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Introduction

This habilitation thesis is organized in two independent parts: a first part about my
main results on Steinhaus triangles and graphs and a second part about other results
obtained on numerical semigroups, Tower of Hanoi problems, Ramsey theory and Kneser
transversals.

The topic of the first part, Steinhaus triangles and graphs, is my oldest research theme,
starting with my doctoral thesis, that I defended in 2008. Since then, I have continued
to work on and explore problems on these structures and on generalizations. This part
is divided into five chapters: two chapters about binary Steinhaus triangles, the first
chapter on balanced triangles and the second one on Steinhaus triangles having symmetric
properties, one chapter on Steinhaus graphs and finally two chapters on generalizations of
binary Steinhaus triangles, one for a generalization with modular numbers and one other
for generalizations in higher dimensions with balanced simplices.

In Chapter 1, the structure of binary Steinhaus triangles is explored. This is one of
the most elementary structures in mathematics, that even a schoolboy could understand.
The figure below consists of 14 zeroes and 14 ones. They are arranged in such a way that
under each pair of equal numbers there appears a zero and under different numbers there
appears a one. If the first row has n terms, then in an analogous figure there would be

0 0 1 0 1 0 0
0 1 1 1 1 0
1 0 0 0 1
1 0 0 1
1 0 1
1 1
0

n(n+1)
2

terms, our example corresponds to the case n = 7. In his famous book entitled "One
hundred problems in elementary mathematics", Hugo Steinhaus asked in 1958 whether it
is possible to construct a figure analogous to the above one and beginning with n terms
in the highest row. A binary Steinhaus triangle is a down-pointing binary triangle built
with the same local rule and we say that a triangle is balanced if it contains as many
zeroes as ones. The Steinhaus problem was positively solved for the first time in 1972 by
Heiko Harborth. He proved that, for every positive integer n ≡ 0 or 3 mod 4, there exists
a binary sequence of length n which is the first row of a balanced Steinhaus triangle.
His proof is constructive and based on pseudo-periodic binary sequences. Since then,
many solutions of the Steinhaus problem have appeared in the litterature. All known
solutions are constructive and involve pseudo-periodic binary sequences. After explaining
the reasons for choosing pseudo-periodic binary sequences, some of these solutions are
presented in this chapter. In the last part of this chapter, a recent solution of the Steinhaus
problem obtained from purely periodic binary sequences is detailed. If we apply the same

1



2 INTRODUCTION

local rule from an infinite binary sequence, instead of a finite one, we obtain an infinite grid
of zeroes and ones that is called its orbit. The main result here is that there exist periodic
binary sequences, of length period 24, whose orbit contains balanced binary Steinhaus
triangles for all the admissible sizes. Moreover, this result is also valid for a generalization
of the Steinhaus problem in two directions: for binary Steinhaus triangles containing an
odd number of terms whose numbers of zeroes and ones only differ by 1 (almost-balanced
triangles) and also for up-pointing binary triangles built with the same local rule (binary
generalized Pascal triangles). The strength of this result is that from only one periodic
binary sequence, it is possible to explicitly obtain the existence of almost-balanced binary
triangles, of these two kinds, for all possible sizes. This result has been published in [C7].

The study of binary Steinhaus triangles continues in Chapter 2 with binary triangles
having symmetric properties. It is straightforward to see that the set ST (n) of binary
Steinhaus triangles of size n, i.e., whose first row is of length n, is a vector space over
Z/2Z of dimension n. Moreover, the local rule implies that ST (n) is closed under the 120
degrees rotation and under horizontal reflection. This implies a faithful representation of
the dihedral group D3 on ST (n). A binary Steinhaus triangle is said to be rotationally
symmetric, horizontally symmetric or dihedrally symmetric if it is invariant under the
120 degrees rotation, the horizontal reflection or both, respectively. The linear subspaces
RST (n), HST (n) and DST (n) of rotationnaly symmetric, horizontally symmetric and
dihedrally symmetric binary Steinhaus triangles, respectively, have been studied by André
Barbé in [26], where he determined the dimension of each of them. Bases of RST (n),
HST (n) and DST (n) are obtained by Josep Brunat and Montserrat Maureso in [39].
In Chapter 2, for each of these three linear subspaces, we give new bases which are
simpler than those mentioned. They are obtained by considering elementary properties
of generalized binomial coefficients. A journal version [C8] of these results is submitted
for publication.

Chapter 3 concerns the structure of Steinhaus graphs. A Steinhaus graph of order n
is a simple graph whose adjacency matrix has an upper-triangular part which is a binary
Steinhaus triangle of size n−1. It is straightforward to see that the set SG(n) of Steinhaus
graphs of order n is a vector space over Z/2Z of dimension n − 1 that is isomorphic to
ST (n − 1). This family of simple graphs was introduced by John C. Molluzzo in [89].
Franz A. Delahan proved in [48] that any simple graph of order n is isomorphic to an
induced subgraph of a Steinhaus graph of order

(
n
2

)
+1. A natural problem on Steinhaus

graphs is to characterize those, or their associated binary sequences, having a given graph
property such as connectedness, planarity, bipartition, regularity, etc. In Chapter 3, we
focus on regular Steinhaus graphs, that are Steinhaus graphs where every vertex has the
same degree, and on the weaker case of parity-regular Steinhaus graphs, that are Steinhaus
graphs for which all the vertex degrees are of the same parity. A parity-regular Steinhaus
graph is said to be either even or odd according to the parity of its vertices. The first
part of Chapter 3 is a complete study of the linear subspace ESG(n) of even Steinhaus
graphs of order n. The characterization of even Steinhaus graphs has already been done
by Wayne M. Dymacek in [51], where the dimension of ESG(n) is given by considering
that the adjacency matrix of an even Steinhaus graph is symmetric with respect to its
anti-diagonal. This result is retrieved here by showing that the anti-diagonal terms of
the adjacency matrix of a Steinhaus graph, not necessarily even, can be expressed in
function of its vertex degrees. This last result has been published in [C3]. After that, it
is shown that there exists an isomorphism between ESG(n) and a certain linear subspace
of DST (n). Therefore, using results highlighted in Chapter 2, explicit vector bases of
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ESG(n) and PRSG(n) are given, for all positive integers n. This new result comes from
[C8]. The last part of this chapter concerns regular Steinhaus graphs. The complete list
of regular Steinhaus graphs was conjectured by Wayne M. Dymacek in [51]. Since then,
this conjecture was verified up to 117 vertices by Shalom Eliahou and Maxime Augier
in [24]. In the end of Chapter 3, we show how results obtained on DST (n) permits us
to complete the study of regular Steinhaus graphs and to push forward the verification
of Dymacek’s conjecture up to 1500 vertices for regular Steinhaus graphs of odd degree.
This result has also been published in [C3].

In Chapter 4, the structure of binary Steinhaus triangles is extended to triangles of
numbers modulo a positive integer m built with the same local rule as the standard Pascal
triangle modulo m. A Steinhaus triangle modulo m is said to be balanced if it contains
all the elements of Z/mZ with the same multiplicity. In 1976, John C. Molluzzo asked if
there exists a balanced Steinhaus triangle of size n modulo m, for every positive integers
m and n such that

(
n+1
2

)
is divisible by m. For m = 2, it corresponds to the Steinhaus

problem introduced in Chapter 1. The Molluzzo problem constitutes the main topic of
Chapter 4. Until my doctoral thesis, this problem was solved in the affirmative only for
m = 3 and 5 in [30]. Since then, this problem has been positively solved, by constructive
approaches, for small values of m: for m ∈ {3, 5, 7} in [C1] and for m = 4 in [C9]. First
counter-examples appeared in [C1], where it is proved that there does not exist balanced
Steinhaus triangles of size 5 in Z/15Z and of size 6 in Z/21Z. Nevertheless, this problem
can be positively answered for an infinite number of values m. In the first part of this
chapter, it is shown that there exist balanced Steinhaus triangles, for all the possible
sizes, in the case where m is a power of 3. This result is obtained by studying Steinhaus
triangles associated with arithmetic progressions. The main result here is that, when m
is an odd number, the Steinhaus triangle whose first row is an arithmetic progression
with an invertible common difference and of length kαm is balanced, for all non-negative
integers k and where α is the multiplicative order of 2m modulo m. This implies that
there exists an infinite number of balanced Steinhaus triangles modulo m, for every odd
number m. In particular, when m is a power of 3, this permits to positively answer the
Molluzzo problem in this case. This result has been published in [C2]. In the second part
of Chapter 4, we are interested in a particular sequence of integers

US = (. . . . . . ,−3,−3, 5,−2,−2, 3,−1,−1, 1, 0,0,−1, 1, 1,−3, 2, 2,−5, 3, 3,−7, . . . . . .)

that is called the universal sequence. This sequence can be seen as an interlacing of three
arithmetic progressions. After studying Steinhaus triangles, or more generally orbits, as-
sociated with interlaced arithmetic progressions, we obtain that the orbit of the projection
of US in Z/mZ contains infinitely many balanced Steinhaus triangles, when m is odd.
More precisely, for every odd number m, this orbit contains balanced Steinhaus triangles
of size km, for all non-negative integers k. The proof of this result is based on arithmetic
triangles, that are, triangles of numbers modulo m, not necessarily Steinhaus triangles,
where all rows and diagonals are arithmetic progressions with the same common differ-
ences, respectively. This is a noticeable improvement of the previous result on arithmetic
progressions because here we obtain balanced Steinhaus triangles for all sizes multiple
of m, not only for multiples of αm. This result does not completely solve the Molluzzo
problem for other moduli but, in the case where m is an odd prime power, we know that
there exist balanced Steinhaus triangles for 2/3 of the admissible sizes. These results on
the universal sequence have been published in [C5]. In the last part of Chapter 4, a con-
struction method that consists in attempting to lift in Z/4Z specific known solutions in
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Z/2Z is detailed. This permits to obtain a complete positive answer to Molluzzo problem
for m = 4. Up to now, this is the only known solution to this problem for m > 2 even.
This work has been carried out with Shalom Eliahou and has been published in [C9].

In Chapter 5, the structure of Steinhaus triangles is considered for other local rules
and for higher dimensions, not only in dimension 2. An additive cellular automaton is a
linear map on the set of infinite multidimensional arrays of elements in Z/mZ. In this
chapter, we consider simplices appearing in orbits generated from arithmetic arrays by
additive cellular automata. We show that they are a source of balanced simplices, that
are simplices containing all the elements of Z/mZ with the same multiplicity. For any
additive cellular automaton of dimension 1 or higher, the existence of infinitely many
balanced simplices of Z/mZ appearing in such orbits is obtained, and this, for an infi-
nite number of values m. The special case of the Pascal cellular automata, the cellular
automata generating the Pascal simplices, that are a generalization of the Pascal triangle
into arbitrary dimension, is studied in detail. This constitutes a natural generalization
of the result obtained on Steinhaus triangles associated with arithmetic progressions in
Chapter 4. This generalization has been published in [C6].

The second part of this habilitation thesis is divided into four chapters. Each chapter
is about a research topic on which I began to work after my doctoral thesis: numerical
semigroups, Tower of Hanoi problems, Ramsey theory and Kneser transversals.

Chapter 6 concerns numerical semigroups. A semigroup is a set with an internal
binary operation that is associative. A numerical semigroup S is a subsemigroup of N
such that 0 ∈ S and N\S is finite. It is well-known that, for every numerical semigroup S,
there exist a minimal nonempty set A = {a1, . . . , an} of relatively prime positive integers
such that S = ⟨A⟩, i.e., each element of S can be expressed as x1a1 + · · · + xnan, where
x1, . . . , xn are non-negative integers. The set A is called the set of generators of S. For
every numerical semigroup S, we consider the locally finite poset (Z,⩽S) induced by S on
the set of integers Z defined by x ⩽S y if and only if y−x ∈ S, for all integers x and y. The
Möbius function is an important concept associated with locally finite posets introduced
by Gian-Carlo Rota in [98]. In the first part of Chapter 6, we investigate the Möbius
function µS associated with the poset (Z,⩽S), where S is a numerical semigroup. Up to
2013, the only known result concerning µS was an old theorem due to James A. Deddens
in 1979 [47] that determines the value of µS when S = ⟨a1, a2⟩ has exactly two generators.
Here, we introduce a new approach to investigate µS when S is an arithmetic numerical
semigroup, that is, when S = ⟨a, a+ d, . . . , a+ kd⟩ for some positive integers a, d, k such
that a and d are coprime and k < a. The main result obtained here is a recursive formula
for µS when S is an arithmetic numerical semigroup. In particular, this permits us to
give a new proof of Dedden’s result and an explicit formula in the case where k = 2 and
a even, i.e., when S = ⟨2q, 2q + d, 2q + 2d⟩ for relatively prime positive integers q and d.
This is a joint work with Jorge Luis Ramírez Alfonsín that has been published in [C16].
After that, we continue the investigation of the Möbius function associated with locally
finite posets (Zm,⩽S) arising now from subsemigroups S of Zm. This extends the work
introduced before. We develop another approach to study µS by using the Hilbert series of
S. The latter enables us to provide formulas for µS when S belongs to certain families of
semigroups such as semigroups with a unique Betti element or three generated complete
intersection numerical semigroups. This second work on µS has been carried out with
Ignacio García-Marco, Luis Pedro Montejano and Jorge Luis Ramírez Alfonsín and has
been published in [C10]. The last part of this chapter is about square Frobenius numbers.
For every numerical semigroup S, the Frobenius number g(S) is the largest integer which
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is not an element of S. It is well-known that g(⟨a1, a2⟩) = a1a2 − a1 − a2. However to
calculate g(S) is a difficult problem in general. Here, we consider the following variant
of the Frobenius number of S: let 2r(S) be the largest square number not belonging
to S. We give an upper bound for 2r(S) for all arithmetic numerical semigroups S.
The latter turns out to be the exact value of 2r(⟨s1, s2⟩) under certain conditions. We
present an exact formula for 2r(⟨s1, s1 + d⟩) when d = 3, 4 and 5. We study 2r(⟨s1, s1 + 1⟩)
and 2r(⟨s1, s1 + 2⟩) and put forward two relevant conjectures. This is a joint work with
Jorge Luis Ramírez Alfonsín and a journal version [C17] of these results is submitted for
publication.

In Chapter 7, Tower of Hanoi problems are discussed. The Tower of Hanoi problem
was introduced by Edouard Lucas in 1883 [85] for the case of 3 pegs and n disks of different
sizes. Initially, n disks are placed on one of the 3 pegs with the largest at the bottom.
Then, at each time one of the topmost disks is moved to a peg with a larger disk on the
top or to an empty peg. The goal of the problem is to transfer all the disks from the initial
peg to the peg of destination with the minimum number of moves. A simple recursive
argument shows that 2n−1 moves are necessary and sufficient to carry out this task. This
Tower of Hanoi problem was then extended to the case of 4 pegs by Dudeney in 1907 [50]
and to arbitrary k ⩾ 3 pegs by Stewart in 1939 [108]. In 1941, Frame [66] and Stewart
[109] independently proposed algorithms which achieve the same numbers of moves for
the k-peg Tower of Hanoi problem with k ⩾ 4 pegs. Thus, these numbers are called
the Frame-Stewart numbers. It is known that these numbers are optimal for the 4 pegs
problem [37] and they are supposed to be optimal for k > 4 pegs. The Frame-Stewart
numbers are defined by the following recurrence relation:

Sk(n) = min
1⩽t⩽n

{
2 · Sk(n− t) + Sk−1(t)

}
, S3(n) = 2n − 1.

In the first part of Chapter 7, we generalize this recurrence relation to

Gk(n) = min
1⩽t⩽n

{
pk ·Gk(n− t) + qk ·Gk−1(t)

}
, G3(n) = p3 ·G3(n− 1) + q3,

for two sequences of arbitrary positive integers (pi)i⩾3 and (qi)i⩾3 and we show that the
sequence of differences (Gk(n)−Gk(n− 1))n⩾1 consists of numbers of the form (

∏k
i=3 qi) ·

(
∏k

i=3 pi
αi), with αi ⩾ 0 for all i, arranged in nondecreasing order. We also apply this

result to analyze recurrence relations for the Tower of Hanoi problems on several graphs.
This work has been carried out with Akihiro Matsuura and has been published in [C14].
In the last part of Chapter 7, results obtained about a two-player combinatorial game
based on Tower of Hanoi are studied. First, it is well-known that in the 3 pegs problem,
the minimal number of moves is 2n − 1 to transfer a tower of n disks. But there are also
other variations to the game, involving for example real number weights on the moves of
the disks. This gives rise to a similar type of problem, but where the final score seeks
to be optimized. We study extensions of the one-player setting to two players, invoking
classical winning conditions in combinatorial game theory such as the player who moves
last wins, or the highest score wins. Here we solve both these winning conditions on
3 pegs. This is a joint work with Urban Larsson and Akihiro Matsuura that has been
published in [C11].

Problems in Ramsey theory typically ask a question of the form: how big must
some substructure be to guarantee that a particular property holds? In the first part
of Chapter 8, we are interested in a problem of Ramsey theory on numbers. For any
positive integers l and m, a set of integers is said to be (weakly) l-sum-free modulo m
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if it contains no (pairwise distinct) elements x1, x2, . . . , xl, y satisfying the congruence
x1 + . . . + xl ≡ y mod m. It is known that, for any positive integers k and l, there
exists a largest integer n for which the set of the first n positive integers {1, 2, . . . , n}
admits a partition into k (weakly) l-sum-free sets modulo m. This number is called the
generalized (weak) Schur number modulo m, associated with k and l. This is a mod-
ular version of the standard (weak) Schur numbers for which only few exact values are
known. It is straightforward to see that modular Schur numbers always constitute lower
bounds of standard Schur numbers. Here, for all positive integers k and l, the exact value
of these modular Schur numbers are determined for the moduli m = 1, 2 and 3. This
work has been carried out with María Pastora Revuelta Marchena and María Isabel Sanz
Domínguez and has been published in [C18]. In the last part of Chapter 8, several results
for Ramsey theory on graphs are exposed. For any simple graphs G and H, let R(G,H)
be the smallest integer N such that any 2-coloring (say red and blue) of the edges of the
complete graph Kn, where n ⩾ N , there is either a red copy of G or a blue copy of H. It
is well-known, by Ramsey Theorem, that R(G,H) is always finite, for any graphs G and
H. After giving different recursive formulas, we obtain new exact numbers or new bounds
on Ramsey numbers for different families of graphs: essentially for complete graphs with
a dropped edge or triangle and for complete graphs with dropped stars. This is a joint
work with Luis Pedro Montejano and Jorge Luis Ramírez Alfonsín. These results have
been published in [C15, C19].

The last chapter of this thesis concerns Kneser transversals. For any positive integers
k, d, λ with both d, k ⩾ λ, let m(k, d, λ) be the maximum positive integer n such that
every set of n points (not necessarily in general position) in Rd has the property that the
convex hulls of all k-sets have a common transversal (d− λ)-plane. In [23], the following
inequalities were obtained

d− λ+ k +

⌈
k

λ

⌉
− 1 ⩽ m(k, d, λ) < d+ 2(k − λ) + 1.

It turns out that m(k, d, λ) is strongly connected with other interesting problems, for
instance, the chromatic number of Kneser hypergraphs and a discrete version of Rado’s
centerpoint theorem. In Chapter 9, we introduce a natural discrete version m∗ of m by
considering the existence of complete Kneser transversals. A complete Kneser transversal
of a finite subset X of Rd is a (d− λ)-plane that is transversal to the convex hulls of all
k-sets of X and that contains (d − λ) + 1 points of X. We study the relation between
m∗ and m and give a number of lower and upper bounds of m∗ as well as the exact
value in some cases. The main ingredient for proofs are Radon’s partition theorem as
well as oriented matroids tools. By studying the alternating oriented matroid, we obtain
the asymptotic behavior of the function m∗ for the family of cyclic polytopes. This
work has been carried out with Leonardo Martínez-Sandoval, Luis Montejano, Luis Pedro
Montejano and Jorge Luis Ramírez Alfonsín and has been published in [C12]. In the last
part of Chapter 9, we focus on the existence of (complete) Kneser transversals for λ = 2, 3.
In order to do this, we introduce the notions of stability and instability for (complete)
Kneser transversals. We first give a stability result for collections of d + 2(k − λ) points
in Rd with k − λ ⩾ 2 and λ = 2, 3. We then present a description of Kneser transversals
L of collections of d + 2(k − λ) points in Rd with k − λ ⩾ 2 for λ = 2, 3. We show
that either L is a complete Kneser transversal or it contains d− 2(λ− 1) points and the
remaining 2(k− 1) points of X are matched in k− 1 pairs in such a way that L intersects
the corresponding closed segments determined by them. The latter leads to new upper



7

and lower bounds (in the case when λ = 2 and 3) for m(k, d, λ). Finally, by using oriented
matroid machinery, we present some computational results (closely related to the stability
and unstability notions). We determine the existence of (complete) Kneser transversals
for each of the 246 different order types of configurations of 7 points in R3. This is also
a joint work with Leonardo Martínez-Sandoval, Luis Montejano, Luis Pedro Montejano
and Jorge Luis Ramírez Alfonsín and it has been published in [C13].
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Chapter 1

Balanced binary triangles

1.1 Preliminary results on binary triangles

In this chapter, we mainly consider two kinds of binary triangles built with the same local
rule as the Sierpiński triangle or the standard Pascal triangle modulo 2.

1.1.1 Binary Steinhaus triangles

Definition 1.1.1 (Binary Steinhaus triangle). Let n be a positive integer. A binary
Steinhaus triangle of size n is a down-pointing triangle (ai,j)1⩽i⩽j⩽n of elements of the
cyclic group Z/2Z = {0, 1} satisfying the same local rule as the standard Pascal triangle
modulo 2, that is,

ai,j = ai−1,j−1 + ai−1,j, (LR)

for all integers i and j such that 2 ⩽ i ⩽ j ⩽ n, where the sum is the sum in Z/2Z.
Note that (0) and (1) are the binary Steinhaus triangles of size 1 and we say that ∅ is the
binary Steinhaus triangle of size 0.

An example of a binary Steinhaus triangle of size 7 is depicted in Figure 1.1.

1 0 0 1 0 0 0
1 0 1 1 0 0
1 1 0 1 0
0 1 1 1
1 0 0
1 0
1

Figure 1.1: A binary Steinhaus triangle of size 7

Notation 1.1.2. For any non-negative integer n, the set of binary Steinhaus triangles of
size n is denoted by ST (n).

It is straightforward to see that ST (n) is a vector space over Z/2Z, by considering
the sum

(ai,j)1⩽i⩽j⩽n + (bi,j)1⩽i⩽j⩽n = (ai,j + bi,j)1⩽i⩽j⩽n ,

11
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for all (ai,j)1⩽i⩽j⩽n and (bi,j)1⩽i⩽j⩽n in ST (n).
Moreover, it is clear that a binary Steinhaus triangle (ai,j)1⩽i⩽j⩽n is completely deter-

mined by its first row (a1,j)1⩽j⩽n. Indeed, by induction on i and using (LR), we obtain
that

ai,j =
i−1∑
k=0

(
i− 1

k

)
a1,j−k, (1.1)

for all integers i and j such that 1 ⩽ i ⩽ j ⩽ n, where the binomial coefficient
(
a
b

)
is the

coefficient of the monomial Xb in the expansion of (1 +X)a, for all non-negative integers
a and b. Therefore, in the sequel, we use the following

Notation 1.1.3. The binary Steinhaus triangle whose first row is the binary sequence S
is denoted by ∇S.

The triangle in Figure 1.1 is then ∇(1001000).
For two binary sequences S1 = (aj)1⩽j⩽n and S2 = (bj)1⩽j⩽n of the same length n ⩾ 1,

their sum is the sequence S1 + S2 = (aj + bj)1⩽j⩽n of length n. The set Z/2Z{1,...,n} of
binary sequences of length n can then be seen as a vector space over Z/2Z of dimension
n. Since the linear map

Z/2Z{1,...,n} −→ ST (n)
S 7−→ ∇S

is an isomorphism, we obtain the following

Proposition 1.1.4. For any non-negative integer n, the set ST (n) is a vector space over
Z/2Z of dimension n.

This kind of binary triangles has been introduced by Hugo Steinhaus in his problem
book [106, 107], where he posed, as unsolved, the following

Problem 1.1.5 (Steinhaus, 1958). Does there exist, for every non-negative integer n such
that n ≡ 0 or 3 mod 4, a Steinhaus triangle of size n containing as many 0’s as 1’s?

The triangle ∇(1001000) depicted in Figure 1.1 solves this problem for n = 7, since
it contains 14 zeroes and 14 ones. Note that, since a triangle of size n contains

(
n+1
2

)
elements, the condition n ≡ 0 or 3 mod 4 is a necessary and sufficient condition for
having a triangle of size n with an even number of terms. The Steinhaus Problem was
solved for the first time by Heiko Harborth in 1972 [71]. Since then, many solutions of
this problem have appeared in the litterature [60, 61, 57] and [C7]. All known solutions
are constructive and some of these will be presented later in this chapter.

1.1.2 Binary generalized Pascal triangles

Definition 1.1.6 (Binary generalized Pascal triangle). Let n be a positive integer. A bi-
nary generalized Pascal triangle of size n is an up-pointing triangle (ai,j)1⩽j⩽i⩽n of elements
of Z/2Z verifying the local rule (LR), that is,

ai,j = ai−1,j−1 + ai−1,j,

for all integers i, j such that 2 ⩽ j < i ⩽ n. Note that (0) and (1) are the binary
generalized Pascal triangles of size 1 and we say that ∅ is the binary generalized Pascal
triangle of size 0.
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It is clear that a generalized Pascal triangle (ai,j)1⩽j⩽i⩽n is completely determined by
its left side L = (ai,1)1⩽i⩽n and its right side R = (ai,i)1⩽i⩽n. Indeed, by induction on i
and using (LR), we obtain that

ai,j =

i−j+1∑
k=2

(
i− k − 1

j − 2

)
ak,1 +

j∑
k=2

(
i− k − 1

j − k

)
ak,k, (1.2)

for all integers i and j such that 2 ⩽ j ⩽ i − 1 ⩽ n − 1. Note that the first terms of L
and R correspond.

Notation 1.1.7. We denote by ∆(L,R) the binary generalized Pascal triangle whose left
and right sides are the sequences L and R, respectively.

An example of binary generalized Pascal triangle of size 7 is depicted in Figure 1.2.
Moreover, note that, for the constant binary sequences L = R = 1 · · · 1 of length n, the
triangle ∆(L,R) corresponds to the first n rows of the standard Pascal triangle modulo
2, the Sierpiński triangle.

0
0 1

0 1 0
0 1 1 0

1 1 0 1 0
0 0 1 1 1 0

1 0 1 0 0 1 1

Figure 1.2: The binary generalized Pascal triangle ∆(0000101, 0100001)

Notation 1.1.8. For any non-negative integer n, the set of binary generalized Pascal
triangles of size n is denoted by PT (n).

Proposition 1.1.9. For any positive integer n, the set PT (n) is a vector space over
Z/2Z of dimension 2n− 1.

Moreover, there exists a natural isomorphism between PT (n) and ST (2n− 1), for all
positive integers n. Indeed, as depicted in Figure 1.3, a binary generalized Pascal triangle
of size n can be seen as a subtriangle of a binary Steinhaus triangle of size 2n− 1. More
details on this result will be given later.

1 1 0 0 1 0 1 0 0
0 1 0 1 1 1 1 0
1 1 1 0 0 0 1
0 0 1 0 0 1
0 1 1 0 1
1 0 1 1
1 1 0
0 1
1

1
1 1

1 0 0
0 1 0 0

0 1 1 0 1

Figure 1.3: A binary generalized Pascal triangle inside a Steinhaus triangle
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1.1.3 Derived and antiderived sequences of binary sequences

These two kinds of binary triangles are constituted by binary sequences. We continue by
introducing the notions of derived and antiderived sequences of binary sequences.

Definition 1.1.10 (Derived sequence). Let S = (aj)1⩽j⩽n be a sequence of Z/2Z. The
derived sequence ∂S of S is the sequence

∂S = (aj + aj+1)1⩽j⩽n−1 (1.3)

of length n− 1, when n ⩾ 2, and the empty sequence, when n ⩽ 1.

It is clear that the derivation map ∂ is linear, i.e., ∂(S1 + S2) = ∂S1 + ∂S2 for all
binary sequences S1 and S2 of same length.

Definition 1.1.11 (Iterated derived sequences). The iterated derived sequences ∂iS of a
finite binary sequence S are recursively defined by ∂iS = ∂(∂i−1S), for all i ⩾ 1, with
∂0S = S.

For any finite binary sequence S, its Steinhaus triangle ∇S can then be seen as the
collection (∂iS)0⩽i⩽n−1, where, for every i ∈ {1, . . . , n}, the ith row of ∇S corresponds to
the derived sequence ∂i−1S.

Definition 1.1.12 (Antiderived sequences). Let S be a binary sequence of length n. An
antiderived sequence of S is a sequence T of length n+ 1 such that ∂T = S.

Notation 1.1.13 (Constant sequences). For any non-negative integer n, the constant
sequence of length n equal to x is denoted by (x)n. For n = 1, the sequence (x)1 is simply
denoted by (x).

Proposition 1.1.14. Let S = (aj)1⩽j⩽n be a sequence of Z/2Z of length n. The sequence
S admits two antiderived sequences T1 and T2 and these sequences are complementary,
i.e., T1 + T2 = (1)n+1. For any i ∈ {1, . . . , n + 1} and any x ∈ Z/2Z, the antiderived
sequence of S whose ith term is x is the sequence

∫
i,x
S = (bj)1⩽j⩽n+1 of length n + 1

defined by

bj = x+
i−1∑
k=1

ak +

j−1∑
k=1

ak, (1.4)

for all j ∈ {1, . . . , n+ 1}.

For example, the sequence S = 0100 admits the two antiderived sequences 00111 and
11000. Further, it is straightforward to obtain a fundamental theorem of calculus.

Proposition 1.1.15. Let S = (aj)1⩽j⩽n be a binary sequence of length n. For any i ∈
{1, . . . , n+ 1} and any x ∈ Z/2Z, we have that

i) ∂
(∫

i,x
S
)
= S,

ii)
∫
i,x

(∂S) = S + (ai + x)n.

The notions of derived sequences and antiderived sequences can easily be adapted for
infinite binary sequences. A similar result as Proposition 1.1.15 has been obtained in this
case in [90].
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1.1.4 The multiplicity function of binary triangles

Binary triangles also can be seen as finite multisets of elements of Z/2Z.

Notation 1.1.16. For any finite multiset M of elements of Z/2Z, let mM denote its
multiplicity function, that is, the function mM : Z/2Z −→ N that assigns to each element
x ∈ Z/2Z its multiplicity in M . The cardinality of M is then the sum |M | = mM(0) +
mM(1).

For any binary sequence S, since every element of the triangle ∇S can be expressed
in function of the terms of the sequence S by (1.1), it is easy to see that the parity of
m∇S(1) is only related to the terms of the sequence S.

Proposition 1.1.17 (Harborth [71] - Chang [42]). Let S = (aj)1⩽j⩽n be a binary sequence
of length n. Then,

m∇S(1) ≡
n∑

j=1

((
n+ 1

k

)
+ 1

)
aj (mod 2).

Moreover, m∇S(1) is even for all binary sequences of length n if and only if n = 2k − 2,
for some k ⩾ 2

The smallest and largest number of each element in a binary triangle are known.

Notation 1.1.18. For any n1-tuple X1 and any n2-tuple X2,

X1 = (a0, a1, . . . , an1−1) and X2 = (b0, b1, . . . , bn2−1),

the concatenation X1.X2 is the (n1 + n2)-tuple

X1.X2 = (a0, a1, . . . , an1−1, b0, b1, . . . , bn2−1).

For any n-tuple X, the kn-tuple Xk is recursively defined by Xk = X.Xk−1 for all integers
k ⩾ 2, with X1 = X. For any n-tuple X = (a0, a1, . . . , an−1), the infinite sequence
X∞ = (bj)j∈N is defined by bkn+j = aj for all k ∈ N and for all j ∈ {0, 1, . . . , n− 1}. For
any infinite sequence S = (aj)j∈N and any positive integers n1 and n2 such that n1 ⩽ n2,
we denote by S[n1, n2] the subsequence S[n1, n2] = (an1 , an1+1, . . . , an2). Moreover, for
any positive integer n, we denote by S[n] the initial segment of length n of S, that is, the
n-tuple S[n] = S[0, n− 1] = (a0, a1, . . . , an−1).

Proposition 1.1.19 (Harborth [71] - Chang [42]). For any binary sequence S of length
n, we have

0 ⩽ m∇S(1) ⩽

⌈
2

3

(
n+ 1

2

)⌉
.

Moreover, m∇S(1) = 0 if and only if S = (0)n and m∇S(1) =
⌈
2
3

(
n+1
2

)⌉
if and only if S is

in {
{(110)∞[n], (101)∞[n], (011)∞[n]} for n ≡ 0, 2 (mod 3),
{(110)∞[n], (101)∞[n]} for n ≡ 1 (mod 3).

Proposition 1.1.20 (Harborth-Hurlbert [72]). For any binary generalized Pascal triangle
∆ of size n, we have

0 ⩽ m∆(1) ⩽

⌈
2

3

(
n+ 1

2

)⌉
+ ε,
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where

ε =


2 if n ≡ 1 mod 3, n ̸= 1,
1 if n ≡ 0, 2 mod 3, n ̸= 8,
0 if n = 1,
3 if n = 8.

Determining all possible values of the multiplicity function of a binary triangle is a
very difficult problem. However, Chang managed to obtain in [42] the four smallest and
three largest possible numbers of 1’s in binary Steinhaus triangles.

Proposition 1.1.21 (Chang [42]). Let S be a binary sequence of length n ⩾ 1. If
m∇S(1) > 0, then m∇S(1) ⩾ n. Moreover, m∇S(1) = n if and only if S is one of the
following sequences:

• 1 · · · 1, 10 · · · 0 and 0 · · · 01,

• 010 for n = 3.

Proposition 1.1.22 (Chang [42]). Let S be a binary sequence of length n ⩾ 4. If
m∇S(1) > n, then m∇S(1) ⩾ n − 1 +

⌊
n
2

⌋
. Moreover, m∇S(1) = n − 1 +

⌊
n
2

⌋
if and

only if S is one of the following sequences:

• 010 · · · 0 and 0 · · · 010,

• 0 · · · 011 and 110 · · · 0,

• (01)
n
2 and (10)

n
2 if n is even and 0(10)

n−1
2 if n is odd,

• 001100, 001000 and 000110 for n = 6,

• 0001000 for n = 7.

Proposition 1.1.23 (Chang [42]). Let S be a binary sequence of odd length n ⩾ 5. Then,
m∇S(1) = n− 1 + n+1

2
if and only if S is one of the following sequences:

• 1(01)
n−1
2 ,

• 0 · · · 011 and 110 · · · 0,

• 00100, 01100 and 00110 for n = 5.

Proposition 1.1.24 (Chang [42]). Let S be a binary sequence of length n ⩾ 7. If
m∇S(1) > n− 1 +

⌈
n
2

⌉
, then

m∇S(1) ⩾

{
2n− 4 if n ≡ 2 mod 4 or n = 11,
2n− 3 otherwise.

Proposition 1.1.25 (Chang [42]). Let S be a binary sequence of length n ⩾ 1. Then,
m∇S(1) =

⌈
2
3

(
n+1
2

)⌉
− 1 if and only if S is one of the following sequences:

• 0 for n = 1,

• 111, 010, 100 and 001 for n = 3,

• 0110, 1001, 1110 and 0111 for n = 4,
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• 01110, 01011, 11010, 11101, 10111, 01001 and 10010 for n = 5,

• 0(110)
n−1
3 for n ≡ 1 mod 3.

Proposition 1.1.26 (Chang [42]). Let S be a binary sequence of length n ⩾ 6. If
m∇S(1) <

⌈
2
3

(
n+1
2

)⌉
− 1, then m∇S(1) ⩽

⌊
n2+1
3

⌋
. Moreover, if m∇S(1) =

⌊
n2+1
3

⌋
, then

the sequence S cannot contain three consecutive 0’s, except for the sequences 110001 and
100011 for n = 6 and 110001110 and 011100011 for n = 9.

1.1.5 The average number of each element in binary triangles

For any positive integer n and every x ∈ Z/2Z, it is possible to determine the average
number of x in a binary triangle of size n, i.e.,

1

2n

∑
∇∈ST (n)

m∇(x) and
1

22n−1

∑
∆∈PT (n)

m∆(x).

Proposition 1.1.27. For any non-negative integer n, the average number of 0’s and
1’s in a binary Steinhaus triangle or in a binary generalized Pascal triangle of size n is
exactly 1

2

(
n+1
2

)
.

Proof. Since any binary sequence S of length n admits exactly two antiderived sequences∫
i,0
S and

∫
i,1
S with

∫
i,0
S +

∫
i,1
S = (1)n+1 from Proposition 1.1.14.

The Steinhaus Problem then corresponds to the determination of the existence of
binary Steinhaus triangles with an average number of 0’s and 1’s, that are binary Steinhaus
triangles ∇ with m∇(0) = m∇(1).

Definition 1.1.28 (Balanced multiset). A finite multiset M of elements of Z/2Z is said
to be balanced if mM(0) = mM(1). Note that the cardinality of a balanced multiset is an
even number.

For instance, since they contain 14 zeroes and 14 ones, the triangles depicted in Fig-
ure 1.1 and Figure 1.2 are balanced binary triangles of size 7.

Since a binary triangle of size n is constituted by
(
n+1
2

)
elements of Z/2Z, it is clear

that there exists a balanced binary triangle of size n only if the binomial coefficient
(
n+1
2

)
is even. Moreover,(

n+ 1

2

)
≡ 0 (mod 2) ⇐⇒ n ≡ 0 or 3 (mod 4).

Therefore, it is natural to consider the Steinhaus Problem. When n is a positive integer
such that n ≡ 1 or 2 mod 4, i.e., when

(
n+1
2

)
is an odd number, we can consider the similar

problem of determining if there exist almost-balanced Steinhaus triangles of size n.

Definition 1.1.29 (Almost-balanced multiset). A finite multiset M of elements of Z/2Z
is said to be almost-balanced if |mM(0)−mM(1)| ⩽ 1.

Proposition 1.1.30. Let M be a finite multiset of elements of Z/2Z that is almost-
balanced. Then, the multiset M is balanced if and only if |M | is even.



18 CHAPTER 1. BALANCED BINARY TRIANGLES

Corollary 1.1.31. Let T be an almost-balanced binary triangle of size n. If n ≡ 0 or
3 mod 4, then mT (0) = mT (1) and T is (perfectly) balanced. Otherwise, if n ≡ 1 or
2 mod 4, then mT (0) = mT (1)± 1.

The Steinhaus Problem can then be generalized in two directions: for binary general-
ized Pascal triangles and when the number of elements constituting a triangle is odd.

Problem 1.1.32 (Chappelon [C7]). Does there exist, for any positive integer n, an
almost-balanced binary Steinhaus triangle and an almost-balanced binary generalized Pas-
cal triangle of size n?

This chapter is organized as follows. In the next section, solutions of the Steinhaus
Problem based on pseudo-periodic binary sequences are presented. After that, a recent
solution of Problem 1.1.32 is studied in details in Section 3. This problem is positively
solved in this chapter by considering fully periodic binary sequences generating triangles
that have a periodic structure.

1.2 Pseudo-periodic balanced binary Steinhaus trian-
gles

In this section, different solutions of the Steinhaus Problem are presented. All these
solutions are constructive and balanced binary triangles given here are always associated
with binary sequences that are pseudo-periodic.

1.2.1 Binary Steinhaus triangles of pseudo-periodic sequences

Definition 1.2.1 (Pseudo-periodic sequences). Let u = (un)n∈N be a (finite or infinite)
sequence indexed on N = N or N = {0, 1, . . . ,m}, with m ∈ N.

i) The sequence u is said to be periodic if there exists a positive integer p such that
un+p = un, for all n ∈ N such that n + p ∈ N . Then, we say that the sequence u is
p-periodic of period P = {u0, . . . , up−1}.

ii) The sequence u is said to be pseudo-periodic if there exists positive integers i and p
such that un+p = un, for all n ∈ N \ {0, . . . , i − 1} such that n + p ∈ N . Then, we
say that the sequence u is (i, p)-pseudo-periodic of period P = {ui, . . . , ui+p−1} from
I = {u0, . . . , ui−1}.

The interest of pseudo-periodic sequences is that this structure is preserved under the
derivation process.

Proposition 1.2.2. Let I = {x1, . . . , xi} be an i-tuple and P = {y1, . . . , yp} be a p-tuple
of elements in Z/2Z. Then, the derived sequence ∂S of the (i, p)-pseudo-periodic sequence
S = I.P∞ is also an (i, p)-pseudo-periodic sequence. More precisely, we have

∂ (I.P∞) = I ′.P ′∞,

with I ′ = (x1 + x2, x2 + x3, . . . , xi + y1) and P ′ = (y1 + y2, y2 + y3, . . . , yp + y1).

Moreover, the sequence of derived sequences of a pseudo-periodic sequence is also
pseudo-periodic.
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Proposition 1.2.3. For any pseudo-periodic binary sequence S, the sequence of derived
sequences (∂iS)i⩾0 is pseudo-periodic.

Proof. Suppose that S is an (i, p)-pseudo-periodic binary sequence. We know from Propo-
sition 1.2.2 that the sequence ∂kS is also an (i, p)-pseudo-periodic sequence, for all k ⩾ 0.
Since the number of (i, p)-pseudo-periodic binary sequences is finite (2i+p), it follows that
there exist integers k1 and k2 such that 0 ⩽ k1 < k2 and ∂k1S = ∂k2S. We conclude that
the sequence

(
∂kS

)
k⩾0

is (k1, k2 − k1)-pseudo-periodic.

Let S be an (i, p)-pseudo-periodic binary sequence. From Proposition 1.2.2, we know
that all its iterated derived sequences ∂kS are also (i, p)-pseudo-periodic, for all k ⩾ 0,
and from Proposition 1.2.3, there exist non-negative integers i′ and p′ such that the
sequence

(
∂kS

)
k⩾0

is (i′, p′)-pseudo-periodic. Then, for α = lcm(i, p, i′, p′), we have that
the sequence

(
∂kS

)
k⩾0

and every derived sequence ∂kS, for all k ⩾ 0, are (α, α)-periodic.
It follows that binary Steinhaus triangles ∇S[kα] have an iterative structure, as depicted
in Figure 1.4.

A0
A1 A2 A2 A2

B0
B1 B2 B2

B0
B1 B2

B0
B1

B0

Figure 1.4: Structure of binary Steinhaus triangles of pseudo-periodic sequences

Proposition 1.2.4. Let S be an (α, α)-pseudo-periodic binary sequence such that its
sequence of iterated derived sequences (∂iS)i⩾0 is also (α, α)-pseudo-periodic. Then, the
triangles ∇S[kα] are balanced for all k ⩾ 0 if and only if they are balanced for all k ∈
{1, 2, 3, 4}.

1.2.2 Harborth’s solution for the Steinhaus Problem

The first solution for the Steinhaus Problem appeared in 1972 in [71], where Harborth has
shown that there exist, for all the admissible sizes, balanced Steinhaus triangles whose
first row is a pseudo-periodic sequence of period length 12 and for which the sequence of
iterated derived sequences is fully periodic of period length 12.
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Theorem 1.2.5 (Harborth [71]). For any l ∈ {3, 4, 7, 8, 11, 12}, there exist I ∈ {0, 1}l and
P ∈ {0, 1}12 such that the sequence (∂i (I.P∞))i⩾0 of derivatives of I.P∞ is 12-periodic,
i.e.,

∂12 (I.P∞) = I.P∞,

and such that the Steinhaus triangle ∇
(
I.P k

)
, of size 12k + l, is balanced, for all k ⩾ 0.

The method can easily be explained: after determining the set of tuples I and P such
that ∂12 (I.P∞) = I.P∞, the periodic structure of ∇

(
I.P k

)
, as depicted in Figure 1.5,

implies that the Steinhaus triangles ∇
(
I.P k

)
are balanced, for all k ⩾ 0, if and only if

the elementary blocks

B0 = ∇I
B1 = ∇(I.P ) \ (B0 ⊔B0)
B2 = ∇(I.P 2) \ (∇(I.P ) ⊔B0 ⊔B1)

are balanced.

B0

B1 B2 B2

B0

B1 B2

B0

B1

B0

Figure 1.5: Structure of balanced triangles in Harborth’s solution

1.2.3 Strongly balanced binary Steinhaus triangles

Definition 1.2.6. Let S be a sequence of Z/2Z of length n. The binary Steinhaus
triangle ∇S is said to be strongly balanced if the sub-triangles ∇S[n− 4t] are balanced
for all t ∈

{
0, 1, . . . ,

⌊
n
4

⌋}
.

In [60], Eliahou and Hachez have shown that there exist, for all non-negative integers
n such that n ≡ 0 or 3 mod 4, strongly balanced Steinhaus triangles of size n. More
precisely, they completely determined the set of sequences generating strongly balanced
Steinhaus triangles of size n, for all admissible sizes.

Theorem 1.2.7 (Eliahou-Hachez [60]). The generating function g(t) =
∑∞

n=0 sb(n)t
n of

the number sb(n) of strongly balanced Steinhaus triangles of size n is given by the following
rational function:

g(t) =
4t92

1− t4
+ f0(t) +

(14 + 12t4 + 14t8) t127

1− t12
+ f3(t),
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where f0(t) and f3(t) are the following polynomials:

f0(t) = 1 + 6t4 + 18t8 + 30t12 + 52t16 + 80t20 + 88t24 + 106t28 + 116t32 + 124t36

+106t40 + 92t44 + 92t48 + 90t52 + 64t56 + 44t60 + 38t64 + 32t68 + 20t72

+20t76 + 8t80 + 8t84 + 6t88,

f3(t) = 4t3 + 8t7 + 16t11 + 26t15 + 36t19 + 48t23 + 48t27 + 66t31 + 88t35 + 108t39

+114t43 + 90t47 + 88t51 + 104t55 + 92t59 + 60t63 + 48t67 + 28t71 + 26t75

+26t79 + 20t83 + 16t87 + 18t91 + 14t95 + 14t99 + 14t103 + 14t107 + 16t111

+14t115 + 14t119 + 16t123.

Considering the binary sequences Q1, . . . , Q4 and R1, . . . , R12 of Table 1.1, the set of
strongly balanced Steinhaus triangles of sufficiently large size can then be described.

Q1 (0100) . (001001011100)∞

Q2 (010010000111)∞

Q3 (0101) . (011000011000)∞

Q4 (0101) . (101000101000)∞

R1 (001) . (010000100001)∞

R2 (0011110) . (001101010110)∞

R3 (010) . (000101000010)∞

R4 (0100001) . (010010111100001010111111)∞

R5 (0100001) . (100100001001)∞

R6 (0101011) . (010101100011)∞

R7 (0101011) . (010111111101011010011101)∞

R8 (010) . (101110110010)∞

R9 (100) . (001000010100)∞

R10 (1000010) . (110001101010)∞

R11 (1111101) . (011000110101)∞

R12 (111) . (110110000111)∞

Table 1.1: Sequences generating strongly balanced Steinhaus triangles

Theorem 1.2.8 (Eliahou-Hachez [60]). Let n be a non-negative integer.

i) If n ≡ 0 mod 4, then the Steinhaus triangles ∇(Qi[n]) are strongly balanced, for all
i ∈ {1, 2, 3, 4}. Conversely, every strongly balanced Steinhaus triangle of size n with
n ≡ 0 mod 4 and n ⩾ 92 is one of the triangles ∇(Qi[n]), where i ∈ {1, 2, 3, 4}.

ii) If n ≡ 3 mod 4, then the Steinhaus triangles ∇(Ri[n]) are strongly balanced, for all
i ∈ {1, . . . , 12}. Moreover, if n ⩾ 127, then every strongly balanced Steinhaus triangle
of size n is one of the triangles ∇(Ri[n]), where i ∈ {1, . . . , 12}, with the following
exceptions:

• if n ≡ 3 mod 12, there are two more strongly balanced Steinhaus triangles of size
n, namely ∇(R5[n− 4]. (0101)) and ∇(R8[n− 4]. (0100)).

• if n ≡ 7 mod 12, there are two more strongly balanced Steinhaus triangles of
size n, namely ∇(R8[n− 8]. (01001000)), and either ∇(R5[n− 8]. (01011111))
if n ≡ 7 mod 24, or ∇(R5[n− 8]. (01011010)) if n ≡ 19 mod 24.

The method can easily be explained: assume that the binary sequence X of length
n generates a strongly balanced Steinhaus triangle. An extension of X is any binary
sequence Y such that Y [n] = X. Let Y be any one of the 16 possible extensions of X of
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length n+ 4. Then, the Steinhaus triangle ∇Y is strongly balanced if and only if ∇Y is
balanced. This holds because ∇X is itself strongly balanced.

Note that the sequences in Theorem 1.2.8 are pseudo-periodic of period length 12
or 24, as in the Harborth’s proof. The proof directly follows from the pseudo-periodic
structure of the triangles as depicted in Figure 1.6 where the blocks T , A1, A3, B1 ⊔ B3,
C1 ⊔ C3, A2, B2 and C2 are balanced.

T
A1 B1 C1 A1 B1 C1 A1 B1 C1

A3

B3

C3

A3

B3

C3

A3

B3

C3

A2

B2

C2

A2

B2

C2

A2

B2

C2

Figure 1.6: Structure of the Steinhaus triangle ∇(Q1[52])

1.2.4 Other solutions for the Steinhaus Problem

There exist other interesting solutions to the Steinhaus Problem.

Definition 1.2.9. Let S = (aj)1⩽j⩽n be a sequence of Z/2Z of length n. The reversed
sequence of S is the sequence S = (an−j+1)1⩽j⩽n. The sequence S is said to be symmetric
if S = S, i.e., if an−j+1 = aj, for all j ∈ {1, . . . , n}. It is said to be antisymmetric if
S + S = (1)n, i.e., if xn−j+1 ≡ xj + 1 mod 2, for all j ∈ {1, . . . , n}.

A solution, based on binary Steinhaus triangles generated from symmetric and anti-
symmetric sequences, appeared in [61].

Theorem 1.2.10 (Eliahou-Hachez [61]). Let n be a non-negative integer.

i) There exists a symmetric binary sequence of length n that generates a balanced Stein-
haus triangle if and only if n ≡ 0, 3 or 7 mod 8.

ii) There exists an antisymmetric binary sequence of length n that generates a balanced
Steinhaus triangle if and only if n ≡ 4 mod 8.

Another solution, based on Steinhaus triangles generated from balanced binary se-
quences, that are binary sequences containing as many 0’s as 1’s, can be found in [57].
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Theorem 1.2.11 (Eliahou-Marín-Revuelta [57]). For any integer n divisible by 4, there
exists a balanced binary sequence of length n that generates a balanced Steinhaus triangle.

This produces a complete solution for the Steinhaus Problem since if S is a balanced
binary sequence of length n ≡ 0 mod 4 such that ∇S is balanced, then it is clear that
∇(∂S) is a balanced Steinhaus triangle of size n− 1 ≡ 3 mod 4.

Note that the solutions in [61, 57] admit a pseudo-periodic structure too. In the next
section, a fully periodic solution of the Steinhaus Problem is given.

1.3 Periodic almost-balanced binary triangles
In this section, we present a recent solution (Chappelon 2017 [C7]) of Problem 1.1.32,
that is a generalization of the Steinhaus Problem in two directions: for binary generalized
Pascal triangles and when the number of elements constituting a triangle is odd. This
problem is solved in the positive in this section. The solution presented here is constructive
and based on periodic binary triangles, that are binary triangles where each row or column
is a periodic sequence.

1.3.1 Orbits of doubly infinite binary sequences

Let us begin with some definitions and terminology. As for infinite or finite binary se-
quences, the derivation process can be considered on doubly infinite binary sequences.

Definition 1.3.1 (Derived sequence). Let S = (aj)j∈Z be a doubly infinite sequence of
Z/2Z. The derived sequence ∂S is the sequence

∂S = (aj−1 + aj)j∈Z .

This derivation process can be iterated and, for every positive integer i, the i-th derived
sequence ∂iS is recursively defined by ∂iS = ∂ (∂i−1S), with ∂0S = S.

Definition 1.3.2 (Orbit). Let S = (aj)j∈Z be a doubly infinite sequence of Z/2Z. The
orbit OS is the sequence of all the iterated derived sequences of S, that is,

OS =
(
∂iS
)
i∈N .

The orbit of S can also be seen as the doubly indexed sequence OS = (ai,j)(i,j)∈N×Z
recursively defined by

i) a0,j = aj, for all j ∈ Z, and

ii) ai,j = ai−1,j−1 + ai−1,j, for all i ⩾ 1 and for all j ∈ Z.

Using the local rule (LR), it is straightforward to see that any element of the orbit OS

can be expressed in function of the terms of the sequence S.

Proposition 1.3.3. Let S = (aj)j∈Z be a doubly infinite sequence of Z/2Z. In the orbit
OS = (ai,j)(i,j)∈N×Z, we have

ai,j =
i∑

k=0

(
i

k

)
aj−k,

for all (i, j) ∈ N× Z.
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An example of orbit OS associated with the sequence

S = . . . . . . 0010101100001100001001110 . . . . . .

is depicted in Figure 1.7.

0 0 1 0 1 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 1 0
1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 1
1 1 1 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 1 0 1 1 1 0 1
1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1 1
0 1 0 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 0 1 0
1 1 1 1 0 1 0 1 0 1 1 0 0 0 1 0 1 0 0 1 0 1 1 1 1
0 0 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 0 0 0
0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 1 0 0
0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1 0 1 1 0
1 0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 1 0 1 1 1 1 1 0 1
1 1 0 0 1 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 1 1
0 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 1 0
1 0 1 1 1 1 0 0 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1
0 1 1 0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 1 1 0 1 0 1 0

Figure 1.7: Binary triangles appearing in an orbit OS

Binary triangles can then been considered as appearing in orbits of binary sequences.
Example of triangles appearing in an orbit OS is represented in Figure 1.7.

Notation 1.3.4.

i) Let ∇S(i0, j0, n) denote the down-pointing triangle whose principal vertex is at the
position (i0, j0) ∈ N×Z in the orbit OS = (ai,j)(i,j)∈N×Z and of size n, i.e., the binary
Steinhaus triangle

∇S(i0, j0, n) = (ai0+i,j0+j)0⩽i⩽j⩽n−1 .

ii) Let ∆S(i0, j0, n) denote the up-pointing triangle whose principal vertex is at the
position (i0, j0) ∈ N × Z in the orbit OS and of size n, i.e., the binary generalized
Pascal triangle

∆S(i0, j0, n) = (ai0+i,j0+j)0⩽j⩽i⩽n−1 .

The main result of this section is the following

Theorem 1.3.5 (Chappelon [C7]). There exists a binary doubly infinite sequence S such
that its orbit OS contains almost-balanced Steinhaus triangles and almost-balanced gener-
alized Pascal triangles of size n, for all non-negative integers n.

This theorem positively solves Problem 1.1.32 for the two kinds of triangles, even when
the triangles contain an odd number of terms. Note that the existence of almost-balanced
Steinhaus triangles with odd cardinality was first announced, without proof, in [60]. For
the generalized Pascal triangles, the result was known but has not been published before.
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1.3.2 Periodic orbits

The definition and notations for (in)finite periodic sequences previously used can be ex-
tended to the case of doubly infinite periodic sequences.

Notation 1.3.6. For any n-tuple X = (a0, a1, . . . , an−1), the doubly infinite sequence
X∞ = (bj)j∈Z is defined by bkn+j = aj for all k ∈ Z and for all j ∈ {0, 1, . . . , n− 1}. For
any doubly infinite sequence S = (aj)j∈Z and any positive integer n, we denote by S[n]
the initial segment of length n of S, that is, the n-tuple S[n] = (a0, a1, . . . , an−1).

Definition 1.3.7 (Periodic sequence). Let p be a positive integer and let S = (aj)j∈Z be
a doubly infinite sequence of elements in Z/2Z. The sequence S is said to be periodic of
period p, or p-periodic, if aj+p = aj for all j ∈ Z. The p-periodicity of S is denoted by
S = (a0, a1, . . . , ap−1)

∞, where the p-tuple (a0, a1, . . . , ap−1) is a period of S.

As for (in)finite binary sequences, it is clear that the periodicity of a doubly infinite
sequence is preserved under the derivation process.

Proposition 1.3.8. For any p-tuple (a0, a1, . . . , ap−1) of Z/2Z, we have

∂ (a0, a1, . . . , ap−1)
∞ = (ap−1 + a0, a0 + a1, . . . , ap−2 + ap−1)

∞

Moreover, its sequence of derived sequences is pseudo-periodic.

Proposition 1.3.9 (Chappelon [C7]). The orbit of a periodic sequence is a pseudo-
periodic sequence.

Proof. As in the proof of Proposition 1.2.3.

Here, we will study the special case where the orbit is fully periodic.

Definition 1.3.10 (Periodic orbit). Let S be a doubly infinite binary sequence. Its orbit
OS = (ai,j)(i,j)∈N×Z is said to be p-periodic if every row and every column is a p-periodic
sequence, i.e., if the equalities

ai,j+p = ai,j and ai+p,j = ai,j

hold for all i ∈ N and all j ∈ Z. In other words, the orbit (ai,j)(i,j)∈N×Z is p-periodic if the
equality

ai,j = ai,j

holds, for all (i, j) ∈ N × Z, where x is the remainder in the euclidean division of x by
p. Any square Pi0,j0 = (ai0+i,j0+j)0⩽i,j⩽p−1 of size p is said to be a period of the p-periodic
orbit OS.

Remark 1.3.11. All the periods of a p-periodic orbit have the same multiplicity function,
i.e., we have mPi0,j0

= mP0,0 for all (i0, j0) ∈ N× Z.

For example, as depicted in Figure 1.8, the orbit OX∞ associated with the 6-tuple
X = 010100 is 6-periodic. Note that a binary triangle appearing in a periodic orbit is
simply a periodic binary triangle, as defined above.

The set of p-tuples of Z/2Z that generate p-periodic orbits is given in the following
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0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0
0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0
0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1
1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1
0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1
1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1
0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0
0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0
0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1
1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1
0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1
1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1

Figure 1.8: The 6-periodic orbit O010100∞

Theorem 1.3.12 (Harborth [71] - Chappelon [C7]). The orbit OX∞ associated with the
p-tuple X = (a0, a1, . . . , ap−1) is p-periodic if and only if the vector vX = (a0, a1, . . . , ap−1)

t

is in the kernel of the matrix Wp which is the Wendt matrix of size p modulo 2, i.e., the
circulant matrix of the binomial coefficients modulo 2

Wp =
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p
p

) (
p

p−1

) (
p

p−2

)
· · ·

(
p
1

)(
p
1

) (
p
p

) (
p

p−1

)
· · ·

(
p
2

)
...

