t,Π(t, 0;x))− d∇u(t,Π(t, 0;x)) · ∇P (t,Π(t, 0;x))

= u(t,Π(t, 0;x))
(
h(u(t,Π(t, 0;x))) + d

χ
(P (t,Π(t, 0;x))− u(t,Π(t, 0;x)))

)
.

The solution along the characteristics can be written as
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u(t,Π(t, 0;x))

= u0(x) exp
(∫ t

0
h(u(l,Π(l, 0;x))) + d

χ

(
P (l,Π(l, 0;x))− u(l,Π(l, 0;x))

)
dl
)
.

Similarly, we can deduce for any 0 ≤ s ≤ t

u(t,Π(t, s;x))

= u(s, x) exp
(∫ t

s

h(u(l,Π(l, s;x))) + d

χ

(
P (l,Π(l, s;x))− u(l,Π(l, s;x))

)
dl
)
. (3.1.30)

For the simplicity of notation, we let d = χ = 1 in our following discussion and define w(t, x) := u(t,Π(t, 0;x)).
We construct the following Banach fixed point problem for the pair (w,P ). For each (w,P ), we let

w1(t, x) = u0(x) exp
(∫ t

0
F (w(l, x)) + P (l,Π(l, 0;x))dl

)
. (3.1.31)

where we set F (u) = h(u)− u for any u ≥ 0 and we define

T

w(t, x)

P (t, x)

 :=

 w1(t, x)

(I −∆)−1w1(t,Π(0, t;x))

 =

w1(t, x)

P 1(t, x)

 , (3.1.32)

where (I −∆)−1 is the resolvent of the Laplacian operator with Neumann boundary condition.
We define

Xτ := C0([0, τ ], C0(Ω)
)
, Y τ := C0([0, τ ], C1(Ω)

)
,

X̃τ :=
{
w ∈ C0([0, τ ], C0(Ω)

) ∣∣∣ w ≥ 0, sup
t∈[0,τ ]

‖w(t, ·)‖W 1,∞(Ω) ≤ C1

}
,

Ỹ τ :=
{
P ∈ C0([0, τ ], C1(Ω)

) ∣∣∣ sup
t∈[0,τ ]

∥∥P (t, ·)
∥∥
W 2,∞(Ω) ≤ C2

}
,

(3.1.33)

where Ci, i = 1, 2 are two constants to be fixed later. We also set

Zτ := Xτ × Y τ , Z̃τ := X̃τ × Ỹ τ .

Notice Z̃τ is a complete metric space for the distance induced by the norm (‖ · ‖Xτ , ‖ · ‖Y τ ). For simplicity,
we denote ‖ · ‖Cα,k := ‖ · ‖Cα,k(Ω) and ‖ · ‖Wk,∞ := ‖ · ‖Wk,∞(Ω) for α ∈ (0, 1], k ∈ N+.

Theorem 3.1.20 (Existence and uniqueness of solutions). For any initial value u0 ∈W 1,∞(Ω) and u0 ≥ 0,
for any C1, C2 large enough in (3.1.33), there exists τ = τ(C1, C2) > 0 such that the mapping T has a
unique fixed point in Z̃τ .

Proof. For any positive initial value u0 ∈ W 1,∞(Ω) and r > 0, we fix C1 to be a constant such that
4‖u0‖W 1,∞ ≤ C1 and C2 is a constant defined in (3.1.44) later in the proof.

We also denote w0

P 0

 =

 u0

(I −∆)−1
N u0


and let BZ̃τ

w0

P 0

 , r

 be the closed ball centered at

w0

P 0

 with radius r in Z̃τ = X̃τ × Ỹ τ with usual

product norm ∥∥∥∥∥∥
w
P

∥∥∥∥∥∥
Z̃τ

:= ‖w‖Xτ + ‖P‖Y τ

and we set

κ :=

∥∥∥∥∥∥
w0

P 0

∥∥∥∥∥∥
Z̃τ

+ r.
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Suppose

w
P

 ∈ BZτ

w0

P 0

 , r

, we need to prove that there exits a τ small enough such that the

following properties hold

(a). For any t ∈ [0, τ ],
(
w1(t, ·), P 1(t, ·)

)
in (3.1.31) and (3.1.32) belong to W 1,∞(Ω)×W 2,∞(Ω) and their

norms satisfy

sup
t∈[0,τ ]

‖w1(t, ·)‖W 1,∞ ≤ C1, (3.1.34)

sup
t∈[0,τ ]

‖P 1(t, ·)‖W 2,∞ ≤ C2. (3.1.35)

(b). Moreover, we have

‖w1 − w0‖Xτ ≤
r

2 , (3.1.36)

‖P 1 − P 0‖Y τ ≤
r

2 . (3.1.37)

Moreover, we plan to show that the mapping is a contraction: there exists a θ ∈ (0, 1) such that for anyw̃
P̃

 ,

w
P

 ∈ BZ̃τ(
w0

P 0

 , r

)
we have

∥∥∥∥∥∥T
w̃
P̃

− T
w
P

∥∥∥∥∥∥
Z̃τ

≤ θ

∥∥∥∥∥∥
w̃
P̃

−
w
P

∥∥∥∥∥∥
Z̃τ

. (3.1.38)

Step 1. We show that there exists a τ small enough such that for any (w,P ) ∈ X̃τ × Ỹ τ then

sup
t∈[0,τ ]

‖w1(t, ·)‖W 1,∞ ≤ C1,

where w1 is defined in (3.1.31).

Indeed, since∇P (t, ·) is Lipschitz continuous, then x→ Π(t, 0, x) is also Lipschitz continuous. Since Π(t, 0; ·)
maps Ω into Ω, we have

‖P (t,Π(t, 0; ·))‖W 1,∞ ≤ ‖P (t,Π(t, 0; ·))‖L∞ + ‖∇P (t, ·)‖L∞‖Π(t, 0; ·)‖W 1,∞

≤ ‖P (t, ·)‖W 1,∞ max{‖Π(t, 0; ·)‖W 1,∞ , 1}.

For any t ∈ [0, τ ], we let F̃ := supu∈[0,κ] {|F (u)|+ |F ′(u)|}. By the definition of w1 in (3.1.31), we have

‖w1(t, ·)‖W 1,∞

≤ ‖u0‖W 1,∞

∥∥∥∥exp
{∫ t

0
F (w(l, ·)) + P (l,Π(l, 0, ·))dl

}∥∥∥∥
W 1,∞

≤ ‖u0‖W 1,∞

∥∥∥∥exp
{∫ t

0
F (w(l, ·)) + P (l,Π(l, 0, ·))dl

}∥∥∥∥
L∞

×
(

1 +
∫ t

0
‖F (w(l, ·))‖W 1,∞ + ‖P (l,Π(l, 0, ·))‖W 1,∞dl

)
≤ ‖u0‖W 1,∞ exp

{∫ t

0
‖F (w(l, ·))‖L∞ + ‖P (l,Π(l, 0, ·))‖L∞dl

}
×
(

1 + τF̃ max{ sup
l∈[0,τ ]

‖w(l, ·)‖W 1,∞ , 1}+ τ‖P (l, ·)‖W 1,∞ max{‖Π(l, 0, ·)‖W 1,∞ , 1}
)

≤ ‖u0‖W 1,∞eτ(F̃+κ)
(

1 + τF̃ max{C1, 1}+ τκmax{‖Π(l, 0, ·)‖W 1,∞ , 1}
)
. (3.1.39)
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Next we estimate max
{

supl∈[0,τ ] ‖Π(l, 0, ·)‖W 1,∞ , 1
}
. We have for any t, s ∈ [0, τ ]

Π(t, s;x) = x−
∫ t

s

∇P (l,Π(l, s;x))dl.

Since Ω is the unit open disk, ‖x‖W 1,∞(Ω) = 2. We can obtain the following estimate

‖Π(t, s; ·)‖W 1,∞ ≤ 2 +
∫ t

s

‖∇P (l,Π(l, s; ·))‖W 1,∞dl

≤ 2 + sup
l∈[s,t]

‖∇P (l, ·)‖W 1,∞

∫ t

s

max {‖Π(l, s; ·)‖W 1,∞ , 1} dl

≤ 2 + C2

∫ t

s

max{‖Π(l, s; ·)‖W 1,∞ , 1}dl.

Thanks to Grönwall’s inequality, we have

sup
t,s∈[0,τ ]

‖Π(t, s; ·)‖W 1,∞ ≤ 2eτC2 . (3.1.40)

Substituting the (3.1.40) into (3.1.39) yields

‖w1(t, ·)‖W 1,∞ ≤ ‖u0‖W 1,∞eτ(F̃+κ)
(

1 + τF̃ max{C1, 1}+ 2τκeτC2
)
.

Since C1 ≥ 4‖u0‖W 1,∞ , we can choose τ ≤ min
{

ln 2
F̃+κ ,

1
F̃ max{C1,1}+2κeC2

, 1
}

and we obtain

sup
t∈[0,τ ]

‖w1(t, ·)‖W 1,∞ ≤ C1. (3.1.41)

Thus, Equation (3.1.34) holds.

Let us now check that w1 satisfies (3.1.36). Let χ[u] := ueu, we remark that |eu − 1| ≤ ueu = χ[u] for all
u ≥ 0. We have

|w1(t, x)− u0(x)| ≤ |u0(x)|
∣∣∣∣exp

{∫ t

0
F (w(l, x)) + P (l,Π(l, 0, x))dl

}
− 1
∣∣∣∣

≤ ‖u0‖C0χ

[∫ t

0
‖F (w(l, ·))‖C0 + ‖P (l,Π(l, 0, ·))‖C0dl

]
≤ ‖u0‖C0χ

[
τF̃ + τ sup

l∈[0,τ ]
‖P (l, ·)‖C0

]
≤ ‖u0‖C0χ

[
τF̃ + τκ

]
, (3.1.42)

where F̃ = supu∈[0,κ] {|F (u)|+ |F ′(u)|}. From (3.1.42) we have

sup
t∈[0,τ ]

‖w1(t, ·)− u0(·)‖C0 ≤ ‖u0‖C0χ
[
τF̃ + τκ

]
. (3.1.43)

Since limu→0 χ[u] = 0, it suffice to take τ small enough to ensure (3.1.36).

Step 2. Next we verify (3.1.35) and (3.1.37) for P 1 where P 1 is defined as the second component of (3.1.32).
We show that there exists τ small enough such that for any (w,P ) ∈ X̃τ × Ỹ τ

sup
t∈[0,τ ]

‖P 1(t, ·)‖W 2,∞ ≤ C2.

Thanks to the Schauder estimate [187, Theorem 6.30], there exists a constant C depending only on Ω such
that

‖P 1(t, ·)‖
C2, 12

≤ C‖w1(t,Π(0, t; ·))‖
C0, 12

.
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Recalling supt∈[0,τ ] ‖Π(0, t; ·)‖W 1,∞ ≤ 2eτC2 as a consequence of (3.1.40), we have

‖P 1(t, ·)‖W 2,∞ ≤ ‖P 1(t, ·)‖
C2, 12

≤ C‖w1(t,Π(0, t; ·))‖
C0, 12

≤ C‖w1(t,Π(0, t; ·))‖W 1,∞

≤ C‖w1(t, ·)‖W 1,∞ max{‖Π(0, t; ·)‖W 1,∞ , 1}
≤ 2C C1e

τC2 .

We can now define
C2 = 4C C1, (3.1.44)

which only depends on Ω and ‖u0‖W 1,∞ . Finally, we let τ ≤ (ln 2)/C2 and we have

‖P 1(t, ·)‖W 2,∞ ≤ 4C C1 = C2.

In particular, we have shown (3.1.35).

Next we prove (3.1.37). Since Ω is a two-dimensional unit disk, using Morrey’s inequality [162, Chapter 5.
Theorem 6], we have

‖P 1(t, ·)− P0(·)‖
C1, 12

≤ C‖P 1(t, ·)− P0(·)‖W 2,4 ,

where C is a constant depending only on Ω. For the sake of simplicity, we use the same notation C for
a universal constant depending only on Ω in the following estimates. Moreover, by the classical elliptic
estimates we have

‖P 1(t, ·)− P0(·)‖W 2,4 ≤ C‖w1(t,Π(0, t; ·))− u0(·)‖L4 .

This implies that

‖P 1(t, ·)− P0(·)‖C1 ≤ C‖w1(t,Π(0, t; ·))− u0(·)‖L4

≤ C‖w1(t,Π(0, t; ·))− u0(·)‖C0

≤ C‖w1(t,Π(0, t; ·))− w1(t, ·)‖C0 + C‖w1(t, ·)− u0(·)‖C0

≤ C‖w1‖W 1,∞‖Π(0, t; ·)− ·‖C0 + C‖w1(t, ·)− u0(·)‖C0

≤ C C1‖Π(0, t; ·)− ·‖C0 + C‖w1(t, ·)− u0(·)‖C0

≤ C C1 τ sup
t∈[0,τ ]

‖∇P (t, ·)‖C0 + C‖w1(t, ·)− u0(·)‖C0

≤ C C1 τ κ+ C‖w1(t, ·)− u0(·)‖C0

≤ C C1 τ κ+ C‖u0‖C0χ
[
τF̃ + τκ

]
,

where we have used (3.1.43) for the last inequality . We can conclude

sup
t∈[0,τ ]

‖P 1(t, ·)− P0(·)‖C1 → 0, τ → 0.

Thus, it suffice to take τ small enough to ensure the neighborhood condition (3.1.37).

Step 3. Contraction mapping In order to verify (3.1.38), we let

w̃
P̃

 ,

w
P

 ∈ BZ̃τ
w0

P 0

 , r

. We

observe that

∣∣w̃1(t, x)− w1(t, x)
∣∣ =

∣∣∣∣u0(x) exp
(∫ t

0
F (w(l, x)) + P (l,Π(l, 0;x))dl

)
− u0(x) exp

(∫ t

0
F (w̃(l, x)) + P̃ (l, Π̃(l, 0;x))dl

)∣∣∣∣.
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Due to the classical inequality |ex − ey| ≤ ex+y|x− y| which holds for any x, y ∈ R, we deduce∣∣w̃1(t, x)− w1(t, x)
∣∣

≤ ‖u0‖C0e2τ(F̃+κ)
[ ∫ t

0
‖F (w̃(l, ·))− F (w(l, ·))‖C0dl

+
∫ t

0
‖P̃ (l, Π̃(l, 0; ·))− P (l,Π(l, 0; ·))‖C0dl

]
≤ ‖u0‖C0e2τ(F̃+κ)

[
τF̃ sup

l∈[0,τ ]
‖w̃(l, ·)− w(l, ·)‖C0

+ τ sup
l∈[0,τ ]

‖P̃ (l, Π̃(l, 0; ·))− P (l, Π̃(l, 0; ·))‖C0

+ τ sup
l∈[0,τ ]

‖P (l, Π̃(l, 0; ·))− P (l,Π(l, 0; ·))‖C0

]
≤ ‖u0‖C0e2τ(F̃+κ)

[
τF̃ sup

l∈[0,τ ]
‖w̃(l, ·)− w(l, ·)‖C0 + τ sup

l∈[0,τ ]
‖P̃ (l, ·)− P (l, ·)‖C0

+ τ sup
l∈[0,τ ]

‖P (l, ·)‖W 1,∞ sup
l∈[0,τ ]

‖Π̃(l, 0; ·)−Π(l, 0; ·)‖C0

]
≤ τ‖u0‖C0e2τ(F̃+κ)

[
F̃‖w̃ − w‖Xτ + ‖P̃ − P ‖Y τ

+ C2 sup
l∈[0,τ ]

‖Π̃(l, 0; ·)−Π(l, 0; ·)‖C0

]
. (3.1.45)

To estimate supl∈[0,τ ] ‖Π̃(l, 0; ·)−Π(l, 0; ·)‖C0 in (3.1.45), we claim that

sup
t,s∈[0,τ ]

‖Π̃(t, s; ·)−Π(t, s; ·)‖C0 ≤ τeτC2 sup
t∈[0,τ ]

‖P̃ (l, ·)− P (l, ·)‖C1 (3.1.46)

Indeed, we can obtain that∣∣Π̃(t, s;x)−Π(t, s;x)
∣∣ =

∣∣∣∣∫ t

s

∇P̃ (l, Π̃(l, s;x))−∇P (l,Π(l, s;x))dl
∣∣∣∣

≤
∫ t

s

‖∇P̃ (l, Π̃(l, s; ·))−∇P (l, Π̃(l, s; ·))‖C0dl

+
∫ t

s

‖∇P (l, Π̃(l, s; ·))−∇P (l,Π(l, s; ·))‖C0dl

≤ τ sup
l∈[0,τ ]

‖∇P̃ (l, Π̃(l, s; ·))−∇P (l, Π̃(l, s; ·))‖C0

+ sup
l∈[0,τ ]

‖∇P (l, ·)‖W 1,∞

∫ t

s

‖Π̃(l, s; ·)−Π(l, s; ·)‖C0dl.

This leads to

sup
t,s∈[0,τ ]

‖Π̃(t, s; ·)−Π(t, s; ·)‖C0 ≤ τ sup
l∈[0,τ ]

‖P̃ (l, ·)− P (l, ·)‖C1

+ C2

∫ t

s

‖Π̃(l, s; ·)−Π(l, s; ·)‖C0dl.

Again due to Grönwall’s inequality, we conclude that (3.1.46) holds.
Inserting (3.1.46) into (3.1.45) we have

sup
t∈[0,τ ]

∥∥w̃1(t, ·)− w1(t, ·)
∥∥
C0

≤ ‖u0‖C0e2τ(F̃+κ)
[
τF̃‖w̃ − w‖Xτ + τ‖P̃ − P ‖Y τ + τ2 C2 e

τC2‖P̃ − P ‖Y τ
]

≤ τ‖u0‖C0e2τ(F̃+κ)
[
F̃‖w̃ − w‖Xτ +

(
1 + τ C2 e

τC2
)
‖P̃ − P ‖Y τ

]
≤ L1(τ)

[
‖w̃ − w‖Xτ + ‖P̃ − P ‖Y τ

]
, (3.1.47)
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where we set
L1(τ) := τ‖u0‖C0e2τ(F̃+κ) (F̃ +

(
1 + τ C2 e

τC2
))

and L1(τ)→ 0 as τ → 0.
Next we prove the contraction property for ‖P̃ 1 − P 1‖Y τ . As before, applying the same argument of

Morrey’s inequality and the classical elliptic estimates, we can deduce

‖P̃ 1(t, ·)− P 1(t, ·)‖C1 ≤ C‖w̃1(t, Π̃(0, t; ·))− w1(t,Π(0, t; ·))‖L4

≤ C‖w̃1(t, Π̃(0, t; ·))− w1(t,Π(0, t; ·))‖C0

≤ C‖w̃1(t, Π̃(0, t; ·))− w1(t, Π̃(0, t; ·))‖C0

+ C‖w1(t, Π̃(0, t; ·))− w1(t,Π(0, t; ·))‖C0

≤ C‖w̃1(t, ·)− w1(t, ·)‖C0 + C‖w1‖W 1,∞‖Π̃(0, t; ·)−Π(0, t; ·)‖C0

≤ C‖w̃1(t, ·)− w1(t, ·)‖C0 + C C1‖Π̃(0, t; ·)−Π(0, t; ·)‖C0

≤ C‖w̃1(t, ·)− w1(t, ·)‖C0 + C C1 τ e
τC2 sup

t∈[0,τ ]
‖P̃ (t, ·)− P (t, ·)‖C1 ,

where we used (3.1.46) in the last inequality and C is a constant depending only on Ω. Defining L2(τ) :=
C C1 τ e

τC2 and together with (3.1.47) we obtain

sup
t∈[0,τ ]

‖P̃ 1(t, ·)− P 1(t, ·)‖C1 ≤ C L1(τ)
[
‖w̃ − w‖Xτ + ‖P̃ − P ‖Y τ

]
+ L2(τ)‖P̃ − P ‖Y τ . (3.1.48)

Combing with (3.1.47) and (3.1.48) we deduce

‖w̃1 − w1‖Xτ + ‖P̃ 1 − P 1‖Y τ ≤
(
C L1(τ) + L2(τ)

)[
‖w̃ − w‖Xτ + ‖P̃ − P ‖Y τ

]
, (3.1.49)

where Li(τ)→ 0, i = 1, 2 as τ → 0. If τ is small enough, this implies (3.1.38) for some θ ∈ (0, 1). Since Z̃τ
is complete metric space for the distance induced by the norm (‖ · ‖Xτ , ‖ · ‖Y τ ) in Zτ , the result follows by
the classical Banach fixed point theorem.

Remark 3.1.21. Let us mention that we can derive a maximal time of solutions as long as the W 1,∞(Ω)
norm of u(t, .) stays bounded. This can be seen by using our local existence result together with the following
observations. Let t0 > 0 and assume that the solution exists until t = t0. We define for all t, s ≥ t0{

∂
∂tΠt0(t, s;x) = −d∇P (t+ t0,Πt0(t, s;x)),
Πt0(s, s;x) = x ∈ Ω.

(3.1.50)

Then by the uniqueness of solutions we deduce that

Πt0(t, s;x) = Π(t+ t0, s+ t0;x)

where Π is the solution of (3.1.4). Moreover

w(t+ t0, x) := u(t+ t0,Π(t+ t0, 0;x)) = u(t+ t0,Π(t+ t0, t0; Π(t0, 0;x)).

Choose x = Π(t0, 0; x̂) then in order to deal the fixed point problem starting t0 it is natural to introduce

wt0(t, x̂) := w(t+ t0,Π(0, t0;x)) = u(t+ t0,Πt0(t, 0; x̂)). (3.1.51)

By combining equations (3.1.50)-(3.1.51), we can deduce the existence and uniqueness of solutions as long
as the W 1,∞(Ω) norm of u(t, .) is bounded. This idea can be used to derive a maximal semiflow in the sense
[274, Chapter 5].



238

3.1.5.3 Parameter fitting

From the work in [318], MCF-7 and MCF-7/Doxo cells are cultured at 105 initial number of cells separately
in 60×15 mm cell Petri dish with or without doxorubicine. We use the cell proliferation data followed every
12 hours during six days to fit the parameters of the following ordinary differential equation

dui
dt

= ui(bi − aiiui)− δiui i = 1, 2.
ui(0) = ui,0.

(3.1.52)

Here we use u1 to represent the MCF-7 (sensitive to drug) and u2 to represent the MCF-7/Doxo (resistant
to drug) and bi > 0 is the growth rate δi is the extra mortality rate caused by drug (doxorubicine) treatment
and aii > 0 is a coefficient which controls the carrying capacity.

In the work [367] cell proliferation kinetics for MCF-7 is studied over 11 days in 150 cm2 flask. Following
an inoculation of 3 × 105 cells at day 0, a maximum cell density of 8 to 9 × 107 cells/flask was reached at
day 11. Therefore, we assume the carrying capacity for each species in 60 × 15 mm (surface of 21.5 cm2)
Petri dish satisfies

bi
aii
≈ 9× 107 × 21.5 cm2

150 cm2 = 1.29× 107, i = 1, 2.

By fixing the carrying capacity, we first estimate the growth rate bi of each species under zero drug concen-
tration, namely δi = 0. We divide the number of cells by ui,0 = 105 (the initial number of cells) and rescale
the parameters as follows

ũi = ui
105 , ãi = aii × 105, b̃i = bi. (3.1.53)

As seen in Figure 3.1.23, without treatment, MCF-7 and MCF-7/Doxo displayed very similar growth rates,
0.6420 and 0.6359 per day, respectively.
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Figure 3.1.23: Fitting for the parameters (under rescaling (3.1.53)) in model (3.1.52). We plot the experi-
mental data (dots in (a)) of MCF-7 (sensitive to drug) and (dots in (b)) MCF-7/Doxo (resistant to drug)
with no drug concentration over 6 days. We obtain an estimation of the growth rates b1 = 0.6420, b2 = 0.6359
and a11 = 0.0050, a22 = 0.0049.

By fixing the parameters

b1 = 0.6420, a11 = 0.0050, b2 = 0.6359, a22 = 0.0049, (3.1.54)

we consider different scenarios with the drug concentration varies from 0.1µM to 10µM (see Figure 3.1.24)
and we estimate the extra mortality rate δi for each population due to doxorubicine (see Table 3.1.4).
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Figure 3.1.24: Fitting for the growth curves of MCF-7 (a) and MCF-7/Doxo (b) under different drug con-
centrations in model (3.1.52) over 6 days. Cells were grown in the absence or presence of doxorubicine
(0.1 to 10 µM , corresponding symbols given in the legend in (b)) and counted every 12 hours in a Malassez
chamber. Cell counts are expressed as the logarithm of the numbers of cells (ui) divided by the number of
cells at day 0 (ui,0). We fix the growth rate bi and aii, i = 1, 2 as in (3.1.54).

Drug concentration (µM) 0 0.1 0.3 1 3 10

Extra mortality δ1 (day−1) 0 0.6619 0.8109 1.0118 1.5585 1.9545

Extra mortality δ2 (day−1) 0 0 0 0.0246 0.0569 0.2192

Table 3.1.4: List of the estimation of extra mortality rate δ1 for the sensitive cell and δ2 for the resistant
cell under different concentrations of doxorubicine.

3.1.5.4 Numerical Scheme

For simplicity, we give the numerical scheme for the following one species and one dimensional model
∂tu+ d ∂x (u∂xP ) = f(u)
(I − χ∆)P (t, x) = u(t, x)

in (0, T ]× [−L,L]

∂xP (t,±L) = 0 on [0, T ].
(3.1.55)

The numerical method used is based on finite volume method. We refer to [249, 376] for more results about
this subject. Our numerical scheme reads as follows

un+1
i = uni − d

∆t
∆x

(
φ(uni+1, u

n
i )− φ(uni , uni−1)

)
+ ∆t f(uni ),

i = 1, 2, ...,M, n = 0, 1, 2, ..., N,
(3.1.56)

with the flux φ(uni+1, u
n
i ) defined as

φ(uni+1, u
n
i ) = (vni+ 1

2
)+uni − (vni+ 1

2
)−uni+1 =

{
vn
i+ 1

2
uni , vn

i+ 1
2
≥ 0,

vn
i+ 1

2
uni+1, vn

i+ 1
2
< 0.

(3.1.57)

and
vni+ 1

2
= −

lni+1 − lni
∆x , i = 0, 1, 2, · · · ,M, (3.1.58)
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where we define

Ln := (I − χA)−1Un, n = 0, 1, 2, ..., N, Lni =
(
lni
)
M×1 Un =

(
uni
)
M×1.

where χ is a constant and A = (ai,j)M×M is the usual linear diffusion matrix with Neumann boundary
condition. Therefore, since the Neumann boundary condition corresponds to a no flux boundary condition,
we impose

φ(un1 , un0 ) = 0,
φ(unM+1, u

n
M ) = 0.

(3.1.59)

which corresponds to l0 = l1 and lM+1 = lM .
The numerical scheme at the boundary becomes

un+1
1 = un1 − d

∆t
∆xφ(un2 , un1 ) + ∆t f(un1 ),

un+1
M = unM + d

∆t
∆xφ(unM , unM−1) + ∆t f(unM ).

By this boundary condition, we have the conservation of mass for Equation (3.1.55) when the reaction term
f ≡ 0.
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3.2 Existence and uniqueness of solutions for a hyperbolic Keller–Segel
equation

3.2.1 Introduction
In this section 3.2 we are concerned with the following diffusion equation with logistic source:{

∂tu(t, x)− χ∂x
(
u(t, x)∂xp(t, x)

)
= u(t, x)(1− u(t, x)), t > 0, x ∈ R,

u(t = 0, x) = u0(x),
(3.2.1)

where χ > 0 is a sensing coefficient and p(t, x) is an external pressure. Model (3.2.1) describes the behavior
of a population of cells u(t, x) living in a one-dimensional habitat x ∈ R, which undergo a logistic birth and
death population dynamics, and in which individual cells follow the gradient of a field p. The constant χ
characterizes the response of the cells to the effective gradient px. In this work we will consider the case
where p is itself determined by the state of the population u(t, x) as

− σ2∂xxp(t, x) + p(t, x) = u(t, x), t > 0, x ∈ R. (3.2.2)

This corresponds to a scenario in which the field p(t, x) is produced by the cells, diffuses to the whole space
with diffusivity σ2 (for σ > 0), and vanishes at rate one. As a result cells are pushed away from crowded
area to emptier region.

A similar model has been successfully used in our recent work [P8] to describe the motion of cancer
cells in a Petri dish in the context of cell co-culture experiments of Pasquier et al. [318]. Pasquier et al.
[318] cultivated two types of breast cancer cells to study the transfer of proteins between them in a study
of multi-drug resistance. It was observed that the two types of cancer cells form segregated clusters of cells
of each kind after a 7-day co-culture experiment. In [P8], the authors studied the segregation property of
a model similar to (3.2.1)–(3.2.2), set in a circular domain in two spatial dimensions x ∈ R2 representing a
Petri dish. The study aims at describing the cancer cells motion in a Petri dish [P8, 318] in the context of a
batch culture. The cell population should be regarded as a mono-layer attached to the bottom of the Petri
dish covered a large quantity of nutritional liquid (used in the cell culture), which is constantly renewed.

Our model can be included in the family of non-local advection models for cell-cell adhesion and repulsion.
As pointed out by many biologists, cell-cell interactions do not only exist in a local scope, but a long-range
interaction should be taken into account to guide the mathematical modeling. Armstrong, Painter and
Sherratt [16] in their early work proposed a model (APS model) in which a local diffusion is added to the
non-local attraction driven by the adhesion forces to describe the phenomenon of cell mixing, full/partial
engulfment and complete sorting in the cell sorting problem. Based on the APS model, Murakawa and
Togashi [296] thought that the population pressure should come from the cell volume size instead of the
linear diffusion. Therefore, the linear diffusion was changed into a nonlinear diffusion in order to capture the
sharp fronts and the segregation in cell co-culture. Carrillo et al. [105] recently proposed a new assumption
on the adhesion velocity field and their model showed a good agreement in the experiments in the work
of Katsunuma et al. [229]. The idea of the long-range attraction and short-range repulsion can also be
seen in the work of Leverentz, Topaz and Bernoff [250]. They considered a non-local advection model to
study the asymptotic behavior of the solution. By choosing a Morse-type kernel which follows the attractive-
repulsive interactions, they found that the solution can asymptotically spread, contract (blow-up), or reach a
steady-state. Burger, Fetecau and Huang [83] considered a similar non-local adhesion model with nonlinear
diffusion, for which they investigated the well-posedness and proved the existence of a compactly supported,
non-constant steady state. Dyson et al. [156] established the local existence of a classical solution for a
non-local cell-cell adhesion model in spaces of uniformly continuous functions. For Turing and Turing-Hopf
bifurcation due to the non-local effect, we refer to Ducrot et al. [151] and Song et al. [365]. We also refer
to Mogliner et al. [288], Eftimie et al. [158], Ducrot and Magal [152], Ducrot and Manceau [153] for more
topics on non-local advection equations. For the derivation of such models, we refer to the work of Bellomo
et al. [44] and Morale, Capasso and Oelschläger [290].

It can be noticed that, in the limit of slow diffusivity σ → 0 (and under the simplifying assumption that
χ = 1), we get u(t, x) ≡ p(t, x) and (3.2.1) is equivalent to an equation with porous medium-type diffusion
and logistic reaction

ut −
1
2(u2)xx = u(1− u). (3.2.3)
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The propagation dynamics for this kind of equation was first studied, to the extent of our knowledge, by
Aronson [21], Atkinson, Reuter and Ridler-Rowe [23], and later by de Pablo and Vázquez [313], in the more
general context of nonlinear diffusion

ut = (um)xx + u(1− u), with m > 1. (3.2.4)

We refer to the monograph of Vázquez [380] for a detailed study of solutions to porous medium equations.
The particular relation between the pressure p(t, x) and the density u(t, x) in (3.2.2) strongly reminds

the celebrated model of chemotaxis studied by Patlak (1953) and Keller and Segel (1970) [320, 233, 232]
(parabolic-parabolic Keller-Segel model) and, more specifically, the parabolic-elliptic Keller-Segel model
which is derived from the former by a quasi-stationary assumption on the diffusion of the chemical [226].
Indeed Equation (3.2.2) can be formally obtained as the quasistatic approximation of the following parabolic
equation

ε∂tp(t, x) = χpxx(t, x) + u(t, x)− p(t, x),

when ε→ 0.
A rigorous derivation of the limit has been achieved in the case of the Keller-Segel model by Carrapatoso

and Mischler [103]. We refer to [94, 209, 323] and the references therein for a mathematical introduction and
biological applications. In these models, the field p(t, x) is interpreted as the concentration of a chemical
produced by the cells rather than a physical pressure. One of the difficulties in attractive chemotaxis
models is that two opposite forces compete to drive the behavior of the equations: the diffusion due to
the random motion of cells, on the one hand, and on the other hand the non-local advection due to the
attractive chemotaxis; the former tends to regularize and homogenize the solution, while the latter promotes
cell aggregation and may lead to the blow-up of the solution in finite time [109, 226].

Since the pressure p(t, x) is a non-local function of the density u(t, x) in (3.2.2), the spatial derivative
appears as a non-local advection term in (3.2.1). In fact, our problem (3.2.1)–(3.2.2) can be rewritten as a
transport equation in which the speed of particles is non-local in the density, ∂tu(t, x)− χ∂x(u(t, x)∂x(ρ ? u)(t, x)) = u(t, x)(1− u(t, x))

u(t = 0, x) = u0(x),
(3.2.5)

where
(ρ ? u) (x) =

∫
R
ρ(x− y)u(t, y)dy, ρ(x) = 1

2σ e
− |x|σ . (3.2.6)

Traveling waves for a similar diffusive equation with logistic reaction have been investigated for quite general
non-local kernels by Hamel and Henderson [198], who considered the model

ut + (u (K ? u))x = uxx + u(1− u), (3.2.7)

where K ∈ Lp(R) is odd and p ∈ [1,∞]. Notice that the attractive parabolic-elliptic Keller-Segel model is
included in this framework by the particular choice

K(x) = −χ sign(x)e−|x|/
√
d/
(
2
√
d
)
.

They proved a spreading result for this equation (initially compactly supported solutions to the Cauchy
problem propagate to the whole space with constant speed) and explicit bounds on the speed of propagation.
Diffusive non-local advection also appears in the context of swarm formation [289]. Pattern formation for a
model similar to (3.2.7) by Ducrot, Fu and Magal [151]. Let us mention that the inviscid equation (3.2.5)
has been studied in a periodic cell by Ducrot and Magal [152]. A substantial literature has been produced
for conservative systems of interacting particles and their kinetic limit (Balagué et al. [30], Carrillo et al.
[104], Bernoff and Topaz [57], Bertozzi, Laurent and Rosado [60], among others).

This section 3.2 is a part of a set of two. Here we study the well-posed character of the Cauchy problem
(3.2.1)–(3.2.2). In a the next section 3.3, we will build on these results to study the propagation dynamics
of compactly supported initial conditions and the existence of sharp discontinuous traveling waves for the
model (3.2.1)–(3.2.2).

In this section 3.2 we focus on the particular case of (3.2.1)–(3.2.2) with σ > 0 and χ > 0. The section 3.2
is organized as follows. In Section 2, we present our main results. Section 3 is devoted to the well-posedness
of the Cauchy problem for system (3.2.1)–(3.2.2).
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3.2.2 Main results
We begin by defining our notion of solution to equation (3.2.1).

Definition 3.2.1 (Integrated solutions). Let u0 ∈ L∞(R). A measurable function u(t, x) ∈ L∞([0, T ]× R)
is an integrated solution to (3.2.1) if the characteristic equation

d
dth(t, x) = −χ(ρx ? u)(t, h(t, x))

h(t = 0, x) = x.
(3.2.8)

has a classical solution h(t, x) (i.e. for each x ∈ R fixed, the function t 7→ h(t, x) is in C1([0, T ],R) and
satisfies (3.2.8)), and for a.e. x ∈ R, the function t 7→ u(t, h(t, x)) is in C1([0, T ],R) and satisfies

d
dtu(t, h(t, x)) = u(t, h(t, x))

(
1 + χ̂(ρ ? u)(t, h(t, x))− (1 + χ̂)u(t, h(t, x))

)
,

u(t = 0, x) = u0(x),
(3.2.9)

where χ̂ := χ
σ2 .

We define weighted space L1
η(R) as follows

L1
η(R) :=

{
f : R→ R measurable

∣∣∣∣ ∫
R
|f(x)|e−η|x|dx <∞

}
.

L1
η(R) is a Banach space endowed with the norm

‖f‖L1
η

:= η

2

∫
R
|f(y)|e−η|y|dy.

Our first result concerns the existence of integrated solutions to (3.2.1).

Theorem 3.2.2 (Well-posedness). Let u0 ∈ L∞+ (R) and fix η > 0. There exists τ∗(u0) ∈ (0,+∞] such that
for all τ ∈ (0, τ∗(u0)), there exists a unique integrated solution u ∈ C0([0, τ ], L1

η(R)) to (3.2.1) which satisfies
u(t = 0, x) = u0(x). Moreover u(t, ·) ∈ L∞(R) for each t ∈ [0, τ∗(u0)) and the map t ∈ [0, τ∗(u0)) 7→ Ttu0 :=
u(t, ·) is a semigroup which is continuous for the L1

η(R)-topology. The map u0 ∈ L∞(R) 7→ Ttu0 ∈ L1
η(R) is

continuous.
Finally, if 0 ≤ u0(x) ≤ 1, then τ∗(u0) = +∞ and 0 ≤ u(t, ·) ≤ 1 for all t > 0.

Next we show that the semiflow preserves some properties satisfied by the initial condition, namely the
monotony, continuity and continuous differentiability. In the case of a C1(R) initial condition, we show
that the solution integrated along the characteristics is actually a classical pointwise solution to the original
problem (3.2.1)–(3.2.2).

Proposition 3.2.3 (Regularity of solutions). Let u(t, x) be an integrated solution to (3.2.1).

1. if u0(x) is continuous, then u(t, x) is continuous for each t > 0.

2. if u0(x) is monotone, then u(t, x) has the same monotony for each t > 0.

3. if u0(x) ∈ C1(R), then u ∈ C1([0, T ]× R) and u is then a classical solution to (3.2.1)–(3.2.2).

Next we show the long-time behavior of the solutions to (3.2.1).

Theorem 3.2.4 (Long-time behavior). Let 0 ≤ u0(x) ≤ 1 be a nontrivial non-negative initial condition and
u(t, x) be the corresponding integrated solution. Then 0 ≤ u(t, x) ≤ 1 for all t > 0 and x ∈ R. If moreover
there exists δ > 0 such that δ ≤ u0(x) ≤ 1 then

u(t, x)→ 1, as t→∞

and the convergence holds uniformly in x ∈ R.

The case of bounded initial conditions which are not positively bounded from below is more complex. In
the case of initial conditions which are compactly supported, we expect that the support will expand to the
whole space with constant speed and that the profile of the solution reaches an asymptotic shape (traveling
wave). This situation will be investigated in section 3.3.
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3.2.3 Well-posedness of the Cauchy problem
In this section 3.2.3 we investigate the existence and uniqueness of solutions for the system (3.2.8)-(3.2.9).
The idea to construct a fixed point problem is to consider the two variables

w(t, x) = u(t, h(t, x)) and p(t, x) = (ρ ? u)(t, x).

Before we state the theorem, let us introduce some functional spaces and definitions. We introduce the
following weighted L1 space for any η > 0, as

L1
η(R) :=

{
f : R→ R measurable

∣∣∣∣ ∫
R
|f(x)|e−η|x|dx <∞

}
,

endowed with the norm ‖f‖L1
η

:= η
2
∫
R |f(y)|e−η|y|dy. Then for any η > 0 the space L1

η(R) is a Banach space
and for any 0 < η < η′ < +∞ we have

L∞(R) ⊂ L1
η(R) ⊂ L1

η′(R) ⊂ L1
loc(R).

We will say that a measurable set U ⊂ R is conull if |R\U| = 0, where |A| is the Lebesgue measure of the set
A. In what follows we need to work in the space of regular bounded functions on a measurable set U ⊂ R.
Let us recall that the space

L∞(U) :=
{
f : U → R

∣∣∣∣ sup
x∈U
|f(x)| < +∞

}
,

endowed with the norm ‖f‖L∞(U) := supx∈U |f(x)|, is a Banach space. If U is conull then L∞(U) is
continuously embedded in L∞(R) since

‖f‖L∞(R) ≤ ‖f‖L∞(U).

Finally we introduce the fixed point problem which is the key element of our proof of Theorem 3.2.2.
Let τ > 0 and U ⊂ R be a conull set, we introduce the function spaces:

Xτ
U := C0([0, τ ],L∞(U)

)
, X̃τ

U := C0([0, τ ],L∞+ (U)
)
,

Y τ := C0([0, τ ],W 1,∞(R)
)
,

Ỹ τ := {p ∈ Y τ | p(t, ·) ∈W 2,∞(R) for all t ∈ [0, τ ]
and sup

t∈[0,τ ]
‖pxx(t, ·)‖L∞(R) < +∞},

ZτU := Xτ
U × Y τ , Z̃τU := X̃τ

U × Ỹ τ .

(3.2.10)

Clearly, X̃τ
U is closed in the Banach space C0([0, τ ],L∞(U)). Ỹ τ is not closed in C0([0, τ ],W 1,∞(R)

)
, however

for each K > 0, the set
Ỹ τK := {p ∈ Ỹ τ | sup

t∈[0,τ ]
‖pxx(t, ·)‖L∞(R) ≤ K} (3.2.11)

is closed in Y τ . Indeed, let pn(t, x)→ p(t, x) be a converging sequence in Y τ . Since C0([0, τ ],W 1,∞(R)
)
is

a Banach space we have p ∈ C0([0, τ ],W 1,∞(R)
)
. Moreover for each t ∈ [0, τ ] there exists a measurable set

Et ⊂ R such that
∫
R\Et 1dx = 0, pnx(t, x) and px(t, x) are well-defined for any x ∈ Et and lim

n→+∞
pnx(t, x) =

px(t, x) for each x ∈ E. Let x, y ∈ Et, we have:

|px(t, x)− px(t, y)| ≤ |px(t, x)− pnx(t, x)|+ |pnx(t, x)− pnx(t, y)|+ |pnx(t, y)− pnx(t, y)|
≤ |px(t, x)− pnx(t, x)|+K|x− y|+ |pnx(t, y)− pnx(t, y)|.

Taking the limit n→∞, we obtain

|px(t, x)− px(t, y)| ≤ K|x− y|

hence ‖pxx‖L∞ ≤ K and p ∈ Ỹ τK .
Given p ∈ Ỹ τ , let h be the solution of the following equation{

∂
∂th(t, s;x) = −χpx(t, h(t, s;x)),
h(s, s;x) = x.

(3.2.12)

The existence of the solution h is ensured by p ∈ Ỹ τ . Moreover,
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(i) for any x, the mapping t 7→ px(t, x) is continuous;

(ii) the vector field px(t, x) is Lipschitz continuous with respect to x and the Lipschitz coefficient is uniform
with respect to t on [0, τ ]. In particular the image of U by h(t, s; ·) is still conull for any t, s ∈ [0, τ ].

We are now in the position to define the mapping T τU [u0] to which we aim at applying a fixed-point theorem:

T τU [u0](w, p)(t, x) =

u0(x) exp
( ∫ t

0 1 + χ̂p(l, h(l, 0;x))− (1 + χ̂)w(l, x)dl
)

∫
R ρ(x− h(t, 0; z))u0(z)e

∫ t
0

1−w(l,z)dldz

T

, (3.2.13)

where
(w, p) ∈ ZτU := Xτ

U × Y τ .

Remark 3.2.5. In formula (3.2.13), the function h must be understood as the solution of (3.2.12) where p
the argument of the function T τU [u0](w, p).

Remark 3.2.6. Since we only impose u0 to be in L∞ the time of local existence will depend on each value
u0(x). That is why we are not considering the class of functions L∞ for w(t, ·). Instead we work in the space
L∞(U) for w(t, ·).

Our first result is the well-definition of T τU [u0]. We start with a series technical Lemma.

Lemma 3.2.7 (Lipschitz continuity of the characteristic flow). Let τ > 0, K > 0 and p ∈ Ỹ τK be given
(recall that by definition of Ỹ τK , pxx is uniformly bounded: supt∈[0,τ ] ‖pxx(t, ·)‖L∞(R) ≤ K < +∞). Then,
the solution h(t, s;x) to (3.2.12) satisfies

|h(t, s;x)− h(t, s; y)| ≤ eKχ|t−s||x− y|. (3.2.14)

Proof. The integrated form of (3.2.12) is

h(t, s;x) = x+
∫ t

s

−χpx(l, h(l, x;x))dl,

therefore

|h(t, s;x)− h(t, s; y)| ≤ |x− y|+ χ

∫ t

s

|px(t, h(t, s;x))− px(t, h(t, s; y))|dy

≤ |x− y|+ χ sup
t∈[0,τ ]

‖pxx(t, ·)‖L∞(R)

∫ t

s

|h(l, s;x)− h(l, s; y)|dy

≤ |x− y|+Kχ

∫ t

s

|h(l, s;x)− h(l, s; y)|dy,

since p ∈ Ỹ τK . Grönwall’s inequality [107, Lemma 4.2.1] implies:

|h(t, s;x)− h(t, s; y)| ≤ eKχ|t−s||x− y|.

Lemma 3.2.7 is proved.

Lemma 3.2.8. Let p̃, p ∈ Ỹ τK (where Ỹ τK is defined as in (3.2.11)) and h̃, h be the corresponding characteristic
flows defined in (3.2.12) with p and p̃ respectively. Then for any τ > 0 and t, s ∈ [0, τ ] we have

‖h̃(t, s; ·)− h(t, s; ·)‖L∞(R) ≤ |t− s|χ sup
l∈[0,τ ]

‖p̃x(l, ·)− px(l, ·)‖L∞(R)e
Kχ|t−s|

Proof. Without loss of generality we suppose t ≥ s, then

∂t
(
h̃(t, s;x)− h(t, s;x)

)
= −χp̃x(t, h̃(t, s;x)) + χpx(t, h(t, s;x))
= −χp̃x(t, h̃(t, s;x)) + χpx(t, h̃(t, s;x))− χpx(t, h̃(t, s;x))

+ χpx(t, h(t, s;x)).



246

Therefore, we have

‖h̃(t, s; ·)− h(t, s; ·)‖L∞(R)

≤ |t− s|χ sup
l∈[s,t]

‖px(l, ·)− p̃x(l, ·)‖L∞(R)

+ χ sup
l∈[0,τ ]

‖pxx(l, ·)‖L∞(R)

∫ t

s

‖h̃(l, s; ·)− h(l, s; ·)‖L∞(R)dl.

The result follows from Grönwall’s inequality and the definition of Ỹ τK .

Lemma 3.2.9 (Continuity properties). Let (w, p) ∈ Z̃τU be given. Then, the function u(t, x) := w(t, h(0, t;x)),
defined for each t ∈ [0, τ ] and a.e. x ∈ R, is a continuous function of time for the L1

η(R) topology (i.e., the
map t 7→ u(t, ·) is continuous in L1

η(R)). The maps t 7→ (ρ ? u)(t, ·) and t 7→ (ρx ? u)(t, ·) are continuous for
the C0

b (R) topology and moreover (ρ ? u)(t, ·) ∈W 2,∞(R) for all t ∈ [0, τ ].

Proof. Let (w, p) ∈ Z̃τU be given. We first remark that, since px is Lipschitz continuous, the function h(t, s; ·)
is locally Lipschitz continuous for all t, s ∈ [0, τ ] and therefore h(t, 0;U) is conull. In particular, u(t, x) is
well-defined for every x ∈ h(t, 0;U), therefore almost everywhere, for each t ∈ [0, τ ].

We divide the rest of the proof in two steps.
Step 1. We show the continuity of t 7→ u(t, ·).

Let t ∈ [0, τ ] and ε > 0 be given. For s ∈ [0, τ ], we have:

‖u(t, ·)− u(s, ·)‖L1
η

= η

2

∫
R
|w(t, h(0, t;x))− w(s, h(0, s;x))|e−η|x|dx

≤ η

2

∫
R
|w(t, h(0, t;x))− w(t, h(0, s;x))|e−η|x|dx

+ η

2

∫
R
|w(t, h(0, s;x))− w(s, h(0, s;x))|e−η|x|dx.

By the continuity of t 7→ w(t, ·) in L∞(U), there is δ0 > 0 such that if |t − s| ≤ δ0, then ‖w(t, ·) −
w(s, ·)‖L∞(U) ≤ ε

2 . Therefore if |t− s| ≤ δ0,

‖u(t, ·)− u(s, ·)‖L1
η

≤ η

2

∫
R
|w(t, h(0, t;x))− w(t, h(0, s;x))|e−η|x|dx+ ‖w(t, ·)− w(s, ·)‖L∞(U)

≤ η

2

∫
R
|w(t, h(0, t;x))− w(t, h(0, s;x))|e−η|x|dx+ ε

2 .

Next we select R > 0 sufficiently large, so that

min(h(s, 0;R),−h(s, 0;−R))

≥ −1
η

ln
(

ε

18 supt∈[0,τ ] ‖w‖L∞(U)

)
for all s ∈ [t− δ0, t+ δ0].

By the density of compactly supported smooth function in L1(−R,R), there is ϕ ∈ C1
c ([−R,R]) such that

‖w − ϕ‖L1(−R,R) ≤
ε

18η e
−Kχ(t+δ0).

Then, we have:

‖u(t, ·)− u(s, ·)‖L1
η
≤ ε

2 + η

2

∫
R
|w(t, h(0, t;x))− w(t, h(0, s;x))|e−η|x|dx

≤ ε

2 + η

2

∫
R
|w(t, h(0, t;x))− ϕ(h(0, t;x))|e−η|x|dx (3.2.15)

+ η

2

∫
R
|ϕ(h(0, t;x))− ϕ(h(0, s;x))|e−η|x|dx (3.2.16)

+ η

2

∫
R
|ϕ(h(0, s;x))− w(t, h(0, s;x))|e−η|x|dx. (3.2.17)
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Next we estimate (3.2.16) and (3.2.17) (remark that (3.2.15) is a particular case of (3.2.17), for s = t),
starting with (3.2.17). We have

η

2

∫
R
|ϕ(h(0, s;x))− w(t, h(0, s;x))|e−η|x|dx

= η

2

∫ h(s,0;−R)

−∞
|w(t, h(0, s;x))|e−η|x|dx

+ η

2

∫ h(s,0;R)

h(s,0;−R)
|w(t, h(0, s;x))− ϕ(h(0, s;x))|e−η|x|dx

+ η

2

∫ +∞

h(s,0;R)
|w(t, h(0, s;x))|e−η|x|dx,

then:

η

2

∫ +∞

h(s,0;R)
|w(t, h(0, s;x))|e−η|x|dx ≤ sup

t∈[0,τ ]
‖w‖L∞

η

2

[
e−ηx

−η

]+∞

h(s,0;R)

= sup
t∈[0,τ ]

‖w‖L∞
e−ηh(s,0;R)

2 ≤ ε

36 .

Similarly, we have
η

2

∫ h(s,0;−R)

−∞
|w(t, h(0, s;x))|e−η|x|dx ≤ ε

36 .

Moreover, changing the variable in the integral, we have

η

2

∫ h(s,0;R)

h(s,0;−R)
|w(t, h(0, s;x))− ϕ(h(0, s;x))|e−η|x|dx

= η

2

∫ R

−R
|w(t, y)− ϕ(y)|e−η|h(s,0;y)||hx(s, 0; y)|dy

≤ η

2e
Kχs‖w − ϕ‖L1(−R,R) ≤

η

2e
Kχ(s−t−δ0) ε

18η ≤
ε

36 ,

where we recall that |hx| ≤ eKχ|t−s| by (3.2.14) and s ≤ t+ δ0. We have shown that

η

2

∫
R
|ϕ(h(0, s;x))− w(t, h(0, s;x))|e−η|x|dx ≤ ε

12 ,

for each s ∈ (t− δ0, t+ δ0), which is our desired estimate for (3.2.17) (and therefore for (3.2.15)).
Next we estimate (3.2.16). Let

R′ := sup
s∈(t−δ0,t+δ0)

max
(
h(s, 0;R),−h(s, 0;−R)

)
,

which is well-defined by the continuity of s 7→ h(s, 0;±R) on [t − δ0, t + δ0]. Then the functions x 7→
ϕ(h(0, s;x)) have their support in (−R′, R′) for any s ∈ (t− δ0, t+ δ0). In particular,

η

2

∫
R
|ϕ(h(0, t;x))− ϕ(h(0, s;x))|e−η|x|dx

≤ η

2‖ϕ
′‖C0(−R′,R′)

∫ R′

−R′
|h(0, t;x)− h(0, s;x)|e−η|x|dx

≤ ‖ϕ′‖C0(−R′,R′) sup
x∈[−R,R]

|h(t, 0;x)− h(s, 0;x)|.

Since (s, x) 7→ h(s, 0;x) is continuous on the compact set [t−δ0, t+δ0]× [−R′, R′], it is uniformly continuous
on this set and there exists δ1 > 0 such that

sup
x∈[−R,R]

|h(t, 0;x)− h(s, 0;x)| ≤ ε

6‖ϕ′‖C0(−R′,R′)
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whenever |t− s| ≤ δ1. This finishes our estimate of (3.2.16).
Summarizing, we have found δ1 > 0 such that for all s ∈ [t− δ1, t+ δ1], the inequality

‖u(t, ·)− u(s, ·)‖L1
η(R) ≤ ε

holds. This finishes the proof of the continuity of u(t, ·) in L1
η(R).

Step 2. Define p(t, x) := (ρ ? u)(t, x) =
∫
R ρ(x − y)u(t, y)dy in the scope of this Step. We first show that

for any t ∈ [0, T ] we have p(t, ·) ∈W 2,∞(R). Indeed, since ρ ∈W 1,∞(R) it is classical that px(t, x) exists for
each t ∈ [0, T ] and x ∈ R and

px(t, x) =
∫
R
ρx(x− y)u(t, y)dy.

Next we remark that for x ≤ y we have

|px(t, x)− px(t, y)| =
∣∣∣∣∫

R

(
ρx(x− z)− ρx(y − z)

)
u(t, z)dz

∣∣∣∣
≤
∫
R
|ρx(x− z)− ρx(y − z)|dz‖u(t, ·)‖L∞(R)

≤
∫
R
|ρx(z)− ρx(y − x+ z)|dz‖u(t, ·)‖L∞(R)

= ‖u(t, ·)‖L∞(R) ×
1

2σ2

[∫ x−y

−∞
−ez/σ + e(y−x+z)/σdz

+
∫ 0

x−y
ez/σ + e(x−y−z)/σdz

+
∫ +∞

0
e−z/σ − e(x−y−z)/σdz

]
=
‖u(t, ·)‖L∞(R)

2 × 4
(

1− e−
|x−y|
σ

)
≤ 2
σ
‖u(t, ·)‖L∞(R)|x− y|. (3.2.18)

We deduce that
|px(t, x)− px(t, y)| ≤ 2

σ
‖u(t, ·)‖L∞(R)|x− y|, for all t ∈ [0, T ].

In particular px(t, ·) is globally Lipschitz continuous and thus p(t, ·) ∈W 2,∞(R).
Next we prove that px(t, x) = (ρx ? u)(t, x) ∈ C0([0, T ] × R). Let ε > 0 and R := ln

(
6‖u‖L∞([0,T ]×R)

ε

)
,

then we have ‖ρx‖L1(R\(−R,R)) = ε/
(
6‖u‖L∞([0,T ]×R)

)
. Let 0 < s < t, we have

|px(t, x)− px(s, y)| ≤ |px(t, x)− px(t, y)|+ |px(t, y)− px(s, y)|

≤ 2
σ
‖u‖L∞([0,T ]×R)|x− y|+

∫
(−R,R)

|ρx(y − z)|
∣∣u(t, z)− u(s, z)

∣∣dz
+
∫
R\(−R,R)

∣∣ρx(y − z)u(t, z)− ρx(y − z)u(s, z)
∣∣dz

≤ 2
σ
‖u‖L∞([0,T ]×R)|x− y|+ ‖ρ‖L∞‖u(t, ·)− u(s, ·)‖

L1
(

(−R,R)
)

+ ‖ρx‖L1(R\(−R,R)) × 2‖u‖L∞([0,T ]×R)

≤ 2
σ
‖u‖L∞([0,T ]×R)|x− y|+ ‖ρ‖L∞‖u(t, ·)− u(s, ·)‖

L1
(

(−R,R)
) + ε

3 .

Hence, choosing |x−y| ≤ σε
6‖u‖L∞([0,T ]×R)

and |t−s| sufficiently small so that the norm ‖u(t, .)−u(s, .)‖
L1
(

(−R,R)
)

is controlled by ε
3‖ρ‖L∞ we have

|px(t, x)− px(s, y)| ≤ ε.

Hence px is continuous. The continuity of t 7→ p(t, ·) in L∞(R) can be shown similarly.
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Theorem 3.2.10 (Local existence and uniqueness of solutions). Let U be conull and u0 ∈ L∞(U) be given.
There exists τ > 0 such that T τU [u0] has a unique fixed point in Z̃τ . Moreover τ can be chosen as a continuous
function τ

(
‖u0‖L∞(U)

)
of ‖u0‖L∞(U) and the mapping u0 ∈ L∞(U) 7→ (w(t, x), p(t, x)) ∈ Z̃τ is continuous

in a neighborhood of u0.

Proof. We divide the proof in three steps.

Step 1. Stability of Z̃τU by T τU [u0]. We show that T τU [u0](Z̃τU ) ⊂ Z̃τU . Define (w1, p1) := T τU [u0](w, p). We
first prove w1 ∈ Xτ = C([0, τ ],L∞(U)). By definition we have

w1(t, ·)− w1(s, ·) = u0(·) exp
(∫ t

0
1 + χ̂p(l, h(l, 0; ·))− (1 + χ̂)w(l, ·)dl

)
− u0(·) exp

(∫ s

0
1 + χ̂p(l, h(l, 0; ·))− (1 + χ̂)w(l, ·)dl

)
.

Let us denote Θ[u] := |u|e|u|, u ∈ R and recall the inequality eu − 1 ≤ |u|e|u| = Θ[u] for all u ∈ R. We have∥∥∥∥u0(·) exp
(∫ t

0
1 + χ̂p(l, h(l, 0; ·))− (1 + χ̂)w(l, ·)dl

)
− u0(·) exp

(∫ s

0
1 + χ̂p(l, h(l, 0; ·))− (1 + χ̂)w(l, ·)dl

)∥∥∥∥
L∞(U)

= ‖u0‖L∞(U)e
s
(

1+χ̂‖p‖L∞((0,τ)×R)

)
×
∥∥∥∥ exp

(∫ t

s

1 + χ̂p(l, h(l, 0; ·))− (1 + χ̂)w(l, ·)dl
)
− 1
∥∥∥∥
L∞(U)

≤ ‖u0‖L∞(U)e
s
(

1+χ̂‖p‖L∞((0,τ)×R)

)
×Θ

[
(t− s)

(
1 + χ̂‖p‖L∞((0,τ)×R) + (1 + χ̂) sup

l∈[0,τ ]
‖w(l, ·)‖L∞(U)

)]
.

This implies

‖w1(t, ·)− w1(s, ·)‖L∞(U)

≤ ‖u0‖L∞(U)e
s
(

1+χ̂‖p‖Y τ
)
Θ
[
(t− s)

(
1 + χ̂‖p‖Y τ + (1 + χ̂)‖w‖Xτ

)]
. (3.2.19)

Since χ[u]→ 0 as u→ 0, the continuity of w1 is proved.
Next we prove p1 ∈ Ỹ τ . Recall that, by definition of Ỹ τ (see (3.2.10)), the second derivative of p is

uniformly bounded: supt∈[0,τ ] ‖pxx(t, ·)‖L∞(R) =: K < +∞. For any t, s ∈ [0, τ ] and x ∈ R, we have∣∣p1(t, x)− p1(s, x)
∣∣
=
∣∣∣∣ ∫

R

(
ρ(x− h(t, 0; z))e

∫ t
0

1−w(l,z)dl − ρ(x− h(s, 0; z))e
∫ s

0
1−w(l,z)dl

)
u0(z)

∣∣∣∣
≤ ‖u0‖L∞(R)

(∥∥∥e∫ t0 1−w(l,·)dl − e
∫ s

0
1−w(l,·)dl

∥∥∥
L∞(R)

∫
R
|ρ(x− h(t, 0; z))|dz

+
∥∥∥e∫ s0 1−w(l,·)dl

∥∥∥
L∞(R)

∫
R
|ρ(x− h(t, 0; z))− ρ(x− h(s, 0; z))|dz

)
.

(3.2.20)

Since p ∈ Ỹ τ we have ‖pxx‖L∞((0,τ)×R) ≤ K and thus, recalling the Lipschitz property of h (3.2.14),

∥∥∥e∫ t0 1−w(l,·)dl − e
∫ s

0
1−w(l,·)dl

∥∥∥
L∞
≤ |t− s|(et + es)

(
1 + sup

t∈[0,τ ]
‖w(t, ·)‖L∞(U)

)
≤ |t− s|2eτ

(
1 + ‖w‖XτU

)
,∫

R
|ρ(x− h(t, 0; z))|dz =

∫
R
ρ(x− y)∂xh(0, t; y)dy ≤ eKχt.

(3.2.21)
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where we have used the classical inequality

|ex − ey| ≤ (ex + ey)|x− y| for all x, y ∈ R. (3.2.22)

There remains to estimate the second term in the right-hand side of (3.2.20). Using (3.2.22) we have

∫
R
|ρ(x− h(t, 0; z))− ρ(x− h(s, 0; z))|dz

= 1
2σ

∫
R

∣∣∣e− |x−h(t,0;z)|
σ − e−

|x−h(s,0;z)|
σ

∣∣∣dz
≤ 1

2σ

∫
R

(
e−
|x−h(t,0;z)|

σ + e−
|x−h(s,0;z)|

σ

)
σ−1|h(t, 0; z)− h(s, 0; z)|dz

≤ 1
2σ2 ‖h(t, 0; ·)− h(s, 0; ·)‖L∞(R)

×
(∫

R
e−
|x−y|
σ hx(0, t; y)dy +

∫
R
e−
|x−y|
σ hx(0, s; y)dy

)
≤ σ−1‖h(t, 0; ·)− h(s, 0; ·)‖L∞(R)(eKχt + eKχs)
≤ 2σ−1eKχτ‖h(t, 0; ·)− h(s, 0; ·)‖L∞(R).

(3.2.23)

Moreover, since

h(t, 0;x)− h(s, 0;x) = −
∫ t

s

χpx(l, h(l, 0;x))dl, (3.2.24)

we have ‖h(t, 0; ·)− h(s, 0; ·)‖L∞(R) ≤ |t− s|χ supl∈[0,τ ] ‖px(t, ·)‖L∞(R). Combining (3.2.20) and (3.2.23) we
have

∥∥p1(t, ·)− p1(s, ·)
∥∥
L∞(R) ≤ |t− s| × 2e(Kχ+1)τ‖u0‖L∞(U)

(
1 + ‖w‖XτU + σ−1χ‖p‖Y τ

)
. (3.2.25)

This proves p1 ∈ C([0, τ ], L∞(R)).
Similarly, we compute for any t, s ∈ [0, τ ] and x ∈ R:

∣∣p1
x(t, x)− p1

x(s, x)
∣∣ ≤ |t− s| × 2σ−1e(Kχ+1)τ‖u‖L∞(R)

(
1 + ‖w‖XτU

)
(3.2.26)

+ ‖u‖L∞(R)e
s

∫
R
|ρx(x− h(t, 0; z))− ρx(x− h(s, 0; z))|dz.

In order to estimate the last term in (3.2.26), suppose first that h(0, t;x) ≤ h(0, s;x). We have

∫
R
|ρx(x− h(t, 0; z))− ρx(x− h(s, 0; z))|dz

= 1
2σ2

∫ h(0,t;x)

−∞

∣∣− e− x−h(t,0;z)
σ + e−

x−h(s,0;z)
σ

∣∣dz
+ 1

2σ2

∫ ∞
h(0,s;x)

∣∣e x−h(t,0;z)
σ − e

x−h(s,0;z)
σ

∣∣dz
+ 1

2σ2

∫ h(0,s;x)

h(0,t;x)

∣∣e x−h(t,0;z)
σ + e−

x−h(s,0;z)
σ

∣∣dz.
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Using (3.2.22) and (3.2.21) we have∫
R
|ρx(x− h(t, 0; z))− ρx(x− h(s, 0; z))|dz

≤ 1
2σ2

∫ h(0,t;x)

−∞

(
e−
|x−h(t,0;z)|

σ + e−
|x−h(s,0;z)|

σ

)
|h(t, 0; z)− h(s, 0; z)|dz

+ 1
2σ2

∫ ∞
h(0,s;x)

(
e−
|x−h(t,0;z)|

σ + e−
|x−h(s,0;z)|

σ

)
|h(t, 0; z)− h(s, 0; z)|dz

+ 1
2σ2

∫ h(0,s;x)

h(0,t;x)

∣∣e x−h(t,0;z)
σ + e−

x−h(s,0;z)
σ

∣∣dz
≤ 1

2σ2 ‖h(t, 0; ·)− h(s, 0; ·)‖L∞
∫
R

(
e−
|x−h(t,0;z)|

σ + e−
|x−h(s,0;z)|

σ

)
dz

+ 1
2σ2

∫ h(0,s;x)

h(0,t;x)
2dz

≤ 2σ−1eKχτ‖h(t, 0; ·)− h(s, 0; ·)‖L∞(R) + σ−2‖h(0, t; ·)− h(0, s; ·)‖L∞(R).

(3.2.27)

Moreover by (3.2.24) we have ‖h(0, t; ·)− h(0, s; ·)‖L∞(R) ≤ |t− s|χ‖p‖Y τ . Combining (3.2.26) and (3.2.27)
we have∥∥p1

x(t, ·)− p1
x(s, ·)

∥∥
L∞(R)

≤ |t− s| × ‖u0‖L∞(U)σ
−1(2e(Kχ+1)τ (1 + ‖w‖Xτ ) + χeτ (2eKχτ + σ−1)‖p‖Y τ

)
. (3.2.28)

This proves p1
x ∈ C([0, τ ], L∞(R)). According to (3.2.25) and (3.2.28) we have∥∥p1(t, ·)− p1(s, ·)

∥∥
W 1,∞(R) ≤ C|t− s| × ‖u0‖L∞(U)e

(Kχ+1)τ , (3.2.29)

where C is a constant depending on σ, χ, ‖w‖Xτ and ‖p‖Y τ . Therefore p1 ∈ Y τ .
There remains to show that supt∈[0,τ ] ‖p1

xx(t, ·)‖L∞(R) < +∞. Let t, s ∈ [0, τ ] and x ∈ R. We have

|p1
x(t, x)− p1

x(t, y)| =
∣∣∣∣∫

R

(
ρx(x− h(t, 0; z))− ρx(y − h(t, 0; z))

)
u0(z)e

∫ t
0

1−w(l,z)dldz
∣∣∣∣

≤ ‖u0‖L∞(R)e
t

∫
R
|ρx(x− z)− ρx(y − z)|hx(0, t; z)dz

≤ 2σ−1e(Kχ+1)τ‖u0‖L∞(R)|x− y|.

Therefore
sup
t∈[0,τ ]

‖p1
xx(t, ·)‖L∞(R) ≤ 2σ−1e(Kχ+1)τ‖u0‖L∞(U) < +∞. (3.2.30)

We have shown the stability of Z̃τU .
Step 2. Local stability of a vicinity. We show the stability of the set

Br := {(w, p) ∈ Z̃τU | sup
t∈[0,τ ]

‖u0 − w(t, ·)‖L∞(U) ≤ r and p ∈ Ỹ τK

and ‖p− (ρ ? u0)‖Y τ ≤ r}, (3.2.31)

for any r > 0 and τ > 0 sufficiently small, where K := 4σ−1‖u0‖L∞(U). Note that Br is closed in ZτU for
any r > 0.

Let (w, p) ∈ Br, and define κ := ‖(u0, ρ ? u0)‖Zτ + r. By definition, we have
‖(w, p)‖Z̃τ ≤ ‖u0, ρ ? u0‖Z̃τ + r = κ.

On the one hand by (3.2.19) (with s = 0) we find that
sup
t∈[0,τ ]

‖w1(t, ·)− u0(·)‖L∞(U) = sup
t∈[0,τ ]

∥∥w1(t, ·)− w1(0, ·)
∥∥
L∞(U)

≤ ‖u0‖L∞(U)Θ
[
τ
(
1 + χ̂‖p‖Y τ + (1 + χ̂)‖w‖Xτ

)]
≤ κχ

[
τ(1 + (1 + 2χ̂)κ)

]
−−−→
τ→0

0 < r,
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where Θ[u] = |u|e|u|. On the other hand, by (3.2.29) (with s = 0), for all t ∈ [0, τ ],

‖p1(t, x)− (ρ ? u0)(x)‖Y τ = sup
t∈[0,τ ]

‖p1(t, ·)− p1(0, ·)‖W 1,∞(R)

≤ Cτ × ‖u0‖L∞(U)e
(Kχ+1)τ .

≤ Cτκe(Kχ+1)τ −−−→
τ→0

0 < r.

Finally by (3.2.30),

sup
t∈[0,τ ]

‖p1
xx(t, ·)‖L∞(R) ≤ 2σ−1e(Kχ+1)τ‖u0‖L∞(U)

−−−→
τ→0

2σ−1‖u0‖L∞(U) < 4σ−1‖u0‖L∞(U) = K.

We conclude that for any r > 0 there is τ > 0 sufficiently small so that the inclusion T τU [u0](Br) ⊂ Br holds.

Step 3. T τU [u0] is a contraction. More precisely, we show that T τU [u0] is contracting for τ sufficiently
small.

Let r > 0 be given and τ > 0 be sufficiently small so that Br is left stable by T τU [u0], and define
κ := ‖(u0, ρ ? u0)‖Zτ + r as in Step 2. Let (w, p) ∈ Br and (w̃, p̃) ∈ Br be given, we observe that for any
t, s ∈ [0, τ ] and x ∈ U ,

|w̃1(t, x)− w1(t, x)|

≤ ‖u0‖L∞(U)

∣∣∣e∫ t0 1+χ̂p(l,h(l,0;x))−(1+χ̂)w(l,x)dl − e
∫ t

0
1+p̃(l,h̃(l,0;x))−(1+χ̂)w̃(l,x)dl

∣∣∣
≤ ‖u0‖L∞(U)e

t(1+χ̂‖p‖Y τ )
∣∣∣1− e∫ t0 χ̂p̃(l,h̃(l,0;x))−χ̂p(l,h(l,0;x))−(1+χ̂)(w̃(l,x)−w(l,x))dl

∣∣∣
≤ κeτ(1+κχ)

∣∣∣1− e∫ t0 χ̂p̃(l,h̃(l,0;x))−χ̂p(l,h(l,0;x))−(1+χ̂)(w̃(l,x)−w(l,x))dl
∣∣∣

≤ κeτ(1+κχ)Θ
[
τ
(
χ̂ sup
l∈[0,τ ]

|p̃(l, h̃(l, 0;x))− p(l, h(l, 0;x))|+ (1 + χ̂)‖w̃ − w‖Xτ
)]
,

where we have used the inequality |eu − 1| ≤ |u|e|u| =: Θ[u], ∀u ∈ R. Moreover, we have

sup
l∈[0,τ ]

|p̃(l, h̃(l, 0;x))− p(l, h(l, 0;x))|

≤ sup
l∈[0,τ ]

‖p̃(l, ·)− p(l, ·)‖L∞(R) + sup
l∈[0,τ ]

|p(l, h̃(l, 0;x))− p(l, h(l, 0;x))|

≤ ‖p̃− p‖Y τ + sup
l∈[0,τ ]

‖px(l, ·)‖L∞(R) sup
l∈[0,τ ]

‖h̃(l, 0; ·)− h(l, 0; ·)‖L∞(R)

≤ ‖p̃− p‖Y τ + κ sup
l∈[0,τ ]

‖h̃(l, 0; ·)− h(l, 0; ·)‖L∞(R).

According to Lemma 3.2.8 we have

‖h̃(t, 0; ·)− h(t, 0; ·)‖L∞(R) ≤ τχ sup
l∈[0,τ ]

‖p̃x(l, ·)− px(l, ·)‖L∞(R)e
Kχτ ,

which yields
sup
l∈[0,τ ]

|p̃(l, h̃(l, 0;x))− p(l, h(l, 0;x))| ≤ ‖p̃− p‖Ỹ τ (1 + κχτeKχτ ).

This implies

‖w̃1 − w1‖X̃τ ≤ e
τ(1+κχ)Θ

[
τ
(
χ̂‖p̃− p‖Ỹ τ (1 + κχτeKχτ ) + (1 + χ̂)‖w̃ − w‖X̃τ

)]
. (3.2.32)
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On the other hand, we have

∣∣p̃1(t, x)− p1(t, x)
∣∣

=
∣∣∣∣ ∫

R

(
ρ(x− h̃(t, 0; z))e

∫ t
0

1−w̃(l,z)dl − ρ(x− h(t, 0; z))e
∫ t

0
1−w(l,z)dl

)
u0(z)dz

∣∣∣∣
=
∣∣∣∣ ∫

R

(
ρ(x− h̃(t, 0; z))

(
e

∫ t
0

1−w̃(l,z)dl − e
∫ t

0
1−w(l,z)dl

)
−
(
ρ(x− h̃(t, 0; z))− ρ(x− h(t, 0; z))

)
e

∫ t
0

1−w(l,z)dl
)
u0(z)dz

∣∣∣∣
≤ ‖u0‖L∞(R)

(∥∥∥e∫ t0 1−w̃(l,·)dl − e
∫ t

0
1−w(l,·)dl

∥∥∥
L∞(R)

∫
R
|ρ(x− h̃(t, 0; z))|dz

+
∥∥∥e∫ t0 1−w(l,·)dl

∥∥∥
L∞(R)

∫
R
|ρ(x− h̃(t, 0; z))− ρ(x− h(t, 0; z))|dz

)
.

In order to estimate the term
∥∥∥e∫ t0 1−w̃(l,·)dl − e

∫ t
0

1−w(l,·)dl
∥∥∥
L∞(R)

, we write

∥∥∥e∫ t0 1−w̃(l,·)dl − e
∫ t

0
1−w(l,·)dl

∥∥∥
L∞(R)

≤ 2eτ
∥∥∥∥∫ t

0
w̃(l, ·)− w(l, ·)dl

∥∥∥∥
L∞(U)

≤ 2τeτ ‖w̃ − w‖Xτ ,

where we have used (3.2.22). Next we notice that that p̃ ∈ Ỹ τ implies the inequality ‖p̃xx‖L∞((0,τ)×R) ≤ K,
thus we obtain by a change of variable (recall the Lipschitz continuity of h̃ by Lemma 3.2.7)∫

R
|ρ(x− h̃(t, 0; z))|dz =

∫
R
ρ(x− z)∂xh̃(0, t; z)dz ≤ eKχτ .

Finally we have

∫
R
|ρ(x− h̃(t, 0; z))− ρ(x− h(t, 0; z))|dz

= 1
2σ

∫
R

∣∣∣e− |x−h̃(t,0;z)|
σ − e−

|x−h(t,0;z)|
σ

∣∣∣ dz
≤ 1

2σ

∫
R

(
e−
|x−h̃(t,0;z)|

σ + e−
|x−h(t,0;z)|

σ

)
|h̃(t, 0; z)− h(t, 0; z)|dz

≤ ‖h̃(t, 0; ·)− h(t, 0; ·)‖L∞(R)
1

2σ

∫
R
e−
|x−h̃(t,0;z)|

σ + e−
|x−h(t,0;z)|

σ dz

≤ ‖h̃(t, 0; ·)− h(t, 0; ·)‖L∞(R)(eKχt + eKχt)
≤ 2eKχτ‖h̃(t, 0; ·)− h(t, 0; ·)‖L∞(R).

Applying Lemma 3.2.8 yields∫
R
|ρ(x− h̃(t, 0; z))− ρ(x− h(t, 0; z))|dz ≤ 2eKτ‖h̃(t, 0; ·)− h(t, 0; ·)‖L∞(R)

≤ 2χτe2Kχτ‖p̃− p‖Ỹ τ .

We have shown the following estimate on p:

sup
t∈[0,τ ]

∥∥p̃1(t, ·) − p1(t, ·)
∥∥
L∞(R) ≤ 2κτe(Kχ+1)τ ‖w̃ − w‖X̃τ + 2κχτe(2Kχ+1)τ‖p̃ − p‖Ỹ τ . (3.2.33)
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Next we estimate the gradient of p. We have:∣∣p̃1
x(t, x)− p1

x(t, x)
∣∣

=
∣∣∣∣ ∫

R

(
ρx(x− h̃(t, 0; z))e

∫ t
0

1−w̃(l,z)dl − ρx(x− h(t, 0; z))e
∫ t

0
1−w(l,z)dl

)
u0(z)

∣∣∣∣
≤ ‖u0‖L∞(R)

(∥∥∥e∫ t0 1−w̃(l,·)dl − e
∫ t

0
1−w(l,·)dl

∥∥∥
L∞(R)

∫
R
|ρx(x− h̃(t, 0; z))|dz

+
∥∥∥e∫ t0 1−w(l,·)dl

∥∥∥
L∞(R)

∫
R
|ρx(x− h̃(t, 0; z))− ρx(x− h(t, 0; z))|dz

)
≤ 2σ−1κτe(Kχ+1)τ ‖w̃ − w‖Xτ + κeτ

∫
R
|ρx(x− h̃(t, 0; z))− ρx(x− h(t, 0; z))|dz.

For the need of this computation, let us introduce h− := min
(
h̃(0, t;x), h(0, t;x)

)
and h+ := max

(
h̃(0, t;x), h(0, t;x)

)
.

We have:∫
R
|ρx(x− h̃(t, 0; z))− ρx(x− h(t, 0; z))|dz

≤ 1
2σ2

∫ h−

−∞

(
e−
|x−h̃(t,0;z)|

σ + e−
|x−h(t,0;z)|

σ

)
|h̃(t, 0; z)− h(t, 0; z)|dz

+ 1
2σ2

∫ ∞
h+

(
e−
|x−h̃(t,0;z)|

σ + e−
|x−h(t,0;z)|

σ

)
|h̃(t, 0; z)− h(t, 0; z)|dz

+ 1
2σ2

∫ h+

h−

∣∣e− |x−h̃(t,0;z)|
σ + e−

|x−h(t,0;z)|
σ

∣∣dz
≤ 1

2σ2 ‖h̃(t, 0; ·)− h(t, 0; ·)‖L∞(R)

∫
R

(
e−
|x−h̃(t,0;z)|

σ + e−
|x−h(t,0;z)|

σ

)
dz

+ 1
2σ2

∫ h+

h−
2dz

≤ 2σ−1eKχτ‖h̃(t, 0; ·)− h(t, 0; ·)‖L∞(R) + σ−2‖h̃(0, t; ·)− h(0, t; ·)‖L∞(R).

According to Lemma 3.2.8 we have then∫
R
|ρx(x− h̃(t, 0; z))− ρx(x− h(t, 0; z))|dz

≤ 2σ−1eKχτ‖h̃(t, 0; ·)− h(t, 0; ·)‖L∞(R) + σ−2‖h̃(0, t; ·)− h(0, t; ·)‖L∞(R)

≤
(
2τσ−1χe2Kχτ + σ−2χτeKχτ

)
‖p̃− p‖Y τ .

This implies

sup
t∈[0,τ ]

∥∥p̃1
x(t, ·)− p1

x(t, ·)
∥∥
L∞(R) ≤ 2σ−1κτe(Kχ+1)τ ‖w̃ − w‖Xτ

+
(
2κχσ−1τe(2Kχ+1)τ + κχσ−2τe(Kχ+1)τ)‖p̃− p‖Y τ . (3.2.34)

Combining (3.2.32), (3.2.33) and (3.2.34), there exists a mapping τ 7→ L(τ) with L(τ) → 0 as τ → 0 such
that

‖T τU [u0](w̃, p̃)− T τU [u0](w, p)‖Zτ ≤ L(τ) ‖(w̃, p̃)− (w, p)‖Zτ . (3.2.35)

Thus for τ > 0 sufficiently small we have L(τ) < 1 in which case T τU [u0] is a contraction on the complete
metric space Br equipped with the topology induced by Zτ . By the Banach contraction principle, there
exists then a unique fixed point to T τU [u0]. Moreover τ can be chosen as a continuous function of ‖u0‖L∞(U).

Finally, the continuous dependency of (w, p) with respect to u0 is a direct application of the continuous
dependency of the fixed point with respect to a parameter [413, Proposition 1.2].

In order to show the semigroup property satisfied by (w, p) and to make the link with the integrated
solutions to (3.2.1), we need the following technical Lemma.
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Lemma 3.2.11 (The derivatives of p and h). Let U ⊂ R be conull and τ > 0 be given. Let (w, p) ∈ Z̃τU be
a fixed point of T τU [u0]. Then there exists a conull set U ′ such that

(i) for any t, s ∈ [0, τ ], the solution h(t, s;x) to (3.2.12) is differentiable for each x ∈ h(s, 0;U ′) (therefore
for almost every x ∈ R) and we have

hx(t, s;x) = exp
(
χ̂

∫ t

s

w(l, x)− p(l, h(l, s;x))dl
)

for a.e. x ∈ U . (3.2.36)

(ii) for every t ∈ [0, τ ] and x ∈ R we have

p(t, x) =
∫
R
ρ(x− y)w(t, h(0, t; y))dy and px(t, x) =

∫
R
ρx(x− y)w(t, h(0, t; y))dy.

(iii) for every x ∈ U ′, the function px(t, ·) is differentiable at h(t, 0;x) and we have

σ2pxx(t, h(t, 0;x)) = p(t, h(t, 0;x))− w(t, x).

Proof. We divide the proof in three steps.

Step 1. We prove item (i).
Let x ≤ y and t, s ∈ [0, τ ] be given, we first remark that

px(t, h(t, 0; y))− px(t, h(t, 0;x))

=
∫
R

(
ρx(h(t, 0; y)− h(t, 0; z))− ρx(h(t, 0;x)− h(t, 0; z))

)
u0(z)e

∫ t
0

1−w(l,z)dldz

=
∫ x

−∞

(
ρx(h(t, 0; y)− h(t, 0; z))− ρx(h(t, 0;x)− h(t, 0; z))

)
u0(z)e

∫ t
0

1−w(l,z)dldz

+
∫ +∞

y

(
ρx(h(t, 0; y)− h(t, 0; z))− ρx(h(t, 0;x)− h(t, 0; z))

)
u0(z)e

∫ t
0

1−w(l,z)dldz

− 1
2σ2

∫ y

x

(
e
h(t,0;y)−h(t,0;z)

σ + e
−h(t,0;x)+h(t,0;z)

σ

)
u0(z)e

∫ t
0

1−w(l,z)dldz

=
∫ x

−∞

(
ρx(h(t, 0; y)− h(t, 0; z))− ρx(h(t, 0;x)− h(t, 0; z))

)
u0(z)e

∫ t
0

1−w(l,z)dldz

+
∫ +∞

y

(
ρx(h(t, 0; y)− h(t, 0; z))− ρx(h(t, 0;x)− h(t, 0; z))

)
u0(z)e

∫ t
0

1−w(l,z)dldz

− 1
2σ2

∫ y

x

(
e
h(t,0;y)−h(t,0;z)

σ + e
−h(t,0;x)+h(t,0;z)

σ

)
u0(z)e

∫ t
0
w(l,z)dl

− 2u0(x)e
∫ t

0
1−w(l,x)dldz − (y − x)

σ2 u0(x)e
∫ t

0
1−w(l,x)dl

=: f(t;x, y)(h(t, 0; y)− h(t, 0;x))− g(t;x, y)

where

f(t;x, y) :=
(∫ x

−∞
+
∫ +∞

y

) (
ρx(h(t, 0; y)− h(t, 0; z))− ρx(h(t, 0;x)− h(t, 0; z))

)
h(t, 0; y)− h(t, 0;x)

× u0(z)e
∫ t

0
1−w(l,z)dldz

and

g(t;x, y) := 1
2σ2

∫ y

x

(
e
h(t,0;y)−h(t,0;z)

σ + e
−h(t,0;x)+h(t,0;z)

σ

)
u0(z)e

∫ t
0

1−w(l,z)dl

− 2u0(x)e
∫ t

0
1−w(l,x)dldz + (y − x)

σ2 u0(x)e
∫ t

0
1−w(l,x)dl

.
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Next we remark that, with those functions f and g, we have

h(t, 0; y)− h(t, 0;x) = y − x− χ
∫ t

0
px(l, h(l, 0; y))− px(l, h(l, 0;x))dl

= y − x− χ
∫ t

s

f(l;x, y)(h(l, 0; y)− h(l, 0;x))− g(l;x, y)dl

= (y − x)e−χ
∫ t

0
f(l;x,y)dl + χ

∫ t

0
g(σ;x, y)e−χ

∫ t
σ
f(l;x,y)dldσ

For a given x ∈ R, we have
f(t;x, y) −−−→

y→x

1
σ2 p(t, h(t, 0;x))

uniformly in t, because of Lebesgue’s dominated convergence theorem.
Next we remark that, given t ∈ [0, τ ], if x is a Lebesgue point of the function z 7→ u0(z)e

∫ t
0

1−w(l,z)dl ∈
C0([0, τ ],L∞(U)), then g(t;x,y)

y−x has a limit as y → x and

lim
y→x

g(t;x, y)
y − x

= 1
σ2u0(x)e

∫ t
0

1−w(l,x)dx
.

Applying Lemma 3.2.18, we conclude that there exists a conull set U ′ ⊂ U on which h(t, 0; ·) is differentiable
at every point x ∈ U ′ for all t > 0 and we have

hx(t, 0;x) = e
−χ̂
∫ t

0
p(l,h(l,0;x))dl + χσ−2

∫ t

0
u0(x)e

∫ σ
0

1−w(l,x)dl
e
−χ̂
∫ t
σ
p(l,h(l,0;x))dldσ

= e
−χ̂
∫ t

0
p(l,h(l,0;x))dl

(
1 + χ̂

∫ t

0
u0(x)e

∫ σ
0

1+χ̂p(l,h(l,0;x))−w(l,x)dldσ
)

= e
−χ̂
∫ t

0
p(l,h(l,0;x))dl

(
1 +

∫ t

0
χ̂w(σ, x)eχ̂

∫ σ
0
w(l,x)dxdσ

)
= e
−
∫ t

0
p(l,h(l,0;x))dl

(
1 +

∫ t

0

(
e

∫ σ
0
χ̂w(l,x)dx

)′
dσ
)

= exp
(
χ̂

∫ t

0
w(l, x)− p(l, h(l, 0;x))dl

)
.

Since h(0, t;x) = [h(t, 0; ·)]−1(x), the function h(0, t; ·) is differentiable at each point x ∈ h(t, 0;U ′) and

hx(0, t;x) = 1
hx(t, 0;h(0, t;x)) = exp

(
−χ̂
∫ t

0
w(l, h(0, t;x))− p(l, h(l, t;x))dl

)
.

The formula (3.2.36) can be deduced from the remark h(t, s;x) = h(t, 0;h(0, s;x)), where the right-hand
side is differentiable for all x ∈ h(s, 0;U ′).
Step 2. We show item (ii).

