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Contents Introduction

This habilitation thesis is organized in two independent parts: a first part about my main results on Steinhaus triangles and graphs and a second part about other results obtained on numerical semigroups, Tower of Hanoi problems, Ramsey theory and Kneser transversals.

The topic of the first part, Steinhaus triangles and graphs, is my oldest research theme, starting with my doctoral thesis, that I defended in 2008. Since then, I have continued to work on and explore problems on these structures and on generalizations. This part is divided into five chapters: two chapters about binary Steinhaus triangles, the first chapter on balanced triangles and the second one on Steinhaus triangles having symmetric properties, one chapter on Steinhaus graphs and finally two chapters on generalizations of binary Steinhaus triangles, one for a generalization with modular numbers and one other for generalizations in higher dimensions with balanced simplices.

In Chapter 1, the structure of binary Steinhaus triangles is explored. This is one of the most elementary structures in mathematics, that even a schoolboy could understand. The figure below consists of 14 zeroes and 14 ones. They are arranged in such a way that under each pair of equal numbers there appears a zero and under different numbers there appears a one. If the first row has n terms, then in an analogous figure there would be 0 0 1 0 1 0 0 0 1 1 1 1 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 0 n(n+1) 2 terms, our example corresponds to the case n = 7. In his famous book entitled "One hundred problems in elementary mathematics", Hugo Steinhaus asked in 1958 whether it is possible to construct a figure analogous to the above one and beginning with n terms in the highest row. A binary Steinhaus triangle is a down-pointing binary triangle built with the same local rule and we say that a triangle is balanced if it contains as many zeroes as ones. The Steinhaus problem was positively solved for the first time in 1972 by Heiko Harborth. He proved that, for every positive integer n ≡ 0 or 3 mod 4, there exists a binary sequence of length n which is the first row of a balanced Steinhaus triangle. His proof is constructive and based on pseudo-periodic binary sequences. Since then, many solutions of the Steinhaus problem have appeared in the litterature. All known solutions are constructive and involve pseudo-periodic binary sequences. After explaining the reasons for choosing pseudo-periodic binary sequences, some of these solutions are presented in this chapter. In the last part of this chapter, a recent solution of the Steinhaus problem obtained from purely periodic binary sequences is detailed. If we apply the same INTRODUCTION local rule from an infinite binary sequence, instead of a finite one, we obtain an infinite grid of zeroes and ones that is called its orbit. The main result here is that there exist periodic binary sequences, of length period 24, whose orbit contains balanced binary Steinhaus triangles for all the admissible sizes. Moreover, this result is also valid for a generalization of the Steinhaus problem in two directions: for binary Steinhaus triangles containing an odd number of terms whose numbers of zeroes and ones only differ by 1 (almost-balanced triangles) and also for up-pointing binary triangles built with the same local rule (binary generalized Pascal triangles). The strength of this result is that from only one periodic binary sequence, it is possible to explicitly obtain the existence of almost-balanced binary triangles, of these two kinds, for all possible sizes. This result has been published in [C7].

The study of binary Steinhaus triangles continues in Chapter 2 with binary triangles having symmetric properties. It is straightforward to see that the set ST (n) of binary Steinhaus triangles of size n, i.e., whose first row is of length n, is a vector space over Z/2Z of dimension n. Moreover, the local rule implies that ST (n) is closed under the 120 degrees rotation and under horizontal reflection. This implies a faithful representation of the dihedral group D 3 on ST (n). A binary Steinhaus triangle is said to be rotationally symmetric, horizontally symmetric or dihedrally symmetric if it is invariant under the 120 degrees rotation, the horizontal reflection or both, respectively. The linear subspaces RST (n), HST (n) and DST (n) of rotationnaly symmetric, horizontally symmetric and dihedrally symmetric binary Steinhaus triangles, respectively, have been studied by André Barbé in [START_REF] Barbé | Symmetric patterns in the cellular automaton that generates Pascal's triangle modulo 2[END_REF], where he determined the dimension of each of them. Bases of RST (n), HST (n) and DST (n) are obtained by Josep Brunat and Montserrat Maureso in [START_REF] Josep | Symmetries in Steinhaus triangles and in generalized Pascal triangles[END_REF]. In Chapter 2, for each of these three linear subspaces, we give new bases which are simpler than those mentioned. They are obtained by considering elementary properties of generalized binomial coefficients. A journal version [C8] of these results is submitted for publication.

Chapter 3 concerns the structure of Steinhaus graphs. A Steinhaus graph of order n is a simple graph whose adjacency matrix has an upper-triangular part which is a binary Steinhaus triangle of size n-1. It is straightforward to see that the set SG(n) of Steinhaus graphs of order n is a vector space over Z/2Z of dimension n -1 that is isomorphic to ST (n -1). This family of simple graphs was introduced by John C. Molluzzo in [START_REF] Molluzzo | Steinhaus graphs. In Theory and applications of graphs[END_REF]. Franz A. Delahan proved in [START_REF] Delahan | Induced embeddings in Steinhaus graphs[END_REF] that any simple graph of order n is isomorphic to an induced subgraph of a Steinhaus graph of order n 2 + 1. A natural problem on Steinhaus graphs is to characterize those, or their associated binary sequences, having a given graph property such as connectedness, planarity, bipartition, regularity, etc. In Chapter 3, we focus on regular Steinhaus graphs, that are Steinhaus graphs where every vertex has the same degree, and on the weaker case of parity-regular Steinhaus graphs, that are Steinhaus graphs for which all the vertex degrees are of the same parity. A parity-regular Steinhaus graph is said to be either even or odd according to the parity of its vertices. The first part of Chapter 3 is a complete study of the linear subspace ESG(n) of even Steinhaus graphs of order n. The characterization of even Steinhaus graphs has already been done by Wayne M. Dymacek in [START_REF] Dymacek | Steinhaus graphs[END_REF], where the dimension of ESG(n) is given by considering that the adjacency matrix of an even Steinhaus graph is symmetric with respect to its anti-diagonal. This result is retrieved here by showing that the anti-diagonal terms of the adjacency matrix of a Steinhaus graph, not necessarily even, can be expressed in function of its vertex degrees. This last result has been published in [C3]. After that, it is shown that there exists an isomorphism between ESG(n) and a certain linear subspace of DST (n). Therefore, using results highlighted in Chapter 2, explicit vector bases of ESG(n) and PRSG(n) are given, for all positive integers n. This new result comes from [C8]. The last part of this chapter concerns regular Steinhaus graphs. The complete list of regular Steinhaus graphs was conjectured by Wayne M. Dymacek in [START_REF] Dymacek | Steinhaus graphs[END_REF]. Since then, this conjecture was verified up to 117 vertices by Shalom Eliahou and Maxime Augier in [START_REF] Augier | Parity-regular Steinhaus graphs[END_REF]. In the end of Chapter 3, we show how results obtained on DST (n) permits us to complete the study of regular Steinhaus graphs and to push forward the verification of Dymacek's conjecture up to 1500 vertices for regular Steinhaus graphs of odd degree. This result has also been published in [C3].

In Chapter 4, the structure of binary Steinhaus triangles is extended to triangles of numbers modulo a positive integer m built with the same local rule as the standard Pascal triangle modulo m. A Steinhaus triangle modulo m is said to be balanced if it contains all the elements of Z/mZ with the same multiplicity. In 1976, John C. Molluzzo asked if there exists a balanced Steinhaus triangle of size n modulo m, for every positive integers m and n such that n+1 2 is divisible by m. For m = 2, it corresponds to the Steinhaus problem introduced in Chapter 1. The Molluzzo problem constitutes the main topic of Chapter 4. Until my doctoral thesis, this problem was solved in the affirmative only for m = 3 and 5 in [START_REF] Bartsch | Steinhaus-Figuren modulo 2 und verallgemeinerte Steinhaus-Dreiecke[END_REF]. Since then, this problem has been positively solved, by constructive approaches, for small values of m: for m ∈ {3, 5, 7} in [C1] and for m = 4 in [C9]. First counter-examples appeared in [C1], where it is proved that there does not exist balanced Steinhaus triangles of size 5 in Z/15Z and of size 6 in Z/21Z. Nevertheless, this problem can be positively answered for an infinite number of values m. In the first part of this chapter, it is shown that there exist balanced Steinhaus triangles, for all the possible sizes, in the case where m is a power of 3. This result is obtained by studying Steinhaus triangles associated with arithmetic progressions. The main result here is that, when m is an odd number, the Steinhaus triangle whose first row is an arithmetic progression with an invertible common difference and of length kαm is balanced, for all non-negative integers k and where α is the multiplicative order of 2 m modulo m. This implies that there exists an infinite number of balanced Steinhaus triangles modulo m, for every odd number m. In particular, when m is a power of 3, this permits to positively answer the Molluzzo problem in this case. This result has been published in [C2]. In the second part of Chapter 4, we are interested in a particular sequence of integers US = (. . . . . . , -3, -3, 5, -2, -2, 3, -1, -1, 1, 0, 0, -1, 1, 1, -3, 2, 2, -5, 3, 3, -7, . . . . . .) that is called the universal sequence. This sequence can be seen as an interlacing of three arithmetic progressions. After studying Steinhaus triangles, or more generally orbits, associated with interlaced arithmetic progressions, we obtain that the orbit of the projection of US in Z/mZ contains infinitely many balanced Steinhaus triangles, when m is odd. More precisely, for every odd number m, this orbit contains balanced Steinhaus triangles of size km, for all non-negative integers k. The proof of this result is based on arithmetic triangles, that are, triangles of numbers modulo m, not necessarily Steinhaus triangles, where all rows and diagonals are arithmetic progressions with the same common differences, respectively. This is a noticeable improvement of the previous result on arithmetic progressions because here we obtain balanced Steinhaus triangles for all sizes multiple of m, not only for multiples of αm. This result does not completely solve the Molluzzo problem for other moduli but, in the case where m is an odd prime power, we know that there exist balanced Steinhaus triangles for 2/3 of the admissible sizes. These results on the universal sequence have been published in [C5]. In the last part of Chapter 4, a construction method that consists in attempting to lift in Z/4Z specific known solutions in INTRODUCTION Z/2Z is detailed. This permits to obtain a complete positive answer to Molluzzo problem for m = 4. Up to now, this is the only known solution to this problem for m > 2 even. This work has been carried out with Shalom Eliahou and has been published in [C9].

In Chapter 5, the structure of Steinhaus triangles is considered for other local rules and for higher dimensions, not only in dimension 2. An additive cellular automaton is a linear map on the set of infinite multidimensional arrays of elements in Z/mZ. In this chapter, we consider simplices appearing in orbits generated from arithmetic arrays by additive cellular automata. We show that they are a source of balanced simplices, that are simplices containing all the elements of Z/mZ with the same multiplicity. For any additive cellular automaton of dimension 1 or higher, the existence of infinitely many balanced simplices of Z/mZ appearing in such orbits is obtained, and this, for an infinite number of values m. The special case of the Pascal cellular automata, the cellular automata generating the Pascal simplices, that are a generalization of the Pascal triangle into arbitrary dimension, is studied in detail. This constitutes a natural generalization of the result obtained on Steinhaus triangles associated with arithmetic progressions in Chapter 4. This generalization has been published in [C6].

The second part of this habilitation thesis is divided into four chapters. Each chapter is about a research topic on which I began to work after my doctoral thesis: numerical semigroups, Tower of Hanoi problems, Ramsey theory and Kneser transversals.

Chapter 6 concerns numerical semigroups. A semigroup is a set with an internal binary operation that is associative. A numerical semigroup S is a subsemigroup of N such that 0 ∈ S and N\S is finite. It is well-known that, for every numerical semigroup S, there exist a minimal nonempty set A = {a 1 , . . . , a n } of relatively prime positive integers such that S = ⟨A⟩, i.e., each element of S can be expressed as x 1 a 1 + • • • + x n a n , where x 1 , . . . , x n are non-negative integers. The set A is called the set of generators of S. For every numerical semigroup S, we consider the locally finite poset (Z, ⩽ S ) induced by S on the set of integers Z defined by x ⩽ S y if and only if y-x ∈ S, for all integers x and y. The Möbius function is an important concept associated with locally finite posets introduced by Gian-Carlo Rota in [START_REF] Rota | On the foundations of combinatorial theory. I. Theory of Möbius functions[END_REF]. In the first part of Chapter 6, we investigate the Möbius function µ S associated with the poset (Z, ⩽ S ), where S is a numerical semigroup. Up to 2013, the only known result concerning µ S was an old theorem due to James A. Deddens in 1979 [START_REF] Deddens | A combinatorial identity involving relatively prime integers[END_REF] that determines the value of µ S when S = ⟨a 1 , a 2 ⟩ has exactly two generators. Here, we introduce a new approach to investigate µ S when S is an arithmetic numerical semigroup, that is, when S = ⟨a, a + d, . . . , a + kd⟩ for some positive integers a, d, k such that a and d are coprime and k < a. The main result obtained here is a recursive formula for µ S when S is an arithmetic numerical semigroup. In particular, this permits us to give a new proof of Dedden's result and an explicit formula in the case where k = 2 and a even, i.e., when S = ⟨2q, 2q + d, 2q + 2d⟩ for relatively prime positive integers q and d. This is a joint work with Jorge Luis Ramírez Alfonsín that has been published in [C16]. After that, we continue the investigation of the Möbius function associated with locally finite posets (Z m , ⩽ S ) arising now from subsemigroups S of Z m . This extends the work introduced before. We develop another approach to study µ S by using the Hilbert series of S. The latter enables us to provide formulas for µ S when S belongs to certain families of semigroups such as semigroups with a unique Betti element or three generated complete intersection numerical semigroups. This second work on µ S has been carried out with Ignacio García-Marco, Luis Pedro Montejano and Jorge Luis Ramírez Alfonsín and has been published in [C10]. The last part of this chapter is about square Frobenius numbers. For every numerical semigroup S, the Frobenius number g(S) is the largest integer which is not an element of S. It is well-known that g(⟨a 1 , a 2 ⟩) = a 1 a 2a 1a 2 . However to calculate g(S) is a difficult problem in general. Here, we consider the following variant of the Frobenius number of S: let 2 r(S) be the largest square number not belonging to S. We give an upper bound for 2 r(S) for all arithmetic numerical semigroups S. The latter turns out to be the exact value of 2 r(⟨s 1 , s 2 ⟩) under certain conditions. We present an exact formula for 2 r(⟨s 1 , s 1 + d⟩) when d = 3, 4 and 5. We study 2 r(⟨s 1 , s 1 + 1⟩) and 2 r(⟨s 1 , s 1 + 2⟩) and put forward two relevant conjectures. This is a joint work with Jorge Luis Ramírez Alfonsín and a journal version [C17] of these results is submitted for publication.

In Chapter 7, Tower of Hanoi problems are discussed. The Tower of Hanoi problem was introduced by Edouard Lucas in 1883 [START_REF] Lucas | Récréations Mathématiques[END_REF] for the case of 3 pegs and n disks of different sizes. Initially, n disks are placed on one of the 3 pegs with the largest at the bottom. Then, at each time one of the topmost disks is moved to a peg with a larger disk on the top or to an empty peg. The goal of the problem is to transfer all the disks from the initial peg to the peg of destination with the minimum number of moves. A simple recursive argument shows that 2 n -1 moves are necessary and sufficient to carry out this task. This Tower of Hanoi problem was then extended to the case of 4 pegs by Dudeney in 1907 [START_REF] Ernest | The Reve's puzzle, the Canterbury puzzles and other curious problems[END_REF] and to arbitrary k ⩾ 3 pegs by Stewart in 1939 [START_REF] Stewart | Advanced problem 3918[END_REF]. In 1941, Frame [START_REF] Frame | Solution to advanced problem 3918[END_REF] and Stewart [START_REF] Stewart | Solution to advanced problem 3918[END_REF] independently proposed algorithms which achieve the same numbers of moves for the k-peg Tower of Hanoi problem with k ⩾ 4 pegs. Thus, these numbers are called the Frame-Stewart numbers. It is known that these numbers are optimal for the 4 pegs problem [START_REF] Bousch | La quatrième tour de Hanoï[END_REF] and they are supposed to be optimal for k > 4 pegs. The Frame-Stewart numbers are defined by the following recurrence relation:

S k (n) = min 1⩽t⩽n 2 • S k (n -t) + S k-1 (t) , S 3 (n) = 2 n -1.
In the first part of Chapter 7, we generalize this recurrence relation to

G k (n) = min 1⩽t⩽n p k • G k (n -t) + q k • G k-1 (t) , G 3 (n) = p 3 • G 3 (n -1) + q 3 ,
for two sequences of arbitrary positive integers (p i ) i⩾3 and (q i ) i⩾3 and we show that the sequence of differences (G k (n) -G k (n -1)) n⩾1 consists of numbers of the form ( k i=3 q i ) • ( k i=3 p i α i ), with α i ⩾ 0 for all i, arranged in nondecreasing order. We also apply this result to analyze recurrence relations for the Tower of Hanoi problems on several graphs. This work has been carried out with Akihiro Matsuura and has been published in [C14]. In the last part of Chapter 7, results obtained about a two-player combinatorial game based on Tower of Hanoi are studied. First, it is well-known that in the 3 pegs problem, the minimal number of moves is 2 n -1 to transfer a tower of n disks. But there are also other variations to the game, involving for example real number weights on the moves of the disks. This gives rise to a similar type of problem, but where the final score seeks to be optimized. We study extensions of the one-player setting to two players, invoking classical winning conditions in combinatorial game theory such as the player who moves last wins, or the highest score wins. Here we solve both these winning conditions on 3 pegs. This is a joint work with Urban Larsson and Akihiro Matsuura that has been published in [C11].

Problems in Ramsey theory typically ask a question of the form: how big must some substructure be to guarantee that a particular property holds? In the first part of Chapter 8, we are interested in a problem of Ramsey theory on numbers. For any positive integers l and m, a set of integers is said to be (weakly) l-sum-free modulo m INTRODUCTION if it contains no (pairwise distinct) elements x 1 , x 2 , . . . , x l , y satisfying the congruence x 1 + . . . + x l ≡ y mod m. It is known that, for any positive integers k and l, there exists a largest integer n for which the set of the first n positive integers {1, 2, . . . , n} admits a partition into k (weakly) l-sum-free sets modulo m. This number is called the generalized (weak) Schur number modulo m, associated with k and l. This is a modular version of the standard (weak) Schur numbers for which only few exact values are known. It is straightforward to see that modular Schur numbers always constitute lower bounds of standard Schur numbers. Here, for all positive integers k and l, the exact value of these modular Schur numbers are determined for the moduli m = 1, 2 and 3. This work has been carried out with María Pastora Revuelta Marchena and María Isabel Sanz Domínguez and has been published in [C18]. In the last part of Chapter 8, several results for Ramsey theory on graphs are exposed. For any simple graphs G and H, let R(G, H) be the smallest integer N such that any 2-coloring (say red and blue) of the edges of the complete graph K n , where n ⩾ N , there is either a red copy of G or a blue copy of H. It is well-known, by Ramsey Theorem, that R(G, H) is always finite, for any graphs G and H. After giving different recursive formulas, we obtain new exact numbers or new bounds on Ramsey numbers for different families of graphs: essentially for complete graphs with a dropped edge or triangle and for complete graphs with dropped stars. This is a joint work with Luis Pedro Montejano and Jorge Luis Ramírez Alfonsín. These results have been published in [C15, C19].

The last chapter of this thesis concerns Kneser transversals. For any positive integers k, d, λ with both d, k ⩾ λ, let m(k, d, λ) be the maximum positive integer n such that every set of n points (not necessarily in general position) in R d has the property that the convex hulls of all k-sets have a common transversal (dλ)-plane. In [START_REF] Arocha | Transversals to the convex hulls of all k-sets of discrete subsets of R n[END_REF], the following inequalities were obtained

d -λ + k + k λ -1 ⩽ m(k, d, λ) < d + 2(k -λ) + 1.
It turns out that m(k, d, λ) is strongly connected with other interesting problems, for instance, the chromatic number of Kneser hypergraphs and a discrete version of Rado's centerpoint theorem. In Chapter 9, we introduce a natural discrete version m * of m by considering the existence of complete Kneser transversals. A complete Kneser transversal of a finite subset X of R d is a (dλ)-plane that is transversal to the convex hulls of all k-sets of X and that contains (dλ) + 1 points of X. We study the relation between m * and m and give a number of lower and upper bounds of m * as well as the exact value in some cases. The main ingredient for proofs are Radon's partition theorem as well as oriented matroids tools. By studying the alternating oriented matroid, we obtain the asymptotic behavior of the function m * for the family of cyclic polytopes. This work has been carried out with Leonardo Martínez-Sandoval, Luis Montejano, Luis Pedro Montejano and Jorge Luis Ramírez Alfonsín and has been published in [C12]. In the last part of Chapter 9, we focus on the existence of (complete) Kneser transversals for λ = 2, 3.

In order to do this, we introduce the notions of stability and instability for (complete) Kneser transversals. We first give a stability result for collections of d + 2(kλ) points in R d with kλ ⩾ 2 and λ = 2, 3. We then present a description of Kneser transversals L of collections of d + 2(kλ) points in R d with kλ ⩾ 2 for λ = 2, 3. We show that either L is a complete Kneser transversal or it contains d -2(λ -1) points and the remaining 2(k -1) points of X are matched in k -1 pairs in such a way that L intersects the corresponding closed segments determined by them. The latter leads to new upper and lower bounds (in the case when λ = 2 and 3) for m(k, d, λ). Finally, by using oriented matroid machinery, we present some computational results (closely related to the stability and unstability notions). We determine the existence of (complete) Kneser transversals for each of the 246 different order types of configurations of 7 points in R 3 . This is also a joint work with Leonardo Martínez-Sandoval, Luis Montejano, Luis Pedro Montejano and Jorge Luis Ramírez Alfonsín and it has been published in [C13].

INTRODUCTION

Part I

Steinhaus triangles and graphs

Chapter 1

Balanced binary triangles

Preliminary results on binary triangles

In this chapter, we mainly consider two kinds of binary triangles built with the same local rule as the Sierpiński triangle or the standard Pascal triangle modulo 2.

Binary Steinhaus triangles

Definition 1.1.1 (Binary Steinhaus triangle). Let n be a positive integer. A binary Steinhaus triangle of size n is a down-pointing triangle (a i,j ) 1⩽i⩽j⩽n of elements of the cyclic group Z/2Z = {0, 1} satisfying the same local rule as the standard Pascal triangle modulo 2, that is, a i,j = a i-1,j-1 + a i-1,j , (LR) for all integers i and j such that 2 ⩽ i ⩽ j ⩽ n, where the sum is the sum in Z/2Z. Note that (0) and (1) are the binary Steinhaus triangles of size 1 and we say that ∅ is the binary Steinhaus triangle of size 0.

An example of a binary Steinhaus triangle of size 7 is depicted in Figure 1.1.

1 0 0 1 0 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 1 1 0 0 1 0 1 It is straightforward to see that ST (n) is a vector space over Z/2Z, by considering the sum (a i,j ) 1⩽i⩽j⩽n + (b i,j ) 1⩽i⩽j⩽n = (a i,j + b i,j ) 1⩽i⩽j⩽n ,
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CHAPTER 1. BALANCED BINARY TRIANGLES for all (a i,j ) 1⩽i⩽j⩽n and (b i,j ) 1⩽i⩽j⩽n in ST (n). Moreover, it is clear that a binary Steinhaus triangle (a i,j ) 1⩽i⩽j⩽n is completely determined by its first row (a 1,j ) 1⩽j⩽n . Indeed, by induction on i and using (LR), we obtain that

a i,j = i-1 k=0 i -1 k a 1,j-k , (1.1) 
for all integers i and j such that 1 ⩽ i ⩽ j ⩽ n, where the binomial coefficient a b is the coefficient of the monomial X b in the expansion of (1 + X) a , for all non-negative integers a and b. Therefore, in the sequel, we use the following Notation 1.1.3. The binary Steinhaus triangle whose first row is the binary sequence S is denoted by ∇S.

The triangle in Figure 1.1 is then ∇(1001000).

For two binary sequences S 1 = (a j ) 1⩽j⩽n and S 2 = (b j ) 1⩽j⩽n of the same length n ⩾ 1, their sum is the sequence S 1 + S 2 = (a j + b j ) 1⩽j⩽n of length n. The set Z/2Z {1,...,n} of binary sequences of length n can then be seen as a vector space over Z/2Z of dimension n. Since the linear map Z/2Z {1,...,n} -→ ST (n) S -→ ∇S is an isomorphism, we obtain the following Proposition 1.1.4. For any non-negative integer n, the set ST (n) is a vector space over Z/2Z of dimension n.

This kind of binary triangles has been introduced by Hugo Steinhaus in his problem book [START_REF] Steinhaus | Sto zadań[END_REF][START_REF] Steinhaus | One hundred problems in elementary mathematics[END_REF], where he posed, as unsolved, the following Problem 1.1.5 [START_REF] Steinhaus | Sto zadań[END_REF]. Does there exist, for every non-negative integer n such that n ≡ 0 or 3 mod 4, a Steinhaus triangle of size n containing as many 0's as 1's?

The triangle ∇(1001000) depicted in Figure 1.1 solves this problem for n = 7, since it contains 14 zeroes and 14 ones. Note that, since a triangle of size n contains n+1 2 elements, the condition n ≡ 0 or 3 mod 4 is a necessary and sufficient condition for having a triangle of size n with an even number of terms. The Steinhaus Problem was solved for the first time by Heiko Harborth in 1972 [START_REF] Harborth | Solution of Steinhaus's problem with plus and minus signs[END_REF]. Since then, many solutions of this problem have appeared in the litterature [START_REF] Eliahou | On a problem of Steinhaus concerning binary sequences[END_REF][START_REF] Eliahou | On symmetric and antisymmetric balanced binary sequences[END_REF][START_REF] Eliahou | Zero-sum balanced binary sequences[END_REF] and [C7]. All known solutions are constructive and some of these will be presented later in this chapter.

It is clear that a generalized Pascal triangle (a i,j ) 1⩽j⩽i⩽n is completely determined by its left side L = (a i,1 ) 1⩽i⩽n and its right side R = (a i,i ) 1⩽i⩽n . Indeed, by induction on i and using (LR), we obtain that

a i,j = i-j+1 k=2 i -k -1 j -2 a k,1 + j k=2 i -k -1 j -k a k,k , (1.2) 
for all integers i and j such that 2 ⩽ j ⩽ i -1 ⩽ n -1. Note that the first terms of L and R correspond.

Notation 1.1.7. We denote by ∆ (L, R) the binary generalized Pascal triangle whose left and right sides are the sequences L and R, respectively.

An example of binary generalized Pascal triangle of size 7 is depicted in Figure 1.2. Moreover, note that, for the constant binary sequences L = R = 1 • • • 1 of length n, the triangle ∆ (L, R) corresponds to the first n rows of the standard Pascal triangle modulo 2, the Sierpiński triangle. 0 0 1 0 1 0 0 1 1 0 1 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 1 1 Figure 1.2: The binary generalized Pascal triangle ∆ (0000101, 0100001) Notation 1.1.8. For any non-negative integer n, the set of binary generalized Pascal triangles of size n is denoted by PT (n).

Proposition 1.1.9. For any positive integer n, the set PT (n) is a vector space over Z/2Z of dimension 2n -1.

Moreover, there exists a natural isomorphism between PT (n) and ST (2n -1), for all positive integers n. Indeed, as depicted in Figure 1.3, a binary generalized Pascal triangle of size n can be seen as a subtriangle of a binary Steinhaus triangle of size 2n -1. More details on this result will be given later.

1 1 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0 1 1 1 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 1 0 0 0 1 1 0 1 

Derived and antiderived sequences of binary sequences

These two kinds of binary triangles are constituted by binary sequences. We continue by introducing the notions of derived and antiderived sequences of binary sequences.

Definition 1.1.10 (Derived sequence). Let S = (a j ) 1⩽j⩽n be a sequence of Z/2Z. The derived sequence ∂S of S is the sequence ∂S = (a j + a j+1 ) 1⩽j⩽n-1

(1.3) of length n -1, when n ⩾ 2, and the empty sequence, when n ⩽ 1.

It is clear that the derivation map ∂ is linear, i.e., ∂(S 1 + S 2 ) = ∂S 1 + ∂S 2 for all binary sequences S 1 and S 2 of same length.

Definition 1.1.11 (Iterated derived sequences). The iterated derived sequences ∂ i S of a finite binary sequence S are recursively defined by

∂ i S = ∂(∂ i-1 S), for all i ⩾ 1, with ∂ 0 S = S.
For any finite binary sequence S, its Steinhaus triangle ∇S can then be seen as the collection (∂ i S) 0⩽i⩽n-1 , where, for every i ∈ {1, . . . , n}, the ith row of ∇S corresponds to the derived sequence ∂ i-1 S.

Definition 1.1.12 (Antiderived sequences). Let S be a binary sequence of length n. An antiderived sequence of S is a sequence T of length n + 1 such that ∂T = S. Notation 1.1.13 (Constant sequences). For any non-negative integer n, the constant sequence of length n equal to x is denoted by (x) n . For n = 1, the sequence (x) 1 is simply denoted by (x).

Proposition 1.1.14. Let S = (a j ) 1⩽j⩽n be a sequence of Z/2Z of length n. The sequence S admits two antiderived sequences T 1 and T 2 and these sequences are complementary, i.e., T 1 + T 2 = (1) n+1 . For any i ∈ {1, . . . , n + 1} and any x ∈ Z/2Z, the antiderived sequence of S whose ith term is x is the sequence i,x S = (b j ) 1⩽j⩽n+1 of length n + 1 defined by

b j = x + i-1 k=1 a k + j-1 k=1 a k , (1.4) 
for all j ∈ {1, . . . , n + 1}.

For example, the sequence S = 0100 admits the two antiderived sequences 00111 and 11000. Further, it is straightforward to obtain a fundamental theorem of calculus.

Proposition 1.1.15. Let S = (a j ) 1⩽j⩽n be a binary sequence of length n. For any i ∈ {1, . . . , n + 1} and any x ∈ Z/2Z, we have that

i) ∂ i,x S = S, ii) i,x (∂S) = S + (a i + x) n .
The notions of derived sequences and antiderived sequences can easily be adapted for infinite binary sequences. A similar result as Proposition 1.1.15 has been obtained in this case in [START_REF] Nathanson | Derivatives of binary sequences[END_REF].

PRELIMINARY RESULTS ON BINARY TRIANGLES

The multiplicity function of binary triangles

Binary triangles also can be seen as finite multisets of elements of Z/2Z. Notation 1.1.16. For any finite multiset M of elements of Z/2Z, let m M denote its multiplicity function, that is, the function m M : Z/2Z -→ N that assigns to each element x ∈ Z/2Z its multiplicity in M . The cardinality of M is then the sum |M | = m M (0) + m M (1).

For any binary sequence S, since every element of the triangle ∇S can be expressed in function of the terms of the sequence S by (1.1), it is easy to see that the parity of m ∇S (1) is only related to the terms of the sequence S.

Proposition 1.1.17 (Harborth [71] -Chang [START_REF] Chang | Binary triangles[END_REF]). Let S = (a j ) 1⩽j⩽n be a binary sequence of length n. Then,

m ∇S (1) ≡ n j=1 n + 1 k + 1 a j (mod 2).
Moreover, m ∇S (1) is even for all binary sequences of length n if and only if n = 2 k -2, for some k ⩾ 2

The smallest and largest number of each element in a binary triangle are known.

Notation 1.1.18. For any n 1 -tuple X 1 and any n 2 -tuple X 2 ,

X 1 = (a 0 , a 1 , . . . , a n 1 -1 ) and X 2 = (b 0 , b 1 , . . . , b n 2 -1 ), the concatenation X 1 .X 2 is the (n 1 + n 2 )-tuple X 1 .X 2 = (a 0 , a 1 , . . . , a n 1 -1 , b 0 , b 1 , . . . , b n 2 -1 ).
For any n-tuple X, the kn-tuple X k is recursively defined by X k = X.X k-1 for all integers k ⩾ 2, with X 1 = X. For any n-tuple X = (a 0 , a 1 , . . . , a n-1 ), the infinite sequence X ∞ = (b j ) j∈N is defined by b kn+j = a j for all k ∈ N and for all j ∈ {0, 1, . . . , n -1}. For any infinite sequence S = (a j ) j∈N and any positive integers n 1 and n 2 such that n 1 ⩽ n 2 , we denote by S[n 1 , n 2 ] the subsequence S[n 1 , n 2 ] = (a n 1 , a n 1 +1 , . . . , a n 2 ). Moreover, for any positive integer n, we denote by S[n] the initial segment of length n of S, that is, the n-tuple S[n] = S[0, n -1] = (a 0 , a 1 , . . . , a n-1 ).

Proposition 1.1.19 (Harborth [71] -Chang [START_REF] Chang | Binary triangles[END_REF]). For any binary sequence S of length n, we have

0 ⩽ m ∇S (1) ⩽ 2 3 n + 1 2 . Moreover, m ∇S (1) = 0 if and only if S = (0) n and m ∇S (1) = 2 3 n+1 2 if and only if S is in {(110) ∞ [n], (101) ∞ [n], (011) ∞ [n]} for n ≡ 0, 2 (mod 3), {(110) ∞ [n], (101) ∞ [n]} for n ≡ 1 (mod 3).
Proposition 1.1.20 ). For any binary generalized Pascal triangle ∆ of size n, we have

0 ⩽ m ∆ (1) ⩽ 2 3 n + 1 2 + ε, CHAPTER 1. BALANCED BINARY TRIANGLES where ε =        2 if n ≡ 1 mod 3, n ̸ = 1, 1 if n ≡ 0, 2 mod 3, n ̸ = 8, 0 if n = 1, 3 if n = 8.
Determining all possible values of the multiplicity function of a binary triangle is a very difficult problem. However, Chang managed to obtain in [START_REF] Chang | Binary triangles[END_REF] the four smallest and three largest possible numbers of 1's in binary Steinhaus triangles.

Proposition 1.1.21 (Chang [42]). Let S be a binary sequence of length n ⩾ 1. If m ∇S (1) > 0, then m ∇S (1) ⩾ n. Moreover, m ∇S (1) = n if and only if S is one of the following sequences:

• 1 • • • 1, 10 • • • 0 and 0 • • • 01,
• 010 for n = 3. Proposition 1.1.22 (Chang [42]). Let S be a binary sequence of length

n ⩾ 4. If m ∇S (1) > n, then m ∇S (1) ⩾ n -1 + n 2 . Moreover, m ∇S (1) = n -1 + n 2
if and only if S is one of the following sequences:

• 010 • • • 0 and 0 • • • 010, • 0 • • • 011 and 110 • • • 0, • (01) n 2 and (10) n 2 if n is even and 0(10) n-1 2 if n is odd,
• 001100, 001000 and 000110 for n = 6,

• 0001000 for n = 7.

Proposition 1.1.23 (Chang [42]). Let S be a binary sequence of odd length n ⩾ 5. Then, m ∇S (1) = n -1 + n+1 2 if and only if S is one of the following sequences:

• 1(01) n-1 2 , • 0 • • • 011 and 110 • • • 0,
• 00100, 01100 and 00110 for n = 5.

Proposition 1.1.24 (Chang [42]). Let S be a binary sequence of length n ⩾ 7.

If m ∇S (1) > n -1 + n 2 , then m ∇S (1) ⩾ 2n -4 if n ≡ 2 mod 4 or n = 11, 2n -3 otherwise.
Proposition 1.1.25 (Chang [42]). Let S be a binary sequence of length n ⩾ 1. Then,

m ∇S (1) = 2 3 n+1 2
-1 if and only if S is one of the following sequences: for n ≡ 1 mod 3.

• 0 for n = 1, • 111 
Proposition 1.1.26 (Chang [42]). Let S be a binary sequence of length n ⩾ 6. If

m ∇S (1) < 2 3 n+1 2 -1, then m ∇S (1) ⩽ n 2 +1 3 . Moreover, if m ∇S (1) = n 2 +1 3
, then the sequence S cannot contain three consecutive 0's, except for the sequences 110001 and 100011 for n = 6 and 110001110 and 011100011 for n = 9.

The average number of each element in binary triangles

For any positive integer n and every x ∈ Z/2Z, it is possible to determine the average number of x in a binary triangle of size n, i.e.,

1 2 n ∇∈ST (n) m ∇ (x) and 1 2 2n-1 ∆∈PT (n) m ∆ (x).
Proposition 1.1.27. For any non-negative integer n, the average number of 0's and 1's in a binary Steinhaus triangle or in a binary generalized Pascal triangle of size n is exactly 1 2 n+1 2 .

Proof. Since any binary sequence S of length n admits exactly two antiderived sequences i,0 S and i,1 S with i,0 S + i,1 S = (1) n+1 from Proposition 1.1.14.

The Steinhaus Problem then corresponds to the determination of the existence of binary Steinhaus triangles with an average number of 0's and 1's, that are binary Steinhaus triangles ∇ with m ∇ (0) = m ∇ (1).

Definition 1.1.28 (Balanced multiset). A finite multiset M of elements of Z/2Z is said to be balanced if m M (0) = m M (1). Note that the cardinality of a balanced multiset is an even number.

For instance, since they contain 14 zeroes and 14 ones, the triangles depicted in This chapter is organized as follows. In the next section, solutions of the Steinhaus Problem based on pseudo-periodic binary sequences are presented. After that, a recent solution of Problem 1.1.32 is studied in details in Section 3. This problem is positively solved in this chapter by considering fully periodic binary sequences generating triangles that have a periodic structure.

Pseudo-periodic balanced binary Steinhaus triangles

In this section, different solutions of the Steinhaus Problem are presented. All these solutions are constructive and balanced binary triangles given here are always associated with binary sequences that are pseudo-periodic.

Binary Steinhaus triangles of pseudo-periodic sequences

Definition 1.2.1 (Pseudo-periodic sequences). Let u = (u n ) n∈N be a (finite or infinite) sequence indexed on N = N or N = {0, 1, . . . , m}, with m ∈ N.

i) The sequence u is said to be periodic if there exists a positive integer p such that u n+p = u n , for all n ∈ N such that n + p ∈ N . Then, we say that the sequence u is p-periodic of period P = {u 0 , . . . , u p-1 }.

ii) The sequence u is said to be pseudo-periodic if there exists positive integers i and p such that u n+p = u n , for all n ∈ N \ {0, . . . , i -1} such that n + p ∈ N . Then, we say that the sequence u is (i, p)-pseudo-periodic of period P = {u i , . . . , u i+p-1 } from

I = {u 0 , . . . , u i-1 }.
The interest of pseudo-periodic sequences is that this structure is preserved under the derivation process.

Proposition 1.2.2. Let I = {x 1 , . . . , x i } be an i-tuple and P = {y 1 , . . . , y p } be a p-tuple of elements in Z/2Z. Then, the derived sequence ∂S of the (i, p)-pseudo-periodic sequence S = I.P ∞ is also an (i, p)-pseudo-periodic sequence. More precisely, we have

∂ (I.P ∞ ) = I ′ .P ′ ∞ ,
with I ′ = (x 1 + x 2 , x 2 + x 3 , . . . , x i + y 1 ) and P ′ = (y 1 + y 2 , y 2 + y 3 , . . . , y p + y 1 ).

Moreover, the sequence of derived sequences of a pseudo-periodic sequence is also pseudo-periodic.

Proposition 1.2.3. For any pseudo-periodic binary sequence S, the sequence of derived sequences (∂ i S) i⩾0 is pseudo-periodic.

Proof. Suppose that S is an (i, p)-pseudo-periodic binary sequence. We know from Proposition 1.2.2 that the sequence ∂ k S is also an (i, p)-pseudo-periodic sequence, for all k ⩾ 0. Since the number of (i, p)-pseudo-periodic binary sequences is finite (2 i+p ), it follows that there exist integers k 1 and k 2 such that 0

⩽ k 1 < k 2 and ∂ k 1 S = ∂ k 2 S. We conclude that the sequence ∂ k S k⩾0 is (k 1 , k 2 -k 1 )-pseudo-periodic.
Let S be an (i, p)-pseudo-periodic binary sequence. From Proposition 1.2.2, we know that all its iterated derived sequences ∂ k S are also (i, p)-pseudo-periodic, for all k ⩾ 0, and from Proposition 1.2.3, there exist non-negative integers i ′ and p ′ such that the sequence ∂ k S k⩾0 is (i ′ , p ′ )-pseudo-periodic. Then, for α = lcm(i, p, i ′ , p ′ ), we have that the sequence ∂ k S k⩾0 and every derived sequence ∂ k S, for all k ⩾ 0, are (α, α)-periodic. It follows that binary Steinhaus triangles ∇S[kα] have an iterative structure, as depicted in Figure 1.4.

A 0 A 1 A 2 A 2 A 2 B 0 B 1 B 2 B 2 B 0 B 1 B 2 B 0 B 1 B 0 Figure 1.4: Structure of

binary Steinhaus triangles of pseudo-periodic sequences

Proposition 1.2.4. Let S be an (α, α)-pseudo-periodic binary sequence such that its sequence of iterated derived sequences (∂ i S) i⩾0 is also (α, α)-pseudo-periodic. Then, the triangles ∇S[kα] are balanced for all k ⩾ 0 if and only if they are balanced for all k ∈ {1, 2, 3, 4}.

Harborth's solution for the Steinhaus Problem

The first solution for the Steinhaus Problem appeared in 1972 in [START_REF] Harborth | Solution of Steinhaus's problem with plus and minus signs[END_REF], where Harborth has shown that there exist, for all the admissible sizes, balanced Steinhaus triangles whose first row is a pseudo-periodic sequence of period length 12 and for which the sequence of iterated derived sequences is fully periodic of period length 12.

CHAPTER 1. BALANCED BINARY TRIANGLES Theorem 1.2.5 (Harborth [71]). For any l ∈ {3, 4, 7, 8, 11, 12}, there exist I ∈ {0, 1} l and P ∈ {0, 1} 12 such that the sequence (∂ i (I.P ∞ )) i⩾0 of derivatives of I.P ∞ is 12-periodic, i.e., ∂ 12 (I.P ∞ ) = I.P ∞ , and such that the Steinhaus triangle ∇ I.P k , of size 12k + l, is balanced, for all k ⩾ 0.

The method can easily be explained: after determining the set of tuples I and P such that ∂ 12 (I.P ∞ ) = I.P ∞ , the periodic structure of ∇ I.P k , as depicted in Figure 1.5, implies that the Steinhaus triangles ∇ I.P k are balanced, for all k ⩾ 0, if and only if the elementary blocks .

B 0 = ∇I B 1 = ∇(I.P ) \ (B 0 ⊔ B 0 ) B 2 = ∇(I.P 2 ) \ (∇(I.P ) ⊔ B 0 ⊔ B 1 ) are balanced. B 0 B 1 B 2 B 2 B 0 B 1 B 2 B 0 B 1 B 0 Figure 1
In [START_REF] Eliahou | On a problem of Steinhaus concerning binary sequences[END_REF], Eliahou and Hachez have shown that there exist, for all non-negative integers n such that n ≡ 0 or 3 mod 4, strongly balanced Steinhaus triangles of size n. More precisely, they completely determined the set of sequences generating strongly balanced Steinhaus triangles of size n, for all admissible sizes. Theorem 1.2.7 (Eliahou-Hachez [START_REF] Eliahou | On a problem of Steinhaus concerning binary sequences[END_REF]). The generating function g(t) = ∞ n=0 sb(n)t n of the number sb(n) of strongly balanced Steinhaus triangles of size n is given by the following rational function: Considering the binary sequences Q 1 , . . . , Q 4 and R 1 , . . . , R 12 of Table 1.1, the set of strongly balanced Steinhaus triangles of sufficiently large size can then be described. [START_REF] Sturmfels | Gröbner bases and convex polytopes[END_REF] . (110110000111) ∞ The method can easily be explained: assume that the binary sequence X of length n generates a strongly balanced Steinhaus triangle. An extension of X is any binary sequence Y such that Y [n] = X. Let Y be any one of the 16 possible extensions of X of CHAPTER 1. BALANCED BINARY TRIANGLES length n + 4. Then, the Steinhaus triangle ∇Y is strongly balanced if and only if ∇Y is balanced. This holds because ∇X is itself strongly balanced.

g(t) = 4t 92 1 -t 4 + f 0 (t) + (14 + 12t 4 + 14t 8 ) t 127 1 -t 12 + f 3 (t),
Q 1 (0100) . (001001011100) ∞ Q 2 (010010000111) ∞ Q 3 (0101) . (011000011000) ∞ Q 4 (0101) . (101000101000) ∞ R 1 (001) . (010000100001) ∞ R 2 (0011110) . (001101010110) ∞ R 3 (010) . (000101000010) ∞ R 4 (0100001) . (010010111100001010111111) ∞ R 5 (0100001) . (100100001001) ∞ R 6 (0101011) . (010101100011) ∞ R 7 (0101011) . (010111111101011010011101) ∞ R 8 (010) . (101110110010) ∞ R 9 (100) . (001000010100) ∞ R 10 (1000010) . (110001101010) ∞ R 11 (1111101) . (011000110101) ∞ R 12
Note that the sequences in Theorem 1.2.8 are pseudo-periodic of period length 12 or 24, as in the Harborth's proof. The proof directly follows from the pseudo-periodic structure of the triangles as depicted in Figure 1.6 where the blocks

T , A 1 , A 3 , B 1 ⊔ B 3 , C 1 ⊔ C 3 , A 2 , B 2 and C 2 are balanced. T A 1 B 1 C 1 A 1 B 1 C 1 A 1 B 1 C 1 A 3 B 3 C 3 A 3 B 3 C 3 A 3 B 3 C 3 A 2 B 2 C 2 A 2 B 2 C 2 A 2 B 2 C 2 Figure 1.6: Structure of the Steinhaus triangle ∇(Q 1 [52])

Other solutions for the Steinhaus Problem

There exist other interesting solutions to the Steinhaus Problem. Definition 1.2.9. Let S = (a j ) 1⩽j⩽n be a sequence of Z/2Z of length n. The reversed sequence of S is the sequence S = (a n-j+1 ) 1⩽j⩽n . The sequence S is said to be symmetric if S = S, i.e., if a n-j+1 = a j , for all j ∈ {1, . . . , n}. It is said to be antisymmetric if S + S = (1) n , i.e., if x n-j+1 ≡ x j + 1 mod 2, for all j ∈ {1, . . . , n}.

A solution, based on binary Steinhaus triangles generated from symmetric and antisymmetric sequences, appeared in [START_REF] Eliahou | On symmetric and antisymmetric balanced binary sequences[END_REF].

Theorem 1.2.10 (Eliahou-Hachez [START_REF] Eliahou | On symmetric and antisymmetric balanced binary sequences[END_REF]). Let n be a non-negative integer. i) There exists a symmetric binary sequence of length n that generates a balanced Steinhaus triangle if and only if n ≡ 0, 3 or 7 mod 8.

ii) There exists an antisymmetric binary sequence of length n that generates a balanced Steinhaus triangle if and only if n ≡ 4 mod 8.

Another solution, based on Steinhaus triangles generated from balanced binary sequences, that are binary sequences containing as many 0's as 1's, can be found in [START_REF] Eliahou | Zero-sum balanced binary sequences[END_REF].

PERIODIC ALMOST-BALANCED BINARY TRIANGLES

Theorem 1.2.11 (Eliahou-Marín-Revuelta [START_REF] Eliahou | Zero-sum balanced binary sequences[END_REF]). For any integer n divisible by 4, there exists a balanced binary sequence of length n that generates a balanced Steinhaus triangle. This produces a complete solution for the Steinhaus Problem since if S is a balanced binary sequence of length n ≡ 0 mod 4 such that ∇S is balanced, then it is clear that ∇(∂S) is a balanced Steinhaus triangle of size n -1 ≡ 3 mod 4.

Note that the solutions in [START_REF] Eliahou | On symmetric and antisymmetric balanced binary sequences[END_REF][START_REF] Eliahou | Zero-sum balanced binary sequences[END_REF] admit a pseudo-periodic structure too. In the next section, a fully periodic solution of the Steinhaus Problem is given.

Periodic almost-balanced binary triangles

In this section, we present a recent solution (Chappelon 2017 [C7]) of Problem 1.1.32, that is a generalization of the Steinhaus Problem in two directions: for binary generalized Pascal triangles and when the number of elements constituting a triangle is odd. This problem is solved in the positive in this section. The solution presented here is constructive and based on periodic binary triangles, that are binary triangles where each row or column is a periodic sequence.

Orbits of doubly infinite binary sequences

Let us begin with some definitions and terminology. As for infinite or finite binary sequences, the derivation process can be considered on doubly infinite binary sequences.

Definition 1.3.1 (Derived sequence). Let S = (a j ) j∈Z be a doubly infinite sequence of Z/2Z. The derived sequence ∂S is the sequence ∂S = (a j-1 + a j ) j∈Z .

This derivation process can be iterated and, for every positive integer i, the i-th derived sequence ∂ i S is recursively defined by

∂ i S = ∂ (∂ i-1 S), with ∂ 0 S = S.
Definition 1.3.2 (Orbit). Let S = (a j ) j∈Z be a doubly infinite sequence of Z/2Z. The orbit O S is the sequence of all the iterated derived sequences of S, that is,

O S = ∂ i S i∈N .
The orbit of S can also be seen as the doubly indexed sequence O S = (a i,j ) (i,j)∈N×Z recursively defined by i) a 0,j = a j , for all j ∈ Z, and ii) a i,j = a i-1,j-1 + a i-1,j , for all i ⩾ 1 and for all j ∈ Z.

Using the local rule (LR), it is straightforward to see that any element of the orbit O S can be expressed in function of the terms of the sequence S.