...
...

...(
p

p−1

) (
p

p−2

) (
p

p−3

)
· · ·

(
p
p

)

 .

Notation 1.3.13. The set of p-tuples X that generate p-periodic orbits OX∞ is denoted
by POp.

The set POp is then a Z/2Z-vector space isomorphic to the kernel of the Wendt matrix
Wp of size p modulo 2. Table 1.2 gives dimker(Wp) and |POp| = 2dimker(Wp) for the first
few values of p.

p 1 2 3 4 5 6 7 8 9 10 11 12

dimker(Wp) 0 0 2 0 0 4 6 0 2 0 0 8

p 13 14 15 16 17 18 19 20 21 22 23 24

dimker(Wp) 0 12 14 0 0 4 0 0 8 0 0 16

Table 1.2: The first few values of dimker(Wp)

For example, for p = 6, we have dimker(W6) = 4 and |PO6| = 24 = 16. There are
then 16 different 6-tuples that generate a 6-periodic orbit. More precisely, the set PO6 is
given by

PO6 = ⟨000101, 001010, 010001, 100010⟩
= {000000, 000101, 001010, 001111, 010001, 010100, 011011, 011110,

100010, 100111, 101000, 101101, 110011, 110110, 111001, 111100} .

We recall here that the 6-tuple X = 010100 generates a 6-periodic orbit as depicted in
Figure 1.8.
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1.3.3 Symmetry group of POp

In this subsection, a symmetry group on the set of p-tuples that generate p-periodic orbits
is defined. First, the notion of translation and the action of the dihedral group D3 on
periodic orbits are introduced.

Translation

Definition 1.3.14. Let OX∞ = (ai,j)(i,j)∈N×Z be the p-periodic orbit associated with
X = (a0, a1, . . . , ap−1) ∈ POp. The translate of X by the vector (u, v) ∈ Z2 is the p-tuple
tu,v(X) = (a−u,j−v)0⩽j⩽p−1.

From Proposition 1.3.3, we know that

tu,v(X) =

(
−u∑
k=0

(−u
k

)
aj−v−k

)
0⩽j⩽p−1

.

From the definition of tu,v(X), it is clear that

Otu,v(X)∞ =
(
ai−u,j−v

)
(i,j)∈N×Z .

Therefore tu,v is an automorphism of POp. Moreover, the application

(Z2,+) −→ (Aut(POp), ◦)
(u, v) 7−→ tu,v

is a group morphism.
For example, the translate of the 6-tuple 010100 ∈ PO6 (Figure 1.8) by the vector

(2, 3) is t2,3(010100) = 101000, as we can see in its orbit Ot2,3(010100)
∞ = O101000∞ depicted

in Figure 1.9.

1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0
1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0
1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0
1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1
0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0
0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1
1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0
1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0
1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0
1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1
0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0
0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1

Figure 1.9: The translate t2,3(010100) = 101000

The dihedral group D3

First, consider the binary Steinhaus triangles ∇S = (ai,j)0⩽i⩽j⩽n−1 of size n. The left and
right sides of ∇S are the sequences l(S) = (an−1−i,n−1−i)0⩽i⩽n−1 and r(S) = (ai,n−1)0⩽i⩽n−1,
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respectively. From (1.1), we know that l(S) and r(S) can be expressed as functions of the
elements of S = (aj)0⩽j⩽n−1

l(S) =

(
n−1−i∑
k=0

(
n− 1− i

k

)
an−1−i−k

)
0⩽i⩽n−1

and r(S) =

(
i∑

k=0

(
i

k

)
an−1−k

)
0⩽i⩽n−1

.

The reversed sequence of S is the sequence read from the right to the left, that is i(S) =
(an−1−j)0⩽j⩽n−1.

Due to the symmetries involved in the local rule that generates ∇S, the Pascal local
rule modulo 2, it is known that the Steinhaus triangles ∇l(S), ∇r(S) and ∇i(S) correspond
to the rotations of ∓120 degrees around the center of the triangle ∇S and the reflection
across the vertical line through the center of ∇S, respectively. More precisely, for all
integers i and j such that 1 ⩽ i ⩽ j ⩽ n− 1, we have

ai−1,j−1 + ai−1,j = ai,j ⇐⇒ ai−1,j + ai,j = ai−1,j−1 ⇐⇒ ai−1,j−1 + ai,j = ai−1,j. (1.5)

Therefore

∇l(S) = ∇(an−1−j,n−1−j)0⩽j⩽n−1 = (an−1−j,n−1−j+i)0⩽i⩽j⩽n−1,

∇r(S) = ∇(aj,n−1)0⩽j⩽n−1 = (aj−i,n−1−i)0⩽i⩽j⩽n−1,

∇i(S) = ∇(a0,n−1−j)0⩽j⩽n−1 = (ai,n−1+i−j)0⩽i⩽j⩽n−1.

Since
r3 = i2 = (ir)2 = id(Z/2Z)n ,

the subgroup of (Aut((Z/2Z)n), ◦), the group of automorphisms of the vector space of
n-tuples over Z/2Z, generated by r and i is isomorphic to the dihedral group D3〈

r, i
∣∣r3 = i2 = (ir)2 = id(Z/2Z)n

〉
= D3.

As depicted in Figure 1.10, it is easy to see that the multiplicity function of a Steinhaus
triangle is invariant under the action of the dihedral group D3. Indeed, for any finite
sequence S, we have

m∇S = m∇r(S) = m∇i(S).

0 1 0 0
1 1 0
0 1
1

0 0 1 1
0 1 0
1 1
0

1 0 1 0
1 1 1
0 0
0

0 0 1 0
0 1 1
1 0
1

0 1 0 1
1 1 1
0 0
0

1 1 0 0
0 1 0
1 1
0

∇S ∇r(S) ∇r2(S) ∇i(S) ∇ri(S) ∇r2i(S)

Figure 1.10: Action of D3 on ∇(0100)

The study of rotationally symmetric triangles and dihedrally symmetric triangles, that
are triangles ∇S such that S = r(S) and S = r(S) = i(S), respectively, can be found in
[26, 39] and [C8] and in next chapter.

Now, we consider the restrictions of r and i to the vector space POp of p-tuples that
generate p-periodic orbits. Since we only consider these restrictions, they are also denoted
by r and i in the sequel.
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Proposition 1.3.15 (Chappelon [C7]). For all positive integers p, we have

r (POp) = i (POp) = POp.

It follows that r and i are automorphisms of the vector space POp and the subgroup
of (Aut(POp), ◦) generated by r and i is also isomorphic to the dihedral group D3

D3 = ⟨r, i⟩ =
{
idPOp , r, r

2, i, ri, r2i
}
.

More precisely, for any p-tuple X, we have

OX∞ = (ai,j)(i,j)∈N×Z Oi(X)∞ = (ai,i−j−1)(i,j)∈N×Z
Or(X)∞ = (aj−i,−i−1)(i,j)∈N×Z Ori(X)∞ = (a−j−1,−i−1)(i,j)∈N×Z
Or2(X)∞ = (a−j−1,i−j−1)(i,j)∈N×Z Or2i(X)∞ = (aj−i,j)(i,j)∈N×Z

For instance, a representation of Og(010100)∞ for all g ∈ D3 is given in Figure 1.11.

1 1 0 0 1 1 1 1
0 0 1 0 1 0 0 0
0 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0
1 1 1 1 0 0 1 1
1 0 0 0 1 0 1 0
1 1 0 0 1 1 1 1
0 0 1 0 1 0 0 0

0 0 0 1 0 1 0 0
1 0 0 1 1 1 1 0
0 1 0 1 0 0 0 1
0 1 1 1 1 0 0 1
0 1 0 0 0 1 0 1
1 1 1 0 0 1 1 1
0 0 0 1 0 1 0 0
1 0 0 1 1 1 1 0

0 1 1 1 1 0 0 1
0 1 0 0 0 1 0 1
1 1 1 0 0 1 1 1
0 0 0 1 0 1 0 0
1 0 0 1 1 1 1 0
0 1 0 1 0 0 0 1
0 1 1 1 1 0 0 1
0 1 0 0 0 1 0 1

OX∞ Or(X)∞ Or2(X)∞

1 1 1 0 0 1 1 1
0 0 0 1 0 1 0 0
1 0 0 1 1 1 1 0
0 1 0 1 0 0 0 1
0 1 1 1 1 0 0 1
0 1 0 0 0 1 0 1
1 1 1 0 0 1 1 1
0 0 0 1 0 1 0 0

0 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0
1 1 1 1 0 0 1 1
1 0 0 0 1 0 1 0
1 1 0 0 1 1 1 1
0 0 1 0 1 0 0 0
0 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0

0 1 0 1 0 0 0 1
0 1 1 1 1 0 0 1
0 1 0 0 0 1 0 1
1 1 1 0 0 1 1 1
0 0 0 1 0 1 0 0
1 0 0 1 1 1 1 0
0 1 0 1 0 0 0 1
0 1 1 1 1 0 0 1

Oi(X)∞ Ori(X)∞ Or2i(X)∞

Figure 1.11: Action of D3 on O010100∞

The symmetry group of POp

Let G be the subgroup of (Aut(POp), ◦) generated by r, i, t1,0 and t0,1, that is,

G := ⟨r, i, t1,0, t0,1⟩ .
As in D3, the equality ir = r2i holds in G. The equalities involving the translations are
listed below.

Proposition 1.3.16. For all (u, v) ∈ Z2, the equalities rtu,v = tv−u,−ur and itu,v = tu,u−vi
hold.

From these equalities, it is clear that each element g ∈ G can be uniquely written as

g = tu,vr
αiβ

with u, v ∈ {0, 1, . . . , p− 1}, α ∈ {0, 1, 2} and β ∈ {0, 1}. Therefore G is a group of order
|G| = 6p2.
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Equivalence classes of POp

Now, we consider the binary relation ∼G on the set POp defined by X1 ∼G X2 if and only
if there exists g ∈ G such that X2 = g(X1). Since G is a subgroup of (Aut(POp), ◦), it
is clear that ∼G is an equivalence relation on POp. Therefore, to search almost-balanced
triangles, it is sufficient to examine only one representative of each equivalence classe in
the set POp := POp/ ∼G. In the sequel, the equivalence class of the tuple X is denoted
by X and the lexicographically smallest tuple X is used as the representative of each
equivalence class X.

For example, for p = 6, PO6 consists of 3 equivalence classes that contain the 16
tuples of PO6 generating 6-periodic orbits. More precisely,

PO6 = {{000000} , {000101, 001010, 001111, 010001, 010100, 011110, 100010,
100111, 101000, 110011, 111001, 111100} , {011011, 101101, 110110}}

=
{
000000, 000101, 011011

}
since

001010 = t0,5(000101) 100010 = t0,1(000101) 101101 = t0,1(011011)
001111 = t1,3(000101) 100111 = t1,4(000101) 110110 = t0,2(011011)
010001 = t0,2(000101) 101000 = t0,3(000101)
010100 = t0,4(000101) 110011 = t1,5(000101)
011110 = t1,2(000101) 111001 = t1,0(000101)

111100 = t1,1(000101)

The 6-periodic orbits associated with these 3 equivalence classes are depicted in Fig-
ure 1.12.

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1 1 1 1 0 0 1 1
1 0 0 0 1 0 1 0
1 1 0 0 1 1 1 1
0 0 1 0 1 0 0 0
0 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0
1 1 1 1 0 0 1 1
1 0 0 0 1 0 1 0

1 1 0 1 1 0 1 1
1 0 1 1 0 1 1 0
0 1 1 0 1 1 0 1
1 1 0 1 1 0 1 1
1 0 1 1 0 1 1 0
0 1 1 0 1 1 0 1
1 1 0 1 1 0 1 1
1 0 1 1 0 1 1 0

Figure 1.12: The set PO6 =
{
000000, 000101, 011011

}
Table 1.3 gives

∣∣POp

∣∣ for the first few values of p.

p 1 2 3 4 5 6 7 8 9 10 11 12

|POp| 1 1 22 1 1 24 26 1 22 1 1 28∣∣POp

∣∣ 1 1 2 1 1 3 3 1 2 1 1 7

p 13 14 15 16 17 18 19 20 21 22 23 24

|POp| 1 212 214 1 1 24 1 1 28 1 1 216∣∣POp

∣∣ 1 13 30 1 1 3 1 1 6 1 1 92

Table 1.3: The first few values of
∣∣POp

∣∣
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1.3.4 Family of periodic almost-balanced Steinhaus triangles with
the same principal vertex

In this subsection, we determine necessary and sufficient conditions for obtaining, in a
p-periodic orbit, an infinite family of almost-balanced Steinhaus triangles with the same
principal vertex.

Proposition 1.3.17 (Chappelon [C7]). Let S = X∞ with X ∈ POp, (i0, j0) ∈ N×Z and
r ∈ {0, 1, . . . , p− 1}. The Steinhaus triangles

Tk := ∇S(i0, j0, kp+ r)

are almost-balanced for all non-negative integers k if and only if the triangle T0, the
multiset difference T1 \ T0 and the period P are almost-balanced, with p divisible by 4.

This is the reason why, in the sequel of this section, we only consider p-periodic orbits
with a balanced period and where p is divisible by 4.

Note that the period of the orbit generated from every element of a same equivalence
class of POp has the same multiplicity function. Let us denote by BPOp the set of all
the equivalence classes of POp having a balanced period. Table 1.4 gives

∣∣BPOp

∣∣ for the
first few values of p divisible by 4.

p 4 8 12 16 20 24

|POp| 1 1 256 1 1 65536∣∣POp

∣∣ 1 1 7 1 1 92∣∣BPOp

∣∣ 0 0 2 0 0 17

Table 1.4: The first few values of
∣∣BPOp

∣∣
More precisely, we obtain

BPO12 =
{
Y1, Y2

}
=
{
000001110111, 000101000101

}
and BPO24 =

{
X1, X2, . . . , X17

}
, where the 17 representatives Xi are given in Table 1.5.

Note that X16 = Y 2
1 and X17 = Y 2

2 . Therefore the orbits OX∞
16

and OX∞
17

correspond to
OY ∞

1
and OY ∞

2
, respectively. A representation of the orbits generated from the elements

of BPO12 and BPO24 can be found in Appendix A.

1.3.5 Periodic almost-balanced binary triangles

In this subsection we will prove Theorem 1.3.5, the main result of this section.
Let X be a p-tuple of Z/2Z, with p divisible by 4, such that X is in BPOp and let

S := X∞. Now, for each remainder r ∈ {0, 1, . . . , p − 1} and for each position (i0, j0) ∈
{0, 1, . . . , p− 1}2, we test if the blocks ∇S(i0, j0, r) and ∇S(i0, j0, p+ r)\∇S(i0, j0, r) are
almost-balanced. If this is the case, we know from Proposition 1.3.17 that the Steinhaus
triangles ∇S(i0, j0, kp+ r) are almost-balanced for all non-negative integers k.

Let RX denote the set of remainders r ∈ {0, 1, . . . , p − 1} for which there exists a
position (i0, j0) ∈ {0, 1, . . . , p− 1}2 such that the Steinhaus triangles ∇S(i0, j0, kp + r)
are almost-balanced for all non-negative integers k.
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i Xi

1 000000000110101101101011
2 000000001001011110010111
3 000000010010011000100111
4 000000010110111001101111
5 000000010111110001111101
6 000000100001111100011101
7 000000100010100100101011
8 000000100011101100111001
9 000000101000111110001101

i Xi

10 000000101001110110011111
11 000001000010010100100001
12 000001000101101101011111
13 000001001000001110000111
14 000001001111110111111001
15 000001100001100100011111
16 000001110111000001110111
17 000101000101000101000101

Table 1.5: The representatives Xi of BPO24 =
{
X1, X2, . . . , X17

}
From Table 1.4, the first values of p, divisible by 4, for which BPOp ̸= ∅ are 12

and 24. For p = 12, we find that RYi
= ∅ for each of the two equivalence classes

BPO12 =
{
Y1, Y2

}
. For p = 24, we find that RXi

̸= ∅ for the first 15 of the 17 equivalence
classes of BPO24 =

{
X1, X2, . . . , X17

}
. Note that the two equivalence classes X of BPO24

such that RX = ∅ are exactly of the form X = Y 2 with Y ∈ BPO12 (as already seen
X16 = Y 2

1 and X17 = Y 2
2 ). More precisely, Table 1.6 gives the exact number of remainders

constituting RX for each X ∈ BPO24.

i Xi |RXi
|

1 000000000110101101101011 18

2 000000001001011110010111 16

3 000000010010011000100111 23

4 000000010110111001101111 24

5 000000010111110001111101 17

6 000000100001111100011101 24

7 000000100010100100101011 24

8 000000100011101100111001 24

9 000000101000111110001101 24

10 000000101001110110011111 23

11 000001000010010100100001 24

12 000001000101101101011111 23

13 000001001000001110000111 20

14 000001001111110111111001 20

15 000001100001100100011111 23

16 000001110111000001110111 0

17 000101000101000101000101 0

Table 1.6: |RX | for all X ∈ BPO24

For six equivalence classes X of BPO24, we find that |RX | = 24 and thus, from these
24-tuples, we obtain the proof of Theorem 1.3.5 for Steinhaus triangles, i.e., there exist
periodic orbits containing almost-balanced Steinhaus triangles of size n for all n ⩾ 1.
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For instance, in the orbit OX∞
9

associated with the 24-tuple

X9 = 000000101000111110001101,

the existence of almost-balanced Steinhaus triangles for all the possible sizes can be ob-
tained from at least 4 positions. Table 1.7 gives positions (i0, j0) in the orbit OX∞

9
for which

the Steinhaus triangles ∇X∞
9 (i0, j0, 24k+r) are almost-balanced for all non-negative inte-

gers k and the corresponding 24-tuples Z such that ∇Z∞[24k + r] = ∇X∞
9 (i0, j0, 24k+r).

r (i0, j0) Z
0, 4, 7, 8, 12, 13, 15, 16, 21, 22, 23 (1, 11) 010000100101110000011110
1, 2, 3, 5, 10, 17, 18, 19, 20, 21 (1, 6) 111100100001001011100000

0, 1, 6, 9, 14, 22, 23 (6, 9) 000111010101000101001100
11 (3, 3) 000110011101001011001011

Table 1.7: Almost-balanced Steinhaus triangles ∇X∞
9 (i0, j0, 24k + r) = ∇Z∞[24k + r]

The family of almost-balanced Steinhaus triangles ∇X∞
9 (6, 9, 24k + 6), appearing in

the orbit OX∞
9

, is depicted in Figure 1.13, where empty and full squares correspond to
0 and 1 respectively. Indeed, we can verify that the blocks T0 := ∇X∞

9 (6, 9, 6), T1 \
T0 := ∇X∞

9 (6, 9, 30) \ ∇X∞
9 (6, 9, 6) and the period P are almost-balanced, since their

multiplicity functions, given in Table 1.8, are constant or almost constant.

x mT0(x) mT1\T0(x) mP (x)
0 11 222 288
1 10 222 288

Table 1.8: The multiplicity functions of T0, T1 \ T0 and P

The following proposition concludes the proof of Theorem 1.3.5 by showing that in an
orbit OX∞ generated from a p-tuple X such that X ∈ BPOp, the existence of almost-
balanced Steinhaus triangles implies that of almost-balanced generalized Pascal triangles.

Proposition 1.3.18 (Chappelon [C7]). Let S = X∞ with X ∈ BPOp, (i0, j0) ∈ N × Z,
r ∈ {0, 1, . . . , p− 1} and p divisible by 4. Then, the Steinhaus triangles ∇S(i0, j0, kp+ r)
are almost-balanced for all non-negative integers k if and only if the generalized Pascal
triangles ∆S(i0 + r + 1, j0 + r, kp+ (p− 1− r)) are almost-balanced for all non-negative
integers k.

Using Proposition 1.3.18 and the families of almost-balanced Steinhaus triangles ap-
pearing in the orbit OX∞

9
associated with the 24-tuple X9 = 000000101000111110001101

given in Table 1.7, we obtain the existence of almost-balanced generalized Pascal triangles
for all the possible sizes.

Moreover, in the orbit OX∞
9

, the existence of almost-balanced generalized Pascal tri-
angles for all the possible sizes can also be obtained from only 6 positions. This result
is not obtained by using Proposition 1.3.18 but by testing, at each position (i0, j0) and
for each remainder r, if the elementary blocks V1 and V0 ∪ V1 are almost-balanced, where
V1 = ∆X∞

9 (i0, j0, r) and V0 = ∆X∞
9 (i0, j0, p+r)\(∆X∞

9 (i0, j0, r)∪∆X∞
9 (i0+p, j0+p, r)).

The corresponding values appear in Table 1.9.
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Figure 1.13: The balanced Steinhaus triangles ∇X∞
9 (6, 9, 24k + 6)

r (i0, j0) Zl Zr

1, 7, 15, 23 (0, 9) 010001000111110100111001 000110010000010000011101
4, 5, 12, 13, 21 (7, 22) 011111110100110100110010 001010010111111101010110
3, 6, 14, 19, 22 (7, 4) 011110011111101110000010 010001001010001011100110
2, 10, 18, 20 (4, 15) 100111011100010101011000 110100010100011010010111
0, 8, 16, 22 (1, 2) 001011100111100001010110 000010000011101000110010
1, 3, 9, 11, 17 (6, 7) 011000100111011100010101 000001110100011001000001

Table 1.9: Almost-balanced triangles ∆X∞
9 (i0, j0, 24k+r) = ∆(Z∞

l [24k + r], Z∞
r [24k + r])



Chapter 2

Symmetric binary triangles

In this chapter, we study binary triangles that are invariant under the action of subgroups
of the dihedral group D3.

2.1 Symmetric binary Steinhaus triangles
Let n be a positive integer. We consider the set ST (n) of binary Steinhaus triangles of
size n. We already know that ST (n) is a vector space over Z/2Z of dimension n. We
begin by recalling that the dihedral group D3 acts on ST (n).

Let (ai,j)1⩽i⩽j⩽n be a binary Steinhaus triangle of size n. The local rule (LR)

ai,j = ai−1,j−1 + ai−1,j

can also be written as

ai−1,j−1 = ai−1,j + ai,j or ai,j = ai−1,j + ai−1,j−1,

for all integers i and j such that 2 ⩽ i ⩽ j ⩽ n. This is the reason why the 120 degrees
rotation and the horizontal reflection of a Steinhaus triangle are also Steinhaus triangles,
of the same size.

Definition 2.1.1 (Rotation and horizontal reflection). Let r and h be the 120 degrees
rotation and the horizontal reflection of binary Steinhaus triangles, that are the automor-
phisms of ST (n) defined by

r : ST (n) −→ ST (n)
(ai,j)1⩽i⩽j⩽n 7−→ (aj−i+1,n−i+1)1⩽i⩽j⩽n

and
h : ST (n) −→ ST (n)

(ai,j)1⩽i⩽j⩽n 7−→ (ai,n−j+i)1⩽i⩽j⩽n

for all non-negative integers n.

These automorphisms verify the following identities

r3 = h2 = hrhr = idST (n),

where idST (n) is the identity map on ST (n). Therefore, the subgroup ⟨r, h⟩ generated by
r and h, of the automorphism group of ST (n), is isomorphic to the dihedral group D3.

35
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1 1 0 0 1
0 1 0 1

1 1 1
0 0

0

1 1 1 0 0
0 0 1 0

0 1 1
1 0

1

0 0 1 0 1
0 1 1 1

1 0 0
1 0

1

1 0 0 1 1
1 0 1 0

1 1 1
0 0

0

1 0 1 0 0
1 1 1 0

0 0 1
0 1

1

0 0 1 1 1
0 1 0 0

1 1 0
0 1

1

∇S r (∇S) r2 (∇S) h (∇S) rh (∇S) r2h (∇S)

Figure 2.1: Action of D3 on ∇(11001)

This induces a faithful representation of D3 on ST (n), for all non-negative integers n. In
the sequel, the automorphism subgroup ⟨r, h⟩ is simply denoted by D3. For instance, for
S = (11001) and for all g ∈ D3, the Steinhaus triangles g (∇S) are depicted in Figure 2.1.

For any subgroup G of D3 and any non-negative integer n, we consider the linear
subspace of invariant triangles of ST (n) under G, that is,

ST (n)G = {∇ ∈ ST (n) | ∀g ∈ G, g (∇) = ∇} .

It is well known that there are exactly 6 subgroups of D3, that are
{
idST (n)

}
, ⟨h⟩, ⟨rh⟩,

⟨r2h⟩, ⟨r⟩ and D3. Obviously, we have ST (n)G = ST (n) for the trivial subgroup G ={
idST (n)

}
. Moreover, by the linear maps

ST (n)⟨h⟩ −→ ST (n)⟨rh⟩

∇ 7−→ r2 (∇)

and
ST (n)⟨h⟩ −→ ST (n)⟨r2h⟩

∇ 7−→ r (∇)

it is clear that the three linear subspaces ST (n)⟨h⟩, ST (n)⟨rh⟩ and ST (n)⟨r2h⟩ are isomor-
phic to each other. Therefore, for all non-negative integers n, we only consider the linear
subspaces ST (n)⟨h⟩, ST (n)⟨r⟩ and ST (n)D3 .

Notation 2.1.2. For all non-negative integers n, the linear subspaces ST (n)⟨h⟩, ST (n)⟨r⟩

and ST (n)D3 are denoted by HST (n), RST (n) and DST (n), respectively. Obviously,
these vector spaces simply correspond to ker

(
h− idST (n)

)
, ker

(
r − idST (n)

)
and their

intersection, respectively.

Definition 2.1.3 (Symmetric binary Steinhaus triangles). A binary Steinhaus triangle
∇ of HST (n), RST (n) or DST (n) is said to be horizontally symmetric, rotationally
symmetric or dihedrally symmetric, respectively, and verifies h (∇) = ∇, r (∇) = ∇ or
r (∇) = h (∇) = ∇, respectively.

Examples of such symmetric Steinhaus triangles appear in Figure 2.2.
In [26], it was proved that

• dimHST (n) =
⌈
n
2

⌉
,

• dimRST (n) =
⌊
n
3

⌋
+ δ1,(n mod 3),

• dimDST (n) =
⌊
n+3
6

⌋
+ δ1,(n mod 6),
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1 1 0 0 1 1
0 1 0 1 0
1 1 1 1
0 0 0
0 0
0

1 0 0 1 1 1
1 0 1 0 0
1 1 1 0
0 0 1
0 1
1

0 1 1 1 1 0
1 0 0 0 1
1 0 0 1
1 0 1
1 1
0

Figure 2.2: Triangles of HST (6), RST (6) and DST (6).

for all non-negative integers n, where δi,(n mod j) is equal to 1, if n ≡ i mod j, and 0
otherwise. Bases of HST (n), RST (n) and DST (n), for all non-negative integers n,
are obtained in [39]. In this chapter, we give new bases, for each of these three linear
subspaces, which are simpler than those mentioned. They are obtained by considering
elementary properties of generalized binomial coefficients and the notion of generating
index sets of Steinhaus triangles. These results can be found in [C8] for the most part.

2.2 Generating index sets
Let n be a positive integer. We denote by ∇(n) the index set of Steinhaus triangles of
size n, that is,

∇(n) =
{
(i, j) ∈ N2

∣∣ 1 ⩽ i ⩽ j ⩽ n
}
.

Definition 2.2.1 (Generating index set of ST (n)). A subset G of ∇(n) is said to be
a generating index set of ST (n) if the knowledge of the values ai,j, for all (i, j) ∈ G,
uniquely determines the whole Steinhaus triangle (ai,j)1⩽i⩽j⩽n, i.e., if the linear map

πG : ST (n) −→ {0, 1}G
(ai,j)1⩽i⩽j⩽n 7−→ (ai,j)(i,j)∈G

is an isomorphism.

Since dimST (n) = n, we deduce that the cardinality of a generating index set of
ST (n) is always n. From (1.1), it is clear that the set of top row indices of a Steinhaus
triangle of size n, that is,

G1 = {(1, 1), (1, 2), . . . , (1, n)} ,

is a generating index set of ST (n). Note that πG1
−1(S) = ∇S, for all S ∈ {0, 1}G1 . It

follows that the set G is a generating index set of ST (n) if and only if the linear map
πG ◦ πG1

−1 : {0, 1}G1 → {0, 1}G is an isomorphism. For instance, the 16 generating index
sets of ST (3) (4 up to the action of the dihedral group D3) are depicted in Figure 2.3,
where a disk is either black if its position is in the generating index set or white otherwise.

Since the sets of right side indices,

Gr = {(1, n), (2, n), . . . , (n, n)} ,

and left side indices,
Gl = {(1, 1), (2, 2), . . . , (n, n)} ,

of a Steinhaus triangle ∇ of size n can be seen as the sets of top row indices of the Steinhaus
triangles r (∇) and r2 (∇), respectively, it follows that Gr and Gl are generating index
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0
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0
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0
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{(1, 1), (1, 2), (3, 3)} {(1, 3), (2, 2), (3, 3)} {(1, 1), (1, 3), (2, 3)} {(1, 2), (1, 3), (3, 3)} {(1, 1), (1, 3), (2, 2)} {(1, 1), (2, 3), (3, 3)}

0 0 0

0 0

0

{(1, 2), (2, 2), (2, 3)}

Figure 2.3: Generating index sets of ST (3)

sets of ST (n) too. Therefore, each element of a Steinhaus triangle can be expressed in
function of the terms of its first row, of its right side or of its left side.

For any non-negative integers a and b such that b ⩽ a, the binomial coefficient
(
a
b

)
is the coefficient of the monomial Xb in the polynomial expansion of the binomial power
(1+X)a. It corresponds to the number of ways to choose b elements in a set of a elements.
Here, we extend this notation by supposing that

(
a
b

)
= 0, for all integers b such that b < 0

or b > a. For this generalization, the Pascal identity(
a

b

)
=

(
a− 1

b− 1

)
+

(
a− 1

b

)
holds, for all positive integers a and all integers b.

Lemma 2.2.2. Let (ai,j)1⩽i⩽j⩽n be a binary Steinhaus triangle of size n. Then, we have

ai,j ≡
n∑

k=1

(
i− 1

j − k

)
a1,k ≡

n∑
k=1

(
n− j

k − i

)
ak,n ≡

n∑
k=1

(
j − i

k − i

)
ak,k (mod 2),

for all integers i, j such that 1 ⩽ i ⩽ j ⩽ n.

Proposition 2.2.3. Let G = {(i1, j1), (i2, j2), . . . , (in, jn)} be a subset of ∇(n) whose
cardinality is |G| = n. Then, the set G is a generating index set of ST (n) if and only if
det(MG) ≡ 1 mod 2, where

MG =

((
ik − 1

jk − l

))
1⩽k,l⩽n

.



2.3. ROTATIONALLY SYMMETRIC STEINHAUS TRIANGLES 39

The notion of generating index sets and the result of Proposition 2.2.3 appear in a
more general context in [28, 29], where it is also proved that the set of generating index
sets of ST (n) define a matroid called the Pascal matroid modulo 2. Note that a generating
index set is simply called a generating set in [28, 29].

The notion of generating index set can be extended to any linear subspace of ST (n).

Definition 2.2.4 (Generating index set of linear subspaces). Let V be a linear subspace
of ST (n). A subset G of ∇(n) is said to be a generating index set of V if the linear map

πG : V −→ {0, 1}G
(ai,j)1⩽i⩽j⩽n 7−→ (ai,j)(i,j)∈G

is an isomorphism. Note that |G| = dimV , for any generating index set G of V .

In this chapter, we consider generating index sets of the linear subspaces RST (n),
HST (n) and DST (n), for all non-negative integers n.

2.3 Rotationally symmetric Steinhaus triangles
In this section, after characterizing rotationally symmetric Steinhaus triangles, we deter-
mine, for all non-negative integers n, generating index sets and bases of RST (n).

2.3.1 Characterizations of RST (n)

First, by definition of the automorphism r, we have

r
(
(ai,j)1⩽i⩽j⩽n

)
= (aj−i+1,n−i+1)1⩽i⩽j⩽n = ∇(aj,n)1⩽j⩽n,

for any Steinhaus triangle (ai,j)1⩽i⩽j⩽n = ∇(a1,j)1⩽j⩽n. Therefore, a Steinhaus triangle
(ai,j)1⩽i⩽j⩽n is rotationally symmetric if and only if its first row (a1,j)1⩽j⩽n and its right
side (aj,n)1⩽j⩽n correspond.

Proposition 2.3.1. The Steinhaus triangle (ai,j)1⩽i⩽j⩽n is rotationally symmetric if and
only if (a1,j)1⩽j⩽n = (aj,n)1⩽j⩽n.

Definition 2.3.2 (Operator H). Let H be the linear map that assigns, to each Steinhaus
triangle of order n ⩾ 3, its subtriangle of order n − 3 obtained by removing its first row
and its left and right sides, that is,

H : ST (n) −→ ST (n− 3)
(ai,j)1⩽i⩽j⩽n 7−→ (a1+i,2+j)1⩽i⩽j⩽n−3

Note that the linear map H is surjective. Indeed, for any ∇S ′ ∈ ST (n − 3), it is
easy to verify that ∇S ′ = H(∇S) if and only if S is one of the eight sequences of the
form S = (x1) ·

∫
i,x
S ′ · (x2), where x1, x2 ∈ {0, 1} and

∫
i,x
S ′ is one of the two antiderived

sequences of S ′. Examples of a Steinhaus triangle ∇S and its subtriangle H(∇S) are
depicted in Figure 2.4.

Notation 2.3.3. For any binary sequence S = (aj)1⩽j⩽n, we denote by σ(S) its sum
σ(S) =

∑n
j=1 aj, i.e., the number of ones in S, and by σ2(S) its sum modulo 2.
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1 0 1 1 1 1 0
1 1 0 0 0 1
0 1 0 0 1
1 1 0 1
0 1 1
1 0
1

1 0 0 0
1 0 0
1 0
1

Figure 2.4: H(∇(1011110)) = ∇(1000)

For any positive integer n ⩾ 3, by definition of RST (n) and H, it is clear that
H(RST (n)) ⊂ RST (n − 3). The precise relationship between a rotationally symmetric
Steinhaus triangle ∇S and its subtriangle H(∇S) is given in the following

Proposition 2.3.4. Let S be a finite binary sequence of length n ⩾ 3. The Steinhaus tri-
angle ∇S is rotationally symmetric if and only if H(∇S) = ∇S ′ is rotationally symmetric
and S = (σ2 (S

′)) ·
∫
i,x
S ′ · (σ2 (S ′)), for some i ∈ {1, . . . , n− 2} and some x ∈ {0, 1}.

Proposition 2.3.4 appears in [27] in a more general context.

2.3.2 Generating index sets of RST (n)

Using Proposition 2.3.4, we are now ready to determine generating index sets of the linear
subspace of rotationally symmetric Steinhaus triangles, for every non-negative integer n.

Theorem 2.3.5 (Chappelon [C8]). Let n be a non-negative integer. The set

GR =
{
(i, ji)

∣∣∣ i ∈ {1, . . . , ⌊n
3

⌋
+ δ1,(n mod 3)

}}
,

where ji ∈ {2i, . . . , n− i} for all i ∈
{
1, . . . ,

⌊
n
3

⌋}
and jn+2

3
= 2n+1

3
when n ≡ 1 mod 3, is

a generating index set of RST (n).

Corollary 2.3.6 (Chappelon [C8]). Let n be a non-negative integer. The set

GR :=
{(
i, n−

⌊n
3

⌋) ∣∣∣ i ∈ {1, . . . , ⌊n
3

⌋
+ δ1,(n mod 3)

}}
is a generating index set of RST (n).

Since the dimension of RST (n) corresponds to the cardinality of a generating index
set GR, it is straightforward to obtain the following

Corollary 2.3.7. dimRST (n) =
⌊
n
3

⌋
+ δ1,(n mod 3), for all non-negative integers n.

2.3.3 Bases of RST (n)

Now, using the generating index sets GR introduced before, we determine bases of the
linear subspace of rotationally symmetric Steinhaus triangles.

First, we consider the linear map ρ : ST (n) −→ RST (n) defined by ρ = r2+r+idST (n),
for all non-negative integers n. Obviously, this map is surjective since ρ(∇) = ∇, for all
∇ ∈ RST (n). Moreover, as detailed below, all the terms of ρ (∇) can be expressed in
function of these ∇.
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Proposition 2.3.8 (Chappelon [C8]). For all (ai,j)1⩽i⩽j⩽n ∈ ST (n), we have

ρ
(
(ai,j)1⩽i⩽j⩽n

)
= (ai,j + aj−i+1,n−i+1 + an−j+1,n+i−j mod 2)1⩽i⩽j⩽n .

Notation 2.3.9 (Triangles Un). For any non-negative integer n, let Un be the Steinhaus
triangle of size n defined by

Un = ρ (∇(1)n) .

It is clear that U0 = ∅, U1 = ∇(1), U2 = ∇(00) and Un = ∇(011 · · · 110) for n ⩾ 3, since

Un = ρ (∇(1)n) = ∇(1 · · · 1) +∇(10 · · · 0) +∇(0 · · · 01) = ∇((1 · · · 1) + (10 · · · 0) + (0 · · · 01)),

for all positive integers n.

The Steinhaus triangles Un are depicted in Figure 2.5, for the first few values of n.
Moreover, an explicit formula for the terms of Un is given in the following

1
0 0

0

0 1 0
1 1

0

0 1 1 0
1 0 1

1 1
0

0 1 1 1 0
1 0 0 1

1 0 1
1 1

0

0 1 1 1 1 0
1 0 0 0 1

1 0 0 1
1 0 1

1 1
0

Figure 2.5: Un for n ∈ {1, . . . , 6}

Proposition 2.3.10 (Chappelon [C8]). For any non-negative integer n, we have

Un = (δi,1 + δi,j + δj,n mod 2)1⩽i⩽j⩽n .

Corollary 2.3.11. H(Un) = ∇(0)n−3, for all positive integers n ⩾ 3.

For any non-negative integer k such that 3k ⩽ n, we consider the iterated operator

Hk = HH · · ·H︸ ︷︷ ︸
k times

: ST (n) −→ ST (n− 3k)
(ai,j)1⩽i⩽j⩽n 7−→ (ak+i,2k+j)1⩽i⩽j⩽n−3k

Using the operators Hk and the generating index set GR, we obtain a family of bases of
RST (n), for all non-negative integers n.

Theorem 2.3.12 (Chappelon [C8]). Let n and m be non-negative integers such that m =⌊
n
3

⌋
+ δ1,(n mod 3). For every k ∈ {0, . . . ,m− 1}, let ∇k ∈ RST (n) such that Hk (∇k) =

Un−3k. Then, the set {∇0, . . . ,∇m−1} is a basis of RST (n).

Since Un−3k = ρ ((1)n−3k) by definition, for all non-negative integers n and k such that
3k ⩽ n, this leads to the following

Corollary 2.3.13 (Chappelon [C8]). Let n and m be non-negative integers such that
m =

⌊
n
3

⌋
+ δ1,(n mod 3). For every k ∈ {0, . . . ,m− 1}, let Sk be a binary sequence of length

n such that ∂kSk = (1)n−k. Then, the set {ρ (∇S0) , . . . , ρ (∇Sm−1)} is a basis of RST (n).
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Binomial coefficients
(
a
b

)
have been defined before for any non-negative integer a and

any integer b. Now, we extend this definition for negative integers a. For any integers a
and b, let

(
a
b

)
denote the integers recursively defined by

•
(
a
0

)
= 1, for all a ∈ Z,

•
(
0
b

)
= 0, for all b ∈ N∗,

•
(
a
b

)
=
(
a−1
b−1

)
+
(
a−1
b

)
, for all a, b ∈ Z.

When a is non-negative, it corresponds with the previous definition. Moreover, for any
negative integer a, the following equality holds(

a

b

)
=

{
0 for b < 0,

(−1)b
(
b−a−1

b

)
for b ⩾ 0.

Here, we mainly consider the infinite Pascal matrix modulo 2, that is, the doubly indexed
sequence

((
a
b

)
2

)
(a,b)∈Z2 , where

(
a
b

)
2

is the value of
(
a
b

)
mod 2. The first few values of this

doubly infinite sequence are shown in Figure 2.6, where the terms
(
a
0

)
2

are in blue, for all
integers a, and the terms

(
0
b

)
2

are in red, for all positive integers b.

Notation 2.3.14. For any integers k and l, let S(n)
k,l be the subsequence of length n of the

kth column of the infinite Pascal matrix modulo 2 defined by

S
(n)
k,l =

((
l + j − 1

k

)
2

)
1⩽j⩽n

=

((
l

k

)
2

,

(
l + 1

k

)
2

, . . . . . . ,

(
l + n− 1

k

)
2

)
.

For instance, the sequence S
(7)
5,2 =

((
j+1
5

)
2

)
1⩽j⩽7

= (0001010) appears in yellow in Fig-
ure 2.6.

Since we retrieve the local rule (LR) in the infinite Pascal matrix modulo 2, it is
straightforward to obtain the following

Proposition 2.3.15. Let k and l be two integers and let n be a positive integer. Then,

∂iS
(n)
k,l = S

(n−i)
k−i,l =

((
l + j − 1

k − i

)
2

)
1⩽j⩽n−i

,

for all i ∈ {0, . . . , n− 1} and

∇S
(n)
k,l =

((
l + j − i

k + 1− i

)
2

)
1⩽i⩽j⩽n

.

For instance, the Steinhaus triangle ∇S
(7)
10,−10 = ∇(0000110) appears in green in Figure 2.6.

We are now ready for giving explicit bases of RST (n), for every non-negative integer
n, using Corollary 2.3.13 with binary sequences S

(n)
k,l .

Theorem 2.3.16 (Chappelon [C8]). Let n and m be non-negative integers such that m =⌊
n
3

⌋
+ δ1,(n mod 3). For any integers l0, . . . , lm−1, the set

{
ρ
(
∇S

(n)
0,l0

)
, . . . , ρ

(
∇S

(n)
m−1,lm−1

)}
is a basis of RST (n). Moreover, we have

ρ
(
∇S

(n)
k,lk

)
=

((
lk + j − i

k + 1− i

)
+

(
lk + n− j

k + i− j

)
+

(
lk + i− 1

k + j − n

)
mod 2

)
1⩽i⩽j⩽n

, (2.1)

for all k ∈ {0, . . . ,m− 1}.
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Figure 2.6: The infinite Pascal matrix modulo 2 with
((

a
0

)
2

)
a∈Z in blue,

((
0
b

)
2

)
b>0

in red,
S
(7)
5,2 in yellow and ∇S

(7)
10,−10 in green
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Remark 2.3.17. For any integer l0, we have ρ
(
∇S

(n)
0,l0

)
= ρ (∇(1)n) = Un.

For instance, for n = 10 and l0 = l1 = l2 = l3 = 0, we obtain

k S
(10)
k,0 ρ

(
∇S

(10)
k,0

)
0 (1111111111) ∇0 = ∇(0111111110)
1 (0101010101) ∇1 = ∇(1001010111)
2 (0011001100) ∇2 = ∇(0001001000)
3 (0001000100) ∇3 = ∇(0010001100)

All the rotationally symmetric Steinhaus triangles of size 10 are depicted in Figure 2.7,
where the elements of the basis {∇0,∇1,∇2,∇3} are in red and, for every ∇ ∈ RST (10),
the coordinate vector (x0, x1, x2, x3) of ∇ = x0∇0 + x1∇1 + x2∇2 + x3∇3 is given.
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Figure 2.7: The 16 triangles of RST (10) where the 4 red triangles form a basis
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2.4 Horizontally symmetric Steinhaus triangles
In this section, we characterize the horizontally symmetric Steinhaus triangles and we
give a generating index set of HST (n). This permits us to obtain bases of HST (n), for
all non-negative integers n.

2.4.1 Characterizations of HST (n)

Definition 2.4.1 (Symmetric sequence). A binary sequence S = (aj)1⩽j⩽n is said to be
symmetric if an−j+1 = aj, for all j ∈ {1, . . . , n}.

For instance, the sequence (010010010) is symmetric. As shown in the following result,
the symmetry is preserved under the derivation process.

Proposition 2.4.2 (Chappelon [C8]). The binary sequence S is symmetric if and only if
∂S is symmetric and σ2(∂S) = 0.

It follows that the horizontal symmetry of a Steinhaus triangle is only related to the
symmetry of its first row.

Proposition 2.4.3 (Chappelon [C8]). The Steinhaus triangle ∇S is horizontally sym-
metric if and only if the sequence S is symmetric.

Now, we show that the horizontal symmetry of a Steinhaus triangle only depends on
the values of middle terms of its rows of odd lengths.

Proposition 2.4.4 (Chappelon [C8]). The Steinhaus triangle (ai,j)1⩽i⩽j⩽n, of size n, is
horizontally symmetric if and only if an−2i,n−i = 0, for all i ∈

{
0, . . . ,

⌊
n
2

⌋
− 1
}
.

2.4.2 Generating index set of HST (n)

Proposition 2.4.5 (Chappelon [C8]). Let n be a non-negative integer. The set

GH :=
{
(1, j)

∣∣∣ j ∈ {1, . . . , ⌈n
2

⌉}}
is a generating index set of HST (n).

Since the dimension of HST (n) corresponds to the cardinality of the generating index
set GH , it is straightforward to obtain the following

Corollary 2.4.6. dimHST (n) =
⌈
n
2

⌉
, for all non-negative integers n.

2.4.3 Bases of HST (n)

Notation 2.4.7. Let n be a positive integer. For any positive integer k ∈ {1, . . . , n},
we denote by E

(n)
k the binary sequence of length n consisting only of zeroes, except at

position k. In other words, we have

E
(n)
k =

((
0

j − k

)
2

)
1⩽j⩽n

,

for all k ∈ {1, . . . , n}.
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Since we retrieve the local rule (LR) of the infinite Pascal matrix modulo 2, we obtain
that

∇E
(n)
k =

((
i− 1

j − k

)
2

)
1⩽i⩽j⩽n

,

for all integers k ∈ {1, . . . , n}.

Proposition 2.4.8 (Chappelon [C8]). Let n be a positive integer. The set
{
∇1, . . . ,∇⌈n

2 ⌉
}

is a basis of HST (n), where

∇k = ∇
(
E
(n)
k + E

(n)
n−k+1

)
=

((
i− 1

j − k

)
+

(
i− 1

j − n+ k − 1

)
mod 2

)
1⩽i⩽j⩽n

,

for all k ∈
{
1, . . . ,

⌊
n
2

⌋}
, and

∇n+1
2

= ∇E
(n)
n+1
2

=

((
i− 1

j − n+1
2

)
2

)
1⩽i⩽j⩽n

,

when n is odd.

Now, we show that the generating index set GH also permits us to obtain a basis from
the sequences S

(n)
k,l =

((
l+j−1

k

)
2

)
1⩽j⩽n

introduced before.

Theorem 2.4.9 (Chappelon [C8]). Let n be a positive integer. The set
{
∇1, . . . ,∇⌈n

2 ⌉
}

is a basis of HST (n), where

∇k = ∇S
(n)
n−2k,−k =

(( −k + j − i

n− 2k + 1− i

)
2

)
1⩽i⩽j⩽n

,

for all k ∈
{
1, . . . ,

⌊
n
2

⌋}
, and ∇n+1

2
= ∇(1)n, when n is odd.

Remark 2.4.10. When n is even, we have ∇n
2
= ∇S

(n)
0,−n

2
= ∇(1)n. Therefore, ∇⌈n

2 ⌉ =

∇(1)n, for all integers n.

For instance, for n = 7, we obtain

∇1 = ∇S
(7)
5,−1 = ∇(1000001), ∇2 = ∇S

(7)
3,−2 = ∇(0100010),

∇3 = ∇S
(7)
1,−3 = ∇(1010101), ∇4 = ∇(1111111).

All the horizontally symmetric Steinhaus triangles of size 7 are depicted in Figure 2.8,
where the elements of the basis {∇1,∇2,∇3,∇4} are in red and, for every ∇ ∈ HST (7),
the coordinate vector (x1, x2, x3, x4) of ∇ = x1∇1 + x2∇2 + x3∇3 + x4∇4 is given.

2.5 Dihedrally symmetric Steinhaus triangles

In this section, after characterizing dihedrally symmetric Steinhaus triangles, we deter-
mine, for all non-negative integers n, generating index sets and a basis of DST (n).
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Figure 2.8: The 16 triangles of HST (7) where the 4 red triangles form a basis
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2.5.1 Characterizations of DST (n)

We begin by showing that the dihedral symmetry of a Steinhaus triangle is only related
to the symmetry of its first row and of its right and left sides.

Proposition 2.5.1. The Steinhaus triangle ∇ is dihedrally symmetric if and only if two
of the three Steinhaus triangles ∇, r (∇) and r2 (∇) are horizontally symmetric.

Corollary 2.5.2. The Steinhaus triangle ∇S = (ai,j)1⩽i⩽j⩽n is dihedrally symmetric if
and only if two of the three sequences, its first row (a1,j)1⩽j⩽n, its right side (aj,n)1⩽j⩽n or
its left side (aj,j)1⩽j⩽n, are symmetric.

Proposition 2.5.1 also permits us to show that the dihedral symmetry of a Steinhaus
triangle only depends on the values of middle terms of its rows, its columns or its diagonals
of odd lengths.

Corollary 2.5.3. The Steinhaus triangle ∇S = (ai,j)1⩽i⩽j⩽n is dihedrally symmetric if
and only if two of the sets

{
an−2i,n−i

∣∣i ∈ {0, . . . , ⌊n
2

⌋
− 1
}}

,
{
ai,2i−1

∣∣i ∈ {1, . . . , ⌊n
2

⌋}}
and

{
ai,n−i+1

∣∣i ∈ {1, . . . , ⌊n
2

⌋}}
are sets of zeroes.

For any positive integer n ⩾ 3, by definition of DST (n) and H, it is clear that
H(DST (n)) ⊂ DST (n − 3). The precise relationship between a dihedrally symmetric
Steinhaus triangle ∇S and its subtriangle H(∇S) is given in the following

Proposition 2.5.4. Let S be a binary sequence of length n ⩾ 3. The Steinhaus triangle
∇S is dihedrally symmetric if and only if H(∇S) = ∇S ′ is dihedrally symmetric, σ2 (S ′) =
0 and S = (0) ·

∫
i,x
S ′ · (0), for some i ∈ {1, . . . , n− 2} and some x ∈ {0, 1}.

Proposition 2.5.4 appears in [27] in a more general context.

Notation 2.5.5. For any non-negative integer n, the set of dihedrally symmetric Stein-
haus triangles ∇S of size n with σ(S) even is denoted by DST 0(n).

It is clear that DST 0(n) is a linear subspace of DST (n). Moreover, the vector space
DST (n) can be expressed in function of its linear subspace DST 0(n).

Proposition 2.5.6 (Chappelon [C8]). Let n be a non-negative integer. Then, we have

DST (n) =

{
DST 0(n) for n even,
DST 0(n) ⊔ (DST 0(n) + Un) for n odd,

where ⊔ is the disjoint union of two sets.

Corollary 2.5.7 (Chappelon [C8]). Let S be a binary sequence of length n ⩾ 3. For
n even, the Steinhaus triangle ∇S is in DST 0(n) if and only if H(∇S) = ∇S ′ is in
DST 0(n− 3) and S = (0) ·

∫
i,x
S ′ · (0), for some i ∈ {1, . . . , n− 2} and some x ∈ {0, 1}.

For n odd, the Steinhaus triangle ∇S is in DST 0(n) if and only if H(∇S) = ∇S ′ is in
DST 0(n− 3) and S = (0) ·

∫
n−1
2

,0
S ′ · (0).
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2.5.2 Generating index sets of DST (n)

We begin this subsection by giving generating index sets of DST 0(n), for all non-negative
integers n. This comes from Corollary 2.5.7.

Theorem 2.5.8 (Chappelon [C8]). Let n and m be non-negative integers such that m =⌊
n
6

⌋
+ δ4,(n mod 6). For every integer i ∈

{
1, . . . ,

⌊
n
3

⌋}
, let ji ∈ {2i, . . . , n− i}. Then, the

set
GD0 = {(2i+ 1, j2i+1) | i ∈ {0, . . . ,m− 1}} ,

when n is even, or
GD0 = {(2i, j2i) | i ∈ {1, . . . ,m}} ,

when n is odd, is a generating index set of DST 0(n).

Since the dimension of DST 0(n) corresponds to the cardinality of the generating index
set GD0 , it is easy to obtain the following

Corollary 2.5.9. dimDST 0(n) =
⌊
n
6

⌋
+ δ4,(n mod 6), for all non-negative integers n.

Using Proposition 2.5.6 and Theorem 2.5.8, we are now ready to give a generating
index set of DST (n), for all non-negative integers n.

Theorem 2.5.10 (Chappelon [C8]). Let n and m be non-negative integers such that
m =

⌊
n+3
6

⌋
+ δ1,(n mod 6). For every integer i ∈

{
1, . . . ,

⌊
n
3

⌋}
, let ji ∈ {2i, . . . , n− i}.

Then, the set
GD = {(2i+ 1, j2i+1) | i ∈ {0, . . . ,m− 1}} ,

when n is even, or

GD = {(1, j1)} ∪ {(2i, j2i) | i ∈ {1, . . . ,m− 1}} ,

when n is odd, is a generating index set of DST (n).

Corollary 2.5.11 (Chappelon [C8]). Let n and m be non-negative integers such that
m =

⌊
n+3
6

⌋
+ δ1,(n mod 6). The set

GD =
{(

2i+ 1, n−
⌊n
3

⌋) ∣∣∣ i ∈ {0, . . . ,m− 1}
}
,

when n is even, or

GD =
{(

1, n−
⌊n
3

⌋)}
∪
{(

2i, n−
⌊n
3

⌋) ∣∣∣ i ∈ {1, . . . ,m− 1}
}
,

when n is odd, is a generating index set of DST (n).

Since the dimension of DST (n) corresponds to the cardinality of the generating index
set GD, it is straightforward to obtain the following

Corollary 2.5.12. dimDST (n) =
⌊
n+3
6

⌋
+ δ1,(n mod 6), for all non-negative integers n.
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2.5.3 Basis of DST (n)

First, using the operators Hk and the generating index sets GD introduced before, we
obtain a family of bases of DST (n), for all non-negative integers n.

Theorem 2.5.13 (Chappelon [C8]). Let n and m be non-negative integers such that
m =

⌊
n+3
6

⌋
+ δ1,(n mod 6). For every k ∈

{
0, . . . ,

⌊
n
3

⌋
− 1
}
, let ∇k ∈ DST (n) such that

Hk (∇k) = Un−3k. Then, the set

{∇2k | k ∈ {0, . . . ,m− 1}} ,

when n is even, or
{∇0} ∪ {∇2k+1 | k ∈ {0, . . . ,m− 2}} ,

when n is odd, is a basis of DST (n).

Remark 2.5.14. ∇0 = Un in the previous result.
Now, we consider the restriction of the linear map ρ on the linear subspace HST (n),

i.e., the linear map ρ HST (n) : HST (n) −→ DST (n) defined by ρ = r2 + r + idn, for
all non-negative integers n. Obviously, this map is surjective since ρ(∇) = ∇, for all
∇ ∈ DST (n). Since Un−3k = ρ ((1)n−3k) by definition, for all non-negative integers n and
k such that 3k ⩽ n, this leads to the following

Corollary 2.5.15 (Chappelon [C8]). Let n and m be non-negative integers such that
m =

⌊
n+3
6

⌋
+ δ1,(n mod 6). For every k ∈

{
0, . . . ,

⌊
n
3

⌋
− 1
}
, let Sk be a symmetric binary

sequence of length n such that ∂kSk = (1)n−k. Then, the set

{ρ (∇S2k) | k ∈ {0, . . . ,m− 1}} ,

when n is even, or

{ρ (∇S0)} ∪ {ρ (∇S2k+1) | k ∈ {0, . . . ,m− 2}} ,

when n is odd, is a basis of DST (n).

Remark 2.5.16. ρ (∇S0) = ρ (∇(1)n) = Un in the previous result.
We end this section by giving an explicit basis of DST (n) in terms of the n-length

binary sequences

S
(n)
k,l =

((
l + j − 1

k

)
2

)
1⩽j⩽n

,

for all integers k and l.

Theorem 2.5.17 (Chappelon [C8]). Let n and m be non-negative integers such that
m =

⌊
n+3
6

⌋
+ δ1,(n mod 6). For every k ∈

{
0, . . . ,

⌊
n
3

⌋
− 1
}

of same parity as n, let

∇k = ρ
(
∇S

(n)

k, k−n
2

)
=

((
k−n
2

+ j − i

k + 1− i

)
+

(
k+n
2

− j

k + i− j

)
+

(
k−n
2

+ i− 1

k + j − n

)
mod 2

)
1⩽i⩽j⩽n

.

Then, the set
{∇2k | k ∈ {0, . . . ,m− 1}} ,

when n is even, or
{Un} ∪ {∇2k+1 | k ∈ {0, . . . ,m− 2}} ,

when n is odd, is a basis of DST (n).
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Corollary 2.5.18 (Chappelon [C8]). Let n and m be non-negative integers such that
m =

⌊
n
6

⌋
+ δ4,(n mod 6). For every k ∈

{
0, . . . ,

⌊
n
3

⌋
− 1
}

of same parity as n, let

∇k = ρ
(
∇S

(n)

k, k−n
2

)
=

((
k−n
2

+ j − i

k + 1− i

)
+

(
k+n
2

− j

k + i− j

)
+

(
k−n
2

+ i− 1

k + j − n

)
mod 2

)
1⩽i⩽j⩽n

.

Then, the set
{∇2k | k ∈ {0, . . . ,m− 1}} ,

when n is even, or
{∇2k+1 | k ∈ {0, . . . ,m− 1}} ,

when n is odd, is a basis of DST 0(n).

For instance, for n = 22, we obtain

k S
(22)
2k,k−11 ρ

(
∇S

(22)
2k,k−11

)
0 (1111111111111111111111) ∇0 = ∇(0111111111111111111110)
1 (1100110011001100110011) ∇2 = ∇(0110110011001100110110)
2 (1000011110000111100001) ∇4 = ∇(0111111110000111111110)
3 (0000001100000011000000) ∇6 = ∇(0000000100000010000000)

All the dihedrally symmetric Steinhaus triangles of size 22 are depicted in Figure 2.9,
where the elements of the basis {∇0,∇2,∇4,∇6} are in red and, for every ∇ ∈ DST (22),
the coordinate vector (x0, x2, x4, x6) of ∇ = x0∇0 + x2∇2 + x4∇4 + x6∇6 is given.