We have, by definition,

p(t, x) =
∫
R
ρ(x− h(t, 0; z))u0(z)e

∫ t
0

1−w(l,z)dldz

and item (i) allows a change of variables which yields

p(t, x) =
∫
R
ρ(x− y)u0(h(0, t; y))e

∫ t
0

1−w(l,h(0,t;z))dl
hx(0, t; z)dz

=
∫
R
ρ(x− y)u0(h(0, t; y))e

∫ t
0

1−w(l,h(0,t;z))dl
e
−χ̂
∫ t

0
w(l,h(0,t;y))−p(l,h(l,t;y))dldz

=
∫
R
ρ(x− y)u0(h(0, t; y))e

∫ t
0

1+χ̂p(l,h(l,t;x))−(1+χ̂)w(l,h(0,t;z))dldz

=
∫
R
ρ(x− y)w(t, h(0, t; y))dy.
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The formula for px is proven similarly. Item (ii) is proved.
Step 3. We show item (iii).

Using the formula for px established in item (ii), we have

px(t, y)− px(t, x) =
∫
R

(ρx(y − z)− ρx(x− z))w(t, h(0, t; z))dz

=
(∫ x

−∞
+
∫ +∞

y

)
(ρx(y − z)− ρx(x− z))w(t, h(0, t; z))dz

− 1
2σ2

∫ y

x

(e
y−z
σ + w

−x+z
σ )w(t, h(0, t; z))dz,

therefore px(t, ·) is differentiable each time x is a Lebesgue point of z 7→ w(t, h(0, t; z)) and we have

pxx(t, x) = p(t, x)− w(t, h(0, t;x)).

To finish our statement, we show that there exists U ′′ ⊂ U ′ (see the definition of U ′ given in item (i)) such
that every x = h(t, 0;x0) with x0 ∈ U ′′ is a Lebesgue point of z 7→ w(t, h(0, t; z)). Indeed, let U ′′ be the set
given by Lemma 3.2.18 applied to the function w ∈ C0([0, τ ],L∞(U ′)). If x = h(t, 0;x0) we have:

1
y − x

∫ y

x

|w(t, h(0, t; z))− w(t, h(0, t;x))|dz

= 1
y − x

∫ h(0,t;y)

h(0,t;x)
|w(t, z)− w(t, x0)|hx(t, 0; z)dz

≤ h(0, t; y)− h(0, t;x)
y − x

1
h(0, t; y)− h(0, t;x)

×
∫ h(0,t;y)

h(0,t;x)
|w(t, z)− w(t, x0)|dz‖hx(t, 0; ·)‖L∞(R).

Since h(0, t;x) is differentiable for each x ∈ h(t, 0;U ′) ⊃ h(t, 0;U ′′), the right-hand side converges to 0 as
y → x when x0 ∈ U ′′ is a Lebesgue point of w(t, ·). Lemma 3.2.11 is proved.

Unfortunately, the solution (w, p) constructed in Theorem 3.2.10 does not satisfy a semigroup property.
The reason is that, for a semigroup property to hold, the property p(t, x) =

∫
R ρ(x− y)w(t, y)dy would have

to hold so that the vector (w(t, ·), p(t, ·)) can be taken as an initial condition; however, this is very unlikely
in view of Lemma 3.2.11. In order to continue our construction of the integrated solutions, we first show
that the solution can be defined in L∞ with little modification.

Given u0 ∈ L∞(R), we define the operator induced by the family T τU [u0] : Z̃τ → Zτ (for U ⊂ R conull)
as

T τ [u0](w, p) = T τR [u0](w, p) (3.2.37)
where T τR [u0] is obtained by (3.2.13) with an initial condition equal to u0 a.e. and Zτ := C0([0, τ ], L∞(R))×
Y τ , Z̃τ := C0([0, τ ], L∞+ (R))× Ỹ τ . The fact that T τ [u0] is well-defined is shown in the following Corollary.

Corollary 3.2.12 (Well-posedness in L∞(R)). Let u0 ∈ L∞(R) be given. Let U and U ′ be two conull
set and uU0 ∈ L∞(U) and uU

′

0 ∈ L∞(U ′) be such that u0 = uU0 = uU
′

0 almost everywhere. There exists
τ = τ(‖u0‖L∞(R)) > 0 and a conull set U ′′ ⊂ U ∩ U ′ such that the solutions wU ∈ C0([0, τU ],L∞(U))
and wU ′ ∈ C0([0, τU ′ ],L∞(U ′)) given by Theorem 3.2.10 coincide for all t ∈ [0, τU ] ∩ [0, τU ′ ] and x ∈ U ′′.
Moreover we have τ ≥ max(τU , τU ′).

In particular, let ũ0 ∈ L∞(R) be such that u0 = ũ0 almost everywhere and ‖ũ0‖L∞(R) = ‖u0‖L∞(R)
and define w(t, ·) as the L∞ class of the solution w̃ ∈ C0([0, τ ],L∞(R)) given by Theorem 3.2.10. Then
w ∈ C0([0, τ ], L∞(R)) and w is the unique fixed point on the operator T τ [u0] induced by the operator T τR [ũ0]
defined in (3.2.13).

Proof. Most of the arguments involved in the proof of Corollary 3.2.12 are very classical therefore we concen-
trate on the most important point which is the well-definition of w in L∞. The set U ′′ ⊂ U ∩ U ′ mentioned
in the corollary can be defined as

U ′′ = U ∩ U ′ ∩ {uU0 (x) ≤ ‖u0‖L∞}.
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Since the existence time given by Theorem 3.2.10 depends only on ‖uU0 ‖L∞(U ′′), we have τU
′′ ≥ max(τU , τU ′).

Moreover since U ′′ ⊂ U it follows from the uniqueness of the fixed point of T τU [u0] that wU and wU ′′ coincide
on U ′′, and similarly wU ′ = wU

′′ on U ′′. The remaining statements are classical.

We are now equipped with a family of operators Tt defined for u ∈ L∞(R) and t ∈ [0, τ(‖u0‖L∞)] as

Ttu0(x) := w(t, h(0, t;x)) ∈ L∞(R), (3.2.38)

where w and τ(‖u0‖L∞) are given by Corollary 3.2.12. Next we show that the family Tt satisfies a semigroup
property. We deduce the existence of a maximal solution for each u0 ∈ L∞(R).

Theorem 3.2.13 (Maximal solutions). Let u0 ∈ L∞(R) be given. The number

τ∗(u0) := sup{τ > 0 | T τ [u0] has a unique fixed point}

is well-defined and belongs to (0,+∞], where T τ [u0] is the operator defined in (3.2.37). Moreover, there
exists a conull set U ⊂ R and ũ0 ∈ L∞(U) such that the operator T τU [u0] has a unique fixed point w̃ ∈
C0([0, τ ],L∞(U)) for each τ ∈ (0, τ∗(u0)) and

w̃(t, x) = w(t, x) for a.e. x ∈ R.

The map u0 ∈ L∞(R) 7→ (w̃, p) ∈ ZτU (and therefore u0 ∈ L∞(R) 7→ (w, p) ∈ Zτ ) is continuous for each
τ ∈ (0, τ∗(u0)).

Finally, the map t ∈ [0, τ∗(u0)) 7→ Ttu0 ∈ L∞(R) is a semigroup which is continuous for the L1
η(R)

topology for any η ∈ (0, 1), where Tt is defined by (3.2.38), and if τ∗(u0) < +∞ then we have

lim sup
t→τ∗(u0)−

‖Ttu0‖L∞(R) = +∞.

The map u0 ∈ L∞(R) 7→ Ttu0 ∈ L1
η(R) is continuous for each t ∈ (0, τ∗(u0)).

Proof. The positiveness of τ∗(u0) is a consequence of Corollary 3.2.12. We show the existence of U as
defined in the Theorem. Let U0 := R and let ũ0 ∈ L∞(R) be a bounded measurable function on R such that
‖ũ0‖L∞(R) = ‖u0‖L∞(R). In the rest of the proof we identify u0 and ũ0 and consequently drop the tilde. We
recursively construct a sequence of conull sets Un, n ∈ R, such that Un+1 ⊂ Un, and a sequence of functions
un0 ∈ L∞(Un), such that:

(i) un+1
0 (x) := wn(τn, hn(0, τn;x)) where τn := τ(‖un0‖L∞), (wn, pn) is the unique fixed point of the

operator T τnUn (given by Theorem 3.2.10) with initial condition un0 and hn is the solution of (3.2.12)
corresponding to pn.

(ii) Un+1 = Un ∩ hn(0, τn;Un) ∩ {x |un+1
0 (x) ≤ ‖un+1

0 ‖L∞}.

We let U :=
⋂
n∈N
Un. Remark that, since each Un is conull, the set U is still conull. Next we show that T τ [u0]

has a unique fixed point for each τ ∈ [0,
∑
n∈N τn).

Let T0 = 0 and Tn :=
∑n−1
k=0 τn+1, for all t ∈ [Tn, Tn + 1) we define

w(t, x) := wn(t− Tn, hn−1(τn, 0;x)) for all x ∈ U ,
p(t, x) := pn(t− Tn, hn−1(τn, 0;x)) for all x ∈ R.

We show that (w, p) is the unique fixed point of T τU [u0] for all τ ∈ [0, T∞) by induction. Indeed, the property
is a consequence of Theorem 3.2.10 for all τ ≤ T1. Suppose that (w, p) is the unique fixed point of T τU [u0]
for all τ ≤ Tn, n ≥ 1. The formula

w(t, x) = u0(x) exp
(∫ t

0
1 + χ̂p(l, h(l, 0;x))− (1 + χ̂)w(l, x)dl

)
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is valid for all t ≤ Tn. For t ∈ [Tn, Tn+1] we have

wn(t− Tn, x) = un0 (x) exp
(∫ t−Tn

0
1 + χ̂pn(l, hn(l, 0;x))− (1 + χ̂)wn(l, x)dl

)

= w(Tn, h(Tn, 0;x)) exp
(∫ t−Tn

0
1 + χ̂pn(l, hn(l, 0;x))− (1 + χ̂)wn(l, x)dl

)
= u0(h(0, Tn;x))

× exp
(∫ Tn

0
1 + χ̂p(l, h(l, 0;h(0, Tn;x)))− (1 + χ̂)w(l, h(0, Tn;x))dl

)

× exp
(∫ t−Tn

0
1 + χ̂pn(l, hn(l, 0;x))− (1 + χ̂)wn(l, x)dl

)
,

so that

wn(t− Tn, h(Tn, 0;x)) = u0(x) exp
(∫ Tn

0
1 + χ̂p(l, h(l, 0;x))− (1 + χ̂)w(l, x)dl

)

× exp
(∫ t

Tn

1 + χ̂pn(l − Tn, hn(l − Tn, 0;h(Tn, 0;x)))

− (1 + χ̂)wn(l − Tn, h(Tn, 0;x))dl
)
. (3.2.39)

Next we remark that, by Lemma 3.2.11, the formula

p(Tn, x) =
∫
R
ρ(x− y)w(Tn, h(0, Tn; y))dy =

∫
R
ρ(x− y)un0 (y)dy = pn(0, x)

px(Tn, x) =
∫
R
ρx(x− y)w(Tn, h(0, Tn; y))dy =

∫
R
ρx(x− y)un0 (y)dy = pn(0, x)

hold, therefore p(t, x) can be extended to a function p ∈ C0([0, Tn+1],W 1,∞(R)) by defining p(t, x) =
pn(t− Tn, x) when t ≥ Tn, and moreover the extended function h(t, s;x) defined on [0, Tn+1]× [0, Tn+1]×R
by

h(t, s;x) =


h(t, s;x) if t, s ≤ Tn
hn(t− Tn, 0;h(Tn, s;x)) if s ≤ Tn ≤ t
h(t, Tn;hn(0, s− Tn;x)) if t ≤ Tn ≤ s
hn(t, s;x) if Tn ≤ t, s

solves (3.2.12). Therefore (3.2.39) can be rewritten as:

wn(t− Tn, h(0, Tn;x)) = u0(x) exp
(∫ Tn

0
1 + χ̂p(l, h(l, 0;x))− (1 + χ̂)w(l, x)dl

+
∫ t

Tn

1 + χ̂p(l, hn(l − Tn, 0;h(Tn, 0;x))− (1 + χ̂)wn(l − Tn, h(Tn, 0;x))dl
)

= u0(x) exp
(∫ t

0
1 + χ̂p(l, h(l, 0;x))− (1 + χ̂)w(l, x)dl

)
,

where we have used the function w ∈ C0([0, Tn+1],L∞(U)) defined by the equality w(t, x) := wn(t −
Tn, h(0, Tn;x)) when t ≥ Tn. Finally

p(t, x) =
∫
R
ρ(x− y)w(t, h(0, t; y))dy =

∫
R
ρ(x− h(t, 0;x)w(t, z)hx(t, 0; z)dz

=
∫
R
ρ(x− h(t, 0; z))u0(z)e

∫ t
0

1−w(l,z)dldz.
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We have shown that (w, p) is a fixed point of T tU [u0], for all t ≤ Tn+1. Uniqueness follows from the remark:
let w, w̃ of T Tn+1

U [u0] be two fixed points of T Tn+1
U . Then w and w̃ coincide in [0, Tn] (by uniqueness of the

fixed point) therefore w(Tn, x) = w̃(Tn, x), w(Tn, h(0, Tn;x)) = w̃(Tn, h(0, Tn;x)) and by the uniqueness of
the fixed point in the interval [Tn, Tn+1] we conclude w(t, ·) = w̃(t, ·). The uniqueness is proved. We have
shown by induction that T τU [u0] has a unique fixed point for all τ ∈ [0, T∞]. As a by-product, this is also
true for T τ [u0] and therefore T∞ ≤ τ∗(u0).

Next we remark that τn = τ(‖un0‖L∞) is a positive continuous function of ‖un0‖L∞ and therefore T∞ =∑
τn < +∞ implies ‖w(Tn, ·)‖L∞ = ‖un0‖L∞ → +∞. This shows that τ∗(u0) ≤ T∞ and therefore

τ∗(u0) = T∞.

Obviously if T∞ = +∞ then we have τ∗(u0) ≥ T∞ = +∞. We have shown the equality between the
quantities.

Finally, the continuity of u0 ∈ L∞(U) 7→ (w, p) ∈ ZτU is a consequence of the continuity of the continuity
of the map un0 7→ (wn, pn) ∈ ZτU given by Theorem 3.2.10.

Next we prove the semigroup property of t 7→ Ttu0. This follows from a direct computation: let 0 ≤ t ≤
s < τ∗(u0), then for almost all x ∈ R we have

Tt+su0(x) = u0(h(0, t+ s;x)) exp
(∫ t+s

0
1 + χ̂p(l, h(l, t+ s;x))

− (1 + χ̂)w(l, h(0, t+ s;x))dl
)

=
[
u0(h(0, t;h(t, t+ s))) exp

(∫ t

0
1 + χ̂p(l, h(l, t;h(t, t+ s;x)))

− (1 + χ̂)w(l, h(0, t;h(t, t+ s;x))dl
)]

× e
∫ t+s
t

1+χ̂p(l,h(l,t+s;x))−(1+χ̂)w(l,h(0,t+s;x))dl

= Ttu0(h(t, t+ s;x)) exp
(∫ s

0
1 + χ̂p(t+ l, h(t+ l, t+ s;x))

− (1 + χ̂)w(t+ l, h(0, t;h(t, t+ s;x)))dl
)
.

Let p̃(t, x), h̃(t, s;x), w̃(t, x) be the quantities corresponding to the initial condition ũ0 = Ttu0(x). By
Lemma 3.2.11 we have

p(t, x) =
∫
R
ρ(x− y)w(t, h(0, t; y))dy =

∫
R
ρ(x− y)Tt(u0)(y)dy,

therefore by the uniqueness of the fixed point we have

p̃(l, y) = p(t+ l, y), h̃(l, σ;x) = h(t+ l, t+ σ;x), w̃(l, x) = w(t+ l, h(0, t;x)).

We conclude that

Tt+su0(x) = Ttu0(h̃(0, s;x)) exp
(∫ s

0
1 + χ̂p̃(l, h̃(l, s;x))− (1 + χ̂)w̃(l, h̃(0, s;x))dl

)
.

= TsTtu0(x).

The continuity of t 7→ Ttu0 in the L1
η topology follows directly from Lemma 3.2.11 and 3.2.9.

What remains to show is the continuity of u0 ∈ L∞(R) 7→ Ttu0 ∈ L1
η(R). We use the sequential

characterization of continuity. Let u0, u
n
0 ∈ L∞(R) be such that

‖un0 − u0‖L∞(R) −−−−→
n→∞

0,

and let 0 < t < τ∗(u0). Let us recall that the map u0 ∈ L∞ 7→ (w, p) ∈ Zτ is continuous, therefore we have
τ∗(un) > t for n sufficiently large and

‖wn(t, ·)− w(t, ·)‖L∞(R) −−−−→
n→∞

0,
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where (wn, pn) is the fixed point of T t[un0 ]. Define hn as the solution to (3.2.12) associated with un, then
we have

‖u(t, ·)− un(t, ·)‖L1
η(R) = η

2

∫
R
e−η|x||u(t, x)− un(t, x)|dx

= η

2

∫
R
e−η|x||w(t, h(t, 0;x))− wn(t, hn(t, 0;x))|dx

≤ η

2

∫
R
e−η|x||w(t, h(t, 0;x))− w(t, hn(t, 0;x))|dx

+ η

2

∫
R
e−η|x||w(t, hn(t, 0;x))− w(t, hn(t, 0;x))|dx

≤ η

2

∫
R
e−η|x||w(t, h(t, 0;x))− w(t, hn(t, 0;x))|dx

+ ‖w(t, ·)− wn(t, ·)‖L∞(R).

Next we remark that the function w(t, hn(t, 0;x)) converges to w(t, h(t, 0;x)) for a.e. x ∈ R. Indeed, let
x ∈ R be a Lebesgue point of w(t, h(t, 0; ·)), then we have

1
2ε

∫ x+ε

x−ε
|w(t, h(t, 0; z))− w(t, hn(t, 0; z))|dz

≤ 1
2ε

∫ x+ε

x−ε
|w(t, h(t, 0; z))− w(t, h(t, 0;x))|dz

+ 1
2ε

∫ x+ε

x−ε
|w(t, h(t, 0;x))− w(t, hn(t, 0; z))|dz

= 1
2ε

∫ x+ε

x−ε
|w(t, h(t, 0; z))− w(t, h(t, 0;x))|dz

+ 1
2ε

∫ h(0,t;hn(t,0;x+ε))

h(0,t;hn(t,0;x−ε))
|w(t, h(t, 0;x))− w(t, h(t, 0; y))|

× hnx(t, 0;h(t, 0; y))hx(t, 0; y)dy

≤ 1
2ε

∫ x+ε

x−ε
|w(t, h(t, 0; z))− w(t, h(t, 0;x))|dz

+ C

2ε

∫ h(0,t;hn(t,0;x+ε))

h(0,t;hn(t,0;x−ε))
|w(t, h(t, 0;x))− w(t, h(t, 0; y))|dy,

where C := ‖hnx(t, 0; ·)‖L∞‖hx(t, 0; ·)‖L∞ , so that

lim sup
n→+∞

∫ x+ε

x−ε
|w(t, h(t, 0; z))− w(t, hn(t, 0; z))|dz = o(ε).

Define

Eδ := {x ∈ R | lim sup
n→∞

|w(t, h(t, 0;x))− w(t, hn(t, 0;x))| ≥ δ},

and take a compact set K ⊂ Eδ which is contained in a open set O with finite Lebesgue measure. Then K
can be covered by a finite union of the interval in the family Ωµ of intervals Ix,ε,µ := (x− ε, x+ ε) such that
x is a Lebesgue point of w(t, h(t, 0; ·)), I ⊂ O and

lim sup
n→+∞

∫
Ix,ε,µ

|w(t, h(t, 0; z))− w(t, hn(t, 0; z))|dz ≤ 2µε.

Applying the Vitali covering lemma [342, Theorem 8.5 p. 154], there is a finite disjoint subcollection
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Ixk,εk,µ = (xk, εk) (1 ≤ k ≤ n < +∞) such that |K\
⋃
Ixn,εn,µ| = 0 and therefore

δ|K| ≤
∫
K

lim sup
n→+∞

|w(t, h(t, 0;x))− w(t, hn(t, 0;x))|dx

≤
n∑
k=1

∫
Ixk,εk,µ

lim sup
n→+∞

|w(t, h(t, 0;x))− w(t, hn(t, 0;x))|dx

≤
n∑
k=1

lim sup
n→+∞

∫
Ixk,εk,µ

|w(t, h(t, 0;x))− w(t, hn(t, 0;x))|dx

≤
n∑
k=1

2µεk = µ

n∑
k=1
|Ixk,εk,µ| ≤ µ|O|.

Since O is independent of µ we take the limit µ→ 0 to find |K| = 0 and therefore

|Eδ| = sup
K compact, K⊂Eδ

|K| = 0.

Since δ > 0 arbitrary we have shown that the set of where w(t, hn(t, 0;x)) does not converge to w(t, h(t, 0;x))
is included in

⋃
n≥0E1/n, which is still negligible for the Lebesgue measure. We have shown the convergence

of w(t, hn(t, 0; ·)) to w(t, h(t, 0; ·)) almost everywhere in R. The convergence of un(t, ·) to u(t, ·) in L1
η(R) is

then a consequence of Lebesgue’s dominated convergence Theorem.

We are now in the position to link the constructed maximal solution with the integrated solutions to
(3.2.1).

Proposition 3.2.14 (Integrated solutions). Let τ > 0 and u0 ∈ L∞(R).

(i) If u ∈ C0([0, τ ], L1
loc(R)) is an integrated solution to (3.2.1), then τ∗(u0) ≥ τ and u(t, ·) = Ttu0 for all

t ∈ [0, τ ].

(ii) Conversely, if u(t, x) := Ttu0(x) for all t ∈ [0, τ ], then u(t, x) is an integrated solution to (3.2.1).

Proof. We first prove Item (i). Assume u(t, x) ∈ C0([0, τ ], L1
loc(R) is an integrated solution. Define p(t, x) :=∫

R ρ(x− y)u(t, y)dy. We first show that p ∈ C0([0, τ ],W 1,∞(R)). We have:

|p(t, x)− p(s, x)| ≤
∫
R
ρ(x− y)|u(t, y)− u(s, y)|dy,

|px(t, x)− px(s, x)| ≤
∫
R
|ρx(x− y)||u(t, y)− u(s, y)|dy,

and since t 7→ u(t, ·) is bounded in L∞ and continuous in L1
loc both right-hand sides can be made arbitrarily

small (recall ρ and ρx are in L1). This shows p ∈ C0([0, τ ],W 1,∞(R)).
Next we show that p(t, ·) ∈ W 2,∞(R) for all t ∈ [0, τ ] and that the inequality supt∈[0,τ ] ‖pxx(t, ·)‖L∞ <

+∞ holds. Indeed, take x ≤ y, we have

px(t, x)− px(t, y) =
∫
R

(ρx(x− z)− ρx(y − z))u(t, z)dz

=
(∫ x

−∞
+
∫ +∞

y

)(
ρx(x− z)− ρx(y − z)

)
u(t, z)dz

− 1
2σ2

∫ y

x

(e
y−z
σ + e

−x+z
σ )u(t, z)− 2u(t, x)dz + σ−2u(t, x),

therefore px is differentiable at each Lebesgue point of u and we have

σ2pxx(t, x) = p(t, x)− u(t, x) for a.e. x ∈ R.

Next, define the solution h to (3.2.12). According to Definition 3.2.1, there exists a conull set U on which
t 7→ u(t, h(t, 0;x)) is a classical solution to (3.2.9). Therefore, by a direct integration, we have

w(t, x) = u0(x) exp
(∫ t

0
1 + χ̂p(l, h(l, 0;x))− (1 + χ̂)w(l, x)dl

)
,
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where w(t, x) := u(t, h(t, 0;x)). In particular, w(t, x) ∈ C0([0, τ ],L∞(U)). By Lemma 3.2.18, there exists a
subset U ′ ⊂ U such that for each x ∈ U ′ and all t ∈ [0, τ ], x is a Lebesgue point of w(t, x). Since h(t, s; ·) is
Lipschitz continuous for all t, s ∈ [0, τ ], we have∫ 1

−1
|u(t, x+ εy)− u(t, x)|dy =

∫ h(0,t;x+ε)

h(0,t;x−ε)
|u(t, h(t, 0; z))− u(t, x)|hx(t, 0; z)dz

≤
∫ h(0,t;x+ε)

h(0,t;x−ε)
|w(t, z)− w(t, h(0, t;x))|hx(t, 0; z)dz

≤ K
∫ h(0,t;x)+Kε

h(0,t;x)−Kε
|w(t, z)− w(t, h(0, t;x))|dz,

where K is the Lipschitz constant of h(t, 0; ·). Therefore x is a Lebesgue point of u whenever h(0, t;x) is a
Lebesgue point of w. In particular, for x ∈ U ′, pxx(t, h(t, 0;x)) is the derivative of px and we have

σ2pxx(t, h(t, 0;x)) = p(t, h(t, 0;x))− w(t, x).

In particular, writing

h(t, 0; , x)− h(t, 0; y) = x− y − χ
∫ t

0
px(l, h(l, x))− px(l, h(l, y))dl

= x− y − χ
∫ t

0

px(l, h(l, 0;x))− px(l, 0;h(l, y))
h(l, 0;x)− h(l, 0; y) (h(l, 0;x)− h(l, 0; y))dl

= (x− y) exp
(
−χ
∫ t

0

px(l, h(l, 0;x))− px(l, 0;h(l, y))
h(l, 0;x)− h(l, 0; y) dl

)
,

we find that the formula
hx(t, 0;x) = e

χ̂
∫ t

0
w(l,x)−p(l,h(l,0;x))dl

holds for all x ∈ U ′. Therefore

p(t, x) =
∫
R
ρ(x− y)u(t, y)dy =

∫
R
ρ(x− h(t, 0; z))u(t, h(t, 0; z))hx(t, 0; z)dz

=
∫
R
ρ(x− h(t, 0; z))w(t, z)eχ̂

∫ t
0
w(l,z)−p(l,h(l,0;z))dldz

=
∫
R
ρ(x− h(t, 0; z))u0(z)e

∫ t
0

1−w(l,z)dldz.

Therefore (w, p) is a fixed point of T τU [u0].
Conversely if u(t, x) = Ttu0(x) for all t ∈ [0, τ ] then by definition u is a fixed point of T τ [u0] and we have

see in Theorem 3.2.13 that there exists U ⊂ R conull such that T τU [u0](w, p) = (w, p) for a p ∈ Ỹ τ , with
w(t, x) = u(t, h(t, 0;x)). It then follows from Lemma 3.2.11 that p = ρ?u and elementary computation then
show that u is indeed a classical solution to (3.2.9) for all x ∈ U . This proves Item (ii).

This finishes the proof of Proposition 3.2.14.

Now we prove Lemma 3.2.8 which is used in the proof of Lemma 3.2.10. Next we prove that the solutions
remain bounded by 0 and 1.

Lemma 3.2.15 (Boundedness of the solutions). Let τ > 0 be given and let u0 ∈ L∞(R) satisfy 0 ≤ u0(x) ≤
1. Let u(t, x) be the corresponding integrated solution to (3.2.1). Then

0 ≤ u(t, x) ≤ 1.

Proof. Let w(t, x) := u(t, h(t, 0;x)) ∈ C0([0, T ];L∞(U)
)
for some T > 0 and a conull set U ⊂ R (the

continuity of t 7→ w(t, ·) follows from Theorem 3.2.13) be such that t 7→ w(t, x) is a classical solution to
(3.2.9) for each x ∈ U . We prove the uniform bound:

‖w(t, ·)‖L∞(U) ≤ 1. (3.2.40)
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Let ε > 0 and assume by contradiction that there exists t ∈ [0, T ) with

‖w(t, .)‖L∞(U) > 1 + ε.

Define
t∗ := inf

{
t > 0 | ‖w(t, .)‖L∞ > 1 + ε

}
< T.

Then by the continuity of t 7→ ‖w(t, ·)‖L∞(U) we have ‖w(t∗, ·)‖L∞(U) = 1 + ε. In particular there exists a
sequence (tn, xn) with tn > t∗, tn → t∗ as n→ +∞ and x ∈ U which satisfies

w(tn, xn)→ ‖w(t∗, ·)‖L∞(U), as n→∞,
w(tn, xn) > 1 + ε ∀n ∈ N. (3.2.41)

We claim that there exists a N such that for any n ≥ N and t ∈ [t∗, tn], we have

w(t, xn) > ‖w(t, ·)‖L∞(U) −
ε

2(1 + χ̂) and ‖w(t, ·)‖L∞(U) ≥ ‖w(t∗, ·)‖L∞(U) −
ε

2χ̂ . (3.2.42)

Indeed, for t ∈ [t∗, tn] we have∣∣w(t, xn)− ‖w(t, ·)‖L∞(U)
∣∣

≤ |w(t, xn)− w(t∗, xn)|+ |w(t∗, xn)− w(tn, xn)|
+ |w(tn, xn)− ‖w(t∗, ·)‖L∞(U)|+ |‖w(t∗, ·)‖L∞(U) − ‖w(t, ·)‖L∞(U)|
≤ ‖w(t, ·)− w(t∗, ·)‖L∞(U) + ‖w(t∗, ·)− w(tn, ·)‖L∞(U)

+ |w(tn, xn)− ‖w(t∗, ·)‖L∞(U)|+ |‖w(t∗, ·)‖L∞(U) − ‖w(t, ·)‖L∞(U)|.

Due to the continuity of w in L∞(U) there exists δ0 > 0 such that ‖w(t, ·) − w(t∗, ·)‖L∞(U) ≤ ε
8(1+χ̂) if

|t − t∗| ≤ δ0 and by the continuity of t 7→ ‖w(t, ·)‖L∞(U) there exists δ1 > 0 such that |‖w(t∗, ·)‖L∞(U) −
‖w(t, ·)‖L∞(U)| ≤ ε

8(1+χ̂) if |t− t∗| ≤ δ1. Since tn → t∗ as n→ +∞ and w(tn, xn)→ ‖w(t∗, ·)‖L∞(U) we can
choose N > 0 such that for all n ≥ N , we have |tn − t∗| ≤ min(δ0, δ1) and |w(tn, xn) − ‖w(t∗, ·)‖L∞(U)| ≤

ε
8(1+χ̂) , in which case we have the inequality

∣∣‖w(t, ·)‖L∞(U) − ‖w(t∗, ·)‖L∞(U)
∣∣ ≤ ε

8(1+χ̂) ≤
ε

1+χ̂ and

∣∣w(t, xn)− ‖w(t, ·)‖L∞(U)
∣∣ ≤ ε

2(1 + χ̂) , for all t ∈ [t∗, tn].

Finally, using (3.2.42) we have for all t ∈ [t∗, tn]:

d
dtw(t, xn) = w(t, xn)

(
1 + χ̂(ρ ? u)(t, h(t, 0;xn))− (1 + χ̂)w(t, xn)

)
≤ w(t, xn)

(
1 + χ̂‖w(t, ·)‖L∞(U) − (1 + χ̂)‖w(t, ·)‖L∞(U) + ε

2

)
≤ w(t, xn)

(
1 + ε

2 − ‖w(t, ·)‖L∞(U)

)
≤ w(t, xn)

(
1 + ε

2 − ‖w(t∗, ·)‖L∞(U) + ε

2

)
≤ 0.

This implies
w(t, xn) ≤ w(t∗, xn) ≤ 1 + ε, ∀t ∈ [t∗, tn].

On the other hand, due to (3.2.41) we have

w(tn, xn) > 1 + ε.

This is a contradiction. Thus for any t > 0, ‖w(t, ·)‖L∞(U) ≤ 1 + ε. Since ε is arbitrary, (3.2.40) holds.

In particular, the solution constructed in Step 1 and 2 can be extended up to T = +∞. We are now in
the position to prove Theorem 3.2.2.
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Proof of Theorem 3.2.2. Let u0 ∈ L∞(R).
Existence and uniqueness. The existence and uniqueness of the integrated solution follows directly

from Theorem 3.2.13 (existence and uniqueness of a fixed-point problem) and Proposition 3.2.14 (consistency
between the fixed-point problem and the integrated solutions).

Continuity. The continuity in the space L1
η(R) and the continuity of u0 ∈ L∞(R) 7→ Ttu0 ∈ L1

η(R) have
been shown in Theorem 3.2.13.

Other properties. The semigroup property follows directly from the form of the operator has been
shown in Theorem 3.2.13. The uniform bound when 0 ≤ u0(x) ≤ 1 has been shown in Lemma 3.2.15 and
the fact that τ∗(u0) = +∞ from the fact that the L∞ norm of u(t, ·) cannot blow-up in finite time.

This ends the proof of Theorem 3.2.2.

Next we show that our model preserves certain properties of the initial condition.

Proposition 3.2.16 (Properties of the solutions). Let u(t, x) be an integrated solution to (3.2.1) and suppose
u0 ∈ L∞(R) with 0 ≤ u0 ≤ 1. Then

(i) if u0(x) is continuous, then u ∈ C0([0, T ]× R).

(ii) if u0(x) ∈ C1(R), then u ∈ C1([0, T ]× R) and u is then a classical solution to (3.2.1).

(iii) if u0(x) is monotone, then u(t, x) has the same monotony for each t > 0.

Proof. From (3.2.9) we can directly solve the solution w(t, x) = u(t, h(t, 0;x)) as

w(t, x) =
u0(x) exp

( ∫ t
0 1 + χ̂(ρ ? u)(l, h(l, 0;x))dl

)
1 + (1 + χ̂)u0(x)

∫ t
0 exp

( ∫ l
0 1 + χ̂(ρ ? u)(σ, h(σ, 0;x))dσ

)
dl
,

for all t > 0 and almost all x ∈ R, which is equivalent to

u(t, x) =
u0(h(0, t;x)) exp

( ∫ t
0 1 + χ̂(ρ ? u)(l, h(l, t;x))dl

)
1 + (1 + χ̂)u0(h(0, t;x))

∫ t
0 exp

( ∫ l
0 1 + χ̂(ρ ? u)(σ, h(σ, t;x))dσ

)
dl
.

Since (t, x)→ h(t, s;x) is continuous, the right-hand side is a continuous function. This shows (i).
Let us show (ii). By (i) we have u ∈ C0([0, T ] × R). Thus, the spatial derivative of the vector field of

(3.2.8) satisfies
−σ2(ρx ? u)x(t, x) = u(t, x)− (ρ ? u)(t, x) ∈ C0([0, T ]× R).

Therefore, the characteristic flow (t, s, x) 7→ h(t, s;x) ∈ C1([0, T ]× [0, T ]× R). If we denote

φ(t, x) := e

∫ t
0

1+χ̂(ρ?u)(l,h(l,0,x))dl
, (3.2.43)

then (t, x) 7→ φ(t, x) is C1, which implies w ∈ C1([0, T ] × R). Since u(t, x) = w(t, h(0, t;x)) we have
u ∈ C1([0, T ]× R).

Finally we show (iii). We will assume that u0(x) is decreasing (the increasing case can be treated
with a similar argument). We let w(t, x) := u(t, h(t, x)) where u is the solution to (3.2.1) starting from
u(t = 0, x) ≡ u0(x), and h(t, s;x) be the corresponding characteristic flow, i.e. the solution to (3.2.12) with
p(t, x) :=

∫
R ρ(x− z)w(t, h(0, t; z))dz. Our aim is to show that w is a fixed point of the map

T̃τ : C0([0, τ ], L∞(R)
)
−→ C0([0, τ ], L∞(R)

)
w̃ 7−→

u0(x) exp
(∫ t

0
1 + χ̂p̃(s, h(s, 0;x))ds

)
1 + (1 + χ̂)u0(x)

∫ t

0
exp

(∫ l

0
1 + p̃(s, h(s, 0;x))ds

)
dl
,

where p̃(t, x) is defined in the above formula by

p̃(t, x) :=
∫
R
ρ(x− z)w̃(t, h(0, t; z))dz
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we stress that h is the characteristic flow corresponding to the “real” solution to (3.2.1) and is independent
of w̃.

As the proof is more involved, we subdivide it in four steps.
Step one: Let r > 0, we show that there exists τ0 such that the ball

Br :=
{
w ∈ C0([0, τ ], L∞(R)

)
|‖w(t, x)− u0(x)‖

C0
(

[0,τ ],L∞(R)
) ≤ r}

is left stable by T̃τ for 0 < τ ≤ τ0.
Let w0 ∈ Br. We compute:

|T̃τ (w̃)− u0(x)| =

∣∣∣∣∣∣ u0(x)e
∫ t

0
1+χ̂p̃(s,h(s,0;x))ds

1 + (1 + χ̂)u0(x)
∫ t

0 e

∫ l
0

1+χ̂p̃(s,h(s,0;x))dsdl
− u0(x)

∣∣∣∣∣∣
≤ |u0(x)|

∣∣∣∣∣∣e
∫ t

0
1+χ̂p̃(s,h(s,0;x))ds − 1− (1 + χ̂)u0(x)

∫ t
0 e

∫ l
0

1+χ̂p̃(s,h(s,0;x))dsdl

1 + (1 + χ̂)u0(x)
∫ t

0 e

∫ l
0

1+χ̂p̃(s,h(s,0;x))dsdl

∣∣∣∣∣∣
≤ ‖u0‖L∞(R)

(
e1+χ̂‖u0‖L∞(R)+χ̂r

∣∣∣∣∫ t

0
1 + χ̂p̃(s, h(s, 0;x))ds

∣∣∣∣
+ (1 + χ̂)‖u0‖L∞(R)te

t(1+χ̂‖u0‖L∞(R)+χ̂r)

)
≤ Cτ,

where C depends on ‖u0‖L∞(R), r, and χ̂. The existence of τ0 is proved.
Step two: Let r > 0, we show that there exists τ1 > 0 such that T̃τ is contracting on Br for 0 < τ < τ1.
Let w̃1, w̃2 ∈ Br, and let κ := 1 + r so that ‖w1‖L∞(R) ≤ κ and ‖w2‖L∞(R) ≤ κ. For notational

compactness we define in advance

p̃i(t, x) :=
∫
R
ρ(x− z)w̃i(t, h(0, t; z))dz, i ∈ {1, 2},

Di(t, x) := 1 + (1 + χ̂)u0(x)
∫ t

0
exp

(∫ l

0
1 + p̃i(s, h(s, 0;x))ds

)
dl, i ∈ {1, 2}.

We compute:∣∣T̃τ (w1)(t, x)− T̃τ (w2)(t, x)
∣∣
=

∣∣∣∣∣∣u0(x)e
∫ t

0
1+χ̂p̃1(s,h(s,0;x))ds

D2(t, x)− u0(x)e
∫ t

0
1+χ̂p̃2(s,h(s,0;x))ds

D1(t, x)
D1(t, x)D2(t, x)

∣∣∣∣∣∣
≤ u0(x)

∣∣∣∣e∫ t0 1+χ̂p̃1(s,h(s,0;x))ds − e
∫ t

0
1+χ̂p̃2(s,h(s,0;x))ds

∣∣∣∣
+ (1 + χ̂)u0(x)e(κχ+1)t

∫ t

0

∣∣∣∣e∫ l0 1+χ̂p̃1(s,h(s,0;x))ds+
∫ t

0
1+χ̂p̃2(s,h(s,0;x))ds

−e
∫ l

0
1+χ̂p̃2(s,h(s,0;x))ds+

∫ t
0

1+χ̂p̃1(s,h(s,0;x))ds
∣∣∣∣ dl

≤
(
te(1+κχ) + 2(1 + χ̂)t2e(1+κχ)(t+1)

)
‖χp̃1 − χp̃2‖C0([0,τ ],L∞(R))

≤ χτ
(
e1+κχ + 2(1 + χ̂)τe(1+κχ)(τ+1)

)
‖w̃1 − w̃2‖C0([0,τ ],L∞(R)),

where we have used the inequalities ‖u0‖L∞(R) ≤ 1 and ‖p̃1 − p̃2‖C0([0,τ ],L∞(R)) ≤ ‖w̃1 − w̃2‖C0([0,τ ],L∞(R)).
The existence of τ1 is proved.
Step three: We show that the map T̃τ preserves the monotony of u0, i.e. the set

D := {w ∈ C0([0, τ ], L∞(R)
)
|w(t, ·) is nonincreasing}
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is left stable by T̃τ .
Indeed, let w̃ be nonincreasing with respect to x. Let w̃1(t, x) := T̃τ (w)(t, x). We first show that P̃ is

nonincreasing:

p̃(t, x)− p̃(t, y) =
∫
R
ρ(z)

(
w̃(t, h(0, t;x− z))− w̃(t, h(0, t; y − z))

)
dz ≤ 0,

since the characteristic flow h(t, s; ·) is increasing. Next we let

D(t, x) := 1 + (1 + χ̂u0(x)
∫ t

0
exp

(∫ l

0
1 + χ̂p̃(s, h(s, 0;x))ds

)
dl.

We compute:

w̃1(t, x)− w̃1(t, y)

= u0(x)e
∫ t

0
1+χ̂p̃(s,h(s,0;x))ds

D(t, y)− u0(y)e
∫ t

0
1+χ̂p̃(s,h(s,0;y))ds

D(t, x)
D(t, x)D(t, y)

= u0(x)e
∫ t

0
1+χ̂p̃(s,h(s,0;x))ds − u0(y)e

∫ t
0

1+χ̂p̃(s,h(s,0;y))ds

D(t, x)D(t, y)

+ u0(x)u0(y)
D(t, x)D(t, y)

∫ t

0
e

∫ l
0

1+χ̂p̃(t,h(s,0;y))dy+
∫ t

0
1+χ̂p̃(s,h(s,0;x))ds

− e
∫ l

0
1+χ̂p̃(t,h(s,0;x))dy+

∫ t
0

1+χ̂p̃(s,h(s,0;y))dsdl

≤ u0(x)u0(y)
D(t, x)D(t, y)

∫ t

0
e

∫ l
0

1+χ̂p̃(t,h(s,0;x))dy+
∫ t

0
1+χ̂p̃(s,h(s,0;y))ds

×
(
e
χ̂
∫ t
l
p̃(s,h(s,0;x))−p̃(s,h(s,0;y))ds − 1

)
dl ≤ 0,

since P̃ is nonincreasing. This shows the stability of D.
Step four: We conclude.
Let τ := min(τ0, τ1) where τ0, τ1 are as in Step 1 and 2. By a direct application of the Banach contraction

principle, T̃τ has a unique fixed point in Br, which is w (since w happens to be a fixed point). Moreover w
can be obtained as the limit of the iteration scheme:

w0(t, x) := u0(x), wn+1(t, x) := T̃τ (wn)(t, x).

Since u0 is nonincreasing and T̃τ preserves the monotony, it follows that w is nonincreasing (D is closed for
the considered topology).

Since τ does not depend on u0, the monotony of u(t, ·) for all t > 0 follows from an induction argument.

Theorem 3.2.17 (Long-time behavior). Let δ ∈ (0, 1) and u0(x) be such that δ ≤ u0(x) ≤ 1. Let u(t, x) be
the corresponding integrated solution to (3.2.1). Then

lim
t→∞

‖1− u(t, ·)‖L∞(R) = 0.

Proof. Let θ be defined as
θ := lim inf

t→+∞
inf
x∈R

u(t, x),

and assume by contradiction that θ < 1. We first remark that for any x ∈ R we have
∂tw(t, x) = w(t, x) (1 + χ̂(ρ ? u)(t, h(t, 0;x))− (1 + χ̂)w(t, x))

≥ w(t, x)
(
1− (1 + χ̂)w(t, x)

) t > 0,

w(0, x) ≥ δ.

Thus, for each x ∈ R,
w(t, x) ≥ δ, x ∈ R, t > 0.



268

In particular (ρ ? u)(t, h(t, 0;x)) =
∫
R ρ(h(t, 0;x)− y)u(t, y)dy ≥ δ

∫
R ρ(h(t, 0;x)− y)dy = δ. We deduce that

∂tw(t, x) = w(t, x) (1 + χ̂(ρ ? u)(t, h(t, 0;x))− (1 + χ̂)w(t, x))
≥ w(t, x)

(
1 + χ̂δ − (1 + χ̂)w(t, x)

) t > 0,

w(0, x) ≥ δ.

This implies for any t > 0, x ∈ R

w(t, x) ≥ δet(1+χ̂δ)

1 + (1+χ̂)δ
1+χ̂δ

(
et(1+χ̂δ) − 1

) t→∞−−−→ 1 + χ̂δ

1 + χ̂
.

In particular

θ ≥ 1 + χ̂δ

1 + δ
>

1
1 + χ̂

. (3.2.44)

It is not difficult to see that for each α ∈ (0, 1) there exists Tα such that, for all t ≥ Tα, we have

inf
x∈R

w(t, x) ≥ αθ.

Therefore for all t ≥ Tα,

(ρ ? u)(t, h(t, 0;x)) ≥ αθ
∫
R
ρ(h(t, 0;x)− y)dy = αθ,

which yields 
∂tw(t, x) = w(t, x) (1 + (ρ ? u)(t, h(t, 0;x))− (1 + χ̂)w(t, x))

≥ w(t, x) (1 + αθ − (1 + χ̂)w(t, x))
t > T1, x ∈ R

w(T1, x) ≥ 1+χ̂ δ2
1+χ̂

and finally

θ = lim inf
t→+∞

inf
x∈R

w(t, x) ≥ 1 + χ̂αθ

1 + χ̂
.

This is a contradiction if α is chosen as

α = 1− 1
χ̂

(
1
θ
− 1
)
,

and this choice is admissible because

1
χ̂

(
1
θ
− 1
)
<

1
χ̂

(1 + χ̂− 1) = 1

by (3.2.44). This concludes the proof of Theorem 3.2.17.
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3.2.4 Lebesgue points along continuous trajectories
Here we show that the space L∞(U) is well-behaved with respect to Lebesgue points when U is a subset of
R.

Lemma 3.2.18 (Lebesgue points along continuous trajectories). Let U ⊂ R be conull. Let w ∈ C0([0, τ ],L∞(U))
be given, then there exists a conull set U ′ ⊂ U such that each x ∈ U ′ is a Lebesgue points of w(t, ·) for all
t ∈ [0, τ ].

Proof. Recall that a Lebesgue point of a measurable function f : U → R is characterized by the property

lim
ε→0

1
2ε

∫ x+ε

x−ε
|f(z)− f(x)|dz = 0

or, equivalently,

lim
ε→0

1
2

∫ 1

−1
|f(x+ εy)− f(x)|dz = 0.

Let w ∈ C0([0, τ ],L∞(U)) be given. Given q ∈ Q ∩ [0, τ ] we define the failure set

Fq := {x ∈ U |x is a not a Lebesgue point of w (q, ·)} .

It is classical that for each q the set Fq is negligible for the Lebesgue measure λ, i.e. λ(Fq) = 0. Since the
family (Fq)q∈Q∩[0,τ ] is countable, we have

λ

 ⋃
q∈Q∩[0,τ ]

Fq

 = 0

therefore the set U ′ := U\
⋃
q∈Q∩[0,τ ] Fq is conull.

Let us show that U ′ is composed of Lebesgue points of w(t, ·). Let x ∈ U ′ and t ∈ [0, τ ], then there
exists a sequence of rational numbers tn ∈ Q such that tn → t. By definition of U ′, x is not in any Ftn and
therefore x is a Lebesgue point of the functions w(tn, ·) for all n ∈ N. We have:∫ 1

−1
|w(t, x+ εy)− w(t, x)|dy

≤
∫ 1

−1
|w(t, x+ εy)− w(tn, x+ εy)|dy +

∫ 1

−1
|w(tn, x+ εy)− w(tn, x)|dy

+
∫ 1

−1
|w(tn, x)− w(t, x)|dy

≤
∫ 1

−1
|w(tn, x+ εy)− w(tn, x)|dy + 2‖w(t, ·)− w(tn, ·)‖L∞(U),

therefore the right-hand side is arbitrarily small when ε → 0. We conclude that x is a Lebesgue point of
w(t, ·). Lemma 3.2.18 is proved.



270

3.3 Sharp discontinuous traveling waves in a hyperbolic Keller–Segel equation

3.3.1 Introduction
In this section 3.3 we are concerned with the following diffusion equation with logistic source:{

∂tu(t, x)− χ∂x
(
u(t, x)∂xp(t, x)

)
= u(t, x)(1− u(t, x)), t > 0, x ∈ R,

u(t = 0, x) = u0(x),
(3.3.1)

where χ > 0 is a sensing coefficient and p(t, x) is an external pressure. Model (3.3.1) describes the behavior
of a population of cells u(t, x) living in a one-dimensional habitat x ∈ R, which undergo a logistic birth and
death population dynamics, and in which individual cells follow the gradient of a field p. The constant χ
characterizes the response of the cells to the effective gradient px. In this work we will consider the case
where p is itself determined by the state of the population u(t, x) as

− σ2∂xxp(t, x) + p(t, x) = u(t, x), t > 0, x ∈ R. (3.3.2)

The above equation (3.3.2) corresponds to the limit of fast diffusion ε→ 0 of the parabolic equation (3.3.8).
It corresponds to a scenario in which the field p(t, x) is produced by the cells, diffuses to the whole space
with diffusivity σ2 (for σ > 0), and vanishes at rate one. As a result cells are pushed away from crowded
area to emptier region.

A similar model has been successfully used in our recent work [P8] to describe the motion of cancer
cells in a Petri dish in the context of cell co-culture experiments of Pasquier et al. [318]. Pasquier et al.
[318] cultivated two types of breast cancer cells to study the transfer of proteins between them in a study
of multi-drug resistance. It was observed that the two types of cancer cells form segregated clusters of
cells of each kind after a 7-day co-culture experiment (Figure 3.3.1 (a)). In section 3.2, we studied the
segregation property of a model similar to (3.3.1)–(3.3.2), set in a circular domain in two spatial dimensions
x ∈ R2 representing a Petri dish. Starting from islet-like initial conditions representing cell clusters, it was
numerically observed that the distribution of cells converges to a segregated state in the long run.

One may observe that in such an experiment the cells are well fed. So there is no limitation for food.
As explained in Ducrot et al.[155], the limitations are due to space and the contact inhibition of growth is
involved. Therefore the right hand side of (3.3.1), which is a logistic term (for simplicity), could possibly
have the following form

f(x) = βx

1 + αx
− µx

where β is the division rate and µ is the mortality rate. We believe that our results hold for such a non-
linearity and this is left for future work.

Strikingly, even before the two species come in contact, a sharp transition is formed between the space
occupied by one species and the empty space being invaded (Figure 3.3.1 (b)) and the distribution of cells
looks like a very sharp traveling front. In an attempt to better understand the spatial behavior of cell
populations growing in a Petri dish, in the present paper we investigate the mathematical properties of a
simplified model for a single species on the real line. We are particularly interested in showing the existence
of a sharp traveling front moving at a constant speed.

Our model can be included in the family of non-local advection models for cell-cell adhesion and repulsion.
As pointed out by many biologists, cell-cell interactions do not only exist in a local scope, but a long-range
interaction should be taken into account to guide the mathematical modeling. Armstrong, Painter and
Sherratt [16] in their early work proposed a model (APS model) in which a local diffusion is added to the
non-local attraction driven by the adhesion forces to describe the phenomenon of cell mixing, full/partial
engulfment and complete sorting in the cell sorting problem. Based on the APS model, Murakawa and
Togashi [296] thought that the population pressure should come from the cell volume size instead of the
linear diffusion. Therefore, the linear diffusion was changed into a nonlinear diffusion in order to capture the
sharp fronts and the segregation in cell co-culture. Carrillo et al. [105] recently proposed a new assumption
on the adhesion velocity field and their model showed a good agreement in the experiments in the work
of Katsunuma et al. [229]. The idea of the long-range attraction and short-range repulsion can also be
seen in the work of Leverentz, Topaz and Bernoff [250]. They considered a non-local advection model to
study the asymptotic behavior of the solution. By choosing a Morse-type kernel which follows the attractive-
repulsive interactions, they found that the solution can asymptotically spread, contract (blow-up), or reach a
steady-state. Burger, Fetecau and Huang [83] considered a similar non-local adhesion model with nonlinear
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(a)
(b)

Figure 3.3.1: [P8, Figure 1 and Figure 5 (b)]. (a) Direct immunodetection of P-gp transfers in co-cultures
of sensitive (MCF-7) and resistant (MCF-7/Doxo) variants of the human breast cancer cell line. (b) The
temporal-spatial evolution of the two species in the 1D model. One can check that a discontinuity is forming
near the front face of the green surface.

diffusion, for which they investigated the well-posedness and proved the existence of a compactly supported,
non-constant steady state. Dyson et al. [156] established the local existence of a classical solution for a
non-local cell-cell adhesion model in spaces of uniformly continuous functions. For Turing and Turing-Hopf
bifurcation due to the non-local effect, we refer to Ducrot et al. [151] and Song et al. [365]. We also refer
to Mogliner et al. [288], Eftimie et al. [158], Ducrot and Magal [152], Ducrot and Manceau [153] for more
topics on non-local advection equations. For the derivation of such models, we refer to the work of Bellomo
et al. [44] and Morale, Capasso and Oelschläger [290].

Since the pressure p(t, x) is a non-local function of the density u(t, x) in (3.3.2), the spatial derivative
appears as a non-local advection term in (3.3.1). In fact, our problem (3.3.1)–(3.3.2) can be rewritten as a
transport equation in which the speed of particles is non-local in the density,{

l∂tu(t, x)− χ∂x(u(t, x)∂x(ρ ? u)(t, x)) = u(t, x)(1− u(t, x)),
u(t = 0, x) = u0(x),

(3.3.3)

where
(ρ ? u) (x) =

∫
R
ρ(x− y)u(t, y)dy, ρ(x) = 1

2σ e
− |x|σ . (3.3.4)

Traveling waves for a similar diffusive equation with logistic reaction have been investigated for quite general
non-local kernels by Hamel and Henderson [198], who considered the model

ut + (u (K ? u))x = uxx + u(1− u), (3.3.5)

where K ∈ Lp(R) is odd and p ∈ [1,∞]. Notice that the attractive parabolic-elliptic Keller-Segel model
(3.3.9) is included in this framework by the particular choice

K(x) = −χ sign(x)e−|x|/
√
d/
(
2
√
d
)
.

They proved a spreading result for this equation (initially compactly supported solutions to the Cauchy
problem propagate to the whole space with constant speed) and explicit bounds on the speed of propagation.
Diffusive non-local advection also appears in the context of swarm formation [289]. Pattern formation for a
model similar to (3.3.5) by Ducrot, Fu and Magal [151]. Let us mention that the inviscid equation (3.3.3)
has been studied in a periodic cell by Ducrot and Magal [152]. Other methods have been established for
conservative systems of interacting particles and their kinetic limit (Balagué et al. [30], Carrillo et al. [104])
based on gradient flows set on measure spaces; those are difficult to adapt here because of the logistic term.
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There is also related literature regarding traveling waves in nonlocal reaction-diffusion equations[121, P4,
393, 165, 154].

Recall that a traveling wave is a special solution having the specific form

u(t, x) = U(x− ct), for a.e. (t, x) ∈ R2,

where the profile U has the following behavior at ±∞:

lim
z→−∞

U(z) = 1, lim
z→∞

U(z) = 0.

The goal of this section 3.3 is to investigate sharp traveling waves namely

U(x) = 0, for all x > 0.

Moreover as it is represented in Figure 3.3.2-(a) we will obtain the existence of such a wave with a discon-
tinuity at x = 0 for the profile U . Discontinuous traveling waves in hyperbolic partial differential equations

discontinuous
traveling wave

(a)

smooth
traveling wave

(b)

Figure 3.3.2: An illustration of two types of traveling wave solutions.

have appeared in the literature of the recent few years. Travelling wave solutions with a shock or jump dis-
continuity have been found e.g. in models of malignant tumor cells (Marchant, Norbury and Perumpanani
[277], Harley et al. [202] where the existence of discontinuous waves is proved by means of geometric singular
perturbation theory for ODEs) or chemotaxis (Landman, Pettet and Newgreen [247] where both smooth
and discontinuous traveling waves are found using phase plane analysis).

It can be noticed that, in the limit of slow diffusivity σ → 0 (and under the simplifying assumption that
χ = 1), we get u(t, x) ≡ p(t, x) and (3.3.1) is equivalent to an equation with porous medium-type diffusion
and logistic reaction

ut −
1
2(u2)xx = u(1− u). (3.3.6)

We refer to the monograph of Vázquez [380] for more result about porous medium equation. The propagation
dynamics for this kind of equation was first studied, to the extent of our knowledge, by Aronson [21],
Atkinson, Reuter and Ridler-Rowe [23], and later by de Pablo and Vázquez [313], in the more general
context of nonlinear diffusion

ut = (um)xx + u(1− u), with m > 1. (3.3.7)
In Section 3.3.3.3, we observe that the discontinuous sharp traveling obtained in the present section 3.3
converge (numerically) to the continuous profile described by Pablo and Vázquez [313].

The particular relation between the pressure p(t, x) and the density u(t, x) in (3.3.2) strongly reminds
the celebrated model of chemotaxis studied by Patlak (1953) and Keller and Segel (1970) [320, 233, 232]
(parabolic-parabolic Keller-Segel model) and, more specifically, the parabolic-elliptic Keller-Segel model
which is derived from the former by a quasi-stationary assumption on the diffusion of the chemical [226].
Indeed Equation (3.3.2) can be formally obtained as the quasistatic approximation of the following parabolic
equation

ε∂tp(t, x) = χpxx(t, x) + u(t, x)− p(t, x), (3.3.8)
when ε → 0. A rigorous derivation of the limit has been achieved in the case of the Keller-Segel model by
Carrapatoso and Mischler [103]. We also refer to de Mottoni and Rothe [293] for such a result in the context
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of linear parabolic equations. We refer to Calvez and Corrias[94], Hillen and Painter[209], Perthame and
Dalibard[323] and the references therein for a mathematical introduction and biological applications. In these
models, the field p(t, x) is interpreted as the concentration of a chemical produced by the cells rather than a
physical pressure. One of the difficulties in attractive chemotaxis models is that two opposite forces compete
to drive the behavior of the equations: the diffusion due to the random motion of cells, on the one hand, and
on the other hand the non-local advection due to the attractive chemotaxis; the former tends to regularize
and homogenize the solution, while the latter promotes cell aggregation and may lead to the blow-up of the
solution in finite time [109, 226]. At this point let us mention that our study concerns repulsive cell-cell
interaction with no diffusion, therefore no such blow-up phenomenon is expected in our study; however
the absence of diffusion adds to the mathematical complexity of the study, because standard methods of
reaction-diffusion equations cannot be employed here. Traveling waves for the (attractive) parabolic-elliptic
Keller-Segel model were studied by Nadin, Perthame and Ryzhik [301], who constructed these traveling wave
by a bounded interval approximation of the 1D system{

lut + χ (upx)x = uxx + u(1− u),
−d pxx + p = u,

(3.3.9)

set on the real line x ∈ R, when the strength of the advection is not too strong 0 < χ < min(1, d), and
gave estimates on the speed of such a traveling wave: 2 ≤ c∗ ≤ 2 + χ

√
d/(d− χ). More recently, Salako and

Shen [344, 345, 346] and Salako, Shen and Xue [347] published a series of articles concerning the asymptotic
properties and spatial dynamics of chemotaxis models.

In this paper we focus on the particular case of (3.3.1)–(3.3.2) with σ > 0 and χ > 0. The paper is
organized as follows. In Section 2, we present our main results. In Section 3 we present numerical simulations
to illustrate our theoretical results. In Section 4, we prove the propagation properties of the solution and
describe the local behavior near the propagating boundary (see Proposition 3.3.6 for definition), including
the formation of a discontinuity for time-dependent solutions. In Section 5 we prove the existence of sharp
traveling waves. We also prove that smooth traveling waves are necessarily positive, which shows that sharp
traveling waves are necessarily singular (in this case, discontinuous). In particular, a solution starting from
a compactly supported initial condition with polynomial behavior at the boundary can never catch such a
smooth traveling wave.

3.3.2 Main results and comments
We begin by defining our notion of solution to equation (3.3.1).

Definition 3.3.1 (Integrated solutions). Let u0 ∈ L∞(R). A measurable function u(t, x) ∈ L∞([0, T ]× R)
is an integrated solution to (3.3.1) if the characteristic equationl

d
dth(t, x) = −χ(ρx ? u)(t, h(t, x))

h(t = 0, x) = x.
(3.3.10)

has a classical solution h(t, x) (i.e. for each x ∈ R fixed, the function t 7→ h(t, x) is in C1([0, T ],R) and
satisfies (3.3.10)), and for a.e. x ∈ R, the function t 7→ u(t, h(t, x)) is in C1([0, T ],R) and satisfiesl

d
dtu(t, h(t, x)) = u(t, h(t, x))

(
1 + χ̂(ρ ? u)(t, h(t, x))− (1 + χ̂)u(t, h(t, x))

)
,

u(t = 0, x) = u0(x),
(3.3.11)

where χ̂ := χ
σ2 .

We define weighted space L1
η(R) as follows

L1
η(R) :=

{
f : R→ R measurable

∣∣∣∣ ∫
R
|f(x)|e−η|x|dx <∞

}
.

L1
η(R) is a Banach space endowed with the norm

‖f‖L1
η

:= η

2

∫
R
|f(y)|e−η|y|dy.
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We first recall some results concerning the existence of integrated solutions for equation (3.3.1) in Theorem
3.3.2, Proposition 3.3.3 and Theorem 3.3.4. We prove those results in the companion paper [P11].

Theorem 3.3.2 (Well-posedness ). Let u0 ∈ L∞+ (R) and fix η > 0. There exists τ∗(u0) ∈ (0,+∞] such that
for all τ ∈ (0, τ∗(u0)), there exists a unique integrated solution u ∈ C0([0, τ ], L1

η(R)) to (3.3.1) which satisfies
u(t = 0, x) = u0(x). Moreover u(t, ·) ∈ L∞(R) for each t ∈ [0, τ∗(u0)) and the map t ∈ [0, τ∗(u0)) 7→ Ttu0 :=
u(t, ·) is a semigroup which is continuous for the L1

η(R)-topology. The map u0 ∈ L∞(R) 7→ Ttu0 ∈ L1
η(R) is

continuous.
Finally, if 0 ≤ u0(x) ≤ 1, then τ∗(u0) = +∞ and 0 ≤ u(t, ·) ≤ 1 for all t > 0.

The next result concerns the preservation properties satisfied by the solutions of (3.3.1) (see [P11, Propo-
sition 2.2]).

Proposition 3.3.3 (Regularity of solutions). Let u(t, x) be an integrated solution to (3.3.1).

1. if u0(x) is continuous, then u(t, x) is continuous for each t > 0.

2. if u0(x) is monotone, then u(t, x) has the same monotony for each t > 0.

3. if u0(x) ∈ C1(R), then u ∈ C1([0, T ]× R) and u is then a classical solution to (3.3.1).

In this following theorem we consider the long-time behavior of some solutions to (3.3.1) (see [P11,
Theorem 2.3]).

Theorem 3.3.4 (Long-time behavior). Let 0 ≤ u0(x) ≤ 1 be a nontrivial non-negative initial condition and
u(t, x) be the corresponding integrated solution. Then 0 ≤ u(t, x) ≤ 1 for all t > 0 and x ∈ R. If moreover
there exists δ > 0 such that δ ≤ u0(x) ≤ 1 then

u(t, x)→ 1, as t→∞

and the convergence holds uniformly in x ∈ R.

We now arrive at the main interest of the paper, which is to describe the spatial dynamics of solutions
to (3.3.1)–(3.3.2). To get insight about the asymptotic propagation properties of the solutions, we focus
on initial conditions whose support is bounded towards +∞. If the behavior of the initial condition in
a neighbourhood of the boundary of the support is polynomial, we can establish a precise estimate of the
location of the level sets relative to the position of the rightmost positive point. Our first assumption requires
that the initial condition is supported in (−∞, 0].

Assumption 3.3.5 (Initial condition). We assume that u0(x) is a continuous function satisfying

0 ≤ u0(x) ≤ 1, for all x ∈ R,
u0(x) = 0, for all x ≥ 0,
u0(x) > 0, for all x ∈ (−δ0, 0),

for some δ0 > 0.

Under this assumption we show that u is propagating to the right.

Proposition 3.3.6 (The separatrix). Let u0(x) satisfy Assumption 3.3.5, and h∗(t) := h(t, 0) be the sepa-
ratrix. Then h∗(t) stays at the rightmost boundary of the support of u(t, ·), i.e.

(i) we have
u(t, x) = 0 for all x ≥ h∗(t), (3.3.12)

(ii) for each t > 0 there exists δ > 0 such that

u(t, x) > 0 for all x ∈
(
h∗(t)− δ, h∗(t)

)
. (3.3.13)

Moreover, u is propagating to the right i.e.

d
dth

∗(t) > 0 for all t > 0.
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We precise the behavior of the initial condition in a neighbourhood of 0 and estimate the steepness of u
in positive time.

Assumption 3.3.7 (Polynomial behavior near 0). In addition to Assumption 3.3.5, we require that there
exists α ≥ 1 and γ > 0 such that

u0(x) ≥ γ|x|α, for all x ∈ (−δ, 0).

Theorem 3.3.8 (Formation of a discontinuity). Let u0(x) satisfy Assumptions 3.3.5 and 3.3.7 and u(t, x)
solve (3.3.1) with u(t = 0, x) = u0(x). For all δ > 0 we have

lim sup
t→+∞

sup
x∈(h∗(t)−δ,h∗(t))

u(t, x) ≥ 1
1 + χ̂+ αχ

> 0. (3.3.14)

More precisely, define the level set

ξ(t, β) := sup{x ∈ R |u(t, x) = β},

for all t > 0 and 0 < β < 1
1+χ̂+αχ . Then, for each 0 < β < 1

1+χ̂+αχ , the distance between ξ(t, β) and the
separatrix is decaying exponentially fast:

h∗(t)−
(
β

γ

) 1
α

e−
η

2α t ≤ ξ(t, β) ≤ h∗(t), (3.3.15)

where η ∈ (0, 1) is given in Proposition 3.3.19 and χ̂ = χ
σ2 .

h∗(t1) h∗(t2)

β

ξ(t1, β)

t = t1

ξ(t2, β)

t = t2

Figure 3.3.3: A cartoon for the formation of the discontinuity. Here we choose t1 < t2 and ξ(t, β), t = t1, t2
are the level sets. Theorem 3.3.8 proves that when Assumptions 3.3.5 and 3.3.7 are satisfied, then the distance
|ξ(t, β)− h∗(t)| converges to 0 exponentially fast.

In particular, the profile u(t, x) forms a discontinuity near the boundary point h∗(t) as t → +∞. By
considering discontinuous integrated solutions, we are able to estimate the size of the jump for non increasing
profiles, which leads to an estimate of the asymptotic speed.

Proposition 3.3.9 (Asymptotic jump near the separatrix). Let u0 be a non increasing function satisfying
u0(−∞) ≤ 1, u0(0) > 0 and u0(x) = 0 for x > 0. Then

lim inf
t→+∞

u(t, h∗(t)) ≥ 2
2 + χ̂

, (3.3.16)

lim inf
t→+∞

d
dth

∗(t) ≥ σχ̂

2 + χ̂
, (3.3.17)

where χ̂ = χ
σ2 .

We finally turn to traveling wave solutions u(t, x) = U(x− ct), which are self-similar profiles traveling at
a constant speed.
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Definition 3.3.10 (Traveling wave solution). A traveling wave is a nonnegative solution u(t, x) to (3.3.1)
such that there exists a function U ∈ L∞(R) and a speed c ∈ R such that u(t, x) = U(x − ct) for a.e.
(t, x) ∈ R2. By convention, we also require that U has the following behavior at ±∞:

lim
z→−∞

U(z) = 1, lim
z→∞

U(z) = 0.

The function U is the profile of the traveling wave.

Under a technical assumption on χ̂ = χ
σ2 , we can prove the existence of sharp traveling waves which

present a jump at the vanishing point.

Assumption 3.3.11 (Bounds on χ̂). Let χ > 0 and σ > 0 be given and define χ̂ := χ
σ2 . We assume that

0 < χ̂ < χ̄, where χ̄ is the unique root of the function

χ̂ 7→ ln
(

2− χ̂
χ̂

)
+ 2

2 + χ̂

(
χ̂

2 ln
(
χ̂

2

)
+ 1− χ̂

2

)
given in 3.3.27.

Remark 3.3.12. It follows from 3.3.27 that χ̂ = 1 satisfies Assumption 3. Actually, numerical evidence
suggest that χ̄ ≈ 1.045.

Theorem 3.3.13 (Existence of a sharp discontinuous traveling wave). Let Assumption 3.3.11 be satisfied.
There exists a traveling wave u(t, x) = U(x− ct) traveling at speed

c ∈
(

σχ̂

2 + χ̂
,
σχ̂

2

)
,

where χ̂ = χ
σ2

Moreover, the profile U satisfies the following properties (up to a shift in space):

(i) U is sharp in the sense that U(x) = 0 for all x ≥ 0; moreover, U has a discontinuity at x = 0 with
U(0−) ≥ 2

2+χ̂ .

(ii) U is continuously differentiable and strictly decreasing on (−∞, 0], and satisfies

−cU ′ − χ(UP ′)′ = U(1− U)

pointwise on (−∞, 0), where P (z) := (ρ ? U)(z).

Our proof is based on a fixed-point argument. Other methods could have been imagined, like a vanishing
viscosity argument. This method consists in adding a small elliptic regularization ε∂xxu in the right-hand
side of equation (3.3.1), prove the existence of a traveling wave for the regularized problem (similar to (3.3.5)),
then let the regularization vanish ε→ 0. With the appropriate estimates, it may then be possible to prove
the existence of a traveling front for the original equation. However, the implementation of this method is
not without difficulties. Firstly, the vanishing viscosity process ε→ 0 requires a kind of compactness, which
cannot be provided by the Arzelà-Ascoli here because the limiting object is discontinuous. Secondly, the
traveling wave problem (3.3.5) is itself non-trivial. The existing constructions [301, 344] are only valid for
a parameter range which prevents the vanishing of the elliptic parameter. Overall the vanishing viscosity
method may be as hard to implement as the present argument. Connecting the solutions to (3.3.5) to the
ones of (3.3.1)–(3.3.2) is still an interesting problem and we plan to investigate it in a future work.

Finally, we show that continuous traveling waves cannot be sharp, i.e. are necessarily positive on R.

Proposition 3.3.14 (Smooth traveling waves). Let U(x) be the profile of a traveling wave solution to (3.3.1)
and assume that U is continuous. Then U ∈ C1(R), U is strictly positive and we have the estimate:

− χ(ρx ? U)(x) < c, for all x ∈ R. (3.3.18)

In particular, by Theorem 3.3.8, any solutions starting from an initial condition satisfying Assumption
3.3.7 may never catch such a traveling wave.
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3.3.3 Numerical Simulations
We first describe the numerical framework of this study.

• The parameters σ and χ are fixed as σ = 1 and χ = 1.

• We choose a bounded interval [−L,L] and an initial distribution of φ ∈ C([−L,L]);

• We solve numerically the following PDE using the upwind scheme (p being given)
∂tu(t, x)− ∂x

(
u(t, x)∂xp(t, x)

)
= u(t, x)(1− u(t, x)),

∇p(t, x) · ν = 0
u(0, x) = φ(x),

t > 0, x ∈ [−L,L]. (3.3.19)

• The pressure p is defined as

p(t, x) = (I −∆)−1
N u(t, x), t > 0, x ∈ [−L,L], (3.3.20)

where (I −∆)−1
N is the Laplacian operator with Neumann boundary condition. Due to the Neumann

boundary condition of the pressure p, we do not need boundary condition on u (see section 3.2).

Our numerical scheme is detailed in 3.3.7.

3.3.3.1 Formation of a discontinuity

In this part, we use numerical simulations to verify the theoretical predictions in the previous section 3.3.2.
Firstly, we choose the initial value φ ∈ C1([−L,L]) as follows

φ(x) = (x− x0)2

(L+ x0)21[−L,x0](x), L = 20, x0 = −15. (3.3.21)

Notice that this initial condition satisfies Assumptions 3.3.5 and 3.3.7. Due to Theorem 3.3.8, we should
observe the formation of a discontinuity in space for large time.

We plot the evolution of the solution u(t, x) starting from u(0, x) = φ(x) in Figure 3.3.4. We observe
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Figure 3.3.4: We plot the propagation of the traveling waves under system (3.3.19) with the initial value
(3.3.21). We plot the propagation profile at t = 0, 10, 25, 40 (resp. dashed lines, dotted-dashed lines, dotted
lines and solid lines).

that the jump is formed for large time and the height of the jump is greater than 2/3 which is in accordance
with Theorem 3.3.13.

Next, we study the propagation speed of different level sets, namely,

t 7−→ ξ(t, β) + L,
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where ξ(t, β) := sup{x ∈ R |u(t, x) = β} and β = 0, 0.2, 2/3, 0.8. Note that the case β = 0 corresponds to
the rightmost characteristic.

We compute the propagation speed in the following way: for different β ∈ [0, 1], we choose t1 = 15
and t2 = 40 where the propagation speed is almost stable after t = t1. Thus we can compute the mean
propagation speed as follows

Propagation speed at level β = ξ(t2, β)− ξ(t1, β)
t2 − t1

. (3.3.22)
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Figure 3.3.5: We plot the evolution of different level sets t 7−→ ξ(t, β) +L under system (3.3.19). Our initial
distribution is taken as (3.3.21). We plot the propagating speeds of the profile at β = 0, 0.2, 2/3, 0.8. The
x-axis represents the time and the y-axis is the relative distance ξ(t, β) + L. The velocity is calculated by
(3.3.22) for t1 = 15 and t2 = 40.

Next we want to check whether the solutions of system (3.3.20) starting from two different initial values
converge to the same discontinuous traveling wave solution. To that aim, given two different initial profiles
φ1 and φ2 with φ1 ≤ φ2 on [−L,L],

φ1(x) = −x+ 15
5 1[−20,−15](x), φ2(x) = 1[−20,−17.5](x)− x+ 15

10 1[−17.5,−15](x) (3.3.23)

We simulate the propagation of these two profiles in Figure 3.3.6.
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Figure 3.3.6: We plot the propagation of two profiles under system (3.3.19) with initial distributions are taken
as (3.3.23). The blue curves represent the profile with initial distribution φ1 while the red curves represent
the profile with initial distribution φ2. We plot the propagation profiles at t = 0, 15 and 30 (resp. dashed
lines, dotted-dashed lines and solid lines). The simulation shows that the two profiles converge to the same
discontinuous traveling wave solution.
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3.3.3.2 Large speed traveling waves

As we know for porous medium equation, the existence of large speed c > c∗ traveling wave solutions is
known [313] and it can be observed numerically by taking the exponentially decreasing function as initial
value. In this part, instead of taking a compactly supported initial value, we set the initial value

φα(x) = 1
1 + eα(x−x0) , x0 = −15, (3.3.24)

where α ≥ 1 is a parameter introduced to describe the decaying rate of the initial value.
We compare the following three different scenarios with different parameters α = 1, 2, 5 in the initial

value (3.3.24). We observe the large speed traveling waves in Figure 3.3.7 when α = 1, 2. We note that as
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Figure 3.3.7: We plot the propagation of the traveling waves under system (3.3.19) with the initial values
(3.3.24) and the corresponding evolution of different level sets t 7−→ ξ(t, β) +L. Figure (a) and (d) represent
the evolution of the traveling wave and its level sets when α = 1. Figure (b) and (e) correspond to the case
when α = 2. Figure (c) and (f) correspond to the case when α = 5.

the parameter α in (3.3.24) is increasing, the propagation speed is decreasing and c ≈ 1/α. When α = 5,
the propagation of the traveling waves is similar to the case in Figure 3.3.4 in which we started from the
compactly supported initial value. In other word, we can observe the formation of discontinuity and the
critical speed c∗ ≈ 0.414 is reached.

3.3.3.3 Comparison with porous medium equations: the vanishing jump

In this part, we compare the non-local advection model with the porous medium equation by varying the
parameter σ

p(t, x) = (I − σ2∆)−1
N u(t, x) (3.3.25)
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Thus if σ → 0 then formally we have p(t, x)→ u(t, x). Thus, the first equation of (3.3.19) becomes

ut −
1
2(u2)xx = u(1− u),

which is the classical porous medium equation. It is well-known that this equation has the explicit traveling
wave solution U(z) = (1− ez/

√
2)+ with critical speed c∗ = 1/

√
2.
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Figure 3.3.8: We plot the propagation of the traveling waves for system (3.3.19) with the kernel (3.3.25)
and the corresponding evolution of different level sets t 7−→ ξ(t, β) + L. Figure (a) and (d) represent the
evolution of the traveling wave and its level sets when σ2 = 0.5. Figure (b) and (e) correspond to the case
when σ2 = 0.1. Figure (c) and (f) correspond to the case when σ2 = 0.01. Our initial value is taken as in
(3.3.24) with α = 5.

We consider the transition from the discontinuous traveling wave solution to the continuous sharp-type
traveling wave solution by letting σ → 0. Moreover, we want to see if the critical traveling speed of the
discontinuous wavefront c(σ) converges to c∗ = 1/

√
2 ≈ 0.707 as σ → 0. Our initial value is taken as

1/(1 + exp(5 ∗ (x+ 15))), x ∈ [−20, 20] in (3.3.24). We compare the following three different scenarios with
different parameters σ2 = 0.5, 0.1, 0.01 in kernel (3.3.25).

In Figure 3.3.8 we can observe that as σ → 0 in the kernel, the discontinuous jump is gradually vanishing
from (a) to (c). Moreover, the critical speed c(σ) is increasing as σ → 0 and is approaching the critical speed
c∗ = 1/

√
2 ≈ 0.707 for the porous medium case.

To explore more about the relationship between parameter σ2 and the critical speed c(σ), we plot Figure
3.3.9.
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Figure 3.3.9: The relationship between parameter σ2 and the critical propagation speed c(σ) by numerical
simulations. Concerning the computation for the critical speed c, we take the speed on three level sets
t→ ξ(t, β) +L for β = 0.3, 0.5, 0.8 and we plot the mean value (the standard variation is negligible ≈ 10−3).
As the critical speed c(σ) is decreasing with respect to σ, the theoretical lower bound is obtained by setting
χ = 1, σ0 = 0.5 in Theorem 3.3.13.

3.3.4 Properties of the time-dependent solutions
3.3.4.1 The separatrix

In this section 3.3.4.1 we study the qualitative properties of solutions to (3.3.1) starting from an initial
condition supported in (−∞, 0].

Proposition 3.3.15 (The separatrix). Let u be a solution integrated along the characteristics to (3.3.1),
starting from u0(x) satisfying Assumption 3.3.5. Let h∗(t) := h(t, 0) be the separatrix (as in Proposition
3.3.6). Then h∗(t) stays at the rightmost boundary of the support of u(t, ·), i.e.

(i) we have
u(t, x) = 0 for all x ≥ h∗(t). (3.3.26)

(ii) for each t > 0 there exists δ > 0 such that

u(t, x) > 0 for all x ∈ (h∗(t)− δ, h∗(t)). (3.3.27)

Proof. By definition the characteristics are well-defined by (3.3.10) as the flow of an ODE. In particular, if
x ≥ h∗(t) = h(t, 0) there exists x0 ≥ 0 such that x = h(t, x0). Since u0(x0) = 0 and in view of (3.3.11), we
have indeed u(t, x) = 0. This proves Item (i)

By Assumption 3.3.5, there exists δ0 > 0 such that u0(x) > 0 for x ∈ (−δ0, 0). We remark that

d
dtu(t, h(t, x)) = χ̂ u(t, h(t, x))

(
(ρ ∗ u)(t, h(t, x))− u(t, h(t, x))

)
+ u(t, h(t, x))

(
1− u(t, h(t, x))

)
≥ u(t, h(t, x))

(
1− (1 + χ̂)u(t, h(t, x))

)
.

By comparison with the solution to the ODE v′(t) = v(t)(1−(1+ χ̂)v(t)) starting from v(t = 0) = u0(x) > 0,
we deduce that u(t, x) ≥ v(t) > 0 for each x ∈ (h(t,−δ0), h∗(t)). Since h(t,−δ0) < h(t, 0) = h∗(t), this proves
Item (ii).

Next we investigate the propagation of u.

Proposition 3.3.16 (u is propagating). Let u0 satisfy Assumption 3.3.5 and let u be the solution integrated
along the characteristics to (3.3.1) starting from u(t = 0, x) = u0(x). Then u is propagating to the right, i.e.

d
dth

∗(t) > 0. (3.3.28)
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Moreover, we have the estimate:
d
dth

∗(t) ≤ χ

2σ . (3.3.29)

Proof. We have the following estimates:

d
dth

∗(t) = −χ(ρx ∗ u)(t, h∗(t))

= −χ
∫ +∞

−∞
ρx(y)u(t, h∗(t)− y)dy

= χ

∫ +∞

−∞

sign(y)
2σ2 e−

|y|
σ u(t, h∗(t)− y)dy

= χ

σ

∫ +∞

0
ρ(y)u(t, h∗(t)− y)dy

> 0,

since u(t, x) = 0 for all x > h∗(t). (3.3.28) is proved.
Then, since 0 ≤ u ≤ 1, we have

d
dth

∗(t) = χ

σ

∫ +∞

0
ρ(y)u(t, h∗(t)− y)dy

≤ χ

σ

∫ +∞

0
ρ(y)dy = χ

2σ ,

which proves (3.3.29).

These first two propositions together yield a proof of Proposition 3.3.6.

Proof of Proposition 3.3.6. Items (i) and (ii) have been proved in Proposition 3.3.15, and the propagating
property follows from Proposition 3.3.16.

We continue with a technical lemma that will be used in the proof of Theorem 3.3.8.

Lemma 3.3.17 (Divergence speed near the separatrix). Let u0(x) satisfy Assumptions 3.3.5 and 3.3.7 and
u(t, x) be the corresponding solution to (3.3.1). Let h(t, x) be the characteristic flow of u and h∗(t) be the
separatrix of u, as defined in Proposition 3.3.6. For all t ≥ 0 and x < 0 we have

d
dt (h

∗(t)− h(t, x)) ≤ χ (h∗(t)− h(t, x)) sup
y∈(h(t,x),h∗(t))

u(t, y). (3.3.30)

Proof. Recall that, by Proposition 3.3.15, u(t, x) = 0 for each x ≥ h∗(t). For x < 0, we notice that:

d
dt
(
h∗(t)− h(t, x)

)
= −χ(ρx ? u)(t, h∗(t)) + χ(ρx ? u)(h(t, x))

= χ

∫
R

(
ρx(h(t, x)− y)− ρx(h∗(t)− y)

)
u(t, y)dy

= χ

∫ h(t,x)

−∞

(
ρx(h(t, x)− y)− ρx(h∗(t)− y)

)
u(t, y)dy

+ χ

∫ h∗(t)

h(t,x)

(
ρx(h(t, x)− y)− ρx(h∗(t)− y)

)
u(t, y)dy.

Therefore,

d
dt (h

∗(t)− h(t, x)) ≤ χ
∫ h(t,x)

−∞

(
ρx(h(t, x)− y)− ρx(h∗(t)− y)

)
u(t, y)dy

+ χ(h∗(t)− h(t, x))× sup
y∈(h(t,x),h∗(t))

u(t, y).
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Since ρx(y) = − 1
2σ2 sign(y)e−

|y|
σ is increasing on (0,+∞), we have

ρx(h(t, x)− y)− ρx(h∗(t)− y) ≤ 0

for each y ≤ h(t, x), which shows (3.3.30). Lemma 3.3.17 is proved.

Proposition 3.3.18 (Formation of a discontinuity). Let u0(x) satisfy Assumptions 3.3.5 and 3.3.7 and
u(t, x) be the corresponding solution to (3.3.1). For all δ > 0 we have

lim sup
t→+∞

sup
x∈(h∗(t,x)−δ,h∗(t))

u(t, x) ≥ 1
1 + χ̂+ αχ

> 0. (3.3.31)

Proof. We divide the proof in 2 steps.
Step 1: We show that for all δ > 0,

sup
t>0

sup
x∈(h∗(t)−δ,h∗(t))

u(t, x) ≥ 1
1 + χ̂+ αχ

. (3.3.32)

Assume by contradiction that there exists δ > 0 such that

for all t > 0, sup
x∈(h∗(t)−δ,h∗(t))

u(t, x) ≤ η < 1
1 + χ̂+ αχ

, (3.3.33)

where α ≥ 1 is the constant from Assumption 3.3.7.
We remark that the following inequality holds for x ∈ (h∗(t)− δ, h∗(t)).

d
dtu(t, h(t, x)) = χ̂ u(t, h(t, x))(ρ ? u)(t, h(t, x)) + u(t, h(t, x))

(
1− (1 + χ̂)u(t, h(t, x))

)
≥ u(t, h(t, x))

(
1− (1 + χ̂)u(t, h(t, x))

)
≥ u(t, h(t, x)) (1− (1 + χ̂)η) , (3.3.34)

therefore
u(t, h(t, x)) ≥ u(0, x) exp

((
1− (1 + χ̂)η

)
t
)
,

provided the characteristic h(t, x) does not leave the cylinder (h∗(s)− δ, h∗(s)) for any 0 ≤ s ≤ t.
Next by (3.3.30) and (3.3.33), we have

d
dt
(
h∗(t)− h(t, x)

)
≤ χ

(
h∗(t)− h(t, x)

)
× η,

for each x ∈ (h∗(t)− δ, h∗(t)). Hence by Grönwall’s Lemma(
h∗(t)− h(t, x)

)
≤ −xeηχt,

provided the characteristic h(t, x) does not leave the cylinder (h∗(s) − δ, h∗(s)) for any 0 ≤ s ≤ t. In
particular for 0 > − 1

2δe
−ηχt ≥ x ≥ −δe−ηχt, we find

u(t, h(t, x)) ≥ u(0, x) exp
((

1− 1 + χ̂

1 + χ̂+ αχ

)
t

)
≥ γ(−x)α exp

((
1− 1 + χ̂

1 + χ̂+ αχ

)
t

)
≥ 1

2α γδ
α exp

((
1− (1 + χ̂+ αχ)η

)
t
)
−−−−→
t→+∞

+∞,

by our assumption that η < 1
1+χ̂+αχ . This is a contradiction.

Step 2: We show (3.3.31).
Assume by contradiction that there exists T > 0 and δ > 0 such that

sup
t≥T

sup
x∈[h∗(t)−δ,h∗(t)]

u(t, x) < 1
1 + χ̂+ αχ

.

Since the function u(t, x+h∗(t)) is continuous on the compact set [0, T ]×[−δ, 0], it is uniformly continuous
on this set and hence (recall that u(t, h∗(t)) = 0) there exists 0 < δ0 ≤ δ such that

sup
t∈[0,T ],x∈[−δ0,0]

u(t, x+ h∗(t)) = sup
t∈[0,T ],x∈[−δ0,0]

(
u(t, x+ h∗(t))− u(t, h∗(t))

)
≤ 1

1 + χ̂+ αχ
.
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Hence we conclude
sup

t>0,x∈[−δ0,0]
u(t, x− h∗(t)) ≤ 1

1 + χ̂+ αχ
.

This is in contradiction with Step 1. Proposition 3.3.18 is proved.

Proposition 3.3.19 (Refined estimate on the level sets). Let u0(x) satisfy Assumption 3.3.5 and 3.3.7.
Define

ξ(t, β) := sup{x ∈ R |u(t, x) = β}

for any 0 < β < 1
1+χ̂+αχ . Then, the level set function ξ(t, β) converges exponentially fast to h∗(t)

h∗(t)−
(
β

γ

) 1
α

e−
η

2α t ≤ ξ(t, β) ≤ h∗(t), (3.3.35)

for each 0 < β < 1
1+χ̂+αχ , where η is given by

η := 1− 1 + χ̂+ αχ

β
∈ (0, 1).