Proposition 1.3.3. Let S = (a j ) j∈Z be a doubly infinite sequence of Z/2Z. In the orbit O S = (a i,j ) (i,j)∈N×Z , we have 0 1 0 1 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 1 0 0 1 1 1 1 1 0 1 0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 1 0 1 1 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 0 0 0 1 0 1 0 0 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1 0 1 1 0 0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 1 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 1 1 0 1 0 1 0 i) Let ∇S(i , j 0 , n) denote the down-pointing triangle whose principal vertex is at the position (i 0 , j 0 ) ∈ N × Z in the orbit O S = (a i,j ) (i,j)∈N×Z and of size n, i.e., the binary Steinhaus triangle ∇S(i 0 , j 0 , n) = (a i 0 +i,j 0 +j ) 0⩽i⩽j⩽n-1 .

a i,j = i k=0 i k a j-k , for all (i, j) ∈ N × Z.
ii) Let ∆S(i 0 , j 0 , n) denote the up-pointing triangle whose principal vertex is at the position (i 0 , j 0 ) ∈ N × Z in the orbit O S and of size n, i.e., the binary generalized Pascal triangle

∆S(i 0 , j 0 , n) = (a i 0 +i,j 0 +j ) 0⩽j⩽i⩽n-1 .
The main result of this section is the following Theorem 1.3.5 (Chappelon [C7]). There exists a binary doubly infinite sequence S such that its orbit O S contains almost-balanced Steinhaus triangles and almost-balanced generalized Pascal triangles of size n, for all non-negative integers n.

This theorem positively solves Problem 1.1.32 for the two kinds of triangles, even when the triangles contain an odd number of terms. Note that the existence of almost-balanced Steinhaus triangles with odd cardinality was first announced, without proof, in [START_REF] Eliahou | On a problem of Steinhaus concerning binary sequences[END_REF]. For the generalized Pascal triangles, the result was known but has not been published before.
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Periodic orbits

The definition and notations for (in)finite periodic sequences previously used can be extended to the case of doubly infinite periodic sequences. Notation 1.3.6. For any n-tuple X = (a 0 , a 1 , . . . , a n-1 ), the doubly infinite sequence X ∞ = (b j ) j∈Z is defined by b kn+j = a j for all k ∈ Z and for all j ∈ {0, 1, . . . , n -1}. For any doubly infinite sequence S = (a j ) j∈Z and any positive integer n, we denote by S[n] the initial segment of length n of S, that is, the n-tuple S[n] = (a 0 , a 1 , . . . , a n-1 ).

Definition 1.3.7 (Periodic sequence). Let p be a positive integer and let S = (a j ) j∈Z be a doubly infinite sequence of elements in Z/2Z. The sequence S is said to be periodic of period p, or p-periodic, if a j+p = a j for all j ∈ Z. The p-periodicity of S is denoted by S = (a 0 , a 1 , . . . , a p-1 ) ∞ , where the p-tuple (a 0 , a 1 , . . . , a p-1 ) is a period of S.

As for (in)finite binary sequences, it is clear that the periodicity of a doubly infinite sequence is preserved under the derivation process.

Proposition 1.3.8. For any p-tuple (a 0 , a 1 , . . . , a p-1 ) of Z/2Z, we have

∂ (a 0 , a 1 , . . . , a p-1 ) ∞ = (a p-1 + a 0 , a 0 + a 1 , . . . , a p-2 + a p-1 ) ∞
Moreover, its sequence of derived sequences is pseudo-periodic.

Proposition 1.3.9 (Chappelon [C7]). The orbit of a periodic sequence is a pseudoperiodic sequence.

Proof. As in the proof of Proposition 1.2.3.

Here, we will study the special case where the orbit is fully periodic.

Definition 1.3.10 (Periodic orbit). Let S be a doubly infinite binary sequence. Its orbit O S = (a i,j ) (i,j)∈N×Z is said to be p-periodic if every row and every column is a p-periodic sequence, i.e., if the equalities a i,j+p = a i,j and a i+p,j = a i,j hold for all i ∈ N and all j ∈ Z. In other words, the orbit (a i,j ) (i,j)∈N×Z is p-periodic if the equality a i,j = a i,j holds, for all (i, j) ∈ N × Z, where x is the remainder in the euclidean division of x by p. Any square P i 0 ,j 0 = (a i 0 +i,j 0 +j ) 0⩽i,j⩽p-1 of size p is said to be a period of the p-periodic orbit O S .

Remark 1.3.11. All the periods of a p-periodic orbit have the same multiplicity function, i.e., we have m P i 0 ,j 0 = m P 0,0 for all (i 0 , j 0 ) ∈ N × Z.

For example, as depicted in Figure 1.8, the orbit O X ∞ associated with the 6-tuple X = 010100 is 6-periodic. Note that a binary triangle appearing in a periodic orbit is simply a periodic binary triangle, as defined above.

The set of p-tuples of Z/2Z that generate p-periodic orbits is given in the following 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1

Figure 1.8: The 6-periodic orbit O 010100 ∞ Theorem 1.3.12 (Harborth [START_REF] Harborth | Solution of Steinhaus's problem with plus and minus signs[END_REF] -Chappelon [C7]). The orbit O X ∞ associated with the p-tuple X = (a 0 , a 1 , . . . , a p-1 ) is p-periodic if and only if the vector v X = (a 0 , a 1 , . . . , a p-1 ) t is in the kernel of the matrix W p which is the Wendt matrix of size p modulo 2, i.e., the circulant matrix of the binomial coefficients modulo 2

W p =         p p p p-1 p p-2 • • • p 1 p 1 p p p p-1 • • • p 2 . . . . . . . . . . . . p p-1 p p-2 p p-3 • • • p p         . Notation 1.3.13. The set of p-tuples X that generate p-periodic orbits O X ∞ is denoted by PO p .
The set PO p is then a Z/2Z-vector space isomorphic to the kernel of the Wendt matrix W p of size p modulo 2. We recall here that the 6-tuple X = 010100 generates a 6-periodic orbit as depicted in Figure 1.8.
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Symmetry group of PO p

In this subsection, a symmetry group on the set of p-tuples that generate p-periodic orbits is defined. First, the notion of translation and the action of the dihedral group D 3 on periodic orbits are introduced.

Translation

Definition 1.3.14. Let O X ∞ = (a i,j ) (i,j)∈N×Z be the p-periodic orbit associated with X = (a 0 , a 1 , . . . , a p-1 ) ∈ PO p . The translate of X by the vector

(u, v) ∈ Z 2 is the p-tuple t u,v (X) = (a -u,j-v ) 0⩽j⩽p-1 .
From Proposition 1.3.3, we know that

t u,v (X) = -u k=0 -u k a j-v-k 0⩽j⩽p-1
.

From the definition of t u,v (X), it is clear that

O tu,v(X) ∞ = a i-u,j-v (i,j)∈N×Z .
Therefore t u,v is an automorphism of PO p . Moreover, the application

(Z 2 , +) -→ (Aut(PO p ), •) (u, v) -→ t u,v
is a group morphism. For example, the translate of the 6-tuple 010100 ∈ PO 6 (Figure 1.8) by the vector (2, 3) is t 2,3 (010100) = 101000, as we can see in its orbit O t 2,3 (010100) ∞ = O 101000 ∞ depicted in Figure 1.9.

1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 Figure 1.9: The translate t 2,3 (010100) = 101000

The dihedral group D 3 First, consider the binary Steinhaus triangles ∇S = (a i,j ) 0⩽i⩽j⩽n-1 of size n. The left and right sides of ∇S are the sequences l(S) = (a n-1-i,n-1-i ) 0⩽i⩽n-1 and r(S) = (a i,n-1 ) 0⩽i⩽n-1 , CHAPTER 1. BALANCED BINARY TRIANGLES respectively. From (1.1), we know that l(S) and r(S) can be expressed as functions of the elements of S = (a j ) 0⩽j⩽n-1

l(S) = n-1-i k=0 n -1 -i k a n-1-i-k 0⩽i⩽n-1 and r(S) = i k=0 i k a n-1-k 0⩽i⩽n-1
.

The reversed sequence of S is the sequence read from the right to the left, that is i(S) = (a n-1-j ) 0⩽j⩽n-1 . Due to the symmetries involved in the local rule that generates ∇S, the Pascal local rule modulo 2, it is known that the Steinhaus triangles ∇l(S), ∇r(S) and ∇i(S) correspond to the rotations of ∓120 degrees around the center of the triangle ∇S and the reflection across the vertical line through the center of ∇S, respectively. More precisely, for all integers i and j such that 1 ⩽ i ⩽ j ⩽ n -1, we have

a i-1,j-1 + a i-1,j = a i,j ⇐⇒ a i-1,j + a i,j = a i-1,j-1 ⇐⇒ a i-1,j-1 + a i,j = a i-1,j . (1.5) Therefore ∇l(S) = ∇(a n-1-j,n-1-j ) 0⩽j⩽n-1 = (a n-1-j,n-1-j+i ) 0⩽i⩽j⩽n-1 , ∇r(S) = ∇(a j,n-1 ) 0⩽j⩽n-1 = (a j-i,n-1-i ) 0⩽i⩽j⩽n-1 , ∇i(S) = ∇(a 0,n-1-j ) 0⩽j⩽n-1 = (a i,n-1+i-j ) 0⩽i⩽j⩽n-1 . Since r 3 = i 2 = (ir) 2 = id (Z/2Z) n ,
the subgroup of (Aut((Z/2Z) n ), •), the group of automorphisms of the vector space of n-tuples over Z/2Z, generated by r and i is isomorphic to the dihedral group D 3 r, i r 3 = i 2 = (ir) 2 = id (Z/2Z) n = D 3 .

As depicted in Figure 1.10, it is easy to see that the multiplicity function of a Steinhaus triangle is invariant under the action of the dihedral group D 3 . Indeed, for any finite sequence S, we have m ∇S = m ∇r(S) = m ∇i(S) . The study of rotationally symmetric triangles and dihedrally symmetric triangles, that are triangles ∇S such that S = r(S) and S = r(S) = i(S), respectively, can be found in [START_REF] Barbé | Symmetric patterns in the cellular automaton that generates Pascal's triangle modulo 2[END_REF][START_REF] Josep | Symmetries in Steinhaus triangles and in generalized Pascal triangles[END_REF] and [C8] and in next chapter. Now, we consider the restrictions of r and i to the vector space PO p of p-tuples that generate p-periodic orbits. Since we only consider these restrictions, they are also denoted by r and i in the sequel.

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 1 0 1 0 1 0 1 1 1 0 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 0 1 0 1 1 0 ∇S ∇r(S) ∇r 2 (S) ∇i(S) ∇ri(S) ∇r 2 i(S)
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Proposition 1.3.15 (Chappelon [C7]). For all positive integers p, we have

r (PO p ) = i (PO p ) = PO p .
It follows that r and i are automorphisms of the vector space PO p and the subgroup of (Aut(PO p ), •) generated by r and i is also isomorphic to the dihedral group D 3 D 3 = ⟨r, i⟩ = id POp , r, r 2 , i, ri, r 2 i .

More precisely, for any p-tuple X, we have

O X ∞ = (a i,j ) (i,j)∈N×Z O i(X) ∞ = (a i,i-j-1 ) (i,j)∈N×Z O r(X) ∞ = (a j-i,-i-1 ) (i,j)∈N×Z O ri(X) ∞ = (a -j-1,-i-1 ) (i,j)∈N×Z O r 2 (X) ∞ = (a -j-1,i-j-1 ) (i,j)∈N×Z O r 2 i(X) ∞ = (a j-i,j ) (i,j)∈N×Z
For instance, a representation of O g(010100) ∞ for all g ∈ D 3 is given in Figure 1.11.

1 1 0 0 1 1 1 1 0 0 1 0 1 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 1 1 1 1 0

0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 O X ∞ O r(X) ∞ O r 2 (X) ∞
1 1 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 1 0 1 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0 0 1

O i(X) ∞ O ri(X) ∞ O r 2 i(X) ∞ Figure 1.11: Action of D 3 on O 010100 ∞
The symmetry group of PO p

Let G be the subgroup of (Aut(PO p ), •) generated by r, i, t 1,0 and t 0,1 , that is,

G := ⟨r, i, t 1,0 , t 0,1 ⟩ .
As in D 3 , the equality ir = r 2 i holds in G. The equalities involving the translations are listed below.

Proposition 1.3.16. For all (u, v) ∈ Z 2 , the equalities rt u,v = t v-u,-u r and it u,v = t u,u-v i hold.

From these equalities, it is clear that each element g ∈ G can be uniquely written as since 001010 = t 0,5 (000101) 100010 = t 0,1 (000101) 101101 = t 0,1 (011011) 001111 = t 1,3 (000101) 100111 = t 1,4 (000101) 110110 = t 0,2 (011011) 010001 = t 0,2 (000101) 101000 = t 0,3 (000101) 010100 = t 0,4 (000101) 110011 = t 1,5 (000101) 011110 = t 1,2 (000101) 111001 = t 1,0 (000101

g = t u,v r α i β with u, v ∈ {0,
) 111100 = t 1,1 (000101) 
The 6-periodic orbits associated with these 3 equivalence classes are depicted in Figure 1.12. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 1 0 1 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 Figure 1.12: The set PO 6 = 000000, 000101, 011011 In this subsection, we determine necessary and sufficient conditions for obtaining, in a p-periodic orbit, an infinite family of almost-balanced Steinhaus triangles with the same principal vertex.

Proposition 1.3.17 (Chappelon [C7]). Let S = X ∞ with X ∈ PO p , (i 0 , j 0 ) ∈ N × Z and r ∈ {0, 1, . . . , p -1}. The Steinhaus triangles

T k := ∇S(i 0 , j 0 , kp + r)
are almost-balanced for all non-negative integers k if and only if the triangle T 0 , the multiset difference T 1 \ T 0 and the period P are almost-balanced, with p divisible by 4. This is the reason why, in the sequel of this section, we only consider p-periodic orbits with a balanced period and where p is divisible by 4.

Note that the period of the orbit generated from every element of a same equivalence class of PO p has the same multiplicity function. Let us denote by BPO p the set of all the equivalence classes of PO p having a balanced period. 

Periodic almost-balanced binary triangles

In this subsection we will prove Theorem 1.3.5, the main result of this section.

Let X be a p-tuple of Z/2Z, with p divisible by 4, such that X is in BPO p and let S := X ∞ . Now, for each remainder r ∈ {0, 1, . . . , p -1} and for each position (i 0 , j 0 ) ∈ {0, 1, . . . , p -1} 2 , we test if the blocks ∇S(i 0 , j 0 , r) and ∇S(i 0 , j 0 , p + r) \ ∇S(i 0 , j 0 , r) are almost-balanced. If this is the case, we know from Proposition 1.3.17 that the Steinhaus triangles ∇S(i 0 , j 0 , kp + r) are almost-balanced for all non-negative integers k.

Let R X denote the set of remainders r ∈ {0, 1, . . . , p -1} for which there exists a position (i 0 , j 0 ) ∈ {0, 1, . . . , p -1} 2 such that the Steinhaus triangles ∇S(i 0 , j 0 , kp + r) are almost-balanced for all non-negative integers k. For six equivalence classes X of BPO 24 , we find that |R X | = 24 and thus, from these 24-tuples, we obtain the proof of Theorem 1.3.5 for Steinhaus triangles, i.e., there exist periodic orbits containing almost-balanced Steinhaus triangles of size n for all n ⩾ 1.

PERIODIC ALMOST-BALANCED BINARY TRIANGLES

33

For instance, in the orbit O X ∞ 9 associated with the 24-tuple X 9 = 000000101000111110001101, the existence of almost-balanced Steinhaus triangles for all the possible sizes can be obtained from at least 4 positions. Table 1.7 gives positions (i 0 , j 0 ) in the orbit O X ∞ 9 for which the Steinhaus triangles ∇X ∞ 9 (i 0 , j 0 , 24k + r) are almost-balanced for all non-negative integers k and the corresponding 24-tuples Z such that ∇Z ∞ [24k + r] = ∇X ∞ 9 (i 0 , j 0 , 24k +r). 

r (i 0 , j 0 ) Z 0,
(i 0 , j 0 , 24k + r) = ∇Z ∞ [24k + r]
The family of almost-balanced Steinhaus triangles ∇X ∞ 9 (6, 9, 24k + 6), appearing in the orbit O X ∞ 9 , is depicted in Figure 1.13, where empty and full squares correspond to 0 and 1 respectively. Indeed, we can verify that the blocks T 0 := ∇X ∞ 9 (6, 9, 6), T 1 \ T 0 := ∇X ∞ 9 (6, 9, 30) \ ∇X ∞ 9 (6, 9, 6) and the period P are almost-balanced, since their multiplicity functions, given in Table 1.8, are constant or almost constant.

x m T 0 (x) m T 1 \T 0 (x) m P (x) 0 11 222 288 1 10 222 288
Table 1.8: The multiplicity functions of T 0 , T 1 \ T 0 and P

The following proposition concludes the proof of Theorem 1.3.5 by showing that in an orbit O X ∞ generated from a p-tuple X such that X ∈ BPO p , the existence of almostbalanced Steinhaus triangles implies that of almost-balanced generalized Pascal triangles.

Proposition 1.3.18 (Chappelon [C7]). Let S = X ∞ with X ∈ BPO p , (i 0 , j 0 ) ∈ N × Z, r ∈ {0, 1, . . . , p -1} and p divisible by 4. Then, the Steinhaus triangles ∇S(i 0 , j 0 , kp + r) are almost-balanced for all non-negative integers k if and only if the generalized Pascal triangles ∆S(i 0 + r + 1, j 0 + r, kp + (p -1r)) are almost-balanced for all non-negative integers k.

Using Proposition 1.3.18 and the families of almost-balanced Steinhaus triangles appearing in the orbit O X ∞ 9 associated with the 24-tuple X 9 = 000000101000111110001101 given in Table 1.7, we obtain the existence of almost-balanced generalized Pascal triangles for all the possible sizes.

Moreover, in the orbit O X ∞ 9 , the existence of almost-balanced generalized Pascal triangles for all the possible sizes can also be obtained from only 6 positions. This result is not obtained by using Proposition 1.3.18 but by testing, at each position (i 0 , j 0 ) and for each remainder r, if the elementary blocks V 1 and V 0 ∪ V 1 are almost-balanced, where V 1 = ∆X ∞ 9 (i 0 , j 0 , r) and V 0 = ∆X ∞ 9 (i 0 , j 0 , p+r)\(∆X ∞ 9 (i 0 , j 0 , r)∪∆X ∞ 9 (i 0 +p, j 0 +p, r)). 

The corresponding values appear in

(i 0 , j 0 , 24k+r) = ∆(Z ∞ l [24k + r], Z ∞ r [24k + r])
Chapter 2

Symmetric binary triangles

In this chapter, we study binary triangles that are invariant under the action of subgroups of the dihedral group D 3 .

Symmetric binary Steinhaus triangles

Let n be a positive integer. We consider the set ST (n) of binary Steinhaus triangles of size n. We already know that ST (n) is a vector space over Z/2Z of dimension n. We begin by recalling that the dihedral group D 3 acts on ST (n).

Let (a i,j ) 1⩽i⩽j⩽n be a binary Steinhaus triangle of size n. The local rule (LR)

a i,j = a i-1,j-1 + a i-1,j
can also be written as a i-1,j-1 = a i-1,j + a i,j or a i,j = a i-1,j + a i-1,j-1 , for all integers i and j such that 2 ⩽ i ⩽ j ⩽ n. This is the reason why the 120 degrees rotation and the horizontal reflection of a Steinhaus triangle are also Steinhaus triangles, of the same size.

Definition 2.1.1 (Rotation and horizontal reflection). Let r and h be the 120 degrees rotation and the horizontal reflection of binary Steinhaus triangles, that are the automorphisms of ST (n) defined by

r : ST (n) -→ ST (n) (a i,j ) 1⩽i⩽j⩽n -→ (a j-i+1,n-i+1 ) 1⩽i⩽j⩽n and h : ST (n) -→ ST (n) (a i,j ) 1⩽i⩽j⩽n -→ (a i,n-j+i ) 1⩽i⩽j⩽n
for all non-negative integers n.

These automorphisms verify the following identities

r 3 = h 2 = hrhr = id ST (n) ,
where id ST (n) is the identity map on ST (n). Therefore, the subgroup ⟨r, h⟩ generated by r and h, of the automorphism group of ST (n), is isomorphic to the dihedral group D 3 .
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1 1 0 0 1 0 1 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 1 1 1 0 0 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 0 0 0 1 0 1 0 0 1 1 1 0 0 0 1 0 1 1 0 0 1 1 1 0 1 0 0 1 1 0 0 1 1 ∇S r (∇S) r 2 (∇S) h (∇S) rh (∇S) r 2 h (∇S) Figure 2.1: Action of D 3 on ∇(11001)
This induces a faithful representation of D 3 on ST (n), for all non-negative integers n. In the sequel, the automorphism subgroup ⟨r, h⟩ is simply denoted by D 3 . For instance, for S = (11001) and for all g ∈ D 3 , the Steinhaus triangles g (∇S) are depicted in Figure 2.1.

For any subgroup G of D 3 and any non-negative integer n, we consider the linear subspace of invariant triangles of ST (n) under G, that is,

ST (n) G = {∇ ∈ ST (n) | ∀g ∈ G, g (∇) = ∇} .
It is well known that there are exactly 6 subgroups of D 3 , that are id ST (n) , ⟨h⟩, ⟨rh⟩, ⟨r 2 h⟩, ⟨r⟩ and D 3 . Obviously, we have ST (n) G = ST (n) for the trivial subgroup G = id ST (n) . Moreover, by the linear maps

ST (n) ⟨h⟩ -→ ST (n) ⟨rh⟩ ∇ -→ r 2 (∇) and ST (n) ⟨h⟩ -→ ST (n) ⟨r 2 h⟩ ∇ -→ r (∇)
it is clear that the three linear subspaces ST (n) ⟨h⟩ , ST (n) ⟨rh⟩ and ST (n) ⟨r 2 h⟩ are isomorphic to each other. Therefore, for all non-negative integers n, we only consider the linear subspaces ST (n) ⟨h⟩ , ST (n) ⟨r⟩ and ST (n) D 3 .

Notation 2.1.2. For all non-negative integers n, the linear subspaces ST (n) ⟨h⟩ , ST (n) ⟨r⟩ and ST (n) D 3 are denoted by HST (n), RST (n) and DST (n), respectively. Obviously, these vector spaces simply correspond to ker hid ST (n) , ker rid ST (n) and their intersection, respectively. 

(∇) = ∇, r (∇) = ∇ or r (∇) = h (∇) = ∇, respectively.
Examples of such symmetric Steinhaus triangles appear in Figure 2.2. In [START_REF] Barbé | Symmetric patterns in the cellular automaton that generates Pascal's triangle modulo 2[END_REF], it was proved that for all non-negative integers n, where δ i,(n mod j) is equal to 1, if n ≡ i mod j, and 0 otherwise. Bases of HST (n), RST (n) and DST (n), for all non-negative integers n, are obtained in [START_REF] Josep | Symmetries in Steinhaus triangles and in generalized Pascal triangles[END_REF]. In this chapter, we give new bases, for each of these three linear subspaces, which are simpler than those mentioned. They are obtained by considering elementary properties of generalized binomial coefficients and the notion of generating index sets of Steinhaus triangles. These results can be found in [C8] for the most part.

• dim HST (n) = n 2 , • dim RST (n) = n 3 + δ 1,(n mod 3) , • dim DST (n) = n+3 6 + δ 1,(n mod 6) , 2.2. GENERATING INDEX SETS 1 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 0 0 0 1 0 1 1 0 1 1 1 1 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 0

Generating index sets

Let n be a positive integer. We denote by ∇(n) the index set of Steinhaus triangles of size n, that is,

∇(n) = (i, j) ∈ N 2 1 ⩽ i ⩽ j ⩽ n .
Definition 2.2.1 (Generating index set of ST (n)). A subset G of ∇(n) is said to be a generating index set of ST (n) if the knowledge of the values a i,j , for all (i, j) ∈ G, uniquely determines the whole Steinhaus triangle (a i,j ) 1⩽i⩽j⩽n , i.e., if the linear map

π G : ST (n) -→ {0, 1} G (a i,j ) 1⩽i⩽j⩽n -→ (a i,j ) (i,j)∈G is an isomorphism.
Since dim ST (n) = n, we deduce that the cardinality of a generating index set of ST (n) is always n. From (1.1), it is clear that the set of top row indices of a Steinhaus triangle of size n, that is,

G 1 = {(1, 1), (1, 2), . . . , (1, n)} , is a generating index set of ST (n). Note that π G 1 -1 (S) = ∇S, for all S ∈ {0, 1} G 1 . It follows that the set G is a generating index set of ST (n) if and only if the linear map π G • π G 1 -1 : {0, 1} G 1 → {0, 1}
G is an isomorphism. For instance, the 16 generating index sets of ST (3) (4 up to the action of the dihedral group D 3 ) are depicted in Figure 2.3, where a disk is either black if its position is in the generating index set or white otherwise.

Since the sets of right side indices, Lemma 2.2.2. Let (a i,j ) 1⩽i⩽j⩽n be a binary Steinhaus triangle of size n. Then, we have

G r = {(1, n), (2, n), . . . , (n, n)} ,
{(1, 1), (1, 2), (3, 3)} {(1, 3), (2, 2), (3, 3)} {(1, 1), (1, 3), (2, 3)} {(1, 2), (1, 3), (3, 3)} {(1, 1), (1, 3), (2, 2)} {(1, 1), (2, 3), (3, 3)} 0 0 0 0 0 0 {(1, 2), (2, 2), (2, 3)}
a i,j ≡ n k=1 i -1 j -k a 1,k ≡ n k=1 n -j k -i a k,n ≡ n k=1 j -i k -i a k,k (mod 2),
for all integers i, j such that 1 ⩽ i ⩽ j ⩽ n.

Proposition 2.2.3. Let G = {(i 1 , j 1 ), (i 2 , j 2 ), . . . , (i n , j n )} be a subset of ∇(n) whose cardinality is |G| = n. Then, the set G is a generating index set of ST (n) if and only if det(M G ) ≡ 1 mod 2, where

M G = i k -1 j k -l 1⩽k,l⩽n
.

The notion of generating index sets and the result of Proposition 2.2.3 appear in a more general context in [START_REF] Barbé | The Pascal matroid as a home for generating sets of cellular automata configurations defined by quasigroups[END_REF][START_REF] Barbé | Frame cellular automata: configurations, generating sets and related matroids[END_REF], where it is also proved that the set of generating index sets of ST (n) define a matroid called the Pascal matroid modulo 2. Note that a generating index set is simply called a generating set in [START_REF] Barbé | The Pascal matroid as a home for generating sets of cellular automata configurations defined by quasigroups[END_REF][START_REF] Barbé | Frame cellular automata: configurations, generating sets and related matroids[END_REF].

The notion of generating index set can be extended to any linear subspace of ST (n).

Definition 2.2.4 (Generating index set of linear subspaces). Let V be a linear subspace of ST (n). A subset G of ∇(n) is said to be a generating index set of V if the linear map

π G : V -→ {0, 1} G (a i,j ) 1⩽i⩽j⩽n -→ (a i,j ) (i,j)∈G is an isomorphism. Note that |G| = dim V, for any generating index set G of V.
In this chapter, we consider generating index sets of the linear subspaces RST (n), HST (n) and DST (n), for all non-negative integers n.

Rotationally symmetric Steinhaus triangles

In this section, after characterizing rotationally symmetric Steinhaus triangles, we determine, for all non-negative integers n, generating index sets and bases of RST (n).

Characterizations of RST (n)

First, by definition of the automorphism r, we have r (a i,j ) 1⩽i⩽j⩽n = (a j-i+1,n-i+1 ) 1⩽i⩽j⩽n = ∇(a j,n ) 1⩽j⩽n , for any Steinhaus triangle (a i,j ) 1⩽i⩽j⩽n = ∇(a 1,j ) 1⩽j⩽n . Therefore, a Steinhaus triangle (a i,j ) 1⩽i⩽j⩽n is rotationally symmetric if and only if its first row (a 1,j ) 1⩽j⩽n and its right side (a j,n ) 1⩽j⩽n correspond.

Proposition 2.3.1. The Steinhaus triangle (a i,j ) 1⩽i⩽j⩽n is rotationally symmetric if and only if (a 1,j ) 1⩽j⩽n = (a j,n ) 1⩽j⩽n .

Definition 2.3.2 (Operator H). Let H be the linear map that assigns, to each Steinhaus triangle of order n ⩾ 3, its subtriangle of order n -3 obtained by removing its first row and its left and right sides, that is,

H : ST (n) -→ ST (n -3) (a i,j ) 1⩽i⩽j⩽n -→ (a 1+i,2+j ) 1⩽i⩽j⩽n-3
Note that the linear map H is surjective. Indeed, for any ∇S ′ ∈ ST (n -3), it is easy to verify that ∇S ′ = H (∇S) if and only if S is one of the eight sequences of the form S = (x 1 ) • i,x S ′ • (x 2 ), where x 1 , x 2 ∈ {0, 1} and i,x S ′ is one of the two antiderived sequences of S ′ . Examples of a Steinhaus triangle ∇S and its subtriangle H (∇S) are depicted in Figure 2.4. Notation 2.3.3. For any binary sequence S = (a j ) 1⩽j⩽n , we denote by σ(S) its sum σ(S) = n j=1 a j , i.e., the number of ones in S, and by σ 2 (S) its sum modulo 2.

1 0 1 1 1 1 0 1 1 0 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 0 1

1 0 0 0 1 0 0 1 0 1 Figure 2.4: H (∇(1011110)) = ∇(1000)
For any positive integer n ⩾ 3, by definition of RST (n) and H, it is clear that H (RST (n)) ⊂ RST (n -3). The precise relationship between a rotationally symmetric Steinhaus triangle ∇S and its subtriangle H (∇S) is given in the following Proposition 2.3.4. Let S be a finite binary sequence of length n ⩾ 3. The Steinhaus triangle ∇S is rotationally symmetric if and only if H (∇S) = ∇S ′ is rotationally symmetric and S = (σ 2 (S ′ )) • i,x S ′ • (σ 2 (S ′ )), for some i ∈ {1, . . . , n -2} and some x ∈ {0, 1}.

Proposition 2.3.4 appears in [START_REF] Barbé | Cellular automata, quasigroups and symmetries[END_REF] in a more general context.

Generating index sets of RST (n)

Using Proposition 2.3.4, we are now ready to determine generating index sets of the linear subspace of rotationally symmetric Steinhaus triangles, for every non-negative integer n.

Theorem 2.3.5 (Chappelon [C8]). Let n be a non-negative integer. The set

G R = (i, j i ) i ∈ 1, . . . , n 3 + δ 1,(n mod 3) ,
where j i ∈ {2i, . . . , n -i} for all i ∈ 1, . . . , n 3 and jn+2

3 = 2n+1 3
when n ≡ 1 mod 3, is a generating index set of RST (n).

Corollary 2.3.6 (Chappelon [C8]). Let n be a non-negative integer. The set

G R := i, n - n 3 i ∈ 1, . . . , n 3 + δ 1,(n mod 3) is a generating index set of RST (n).
Since the dimension of RST (n) corresponds to the cardinality of a generating index set G R , it is straightforward to obtain the following Corollary 2.3.7. dim RST (n) = n 3 + δ 1,(n mod 3) , for all non-negative integers n.

Bases of RST (n)

Now, using the generating index sets G R introduced before, we determine bases of the linear subspace of rotationally symmetric Steinhaus triangles. First, we consider the linear map ρ : ST (n) -→ RST (n) defined by ρ = r 2 +r+id ST (n) , for all non-negative integers n. Obviously, this map is surjective since ρ(∇) = ∇, for all ∇ ∈ RST (n). Moreover, as detailed below, all the terms of ρ (∇) can be expressed in function of these ∇.

Proposition 2.3.8 (Chappelon [C8]). For all (a i,j ) 1⩽i⩽j⩽n ∈ ST (n), we have ρ (a i,j ) 1⩽i⩽j⩽n = (a i,j + a j-i+1,n-i+1 + a n-j+1,n+i-j mod 2) 1⩽i⩽j⩽n .

Notation 2.3.9 (Triangles U n ). For any non-negative integer n, let U n be the Steinhaus triangle of size n defined by

U n = ρ (∇(1) n ) .
It is clear that

U 0 = ∅, U 1 = ∇(1), U 2 = ∇(00) and U n = ∇(011 • • • 110) for n ⩾ 3, since U n = ρ (∇(1) n ) = ∇(1 • • • 1) + ∇(10 • • • 0) + ∇(0 • • • 01) = ∇((1 • • • 1) + (10 • • • 0) + (0 • • • 01)),
for all positive integers n.

The Steinhaus triangles U n are depicted in Figure 2.5, for the first few values of n. Moreover, an explicit formula for the terms of U n is given in the following

1 0 0 0 0 1 0 1 1 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 0 1 0 0 1 1 0 1 1 1 0 0 1 1 1 1 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 0 Figure 2.5: U n for n ∈ {1, . . . , 6}
Proposition 2.3.10 (Chappelon [C8]). For any non-negative integer n, we have

U n = (δ i,1 + δ i,j + δ j,n mod 2) 1⩽i⩽j⩽n .
Corollary 2.3.11. H (U n ) = ∇(0) n-3 , for all positive integers n ⩾ 3.

For any non-negative integer k such that 3k ⩽ n, we consider the iterated operator

H k = HH • • • H k times : ST (n) -→ ST (n -3k) (a i,j ) 1⩽i⩽j⩽n -→ (a k+i,2k+j ) 1⩽i⩽j⩽n-3k
Using the operators H k and the generating index set G R , we obtain a family of bases of RST (n), for all non-negative integers n.

Theorem 2.3.12 (Chappelon [C8]). Let n and m be non-negative integers such that m =

n 3 + δ 1,(n mod 3) . For every k ∈ {0, . . . , m -1}, let ∇ k ∈ RST (n) such that H k (∇ k ) = U n-3k . Then, the set {∇ 0 , . . . , ∇ m-1 } is a basis of RST (n). Since U n-3k = ρ ((1) n-3k
) by definition, for all non-negative integers n and k such that 3k ⩽ n, this leads to the following Corollary 2.3.13 (Chappelon [C8]). Let n and m be non-negative integers such that m = n 3 + δ 1,(n mod 3) . For every k ∈ {0, . . . , m -1}, let S k be a binary sequence of length n such that ∂ k S k = (1) n-k . Then, the set {ρ (∇S 0 ) , . . . , ρ (∇S m-1 )} is a basis of RST (n).
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Binomial coefficients a

b have been defined before for any non-negative integer a and any integer b. Now, we extend this definition for negative integers a. For any integers a and b, let a b denote the integers recursively defined by

• a 0 = 1, for all a ∈ Z, • 0 b = 0, for all b ∈ N * , • a b = a-1 b-1 + a-1 b , for all a, b ∈ Z.
When a is non-negative, it corresponds with the previous definition. Moreover, for any negative integer a, the following equality holds

a b = 0 for b < 0, (-1) b b-a-1 b for b ⩾ 0.
Here, we mainly consider the infinite Pascal matrix modulo 2, that is, the doubly indexed sequence a b 2 (a,b)∈Z 2 , where a b 2 is the value of a b mod 2. The first few values of this doubly infinite sequence are shown in Figure 2.6, where the terms a 0 2 are in blue, for all integers a, and the terms 0 b 2 are in red, for all positive integers b. Notation 2.3.14. For any integers k and l, let S (n) k,l be the subsequence of length n of the kth column of the infinite Pascal matrix modulo 2 defined by

S (n) k,l = l + j -1 k 2 1⩽j⩽n = l k 2 , l + 1 k 2 , . . . . . . , l + n -1 k 2 .
For instance, the sequence S 

∂ i S (n) k,l = S (n-i) k-i,l = l + j -1 k -i 2 1⩽j⩽n-i ,
for all i ∈ {0, . . . , n -1} and

∇S (n) k,l = l + j -i k + 1 -i 2 1⩽i⩽j⩽n .
For instance, the Steinhaus triangle ∇S (7) 10,-10 = ∇(0000110) appears in green in Figure 2.6. We are now ready for giving explicit bases of RST (n), for every non-negative integer n, using Corollary 2.3.13 with binary sequences S (n) k,l . Theorem 2.3.16 (Chappelon [C8]). Let n and m be non-negative integers such that m = n 3 + δ 1,(n mod 3) . For any integers l 0 , . . . , l m-1 , the set ρ ∇S

(n) 0,l 0 , . . . , ρ ∇S (n) m-1,l m-1 is a basis of RST (n). Moreover, we have ρ ∇S (n) k,l k = l k + j -i k + 1 -i + l k + n -j k + i -j + l k + i -1 k + j -n mod 2 1⩽i⩽j⩽n , (2.1) 
for all k ∈ {0, . . . , m -1}.
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1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • . . . . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 0 0 1 1 Figure 2
.6: The infinite Pascal matrix modulo 2 with a 0 2 a∈Z in blue, 0 b 2 b>0 in red, S (7) 5,2 in yellow and ∇S (7) 10,-10 in green Remark 2.3.17. For any integer l 0 , we have ρ ∇S

(n) 0,l 0 = ρ (∇(1) n ) = U n .
For instance, for n = 10 and l

0 = l 1 = l 2 = l 3 = 0, we obtain k S (10) k,0 ρ ∇S (10) k,0 0 (1111111111) ∇ 0 = ∇(0111111110) 1 (0101010101) ∇ 1 = ∇(1001010111) 2 (0011001100) ∇ 2 = ∇(0001001000) 3 (0001000100) ∇ 3 = ∇(0010001100)
All the rotationally symmetric Steinhaus triangles of size 10 are depicted in Figure 2.7, where the elements of the basis {∇ 0 , ∇ 1 , ∇ 2 , ∇ 3 } are in red and, for every ∇ ∈ RST (10), the coordinate vector

(x 0 , x 1 , x 2 , x 3 ) of ∇ = x 0 ∇ 0 + x 1 ∇ 1 + x 2 ∇ 2 + x 3 ∇ 3 is given.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Horizontally symmetric Steinhaus triangles

In this section, we characterize the horizontally symmetric Steinhaus triangles and we give a generating index set of HST (n). This permits us to obtain bases of HST (n), for all non-negative integers n.

Characterizations of HST (n)

Definition 2.4.1 (Symmetric sequence). A binary sequence S = (a j ) 1⩽j⩽n is said to be symmetric if a n-j+1 = a j , for all j ∈ {1, . . . , n}.

For instance, the sequence (010010010) is symmetric. As shown in the following result, the symmetry is preserved under the derivation process.

Proposition 2.4.2 (Chappelon [C8]). The binary sequence S is symmetric if and only if ∂S is symmetric and σ 2 (∂S) = 0.

It follows that the horizontal symmetry of a Steinhaus triangle is only related to the symmetry of its first row.

Proposition 2.4.3 (Chappelon [C8]). The Steinhaus triangle ∇S is horizontally symmetric if and only if the sequence S is symmetric. Now, we show that the horizontal symmetry of a Steinhaus triangle only depends on the values of middle terms of its rows of odd lengths.

Proposition 2.4.4 (Chappelon [C8]). The Steinhaus triangle (a i,j ) 1⩽i⩽j⩽n , of size n, is horizontally symmetric if and only if a n-2i,n-i = 0, for all i ∈ 0, . . . , n 2 -1 .

Generating index set of HST (n)

Proposition 2.4.5 (Chappelon [C8]). Let n be a non-negative integer. The set

G H := (1, j) j ∈ 1, . . . , n 2 is a generating index set of HST (n).
Since the dimension of HST (n) corresponds to the cardinality of the generating index set G H , it is straightforward to obtain the following Corollary 2.4.6. dim HST (n) = n 2 , for all non-negative integers n.

Bases of HST (n)

Notation 2.4.7. Let n be a positive integer. For any positive integer k ∈ {1, . . . , n}, we denote by

E (n) k
the binary sequence of length n consisting only of zeroes, except at position k. In other words, we have

E (n) k = 0 j -k 2 1⩽j⩽n
, for all k ∈ {1, . . . , n}.
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Since we retrieve the local rule (LR) of the infinite Pascal matrix modulo 2, we obtain that

∇E (n) k = i -1 j -k 2 1⩽i⩽j⩽n ,
for all integers k ∈ {1, . . . , n}.

Proposition 2.4.8 (Chappelon [C8]). Let n be a positive integer. The set ∇ 1 , . . . , ∇ ⌈ n 2 ⌉ is a basis of HST (n), where

∇ k = ∇ E (n) k + E (n) n-k+1 = i -1 j -k + i -1 j -n + k -1 mod 2 1⩽i⩽j⩽n , for all k ∈ 1, . . . , n 2 
, and

∇n+1 2 = ∇E (n) n+1 2 = i -1 j -n+1 2 2 1⩽i⩽j⩽n
, when n is odd.

Now, we show that the generating index set G H also permits us to obtain a basis from the sequences

S (n) k,l = l+j-1 k 2 1⩽j⩽n introduced before.
Theorem 2.4.9 (Chappelon [C8]). Let n be a positive integer. The set ∇ 1 , . . . , ∇ ⌈ n 2 ⌉ is a basis of HST (n), where

∇ k = ∇S (n) n-2k,-k = -k + j -i n -2k + 1 -i 2 1⩽i⩽j⩽n
,

for all k ∈ 1, . . . , n 2 
, and ∇n+1 2 = ∇(1) n , when n is odd.

Remark 2.4.10. When n is even, we have

∇ n 2 = ∇S (n) 0,-n 2 = ∇(1) n . Therefore, ∇ ⌈ n 2 ⌉ = ∇(1) n , for all integers n.
For instance, for n = 7, we obtain

∇ 1 = ∇S (7) 5,-1 = ∇(1000001), ∇ 2 = ∇S (7) 3,-2 = ∇(0100010), ∇ 3 = ∇S (7) 1,-3 = ∇(1010101), ∇ 4 = ∇(1111111).
All the horizontally symmetric Steinhaus triangles of size 7 are depicted in Figure 2.8, where the elements of the basis {∇ 1 , ∇ 2 , ∇ 3 , ∇ 4 } are in red and, for every ∇ ∈ HST (7), the coordinate vector

(x 1 , x 2 , x 3 , x 4 ) of ∇ = x 1 ∇ 1 + x 2 ∇ 2 + x 3 ∇ 3 + x 4 ∇ 4 is given.

Dihedrally symmetric Steinhaus triangles

In this section, after characterizing dihedrally symmetric Steinhaus triangles, we determine, for all non-negative integers n, generating index sets and a basis of DST (n). 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Characterizations of DST (n)

We begin by showing that the dihedral symmetry of a Steinhaus triangle is only related to the symmetry of its first row and of its right and left sides.

Proposition 2.5.1. The Steinhaus triangle ∇ is dihedrally symmetric if and only if two of the three Steinhaus triangles ∇, r (∇) and r 2 (∇) are horizontally symmetric.

Corollary 2.5.2. The Steinhaus triangle ∇S = (a i,j ) 1⩽i⩽j⩽n is dihedrally symmetric if and only if two of the three sequences, its first row (a 1,j ) 1⩽j⩽n , its right side (a j,n ) 1⩽j⩽n or its left side (a j,j ) 1⩽j⩽n , are symmetric.

Proposition 2.5.1 also permits us to show that the dihedral symmetry of a Steinhaus triangle only depends on the values of middle terms of its rows, its columns or its diagonals of odd lengths.

Corollary 2.5.3. The Steinhaus triangle ∇S = (a i,j ) 1⩽i⩽j⩽n is dihedrally symmetric if and only if two of the sets

a n-2i,n-i i ∈ 0, . . . , n 2 -1 , a i,2i-1 i ∈ 1, . . . , n 2 and a i,n-i+1 i ∈ 1, . . . , n 2 
are sets of zeroes.

For any positive integer n ⩾ 3, by definition of DST (n) and H, it is clear that H (DST (n)) ⊂ DST (n -3). The precise relationship between a dihedrally symmetric Steinhaus triangle ∇S and its subtriangle H (∇S) is given in the following Proposition 2.5.4. Let S be a binary sequence of length n ⩾ 3. The Steinhaus triangle ∇S is dihedrally symmetric if and only if H (∇S) = ∇S ′ is dihedrally symmetric, σ 2 (S ′ ) = 0 and S = (0) • i,x S ′ • (0), for some i ∈ {1, . . . , n -2} and some x ∈ {0, 1}.

Proposition 2.5.4 appears in [START_REF] Barbé | Cellular automata, quasigroups and symmetries[END_REF] in a more general context. Notation 2.5.5. For any non-negative integer n, the set of dihedrally symmetric Steinhaus triangles ∇S of size n with σ(S) even is denoted by DST 0 (n).

It is clear that DST 0 (n) is a linear subspace of DST (n). Moreover, the vector space DST (n) can be expressed in function of its linear subspace DST 0 (n).

Proposition 2.5.6 (Chappelon [C8]). Let n be a non-negative integer. Then, we have

DST (n) = DST 0 (n) for n even, DST 0 (n) ⊔ (DST 0 (n) + U n ) for n odd,
where ⊔ is the disjoint union of two sets.

Corollary 2.5.7 (Chappelon [C8]). Let S be a binary sequence of length n ⩾ 3. For n even, the Steinhaus triangle ∇S is in DST 0 (n) if and only if

H(∇S) = ∇S ′ is in DST 0 (n -3) and S = (0) • i,x S ′ • (0), for some i ∈ {1, . . . , n -2} and some x ∈ {0, 1}. For n odd, the Steinhaus triangle ∇S is in DST 0 (n) if and only if H(∇S) = ∇S ′ is in DST 0 (n -3) and S = (0) • n-1 2 ,0 S ′ • (0).

Generating index sets of DST (n)

We begin this subsection by giving generating index sets of DST 0 (n), for all non-negative integers n. This comes from Corollary 2.5.7.

Theorem 2.5.8 (Chappelon [C8]). Let n and m be non-negative integers such that m = n 6 + δ 4,(n mod 6) . For every integer i ∈ 1, . . . , n
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, let j i ∈ {2i, . . . , n -i}. Then, the set

G D 0 = {(2i + 1, j 2i+1 ) | i ∈ {0, . . . , m -1}} ,
when n is even, or

G D 0 = {(2i, j 2i ) | i ∈ {1, . . . , m}} , when n is odd, is a generating index set of DST 0 (n).
Since the dimension of DST 0 (n) corresponds to the cardinality of the generating index set G D 0 , it is easy to obtain the following Corollary 2.5.9. dim DST 0 (n) = n 6 + δ 4,(n mod 6) , for all non-negative integers n.

Using Proposition 2.5.6 and Theorem 2.5.8, we are now ready to give a generating index set of DST (n), for all non-negative integers n.

Theorem 2.5.10 (Chappelon [C8]). Let n and m be non-negative integers such that m = n+3 6 + δ 1,(n mod 6) . For every integer i ∈ 1, . . . , n 3 , let j i ∈ {2i, . . . , n -i}. Then, the set

G D = {(2i + 1, j 2i+1 ) | i ∈ {0, . . . , m -1}} ,
when n is even, or

G D = {(1, j 1 )} ∪ {(2i, j 2i ) | i ∈ {1, . . . , m -1}} ,
when n is odd, is a generating index set of DST (n).

Corollary 2.5.11 (Chappelon [C8]). Let n and m be non-negative integers such that m = n+3 6 + δ 1,(n mod 6) . The set

G D = 2i + 1, n - n 3 i ∈ {0, . . . , m -1} ,
when n is even, or

G D = 1, n - n 3 ∪ 2i, n - n 3 i ∈ {1, . . . , m -1} , when n is odd, is a generating index set of DST (n).
Since the dimension of DST (n) corresponds to the cardinality of the generating index set G D , it is straightforward to obtain the following Corollary 2.5.12. dim DST (n) = n+3 6 + δ 1,(n mod 6) , for all non-negative integers n.
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Basis of DST (n)

First, using the operators H k and the generating index sets G D introduced before, we obtain a family of bases of DST (n), for all non-negative integers n.

Theorem 2.5.13 (Chappelon [C8]). Let n and m be non-negative integers such that m = n+3 6 + δ 1,(n mod 6) . For every k ∈ 0, . . .

, n 3 -1 , let ∇ k ∈ DST (n) such that H k (∇ k ) = U n-3k . Then, the set {∇ 2k | k ∈ {0, . . . , m -1}} , when n is even, or {∇ 0 } ∪ {∇ 2k+1 | k ∈ {0, . . . , m -2}} , when n is odd, is a basis of DST (n).
Remark 2.5.14. ∇ 0 = U n in the previous result. Now, we consider the restriction of the linear map ρ on the linear subspace HST (n), i.e., the linear map ρ HST (n) : HST (n) -→ DST (n) defined by ρ = r 2 + r + id n , for all non-negative integers n. Obviously, this map is surjective since ρ(∇) = ∇, for all ∇ ∈ DST (n). Since U n-3k = ρ ((1) n-3k ) by definition, for all non-negative integers n and k such that 3k ⩽ n, this leads to the following Corollary 2.5.15 (Chappelon [C8]). Let n and m be non-negative integers such that

m = n+3 6 + δ 1,(n mod 6) . For every k ∈ 0, . . . , n 3 -1 , let S k be a symmetric binary sequence of length n such that ∂ k S k = (1) n-k . Then, the set {ρ (∇S 2k ) | k ∈ {0, . . . , m -1}} , when n is even, or {ρ (∇S 0 )} ∪ {ρ (∇S 2k+1 ) | k ∈ {0, . . . , m -2}} , when n is odd, is a basis of DST (n). Remark 2.5.16. ρ (∇S 0 ) = ρ (∇(1) n ) = U n in the previous result.
We end this section by giving an explicit basis of DST (n) in terms of the n-length binary sequences

S (n) k,l = l + j -1 k 2 1⩽j⩽n
, for all integers k and l.

Theorem 2.5.17 (Chappelon [C8]). Let n and m be non-negative integers such that m = n+3 6 + δ 1,(n mod 6) . For every k ∈ 0, . . . , n 3 -1 of same parity as n, let

∇ k = ρ ∇S (n) k, k-n 2 = k-n 2 + j -i k + 1 -i + k+n 2 -j k + i -j + k-n 2 + i -1 k + j -n mod 2 1⩽i⩽j⩽n .
Then, the set

{∇ 2k | k ∈ {0, . . . , m -1}} , when n is even, or {U n } ∪ {∇ 2k+1 | k ∈ {0, . . . , m -2}} ,
when n is odd, is a basis of DST (n).
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Corollary 2.5.18 (Chappelon [C8]). Let n and m be non-negative integers such that m = n 6 + δ 4,(n mod 6) . For every k ∈ 0, . . . , n 3 -1 of same parity as n, let

∇ k = ρ ∇S (n) k, k-n 2 = k-n 2 + j -i k + 1 -i + k+n 2 -j k + i -j + k-n 2 + i -1 k + j -n mod 2 1⩽i⩽j⩽n .
Then, the set

{∇ 2k | k ∈ {0, . . . , m -1}} , when n is even, or {∇ 2k+1 | k ∈ {0, . . . , m -1}} , when n is odd, is a basis of DST 0 (n).
For instance, for n = 22, we obtain

k S (22) 2k,k-11 ρ ∇S (22) 2k,k-11 0 (1111111111111111111111) ∇ 0 = ∇(0111111111111111111110) 1 (1100110011001100110011) ∇ 2 = ∇(0110110011001100110110) 2 (1000011110000111100001) ∇ 4 = ∇(0111111110000111111110) 3 (0000001100000011000000) ∇ 6 = ∇(0000000100000010000000)
All the dihedrally symmetric Steinhaus triangles of size 22 are depicted in Figure 2.9, where the elements of the basis {∇ 0 , ∇ 2 , ∇ 4 , ∇ 6 } are in red and, for every ∇ ∈ DST [START_REF] Albert | Lessons in Play: An Introduction to Combinatorial Game Theory[END_REF], the coordinate vector

(x 0 , x 2 , x 4 , x 6 ) of ∇ = x 0 ∇ 0 + x 2 ∇ 2 + x 4 ∇ 4 + x 6 ∇ 6 is given.