2.6 Symmetric generalized Pascal triangles
In this section, we consider binary generalized Pascal triangles. The set of binary gener-
alized Pascal triangles of size n is denoted by PT (n). Since the set of generalized Pascal
triangles is closed under addition modulo 2, it follows that PT (n) is a vector space over
Z/2Z. Since a generalized Pascal triangle is uniquely determined by its left and right
sides, which have the same first term, the dimension of PT (n) is 2n − 1, for all positive
integers n. Moreover, there exists a natural isomorphism between PT (n) and ST (2n−1),
for all positive integers n. Indeed, as depicted in Figure 2.10, a generalized Pascal triangle
of size n can be seen as a subtriangle of a Steinhaus triangle of size 2n− 1.

Definition 2.6.1 (Isomorphism γ). For any positive integer n, let γ be the linear map
defined by

γ : ST (2n− 1) −→ PT (n)
(ai,j)1⩽i⩽j⩽2n−1 7−→ (ai,n−1+j)1⩽j⩽i⩽n

The linear map γ is well defined since the generalized Pascal triangles and the Steinhaus
triangles share the same local rule (LR).

Proposition 2.6.2. The linear map γ : ST (2n− 1) −→ PT (n) is an isomorphism.

As for Steinhaus triangles, the action of the dihedral group D3 = ⟨r′, h′⟩ on PT (n)
can be considered, where the automorphisms r′ and h′ of PT (n) are defined by

r′ : PT (n) −→ PT (n)
(ai,j)1⩽j⩽i⩽n 7−→ (an+j−i,n+1−i)1⩽j⩽i⩽n
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0

0 0
0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 1
1 0 0 0 0 0 1

1 0 0 0 0 1
1 0 0 0 1

1 0 0 1
1 0 1

1 1
0

0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0
1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1

1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 0 0 0 0 0 0 1 1 0

1 0 1 0 0 0 0 0 0 0 0 1 0 1
1 1 1 0 0 0 0 0 0 0 1 1 1

0 0 1 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 0 0 1 1 0

1 0 1 0 0 0 0 1 0 1
1 1 1 0 0 0 1 1 1

0 0 1 0 0 1 0 0
0 1 1 0 1 1 0

1 0 1 1 0 1
1 1 0 1 1

0 1 1 0
1 0 1

1 1
0

0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0
0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0

0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0

1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1
1 1 1 0 0 0 0 0 0 0 0 0 1 1 1

0 0 1 0 0 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 0 0 0 0 1 1 0

1 0 1 0 0 0 0 0 0 1 0 1
1 1 1 0 0 0 0 0 1 1 1

0 0 1 0 0 0 0 1 0 0
0 1 1 0 0 0 1 1 0

1 0 1 0 0 1 0 1
1 1 1 0 1 1 1

0 0 1 1 0 0
0 1 0 1 0

1 1 1 1
0 0 0

0 0
0

(0, 0, 0, 0) (1, 0, 0, 0) (0, 1, 0, 0) (1, 1, 0, 0)

0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0
1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1
1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 1

1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1
1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1

1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1
1 0 1 0 1 0 0 0 0 0 1 0 1 0 1

1 1 1 1 1 0 0 0 0 1 1 1 1 1
0 0 0 0 1 0 0 0 1 0 0 0 0

0 0 0 1 1 0 0 1 1 0 0 0
0 0 1 0 1 0 1 0 1 0 0

0 1 1 1 1 1 1 1 1 0
1 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 1
1 0 0 0 0 0 1

1 0 0 0 0 1
1 0 0 0 1

1 0 0 1
1 0 1

1 1
0

0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0
0 0 1 0 1 0 0 0 0 0 1 0 1 0 0

0 1 1 1 1 0 0 0 0 1 1 1 1 0
1 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 1 1 0 0 1 1 0 0 1
1 0 1 0 1 0 1 0 1 0 1

1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0

0 0
0

0 0 0 1 0 0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 0 0
0 0 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 0 0

0 1 0 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 1 0
1 1 1 0 0 0 1 0 1 0 1 0 1 0 0 0 1 1 1

0 0 1 0 0 1 1 1 1 1 1 1 1 0 0 1 0 0
0 1 1 0 1 0 0 0 0 0 0 0 1 0 1 1 0

1 0 1 1 1 0 0 0 0 0 0 1 1 1 0 1
1 1 0 0 1 0 0 0 0 0 1 0 0 1 1

0 1 0 1 1 0 0 0 0 1 1 0 1 0
1 1 1 0 1 0 0 0 1 0 1 1 1

0 0 1 1 1 0 0 1 1 1 0 0
0 1 0 0 1 0 1 0 0 1 0

1 1 0 1 1 1 1 0 1 1
0 1 1 0 0 0 1 1 0

1 0 1 0 0 1 0 1
1 1 1 0 1 1 1

0 0 1 1 0 0
0 1 0 1 0

1 1 1 1
0 0 0

0 0
0

0 1 1 0 1 1 0 0 1 0 1 1 0 1 0 0 1 1 0 1 1 0
1 0 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 0 1

1 1 0 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 1 1
0 1 1 0 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0

1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 1 0 1
1 1 1 0 1 0 0 0 0 0 0 0 1 0 1 1 1

0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0
0 1 0 0 1 0 0 0 0 0 1 0 0 1 0

1 1 0 1 1 0 0 0 0 1 1 0 1 1
0 1 1 0 1 0 0 0 1 0 1 1 0

1 0 1 1 1 0 0 1 1 1 0 1
1 1 0 0 1 0 1 0 0 1 1

0 1 0 1 1 1 1 0 1 0
1 1 1 0 0 0 1 1 1

0 0 1 0 0 1 0 0
0 1 1 0 1 1 0

1 0 1 1 0 1
1 1 0 1 1

0 1 1 0
1 0 1

1 1
0

(0, 0, 1, 0) (1, 0, 1, 0) (0, 1, 1, 0) (1, 1, 1, 0)

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0

0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0
0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0

0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0

0 0 1 1 0 0 1 1 0 0
0 1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1
0 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0

0 0
0

0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0
1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1

1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1
1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1

1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1
1 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1

1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1
0 1 1 1 1 1 1 0 1 1 1 1 1 1 0

1 0 0 0 0 0 1 1 0 0 0 0 0 1
1 0 0 0 0 1 0 1 0 0 0 0 1

1 0 0 0 1 1 1 1 0 0 0 1
1 0 0 1 0 0 0 1 0 0 1

1 0 1 1 0 0 1 1 0 1
1 1 0 1 0 1 0 1 1

0 1 1 1 1 1 1 0
1 0 0 0 0 0 1

1 0 0 0 0 1
1 0 0 0 1

1 0 0 1
1 0 1

1 1
0

0 1 1 0 1 1 0 1 1 1 0 0 1 1 1 0 1 1 0 1 1 0
1 0 1 1 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 1

1 1 0 1 1 0 1 0 1 1 1 1 0 1 0 1 1 0 1 1
0 1 1 0 1 1 1 1 0 0 0 1 1 1 1 0 1 1 0

1 0 1 1 0 0 0 1 0 0 1 0 0 0 1 1 0 1
1 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 1

0 1 1 1 0 1 0 1 1 0 1 0 1 1 1 0
1 0 0 1 1 1 1 0 1 1 1 1 0 0 1

1 0 1 0 0 0 1 1 0 0 0 1 0 1
1 1 1 0 0 1 0 1 0 0 1 1 1

0 0 1 0 1 1 1 1 0 1 0 0
0 1 1 1 0 0 0 1 1 1 0

1 0 0 1 0 0 1 0 0 1
1 0 1 1 0 1 1 0 1

1 1 0 1 1 0 1 1
0 1 1 0 1 1 0

1 0 1 1 0 1
1 1 0 1 1

0 1 1 0
1 0 1

1 1
0

0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0
0 0 1 1 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0

0 1 0 1 1 0 1 0 1 1 1 1 0 1 0 1 1 0 1 0
1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 0 1 1 1

0 0 1 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0
0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0

1 1 1 1 0 1 0 1 1 0 1 0 1 1 1 1
0 0 0 1 1 1 1 0 1 1 1 1 0 0 0

0 0 1 0 0 0 1 1 0 0 0 1 0 0
0 1 1 0 0 1 0 1 0 0 1 1 0

1 0 1 0 1 1 1 1 0 1 0 1
1 1 1 1 0 0 0 1 1 1 1

0 0 0 1 0 0 1 0 0 0
0 0 1 1 0 1 1 0 0

0 1 0 1 1 0 1 0
1 1 1 0 1 1 1

0 0 1 1 0 0
0 1 0 1 0

1 1 1 1
0 0 0

0 0
0

(0, 0, 0, 1) (1, 0, 0, 1) (0, 1, 0, 1) (1, 1, 0, 1)

0 1 1 1 1 1 1 0 1 0 0 0 0 1 0 1 1 1 1 1 1 0
1 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1

1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1
1 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0 1

1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1
1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 1

1 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1
0 1 0 1 0 1 1 0 1 1 0 1 0 1 0

1 1 1 1 1 0 1 1 0 1 1 1 1 1
0 0 0 0 1 1 0 1 1 0 0 0 0

0 0 0 1 0 1 1 0 1 0 0 0
0 0 1 1 1 0 1 1 1 0 0

0 1 0 0 1 1 0 0 1 0
1 1 0 1 0 1 0 1 1

0 1 1 1 1 1 1 0
1 0 0 0 0 0 1

1 0 0 0 0 1
1 0 0 0 1

1 0 0 1
1 0 1

1 1
0

0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0

0 0 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0 0
0 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 0

0 1 0 0 1 1 0 1 1 0 1 1 0 0 1 0
1 1 0 1 0 1 1 0 1 1 0 1 0 1 1

0 1 1 1 1 0 1 1 0 1 1 1 1 0
1 0 0 0 1 1 0 1 1 0 0 0 1

1 0 0 1 0 1 1 0 1 0 0 1
1 0 1 1 1 0 1 1 1 0 1

1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1
0 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0

0 0
0

0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0

0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0
1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1

0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0
0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0

1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1
0 0 1 1 0 1 1 0 1 1 0 1 1 0 0

0 1 0 1 1 0 1 1 0 1 1 0 1 0
1 1 1 0 1 1 0 1 1 0 1 1 1

0 0 1 1 0 1 1 0 1 1 0 0
0 1 0 1 1 0 1 1 0 1 0

1 1 1 0 1 1 0 1 1 1
0 0 1 1 0 1 1 0 0

0 1 0 1 1 0 1 0
1 1 1 0 1 1 1

0 0 1 1 0 0
0 1 0 1 0

1 1 1 1
0 0 0

0 0
0

0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1

1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1
0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0

1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1
1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1

0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
1 0 1 1 0 1 1 0 1 1 0 1 1 0 1

1 1 0 1 1 0 1 1 0 1 1 0 1 1
0 1 1 0 1 1 0 1 1 0 1 1 0

1 0 1 1 0 1 1 0 1 1 0 1
1 1 0 1 1 0 1 1 0 1 1

0 1 1 0 1 1 0 1 1 0
1 0 1 1 0 1 1 0 1

1 1 0 1 1 0 1 1
0 1 1 0 1 1 0

1 0 1 1 0 1
1 1 0 1 1

0 1 1 0
1 0 1

1 1
0

(0, 0, 1, 1) (1, 0, 1, 1) (0, 1, 1, 1) (1, 1, 1, 1)

Figure 2.9: The 16 triangles of DST (22) where the 4 red triangles form a basis

1 1 0 0 1 0 1 0 0
0 1 0 1 1 1 1 0
1 1 1 0 0 0 1
0 0 1 0 0 1
0 1 1 0 1
1 0 1 1
1 1 0
0 1
1

1
1 1

1 0 0
0 1 0 0

0 1 1 0 1

Figure 2.10: γ (∇(110010100)) = ∆ ((11100), (11001))
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and
h′ : PT (n) −→ PT (n)

(ai,j)1⩽j⩽i⩽n 7−→ (ai,1−j+i)1⩽j⩽i⩽n

For instance, for L = (11100) and R = (11001) and for all g ∈ D3, the generalized Pascal
triangles g (∆ (L,R)) are depicted in Figure 2.11.

1
1 1

1 0 0
0 1 0 0

0 1 1 0 1

1
0 0

0 0 1
1 0 1 1

1 1 1 0 0

0
1 0

1 1 1
0 0 0 1

1 0 0 1 1

1
1 1

0 0 1
0 0 1 0

1 0 1 1 0

0
0 1

1 1 1
1 0 0 0

1 1 0 0 1

1
0 0

1 0 0
1 1 0 1

0 0 1 1 1

∆ (L,R) r′ (∆ (L,R)) r′2 (∆ (L,R)) h′ (∆ (L,R)) r′h′ (∆ (L,R)) r′2h′ (∆ (L,R))

Figure 2.11: Action of D3 on ∆((11100), (11001))

Proposition 2.6.3. For any positive integer n, we have

γr = r′γ and γh = h′γ.

Definition 2.6.4 (Symmetric binary generalized Pascal triangles). A generalized Pascal
triangle ∆ of size n is said to be

• rotationally symmetric if r′(∆) = ∆,

• horizontally symmetric if h′(∆) = ∆,

• dihedrally symmetric if r′(∆) = h′(∆) = ∆.

The sets of horizontally symmetric, rotationally symmetric and dihedrally symmetric
generalized Pascal triangles of size n are denoted by HPT (n), RPT (n) and DPT (n),
respectively, for all non-negative integers n. In other words, the sets HPT (n), RPT (n)
and DPT (n) are simply the linear subspaces ker

(
h′ − idPT (n)

)
, ker

(
r′ − idPT (n)

)
and

ker
(
h′ − idPT (n)

)
∩ ker

(
r′ − idPT (n)

)
, respectively, where idPT (n) is the identity map on

PT (n), for all non-negative integers n.

Examples of symmetric binary generalized Pascal triangles appear in Figure 2.12.

1
0 0

1 0 1
1 1 1 1

0 0 0 0 0

1
0 1

0 1 0
1 1 1 0

1 0 0 1 1

1
1 1

0 0 0
1 0 0 1

1 1 0 1 1

Figure 2.12: Triangles of HPT (5), RPT (5) and DPT (5).

It is now easy to see that a symmetric generalized Pascal triangles of size n corresponds
to a symmetric Steinhaus triangle of size 2n− 1, for all positive integers n.

Proposition 2.6.5 (Chappelon [C8]). For any positive integer n, a Steinhaus triangle
∇, of size 2n − 1, is horizontally, rotationally, or dihedrally symmetric if and only if
the generalized Pascal triangle γ (∇), of size n, is horizontally, rotationally, or dihedrally
symmetric, respectively.
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Corollary 2.6.6 (Chappelon [C8]). The linear map γ induces isomorphisms of HST (2n−
1) upon HPT (n), RST (2n− 1) upon RPT (n) and DST (2n− 1) upon DPT (n), respec-
tively, for all positive integers n.

Using the isomorphism γ and the results of the previous sections, we obtain the di-
mension and a basis for each linear subspace of symmetric generalized Pascal triangles of
size n, for all positive integers n.

Proposition 2.6.7. For any positive integer n, we have

• dimHPT (n) = n,

• dimRPT (n) = 2
⌊
n−1
3

⌋
+ 1,

• dimDPT (n) =
⌈
n
3

⌉
.

Theorem 2.6.8 (Chappelon [C8]). Let n and m be positive integers such that m =
2
⌊
n−1
3

⌋
+ 1. For any integers l0, . . . , lm−1, the set{

γρ
(
∇S

(2n−1)
k,lk

) ∣∣∣ k ∈ {0, . . . ,m− 1}
}

is a basis of RPT (n), where

γρ
(
∇S

(2n−1)
k,lk

)
=

((
lk + j − i+ n− 1

k + 1− i

)
+

(
lk + n− j

k + i− j − n+ 1

)
+

(
lk + i− 1

k + j − n

)
mod 2

)
1⩽j⩽i⩽n

,

for all k ∈ {0, . . . ,m− 1}.

Theorem 2.6.9 (Chappelon [C8]). Let n be a positive integer. The set{
γ
(
S
(2n−1)
2(n−k)−1,−k

) ∣∣∣ k ∈ {1, . . . , n− 1}
}
∪ {γ (∇(1)2n−1)}

is a basis of HPT (n), where

γ
(
∇S

(2n−1)
2(n−k)−1,−k

)
=

((−k + j − i+ n− 1

2(n− k)− i

)
2

)
1⩽j⩽i⩽n

,

for all k ∈
{
1, . . . ,

⌊
n
2

⌋}
, and γ (∇(1)2n−1) = ∆ ((1) · (0)n−1, (1) · (0)n−1).

Theorem 2.6.10 (Chappelon [C8]). Let n and m be positive integers such that m =
⌈
n
3

⌉
.

Then, the set

{γ (U2n−1)} ∪
{
γρ
(
S
(2n−1)
2k+1,k−n+1

) ∣∣∣ k ∈ {0, . . . ,m− 2}
}

is a basis of DST (n), where γ (U2n−1) = ∆ ((1) · (0)n−2 · (1), (1) · (0)n−2 · (1)) and

γρ
(
S
(2n−1)
2k+1,k−n+1

)
=

((
k + j − i

2k − i+ 2

)
+

(
k − j + 1

i− j + 2k − n+ 2

)
+

(
k − n+ i

2k + j − n+ 1

)
mod 2

)
1⩽j⩽i⩽n

,

for all k ∈ {0, . . . ,m− 2}.
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We end this section by giving bases obtained from Theorem 2.6.8 for RPT (6), from
Theorem 2.6.9 for HPT (4) and from Theorem 2.6.10 for DPT (11).

For n = 7 and k0 = k1 = k2 = k3 = k4 = 0, we obtain the following basis{
γρ
(
∇S

(13)
k,0

) ∣∣∣ k ∈ {0, 1, 2, 3, 4}
}

of RPT (7), where

k S
(13)
k,0 ρ

(
∇S

(13)
k,0

)
γρ
(
∇S

(13)
k,0

)
0 (1111111111111) ∇(0111111111110) ∆0 = ∆((1000001), (1000001))
1 (0101010101010) ∇(0001010101000) ∆1 = ∆((0100010), (0100010))
2 (0011001100110) ∇(0101001100010) ∆2 = ∆((1110101), (1010111))
3 (0001000100010) ∇(0100000101010) ∆3 = ∆((0000010), (0100000))
4 (0000111100001) ∇(1111011110001) ∆4 = ∆((1011001), (1001101))

All the rotationnaly symmetric generalized Pascal triangles of size 7 are depicted in Fig-
ure 2.13, where the elements of the basis {∆0,∆1,∆2,∆3,∆4} are in red and, for every ∆ ∈
RPT (7), the coordinate vector (x0, x1, x2, x3, x4) of ∆ = x0∆0+x1∆1+x2∆2+x3∆3+x4∆4

is given.
For n = 4, we obtain the following basis{

γ
(
S
(7)
7−2k,−k

) ∣∣∣ k ∈ {1, 2, 3}
}
∪ {γ (∇(1)7)}

of HPT (4), where

k S
(7)
7−2k,−k γρ

(
∇S

(7)
7−2k,−k

)
1 (1000001) ∆1 = ∆((0001), (0001))
2 (0100010) ∆2 = ∆((0011), (0011))
3 (1010101) ∆3 = ∆((0100), (0100))

and ∆4 = γ (∇(1)7) = ∆ ((1000), (1000)). All the horizontally symmetric generalized
Pascal triangles of size 4 are depicted in Figure 2.14, where the elements of the ba-
sis {∆1,∆2,∆3,∆4} are in red and, for every T ∈ HPT (4), the coordinate vector
(x1, x2, x3, x4) of ∆ = x1∆1 + x2∆2 + x3∆3 + x4∆4 is given.

For n = 11, we obtain the following basis

{γ (U21)} ∪
{
γρ
(
∇S

(21)
2k+1,k−10

) ∣∣∣ k ∈ {0, 1, 2}
}

of DPT (11), where ∆0 = γ (U21) = ∆ ((10000000001), (10000000001)) and

k S
(21)
2k+1,k−10 ρ

(
∇S

(21)
2k+1,k−10

)
γρ
(
∇S

(21)
2k+1,k−10

)
0 (010101010101010101010) ∇(000101010101010101000) ∆1 = ∆((01000000010), (01000000010))
1 (100010001000100010001) ∇(011110001000100011110) ∆2 = ∆((00110001100), (00110001100))
2 (000001010000010100000) ∇(000000010000010000000) ∆3 = ∆((00010001000), (00010001000))

All the dihedrally symmetric generalized Pascal triangles of size 11 are depicted in Fig-
ure 2.15, where the elements of the basis {∆0,∆1,∆2,∆3} are in red and, for every
∆ ∈ DPT (11), the coordinate vector (x0, x1, x2, x3) of ∆ = x0∆0 + x1∆1 + x2∆2 + x3∆3

is given.
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Figure 2.13: The 32 triangles of RPT (7) where the 5 red triangles form a basis
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Figure 2.14: The 16 triangles of HPT (4) where the 4 red triangles form a basis
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Figure 2.15: The 16 triangles of DPT (11) where the 4 red triangles form a basis



Chapter 3

Regular Steinhaus graphs

In this chapter, we introduce the Steinhaus graphs that are a family of simple graphs
related to binary Steinhaus triangles.

3.1 The family of Steinhaus graphs
Definition 3.1.1 (Steinhaus graph). A Steinhaus graph of order n ⩾ 1 is a simple graph
whose adjacency matrix has an upper-triangular part which is a binary Steinhaus triangle
of size n − 1. For any sequence S = (a1, a2, . . . , an−1) of Z/2Z of length n − 1, its
associated Steinhaus graph G(S) is the simple graph of order n whose adjacency matrix
M(S) = (ai,j)1⩽i,j⩽n verifies

i) ai,j = aj,i, for all i, j ∈ {1, . . . , n}, (symmetry)

ii) ai,i = 0, for all i ∈ {1, . . . , n}, (diagonal of zeroes)

iii) a1,j = aj−1, for all j ∈ {2, . . . , n− 1}, (sequence S)

iv) ai,j = ai−1,j−1+ai−1,j, for all integers i, j such that 2 ⩽ i < j ⩽ n, (local rule of ∇S).

The adjacency matrix M(S) is said to be the Steinhaus matrix of S.

For example, for S = (0010100), the Steinhaus graph G(S) and its adjacency matrix
M(S) are depicted in Figure 3.1.
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Figure 3.1: The Steinhaus graph G(0010100) and its adjacency matrix M(0010100)
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Notation 3.1.2. For all positive integers n, the set of Steinhaus graphs of order n is
denoted by SG(n) and the set of Steinhaus matrices of size n by SM(n).

It is clear that there is a natural correspondence between SG(n) (or SM(n)) and
ST (n − 1). Therefore, for all positive integers n, the set SG(n) (or SM(n)) is a vector
space over Z/2Z of dimension n− 1.

The family of Steinhaus graphs has been introduced in [89]. In [48], it was proved
that any simple graph of order n is isomorphic to an induced subgraph of a Steinhaus
graph of order

(
n
2

)
+1. A general problem on Steinhaus graphs is to characterize those, or

their associated binary sequences, having a given graph property such as connectedness,
planarity, bipartition, regularity, etc. It is easy to see that a Steinhaus graph is either
connected or totally disconnected (the edgeless graph). The bipartite Steinhaus graphs
are characterized in [52, 53, 43] and the planar ones in [55].

In this chapter, we are interested in Steinhaus graphs that are regular, i.e., Steinhaus
graphs whose vertices are of the same degree. In 1979, the two following conjectures on
regular Steinhaus graphs were given by W. Dymacek.

Conjecture 3.1.3 (Dymacek [51]). The regular Steinhaus graphs of even degree are the
zero-edge graph on n vertices, for all positive integers n, and the Steinhaus graph G(S)
on n = 3m + 1 vertices generated by the periodic sequence S = (110)m of length 3m, for
all positive integers m.

Conjecture 3.1.4 (Dymacek [51]). The complete graph on two vertices K2 is the only
regular Steinhaus graph of odd degree.

These conjectures were verified up to 117 vertices in [24] and up to 1500 vertices in
[C3] for the odd case.

1

2

3

4

5

6

7

8

0 1

1

0

0

0

0

1

1

0

0

0

0

0

0

0 1

1

0

0

1

1

1

1

0

0

0

0

0 1

1

1

1

0

0

1

1

0

0

0 0

0

1

1

1

1

1

1

0 1

1

0

0

0

0

0 1

1

0

0

0 1

1 0

1

2

3

4

5

6

7

8

0 1

1

0

0

0

0

1

1

0

0

0

0

1

1

0 1

1

0

0

1

1

1

1

0

0

1

1

0 1

1

1

1

0

0

1

1

1

1

0 0

0

1

1

1

1

0

0

0 1

1

0

0

1

1

0 1

1

1

1

0 0

0 0

G (1001000) M (1001000) G (1001001) M (1001001)

Figure 3.2: Even and odd Steinhaus graphs

3.2 Parity-regular Steinhaus graphs
In this section, we study the weaker case of parity-regular Steinhaus graphs, that are
Steinhaus graphs for which all the vertex degrees are of the same parity.

Definition 3.2.1 (Even and odd Steinhaus graphs). A Steinhaus graph is said to be even
(resp. odd) if every vertex has even degree (resp. odd degree). A parity-regular Steinhaus
graph is a Steinhaus graph that is even or odd.

Examples of even and odd Steinhaus graphs are given in Figure 3.2.
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Notation 3.2.2. For all positive integers n, the sets of even Steinhaus graphs and of odd
Steinhaus graphs of order n are denoted by ESG(n) and OSG(n), respectively. For all
positive integers n, the set of parity-regular Steinhaus graphs of order n is denoted by
PRSG(n), that is, PRSG(n) = ESG(n) ∪ OSG(n).

In this section, we prove that ESG(n) is a linear subspace of SG(n) of dimension
⌊
n−1
3

⌋
,

for all positive integers n, and OSG(n) is an affine subspace of direction ESG(n), for all
even numbers n. Obviously, since the number of vertices of odd degrees is always even,
OSG(n) = ∅ when n is odd.

3.2.1 Doubly-symmetric Steinhaus matrices

Definition 3.2.3 (Doubly-symmetric Steinhaus matrices). A Steinhaus matrix M(S) =
(ai,j)1⩽i,j⩽n is said to be doubly-symmetric if all its diagonals are symmetric, i.e., if

an−j+1,n−i+1 = ai,j

for all i, j ∈ {1, . . . , n}. In other words, the Steinhaus matrix M(S) is doubly-symmetric
if the Steinhaus triangle r2 (∇S) is horizontally symmetric.

An example of doubly-symmetric Steinhaus matrix of size 8 is given in Figure 3.3.
First, we characterize doubly-symmetric Steinhaus matrices.
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Figure 3.3: A doubly-symmetric Steinhaus matrix of size 8

Proposition 3.2.4. Let M = (ai,j)1⩽i,j⩽n be a Steinhaus matrix of size n ⩾ 3. Then, the
following assertions are equivalent:

i) the matrix M is doubly-symmetric,

ii) the over-diagonal (ai,i+1)1⩽i⩽n−1 of M is a symmetric sequence,

iii) the entries ai,n−i+1 of the anti-diagonal of M vanish for all i ∈
{
1, . . . ,

⌊
n−1
2

⌋}
.

Proof. We know that the Steinhaus matrix M(S) is doubly-symmetric if and only if the
Steinhaus triangle r2 (∇S) is horizontally symmetric. Therefore, the equivalence i) ⇔ ii)
directly comes from Proposition 2.4.3 and the equivalence i) ⇔ iii) from Proposition 2.4.4.

The main result of this subsection is the following

Theorem 3.2.5 (Dymacek [51]). The adjacency matrix of an even Steinhaus graph is a
doubly-symmetric Steinhaus matrix whose diagonals are zero-sum.
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Remark 3.2.6. If a Steinhaus matrix is doubly-symmetric, then all its diagonals are
symmetric and thus we already know that all its diagonals, except the over-diagonal
(ai,i+1)1⩽i⩽n−1, have to be zero-sum. The additional information here is that an

2
,n
2
+1 = 0

in a Steinhaus matrix (ai,j)1⩽i,j⩽n of even size n.

The proof given here is based on the following result which shows that the anti-diagonal
entries of a Steinhaus matrix are determined by the vertex degrees of its associated Stein-
haus graph.

Theorem 3.2.7 (Chappelon [C3]). Let G be a Steinhaus graph on n ⩾ 2 vertices and
M = (ai,j) its associated Steinhaus matrix. Then every anti-diagonal entry of M can be
expressed by means of the vertex degrees of G. If we denote by deg(Vi) the degree of the
vertex Vi in G, then we have

ai,n−i+1 ≡
i−1∑
k=0

(
i− 1

k

)
deg (Vi+k+1) ≡

i−1∑
k=0

(
i− 1

k

)
deg (Vn−i−k) (mod 2),

for all i ∈
{
1, . . . ,

⌊
n
2

⌋}
.

Remark 3.2.8. We deduce from Theorem 3.2.7 a necessary condition on the vertex degrees
of a given labelled graph to be a Steinhaus graph. Indeed, vertex degrees of a Steinhaus
graph on n vertices must satisfy the following binary equations:

i−1∑
k=0

(
i− 1

k

)
deg (Vi+k+1) ≡

i−1∑
k=0

(
i− 1

k

)
deg (Vn−i−k) (mod 2), for all 1 ⩽ i ⩽

⌊n
2

⌋
.

More generally, an open problem, corresponding to Question 3 in [54], is to determine if
an arbitrary graph, not necessary labelled, is isomorphic to a Steinhaus graph.

It is clear that Dymacek’s theorem comes from Theorem 3.2.7 using Proposition 3.2.4.

3.2.2 Even Steinhaus graphs

Recall that, for any positive integer n ⩾ 3, the linear map H : ST (n) −→ ST (n − 3),
introduced in Chapter 2, is the linear map that assigns to each binary Steinhaus triangle
of size n its subtriangle of size n − 3 obtained by removing its first row and its left and
right sides. Now, we consider the linear map H on graphs.

Definition 3.2.9 (Operator H). Let H : SG(n) −→ SG(n − 3) be the linear map that
assigns to each Steinhaus graph G(S) of order n the Steinhaus graph of order n−3 whose
upper-triangular part of its adjacency matrix is the Steinhaus triangle H(∇S). More
precisely,

H : SG(n) −→ SG(n− 3)
G(S) 7−→ G(∂S[2, n− 3])

Note that the linear map H is surjective. Indeed, for any G(S ′) ∈ SG(n − 3), it is
easy to verify that G(S ′) = H(G(S)) if and only if S is one of the eight sequences of the
form S = (x1) ·

∫
i,x
S ′ · (x2), where x1, x2 ∈ Z/2Z and

∫
i,x
S ′ is one of the two antiderived

sequences of S ′. Examples of Steinhaus graphs G(S) and H(G(S)) and their adjacency
matrices are depicted in Figure 3.4.
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G(S) M(S) HG (G(S)) = G(S′) M(S′)

Figure 3.4: G(1001000) and H(G(1001000)) = G(0110)

Theorem 3.2.10 (Dymacek [51]). Let S be a finite binary sequence of length n ⩾ 3.
The Steinhaus graph G(S) is even if and only if H(G(S)) = G(S ′) is even and S =(
σ2

(∫
i,x
S ′
))

·
∫
i,x
S ′ · (0), for some i ∈ {1, . . . , n− 3} and some x ∈ Z/2Z, where σ2(T )

is the sum of the elements of T modulo 2.

Corollary 3.2.11. dim ESG(n) =
⌊
n−1
3

⌋
, for all positive integers n.

3.2.3 Parity-regular Steinhaus graphs

We end this section by giving the dimension of the linear subspace PRSG(n) of parity-
regular Steinhaus graphs, for all positive integers n. By definition, we know that

PRSG(n) = ESG(n) ⊔ OSG(n),
where OSG(n) is the set of odd Steinhaus graphs of order n, for all positive integers n.
As already remarked, it is clear that OSG(n) = ∅, when n is odd. For n even, we obtain
the following

Proposition 3.2.12. For any positive integer n,

OSG(2n) = ESG(2n) + G((0)2n−2 · (1)) .
The proof is based on the following lemma, where the linear map ι is defined by

ι : SG(2n) −→ SG(2n)
G(S) 7−→ G(S + (0)2n−2 · (1))

for all positive integers n.

Lemma 3.2.13. For any positive integer n, the Steinhaus graph G(S) of order 2n is even
if and only if ι (G(S)) is odd.

It immediately follows that, for any positive integer n, we have

PRSG(2n− 1) = ESG(2n− 1) (3.1)

and
PRSG(2n) = ESG(2n) ⊔ (ESG(2n) + G((0)2n−2 · (1))) . (3.2)

Therefore, we retrieve the following

Proposition 3.2.14. dimPRSG(n) =
⌊
n−1
3

⌋
+ δ0,(n mod 2), for all positive integers n.
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3.3 Vector bases of parity-regular Steinhaus graphs

Bases of PRSG(n) have been computed, for n ⩽ 30, in [24]. In this section, we determine
bases of ESG(n) and PRSG(n), for all positive integers n. This is achieved by showing
that the vector space ESG(n) is isomorphic to a particular linear subspace of DST (2n−1),
for all positive integers n.

3.3.1 Isomorphism between ESG(n) and DST 0(2n− 1)

Definition 3.3.1 (Interlacing sequence). For any binary sequence S = (aj)1⩽j⩽n of length
n, we denote by ir(S) the interlacing of the sequence S and its reversed sequence, that is,
the sequence ir(S) = (bj)1⩽j⩽2n of length 2n defined by

b2j−1 = aj and b2j = an−j+1,

for all j ∈ {1, . . . , n}.

For instance, for S = (101000), we have ir(S) = (100010010001).

Definition 3.3.2 (Operator θ). For any positive integer n, let θ be the linear map

θ : SG(n) −→ ST (2n− 1)
G(S) 7−→ ∇

∫
n,0
ir(S)

Note that the Steinhaus triangle ∇S ∈ ST (n− 1) is then a subtriangle of θ(G(S)) ∈
ST (2n − 1). Indeed, for the sequence S = (aj)1⩽j⩽n−1 and the Steinhaus triangle
θ(G(S)) = ∇

∫
n,0
ir(S) = (ai,j)1⩽i⩽j⩽2n−1, the Steinhaus triangle ∇S is simply the subtri-

angle (a2i,2j)1⩽i⩽j⩽n−1, since a2,2j = aj, for all j ∈ {1, . . . , n− 1}, by definition of θ, and,
using the local rule (LR), we have

a2i,2j ≡ a2i−1,2j−1+a2i−1,2j ≡ a2i−2,2j−2+2a2i−2,2j−1+a2i−2,2j ≡ a2i−2,2j−2+a2i−2,2j (mod 2),

for all integers i and j such that 2 ⩽ i ⩽ j ⩽ n− 1. For instance, for the sequence S =
(101000), the Steinhaus triangle θ(G(S)) is depicted in Figure 3.5, where the subtriangle
∇S appears in red.

0 1 1 1 1 0 0 0 1 1 1 1 0
1 0 0 0 1 0 0 1 0 0 0 1
1 0 0 1 1 0 1 1 0 0 1
1 0 1 0 1 1 0 1 0 1
1 1 1 1 0 1 1 1 1
0 0 0 1 1 0 0 0
0 0 1 0 1 0 0
0 1 1 1 1 0
1 0 0 0 1
1 0 0 1
1 0 1
1 1
0

1 0 1 0 0 0

1 1 1 0 0

0 0 1 0

0 1 1

1 0

1

Figure 3.5: The Steinhaus triangle θ(G(101000)) where ∇(101000) appears in red
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By definition of the linear map ir, we know that the sequence ir(S) is symmetric and
σ2 (ir(S)) = 0. It follows from Proposition 2.4.2 that the sequence

∫
n,0
ir(S) is symmetric

too. Therefore, using Proposition 2.4.3, we have

θ(G(S)) = ∇
∫
n,0
ir(S) ∈ HST (2n− 1),

for all G(S) ∈ SG(n). Moreover, since the middle term of the sequence
∫
n,0
ir(S) is 0 by

definition, we obtain that
σ2

(∫
n,0
ir(S)

)
= 0,

for any sequence S of length n− 1.
The main result of this section is to show that the restriction of θ to the linear sub-

space of even Steinhaus graphs ESG(n) induces an isomorphism between ESG(n) and
DST 0(2n− 1), for all positive integers n.
Theorem 3.3.3 (Chappelon [C8]). Let S be a binary sequence of length n − 1 ⩾ 0.
Then, the Steinhaus graph G(S) is even if and only if the Steinhaus triangle θ (G(S)) is
dihedrally symmetric.
Corollary 3.3.4 (Chappelon [C8]). For any positive integer n, the restriction

θ|ESG(n) : ESG(n) −→ DST 0(2n− 1)

is an isomorphism.
Using Corollary 3.3.4 with Corollary 2.5.9 permits us to obtain a new proof that

dim ESG(n) = dimDST 0(2n− 1) =

⌊
2n− 1

6

⌋
+ δ4,(2n−1 mod 6) =

⌊
2n− 1

6

⌋
=

⌊
n− 1

3

⌋
,

for all positive integers n.

3.3.2 Basis of ESG(n)
Using Theorem 3.3.3 and the results of Chapter 2, we are now ready for giving a basis of
ESG(n), for all positive integers n.
Theorem 3.3.5 (Chappelon [C8]). Let n be a positive integer. The set{

ψρ
(
∇S

(2n−1)
2k+1,k−n+1

) ∣∣∣∣ k ∈
{
0, . . . ,

⌊
n− 1

3

⌋
− 1

}}
is a basis of ESG(n), where ψρ

(
∇S

(2n−1)
2k+1,k−n+1

)
= G(Sk) with

Sk =

((
k − n+ 2j − 1

2k

)
+

(
k + n− 2j

2k − 2j + 3

)
+

(
k − n+ 2

2k − 2n+ 2j + 2

)
mod 2

)
1⩽j⩽n−1

,

for all k ∈
{
0, . . . ,

⌊
n−1
3

⌋
− 1
}
.

For instance, for n = 12, we obtain

k S
(23)
2k+1,k−11 ρ

(
∇S

(23)
2k+1,k−11

)
ψ
(
ρ
(
∇S

(23)
2k+1,k−11

))
0 (10101010101010101010101) ∇(01101010101010101010110) G1 = G(11111111110)

1 (01000100010001000100010) ∇(00010100010001000101000) G2 = G(01101010110)

2 (10000010100000101000001) ∇(01111110100000101111110) G3 = G(10011001000)

All the even Steinhaus graphs of order 12 are depicted in Figure 3.6, where the elements
of the basis {G1, G2, G3} are in red and, for every G ∈ ESG(12), the coordinate vector
(x1, x2, x3) of G = x1G1 + x2G2 + x3G3 is given.
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Figure 3.6: The 8 graphs of ESG(12) where the 3 red graphs form a basis



3.4. REGULAR STEINHAUS GRAPHS OF ODD DEGREE 67

3.3.3 Basis of PRSG(n)
We end this section by giving a basis of the linear subspace PRSG(n) of parity-regular
Steinhaus graphs, for all positive integers n. By definition, we know that PRSG(n) =
ESG(n) ⊔ OSG(n), where OSG(n) is the set of odd Steinhaus graphs of order n, for all
positive integers n. As already remarked, it is clear that OSG(n) = ∅, when n is odd, and

OSG(n) = ESG(n) + G((0)n−2 · (1)) ,

when n is even. It immediately follows that, for any positive integer n, we have

PRSG(2n− 1) = ESG(2n− 1) (3.3)

and
PRSG(2n) = ESG(2n) ⊔ (ESG(2n) + G((0)2n−2 · (1))) . (3.4)

Combining the identities (3.3) and (3.4) with Theorem 3.3.5, we obtain the following

Theorem 3.3.6 (Chappelon [C8]). Let n be a positive integer. The set{
ψρ
(
∇S

(2n−1)
2k+1,k−n+1

) ∣∣∣∣ k ∈
{
0, . . . ,

⌊
n− 1

3

⌋
− 1

}}
,

when n is odd, or the set

{G((0)n−2 · (1))} ∪
{
ψρ
(
∇S

(2n−1)
2k+1,k−n+1

) ∣∣∣∣ k ∈
{
0, . . . ,

⌊
n− 1

3

⌋
− 1

}}
,

when n is even, is a basis of PRSG(n), where ψρ
(
∇S

(2n−1)
2k+1,k−n+1

)
= G(Sk) with

Sk =

((
k − n+ 2j − 1

2k

)
+

(
k + n− 2j

2k − 2j + 3

)
+

(
k − n+ 2

2k − 2n+ 2j + 2

)
mod 2

)
1⩽j⩽n−1

,

for all k ∈
{
0, . . . ,

⌊
n−1
3

⌋
− 1
}
.

For instance, for n = 12, we obtain

G0 = G(00000000001) , G1 = G(11111111110) , G2 = G(01101010110) , G3 = G(10011001000) .

All the parity-regular Steinhaus graphs of order 12 are depicted in Figure 3.6 for even
graphs and in Figure 3.7 for odd ones, where the elements of the basis {G0, G1, G2, G3}
are in red and, for every G ∈ PRSG(12), the coordinate vector (x0, x1, x2, x3) of G =
x0G0 + x1G1 + x2G2 + x3G3 is given ((x1, x2, x3) when x0 = 0 in Figure 3.6).

3.4 Regular Steinhaus graphs of odd degree

In this section, we will study in detail the structure of Steinhaus matrices associated with
regular Steinhaus graphs of odd degree.
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Figure 3.7: The 8 graphs of OSG(12)
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3.4.1 Multi-symmetric Steinhaus matrices

Let G be a Steinhaus graph on n ⩾ 1 vertices. Then, for every integer 1 ⩽ i ⩽ n,
we denote by G \ {Vi} the graph obtained from G by deleting its ith vertex Vi and its
incident edges in G. Since the adjacency matrix of the graph G \ {V1} (resp. G \ {Vn})
is the Steinhaus matrix obtained by removing the first row (resp. the last column) in the
adjacency matrix of G, it follows that the graph G \ {V1} (resp. G \ {Vn}) is a Steinhaus
graph on n− 1 vertices.

Bailey and Dymacek studied the regular Steinhaus graphs of odd degree in [25], where
the following theorem is stated, using Dymacek’s theorem.

Theorem 3.4.1 (Bailey-Dymacek [25]). Let G be a regular Steinhaus graph of odd degree
d on 2n ⩾ 4 vertices. Then d = n, the Steinhaus graph G \ {V1, V2n} is regular of even
degree n− 1, and a1,j = a1,2n−j+1 for all 2 ⩽ j ⩽ 2n− 1.

Remark 3.4.2. In every simple graph, there are an even number of vertices of odd degree.
Therefore parity-regular Steinhaus graphs of odd type and thus regular Steinhaus graphs
of odd degree have an even number of vertices.

In their theorem, the authors studied the form of the sequence associated with G. We
are more interested in the Steinhaus matrix of G \ {V1, V2n} in the sequel.

Definition 3.4.3 (Multi-symmetric matrix). A square matrix of size n ⩾ 1 is said to be
multi-symmetric if M is doubly-symmetric and each row of the upper-triangular part of
M is a symmetric sequence, that is

ai,j = ai,n−j+i+1, for all 1 ⩽ i < j ⩽ n.

It is clear that a Steinhaus matrix M(S) is multi-symmetric if and only if the binary
Steinhaus triangle ∇S is dihedrally symmetric.

First, it is easy to see that each column of the upper-triangular part of a multi-
symmetric matrix is also a symmetric sequence.

Proposition 3.4.4. Let M = (ai,j) be a multi-symmetric matrix of size n. Then, each
column of the upper-triangular part of M is a symmetric sequence, that is ai,j = aj−i,j for
all 1 ⩽ i < j ⩽ n.

As for doubly-symmetric Steinhaus matrices, multi-symmetric Steinhaus matrices can
be characterized as follows.

Proposition 3.4.5 (Chappelon [C3]). Let M = (ai,j) be a Steinhaus matrix of size n ⩾ 3.
Then the following assertions are equivalent:

(i) the matrix M is multi-symmetric,

(ii) the first row, the last column and the over-diagonal of M are symmetric sequences,

(iii) the entries ai,n−i+1, an−2i+1,n−i+1 and ai,2i vanish for all 1 ⩽ i ⩽
⌊
n−1
2

⌋
.

We now refine Theorem 3.4.1.

Theorem 3.4.6. Let G be a regular Steinhaus graph of odd degree n on 2n ⩾ 4 vertices.
Then G \ {V1, V2n} is a regular Steinhaus graph of even degree n − 1 whose associated
Steinhaus matrix is multi-symmetric.
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Remark 3.4.7. By Theorem 3.4.6, it is easy to show that Conjecture 3.1.3 implies Conjec-
ture 3.1.4. Indeed, if Conjecture 3.1.3 is true, then the zero-edge graph on n vertices is the
only regular Steinhaus graph of even degree whose Steinhaus matrix is multi-symmetric.
It follows, by Theorem 3.4.6, that if G(s) is a regular Steinhaus graph of odd degree on
n + 2 vertices then s = (0 · · · 01) or s = (1 · · · 1). Therefore the Steinhaus graph G(s) is
the star graph on n+ 2 vertices which is not a regular Steinhaus graph.

In the sequel of this subsection we will study in detail the multi-symmetric Steinhaus
matrices. First, in order to determine a parametrization of these matrices, we use the
operator H which assigns to each matrix M = (ai,j) in SM(n) the Steinhaus matrix
H(M) = (bi,j) in SM(n− 3) defined by bi,j = ai−1,j−2, for all 1 ⩽ i < j ⩽ n− 3.

Proposition 3.4.8 (Chappelon [C3]). Let M = (ai,j) be a Steinhaus matrix of size n ⩾ 4.
Then the extension M of H(M) only depends on the parameters a1,2, a1,j0 and a1,n, with
j0 in {3, . . . , n− 1}.

Therefore, for every Steinhaus matrix N of size n− 3, there exist 8 distinct Steinhaus
matrices M of size n such that H(M) = N . We can also use this operator to determine
parametrizations of multi-symmetric Steinhaus matrices.

Proposition 3.4.9 (Chappelon [C3]). Let M = (ai,j) be a multi-symmetric Steinhaus
matrix of size n. Let ji be an element of the set {2i+ 1, . . . , n− i} for all 1 ⩽ i ⩽

⌊
n−1
3

⌋
.

Then the matrix M depends on the following parameters:

• a1,j1 and
{
a2i,j2i

∣∣ 1 ⩽ i ⩽
⌈
n
6

⌉
− 1
}
, for n even,

•
{
a2i+1,j2i+1

∣∣ 0 ⩽ i ⩽
⌈
n−3
6

⌉
− 1
}
, for n odd.

For all positive integers n, the number of multi-symmetric Steinhaus matrices of size
n immediately follows.

Theorem 3.4.10 (Chappelon [C3]). Let n be a positive integer. If we denote by MS(n)
the number of multi-symmetric Steinhaus matrices of size n, then we have

MS(n) =

{
2⌈n

6 ⌉ , for n even,
2⌈n−3

6 ⌉ , for n odd.

3.4.2 Vertex degrees of Steinhaus graphs associated with multi-
symmetric Steinhaus matrices

In this section, we analyse the vertex degrees of a Steinhaus graph associated with a
multi-symmetric Steinhaus matrix of size n. We begin with the case of doubly-symmetric
Steinhaus matrices.

Proposition 3.4.11. Let n be a positive integer and G be a Steinhaus graph on n vertices
whose Steinhaus matrix is doubly-symmetric. Then, for all 1 ⩽ i ⩽ n, we have

deg(Vi) = deg(Vn−i+1).

We shall now see that, for a Steinhaus graph associated with a multi-symmetric Stein-
haus matrix, the knowledge of the vertex degrees modulo 4 imposes strong conditions on
the entries of its Steinhaus matrix. In order to prove this result, we distinguish different
cases depending on the parity of n.
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Proposition 3.4.12 (Chappelon [C3]). Let n be an even number and G be a Steinhaus
graph on n vertices whose Steinhaus matrix M = (ai,j) is multi-symmetric. Then, we
have

deg(V1) = deg(Vn) ≡ a1,n
2
+1 (mod 2),

deg(V2) = deg(Vn−1) ≡ 2a1,n
2
+1 (mod 4),

deg(V3) = deg(Vn−2) ≡ 2a2,n
2
+1 (mod 4),

deg(V2i) = deg(Vn−2i+1) ≡ 2a2,2i+1 + 2ai,2i+1 (mod 4), for all 2 ⩽ i ⩽ n
2
− 2.

Remark 3.4.13. Let n be an even number. In every Steinhaus graph on n vertices whose
Steinhaus matrix is multi-symmetric the fourth vertex V4 has a degree divisible by 4.

Proposition 3.4.14 (Chappelon [C3]). Let n be an odd number and G be a Steinhaus
graph on n vertices whose Steinhaus matrix M = (ai,j) is multi-symmetric. Then, we
have

deg(V1) = deg(Vn) ≡ 0 (mod 2),
deg(V2) = deg(Vn−1) ≡ 2a1,n+1

2
(mod 4),

deg(V2i) ≡ 2ai+1,2i+1 + 2a2i−1,2i+1 + 2a2i−1,n−1
2

+i (mod 4), for all 2 ⩽ i ⩽ n−3
2
,

deg(V2i+1) ≡ 2a2,2i+2 (mod 4), for all 1 ⩽ i ⩽ n−3
2
.

Remark 3.4.15. Let n be an odd number. In every Steinhaus graph on n vertices whose
Steinhaus matrix is multi-symmetric the third vertex V3 has a degree divisible by 4.

3.4.3 Regular Steinhaus graphs modulo 4 with multi-symmetric
Steinhaus matrices

In this subsection, we consider the multi-symmetric Steinhaus matrices associated with
Steinhaus graphs which are regular modulo 4, i.e. where all vertex degrees are equal
modulo 4. First, we determine an upper bound of the number of these matrices. Two
cases are distinguished, according to the parity of n.

Theorem 3.4.16 (Chappelon [C3]). For all odd numbers n, there are at most 2⌈ n
30⌉ multi-

symmetric Steinhaus matrices of size n whose associated Steinhaus graphs are regular
modulo 4.

Theorem 3.4.17 (Chappelon [C3]). For all even numbers n, there are at most 2⌈ n
24⌉

multi-symmetric Steinhaus matrices of size n whose associated Steinhaus graphs are reg-
ular modulo 4.

Using these explicit parametrizations of the multi-symmetric Steinhaus matrices whose
Steinhaus graphs are regular modulo 4, we obtain the following result by computer search:

Computational Result 3.4.18 (Chappelon [C3]). For all positive integers n ⩽ 1500,
the zero-edge graph on n vertices is the only Steinhaus graph on n vertices with a multi-
symmetric Steinhaus matrix and which is regular modulo 4.

This result can easily be proved for all odd numbers in the special case of regular
Steinhaus graphs on n vertices whose Steinhaus matrices are multi-symmetric.

Theorem 3.4.19 (Chappelon [C3]). For all odd numbers n, there is no regular Steinhaus
graph on n vertices whose Steinhaus matrix is multi-symmetric, except the zero-edge graph
on n vertices.
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Finally, the above computational result permits us to extend the verification of Con-
jecture 3.1.4 up to n ⩽ 1500 vertices. Indeed, as proved in the remark following Theo-
rem 3.4.6, for a Steinhaus graph G on 2n vertices, if G \ {V1, V2n} is the zero-edge graph
on 2n− 2 vertices, then G is the star graph on 2n vertices which is not a regular graph.
Therefore, by Theorem 3.4.6, we obtain

Theorem 3.4.20 (Chappelon [C3]). There is no regular Steinhaus graph of odd degree
on 2 < n ⩽ 1500 vertices.



Chapter 4

Balanced triangles modulo m

In this chapter, we are interested in a generalization of the Steinhaus Problem for triangles
of elements of Z/mZ built with the same local rule as the standard Pascal triangle modulo
a positive integer m.

4.1 The Molluzzo Problem

Definition 4.1.1 (Steinhaus triangle modulo m). A Steinhaus triangle modulo m of size
n ⩾ 1 is a down-pointing triangle (ai,j)1⩽i⩽j⩽n of elements of Z/mZ satisfying the same
local rule as the standard Pascal triangle modulo m, that is,

ai,j = ai−1,j−1 + ai−1,j, (LR)

for all integers i and j such that 2 ⩽ i ⩽ j ⩽ n, where the sum is the sum in Z/mZ. Note
that (x), for all x ∈ Z/mZ, are Steinhaus triangles modulo m of size 1 and we say that ∅
is the Steinhaus triangle modulo m of size 0.

Definition 4.1.2 (Generalized Pascal triangle modulo m). A generalized Pascal triangle
modulo m of size n ⩾ 1 is an up-pointing triangle (ai,j)1⩽j⩽i⩽n of elements of Z/mZ
verifying the local rule (LR), that is,

ai,j = ai−1,j−1 + ai−1,j,

for all integers i, j such that 2 ⩽ j < i ⩽ n. Note that (x), for all x ∈ Z/mZ, are
generalized Pascal triangles modulo m of size 1 and we say that ∅ is the generalized
Pascal triangle modulo m of size 0.

Examples of a Steinhaus triangle and a generalized Pascal triangle modulo 7 of size 7
are given in Figure 4.1.

As for the binary case m = 2 introduced in Chapter 1, all the elements of a Steinhaus
triangle are determined by its first row and all the elements of a generalized Pascal triangle
by its left and right sides. More precisely, in any Steinhaus triangle (ai,j)1⩽i⩽j⩽n, we have

ai,j =
i−1∑
k=0

(
i− 1

k

)
a1,j−k,

73
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for all integers i and j such that 1 ⩽ i ⩽ j ⩽ n, and in any generalized Pascal triangle
(ai,j)1⩽j⩽i⩽n, we have

ai,j =

i−j+1∑
k=2

(
i− k − 1

j − 2

)
ak,1 +

j∑
k=2

(
i− k − 1

j − k

)
ak,k,

for all integers i and j such that 1 ⩽ j ⩽ i ⩽ n.

Notation 4.1.3. Let ∇S denote the Steinhaus triangle whose first row is the sequence
S of Z/mZ and let ∆(L,R) denote the generalized Pascal triangle whose left and right
sides are the sequences L and R of Z/mZ, respectively. Note that the first terms of L
and R must correspond.

Notation 4.1.4. For any positive integer m and any non-negative integer n, the sets of
Steinhaus triangles and generalized Pascal triangles modulo m of size n are denoted by
STm(n) and PTm(n), respectively.

For any positive integer m and any non-negative integer n, the sets STm(n) and
PTm(n) are Z/mZ-modules. Moreover, for any positive integer n, there exists a natural
isomorphism between STm(2n− 1) and PTm(n) that is

γ : STm(2n− 1) −→ PTm(n)
(ai,j)1⩽i⩽j⩽2n−1 7−→ (ai,n−1+j)1⩽j⩽i⩽n

Steinhaus triangles and generalized Pascal triangles can be viewed as finite multisets
of Z/mZ.

2 3 3 0 4 4 5
5 6 3 4 1 2
4 2 0 5 3
6 2 5 1
1 0 6
1 6
0

0
1 6

2 0 5
1 2 5 6

5 3 0 4 2
3 1 3 4 6 4

5 4 4 0 3 3 2

∇(2330445) ∆ (0121535, 0656242)

Figure 4.1: Examples of triangles of Z/7Z of size 7

Definition 4.1.5 (Multiset). A finite multiset of elements of Z/mZ is a set of Z/mZ
for which repeated elements are allowed. A finite multiset M of Z/mZ corresponds to a
function mM : Z/mZ −→ N, the multiplicity function associed to M , which assigns its
multiplicity in M to each element of Z/mZ. The cardinality of M , denoted by |M |, is
the number of elements of M counted with multiplicity, that is the non-negative integer
|M | =∑x∈Z/mZmM(x).

Definition 4.1.6 (Balanced multiset). A finite multiset M of Z/mZ is said to be balanced
if its multiplicity function is constant, i.e., if mM(x) = mM(y) for all x, y ∈ Z/mZ.

In 1976, John C. Molluzzo proposed the following problem on balanced Steinhaus
triangles modulo m.
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Problem 4.1.7 (Molluzzo [89]). Let m be a positive integer. For every non-negative
integer n such that the binomial coefficient

(
n+1
2

)
is divisible by m, does there exist a

balanced Steinhaus triangle of size n in Z/mZ?

For m = 2, we retrieve the Steinhaus Problem of Chapter 1. Since then, this problem
has been positively solved, by constructive approaches, for small values of m: for m ∈
{3, 5} in [30], for m ∈ {3, 5, 7} in [C1], for m = 4 in [C9]. First counter-examples appeared
in [C1], where it is proved that there does not exist balanced Steinhaus triangles of size 5 in
Z/15Z and of size 6 in Z/21Z. Nevertheless, this problem can be positively answered for an
infinite number of values m. Indeed, as showed in [C1, C2], there exist balanced Steinhaus
triangles, for all the possible sizes, in the case where m is a power of 3. This result was
obtained by studying Steinhaus triangles associated with arithmetic progressions. Even
if the Molluzzo Problem is not completely solved for the other odd values of m, we know
that there exist infinitely many balanced Steinhaus triangles in every Z/mZ with m odd.
This weak version of the Molluzzo Problem was posed in [C9].

Problem 4.1.8 (Weak Molluzzo’s Problem). Let m be a positive integer. Do there exist
infinitely many balanced Steinhaus triangles of Z/mZ?

Problem 4.1.8 is thus solved for the odd numbers m. For the even values, the cases
m = 2 and m = 4 come from the solutions of Problem 4.1.7 and a solution is known from
[59] for m ∈ {6, 8, 10}. This problem is completely open for the even numbers m ⩾ 12.

This chapter is organized as follows. After giving some preliminary results about Stein-
haus triangles and the Molluzzo Problem in Section 2, we study in details the Steinhaus
triangles generated by arithmetic progressions in Section 3. This permits us to obtain
a positive answer to Problem 4.1.7 for m = 3k, for all k ⩾ 0, and a positive answer to
Problem 4.1.8 for any odd value of m. In Section 4, we show that there exists a particular
sequence of integers whose projection of its orbit in Z/mZ contains balanced Steinhaus
triangles of size km modulo m, for all k ⩾ 0 and for all odd values of m. Finally, in
Section 5, we are interested in the Molluzzo Problem for even values of m. We manage
to lift to Z/4Z some solutions for Z/2Z obtained in Chapter 1.

4.2 Preliminary results

4.2.1 Derived and antiderived sequences of sequences modulo m

As for binary sequences in Chapter 1, we introduce the notions of derived and antiderived
sequences of sequences of Z/mZ.