Proof. Let η ∈ (0, 1) be given and set β∗ := 1−η
1+χ̂+αχ . Let us first remark that for any β ∈ (0, β∗), ξ(t, β)

is well-defined by the continuity of x 7→ u(t, x) and Assumption 3.3.7, that u(t, ξ(t, β)) = β and that
supx∈(ξ(t,β),h∗(t)) u(t, x) ≤ β. Moreover ξ(0, β) < 0 and u0(ξ(0, β)) = β ≥ γ

∣∣ξ(0, β)
∣∣α, therefore

ξ(0, β) ≥ −
(
β

γ

) 1
α

(3.3.36)

for each 0 < β ≤ β∗ = 1−η
1+χ̂+αχ .

Step 1: We show that if u0 satisfies Assumption 3.3.5 and (3.3.36), then

ξ(t, β) ≥ h∗(t)−
(
β

γ

) 1
α

e
η

2α t, (3.3.37)

for all 0 ≤ t ≤ t∗ := 1
1+χ̂ ln

(
1 + η

2(1−η)

)
.

Let 0 < β ≤ β∗. We remark that, by Assumption 3.3.5, we have 0 ≤ u(t, x) ≤ 1 hence 0 ≤ (ρ?u)(t, x) ≤ 1.
It follows that, for all t ≥ 0,

d
dtu(t, h(t, x)) = u(t, h(t, x))

(
1 + χ̂ρ ? u− (1 + χ̂)u(t, h(t, x))

)
≤ (1 + χ̂)u(t, h(t, x)).

In the remaining part of Step 1 we consider t ∈ [0, t∗]. Using (3.3.30) from Lemma 3.3.17 we establish the
following estimates on u and h for 0 ≤ t ≤ t∗ and ξ (0, β∗) ≤ x ≤ 0:

• Since d
dtu(t, h(t, x)) ≤ (1 + χ̂)u(t, h(t, x)) we have u(t, h(t, x)) ≤ u0(x)e(1+χ̂)t for all t ≤ t∗ and hence

if x ≥ ξ(0, β∗),

u(t, h(t, x)) ≤ β∗eln
(

1+ η
2(1−η)

)
= 1− η

1 + χ̂+ αχ

(
1 + η

2(1− η)

)
=

1− η
2

1 + χ̂+ αχ
. (3.3.38)

• Using (3.3.38) in the equation along the characteristic (3.3.11):

d
dtu(t, h(t, x)) = u(t, h(t, x))

(
1 + χ̂(ρ ? u)(t, h(t, x))− (1 + χ̂)u(t, h(t, x))

)
≥
(

1−
(1 + χ̂)(1− η

2 )
1 + χ̂+ αχ

)
u(t, h(t, x)),

we get

u(t, h(t, x)) ≥ u0(x) exp
[(

1−
(1 + χ̂)(1− η

2 )
1 + χ̂+ αχ

)
t

]
(3.3.39)
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• For all x ∈ (ξ(0, β∗), 0), since

sup
y∈(h(t,x),h∗(t))

u(t, y) ≤ sup
y∈(h(t,ξ(0,β∗)),h∗(t)

u(t, y) ≤
1− η

2
1 + χ̂+ αχ

,

we have by (3.3.30):

h∗(t)− h(t, x) ≤ exp
( (1− η

2 )χ
1 + χ̂+ αχ

t

)
(h∗(0)− h(0, x)),

hence
h(t, x) ≥ h∗(t) + x exp

( (1− η
2 )χ

1 + χ̂+ αχ
t

)
. (3.3.40)

Since β ≤ β∗, we have ξ(0, β) ≥ ξ(0, β∗). Using (3.3.39) with x = ξ(0, β) we find that

u(t, h(t, ξ(0, β))) ≥ β exp
[(

1−
(1 + χ̂)(1− η

2 )
1 + χ̂+ αχ

)
t

]
,

which implies

ξ

(
t, β exp

[(
1−

(1 + χ̂)(1− η
2 )

1 + χ̂+ αχ

)
t

])
≥ h(t, ξ(0, β)).

Now by using x = ξ(0, β) in (3.3.40), we obtain

h(t, ξ(0, β)) ≥ h∗(t) + ξ(0, β) exp
( (1− η

2 )χ
1 + χ̂+ αχ

t

)
.

Using (3.3.36) we find that

ξ

(
0, β exp

[
−
(

1−
(1 + χ̂)(1− η

2 )
1 + χ̂+ αχ

)
t

])
≥ −

(
β

γ

) 1
α

exp
[
− 1
α

(
1−

(1 + χ̂)(1− η
2 )

1 + χ̂+ αχ

)
t

]
which leads to

ξ(t, β) ≥ h∗(t)−
(
β

γ

) 1
α

exp
[
− 1
α

(
1−

(1 + χ̂)(1− η
2 )

1 + χ̂+ αχ

)
t+

(1− η
2 )χ

1 + χ̂+ αχ
t

]
= h∗(t)−

(
β

γ

) 1
α

exp
[
− η

2αt
]

and this estimate holds for each 0 ≤ t ≤ t∗ and 0 < β ≤ β∗.
Step 2: We show that the estimate (3.3.37) can be extended by induction.
Define ū0(x) := u(t∗, x+ h(t∗)) and ξ̄(t, β) = ξ(t+ t∗, β)− h∗(t∗). We have for each 0 < β ≤ β∗

ξ̄(0, β) ≥ −
(
β

γ̄

) 1
α

,

where γ̄ = γe
η
2 t
∗ . In particular the inequality (3.3.36) is satisfied by ū0(x), as well as Assumption 3.3.5. We

can apply Step 1 and (3.3.37) gives

ξ̄(t, β) ≥ h̄∗(t)−
(
β

γ̄

) 1
α

e−
η

2α t = h(t, h∗(t))− h∗(t∗)−
(
β

γ

) 1
α

e−
η

2α (t+t∗)

= h∗(t+ t∗)−
(
β

γ

) 1
α

e−
η

2α (t+t∗),

which yields

ξ(t+ t∗, β) ≥ h∗(t+ t∗)−
(
β

γ

) 1
α

e−
η

2α (t+t∗).

The proof is completed.
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We are now in the position to prove Theorem 3.3.8

Proof of Theorem 3.3.8. The first part, equation 3.3.14, has been shown in Proposition 3.3.18, while the
second part (equation (3.3.15)) has been shown in Proposition 3.3.19.

We conclude this section 3.3.4.1 by the proof of Proposition 3.3.9.

Proof of Proposition 3.3.9. Since x 7→ u(t, x) is nonincreasing, we have u(t, x) ≥ u(t, h∗(t)) for each x ≤
h∗(t). Hence (ρ ? u)(t, h∗(t)) ≥ 1

2u(t, h∗(t)) and

d
dtu(t, h∗(t)) = u(t, h∗(t))

(
1 + χ̂ ρ ? u− (1 + χ̂)u(t, h∗(t))

)
≥ u(t, h∗(t))

(
1−

(
1 + χ̂

2

)
u(t, h∗(t))

)
.

This yields

u(t, h∗(t)) ≥ u0(0)(
1 + χ̂

2

)
u0(0) + e−t

(
1−

(
1 + χ̂

2

)
u0(0)

) −→
t→+∞

1
1 + χ̂

2
= 2

2 + χ̂
.

(3.3.16) is shown. Next, we have d
dth
∗(t) = −(ρx ? u)(t, h∗(t)) which gives

d
dth

∗(t) = χ

σ

∫ ∞
0

ρ(y)u
(
t, h∗(t)− y

)
dy ≥ u(t, h∗(t))× χ

2σ −→
t→+∞

σχ̂

2 + χ̂
.

This proves (3.3.17) and finishes the proof of Proposition 3.3.9.

3.3.5 Traveling wave solutions
In this section 3.3.5 we investigate the existence of particular solutions which consist in a fixed profile
traveling at a constant speed c (traveling waves). We are particularly interested in profiles which connect
the stationary state 1 near −∞ to the stationary solution 0 at a finite point of space, say, for any x ≥ 0.

3.3.5.1 Existence of sharp traveling waves

We study the traveling wave solutions of equation (3.3.1):∂tu(t, x)− χ∂x
(
u(t, x)∂xp(t, x)

)
= u(t, x)(1− u(t, x))

−σ2∂2
xp(t, x) + p(t, x) = u(t, x)

t > 0, x ∈ R.

Let us formally derive an equation for the traveling wave solutions to (3.3.1). We consider the traveling
wave solution U(x− c t) = u(t, x). By using the resolvent formula of the second equation of (3.3.1) formula
we deduce that

p(t, x) = 1
2σ

∫
R
e−
|x−y|
σ u(t, y)dy = 1

2σ

∫
R
e−
|x−ct−l|

σ U(l)dl = P (x− c t)

and the first equation in (3.3.1) becomes

− cU ′(x− c t)− χ∂x
(
U(x− c t) ∂xP (x− c t)

)
= U(x− c t)(1− U(x− c t)), t > 0, x ∈ R. (3.3.41)

By developing the derivative in (3.3.41) we obtain(
− c− χP ′(x− c t)

)
U ′(x− c t) = U(x− c t)(1 + χ̂P (x− c t)− (1 + χ̂)U(x− c t)),

for all t > 0 and x ∈ R, where χ̂ = χ
σ2 . Therefore, by letting z = x − c t, the traveling wave solutions of

system (3.3.1) satisfy the following equation(−c− χP ′(z))U ′(z) = U(z)
(
1 + χ̂P (z)− (1 + χ̂)U(z)

)
,

−σ2P ′′(z) + P (z) = U(z).
(3.3.42)
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Let us finally remark that

P (z) = 1
2σ

∫
R
e−
|y|
σ U(z − y)dy = 1

2σ

∫
R
e−
|z−y|
σ U(y)dy. (3.3.43)

In particular if U is non-constant and nonincreasing, then z 7→ P (z) is strictly decreasing.
The goal of this Section is to show that equation (3.3.42) can solved on the half-line (−∞, 0) which, as

we will see later, will give a proof of Theorem 3.3.13. We begin by defining a set of admissible profiles, which
is the set of function on which an appropriate fixed-point theorem will be used. The properties we impose
are those who we suspect will be satisfied by the real profile of the traveling wave.

Definition 3.3.20. We say that the profile U : R→ [0, 1] is admissible if

(i) U ∈ C((−∞, 0),R) and limz→0− U(z) exists and belongs to
[

2
2 + χ̂

, 1
]
;

(ii) 0 ≤ U(z) ≤ 1 for any z ∈ R;

(iii) the map z 7→ U(z) is non-increasing on R;

(iv) U(z) ≡ 0 for any z ≥ 0.

We denote A the set of all admissible functions.

Lemma 3.3.21. Let Assumption 3.3.11 hold and suppose that U is admissible (as in Definition 3.3.20).
Then the function P defined by P = (ρ ? U) satisfies

P ′(0) < P ′(z) ≤ 0, for all z ∈ R\{0}.

Moreover, this estimate is locally uniform in U on (−∞, 0) in the sense that for each L > 1 there is ε > 0
independent of U ∈ A such that

P ′(z)− P ′(0) ≥ ε > 0, for all z ∈
[
−L,− 1

L

]
.

Proof. We divide the proof in five steps.

Step 1. We prove P ′(0) < P ′(z) for any z > 0. Notice that, for z > 0, we have

P (z) = 1
2σ

∫ z

−∞
e−

z−y
σ U(y)dy + 1

2σ

∫ ∞
z

e
z−y
σ U(y)dy = 1

2σ e
− zσ
∫ 0

−∞
e
y
σU(y)dy.

Thus, taking derivative gives

P ′(z) = − 1
σ
e−

z
σ

1
2σ

∫ 0

−∞
eyU(y)dy = e−

z
σP ′(0),

and since U is strictly positive for negative values of z, we deduce that P ′(0) < P ′(z) for any z > 0.

Step 2. We prove that P ′(0) < P ′(z) for any −σ ln( χ̂2 ) < z < 0. In fact, we prove the stronger result

P ′′(z) < 0 if σ ln
(
χ̂

2

)
< z < 0.

For any z < 0, we have

P ′′(z) = 1
2σ3

∫ z

−∞
e−

z−y
σ U(y)dy + 1

2σ3

∫ ∞
z

e
z−y
σ U(y)dy − 1

σ2U(z)

= 1
2σ3

∫ z

−∞
e−

z−y
σ U(y)dy + 1

2σ3

∫ 0

z

e
z−y
σ U(y)dy − 1

σ2U(z).
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Due to the assumption U ≤ 1 and the fact that U is decreasing we have

σ2P ′′(z) ≤ 1
2σ

∫ z

−∞
e−

z−y
σ dy + 1

2σ

∫ 0

z

e
z−y
σ U(y)dy − U(z)

= 1
2 + 1

2σ

∫ 0

z

e
z−y
σ U(y)dy − U(z) ≤ 1

2 + 1
2σ

∫ 0

z

e
z−y
σ dyU(z)− U(z)

= 1
2 −

1
2
(
1 + e

z
σ

)
U(z) ≤ 1

2
2 + χ̂− 2(1 + e

z
σ )

2 + χ̂
= χ̂− 2e zσ

2(2 + χ̂) < 0,

provided z ∈ (σ ln(χ̂/2), 0). In particular

P ′(z)− P ′(0) = −
∫ 0

z

P ′′(y)dy ≥ 1
σ(2 + χ̂)

(
χ̂

2σ z + 1− e zσ
)
> 0. (3.3.44)

Step 3. We prove that P ′(0) < P ′(z) for any z < σ ln
(

1− χ̂
2

)
. For any z < 0, we have

σP ′(z) = − 1
2σ

∫ z

−∞
e−

z−y
σ U(y)dy + 1

2σ

∫ 0

z

e
z−y
σ U(y)dy,

σP ′(0) = − 1
2σ

∫ 0

−∞
e
y
σU(y)dy,

and
σ
(
P ′(z)− P ′(0)

)
= 1

2σ

∫ 0

−∞
e
y
σU(y)dy − 1

2σ

∫ z

−∞
e−

z−y
σ U(y)dy + 1

2σ

∫ 0

z

e
z−y
σ U(y)dy.

Since for any z ≤ 0, 2
2+χ̂ ≤ U(z) ≤ 1, we have the following estimate

σ
(
P ′(z)− P ′(0)

)
≥ 1

2σ

∫ 0

−∞
e
y
σ × 2

2 + χ̂
dy − 1

2σ

∫ z

−∞
e−

z−y
σ dy

+ 1
2σ

∫ 0

z

e
z−y
σ

2
2 + χ̂

dy

= 1
2 + χ̂

− 1
2 + 1

2 + χ̂

(
1− e zσ

)
= 1

2 + χ̂

(
2− e zσ − 1

2(2 + χ̂)
)

= 1
2 + χ̂

(
1− χ̂

2 − e
z
σ

)
. (3.3.45)

By our assumption z < σ ln
(

1− χ̂
2

)
, we deduce that P ′(z)− P ′(0) > 0.

Notice that, if χ̂ < 1, we have σ ln
(
χ̂
2

)
< σ ln

(
1− χ̂

2

)
and the estimate is done. If 1 ≤ χ̂ < 2 we still

need to fill a gap between the two bounds.
Step 4. We assume that χ̂ ≥ 1 and we prove that

P ′(z)− P ′(0) ≥ −
∫ 0

z

P ′′(y)dy

≥ z

2σ2 −
1

2σ ln
(
χ̂

2

)
+ 1
σ(2 + χ̂)

(
χ̂

2 ln
(
χ̂

2

)
+ 1− χ̂

2

)
> 0 (3.3.46)

for any z ∈
[
σ ln

(
χ̂
2

)
− σ

2+χ̂

(
χ̂
2 ln

(
χ̂
2

)
+ 1− χ̂

2

)
, σ ln

(
χ̂
2

)]
. Notice that

χ̂

2 ln
(
χ̂

2

)
+ 1− χ̂

2 > 0,

because x 7→ x ln(x) is strictly convex.
By Step 2 we have for all z ≤ 0:

P ′′(z) ≤ 1
2σ2 ,
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therefore if z ∈
[
σ ln

(
χ̂
2

)
− σ

2+χ̂

(
χ̂
2 ln

(
χ̂
2

)
+ 1− χ̂

2

)
, σ ln

(
χ̂
2

)]
we have

P ′(z)− P ′(0) = P ′(z)− P ′
(
σ ln

(
χ̂

2

))
+ P ′

(
σ ln

(
χ̂

2

))
− P ′(0)

≥ −
∫ σ ln( χ̂2 )

z

P ′′(y)dy + 1
σ(2 + χ̂)

(
χ̂

2σσ ln
(
χ̂

2

)
+ 1− χ̂

2

)
≥ − 1

2σ2

(
σ ln

(
χ̂

2

)
− z
)

+ 1
σ(2 + χ̂)

(
χ̂

2 ln
(
χ̂

2

)
+ 1− χ̂

2

)

≥ z

2σ2 −
ln
(
χ̂
2

)
2σ + 1

σ(2 + χ̂)

(
χ̂

2 ln
(
χ̂

2

)
+ 1− χ̂

2

)
> 0.

We have proved the desired estimate.
Step 5. We show the local uniformity. If χ̂ < 1 the local uniformity follows from Step 2 and Step 3 because
1− χ̂

2 <
χ̂
2 . If 1 ≤ χ̂ < 2, then

ln
(
χ̂

2

)
− 2

2 + χ̂

(
χ̂

2 ln
(
χ̂

2

)
+ 1− χ̂

2

)
< ln

(
1− χ̂

2

)
, (3.3.47)

because of Assumption 3.3.11 and 3.3.27 (notice that (3.3.47) is equivalent to f(χ̂) < 0, where f is as defined
in 3.3.27). By the estimates (3.3.44), (3.3.45) and (3.3.46) from Step 2, Step 3 and Step 4, we find that
P ′(z)−P ′(0) > 0 on every compact subset of (−∞, 0) and is bounded from below by a constant independent
of U . This finishes the proof of Lemma 3.3.21.

Before resuming to the proof, let us define the mapping T to which we want to apply a fixed-point
theorem. Fix U ∈ A, we define T (U) as

T (U)(z) := U(τ−1(z)) for all z < 0 (3.3.48)

and T (U)(z) ≡ 0 for all z ≥ 0, where τ : R 7→ (−∞, 0) is the solution of the following scalar ordinary
differential equation {

τ ′(t) = χ
(
P ′(0)− P ′(τ(t))

)
,

τ(0) = −1,
(3.3.49)

and
U(t) =

[
(1 + χ̂)

∫ t

−∞
exp

(
−
∫ t

l

1 + χ̂P (τ(s))ds
)

dl
]−1

, for all t ∈ R.

Lemma 3.3.22 (Stability of A). Let Assumption 3.3.11 be satisfied, let U be admissible in the sense of
Definition 3.3.20 and T be the map defined by (3.3.48). Then the image of U by T has the following
properties:

(i) 2
2 + χ̂

≤ T (U)(z) ≤ 1 for all z ≤ 0;

(ii) T (U) is strictly decreasing on (−∞, 0];

(iii) T (U) ∈ C1((−∞, 0),R) and T (U)(0−) = limz→0− T (U)(z) = 1 + χ̂P (0)
1 + χ̂

.

In particular, A is left stable by T
T (A) ⊂ A.

Proof. We divide the proof in three steps.

Step 1. We prove that 2
2 + χ̂

≤ T (U)(z) ≤ 1 for all z < 0. For any z ∈ R we have

P (z) =
∫ ∞
−∞

ρ(y)U(z − y)dy ≤
∫ +∞

−∞
ρ(y)dy = 1,

P (z) =
∫ ∞
−∞

ρ(y)U(z − y)dy ≥ 0.
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Since 2
2 + χ̂

≤ U(z) ≤ 1 for all z < 0, we have for z < 0

P (z) ≥ 1
2σ

∫ +∞

z

exp
(
−|y|
σ

)
× 2

2 + χ̂
dy = 2

2 + χ̂

(
1− e

z
σ

2

)
≥ 1

2 + χ̂
.

Thus, for any z ≤ 0, we have 1
2 + χ̂

≤ P (z) ≤ 1. Since τ(t) is the solution of

{
τ ′(t) = χ

(
P ′(0)− P ′(τ(t))

)
τ(0) = −1,

and due to Lemma 3.3.21, t→ τ(t) is strictly decreasing, continuous and

lim
t→−∞

τ(t) = 0, lim
t→+∞

τ(t) = −∞.

Therefore,
1

2 + χ̂
≤ P (τ(t)) ≤ 1, t ∈ R.

Since by definition U(t) =
[
(1 + χ̂)

∫ t
−∞ e

−
∫ t
l

1+χ̂P (τ(s))dsdl
]−1

, U is monotone with respect to P , and we
compute on the one hand

U(t) ≤
[
(1 + χ̂)

∫ t

−∞
e
−
∫ t
l

1+χ̂dsdl
]−1

=
[
(1 + χ̂)

∫ t

−∞
e−(1+χ̂)(t−l)dl

]−1
= 1.

On the other hand, we can see that

U(t) ≥
[
(1 + χ̂)

∫ t

−∞
exp

(
−
∫ t

l

1 + χ̂

2 + χ̂
ds
)

dl
]−1

=
[
(1 + χ̂)

∫ t

−∞
exp

(
−
(

1 + χ̂

2 + χ̂

)
(t− l)

)
dl
]−1

= 2
2 + χ̂

.

This implies 2
2+χ̂ ≤ U(t) ≤ 1, for all t ∈ R. Since τ−1 maps (−∞, 0) to R, for any z < 0 we have indeed

2
2 + χ̂

≤ T (U)(z) = U(τ−1(z)) ≤ 1.

Item (i) is proved.

Step 2. We prove that z 7→ T (U)(z) is strictly decreasing on (−∞, 0). First, we prove that t 7→ U(t) is
strictly increasing. Indeed U is differentiable and we have

U ′(t) = −1
1 + χ̂

×
1 +

∫ t

−∞
−
(
1 + χ̂P (τ(t))

)
e
−
∫ t
l

1+χ̂P (τ(s))dsdl[ ∫ t

−∞
exp

(
−
∫ t

l

1 + P (τ(s))ds
)

dl
]2 (3.3.50)

Moreover, for any l < t, we have τ(t) < τ(l). Since P is strictly decreasing, P (τ(l)) < P (τ(t)). We deduce∫ t

−∞
e
−
∫ t
l

1+χ̂P (τ(s))ds(1 + χ̂P (τ(t))
)
dl >

∫ t

−∞
e
−
∫ t
l

1+χ̂P (τ(s))ds(1 + χ̂P (τ(l))
)
dl

=
∫ t

−∞

d
dl

(
e
−
∫ t
l

1+χ̂P (τ(s))ds
)

= 1.
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This implies U ′(t) > 0 and t 7→ U(t) is strictly increasing. Note that the inverse map z 7→ τ−1(z) is strictly
decreasing, therefore the composition of two mappings

z 7−→ T (U)(z) = U(τ−1(z))

is also strictly decreasing on (−∞, 0). Item (ii) is proved.

Step 3. We prove that T (U) ∈ C1((−∞, 0),R) and compute the limit of T (U) as z → 0−.
Since for any z < 0

σ2P ′′(z) = −U(z) + P (z) ∈ C((−∞, 0),R),

P belongs to C2((−∞, 0),R), which implies that t 7→ τ(t) belongs to C1(R, (−∞, 0)). By (3.3.50), the
function t 7→ U ′(t) is continuous and the inverse map z → τ−1(z) is also of class C1 from (−∞, 0) to R.
Thus, the function

z 7−→ T (U)(z) = U(τ−1(z))

is of class C1 from (−∞, 0) to R. Moreover, the map t 7→ U(t) is strictly decreasing and is bounded from
below by 2

2+χ̂ > 0, thus limt→−∞ U(t) exists. In particular

T (U)(0−) := lim
z→0−

U(τ−1(z)) = lim
t→−∞

U(t).

By the definition of U

T (U)(0−) = lim
t→−∞

U(t)

= lim
t→−∞

[
(1 + χ̂)

∫ t

−∞
e
−
∫ t
l

1+χ̂P (τ(s))dsdl
]−1

= lim
t→−∞

e

∫ t
0

1+χ̂P (τ(s))ds

(1 + χ̂)
∫ t
−∞ e

∫ l
0

1+χ̂P (τ(s))dsdl
.

By employing L’Hôpital rule

T (U)(0−) = lim
t→−∞

e

∫ t
0

1+χ̂P (τ(s))ds

(1 + χ̂)
∫ t
−∞ e

∫ l
0

1+χ̂P (τ(s))dsdl

= lim
t→−∞

(
1 + χ̂P (τ(t))

)
e

∫ t
0

1+P (τ(s))ds

(1 + χ̂) e
∫ t

0
1+P (τ(s))ds

= 1 + χ̂P (0)
1 + χ̂

.

Therefore, T (U) ∈ C1((−∞, 0),R) ∩ C((−∞, 0],R) and T (U)(0) = (1 + χ̂P (0))/(1 + χ̂). This proves Item
(iii) and concludes the proof of Lemma 3.3.22.

Next we focus on the continuity of T for a particular topology.

Lemma 3.3.23 (Continuity of T ). Define the weighted norm

‖U‖η := sup
z∈(−∞,0)

α(z)|U(z)|, (3.3.51)

where
α(z) :=

√
−z eηz ≤ 1√

2eη , for all z ≤ 0,

with 0 < η < σ−1. If Assumption 3.3.11 is satisfied, then the map T is continuous on A for the distance
induced by ‖ · ‖η.
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Proof. Let U ∈ A and ε ∈ (0, 2
√

2/ηe) be given. Let Ũ ∈ A be given and define the corresponding pressure
and rescaled variable P̃ := ρ ? Ũ and τ̃ as the solution to (3.3.49) with U replaced by Ũ . We remark that :

|T (U)(z)− T (Ũ)(z)| =

|T (U)(z)T (Ũ)(z)|
∣∣∣∣∣
∫ τ̃−1(z)

−∞
e
−
∫ τ̃−1(z)

l
1+χ̂P̃ (τ̃(s)dsdl −

∫ τ−1(z)

−∞
e
−
∫ τ−1(z)

l
1+χ̂P (τ(s)dsdl

∣∣∣∣∣
≤

∣∣∣∣∣
∫ τ̃−1(z)

−∞
e
−
∫ τ̃−1(z)

l
1+χ̂P̃ (τ̃(s))dsdl −

∫ τ−1(z)

−∞
e
−
∫ τ−1(z)

l
1+χ̂P (τ(s))dsdl

∣∣∣∣∣ ,
by Lemma 3.3.22. Define T−L(U) :=

∫ τ−1(z)
−L e

−
∫ τ−1(z)

l
1+χ̂P (τ(s))dsdl. We have T (U) = T−∞(U) and

|T−∞(U)− T−∞(Ũ)|

≤

∣∣∣∣∣
∫ τ̃−1(z)−L

−∞
e
−
∫ τ̃−1(z)

l
1+χ̂P̃ (τ̃(s))dsdl −

∫ τ−1(z)−L

−∞
e
−
∫ τ−1(z)

l
1+χ̂P (τ(s))dsdl

∣∣∣∣∣
+
∣∣∣∣∣
∫ τ̃−1(z)

τ̃−1(z)−L
e
−
∫ τ̃−1(z)

l
1+χ̂P̃ (τ̃(s))dsdl −

∫ τ−1(z)

τ−1(z)−L
e
−
∫ τ−1(z)

l
1+χ̂P (τ(s))dsdl

∣∣∣∣∣
≤ e−L + e−L

+
∣∣∣∣∣
∫ τ̃−1(z)

τ̃−1(z)−L
e
−
∫ τ̃−1(z)

l
1+χ̂P (τ̃(s))dsdl −

∫ τ−1(z)

τ−1(z)−L
e
−
∫ τ−1(z)

l
1+χ̂P (τ(s))dsdl

∣∣∣∣∣
≤ ε

2
√

2ηe

+
∣∣∣∣∣
∫ τ̃−1(z)

τ̃−1(z)−L
e
−
∫ τ̃−1(z)

l
1+χ̂P̃ (τ̃(s))dsdl −

∫ τ−1(z)

τ−1(z)−L
e
−
∫ τ−1(z)

l
1+χ̂P (τ(s))dsdl

∣∣∣∣∣
= ε

2
√

2ηe+ |T−L(U)(z)− T−L(Ũ)(z)|,

for L := − ln
(
ε
2
√

eη
2
)
> 0.

Let z0 and z1 be respectively the smallest and the biggest negative root of the equation

ηz + 1
2 ln(−z) = ln

(ε
4

)
.

The choice of ε ensures that z0 and z1 exist. Then if z 6∈ [z0, z1] we have
√
−zeηz ≤ ε

4 and, since |T−L(U)| ≤ 1
we have

√
−zeηz|T−L(U)(z)| =

√
−zeηz

∣∣∣∣∣
∫ τ−1(z)

τ−1(z)−L
e
−
∫ τ−1(z)

l
1+χ̂P (τ(s))dsdl

∣∣∣∣∣
≤ ε

4

∫ τ−1(z)

τ−1(z)−L
e
−
∫ τ−1(z)

l
1dsdl = ε

4(1− e−L) ≤ ε

4 .

Similarly, we have
√
−zeηz|T−L(Ũ)(z)| ≤ ε

4 .

We have shown
sup

z 6∈[z0,z1]

√
−zeηz|T (U)(z)− T (Ũ)(z)| ≤ ε.
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There remains to estimate
√
−zeηz|T−L(U)(z)− T−L(Ũ)(z)| when z ∈ [z0, z1]. We have

|T−L(U)(z)− T−L(Ũ)(z)|

=
∣∣∣∣∣
∫ τ̃−1(z)

τ̃−1(z)−L
e
−
∫ τ̃−1(z)

l
1+χ̂P̃ (τ̃(s))dsdl −

∫ τ−1(z)

τ−1(z)−L
e
−
∫ τ−1(z)

l
1+χ̂P (τ(s))dsdl

∣∣∣∣∣
≤ 2|τ̃−1(z)− τ−1(z)|

+
∣∣∣∣∣
∫ τ−1(z)

τ−1(z)−L
e
−
∫ τ̃−1(z)

l
1+χ̂P̃ (τ̃(s))ds − e−

∫ τ−1(z)

l
1+χ̂P (τ(s))dsdl

∣∣∣∣∣
≤ 2|τ̃−1(z)− τ−1(z)|

+ L sup
l∈(τ−1(z)−L,τ−1(z))

∣∣∣∣e∫ τ−1(z)

l
1+χ̂P (τ(s))ds−

∫ τ̃−1(z)

l
1+χ̂P̃ (τ̃(s))ds − 1

∣∣∣∣ ,
and we remark that∣∣∣∣∣
∫ τ−1(z)

l

1 + χ̂P (τ(s))ds−
∫ τ̃−1(z)

l

1 + χ̂P̃ (τ̃(s))ds
∣∣∣∣∣

≤ 2|τ−1(z)− τ̃−1(z)|+ χ̂

∣∣∣∣∣
∫ τ−1(z)

l

P (τ(s))− P̃ (τ̃(s))ds
∣∣∣∣∣

≤ 2|τ−1(z)− τ̃−1(z)|+ χ̂L sup
s∈(τ−1(z)−L,τ−1(z))

|P (τ(s))− P (τ̃(s))|

+ χ̂L sup
s∈(τ−1(z)−L,τ−1(z))

|P (τ̃(s))− P̃ (τ̃(s))|.

To conclude the proof of the continuity of T , we show that each of those three terms can be made arbitrarily
small (uniformly on [z0, z1]) by choosing Ũ sufficiently close to U in the ‖ · ‖η norm. We start with the
second one. We have for all z ≤ 0:

|P (z)− P̃ (z)| = 1
2σ

∣∣∣∣∫ 0

−∞
e−
|z−y|
σ (U(y)− Ũ(y))dy

∣∣∣∣
≤ 1

2σ

∫ z

−∞
e
y−z
σ |U(y)− Ũ(y)|dy + 1

2σ

∫ 0

z

e
z−y
σ |U(y)− Ũ(y)|dy

≤ 1
2σ

√
2η
e
e−

z
σ

∫ z

−∞

e(1−ση) yσ
√
−y

‖U − Ũ‖ηdy + 1
2

√
2η
e
e
z
σ

∫ 0

z

e−(1+ση) yσ
√
−y

‖U − Ũ‖ηdy

= σ−1
√

η

2e

[
e−

z
σ

∫ z

−∞

e(1−ση) yσ
√
−y

dy + e
z
σ

∫ 0

z

e−(1+ση) yσ
√
−y

dy
]
‖U − Ũ‖η

=: CP (z)‖U − Ũ‖η.

A similar computation shows that, for all z ≤ 0,

|P ′(z)− P̃ ′(z)| ≤ σ−2
√

η

2e

[
e−

z
σ

∫ z

−∞

e(1−ση) yσ
√
−y

dy + e
z
σ

∫ 0

z

e−(1+ση) yσ
√
−y

dy
]
‖U − Ũ‖η

= 1
σ
CP (z)‖U − Ũ‖η.

In particular for z = 0 we have

|P ′(0)− P̃ ′(0)| ≤ σ−2
√

η

2e

∫ 0

−∞

e(1−ση) yσ
√
−y

dy‖U − Ũ‖η,
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and therefore P ′(0) and P̃ ′(0) can be chosen arbitrarily small. Next we show that τ(t) and τ̃(t) are uniformly
close for t ∈ [τ−1(z0)− L, τ−1(z1)]. Indeed, we compute:

|(τ − τ̃)(t)| = χ

∣∣∣∣∫ t

0
P ′(0)− P ′(τ(s))ds−

∫ t

0
P̃ ′(0)− P̃ ′(τ̃(s))ds

∣∣∣∣
≤ χ

∣∣∣∣t(P ′(0)− P̃ ′(0)) +
∫ t

0
P̃ ′(τ(s))− P ′(τ(s))ds

∣∣∣∣
+ χ

∣∣∣∣∫ t

0
P̃ ′(τ̃(s))− P̃ ′(τ(s))ds

∣∣∣∣
≤ χt[CP (0) + max

0≤s≤t
CP (τ(s))]‖U − Ũ‖η + χ̂

∫ t

0
|τ̃(s)− τ(s)|ds,

where we have used the fact that σ2|P ′′(z)| = |P (z)− U(z)| ≤ 1. By Grönwall’s Lemma, we have therefore

|τ(t)− τ̃(t)| ≤ χt
[
CP (0) + max

0≤s≤t
CP (τ(s))

]
‖U − Ũ‖ηeχ̂t,

and we have shown that τ and τ̃ can be made arbitrarily close by choosing ‖U − Ũ‖η sufficiently small. This
gives an arbitrary control on the term

sup
s∈(τ−1(z)−L,τ−1(z))

|P (τ(s))− P (τ̃(s))| ≤ |P ′(0)||τ(s)− τ̃(s)|,

since P ′(0) < P ′(z) ≤ 0 by Lemma 3.3.21, and on the term

sup
s∈(τ−1(z)−L,τ−1(z))

|P (τ̃(s))− P̃ (τ̃(s))| ≤
[

sup
s∈(τ−1(z)−L,τ−1(z))

CP (τ̃(s))
]
‖U − Ũ‖η.

Finally, we estimate τ−1(z)− τ̃−1(z) by the remark:

|τ−1(z)− τ̃−1(z)| =
∣∣∣∣∫ z

−1

1
τ ′(τ−1(y))dy −

∫ z

−1

1
τ̃ ′(τ̃−1(y))dy

∣∣∣∣
= 1
χ

∣∣∣∣∫ z

−1

1
P ′(0)− P ′(y) −

1
P̃ ′(0)− P̃ ′(y)

dy
∣∣∣∣

≤ 1
χ

∫ z

−1

|P ′(0)− P̃ ′(0)|+ |P ′(y)− P̃ ′(y)|
|P ′(0)− P ′(y)||P̃ ′(0)− P̃ ′(y)|

dy,

recalling that we have a uniform lower bound for |P ′(0)− P ′(y)| and |P̃ ′(0)− P̃ ′(y)| by Lemma 3.3.21.
This finishes the proof of Lemma 3.3.23.

Lemma 3.3.24. Suppose U is admissible in the sense of Definition 3.3.20 and that Assumption 3.3.11 holds.
Then T (U) ∈ C1((−∞, 0],R) and

T (U)′(z) = T (U)(z)1 + χ̂P (z)− (1 + χ̂)T (U)(z)
χ
(
P ′(0)− P ′(z)

) , for all z < 0. (3.3.52)

Moreover
lim
z→0−

T (U)′(z) = P ′(0)
1 + χ̂

1 + χ̂P (0)
1 + χ̂U(0−) .

Proof. We divide the proof in two steps.
Step 1. We prove (3.3.52).

We observe that
τ ′(τ−1(z)) := χ

(
P ′(0)− P ′(z)

)
,

therefore T (U) is differentiable for each z < 0 and

T (U)′(z) = U ′(τ−1(z)) 1
τ ′(τ−1(z)) = U ′(τ−1(z)) 1

χ
(
P ′(0)− P ′(z)

) .
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By Equation (3.3.50) in Lemma 3.3.22 we have

U ′(t) = 1
1 + χ̂

[ ∫ t

−∞
e
−
∫ t
l

1+χ̂P (τ(s))dsdl
]−2

×
(∫ t

−∞
e
−
∫ t
l

1+χ̂P (τ(s))ds(1 + χ̂P (τ(t))
)
dl − 1

)
=
[
(1 + χ̂)

∫ t

−∞
e
−
∫ t
l

1+χ̂P (τ(s))dsdl
]−2

×
(

(1 + χ̂)
∫ t

−∞
e
−
∫ t
l

1+χ̂P (τ(s))dsdl
(
1 + χ̂P (τ(t))

)
− (1 + χ̂)

)
= U2(t)

(
U−1(t)

(
1 + χ̂P (τ(t))

)
− (1 + χ̂)

)
= U(t)

(
1 + χ̂P (τ(t))− (1 + χ̂)U(t)

)
.

Therefore, we can rewrite T (U)′(z) as

T (U)′(z) = U ′(τ−1(z))
χ
(
P ′(0)− P ′(z)

)
= U(τ−1(z))1 + χ̂P (z)− (1 + χ̂)U(τ−1(z))

χ
(
P ′(0)− P ′(z)

)
= T (U)(z)1 + χ̂P (z)− (1 + χ̂)T (U)(z)

χ
(
P ′(0)− P ′(z)

) .

Equation (3.3.52) follows.

Step 2. Next we prove

lim
z→0−

T (U)′(z) = P ′(0)
1 + χ̂

1 + χ̂P (0)
1 + χ̂U(0) .

Recall that

T (U)(z) = U(τ−1(z)) = 1

(1 + χ̂)
∫ τ−1(z)
−∞ e

−
∫ τ−1(z)

l
1+χ̂P (τ(s))dsdl

= e

∫ τ−1(z)

0
1+χ̂P (τ(s))ds

(1 + χ̂)
∫ τ−1(z)
−∞ e

∫ l
0

1+χ̂P (τ(s))dsdl
.

We have shown in Step 1 that for any z < 0

T (U)′(z) = T (U)(z)1 + χ̂P (z)− (1 + χ̂)T (U)(z)
χ
(
P ′(0)− P ′(z)

) , (3.3.53)

and by Lemma 3.3.22 we have

lim
z→0−

T (U)(z) = 1 + χ̂P (0)
1 + χ̂

.

Moreover,

1 + χ̂P (z)− (1 + χ̂)T (U)(z)
χ
(
P ′(0)− P ′(z)

)
=

(1 + χ̂P (z))
∫ τ−1(z)
−∞ e

∫ l
0

1+χ̂P (τ(s))dsdl − e
∫ τ−1(z)

0
1+χ̂P (τ(s))ds

χ(P ′(0)− P ′(z))
∫ τ−1(z)
−∞ e

∫ l
0

1+χ̂P (τ(s))ds
=: N(z)

D(z) ,
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and

N ′(z)
D′(z) =

χ̂P ′(z)
∫ τ−1(z)
−∞ e

∫ l
0

1+χ̂P (τ(s))dsdl

−χP ′′(z)
∫ τ−1(z)
−∞ e

∫ l
0

1+χ̂P (τ(s))dsds+ χ
(
P ′(0)− P ′(z)

)
(τ−1)′(z)e

∫ τ−1(z)

0
1+χ̂P (τ(s))ds

= P ′(z)
χ̂(U(z)− P (z)) + (1 + χ̂)T (U)(z) −−−−→z→0−

P ′(0)
χ̂U(0−) + 1 .

Therefore, by using L’Hôpital’s rule, T (U)′(z) admits a limit when z → 0− and

lim
z→0−

T (U)′(z) = P ′(0)
1 + χ̂

1 + χ̂P (0)
1 + χ̂U(0−) .

Lemma 3.3.25 (Compactness of T ). Let Assumption 3.3.11 hold. The metric space A equipped with the
distance induced by the ‖ · ‖η norm (defined in (3.3.51)) is a complete metric space on which the map
T : A → A is compact.

Proof. Let us first briefly recall that the space A is complete. Let Bη be the set of all continuous functions
defined on (−∞, 0) with finite ‖ · ‖η norm:

Bη := {u ∈ C0((−∞, 0)
)
| ‖u‖η < +∞}.

It is classical that Bη equipped with the norm ‖ · ‖η is a Banach space. Therefore, in order to prove
the completeness of A, it suffices to show that A is closed in Bη. Let Un ∈ A, U ∈ Bη be such that
lim ‖Un − U‖η = 0. Then Un converges to U locally uniformly on (−∞, 0), and in particular we have

U(z) ∈
[

2
2 + χ̂

, 1
]

for all z ≤ 0,

U is non-increasing.

Therefore u ∈ A and the completeness is proved.

Let us show that T is a compact map of the metric space A. We have shown in Lemma 3.3.22 that T is
continuous on A and leaves A stable. Let Un ∈ A, then combining Equation (3.3.52) and the local uniform
lower bound of P ′(z)−P ′(0) from Lemma 3.3.21, the family T (Un)′|[−k,−1/k] is uniformly Lipschitz contin-
uous on [−k,−1/k] for each k ∈ N. Therefore the Ascoli-Arzelà applies and the set {T (Un)|[−k,−1/k]}n≥0
is relatively compact for the uniform topology on [−k,−1/k] for each k ∈ N. Using a diagonal extraction
process, there exists a subsequence ϕ(n) and a continuous function U such that Uϕ(n) → U uniformly on
every compact subset of (−∞, 0). Let us show that ‖Uϕ(n) −U‖η → 0 as n→ +∞. Let ε > 0 be given, and
let z0, z1 be respectively the smallest and largest root of the equation:

ηz + 1
2 ln(−z) = ln

(ε
2

)
.

Then, on the one hand, for any z 6∈ [z0, z1], we have
√
−zeηz ≤ ε

2 and therefore
√
−zeηz|T (Uϕ(n))(z)− T (U)(z)| ≤

√
−zeηz(|Uϕ(n)(z)|+ |U(z)|) ≤ ε.

On the other hand, since T (Uϕ(n)) converges locally uniformly to T (U), there is n0 ≥ 0 such that

sup
z∈[z0,z1]

√
−zeηz|T (Uϕ(n))(z)− T (U)(z)| ≤ ε, for all n ≥ n0.

We conclude that
‖T (Uϕ(n))− T (U)‖η ≤ ε,

for all n ≥ n0. The convergence is proved. This ends the proof of Lemma 3.3.25

We are now in the position to prove Theorem 3.3.13.
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Proof of Theorem 3.3.13. We remark that the set of admissible functions A is a nonempty, closed, convex,
bounded subset of the Banach space Bη, and T is a continuous compact operator on A (Lemma 3.3.25).
Therefore, a direct application of the Schauder fixed-point Theorem (see e.g. [413, Theorem 2.A p. 57])
shows that T admits a fixed point U in A:

T (U) = U.

Applying Lemma 3.3.22 and 3.3.24, U is strictly decreasing on (−∞, 0), U((−∞, 0)) ⊂ [ 2
2+χ̂ , 1], U is C1 on

(−∞, 0] and

lim
z→0−

U(z) = 1 + χ̂P (0)
1 + χ̂

and lim
z→0−

U ′(z) = P ′(0)
1 + χ̂

1 + χ̂P (0)
1 + χ̂U(0) .

Finally
U ′(z) = U(z)1 + χ̂P (z)− (1 + χ̂)U(z)

χ
(
P ′(0)− P ′(z)

) , for all z < 0, (3.3.54)

therefore
χP ′(0)U ′(z)− χP ′(z)U ′(z)− χU(z)P ′′(z) = U(z)(1− U(z)), for all z < 0,

and finally
χP ′(0)U ′(z)− χ(P ′(z)U(z))′ = U(z)(1− U(z)), for all z < 0.

We now prove that U(−∞) := limz→∞ U(z) = 1. Since U is monotone decreasing on (−∞, 0) and is
bounded by 1 from above, U(−∞) exists and, by a direct application of Lebesgue’s dominated convergence
theorem, P also converges to a limit near −∞, P (−∞) = U(−∞). Therefore U ′(z) → 0, P ′(z) → 0 and
P ′′(z)→ 0 as z → −∞. We conclude that

lim
z→−∞

U(z)(1− U(z)) = 0,

which implies that U(−∞) = 1.
Let us define u(t, x) := U(x− ct), with c := −χP ′(0). The characteristics associated with u(t, x) are

d
dth(t, x) = −χ(ρx ? u)(t, h(t, x)) = χ(ρ ? U)(h(t, x)− ct) = −χP ′(h(t, x)− ct),

and u(t, x) satisfies for all x such that h(t, x)− ct < 0:

∂tu(t, h(t, x)) = ∂t(U(h(t, x)− ct)) =
(

d
dt (h(t, x)− ct)

)
U ′(h(t, x)− ct)

= χ(−P ′(h(t, x)− ct) + P ′(0))U ′(h(t, x)− ct)
= u(t, h(t, x))(1 + χ̂(ρ ? u)(t, h(t, x))− (1 + χ̂)u(t, h(t, x))).

If h(t, x)− ct > 0 then u(t, h(t, x)) = U(h(t, x)− ct) = 0 (locally in t) and therefore

∂tu(t, h(t, x)) = 0 = u(t, h(t, x))(1 + χ̂(ρ ? u)(t, h(t, x))− (1 + χ̂)u(t, h(t, x))).

Since {0} is a negligible set for the Lebesgue measure, we conclude that u(t, x) is a solution integrated along
the characteristics to (3.3.1) and thus U is a traveling wave profile with speed c = −P ′(0) > 0 as defined in
Definition 3.3.10. Finally

c = −χP ′(0) = χ

2σ

∫ 0

−∞
eyU(y)dy ∈

(
χ

σ(2 + χ̂) ,
χ

2σ

)
=
(

σχ̂

2 + χ̂
,
σχ̂

2

)
.

This finishes the proof of Theorem 3.3.13

3.3.5.2 Non-existence of continuous sharp traveling waves

Remark 3.3.26. This result tells us if U is a sharp traveling wave solution to (3.3.1), then it must be
discontinuous. This situation is very different from the porous medium case. However, it does not exclude
the existence of positive continuous traveling wave solutions which decay to zero near +∞. In fact, as we
shown in the numerical simulations in the section 3.3.3, we can observe numerically large speed traveling
wave solutions that are smooth and strictly positive.
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Proof of Proposition 3.3.14. We divide the proof in 3 steps.
Step 1: We show the estimate (3.3.18).
Assume by contradiction that there exists x ∈ R such that

− χ
∫
R
ρx(x− y)U(y)dy = c. (3.3.55)

We let P (x) := (ρ ?U)(x) =
∫
R ρ(x− y)U(y)dy. Since U ∈ C0(R), we have that P ∈ C2(R). Differentiating,

we find that

P ′(x) =
∫
R
ρx(x− y)U(y)dy = (ρ′ ? U)(x),

σ2P ′′(x) =
∫
R
ρ(x− y)U(y)dy − U(x) = P (x)− U(x).

Letting Y (x) := −χ(ρx ? U)(x)− c = −χP ′(x)− c, then Y ∈ C1(R) and we have

Y ′(x) = −χP ′′(x) = χ̂
(
U(x)− (ρ ? U)(x)

)
. (3.3.56)

Since limx→+∞ U(x) = 0, we have limx→+∞ Y (x) = −c < 0. Remark that by our assumption (3.3.55), Y
has at least one zero and therefore the largest root of Y is well-defined:

x∗ := inf{x | for all y > x, Y (y) < 0}.

We first remark that

d
dt
(
h(t, x)− ct

)
= d

dth(t, x)− c = −χ(ρx ? u)(t, h(t, x))− c = Y (h(t, x)− ct), (3.3.57)

where we recall that u(t, x) := U(x − ct) is a solution to (3.3.1). In particular since Y (x∗) = 0 by the
continuity of Y , we have h(t, x∗)− ct = x∗. Next by using (3.3.11) we have

d
dtu(t, h(t, x∗)) = u(t, h(t, x∗))

(
1 + χ̂(ρ ? u)(t, h(t, x∗))− (1 + χ̂)u(t, h(t, x∗))

)
= U(h(t, x∗)− ct)

(
1 + χ̂(ρ ? U)(h(t, x∗)− ct)

− (1 + χ̂)U(h(t, x∗)− ct)
)

= U(x∗)
(
1 + χ̂P (x∗)− (1 + χ̂)U(x∗)

)
,

and since u(t, h(t, x∗)) = U(h(t, x∗)− ct) = U(x∗) does not depend on t, this yields

0 = U(x∗)
(
1 + χ̂P (x∗)− (1 + χ̂)U(x∗)

)
.

We conclude that either U(x∗) = 0 or U(x∗) = 1+χ̂P (x∗)
1+χ̂ > 0. In the remaining part of this step we will

show that these two cases lead to contradiction.

Case 1: U(x∗) = 1+χ̂P (x∗)
1+χ̂ > 0. By (3.3.56) we have:

Y ′(x∗) = χ̂
(
U(x∗)− P (x∗)

)
= (1− P (x∗))

χ̂

1 + χ̂
,

however U(x) ∈ [0, 1], U(x) 6≡ 1 and thus P (x∗) = (ρ?U)(x∗) < 1 which shows Y ′(x∗) > 0. Yet by definition
of x∗ we have Y (x∗) = 0 and Y (x) < 0 for all x > x∗, hence Y ′(x∗) ≤ 0, which is a contradiction.

Case 2: U(x∗) = 0. By (3.3.56) we have

Y ′(x∗) = 0− χ̂P (x∗) = −χ̂(ρ ? U)(x∗) < 0. (3.3.58)

Hence by the continuity of Y , there exists a x0 < x∗ such that

Y (x) > 0, for all x ∈ [x0, x∗).
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Recall that, by (3.3.57), we have for all t > 0

d
dt (h(t, x0)− ct) = Y (h(t, x0)− ct) > 0

as well as h(0, x0) − c × 0 = x0, therefore the function t 7→ h(t, x0) − ct is increasing and converges to x∗
as t → +∞. In particular as t → +∞ we have u(t, h(t, x0)) = U(h(t, x0)− ct) → U(x∗) = 0. Let T > 0 be
such that 0 < u(t, h(t, x0)) ≤ 1

2(1+χ̂) for all t ≥ T . We have

d
dtu(t, h(t, x0)) = u(t, h(t, x0))

(
1 + χ̂(ρ ? u)(t, h(t, x0))− (1 + χ̂)u(t, h(t, x0))

)
≥ 1

2u(t, h(t, x0)),

hence u(t, h(t, x0)) ≥ u(T, h(T, x0))e t−T2 . In particular letting

t∗ := T − 2 ln
(
u(T, h(T, x0))

)
> T,

we have
u (t∗, h(t∗, x0)) ≥ 1 > 1

2(1 + χ̂) ,

which is a contradiction. Since both Case 1 and Case 2 lead to contradiction, we have shown (3.3.18).
Step 2: Regularity of u.
We have shown in Step 1 that for all x ∈ R the strict inequality:

Y (x) = −χP ′(x)− c < 0

holds. Let x ∈ R and t0 > 0. Then, there exists y ∈ R such that h(t0, y) = x, where h is the characteristic
semiflow defined by (3.3.10). Since

d
dt (h(t, y)− ct) = −χ(ρx ? u)(t, h(t, y))− c = Y (h(t, y)) 6= 0,

the mapping t 7→ h(t, y)− ct has a C1 inverse which we denote ϕ(z), i.e.

for all z | ∃t > 0, z = h(t, y)− ct, h(ϕ(z), y)− cϕ(z) = z.

Then we have
U(h(t, y)− ct) = u(t, h(t, y)) ⇔ U(z) = u(ϕ(z), h(ϕ(z), y)),

with z = h(t, y) in a neighbourhood of x. Since ϕ is C1 and the function t 7→ u(t, h(t, y)) is C1, we conclude
that U is C1 in a neighbourhood of x. The regularity is proved.

Step 3: We show that u is positive.
Combining Step 1 and 2, we know that u is a classical solution to the equation:

−cUx − χ((ρ ? U)xU)x = U(1− U)
(−c− χP ′)Ux = U(1 + χ̂P − (1 + χ̂)U)

Ux = U

Y
(1 + χ̂P − (1 + χ̂)U),

and since Y < 0, the right-hand side is a locally Lipschitz vector field in the variable U . In particular, the
classical Cauchy-Lipschitz Theorem applies and the only solution with U(x) = 0 for some x ∈ R is U ≡ 0.
Since U is non-trivial by assumption, U has to be positive.

Appendix
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3.3.6 An nonlinear function
We study a function used in the proof of Lemma 3.3.21 and Assumption 3.3.11.

Lemma 3.3.27. The function

f(x) := ln
(

2− x
x

)
+ 2

2 + x

(x
2 ln

(x
2

)
+ 1− x

2

)
defined for x ∈ (0, 2) is strictly decreasing and satisfies

lim
x→0+

f(x) = +∞, lim
x→2−

f(x) = −∞.

In particular f(x) has a unique root in (0, 2).
Finally, we have f(1) > 0.

Proof. The behavior of f at the boundary is standard. The strict monotony requires the computation of the
derivative:

f ′(x) =
(
−x− (2− x)

x2

)
× x

2− x + −2
(2 + x)2

(x
2 ln

(x
2

)
+ 1− x

2

)
+ 1

2 + x
ln
(x

2

)
.

Recalling that
χ̂

2 ln
(
χ̂

2

)
+ 1− χ̂

2 > 0, (3.3.59)

for each x ∈ (0, 2) because x 7→ x ln(x) is strictly convex, all three terms in the expression of f ′(x) are
negative, therefore

f ′(x) < 0

for all x ∈ (0, 2). The fact that f(1) > 0 can also be deduced from (3.3.59). Lemma 3.3.27 is proved.

3.3.7 Numerical scheme
Our numerical scheme for the travalling waves in Section 3 reads

un+1
i − uni

∆t + 1
∆x

(
G(uni+1, u

n
i )−G(uni , uni−1)

)
= uni (1− uni ),

i = 1, 2, . . . ,M, n = 0, 1, 2, . . .
u0 = 1, uM+1 = 0,

with G(uni+1, u
n
i ) defined as

G(uni+1, u
n
i ) = (vni+ 1

2
)+uni − (vni+ 1

2
)−uni+1 =

{
vn
i+ 1

2
uni , vn

i+ 1
2
≥ 0,

vn
i+ 1

2
uni+1, vn

i+ 1
2
< 0,

i = 1, . . . ,M.

Moreover, the velocity v is given by

vni+ 1
2

= −
pni+1 − pni

∆x , i = 0, 1, 2, · · · ,M,

where from (3.3.20) we define

Pn := (I −A)−1Un, Pn =
(
pni
)
M×1 Un =

(
uni
)
M×1.

where A = (ai,j)M×M is the usual linear diffusion matrix with Neumann boundary condition. Therefore, by
Neumann boundary condition p0 = p1 and pM+1 = pM , when i = 1,M we have

G(un1 , un0 ) = 0,
G(unM+1, u

n
M ) = 0,
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which gives

un+1
1 = un1 − d

∆t
∆xG(un2 , un1 ) + ∆t f(un1 ),

un+1
M = unM + d

∆t
∆xG(unM , unM−1) + ∆t f(unM ).

Owing to the boundary condition, we have the conservation of mass for Equation (3.3.19) when the reaction
term equals zero.

Acknowledgements: Xiaoming Fu was supported by China Scholarship Council. The authors would
like to thank the anonymous referees for their constructive comments which helped improve the quality of
the paper.





Chapter 4

Long-time dynamics in epidemic models

4.1 Concentration estimates in a multi-host epidemiological model structured
by phenotypic traits

4.1.1 Introduction
In this work we study the stationary states of the following system of equations

dSk
dt (t) = ξkΛ− θSk(t)− Sk(t)

∫
RN

βk(y)A(t, y)dy, k = 1, 2,

∂Ik
∂t

(t, x) = βk(x)Sk(t)A(t, x)− (θ + dk(x))Ik(t, x), k = 1, 2,
∂A

∂t
(t, x) = −δA(t, x) +

∫
RN

mε(x− y) [r1(y)I1(t, y) + r2(y)I2(t, y)] dy.

(4.1.1)

The above system describes the evolution of a pathogen producing spores in a heterogeneous plant population
with two hosts. This model has been proposed in [263] to study the impact of resistant plants on the
evolutionary adaptation of a fungal pathogen.

Here the state variables are nonnegative functions. The function Sk(t) denotes the healthy tissue density
of each host k ∈ {1, 2}, Ik(t, x) represents the density of tissue infected by pathogen with phenotypic trait
value x ∈ RN , while A(t, x) describes the density of airborne spores of pathogens with phenotypic trait value
x ∈ RN . Here N ∈ N \ {0} is a given and fixed integer.

The positive parameters Λ, θ, δ respectively denote the influx of total new healthy tissue, the death rate
of host tissue and the death rate of the spores. The parameters ξk ∈ (0, 1) correspond to the proportions
of influx of new healthy tissue for each host population and therefore satisfy the relation ξ1 + ξ2 = 1. Note
that in the absence of the disease, namely when I1 = I2 = A = 0, the density of tissue at equilibrium for
each host k is equal to ξkΛ/θ.

The phenotypic traits of the pathogen considered in the model are supposed to influence the functions rk,
βk and dk that respectively denote the spores production rates, the infection efficiencies and the infectious
periods of the pathogen. Those parameters depend on the phenotypic value x ∈ RN and the host k = 1, 2.

The function mε is a probability kernel that characterises the mutations arising during the reproduction
process. More precisely, given tissue infected by a mother spore with phenotypic value y, mε(x− y) stands
for the probability that a produced spore has a phenotypic value x. Therefore mε describes the dispersion
in the phenotypic trait space RN arising at each production of new spores.

Here we consider that produced spores cannot have a very different phenotypic value from the one of
their mother. In other words, mutations are occurring within a small variance so that we assume that the
mutation kernel is highly concentrated and depends on a small parameter 0 < ε � 1 according to the
following scaling form

mε(x) = 1
εN

m
(x
ε

)
, ∀x ∈ RN ,

where m is a fixed probability distribution (see Assumption 4.1.1 in Section 4.1.2 below).

In this work we aim at studying the existence and uniqueness of nontrivial steady states for the above
system of equations. We also investigate the shape of these steady states for ε � 1 and we shall more
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precisely study their concentrations around some specific phenotypic trait values when the mutation kernel
is very narrow, i.e. for ε→ 0.

The above problem supplemented with an age of infection structure has been investigated by Djidjou et
al. [146] using formal asymptotic expansions and numerical simulations. In the aforementioned work, the
authors proved the convergence of the solution of the Cauchy problem toward highly concentrated steady
states.

Moreover, the case of a single host population has already been studied thoroughly. A refined math-
ematical analysis of the stationary states has been carried out in [145] with a particular emphasis on the
concentration property for ε � 1. We also refer to [85, 86] for the study of the dynamical behaviour and
the transient regimes of a corresponding simplified Cauchy problem for a single host.

Model (4.1.1) is related to the selection-mutation models for a population structured by a continuous
phenotypic trait introduced in [125, 237] to study the maintenance of genetic variance in quantitative char-
acters. Since then, several studies have been devoted to this class of models in which mutation is frequently
modelled by either a nonlocal or a Laplace operator. In many of these works the existence of steady state
solutions is related to the existence of a positive eigenfunction of some linear operator and to the Krein-
Rutman Theorem, see e.g. [64, 84, 92, 93]. In particular, in [92, 93] it is assumed that the rate of mutations
is small; in this case the authors are able to prove that the steady state solutions tend to concentrate around
some specific trait in the phenotypic space as the mutation rate tends to 0. In [9], the steady state solutions
for a nonlocal reaction-diffusion model for adaptation are given in terms of the principal eigenfunction of a
Schrödinger operator.

As far as dynamical properties are concerned and under the assumption of small mutations, another
fruitful approach introduced in [140] consists in proving that the solutions of the mutation selection problem
are asymptotically given by a Hamilton-Jacobi equation. This approach has led to many works, see e.g.
[284, 285, 307].

Propagation properties have also been investigated in related models, see e.g. [1] and [P4] for spatially
distributed systems of equations.

As already mentioned above, in this section 4.1 we are concerned with the steady states of (4.1.1). Using
the symbol ? to denote the convolution product in RN , steady state solutions of (4.1.1) solve the following
system of equations 

Sk = ξkΛ
θ+
∫
RN

βk(y)A(y)dy
, k = 1, 2,

Ik(x) = βk(x)
θ+dk(x)SkA(x), k = 1, 2,

δA(x) = mε ? [r1(·)I1(·) + r2(·)I2(·)] (x).

(4.1.2)

The above system can be rewritten in the form of a single equation for A = Aε ∈ L1
+(RN )

Aε = T ε (Aε) , (4.1.3)

where the nonlinear operator T ε is given by

T ε(ϕ) =
∑
k=1,2

Lεk(ϕ)
1 + θ−1

∫
RN βk(z)ϕ(z)dz . (4.1.4)

Here, for k = 1, 2, Lεk denotes the following linear operator

Lεk = Λξk
θ
mε ? (Ψk·) , k = 1, 2, (4.1.5)

wherein Ψk corresponds to the fitness function of the pathogen in host k

Ψk(x) = βk(x)rk(x)
δ(θ + dk(x)) , x ∈ RN , k = 1, 2. (4.1.6)

Conversely, if Aε ∈ L1
+(RN ) is a fixed point of T ε, a stationary solution (Sε1 , Sε2 , Iε1 , Iε2 , Aε) to the original

system (4.1.1) can be reconstructed by injecting Aε into the first two equations of (4.1.2). The trivial
solution Aε ≡ 0 is always solution of (4.1.2) and corresponds to the disease-free equilibrium. When Aε is
nontrivial, the corresponding stationary state is said to be endemic.
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This section 4.1 is organized as follows. In Section 4.1.2, we state the main results obtained in this
work. In Section 4.1.3 we prove the existence of an endemic (nontrivial) equilibrium for model (4.1.1) by
using dynamical system arguments and the theory of global attractors. In Section 4.1.4 we prove that
any nontrivial fixed point of (4.1.4) roughly behaves as the superposition of the solution of two single host
problems, corresponding to the fixed points of the non-linear operators

T εk [ϕ] = ξkΛ
θ

mε ? (Ψkϕ)
1 + θ−1

∫
RN βk(z)ϕ(z)dz , (4.1.7)

provided the fitness functions Ψk defined in (4.1.6) have disjoint supports. Finally, in Section 4.1.5, we
investigate the uniqueness of the non-trivial fixed point of T ε, for ε� 1. Our analysis relies on the precise
description of the shape of Aε coupled with topological degree theory.

4.1.2 Main results and comments
In this section 4.1.2 we state and discuss the main results that are proved in this section 4.1. Throughout
this manuscript we make the following assumption on the model parameters.

Assumption 4.1.1. We assume that

a) the parameters ξ1, ξ2, Λ, θ and δ are positive constants with ξ1 + ξ2 = 1;

b) for each k = 1, 2, the functions βk, dk, rk are continuous, nonnegative and bounded on RN and the
function Ψk defined in (4.1.6) is not identically 0 and satisfies

lim
‖x‖→∞

Ψk(x) = 0;

c) the function m ∈ L∞+ (RN ) ∩ L1
+(RN ) is positive almost everywhere, symmetric and with unit mass,

i.e.
m(x) > 0, m(−x) = m(x) a.e. in RN , and

∫
RN

m(x)dx = 1.

Moreover for every R > 0, the function satisfies

x 7−→ sup
‖y‖≤R

m(x+ y) ∈ L1(RN ).

As already mentioned in the Introduction, in this work we discuss some properties of the nonnegative
fixed points for the nonlinear operator T ε in L1(RN ). Recall that A ≡ 0 is always a solution of such an
equation. Our first result provides a sharp condition for the existence of a nontrivial fixed point. This
condition relies on the spectral radius rσ(Lε) of the linear bounded operator Lε ∈ L

(
L1(RN )

)
defined by

Lε(ϕ) := Lε1(ϕ) + Lε2(ϕ) = Λ
θ
mε ? [(ξ1Ψ1 + ξ2Ψ2)ϕ] ,∀ϕ ∈ L1(RN ). (4.1.8)

Our first result reads as follows.

Theorem 4.1.2 (Equilibrium points of System (4.1.1)). Let Assumption 4.1.1 be satisfied and let ε > 0 be
given.

(i) If rσ(Lε) ≤ 1, then A ≡ 0 is the unique solution of (4.1.3) in L1
+(RN ).

(ii) If rσ(Lε) > 1, then there exists at least a continuous function Aε > 0 such that

Aε ∈ L1(RN ) ∩ L∞(RN ) and Aε = T ε (Aε) ,

where the nonlinear operator T ε is defined in (4.1.4). Furthermore, the solution Aε belongs to C(RN ),
the space of bounded and continuous functions on RN , and the family {Aε}ε>0 is uniformly bounded
in L1(RN ).



306

The proof of the above Theorem involves the theory of global attractors applied to the discrete dynamical
system generated by T ε. Note that the operator Lε is the Fréchet derivative of T ε (see (4.1.4)) at A ≡ 0.
The position of the spectral radius rσ(Lε) with respect to 1 describes the stability and instability of the
extinction state A ≡ 0 for the aforementioned dynamical system.

In our next result we consider the situation where rσ(Lε) > 1 and investigate the shape of the nontrivial
and nonnegative solutions of the fixed point problem (4.1.3) for ε � 1. Observe that the threshold rσ(Lε)
converges to a limit when ε→ 0

lim
ε→0

rσ(Lε) = R0 := Λ
θ
‖ξ1Ψ1 + ξ2Ψ2‖L∞ . (4.1.9)

In addition to Assumption 4.1.1, we introduce further conditions on the functions βk and on the decay rate
of the mutation kernel m.

Assumption 4.1.3. We assume that the mutation kernel satisfies, for all n ∈ N,

lim
‖x‖→∞

‖x‖nm(x) = 0.

In other words, m satisfies m(x) = o
(

1
‖x‖∞

)
as ‖x‖ → ∞.

Furthermore, we assume that functions β1 and β2 have compact supports, separated in the sense

dist (Σ1,Σ2) > 0 with Σk = {x ∈ RN , βk(x) > 0}, k = 1, 2, (4.1.10)

where dist is the usual distance between sets in RN

dist(Σ1,Σ2) := inf
x∈Σ1

inf
y∈Σ2

‖y − x‖.

This second assumption will allow us to reduce the study of the fixed points of T ε to the two simpler
fixed point problems associated with T εk (defined in (4.1.7)) weakly coupled when ε� 1.

Our last assumption concerns the spectral gap of the bounded linear operators Lεk (see (4.1.5)). Let us
recall that for each ε > 0 and k = 1, 2, the spectrum σ (Lεk) of Lεk is composed of isolated eigenvalues (except
0) with finite algebraic multiplicities, among which rσ(Lεk) is a simple eigenvalue. Moreover,

lim
ε→0

rσ(Lεk) = R0,k := ξkΛ
θ
‖Ψk‖L∞ , k = 1, 2. (4.1.11)

We refer to Appendix 4.1.6 for a precise statement of those spectral properties. Recalling the definition of
R0 in (4.1.9), observe that, due to Assumption 4.1.3, we have

R0 = max{R0,1, R0,2}.

Next for k = 1, 2 we denote by λε,1k > λε,2k the first and the second eigenvalues of the linear operator Lεk and
we assume that the spectral gaps are not too small, namely

Assumption 4.1.4 (Spectral gap). We assume that for each k = 1, 2 there exists nk ∈ N such that

lim inf
ε→0

λε,1k − λ
ε,2
k

εnk
> 0.

Note that the above assumption is satisfied for rather general functions Ψk. An asymptotic expansion
of the first eigenvalues of the operators Lεk has been obtained in [145] when the mutation kernel has a fast
decay at infinity and when Ψk are smooth functions. In that case, the asymptotic expansions for the first
eigenvalues involve the derivative of the fitness functions Ψk at their maximum. Roughly speaking, for
each k = 1, 2, Assumption 4.1.4 is satisfied when each – partial – fitness function Ψk achieves its global
maximum at a finite number of optimal traits, and its behaviour around any two optimal traits differs by
some derivative. Assumption 4.1.4 allows us to include the situation studied in [145] in a more general
framework. A similar abstract assumption has been used in [85, 86] to derive refined information on the
asymptotic and the transient behaviour of the solutions to (4.1.1) in the context of a single host population.

The single host problem
T εk (Aεk) = Aεk (4.1.12)
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has been extensively studied in Djidjou et al. [145]. In particular it has been shown that, when R0,k > 1,
this equation admits a unique positive solution Aε,∗k ∈ L1

+(RN ) as soon as ε is sufficiently small. Our next
result shows that any nontrivial solution of (4.1.3) is close to the superposition of the solutions to the two
uncoupled problems (4.1.12) for k = 1, 2, when ε� 1.

Theorem 4.1.5 (Asymptotic shape of the solutions of (4.1.8)). Let Assumptions 4.1.1, 4.1.3 and 4.1.4 be
satisfied and assume further that R0 > 1. Let Aε ∈ L1

+(RN ) ∩ L∞(RN ) be a nontrivial solution of (4.1.3).
Then the following estimate holds for ε� 1:

‖Aε − (Aε,∗1 +Aε,∗2 )‖L1(RN ) = o(ε∞),

where, for k = 1, 2, Aε,∗k ∈ L1(RN ) is the unique positive fixed-point of T εk if R0,k > 1 and Aε,∗k ≡ 0 otherwise.

Remark 4.1.6. As will be shown in Lemma 4.1.11, it should be noted that ‖Aε,∗1 ‖L1(Σ2) = o(ε∞) and,
similarly, ‖Aε,∗2 ‖L1(Σ1) = o(ε∞). Therefore, the following result holds as well

‖Aε −Aε,∗1 ‖L1(Σ1) = o(ε∞), ‖Aε −Aε,∗2 ‖L1(Σ2) = o(ε∞),
‖Aε − (Aε,∗1 +Aε,∗2 )‖L1(RN\(Σ1∪Σ2)) = o(ε∞).
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Figure 4.1.1: Fitness functions and endemic equilibrium in the case R0,1 > 1 and R0,2 > 1.

In particular, Theorem 4.1.5 ensures a concentration property for the nontrivial fixed point solutions of
(4.1.3) and thus for the endemic solutions of (4.1.1) as ε → 0 (see Figures 4.1.1 and 4.1.2). It shows that
each infectious population Ik concentrates around phenotypic values maximising Ψk if R0,k > 1 or goes to 0
a.e. if R0,k ≤ 1. As a special case, when each Ψk achieves its maximum at a single point xk ∈ Σk, a slightly
more precise result can be stated.



308

0 0.5 1

0

1

2

3

4

5

0 0.5 1

0

2

4

6

8

0 0.5 1

0

2

4

6

8

0 0.5 1

0

2

4

6

8

Figure 4.1.2: Fitness functions and endemic equilibrium in the case R0,1 > 1 and R0,2 < 1

Corollary 4.1.7 (Concentration property of the endemic equilibrium points). Assume that each fitness
function Ψk admits a unique maximum at x = xk and that R0,k > 1 for all k = 1, 2, that is

R0,k = ξkΛ
θ

Ψk(xk) > 1, ∀k = 1, 2.

For ε � 1, denote by (Sε1 , Sε2 , Iε1 , Iε2 , Aε) any endemic equilibrium point of (4.1.1). Then, as ε → 0, the
following behaviour holds

lim
ε→0

Sεk = 1
Ψk(xk)

and for any function f continuous and bounded on RN , we have

lim
ε→0

∫
RN

f(x)Iεk(x)dx = R0,k − 1
Ψk(xk)

(
1 + dk(xk)

θ

)f(xk)

and
lim
ε→0

∫
RN

f(x)Aε(x)dx = θ

β1(x1) (R0,1 − 1)f(x1) + θ

β2(x2) (R0,2 − 1)f(x2).

Numerical explorations suggest that the latter concentration property may fail to hold when Assumption
4.1.3 does not hold. Indeed, we can find examples where R0,1 > 1, R0,2 > 1 and where the population of
spores does not concentrate to either maximum of Ψ1 or Ψ2. Such an example is shown in Figure 4.1.3.

Finally, we are able to prove the uniqueness of the positive equilibrium of (4.1.1) given by Theorem 4.1.2,
when ε is sufficiently small. The case where min(R0,1, R0,2) = 1 requires an additional assumption on the
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Figure 4.1.3: Fitness functions and endemic equilibrium when Assumption 4.1.3 does not hold. Though Ψ2
takes its maximum value in x = 0.7, functions A, I1 and I2 concentrate around the trait value x3 ' 0.652.

speed of convergence of the smallest spectral radius as ε→ 0, which is quite natural in our context (it holds
for exponentially decaying mutation kernels [145]).

Theorem 4.1.8 (Uniqueness of the endemic equilibrium). Let Assumptions 4.1.1, 4.1.3 and 4.1.4 be satis-
fied. Assume moreover that R0,1 > 1 and that one of the following properties is satisfied:

• either R0,2 6= 1,

• or R0,2 = 1 and the convergence of rσ(Lε2) towards R0,2 is at most polynomial in ε, namely rσ(Lε2) ≤
1− Cεn for some C > 0, n > 0.

Then, for ε > 0 sufficiently small, T ε has exactly one nonnegative nontrivial fixed point.

Our proof is based on a computation of the Leray-Schauder degree in the positive cone of C (Σ1)×C (Σ2).
The use of the Leray-Schauder degree is usually restricted to derive the existence of solutions to nonlinear
problems, or to provide lower bounds on the number of solutions; here, we are able to derive the uniqueness
of solution. Indeed, for ε > 0, we show that any equilibrium is stable, the topological degree provides a way
to count the exact number of positive equilibria for the equation, and show uniqueness. Occurrences of such
an argument in the literature are scarce but include [150] and more recently [253].

4.1.3 Proof of Theorem 4.1.2
This section 4.1.3 is devoted to the proof of Theorem 4.1.2. To do so, we investigate some dynamical
properties of the nonlinear operator T ε defined in (4.1.4). The existence of a nontrivial fixed point follows
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from the theory of global attractors while the non-existence follows from comparison arguments. Throughout
this section 4.1.3 we fix ε > 0. Set Ψ = ξ1Ψ1 + ξ2Ψ2, Ω ⊂ RN the open set given by

Ω := {x ∈ RN : Ψ(x) > 0},

and let us denote by χA the characteristic function of a set A.
We split this section 4.1.3 into two parts. Section 4.1.3.1 is devoted to the proof of Theorem 4.1.2 (i),

namely the non-existence of a nontrivial fixed point when rσ(Lε) ≤ 1. In Section 4.1.3.2 we prove the
existence of a nontrivial solution when rσ(Lε) > 1.

4.1.3.1 Proof of Theorem 4.1.2 (i)

Recall that ε > 0 is fixed. To prove the first part of the theorem, we suppose that rσ(Lε) ≤ 1 and denote
by Lε|L1(Ω) the operator defined for every ϕ ∈ L1(Ω) by:

Lε|L1(Ω)(ϕ)(x) = Lεϕ̃(x), a.e. x ∈ Ω;

where ϕ̃ ∈ L1(RN ) is defined by

ϕ̃(x) =
{
ϕ(x) if x ∈ Ω;
0 if x ∈ RN \ Ω.

Lemma 4.1.21 then applies and ensures that the operator Lε|L1(Ω) ∈ Ł(L1(Ω)) is positivity improving,
compact, has a positive spectral radius and satisfies

rσ
(
Lε|L1(Ω)

)
= rσ(Lε).

Next using Lemma 4.1.22 (1), we have

lim
n→∞

∥∥∥∥∥ (Lε|L1(Ω))n(ϕ)(
rσ
(
Lε|L1(Ω)

))n −Π(ϕ)
∥∥∥∥∥
L1(Ω)

= 0, ∀ϕ ∈ L1(Ω), (4.1.13)

where Π denotes the spectral projection associated to Lε|L1(Ω) onto

Ker
(
I −

(Lε|L1(Ω))(
rσ
(
Lε|L1(Ω)

))) .
Let A ∈ L1

+(RN ) be a fixed point of T ε. To prove Theorem 4.1.2 (i), let us show that A ≡ 0. To that aim
note that we have

A|Ω = χΩ(T ε)n(A) ≤ (Lε|L1(Ω))n(A|Ω), ∀n ≥ 0. (4.1.14)

Now let us observe that, under the stronger assumption that rσ(Lε) < 1, then Lemma 4.1.22 applies and
shows

lim
n→∞

∥∥(Lε|L1(Ω)
)n (A)

∥∥
L1(Ω) = 0.

Hence ‖A‖L1(Ω) = 0 and therefore A = T ε(A) = 0 a.e. in RN . This completes the proof of the result when
rσ(Lε) < 1.

We now consider the limit case rσ(Lε) = 1. To handle this case let us recall that Π
(
A|Ω

)
∈ Ker

(
I − (Lε|L1(Ω))

)
.

This allows us to decompose and estimate (4.1.14) as follows:

Π(A|Ω) + (I −Π)(A|Ω) = χΩ(T ε)n(A)
≤ (Lε|L1(Ω))n(Π(A|Ω) + (I −Π)(A|Ω)) (4.1.15)
≤ Π(A|Ω) + (Lε|L1(Ω))n(I −Π)(A|Ω),

for every n ≥ 0. This leads to

(I −Π)(A|Ω) ≤ (Lε|L1(Ω))n(I −Π)(A|Ω), ∀n ≥ 1. (4.1.16)
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Next since (I−Π)(A|Ω) ∈ Rg(I− (Lε|L1(Ω))), the part of Lε|L1(Ω) in Rg(I− (Lε|L1(Ω))) has a spectral radius
strictly smaller than 1. Hence letting n→∞ in (4.1.16) leads to

(I −Π)(A|Ω) = 0.

Recalling (4.1.15) this yields
A|Ω = χΩT

ε(A) = (Lε|L1(Ω))(A|Ω),

and this ensures that ∫
RN

βk(z)A|Ω(z)dz = 0 ∀k ∈ {1, 2},

and therefore A|Ω = 0 a.e. in Ω (recall β1 + β2 > 0 on Ω by definition (4.1.6)). The equation A = T ε(A)
ensures that A = 0 a.e. in RN , that completes the proof of Theorem 4.1.2 (i).

4.1.3.2 Proof of Theorem 4.1.2 (ii)

We now turn to the proof of the existence of a nontrivial fixed point for the nonlinear operator T ε. To that
aim we shall make use of the theory of global attractors and uniform persistence theory for which we refer
to [276]. To perform our analysis and prove the theorem we define the sets

M0 :=
{
ϕ ∈ L1

+(RN ) :
∫

Ω
ϕ(y)dy > 0

}
and ∂M0 = {ϕ ∈ L1

+(RN ) : χΩϕ = 0 a.e.}, (4.1.17)

so that
L1

+(RN ) =M0 ∪ ∂M0.

Note also that we have the following invariant properties

T ε(M0) ⊂M0 and T ε(∂M0) = {0L1} ⊂ ∂M0.

Next let us observe that T ε is bounded on L1
+(RN ). Indeed, recalling the definition of Ψk in (4.1.6) it is

readily checked that

‖T ε(ϕ)‖L1(RN ) ≤
Λ
δθ

[ξ1‖r1‖L∞ + ξ2‖r2‖L∞ ] , ∀ϕ ∈ L1
+(RN ). (4.1.18)

Our first lemma deals with the weak persistence of T ε and T εk as defined in (4.1.7). Our result reads as
follows.

Lemma 4.1.9. Let Assumption 4.1.1 be satisfied. If rσ(Lεk) > 1 for some k ∈ {1, 2}, then we have

lim sup
n→∞

∫
RN

βk(y)(T εk )n(ϕ)(y)dy ≥ θ

2 (rσ(Lεk)− 1) , ∀ϕ ∈M0. (4.1.19)

If now rσ(Lε) > 1, then there exists k ∈ {1, 2} such that

lim sup
n→∞

∫
RN

βk(y)(T ε)n(ϕ)(y)dy ≥ θ

2 (rσ(Lε)− 1) , ∀ϕ ∈M0. (4.1.20)

Proof. Let us first show (4.1.20). We argue by contradiction by assuming that there exists ϕ ∈ M0 such
that

lim sup
n→∞

∫
RN

βk(y)(T ε)n(ϕ)(y)dy < θ

2(rσ(Lε)− 1) =: η, k = 1, 2.

Then, there exists an integer n0 ≥ 1 such that∫
RN

βk(y)(T ε)n(ϕ)(y)dy ≤ η, for k = 1, 2 and n ≥ n0

therefore
(T ε)n0+1(ϕ)(x) ≥

(
θ

θ + η
Lε
)

((T ε)n0(ϕ))(x), for a.e. x ∈ RN ,
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and by induction

(T ε)n0+n(ϕ) ≥
(

θ

θ + η
Lε
)n

((T ε)n0(ϕ))(x) (4.1.21)

for a.e. x ∈ Ω and for every n ≥ 1. Next set

ϕ̃ = ((T ε)n0(ϕ))|Ω ∈ L
1
+(Ω)\ {0} .

By Lemma 4.1.21, the operator
(

θ

θ + η
Lε
)
|L1(Ω)

∈ Ł(L1(Ω)) is positivity improving, compact and satisfies

rσ

((
θ

θ + η
Lε
)
|L1(Ω)

)
= θ

θ + η
rσ(Lε) = 2rσ(Lε)

1 + rσ(Lε) > 1

since rσ(Lε) > 1. Applying Lemma 4.1.22 yields

lim
n→∞

∥∥∥∥∥
((

θ

θ + η
Lε
)
|L1(Ω)

)n
(ϕ̃)
∥∥∥∥∥
L1(Ω)

=∞,

so that (4.1.21) ensures that the sequence ‖(T ε)n(ϕ)‖L1(Ω) is unbounded. This contradicts the point dissi-
pativity of T ε as stated in (4.1.18). The proofs of (4.1.19) for T ε1 and T ε2 are similar.

We are now able to complete the proof of Theorem 4.1.2 (ii).

Proof of Theorem 4.1.2 (ii). Recall that throughout this section 4.1.3.2, ε > 0 is fixed. Assume that
rσ(Lε) > 1. As 0 ≤ T ε ≤ Lε and as Lε is compact (see Lemma 4.1.21), then T ε is bounded and com-
pact. Now Theorem 2.9 in [276] applies and ensures that there is a compact global attractor A ⊂ L1

+(RN )
for T ε, i.e. A attracts every bounded subset of L1

+(RN ) under the iteration of T ε. Next by Lemma 4.1.9,
T ε is weakly uniformly persistent with respect to the decomposition pair (M0, ∂M0) of the state space
L1

+(RN ). Next [276, Proposition 3.2]) applies and ensures that T ε is also strongly uniformly persistent with
respect to this decomposition, i.e. there exists κ > 0 such that

lim inf
n→+∞

‖(T ε)n(ϕ)‖L1(Ω) ≥ κ, ∀ϕ ∈M0.

As a consequence, according to [276], T ε|M0
admits a compact global attractor A0 ⊂M0 and T ε has at least

one fixed point A ∈ A0. From the equation A = T ε(A), it is readily checked that A > 0 a.e. and belongs to
L∞(RN ), while the uniform boundedness (with respect to ε) of such a fixed point follows from (4.1.18).

Finally, it remains to prove the continuity of the fixed point A. The facts that ΨkA ∈ L1(RN ) for each
k = 1, 2 and mε ∈ L∞(RN ), imply (see e.g. [63, Corollary 3.9.6, p. 207]) that mε ? (ΨkA) ∈ C(RN ). From
the expression (4.1.4) of T ε, it follows that A ∈ C(RN ). This completes the proof of Theorem 4.1.2 (ii).

4.1.4 Proof of Theorem 4.1.5
In this section 4.1.4, we investigate the shape of the endemic equilibria and we prove Theorem 4.1.5. Hence
we assume throughout this section 4.1.4 that Assumptions 4.1.1, 4.1.3 and 4.1.4 hold. We furthermore
assume that

R0 = max{R0,1, R0,2} > 1.
Next recall that since rσ(Lε) → R0 as ε → 0, Theorem 4.1.2 implies that Problem (4.1.3) has at least a
nontrivial fixed point for all ε sufficiently small. We denote by Aε ∈ L1

+(RN ) such a nontrivial fixed point
of T ε, for all ε small enough. It is not difficult to check that Aε > 0 a.e.

Recalling the definition of the open sets

Ωk = {x ∈ RN : Ψk(x) > 0}, k = 1, 2, Ω = Ω1 t Ω2 = {x ∈ RN : Ψ(x) > 0},

note that Assumption 4.1.3 ensures that there exists η > 0 such that ‖x − y‖ ≥ η for all (x, y) ∈ Ω1 × Ω2.
In what follows the functions χΩk denotes the characteristic functions for Ωk.

Throughout this section 4.1.4, for all ε > 0 small enough, Aε ∈ L1
+(RN ) \ {0} denotes a positive solution

to the equation:
Aε = Λξ1(mε ?Ψ1A

ε)
θ +

∫
RN β1(z)Aε(z)dz + Λξ2(mε ?Ψ2A

ε)
θ +

∫
RN β2(z)Aε(z)dz . (4.1.22)
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4.1.4.1 Preliminary estimates

Recall the definition of Lεk in (4.1.5). Let φε,1k ∈ L1
+(RN ) with φε,1k > 0 and ‖φε,1k ‖L1(RN ) = 1 be the principal

eigenvector of Lεk associated to its principal eigenvalue, which is equal to the spectral radius rσ(Lεk). We
now recall some results related to the one host model. We refer to [145] for more details (see also Lemma
4.1.21).

Lemma 4.1.10. Let Assumption 4.1.1 be satisfied. Let k ∈ {1, 2} and ε > 0 be given and assume that
rσ(Lεk) > 1. Then the equation

Ak = ΛξkχΩk(mε ∗ (ΨkAk))
θ +

∫
RN βk(z)Ak(z)dz , Ak ∈ L1

+(RN ) \ {0},

has a unique solution, given by

Aε,∗k = νεkφ
ε,1
k with νεk = θ(rσ(Lεk)− 1)∫

RN βk(z)φε,1k (z)dz
. (4.1.23)

Now, using the separation assumption on the sets Ωk, k ∈ {1, 2} and the decay at infinity of m, we derive
the following preliminary lemma that will be used to prove Theorem 4.1.5 in the next section 4.1.4.2.

Lemma 4.1.11. Suppose that Assumptions 4.1.1 and 4.1.3 are satisfied. Then, for each (k, l) ∈ {1, 2}2 with
k 6= l, the following properties hold:

(a) we have ∫
RN

χΣlφ
ε,1
k (z)dz = o(ε∞), νεk

∫
RN

χΣlφ
ε,1
k (z)dz = o(ε∞),

for all ε� 1, where Σl and νεk are respectively defined in (4.1.10) and (4.1.23).

(b) Let p ∈ [1,∞) be given. Then, for any A ∈ L1
+(RN ), the following estimate holds

‖χΣkmε ∗ (ΨlA)‖Lp(RN ) = ‖A‖L1(Ωl) × o(ε∞), (4.1.24)

where the term o(ε∞) is independent of A ∈ L1
+(RN ).