Symmetric generalized Pascal triangles

In this section, we consider binary generalized Pascal triangles. The set of binary generalized Pascal triangles of size n is denoted by PT (n). Since the set of generalized Pascal triangles is closed under addition modulo 2, it follows that PT (n) is a vector space over Z/2Z. Since a generalized Pascal triangle is uniquely determined by its left and right sides, which have the same first term, the dimension of PT (n) is 2n -1, for all positive integers n. Moreover, there exists a natural isomorphism between PT (n) and ST (2n-1), for all positive integers n. Indeed, as depicted in Figure 2.10, a generalized Pascal triangle of size n can be seen as a subtriangle of a Steinhaus triangle of size 2n -1.

Definition 2.6.1 (Isomorphism γ). For any positive integer n, let γ be the linear map defined by γ :

ST (2n -1) -→ PT (n) (a i,j ) 1⩽i⩽j⩽2n-1 -→ (a i,n-1+j ) 1⩽j⩽i⩽n
The linear map γ is well defined since the generalized Pascal triangles and the Steinhaus triangles share the same local rule (LR).

Proposition 2.6.2. The linear map γ : ST (2n -1) -→ PT (n) is an isomorphism.

As for Steinhaus triangles, the action of the dihedral group D 3 = ⟨r ′ , h ′ ⟩ on PT (n) can be considered, where the automorphisms r ′ and h ′ of PT (n) are defined by

r ′ : PT (n) -→ PT (n) (a i,j ) 1⩽j⩽i⩽n -→ (a n+j-i,n+1-i ) 1⩽j⩽i⩽n
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Figure 2.9: The 16 triangles of DST [START_REF] Albert | Lessons in Play: An Introduction to Combinatorial Game Theory[END_REF] where the 4 red triangles form a basis

1 1 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0 1 1 1 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 1 0 0 0 1 1 0 1 Figure 2.10: γ (∇(110010100)) = ∆ ((11100), (11001)) and h ′ : PT (n) -→ PT (n) (a i,j ) 1⩽j⩽i⩽n -→ (a i,1-j+i ) 1⩽j⩽i⩽n
For instance, for L = (11100) and R = (11001) and for all g ∈ D 3 , the generalized Pascal triangles g (∆ (L, R)) are depicted in Figure 2.11. 

1 1 1 1 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 1 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0 1 1 1 ∆ (L, R) r (∆ (L, R)) r 2 (∆ (L, R)) h (∆ (L, R)) r h (∆ (L, R)) r 2 h (∆ (L, R))
• rotationally symmetric if r ′ (∆) = ∆, • horizontally symmetric if h ′ (∆) = ∆, • dihedrally symmetric if r ′ (∆) = h ′ (∆) = ∆.
The sets of horizontally symmetric, rotationally symmetric and dihedrally symmetric generalized Pascal triangles of size n are denoted by HPT (n), RPT (n) and DPT (n), respectively, for all non-negative integers n. In other words, the sets HPT (n), RPT (n) and DPT (n) are simply the linear subspaces ker h ′id PT (n) , ker r ′id PT (n) and ker h ′id PT (n) ∩ ker r ′id PT (n) , respectively, where id PT (n) is the identity map on PT (n), for all non-negative integers n.

Examples of symmetric binary generalized Pascal triangles appear in Figure 2.12.

1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0 1 0 0 1 1 1 1 1 0 0 0 1 0 0 1 1 1 0 1 1 Figure 2
.12: Triangles of HPT (5), RPT (5) and DPT (5).

It is now easy to see that a symmetric generalized Pascal triangles of size n corresponds to a symmetric Steinhaus triangle of size 2n -1, for all positive integers n.

Proposition 2.6.5 (Chappelon [C8]). For any positive integer n, a Steinhaus triangle ∇, of size 2n -1, is horizontally, rotationally, or dihedrally symmetric if and only if the generalized Pascal triangle γ (∇), of size n, is horizontally, rotationally, or dihedrally symmetric, respectively. CHAPTER 2. SYMMETRIC BINARY TRIANGLES Corollary 2.6.6 (Chappelon [C8]). The linear map γ induces isomorphisms of HST (2n-1) upon HPT (n), RST (2n -1) upon RPT (n) and DST (2n -1) upon DPT (n), respectively, for all positive integers n.

Using the isomorphism γ and the results of the previous sections, we obtain the dimension and a basis for each linear subspace of symmetric generalized Pascal triangles of size n, for all positive integers n.

Proposition 2.6.7. For any positive integer n, we have

• dim HPT (n) = n, • dim RPT (n) = 2 n-1 3 + 1, • dim DPT (n) = n 3 .
Theorem 2.6.8 (Chappelon [C8]). Let n and m be positive integers such that m = 2 n-1 3 + 1. For any integers l 0 , . . . , l m-1 , the set

γρ ∇S (2n-1) k,l k k ∈ {0, . . . , m -1} is a basis of RPT (n), where γρ ∇S (2n-1) k,l k = l k + j -i + n -1 k + 1 -i + l k + n -j k + i -j -n + 1 + l k + i -1 k + j -n mod 2 1⩽j⩽i⩽n ,
for all k ∈ {0, . . . , m -1}.

Theorem 2.6.9 (Chappelon [C8]). Let n be a positive integer. The set

γ S (2n-1) 2(n-k)-1,-k k ∈ {1, . . . , n -1} ∪ {γ (∇(1) 2n-1 )} is a basis of HPT (n), where γ ∇S (2n-1) 2(n-k)-1,-k = -k + j -i + n -1 2(n -k) -i 2 1⩽j⩽i⩽n
,

for all k ∈ 1, . . . , n 2 
, and γ (∇(1) 2n-1 ) = ∆ ((1)

• (0) n-1 , (1) • (0) n-1 ).
Theorem 2.6.10 (Chappelon [C8]). Let n and m be positive integers such that m = n 3 . Then, the set

{γ (U 2n-1 )} ∪ γρ S (2n-1) 2k+1,k-n+1 k ∈ {0, . . . , m -2} is a basis of DST (n), where γ (U 2n-1 ) = ∆ ((1) • (0) n-2 • (1), (1) • (0) n-2 • (1)) and γρ S (2n-1) 2k+1,k-n+1 = k + j -i 2k -i + 2 + k -j + 1 i -j + 2k -n + 2 + k -n + i 2k + j -n + 1 mod 2 1⩽j⩽i⩽n ,
for all k ∈ {0, . . . , m -2}.

We end this section by giving bases obtained from Theorem 2.6.8 for RPT (6), from Theorem 2.6.9 for HPT (4) and from Theorem 2.6.10 for DPT (11).

For n = 7 and , where the elements of the basis {∆ 0 , ∆ 1 , ∆ 2 , ∆ 3 , ∆ 4 } are in red and, for every ∆ ∈ RPT (7), the coordinate vector

k 0 = k 1 = k 2 = k 3 = k 4 = 0,
(x 0 , x 1 , x 2 , x 3 , x 4 ) of ∆ = x 0 ∆ 0 +x 1 ∆ 1 +x 2 ∆ 2 +x 3 ∆ 3 +x 4 ∆ 4 is given.
For n = 4, we obtain the following basis and ∆ 4 = γ (∇(1) 7 ) = ∆ ((1000), (1000)). All the horizontally symmetric generalized Pascal triangles of size 4 are depicted in Figure 2.14, where the elements of the basis {∆ 1 , ∆ 2 , ∆ 3 , ∆ 4 } are in red and, for every T ∈ HPT (4), the coordinate vector

γ S (7) 7-2k,-k k ∈ {1, 2, 3} ∪ {γ (∇(1) 7 )} of HPT ( 
(x 1 , x 2 , x 3 , x 4 ) of ∆ = x 1 ∆ 1 + x 2 ∆ 2 + x 3 ∆ 3 + x 4 ∆ 4 is given.
For n = 11, we obtain the following basis 

{γ (U 21 )} ∪ γρ ∇S
(x 0 , x 1 , x 2 , x 3 ) of ∆ = x 0 ∆ 0 + x 1 ∆ 1 + x 2 ∆ 2 + x 3 ∆ 3 is given.
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0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 0 1 1 1 0 1 1 1 (1, 0, 0, 1, 1) (0, 1, 0, 1, 1) (1, 1, 0, 1, 1) (0, 0, 1, 1, 1) (1, 0, 1, 1, 1) 0 0 0 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 (0, 1, 1, 1, 1) (1, 1, 1, 1, 1)
Figure 2.13: The 32 triangles of RPT (7) where the 5 red triangles form a basis 2.6. SYMMETRIC GENERALIZED PASCAL TRIANGLES

57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 (0, 0, 0, 0) (1, 0, 0, 0) (0, 1, 0, 0) (1, 1, 0, 0) (0, 0, 1, 0) (1, 0, 1, 0) 0 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1 1 1 1 0 0 1 0 1 0 1 1 0 (0, 1, 1, 0)
(1, 1, 1, 0) (0, 0, 0, 1) (1, 0, 0, 1) (0, 1, 0, 1) (1, 1, 0, 1)

1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 (0, 0, 1, 1) (1, 0, 1, 1) (0, 1, 1, 1) (1, 1, 1, 1)
Figure 2.14: The 16 triangles of HPT (4) where the 4 red triangles form a basis 58 CHAPTER 2. SYMMETRIC BINARY TRIANGLES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 (0, 0, 0, 0)

(1, 0, 0, 0) (0, 1, 0, 0) (1, 1, 0, 0) 0 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 0

1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 1 1 1 0 0 0 1 1 1 1 (0, 0, 1, 0) (1, 0, 1, 0) (0, 1, 1, 0) (1, 1, 1, 0)
0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 1 1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 0 1 1 1 0 1 0 0 0 1 0 1 1 (0, 0, 0, 1)

(1, 0, 0, 1) (0, 1, 0, 1) (1, 1, 0, 1) 

0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 1 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 1 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 1 1 0 1 0 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 0 0 0 0 0 1 1 0 1 1 1 1 0 1 0 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 1 1 1 (0, 0, 1, 1) (1, 0, 1, 1) (0, 1, 1, 1) (1, 1, 1, 1)

Regular Steinhaus graphs

In this chapter, we introduce the Steinhaus graphs that are a family of simple graphs related to binary Steinhaus triangles.

The family of Steinhaus graphs

Definition 3.1.1 (Steinhaus graph). A Steinhaus graph of order n ⩾ 1 is a simple graph whose adjacency matrix has an upper-triangular part which is a binary Steinhaus triangle of size n -1. For any sequence S = (a 1 , a 2 , . . . , a n-1 ) of Z/2Z of length n -1, its associated Steinhaus graph G(S) is the simple graph of order n whose adjacency matrix M(S) = (a i,j ) 1⩽i,j⩽n verifies i) a i,j = a j,i , for all i, j ∈ {1, . . . , n}, (symmetry) ii) a i,i = 0, for all i ∈ {1, . . . , n}, (diagonal of zeroes)

iii) a 1,j = a j-1 , for all j ∈ {2, . . . , n -1}, (sequence S) iv) a i,j = a i-1,j-1 + a i-1,j , for all integers i, j such that 2 ⩽ i < j ⩽ n, (local rule of ∇S).

The adjacency matrix M(S) is said to be the Steinhaus matrix of S.

For example, for S = (0010100), the Steinhaus graph G(S) and its adjacency matrix M(S) are depicted in Figure 3.1. It is clear that there is a natural correspondence between SG(n) (or SM(n)) and ST (n -1). Therefore, for all positive integers n, the set SG(n) (or SM(n)) is a vector space over Z/2Z of dimension n -1.

The family of Steinhaus graphs has been introduced in [START_REF] Molluzzo | Steinhaus graphs. In Theory and applications of graphs[END_REF]. In [START_REF] Delahan | Induced embeddings in Steinhaus graphs[END_REF], it was proved that any simple graph of order n is isomorphic to an induced subgraph of a Steinhaus graph of order n 2 + 1. A general problem on Steinhaus graphs is to characterize those, or their associated binary sequences, having a given graph property such as connectedness, planarity, bipartition, regularity, etc. It is easy to see that a Steinhaus graph is either connected or totally disconnected (the edgeless graph). The bipartite Steinhaus graphs are characterized in [START_REF] Dymacek | Bipartite Steinhaus graphs[END_REF][START_REF] Dymacek | Generating strings for bipartite Steinhaus graphs[END_REF][START_REF] Chang | Characterizations of bipartite Steinhaus graphs[END_REF] and the planar ones in [START_REF] Dymàček | Planar Steinhaus graphs[END_REF].

In this chapter, we are interested in Steinhaus graphs that are regular, i.e., Steinhaus graphs whose vertices are of the same degree. In 1979, the two following conjectures on regular Steinhaus graphs were given by W. Dymacek.

Conjecture 3.1.3 (Dymacek [START_REF] Dymacek | Steinhaus graphs[END_REF]). The regular Steinhaus graphs of even degree are the zero-edge graph on n vertices, for all positive integers n, and the Steinhaus graph G(S) on n = 3m + 1 vertices generated by the periodic sequence S = (110) m of length 3m, for all positive integers m. Conjecture 3.1.4 (Dymacek [START_REF] Dymacek | Steinhaus graphs[END_REF]). The complete graph on two vertices K 2 is the only regular Steinhaus graph of odd degree.

These conjectures were verified up to 117 vertices in [START_REF] Augier | Parity-regular Steinhaus graphs[END_REF] and up to 1500 vertices in [C3] for the odd case. 

Parity-regular Steinhaus graphs

In this section, we study the weaker case of parity-regular Steinhaus graphs, that are Steinhaus graphs for which all the vertex degrees are of the same parity. 

(n), that is, PRSG(n) = ESG(n) ∪ OSG(n).
In this section, we prove that ESG(n) is a linear subspace of SG(n) of dimension n-1 3 , for all positive integers n, and OSG(n) is an affine subspace of direction ESG(n), for all even numbers n. Obviously, since the number of vertices of odd degrees is always even, OSG(n) = ∅ when n is odd.

Doubly-symmetric Steinhaus matrices

Definition 3.2.3 (Doubly-symmetric Steinhaus matrices). A Steinhaus matrix M(S) = (a i,j ) 1⩽i,j⩽n is said to be doubly-symmetric if all its diagonals are symmetric, i.e., if

a n-j+1,n-i+1 = a i,j
for all i, j ∈ {1, . . . , n}. In other words, the Steinhaus matrix M(S) is doubly-symmetric if the Steinhaus triangle r 2 (∇S) is horizontally symmetric.

An example of doubly-symmetric Steinhaus matrix of size 8 is given in Figure 3.3. First, we characterize doubly-symmetric Steinhaus matrices. 

i) the matrix M is doubly-symmetric, ii) the over-diagonal (a i,i+1 ) 1⩽i⩽n-1 of M is a symmetric sequence, iii) the entries a i,n-i+1 of the anti-diagonal of M vanish for all i ∈ 1, . . . , n-1 2 .
Proof. We know that the Steinhaus matrix M(S) is doubly-symmetric if and only if the Steinhaus triangle r 2 (∇S) is horizontally symmetric. Therefore, the equivalence i) ⇔ ii) directly comes from Proposition 2.4.3 and the equivalence i) ⇔ iii) from Proposition 2.4.4.

The main result of this subsection is the following Theorem 3.2.5 (Dymacek [START_REF] Dymacek | Steinhaus graphs[END_REF]). The adjacency matrix of an even Steinhaus graph is a doubly-symmetric Steinhaus matrix whose diagonals are zero-sum. Remark 3.2.6. If a Steinhaus matrix is doubly-symmetric, then all its diagonals are symmetric and thus we already know that all its diagonals, except the over-diagonal (a i,i+1 ) 1⩽i⩽n-1 , have to be zero-sum. The additional information here is that a n 2 , n 2 +1 = 0 in a Steinhaus matrix (a i,j ) 1⩽i,j⩽n of even size n.

The proof given here is based on the following result which shows that the anti-diagonal entries of a Steinhaus matrix are determined by the vertex degrees of its associated Steinhaus graph.

Theorem 3.2.7 (Chappelon [C3]). Let G be a Steinhaus graph on n ⩾ 2 vertices and M = (a i,j ) its associated Steinhaus matrix. Then every anti-diagonal entry of M can be expressed by means of the vertex degrees of G. If we denote by deg(V i ) the degree of the vertex V i in G, then we have

a i,n-i+1 ≡ i-1 k=0 i -1 k deg (V i+k+1 ) ≡ i-1 k=0 i -1 k deg (V n-i-k ) (mod 2),
for all i ∈ 1, . . . , n 2 .
Remark 3.2.8. We deduce from Theorem 3.2.7 a necessary condition on the vertex degrees of a given labelled graph to be a Steinhaus graph. Indeed, vertex degrees of a Steinhaus graph on n vertices must satisfy the following binary equations:

i-1 k=0 i -1 k deg (V i+k+1 ) ≡ i-1 k=0 i -1 k deg (V n-i-k ) (mod 2), for all 1 ⩽ i ⩽ n 2 .
More generally, an open problem, corresponding to Question 3 in [START_REF] Dymàček | A survey of Steinhaus graphs[END_REF], is to determine if an arbitrary graph, not necessary labelled, is isomorphic to a Steinhaus graph.

It is clear that Dymacek's theorem comes from Theorem 3.2.7 using Proposition 3.2.4.

Even Steinhaus graphs

Recall that, for any positive integer n ⩾ 3, the linear map H : ST (n) -→ ST (n -3), introduced in Chapter 2, is the linear map that assigns to each binary Steinhaus triangle of size n its subtriangle of size n -3 obtained by removing its first row and its left and right sides. Now, we consider the linear map H on graphs.

Definition 3.2.9 (Operator H). Let H : SG(n) -→ SG(n -3) be the linear map that assigns to each Steinhaus graph G(S) of order n the Steinhaus graph of order n -3 whose upper-triangular part of its adjacency matrix is the Steinhaus triangle H(∇S). More precisely,

H : SG(n) -→ SG(n -3) G(S) -→ G(∂S[2, n -3])
Note that the linear map H is surjective. Indeed, for any G(S ′ ) ∈ SG(n -3), it is easy to verify that G(S ′ ) = H(G(S)) if and only if S is one of the eight sequences of the form S = (x 1 ) • i,x S ′ • (x 2 ), where x 1 , x 2 ∈ Z/2Z and i,x S ′ is one of the two antiderived sequences of S ′ . Examples of Steinhaus graphs G(S) and H(G(S)) and their adjacency matrices are depicted in Figure 3.4. Theorem 3.2.10 (Dymacek [START_REF] Dymacek | Steinhaus graphs[END_REF]). Let S be a finite binary sequence of length n ⩾ 3.

0 0 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 0 1 1 1 1 0 1 2 3 4 5 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 0 0 0 G(S) M(S) H G (G(S)) = G(S ) M(S )
The Steinhaus graph G(S) is even if and only if H(G(S)) = G(S ′ ) is even and S = σ 2 i,x S ′ • i,x S ′ • (0)
, for some i ∈ {1, . . . , n -3} and some x ∈ Z/2Z, where σ 2 (T ) is the sum of the elements of T modulo 2.

Corollary 3.2.11. dim ESG(n) = n-1 3
, for all positive integers n.

Parity-regular Steinhaus graphs

We end this section by giving the dimension of the linear subspace PRSG(n) of parityregular Steinhaus graphs, for all positive integers n. By definition, we know that

PRSG(n) = ESG(n) ⊔ OSG(n),
where OSG(n) is the set of odd Steinhaus graphs of order n, for all positive integers n. As already remarked, it is clear that OSG(n) = ∅, when n is odd. For n even, we obtain the following Proposition 3.2.12. For any positive integer n,

OSG(2n) = ESG(2n) + G((0) 2n-2 • (1)) .
The proof is based on the following lemma, where the linear map ι is defined by

ι : SG(2n) -→ SG(2n) G(S) -→ G(S + (0) 2n-2 • (1))
for all positive integers n. Lemma 3.2.13. For any positive integer n, the Steinhaus graph G(S) of order 2n is even if and only if ι (G(S)) is odd.

It immediately follows that, for any positive integer n, we have

PRSG(2n -1) = ESG(2n -1) (3.1)
and

PRSG(2n) = ESG(2n) ⊔ (ESG(2n) + G((0) 2n-2 • (1))) . (3.2)
Therefore, we retrieve the following Proposition 3.2.14. dim PRSG(n) = n-1

Vector bases of parity-regular Steinhaus graphs

Bases of PRSG(n) have been computed, for n ⩽ 30, in [START_REF] Augier | Parity-regular Steinhaus graphs[END_REF]. In this section, we determine bases of ESG(n) and PRSG(n), for all positive integers n. This is achieved by showing that the vector space ESG(n) is isomorphic to a particular linear subspace of DST (2n-1), for all positive integers n. For instance, for S = (101000), we have ir(S) = (100010010001).

Definition 3.3.2 (Operator θ). For any positive integer n, let θ be the linear map

θ : SG(n) -→ ST (2n -1) G(S) -→ ∇ n,0 ir(S)
Note that the Steinhaus triangle ∇S ∈ ST (n -1) is then a subtriangle of θ(G(S)) ∈ ST (2n -1). Indeed, for the sequence S = (a j ) 1⩽j⩽n-1 and the Steinhaus triangle θ(G(S)) = ∇ n,0 ir(S) = (a i,j ) 1⩽i⩽j⩽2n-1 , the Steinhaus triangle ∇S is simply the subtriangle (a 2i,2j ) 1⩽i⩽j⩽n-1 , since a 2,2j = a j , for all j ∈ {1, . . . , n -1}, by definition of θ, and, using the local rule (LR), we have

a 2i,2j ≡ a 2i-1,2j-1 +a 2i-1,2j ≡ a 2i-2,2j-2 +2a 2i-2,2j-1 +a 2i-2,2j ≡ a 2i-2,2j-2 +a 2i-2,2j (mod 2),
for all integers i and j such that 2 ⩽ i ⩽ j ⩽ n -1. For instance, for the sequence S = (101000), the Steinhaus triangle θ(G(S)) is depicted in Figure 3.5, where the subtriangle ∇S appears in red. By definition of the linear map ir, we know that the sequence ir(S) is symmetric and σ 2 (ir(S)) = 0. It follows from Proposition 2.4.2 that the sequence n,0 ir(S) is symmetric too. Therefore, using Proposition 2.4.3, we have θ(G(S)) = ∇ n,0 ir(S) ∈ HST (2n -1), for all G(S) ∈ SG(n). Moreover, since the middle term of the sequence n,0 ir(S) is 0 by definition, we obtain that σ 2 n,0 ir(S) = 0, for any sequence S of length n -1.

0 1 1 1 1 0 0 0 1 1 1 1 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1 0 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0 1 1 1 0 1
The main result of this section is to show that the restriction of θ to the linear subspace of even Steinhaus graphs ESG(n) induces an isomorphism between ESG(n) and DST 0 (2n -1), for all positive integers n.

Theorem 3.3.3 (Chappelon [C8]). Let S be a binary sequence of length n -1 ⩾ 0. Then, the Steinhaus graph G(S) is even if and only if the Steinhaus triangle θ (G(S)) is dihedrally symmetric.

Corollary 3.3.4 (Chappelon [C8]). For any positive integer n, the restriction

θ| ESG(n) : ESG(n) -→ DST 0 (2n -1)
is an isomorphism.

Using Corollary 3.3.4 with Corollary 2.5.9 permits us to obtain a new proof that

dim ESG(n) = dim DST 0 (2n -1) = 2n -1 6 + δ 4,(2n-1 mod 6) = 2n -1 6 = n -1 3 ,
for all positive integers n.

Basis of ESG(n)

Using Theorem 3.3.3 and the results of Chapter 2, we are now ready for giving a basis of ESG(n), for all positive integers n.

Theorem 3.3.5 (Chappelon [C8]). Let n be a positive integer. The set

ψρ ∇S (2n-1) 2k+1,k-n+1 k ∈ 0, . . . , n -1 3 -1 is a basis of ESG(n), where ψρ ∇S (2n-1) 2k+1,k-n+1 = G(S k ) with S k = k -n + 2j -1 2k + k + n -2j 2k -2j + 3 + k -n + 2 2k -2n + 2j + 2 mod 2 1⩽j⩽n-1 , for all k ∈ 0, . . . , n-1 3 -1 .
For instance, for n = 12, we obtain k S All the even Steinhaus graphs of order 12 are depicted in Figure 3.6, where the elements of the basis {G 1 , G 2 , G 3 } are in red and, for every G ∈ ESG(12), the coordinate vector 

(x 1 , x 2 , x 3 ) of G = x 1 G 1 + x 2 G 2 + x 3 G 3 is given.

Basis of PRSG(n)

We end this section by giving a basis of the linear subspace PRSG(n) of parity-regular Steinhaus graphs, for all positive integers n. By definition, we know that PRSG(n) = ESG(n) ⊔ OSG(n), where OSG(n) is the set of odd Steinhaus graphs of order n, for all positive integers n. As already remarked, it is clear that OSG(n) = ∅, when n is odd, and

OSG(n) = ESG(n) + G((0) n-2 • (1)) ,
when n is even. It immediately follows that, for any positive integer n, we have

PRSG(2n -1) = ESG(2n -1) (3.3) and PRSG(2n) = ESG(2n) ⊔ (ESG(2n) + G((0) 2n-2 • (1))) . (3.4)
Combining the identities (3.3) and (3.4) with Theorem 3.3.5, we obtain the following Theorem 3.3.6 (Chappelon [C8]). Let n be a positive integer. The set

ψρ ∇S (2n-1) 2k+1,k-n+1 k ∈ 0, . . . , n -1 3 -1 ,
when n is odd, or the set

{G((0) n-2 • (1))} ∪ ψρ ∇S (2n-1) 2k+1,k-n+1 k ∈ 0, . . . , n -1 3 -1 ,
when n is even, is a basis of PRSG(n), where ψρ ∇S

(2n-1) 2k+1,k-n+1 = G(S k ) with S k = k -n + 2j -1 2k + k + n -2j 2k -2j + 3 + k -n + 2 2k -2n + 2j + 2 mod 2 1⩽j⩽n-1 , for all k ∈ 0, . . . , n-1 3 -1 .
For instance, for n = 12, we obtain

G 0 = G(00000000001) , G 1 = G(11111111110) , G 2 = G(01101010110) , G 3 = G(10011001000) .
All the parity-regular Steinhaus graphs of order 12 are depicted in Figure 3.6 for even graphs and in Figure 3.7 for odd ones, where the elements of the basis {G 0 , G 1 , G 2 , G 3 } are in red and, for every G ∈ PRSG(12), the coordinate vector

(x 0 , x 1 , x 2 , x 3 ) of G = x 0 G 0 + x 1 G 1 + x 2 G 2 + x 3 G 3 is given ((x 1 , x 2 , x 3 ) when x 0 = 0 in Figure 3.6).

Regular Steinhaus graphs of odd degree

In this section, we will study in detail the structure of Steinhaus matrices associated with regular Steinhaus graphs of odd degree. Bailey and Dymacek studied the regular Steinhaus graphs of odd degree in [START_REF] Bailey | Regular Steinhaus graphs[END_REF], where the following theorem is stated, using Dymacek's theorem.

Theorem 3.4.1 (Bailey-Dymacek [START_REF] Bailey | Regular Steinhaus graphs[END_REF]). Let G be a regular Steinhaus graph of odd degree d on 2n ⩾ 4 vertices. Then d = n, the Steinhaus graph G \ {V 1 , V 2n } is regular of even degree n -1, and a 1,j = a 1,2n-j+1 for all 2 ⩽ j ⩽ 2n -1.

Remark 3.4.2. In every simple graph, there are an even number of vertices of odd degree. Therefore parity-regular Steinhaus graphs of odd type and thus regular Steinhaus graphs of odd degree have an even number of vertices.

In their theorem, the authors studied the form of the sequence associated with G. We are more interested in the Steinhaus matrix of G \ {V 1 , V 2n } in the sequel.

Definition 3.4.3 (Multi-symmetric matrix). A square matrix of size n ⩾ 1 is said to be multi-symmetric if M is doubly-symmetric and each row of the upper-triangular part of M is a symmetric sequence, that is

a i,j = a i,n-j+i+1 , for all 1 ⩽ i < j ⩽ n.
It is clear that a Steinhaus matrix M(S) is multi-symmetric if and only if the binary Steinhaus triangle ∇S is dihedrally symmetric.

First, it is easy to see that each column of the upper-triangular part of a multisymmetric matrix is also a symmetric sequence. Proposition 3.4.4. Let M = (a i,j ) be a multi-symmetric matrix of size n. Then, each column of the upper-triangular part of M is a symmetric sequence, that is a i,j = a j-i,j for all 1 ⩽ i < j ⩽ n.

As for doubly-symmetric Steinhaus matrices, multi-symmetric Steinhaus matrices can be characterized as follows.

Proposition 3.4.5 (Chappelon [C3]). Let M = (a i,j ) be a Steinhaus matrix of size n ⩾ 3. Then the following assertions are equivalent:

(i) the matrix M is multi-symmetric, (ii) the first row, the last column and the over-diagonal of M are symmetric sequences, (iii) the entries a i,n-i+1 , a n-2i+1,n-i+1 and a i,2i vanish for all 1 ⩽ i ⩽ n-1 2 .

We now refine Theorem 3.4.1. In the sequel of this subsection we will study in detail the multi-symmetric Steinhaus matrices. First, in order to determine a parametrization of these matrices, we use the operator H which assigns to each matrix M = (a i,j ) in SM(n) the Steinhaus matrix H(M ) = (b i,j ) in SM(n -3) defined by b i,j = a i-1,j-2 , for all 1 ⩽ i < j ⩽ n -3. Proposition 3.4.8 (Chappelon [C3]). Let M = (a i,j ) be a Steinhaus matrix of size n ⩾ 4.

Then the extension M of H(M ) only depends on the parameters a 1,2 , a 1,j 0 and a 1,n , with j 0 in {3, . . . , n -1}.

Therefore, for every Steinhaus matrix N of size n -3, there exist 8 distinct Steinhaus matrices M of size n such that H(M ) = N . We can also use this operator to determine parametrizations of multi-symmetric Steinhaus matrices.

Proposition 3.4.9 (Chappelon [C3]). Let M = (a i,j ) be a multi-symmetric Steinhaus matrix of size n. Let j i be an element of the set {2i + 1, . . . , n -i} for all 1 ⩽ i ⩽ n-1 3 .

Then the matrix M depends on the following parameters:

• a 1,j 1 and a 2i,j 2i 1 ⩽ i ⩽ n 6 -1 , for n even, • a 2i+1,j 2i+1 0 ⩽ i ⩽ n-3 6 -1 , for n odd.
For all positive integers n, the number of multi-symmetric Steinhaus matrices of size n immediately follows.

Theorem 3.4.10 (Chappelon [C3]). Let n be a positive integer. If we denote by M S(n) the number of multi-symmetric Steinhaus matrices of size n, then we have

M S(n) = 2 ⌈ n 6 ⌉ , for n even, 2 ⌈ n-3 6 ⌉ , for n odd.

Vertex degrees of Steinhaus graphs associated with multisymmetric Steinhaus matrices

In this section, we analyse the vertex degrees of a Steinhaus graph associated with a multi-symmetric Steinhaus matrix of size n. We begin with the case of doubly-symmetric Steinhaus matrices.

Proposition 3.4.11. Let n be a positive integer and G be a Steinhaus graph on n vertices whose Steinhaus matrix is doubly-symmetric. Then, for all 1 ⩽ i ⩽ n, we have

deg(V i ) = deg(V n-i+1 ).
We shall now see that, for a Steinhaus graph associated with a multi-symmetric Steinhaus matrix, the knowledge of the vertex degrees modulo 4 imposes strong conditions on the entries of its Steinhaus matrix. In order to prove this result, we distinguish different cases depending on the parity of n.

Proposition 3.4.12 (Chappelon [C3]). Let n be an even number and G be a Steinhaus graph on n vertices whose Steinhaus matrix M = (a i,j ) is multi-symmetric. Then, we have

deg(V 1 ) = deg(V n ) ≡ a 1, n 2 +1 (mod 2), deg(V 2 ) = deg(V n-1 ) ≡ 2a 1, n 2 +1 (mod 4), deg(V 3 ) = deg(V n-2 ) ≡ 2a 2, n 2 +1 (mod 4), deg(V 2i ) = deg(V n-2i+1 ) ≡ 2a 2,2i+1 + 2a i,2i+1 (mod 4), for all 2 ⩽ i ⩽ n
2 -2. Remark 3.4.13. Let n be an even number. In every Steinhaus graph on n vertices whose Steinhaus matrix is multi-symmetric the fourth vertex V 4 has a degree divisible by 4. Proposition 3.4.14 (Chappelon [C3]). Let n be an odd number and G be a Steinhaus graph on n vertices whose Steinhaus matrix M = (a i,j ) is multi-symmetric. Then, we have

deg(V 1 ) = deg(V n ) ≡ 0 (mod 2), deg(V 2 ) = deg(V n-1 ) ≡ 2a 1, n+1 2 (mod 4), deg(V 2i ) ≡ 2a i+1,2i+1 + 2a 2i-1,2i+1 + 2a 2i-1, n-1 2 +i (mod 4), for all 2 ⩽ i ⩽ n-3 2 , deg(V 2i+1 ) ≡ 2a 2,2i+2 (mod 4), for all 1 ⩽ i ⩽ n-3
2 . Remark 3.4.15. Let n be an odd number. In every Steinhaus graph on n vertices whose Steinhaus matrix is multi-symmetric the third vertex V 3 has a degree divisible by 4.

Regular Steinhaus graphs modulo 4 with multi-symmetric Steinhaus matrices

In this subsection, we consider the multi-symmetric Steinhaus matrices associated with Steinhaus graphs which are regular modulo 4, i.e. where all vertex degrees are equal modulo 4. First, we determine an upper bound of the number of these matrices. Two cases are distinguished, according to the parity of n.

Theorem 3.4.16 (Chappelon [C3]). For all odd numbers n, there are at most 2 ⌈ n 30 ⌉ multisymmetric Steinhaus matrices of size n whose associated Steinhaus graphs are regular modulo 4.

Theorem 3.4.17 (Chappelon [C3]). For all even numbers n, there are at most 2 ⌈ n 24 ⌉ multi-symmetric Steinhaus matrices of size n whose associated Steinhaus graphs are regular modulo 4.

Using these explicit parametrizations of the multi-symmetric Steinhaus matrices whose Steinhaus graphs are regular modulo 4, we obtain the following result by computer search: Computational Result 3.4.18 (Chappelon [C3]). For all positive integers n ⩽ 1500, the zero-edge graph on n vertices is the only Steinhaus graph on n vertices with a multisymmetric Steinhaus matrix and which is regular modulo 4.

This result can easily be proved for all odd numbers in the special case of regular Steinhaus graphs on n vertices whose Steinhaus matrices are multi-symmetric.

Theorem 3.4.19 (Chappelon [C3]). For all odd numbers n, there is no regular Steinhaus graph on n vertices whose Steinhaus matrix is multi-symmetric, except the zero-edge graph on n vertices. 

The Molluzzo Problem

a i,j = a i-1,j-1 + a i-1,j , (LR) 
for all integers i and j such that 2 ⩽ i ⩽ j ⩽ n, where the sum is the sum in Z/mZ. Note that (x), for all x ∈ Z/mZ, are Steinhaus triangles modulo m of size 1 and we say that ∅ is the Steinhaus triangle modulo m of size 0.

Definition 4.1.2 (Generalized Pascal triangle modulo m). A generalized Pascal triangle modulo m of size n ⩾ 1 is an up-pointing triangle (a i,j ) 1⩽j⩽i⩽n of elements of Z/mZ verifying the local rule (LR), that is,

a i,j = a i-1,j-1 + a i-1,j ,
for all integers i, j such that 2 ⩽ j < i ⩽ n. Note that (x), for all x ∈ Z/mZ, are generalized Pascal triangles modulo m of size 1 and we say that ∅ is the generalized Pascal triangle modulo m of size 0.

Examples of a Steinhaus triangle and a generalized Pascal triangle modulo 7 of size 7 are given in Figure 4.1.

As for the binary case m = 2 introduced in Chapter 1, all the elements of a Steinhaus triangle are determined by its first row and all the elements of a generalized Pascal triangle by its left and right sides. More precisely, in any Steinhaus triangle (a i,j ) 1⩽i⩽j⩽n , we have

a i,j = i-1 k=0 i -1 k a 1,j-k , 74 
CHAPTER 4. BALANCED TRIANGLES MODULO M for all integers i and j such that 1 ⩽ i ⩽ j ⩽ n, and in any generalized Pascal triangle (a i,j ) 1⩽j⩽i⩽n , we have

a i,j = i-j+1 k=2 i -k -1 j -2 a k,1 + j k=2 i -k -1 j -k a k,k ,
for all integers i and j such that 1 ⩽ j ⩽ i ⩽ n. For any positive integer m and any non-negative integer n, the sets ST m (n) and PT m (n) are Z/mZ-modules. Moreover, for any positive integer n, there exists a natural isomorphism between ST m (2n -1) and PT m (n) that is

γ : ST m (2n -1) -→ PT m (n) (a i,j ) 1⩽i⩽j⩽2n-1 -→ (a i,n-1+j ) 1⩽j⩽i⩽n
Steinhaus triangles and generalized Pascal triangles can be viewed as finite multisets of Z/mZ. Problem 4.1.7 (Molluzzo [START_REF] Molluzzo | Steinhaus graphs. In Theory and applications of graphs[END_REF]). Let m be a positive integer. For every non-negative integer n such that the binomial coefficient n+1 2 is divisible by m, does there exist a balanced Steinhaus triangle of size n in Z/mZ? For m = 2, we retrieve the Steinhaus Problem of Chapter 1. Since then, this problem has been positively solved, by constructive approaches, for small values of m: for m ∈ {3, 5} in [START_REF] Bartsch | Steinhaus-Figuren modulo 2 und verallgemeinerte Steinhaus-Dreiecke[END_REF], for m ∈ {3, 5, 7} in [C1], for m = 4 in [C9]. First counter-examples appeared in [C1], where it is proved that there does not exist balanced Steinhaus triangles of size 5 in Z/15Z and of size 6 in Z/21Z. Nevertheless, this problem can be positively answered for an infinite number of values m. Indeed, as showed in [C1, C2], there exist balanced Steinhaus triangles, for all the possible sizes, in the case where m is a power of 3. This result was obtained by studying Steinhaus triangles associated with arithmetic progressions. Even if the Molluzzo Problem is not completely solved for the other odd values of m, we know that there exist infinitely many balanced Steinhaus triangles in every Z/mZ with m odd. This weak version of the Molluzzo Problem was posed in [C9]. This chapter is organized as follows. After giving some preliminary results about Steinhaus triangles and the Molluzzo Problem in Section 2, we study in details the Steinhaus triangles generated by arithmetic progressions in Section 3. This permits us to obtain a positive answer to Problem 4.1.7 for m = 3 k , for all k ⩾ 0, and a positive answer to Problem 4.1.8 for any odd value of m. In Section 4, we show that there exists a particular sequence of integers whose projection of its orbit in Z/mZ contains balanced Steinhaus triangles of size km modulo m, for all k ⩾ 0 and for all odd values of m. Finally, in Section 5, we are interested in the Molluzzo Problem for even values of m. We manage to lift to Z/4Z some solutions for Z/2Z obtained in Chapter 1.

Preliminary results

Derived and antiderived sequences of sequences modulo m

As for binary sequences in Chapter 1, we introduce the notions of derived and antiderived sequences of sequences of Z/mZ. Definition 4.2.1 (Derived sequence). Let S = (a j ) 1⩽j⩽n be a sequence of Z/mZ. The derived sequence ∂S of S is the sequence

∂S = (a j + a j+1 ) 1⩽j⩽n-1 (4.1)
of length n -1, when n ⩾ 2, and the empty sequence, when n ⩽ 1.

It is clear that the derivation map ∂ is linear, i.e., ∂(S 1 + S 2 ) = ∂S 1 + ∂S 2 for all sequences S 1 and S 2 of same length. Definition 4.2.2 (Iterated derived sequence). The iterated derived sequences ∂ i S of a finite sequence S of Z/mZ are recursively defined by

∂ i S = ∂(∂ i-1 S), for all i ⩾ 1, with ∂ 0 S = S.
For any finite sequence S of Z/mZ, its Steinhaus triangle ∇S can then be seen as the collection (∂ i S) 0⩽i⩽n-1 , where, for every i ∈ {1, . . . , n}, the ith row of ∇S corresponds to the derived sequence ∂ i-1 S. Definition 4.2.3 (Antiderived sequence). Let S be a sequence of Z/mZ of length n. An antiderived sequence of S is a sequence T of length n + 1 such that ∂T = S. Proposition 4.2.4. Let S = (a j ) 1⩽j⩽n be a sequence of Z/mZ of length n. The sequence S admits m antiderived sequences T 1 , . . . , T m and these sequences verify

{T k,i | k ∈ {1, . . . , m}} = Z/mZ,
for all i ∈ {1, . . . , n + 1}, where T k,i is the ith term of the sequence T k . For any i ∈ {1, . . . , n + 1} and any x ∈ Z/mZ, the antiderived sequence of S whose ith term is x is the sequence i,x S = (b j ) 1⩽j⩽n+1 of length n + 1 defined by

b j = (-1) i+j x + i-1 k=1 (-1) j+k a k - j-1 k=1 (-1) j+k a k , (4.2) 
for all j ∈ {1, . . . , n + 1}.

For example, the sequence S = 0143 of Z/5Z admits the five antiderived sequences 00130, 14221, 23312, 32403 and 41044. Further, it is straightforward to obtain a fundamental theorem of calculus. Proposition 4.2.5. Let S = (a j ) 1⩽j⩽n be a binary sequence of length n. For any i ∈ {1, . . . , n + 1} and any x ∈ Z/mZ, we have that

i) ∂ i,x S = S, ii) i,x (∂S) = S + (-1) i+j (x -a i ) 1⩽j⩽n .

The average number of each element in triangles modulo m

Using the derivative and antiderivative operations on sequences of Z/mZ introduced before, it is now easy to determine, for any positive integer n and every x ∈ Z/mZ, the average number of x in a Steinhaus triangle or a generalized Pascal triangle modulo m of size n, i.e., 

1 m n ∇∈ST m(n) m ∇ (x) and 1 m 2n-1 ∆∈PTm(n) m ∆ (x).

Balanced multisets under projection maps

Definition 4.2.7. For every factor q of the positive integer m, we denote by π q the canonical surjective morphism π q : Z/mZ -↠ Z/qZ. For a finite multiset M of elements in Z/mZ, we define, and denote by

π q (M ) = {π q (x) | x ∈ M } , its projected multiset in Z/qZ.
We now study the behaviour of balanced multisets in Z/mZ under the projection morphism π q : Z/mZ -↠ Z/qZ. Theorem 4.2.8 (Chappelon [C2]). Let q be a divisor of m and M be a multiset of elements in Z/mZ. Then, the multiset M is balanced if, and only if, its projected multiset π q (M ) is balanced and the multiplicity function m M : Z/mZ -→ N is constant on each coset of the subgroup qZ/mZ. Proof. For every x in Z/mZ, it is clear that the multiplicity of π q (x) in π q (M ) is the sum of the multiplicities in M of all the elements of the coset x + qZ/mZ, that is,

m πq(M ) (π q (x)) = m q -1 k=0 m M (x + kq), ∀x ∈ Z/mZ.
This completes the proof. We denote by ω(m) the number of distinct prime factors of m, i.e. the number of primes p for which v p (m) ⩾ 1.

The set of all positive integers n such that m divides n+1 2 is described in the following Theorem 4.2.11 (Chappelon [C2]). Let m be a positive integer. The set of all nonnegative integers n such that the binomial coefficient n+1 2 is a multiple of m is a disjoint union of 2 ω(m) distinct classes modulo 2m if m is even, and of the same number of distinct classes modulo m if m is odd. This set comprises the classes 2mN and (2m -1) + 2mN if m is even, and the classes mN and (m -1) + mN if m is odd.

Corollary 4.2.12. Let p be an odd prime number and k be a positive integer. For every non-negative integer n, we have

n + 1 2 ≡ 0 (mod p k ) ⇐⇒ n ≡ 0 or -1 (mod p k ).
Similarly, for every non-negative integer n, we have

n + 1 2 ≡ 0 (mod 2 k ) ⇐⇒ n ≡ 0 or -1 (mod 2 k+1 ).
For instance, for m = 825 = 3 • 5 2 • 11, the set of non-negative integers n such that the binomial coefficient n+1 2 is divisible by 825 is the disjoint union of the 8 classes a + 825N with a ∈ {0, 99, 275, 374, 450, 549, 725, 824}.

Balanced Steinhaus triangles from arithmetic progressions

Steinhaus triangles of arithmetic progressions

In this subsection, we describe the structure of Steinhaus triangles associated with arithmetic progressions of Z/mZ.

Notation 4.3.1. Let AP(a, d, n) denote the arithmetic progression beginning with a, with common difference d and of length n, that is,

AP(a, d, n) = (a, a + d, a + 2d, . . . , a + (n -1)d) ,
for any a, d ∈ Z/mZ and any non-negative integer n.

First, it is straightforward to see that the structure of arithmetic progressions is preserved under the derivation process. 

∂ i AP(a, d, n) = AP(2 i a + 2 i-1 id, 2 i d, n -i),
for all integers n and i such that 1 ⩽ i ⩽ n.
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Corollary 4.3.4. Let a, d ∈ Z/mZ. If ∇AP(a, d, n) = (a i,j ) 1⩽i⩽j⩽n , then a i,j = a + (j -1)d for i = 1 and for all j ∈ {1, . . . , n}, 2 i-1 a + 2 i-2 (2ji)d for all integers i, j s.t. 2 ⩽ i ⩽ j ⩽ n.

For any even number m, we deduce from Corollary 4.3.4 that in the Steinhaus triangle ∇AP(a, d, n) = (a i,j ) 1⩽i⩽j⩽n , we have

a i,j ∈ {2k | k ∈ Z/mZ}
for all integers i and j such that 3 ⩽ i ⩽ j ⩽ n. Therefore, if ∇AP(a, d, n) is balanced, then all the elements of {2k + 1 | k ∈ Z/mZ} are in the first two rows of ∇AP(a, d, n).

It follows that n + (n -1) ⩾ 1 2 n + 1 2
and thus n ⩽ 6. Moreover, since m is even, we have that n+1 2 must be divisible by 2. This implies that n ∈ {0, 3, 4}.

Proposition 4.3.5. Let m be an even integer and let n be a non-negative integer. If ∇AP(a, d, n) is balanced, then n ∈ {0, 3, 4}.

The Steinhaus triangle of size 0 is always balanced in Z/mZ, for any positive integer m. For any even number m and any positive integer n, the complete determination of balanced triangles ∇AP(a, d, n) is given below. In the sequel of this section, we suppose that m is an odd number. In this case, it is easy to see that among the m antiderived sequences of an arithmetic progression, only one is also an arithmetic progression.

Proposition 4.3.7. Let m be an odd number and let a, d ∈ Z/mZ. Then, the sequence AP(2 -1 a -2 -2 d, 2 -1 d, n + 1) is the only arithmetic progression whose derived sequence is the arithmetic progression AP(a, d, n).

In contrast, for n even, there is no such unicity statement. For example, in Z/8Z, the arithmetic progressions 37373 and 11111 are distinct but have the same derived sequence 2222.

Balanced Steinhaus triangles from arithmetic progressions modulo m odd

We begin by showing that the common difference of a balanced Steinhaus triangle of an arithmetic progression in Z/mZ must be invertible. We continue by studying Steinhaus triangles of arithmetic progressions with invertible common differences. Definition 4.3.9. For every coprime integers m and a, we denote by ord m (a) the multiplicative order of a modulo m, i.e. the smallest positive integer e such that a e ≡ 1 mod m, namely ord m (a) = min {e ∈ N * | a e ≡ 1 mod m} .

Note that ord m (a) is always a divisor of φ(m), the totient of m.

The following theorem is the main result of this section. For example, in Z/7Z, the Steinhaus triangle ∇AP(1, 3, 20) is balanced since 3 is an invertible element of Z/7Z and ord 7 (2 7 ) = 3. Indeed, each element of Z/7Z occurs 30 times in this Steinhaus triangle. 1 4 0 3 6 2 5 1 4 0 3 6 2 5 1 4 0 3 6 2 5 4 3 2 1 0 6 5 4 3 2 1 0 6 5 4 3 2 1 2 0 5 3 1 6 4 2 0 5 3 1 6 4 2 0 5 3 2 5 1 4 0 3 6 2 5 1 4 0 3 6 2 5 1 0 6 5 4 3 2 1 0 6 5 4 3 2 1 0 6 6 4 2 0 5 3 1 6 4 2 0 5 3 1 6 3 6 2 5 1 4 0 3 6 2 5 1 4 0 2 1 0 6 5 4 3 2 1 0 6 5 4 3 1 6 4 2 0 5 3 1 6 4 2 4 0 3 6 2 5 1 4 0 3 6 4 3 2 1 0 6 5 4 3 2 0 5 3 1 6 4 2 0 5 5 1 4 0 3 6 2 5 6 5 4 3 2 1 0 4 2 0 5 3 1 6 2 5 1 4 1 0 6 5 1 6 4 0 3 3 Since there are n distinct elements a in Z/mZ and φ(m) distinct invertible elements d in Z/mZ, it follows that, for each positive integer n, there exist exactly mφ(m) distinct arithmetic progressions AP(a, d, n) with invertible common difference in Z/mZ and of length n. Therefore, for m odd, Theorem 4.3.10 implies that there exist at least mφ(m) balanced Steinhaus triangles of size n for every positive integer n ≡ 0 or -1 mod ord m (2 m ) m. However, this is not sufficient to completely settle the Molluzzo Problem, as shown by the following proposition. This shortcoming will be partly overcome in the next subsection. 