Definition 4.2.1 (Derived sequence). Let S = (aj)1⩽j⩽n be a sequence of Z/mZ. The
derived sequence ∂S of S is the sequence

∂S = (aj + aj+1)1⩽j⩽n−1 (4.1)

of length n− 1, when n ⩾ 2, and the empty sequence, when n ⩽ 1.

It is clear that the derivation map ∂ is linear, i.e., ∂(S1 + S2) = ∂S1 + ∂S2 for all
sequences S1 and S2 of same length.

Definition 4.2.2 (Iterated derived sequence). The iterated derived sequences ∂iS of a
finite sequence S of Z/mZ are recursively defined by ∂iS = ∂(∂i−1S), for all i ⩾ 1, with
∂0S = S.
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For any finite sequence S of Z/mZ, its Steinhaus triangle ∇S can then be seen as the
collection (∂iS)0⩽i⩽n−1, where, for every i ∈ {1, . . . , n}, the ith row of ∇S corresponds to
the derived sequence ∂i−1S.

Definition 4.2.3 (Antiderived sequence). Let S be a sequence of Z/mZ of length n. An
antiderived sequence of S is a sequence T of length n+ 1 such that ∂T = S.

Proposition 4.2.4. Let S = (aj)1⩽j⩽n be a sequence of Z/mZ of length n. The sequence
S admits m antiderived sequences T1, . . . , Tm and these sequences verify

{Tk,i | k ∈ {1, . . . ,m}} = Z/mZ,

for all i ∈ {1, . . . , n + 1}, where Tk,i is the ith term of the sequence Tk. For any i ∈
{1, . . . , n + 1} and any x ∈ Z/mZ, the antiderived sequence of S whose ith term is x is
the sequence

∫
i,x
S = (bj)1⩽j⩽n+1 of length n+ 1 defined by

bj = (−1)i+jx+
i−1∑
k=1

(−1)j+kak −
j−1∑
k=1

(−1)j+kak, (4.2)

for all j ∈ {1, . . . , n+ 1}.

For example, the sequence S = 0143 of Z/5Z admits the five antiderived sequences
00130, 14221, 23312, 32403 and 41044. Further, it is straightforward to obtain a funda-
mental theorem of calculus.

Proposition 4.2.5. Let S = (aj)1⩽j⩽n be a binary sequence of length n. For any i ∈
{1, . . . , n+ 1} and any x ∈ Z/mZ, we have that

i) ∂
(∫

i,x
S
)
= S,

ii)
∫
i,x

(∂S) = S +
(
(−1)i+j (x− ai)

)
1⩽j⩽n

.

4.2.2 The average number of each element in triangles modulo m

Using the derivative and antiderivative operations on sequences of Z/mZ introduced be-
fore, it is now easy to determine, for any positive integer n and every x ∈ Z/mZ, the
average number of x in a Steinhaus triangle or a generalized Pascal triangle modulo m of
size n, i.e.,

1

mn

∑
∇∈STm(n)

m∇(x) and
1

m2n−1

∑
∆∈PTm(n)

m∆(x).

Proposition 4.2.6. For any non-negative integer n, the average number of x in a Stein-
haus triangle or in a generalized Pascal triangle modulo m of size n is exactly 1

m

(
n+1
2

)
, for

all x ∈ Z/mZ.

The Molluzzo Problem then corresponds to the determination of the existence of Stein-
haus triangles modulo m with an average number of each element of Z/mZ, that are
Steinhaus triangles ∇ with m∇(x) = m∇(y), for all x, y ∈ Z/mZ.
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4.2.3 Balanced multisets under projection maps

Definition 4.2.7. For every factor q of the positive integer m, we denote by πq the
canonical surjective morphism πq : Z/mZ −↠ Z/qZ. For a finite multiset M of elements
in Z/mZ, we define, and denote by

πq(M) = {πq(x) | x ∈M} ,

its projected multiset in Z/qZ.

We now study the behaviour of balanced multisets in Z/mZ under the projection
morphism πq : Z/mZ −↠ Z/qZ.

Theorem 4.2.8 (Chappelon [C2]). Let q be a divisor of m and M be a multiset of
elements in Z/mZ. Then, the multiset M is balanced if, and only if, its projected multiset
πq(M) is balanced and the multiplicity function mM : Z/mZ −→ N is constant on each
coset of the subgroup qZ/mZ.

Proof. For every x in Z/mZ, it is clear that the multiplicity of πq(x) in πq(M) is the sum
of the multiplicities in M of all the elements of the coset x+ qZ/mZ, that is,

mπq(M)(πq(x)) =

m
q
−1∑

k=0

mM(x+ kq), ∀x ∈ Z/mZ.

This completes the proof.

Remark 4.2.9. Theorem 4.2.8 is true only when |M | is divisible by m. For instance, as
depicted in Figure 4.2, the Steinhaus triangle ∇(153) is balanced modulo 10 while its
projection π5 (∇(153)) = ∇(103) is not in Z/5Z.

1 5 3
6 8
4

1 0 3
1 3
4

Figure 4.2: The Steinhaus triangle ∇(153) of Z/10Z and its projection π5 (∇(153)) in
Z/5Z

Therefore, in the sequel of this chapter, we only consider triangles of size n such that(
n+1
2

)
is divisible by m.

Notation 4.2.10. The set of all prime numbers is denoted by P . For every prime number
p, we denote by vp(m) the p-adic valuation of m, i.e. the greatest exponent e ⩾ 0 for
which pe divides m. The prime factorization of m may then be written as

m =
∏
p∈P

pvp(m).

We denote by ω(m) the number of distinct prime factors of m, i.e. the number of primes
p for which vp(m) ⩾ 1.

The set of all positive integers n such that m divides
(
n+1
2

)
is described in the following
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Theorem 4.2.11 (Chappelon [C2]). Let m be a positive integer. The set of all non-
negative integers n such that the binomial coefficient

(
n+1
2

)
is a multiple of m is a disjoint

union of 2ω(m) distinct classes modulo 2m if m is even, and of the same number of distinct
classes modulo m if m is odd. This set comprises the classes 2mN and (2m− 1) + 2mN
if m is even, and the classes mN and (m− 1) +mN if m is odd.

Corollary 4.2.12. Let p be an odd prime number and k be a positive integer. For every
non-negative integer n, we have(

n+ 1

2

)
≡ 0 (mod pk) ⇐⇒ n ≡ 0 or − 1 (mod pk).

Similarly, for every non-negative integer n, we have(
n+ 1

2

)
≡ 0 (mod 2k) ⇐⇒ n ≡ 0 or − 1 (mod 2k+1).

For instance, for m = 825 = 3 · 52 · 11, the set of non-negative integers n such that the
binomial coefficient

(
n+1
2

)
is divisible by 825 is the disjoint union of the 8 classes a+825N

with a ∈ {0, 99, 275, 374, 450, 549, 725, 824}.

4.3 Balanced Steinhaus triangles from arithmetic pro-
gressions

4.3.1 Steinhaus triangles of arithmetic progressions

In this subsection, we describe the structure of Steinhaus triangles associated with arith-
metic progressions of Z/mZ.

Notation 4.3.1. Let AP(a, d, n) denote the arithmetic progression beginning with a, with
common difference d and of length n, that is,

AP(a, d, n) = (a, a+ d, a+ 2d, . . . , a+ (n− 1)d) ,

for any a, d ∈ Z/mZ and any non-negative integer n.

First, it is straightforward to see that the structure of arithmetic progressions is pre-
served under the derivation process.

Proposition 4.3.2. Let a, d ∈ Z/mZ. Then,

∂AP(a, d, n) = AP(2a+ d, 2d, n− 1),

for all positive integers n.

Corollary 4.3.3. Let a, d ∈ Z/mZ. Then,

∂iAP(a, d, n) = AP(2ia+ 2i−1id, 2id, n− i),

for all integers n and i such that 1 ⩽ i ⩽ n.
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Corollary 4.3.4. Let a, d ∈ Z/mZ. If ∇AP(a, d, n) = (ai,j)1⩽i⩽j⩽n, then

ai,j =

{
a+ (j − 1)d for i = 1 and for all j ∈ {1, . . . , n},
2i−1a+ 2i−2(2j − i)d for all integers i, j s.t. 2 ⩽ i ⩽ j ⩽ n.

For any even number m, we deduce from Corollary 4.3.4 that in the Steinhaus triangle
∇AP(a, d, n) = (ai,j)1⩽i⩽j⩽n, we have

ai,j ∈ {2k | k ∈ Z/mZ}

for all integers i and j such that 3 ⩽ i ⩽ j ⩽ n. Therefore, if ∇AP(a, d, n) is balanced,
then all the elements of {2k + 1 | k ∈ Z/mZ} are in the first two rows of ∇AP(a, d, n).
It follows that

n+ (n− 1) ⩾
1

2

(
n+ 1

2

)
and thus n ⩽ 6. Moreover, since m is even, we have that

(
n+1
2

)
must be divisible by 2.

This implies that n ∈ {0, 3, 4}.

Proposition 4.3.5. Let m be an even integer and let n be a non-negative integer. If
∇AP(a, d, n) is balanced, then n ∈ {0, 3, 4}.

The Steinhaus triangle of size 0 is always balanced in Z/mZ, for any positive integer
m. For any even number m and any positive integer n, the complete determination of
balanced triangles ∇AP(a, d, n) is given below.

Theorem 4.3.6 (Chappelon [C2]). Let m be an even number. Let a, d ∈ Z/mZ and let
n be a positive integer. Then the Steinhaus triangle generated from X = AP(a, d, n) is
balanced if, and only if, we have

m = 2 and X ∈ {010, 111, 0101, 1010} ,
or

m = 6 and X ∈ {135, 234, 432, 531} .

In the sequel of this section, we suppose that m is an odd number. In this case, it is
easy to see that among the m antiderived sequences of an arithmetic progression, only
one is also an arithmetic progression.

Proposition 4.3.7. Let m be an odd number and let a, d ∈ Z/mZ. Then, the sequence
AP(2−1a− 2−2d, 2−1d, n+ 1) is the only arithmetic progression whose derived sequence is
the arithmetic progression AP(a, d, n).

In contrast, for n even, there is no such unicity statement. For example, in Z/8Z, the
arithmetic progressions 37373 and 11111 are distinct but have the same derived sequence
2222.

4.3.2 Balanced Steinhaus triangles from arithmetic progressions
modulo m odd

We begin by showing that the common difference of a balanced Steinhaus triangle of an
arithmetic progression in Z/mZ must be invertible.
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Theorem 4.3.8 (Chappelon [C2]). Let m be an odd number and let a, d ∈ Z/mZ. If d
is non-invertible, then the Steinhaus triangle ∇AP(a, d, n) is not balanced, for all positive
integers n.

We continue by studying Steinhaus triangles of arithmetic progressions with invertible
common differences.

Definition 4.3.9. For every coprime integers m and a, we denote by ordm(a) the multi-
plicative order of a modulo m, i.e. the smallest positive integer e such that ae ≡ 1 mod m,
namely

ordm(a) = min {e ∈ N∗ | ae ≡ 1 mod m} .
Note that ordm(a) is always a divisor of φ(m), the totient of m.

The following theorem is the main result of this section.

Theorem 4.3.10 (Chappelon [C2]). Let m be an odd number. Let a, d ∈ Z/mZ, with d
invertible. Then, the Steinhaus triangle ∇AP(a, d, n) is balanced, for all positive integers
n ≡ 0 or −1 mod ordm(2

m)m.

For example, in Z/7Z, the Steinhaus triangle ∇AP(1, 3, 20) is balanced since 3 is an
invertible element of Z/7Z and ord7(2

7) = 3. Indeed, each element of Z/7Z occurs 30
times in this Steinhaus triangle.

1 4 0 3 6 2 5 1 4 0 3 6 2 5 1 4 0 3 6 2
5 4 3 2 1 0 6 5 4 3 2 1 0 6 5 4 3 2 1
2 0 5 3 1 6 4 2 0 5 3 1 6 4 2 0 5 3
2 5 1 4 0 3 6 2 5 1 4 0 3 6 2 5 1
0 6 5 4 3 2 1 0 6 5 4 3 2 1 0 6
6 4 2 0 5 3 1 6 4 2 0 5 3 1 6
3 6 2 5 1 4 0 3 6 2 5 1 4 0
2 1 0 6 5 4 3 2 1 0 6 5 4
3 1 6 4 2 0 5 3 1 6 4 2
4 0 3 6 2 5 1 4 0 3 6
4 3 2 1 0 6 5 4 3 2
0 5 3 1 6 4 2 0 5
5 1 4 0 3 6 2 5
6 5 4 3 2 1 0
4 2 0 5 3 1
6 2 5 1 4
1 0 6 5
1 6 4
0 3
3

Figure 4.3: The Steinhaus triangle ∇AP(1, 3, 20)

Since there are n distinct elements a in Z/mZ and φ(m) distinct invertible elements d
in Z/mZ, it follows that, for each positive integer n, there exist exactly mφ(m) dis-
tinct arithmetic progressions AP(a, d, n) with invertible common difference in Z/mZ
and of length n. Therefore, for m odd, Theorem 4.3.10 implies that there exist at
least mφ(m) balanced Steinhaus triangles of size n for every positive integer n ≡ 0
or −1 mod ordm(2

m)m. However, this is not sufficient to completely settle the Molluzzo
Problem, as shown by the following proposition. This shortcoming will be partly overcome
in the next subsection.
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Proposition 4.3.11. Let m > 1 be an odd number. Then

ordm(2
m) ⩾ 2.

4.3.3 The antisymmetric case

Here, we refine Theorem 4.3.10 by considering antisymmetric sequences of Z/mZ.

Definition 4.3.12 (Antisymmetric sequence). Let X = (x1, x2, . . . , xn) be a finite se-
quence of length n ⩾ 1 in Z/mZ. The sequence X is said to be antisymmetric if
xm−i+1 = −xi, for all i ∈ {1, . . . , n}.

We first show that the antisymmetry is preserved by the derivation process and we
study the condition to have an antisymmetric antiderived sequence of an antisymmetric
sequence.

Proposition 4.3.13 (Chappelon [C2]). Let X = (x1, x2, . . . , xn) be a finite sequence of
length n ⩾ 1 in Z/mZ. Then the sequence X is antisymmetric if, and only if, its derived
sequence ∂X is also antisymmetric and x⌈n

2
⌉ + xn−⌈n

2
⌉+1 = 0, where ⌈n

2
⌉ is the ceiling of

n
2
.

Proposition 4.3.14 (Chappelon [C2]). Let m be an odd number. Let a, d ∈ Z/mZ.
Then, the arithmetic progression AP(a, d, n) of length n ⩾ 2 is antisymmetric if, and only
if, its derived sequence AP(2a+ d, 2d, n− 1) is also antisymmetric.

In contrast, for m even, this proposition is not true. For instance, for n = 8, the
arithmetic progression X = 01234 is not antisymmetric in Z/8Z but its derived sequence
∂X = 1357 is.

We now determine arithmetic progressions which are antisymmetric in Z/mZ for m
odd.

Proposition 4.3.15 (Chappelon [C2]). Let m be an odd number. Let d be in Z/mZ and n
be a positive integer. Then, there exists a unique antisymmetric arithmetic progression of
length n and with common difference d. Moreover, if n is a multiple of m, then the unique
antisymmetric arithmetic progression with common difference d and of length n is the
sequence AP(2−1d, d, n). If n ≡ −1 (mod m), then the unique antisymmetric arithmetic
progression with common difference d and of length n is the sequence AP(d, d, n).

If m is even, the above unicity does not hold in general. For example, in Z/8Z,
the antisymmetric sequences 02460 and 46024 are both arithmetic progressions of length
n = 5 and of common difference d = 2.

Definition 4.3.16. For every coprime integers m and a, we denote by pordm(a) the
projective multiplicative order of a modulo m, i.e., the smallest positive integer e such
that ae ≡ ±1 mod m, namely

pordm(a) = min {e ∈ N∗ | ae ≡ ±1 mod m} .

Note that we have the alternative ordm(a) = pordm(a) or ordm(a) = 2pordm(a). More-
over, ordm(a) = 2pordm(a) if and only if there exists a power e of a such that ae ≡
−1 mod m.
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We now improve Theorem 4.3.10 by considering the antisymmetric arithmetic pro-
gressions with invertible common difference. There are exactly φ(m) such sequences, for
every length, by Proposition 4.3.15.

Theorem 4.3.17 (Chappelon [C2]). Let m be an odd number and d be an invertible
element in Z/mZ. Then

• for every n ≡ 0 mod pordm(2
m)m, the triangle ∇AP(2−1d, d, n) is balanced,

• for every n ≡ −1 mod pordm(2
m)m, the triangle ∇AP(d, d, n) is balanced.

We shall now see that this theorem answers in the affirmative the Molluzzo Problem
in Z/3kZ for all positive integers k and gives a partial answer in the general odd case.

Corollary 4.3.18 (Chappelon [C2]). The Molluzzo Problem is completely solved in Z/3kZ
for all positive integers k. In other words, there exists a balanced Steinhaus triangle of
size n of Z/3kZ for all positive integers n such that

(
n+1
2

)
is divisible by 3k.

Proof. Let k be a positive integer. We have

pord3k

(
23

k
)
= pord3

(
23
)
= 1.

Let d be an invertible element in Z/3kZ. Then, Theorem 4.3.17 implies that

• AP(2−1d, d, n) is balanced for every positive integer n ≡ 0 mod 3k,

• AP(d, d, n) is balanced for every positive integer ≡ −1 mod 3k.

Finally, from Corollary 4.2.12, we know that 3k divides the binomial coefficient
(
n+1
2

)
if,

and only if, the positive integer n is congruent to 0 or −1 modulo 3k.

For every odd number m, Theorem 4.2.11 and Theorem 4.3.17 partly solve the Mol-
luzzo Problem in Z/mZ in the exact proportion of 1

2ω(m)−1pordm(2
m)

, where ω(m) is the
number of distinct prime factors of m. Indeed, if we consider the sets

N(m) =

{
n ∈ N

∣∣∣∣ (n+ 1

2

)
≡ 0 mod m

}
,

and
B(m) = {n ∈ N | ∃ a balanced sequence in Z/mZ of length n} ,

then clearly B(m) ⊂ N(m). Moreover, the Molluzzo Problem can be reformulated as the
question whether B(m) = N(m) for all m > 1.

It follows from Theorem 4.2.11 and Theorem 4.3.17 that

|B(m) ∩ {0, 1, . . . , k} |
|N(m) ∩ {0, 1, . . . , k} | ⩾

1

2ω(n)−1pordm(2
m)
,

for all k ⩾ pordm(2
m)m. Since 2ω(m)−1pordm(2

m) ⩾ 2 for every odd number m ̸= 3k,
it follows that our method gives a complete solution to the Molluzzo Problem for the
powers of three only. For example, for m = 5k, we have 2ω(m)−1pordm(2

m) = 2, whence
our results in this case produce balanced sequences for half of the admissible lengths.
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4.4 A universal integer sequence generating balanced
triangles modulo m odd

4.4.1 Orbits and triangles modulo m

In this section, we are also interested in the Molluzzo Problem and its weak version for
odd values of m, for Steinhaus triangles and for generalized Pascal triangles modulo m.
These triangles can be seen as finite subparts of the orbit associated with a doubly infinite
sequence of elements of Z/mZ, where the derivation process is the same as defined above
for finite sequences, with the same local rule as the standard Pascal triangle modulo m.

Definition 4.4.1 (Derived sequences). Let m be a positive integer and let S = (aj)j∈Z be
a doubly infinite sequence of elements of Z/mZ. The derived sequence of S is the sequence

∂S = (aj + aj+1)j∈Z .

The ith derived sequence ∂iS is recursively defined by ∂iS = ∂(∂i−1S), for all integers
i ⩾ 1, with ∂0S = S.

Definition 4.4.2 (Orbit). Let m be a positive integer and let S = (aj)j∈Z be a doubly
infinite sequence of elements of Z/mZ. The orbit of S is the sequence

OS =
(
∂iS
)
i∈N .

The orbit of S can also be seen as the (N× Z)-indexed sequence

OS = (ai,j)(i,j)∈N×Z

where ai,j is the jth term of ∂iS, for all i ∈ N and all j ∈ Z. Then, we have

ai+1,j = ai,j + ai,j+1,

for all integers i ⩾ 1 and j, by the local rule of this cellular automaton. Moreover, we
know that

ai,j =
i∑

k=0

(
i

k

)
aj+k

for all integers i ⩾ 0 and j.

Notation 4.4.3. Let S be a doubly infinite sequence of Z/mZ and let OS = (ai,j)(i,j)∈N×Z
its orbit. For every i ∈ N, the ith row of OS is the sequence Ri = ∂iS = (ai,j)j∈Z and,
for every j ∈ Z, the jth diagonal and the jth anti-diagonal of OS are the sequences
Dj = (ai,j)i∈N and ADj = (ai,j−i)i∈N respectively.

Examples of Steinhaus triangles and generalized Pascal triangles appearing in an orbit
of a doubly infinite sequence of Z/5Z are depicted in Figure 4.4.

Definition 4.4.4 (Interlaced arithmetic progression). For all positive integers n and k
and for all k-tuples of elements A = (a0, . . . , ak−1) and D = (d0, . . . , dk−1) in Z/mZ, or
in Z, the k-interlaced arithmetic progression IAP(A,D) is the sequence with first terms
(a0, . . . , ak−1) and with common differences (d0, . . . , dk−1), that is the doubly infinite se-
quence IAP(A,D) = (aj)j∈Z defined by aj0+jk = aj0 + jdj0 , for all j ∈ Z and for every
j0 ∈ {0, 1, . . . , k−1}. For k = 1, we denote by AP(a0, d0) the arithmetic progression with
first element a0 and with common difference d0.
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0 4 3 1 2 4 2 0 3 1 3 4 0 1 0 0 0 1 3 2 0 2 0 3 3 3 3 4 1 0 0 1 4 1 0
4 2 4 3 1 1 2 3 4 4 2 4 1 1 0 0 1 4 0 2 2 2 3 1 1 1 2 0 1 0 1 0 0 1

3 1 1 2 4 2 3 0 2 3 1 1 0 2 1 0 1 0 4 2 4 4 0 4 2 2 3 2 1 1 1 1 0 1 4
4 2 3 1 1 0 3 2 0 4 2 1 2 3 1 1 1 4 1 1 3 4 4 1 4 0 0 3 2 2 2 1 1 0

1 1 0 4 2 1 3 0 2 4 1 3 3 0 4 2 2 0 0 2 4 2 3 0 0 4 0 3 0 4 4 3 2 1 2
2 1 4 1 3 4 3 2 1 0 4 1 3 4 1 4 2 0 2 1 1 0 3 0 4 4 3 3 4 3 2 0 3 3

1 3 0 0 4 2 2 0 3 1 4 0 4 2 0 0 1 2 2 3 2 1 3 3 4 3 2 1 2 2 0 2 3 1 0
4 3 0 4 1 4 2 3 4 0 4 4 1 2 0 1 3 4 0 0 3 4 1 2 2 0 3 3 4 2 2 0 4 1

0 2 3 4 0 0 1 0 2 4 4 3 0 3 2 1 4 2 4 0 3 2 0 3 4 2 3 1 2 1 4 2 4 0 1
2 0 2 4 0 1 1 2 1 3 2 3 3 0 3 0 1 1 4 3 0 2 3 2 1 0 4 3 3 0 1 1 4 1

Figure 4.4: Examples of triangles in Z/5Z: ∇(24311), ∆(03240, 02344), ∇(1330), ∇(1141)
and ∆(0444, 0031)

Let S = IAP((0,−1, 1), (1,−2, 1)). We shall show that this sequence has the remark-
able property that the orbit of its projection πm(S) contains infinitely many balanced
Steinhaus figures for every odd number m. For this reason, we shall call this sequence the
universal sequence and denote it by US. The first few terms of US, where 0 is the term
of index 0, are given below:

US = (. . . . . . ,−3,−3, 5,−2,−2, 3,−1,−1, 1, 0,0,−1, 1, 1,−3, 2, 2,−5, 3, 3,−7, . . . . . .) .

The following theorem is the main result of this section.

Theorem 4.4.5 (Chappelon [C5]). Let m be an odd number. Then, the orbit of the
projection πm(US) of the universal sequence in Z/mZ contains:

i) balanced Steinhaus triangles of size n for every n ≡ 0 mod m or n ≡ −1 mod 3m.
This partially solves the Molluzzo Problem for 2/3 of the admissible sizes n, in the
case where m is an odd prime power.

ii) balanced generalized Pascal triangles of size n for every n ≡ −1 mod m or n ≡
0 mod 3m. This also gives a partial solution of the analogous Molluzzo Problem for
generalized Pascal triangles, for 2/3 of the admissible sizes n, in the case where m is
an odd prime power.

It would be highly desirable to have a similar result for m even, but this is widely open.
This section is organized as follows. In Subsection 2, we study doubly arithmetic triangles
(DAT for short) in Z/mZ. These are triangles whose rows are arithmetic progressions
with the same common difference and whose diagonals are also arithmetic progressions
with the same common difference. We show that these triangles constitute a source
of balanced multisets in Z/mZ, for m odd, while they are never balanced in Z/mZ,
for m even. In Subsection 3, interlaced doubly arithmetic orbits, i.e., orbits that are an
interlacing of doubly arithmetic structures, are considered. We determine all the interlaced
doubly arithmetic orbits in Z and, in Subsection 4, we show that the projection of these
particular orbits in Z/mZ, for m odd, contains infinitely many balanced triangles. This
result is refined in Subsection 5, by considering antisymmetric sequences. In Subsection 6,
a particular case of this antisymmetric refinement leads to the universal sequence US and
Theorem 4.4.5.
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4.4.2 DAT: a source of balanced multisets

Definition 4.4.6 (DAT). For all positive integers m and n and for all elements a, d1
and d2 in Z/mZ, the doubly arithmetic triangle DAT(a, d1, d2, n) is the triangle of size
n in Z/mZ, with first element a and where each diagonal and each row are arithmetic
progressions with respective common differences d1 and d2, that is the multiset in Z/mZ
defined by

DAT(a, d1, d2, n) = {a+ id1 + jd2 | 0 ⩽ i ⩽ n− 1 , 0 ⩽ j ⩽ n− 1− i} .

Obviously, the anti-diagonals of a DAT are arithmetic progressions with common differ-
ence d1 − d2.

Here, we show that doubly arithmetic triangles constitute a source of balanced multi-
sets in Z/mZ, for m odd. We begin by determining a necessary condition, on the common
differences d1 and d2, to obtain a balanced DAT in Z/mZ.

Proposition 4.4.7 (Chappelon [C5]). Let m and n be two positive integers and let
a, d1, d2 ∈ Z/mZ. If the doubly arithmetic triangle DAT(a, d1, d2, n) is balanced, then
its common differences d1, d2 and d1 − d2 are invertible in Z/mZ.

Remark 4.4.8. For m even, there is no balanced DAT in Z/mZ since at least one element
of {d1, d2, d1 − d2} is not invertible in Z/mZ, by the parity of m.

Remark 4.4.9. The condition on n to be a positive integer such that
(
n+1
2

)
is divisible by

m is not sufficient: as depicted in Figure 4.5, the triangle DAT(0, 8, 1, 5) is not balanced in
Z/15Z, although its cardinality

(
6
2

)
= 15 is divisible by m = 15 and its common differences

8, 1 and 7 are invertible in Z/15Z.

0 1 2 3 4
8 9 10 11

1 2 3
9 10

2

Figure 4.5: The doubly arithmetic triangle DAT(0, 8, 1, 5) in Z/15Z

The following theorem is the main result of this subsection.

Theorem 4.4.10 (Chappelon [C5]). Let m be an odd number and let d1, d2 ∈ Z/mZ
be invertible such that d1 − d2 is also invertible. Then, the doubly arithmetic triangle
DAT(a, d1, d2, n) is balanced in Z/mZ for all n ≡ 0 or −1 mod m.

Remark 4.4.11. For m odd and for every d ∈ Z/mZ invertible, the doubly arithmetic
triangles DAT(a, d,−d, n), DAT(a, d, 2d, n) and DAT(a, 2d, d, n) are balanced in Z/mZ,
for all n ≡ 0 or −1 mod m.

Let m be a positive integer and let d1 and d2 be two elements of Z/mZ. The orbit
OS, associated with a doubly infinite sequence S in Z/mZ, is said to be (d1, d2)-doubly
arithmetic if each subtriangle appearing in it is a DAT with common differences (d1, d2),
that is if OS is an orbit where all the diagonals are arithmetic progressions with the same
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common difference d1 and where all the rows are arithmetic progressions with the same
common difference d2.

Now, we prove that, for every positive integer m, there does not exist a doubly arith-
metic orbit in Z/mZ, except the trivial orbit generated by the sequence of zeros in Z/mZ.

Proposition 4.4.12. Let m be a positive integer. The orbit associated with the sequence
of zeros is the only doubly arithmetic orbit in Z/mZ.

Even if there does not exist a non-trivial doubly arithmetic orbit, the results of this
subsection will be useful in next subsections, where orbits with an interlaced doubly
arithmetic structure are studied.

4.4.3 Interlaced doubly arithmetic orbits of integers

Definition 4.4.13 (Interlaced doubly arithmetic orbit). For all positive integersm, k1 and
k2 and for every doubly infinite sequence S in Z/mZ, or in Z, the orbit OS = (ai,j)(i,j)∈N×Z
is said to be (k1, k2)-interlaced doubly arithmetic if, for every i0 ∈ {0, 1, . . . , k1 − 1} and
every j0 ∈ {0, 1, . . . , k2 − 1}, the subsequence (ai0+ik1,j0+jk2)(i,j)∈N×Z is doubly arithmetic,
i.e., if we have

ai0+ik1,j0+jk2 = ai0,j0 + i(ai0+k1,j0 − ai0,j0) + j(ai0,j0+k2 − ai0,j0),

for all i ∈ N and all j ∈ Z.

Determining all interlaced doubly arithmetic orbits (IDAO for short) in Z/mZ seems
to be very difficult. Nevertheless, IDAO in Z are determined in this subsection and their
projection in Z/mZ will be considered in the sequel. First, it is clear that the sequence S
associated with a (k1, k2)-interlaced doubly arithmetic orbit OS is a k2-interlaced arith-
metic progression. We begin by showing that the interlaced arithmetic structure of a
sequence is preserved under the derivation process.

Proposition 4.4.14. Let m be a positive integer. Let (a0, . . . , ak−1) and (d0, . . . , dk−1) be
two k-tuples of elements in Z/mZ, or in Z. Then, we have

∂IAP ((a0, . . . , ak−1), (d0, . . . , dk−1))
= IAP ((a0 + a1, . . . , ak−2 + ak−1, ak−1 + a0 + d0), (d0 + d1, . . . , dk−2 + dk−1, dk−1 + d0)) .

We can now explicitly determine all the iterated derived sequences of an interlaced
arithmetic progression.

Proposition 4.4.15. Let m be a positive integer. Let A and D be two k-tuples of elements
in Z/mZ, or in Z. Then, for every non-negative integer i, we have

∂iIAP (A,D) = IAP (ACi +DTi , DCi) ,

where Ci is the circulant matrix of size k defined by

Ci = Circ

(∑
l⩾0

(
i

lk

)
,
∑
l⩾0

(
i

lk − 1

)
, . . . ,

∑
l⩾0

(
i

lk + 1

))
,

and where Ti is the Toeplitz matrix of size k where the (r, s)-entry of Ti is

(Ti)r,s =
∑
l⩾0

l

(
i

r − s+ lk

)
,

for all r, s ∈ {1, . . . , k}.
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The main result of this subsection is the complete characterization of IDAO in Z.

Theorem 4.4.16 (Chappelon [C5]). Every interlaced doubly arithmetic orbit OS in Z is
generated by an interlaced arithmetic progression of the form

S = IAP((a0, a1, a2), (d,−2d− 3Σ, d+ 3Σ)),

where a0, a1, a2 and d are integers, and Σ := a0 + a1 + a2.

We begin by showing that the interlaced arithmetic progressions listed in Theo-
rem 4.4.16 will generate interlaced doubly arithmetic orbits of integers.

Proposition 4.4.17. Let a0, a1, a2, d ∈ Z and let Σ = a0 + a1 + a2. Then, the orbit
OS associated with S = IAP((a0, a1, a2)(d,−2d − 3Σ, d + 3Σ)) is (6, 3)-interlaced doubly
arithmetic.

Now, we show that there is no other sequence generating IDAO in Z. Since any
(k1, k2)-IDAO is also a (k1k2, k1k2)-IDAO, we suppose that we have k1 = k2 = k in the
sequel. The problem of determining all (k, k)-IDAO can then be converted into a system
of linear equations.

Proposition 4.4.18 (Chappelon [C5]). Let m be a positive integer. Let A and D be
two k-tuples of elements in Z/mZ, or in Z, and let S = IAP(A,D) be a k-interlaced
arithmetic progression. Then, the orbit OS is (k, k)-interlaced doubly arithmetic if and
only if A and D satisfy (

Wk
2 WkTk

T

0k Wk

)(
AT

DT

)
= 0,

where Wk = Ck − Ik = Circ
((

k
0

)
,
(
k
1

)
, . . . ,

(
k

k−1

))
, that is the Wendt matrix of size k.

In [112], E. Wendt investigated the resultant of Xk − 1 and (X +1)k − 1, which corre-
sponds to the determinant of Wk. E. Lehmer was the first to prove that the determinant
of Wk vanishes if and only if k is divisible by 6 [83]. It is also easy to deduce from her
proof that the Wendt matrix Wk is of rank k if k is not divisible by 6 and of rank k − 2
otherwise.

Proposition 4.4.19.

rank(Wk) =

{
k if k ̸≡ 0 (mod 6),
k − 2 if k ≡ 0 (mod 6).

We are now able to prove the main theorem of this section.

Proof of Theorem 4.4.16. If k is not divisible by 6, then the Wendt matrix Wk is of rank
k by Proposition 4.4.19. This implies that A = D = (0, . . . , 0) and thus S is the sequence
of zeros. Otherwise, if k is divisible by 6, then Proposition 4.4.17 implies that the vector
space of (k, k)-interlaced doubly arithmetic orbits is of dimension greater than or equal
to 4. Moreover, since rank(Wk

2) = rank(Wk) = k − 2 by Proposition 4.4.19, it follows
that the matrix (

Wk
2 WkTk

T

0k Wk

)
is of rank greater than or equal to 2k − 4. Therefore, there is no other (k, k)-IDAO than
those listed in Theorem 4.4.16. This completes the proof.
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4.4.4 Balanced triangles modulo m odd

For any odd number m, the projection in Z/mZ of an IDAO in Z, obtained in the previous
subsection, contains infinitely many balanced triangles modulo m.

Theorem 4.4.20 (Chappelon [C5]). Let m be an odd number and let a0, a1, a2, d ∈ Z/mZ.
Define Σ := a0 + a1 + a2. If d, d+3Σ, and 2d+3Σ are invertible, then, the following tri-
angles, contained in the orbit of S = IAP((a0, a1, a2), (d,−2d−3Σ, d+3Σ)), are balanced:

i) every Steinhaus triangle of size n in OS, for every n ≡ 0 or −1 mod 6m,

ii) every generalized Pascal triangle of size n in OS, for every n ≡ 0 or −1 mod 6n.

Proof. Let OS = (ai,j)(i,j)∈N×Z be the orbit associated with S. Consider the subsequences
Si0,j0 = (ai0+6i,j0+6j)(i,j)∈N×Z, for i0 and j0 in {0, 1, 2, 3, 4, 5}. Each of these 36 subse-
quences is doubly arithmetic since the orbit OS is (6, 3)-interlaced doubly arithmetic by
Proposition 4.4.17. Table 4.1 gives their common differences d1, d2, d1 − d2. Thus, each

Si0,j0 d1 d2 d1 − d2

S1,2 , S1,5 , S3,1 , S3,4 , S5,0 , S5,3 2d 2(2d+ 3Σ) −2(d+ 3Σ)
S0,1 , S0,4 , S2,0 , S2,3 , S4,2 , S4,5 −2d −2(2d+ 3Σ) 2(d+ 3Σ)
S1,1 , S1,4 , S3,0 , S3,3 , S5,2 , S5,5 2(d+ 3Σ) −2d 2(2d+ 3Σ)
S0,0 , S0,3 , S2,2 , S2,5 , S4,1 , S4,4 −2(d+ 3Σ) 2d −2(2d+ 3Σ)
S0,2 , S0,5 , S2,1 , S2,4 , S4,0 , S4,3 2(2d+ 3Σ) 2(d+ 3Σ) 2d
S1,0 , S1,3 , S3,2 , S3,5 , S5,1 , S5,4 −2(2d+ 3Σ) −2(d+ 3Σ) −2d

Table 4.1: Si0,j0 = (ai0,j0 + id1 + jd2)(i,j)∈N×Z

subsequence Si0,j0 is doubly arithmetic, with invertible common differences d1, d2 and
d1 − d2. Let λ ⩾ 1 and let ∇ be a Steinhaus triangle of size n = 6λm or n = 6λm − 1,
that appears in OS. Since ∇∩Si0,j0 , for i0 and j0 in {0, 1, 2, 3, 4, 5}, is a doubly arithmetic
triangle of order λm or λm−1 and with invertible common differences d1, d2 and d1−d2,
it follows from Theorem 4.4.10 that the 36 subtriangles are balanced. Therefore their
union, the Steinhaus triangle ∇, is also balanced in Z/mZ. Similarly, every generalized
Pascal triangle of size n in OS is balanced, for all n ≡ 0 or −1 mod 6m, since it can
be decomposed into 36 subtriangles, which are balanced doubly arithmetic triangles by
Theorem 4.4.10 again.

The case where a0 = 0, a1 = 1, a2 = 2 and d = 1 in Z/3Z, i.e., the orbit associated
with the sequence IAP((0, 1, 2), (1, 1, 1)), is illustrated in Figure 4.6. In this example,
balanced triangles are depicted in gray: there are a balanced Steinhaus triangle of size
18, a balanced generalized Pascal triangle of size 18 and a balanced Steinhaus triangle of
size 17.

4.4.5 The antisymmetric case

Here, we refine Theorem 4.4.20 by considering antisymmetric sequences in Z/mZ. The
main interest of the antisymmetric sequences in Z/mZ is that their multiplicity function
admits a certain symmetry. Indeed, it is clear that, if S is an antisymmetric sequence in
Z/mZ, then its multiplicity function mS satisfies mS(x) = mS(−x), for all x in Z/mZ.
The same equality appears for the multiplicity function of triangles generated from anti-
symmetric sequences.
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0 0 0 0 01 1 1 1 12 2 2 21 1 1 12 2 2 20 0 0 02 2 2 20 0 0 01 1 1 1

0 0 0 0 01 1 1 1 12 2 2 21 1 1 12 2 2 20 0 0 02 2 2 20 0 0 01 1 1 1

0 0 0 0 01 1 1 1 12 2 2 21 1 1 12 2 2 20 0 0 02 2 2 20 0 0 01 1 1 1

0 0 0 0 01 1 1 1 12 2 2 21 1 1 12 2 2 20 0 0 02 2 2 20 0 0 01 1 1 1

0 0 0 0 01 1 1 1 12 2 2 21 1 1 12 2 2 20 0 0 02 2 2 20 0 0 01 1 1 1

0 0 0 0 01 1 1 1 12 2 2 21 1 1 12 2 2 20 0 0 02 2 2 20 0 0 01 1 1 1

0 0 0 0 01 1 1 1 12 2 2 21 1 1 12 2 2 20 0 0 02 2 2 20 0 0 01 1 1 1

0 0 0 0 01 1 1 1 12 2 2 21 1 1 12 2 2 20 0 0 02 2 2 20 0 0 01 1 1 1

0 0 0 0 01 1 1 1 12 2 2 21 1 1 12 2 2 20 0 0 02 2 2 20 0 0 01 1 1 1

1 1 1 1 10 0 0 00 0 0 00 0 0 02 2 2 22 2 2 22 2 2 21 1 1 11 1 1 1

1 1 1 1 10 0 0 00 0 0 00 0 0 02 2 2 22 2 2 22 2 2 21 1 1 11 1 1 1

1 1 1 1 10 0 0 00 0 0 00 0 0 02 2 2 22 2 2 22 2 2 21 1 1 11 1 1 1

1 1 1 1 10 0 0 00 0 0 00 0 0 02 2 2 22 2 2 22 2 2 21 1 1 11 1 1 1

1 1 1 1 10 0 0 00 0 0 00 0 0 02 2 2 22 2 2 22 2 2 21 1 1 11 1 1 1

1 1 1 1 10 0 0 00 0 0 00 0 0 02 2 2 22 2 2 22 2 2 21 1 1 11 1 1 1

1 1 1 1 10 0 0 00 0 0 00 0 0 02 2 2 22 2 2 22 2 2 21 1 1 11 1 1 1

1 1 1 1 10 0 0 00 0 0 00 0 0 02 2 2 22 2 2 22 2 2 21 1 1 11 1 1 1

2 2 2 2 21 1 1 1 10 0 0 00 0 0 02 2 2 21 1 1 11 1 1 10 0 0 02 2 2 2

2 2 2 2 21 1 1 1 10 0 0 00 0 0 02 2 2 21 1 1 11 1 1 10 0 0 02 2 2 2

2 2 2 2 21 1 1 1 10 0 0 00 0 0 02 2 2 21 1 1 11 1 1 10 0 0 02 2 2 2

2 2 2 2 21 1 1 1 10 0 0 00 0 0 02 2 2 21 1 1 11 1 1 10 0 0 02 2 2 2

2 2 2 2 21 1 1 1 10 0 0 00 0 0 02 2 2 21 1 1 11 1 1 10 0 0 02 2 2 2

2 2 2 2 21 1 1 1 10 0 0 00 0 0 02 2 2 21 1 1 11 1 1 10 0 0 02 2 2 2

2 2 2 2 21 1 1 1 10 0 0 00 0 0 02 2 2 21 1 1 11 1 1 10 0 0 02 2 2 2

2 2 2 2 21 1 1 1 10 0 0 00 0 0 02 2 2 21 1 1 11 1 1 10 0 0 02 2 2 2

0 0 0 0 01 1 1 10 0 0 02 2 2 20 0 0 02 2 2 21 1 1 12 2 2 21 1 1 1

0 0 0 0 01 1 1 10 0 0 02 2 2 20 0 0 02 2 2 21 1 1 12 2 2 21 1 1 1

0 0 0 0 01 1 1 10 0 0 02 2 2 20 0 0 02 2 2 21 1 1 12 2 2 21 1 1 1

0 0 0 0 01 1 1 10 0 0 02 2 2 20 0 0 02 2 2 21 1 1 12 2 2 21 1 1 1

0 0 0 0 01 1 1 10 0 0 02 2 2 20 0 0 02 2 2 21 1 1 12 2 2 21 1 1 1

0 0 0 0 01 1 1 10 0 0 02 2 2 20 0 0 02 2 2 21 1 1 12 2 2 21 1 1 1

0 0 0 0 01 1 1 10 0 0 02 2 2 20 0 0 02 2 2 21 1 1 12 2 2 21 1 1 1

0 0 0 0 01 1 1 10 0 0 02 2 2 20 0 0 02 2 2 21 1 1 12 2 2 21 1 1 1

1 1 1 1 11 1 1 1 11 1 1 12 2 2 22 2 2 22 2 2 20 0 0 00 0 0 00 0 0 0

1 1 1 1 11 1 1 1 11 1 1 12 2 2 22 2 2 22 2 2 20 0 0 00 0 0 00 0 0 0

1 1 1 1 11 1 1 1 11 1 1 12 2 2 22 2 2 22 2 2 20 0 0 00 0 0 00 0 0 0

1 1 1 1 11 1 1 1 11 1 1 12 2 2 22 2 2 22 2 2 20 0 0 00 0 0 00 0 0 0

1 1 1 1 11 1 1 1 11 1 1 12 2 2 22 2 2 22 2 2 20 0 0 00 0 0 00 0 0 0

1 1 1 1 11 1 1 1 11 1 1 12 2 2 22 2 2 22 2 2 20 0 0 00 0 0 00 0 0 0

1 1 1 1 11 1 1 1 11 1 1 12 2 2 22 2 2 22 2 2 20 0 0 00 0 0 00 0 0 0

1 1 1 1 11 1 1 1 11 1 1 12 2 2 22 2 2 22 2 2 20 0 0 00 0 0 00 0 0 0

2 2 2 2 22 2 2 20 0 0 01 1 1 11 1 1 12 2 2 20 0 0 00 0 0 01 1 1 1

2 2 2 2 22 2 2 20 0 0 01 1 1 11 1 1 12 2 2 20 0 0 00 0 0 01 1 1 1

2 2 2 2 22 2 2 20 0 0 01 1 1 11 1 1 12 2 2 20 0 0 00 0 0 01 1 1 1

2 2 2 2 22 2 2 20 0 0 01 1 1 11 1 1 12 2 2 20 0 0 00 0 0 01 1 1 1

2 2 2 2 22 2 2 20 0 0 01 1 1 11 1 1 12 2 2 20 0 0 00 0 0 01 1 1 1

2 2 2 2 22 2 2 20 0 0 01 1 1 11 1 1 12 2 2 20 0 0 00 0 0 01 1 1 1

2 2 2 2 22 2 2 20 0 0 01 1 1 11 1 1 12 2 2 20 0 0 00 0 0 01 1 1 1

2 2 2 2 22 2 2 20 0 0 01 1 1 11 1 1 12 2 2 20 0 0 00 0 0 01 1 1 1

Figure 4.6: Balanced triangles in the orbit of IAP((0, 1, 2), (1, 1, 1)) in Z/3Z.
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Proposition 4.4.21 (Chappelon [C5]). Let m be a positive integer and let S be an anti-
symmetric sequence of length n ⩾ 1 in Z/mZ. Then, we have m∇S(x) = m∇S(−x) for all
x ∈ Z/mZ.

Proposition 4.4.22 (Chappelon [C5]). Let m be a positive integer and let S be an anti-
symmetric sequence of length 2n−1 ⩾ 1 in Z/mZ. Then, we have mγ(∇S)(x) = mγ(∇S)(−x)
for all x ∈ Z/mZ.

Remark 4.4.23. The triangle γ(∇S) is the generalized Pascal triangle of size n associated
with the Steinhaus triangle ∇S of size 2n − 1 by the isomorphism γ : STm(2n − 1) −→
PTm(n) defined at the beginning of this section.

Now, for m odd, we determine all the sequences generating IDAO in Z and such that
the first 3m terms of their projection in Z/mZ are antisymmetric.

Proposition 4.4.24 (Chappelon [C5]). Let m be an odd number. Let a0, a1, a2, d ∈ Z/mZ
and let Σ = a0 + a1 + a2. Then, the subsequence Sn = IAP((a0, a1, a2), (d,−2d− 3Σ, d+
3Σ))[0, n − 1], of length n ≡ 0 mod 3m in Z/mZ, is antisymmetric if and only if Σ = 0
and a1 = −d, i.e., if we have Sn = IAP((a,−d, d− a), (d,−2d, d))[0, n− 1].

Let m be an odd number and let a and d be two elements in Z/mZ with d invertible.
We refine Theorem 4.4.20 by considering the orbit OS = (ai,j)(i,j)∈N×Z of the sequence S =

IAP ((a,−d, d− a), (d,−2d, d)). Let ∇0 be the Steinhaus triangle, of size 3m, generated
by the first 3m terms of S and let ∆0 be the generalized Pascal triangle, of size 3m− 1,
adjacent with ∇0 as depicted in Figure 4.7, that are ∇0 = ∇S[0, 3m− 1] and ∆0 =
γ(∇∂S[1, 6m− 3]).

∇0

∆0

Figure 4.7: ∇0 = ∇S[0, 3m− 1] and ∆0 = γ(∇∂S[1, 6m− 3])

We begin by showing that these triangles are balanced in Z/mZ.

Proposition 4.4.25 (Chappelon [C5]). Let m be an odd number and let a, d ∈ Z/mZ
with d invertible. Consider the 3-interlaced arithmetic progression S = IAP((a,−d, d −
a)(d,−2d, d)). Then, the triangles ∇0 = ∇S[0, 3m− 1] and ∆0 = γ(∇∂S[1, 6m− 3]) are
balanced in Z/mZ.

Finally, we obtain the refinement of Theorem 4.4.20 announced above.

Theorem 4.4.26 (Chappelon [C5]). Let m be an odd number and let a, d ∈ Z/mZ with
d invertible. Then, the following triangles, contained in the orbit of S = IAP((a,−d, d−
a), (d,−2d, d)), are balanced:

i) the Steinhaus triangles ∇S[0, 3λm− 1] of size 3λm, and ∇∂S[0, 3λm− 2] of size
3λm− 1, for every positive integer λ,

ii) the generalized Pascal triangles γ(∇∂S[−n, n− 2]) of size n, for every positive integer
n ≡ 0 or −1 mod 3m.
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Proof. For every positive integer λ, the Steinhaus triangle ∇S[0, 3λm− 1] and the Pascal
triangle γ(∇∂S[−3λm, 3λm− 2]) are balanced because they are multiset unions of the
elementary triangles ∇0, −∇0, ∆0 and −∆0, which are balanced in Z/mZ by Proposi-
tion 4.4.25. The Steinhaus triangle ∇∂S[0, 3λm− 2] is balanced, since it is obtained from
∇S[0, 3λm− 1] by rejecting its first row, which is a 3-interlaced arithmetic progression
with invertible common differences and of length 3λm and thus contains 3λ times each
element of Z/mZ. Similarly, the Pascal triangle γ(∇∂S[−3λm+ 1, 3λm− 3]) is balanced,
since it is obtained from γ(∇∂S[−3λm, 3λm− 2]) by rejecting its last row, which is also
balanced.

4.4.6 The universal sequence modulo m odd

Let US = IAP((0,−1, 1), (1,−2, 1)) be the universal sequence of integers introduced be-
fore. In this subsection, we refine Theorem 4.4.26 by studying this universal sequence
modulo an odd number m, namely the sequence

S = dπn(US) = IAP((0,−d, d), (d,−2d, d)),

where d is invertible in Z/mZ. It corresponds to the sequence S of Theorem 4.4.26 with
a = 0. First, each element of its orbit OS = (ai,j)(i,j)∈N×Z can be expressed as a function
of d.

Proposition 4.4.27 (Chappelon [C5]). Let m be an odd number and let d ∈ Z/mZ be
invertible. Consider the orbit OS = (ai,j)(i,j)∈N×Z of S = IAP((0,−d, d), (d,−2d, d)) in
Z/mZ. Then, we have

ai,j = (−1)i
∑
k>0

(
k

j + 2i− k

)
(−1)k(k − i)d.

for all non-negative integers i and j.

In the sequel of this subsection, we suppose that m is an odd number and that S
is the universal sequence modulo m, that is S = IAP((0,−d, d), (d,−2d, d)), where d
is an invertible element in Z/mZ. Let ∇1, ∇2 and ∇3 be the Steinhaus triangles of
size m associated with the sequences S[0,m − 1], S[m, 2m − 1] and S[2m, 3m − 1], re-
spectively, and let ∆1, ∆2 and ∆3 be their adjacent generalized Pascal triangles of size
m − 1, as depicted in Figure 4.8, that are: ∇1 = ∇S[0,m− 1], ∇2 = ∇S[m, 2m− 1],
∇3 = ∇S[2m, 3m− 1], ∆1 = γ(∇∂S[1, 2m− 3]), ∆2 = γ(∇∂S[m+ 1, 3m− 3]) and
∆3 = γ(∇∂S[2m+ 1, 4m− 3]).

∇1 ∇2 ∇3

∆1 ∆2 ∆3

Figure 4.8: The elementary triangles ∇1, ∇2, ∇3, ∆1, ∆2 and ∆3

We begin by showing that these triangles, or unions of them, are balanced in Z/mZ.
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Proposition 4.4.28 (Chappelon [C5]). Let m be an odd number and let d ∈ Z/mZ
be invertible. Consider the universal sequence S = IAP((0,−d, d), (d,−2d, d)) mod-
ulo m and the elementary triangles ∇1 = ∇S[0,m− 1], ∇2 = ∇S[m, 2m− 1], ∇3 =
∇S[2m, 3m− 1], ∆1 = γ(∇∂S[1, 2m− 3]), ∆2 = γ(∇∂S[m+ 1, 3m− 3]) and ∆3 =
γ(∇∂S[2m+ 1, 4m− 3]). Then, the multisets ∇2, ∇1 ∪ ∇3, ∆3 and ∆1 ∪ ∆2 are bal-
anced in Z/mZ.

We are now ready to give the main result of this section.

Theorem 4.4.29 (Chappelon [C5]). Let m be an odd number and let d ∈ Z/mZ be in-
vertible. Then, the following triangles, contained in the orbit associated with the universal
sequence S = IAP((0,−d, d), (d,−2d, d)) in Z/mZ, are balanced:

i) the Steinhaus triangles ∇S[n, 2n− 1], for every n ≡ 0 mod m, and ∇∂S[0, n− 1],
for every n ≡ −1 mod 3m,

ii) the generalized Pascal triangle γ(∇∂S[−n, n− 2]), for every n ≡ −1 mod m or n ≡
0 mod 3m.

4.5 The Molluzzo Problem modulo m even

Despite its apparent simplicity, the problem of Molluzzo is very challenging, as testified
by the scarcity of available results. We have seen that this problem is positively solved
for m = 2 in Chapter 1 (the Steinhaus Problem) and for m = 3k, for every k ⩾ 1, in
Section 3 of this chapter. In this section, we positively solve this problem for the case
m = 4. The construction method, presented here and in [C9], consists in attempting to
lift to Z/4Z specific known solutions in Z/2Z.

4.5.1 A solution for m = 4

First, from Corollary 4.2.12, we know that the set of non-negative integers n for which the
binomial coefficient

(
n+1
2

)
is divisible by m = 4 is exactly the set of non-negative integers

congruent to 0 or −1 modulo 8, i.e.,

N(4) =

{
n ∈ N

∣∣∣∣ (n+ 1

2

)
≡ 0 mod 4

}
= 8N ∪ (8N+ 7).

As in [60] for the case m = 2, the solution presented here involves the concept of
strongly balanced triangles.

Definition 4.5.1 (Strongly balanced triangle). Let S be a finite sequence of length n ⩾ 0
in Z/4Z. The Steinhaus triangle ∇S is said to be strongly balanced if, for every t ∈
{0, . . . ,

⌊
n
8

⌋
}, the Steinhaus triangle ∇S[n− 8t] is balanced.

Here is the main result of this section.

Theorem 4.5.2 (Chappelon-Eliahou [C9]). There exists a balanced Steinhaus triangle of
size n in Z/4Z if and only if

(
n+1
2

)
≡ 0 mod 4. More precisely, consider the following
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infinite pseudo-periodic sequences in Z/4Z:

S1 = 01220232(212113220030232311200232)∞,
S2 = 21210130(200132022112002110220130)∞,

T1 = 0120021(212202102023032200322021)∞,
T2 = 1000212(312223301210312003103232)∞,
T3 = 1200210(220101222032222103000210)∞,
T4 = 2102203(232002102021230022302203)∞.

Then, for all integers i, j, k such that 1 ⩽ i ⩽ 2, 1 ⩽ j ⩽ 4 and k ⩾ 0, the Steinhaus
triangles of the initial segments Si[8k] and Tj[8k + 7] are strongly balanced.

4.5.2 The construction method

We now explain how our solution was constructed. Let m1,m2 ⩾ 2 be integers, with m2

a multiple of m1. Consider the canonical quotient map

π : Z/m2Z −→ Z/m1Z.

If ∇ is a Steinhaus triangle in Z/m2Z, then π(∇) is a Steinhaus triangle in Z/m1Z.
Moreover, if ∇ is balanced of size n such that

(
n+1
2

)
is divisible by m2, we know from The-

orem 4.2.8 that π(∇) is balanced in Z/m1Z. Thus, an obvious strategy for constructing
balanced Steinhaus triangles in Z/m2Z consists in trying to lift to Z/m2Z known balanced
Steinhaus triangles in Z/m1Z. This route is tricky, as illustrated by Theorems 4.5.6 and
4.5.7 below. It allowed us to solve the case m = 4 of the Molluzzo Problem, but neither
the case m = 6 nor the case m = 8 so far.

We shall restrict our attention to strongly balanced Steinhaus triangles. These were
defined earlier in Z/4Z only. We now generalize them to Z/mZ for all even moduli.

Definition 4.5.3. Let m ⩾ 2 be an even modulus. Let S be a finite sequence of length
n ⩾ 0 in Z/mZ. The Steinhaus triangle ∇S is said to be strongly balanced if, for every
t ∈
{
0, . . . ,

⌊
n
2m

⌋}
, the Steinhaus triangle ∇S[n− 2mt] is balanced.

Note that this definition coincides with Definition 4.5.1 for m = 4. From now on, we
assume that m1 = m is an even number, and that m2 = 2m1. The following notation
helps to measure, roughly speaking, to what extent strong solutions in Z/mZ can be lifted
to strong solutions in Z/2mZ.

Notation 4.5.4. Let S be an infinite sequence in Z/mZ. For n ⩾ 0, let an(S) denote
the number of sequences T in Z/2mZ, of length n, such that

• ∇T is a strongly balanced Steinhaus triangle in Z/2mZ;

• π(T ) = S[n], the initial segment of length n in S.

We denote by GS(t) =
∑∞

n=0 an(S)t
n the generating function of the numbers an(S).

We shall use this notation as a convenient device for exhibiting the value of the an(S)
for all n at once. For our present purposes, the favorable case occurs when GS(t) is an
infinite series, not just a polynomial. Indeed, GS(t) is an infinite series if and only if there
exists infinitely many strongly balanced Steinhaus triangles in Z/2mZ, which lift those in
Z/mZ generated by initial segments of S.
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From Z/2Z to Z/4Z

Here we set m = 2. Several types of balanced Steinhaus triangles of length 4k or 4k+3 in
Z/2Z are known. We focus here on the ones given in [60], which have the added property
of being strongly balanced.

Theorem 4.5.5 (Eliahou-Hachez [60]). Let Q1, . . . , Q4 and R1, . . . , R12 be the following
eventually periodic sequences of Z/2Z:

Q1 = 0100(001001011100)∞,
Q2 = (010010000111)∞,
Q3 = 0101(011000011000)∞,
Q4 = 0101(101000101000)∞,

R1 = 001(010000100001)∞,
R2 = 0011110(001101010110)∞,
R3 = 010(000101000010)∞,

R4 = 0100001(010010111100001010111111)∞,
R5 = 0100001(100100001001)∞,
R6 = 0101011(010101100011)∞,
R7 = 0101011(010111111101011010011101)∞,
R8 = 010(101110110010)∞,
R9 = 100(001000010100)∞,
R10 = 1000010(110001101010)∞,
R11 = 1111101(011000110101)∞,
R12 = 111(110110000111)∞.