Proof. We first prove (a). To that aim let us first notice that, due to Assumption 4.1.3, there exists η > 0
such that ‖x − y‖ ≥ η for all (x, y) ∈ Σ1 × Σ2. Thus, due to the decay assumption for m at infinity, one
obtains

mε(x− y) = o(ε∞), (4.1.25)

uniformly for (x, y) in the compact set Σ1 × Σ2. Now let (k, l) ∈ {1, 2}2, k 6= l be given. By the definition
of φε,1k we have

φε,1k = Λξk
θrσ (Lεk)

(
mε ? (Ψkφ

ε,1
k )
)
. (4.1.26)

Integrating (4.1.26) over Σl and recalling that ‖φε,1k ‖L1(RN ) = 1 we get∫
RN

χΣlφ
ε,1
k (z)dz ≤ Λξk|Σl|

θrσ (Lεk)‖Ψk‖L∞(RN ) sup
(x,y)∈Σk×Σl

mε(x− y).

Since rσ(Lεk)→ R0,k > 0 as ε→ 0 (recalling (4.1.11)), this yields∫
RN

χΣlφ
ε,1
k (z)dz = o(ε∞) as ε→ 0,

and completes the proof of the first estimate in (a). Next coming back to (4.1.26) and recalling the definition
of Ψk in (4.1.6) we get for all x ∈ RN

φε,1k (x) ≤ Λξk
θrσ (Lεk)

‖mε‖L∞‖rk‖L∞
δθ

∫
RN

βk(y)φε,1k (y)dy.
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Hence since ‖φε,1k ‖L1(RN ) = 1 and ‖mε‖L∞ = O(ε−N ), integrating the above inequality over the bounded
set Σk, there exists a constant C > 0 such that∫

Σk
βk(y)φε,1k (y)dy ≥ CεN , ∀ε� 1.

Hence we get
νεk = O(ε−N ) as ε→ 0,

and the second estimate in (a) follows. We now turn to the proof of (b). Let A ∈ L1
+(RN ) be given. Then

we have, for all ε > 0,

|mε ? (Ψ2A)(x)| ≤ sup
(y,z)∈Σ1×Σ2

mε(y − z) ‖Ψ2‖L∞‖A‖L1(Ω2), ∀x ∈ Σ1.

Hence, integrating the above inequality on the compact set Σ1, we obtain that, for all p ∈ [1,∞):

‖χΣ1mε ? (Ψ2A)(x)‖Lp(RN ) ≤ |Σ1|1/p sup
(y,z)∈Σ1×Σ2

mε(y − z) ‖Ψ2‖L∞‖A‖L1(Ω2),

and the estimate with k = 1 and l = 2 follows recalling (4.1.25). The other estimate interchanging the index
1 and 2 is similar. This completes the proof of (b).

4.1.4.2 Proof of Theorem 4.1.5

This section 4.1.4.2 is devoted to the proof of Theorem 4.1.5. Throughout this section 4.1.4.2 we assume that
R0 > 1 so that, since rσ(Lε)→ R0 as ε→ 0, there exists ε0 > 0 such that Problem (4.1.3) has a nontrivial
fixed point Aε for each ε ∈ (0, ε0] (see Theorem 4.1.2). Recall that since T ε is bounded with respect to ε,
there exists M > 0 such that

‖Aε‖L1(RN ) ≤M, ∀ε ∈ (0, ε0].
As before, set

Aεk = χΩkA
ε, k = 1, 2, ε ∈ (0, ε0],

and observe that ‖Aε1‖L1(Ω1) + ‖Aε2‖L1(Ω2) ≤M for all ε ∈ (0, ε0]. Now let us define

µεk = θ +
∫
RN

βk(z)Aε(z)dz, ∀k ∈ {1, 2}, ∀ε ∈ (0, ε0] (4.1.27)

as well as
Ψε := Λξ1Ψ1

µε1
+ Λξ2Ψ2

µε2
.

With these notations, note that Aε becomes a positive fixed point for the linear operator Kε ∈ Ł(L1(RN ))
defined by

Kεϕ := mε ? (Ψεϕ) , ϕ ∈ L1(RN ).
Our first step consists in proving the next lemma.

Lemma 4.1.12. The following estimate holds

rσ(Lεk) ≤ µεk
θ
, ∀ε ∈ (0, ε0]. (4.1.28)

Proof. Let us first note that

θ ≤ µεk ≤ θ +M‖βk‖L∞ , ∀k ∈ {1, 2}, ∀ε ∈ (0, ε0] (4.1.29)

for some constant M > 0. Note that since Aε > 0 and KεAε = Aε, we obtain by a version of the Krein-
Rutman theorem (see e.g. [281, Corollary 4.2.15 p.273]) that

rσ(Kε) = 1,∀ε ∈ (0, ε0].

On the other hand, we have Aε = KεAε = θ
µε1
Lε1A

ε + θ
µε2
Lε2A, thus for n ≥ 1 we have

0 ≤
(
θ

µε1
Lε1

)n
Aε ≤

(
θ

µε1
Lε1

)n−1
Aε ≤ . . . ≤ θ

µε1
Lε1A

ε ≤ Aε,

therefore the contrapositive of Lemma 4.1.22 item 2 shows that θ
µε1
rσ(Lε1) ≤ 1. Similarly, we have θ

µε2
rσ(Lε2) ≤

1.
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We recall that throughout this section 4.1.4.2 the condition R0 = max{R0,1, R0,2} > 1 holds. We now
set Θk =

√
Ψk and we define the self-adjoint operators Sεk ∈ Ł(L2(Ωk)) (recall Ωk = {Ψk > 0}), for k = 1, 2,

by
Sεk = Λξk

θ
Θk(mε ? (Θk·)).

Here recall that σ(Sεk) = σ(Lεk) since Ωk is bounded (see Lemma 4.1.21). Our next lemma reads as follows.

Lemma 4.1.13. Let k ∈ {1, 2} be such that R0,k > 1. Then we have

dist
(
µεk
θ
, σ(Sεk)

)
= dist

(
µεk
θ
, σ(Lεk)

)
= o(ε∞), ∀ε� 1. (4.1.30)

Proof. Let us assume that R0,1 > 1 (the case R0,2 > 1 is obtained by the symmetry of the problem with
respect to the indices). We recall that

Ωk = {x ∈ RN : Ψk > 0}, k = 1, 2,

and we denote by {λε,nk }n≥1 the eigenvalues of Sεk (and of Lεk) ordered by decreasing modulus, so that
λε,1k = rσ(Sεk) = rσ(Lεk). Next multiplying (4.1.22) by Θ1 and using Lemma 4.1.11 (b) yields

µε1Θ1A
ε

θ
− Λξ1Θ1(mε ? (Ψ1A

ε))
θ

= Λξ2µε1Θ1(mε ? (Ψ2A
ε))

θµε2
= o(ε∞),

in L2(Ω1). Hence the following estimate holds∥∥∥∥(µε1θ I − Sε1
)

Θ1A
ε

∥∥∥∥
L2(Ω1)

= o(ε∞). (4.1.31)

On the other hand, since Sε1 is self-adjoint, then the following estimate holds (see e.g. [334])∥∥∥∥∥
(
µε1
θ
I − Sε1

)−1
∥∥∥∥∥

Ł(L2(Ω1))

= 1

dist
(
µε1
θ
, σ(Sε1)

) .
By setting

yε1 :=
(
µε1
θ
I − Sε1

)
Θ1A

ε,

we get

Θ1A
ε =

(
µε1
θ
I − Sε1

)−1
yε1, ‖yε1‖L2(Ω1) = o(ε∞),

so that
‖Θ1A

ε‖L2(Ω1) ≤
‖yε1‖L2(Ω1)

dist
(
µε1
θ
, σ(Sε1)

)
and

dist
(
µε1
θ
, σ(Sε1)

)
≤
‖yε1‖L2(Ω1)

‖Θ1Aε‖L2(Ω1)
≤
√
|Ω1|‖yε1‖L2(Ω1)

‖Θ1Aε‖L1(Ω1)
, (4.1.32)

where we have used the Cauchy-Schwarz inequality in L2(Ω1).
To complete the proof of the lemma, we show that the quantity ‖Θ1A

ε‖L1(Ω1) does not become too small
when ε→ 0. To do so, recall the definition of the nonlinear operator T ε1 :

T ε1 (ϕ) = Lε1(ϕ)
1 + θ−1

∫
Ω1
β1(x)ϕ(x)dx,

for all ϕ ∈ L1
+(Ω1). Then, it follows from Lemma 4.1.9 that

lim sup
n→∞

∫
RN

β1(y) (T ε1 )n (ϕ)(y)dy ≥ θ

2 (rσ(Lε1)− 1) > 0,
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for ε > 0 sufficiently small and every ϕ ∈ L1
+(RN ) \ {0}. Moreover, we also have

Aε(x) = (T ε)n(Aε)(x) ≥ (T ε1 )n(Aε)(x)

for a.e. x ∈ RN and every n ∈ N \ {0}. We get for ε sufficiently small:

‖β1‖L∞‖χΣ1A
ε‖L1(RN ) ≥

∫
RN

β1(y)Aε(y)dy

≥ lim sup
n→∞

∫
RN

β1(y) (T ε1 )n (Aε)(y)dy ≥ θ

2 (rσ(Lε1)− 1) .

Next multiplying (4.1.22) by χΣ1 and integrating leads us to

Λξ1
θ
‖Θ1‖L∞‖Θ1A

ε‖L1(Ω1) ≥
µε1‖χΣ1A

ε‖L1(RN )

θ
− Λξ2µε1

θµε2

∫∫
Ω1×Ω2

mε(x− y)Ψ2(y)Aε(y)dydx,

while Lemma 4.1.11 ensures that∫∫
Ω1×Ω2

mε(x− y)Ψ2(y)Aε(y)dydx = o(ε∞).

As a consequence there exist ε > 0 and η > 0 such that

‖Θ1A
ε‖L1(Ω1) ≥ η, ∀ε ∈ (0, ε].

The latter estimate combined with (4.1.32) completes the proof of the lemma.

As a corollary of the above lemma, we also have the following result.

Corollary 4.1.14. Let k ∈ {1, 2} be such that R0,k > 1. Then the following holds true for ε > 0 sufficiently
small

µεk
θ

= λε,1k + o(ε∞). (4.1.33)

Proof. Here we consider the case where R0,1 > 1. The case where R0.2 > 1 is obtained similarly.
In view of Lemma 4.1.13, we argue by contradiction and assume that there exist a sequence {εk} ⊂ (0,∞)

going to 0 as k →∞ and a sequence nk ∈ N \ {0, 1} such that for all k one has

µεk1
θ

= λεk,nk1 + o(ε∞k ).

Firstly we have
µεk1
θ

= λεk,nk1 + o(ε∞k ) ≤ λεk,21 + o(ε∞k ), ∀k ≥ 0.

Next using Assumption 4.1.4 one has λεk,11 − λεk,21 ≥ cεn1
k for all k large enough, where c > 0 and n1 ∈ N

are given constants independent of k. This yields

µεk1
θ
− rσ(Lε1) = µεk1

θ
− λεk,11 ≤ −cεn1

k + o(ε∞k ), ∀k � 1.

This contradicts the estimate provided by Lemma 4.1.12 and Corollary 4.1.14 is proved.

Our next lemma describes the asymptotic shape as ε → 0 of the fixed points in the domain Ωk, when
R0,k > 1.

Lemma 4.1.15. Let k ∈ {1, 2} such that R0,k > 1 and Aε be a positive solution to T εAε = Aε. Then, the
following estimate holds for ε > 0 sufficiently small:∥∥∥Aε − νεkφε,1k ∥∥∥

L2(Ωk)
= o(ε∞), (4.1.34)

where νεk is defined in (4.1.23).
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Proof. Here we only deal with the case R0,1 > 1, the case R0,2 > 1 being similar.
We first remark that, by definition of Ψ1 (see (4.1.6)), Ω1 ⊂ Σ1 and Ψ1 = Θ1 = 0 on Σ1 \ Ω1. Observe

that Corollary 4.1.14 together with (4.1.31) yields

‖(λε,11 I − Sε1)Θ1A
ε‖L2(Ω1) = o(ε∞), ε� 1. (4.1.35)

Let us denote by Π1 the positive one-dimensional rank projection on Ker(λε,11 I − Sε1). Consider C = Cε a
closed circle with center λε,11 and the radius η1(ε) given by

η1(ε) = 1
2

∣∣∣λε,11 − λ
ε,2
1

∣∣∣ ,
so that the resolvent (λI − Sε1)−1 exists for every λ ∈ C. Recalling the formula for spectral projectors [129,
Theorem 1.5.4], we obtain for ε sufficiently small:

Θ1A
ε −Π1(Θ1A

ε) = 1
2iπ

∮
C
(λ− λε,11 )−1dλΘ1A

ε − 1
2iπ

∮
C
(λ− Sε1)−1dλΘ1A

ε

= 1
2iπ

∮
C
(λ− Sε1)−1(λ− λε,11 )−1(Sε1 − λ

ε,1
1 )Θ1A

εdλ.

As a consequence, since Sε1 is self-adjoint, we obtain the following estimate:

‖Θ1A
ε −Π1(Θ1A

ε)‖L2(Ω1) ≤
(

1
η1(ε)

)2
‖(λε,11 − Sε1)(Θ1A

ε)‖L2(Ω1)

≤

 2∣∣∣λε,11 − λ
ε,2
1

∣∣∣
2

‖(λε,11 − Sε1)Θ1A
ε‖L2(Ω1).

Now recall that the spectral gap λε,11 − λ
ε,2
1 is at most polynomial (see Assumption 4.1.4), so that (4.1.35)

leads us to the following estimate

‖Θ1A
ε −Π1(Θ1A

ε)‖L2(Ω1) = o(ε∞), ε� 1. (4.1.36)

We remind that (λε,11 , φε,11 ) is the principal eigenpair of Lε1. Hence (λε,11 ,Θ1φ
ε,1
1 ) becomes the principal

eigenpair of Sε1 and the spectral projector Π1 is given by

Π1(ϕ) = ‖Θ1φ
ε,1
1 ‖
−2
L2(Ω1)Θ1φ

ε,1
1

(∫
Ω1

Θ1(x)φε,11 (x)ϕ(x)dx
)
.

Since Θ1 = 0 on Σ1 \ Ω1, (4.1.36) becomes

‖Θ1A
ε − αε1νε1Θ1φ

ε,1
1 ‖L2(Ω1) = o(ε∞) (4.1.37)

for some constant αε1 > 0, that will be investigated below.
Note now that since Aε is uniformly bounded in L1(RN ), then (4.1.22) together with Lemma 4.1.11 (b)

yield

χΩ1

(
θ +

∫
RN

β1(z)Aε(z)dz
)
Aε = Λξ1χΩ1(mε ? (Ψ1A

ε)) + o(ε∞), ∀ε� 1.

Next we deduce from the above equality that, for ε sufficiently small,∥∥∥∥(θ +
∫
RN

β1(z)Aε(z)dz
)
Aε − Λξ1

(
mε ? (Ψ1α

ε
1ν
ε
1φ

ε,1
1 )
)∥∥∥∥

L2(Ω1)

≤
∥∥∥Λξ1

(
mε ? (Ψ1A

ε −Ψ1α
ε
1ν
ε
1φ

ε,1
1 )
)∥∥∥

L2(Ω1)
+ o(ε∞)

≤ Λξ1‖mε‖L1(RN )‖Θ1‖L∞
∥∥∥Θ1A

ε − αε1νε1Θ1φ
ε,1
1

∥∥∥2

L2(Ω1)
+ o(ε∞),
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so that (4.1.37) implies that∥∥∥∥(θ +
∫
RN

β1(z)Aε(z)dz
)
Aε − Λξ1

(
mε ? (Ψ1α

ε
1ν
ε
1φ

ε,1
1 )
)∥∥∥∥

L2(Ω1)
= o(ε∞). (4.1.38)

The above equality also rewrites as follows∥∥∥∥(θ +
∫
RN

β1(z)Aε(z)dz
)
Aε − αε1νε1θLε1(φε,11 )

∥∥∥∥
L2(Ω1)

=
∥∥∥∥(θ +

∫
RN

β1(z)Aε(z)dz
)
Aε − αε1νε1θλ

ε,1
1 φε,11

∥∥∥∥
L2(Ω1)

= o(ε∞). (4.1.39)

On the other hand we deduce from (4.1.27) and (4.1.33) that

θλε,11 = θ +
∫
RN

β1(z)Aε(z)dz + o(ε∞), (4.1.40)

so that (4.1.39) becomes ∥∥∥θλε,11 Aε − θλε,11 αε1ν
ε
1φ

ε
1

∥∥∥
L2(Ω1)

= o(ε∞).

Since λε,11 → R0,1 > 1 as ε→ 0, the above estimate rewrites as

‖Aε − αε1νε1φ
ε,1
1 ‖L2(Ω1) = o(ε∞), ∀ε� 1. (4.1.41)

To complete the proof of the lemma, it remains to show that αε1 is close to 1 when ε→ 0. In the following
we check that αε1 = 1 + o(ε∞) as ε→ 0.

To do so, combining (4.1.40) with the definition of νε1 in (4.1.23), that also rewrites as
∫
RN β1(z)νε1φ

ε,1
1 (z)dz =

θ(λε,11 − 1), we obtain

θ(1− αε1)(λε,11 − 1) =
∫
RN

β1(z)
(
Aε(z)− αε1νε1φ

ε,1
1 (z)

)
dz + o(ε∞).

Since λε,11 − 1→ R0,1 − 1 > 0 as ε→ 0, we obtain

1− αε1 = o(ε∞) as ε→ 0

which completes the proof of the Lemma.

Equipped with the above lemmas we are now in the position to complete the proof of Theorem 4.1.5.

Proof of Theorem 4.1.5. We split our argument into two parts. We first consider the case where R0,1 > 1
and R0,2 > 1 and show that the result directly follows from Lemma 4.1.15. In a second step we investigate
the case where R0,1 > 1 and R0,2 ≤ 1. Using the symmetry of the problem with respect to the indices, this
covers all the possible cases.

First case: We suppose that R0,1 > 1 and R0,2 > 1. In this case, Lemma 4.1.15 applies and ensures that

‖Aε|Ωk − ν
ε
kφ

ε,1
k |Ωk‖L2(Ωk) = o(ε∞), ∀ε� 1 (4.1.42)

for each k ∈ {1, 2}. Moreover, since Aε is a fixed point of T ε, we have

Aε(x) = Λ
∫
RN

mε(x− y)
(

ξ1Ψ1(y)
θ +

∫
RN β1(s)Aε(s)ds + ξ2Ψ2(y)

θ +
∫
RN β2(s)Aε(s)ds

)
Aε(y)dy (4.1.43)

for every x ∈ RN . It follows from (4.1.26) that

νεkφ
ε,1
k (x) = Λ

θλε,1k

∫
Ωk
mε(x− y)ξkΨk(y)νεkφ

ε,1
k (y)dy
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for each k ∈ {1, 2}, where we recall that Ωk = {Ψk > 0} and Ω = Ω1 tΩ2. Injecting the latter equation into
(4.1.43) leads to∫

RN\Ω

∣∣∣Aε − νε1φε,11 − νε2φ
ε,1
2

∣∣∣ (x)dx

≤
∑
k=1,2

Λ
θλε,1k

∫
RN\Ω

∫
RN

mε(x− y)ξkΨk(y)
∣∣∣∣∣
(

θλε,1k Aε(y)
θ +

∫
RN βk(s)Aε(s)ds

)
− νεφε,1k (y)

∣∣∣∣∣ dydx.

We then infer from (4.1.40) that

θλε,1k
θ +

∫
RN βk(s)Aε(s)ds = 1 + o(ε∞) for each k ∈ {1, 2}.

Recalling that λε,1k → R0,k > 1 as ε→ 0, and that the family {Aε}ε>0 is uniformly bounded in L1(RN ) (see
Theorem 4.1.2), one deduces that∫

RN\Ω

∣∣∣Aε − νε1φε,11 − νε2φ
ε,1
2

∣∣∣ (x)dx ≤ Λ
Mθ

∑
k=1,2

‖Ψk‖L∞‖Aε|Ωk − ν
ε
kφ

ε,1
k |Ωk‖L1(Ωk) + o(ε∞) = o(ε∞)

for some constant M > 0. Here we have used (4.1.42).
Finally, since ‖χΩ1φ

ε,1
2 ‖L1(RN ) = o(ε∞) and ‖χΩ2φ

ε,1
1 ‖L1(RN ) = o(ε∞), we obtain

‖Aε − (νε1φ
ε,1
1 + νε2φ

ε,1
2 )‖L1(RN ) = o(ε∞),

that proves the result in the case where R0,1 > 1 and R0,2 > 1.

Second case: We assume now that R0,1 > 1 and R0,2 ≤ 1. Note that Lemma 4.1.15 applies and ensures
that (4.1.42) holds for Aε1. From Lemma 4.1.11 (b) and (4.1.43), we get∫

Ω2

Aε(x)dx = Λξ2
θ +

∫
RN β2(s)Aε(s)ds

∫
Ω2

∫
Ω2

mε(x− y)Ψ2(y)Aε(y)dydx+ o(ε∞) (4.1.44)

≤
θR0,2

∫
Ω2
Aε(y)dy

θ +
∫
RN β2(s)Aε(s)ds + o(ε∞).

It follows that (
1− θR0,2

θ + ‖β2Aε‖L1(RN )

)∫
Ω2

Aε(x)dx = o(ε∞). (4.1.45)

Now we prove that the following estimate holds∫
Ω2

Aε(x)dx = o(ε∞) (4.1.46)

When R0,2 < 1, (4.1.45) implies:

(1−R0,2)
∫

Ω2

Aε(x)dx ≤
(

1− R0,2
1 + θ−1

∫
RN β2(z)Aε2(z)dz

)∫
Ω2

Aε(x)dx = o(ε∞)

hence (4.1.46) holds.
Now suppose that R0,2 = 1. From (4.1.45), we see that(∫

Ω2
β2(x)Aε(x)dx

)2

‖β2‖L∞ (θ +M‖β2‖L∞) ≤
∫
RN β2(x)Aε(x)dx

∫
Ω2
Aε(x)dx

θ + ‖β2Aε‖L1(RN )
= o(ε∞)

for some constant M > 0 such that ‖Aε‖L1(RN ) ≤M for all ε small. Therefore, we have∫
Ω2

β2(x)Aε(x)dx = o(ε∞). (4.1.47)
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Next (4.1.44) allows us to control the quantity
∫

Ω2
Aε(z)dz by

∫
Ω2
β2(z)Aε(z)dz as follows∫

Ω2

Aε(x)dx ≤ Λξ2‖r2‖L∞
δθ

∫
Ω2

β2(x)Aε(x)dx+ o(ε∞)

and therefore (4.1.46) holds.
To complete the proof of the theorem, it remains to show that∫

RN\Ω

∣∣∣Aε(z)− νε1φε,11 (z)
∣∣∣ dz = o(ε∞).

To this end, we follow the proof of the first case to obtain∫
RN\Ω

∣∣∣Aε − νε1φε,11

∣∣∣ (x)dx ≤ Λξ2
θ +

∫
RN β2(x)Aε(x)dx‖Ψ2‖L∞

∫
Ω2

Aε(x)dx

+ Λ
θλε,11

∫
RN\Ω

∫
RN

mε(x− y)ξ1Ψ1(y)
∣∣∣∣∣
(

θλε,11 Aε(y)
θ +

∫
RN β1(s)Aε(s)ds

)
− νεφε,11 (y)

∣∣∣∣∣dydx.

From (4.1.46), we deduce that∫
RN\Ω

∣∣∣Aε − νε1φε,11

∣∣∣ (x)dx ≤ Λ
θ
‖Ψ1‖L∞‖Aε − νε1φ

ε,1
1 ‖L1(Ω1) + o(ε∞) = o(ε∞),

by using the fact that (4.1.42) holds for Aε1, this concludes the proof of this second case and thus the proof
of Theorem 4.1.5.

4.1.5 Proof of Theorem 4.1.8
In this section 4.1.5 we handle the uniqueness of the endemic steady state for ε sufficiently small and we
prove Theorem 4.1.8. To this end, we use degree theory (see e.g. [81, 413]).

Our strategy is as follows: we first derive estimates for the eigenvalues of the linearised equation around
each stationary solution for all ε > 0 small enough. In particular we show that every positive stationary
solution is locally stable for the discrete dynamical system generated by T ε. Next, we compute the Leray-
Schauder degree of the (nonlinear) operator in a subset of the positive cone which contains all the positive
fixed point, and show that it is equal to one. Because of the additivity property of the Leray-Schauder degree,
these two arguments combined together show that there cannot be more than one stationary solution.

Recall that T ε = T ε1 +T ε2 (see the definitions (4.1.4) and (4.1.7)). In this section 4.1.5, in order to work in
a solid cone of a Banach space, we will be mainly interested in some properties of T ε, T ε1 and T ε2 considered
as operators acting on C(Σ), C(Σ1) and C(Σ2), where, according to Assumption 4.1.3, Σ1 and Σ2 are defined
in (4.1.10) while Σ denote the compact set given by

Σ = Σ1 t Σ2.

Recall also that Ωk = {Ψk > 0} and Ω = Ω1 t Ω2. And note that due to the definition of Ψk in (4.1.6) one
has Ω ⊂ Σ and Ωk ⊂ Σk for each k ∈ {1, 2}.

We will use the fact that the fixed-points of T ε are close to the fixed-point of the uncoupled problem

Aε,∗ := Aε,∗1 +Aε,∗2 , (4.1.48)

where for each k = 1, 2, Aε,∗k ∈ L1(RN )∩C(RN ) is the unique nontrivial solution of T εkA
ε,∗
k = Aε,∗k if R0,k > 1

and Aε,∗k ≡ 0 otherwise.
Recall finally that the spectra of Lε1 and Lε2, considered as bounded operators on Lp(Ωk), Lp(RN ) with

1 ≤ p <∞, or C(Σk), consist in a real sequence of decreasing eigenvalues, independent of the space considered
(see Lemma 4.1.21), which we denote

σ(Lεk) = {λε,nk , n ≥ 1}, k = 1, 2.

Lemma 4.1.16 (Computation of the spectrum). Assume that R0,1 > 1 and that one of the following
properties is satisfied:
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• either R0,2 6= 1,

• or R0,2 = 1 and the convergence of rσ(Lε2) is at most polynomial for small ε, namely rσ(Lε2) ≤ 1−CεM
for some constants C > 0 and M > 0.

Then, there exists ε0 > 0 such that for any 0 < ε ≤ ε0 and for any nonnegative nontrivial fixed point
Aε ∈ C(Σ) of T ε, we have

σ(DAεT
ε) ⊂ (−1, 1),

wherein DAεT
ε denotes the Fréchet derivative of T ε with respect to the C(Σ)−topology.

Proof. We divide the proof into three steps.

Step one: We show that

σ(DAε,∗
k
T εk ) = {0} ∪

{
λε,nk
λε,1k

}
n≥2

∪

{
1
λε,1k

}
, ∀k ∈ {1, 2},

if R0,k > 1, and
σ(DAε,∗

k
T εk ) = σ(Lεk) = {0} ∪ {λε,nk }n≥1

otherwise, where Aε,∗k is the solution to the uncoupled problem T εkA
ε,∗
k = Aε,∗k while DAε,∗

k
T εk is the Fréchet

differential of T εk for the C(Σk) topology.

Let us consider the case R0,k > 1. We first recall that T εk is compact as 0 ≤ T εk ≤ Lεk and as Lεk is
compact by Lemma 4.1.21, then its Fréchet differential is also compact and its spectrum is consequently
identical to its point spectrum. Let k ∈ {1, 2} be given and let L2

Ψk(Ωk) be the weighted L2 space defined by
the inner product 〈f, g〉Ψk :=

∫
Ωk f(z)g(z)Ψk(z)dz. Since Lεk|L2

Ψk
(Ωk) is self-adjoint in the space L2

Ψk(Ωk),
there exists an Hilbert basis of L2

Ψk(Ωk) composed of eigenfunctions of the operator Lεk|L2
Ψk

(Ωk), which we
denote {φε,nk }n≥1, and related to the sequence of eigenvalues {λε,nk }n≥1. Observe that

∀f ∈ C(Σk) : f|Ωk ∈ L2
Ψk(Ωk)

since Ψk ∈ L∞(RN ) and Σk is compact. Observe also that, contrary to the previous sections, here φε,1k is
not normalized in L1(RN ) but in L2

Ψk(Ωk), namely ‖φε,1k ‖L2
Ψk

(Ωk) = 1.
Moreover, every φε,nk can be extended to a function in L1(RN ) ∩ C(RN ) by the identity:

φε,nk (x) := 1
λε,nk

∫
Ωk
mε(x− y)Ψk(y)φε,nk (y)dy, x ∈ RN \ Ωk.

Let h ∈ C(Σk) be given. Then we have

DAε,∗
k
T εkh = Lεkh

1 + θ−1
∫
RN βk(y)Aε,∗k (y)dy −

LεkA
ε,∗
k(

1 + θ−1
∫
RN βk(y)Aε,∗k (y)dy

)2
∫
RN βk(y)h(y)dy

θ
.

Let us write hn := 〈h, φε,nk 〉Ψk . Recalling that 1+θ−1 ∫
RN βk(z)Aε,∗k (z)dz = λε,1k and thatAε,∗k = θ

λε,1
k
−1∫

RN
βk(z)φε,1

k
(z)dz

φε,1k ,
we compute

〈DAε,∗
k
T εkh, φ

ε,n
k 〉Ψk =


h1λε,1k −

λε,1k 〈A
ε,∗
k , φε,1k 〉Ψk

1 + θ−1
∫
RN βk(y)Aε,∗k (y)dy

∫
RN

βk(y)
θ

h(y)dy

1 + θ−1
∫
RN βk(y)Aε,∗k (y)dy , if n = 1,

hnλε,nk
1 + θ−1

∫
RN βk(y)Aε,∗k (y)dy , otherwise,

=


h1 − λε,1

k
−1

λε,1
k

∫
RN

βk(y)h(y)dy∫
RN

βk(z)φε,1
k

(z)dz
, if n = 1,

λε,nk
λε,1k

hn, otherwise.
(4.1.49)
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We deduce that φε,1k is an eigenvector of DAε,∗
k
T εk associated with the eigenvalue 1

λε,1
k

, and that every function

φ̃ε,nk := φε,1k +
(

1− λε,nk
λε,1k − 1

) ∫
RN βk(z)φε,1k (z)dz∫
RN βk(z)φε,nk (z)dz φ

ε,n
k

is an eigenvector of DAε,∗
k
T εk associated with the eigenvalue λε,n

k

λε,1
k

. Thus:

σ(DAε,∗
k
T εk ) ⊃ {0} ∪

{
λε,nk
λε,1k

}
n≥2

∪

{
1
λε,1k

}
Conversely let λ ∈ σ(DAε,∗

k
T εk ) \ {0} be given and h ∈ C(Σk) \ {0} be an associated eigenfunction. If

supph ⊂ Σk \ Ωk then

λh = −λ
ε,1
k − 1
λε,1k

∫
RN βk(y)h(y)dy∫

RN βk(z)φε,1k (z)dz
φε,1k ,

which implies h = φε,1k (up to the multiplication by a nonzero scalar), and this is a contradiction. Therefore
supph∩Ωk 6= ∅. Then, taking the scalar product with φε,nk one finds that (4.1.49) still holds. In particular,
λ is either one of the λε,n

k

λε,1
k

or 1
λε,1
k

. We have shown:

σ(DAε,∗
k
T εk ) ⊂ {0} ∪

{
λε,nk
λε,1k

}
n≥2

∪

{
1
λε,1k

}
,

hence the equality holds.
If now R0,1 ≤ 1, we have Aε,∗k ≡ 0 and therefore DAε,∗

k
T εk = Lεk. Then

σ(DAε,∗
k
T εk ) = σ(Lεk) = {0} ∪ {λε,nk }n≥1 .

Since λε,nk < λε,1k for any k ∈ {1, 2} and n ≥ 2, we deduce that whenever R0,k 6= 1, there exists ε0 > 0 such
that for every ε ∈ (0, ε0], we have:

σ
(
DAε,∗

k
T εk

)
⊂ [0, 1). (4.1.50)

If R0,k = 1, then (4.1.50) holds because of our assumption that λε,1k ≤ 1− CεM .
Step two: For each ε > 0, let λε ∈ σ(DAεT

ε) \ {0} be given and consider a bounded family of associated
eigenvectors hε ∈ C(Σ). We prove that

sup
Σk

∣∣∣(DAε,∗
k
T εk − λεI)hεk

∣∣∣ = o(ε∞), k = 1, 2, (4.1.51)

for ε > 0 sufficiently small, wherein we have set hε1 := χΣ1h
ε and hε2 := χΣ2h

ε.
Let us show the property for k = 1. The case k = 2 is similar. We rewrite the identity χΣ1DAεT

εhε =
λεhε1 as follows

(DAε,∗1
T ε1 − λεI)hε1 = (DAε,∗1

T ε1h
ε
1 −DAε1

T ε1h
ε
1)−DAε2

T ε2h
ε
2 in Σ1. (4.1.52)

Our next task is to show that the right-hand side of the previous equation has order o(ε∞). We first remark
that, by Lemma 4.1.11, we have

sup
x∈Σ1

∣∣DAε2
T ε2h

ε
2(x)

∣∣ = o(ε∞). (4.1.53)

Next we claim that, for k ∈ {1, 2}, one has

sup
Σk

∣∣∣DAε1
T ε1h

ε
1 −DAε,∗1

T ε1h
ε
1

∣∣∣ = o(ε∞). (4.1.54)

Indeed, we have

DAε1
T ε1h

ε
1 −DAε,∗1

T ε1h
ε
1 =

(
1

1 + θ−1
∫
RN β1(y)Aε1(y)dy −

1
1 + θ−1

∫
RN β1(y)Aε,∗1 (y)dy

)
Lε1h

ε
1

−

(
Lε1A

ε
1(

1 + θ−1
∫
RN β1(y)Aε1(y)dy

)2 − Lε1A
ε,∗
1(

1 + θ−1
∫
RN β1(y)Aε,∗1 (y)dy

)2
)∫

RN

β1(y)
θ

hε1(y)dy. (4.1.55)
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On the one hand, using Theorem 4.1.5, we have∣∣∣∣ 1
1 + θ−1

∫
RN β1(y)Aε1(y)dy −

1
1 + θ−1

∫
RN β1(y)Aε,∗1 (y)dy

∣∣∣∣ ≤ ‖β1‖L∞
θ2 ‖Aε1 −A

ε,∗
1 ‖L1(Σ1) = o(ε∞),

which settles the first term on the right-hand side of (4.1.55). On the other hand, we also have

Lε1A
ε
1(

1 + θ−1
∫
RN β1(y)Aε1(y)dy

)2 − Lε1A
ε,∗
1(

1 + θ−1
∫
RN β1(y)Aε,∗1 (y)dy

)2 = Lε1(Aε1 −A
ε,∗
1 )(

1 + θ−1
∫
RN β1(y)Aε1(y)dy

)2
+
(

1(
1 + θ−1

∫
RN β1(y)Aε1(y)dy

)2 − 1(
1 + θ−1

∫
RN β1(y)Aε,∗1 (y)dy

)2
)
Lε1A

ε,∗
1 ,

and, for all x ∈ Σ1

∣∣Lε1(Aε1 −A
ε,∗
1 )
∣∣ (x) =

|ξ1
∫

Ω1
mε(x− y)Ψ1(y)(Aε1(y)−Aε,∗1 (y))dy|

(θ +
∫
RN β1(y)Aε,∗1 (y)dy)2

≤ ξ1
θ2 ‖Ψ1‖L∞

∫
Ω1

m

(
x− y
ε

)
|Aε1(y)−Aε,∗1 (y)|

εN
dy

≤ ξ1
θ2 ‖Ψ1‖L∞‖m‖L∞

‖Aε1 −A
ε,∗
1 ‖L1(Ω1)

εN
= o(ε∞),

thus (4.1.54) holds. Combining (4.1.52), (4.1.53) and (4.1.55), we have indeed shown (4.1.51).

Step three: Assume by contradiction that there exists a sequence λε ∈ σ(DAεT
ε) with ε → 0 and such

that
|λε| ≥ 1.

Let hε ∈ C(Σ) be a sequence of associated normed (in C(Σ)) eigenvectors. Then there is k ∈ {1, 2} such that
supΣk |h

ε
k| = 1 for infinitely many ε > 0. Using the symmetry with respect to the indices and the possible

extraction of subsequences, we will assume in this step that k = 1.
Let us first consider the case where R0,1 > 1. Then, let us define gε := (DAε,∗1

T ε1 − λεI)hε1.
Due to (4.1.51) we have ‖gε‖C(Σ1) = o(ε∞). Next taking the inner product with φε,n1 yields, as in (4.1.49),

〈hε1, φ
ε,n
1 〉Ψ1 = 1

λε,n1
λε,11
− λε

gεn, ∀n ≥ 2,

where gεn := 〈gε, φε,n1 〉Ψ1 . Then,∣∣∣∣∣λε,n1
λε,11

− λε
∣∣∣∣∣ ≥ |λε| −

∣∣∣∣∣λε,n1
λε,11

∣∣∣∣∣ ≥ 1− |λ
ε,2
1 |
|λε,11 |

≥ |λ
ε,1
1 | − |λ

ε,2
1 |

|λε,11 |
≥ CεM ,

for some C > 0 and M > 0 independent of ε and n. This shows

|〈hε1, φ
ε,n
1 〉Ψ1 | = |gεn| × O(ε−M ), ∀n ≥ 2

therefore

‖hε1 − 〈hε1, φ
ε,1
1 〉Ψ1φ

ε,1
1 ‖2L2

Ψ1
=

+∞∑
n=2
|〈hε1, φ

ε,n
1 〉Ψ1 |2 =

+∞∑
n=2

∣∣∣∣∣∣ 1
λε,n1
λε,11
− λε

gεn

∣∣∣∣∣∣
2

≤ C−2ε−2M
+∞∑
n=2
|gεn|2 ≤ C−2ε−2M‖gε‖2L2

Ψ1
= o(ε∞)

by using (4.1.51).
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Set µε := hε1−〈hε1, φ
ε,1
1 〉Ψ1φ

ε,1
1 , then we have ‖Lε1µε‖C(Σ1) = O(‖µε‖L2

Ψ1
) = o(ε∞). By means of (4.1.51),

we deduce that

λεhε1 + o(ε∞) = DAε,∗1
T ε1h

ε
1 = Lε1(µε + 〈hε1, φ

ε,1
1 〉Ψ1φ

ε,1
1 )

λε,11
− λε,11 − 1

λε,11

∫
RN β1(y)hε1(y)dy∫
RN β1(y)φε,11 (y)dy

φε,11

=
(
〈hε1, φ

ε,1
1 〉Ψ1 −

λε,11 − 1
λε,11

∫
RN β1h

ε
1∫

RN β1φ
ε,1
1

)
φε,11 + o(ε∞) := αεφε,11 + o(ε∞). (4.1.56)

Next note that
1 ≤ |λε| sup

x∈Σ1

|hε1(x)| = |αε| sup
x∈Σ1

φε,11 (x) + o(ε∞),

where

sup
x∈Σ1

φε,11 (x) = 1
λε,11

sup
x∈Σ1

Lε1φ
ε,1
1 (x) = 1

λε,11
sup
x∈Σ1

Λξ1
θ

∫
RN

mε(x− y)Ψ1(y)φε,11 (y)dy

≤ Λξ1
λε,11 θ

‖m‖L∞
εN

‖Ψ1‖L2(R)‖φε,11 ‖L2
Ψk

= O(ε−N ),

therefore |αε| ≥ CεN for some constant C > 0. By definition of hε and using (4.1.53)-(4.1.56), it follows
that

o(ε∞) = (DAε,11
T ε1 − λεI)hε1 = 1

λε
(DAε,11

T ε1 − λεI)(αεφε,11 + o(ε∞)) = αε

λε

(
1
λε,11
− λε

)
φε,11 + o(ε∞),

then multiplying by φε,11 Ψ1 and integrating, we get∣∣∣∣∣ 1
λε,11
− λε

∣∣∣∣∣ = o(ε∞).

Since λε ≥ 1 and λε,11 → R0,1 > 1 as ε→ 0, we obtain a contradiction.
Now we assume that R0,1 ≤ 1, then we have Aε,∗1 ≡ 0, hence

DAε,∗1
T ε1 = Lε1,

which leads us to
rσ(DAε,∗1

T ε1 ) = rσ(Lε1) −−−→
ε→0

R0,1 ≤ 1.

Moreover, by definition of λε and using (4.1.51), we have (Lε1 − λεI)hε1 =: gε = o(ε∞) hence

‖hε1‖L2
Ψ1
≤ ‖(Lε1 − λεI)−1gε‖L2

Ψ1
≤ ‖(Lε1 − λεI)−1‖L(L2

Ψ1
)‖gε‖L2

Ψ1
= 1

dist(λε, σ(Lε1))‖g
ε‖L2

Ψ1
.

Now let us observe that there exists some constant C > 0 such that ‖hε1‖L2
Ψ1
≥ CεN for ε sufficiently small.

To see this, note that one has, for all x ∈ Σ1,

|hε1|(x) = 1
|λε|
|Lε1hε1(x)− gε(x)| ≤ 1

|λε|

(
Λξ1
θ

∫
RN

mε(x− y)|hε1|(y)Ψ1(y)dy + |gε|(x)
)

≤ c

εN
‖hε1‖L2

Ψ1
+ o(ε∞),

where c > 0 is some constant independent of ε. Finally recalling that ‖hε1‖C(Σ1) = 1 this proves the expected
lower bound for ‖hε1‖L2

Ψ1
. This estimate allows us to conclude that

dist(λε, σ(Lε1)) = o(ε∞),

which is a contradiction since λε ≥ 1 while

sup{|λ|, λ ∈ σ(Lε1)} = r(Lε1) ≤ 1− CεM ,

by our assumptions and (4.1.50). This completes the proof of Lemma 4.1.16.
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Our next task is to compute the Leray-Schauder degree of the operator T ε in a suitable subset of the
positive cone, C+(Σ), of C(Σ). For α > 0 we define the open set

Kα := {A ∈ C(Σ) : A(x) > α ∀x ∈ Σ} .

Lemma 4.1.17 (Computation of the degree). Assume that R0,1 > 1. Then, for ε > 0 sufficiently small,
there exists α = α(ε) > 0 such that for any nonnegative nontrivial fixed point A ∈ C(Σ) of T ε, we have:

A ∈ Kα.

Moreover,
deg (I − T ε,Kα) = 1, (4.1.57)

where deg denotes the Leray-Schauder degree.

Proof. Our proof relies on the construction of a suitable homotopy which allows us to separate the variables
and compute the Leray-Schauder degree. For technical reasons, we do not use the same homotopy in the
case R0,2 > 1 and R0,2 < 1. Therefore, we split the proof into two parts.

Part 1: the case R0,2 > 1. Let us define, for τ ∈ [0, 1], A ∈ C+(Σ) and (A1, A2) := (χΣ1A,χΣ2A), the
operators

T ε,τ1 (A) : = χΣ1L
ε
1A1

1 + θ−1
∫
RN β1(y)A1(y)dy + τ

χΣ1L
ε
2A2

1 + θ−1
∫
RN β2(y)A2(y)dy = χΣ1T

ε
1A1 + τχΣ1T

ε
2A2,

T ε,τ2 (A) : = τ
χΣ2L

ε
1A1

1 + θ−1
∫
RN β1(y)A1(y)dy + χΣ2L

ε
2A2

1 + θ−1
∫
RN β2(y)A2(y)dy = τχΣ2T

ε
1A1 + χΣ2T

ε
2A2,

T ε,τ (A) : = T ε,τ1 A+ T ε,τ2 A

(4.1.58)

where T εk is defined in (4.1.7) for each k ∈ {1, 2}. The map (τ,A) 7→ T ε,τ (A) is continuous from [0, 1]×C+(Σ)
into C(Σ). Let us first observe that there exists M > 0 such that for all τ ∈ [0, 1], if A ∈ C+(Σ) satisfies
A = T ε,τ (A) then ‖A‖L1(Σ) ≤M . One may also notice that this upper bound can be chosen independently
of ε > 0.

We first show that the fixed points of T ε,τ can be estimated from below uniformly in τ ∈ (0, 1). This will
allow us to easily compute the Leray-Schauder degree, since T ε,0 is completely uncoupled in its variables.

Step 1: We show that there exists α > 0 (independent of τ ∈ [0, 1]) such that

min
x∈Σ

(Aτ (x)) > α, (4.1.59)

for any nontrivial and nonnegative Aτ satisfying T ε,τAτ = Aτ for some τ ∈ [0, 1].
Let τ ∈ [0, 1] and (Aτ1 , Aτ2) ∈ C+(Σ1) × C+(Σ2) ⊂ L1

+(Σ1) × L1
+(Σ2) be a nontrivial fixed point of T ε,τ ,

i.e. T ε,τ (Aτ1 +Aτ2) = (Aτ1 +Aτ2). We remark that

T ε,τ1 Aτ ≥ T ε,τ1 Aτ1 = χΣ1T
ε
1A

τ
1 and T ε,τ2 Aτ ≥ T ε,τ2 Aτ2 = χΣ2T

ε
2A

τ
2 .

In particular, we have
Aτk = (T ε,τk )nAτ ≥ χΣk(T εk )nAτk, (4.1.60)

everywhere in Σk and for all n ∈ N and k = 1, 2. Since limε→0 rσ(Lεk) = R0,k > 1, we can find ε0 > 0 such
that rσ(Lε1) > 1 and rσ(Lε2) > 1 for any ε ∈ (0, ε0]. Let ε ∈ (0, ε0] be given, then using (4.1.19) we get

lim sup
n→∞

∫
RN

βk(y)(T εk )n(ϕ)(y)dy ≥ θ

2(rσ(Lεk)− 1) > 0,

for any k ∈ {1, 2} and any ϕ ∈ L1
+(Σk) \ {0}. We deduce that there exists η > 0 (independent of ε small

and τ) such that ∫
RN

βk(y)Aτk(y)dy ≥ lim sup
n→∞

∫
RN

βk(y)(T εk )n(Aτk)(y)dy ≥ η (4.1.61)
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for any k ∈ {1, 2}. Next, using (4.1.25) and since the fixed points of T ε,τ are bounded by some constant M
in L1(Σ), we obtain Aτk = T ε,τk Aτ ≤ LεkA

τ
k + o(ε∞) where o(ε∞) is uniform with respect to τ ∈ [0, 1] and

x ∈ Σk. Hence we get

η ≤
∫
RN

βk(x)Aτk(x)dx ≤ Λξk
θ

∫∫
RN×RN

βk(x)mε(x− y)Aτk(y)Ψk(y)dydx+ o(ε∞)

≤ Λξk‖βk‖L∞
θ

∫
RN

Ψk(y)Aτk(y)dy + o(ε∞).

Using (4.1.60), we get for any k ∈ {1, 2} and any x ∈ Σk:

Aτk(x) ≥ Λξk
θ +M‖βk‖L∞

∫
Ωk
mε(x− y)Ψk(y)Aτk(y)dy

≥ Λξk
θ +M‖βk‖L∞

min
x∈Σk

min
τ∈[0,1]

∫
Ωk
mε(x− y)Ψk(y)Aε,τk (y)dy ≥ c(ε).

for some constants M > 0 and c(ε) > 0 independent of Aτ and τ ∈ [0, 1]. This shows (4.1.59) and thus
that, for ε > 0 sufficiently small, there exists α = α(ε) > 0 such that for any τ ∈ [0, 1], any nontrivial and
nonnegative fixed points Aτ of T ε,τ satisfies Aτ ∈ Kα.

Step 2: We compute the Leray-Schauder degree of the operator T ε in the open set Kα.
We have shown in the previous step that A ∈ Kα for any positive fixed point of the operator T ε,τ with

τ ∈ (0, 1]. In particular, there is no fixed point of T ε,τ on the boundary of Kα for τ ∈ (0, 1]. For τ = 0, the
operator T ε,0 is uncoupled and hence we can compute the set of nonnegative fixed points of T ε,0, which is
{(0, 0), (Aε,∗1 , 0), (0, Aε,∗2 ), (Aε,∗1 , Aε,∗2 )}. None of those points lie in the boundary of Kα. In particular, [81,
Theorem 11.8] applies and shows that the Leray-Schauder degree in Kα is independent of τ , i.e.

deg(I − T ε,0,Kα) = deg(I − T ε,1,Kα).

Since T ε,0 is uncoupled with respect to (A1, A2) ∈ C(Σ1)×C(Σ2), the product property of the Leray-Schauder
degree (see [81, Theorem 11.3]) implies that

deg(I − T ε,0,Kα) = deg(I − T ε1 ,K1
α)× deg(I − T ε2 ,K2

α),

where Kk
α := {Ak ∈ C(Σk) |Ak(x) > α, ∀x ∈ Σk} for k ∈ {1, 2}. Finally, since T εk has exactly one fixed

point in Kk
α and 1 /∈ σ

(
DAε,∗

k
T εk

)
, the degree of the nonlinear operator T εk can be linked to the degree of its

Fréchet derivative near Aε,∗k (see [81, Theorem 22.3])

deg(I − T εk ,Kk
α) = deg(I −DAε,∗

k
T εk , B(0, 1)),

where B(0, 1) is the open ball of radius 1 in C(Σk). The explicit formula of the degree of linear operators
(see [81, Theorem 21.10]) allows us to conclude that

deg(I −DAε,∗
k
T εk , B(0, 1)) = 1,

since σ(DAε,∗
k
T εk ) ⊂ (−1, 1) for k ∈ {1, 2}. This shows (4.1.57) and ends the proof of Lemma 4.1.17 in the

case R0,2 > 1.

Part 2: the case R0,2 ≤ 1. In this case we cannot use the same homotopy as in Part 1 to compute
the Leray-Schauder degree, because T ε2 has no nonnegative nontrivial fixed point. Instead, we define, for
τ ∈ [0, 1], A ∈ C+(Σ) and (A1, A2) := (χΣ1A,χΣ2A), the operators

T ε,τ1 (A) : = χΣ1L
ε
1A1

1 + θ−1
∫
RN β1(y)A1(y)dy + χΣ1L

ε,τ
2 A2

1 + θ−1
∫
RN β

τ
2 (y)A2(y)dy ,

T ε,τ2 (A) : = χΣ2L
ε
1A1

1 + θ−1
∫
RN β1(y)A1(y)dy + χΣ2L

ε,τ
2 A2

1 + θ−1
∫
RN β

τ
2 (y)A2(y)dy ,

T ε,τ (A) : = T ε,τ1 A+ T ε,τ2 A.

(4.1.62)
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where βτ2 (y) :=
(

1 + τ
(

2
R0,2
− 1
))

β2(y), Ψτ
2(y) := βτ2 (y)r2(y)

δ(θ+d2(y)) and

Lε,τ2 ϕ = Λ
θ

∫
Ω2

mε(x− y)ξ2Ψτ
2(y)ϕ(y)dy

which is well-defined since R0,2 > 0 (recall that Ψ2 6≡ 0 by Assumption 4.1.1). This corresponds to artifi-
cially increasing the basic reproductive number of the second equation until it becomes greater than 1. In
particular, for τ = 1 we are in the same situation as in Part 1 since

Λ
θ
ξ2‖Ψ1

2‖L∞ = 2.

Note that, as above, there exists M > 0 such that for all τ ∈ [0, 1], any fixed point Aτ ∈ C+(Σ) of T ε,τ
satisfies ‖Aτ‖L1(Σ) ≤M . Here our only task consists in finding a uniform lower bound for the fixed point of
T ε,τ .

Claim: There is α > 0 such that for any τ ∈ (0, 1) and any nonnegative nontrivial Aτ solution to T ε,τAτ =
Aτ , we have A ∈ Kα.

Indeed, let Aτ be such a fixed point. We first remark that Aτ1 ≥ χΣ1(T ε1 )nAτ1 for any n ∈ N, hence:∫
RN

β1(y)Aτ1(y)dy ≥ lim sup
n→∞

∫
RN

β1(y)(T ε1 )n(Aτ1)(y)dy ≥ θ

2(rσ(Lε1)− 1) > 0,

where we have used (4.1.19) as in the Step 1 of Part 1. Thus, we have

Aτ1(x) ≥ Λξkc(ε)
θ +M‖β1‖L∞

≥ η > 0, ∀x ∈ Σ1

for some constants M > 0 and η > 0. To estimate Aτ2 , we remark that

Aτ2 ≥ χΣ2T
ε
1A

τ
1 = χΣ2L

ε
1A

τ
1

1 + θ−1
∫
RN β1(y)Aτ1(y)dy = Λ

θ

χΣ2

∫
Ω1
mε(· − y)ξ1Ψ1(y)Aτ1(y)dy

1 + θ−1
∫
RN β1(y)Aτ1(y)dy

and, as in Part one, we have Aτ1 = T ε,τ1 Aτ ≤ Lε1Aτ1 + o(ε∞), and thus

η ≤
∫
RN

β1(x)Aτ1(x)dx ≤ Λξ1
θ

∫∫
RN×RN

β1(x)mε(x− y)Aτ1(y)Ψ1(y)dydx+ o(ε∞)

≤ Λξ1‖β1‖∞
θ

∫
RN

Ψ1(y)Aτ1(y)dy + o(ε∞).

We conclude
Aτ2(x) ≥ Λξ1η

θ +M‖β1‖L∞
min
x∈Σ2

∫
Ω1

mε(x− y)dy > 0

for every x ∈ Σ2. This proves our Claim.

To finish the proof of the second part, we remark that the Leray-Schauder degree is independent of τ
(see [81, Theorem 11.8]), i.e.

deg(I − T ε,0,Kα) = deg(I − T ε,1,Kα),

and we have proved in Part 1 that, for α sufficiently small, we have deg(I − T ε,1,Kα) = 1. This finishes the
proof of Lemma 4.1.17.

Lemma 4.1.18. There exists ε0 > 0 such that for every ε ∈ (0, ε0], there is a finite number of nonnegative
nontrivial fixed point of T ε.

Proof. Let ε > 0 and assume by contradiction that there exist infinitely many fixed points of T ε. Since T ε
is compact from C+(Σ) into itself, there exist a sequence An ∈ Kα of fixed points of T ε and A such that

‖An −A‖L∞ −−−−→
n→∞

0.
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By definition we have T ε(An) = An for every n ∈ N. By the continuity of T ε we get

T ε(A) = A.

Since T ε is Fréchet differentiable at the point A, we have as n→∞

A−An

‖A−An‖L∞
= T ε(A)− T ε(An)
‖A−An‖L∞

= 1
‖A−An‖L∞

DAT
ε
(
An −A

)
+ o(1).

Let us define
Un = A−An

‖A−An‖L∞
,

then we have
Un := DAT

εUn + o(1) as n→∞.

By the compactness of T ε, we can extract from Un a subsequence Ūn which converges to U∞ with ‖U∞‖L∞ =
1. We conclude

U∞ = DAT
ε,1U∞

which is a contradiction since 1 6∈ σ(DAT
ε,1) by Lemma 4.1.16. This finishes the proof of Lemma 4.1.18.

We can finally prove our uniqueness result for ε > 0 small.

Proof of Theorem 4.1.8. By Lemma 4.1.18, there exists a finite number Nε of fixed points of T ετ . Denote by
Aε,i, i ∈ J1, NεK an enumeration of the fixed points of T ετ . By the additivity property of the Leray-Schauder
degree (see [81, Theorem 11.4, p. 79] and [81, Theorem 11.5, p. 79]), we get

deg (I − T ε,Kα) = deg
(
I − T ε,

Nε⋃
i=1

B(Aε,i, η)
)

=
Nε∑
i=1

deg
(
I − T ε, B(Aε,i, η)

)
, (4.1.63)

for η > 0 sufficiently small, where α > 0 is the constant from Lemma 4.1.17 and B(Aε,i, η) is the ball of
center Aε,i and of radius η in C(Σ). Next, using [81, Theorem 22.3], we can link the degree of T ε to the one
of its Fréchet derivative close to a fixed point

deg
(
I − T ε,1, B(Aε,i, η)

)
= deg

(
I −DAε,iT

ε,1, B(0, 1)
)

= 1

for η > 0 sufficiently small and for every i ∈ J1, NεK. This leads to

deg
(
I − T ε,1,Kα

)
= Nε,

where we have used (4.1.63). Since we have shown in Lemma 4.1.17 that deg(I − T ε,Kα) = 1, we conclude
that Nε = 1. We have proven the uniqueness of the nonnegative nontrivial fixed point of T ε for ε > 0 small,
which completes the proof of Theorem 4.1.8.

4.1.6 Spectral properties of a weighted convolution operator
In this appendix, we state and recall some basic spectral properties of a weighted convolution operator as
in (4.1.8), i.e. of the form

Lε = mε ? (Ψ ·) , (4.1.64)

where mε = ε−Nm
(
ε−1·

)
with ε > 0. Throughout this appendix, we assume

Assumption 4.1.19. The function m satisfies Assumption 4.1.1 c) and Ψ : RN → [0,∞) is a non-zero
continuous function tending to 0 at ‖x‖ = +∞.

The above assumption allows us to directly apply the results presented in this Appendix to operator Lε
as well as to Lε1 and Lε2 as defined in (4.1.5)

We start this section 4.1.6 by reminding the following definition about positive operators:
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Definition 4.1.20. Let p ∈ [1,∞), I ⊂ RN and K ∈ Ł(Lp(I)) be given. We denote by

Lp+(I) := {ϕ ∈ Lp(I) : ϕ(x) ≥ 0 a.e.}

the positive cone of Lp(I). Let 〈·, ·〉 be the duality product between Lp(I) and Lp′(I) where 1/p+ 1/p′ = 1.
For ϕ ∈ Lp(I), the notation ϕ 	 0 will refer to ϕ ∈ Lp+(I) and ϕ 6≡ 0 while the notation ϕ > 0 will refer to
ϕ ∈ Lp+(I) and ϕ(x) > 0 a.e. We say that

1. K is positive if K
(
Lp+(I)

)
⊂ Lp+(I);

2. K is said to be positivity improving if K is positive and if, for every ϕ ∈ Lp(I), ϕ 	 0 and φ ∈ Lp′(I),
φ 	 0, we have 〈Kϕ, φ〉 > 0.

Consider the non-empty open set Ω ⊂ RN given by

Ω = {x ∈ RN : ψ(x) ∈ (0,∞)}.

We will denote, in the following lemma only, by Lεp,Mε
p , the operator Lε defined in (4.1.8) and considered

as endomorphisms on Lp(Ω), Lp(RN ) respectively.

Lemma 4.1.21. Let Assumption 4.1.19 be satisfied. Then the following properties are satisfied:

1. Let p ≥ 1. The operators Lεp and Mε
p are compact, their spectra σ(Lεp)\{0} and σ(Mε

p )\{0} are com-
posed of isolated eigenvalues with finite algebraic multiplicity. All these operators share the same spec-
tral radius – independent of p – denoted by rσ(Lε), which is a positive algebraically simple eigenvalue.
There exists a function φε,1p ∈ Lp(Ω) satisfying

φε,1p > 0, Lεpφ
ε,1
p = rσ(Lε)φε,1p .

Moreover Lεp is positivity improving and, if φ ∈ Lp(RN ), φ 	 0 satisfies the equality Lεpφ = αφ for
some α ∈ R, then φ > 0, φ ∈ span(φε,1p ) and α = rσ(Lεp). Finally, we have σ(Mε

p ) = σ(Lεp).

2. Assume that Ω is bounded, let Sε be the positive self-adjoint operator defined by

Sε : L2(Ω) 3 ϕ(x) 7→
√

Ψ(x)
∫
RN

mε(x− y)
√

Ψ(y)ϕ(y)dy ∈ L2(Ω), (4.1.65)

then for every p ≥ 1, we have σ(Sε) = σ(Lεp) ⊂ R+, and the following Rayleigh formula holds

rσ(Lε) = rσ(Sε) = sup
ϕ∈L2(Ω)
‖ϕ‖L2(Ω)=1

∫
Ω

∫
Ω

√
Ψ(x)

√
Ψ(y)mε(x− y)ϕ(x)ϕ(y)dxdy. (4.1.66)

Moreover, rσ(Lε) satisfies

rσ(Lε) −−−→
ε→0

‖Ψ‖L∞ .

3. Suppose that Ω bounded and let Σ ⊃ Ω be a compact set. The operator LεΣ, the realisation of Lε in
C(Σ), is compact and one has σ(LεΣ) = σ(Lεp) for any p ≥ 1.

Proof. Item 1 is rather classical and has been proved in [145, Theorem 4.1]. In short, the inclusion σ(Mε
p ) ⊂

σ(Lεp) is straightforward, while the reverse inclusion comes from the fact that any eigenfunction φε of Lεp
related to the eigenvalue λε can be extended from Lp(Ω) to Lp(RN ) by setting

φε(x) := 1
λε

∫
Ω
mε(x− y)Ψ(y)φε(y)dy, ∀x ∈ RN \ Ω. (4.1.67)

Let us show Item 2. Recall that Ω is bounded. Let p ≥ 1, λ ∈ σ(Lεp) be an eigenvalue and ϕ ∈ Lp(Ω) ⊂
L1(Ω) be the associated eigenvector for Lεp, i.e.

Lεpϕ(x) =
∫

Ω
mε(x− y)Ψ(y)ϕ(y)dy = λϕ(x)
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so that ϕ ∈ L∞(Ω) by the Young inequality. Multiplying the above equation by
√

Ψ(x), we get:√
Ψ(x)

∫
Ω
mε(x− y)

√
Ψ(y)

√
Ψ(y)ϕ(y)dy = λ

√
Ψ(x)ϕ(x) ⇐⇒ SεΦ(x) = λΦ(x),

with Φ :=
√

Ψϕ ∈ L∞(Ω) ⊂ L2(Ω). Therefore λ ∈ σ(Sε). We have shown:

σ(Lεp) ⊂ σ(Sε), ∀p ≥ 1.

Let us show the reverse inclusion. Note that due to the first item, the operator Sε is compact on L2(Ω) and
therefore σ(Sε) consists in isolated eigenvalues. Let λ ∈ σ(Sε)\{0} be an eigenvalue and Φ ∈ L2(Ω) be an
associated eigenvector, so that

Φ(x)√
Ψ(x)

= 1
λ
·
∫

Ω
mε(x− y)

√
Ψ(y)Φ(y)dy ∈ L∞(Ω).

Hence there exists a non-zero function ϕ ∈ L∞(Ω) ⊂ Lp(Ω),∀p ≥ 1 such that Φ = ϕ
√

Ψ where the function
ϕ satisfies

λϕ(x) =
∫

Ω
mε(x− y)

√
Ψ(y)

√
Ψ(y)ϕ(y)dy = Lεϕ(x).

Thus λ ∈ σ(Lεp) for any p ≥ 1 and we have shown

σ(Sε) ⊂ σ(Lεp), ∀p ≥ 1.

Formula (4.1.66) is classical for positive and symmetric operators.
Now let φε,1 be the positive eigenfunction of Lε associated with rσ(Lε), normalised so that

∫
Ω φ

ε,1(y)dy =
1. We first notice that

rσ(Lε) = rσ(Lε)
∫

Ω
φε,1(x)dx =

∫∫
Ω×Ω

mε(x− y)Ψ(y)φε,1(y)dydx

≤ ‖Ψ‖L∞
∫

Ω

∫
Ω
mε(x− y)dxφε,1(y)dy ≤ ‖Ψ‖L∞ .

Next let x0 ∈ Ω be such that Ψ(x0) = supx∈Ω Ψ(x). Injecting the function 1√
|B(x0,r)|

χB(x0,r)(x) into (4.1.66)
yields

rσ(Lε) = rσ(Sε) ≥ 1
|B(x0, r)|

∫∫
Ω×Ω

√
Ψ(x)

√
Ψ(y)mε(x− y)χB(x0,r)(x)χB(x0,r)(y)dydx

≥
(

inf
x∈B(x0,r)

√
Ψ(x)

)2 1
|B(x0, r)|

∫∫
B(x0,r)2

mε(x− y)dxdy

= inf
x∈B(x0,r)

Ψ(x) 1
|B(x0, r)|

εN
∫∫

B(x0,r/ε)2
m (x− y) dydx

= inf
x∈B(x0,r)

Ψ(x)
εN
∣∣B (x0,

r
ε

)∣∣
|B(x0, r)|

∫
B(0,r/ε)

m (y) dy

= inf
x∈B(x0,r)

Ψ(x)
∫
B(0,r/ε)

m (y) dy −→
ε→0

inf
x∈B(x0,r)

Ψ(x),

for all r > 0 sufficiently small so that B(x0, r) ⊂ Ω. This proves the following inequality

inf
x∈B(x0,r)

Ψ(x) ≤ lim inf
ε→0

rσ(Lε) ≤ lim sup
ε→0

rσ(Lε) ≤ ‖Ψ‖L∞ .

Since limr→0 infx∈B(x0,r) Ψ(x) = ‖Ψ‖L∞ , Item 2 is proved.
Finally we prove the last point, that is Item 3. As Σ is compact the fact that LεΣ is compact follows

from the Arzelà-Ascoli theorem. It remains to show that σ(LεΣ) = σ(Lεp) for any p ≥ 1. The inclusion
σ(LεΣ) ⊂ σ(Lεp) is immediate since C(Σ) ⊂ Lp(Σ) for every p ≥ 1 and Ω ⊂ Σ. Let p ∈ [1,∞) be given. The
reverse inclusion follows from the identity (4.1.67) that allows to extend the eigenfunction from Lp(Ω) to
Lp(Σ). Let us notice that mε ? (Ψφ) ∈ C(Σ) as soon as φ ∈ Lp(Σ) ⊂ L1(Σ) (see e.g. [63, Corollary 3.9.6, p.
207]).

This ends the proof of Lemma 4.1.21.
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We now give some asymptotic results for compact and positivity improving operators. The following
result is classical but here we propose a proof for the sake of completeness.

Lemma 4.1.22. Suppose that Assumption 4.1.19 holds and let Lε be the operator defined in (4.1.64),
considered as an operator from L1(Ω) into itself.

1. The operator Lε satisfies rσ(Lε) > 0 and

lim
n→∞

∥∥∥∥ (Lε)n(ϕ)
(rσ(Lε))n −Π(ϕ)

∥∥∥∥
L1(Ω)

= 0

for every ϕ ∈ L1(Ω), where Π is the finite-rank projection into Ker
(
I − Lε

rσ(Lε)

)
. Moreover Π is

positivity improving.

2. If rσ(Lε) > 1, then
lim
n→∞

‖(Lε)n(ϕ)‖L1(Ω) =∞

for every ϕ ∈ L1
+(Ω) \ {0}. If rσ(Lε) < 1, then

lim
n→∞

‖(Lε)n(ϕ)‖L1(Ω) = 0

for every ϕ ∈ L1
+(Ω) \ {0}.

Proof. Step one: since Lε is compact and positivity improving, then rσ(Lε) > 0 by [314, Theorem 3] and
rσ(Lε) is a simple eigenvalue of Lε (see Lemma 4.1.21). We recall that

L1(Ω) = Ker
(
I − Lε

rσ(Lε)

)
⊕ Rg(I −Π).

Moreover the projection Π is given by the formula

Π(ϕ) = 〈φ
′, ϕ〉
〈φ′, φ〉

φ

where φ and φ′ denote respectively the eigenfunctions of Lε and its dual (Lε)′, associated to rσ(Lε). Note
that rσ(Lε) is a pole of the resolvent of Lε and an eigenvalue of (Lε)′ by the Krein-Rutman theorem (see e.g.
[281, Theorem 4.1.4, p. 250] and [281, Theorem 4.1.5, p. 251]). Moreover, φ′ � 0 (see e.g. [414, Proposition
4]). Consequently Π is positivity improving and for every ϕ ∈ L1(Ω), we have

Lε(ϕ) = Lε(Π(ϕ)) + Lε(I −Π)(ϕ) = rσ(Lε)Π(ϕ) + Lε(I −Π)(ϕ).

By induction, for every n ≥ 0, we get

(Lε)n(ϕ) = (rσ(Lε))nΠ(ϕ) + [Lε(I −Π)]n (ϕ).

Hence ∥∥∥∥ (Lε)n(ϕ)
(rσ(Lε))n −Π(ϕ)

∥∥∥∥
L1(Ω)

=
‖(Lε(I −Π))n(ϕ)‖L1(Ω)

(rσ(Lε))n

≤
‖(Lε(I −Π))n‖Ł(L1(Ω))

(rσ(Lε))n ‖ϕ‖L1(Ω).

On the one hand it is known (see e.g. [129, Theorem 1.5.4, p. 30]) that

σ(Lε(I −Π)) = σ(Lε) \ {rσ(Lε)},

and therefore
rσ(Lε(I −Π)) < rσ(Lε).

On the other hand, the Gelfand equality implies that

rσ(Lε(I −Π)) = lim
n→∞

n

√
‖(Lε(I −Π))n‖Ł(L1(Ω))
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so that
‖(Lε(I −Π))n‖Ł(L1(Ω)) ≤ (rσ(Lε(I −Π)) + η)n

for any η > 0 and n large enough. Consequently we have

lim
n→∞

∥∥∥∥ (Lε)n(ϕ)
(rσ(Lε))n −Π(ϕ)

∥∥∥∥
L1(Ω)

≤ lim
n→∞

(
rσ(Lε(I −Π)) + η

rσ(Lε)

)n
‖ϕ‖L1(Ω) = 0

where η > 0 is chosen such that rσ(Lε(I − Π)) + η < rσ(Lε). This completes the proof of the first part of
the lemma.

Step two: suppose first that rσ(Lε) < 1 and let ϕ ∈ L1
+(Ω) be given. Due to the first item we have

0 = lim sup
n→∞

∥∥∥∥ (Lε)n(ϕ)
(rσ(Lε))n −Π(ϕ)

∥∥∥∥
L1(Ω)

≥ lim sup
n→∞

∥∥∥∥ (Lε)n(ϕ)
(rσ(Lε))n

∥∥∥∥
L1(Ω)

− ‖Π(ϕ)‖L1(Ω) .

Assume by contradiction that
lim sup
n→∞

‖(Lε)n(ϕ)‖L1(Ω) > 0.

Then, there exist η > 0 and a sequence nk →∞ such that

‖(Lε)nk‖L1(Ω) ≥ η > 0, ∀k ≥ 0.

Therefore, we have

η

(rσ(Lε))nk ≤
∥∥∥∥ (Lε)nk(ϕ)

(rσ(Lε))nk

∥∥∥∥
L1(Ω)

≤ ‖Π(ϕ)‖L1(Ω) + o(1) as k →∞

which yields a contradiction.
Consider now the case where rσ(Lε) > 1 and let ϕ ∈ L1

+(Ω) be such that
∫

Ω ϕ(y)dy > 0. Using again
the part part of the lemma, we have

0 = lim sup
n→∞

∥∥∥∥ (Lε)n(ϕ)
(rσ(Lε))n −Π(ϕ)

∥∥∥∥
L1(Ω)

≥ ‖Π(ϕ)‖L1(Ω) − lim sup
n→∞

∥∥∥∥ (Lε)n(ϕ)
(rσ(Lε))n

∥∥∥∥
L1(Ω)

.

Assume by contradiction that
lim sup
n→∞

‖(Lε)n(ϕ)‖L1(Ω) <∞.

Then, there is η > 0 and a sequence nk →∞ such that

‖(Lε)nk‖L1(Ω) ≤ η <∞, ∀k ≥ 0.

Therefore, we have

η

(rσ(Lε))nk ≥
∥∥∥∥ (Lε)nk(ϕ)

(rσ(Lε))nk

∥∥∥∥
L1(Ω)

≥ ‖Π(ϕ)‖L1(Ω) + ok→∞(1),

which is a contradiction and item 2 is proved. This finishes the proof of Lemma 4.1.22.
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4.2 On the competitive exclusion principle for continuously distributed
populations

In this section 4.2 we investigate the large time behavior of the systemSt(t) = Λ− θS(t)− S(t)
∫
RN

α(x)γ(x)I(t,dx), x ∈ RN ,

It(t,dx) =
(
α(x)S(t)− 1

)
γ(x)I(t,dx),

(4.2.1)

equipped with suitable non-negative initial data. This system of equations intervenes in theoretical ecology,
in epidemiology and in genetics. In ecology, it describes the evolution of a population of individuals with
density I that compete for a single limited resource with density S = S(t). In epidemiology, this system
describes the evolution of the number of susceptible S and of the density of infected individuals I who have
been contaminated by different pathogen variants of some disease. In both cases, the density of individuals
I is represented by a measure on the space RN , for some integer N > 0, of phenotypic traits. Representing
the density I by a measure is natural in this context as one expects concentration properties of the density
on one or several optimal traits as time goes to infinity. Note also that this model does not take into account
mutations but only pure competition (or selection).

In the context of ecology, phenotypical traits are related to the competitors and how they interact with
the resource via the continuous functions α and γ, while the last two parameters Λ > 0 and θ > 0 are positive
constants which encode the renewal and disappearance rates of the resource. The “Competitive exclusion
principle” states that “Complete competitors cannot coexist”, which in particular means that given a number
of species competing for the same resource in the same place, only one can survive in the long run. This idea
was already present to some extent in the book of Darwin, and is sometimes referred to as Gause’s law [201].
The aim of the present section 4.2 is to investigate this principle in the case of a continuously distributed
initial population. We will show in particular that, while it is true that the species have to maximize the
fitness function in order to survive, the natural process of competition is not selecting a unique species but
several species may coexist as long as they maximize the fitness function. In many cases it is possible to
compute the eventual repartition of the surviving competitors. In some cases, species that maximize the
fitness may still get extinct if the initial population is not sufficient, and we provide a way to characterize
when this unexpected extinction happens. Considering a situation where R0 has more than one maximum
at the same exact level may appear artificial but is not without biological interest. Indeed, the long-time
behavior that we observe in these borderline cases can persist in transient time upon perturbing the function
R0. For example in the epidemiological context of [133], it has been observed that a strain 1 with a higher
value of γ and a slightly lower R0 value than a strain 2 may nevertheless be dominant for some time, see
Figure 4.2.8. These borderline cases shed light on our understanding of the transient dynamics, see also [85]
where we explicit transient dynamics for a related evolutionary model depending on the local flatness of the
fitness function.

This problem of survival of competitors has attracted the attention of mathematicians since the ’70s and
many studies have proved this property in many different contexts – let us mention the seminal works of Hsu,
Hubbell and Waltman [218] and Hsu [217], followed by Armstrong and McGehee [17], Butler and Wolkowicz
[89], Wolkowicz and Lu [401], Hsu, Smith and Waltman [216], Wolkowicz and Xia [402], Li [251], and more
recently Rapaport and Veruete [333], to cite a few – and also disproved in other contexts, for instance in
fluctuating environments, see Cushing [126] and Smith [360].

A common feature of the above-mentioned studies on the competitive exclusion principle is that they all
focus on finite systems representing the different species competing for the resource. Yet quantitative traits
such as the virulence or the transmission rate of a pathogen, the life expectancy of an individual and more
generally any observable feature such as height, weight, muscular mass, speed, size of legs, etc. are naturally
represented using continuous variables. Such a description of a population seems highly relevant and has
been used mostly in modelling studies involving some kind of evolution [275, 272, 34, 33, 265, 266, 72, 331,
P4]

A few studies actually focus on pure competition for a continuously structured population. Let us mention
the work of Desvillettes, Mischler, Jabin and Raoul [139], and later Jabin and Raoul [225] and Raoul [332],
who studied the logistic equation

∂tf(t, x) =
(
a(x)−

∫
b(x, y)f(y)

)
f(t, x),
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and studied more precisely the asymptotic behavior of the solutions f = f(t, x) when the initial condition
is a Radon measure. Cañizo, Carrillo and Cuadrado [97] proved the well-posedness of several evolution
equations in the sense of measures. Ackleh, Cleveland and Thieme devoted a part of their study [2] to purely
competitive dynamics. Here the focus are equations of the type

µ′(t)(E) =
∫
E

[
B(µ̄(t), q)−D(µ̄(t), q)

]
µ(t)(dq),

where µ is a Radon measure on a space of strategies Q and µ̄(t) = µ(t)(Q). They show a persistence property
for such a model and give more precise statements on the asymptotic behavior of the total mass; under the
assumption that a unique strategy maximizing the carrying capacity, they show the convergence in the sense
of measures to a Dirac mass concentrated on this strategy.

An important example of a biological system which allows the experimenter to observe the competitive
exclusion principle is the so-called chemostat, a device in which living organisms (like cells, yeasts, bacteria...)
are cultivated in a controlled environment where the in- and outflow of nutrients are monitored. Systems
of the same type as (4.2.1) (as most systems in the literature cited above) are particularly well-adapted
to the modeling of a population in a chemostat. We refer to the monograph of Smith and Waltman [363]
for a detailed work on mathematical models for the chemostat. Recently, a lot of interest has been given
to chemostat models as a mean to study the Darwinian evolution of a population, that is, the changes
in frequency of common characteristics due to the processes of selection and mutation. An important
difference of chemostat models is that they usually assume Michaelis-Menten functional response, contrary
to our system where the functional response if linear.

The connections between chemostat and epidemic models has been remarked in [362], where an extensive
review of the literature is conducted. A competitive exclusion principle for epidemic models has been
established by Bremermann and Thieme [78]. The asymptotic behavior of epidemic models of SIR type has
been investigated by Korobeinikov and Wake [243], Korobeinikov and Maini [242], Korobeinikov [239, 240,
241], McCluskey [279, 280], in the context of systems of ordinary differential equations. Our motivation for
the study of System (4.2.1) comes from a model of Darwinian evolution of spore-producing plant pathogens
[145, 85, P6]. The present work represents a first step (without mutation) towards a generalization of this
previous model to cases where the mortality rate of the infected population, which is represented by function
γ in (4.2.1), varies from one strain to another.

We add to the existing literature on systems related to (4.2.1) by considering the case when the initial
condition I0(dx) is a Radon measure. Considering measures as initial data is not a gratuitous generality.
Indeed as we will show in Theorem 4.2.2, initial conditions in the usual space L1(RN ) will converge, in
many cases, towards a singular Radon measure. Therefore it is necessary to study the equation in a space
of measures in order to investigate the long-time behavior of the solutions to (4.2.1). By doing so we were
able to include the case of finite systems of ODE into our framework, see Section 4.2.1.2 below. Those
results are extended to the case of countably many equations under the structural requirement that the
coefficients converge to a limit. The system behaves as predicted and the density I converges towards a
Dirac measure at some x∗ when the basic reproduction number (fitness) associated to the phenotypic value
x defined as R0(x) := Λ

θ α(x) has a unique maximum on the support of I0 and the initial data has a positive
mass on the maximizing value x∗, see Section 4.2.1.3. The situation is more complex when this assumption
is removed. In particular, the asymptotic behaviour of the solution strongly depends on the initial condition
I0, which may be related to the absence of mutations in the model. When the density of the initial condition
vanished near the maximizing set of R0(I0), we uncovered a subtle dependency on the initial data and on the
function γ of (4.2.1) (Section 4.2.1.3). It may happen, if the initial density decreases sufficiently fast near
the maximizing set of the basic reproduction number, that the equilibrium reached by the system is different
from the one predicted by heuristic arguments on the fitness function. This shows that the dynamics of the
system with continuous phenotypic traits x ∈ RN is far more rich than the one of discrete models.

4.2.1 Main results
In this section 4.2.1 we state and discuss the main results we shall prove in this note related to the large
time behavior of (4.2.1). Before going to our results, we introduce some notations that will be used along
this work. For a Borel set K ⊂ RN , we denote by M(K) the set of the signed Radon measures on K of
finite mass. Recall thatM(K) is a Banach space when endowed with the absolute variation norm given by:

‖µ‖AV = |µ|(K), ∀µ ∈M(K).
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We also denote byM+(K) the set of the finite nonnegative measures on K. Observe that one hasM+(K) ⊂
M(K) andM+(K) is a closed subset ofM(K) for the norm topology of ‖ · ‖AV . An alternate topology on
M(K) can be defined by the so-called Kantorovitch-Rubinstein norm (see [63, Vol. II, Chap. 8.3 p. 191]),

‖µ‖0 := sup
{∫

fdµ : f ∈ Lip1(K), sup
x∈K
|f(x)| ≤ 1

}
,

wherein we have set

Lip1(K) :=
{
f ∈ BC(K) : |f(x)− f(y)| ≤ ‖x− y‖, ∀(x, y) ∈ K2} .

Here (and below) BC(K) denotes the set of the continuous and bounded functions from K into R. Let us
recall (see for instance [63, Theorem 8.3.2]) that the metric generated by ‖ · ‖0 onM+(K) is equivalent on
this set to the weak topology obtained by identifying M(K) to the dual space of BC(K). Note however
that this equivalence is true only forM+(K) and cannot be extended toM(K) since the latter space is not
(in general) complete for the metric generated by ‖ · ‖0. We denote by d0 this metric onM+(K), that is

d0(µ, ν) := ‖µ− ν‖0 for all µ, ν ∈M+(K). (4.2.2)

Now along this note we fix I0 = I0(dx) ∈M+(RN ).
About the parameters arising in (4.2.1) our main assumption reads as follows.

Assumption 4.2.1. The constants Λ > 0 and θ > 0 are given. The functions α(x) and γ(x) are continuous
from RN into R and there exist positive constants α∞ and γ0 < γ∞ such that

α(x) ≤ α∞, 0 < γ0 ≤ γ(x) ≤ γ∞ for all x ∈ RN .

Finally, define α∗ := supx∈supp I0 α(x). We assume that the set

Lε(I0) := {α ≥ α∗ − ε} ∩ supp I0 = {x ∈ supp I0 : α(x) ≥ α∗ − ε}

is bounded when ε > 0 is sufficiently small.

Let us observe that if S0 ≥ 0 then (4.2.1) equipped with the initial data S(0) = S0 and I(0,dx) = I0(dx)
has a unique globally defined solution S(t) ≥ 0 and I(t,dx) ∈ M+(RN ) for all t ≥ 0. In addition I is given
by

I(t,dx) = exp
(
γ(x)

(
α(x)

∫ t

0
S(s)ds− t

))
I0(dx).

The above formula ensures that supp I(t, ·) = supp I0 for all t ≥ 0. And to describe the large time behavior
of I, we will use the values of α and γ on the support of I0. Due to the above remark and since I0 is given
and fixed, along this section 4.2, for any y ∈ R we write

α−1(y) = {x ∈ supp (I0) : α(x) = y} ⊂ supp (I0). (4.2.3)

We also define the two quantities α∗ ≥ 0 and R0(I0) by

α∗ =: sup
x∈supp I0

α(x) and R0(I0) := Λ
θ
α∗. (4.2.4)

We now split our main results into several parts. We first derive very general results about the large
time behavior of the solution (S, I) of (4.2.1) when I0 is an arbitrary Radon measure. We roughly show
that I(t,dx) concentrates on the points that maximize both α and γ. We then apply this result to consider
the case where I0(dx) is a finite or countable sum of Dirac masses. We continue our investigations with an
absolutely continuous (with respect to Lebesgue measure) initial measure and a finite set α−1(α∗). In that
setting we are able to fully characterize the points where the measure I(t, dx) concentrates as t→∞.
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4.2.1.1 General results for measure-valued initial data

As mentioned above this section 4.2 is concerned with the large time behavior of the solution (S, I) of (4.2.1)
where the initial measure I0(dx) is an arbitrary Radon measure. Using the above notations our first result
reads as follows.

Theorem 4.2.2 (Asymptotic behavior of measure-valued initial data). Let Assumption 4.2.1 be satisfied.
Let S0 ≥ 0 be given and denote by (S(t), I(t, dx)) the solution of (4.2.1) equipped with the initial data
S(0) = S0 and I(0,dx) = I0(dx). Recalling (4.2.4), suppose that R0(I0) > 1. We distinguish two cases
depending on the measure of this set w.r.t. I0:

i) If I0
(
α−1(α∗)

)
> 0, then one has

S(t) −−−−→
t→+∞

1
α∗

and I(t,dx) −−−−→
t→+∞

I∗∞(dx) := 1α−1(α∗)(x)eτγ(x)I0(dx),

where τ ∈ R denotes the unique solution of the equation∫
RN

γ(x)1α−1(α∗)(x)eτγ(x)I0(dx) = θ

α∗
(
R0 − 1

)
.

The convergence of I(t,dx) to I∗∞(dx) holds in the absolute variation norm ‖ · ‖AV .

ii) If I0
(
α−1(α∗)

)
= 0, then one has S(t)→ 1

α∗ and I(t,dx) is uniformly persistent, namely

lim inf
t→+∞

∫
RN

I(t, dx) > 0.

Moreover I(t,dx) is asymptotically concentrated as t→∞ on the set α−1(α∗), in the sense that

d0
(
I(t,dx),M+(α−1(α∗))

)
−−−−→
t→+∞

0,

where d0 is the Kantorovitch-Rubinstein distance.

We continue our general result by showing that under additional properties for the initial measure I0,
the function I(t,dx) concentrates in the large times on the set of the points in α−1(α∗) that maximize the
function γ = γ(x).

The additional hypothesis for the initial measure I0(dx) are expressed in term of some properties of its
disintegration measure with respect to the function α. We refer to the book of Bourbaki [73, VI, §3, Theorem
1 p. 418] for a proof of the disintegration Theorem 4.2.35 which is recalled in Appendix 4.2.6.

Let A(dy) be the image of I0(dx) under the continuous mapping α : RN → R, then there exists a family
of nonnegative measures I0(y,dx) (the disintegration of I0 with respect to α) such that for almost every
y ∈ α(supp I0) with respect to A we have:

supp I0(y,dx) ⊂ α−1(y),
∫
α−1(y)

I0(y,dx) = 1 and I0(dx) =
∫
I0(y,dx)A(dy) (4.2.5)

wherein the last equality means that∫
RN

f(x)I0(dx) =
∫
y∈R

∫
α−1(y)

f(x)I0(y,dx)A(dy) for all f ∈ BC(RN ).

Note that, by definition, the measure A is supported on the set α(supp I0).

Remark 4.2.3 (Important example). Suppose that I0 ∈ L1(Rn). Since we restrict to measures which are
absolutely continuous with respect to the Lebesgue measure here, with a small abuse of notation we will
omit the element dx when the context is clear. Assume that α is Lipschitz continuous on RN and that

I0(x)
|∇α(x)| ∈ L

1(RN ). (4.2.6)
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The coarea formula implies that, for all g ∈ L1(RN ), we have∫
RN

g(x)|∇α(x)|dx =
∫
R

∫
α−1(y)

g(x)HN−1(dx)dy,

where HN−1(dx) is the (N − 1)-dimensional Hausdorff measure (see Federer [166, §3.2]).
Therefore if g(x) = f(x) I0(x)

|∇α(x)| we get∫
RN

f(x)I0(x)dx =
∫
R

∫
α−1(y)

f(x) I0(x)
|∇α(x)|HN−1(dx)dy, (4.2.7)

and if moreover f(x) = ϕ(α(x)) we get∫
R
ϕ(y)A(dy) =

∫
RN

ϕ(α(x))I0(x)dx =
∫
R
ϕ(y)

∫
α−1(y)

I0(x)
|∇α(x)|HN−1(dx)dy,

where we recall that A(dy) is the image measure of I0(dx) through α. Therefore we have an explicit
expression for A(dy):

A(dy) =
∫
α−1(y)

I0(x)
|∇α(x)|HN−1(dx)dy (4.2.8)

and (recalling (4.2.7)) we deduce the following explicit disintegration of I0:

I0(y,dx) =
1x∈α−1(y)

I0(x)
|∇α(x)|HN−1(dx)∫

α−1(y)
I0(z)
|∇α(z)|HN−1(dz)

. (4.2.9)

Equations (4.2.8) and (4.2.9) give an explicit formula for the disintegration introduced in (4.2.5).

Remark 4.2.4. Suppose that α is a C2 function with no critical point in supp I0 except for a finite number
of regular maxima (in the sense that the bilinear form D2α(x) is non-degenerate at each maximum). This
is a typical situation. Then assumption (4.2.6) in Remark 4.2.3 is automatically satisfied if N ≥ 3 and
I0 ∈ L∞(RN ). If N = 2 then a sufficient condition to satisfy (4.2.6) with I0 ∈ L∞(RN ) should involve I0
vanishing sufficiently fast in the neighborhood of each maximum of α.