The antisymmetric case

Here, we refine Theorem 4.3.10 by considering antisymmetric sequences of Z/mZ. Definition 4.3.12 (Antisymmetric sequence). Let X = (x 1 , x 2 , . . . , x n ) be a finite sequence of length n ⩾ 1 in Z/mZ. The sequence X is said to be antisymmetric if x m-i+1 = -x i , for all i ∈ {1, . . . , n}.

We first show that the antisymmetry is preserved by the derivation process and we study the condition to have an antisymmetric antiderived sequence of an antisymmetric sequence.

Proposition 4.3.13 (Chappelon [C2]). Let X = (x 1 , x 2 , . . . , x n ) be a finite sequence of length n ⩾ 1 in Z/mZ. Then the sequence X is antisymmetric if, and only if, its derived sequence ∂X is also antisymmetric and

x ⌈ n 2 ⌉ + x n-⌈ n 2 ⌉+1 = 0, where ⌈ n 2 ⌉ is the ceiling of n 2 .
Proposition 4.3.14 (Chappelon [C2]). Let m be an odd number. Let a, d ∈ Z/mZ. Then, the arithmetic progression AP(a, d, n) of length n ⩾ 2 is antisymmetric if, and only if, its derived sequence AP(2a + d, 2d, n -1) is also antisymmetric.

In contrast, for m even, this proposition is not true. For instance, for n = 8, the arithmetic progression X = 01234 is not antisymmetric in Z/8Z but its derived sequence ∂X = 1357 is.

We now determine arithmetic progressions which are antisymmetric in Z/mZ for m odd.

Proposition 4.3.15 (Chappelon [C2]). Let m be an odd number. Let d be in Z/mZ and n be a positive integer. Then, there exists a unique antisymmetric arithmetic progression of length n and with common difference d. Moreover, if n is a multiple of m, then the unique antisymmetric arithmetic progression with common difference d and of length n is the sequence AP(2 -1 d, d, n). If n ≡ -1 (mod m), then the unique antisymmetric arithmetic progression with common difference d and of length n is the sequence AP(d,d,n).

If m is even, the above unicity does not hold in general. For example, in Z/8Z, the antisymmetric sequences 02460 and 46024 are both arithmetic progressions of length n = 5 and of common difference d = 2. Theorem 4.3.17 (Chappelon [C2]). Let m be an odd number and d be an invertible element in Z/mZ. Then

• for every n ≡ 0 mod pord m (2 m ) m, the triangle ∇AP(2 -1 d, d, n) is balanced,

• for every n ≡ -1 mod pord m (2 m ) m, the triangle ∇AP(d, d, n) is balanced.

We shall now see that this theorem answers in the affirmative the Molluzzo Problem in Z/3 k Z for all positive integers k and gives a partial answer in the general odd case.

Corollary 4.3.18 (Chappelon [C2]). The Molluzzo Problem is completely solved in Z/3 k Z for all positive integers k. In other words, there exists a balanced Steinhaus triangle of size n of Z/3 k Z for all positive integers n such that n+1 2 is divisible by 3 k .

Proof. Let k be a positive integer. We have

pord 3 k 2 3 k = pord 3 2 3 = 1.
Let d be an invertible element in Z/3 k Z. Then, Theorem 4.3.17 implies that d,n) is balanced for every positive integer ≡ -1 mod 3 k . Finally, from Corollary 4.2.12, we know that 3 k divides the binomial coefficient n+1 2 if, and only if, the positive integer n is congruent to 0 or -1 modulo 3 k .

• AP(2 -1 d, d, n) is balanced for every positive integer n ≡ 0 mod 3 k , • AP(d,
For every odd number m, Theorem 4.2.11 and Theorem 4.3.17 partly solve the Molluzzo Problem in Z/mZ in the exact proportion of 1 2 ω(m)-1 pord m (2 m ) , where ω(m) is the number of distinct prime factors of m. Indeed, if we consider the sets It follows from Theorem 4.2.11 and Theorem 4.3.17 that

N (m) = n ∈ N n + 1 2 ≡ 0 mod m ,
|B(m) ∩ {0, 1, . . . , k} | |N (m) ∩ {0, 1, . . . , k} | ⩾ 1 2 ω(n)-1 pord m (2 m ) ,
for all k ⩾ pord m (2 m ) m. Since 2 ω(m)-1 pord m (2 m ) ⩾ 2 for every odd number m ̸ = 3 k , it follows that our method gives a complete solution to the Molluzzo Problem for the powers of three only. For example, for m = 5 k , we have 2 ω(m)-1 pord m (2 m ) = 2, whence our results in this case produce balanced sequences for half of the admissible lengths. These triangles can be seen as finite subparts of the orbit associated with a doubly infinite sequence of elements of Z/mZ, where the derivation process is the same as defined above for finite sequences, with the same local rule as the standard Pascal triangle modulo m.

Definition 4.4.1 (Derived sequences). Let m be a positive integer and let S = (a j ) j∈Z be a doubly infinite sequence of elements of Z/mZ. The derived sequence of S is the sequence

∂S = (a j + a j+1 ) j∈Z .
The ith derived sequence ∂ i S is recursively defined by

∂ i S = ∂(∂ i-1 S), for all integers i ⩾ 1, with ∂ 0 S = S.
Definition 4.4.2 (Orbit). Let m be a positive integer and let S = (a j ) j∈Z be a doubly infinite sequence of elements of Z/mZ. The orbit of S is the sequence

O S = ∂ i S i∈N .
The orbit of S can also be seen as the (N × Z)-indexed sequence

O S = (a i,j ) (i,j)∈N×Z
where a i,j is the jth term of ∂ i S, for all i ∈ N and all j ∈ Z. Then, we have a i+1,j = a i,j + a i,j+1 , for all integers i ⩾ 1 and j, by the local rule of this cellular automaton. Moreover, we know that

a i,j = i k=0 i k a j+k
for all integers i ⩾ 0 and j.

Notation 4.4.3. Let S be a doubly infinite sequence of Z/mZ and let O S = (a i,j ) (i,j)∈N×Z its orbit. For every i ∈ N, the ith row of O S is the sequence R i = ∂ i S = (a i,j ) j∈Z and, for every j ∈ Z, the jth diagonal and the jth anti-diagonal of O S are the sequences D j = (a i,j ) i∈N and AD j = (a i,j-i ) i∈N respectively.

Examples of Steinhaus triangles and generalized Pascal triangles appearing in an orbit of a doubly infinite sequence of Z/5Z are depicted in Figure 4.4. Definition 4.4.4 (Interlaced arithmetic progression). For all positive integers n and k and for all k-tuples of elements A = (a 0 , . . . , a k-1 ) and D = (d 0 , . . . , d k-1 ) in Z/mZ, or in Z, the k-interlaced arithmetic progression IAP(A, D) is the sequence with first terms (a 0 , . . . , a k-1 ) and with common differences (d 0 , . . . , d k-1 ), that is the doubly infinite sequence IAP(A, D) = (a j ) j∈Z defined by a j 0 +jk = a j 0 + jd j 0 , for all j ∈ Z and for every j 0 ∈ {0, 1, . . . , k -1}. For k = 1, we denote by AP(a 0 , d 0 ) the arithmetic progression with first element a 0 and with common difference d 0 . 0 4 3 1 2 4 2 0 3 1 3 4 0 1 0 0 0 1 3 2 0 2 0 3 3 3 3 4 1 0 0 1 4 1 0 4 2 4 3 1 1 2 3 4 4 2 4 1 1 0 0 1 4 0 2 2 2 3 1 1 1 2 0 1 0 1 0 0 1 3 1 1 2 4 2 3 0 2 3 1 1 0 2 1 0 1 0 4 2 4 4 0 4 2 2 3 2 1 1 1 1 0 1 4 4 2 3 1 1 0 3 2 0 4 2 1 2 3 1 1 1 4 1 1 3 4 4 1 4 0 0 3 2 2 2 1 1 0 1 1 0 4 2 1 3 0 2 4 1 3 3 0 4 2 2 0 0 2 4 2 3 0 0 4 0 3 0 4 4 3 2 1 2 2 1 4 1 3 4 3 2 1 0 4 1 3 4 1 4 2 0 2 1 1 0 3 0 4 4 3 3 4 3 2 0 3 3 1 3 0 0 4 2 2 0 3 1 4 0 4 2 0 0 1 2 2 3 2 1 3 3 4 3 2 1 2 2 0 2 3 1 0 4 3 0 4 1 4 2 3 4 0 4 4 1 2 0 1 3 4 0 0 3 4 1 2 2 0 3 3 4 2 2 0 4 1 0 2 3 4 0 0 1 0 2 4 4 3 0 3 2 1 4 2 4 0 3 2 0 3 4 2 3 1 2 1 4 2 4 0 1 2 0 2 4 0 1 1 2 1 3 2 3 3 0 3 0 1 1 4 3 0 2 3 2 1 0 4 3 3 0 1 1 4 1 Let S = IAP((0, -1, 1), (1, -2, 1)). We shall show that this sequence has the remarkable property that the orbit of its projection π m (S) contains infinitely many balanced Steinhaus figures for every odd number m. For this reason, we shall call this sequence the universal sequence and denote it by US. The first few terms of US, where 0 is the term of index 0, are given below: US = (. . . . . . , -3, -3, 5, -2, -2, 3, -1, -1, 1, 0, 0, -1, 1, 1, -3, 2, 2, -5, 3, 3, -7, . . . . . .) .

The following theorem is the main result of this section.

Theorem 4.4.5 (Chappelon [C5]). Let m be an odd number. Then, the orbit of the projection π m (US) of the universal sequence in Z/mZ contains: i) balanced Steinhaus triangles of size n for every n ≡ 0 mod m or n ≡ -1 mod 3m.

This partially solves the Molluzzo Problem for 2/3 of the admissible sizes n, in the case where m is an odd prime power.

ii) balanced generalized Pascal triangles of size n for every n ≡ -1 mod m or n ≡ 0 mod 3m. This also gives a partial solution of the analogous Molluzzo Problem for generalized Pascal triangles, for 2/3 of the admissible sizes n, in the case where m is an odd prime power.

It would be highly desirable to have a similar result for m even, but this is widely open. This section is organized as follows. In Subsection 2, we study doubly arithmetic triangles (DAT for short) in Z/mZ. These are triangles whose rows are arithmetic progressions with the same common difference and whose diagonals are also arithmetic progressions with the same common difference. We show that these triangles constitute a source of balanced multisets in Z/mZ, for m odd, while they are never balanced in Z/mZ, for m even. In Subsection 3, interlaced doubly arithmetic orbits, i.e., orbits that are an interlacing of doubly arithmetic structures, are considered. We determine all the interlaced doubly arithmetic orbits in Z and, in Subsection 4, we show that the projection of these particular orbits in Z/mZ, for m odd, contains infinitely many balanced triangles. This result is refined in Subsection 5, by considering antisymmetric sequences. In Subsection 6, a particular case of this antisymmetric refinement leads to the universal sequence US and Theorem 4.4.5.

DAT: a source of balanced multisets

Definition 4.4.6 (DAT). For all positive integers m and n and for all elements a, d 1 and d 2 in Z/mZ, the doubly arithmetic triangle DAT(a, d 1 , d 2 , n) is the triangle of size n in Z/mZ, with first element a and where each diagonal and each row are arithmetic progressions with respective common differences d 1 and d 2 , that is the multiset in Z/mZ defined by

DAT(a, d 1 , d 2 , n) = {a + id 1 + jd 2 | 0 ⩽ i ⩽ n -1 , 0 ⩽ j ⩽ n -1 -i} .
Obviously, the anti-diagonals of a DAT are arithmetic progressions with common difference d 1d 2 .

Here, we show that doubly arithmetic triangles constitute a source of balanced multisets in Z/mZ, for m odd. We begin by determining a necessary condition, on the common differences d 1 and d 2 , to obtain a balanced DAT in Z/mZ. Remark 4.4.9. The condition on n to be a positive integer such that n+1 2 is divisible by m is not sufficient: as depicted in Figure 4.5, the triangle DAT(0, 8, 1, 5) is not balanced in Z/15Z, although its cardinality 6 2 = 15 is divisible by m = 15 and its common differences 8, 1 and 7 are invertible in Z/15Z. 0 1 2 3 4 8 9 10 11 1 2 3 9 10 2 The following theorem is the main result of this subsection. Let m be a positive integer and let d 1 and d 2 be two elements of Z/mZ. The orbit O S , associated with a doubly infinite sequence S in Z/mZ, is said to be (d 1 , d 2 )-doubly arithmetic if each subtriangle appearing in it is a DAT with common differences (d 1 , d 2 ), that is if O S is an orbit where all the diagonals are arithmetic progressions with the same common difference d 1 and where all the rows are arithmetic progressions with the same common difference d 2 . Now, we prove that, for every positive integer m, there does not exist a doubly arithmetic orbit in Z/mZ, except the trivial orbit generated by the sequence of zeros in Z/mZ. Proposition 4.4.12. Let m be a positive integer. The orbit associated with the sequence of zeros is the only doubly arithmetic orbit in Z/mZ.

Even if there does not exist a non-trivial doubly arithmetic orbit, the results of this subsection will be useful in next subsections, where orbits with an interlaced doubly arithmetic structure are studied.

Interlaced doubly arithmetic orbits of integers

Definition 4.4.13 (Interlaced doubly arithmetic orbit). For all positive integers m, k 1 and k 2 and for every doubly infinite sequence S in Z/mZ, or in Z, the orbit O S = (a i,j ) (i,j)∈N×Z is said to be (k 1 , k 2 )-interlaced doubly arithmetic if, for every i 0 ∈ {0, 1, . . . , k 1 -1} and every j 0 ∈ {0, 1, . . . , k 2 -1}, the subsequence (a i 0 +ik 1 ,j 0 +jk 2 ) (i,j)∈N×Z is doubly arithmetic, i.e., if we have a i 0 +ik 1 ,j 0 +jk 2 = a i 0 ,j 0 + i(a i 0 +k 1 ,j 0a i 0 ,j 0 ) + j(a i 0 ,j 0 +k 2a i 0 ,j 0 ), for all i ∈ N and all j ∈ Z.

Determining all interlaced doubly arithmetic orbits (IDAO for short) in Z/mZ seems to be very difficult. Nevertheless, IDAO in Z are determined in this subsection and their projection in Z/mZ will be considered in the sequel. First, it is clear that the sequence S associated with a (k 1 , k 2 )-interlaced doubly arithmetic orbit O S is a k 2 -interlaced arithmetic progression. We begin by showing that the interlaced arithmetic structure of a sequence is preserved under the derivation process. Proposition 4.4.14. Let m be a positive integer. Let (a 0 , . . . , a k-1 ) and (d 0 , . . . , d k-1 ) be two k-tuples of elements in Z/mZ, or in Z. Then, we have ∂IAP ((a 0 , . . . , a k-1 ), (d 0 , . . . , d k-1 ))

= IAP ((a 0 + a 1 , . . . , a k-2

+ a k-1 , a k-1 + a 0 + d 0 ), (d 0 + d 1 , . . . , d k-2 + d k-1 , d k-1 + d 0 )) .
We can now explicitly determine all the iterated derived sequences of an interlaced arithmetic progression.

Proposition 4.4.15. Let m be a positive integer. Let A and D be two k-tuples of elements in Z/mZ, or in Z. Then, for every non-negative integer i, we have

∂ i IAP (A, D) = IAP (AC i + DT i , DC i ) ,
where C i is the circulant matrix of size k defined by

C i = Circ l⩾0 i lk , l⩾0 i lk -1 , . . . , l⩾0 i lk + 1 ,
and where T i is the Toeplitz matrix of size k where the (r, s)-entry of T i is

(T i ) r,s = l⩾0 l i r -s + lk ,
for all r, s ∈ {1, . . . , k}.
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The main result of this subsection is the complete characterization of IDAO in Z.

Theorem 4.4.16 (Chappelon [C5]). Every interlaced doubly arithmetic orbit O S in Z is generated by an interlaced arithmetic progression of the form

S = IAP((a 0 , a 1 , a 2 ), (d, -2d -3Σ, d + 3Σ)),
where a 0 , a 1 , a 2 and d are integers, and Σ := a 0 + a 1 + a 2 .

We begin by showing that the interlaced arithmetic progressions listed in Theorem 4.4.16 will generate interlaced doubly arithmetic orbits of integers.

Proposition 4.4.17. Let a 0 , a 1 , a 2 , d ∈ Z and let Σ = a 0 + a 1 + a 2 . Then, the orbit O S associated with S = IAP((a 0 , a 1 , a 2 )(d, -2d -3Σ, d + 3Σ)) is (6, 3)-interlaced doubly arithmetic. Now, we show that there is no other sequence generating IDAO in Z. Since any (k 1 , k 2 )-IDAO is also a (k 1 k 2 , k 1 k 2 )-IDAO, we suppose that we have k 1 = k 2 = k in the sequel. The problem of determining all (k, k)-IDAO can then be converted into a system of linear equations.

Proposition 4.4.18 (Chappelon [C5]). Let m be a positive integer. Let A and D be two k-tuples of elements in Z/mZ, or in Z, and let S = IAP(A, D) be a k-interlaced arithmetic progression. Then, the orbit O S is (k, k)-interlaced doubly arithmetic if and only if A and D satisfy

W k 2 W k T k T 0 k W k A T D T = 0,
where

W k = C k -I k = Circ k 0 , k 1 , . . . , k k-1
, that is the Wendt matrix of size k. In [START_REF] Wendt | Arithmetische Studien über den "letzten" Fermatschen Satz, welcher aussagt, dass die Gleichung a n = b n + c n für n > 2 in ganzen Zahlen nicht auflösbar ist[END_REF], E. Wendt investigated the resultant of X k -1 and (X + 1) k -1, which corresponds to the determinant of W k . E. Lehmer was the first to prove that the determinant of W k vanishes if and only if k is divisible by 6 [START_REF] Lehmer | On a resultant connected with Fermat's last theorem[END_REF]. It is also easy to deduce from her proof that the Wendt matrix W k is of rank k if k is not divisible by 6 and of rank k -2 otherwise.

Proposition 4.4.19.

rank(W k ) = k if k ̸ ≡ 0 (mod 6), k -2 if k ≡ 0 (mod 6).
We are now able to prove the main theorem of this section.

Proof of Theorem 4.4.16. If k is not divisible by 6, then the Wendt matrix W k is of rank k by Proposition 4.4.19. This implies that A = D = (0, . . . , 0) and thus S is the sequence of zeros. Otherwise, if k is divisible by 6, then Proposition 4.4.17 implies that the vector space of (k, k)-interlaced doubly arithmetic orbits is of dimension greater than or equal to 4. Moreover, since rank(W k 2 ) = rank(W k ) = k -2 by Proposition 4.4.19, it follows that the matrix

W k 2 W k T k T 0 k W k
is of rank greater than or equal to 2k -4. Therefore, there is no other (k, k)-IDAO than those listed in Theorem 4.4.16. This completes the proof.

Balanced triangles modulo m odd

For any odd number m, the projection in Z/mZ of an IDAO in Z, obtained in the previous subsection, contains infinitely many balanced triangles modulo m.

Theorem 4.4.20 (Chappelon [C5]). Let m be an odd number and let a 0 , a 1 , a 2 , d ∈ Z/mZ. Define Σ := a 0 + a 1 + a 2 . If d, d + 3Σ, and 2d + 3Σ are invertible, then, the following triangles, contained in the orbit of S = IAP((a 0 , a 1 , a 2 ), (d, -2d -3Σ, d + 3Σ)), are balanced: i) every Steinhaus triangle of size n in O S , for every n ≡ 0 or -1 mod 6m, ii) every generalized Pascal triangle of size n in O S , for every n ≡ 0 or -1 mod 6n.

Proof. Let O S = (a i,j ) (i,j)∈N×Z be the orbit associated with S. Consider the subsequences S i 0 ,j 0 = (a i 0 +6i,j 0 +6j ) (i,j)∈N×Z , for i 0 and j 0 in {0, 1, 2, 3, 4, 5}. Each of these 36 subsequences is doubly arithmetic since the orbit O S is (6, 3)-interlaced doubly arithmetic by Proposition 4.4.17. Table 4.1 gives their common differences d 1 , d 2 , d 1d 2 . Thus, each

S i 0 ,j 0 d 1 d 2 d 1 -d 2 S 1,2 , S 1,5 , S 3,1 , S 3,4 , S 5,0 , S 5,3 2d 2(2d + 3Σ) -2(d + 3Σ) S 0,1 , S 0,4 , S 2,0 , S 2,3 , S 4,2 , S 4,5 -2d -2(2d + 3Σ) 2(d + 3Σ) S 1,1 , S 1,4 , S 3,0 , S 3,3 , S 5,2 , S 5,5 2(d + 3Σ) -2d 2(2d + 3Σ) S 0,0 , S 0,3 , S 2,2 , S 2,5 , S 4,1 , S 4,4 -2(d + 3Σ) 2d -2(2d + 3Σ) S 0,2 , S 0,5 , S 2,1 , S 2,4 , S 4,0 , S 4,3 2(2d + 3Σ) 2(d + 3Σ) 2d S 1,0 , S 1,3 , S 3,2 , S 3,5 , S 5,1 , S 5,4 -2(2d + 3Σ) -2(d + 3Σ) -2d Table 4.1: S i 0 ,j 0 = (a i 0 ,j 0 + id 1 + jd 2 ) (i,j)∈N×Z
subsequence S i 0 ,j 0 is doubly arithmetic, with invertible common differences d 1 , d 2 and d 1d 2 . Let λ ⩾ 1 and let ∇ be a Steinhaus triangle of size n = 6λm or n = 6λm -1, that appears in O S . Since ∇ ∩ S i 0 ,j 0 , for i 0 and j 0 in {0, 1, 2, 3, 4, 5}, is a doubly arithmetic triangle of order λm or λm -1 and with invertible common differences d 1 , d 2 and d 1d 2 , it follows from Theorem 4.4.10 that the 36 subtriangles are balanced. Therefore their union, the Steinhaus triangle ∇, is also balanced in Z/mZ. Similarly, every generalized Pascal triangle of size n in O S is balanced, for all n ≡ 0 or -1 mod 6m, since it can be decomposed into 36 subtriangles, which are balanced doubly arithmetic triangles by Theorem 4.4.10 again.

The case where a 0 = 0, a 1 = 1, a 2 = 2 and d = 1 in Z/3Z, i.e., the orbit associated with the sequence IAP((0, 1, 2), (1, 1, 1)), is illustrated in Figure 4.6. In this example, balanced triangles are depicted in gray: there are a balanced Steinhaus triangle of size 18, a balanced generalized Pascal triangle of size 18 and a balanced Steinhaus triangle of size 17.

The antisymmetric case

Here, we refine Theorem 4.4.20 by considering antisymmetric sequences in Z/mZ. The main interest of the antisymmetric sequences in Z/mZ is that their multiplicity function admits a certain symmetry. Indeed, it is clear that, if S is an antisymmetric sequence in Z/mZ, then its multiplicity function m S satisfies m S (x) = m S (-x), for all x in Z/mZ. The same equality appears for the multiplicity function of triangles generated from antisymmetric sequences. Now, for m odd, we determine all the sequences generating IDAO in Z and such that the first 3m terms of their projection in Z/mZ are antisymmetric.
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Proposition 4.4.24 (Chappelon [C5]). Let m be an odd number. Let a 0 , a 1 , a 2 , d ∈ Z/mZ and let Σ = a 0 + a 1 + a 2 . Then, the subsequence S n = IAP((a 0 , a 1 , a 2 ), (d, -2d -3Σ, d + 3Σ))[0, n -1], of length n ≡ 0 mod 3m in Z/mZ, is antisymmetric if and only if Σ = 0 and a 1 = -d, i.e., if we have S n = IAP ((a,da),(d,d)

)[0, n -1].
Let m be an odd number and let a and d be two elements in Z/mZ with d invertible. We refine Theorem 4.4.20 by considering the orbit O S = (a i,j ) (i,j)∈N×Z of the sequence S = IAP ((a, -d, da), (d, -2d, d)). Let ∇ 0 be the Steinhaus triangle, of size 3m, generated by the first 3m terms of S and let ∆ 0 be the generalized Pascal triangle, of size 3m -1, adjacent with ∇ 0 as depicted in Figure 4.7, that are

∇ 0 = ∇S[0, 3m -1] and ∆ 0 = γ(∇∂S[1, 6m -3]). ∇ 0 ∆ 0 Figure 4.7: ∇ 0 = ∇S[0, 3m -1] and ∆ 0 = γ(∇∂S[1, 6m -3])
We begin by showing that these triangles are balanced in Z/mZ. Proof. For every positive integer λ, the Steinhaus triangle ∇S[0, 3λm -1] and the Pascal triangle γ(∇∂S[-3λm, 3λm -2]) are balanced because they are multiset unions of the elementary triangles ∇ 0 , -∇ 0 , ∆ 0 and -∆ 0 , which are balanced in Z/mZ by Proposition 4.4.25. The Steinhaus triangle ∇∂S[0, 3λm -2] is balanced, since it is obtained from ∇S[0, 3λm -1] by rejecting its first row, which is a 3-interlaced arithmetic progression with invertible common differences and of length 3λm and thus contains 3λ times each element of Z/mZ. Similarly, the Pascal triangle γ(∇∂S[-3λm + 1, 3λm -3]) is balanced, since it is obtained from γ(∇∂S[-3λm, 3λm -2]) by rejecting its last row, which is also balanced.

The universal sequence modulo m odd

Let US = IAP((0, -1, 1), (1, -2, 1)) be the universal sequence of integers introduced before. In this subsection, we refine Theorem 4.4.26 by studying this universal sequence modulo an odd number m, namely the sequence

S = dπ n (US) = IAP((0, -d, d), (d, -2d, d)),
where d is invertible in Z/mZ. It corresponds to the sequence S of Theorem 4.4.26 with a = 0. First, each element of its orbit O S = (a i,j ) (i,j)∈N×Z can be expressed as a function of d. 

a i,j = (-1) i k>0 k j + 2i -k (-1) k (k -i)d.
for all non-negative integers i and j.

In the sequel of this subsection, we suppose that m is an odd number and that S is the universal sequence modulo m, that is S = IAP(( 0,d),(d,d)), where d is an invertible element in Z/mZ. Let ∇ 1 , ∇ 2 and ∇ 3 be the Steinhaus triangles of size m associated with the sequences S[0, m -1], S[m, 2m -1] and S[2m, 3m -1], respectively, and let ∆ 1 , ∆ 2 and ∆ 3 be their adjacent generalized Pascal triangles of size m -1, as depicted in Figure 4.8, that are:

∇ 1 = ∇S[0, m -1], ∇ 2 = ∇S[m, 2m -1], ∇ 3 = ∇S[2m, 3m -1], ∆ 1 = γ(∇∂S[1, 2m -3]), ∆ 2 = γ(∇∂S[m + 1, 3m -3]) and ∆ 3 = γ(∇∂S[2m + 1, 4m -3]). ∇ 1 ∇ 2 ∇ 3 ∆ 1 ∆ 2 ∆ 3 Figure 4.8: The elementary triangles ∇ 1 , ∇ 2 , ∇ 3 , ∆ 1 , ∆ 2 and ∆ 3
We begin by showing that these triangles, or unions of them, are balanced in Z/mZ. 

∇ 1 = ∇S[0, m -1], ∇ 2 = ∇S[m, 2m -1], ∇ 3 = ∇S[2m, 3m -1], ∆ 1 = γ(∇∂S[1, 2m -3]), ∆ 2 = γ(∇∂S[m + 1, 3m -3]) and ∆ 3 = γ(∇∂S[2m + 1, 4m -3]). Then, the multisets ∇ 2 , ∇ 1 ∪ ∇ 3 , ∆ 3 and ∆ 1 ∪ ∆ 2 are bal- anced in Z/mZ.
We are now ready to give the main result of this section. 

The Molluzzo Problem modulo m even

Despite its apparent simplicity, the problem of Molluzzo is very challenging, as testified by the scarcity of available results. We have seen that this problem is positively solved for m = 2 in Chapter 1 (the Steinhaus Problem) and for m = 3 k , for every k ⩾ 1, in Section 3 of this chapter. In this section, we positively solve this problem for the case m = 4. The construction method, presented here and in [C9], consists in attempting to lift to Z/4Z specific known solutions in Z/2Z.

A solution for m = 4

First, from Corollary 4.2.12, we know that the set of non-negative integers n for which the binomial coefficient n+1 2 is divisible by m = 4 is exactly the set of non-negative integers congruent to 0 or -1 modulo 8, i.e.,

N (4) = n ∈ N n + 1 2 ≡ 0 mod 4 = 8N ∪ (8N + 7).
As in [START_REF] Eliahou | On a problem of Steinhaus concerning binary sequences[END_REF] for the case m = 2, the solution presented here involves the concept of strongly balanced triangles. Definition 4.5.1 (Strongly balanced triangle). Let S be a finite sequence of length n ⩾ 0 in Z/4Z. The Steinhaus triangle ∇S is said to be strongly balanced if, for every t ∈ {0, . . . , n 8 }, the Steinhaus triangle ∇S[n -8t] is balanced.

Here is the main result of this section. 

S 1 = 01220232(212113220030232311200232) ∞ , S 2 = 21210130(200132022112002110220130) ∞ , T 1 = 0120021(212202102023032200322021) ∞ , T 2 = 1000212(312223301210312003103232) ∞ , T 3 = 1200210(220101222032222103000210) ∞ , T 4 = 2102203(232002102021230022302203) ∞ .
Then, for all integers i, j, k such that 1 ⩽ i ⩽ 2, 1 ⩽ j ⩽ 4 and k ⩾ 0, the Steinhaus triangles of the initial segments S i [8k] and T j [8k + 7] are strongly balanced.

The construction method

We now explain how our solution was constructed. Let m 1 , m 2 ⩾ 2 be integers, with m 2 a multiple of m 1 . Consider the canonical quotient map

π : Z/m 2 Z -→ Z/m 1 Z. If ∇ is a Steinhaus triangle in Z/m 2 Z, then π(∇) is a Steinhaus triangle in Z/m 1 Z. Moreover, if ∇ is balanced of size n such that n+1
2 is divisible by m 2 , we know from Theorem 4.2.8 that π(∇) is balanced in Z/m 1 Z. Thus, an obvious strategy for constructing balanced Steinhaus triangles in Z/m 2 Z consists in trying to lift to Z/m 2 Z known balanced Steinhaus triangles in Z/m 1 Z. This route is tricky, as illustrated by Theorems 4.5.6 and 4.5.7 below. It allowed us to solve the case m = 4 of the Molluzzo Problem, but neither the case m = 6 nor the case m = 8 so far.

We shall restrict our attention to strongly balanced Steinhaus triangles. These were defined earlier in Z/4Z only. We now generalize them to Z/mZ for all even moduli. Definition 4.5.3. Let m ⩾ 2 be an even modulus. Let S be a finite sequence of length n ⩾ 0 in Z/mZ. The Steinhaus triangle ∇S is said to be strongly balanced if, for every t ∈ 0, . . . , n 2m , the Steinhaus triangle ∇S[n -2mt] is balanced.

Note that this definition coincides with Definition 4.5.1 for m = 4. From now on, we assume that m 1 = m is an even number, and that m 2 = 2m 1 . The following notation helps to measure, roughly speaking, to what extent strong solutions in Z/mZ can be lifted to strong solutions in Z/2mZ. Notation 4.5.4. Let S be an infinite sequence in Z/mZ. For n ⩾ 0, let a n (S) denote the number of sequences T in Z/2mZ, of length n, such that • ∇T is a strongly balanced Steinhaus triangle in Z/2mZ;

• π(T ) = S[n], the initial segment of length n in S.

We denote by G S (t) = ∞ n=0 a n (S)t n the generating function of the numbers a n (S). We shall use this notation as a convenient device for exhibiting the value of the a n (S) for all n at once. For our present purposes, the favorable case occurs when G S (t) is an infinite series, not just a polynomial. Indeed, G S (t) is an infinite series if and only if there exists infinitely many strongly balanced Steinhaus triangles in Z/2mZ, which lift those in Z/mZ generated by initial segments of S.

From Z/2Z to Z/4Z

Here we set m = 2. Several types of balanced Steinhaus triangles of length 4k or 4k + 3 in Z/2Z are known. We focus here on the ones given in [START_REF] Eliahou | On a problem of Steinhaus concerning binary sequences[END_REF], which have the added property of being strongly balanced.

Theorem 4.5.5 ). Let Q 1 , . . . , Q 4 and R 1 , . . . , R 12 be the following eventually periodic sequences of Z/2Z:

Q 1 = 0100(001001011100) ∞ , Q 2 = (010010000111) ∞ , Q 3 = 0101(011000011000) ∞ , Q 4 = 0101(101000101000) ∞ , R 1 = 001(010000100001) ∞ , R 2 = 0011110(001101010110) ∞ , R 3 = 010(000101000010) ∞ , R 4 = 0100001(010010111100001010111111) ∞ , R 5 = 0100001(100100001001) ∞ , R 6 = 0101011(010101100011) ∞ , R 7 = 0101011(010111111101011010011101) ∞ , R 8 = 010(101110110010) ∞ , R 9 = 100(001000010100) ∞ , R 10 = 1000010(110001101010) ∞ , R 11 = 1111101(011000110101) ∞ , R 12 = 111(110110000111) ∞ .
For all integers i, j, k such that 1 ⩽ i ⩽ 4, 1 ⩽ j ⩽ 12 and k ⩾ 0, the Steinhaus triangles ∇Q i [4k] and ∇R j [4k + 3] are strongly balanced in Z/2Z.

Can we lift some initial segments of these sequences to sequences in Z/4Z which generate strongly balanced Steinhaus triangles? To answer this question, we have determined by computer the numbers a n (S) for all 16 sequences S in Theorem 4.5.5 and all n ⩾ 1. In 11 out of the 16 cases, the numbers a n (S) turn out to vanish for all sufficiently large n, i.e. the series G S (t) is just a polynomial. But remarkably, in the remaining 5 cases, the a n (S) turn out to be ultimately periodic and non-vanishing, so that the infinite series G S (t) is actually a rational function. These 16 series are displayed below; the 5 infinite ones occur for the sequences Q 1 , Q 3 , R 3 , R 9 , R 10 . Theorem 4.5.6 (Chappelon-Eliahou [C9]). The generating functions G S (t) of Q 1 , . . . , Q 4 and R 1 , . . . , R 12 are: The origin of our sequences S 1 , S 2 , T 1 , T 2 , T 3 , T 4 , solving the Molluzzo Problem in Z/4Z, is now clear. Indeed, they are lifts to Z/4Z of the 5 sequences Q 1 , Q 3 , R 3 , R 9 , R 10 in Z/2Z with G S (t) infinite. More precisely, we have

G Q 1 (t) = 1 + 8t 8 + 34t 16 + 58t
π(S 1 ) = Q 1 , π(S 2 ) = Q 3 , π(T 1 ) = π(T 4 ) = R 3 , π(T 2 ) = R 10 , π(T 3 ) = R 9 ,
as the reader may readily check.

From Z/4Z to Z/8Z

Having solved the problem in Z/4Z with Theorem 4.5.2, can we lift our solutions S 1 , S 2 , T 1 , T 2 , T 3 , T 4 to sequences in Z/8Z giving rise to infinitely many strongly balanced Steinhaus triangles? Unfortunately, the answer is no, as shown by the following computational result.

Theorem 4.5.7 (Chappelon-Eliahou [C9]). The generating functions G S (t) of sequences CHAPTER 4. BALANCED TRIANGLES MODULO M S 1 , S 2 , T 1 , T 2 , T 3 , T 4 are polynomials only: 95 .

G S 1 (t) = 1 + 16t 16 + 46t 32 + 32t 48 + 14t
Summarizing, at this stage, it is not even known whether there exist infinitely many balanced Steinhaus triangles in Z/8Z.

Chapter 5

Balanced simplices

Simplices generated by additive cellular automata

Let us define the generalization of Steinhaus triangles and generalized Pascal triangles that we consider here and in [C6]. Let n and m be positive integers. Throughout this chapter, n will denote the dimension of the objects studied and m the order of the finite cyclic group Z/mZ. For any integers a and b such that a < b, we let [a, b] denote the set of the integers between a and b, that is, [a, b] := {a, a + 1, . . . , b} and [a, b] n the Cartesian product of n copies of [a, b]. For any n-tuple of elements u, we let u i denote its ith component for all i ∈ [1, n], that is, u = (u 1 , . . . , u n ). For two n-tuples u and v and an integer λ, we consider the sum u

+ v := (u 1 + v 1 , . . . , u n + v n ), the product u • v := (u 1 v 1 , . . . , u n v n )
and the scalar product λu := (λu 1 , . . . , λu n ).

Definition 5.1.1 (ACA). Let r be a non-negative integer and let W = (w j ) j∈[-r,r] n be an n-dimensional array of integers of size (2r+1) n . The additive cellular automaton (ACA for short) over Z/mZ associated with W is the map ∂ which assigns, to every n-dimensional infinite array of Z/mZ, a new array by a linear transformation whose coefficients are those of W . More precisely, the map ∂ is defined by

∂ ((a i ) i∈Z n ) =   j∈[-r,r] n w j a i+j   i∈Z n
, for all arrays (a i ) i∈Z n of elements in Z/mZ. We say that ∂ is of dimension n ⩾ 1 and of weight W with radius r ⩾ 0. Definition 5.1.2 (Orbit). Let A = (a i ) i∈Z n be an infinite array of Z/mZ of dimension n. The orbit O A generated from A by the ACA ∂ is the collection of all the n-dimensional arrays obtained from A by successive applications of ∂, that is,

O A := ∂ j (A) j ∈ N ,
where ∂ j is recursively defined by ∂ j (A) = ∂(∂ j-1 (A)) for all j ⩾ 1 and ∂ 0 (A) = A. The orbit O A can also be seen as the (n + 1)-dimensional array (a i,j ) (i,j)∈Z n ×N of Z/mZ whose jth row R j := (a i,j ) i∈Z n corresponds to ∂ j (A), for all j ∈ N.

Definition 5.1.3 (Simplices). Let A = (a i ) i∈Z n be an infinite array of Z/mZ of dimension n. Let ε ∈ {-1, 1} n and let s be a positive integer. The simplex of size s, with orientation 98 CHAPTER 5. BALANCED SIMPLICES ε and whose principal vertex is at the coordinates j ∈ Z n in A, is the multiset of Z/mZ defined and denoted by

△(j, ε, s) := {a j+ε•k | k ∈ N n such that k 1 + • • • + k n ⩽ s -1} .
For n = 2 and n = 3, it is called a triangle and a tetrahedron, respectively. a 0,0 a 1,0 2 3 4 0 1 2 3 4 0 1 2 3 4 0 a 0,1 a 1,1 2 1 0 4 3 2 1 0 4 3 2 1 0 4 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2 The goal in this chapter is to prove the existence of balanced simplices appearing in certain orbits generated by ACA. Sufficient conditions for obtaining this result will be detailed throughout this chapter. As seen in the previous chapters, this notion of balanced simplices generated by ACA essentially appears in the literature in the case of the Pascal cellular automaton of dimension 1. Definition 5.1.4 (PCA n ). The Pascal cellular automaton of dimension n is the ACA of radius r = 1 and whose weight array W = (w i ) i∈[-1,1] n is defined by

w i = 1 if i ∈ {0 Z n , -e 1 , -e 2 , . . . , -e n } , 0 otherwise,
where (e 1 , e 2 , . . . , e n ) is the canonical basis of the vector space Z n . It is denoted by PCA n .

For instance, W = (1, 1, 0) for PCA 1 and W =

  0 0 0 1 1 0 0 1 0   for PCA 2 .
Remark 5.1.5. Let A = (a i ) i∈Z n-1 be the (n -1)-dimensional array of Z/mZ defined by a i = 1 for i = 0 Z n and a i = 0 otherwise. If (a i,j ) (i,j)∈Z n-1 ×N is the orbit O A generated by the PCA n-1 , then a i,j is the multinomial coefficient

a i,j = j i 1 , . . . , i n-1 , j -n-1 k=1 i k = j! i 1 ! • • • i n-1 ! j -n-1 k=1 i k !
for all i ∈ N n-1 such that i 1 + • • • + i n-1 ⩽ j, and a i,j = 0 otherwise. Thus, we retrieve the coefficients of the Pascal n-simplex modulo m. This is the reason why this specific ACA is called the Pascal cellular automaton.

Let A = (a i ) i∈Z be a doubly infinite sequence of Z/mZ. We consider the orbit generated from A by PCA 1 , i.e., the infinite array O A = (a i,j ) (i,j)∈Z×N defined by a i,0 = a i for all i ∈ Z and a i,j = a i-1,j-1 + a i,j-1 for all (i, j) ∈ Z × N * . Then, the (-+)-triangles and the (+-)-triangles appearing in a such orbit correspond with the Steinhaus triangles and the generalized Pascal triangles modulo m, respectively. As already seen before, the proof of Theorem 4.4.5 is based on the elementary object that is the arithmetic triangle and its main interest is that it is very often balanced. In this paper, we consider a generalization in higher dimensions of arithmetic triangles. Definition 5.1.6 (Arithmetic arrays and simplices). Let n and m be positive integers. Let A = (a i ) i∈Z n be an array of Z/mZ. The array A is said to be arithmetic with first element a and with common difference

d = (d 1 , . . . , d n ) ∈ (Z/mZ) n if a i = a + i 1 d 1 + • • • + i n d n ,
for all i = (i 1 , . . . , i n ) ∈ Z n . The arithmetic array with first element a ∈ Z/mZ and with common difference d ∈ (Z/mZ) n is denoted by AA(a, d). The arithmetic simplex of size s, with first element a ∈ Z/mZ and with common difference

d = (d 1 , . . . , d n ) ∈ (Z/mZ) n , is the simplex △(0 Z n , + • • • +, s) appearing in the array AA(a, d) = (a i ) i∈Z n and is denoted by AS(a, d, s), that is, AS(a, d, s) = {a + i 1 d 1 + • • • + i n d n | i ∈ N n such that i 1 + • • • + i n ⩽ s -1} .
For n = 1, the arithmetic progression AS(a, d, s) is also denoted by AP(a, d, s).

Remark 5.1.7. The following multiset identities hold for arithmetic simplices:

AS(a, (d 1 , . . . , d n ), s) = AS(a + (s -1)d 1 , (-d 1 , d 2 -d 1 , . . . , d n -d 1 ), s) = AS(a + (s -1)d 2 , (d 1 -d 2 , -d 2 , d 3 -d 2 , . . . , d n -d 2 ), s) • • • • • • = AS(a + (s -1)d n , (d 1 -d n , . . . , d n-1 -d n , -d n ), s),
and

AS(a, (d 1 , . . . , d n ), s) = AS a, d π(1) , . . . , d π(n) , s , where π is a permutation of [1, n]. 0 1 2 3 4 2 3 4 0 4 0 1 1 2 3 3 4 0 1 0 1 2 2 3 4 1 2 3 3 4 0 4 0 1 2 Figure 5.3: The arithmetic tetrahedron AS(0, (1, 2, 3), 5) in Z/5Z
For example, the arithmetic tetrahedron AS(0, (1, 2, 3), 5) of Z/5Z is depicted in Figure 5.3. The successive rows of this tetrahedron are the arithmetic triangles AS(0, (1, 2), 5), AS(3, (1, 2), 4), AS(1, (1, 2), 3), AS(4, (1, 2), 2) and AS(2, (1, 2), 1) of Z/5Z.

Return now to the general case of an ACA of dimension n -1, with a weight array W = (w j ) j∈[-r,r] n-1 of radius r ∈ N. Let us define

σ := j∈[-r,r] n-1 w j and σ k := j∈[-r,r] n-1 j k w j , for all k ∈ [1, n -1].
For any integers a and b, we let gcd(a, b) and lcm(a, b) denote the greatest common divisor and the least common multiplicator of a and b, respectively. Let x ∈ Z/mZ. We also let gcd(x, m) denote the greatest common divisor of m and any representant of the residue class x.

Using properties of arithmetic simplices, the following theorem, which is the main result of this chapter, will be obtained.

Theorem 5.1.8 (Chappelon [C6]). Let n ⩾ 2 and m be two positive integers such that gcd(m, n!) = 1. Suppose that σ is invertible modulo m. Let a ∈ Z/mZ, d ∈ (Z/mZ) n-1 and ε ∈ {-1, 1} n such that d i , for all i ∈ [1, n], and ε j d jε i d i , for all distinct integers i, j ∈ [1, n], are invertible, where

d n := σ -1 n-1 k=1 σ k d k .
Then, in the orbit O AA(a,d) , every n-simplex with orientation ε and of size s is balanced modulo m, for all s ≡ -t mod lcm(ord m (σ) , m), where t ∈ [0, n -1].

Remark 5.1.9. For any integer σ which is invertible modulo m, the identity lcm(ord m (σ) , m) = ord m (σ m ) m holds. A complete study of this arithmetic function can be found in [C4].

For n = 2, m odd and W = (1, 1, 0), the weight sequence of PCA 1 , we retrieve Theorem 4.3.10. Indeed, in this case, we have σ

= 2, σ 1 = -1, d 1 = d, d 2 = σ -1 σ 1 d 1 = -2 -1 d and ε 1 d 1 -ε 2 d 2 = ±2 -1 d for ε = (±1, ∓1), which are invertibles of Z/mZ.
In the special case of PCA n-1 , Theorem 5.1.8 gives a positive answer to the equivalent problem of the weak Molluzzo Problem, in higher dimensions, for an infinite number of values m.

Corollary 5.1.10 (Chappelon [C6]). Let n ⩾ 2 be a positive integer. For every positive integer m such that gcd(m, (3(n-1))!) = 1, there exist infinitely many balanced n-simplices of Z/mZ generated by PCA n-1 , for all possible orientations ε ∈ {-1, 1} n . In the special case of the two orientations ε = + • • • +or ε = -• • • -+, the existence of an infinite number of such balanced simplices is verified for every m such that gcd(m, n!) = 1 for n even and for every m such that gcd m, 3n+1 2 ! = 1 for n odd.

This chapter is organized as follows. After giving some basic results on balanced simplices and orbits of arithmetic arrays generated by ACA in Section 2, we study, in Section 3, arithmetic simplices and we give some sufficient conditions on them to be balanced, for any dimension n ⩾ 2. Moreover, in dimension 2 and 3, we also provide necessary conditions on arithmetic triangles and arithmetic tetrahedra for being balanced. This leads to Theorem 5.1.8 in Section 4. Moreover, using the specificities on balanced arithmetic tetrahedra in dimension 2, highlighted in Section 3, we complete Theorem 5.1.8 for balanced tetrahedra. In Section 5, we consider the special case where simplices have the additional geometric property of being composed of antisymmetric sequences. This permits us to obtain more results for ACA of dimension 1 generating balanced triangles. Finally, the problem of determining the existence of balanced triangles and tetrahedra generated by PCA 1 and PCA 2 , for the remaining open cases, is posed in the last section.

Preliminaries

We begin this section with the terminology on simplices that we will use in the sequel. Definition 5.2.1 (Vertices, edges, facets and rows of simplices). Let A = (a i ) i∈Z n be an infinite array of dimension n of Z/mZ. Let △ = △(j, ε, s) be the n-simplex of size s of Z/mZ with principal vertex at position j ∈ Z n in A and with orientation ε ∈ {-1, 1} n . Let (e 1 , e 2 , . . . , e n ) denote the canonical basis of the vector space Z n and let e 0 := 0

Z n . The n + 1 vertices V 0 , . . . , V n of △ are defined by V k (△) := a j+(s-1)ε•e k for all k ∈ [0, n],
where V 0 (△) := a j (principal vertex) and

V k (△) := a j+ε•(s-1)e k = a j 1 ,...,j k-1 ,j k +ε k (s-1),j k+1 ,...,jn , for all k ∈ [1, n]. The n+1 2 edges E k,l of △ are sequences of length s defined by E k,l (△) := a j+ε•((s-1-x)e k +xe l ) x ∈ [0, s -1] = a j+ε•(s-1)e k ) , a j+ε•((s-2)e k +e l ) , a j+ε•((s-3)e k +2e l ) , . . . , a j+ε•(s-1)e l ,
for all distinct integers k, l ∈ [0, n]. The n + 1 facets F 0 , . . . , F n of △ are the (n -1)simplices of size s defined by

F k (△) := {a j+ε•l | l ∈ N n such that l k = 0 and l 1 + • • • + l n ⩽ s -1} , CHAPTER 5. BALANCED SIMPLICES for all l ∈ [1, n] and F 0 (△) := {a j+ε•l | l ∈ N n such that l 1 + • • • + l n = s -1} . For every k ∈ [0, s -1], the kth row of △ is the (n -1)-simplex of size s -k defined by R k (△) := {a j+ε•l | l ∈ N n such that l n = k and l 1 + • • • + l n-1 ⩽ s -k -1} .

Sizes of balanced simplices

In this subsection, the admissible sizes of balanced simplices are studied. First, the cardinality of an n-simplex of size s is determined.

Proposition 5.2.2. Let △ be an n-simplex of size s appearing in an n-dimensional array. Then, the multiset cardinality of

△ is |△| = s+n-1 n .
The divisibility of s+n-1 n by m is obviously a necessary condition for having a balanced n-simplex of Z/mZ of size s. When m is a composite number, to give all the sizes s for which the binomial s+n-1 n is divisible by m is tedious and not really important here because the results that we obtain in this chapter are only for some of them, not for all the admissible sizes. It would correspond to a generalization of Theorem 4.2.11. Nevertheless, we can see that the sizes involved in Theorem 5.1.8 are admissible for this problem.

Proposition 5.2.3. Let n, p, k, s be positive integers such that p is prime and p > n ⩾ 2. Then, the binomial coefficient s+n-1 n is divisible by p k if and only if s ≡ -t mod p k for t ∈ [0, n -1]. Proposition 5.2.4. Let m and n be two positive integers such that gcd(m, n!) = 1 and let s be a positive integer such that s ≡ -t mod m, where t ∈ [0, n -1]. Then, the binomial coefficient s+n-1 n is divisible by m.