For all integers i, j, k such that 1 ⩽ i ⩽ 4, 1 ⩽ j ⩽ 12 and k ⩾ 0, the Steinhaus triangles
∇Qi[4k] and ∇Rj[4k + 3] are strongly balanced in Z/2Z.

Can we lift some initial segments of these sequences to sequences in Z/4Z which gen-
erate strongly balanced Steinhaus triangles? To answer this question, we have determined
by computer the numbers an(S) for all 16 sequences S in Theorem 4.5.5 and all n ⩾ 1.
In 11 out of the 16 cases, the numbers an(S) turn out to vanish for all sufficiently large
n, i.e. the series GS(t) is just a polynomial. But remarkably, in the remaining 5 cases,
the an(S) turn out to be ultimately periodic and non-vanishing, so that the infinite series
GS(t) is actually a rational function. These 16 series are displayed below; the 5 infinite
ones occur for the sequences Q1, Q3, R3, R9, R10.

Theorem 4.5.6 (Chappelon-Eliahou [C9]). The generating functions GS(t) of Q1, . . . , Q4

and R1, . . . , R12 are:

GQ1(t) = 1 + 8t8 + 34t16 + 58t24 + 84t32 + 88t40 + 86t48 + 82t56 + 60t64 + 36t72+

+34t80 + 28t88 + 16t96 +
2t104

1− t8
,

GQ2(t) = 1 + 4t8 + 14t16 + 32t24 + 36t32 + 48t40 + 44t48 + 26t56 + 22t64 + 8t72+
+6t80 + 4t88 + 2t96,

GQ3(t) = 1 + 8t8 + 28t16 + 46t24 + 78t32 + 124t40 + 118t48 + 96t56 + 78t64 + 60t72+
28t80 + 20t88 + 14t96 + 10t104 + 4t112 + 6t120 + 4t128 + 6t136 + 4t144 + 2t152+

+2t160 + 2t168 + 2t176 + 2t184 + 2t192 + 2t200 + 4t208 +
2t216

1− t8
,

GQ4(t) = 1 + 8t8 + 26t16 + 42t24 + 66t32 + 62t40 + 52t48 + 36t56 + 26t64 + 12t72 + 6t80,
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GR1(t) = 0, GR2(t) = 0,

GR3(t) = 10t7 + 38t15 + 70t23 + 88t31 + 76t39 + 54t47 + 44t55 + 28t63 + 16t71 + 8t79+

+4t87 + 4t95 + 4t103 + 4t111 + 4t119 + 6t127 + 4t135 + 6t143 +
4t151

1− t8
,

GR4(t) = 10t7 + 52t15 + 102t23 + 136t31 + 152t39 + 118t47 + 108t55 + 80t63 + 60t71+
+32t79 + 20t87 + 8t95 + 2t103,

GR5(t) = 10t7,

GR6(t) = 10t7 + 30t15 + 66t23 + 96t31 + 96t39 + 94t47 + 66t55 + 42t63 + 24t71 + 8t79+
+2t87 + 2t95,

GR7(t) = 10t7 + 60t15 + 138t23 + 204t31 + 304t39 + 266t47 + 246t55 + 148t63 + 64t71+
+36t79 + 14t87 + 10t95 + 8t103,

GR8(t) = 10t7,

GR9(t) = 10t7 + 42t15 + 80t23 + 130t31 + 164t39 + 174t47 + 126t55 + 68t63 + 38t71+
+20t79 + 22t87 + 12t95 + 2t103 + 2t111 + 2t119 + 2t127 + 2t135 + 2t143 + 2t151+

+2t159 + 2t167 + 2t175 + 2t183 + 2t191 + 2t199 + 4t207 +
2t215

1− t8
,

GR10(t) = 10t7 + 58t15 + 98t23 + 130t31 + 160t39 + 138t47 + 132t55 + 84t63 + 64t71+

+34t79 + 14t87 + 8t95 + 6t103 + 2t111 + 2t119 + 4t127 +
2t135

1− t8
,

GR11(t) = 4t7 + 16t15 + 26t23 + 32t31 + 30t39 + 30t47 + 26t55 + 12t63 + 8t71 + 2t79,

GR12(t) = 4t7.

The origin of our sequences S1, S2, T1, T2, T3, T4, solving the Molluzzo Problem in
Z/4Z, is now clear. Indeed, they are lifts to Z/4Z of the 5 sequences Q1, Q3, R3, R9, R10

in Z/2Z with GS(t) infinite. More precisely, we have

π(S1) = Q1, π(S2) = Q3, π(T1) = π(T4) = R3, π(T2) = R10, π(T3) = R9,

as the reader may readily check.

From Z/4Z to Z/8Z

Having solved the problem in Z/4Z with Theorem 4.5.2, can we lift our solutions S1, S2, T1,
T2, T3, T4 to sequences in Z/8Z giving rise to infinitely many strongly balanced Steinhaus
triangles? Unfortunately, the answer is no, as shown by the following computational
result.

Theorem 4.5.7 (Chappelon-Eliahou [C9]). The generating functions GS(t) of sequences
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S1, S2, T1, T2, T3, T4 are polynomials only:

GS1(t) = 1 + 16t16 + 46t32 + 32t48 + 14t64,

GS2(t) = 1 + 22t16 + 60t32 + 56t48 + 28t64 + 6t80,

GT1(t) = 14t15 + 40t31 + 40t47 + 24t63 + 8t79 + 2t95 + 2t111,

GT2(t) = 30t15 + 66t31 + 76t47 + 32t63 + 12t79,

GT3(t) = 14t15 + 54t31 + 42t47 + 34t63 + 12t79 + 2t95,

GT4(t) = 14t15 + 54t31 + 64t47 + 40t63 + 10t79 + 2t95.

Summarizing, at this stage, it is not even known whether there exist infinitely many
balanced Steinhaus triangles in Z/8Z.



Chapter 5

Balanced simplices

5.1 Simplices generated by additive cellular automata
Let us define the generalization of Steinhaus triangles and generalized Pascal triangles
that we consider here and in [C6]. Let n and m be positive integers. Throughout this
chapter, n will denote the dimension of the objects studied and m the order of the finite
cyclic group Z/mZ. For any integers a and b such that a < b, we let [a, b] denote the
set of the integers between a and b, that is, [a, b] := {a, a + 1, . . . , b} and [a, b]n the
Cartesian product of n copies of [a, b]. For any n-tuple of elements u, we let ui denote
its ith component for all i ∈ [1, n], that is, u = (u1, . . . , un). For two n-tuples u and
v and an integer λ, we consider the sum u + v := (u1 + v1, . . . , un + vn), the product
u · v := (u1v1, . . . , unvn) and the scalar product λu := (λu1, . . . , λun).

Definition 5.1.1 (ACA). Let r be a non-negative integer and let W = (wj)j∈[−r,r]n be an
n-dimensional array of integers of size (2r+1)n. The additive cellular automaton (ACA for
short) over Z/mZ associated with W is the map ∂ which assigns, to every n-dimensional
infinite array of Z/mZ, a new array by a linear transformation whose coefficients are those
of W . More precisely, the map ∂ is defined by

∂ ((ai)i∈Zn) =

 ∑
j∈[−r,r]n

wjai+j


i∈Zn

,

for all arrays (ai)i∈Zn of elements in Z/mZ. We say that ∂ is of dimension n ⩾ 1 and of
weight W with radius r ⩾ 0.

Definition 5.1.2 (Orbit). Let A = (ai)i∈Zn be an infinite array of Z/mZ of dimension n.
The orbit OA generated from A by the ACA ∂ is the collection of all the n-dimensional
arrays obtained from A by successive applications of ∂, that is,

OA :=
{
∂j(A)

∣∣ j ∈ N
}
,

where ∂j is recursively defined by ∂j(A) = ∂(∂j−1(A)) for all j ⩾ 1 and ∂0(A) = A. The
orbit OA can also be seen as the (n+1)-dimensional array (ai,j)(i,j)∈Zn×N of Z/mZ whose
jth row Rj := (ai,j)i∈Zn corresponds to ∂j(A), for all j ∈ N.

Definition 5.1.3 (Simplices). Let A = (ai)i∈Zn be an infinite array of Z/mZ of dimension
n. Let ε ∈ {−1, 1}n and let s be a positive integer. The simplex of size s, with orientation

97
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ε and whose principal vertex is at the coordinates j ∈ Zn in A, is the multiset of Z/mZ
defined and denoted by

△(j, ε, s) := {aj+ε·k | k ∈ Nn such that k1 + · · ·+ kn ⩽ s− 1} .

For n = 2 and n = 3, it is called a triangle and a tetrahedron, respectively.

a0,0a1,0 2 3 4 0 1 2 3 4 0 1 2 3 4 0
a0,1a1,1 2 1 0 4 3 2 1 0 4 3 2 1 0 4
2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2
2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2
4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0
1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1
4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4
2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2
2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2
4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0
1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1
4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4
2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2
2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2

Figure 5.1: Example of triangles △((2, 2),++, 5), △((2, 13),+−, 5), △((13, 2),−+, 5)
and △((13, 13),−−, 5) appearing in an orbit OA = (ai,j)(i,j)∈Z×N of Z/5Z generated by
the ACA of weight W = (2, 1, 1)

Figure 5.2: The eight possible orientations of a tetrahedron

In this chapter, we mainly consider simplices of dimension n appearing in the orbit
generated from an infinite array of Z/mZ by an ACA of dimension n − 1. Examples of
triangles, for the four possible orientations in dimension n = 2, are depicted in Figure 5.1.
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In Figure 5.2, for dimension n = 3, the eight possible orientations of a tetrahedron are
represented.

The goal in this chapter is to prove the existence of balanced simplices appearing
in certain orbits generated by ACA. Sufficient conditions for obtaining this result will be
detailed throughout this chapter. As seen in the previous chapters, this notion of balanced
simplices generated by ACA essentially appears in the literature in the case of the Pascal
cellular automaton of dimension 1.

Definition 5.1.4 (PCAn). The Pascal cellular automaton of dimension n is the ACA of
radius r = 1 and whose weight array W = (wi)i∈[−1,1]n is defined by

wi =

{
1 if i ∈ {0Zn ,−e1,−e2, . . . ,−en} ,
0 otherwise,

where (e1, e2, . . . , en) is the canonical basis of the vector space Zn. It is denoted by PCAn.

For instance, W = (1, 1, 0) for PCA1 and W =

 0 0 0
1 1 0
0 1 0

 for PCA2.

Remark 5.1.5. Let A = (ai)i∈Zn−1 be the (n − 1)-dimensional array of Z/mZ defined by
ai = 1 for i = 0Zn and ai = 0 otherwise. If (ai,j)(i,j)∈Zn−1×N is the orbit OA generated by
the PCAn−1, then ai,j is the multinomial coefficient

ai,j =

(
j

i1, . . . , in−1, j −
∑n−1

k=1 ik

)
=

j!

i1! · · · in−1!
(
j −∑n−1

k=1 ik
)
!

for all i ∈ Nn−1 such that i1 + · · · + in−1 ⩽ j, and ai,j = 0 otherwise. Thus, we retrieve
the coefficients of the Pascal n-simplex modulo m. This is the reason why this specific
ACA is called the Pascal cellular automaton.

Let A = (ai)i∈Z be a doubly infinite sequence of Z/mZ. We consider the orbit gener-
ated from A by PCA1, i.e., the infinite array OA = (ai,j)(i,j)∈Z×N defined by ai,0 = ai for
all i ∈ Z and

ai,j = ai−1,j−1 + ai,j−1

for all (i, j) ∈ Z × N∗. Then, the (−+)-triangles and the (+−)-triangles appearing in a
such orbit correspond with the Steinhaus triangles and the generalized Pascal triangles
modulo m, respectively.

As already seen before, the proof of Theorem 4.4.5 is based on the elementary object
that is the arithmetic triangle and its main interest is that it is very often balanced. In
this paper, we consider a generalization in higher dimensions of arithmetic triangles.

Definition 5.1.6 (Arithmetic arrays and simplices). Let n and m be positive integers.
Let A = (ai)i∈Zn be an array of Z/mZ. The array A is said to be arithmetic with first
element a and with common difference d = (d1, . . . , dn) ∈ (Z/mZ)n if

ai = a+ i1d1 + · · ·+ indn,

for all i = (i1, . . . , in) ∈ Zn. The arithmetic array with first element a ∈ Z/mZ and with
common difference d ∈ (Z/mZ)n is denoted by AA(a, d). The arithmetic simplex of size s,
with first element a ∈ Z/mZ and with common difference d = (d1, . . . , dn) ∈ (Z/mZ)n, is
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the simplex △(0Zn ,+ · · ·+, s) appearing in the array AA(a, d) = (ai)i∈Zn and is denoted
by AS(a, d, s), that is,

AS(a, d, s) = {a+ i1d1 + · · ·+ indn | i ∈ Nn such that i1 + · · ·+ in ⩽ s− 1} .

For n = 1, the arithmetic progression AS(a, d, s) is also denoted by AP(a, d, s).

Remark 5.1.7. The following multiset identities hold for arithmetic simplices:

AS(a, (d1, . . . , dn), s) = AS(a+ (s− 1)d1, (−d1, d2 − d1, . . . , dn − d1), s)
= AS(a+ (s− 1)d2, (d1 − d2,−d2, d3 − d2, . . . , dn − d2), s)
· · · · · ·
= AS(a+ (s− 1)dn, (d1 − dn, . . . , dn−1 − dn,−dn), s),

and AS(a, (d1, . . . , dn), s) = AS
(
a,
(
dπ(1), . . . , dπ(n)

)
, s
)
, where π is a permutation of [1, n].

0 1 2 3 4
2 3 4 0
4 0 1
1 2
3

3 4 0 1
0 1 2
2 3
4

1 2 3
3 4
0

4 0
1

2

Figure 5.3: The arithmetic tetrahedron AS(0, (1, 2, 3), 5) in Z/5Z

For example, the arithmetic tetrahedron AS(0, (1, 2, 3), 5) of Z/5Z is depicted in Fig-
ure 5.3. The successive rows of this tetrahedron are the arithmetic triangles AS(0, (1, 2), 5),
AS(3, (1, 2), 4), AS(1, (1, 2), 3), AS(4, (1, 2), 2) and AS(2, (1, 2), 1) of Z/5Z.

Return now to the general case of an ACA of dimension n − 1, with a weight array
W = (wj)j∈[−r,r]n−1 of radius r ∈ N. Let us define

σ :=
∑

j∈[−r,r]n−1

wj and σk :=
∑

j∈[−r,r]n−1

jkwj, for all k ∈ [1, n− 1].

For any integers a and b, we let gcd(a, b) and lcm(a, b) denote the greatest common divisor
and the least common multiplicator of a and b, respectively. Let x ∈ Z/mZ. We also let
gcd(x,m) denote the greatest common divisor of m and any representant of the residue
class x.

Using properties of arithmetic simplices, the following theorem, which is the main
result of this chapter, will be obtained.

Theorem 5.1.8 (Chappelon [C6]). Let n ⩾ 2 and m be two positive integers such that
gcd(m,n!) = 1. Suppose that σ is invertible modulo m. Let a ∈ Z/mZ, d ∈ (Z/mZ)n−1

and ε ∈ {−1, 1}n such that di, for all i ∈ [1, n], and εjdj − εidi, for all distinct integers
i, j ∈ [1, n], are invertible, where dn := σ−1

∑n−1
k=1 σkdk. Then, in the orbit OAA(a,d), every

n-simplex with orientation ε and of size s is balanced modulo m, for all s ≡ −t mod
lcm(ordm(σ) ,m), where t ∈ [0, n− 1].

Remark 5.1.9. For any integer σ which is invertible modulo m, the identity

lcm(ordm(σ) ,m) = ordm(σ
m)m

holds. A complete study of this arithmetic function can be found in [C4].
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For n = 2, m odd and W = (1, 1, 0), the weight sequence of PCA1, we retrieve
Theorem 4.3.10. Indeed, in this case, we have σ = 2, σ1 = −1, d1 = d, d2 = σ−1σ1d1 =
−2−1d and ε1d1 − ε2d2 = ±2−1d for ε = (±1,∓1), which are invertibles of Z/mZ.

In the special case of PCAn−1, Theorem 5.1.8 gives a positive answer to the equivalent
problem of the weak Molluzzo Problem, in higher dimensions, for an infinite number of
values m.

Corollary 5.1.10 (Chappelon [C6]). Let n ⩾ 2 be a positive integer. For every positive
integer m such that gcd(m, (3(n−1))!) = 1, there exist infinitely many balanced n-simplices
of Z/mZ generated by PCAn−1, for all possible orientations ε ∈ {−1, 1}n. In the special
case of the two orientations ε = + · · · + − or ε = − · · · − +, the existence of an infinite
number of such balanced simplices is verified for every m such that gcd(m,n!) = 1 for n
even and for every m such that gcd

(
m,
(
3n+1

2

)
!
)
= 1 for n odd.

This chapter is organized as follows. After giving some basic results on balanced
simplices and orbits of arithmetic arrays generated by ACA in Section 2, we study, in
Section 3, arithmetic simplices and we give some sufficient conditions on them to be
balanced, for any dimension n ⩾ 2. Moreover, in dimension 2 and 3, we also provide
necessary conditions on arithmetic triangles and arithmetic tetrahedra for being balanced.
This leads to Theorem 5.1.8 in Section 4. Moreover, using the specificities on balanced
arithmetic tetrahedra in dimension 2, highlighted in Section 3, we complete Theorem 5.1.8
for balanced tetrahedra. In Section 5, we consider the special case where simplices have
the additional geometric property of being composed of antisymmetric sequences. This
permits us to obtain more results for ACA of dimension 1 generating balanced triangles.
Finally, the problem of determining the existence of balanced triangles and tetrahedra
generated by PCA1 and PCA2, for the remaining open cases, is posed in the last section.

5.2 Preliminaries
We begin this section with the terminology on simplices that we will use in the sequel.

Definition 5.2.1 (Vertices, edges, facets and rows of simplices). Let A = (ai)i∈Zn be an
infinite array of dimension n of Z/mZ. Let △ = △(j, ε, s) be the n-simplex of size s of
Z/mZ with principal vertex at position j ∈ Zn in A and with orientation ε ∈ {−1, 1}n.
Let (e1, e2, . . . , en) denote the canonical basis of the vector space Zn and let e0 := 0Zn .
The n+ 1 vertices V0, . . . ,Vn of △ are defined by Vk(△) := aj+(s−1)ε·ek for all k ∈ [0, n],
where V0(△) := aj (principal vertex) and

Vk(△) := aj+ε·(s−1)ek = aj1,...,jk−1,jk+εk(s−1),jk+1,...,jn ,

for all k ∈ [1, n]. The
(
n+1
2

)
edges Ek,l of △ are sequences of length s defined by

Ek,l(△) :=
{
aj+ε·((s−1−x)ek+xel)

∣∣ x ∈ [0, s− 1]
}

=
{
aj+ε·(s−1)ek), aj+ε·((s−2)ek+el), aj+ε·((s−3)ek+2el), . . . , aj+ε·(s−1)el

}
,

for all distinct integers k, l ∈ [0, n]. The n + 1 facets F0, . . . ,Fn of △ are the (n − 1)-
simplices of size s defined by

Fk(△) := {aj+ε·l | l ∈ Nn such that lk = 0 and l1 + · · ·+ ln ⩽ s− 1} ,
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for all l ∈ [1, n] and

F0(△) := {aj+ε·l | l ∈ Nn such that l1 + · · ·+ ln = s− 1} .

For every k ∈ [0, s− 1], the kth row of △ is the (n− 1)-simplex of size s− k defined by

Rk(△) := {aj+ε·l | l ∈ Nn such that ln = k and l1 + · · ·+ ln−1 ⩽ s− k − 1} .

5.2.1 Sizes of balanced simplices

In this subsection, the admissible sizes of balanced simplices are studied. First, the
cardinality of an n-simplex of size s is determined.

Proposition 5.2.2. Let △ be an n-simplex of size s appearing in an n-dimensional array.
Then, the multiset cardinality of △ is |△| =

(
s+n−1

n

)
.

The divisibility of
(
s+n−1

n

)
bym is obviously a necessary condition for having a balanced

n-simplex of Z/mZ of size s. When m is a composite number, to give all the sizes s
for which the binomial

(
s+n−1

n

)
is divisible by m is tedious and not really important here

because the results that we obtain in this chapter are only for some of them, not for all the
admissible sizes. It would correspond to a generalization of Theorem 4.2.11. Nevertheless,
we can see that the sizes involved in Theorem 5.1.8 are admissible for this problem.

Proposition 5.2.3. Let n, p, k, s be positive integers such that p is prime and p > n ⩾ 2.
Then, the binomial coefficient

(
s+n−1

n

)
is divisible by pk if and only if s ≡ −t mod pk for

t ∈ [0, n− 1].

Proposition 5.2.4. Let m and n be two positive integers such that gcd(m,n!) = 1 and let
s be a positive integer such that s ≡ −t mod m, where t ∈ [0, n− 1]. Then, the binomial
coefficient

(
s+n−1

n

)
is divisible by m.

5.2.2 Orbits of arithmetic arrays

In this subsection, the orbits of arithmetic arrays are studied in detail. Let n ⩾ 2 be
a positive integer. First, we show that the arithmetic structure is preserved under the
action of ∂ for any weight array W = (wi)i∈[−r,r]n−1 , of radius r ∈ N.

Proposition 5.2.5. Let a ∈ Z/mZ and let d = (d1, . . . , dn−1) ∈ (Z/mZ)n−1. Then,

∂AA(a, d) = AA

(
σa+

n−1∑
k=1

σkdk, σd

)
,

where σ and σk are the coefficients

σ :=
∑

j∈[−r,r]n−1

wj, σk :=
∑

j∈[−r,r]n−1

jkwj, for all k ∈ [1, n− 1].

Proposition 5.2.6. Let a ∈ Z/mZ and let d = (d1, . . . , dn−1) ∈ (Z/mZ)n−1. Then,

∂iAA(a, d) = AA

(
σia+ iσi−1

n−1∑
k=1

σkdk, σ
id

)
,

for all i ∈ N.
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Thus, the elements of the orbit of an arithmetic array AA(a, d) are entirely determined
in function of a, d, σ and σk for all k ∈ [1, n− 1].

Proposition 5.2.7. Let a ∈ Z/mZ and let d ∈ (Z/mZ)n−1. Let OAA(a,d) = (ai)i∈Zn−1×N
be the orbit of the arithmetic array AA(a, d). Then,

ai =
(
∂inAA(a, d)

)
i1,...,in−1

= σin

(
a+

n∑
k=1

ikdk

)
,

for all i ∈ Zn−1 × N, where dn := σ−1
∑n−1

k=1 σkdk.

Remark 5.2.8. For OAA(a,d) = (ai)i∈Zn−1×N and for every (i1, . . . , in−1) ∈ Zn−1, the se-
quence

(
ai1,...,in−1,in

)
in∈N

is the arithmetico-geometric sequence with first element a +

i1d1 + · · ·+ in−1dn−1, with common difference dn := σ−1
∑n−1

k=1 σkdk and common ratio σ.

We deduce from Proposition 5.2.7 that two distinct ACA can generate the same orbit
from an arithmetic array. For instance, for any ACA of weight array W = (wi)i∈[−r,r]n−1 of
radius r, we can consider the ACA of weight array W = (wi)i∈[−1,1]n−1 of radius 1 defined
by

wi =


σ(W )−

n−1∑
k=1

σk(W ) , if i = 0Zn ,

σk(W ) , if i = ek, for all k ∈ [1, n− 1],
0 , otherwise.

Then, it is clear that we have

σ(W ) =
∑

i∈[−1,1]n−1

wi = σ(W ),

and
σk(W ) =

∑
i∈[−1,1]n−1

ikwi = σk(W ),

for all k ∈ [1, n − 1]. Therefore, in the sequel of this chapter, the coefficients σ and σk
will be more important than the elements of the weight array W themselves.

Now, we prove that, in the orbit of an arithmetic array of Z/mZ, if there exists a
balanced simplex of sufficiently large size, then σ is invertible modulo m.

Proposition 5.2.9 (Chappelon [C6]). Let a ∈ Z/mZ and let d ∈ (Z/mZ)n−1. In the
orbit OAA(a,d), if an n-simplex of size s > n

m−1
+ 3

2
+
√

mn2

(m−1)2
+ 1

4
is balanced in Z/mZ,

then σ is invertible modulo m.

Remark 5.2.10. For all integers m ⩾ 2, we have n
m−1

+ 3
2
+
√

mn2

(m−1)2
+ 1

4
< 5n+3

2
.

This is the reason why we suppose, in the sequel of this paper, that σ is invertible
modulo m. We end this section by showing that a simplex in the orbit of an arithmetic
array can be decomposed into arithmetic subsimplices.

Proposition 5.2.11 (Chappelon [C6]). Let a ∈ Z/mZ and let d = (d1, . . . , dn−1) ∈
(Z/mZ)n−1. Let α and s be two positive integers such that α is divisible by ordm(σ)
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and s ≡ −t mod α, where t ∈ [0, n − 1], and let ε ∈ {−1, 1}n. Let △(j, ε, s) be the n-
simplex appearing in the orbit OAA(a,d) = (ai)i∈Zn−1×N. Then, for every k ∈ [0, α − 1]n,
the subsimplex

SSk :=
{
aj+ε·(k+αl)

∣∣ l ∈ Nn such that (k1 + αl1) + · · ·+ (kn + αln) ⩽ s− 1
}
,

obtained from △(j, ε, s) by extracting one term every α in each component, is the arith-
metic simplex

SSk = AS

(
aj+ε·k, ασ

jn+εnknε · d̃,
⌈ s
α

⌉
−
⌊∑n

u=1 ku + t

α

⌋)
,

where d̃ =
(
d1, . . . , dn−1, σ

−1
∑n−1

u=1 σudu
)
.

From the previous proposition, we know that every n-simplex △ of size λα− t, where
α is a multiple of ordm(σ) and t ∈ [0, n− 1], appearing in the orbit of an arithmetic array
can be decomposed into αn arithmetic n-simplices of sizes in [λ− (n− 1), λ]. Therefore,
in next section, the arithmetic simplices will be studied in detail.

5.3 Balanced arithmetic simplices
In this section, we will see that arithmetic simplices are a source of balanced multisets of
Z/mZ. First, we show, in the general case n ⩾ 1, that there exists sufficient conditions on
arithmetic simplices for being balanced. After that, in dimension n = 2 and n = 3, i.e., for
arithmetic triangles and arithmetic tetrahedra, necessary conditions for being balanced
are also given.

5.3.1 The general case: in dimension n ⩾ 1

We begin this subsection by showing that, when n ⩾ 2, the edges, the facets and the rows
of an arithmetic simplex are also arithmetic.

Proposition 5.3.1. Let a ∈ Z/mZ, d = (d1, . . . , dn) ∈ (Z/mZ)n and let s be a positive
integer. Let △ := AS(a, d, s) and let d0 := 0. Then, we have

Vi(△) = a+ (s− 1)di,

for all i ∈ [0, n],
Ei,j(△) = AP(Vi(△), dj − di, s),

for all distinct integers i, j ∈ [0, n],

Ri(△) = AS(a+ idn, (d1, . . . , dn−1), s− i),

for all i ∈ [0, n],
Fi(△) = AS(a, (d1, . . . , di−1, di+1, . . . , dn), s),

for all i ∈ [1, n], and

F0(△) = AS(a+ (s− 1)d1, (d2 − d1, . . . , dn − d1), s).

Moreover, for all i ∈ [0, n], we have

△ \ Fi(△) = AS(a+ di, d, s− 1).
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The following theorem, which gives sufficient conditions on arithmetic simplices for
being balanced, is the main result of this section.

Theorem 5.3.2 (Chappelon [C6]). Let n and m be two positive integers with gcd(m,n!) =
1. Let a ∈ Z/mZ and let d = (d1, . . . , dn) ∈ (Z/mZ)n such that di, for all i ∈ [1, n], and
dj − di, for all distinct integers i, j ∈ [1, n], are invertible. Then, the arithmetic simplex
AS(a, d, s) is balanced for all s ≡ −t mod m, with t ∈ [0, n− 1].

5.3.2 In dimension 2

In this subsection, we only consider arithmetic triangles over Z/mZ. Necessary conditions
on the common differences d1, d2 and d2 − d1 of AS(a, (d1, d2), s), depicted in Figure 5.4,
for being balanced in Z/mZ are determined.

V0

V1

V2

d1

d2

d 2
− d

1

Figure 5.4: Common differences of an arithmetic triangle

Theorem 5.3.3 (Chappelon [C6]). Let m and s be two positive integers and let a, d1, d2 ∈
Z/mZ. If the arithmetic triangle AS(a, (d1, d2), s) is balanced, then the common differ-
ences d1, d2 and d2 − d1 are all invertible.

It follows from this theorem that there does not exist balanced arithmetic triangles in
Z/mZ for m even. Nevertheless, in the case where m is an even number, the multiplicity
function of an arithmetic triangle of Z/mZ can be completely determined when exactly
two of the three common differences d1, d2, d1 − d2 are invertible and the size s is such
that s ≡ 0 or −1 mod m.

Proposition 5.3.4 (Chappelon [C6]). Let m and s be two positive integers such that
s ≡ 0 or −1 mod m. Let a, d1, d2 ∈ Z/mZ and let △ = AS(a, (d1, d2), s). If d2 and
d2 − d1 are invertible, then

m△(x) = m△(x+ gcd(d1,m)),

for all x ∈ Z/mZ, and

m△(a+ id2) =
1

m

(
s+ 1

2

)
+
⌈ s
m

⌉(gcd(d1,m)− 1

2
− i

)
,

for all integers i ∈ [0, gcd(d1,m)− 1].

For example, for m = 12, a = 0, d1 = 1 and d2 = 5, we obtain that d2 − d1 = 4,
gcd(d1 − d2,m) = 4 and the multiplicity function of △ = AS(a, (d1, d2),m) is given in
Table 5.1.
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x 0 1 2 3 4 5 6 7 8 9 10 11
m△(x) 5 6 7 8 5 6 7 8 5 6 7 8

Table 5.1: Multiplicity function of △ = AS(0, (1, 5), 12) in Z/12Z

5.3.3 In dimension 3

In this subsection, we only consider the arithmetic tetrahedron AS(a, (d1, d2, d3), s) in
Z/mZ. We determine necessary and sufficient conditions on the common differences d1,
d2, d3, d2−d1, d3−d2 and d1−d3 of AS(a, (d1, d2, d3), s), depicted in Figure 5.5, for being
balanced in Z/mZ.

V0

V1

V2

V3

d1

d2

d3
d3 − d2

d 2
− d

1

d 1
−
d 3

Figure 5.5: Common differences of an arithmetic tetrahedron

Definition 5.3.5 (Adjacent common differences). Among the six common differences
d1, d2, d3, d2 − d1, d3 − d2 and d1 − d3 of AS(a, (d1, d2, d3), s), two of them are said
to be adjacent if they have a vertex in common. The couples of non-adjacent common
differences of AS(a, (d1, d2, d3), s) are (d1, d3 − d2), (d2, d1 − d3) and (d3, d2 − d1). The
twelve other couples of common differences are said to be adjacent (See Figure 5.6).

V0

V1

V2

V3

d1

d2

d3
d3 − d2

d 2
− d

1d 1
−
d 3

V0

V1

V2

V3

d1

d2

d3
d3 − d2

d 2
− d

1d 1
−
d 3

V0

V1

V2

V3

d1

d2

d3
d3 − d2

d 2
− d

1d 1
−
d 3

d1 and d3 − d2 d2 and d1 − d3 d3 and d2 − d1

Figure 5.6: Non-adjacent common differences of AS(a, (d1, d2, d3), s)
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Theorem 5.3.6 (Chappelon [C6]). Let m and s be two positive integers and let a, d1, d2, d3
be in Z/mZ. Let D := {d1, d2, d3, d2 − d1, d3 − d2, d1 − d3} be the set of common differ-
ences of the arithmetic tetrahedron △ = AS(a, (d1, d2, d3), s). If △ is balanced in Z/mZ
and

i) m is odd, then all the elements of D are invertible.

ii) m is even, then all the elements of D are invertible, except two of them, say δ1 and
δ2, which are non-adjacent and such that gcd(δ1,m) = gcd(δ2,m) = 2.

We continue by showing that there is no balanced arithmetic tetrahedron in Z/mZ
when m is divisible by 3.

Theorem 5.3.7 (Chappelon [C6]). Let m and s be two positive integers such that m is
a multiple of 3. There is no balanced arithmetic tetrahedron of size s in Z/mZ.

In the end of this subsection, we prove that the necessary conditions on the com-
mon differences of balanced arithmetic tetrahedra highlighted in Theorem 5.3.6 are also
sufficient for certain sizes.

Theorem 5.3.8 (Chappelon [C6]). Let m be an odd number not divisible by 3 and let
a, d1, d2, d3 ∈ Z/mZ such that d1, d2, d3, d2 − d1, d3 − d2 and d1 − d3 are invertible.
Then, the arithmetic tetrahedron AS(a, (d1, d2, d3), s) is balanced for all s ≡ 0, −1, or
−2 mod m.

Proof. Theorem 5.3.2 for n = 3.

Theorem 5.3.9 (Chappelon [C6]). Let m be an even number not divisible by 3 and let
a, d1, d2, d3 ∈ Z/mZ such that gcd(d1,m) = gcd(d3 − d2,m) = 2 and d2, d3, d2 − d1 and
d1 − d3 are invertible. Then, the arithmetic tetrahedron AS(a, (d1, d2, d3), s) is balanced
for all s ≡ 0 or −2 mod m.

Remark 5.3.10. When m is even and not divisible by 3, if we suppose that gcd(d1,m) =
gcd(d3 − d2,m) = 2 and d2, d3, d2 − d1 and d1 − d3 are invertible, then the arithmetic
tetrahedron AS(a, (d1, d2, d3), s) is not balanced for all s ≡ −1 mod m. Indeed, it can be
seen as the multiset difference of the arithmetic tetrahedron AS(a− d3, (d1, d2, d3), s+1),
which is balanced by Theorem 5.3.9, and the arithmetic triangle AS(a−d3, (d1, d2), s+1),
which is not balanced by Theorem 5.3.3.

5.4 Balanced simplices generated from arithmetic ar-
rays

We are now ready to show that the orbits generated from arithmetic arrays by additive
cellular automata are a source of balanced simplices.

5.4.1 The general case: in dimension n ⩾ 2

For any ACA

Using properties of arithmetic simplices, Theorem 5.1.8, which is the main result of this
chapter, is obtained.
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Theorem 5.4.1 (Chappelon [C6]). Let n ⩾ 2 and m be two positive integers such that
gcd(m,n!) = 1. Suppose that σ is invertible modulo m. Let a ∈ Z/mZ, d ∈ (Z/mZ)n−1

and ε ∈ {−1, 1}n such that di, for all i ∈ [1, n], and εjdj − εidi, for all distinct integers
i, j ∈ [1, n], are invertible, where dn := σ−1

∑n−1
k=1 σkdk. Then, in the orbit OAA(a,d), every

n-simplex with orientation ε and of size s is balanced modulo m, for all s ≡ −t mod
lcm(ordm(σ) ,m), where t ∈ [0, n− 1].

Remark 5.4.2. If σ ≡ 1 mod m, then the n-simplex △ (j, ε, s) appearing in OAA(a,d) is an
arithmetic simplex and Theorem 5.1.8 is simply Theorem 5.3.2 on balanced arithmetic
simplices.

For the Pascal cellular automata

Here, we investigate the consequences of Theorem 5.1.8 on the existence of balanced n-
simplices, in the case where the ACA considered is PCAn−1 and we obtain Corollary 5.1.10.

Corollary 5.4.3 (Chappelon [C6]). Let n ⩾ 2 be a positive integers. For every positive
integer m such that gcd(m, (3(n−1))!) = 1, there exist infinitely many balanced n-simplices
of Z/mZ generated by PCAn−1, for all possible orientations ε ∈ {−1, 1}n. In the special
case of the two orientations ε = + · · · + − or ε = − · · · − +, the existence of an infinite
number of such balanced simplices is verified for every Z/mZ such that gcd(m,n!) = 1, if
n is even, and for every Z/mZ such that gcd

(
m,
(
3n+1

2

)
!
)
= 1, if n is odd.

5.4.2 In dimension 3

In this subsection, we show that, in dimension 3, a similar result as Theorem 5.1.8 can be
obtained for certain even values of m by using Theorem 5.3.9. As a corollary, the special
case of the Pascal cellular automaton PCA2 is studied.

For any ACA

Theorem 5.4.4 (Chappelon [C6]). Let m be an even number not divisible by 3 such that
σ ∈ Z/mZ is invertible and σ ≡ 1 mod 2v2(m), where v2(m) is the highest exponent u such
that 2u divides m. Let a ∈ Z/mZ, d = (d1, d2) ∈ (Z/mZ)2 and ε ∈ {−1, 1}3 such that
ε2d2, ε3d3, ε2d2− ε1d1, ε1d1− ε3d3 are invertible in Z/mZ and gcd(ε1d1,m) = gcd(ε3d3−
ε2d2,m) = 2, where d3 := σ−1(σ1d1+σ2d2). Then, in the orbit OAA(a,d), every tetrahedron
with orientation ε and of size s is balanced, for all s ≡ 0 or −2 mod lcm(ordm(σ) ,m).

For the Pascal cellular automaton

Here, we investigate the consequences of Theorem 5.4.4 on the existence of balanced
tetrahedra, in the case where the ACA considered is PCA2.

Corollary 5.4.5 (Chappelon [C6]). For even numbers m not divisible by 3 such that
v2(m) = 1, there exist infinitely many balanced tetrahedra of Z/mZ generated by PCA2,
for all orientations ε = +++, +−+, +−−, −++, −+− and −−−. In the remaining
case of the two orientations ε = ++− or ε = −−+, the existence of an infinite number of
such balanced tetrahedra is verified for every Z/mZ of even order m such that v2(m) = 1
and gcd(m, 3.5) = 1.



5.5. THE ANTISYMMETRIC CASE 109

5.5 The antisymmetric case
We begin this section by defining the antisymmetric sequences and the antisymmetric
simplices.

Definition 5.5.1 (Antisymmetric sequences). A finite sequence S = (a1, . . . , as) of length
s ⩾ 1 in Z/mZ is said to be antisymmetric if ai + as−i+1 = 0 for all i ∈ [1, s].

For instance, the sequence S = 2210433 is antisymmetric in Z/5Z.

Definition 5.5.2 (Antisymmetric simplices). Let A = (ai)i∈Zn be an infinite array of
elements in Z/mZ and let △(j, ε, s) be the n-simplex of size s, with orientation ε ∈
{−1, 1}n and whose principal vertex is aj in A, that is,

△(j, ε, s) = {aj+ε·k | k ∈ Nn such that k1 + · · ·+ kn ⩽ s− 1} .

Let u and v be two distinct integers in [0, n]. The simplex △(j, ε, s) is said to be (u, v)-
antisymmetric if all its subsequences in the same direction of the edge Eu,v between the
vertices Vu and Vv are antisymmetric. More precisely, △(j, ε, s) is (0, v)-antisymmetric
if we have

aj+ε·k + aj+ε·s(k) = 0, where s(k) =

(
k1, . . . , kv−1, s− 1−

n∑
l=1

kl, kv+1, . . . , kn

)
,

for all k ∈ Nn such that k1 + · · · + kn ⩽ s − 1 and, for u, v ⩾ 1, △(j, ε, s) is (u, v)-
antisymmetric if we have

aj+ε·k + aj+ε·t(k) = 0, where (t(k))l = kτ(l) for all l ∈ [1, n],

where τ is the transposition (u, v), for all k ∈ Nn such that k1 + · · ·+ kn ⩽ s− 1.

For instance, the tetrahedron depicted in Figure 5.7 is (1, 2)-antisymmetric. Moreover,
each row of this tetrahedron is an (1, 2)-antisymmetric triangle.

0 1 1 3 6
6 0 4 5
6 3 0
4 2
1

0 4 0 1
3 0 3
0 4
6

0 2 3
5 0
4

0 5
2

0

Figure 5.7: An (1, 2)-antisymmetric tetrahedron in Z/7Z

5.5.1 Antisymmetric simplices

Let m and n be two positive integers such that n ⩾ 2 and gcd(m,n!) = 1. In the sequel
of this section, we consider n-simplices △(j, ε, s) appearing in the orbit of the arithmetic
array AA(a, d), where a ∈ Z/mZ and d = (d1, d2, . . . , dn−1) ∈ (Z/mZ)n−1, generated by
an ACA of weight array W = (wl)l∈[−r,r]n−1 . The elements of this orbit are denoted by
OAA(a,d) = (ai)i∈Zn−1×N. As already defined before,

σ :=
∑

l∈[−r,r]n−1

wl and σk =
∑

l∈[−r,r]n−1

lkwl, for all k ∈ [1, n− 1].
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Moreover, suppose that σ is invertible modulo m and let

dn := σ−1

n−1∑
k=1

σkdk.

In this subsection, necessary conditions on simplices for being antisymmetric are deter-
mined.

Proposition 5.5.3 (Chappelon [C6]). Let u and v be two distinct integers in [1, n]. If
△(j, ε, s) is (u, v)-antisymmetric, then dw = 0 for all w ∈ [1, n]\{u, v} and εudu+εvdv = 0.

Proposition 5.5.4 (Chappelon [C6]). Let v be an integer in [1, n]. If △(j, ε, s) is (0, v)-
antisymmetric, then 2εwdw = εvdv for all w ∈ [1, n] \ {v}.

For n ⩾ 3, it is easy to see from Proposition 5.5.3 and Proposition 5.5.4 that if the
simplex △(j, ε, s) is (u, v)-antisymmetric, then there is at least one element among the
elements εidi, for all i ∈ [1, n], and εjdj−εidi, for all distinct integers i, j ∈ [1, n], which is
non-invertible and equal to zero in Z/mZ. In this case, the hypotheses of Theorem 5.3.2
are not satisfied. Therefore, in the next subsection, we only consider the case of dimension
n = 2.

5.5.2 In dimension 2

An arithmetic array of dimension 1 is simply called an arithmetic progression and is
denoted by AP(a, d) or AP(a, d, s), for an arithmetic progression of length s, that is,

AP(a, d, s) = (a, a+ d, a+ 2d, . . . , a+ (s− 1)d).

Let W = (w−r, . . . , wr) ∈ Z2r+1 be the weight sequence of the ACA of dimension 1 that
we consider here. First, we know that the derived sequence of an arithmetic progression
is also an arithmetic progression. Indeed, we have

∂AP(a, d) = AP(σa+ σ′d, σd),

where

σ =
r∑

i=−r

wi and σ′ =
r∑

i=−r

iwi.

As already remarked, for W = (0, σ−σ′, σ′), we obtain that σ
(
W
)
= σ(W ) and σ′ (W) =

σ′(W ). Thus, the orbits of AP(a, d) are the same if we consider W or W . Therefore, in the
sequel of this subsection, we only consider the case where r = 1 and W = (0, σ − σ′, σ′).

(1,2)-antisymmetric triangles

First, we know from Proposition 5.5.3 that if the triangle △(j, ε, s), appearing in the orbit
OAP(a,d) with d invertible, is (1, 2)-antisymmetric, then

ε1d+ ε2σ
−1σ′d = 0 ⇐⇒ ε1σ + ε2σ

′ = 0 ⇐⇒ σ′ = −ε1ε2σ.

So, we deduce that
W = (0, (1 + ε1ε2)σ,−ε1ε2σ).
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Since △(j, ε, s) is (1, 2)-antisymmetric, we know that aj = 0 and aj+ε·e1 + aj+ε·e2 = 0. It
follows that

aj = 0 ⇐⇒ a+ j1d1 + j2d2 = 0,

and

aj+ε·e1+aj+ε·e2 = 0 ⇐⇒ σj2(a+ (j1 + ε1)d1 + j2d2) + σj2+ε2(a+ j1d1 + (j2 + ε2)d2) = 0
=⇒ ε1d1 + σε2ε2d2 = 0
⇐⇒ ε1 + σε2ε2σ

−1σ′ = 0.

This implies that σε2 = 1 and thus σ = 1. Therefore,

W = (0, 1 + ε1ε2,−ε1ε2).

Finally, since σ = 1, we know that △(j, ε, s) is an arithmetic triangle which is already
balanced for all s ≡ 0 or −1 mod m by Theorem 5.3.2.

(0,2)-antisymmetric triangles

First, we know from Proposition 5.5.4 that if the triangle △(j, ε, s), appearing in the orbit
OAP(a,d) with d invertible, is (0, 2)-antisymmetric, then

ε2σ
−1σ′ = 2ε1 ⇐⇒ σ′ = 2ε1ε2σ.

So, we deduce that
W = (0, (1− 2ε1ε2)σ, 2ε1ε2σ).

Since △(j, ε, s) is (0, 2)-antisymmetric, we know that aj+(s−1)ε·e1 = 0 and aj+(s−2)ε·e1 +
aj+ε·((s−2)e1+e2) = 0. It follows that

aj+(s−1)ε·e1 = 0 ⇐⇒ a+ (j1 + ε1(s− 1))d1 + j2d2 = 0,

and

aj+(s−2)ε·e1 +aj+ε·((s−2)e1+e2) = 0 ⇐⇒ σj2(a+ (j1 + ε1(s− 2))d1 + j2d2)
+σj2+ε2(a+ (j1 + ε1(s− 2))d1 + (j2 + ε2)d2) = 0

=⇒ −ε1d1 + σε2(−ε1d1 + ε2d2) = 0
⇐⇒ −ε1 + σε2(−ε1 + ε2σ

−1σ′) = 0

⇐⇒ σ′ =
1 + σε2

σε2
ε1ε2σ

This implies that σε2 = 1 and thus σ = 1. Therefore,

W = (0, 1− 2ε1ε2, 2ε1ε2).

Finally, since σ = 1, we know that △(j, ε, s) is an arithmetic triangle which is already
balanced for all s ≡ 0 or −1 mod m by Theorem 5.3.2.
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(0,1)-antisymmetric triangles

First, we know from Proposition 5.5.4 that if the simplex △(j, ε, s) is (0, 1)-antisymmetric,
then

ε1 = 2ε2σ
−1σ′ ⇐⇒ σ = 2ε1ε2σ

′.

So, we deduce that
W = (0, (2ε1ε2 − 1)σ′, σ′).

Now, we refine Theorem 5.1.8 in this case by considering triangles that have the
additional property to be (0, 1)-antisymmetric.

Theorem 5.5.5 (Chappelon [C6]). Let m be an odd positive integer and let W ∈ Z2r+1

such that σ = 2σ′ and σ is invertible modulo m. Let a, d ∈ Z/mZ such that d is in-
vertible. Then, in the orbit OAP(a,d), every (0, 1)-antisymmetric triangle of orientation
(++) or (−−) and of size s is balanced, for all positive integers s ≡ 0 or −1 mod
lcm(pordm(σ) ,m), where pordm(σ) is the multiplicative order of σ in (Z/mZ)∗ /{−1, 1}.

Theorem 5.5.6 (Chappelon [C6]). Let m be an odd positive integer and let W ∈ Z2r+1

such that σ = −2σ′ and σ is invertible modulo m. Let a, d ∈ Z/mZ such that d is
invertible. Then, in the orbit OAP(a,d), every (0, 1)-antisymmetric triangle of orienta-
tion (−+) or (+−) and of size s is balanced, for all positive integers s ≡ 0 or −1 mod
lcm(pordm(σ) ,m), where pordm(σ) is the multiplicative order of σ in (Z/mZ)∗ /{−1, 1}.

5.6 Open problems
For the Pascal cellular automaton of dimension 1, the following problems remain open.

Problem 5.6.1. For m even, do there exist infinitely many balanced triangles of Z/mZ,
with any orientation, generated by PCA1?

Problem 5.6.2. For m odd divisible by 3, do there exist infinitely many balanced triangles
of Z/mZ, with orientations ++ and −−, generated by PCA1?

For the Pascal cellular automaton of dimension 2, the following problems remain open.

Problem 5.6.3. For m divisible by 3, do there exist infinitely many balanced tetrahedra
of Z/mZ, with any orientation, generated by PCA2?

Problem 5.6.4. For m even such that v2(m) ⩾ 2, do there exist infinitely many balanced
tetrahedra of Z/mZ, with any orientation, generated by PCA2?

Problem 5.6.5. For m odd divisible by 5, do there exist infinitely many balanced tetra-
hedra of Z/mZ, with orientations + + −, + − +, + − −, − + +, − + − and − − −,
generated by PCA2?

Problem 5.6.6. For m divisible by 5 such that v2(m) ⩽ 1, do there exist infinitely many
balanced tetrahedra of Z/mZ, with orientations ++− and −−+, generated by PCA2?



Part II

Other results on numerical semigroups,
Tower of Hanoi, Ramsey theory and

Kneser transversals

113





Chapter 6

Numerical semigroups

The main topic of this chapter is the numerical semigroups. The results presented here
can be found in the publications [C16, C10] and the manuscript [C17].

6.1 The Möbius function of numerical semigroup posets

6.1.1 Numerical semigroups

Definition 6.1.1 (Semigroup). A semigroup is a set S with an internal binary operation
. : S × S → S that is associative, i.e.,

a.(b.c) = (a.b).c,

for all a, b, c ∈ S.

Definition 6.1.2 (Numerical semigroup). A numerical semigroup is a subsemigroup S
of N such that 0 ∈ S and N \ S is finite.

Notation 6.1.3. Let A = {a1, . . . , an} be a finite set of non-negative integers. The
subsemigroup of N generated by A is denoted by ⟨A⟩, i.e.,

⟨A⟩ = {x1a1 + · · ·+ xnan | (x1, . . . , xn) ∈ Nn} .

For any non-negative integer x, we say that x is representable as a non-negative integer
combination of a1, . . . , an if and only if x ∈ ⟨A⟩.

Proposition 6.1.4. The subsemigroup S of N is a numerical semigroup if and only if
there exists a finite subset A of N such that S = ⟨A⟩ with gcd(A) = 1.

Corollary 6.1.5. Let A = {a1, . . . , an} be a finite set of non-negative integers such that
gcd(A) = 1. Then, there exists an integer N such that any integer x ⩾ N is representable
as a non-negative integer combination of a1, . . . , an.

Definition 6.1.6 (Gaps, Frobenius number, genus and multiplicity). Let S be a numerical
semigroup. The positive integers not in S are called the gaps of S. The largest gap of S
is called the Frobenius number of S and is denoted by g(S). The number of gaps of S,
denoted by N(S) (that is, N(S) = |N \ S|) is called the genus of S. The multiplicity of S
is the smallest positive element m(S) belonging to S.
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It is well-known that
g(⟨{a1, a2}⟩) = a1a2 − a1 − a2,

for any coprime positive integers a1 and a2. However, calculating g(S) is a difficult problem
in general. In [95] was shown that computing g(S) is NP-hard. An extensive literature
on the Frobenius number and numerical semigroups can be found in [96, 97].

6.1.2 The Möbius function of locally finite posets

The Möbius function is an important concept associated with locally finite posets.

Definition 6.1.7 (Poset). A partial order is a binary relation ⩽P over a set P that is
reflexive, antisymmetric and transitive, i.e.,

i) a ⩽P a, for all a ∈ P , (reflexivity)

ii) if a ⩽P b and b ⩽P a, then a = b, for all a, b ∈ P , (antisymmetry)

iii) if a ⩽P b and b ⩽P c, then a ⩽P c, for all a, b, c ∈ P . (transitivity)

A set with a partial order is called a partially ordered set, or poset for short.

Definition 6.1.8 (Locally finite poset). Let (P,⩽P ) be a poset. The strict partial order
<P is the reduction of ⩽P given by, a <P b if and only if a ⩽P b and a ̸= b. For any a
and b in the poset P , the segments between a and b are defined by

[a, b]P = {c ∈ P | a ⩽P c ⩽P b} , ]a, b]P = {c ∈ P | a <P c ⩽P b} ,

[a, b[P = {c ∈ P | a ⩽P c <P b} , ]a, b[P = {c ∈ P | a <P c <P b} .

A poset is said to be locally finite if every segment has finite cardinality.

Definition 6.1.9 (Chain). Let a and b be elements of the locally finite poset (P,⩽P ).
A chain of length l ⩾ 0 between a and b is a subset of [a, b]P containing a and b, with
cardinality l + 1 and totally ordered by ⩽P , that is {a0, a1, . . . , al} ⊂ [a, b]P such that

a = a0 <P a1 <P a2 <P · · · <P al−1 <P al = b.

For any nonnegative integer l, we denote by Cl(a, b) the set of all chains of length l between
a and b. The cardinality of Cl(a, b) is denoted by cl(a, b). This number is always finite
because the poset P is supposed to be locally finite.

For instance, the number of chains c3(1, 12), where the poset is the set N partially
ordered by divisibility, is equal to 3. Indeed, there are exactly 3 chains of length 3
between 1 and 12 in [1, 12]N = {1, 2, 3, 4, 6, 12}, which are {1, 2, 4, 12}, {1, 2, 6, 12} and
{1, 3, 6, 12}.

Definition 6.1.10 (Möbius function). For any locally finite poset P , the Möbius function
µP is the integer-valued function on P × P defined by

µP (a, b) =
∑
l⩾0

(−1)lcl(a, b), (6.1)

for all elements a and b of the poset P .
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Remark 6.1.11.

i) The sum involved in the definition of the Möbius function is always finite because,
for a and b given, there exists a maximal length of a possible chain between a and b
since the segment [a, b]P has finite cardinality.

ii) If we consider the Möbius function of the poset obtained from the positive integers
partially ordered by the divisibility, we retrieve the classical Möbius arithmetic func-
tion on the integers.

The Möbius function has been extremely useful to investigate many different problems.
For instance, the inclusion-exclusion principle can be retrieved by considering the set of
all subsets of a finite set partially ordered by inclusion.

The concept of Möbius function for a locally finite poset (P,⩽P ) was introduced by
Rota in [98] as the inverse of the zeta function in the incidence algebra of a locally finite
poset. Let us see this with more detail. Consider the set I(P ) of all real-valued functions
f : P × P −→ R for which f(a, b) = 0 if a ̸⩽P b. The sum + and the multiplication by
scalars are defined as usual in I(P ). The product of two functions f and g in I(P ) is
defined by

(f × g)(a, b) =
∑

c∈[a,b]P

f(a, c)g(c, b),

for all (a, b) ∈ P ×P . Then (I(P ),+, .,×) appears as an associative algebra over R. This
is the incidence algebra of P . The Kronecker delta function δ ∈ I(P ), defined by

δ(a, b) =

{
1 if a = b,
0 otherwise,

for all (a, b) ∈ P × P , is the identity element of I(P ). The zeta function ζP ∈ I(P ) is
defined by

ζP (a, b) =

{
1 if a ⩽P b,
0 otherwise,

for all (a, b) ∈ P × P .
Rota [98] proved that the zeta function ζP (called the inverse function) is invertible

in I(P ) and showed that µP is recursively defined as follows: for all (a, b) ∈ P × P , by

µP (a, a) = 1 and µP (a, b) = −
∑

c∈[a,b[P

µP (a, c) if a <P b. (6.2)

Let us see that both definitions of µS given by (6.1) and by (6.2) are equivalent. For, let
a and b be two elements of the locally finite poset P such that a <P b. Then,

cl(a, b) =
∑

c∈[a,b[P

cl−1(a, c) =
∑

c∈]a,b]P

cl−1(c, b), (6.3)

for all positive integers l. Indeed, every chain {a0, a1, . . . , al} ∈ Cl(a, b) can be seen as an
extension of a chain of Cl−1(a, al−1) or of Cl−1(a1, b).

Obviously, the identity µS(a, a) = 1 directly comes from (6.1) since c0(a, a) = 1 and
cl(a, a) = 0 for all l ⩾ 1. By combining (6.3) and (6.1), for all a <P b, we obtain that

µP (a, b) =
∑
l⩾0

(−1)lcl(a, b) = c0(a, b) +
∑
l⩾1

(−1)l
∑

c∈[a,b[P

cl−1(a, c).
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Finally, since a ̸= b, it follows that c0(a, b) = 0 and thus

µP (a, b) =
∑

c∈[a,b[P

∑
l⩾0

(−1)l+1cl(a, c) = −
∑

c∈[a,b[P

µP (a, c).

Similarly, using the second identity of (6.3), we can also prove that, whenever a <P b, we
have

µP (a, b) = −
∑

c∈]a,b]P

µP (c, b).

Therefore the two definitions of the Möbius function (for a locally finite poset) are the
same. All the results presented in next section are derived from the recursive formula
presented in (6.2).

6.1.3 Numerical semigroup posets

For any numerical semigroup S, we consider the binary relation ⩽S on the set of integers
Z defined by

x ⩽S y ⇐⇒ y − x ∈ S,

for all integers x and y.
Proposition 6.1.12. For any numerical semigroup S, (Z,⩽S) is a locally finite poset.
Proof. The binary relation ⩽S is reflexive since 0 ∈ S, antisymmetric since S∩(−S) = {0}
and reflexive by associativity of the addition in S. Therefore, the relation ⩽S is a partial
order over Z. Moreover, (Z,⩽S) is a locally finite poset since∣∣∣[x, y](Z,⩽S)

∣∣∣ ⩽ y − x+ 1,

for all x, y ∈ Z.
Notation 6.1.13. For any numerical semigroup S, the Möbius function of the locally
finite poset (Z,⩽S) is denoted by µS.

It is easy to see that µS can be considered as a univariate function on Z.
Proposition 6.1.14. Let S be a numerical semigroup. Then, in the locally finite poset
(Z,⩽S), we have

cl(x, y) = cl(0, y − x), (6.4)
for all x, y ∈ Z and for all l ⩾ 0.
Corollary 6.1.15. Let S be a numerical semigroup. Then, in the locally finite poset
(Z,⩽S), we have

µS(x, y) = µS(0, y − x),

for all x, y ∈ Z.
In the sequel of this section, we shall only consider the reduced Möbius function

µS : Z −→ Z defined by
µS(x) = µS(0, x),

for all x ∈ Z. The recursive formula given by (6.2) can be more easily presented when
the locally finite poset is (Z,⩽S).
Proposition 6.1.16 (Chappelon-Ramírez [C16]). Let S be a numerical semigroup and
let x ∈ Z \ {0}. Then,

µS(x) = −
∑

y∈S\{0}

µS(x− y) ⇐⇒
∑
y∈S

µS(x− y) = 0.
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6.1.4 The Möbius function of arithmetic semigroup posets

Using the recursive formula of Proposition 6.1.16, the Möbius function of numerical semi-
group posets have been explicitly determined, or semi-explicitly determined, for some
families of numerical semigroups in [C16].