We shall also make use, for all y A−almost everywhere, of the disintegration measure of I0(y,dx) with
respect to the function γ, as follows

I0(y,dx) =
∫
z∈γ(α−1(y))

Iα,γ0 (y, z, dx)Iα0 (y,dz),

that allows to the following reformulation of I0(dx):

I0(dx) =
∫
y∈R

∫
z∈γ(α−1(y))

Iα,γ0 (y, z, dx)Iα0 (y,dz)A(dy).

Now equipped with this disintegration of I0 with respect to α we are now able to state our regularity
assumption to derive more refine concentration information in the case where I0

(
α−1(α∗)

)
= 0.

Assumption 4.2.5 (Regularity with respect to α, γ). Recalling (4.2.3), assume that α−1(α∗) 6= ∅ and define
γ∗ > 0 by

γ∗ := sup
x∈α−1(α∗)

γ(x). (4.2.10)

We assume that, for each value γ̄ < γ∗ there exist constants δ > 0 and m > 0 such that

m ≤
∫
γ−1([γ̄,γ∗])∩α−1(y)

I0(y,dx) for A-almost every y ∈ (α∗ − δ, α∗].

Remark 4.2.6. The above assumption means that the initial measure I0(dx) is uniformly positive in a
small neighborhood of α−1(α∗). For instance, if the assumptions of Remark 4.2.3 are satisfied and if there
exists an open set U containing α−1(α∗) ∩ γ−1(γ∗) on which I0(x) is almost everywhere uniformly positive,
then Assumption 4.2.5 is automatically satisfied.
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The next proposition ensures that, when the initial measure I0 satisfies Assumption 4.2.5, then the
function I(t,dx) concentrates on α−1(α∗) ∩ γ−1(γ∗).

Proposition 4.2.7. Under the same assumptions as in Theorem 4.2.2, assume that I0
(
α−1(α∗)

)
= 0 and

let us furthermore assume that Assumption 4.2.5 holds, then recalling that γ∗ is defined in (4.2.10) one has

d0
(
I(t,dx),M+(α−1(α∗) ∩ γ−1(γ∗))

)
−−−−→
t→+∞

0,

as well as the following asymptotic mass∫
RN

I(t,dx) −−−−→
t→+∞

θ

α∗γ∗
(
R0(I0)− 1

)
.

Let U ⊂ RN be a Borel set such that U ∩ α−1(α∗) ∩ γ−1(γ∗) 6= ∅ and

lim inf
ε→0

A(dy)
ess inf

α∗−ε≤y≤α∗

Iα0 (y,dz)
ess inf

γ∗−ε≤z≤γ∗

∫
U

Iα,γ0 (y, z, dx) > 0,

then the following persistence occurs
lim inf
t→∞

∫
U

I(t,dx) > 0.

We now explore some numerical computations of (4.2.1) with various configurations.

Figure 4.2.1: Illustration of Theorem 4.2.2 in the case i), i.e., when I0
(
α−1(α∗)

)
> 0. Parameters of this simu-

lation are: Λ = 2, θ = 1, α(x) = 0.5+
(
T[−0.4,−0.2](x1) + 1[0.2,0.8](x1)

)
1[−0.6,0.6](x2) where x = (x1, x2) ∈ R2

and T[−0.4,−0.2] is the triangular function of height one and support [−0.4,−0.2], and γ = 1
2α . Initial condi-

tion is given by I0(dx) = I0(x1, x2) dx where I0(x1, x2) = 1[−0.5,0.5](x1) cos(πx1)1[−0.5,0.5](x2) cos(πx2). In
particular, we have α∗ = 3/2 and α−1(α∗) = ({−0.3} ∪ [0.2, 0.8])× [−0.6, 0.6].

4.2.1.2 The case of discrete systems

In this section 4.2.1.2 we propose an application of the general result, namely Theorem 4.2.2, to the case of
discrete systems. We start with the case of finite systems, i.e., the case when system (4.2.1) can be written
as follows: 

d
dtS(t) = Λ− θS(t)− S(t)

(
α1γ1I

1(t) + α2γ2I
2(t) + . . .+ αnγnI

n(t)
)

d
dtI

1(t) =
(
α1S(t)− 1

)
γ1I

1(t)

d
dtI

2(t) =
(
α2S(t)− 1

)
γ2I

2(t)

...
d
dtI

n(t) =
(
αnS(t)− 1

)
γnI

n(t).

(4.2.11)
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Figure 4.2.2: (continued from Fig. 4.2.1) Illustration of Theorem 4.2.2 in the case i), i.e., when I0
(
α−1(α∗)

)
>

0. Function t→ S(t) converges towards 1/α∗ = 2/3 and function x→ I(t, x) at time t = 50 is asymptotically
concentrated on α−1(α∗) = ({−0.3} ∪ [0.2, 0.8])× [−0.6, 0.6].

Figure 4.2.3: Illustration of Theorem 4.2.2 in the case i), i.e., when I0
(
α−1(α∗)

)
> 0. Function x→ I(t, x)

at time t = 10, 20, 30 and 40. The function I remains bounded in this case.
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Figure 4.2.4: Illustration of Theorem 4.2.2 in the case ii), i.e., when I0
(
α−1(α∗)

)
= 0. Parameters of this

simulation are: Λ = 2, θ = 1, α(x) = 0.5 + T[−0.1,0.8](x1)1[−0.6,0.6](x2) where x = (x1, x2) ∈ R2 and
T[−0.1,0.8] is the triangular function of height one and support [−0.1, 0.8], γ = 1

2α . Initial condition is
given by I0(dx) = I0(x1, x2) dx where I0(x) = 1[−0.5,0.5](x1) cos(πx1)1[−0.5,0.5](x2) cos(πx2). In particular,
α∗ = 3/2 and α−1(α∗) = {0.35} × [−0.6, 0.6].

Figure 4.2.5: (continued from Fig. 4.2.4) Illustration of Theorem 4.2.2 in the case ii), i.e. when I0
(
α−1(α∗)

)
=

0. Function t→ S(t) converges towards 1/α∗ = 2/3. Function x→ I(t, x) at time t = 100 is asymptotically
concentrated on α−1(α∗) = {0.35} × [−0.6, 0.6].

For the above system, we can completely characterize the asymptotic behavior of the population. To that
aim we define the basic reproductive number (in the ecological or epidemiological sense) for species i as
follows:

Ri0 := Λ
θ
αi, i = 1, . . . , n.

Then we can show that the only species that do not get extinct are the ones for which Ri0, i = 1, . . . , n, is
maximal and strictly greater than one.
In the case when several species have the same basic maximal reproductive number, then these species all
survive and the asymptotic distribution can be computed explicitly as a function of the initial data Ii0 and
of the values γi.

Theorem 4.2.8 (Asymptotic behavior of finite systems). Let n ≥ 1 and α1, . . . , αn and γ1 > 0, . . . , γn > 0
be given. Set

α∗ := max{α1, · · · , αn},
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Figure 4.2.6: Illustration of Theorem 4.2.2 in the case ii), i.e., when I0
(
α−1(α∗)

)
= 0. Function x→ I(t, x)

at time t = 20, 40, 60 and 80. The function I asymptotically converges towards a singular measure.

and assume that
R∗0 := Λ

θ
α∗ = max

{
R1

0, · · · ,Rn0
}
> 1.

Then, for any initial data S0 ≥ 0, I1
0 > 0, · · · , In0 > 0, the corresponding solution to (4.2.11) converges in

the large times to
(
S∞,

(
I1
∞, · · · , In∞

))
given by

S∞ = 1
α∗

and Ii∞ =
{

0 if Ri0 < R∗0,
eτγiIi0 if Ri0 = R∗0,

for all i = 1, . . . , n,

wherein the constant τ ∈ R is defined as the unique solution of the equation:∑
{i :Ri0=R∗0}

γiI
i
0 e

τγi = θ

α∗
(R0 − 1).

Note that in the case when the interaction of the species with the resource is described by the Michaelis-
Menten kinetics instead of the mass action law, or when the growth of the resource obeys a logistic law (Hsu
[217]), a similar result was already present in Hsu, Hubbell and Waltman [218] and Hsu [217], including the
case when several species have the exact same reproduction number (or fitness) Ri0.

In the case of a countable system we can still provide a complete description when both α and γ converge
to a limit near +∞. We now investigate the following system

d
dtS(t) = Λ− θS(t)− S(t)

∑
i∈N

αiγiIi(t),

d
dtI

i(t) =
(
αiS(t)− 1

)
γiI

i(t), for i ∈ N,
(4.2.12)
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supplemented with some initial data

S(0) = S0 > 0 and Ii(0) = Ii0 > 0, ∀i ∈ N with
∑
i∈N

Ii0 <∞. (4.2.13)

Since components of (4.2.12) starting from a zero initial data will stay equal to zero in positive time, they
can be removed from the system without impacting the dynamics and we may without loss of generality
assume that Ii0 > 0 for all i ∈ N (as we did in (4.2.13)).

In the sequel we denote by
(
S(t), Ii(t)

)
be the corresponding solution to (4.2.12) with initial data S(0) =

S0 and Ii(0) = Ii0 for all i ∈ N.

Theorem 4.2.9 (Asymptotic behavior of discrete systems). Let (αi)i∈N and (γi)i∈N be bounded sequences
with γi > 0 for all i ∈ N. Set

α∗ := sup{αi, i ∈ N},

and assume that
R∗0 := Λ

θ
α∗ > 1.

We distinguish two cases.

i) If the set {i ∈ N : αi = α∗} is not empty, then
(
S(t), Ii(t)

)
converges to the following asymptotic

stationary state

S∞ = 1
α∗
, and Ii∞ =

{
0 if Ri0 < R∗0,
eτγiIi0 if Ri0 = R∗0,

for all i ∈ N ∪ {∞}.

where the constant τ ∈ R is the unique solution of the equation:∑
{i∈N :Ri0=R∗0}

γiI
i
0 e

τγi = θ

α∗
(R∗0 − 1).

ii) If the set {i ∈ N : αi = α∗} is empty, then one has S(t)→ 1
α∗ and Ii(t)→ 0 for all i ∈ N as t→∞,

while
lim inf
t→+∞

∑
i∈N

Ii(t) > 0.

If moreover one has αn → α∗ and γn → γ∞ > 0 as n→∞ with n ∈ N then the total mass converges
to a positive limit

lim
t→+∞

∑
i∈N

Ii(t) = θ

α∗γ∞
(R∗0 − 1). (4.2.14)

Note that for more complex countable systems, such as if the ω-limit set of αn or γn contains two or
more distinct values, then it is no longer possible in general to state a result independent of the initial data.
We will discuss a similar phenomenon for measures with a density with respect to the Lebesgue measure in
Section 4.2.1.3

4.2.1.3 The case when α(x) has a finite number of regular maxima

We now go back to our analysis of (4.2.1) set on RN . If the function α(x) has a unique global maximum
which is accessible to the initial data, then our analysis leads to a complete description of the asymptotic
state of the population. This may be the unique case when the behvaior of the orbit is completely known,
independently on the positivity of the initial mass of the fitness maximizing set {α(x) = α∗}.

Theorem 4.2.10 (The case of a unique global maximum). Let Assumption 4.2.1 be satisfied. Let S0 ≥ 0
and I0(dx) ∈ M+(RN ) be a given initial data. Suppose that the function α = α(x) has a unique maximum
α∗ on the support of I0 attained at x∗ ∈ supp I0, and that

R0(I0) := Λ
θ
α∗ > 1.
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Then it holds that
S(t) −−−−→

t→+∞

1
α∗
, d0 (I(t,dx), I∞δx∗(dx)) −−−−→

t→+∞
0,

where δx∗(dx) denotes the Dirac measure at x∗ and

I∞ := θ

α∗γ(x∗) (R0(I0)− 1).

Next we describe the large time behavior of the solutions when the function α has a finite number of
maxima on the support of I0(dx). We consider an initial data (S0, I0) ∈ [0,∞)×M+(RN ) with I0 absolutely
continuous with respect to the Lebesgue measure dx in RN (in other words and with a small abuse of notation,
I0 ∈ L1(RN )) in a neighborhood of the maxima of the fitness function. Recalling the definition of α∗ in
(4.2.4), throughout this section 4.2.1.3, we shall make use of the following set of assumptions.

By a small abuse of notation, we will identify in this section 4.2.1.3 the function I0 ∈ L1(RN ) and the
associated measure I0(x)dx ∈M+(RN ) when the context is clear.

Assumption 4.2.11. We assume that:

(i) the set α−1(α∗) (given in (4.2.3)) is a finite set, namely there exist x1, ..., xp in the interior of supp (I0)
such that xi 6= xj for all i 6= j and

α−1(α∗) = {x1, · · · , xp} and R0 := Λα∗
θ

> 1.

(ii) There exist ε0 > 0, M > 1 and κ1 ≥ 0,..,κp ≥ 0 such that for all i = 1, .., p and for almost all
x ∈ B(xi, ε0) ⊂ supp (I0) one has

M−1|x− xi|κi ≤ I0(x) ≤M |x− xi|κi .

Here and along this note we use | · | to denote the Euclidean norm of RN .

(iii) The functions α and γ are of class C2 and there exists ` > 0 such that for each i = 1, .., p one has

D2α(xi)ξ2 ≤ −l|ξ|2, ∀ξ ∈ RN .

Remark 4.2.12. Let us observe that since xi belongs to the interior of supp (I0) then Dα(xi) = 0.

In order to state our next result, we introduce the following notation: we write f(t) � g(t) as t → ∞ if
there exists C > 1 and T > 0 such that

C−1|g(t)| ≤ |f(t)| ≤ C|g(t)|, ∀t ≥ T.

According to Theorem 4.2.2 (ii), one has α∗S(t)→ 1 as t→∞, and as a special case we conclude that

S̄(t) = 1
t

∫ t

0
S(l)dl→ 1

α∗
as t→∞.

As a consequence the function η(t) := α∗S̄(t)− 1 satisfies η(t) = o(1) as t→∞. To describe the asymptotic
behavior of the solution (S(t), I(t, dx)) with initial data S0 and I0 as above, we shall derive a precise behavior
of η for t� 1. This refined analysis will allow us to characterize the points of concentration of I(t,dx). Our
result reads as follows.

Theorem 4.2.13. Let Assumption 4.2.11 be satisfied. Then the function η = η(t) satisfies the following
asymptotic expansion

η(t) = %
ln t
t

+O

(
1
t

)
, as t→∞. (4.2.15)

wherein we have set
% := min

i=1,...,p

N + κi
2γ(xi)

. (4.2.16)
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Moreover there exists ε1 ∈ (0, ε0) such that for all 0 < ε < ε1 and all i = 1, .., p one has∫
|x−xi|≤ε

I(t, dx) � tγ(xi)%−
N+κi

2 as t→∞. (4.2.17)

As a special case, for all ε > 0 small enough and all i = 1, .., p one has∫
|x−xi|≤ε

I(t, dx)
{
� 1 if i ∈ J
→ 0 if i /∈ J

as t→∞,

where J is the set defined as
J :=

{
i = 1, .., p : N + κi

2γ(xi)
= %

}
. (4.2.18)

The above theorem states that the function I(t,dx) concentrates on the set of points {xi, i ∈ J} (see
Corollary 4.2.15 below). Here Assumption 4.2.5 on the uniform positiveness of the measure I0(dx) around
the points xi is not satisfied in general, and the measure I concentrates on α−1(α∗) as predicted by Theorem
4.2.2, but not necessarily on α−1(α∗) ∩ γ−1(γ∗) as would have been given by Proposition 4.2.7.

In Figure 4.2.7 we provide a precise example of this non-standard behavior. The function α(x) is chosen
to have two maxima x1 = −0.5 and x2 = 0.5; the precise definition of α(x) is

α(x) = P[x1−δ,x1+δ](x) +P[x2−δ,x2+δ](x), (4.2.19)

where
P[a,b](x) := max

(
1− (a+ b− 2x)2

(a− b)2 , 0
)

is the downward parabolic function of height one and support [a, b] and δ = 0.2. The function α(x) has the
exact same local behavior in the neighborhood of x1 and x2. The function I0(x) is chosen as

I0(x) = min
(

1, 1024 (x− x1)8
)

min
(

1, 4 (x− x2)2
)
1[−1,1](x), (4.2.20)

so that κ1 = 8 and κ2 = 2. Finally we take

γ(x) = 1
1 +P[x1−δ,x1+δ](x) + 3P[x2−δ,x2+δ](x) (4.2.21)

so that γ(x1) = 1
2 and γ(x2) = 1

4 . Summarizing, we have

N + κ1
2γ(x1) = 9 > 6 = N + κ2

2γ(x2) ,

so that Theorem 4.2.13 predicts that the mass I(t,dx) will vanish near x1 = α−1(α∗)∩ γ−1(γ∗) and concen-
trate on x2.

In addition, the precise expansion of η = η(t) provided in the above theorem allows us obtain the self-
similar behavior of the solution I(t,dx) around the maxima of the fitness function. This asymptotic directly
follows from (4.2.27).

Corollary 4.2.14. For each i = 1, ..., p and f ∈ Cc(RN ), the set of the continuous and compactly supported
functions, one has as t→∞:

t
N
2

∫
RN

f
(

(x− xi)
√
t
)
I(t,dx) � tγ(xi)%−

N+κi
2

∫
RN

f(x)|x|κi exp
(
γ(xi)
2α∗ D

2α(xi)x2
)

dx. (4.2.22)

Our next corollary relies on some properties of the ω−limit set of the solution I(t, dx). Using the estimates
of the mass around xi given in (4.2.17), it readily follows that any limit measures of I(t,dx) belongs to a
linear combination of δxi with i ∈ J and strictly positive coefficients of each of these Dirac masses. This
reads as follows.

Corollary 4.2.15. Under the same assumptions as in Theorem 4.2.13, the ω−limit set O(I0) as defined in
Lemma 4.2.19 satisfies that there exist 0 < A < B such that

O(I0) ⊂
{∑
i∈J

ciδxi : (ci)i∈J ∈ [A,B]J
}
.
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Figure 4.2.7: Illustration of Theorem 4.2.13 and Corollary 4.2.14. Parameters of this simulation are: Λ = 2,
θ = 1, α(x) is given by (4.2.19), I0(x) by (4.2.20) and γ(x) by (4.2.21). In particular, α∗ = 1, α−1(α∗) =
{x1, x2} with x1 = −0.5, x2 = 0.5, κ1 = 8, κ2 = 2, γ(x1) = 1/2, γ(x2) = 1/4, ρ = 6 and J = {2}. The
initial condition I0 vanishes more rapidly around x1 than x2 so that the solution I(t, x) vanishes around x1
as t goes to ∞, even though γ(x1) > γ(x2), while around x2 it takes the shape given by expression (4.2.14).

4.2.1.4 Transient dynamics on local maxima: a numerical example

In many biologically relevant situations it may be more usual to observe situations involving a fitness
function with one global maximum and several (possibly many) local maxima, whose values are not exactly
equal to the global maximum but very close. In such a situation, while the long-term distribution will
be concentrated on the global maximum, one may observe a transient behavior in which the orbits stay
close to the equilibrium of the several global maxima situation (corresponding to Theorem 4.2.13), before
it concentrates on the eventual distribution. We leave the analytical treatment of such a situation open for
future studies, however, we present a numerical experiment in Figure 4.2.8 which shows such a transient
behavior.

In this simulation, we took a fitness function presenting one global maximum at x2 = +0.5 and a local
maximum at x1 = −0.5, whose value is close to the global maximum. The precise definition of α(x) is

α(x) = 0.95×P[x1−δ,x1+δ](x) +P[x2−δ,x2+δ](x) with δ = 0.2. (4.2.23)

The function I0(x) is chosen as

I0(x) = min
(

1, 4 (x− x1)2
)

min
(

1, 4 (x− x2)2
)
1[−1,1](x), (4.2.24)

so that κ1 = 2 and κ2 = 2. Finally,

γ(x) = 1
1 +P[x1−δ,x1+δ](x) + 3P[x2−δ,x2+δ](x) (4.2.25)
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so that γ(x1) = 1
2 and γ(x2) = 1

4 . Summarizing, we have

N + κ1
2γ(x1) = 3 < 6 = N + κ2

2γ(x2) .

If α(x) had two global maximum at the same level, Theorem 4.2.13 would predict that the mass I(t, dx)
vanishes near x2 and concentrates on x1. Since the value of α(x2) is slightly higher than the value of α(x1),
however, it is clear that the eventual distribution will be concentrated on x2. We observe numerically (see
Figure 4.2.8) that the distribution first concentrates on x1 on a transient time scale, before the dynamics
on x2 takes precedence. We refer to [85] for a related model with mutations where these transient behaviors
are analytically characterized.

Figure 4.2.8: Illustration of a transient behavior for (4.2.1). Parameters of this simulation are: Λ = 2, θ = 1,
α(x) is given by (4.2.23), I0(x) by (4.2.24) and γ(x) by (4.2.25). In particular, α∗ = 1, α−1(α∗) = {x2}
with x1 = −0.5, x2 = 0.5. Other parameters are κ1 = 2, κ2 = 2, γ(x1) = 1/2, γ(x2) = 1/4. The value
of the local maximum at x1, α(x1) = 0.95, being very close to α∗, observe that the distribution I(t, x) first
concentrates around x1 before the global maximum x2 becomes dominant (bottom right plot).

4.2.2 Measure-valued solutions and proof of Theorem 4.2.2
In this section 4.2.2 we derive general properties of the solution of (4.2.1) equipped with the given and fixed
initial data S(0) = S0 ∈ [0,∞) and I0(dx) ∈ M+(RN ). Recall that α∗ and R0(I0) are both defined in
(4.2.4). Next for ε > 0 let us denote by Lε(I0) the following superlevel set:

Lε(I0) := {x ∈ supp I0 : α(x) ≥ α∗ − ε} =
⋃

α∗−ε≤y≤α∗
α−1(y). (4.2.26)

Then the following lemma holds true.
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Lemma 4.2.16. Let Assumption 4.2.1 hold and let (S0, I0(dx)) ∈ R+×M+(RN ) be a given initial condition.
Denote

(
S(t), I(t,dx)

)
the corresponding solution of (4.2.1). Then

(
S(t), I(t, dx)

)
is defined for all t ≥ 0

and

0 < min(θ, γ∗)
θΛ min(θ, γ∗) + α∗γ∗

≤ lim inf
t→+∞

S(t) ≤ lim sup
t→+∞

S(t) ≤ Λ
θ
< +∞,

lim sup
t→+∞

∫
RN

I(t,dx) ≤ Λ
min(θ, γ∗)

< +∞,

where γ∗ := infx∈supp I0 γ(x), γ∗ := supx∈supp I0 γ(x) and α∗ := supx∈supp I0 α(x).

Proof. We remark that

d
dt

(
S(t) +

∫
RN

I(t, dx)
)
≤ Λ− θS(t)− γ∗

∫
RN

I(t, dx),

therefore
S(t) +

∫
RN

I(t,dx) ≤ Λ
min(θ, γ∗)

+
(
S0 +

∫
RN

I0(dx)− Λ
min(θ, γ∗)

)
e−min(θ,γ0)t.

In particular I(t,dx) is uniformly bounded in M(RN ) and therefore we have the global existence of the
solution as well as

lim sup
t→+∞

∫
RN

I(t, dx) ≤ Λ
min(θ, γ∗)

and lim sup
t→+∞

S(t) ≤ Λ
min(θ, γ∗)

.

Next we return to the S-component of equation (4.2.1) and let ε > 0 be given. We have, for t0 sufficiently
large and t ≥ t0,

St = Λ−
(
θ +

∫
RN

α(x)γ(x)I(t,dx)
)
S(t) ≥ Λ−

(
θ + α∗γ∗

Λ
min(θ, γ∗)

+ ε

)
S(t),

therefore

S(t) ≥ e−
(
θ+ Λα∗γ∗

min(θ,γ∗)
+ε
)

(t−t0)
S(t0) + Λ min(θ, γ∗)

(θ + ε) min(θ, γ∗) + Λα∗γ∗

(
1− e−

(
θ+ Λα∗γ∗

min(θ,γ∗)
+ε
)

(t−t0)
)
,

so that finally by letting t→ +∞ we get

lim inf
t→+∞

S(t) ≥ min(θ, γ∗)Λ
(θ + ε) min(θ, γ∗) + Λα∗γ∗ .

Since ε > 0 is arbitrary we have shown

lim inf
t→+∞

S(t) ≥ min(θ, γ∗)Λ
θmin(θ, γ∗) + Λα∗γ∗ .

The Lemma is proved.

Lemma 4.2.17. Let Assumption 4.2.1 hold and let (S0, I0(dx)) ∈ R+ ×M+(RN ) be a given nonnegative
initial condition. Let

(
S(t), I(t,dx)

)
be the corresponding solution of (4.2.1). Then

lim sup
T→+∞

1
T

∫ T

0
S(t)dt ≤ 1

α∗
,

where α∗ is given in (4.2.4).

Proof. Let us remark that the second component of (4.2.1) can be written as

I(t,dx) = I0(dx)eγ(x)
(
α(x)

∫ t
0
S(s)ds−t

)
,

= I0(dx) exp
(
γ(x)

∫ t

0
S(s)ds

[
α(x)− t∫ t

0 S(s)ds

])
. (4.2.27)
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Assume by contradiction that the conclusion of the Lemma does not hold, i.e. there exists ε > 0 and a
sequence Tn → +∞ such that

1
Tn

∫ Tn

0
S(t)dt ≥ 1

α∗
+ ε.

Then
Tn∫ Tn

0 S(t)dt
≤ 1

1
α∗

+ ε
≤ α∗ − ε′,

where ε′ = (α∗)2
ε + o(ε). Since the mapping x 7→ α(x) is continuous, the set Lν(I0) = {x ∈ supp I0 :

α(x) ≥ α∗ − ν} has positive mass with respect to the measure I0(dx) for all ν > 0, i.e.
∫
Lν(I0) I0(dx) > 0.

This is true, in particular, for ν = ε′

2 , therefore∫
Lε′/2(I0)

I(Tn,dx) =
∫
Lε′/2(I0)

exp
(
γ(x)

∫ Tn

0
S(s)ds

[
α(x)− Tn∫ Tn

0 S(s)ds

])
I0(dx)

≥
∫
Lε′/2(I0)

exp
(
γ∗

∫ Tn

0
S(s)ds · ε

′

2

)
I0(dx)

=
∫
Lε′/2(I0)

I0(dx) exp
(
ε′γ∗

2

∫ Tn

0
S(s)ds

)
,

where γ∗ = infx∈supp I0 γ(x). Since
∫
Lε′/2(I0) I0(dx) > 0 and

∫ Tn
0 S(t)dt → +∞ when n → +∞, we have

therefore
lim sup
t→+∞

∫
RN

I(t,dx) ≥ lim sup
n→+∞

∫
Lε′/2(I0)

I(Tn,dx) = +∞,

which is a contradiction since I(t, dx) is bounded inM(RN ) by Lemma 4.2.16. This completes the proof of
the Lemma.

The following kind of weak persistence property holds.

Lemma 4.2.18. Let Assumption 4.2.1 hold and let (S0, I0(dx)) ∈ R+ ×M+(RN ) be a given nonnegative
initial condition. Let

(
S(t), I(t, dx)

)
be the corresponding solution of (4.2.1). Recalling the definition of α∗

in (4.2.4), assume that

R0(I0) = Λ
θ
α∗ > 1.

Then
lim sup
t→+∞

∫
RN

I(t, dx) ≥ θ

α∗γ∗
(
R0(I0)− 1

)
> 0,

where γ∗ := supx∈supp I0 γ(x).

Proof. Assume by contradiction that for t0 sufficiently large we have∫
RN

I(t, dx) ≤ η′ < η =: θ

α∗γ∗
(
R0(I0)− 1

)
for all t ≥ t0,

with η′ > 0.
As a consequence of Lemma 4.2.17 we have

lim inf
t→+∞

S(t) ≤ lim sup
T→+∞

1
T

∫ T

0
S(t)dt ≤ 1

α∗
. (4.2.28)

Let S := lim inft→+∞ S(t). Let (tn)n≥0 be a sequence that tends to ∞ as n → ∞ and such that
limn→+∞ S′(tn) = 0 and limn→+∞ S(tn) = S. As

∫
RN I(tn,dx) ≤ η′ for n large enough we deduce from the

equality
S′(tn) = Λ− θS(tn)− S(tn)

∫
RN

α(x)γ(x)I(tn,dx),
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that
0 ≥ Λ− θS − Sα∗γ∗η′

so that
S ≥ Λ

θ + α∗γ∗η′
>

Λ
θ + α∗γ∗η

and by definition of η
S >

Λ
θR0

= 1
α∗
,

which contradicts (4.2.28).

Let us remind that M+(RN ), equipped with the Kantorovitch-Rubinstein metric d0 defined in (4.2.2),
is a complete metric space.

Lemma 4.2.19 (Compactness of the orbit and uniform persistence). Let Assumption 4.2.1 hold and let
(S0, I0(dx)) ∈ R+ ×M+(RN ) be a given nonnegative initial condition. Let

(
S(t), I(t, dx)

)
be the corre-

sponding solution of (4.2.1). Assume that there exists ε > 0 such that the superlevel set Lε(I0) (defined in
(4.2.26)) is bounded. Then, the closure of the orbit of I0,

O(I0) :=
{
µ ∈M+(RN ) : there exists a sequence tn ≥ 0 such that d0(I(tn,dx), µ) −−−−−→

n→+∞
0
}
,

is compact for the topology induced by d0 (i.e. the weak topology of measures).
If moreover R0(I0) > 1, then it holds

lim inf
t→+∞

∫
I(t, dx) > 0.

Proof. First of all let us remark that

I(t, dx) = e

(∫ t
0
S(s)dsα(x)−t

)
γ(x)

I0(dx),

and therefore the orbit t 7→ I(t, dx) is continuous for the metric d0.
By Lemma 4.2.17 we have

lim sup
T→+∞

1
T

∫ T

0
S(s)ds ≤ 1

α∗
,

where α∗ defined in (4.2.4). Let ε > 0 be sufficiently small, so that the set Lε(I0) is bounded and let
R := supx∈Lε(I0) ‖x‖. Then there exists T0 = T0(ε) such that

T∫ T
0 S(t)dt

≥ α∗ − ε

2 for all T ≥ T0.

Therefore if T ≥ T0, we have

∫
‖x‖≥R

I(T, dx) =
∫
‖x‖≥R

e
γ(x)

∫ T
0
S(t)dt

(
α(x)− T∫ T

0
S(t)dt

)
I0(dx)

≤
∫
‖x‖≥R

e
γ(x)

∫ T
0
S(t)dt(α(x)−α∗+ ε

2 )I0(dx)

≤
∫
‖x‖≥R

e
− ε2γ(x)

∫ T
0
S(t)dt

I0(dx) −−−−−→
T→+∞

0.

In particular, the set {I(t,dx) : t ≥ 0} is tight and bounded in the absolute variation norm (see Lemma
4.2.16), therefore precompact for the weak topology by Prokhorov’s Theorem [63, Theorem 8.6.2, Vol. II p.
202].

Next we show the weak uniform persistence property if R0(I0) > 1. Let tn → +∞ be such that
I(tn,dx) d0−−−−−→

n→+∞
I∞(dx). Then, for ε > 0 sufficiently small we will be fixed in the rest of the proof, we have

inf
x∈Lε(I0)

Λ
θ
α(x) > 1. (4.2.29)
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By Lemma 4.2.17 we have
tn∫ tn

0 S(t)dt
≥ α∗ − ε

2 for all T ≥ T0,

for some T0 = T0(ε). Therefore we get

∫
RN\Lε(I0)

I(tn,dx) =
∫
RN\Lε(I0)

e
γ(x)

∫ tn
0

S(t)dt

(
α(x)− tn∫ tn

0
S(t)dt

)
I0(dx)

≤
∫
RN\Lε(I0)

e
γ(x)

∫ tn
0

S(t)dt(α(x)−α∗+ ε
2 )I0(dx)

≤
∫
RN\Lε(I0)

e
− ε2γ(x)

∫ tn
0

S(t)dt
I0(dx) −−−−−→

tn→+∞
0.

In particular we have
∫
RN\Lε(I0) I

∞(dx) = 0. Recall that, as a consequence of (4.2.29), we have R0(I∞) :=
supx∈supp(I∞)

Λ
θ α(x) ≥ Λ

θ infx∈Lε(I0) α(x) > 1. By Lemma 4.2.18 we have the alternative:

either I(dx) ≡ 0 or
∫
RN

I∞(dx) ≥ θ

α∗γ∗
(R0(I∞)− 1) ≥ θ

α∗γ∗

(
Λ
θ

inf
x∈Lε(I0)

α(x)− 1
)
> 0.

This is precisely the weak uniform persistence in the metric space
(
O(I0), d0

)
, which is complete. As a

consequence of [276, Proposition 3.2] in the complete (and compact) metric spaceM = O(I0)∪{0} equipped
with the metric d0, with M0 = O(I0)\{0}, ∂M0 = {0} and

ρ(I) =
∫
RN
I(dx) = 〈I, 1〉M(RN ),BC(RN ),

the Poincaré map is uniformly persistent, where the chevron 〈·, ·〉M(RN ),BC(RN ) denotes the canonical bilinear
mapping onM(RN ) = BC(RN )∗ ×BC(RN ). Hence this yields

lim inf
t→+∞

∫
RN

I(t,dx) > 0,

and the Lemma is proved.

Lemma 4.2.20. Let Assumption 4.2.1 hold and let (S0, I0(dx)) ∈ R+ ×M+(RN ) be a given nonnegative
initial condition. Let

(
S(t), I(t, dx)

)
be the corresponding solution of (4.2.1). Assume that R0(I0) > 1 and

that Lε(I0) (defined in (4.2.26)) is bounded for ε > 0 sufficiently small. Then

lim inf
T→+∞

1
T

∫ T

0
S(t)dt ≥ 1

α∗
,

with α∗ given in (4.2.4).

Proof. As in the proof of Lemma 4.2.20, we write

I(t, dx) = I0(dx)e
(
α(x)

∫ t
0
S(s)ds−t

)
γ(x)

,

= I0(dx) exp
(
γ(x)

∫ t

0
S(s)ds

[
α(x)− t∫ t

0 S(s)ds

])
.

Assume by contradiction that the conclusion of the Lemma does not hold, i.e. there exists ε > 0 and a
sequence Tn → +∞ such that

1
Tn

∫ Tn

0
S(t)dt ≤ 1

α∗
− ε.

Then
Tn∫ Tn

0 S(t)dt
≥ 1

1
α∗
− ε
≥ α∗ + ε′,
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where ε′ = (α∗)2
ε+ o(ε), provided ε is sufficiently small. Therefore∫
RN

I(Tn,dx)dx =
∫
RN

exp
(
γ(x)

∫ Tn

0
S(s)ds

[
α(x)− Tn∫ Tn

0 S(s)ds

])
I0(dx)

≤
∫
RN

exp
(
−γ0

∫ Tn

0
S(s)ds · ε′

)
I0(dx)

= exp
(
−ε′γ0

∫ Tn

0
S(s)ds

)∫
RN

I0(dx),

We have therefore
lim inf
t→+∞

∫
RN

I(t,dx) ≤ lim inf
n→+∞

∫
RN

I(Tn,dx) = 0,

which is in contradiction with Lemma 4.2.19. This completes the proof of the Lemma.

Remark 4.2.21. By combining Lemma 4.2.17 and Lemma 4.2.20 we obtain that 1
T

∫ T
0 S(t)dt admits a limit

when T → +∞ and

lim
T→+∞

1
T

∫ T

0
S(t)dt = 1

α∗
.

Lemma 4.2.22. Let Assumption 4.2.1 hold and let (S0, I0(dx)) ∈ R+ ×M+(RN ) be a given nonnegative
initial condition. Let

(
S(t), I(t, dx)

)
be the corresponding solution of (4.2.1). Assume that Lε(I0) (defined

in (4.2.26)) is bounded for ε > 0 sufficiently small. Then one has

d0
(
I(t,dx),M+(α−1(α∗))

)
−−−−→
t→+∞

0.

Proof. Let ε > 0 be as in the statement of Lemma 4.2.22. By Lemma 4.2.17, there exists T ≥ 0 such that
for all t ≥ T we have

t∫ t
0 S(s)ds

≥ α∗ − ε

2 ,

where α∗ := supx∈supp I0 α(x). Hence for t ≥ T we have∫
RN\Lε(I0)

I(t,dx) =
∫
RN\Lε(I0)

exp
(
γ(x)

∫ t

0
S(s)ds

(
α(x)− t∫ t

0 S(s)ds

))
I0(dx)

≤
∫
RN\Lε(I0)

exp
(
γ(x)

∫ t

0
S(s)ds

(
α∗ − ε− t∫ t

0 S(s)ds

))
I0(dx)

≤
∫
RN\Lε(I0)

e
− ε2γ(x)

∫ t
0
S(s)ds

I0(dx) −−−−→
t→+∞

0.

In particular, if I(t,dx)|Lε(I0) denotes the restriction of I(t, dx) to Lε(I0), we have ‖I(t,dx)−I(t,dx)|Lε(I0)‖AV −−−−→
t→+∞

0 and hence
d0
(
I(t,dx), I(t,dx)|Lε(I0)

)
≤ dAV

(
I(t, dx), I(t, dx)|Lε(I0)

)
−−−−→
t→+∞

0.

Here ε > 0 can be chosen arbitrarily small. By Lemma 4.2.16 we know moreover that

lim sup
t→+∞

∫
RN

I(t, dx) ≤ Λ
min(θ, γ∗)

,

so that for t sufficiently large, we have ∫
RN

I(t, dx) ≤ 2 Λ
min(θ, γ∗)

.

Finally by using Proposition 4.2.31, we have

d0
(
I(t,dx),M+

(
α−1(α∗)

) )
≤ d0

(
I(t,dx), I(t,dx)|Lε(I0)

)
+ d0

(
I(t,dx)|Lε(I0),M+

(
α−1(α∗)

) )
≤ d0

(
I(t,dx), I(t,dx)|Lε(I0)

)
+ 2 Λ

min(θ, γ∗)
sup

x∈Lε(I0)
d
(
x, α−1(α∗)

)
.
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Since
sup

x∈Lε(I0)
d
(
x, α−1(α∗)

)
−−−→
ε→0

0,

the Kantorovitch-Rubinstein distance between I(t,dx) and M
(
α−1(α∗)

)
can indeed be made arbitrarily

small as t→ +∞. This proves the Lemma.

Lemma 4.2.23. Let Assumption 4.2.1 hold and let (S0, I0(dx)) ∈ R+ ×M+(RN ) be a given nonnegative
initial condition. Let

(
S(t), I(t,dx)

)
be the corresponding solution of (4.2.1). Assume that α(x) ≡ α∗ is a

constant function on supp I0 such that R0(I0) > 1. There exists a stationary solution (S∗, i∗) ∈ R+×L1(I0)
such that

S(t) −−−−→
t→+∞

S∗ = 1
α∗
,

I(t,dx) AV−−−−→
t→+∞

i∗(x)I0(dx).

i∗ is a Borel-measurable function on RN , which is unique up to a negligible set with respect to I0(dx).
Moreover it satisfies i∗(x) = eτγ(x), where τ is the unique solution to the equation∫

RN
γ(x)eτγ(x)I0(dx) = θ

α∗
(R0 − 1) . (4.2.30)

Proof. First we check that the proposed stationary solution is indeed unique and a stationary solution. By
Lemma 4.2.17–4.2.20, S∗ = 1

α∗ is the only possible choice for S∗. Next, we remark that the map

τ 7→
∫
RN

γ(x)eτγ(x)I0(dx)

is strictly increasing and maps R onto (0,+∞), therefore (4.2.30) has a unique solution τ and the corre-
sponding function i∗(x)I0(dx) := eτγ(x)I0(dx) satisfies∫

RN
γ(x)i∗(x)I0(dx) = θ

α∗
(R0 − 1) .

Therefore it is not difficult to check that (S∗, i∗(x)I0(dx)) is a stationary solution to the system of differential
equations S

′(t) = Λ− θS(t)−
∫
RN

α∗γ(x)I(t, dx)

I ′(t,dx) = γ(x) (α∗S(t)− 1) I(t, dx),
which is equivalent to (4.2.1) on supp I0.

Next we show the convergence of an initial condition to (S∗, I∗) where I∗(dx) = i∗(x)I0(dx). To that
aim we introduce the Lyapunov functional

V (S, I) := S∗g

(
S

S∗

)
+
∫
RN

i∗(x)g
(
I(x)
i∗(x)

)
I0(dx),

where g(s) = s− ln(s). V (S, I) is well-defined when ln(I(x)) ∈ L1(I0). Let us denote I(t,dx) = i(t, x)I0(dx)
and remark that V (S(t), i(t, x)) is always well-defined since i(t, x) = eα(x)S(t)−γ(x)t. We claim that V ′(S(t), i(t, ·)) ≤
0. Indeed, writing V1(S) = S∗g

(
S(t)
S∗

)
and V2(t) =

∫
RN i

∗(x)g
(
i(t,x)
i∗(x)

)
I0(dx), we have

V ′1(t) = S∗
S′(t)
S∗

g′
(
S(t)
S∗

)
=
(

Λ− θS(t)− S(t)
∫
RN

α∗γ(x)i(t, x)I0(dx)
)(

1− S∗

S(t)

)
=
(

Λ− θS(t)− S(t)
∫
RN

α∗γ(x)i(t, x)I0(dx)− Λ + θS∗ + S∗
∫
RN

α∗γ(x)i∗(x)I0(dx)
)(

1− S∗

S(t)

)
= −θ (S(t)− S∗)2

S(t) +
(
S∗
∫
RN

α∗γ(x)i∗(x)I0(dx)− S(t)
∫
RN

α∗γ(x)i(t, x)I0(dx)
)(

1− S∗

S(t)

)
,

= −θ (S(t)− S∗)2

S(t) + S∗
∫
RN

α∗γ(x)i∗(x)I0(dx)− (S∗)2

S(t)

∫
RN

α∗γ(x)i∗(x)I0(dx)

− S(t)
∫
RN

α∗γ(x)i(t, x)I0(dx) + S∗
∫
RN

α∗γ(x)i(t, x)I0(dx),
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and

V ′2(t) =
∫
RN

i∗(x) it(t, x)
i∗(x) g

′
(
i(t, x)
i∗(x)

)
I0(dx) =

∫
RN

γ(x) (α∗S(t)− 1) i(t, x)
(

1− i∗(x)
i(t, x)

)
I0(dx)

=
∫
RN

γ(x) (α∗S(t)− 1) (i(t, x)− i∗(x)) I0(dx)

=
∫
RN

γ(x)α∗S(t)i(t, x)I0(dx)−
∫
RN

γ(x)i(t, x)I0(dx)−
∫
RN

γ(x)α∗S(t)i∗(x)I0(dx)

+
∫
RN

γ(x)i∗(x)I0(dx).

Recalling S∗ = 1
α∗ , we have therefore

d
dtV (S(t), i(t, ·)) = d

dtV1(t) + d
dtV2(t)

= −θ (S(t)− S∗)2

S(t) + 2
∫
RN

γ(x)i∗(x)dx− (S∗)2

S(t)

∫
RN

α∗γ(x)i∗(x)I0(dx)

−
∫
RN

α∗γ(x)S(t)i∗(t)I0(dx).

Since ∫
RN

α∗γ(x)i∗(x)
(
S(t) + (S∗)2

S(t)

)
I0(dx) ≥

∫
RN

α∗γ(x)i∗(x)× 2S∗I0(dx),

which stems from the inequality a+ b ≥ 2
√
ab, we have proved that

d
dtV (S(t), i(t, ·)) ≤ 0.

It then follows from classical arguments that S(t)→ S∗ and i(t, ·)→ i∗(·) as t→ +∞ (where the last limit
holds in L1(I0)). The Lemma is proved.

Next we can determine the long-time behavior when the initial measure I0 puts a positive mass on the
set of maximal fitness. Recall that α−1(α∗) (see (4.2.3) and (4.2.4)) is the set of points in the support of I0
that have maximal fitness, i.e.

α−1(α∗) =
⋂
ε>0

Lε(I0) = {x ∈ supp I0 : α(x) ≥ α(y) for all y ∈ supp I0} .

Lemma 4.2.24. Assume that Lε(I0) is bounded for ε > 0 sufficiently small and that R0(I0) > 1. Suppose
that I0(α−1(α∗)) > 0, or in other words, ∫

α−1(α∗)
I0(dx) > 0.

Then the limit of I(t,dx) is completely determined by the part of I0 in α−1(α∗), that is to say,

d0
(
I(t,dx), I∗∞(dx)

)
−−−−→
t→+∞

0,

where I∗∞(dx) is the stationary measure given by Lemma 4.2.23 associated with the initial condition I∗0 (dx) :=
I0|α−1(α∗)(dx), the restriction of I0(dx) to the set α−1(α∗).

Proof. First, let us define α∗ := supx∈supp I0 α(x) (so that α(x) is a constant equal to α∗ on α−1(α∗)) and

η(t) := α∗S(t)− 1, with S(t) = 1
t

∫ t

0
S(s)ds.

Then I(t,dx) can be written as

I(t,dx) = exp
(
γ(x)t

[
η(t) + (α(x)− α∗)1

t

∫ t

0
S(s)ds

])
I0(dx).
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We remark that the function t 7→ tη(t) is bounded. Indeed, by Jensen’s inequality we have

exp
(∫

α−1(α∗)
γ(x)tη(t) I0(dx)∫

α−1(α∗) I0

)
≤
∫
α−1(α∗)

eγ(x)tη(t) I0(dx)∫
α−1(α∗) I0(dz) ,

so that

tη(t) ≤
∫
α−1(α∗) I0∫

α−1(α∗) γ(x)I0(dx) ln
(∫

RN
eγ(x)tη(t) I0(dx)∫

RN I0

)
=

∫
α−1(α∗) I0∫

α−1(α∗) γ(x)I0(dx) ln
(

1∫
α−1(α∗) I0

∫
α−1(α∗)

I(t,dx)
)
.

Applying Lemma 4.2.16, I(t,dx) is bounded and we have indeed an upper bound for tη(t). Next, writing

I(t, dx) = exp
(
γ(x)tη(t) + (α(x)− α∗)

∫ t

0
S(s)ds

)
I0(dx)

and recalling that
∫ t

0 S(s)ds → +∞ as t → +∞, the function exp
(
γ(x)tη(t) + (α(x)− α∗)

∫ t
0 S(s)ds

)
converges almost everywhere (with respect to I0) to 0 on RN\α−1(α∗), so that by Lebesgue’s dominated
convergence theorem, we have

lim
t→+∞

∫
RN\α−1(α∗)

I(t,dx) =
∫
RN\α−1(α∗)

lim
t→+∞

exp
(
γ(x)tη(t) + (α(x)− α∗)

∫ t

0
S(s)ds

)
I0(dx) = 0.

Next it follows from Lemma 4.2.20 that lim inft→+∞ I(t, dx) > 0, so that

lim inf
t→+∞

∫
α−1(α∗)

I(t,dx) = lim inf
t→+∞

∫
RN

I(t, dx) > 0.

Assume by contradiction that there is a sequence (tn) such that tnη(tn)→ −∞, then∫
α−1(α∗)

I(t, dx) =
∫
α−1(α∗)

eγ(x)tnη(tn)I0(dx) ≤
∫
α−1(α∗)

eγ∗tnη(tn)I0(dx) = eγ∗tnη(tn)
∫
α−1(α∗)

I0(dx) −−−−→
t→+∞

0,

where γ∗ := infx∈supp I0 γ(x) > 0. This is a contradiction. Therefore there is a constant η > 0 such that

tη(t) ≥ −η > −∞.

In particular, the function t 7→ tη(t) is bounded by two constants,

−∞ < −η ≤ tη(t) ≤ η < +∞.

Suppose that there exists a sequence tn → +∞ and η∗ ∈ [−η, η] such that

lim
n→+∞

tnη(tn) = η∗.

Upon replacing tn by a subsequence, the function S(tn) converges to a limit S∗0 and therefore the shifted
orbits satisfy

(S(t+ tn), I(t+ tn,dx)) −−−−−→
n→+∞

(S∗(t), I∗(t, dx))

locally uniformly in time. The resulting orbit (S∗(t), I∗(t, dx)) is a solution to (4.2.1), defined for all times
t ∈ R, and satisfying

S∗(0) = S0,

I∗(0,dx) = eγ(x)η∗I∗0 (dx),

where we recall that I∗0 (dx) is the restriction of I0(dx) to α−1(α∗). By Lemma 4.2.23, this implies that
S∗0 = 1

α∗ and I∗(0,dx) = eτγ(x)I∗0 (dx), where τ is uniquely defined by (4.2.30) (and independent of the
sequence tn). Therefore η∗ = τ . We conclude that

lim
t→+∞

tη(t) = τ,

where τ is the constant uniquely defined by (4.2.30) with the initial measure I∗0 (dx). This ends the proof of
the Lemma.
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When the set of maximal fitness α−1(α∗) is negligible for I0, it is more difficult to obtain a general result
for the long-time behavior of I(t,dx). We start with a short but useful estimate on the rate η(t)

Lemma 4.2.25. Assume that Lε(I0) is bounded for ε > 0 sufficiently small and that R0(I0) > 1. Suppose
that I0(α−1(α∗)) = 0 and set

η(t) := α∗S(t)− 1, with S(t) = 1
t

∫ t

0
S(s)ds,

where α∗ := supx∈supp I0 α(x). Then it holds

tη(t) −−−→
t→∞

+∞.

Proof. Assume by contradiction that there exists a sequence tn → +∞ such that tnη(tn) has a uniform
upper bound as tn → +∞, then observe that the quantity

eγ(x)(α(x)S(tn)−1)tn = eγ(x)(α(x)−α∗)S(tn)tn+γ(x)η(tn)tn

is uniformly bounded in tn and vanishes as tn → +∞ almost everywhere with respect to I0(dx). By a direct
application of Lebesgue’s dominated convergence Theorem, we have therefore∫

RN
I(tn,dx) =

∫
RN

eγ(x)(α(x)S(tn)−1)tnI0(dx) −−−−−→
tn→+∞

0,

which is in contradiction with Lemma 4.2.19. We conclude that tη(t)→ +∞ as t→ +∞.

We can now state our convergence result for measures which vanish on α−1(α∗), provided the behavior
of I0 at the boundary is not too pathological. Basically, it says that the selection filters the low values of
γ(x) near boundary points x ∈ α−1(α∗).

We are now in the position to prove Theorem 4.2.2.

Proof of Theorem 4.2.2. To show the convergence of S(t) to 1
α∗ (which is present in both i) and ii)), we first

remark that
S(t) = 1

t

∫ t

0
S(s)ds −−−−→

t→+∞

1
α∗
, (4.2.31)

as a consequence of Lemma 4.2.17 and 4.2.20. Next, let tn → +∞ be an arbitrary sequence, then by the
compactness of the orbit proved in Lemma 4.2.19 we can extract from S(tn) a subsequence which converges
to a number S∗. It follows from (4.2.31) that S∗ = 1

α∗ .
The convergence of I(t, dx) in case i) was proved in Lemma 4.2.24.
The uniform persistence of I(t,dx) in case ii) is a consequence of 4.2.19. The concentration on the

maximal fitness was proved in Lemma 4.2.22. The Theorem is proved.

We now turn to the proof of Proposition 4.2.7 and we first prove that I(t,dx) concentrates on the set of
points maximizing both α and γ. This property is summarized in the next lemma.

Lemma 4.2.26. Assume that Lε(I0) is bounded for ε > 0 sufficiently small and that R0(I0) > 1. Suppose
that I0(α−1(α∗)) = 0 and that Assumption 4.2.5 holds. Recalling the definition of α∗ in (4.2.4) and γ∗ in
Assumption 4.2.5, set Γ0(I0) be the set of maximal points of γ on α−1(α∗), defined by

Γ0(I0) :=
{
x ∈ α−1(α∗) : γ(x) ≥ γ(y) for all y ∈ α−1(α∗)

}
= γ−1({γ∗}) ∩ α−1(α∗).

Then one has
d0 (I(t, dx),M+(Γ0(I0))) −−−−→

t→+∞
0.

Proof. We decompose the proof in several steps.

Step 1: We show that I(t,dx) and 1α(x)S(t)≥1I(t,dx) are asymptotically close in ‖ · ‖AV . That is
to say,

‖I(t,dx)− 1α(·)S(t)≥1I(t, dx)‖AV −−−−→
t→+∞

0.
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Indeed we have

I(t,dx)− 1α(x)S(t)≥1I(t,dx) = 1α(x)S(t)<1I(t, dx) = 1α(x)S(t)<1e
γ(x)(α(x)S(t)−1)tI0(dx).

First note that the function 1α(x)S(t)<1I(t, dx) = 1α(x)S(t)<1e
γ(x)(α(x)S(t)−1)t is uniformly bounded. On the

other hand, since I0(α−1(α∗)) = 0 recall that S(t) → 1
α∗ for t → ∞, so that 1α(x)S(t)<1 → 0 as t → ∞

almost everywhere with respect to I0. It follows from Lebesgue’s dominated convergence Theorem that∫
RN
1α(x)S(t)<1e

γ(x)(α(x)S(t)−1)tI0(dx) −−−−→
t→+∞

0.

Step 2: We show that the measure 1S(t)y≥1e
γ̄(yS(t)−1)tA(dy) is bounded when t→∞ for all γ̄ < γ∗.

Note that I0(α−1(α∗)) = 0 implies that A({α∗}) = 0 and remark that one has

∫
RN
1α(x)S(t)≥1I(t,dx) =

∫ α∗

min(α∗,1/S(t))

∫
{x∈α−1(y)}

eγ(x)(yS(t)−1)tI0(y,dx)A(dy),

so, according to Step 1, for t sufficiently large one has

∫
γ−1([γ̄,γ∗])

I(t,dx) =
∫ α∗

min(α∗,1/S(t))

∫
x∈α−1(y)∩γ−1([γ̄,γ∗])

eγ(x)(yS(t)−1)tI0(y,dx)A(dy) + o(1)

≥
∫ α∗

min(α∗,1/S(t))

∫
{α(x)=y}∩γ−1([γ̄,γ∗])

eγ̄(yS(t)−1)tI0(y,dx)A(dy) + o(1)

=
∫ α∗

min(α∗,1/S(t))

∫
{α(x)=y}∩γ−1([γ̄,γ∗])

I0(y,dx)eγ̄(yS(t)−1)tA(dy) + o(1)

≥ m
∫ α∗

min(α∗,1/S(t))
eγ̄(yS(t)−1)tA(dy) + o(1),

wherein m > 0 is the constant associated with γ̄ in Assumption 4.2.5. Recalling the upper bound for I(t, dx)
from Lemma 4.2.16, we have

lim sup
t→+∞

∫ α∗

min(α∗,1/S(t))
eγ̄(yS(t)−1)tA(dy) ≤ lim sup

t→+∞

1
m

∫
RN

I(t, dx) ≤ Λ
mmin(θ, γ0) < +∞.

This implies that

lim sup
t→+∞

∫
α(supp(I0))

eγ̄(yS(t)−1)tA(dy) <∞.

Note that, if the constant m is independent of γ̄, then the above estimate does not depend on γ̄ either.

Step 3: We show that
∫
1γ(x)<γ̄1S(t)α(x)≥1I(t,dx) vanishes whenever γ̄ < γ∗.

Fix γ̄ < γ∗ and let ε := γ∗−γ̄
2 . Then we have

∫
γ−1((−∞,γ̄])∩α−1([1/S(t),∞))

I(t, dx) =
∫ α∗

min(α∗,1/S(t))

∫
x∈γ−1((−∞,γ̄])∩α−1(y)

eγ(x)(yS(t)−1)tI0(y,dx)A(dy)

≤
∫ α∗

min(α∗,1/S(t))

∫
x∈γ−1((−∞,γ̄])∩α−1(y)

I0(y,dx)e(γ∗−2ε)(yS(t)−1)tA(dy)

≤
∫ α∗

min(α∗,1/S(t))

∫
x∈α−1(y)}

I0(y,dx)e−ε(yS(t)−1)teγ̄(yS(t)−1)tA(dy).
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Reducing ε if necessary we may assume that γ̄
ε > 1. Therefore it follows from Hölder’s inequality that

∫
γ−1((−∞,γ̄])∩α−1([1/S(t),∞))

I(t, dx) ≤
(∫ α∗

min(α∗,1/S(t))

(
e−ε(yS(t)−1)t

) γ̄
ε

eγ̄(yS(t)−1)tA(dy)
) ε
γ̄

×

∫ α∗

min(α∗,1/S(t))

(∫
α(x)=y

I0(y,dx)
) γ̄
γ̄−ε

eγ̄(yS(t)−1)tA(dy)

1− εγ̄

≤

(∫ α∗

min(α∗,1/S(t))
A(dy)

) ε
γ̄
(∫ α∗

min(α∗,1/S(t))
eγ̄(yS(t)−1)tA(dy)

)1− εγ̄

= I0(Lα∗−min(α∗,1/S(t))(I0))
ε
γ̄

(∫ α∗

min(α∗,1/S(t))
eγ̄(yS(t)−1)tA(dy)

)1− εγ̄

.

(4.2.32)

Since S(t)→ 1/α∗ as t→∞, I0(Lε(I0)) −−−→
ε→0

0 and by the boundedness of
∫ α∗

min(α∗,1/S(t)) e
γ̄(yS(t)−1)tA(dy)

shown in Step 2, we have indeed∫
γ−1((−∞,γ̄])∩α−1([1/S(t),∞))

I(t, dx) −−−−→
t→+∞

0,

and this completes proof of Lemma 4.2.26.

Proof of Proposition 4.2.7. The concentration of the distribution toM+(α−1(α∗) ∩ γ−1(γ∗)) was shown in
Lemma 4.2.26.

Next we prove the asymptotic mass. Pick a sentence tn → +∞. By the compactness of the orbit (proved
in Lemma 4.2.19) we can extract from tn a subsequence t′n such that there exists a Radon measure I∞(dx)
with

d0(I(t, dx), I∞(dx)) −−−−→
t→+∞

0,

and since S(t)→ 1
α∗ and upon further extraction, S′(t′n)→ 0. Therefore,∫
RN

α(x)γ(x)I(t′n,dx) = Λ− St(t′n)
S(t′n) − θ −−−−−→

n→+∞
α∗Λ− θ = θ (R0(I0)− 1) .

By the concentration result in Lemma 4.2.26, I∞ is concentrated on α−1(α∗) ∩ γ−1(γ∗). Therefore

α∗γ∗
∫
I∞(dx) =

∫
α(x)γ(x)I∞(dx) = lim

n→+∞
I(t′n,dx) = θ (R0(I0)− 1) ,

so that
lim

n→+∞

∫
I(t′n,dx) =

∫
I∞(dx) = θ

α∗γ∗
(R0(I0)− 1) .

Since the limit is independent of the sequence tn, we have indeed shown that

lim
t→+∞

∫
RN

I(t,dx) = θ

α∗γ∗
(R0(I0)− 1) .

To prove the last statement, set

f(t) :=
∫ α∗

min(α∗,1/S(t))

∫ γ∗

γ̄

ez(yS(t)−1)tIα0 (y,dz)A(dy),

where γ̄ < γ∗. It follows from (4.2.32) that∫
γ−1((−∞,γ̄])∩α−1([1/S(t),∞))

I(t, dx) −−−−→
t→+∞

0,
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therefore

f(t) =
∫ α∗

min(α∗,1/S(t))

∫ γ∗

γ̄

∫
{γ(x)=z}

ez(yS(t)−1)tIα,γ0 (y, z, dx)Iα0 (z,dy)A(dy) =
∫
γ−1([γ̄,γ∗])∩α−1([1/S(t),∞))

I(t,dx)

satisfies
0 < lim inf

t→+∞

∫
I(t,dx) = lim inf

t→+∞

∫
γ−1((−∞,γ̄])∩α−1([1/S(t),∞))

I(t,dx) ≤ lim inf
t→+∞

f(t)

Remark that∫
1U (x)1γ≥γ̄1S(t)y≥1I(t, dx) =

∫ α∗

min(α∗,1/S(t))

∫ γ∗

γ̄

∫
{γ(x)=z}

1U (x)ez(yS(t)−1)tIα,γ0 (y, z, dx)Iα0 (y,dz)A(dy)

=
∫ α∗

min(α∗,1/S(t))

∫ γ∗

γ̄

∫
{γ(x)=z}

1U (x)Iα,γ0 (y, z, dx)ez(yS(t)−1)tIα0 (y,dz)A(dy)

≥
∫ α∗

min(α∗,1/S(t))

∫ γ∗

γ̄

m

2 e
z(yS(t)−1)tIα0 (y,dz)A(dy)

≥ f(t)m2 ,

provided t is sufficiently large and γ̄ is sufficiently close to γ∗, where

m := lim inf
ε→0

A(dy)
ess inf

α∗−ε≤y≤α∗

Iα0 (y,dz)
ess inf

γ∗−ε≤z≤γ∗

∫
1x∈UI

α,γ
0 (y, z, dx) > 0.

Therefore
lim inf
t→+∞

∫
U

I(t, dx) ≥ m

2 lim inf
t→+∞

f(t) > 0.

This completes proof of Proposition 4.2.7.

4.2.3 The case of discrete systems. Proof of Theorem 4.2.8 and 4.2.9
In this section 4.2.3 we show how the theory for discrete systems can be included in the theory for measure-
valued solutions to (4.2.1) in RN . Rather than doing a direct proof of the results, we show how the general
results from Section 4.2.2 can be applied to prove Theorem 4.2.8 and 4.2.9. In particular, we rely heavily on
Theorem 4.2.2, which has been proven in Section 4.2.2 (independently of Theorem 4.2.8 and 4.2.9).

Proof of Theorem 4.2.8. Let us choose n distinct real numbers x1, . . . , xn. Then there exist continuous
functions α(x) and γ(x) such that

α(xi) = αi and γ(xi) = γi for all i = 1, . . . , n.

There are many ways to construct α(x) and γ(x); for instance one can work with Lagrange polynomials
and interpolate with a constant value outside of a ball and when the values of γ(x) become close to 0. In
particular one can impose that α(x) and γ(x) are bounded and that γ(x) > 0 for all x ∈ RN , thus meeting
Assumption 4.2.1. Now define the initial data

I0(dx) :=
n∑
i=1

Ii0δxi .

Clearly, the solution
(
S(t), I(t,dx)

)
to (4.2.1) can be identified with the solution (S(t), Ii(t)) to (4.2.11) by

the formula

I(t, dx) =
n∑
i=1

Ii(t)δxi .

Since the set {x : α(x) = α∗} has non-zero measure for I0, we are in the situation i) of Theorem 4.2.2 and
Theorem 4.2.8 can therefore be deduced from Theorem 4.2.2.
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Proof of Theorem 4.2.9. As in the proof of Theorem 4.2.8, we identify the solutions to (4.2.12) with the
solutions I(t, dx) to (4.2.1) through the formula

I0(dx) :=
+∞∑
i=1

Ii0δxi , I(t,dx) =
+∞∑
i=1

Ii(t)δxi ,

only this time we choose xi = (αi, γi) ∈ R2. Because of this particular choice, it is fairly easy to construct
α(x) and γ(x) by the formula

α(x1, x2) := α∞f
( x1
α∞

)
, γ(x1, x2) :=

∣∣∣∣γ∞f (x2 − γ0
γ∞

)∣∣∣∣+ γ0,

where α∞ := sup |αi|, γ∞ := sup |γi|, γ0 = inf γi and f(x) := min(max(x,−1), 1). Then the conclusions
of Theorem 4.2.9 in case i) are given by a direct application of Theorem 4.2.2. Suppose that the set
{i : αi = α∗} is empty, then we are in case ii) of Theorem 4.2.2, and we can readily conclude that

S(t) −−−−→
t→+∞

1
α∗

and lim inf
t→+∞

+∞∑
i=1

Ii(t) = lim inf
t→+∞

∫
R2
I(t, dx) > 0.

If we assume moreover that αn → α∗ and γn → γ∗, then the maximum of α(x) on supp I0 is attained at a
single point (α∗, γ∗) and we can apply Theorem 4.2.10 to find that

I(t, dx) ∗−−−−→
t→+∞

I∞δ(α∗,γ∗),

where I∞ = θ
γ∗ (R∗0 − 1). This finishes the proof of Theorem 4.2.9.

4.2.4 The case of a finite number of regular maxima
In this section 4.2.4 we prove Theorem 4.2.13. To that aim, we shall make use of the following formula

I(t,dx) = exp
(
γ(x)

(
α(x)

∫ t

0
S(s)ds− t

))
I0(dx). (4.2.33)

Recall also the definition of η(t):

η(t) = α∗
1
t

∫ t

0
S(s)ds− 1 = α∗S(t)− 1.

Proof of Theorem 4.2.13. We split the proof of this result into three parts. We first derive a suitable upper
bound. We then derive a lower bound in a second step and we conclude the proof of the theorem by
estimating the large time asymptotic of the mass of I around each point of α−1(α∗).
Upper bound:
Let i = 1, .., p be given. Recall that ∇α(xi) = 0. Now due to (iii) in Assumption 4.2.11 there exist m > 0
and T > ε−2

0 large enough such that for all t ≥ T and for all y ∈ B
(

0, t− 1
2

)
we have

α(xi + y)− α∗ ≤ −α∗m‖y‖2.

As a consequence, setting

Γ(x) = γ(x)α(x)
α∗

,

we infer from (4.2.33) and the lower estimate of I0 around xi given in Assumption 4.2.11 (ii), that for all
t > T ∫

‖xi−x‖≤t−
1
2
I(t, dx) ≥M−1

∫
|y|≤t−

1
2
|y|κi exp

[
tη(t)Γ(xi + y)− tγ(xi + y)m|y|2

]
dy.
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Next since the function I = I(t,dx) has a bounded mass, there exists some constant C > 0 such that∫
RN

I(t,dx) ≤ C, ∀t ≥ 0.

Coupling the two above estimates yields for all t > T∫
|y|≤t−

1
2
|y|κi exp

[
tη(t)Γ(xi + y)− tγ(xi + y)m|y|2

]
dy ≤MC.

Hence setting z = y
√
t into the above integral rewrites as∫

|z|≤1
t−

κi
2 |z|κi exp

[
tη(t)Γ(xi + t−

1
2 z)− γ(xi + t−

1
2 z)m|z|2

] dz
tN/2

≤MC, ∀t > T.

Now, since γ and α are both smooth functions, we have uniformly for |z| ≤ 1 and t� 1:

Γ(xi + t−
1
2 z) = γ(xi) +O

(
t−

1
2

)
,

γ(xi + t−
1
2 z) = γ(xi) +O

(
t−

1
2

)
.

This yields for all t� 1∫
|z|≤1

t−
κi
2 |z|κi exp

[
tη(t)

(
γ(xi) +O

(
t−

1
2

))
− γ(xi)m|z|2

] dz
tN/2

≤ CM,

t−
κi
2 −

N
2 e

tη(t)
(
γ(xi)+O

(
t−

1
2

)) ∫
|z|≤1

|z|κie−γ(xi)m|z|2dz ≤ CM,

that also ensures the existence of some constant c1 ∈ R such that

tη(t)
(
γ(xi) +O

(
t−

1
2

))
− N + κi

2 ln t ≤ c1, ∀t� 1,

or equivalently
η(t) ≤ N + κi

2γ(xi)
ln t
t

+O

(
1
t

)
as t→∞.

Since the above upper-bound holds for all i = 1, .., p, we obtain the following upper-bound

η(t) ≤ % ln t
t

+O

(
1
t

)
as t→∞, (4.2.34)

where % is defined in (4.2.16).
Lower bound:
Let ε1 ∈ (0, ε0) small enough be given such that for all i = 1, .., p and |y| ≤ ε1 one has

α(xi + y) ≤ α∗ − `

2 |y|
2.

Herein ` > 0 is defined in Assumption 4.2.11 (iii). Next define m > 0 by

m = `

2 min
i=1,..,p

min
|y|≤ε1

γ(xi + y) > 0.

Recall that Γ(x) = α(x)γ(x)
α∗ and ∇Γ(x) = 1

α∗ (α(x)∇γ(x) + γ(x)∇α(x)). Consider M > 0 such that for all
k = 1, .., p and all |x− xk| ≤ ε1 one has

|Γ(x)− γ(xk)−∇γ(xk) · (x− xk)| ≤M |x− xk|2. (4.2.35)

Next fix i = 1, .., p and ε ∈ (0, ε1). Then one has for all t > 0∫
|x−xi|≤ε

I(t,dx) ≤
∫
|x−xi|≤ε

exp
[
tη(t)Γ(x)− tm|x− xi|2

]
I0(dx)

≤ etη(t)γ(xi)
∫
|x−xi|≤ε

exp
[
t
(
η(t)∇γ(xi) · (x− xi)− (m+O(η(t))|x− xi|2

)]
I0(dx).
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Now observe that for all t� 1 one has

η(t)∇γ(xk)·(x−xi)−(m+O(η(t)))|x−xi|2 = −(m+O(η(t)))
∣∣∣∣x− xi − η(t)∇γ(xi)

2(m+O(η(t)))

∣∣∣∣2 + η(t)2‖∇γ(xi)‖2
4(m+O(η(t))) ,

so that we get, using Assumption 4.2.11 (ii), that∫
|x−xi|≤ε

I(t,dx) ≤ etη(t)γ(xi)+
tη(t)2‖∇γ(xi)‖

2
4(m+O(η(t))

∫
|x−xi|≤ε

exp
[
−(m+O(η(t))t

∣∣∣∣x− xi − η(t)∇γ(xi)
2(m+O(η(t))

∣∣∣∣2
]
I0(dx)

≤Metη(t)γ(xi)+
tη(t)2‖∇γ(xi)‖

2
4(m+O(η(t))

×
∫
|x−xi|≤ε

|x− xi|κi exp
[
−(m+O(η(t))t

∣∣∣∣x− xi − η(t)∇γ(xi)
2(m+O(η(t))

∣∣∣∣2
]

dx.

We now make use of the following change of variables in the above integral

z =
√
t

(
x− xi −

η(t)∇γ(xi)
2(m+O(η(t))

)
,

so that we end up with ∫
|x−xi|≤ε

I(t,dx) ≤ t−
N+κi

2 etη(t)γ(xi)+
tη(t)2‖∇γ(xi)‖

2
4(m+O(η(t)) C(t),

with C(t) given by

C(t) := M

∫
|z|≤
√
t(ε+O(η(t)))

|z +
√
tO(η(t))|κie−

m+O(η(t))
2 |z|2dz.

Now let us recall that Lemma 4.2.25 ensures that

lim
t→∞

tη(t) =∞.

Hence one already knows that η(t) ≥ 0 for all t� 1. Moreover (4.2.34) ensures that

lim
t→∞

√
tη(t) = 0,

so that Lebesgue convergence theorem ensures that

C(t)→ C∞ := M

∫
RN
|z|κie−m2 |z|

2
dz ∈ (0,∞) as t→∞.

As a conclusion of the above analysis, we have obtained that there exists some constant C ′ such that for all
ε ∈ (0, ε1) and all i = 1, .., p one has∫

|x−xi|≤ε
I(t, dx) ≤ C ′t−

N+κi
2 etη(t)γ(xi), ∀t� 1. (4.2.36)

Since I(t,dx) concentrates on α−1(α∗), then for all ε ∈ (0, ε1) one has∫
RN

I(t,dx) =
p∑
i=1

∫
|x−xi|≤ε

I(t,dx)dx+ o(1) as t→∞.

Using the persistence of I stated in Theorem 4.2.2 (see Lemma 4.2.16), we end-up with

0 < lim inf
t→∞

∫
RN

I(t, dx) ≤ lim inf
t→∞

p∑
i=1

∫
|x−xi|≤ε

I(t, dx),
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so that (4.2.36) ensures that there exists c > 0 and T > 0 such that

0 < c ≤
p∑
i=1

e
γ(xi)

(
tη(t)− N+κi

2γ(xi)
ln t
)
, ∀t ≥ T. (4.2.37)

Now recalling the definition of % and J in (4.2.16) and (4.2.18), the upper bound for η(t) provided in (4.2.34)
implies ∑

i/∈J

e
γ(xi)

(
tη(t)− N+κi

2γ(xi)
ln t
)
→ 0 as t→∞,

and (4.2.37) rewrites as
0 < c

2 ≤
∑
i∈J

eγ(xi)(tη(t)−% ln t), ∀t� 1.

This yields
lim inf
t→∞

(tη(t)− % ln t) > −∞,

that is
η(t) ≥ % ln t

t
+O

(
1
t

)
as t→∞. (4.2.38)

Then (4.2.15) follows coupling (4.2.34) and (4.2.38).
Estimate of the masses: In this last step we turn to the proof of (4.2.17). Observe first that the upper
estimate directly follows from the asymptotic expansion of η(t) in (4.2.15) together with (4.2.36). Next, the
proof for the lower estimate follows from similar inequalities as the one derived in the second step above.

Appendix

4.2.5 Measure theory on metric spaces
In this Section we let (M,d) be a complete metric space. Let K(M) be the set of compact subsets in M and
let K ∈ K(M). We first recall that we can define a kind of frame of reference, internal to K, which allows
to identify each point in K.

Let us denote K(M) the set formed by all compact subsets of M . Recall that (K(M), dH) is a complete
metric space, where dH is the Hausdorff distance

dH(K1,K2) = max
(

sup
x∈K1

d(x,K2), sup
x∈K2

d(x,K1)
)
.

Proposition 4.2.27 (Metric coordinates). There exists a finite number of points x1, . . . , xn ∈ K with the
property that each y ∈ K can be identified uniquely by the distance between y and x1, . . . , xn. In other words
the map

y
cK7−→


d(y, x1)

...

d(y, xn)

 ∈ Rn+,
is one-to-one. Moreover cK is continuous and its reciprocal function c−1

K : cK(K)→ K is also continuous.

Proof. Let us choose x1 ∈ K and x2 ∈ K such that x1 6= x2. We recursively construct a sequence xn and a
compact set Kn such that

Kn = {y ∈ K : d(y, xi) = d(y, x1) for all 1 ≤ i ≤ n},
xn+1 ∈ Kn,

the choice of xn+1 being arbitrary. Clearly Kn is a compact set and Kn+1  Kn. Suppose by contradiction
that Kn 6= ∅ for all n ∈ N, then (because K is compact) one can construct a sequence xϕ(n), extracted from
xn, and which converges to a point

x = lim
n→+∞

xϕ(n) ∈
⋂
n∈N

Kn =: K∞.



363

In particular K∞ is not empty. However we see that, by definition of K∞, we have d(x, xn) = d(x, x1) > 0
for all n ∈ N, which contradicts the fact that

lim
n→+∞

d(x, xϕ(n)) = 0.

Hence we have shown by contradiction that there exists n0 ∈ N such that Kn0 = ∅ and Kn0−1 6= ∅. This
is precisely the injectivity of the map cK : K → Rn0 .

To show the continuity, we remark that cK is continuous, and therefore for each closed set F ⊂ K, F is
compact so that cK(F ) is compact and therefore closed. Therefore (c−1

K )−1(F ) = cK(F ) is closed in cK(K).
The proposition is proved.

Recall that the Borel σ-algebra B(M) is the closure of the set of all open sets in P(M) = 2M under the
operations of complement and countable union. A function ϕ : M → N is Borel measurable if the reciprocal
image of any Borel set is Borel, i.e. ϕ−1(B) ∈ B(M) for all B ∈ B(N).

Proposition 4.2.28 (Borel function of choice). There exists a Borel measurable map c :
(
K(K), dH

)
→

(K, d) such that
c(K ′) ∈ K ′ for all K ′ ∈ K(K).

Proof. Let cK : K → Rn0 be the map constructed in Proposition 4.2.27. For a compact K ′ ⊂ K we define

c(K ′) := c−1
K

(
min

y∈cK(K′)
y

)
,

where the minimum is taken with respect to the lexicographical order in Rn0 (which is a total order and
therefore identifies a unique minimum for each K ′ ∈ K(K)). Since the map K̃ ⊂ Rn0 → miny∈K y is Borel
for the topology on K(Rn0) induced by the Hausdorff metric, so is c. The proposition is proved.

Proposition 4.2.29 (Borel measurability of the metric projection). Let K ⊂ M be compact. The map
PK : M → K(K) defined by

PK(x) = {y ∈ K : d(x, y) = d(x,K)},

is Borel measurable.

Proof. First we remark that the map

PK(x) := {y ∈ K : d(x, y) = d(x,K)} ∈ K(M),

is well-defined for each x ∈ M , and therefore forms a mapping from M into K(K) ⊂ K(M). Indeed PK(x)
is clearly closed in the compact space K, therefore is compact.

To show the Borel measurability of PK , we first remark that, given a compact space K ′ ⊂ K, the set

P̃−1
K (K ′) := {x ∈M : PK(x) ∩K ′ 6= ∅}

is closed. Indeed let xn → x be a sequence in P̃−1
K (K ′), then by definition there exists yn ∈ K ′ such that

d(xn, yn) = d(xn,K). By the compactness of K ′, there exists y ∈ K ′ and a subsequence yϕ(n) extracted
from yn such that yϕ(n) → y. Because of the continuity of z 7→ d(z,K), we have

d(x, y) = lim
n→+∞

d(xϕ(n), yϕ(n)) = lim
n→+∞

d(xϕ(n),K) = d(x,K),

therefore y ∈ PK(x) ∩K ′, which shows that x ∈ P̃−1
K (K ′). Hence P̃−1

K (K ′) is closed.
We are now in a position to show the Borel regularity of PK . Let C ∈ K(K) and R > 0 be given. We

defined BH(C,R) the ball of center C and radius R in the Hausdorff metric:

BH(C,R) = {C ′ ∈ K(K) : dH(C,C ′) ≤ R}.

Then
P−1
K (BH(C,R)) = {x ∈M : dH(PK(x), C) ≤ R} = B1 ∩B2,
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where

B1 := {x ∈M : d(y, C) ≤ R for all y ∈ PK(x)}, and
B2 := {x ∈M : d(z, PK(x)) ≤ R for all z ∈ C}.

It can be readily seen that B1 is a Borel set by writing

B1 = P̃−1
K (VR(C))

⋂
n≥1

(
M\

(
P̃−1
K (K\VR+ 1

n
(C))

))
,

where VR(C) := {y ∈ K : d(y, C) ≤ R}. To see that B2 is a Borel set, we choose a sequence zn which is
dense in C and write

B2 =
⋂
k≥1

⋂
n≥1

P̃−1
K

(
B(zn, R+ 1/k)

)
.

Indeed if x ∈ B2 then PK(x) intersects every ball of radius R and center z ∈ C; in particular PK(x)
intersects every ball of radius R + 1/k and center zn. Conversely suppose that PK(x) intersects every ball
B(zn, R+ 1/k) for n ≥ 1 and k ≥ 1. If z ∈ C then there is a sequence zϕ(k) such that z = lim zϕ(k), and (by
assumption) we have PK(x) ∩B(zϕ(k), R+ 1/k) 6= ∅. Therefore

d
(
z, PK(x)

)
= lim
k→+∞

d
(
zϕ(k), PK(x)

)
≤ lim
k→+∞

R+ 1
k

= R.

Thus x ∈ B2. The equality is proved.
We conclude that P−1

K (BH(C,R)) is a Borel set for all C ∈ K(K) and R > 0, and since those sets form
a basis of the Borel σ-algebra, PK is indeed Borel measurable. The Lemma is proved.

Theorem 4.2.30 (Existence of a regular metric projection). Let K ⊂M be compact. There exists a Borel
measurable map PK : M → K such that

d
(
x, PK(x)

)
= d(x,K).

Proof. The proof is immediate by combining Proposition 4.2.29 Proposition 4.2.28.

Proposition 4.2.31 (Metric projection on measure spaces). Let K ∈ K(RN ) be a given compact set. Let
µ ∈ M+(K) be a given nonnegative measure on K. Then the Kantorovitch-Rubinstein distance between µ
andM+(K) can be bounded by the distance between K and the furthest point in suppµ:

d0(µ,M+(K)) ≤ ‖µ‖AV sup
x∈suppµ

d(x,K).

Proof. Indeed, let us choose a Borel measurable metric projection PK on K as in Theorem 4.2.30. Let µK
be the image measure defined on B(K) by

µK(B) := µ
(
P−1
K (B)

)
, for all B ∈ B(K).

Then in particular for all f ∈ BC(RN ) we have∫
RN

f(PK(x))dµ(x) =
∫
K

f(x)dµK(x).

Let f ∈ Lip1(RN ), then we have∫
RN

f(x)d(µ− µK)(x) =
∫
RN

f(x)dµ(x)−
∫
RN

f(x)dµK(x)

=
∫
RN

f(x)dµ(x)−
∫
RN

f(PK(x))dµ(x)

=
∫
RN

f(x)− f(PK(x))dµ(x)

≤
∫

suppµ
|x− PK(x)|dµ(x)

≤ sup
y∈suppµ

d(y,K)
∫

suppµ
1dµ = ‖µ‖AV sup

x∈suppK
d(x,K).
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Therefore d0(µ, µK) ≤ ‖µ‖AV supx∈suppK d(x,K) and, since µK ∈M+(K),

d0
(
µ,M+(K)

)
≤ d0(µ, µK) ≤ ‖µ‖AV sup

x∈suppµ
d(x,K).

The Proposition is proved.

4.2.6 Disintegration of measures
We recall the disintegration theorem as stated in [73, VI, §3, Theorem 1 p. 418]. We use Bourbaki’s version,
which is proved by functional analytic arguments, for convenience, although other approaches exist which
are based on measure-theoretic arguments and may be deemed more intuitive. We refer to Ionescu Tulcea
and Ionescu Tulcea for a disintegration theorem resulting from the theory of (strong) liftings [223, 224].

Let us first we recall some background on adequate families. This is adapted from [73, V.16 §3] to the
context of finite measures of RN . We let T and X be locally compact topological spaces and µ ∈ M+(T )
be a fixed Borel measure.

Definition 4.2.32 (Scalarly essentially integrable family). Let Λ : t 7→ λt be a mapping from T into
M+(X). Λ is scalarly essentially integrable for the measure µ if for every compactly supported continuous
function f ∈ Cc(X), the function t 7→

∫
X
f(x)λt(dx) is in L1(µ). Setting ν(f) =

∫
T

∫
X
f(x)λt(dx)µ(dt)

defines a linear form on Cc(X), hence a measure ν, which is the integral of the family Λ, and we denote∫
T

λt µ(dt) := ν.

Recall that every positive Borel measure µ on a locally compact space X defines a positive bounded
linear functional on Cc(X) equipped with the inductive limit of the topologies on Cc(K) when K runs over
the compact subsets of X. Conversely if µ is a positive bounded linear functional on Cc(X), there are two
canonical ways to define a measure on the Borel σ-algebra.

1. Outer-regular construction. Let U ⊂ X be a open, then one can define

µ∗(U) := sup {µ(f) : f ∈ Cc(X), 0 ≤ f(x) ≤ 1U (x)} ,

then for an arbitrary Borel set B,

µ∗(B) := inf {µ∗(U) : U open, B ⊂ U} .

This notion corresponds to that of the upper integral discussed in [73, IV.1 §1].

2. Inner-regular construction. If U ⊂ X is open, we define µ•(U) := µ∗(U) and similarly if K ⊂ X is
compact, then µ•(K) := µ∗(K). Then for an arbitrary Borel set B which is contained in an open set
of finite measure: B ⊂ U with µ•(U) < +∞, we define

µ•(B) := sup{µ•(K) : K compact, K ⊂ B}.

Else µ•(B) = +∞. This corresponds to the essential upper integral discussed in [73, V.1, §1].

It is always true that µ• ≤ µ∗, however it may happen that µ∗ 6= µ• when µ∗ is not finite, see e.g. [63,
II§7.11 p.113] or [73, V.1, §1]. If µ is a Borel measure, then we define the corresponding notions of µ• and
µ∗ associated with the linear functional f 7→

∫
X
f(x)µ(dx). Note that if µ is Radon, then µ∗ = µ = µ•.

Definition 4.2.33 (Pre-adequate and adequate families). We follow [73, Definition 1, V.17§3]. Let Λ : t 7→
λt be a scalarly essentially µ-integrable mapping from T intoM+(X), ν the integral of Λ.

We say that Λ is µ-pre-adequate if, for every lower semi-continuous function f ≥ 0 defined on X, the
function t 7→

∫
f(x)λ•t (dx) is µ-measurable on T and∫

X

f(x)ν•(dx) =
∫
T

∫
X

f(x)λ•t (dx)µ•(dt).

We say that Λ is µ-adequate if Λ is µ′-pre-adequate for every positive Borel measure µ′ ≤ µ.
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The last notion we need to define is the one of µ-proper function.

Definition 4.2.34 (µ-proper function). We say that a function p : T → X is µ-proper if it is µ-measurable
and, for every compact set K ⊂ X, the set p−1(K) is µ•-measurable and µ•(p−1(K)) < +∞.

If µ is Radon, in particular, then every µ-measurable mapping p : T → X (X being equipped with the
Borel σ-algebra) is µ-proper. The following Theorem is taken from [73, Theorem 1, VI.41 No.1, §3].

Theorem 4.2.35 (Disintegration of measures). Let T and X be two locally compact spaces having countable
bases, µ be a positive measure on T , p be a µ-proper mapping of T into X, and ν = p(µ) the image of µ
under p. There exists a ν-adequate family x 7→ λx (x ∈ X) of positive measures on T , having the following
properties:

a) ‖λx‖ = 1 for all x ∈ p(T );

b) λx is concentrated on the set p−1({x}) for all x ∈ p(T ), and λx = 0 for x 6∈ p(T );

c) µ =
∫
λx ν(dx).

Moreover, if x 7→ λ′x (x ∈ X) is a second ν-adequate family of positive measures on T having the properties
b) and c), then λ′x = λx almost everywhere in B with respect to the measure ν.



Chapter 5

Parameter identification in epidemiological
models and application to the COVID-19
epidemic

5.1 Real-time prediction of the end of an epidemic wave: COVID-19 in China
as a case-study

5.1.1 Introduction
The COVID-19 pandemic has now spread worldwide, causing over one million deaths and 40 million re-
ported cases so far (as of 25 October, 20201). SARS-CoV-2, the virus that causes COVID-19, emerged in
China at the end of 2019. In early 2020, the Chinese government imposed strong public health measures,
including enhanced epidemiological surveys and surveillance, travel restrictions, quarantine, contact tracing
and isolation [316]. These intense interventions were sufficient to bring the epidemic wave under control,
and since mid-March case numbers have remained low.

A key challenge in infectious disease epidemiology is forecasting the progression of an epidemic. Significant
attention has been directed towards developing methods for estimating future numbers of cases and deaths,
as well as forecasting the timing of the epidemic peak [117, 131, P7, 419, 261, 260, 258, 259, 262, 326,
372]. Predicting the ends of epidemic waves, on the other hand, has received considerably less attention
[303], despite the fact that the end of an epidemic wave signals an opportunity to relax costly public health
measures. Some previous studies have estimated the probability that an epidemic is over as a function of
the time since the last observed case using renewal equation models [304, 248] or stochastic compartmental
models [374]. However, predicting the end of the first COVID-19 epidemic wave in China was particularly
challenging for two key reasons. First, evidence emerged early in the COVID-19 pandemic that infected
individuals could transmit the virus prior to displaying symptoms ("presymptomatic infection"). Second,
some infected individuals never display symptoms or display only mild symptoms, and therefore do not report
disease ("asymptomatic infection"). It is now widely accepted that these presymptomatic and asymptomatic
hosts play a significant role in SARS-CoV-2 transmission [168, 327, 341, 194, 373].