Orbits of arithmetic arrays

In this subsection, the orbits of arithmetic arrays are studied in detail. Let n ⩾ 2 be a positive integer. First, we show that the arithmetic structure is preserved under the action of ∂ for any weight array W = (w i ) i∈[-r,r] n-1 , of radius r ∈ N.

Proposition 5.2.5. Let a ∈ Z/mZ and let d = (d 1 , . . . , d n-1 ) ∈ (Z/mZ) n-1 . Then,

∂AA(a, d) = AA σa + n-1 k=1 σ k d k , σd ,
where σ and σ k are the coefficients

σ := j∈[-r,r] n-1 w j , σ k := j∈[-r,r] n-1 j k w j , for all k ∈ [1, n -1].
Proposition 5.2.6. Let a ∈ Z/mZ and let d = (d 1 , . . . , d n-1 ) ∈ (Z/mZ) n-1 . Then,

∂ i AA(a, d) = AA σ i a + iσ i-1 n-1 k=1 σ k d k , σ i d ,
for all i ∈ N.
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Thus, the elements of the orbit of an arithmetic array AA(a, d) are entirely determined in function of a, d, σ and σ k for all k ∈ [1, n -1].

Proposition 5.2.7. Let a ∈ Z/mZ and let d ∈ (Z/mZ) n-1 . Let O AA(a,d) = (a i ) i∈Z n-1 ×N be the orbit of the arithmetic array AA(a, d). Then,

a i = ∂ in AA(a, d) i 1 ,...,i n-1 = σ in a + n k=1 i k d k , for all i ∈ Z n-1 × N, where d n := σ -1 n-1 k=1 σ k d k .
Remark 5.2.8. For O AA(a,d) = (a i ) i∈Z n-1 ×N and for every (i 1 , . . . , i n-1 ) ∈ Z n-1 , the sequence a i 1 ,...,i n-1 ,in in∈N is the arithmetico-geometric sequence with first element a

+ i 1 d 1 + • • • + i n-1 d n-1 , with common difference d n := σ -1 n-1 k=1 σ k d k
and common ratio σ. We deduce from Proposition 5.2.7 that two distinct ACA can generate the same orbit from an arithmetic array. For instance, for any ACA of weight array W = (w i ) i∈[-r,r] n-1 of radius r, we can consider the ACA of weight array W = (w i ) i∈[-1,1] n-1 of radius 1 defined by

w i =          σ(W ) - n-1 k=1 σ k (W ) , if i = 0 Z n , σ k (W ) , if i = e k , for all k ∈ [1, n -1], 0 , otherwise. 
Then, it is clear that we have

σ(W ) = i∈[-1,1] n-1 w i = σ(W ), and 
σ k (W ) = i∈[-1,1] n-1 i k w i = σ k (W ), for all k ∈ [1, n -1].
Therefore, in the sequel of this chapter, the coefficients σ and σ k will be more important than the elements of the weight array W themselves. Now, we prove that, in the orbit of an arithmetic array of Z/mZ, if there exists a balanced simplex of sufficiently large size, then σ is invertible modulo m. Proposition 5.2.9 (Chappelon [C6]). Let a ∈ Z/mZ and let d ∈ (Z/mZ) n-1 . In the

orbit O AA(a,d) , if an n-simplex of size s > n m-1 + 3 2 + mn 2 (m-1) 2 + 1 4 is balanced in Z/mZ, then σ is invertible modulo m.
Remark 5.2.10. For all integers m ⩾ 2, we have n m-1

+ 3 2 + mn 2 (m-1) 2 + 1 4 < 5n+3 2
. This is the reason why we suppose, in the sequel of this paper, that σ is invertible modulo m. We end this section by showing that a simplex in the orbit of an arithmetic array can be decomposed into arithmetic subsimplices. Proposition 5.2.11 (Chappelon [C6]). Let a ∈ Z/mZ and let d = (d 1 , . . . , d n-1 ) ∈ (Z/mZ) n-1 . Let α and s be two positive integers such that α is divisible by ord m (σ) and s ≡ -t mod α, where t ∈ [0, n -1], and let ε ∈ {-1, 1} n . Let △(j, ε, s) be the nsimplex appearing in the orbit O AA(a,d) = (a i ) i∈Z n-1 ×N . Then, for every k ∈ [0, α -1] n , the subsimplex

SS k := a j+ε•(k+αl) l ∈ N n such that (k 1 + αl 1 ) + • • • + (k n + αl n ) ⩽ s -1 ,
obtained from △(j, ε, s) by extracting one term every α in each component, is the arithmetic simplex

SS k = AS a j+ε•k , ασ jn+εnkn ε • d, s α - n u=1 k u + t α , where d = d 1 , . . . , d n-1 , σ -1 n-1 u=1 σ u d u .
From the previous proposition, we know that every n-simplex △ of size λαt, where α is a multiple of ord m (σ) and t ∈ [0, n -1], appearing in the orbit of an arithmetic array can be decomposed into α n arithmetic n-simplices of sizes in [λ -(n -1), λ]. Therefore, in next section, the arithmetic simplices will be studied in detail.

Balanced arithmetic simplices

In this section, we will see that arithmetic simplices are a source of balanced multisets of Z/mZ. First, we show, in the general case n ⩾ 1, that there exists sufficient conditions on arithmetic simplices for being balanced. After that, in dimension n = 2 and n = 3, i.e., for arithmetic triangles and arithmetic tetrahedra, necessary conditions for being balanced are also given.

The general case: in dimension n ⩾ 1

We begin this subsection by showing that, when n ⩾ 2, the edges, the facets and the rows of an arithmetic simplex are also arithmetic.

Proposition 5.3.1. Let a ∈ Z/mZ, d = (d 1 , . . . , d n ) ∈ (Z/mZ) n and let s be a positive integer. Let △ := AS(a, d, s) and let d 0 := 0. Then, we have

V i (△) = a + (s -1)d i , for all i ∈ [0, n], E i,j (△) = AP(V i (△), d j -d i , s), for all distinct integers i, j ∈ [0, n], R i (△) = AS(a + id n , (d 1 , . . . , d n-1 ), s -i), for all i ∈ [0, n], F i (△) = AS(a, (d 1 , . . . , d i-1 , d i+1 , . . . , d n ), s),
for all i ∈ [1, n],
and

F 0 (△) = AS(a + (s -1)d 1 , (d 2 -d 1 , . . . , d n -d 1 ), s).
Moreover, for all i ∈ [0, n], we have

△ \ F i (△) = AS(a + d i , d, s -1).
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The following theorem, which gives sufficient conditions on arithmetic simplices for being balanced, is the main result of this section.

Theorem 5.3.2 (Chappelon [C6]). Let n and m be two positive integers with gcd(m, n!) = 1. Let a ∈ Z/mZ and let d = (d 1 , . . . , d n ) ∈ (Z/mZ) n such that d i , for all i ∈ [1, n], and d jd i , for all distinct integers i, j ∈ [1, n], are invertible. Then, the arithmetic simplex AS(a, d, s) is balanced for all s ≡ -t mod m, with t ∈ [0, n -1].

In dimension 2

In this subsection, we only consider arithmetic triangles over Z/mZ. Necessary conditions on the common differences d 1 , d 2 and d 2d 1 of AS(a, (d 1 , d 2 ), s), depicted in Figure 5.4, for being balanced in Z/mZ are determined. It follows from this theorem that there does not exist balanced arithmetic triangles in Z/mZ for m even. Nevertheless, in the case where m is an even number, the multiplicity function of an arithmetic triangle of Z/mZ can be completely determined when exactly two of the three common differences d 1 , d 2 , d 1d 2 are invertible and the size s is such that s ≡ 0 or -1 mod m. Proposition 5.3.4 (Chappelon [C6]). Let m and s be two positive integers such that

V 0 V 1 V 2 d 1 d 2 d 2 - d 1
s ≡ 0 or -1 mod m. Let a, d 1 , d 2 ∈ Z/mZ and let △ = AS(a, (d 1 , d 2 ), s). If d 2 and d 2 -d 1 are invertible, then m △ (x) = m △ (x + gcd(d 1 , m)),
for all x ∈ Z/mZ, and

m △ (a + id 2 ) = 1 m s + 1 2 + s m gcd(d 1 , m) -1 2 -i , for all integers i ∈ [0, gcd(d 1 , m) -1].
For example, for m = 12, a = 0, d 1 = 1 and d 2 = 5, we obtain that d 2d 1 = 4, gcd(d 1d 2 , m) = 4 and the multiplicity function of △ = AS(a, (d 1 , d 2 ), m) is given in Table 5.1.
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CHAPTER 5. BALANCED SIMPLICES x 0 1 2 3 4 5 6 7 8 9 10 11 m △ (x) 5 6 7 8 5 6 7 8 5 6 7 8

Table 5.1: Multiplicity function of △ = AS(0, (1, 5), 12) in Z/12Z

In dimension 3

In this subsection, we only consider the arithmetic tetrahedron AS(a, (d 1 , d 2 , d 3 ), s) in Z/mZ. We determine necessary and sufficient conditions on the common differences

d 1 , d 2 , d 3 , d 2 -d 1 , d 3 -d 2 and d 1 -d 3 of AS(a, (d 1 , d 2 , d 3 ), s
), depicted in Figure 5.5, for being balanced in Z/mZ. ii) m is even, then all the elements of D are invertible, except two of them, say δ 1 and δ 2 , which are non-adjacent and such that gcd(δ 1 , m) = gcd(δ 2 , m) = 2.

V 0 V 1 V 2 V 3 d 1 d 2 d 3 d 3 -d 2 d 2 - d 1 d 1 - d 3
V 0 V 1 V 2 V 3 d 1 d 2 d3 d 3 -d 2 d 2 - d 1 d 1 - d 3 V 0 V 1 V 2 V 3 d 1 d 2 d3 d 3 -d 2 d 2 - d 1 d 1 - d 3 V 0 V 1 V 2 V 3 d 1 d 2 d3 d 3 -d 2 d 2 - d 1 d 1 - d 3
We continue by showing that there is no balanced arithmetic tetrahedron in Z/mZ when m is divisible by 3.

Theorem 5.3.7 (Chappelon [C6]). Let m and s be two positive integers such that m is a multiple of 3. There is no balanced arithmetic tetrahedron of size s in Z/mZ.

In the end of this subsection, we prove that the necessary conditions on the common differences of balanced arithmetic tetrahedra highlighted in Theorem 5.3.6 are also sufficient for certain sizes.

Theorem 5.3.8 (Chappelon [C6]). Let m be an odd number not divisible by 3 and let

a, d 1 , d 2 , d 3 ∈ Z/mZ such that d 1 , d 2 , d 3 , d 2 -d 1 , d 3 -d 2 and d 1 -d 3 are invertible.
Then, the arithmetic tetrahedron AS(a, (d 1 , d 2 , d 3 ), s) is balanced for all s ≡ 0, -1, or -2 mod m. Remark 5.3.10. When m is even and not divisible by 3, if we suppose that gcd(d 1 , m) = gcd(d 3d 2 , m) = 2 and d 2 , d 3 , d 2d 1 and d 1d 3 are invertible, then the arithmetic tetrahedron AS(a, (d 1 , d 2 , d 3 ), s) is not balanced for all s ≡ -1 mod m. Indeed, it can be seen as the multiset difference of the arithmetic tetrahedron AS(ad 3 , (d 1 , d 2 , d 3 ), s + 1), which is balanced by Theorem 5.3.9, and the arithmetic triangle AS(ad 3 , (d 1 , d 2 ), s + 1), which is not balanced by Theorem 5.3.3.

Balanced simplices generated from arithmetic arrays

We are now ready to show that the orbits generated from arithmetic arrays by additive cellular automata are a source of balanced simplices.

The general case: in dimension n ⩾ 2

For any ACA Using properties of arithmetic simplices, Theorem 5.1.8, which is the main result of this chapter, is obtained.

The antisymmetric case

We begin this section by defining the antisymmetric sequences and the antisymmetric simplices.

Definition 5.5.1 (Antisymmetric sequences). A finite sequence S = (a 1 , . . . , a s ) of length s ⩾ 1 in Z/mZ is said to be antisymmetric if a i + a s-i+1 = 0 for all i ∈ [1, s].

For instance, the sequence S = 2210433 is antisymmetric in Z/5Z.

Definition 5.5.2 (Antisymmetric simplices). Let A = (a i ) i∈Z n be an infinite array of elements in Z/mZ and let △(j, ε, s) be the n-simplex of size s, with orientation ε ∈ {-1, 1} n and whose principal vertex is a j in A, that is,

△(j, ε, s) = {a j+ε•k | k ∈ N n such that k 1 + • • • + k n ⩽ s -1} .
Let u and v be two distinct integers in [0, n]. The simplex △(j, ε, s) is said to be (u, v)antisymmetric if all its subsequences in the same direction of the edge E u,v between the vertices V u and V v are antisymmetric. More precisely, △(j, ε, s) is (0, v)-antisymmetric if we have

a j+ε•k + a j+ε•s(k) = 0, where s(k) = k 1 , . . . , k v-1 , s -1 - n l=1 k l , k v+1 , . . . , k n , for all k ∈ N n such that k 1 + • • • + k n ⩽ s -1 and, for u, v ⩾ 1, △(j, ε, s) is (u, v)- antisymmetric if we have a j+ε•k + a j+ε•t(k) = 0, where (t(k)) l = k τ (l) for all l ∈ [1, n],
where τ is the transposition (u, v), for all k ∈ N n such that

k 1 + • • • + k n ⩽ s -1.
For instance, the tetrahedron depicted in Figure 5.7 is (1, 2)-antisymmetric. Moreover, each row of this tetrahedron is an (1, 2)-antisymmetric triangle. 

Antisymmetric simplices

Let m and n be two positive integers such that n ⩾ 2 and gcd(m, n!) = 1. In the sequel of this section, we consider n-simplices △(j, ε, s) appearing in the orbit of the arithmetic array AA(a, d), where a ∈ Z/mZ and d = (d 1 , d 2 , . . . , d n-1 ) ∈ (Z/mZ) n-1 , generated by an ACA of weight array W = (w l ) l∈[-r,r] n-1 . The elements of this orbit are denoted by O AA(a,d) = (a i ) i∈Z n-1 ×N . As already defined before,

σ := l∈[-r,r] n-1 w l and σ k = l∈[-r,r] n-1 l k w l , for all k ∈ [1, n -1].
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CHAPTER 5. BALANCED SIMPLICES Moreover, suppose that σ is invertible modulo m and let

d n := σ -1 n-1 k=1 σ k d k .
In this subsection, necessary conditions on simplices for being antisymmetric are determined.

Proposition 5.5.3 (Chappelon [C6]). Let u and v be two distinct integers in

[1, n]. If △(j, ε, s) is (u, v)-antisymmetric, then d w = 0 for all w ∈ [1, n]\{u, v} and ε u d u +ε v d v = 0. Proposition 5.5.4 (Chappelon [C6]). Let v be an integer in [1, n]. If △(j, ε, s) is (0, v)- antisymmetric, then 2ε w d w = ε v d v for all w ∈ [1, n] \ {v}.
For n ⩾ 3, it is easy to see from Proposition 5.5.3 and Proposition 5.5.4 that if the simplex △(j, ε, s) is (u, v)-antisymmetric, then there is at least one element among the elements ε i d i , for all i ∈ [1, n], and ε j d jε i d i , for all distinct integers i, j ∈ [1, n], which is non-invertible and equal to zero in Z/mZ. In this case, the hypotheses of Theorem 5.3.2 are not satisfied. Therefore, in the next subsection, we only consider the case of dimension n = 2.

In dimension 2

An arithmetic array of dimension 1 is simply called an arithmetic progression and is denoted by AP(a, d) or AP(a, d, s), for an arithmetic progression of length s, that is, AP(a, d, s) = (a, a + d, a + 2d, . . . , a + (s -1)d).

Let W = (w -r , . . . , w r ) ∈ Z 2r+1 be the weight sequence of the ACA of dimension 1 that we consider here. First, we know that the derived sequence of an arithmetic progression is also an arithmetic progression. Indeed, we have

∂AP(a, d) = AP(σa + σ ′ d, σd), where σ = r i=-r w i and σ ′ = r i=-r iw i .
As already remarked, for W = (0, σ -σ ′ , σ ′ ), we obtain that σ W = σ(W ) and σ ′ W = σ ′ (W ). Thus, the orbits of AP(a, d) are the same if we consider W or W . Therefore, in the sequel of this subsection, we only consider the case where r = 1 and W = (0, σσ ′ , σ ′ ).

(1,2)-antisymmetric triangles First, we know from Proposition 5.5.3 that if the triangle △(j, ε, s), appearing in the orbit O AP(a,d) with d invertible, is (1, 2)-antisymmetric, then

ε 1 d + ε 2 σ -1 σ ′ d = 0 ⇐⇒ ε 1 σ + ε 2 σ ′ = 0 ⇐⇒ σ ′ = -ε 1 ε 2 σ. So, we deduce that W = (0, (1 + ε 1 ε 2 )σ, -ε 1 ε 2 σ).
Since △(j, ε, s) is (1, 2)-antisymmetric, we know that a j = 0 and a j+ε•e 1 + a j+ε•e 2 = 0. It follows that

a j = 0 ⇐⇒ a + j 1 d 1 + j 2 d 2 = 0,
and

a j+ε•e 1 +a j+ε•e 2 = 0 ⇐⇒ σ j 2 (a + (j 1 + ε 1 )d 1 + j 2 d 2 ) + σ j 2 +ε 2 (a + j 1 d 1 + (j 2 + ε 2 )d 2 ) = 0 =⇒ ε 1 d 1 + σ ε 2 ε 2 d 2 = 0 ⇐⇒ ε 1 + σ ε 2 ε 2 σ -1 σ ′ = 0.
This implies that σ ε 2 = 1 and thus σ = 1. Therefore,

W = (0, 1 + ε 1 ε 2 , -ε 1 ε 2 ).
Finally, since σ = 1, we know that △(j, ε, s) is an arithmetic triangle which is already balanced for all s ≡ 0 or -1 mod m by Theorem 5.3.2.

(0,2)-antisymmetric triangles First, we know from Proposition 5.5.4 that if the triangle △(j, ε, s), appearing in the orbit O AP(a,d) with d invertible, is (0, 2)-antisymmetric, then

ε 2 σ -1 σ ′ = 2ε 1 ⇐⇒ σ ′ = 2ε 1 ε 2 σ.
So, we deduce that

W = (0, (1 -2ε 1 ε 2 )σ, 2ε 1 ε 2 σ).
Since △(j, ε, s) is (0, 2)-antisymmetric, we know that a j+(s-1)ε•e 1 = 0 and a j+(s-2)ε•e 1 + a j+ε•((s-2)e 1 +e 2 ) = 0. It follows that

a j+(s-1)ε•e 1 = 0 ⇐⇒ a + (j 1 + ε 1 (s -1))d 1 + j 2 d 2 = 0, and 
a j+(s-2)ε•e 1 + a j+ε•((s-2)e 1 +e 2 ) = 0 ⇐⇒ σ j 2 (a + (j 1 + ε 1 (s -2))d 1 + j 2 d 2 ) +σ j 2 +ε 2 (a + (j 1 + ε 1 (s -2))d 1 + (j 2 + ε 2 )d 2 ) = 0 =⇒ -ε 1 d 1 + σ ε 2 (-ε 1 d 1 + ε 2 d 2 ) = 0 ⇐⇒ -ε 1 + σ ε 2 (-ε 1 + ε 2 σ -1 σ ′ ) = 0 ⇐⇒ σ ′ = 1 + σ ε 2 σ ε 2 ε 1 ε 2 σ
This implies that σ ε 2 = 1 and thus σ = 1. Therefore,

W = (0, 1 -2ε 1 ε 2 , 2ε 1 ε 2 ).
Finally, since σ = 1, we know that △(j, ε, s) is an arithmetic triangle which is already balanced for all s ≡ 0 or -1 mod m by Theorem 5.3.2.

CHAPTER 5. BALANCED SIMPLICES (0,1)-antisymmetric triangles First, we know from Proposition 5.5.4 that if the simplex △(j, ε, s) is (0, 1)-antisymmetric, then

ε 1 = 2ε 2 σ -1 σ ′ ⇐⇒ σ = 2ε 1 ε 2 σ ′ .
So, we deduce that W = (0, (2ε

1 ε 2 -1)σ ′ , σ ′ ).
Now, we refine Theorem 5.1.8 in this case by considering triangles that have the additional property to be (0, 1)-antisymmetric.

Theorem 5.5.5 (Chappelon [C6]). Let m be an odd positive integer and let W ∈ Z 2r+1 such that σ = 2σ ′ and σ is invertible modulo m. Let a, d ∈ Z/mZ such that d is invertible. Then, in the orbit O AP(a,d) , every (0, 1)-antisymmetric triangle of orientation (++) or (--) and of size s is balanced, for all positive integers s ≡ 0 or -1 mod lcm(pord m (σ) , m), where pord m (σ) is the multiplicative order of σ in (Z/mZ) * /{-1, 1}.

Theorem 5.5.6 (Chappelon [C6]). Let m be an odd positive integer and let W ∈ Z 2r+1 such that σ = -2σ ′ and σ is invertible modulo m. Let a, d ∈ Z/mZ such that d is invertible. Then, in the orbit O AP(a,d) , every (0, 1)-antisymmetric triangle of orientation (-+) or (+-) and of size s is balanced, for all positive integers s ≡ 0 or -1 mod lcm(pord m (σ) , m), where pord m (σ) is the multiplicative order of σ in (Z/mZ) * /{-1, 1}.

Open problems

For the Pascal cellular automaton of dimension 1, the following problems remain open.

Problem 5.6.1. For m even, do there exist infinitely many balanced triangles of Z/mZ, with any orientation, generated by PCA 1 ? Problem 5.6.2. For m odd divisible by 3, do there exist infinitely many balanced triangles of Z/mZ, with orientations ++ and --, generated by PCA 1 ?

For the Pascal cellular automaton of dimension 2, the following problems remain open.

Problem 5.6.3. For m divisible by 3, do there exist infinitely many balanced tetrahedra of Z/mZ, with any orientation, generated by PCA 2 ? Problem 5.6.4. For m even such that v 2 (m) ⩾ 2, do there exist infinitely many balanced tetrahedra of Z/mZ, with any orientation, generated by PCA 2 ? Problem 5.6.5. For m odd divisible by 5, do there exist infinitely many balanced tetrahedra of Z/mZ, with orientations + + -, + -+, + --, -+ +, -+and ---, generated by PCA 2 ? Problem 5.6.6. For m divisible by 5 such that v 2 (m) ⩽ 1, do there exist infinitely many balanced tetrahedra of Z/mZ, with orientations + +and --+, generated by PCA 2 ?

Part II Other results on numerical semigroups, Tower of Hanoi, Ramsey theory and Kneser transversals

Chapter 6

Numerical semigroups

The main topic of this chapter is the numerical semigroups. The results presented here can be found in the publications [C16, C10] and the manuscript [C17].

6.1 The Möbius function of numerical semigroup posets Notation 6.1.3. Let A = {a 1 , . . . , a n } be a finite set of non-negative integers. The subsemigroup of N generated by A is denoted by ⟨A⟩, i.e.,

⟨A⟩ = {x 1 a 1 + • • • + x n a n | (x 1 , . . . , x n ) ∈ N n } .
For any non-negative integer x, we say that x is representable as a non-negative integer combination of a 1 , . . . , a n if and only if x ∈ ⟨A⟩. Proposition 6.1.4. The subsemigroup S of N is a numerical semigroup if and only if there exists a finite subset A of N such that S = ⟨A⟩ with gcd(A) = 1.

Corollary 6.1.5. Let A = {a 1 , . . . , a n } be a finite set of non-negative integers such that gcd(A) = 1. Then, there exists an integer N such that any integer x ⩾ N is representable as a non-negative integer combination of a 1 , . . . , a n . Definition 6.1.6 (Gaps, Frobenius number, genus and multiplicity). Let S be a numerical semigroup. The positive integers not in S are called the gaps of S. The largest gap of S is called the Frobenius number of S and is denoted by g(S). The number of gaps of S, denoted by N (S) (that is, N (S) = |N \ S|) is called the genus of S. The multiplicity of S is the smallest positive element m(S) belonging to S.

Table 6.1: First values of µ S ([x 0 , 0, x 2 ]) for q = 11 and d = 5. 
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The Möbius function of semigroup posets through Hilbert series

In this section, posets associated with subsemigroups of Z m are considered. Characterizations of complete intersection toric ideals can be found in [START_REF] Fischer | Affine semigroup rings that are complete intersections[END_REF]. 

Semigroup posets

m d B (b) t b = 1 (1 -t b 1 ) (1 -t b 2 ) • • • (1 -t b k ) .
Corollary 6.2.17 

Explicit formulas for the Möbius function

In this subsection, we exploit the results of the previous subsection to obtain explicit formulas for µ S when S is a semigroup with a unique Betti element and when S is a complete intersection numerical semigroup generated by three elements. These results are consequences of Corollary 6.2.17. However, they can also be obtained with a different proof by using Theorem 6.2.7.

The square Frobenius number

Definition 6.3.1 (P -type functions). Given a particular (arithmetical, number theoretical, etc.) Property P , one might consider the following two P -type functions of a numerical semigroup S:

P r(S):= the largest integer having property P not belonging to S and P r(S) := the smallest integer having property P belonging to S.

Notice that the multiplicity and the Frobenius number are P -type functions where P is the property of being a positive integer. P -type functions were introduced by J.L. Ramírez Alfonsín (often mentioned during his lectures) with the hope to understand better certain properties P in terms of linear forms. In this spirit, we consider the property of being perfect k-power integer (that is, integers of the form m k for some integers m, k > 1). Definition 6.3.2 (Power Frobenius number). Let k ⩾ 2 be an integer, we define k-power r(S) := the largest perfect k-power integer not belonging to S. This k-power variant of g(S) is called the k-power Frobenius number of S, we may write k r(S) for short.

In this section we investigate the 2-power Frobenius number, we call it the square Frobenius number.

Arithmetic semigroups

Let a, d and k be positive integers such that a and d are relatively prime. Throughout this subsection, we denote by S A the semigroup generated by the arithmetic progression whose first element is a, with common difference d and of length k + 1, that is, S A = ⟨a, a + d, a + 2d, . . . , a + kd⟩ .

Note that the integers a, a + d, . . . , a + kd are relatively prime if and only if gcd(a, d) = 1.

We shall start by giving a necessary and sufficient condition for a square to belong to S A . Definition 6.3.3 (Modular multiplicative inverse). For any integer x coprime to d, a multiplicative inverse modulo d of x is an integer y such that xy ≡ 1 mod d. Proposition 6.3.4 (Chappelon-Ramírez [C17]). Let i be an integer and let λ i be the unique integer in {0, 1, . . . , d -1} such that λ i a + i 2 ≡ 0 mod d. In other words, the integer λ i is the rest in the Euclidean division of -a -1 i 2 by d, where a -1 is a multiplicative inverse of a modulo d. Then,

(a -i) 2 ∈ S A if and only if (i + kd) 2 ⩽ i 2 + λ i a ad + k d -λ i (a + kd).
Remark 6.3.5. We have that λ 0 = 0 and λ i > 0 for all integers i such that gcd(i, d) = 1 with d ⩾ 2. Moreover, λ i = λ d-i for all i ∈ {1, 2, . . . , d -1}.

The above characterization permits us to obtain an upper-bound of 2 r(S A ) when a is larger enough compared to d ⩾ 3. Definition 6.3.6. Let λ * be the integer defined by

λ * = max 0⩽i⩽d-1 λ i ∈ {0, 1, . . . , d -1} | λ i a + i 2 ≡ 0 mod d .
Let {α 1 < . . . < α n } ⊆ {0, 1, . . . , d -1} such that λ α j = λ * and take α n+1 = d + α 1 . Let j ∈ {1, . . . , n} be the index such that (µd + α j ) 2 ⩽ (kdλ * )(a + kd) < (µd + α j+1 ) 2 , (6.7)

for some integer µ ⩾ 0.

Remark 6.3.7.

(a) The above index j exists and it is unique. Indeed, we clearly have that there is an integer µ such that µd ⩽ (kdλ * )(a + kd) < (µ + 1)d. (b) We have that µd + α n+1 = (µ + 1)d + α 1 .

Since 0 ⩽ α 1 < • • • < α n ⩽ d -1,
The following two propositions give us useful information on the sequence of indexes α 1 , . . . , α n . Proposition 6.3.8. We have that α i + α n+1-i = d, for all i ∈ {1, . . . , n}. Remark 6.3.11. We notice that the function h(a, d, k) can always be computed for any relatively prime integers a and d and any positive integer k. It is enough to calculate λ i for each i = 0, . . . , d -1, from which λ * and the set of α i 's can be obtained and thus the desired µ and α j+1 can be computed. Theorem 6.3.12 (Chappelon-Ramírez [C17]). Let d ⩾ 3 and a + kd ⩾ 4kd 3 . Then, 2 r(S A ) ⩽ h(a, d, k) . Remark 6.3.13. The above proof can be adapted if we consider the weaker condition a + kd > 4(kdλ * )d 2 + d 2 instead of a + kd ⩾ 4kd 3 .

We believe that the upper bound h(a, d, k) of 2 r(S A ) given in Theorem 6.3.12 is actually an equality. We are able to establish the latter in the case when k = 1 for any d ⩾ 3. Corollary 6.3.14 (Chappelon-Ramírez [C17]). Let d ⩾ 3 and a + d ⩾ 4d 3 . Then, 2 r(⟨a, a + d⟩) = h(a, d, 1) .

Unfortunately, the value of 2 r(⟨a, a + d⟩) given in the above corollary does not hold in general (if the condition a + d ⩾ 4d 3 is not satisfied). However, as we will see below, the number of values of a not satisfying the equality 2 r(⟨a, a + d⟩) = h(a, d, 1) is finite for each fixed d. 6.3.2 Formulas for ⟨a, a + d⟩ with small d ⩾ 3

Here, we investigate the value of 2 r(⟨a, a + d⟩) when d is small.

For any positive integer d ⩾ 3, we may define the set E(d) to be the set of integers a coprime to d not satisfying the equality of Corollary 6.3.14, that is, E(d) := a ∈ N \ {0, 1} gcd(a, d) = 1 and 2 r(⟨a, a + d⟩) ̸ = h(a, d, 1) .

Since λ * ⩽ d -1 then, from Corollary 6.3.14, we obtain that E(d) ⊂ [2, 4d 3 -1] ∩ N. We completely determine the set E(d) for a few values of d ⩾ 3 by computer calculations, see The exact values of 2 r(⟨a, a + d⟩) when a ∈ E(d), for d ∈ {3, . . . , 12}, are given in Table 6.3. For each value d ∈ {3, . . . , 12}, an explicit formula can be presented for 2 r(⟨a, a + d⟩) excluding the values given in Table 6.2. The latter can be done by using (essentially) the same arguments as those applied in the proofs of Theorem 6.3.12 and Corollary 6.3.14. Theorem 6.3.15 (Chappelon-Ramírez [C17]). Let a ⩾ 3 be an integer not divisible by 3 and let S = ⟨a, a + 3⟩. Then,

2 r(S) =            (a -(3b -1)) 2 if either (3b + 1) 2 ⩽ a + 3 < (3b + 2) 2 and a ≡ 1 mod 3
or (3b + 1) 2 ⩽ 2(a + 3) < (3b + 2) 2 and a ≡ 2 mod 3, (a -(3b + 1)) 2 if either (3b + 2) 2 ⩽ a + 3 < (3b + 4) 2 and a ≡ 1 mod 3 or (3b + 2) 2 ⩽ 2(a + 3) < (3b + 4) 2 and a ≡ 2 mod 3.

Theorem 6.3.16 (Chappelon-Ramírez [C17]). Let a ⩾ 3 be an odd integer and let S = ⟨a, a + 4⟩. Then,

2 r(S) =               
(a -(4b -1)) 2 if either (4b + 1) 2 ⩽ a + 4 < (4b + 3) 2 and a ≡ 1 mod 4 or (4b + 1) 2 ⩽ 3(a + 4) < (4b + 3) 2 and a ≡ 3 mod 4, (a -(4b + 1)) 2 if either (4b + 3) 2 ⩽ a + 4 < (4b + 5) 2 and a ≡ 1 mod 4 or (4b + 3) 2 ⩽ 3(a + 4) < (4b + 5) 2 and a ≡ 3 mod 4. if a = 27 or 32, (a -(5b -2)) 2 if either (5b + 2) 2 ⩽ a + 5 < (5b + 3) 2 and a ≡ 4 mod 5 or (5b + 2) 2 ⩽ 2(a + 5) < (5b + 3) 2 and a ≡ 2 mod 5, (a -(5b -1)) 2 if either (5b + 1) 2 ⩽ a + 5 < (5b + 4) 2 and a ≡ 1 mod 5 or (5b + 1) 2 ⩽ 2(a + 5) < (5b + 4) 2 and a ≡ 3 mod 5, a ̸ = 13, (a -(5b + 1)) 2 if either (5b + 4) 2 ⩽ a + 5 < (5b + 6) 2 and a ≡ 1 mod 5 or (5b + 4) 2 ⩽ 2(a + 5) < (5b + 6) 2 and a ≡ 3 mod 5, (a -(5b + 2)) 2 if either (5b + 3) 2 ⩽ a + 5 < (5b + 7) 2 and a ≡ 4 mod 5, a ̸ = 4 or (5b + 3) 2 ⩽ 2(a + 5) < (5b + 7) 2 and a ≡ 2 mod 5, a ̸ = 2, 27, 32.

Study of ⟨a, a + 1⟩

We investigate the square Frobenius number of ⟨a, a + 1⟩ with a ⩾ 2. We first study the case when neither a nor a+1 is a square integer. Using similar arguments as those applied in the proofs of Theorem 6.3.12 and Corollary 6.3.14, we obtain the following Proposition 6.3.18 (Chappelon-Ramírez [C17]). Let a be a positive integer such that b 2 < a < a + 1 < (b + 1) 2 for some integer b ⩾ 1. Then, Let (u n ) n⩾1 be the recursive sequence defined by u 1 = 1, u 2 = 2, u 3 = 3, u 2n = u 2n-1 + u 2n-2 and u 2n+1 = u 2n + u 2n-2 for all n ⩾ 2. (6.8)

The first few values of (u n ) n⩾1 are 1, 2, 3, 5, 7, 12, 17, [START_REF] Barbé | Frame cellular automata: configurations, generating sets and related matroids[END_REF][START_REF] Bukh | Upper bounds for centerlines[END_REF][START_REF] Guy | Unsolved problems in number theory[END_REF][START_REF] Isabel | Números de Schur y de Rado[END_REF]169,239,408,577,985 . . . , see [START_REF] Neil | The OEIS Foundation Inc[END_REF]. We pose the following conjecture in the case when either a or a+1 is an square integer. Conjecture 6.3.19 ). Let (u n ) n⩾1 be the recursive sequence given in (6.8). If a = b 2 for some integer b ⩾ 1 then

2 r(⟨a, a + 1⟩) =            a -b √ 2 2 if b ̸ ∈ n⩾0 {u 4n+1 , u 4n+2 } , a -b √ 3 2 if b ∈ n⩾0 {u 4n+1 , u 4n+2 } . 6.3. THE SQUARE FROBENIUS NUMBER 133 If a + 1 = b 2 for some integer b ⩾ 1 then 2 r(⟨a, a + 1⟩) =                    a -b √ 2 2 if b ̸ ∈ n⩾1 {u 4n-1 , u 4n } , a -b √ 3 2 if b ∈ n⩾1 {u 4n , u 4n+3 } , 2 2 if b = u 3 = 3.
The formulas of Conjecture 6.3.19 have been verified by computer for all integers a ⩾ 2 up to 10 6 .

Study of ⟨a, a + 2⟩

We investigate the square Frobenius number of ⟨a, a + 2⟩ with a ⩾ 3 odd. We first study the case when neither a nor a + 2 is a square integer. Using similar arguments as those applied in the proofs of Theorem 6.3.12 and Corollary 6.3.14, we obtain the following Proposition 6.3.20 ). Let a ⩾ 3 be an odd integer such that (2b + 1) 2 < a < a + 2 < (2b + 3) 2 for some integer b ⩾ 1. Then, 2 r(⟨a, a + 2⟩) = (a -(2b + 1)) 2 .

We pose the following conjecture in the case when either a or a + 2 is a square integer. Conjecture 6.3.21 (Chappelon-Ramírez [C17]). Let (u n ) n⩾1 be the recursive sequence given in (6.8). If a = (2b + 1) 2 for some integer b ⩾ 1 then

2 r(⟨a, a + 2⟩) =                    a -2 (2b+1) √ 2 2 2 if (2b + 1) ̸ ∈ n⩾1 {u 4n+1 } , a -(2b + 1) √ 3 2 if (2b + 1) ∈ n⩾2 {u 4n+1 } , 38 2 if 2b + 1 = u 5 = 7. If a + 2 = (2b + 1) 2 for some integer b ⩾ 1 then 2 r(⟨a, a + 2⟩) =            a -2 (2b+1) √ 2 2 2 if (2b + 1) ̸ ∈ n⩾0 {u 4n+3 } , a -(2b + 1) √ 3 2 if (2b + 1) ∈ n⩾0 {u 4n+3 } .
The formulas of Conjecture 6.3.21 have been verified by computer for all odd integers a ⩾ 3 up to 10 6 .

Remarks and open problems

In the process of investigating square Frobenius numbers different problems arose. We naturally consider the P -type function k-power r(S) = k r(S) defined as, k r(S) := the smallest perfect k-power integer belonging to S.

It is clear that

s ⩽ k r(S) ⩽ s k (6.9)

where s is the multiplicity of S.

Theorem 6.3. Or more ambitious, Question 6.3.24. Let k ⩾ 2 be an integer. Is there a closed formula for k r(S) and/or k r(S) for any semigroup S?

Perhaps a first step on this direction might be the following.

Problem 6.3.25. Give a formula for 2 r(⟨F i , F j ⟩) and/or 2 r(⟨F i , F j ⟩) with gcd(F i , F j ) = 1 where F k denotes the k th Fibonacci number. What about 2 r(⟨a 2 , b 2 ⟩) where a and b are relatively prime integers ? We clearly have that 2 r(⟨a 2 , b 2 ⟩) = a 2 for 1 ⩽ a < b.

Chapter 7

Tower of Hanoi

In this chapter, we are interested in problems related to the Tower of Hanoi. The first section is about results obtained in [C14] on generalized Frame-Stewart numbers, that are optimal numbers of moves in the Tower of Hanoi problem on 4 pegs and supposed to be optimal for k ⩾ 5 pegs. In the second section, results obtained in [C11] about a two-player combinatorial game based on the Tower of Hanoi are studied. An extensive literature on Tower of Hanoi problems can be found in [START_REF] Hinz | The tower of Hanoi-myths and maths[END_REF].

Generalized Frame-Stewart numbers

The Tower of Hanoi problem was introduced by Édouard Lucas in 1883 [START_REF] Lucas | Récréations Mathématiques[END_REF] for the case of 3 pegs and n disks of different sizes. Initially, n disks are placed on one of the 3 pegs with the largest at the bottom. Then, at each time one of the topmost disks is moved to a peg with a larger disk on the top or to an empty peg. The goal of the problem is to transfer all the disks from the initial peg to the peg of destination with the minimum number of moves. A simple recursive argument shows that 2 n -1 moves are necessary and sufficient to carry out this task. This Tower of Hanoi problem was then extended to the case of 4 pegs by Dudeney in 1907 [START_REF] Ernest | The Reve's puzzle, the Canterbury puzzles and other curious problems[END_REF] and to arbitrary k ⩾ 3 pegs by Stewart in 1939 [START_REF] Stewart | Advanced problem 3918[END_REF]. In 1941, Frame [START_REF] Frame | Solution to advanced problem 3918[END_REF] and Stewart [START_REF] Stewart | Solution to advanced problem 3918[END_REF] independently proposed algorithms which achieve the same numbers of moves for the k-peg Tower of Hanoi problem with k ⩾ 4 pegs. Klavžar et al. [START_REF] Klavžar | On the Frame-Stewart algorithm for the multi-peg Tower of Hanoi problem[END_REF] showed that seven different approaches to the k-peg Tower of Hanoi problem, including those by Frame and Stewart, are all equivalent, that is, achieve the same numbers of moves. Thus, these numbers are called the Frame-Stewart numbers [START_REF] Klavžar | Simple explicit formulas for the Frame-Stewart numbers[END_REF].

In 2014, T. Bousch showed in [START_REF] Bousch | La quatrième tour de Hanoï[END_REF] that the Frame-Stewart numbers are the optimal numbers of moves for the case of 4 pegs. Somewhat surprisingly, the optimal solution for the multi-peg Tower of Hanoi problem with k ⩾ 5 pegs is not known yet. So far, the best upper bounds are achieved by the Frame-Stewart numbers and the best lower bounds are obtained by Chen et al. [START_REF] Chen | On the Frame-Stewart conjecture about the Towers of Hanoi[END_REF]. Since the upper bounds are believed to be optimal, they are called the presumed optimal solution.

Stewart's recursive algorithm for the k-peg Tower of Hanoi problem is summarized as follows. For a positive integer t ⩽ n, i) recursively transfer a pile of nt smallest disks from the first peg to a temporary peg, using k pegs;

CHAPTER 7. TOWER OF HANOI graph S k for arbitrary k ⩾ 3 and show that disks can be transferred from one leaf to another in G k (n) moves.

Theorem 7.1.12 (Chappelon-Matsuura [C14]). Let k ⩾ 3 be an integer. Consider the Tower of Hanoi problem on the star graph S k in which n ⩾ 1 disks are transferred from one leaf of the graph to another leaf. Then, an upper bound on the minimal number of moves to solve this problem is given by the generalized Frame-Stewart number G k (n), where (p 3 , q 3 ) = (3, 2) and (p i , q i ) = (2, 1) for 4 ⩽ i ⩽ k.

Two-player Tower of Hanoi

Tower of Hanoi (TH) is traditionally a one player game [START_REF] Hearn | Games, puzzles, and computation[END_REF][START_REF] Demaine | Playing games with algorithms: Algorithmic combinatorial game theory[END_REF]. Here we let two players, Anh (first player) and Bao (second player), alternate turns and play a game on three or more pegs with various numbers of disks. We will begin by analyzing games under the following impartial rules (the move options do not depend on who is to move) [START_REF] Albert | Lessons in Play: An Introduction to Combinatorial Game Theory[END_REF][START_REF] Berlekamp | Winning ways for your mathematical plays[END_REF][START_REF] Conway | On numbers and games[END_REF].

Let n ⩾ 1 and k ⩾ 3 be positive integers. Two players alternate in transferring precisely one out of n disks (of different sizes) on k pegs, Peg 1, . . . , Peg k. The starting position is as usual for the Tower of Hanoi; the tower (i.e., all the disks in decreasing size) is placed on the starting peg (Peg 1), and at each stage of the game, a larger disk cannot be placed on top of a smaller. In addition, the current player cannot move the disk that the previous player just moved. The game ends when the tower has been transferred to some predetermined final peg, and some predetermined condition determines who wins. It is not allowed to transfer the tower to a non-final peg. We detail five ending conditions in the sequel. A position is any configuration of the n disks on the k pegs such that no larger disk is on top of a smaller disk, and in case of a non-starting position, a note on which disk was just moved.

Thus, a position (S 1 , . . . , S k ; α) is an ordered partitioning of the set {1, . . . , n} in k sub-sets i∈{1,...,k} S i = {1, . . . , n} such that S i ∩ S j = ∅ for any i ̸ = j, and an integer α ∈ {1, . . . , k}.

Let us exemplify our game with a position on seven disks and three pegs, and where the disk at the dashed peg has just been moved by the previous player and hence cannot be moved by the current player; below it we find its two legal options. Henceforth it will be clear by the context which disk was moved last, so we omit the dashed emphasis. Note that, by this rule, there are exactly 3(2 • 3 n-1 -1) = 2(3 n -3) + 3 positions of two-player TH on 3 pegs and n disks; 2 positions for each configuration of the non-Tower configurations (depending on which disk was just moved) and the 3 Tower configurations. A game is cyclic (or loopy [START_REF] Conway | Loopy games[END_REF]) if there is at least one position which can be revisited during (not neccesarily optimal) play. Clearly TH is cyclic.

Normal play One winning condition is adapted from the one-player game: the player who plays the last disk (on top of the rest of the tower) wins. This corresponds to a classical convention for two-player games: a player who cannot move loses, which is called normal play [START_REF] Albert | Lessons in Play: An Introduction to Combinatorial Game Theory[END_REF][START_REF] Berlekamp | Winning ways for your mathematical plays[END_REF][START_REF] Conway | On numbers and games[END_REF][START_REF] Siegel | Combinatorial game theory[END_REF]. If no player can force a win in this setting, then the game is declared drawn.

One of first observations is that in spite of the cyclic nature of the game, if we play on just three pegs, Anh wins the normal play convention. Bao's moves will be forced throughout the game and the proof is an adaptation of the well known one-player result. In fact, Anh's moves also have a restriction; she always has to move the smallest disk, but this turns out to be an advantage. In that section, we also note that the game is drawn on four or more pegs.

Scoring play Scoring two-player TH is the following game. The players move as in the normal play variation, but at each stage of game the current player gains a given real weight w ij = w ji , for a move from Peg i to Peg j (and the game starts with score 0 for each player). Thus, with three pegs there are three move edges, {i, j} ∈ {{1, 2}, {1, 3}, {2, 3}} and three real weights w 12 , w 13 and w 23 ; see Figure 7.4 for an illustration. For example, if Anh's current score is s and she moves along edge {i, j}, then her updated score is s + w ij . The player who obtains the largest score when the game ends wins.

If the game terminates but none of the players can claim a victory (because their terminal scores are equal) then the game is a tie. We also adapt the convention of drawn games from normal play, so a game is declared a draw if no player can force a win, by terminating the game.

The main result of this section is that Anh wins nearly all scoring games on three pegs. The reason is partly the same as in normal play, but in this setting the optimal move sequence varies depending on the given weights, and the proof is non-trivial. The only case when Anh cannot force a win is when all weights are equal and non-positive; otherwise she can attain an arbitrary high score by adhering to certain intermediate repetitive patterns. Questions of termination are often very hard (e.g., Turing machines), but in our three-peg setting it will be easy to distinguish drawn from winning. The first player, namely Anh, controls all the moves under optimal play; if she cannot win, it will be easy to play drawn. The question of minimizing the number of moves in the two-player setting is also studied.

Ending conditions for the two-player Tower of Hanoi

Consider the following variations of the two-player Tower of Hanoi; the game ends when the tower has been transferred to a final peg, which is (EC1) a given peg, distinct from the starting peg;

(EC2) the starting peg, but the largest disk has to be moved at least once;

(EC3) the starting peg, but the smallest disk has to be moved at least once;

(EC4) any peg, but the largest disk has to be moved at least once; and (EC5) any peg, but the smallest disk has to be moved at least once.

Ending conditions (EC2) and (EC3) are not applicable when n = 1. In Figure 7.4 to Figure 7.7, we illustrate the idea of going from the one-player setting to the two-player setting using the standard graph representation. Each edge will now be directed, and the direction depends on the previous move. In Figures 7.5 and 7.7 we show which moves are possible in two-player Tower of Hanoi for n = 1 and 2 respectively (red dotted edges are illegal; green move edges are directed with direction depending on a given initial move).

General play

In this section we regard an odd or even number of moves in the one-player game in the same sense as for the two-player games; no disk will be moved twice unless some other disk has been moved in between. Each odd numbered move thus moves the smallest disk, and in fact we could equivalently have chosen to let Anh lead the game. Recall that the 

Scoring play: two-player Tower of Hanoi with weights

As stated in the introduction, for the scoring variation of the normal play setting, we provide real weights to the move edges, in the three-peg case, w 12 , w 13 and w 23 respectively. As usual, the two players alternate in moving, and a player gets w ij points for a move along edge {i, j}. The player who has most points when the game ends wins. We begin by giving the solution of the game with less than three disks.

We will use A ij (n) and B ij (n), for the total points for Anh and Bao respectively, of the two-player Tower of Hanoi game, for transferring n disks from Peg i to Peg j by a given algorithm, for example the minimal algorithm, and we let the total score be

∆ ij (n) = A ij (n) -B ij (n), or just ∆(n). Hence, if ∆(n) > 0 then Anh wins, if ∆(n) = 0,
then the game is tie, and otherwise Bao wins.

Theorem 7.2.5 (CLM [C11]). Consider the two-player Tower of Hanoi game on two disks, three pegs and three weights of real numbers w 12 , w 13 , and w 23 . In case of (EC4) or (EC5), the first player wins if either of the following inequalities holds:

w 12 + w 23 -w 13 > 0 (7.1)
3w 13w 12w 23 > 0 (7.2) w 13 + w 23w 12 > 0 (7.3) 3w 12w 13w 23 > 0 (7.4) w 12 + w 13w 23 > 0 (7.5)

In case of (EC2) or (EC3), she wins if (7.5) holds. In case of (EC1), she wins if (7.1) or (7.2) holds. Otherwise the game is a draw.

If the game is played on only one disk, then (EC2,3) are not applicable. For (EC1) the first player wins if w 13 > 0; loses if w 13 < 0; and the game is a tie otherwise. The second player wins (EC4,5) if w 12 < 0 and w 13 < 0. The game is a tie if at least one of these weights is 0 and the others are non-positive. Otherwise the first player wins. It turns out that the case n ⩾ 3 has fewer drawn games, allowing a simpler description; it relies on the general ideas in Subsection 7.2.1. By relabeling the pegs, it suffices to analyze the case of transferring the disks from Peg 1 to Peg 3 and the case from Peg 1 to Peg 1 . Theorem 7.2.6 (CLM [C11]). Given n ⩾ 3 disks, three pegs and three weights of real numbers w 13 , w 12 , and w 23 . Then, for the two-player Tower of Hanoi game, the first player wins every game, except in the case w 12 = w 13 = w 23 ⩽ 0 for which the game is a draw.

We can adapt this proof to scoring play from an arbitrary position of disks for the three-peg case. But we have to remember that in the two-player setting a position carries also a memory of the last move.