For S = ⟨a, b⟩
For a numerical semigroup S generated from two coprime positive integers, the following
theorem, due to Deddens in 1979, gives an explicit formula for µS.

Theorem 6.1.17 (Deddens [47]). Let a and b be two relatively positive integers and let
S = ⟨a, b⟩. Then, we have

µS(x) =


1 if x ⩾ 0 and x ≡ 0 or a+ b (mod ab),

−1 if x ⩾ 0 and x ≡ a or b (mod ab),
0 otherwise,

for all x ∈ Z.

A proof based on the recursive formula of Proposition 6.1.16 can be found in [C16].

For arithmetic semigroups

Definition 6.1.18 (Arithmetic semigroup). Let a and d be two coprime positive integers
and let k be a positive integer such that k ⩽ a− 1. The numerical semigroup

S = ⟨a, a+ d, . . . , a+ kd⟩
generated by the arithmetic progression AP(a, d, k+1) is called an arithmetic semigroup.

A recursive formula for µS is obtained in [C16] when S = ⟨a, a+ d, . . . , a+ kd⟩ is
an arithmetic semigroup. The following key remark led us to guess such recursion. If
x = maa+mdd such that ma ⩾ 0 and 0 ⩽ md ⩽ a− 1 then,

x ∈ S ⇐⇒ ma ⩾
⌈md

k

⌉
.

Theorem 6.1.19 (Chappelon-Ramirez [C16]). Let S = ⟨a, a+ d, . . . , a+ kd⟩ such that
gcd(a, d) = 1 and let a = qk + r with 0 ⩽ r < k. Let x ∈ Z \ {0, a, a+ kd, a+ (a+ kd)},
then

µS(x) =



µS(x− q(a+ kd)) +
k−1∑
i=1

µS(x− (a+ id)− q(a+ kd))

−µS(x− (a+ id)) if r = 0,

µS(x− (q + 1)(a+ kd)) +
k−1∑
i=r

µS(x− (a+ id)− q(a+ kd))

−
k−1∑
i=1

µS(x− (a+ id)) if r = 1,

µS(x− (q + 1)(a+ kd)) +
r−1∑
i=1

µS(x− (a+ id)− (q + 1)(a+ kd))

+
k−1∑
i=r

µS(x− (a+ id)− q(a+ kd))−
k−1∑
i=1

µS(x− (a+ id)) if r ⩾ 2.
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The proof is based on Proposition 6.1.16 and on the following lemma where it is proved
that in arithmetic semigroups there exists a unique representation of elements.

Lemma 6.1.20. Let x ∈ S = ⟨a, a+ d, . . . , a+ kd⟩ with 2 ⩽ k ⩽ a − 1. Then, there
exists a unique triplet (x0, xi, xk) ∈ N× {0, 1} × {0, . . . , ⌈a

k
⌉} such that

x = x0a+ xi(a+ id) + xk(a+ kd)

for some 1 ⩽ i ⩽ k − 1 with ixi + kxk < a.

Notation 6.1.21. Let (x0, xi, xk) ∈ N× {0, 1} × {0, . . . , ⌊a/k⌋} with 1 ⩽ i ⩽ k − 1 and
ixi + kxk < a. We denote by [x0, xi, xk] the element in S = ⟨a, a+ d, . . . , a+ kd⟩ given
by the representation of Lemma 6.1.20.

For semigroups ⟨2a, 2a+ d, 2a+ 2d⟩
Recall that the multiplicity function of a multiset A of N is the function

mA : N −→ N

which assigns to each element x ∈ N its multiplicity, that is, the number of times that x
appears in the multiset A.

Let a = 2q and d ∈ N∗ such that gcd(a, d) = gcd(q, d) = 1. For each i ∈ {−1, 0, 1},
we consider the following multisets.

Ai = {m(q + d) + i | m ∈ N} ,

Bi = {m(q + d)− nd+ i | m ∈ N \ {0, 1}, n ∈ {1, 2, . . . , ⌊m/2⌋}} ,

Ci = Ai

⋃
Bi.

As we mentioned above, given a triple (x0, x1, x2) ∈ N×{0, 1}×{0, . . . , q−1}, we denote
by [x0, x1, x2] the element in S given by the representation in Lemma 6.1.20. We shall
consider this representation for all x0 ∈ Z, i.e.,

[x0, x1, x2] = x0a+ x1(a+ d) + x2(a+ 2d)

for all (x0, x1, x2) ∈ Z× {0, 1} × {0, . . . , q − 1}. In this case, it is clear that

[x0, x1, x2] ∈ S ⇐⇒ x0 ∈ N,

for all (x0, x1, x2) ∈ Z× {0, 1} × {0, . . . , q − 1}.
Theorem 6.1.22 (Chappelon-Ramirez [C16]). Let q and d be two coprime positive inte-
gers and let

S = ⟨2q, 2q + d, 2q + 2d⟩ .
Let (x0, x1, x2) ∈ Z× {0, 1} × {0, . . . , q − 1}. Then,

µS([x0, x1, x2]) =

{
(−1)x1

(
mA0 −mA1 + 2mB0 −mB−1 −mB1

)
(x0) if x2 = 0,

(−1)x1
(
2mC0 −mC−1 −mC1

)
(x0 − x2) if x2 ⩾ 1.

We notice that if x0 − x2 is a constant then we should have the same value for
µS([x0, 0, x2]). The latter is illustrated by the first values of µS([x0, 0, x2]), listed in Ta-
ble 6.1, for the case when a = 22 and d = 5. Indeed, we can see appearing diagonals
(corresponding to x0 − x2 constant) with the same value.



6.1. THE MÖBIUS FUNCTION OF NUMERICAL SEMIGROUP POSETS 121

Table 6.1: First values of µS([x0, 0, x2]) for q = 11 and d = 5.

HH
HHHHx0

x2 0 1 2 3 4 5 6 7 8 9 10

0 1 −1 0 0 0 0 0 0 0 0 0
1 −1 2 −1 0 0 0 0 0 0 0 0
2 0 −1 2 −1 0 0 0 0 0 0 0

0 0 −1 2 −1 0 0 0 0 0 0
0 0 0 −1 2 −1 0 0 0 0 0
0 0 0 0 −1 2 −1 0 0 0 0
0 0 0 0 0 −1 2 −1 0 0 0
0 0 0 0 0 0 −1 2 −1 0 0
0 0 0 0 0 0 0 −1 2 −1 0
0 0 0 0 0 0 0 0 −1 2 −1

q − 1 0 0 0 0 0 0 0 0 0 −1 2
q 0 0 0 0 0 0 0 0 0 0 −1

q + 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

q + d− 1 0 0 0 0 0 0 0 0 0 0 0
q + d 1 −1 0 0 0 0 0 0 0 0 0

q + d+ 1 −1 2 −1 0 0 0 0 0 0 0 0
q + d+ 2 0 −1 2 −1 0 0 0 0 0 0 0

0 0 −1 2 −1 0 0 0 0 0 0
0 0 0 −1 2 −1 0 0 0 0 0
0 0 0 0 −1 2 −1 0 0 0 0
0 0 0 0 0 −1 2 −1 0 0 0
0 0 0 0 0 0 −1 2 −1 0 0
0 0 0 0 0 0 0 −1 2 −1 0
0 0 0 0 0 0 0 0 −1 2 −1

2q + d− 1 −1 0 0 0 0 0 0 0 0 −1 2
2q + d 2 −1 0 0 0 0 0 0 0 0 −1

2q + d+ 1 −1 2 −1 0 0 0 0 0 0 0 0
0 −1 2 −1 0 0 0 0 0 0 0
0 0 −1 2 −1 0 0 0 0 0 0

2q + 2d− 1 0 0 0 −1 2 −1 0 0 0 0 0
2q + 2d 1 −1 0 0 −1 2 −1 0 0 0 0

2q + 2d+ 1 −1 2 −1 0 0 −1 2 −1 0 0 0
2q + 2d+ 2 0 −1 2 −1 0 0 −1 2 −1 0 0

0 0 −1 2 −1 0 0 −1 2 −1 0
0 0 0 −1 2 −1 0 0 −1 2 −1
0 0 0 0 −1 2 −1 0 0 −1 2
0 0 0 0 0 −1 2 −1 0 0 −1
0 0 0 0 0 0 −1 2 −1 0 0
0 0 0 0 0 0 0 −1 2 −1 0
0 0 0 0 0 0 0 0 −1 2 −1

3q + 2d− 1 −1 0 0 0 0 0 0 0 0 −1 2
3q + 2d 2 −1 0 0 0 0 0 0 0 0 −1

3q + 2d+ 1 −1 2 −1 0 0 0 0 0 0 0 0
0 −1 2 −1 0 0 0 0 0 0 0

Continued on next page
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Table 6.1 – continued from previous page
H
HHH

HHx0

x2 0 1 2 3 4 5 6 7 8 9 10

0 0 −1 2 −1 0 0 0 0 0 0
3q + 3d− 1 0 0 0 −1 2 −1 0 0 0 0 0

3q + 3d 1 −1 0 0 −1 2 −1 0 0 0 0
3q + 3d+ 1 −1 2 −1 0 0 −1 2 −1 0 0 0
3q + 3d+ 2 0 −1 2 −1 0 0 −1 2 −1 0 0

0 0 −1 2 −1 0 0 −1 2 −1 0
0 0 0 −1 2 −1 0 0 −1 2 −1

6.2 The Möbius function of semigroup posets through
Hilbert series

In this section, posets associated with subsemigroups of Zm are considered.

6.2.1 Semigroup posets

Notation 6.2.1. Let A = {a1, . . . , an} be a subset of Zm. The subsemigroup of Zm

generated by A is denoted by ⟨A⟩, i.e.,

⟨A⟩ = ⟨a1, . . . , an⟩ = {x1a1 + · · ·+ xnan | x1, . . . , xn ∈ N} .
Definition 6.2.2. For any subsemigroup S of Zm, we consider the binary relation ⩽S on
Zm defined by

x ⩽S y ⇐⇒ y − x ∈ S,

for all x, y ∈ Zm.

Proposition 6.2.3. Let S be a subsemigroup of Zm. Then, (Zm,⩽S) is a locally finite
poset if and only if S ∩ (−S) = {0}.
Proof. The reflexivity and the transitivity of ⩽S come from 0 ∈ S and the associativity
of the addition in S, respectively. Moreover, the relation ⩽S is antisymmetric if and only
if S ∩ (−S) = {0}. Finally, if S ∩ (−S) = {0}, then (Zm,⩽S) is locally finite.

Definition 6.2.4 (Pointed semigroup). A subsemigroup S of Zm such that S∩(−S) = {0}
is said to be pointed.

Let µS denote the Möbius function associated with (Zm,⩽S). It is easy to see that µS

can be considered as a univariate function on Zm. Indeed, for all x, y ∈ Zm and for all
l ⩾ 0, one can observe that cl(x, y) = cl(0, y − x). Thus, we obtain

µS(x, y) = µS(0, y − x)

for all x, y ∈ Zm. Therefore, in the sequel of this section, we shall only consider the
reduced Möbius function µS : Zm −→ Z defined by

µS(x) := µS(0, x),

for all x ∈ Zm. Thus, as for the numerical semigroup posets, the formula given by (6.2)
may now be simplified when the locally finite poset is (Zm,⩽S).
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Proposition 6.2.5 (CGMR [C10]). Let S be a pointed semigroup and let x ∈ Zm. Then,

∑
b∈S

µS(x− b) =

{
1 if x = 0,
0 otherwise.

Proposition 6.2.5 will be very useful to obtain most of the following results.

6.2.2 The Hilbert and Möbius series

Here, results relating the Hilbert series of the semigroup S with the Möbius function of
the poset (Zm,⩽S) are given. First, some basic notions on multivariate Hilbert series are
quickly recalled. A complete study of multivariate Hilbert series can be found in [81].

Let k be any field and let S = ⟨a1, . . . , an⟩ be a subsemigroup of Zm. The semigroup S
induces a grading on the ring of polynomials R := k[x1, . . . , xn] by assigning degS(xi) :=
ai ∈ Zm, for all i ∈ {1, . . . , n}. Then, the S-degree of the monomial m := xα1

1 · · ·xαn
n

is degS(m) :=
∑n

i=1 αiai ∈ Zm. A polynomial is said to be S-homogeneous if all of its
monomials have the same S-degree and an ideal is S-homogeneous if it is generated by S-
homogeneous polynomials. For all b ∈ Zm, we denote by Rb the k-vector space generated
by all S-homogeneous polynomials of S-degree b.

Whenever S is pointed, the k-vector space Rb has finite dimension, for all b ∈ Zm (see
[81, Proposition 4.1.19]). Let I ⊂ R be an S-homogeneous ideal. The multigraded Hilbert
function of M := R/I is

HFM : Zm −→ N,

defined by HFM(b) := dimk(Rb)− dimk(Rb ∩ I), for all b ∈ Zm.
For every b = (b1, . . . , bm) ∈ Zm, we denote by tb the monomial tb11 · · · tbmm in the

Laurent polynomial ring Z[t1, . . . , tm, t−1
1 , . . . , t−1

m ]. The multivariate Hilbert series of M
is the following formal power series in Z[[t1, . . . , tm, t−1

1 , . . . , t−1
m ]]:

HM(t) :=
∑
b∈Zm

HFM(b) tb.

We denote by IS the toric ideal of S, i.e., the kernel of the homomorphism of k-algebras

φ : R −→ k[t1, . . . , tm, t
−1
1 , . . . , t−1

m ]

induced by φ(xi) = tai , for all i ∈ {1, . . . , n}. It is well known that IS is S-homogeneous
(see [111, Corollary 4.3]). Moreover, the multivariate Hilbert series of M = R/IS with
respect to the grading induced by S is

HM(t) =
∑
b∈S

tb. (6.5)

Indeed, Rb = {0} and HFM(b) = 0 whenever b /∈ S. In addition, if b ∈ S, φ induces
an isomorphism of k-vector spaces between Rb/(Rb ∩ I) and {α tb |α ∈ k}, for all b ∈ S.
Hence, HFM(b) = 1 in this case.

Definition 6.2.6 (Hilbert series of a semigroup). The multivariate Hilbert series of R/IS
is called the Hilbert series of S and is denoted by HS(t).
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Theorem 6.2.7 (CGMR [C10]). Let S be a pointed semigroup and let c1, . . . , ck be nonzero
vectors in Zm. If we set

(1− tc1) · · · (1− tck) HS(t) =
∑
b∈Zm

fb t
b ∈ Z[[t1, . . . , tm, t−1

1 , . . . , t−1
m ]],

then, ∑
b∈Zm

fb µS(x− b) = 0

for all x /∈
{∑

i∈A ci
∣∣ A ⊂ {1, . . . , k}

}
.

Remark 6.2.8. Notice that the formula (1− tc1) · · · (1− tck) HS(t) =
∑

b∈Zm fb t
b might

have an infinite number of terms. Nevertheless, for every x ∈ Zm, the formula given here∑
b∈Zm fb µS(x − b) = 0 only involves a finite number of nonzero summands, since S is

pointed.

The following example illustrates how to apply Theorem 6.2.7 to compute µS.

Example 6.2.9. Consider the semigroup S = ⟨2, 3⟩ ⊂ N. We observe that S = N \ {1}.
Hence, HS(t) = 1 +

∑
b⩾2 t

b ∈ Z[[t]] and t2HS(t) = t2 +
∑

b⩾4 t
b. It follows that

(1− t2)HS(t) = 1 + t3.

Applying Theorem 6.2.7, we get that

µS(x) + µS(x− 3) = 0,

for all x ∈ Z\{0, 2}. Furthermore, by direct computation, we have µS(0) = 1, µS(2) = −1
and µS(x) = 0 for all x < 0. This leads to the formula

µS(x) =


1 if x ⩾ 0 and x ≡ 0 or 5 (mod 6),

−1 if x ⩾ 0 and x ≡ 2 or 3 (mod 6),
0 otherwise.

Definition 6.2.10 (Möbius series of a semigroup). The Möbius series of S is the gener-
ating function GS of the Möbius function

GS(t) :=
∑
b∈Zm

µS(b) t
b ∈ Z[[t1, . . . , tm, t−1

1 , . . . , t−1
m ]].

Theorem 6.2.11 (CGMR [C10]). Let S be a pointed semigroup. Then,

HS(t) · GS(t) = 1.

Theorem 6.2.11 states that, whenever we can explicitly compute the inverse of HS(t),
we will be able to obtain µS. This idea is illustrated in next example.

Example 6.2.12. Let {e1, . . . , em} denote the canonical basis of Nm and let S be the
semigroup defined by S = ⟨e1, . . . , em⟩ = Nm. Clearly, we have that

HNm(t) =
∑
b∈Nm

tb =
1

(1− t1) · · · (1− tm)
.
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Therefore, by Theorem 6.2.11, we obtain

GNm(t) = (1− t1) · · · (1− tm) =
∑

A⊂{1,...,m}

(−1)|A|
∏
i∈A

ti =
∑

A⊂{1,...,m}

(−1)|A| t
∑

i∈A ei .

So we derive the following formula for µNm :

µNm(x) =

 (−1)|A| if x =
∑

i∈A ei for some A ⊂ {1, . . . ,m},

0 otherwise.

Definition 6.2.13 (Complete intersection pointed semigroup). A pointed semigroup S =
⟨a1, . . . , an⟩ is called a complete intersection semigroup if its corresponding toric ideal IS is
a complete intersection ideal, i.e., if IS is generated by n−d S-homogeneous polynomials,
where d is the dimension of the Q-vector space spanned by a1, . . . , an.

Characterizations of complete intersection toric ideals can be found in [65].

Notation 6.2.14. Let B = (b1, b2, . . . , bk) be a k-tuple of nonzero vectors in Zm such
that the semigroup T := ⟨b1, . . . , bk⟩ is pointed and let b ∈ Zm. We denote by dB(b) the
number of non-negative integer representations of b by b1, . . . , bk, that is, the number of
solutions of b =

∑k
i=1 xibi, where xi is a nonnegative integer for all i.

Remark 6.2.15. Since T is pointed, we know that dB(b) is finite, for all b ∈ Zm. Moreover,
dB(0) = 1.

Proposition 6.2.16 (Theorem 5.8.15 [81]). Let B = (b1, b2, . . . , bk) be a k-tuple of
nonzero vectors in Zm such that the semigroup T := ⟨b1, . . . , bk⟩ is pointed. The gen-
erating function of dB(b) is given by

∑
b∈Zm

dB(b) t
b =

1

(1− tb1) (1− tb2) · · · (1− tbk)
.

Corollary 6.2.17 (CGMR [C10]). Let S be a complete intersection pointed semigroup and
assume that IS is generated by n−d S-homogeneous polynomials of S-degrees b1, . . . , bn−d ∈
Zm. Then,

µS(x) =
∑

A⊂{1,...,n}

(−1)|A| dB

(
x−

∑
i∈A

bi

)
,

for all x ∈ Zm, where B = {b1, . . . , bn−d}.

6.2.3 Explicit formulas for the Möbius function

In this subsection, we exploit the results of the previous subsection to obtain explicit
formulas for µS when S is a semigroup with a unique Betti element and when S is a
complete intersection numerical semigroup generated by three elements. These results
are consequences of Corollary 6.2.17. However, they can also be obtained with a different
proof by using Theorem 6.2.7.
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Semigroups with a unique Betti element

Definition 6.2.18 (Semigroup with a unique Betti element). A semigroup S ⊂ Nm is
said to have a unique Betti element b ∈ Nm if its corresponding toric ideal is generated
by a set of S-homogeneous polynomials of common S-degree b.

Proposition 6.2.19 (Corollary 10 [68]). Subsemigroups of Nm with a unique Betti ele-
ment are always complete intersection.

Theorem 6.2.20 (CGMR [C10]). Let S = ⟨a1, . . . , an⟩ ⊂ Nm be a semigroup with a
unique Betti element b ∈ Nm. If we denote by d the dimension of the Q-vector space
generated by a1, . . . , an, then we have

µS(x) =
t∑

j=1

(−1)|Aj |
(
kAj

+ n− d− 1

kAj

)
,

where

{A1, . . . , At} =

{
A ⊂ {1, . . . , n}

∣∣∣∣∣ there exists kA ∈ N such that x−
∑
i∈A

ai = kA b

}
.

When m = 1, i.e., when S = ⟨a1, . . . , an⟩ ⊂ N, S is a numerical semigroup with a
unique Betti element b ∈ N if and only if there exist pairwise relatively prime integers
b1, . . . , bn ⩾ 2 such that ai :=

∏
j ̸=i bj, for all i ∈ {1, . . . , n}, and b =

∏n
i=1 bi (see [68]). In

this setting, Theorem 6.2.20 can be refined as follows.

Corollary 6.2.21 (CGMR [C10]). Let S = ⟨a1, . . . , an⟩ ⊂ N be a numerical semigroup
with a unique Betti element b ∈ N. Then,

µS(x) =


(−1)|A|

(
k + n− 2

k

)
if x =

∑
i∈A ai + kb for some A ⊂ {1, . . . , n}, k ∈ N,

0 otherwise.

As a direct consequence of this result, we recover Theorem 6.1.17.

Three generated complete intersection numerical semigroups

We provide a semi-explicit formula for µS, when S is a complete intersection numerical
semigroup minimally generated by the set {a1, a2, a3}. When S = ⟨a1, a2, a3⟩ ⊂ N, Herzog
proves in [75] that S is a complete intersection if and only if gcd(ai, aj) ak ∈ ⟨ai, aj⟩ with
{i, j, k} = {1, 2, 3}. Suppose that da1 ∈ ⟨a2, a3⟩, where d := gcd(a2, a3).

For every x ∈ Z, there exists a unique α(x) ∈ {0, . . . , d − 1} such that α(x)a1 ≡
x mod d. It is easy to check that, for every x, y ∈ Z,

α(x− y) =


α(x)− α(y) if α(x) ⩾ α(y),

d+ α(x)− α(y) otherwise.
(6.6)

Theorem 6.2.22 (CGMR [C10]). Let S = ⟨a1, a2, a3⟩ be a numerical semigroup such that
da1 ∈ ⟨a2, a3⟩, where d := gcd(a2, a3). For all x ∈ Z, we have that µS(x) = 0, if α(x) ⩾ 2,
and

µS(x) = (−1)α (dB(x
′)− dB(x

′ − a2)− dB(x
′ − a3) + dB(x

′ − a2 − a3))

otherwise, where x′ := x− α(x)a1 and B := (da1, a2 a3/d).
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Remark 6.2.23.

i) Theorem 6.2.22 yields an algorithm for computing µS(x), for all x ∈ Z, which relies
on the computation of four values of dB(y), where B = (da1, a2a3/d). It is worth
mentioning that in [96, Section 4.4] there are several results and methods to compute
these values.

ii) Theorem 6.2.22 generalizes [C16, Theorem 3], where the authors provide a semi-
explicit formula for S = ⟨2q, 2q + e, 2q + 2e⟩ where q, e ∈ Z+ and gcd(2q, 2q+ e, 2q+
2e) = 1. Indeed, if S = ⟨a, a+ e, . . . , a+ ke⟩ with gcd(a, e) = 1 and k ⩾ 2, then S is
a complete intersection if and only if k = 2 and a is even (see [32]).

6.2.4 When is a poset equivalent to a semigroup poset?

A natural question is whether a poset P is isomorphic to a poset associated with a
semigroup S since, in such a case, one might be able to calculate µP by computing µS

instead.
Let (P ,⩽P) be a locally finite poset. For every x ∈ P , we set Px := {y ∈ P | x ⩽P y}

and we consider the restricted Möbius function µP(−, x) : Px → Z. It is clear that, if
there exists a pointed semigroup S and an order isomorphism ψ : (Px,⩽P) −→ (S,⩽S

), then µP(−, x) can be computed by means of the Möbius function of (S,⩽S), since
µP(y, x) = µS(ψ(y)) for all y ∈ Px.

The poset Px is said to be autoequivalent if and only if, for all y ∈ Px, there exists
an order isomorphism gy : Px −→ Py such that gy ◦ gz = gz ◦ gy, for all y, z ∈ Px, and
gx is the identity. For all y ∈ Px, we set l1(y) := {z ∈ P | there is no u ∈ P such that
y ⪇ u ⪇ z}. Whenever Px is autoequivalent with isomorphisms {gy}x⩽y and l1(x) is a
finite set of n elements, we associate to P a subgroup LP ⊂ Zn in the following way.

Let l1(x) = {x1, . . . , xn} ⊂ P and consider the map

f : Nn −→ P
defined as f(0, . . . , 0) = x, and for all α ∈ Nn and all i ∈ {1, . . . , n}, f(α+ei) = gxi

(f(α)),
where {e1, . . . , en} is the canonical basis of Nm. In particular, f(ei) = gxi

(f(0)) = gxi
(x) =

xi, for all i ∈ {1, . . . , n}.
Lemma 6.2.24. f is well defined and is surjective.

Now, we set LP := {α− β ∈ Zn | f(α) = f(β)}.
Lemma 6.2.25. LP is a subgroup of Zn.

If L is a subgroup of Zn, then its saturation is the group defined by

Sat(L) :=
{
γ ∈ Zn

∣∣ there exists d ∈ Z+ such that dγ ∈ L
}
.

Theorem 6.2.26 (CGMR [C10]). Let P be a locally finite poset and let x ∈ P. Then,
(Px,⩽) is isomorphic to (S,⩽S) for some (pointed) semigroup S ⊂ Zm if and only if Px

is autoequivalent, l1(x) is finite and LP = Sat(LP).

The necessity direction of Theorem 6.2.26 can be stated in algebraic terms as : when-
ever Px is autoequivalent and l1(x) is finite, the subgroup LP defines a lattice ideal
I := ({xα − xβ |α− β ∈ LP}). Moreover, Px is isomorphic to a semigroup poset (S,⩽S)
if and only if the ideal I itself is the toric ideal of a semigroup S. The latter holds if and
only if I is prime or, equivalently, if LP = Sat(LP) (see [56]).
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6.3 The square Frobenius number
Definition 6.3.1 (P -type functions). Given a particular (arithmetical, number theoreti-
cal, etc.) Property P , one might consider the following two P -type functions of a numerical
semigroup S:

Pr(S):= the largest integer having property P not belonging to S

and
P r(S) := the smallest integer having property P belonging to S.

Notice that the multiplicity and the Frobenius number are P -type functions where P is
the property of being a positive integer. P -type functions were introduced by J.L. Ramírez
Alfonsín (often mentioned during his lectures) with the hope to understand better certain
properties P in terms of linear forms. In this spirit, we consider the property of being
perfect k-power integer (that is, integers of the form mk for some integers m, k > 1).

Definition 6.3.2 (Power Frobenius number). Let k ⩾ 2 be an integer, we define

k-powerr(S) := the largest perfect k-power integer not belonging to S.

This k-power variant of g(S) is called the k-power Frobenius number of S, we may write
kr(S) for short.

In this section we investigate the 2-power Frobenius number, we call it the square
Frobenius number.

6.3.1 Arithmetic semigroups

Let a, d and k be positive integers such that a and d are relatively prime. Throughout
this subsection, we denote by SA the semigroup generated by the arithmetic progression
whose first element is a, with common difference d and of length k + 1, that is,

SA = ⟨a, a+ d, a+ 2d, . . . , a+ kd⟩ .

Note that the integers a, a+ d, . . . , a+ kd are relatively prime if and only if gcd(a, d) = 1.
We shall start by giving a necessary and sufficient condition for a square to belong to

SA.

Definition 6.3.3 (Modular multiplicative inverse). For any integer x coprime to d, a
multiplicative inverse modulo d of x is an integer y such that xy ≡ 1 mod d.

Proposition 6.3.4 (Chappelon-Ramírez [C17]). Let i be an integer and let λi be the
unique integer in {0, 1, . . . , d− 1} such that λia + i2 ≡ 0 mod d. In other words, the
integer λi is the rest in the Euclidean division of −a−1i2 by d, where a−1 is a multiplicative
inverse of a modulo d. Then,

(a− i)2 ∈ SA if and only if (i+ kd)2 ⩽

((⌊
i2 + λia

ad

⌋
+ k

)
d− λi

)
(a+ kd).

Remark 6.3.5. We have that λ0 = 0 and λi > 0 for all integers i such that gcd(i, d) = 1
with d ⩾ 2. Moreover, λi = λd−i for all i ∈ {1, 2, . . . , d− 1}.
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The above characterization permits us to obtain an upper-bound of 2r(SA) when a is
larger enough compared to d ⩾ 3.

Definition 6.3.6. Let λ∗ be the integer defined by

λ∗ = max
0⩽i⩽d−1

{
λi ∈ {0, 1, . . . , d− 1} | λia+ i2 ≡ 0 mod d

}
.

Let {α1 < . . . < αn} ⊆ {0, 1, . . . , d− 1} such that λαj
= λ∗ and take αn+1 = d + α1. Let

j ∈ {1, . . . , n} be the index such that

(µd+ αj)
2 ⩽ (kd− λ∗)(a+ kd) < (µd+ αj+1)

2, (6.7)

for some integer µ ⩾ 0.

Remark 6.3.7.

(a) The above index j exists and it is unique. Indeed, we clearly have that there is an
integer µ such that

µd ⩽
√

(kd− λ∗)(a+ kd) < (µ+ 1)d.

Since 0 ⩽ α1 < · · · < αn ⩽ d− 1, then the interval [µd, (µ + 1)d[ can be refined into
intervals of the form [µd+ αi, µd+ αi+1[ for each i = 1, . . . , n− 1. Therefore, there is
a unique index j verifying equation (6.7).

(b) We have that µd+ αn+1 = (µ+ 1)d+ α1.
The following two propositions give us useful information on the sequence of in-

dexes α1, . . . , αn.

Proposition 6.3.8. We have that αi + αn+1−i = d, for all i ∈ {1, . . . , n}.
Proposition 6.3.9. If d ⩾ 3 then n ⩾ 2 and 1 ⩽ α1 <

d
2
< αn ⩽ d− 1.

Definition 6.3.10. Let us now consider the integer function h(a, d, k) defined as

h(a, d, k) := (a− ((µ− k)d+ αj+1))
2.

Remark 6.3.11. We notice that the function h(a, d, k) can always be computed for any
relatively prime integers a and d and any positive integer k. It is enough to calculate λi
for each i = 0, . . . , d− 1, from which λ∗ and the set of αi’s can be obtained and thus the
desired µ and αj+1 can be computed.

Theorem 6.3.12 (Chappelon-Ramírez [C17]). Let d ⩾ 3 and a+ kd ⩾ 4kd3. Then,
2r(SA) ⩽ h(a, d, k) .

Remark 6.3.13. The above proof can be adapted if we consider the weaker condition
a+ kd > 4(kd− λ∗)d2 + d2 instead of a+ kd ⩾ 4kd3.

We believe that the upper bound h(a, d, k) of 2r(SA) given in Theorem 6.3.12 is actually
an equality. We are able to establish the latter in the case when k = 1 for any d ⩾ 3.

Corollary 6.3.14 (Chappelon-Ramírez [C17]). Let d ⩾ 3 and a+ d ⩾ 4d3. Then,
2r(⟨a, a+ d⟩) = h(a, d, 1) .

Unfortunately, the value of 2r(⟨a, a+ d⟩) given in the above corollary does not hold
in general (if the condition a + d ⩾ 4d3 is not satisfied). However, as we will see below,
the number of values of a not satisfying the equality 2r(⟨a, a+ d⟩) = h(a, d, 1) is finite for
each fixed d.
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6.3.2 Formulas for ⟨a, a+ d⟩ with small d ⩾ 3

Here, we investigate the value of 2r(⟨a, a+ d⟩) when d is small.
For any positive integer d ⩾ 3, we may define the set E(d) to be the set of integers a

coprime to d not satisfying the equality of Corollary 6.3.14, that is,

E(d) :=
{
a ∈ N \ {0, 1}

∣∣ gcd(a, d) = 1 and 2r(⟨a, a+ d⟩) ̸= h(a, d, 1)
}
.

Since λ∗ ⩽ d− 1 then, from Corollary 6.3.14, we obtain that E(d) ⊂ [2, 4d3 − 1] ∩N. We
completely determine the set E(d) for a few values of d ⩾ 3 by computer calculations, see
Table 6.2.

d |E(d)| E(d)

3 0 ∅
4 0 ∅
5 5 {2, 4, 13, 27, 32}
6 0 ∅
7 10 {2, 3, 4, 9, 16, 18, 19, 23, 30, 114}
8 5 {5, 9, 21, 45, 77}
9 5 {2, 4, 7, 8, 16}
10 14 {3, 9, 13, 23, 27, 33, 43, 123, 133, 143, 153, 163, 333, 343}
11 14 {2, 3, 4, 5, 7, 8, 9, 14, 16, 18, 25, 36, 38, 47}
12 9 {13, 19, 25, 31, 67, 79, 139, 151, 235}

Table 6.2: E(d) for the first values of d ⩾ 3

The exact values of 2r(⟨a, a+ d⟩) when a ∈ E(d), for d ∈ {3, . . . , 12}, are given in
Table 6.3. For each value d ∈ {3, . . . , 12}, an explicit formula can be presented for
2r(⟨a, a+ d⟩) excluding the values given in Table 6.2. The latter can be done by using
(essentially) the same arguments as those applied in the proofs of Theorem 6.3.12 and
Corollary 6.3.14.

Theorem 6.3.15 (Chappelon-Ramírez [C17]). Let a ⩾ 3 be an integer not divisible by 3
and let S = ⟨a, a+ 3⟩. Then,

2r(S) =


(a− (3b− 1))2 if either (3b+ 1)2 ⩽ a+ 3 < (3b+ 2)2 and a ≡ 1 mod 3

or (3b+ 1)2 ⩽ 2(a+ 3) < (3b+ 2)2 and a ≡ 2 mod 3,

(a− (3b+ 1))2 if either (3b+ 2)2 ⩽ a+ 3 < (3b+ 4)2 and a ≡ 1 mod 3
or (3b+ 2)2 ⩽ 2(a+ 3) < (3b+ 4)2and a ≡ 2 mod 3.

Theorem 6.3.16 (Chappelon-Ramírez [C17]). Let a ⩾ 3 be an odd integer and let S =
⟨a, a+ 4⟩. Then,

2r(S) =



(a− (4b− 1))2 if either (4b+ 1)2 ⩽ a+ 4 < (4b+ 3)2 and a ≡ 1 mod 4
or (4b+ 1)2 ⩽ 3(a+ 4) < (4b+ 3)2and a ≡ 3 mod 4,

(a− (4b+ 1))2 if either (4b+ 3)2 ⩽ a+ 4 < (4b+ 5)2 and a ≡ 1 mod 4
or (4b+ 3)2 ⩽ 3(a+ 4) < (4b+ 5)2and a ≡ 3 mod 4.
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d a 2r(⟨a, a+ d⟩) h(a, d, 1)

5 2 1 0
5 4 1 22

5 13 102 92

5 27 212 202

5 32 262 252

7 2 1 52

7 3 22 0
7 4 52 62

7 9 72 62

7 16 142 132

7 18 172 162

7 19 142 132

7 23 212 202

7 30 282 272

7 114 1052 1042

8 5 42 32

8 9 102 122

8 21 162 152

8 45 362 352

8 77 642 632

9 2 32 42

9 4 32 62

9 7 62 112

9 8 62 42

9 16 92 122

10 3 22 72

10 9 72 122

10 13 102 92

10 23 202 192

10 27 262 252

10 33 302 292

d a SG(⟨a, a+ d⟩) h(a, d, 1)

10 43 402 392

10 123 1102 1092

10 133 1202 1192

10 143 1302 1292

10 153 1402 1392

10 163 1502 1492

10 333 3102 3092

10 343 3202 3192

11 2 32 42

11 3 52 92

11 4 52 62

11 5 72 92

11 7 42 22

11 8 72 122

11 9 82 122

11 14 132 192

11 16 142 202

11 18 152 132

11 25 222 202

11 36 332 312

11 38 362 342

11 47 442 422

12 13 142 182

12 19 172 162

12 25 262 302

12 31 292 282

12 67 592 582

12 79 712 702

12 139 1252 1242

12 151 1372 1362

12 235 2152 2142

Table 6.3: 2r(⟨a, a+ d⟩) and h(a, d, 1) when a ∈ E(d) for d ∈ {3, . . . , 12}
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Theorem 6.3.17 (Chappelon-Ramírez [C17]). Let a ⩾ 2 be an integer not divisible by 5
and let S = ⟨a, a+ 5⟩. Then,

2r(S) =



1 if a = 2 or 4,
102 if a = 13,
(a− 6)2 if a = 27 or 32,
(a− (5b− 2))2 if either (5b+ 2)2 ⩽ a+ 5 < (5b+ 3)2 and a ≡ 4 mod 5

or (5b+ 2)2 ⩽ 2(a+ 5) < (5b+ 3)2and a ≡ 2 mod 5,

(a− (5b− 1))2 if either (5b+ 1)2 ⩽ a+ 5 < (5b+ 4)2 and a ≡ 1 mod 5
or (5b+ 1)2 ⩽ 2(a+ 5) < (5b+ 4)2and a ≡ 3 mod 5, a ̸= 13,

(a− (5b+ 1))2 if either (5b+ 4)2 ⩽ a+ 5 < (5b+ 6)2 and a ≡ 1 mod 5
or (5b+ 4)2 ⩽ 2(a+ 5) < (5b+ 6)2and a ≡ 3 mod 5,

(a− (5b+ 2))2 if either (5b+ 3)2 ⩽ a+ 5 < (5b+ 7)2 and a ≡ 4 mod 5, a ̸= 4
or (5b+ 3)2 ⩽ 2(a+ 5) < (5b+ 7)2and a ≡ 2 mod 5, a ̸= 2, 27, 32.

6.3.3 Study of ⟨a, a+ 1⟩
We investigate the square Frobenius number of ⟨a, a+ 1⟩ with a ⩾ 2. We first study the
case when neither a nor a+1 is a square integer. Using similar arguments as those applied
in the proofs of Theorem 6.3.12 and Corollary 6.3.14, we obtain the following

Proposition 6.3.18 (Chappelon-Ramírez [C17]). Let a be a positive integer such that
b2 < a < a+ 1 < (b+ 1)2 for some integer b ⩾ 1. Then,

2r(⟨a, a+ 1⟩) = (a− b)2.

Let (un)n⩾1 be the recursive sequence defined by

u1 = 1, u2 = 2, u3 = 3, u2n = u2n−1 + u2n−2 and u2n+1 = u2n + u2n−2 for all n ⩾ 2. (6.8)

The first few values of (un)n⩾1 are

1, 2, 3, 5, 7, 12, 17, 29, 41, 70, 99, 169, 239, 408, 577, 985, . . . . . . (A002965)

This sequence appears in a number of other contexts. For instance, it corresponds to the
denominators of Farey fraction approximations to

√
2, where the fractions are 1

1
, 2

1
, 3

2
, 4

3
,

7
5
, 10

7
, 17

12
, 24

17
. . . , see [104].

We pose the following conjecture in the case when either a or a+1 is an square integer.

Conjecture 6.3.19 (Chappelon-Ramírez [C17]). Let (un)n⩾1 be the recursive sequence
given in (6.8). If a = b2 for some integer b ⩾ 1 then

2r(⟨a, a+ 1⟩) =



(
a−

⌊
b
√
2
⌋)2

if b ̸∈
⋃
n⩾0

{u4n+1, u4n+2} ,

(
a−

⌊
b
√
3
⌋)2

if b ∈
⋃
n⩾0

{u4n+1, u4n+2} .
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If a+ 1 = b2 for some integer b ⩾ 1 then

2r(⟨a, a+ 1⟩) =



(
a−

⌊
b
√
2
⌋)2

if b ̸∈
⋃
n⩾1

{u4n−1, u4n} ,

(
a−

⌊
b
√
3
⌋)2

if b ∈
⋃
n⩾1

{u4n, u4n+3} ,

22 if b = u3 = 3.

The formulas of Conjecture 6.3.19 have been verified by computer for all integers a ⩾ 2
up to 106.

6.3.4 Study of ⟨a, a+ 2⟩
We investigate the square Frobenius number of ⟨a, a+ 2⟩ with a ⩾ 3 odd. We first study
the case when neither a nor a + 2 is a square integer. Using similar arguments as those
applied in the proofs of Theorem 6.3.12 and Corollary 6.3.14, we obtain the following

Proposition 6.3.20 (Chappelon-Ramírez [C17]). Let a ⩾ 3 be an odd integer such that
(2b+ 1)2 < a < a+ 2 < (2b+ 3)2 for some integer b ⩾ 1. Then,

2r(⟨a, a+ 2⟩) = (a− (2b+ 1))2.

We pose the following conjecture in the case when either a or a+2 is a square integer.

Conjecture 6.3.21 (Chappelon-Ramírez [C17]). Let (un)n⩾1 be the recursive sequence
given in (6.8). If a = (2b+ 1)2 for some integer b ⩾ 1 then

2r(⟨a, a+ 2⟩) =



(
a− 2

⌊
(2b+1)

√
2

2

⌋)2
if (2b+ 1) ̸∈

⋃
n⩾1

{u4n+1} ,

(
a−

⌊
(2b+ 1)

√
3
⌋)2

if (2b+ 1) ∈
⋃
n⩾2

{u4n+1} ,

382 if 2b+ 1 = u5 = 7.

If a+ 2 = (2b+ 1)2 for some integer b ⩾ 1 then

2r(⟨a, a+ 2⟩) =



(
a− 2

⌊
(2b+1)

√
2

2

⌋)2
if (2b+ 1) ̸∈

⋃
n⩾0

{u4n+3} ,

(
a−

⌊
(2b+ 1)

√
3
⌋)2

if (2b+ 1) ∈
⋃
n⩾0

{u4n+3} .

The formulas of Conjecture 6.3.21 have been verified by computer for all odd integers
a ⩾ 3 up to 106.
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6.3.5 Remarks and open problems

In the process of investigating square Frobenius numbers different problems arose. We
naturally consider the P -type function k-powerr(S) = kr(S) defined as,

kr(S) := the smallest perfect k-power integer belonging to S.

It is clear that
s ⩽ kr(S) ⩽ sk (6.9)

where s is the multiplicity of S.

Theorem 6.3.22 (Chappelon-Ramírez [C17]). Let SA = ⟨a, a+ d, . . . , a+ kd⟩ where
a, d, k are positive integers with gcd(a, d) = 1. If ⌈√a⌉ ⩽ d ⩽ ak

1+2k
then

2r(SA) ⩽ (a− d)2.

Problem 6.3.23. Let k ⩾ 2 be an integer and let S be a numerical semigroup. Investigate
the computational complexity to determine kr(S) and/or kr(S).

Or more ambitious,

Question 6.3.24. Let k ⩾ 2 be an integer. Is there a closed formula for kr(S) and/or
kr(S) for any semigroup S?

Perhaps a first step on this direction might be the following.

Problem 6.3.25. Give a formula for 2r(⟨Fi, Fj⟩) and/or 2r(⟨Fi, Fj⟩) with gcd(Fi, Fj) = 1
where Fk denotes the kth Fibonacci number. What about 2r(⟨a2, b2⟩) where a and b are
relatively prime integers ? We clearly have that 2r(⟨a2, b2⟩) = a2 for 1 ⩽ a < b.



Chapter 7

Tower of Hanoi

In this chapter, we are interested in problems related to the Tower of Hanoi. The first
section is about results obtained in [C14] on generalized Frame-Stewart numbers, that
are optimal numbers of moves in the Tower of Hanoi problem on 4 pegs and supposed
to be optimal for k ⩾ 5 pegs. In the second section, results obtained in [C11] about a
two-player combinatorial game based on the Tower of Hanoi are studied. An extensive
literature on Tower of Hanoi problems can be found in [76].

7.1 Generalized Frame-Stewart numbers

The Tower of Hanoi problem was introduced by Édouard Lucas in 1883 [85] for the case
of 3 pegs and n disks of different sizes. Initially, n disks are placed on one of the 3 pegs
with the largest at the bottom. Then, at each time one of the topmost disks is moved
to a peg with a larger disk on the top or to an empty peg. The goal of the problem is
to transfer all the disks from the initial peg to the peg of destination with the minimum
number of moves. A simple recursive argument shows that 2n − 1 moves are necessary
and sufficient to carry out this task. This Tower of Hanoi problem was then extended to
the case of 4 pegs by Dudeney in 1907 [50] and to arbitrary k ⩾ 3 pegs by Stewart in 1939
[108]. In 1941, Frame [66] and Stewart [109] independently proposed algorithms which
achieve the same numbers of moves for the k-peg Tower of Hanoi problem with k ⩾ 4
pegs. Klavžar et al.[79] showed that seven different approaches to the k-peg Tower of
Hanoi problem, including those by Frame and Stewart, are all equivalent, that is, achieve
the same numbers of moves. Thus, these numbers are called the Frame-Stewart numbers
[78].

In 2014, T. Bousch showed in [37] that the Frame-Stewart numbers are the optimal
numbers of moves for the case of 4 pegs. Somewhat surprisingly, the optimal solution for
the multi-peg Tower of Hanoi problem with k ⩾ 5 pegs is not known yet. So far, the best
upper bounds are achieved by the Frame-Stewart numbers and the best lower bounds are
obtained by Chen et al. [44]. Since the upper bounds are believed to be optimal, they
are called the presumed optimal solution.

Stewart’s recursive algorithm for the k-peg Tower of Hanoi problem is summarized as
follows. For a positive integer t ⩽ n,

i) recursively transfer a pile of n − t smallest disks from the first peg to a temporary
peg, using k pegs;

135



136 CHAPTER 7. TOWER OF HANOI

ii) transfer the remaining pile of t largest disks from the first peg to the final peg using
k − 1 pegs, ignoring the peg occupied by the n− t smallest disks;

iii) recursively transfer the pile of n − t smallest disks from the temporary peg to the
final peg, using k pegs.

The algorithm chooses the integer t such that the number of moves is minimized.

Definition 7.1.1 (Frame-Stewart numbers). The Frame-Stewart numbers Sk(n) satisfy
the following recurrence relations:

Sk(n) = min
1⩽t⩽n

{
2 · Sk(n− t) + Sk−1(t)

}
, for n ⩾ 1, k ⩾ 4,

S3(n) = 2n − 1, for n ⩾ 1, and Sk(0) = 0, for k ⩾ 3.

When k = 4 for instance, S4(n) is obtained by the following simple formula:

S4(n)− S4(n− 1) = 2i−1, for
(
i

2

)
< n ⩽

(
i+ 1

2

)
,

where
(
i
2

)
is the binomial coefficient equal to i(i − 1)/2. In the general case k ⩾ 4, the

number Sk(n) is obtained by several different approaches, e.g., [66, 78, 79, 87, 109].
In [88], the following general recurrence relation was considered to clarify the combina-

torial structure latent in the recurrence relation for Sk(n) and to cope with the recurrence
relations for the Tower of Hanoi on graphs in which pegs are placed on vertices of a given
graph and disks are only moved along the edges:

T(n) = min
1⩽t⩽n

{
α · T(n− t) + β · (2t − 1)

}
, for n ⩾ 1, and T(0) = 0,

where α and β are arbitrary positive integers. It was shown that the sequence of differences
(T(n)−T(n− 1))n⩾1 consists of numbers of the form β · 2i ·αj, with i, j ⩾ 0, arranged in
nondecreasing order. When α = 3, 2i·αj increases as 1, 2, 3, 22, 2·3, 23, 32, 22·3, 24, 2·32, · · · .
These numbers are called “3-smooth numbers”[105] and have been studied extensively in
number theory, in relation to the distribution of prime numbers [73] and to new number
representations [36, 62]. The formulation and analysis of T(n), however, has some defects
such that (i) it is only focused on the 4-peg case with no consideration for the general case
k ⩾ 3; and (ii) even in the 4-peg case, term 2i · αj consists of constant 2 and parameter
α, which might admit further generalization.

In this section, we fully generalize the recurrence relations for the previous Sk(n) and
T (n) and obtain the exact formulas.

Definition 7.1.2 (Generalized Frame-Stewart numbers). We define the following recur-
rence relations for two sequences of arbitrary positive integers (pi)i⩾3 and (qi)i⩾3:

Gk(n) = min
1⩽t⩽n

{
pk ·Gk(n− t) + qk ·Gk−1(t)

}
, for n ⩾ 1, k ⩾ 4,

G3(n) = p3 ·G3(n− 1) + q3, for n ⩾ 1, and Gk(0) = 0, for k ⩾ 3.

The numbers Gk(n) are called the generalized Frame-Stewart numbers.

Then, we show that the sequence of differences (Gk(n) − Gk(n − 1))n⩾1 consists of
numbers of the form (

∏k
i=3 qi)·(

∏k
i=3 pi

αi), with αi ⩾ 0 for all i, arranged in nondecreasing
order.
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Theorem 7.1.3 (Chappelon-Matsuura [C14]). For every positive integer n and for two
sequences of arbitrary positive integers (pi)i⩾3 and (qi)i⩾3, we have

Gk(n) = q ·
n∑

j=1

ukj

where q =
∏k

i=3 qi and ukj is the jth term of the sequence
(
ukj
)
j⩾1

of integers
∏k

i=3 pi
αi,

with αi ⩾ 0 for all i, arranged in nondecreasing order.

Remark 7.1.4. Note that Gk(n) is equal to Sk(n) when (pi, qi) = (2, 1) for all i ⩾ 3 and
G4(n) is equal to T(n) when (p3, q3) = (2, 1) and (p4, q4) = (α, β).

7.1.1 Basic results on smooth number sequences

Let (pi)i⩾3 be a sequence of positive integers. We consider the sequence
(
ukj
)
j⩾1

of all the

integers of the form
∏k

i=3 pi
αi , where αi ⩾ 0 for all i, arranged in nondecreasing order.

For instance, for (p3, p4) = (2, 2) and (p3, p4) = (2, 3), the first few terms of (u4j)j⩾1 are
(1, 2, 2, 22, 22, 22, 23, · · · ) and (1, 2, 3, 22, 2 · 3, 23, 32, · · · ), respectively. When there is some
i0 such that pi0 is equal to 1, then by definition

(
ukj
)
j⩾1

is the constant sequence of 1’s, for
every k ⩾ i0. We note that

(
ukj
)
j⩾1

is closely related to smooth numbers which have been
explored extensively in number theory. A positive integer is called B-smooth if none of its
prime factors are greater than a positive integer B. The sequence

(
ukj
)
j⩾1

then consists
of B-smooth numbers for B = max3⩽i⩽k {pi}.

Here, we restrict to the case where all the pi’s are greater than 1 and obtain a simple
lemma on a certain recursive structure of the smooth number sequence

(
ukj
)
j⩾1

, which is
useful for the proof of Theorem 7.1.3.

Lemma 7.1.5 (Chappelon-Matsuura [C14]). Let k ⩾ 4 and let (fk(j))j⩾1 be the sequence
of positive integers defined by fk(1) = 1 and fk(j) = min

{
l > fk(j − 1)

∣∣ ukl = uk−1
j

}
for

j ⩾ 2. Then, for every integer n such that fk(j) < n < fk(j + 1), we have ukn = pk · ukn−j.

7.1.2 Sketch of proof of the main result

Let G1
k(n) denote the special case of Gk(n) associated with arbitrary sequence (pi)i⩾3 and

with the constant sequence (qi)i⩾3 with qi = 1 for i ⩾ 3. There exists a simple relationship
between numbers Gk(n) and G1

k(n).

Proposition 7.1.6 (Chappelon-Matsuura [C14]). For every nonnegative integer n and
for every sequence of integers (qi)i⩾3, we have

Gk(n) = q ·G1
k(n),

where q =
∏k

i=3 qi.

By Proposition 7.1.6, it is sufficient to prove Theorem 7.1.3 for G1
k(n) instead of

Gk(n). Now, we show at which argument G1
k(n) = min

1⩽t⩽n

{
pk ·G1

k(n− t) + G1
k−1(t)

}
takes

its minimum.
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Lemma 7.1.7 (Chappelon-Matsuura [C14]). Let n be a positive integer. Suppose that
pi > 1 for all 3 ⩽ i ⩽ k. Suppose also that ∆G1

i (l) = G1
i (l) − G1

i (l − 1) = uil for
3 ⩽ i ⩽ k − 1 and l ⩾ 1 and that ∆G1

k(l) = ukl for 1 ⩽ l ⩽ n − 1. Let j be the integer
such that fk(j) ⩽ n < fk(j + 1). Then, for 1 ⩽ t ⩽ n, G1

k,n(t) = pk ·G1
k(n− t) + G1

k−1(t)
takes its minimum at t = j.

Using Proposition 7.1.6 and Lemma 7.1.7, we are now ready to obtain Theorem 7.1.3,
the main result of this section.

Theorem 7.1.8 (Chappelon-Matsuura [C14]). For every positive integer n and for two
sequences of arbitrary positive integers (pi)i⩾3 and (qi)i⩾3, we have

Gk(n) = q ·
n∑

j=1

ukj

where q =
∏k

i=3 qi and ukj is the jth term of the sequence
(
ukj
)
j⩾1

of integers
∏k

i=3 pi
αi,

with αi ⩾ 0 for all i, arranged in nondecreasing order.

Corollary 7.1.9 (Chappelon-Matsuura [C14]). Let k ⩾ 4 and j ⩾ 1. For every integer
n such that fk(j) ⩽ n < fk(j + 1),

Gk(n) = pk ·Gk(n− j) + qk ·Gk−1(j).

We end this subsection by considering the special case where pi = p ⩾ 1 for all i.

Proposition 7.1.10 (Chappelon-Matsuura [C14]). Let pi = p ⩾ 1 for all 3 ⩽ i ⩽ k.
Then, for all integers j ⩾ 0 and n ⩾ 1 such that(

k + j − 3

k − 2

)
< n ⩽

(
k + j − 2

k − 2

)
,

ukn = pj and G1
k(n) can be computed as follows:

G1
k(n) =

j−1∑
m=0

(
k +m− 3

k − 3

)
pm +

(
n−

(
k + j − 3

k − 2

))
pj.

7.1.3 Application: the Tower of Hanoi on graphs

Let G = (V,E) be a simple graph with the set of vertices V = {v1, . . . , vk} and the set
of edges E. A k-peg Tower of Hanoi problem can be considered on G: the k pegs are
placed on the vertices v1, . . . , vk and transfer of disks is allowed between the pegs vi and
vj only if there is an edge between vi and vj. The original k-peg Tower of Hanoi problem
then corresponds to the Tower of Hanoi problem on the complete graph Kk. The cases of
k = 3 and k = 4 are illustrated in Figure 7.1.

The main application of the generalized Frame-Stewart numbers is in giving upper
bounds of the number of moves for the Tower of Hanoi problem on some simple graphs.
For the Tower of Hanoi problem on the complete graph with k ⩾ 3 vertices and n ⩾ 0
disks, we retrieve the Frame-Stewart numbers Sk(n). In the sequel, we consider other
special cases where G is the path graph P3 or the star graph Sk.
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1 2

3

1 2

34

Figure 7.1: The original Tower of Hanoi problem with 3 pegs (K3) and 4 pegs (K4)

1 2 3

Figure 7.2: The path graph P3

On the path graph P3

The following theorem shows that the optimal number of moves for the Tower of Hanoi
problem on the path graph P3 is given by the generalized Frame-Stewart numbers.

Theorem 7.1.11. Consider the Tower of Hanoi problem on P3, as depicted in Figure 7.2.
The minimum number of moves to transfer n ⩾ 1 disks

• from peg 1 to peg 3 is G3(n) = 2 ·∑n−1
i=0 3i, where (p3, q3) = (3, 2);

• from peg 1 to peg 2 is G1
3(n) =

∑n−1
i=0 3i, where (p3, q3) = (3, 1).

This theorem is rather well-known (e.g., see [100]).

On the star graph Sk

We end this subsection by considering the Tower of Hanoi problem on the star graph Sk

with k vertices and k − 1 edges. For k = 3, the graph S3 corresponds to the path graph
P3. The star graphs for k = 4 and k = 5 are depicted in Figure 7.3.

1

2

3 4

1

2 3

45

Figure 7.3: The star graphs S4 and S5

Stockmeyer [110] considered the Tower of Hanoi problem on the star graph S4, where
all the n disks are transferred from one leaf of the graph to another leaf (for instance,
the problem of transferring disks in the minimal number of moves from peg 2 to peg 3
in Figure 7.3). He described a recursive algorithm which achieved a good (seemingly the
best) upper bound; thus, called it the presumed optimal algorithm. T. Bousch proved in
[38] that this number is optimal for S4. Here, we generalize this algorithm to the star
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graph Sk for arbitrary k ⩾ 3 and show that disks can be transferred from one leaf to
another in Gk(n) moves.

Theorem 7.1.12 (Chappelon-Matsuura [C14]). Let k ⩾ 3 be an integer. Consider the
Tower of Hanoi problem on the star graph Sk in which n ⩾ 1 disks are transferred from
one leaf of the graph to another leaf. Then, an upper bound on the minimal number
of moves to solve this problem is given by the generalized Frame-Stewart number Gk(n),
where (p3, q3) = (3, 2) and (pi, qi) = (2, 1) for 4 ⩽ i ⩽ k.

7.2 Two-player Tower of Hanoi

Tower of Hanoi (TH) is traditionally a one player game [74, 49]. Here we let two players,
Anh (first player) and Bao (second player), alternate turns and play a game on three or
more pegs with various numbers of disks. We will begin by analyzing games under the
following impartial rules (the move options do not depend on who is to move) [22, 31, 45].

Let n ⩾ 1 and k ⩾ 3 be positive integers. Two players alternate in transferring
precisely one out of n disks (of different sizes) on k pegs, Peg 1, . . . , Peg k. The starting
position is as usual for the Tower of Hanoi; the tower (i.e., all the disks in decreasing size)
is placed on the starting peg (Peg 1), and at each stage of the game, a larger disk cannot
be placed on top of a smaller. In addition, the current player cannot move the disk that
the previous player just moved. The game ends when the tower has been transferred to
some predetermined final peg, and some predetermined condition determines who wins.
It is not allowed to transfer the tower to a non-final peg. We detail five ending conditions
in the sequel. A position is any configuration of the n disks on the k pegs such that no
larger disk is on top of a smaller disk, and in case of a non-starting position, a note on
which disk was just moved.

Thus, a position (S1, . . . , Sk;α) is an ordered partitioning of the set {1, . . . , n} in k
sub-sets ⋃

i∈{1,...,k}

Si = {1, . . . , n}

such that Si ∩ Sj = ∅ for any i ̸= j, and an integer α ∈ {1, . . . , k}.
Let us exemplify our game with a position on seven disks and three pegs, and where

the disk at the dashed peg has just been moved by the previous player and hence cannot
be moved by the current player; below it we find its two legal options.