Early evidence for asymptomatic transmission included a study by Nishiura et al. [305], which reported
early in the pandemic that 13 evacuees on charter flights from Wuhan (China) were infected and four of
these individuals never developed symptoms. Chowell et al. [287] estimated the proportion of asymptomatic
infections to be 17.9%. Research by Li et al. [252] generated an estimate that 86% of all infections were
undocumented (95% CI: [82%-90%]) prior to the introduction of travel restrictions in China on January 23,
2020, and a team in China [316] suggested that there were 37,400 cases in Wuhan that authorities were
unaware of by February 18, 2020. More recently, Ferretti et al. [168] split the reproduction number into
components corresponding to transmission from symptomatic, presymptomatic and asymptomatic infectious
individuals, as well as environmental transmission. Unreported cases, largely due to presymptomatic and
asymptomatic infections, were a key driver of the rapid geographic spread of SARS-CoV-2 and explain why
early containment of the virus was impossible (compared to, e.g. SARS [175]). In [P7], we consider the
symptomatic reported and unreported patients and we prove that it is hopeless to estimate the fraction
of reported (or unreported) patients by using SI models. In other words, several values of the fraction of

1Source: worldometers website, see www.worldometers.info/coronavirus/ (Accessed November 27, 2021)
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reported symptomatic patients give the exact same fit to the data. Finally, a study based on several cohorts
of patients was conducted in Oran et al. [312].

Here, we consider a compartmental model characterising SARS-CoV-2 transmission, and parameterise it
using data from the first (yet unique) epidemic wave in China. Our model incorporates key features of this
epidemic wave, including explicit inclusion of public health measures designed to mitigate the severity of the
epidemic, as well as presymptomatic and asymptomatic infections. When we conducted our analysis in real-
time, the proportion of infected individuals that were symptomatic and reported disease was unknown (and,
in fact, the precise value remains uncertain even now), so we consider a range of values of that parameter
(f). We derive an analytic expression for predicting when an epidemic wave is likely to end, under the
assumption that public health measures that are in place remain fixed until the epidemic wave is over. We
use this expression to show how the predicted end of epidemic wave date changed as the epidemic wave
continued, and compare these results to equivalent results obtained using model simulations. Not only do
we provide a framework for predicting the ends of epidemic waves, but we also show that the times at which
epidemic waves end depend on the proportion of detected cases. This emphasises the importance of intense
surveillance to find infectious cases, including those who do not display clear symptoms.

5.1.2 Methods
5.1.2.1 Data

We use cumulative data describing daily numbers of cases in mainland China from January 20, 2020 to
March 18, 2020, obtained from the National Health Commission of the People’s Republic of China and
Chinese Center for Disease Control and Prevention2. Up until February 10 2020, cases in the dataset were
only those that were confirmed by laboratory testing. From February 11 to February 15, data were available
not only for cases confirmed by laboratory testing, but also for cases that were clinically diagnosed based
on medical imaging. From February 16 onwards, these two data types were combined in the dataset, so
that it was impossible to distinguish between laboratory confirmed and clinically diagnosed cases. Changing
case definitions in response to changes in case numbers is necessary and commonplace [377], however such
changes make inferring epidemic trends based on case numbers challenging. To account for this and remove
the substantial jump in cases on February 16 due to changes in testing practices, we calculated the cumulative
number of clinically diagnosed cases between February 11 and February 15, and subtracted this from the
cumulative numbers of cases from February 16 onwards. We therefore obtained approximate numbers of
confirmed cases throughout the period from January 20 to March 18, 2020. The dataset, accounting for this
adjustment, is shown in the Supplementary Information (Table 5.1.4).

We note that, on January 23, mainland China began implementing lockdowns, beginning with a lockdown
in the city of Wuhan.

5.1.2.2 Mathematical model

To characterise changes in observed case numbers from January 20 to March 18 in mainland China, we
considered a compartmental model in which we track the number of individuals that are either susceptible
to the virus (S(t)), in early infection and infectious (I(t)) and in later infection and reporting disease (R(t))
or in later infection and not reporting disease (U(t)) [P10, 260]. Individuals that are in later infection and
not reporting disease include those that are asymptomatic and those who develop only mild symptoms and
so do not adhere to interventions targeting symptomatic individuals. The model is therefore given by:

S′(t) = −τ(t)S(t)[I(t) + U(t)],
I ′(t) = τ(t)S(t)[I(t) + U(t)]− νI(t),
R′(t) = νfI(t)− ηR(t),
U ′(t) = ν(1− f)I(t)− ηU(t),

(5.1.1)

with initial data

S(t0) = S0 > 0, I(t0) = I0 > 0, R(t0) = R0 ≥ 0 and U(t0) = U0 ≥ 0. (5.1.2)
2The National Health Commission of the People’s Republic of China http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.

shtml(accessed on 10 April 2020).
Chinese Center for Disease Control and Prevention. http://www.chinacdc.cn/jkzt/crb/zl/szkb_11803/jszl_11809/ (accessed
on 10 April 2020).

 http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml
 http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml
 http://www.chinacdc.cn/jkzt/crb/zl/szkb_11803/jszl_11809/
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Figure 5.1.1: Schematic showing the different compartments and transition rates in the model given by system
of equations (5.1.1).

In this model, t ≥ t0 is time in days and t0 is the start date of the epidemic wave. A schematic illustrating
the different model compartments is shown in Figure 5.1.1 and the model parameters - including whether the
parameter values were assumed or obtained via model fitting - are listed in Table 5.1.1. It has previously been
demonstrated that the latent period for COVID-19 is short [258], and COVID-19 patients have been found to
have high viral loads early in infection [400, 205], so we do not include individuals who are presymptomatic
and not yet infectious in the model. However, explicit inclusion of individuals who are infected but not yet
infectious would be a straightforward extension of our model [259].

Symbol Interpretation Method

t0 Epidemic start time fitted

S0 Number susceptible at time t0 fixed

I0 Number in early infection and infectious at time t0 fitted

U0 Number in later infection and not reporting disease at time t0 fitted

τ(t) Transmission rate at time t, accounting for public health measures fitted

1/ν Average duration of early infection fixed

f Fraction of infected individuals that go on to report disease fixed

1/η Average duration of later infection fixed

Table 5.1.1: Parameters and initial conditions of the model.

Early infection (which corresponds to the incubation period, for individuals who develop clear symptoms)
is assumed to last for an average period of 1/ν days. The infectious period is assumed to be 1/ν+ 1/η days,
although we assume that individuals that report disease do not transmit the virus during their symptomatic
infectious period (i.e. they adhere to public health measures that are effective at reducing transmission). A
fraction, f , of infected hosts report disease, whereas a fraction 1 − f do not report disease at any stage of
their infection.

In the model, the transmission rate at time t, accounting for public health measures in place at that
time, is denoted by τ(t). During the exponential growth phase, we assume that τ(t) ≡ τ0 is constant. We
then use a time-dependent decreasing transmission rate τ(t) to incorporate the effects of the strong measures
taken by Chinese authorities to control the epidemic wave (see Introduction for a description of the different
measures that were introduced): {

τ(t) = τ0, 0 ≤ t ≤ N,

τ(t) = τ0 exp (−µ (t−N)) , t > N.
(5.1.3)

The date N and the value of µ are chosen so that daily numbers of cumulative reported cases in the numerical
simulation of the epidemic align with the analogous values in the dataset.



370

The cumulative number of reported cases at time t is given by

CR(t) = νf

∫ t

t0

I(σ)dσ, for t ≥ t0, (5.1.4)

and the cumulative number of unreported cases at time t is given by

CU(t) = ν(1− f)
∫ t

t0

I(σ)dσ, for t ≥ t0. (5.1.5)

The daily number of reported cases can be obtained by computing the solution of the following equation:

DR′(t) = ν f I(t)−DR(t), for t ≥ t0 and DR(t0) = 0. (5.1.6)

5.1.2.3 Parameter values

Since there is substantial uncertainty surrounding the proportion of cases that are symptomatic and report
disease for COVID-19, the value of f is unknown. Since intense interventions were introduced in China
during the first epidemic wave, and the full extent of asymptomatic transmission was unknown, we assume
in the baseline version of our analysis that f = 0.8. However, we checked the robustness of our results to
this assumption by also considering different values (f = 0.2, 0.4 and 0.6).

We assume that the durations of early and late infection are ν = 1/7 days and η = 1/7 days, respectively.
By assuming that the mean duration of early infection (i.e. duration of infection prior to symptoms, for
individuals that go on to develop symptoms) is 7 days, the expected generation time for individuals that
develop symptoms might be expected to be around 3.5 days. This lies within the range of estimated
generation times for COVID-19 (see e.g. [179]). COVID-19 patients have been found to shed virus up to
around one week after hospitalisation, thereby motivating our assumed value of η [400].

To determine the initial conditions (equations (5.1.2)), we assumed that in the initial exponential growth
phase of the epidemic wave (the earliest stages of the epidemic, which is assumed to be between January 19
and January 26, 2020), CR(t) took the form:

CR(t) = χ1 exp(χ2 t)− χ3, t ≥ t0. (5.1.7)

Following [261], expressions for I0, U0, R0 can be obtained:

I0 = χ2
f(νf + ν2) , U0 =

(
(1− f)(νf + ν2)

η + χ2

)
I0, R0 = 0. (5.1.8)

Furthermore, the transmission rate during this exponential growth phase of the epidemic wave is given by
the constant value

τ(t) = τ0 =
(
χ2 + νf + ν2

S0

)(
η + χ2

ν(1− f) + η + χ2

)
, (5.1.9)

the epidemic start time is

t0 = 1
χ2

(
log(χ3) − log(χ1)

)
, (5.1.10)

and the value of the basic reproductive number is

R0 =
(

τ0S0
νf + ν2

)(
1 + ν2

η

)
. (5.1.11)

In the above, the value of χ3 = 30 is assumed and the values of χ1 and χ2 are obtained by fitting equation
(5.1.7) to data on the cumulative numbers of cases per day using least squares estimation. Specifically, we
use the "polyfit" Matlab function to estimate χ1 and χ2. The population size is assumed to be large, so that
the initial number of susceptible individuals, S0, corresponds to the total population size.
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Figure 5.1.2: Comparison of the model output with the data for mainland China. The parameter values and
initial conditions are listed in Table 5.1.2, and f = 0.8. On the left hand side we plot the cumulative data
(red dots), the simulated cumulative reported cases CR(t) (black line) and unreported cases CU(t) (green
line). On the right hand side, we plot data on the daily numbers of cases (black dots) and the inferred daily
number of cases using the model, DR(t) (blue line).

5.1.3 Results
5.1.3.1 Fitting the model to data

We first estimated the values of χ1 and χ2 using data on the cumulative number of confirmed cases in the
earliest stages of the epidemic wave (January 19 to January 26, 2020). The values of τ0 and the initial
conditions (I0, U0 and t0) are then obtained using formulae (5.1.8)-(5.1.10). The fitted parameter values are
shown in Table 5.1.2. Analogous results for different values of the reporting fraction, f , are also shown.

χ1 χ2 χ3 t0 f µ N I0 U0 S0 τ0

0.2601 0.3553 30 13.3617 0.8 0.1480 Jan. 26 93.2785 5.3494 1.40005× 109 3.3655× 10−10

0.2601 0.3553 30 13.3617 0.6 0.1531 Jan. 26 124.3550 14.2646 1.40005× 109 3.1920× 10−10

0.2601 0.3553 30 13.3617 0.4 0.1574 Jan. 26 186.5325 32.0953 1.40005× 109 3.0358× 10−10

0.2601 0.3553 30 13.3617 0.2 0.1612 Jan. 26 373.0650 85.5875 1.40005× 109 2.8942× 10−10

Table 5.1.2: Values of parameters obtained by fitting to cumulative data from the initial exponential phase
of the mainland China epidemic wave. The values of I0 U0, τ0, and t0 are obtained using formulae (5.1.8)-
(5.1.10). Here we take χ3 = 30 in order to obtain non-zero integer values of I0 and U0.

We then used the mathematical model (5.1.1) with these parameter values and initial conditions to
project the cumulative number of reported cases forwards (black line in Figure 5.1.2 (left)), choosing µ so
that CR(t) matched the observed data (red dots in Figure 5.1.2 (left)). The inferred cumulative numbers
of unreported cases are also shown in Figure 5.1.2 (left), assuming that f = 0.8. Daily numbers of reported
cases corresponding to this forward projection are shown in Figure 5.1.2 (right).

5.1.3.2 Predicting the end of the epidemic wave

To predict the end of the epidemic wave, we are particularly interested in the time period in which cases are
fading out and very few new infections are occurring. We consider a scenario in which the current time is
day t1, and we are attempting to predict when the epidemic will end. As long as t1 is sufficiently long after
the peak of the epidemic wave that the quantity τ(t)S(t) ≤ τ(t)S0 is small, the approximation

I ′(t) ' −νI(t),

can be used instead of the second equation in system (5.1.1) when t > t1. For the parameter values used in our
model, temporal changes in S0τ(t) are shown in the Supplementary Information (Figure 5.1.6), highlighting
that τ(t)S(t) is small from the second half of March, 2020, onwards).
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Figure 5.1.3: Estimated extinction probabilities (using equation (5.1.15)). The numerical values for I1 and
U1 were computed from the ODE model, considering t1 values at 7 day intervals. In this figure, we assume
that f = 0.8 (other parameter values are listed in Table 5.1.2).

Hence, to obtain an analytic expression describing the predicted end of the epidemic wave, we considered
the following approximate system of equations whenever t ≥ t1:

I ′(t) = −νI(t),
R′(t) = νf I(t)− ηR(t),
U ′(t) = ν(1− f) I(t)− ηU(t).

(5.1.12)

This system is supplemented by the initial data

I(t1) = I1, U(t1) = U1 and R(t1) = R1. (5.1.13)

where I1, U1 and R1 are the values of the solutions of the original system (5.1.1)-(5.1.2) on day t1. A
schematic for the approximate model (5.1.12) is shown in the Supplementary Information (Figure 5.1.7).

The error between the original model and the approximate model is shown in the Supplementary Infor-
mation (Figure 5.1.8), where the error is given by

err(t1) = sup
t≥t1

max
(
|I(t)− I1(t)|, |U(t)− U1(t)|

)
. (5.1.14)

In this expression, I(t) and U(t) are the solutions of the original system (5.1.1), and I1(t) and U1(t) are
solutions of the approximate model. In both cases, the models are fitted to observed data on cumulative
numbers of reported cases (hence, this error formula does not involve R(t) which is very similar for the two
models). When applied in the later stages of the epidemic wave, the approximate model is more accurate
than earlier in the epidemic wave.

By considering the analogous continuous-time Markov chain to the approximate model (5.1.12), the prob-
ability that the epidemic is over on different future dates can be estimated analytically (see Supplementary
Information section 5.1.5 for additional details). Specifically, the probability that no individuals remain in
the I or U compartments can be calculated at different times in future:

P(I(s) + U(s) = 0 for s ≥ t | I(t1) = I1, U(t1) = U1)

=
(

1− e−η(t−t1)
)U1
×
(

1− e−ν(t−t1) − (1− f)ν(t− t1)e−η(t−t1)
)I1

. (5.1.15)

The predictions generated by equation (5.1.15) for different values of t1 are shown in Figure 5.1.3. We note
that, as t1 increases, the probability distribution of the date of extinction converges to a limit profile.

Furthermore, we also computed the earliest dates that corresponded to at least 90%, 95% and 99%
probabilities that the epidemic was over, for different values of t1, using equation (5.1.15). The results of
this analysis are shown in Figure 5.1.4.

5.1.3.3 Comparing the analytic predictions with stochastic simulations

To investigate the accuracy of our analytic predictions, we also estimated the end of epidemic time using
simulations of the analogous stochastic model to the system of equations (5.1.1). Specifically, as before,
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Figure 5.1.4: For each panel, the x-axis corresponds to the day t1 and the y-axis corresponds to the dates
of epidemic wave extinction at different probability levels (90%, 95% and 99%) computed by using (5.1.15).
Different panels correspond to different values of the parameter f ((a) f = 0.8; (a) f = 0.6; (a) f = 0.4;
(a) f = 0.2). The values of I1 and U1 are computed by solving system of equations (5.1.1) numerically up
to the time t = t1. Parameter values are listed in Table 5.1.2.

the deterministic model was fitted to the data on cumulative numbers of confirmed cases and used up until
time t1. Then from time t1 onwards, stochastic simulations were run using the direct method version of the
Gillespie stochastic simulation algorithm [188].

In Figure 5.1.5, we plot the cumulative distribution for the epidemic wave extinction probability obtained
using the stochastic simulations. As can be seen in that figure, since the stochastic simulations involve using
the exact model (equations (5.1.1)) rather than the approximate model, the predicted end dates of the
epidemic wave are independent of t1. The graph in Figure 5.1.5 corresponds to the limit profile discussed at
the end of the previous section 5.1.3.2 (i.e. the analytic prediction when t1 is sufficiently late in the epidemic
that the analytic prediction is accurate). From Figure 5.1.3, it can be seen that that this approximation is
accurate when t1 is February 17, 2020, or later.

We also computed the error between the analytic end of epidemic time prediction and the analogous
quantity using the stochastic simulations. More precisely, we computed the quantity

diff(t1) = sup
t≥t1
|fIBM (t)− fanalytic(t)| (5.1.16)

for each value of t1 presented in Figures 5.1.3 and 5.1.5, where fIBM is the cumulative distribution computed
by stochastic simulations (Figure 5.1.5) and fanalytic is the cumulative distribution given by equation (5.1.15)
(Figure 5.1.3). The results are shown in the Supplementary Information (Table 5.1.6).

Finally, we compared the mean outputs from the stochastic simulations to the numerical solutions of
the original model (system of equations (5.1.1)). Unsurprisingly, these quantities match closely (Figure
5.1.9). In Figure 5.1.10, we show the variability between different stochastic simulations obtained when
the stochastic simulations are run throughout the epidemic (i.e. starting on day t0). This high variability
observed between different simulations is largely due to the small number of individuals infected initially;
when instead stochastic simulations were run from day t1 onwards, the variability between different stochastic
simulations reduced (see Supplementary Information, Table 5.1.7).
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Figure 5.1.5: Estimated cumulative probability distribution for the end of epidemic wave date obtained using
stochastic simulations. Results are shown for different values of t1, although as expected the different lines
in this graph lie on top of each other. Initial conditions for the stochastic simulations were computed by
rounding the solutions of equations (5.1.1) at t = t1 to the nearest integers. 150,000 simulations were run
for each value of t1. In this figure, f = 0.8. Other parameter values are shown in Table 5.1.2.

5.1.4 Discussion
Despite receiving surprisingly little attention from epidemiological modellers, predicting the ends of epidemic
waves is important for estimating how long intense interventions are likely to be required [304, 248, 374,
303]. In this study, we developed a framework for predicting the ends of epidemic waves using compart-
mental epidemiological models. This involving fitting a compartmental model to case notification data and
using an analytic expression to estimate when the epidemic wave is likely to end. We also compared our
analytic prediction to analogous results obtained via model simulations, thereby demonstrating that our re-
sults are accurate whenever the underlying epidemiological model provides a realistic reflection of pathogen
transmission.

In Table 5.1.3, we show the results that we obtained using this framework in real-time to predict the
end of the first COVID-19 epidemic wave in China. Specifically, the results in this table correspond to
those shown in Figure 3, after the end of epidemic wave probability converged to the limit profile (i.e. using
values of t1 from approximately mid-February onwards). Importantly, the predicted epidemic wave end date
depended on the assumed proportion of infectious cases that report disease (f). Since this quantity was
unknown, and remains uncertain even now, we conclude that accurate estimation of the reporting fraction
is essential to forecast the ends of epidemic waves accurately.

Level of risk 10% 5% 1%

Extinction date (f = 0.8) May 19 May 24 June 5

Extinction date (f = 0.6) May 25 May 31 June 12

Extinction date (f = 0.4) May 31 June 5 June 17

Extinction date (f = 0.2) June 7 June 12 June 24

Table 5.1.3: The predicted end of epidemic wave date inferred when t1 was March 16, 2020, for different
levels of risk aversion. For example, assuming f = 0.8, our model predicted a 10% chance that the epidemic
wave would persist beyond May 19, 2020.

Our intention here was to develop a basic modelling approach for predicting when an epidemic wave is
likely to end. To improve the accuracy of predictions, this approach would require adjustments to account
for important features of real-world epidemic waves. As well as uncertainty in the reporting fraction, another
key assumption was that public health measures remained in place until the end of the epidemic wave. Of
course, if measures such as isolation of infectious cases are relaxed before an epidemic wave has ended,
then the epidemic end date is likely to be different to the one predicted using our modelling framework. In
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that scenario, relaxation of interventions could in theory be integrated explicitly into the underlying model,
and model simulations used to predict the end of epidemic waves. Since interventions are often included
in compartmental models [131, 419, 372, 326], this is a straightforward extension of the research presented
here. We also note that, if interventions are relaxed following the end of an epidemic wave, then additional
cases could begin a second wave - a phenomenon that is now arguably being observed in a range of countries
worldwide for COVID-19.

We note that there were very few cases in mainland China after mid-March, 2020. As a result, our
modelling framework tended to estimate later end of epidemic wave dates than turned out to be the case.
The most likely explanation for this is that, by characterising the impacts of control interventions using
equation (5.1.3), public health measures did not have a sufficiently strong effect in the model. Testing the
effects of different possible characterisations of the effects of public health measures is left as future work.

Since the precise method of parameter inference was not central to our framework, we used a basic
approach to estimate the values of pathogen transmission parameters here, namely least squares estimation.
Many different methods are used to estimate transmission parameters in real-time during epidemics [308,
80], and our modelling framework could be extended to use these more sophisticated methods.

Despite the many simplifications in our modelling approach as presented here, we have provided an
initial framework for predicting the ends of epidemic waves, and demonstrated the key principle that the
end date of an epidemic wave depends sensitively on the proportion of infectious cases that report disease.
Extending this framework to include additional epidemiological realism, so that ends of epidemic waves can
be forecasted as accurately as possible, is an important target for future research. This will allow public
health decision makers to plan control interventions effectively during infectious disease epidemics.

5.1.5 Supplementary Information

5.1.5.1 Formula to compute the probability distribution of the extinction date

We use continuous-time Markov processes to compute the exact distribution of the date of end of the epidemic
after the transmission rate is effectively taken as zero. We start on t1 with initial values I1, U1, and R1 for
I-individuals, U -individuals and R-individuals, respectively. The evolution of each individual is guided by
independent exponential processes, and we have the following:

(i) Each individual I will change state following an exponential clock of rate ν. When I changes its state,
it will be transferred to the class of R-individuals with probability f and to the class of U -individuals
with probability (1− f);

(ii) Each individual in the state U will change state following an exponential clock with rate η and become
removed individual;

(iii) Each individual in the state R will change state following an exponential clock with rate η and become
removed individual

Since the class I has only outgoing fluxes, the law of extinction for the I-individuals is

P(I(t) = 0 | I(t1) = I1) =
(∫ t

t1

νe−ν(s−t1)ds
)I1

=
(

1− e−ν(t−t1)
)I1

,

and the probability to have some I-individual left at time t is

P(I(t) = I | I(t1) = I1) = (1− e−ν(t−t1))I1−Ie−νI(t−t1).

For the U -individuals and the R-individuals, the situation is more intricate. Indeed, the U -individuals and
the R-individuals vanish at a constant rate η but new individuals appear from the I class at rate (1 − f)ν
and fν, respectively, depending on the remaining stock of I. Therefore the probability that U gets extinct
before t also depends on the number of remaining I. It is actually easier to compute directly the extinction
property for the sum I + U , which is our aim anyways.
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When ν 6= η, we obtain

P(I(s) + U(s) = 0∀s ≥ t | I(t1) = I1, U(t1) = U1)

=
(

1− e−η(t−t1)
)U1
×
(∫ t

t1

P(U → RR before t | I → U at s)P(I → U at s) + P(I → R at s)ds
)I1

=
(

1− e−η(t−t1)
)U1
×
(∫ t

t1

(
1− e−η(t−s)

)
× (1− f)νe−ν(s−t1) + fνe−ν(s−t1)ds

)I1
=
(

1− e−η(t−t1)
)U1
×
(

(1− f)
(

1− e−ν(t−t1) − ν e
−ν(t−t1) − e−η(t−t1)

η − ν

)
+ f(1− e−ν(t−t1))

)I1
=
(

1− e−η(t−t1)
)U1
×
(

1− e−ν(t−t1) − (1− f)ν e
−ν(t−t1) − e−η(t−t1)

η − ν

)I1
,

where the RR-individuals are the removed individuals.
Similarly when η = ν, we obtain

P(I(s) + U(s) = 0∀s ≥ t | I(t1) = I1, U(t1) = U1)

=
(

1− e−η(t−t1)
)U1
×
(

1− e−ν(t−t1) − (1− f)ν(t− t1)e−η(t−t1)
)I1

. (5.1.17)

5.1.5.2 Cumulative distribution of the date of end of the epidemic

The stochastic simulations introduced in section 5.1.3.3 can be used, in particular, to precisely estimate the
cumulative probability distribution of the date of end of the epidemic, defined as the last time at which the
quantity I + U is positive.

In order to get a measure of the precision we remark that the values taken by the cumulative probability
distribution f(t) can be estimated by the average of independent measures of the random variable

X = 1text≤t,

which follows an Bernouilli distribution of parameter f(t). Consecutive runs of the individual-based simula-
tions yield independent observations Xn of this distribution. By Hoeffding’s inequality we have for all ε > 0
and n ∈ N

P

(∣∣∣∣∣ 1n
n∑
i=1

Xn − f(t)
∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−2ε2n

)
=: α,

and we achieved an error of at most ε = 10−3 at risk α ≤ 10−3 by running n = − 2
ε2 ln

(
α
2
)
≈ 15201805

independent individual-based simulations to estimate the probability distribution of the extinction time
(Figure 5.1.5, t1 = 82 i.e. March 23). Other curves are esimated on the basis of 152019 independent
simulations, which amouts to an error of at most 10−2 at risk 10−3.

Since the curves presented in Figure 5.1.3 are so similar that it is difficult to see any difference between
them, we computed the absolute error between each curve and the “reference” of t1 = 82. We present
the numerical values in Table 5.1.5. Notice that the error is actually below the estimated precision of the
approximation.

5.1.5.3 Supplementary figures

5.1.5.4 Supplementary tables

We use cumulative reported data from the National Health Commission of the People’s Republic of China and
the Chinese CDC for mainland China. Before February 11, the data was based on laboratory confirmations.
From February 11 to February 15, the data included cases that were not tested for the virus, but were
clinically diagnosed based on medical imaging (patients that showed signs of pneumonia). There were
17,409 such cases from February 11 to February 15. The data from February 11 to February 15 specified
both types of reported cases. From February 16, the data did not separate the two types of reporting, but
reported the sum of both types. We therefore subtracted 17,409 cases from the cumulative reported cases
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Figure 5.1.6: Graph of τ(t)S0 = τ0S0 exp (−µmax (t−N, 0)) with S0 = 1.40005× 109, τ0 = 3.3655× 10−10,
N = Jan. 26, and µ = 0.148. The transmission rate is very small in the second half of March onwards. The
parameter values correspond to the baseline case that we considered (f = 0.8) see Table 5.1.2.
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Figure 5.1.7: Schematic of the model (5.1.12).
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Figure 5.1.8: In this figure the x-axis corresponds to t1 and the y-axis correponds to the error err(t1) defined
in (5.1.14). We observe that the smaller f , the larger the error. Parameter values are listed in Table 5.1.2.
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Figure 5.1.9: In figure (a) we plot a comparison between the average S (susceptible) computed from the IBM
and the S component of the solution of (5.1.1). In figure (b) we plot a comparison between the average
I (asymptomatic), R (reported) and U (unreported) computed from the IBM and the components I, R
and U of the solution of (5.1.1). In figure (c) we plot a comparison between the average RR (removed)
computed from the IBM and the components RR of the solution of (5.1.1). In figure (d) we plot a comparison
between the average CR (cumulative reported cases) computed from the IBM and the curve CR computed by
(5.1.1)-(5.1.4). In this figure 500 independent runs of the IBM simulations are used and the corresponding
components of the ODE model start from the same initial condition (at t = t0). The parameters we used for
both computations are the following: I0 = 93, U0 = 5, S0 = 1.40005×109− (I0 +U0), R0 = RR0 = CR0 = 0
and f = 0.8, τ0 = 3.3655× 10−10, N = 26, µ = 0.148, ν = 1

7 , η = 1
7 , t0 = 13.3617.

after February 15 to obtain approximate data for the cumulative numbers of reported cases based only on
laboratory confirmations after February 15.The data is given in Table 5.1.4 with this adjustment.



379

(a) (b)

Jan 14 Feb 13 Mar 14 Apr 13

1.4

1.4

1.4

1.4

1.4

·109

95% probability

68% probability
average

Jan 14 Feb 13 Mar 14 Apr 13
0

1

2

3

·104

I
R
U

(c) (d)

Jan 14 Feb 13 Mar 14 Apr 13
0

0.2

0.4

0.6

0.8

1
·105

Jan 14 Feb 13 Mar 14 Apr 13
0

2

4

6

8
·104

Figure 5.1.10: In figure (a) we plot the mean value and variance of S (susceptible) computed from the IBM.
The dark blue area contains 68% of the trajectories, and the light blue area 95%. In figure (b) we plot the
mean value and variance of I (infected), R (reported) and U (unreported) computed from the IBM. The dark
areas contains 68% of the trajectories, and the light areas 95%. In figure (c) we plot the mean value and
variance of RR (removed) computed from the IBM. The dark green area contains 68% of the trajectories,
and the light green area 95%. In figure (d) we plot the mean value and variance of CR (cumulated reported)
computed from the IBM. The dark gray area contains 68% of the trajectories, and the light gray area 95%.
We use 500 independent runs of the IBM simulations. The parameters we used for both computations are
the following: I0 = 93, U0 = 5, S0 = 1.40005 × 109 − (I0 + U0), R0 = RR0 = CR0 = 0 and f = 0.8,
τ0 = 3.3655× 10−10, N = 26, µ = 0.148, ν = 1

7 , η = 1
7 , t0 = 13.3617.

January

19 20 21 22 23 24 25

198 291 440 571 830 1287 1975

26 27 28 29 30 31

2744 4515 5974 7711 9692 11791

February

1 2 3 4 5 6 7

14380 17205 20438 24324 28018 31161 34546

8 9 10 11 12 13 14

37198 40171 42638 44653 46472 48467 49970

15 16 17 18 19 20 21

51091 70548− 17409 72436− 17409 74185− 17409 75002− 17409 75891− 17409 76288− 17409

22 23 24 25 26 27 28

76936− 17409 77150− 17409 77658− 17409 78064− 17409 78497− 17409 78824− 17409 79251− 17409

29

79824− 17409

March

1 2 3 4 5 6 7

79824− 17409 79824− 17409 79824− 17409 80409− 17409 80552− 17409 80651− 17409 80695− 17409

8 9 10 11 12 13 14

80735− 17409 80754− 17409 80778− 17409 80793− 17409 80813− 17409 80824− 17409 80844− 17409

15 16 17 18

80860− 17409 80881− 17409 80894− 17409 80928− 17409

Table 5.1.4: Cumulative data describing confirmed cases in mainland China from January 20, 2020 to March
18, 2020.
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t1 26 33 40 47 54 61

date Jan. 27 Feb. 3 Feb. 10 Feb. 17 Feb. 24 Mar. 2

diff(t1) 2.9× 10−3 2.1× 10−3 2.9× 10−3 1.8× 10−3 2.5× 10−3 1.4× 10−3

t1 68 75 82

date Mar. 9 Mar. 16 Mar. 23

diff(t1) 1.6× 10−3 1.2× 10−3 0.00

Table 5.1.5: Absolute difference between the cumulative distribution given by the stochastic simulations and
the reference simulation t1 = 82. For each t1 we computed the error as diff(t1) = supt≥t1 |ft1(t) − f81(t)|,
where ft1 is the estimated distribution computed simulations, for which the initial condition correspond to
the components of (5.1.1) at t = t1 rounded to the closest integer.

t1 26 33 40 47 54 61

date Jan. 27 Feb. 3 Feb. 10 Feb. 17 Feb. 24 Mar. 2

diff(t1) 8.6× 10−1 4.4× 10−1 1.7× 10−1 6.4× 10−2 2.5× 10−2 8.1× 10−3

t1 68 75 82

date Mar. 9 Mar. 16 Mar. 23

diff(t1) 3.5× 10−3 8.5× 10−4 5.7× 10−4

Table 5.1.6: Absolute difference between the cumulative distribution given by the stochastic simulations and
the analytic approximation using the approximate model (5.1.12), computed using equation (5.1.16).

t1 t0 18 22 26 33 40

date Jan. 14 Jan. 19 Jan. 23 Jan. 27 Feb. 3 Feb.10

maxt≥t1 σ(t) 3717 1685 787 401 186 106

Table 5.1.7: Maximal standard deviation for the components I, R and U computed by stochastic simulations
started at date t1 with initial condition given by the solution to (5.1.1) with the parameters from Table 5.1.2.
The ODE model (5.1.1) is solved up to t = t1, and we take the solution to (5.1.1) at t = t1 as initial condition
for the stochastic simulations. σ(t) is the maximum, at time t, of the standard deviations of the quantities
I(t), R(t) and U(t) in a sample of n = 1000 independent simulations started at t = t1, and is expressed in
number of individuals. We took f = 0.8 and other parameters are taken from Table 5.1.2.
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5.2 Unreported Cases for Age Dependent COVID-19 Outbreak in Japan

5.2.1 Introduction

COVID-19 disease caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2) first appeared
in Wuhan, China, and the first cases were notified to WHO on 31 December 2019 [430, 422]. Beginning in
Wuhan as an epidemic, it then spread very quickly and was characterized a pandemic on 11 March 2020
[430]. Symptoms of this disease include fever, shortness of breath, cough, and a non-negligible proportion
of infected individuals may develop severe forms of the symptoms leading to their transfer to intensive
care units and, in some cases, death, see e.g., Guan et al. [194] and Wei et al. [396]. Both symptomatic
and asymptomatic individuals can be infectious [341, 396, 417], which makes the control of the disease
particularly challenging.

The virus is characterized by its rapid progression among individuals, most often exponential in the first
phase, but also a marked heterogeneity in populations and geographic areas [423, 415, 382]. The number of
reported cases worldwide exceeded 3 millions as of 3 May 2020 [420]. The heterogeneity of the number of
cases and the severity according to the age groups, especially for children and elderly people, aroused the
interest of several researchers [102, 326, 268, 356, 375]. Indeed, several studies have shown that the severity
of the disease increases with the age and co-morbidity of hospitalized patients (see e.g., To et al. [375] and
Zhou et al. [415]). Wu et al. [404] have shown that the risk of developing symptoms increases by 4% per year
in adults aged between 30 and 60 years old while Davies et al. [130] found that there is a strong correlation
between chronological age and the likelihood of developing symptoms. Since completely asymptomatic
individuals can also be contagious, a higher probability of developing symptoms does not necessarily imply
greater infectiousness: Zou et al. [417] found that, in some cases, the viral load in asymptomatic patients
was similar to that in symptomatic patients. Moreover while adults are more likely to develop symptoms,
Jones et al. [227] found that the viral loads in infected children do not differ significantly from those of
adults.

These findings suggest that a study of the dynamics of inter-generational spread is fundamental to better
understand the spread of the coronavirus and most importantly to efficiently fight the COVID-19 pandemic.
To this end the distribution of contacts between age groups in society (work, school, home, and other
locations) is an important factor to take into account when modeling the spread of the epidemic. To account
for these facts, some mathematical models have been developed [25, 108, 130, 326, 356]. In Ayoub et al. [25]
the authors studied the dependence of the COVID-19 epidemic on the demographic structures in several
countries but did not focus on the contacts distribution of the populations. In [108, 130, 326, 356] a focus
on the social contact patterns with respect to the chronological age has been made by using the contact
matrices provided in Prem et al. [325]. While Ayoub et al. [25], Chikina and Pegden [108] and Davies et
al. [130] included the example of Japan in their study, their approach is significantly different from ours.
Indeed, Ayoub et al. [25] use a complex mathematical model to discuss the influence of the age structure
on the infection in a variety of countries, mostly through the basic reproduction number R0. They use
parameter values from the literature and from another study of the same group of authors [26], where the
parameter identification is done by a nonlinear least-square minimization. Chikina and Pegden [108] use an
age-structured model to investigate age-targeted mitigation strategies. They rely on parameter values from
the literature and do discuss using age-structured temporal series to fit their model. Finally, Davies et al.
[130] also discuss age-related effects in the control of the COVID epidemic, and use statistical inference to
fit an age-structured SIR variant to data; the model is then used to discuss the efficiency of different control
strategies. We provide a new, explicit computational solution for the parameter identification of an age-
structured model. The model is based on the SIUR model developed in Liu et al. [261], which accounts for
a differentiated infectiousness for reported and unreported cases (contrary to, for instance, other SIR-type
models). In particular, our method is significantly different from nonlinear least-squares minimization and
does not involve statistical inference.

In this section 5.2 we focus on an epidemic model with unreported infectious symptomatic patients (i.e.,
with mild or no symptoms). Our goal is to investigate the age structured data of the COVID-19 outbreak
in Japan. In section 5.2.2 we present the age structured data and in section 5.2.3 the mathematical models
(with and without age structure). One of the difficulties in fitting the model to the data is that the growth
rate of the epidemic is different in each age class, which lead us to adapt our early method presented in Liu
et al. [261]. The new method is presented in the Appendix 5.2.6. In section 5.2.4 we present the comparison
of the model with the data. In the last section 5.2.5 we discuss our results.
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Figure 5.2.1: In this figure we plot in blue bars the age distribution of the Japanese population for 10,000
people and we plot in orange bars the age distribution of the number of reported cases of SARS-CoV-2
for 10,000 patient on 29 April (based on the total of 13,660 reported cases). We observe that 77% of the
confirmed patients belong to the 20–60 years age class.
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Figure 5.2.2: In this figure we plot the number of infected patients for each age class per 10,000 individuals
of the same age class (i.e., the number of infected individuals divided by the population of the age class
times 10,000). The figure shows that the individuals are more or less likely to becomes infected depending
on their age class. The bars describe the susceptibility of people to the SARS-CoV-2 depending on their age
class.

5.2.2 Data
Patient data in Japan have been made public since the early stages of the epidemic with the quarantine
of the Diamond Princess in the Haven of Yokohama. We used data from the website covid19japan.com
(https://covid19japan.com. Accessed 6 May 2020) which is based on reports from national and regional
authorities. Patients are labeled “confirmed” when tested positive to COVID-19 by PCR. Interestingly, the
age class of the patient is provided for 13,660 out of 13,970 confirmed patients (97.8% of the confirmed
population) as of 29 April. The age distribution of the infected population is represented in Figure 5.2.1
compared to the total population per age class (data from the Statistics Bureau of Japan estimate for 1
October 2019). In Figure 5.2.2 we plot the number of reported cases per 10,000 people of the same age
class (i.e., the number of infected patients divided by the population of the age class times 10,000). Both
datasets are given in Table 5.2.1 and a statistical summary is provided by Table 5.2.2. Note that the high
proportion of 20–60 years old confirmed patients may indicate that the severity of the disease is lower for
those age classes than for older patients, and therefore the disease transmits more easily in those age classes
because of a higher number of asymptomatic individuals. Elderly infected individuals might transmit less
because they are identified more easily. The cumulative number of death (Figure 5.2.3) is another argument
in favor of this explanation. We also reconstructed the time evolution of the reported cases in Figures 5.2.4
and 5.2.5. Note that the steepest curves precisely concern the 20–60-year old, probably because they are
economically active and therefore have a high contact rate with the population.

https://covid19japan.com
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Figure 5.2.3: Cumulative number of SARS-CoV-2-induced deaths per age class (red bars). We observe that
83% of death occur in between 70 and 100 years old.
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Figure 5.2.4: Time evolution of the cumulative number of reported cases of SARS-CoV-2 per age class.
The vertical axis represents the total number of cumulative reported cases in each age class.
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Figure 5.2.5: Time evolution of the cumulative number of reported cases of SARS-CoV-2 per age class.
The vertical axis represents the total number of cumulative reported cases in each age class

Table 5.2.1: The age distribution of Japan is taken from the Statistics Bureau of Japan [427]. The number of
cases and the number of death the data come from Prefectural Governments and Japan Ministry of Health,
Labour and Welfare.

Age group [0, 10[ [10, 20[ [20, 30[ [30, 40[ [40, 50[ [50, 60[ [60, 70[ [70, 80[ [80, 90[ [90, 100[

Age class for 2019 9,859,515 11,171,044 12,627,964 14,303,042 18,519,755 16,277,853 16,231,582 15,926,926 8,939,954 2,309,313

Age class per 10,000 people 781 885 1000 1133 1467 1290 1286 1262 709 183

Confirmed Cases 211 327 2216 2034 2220 2355 1566 1289 857 304

Death 0 0 0 2 6 4 7 37 49 9

Table 5.2.2: Statistical summary of the data from Table 5.2.1.

Dataset Japanese Population Infected Deceased

First Quartile 28 28 68

Median 48 44 75

Third Quartile 67 59 81
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5.2.3 Methods

5.2.3.1 SIUR Model

The model consists of the following system of ordinary differential equations:



S′(t) = −τ(t)S(t)I(t) + U(t)
N

,

I ′(t) = τ(t)S(t)I(t) + U(t)
N

− νI(t),

R′(t) = ν1I(t)− ηR(t),

U ′(t) = ν2I(t)− ηU(t).

(5.2.1)

This system is supplemented by initial data

S(t0) = S0 ≥ 0, I(t0) = I0 ≥ 0, R(t0) ≥ 0 and U(t0) = U0 ≥ 0. (5.2.2)

Here t ≥ t0 is time in days, t0 is the starting date of the epidemic in the model, S(t) is the number of
individuals susceptible to infection at time t, I(t) is the number of asymptomatic infectious individuals at
time t, R(t) is the number of reported symptomatic infectious individuals at time t, and U(t) is the number
of unreported symptomatic infectious individuals at time t. A flow chart of the model is presented in Figure
5.2.6.

Asymptomatic infectious individuals I(t) are infectious for an average period of 1/ν days. Reported
symptomatic individuals R(t) are infectious for an average period of 1/η days, as are unreported symptomatic
individuals U(t). We assume that reported symptomatic infectious individuals R(t) are reported and isolated
immediately, and cause no further infections. The asymptomatic individuals I(t) can also be viewed as having
a low-level symptomatic state. All infections are acquired from either I(t) or U(t) individuals. A summary
of the parameters involved in the model is presented in Table 5.2.3.

Our study begins in the second phase of the epidemics, i.e., after the pathogen has succeeded in surviving
in the population. During this second phase τ(t) ≡ τ0 is constant. When strong government measures such
as isolation, quarantine, and public closings are implemented, the third phase begins. The actual effects of
these measures are complex, and we use a time-dependent decreasing transmission rate τ(t) to incorporate
these effects. The formula for τ(t) is

{
τ(t) = τ0, 0 ≤ t ≤ D,

τ(t) = τ0 exp (−µ (t−D)) , D < t.
(5.2.3)

The date D is the first day of public intervention and µ characterises the intensity of the public inter-
vention.

A similar model has been used to describe the epidemics in mainland China, South Korea, Italy, and
other countries, and give reasonable trajectories for the evolution of the epidemic based on actual data
[P16, 261, 260, 258, 259, 262]. Compared with these models, we added a scaling with respect to the total
population size N , for consistency with the age-structured model (5.2.12). This only changes the value of
the parameter τ and does not impact the qualitative or quantitative behavior of the model.



386

S I

R

U

SymptomaticAsymptomatic

τS[I + U ]

ν1
I

ν
2I

Removed

ηR

ηU

Figure 5.2.6: Compartments and flow chart of the model.

Table 5.2.3: Parameters of the model.

Symbol Interpretation Method

t0 Time at which the epidemic started fitted

S0 Number of susceptible at time t0 fixed

I0 Number of asymptomatic infectious at time t0 fitted

U0 Number of unreported symptomatic infectious at time t0 fitted

τ(t) Transmission rate at time t fitted

D First day of public intervention fitted

µ Intensity of the public intervention fitted

1/ν Average time during which asymptomatic infectious are asymptomatic fixed

f Fraction of asymptomatic infectious that become reported symptomatic infectious fixed

ν1 = f ν Rate at which asymptomatic infectious become reported symptomatic fixed

ν2 = (1− f) ν Rate at which asymptomatic infectious become unreported symptomatic fixed

1/η Average time symptomatic infectious have symptoms fixed

5.2.3.2 Comparison of the Model (5.2.1) with the Data

At the early stages of the epidemic, the infectious components of the model I(t), U(t) and R(t) must be
exponentially growing. Therefore, we can assume that

I(t) = I0 exp (χ2 (t− t0)) .

The cumulative number of reported symptomatic infectious cases at time t, denoted by CR(t), is

CR(t) = ν1

t∫
t0

I(s)ds. (5.2.4)

Since I(t) is an exponential function and CR(t0) = 0 it is natural to assume that CR(t) has the following
special form:

CR(t) = χ1 exp (χ2t)− χ3. (5.2.5)
As in their early articles [261, 260, 258, 259, 262], the authors fix χ3 = 1 and we evaluate the parameters

χ1 and χ2 by using an exponential fit to

χ1 exp (χ2t) ' CRdata(t).

We use only early data for this part, from day t = d1 until day t = d2, because we want to catch the
exponential growth of the early epidemic and avoid the influence of saturation arising at later stages.
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Remark 5.2.1. The estimated parameters χ1 and χ2 will vary if we change the interval [d1, d2].

Once χ1, χ2, χ3 are known, we can compute the starting time of the epidemic t0 from (5.2.5) as :

CR(t0) = 0⇔ χ1 exp (χ2t0)− χ3 = 0 ⇒ t0 = 1
χ2

(ln (χ3)− ln (χ1)) .

We fix S0 = 126.8 × 106, which corresponds to the total population of Japan. The quantities I0, R0,
and U0 correspond to the values taken by I(t), R(t) and U(t) at t = t0 (and in particular R0 should not
be confused with the basic reproduction number R0). We fix the fraction f of symptomatic infectious
cases that are reported. We assume that between 80% and 100% of infectious cases are reported. Thus, f
varies between 0.8 and 1. We assume that the average time during which the patients are asymptomatic
infectious 1/ν varies between 1 day and 7 days. We assume that the average time during which a patient is
symptomatic infectious 1/η varies between 1 day and 7 days. In other words we fix the parameters f , ν, η.
Since f and ν are known, we can compute

ν1 = fν and ν2 = (1− f) ν. (5.2.6)

Computing further (see below for more details), we should have

I0 = χ1χ2 exp (χ2t0)
f ν

= χ3χ2
f ν

, (5.2.7)

τ = N
χ2 + ν

S0

η + χ2
ν2 + η + χ2

, (5.2.8)

R0 = ν1
η + χ2

I0 = fν

η + χ2
I0. (5.2.9)

and
U0 = ν2

η + χ2
I0 = (1− f)ν

η + χ2
I0. (5.2.10)

By using the approach described in Diekmann et al. [141], van den Driessche and Watmough [149], the
basic reproductive number for model (5.2.1) is given by

R0 = τS0
νN

(
1 + ν2

η

)
.

By using (5.2.8) we obtain

R0 = χ2 + ν

ν

(η + χ2)
ν2 + η + χ2

(
1 + ν2

η

)
. (5.2.11)

5.2.3.3 Model SIUR with Age Structure

In what follows we will denote N1, . . . , N10 the number of individuals respectively for the age classes
[0, 10[, . . . , [90, 100[. The model for the number of susceptible individuals S1(t), . . . , S10(t), respectively
for the age classes [0, 10[, . . . , [90, 100[, is the following

S′1(t) = −τ1S1(t)
[
φ1,1

(I1(t) + U1(t))
N1

+ . . .+ φ1,10
(I10(t) + U10(t))

N10

]
,

...

S′10(t) = −τ10S10(t)
[
φ10,1

(I1(t) + U1(t))
N1

+ . . .+ φ10,10
(I10(t) + U10(t))

N10

]
.

(5.2.12)

The model for the number of asymptomatic infectious individuals I1(t), . . . , I10(t), respectively for the
age classes [0, 10[, . . . , [90, 100[, is the following

I ′1(t) = τ1S1(t)
[
φ1,1

(I1(t) + U1(t))
N1

+ . . .+ φ1,10
(I10(t) + U10(t))

N10

]
− νI1(t),

...

I ′10(t) = τ10S10(t)
[
φ10,1

(I1(t) + U1(t))
N1

+ . . .+ φ10,10
(I10(t) + U10(t))

N10

]
− νI10(t).

(5.2.13)
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The model for the number of reported symptomatic infectious individuals R1(t), . . . , R10(t), respectively
for the age classes [0, 10[, . . . , [90, 100[, is

R′1(t) = ν1
1 I1(t)− ηR1(t),

...

R′10(t) = ν10
1 I10(t)− ηR10(t).

(5.2.14)

Finally the model for the number of unreported symptomatic infectious individuals U1(t), . . . , U10(t),
respectively in the age classes [0, 10[, . . . , [90, 100[, is the following

U ′1(t) = ν1
2 I1(t)− ηU1(t),

...

U ′10(t) = ν10
2 I10(t)− ηU10(t).

(5.2.15)

In each age class [0, 10[, . . . , [90, 100[ we assume that there is a fraction f1, . . . , f10 of asymptomatic
infectious individual who become reported symptomatic infectious (i.e., with severe symptoms) and a fraction
(1−f1), . . . , (1−f10) who become unreported symptomatic infectious (i.e., with mild symptoms). Therefore
we define

ν1
1 = νf1 and ν1

2 = ν(1− f1),
...

ν10
1 = νf10 and ν10

2 = ν(1− f10).

(5.2.16)

In this model τ1, . . . , τ10 are the respective transmission rates for the age classes [0, 10[, . . . , [90, 100[.
The matrix φij represents the probability for an individual in the class i to meet an individual in the

class j. In their survey, Prem and co-authors [325] present a way to reconstruct contact matrices from
existing data and provide such contact matrices for a number of countries including Japan. Based on the
data provided by Prem et al. [325] for Japan we construct the contact probability matrix φ. More precisely,
we inferred contact data for the missing age classes [80, 90[ and [90, 100[. The precise method used to
construct the contact matrix γ is detailed in Appendix 5.2.7. An analogous contact matrix for Japan has
been proposed by Munasinghe, Asai and Nishiura [295]. The contact matrix γ we used is the following

[γij ] =



4.03 0.92 0.47 1.69 0.83 0.92 0.78 0.56 0.57 0.57

0.71 8.06 1.38 1.36 1.96 1.74 0.75 0.86 0.74 0.57

0.55 1.05 4.63 2.25 1.84 1.92 0.94 0.46 0.74 0.73

1.52 1.20 2.54 4.97 2.98 2.40 1.76 0.99 0.53 0.73

0.69 1.42 1.93 2.87 3.91 2.76 1.35 1.33 0.95 0.53

0.34 0.48 1.20 1.46 1.61 2.97 1.40 0.98 1.23 0.95

0.28 0.18 0.20 0.52 0.38 0.77 2.67 1.72 0.92 1.23

0.12 0.10 0.09 0.18 0.19 0.25 0.76 1.99 1.18 0.93

0.09 0.10 0.08 0.09 0.13 0.17 0.27 0.64 1.61 1.19

0.09 0.09 0.10 0.08 0.09 0.13 0.17 0.27 0.64 1.61



, (5.2.17)

where the ith line of the matrix γij is the average number of contact made by an individuals in the age
class i with an individual in the age class j during one day. Notice that the higher number of contacts are
achieved within the same age class. The matrix of conditional probability φ of contact between age classes
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is given by (5.2.18) and we plot a visual representation of this matrix in Figure 5.2.7.

[φij ] =



0.35 0.08 0.04 0.14 0.07 0.08 0.06 0.04 0.05 0.05

0.03 0.44 0.07 0.07 0.10 0.09 0.04 0.04 0.04 0.03

0.03 0.06 0.30 0.14 0.12 0.12 0.06 0.03 0.04 0.04

0.07 0.06 0.12 0.25 0.15 0.12 0.08 0.05 0.02 0.03

0.03 0.07 0.10 0.16 0.22 0.15 0.07 0.07 0.05 0.03

0.02 0.03 0.09 0.11 0.12 0.23 0.11 0.07 0.09 0.07

0.03 0.02 0.02 0.05 0.04 0.08 0.30 0.19 0.10 0.13

0.02 0.01 0.01 0.03 0.03 0.04 0.13 0.34 0.20 0.16

0.02 0.02 0.01 0.02 0.02 0.03 0.06 0.14 0.36 0.27

0.02 0.02 0.03 0.02 0.02 0.03 0.05 0.08 0.19 0.48



. (5.2.18)
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Figure 5.2.7: Graphical representation of the contact matrix φ. The intensity of blue in the cell (i, j) indicates
the conditional probability that, given a contact between an individual of age group i and another individual,
the latter belongs to the age class j. The matrix was reconstructed from the data of Prem et al. [325],
with the method described in Appendix 5.2.7.

5.2.4 Results
5.2.4.1 Model without Age Structure

The daily number of reported cases from the model can be obtained by computing the solution of the
following equation:

DR′(t) = ν1 I(t)−DR(t), for t ≥ t0 and DR(t0) = DR0. (5.2.19)

In Figures 5.2.8 and 5.2.9 we employ the method presented previously in Liu et al. [262] to fit the data
for Japan without age structure.

The model to compute the cumulative number of death from the reported individuals is the following

D′(t) = ηD pR(t), for t ≥ t0 and D(t0) = 0, (5.2.20)

where ηD is the death rate of reported infectious symptomatic individuals and p is the case fatality rate
(namely the fraction of death per reported infectious individuals).

In the simulation we chose 1/ηD = 6 days and the case fatality rate p = 0.286 is computed by using the
cumulative number of confirmed cases and the cumulative number of deaths (as of 29 April) as follows

p = cumulative number of deaths
cumulative number of reported cases = 393

13744 . (5.2.21)

In Figure 5.2.10 we plot the cumulative number ofD(t) by using the same simulations than in Figures 5.2.8 and 5.2.9.
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Figure 5.2.8: Cumulative number of cases. We plot the cumulative data (reds dots) and the best fits of the
model CR(t) (black curve) and CU(t) (green curve). We fix f = 0.8, 1/η = 7 days and 1/ν = 7 and we
apply the method described in Liu et al. [262]. The best fit is d1 = 2 April, d2 = 5 April, D = 27 April,
µ = 0.6, χ1 = 179, χ2 = 0.085, χ3 = 1 and t0 = 13 January.
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Figure 5.2.9: Daily number of cases. We plot the daily data (black dots) with DR(t) (blue curve). We fix
f = 0.8, 1/η = 7 days and 1/ν = 7 and we apply the method described in Liu et al. [262]. The best fit is
d1 = 2 April, d2 = 5 April, N = 27 April, µ = 0.6, χ1 = 179, χ2 = 0.085, χ3 = 1 and t0 = 13 January.
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Figure 5.2.10: In this figure we plot the data for the cumulative number of death (black dots), and our best
fits for D(t) (red curves).

5.2.4.2 Model with Age Structure

In order to describe the confinement for the age structured model (5.2.12)–(5.2.15) we will use for each age
class i = 1, . . . , 10 a different transmission rate having the following form{

τi(t) = τi, 0 ≤ t ≤ Di,

τi(t) = τi exp (−µi (t−Di)) , Di < t.
(5.2.22)

The date Di is the first day of public intervention for the age class i and µi is the intensity of the public
intervention for each age class.

In Figure 5.2.11 we plot the cumulative number of reported cases as given by our model (5.2.12)–
(5.2.15) (solid lines), compared with reported cases data (black dots). We used the method described in
the Appendix 5.2.6 to estimate the parameters τi from the data. In Figure 5.2.12 we plot the cumulative
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number of unreported cases (solid lines) as given by our model with the same parameter values, compared
to the existing data of reported cases (black dots).
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Figure 5.2.11: We plot a comparison between the model (5.2.12)–(5.2.15) and the age structured data from
Japan by age class. We took 1/ν = 1/η = 7 days for each age class. Our best fit is obtained for fi which
depends linearly on the age class until it reaches 90%, with f1 = 0.1, f2 = 0.2, f3 = 0.3, f4 = 0.4, f5 = 0.5,
f6 = 0.6, f7 = 0.7, f8 = 0.8, f9 = 0.9, and f10 = 0.9. The values we used for the first day of public
intervention are Di = 13 April for the 0–20 years age class i = 1, 2, Di = 11 April for the age class going
from [20, 30[ to [60, 70[ i = 3, 4, 5, 6, 7, and Di = 16 April for the remaining age classes. We fit the data from
30 March to 20 April to derive the value of χi1 and χi2 for each age class. For the intensity of confinement
we use the values µ1 = µ2 = 0.4829, µ3 = µ4 = 0.2046, µ5 = µ6 = 0.1474, µ7 = 0.0744, µ8 = 0.1736,
µ9 = µ10 = 0.1358. By applying the method described in Appendix A, we obtain τ1 = 0.1630, τ2 = 0.1224,
τ3 = 0.3028, τ4 = 0.2250, τ5 = 0.1520, τ6 = 0.1754, τ7 = 0.1289, τ8 = 0.1091, τ9 = 0.1211 and τ10 = 0.1642.
The matrix φ is the one defined in (5.2.18).
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Figure 5.2.12: Cumulative number of unreported cases as given by the fit of the model (5.2.12)–(5.2.15) to
Japanese data. The solid curves represent the solution of the model and the black dots correspond to the
reported cases data. Parameter are the same as in Figure 5.2.11.

In order to understand the role of transmission network between age groups in this epidemic, we plot
in Figure 5.2.13 the transmission matrices computed at different times. The transmission matrix is the
following

C(t) = diag (τ1(t), τ2(t), . . . , τ10(t))× φ (5.2.23)

where the matrix φ describes contacts and is given in (5.2.18), and the transmission rates are the ones fitted
to the data as in Figure 5.2.11

τi(t) = τ0
i (t) exp(−µi(t−Di)+).

During the early stages of the epidemic, the transmission seems to be evenly distributed among age
classes, with a little bias towards younger age classes (Figure 5.2.13a). Younger age classes seem to react
more quickly to social distancing policies than older classes, therefore their transmission rate drops rapidly
(Figure 5.2.13b,c); one month after the start of social distancing measures, the transmission mostly occurs
within elderly classes (60–100 years, Figure 5.2.13d).
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Figure 5.2.13: Rate of contact between age classes according to the fitted data. For each age class in the
y-axis we plot the rate of contacts between one individual of this age class and another individual of the age
class indicated on the x-axis. (a) is the rate of contacts before the start of public measures (11 April). (b) is
the rate of contacts at the date of effect of the public measures for the last age class (16 April). (c) is the rate
of contacts one week later (23 April). (d) is the rate of contacts one month later (16 May). In this figure we
use τ1 = 0.1630, τ2 = 0.1224, τ3 = 0.3028, τ4 = 0.2250, τ5 = 0.1520, τ6 = 0.1754, τ7 = 0.1289, τ8 = 0.1091,
τ9 = 0.1211 and τ10 = 0.1642, µ1 = µ2 = 0.4829, µ3 = µ4 = 0.2046, µ5 = µ6 = 0.1474, µ7 = 0.0744,
µ8 = 0.1736, µ9 = µ10 = 0.1358, and D1 = D2 = 13 April, D3 = D4 = D5 = D6 = D7 = 11 April,
D8 = D9 = D10 = 16 April.

5.2.5 Discussion
The recent COVID-19 pandemic has lead many local governments to enforce drastic control measures in an
effort to stop its progression. Those control measures were often taken in a state of emergency and without
any real visibility concerning the later development of the epidemics, to prevent the collapse of the health
systems under the pressure of severe cases. Mathematical models can precisely help see more clearly what
could be the future of the pandemic provided that the particularities of the pathogen under consideration are
correctly identified. In the case of COVID-19, one of the features of the pathogen which makes it particularly
dangerous is the existence of a high contingent of unidentified infectious individuals who spread the disease
without notice. This makes non-intensive containment strategies such as quarantine and contact-tracing
relatively inefficient but also renders predictions by mathematical models particularly challenging.

Early attempts to reconstruct the epidemics by using SIURmodels were performed in Liu et al. [261, 260, 258, 259],
who used them to fit the behavior of the epidemics in many countries, by including undetected cases into
the mathematical model. Here we extend our modeling effort by adding the time series of deaths into the
equation. In section 5.2.4 we present an additional fit of the number of disease-induced deaths coming from
symptomatic (reported) individuals (see Figure 5.2.10). In order to fit properly the data, we were forced
to reduce the length of stay in the R-compartment to 6 days (on average), meaning that death induced
by the disease should occur on average faster than recovery. A shorter period between infection and death
(compared to remission) has also been observed, for instance, by Verity et al. [382].

The major improvement in this section 5.2 is to combine our early SIUR model with chronological age.
Early results using age structured SIR models were obtained by Kucharski et al. [245] but no unreported
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individuals were considered and no comparison with age-structured data were performed. Indeed in this
section 5.2 we provide a new method to fit the data and the model. The method extends our previous
method for the SIUR model without age (see Appendix 5.2.6).

The data presented in section 5.2.2 suggests that the chronological age plays a very important role in the
expression of the symptoms. The largest part of the reported patients are between 20 and 60 years old (see
Figure 5.2.1), while the largest part of the deceased are between 60 and 90 years old (see Figure 5.2.3). This
suggests that the symptoms associated with COVID-19 infection are more severe in elderly patients, which
has been reported in the literature several times (see e.g., Lu et al. [268], Zhou et al. [415]). In particular,
the probability of being asymptomatic (our parameter f) should in fact depend on the age class.

Indeed, the best match for our model (see Figure 5.2.11) was obtained under the assumption that the
proportion of symptomatic individual among the infected increases with the age of the patient. This linear
dependency of f as a function of age is consistent with the observations of Wu et al. [404] that the severity
of the symptoms increase linearly with age. As a consequence, unreported cases are a majority for young
age classes (for age classes less than 50 years) and become a minority for older age classes (more than 50
years), see Figure 5.2.12. Moreover, our model reveals the fact that the policies used by the government
to reduce contacts between individuals have strongly heterogeneous effects depending on the age classes.
Plotting the transmission matrix at different times (see Figure 5.2.13) shows that younger age classes react
more quickly and more efficiently than older classes. This may be due to the fact that the number of contacts
in a typical day is higher among younger individuals. As a consequence, we predict that one month after
the effective start of public measures, the new transmissions will almost exclusively occur in elderly classes.
The observation that younger ages classes play a major roles in the transmission of the disease has been
highlighted several times in the literature, see e.g., Davies et al. [130], Cao et al. [102], Kucharski et al.
[245] for the COVID-19 epidemic, but also Mossong et al. [292] in a more general context.

We develop a new model for age-structured epidemic and provided a new and efficient method to identify
the parameters of this model based on observed data. Our method differs significantly from the existing
nonlinear least-squares and statistical inference methods and we believe that it produces high-quality results.
Moreover, we only use the initial phase of the epidemic for the identification of the epidemiological param-
eters, which shows that the model itself is consistent with the observed phenomenon and argues against
overfitting. Yet our study could be improved in several direction. We only use reported cases which were
confirmed by PCR tests, and therefore the number of tests performed could introduce a bias in the observed
data – and therefore our results. We are currently working on an integration of this number of tests in our
model. We use a phenomenological model to describe the response of the population in terms of number of
contacts to the mitigation measures imposed by the government. This could probably be described more
precisely by investigating the mitigation strategies in terms of social network. Nevertheless we believe that
our study offers a precise and robust mathematical method which adds to the existing literature.

5.2.6 Method to Fit of the Age Structured Model to the Data
We first choose two days d1 and d2 between which each cumulative age group grows like an exponential.
By fitting the cumulative age classes [0, 10[,[10, 20[, . . . and [90, 100[ between d1 and d2, for each age class
j = 1, . . . 10 we can find χj1 and χj2

CRdataj (t) ' χj1 eχ
j
2t.

We choose a starting time t0 ≤ d1 and we fix

χj3 = χj1 e
χj2t0 ,∀j = 1, . . . , n,

and we obtain 
CR1(t) = χ1

1 e
χ1

2t − χ1
3,

...

CRn(t) = χn1 e
χn2 t − χn3 i

(5.2.24)

where
χij ≥ 0,∀i = 1, . . . , n, ∀j = 1, 2, 3.
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Figure 5.2.14: We plot an exponential fit for each age classes using the data from Japan.

We assume that
CR1(t)′ = ν1

1I1(t),
...

CRn(t)′ = νn1 In(t),

(5.2.25)

where
νi1 = ν fi, and νi2 = ν (1− fi),∀i = 1, . . . , n.

Therefore we obtain
Ij(t) = I?j e

χj2t (5.2.26)

where

I?j := χj1 χ
j
2

νj1
.

By assuming that the number of susceptible individuals remains constant we have
I ′1(t) = τ1S1

[
φ11

I1(t) + U1(t)
N1

+ . . .+ φ1n
In(t) + Un(t)

Nn

]
− νI1(t),

...

I ′n(t) = τnSn

[
φn1

I1(t) + U1(t)
N1

+ . . .+ φnn
In(t) + Un(t)

Nn

]
− νIn(t),

(5.2.27)
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and 
U ′1(t) = ν1

2 I1(t)− ηU1(t),
...

U ′n(t) = νn2 In(t)− ηUn(t).

(5.2.28)

If we assume that the Uj(t) have the following form

Uj(t) = U?j e
χj2t, (5.2.29)

then by substituting in (5.2.28) we obtain

U?j =
νj2I

?
j

η + χj2
. (5.2.30)

The cumulative number of unreported cases CUj(t) is computed as

CUj(t)′ = νj2Ij(t),

and we used the following initial condition:

CUj(0) = CU∗j =
∫ 0

−∞
νj2I
∗
j e
χj2sds =

νj2I
∗
j

χj2
.

We define the error between the data and the model as follows
ε1(t) = I ′1(t)− τ1S1

[
φ11

I1(t) + U1(t)
N1

+ . . .+ φ1n
In(t) + Un(t)

Nn

]
+ νI1(t),

...

εn(t) = I ′n(t)− τnSn
[
φn1

I1(t) + U1(t)
N1

+ . . .+ φnn
In(t) + Un(t)

Nn

]
+ νIn(t),

(5.2.31)

or equivalently
ε1(t) =

(
χ1

2 + ν
)
I?1e

χ1
2t − τ1S1

[
φ11

I?1 + U?1
N1

eχ
1
2t + . . .+ φ1n

I?n + U?n
Nn

eχ
n
2 t

]
,

...

εn(t) = (χn2 + ν) I?neχ
n
2 t − τnSn

[
φn1

I?1 + U?1
N1

eχ
1
2t + . . .+ φnn

I?n + U?n
Nn

eχ
n
2 t

]
.

(5.2.32)

Let the matrix φ be fixed. We look for the vector τ = (τ1, . . . , τn) which minimizes of

min
τ∈Rn

∑
j=1,...,n

∫ d2

d1

εj(t)2dt.

Define for each j = 1, . . . , n
Kj(t) :=

(
χj2 + ν

)
I?j e

χj2t

and
Hj(t) := Sj

[
φj1

I?1 + U?1
N1

eχ
1
2t + . . .+ φjn

I?n + U?n
Nn

eχ
n
2 t

]
,

so that
εj(t) = Kj(t)− τjHj(t).

Hence for each j = 1, . . . , n∫ d2

d1

εj(t)2dt =
∫ d2

d1

Kj(t)2dt− 2τj
∫ d2

d1

Kj(t)Hj(t)dt+ τ2
j

∫ d2

d1

Hj(t)2dt,
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and by setting

0 = ∂

∂τj

∫ d2

d1

εj(t)2dt = −2
∫ d2

d1

Kj(t)Hj(t)dt+ 2τj
∫ d2

d1

Hj(t)2dt

we deduce that

τj =
∫ d2
d1
Kj(t)Hj(t)dt∫ d2
d1
Hj(t)2dt

. (5.2.33)

Remark 5.2.2. It does not seem possible to estimate the matrix of contact φ by using similar optimization
method. Indeed, if we look for a matrix φ = (φij) which minimizes

min
φ∈Mn(R)

∑
j=1,...,n

∫ d2

d1

εj(t)2dt,

it turn out that ∑
j=1,...,n

∫ d2

d1

εj(t)2dt = 0

whenever φ is diagonal. Therefore the optimum is reached for any diagonal matrix. Moreover by using
similar considerations, if several χ2

j are equal, we can find a multiplicity of optima (possibly with φ not
diagonal). This means that trying to optimize by using the matrix φ does not yield significant and reliable
information.

In the Figure 5.2.15 below, we present an example of application of our method to fit the Japanese data.
We use the period going from 20 March to 15 April.
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Figure 5.2.15: We plot a comparison between the model (5.2.12)–(5.2.15) (without public intervention) and
the age structured data from Japan. We set 1/ν = 1/η = 7 days, fi which actually depends on the age class,
with f1 = 0.1, f2 = 0.2, f3 = 0.4, f4 = 0.4, f5 = 0.6, f6 = 0.6, f7 = 0.8, f8 = 0.8, f9 = 0.8, and f10 = 0.9.
and we obtain τ1 = 0.1264, τ2 = 0.1655, τ3 = 0.3538, τ4 = 0.2966, τ5 = 0.1513, τ6 = 0.1684, τ7 = 0.1251,
τ8 = 0.1168, τ9 = 0.1015, τ10 = 0.1258. The matrix φ is the one defined in (5.2.18).
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5.2.7 Construction of the Contact Matrix
The survey [325] presents reconstructed contact matrices for a number of countries including Japan for the 5-
year age classes [0, 5), [5, 10), ..., [75, 80) at various locations (work, school, home, and other locations) and a
compilation of those contact matrices to account for all locations. The precise description of the compilation
is presented in the section 5.2. Note that this section 5.2 is a follow-up of Mossong et al. [292] where
the survey procedure is described (including the data collection protocol) for several European countries
participating in the POLYMOD study.

The data is publicly available online (Prem et al. [325], Supporting dataset, DOI: https://doi.org/
10.1371/journal.pcbi.1005697.s002) and is presented in the form of a zipped collection of spreadsheets,
containing the data for several countries in columns X1 X2 ... X16. The columns stand for the average
number of contact of one individual of the corresponding age class (0–5 years for X1, 5–10 years for X2,
etc...), with an individual of the age class indicated by the row (first row is 0–5 years, second is 5–10 years
etc...). Since the age span covered by the study stops at 80, we had to infer the number of contacts for people
over the age of 80. We postulated that most people aged 80 or more are retired and that their behaviour
does not significantly differs from the behavior of people in the age class [75, 80). Therefore we completed
the missing columns by copying the last available information and shifting it to the bottom. We repeated
the procedure for lines. We believe that the introduced bias is kept to a minimum since the numerical values
are relatively low compared to the diagonal.

Because we use 10-year ages classes and the data is given in 5-year age classes, we had to combine
adjacent columns to recover the average number of contacts. To combine columns together, we used the
weighted average

C ′i =
N2(i−1)+1C2(i−1)+1 +N2(i−1)+2C2(i−1)+2

N2(i−1)+1 +N2(i−1)+2
,

where the column C ′i corresponds to the average number of contacts of an individual taken at random in the
[10(i − 1), 10i) and Ci is the average number of contacts of an individual taken at random in the age class
[5(i− 1), 5i). To combine two lines, we simply use the sum of the data

L′i = L2(i−1)+1 + L2(i−1)+2.

The matrix γ in (5.2.17) is the transpose of the array obtained by the former procedure applied to the
“all locations” dataset. Then φ is obtained by scaling the lines of γ to 1, i.e.,

φij = γij∑10
k=1 γik

.

https://doi.org/10.1371/journal.pcbi.1005697.s002
https://doi.org/10.1371/journal.pcbi.1005697.s002
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5.3 Clarifying predictions for COVID-19 from testing data: the example of
New York State

5.3.1 Introduction

The epidemic of novel coronavirus (COVID-19) infections began in China in December 2019 and rapidly
spread worldwide in 2020. Since the early beginning of the epidemic, mathematicians and epidemiologists
have developed models to analyze the data and characterize the spread of the virus, and attempt to project
the future evolution of the epidemic. Many of those models are based on the SIR or SEIR model which
is classical in the context of epidemics. We refer to [403, 368] for the earliest articles devoted to such
a question and to [12, 27, 77, 75, 76, 88, 142, 208, 231, 297, 371] for more models. In the course of
the COVID-19 outbreak, it became clear for the scientific community that covert cases (asymptomatic or
unreported infectious case) play an important role. An early description of an asymptomatic transmission
in Germany was reported by Rothe et al. [341]. It was also observed on the Diamond Princess cruise ship in
Yokohama in Japan by Mizumoto et al. [287] that many of the passengers were tested positive to the virus,
but never presented any symptoms. We also refer to Qiu [327] for more information about this problem.
At the early stage of the COVID-19 outbreak, a new class of epidemic models was proposed in Liu et al.
[261] to take into account the contamination of susceptible individuals by contact with unreported infectious.
Actually, this class of models was presented earlier in Arino et al. [15]. In [261] a new method to use the
number of reported cases in SIR models was also proposed. This method and model was extended in several
directions by the same group in [260, 258, 259] to include non-constant transmission rates and a period of
exposure. More recently the method was extended and successfully applied to a Japanese age-structured
dataset in [P10]. The method was also extended to investigate the predictability of the outbreak in several
countries including China, South Korea, Italy, France, Germany and the United Kingdom in [262]. The
application of the Bayesian method was also considered in [117].

In parallel with these modeling ideas, Bayesian methods have been widely used to identify the parameters
in the models used for the COVID-19 pandemic (see e.g. Roques et al. [340, 339] where an estimate of the
fatality ratio has been developed). A remarkable feature of those methods is to provide mechanisms to
correct some of the known biases in the observation of cases, such as the daily number of tests. Here we
embed the data for the daily number of tests into an epidemic model and compare the number of reported
cases produced by the model and the data. Our goal is to understand the relationship between the data for
the daily number of tests (which is an input of our model) and the data for the daily number of reported
cases (which is an output of our model).

The plan of the section 5.3 is the following. In section 5.3.2, we present a model involving the daily
number of tests. In section 5.3.3, we apply the method presented in [261] to our new model. In section
5.3.4, we present some numerical simulations and compare the model with the data. The last section 5.3.5
is devoted to the discussion.

5.3.2 Epidemic with testing data

Let n(t) be the number of tests per unit of time. Throughout this section 5.3, we use one day as the unit of
time. Therefore n(t) can be regarded as the daily number of tests at time t. The function n(t) is actually
coming from a database for the New York State [428]. Let N(t) be the cumulative number of tests from the
beginning of the epidemic. Then

N ′(t) = n(t), for t ≥ t1 and N(t1) = N1. (5.3.1)

Remark 5.3.1. section 5.3.4 is devoted to numerical simulations. We use n(t) as a piecewise constant
function that varies day by day. Each day, n(t) is equal to the number of tests that were performed that
day. So n(t) should be understood as the black curve in Figure 5.3.4.
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Figure 5.3.1: Flow chart of the epidemic model with tests (5.3.2). In this diagram n(t) is the daily number
of tests at time t. We consider a fraction (1 − σ) of false negative tests and a fraction σ of true positive
tests. The parameter g reflects the fact that the tests are devoted not only to the symptomatic patients but
also to a large fraction of the population of New York state.

The model consists of the following ordinary differential equation

S′(t) = −τS(t)[I(t) + U(t) +D(t)],

E′(t) = τS(t)[I(t) + U(t)] +D(t)]− αE(t),

I ′(t) = αE(t)− νI(t),

U ′(t) = ν (1− f) I(t) + n(t) (1− σ) g D(t)− ηU(t),

D′(t) = ν f I(t)− n(t) g D(t)− ηD(t),

R′(t) = n(t)σ gD(t)− ηR(t).

(5.3.2)

This system is supplemented by initial data (which are all non negative)

S(t1) = S1, E(t1) = E1, I(t1) = I1, U(t1) = U1, D(t1) = D1 and R(t1) = R1. (5.3.3)

The time t1 corresponds to the time where the tests started to be used constantly. Therefore the epidemic
started before t1.

Here t ≥ t1 is the time in days. S(t) is the number of individuals susceptible to infection. E(t) is the
number of exposed individuals (i.e. who are incubating the disease but not infectious). I(t) is the number
of individuals incubating the disease, but already infectious. U(t) is the number of undetected infectious
individuals (i.e. who are expressing mild or no symptoms), and the infectious that have been tested with a
false negative result, are therefore not candidates for testing. D(t) is the number of individuals who express
severe symptoms and are candidates for testing. R(t) is the number of individuals who have been tested
positive to the disease. The flux diagram of our model is presented in Figure 5.3.1.

Susceptible individuals S(t) become infected by contact with an infectious individual I(t), U(t) or D(t).
When they get infected, susceptibles are first classified as exposed individuals E(t), that is to say that they
are incubating the disease but not yet infectious. The average length of this exposed period (or noninfectious
incubation period) is 1/α days.

After the exposure period, individuals are becoming asymptomatic infectious I(t). The average length
of the asymptomatic infectious period is 1/ν days. After this period, individuals are becoming either mildly
symptomatic individuals U(t) or individuals with severe symptomsD(t). The average length of this infectious
period is 1/η days. Some of the U -individuals may show no symptoms at all.

In our model, the transmission can occur between a S-individual and an I-, U - or R-individual. Trans-
missions of SARS-CoV-2 are described in the model by the term τS(t)[I(t) + U(t) + D(t)] where τ is the
transmission rate. Here, even though a transmission from R-individuals to a S-individuals is possible in
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Figure 5.3.2: Key time periods of COVID-19 infection: the latent or exposed period before the onset of
symptoms and transmissibility, the incubation period before symptoms appear, the symptomatic period, and
the transmissibility period, which may overlap the asymptomatic period.

Symbol Interpretation Method

t1 Date when the tests start to be used extensively fixed

S1 Number of susceptible at time t1 fixed

E1 Number of exposed at time t1 fitted

I1 Number of asymptomatic infectious at time t1 fitted

U1 Number of undetectable infectious at time t1 fitted

D1 Number of detectable infectious at time t1 fitted

R1 Number of reported (tested positive) cases at time t1 fitted

τ Transmission rate fitted

n(t) Number of tests per unit of time fixed

1/α Average length of exposure fixed

1/ν Average length of asymptomatic infectiousness fixed

1/η Average length of symptomatic infectiousness fixed

f Frequency of infectious with sever symptoms fixed

σ Fraction of true positive tests fixed

g Frequency of testable individuals fixed

Table 5.3.1: Parameters and initial conditions of the model.

theory (e.g. if a tested patient infects its medical doctor), we consider that such a case is rare and we neglect
it.

The last part of the model is devoted to the testing. The parameter σ is the fraction of true positive
tests and (1− σ) is the fraction of false negative tests. The quantity σ has been estimated at σ = 0.7 in the
case of nasal or pharyngeal swabs for SARS-CoV-2 [316].

Among the detectable infectious, we assume that only a fraction g are tested per unit of time. This
fraction corresponds to individuals with symptoms suggesting a potential infection to SARS-CoV-2. The
fraction g is the frequency of testable individuals in the population of New York state. We can rewrite g as

g = 1
κP

(5.3.4)

where P is the total number of individuals in the population of the state of New York and 0 ≤ κ ≤ 1 is the
fraction total population with mild or sever symptoms that may induce a test.

Individuals who were tested positive R(t) are infectious on average during a period of 1/η days. But
we assume that they become immediately isolated and do not contribute to the epidemic anymore. In this
model we focus on the testing of the D-individuals. The quantity n(t)σ gD is a flux of successfully tested
D-individuals which become R-individuals. The flux of tested D-individuals which are false negatives is
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Symbol Interpretation Equation

t Time (in days)

S(t) Number of susceptible at time t (5.3.2)

E(t) Number of exposed at time t (5.3.2)

I(t) Number of asymptomatic infectious at time t (5.3.2)

U(t) Number of undetectable infectious at time t (5.3.2)

D(t) Number of detectable infectious at time t (5.3.2)

R(t) Number of reported (tested infectious) cases at time t (5.3.2)

CR(t) Cumulative number of reported (tested infectious) cases at time t (5.3.5)

DR(t) Daily number of reported (tested infectious) cases at time t (5.3.6)

CD(t) Cumulative number of detectable infectious at time t (5.3.7)

CU(t) Cumulative number of undetectable infectious at time t (5.3.8)

Table 5.3.2: Variables used in the model.

n(t) (1−σ) g D which go from the class of D-individuals to the U -individuals. The parameters of the model
and the initial conditions of the model are listed in Table 5.3.1.

Before describing our method we need to introduce a few useful identity. The cumulative number of
reported cases is obtained by using the following equation

CR′(t) = n(t)σ gD(t). (5.3.5)

The daily number of reported cases DR′(t) is given by

DR(t)′ = n(t)σ gD(t)−DR(t). (5.3.6)

The cumulative number of detectable cases is given by

CD′(t) = νfI(t), (5.3.7)

and the cumulative number of undetectable cases is given by

CU ′(t) = ν(1− f)I(t) + n(t)(1− σ)gD(t). (5.3.8)

5.3.3 Method to fit the cumulative number of reported cases
In order to deal with data, we need to understand how to set the parameters as well as some components
of the initial conditions. In order to do so, we extend the method presented first in [261]. The main novelty
here concerns the cumulative number of tests which is assumed to grow linearly at the beginning. This
property is satisfied for the New York State data as we can see in Figure 5.3.3. The black curve in this
figure is close to a line from March 15 to April 15. Figure 5.3.4 shows day-by-day fluctuations of the number
of tests while in Figure 5.3.3 the day-by-day fluctuations are not visible and the cumulative data allow to
understand the growth tendency of the number of tests.
Phenomenological models for the tests : We fit a line to the cumulative number of tests in a suitable
interval of days [t1, t2]. This means that we can find a pair of numbers a and b such that

N(t) = a× (t− t1) +N1, for t1 ≤ t ≤ t2. (5.3.9)

where a the daily number of tests and N1 is the cumulative number of tests on day t1.
By using the fact that N(t)′ = n(t) we deduce that

n(t) = a, for t1 ≤ t ≤ t2. (5.3.10)

Remark 5.3.2. In the simulations we fit a line to the cumulative number of tests from mid-March to mid-
April. Figure 5.3.3 shows that the linear growth assumption is reasonable for the New York State cumulative
testing data.
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Figure 5.3.3: In this figure, we plot the cumulative number of tests for the New York State. The black curve,
orange curve, and blue curve correspond respectively to the number of tests, the number of positive tests, and
the number of negative tests. We can see that at the early beginning of the epidemic, the cumulative number
of tests (black curve) grows linearly from mid-March to mid-April.
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Figure 5.3.4: In this figure, we plot the daily number of tests for the New York State. The black curve,
orange curve, and blue curve correspond respectively to the number of tests, the number of positive tests, and
the number of negative tests.

Phenomenological models for the reported cases: At the early stage of the epidemic, we assume
that all the infected components of the system grow exponentially while the number of susceptible remains
unchanged during a relatively short period of time t ∈ [t1, t2]. Therefore, we assume that

E(t) = E1e
χ2(t−t1), I(t) = I1e

χ2(t−t1), D(t) = D1e
χ2(t−t1) and U(t) = U1e

χ2(t−t1). (5.3.11)

We deduce that the cumulative number of reported cases satisfies

CR(t) = CR(t1) +
∫ t

t1

aσgD(θ)dθ (5.3.12)

hence by replacing D(t) by the exponential formula (5.3.11)

CR(t) = CR(t1) + aσg

χ2
D1

(
eχ2(t−t1) − 1

)
(5.3.13)

and it makes sense to assume that CR(t)− CR(t1) has the following form

CR(t)− CR(t1) = χ1e
χ2(t−t1) − χ3. (5.3.14)

By identifying (5.3.13) and (5.3.14) we deduce that

χ1 = χ3 = a σ g

χ2
D1. (5.3.15)
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Moreover by using (5.3.10) and the fact that the number of susceptible S(t) remains constant equalling S1
on the time interval t ∈ [t1, t2], the E-equation, I-equation, U -equation and D-equation of the model (5.3.2)
become 

E′(t) = τS1[I(t) + U(t) +D(t)]− αE(t),
I ′(t) = αE(t)− νI(t),
U ′(t) = ν (1− f) I(t) + a (1− σ) g D(t)− ηU(t),
D′(t) = ν f I(t)− a g D(t)− ηD(t).

By using (5.3.11) we obtain 

χ2E1 = τS1[I1 + U1 +D1]− αE1,

χ2I1 = αE1 − νI1,

χ2U1 = ν (1− f) I1 + a (1− σ) g D1 − ηU1,

χ2D1 = ν f I1 − a g D1 − ηD1.

Computing further, we get 

E1 = τ1S1(I1 + U1 +D1)
χ2 + α

I1 = αE1
χ2 + ν

U1 = νI1 + a (1− σ) g D1
χ2 + η

D1 = ν f I1
χ2 + a g + η

.

(5.3.16)

Finally by using (5.3.15)
D1 = χ2 χ3

σ a g
. (5.3.17)

and by using (5.3.16) we obtain

I1 = χ2 + a g + η

νf
D1 = χ2 + a g + η

ν
× χ2 χ3
f σ a g

U1 = νI1 + (1− σ) a g D1
χ2 + η

= (χ2 + η + [1 + f(1− σ)] a g)
χ2 + η

× χ2 χ3
f σ a g

E1 = (χ2 + ν)
α

I1 = (χ2 + ν)
α

× (χ2 + a g + η)
ν

× χ2 χ3
f σ a g

τ1 = (χ2 + α)
S1(I1 + U1 +D1)E1

= (χ2 + α) (χ2 + ν) (χ2 + η) (χ2 + a g + η)

αS1

(
[χ2 + a g + η + ν(f + 1)] (χ2 + η) + ν [1 + f(1− σ)] a g

) ,

(5.3.18)

where I1 is the number of incubating infectious individuals at time t1, U1 is the number of unreported
infectious individuals at time t1, E1 is the number of incubating non-infectious individuals at time t1 (see
(5.3.11)), and finally τ1 is the transmission rate at time t1.

5.3.4 Numerical simulations
We assume that the transmission coefficient takes the form

τ(t) = τ0
(
(1− γ) exp(−µ(t− Tm)+) + γ

)
, (5.3.19)
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Figure 5.3.5: Best fit of the model without confinement (or social distancing) measures (i.e. γ = 1). Fitted
parameters: The transmission rate τ(t) ≡ τ0 is constant according to the formula (5.3.19) with γ = 1 and
τ0 is fixed to the value τ1 computed by using (5.3.18). Parameter values: S0 = 19453561, α = 1, ν = 1/6,
η = 1/7, σ = 0.7, f = 0.8 and g = 6/S0 = 3.08 × 10−7. t1 = march 18, t2 = march 29, a = 1.4874 × 104,
b = −2.1781× 105, χ1 = 2.8814× 104, χ2 = 0.1013, χ3 = 2.9969× 104. In figure (a) we plot the cumulative
number of tests (black dots), the cumulative number of positive cases (red dots) for the state of New York
and the cumulative number of cases CD(t) (yellow curve) obtained by fitting the model to the data. In
figures (b)–(c) we plot the number of cases obtained from the model. We observe that most of the cases are
unreported. In figure (d) we plot the daily number of tests (black dots), the daily number of positive cases
(red dots) for the state of New York and the daily number of cases DD(t) obtained from the data.

where τ0 > 0 is the initial transmission coefficient, Tm > 0 is the time at which the social distancing starts
in the population, and µ > 0 controls the speed at which this social distancing is taking place.