Corollary 7.2.7. Consider an arbitrary Tower of Hanoi position on n ⩾ 3 disks, three pegs and three weights of real numbers w 13 , w 12 , and w 23 . Then the first player wins, unless w 12 = w 13 = w 23 ⩽ 0, and provided the previous player did not move the smallest disk.

The minimal number of moves for winning

The minimal number of moves for winning normal play

Traditionally, in the one-player setting, the interest has often been focused on the minimal number of moves for transferring the tower. Here, we analyze our variations of the twoplayer game in this sense. It is not a big surprise that the minimal number of moves to win normal play is the same as the number of moves in the one-player minimal algorithm, but let us sum up the state of the art before we move on to the more challenging analysis of minimum number of moves for winning scoring play.

Theorem 7.2.8 (CLM [C11]). The minimum number of moves for transferring n ⩾ 1 disks from one peg to another peg is 2 n -1. The minimum number of moves for transferring n ⩾ 2 disks from one peg to the same peg is 2 n+1 -1, if the largest disk has to be moved; and it is seven if only the smallest disk has to be moved. Now, we estimate the minimal number of moves for winning the normal play twoplayer Tower of Hanoi. In case the game is drawn, then we say that the minimal number of moves is infinite.

Theorem 7.2.9 (CLM [C11]). Let M l (n) denote the minimal number of moves needed for winning a normal play game on l ⩾ 3 pegs and n ⩾ 1 disks. Then,

M 3 (n) =            2 n -1, for n ⩾ 1, for (EC1,4), 2 n+1 -1, for n ⩾ 2, for (EC2), 7, for n ⩾ 2, for (EC3), 2 n -1, for n ⩽ 2, for (EC5), 7,
for n ⩾ 3, for (EC5).

M l (n) =   
1, for n = 1, l ⩾ 4 and for (EC1,4,5), 3, for n = 2, l ⩾ 4 and for (EC4,5), ∞, otherwise for l ⩾ 4. The exact value of S(4, 2) was obtained by Baumert [START_REF] Abbott | A problem of Schur and its generalizations[END_REF]. The lower and upper bounds of S(5, 2) are due to Exoo [START_REF] Exoo | A lower bound for Schur numbers and multicolor Ramsey numbers of K 3[END_REF] and Sanz [START_REF] Isabel | Números de Schur y de Rado[END_REF], respectively. Finally, the lower bounds of S(6, 2) and S(7, 2) were obtained by Fredricksen and Sweet [START_REF] Fredricksen | Symmetric sum-free partitions and lower bounds for Schur numbers[END_REF] by considering symmetric sum-free partitions.

Many generalizations of Schur numbers have appeared since their introduction. Here, the generalized Schur numbers that we consider are similarly defined in [START_REF] Beutelspacher | Generalized Schur numbers[END_REF][START_REF] Landman | Ramsey theory on the integers[END_REF]. These numbers are always finite (see [93,[START_REF] Landman | Ramsey theory on the integers[END_REF] for instance). Definition 8.1.4 (Modular sum-free set). Let m be a positive integer. A set of integers is said to be l-sum-free modulo m if it contains no elements x 1 , . . . , x l , y satisfying x 1 + . . . + x l ≡ y (mod m). Definition 8.1.5 (Modular generalized Schur number). For every positive integer k, the generalized Schur number modulo m, denoted by S m (k, l), is the largest integer n for which the set of the first n positive integers {1, 2, . . . , n} admits a k-partition into l-sum-free sets modulo m.

Obviously, for every modulus m, the inequality

S m (k, l) ⩽ S(k, l) (8.1)
holds because a l-sum-free set modulo m of integers is also l-sum-free. Moreover, since m + . . . + m ≡ m mod m, a l-sum-free set of integers modulo m does not contain the integer m. Therefore, we have

S m (k, l) ⩽ m -1. (8.2)
For l = 2, Abbott and Wang investigated in [START_REF] Abbott | Sum-free sets of integers[END_REF] the numbers

T(k) = max {n ∈ N | S n+1 (k, 2) = n} ,
where k is a positive integer. They obtained that T(k) = S(k, 2) for k ∈ {1, 2, 3, 4} and they conjectured that the equality is true for all positive integers k.

Here, we explicitly determine the modular generalized Schur numbers S m (k, l) for small values of m: for all moduli m ∈ {1, 2, 3}. For m = 1, the result is clear. Indeed, S 1 (k, l) = 0, for all k ⩾ 1 and l ⩾ 1, since every positive integer x verifies x + . . . + x ≡ x mod 1 and thus, there does not exist non-empty l-sum-free set modulo 1. For m = 2 and m = 3, the exact values of S m (k, l) are given by the following theorems. A simple proof of these theorems can be found in [C18]. The exact value of WS(4, 2) was obtained by Blanchard, Harary and Reis [START_REF] Peter | Partitions into sum-free sets[END_REF]. The lower bounds of WS(5, 2) and WS(6, 2) are due to Eliahou, Marín, Revuelta and Sanz [START_REF] Eliahou | Weak Schur numbers and the search for G. W. Walker's lost partitions[END_REF].

More generally, the generalized weak Schur numbers are always finite (see [START_REF] Sierpiński | Elementary theory of numbers[END_REF][START_REF] Irving | An extension of Schur's theorem on sum-free partitions[END_REF][START_REF] Landman | Ramsey theory on the integers[END_REF]] for instance). Moreover, the generalized weak Schur numbers appear as a good upper bound for the generalized Schur numbers, since a weakly l-sum-free set of integers is also l-sum-free. Therefore, we have

S(k, l) ⩽ WS(k, l), (8.3) 
for all positive integers k and l. A trivial lower bound for the weak Schur numbers is kl ⩽ WS(k, l), (8.4) because each of the k weakly sum-free sets can contain l distinct integers without solution of the equation x 1 + . . . + x l = y. Better lower bounds for WS(k, l) can be found in [START_REF] Isabel | Números de Schur y de Rado[END_REF].

Definition 8.1.10 (Modular weakly sum-free set). A set of integers is said to be weakly l-sum-free modulo m if it contains no pairwise distinct elements x 1 , . . . , x l , y satisfying x 1 + . . . + x l ≡ y (mod m). 

Ramsey numbers of certain families of graphs

• • • ⩽ 41 49 ⩽ • • • ⩽ 61 5 43 ⩽ • • • ⩽ 48 58 ⩽ • • • ⩽ 87 80 ⩽ • • • ⩽ 143 6 102 ⩽ • • • ⩽ 165 115 ⩽ • • • ⩽ 298 7 205 ⩽ • • • ⩽ 540 Table 8.4: The first few Ramsey numbers R(K a , K b )
In this section, we present Ramsey numbers for complete graphs with dropped cliques and for complete graphs with dropped stars that appears in [C19] and [C15], respectively. An excellent survey on Ramsey numbers for small values can be found in [START_REF] Stanisław | Small Ramsey numbers[END_REF].

Ramsey for complete graphs with dropped edge or triangle

Definition 8.2.2. Let k ⩾ t ⩾ 1 be positive integers. We denote by K [k,t] the complete graph on k vertices from which a set of edges, induced by a clique of order t, has been dropped.

For instance, the graphs K [5,3] and K [4,2] are depicted in Figure 8.1. A recursive formula First, a generalization of the Ramsey number for r colors can be considered.

ii) R(K 5 , K 6 -P 3 ) ⩽ 49.

iii) R(K 6 , K 6 -P 3 ) ⩽ 87.

Corollary 

i) R(K 4 , K 7 -K 1,s ) = R(K 4 , K 6 ) for s ⩾ 3. iii) R(K 4 , K 9 -K 1,s ) = R(K 4 , K 8 ) for s ⩾ 4. v) R(K 4 , K 11 -K 1,s ) = R(K 4 , K 10 ) for s ⩾ 5. vii) R(K 4 , K 13 -K 1,s ) = R(K 4 , K 12 ) for s ⩾ 6. ix) R(K 4 , K 15 -K 1,s ) = R(K 4 , K 14 ) for s ⩾ 8. ii) R(K 4 , K 8 -K 1,s ) = R(K 4 , K 7 ) for s ⩾ 3. iv) R(K 4 , K 10 -K 1,s ) = R(K 4 , K 9 ) for s ⩾ 4. vi) R(K 4 , K 12 -K 1,s ) = R(K 4 , K 11 ) for s ⩾ 6. viii) R(K 4 , K 14 -K 1,s ) = R(K 4 , K 13 ) for s ⩾ 7. x) R(K 4 , K 16 -K 1,s ) = R(K 4 , K 15 ) for s ⩾ 9. Wheels versus K n -K 1,s
Here, we obtain further relating results by applying Theorem 8.2.10 to other graphs. Indeed, we may consider G 1 as the cycle on n -1 vertices C n-1 , and thus G v 1 will be the wheel W n by taking the new vertex v incident to all the vertices of C n-1 . This is a natural discrete version of the original function m. Indeed, consider a set of points X in R d . The existence of an arbitrary (dλ)-plane transversal to the convex hull of the k-sets of X is not an invariant of the order type. For example, if d = 2 and X is the vertex set of a regular hexagon then the center is a 0-plane transversal to the convex hull of the 4-sets. But by suitably perturbing these 6 points slightly we lose this property, see Figure 9.1. Figure 9.1: A 0-plane transversal that is not invariant of the order type On the other hand, the existence of a complete Kneser (dλ)-transversal to the convex hull of the k-sets is an invariant of the order type. This allows us to study m * using oriented matroid theory. Since the parameter m * requires additional conditions on the transversals, we clearly have

Corollary 8.2.25 (CMR [C15]). i) R(W 5 , K 6 -K 1,s ) = 27 for s = 3, 4, 5. ii) R(W 5 , K 7 -K 1,s ) = R(W 5 , K 6 ) for s = 4, 5, 6. iii) R(W 5 , K 8 -K 1,s ) = R(W 5 , K 7 ) for s = 4, 5, 6, 7.
m * (k, d, λ) ⩽ m(k, d, λ).
The case k = λ is easy to deal with. Proposition 9.1.4 (CMMMR [C12]). The value of m * (k, d, k) is d.

Proof. If we have d points or less in R d , then we can choose any subset T with dk + 1 elements, and it will have non-empty intersection with any k-set. Therefore, aff(T ) will be a Kneser transversal. On the other hand, if we choose d + 1 affinely independent points in R d , then any (dk + 1)-set T will leave k points in its complement, and therefore by affine independence aff(T ) cannot be a Kneser transversal.

From here on, we will assume that k ⩾ λ + 1. It turns out that the function m * has two different behaviors. The arguments for the case λ -1 ⩾ d 2 , are usually simpler than those for the case λ -1 < d 2 . For this reason, we define

α(d, λ) = λ -1 d 2
and we call α ⩾ 1 the trivial range and α < 1 the non-trivial range. In this section, we investigate m * . We present the exact value of m * in the trivial range and give bounds and some exact values of m * in the non-trivial range. 

v i ∩ Conv i∈B v i ̸ = ∅.
Moreover, Radon's theorem states that this intersection is a unique point in the interior of each convex hull.

The following proposition is a generalization of the well-known Carathéodory's theorem that states that if a point p lies in the convex hull of a set S in R d , then there is a subset S ′ of S consisting of at most d + 1 points such that p lies in the convex hull of S ′ . It is not difficult to prove that the set S ′ has exactly d + 1 points if the set S is in general position in R d . Proposition 9.1.5 (CMMMR [C12]). Let d and λ be positive integers with d ⩾ λ and let S and T be two disjoint sets of points in general position in R d such that |S| ⩾ λ + 1 and |T | = dλ + 1. Then the following two statements are equivalent:

• Conv(S) ∩ aff(T ) ̸ = ∅, • Conv(S ′ ) ∩ aff(T ) ̸ = ∅ for a subset S ′ ⊆ S such that |S ′ | = λ + 1.
The following result will be very useful in the sequel. Remark 9.1.7. In the case in which S ∪ T is not in general position then we still have a Radon partition, but it might not be unique. If in one of those Radon partitions we have that all the points from S belong to the same set, then the proof above shows that we also conclude that Conv(S) ∩ aff(T ) ̸ = ∅.

As a consequence of the above proposition and remark we get the following lemma. Using this lemma, we obtain the following lower bound in the non-trivial range.

Theorem 9.1.9 (CMMMR [C12]). In the non-trivial range, when α(d, λ) < 1, we have that

(d -λ + 1) + k ⩽ m * (k, d, λ).
Proof. Let X be a collection of (d for each integer j such that j + λ is an odd number. Let

-λ + 1) + k points in R d . Since k ⩾ λ + 1, then |X| ⩾ d + 2. Let Y be a (d + 2)-subset of X.
z(k, d, λ) def = (d -λ + 1) + max j∈{λ+1,...,d-λ+2} j+λ is odd k -1 β(λ, j) • j + (k -1) modβ(λ,j) Z(k, d, λ) def = (d -λ + 1) + ⌊(2 -α(d, λ))(k -1)⌋
Using simple combinatorial arguments and (9.2) the structure of minimal Radon partitions of cyclic polytopes, it is proved in [C12] that z(k, d, λ) and Z(k, d, λ) are lower and upper bounds, respectively, of ζ(k, d, λ) in the non-trivial range.

Theorem 9.1.15 (CMMMR [C12]). In the non-trivial range, when α(d, λ) < 1,

z(k, d, λ) ⩽ ζ(k, d, λ) ⩽ Z(k, d, λ).
Corollary 9.1.16. In the non-trivial range, when α(d, λ) < 1, we have that

(d -λ + 1) + k ⩽ m * (k, d, λ) ⩽ (d -λ + 1) + ⌊(2 -α(d, λ))(k -1)⌋ .
The bounds found by Theorem 9.1.15 are asymptotically correct in terms of k.

Theorem 9.1.17 (CMMMR [C12]). In the non trivial-range, we have that

lim k→∞ ζ(k, d, λ) k = 2 -α(d, λ).

Codimension two and three Kneser transversals

In this section, we present various results on the existence of (complete) Kneser transversals for λ = 2, 3. In order to do this, we introduce the notions of stability and instability for (complete) Kneser transversals. After that, by using oriented matroid machinery, we present some computational results (closely related to the stability and unstability notions). We determine the existence of (complete) Kneser transversals for each of the 246 different order types of configurations of 7 points in R 3 . The results presented here can be found in [C13].

Stability

As already seen before, the existence of a Kneser transversal is not necessarily an invariant of the order type. For example, for d = 2, let X be the vertex set of a regular hexagon. Then, the center of such hexagon is a 0-plane transversal to the convex hull of the 4sets. But, by a suitable 'slight' perturbation of the 6 vertices of the hexagon we lose this property, see Figure 9.1.

which is strictly smaller than d + 2(kλ) when ⌈ d 2 ⌉ < k -1 and thus implying that X ′ does not admit a complete transversal. Therefore, the collection of points X ′ in R d does not have a (dλ)-plane transversal to the convex hull of the k-sets implying that m(k, d, λ) < d + 2(kλ).

The following result due to Bukh, Matoušek and Nivasch [START_REF] Bukh | Stabbing simplices by points and flats[END_REF] was proved by using equivariant topology (see also [START_REF] Bukh | Upper bounds for centerlines[END_REF] and [START_REF] Magazinov | An improvement on the Rado bound for the centerline depth[END_REF] for some related results).

Let X = {x 1 , x 2 , . . . x n } be a collection of n points in R d . Then, there exists a codimension two affine plane L and 2d -1 hyperplanes passing through L that divide R d into 4d -2 parts, each containing at most n 4d-2 + O(1) points of X.

Every hyperplane H through L leaves at least 2d -2 of these parts on each side of H. Therefore, on each side of H we must have at least

n -2d n 4d -2 + O(1) = (2d -2)n 4d -2 -2dO(1)
points of X and thus

(2d -2)n 4d -2 -2dO(1) ⩽ τ (n, d, 2).
Furthermore, if k ⩾ 2dn 4d-2 + 2dO(1), the codimension two affine plane L intersects the convex hull of every k-set of X, implying that

(4d -2) 2d (k -2dO(1)) ⩽ m(k, d, 2). (9.3) 
From Equation (9.3) and Theorem 9.2.4, we obtain

2 - 1 d ⩽ lim sup k→∞ m(k, d, 2) k ⩽ 2.
Therefore, for d ⩾ 3, λ = 2 and k large enough the conjectured value

[23, Conjecture 1] m(k, d, λ) = d -λ + k + k λ -1 does not hold.

Computational results

General background on oriented matroid theory can be found in [START_REF] Björner | Oriented matroids, volume 46 of Encyclopedia of Mathematics and its Applications[END_REF].

Definition 9.2.5 (Abstract order type). An abstract order type is the relabeling class of an acyclic oriented matroid. The abstract order types of realizable oriented matroids are called order types corresponding to isomorphism types of configurations of points in the Euclidean space.

In [START_REF] Arocha | Transversals to the convex hulls of all k-sets of discrete subsets of R n[END_REF], it is proved that m(3, 2, 4) = 6 (i.e., there always exists a transversal line to all tetrahedra formed by any configuration of 6 points in R 3 ) and that there is never a transversal line to all tetrahedra formed by any configuration of 8 points in general position in R 3 . What about transversal lines to all tetrahedra in configurations of 7 points in R 3 ?

We will answer this question by classifying the configurations of 7 points in R 3 having a (complete) Kneser line (if any). It is known that there are 5083 abstract order types of rank r = 4 (d = 3) of cardinality n = 7 [START_REF] Finschi | Catalog of oriented matroids[END_REF]. Among these 5083 abstract order types, 246 of them are the order type of some configuration of points in general position.

CHAPTER 9. KNESER TRANSVERSALS

Complete Kneser transversal line

We investigate whether there exists a complete transversal line to the tetrahedra of E = {x 1 , . . . , x 7 }. For this, we first detect when the line joining x i 1 and x i 2 intersects the interior of the triangle (x i 3 , x i 4 , x i 5 ). The following proposition is a direct consequence of Proposition 9.1.6. Proposition 9.2.6 (CMMMR [C13]). Let E := {x 1 , . . . , x 7 } be a set of 7 points in general position in R 3 and let M = (E, B) its associated oriented matroid. Then, the line (x i 1 , x i 2 ) intersects the interior of the triangle (x i 3 , x i 4 , x i 5 ) if and only if sg(x i 3 ) = sg(x i 4 ) = sg(x i 5 ) in the circuit {x i 1 , x i 2 , x i 3 , x i 4 , x i 5 } of M, where sg(x) stands for the sign of x in M.

Proof. Since M is acyclic, it is not possible that the elements of the circuit C := {x i 1 , x i 2 , x i 3 , x i 4 , x i 5 } have all the same sign. Moreover, as depicted in Figure 9.2, the line (x i 1 , x i 2 ) intersects the interior of the triangle (x i 3 , x i 4 , x i 5 ) if and only if the Radon partition associated with C is one of {{x

i 1 , x i 2 } , {x i 3 , x i 4 , x i 5 }} , {{x i 1 } , {x i 2 , x i 3 , x i 4 , x i 5 }} or {{x i 2 } , {x i 1 , x i 3 , x i 4 , x i 5 }}. x i 1 x i 2 x i 3 x i 4 x i 5 x i 1 x i 2 x i 3 x i 4 x i 5 {{x i 1 , x i 2 } , {x i 3 , x i 4 , x i 5 }} {{x i 2 } , {x i 1 , x i 3 , x i 4 , x i 5 }} Figure 9
.2: Radon partitions where the line

(x i 1 , x i 2 ) intersects the triangle (x i 3 , x i 4 , x i 5 )
We notice that since the points of E are in general position, then the line (x i 1 , x i 2 ) cannot intersect the triangle (x i 3 , x i 4 , x i 5 ) on a vertex or an edge.

For each of the 7 2 = 21 pairs (x i 1 , x i 2 ), we determine, by using Proposition 9.2.6, if the line (x i 1 , x i 2 ) intersects the 5 3 = 10 triangles of E \ {x i 1 , x i 2 }. Since the points are in general position, it is easy to see that if (x i 1 , x i 2 ) intersects a tetrahedron T whose vertices are in E, then (x i 1 , x i 2 ) intersects at least two faces (two triangles) of T (c.f. Proposition 9.1.5). Therefore, if (x i 1 , x i 2 ) intersects the triangle (x i 3 , x i 4 , x i 5 ), it intersects both tetrahedra (x i 3 , x i 4 , x i 5 , x i 6 ) and (x i 3 , x i 4 , x i 5 , x i 7 ). Finally, if the line (x i 1 , x i 2 ) intersects the 5 4 = 5 tetrahedra generated from E \ {x i 1 , x i 2 }, it immediately follows that (x i 1 , x i 2 ) is transversal to all the tetrahedra of E.

For instance, for M = OT (7, 4, 2) in the classification given in [START_REF] Finschi | Catalog of oriented matroids[END_REF], that is the abstract order type representing a point configuration having the chirotope χ M : B → {0, -, +} 9.2. CODIMENSION TWO AND THREE KNESER TRANSVERSALS 169 given by 1 1 1 1 2 1 1 1 2 1 1 2 1 2 3 1 1 1 2 2 2 3 3 2 2 3 3 2 3 3 4 4 4 2 2 3 3 3 4 4 4 3 4 4 4 5 5 5 5 5 5 3 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 6 6 7 7 7 χ M = + -+ ---+ ---+ + --+ + -+ 2 1 1 2 1 2 3 1 1 2 1 2 3 1 2 3 4 3 2 3 3 4 4 4 2 3 3 4 4 4 5 5 5 5 4 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 χ M = + + --+ + + + --+ -+ + + -+ the line L going through 1 and 5 is a complete Kneser transversal line. Indeed, by Proposition 9.2.6, we know that L intersects the triangles (2, 3, 4), (2, 3, 6), (2, 6, 7) and (3, 4, 7) since the corresponding circuits are { 12345}, {1 23 5 6}, {1 25 67 }, {1 3457 }, implying that L intersects the 5 tetrahedra (2, 3, 4, 6), (2, 3, 4, 7), (2, 3, 6, 7), (2, 4, 6, 7) and (3, 4, 6, 7). By applying the above method, we obtain the following result.

Theorem 9.2.7 (CMMMR [C13]). Among the 246 configurations of 7 points in general position in R 3 there are 124 admitting a complete Kneser transversal to the tetrahedra. These configurations correspond to the 124 realizable rank 4 oriented matroids on 7 elements given by the following set according to the classification in [START_REF] Finschi | Catalog of oriented matroids[END_REF] A := {2, 3, 5, 6, 8, 9, 10, 15, 16, 18, [START_REF] Abbott | A problem of Schur and its generalizations[END_REF][START_REF] Abbott | Sum-free sets of integers[END_REF][START_REF] Bailey | Regular Steinhaus graphs[END_REF][START_REF] Barbé | Cellular automata, quasigroups and symmetries[END_REF][START_REF] Barbé | The Pascal matroid as a home for generating sets of cellular automata configurations defined by quasigroups[END_REF][START_REF] Barbé | Frame cellular automata: configurations, generating sets and related matroids[END_REF][START_REF] Beutelspacher | Generalized Schur numbers[END_REF][START_REF] Björner | Oriented matroids, volume 46 of Encyclopedia of Mathematics and its Applications[END_REF][START_REF] Peter | Partitions into sum-free sets[END_REF][START_REF] Bousch | La tour de Stockmeyer[END_REF][START_REF] Bukh | Stabbing simplices by points and flats[END_REF][START_REF] Bukh | Upper bounds for centerlines[END_REF][START_REF] Chang | Characterizations of bipartite Steinhaus graphs[END_REF][START_REF] Chen | On the Frame-Stewart conjecture about the Towers of Hanoi[END_REF][START_REF] Conway | On numbers and games[END_REF] 160,166,167,171,172,177,178,182,183,184,185,186,187,189,191,192,195,199,200,201,206,207,208,211,212,219,220,221,224,225,228,229,234,237, 243, 244} .

Kneser transversal line

Let E := {x 1 , . . . , x 7 } be a set of 7 points in general position in R 3 and let M = (E, B) be its associated oriented matroid. By Theorem 9.2.2, if there exist a non-complete Kneser transversal line to the convex hull of its 4-subsets, then the 7 points of M must look as depicted in Figure 9.3. This implies that M admits the following circuits {x 1 x 2 x 3 x 4 x 7 }, {x 1 x 2 x 5 x 6 x 7 }, {x 3 x 4 x 5 x 6 x 7 }, (9.4) and cocircuits {x 3 x 4 x 5 x 6 }, {x 1 x 2 x 5 x 6 }, {x 1 x 2 x 3 x 4 }. (9.5) However it is possible that certain configurations of 7 points M having circuits as given in (9.4) and cocircuits as in (9.5) do not admit a transversal line to the convex hull x 1
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Representation in R 3 Projection in R 2

Figure 9.3: 7 points in R 3 with circuits and cocircuits satisfying (9.4) and (9.5) with a Kneser transversal line to all 4-sets

x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 1 x 2 x 3 x 4 x 5 x 6 x 7 Representation in R 3 Projection in R 2 Figure 9
.4: 7 points in R 3 with circuits and cocircuits satisfying (9.4) and (9.5) but without transversal line to all 4-sets of its 4-subsets, see Figure 9.4 where this situation is illustrated. This example shows once more that the existence of Kneser Transversals is not an invariant of the order type in general. Nevertheless, we can still identify whether a configuration of 7 points admits a Kneser transversal line. To this end, we consider the oriented matroid M ′ associated with the configuration of 8 points E ′ := {x 1 , . . . , x 8 } in R 3 , not necessarily in general position, illustrated in Figure 9.5. The deletion of either point x 7 or point x 8 from M yields a configuration on 7 points as represented in Figure 9.3 admitting thus a Kneser transversal line (containing either x 7 or x 8 ) to the all tetrahedra. We thus have that the line going through x 7 and x 8 would be a complete Kneser transversal line of E ′ . Moreover, any configuration on 7 points as represented in Figure 9.3 arises on this way.

We may thus detect all such configurations M ′ . We do this by observing that an oriented matroid M on 8 elements corresponds to such a configuration if and only if M admits the following cocircuits {x 3 x 4 x 5 x 6 }, {x 1 x 2 x 5 x 6 }, {x 1 x 2 x 3 x 4 }.

(9.6)
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x 3 x 4
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x 5

x 6

x 7

x 8

Representation in R 3 Projection in R 2 For each of the 10775236 order types of 8 points in R 3 , we consider its associated oriented matroid M. If M admits cocircuits of the form (9.6), we delete x 7 or x 8 obtaining a configuration of 7 points in general position as in Figure 9.3 admitting a non-complete Kneser transversal line to all tetrehedra. Theorem 9.2.8 (CMMMR [C13]). Among the 246 different order types of 7 points in general position in R 3 there are 124 admitting a representation for which there is a noncomplete Kneser transversal line to all tetrahedra. These configurations correspond to the 124 realizable rank 4 oriented matroids on 7 elements given in by the following set according to the classification in [START_REF] Finschi | Catalog of oriented matroids[END_REF] B := {1, 2, 4, 6, 7, 10, 11, 12, 13, 14, 16, 19, [START_REF] Augier | Parity-regular Steinhaus graphs[END_REF][START_REF] Barbé | Symmetric patterns in the cellular automaton that generates Pascal's triangle modulo 2[END_REF][START_REF] Barbé | Frame cellular automata: configurations, generating sets and related matroids[END_REF][START_REF] Bartsch | Steinhaus-Figuren modulo 2 und verallgemeinerte Steinhaus-Dreiecke[END_REF][START_REF] Berlekamp | Winning ways for your mathematical plays[END_REF][START_REF] Bermejo | Complete intersections in certain affine and projective monomial curves[END_REF][START_REF] Blecksmith | 3-smooth representations of integers[END_REF][START_REF] Bousch | La tour de Stockmeyer[END_REF][START_REF] Josep | Symmetries in Steinhaus triangles and in generalized Pascal triangles[END_REF][START_REF] Bukh | Stabbing simplices by points and flats[END_REF][START_REF] Bukh | Upper bounds for centerlines[END_REF][START_REF] Chang | Binary triangles[END_REF][START_REF] Dymàček | Planar Steinhaus graphs[END_REF] Corollary 9.2.9 (CMMMR [C13]). Among the 246 configurations of 7 points in general position in R 3 , 124 of them admit a Kneser transversal line to all the tetrahedra and 122 configurations do not admit a Kneser transversal line to the all the tetrahedra.
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O X ∞ 7 O X ∞ 8 O X ∞ 9 O X ∞ 10 
0 1 1 1 5 3 5 0 5 4 4 0 4 4 1 3 4 2 2 4 1 5 0 2 0 1 1 4 4 5 1 4 3 1 5 0 0 3 5 3 3 5 3 0 3 4 4 0 4 4 3 5 4 2 2 4 5 3 0 2 0 3 3 4 4 3 5 4 5 3 3 0 Problem P3. Let m be a positive integer. For every non-negative integer n and every submodule RSC (Z/mZ,⋆) (n) and DSC (Z/mZ,⋆) (n), the question is to determine its length and a generating set.

The Pascal Matroid

In Chapter 2, the notion of generating index set of binary Steinhaus triangles has been introduced in order to study linear subspaces of symmetric binary triangles. A subset G of the index set ∇(n) = (i, j) ∈ N 2 1 ⩽ i ⩽ j ⩽ n is said to be a generating index set of the vector space ST (n) of binary Steinhaus triangles of size n if the knowledge of the values a i,j , for all (i, j) ∈ G, uniquely determines the whole Steinhaus triangle (a i,j ) 1⩽i⩽j⩽n , i.e., if the linear map π G : ST (n) -→ (Z/2Z) G (a i,j ) 1⩽i⩽j⩽n -→ (a i,j ) (i,j)∈G is an isomorphism. For instance, the index set in gray in Figure C3 is a generating index set for binary Steinhaus triangles of size 7.

1 0 1 0 0 0 1 1 1 1 0 0 1 0 0 1 0 1 0 1 1 1 1 0 0 1 0 1

1 1 1 0 0 1 0 Figure C3: A generating index set of ST (7)
It is known that, for every non-negative integer n, the collection of generating index sets of ST (n) has a matroid structure called Pascal matroid. This matroid has been introduced in [START_REF] Barbé | The Pascal matroid as a home for generating sets of cellular automata configurations defined by quasigroups[END_REF] but without detailed analysis.

Problem P4. The main objective here is to study the Pascal matroid as well as other variations from a matroid theory perspective. and π m 0 (S) = π m 0 (US).

Then, the Steinhaus triangle ∇S[n, 2n -1] of size n is balanced, for all n ≡ 0 or -1 mod 12m.

The proof of these conjectures would give a positive answer to the weak Molluzzo Problem for all positive integers m not divisible by 64.

Problem P5. For every even number m, is it possible to obtain infinitely many balanced Steinhaus triangles modulo m by lifting the universal sequence US to Z/mZ? P -type functions for numerical semigroups Let s 1 , . . . , s n be coprime positive integers. Let S = ⟨s 1 , . . . , s n ⟩ = n i=1

x i s i ∀i ∈ {1, . . . , n}, x i ∈ N denote the numerical semigroup generated by s 1 , . . . , s n .

As seen in Chapter 6, given a particular (arithmetical, number theoretical, etc.) Property P , one might consider the following two P -type functions of a numerical semigroup S:

P r(S):= the largest integer having property P not belonging to S and P r(S) := the smallest integer having property P belonging to S. Notice that the multiplicity and the Frobenius number of a numerical semigroup are Ptype functions where P is the property of being a positive integer. The case where P is the property of being a square number is studied Chapter 6 and in [C17].

Problem P6. Study these two P -type functions for other properties P such as being a triangular number, being a prime number or even being a cube, and this for different families of numerical semigroups.

Generalizations of Frame-Stewart numbers

In Chapter 7, generalized Frame-Stewart numbers have been studied. These numbers are related to the Tower of Hanoi problem on graphs.

Stewart's recursive algorithm for the k-peg Tower of Hanoi problem is summarized as follows. For a positive integer t ⩽ n, i) recursively transfer a pile of nt smallest disks from the first peg to a temporary peg, using k pegs;

ii) transfer the remaining pile of t largest disks from the first peg to the final peg using k -1 pegs, ignoring the peg occupied by the nt smallest disks;

iii) recursively transfer the pile of nt smallest disks from the temporary peg to the final peg, using k pegs.

The algorithm chooses the integer t such that the number of moves is minimized.

Definition (Frame-Stewart numbers). The Frame-Stewart numbers S k (n) satisfy the following recurrence relations: In Chapter 7 and in [C14], the Frame-Stewart numbers are generalized as follows and exact formulas are obtained.

S k (n) = min
Definition (Generalized Frame-Stewart numbers). Let (p i ) i⩾3 and (q i ) i⩾3 be two sequences of arbitrary positive integers. Let G k (n) be the integers recursively defined by

G k (n) = min 1⩽t⩽n p k • G k (n -t) + q k • G k-1 (t) , for n ⩾ 1, k ⩾ 4,
G 3 (n) = p 3 • G 3 (n -1) + q 3 , for n ⩾ 1, and G k (0) = 0, for k ⩾ 3.

The numbers G k (n) are called the generalized Frame-Stewart numbers.

The main result is that the sequence of differences (G k (n) -G k (n -1)) n⩾1 consists of numbers of the form ( k i=3 q i )•( k i=3 p i α i ), with α i ⩾ 0 for all i, arranged in nondecreasing order.

Theorem (Chappelon-Matsuura [C14]). For every positive integer n and for two sequences of arbitrary positive integers (p i ) i⩾3 and (q i ) i⩾3 , we have

G k (n) = q • n j=1 u k j
where q = k i=3 q i and u k j is the jth term of the sequence u k j j⩾1 of integers k i=3 p i α i , with α i ⩾ 0 for all i, arranged in nondecreasing order.

The main objective here is to consider a more general version of generalized Frame-Stewart numbers and to obtain a similar result as in [C14]. More precisely, the following numbers are considered.

Definition. Let (F (n)) n∈N be the family of non-negative integers defined by

F (0) = 0, F (n) = min k i=1 F i (m i ) (m 1 , . . . , m k ) ∈ N k , k i=1 m i = n for n ⩾ 1,
where, for every i ∈ {1, 2, . . . , k}, (F i (n)) n∈N is a family of non-negative integers with F i (0) = 0. For all positive integers n, the differences are denoted by ∆F i (n) = F i (n) -F i (n -1), for all i ∈ {1, . . . , k}, and ∆F (n) = F (n) -F (n -1).

In a joint work in progress with Akihiro Matsuura, the following result was obtained.
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RÉSUMÉ EN FRANÇAIS triangle de Steinhaus équilibré. Sa preuve est constructive et se base sur l'étude des suites binaires pseudo-périodiques. Depuis, de nombreuses solutions du problème de Steinhaus sont apparues dans la littérature. Toutes ces solutions sont constructives et mettent en jeu des suites binaires pseudo-périodiques. Quelques unes de ces solutions sont présentées dans ce chapitre, après avoir expliquer en quoi le choix de suites binaires pseudo-périodiques est pertinent. Dans la dernière partie de ce chapitre, une solution récente du problème de Steinhaus obtenue à partir de suites binaires totalement périodiques est présentée. Si l'on applique la même règle locale à une suite binaire infinie, au lieu d'une suite finie, on obtient une grille infinie de zéros et de uns que nous appelons l'orbite de la suite. Le résultat principal de ce chapitre est qu'il existe des suites binaires périodiques, de période 24, dont l'orbite contient des triangles de Steinhaus binaires équilibrés pour toutes les tailles admissibles. De plus, ce résultat est également valide pour une généralisation du problème de Steinhaus dans deux directions : pour les triangles de Steinhaus binaires contenant un nombre impair d'éléments et dont le nombre de zéros et de uns ne différent que d'au plus 1 (les triangles presque-équilibrés) mais aussi pour les triangles binaires, pointant vers le haut, construit avec la même règle locale (les triangles de Pascal généralisés). La force de ce résultat est qu'à partir d'une même suite binaire périodique, il est possible d'obtenir de manière explicite l'existence de triangles binaires presque-équilibrés, pour les deux types de triangles binaires, pour toutes les tailles possibles. Ce résultat a été publié dans [C7].

L'étude des triangles de Steinhaus binaires continue au Chapitre 2 avec les triangles binaires ayant des propriétés symétriques. Il est facile de voir que l'ensemble ST (n) des triangles de Steinhaus binaires de taille n, c'est-à-dire, dont la première ligne est de longueur n, est un espace vectoriel sur Z/2Z de dimension n. De plus, la règle locale implique que ST (n) est stable par la rotation d'angle 120 degrés ainsi que pour la réflexion horizontale. Cela implique une représentation fidèle du groupe diédral D 3 sur ST (n). Un triangle de Steinhaus binaire est dit être symétrique par rotation, horizontalement symétrique ou diédralement symétrique s'il est invariant par la rotation d'angle 120 degrés, la réflexion horizontale ou les deux, respectivement. Les sous-espaces vectoriels RST (n), HST (n) et DST (n) des triangles de Steinhaus symétriques par rotation, horizontalement symétriques et diédralement symétriques ont été étudiés par André Barbé dans [START_REF] Barbé | Symmetric patterns in the cellular automaton that generates Pascal's triangle modulo 2[END_REF], où il a déterminé pour chacun d'eux leur dimension. Des bases de RST (n), HST (n) et DST (n) ont été obtenues par Josep Brunat et Montserrat Maureso dans [START_REF] Josep | Symmetries in Steinhaus triangles and in generalized Pascal triangles[END_REF]. Dans le Chapitre 2, pour chacun de ces trois sous-espaces vectoriels, de nouvelles bases, plus simples que celles précédemment citées, sont données. Elles sont obtenues en considérant des propriétés élémentaires des coefficients binomiaux généralisés. Un manuscrit [C8] sur ces résultats a été soumis à publication.

Le Chapitre 3 concerne la structure de graphes de Steinhaus. Un graphe de Steinhaus d'ordre n est un graphe simple dont la partie triangulaire supérieure de la matrice d'adjacence est un triangle de Steinhaus binaire de taille n-1. Il est facile de voir que l'ensemble SG(n) des graphes de Steinhaus d'ordre n est un espace vectoriel sur Z/2Z de dimension n -1 qui est isomorphe à ST (n -1). Cette famille de graphes simples a été introduite par John C. Molluzzo dans [START_REF] Molluzzo | Steinhaus graphs. In Theory and applications of graphs[END_REF]. Franz A. Delahan a montré dans [START_REF] Delahan | Induced embeddings in Steinhaus graphs[END_REF] que tout graphe simple d'ordre n est isomorphe à un sous-graphe induit d'un graphe de Steinhaus d'ordre n 2 + 1. Un problème classique sur les graphes de Steinhaus est de caractériser ceux, ou leurs suites binaires associées, ayant une propriété graphique donnée telle que la connectivité, la planarité, la propriété d'être biparti, la régularité, etc. Dans le Chapitre 3, nous nous concentrons sur les graphes de Steinhaus réguliers, c'est-à-dire, les graphes de Steinhaus où tous les sommets sont de même degré, et sur le cas plus faible des graphes de Steinhaus réguliers de parité, c'est-à-dire, les graphes de Steinhaus où les degrés des sommets sont tous de même parité. Un graphe de Steinhaus régulier de parité est soit pair, soit impair, suivant la parité de ses sommets. La première partie du Chapitre 3 est une étude complète du sous-espace vectoriel ESG(n) des graphes de Steinhaus pairs d'ordre n. La caractérisation des graphes de Steinhaus pairs a déjà été faite par Wayne M. Dymacek dans [START_REF] Dymacek | Steinhaus graphs[END_REF], où il détermine la dimension de ESG(n) en prouvant que la matrice d'adjacence d'un graphe de Steinhaus pair est symétrique par rapporte à son antidiagonale. On retrouve ce résultat ici en montrant que les éléments de l'antidiagonale de la matrice d'adjacence d'un graphe de Steinhaus, non nécessairement pair, s'expriment en fonction des degrés de ses sommets. Ce dernier résultat a été publié dans [C3]. Après cela, il est montré qu'il existe un isomorphisme entre ESG(n) et un certain sous-espace vectoriel de DST (n). Ainsi, en utilisant les résultats mis en lumière au Chapitre 2, des bases explicites de ESG(n) et PRSG(n) sont données, pour tout entier positif n. Ce nouveau résultat vient de [C8].

La dernière partie de ce chapitre concerne les graphes de Steinhaus réguliers. La liste complète des graphes de Steinhaus réguliers a été conjecturée par Wayne M. Dymacek dans [START_REF] Dymacek | Steinhaus graphs[END_REF]. Depuis, cette conjecture a été vérifiée jusque 117 sommets par Shalom Eliahou et Maxime Augier dans [START_REF] Augier | Parity-regular Steinhaus graphs[END_REF]. En fin de Chapitre 3, nous montrons comment les résultats obtenus sur DST (n) permettent de compléter l'étude des graphes de Steinhaus réguliers et permettent de pousser la vérification de la conjecture de Dymacek jusqu'à 1500 sommets pour les graphes de Steinhaus réguliers de degré impair. Ce résultat a été publié dans [START_REF] Bartsch | Steinhaus-Figuren modulo 2 und verallgemeinerte Steinhaus-Dreiecke[END_REF]. Depuis, ce problème a été résolu positivement par une approche constructive pour de petites valeurs de m : pour m ∈ {3, 5, 7} dans [C1] et pour m = 4 dans [C9]. Les premiers contre-exemples sont apparus dans [C1], où il est montré qu'il n'existe pas de triangles de Steinhaus équilibrés de taille 5 dans Z/15Z et de taille 6 dans Z/21Z. Néanmoins, ce problème admet une réponse positive pour une infinité de valeur de m. Dans la première partie de ce chapitre, on montre qu'il existe des triangles de Steinhaus équilibrés pour toutes les tailles possibles, dans le cas où m est une puissance de 3. Ce résultat est obtenu en étudiant les triangles de Steinhaus associés aux suites arithmétiques. Le résultat principal ici est que, lorsque m est un nombre impair, le triangle de Steinhaus dont la première ligne est une suite arithmétique de raison inversible et de longueur kαm est équilibré, pour tout entier strictement positif k et où α est l'ordre multiplicatif de 2 m modulo m. Cela implique qu'il existe une infinité de triangles de Steinhaus équilibrés modulo m dès que le nombre m est impair. En particulier, lorsque m est une puissance de 3, cela permet de répondre positivement au problème de Molluzzo dans ce cas. Ce résultat a été publié dans [C2].

Dans la seconde partie du Chapitre 4, nous nous intéressons à une suite d'entiers 190 RÉSUMÉ EN FRANÇAIS particulière US = (. . . , -3, -3, 5, -2, -2, 3, -1, -1, 1, 0, 0, -1, 1, 1, -3, 2, 2, -5, 3, 3, -7, . . .)

qui est appelée la suite universelle. Cette suite peut être vue comme un entrelacement de trois suites arithmétiques. On étudie alors les triangles de Steinhaus, ou plus généralement les orbites, associés aux suite arithmétiques entrelacées et l'on obtient que l'orbite de la projection de US dans Z/mZ contient une infinité de triangles de Dans la dernière partie du Chapitre 4, une méthode constructive qui consiste à essayer de relever dans Z/4Z des solutions déjà connues de Z/2Z est proposée. Cela permet d'obtenir une réponse complète et positive au problème de Molluzzo pour m = 4. A ce jour, il s'agit ici de la seule solution à ce problème pour m > 2 pair. Ce travail a été réalisé en collaboration avec Shalom Eliahou et a été publié dans [C9].

Dans le Chapitre 5, on considère la structure de triangles de Steinhaus pour d'autres règles locales et en dimensions supérieures, pas seulement en dimension 2. Un automate cellulaire additif est une application linéaire sur l'ensemble des tableaux infinis multidimensionnels d'éléments dans Z/mZ. Dans ce chapitre, nous considérons les simplexes apparaissant dans les orbites engendrées à partir de tableaux arithmétiques par des automates cellulaires additifs. Il se trouve que ce sont des sources de simplexes équilibrés, c'est-à-dire, de simplexes contenant tous les éléments de Z/mZ avec la même multiplicité. Pour tout automate cellulaire additif de dimension 1 ou plus, l'existence d'une infinité de simplexes équilibrés dans Z/mZ apparaissant dans de telles orbites est obtenu, et ce pour une infinité de valeurs de m. Le cas particulier des automates cellulaires de Pascal, les automates cellulaires engendrant les simplexes de Pascal, c'est-à-dire une généralisation du triangle de Pascal en dimension quelconque, est étudié en détails. Cela constitue un généralisation naturelle du résultat sur les triangles de Steinhaus associés aux suites arithmétiques du Chapitre 4. Cette généralisation a été publiée dans [C6].

La seconde partie de ce mémoire d'habilitation est divisée en quatre chapitres. Chacun de ces chapitres est à propos d'un thème de recherche sur lequel j'ai commencé à travailler après mon doctorat : les semigroupes numériques, les problèmes de type tours de Hanoï, la théorie de Ramsey et les transversaux de Kneser.

Le Chapter 6 concerne les semigroupes numériques. Un semigroupe est un ensemble avec une loi de composition interne qui est associative. Un semigroupe numérique S est un sous-semigroupe de N tel que 0 ∈ S et N \ S soit fini. Il est connu que, pour tout semigroupe numérique S, il existe un sous-ensemble non-vide minimal A = {a 1 , . . . , a n } d'entiers strictement positifs et premiers entre eux tel que S = ⟨A⟩, c'est-à-dire, chaque élément de S peut s'exprimer comme x 1 a 1 + • • • + x n a n , où x 1 , . . . , x n sont des entiers naturels. L'ensemble A est appelé l'ensemble des générateurs de S. Pour tout semigroupe numérique S, on considère le poset localement fini (Z, ⩽ S ) induit par S sur l'ensemble des entiers Z défini par x ⩽ S y si et seulement si yx ∈ S, pour tous entiers x et y. La fonction de Möbius est un concept important associé aux posets localement finis qui a été introduit par Gian-Carlo Rota dans [START_REF] Rota | On the foundations of combinatorial theory. I. Theory of Möbius functions[END_REF]. Dans la première partie du Chapitre 6, nous nous intéressons à la fonction de Möbius µ S associée au poset (Z, ⩽ S ), où S est un semigroupe numérique. Jusque 2013, le seul résultat connu concernant µ S était un vieux théorème dû à James A. Deddens en 1979 [START_REF] Deddens | A combinatorial identity involving relatively prime integers[END_REF] qui détermine la valeur de µ S pour S = ⟨a 1 , a 2 ⟩ le semigroupe numérique à deux générateurs. Ici, nous introduisons une nouvelle approche pour étudier µ S lorsque S est un semigroupe numérique arithmétique, c'est-à-dire, lorsqueS = ⟨a, a + d, . . . , a + kd⟩ pour des entiers positifs a, d, k tels que a et d soient relativement premiers et k < a. Le résultat principal obtenu ici est une formule récursive pour µ S lorsque S est un semigroupe numérique arithmétique. En particulier, cela permet d'obtenir une nouvelle preuve du résultat de Dedden ainsi qu'une formule explicite dans le cas où k = 2 et a est pair, c'est-à-dire, lorsque S = ⟨2q, 2q + d, 2q + 2d⟩ pour des entiers positifs q et d premiers entre eux. Ce travail a été réalisé en collaboration avec Jorge Luis Ramírez Alfonsín et a été publié dans [C16].

Après cela, nous continuons l'étude de la fonction de Möbius associée aux posets localement finis (Z m , ⩽ S ) provenant dorénavant de sous-semigroupes S de Z m . Cela étend le travail précédemment introduit. Une nouvelle approche est développée afin d'étudier µ S en utilisant la série de Hilbert de S. Cette méthode nous a permis d'obtenir des formules explicites de µ S lorsque S est dans certaines familles de semigroupes tels que les semigroupes ayant un unique élément de Betti ou les semigroupes numériques à trois générateurs et d'intersection complète. Ce second travail sur µ S a été réalisé en collaboration avec Ignacio García-Marco, Luis Pedro Montejano et Jorge Luis Ramírez Alfonsín. Il a été publié dans [C10].

La dernière partie de ce chapitre est sur le nombre de Frobenius carré. Pour tout semigroupe numérique S, le nombre de Frobenius g(S) est le plus grand entier qui n'est pas un élement de S. Il est bien connu que g(⟨a 1 , a 2 ⟩) = a 1 a 2a 1a 2 . Cependant, déterminer de manière explicite g(S) est un problème difficile en général. Ici, nous nous intéressons à la variante suivante du nombre de Frobenius de S : soit 2 r(S) le plus grand entier carré n'appartenant pas à S. Une borne supérieure de 2 r(S) pour les semigroupes numériques arithmétiques S est donnée. Cette dernière s'avère être la valeur exacte de 2 r(⟨s 1 , s 2 ⟩) sous certaines conditions. Nous donnons une formule exacte pour 2 r(⟨s 1 , s 1 + d⟩) lorsque d = 3, 4 and 5. Nous étudions 2 r(⟨s 1 , s 1 + 1⟩) et 2 r(⟨s 1 , s 1 + 2⟩) et mettons en avant deux conjectures. Il s'agit d'un travail en commun avec Jorge Luis Ramírez Alfonsín dont un manuscrit [C17] contenant ces résultats a été soumis à publication.