Move options:
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w12

w13

w23

Figure 7.4: A graph representation of Tower of Hanoi, with weighted move edges, for
n = 1

Henceforth it will be clear by the context which disk was moved last, so we omit the
dashed emphasis. Note that, by this rule, there are exactly 3(2 · 3n−1 − 1) = 2(3n − 3)+ 3
positions of two-player TH on 3 pegs and n disks; 2 positions for each configuration of
the non-Tower configurations (depending on which disk was just moved) and the 3 Tower
configurations. A game is cyclic (or loopy [46]) if there is at least one position which can
be revisited during (not neccesarily optimal) play. Clearly TH is cyclic.

Normal play One winning condition is adapted from the one-player game: the player
who plays the last disk (on top of the rest of the tower) wins. This corresponds to a
classical convention for two-player games: a player who cannot move loses, which is called
normal play [22, 31, 45, 102]. If no player can force a win in this setting, then the game
is declared drawn.

One of first observations is that in spite of the cyclic nature of the game, if we play
on just three pegs, Anh wins the normal play convention. Bao’s moves will be forced
throughout the game and the proof is an adaptation of the well known one-player result.
In fact, Anh’s moves also have a restriction; she always has to move the smallest disk, but
this turns out to be an advantage. In that section, we also note that the game is drawn
on four or more pegs.

Scoring play Scoring two-player TH is the following game. The players move as in
the normal play variation, but at each stage of game the current player gains a given real
weight wij = wji, for a move from Peg i to Peg j (and the game starts with score 0 for each
player). Thus, with three pegs there are three move edges, {i, j} ∈ {{1, 2}, {1, 3}, {2, 3}}
and three real weights w12, w13 and w23; see Figure 7.4 for an illustration. For example, if
Anh’s current score is s and she moves along edge {i, j}, then her updated score is s+wij.
The player who obtains the largest score when the game ends wins.

If the game terminates but none of the players can claim a victory (because their
terminal scores are equal) then the game is a tie. We also adapt the convention of drawn
games from normal play, so a game is declared a draw if no player can force a win, by
terminating the game.

The main result of this section is that Anh wins nearly all scoring games on three
pegs. The reason is partly the same as in normal play, but in this setting the optimal
move sequence varies depending on the given weights, and the proof is non-trivial. The
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Figure 7.5: A play of two-player TH for n = 1, (EC1)

only case when Anh cannot force a win is when all weights are equal and non-positive;
otherwise she can attain an arbitrary high score by adhering to certain intermediate
repetitive patterns. Questions of termination are often very hard (e.g., Turing machines),
but in our three-peg setting it will be easy to distinguish drawn from winning. The first
player, namely Anh, controls all the moves under optimal play; if she cannot win, it will
be easy to play drawn. The question of minimizing the number of moves in the two-player
setting is also studied.

7.2.1 Ending conditions for the two-player Tower of Hanoi

Consider the following variations of the two-player Tower of Hanoi; the game ends when
the tower has been transferred to a final peg, which is

(EC1) a given peg, distinct from the starting peg;

(EC2) the starting peg, but the largest disk has to be moved at least once;

(EC3) the starting peg, but the smallest disk has to be moved at least once;

(EC4) any peg, but the largest disk has to be moved at least once; and

(EC5) any peg, but the smallest disk has to be moved at least once.

Ending conditions (EC2) and (EC3) are not applicable when n = 1. In Figure 7.4 to
Figure 7.7, we illustrate the idea of going from the one-player setting to the two-player
setting using the standard graph representation. Each edge will now be directed, and the
direction depends on the previous move. In Figures 7.5 and 7.7 we show which moves are
possible in two-player Tower of Hanoi for n = 1 and 2 respectively (red dotted edges are
illegal; green move edges are directed with direction depending on a given initial move).

7.2.2 General play

In this section we regard an odd or even number of moves in the one-player game in the
same sense as for the two-player games; no disk will be moved twice unless some other
disk has been moved in between. Each odd numbered move thus moves the smallest disk,
and in fact we could equivalently have chosen to let Anh lead the game. Recall that the
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Figure 7.6: A graph representation of one-player TH for n = 2

Figure 7.7: A play sequence of two-player TH for n = 2, (EC2); depicting the first row in
Table 7.1
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Position Sequence of moves Number of moves
13− 12− 13− 23− 12− 13− 12 7

12 1

13 1

13− 12− 13 3

13− 12− 23 3

12− 13− 12− 23− 13 5

12− 13− 12 3

13− 12− 13− 23− 12 5

12− 13− 23 3

Table 7.1: Any Tower of Hanoi position on two disks and three pegs can be reached in an
odd number of moves

starting position throughout the paper is all disks on Peg 1. The following two results are
easy well-known consequences of the graph representation of Tower of Hanoi.

Theorem 7.2.1 (CLM [C11]). For three pegs, n ⩾ 2 disks can be transferred from the
starting position to any position using an odd number of moves. That is, in the two-player
version, the first player can force play to any position in an odd number of moves.

Corollary 7.2.2 (CLM [C11]). For three pegs, n ⩾ 2 disks can be transferred from the
starting position to any intermediate position using an even number of moves.

7.2.3 Normal play: two-player Tower of Hanoi

In the normal play variation of the two-player Tower of Hanoi, Anh can avoid drawn
simply by adhering to the well known minimal algorithm for the one-player Tower of
Hanoi (Bao’s moves will be forced all through the game), using precisely 2n − 1 moves.
However, she can also choose freely among all odd-length move paths.

Corollary 7.2.3 (CLM [C11]). For three pegs and n ⩾ 1 disks, the two-player Tower of
Hanoi game terminates and the first player wins. This is true for any ending condition
and also from any position, provided that the previous player did not move the smallest
disk.

Games on four pegs are mostly loopy.

Theorem 7.2.4 (CLM [C11]). The two-player Tower of Hanoi on four or more pegs is
a draw game if the number of disks is three or more, given any ending condition.

For completeness, let us also give the rest of the k-peg observations with k ⩾ 4. For
(EC1-3), if there are two disks, Bao never has to move the largest disk to a final peg and
hence the game is drawn. For (EC1), if there is only one disk, then Anh wins in the first
move. For (EC2,3), if there is only one disk, the special rule is invoked and Bao wins in
his first move. For (EC4,5), if there are two disks, Bao has to move the largest disk to a
final peg and hence loses. If there is only one disk, then Anh wins in the first move.
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7.2.4 Scoring play: two-player Tower of Hanoi with weights

As stated in the introduction, for the scoring variation of the normal play setting, we
provide real weights to the move edges, in the three-peg case, w12, w13 and w23 respectively.
As usual, the two players alternate in moving, and a player gets wij points for a move
along edge {i, j}. The player who has most points when the game ends wins. We begin
by giving the solution of the game with less than three disks.

We will use Aij(n) and Bij(n), for the total points for Anh and Bao respectively,
of the two-player Tower of Hanoi game, for transferring n disks from Peg i to Peg j
by a given algorithm, for example the minimal algorithm, and we let the total score be
∆ij(n) = Aij(n)− Bij(n), or just ∆(n). Hence, if ∆(n) > 0 then Anh wins, if ∆(n) = 0,
then the game is tie, and otherwise Bao wins.

Theorem 7.2.5 (CLM [C11]). Consider the two-player Tower of Hanoi game on two
disks, three pegs and three weights of real numbers w12, w13, and w23. In case of (EC4)
or (EC5), the first player wins if either of the following inequalities holds:

w12 + w23 − w13 > 0 (7.1)
3w13 − w12 − w23 > 0 (7.2)
w13 + w23 − w12 > 0 (7.3)

3w12 − w13 − w23 > 0 (7.4)
w12 + w13 − w23 > 0 (7.5)

In case of (EC2) or (EC3), she wins if (7.5) holds. In case of (EC1), she wins if (7.1)
or (7.2) holds. Otherwise the game is a draw.

If the game is played on only one disk, then (EC2,3) are not applicable. For (EC1)
the first player wins if w13 > 0; loses if w13 < 0; and the game is a tie otherwise. The
second player wins (EC4,5) if w12 < 0 and w13 < 0. The game is a tie if at least one of
these weights is 0 and the others are non-positive. Otherwise the first player wins.

Figure 7.8: Consider (EC1) for n = 2. Here w23 = −3 and the other weights represent the
x- and y-axes. The game is drawn in the white area. Compare this picture with the result
for n ⩾ 3 in Theorem 7.2.6, where the class of drawn games would have been represented
by a single white dot at (−3,−3).
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It turns out that the case n ⩾ 3 has fewer drawn games, allowing a simpler description;
it relies on the general ideas in Subsection 7.2.1. By relabeling the pegs, it suffices to
analyze the case of transferring the disks from Peg 1 to Peg 3 and the case from Peg 1 to
Peg 1 .

Theorem 7.2.6 (CLM [C11]). Given n ⩾ 3 disks, three pegs and three weights of real
numbers w13, w12, and w23. Then, for the two-player Tower of Hanoi game, the first
player wins every game, except in the case w12 = w13 = w23 ⩽ 0 for which the game is a
draw.

We can adapt this proof to scoring play from an arbitrary position of disks for the
three-peg case. But we have to remember that in the two-player setting a position carries
also a memory of the last move.

Corollary 7.2.7. Consider an arbitrary Tower of Hanoi position on n ⩾ 3 disks, three
pegs and three weights of real numbers w13, w12, and w23. Then the first player wins,
unless w12 = w13 = w23 ⩽ 0, and provided the previous player did not move the smallest
disk.

7.2.5 The minimal number of moves for winning

The minimal number of moves for winning normal play

Traditionally, in the one-player setting, the interest has often been focused on the minimal
number of moves for transferring the tower. Here, we analyze our variations of the two-
player game in this sense. It is not a big surprise that the minimal number of moves to
win normal play is the same as the number of moves in the one-player minimal algorithm,
but let us sum up the state of the art before we move on to the more challenging analysis
of minimum number of moves for winning scoring play.

Theorem 7.2.8 (CLM [C11]). The minimum number of moves for transferring n ⩾ 1
disks from one peg to another peg is 2n−1. The minimum number of moves for transferring
n ⩾ 2 disks from one peg to the same peg is 2n+1 − 1, if the largest disk has to be moved;
and it is seven if only the smallest disk has to be moved.

Now, we estimate the minimal number of moves for winning the normal play two-
player Tower of Hanoi. In case the game is drawn, then we say that the minimal number
of moves is infinite.

Theorem 7.2.9 (CLM [C11]). Let Ml(n) denote the minimal number of moves needed
for winning a normal play game on l ⩾ 3 pegs and n ⩾ 1 disks. Then,

M3(n) =


2n − 1, for n ⩾ 1, for (EC1,4),{
2n+1 − 1, for n ⩾ 2, for (EC2),
7, for n ⩾ 2, for (EC3),{
2n − 1, for n ⩽ 2, for (EC5),
7, for n ⩾ 3, for (EC5).

Ml(n) =


1, for n = 1, l ⩾ 4 and for (EC1,4,5),
3, for n = 2, l ⩾ 4 and for (EC4,5),
∞, otherwise for l ⩾ 4.
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The minimal number of moves for winning scoring play

When the players move blindly (ignoring winning) and just follow the classical minimal
algorithm, we obtain the total scores according to the following two lemmas.

Lemma 7.2.10. Given n ⩾ 1 disks, three pegs and three weights of real numbers w12,
w13, and w23. Then, for the two-player weighted Tower of Hanoi game of transferring n
disks from Peg 1 to Peg 3 by the minimal algorithm, the total score is

• ∆13(n) = w13 if n is odd;

• ∆13(n) = w12 + w23 − w13 if n is even.

Lemma 7.2.11. Given n ⩾ 2 disks, three pegs and three weights of real numbers w12,
w13, and w23. Then, for the two-player weighted Tower of Hanoi game of transferring n
disks from Peg 1 to Peg 1 by the minimal algorithm, if we suppose that the largest disk be
moved, the total score is

• ∆11(n) = 3w23 − w12 − w13 if n is odd;

• ∆11(n) = w12 + w13 − w23 if n is even.

We estimate the minimal number of moves for winning scoring Tower of Hanoi under
the five ending conditions (EC1-5). We recall that the starting peg is Peg 1 and for (EC1)
we suppose the tower is transferred to Peg 3.

Theorem 7.2.12 (CLM [C11]). Let M3(n) denote the minimal number of moves needed
for a winning game on three pegs and n ⩾ 1 disks. Then, for n ⩽ 2,

• for (EC1):

M3(1) =

{
1 if w13 ̸= 0,
∞ otherwise,

3 ⩽ M3(2) ⩽


3 if w12 + w23 > w13,
5 if 3w13 > w12 + w23,
∞ otherwise,

• for (EC2,3):
M3(1) = ∞,

7 ⩽ M3(2) ⩽

{
7 if w12 + w13 > w23,
∞ otherwise,

• for (EC4,5):

M3(1) =

{
1 if max{w12, w13} ≠ 0,
∞ otherwise,

3 ⩽ M3(2) ⩽


3 if w12 + w23 > w13 or w13 + w23 > w12,
5 if 3w13 > w12 + w23 or 3w12 > w13 + w23,
7 if w12 + w13 > w23,
∞ otherwise.
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For n ⩾ 3, if w12 = w13 = w23 = α, we have

M3(n) =

{
2n − 1 if α > 0,
∞ if α ⩽ 0.

Otherwise, suppose that

β1 =

{
w13 if n odd,
w12 + w23 − w13 if n even,

β2 =

{
3w23 − w12 − w13 if n odd,
w12 + w13 − w23 if n even,

β3 =

{
max{w13, w12} if n odd,
max{w12 + w23 − w13, w13 + w23 − w12} if n even,

and γ = max {wij + wik − 2wjk | {i, j, k} = {1, 2, 3}} .
Then,

• for (EC1):
M3(n) = 2n − 1 if β1 > 0,

otherwise,

2n ⩽ M3(n) ⩽ 2n + 15 + 16

⌊−β1
2γ

⌋
,

except for n = 3 with (i) γ = w13+w23− 2w12 and (ii) γ = w12+w13− 2w23, where

8 ⩽ M3(n) ⩽ min

{
27 + 16

⌊
2(w12 + w23)− 3w13

2γ

⌋
, 29 + 16

⌊−w13

2γ

⌋}
,

• for (EC2):
M3(n) = 2n+1 − 1 if β2 > 0,

2n+1 ⩽ M3(n) ⩽ 2n+1 + 15 + 16

⌊−β2
2γ

⌋
otherwise,

• for (EC3):

M3(n) =

{
7 if w12 + w13 > w23,
15 if w12 + w13 ⩽ w23 and β2 > 0,

16 ⩽ M3(n) ⩽ 31 + 16

⌊−β2
2γ

⌋
otherwise,

• for (EC4):
M3(n) = 2n − 1 if β3 > 0,

otherwise,

2n ⩽ M3(n) ⩽ min

{
2n + 15 + 16

⌊−β3
2γ

⌋
, 2n+1 + 15 + 16

⌊−β2
2γ

⌋}
,

except for (i) n = 3 and γ = w13 + w23 − 2w12, where

8 ⩽ M3(3) ⩽ min

{
23+16

⌊−w12

2γ

⌋
, 27+16

⌊
2(w12 + w23)− 3w13

2γ

⌋
, 29+16

⌊−w13

2γ

⌋
,
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31 + 16

⌊−β2
2γ

⌋}
,

for (ii) n = 3 and γ = w12 + w23 − 2w13, where

8 ⩽ M3(3) ⩽ min

{
23+16

⌊−w13

2γ

⌋
, 27+16

⌊
2(w13 + w23)− 3w12

2γ

⌋
, 29+16

⌊−w12

2γ

⌋
,

31 + 16

⌊−β2
2γ

⌋}
,

and for (iii) n = 3 and γ = w12 + w13 − 2w23, where

8 ⩽ M3(3) ⩽ min

{
27 + 16

⌊
2(w12 + w23)− 3w13

2γ

⌋
, 29 + 16

⌊−w13

2γ

⌋
,

27 + 16

⌊
2(w13 + w23)− 3w12

2γ

⌋
, 29 + 16

⌊−w12

2γ

⌋
, 31 + 16

⌊−β2
2γ

⌋}
,

• for (EC5):

7 ⩽ M3(n) ⩽


7 if w12 + w13 > w23 or (n = 3 and β3 > 0),
15 if (w12 + w13 ⩽ w23 and β2 > 0) or (n = 4 and β3 > 0),
2n − 1 if β3 > 0,

otherwise,

8 ⩽ M3(n) ⩽ min

{
31 + 16

⌊−β2
2γ

⌋
, 2n + 15 + 16

⌊−β3
2γ

⌋}
,

except for the cases (i), (ii), and (iii) that are the same with (EC4).
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Chapter 8

Ramsey theory

Problems in Ramsey theory typically ask a question of the form: how big must some
substructure be to guarantee that a particular property holds? In this chapter, we are
interested in a problem of Ramsey theory on numbers in the first section. It corresponds
to the study of modular Schur numbers obtained in [C18]. In the second section, results
obtained in [C15, C19] about Ramsey theory on graphs are exposed.

8.1 Modular Schur numbers
In [70], Guy proposed two unsolved problems in elementary number theory. The first one
is the Schur’s problem of partitioning integers into sum-free classes (Problem E12). Schur
proved in [101] that if the set of the first ⌈k!e⌉ positive integers is partitioned into k parts
any way, then x+ y = z can be solved in integers within one part. Let S(k) be the largest
integer n such that there exists a partition of the first n positive integers {1, 2, . . . , n} into
k parts with no solution to the equation

x+ y = z,

in any part. The exact value of S(k) is known only for k ∈ {1, 2, 3, 4} and the Problem E12
is to determine it for k ⩾ 5. The second unsolved problem proposed by Guy is a modular
version of this Schur’s problem (Problem E13). It was posed by Abbott and Wang in [21].
Let T(k) be the largest integer n such that there exists a partition of {1, 2, . . . , n} into k
parts, with no solution to the congruence

x+ y ≡ z (mod n+ 1),

in any part. Abbott and Wang determined that T(k) = S(k) for k ∈ {1, 2, 3, 4}, and they
conjectured that the equality is true for all positive integers k. The main purpose here is
to study and explicitly determine modular generalizations of Schur numbers.

8.1.1 Modular generalized Schur numbers

Definition 8.1.1 (Partition). Let k be a positive integer and let S be a set of integers.
A k-partition of S is a set P = {S1, . . . , Sk} of subsets of S such that any element of S is
contained in exactly one element of P .

Definition 8.1.2 (Sum-free set). Let l be a positive integer. A set of integers is said to
be l-sum-free if it contains no elements x1, . . . , xl, y satisfying

x1 + . . .+ xl = y.

151
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Definition 8.1.3 (Generalized Schur number). For every positive integer k, the general-
ized Schur number S(k, l) is the largest integer n for which the set of the first n positive
integers {1, 2, . . . , n} admits a k-partition into l-sum-free sets.

For l = 2, the numbers S(k, 2) = S(k) are known as Schur numbers. They have been
introduced by Schur himself in 1916 [101], in order to study a modular version of Fermat’s
Last Theorem. He proved that those numbers are always finite, for every positive integer
k. The first few Schur numbers are given in Table 8.1.

k 1 2 3 4 5 6 7
S(k, 2) 1 4 13 44 160 ⩽ · · · ⩽ 305 ⩾ 536 ⩾ 1680

Table 8.1: The first few Schur numbers S(k, 2)

The exact value of S(4, 2) was obtained by Baumert [20]. The lower and upper bounds
of S(5, 2) are due to Exoo [63] and Sanz [99], respectively. Finally, the lower bounds of
S(6, 2) and S(7, 2) were obtained by Fredricksen and Sweet [67] by considering symmetric
sum-free partitions.

Many generalizations of Schur numbers have appeared since their introduction. Here,
the generalized Schur numbers that we consider are similarly defined in [33, 82]. These
numbers are always finite (see [93, 82] for instance).

Definition 8.1.4 (Modular sum-free set). Let m be a positive integer. A set of integers
is said to be l-sum-free modulo m if it contains no elements x1, . . . , xl, y satisfying

x1 + . . .+ xl ≡ y (mod m).

Definition 8.1.5 (Modular generalized Schur number). For every positive integer k, the
generalized Schur number modulo m, denoted by Sm(k, l), is the largest integer n for which
the set of the first n positive integers {1, 2, . . . , n} admits a k-partition into l-sum-free
sets modulo m.

Obviously, for every modulus m, the inequality

Sm(k, l) ⩽ S(k, l) (8.1)

holds because a l-sum-free set modulo m of integers is also l-sum-free. Moreover, since
m + . . . + m ≡ m mod m, a l-sum-free set of integers modulo m does not contain the
integer m. Therefore, we have

Sm(k, l) ⩽ m− 1. (8.2)

For l = 2, Abbott and Wang investigated in [21] the numbers

T(k) = max {n ∈ N | Sn+1(k, 2) = n} ,
where k is a positive integer. They obtained that T(k) = S(k, 2) for k ∈ {1, 2, 3, 4} and
they conjectured that the equality is true for all positive integers k.

Here, we explicitly determine the modular generalized Schur numbers Sm(k, l) for small
values of m: for all moduli m ∈ {1, 2, 3}. For m = 1, the result is clear. Indeed,

S1(k, l) = 0,

for all k ⩾ 1 and l ⩾ 1, since every positive integer x verifies x + . . . + x ≡ x mod 1 and
thus, there does not exist non-empty l-sum-free set modulo 1. For m = 2 and m = 3, the
exact values of Sm(k, l) are given by the following theorems.
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Theorem 8.1.6 (CRS [C18]). Let k and l be two positive integers. Then,

S2(k, l) =

{
0 for l odd,
1 for l even.

Theorem 8.1.7 (CRS [C18]). Let k and l be two positive integers. Then,

S3(k, l) =


0 for k ⩾ 1 and l ≡ 1 mod 3,
1 for k = 1 and l ≡ 0, 2 mod 3,
2 for k ⩾ 2 and l ≡ 0, 2 mod 3.

A simple proof of these theorems can be found in [C18].

8.1.2 Modular generalized weak Schur numbers

Definition 8.1.8 (Weakly sum-free set). A set of integers is said to be weakly l-sum-free
if it contains no pairwise distinct elements x1, . . . , xl, y satisfying

x1 + . . .+ xl = y.

Definition 8.1.9 (Modular generalized weak Schur number). For every positive integer
k, the generalized weak Schur number WS(k, l) is the largest integer n for which the set of
the first n positive integers {1, 2, . . . , n} admits a k-partition into weakly l-sum-free sets.

For l = 2, the numbers WS(k, 2) are called weak Schur numbers. The first few weak
Schur numbers are given in Table 8.2.

k 1 2 3 4 5 6
WS(k, 2) 2 8 23 66 ⩾ 196 ⩾ 575

Table 8.2: The first few weak Schur numbers WS(k, 2)

The exact value of WS(4, 2) was obtained by Blanchard, Harary and Reis [35]. The
lower bounds of WS(5, 2) and WS(6, 2) are due to Eliahou, Marín, Revuelta and Sanz
[58].

More generally, the generalized weak Schur numbers are always finite (see [103, 77, 82]
for instance). Moreover, the generalized weak Schur numbers appear as a good upper
bound for the generalized Schur numbers, since a weakly l-sum-free set of integers is also
l-sum-free. Therefore, we have

S(k, l) ⩽ WS(k, l), (8.3)

for all positive integers k and l. A trivial lower bound for the weak Schur numbers is

kl ⩽ WS(k, l), (8.4)

because each of the k weakly sum-free sets can contain l distinct integers without solution
of the equation x1 + . . .+ xl = y. Better lower bounds for WS(k, l) can be found in [99].

Definition 8.1.10 (Modular weakly sum-free set). A set of integers is said to be weakly
l-sum-free modulo m if it contains no pairwise distinct elements x1, . . . , xl, y satisfying

x1 + . . .+ xl ≡ y (mod m).
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Definition 8.1.11 (Modular generalized weak Schur number). For every positive integer
k, the generalized weak Schur number modulo m, denoted by WSm(k, l), is the largest
integer n for which the set of the first n positive integers {1, 2, . . . , n} admits a k-partition
into weakly l-sum-free sets modulo m.

For every modulus m, the inequality

WSm(k, l) ⩽ WS(k, l) (8.5)

holds because a weakly l-sum-free set modulo m of integers is also weakly l-sum-free.
Abbott and Wang conjectured that T(k) is equal to S(k, 2), for all positive integers

k. Here, in the weak case, it appears that considering similar numbers as T(k) is without
great interest. Indeed, as we can see in Table 8.3 for m ∈ {1, . . . , 15}, the values of
modular generalized weak Schur numbers, for k = 2 and l = 2, seem to be very difficult to
predict. For m ⩾ 16, we have WSm(2, 2) = WS(2, 2) because WSm(2, 2) ⩽ WS(2, 2) = 8
and because, for two distinct integers x, y ∈ {1, . . . , 8}, we always have x+ y ⩽ 15 < m.

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
WSm(2, 2) 4 5 4 5 6 6 7 6 7 7 7 8 8 8 8

Table 8.3: The modular generalized weak Schur numbers WSm(2, 2)

Here, we explicitly determine the modular generalized weak Schur numbers WSm(k, l)
for small values of m: for all moduli m ∈ {1, 2, 3}. For m = 1, we obtain that

WS1(k, l) = kl,

for all k ⩾ 1 and l ⩾ 1, since a weakly l-sum-free set modulo 1 has cardinality of at most
l because every l+ 1 distinct positive integers x1, . . . , xl, y verify x1 + . . .+ xl ≡ y mod 1.
For m = 2 and m = 3, the following theorems are proved in [C18].

Theorem 8.1.12 (CRS [C18]). Let k and l be two positive integers. Then,

WS2(k, l) =



l + 1 for k = 1 and l ≡ 0, 1 mod 4,
l for k = 1 and l ≡ 2, 3 mod 4,
2(k − 1)l + 1 for k ⩾ 2 and l even,

k(l + 1) for
{
k ⩾ 2 and l ≡ 1 mod 4,
k ⩾ 2 even and l ≡ 3 mod 4,

k(l + 1)− 1 for k ⩾ 3 odd and l ≡ 3 mod 4.

Theorem 8.1.13 (CRS [C18]). Let k and l be two positive integers. Then,

WS3(k, l) =



3k for k ⩾ 1 and l = 1,
l for k = 1 and l ⩾ 2,
2l + 2 for k = 2 and l ⩾ 2, l ≡ 0, 1, 5 mod 9,

2l + 1 for k = 2 and
{
l = 3,
l ⩾ 5, l ≡ 2, 3, 4, 6, 7, 8 mod 9,

2l for k = 2 and l ∈ {2, 4},
3(k − 2)l + 2 for k ⩾ 3 and l ≡ 0, 2 mod 3,

k(l + 1) for
{
k = 3, k ⩾ 5 and l ⩾ 2, l ≡ 1 mod 3,
k = 4 and l ⩾ 2, l ≡ 1, 7 mod 9,

4l + 3 for k = 4 and l ≡ 4 mod 9.
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8.2 Ramsey numbers of certain families of graphs

Definition 8.2.1 (Ramsey number). Let G and H be two graphs. Let R(G,H) be the
smallest integer N such that for any 2-coloring (say, red and blue) of the edges of the
complete graph Kn, with n ⩾ N , there is either a red copy of G or a blue copy of H.

It is known, by Ramsey Theorem, that R(G,H) is always finite, for any graphs G and
H. For instance, the first few Ramsey numbers R(Ka, Kb) are given in Table 8.4.

HHH
HHHa

b
1 2 3 4 5 6 7

1 1 1 1 1 1 1 1
2 2 3 4 5 6 7
3 6 9 14 18 23
4 18 25 36 ⩽ · · · ⩽ 41 49 ⩽ · · · ⩽ 61
5 43 ⩽ · · · ⩽ 48 58 ⩽ · · · ⩽ 87 80 ⩽ · · · ⩽ 143
6 102 ⩽ · · · ⩽ 165 115 ⩽ · · · ⩽ 298
7 205 ⩽ · · · ⩽ 540

Table 8.4: The first few Ramsey numbers R(Ka, Kb)

In this section, we present Ramsey numbers for complete graphs with dropped cliques
and for complete graphs with dropped stars that appears in [C19] and [C15], respectively.
An excellent survey on Ramsey numbers for small values can be found in [94].

8.2.1 Ramsey for complete graphs with dropped edge or triangle

Definition 8.2.2. Let k ⩾ t ⩾ 1 be positive integers. We denote by K[k,t] the complete
graph on k vertices from which a set of edges, induced by a clique of order t, has been
dropped.

For instance, the graphs K[5,3] and K[4,2] are depicted in Figure 8.1.

1

2

3

4

5

1

2

3

4

(a) (b)

Figure 8.1: (a) K[5,3] and (b) K[4,2]

A recursive formula

First, a generalization of the Ramsey number for r colors can be considered.
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Definition 8.2.3 (Generalized Ramsey number). Let k1, . . . , kr and t1, . . . , tr be positive
integers with ki ⩾ ti for all i ∈ {1, . . . , r}. Let R([k1, t1], . . . , [kr, tr]) be the smallest
integer n such that for any r-edge coloring of Kn there always occurs a monochromatic
K[ki,ti] for some i.

In the case when ki = ti for some i, we set

R([k1, t1], . . . , [ki−1, ti−1], [ti, ti], [ki+1, ti+1], . . . , [kr, tr]) ⩽ ti.

We note that equality is reached at min
1⩽i⩽r

{ti | ti = ki}, since the set of all the edges of

K[ti,ti] (which is empty) can always be colored with color i. We also notice that the case
R([k1, 1], . . . , [kr, 1]) is exactly the classical Ramsey number R(k1, . . . , kr) (the smallest
integer n such that for any r-edge coloring of Kn there always occurs a monochromatic
Kki for some i).

The following recursive inequality is classical in Ramsey theory

R(k1, k2, . . . , kr) ⩽ R(k1 − 1, k2, . . . , kr) + R(k1, k2 − 1, . . . , kr) + · · ·+ (8.6)
+R(k1, k2, . . . , kr − 1)− (r − 2)

In the same spirit, we have the following generalization.

Lemma 8.2.4 (CMR [C19]). Let r ⩾ 2 and let k1, . . . , kr and t1, . . . , tr be positive integers
with ki ⩾ ti + 1 ⩾ 2 for all i. Then,

R([k1, t1], . . . , [kr, tr]) ⩽ R([k1 − 1, t1], [k2, t2], . . . , [kr, tr])
+R([k1, t1], [k2 − 1, t2], . . . , [kr, tr])

...
+R([k1, t1], [k2, t2], . . . , [kr − 1, tr])− (r − 2).

Lemma 8.2.4 allows us to give the following upper bound for R([k1, t1], . . . , [kr, tr]).

Theorem 8.2.5 (CMR [C19]). Let r ⩾ 2 be a positive integer and let k1, . . . , kr and
t1, . . . , tr be positive integers such that ki ⩾ ti for all i ∈ {1, . . . , r}. Then,

R ([k1, t1], . . . , [kr, tr]) ⩽ max
1⩽i⩽r

{ti}
(
k1 + · · ·+ kr − (t1 + · · ·+ tr)

k1 − t1, k2 − t2, . . . . . . , kr − tr

)
where

(
n1+n2+···+nr

n1,n2,......,nr

)
is the multinomial coefficient defined by

(
n1+n2+···+nr

n1,n2,......,nr

)
= (n1+···+nr)!

n1!n2!···nr!
,

for all nonnegative integers n1, . . . , nr.

Theorem 8.2.5 can be considered as a natural generalization of the well-known explicit
upper bound for classical Ramsey numbers. Indeed, an immediate consequence of Theo-
rem 8.2.5 (by taking ti = 1 for all i) is the following classical upper bound due to Graham
and Rödl [69, (2.48)].

R ([k1, 1], . . . , [kr, 1]) ⩽

(
k1 + · · ·+ kr − r

k1 − 1, . . . , kr − 1

)
· (8.7)

Let k ⩾ t ⩾ 2 and r ⩾ 2 be integers and let Rr([k, t]) = R([k, t], . . . , [k, t]︸ ︷︷ ︸
r

).

Another straight consequence of Theorem 8.2.5 (by taking k = k1 = · · · = kn and
t = t1 = · · · = tn) is the following inequality
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Rr([k, t]) ⩽ t

(
r(k − t)

k − t, . . . , k − t

)
(8.8)

Moreover, if t = 1 then

Rr([k, 1]) ⩽
(rk − r)!

((k − 1)!)r
· (8.9)

New Ramsey numbers obtained

Using the recursive formula of Lemma 8.2.4 and other Ramsey numbers already known,
the following theorems are proved in [C19].

Theorem 8.2.6 (CMR [C19]). Let n ⩾ 2 be an integer. Then,

R([n, 2], [4, 3]) =


2 for n = 2,
5 for n = 3,
3n− 5 for n ⩾ 4.

Theorem 8.2.7 (CMR [C19]). Let n ⩾ 2 be an integer. Then,

R([n, 3], [4, 3]) =


3 for n = 3,
6 for n = 4,
8 for n = 5,
11 for n = 6,
3n− 8 for n ⩾ 7.

Theorem 8.2.8 (CMR [C19]). Let n ⩾ 2 be an integer. Then,

R([n, 2], [5, 3])


= 2 for n = 2,
= 7 for n = 3,
⩽ 3
(
n+1
2

)
− 5n+ 4 for n ⩾ 4.

8.2.2 Ramsey for complete graphs with dropped stars

Definition 8.2.9 (Complete graph with dropped star). Let Kn −K1,s be the complete
graph on n vertices from which the edges of the star graph K1,s are dropped. Notice that
Kn −K1,1 = Kn − e is the complete graph on n vertices from which an edge is dropped
and Kn−K1,2 = Kn−P3 is the complete graph on n vertices from which a path on three
vertices is dropped.

Here, we investigate R(Km − e,Kn − K1,s) and R(Km, Kn − K1,s) for a variety of
integers m,n and s.

Main result

Let G be a graph and denote by Gv the graph obtained from G to which a new vertex
v, incident to all the vertices of G, is added. The main result of this subsection is the
following

Theorem 8.2.10 (CMR [C15]). Let n and s be positive integers. Let G1 be any graph
and let N be an integer such that N ⩾ R(Gv

1, Kn). If
⌈
(s+1)(N−n)

n

⌉
⩾ R(G1, Kn+1 −K1,s),

then R(Gv
1, Kn+1 −K1,s) ⩽ N .

Using Theorem 8.2.10, new exact values or bounds for Ramsey numbers of certain
complete graphs with dropped stars are obtained.
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Some exact values for R(Km − e,Kn −K1,s)

Corollary 8.2.11 (CMR [C15]). R(K3−e,Km+1−K1,s) = 2m−1, for all s ∈ {1, . . . ,m−
1}.

Corollary 8.2.12 (CMR [C15]).

i) R(K4 − e,K5 −K1,3) = 11.

ii) R(K4 − e,K6 −K1,s) = 16 for any 3 ⩽ s ⩽ 4.

iii) R(K4 − e,K7 −K1,s) = 21 for any 4 ⩽ s ⩽ 5.

Corollary 8.2.13 (CMR [C15]). 21 ⩽ R(K4 − e,K7 −K1,3) ⩽ 22.

Corollary 8.2.14 (CMR [C15]). R(K5 − e,K5 −K1,3) = 19.

Corollary 8.2.15 (CMR [C15]). R(K5 − e,K6 −K1,s) = R(K5 − e,K5) for s = 3, 4.

New upper bounds for R(Km, Kn − P3)

Let us first notice that, by taking G1 = Km in Theorem 8.2.10, we obtain

Corollary 8.2.16 (CMR [C15]). Let N be an integer such that N ⩾ R(Km+1, Kn). If⌈
(s+1)(N−n)

n

⌉
⩾ R(Km, Kn+1 −K1,s), then R(Km+1, Kn+1 −K1,s) ⩽ N .

Using this result, we obtain

Corollary 8.2.17 (CMR [C15]).

i) R(K6, K4 − P3) = R(K6, K3) = 18 with m = 5 and n = 3,

ii) R(K7, K4 − P3) = R(K7, K3) = 23 with m = 6 and n = 3,

iii) R(K8, K4 − P3) = R(K8, K3) = 28 with m = 7 and n = 3,

iv) R(K9, K4 − P3) = R(K9, K3) = 36 with m = 8 and n = 3,

v) R(K10, K4 − P3) = R(K10, K3) ⩽ 43 with m = 9 and n = 3.

Corollary 8.2.18 (CMR [C15]).

i) R(K6, K5 − P3) ⩽ 41.

ii) R(K7, K5 − P3) ⩽ 61.

iii) R(K8, K5 − P3) ⩽ 85.

iv) R(K9, K5 − P3) ⩽ 117.

v) R(K10, K5 − P3) ⩽ 159.

Corollary 8.2.19 (CMR [C15]). If 37 ⩽ R(K6, K4), then R(K6, K5 − P3) = R(K6, K4).

Corollary 8.2.20 (CMR [C15]).

i) 25 ⩽ R(K4, K6 − P3) ⩽ 27.
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ii) R(K5, K6 − P3) ⩽ 49.

iii) R(K6, K6 − P3) ⩽ 87.

Corollary 8.2.21 (CMR [C15]). For each 3 ⩽ m ⩽ 5 and each 7 ⩽ n ⩽ 16, we have that
R(Km, Kn − P3) ⩽ u(m,n), where the value of u(m,n) is given in the (m,n) entry of the
below table (the value between parentheses is the best previously known upper bound).

m \ n 7 8 9 10 11 12 13 14 15 16
3 44(47) 52(59) 61(72) 70(86) 80(101) 91(117)
4 41(49) 61(72) 115(136) 154(183) 199(242) 253(319) 313(405) 383(506) 466(623)
5 87(105) 143(177) 222(277)

Some bounds for R(Km, Kn −K1,s) when s ⩾ 3

Corollary 8.2.22 (CMR [C15]). For each 6 ⩽ m ⩽ 15, we have that R(Km, K6−K1,3) ⩽
u(m), where the value of u(m) is given in the below table (the value between parentheses
is the best previously known upper bound).

m 6 7 8 9 10 11 12 13 14 15
bu 87(90) 143(151) 216(235) 316(350) 442(499) 633(690) 848(928) 1139(1219) 1461(1568) 1878(1568)

Corollary 8.2.23 (CMR [C15]). For each 4 ⩽ m ⩽ 11, we have that R(Km, K7−K1,3) ⩽
u(m), where the value of u(m) is given in the below table (the value between parentheses
is the best previously known upper bound).

m 4 5 6 7 8 9 10 11
bu 41(43) 87(90) 165(180) 298(331) 495(566) 780(916) 1175(1415) 1804(2105)

More equalities

Corollary 8.2.24 (CMR [C15]).
i) R(K4,K7 −K1,s) = R(K4,K6) for s ⩾ 3.

iii) R(K4,K9 −K1,s) = R(K4,K8) for s ⩾ 4.

v) R(K4,K11 −K1,s) = R(K4,K10) for s ⩾ 5.

vii) R(K4,K13 −K1,s) = R(K4,K12) for s ⩾ 6.

ix) R(K4,K15 −K1,s) = R(K4,K14) for s ⩾ 8.

ii) R(K4,K8 −K1,s) = R(K4,K7) for s ⩾ 3.

iv) R(K4,K10 −K1,s) = R(K4,K9) for s ⩾ 4.

vi) R(K4,K12 −K1,s) = R(K4,K11) for s ⩾ 6.

viii) R(K4,K14 −K1,s) = R(K4,K13) for s ⩾ 7.

x) R(K4,K16 −K1,s) = R(K4,K15) for s ⩾ 9.

Wheels versus Kn −K1,s

Here, we obtain further relating results by applying Theorem 8.2.10 to other graphs.
Indeed, we may consider G1 as the cycle on n− 1 vertices Cn−1, and thus Gv

1 will be the
wheel Wn by taking the new vertex v incident to all the vertices of Cn−1.

Corollary 8.2.25 (CMR [C15]).

i) R(W5, K6 −K1,s) = 27 for s = 3, 4, 5.

ii) R(W5, K7 −K1,s) = R(W5, K6) for s = 4, 5, 6.

iii) R(W5, K8 −K1,s) = R(W5, K7) for s = 4, 5, 6, 7.
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Chapter 9

Kneser transversals

9.1 Complete Kneser transversals
Definition 9.1.1 (Function m). Let k, d, λ be integers with d, k ⩾ λ ⩾ 1. Consider the
function m(k, d, λ), defined to be the maximum positive integer n such that every set of
n points (not necessarily in general position) in Rd has the property that the convex hulls
of all k-sets have a common transversal (d− λ)-plane.

In [23], the following inequalities were obtained

d− λ+ k +

⌈
k

λ

⌉
− 1 ⩽ m(k, d, λ) < d+ 2(k − λ) + 1. (9.1)

An interesting feature of the value of m(k, d, λ) is its strong connection with the chromatic
number of Kneser hypergraphs [80, 84] as well as with the Rado’s centerpoint theorem
[92]. Indeed, for the former it is proved in [23] that

if m(k, d, λ) < n, then d− λ+ 1 < χ
(
KGλ+1(n, k)

)
.

For the latter, recall that the well-known Rado’s centerpoint theorem [92] states that if
X is a bounded measurable set in Rd then there exists a point x ∈ Rd such that

measure (P ∩X) ⩾
measure (X)

d+ 1

for each half-space P that contains x (see also [91] for the case d = 2).
Independently Bukh and Matousek [40, Section 6] and Arocha, Bracho, Montejano

and Ramírez-Alfonsín in [23] consider the following generalization of a discrete version of
Rado’s centerpoint theorem. Let n, d, λ ⩾ 1 be integers with d ⩾ λ and let

τ(n, d, λ)
def
= the maximum positive integer τ such that for any collection X of n points

in Rd, there is a (d−λ)-plane LX such that any closed half-space H through LX contains
at least τ points.

By the hyperplane separation theorem we have that n− τ(n, d, λ) + 1 is equal to the
minimum positive integer k such that for any collection X of n points in Rd there is a
common transversal (d − λ)-plane to the convex hulls of all k-sets, which is essentially
m(k, d, λ). Therefore, any improvement to the lower or upper bounds for m(k, d, λ) will
give important insight on the above interesting problem.

The purpose here is to introduce and study a discrete version of the function m(k, d, λ)
which allows us to improve lower or upper bounds for m(k, d, λ).

161
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Definition 9.1.2 (Kneser transversal). Let k, d, λ be integers with k, d ⩾ λ ⩾ 1 and let
X ⊂ Rd be a finite set. We call L a Kneser transversal of X if it is a (d − λ)-plane
transversal to the convex hulls of all k-sets of X. If in addition L contains (d − λ) + 1
points of X, then L is a complete Kneser (d− λ)-transversal.

Definition 9.1.3 (Function m∗). Let k, d, λ be integers with k, d ⩾ λ ⩾ 1. Let m∗(k, d, λ)
be the maximum positive integer n such that every set of n points (not necessarily in
general position) in Rd has a complete Kneser (d − λ)-transversal to the convex hulls of
its k-sets.

This is a natural discrete version of the original function m. Indeed, consider a set of
points X in Rd. The existence of an arbitrary (d−λ)-plane transversal to the convex hull
of the k-sets of X is not an invariant of the order type. For example, if d = 2 and X is
the vertex set of a regular hexagon then the center is a 0-plane transversal to the convex
hull of the 4-sets. But by suitably perturbing these 6 points slightly we lose this property,
see Figure 9.1.

Figure 9.1: A 0-plane transversal that is not invariant of the order type

On the other hand, the existence of a complete Kneser (d − λ)-transversal to the
convex hull of the k-sets is an invariant of the order type. This allows us to study m∗

using oriented matroid theory. Since the parameter m∗ requires additional conditions on
the transversals, we clearly have

m∗(k, d, λ) ⩽ m(k, d, λ).

The case k = λ is easy to deal with.

Proposition 9.1.4 (CMMMR [C12]). The value of m∗(k, d, k) is d.

Proof. If we have d points or less in Rd, then we can choose any subset T with d− k + 1
elements, and it will have non-empty intersection with any k-set. Therefore, aff(T ) will
be a Kneser transversal. On the other hand, if we choose d+1 affinely independent points
in Rd, then any (d− k + 1)-set T will leave k points in its complement, and therefore by
affine independence aff(T ) cannot be a Kneser transversal.

From here on, we will assume that k ⩾ λ + 1. It turns out that the function m∗ has
two different behaviors. The arguments for the case λ−1 ⩾

⌈
d
2

⌉
, are usually simpler than

those for the case λ− 1 <
⌈
d
2

⌉
. For this reason, we define

α(d, λ) =
λ− 1⌈

d
2

⌉
and we call α ⩾ 1 the trivial range and α < 1 the non-trivial range. In this section, we
investigate m∗. We present the exact value of m∗ in the trivial range and give bounds
and some exact values of m∗ in the non-trivial range.
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9.1.1 Kneser transversals from Radon partitions

Here, we provide tools from convex geometry to detect complete Kneser transversals using
Radon partitions.

Let d be a positive integer. Consider d+2 points v1, v2, . . ., vd+2 in general position in
Rd. Radon’s theorem states that there exists a unique partition {1, 2, . . . , d+2} = A∪B
such that

Conv

(⋃
i∈A

vi

)
∩ Conv

(⋃
i∈B

vi

)
̸= ∅.

Moreover, Radon’s theorem states that this intersection is a unique point in the interior
of each convex hull.

The following proposition is a generalization of the well-known Carathéodory’s theo-
rem that states that if a point p lies in the convex hull of a set S in Rd, then there is a
subset S ′ of S consisting of at most d+ 1 points such that p lies in the convex hull of S ′.
It is not difficult to prove that the set S ′ has exactly d+1 points if the set S is in general
position in Rd.

Proposition 9.1.5 (CMMMR [C12]). Let d and λ be positive integers with d ⩾ λ and
let S and T be two disjoint sets of points in general position in Rd such that |S| ⩾ λ+ 1
and |T | = d− λ+ 1. Then the following two statements are equivalent:

• Conv(S) ∩ aff(T ) ̸= ∅,

• Conv(S ′) ∩ aff(T ) ̸= ∅ for a subset S ′ ⊆ S such that |S ′| = λ+ 1.

The following result will be very useful in the sequel.

Proposition 9.1.6 (CMMMR [C12]). Let S and T be two disjoint and non-empty sets
of points in Rd such that |S| + |T | = d + 2 and S ∪ T is in general position. Then
Conv(S) ∩ aff(T ) ̸= ∅ if and only if all the points of S are in the same set in the Radon
partition of S ∪ T .

Remark 9.1.7. In the case in which S ∪ T is not in general position then we still have a
Radon partition, but it might not be unique. If in one of those Radon partitions we have
that all the points from S belong to the same set, then the proof above shows that we
also conclude that Conv(S) ∩ aff(T ) ̸= ∅.

As a consequence of the above proposition and remark we get the following lemma.

Lemma 9.1.8 (CMMMR [C12]). Let X be any set of d+ 2 distinct points in Rd and let⌊
d+2
2

⌋
⩽ t ⩽ d + 1. Then X can be partitioned into two disjoint sets S and T such that

|T | = t and Conv(S) ∩ aff(T ) ̸= ∅.

Using this lemma, we obtain the following lower bound in the non-trivial range.

Theorem 9.1.9 (CMMMR [C12]). In the non-trivial range, when α(d, λ) < 1, we have
that

(d− λ+ 1) + k ⩽ m∗(k, d, λ).

Proof. Let X be a collection of (d − λ + 1) + k points in Rd. Since k ⩾ λ + 1, then
|X| ⩾ d+ 2. Let Y be a (d+ 2)-subset of X.
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Since we are in the case α(d, λ) < 1, we have that
⌊
d+2
2

⌋
⩽ d−λ+1 ⩽ d+1. Therefore,

by Lemma 9.1.8 we can give a partition of Y into two disjoint sets S and T such that
|T | = d− λ+ 1 and Conv(S) ∩ aff(T ) ̸= ∅.

We claim that aff(T ) is a Kneser transversal for X. If a T intersects a k-set, then
aff(T ) is clearly a transversal to its convex hull. Since X has (d−λ+1)+ k points, there
is exactly one k-subset that does not intersect T : the complement of T in X. But this
k-set contains S, for which we know Conv(S) ∩ aff(T ) ̸= ∅. This shows that aff(T ) is a
transversal to the convex hull of all k-sets.

9.1.2 Matroids and cyclic polytopes

Definition 9.1.10 (Moment curve and cyclic polytope). The moment curve in Rd is
defined parametrically as the map γ : R → Rd, t 7→ (t, t2, . . . , td). A cyclic polytope is the
convex hull of a finite set of points on the moment curve.

Here, we study the function m∗ for sets of vertices of cyclic polytopes. Basic notions
of oriented matroids can be found in [34].

Definition 9.1.11 (Alternating oriented matroid). The oriented matroids associated with
cyclic polytopes on n vertices of dimension d are called alternating oriented matroids and
they are denoted by A(r, n) with r = d+ 1.

A well-known fact in oriented matroid theory is that the circuits of oriented ma-
troid theory arising from a configuration of points can be interpreted as minimal Radon-
partitions induced by the signs of the elements. For example, if we have the set of points
V = {v1, v2, v3, v4, v5, v6} in R3 and if C = {v1, v2, v4, v5, v6} is a signed circuit with
+ + − − +, this means that the sets A = {v1, v2, v6} and B = {v4, v5} form a Radon
partition, that is Conv(A) ∩ Conv(B) ̸= ∅.

Suppose that the ground set of A(r, n) is [n] and let C be one of its circuits. A
well-known fact [34, Section 9.4] is that

|C| = r + 1 and if its elements are increasingly ordered, then they
are alternatively signed +−+− · · · (9.2)

Therefore, minimal Radon partitions of cyclic polytopes are well understood.

Definition 9.1.12 (Function m∗). Let k, d, λ be integers with k, d ⩾ λ ⩾ 1. Let ζ(k, d, λ)
be the maximum number of vertices that the cyclic polytope in Rd can have, so that it
has a complete Kneser (d− λ)-transversal to the convex hulls of its k-sets of vertices.

We clearly have
m∗(k, d, λ) ⩽ ζ(k, d, λ).

We will give upper and lower bounds for ζ(k, d, λ). First we deal with some easy special
cases. If λ = 0, then any d − 0 transversal is the whole space, and then we can have as
many points as we want. Also, in the trivial range, the following theorem states that the
precise value of ζ(k, d, λ) and m∗(k, d, λ) is d− λ+ k.

Theorem 9.1.13 (CMMMR [C12]). When α(d, λ) ⩾ 1, we have that

m∗(k, d, λ) = ζ(k, d, λ) = d− λ+ k.

In particular, when α(d, λ) ⩾ 1, the vertex set of the cyclic polytope with at least (d−λ+
1) + k points does not have a complete Kneser (d − λ)-transversal to the convex hulls of
its k-sets.
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Proof. Clearly d− λ+ k ⩽ m∗(k, d, λ) since every (d− λ+ 1)-set intersects all the k-sets
for any set of d−λ+k points in Rd. Let S be the cyclic polytope with d−λ+1+k points
in Rd. Let T ⊆ S be any set with d− λ+1 points, K a subset of S \T with k points and
K ′ a subset of K with λ+ 1 points. By (9.2) the Radon partition of T ∪K ′ can have at
most

⌈
d+2
2

⌉
elements with the same sign. Since by hypothesis |K ′| = λ+ 1 >

⌈
d+2
2

⌉
, then

K ′ has at least two elements with different signs and hence by Proposition 9.1.6 we have
Conv(K ′) ∩ aff(T ) = ∅. Therefore Conv(K) ∩ aff(T ) = ∅ by Proposition 9.1.5.

Definition 9.1.14. Let k, d, λ be integers with k, d ⩾ λ ⩾ 1. Let us define β(λ, j) = j+λ−1
2

for each integer j such that j + λ is an odd number. Let

z(k, d, λ)
def
= (d− λ+ 1) + max

j∈{λ+1,...,d−λ+2}
j+λ is odd

(⌊
k − 1

β(λ, j)

⌋
· j + (k − 1)modβ(λ,j)

)
Z(k, d, λ)

def
= (d− λ+ 1) + ⌊(2− α(d, λ))(k − 1)⌋

Using simple combinatorial arguments and (9.2) the structure of minimal Radon par-
titions of cyclic polytopes, it is proved in [C12] that z(k, d, λ) and Z(k, d, λ) are lower and
upper bounds, respectively, of ζ(k, d, λ) in the non-trivial range.

Theorem 9.1.15 (CMMMR [C12]). In the non-trivial range, when α(d, λ) < 1,

z(k, d, λ) ⩽ ζ(k, d, λ) ⩽ Z(k, d, λ).

Corollary 9.1.16. In the non-trivial range, when α(d, λ) < 1, we have that

(d− λ+ 1) + k ⩽ m∗(k, d, λ) ⩽ (d− λ+ 1) + ⌊(2− α(d, λ))(k − 1)⌋ .

The bounds found by Theorem 9.1.15 are asymptotically correct in terms of k.

Theorem 9.1.17 (CMMMR [C12]). In the non trivial-range, we have that

lim
k→∞

ζ(k, d, λ)

k
= 2− α(d, λ).

9.2 Codimension two and three Kneser transversals
In this section, we present various results on the existence of (complete) Kneser transver-
sals for λ = 2, 3. In order to do this, we introduce the notions of stability and instability
for (complete) Kneser transversals. After that, by using oriented matroid machinery, we
present some computational results (closely related to the stability and unstability no-
tions). We determine the existence of (complete) Kneser transversals for each of the 246
different order types of configurations of 7 points in R3. The results presented here can
be found in [C13].

9.2.1 Stability

As already seen before, the existence of a Kneser transversal is not necessarily an invariant
of the order type. For example, for d = 2, let X be the vertex set of a regular hexagon.
Then, the center of such hexagon is a 0-plane transversal to the convex hull of the 4-
sets. But, by a suitable ’slight’ perturbation of the 6 vertices of the hexagon we lose this
property, see Figure 9.1.
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The situation for complete Kneser transversals is different. Indeed, in the previous
section, we have seen how to detect complete Kneser transversal by using only Radon
partitions implying that the existence of such transversals is an invariant of the order
type. This naturally lead us to consider the notions of stability and instability.

Definition 9.2.1 (Stable Kneser transversal). A Kneser transversal is said to be stable
(resp. unstable) if the given set of points can be slightly perturbed (move each point to,
not more than ϵ > 0 distance of their original position) such that the new configura-
tion of points admits (if there is any) only complete Kneser transversals (resp. the new
configuration of points does not admit a Kneser transversal).

First, (complete) Kneser transversals for codimensions 2 and 3 can be determined.

Theorem 9.2.2 (CMMMR [C13]). Let X = {x1, x2, . . . xn} be a collection of n = d +
2(k−λ) points in general position in Rd. Suppose that L is a (d−λ)-plane transversal to
the convex hulls of all k-sets of X with λ = 2, 3 and k ⩾ λ+ 2 and d ⩾ λ. Then, either

(1) L is a complete Kneser transversal (i.e., it contains d− λ+ 1 points of X) or

(2) |X∩L| = d−2(λ−1) and the other 2(k−1) points of X are matched in k−1 pairs in
such a way that L intersects the corresponding closed segments determined by them.

It is not difficult to generalize Theorem 9.2.2 for λ > 3 if we ask d−2(λ−1) points of X
to be contained in a (d−λ)-plane transversal L and a collection of simplices (formed with
the rest of points) of different dimensions (not necessarily intervals) to be all intersected
by L. However, we have not been able to prove that also for λ > 3 every simplex can be
chosen to be an interval.

Theorem 9.2.3 (CMMMR [C13]). Let X = {x1, . . . , xn} be a finite collection of n =
d+2(k−λ) points in Rd, with k−λ ⩾ 2, λ = 2, 3 and d ⩾ λ. For every ϵ > 0 there exists
X ′ = {x′1, . . . , x′n}, a collection of points in Rd in general position such that |xi − x′i| < ϵ,
for every i = 1, . . . , n, and with the property that every transversal (d − λ)-plane to the
convex hull of the k-sets of X ′ is complete (i.e., it contains d− λ+ 1 points of X ′).

9.2.2 Bounds for m(k, d, λ) when λ = 2, 3

We start by proving the following upper bound

Theorem 9.2.4 (CMMMR [C13]). Let λ = 2, 3, k− λ ⩾ 2 and 2(λ− 1) ⩽ d ⩽ 2(k− 2).
Then,

m(k, d, λ) < d+ 2(k − λ).

Proof. LetX = {x1, . . . , xn} be a finite collection of points in Rd embedded in the moment
curve on n = d+2(k−λ) vertices. On one hand, by Theorem 9.2.3, there exists a collection
of points X ′ = {x′1, . . . , x′n} in Rd in general position with the order type as the cyclic
polytope and with the property that every (d− λ)-plane transversal to the convex hull of
the k-sets of X ′ is complete (i.e., it contains d− λ+ 1 points of X ′). On the other hand,
by Corollary 9.1.16, we have that

m∗(k, d, λ) ⩽ (d− λ+ 1) +

⌊(
2− λ− 1

⌈d
2
⌉

)
(k − 1)

⌋
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which is strictly smaller than d + 2(k − λ) when ⌈d
2
⌉ < k − 1 and thus implying that

X ′ does not admit a complete transversal. Therefore, the collection of points X ′ in Rd

does not have a (d − λ)-plane transversal to the convex hull of the k-sets implying that
m(k, d, λ) < d+ 2(k − λ).

The following result due to Bukh, Matoušek and Nivasch [40] was proved by using
equivariant topology (see also [41] and [86] for some related results).

Let X = {x1, x2, . . . xn} be a collection of n points in Rd. Then, there exists
a codimension two affine plane L and 2d − 1 hyperplanes passing through L
that divide Rd into 4d− 2 parts, each containing at most n

4d−2
+ O(1) points

of X.

Every hyperplane H through L leaves at least 2d− 2 of these parts on each side of H.
Therefore, on each side of H we must have at least

n− 2d

(
n

4d− 2
+O(1)

)
=

(2d− 2)n

4d− 2
− 2dO(1)

points of X and thus ⌊
(2d− 2)n

4d− 2
− 2dO(1)

⌋
⩽ τ(n, d, 2).

Furthermore, if k ⩾ 2dn
4d−2

+ 2dO(1), the codimension two affine plane L intersects the
convex hull of every k-set of X, implying that⌈

(4d− 2)

2d
(k − 2dO(1))

⌉
⩽ m(k, d, 2). (9.3)

From Equation (9.3) and Theorem 9.2.4, we obtain

2− 1

d
⩽ lim sup

k→∞

m(k, d, 2)

k
⩽ 2.

Therefore, for d ⩾ 3, λ = 2 and k large enough the conjectured value [23, Conjecture 1]
m(k, d, λ) = d− λ+ k +

⌈
k
λ

⌉
− 1 does not hold.

9.2.3 Computational results

General background on oriented matroid theory can be found in [34].