To take into account the effect of social distancing and public measures, we assume that the transmission
coefficient τ(t) can be modulated by γ. Indeed by closing schools and non-essential shops and by imposing
social distancing in New York State, the number of contacts per day is reduced. This effect was visible on the
news during the first wave of the COVID-19 epidemic in New York city since the streets were almost empty
at some point. The parameter γ > 0 is the percentage of the number of transmissions that remain after a
transition period (depending on µ), compared to a normal situation. A similar non-constant transmission
rate was considered by Chowell et al. [111].

In Figure 5.3.5 we consider a constant transmission rate τ(t) ≡ τ0 which corresponds to γ = 1 in (5.3.19).
In order to evaluate the distance between the model and the data, we compare the distance between the
cumulative number of cases CR produced by the model and the data (see the orange dots and orange
curve in Figure 5.3.5-(a)). In Figure 5.3.5-(c) we observe that the cumulative number of cases increases
up more than 14 millions of people, which indeed is not realistic. Nevertheless by choosing the parameter
g = 3.08 × 10−7 = 1/

(
S0
6
)
in Figure 5.3.5-(d) we can see that the orange dots and the blue curve match

very well.
In the rest of this section 5.3.4, we focus on the model with confinement (or social distancing) measures.

We assume that such social distancing measures have a strong impact on the transmission rate by assuming
that γ = 0.2 < 1. It means that only 20% of the transmissions remain after a transition period.

In Figure 5.3.6-(c) we can observe that the cumulative number of cases increases up to 800 000 (blue
curve) while the cumulative number reported cases goes up to 350 000. In Figure 5.3.6-(d) we can see that
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Figure 5.3.6: Best fit of the model with confinement (or social distancing) measures. Parameter values:
Same as in Figure 5.3.5, except the transmission coefficient which is not constant in time with γ = 0.2,
Tm = 15 Mar (starting day of public measures), µ = 0.0251, g = 10−5 and τ0 is fixed at the value τ1
computed by using (5.3.18). In figure (a) we plot the cumulative number of tests (black dots), the cumulative
number of positive cases (red dots) for the state of New York and the cumulative number of cases CD(t)
(yellow curve) obtained by fitting the model to the data. In figures (b)–(c) we plot the corresponding
number of cases obtained from the model. With this set of parameters we observe that most of the cases are
unreported. In figure (d) we plot the daily number of tests (black dots), the daily number of positive cases
(red dots) for the state of New York and the daily number of cases DD(t) obtained from the data.

the orange dots and the blue curve match very well again. In order to get this fit we fix the parameter
g = 10−5.

Figure 5.3.7 (a) and (b), we aim at understanding the connection between the daily fluctuations of the
number of reported cases (epidemic dynamic) and the daily number of tests (testing dynamics). The combi-
nation of the testing dynamics and the infection dynamics gives indeed a very complex curve parametrized by
the time. It seems that the only reasonable comparison that we can make is between the cumulative number
of reported cases and the cumulative number of tests. In Figure 5.3.7 (c) and (d), the comparison of the model
and the data gives a very decent fit. In Figure 5.3.7, all the curves are time dependent parametrized curves.
The abscissa is the number of tests (horizontal axis) and the ordinate is the number of reported cases (ver-
tical axis). It corresponds (with our notations) to the parametric functions t→ (ndata(t), DR(t)) in figures
(a) and (b) and their cumulative equivalent t→ (Ndata(t), CR(t)) in figures (c) and (d). In figures (a) and
(c) we use only the data, that is to say that we plot t→ (ndata(t), DRdata(t)) and t→ (Ndata(t), CRdata(t)).
In figures (b) and (d) we use only the model for the number of reported cases, that is to say that we plot
t→ (ndata(t), DRmodel(t)) and t→ (Ndata(t), CRmodel(t)).

In Figure 5.3.8, our goal is to investigate the effect of a change in the testing policy in the New York
State. We are particularly interested in estimating the effect of an increase of the number of tests on the
epidemic. Indeed increasing the number of tests may be thought as beneficial to reduce the number of cases.
Here we challenge this idea by comparing an increase in the number of tests to the quantitative output of
our model. In Figure 5.3.8, we replace the daily number of tests ndata(t) (coming from the data for New
York’s state) in the model by either 2× ndata(t), 5× ndata(t), 10× ndata(t) or 100× ndata(t).

As expected, an increase of the number of tests is helping to reduce the number of cases at first. However,
after increasing 10 times the number of tests, there is no significant difference (in the number of reported)
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Figure 5.3.7: In this figure we plot the curves of the number of reported cases as a function of the number of
tests parametrized by the time. The top figures (a) and (b) correspond to the daily number of cases and the
bottom figures (c) and (d) correspond to the cumulative number of cases. On the left-hand side we plot the
data (a) and (c) while on the right-hand side we plot the model (b) and (d). Parameter values: Same as
in Figure 5.3.6. In figure (a) we plot the daily number of cases coming from the data as a function of the
daily number of tests. In figure (b) we plot the daily number of cases given by the model as a function of the
daily number of tests coming from the data. In figure (c) we plot the cumulative number of cases coming
from the data as a function of the cumulative number of tests. In figure (d) we plot the cumulative number
of cases coming from the model as a function of the cumulative number of tests from the data.

between 10 times and 100 times more tests. Therefore there must be an optimum between increasing
the number of tests (which costs money and other limited resources) and being efficient to slow down the
epidemic.

5.3.5 Discussion
In this section 5.3, we proposed a new epidemic model involving the daily number of tests as an input of
the model. The model itself extends our previous models presented in [261, 260, 258, 259, P10, 262]. We
proposed a new method to use the data in such a context based on the fact that the cumulative number of
tests grows linearly at the early stage of the epidemic. Figure 5.3.3 shows that this is a reasonable assumption
for the New York State data from mid-March to mid-April.

Our numerical simulations show a very good concordance between the number of reported cases produced
by the model and the data in two very different situations. Indeed, Figures 5.3.5 and 5.3.6 correspond
respectively to an epidemic without and with public intervention to limit the number of transmissions. This
is an important observation since this shows that testing data and reported cases are not sufficient to evaluate
the real amplitude of the epidemic. To solve this problem, the only solution seems to include a different kind
of data to the models. This could be done by studying statistically representative samples in the population.
Otherwise, biases can always be suspected. Such a question is of particular interest in order to evaluate the
fraction of the population that has been infected by the virus and their possible immunity.

In Figure 5.3.7, we compared the testing dynamic (day to day variation in the number of tests) and the
reported cases dynamic (day to day variation in the number of reported). Indeed, the dynamics of daily
cases is extremely complex, but we also obtain a relatively robust curve for the cumulative numbers. Our
model gives a good fit for this cumulative cases.

In Figure 5.3.8, we compared multiple testing strategies. By increasing 2, 5, 10 and 100 times the number
of tests, we can project the efficiency of an increase in the daily number of tests. We observe that it is efficient
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Figure 5.3.8: Cumulative number of cases for different testing strategies: Original (blue curve), doubled (red
curve), multiplied by 5 (yellow curve), multiplied by 10 (purple line) and multiplied by 100 (green curve).
The transmission coefficient depends on the time, according to the formula (5.3.19) with γ = 0.2, and τ0 is
fitted by using (5.3.18). Parameter values: they are the same as in Figure 5.3.6. In figure (a) we plot
the cumulated number of cases CR(t) as a function of time. In figure (b) we plot the cumulative number
of undetectable cases CU(t) as a function of time. In figure (c) we plot the cumulative number of cases
(including covert cases) CD(t) as a function of time. Note that the total number of cases (including covert
cases) is reduced by 35% when the number of tests is multiplied by 100.

to increase this number up to 10 but the relative gain in absolute number of infected individuals rapidly
drops after that. In particular, our projections do not show a big difference between a 10-times increase in
the number of tests and a 100-times increase. Therefore there is a balance to find between the number of
test and the efficiency in the evaluation of the number of cases, the optimal strategy being dependent on
other factors like the monetary cost of the tests.
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5.4 SI epidemic model applied to COVID-19 data in mainland China

5.4.1 Introduction
Estimating the average transmission rate is one of the most crucial challenges in the epidemiology of commu-
nicable diseases. This rate conditions the entry into the epidemic phase of the disease and its return to the
extinction phase, if it has diminished sufficiently. It is the combination of three factors, one, the coefficient
of virulence, linked to the infectious agent (in the case of infectious transmissible diseases), the other, the
coefficient of susceptibility, linked to the host (all summarized into the probability of transmission), and also,
the number of contact per unit of time between individuals (see Magal and Ruan [273]). The coefficient of
virulence may change over time due to mutation over the course of the disease history. The second and third
also, if mitigation measures have been taken. This was the case in China from the start of the pandemic
(see Qiu, Chen and Shi [328])). Monitoring the decrease in the average transmission rate is an excellent way
to monitor the effectiveness of these mitigation measures. Estimating the rate is therefore a central problem
in the fight against epidemics.

The goal of this section 5.4 is to understand how to compare the SI model to the reported epidemic data
and therefore the model can be used to predict the future evolution of epidemic spread and to test various
possible scenarios of social mitigation measures. For t ≥ t0, the SI model is the following{

S′(t) = −τ(t)S(t)I(t),
I ′(t) = τ(t)S(t)I(t)− νI(t),

(5.4.1)

where S(t) is the number of susceptible and I(t) the number of infectious at time t. This system is supple-
mented by initial data

S(t0) = S0 ≥ 0, I(t0) = I0 ≥ 0. (5.4.2)

In this model, the rate of transmission τ(t) combines the number of contacts per unit of time and the prob-
ability of transmission. The transmission of the pathogen from the infectious to the susceptible individuals
is described by a mass action law τ(t)S(t) I(t) (which is also the flux of new infectious).

The quantity 1/ν is the average duration of the infectious period and νI(t) is the flux of recovering or
dying individuals. At the end of the infectious period, we assume that a fraction f ∈ (0, 1] of the infectious
individuals is reported. Let CR(t) be the cumulative number of reported cases. We assume that

CR(t) = CR0 + ν f CI(t), for t ≥ t0, (5.4.3)

where
CI(t) =

∫ t

t0

I(σ)dσ. (5.4.4)

Assumption 5.4.1. We assume that

• S0 > 0 the number of susceptible individuals at time t0 when we start to use the model;

• 1
ν
> 0 the average duration of infectious period;

• f > 0 the fraction of reported individuals;

are known parameters.

Throughout this section 5.4, the parameter S0 = 1.4 × 109 will be the entire population of mainland
China (since COVID-19 is a newly emerging disease). The actual number of susceptibles S0 can be smaller
since some individuals can be partially (or totally) immunized by previous infections or other factors. This
is also true for Sars-CoV2, even if COVID-19 is a newly emerging disease. In fact, for COVID-19 the level of
susceptibility may depend on blood group and genetic lineage. It is indeed suspected that the blood group
O is associated with a lower susceptibility to SARS-CoV2 while a gene cluster inherited from Neanderthal
has been identified as a risk factor for severe symptoms (see Zeberg et al. [411] and Guillon et al. [195]).

At the early beginning of the epidemic, the average duration of the infectious period 1/ν is unknown,
since the virus has never been investigated in the past. Therefore, at the early beginning of the COVID-19
epidemic, medical doctors and public health scientists used previously estimated average duration of the
infectious period to make some public health recommendations. Here we show that the average infectious
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period is impossible to estimate by using only the time series of reported cases, and must therefore be
identified by other means. Actually, with the data of Sars-CoV2 in mainland China, we will fit the cumulative
number of the reported case almost perfectly for any non-negative value 1/ν < 3.3 days. In the literature,
several estimations were obtained: 11 days in [415], 9.5 days in [220], 8 days in [271], and 3.5 days in [252].
The recent survey by Byrne et al. [91] focuses on this subject.

Result

In Section 5.4.3, our analysis shows that

• It is hopeless to estimate the exact value of the duration of infectiousness by using SI models.
Several values of the average duration of the infectious period give the exact same fit to the
data.

• We can estimate an upper bound for the duration of infectiousness by using SI models. In the
case of Sars-CoV2 in mainland China, this upper bound is 3.3 days.

In [341], it is reported that transmission of COVID-19 infection may occur from an infectious individual
who is not yet symptomatic. In [423] it is reported that COVID-19 infected individuals generally develop
symptoms, including mild respiratory symptoms and fever, on average 5 − 6 days after the infection date
(with a confience of 95%, range 1− 14 days). In [409] it is reported that the median time prior to symptom
onset is 3 days, the shortest 1 day, and the longest 24 days. It is evident that these time periods play an
important role in understanding COVID-19 transmission dynamics. Here the fraction of reported individuals
f is unknown as well.

Result

In Section 5.4.3, our analysis shows that:

• It is hopeless to estimate the fraction of reported by using the SI models. Several values for the
fraction of reported give the exact same fit to the data.

• We can estimate a lower bound for the fraction of unreported. We obtain 3.83× 10−5 < f ≤ 1.
This lower bound is not significant. Therefore we can say anything about the fraction of
unreported from this class of models.

As a consequence, the parameters 1/ν and f have to be estimated by another method, for instance by a
direct survey methodology that should be employed on an appropriated sample in the population in order
to evaluate the two parameters.

The goal of this section 5.4 is to focus on the estimation of the two remaining parameters. Namely,
knowing the above-mentioned parameters, we plan to identify

• I0 the initial number of infectious at time t0;

• τ(t) the rate of transmission at time t.

This problem has already been considered in several articles. In the early 70s, London and Yorke [264, 410]
already discussed the time dependent rate of transmission in the context of measles, chickenpox and mumps.
More recently, Wang and Ruan [390] the question of reconstructing the rate of transmission was considered
for the 2002-2004 SARS outbreak in China. In Chowell et al. [111] a specific form was chosen for the rate of
transmission and applied to the Ebola outbreak in Congo. Another approach was also proposed in Smirnova
et al. [359].

In Section 5.4.2, we will explain how to apply the method introduce in Liu et al. [260] to fit the early
cumulative data of Sars-CoV2 in China. This method provides a way to compute I0 and τ0 = τ(t0) at the
early stage of the epidemic. In Section 5.4.3, we establish an identifiability result in the spirit of Hadeler
[196].

In Section 5.4.4, we use the Bernoulli-Verhulst model as a phenomenological model to describe the data.
As it was observed in several articles, the data from mainland China (and other countries as well) can be
fitted very well by using this model. As a consequence, we will obtain an explicit formula for τ(t) and I0
expressed as a function of the parameters of the Bernoulli-Verhulst model and the remaining parameters of
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Figure 5.4.1: In this figure, we plot the best fit of the exponential model to the cumulative number of reported
cases of COVID-19 in mainland China between February 19 and March 1. We obtain χ1 = 3.7366, χ2 =
0.2650 and χ3 = 615.41 with t0 = 19 Feb. The parameter χ3 is obtained by minimizing the error between
the best exponential fit and the data.

the SI model. This approach gives a very good description of this set of data. The disadvantage of this
approach is that it requires an evaluation of the final size CR∞ from the early beginning (or at least it
requires an estimation of this quantity).

Therefore, in order to be predictive, we will explore in the remaining subsections of the section 5.4 the
possibility of constructing a day by day rate of transmission. Here we should refer to Bakhta et al. [29]
where another novel forecasting method was proposed.

In Section 5.4.5, we will prove that the daily cumulative data can be approached perfectly by at most
one sequence of day by day piecewise constant transmission rates. In Section 5.4.6, we propose a numerical
methods to compute such a (piecewise constant) rate of transmission. Section 5.4.7 is devoted to the
discussion, and we will present some figures showing the daily basic reproduction number for the COVID-19
outbreak in mainland China.

5.4.2 Estimating τ(t0) and I0 at the early stage of the epidemic

In this subsection 5.4.2, we apply the method presented in [261] to the SI model. At the early stage of the
epidemic, we can assume that S(t) is almost constant and equal to S0. We can also assume that τ(t) remains
constant equal to τ0 = τ(t0). Therefore, by replacing these parameters into the I-equation of system (5.4.1)
we obtain

I ′(t) = (τ0S0 − ν)I(t).

Therefore
I(t) = I0 exp (χ2 (t− t0)) ,

where
χ2 = τ0S0 − ν. (5.4.5)

By using (5.4.3), we obtain

CR(t) = CR0 + ν f I0
eχ2(t−t0) − 1

χ2
. (5.4.6)

We obtain a first phenomenological model for the cumulative number of reported cases (valid only at the
early stage of the epidemic)

CR(t) = χ1e
χ2 t − χ3. (5.4.7)

In Figure 5.4.1, we compare the model to the COVID-19 data for mainland China. The data used in the
section 5.4 are taken from [431, 429, 424] and reported in Section 5.4.8. In order to estimate the parameter
χ3, we minimize the distance between CRData(t) + χ3 and the best exponential fit t → χ1e

χ2 t (i.e. we use
the MATLAB function fit(t, data, ’exp1’)).
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The estimated initial number of infected and transmission rate

By using (5.4.3) and (5.4.7) we obtain

I0 = CR′(t0)
ν f

= χ1 χ2e
χ2 t0

ν f
, (5.4.8)

and by using (5.4.5)
τ0 = χ2 + ν

S0
. (5.4.9)

Remark 5.4.2. Fixing f = 0.5 and ν = 0.2, we obtain

I0 = 3.7366× 0.2650× exp(0.2650× 19)/(0.2× 0.5) = 1521,

and
τ0 = 0.2650 + 0.2

1.4× 109 = 3.3214× 10−10.

The influence of the errors made in the estimations (at the early stage of the epidemic) has been considered
in the recent article by Roda et al. [335]. To understand this problem, let us first consider the case of the
rate of transmission τ(t) = τ0 in the model (5.4.1). In that case (5.4.1) becomes{

S′(t) = −τ0S(t)I(t),
I ′(t) = τ0S(t)I(t)− νI(t).

(5.4.10)

By using the S-equation of model (5.4.10) we obtain

S(t) = S0 exp
(
−τ0

∫ t

t0

I(σ)dσ
)

= S0 exp (−τ0CI(t))

where CI(t) is the cumulated number of infectious individuals. Substituting S(t) by this formula in the
I-equation of (5.4.10) we obtain

I ′(t) = S0 exp (−τ0CI(t)) τ0CI′(t)− νI(t).

Therefore, by integrating the above equation between t and t0 we obtain

CI′(t) = I0 + S0 [1− exp (−τ0CI(t))]− νCI(t). (5.4.11)

Remarkably, the equation (5.4.11) is monotone. We refer to Hal Smith [361] for a comprehensive presentation
on monotone systems. By applying a comparison principle to (5.4.11), we are in a position to confirm the
intuition about epidemics SI models. Notice that the monotone properties are only true for the cumulative
number of infectious (this is false for the number of infectious).

Theorem 5.4.3. Let t > t0 be fixed. The cumulative number of infectious CI(t) is strictly increasing with
respect to the following quantities

(i) I0 > 0 the initial number of infectious individuals;

(ii) S0 > 0 the initial number of susceptible individuals;

(iii) τ > 0 the transmission rate;

(iv) 1/ν > 0 the average duration of the infectiousness period.
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Figure 5.4.2: In this figure, the black curve corresponds to the cumulative number of reported cases CR(t)
obtained from the model (5.4.10) with CR′(t) = νfI(t) by using the values I0 = 1521 and τ0 = 3.32× 10−10

obtained from our method and the early data from February 19 to March 1. The blue region corresponds
the 95% confidence interval when the rate of transmission τ(t) is constant and equal to the estimated value
τ0 = 3.32× 10−10.

Error in the estimated initial number of infected and transmission rate

Assume that the parameters χ1 and χ2 are estimated with a 95% confidence interval

χ−1,95% ≤ χ1 ≤ χ+
1,95%,

and
χ−2,95% ≤ χ2 ≤ χ+

2,95%.

We obtain

I−0,95% :=
χ−1,95% χ−2,95%e

χ−2,95% t0

ν f
≤ I0 ≤ I+

0,95% :=
χ+

1,95% χ+
2,95%e

χ+
2,95% t0

ν f
, (5.4.12)

and

τ−0,95% :=
χ−2,95% + ν

S0
≤ τ0 ≤ τ+

0,95% :=
χ+

2,95% + ν

S0
. (5.4.13)

Remark 5.4.4. By using the data for mainland China we obtain

χ−1,95% = 1.57, χ+
1,95% = 5.89, χ−2,95% = 0.24, χ+

2,95% = 0.28. (5.4.14)

In Figure 5.4.2, we plot the upper and lower solutions CR+(t) (obtained by using I0 = I+
0,95% and

τ0 = τ+
0,95%) and CR−(t) (obtained by using I0 = I−0,95% and τ0 = τ−0,95%) corresponding to the blue region

and the black curve corresponds to the best estimated value I0 = 1521 and τ0 = 3.3214× 10−10.
Recall that the final size of the epidemic corresponds to the positive equilibrium of (5.4.11)

0 = I0 + S0 [1− exp (−τ0CI∞)]− νCI∞. (5.4.15)

In Figure 5.4.2 the changes in the parameters I0 and τ0 (in (5.4.12)-(5.4.13)) do not affect significantly the
final size.

5.4.3 Theoretical formula for τ(t)
By using the S-equation of model (5.4.1) we obtain

S(t) = S0 exp
(
−
∫ t

t0

τ(σ) I(σ)dσ
)
,

next by using the I-equation of model (5.4.1) we obtain

I ′(t) = S0 exp
(
−
∫ t

t0

τ(σ) I(σ)dσ
)
τ(t) I(t)− νI(t),
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and by taking the integral between t and t0 we obtain a Volterra integral equation for the cumulative number
of infectious

CI′(t) = I0 + S0

[
1− exp

(
−
∫ t

t0

τ(σ) I(σ)dσ
)]
− νCI(t), (5.4.16)

which is equivalent to (by using (5.4.3))

CR′(t) = ν f

(
I0 + S0

[
1− exp

(
− 1
ν f

∫ t

t0

τ(σ) CR′(σ)dσ
)])

+ ν CR0 − νCR(t). (5.4.17)

The following result permits to obtain a perfect match between the SI model and the time-dependent rate
of transmission τ(t).

Theorem 5.4.5. Let S0, ν, f , I0 > 0 and CR0 ≥ 0 be given. Let t → I(t) be the second component of
system (5.4.1). Let ĈR : [t0,∞)→ R be a two times continuously differentiable function satisfying

ĈR(t0) = CR0, (5.4.18)

ĈR
′
(t0) = ν f I0, (5.4.19)

ĈR
′
(t) > 0,∀t ≥ t0, (5.4.20)

and
νf (I0 + S0)− ĈR

′
(t)− ν

(
ĈR(t)− CR0

)
> 0,∀t ≥ t0. (5.4.21)

Then
ĈR(t) = CR0 + νf

∫ t

t0

I (s) ds,∀t ≥ t0, (5.4.22)

if and only if

τ(t) =
νf

(
ĈR
′′
(t)

ĈR
′
(t)

+ ν

)
νf (I0 + S0)− ĈR

′
(t)− ν

(
ĈR(t)− CR0

) . (5.4.23)

Proof. Assume first (5.4.22) is satisfied. Then by using equation (5.4.16) we deduce that

S0 exp
(
−
∫ t

t0

τ(σ)I(σ)dσ
)

= I0 + S0 − I(t)− νCI(t).

Therefore ∫ t

t0

τ(σ)I(σ)dσ = ln
[

S0
I0 + S0 − I(t)− νCI(t)

]
= ln (S0)− ln [I0 + S0 − I(t)− νCI(t)]

therefore by taking the derivative on both side

τ(t)I(t) = I ′(t) + νI(t)
I0 + S0 − I(t)− νCI(t) ⇔ τ(t) =

I ′(t)
I(t) + ν

I0 + S0 − I(t)− νCI(t) (5.4.24)

and by using the fact that CR(t)− CR0 = νfCI(t) we obtain (5.4.23).
Conversely, assume that τ(t) is given by (5.4.23). Then if we define Ĩ(t) = ĈR

′
(t)/νf and C̃I(t) =(

ĈR(t)− CR0

)
/νf , by using (5.4.18) we deduce that

C̃I(t) =
∫ t

t0

Ĩ(σ)dσ,

and by using (5.4.19)
Ĩ(t0) = I0. (5.4.25)

Moreover from (5.4.23) we deduce that Ĩ(t) satisfies (5.4.24). By using (5.4.25) we deduce that t → C̃I(t)
is a solution of (5.4.16). By uniqueness of the solution of (5.4.16), we deduce that C̃I(t) = CI(t),∀t ≥ t0 or
equivalently CR(t) = CR0 + νf

∫ t
t0
I (s) ds,∀t ≥ t0. The proof is completed.

The formula (5.4.23) was already obtained by Hadeler [196, see Corollary 2].
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Figure 5.4.3: In this figure, we plot the best fit of the Bernoulli-Verhulst model to the cumulative number of
reported cases of COVID-19 in China. We obtain χ2 = 0.66 and θ = 0.22. The black dots correspond to
data for the cumulative number of reported cases and the blue curve corresponds to the model.

5.4.4 Explicit formula for τ(t) and I0

Many phenomenological models have been compared to the data during the first phase of the COVID-19
outbreak. We refer to the paper of Tsoularis and Wallace [378] for a nice survey on the generalized logistic
equations. Let us consider here for example, the Bernoulli-Verhulst equation

CR′(t) = χ2 CR(t)
(

1−
(

CR(t)
CR∞

)θ)
,∀t ≥ t0, (5.4.26)

supplemented with the initial data
CR(t0) = CR0 ≥ 0.

Let us recall the explicit formula for the solution of (5.4.26)

CR(t) = eχ2(t−t0)CR0[
1 + χ2θ

CRθ
∞

∫ t
t0

(
eχ2(σ−t0)CR0

)θ
dσ

]1/θ = eχ2(t−t0)CR0[
1 + CRθ

0

CRθ
∞

(
eχ2θ(t−t0) − 1

)]1/θ . (5.4.27)

Assumption 5.4.6. We assume that the cumulative numbers of reported cases CRData(ti) are known for
a sequence of times t0 < t1 < · · · < tn+1.

Estimated initial number of infected

By combining (5.4.3) and the Bernoulli-Verhulst equation (5.4.26) for t → CR(t), we deduce the
initial number of infected

I0 = CR′(t0)
ν f

=
χ2 CR0

(
1−

(
CR0
CR∞

)θ)
ν f

. (5.4.28)

Remark 5.4.7. We fix f = 0.5, from the COVID-19 data in mainland China and formula (5.4.28) (with
CR0 = 198), we obtain

I0 = 1909 for ν = 0.1,
and

I0 = 954 for ν = 0.2.

By using (5.4.26) we deduce that

CR′′(t) = χ2 CR′(t)
(

1−
(

CR(t)
CR∞

)θ)
− χ2θ

CRθ
∞

CR(t) (CR(t))θ−1 CR′(t)

= χ2 CR′(t)
(

1−
(

CR(t)
CR∞

)θ)
− χ2θ

CRθ
∞

(CR(t))θ CR′(t),
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therefore

CR′′(t) = χ2 CR′(t)
(

1− (1 + θ)
(

CR(t)
CR∞

)θ)
. (5.4.29)

Estimated rate of transmission

By using the Bernoulli-Verhulst equation (5.4.26) and substituting (5.4.29) in (5.4.23), we obtain

τ(t) =
ν f

(
χ2

(
1− (1 + θ)

(
CR(t)
CR∞

)θ)
+ ν

)

ν f (I0 + S0) + νCR0 − CR(t)
(
χ2

(
1−

(
CR(t)
CR∞

)θ)
+ ν

) . (5.4.30)

This formula (5.4.30) combined with (5.4.27) gives an explicit formula for the rate of transmission.

Since CR(t) < CR∞, by considering the sign of the numerator and the denominator of (5.4.30), we
obtain the following proposition.

Proposition 5.4.8. The rate of transmission τ(t) given by (5.4.30) is non negative for all t ≥ t0 if

ν ≥ χ2 θ, (5.4.31)

and
f (I0 + S0) + νCR0 > CR∞ (χ2 + ν) . (5.4.32)

Compatibility of the model SI with the COVID-19 data for mainland China

The model SI is compatible with the data only when τ(t) stays positive for all t ≥ t0. From our
estimation of the Chinese’s COVID-19 data we obtain χ2 θ = 0.14. Therefore from (5.4.31) we deduce
that model is compatible with the data only when

1/ν ≤ 1/0.14 = 3.3 days. (5.4.33)

This means that the average duration of infectious period 1/ν must be shorter than 3.3 days.

Similarly the condition (5.4.32) implies

f ≥ CR∞χ2 + (CR∞ − CR0) ν
S0 + I0

≥ CR∞χ2 + (CR∞ − CR0)χ2 θ

S0 + I0

and since we have CR0 = 198 and CR∞ = 67102, we obtain

f ≥ 67102× 0.66 + (67102− 198)× 0.14
1.4× 109 ≥ 3.83× 10−5. (5.4.34)

So according to this estimation the fraction of unreported 0 < f ≤ 1 can be almost as small as we
want.

Figure 5.4.4 illustrates the Proposition 5.4.8. We observe that the formula for the rate of transmission
(5.4.30) becomes negative whenever ν < χ2θ. In Figure 5.4.5 we plot the numerical simulation obtained
from (5.4.1)-(5.4.3) when t → τ(t) is replaced by the explicit formula (5.4.30). It is surprising that we
can reproduce perfectly to the original Bernoulli-Verhulst even when τ(t) becomes negative. This was not
guaranteed at first, since the I-class of individuals is losing some individuals which are recovering.

5.4.5 Computing numerically a day by day piecewise constant rate of transmission
Assumption 5.4.9. We assume that the rate of transmission τ(t) is piecewise constant and for each i =
0, . . . , n,

τ(t) = τi, whenever ti ≤ t < ti+1. (5.4.35)
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Figure 5.4.4: In this figure, we plot the rate of transmission obtained from formula (5.4.30) with f = 0.5,
χ2 θ = 0.14 < ν = 0.2 (in Figure (a)) and ν = 0.1 < χ2 θ = 0.14 (in Figure (b)), χ2 = 0.66 and θ = 0.22 and
CR∞ = 67102 which is the latest value obtained from the cumulative number of reported cases for China.
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Figure 5.4.5: In this figure, we plot the number of reported cases by using model (5.4.1) and (5.4.3), and
the rate of transmission is obtained in (5.4.30). The parameters values are f = 0.5, ν = 0.1 or ν = 0.2,
χ2 = 0.66 and θ = 0.22 and CR∞ = 67102 is the latest value obtained from the cumulative number of
reported cases for China. Furthermore, we use S0 = 1.4×109 for the total population of China and I0 = 954
which is obtained from formula (5.4.28). The black dots correspond to data for the cumulative number of
reported cases observed and the blue curve corresponds to the model.

For t ∈ [ti−1, ti], we deduce by using Assumption 5.4.9 that∫ t

t0

τ(σ) CR′(σ)dσ =
i−2∑
j=0

∫ tj+1

tj

τj CR′(σ)dσ +
∫ t

ti−1

τi−1 CR′(σ)dσ.

Therefore by using (5.4.17), for t ∈ [ti−1, ti], we obtain

CR′(t) = ν f

(
I0 + S0

[
1−Πi−1 exp

(
−τi−1
ν f

[CR(t)− CR(ti−1)]
)])

+ ν CR0 − νCR(t), (5.4.36)

where

Πi−1 = exp

− i−2∑
j=0

τj
ν f

[CR(tj+1)− CR(tj)]

 . (5.4.37)

By fixing τi−1 = 0 on the right hand side of (5.4.36) we get

CR′(t) ≥ ν f (I0 + S0 [1−Πi−1]) + ν CR0 − νCR(t),

and when τi−1 →∞ we obtain

CR′(t) ≤ ν f (I0 + S0) + ν CR0 − νCR(t).

By using the theory of monotone ordinary differential equations (see Smith [361]) we deduce that the map
τi → CR(ti) is monotone increasing, and we get the following result.
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Theorem 5.4.10. Let assumptions 5.4.1, 5.4.6 and 5.4.9 be satisfied. Let I0 be fixed. Then we can find
a unique sequence τ0, τ1, . . . , τn of non negative numbers such that t → CR(t) the solution of (5.4.17) fits
exactly the data at any time ti, that is to say that

CR(ti) = CRData(ti),∀i = 1, . . . , n+ 1,

if and only if the two following two conditions are satisfied for each i = 0, 1, . . . , n+ 1,

CRData(ti) ≥ e−ν(ti−ti1 )CRData(ti−1) +
∫ ti

ti−1

νe−ν(ti−σ)dσ
(
f
(
I0 + S0

[
1−ΠData

i−1
])

+ CR0
)
, (5.4.38)

where

ΠData
i−1 = exp

− i−2∑
j=0

τj
ν f

[CRData(tj+1)− CRData(tj)]

 , (5.4.39)

and
CRData(ti) ≤ e−ν(ti−ti1 )CRData(ti−1) +

∫ ti

ti−1

νe−ν(ti−σ)dσ (f (I0 + S0) + CR0) . (5.4.40)

Remark 5.4.11. The above theorem means that the data are identifiable for this model SI if and only if
the conditions (5.4.38) and (5.4.40) are satisfied. Moreover, in that case, we can find a unique sequence of
transmission rates τi ≥ 0 which gives a perfect fit to the data.

5.4.6 Numerical simulations
In this section 5.4.6, we propose a numerical method to fit the day by day rate of transmission. The goal is to
take advantage of the monotone property of CR(t) with respect to τi on the time interval [ti, ti+1]. Recently
more sophisticated methods were proposed by Bakha et al. [29] by using several types of approximation
methods for the rate of transmission.

We start with the simplest Algorithm 1 in order to show the difficulties to identify the rate of transmission.

Algorithm 1

Step 1: W e fix S0 = 1.4× 109, ν = 0.1 or ν = 0.2 and f = 0.5. We consider the system
S′(t) = −τS(t)I(t),
I ′(t) = τS(t)I(t)− νI(t),
CR′(t) = νfI(t),

(5.4.41)

on the interval of time t ∈ [t0, t1]. This system is supplemented by initial values S(t0) = S0 and I(t0) = I0 is
given by formula (5.4.8) (if we consider the data only at the early stage) or formula (5.4.28) (if we consider
all the data) and CR(t0) = CRData(t0) is obtained from the data.

The map τ → CR(t1) being monotone increasing, we can apply a bisection method to find the unique
value τ0 solving

CR(t1) = CRData(t1).

Then we proceed by induction.
Step i: For each integer i = 1, . . . , n we consider the system

S′(t) = −τS(t)I(t),
I ′(t) = τS(t)I(t)− νI(t),
CR′(t) = νfI(t),

(5.4.42)

on the interval of time t ∈ [ti, ti+1]. This system is supplemented by initial values S(ti) and I(ti) obtained
from the previous iteration and with CR(ti) = CRData(ti) obtained from the data.

The map τ → CR(ti) being monotone increasing, we can apply a bisection method to find the unique
value τi solving

CR(ti) = CRData(ti).
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Figure 5.4.6: In this figure, we plot the perfect fit of the cumulative number of reported cases of COVID-19
in China. We fix the parameters f = 0.5 and ν = 0.2 or ν = 0.1 and we apply our algorithm 1 to obtain the
perfect fit. The black dots correspond to data for the cumulative number of reported cases and the blue curve
corresponds to the model.

(a) (b)

Feb 19 Feb 26 Mar 04 Mar 11 Mar 18 Mar 25 Apr 01 Apr 08

2020   

0

1

2

3

4

10
-10

Feb 19 Feb 26 Mar 04 Mar 11 Mar 18 Mar 25 Apr 01 Apr 08

2020   

0

0.5

1

1.5

2

2.5

3

3.5

10
-10

Figure 5.4.7: In this figure, we plot the rate of transmission obtained for the reported cases of COVID-19
in China with the parameters f = 0.5 and ν = 0.2 in figure (a) and ν = 0.1 in figure (b). This rate of
transmission corresponds to the perfect fit obtained in Figure 5.4.6.

In Figure 5.4.6, we plot an example of such a perfect fit, which is the same for ν = 0.1 and ν = 0.2. In
Figure 5.4.7 we plot the rate of transmission obtained numerically for ν = 0.2 in (a) and ν = 0.1 in (b). This
is an example of a negative rate of transmission. Figure 5.4.7 should be compared to Figure 5.4.4 which
gives similar result. In Figures 5.4.8-5.4.10 we use Algorithm 1 and we plot the rate of transmission obtained
by using the reported cases of COVID-19 in China where the parameters are fixed as f = 0.5 and ν = 0.2.
In Figures 5.4.8-5.4.10, we observe an oscillating rate of transmission which is alternatively positive and
negative back and forth. These oscillations are due to the amplification of the error in the numerical method
itself. In Figure 5.4.8, we run the same simulation than in Figure 5.4.9 but during a shorter period. In
Figure 5.4.8, we can see that the slope of CR(t) at the t = ti between two days (the black dots) is amplified
one day to the next.

In Figure 5.4.10, we first smooth the original cumulative data by using the MATLAB function CRData =
smoothdata(CRData,

′gaussian′, 50) to regularize the data and we apply Algorithm 1. Unfortunately, smooth-
ing the data does not help to solve the instability problem in Figure 5.4.10.

We need to introduce a correction when choosing the next initial value I(ti). In Algorithm 1 the errors
are due to the following relationship which is not respected

CR′(t) = νfI(t)

at the points t = ti which should be reflected by the algorithm.
In Figure 5.4.11, we smooth the data first by using the MATLAB function CRData= smoothdata(CRData,

′gaussian′, 50),
and we apply Algorithm 2 by approximating equation (5.4.46) by

Ii = [CRData(ti)− CRData(ti−1)]/(ν × f). (5.4.43)

In Figure 5.4.11 we no longer observe the oscillations of the rate of transmission.
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Figure 5.4.8: In figure (a), we plot the cumulative number of reported cases obtained from the data (black
dots) and the model (blue curve). In figure (b), we plot the daily rate of transmission obtained by using
Algorithm 1. We see that we can fit the data perfectly. But the method is very unstable. We obtain a rate of
transmission that oscillates from positive to negative values back and forth.
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Figure 5.4.9: In figure (a), we plot the cumulative number of reported cases obtained from the data (black
dots) and the model (blue curve). In figure (b), we plot the daily rate of transmission obtained by using
Algorithm 1. We see that we can fit the data perfectly. But the method is very unstable. We obtain a rate of
transmission that oscillates from positive to negative values back and forth.

(a) (b)

Feb 19 Feb 26 Mar 04 Mar 11 Mar 18 Mar 25 Apr 01 Apr 08 Apr 15

2020   

0

1

2

3

4

5

6

7
10

4

Feb 19 Feb 26 Mar 04 Mar 11 Mar 18 Mar 25 Apr 01 Apr 08

2020   

-2

-1

0

1

2

3
10

-9

Figure 5.4.10: We apply Algorithm 1 to the regularized data. In figure (a), we plot the regularized cumulative
number of reported cases obtained from the data (black dots) and the model (blue curve). In figure (b), we
plot the daily rate of transmission obtained by using Algorithm 1. We see that we can fit the data perfectly.
But the method is very unstable. We obtain a rate of transmission that oscillates from positive to negative
values back and forth.
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Figure 5.4.11: In this figure, we plot the rate of transmission obtained by using the reported cases of COVID-
19 in China with the parameters f = 0.5 and ν = 0.2. We first regularize the data by applying the MATLAB
function CRData = smoothdata(CRData,

′gaussian′, 50). Then we apply Algorithm 2 to the regularized data.
In figure (a), we plot the regularized cumulative number of reported cases obtained after smoothing (black
dots) and the model (blue curve). In figure (b), we plot the daily rate of transmission obtained by using the
Algorithm 2. We see that we can fit the data perfectly and this time the rate of transmission is becoming
reasonable.

Algorithm 2

We fix S0 = 1.4× 109, ν = 0.1 or ν = 0.2 and f = 0.5. Then we fit the data by using the method described
in Section 5.4.2 to estimate the parameters χ1, χ2 and χ3 from day 1 to 10. Then we use

S0 = 1.40005× 109,

I0 = χ2 χ1 [exp(χ2 (t0 − 1))]/(f ν),

CR0 = χ1 exp(χ2 t0)− χ3.

(5.4.44)

For each integer i = 0, . . . , n, we consider the system
S′(t) = −τS(t)I(t),
I ′(t) = τS(t)I(t)− νI(t),
CR′(t) = νfI(t),

(5.4.45)

for t ∈ [ti, ti+1]. Then the map τ → CR(ti+1) being monotone increasing, we can apply a bisection method
to find the unique τi solving

CR(ti+1) = CRData(ti+1).

The key idea of this new algorithm is the following correction on the I-component of the system. We start a
new step by using the value S(ti) obtained from the previous iteration and

Ii = CR′Data(ti)/(ν f), (5.4.46)

and
CRi = CRData(ti). (5.4.47)

In Figure 5.4.12 we plot several types of regularized cumulative data in figure (a) and several types of
regularized daily data in figure (b). Among the different regularization methods, an important one is the
Bernoulli-Verhulst best fit approximation. In Figure 5.4.13 we plot the rate of transmission t→ τ(t) obtained
by using Algorithm 2. We can see that the original data gives a negative transmission rate while at the other
extreme the Bernoulli-Verhulst seems to give the most regularized transmission rate. In Figure 5.4.13-(a)
we observe that we now recover almost perfectly the theoretical transmission rate obtained in Section 5.4.4.
In Figure 5.4.13-(b) the rolling weekly average regularization and in Figure 5.4.13-(c) the Gaussian weekly
average regularization still vary a lot and in both cases the transmission rate becomes negative after some
time. In Figure 5.4.13-(c) the original data gives a transmission rate that is negative from the beginning.
We conclude that it is crucial to find a "good" regularization of the daily number of case. So far the best
regularization method is obtained by using the best fit of the Bernoulli-Verhulst model.
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Figure 5.4.12: In this figure, we plot the cumulative number of reported cases (left) and the daily num-
ber of reported cases (right). The black curves are obtained by applying the cubic spline matlab function
"spline(Days,DATA)" to the cumulative data. The left-hand side is obtained by using the cubic spline func-
tion and right-hand side is obtained by using the derivative of the cubic spline interpolation. The blue curves
are obtained by using cubic spline function to the day by day values of cumulative number of cases obtained
from the best fit of the Bernoulli-Verhulst model. The orange curves are obtained by computing the rolling
weekly daily number of cases (we use the matlab function "smoothdata(DAILY,’movmean’,7)") and then by
applying the cubic spline function the corresponding cumulative number of cases. The yellow curves are
obtained by Gaussian the rolling weekly to the daily number of cases (we use the matlab function "smooth-
data(DAILY,’gaussian’,7)") and then by applying the cubic spline function to the corresponding cumulative
number of cases.
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Figure 5.4.13: In this figure we plot the transmission rates t→ τ(t) obtained by using Algorithm 2 with the
parameters f = 0.5 and ν = 0.2. In figure (a) we use the cumulative data obtained by using the Bernoulli-
Verhulst regularization. In figure (b) we use the cumulative data obtained by using the rolling weekly average
regularization. In figure (c) we use the cumulative data obtained by using the Gaussian weekly average
regularization. In figure (d) we use the original cumulative data.
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Figure 5.4.14: In this figure we plot the daily basic reproduction number t → R0(t) = τ(t)S(t)/ν obtained
by using Algorithm 2 with the parameters f = 0.5 and ν = 0.2. In figure (a) we use the cumulative data
obtained by using the Bernoulli-Verhulst regularization. In figure (b) we use the cumulative data obtained by
using the rolling weekly average regularization. In figure (c) we use the cumulative data obtained by using
the Gaussian weekly average regularization. In figure (d) we use the original cumulative data.

Remark 5.4.12. For each simulation Figure 5.4.13-(b) and Figure 5.4.13-(c), it is possible to obtain a trans-
mission t→ τ(t) that is non negative for all time t by increasing sufficiently the parameter ν. Nevertheless,
we do not present these simulations here because the corresponding values of ν to obtain a non negative τ(t)
are unrealistic.

In Figure 5.4.14 (a) (b) (c) and (d) (respectively) we plot the daily basic reproduction number corre-
sponding to the Figure 5.4.13 (a) (b) (c) and (d) (respectively). The red line corresponds to R0 = 1. We
see some complex behavior for the Figure 5.4.14 (b) (c) and the figure (d) is again unrealistic.

5.4.7 Discussion
Estimating the parameters of an epidemiological model is always difficult and generally requires strong
assumptions about their value and their consistency and constancy over time. Despite this, it is often
shown that many sets of parameter values are compatible with a good fit of the observed data. The new
approach developed in this section 5.4 consists first of all in postulating a phenomenological model of growth
of infectious, based on the very classic model of Verhulst, proposed in demography in 1838 [381]. Then,
obtaining explicit formulas for important parameter values such as the transmission rate or the initial
number of infected (or for lower and/or upper limits of these values), gives an estimate allowing an almost
perfect reconstruction of the observed dynamics.

The uses of phenomenological models can also be regarded as a way a of smoothing the data. Indeed,
the errors concerning the observations of new infected cases are numerous:

• the census is rarely regular and many countries report late cases that occurred during the weekend
and at varying times over-add data from specific counts, such as those from homes for the elderly;

• the number of cases observed is still underestimated and the calculation of cases not reported new
cases of infected is always a difficult problem [261];

• the raw data are sometimes reduced for medical reasons of poor diagnosis or lack of detection tools,
or for reasons of domestic policy of states.
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(a) (b)

Figure 5.4.15: In this figure plot R0(t) = τ(t)S(t)
ν

the daily basic reproduction number and we vary the
parameter f (left) and ν (right).

For all these causes of error, it is important to choose the appropriate smoothing method (moving average,
spline, Gaussian kernel, auto-regression, generalized linear model, etc.). In this section 5.4, several methods
were used and the one which allowed the model to perfectly match the smoothed data was retained.

In this section 5.4, we developed several methods to understand how to reconstruct the rate of transmis-
sion from the data. In Section 5.4.2, we reconsidered the method presented in [261] based on an exponential
fit of the early data. The approach gives a first estimation of I0 and τ0. In Section 5.4.3, we prove a result
to connect the time dependent cumulative reported data and the transmission rate. In Section 5.4.4, we
compare the data to the Bernoulli-Verhulst model and we use this model as a phenomenological model.
The Bernoulli-Verhulst model fits the data for mainland China very well. Next by replacing the data by
the solution of the Bernoulli-Verhulst model, we obtain an explicit formula for the transmission rate. So
we derive some conditions on the parameters for the applicability of the SI model to the data for mainland
China. In Section 5.4.5, we discretized the rate of transmission and we observed that given some daily
cumulative data, we can get at most one perfect fit the data. Therefore, in Section 5.4.6, we provide two
algorithms to compute numerically the daily rates of transmission. Such numerical questions turn out to
be a delicate problem. This problem was previously considered by another French group Bakhta, Boiveau,
Maday and Mula [29]. Here we use some simple ideas to approach the derivative of the cumulative reported
cases combined with some smoothing method applied to the data.

To conclude this section 5.4 we plot the daily basic reproduction number

R0(t) = τ(t)S(t)
ν

as a function of the time t and the parameters f or ν. The above simple formula for R0 is not the real
basic reproductive number in the sense of the number of newly infected produced by a single infectious. But
this is a simple formula which gives a tendency about the growth or decay of the number of infectious. In
Figure 5.4.14-(a), the daily basic reproduction number is almost independent of f , while in Figure 5.4.14-(b),
R0(t) is depending on ν mostly for the small value of ν. The red curve on each surfaces in Figure 5.4.14
corresponds to the turning point (i.e. time t ≥ t0 for which R0(t) = 1). We also see that turning point is
not depending much on these parameters.

Concerning contagious diseases, public health physicians are constantly facing four challenges. The first
concerns the estimation of the average transmission rate. Until now, no explicit formula had been obtained
in the case of the SIR model, according to the observed data of the epidemic, that is to say the number
of reported cases of infected patients. Here, from realistic simplifying assumptions, a formula is provided
(formula (5.4.30)), making it possible to accurately reconstruct theoretically the curve of the observed
cumulative cases. The second challenge concerns the estimation of the mean duration of the infectious
period for infected patients. As for the transmission rate, the same realistic assumptions make it possible
to obtain an upper limit to this duration (inequality (5.4.33)), which makes it possible to better guide the
individual quarantine measures decided by the authorities in charge of public health. This upper bound
also makes it possible to obtain a lower bound for the percentage of unreported infected patients (inequality
(5.4.33)), which gives an idea of the quality of the census of cases of infected patients, which is the third
challenge faced by epidemiologists, specialists of contagious diseases. The fourth challenge is the estimation
of the average transmission rate for each day of the infectious period (dependent on the distribution of
the transmission over the "ages" of infectivity), which will be the subject of further work and which poses
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January

19 20 21 22 23 24 25

198 291 440 571 830 1287 1975

26 27 28 29 30 31

2744 4515 5974 7711 9692 11791

February

1 2 3 4 5 6 7

14380 17205 20438 24324 28018 31161 34546

8 9 10 11 12 13 14

37198 40171 42638 44653 46472 48467 49970

15 16 17 18 19 20 21

51091 70548− 17409 72436− 17409 74185− 17409 75002− 17409 75891− 17409 76288− 17409

22 23 24 25 26 27 28

76936− 17409 77150− 17409 77658− 17409 78064− 17409 78497− 17409 78824− 17409 79251− 17409

29

79824− 17409

March

1 2 3 4 5 6 7

79824− 17409 79824− 17409 79824− 17409 80409− 17409 80552− 17409 80651− 17409 80695− 17409

8 9 10 11 12 13 14

80735− 17409 80754− 17409 80778− 17409 80793− 17409 80813− 17409 80824− 17409 80844− 17409

15 16 17 18

80860− 17409 80881− 17409 80894− 17409 80928− 17409

Table 5.4.1: Cumulative data describing confirmed cases in mainland China from January 20, 2020 to March
18, 2020. The data are taken from [431, 429, 424].

formidable problems, in particular those related to the age (biological age or civil age) class of the patients
concerned. Another interesting prospect is the extension of methods developed in the present section 5.4
to the contagious non-infectious diseases (i.e., without causal infectious agent), such as social contagious
diseases, the best example being that of the pandemic linked to obesity [138, 135, 137], for which many
concepts and modeling methods remain available.

5.4.8 Supplementary tables
We use cumulative reported data from the National Health Commission of the People’s Republic of China
and the Chinese CDC for mainland China. Before February 11, the data was based on confirmed testing.
From February 11 to February 15, the data included cases that were not tested for the virus, but were
clinically diagnosed based on medical imaging showing signs of pneumonia. There were 17,409such cases
from February 10 to February 15. The data from February 10 to February 15 specified both types of reported
cases. From February 16, the data did not separate the two types of reporting, but reported the sum of
both types. We subtracted 17,409 cases from the cumulative reported cases after February 15 to obtain the
cumulative reported cases based only on confirmed testing after February 15.The data is given in Table 2
with this adjustment.
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Data

Phenomenological Model

(Limited number of parameters)

(Good description of the tendency)

EpidemicModel

(mechanistic)

- Parameters of estimations

- Basic reproduction number

- Forecasting

- etc . . .

Figure 5.5.1: We can apply statistical methods to estimate the parameters of the proposed phenomenological
model and derive their average values with some confidence intervals. The phenomenological model is used
at the first step of the modelling process, providing regularized data to the epidemic model and allowing the
identification of its parameters.

5.5 A robust phenomenological approach to investigate COVID-19 data for
France

5.5.1 Introduction

Modeling endemic and epidemic phases of the infectious diseases such as smallpox which by the 16th century
had become a predominant cause of mortality in Europe until the vaccination by E. Jenner in 1796, and
present Covid-19 pandemic outbreak has always been a means of describing and predicting disease. D.
Bernoulli proposed in 1760 a differential model [58] taking into account the virulence of the infectious agent
and the mortality of the host, which showed a logistic formula [58, p.13] of the same type as the logistic
equation by Verhulst [381]. The succession of an epidemic phase followed by an endemic phase had been
introduced by Bernoulli and for example appears clearly in the Figures 9 and 10 in [143].

The aim of this section 5.5 is to propose a new approach to compare epidemic models with data from
reported cumulative cases. Here we propose a phenomenological model to fit the observed data of cumulative
infectious cases of COVID-19 that describe the successive epidemic phases and endemic intermediate phases.
This type of problem dates back to the 1970s with the work of London and Yorke [264]. More recently,
Chowell et al. [111] have proposed a specific function to model the temporal transmission speeds τ(t). In
the context of COVID-19, a two-phase model has been proposed by Liu et al. [261] to describe the South
Korean data with an epidemic phase followed by an endemic phase.

In this section 5.5, we use a phenomenological model to fit the data (see Figure 5.5.1). The phenomeno-
logical model is used in the modeling process between the data and the epidemic models. The difficulty here
is to propose a simple phenomenological model (with a limited number of parameters) that would give a
meaningful result for the time-dependent transmission rates τ(t). Many models could potentially be used
as phenomenological models to represent the data (ex. cubic spline and others). The major difficulty here
is to provide a model that gives a good description of the tendency for the data. It has been observed in
our previous work that it is difficult to choose between the possible phenomenological models (see Figures
12-14 in [P7]). The phenomenological model can also be viewed as a regularization of data that should
not fluctuate too much to keep the essential information. An advantage in our phenomenological model is
the limited number of parameters (5 parameters during each epidemic phase and 2 parameters during each
endemic phase). The last advantage of our approach is that once the phenomenological model has been
chosen, we can compute some explicit formula for the transmission rate and derive some estimations for the
other parameters.
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5.5.2 Material and methods
5.5.2.1 Phenomenological model

In this section 5.5, the phenomenological model is compared with the cumulative reported case data taken
from WHO [425]. The phenomenological model deals with data series of new infectious cases decomposed
into two types of successive phases, 1) endemic phases, followed by 2) epidemic ones.

Endemic phase: During the endemic phase, the dynamics of new cases appear to fluctuate around an
average value independently of the number of cases. Therefore the average cumulative number of cases is
given by

CR(t) = N0 + (t− t0)× a, for t ∈ [t0, t1], (5.5.1)

where t0 denotes the beginning of the endemic phase. a is the average value of CR(t0) and N0 the average
value of the daily number of new cases.

In other words, we assume that the average daily number of new cases is constant. Therefore the daily
number of new cases is given by

CR′(t) = a. (5.5.2)

Epidemic phase: In the epidemic phase, the new cases contribute to produce secondary cases. Therefore
the daily number of new cases is no longer constant but varies with time as follows

CR(t) = Nbase +N(t), for t ∈ [t0, t1], (5.5.3)

where

N(t) = eχ(t−t0)N0[
1 + Nθ

0
Nθ
∞

(
eχθ(t−t0) − 1

)]1/θ . (5.5.4)

In other words, the daily number of new cases follows the Bernoulli-Verhulst [58, 381] equation. Namely,
by setting N(t) = CR(t)−Nbase we obtain

N ′(t) = χN(t)
[

1−
(
N(t)
N∞

)θ]
(5.5.5)

with the initial value
N(t0) = N0. (5.5.6)

In the modelNbase+N0 corresponds to the value CR(t0) of the cumulative number of cases at time t = t0. The
parameter N∞ +Nbase is the maximal increase of the cumulative reported case after the time t = t0. χ > 0
is a Malthusian growth parameter, and θ regulates the speed at which the CR(t) increases to N∞ +Nbase.

Regularized model

Because the formula for τ(t) involves derivatives of the phenomenological model regularizing CR(t) (see
equation (5.5.13)), we need to connect the phenomenological models of the different phases as smoothly as
possible. We let C̃R(t) be the model obtained by placing phenomenological models side by side for different
phases. Outside of the time window where phenomenological models are used, we consider that the function
C̃R(t) is constant. We define the regularized model by using the convolution formula:

CR(t) =
∫ +∞

−∞
C̃R(t− s)× 1

σ
√

2π
e−

s2
2σ2 ds = (C̃R ∗ G)(t), (5.5.7)

where G(t) := 1
σ
√

2π e
− t2

2σ2 is the Gaussian function with variance σ2. The parameter σ controls the trade-off
between smoothness and precision: increasing σ reduces the variations in CR(t) and decreasing σ reduces
the distance between CR(t) and C̃R(t). In any case the resulting function CR(t) is very smooth (as well as
its derivatives) and close to the original model C̃R(t) when σ is not too large. In numerical applications, we
take σ = 2 days.
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(S)usceptibles (I)nfectious

(R)eported

(U)nreported

Dead or recovered

Asymptomatic Symptomatic

Figure 5.5.2: Schematic view showing the different compartments and transition arrows in the epidemic
model.

Procedure to fit the phenomenological model to the data

To fit the model to the data, we used the regularized model (5.5.7) where the periods of the different
phases are fixed as in Table 5.5.1. We use a standard curve-fitting algorithm to find the parameters of
the regularized model. In numerical applications we used the Levenberg–Marquardt nonlinear least-squares
algorithm provided by the MATLAB© function fit. Our 95% confidence intervals are the ones provided as
an output of this algorithm. The best-fit parameters and the corresponding confidence intervals are provided
in Table 5.5.1.

5.5.2.2 SI Epidemic model

The SI epidemic model used in this work is the same as in [P7]. It is summarized by the flux diagram in
Figure 5.5.2.

The goal of this section 5.5 is to understand how to compare the SI model to the reported epidemic data
and therefore the model can be used to predict the future evolution of epidemic spread and to test various
possible scenarios of social mitigation measures. For t ≥ t0, the SI model is the following{

S′(t) = −τ(t)S(t)I(t),
I ′(t) = τ(t)S(t)I(t)− νI(t),

(5.5.8)

where S(t) is the number of susceptible and I(t) the number of infectious at time t. This system is supple-
mented by initial data

S(t0) = S0 ≥ 0, I(t0) = I0 ≥ 0. (5.5.9)

In this model, the rate of transmission τ(t) combines the number of contacts per unit of time and the prob-
ability of transmission. The transmission of the pathogen from the infectious to the susceptible individuals
is described by a mass action law τ(t)S(t) I(t) (which is also the flux of new infectious).

The quantity 1/ν is the average duration of the infectious period and νI(t) is the flux of recovering or
dying individuals. At the end of the infectious period, we assume that a fraction f ∈ (0, 1] of the infectious
individuals is reported. Let CR(t) be the cumulative number of reported cases. We assume that

CR(t) = CR0 + ν f CI(t), for t ≥ t0, (5.5.10)

where
CI(t) =

∫ t

t0

I(σ)dσ. (5.5.11)

Assumption 5.5.1 (Given parameters). We assume that

• the number of susceptible individuals when we start to use the model S0 = 67 millions;

• the average duration of infectious period 1
ν

= 3 days;
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• the fraction of reported individuals f = 0.9;

are known parameters.

Parameters estimated in the simulations: As described in [P7] the number of infectious at time t0 is

I0 = CR′(t0)
ν f

(5.5.12)

The rate of transmission τ(t) at time t is given by

τ(t) =
νf

(
CR′′(t)
CR′(t)

+ ν

)
νf (I0 + S0)− CR′(t)− ν (CR(t)− CR0)

. (5.5.13)

Parameters estimated in the endemic phase: The initial number of infectious is given by

I0 = a

ν f
,

and the transmission rate is given by the explicit formula

τ(t) = ν2f

νf (I0 + S0)− a− ν(t− t0)× a,∀t ∈ [t0, t1].

Parameters estimated in the epidemic phase: The initial number of infectious is given by

I0 =
χN0

[
1−

(
N0
N∞

)θ]
ν f

,

and the transmission rate is given by the explicit formula

τ(t) =
νf

(
N ′′(t)
N ′(t) + ν

)
νf (I0 + S0)−N ′(t)− ν (N(t)−N0) ,

and since (recall (5.5.5))

N ′(t) = χN(t)
[

1−
(
N(t)
N∞

)θ]
and

N ′′(t) = χN ′(t)
[

1− (1 + θ)
(
N(t)
N∞

)θ]
, (5.5.14)

we obtain an explicit formula

τ(t) =
νf

(
χ

[
1− (1 + θ)

(
N(t)
N∞

)θ]
+ ν

)

νf (I0 + S0)− χN(t)
[

1−
(
N(t)
N∞

)θ]
− ν (N(t)−N0)

, (5.5.15)

where N(t) is given by (5.5.4):

N(t) = eχ(t−t0)N0[
1 + Nθ

0
Nθ
∞

(
eχθ(t−t0) − 1

)]1/θ .
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By using the Bernoulli-Verhulst model to represent the data, the daily number of new cases is nothing
but the derivative N ′(t) (whenever the unit of time is one day). The daily number of new cases reaches its
maximum at the turning point t = tp, and by using (5.5.14), we obtain

N ′′(tp) = 0⇔ N(tp) =
(

1
1 + θ

)1/θ
N∞.

Therefore by using (5.5.5), the maximum of the daily number of cases equals

N ′(tp) = χN(tp)
[

1−
(
N(tp)
N∞

)θ]
.

By using the above formula, we obtain a new indicator for the amplitude of the epidemic.

Theorem 5.5.2. The maximal daily number of cases in the course of the epidemic phase is given by

χ×N∞ × θ ×
(

1
1 + θ

) 1
θ+1

. (5.5.16)

5.5.2.3 Parameter bounds

The epidemic model (5.5.8) with time-dependent transmission rate is consistent only insofar as the trans-
mission rate remains positive. This gives us a criterion to judge if a set of epidemic parameters has a
chance of being consistent with the observed data: since we know the parameters N0, N∞, χ and θ from
the phenomenological model, the formula (5.5.15) allows us to compute a criterion on ν and f which decides
whether a given parameter values are compatible with the observed data or not. That is to say that, a set
of parameter values is compatible if the transmission rate τ(t) in (5.5.15) remains positive for all t ≥ t0, and
it is not compatible if the sign of τ(t) in (5.5.15) changes for some t ≥ t0. We refer to [P7, Proposition 4.3]
for more results.

The value of the parameter ν is compatible with the model (5.5.15) if and only if

0 ≤ 1
ν
≤ 1
χθ
, (5.5.17)

and the value of the parameter f is compatible with the model (5.5.15) if and only if

f ≥ N∞ −N0
I0 + S0

. (5.5.18)

Therefore, we obtain an information on the parameters ν and f , even though they are not directly identifiable
(two different values of ν or f can produce exactly the same cumulative reported cases).

5.5.2.4 Computation of the basic reproduction number

In order to compute the reproduction number in Figure 5.5.5 we use the Algorithm 2 in [P7] and the
day-by-day values of the phenomenological model.

5.5.3 Results
5.5.3.1 Phenomenological model compared to the French data

In Figure 5.5.3 we present the best fit of our phenomenological model for the cumulative reported case data
of COVID-19 epidemic in France. The yellow regions correspond to the endemic phases and the blue regions
correspond to the epidemic phases. Here we consider the two epidemic waves for France, and the chosen
period, as well as the parameters values for each period, are listed in Table 5.5.1. In Table 5.5.1 we also give
95% confidence intervals for the fitted parameters values.

Figure 5.5.4 shows the corresponding daily number of new reported case data (black dots) and the first
derivative of our phenomenological model (red curve).
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Figure 5.5.3: The red curve corresponds to the phenomenological model and the black dots correspond to the
cumulative number of reported cases in France.

Figure 5.5.4: The red curve corresponds to the first derivative of the phenomenological model and the black
dots correspond to daily number of new reported cases in France.

5.5.3.2 SI epidemic model compared to the French data

Some parameters of the model are known as S0 = 67 millions for France (this is questionable). Some
parameters of the epidemic model can not be precisely evaluated [P7].

Result

By using (5.5.17) we obtain the following conditions for the average duration of infectious period

• 0 < 1
ν
≤ 1/(χθ) = 12.5 days during the first epidemic wave;

• 0 < 1
ν
≤ 1/(χθ) = 3.5 days during the second epidemic wave.

We obtain no constraint for the fraction f ∈ (0, 1] of reported new cases (between 0 and 1 for France).

Moreover by using the formula (5.5.16) we deduce that the maximal daily number of cases is

• 4110 during the first epidemic wave;

• 47875 during the second epidemic wave.
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Period Parameters value Method 95% Confidence interval

Period 1: Endemic phase

Jan 03 - Feb 27

N0 = −4.368

a = 1.099× 10−1

computed

fitted a ∈ [−8.582× 101, 8.604× 101]

Period 2: Epidemic phase

Feb 27 - May 17

Nbase = 0

N0 = 1.675

N∞ = 1.445× 105

χ = 1.263

θ = 6.315× 10−2

fixed

fitted

fitted

fitted

fitted

N0 ∈ [−3.807× 101, 4.142× 101]

N∞ ∈ [1.367× 105, 1.523× 105]

χ ∈ [−1.171× 101, 1.424× 101]

θ ∈ [−6.086× 10−1, 7.349× 10−1]

Period 3: Endemic phase

May 17 - Jul 05

N0 = 1.405× 105

a = 3.11× 102

computed

computed

Period 4: Epidemic phase

Jul 05 - Nov 18

Nbase = 1.403× 105

N0 = 1.517× 104

N∞ = 1.953× 106

χ = 3.671× 10−2

θ = 7.679

fitted

fitted

fitted

fitted

fitted

Nbase ∈ [1.367× 105, 1.439× 105]

N0 ∈ [1.427× 104, 1.607× 104]

N∞ ∈ [1.92× 106, 1.986× 106]

χ ∈ [3.62× 10−2, 3.722× 10−2]

θ ∈ [6.256, 9.102]

Period 5: Endemic phase

Nov 18 - Jan 04

N0 = 4.45× 10−84

a = 1.099× 10−1

computed

fitted a ∈ [1.222× 104, 1.265× 104]

Table 5.5.1: Fitted parameters and computed parameters for the whole epidemic going from January 03 2020
to January 04 2021.

Importantly, by combining the phenomenological model from Section 5.5.3.1 and the epidemiological
model from Section 5.5.2.2, we can reconstruct the time-dependent transmission rate given by (5.5.13)
and the corresponding time-dependent basic reproduction number R0(t) = τ(t)S(t)/ν (sometimes called
“effective basic reproductive ratio”). The obtained basic reproduction number is presented in Figure 5.5.5.
We observe that R0(t) is decreasing during each epidemic wave, except at the very end where it becomes
increasing. This is not necessarily surprising since the lockdown becomes less strictly respected towards the
end. During the endemic phases, the R0(t) becomes effectively equal to one, except again near the end.
The variations observed close to the transition between two phases may be partially due to the smoothing
method, which has an impact on the size of the “bumps”. However, they remain very limited in number and
size.

5.5.4 Discussion
In this section 5.4, we use a phenomenological model to reduce the number of parameters necessary for
summarizing observed data without loss of pertinent information. The process of reduction consists of three
stages: qualitative or quantitative detection of the boundaries between the different phases of the dynamics
(here endemic and epidemic phases), choice of a reduction model (among different possible approaches:
logistic, regression polynomials, splines, autoregressive time series, etc.) and smoothing of the derivatives at
the boundary points corresponding to the breaks in the model.

In Figure 5.5.3, we have a very good agreement between the data and the phenomenological model, for
both the original curve and its derivative. The relative error in Figure 5.5.3 is of order 10−2, which means
that the error is at most of the order of 100 000 individuals. In Figure 5.5.4 the red curve also gives a good
tendency of the black dots corresponding to raw data.

In Figure 5.5.5, the phenomenological models are necessary to derive a significant basic reproduction
number. Otherwise the resulting R0(t) is not interpretable and even not computable after sometime. Similar
results were obtained in Figures 12-14 in [P7]. The method to compute R0 can also be applied directly to
the original data. We did not show the result here because the noise in the data is amplified by the method
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Figure 5.5.5: In this figure we plot the time dependent basic reproduction number R0(t) := τ(t)S(t)/ν. We
fix the average length of the asymptotic infectious period to 3 days. Notice that, contrary to Figure 5.5.3 and
5.5.4, we do not plot to first endemic phase because the basic reproduction number is meaningless before the
first wave.

and the results are not usable. This shows that it is important to use the phenomenological model to provide
a good regularization of the data.

In Figure 5.5.5, the major difficulty is to know how to make the transition from an epidemic phase to an
endemic phase and vice versa. This is a non-trivial problem that is solved by our regularization approach
(using a convolution with a Gaussian). As we can see in Figure 5.5.5, the number of oscillations is very
limited between two phases. Without regularization, there is a sharp corner at the transition between two
phases which leads to infinite values in τ(t). The choice of the convolution with a Gaussian kernel for the
regularization method is the result of an experimental process. We tried several different regularization
methods, including a smooth explicit interpolation function and Hermite polynomials. Eventually, the
convolution with a Gaussian kernel gives the best results.

To minimize the variations of the curve of R0(t), the choice of the transition dates between two phases is
critical. In Figure 5.5.5 we choose the transition dates so that the derivatives of the phenomenological model
do not oscillate too much. Other choices lead to higher variations or increase the number of oscillations.
Finally, the qualitative shape of the curve presented in Figure 5.5.5 is very robust to changes in the epidemic
parameters, even though the quantitative values of R0(t) are different for other values of the parameters ν
and f .

In Figure 5.5.5, we observe that the quantitative value of the R0(t) during the first part of the second
epidemic wave (second blue region) is almost constant and equals 1.11. This value is significantly lower than
the one observed at the beginning of the first epidemic wave (first blue region). Yet the number of cases
produced during the second wave is much higher than the number of cases produced during the first wave.

We observe that the values of the parameters of the phenomenological model are quantitatively different
between the first wave and the second wave. Several phenomena can explain this difference. The population
was better prepared for the second wave. The huge difference in the number of daily reported cases during
the second phase can be partially attributed to the huge increase in the number of tests in France during
this period. But this is only a partial explanation for the explosion of cases during the second wave. We
also observe that the average duration of the infectious period varies between the first epidemic wave (12.5
days) and the second epidemic wave (3.5 days). This may indicate a possible adaptation of the virus SARS
CoV-2 circulating in France during the two periods, or the effect of the mitigation measures, with better
respect of the social distancing and compulsory mask-wearing.

The huge difference between the initial values of R0(t) in the first and the second waves is an apparent
paradox which shows that R0(t) has a limited explanatory value regarding the severity of the epidemic: even
if the quantitative value of R0(t) is higher at the start of the first wave, the number of cases produced during
an equivalent period in the second wave is much higher. This paradox can be partially resolved by remarking
that the R0(t) behaves like an exponential rate and the number of secondary cases produced in the whole
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Figure 5.5.6: Cumulative number of cases for the second epidemic wave obtained by using the SI model (5.5.8)
with τ(t) given by (5.5.13), the parameters from Table 5.5.1. We start the simulation at time t0 = July 05
with the initial value I0 = CR′(t2)

νf for the red curve and with I0 = 1
10

CR′(t2)
νf for yellow curve. The remaining

parameters used are ν = 1/3, f = 0.9, S0 = 66841266. We observe the number is five times lower than then
the original number of cases.

population is therefore very sensitive to the number of active cases at time t. In other words, R0(t) is blind
to the epidemic state of the population and cannot be used as a reliable indicator of the severity of the
epidemic. Other indicators have to be found for that purpose; we propose, for instance, the maximal value
of the daily number of new cases, which can be forecasted by our method (see equation (5.5.16)), although
other indicators can be imagined.

In Figure 5.5.6 we present an exploratory scenario assuming that during the endemic period preceding
the second epidemic wave (May 17 - Jul 05) the daily number of cases is divided by 10. The resulting
cumulative number of cases obtain is five lower the original one. We summarize this observation into the
following statement.

Result

• The level of the daily number of cases during an endemic phase preceding an epidemic phase
strongly influences the severity of this epidemic wave.

• In other words, maintaining social distancing between epidemic waves is essential.

In Figure 5.5.4, there is two order of magnitude in the daily number of cases in between CR′(t1) ≈ 1
(with t1 = Feb 27) at the early beginning of the first epidemic wave and CR′(t2) = 422 (with t2 = July 05)
at the early beginning of the second epidemic wave. That confirms our result. After the second wave, the
average daily number of cases CR′(t) in France is stationary and approximately equal to 12440. Therefore, if
the above observation remains true and if a third epidemic wave occurs, the third epidemic wave is expected
to be more severe than the first and second epidemic waves.

Our study can be extended in several directions. A statistical study of the parameters obtained by using
our phenomenological model with data at the regional scale could be interesting. We could in particular
investigate statistically the correlations existing between the parameters changes and the variations with
demographic parameters as the median age and the population density, as well as geo-climatic factors as the
elevation and temperature, etc. We also plan to extend our method to more realistic epidemic models, like
the SEIUR model from [260], which includes the possibility of transmission from asymptomatic unreported
patients.
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5.6 What can we learn from COVID-19 data by using epidemic models with
unidentified infectious cases?

5.6.1 Introduction
Since the first cases occurred in early December 2019, the COVID-19 crisis has been accompanied by un-
precedented data release. The first cluster of cases was reported on December 31, 2019, by WHO (World
Health Organization) [422]. Chinese authorities confirmed on January 7 that this cluster was caused by a
novel coronavirus [421]. The disease then rapidly spread throughout the world; a case was identified in the
U.S.A. as early as January 19, 2020, for instance [212]. According to the WHO database [425], the first cases
in Japan date back to January 14, in Italy to January 29 (even though the cluster of cases was announced
on January 21, 2020 [13]), in France to January 24, 2020, etc. The spread of the epidemic across countries
was monitored, and the data was made publicly available at the international level by recognized scientific
institutions such as WHO [425] and the Johns Hopkins University [148], who collected data provided by
national health agencies. To the best of our knowledge, this is the first time in history that such detailed
epidemiological data have been made publicly available on a global scale; this opens up new questions and
new challenges for the scientific community.

Modeling efforts in order to analyze and predict the dynamics of the epidemics were initiated from
the start [261, 245, 387]. Forecasting the propagation of the epidemic is, in particular, a key challenge in
infectious disease epidemiology. It has quickly become clear to medical doctors and epidemiologists that
covert cases (asymptomatic or unreported infectious cases) play an important role in the spread of the
COVID-19. An early description of an asymptomatic transmission in Germany was reported by Rothe et
al. [341]. It was also observed on the Diamond Princess cruise ship in Yokohama in Japan [287] that many
of the passengers were tested positive for the virus but never presented any symptoms. On the French
aircraft carrier Charles de Gaulle, clinical and biological data for all 1739 crew members were collected on
arrival at the Toulon harbor and during quarantine: 1121 crew members (64%) were tested positive for
COVID-19 using RT-PCR, and among these, 24% were asymptomatic [90]. The importance of covert cases
in the silent propagation of the epidemic was highlighted by Qiu [327]. Models accounting for asymptomatic
transmission, which agree with reported cases data, have been used from the start of the epidemic [261,
260, 258, 259]. The implementation of such models depends, however, on the a priori knowledge of some
characteristic parameters of the host-pathogen interaction, among which is the ascertainment rate. Nishiura
and collaborators [306] estimated this ascertainment rate as 9.2% on a 7.5-days detection window, based on
testing data of repatriated Japanese nationals from Wuhan. This was corrected later to 44% for non-severe
cases [311]. An early review of SARS-CoV-2 facts can be found in the work of Bar-On et al. [31].

To describe the spread of COVID-19 mathematically, Liu et al. [261] first took into account the infection of
susceptible individuals by contacts with unreported infectious individuals. A new method using the number
of reported cases in SIR models was also proposed in the same work. This method and the model were
extended in several directions by the same group [260, 258, 259, 262] to include non-constant transmission
rates and a period of exposure. More recently, the method was extended and successfully applied to a
Japanese age-structured dataset by Griette, Magal, and Seydi [P10]. The method was also extended to
investigate the predictability of the outbreak in several countries, including China, South Korea, Italy,
France, Germany, and the United Kingdom by Liu, Magal, and Webb [262].

Phenomenological models were extensively used in the literature even before the SARS-CoV-2 pandemic
to describe reported cases data, see e.g., [416, 214] for the 2003 SARS outbreak, and also [215, 391], to
cite a few. In the case of the SARS-CoV-2 epidemic, articles related to phenomenological models are
particularly numerous, see e.g., [106, 357, 418, 389, 337, 164, 24, 112, 278, 315]. More precisely, Castro et
al. [106] investigate the possibility of predicting the turning point of an epidemic wave. Many studies use
phenomenological models to issue short-term predictions on the epidemic [337, 278, 389, 357]. But these
models can also be used to reconstruct the evolution of the epidemic a posteriori [24, 112, 418].

In previous works [261, 260, 258, 259], we have replaced the data with the phenomenological model, and
we use this continuous description as the output of the epidemic model. This allows us to understand how
to express part of the initial distribution and some parameters (e.g., the transmission rate) from the data
and the given parameters of the model. By using this approach, we obtain an explicit formula for the time-
dependent transmission rate expressed by using some given parameters of the model and some parameters
of the phenomenological model. In [P7], we used a Bernoulli-Verhulst phenomenological model to describe
a single epidemic wave and compute a time-dependent transmission rate.

There are many potential phenomenological models to represent a single epidemic wave [391, 24, 112].
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However, except in the case of the logistic equation, there is usually no explicit formula for the solution.
The explicit formula in the case considered here permits to develop a comprehensive statistical analysis.
Phenomenological models also serve to regularize the data, which is a complex question. Indeed the idea is
to get rid of the stochastic oscillations (due for example to the way the data are collected, or the stochastic
nature of the contact between individuals). Some phenomenological models also redistribute the reported
cases to dampen the fluctuations in the data. Let us stress here the fact that some oscillations in cases data
may not be random and might correspond to complex transmission dynamics (delayed infection, peak in
contact numbers during the day, etc.) This highlights one of the drawbacks of phenomenological models:
while they allow a precise description of epidemic waves, they might also hide some valuable information on
how the disease is transmitted in the population.

A key parameter in understanding the dynamics of the COVID-19 epidemic is the transmission rate,
defined as the fraction of all possible contacts between susceptible and infected individuals that effectively
result in a new infection per unit of time. Estimating the average transmission rate is one of the most
crucial challenges in the epidemiology of communicable diseases. In practice, many factors can influence the
actual transmission rate, (i) the coefficient of susceptibility; (ii) the coefficient of virulence; (iii) the number
of contacts per unit of time [273]; (iv) the environmental conductivity [136]. Let us remark that the rate of
contacts per units of time can also be investigated by agent models [392].

Epidemic models with time-dependent transmission rates have been considered in several articles in the
literature. The classical approach is to fix a function of time that depends on some parameters and to fix
these parameters by using the best fit to the data. In Chowell et al. [110] a specific form was chosen for
the rate of transmission and applied to the Ebola outbreak in Congo. Huo et al [222] used a predefined
transmission rate which is a Legendre polynomial depending on a tunable number of parameters. Let us
also mention that kinetic model idea has been used to understand this problem in the paper by Dimarco
et al. [144]. Here we are going the other way around. We reconstruct the transmission rate from the data
by using the model without choosing a predefined function for the transmission rate. Such an approach
was used in the early 70s by London and Yorke [264, 410] who used a discrete-time model and discussed
the time-dependent rate of transmission in the context of measles, chickenpox, and mumps. More recently,
several authors [29, P7, P13] used both an explicit formula and algorithms to reconstruct the transmission
rate. These studies allow us to understand that the regularization of the data is a complex problem and is
crucial in order to rebuild a meaningful time-dependent transmission rate.

In the present section 5.6, we apply a new method to compute the transmission rate from cumulative
reported cases data. While the use of a predefined transmission rate τ(t) as a function of time can lead
to very good fits of the data, here we are looking for a more intrinsic relationship between the data and
the transmission rate. Therefore we propose a different approach and use a two-step procedure. Firstly,
we use a phenomenological model to describe the data and extract the general trend of the epidemiological
dynamics while removing the insignificant noise. Secondly, we derive an explicit relationship between the
phenomenological model and the transmission rate. In other words, we compute the transmission rate
directly from the data. As a result, we can reconstruct an estimation of the state of the population at each
time, including covert cases. Our method also provides new indicators for the epidemiological dynamics that
are related to the reproductive number.

5.6.2 Methods
5.6.2.1 COVID-19 data and phenomenological model

We regularized the time series of cumulative reported cases by fitting standard curves to the data to recon-
struct the time-dependent transmission rate. We first identified the epidemic waves for each of the eight
geographic areas. A Bernoulli–Verhulst curve was then fitted to each epidemic wave using the Levenberg–
Marquardt algorithm [426]. We reported the detailed output of the algorithm in the supplementary material,
including confidence bounds on the parameters. The model was completed by filling the time windows be-
tween two waves with straight lines. Finally, we applied a Gaussian filter with a standard deviation of 7
days to the curve to obtain a smooth model.

Data sources We used reported cases data for 8 different geographic areas, namely California, France,
India, Israel, Japan, Peru, Spain, and the UK. Apart from California State, for which we used data from
the COVID tracking project [428], the reported cases data were taken from the WHO database [425].
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Phenomenological model used for multiple epidemic waves To represent the data, we used a
phenomenological model to fit the curve of cumulative rate cases. Such an idea is not new since it was
already proposed by Bernoulli [58] in 1760 in the context of the smallpox epidemic. Here we used the so-
called Bernoulli–Verhulst [381] model to describe the epidemic phase. Bernoulli [58] investigated an epidemic
phase followed by an endemic phase. This appears clearly in Figures 9 and 10 of the paper by Dietz, and
Heesterbeek [143] who revisited the original article of Bernoulli. We also refer to Blower [59] for another
article revisiting the original work of Bernoulli. Several works comparing cumulative reported cases data and
the Bernoulli–Verhulst model appear in the literature (see [215, 391, 416]). The Bernoulli–Verhulst model
is sometimes called Richard’s model, although Richard’s work came much later in 1959.

The phenomenological model deals with data series of new infectious cases decomposed into two successive
phases: 1) endemic phases followed by 2) epidemic phases.

Endemic phase: During the endemic phase, the dynamics of new cases appears to fluctuate around an
average value independently of the number of cases. Therefore the average cumulative number of cases is
given by

CR(t) = N0 + (t− t0)× a, for t ∈ [t0, t1], (5.6.1)

where t0 denotes the beginning of the endemic phase, and a is the average value of the daily number of new
cases.

We assume that the average daily number of new cases is constant. Therefore the daily number of new
cases is given by

CR′(t) = a. (5.6.2)

Epidemic phase: In the epidemic phase, the new cases are contributing to produce secondary cases.

Therefore the daily number of new cases is no longer constant, but varies with time as follows

CR(t) = Nbase + eχ(t−t0)N0[
1 + Nθ

0
Nθ
∞

(
eχθ(t−t0) − 1

)]1/θ , for t ∈ [t0, t1]. (5.6.3)

In other words, the daily number of new cases follows the Bernoulli–Verhulst [58, 381] equation. Namely, by
setting

N(t) = CR(t)−Nbase, (5.6.4)

we obtain

N ′(t) = χN(t)
[

1−
(
N(t)
N∞

)θ]
, (5.6.5)

completed with the initial value
N(t0) = N0.

In the model, Nbase +N0 corresponds to the value CR(t0) of the cumulative number of cases at time t = t0.
The parameter N∞ + Nbase is the maximal value of the cumulative reported cases after the time t = t0.
χ > 0 is a Malthusian growth parameter, and θ regulates the speed at which CR(t) increases to N∞+Nbase.

Regularize the junction between the epidemic phases: Because the formula for τ(t) involves deriva-
tives of the phenomenological model regularizing CR(t) (see Eqs (5.6.12)–(5.6.15)), we need to connect the
phenomenological models of the different phases as smoothly as possible. Let t0, . . . , tn denote the n + 1
breaking points of the model, that is, the times at which there is a transition between one phase and the next
one. We let C̃R(t) be the global model obtained by placing the phenomenological models of the different
phases side by side.

More precisely, C̃R(t) is defined by Eq (5.6.3) during an epidemic phase [ti, ti+1], or during the initial
phase (−∞, t0] or the last phase [tn,+∞). During an endemic phase, C̃R(t) is defined by Eq (5.6.1). The
parameters are chosen so that the resulting global model C̃R is continuous. We define the regularized model
by using the convolution formula:

CR(t) =
∫ +∞

−∞
G(t− s)× C̃R(s)ds = (G ∗ C̃R)(t), (5.6.6)
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where
G(t) := 1

σ
√

2π
e−

t2
2σ2

is the Gaussian function with mean 0 and variance σ2. The parameter σ controls the trade-off between
smoothness and precision: increasing σ reduces the variations in CR(t) and reducing σ reduces the distance
between CR(t) and C̃R(t). In any case the resulting function CR(t) is very smooth (as well as its derivatives)
and close to the original model C̃R(t) when σ is not too large. In the results section (Section 5.6.3), we fix
σ = 7 days.

Numerically, we will need to compute some t → CR(t) derivatives. Therefore it is convenient to take
advantage of the convolution Eq (5.6.6) and deduce that

dnCR(t)
dtn =

∫ +∞

−∞

dnG(t− s)
dtn × C̃R(s)ds, (5.6.7)

for n = 1, 2, 3.

5.6.2.2 Epidemic model

To reconstruct the transmission rate, we used the underlying mathematical model described by the flowchart
presented in Figure 5.6.1.

(S)usceptibles (E)xposed (I)nfectious

(R)eported

(U)nreported

Immunized or dead

Asymptomatic Symptomatic

Figure 5.6.1: Flowchart for the model.

The model itself includes five parameters whose values were taken from the literature: the average
length of the noninfectious incubation period (1 day, (E)xposed); the average length of the infectious incu-
bation period (3 days, (I)nfectious); the average length of the symptomatic period (7 days, (R)eported or
(U)nreported); the ascertainment rate (0.8). Additional parameters appear in the initial condition and could
not be computed from the initial number of unreported individuals. The transmission rate was computed
from the regularized data and the assumed parameters according to a methodology adapted from Demongeot
et al. [P7].

Many epidemiological models are based on the SIR or SEIR model, which is classical in epidemic mod-
elling. We refer to [404, 368] for the earliest articles devoted to such a question and to [12, 27, 77, 75, 76,
88, 142, 208, 231, 297, 371] for more models. In this chapter, we will compare the following SEIUR model
to the cumulative reported cases data

S′(t) = −τ(t)
[
I(t) + κU(t)

]
S(t),

E′(t) = τ(t)
[
I(t) + κU(t)

]
S(t)− αE(t),

I ′(t) = αE(t)− ν I(t),

U ′(t) = ν (1− f) I(t)− η U(t),

R′(t) = ν f I(t)− η R(t),

(5.6.8)
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where at time t, S(t) is the number of susceptible, E(t) the number of exposed (not yet capable of transmitting
the pathogen), I(t) the number of asymptomatic infectious, R(t) the number of reported symptomatic
infectious and U(t) the number of unreported symptomatic infectious. This system is supplemented by
initial data

S(t0) = S0, E(t0) = E0, I(t0) = I0, U(t0) = U0, and R(t0) = R0. (5.6.9)

In this model, τ(t) is the rate of transmission, 1/α is the average duration of the exposure period, 1/ν
is the average duration of the asymptomatic infectious period, and for simplicity, we subdivide the class
of symptomatic patients into the fraction 0 ≤ f ≤ 1 of patients showing some severe symptoms, and the
fraction 1 − f of patients showing some mild symptoms assumed to be not detected. The quantity 1/η is
the average duration of the symptomatic infectious period. In the model, we assume that the average time
of infection is the same for Reported and Unreported infectious individuals. We refer to [230, 236] for more
information about this topic. Finally, we assume that reported symptomatic individuals do not contribute
significantly to the transmission of the virus.

The cumulative number of reported cases CR(t) is connected to the epidemic model by the following
relationship

CR(t) = CR0 + ν f CI(t), for t ≥ t0, (5.6.10)

where
CI(t) =

∫ t

t0

I(σ)dσ. (5.6.11)

Given and estimated parameters

We assume that the following parameters of the model are known

S0, U0, R0, f, κ, α, ν, η.

The goal of our method is to focus on the estimation of the three remaining parameters. Namely,
knowing the parameters mentioned above, we plan to identify

E0, I0, τ(t).