Dans le Chapitre 7, des problèmes de type tours de Hanoï sont présentés. Le problème de la tour de Hanoï a été introduit par Edouard Lucas en 1883 [START_REF] Lucas | Récréations Mathématiques[END_REF] dans le cas de 3 piquets et n disques de différentes tailles. Initialement, n disques sont placés sur un des 3 piquets avec le plus grand disque tout en bas. Alors, à chaque mouvement un des disque situé au dessus est déplacé sur un autre piquet contenant un disque plus grand sur le dessus ou sur un piquet vide. Le but de ce problème est de transférer tous les disques d'un piquet initial au piquet final avec un nombre minimal de mouvements. Un argument simple et récursif montre que 2 n -1 mouvements sont nécessaires et suffisant pour mener à bien cette tâche. Ce problème de la tour de Hanoï a été étendu au cas de 4 piquets par Dudeney en 1907 [START_REF] Ernest | The Reve's puzzle, the Canterbury puzzles and other curious problems[END_REF] et pour k ⩾ 3 piquets par Stewart en 1939 [START_REF] Stewart | Advanced problem 3918[END_REF]. En 1941, Frame [START_REF] Frame | Solution to advanced problem 3918[END_REF] et Stewart [START_REF] Stewart | Solution to advanced problem 3918[END_REF] ont proposé de manière indépendante des algorithmes qui résolvent avec les mêmes nombres de mouvements ce problème de la tour de Hanoï à k piquets avec k ⩾ 4 piquets. Ces nombres sont alors appelés les nombres de Frame-Stewart. Il est connu que ces nombres sont optimaux pour le problème à 4 piquets [START_REF] Bousch | La quatrième tour de Hanoï[END_REF] et ils sont supposés optimaux pour k > 4 piquets. Les nombres de Frame-Stewart sont définis par la formule de récursive suivante :

S k (n) = min 1⩽t⩽n 2 • S k (n -t) + S k-1 (t) , S 3 (n) = 2 n -1.
Dans la première partie du Chapitre 7, nous considérons la généralisation suivante de cette formule de récursive

G k (n) = min 1⩽t⩽n p k • G k (n -t) + q k • G k-1 (t) , G 3 (n) = p 3 • G 3 (n -1) + q 3 ,
pour deux suites quelconques d'entiers positifs (p i ) i⩾3 et (q i ) i⩾3 et nous obtenons que la suite des différences (G k (n) -G k (n -1)) n⩾1 est constituée des nombres de la forme ( k i=3 q i )•( k i=3 p i α i ), où α i ⩾ 0 pour tout i, ordonnée par ordre croissant. Nous appliquons également ce résultat afin d'analyser les relations de récurrence apparaissant dans les problèmes de tours de Hanoï sur certaines familles de graphes. Ce travail a été réalisé en collaboration avec Akihiro Matsuura et a été publié dans [C14].

Dans la dernière partie du Chapitre 7, on étudie des résultats obtenus sur un jeu combinatoire à deux joueurs basé sur les tours de Hanoï. Tout d'abord, il est bien connu que pour le problème à 3 piquets, le nombre minimal de mouvements afin de transférer une tour de n disques est 2 n -1. Mais il y a également d'autres variations de ce jeu, ajoutant par exemple des poids réels sur le mouvement des disques. Cela donne lieu à un type de problème similaire, mais où le score final cherche à être optimisé. Nous étudions les extensions du jeu à un joueur à deux joueurs, en considérant des conditions de victoire classiques dans la théorie des jeux combinatoires telles que le joueur qui se déplace en dernier gagne ou bien celui qui obtient le score le plus élevé gagne. Ici, nous résolvons le problème à 3 piquets pour ces deux conditions de victoire. Il s'agit d'un travail en commun avec Urban Larsson et Akihiro Matsuura qui a été publié dans [C11].

La théorie de Ramsey tente typiquement de répondre à des questions de la forme : combien d'éléments d'une certaine structure doivent être considérés pour qu'une propriété particulière se vérifie ? Dans la première partie du Chapitre 8, nous nous intéressons à un problème de théorie de Ramsey sur les nombres. Pour tous entiers positifs l et m, un ensemble d'entiers est dit être (faiblement) libre de l-somme modulo m s'il ne contient pas d'éléments x 1 , x 2 , . . . , x l , y (deux à deux distincts) satisfaisant la congruence x 1 + . . . + x l ≡ y mod m. Il est connu que, pour tous entiers k et l, il existe un plus grand entier n pour lequel l'ensemble des n premiers entiers positifs {1, 2, . . . , n} admette une partition en k parties qui sont (faiblement) libre de l-somme modulo m. Ce nombre est appelé le nombre de Schur généralisé (faible) modulo m, associé à k et l. Il s'agit d'une version modulaire du nombre de Schur (faible) classique dont on ne connait que très peu de valeurs exactes. Il est facile de voir que les nombres de Schur modulaires constituent une borne inférieure des nombres de Schur classiques. Ici, pour tous entiers positifs k et l, les valeurs exactes de ces nombres de Schur modulaires sont déterminées pour les moduli m = 1, 2 and 3. Ce travail a été réalisé en collaboration avec María Pastora Revuelta Marchena et María Isabel Sanz Domínguez et a été publié dans [C18].

Dans la dernière partie du Chapitre 8, plusieurs résultats de la théorie de Ramsey sur les graphes sont présentés. Pour tous graphes simples G et H, soit R(G, H) le plus petit entier N tel que pour toute 2-coloration (disons rouge et bleu) des arêtes du graphe complet K n , où n ⩾ N , il y a soit une copie rouge de G, soit une copie bleue de H. Il est bien connu, par le théorème de Ramsey, que R(G, H) est toujours fini, pour tous graphes G et H. Après l'obtention de différentes formules récursives, nous obtenons de nouvelles valeurs exactes ou de nouvelles bornes de nombres de Ramsey pour différentes familles 
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 1 Figure 1.1: A binary Steinhaus triangle of size 7
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 1 Figure 1.3: A binary generalized Pascal triangle inside a Steinhaus triangle

  , 010, 100 and 001 for n = 3, • 0110, 1001, 1110 and 0111 for n = 4, 1.1. PRELIMINARY RESULTS ON BINARY TRIANGLES • 01110, 01011, 11010, 11101, 10111, 01001 and 10010 for n = 5,

  Figure 1.1 and Figure 1.2 are balanced binary triangles of size 7. Since a binary triangle of size n is constituted by n+1 2 elements of Z/2Z, it is clear that there exists a balanced binary triangle of size n only if the binomial coefficient n+1 2 is even. Moreover, n + 1 2 ≡ 0 (mod 2) ⇐⇒ n ≡ 0 or 3 (mod 4). Therefore, it is natural to consider the Steinhaus Problem. When n is a positive integer such that n ≡ 1 or 2 mod 4, i.e., when n+1 2 is an odd number, we can consider the similar problem of determining if there exist almost-balanced Steinhaus triangles of size n. Definition 1.1.29 (Almost-balanced multiset). A finite multiset M of elements of Z/2Z is said to be almost-balanced if |m M (0)m M (1)| ⩽ 1. Proposition 1.1.30. Let M be a finite multiset of elements of Z/2Z that is almostbalanced. Then, the multiset M is balanced if and only if |M | is even. CHAPTER 1. BALANCED BINARY TRIANGLES Corollary 1.1.31. Let T be an almost-balanced binary triangle of size n. If n ≡ 0 or 3 mod 4, then m T (0) = m T (1) and T is (perfectly) balanced. Otherwise, if n ≡ 1 or 2 mod 4, then m T (0) = m T (1) ± 1. The Steinhaus Problem can then be generalized in two directions: for binary generalized Pascal triangles and when the number of elements constituting a triangle is odd. Problem 1.1.32 (Chappelon [C7]). Does there exist, for any positive integer n, an almost-balanced binary Steinhaus triangle and an almost-balanced binary generalized Pascal triangle of size n?

CHAPTER 1 .

 1 BALANCED BINARY TRIANGLES An example of orbit O S associated with the sequence S = . . . . . . 0010101100001100001001110 . . . . . . is depicted in Figure 1.7.
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 17 Figure 1.7: Binary triangles appearing in an orbit O S Binary triangles can then been considered as appearing in orbits of binary sequences. Example of triangles appearing in an orbit O S is represented in Figure 1.7. Notation 1.3.4.
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 1 Figure 1.10: Action of D 3 on ∇(0100)
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 22 Figure 2.2: Triangles of HST (6), RST (6) and DST (6).

  and left side indices, G l = {(1, 1), (2, 2), . . . , (n, n)} , of a Steinhaus triangle ∇ of size n can be seen as the sets of top row indices of the Steinhaus triangles r (∇) and r 2 (∇), respectively, it follows that G r and G l are generating index
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 23 Figure 2.3: Generating index sets of ST (3) sets of ST (n) too. Therefore, each element of a Steinhaus triangle can be expressed in function of the terms of its first row, of its right side or of its left side. For any non-negative integers a and b such that b ⩽ a, the binomial coefficient a b is the coefficient of the monomial X b in the polynomial expansion of the binomial power (1+X) a . It corresponds to the number of ways to choose b elements in a set of a elements. Here, we extend this notation by supposing that a b = 0, for all integers b such that b < 0 or b > a. For this generalization, the Pascal identity a b = a -1 b -1 + a -1 b holds, for all positive integers a and all integers b.

  = (0001010) appears in yellow in Figure 2.6. Since we retrieve the local rule (LR) in the infinite Pascal matrix modulo 2, it is straightforward to obtain the following Proposition 2.3.15. Let k and l be two integers and let n be a positive integer. Then,
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 27 Figure 2.7: The 16 triangles of RST (10) where the 4 red triangles form a basis
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 28 Figure 2.8: The 16 triangles of HST (7) where the 4 red triangles form a basis
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 2 Figure 2.11: Action of D 3 on ∆ ((11100), (11001))

  we obtain the following basis γρ ∇S (13) k,0 k ∈ {0, 1, 2, 3, 4} of RPT (7), where k S ) ∇(0111111111110) ∆ 0 = ∆ ((1000001), (1000001)) 1 (0101010101010) ∇(0001010101000) ∆ 1 = ∆ ((0100010), (0100010)) 2 (0011001100110) ∇(0101001100010) ∆ 2 = ∆ ((1110101), (1010111)) 3 (0001000100010) ∇(0100000101010) ∆ 3 = ∆ ((0000010), (0100000)) 4 (0000111100001) ∇(1111011110001) ∆ 4 = ∆ ((1011001), (1001101)) All the rotationnaly symmetric generalized Pascal triangles of size 7 are depicted in Figure 2.13

  ) ∆ 1 = ∆ ((0001), (0001)) 2 (0100010) ∆ 2 = ∆ ((0011), (0011)) 3 (1010101) ∆ 3 = ∆ ((0100), (0100))

  k ∈ {0, 1, 2} of DPT (11), where ∆ 0 = γ (U 21 ) = ∆ ((10000000001), (10000000001)) and k S ) ∇(000101010101010101000) ∆ 1 = ∆ ((01000000010), (01000000010)) 1 (100010001000100010001) ∇(011110001000100011110) ∆ 2 = ∆ ((00110001100), (00110001100)) 2 (000001010000010100000) ∇(000000010000010000000) ∆ 3 = ∆ ((00010001000), (00010001000)) All the dihedrally symmetric generalized Pascal triangles of size 11 are depicted in Figure 2.15, where the elements of the basis {∆ 0 , ∆ 1 , ∆ 2 , ∆ 3 } are in red and, for every ∆ ∈ DPT (11), the coordinate vector

Figure 2 .

 2 Figure 2.15: The 16 triangles of DPT (11) where the 4 red triangles form a basis

Figure 3

 3 Figure 3.1: The Steinhaus graph G(0010100) and its adjacency matrix M(0010100)

Figure 3

 3 Figure 3.2: Even and odd Steinhaus graphs

  Figure 3.3: A doubly-symmetric Steinhaus matrix of size 8

Figure 3

 3 Figure 3.4: G(1001000) and H(G(1001000)) = G(0110)

  3.3.1 Isomorphism between ESG(n) and DST 0 (2n -1) Definition 3.3.1 (Interlacing sequence). For any binary sequence S = (a j ) 1⩽j⩽n of length n, we denote by ir(S) the interlacing of the sequence S and its reversed sequence, that is, the sequence ir(S) = (b j ) 1⩽j⩽2n of length 2n defined by b 2j-1 = a j and b 2j = a n-j+1 , for all j ∈ {1, . . . , n}.

Figure 3

 3 Figure 3.5: The Steinhaus triangle θ(G(101000)) where ∇(101000) appears in red

  ) ∇(01101010101010101010110) G 1 = G(11111111110) 1 (01000100010001000100010) ∇(00010100010001000101000) G 2 = G(01101010110) 2 (10000010100000101000001) ∇(01111110100000101111110) G 3 = G(10011001000)

Figure 3 . 6 :

 36 Figure 3.6: The 8 graphs of ESG(12) where the 3 red graphs form a basis

Figure 3 . 7 :

 37 Figure 3.7: The 8 graphs of OSG(12)

  Theorem 3.4.6. Let G be a regular Steinhaus graph of odd degree n on 2n ⩾ 4 vertices. Then G \ {V 1 , V 2n } is a regular Steinhaus graph of even degree n -1 whose associated Steinhaus matrix is multi-symmetric. Remark 3.4.7. By Theorem 3.4.6, it is easy to show that Conjecture 3.1.3 implies Conjecture 3.1.4. Indeed, if Conjecture 3.1.3 is true, then the zero-edge graph on n vertices is the only regular Steinhaus graph of even degree whose Steinhaus matrix is multi-symmetric. It follows, by Theorem 3.4.6, that if G(s) is a regular Steinhaus graph of odd degree on n + 2 vertices then s = (0 • • • 01) or s = (1 • • • 1). Therefore the Steinhaus graph G(s) is the star graph on n + 2 vertices which is not a regular Steinhaus graph.

  In this chapter, we are interested in a generalization of the Steinhaus Problem for triangles of elements of Z/mZ built with the same local rule as the standard Pascal triangle modulo a positive integer m.

  Definition 4.1.1 (Steinhaus triangle modulo m). A Steinhaus triangle modulo m of size n ⩾ 1 is a down-pointing triangle (a i,j ) 1⩽i⩽j⩽n of elements of Z/mZ satisfying the same local rule as the standard Pascal triangle modulo m, that is,

  Notation 4.1.3. Let ∇S denote the Steinhaus triangle whose first row is the sequence S of Z/mZ and let ∆ (L, R) denote the generalized Pascal triangle whose left and right sides are the sequences L and R of Z/mZ, respectively. Note that the first terms of L and R must correspond. Notation 4.1.4. For any positive integer m and any non-negative integer n, the sets of Steinhaus triangles and generalized Pascal triangles modulo m of size n are denoted by ST m (n) and PT m (n), respectively.

Figure 4 . 1 :

 41 Figure 4.1: Examples of triangles of Z/7Z of size 7

  Problem 4.1.8 (Weak Molluzzo's Problem). Let m be a positive integer. Do there exist infinitely many balanced Steinhaus triangles of Z/mZ? Problem 4.1.8 is thus solved for the odd numbers m. For the even values, the cases m = 2 and m = 4 come from the solutions of Problem 4.1.7 and a solution is known from[59] for m ∈ {6, 8, 10}. This problem is completely open for the even numbers m ⩾ 12.

  Proposition 4.2.6. For any non-negative integer n, the average number of x in a Steinhaus triangle or in a generalized Pascal triangle modulo m of size n is exactly 1 m n+1 2 , for all x ∈ Z/mZ. The Molluzzo Problem then corresponds to the determination of the existence of Steinhaus triangles modulo m with an average number of each element of Z/mZ, that are Steinhaus triangles ∇ with m ∇ (x) = m ∇ (y), for all x, y ∈ Z/mZ.

Figure 4

 4 Figure 4.2: The Steinhaus triangle ∇(153) of Z/10Z and its projection π 5 (∇(153)) in Z/5Z

  Proposition 4.3.2. Let a, d ∈ Z/mZ. Then, ∂AP(a, d, n) = AP(2a + d, 2d, n -1), for all positive integers n. Corollary 4.3.3. Let a, d ∈ Z/mZ. Then,

  Theorem 4.3.6 (Chappelon [C2]). Let m be an even number. Let a, d ∈ Z/mZ and let n be a positive integer. Then the Steinhaus triangle generated from X = AP(a, d, n) is balanced if, and only if, we have    m = 2 and X ∈ {010, 111, 0101, 1010} , or m = 6 and X ∈ {135, 234, 432, 531} .

  Theorem 4.3.8(Chappelon [C2]). Let m be an odd number and let a, d ∈ Z/mZ. If d is non-invertible, then the Steinhaus triangle ∇AP(a, d, n) is not balanced, for all positive integers n.

  Theorem 4.3.10 (Chappelon[C2]). Let m be an odd number. Let a, d ∈ Z/mZ, with d invertible. Then, the Steinhaus triangle ∇AP(a, d, n) is balanced, for all positive integers n ≡ 0 or -1 mod ord m (2 m ) m.

Figure 4 . 3 :

 43 Figure 4.3: The Steinhaus triangle ∇AP(1, 3, 20)

4. 3 .

 3 BALANCED STEINHAUS TRIANGLES FROM AP'S 81 Proposition 4.3.11. Let m > 1 be an odd number. Then ord m (2 m ) ⩾ 2.

  Definition 4.3.16. For every coprime integers m and a, we denote by pord m (a) the projective multiplicative order of a modulo m, i.e., the smallest positive integer e such that a e ≡ ±1 mod m, namely pord m (a) = min {e ∈ N * | a e ≡ ±1 mod m} . Note that we have the alternative ord m (a) = pord m (a) or ord m (a) = 2pord m (a). Moreover, ord m (a) = 2pord m (a) if and only if there exists a power e of a such that a e ≡ -1 mod m.

CHAPTER 4 .

 4 BALANCED TRIANGLES MODULO MWe now improve Theorem 4.3.10 by considering the antisymmetric arithmetic progressions with invertible common difference. There are exactly φ(m) such sequences, for every length, by Proposition 4.3.15.

  and B(m) = {n ∈ N | ∃ a balanced sequence in Z/mZ of length n} , then clearly B(m) ⊂ N (m). Moreover, the Molluzzo Problem can be reformulated as the question whether B(m) = N (m) for all m > 1.

4. 4

 4 . A UNIVERSAL SEQUENCE GENERATING BALANCED TRIANGLES 83 4.4 A universal integer sequence generating balanced triangles modulo m odd 4.4.1 Orbits and triangles modulo m In this section, we are also interested in the Molluzzo Problem and its weak version for odd values of m, for Steinhaus triangles and for generalized Pascal triangles modulo m.

Figure 4 . 4 :

 44 Figure 4.4: Examples of triangles in Z/5Z: ∇(24311), ∆ (03240, 02344), ∇(1330), ∇(1141) and ∆ (0444, 0031)

  Proposition 4.4.7 (Chappelon [C5]). Let m and n be two positive integers and let a, d 1 , d 2 ∈ Z/mZ. If the doubly arithmetic triangle DAT(a, d 1 , d 2 , n) is balanced, then its common differences d 1 , d 2 and d 1d 2 are invertible in Z/mZ. Remark 4.4.8. For m even, there is no balanced DAT in Z/mZ since at least one element of {d 1 , d 2 , d 1d 2 } is not invertible in Z/mZ, by the parity of m.

Figure 4 . 5 :

 45 Figure 4.5: The doubly arithmetic triangle DAT(0, 8, 1, 5) in Z/15Z

  Theorem 4.4.10 (Chappelon[C5]). Let m be an odd number and let d 1 , d 2 ∈ Z/mZ be invertible such that d 1d 2 is also invertible. Then, the doubly arithmetic triangle DAT(a, d 1 , d 2 , n) is balanced in Z/mZ for all n ≡ 0 or -1 mod m. Remark 4.4.11. For m odd and for every d ∈ Z/mZ invertible, the doubly arithmetic triangles DAT(a, d, -d, n), DAT(a, d, 2d, n) and DAT(a, 2d, d, n) are balanced in Z/mZ, for all n ≡ 0 or -1 mod m.

Figure 4 . 6 :

 46 Figure 4.6: Balanced triangles in the orbit of IAP((0, 1, 2), (1, 1, 1)) in Z/3Z.

Proposition 4.4. 25 (

 25 Chappelon [C5]). Let m be an odd number and let a, d ∈ Z/mZ with d invertible. Consider the 3-interlaced arithmetic progression S = IAP((a, -d, da)(d, -2d, d)). Then, the triangles∇ 0 = ∇S[0, 3m -1] and ∆ 0 = γ(∇∂S[1, 6m -3]) are balanced in Z/mZ.Finally, we obtain the refinement of Theorem 4.4.20 announced above. Theorem 4.4.26 (Chappelon [C5]). Let m be an odd number and let a, d ∈ Z/mZ with d invertible. Then, the following triangles, contained in the orbit of S = IAP((a, -d, da), (d, -2d, d)), are balanced: i) the Steinhaus triangles ∇S[0, 3λm -1] of size 3λm, and ∇∂S[0, 3λm -2] of size 3λm -1, for every positive integer λ, ii) the generalized Pascal triangles γ(∇∂S[-n, n -2]) of size n, for every positive integer n ≡ 0 or -1 mod 3m.

Proposition 4.4. 27 (

 27 Chappelon [C5]). Let m be an odd number and let d ∈ Z/mZ be invertible. Consider the orbit O S = (a i,j ) (i,j)∈N×Z of S = IAP((0, -d, d), (d, -2d, d)) in Z/mZ. Then, we have

CHAPTER 4 .

 4 BALANCED TRIANGLES MODULO M Proposition 4.4.28 (Chappelon [C5]). Let m be an odd number and let d ∈ Z/mZ be invertible. Consider the universal sequence S = IAP((0, -d, d), (d, -2d, d)) modulo m and the elementary triangles

Theorem 4.4. 29 (

 29 Chappelon [C5]). Let m be an odd number and let d ∈ Z/mZ be invertible. Then, the following triangles, contained in the orbit associated with the universal sequence S = IAP((0, -d, d), (d, -2d, d)) in Z/mZ, are balanced: i) the Steinhaus triangles ∇S[n, 2n -1], for every n ≡ 0 mod m, and ∇∂S[0, n -1],for every n ≡ -1 mod 3m,ii) the generalized Pascal triangle γ(∇∂S[-n, n -2]), for every n ≡ -1 mod m or n ≡ 0 mod 3m.

  Theorem 4.5.2 (Chappelon-Eliahou [C9]). There exists a balanced Steinhaus triangle of size n in Z/4Z if and only if n+1 2 ≡ 0 mod 4. More precisely, consider the following 4.5. THE MOLLUZZO PROBLEM MODULO M EVEN 93 infinite pseudo-periodic sequences in Z/4Z:

Figure 5 . 1 :

 51 Figure5.1: Example of triangles △((2, 2), ++, 5), △((2, 13), +-, 5), △((13, 2), -+, 5) and △((13, 13), --, 5) appearing in an orbit O A = (a i,j ) (i,j)∈Z×N of Z/5Z generated by the ACA of weight W = (2, 1, 1)

Figure 5 . 4 :

 54 Figure 5.4: Common differences of an arithmetic triangle

Figure 5 . 5 :

 55 Figure 5.5: Common differences of an arithmetic tetrahedron

d 1

 1 Figure 5.6: Non-adjacent common differences of AS(a, (d 1 , d 2 , d 3 ), s)

Proof.

  Theorem 5.3.2 for n = 3. Theorem 5.3.9 (Chappelon [C6]). Let m be an even number not divisible by 3 and let a, d 1 , d 2 , d 3 ∈ Z/mZ such that gcd(d 1 , m) = gcd(d 3d 2 , m) = 2 and d 2 , d 3 , d 2d 1 and d 1d 3 are invertible. Then, the arithmetic tetrahedron AS(a, (d 1 , d 2 , d 3 ), s) is balanced for all s ≡ 0 or -2 mod m.

Figure 5

 5 Figure 5.7: An (1, 2)-antisymmetric tetrahedron in Z/7Z

  6.1.1 Numerical semigroups Definition 6.1.1 (Semigroup). A semigroup is a set S with an internal binary operation . : S × S → S that is associative, i.e., a.(b.c) = (a.b).c, for all a, b, c ∈ S. Definition 6.1.2 (Numerical semigroup). A numerical semigroup is a subsemigroup S of N such that 0 ∈ S and N \ S is finite.

  Notation 6.2.14. Let B = (b 1 , b 2 , . . . , b k ) be a k-tuple of nonzero vectors in Z m such that the semigroup T := ⟨b 1 , . . . , b k ⟩ is pointed and let b ∈ Z m . We denote by d B (b) the number of non-negative integer representations of b by b 1 , . . . , b k , that is, the number of solutions of b = k i=1 x i b i , where x i is a nonnegative integer for all i. Remark 6.2.15. Since T is pointed, we know that d B (b) is finite, for all b ∈ Z m . Moreover, d B (0) = 1. Proposition 6.2.16 (Theorem 5.8.15 [81]). Let B = (b 1 , b 2 , . . . , b k ) be a k-tuple of nonzero vectors in Z m such that the semigroup T := ⟨b 1 , . . . , b k ⟩ is pointed. The generating function of d B (b) is given by

  b∈Z

  (CGMR [C10]). Let S be a complete intersection pointed semigroup and assume that I S is generated by n-d S-homogeneous polynomials of S-degrees b 1 , . . . , b n-d ∈ Z m . Then, µ S (x) = A⊂{1,...,n} (-1) |A| d B x -i∈A b i , for all x ∈ Z m , where B = {b 1 , . . . , b n-d }.

  Proposition 6.3.9. If d ⩾ 3 then n ⩾ 2 and 1 ⩽ α 1 < d 2 < α n ⩽ d -1. Definition 6.3.10. Let us now consider the integer function h(a, d, k) defined as h(a, d, k) := (a -((µk)d + α j+1 )) 2 .

  d

2r

  (⟨a, a + 1⟩) = (ab) 2 .

23 Figure 7

 237 Figure 7.4: A graph representation of Tower of Hanoi, with weighted move edges, for n = 1

Figure 7

 7 Figure 7.5: A play of two-player TH for n = 1, (EC1)

Figure 7

 7 Figure 7.6: A graph representation of one-player TH for n = 2

Figure 7

 7 Figure7.8: Consider (EC1) for n = 2. Here w 23 = -3 and the other weights represent the x-and y-axes. The game is drawn in the white area. Compare this picture with the result for n ⩾ 3 in Theorem 7.2.6, where the class of drawn games would have been represented by a single white dot at (-3, -3).

8. 1 .

 1 MODULAR SCHUR NUMBERS 153 Theorem 8.1.6 (CRS[C18]). Let k and l be two positive integers. Then, S 2 (k, l) = 0 for l odd, 1 for l even.Theorem 8.1.7 (CRS[C18]). Let k and l be two positive integers. Then,S 3 (k, l) =   0 for k ⩾ 1 and l ≡ 1 mod 3, 1 for k = 1 and l ≡ 0, 2 mod 3, 2 for k ⩾ 2 and l ≡ 0, 2 mod 3.

Figure 8

 8 Figure 8.1: (a) K [5,3] and (b) K [4,2]
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  CHAPTER 9. KNESER TRANSVERSALS Definition 9.1.2 (Kneser transversal). Let k, d, λ be integers with k, d ⩾ λ ⩾ 1 and let X ⊂ R d be a finite set. We call L a Kneser transversal of X if it is a (dλ)-plane transversal to the convex hulls of all k-sets of X. If in addition L contains (dλ) + 1 points of X, then L is a complete Kneser (dλ)-transversal.Definition 9.1.3 (Function m * ). Let k, d, λ be integers with k, d ⩾ λ ⩾ 1. Let m * (k, d, λ) be the maximum positive integer n such that every set of n points (not necessarily in general position) in R d has a complete Kneser (dλ)-transversal to the convex hulls of its k-sets.

  Proposition 9.1.6 (CMMMR [C12]). Let S and T be two disjoint and non-empty sets of points in R d such that |S| + |T | = d + 2 and S ∪ T is in general position. Then Conv(S) ∩ aff(T ) ̸ = ∅ if and only if all the points of S are in the same set in the Radon partition of S ∪ T .

  Lemma 9.1.8 (CMMMR[C12]). Let X be any set of d + 2 distinct points in R d and let d+2 2 ⩽ t ⩽ d + 1. Then X can be partitioned into two disjoint sets S and T such that |T | = t and Conv(S) ∩ aff(T ) ̸ = ∅.

Proof.

  Clearly dλ + k ⩽ m * (k, d, λ) since every (dλ + 1)-set intersects all the k-sets for any set of dλ + k points in R d . Let S be the cyclic polytope with dλ + 1 + k points in R d . Let T ⊆ S be any set with dλ + 1 points, K a subset of S \ T with k points and K ′ a subset of K with λ + 1 points. By (9.2) the Radon partition of T ∪ K ′ can have at most d+2 2 elements with the same sign. Since by hypothesis |K ′ | = λ + 1 > d+2 2 , then K ′ has at least two elements with different signs and hence by Proposition 9.1.6 we have Conv(K ′ ) ∩ aff(T ) = ∅. Therefore Conv(K) ∩ aff(T ) = ∅ by Proposition 9.1.5. Definition 9.1.14. Let k, d, λ be integers with k, d ⩾ λ ⩾ 1. Let us define β(λ, j) = j+λ-1 2

Figure 9 . 5 :

 95 Figure 9.5: 8 points in R 3 with a complete transversal line to all 4-sets

Figure C2 :

 C2 Figure C2: Triangles of RSC (Z/6Z,⋆) (8) and DSC (Z/6Z,⋆) (8)

1⩽t⩽n 2 •

 2 S k (nt) + S k-1 (t) , for n ⩾ 1, k ⩾ 4, S 3 (n) = 2 n -1, for n ⩾ 1,and S k (0) = 0, for k ⩾ 3.

  [C3].Au Chapitre 4, la structure de trianglesde Steinhaus binaires est étendue au cas des triangles de nombres modulo un entier positif m construits avec la même règle locale que le triangle de Pascal classique modulo m. Un triangle de Steinhaus modulo m est dit équilibré s'il contient tous les éléments de Z/mZ avec la même multiplicité. En 1976, John C. Molluzzo demanda s'il existe un triangle de Steinhaus équilibré de taille n modulo m, pour tous entiers positifs m et n tels que n+1 2 soit divisible par m. Pour m = 2, cela correspond au problème de Steinhaus introduit au Chapitre 1. Le problème de Molluzzo constitue le sujet principal du Chapitre 4. Jusqu'à ma thèse de doctorat, ce problème était résolu positivement uniquement pour m = 3 et 5 dans

  de graphes : en particulier pour les graphes complets privés d'un arête ou d'un triangle et pour les graphes complets privés d'une étoile. Il s'agit d'un travail en commun avec Luis Pedro Montejano and Jorge Luis Ramírez Alfonsín. Ces résultats ont été publié dans [C15, C19]. Le dernier chapitre de ce mémoire concerne les transversaux de Kneser. Pour tous entiers positifs k, d, λ avec d, k ⩾ λ, soit m(k, d, λ) le plus grand entier n tel que tout ensemble de n points (non-nécessairement en position générale) dans R d a la propriété que les enveloppes convexes des sous-ensembles à k éléments admettent un (dλ)-plan transversal commun. Les inégalités suivantes ont été obtenues dans [23]dλ + k + k λ -1 ⩽ m(k, d, λ) < d + 2(kλ) + 1.Il s'avère que m(k, d, λ) est fortement connecté avec d'autres problèmes intéressants, par exemple, le nombre chromatique des hypergraphes de Kneser et une version discrète du théorème du point central de Rado. Dans le Chapitre 9, nous introduisons de manière naturelle une version discrète m * de m en considérant l'existence de transversaux complets de Kneser. Un transversal complet de Kneser d'un sous-ensemble fini X de R d est un (dλ)-plan qui est transversal aux enveloppes convexes des k-sous-ensembles de X et qui contient (dλ) + 1 points de X. Nous étudions la relation entre m * et m et donnons quelques bornes inférieures et supérieures de m * ainsi que certaines valeurs exactes dans certains cas. L'ingrédient principal des preuves est aussi bien le théorème de partition de Randon que des outils de la théorie des matroïdes orientés. En étudiant le matroïde orienté alterné, nous obtenons le comportement asymptotique de la fonction m * pour la famille des polytopes cycliques. Ce travail a été réalisé en collaboration avec Leonardo Martínez-Sandoval, Luis Montejano, Luis Pedro Montejano and Jorge Luis Ramírez Alfonsín et a été publié dans [C12].Dans la dernière partie du Chapitre 9, nous nous concentrons sur l'existence de transversaux de Kneser (complets) pour λ = 2, 3. Dans ce but, nous introduisons les notions de stabilité et instabilité pour les transversaux de Kneser (complets). Tout d'abord, nous donnons un résultat de stabilité pour les collections de d + 2(kλ) points dans R d avec kλ ⩾ 2 et λ = 2, 3. Nous présentons alors une description des transversaux de Kneser L des collections de d + 2(kλ) points dans R d avec kλ ⩾ 2 pour λ = 2, 3. Nous montrons que soit L est un transversal de Kneser complet, soit il contient d -2(λ -1) points et les 2(k -1) points restants de X sont mis en correspondance dans k -1 paires de telle sorte que L intersecte les segments fermés correspondants déterminés par eux. Cela conduit à de nouvelles bornes supérieures et inférieures (dans le cas où λ = 2 et 3) pour m(k, d, λ). Finalement, en utilisant la théorie des matroïdes orientés, nous présentons des résultats calculatoires étroitement liés aux notions de stabilité et d'instabilité. Nous déterminons l'existence des transversaux de Kneser (complets) pour chacun des 246 types d'ordre différents de configurations de 7 points dans R 3 . Il s'agit également d'un travail en commun
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where f 0 (t) and f 3 (t) are the following polynomials: f

  80 + 8t 84 + 6t 88 , f 3 (t) = 4t 3 + 8t 7 + 16t 11 + 26t 15 + 36t 19 + 48t 23 + 48t 27 + 66t 31 + 88t 35 + 108t 39 +114t 43 + 90t 47 + 88t 51 + 104t 55 + 92t 59 + 60t 63 + 48t 67 + 28t 71 + 26t 75 +26t 79 + 20t 83 + 16t 87 + 18t 91 + 14t 95 + 14t 99 + 14t 103 + 14t 107 + 16t 111 +14t 115 + 14t 119 + 16t 123 .

Table 1 .

 1 

1: Sequences generating strongly balanced Steinhaus triangles

Theorem 1.2.8 (Eliahou-Hachez

[START_REF] Eliahou | On a problem of Steinhaus concerning binary sequences[END_REF]

). Let n be a non-negative integer. i) If n ≡ 0 mod 4, then the Steinhaus triangles ∇(Q i [n]) are strongly balanced, for all i ∈ {1, 2, 3, 4}. Conversely, every strongly balanced Steinhaus triangle of size n with n ≡ 0 mod 4 and n ⩾ 92 is one of the triangles ∇(Q i [n]), where i ∈ {1, 2, 3, 4}. ii) If n ≡ 3 mod 4, then the Steinhaus triangles ∇(R i [n]) are strongly balanced, for all i ∈ {1, . . . , 12}. Moreover, if n ⩾ 127, then every strongly balanced Steinhaus triangle of size n is one of the triangles ∇(R i [n]), where i ∈ {1, . . . , 12}, with the following exceptions: • if n ≡ 3 mod 12, there are two more strongly balanced Steinhaus triangles of size n, namely ∇(R 5 [n -4]. (0101)) and ∇(R 8 [n -4]. (0100)). • if n ≡ 7 mod 12, there are two more strongly balanced Steinhaus triangles of size n, namely ∇(R 8 [n -8]. (01001000)), and either ∇(R 5 [n -8]. (01011111)) if n ≡ 7 mod 24, or ∇(R 5 [n -8]. (01011010)) if n ≡ 19 mod 24.

Table 1

 1 Table 1.2 gives dim ker(W p ) and |PO p | = 2 dim ker(Wp) for the first few values of p.For example, for p = 6, we have dim ker(W 6 ) = 4 and |PO 6 | = 2 4 = 16. There are then 16 different 6-tuples that generate a 6-periodic orbit. More precisely, the set PO 6 is given by

	p	1	2	3	4	5	6	7	8	9 10 11 12
	dim ker(W p ) 0	0	2	0	0	4	6	0	2	0	0	8
	p	13 14 15 16 17 18 19 20 21 22 23 24
	dim ker(W p ) 0 12 14 0	0	4	0	0	8	0	0 16
	PO 6 = ⟨000101, 001010, 010001, 100010⟩						

.2: The first few values of dim ker(W p ) = {000000, 000101, 001010, 001111, 010001, 010100, 011011, 011110, 100010, 100111, 101000, 101101, 110011, 110110, 111001, 111100} .

  Now, we consider the binary relation ∼ G on the set PO p defined by X 1 ∼ G X 2 if and only if there exists g ∈ G such that X 2 = g(X 1 ). Since G is a subgroup of (Aut(PO p ), •), it is clear that ∼ G is an equivalence relation on PO p . Therefore, to search almost-balanced triangles, it is sufficient to examine only one representative of each equivalence classe in the set PO p := PO p / ∼ G . In the sequel, the equivalence class of the tuple X is denoted by X and the lexicographically smallest tuple X is used as the representative of each equivalence class X.For example, for p = 6, PO 6 consists of 3 equivalence classes that contain the 16 tuples of PO 6 generating 6-periodic orbits. More precisely,
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	Equivalence classes of PO p
	PO 6 = {{000000} , {000101, 001010, 001111, 010001, 010100, 011110, 100010, 100111, 101000, 110011, 111001, 111100} , {011011, 101101, 110110}} = 000000, 000101, 011011
	|G| = 6p 2 .	1, . . . , p -1}, α ∈ {0, 1, 2} and β ∈ {0, 1}. Therefore G is a group of order

Table 1

 1 

	.3 gives PO p for the first few values of p.					
	p	1	2	3	4	5	6	7	8	9 10 11 12
	|PO p |	1	1	2 2 1	1 2 4 2 6 1 2 2 1	1 2 8
	PO p	1	1	2	1	1	3	3	1	2	1	1	7
	p	13 14 15 16 17 18 19 20 21 22 23 24
	|PO p |	1 2 12 2 14 1	1 2 4 1	1 2 8 1	1 2 16
	PO p	1 13 30 1	1	3	1	1	6	1	1 92
			Table 1.3: The first few values of PO p			

  Table 1.4 gives BPO p for the first few values of p divisible by 4.

	p	4 8 12 16 20	24
	|PO p |	1 1 256 1	1 65536
	PO p	1 1	7	1	1	92
	BPO p	0 0	2	0	0	17
	Table 1.4: The first few values of BPO p
	More precisely, we obtain					
	BPO 12 = Y 1 , Y 2 = 000001110111, 000101000101
	and BPO 24 = X 1 , X 2 , . . . , X 17 , where the 17 representatives X i are given in Table 1.5. Note that X 16 = Y 2 1 and X 17 = Y 2 2 . Therefore the orbits O X ∞ 16 and O X ∞ 17 correspond to O Y ∞ 1 2 , respectively. A representation of the orbits generated from the elements and O Y ∞ of BPO 12 and BPO 24 can be found in Appendix A.

Table 1 .

 1 5: The representatives X i of BPO 24 = X 1 , X 2 , . . . , X 17From Table1.4, the first values of p, divisible by 4, for which BPO p ̸ = ∅ are 12 and 24. For p = 12, we find that R Y i = ∅ for each of the two equivalence classes BPO 12 = Y , Y 2 . For p = 24, we find that R X i ̸ = ∅ for the first 15 of the 17 equivalence classes of BPO 24 = X 1 , X 2 , . . . , X 17 . Note that the two equivalence classes X of BPO 24 such that R X = ∅ are exactly of the form X = Y 2 with Y ∈ BPO 12 (as already seen X 16 = Y 2 1 and X 17 = Y 2 2 ). More precisely, Table1.6 gives the exact number of remainders constituting R X for each X ∈ BPO 24 .
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Table 1

 1 

	.9.

  For all positive integers n, the sets of even Steinhaus graphs and of odd Steinhaus graphs of order n are denoted by ESG(n) and OSG(n), respectively. For all positive integers n, the set of parity-regular Steinhaus graphs of order n is denoted by PRSG

	3.2. PARITY-REGULAR STEINHAUS GRAPHS	61
	Notation 3.2.2.	

Definition 3.2.1 (Even and odd Steinhaus graphs). A Steinhaus graph is said to be even (resp. odd) if every vertex has even degree (resp. odd degree). A parity-regular Steinhaus graph is a Steinhaus graph that is even or odd.

Examples of even and odd Steinhaus graphs are given in Figure

3

.2.

  24 + 84t 32 + 88t40 + 86t 48 + 82t 56 + 60t 64 + 36t 72 + +34t 80 + 28t 88 + 16t 96 + 2t 104 1t 8 , G Q 2 (t) = 1 + 4t 8 + 14t 16 + 32t 24 + 36t 32 + 48t 40 + 44t 48 + 26t 56 + 22t 64 + 8t 72 + +6t 80 + 4t 88 + 2t 96 , G Q 3 (t) = 1 + 8t 8 + 28t 16 + 46t 24 + 78t 32 + 124t 40 + 118t 48 + 96t 56 + 78t 64 + 60t 72 + 28t 80 + 20t 88 + 14t 96 + 10t 104 + 4t 112 + 6t 120 + 4t 128 + 6t 136 + 4t 144 + 2t 152 + +2t 160 + 2t 168 + 2t 176 + 2t 184 + 2t 192 + 2t 200 + 4t 208 + 2t 216 1t 8 , G Q 4 (t) = 1 + 8t 8 + 26t 16 + 42t 24 + 66t 32 + 62t 40 + 52t 48 + 36t 56 + 26t 64 + 12t 72 + 6t

  G R 3 (t) = 10t 7 + 38t 15 + 70t23 + 88t 31 + 76t 39 + 54t 47 + 44t 55 + 28t 63 + 16t 71 + 8t 79 + +4t 87 + 4t 95 + 4t 103 + 4t 111 + 4t 119 + 6t 127 + 4t 135 + 6t 143 + 4t 151 1t 8 , G R 4 (t) = 10t 7 + 52t 15 + 102t 23 + 136t 31 + 152t 39 + 118t 47 + 108t 55 + 80t 63 + 60t 71 + +32t 79 + 20t 87 + 8t 95 + 2t 103 , G R 5 (t) = 10t 7 , G R 6 (t) = 10t 7 + 30t 15 + 66t 23 + 96t 31 + 96t 39 + 94t 47 + 66t 55 + 42t 63 + 24t 71 + 8t 79 + +2t 87 + 2t 95 , G R 7 (t) = 10t 7 + 60t 15 + 138t 23 + 204t 31 + 304t 39 + 266t 47 + 246t 55 + 148t 63 + 64t 71 + +36t 79 + 14t 87 + 10t 95 + 8t 103 , G R 8 (t) = 10t 7 , G R 9 (t) = 10t 7 + 42t 15 + 80t 23 + 130t 31 + 164t 39 + 174t 47 + 126t 55 + 68t 63 + 38t 71 + +20t 79 + 22t 87 + 12t 95 + 2t 103 + 2t 111 + 2t 119 + 2t 127 + 2t 135 + 2t 143 + 2t 151 + +2t 159 + 2t 167 + 2t 175 + 2t 183 + 2t 191 + 2t 199 + 4t 207 + 2t 215 1t 8 , G R 10 (t) = 10t 7 + 58t 15 + 98t 23 + 130t 31 + 160t 39 + 138t 47 + 132t 55 + 84t 63 + 64t 71 + +34t 79 + 14t 87 + 8t 95 + 6t 103 + 2t 111 + 2t 119 + 4t 127 + 2t 135 1t 8 , G R 11 (t) = 4t 7 + 16t 15 + 26t 23 + 32t 31 + 30t 39 + 30t 47 + 26t 55 + 12t 63 + 8t 71 + 2t 79 ,

	4.5. THE MOLLUZZO PROBLEM MODULO M EVEN	95
	G R 1 (t) = 0, G R 2 (t) = 0,	
	80 ,	

G R 12 (t) = 4t 7 .

  64 , G S 2 (t) = 1 + 22t 16 + 60t 32 + 56t 48 + 28t 64 + 6t 80 , G T 1 (t) = 14t 15 + 40t 31 + 40t 47 + 24t 63 + 8t 79 + 2t 95 + 2t 111 , G T 2 (t) = 30t 15 + 66t 31 + 76t 47 + 32t 63 + 12t 79 , G T 3 (t) = 14t 15 + 54t 31 + 42t 47 + 34t 63 + 12t 79 + 2t 95 , G T 4 (t) = 14t 15 + 54t 31 + 64t 47 + 40t 63 + 10t 79 + 2t
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 6 1 -continued from previous page

	H x 0 H H	H x 2 H H	0	1	2	3	4	5	6	7	8	9 10

  Notation 6.2.1. Let A = {a 1 , . . . , a n } be a subset of Z m . The subsemigroup of Z m generated by A is denoted by ⟨A⟩, i.e., Therefore, by Theorem 6.2.11, we obtainG N m (t) = (1t 1 ) • • • (1t m ) = |A| t i∈A e i . |A| if x = i∈Ae i for some A ⊂ {1, . . . , m}, Definition 6.2.13 (Complete intersection pointed semigroup). A pointed semigroup S = ⟨a 1 , . . . , a n ⟩ is called a complete intersection semigroup if its corresponding toric ideal I S is a complete intersection ideal, i.e., if I S is generated by nd S-homogeneous polynomials, where d is the dimension of the Q-vector space spanned by a 1 , . . . , a n .

	A⊂{1,...,m} (-1) |A| (-1) So we derive the following formula for µ N m : i∈A t i = A⊂{1,...,m}
	µ N m (x) =	  	(-1) 0	otherwise.

  then the interval [µd, (µ + 1)d[ can be refined into intervals of the form [µd + α i , µd + α i+1 [ for each i = 1, . . . , n -1. Therefore, there is a unique index j verifying equation (6.7).

Table 6

 6 

	.2.	
	d |E(d)| 3 0 4 0 5 5 6 0 7 10 8 5 9 5 10 14 11 14 12 9	E(d) ∅ ∅ {2, 4, 13, 27, 32} ∅ {2, 3, 4, 9, 16, 18, 19, 23, 30, 114} {5, 9, 21, 45, 77} {2, 4, 7, 8, 16} {3, 9, 13, 23, 27, 33, 43, 123, 133, 143, 153, 163, 333, 343} {2, 3, 4, 5, 7, 8, 9, 14, 16, 18, 25, 36, 38, 47} {13, 19, 25, 31, 67, 79, 139, 151, 235}
		Table 6.2: E(d) for the first values of d ⩾ 3

  , . . . . . .

	(A002965)
	This sequence appears in a number of other contexts. For instance, it corresponds to the denominators of Farey fraction approximations to √ 2, where the fractions are 1 1 , 2 1 , 3 2 , 4 3 , 7 5 , 10 7 , 17 12 , 24 17

  22 (Chappelon-Ramírez [C17]). Let S A = ⟨a, a + d, . . . , a + kd⟩ where a, d, k are positive integers with gcd(a, d) = 1. If ⌈ √ a⌉ ⩽ d ⩽ ak 1+2k then 2 r(S A ) ⩽ (ad) 2 .Problem 6.3.23. Let k ⩾ 2 be an integer and let S be a numerical semigroup. Investigate the computational complexity to determine k r(S) and/or k r(S).

  = 3 and γ = w 12 + w 23 -2w 13 , where 12 + w 13 > w 23 or (n = 3 and β 3 > 0), 15 if (w 12 + w 13 ⩽ w 23 and β 2 > 0) or (n = 4 and β 3 > 0), 2 n -1 if β 3 > 0, (Generalized Schur number). For every positive integer k, the generalized Schur number S(k, l) is the largest integer n for which the set of the first n positive integers {1, 2, . . . , n} admits a k-partition into l-sum-free sets.For l = 2, the numbers S(k, 2) = S(k) are known as Schur numbers. They have been introduced by Schur himself in 1916[START_REF] Schur | Über die Kongruenz x m + y m ≡ z m (mod p)[END_REF], in order to study a modular version of Fermat's Last Theorem. He proved that those numbers are always finite, for every positive integer k. The first few Schur numbers are given in Table8.1.
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	for (ii) n 8 ⩽ M 3 (3) ⩽ min 23+16 Definition 8.1.3 k 1 2 3	-w 13 2γ 4	31 + 16 , 27+16 31 + 16	-β 2 2γ 2(w 13 + w 23 ) -3w 12 , 2γ -β 2 2γ , 5 6	7	, 29+16	-w 12 2γ	,
	and for (iii) n = 3 and γ = w 12 + w 13 -2w 23 , where S(k, 2) 1 4 13 44 160 ⩽ • • • ⩽ 305 ⩾ 536 ⩾ 1680
	8 ⩽ M 3 (3) ⩽ min 27 + 16 Table 8.1: The first few Schur numbers S(k, 2) 2(w 12 + w 23 ) -3w 13 2γ , 29 + 16	-w 13 2γ	,
	27 + 16	2(w 13 + w 23 ) -3w 12 2γ	, 29 + 16	-w 12 2γ	, 31 + 16	-β 2 2γ	,
	• for (EC5):							
	7 ⩽ M 3 (n) ⩽ if w otherwise,    7					
	8 ⩽ M 3 (n) ⩽ min 31 + 16	-β 2 2γ	, 2 n + 15 + 16	-β 3 2γ	,
	except for the cases (i), (ii), and (iii) that are the same with (EC4).

  8.1.2 Modular generalized weak Schur numbersDefinition 8.1.8 (Weakly sum-free set). A set of integers is said to be weakly l-sum-free if it contains no pairwise distinct elements x 1 , . . . , x The first few weak Schur numbers are given in Table8.2.

	k	1 2 3	4	5	6
	WS(k, 2) 2 8 23 66 ⩾ 196 ⩾ 575
	Table 8.2: The first few weak Schur numbers WS(k, 2)

l , y satisfying x 1 + . . . + x l = y. Definition 8.1.9 (Modular generalized weak Schur number). For every positive integer k, the generalized weak Schur number WS(k, l) is the largest integer n for which the set of the first n positive integers {1, 2, . . . , n} admits a k-partition into weakly l-sum-free sets.

For l = 2, the numbers WS(k, 2) are called weak Schur numbers.

  Definition 8.2.1 (Ramsey number). Let G and H be two graphs. Let R(G, H) be the smallest integer N such that for any 2-coloring (say, red and blue) of the edges of the complete graph K n , with n ⩾ N , there is either a red copy of G or a blue copy of H.It is known, by Ramsey Theorem, that R(G, H) is always finite, for any graphs G and H. For instance, the first few Ramsey numbers R(K a , K b ) are given in Table8.4.