Definition 9.2.5 (Abstract order type). An abstract order type is the relabeling class of
an acyclic oriented matroid. The abstract order types of realizable oriented matroids are
called order types corresponding to isomorphism types of configurations of points in the
Euclidean space.

In [23], it is proved that m(3, 2, 4) = 6 (i.e., there always exists a transversal line
to all tetrahedra formed by any configuration of 6 points in R3) and that there is never
a transversal line to all tetrahedra formed by any configuration of 8 points in general
position in R3.

What about transversal lines to all tetrahedra in configurations of 7 points in R3?

We will answer this question by classifying the configurations of 7 points in R3 having
a (complete) Kneser line (if any). It is known that there are 5083 abstract order types of
rank r = 4 (d = 3) of cardinality n = 7 [64]. Among these 5083 abstract order types, 246
of them are the order type of some configuration of points in general position.
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Complete Kneser transversal line

We investigate whether there exists a complete transversal line to the tetrahedra of E =
{x1, . . . , x7}. For this, we first detect when the line joining xi1 and xi2 intersects the
interior of the triangle (xi3 , xi4 , xi5). The following proposition is a direct consequence of
Proposition 9.1.6.

Proposition 9.2.6 (CMMMR [C13]). Let E := {x1, . . . , x7} be a set of 7 points in general
position in R3 and let M = (E,B) its associated oriented matroid. Then, the line (xi1 , xi2)
intersects the interior of the triangle (xi3 , xi4 , xi5) if and only if sg(xi3) = sg(xi4) = sg(xi5)
in the circuit {xi1 , xi2 , xi3 , xi4 , xi5} of M, where sg(x) stands for the sign of x in M.

Proof. Since M is acyclic, it is not possible that the elements of the circuit C :=
{xi1 , xi2 , xi3 , xi4 , xi5} have all the same sign. Moreover, as depicted in Figure 9.2, the
line (xi1 , xi2) intersects the interior of the triangle (xi3 , xi4 , xi5) if and only if the Radon
partition associated with C is one of {{xi1 , xi2} , {xi3 , xi4 , xi5}} , {{xi1} , {xi2 , xi3 , xi4 , xi5}}
or {{xi2} , {xi1 , xi3 , xi4 , xi5}}.

xi1

xi2

xi3

xi4

xi5

xi1

xi2

xi3

xi4

xi5

{{xi1 , xi2} , {xi3 , xi4 , xi5}} {{xi2} , {xi1 , xi3 , xi4 , xi5}}

Figure 9.2: Radon partitions where the line (xi1 , xi2) intersects the triangle (xi3 , xi4 , xi5)

We notice that since the points of E are in general position, then the line (xi1 , xi2)
cannot intersect the triangle (xi3 , xi4 , xi5) on a vertex or an edge.

For each of the
(
7
2

)
= 21 pairs (xi1 , xi2), we determine, by using Proposition 9.2.6, if

the line (xi1 , xi2) intersects the
(
5
3

)
= 10 triangles of E \ {xi1 , xi2}. Since the points are in

general position, it is easy to see that if (xi1 , xi2) intersects a tetrahedron T whose vertices
are in E, then (xi1 , xi2) intersects at least two faces (two triangles) of T (c.f. Proposi-
tion 9.1.5). Therefore, if (xi1 , xi2) intersects the triangle (xi3 , xi4 , xi5), it intersects both
tetrahedra (xi3 , xi4 , xi5 , xi6) and (xi3 , xi4 , xi5 , xi7). Finally, if the line (xi1 , xi2) intersects
the

(
5
4

)
= 5 tetrahedra generated from E \ {xi1 , xi2}, it immediately follows that (xi1 , xi2)

is transversal to all the tetrahedra of E.
For instance, for M = OT (7, 4, 2) in the classification given in [64], that is the abstract

order type representing a point configuration having the chirotope χM : B → {0,−,+}
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given by

1 1 1 1 2 1 1 1 2 1 1 2 1 2 3 1 1 1
2 2 2 3 3 2 2 3 3 2 3 3 4 4 4 2 2 3
3 3 4 4 4 3 4 4 4 5 5 5 5 5 5 3 4 4
4 5 5 5 5 6 6 6 6 6 6 6 6 6 6 7 7 7

χM = + − + − − − + − − − + + − − + + − +

2 1 1 2 1 2 3 1 1 2 1 2 3 1 2 3 4
3 2 3 3 4 4 4 2 3 3 4 4 4 5 5 5 5
4 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

χM = + + − − + + + + − − + − + + + − +

the line L going through 1 and 5 is a complete Kneser transversal line. Indeed, by
Proposition 9.2.6, we know that L intersects the triangles (2, 3, 4), (2, 3, 6), (2, 6, 7) and
(3, 4, 7) since the corresponding circuits are

{1̄2345}, {12̄3̄56̄}, {12̄56̄7̄}, {13̄4̄5̄7̄},

implying that L intersects the 5 tetrahedra (2, 3, 4, 6), (2, 3, 4, 7), (2, 3, 6, 7), (2, 4, 6, 7) and
(3, 4, 6, 7).

By applying the above method, we obtain the following result.

Theorem 9.2.7 (CMMMR [C13]). Among the 246 configurations of 7 points in general
position in R3 there are 124 admitting a complete Kneser transversal to the tetrahedra.
These configurations correspond to the 124 realizable rank 4 oriented matroids on 7 ele-
ments given by the following set according to the classification in [64]

A := {2, 3, 5, 6, 8, 9, 10, 15, 16, 18, 20, 21, 25, 27, 28, 29, 33, 34, 35, 38, 40, 41, 43, 44, 45, 46,
47, 48, 50, 51, 52, 55, 56, 60, 62, 63, 64, 67, 68, 69, 70, 71, 72, 74, 76, 79, 85, 88, 92, 93,
94, 95, 96, 97, 98, 99, 100, 101, 102, 106, 107, 109, 110, 111, 112, 113, 118, 120, 123, 124,
125, 127, 132, 134, 135, 136, 140, 141, 142, 144, 145, 150, 151, 154, 155, 156, 157, 159,
160, 166, 167, 171, 172, 177, 178, 182, 183, 184, 185, 186, 187, 189, 191, 192, 195, 199,
200, 201, 206, 207, 208, 211, 212, 219, 220, 221, 224, 225, 228, 229, 234, 237, 243, 244} .

Kneser transversal line

Let E := {x1, . . . , x7} be a set of 7 points in general position in R3 and let M = (E,B) be
its associated oriented matroid. By Theorem 9.2.2, if there exist a non-complete Kneser
transversal line to the convex hull of its 4-subsets, then the 7 points of M must look as
depicted in Figure 9.3. This implies that M admits the following circuits

{x1 x2 x3 x4 x7}, {x1 x2 x5 x6 x7}, {x3 x4 x5 x6 x7}, (9.4)

and cocircuits

{x3 x4 x5 x6}, {x1 x2 x5 x6}, {x1 x2 x3 x4}. (9.5)

However it is possible that certain configurations of 7 points M having circuits as
given in (9.4) and cocircuits as in (9.5) do not admit a transversal line to the convex hull
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x1 x2

x3
x4

x5

x6

x7

x1

x2

x3

x4

x5

x6

x7

Representation in R3 Projection in R2

Figure 9.3: 7 points in R3 with circuits and cocircuits satisfying (9.4) and (9.5) with a
Kneser transversal line to all 4-sets

x1 x2

x3
x4

x5

x6

x7

x1

x2x3

x4

x5

x6

x7

Representation in R3 Projection in R2

Figure 9.4: 7 points in R3 with circuits and cocircuits satisfying (9.4) and (9.5) but
without transversal line to all 4-sets
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of its 4-subsets, see Figure 9.4 where this situation is illustrated. This example shows
once more that the existence of Kneser Transversals is not an invariant of the order type
in general.

Nevertheless, we can still identify whether a configuration of 7 points admits a Kneser
transversal line. To this end, we consider the oriented matroid M′ associated with the
configuration of 8 points E ′ := {x1, . . . , x8} in R3, not necessarily in general position,
illustrated in Figure 9.5. The deletion of either point x7 or point x8 from M yields a
configuration on 7 points as represented in Figure 9.3 admitting thus a Kneser transversal
line (containing either x7 or x8) to the all tetrahedra. We thus have that the line going
through x7 and x8 would be a complete Kneser transversal line of E ′. Moreover, any
configuration on 7 points as represented in Figure 9.3 arises on this way.

We may thus detect all such configurations M′. We do this by observing that an
oriented matroid M on 8 elements corresponds to such a configuration if and only if M
admits the following cocircuits

{x3 x4 x5 x6}, {x1 x2 x5 x6}, {x1 x2 x3 x4}. (9.6)

x1 x2

x3
x4

x5

x6

x7

x8

x1

x2

x3

x4

x5

x6

x7
x8

Representation in R3 Projection in R2

Figure 9.5: 8 points in R3 with a complete transversal line to all 4-sets

For each of the 10775236 order types of 8 points in R3, we consider its associated
oriented matroid M. If M admits cocircuits of the form (9.6), we delete x7 or x8 obtaining
a configuration of 7 points in general position as in Figure 9.3 admitting a non-complete
Kneser transversal line to all tetrehedra.
Theorem 9.2.8 (CMMMR [C13]). Among the 246 different order types of 7 points in
general position in R3 there are 124 admitting a representation for which there is a non-
complete Kneser transversal line to all tetrahedra. These configurations correspond to
the 124 realizable rank 4 oriented matroids on 7 elements given in by the following set
according to the classification in [64]

B := {1, 2, 4, 6, 7, 10, 11, 12, 13, 14, 16, 19, 24, 26, 29, 30, 31, 32, 36, 38, 39, 40, 41, 42, 55, 58,
59, 60, 61, 62, 63, 65, 70, 71, 72, 74, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90,
91, 93, 96, 97, 98, 99, 101, 102, 103, 104, 105, 111, 114, 117, 121, 122, 124, 126, 128, 129,
130, 138, 139, 140, 145, 146, 147, 148, 149, 151, 152, 153, 158, 165, 170, 171, 172, 173,
174, 175, 176, 177, 180, 185, 194, 196, 197, 198, 199, 201, 204, 206, 207, 209, 211, 212,
213, 214, 215, 217, 218, 219, 220, 230, 235, 236, 237, 238, 239, 240, 241, 242, 244, 246} .

Corollary 9.2.9 (CMMMR [C13]). Among the 246 configurations of 7 points in general
position in R3, 124 of them admit a Kneser transversal line to all the tetrahedra and 122
configurations do not admit a Kneser transversal line to the all the tetrahedra.
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Proof. By Theorems 9.2.7 and 9.2.8, we have

|A| = 124, |B| = 124, |A ∩B| = 46, |A \B| = 78, |B \ A| = 78, |A ∪B| = 44.

The 44 order types of A ∪B do not admit Kneser transversal lines. By Theorem 9.2.3,
for each of the 78 order types of B \A, there exists a representation for which there is no
Kneser transversal line.

It turns out that all abstract order types of rank 4 with at most 7 elements are
realizable [34, Corollary 8.3.3], that is, they correspond to 7 points in the space, but not
necessarily in general position.

Theorem 9.2.10 (CMMMR [C13]). Among the 5083 abstract order types of rank r = 4
(d = 3) with n = 7 there are 1158 having a complete Kneser transversal line to all the
tetrahedra.

This calculation was obtained by applying the same arguments as those used for
Theorem 9.2.7 (via Radon partitions) and by taking care of the cases when three or more
points are collinear and when four or more points are coplanar (via the circuits of the the
oriented matroid).



Appendix A

The 24-periodic orbits with balanced
periods

In this appendix, the orbits of representatives Xi, for all the 17 elements of BPO24 ={
X1, X2, . . . , X17

}
of Chapter 1, are given. Moreover, we have also obtained the orbits of

the elements of BPO12 =
{
Y1, Y2

}
. Indeed, as already remarked, we have OY ∞

1
= OX∞

16

and OY ∞
2

= OX∞
17

since X16 = Y 2
1 and X17 = Y 2

2 .

OX∞
1

OX∞
2
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OX∞
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OX∞
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OX∞
5

OX∞
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OX∞
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OX∞
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OX∞
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OX∞
13

OX∞
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OX∞
15

OX∞
16

= OY ∞
1

OX∞
17

= OY ∞
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Conclusion and future work

In this chapter, we conclude by giving an outlook to future work based on results obtained
in this thesis.

Triangles of average weight in elementary cellular au-
tomata
In Chapter 1, binary Steinhaus triangles have been introduced. The problem of Steinhaus
can be seen as the determination whether there exist binary Steinhaus triangles of size
n with an average number of zeroes and one, with 1

2

(
n+1
2

)
zeroes and 1

2

(
n+1
2

)
ones, for

every non-negative integer n. The local rule in binary Steinhaus triangles corresponds to
the local rule in the Sierpiński triangle or the standard Pascal triangle modulo 2. The
Steinhaus Problem has been generalized for other local rules as for Steinhaus triangles
modulo any positive integer m in Chapter 4 or for simplices generated by additive cel-
lular automata in Chapter 5. Here, we consider a generalization for elementary cellular
automata of dimension 1.

Definition (Elementary cellular automaton). The elementary cellular automaton associ-
ated with w : (Z/2Z)3 −→ Z/2Z is the map ∂w defined by

∂w
(
(ai)i∈Z

)
= (w (ai−1, ai, ai+1))i∈Z ,

for all doubly infinite sequences (ai)i∈Z of Z/2Z. There exist 256 elementary cellular
automata. Among them, some are linear and we retrieve the Pascal cellular automaton
which corresponds to the map associated with w(x, y, z) = y+z, for all (x, y, z) ∈ (Z/2Z)3.

For any doubly infinite sequence S, this derivation process can be repeated and we can
consider the orbit OS = (∂iwS)i∈N, where ∂iw is recursively defined by ∂iwS = ∂w (∂i−1

w S)
for all i ⩾ 1 with ∂0wS = S. Binary triangles appearing in a such orbit can then been
considered as for binary Steinhaus triangles.

It is known that in binary Steinhaus triangles of size n, the average number of zeroes
and ones is exactly 1

2

(
n+1
2

)
, for all non-negative integers n. Another example, when w is

the constant map equal to 1, it is easy to show that the average number of zeroes and
ones in binary triangles of size n generated from ∂w are

n

2
and

n

2
+

(
n

2

)
,

respectively, for all non-negative integers n.
In Chapter 1 and in [C7], a strategy for obtaining balanced binary triangles from

periodic binary sequences has been explored. The objective here is to adapt this method
in order to obtain triangles of average weight in any elementary cellular automaton.
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Problem P1. For each of the 256 elementary cellular automata ∂w, do there exist binary
triangles of size n generated from ∂w and with an average number of zeroes and ones, for
all positive integers n?

Generalizations of symmetric binary triangles
In Chapter 2, symmetric binary triangles have been studied. Generating index sets and
vector bases of linear subspaces of rotationally, horizontally and dihedrally symmetric
binary triangles have been obtained. Here, we propose to extend this study in two direc-
tions: in higher dimensions with binary Steinhaus tetrahedra and for triangles of numbers
modulo m built with a specific local rule for which the set of these triangles is invariant
under the action of the dihedral group D3.

Symmetric binary Steinhaus tetrahedra

A binary Steinhaus tetrahedron of size n is a tetrahedron (ai,j,k)1⩽i⩽j⩽k⩽n of zeroes and
ones with the (Pascal) local rule

ai,j,k ≡ ai−1,j−1,k−1 + ai−1,j−1,k + ai−1,j,k (mod 2), (LR)

for all integers i, j and k such that 2 ⩽ i ⩽ j ⩽ k ⩽ n. The set of binary Stein-
haus tetrahedra of size n is denoted by ST 4(n). Since a binary Steinhaus tetrahedron
(ai,j,k)1⩽i⩽j⩽k⩽n is completely determined by its first row (a1,j,k)1⩽j⩽k⩽n, it follows that
ST 4(n) is a vector space over Z/2Z of dimension

(
n+1
2

)
. An example of binary Steinhaus

tetrahedron of size 5 is depicted in Figure C1.

1 1 0 1 0
1 1 1 1
1 0 0
0 0
1

0 0 0 0
1 0 0
1 0
1

1 0 0
0 0
0

1 0
0 1

Figure C1: A binary Steinhaus tetrahedron of size 5

The symmetry group of regular tetrahedra is constituted by the identity map, 11
rotations (8 rotations about an axis through a vertex and the center of the opposite face
by an angle of ±2π

3
and 3 rotations about an axis through centers of opposite edges by an

angle of π
2
), 6 reflections and 6 rotoflections. This symmetry group is isomorphic to S4

and the subset of rotations is a subgroup of order 12 isomorphic to A4.
From the local rule (LR), for any binary Steinhaus tetrahedron T and for all g ∈ S4,

it is easy to see that g(T ) is also a binary Steinhaus tetrahedron, of the same size as T .

Problem P2. For every subgroup G of S4 and every non-negative integer n, we consider
the linear subspace of binary Steinhaus tetrahedra of size n defined by

ST 4(n)
G
=
{
T ∈ ST 4(n)

∣∣ ∀g ∈ G, g (T ) = T
}
.

The question here is to characterize ST 4(n)
G, to determine its dimension and a vector

basis, for all non-negative integers n and for every subgroup G of S4.
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Symmetric triangles modulo m

Triangles similar to binary Steinhaus triangles can be considered for other kinds of num-
bers. Triangles defined from quasigroups have been studied in [27]. A quasigroup (G, ⋆)
is a finite set G with a binary operation ⋆ for which, for every a, b ∈ G, there exist unique
elements x, y ∈ G such that a ⋆ x = b and y ⋆ a = b. A ∇⋆-configuration of size n is a
triangle (ai,j)1⩽i⩽j⩽n of elements in (G, ⋆) verifying the local rule

ai,j = ai−1,j−1 ⋆ ai−1,j,

for all integers i and j such that 2 ⩽ i ⩽ j ⩽ n. For (G, ⋆) = (Z/2Z,+), a ∇⋆-configuration
simply corresponds to a binary Steinhaus triangle.

A quasigroup (G, ⋆) is said to be semisymmetric if y ⋆ (x ⋆ y) = x, for all x, y ∈ G. It
is easy to see that, for a semisymmetric quasigroup (G, ⋆), the set of ∇⋆-configurations is
closed under 120 degrees rotation. Moreover, if (G, ⋆) is a commutative quasigroup, the
set of ∇⋆-configurations is also closed under the horizontal reflection.

A ∇⋆-configuration is said to be rotationally symmetric if it is invariant by rotation
and it is said to be dihedrally symmetric if it is invariant by rotation and by horizontal
reflection (under the action of D3).

Rotationally symmetric ∇⋆-configurations, for semisymmetric quasigroups, and dihe-
drally symmetric ∇⋆-configurations, for commutative semisymmetric quasigroups, have
been studied in [27]. The authors have obtained the cardinality of sets of rotationally
symmetric and dihedrally symmetric ∇⋆-configurations.

Theorem (Theorem 3.4 in [27]). Let (G, ⋆) be a semisymmetric quasigroup. The number
confR(n) of rotationally symmetric ∇⋆-configurations of size n is given by

confR(n) =


|G|k if n = 3k,

|G|k+1 if n = 3k + 1,

|Fix(⋆)||G|k if n = 3k + 2,

where Fix(⋆) = {x ∈ G | x ⋆ x = x}.
Theorem (Theorem 3.16 in [27]). Let (G, ⋆) be a commutative semisymmetric quasigroup.
The number confD(n) of dihedrally symmetric ∇⋆-configurations of size n is given by

confD(n) =



|G|k if n = 6k,

|G|k+1 if n = 6k + 1,

|Fix(⋆)||G|k if n = 6k + 2,

|G|k+1 if n = 6k + 3,

|G|k+1 if n = 6k + 4,

|Fix(⋆)||G|k+1 if n = 6k + 5,

where Fix(⋆) = {x ∈ G | x ⋆ x = x}.
Suppose now that G = Z/mZ, with m ⩾ 2, and let ⋆ be the binary operation defined

by x⋆y = −(x+y), for all x, y ∈ Z/mZ. Then, the quasigroup (Z/mZ, ⋆) is commutative
and semisymmetric. The objective here is to study the sets of rotationally symmetric
and dihedrally symmetric ∇⋆-configurations of size n of (Z/mZ, ⋆), that are denoted by
RSC(Z/mZ,⋆)(n) and DSC(Z/mZ,⋆)(n), respectively. Examples of rotationally symmetric and
dihedrally symmetric ∇⋆-configurations of Z/6Z are depicted in Figure C2.

It is clear that RSC(Z/mZ,⋆)(n) and DSC(Z/mZ,⋆)(n) are submodules of the free Z/mZ-
module of ∇⋆-configurations.
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0 1 1 1 5 3 5 0
5 4 4 0 4 4 1
3 4 2 2 4 1
5 0 2 0 1
1 4 4 5
1 4 3
1 5
0

0 3 5 3 3 5 3 0
3 4 4 0 4 4 3
5 4 2 2 4 5
3 0 2 0 3
3 4 4 3
5 4 5
3 3
0

Figure C2: Triangles of RSC(Z/6Z,⋆)(8) and DSC(Z/6Z,⋆)(8)

Problem P3. Let m be a positive integer. For every non-negative integer n and every
submodule RSC(Z/mZ,⋆)(n) and DSC(Z/mZ,⋆)(n), the question is to determine its length and
a generating set.

The Pascal Matroid

In Chapter 2, the notion of generating index set of binary Steinhaus triangles has been
introduced in order to study linear subspaces of symmetric binary triangles. A subset G
of the index set

∇(n) =
{
(i, j) ∈ N2

∣∣ 1 ⩽ i ⩽ j ⩽ n
}

is said to be a generating index set of the vector space ST (n) of binary Steinhaus triangles
of size n if the knowledge of the values ai,j, for all (i, j) ∈ G, uniquely determines the
whole Steinhaus triangle (ai,j)1⩽i⩽j⩽n, i.e., if the linear map

πG : ST (n) −→ (Z/2Z)G

(ai,j)1⩽i⩽j⩽n 7−→ (ai,j)(i,j)∈G

is an isomorphism. For instance, the index set in gray in Figure C3 is a generating index
set for binary Steinhaus triangles of size 7.

1 0 1 0 0 0 1
1 1 1 0 0 1
0 0 1 0 1
0 1 1 1
1 0 0
1 0
1

1 1
1 0

0 1

0

Figure C3: A generating index set of ST (7)

It is known that, for every non-negative integer n, the collection of generating index
sets of ST (n) has a matroid structure called Pascal matroid. This matroid has been
introduced in [28] but without detailed analysis.

Problem P4. The main objective here is to study the Pascal matroid as well as other
variations from a matroid theory perspective.
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Universal sequence of balanced Steinhaus triangles mod-
ulo m even
In Chapter 4, the Molluzzo Problem on the existence of balanced Steinhaus triangles mod-
ulo m has been studied. Several solutions are presented, essentially in the case where m is
odd. The main results obtained in Chapter 4 come from the analysis of Steinhaus trian-
gles associated with arithmetic progressions and with interlaced arithmetic progressions.
More precisely, the following two theorems are given.

Theorem (Chappelon [C2]). Let m be an odd number. Let a, d ∈ Z/mZ, with d invertible,
and let AP(a, d, n) = (a, a+d, . . . , a+(n−1)d) be the arithmetic progression beginning with
a, with common difference d and of length n. Then, the Steinhaus triangle ∇AP(a, d, n)
is balanced, for all positive integers n ≡ 0 or −1 mod ordm(2

m)m, where ordm(2
m) is the

multiplicative order of 2m modulo m.

This result gives a positive answer to the Molluzzo Problem when m is a power of
three, i.e., for every non-negative integer k, there exists a balanced Steinhaus triangle
modulo 3k of size n if and only if

(
n+1
2

)
is divisible by 3k. Moreover, for the other odd

values of m, the existence of infinitely many balanced Steinhaus triangles modulo m is
obtained. This positively anwers the weak Molluzzo Problem for all odd values of m.

The second main result of Chapter 4 concerns a particular sequence of integers, called
the universal sequence, that is the interlacing of three arithmetic progressions defined by

US = IAP ((0,−1, 1), (1,−2, 1))

= (. . . . . . ,−3,−3, 5,−2,−2, 3,−1,−1, 1, 0,0,−1, 1, 1,−3, 2, 2,−5, 3, 3,−7, . . . . . .) .

Theorem (Chappelon [C5]). Let m be an odd number and let S = πm (US) be the projec-
tion of the universal sequence in Z/mZ. Then, the following Steinhaus triangles of size n
are balanced:

• ∇S[n, 2n− 1], for all n ≡ 0 mod m,

• ∇∂S[0, n− 1], for all n ≡ −1 mod 3m.

In the last part of Chapter 4, a positive solution to the Molluzzo Problem for m = 4
is obtained by lifting to Z/4Z specific known solutions in Z/2Z. The main objective here
is to try to obtain the existence of balanced Steinhaus triangles modulo even numbers by
lifting to Z/2kmZ the universal sequence modulo m odd. The main idea is to continue
the study of interlaced arithmetic progressions. Recent conjectures based on computer
experiments are given below.

Conjecture C1. Let S be the 12-interlaced arithmetic progression defined by

S = IAP ((1, 22, 13, 12, 26, 7, 0, 4, 5, 10, 12, 16), (17, 2, 23, 17, 30, 7, 7, 30, 17, 23, 2, 17)) .

For every m ∈ {2, 4, 8, 16, 32}, we consider the projection πm(S) in Z/mZ. Then, the
Steinhaus triangle ∇πm(S)[n, 2n− 1] of size n is balanced, for all n ≡ 0 or −1 mod 12m.

Conjecture C2. Let m be a positive integer not divisible by 64. Let k and m0 be the
integers such that m = 2k.m0 with m0 odd and k ∈ {0, 1, 2, 3, 4, 5}. Let S be the 12-
interlaced arithmetic progression of Z/mZ defined by

π2k(S) = IAP ((1, 22, 13, 12, 26, 7, 0, 4, 5, 10, 12, 16), (17, 2, 23, 17, 30, 7, 7, 30, 17, 23, 2, 17))
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and
πm0(S) = πm0(US).

Then, the Steinhaus triangle ∇S[n, 2n− 1] of size n is balanced, for all n ≡ 0 or −1 mod
12m.

The proof of these conjectures would give a positive answer to the weak Molluzzo
Problem for all positive integers m not divisible by 64.

Problem P5. For every even number m, is it possible to obtain infinitely many balanced
Steinhaus triangles modulo m by lifting the universal sequence US to Z/mZ?

P -type functions for numerical semigroups
Let s1, . . . , sn be coprime positive integers. Let

S = ⟨s1, . . . , sn⟩ =
{

n∑
i=1

xisi

∣∣∣∣∣ ∀i ∈ {1, . . . , n}, xi ∈ N

}

denote the numerical semigroup generated by s1, . . . , sn.
As seen in Chapter 6, given a particular (arithmetical, number theoretical, etc.) Prop-

erty P , one might consider the following two P -type functions of a numerical semigroup
S:

Pr(S):= the largest integer having property P not belonging to S

and
P r(S) := the smallest integer having property P belonging to S.

Notice that the multiplicity and the Frobenius number of a numerical semigroup are P -
type functions where P is the property of being a positive integer. The case where P is
the property of being a square number is studied Chapter 6 and in [C17].

Problem P6. Study these two P -type functions for other properties P such as being a
triangular number, being a prime number or even being a cube, and this for different
families of numerical semigroups.

Generalizations of Frame-Stewart numbers
In Chapter 7, generalized Frame-Stewart numbers have been studied. These numbers are
related to the Tower of Hanoi problem on graphs.

Stewart’s recursive algorithm for the k-peg Tower of Hanoi problem is summarized as
follows. For a positive integer t ⩽ n,

i) recursively transfer a pile of n − t smallest disks from the first peg to a temporary
peg, using k pegs;

ii) transfer the remaining pile of t largest disks from the first peg to the final peg using
k − 1 pegs, ignoring the peg occupied by the n− t smallest disks;

iii) recursively transfer the pile of n − t smallest disks from the temporary peg to the
final peg, using k pegs.
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The algorithm chooses the integer t such that the number of moves is minimized.

Definition (Frame-Stewart numbers). The Frame-Stewart numbers Sk(n) satisfy the fol-
lowing recurrence relations:

Sk(n) = min
1⩽t⩽n

{
2 · Sk(n− t) + Sk−1(t)

}
, for n ⩾ 1, k ⩾ 4,

S3(n) = 2n − 1, for n ⩾ 1, and Sk(0) = 0, for k ⩾ 3.

In Chapter 7 and in [C14], the Frame-Stewart numbers are generalized as follows and
exact formulas are obtained.

Definition (Generalized Frame-Stewart numbers). Let (pi)i⩾3 and (qi)i⩾3 be two se-
quences of arbitrary positive integers. Let Gk(n) be the integers recursively defined by

Gk(n) = min
1⩽t⩽n

{
pk ·Gk(n− t) + qk ·Gk−1(t)

}
, for n ⩾ 1, k ⩾ 4,

G3(n) = p3 ·G3(n− 1) + q3, for n ⩾ 1, and Gk(0) = 0, for k ⩾ 3.

The numbers Gk(n) are called the generalized Frame-Stewart numbers.

The main result is that the sequence of differences (Gk(n)−Gk(n− 1))n⩾1 consists of
numbers of the form (

∏k
i=3 qi)·(

∏k
i=3 pi

αi), with αi ⩾ 0 for all i, arranged in nondecreasing
order.

Theorem (Chappelon-Matsuura [C14]). For every positive integer n and for two se-
quences of arbitrary positive integers (pi)i⩾3 and (qi)i⩾3, we have

Gk(n) = q ·
n∑

j=1

ukj

where q =
∏k

i=3 qi and ukj is the jth term of the sequence
(
ukj
)
j⩾1

of integers
∏k

i=3 pi
αi,

with αi ⩾ 0 for all i, arranged in nondecreasing order.

The main objective here is to consider a more general version of generalized Frame-
Stewart numbers and to obtain a similar result as in [C14]. More precisely, the following
numbers are considered.

Definition. Let (F (n))n∈N be the family of non-negative integers defined by

F (0) = 0,

F (n) = min

{
k∑

i=1

Fi(mi)

∣∣∣∣∣ (m1, . . . ,mk) ∈ Nk,
k∑

i=1

mi = n

}
for n ⩾ 1,

where, for every i ∈ {1, 2, . . . , k}, (Fi(n))n∈N is a family of non-negative integers with
Fi(0) = 0. For all positive integers n, the differences are denoted by ∆Fi(n) = Fi(n) −
Fi(n− 1), for all i ∈ {1, . . . , k}, and ∆F (n) = F (n)− F (n− 1).

In a joint work in progress with Akihiro Matsuura, the following result was obtained.
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Theorem. Let n be a positive integer. Suppose that, for all i ∈ {1, . . . , k}, the subsequence
(∆Fi(j))1⩽j⩽n is monotonically increasing and consider the sequence (uj)1⩽j⩽kn of these
kn integers sorted in increasing order. Then,

F (l) =
l∑

j=1

uj

for all l ∈ {1, 2, . . . , n}, i.e., ul = ∆F (l) for all l ∈ {1, 2, . . . , n}.

Remark. The sequence of differences (∆F (l))1⩽l⩽n is monotonically increasing too.

Problem P7. The question here is to study the generalization of Frame-Stewart numbers
introduced before and to obtain explicit formulas in the case of the Tower of Hanoi problem
on graphs.



Résumé en français

Ce mémoire d’habilitation est organisé en deux parties indépendantes : une première
partie qui traite de mes principaux résultats sur les triangles et les graphes de Steinhaus
et une seconde partie à propos d’autres résultats obtenus sur les semigroupes numériques,
des problèmes du type des tours de Hanoï, la théorie de Ramsey et sur les transversaux
de Kneser.

Le thème de la première partie, les triangles et les graphes de Steinhaus, est mon
plus ancien sujet de recherche, sur lequel j’ai commencé à travailler au cours de ma
thèse de doctorat, soutenue en 2008. Depuis, j’ai continué à travailler et explorer divers
problèmes sur ces structures ou sur des généralisations de celles-ci. Cette partie est divisée
en cinq chapitres : deux chapitres à propos des triangles de Steinhaus binaires, le premier
chapitre sur les triangles équilibrés et le second sur les triangles de Steinhaus possédant
des propriétés de symétrie, un chapitre sur les graphes de Steinhaus et finalement deux
chapitres sur de possibles généralisations des triangles de Steinhaus binaires, un sur une
généralisation sur les nombres modulaires et un autre chapitre pour les généralisations en
dimensions supérieures avec les simplexes équilibrés.

Dans le Chapitre 1, la structure de triangles de Steinhaus binaires est abordée. Il
s’agit ici de l’une des structures mathématiques les plus élémentaires, que même un écolier
pourrait comprendre. La figure ci-dessous est constituée de 14 zéros et de 14 uns. Ils sont
arrangés de telle sorte que l’on a le chiffre zéro sous chaque paire d’éléments identiques et
le chiffre un sous chaque paire d’éléments distincts. Si la première ligne était constituée

0 0 1 0 1 0 0
0 1 1 1 1 0
1 0 0 0 1
1 0 0 1
1 0 1
1 1
0

par n termes, alors dans une figure analogue on retrouverait n(n+1)
2

éléments, l’exemple
précédent correspondant au cas n = 7. Dans son livre intitulé "One hundred problems
in elementary mathematics", Hugo Steinhaus posa la question en 1958 de savoir s’il est
possible de construire une figure, analogue à la précédente, contenant n éléments dans
sa première ligne. Un triangle de Steinhaus binaire est un triangle binaire, pointant vers
le bas, construit avec la même règle locale. Un triangle est dit équilibré s’il contient
autant de zéros que de uns. Le problème de Steinhaus a été résolu positivement pour
la première fois en 1972 par Heiko Harborth. Il a montré que, pour tout entier positif
n ≡ 0 ou 3 mod 4, il existe une suite binaire de longueur n qui est la première ligne d’un
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triangle de Steinhaus équilibré. Sa preuve est constructive et se base sur l’étude des suites
binaires pseudo-périodiques. Depuis, de nombreuses solutions du problème de Steinhaus
sont apparues dans la littérature. Toutes ces solutions sont constructives et mettent en jeu
des suites binaires pseudo-périodiques. Quelques unes de ces solutions sont présentées dans
ce chapitre, après avoir expliquer en quoi le choix de suites binaires pseudo-périodiques
est pertinent.

Dans la dernière partie de ce chapitre, une solution récente du problème de Steinhaus
obtenue à partir de suites binaires totalement périodiques est présentée. Si l’on applique
la même règle locale à une suite binaire infinie, au lieu d’une suite finie, on obtient une
grille infinie de zéros et de uns que nous appelons l’orbite de la suite. Le résultat principal
de ce chapitre est qu’il existe des suites binaires périodiques, de période 24, dont l’orbite
contient des triangles de Steinhaus binaires équilibrés pour toutes les tailles admissibles.
De plus, ce résultat est également valide pour une généralisation du problème de Stein-
haus dans deux directions : pour les triangles de Steinhaus binaires contenant un nombre
impair d’éléments et dont le nombre de zéros et de uns ne différent que d’au plus 1 (les
triangles presque-équilibrés) mais aussi pour les triangles binaires, pointant vers le haut,
construit avec la même règle locale (les triangles de Pascal généralisés). La force de ce
résultat est qu’à partir d’une même suite binaire périodique, il est possible d’obtenir de
manière explicite l’existence de triangles binaires presque-équilibrés, pour les deux types
de triangles binaires, pour toutes les tailles possibles. Ce résultat a été publié dans [C7].

L’étude des triangles de Steinhaus binaires continue au Chapitre 2 avec les triangles
binaires ayant des propriétés symétriques. Il est facile de voir que l’ensemble ST (n) des
triangles de Steinhaus binaires de taille n, c’est-à-dire, dont la première ligne est de
longueur n, est un espace vectoriel sur Z/2Z de dimension n. De plus, la règle locale
implique que ST (n) est stable par la rotation d’angle 120 degrés ainsi que pour la réflexion
horizontale. Cela implique une représentation fidèle du groupe diédral D3 sur ST (n).
Un triangle de Steinhaus binaire est dit être symétrique par rotation, horizontalement
symétrique ou diédralement symétrique s’il est invariant par la rotation d’angle 120 degrés,
la réflexion horizontale ou les deux, respectivement. Les sous-espaces vectoriels RST (n),
HST (n) et DST (n) des triangles de Steinhaus symétriques par rotation, horizontalement
symétriques et diédralement symétriques ont été étudiés par André Barbé dans [26], où
il a déterminé pour chacun d’eux leur dimension. Des bases de RST (n), HST (n) et
DST (n) ont été obtenues par Josep Brunat et Montserrat Maureso dans [39]. Dans le
Chapitre 2, pour chacun de ces trois sous-espaces vectoriels, de nouvelles bases, plus
simples que celles précédemment citées, sont données. Elles sont obtenues en considérant
des propriétés élémentaires des coefficients binomiaux généralisés. Un manuscrit [C8] sur
ces résultats a été soumis à publication.

Le Chapitre 3 concerne la structure de graphes de Steinhaus. Un graphe de Steinhaus
d’ordre n est un graphe simple dont la partie triangulaire supérieure de la matrice d’adja-
cence est un triangle de Steinhaus binaire de taille n−1. Il est facile de voir que l’ensemble
SG(n) des graphes de Steinhaus d’ordre n est un espace vectoriel sur Z/2Z de dimension
n−1 qui est isomorphe à ST (n−1). Cette famille de graphes simples a été introduite par
John C. Molluzzo dans [89]. Franz A. Delahan a montré dans [48] que tout graphe simple
d’ordre n est isomorphe à un sous-graphe induit d’un graphe de Steinhaus d’ordre

(
n
2

)
+1.

Un problème classique sur les graphes de Steinhaus est de caractériser ceux, ou leurs
suites binaires associées, ayant une propriété graphique donnée telle que la connectivité,
la planarité, la propriété d’être biparti, la régularité, etc. Dans le Chapitre 3, nous nous
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concentrons sur les graphes de Steinhaus réguliers, c’est-à-dire, les graphes de Steinhaus
où tous les sommets sont de même degré, et sur le cas plus faible des graphes de Steinhaus
réguliers de parité, c’est-à-dire, les graphes de Steinhaus où les degrés des sommets sont
tous de même parité. Un graphe de Steinhaus régulier de parité est soit pair, soit impair,
suivant la parité de ses sommets. La première partie du Chapitre 3 est une étude complète
du sous-espace vectoriel ESG(n) des graphes de Steinhaus pairs d’ordre n. La caractéri-
sation des graphes de Steinhaus pairs a déjà été faite par Wayne M. Dymacek dans [51],
où il détermine la dimension de ESG(n) en prouvant que la matrice d’adjacence d’un
graphe de Steinhaus pair est symétrique par rapporte à son antidiagonale. On retrouve ce
résultat ici en montrant que les éléments de l’antidiagonale de la matrice d’adjacence d’un
graphe de Steinhaus, non nécessairement pair, s’expriment en fonction des degrés de ses
sommets. Ce dernier résultat a été publié dans [C3]. Après cela, il est montré qu’il existe
un isomorphisme entre ESG(n) et un certain sous-espace vectoriel de DST (n). Ainsi, en
utilisant les résultats mis en lumière au Chapitre 2, des bases explicites de ESG(n) et
PRSG(n) sont données, pour tout entier positif n. Ce nouveau résultat vient de [C8].

La dernière partie de ce chapitre concerne les graphes de Steinhaus réguliers. La liste
complète des graphes de Steinhaus réguliers a été conjecturée par Wayne M. Dymacek
dans [51]. Depuis, cette conjecture a été vérifiée jusque 117 sommets par Shalom Eliahou
et Maxime Augier dans [24]. En fin de Chapitre 3, nous montrons comment les résultats
obtenus sur DST (n) permettent de compléter l’étude des graphes de Steinhaus réguliers et
permettent de pousser la vérification de la conjecture de Dymacek jusqu’à 1500 sommets
pour les graphes de Steinhaus réguliers de degré impair. Ce résultat a été publié dans
[C3].

Au Chapitre 4, la structure de triangles de Steinhaus binaires est étendue au cas des
triangles de nombres modulo un entier positif m construits avec la même règle locale
que le triangle de Pascal classique modulo m. Un triangle de Steinhaus modulo m est dit
équilibré s’il contient tous les éléments de Z/mZ avec la même multiplicité. En 1976, John
C. Molluzzo demanda s’il existe un triangle de Steinhaus équilibré de taille n modulo m,
pour tous entiers positifs m et n tels que

(
n+1
2

)
soit divisible par m. Pour m = 2, cela

correspond au problème de Steinhaus introduit au Chapitre 1. Le problème de Molluzzo
constitue le sujet principal du Chapitre 4. Jusqu’à ma thèse de doctorat, ce problème
était résolu positivement uniquement pour m = 3 et 5 dans [30]. Depuis, ce problème
a été résolu positivement par une approche constructive pour de petites valeurs de m :
pour m ∈ {3, 5, 7} dans [C1] et pour m = 4 dans [C9]. Les premiers contre-exemples
sont apparus dans [C1], où il est montré qu’il n’existe pas de triangles de Steinhaus
équilibrés de taille 5 dans Z/15Z et de taille 6 dans Z/21Z. Néanmoins, ce problème
admet une réponse positive pour une infinité de valeur de m. Dans la première partie
de ce chapitre, on montre qu’il existe des triangles de Steinhaus équilibrés pour toutes
les tailles possibles, dans le cas où m est une puissance de 3. Ce résultat est obtenu en
étudiant les triangles de Steinhaus associés aux suites arithmétiques. Le résultat principal
ici est que, lorsque m est un nombre impair, le triangle de Steinhaus dont la première
ligne est une suite arithmétique de raison inversible et de longueur kαm est équilibré,
pour tout entier strictement positif k et où α est l’ordre multiplicatif de 2m modulo m.
Cela implique qu’il existe une infinité de triangles de Steinhaus équilibrés modulo m dès
que le nombre m est impair. En particulier, lorsque m est une puissance de 3, cela permet
de répondre positivement au problème de Molluzzo dans ce cas. Ce résultat a été publié
dans [C2].

Dans la seconde partie du Chapitre 4, nous nous intéressons à une suite d’entiers
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particulière

US = (. . . ,−3,−3, 5,−2,−2, 3,−1,−1, 1, 0,0,−1, 1, 1,−3, 2, 2,−5, 3, 3,−7, . . .)

qui est appelée la suite universelle. Cette suite peut être vue comme un entrelacement de
trois suites arithmétiques. On étudie alors les triangles de Steinhaus, ou plus généralement
les orbites, associés aux suite arithmétiques entrelacées et l’on obtient que l’orbite de la
projection de US dans Z/mZ contient une infinité de triangles de Steinhaus équilibrés,
lorsque m est un nombre impair. Plus précisément, pour tout nombre impair m, cette
orbite contient des triangles de Steinhaus équilibrés de taille km, pour tout entier stricte-
ment positif k. La preuve de ce résultat est basée sur les triangles arithmétiques qui sont
des triangles de nombres modulo m, non-nécessairement des triangles de Steinhaus, où
toutes les lignes et toutes les diagonales sont des suites arithmétiques de mêmes raisons,
respectivement. Il s’agit ici d’un progrès notable par rapport au résultat précédent sur
les suites arithmétiques car l’on obtient maintenant l’existence de triangles de Steinhaus
équilibrés pour toutes les tailles multiples de m, et pas seulement multiples de αm. Ce
résultat ne résout pas complètement le problème de Molluzzo pour d’autres moduli mais,
dans le cas où m est une puissance de premier impair, nous savons qu’il existe des tri-
angles de Steinhaus équilibrés pour 2/3 des tailles admissibles. Ces résultat sur la suite
universelle ont été publiés dans [C5].

Dans la dernière partie du Chapitre 4, une méthode constructive qui consiste à essayer
de relever dans Z/4Z des solutions déjà connues de Z/2Z est proposée. Cela permet
d’obtenir une réponse complète et positive au problème de Molluzzo pour m = 4. A ce
jour, il s’agit ici de la seule solution à ce problème pour m > 2 pair. Ce travail a été réalisé
en collaboration avec Shalom Eliahou et a été publié dans [C9].

Dans le Chapitre 5, on considère la structure de triangles de Steinhaus pour d’autres
règles locales et en dimensions supérieures, pas seulement en dimension 2. Un automate
cellulaire additif est une application linéaire sur l’ensemble des tableaux infinis multi-
dimensionnels d’éléments dans Z/mZ. Dans ce chapitre, nous considérons les simplexes
apparaissant dans les orbites engendrées à partir de tableaux arithmétiques par des au-
tomates cellulaires additifs. Il se trouve que ce sont des sources de simplexes équilibrés,
c’est-à-dire, de simplexes contenant tous les éléments de Z/mZ avec la même multiplicité.
Pour tout automate cellulaire additif de dimension 1 ou plus, l’existence d’une infinité
de simplexes équilibrés dans Z/mZ apparaissant dans de telles orbites est obtenu, et ce
pour une infinité de valeurs de m. Le cas particulier des automates cellulaires de Pascal,
les automates cellulaires engendrant les simplexes de Pascal, c’est-à-dire une généralisa-
tion du triangle de Pascal en dimension quelconque, est étudié en détails. Cela constitue
un généralisation naturelle du résultat sur les triangles de Steinhaus associés aux suites
arithmétiques du Chapitre 4. Cette généralisation a été publiée dans [C6].

La seconde partie de ce mémoire d’habilitation est divisée en quatre chapitres. Chacun
de ces chapitres est à propos d’un thème de recherche sur lequel j’ai commencé à travailler
après mon doctorat : les semigroupes numériques, les problèmes de type tours de Hanoï,
la théorie de Ramsey et les transversaux de Kneser.

Le Chapter 6 concerne les semigroupes numériques. Un semigroupe est un ensemble
avec une loi de composition interne qui est associative. Un semigroupe numérique S est
un sous-semigroupe de N tel que 0 ∈ S et N \ S soit fini. Il est connu que, pour tout
semigroupe numérique S, il existe un sous-ensemble non-vide minimal A = {a1, . . . , an}
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d’entiers strictement positifs et premiers entre eux tel que S = ⟨A⟩, c’est-à-dire, chaque
élément de S peut s’exprimer comme x1a1 + · · · + xnan, où x1, . . . , xn sont des entiers
naturels. L’ensemble A est appelé l’ensemble des générateurs de S. Pour tout semigroupe
numérique S, on considère le poset localement fini (Z,⩽S) induit par S sur l’ensemble
des entiers Z défini par x ⩽S y si et seulement si y − x ∈ S, pour tous entiers x et y.
La fonction de Möbius est un concept important associé aux posets localement finis qui
a été introduit par Gian-Carlo Rota dans [98]. Dans la première partie du Chapitre 6,
nous nous intéressons à la fonction de Möbius µS associée au poset (Z,⩽S), où S est
un semigroupe numérique. Jusque 2013, le seul résultat connu concernant µS était un
vieux théorème dû à James A. Deddens en 1979 [47] qui détermine la valeur de µS pour
S = ⟨a1, a2⟩ le semigroupe numérique à deux générateurs. Ici, nous introduisons une
nouvelle approche pour étudier µS lorsque S est un semigroupe numérique arithmétique,
c’est-à-dire, lorsqueS = ⟨a, a+ d, . . . , a+ kd⟩ pour des entiers positifs a, d, k tels que a et
d soient relativement premiers et k < a. Le résultat principal obtenu ici est une formule
récursive pour µS lorsque S est un semigroupe numérique arithmétique. En particulier,
cela permet d’obtenir une nouvelle preuve du résultat de Dedden ainsi qu’une formule
explicite dans le cas où k = 2 et a est pair, c’est-à-dire, lorsque S = ⟨2q, 2q + d, 2q + 2d⟩
pour des entiers positifs q et d premiers entre eux. Ce travail a été réalisé en collaboration
avec Jorge Luis Ramírez Alfonsín et a été publié dans [C16].

Après cela, nous continuons l’étude de la fonction de Möbius associée aux posets lo-
calement finis (Zm,⩽S) provenant dorénavant de sous-semigroupes S de Zm. Cela étend
le travail précédemment introduit. Une nouvelle approche est développée afin d’étudier
µS en utilisant la série de Hilbert de S. Cette méthode nous a permis d’obtenir des for-
mules explicites de µS lorsque S est dans certaines familles de semigroupes tels que les
semigroupes ayant un unique élément de Betti ou les semigroupes numériques à trois gé-
nérateurs et d’intersection complète. Ce second travail sur µS a été réalisé en collaboration
avec Ignacio García-Marco, Luis Pedro Montejano et Jorge Luis Ramírez Alfonsín. Il a
été publié dans [C10].

La dernière partie de ce chapitre est sur le nombre de Frobenius carré. Pour tout
semigroupe numérique S, le nombre de Frobenius g(S) est le plus grand entier qui n’est pas
un élement de S. Il est bien connu que g(⟨a1, a2⟩) = a1a2−a1−a2. Cependant, déterminer
de manière explicite g(S) est un problème difficile en général. Ici, nous nous intéressons
à la variante suivante du nombre de Frobenius de S : soit 2r(S) le plus grand entier carré
n’appartenant pas à S. Une borne supérieure de 2r(S) pour les semigroupes numériques
arithmétiques S est donnée. Cette dernière s’avère être la valeur exacte de 2r(⟨s1, s2⟩)
sous certaines conditions. Nous donnons une formule exacte pour 2r(⟨s1, s1 + d⟩) lorsque
d = 3, 4 and 5. Nous étudions 2r(⟨s1, s1 + 1⟩) et 2r(⟨s1, s1 + 2⟩) et mettons en avant deux
conjectures. Il s’agit d’un travail en commun avec Jorge Luis Ramírez Alfonsín dont un
manuscrit [C17] contenant ces résultats a été soumis à publication.

Dans le Chapitre 7, des problèmes de type tours de Hanoï sont présentés. Le problème
de la tour de Hanoï a été introduit par Edouard Lucas en 1883 [85] dans le cas de 3
piquets et n disques de différentes tailles. Initialement, n disques sont placés sur un des 3
piquets avec le plus grand disque tout en bas. Alors, à chaque mouvement un des disque
situé au dessus est déplacé sur un autre piquet contenant un disque plus grand sur le
dessus ou sur un piquet vide. Le but de ce problème est de transférer tous les disques
d’un piquet initial au piquet final avec un nombre minimal de mouvements. Un argument
simple et récursif montre que 2n − 1 mouvements sont nécessaires et suffisant pour mener
à bien cette tâche. Ce problème de la tour de Hanoï a été étendu au cas de 4 piquets par
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Dudeney en 1907 [50] et pour k ⩾ 3 piquets par Stewart en 1939 [108]. En 1941, Frame
[66] et Stewart [109] ont proposé de manière indépendante des algorithmes qui résolvent
avec les mêmes nombres de mouvements ce problème de la tour de Hanoï à k piquets avec
k ⩾ 4 piquets. Ces nombres sont alors appelés les nombres de Frame-Stewart. Il est connu
que ces nombres sont optimaux pour le problème à 4 piquets [37] et ils sont supposés
optimaux pour k > 4 piquets. Les nombres de Frame-Stewart sont définis par la formule
de récursive suivante :

Sk(n) = min
1⩽t⩽n

{
2 · Sk(n− t) + Sk−1(t)

}
, S3(n) = 2n − 1.

Dans la première partie du Chapitre 7, nous considérons la généralisation suivante de
cette formule de récursive

Gk(n) = min
1⩽t⩽n

{
pk ·Gk(n− t) + qk ·Gk−1(t)

}
, G3(n) = p3 ·G3(n− 1) + q3,

pour deux suites quelconques d’entiers positifs (pi)i⩾3 et (qi)i⩾3 et nous obtenons que
la suite des différences (Gk(n) − Gk(n − 1))n⩾1 est constituée des nombres de la forme
(
∏k

i=3 qi)·(
∏k

i=3 pi
αi), où αi ⩾ 0 pour tout i, ordonnée par ordre croissant. Nous appliquons

également ce résultat afin d’analyser les relations de récurrence apparaissant dans les
problèmes de tours de Hanoï sur certaines familles de graphes. Ce travail a été réalisé en
collaboration avec Akihiro Matsuura et a été publié dans [C14].

Dans la dernière partie du Chapitre 7, on étudie des résultats obtenus sur un jeu
combinatoire à deux joueurs basé sur les tours de Hanoï. Tout d’abord, il est bien connu
que pour le problème à 3 piquets, le nombre minimal de mouvements afin de transférer
une tour de n disques est 2n − 1. Mais il y a également d’autres variations de ce jeu,
ajoutant par exemple des poids réels sur le mouvement des disques. Cela donne lieu à un
type de problème similaire, mais où le score final cherche à être optimisé. Nous étudions
les extensions du jeu à un joueur à deux joueurs, en considérant des conditions de victoire
classiques dans la théorie des jeux combinatoires telles que le joueur qui se déplace en
dernier gagne ou bien celui qui obtient le score le plus élevé gagne. Ici, nous résolvons le
problème à 3 piquets pour ces deux conditions de victoire. Il s’agit d’un travail en commun
avec Urban Larsson et Akihiro Matsuura qui a été publié dans [C11].

La théorie de Ramsey tente typiquement de répondre à des questions de la forme :
combien d’éléments d’une certaine structure doivent être considérés pour qu’une propriété
particulière se vérifie ? Dans la première partie du Chapitre 8, nous nous intéressons
à un problème de théorie de Ramsey sur les nombres. Pour tous entiers positifs l et
m, un ensemble d’entiers est dit être (faiblement) libre de l-somme modulo m s’il ne
contient pas d’éléments x1, x2, . . . , xl, y (deux à deux distincts) satisfaisant la congruence
x1 + . . .+ xl ≡ y mod m. Il est connu que, pour tous entiers k et l, il existe un plus grand
entier n pour lequel l’ensemble des n premiers entiers positifs {1, 2, . . . , n} admette une
partition en k parties qui sont (faiblement) libre de l-somme modulo m. Ce nombre est
appelé le nombre de Schur généralisé (faible) modulo m, associé à k et l. Il s’agit d’une
version modulaire du nombre de Schur (faible) classique dont on ne connait que très peu
de valeurs exactes. Il est facile de voir que les nombres de Schur modulaires constituent
une borne inférieure des nombres de Schur classiques. Ici, pour tous entiers positifs k et l,
les valeurs exactes de ces nombres de Schur modulaires sont déterminées pour les moduli
m = 1, 2 and 3. Ce travail a été réalisé en collaboration avec María Pastora Revuelta
Marchena et María Isabel Sanz Domínguez et a été publié dans [C18].
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Dans la dernière partie du Chapitre 8, plusieurs résultats de la théorie de Ramsey
sur les graphes sont présentés. Pour tous graphes simples G et H, soit R(G,H) le plus
petit entier N tel que pour toute 2-coloration (disons rouge et bleu) des arêtes du graphe
complet Kn, où n ⩾ N , il y a soit une copie rouge de G, soit une copie bleue de H. Il est
bien connu, par le théorème de Ramsey, que R(G,H) est toujours fini, pour tous graphes
G et H. Après l’obtention de différentes formules récursives, nous obtenons de nouvelles
valeurs exactes ou de nouvelles bornes de nombres de Ramsey pour différentes familles
de graphes : en particulier pour les graphes complets privés d’un arête ou d’un triangle
et pour les graphes complets privés d’une étoile. Il s’agit d’un travail en commun avec
Luis Pedro Montejano and Jorge Luis Ramírez Alfonsín. Ces résultats ont été publié dans
[C15, C19].

Le dernier chapitre de ce mémoire concerne les transversaux de Kneser. Pour tous
entiers positifs k, d, λ avec d, k ⩾ λ, soit m(k, d, λ) le plus grand entier n tel que tout
ensemble de n points (non-nécessairement en position générale) dans Rd a la propriété
que les enveloppes convexes des sous-ensembles à k éléments admettent un (d − λ)-plan
transversal commun. Les inégalités suivantes ont été obtenues dans [23]

d− λ+ k +

⌈
k

λ

⌉
− 1 ⩽ m(k, d, λ) < d+ 2(k − λ) + 1.

Il s’avère que m(k, d, λ) est fortement connecté avec d’autres problèmes intéressants, par
exemple, le nombre chromatique des hypergraphes de Kneser et une version discrète du
théorème du point central de Rado. Dans le Chapitre 9, nous introduisons de manière
naturelle une version discrète m∗ de m en considérant l’existence de transversaux complets
de Kneser. Un transversal complet de Kneser d’un sous-ensemble fini X de Rd est un
(d − λ)-plan qui est transversal aux enveloppes convexes des k-sous-ensembles de X et
qui contient (d− λ) + 1 points de X. Nous étudions la relation entre m∗ et m et donnons
quelques bornes inférieures et supérieures de m∗ ainsi que certaines valeurs exactes dans
certains cas. L’ingrédient principal des preuves est aussi bien le théorème de partition de
Randon que des outils de la théorie des matroïdes orientés. En étudiant le matroïde orienté
alterné, nous obtenons le comportement asymptotique de la fonction m∗ pour la famille
des polytopes cycliques. Ce travail a été réalisé en collaboration avec Leonardo Martínez-
Sandoval, Luis Montejano, Luis Pedro Montejano and Jorge Luis Ramírez Alfonsín et a
été publié dans [C12].

Dans la dernière partie du Chapitre 9, nous nous concentrons sur l’existence de trans-
versaux de Kneser (complets) pour λ = 2, 3. Dans ce but, nous introduisons les notions
de stabilité et instabilité pour les transversaux de Kneser (complets). Tout d’abord, nous
donnons un résultat de stabilité pour les collections de d+ 2(k − λ) points dans Rd avec
k−λ ⩾ 2 et λ = 2, 3. Nous présentons alors une description des transversaux de Kneser L
des collections de d+2(k−λ) points dans Rd avec k−λ ⩾ 2 pour λ = 2, 3. Nous montrons
que soit L est un transversal de Kneser complet, soit il contient d− 2(λ− 1) points et les
2(k− 1) points restants de X sont mis en correspondance dans k− 1 paires de telle sorte
que L intersecte les segments fermés correspondants déterminés par eux. Cela conduit à
de nouvelles bornes supérieures et inférieures (dans le cas où λ = 2 et 3) pour m(k, d, λ).
Finalement, en utilisant la théorie des matroïdes orientés, nous présentons des résultats
calculatoires étroitement liés aux notions de stabilité et d’instabilité. Nous déterminons
l’existence des transversaux de Kneser (complets) pour chacun des 246 types d’ordre dif-
férents de configurations de 7 points dans R3. Il s’agit également d’un travail en commun
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avec Leonardo Martínez-Sandoval, Luis Montejano, Luis Pedro Montejano and Jorge Luis
Ramírez Alfonsín qui a été publié dans [C13].
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