Computation of the rate of transmission

The transmission rate is fully determined by the parameters κ, α, ν, η, f, S0, E0, I0, U0, and the data
that are represented by the function t→ CR(t), by using the three following equations

τ(t) = 1
I(t) + κU(t) ×

CE′′(t) + αCE′(t)
E0 + S0 − CE′(t)− αCE(t)

, (5.6.12)

where
I(t) = CR′(t)

ν f
, (5.6.13)

CE(t) = 1
αν f

[
CR′(t)− ν f I0 + ν (CR(t)− CR0)

]
, (5.6.14)

U(t) = e−η(t−t0)U0 +
∫ t

t0

e−η(t−s) (1− f)
f

CR′(s)ds. (5.6.15)

Instantaneous reproduction number computed for COVID-19 data We have only a single epidemic
phase in the standard SI epidemic model because the epidemic exhausts the susceptible population. Here,
the changes of regimes (epidemic phase versus endemic phase) are partly due to the decay in the number of
susceptible. But these changes are also influenced by the changes in the transmission rate. These changes
in the transmission rate are due to the limitation of contacts between individuals or to changes in climate
(in summer) or other factors influencing transmissions.
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In this section 5.6.2.2, we will observe that the main factors for the changes in the epidemic regimes are
the changes in the transmission rate. To investigate this for the COVID-19 data, we use our method to
compute the transmission rate, and we consider the instantaneous reproduction number

Re(t) = τ(t)S(t)
ην

(η + ν(1− f)), (5.6.16)

and the quasi-instantaneous reproduction number

R0
e(t) = τ(t)S0

ην
(η + ν(1− f)), (5.6.17)

in which the transmission varies, but the size of the susceptible population remains constant equal to S0.
We refer to section 5.6.12 for detailed computations to obtain the Eq (5.6.16).

The comparison between Re(t) and R0
e(t) permits us to understand the contribution of the decay of the

susceptible population in the variations of Re(t). Another interesting aspect is that R0
e(t) is proportional to

the transmission rate τ(t). Therefore plotting R0
e(t) permits us to visualize the variation of t→ τ(t) only.

Computation of the initial value of the epidemic model Based on Eq (5.6.4), we can recover the
initial number of asymptomatic infectious I0 = I(t0) and the initial number of exposed E0 = E(t0) for an
epidemic phase starting at time t0. Indeed by definition, we have CR′(t) = νfI(t) and therefore

I0 = CR′(t0)
νf

=
χN0

(
1−

(
N0
N∞

)θ)
νf

.

Estimated initial number of infected

The initial number of asymptomatic infectious is given by

I0 = CR′(t0)
ν f

. (5.6.18)

In the special case of the Bernoulli–Verhulst model we obtain

I0 = χ

ν f
N0

(
1−

(
N0
N∞

)θ)
. (5.6.19)

By differentiating Eq (5.6.5) we deduce that

N ′′(t) = χN ′(t)
(

1−
(
N(t)
N∞

)θ)
− χθ

Nθ
∞
N(t) (N(t))θ−1

N ′(t)

= χN ′(t)
(

1−
(
N(t)
N∞

)θ)
− χθ

Nθ
∞

(N(t))θN ′(t),

therefore

CR′′(t) = N ′′(t) = χ2N(t)
(

1−
(
N(t)
N∞

)θ)(
1− (1 + θ)

(
N(t)
N∞

)θ)
.

By using the third equation in Eq (5.6.8) we obtain

E0 = I ′(t0) + νI(t0)
α

= CR′′(t0) + νCR′(t0)
α

= N ′′(t0) + νN ′(t0)
α

.



440

Estimated initial number of exposed

The initial number of exposed is given by

E0 = CR′′(t0) + νCR′(t0)
α

. (5.6.20)

In the special case of the Bernoulli–Verhulst model, we obtain

E0 = χ

α ν f
N0

(
1−

(
N0
N∞

)θ)(
χ+ ν − χ (1 + θ)

(
N0
N∞

)θ)
. (5.6.21)

Theoretical formula for τ(t) We first remark that the S-equation of model (5.6.8) can be written as

d
dt ln(S(t)) = S′(t)

S(t) = −τ(t)
[
I(t) + κU(t)

]
,

therefore by integrating between t0 and t we get

S(t) = S0 exp
(
−
∫ t

t0

τ(σ) [I(σ) + κU(σ)] dσ
)
.

Next we plug the above formula for S(t) into the E-equation of model (5.6.8) and obtain

E′(t) = S0 exp
(
−
∫ t

t0

τ(σ) [I(σ) + κU(σ)] dσ
)
τ(t) [I(t) + κU(t)]− αE(t)

= −S0
d
dt

(
−
∫ t

t0

τ(σ) [I(σ) + κU(σ)] dσ
)

exp
(
−
∫ t

t0

τ(σ) [I(σ) + κU(σ)] dσ
)

− αE(t),

and by integrating this equation between t0 and t we obtain

E(t) = E0 + S0

[
1− exp

(
−
∫ t

t0

τ(σ) [I(σ) + κU(σ)] dσ
)]
− α

∫ t

t0

E(σ)dσ. (5.6.22)

Define the cumulative numbers of exposed, infectious and unreported individuals by

CE(t) :=
∫ t

t0

E(σ)dσ, CI(t) :=
∫ t

t0

I(σ)dσ, and CU(t) :=
∫ t

t0

U(σ)dσ,

and note that CE′(t) = E(t). We can rewrite the Eq (5.6.22) as

S0 exp
(
−
∫ t

t0

τ(σ) [I(σ) + κU(σ)] dσ
)

= E0 + S0 − CE′(t)− αCE(t).

By taking the logarithm of both sides we obtain∫ t

t0

τ(σ) [I(σ) + κU(σ)] dσ = ln(S0)− ln
(
E0 + S0 − CE′(t)− αCE(t)

)
,

and by differentiating with respect to t:

τ(t) = 1
I(t) + κU(t) ×

CE′′(t) + αCE′(t)
E0 + S0 − CE′(t)− αCE(t)

. (5.6.23)

Therefore we have an explicit formula giving τ(t) as a function of I(t), U(t) and CE(t) and its derivatives.
Next we explain how to identify those three remaining unknowns as a function of CR(t) and its derivatives.
We first recall that, from Eq (5.6.10), we have

CR(t) = CR(t0) + ν f CI(t).
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The I-equation of model (5.6.8) can be rewritten as

αE(t) = I ′(t) + νI(t),

and by integrating this equation between t0 and t we obtain

αCE(t) = CI′(t)− I0 + ν CI(t) = 1
ν f

(CR′(t) + νCR(t)− νCR(t0)). (5.6.24)

Finally, by applying the variation of constants formula to the U -equation of system (5.6.8) we obtain

U(t) = e−η(t−t0)U0 +
∫ t

t0

e−η(t−s)ν (1− f) I(s)ds

= e−η(t−t0)U0 +
∫ t

t0

e−η(t−s) 1− f
f

CR′(s)ds. (5.6.25)

From these computations we deduce that τ(t) can be computed thanks to Eq (5.6.23) from CR(t), α, ν, η,
κ, f and U0. The following theorem is a precise statement of this result.

Theorem 5.6.1. Let S0 > 0, E0 > 0, I0 > 0, U0 > 0, CR0 ≥ 0, α, ν, η and f > 0 be given. Let
t 7→ τ(t) ≥ 0 be a given continuous function and t → I(t) be the second component of system (5.6.8). Let
ĈR : [t0,∞)→ R be a twice continuously differentiable function. Then

ĈR(t) = CR0 + ν f

∫ t

t0

I (s) ds,∀t ≥ t0, (5.6.26)

if and only if ĈR satisfies
ĈR(t0) = CR0, (5.6.27)

ĈR
′
(t0) = ν f I0, (5.6.28)

ĈR
′′
(t0) + νĈR

′
(t0) = αν f E0, (5.6.29)

ĈR
′
(t) > 0,∀t ≥ t0, (5.6.30)

νf (E0 + S0)−
[
ĈR
′′
(t) + νĈR

′
(t)
]
− α

[
ĈR
′
(t)− ν f I0 + νĈR(t)

]
> 0,∀t ≥ t0, (5.6.31)

and τ(t) is given by

τ(t) = 1
Î(t) + κÛ(t)

× ĈE
′′
(t) + αĈE

′
(t)

E0 + S0 − ĈE
′
(t)− αĈE(t)

, (5.6.32)

where

Î(t) := ĈR
′
(t)

ν f
, (5.6.33)

ĈI(t) := 1
ν f

[
ĈR(t)− ĈR(t0)

]
, (5.6.34)

ĈE(t) := 1
α

[
ĈI
′
(t)− I0 + ν ĈI(t)

]
= 1
αν f

[
ĈR
′
(t)− ν f I0 + ν

(
ĈR(t)− CR0

)]
, (5.6.35)

Û(t) := e−η(t−t0)U0 +
∫ t

t0

e−η(t−s) (1− f)
f

ĈR
′
(s)ds. (5.6.36)

Proof. Assume first that ĈR(t) satisfies Eq (5.6.26). Then by using the first equation of system (5.6.8) we
deduce that

S0 exp
(
−
∫ t

t0

τ(σ) [I(σ) + κU(σ)] dσ
)

= E0 + S0 − E(t)− αCE(t). (5.6.37)



442

Therefore ∫ t

t0

τ(σ) [I(σ) + κU(σ)] dσ = ln
[

S0
E0 + S0 − E(t)− αCE(t)

]
= ln (S0)− ln [E0 + S0 − E(t)− αCE(t)] ,

and by taking the derivative of both sides we obtain

τ(t) [I(t) + κU(t)] = E′(t) + αE(t)
E0 + S0 − E(t)− αCE(t) ,

which is equivalent to

τ(t) = E(t)
I(t) + κU(t) ×

E′(t)
E(t) + α

E0 + S0 − E(t)− αCE(t) .

By using the fact that E(t) = CE′(t) and I = CR′(t)/(νf), we deduce Eq (5.6.32). By differentiating Eq
(5.6.26), we get Eqs (5.6.28) and (5.6.30). Equation (5.6.29) is a consequence of the E-component of Eq
(5.6.8). We get Eq (5.6.31) by combining Eqs (5.6.37) and (5.6.35) (since ĈE(t) = CE(t)).

Conversely, assume that τ(t) is given by Eq (5.6.31) and all the Eqs (5.6.27)–(5.6.36) hold. We define
Î(t) = ĈR

′
(t)/νf and ĈI(t) =

(
ĈR(t)− CR0

)
/νf . Then, by using Eq (5.6.27), we deduce that

ĈI(t) =
∫ t

t0

Î(σ)dσ, (5.6.38)

and by using Eq (5.6.28), we deduce
Î(t0) = I0. (5.6.39)

Moreover, from Eq (5.6.31) and Î(t) = ĈR
′
(t)/νf we deduce that

τ(t) = 1
Î(t) + κÛ(t)

× ĈE
′′
(t) + αĈE

′
(t)

E0 + S0 − ĈE
′
(t)− αĈE(t)

. (5.6.40)

Multiplying Eq (5.6.40) by Î(t) + κÛ(t) and integrating, we obtain∫ t
t0
τ(σ)

[
Î(σ) + κÛ(σ)

]
dσ = ln

(
E0 + S0 − ĈE

′
(t0)− αĈE(t0)

)
− ln

(
E0 + S0 − ĈE

′
(t)− αĈE(t)

)
,

(5.6.41)

where the right-hand side is well defined thanks to Eq (5.6.31). By combining Eqs (5.6.27), (5.6.28) and
(5.6.35) we obtain

ĈE(t0) = 0, (5.6.42)
and by taking the derivative in Eq (5.6.35) we obtain

ĈE
′
(t0) = 1

αν f

[
ĈR
′′
(t) + νĈR

′
(t)
]

therefore by using Eq (5.6.29) we deduce that

ĈE
′
(t0) = E0. (5.6.43)

In particular, E0 + S0 − ĈE
′
(t0)− αĈE(t0) = S0 and, by taking the exponential of Eq (5.6.41), we obtain

S0e−
∫ t
t0
τ(σ)
[
Î(σ)+κÛ(σ)

]
dσ = E0 + S0 − ĈE

′
(t)− αĈE(t),

which, differentiating both sides, yields

−S0e−
∫ t
t0
τ(σ)
[
Î(σ)+κÛ(σ)

]
dσ
τ(t)

[
Î(t) + κÛ(t)

]
= −ĈE

′′
(t)− αĈE

′
(t)

= −Ê′(t)− αÊ(t),
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and therefore
Ê′(t) = τ(t)Ŝ(t)

[
Î(t) + κÛ(t)

]
− αÊ(t), (5.6.44)

where Ê(t) := ĈE
′
(t) and Ŝ(t) := S0e−

∫ t
t0
τ(σ)
[
Î(σ)+κÛ(σ)

]
dσ. Differentiating the definition of Ŝ(t), we get

Ŝ′(t) = −
[
Î(t) + κÛ(t)

]
Ŝ(t). (5.6.45)

Next the derivative of Eq (5.6.35) can be rewritten as

Î ′(t) = 1
ν f

ĈR
′′
(t) = αĈE

′
(t)− ν 1

ν f
ĈR
′
(t) = αÊ(t)− νÎ(t). (5.6.46)

Finally, differentiating Eq (5.6.36) yields

Û ′(t) = ν (1− f) Î(t)− ηÛ(t). (5.6.47)

By combining Eqs (5.6.44)–(5.6.47) we see that
(
Ŝ(t), Ê(t), Î(t), Û(t)

)
satisfies Eq (5.6.8) with the initial

condition
(
Ŝ(t0), Ê(t0), Î(t0), Û(t0)

)
= (S0, E0, I0, U0). By the uniqueness of the solutions of Eq (5.6.8) for

a given initial condition, we conclude that
(
Ŝ(t), Ê(t), Î(t), Û(t)

)
=
(
S(t), E(t), I(t), U(t)

)
. In particular,

CR(t) satisfies Eq (5.6.26). The proof is completed.

Remark 5.6.2. The condition Eq (5.6.31) is equivalent to

E0 + S0 − ĈE
′
(t)− αĈE(t) > 0, ∀t ≥ t0.

Remark 5.6.3. The present computations have been previously done, in a different context, by Hadeler
[196].

5.6.2.3 Computing the explicit formula for τ(t) during an epidemic phase

In this section 5.6.2.3, we assume that the curve of cumulative reported cases is given by the Bernoulli–
Verhulst formula

N(t) := CR(t)−Nbase = eχ(t−t0)N0[
1 + Nθ

0
Nθ
∞

(
eχθ(t−t0) − 1

)]1/θ , for t ∈ [t0, t1],

and we recall that

N ′(t) = χN(t)
(

1−
(
N(t)
N∞

)θ)
.

Then we can compute an explicit formula for the components of the system (5.6.8). By definition we have

I(t) = CR′(t)
νf

= χ

νf
N(t)

(
1−

(
N(t)
N∞

)θ)
, (5.6.48)

which gives

I ′(t) = CR′′(t)
νf

= χ2

νf
N(t)

(
1−

(
N(t)
N∞

)θ)(
1− (1 + θ)

(
N(t)
N∞

)θ)
,

so that by using the I-component in the system (5.6.8) we get

E(t) = 1
α

(
I ′(t) + νI(t)

)
= 1
ανf

(
CR′′(t) + νCR′(t)

)
.

By integration, we get

CE(t) = 1
αν f

[(
CR′(t)− CR′0

)
+ ν [CR(t)− CR(t0)]

]
,

= 1
αν f

[
χN(t)

(
1−

(
N(t)
N∞

)θ)
− ν f I0 + ν [N(t)−N0]

]
,

= 1
αν f

[
N(t)

(
χ+ ν − χ

(
N(t)
N∞

)θ)
− ν f I0 − νN0

]
,
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and since

ν f I0 = CR′(t0) = N ′(t0) = χN0

(
1−

(
N0
N∞

)θ)
,

we obtain

CE(t) = 1
αν f

[
N(t)

(
χ+ ν − χ

(
N(t)
N∞

)θ)
−N0

(
χ+ ν − χ

(
N0
N∞

)θ)]
.

Note also that we have explicit formulas for E(t) = CE′(t) and E′(t) = CE′′(t),

E(t) = CE′(t) = χ

ανf

[
N(t)

(
1−

(
N(t)
N∞

)θ)(
χ+ ν − χ(1 + θ)

(
N(t)
N∞

)θ)]
(5.6.49)

and

E′(t) = CE′′(t) = χ2

ανf
N(t)

(
1−

(
N(t)
N∞

)θ)

×

[
χ+ ν − (χ(2 + θ) + ν)(1 + θ)

(
N(t)
N∞

)θ
+ χ(1 + θ)(1 + 2θ)

(
N(t)
N∞

)2θ
]
.

Next, recall the U -equation of Eq (5.6.8), that is,

U ′(t) = ν(1− f)I(t)− ηU(t),

therefore by the variation of constant formula we have

U(t) = e−η(t−t0)U(t0) +
∫ t

t0

e−η(t−s)(1− f)νI(s)ds

= e−η(t−t0U0 +
∫ t

t0

e−η(t−s) 1− f
f

CR′(s)ds. (5.6.50)

Explicit formula for the transmission rate during an epidemic phase

The transmission rate τ(t) can be computed as

τ(t) =
χN(t)

(
1−

(
N(t)
N∞

)θ)
I(t) + κU(t) ×

[
A
(
N(t)
N∞

)2θ
−B

(
N(t)
N∞

)θ
+ C

]
E0 + S0 − E(t)− αCE(t) , (5.6.51)

where
N(t) = eχ(t−t0)N0[

1 + Nθ
0

Nθ
∞

(
eχθ(t−t0) − 1

)]1/θ , for t ≥ t0, (5.6.52)

and

A := χ2(1 + θ)(1 + 2θ), (5.6.53)
B := χ(1 + θ)

[
χ(2 + θ) + ν + α

]
, (5.6.54)

C := (α+ χ)(χ+ ν), (5.6.55)

and I(t) is given by Eq (5.6.48), E(t) by Eq (5.6.49) and U(t) by Eq (5.6.50).
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Compatibility conditions for the positivity of the transmission rate Recall from Eq (5.6.51):

τ(t) =
χN(t)

(
1−

(
N(t)
N∞

)θ)
I(t) + κU(t) ×

[
A
(
N(t)
N∞

)2θ
−B

(
N(t)
N∞

)θ
+ C

]
E0 + S0 − E(t)− αCE(t) .

Here we require that the numerator and the denominator of the last fraction stay positive for all times.
Positivity of the numerator: The model is compatible with the data if the transmission rate τ(t) stays
positive for all times t ∈ R. The numerator

p(N) := AN2 −BN + C

is a second-order polynomial with N ∈ (0, 1). Let ∆ := B2 − 4AC be the discriminant of p(N). Since
p′(0) = −B < 0 and

p′(N) = 0⇔ N = B

2A

we have two cases: 1) B

2A ≥ 1; or 2) 0 < B

2A < 1.

Case 1: If B

2A ≥ 1, p(N) is non-negative for all N ∈ [0, 1] if and only if

p(1) > 0⇔ A+ C −B > 0. (5.6.56)

Substituting A, B, C by their expression, we get

A+ C −B = χ2(1 + θ)(1 + 2θ) + (α+ χ)(χ+ ν)− χ(1 + θ)(χ(2 + θ) + α+ ν)
= χ2 + 2χ2θ + χ2θ + 2χ2θ2 + αχ+ αν + χ2 + χν

− 2χ2 − χθ − 2χ2θ − χ2θ2 − αχ− νχ− αχθ − νχθ
= χ2θ2 + αν − αχθ − νχθ
= (α− χθ)(ν − χθ).

Case 2: If B

2A < 1, p(N) is non-negative for all N ∈ [0, 1] if and only if

p

(
B

2A

)
(1) > 0⇔ ∆ < 0⇔ B2 − 4AC < 0. (5.6.57)

Lemma 5.6.4. ∆ < 0⇒ A+ C −B > 0.

Proof. We have

∆ < 0⇒ B2 − 4AC ≤ (B − 2A)2 ⇔ B2 − 4AC ≤ B2 − 4AB + 4A2

and after simplifying the result follows.

Positivity of the denominator: Next we turn to the denominator in the expression of τ , i.e., we want to
ensure

E0 + S0 − E(t)− αCE(t) > 0 for all t ∈ R. (5.6.58)

We let Y := N(t)
N∞

and observe that E(t) + αCE(t) can be written as

E(t) + αCE(t) = 1
ανf

[
χN∞Y (1− Y θ)(χ+ ν − χ(1 + θ)Y θ)

+ αN∞Y (χ+ ν − χY θ)− αN∞Y0(χ+ ν − Y θ0 )
]

= N∞
ανf

Y
[
(χ+ α)(χ+ ν)− χ(α+ ν + χ(2 + θ))Y θ + χ2(1 + θ)Y 2θ]

− N0
νf

(
χ+ ν − Y θ0

)
,
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since we know that A > 0. Therefore Eq (5.6.58) becomes

Y
[
(χ+ α)(χ+ ν)− χ(χ+ ν + χ(1 + θ) + α)Y θ + χ2(1 + θ)Y 2θ]

≤ ανf

N∞

[
E0 + S0 + N0

νf

(
χ+ ν −

(
N0
N∞

)θ)]
.

We let
g(Y ) := Y

[
(χ+ α)(χ+ ν)− χ(α+ ν + χ(2 + θ))Y θ + χ2(1 + θ)Y 2θ]

and notice that

g′(Y ) = (χ+ α)(χ+ ν)− χ(1 + θ)(α+ ν + χ(2 + θ))Y θ + χ2(1 + 2θ)(1 + θ)Y 2θ,

is exactly p(N) := AN2 −BN + C.
Therefore, assuming that A+C −B > 0, the derivative g′(Y ) is positive and g is strictly increasing. So

we only have to check the final value g(1). We get

ανf

N∞

(
S0 + E0 + N0

νf

(
χ+ ν −

(
N0
N∞

)θ))
≥ (χ+ α)(χ+ ν)− χ(α+ ν − χ(2 + θ)) + χ2(1 + θ)
= χ2 + αν + αχ+ νχ+ χ2 + χ2θ − αχ− νχ− 2χ2 − χ2θ

= αν.

Compatibility for the positivity

The SEIUR model is compatible with the data only when τ(t) stays positive for all t ≥ t0. Therefore
the following two conditions should be met:

(ν − χθ)(α− χθ) ≥ 0 (5.6.59)

and

f + 1
ν

N0
S0 + E0

(
χ+ ν −

(
N0
N∞

)θ)
≥ N∞
S0 + E0

. (5.6.60)

Computing the explicit formula for τ(t) during an endemic phase Recall that during an endemic
phase, the cumulative number of cases is assumed to be a line. Therefore,

CR(t) = A (t− t0) +B

and
CR′(t) = A and CR′′(t) = 0.

Therefore
I(t) = CR′(t)

νf
= A

νf
(5.6.61)

and
E(t) = I ′(t) + νI(t)

α
= A

αf
. (5.6.62)

Hence
CE(t) = A

αf
(t− t0) . (5.6.63)

Moreover
U(t) = e−η(t−t0)U0 +

∫ t

t0

e−η(t−s)ν(1− f)I(s)ds,
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and we obtain
U(t) = e−η(t−t0)U0 + (1− f)A

ηf

(
1− e−η(t−t0)

)
. (5.6.64)

By combining Eqs (5.6.12) and (5.6.61)–(5.6.64) we obtain the following explicit formula.

Explicit formula for the transmission rate during an endemic phase

The transmission rate τ(t) can be computed as

τ(t) = 1
A
νf + κ

(
e−η(t−t0)U0 + 1− f

ηf
A
(
1− e−η(t−t0)

)) × A

fS0 −A (t− t0) , (5.6.65)

with the compatibility condition
t0 ≤ t <

fS0
A

+ t0.

Remark 5.6.5. The above transmission rate corresponds to a constant number of daily infected A. There-
fore it is impossible to maintain such a constant flux of new infected whenever the number of susceptible
individuals is finite. The time t = fS0

A
+ t0 corresponds to the maximal time starting from t0 during which

we can maintain such a regime.

5.6.3 Results
5.6.3.1 Phenomenological model applied to COVID-19 data

Our method to regularize the data was applied to the eight geographic areas. The resulting curves are
presented in Figure 5.6.2. The blue background color regions correspond to epidemic phases, and the yellow
background color regions to endemic phases. We added a plot of the daily number of cases (black dots) and
the derivative of the regularized model for comparison, even though the daily number of cases is not used in
the fitting procedure. The figures show in general, an extremely good agreement between the time series of
reported cases (top row, black dots) and the regularized model (top row, blue curve). The match between
the daily number of cases (bottom row, black dots) and the derivative of the regularized model (bottom
row, blue curve) is also excellent, even though it is not a part of the optimization process. Of course, we
lose some of the information like the extremal values (“peaks”) of the daily number of cases. This is because
we focus on an averaged value of the number of cases. More information could be retrieved by studying
statistically the variation around the phenomenological model. However, we leave such a study for future
work. The relative error between the regularized curve and the data may be relatively high at the beginning
of the epidemic because of the stochastic nature of the infection process and the small number of infected
individuals but quickly drops below 1% (see the supplementary material for more details).

5.6.3.2 Bounds for the value of non-identifiable parameters

Even if some parameters of the mathematical model are not identifiable, we were able to gain some infor-
mation on possible values for those parameters. Indeed, a mathematical model with a negative transmission
rate τ(t) cannot be consistent with the real phenomenon. Therefore, parameter values which produce such
negative transmission rates cannot be compatible with the data. Using this argument, we found that the
average incubation period cannot exceed eight days. The actual value of the upper bound is highly variable
across countries and epidemic waves. We report the values of the upper bound in section 5.6.11 of the
supplementary material.

5.6.3.3 Instantaneous reproduction number computed for COVID-19 data

Our analysis allows us to compute the instantaneous transmission rate τ(t). We use this transmission
rate to compute two different indicators of the epidemiological dynamics for each geographic area, the
instantaneous reproduction number and the quasi-instantaneous reproduction number. Both coincide with
the basic reproduction number R0 on the first day of the epidemic. The instantaneous reproduction number
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Figure 5.6.2: In the top rows, we plot the cumulative number of reported cases (black dots) and the best
fit of the phenomenological model (blue curve). In the bottom rows, we plot the daily number of reported
cases (black dots) and the first derivative of the phenomenological model (blue curve).

at time t, Re(t), is the basic reproduction number corresponding to an epidemic starting at time t with
a constant transmission rate equal to τ(t) and with an initial population of susceptibles composed of S(t)
individuals (the number of susceptible individuals remaining in the population). The quasi-instantaneous
reproduction number at time t, R0

e(t), is the basic reproduction number corresponding to an epidemic starting
at time t with a constant transmission rate equal to τ(t) and with an initial population of susceptibles
composed of S0 individuals (the number of susceptible individuals at the start of the epidemic). The two
indicators are represented for each geographic area in the top row of Figure 5.6.3 (black curve: instantaneous
reproduction number; green curve: quasi-instantaneous reproduction number).

There is one interpretation for Re(t) and another for R0
e(t). The instantaneous reproduction number

indicates if, given the current state of the population, the epidemic tends to persist or die out in the
long term (note that our model assumes that recovered individuals are perfectly immunized). The quasi-
instantaneous reproduction number indicates if the epidemic tends to persist or die out in the long term,
provided the number of susceptible is the total population. In other words, we forget about the immunity
already obtained by recovered individuals. Also, it is directly proportional to the transmission rate and
therefore allows monitoring of its changes. Note that the value of R0

e(t) changed drastically between epidemic
phases, revealing that τ(t) is far from constant. In any case, the difference between the two values starts to
be visible in the figures one year after the start of the epidemic.

We also computed the reproduction number by using the method described in Cori et al [116], which we
denote Rce(t). The precise implementation is described in the supplementary material. It is plotted in the
bottom row of Figure 5.6.3 (green curve), along with the instantaneous reproduction number Re(t) (green
curve).

Remark 5.6.6. In the bottom of Figure 5.6.3, we compare the instantaneous reproduction numbers obtained
by our method in black and the classical method of Cori et al. [116] in green. We observe that the two
approaches are not the same at the beginning. This is because the method of Cori et al. [116] does not
take into account the initial values I0 and E0 while we do. Indeed the method of Cori et al. [116] assumes
that I0 and E0 are close to 0 at the beginning when it is viewed as a Volterra equation reformulation of the
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Bernoulli–Kermack–McKendrick model with the age of infection. Our method, on the other hand, does not
require such an assumption since it provides a way to compute the initial states I0 and E0.

Remark 5.6.7. It is essential to “regularize” the data to obtain a comprehensive outcome from SIR epidemic
models. In general, the rate of transmission in the SIR model (applying identification methods) is not
very noisy and meaningless. For example, at the beginning of the first epidemic wave, the transmission
rate should be decreasing since peoples tend to have less and less contact while to epidemic growth. The
standard regularization methods (like, for example, the rolling weekly average method) have been tested
for COVID-19 data in Demongeot, Griette, and Magal [P7]. The outcome in terms of transmission rate is
very noisy and even negative transmission (which is impossible). Regularizing the data is not an easy task,
and the method used is very important in order to obtain a meaningful outcome for the models. Here, we
tried several approaches to link an epidemic phase to the next endemic phase. So far, this regularization
procedure is the best one.
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Figure 5.6.3: In the top rows, we plot the instantaneous reproduction number Re(t) (in black) and the
quasi instantaneous reproduction number R0

e(t) (in green). In the bottom rows, we plot the instantaneous
reproduction number Re(t) (in black) and the one obtained by the standard method [116, 350] Rce(t) (in
green).

5.6.3.4 Consequences for vaccination

It is essential to "regularize" the data to obtain a comprehensive outcome from SIR epidemic models. In
general, the rate of transmission in the SIR model (applying identification methods) is not very noisy
and meaningless. For example, at the beginning of the first epidemic wave, the transmission rate should
be decreasing since peoples tend to have less and less contact while to epidemic growth. The standard
regularization methods (like, for example, the rolling weekly average method) have been tested for COVID-
19 data in Demongeot, Griette, and Magal [P7]. The outcome in terms of transmission rate is very noisy and
even negative transmission (which is impossible). Regularizing the data is not an easy task, and the method
used is critical in order to obtain a meaningful outcome for the models. Here, we tried several approaches
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to link an epidemic phase to the next endemic phase. So far, this regularization procedure is the best one
we tested.

5.6.4 Discussion
In this section 5.6, we presented a new phenomenological model to describe cumulative reported cases data.
This model allows us to handle multiple epidemic waves and fits the data for the eight geographic areas
considered very well. The use of Bernoulli-Verhulst curves to fit an epidemic wave is not necessary. We expect
that a number of different phenomenological models could be employed for the same purpose; however, our
method has the advantage of involving a limited number of parameters. Moreover, the Bernoulli-Verhulst
model leads to an explicit algebraic formula for the compatibility conditions of non-identifiable parameters.
It is far from obvious that the same computations can be carried out with other models. Our method also
provides a very smooth curve with controlled upper bound for the first (four) derivatives, and we use the
regularity obtained to compute the transmission rate. We refer to Demongeot, Griette, and Magal [P7]
for several examples of problems that may occur when using other methods to regularize the data (rolling
weekly average, etc.).

The first goal of the section 5.6 was to understand how to connect successive epidemic waves. As far
as we know, this is new compared to the existing literature. A succession of epidemic waves separated by
a short period of time with random transmissions is regularly observed in the COVID-19 epidemic data.
But several consecutive epidemic phases may happen without endemic transition. An illustration of this
situation is provided by the case of Japan, where the parameters of the Bernoulli-Verhulst model changed
three times during the last epidemic phases (without endemic interruption). Therefore we subdivide this
last epidemic wave into three epidemic phases.

Another advantage of our method is the connection with an epidemiological model. Our study provides
a way to explain the data by using a single epidemic model with a time-dependent transmission rate. More
precisely, we find that there exists precisely one model that matches the best fit to the data. The fact
that the transmission rate corresponding to the data is not constant is, therefore, meaningful. This means
that the depletion of susceptible hosts due to natural epidemiological dynamics is not sufficient to explain
the reduction in the epidemic spread. Indeed, due to the social changes involving the distancing between
individuals, the transmission rate should vary to take into account the changes in the number of contacts
per unit of time. The variations in the observed dynamics of the number of cases mainly result from the
modification of people’s behavior. In other words, the social changes in the population have a stronger impact
on the propagation of the disease than the pure epidemiological dynamics. By computing the transmission
rate and the associated reproduction numbers, we propose a new method to quantify those social changes.
Other factors may also influence the dynamics of the COVID-19 outbreak (temperature, humidity, etc.) and
should be taken into account. However, the correlation between the dates of the waves and the mitigation
measures imposed by local governments suggests that the former phenomenon takes a more significant role
in the epidemiological dynamics.

Precisely because it involves an epidemiological model, our method provides an alternative, robust way
to compute indicators for the future behavior of the epidemic: the instantaneous and quasi-instantaneous
reproductive numbers Re(t) and R0

e(t). It is natural to compare them to an alternative in the literature,
sometimes called “effective reproductive number”. The method of Cori et al. [116] is a popular framework to
estimate its value. Compared with this standard method, our indicators perform better near the beginning
of the epidemic and close to the last data point and are less variable in time. That we require an a priori
definition of epidemic waves can be considered as an advantage and a drawback. It is a drawback because the
computed value of the indicator may slightly depend on the choice of the dates of the epidemic waves. On
the other hand, this flexibility also allows testing different scenarios for the future evolution of the epidemic.
Thanks to the explicit formula for Re(t) expressed in function of the parameters, we can also explore the
dependency to the parameters (see supplementary material section 5.6.10).

It appears from our results that the instantaneous reproduction number in almost every geographic area
considered is less than 3.5. Therefore, an efficient policy to eliminate the COVID-19 would be to vaccinate
a fraction of 75 − 80% of the population. Once this threshold is reached, the situation should go back to
normal in all the geographic areas considered in this study. This proportion can even be reduced at the
expense of partially maintaining the social distancing and the other anti-COVID measures for a sufficiently
long period of time.

With a few modifications, our method could also include several other features. It is likely, for instance,
that the vaccination of a large part of the population has an impact on the epidemiological dynamics, and
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this impact is not taken into account for the time being. Different distributions of serial intervals could
be taken into account by replacing the mathematical model of ordinary differential equations with integral
equations. What we have shown is that the coupling of a phenomenological model to describe the data, with
an epidemiological model to take into account the nature of the underlying phenomenon, should provide us
with a new, untapped source of information on the epidemic.

Appendix

5.6.5 Table of estimated parameters for the phenomenological model

5.6.5.1 California

Table 5.6.1: In this table we list the parameters of the phenomenological model which gives the best fit to
the cumulative number of cases data in California from January 03 2020 to February 25 2021.

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase

Mar 26, 2020 - Jun 11, 2020

N0 = 7.34× 103

Nbase = 1.14× 10−5

N∞ = 3.24× 105

χ = 4.14× 104

θ = 4.62× 10−7

fitted

fitted

fitted

fitted

fitted

N0 ∈ [4.16× 103, 1.05× 104]

Nbase ∈ [−4.33× 103, 4.33× 103]

N∞ ∈ [2.52× 105, 3.96× 105]

χ ∈ [7.74× 102, 8.20× 104]

θ ∈ [2.39× 10−8, 9.00× 10−7]

Period 2: Endemic phase

Jun 11, 2020 - Jun 23, 2020

a = 3.81× 103

N0 = 1.36× 105

computed

computed

Period 3: Epidemic phase

Jun 23, 2020 - Sep 20, 2020

N0 = 1.57× 105

Nbase = 2.45× 104

N∞ = 8.22× 105

χ = 5.54× 10−2

θ = 7.18× 10−1

fitted

fitted

fitted

fitted

fitted

N0 ∈ [5.96× 104, 2.55× 105]

Nbase ∈ [−7.58× 104, 1.25× 105]

N∞ ∈ [7.36× 105, 9.08× 105]

χ ∈ [5.32× 10−3, 1.05× 10−1]

θ ∈ [−3.59× 10−2, 1.47]

Period 4: Endemic phase

Sep 20, 2020 - Nov 01, 2020

a = 3.66× 103

N0 = 7.76× 105

computed

computed

Period 5: Epidemic phase

Nov 01, 2020 - Feb 25, 2021

N0 = 6.27× 104

Nbase = 8.67× 105

N∞ = 2.66× 106

χ = 6.36× 10−2

θ = 1.02

fitted

fitted

fitted

fitted

fitted

N0 ∈ [4.95× 104, 7.59× 104]

Nbase ∈ [8.45× 105, 8.88× 105]

N∞ ∈ [2.64× 106, 2.67× 106]

χ ∈ [5.73× 10−2, 6.98× 10−2]

θ ∈ [8.79× 10−1, 1.16]
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5.6.5.2 France

Table 5.6.2: In this table we list the parameters of the phenomenological model which gives the best fit to
the cumulative number of cases data in France from January 03 2020 to February 25 2021.

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase

Feb 27, 2020 - May 17, 2020

N0 = 3.61× 10−4

Nbase = 0.00

N∞ = 1.43× 105

χ = 1.17× 102

θ = 7.29× 10−4

fitted

fixed

fitted

fitted

fitted

N0 ∈ [−3.77, 3.77]

N∞ ∈ [−1.58× 104, 3.01× 105]

χ ∈ [−1.09× 107, 1.09× 107]

θ ∈ [−6.84× 101, 6.84× 101]

Period 2: Endemic phase

May 17, 2020 - Jul 05, 2020

a = 3.14× 102

N0 = 1.39× 105

computed

computed

Period 3: Epidemic phase

Jul 05, 2020 - Nov 26, 2020

N0 = 1.50× 104

Nbase = 1.40× 105

N∞ = 1.99× 106

χ = 3.68× 10−2

θ = 6.55

fitted

fitted

fitted

fitted

fitted

N0 ∈ [1.36× 104, 1.65× 104]

Nbase ∈ [1.33× 105, 1.46× 105]

N∞ ∈ [1.97× 106, 2.01× 106]

χ ∈ [3.60× 10−2, 3.76× 10−2]

θ ∈ [5.52, 7.58]

Period 4: Endemic phase

Nov 26, 2020 - Dec 20, 2020

a = 1.28× 104

N0 = 2.11× 106

computed

computed

Period 5: Epidemic phase

Dec 20, 2020 - Feb 25, 2021

N0 = 2.73× 105

Nbase = 2.15× 106

N∞ = 2.13× 106

χ = 5.88× 10−2

θ = 5.47× 10−1

fitted

fitted

fitted

fitted

fitted

N0 ∈ [−2.43× 103, 5.48× 105]

Nbase ∈ [1.86× 106, 2.43× 106]

N∞ ∈ [1.88× 106, 2.39× 106]

χ ∈ [−6.11× 10−2, 1.79× 10−1]

θ ∈ [−9.19× 10−1, 2.01]

5.6.5.3 India

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase

Feb 01, 2020 - Feb 25, 2021

N0 = 5.83× 102

Nbase = 1.97× 104

N∞ = 1.10× 107

χ = 4.89× 10−2

θ = 5.12× 10−1

fitted

fitted

fitted

fitted

fitted

N0 ∈ [3.45× 102, 8.20× 102]

Nbase ∈ [5.36× 103, 3.39× 104]

N∞ ∈ [1.10× 107, 1.11× 107]

χ ∈ [4.59× 10−2, 5.20× 10−2]

θ ∈ [4.71× 10−1, 5.54× 10−1]

Table 5.6.3: In this table we list the parameters of the phenomenological model which gives the best fit to
the cumulative number of cases data in India from January 03 2020 to February 25 2021.



453

5.6.5.4 Israel

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase

Feb 27, 2020 - Jun 01, 2020

N0 = 1.08× 10−2

Nbase = 4.27× 101

N∞ = 1.71× 104

χ = 9.18× 10−1

θ = 1.05× 10−1

fitted

fitted

fitted

fitted

fitted

N0 ∈ [−3.85× 10−2, 6.02× 10−2]

Nbase ∈ [−3.36× 101, 1.19× 102]

N∞ ∈ [1.70× 104, 1.72× 104]

χ ∈ [1.71× 10−1, 1.67]

θ ∈ [1.55× 10−2, 1.94× 10−1]

Period 2: Endemic phase

Jun 01, 2020 - Jun 25, 2020

a = 2.04× 102

N0 = 1.70× 104

computed

computed

Period 3: Epidemic phase

Jun 25, 2020 - Aug 08, 2020

N0 = 2.48× 103

Nbase = 1.95× 104

N∞ = 8.66× 104

χ = 2.93× 10−1

θ = 2.04× 10−1

fitted

fitted

fitted

fitted

fitted

N0 ∈ [3.43× 102, 4.61× 103]

Nbase ∈ [1.70× 104, 2.20× 104]

N∞ ∈ [7.78× 104, 9.55× 104]

χ ∈ [−2.61× 10−1, 8.48× 10−1]

θ ∈ [−2.43× 10−1, 6.50× 10−1]

Period 4: Endemic phase

Aug 08, 2020 - Sep 03, 2020

a = 1.54× 103

N0 = 7.97× 104

computed

computed

Period 5: Epidemic phase

Sep 03, 2020 - Oct 20, 2020

N0 = 4.59× 104

Nbase = 7.38× 104

N∞ = 2.35× 105

χ = 5.05× 10−2

θ = 3.45

fitted

fitted

fitted

fitted

fitted

N0 ∈ [2.88× 104, 6.31× 104]

Nbase ∈ [5.53× 104, 9.23× 104]

N∞ ∈ [2.19× 105, 2.52× 105]

χ ∈ [3.77× 10−2, 6.34× 10−2]

θ ∈ [1.96, 4.93]

Period 6: Endemic phase

Oct 20, 2020 - Nov 14, 2020

a = 8.90× 102

N0 = 3.04× 105

computed

computed

Period 7: Epidemic phase

Nov 14, 2020 - Feb 25, 2021

N0 = 3.16× 103

Nbase = 3.23× 105

N∞ = 4.87× 105

χ = 8.28× 10−2

θ = 7.06× 10−1

fitted

fitted

fitted

fitted

fitted

N0 ∈ [2.16× 103, 4.17× 103]

Nbase ∈ [3.21× 105, 3.25× 105]

N∞ ∈ [4.79× 105, 4.95× 105]

χ ∈ [7.22× 10−2, 9.34× 10−2]

θ ∈ [5.69× 10−1, 8.43× 10−1]

Table 5.6.4: In this table we list the parameters of the phenomenological model which gives the best fit to
the cumulative number of cases data in Israel from January 03 2020 to February 25 2021.
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5.6.5.5 Japan

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase

Feb 20, 2020 - May 27, 2020

N0 = 5.83

Nbase = 3.25× 102

N∞ = 1.63× 104

χ = 1.48× 10−1

θ = 8.29× 10−1

fitted

fitted

fitted

fitted

fitted

N0 ∈ [1.91, 9.74]

Nbase ∈ [2.55× 102, 3.95× 102]

N∞ ∈ [1.62× 104, 1.64× 104]

χ ∈ [1.30× 10−1, 1.65× 10−1]

θ ∈ [6.88× 10−1, 9.70× 10−1]

Period 2: Endemic phase

May 27, 2020 - Jun 13, 2020

a = 7.07× 101

N0 = 1.65× 104

computed

computed

Period 3: Epidemic phase

Jun 13, 2020 - Sep 10, 2020

N0 = 1.49× 102

Nbase = 1.75× 104

N∞ = 6.02× 104

χ = 1.19× 10−1

θ = 6.28× 10−1

fitted

fitted

fitted

fitted

fitted

N0 ∈ [8.52× 101, 2.13× 102]

Nbase ∈ [1.73× 104, 1.78× 104]

N∞ ∈ [5.93× 104, 6.10× 104]

χ ∈ [1.03× 10−1, 1.35× 10−1]

θ ∈ [5.04× 10−1, 7.52× 10−1]

Period 4: Endemic phase

Sep 10, 2020 - Oct 18, 2020

a = 5.36× 102

N0 = 7.27× 104

computed

computed

Period 5: Epidemic phase

Oct 18, 2020 - Dec 05, 2020

N0 = 6.33× 103

Nbase = 8.68× 104

N∞ = 9.10× 104

χ = 5.60× 10−2

θ = 2.58

fitted

fitted

fitted

fitted

fitted

N0 ∈ [4.64× 103, 8.01× 103]

Nbase ∈ [8.48× 104, 8.88× 104]

N∞ ∈ [7.75× 104, 1.05× 105]

χ ∈ [4.74× 10−2, 6.46× 10−2]

θ ∈ [1.00, 4.16]

Period 6: Epidemic phase

Dec 05, 2020 - Dec 30, 2020

N0 = 1.23× 105

Nbase = 3.43× 104

N∞ = 3.49× 105

χ = 1.78× 10−2

θ = 7.84

fitted

fitted

fitted

fitted

fitted

N0 ∈ [−2.43× 105, 4.90× 105]

Nbase ∈ [−3.33× 105, 4.01× 105]

N∞ ∈ [−2.92× 107, 2.99× 107]

χ ∈ [−3.59× 10−2, 7.15× 10−2]

θ ∈ [−1.28× 103, 1.30× 103]

Period 7: Epidemic phase

Dec 30, 2020 - Feb 25, 2021

N0 = 2.00× 104

Nbase = 2.05× 105

N∞ = 2.29× 105

χ = 7.98× 10−1

θ = 9.61× 10−2

fitted

fitted

fitted

fitted

fitted

N0 ∈ [1.59× 103, 3.84× 104]

Nbase ∈ [1.85× 105, 2.25× 105]

N∞ ∈ [2.11× 105, 2.47× 105]

χ ∈ [−2.54, 4.13]

θ ∈ [−3.15× 10−1, 5.07× 10−1]

Table 5.6.5: In this table we list the parameters of the phenomenological model which gives the best fit to
the cumulative number of cases data in Japan from January 03 2020 to February 25 2021.
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5.6.5.6 Peru

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase

Mar 20, 2020 - Jul 01, 2020

N0 = 8.36× 102

Nbase = 3.00× 10−5

N∞ = 3.61× 105

χ = 1.08× 10−1

θ = 4.20× 10−1

fitted

fitted

fitted

fitted

fitted

N0 ∈ [2.63× 102, 1.41× 103]

Nbase ∈ [−1.74× 103, 1.74× 103]

N∞ ∈ [3.44× 105, 3.79× 105]

χ ∈ [7.59× 10−2, 1.41× 10−1]

θ ∈ [2.41× 10−1, 5.98× 10−1]

Period 2: Endemic phase

Jul 01, 2020 - Jul 30, 2020

a = 3.67× 103

N0 = 2.83× 105

computed

computed

Period 3: Epidemic phase

Jul 30, 2020 - Nov 10, 2020

N0 = 1.86× 105

Nbase = 2.03× 105

N∞ = 7.69× 105

χ = 4.84× 10−1

θ = 5.95× 10−2

fitted

fitted

fitted

fitted

fitted

N0 ∈ [−2.61× 104, 3.98× 105]

Nbase ∈ [−1.11× 104, 4.18× 105]

N∞ ∈ [5.65× 105, 9.72× 105]

χ ∈ [−6.23, 7.20]

θ ∈ [−7.74× 10−1, 8.93× 10−1]

Period 4: Endemic phase

Nov 10, 2020 - Jan 11, 2021

a = 1.80× 103

N0 = 9.16× 105

computed

computed

Period 5: Epidemic phase

Jan 11, 2021 - Feb 25, 2021

N0 = 3.23× 105

Nbase = 7.04× 105

N∞ = 7.00× 106

χ = 1.36× 10−2

θ = 3.67× 101

fitted

fitted

fitted

fitted

fitted

Table 5.6.6: In this table we list the parameters of the phenomenological model which gives the best fit to
the cumulative number of cases data in Peru from January 03 2020 to February 25 2021.
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5.6.5.7 Spain

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase

Feb 15, 2020 - May 10, 2020

N0 = 5.19× 10−4

Nbase = 5.77× 102

N∞ = 2.32× 105

χ = 9.80× 10−1

θ = 9.75× 10−2

fitted

fitted

fitted

fitted

fitted

N0 ∈ [−5.00× 10−3, 6.04× 10−3]

Nbase ∈ [−4.50× 102, 1.60× 103]

N∞ ∈ [2.30× 105, 2.34× 105]

χ ∈ [−1.26× 10−1, 2.09]

θ ∈ [−1.83× 10−2, 2.13× 10−1]

Period 2: Endemic phase

May 10, 2020 - Jun 22, 2020

a = 5.67× 102

N0 = 2.28× 105

computed

computed

Period 3: Epidemic phase

Jun 22, 2020 - Oct 02, 2020

N0 = 2.38× 103

Nbase = 2.50× 105

N∞ = 9.89× 105

χ = 9.29× 10−2

θ = 3.84× 10−1

fitted

fitted

fitted

fitted

fitted

N0 ∈ [1.39× 103, 3.36× 103]

Nbase ∈ [2.48× 105, 2.53× 105]

N∞ ∈ [9.02× 105, 1.08× 106]

χ ∈ [7.07× 10−2, 1.15× 10−1]

θ ∈ [2.38× 10−1, 5.29× 10−1]

Period 4: Endemic phase

Oct 02, 2020 - Oct 18, 2020

a = 1.09× 104

N0 = 8.14× 105

computed

computed

Period 5: Epidemic phase

Oct 18, 2020 - Dec 06, 2020

N0 = 1.68× 105

Nbase = 8.20× 105

N∞ = 9.85× 105

χ = 3.15× 10−1

θ = 2.02× 10−1

fitted

fitted

fitted

fitted

fitted

N0 ∈ [−3.50× 104, 3.72× 105]

Nbase ∈ [6.12× 105, 1.03× 106]

N∞ ∈ [8.01× 105, 1.17× 106]

χ ∈ [−1.05, 1.68]

θ ∈ [−7.15× 10−1, 1.12]

Period 6: Endemic phase

Dec 06, 2020 - Dec 26, 2020

a = 9.15× 103

N0 = 1.72× 106

computed

computed

Period 7: Epidemic phase

Dec 26, 2020 - Feb 25, 2021

N0 = 5.94× 104

Nbase = 1.84× 106

N∞ = 1.30× 106

χ = 1.30× 10−1

θ = 7.84× 10−1

fitted

fitted

fitted

fitted

fitted

N0 ∈ [3.86× 104, 8.02× 104]

Nbase ∈ [1.81× 106, 1.87× 106]

N∞ ∈ [1.28× 106, 1.32× 106]

χ ∈ [9.90× 10−2, 1.60× 10−1]

θ ∈ [5.50× 10−1, 1.02]

Table 5.6.7: In this table we list the parameters of the phenomenological model which gives the best fit to
the cumulative number of cases data in Spain from January 03 2020 to February 01 2021.
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5.6.5.8 United Kingdom

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase

Feb 15, 2020 - Jun 15, 2020

N0 = 2.65× 10−2

Nbase = 1.12× 102

N∞ = 2.86× 105

χ = 1.76

θ = 2.76× 10−2

fitted

fitted

fitted

fitted

fitted

N0 ∈ [−8.82× 10−2, 1.41× 10−1]

Nbase ∈ [−4.82× 102, 7.06× 102]

N∞ ∈ [2.84× 105, 2.88× 105]

χ ∈ [−1.46, 4.98]

θ ∈ [−2.38× 10−2, 7.90× 10−2]

Period 2: Endemic phase

Jun 15, 2020 - Sep 01, 2020

a = 9.43× 102

N0 = 2.70× 105

computed

computed

Period 3: Epidemic phase

Sep 01, 2020 - Nov 20, 2020

N0 = 7.85× 103

Nbase = 3.36× 105

N∞ = 2.14× 106

χ = 2.41× 10−1

θ = 1.32× 10−1

fitted

fitted

fitted

fitted

fitted

N0 ∈ [3.63× 103, 1.21× 104]

Nbase ∈ [3.28× 105, 3.43× 105]

N∞ ∈ [1.93× 106, 2.36× 106]

χ ∈ [2.16× 10−2, 4.60× 10−1]

θ ∈ [−9.25× 10−3, 2.74× 10−1]

Period 4: Endemic phase

Nov 20, 2020 - Dec 10, 2020

a = 1.61× 104

N0 = 1.48× 106

computed

computed

Period 5: Epidemic phase

Dec 10, 2020 - Feb 01, 2021

N0 = 2.26× 105

Nbase = 1.58× 106

N∞ = 2.42× 106

χ = 8.57× 10−2

θ = 1.08

fitted

fitted

fitted

fitted

fitted

N0 ∈ [1.16× 105, 3.35× 105]

Nbase ∈ [1.46× 106, 1.70× 106]

N∞ ∈ [2.34× 106, 2.51× 106]

χ ∈ [5.14× 10−2, 1.20× 10−1]

θ ∈ [4.85× 10−1, 1.68]

Table 5.6.8: In this table we list the parameters of the phenomenological model which gives the best fit to
the cumulative number of cases data in United Kingdom from January 03 2020 to February 01 2021.

5.6.6 Plot of the multiple Bernoulli–Verhulst models fitted to each epidemic phase

In Figure 5.6.4, we present the details of the fit of the Bernoulli–Verhulst models to the successive epidemic
waves in the 8 geographic areas considered. Each epidemic wave is associated with a different color.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.6.4: In this figure, we plot the cumulative number of cases (black dots) and the best fit of Bernoulli–
Verhulst for each epidemic wave for (a) California; (b) France; (c) India; (d) Israel; (e) Japan; (f) Peru; (g)
Spain; (h) United Kingdom.
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5.6.7 Relative error of the fitted curve compared to the data in each geographic
area

5.6.7.1 California
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Figure 5.6.5: Relative error between the data and the model for California State, expressed in percent.

5.6.7.2 France
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Figure 5.6.6: Relative error between the data and the model for France, expressed in percent.

5.6.7.3 India
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Figure 5.6.7: Relative error between the data and the model for India, expressed in percent.
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5.6.7.4 Israel
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Figure 5.6.8: Relative error between the data and the model for Israel, expressed in percent.

5.6.7.5 Japan
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Figure 5.6.9: Relative error between the data and the model for Japan, expressed in percent.

5.6.7.6 Peru
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Figure 5.6.10: Relative error between the data and the model for Peru, expressed in percent.
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5.6.7.7 Spain
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Figure 5.6.11: Relative error between the data and the model for Spain, expressed in percent.

5.6.7.8 United Kingdom
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Figure 5.6.12: Relative error between the data and the model for UK, expressed in percent.
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5.6.8 Table of estimated parameters for the phenomenological model

5.6.8.1 California

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase

Mar 26, 2020 - Jun 11, 2020

N0 = 7.34× 103

Nbase = 1.14× 10−5

N∞ = 3.24× 105

χ = 4.14× 104

θ = 4.62× 10−7

fitted

fitted

fitted

fitted

fitted

N0 ∈ [4.16× 103, 1.05× 104]

Nbase ∈ [−4.33× 103, 4.33× 103]

N∞ ∈ [2.52× 105, 3.96× 105]

χ ∈ [7.74× 102, 8.20× 104]

θ ∈ [2.39× 10−8, 9.00× 10−7]

Period 2: Endemic phase

Jun 11, 2020 - Jun 23, 2020

a = 3.81× 103

N0 = 1.36× 105

computed

computed

Period 3: Epidemic phase

Jun 23, 2020 - Sep 20, 2020

N0 = 1.57× 105

Nbase = 2.45× 104

N∞ = 8.22× 105

χ = 5.54× 10−2

θ = 7.18× 10−1

fitted

fitted

fitted

fitted

fitted

N0 ∈ [5.96× 104, 2.55× 105]

Nbase ∈ [−7.58× 104, 1.25× 105]

N∞ ∈ [7.36× 105, 9.08× 105]

χ ∈ [5.32× 10−3, 1.05× 10−1]

θ ∈ [−3.59× 10−2, 1.47]

Period 4: Endemic phase

Sep 20, 2020 - Nov 01, 2020

a = 3.66× 103

N0 = 7.76× 105

computed

computed

Period 5: Epidemic phase

Nov 01, 2020 - Feb 25, 2021

N0 = 6.27× 104

Nbase = 8.67× 105

N∞ = 2.66× 106

χ = 6.36× 10−2

θ = 1.02

fitted

fitted

fitted

fitted

fitted

N0 ∈ [4.95× 104, 7.59× 104]

Nbase ∈ [8.45× 105, 8.88× 105]

N∞ ∈ [2.64× 106, 2.67× 106]

χ ∈ [5.73× 10−2, 6.98× 10−2]

θ ∈ [8.79× 10−1, 1.16]

Table 5.6.9: In this table we list the values of the parameters of the phenomenological model which give the
best fit to the cumulative number of cases data in California from January 03 2020 to February 25 2021.
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5.6.8.2 France

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase

Feb 27, 2020 - May 17, 2020

N0 = 3.61× 10−4

Nbase = 0.00

N∞ = 1.43× 105

χ = 1.17× 102

θ = 7.29× 10−4

fitted

fixed

fitted

fitted

fitted

N0 ∈ [−3.77, 3.77]

N∞ ∈ [−1.58× 104, 3.01× 105]

χ ∈ [−1.09× 107, 1.09× 107]

θ ∈ [−6.84× 101, 6.84× 101]

Period 2: Endemic phase

May 17, 2020 - Jul 05, 2020

a = 3.14× 102

N0 = 1.39× 105

computed

computed

Period 3: Epidemic phase

Jul 05, 2020 - Nov 26, 2020

N0 = 1.50× 104

Nbase = 1.40× 105

N∞ = 1.99× 106

χ = 3.68× 10−2

θ = 6.55

fitted

fitted

fitted

fitted

fitted

N0 ∈ [1.36× 104, 1.65× 104]

Nbase ∈ [1.33× 105, 1.46× 105]

N∞ ∈ [1.97× 106, 2.01× 106]

χ ∈ [3.60× 10−2, 3.76× 10−2]

θ ∈ [5.52, 7.58]

Period 4: Endemic phase

Nov 26, 2020 - Dec 20, 2020

a = 1.28× 104

N0 = 2.11× 106

computed

computed

Period 5: Epidemic phase

Dec 20, 2020 - Feb 25, 2021

N0 = 2.73× 105

Nbase = 2.15× 106

N∞ = 2.13× 106

χ = 5.88× 10−2

θ = 5.47× 10−1

fitted

fitted

fitted

fitted

fitted

N0 ∈ [−2.43× 103, 5.48× 105]

Nbase ∈ [1.86× 106, 2.43× 106]

N∞ ∈ [1.88× 106, 2.39× 106]

χ ∈ [−6.11× 10−2, 1.79× 10−1]

θ ∈ [−9.19× 10−1, 2.01]

Table 5.6.10: In this table we list the values of the parameters of the phenomenological model which give
the best fit to the cumulative number of cases data in France from January 03 2020 to February 25 2021.

5.6.8.3 India

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase

Feb 01, 2020 - Feb 25, 2021

N0 = 5.83× 102

Nbase = 1.97× 104

N∞ = 1.10× 107

χ = 4.89× 10−2

θ = 5.12× 10−1

fitted

fitted

fitted

fitted

fitted

N0 ∈ [3.45× 102, 8.20× 102]

Nbase ∈ [5.36× 103, 3.39× 104]

N∞ ∈ [1.10× 107, 1.11× 107]

χ ∈ [4.59× 10−2, 5.20× 10−2]

θ ∈ [4.71× 10−1, 5.54× 10−1]

Table 5.6.11: In this table we list the values of the parameters of the phenomenological model which give
the best fit to the cumulative number of cases data in India from January 03 2020 to February 25 2021.
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5.6.8.4 Israel

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase

Feb 27, 2020 - Jun 01, 2020

N0 = 1.08× 10−2

Nbase = 4.27× 101

N∞ = 1.71× 104

χ = 9.18× 10−1

θ = 1.05× 10−1

fitted

fitted

fitted

fitted

fitted

N0 ∈ [−3.85× 10−2, 6.02× 10−2]

Nbase ∈ [−3.36× 101, 1.19× 102]

N∞ ∈ [1.70× 104, 1.72× 104]

χ ∈ [1.71× 10−1, 1.67]

θ ∈ [1.55× 10−2, 1.94× 10−1]

Period 2: Endemic phase

Jun 01, 2020 - Jun 25, 2020

a = 2.04× 102

N0 = 1.70× 104

computed

computed

Period 3: Epidemic phase

Jun 25, 2020 - Aug 08, 2020

N0 = 2.48× 103

Nbase = 1.95× 104

N∞ = 8.66× 104

χ = 2.93× 10−1

θ = 2.04× 10−1

fitted

fitted

fitted

fitted

fitted

N0 ∈ [3.43× 102, 4.61× 103]

Nbase ∈ [1.70× 104, 2.20× 104]

N∞ ∈ [7.78× 104, 9.55× 104]

χ ∈ [−2.61× 10−1, 8.48× 10−1]

θ ∈ [−2.43× 10−1, 6.50× 10−1]

Period 4: Endemic phase

Aug 08, 2020 - Sep 03, 2020

a = 1.54× 103

N0 = 7.97× 104

computed

computed

Period 5: Epidemic phase

Sep 03, 2020 - Oct 20, 2020

N0 = 4.59× 104

Nbase = 7.38× 104

N∞ = 2.35× 105

χ = 5.05× 10−2

θ = 3.45

fitted

fitted

fitted

fitted

fitted

N0 ∈ [2.88× 104, 6.31× 104]

Nbase ∈ [5.53× 104, 9.23× 104]

N∞ ∈ [2.19× 105, 2.52× 105]

χ ∈ [3.77× 10−2, 6.34× 10−2]

θ ∈ [1.96, 4.93]

Period 6: Endemic phase

Oct 20, 2020 - Nov 14, 2020

a = 8.90× 102

N0 = 3.04× 105

computed

computed

Period 7: Epidemic phase

Nov 14, 2020 - Feb 25, 2021

N0 = 3.16× 103

Nbase = 3.23× 105

N∞ = 4.87× 105

χ = 8.28× 10−2

θ = 7.06× 10−1

fitted

fitted

fitted

fitted

fitted

N0 ∈ [2.16× 103, 4.17× 103]

Nbase ∈ [3.21× 105, 3.25× 105]

N∞ ∈ [4.79× 105, 4.95× 105]

χ ∈ [7.22× 10−2, 9.34× 10−2]

θ ∈ [5.69× 10−1, 8.43× 10−1]

Table 5.6.12: In this table we list the values of the parameters of the phenomenological model which give
the best fit to the cumulative number of cases data in Israel from January 03 2020 to February 25 2021.
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5.6.8.5 Japan

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase

Feb 20, 2020 - May 27, 2020

N0 = 5.83

Nbase = 3.25× 102

N∞ = 1.63× 104

χ = 1.48× 10−1

θ = 8.29× 10−1

fitted

fitted

fitted

fitted

fitted

N0 ∈ [1.91, 9.74]

Nbase ∈ [2.55× 102, 3.95× 102]

N∞ ∈ [1.62× 104, 1.64× 104]

χ ∈ [1.30× 10−1, 1.65× 10−1]

θ ∈ [6.88× 10−1, 9.70× 10−1]

Period 2: Endemic phase

May 27, 2020 - Jun 13, 2020

a = 7.07× 101

N0 = 1.65× 104

computed

computed

Period 3: Epidemic phase

Jun 13, 2020 - Sep 10, 2020

N0 = 1.49× 102

Nbase = 1.75× 104

N∞ = 6.02× 104

χ = 1.19× 10−1

θ = 6.28× 10−1

fitted

fitted

fitted

fitted

fitted

N0 ∈ [8.52× 101, 2.13× 102]

Nbase ∈ [1.73× 104, 1.78× 104]

N∞ ∈ [5.93× 104, 6.10× 104]

χ ∈ [1.03× 10−1, 1.35× 10−1]

θ ∈ [5.04× 10−1, 7.52× 10−1]

Period 4: Endemic phase

Sep 10, 2020 - Oct 18, 2020

a = 5.36× 102

N0 = 7.27× 104

computed

computed

Period 5: Epidemic phase

Oct 18, 2020 - Dec 05, 2020

N0 = 6.33× 103

Nbase = 8.68× 104

N∞ = 9.10× 104

χ = 5.60× 10−2

θ = 2.58

fitted

fitted

fitted

fitted

fitted

N0 ∈ [4.64× 103, 8.01× 103]

Nbase ∈ [8.48× 104, 8.88× 104]

N∞ ∈ [7.75× 104, 1.05× 105]

χ ∈ [4.74× 10−2, 6.46× 10−2]

θ ∈ [1.00, 4.16]

Period 6: Epidemic phase

Dec 05, 2020 - Dec 30, 2020

N0 = 1.23× 105

Nbase = 3.43× 104

N∞ = 3.49× 105

χ = 1.78× 10−2

θ = 7.84

fitted

fitted

fitted

fitted

fitted

N0 ∈ [−2.43× 105, 4.90× 105]

Nbase ∈ [−3.33× 105, 4.01× 105]

N∞ ∈ [−2.92× 107, 2.99× 107]

χ ∈ [−3.59× 10−2, 7.15× 10−2]

θ ∈ [−1.28× 103, 1.30× 103]

Period 7: Epidemic phase

Dec 30, 2020 - Feb 25, 2021

N0 = 2.00× 104

Nbase = 2.05× 105

N∞ = 2.29× 105

χ = 7.98× 10−1

θ = 9.61× 10−2

fitted

fitted

fitted

fitted

fitted

N0 ∈ [1.59× 103, 3.84× 104]

Nbase ∈ [1.85× 105, 2.25× 105]

N∞ ∈ [2.11× 105, 2.47× 105]

χ ∈ [−2.54, 4.13]

θ ∈ [−3.15× 10−1, 5.07× 10−1]

Table 5.6.13: In this table we list the values of the parameters of the phenomenological model which give
the best fit to the cumulative number of cases data in Japan from January 03 2020 to February 25 2021.
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5.6.8.6 Peru

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase

Mar 20, 2020 - Jul 01, 2020

N0 = 8.36× 102

Nbase = 3.00× 10−5

N∞ = 3.61× 105

χ = 1.08× 10−1

θ = 4.20× 10−1

fitted

fitted

fitted

fitted

fitted

N0 ∈ [2.63× 102, 1.41× 103]

Nbase ∈ [−1.74× 103, 1.74× 103]

N∞ ∈ [3.44× 105, 3.79× 105]

χ ∈ [7.59× 10−2, 1.41× 10−1]

θ ∈ [2.41× 10−1, 5.98× 10−1]

Period 2: Endemic phase

Jul 01, 2020 - Jul 30, 2020

a = 3.67× 103

N0 = 2.83× 105

computed

computed

Period 3: Epidemic phase

Jul 30, 2020 - Nov 10, 2020

N0 = 1.86× 105

Nbase = 2.03× 105

N∞ = 7.69× 105

χ = 4.84× 10−1

θ = 5.95× 10−2

fitted

fitted

fitted

fitted

fitted

N0 ∈ [−2.61× 104, 3.98× 105]

Nbase ∈ [−1.11× 104, 4.18× 105]

N∞ ∈ [5.65× 105, 9.72× 105]

χ ∈ [−6.23, 7.20]

θ ∈ [−7.74× 10−1, 8.93× 10−1]

Period 4: Endemic phase

Nov 10, 2020 - Jan 11, 2021

a = 1.80× 103

N0 = 9.16× 105

computed

computed

Period 5: Epidemic phase

Jan 11, 2021 - Feb 25, 2021

N0 = 3.23× 105

Nbase = 7.04× 105

N∞ = 7.00× 106

χ = 1.36× 10−2

θ = 3.67× 101

fitted

fitted

fitted

fitted

fitted

Table 5.6.14: In this table we list the values of the parameters of the phenomenological model which give
the best fit to the cumulative number of cases data in Peru from January 03 2020 to February 25 2021.
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5.6.8.7 Spain

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase

Feb 15, 2020 - May 10, 2020

N0 = 5.19× 10−4

Nbase = 5.77× 102

N∞ = 2.32× 105

χ = 9.80× 10−1

θ = 9.75× 10−2

fitted

fitted

fitted

fitted

fitted

N0 ∈ [−5.00× 10−3, 6.04× 10−3]

Nbase ∈ [−4.50× 102, 1.60× 103]

N∞ ∈ [2.30× 105, 2.34× 105]

χ ∈ [−1.26× 10−1, 2.09]

θ ∈ [−1.83× 10−2, 2.13× 10−1]

Period 2: Endemic phase

May 10, 2020 - Jun 22, 2020

a = 5.67× 102

N0 = 2.28× 105

computed

computed

Period 3: Epidemic phase

Jun 22, 2020 - Oct 02, 2020

N0 = 2.38× 103

Nbase = 2.50× 105

N∞ = 9.89× 105

χ = 9.29× 10−2

θ = 3.84× 10−1

fitted

fitted

fitted

fitted

fitted

N0 ∈ [1.39× 103, 3.36× 103]

Nbase ∈ [2.48× 105, 2.53× 105]

N∞ ∈ [9.02× 105, 1.08× 106]

χ ∈ [7.07× 10−2, 1.15× 10−1]

θ ∈ [2.38× 10−1, 5.29× 10−1]

Period 4: Endemic phase

Oct 02, 2020 - Oct 18, 2020

a = 1.09× 104

N0 = 8.14× 105

computed

computed

Period 5: Epidemic phase

Oct 18, 2020 - Dec 06, 2020

N0 = 1.68× 105

Nbase = 8.20× 105

N∞ = 9.85× 105

χ = 3.15× 10−1

θ = 2.02× 10−1

fitted

fitted

fitted

fitted

fitted

N0 ∈ [−3.50× 104, 3.72× 105]

Nbase ∈ [6.12× 105, 1.03× 106]

N∞ ∈ [8.01× 105, 1.17× 106]

χ ∈ [−1.05, 1.68]

θ ∈ [−7.15× 10−1, 1.12]

Period 6: Endemic phase

Dec 06, 2020 - Dec 26, 2020

a = 9.15× 103

N0 = 1.72× 106

computed

computed

Period 7: Epidemic phase

Dec 26, 2020 - Feb 25, 2021

N0 = 5.94× 104

Nbase = 1.84× 106

N∞ = 1.30× 106

χ = 1.30× 10−1

θ = 7.84× 10−1

fitted

fitted

fitted

fitted

fitted

N0 ∈ [3.86× 104, 8.02× 104]

Nbase ∈ [1.81× 106, 1.87× 106]

N∞ ∈ [1.28× 106, 1.32× 106]

χ ∈ [9.90× 10−2, 1.60× 10−1]

θ ∈ [5.50× 10−1, 1.02]

Table 5.6.15: In this table we list the values of the parameters of the phenomenological model which give
the best fit to the cumulative number of cases data in Spain from January 03 2020 to February 01 2021.
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5.6.8.8 United Kingdom

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase

Feb 15, 2020 - Jun 15, 2020

N0 = 2.65× 10−2

Nbase = 1.12× 102

N∞ = 2.86× 105

χ = 1.76

θ = 2.76× 10−2

fitted

fitted

fitted

fitted

fitted

N0 ∈ [−8.82× 10−2, 1.41× 10−1]

Nbase ∈ [−4.82× 102, 7.06× 102]

N∞ ∈ [2.84× 105, 2.88× 105]

χ ∈ [−1.46, 4.98]

θ ∈ [−2.38× 10−2, 7.90× 10−2]

Period 2: Endemic phase

Jun 15, 2020 - Sep 01, 2020

a = 9.43× 102

N0 = 2.70× 105

computed

computed

Period 3: Epidemic phase

Sep 01, 2020 - Nov 20, 2020

N0 = 7.85× 103

Nbase = 3.36× 105

N∞ = 2.14× 106

χ = 2.41× 10−1

θ = 1.32× 10−1

fitted

fitted

fitted

fitted

fitted

N0 ∈ [3.63× 103, 1.21× 104]

Nbase ∈ [3.28× 105, 3.43× 105]

N∞ ∈ [1.93× 106, 2.36× 106]

χ ∈ [2.16× 10−2, 4.60× 10−1]

θ ∈ [−9.25× 10−3, 2.74× 10−1]

Period 4: Endemic phase

Nov 20, 2020 - Dec 10, 2020

a = 1.61× 104

N0 = 1.48× 106

computed

computed

Period 5: Epidemic phase

Dec 10, 2020 - Feb 01, 2021

N0 = 2.26× 105

Nbase = 1.58× 106

N∞ = 2.42× 106

χ = 8.57× 10−2

θ = 1.08

fitted

fitted

fitted

fitted

fitted

N0 ∈ [1.16× 105, 3.35× 105]

Nbase ∈ [1.46× 106, 1.70× 106]

N∞ ∈ [2.34× 106, 2.51× 106]

χ ∈ [5.14× 10−2, 1.20× 10−1]

θ ∈ [4.85× 10−1, 1.68]

Table 5.6.16: In this table we list the values of the parameters of the phenomenological model which give
the best fit to the cumulative number of cases data in United Kingdom from January 03 2020 to February
01 2021.

5.6.9 Additional information for the results section

Table 5.6.17: In this table we list the values of the parameters of the epidemic model used for the simulations.

Period Interpretation Parameters value Method

U0 Number of unreported symptomatic infectious at time t0 1 Fixed

R0 Number of reported symptomatic infectious at time t0 0 Fixed

τ(t) Transmission rate Eqs (5.6.27)–(5.6.32) Computed

f Fraction of reported symptomatic infectious 0.8 Fixed

κ
Fraction of unreported symptomatic infectious

capable to transmit the pathogen
1 Fixed

1/α Average duration of the exposed period 1 days Fixed

1/ν Average duration of the asymptomatic infectious period 3 days Fixed

1/η Average duration of the symptomatic infectious period 7 days Fixed
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5.6.9.1 California

Period Interpretation Parameters value Method

t0 Time at which we started the epidemic model Mar 26, 2020 Fixed

S0 Number of susceptibles at time t0 3.95× 107 Fixed

E0 Number of exposed at time t0 7.91× 102 Computed

I0 Number of asymptomatic infectious at time t0 2.06× 103 Computed

Table 5.6.18: In this table we list the values of the parameters of the epidemic model used for the simulations.

Compatibility condition between data and epidemic model

By using the Californian data for the first, the second and the third epidemic waves, we get from Eqs (5.6.59)
and (5.6.60) the following estimates for the average duration of the exposed and asymptomatic infectious
periods and the fraction of reported cases

First epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 5.23× 101 days f ≥ N∞

S0
= 8.21× 10−3

Second epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 2.52× 101 days f ≥ N∞

S0
= 2.08× 10−2

Third epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 1.54× 101 days f ≥ N∞

S0
= 6.72× 10−2

5.6.9.2 France

Period Interpretation Parameters value Method

t0 Time at which we started the epidemic model Feb 27, 2020 Fixed

S0 Number of susceptibles at time t0 6.50× 107 Fixed

E0 Number of exposed at time t0 4.27× 101 Computed

I0 Number of asymptomatic infectious at time t0 6.30× 101 Computed

Table 5.6.19: In this table we list the values of the parameters of the epidemic model used for the simulations.

Compatibility condition between data and epidemic model

By using the French data for the first, the second and the third epidemic waves, we get from Eqs (5.6.59) and
(5.6.60) the following estimates for the average duration of the exposed and asymptomatic infectious periods
and the fraction of reported cases

First epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 1.17× 101 days f ≥ N∞

S0
= 2.19× 10−3

Second epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 4.15 days f ≥ N∞

S0
= 3.06× 10−2

Third epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 3.11× 101 days f ≥ N∞

S0
= 3.28× 10−2
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5.6.9.3 India

Figure 4 of the main text is devoted to the reproduction number of the model. The instantaneous reproduc-
tion number t→ Re(t) is decreasing from February 01, 2020 until February 25, 2021.

Period Interpretation Parameters value Method

t0 Time at which we started the epidemic model Feb 01, 2020 Fixed

S0 Number of susceptibles at time t0 1.39× 109 Fixed

E0 Number of exposed at time t0 4.29× 101 Computed

I0 Number of asymptomatic infectious at time t0 1.12× 102 Computed

Table 5.6.20: In this table we list the values of the parameters of the epidemic model used for the simulations.

Compatibility condition between data and epidemic model

By using the Indian data for the first single wave, we get from Eqs (5.6.59) and (5.6.60) the following estimates
for the average duration of the exposed and asymptomatic infectious periods and the fraction of reported
cases

First epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 3.99× 101 days f ≥ N∞

S0
= 7.93× 10−3

5.6.9.4 Israel

Period Interpretation Parameters value Method

t0 Time at which we started the epidemic model Feb 27, 2020 Fixed

S0 Number of susceptibles at time t0 8.74× 106 Fixed

E0 Number of exposed at time t0 4.16 Computed

I0 Number of asymptomatic infectious at time t0 6.25 Computed

Table 5.6.21: In this table we list the values of the parameters of the epidemic model used for the simulations.

Compatibility condition between data and epidemic model

By using the Israeli data for the first, the second, the third and the fourth epidemic waves, we get from
Eqs (5.6.59) and (5.6.60) the following estimates for the average duration of the exposed and asymptomatic
infectious periods and the fraction of reported cases

First epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 1.04× 101 days f ≥ N∞

S0
= 1.95× 10−3

Second epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 1.67× 101 days f ≥ N∞

S0
= 9.91× 10−3

Third epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 5.74 days f ≥ N∞

S0
= 2.69× 10−2

Fourth epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 1.71× 101 days f ≥ N∞

S0
= 5.57× 10−2
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5.6.9.5 Japan

Period Interpretation Parameters value Method

t0 Time at which we started the epidemic model Feb 20, 2020 Fixed

S0 Number of susceptibles at time t0 1.26× 108 Fixed

E0 Number of exposed at time t0 2.61 Computed

I0 Number of asymptomatic infectious at time t0 5.45 Computed

Table 5.6.22: In this table we list the values of the parameters of the epidemic model used for the simulations.

Compatibility condition between data and epidemic model

By using the Japanese data for the first, the second, the third, the fourth and the fifth epidemic waves,
we get from Eqs (5.6.59) and (5.6.60) the following estimates for the average duration of the exposed and
asymptomatic infectious periods and the fraction of reported cases

First epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 8.18 days f ≥ N∞

S0
= 1.29× 10−4

Second epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 1.34× 101 days f ≥ N∞

S0
= 4.77× 10−4

Third epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 6.92 days f ≥ N∞

S0
= 7.22× 10−4

Fourth epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 7.17 days f ≥ N∞

S0
= 2.77× 10−3

Fifth epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 1.30× 101 days f ≥ N∞

S0
= 1.82× 10−3

5.6.9.6 Peru

Period Interpretation Parameters value Method

t0 Time at which we started the epidemic model Mar 20, 2020 Fixed

S0 Number of susceptibles at time t0 3.32× 107 Fixed

E0 Number of exposed at time t0 1.64× 102 Computed

I0 Number of asymptomatic infectious at time t0 3.85× 102 Computed

Table 5.6.23: In this table we list the values of the parameters of the epidemic model used for the simulations.
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Compatibility condition between data and epidemic model

By using the Peruvian data for the first, the second and the third epidemic waves, we get from Eqs (5.6.59)
and (5.6.60) the following estimates for the average duration of the exposed and asymptomatic infectious
periods and the fraction of reported cases

First epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 2.20× 101 days f ≥ N∞

S0
= 1.09× 10−2

Second epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 3.47× 101 days f ≥ N∞

S0
= 2.32× 10−2

Third epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 2.01 days f ≥ N∞

S0
= 2.11× 10−1

5.6.9.7 Spain

Period Interpretation Parameters value Method

t0 Time at which we started the epidemic model Feb 15, 2020 Fixed

S0 Number of susceptibles at time t0 3.95× 107 Fixed

E0 Number of exposed at time t0 5.10 Computed

I0 Number of asymptomatic infectious at time t0 6.87 Computed

Table 5.6.24: In this table we list the values of the parameters of the epidemic model used for the simulations.

Compatibility condition between data and epidemic model

By using the Spanish data for the first, the second, the third and the fourth epidemic waves, we get from
Eqs (5.6.59) and (5.6.60) the following estimates for the average duration of the exposed and asymptomatic
infectious periods and the fraction of reported cases

First epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 1.05× 101 days f ≥ N∞

S0
= 5.87× 10−3

Second epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 2.81× 101 days f ≥ N∞

S0
= 2.50× 10−2

Third epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 1.58× 101 days f ≥ N∞

S0
= 2.49× 10−2

Fourth epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 9.84 days f ≥ N∞

S0
= 3.29× 10−2

5.6.9.8 United Kingdom

Table 5.6.25: In this table we list the values of the parameters of the epidemic model used for the simulations.

Period Interpretation Parameters value Method

t0 Time at which we started the epidemic model Feb 15, 2020 Fixed

S0 Number of susceptibles at time t0 6.81× 107 Fixed

E0 Number of exposed at time t0 3.41 Computed

I0 Number of asymptomatic infectious at time t0 5.15 Computed



473

Compatibility condition between data and epidemic model

By using the data from Great Britain for the first, the second and the third epidemic waves, we get from
Eqs (5.6.59) and (5.6.60) the following estimates for the average duration of the exposed and asymptomatic
infectious periods and the fraction of reported cases

First epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 2.06× 101 days f ≥ N∞

S0
= 4.20× 10−3

Second epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 3.14× 101 days f ≥ N∞

S0
= 3.15× 10−2

Third epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 1.08× 101 days f ≥ N∞

S0
= 3.56× 10−2

5.6.10 Dependency with respect to the parameters for the French data

Influence of f on basic reproduction number:

Figure 5.6.13: In this figure we plot (t, f)→ Re(t) when t varies from January 03 2020 to January 04 2021
and f varies from 0.1 to 1.
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Figure 5.6.14: In this figure we explore the influence of the parameter f on the solution of model. The figure
(a) corresponds to f = 0.1 and figure (b) corresponds to f = 1. The remaining parameters are unchanged.

Influence of κ on basic reproduction number:
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Figure 5.6.15: In this figure we plot (t, κ)→ Re(t) when t varies from January 03 2020 to January 04 2021
and κ varies from 0.1 to 3.
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Figure 5.6.16: In this figure we explore the influence of the parameter f on the solution of model. The figure
(a) corresponds to κ = 0.1 and figure (b) corresponds to κ = 3. The remaining parameters are unchanged.

Influence of ν on basic reproduction number:

Figure 5.6.17: In this figure we plot (t, ν)→ Re(t) when t varies from January 03 2020 to January 04 2021
and ν varies from 0.1 to 1 (or equivalently 1/ν varies from 10 days to 1 day).
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Figure 5.6.18: In this figure we explore the influence of the parameter 1/ν on the solution of model. The
figure (a) corresponds to 1/ν = 1 and figure (b) corresponds to 1/ν = 10. The remaining parameters are
unchanged.

Influence of η on basic reproduction number:

Figure 5.6.19: In this figure we plot (t, η)→ Re(t) when t varies from January 03 2020 to January 04 2021
and η varies from 0.1 to 1 (or equivalently 1/η varies from 10 days to 1 day).
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Figure 5.6.20: In this figure we explore the influence of the parameterf on the solution of model. The figure
(a) corresponds to 1/η = 1 days and figure (b) corresponds to 1/η = 10 days. The remaining parameters
are unchanged.

Influence of α on basic reproduction number:
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Figure 5.6.21: In this figure we plot (t, α)→ Re(t) when t varies from January 03 2020 to January 04 2021
and α varies from 0.1 to 1 (or equivalently 1/α varies from 10 days to 1 day).
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Figure 5.6.22: In this figure we explore the influence of the parameter f on the solution of model. The figure
(a) corresponds to 1/α = 1 days and figure (b) corresponds to 1/α = 10 days. The remaining parameters
are unchanged.

5.6.11 Upper bound of the duration for the exposed period and the asymptomatic
infectious period

Let us finally mention that for each country and each epidemic wave we evaluated the parameter 1/(χ θ).
In Figure 5.6.23 we plot the histogram of its estimated value and obtain a median value be 15.61 days.
Therefore the length of exposure and the length asymptomatic infectious period should smaller than 15.61
days.

Figure 5.6.23: In this Figure we plot the histogram for the estimated values 1/(χ θ) (see Appendix E). The
red vertical line is mean value which is equal to 21 days. The yellow vertical line is median value which is
equal to 15.61 days.

In this section 5.6.11, we plot the estimated values of the parameter 1/(χ θ) for each epidemic period
and each country consider in this study. The parameter corresponds to the upper bound of the length of the
exposed period and asymptomatic infectious period. Indeed from the subsection devoted to the compatibility
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condition we know that the average duration of the exposed period should satisfy

1/ν ≤ 1/(χ θ),

and the average duration of the asymptomatic infectious period should should satisfy

1/α ≤ 1/(χ θ).
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Figure 5.6.24: In this figure we plot the values of the parameter 1/(χ θ) estimated for each epidemic wave
and for California (a), France (b), India (c), Israel (d). This parameter represents the maximal length of
the incubation period. In each figure, we plot this parameter for each epidemic wave and for each country.
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Figure 5.6.25: In this figure we plot the values of the parameter 1/(χ θ) estimated for each epidemic wave
and for Japan (e), Peru (f), Spain (g) and United Kingdom (h). This parameter represents the maximal
length of the incubation period. In each figure, we plot this parameter for each epidemic wave and for each
country.
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5.6.12 Computing R0

The basic reproduction number R0 can be computed for the SEIUR model by the formula (see [141, 149])

R0 = ρ(FV −1),

where F is the matrix containing new infections and V contains the rates of transfer between classes:

F :=


0 τS τκS 0

0 0 0 0

0 0 0 0

0 0 0 0

 , V :=


α 0 0 0

−α ν 0 0

0 −ν(1− f) η 0

0 ν(1− f) 0 η

 ,

see [141] and [149] for details. Therefore

V −1 =


1/α 0 0 0

1/ν 1/ν 0 0

(1− f)/η (1− f)/η 1/η 0

f/η f/η 0 1/η

 ,

FV −1 = τS

ην


η + κν(1− f) η + κν(1− f) κν 0

0 0 0 0

0 0 0 0

0 0 0 0

 .

It follows that
R0 = τS

ην

(
η + κν(1− f)

)
.

5.6.13 Stochastic approach to effective reproductive ratio
In numerical applications, we also present the results obtained by applying the method described in the paper
of Cori et al. [116]. Let us summarize the principle of the method. We consider that the incidence data
(i.e., the daily number of new reported cases) correspond to infection events that have occurred in the past.
For each new reported case, we reconstruct the time the infectious period started by sampling a Gamma
distribution (i.e. the time from the infection to the moment at which the individual is reported follows a
Gamma distribution). The parameters of this Gamma distribution are computed to match the differential
equation framework. In numerical application, 1/µ = 10 days, we took the average for the average of the
Gamma distribution as well as its standard deviation. We denote It the resulting number of individuals
that begin their infectious period on the day t. As described in [116], we use a smoothing window of τ days
(τ = 14 days in numerical applications). The resulting effective reproductive ratio Rt is then computed as

Rt =
a+

t∑
s=t−τ+1

Is

1
b +

∑t
s=t−τ+1 Λs

,

where a and b are a prior distribution on Rt (we took a = 1 and b = 5, as in [116]) and Λs is computed by
the formula

Λs =
t∑

s=1
It−sws,
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where ws is the average infectiousness profile after time s. In numerical applications, and following [116,
Web Appendix 11], we used the following formula for ws

ws = sFΓ,α,β(s) + (s− 2)FΓ,α,β(s− 2)− 2(s− 1)FΓ,α,β(s− 1)
+ αβ(2FΓ,α+1,β(s− 1)− FΓ,α+1,β(s− 2)− FΓ,α+1,β(s)),

where FΓ,α,β(s) is the cumulative density of a Gamma distribution of parameters (α, β):

FΓ,α,β(t) =
∫ t

0

1
Γ(α)βα s

α−1e−
s
β ds.

The parameters α and β are computed to match the Gamma distribution of the serial intervals which, in our
case, have mean value 1/µ = 10 days and standard deviation as well of 1/µ, so that α = 1/µ and β = 1/µ.

Because of the sampling of random numbers involved in the computation of Rt, the procedure described
above was repeated 100 times (each time drawing a new sequence of Is from the daily number of new cases)
and the final value of Rt presented in Figure 4 of the main text (green curves) is the average of the values
obtained during these 100 simulations.
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