	H a H H 1 H	H b 1 2 3 4 H 1 1 1 1	5 1	6 1	7 1
	2	2 3 4	5	6	7
	3	6 9	14	18	23
	4	18	25	36 ⩽	

  8.2.21 (CMR[C15]). For each 3 ⩽ m ⩽ 5 and each 7 ⩽ n ⩽ 16, we have that R(K m , K n -P 3 ) ⩽ u(m, n), where the value of u(m, n) is given in the (m, n) entry of the below table (the value between parentheses is the best previously known upper bound).Some bounds forR(K m , K n -K 1,s ) when s ⩾ 3 Corollary 8.2.22 (CMR [C15]). For each 6 ⩽ m ⩽ 15, we have that R(K m , K 6 -K 1,3 ) ⩽ u(m), where the value of u(m) is given in the below table (the value between parentheses is the best previously known upper bound).Corollary 8.2.23 (CMR[C15]). For each 4 ⩽ m ⩽ 11, we have that R(K m , K 7 -K 1,3 ) ⩽ u(m), where the value of u(m) is given in the below table (the value between parentheses is the best previously known upper bound).

	m \ n 3	7	8	9	10	11 44(47)	12 52(59)	13 61(72)	14 70(86)	15 80(101)	16 91(117)
	4	41(49)	61(72)		115(136) 154(183) 199(242) 253(319) 313(405) 383(506) 466(623)
	5	87(105) 143(177) 222(277)							
	m	6	7	8	9	10	11	12	13	14	15
	b u 87(90) 143(151) 216(235) 316(350) 442(499) 633(690) 848(928) 1139(1219) 1461(1568) 1878(1568)
	m	4	5	6	7		8	9	10		11
	b u 41(43) 87(90) 165(180) 298(331) 495(566) 780(916) 1175(1415) 1804(2105)
	More equalities								
	Corollary 8.2.24 (CMR [C15]).						

  Here, we provide tools from convex geometry to detect complete Kneser transversals using Radon partitions.Let d be a positive integer. Consider d + 2 points v 1 , v 2 , . . ., v d+2 in general position in R d . Radon's theorem states that there exists a unique partition {1, 2, . . . , d + 2} = A ∪ B such that
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	9.1.1 Kneser transversals from Radon partitions	
	Conv	
	i∈A	

  Steinhaus équilibrés, lorsque m est un nombre impair. Plus précisément, pour tout nombre impair m, cette orbite contient des triangles de Steinhaus équilibrés de taille km, pour tout entier strictement positif k. La preuve de ce résultat est basée sur les triangles arithmétiques qui sont des triangles de nombres modulo m, non-nécessairement des triangles de Steinhaus, où toutes les lignes et toutes les diagonales sont des suites arithmétiques de mêmes raisons, respectivement. Il s'agit ici d'un progrès notable par rapport au résultat précédent sur les suites arithmétiques car l'on obtient maintenant l'existence de triangles de Steinhaus équilibrés pour toutes les tailles multiples de m, et pas seulement multiples de αm. Ce résultat ne résout pas complètement le problème de Molluzzo pour d'autres moduli mais, dans le cas où m est une puissance de premier impair, nous savons qu'il existe des triangles de Steinhaus équilibrés pour 2/3 des tailles admissibles. Ces résultat sur la suite universelle ont été publiés dans[C5].
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Remerciements

CHAPTER 5. BALANCED SIMPLICES Theorem 5.4.1 (Chappelon [C6]). Let n ⩾ 2 and m be two positive integers such that gcd(m, n!) = 1. Suppose that σ is invertible modulo m. Let a ∈ Z/mZ, d ∈ (Z/mZ) n-1 and ε ∈ {-1, 1} n such that d i , for all i ∈ [1, n], and ε j d jε i d i , for all distinct integers i, j ∈ [1, n], are invertible, where d n := σ -1 n-1 k=1 σ k d k . Then, in the orbit O AA(a,d) , every n-simplex with orientation ε and of size s is balanced modulo m, for all s ≡ -t mod lcm(ord m (σ) , m), where t ∈ [0, n -1].

Remark 5.4.2. If σ ≡ 1 mod m, then the n-simplex △ (j, ε, s) appearing in O AA(a,d) is an arithmetic simplex and Theorem 5.1.8 is simply Theorem 5.3.2 on balanced arithmetic simplices.

For the Pascal cellular automata

Here, we investigate the consequences of Theorem 5.1.8 on the existence of balanced nsimplices, in the case where the ACA considered is PCA n-1 and we obtain Corollary 5.1.10.

Corollary 5.4.3 (Chappelon [C6]). Let n ⩾ 2 be a positive integers. For every positive integer m such that gcd(m, (3(n-1))!) = 1, there exist infinitely many balanced n-simplices of Z/mZ generated by PCA n-1 , for all possible orientations ε ∈ {-1, 1} n . In the special case of the two orientations ε = + • • • +or ε = -• • • -+, the existence of an infinite number of such balanced simplices is verified for every Z/mZ such that gcd(m, n!) = 1, if n is even, and for every Z/mZ such that gcd m, 3n+1 2 ! = 1, if n is odd.

In dimension 3

In this subsection, we show that, in dimension 3, a similar result as Theorem 5.1.8 can be obtained for certain even values of m by using Theorem 5.3.9. As a corollary, the special case of the Pascal cellular automaton PCA 2 is studied.

For any ACA Theorem 5.4.4 (Chappelon [C6]). Let m be an even number not divisible by 3 such that σ ∈ Z/mZ is invertible and σ ≡ 1 mod 2 v 2 (m) , where v 2 (m) is the highest exponent u such that 2 u divides m. Let a ∈ Z/mZ, d = (d 1 , d 2 ) ∈ (Z/mZ) 2 and ε ∈ {-1, 1} 3 such that

Then, in the orbit O AA(a,d) , every tetrahedron with orientation ε and of size s is balanced, for all s ≡ 0 or -2 mod lcm(ord m (σ) , m).

For the Pascal cellular automaton

Here, we investigate the consequences of Theorem 5.4.4 on the existence of balanced tetrahedra, in the case where the ACA considered is PCA 2 .

Corollary 5.4.5 (Chappelon [C6]). For even numbers m not divisible by 3 such that v 2 (m) = 1, there exist infinitely many balanced tetrahedra of Z/mZ generated by PCA 2 , for all orientations ε = + + +, + -+, + --, -+ +, -+and ---. In the remaining case of the two orientations ε = ++-or ε = --+, the existence of an infinite number of such balanced tetrahedra is verified for every Z/mZ of even order m such that v 2 (m) = 1 and gcd(m, 3.5) = 1. CHAPTER 6. NUMERICAL SEMIGROUPS It is well-known that g(⟨{a 1 , a 2 }⟩) = a 1 a 2a 1a 2 , for any coprime positive integers a 1 and a 2 . However, calculating g(S) is a difficult problem in general. In [START_REF] Luis | Complexity of the Frobenius problem[END_REF] was shown that computing g(S) is NP-hard. An extensive literature on the Frobenius number and numerical semigroups can be found in [START_REF] Luis | The Diophantine Frobenius problem[END_REF][START_REF] José | Numerical semigroups[END_REF].

The Möbius function of locally finite posets

The Möbius function is an important concept associated with locally finite posets.

Definition 6.1.7 (Poset). A partial order is a binary relation ⩽ P over a set P that is reflexive, antisymmetric and transitive, i.e., i) a ⩽ P a, for all a ∈ P , (reflexivity)

ii) if a ⩽ P b and b ⩽ P a, then a = b, for all a, b ∈ P , (antisymmetry)

iii) if a ⩽ P b and b ⩽ P c, then a ⩽ P c, for all a, b, c ∈ P . (transitivity)

A set with a partial order is called a partially ordered set, or poset for short.

Definition 6.1.8 (Locally finite poset). Let (P, ⩽ P ) be a poset. The strict partial order < P is the reduction of ⩽ P given by, a < P b if and only if a ⩽ P b and a ̸ = b. For any a and b in the poset P , the segments between a and b are defined by A poset is said to be locally finite if every segment has finite cardinality.

Definition 6.1.9 (Chain). Let a and b be elements of the locally finite poset (P, ⩽ P ).

A chain of length l ⩾ 0 between a and b is a subset of [a, b] P containing a and b, with cardinality l + 1 and totally ordered by ⩽ P , that is {a 0 , a 1 , . . . , a l } ⊂ [a, b] P such that a = a 0 < P a 1 < P a 2 < P • • • < P a l-1 < P a l = b.

For any nonnegative integer l, we denote by C l (a, b) the set of all chains of length l between a and b. The cardinality of C l (a, b) is denoted by c l (a, b). This number is always finite because the poset P is supposed to be locally finite.

For instance, the number of chains c 3 (1, 12), where the poset is the set N partially ordered by divisibility, is equal to 3. Indeed, there are exactly 3 chains of length 3 between 1 and 12 in [1, 12] N = {1, 2, 3, 4, 6, 12}, which are {1, 2, 4, 12}, {1, 2, 6, 12} and {1, 3, 6, 12}. i) The sum involved in the definition of the Möbius function is always finite because, for a and b given, there exists a maximal length of a possible chain between a and b since the segment [a, b] P has finite cardinality.

ii) If we consider the Möbius function of the poset obtained from the positive integers partially ordered by the divisibility, we retrieve the classical Möbius arithmetic function on the integers.

The Möbius function has been extremely useful to investigate many different problems. For instance, the inclusion-exclusion principle can be retrieved by considering the set of all subsets of a finite set partially ordered by inclusion.

The concept of Möbius function for a locally finite poset (P, ⩽ P ) was introduced by Rota in [START_REF] Rota | On the foundations of combinatorial theory. I. Theory of Möbius functions[END_REF] as the inverse of the zeta function in the incidence algebra of a locally finite poset. Let us see this with more detail. Consider the set I(P ) of all real-valued functions f : P × P -→ R for which f (a, b) = 0 if a̸ ⩽ P b. The sum + and the multiplication by scalars are defined as usual in I(P ). The product of two functions f and g in I(P ) is defined by

for all (a, b) ∈ P × P . Then (I(P ), +, ., ×) appears as an associative algebra over R. This is the incidence algebra of P . The Kronecker delta function δ ∈ I(P ), defined by

for all (a, b) ∈ P × P , is the identity element of I(P ). The zeta function ζ P ∈ I(P ) is defined by

for all (a, b) ∈ P × P . Rota [START_REF] Rota | On the foundations of combinatorial theory. I. Theory of Möbius functions[END_REF] proved that the zeta function ζ P (called the inverse function) is invertible in I(P ) and showed that µ P is recursively defined as follows: for all (a, b) ∈ P × P , by

Let us see that both definitions of µ S given by (6.1) and by (6.2) are equivalent. For, let a and b be two elements of the locally finite poset P such that a < P b. Then,

for all positive integers l. Indeed, every chain {a 0 , a 1 , . . . , a l } ∈ C l (a, b) can be seen as an extension of a chain of C l-1 (a, a l-1 ) or of C l-1 (a 1 , b).

Obviously, the identity µ S (a, a) = 1 directly comes from (6.1) since c 0 (a, a) = 1 and c l (a, a) = 0 for all l ⩾ 1. By combining (6.3) and (6.1), for all a < P b, we obtain that

CHAPTER 6. NUMERICAL SEMIGROUPS Finally, since a ̸ = b, it follows that c 0 (a, b) = 0 and thus

Similarly, using the second identity of (6.3), we can also prove that, whenever a < P b, we have

Therefore the two definitions of the Möbius function (for a locally finite poset) are the same. All the results presented in next section are derived from the recursive formula presented in (6.2).

Numerical semigroup posets

For any numerical semigroup S, we consider the binary relation ⩽ S on the set of integers Z defined by x ⩽ S y ⇐⇒ yx ∈ S, for all integers x and y.

Proposition 6.1.12. For any numerical semigroup S, (Z, ⩽ S ) is a locally finite poset.

Proof. The binary relation ⩽ S is reflexive since 0 ∈ S, antisymmetric since S ∩(-S) = {0} and reflexive by associativity of the addition in S. Therefore, the relation ⩽ S is a partial order over Z. Moreover, (Z, ⩽ S ) is a locally finite poset since

for all x, y ∈ Z.

Notation 6.1.13. For any numerical semigroup S, the Möbius function of the locally finite poset (Z, ⩽ S ) is denoted by µ S .

It is easy to see that µ S can be considered as a univariate function on Z.

Proposition 6.1.14. Let S be a numerical semigroup. Then, in the locally finite poset (Z, ⩽ S ), we have c l (x, y) = c l (0, yx), (6.4) for all x, y ∈ Z and for all l ⩾ 0.

Corollary 6.1.15. Let S be a numerical semigroup. Then, in the locally finite poset (Z, ⩽ S ), we have

for all x, y ∈ Z.

In the sequel of this section, we shall only consider the reduced Möbius function µ S : Z -→ Z defined by µ S (x) = µ S (0, x), for all x ∈ Z. The recursive formula given by (6.2) can be more easily presented when the locally finite poset is (Z, ⩽ S ).

Proposition 6.1.16 (Chappelon-Ramírez [C16]). Let S be a numerical semigroup and let x ∈ Z \ {0}. Then,
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The Möbius function of arithmetic semigroup posets

Using the recursive formula of Proposition 6.1.16, the Möbius function of numerical semigroup posets have been explicitly determined, or semi-explicitly determined, for some families of numerical semigroups in [C16].

For S = ⟨a, b⟩

For a numerical semigroup S generated from two coprime positive integers, the following theorem, due to Deddens in 1979, gives an explicit formula for µ S .

Theorem 6.1.17 (Deddens [47]). Let a and b be two relatively positive integers and let S = ⟨a, b⟩. Then, we have

A proof based on the recursive formula of Proposition 6.1.16 can be found in [C16].

For arithmetic semigroups Definition 6.1.18 (Arithmetic semigroup). Let a and d be two coprime positive integers and let k be a positive integer such that k ⩽ a -1. The numerical semigroup S = ⟨a, a + d, . . . , a + kd⟩ generated by the arithmetic progression AP(a, d, k + 1) is called an arithmetic semigroup.

A recursive formula for µ S is obtained in [C16] when S = ⟨a, a + d, . . . , a + kd⟩ is an arithmetic semigroup. The following key remark led us to guess such recursion. If

Theorem 6.1.19 (Chappelon-Ramirez [C16]). Let S = ⟨a, a + d, . . . , a + kd⟩ such that gcd(a, d) = 1 and let a = qk + r with 0 ⩽ r < k. Let x ∈ Z \ {0, a, a + kd, a + (a + kd)}, then

The proof is based on Proposition 6.1.16 and on the following lemma where it is proved that in arithmetic semigroups there exists a unique representation of elements. Lemma 6.1.20. Let x ∈ S = ⟨a, a + d, . . . , a + kd⟩ with 2 ⩽ k ⩽ a -1. Then, there exists a unique triplet

Notation 6.1.21. Let (x 0 , x i , x k ) ∈ N × {0, 1} × {0, . . . , ⌊a/k⌋} with 1 ⩽ i ⩽ k -1 and ix i + kx k < a. We denote by [x 0 , x i , x k ] the element in S = ⟨a, a + d, . . . , a + kd⟩ given by the representation of Lemma 6.1.20.

For semigroups ⟨2a, 2a + d, 2a + 2d⟩

Recall that the multiplicity function of a multiset A of N is the function

which assigns to each element x ∈ N its multiplicity, that is, the number of times that x appears in the multiset A.

Let a = 2q and d ∈ N * such that gcd(a, d) = gcd(q, d) = 1. For each i ∈ {-1, 0, 1}, we consider the following multisets.

As we mentioned above, given a triple (x 0 , x 1 , x 2 ) ∈ N × {0, 1} × {0, . . . , q -1}, we denote by [x 0 , x 1 , x 2 ] the element in S given by the representation in Lemma 6.1.20. We shall consider this representation for all x 0 ∈ Z, i.e.,

for all (x 0 , x 1 , x 2 ) ∈ Z × {0, 1} × {0, . . . , q -1}. In this case, it is clear that

Theorem 6.1.22 (Chappelon-Ramirez [C16]). Let q and d be two coprime positive integers and let S = ⟨2q, 2q + d, 2q + 2d⟩ .

We notice that if x 0x 2 is a constant then we should have the same value for µ S ([x 0 , 0, x 2 ]). The latter is illustrated by the first values of µ S ([x 0 , 0, x 2 ]), listed in Table 6.1, for the case when a = 22 and d = 5. Indeed, we can see appearing diagonals (corresponding to x 0x 2 constant) with the same value. Proof. The reflexivity and the transitivity of ⩽ S come from 0 ∈ S and the associativity of the addition in S, respectively. Moreover, the relation ⩽ S is antisymmetric if and only if S ∩ (-S) = {0}. Finally, if S ∩ (-S) = {0}, then (Z m , ⩽ S ) is locally finite. Definition 6.2.4 (Pointed semigroup). A subsemigroup S of Z m such that S∩(-S) = {0} is said to be pointed.

Let µ S denote the Möbius function associated with (Z m , ⩽ S ). It is easy to see that µ S can be considered as a univariate function on Z m . Indeed, for all x, y ∈ Z m and for all l ⩾ 0, one can observe that c l (x, y) = c l (0, yx). Thus, we obtain µ S (x, y) = µ S (0, yx) for all x, y ∈ Z m . Therefore, in the sequel of this section, we shall only consider the reduced Möbius function µ S : Z m -→ Z defined by µ S (x) := µ S (0, x), for all x ∈ Z m . Thus, as for the numerical semigroup posets, the formula given by (6.2) may now be simplified when the locally finite poset is (Z m , ⩽ S ).
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123 Proposition 6.2.5 (CGMR [C10]). Let S be a pointed semigroup and let x ∈ Z m . Then, b∈S µ S (xb) = 1 if x = 0, 0 otherwise. Proposition 6.2.5 will be very useful to obtain most of the following results.

The Hilbert and Möbius series

Here, results relating the Hilbert series of the semigroup S with the Möbius function of the poset (Z m , ⩽ S ) are given. First, some basic notions on multivariate Hilbert series are quickly recalled. A complete study of multivariate Hilbert series can be found in [START_REF] Kreuzer | Computational commutative algebra[END_REF].

Let k be any field and let S = ⟨a 1 , . . . , a n ⟩ be a subsemigroup of Z m . The semigroup S induces a grading on the ring of polynomials R := k[x 1 , . . . , x n ] by assigning deg S (x i ) := a i ∈ Z m , for all i ∈ {1, . . . , n}. Then, the S-degree of the monomial m :

A polynomial is said to be S-homogeneous if all of its monomials have the same S-degree and an ideal is S-homogeneous if it is generated by Shomogeneous polynomials. For all b ∈ Z m , we denote by R b the k-vector space generated by all S-homogeneous polynomials of S-degree b.

Whenever S is pointed, the k-vector space R b has finite dimension, for all b ∈ Z m (see [81, 

We denote by I S the toric ideal of S, i.e., the kernel of the homomorphism of k-algebras Hence, HF M (b) = 1 in this case. Definition 6.2.6 (Hilbert series of a semigroup). The multivariate Hilbert series of R/I S is called the Hilbert series of S and is denoted by H S (t). CHAPTER 6. NUMERICAL SEMIGROUPS Theorem 6.2.7 (CGMR [C10]). Let S be a pointed semigroup and let c 1 , . . . , c k be nonzero vectors in Z m . If we set

Remark 6.2.8. Notice that the formula (1

have an infinite number of terms. Nevertheless, for every x ∈ Z m , the formula given here b∈Z m f b µ S (xb) = 0 only involves a finite number of nonzero summands, since S is pointed.

The following example illustrates how to apply Theorem 6.2.7 to compute µ S .

Example 6.2.9. Consider the semigroup S = ⟨2, 3⟩ ⊂ N. We observe that S = N \ {1}.

Applying Theorem 6.2.7, we get that µ S (x) + µ S (x -3) = 0, for all x ∈ Z\{0, 2}. Furthermore, by direct computation, we have µ S (0) = 1, µ S (2) = -1 and µ S (x) = 0 for all x < 0. This leads to the formula

0 and x ≡ 0 or 5 (mod 6), -1 if x ⩾ 0 and x ≡ 2 or 3 (mod 6), 0 otherwise. Definition 6.2.10 (Möbius series of a semigroup). The Möbius series of S is the generating function G S of the Möbius function

Theorem 6.2.11 (CGMR [C10]). Let S be a pointed semigroup. Then,

Theorem 6.2.11 states that, whenever we can explicitly compute the inverse of H S (t), we will be able to obtain µ S . This idea is illustrated in next example.

Example 6.2.12. Let {e 1 , . . . , e m } denote the canonical basis of N m and let S be the semigroup defined by S = ⟨e 1 , . . . , e m ⟩ = N m . Clearly, we have that

.
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Semigroups with a unique Betti element Definition 6.2.18 (Semigroup with a unique Betti element). A semigroup S ⊂ N m is said to have a unique Betti element b ∈ N m if its corresponding toric ideal is generated by a set of S-homogeneous polynomials of common S-degree b.

Proposition 6.2.19 (Corollary 10 [START_REF] García Sánchez | Affine semigroups having a unique Betti element[END_REF]). Subsemigroups of N m with a unique Betti element are always complete intersection.

Theorem 6.2.20 (CGMR [C10]). Let S = ⟨a 1 , . . . , a n ⟩ ⊂ N m be a semigroup with a unique Betti element b ∈ N m . If we denote by d the dimension of the Q-vector space generated by a 1 , . . . , a n , then we have

where

When m = 1, i.e., when S = ⟨a 1 , . . . , a n ⟩ ⊂ N, S is a numerical semigroup with a unique Betti element b ∈ N if and only if there exist pairwise relatively prime integers b 1 , . . . , b n ⩾ 2 such that a i := j̸ =i b j , for all i ∈ {1, . . . , n}, and b = n i=1 b i (see [START_REF] García Sánchez | Affine semigroups having a unique Betti element[END_REF]). In this setting, Theorem 6.2.20 can be refined as follows.

Corollary 6.2.21 (CGMR [C10]). Let S = ⟨a 1 , . . . , a n ⟩ ⊂ N be a numerical semigroup with a unique Betti element b ∈ N. Then,

As a direct consequence of this result, we recover Theorem 6.1.17.

Three generated complete intersection numerical semigroups

We provide a semi-explicit formula for µ S , when S is a complete intersection numerical semigroup minimally generated by the set {a 1 , a 2 , a 3 }. When S = ⟨a 1 , a 2 , a 3 ⟩ ⊂ N, Herzog proves in [START_REF] Herzog | Generators and relations of abelian semigroups and semigroup rings[END_REF] that S is a complete intersection if and only if gcd(a i , a j ) a k ∈ ⟨a i , a j ⟩ with {i, j, k} = {1, 2, 3}. Suppose that da 1 ∈ ⟨a 2 , a 3 ⟩, where d := gcd(a 2 , a 3 ).

For every x ∈ Z, there exists a unique α(x) ∈ {0, . . . , d -1} such that α(x)a 1 ≡ x mod d. It is easy to check that, for every x, y ∈ Z,

(6.6) Theorem 6.2.22 (CGMR [C10]). Let S = ⟨a 1 , a 2 , a 3 ⟩ be a numerical semigroup such that da 1 ∈ ⟨a 2 , a 3 ⟩, where d := gcd(a 2 , a 3 ). For all x ∈ Z, we have that µ S (x) = 0, if α(x) ⩾ 2, and

otherwise, where x ′ := xα(x)a 1 and B := (da 1 , a 2 a 3 /d).

Remark 6.2.23.

i) Theorem 6.2.22 yields an algorithm for computing µ S (x), for all x ∈ Z, which relies on the computation of four values of d B (y), where B = (da 1 , a 2 a 3 /d). It is worth mentioning that in [96, Section 4.4] there are several results and methods to compute these values.

ii) Theorem 6.2.22 generalizes [C16, Theorem 3], where the authors provide a semiexplicit formula for S = ⟨2q, 2q + e, 2q + 2e⟩ where q, e ∈ Z + and gcd(2q, 2q + e, 2q + 2e) = 1. Indeed, if S = ⟨a, a + e, . . . , a + ke⟩ with gcd(a, e) = 1 and k ⩾ 2, then S is a complete intersection if and only if k = 2 and a is even (see [START_REF] Bermejo | Complete intersections in certain affine and projective monomial curves[END_REF]).

When is a poset equivalent to a semigroup poset?

A natural question is whether a poset P is isomorphic to a poset associated with a semigroup S since, in such a case, one might be able to calculate µ P by computing µ S instead. Let (P, ⩽ P ) be a locally finite poset. For every x ∈ P, we set P x := {y ∈ P | x ⩽ P y} and we consider the restricted Möbius function µ P (-, x) : P x → Z. It is clear that, if there exists a pointed semigroup S and an order isomorphism ψ : (P x , ⩽ P ) -→ (S, ⩽ S ), then µ P (-, x) can be computed by means of the Möbius function of (S, ⩽ S ), since µ P (y, x) = µ S (ψ(y)) for all y ∈ P x .

The poset P x is said to be autoequivalent if and only if, for all y ∈ P x , there exists an order isomorphism g y : P x -→ P y such that g y • g z = g z • g y , for all y, z ∈ P x , and g x is the identity. For all y ∈ P x , we set l 1 (y) := {z ∈ P | there is no u ∈ P such that y ⪇ u ⪇ z}. Whenever P x is autoequivalent with isomorphisms {g y } x⩽y and l 1 (x) is a finite set of n elements, we associate to P a subgroup L P ⊂ Z n in the following way.

Let l 1 (x) = {x 1 , . . . , x n } ⊂ P and consider the map f : N n -→ P defined as f (0, . . . , 0) = x, and for all α ∈ N n and all i ∈ {1, . . . , n}, f

where {e 1 , . . . , e n } is the canonical basis of N m . In particular, f

Lemma 6.2.24. f is well defined and is surjective.

Now, we set L

If L is a subgroup of Z n , then its saturation is the group defined by Sat(L) := γ ∈ Z n there exists d ∈ Z + such that dγ ∈ L .

Theorem 6.2.26 (CGMR [C10]). Let P be a locally finite poset and let x ∈ P. Then, (P x , ⩽) is isomorphic to (S, ⩽ S ) for some (pointed) semigroup S ⊂ Z m if and only if P x is autoequivalent, l 1 (x) is finite and L P = Sat(L P ).

The necessity direction of Theorem 6.2.26 can be stated in algebraic terms as : whenever P x is autoequivalent and l 1 (x) is finite, the subgroup L P defines a lattice ideal I := ({x αx β | αβ ∈ L P }). Moreover, P x is isomorphic to a semigroup poset (S, ⩽ S ) if and only if the ideal I itself is the toric ideal of a semigroup S. The latter holds if and only if I is prime or, equivalently, if L P = Sat(L P ) (see [START_REF] Eisenbud | Binomial ideals[END_REF]). CHAPTER 6. NUMERICAL SEMIGROUPS Theorem 6.3.17 (Chappelon-Ramírez [C17]). Let a ⩾ 2 be an integer not divisible by 5 and let S = ⟨a, a + 5⟩. Then,

ii) transfer the remaining pile of t largest disks from the first peg to the final peg using k -1 pegs, ignoring the peg occupied by the nt smallest disks;

iii) recursively transfer the pile of nt smallest disks from the temporary peg to the final peg, using k pegs.

The algorithm chooses the integer t such that the number of moves is minimized.

Definition 7.1.1 (Frame-Stewart numbers). The Frame-Stewart numbers S k (n) satisfy the following recurrence relations:

When k = 4 for instance, S 4 (n) is obtained by the following simple formula:

where i 2 is the binomial coefficient equal to i(i -1)/2. In the general case k ⩾ 4, the number S k (n) is obtained by several different approaches, e.g., [START_REF] Frame | Solution to advanced problem 3918[END_REF][START_REF] Klavžar | Simple explicit formulas for the Frame-Stewart numbers[END_REF][START_REF] Klavžar | On the Frame-Stewart algorithm for the multi-peg Tower of Hanoi problem[END_REF][START_REF] Majumdar | Generalized multi-peg Tower of Hanoi problem[END_REF][START_REF] Stewart | Solution to advanced problem 3918[END_REF].

In [START_REF] Matsuura | Analysis of recurrence relations generalized from the 4-peg tower of hanoi[END_REF], the following general recurrence relation was considered to clarify the combinatorial structure latent in the recurrence relation for S k (n) and to cope with the recurrence relations for the Tower of Hanoi on graphs in which pegs are placed on vertices of a given graph and disks are only moved along the edges:

where α and β are arbitrary positive integers. It was shown that the sequence of differences (T(n) -T(n -1)) n⩾1 consists of numbers of the form β • 2 i • α j , with i, j ⩾ 0, arranged in nondecreasing order. When α = 3,

These numbers are called "3-smooth numbers" [START_REF] Neil | The OEIS Foundation Inc[END_REF] and have been studied extensively in number theory, in relation to the distribution of prime numbers [START_REF] Hardy | The normal number of prime factors of a number n[END_REF] and to new number representations [START_REF] Blecksmith | 3-smooth representations of integers[END_REF][START_REF] Erdős | Problem Q814[END_REF]. The formulation and analysis of T(n), however, has some defects such that (i) it is only focused on the 4-peg case with no consideration for the general case k ⩾ 3; and (ii) even in the 4-peg case, term 2 i • α j consists of constant 2 and parameter α, which might admit further generalization.

In this section, we fully generalize the recurrence relations for the previous S k (n) and T (n) and obtain the exact formulas.

Definition 7.1.2 (Generalized Frame-Stewart numbers). We define the following recurrence relations for two sequences of arbitrary positive integers (p i ) i⩾3 and (q i ) i⩾3 :

The numbers G k (n) are called the generalized Frame-Stewart numbers.

Then, we show that the sequence of differences

, with α i ⩾ 0 for all i, arranged in nondecreasing order.
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Theorem 7.1.3 (Chappelon-Matsuura [C14]). For every positive integer n and for two sequences of arbitrary positive integers (p i ) i⩾3 and (q i ) i⩾3 , we have

where q = k i=3 q i and u k j is the jth term of the sequence u k j j⩾1 of integers k i=3 p i α i , with α i ⩾ 0 for all i, arranged in nondecreasing order.

) and (p 4 , q 4 ) = (α, β).

Basic results on smooth number sequences

Let (p i ) i⩾3 be a sequence of positive integers. We consider the sequence u k j j⩾1 of all the integers of the form k i=3 p i α i , where α i ⩾ 0 for all i, arranged in nondecreasing order. For instance, for (p 3 , p 4 ) = (2, 2) and (p 3 , p 4 ) = (2, 3), the first few terms of (u

When there is some i 0 such that p i 0 is equal to 1, then by definition u k j j⩾1 is the constant sequence of 1's, for every k ⩾ i 0 . We note that u k j j⩾1 is closely related to smooth numbers which have been explored extensively in number theory. A positive integer is called B-smooth if none of its prime factors are greater than a positive integer B. The sequence u k j j⩾1 then consists of B-smooth numbers for B = max 3⩽i⩽k {p i }.

Here, we restrict to the case where all the p i 's are greater than 1 and obtain a simple lemma on a certain recursive structure of the smooth number sequence u k j j⩾1 , which is useful for the proof of Theorem 7.1.3. Lemma 7.1.5 (Chappelon-Matsuura [C14]). Let k ⩾ 4 and let (f k (j)) j⩾1 be the sequence of positive integers defined by

Sketch of proof of the main result

Let G 1 k (n) denote the special case of G k (n) associated with arbitrary sequence (p i ) i⩾3 and with the constant sequence (q i ) i⩾3 with q i = 1 for i ⩾ 3. There exists a simple relationship between numbers G k (n) and G 1 k (n).

Proposition 7.1.6 (Chappelon-Matsuura [C14]). For every nonnegative integer n and for every sequence of integers (q i ) i⩾3 , we have

where q = k i=3 q i . By Proposition 7.1.6, it is sufficient to prove Theorem 7.1.3 for

CHAPTER 7. TOWER OF HANOI Lemma 7.1.7 (Chappelon-Matsuura [C14]). Let n be a positive integer. Suppose that

takes its minimum at t = j. Using Proposition 7.1.6 and Lemma 7.1.7, we are now ready to obtain Theorem 7.1.3, the main result of this section.

Theorem 7.1.8 (Chappelon-Matsuura [C14]). For every positive integer n and for two sequences of arbitrary positive integers (p i ) i⩾3 and (q i ) i⩾3 , we have

where q = k i=3 q i and u k j is the jth term of the sequence u k j j⩾1 of integers k i=3 p i α i , with α i ⩾ 0 for all i, arranged in nondecreasing order.

Corollary 7.1.9 (Chappelon-Matsuura [C14]). Let k ⩾ 4 and j ⩾ 1. For every integer

We end this subsection by considering the special case where p i = p ⩾ 1 for all i.

Proposition 7.1.10 (Chappelon-Matsuura [C14]). Let p i = p ⩾ 1 for all 3 ⩽ i ⩽ k. Then, for all integers j ⩾ 0 and n ⩾ 1 such that

u k n = p j and G 1 k (n) can be computed as follows: On the path graph P 3

Application: the Tower of Hanoi on graphs

The following theorem shows that the optimal number of moves for the Tower of Hanoi problem on the path graph P 3 is given by the generalized Frame-Stewart numbers.

Theorem 7.1.11. Consider the Tower of Hanoi problem on P 3 , as depicted in Figure 7.2. The minimum number of moves to transfer n ⩾ 1 disks

). This theorem is rather well-known (e.g., see [START_REF] Sapir | The Tower of Hanoi with Forbidden Moves[END_REF]). Stockmeyer [START_REF] Paul | Variations on the four-post Tower of Hanoi puzzle[END_REF] considered the Tower of Hanoi problem on the star graph S 4 , where all the n disks are transferred from one leaf of the graph to another leaf (for instance, the problem of transferring disks in the minimal number of moves from peg 2 to peg 3 in Figure 7.3). He described a recursive algorithm which achieved a good (seemingly the best) upper bound; thus, called it the presumed optimal algorithm. T. Bousch proved in [START_REF] Bousch | La tour de Stockmeyer[END_REF] that this number is optimal for S 4 . Here, we generalize this algorithm to the star Theorem 7.2.1 (CLM [C11]). For three pegs, n ⩾ 2 disks can be transferred from the starting position to any position using an odd number of moves. That is, in the two-player version, the first player can force play to any position in an odd number of moves.

On the star graph S k

Corollary 7.2.2 (CLM [C11]). For three pegs, n ⩾ 2 disks can be transferred from the starting position to any intermediate position using an even number of moves.

Normal play: two-player Tower of Hanoi

In the normal play variation of the two-player Tower of Hanoi, Anh can avoid drawn simply by adhering to the well known minimal algorithm for the one-player Tower of Hanoi (Bao's moves will be forced all through the game), using precisely 2 n -1 moves. However, she can also choose freely among all odd-length move paths.

Corollary 7.2.3 (CLM [C11]). For three pegs and n ⩾ 1 disks, the two-player Tower of Hanoi game terminates and the first player wins. This is true for any ending condition and also from any position, provided that the previous player did not move the smallest disk.

Games on four pegs are mostly loopy.

Theorem 7.2.4 (CLM [C11]). The two-player Tower of Hanoi on four or more pegs is a draw game if the number of disks is three or more, given any ending condition.

For completeness, let us also give the rest of the k-peg observations with k ⩾ 4. For (EC1-3), if there are two disks, Bao never has to move the largest disk to a final peg and hence the game is drawn. For (EC1), if there is only one disk, then Anh wins in the first move. For (EC2,3), if there is only one disk, the special rule is invoked and Bao wins in his first move. For (EC4,5), if there are two disks, Bao has to move the largest disk to a final peg and hence loses. If there is only one disk, then Anh wins in the first move.

The minimal number of moves for winning scoring play

When the players move blindly (ignoring winning) and just follow the classical minimal algorithm, we obtain the total scores according to the following two lemmas. Lemma 7.2.10. Given n ⩾ 1 disks, three pegs and three weights of real numbers w 12 , w 13 , and w 23 . Then, for the two-player weighted Tower of Hanoi game of transferring n disks from Peg 1 to Peg 3 by the minimal algorithm, the total score is

Lemma 7.2.11. Given n ⩾ 2 disks, three pegs and three weights of real numbers w 12 , w 13 , and w 23 . Then, for the two-player weighted Tower of Hanoi game of transferring n disks from Peg 1 to Peg 1 by the minimal algorithm, if we suppose that the largest disk be moved, the total score is

We estimate the minimal number of moves for winning scoring Tower of Hanoi under the five ending conditions (EC1-5). We recall that the starting peg is Peg 1 and for (EC1) we suppose the tower is transferred to Peg 3. Theorem 7.2.12 (CLM [C11]). Let M 3 (n) denote the minimal number of moves needed for a winning game on three pegs and n ⩾ 1 disks. Then, for n ⩽ 2,

• for (EC1):

• for (EC2,3):

• for (EC4,5): 
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For n ⩾ 3, if w 12 = w 13 = w 23 = α, we have

Otherwise, suppose that 

Then,

• for (EC1):

otherwise, • for (EC2):

• for (EC3):

• for (EC4):

otherwise, For every modulus m, the inequality

holds because a weakly l-sum-free set modulo m of integers is also weakly l-sum-free.

Abbott and Wang conjectured that T(k) is equal to S(k, 2), for all positive integers k. Here, in the weak case, it appears that considering similar numbers as T(k) is without great interest. Indeed, as we can see in Here, we explicitly determine the modular generalized weak Schur numbers WS m (k, l) for small values of m: for all moduli m ∈ {1, 2, 3}. For m = 1, we obtain that

for all k ⩾ 1 and l ⩾ 1, since a weakly l-sum-free set modulo 1 has cardinality of at most l because every l + 1 distinct positive integers x 1 , . . . , x l , y verify x 1 + . . . + x l ≡ y mod 1. For m = 2 and m = 3, the following theorems are proved in [C18].

Theorem 8.1.12 (CRS [C18]). Let k and l be two positive integers. Then,

for k = 1 and l ≡ 0, 1 mod 4, l for k = 1 and l ≡ 2, 3 mod 4, 2(k -1)l + 1 for k ⩾ 2 and l even,

for k ⩾ 2 and l ≡ 1 mod 4, k ⩾ 2 even and l ≡ 3 mod 4, k(l + 1) -1 for k ⩾ 3 odd and l ≡ 3 mod 4.

Theorem 8.1.13 (CRS [C18]). Let k and l be two positive integers. Then,

for k ⩾ 1 and l = 1, l for k = 1 and l ⩾ 2, 2l + 2 for k = 2 and l ⩾ 2, l ≡ 0, 1, 5 mod 9, 2l + 1 for k = 2 and l = 3, l ⩾ 5, l ≡ 2, 3, 4, 6, 7, 8 mod 9, 2l for k = 2 and l ∈ {2, 4}, 3(k -2)l + 2 for k ⩾ 3 and l ≡ 0, 2 mod 3, k(l + 1) for k = 3, k ⩾ 5 and l ⩾ 2, l ≡ 1 mod 3, k = 4 and l ⩾ 2, l ≡ 1, 7 mod 9, 4l + 3 for k = 4 and l ≡ 4 mod 9.

CHAPTER 8. RAMSEY THEORY Definition 8.2.3 (Generalized Ramsey number). Let k 1 , . . . , k r and t 1 , . . . , t r be positive integers with k i ⩾ t i for all i ∈ {1, . . . , r}. Let R([k 1 , t 1 ], . . . , [k r , t r ]) be the smallest integer n such that for any r-edge coloring of K n there always occurs a monochromatic K [k i ,t i ] for some i.

In the case when k i = t i for some i, we set

We note that equality is reached at min 1⩽i⩽r {t i | t i = k i }, since the set of all the edges of

(which is empty) can always be colored with color i. We also notice that the case

) is exactly the classical Ramsey number R(k 1 , . . . , k r ) (the smallest integer n such that for any r-edge coloring of K n there always occurs a monochromatic K k i for some i).

The following recursive inequality is classical in Ramsey theory

In the same spirit, we have the following generalization.

Lemma 8.2.4 (CMR [C19]). Let r ⩾ 2 and let k 1 , . . . , k r and t 1 , . . . , t r be positive integers with

Lemma 8.2.4 allows us to give the following upper bound for R([k 1 , t 1 ], . . . , [k r , t r ]).

Theorem 8.2.5 (CMR [C19]). Let r ⩾ 2 be a positive integer and let k 1 , . . . , k r and t 1 , . . . , t r be positive integers such that k i ⩾ t i for all i ∈ {1, . . . , r}. Then,

where

is the multinomial coefficient defined by

Theorem 8.2.5 can be considered as a natural generalization of the well-known explicit upper bound for classical Ramsey numbers. Indeed, an immediate consequence of Theorem 8.2.5 (by taking t i = 1 for all i) is the following classical upper bound due to Graham and Rödl [69, (2.48)].

R ([k

Another straight consequence of Theorem 8.2.5 (by taking

New Ramsey numbers obtained

Using the recursive formula of Lemma 8.2.4 and other Ramsey numbers already known, the following theorems are proved in [C19].

Theorem 8.2.6 (CMR [C19]). Let n ⩾ 2 be an integer. Then,

for n = 3, 3n -5 for n ⩾ 4.

Theorem 8.2.7 (CMR [C19]). Let n ⩾ 2 be an integer. Then,

for n = 4, 8

for n = 5, 11

for n = 6, 3n -8 for n ⩾ 7.

Theorem 8.2.8 (CMR [C19]). Let n ⩾ 2 be an integer. Then,

for n = 2, = 7

for n = 3, ⩽ 3 n+1 2 -5n + 4 for n ⩾ 4.

Ramsey for complete graphs with dropped stars

Definition 8.2.9 (Complete graph with dropped star). Let K n -K 1,s be the complete graph on n vertices from which the edges of the star graph K 1,s are dropped. Notice that K n -K 1,1 = K ne is the complete graph on n vertices from which an edge is dropped and K n -K 1,2 = K n -P 3 is the complete graph on n vertices from which a path on three vertices is dropped.

Here, we investigate R(K me, K n -K 1,s ) and R(K m , K n -K 1,s ) for a variety of integers m, n and s.

Main result

Let G be a graph and denote by G v the graph obtained from G to which a new vertex v, incident to all the vertices of G, is added. The main result of this subsection is the following Theorem 8.2.10 (CMR [C15]). Let n and s be positive integers. Let G 1 be any graph and let N be an integer such that

Using Theorem 8.2.10, new exact values or bounds for Ramsey numbers of certain complete graphs with dropped stars are obtained.

CHAPTER 8. RAMSEY THEORY Some exact values for R(K me, K n -K 1,s ) Corollary 8.2.11 (CMR [C15]). R(K 3 -e, K m+1 -K 1,s ) = 2m-1, for all s ∈ {1, . . . , m-1}.

Corollary 8.2.12 (CMR [C15]).

Let us first notice that, by taking G 1 = K m in Theorem 8.2.10, we obtain Corollary 8.2.16 (CMR [C15]). Let N be an integer such that

Using this result, we obtain Corollary 8.2.17 (CMR [C15]).

i) R(K 6 , K 4 -P 3 ) = R(K 6 , K 3 ) = 18 with m = 5 and n = 3, In [START_REF] Arocha | Transversals to the convex hulls of all k-sets of discrete subsets of R n[END_REF], the following inequalities were obtained

An interesting feature of the value of m(k, d, λ) is its strong connection with the chromatic number of Kneser hypergraphs [START_REF] Kneser | Aufgabe 360[END_REF][START_REF] Lovász | Kneser's conjecture, chromatic number, and homotopy[END_REF] as well as with the Rado's centerpoint theorem [START_REF] Rado | A theorem on general measure[END_REF]. Indeed, for the former it is proved in [START_REF] Arocha | Transversals to the convex hulls of all k-sets of discrete subsets of R n[END_REF] that

For the latter, recall that the well-known Rado's centerpoint theorem [START_REF] Rado | A theorem on general measure[END_REF] states that if X is a bounded measurable set in R d then there exists a point x ∈ R d such that

for each half-space P that contains x (see also [START_REF] Neumann | On an invariant of plane regions and mass distributions[END_REF] for the case d = 2). Independently Bukh and Matousek [40, Section 6] and Arocha, Bracho, Montejano and Ramírez-Alfonsín in [START_REF] Arocha | Transversals to the convex hulls of all k-sets of discrete subsets of R n[END_REF] consider the following generalization of a discrete version of Rado's centerpoint theorem. Let n, d, λ ⩾ 1 be integers with d ⩾ λ and let τ (n, d, λ) def = the maximum positive integer τ such that for any collection X of n points in R d , there is a (dλ)-plane L X such that any closed half-space H through L X contains at least τ points.

By the hyperplane separation theorem we have that nτ (n, d, λ) + 1 is equal to the minimum positive integer k such that for any collection X of n points in R d there is a common transversal (dλ)-plane to the convex hulls of all k-sets, which is essentially m(k, d, λ). Therefore, any improvement to the lower or upper bounds for m(k, d, λ) will give important insight on the above interesting problem.

The purpose here is to introduce and study a discrete version of the function m(k, d, λ) which allows us to improve lower or upper bounds for m(k, d, λ). We claim that aff(T ) is a Kneser transversal for X. If a T intersects a k-set, then aff(T ) is clearly a transversal to its convex hull. Since X has (dλ + 1) + k points, there is exactly one k-subset that does not intersect T : the complement of T in X. But this k-set contains S, for which we know Conv(S) ∩ aff(T ) ̸ = ∅. This shows that aff(T ) is a transversal to the convex hull of all k-sets.

Matroids and cyclic polytopes

Definition 9.1.10 (Moment curve and cyclic polytope). The moment curve in R d is defined parametrically as the map γ : R → R d , t → (t, t 2 , . . . , t d ). A cyclic polytope is the convex hull of a finite set of points on the moment curve.

Here, we study the function m * for sets of vertices of cyclic polytopes. Basic notions of oriented matroids can be found in [START_REF] Björner | Oriented matroids, volume 46 of Encyclopedia of Mathematics and its Applications[END_REF].

Definition 9.1.11 (Alternating oriented matroid). The oriented matroids associated with cyclic polytopes on n vertices of dimension d are called alternating oriented matroids and they are denoted by A(r, n) with r = d + 1.

A well-known fact in oriented matroid theory is that the circuits of oriented matroid theory arising from a configuration of points can be interpreted as minimal Radonpartitions induced by the signs of the elements. For example, if we have the set of points

Suppose that the ground set of A(r, n) is [n] and let C be one of its circuits. A well-known fact [34, Section 9.4] is that |C| = r + 1 and if its elements are increasingly ordered, then they are alternatively signed

Therefore, minimal Radon partitions of cyclic polytopes are well understood.

Definition 9.1.12 (Function m * ). Let k, d, λ be integers with k, d ⩾ λ ⩾ 1. Let ζ(k, d, λ) be the maximum number of vertices that the cyclic polytope in R d can have, so that it has a complete Kneser (dλ)-transversal to the convex hulls of its k-sets of vertices.

We clearly have

We will give upper and lower bounds for ζ(k, d, λ). First we deal with some easy special cases. If λ = 0, then any d -0 transversal is the whole space, and then we can have as many points as we want. Also, in the trivial range, the following theorem states that the precise value of

In particular, when α(d, λ) ⩾ 1, the vertex set of the cyclic polytope with at least (dλ + 1) + k points does not have a complete Kneser (dλ)-transversal to the convex hulls of its k-sets.

CHAPTER 9. KNESER TRANSVERSALS

The situation for complete Kneser transversals is different. Indeed, in the previous section, we have seen how to detect complete Kneser transversal by using only Radon partitions implying that the existence of such transversals is an invariant of the order type. This naturally lead us to consider the notions of stability and instability. Definition 9.2.1 (Stable Kneser transversal). A Kneser transversal is said to be stable (resp. unstable) if the given set of points can be slightly perturbed (move each point to, not more than ϵ > 0 distance of their original position) such that the new configuration of points admits (if there is any) only complete Kneser transversals (resp. the new configuration of points does not admit a Kneser transversal).

First, (complete) Kneser transversals for codimensions 2 and 3 can be determined.

Theorem 9.2.2 (CMMMR [C13]). Let X = {x 1 , x 2 , . . . x n } be a collection of n = d + 2(kλ) points in general position in R d . Suppose that L is a (dλ)-plane transversal to the convex hulls of all k-sets of X with λ = 2, 3 and k ⩾ λ + 2 and d ⩾ λ. Then, either

(1) L is a complete Kneser transversal (i.e., it contains dλ + 1 points of X) or

(2) |X ∩ L| = d -2(λ -1) and the other 2(k -1) points of X are matched in k -1 pairs in such a way that L intersects the corresponding closed segments determined by them.

It is not difficult to generalize Theorem 9.2.2 for λ > 3 if we ask d-2(λ-1) points of X to be contained in a (dλ)-plane transversal L and a collection of simplices (formed with the rest of points) of different dimensions (not necessarily intervals) to be all intersected by L. However, we have not been able to prove that also for λ > 3 every simplex can be chosen to be an interval.

Theorem 9.2.3 (CMMMR [C13]). Let X = {x 1 , . . . , x n } be a finite collection of n = d + 2(kλ) points in R d , with kλ ⩾ 2, λ = 2, 3 and d ⩾ λ. For every ϵ > 0 there exists X ′ = {x ′ 1 , . . . , x ′ n }, a collection of points in R d in general position such that |x ix ′ i | < ϵ, for every i = 1, . . . , n, and with the property that every transversal (dλ)-plane to the convex hull of the k-sets of X ′ is complete (i.e., it contains dλ + 1 points of X ′ ). 9.2.2 Bounds for m(k, d, λ) when λ = 2, 3

We start by proving the following upper bound Theorem 9.2.4 (CMMMR [C13]).

Proof. Let X = {x 1 , . . . , x n } be a finite collection of points in R d embedded in the moment curve on n = d+2(k-λ) vertices. On one hand, by Theorem 9.2.3, there exists a collection of points X ′ = {x ′ 1 , . . . , x ′ n } in R d in general position with the order type as the cyclic polytope and with the property that every (dλ)-plane transversal to the convex hull of the k-sets of X ′ is complete (i.e., it contains dλ + 1 points of X ′ ). On the other hand, by Corollary 9.1.16, we have that It turns out that all abstract order types of rank 4 with at most 7 elements are realizable [START_REF] Björner | Oriented matroids, volume 46 of Encyclopedia of Mathematics and its Applications[END_REF]Corollary 8.3.3], that is, they correspond to 7 points in the space, but not necessarily in general position.

Theorem 9.2.10 (CMMMR [C13]). Among the 5083 abstract order types of rank r = 4 (d = 3) with n = 7 there are 1158 having a complete Kneser transversal line to all the tetrahedra. This calculation was obtained by applying the same arguments as those used for Theorem 9.2.7 (via Radon partitions) and by taking care of the cases when three or more points are collinear and when four or more points are coplanar (via the circuits of the the oriented matroid).

Appendix A

The 24-periodic orbits with balanced periods

In this appendix, the orbits of representatives X i , for all the 17 elements of BPO 24 = X 1 , X 2 , . . . , X 17 of Chapter 1, are given. Moreover, we have also obtained the orbits of the elements of BPO 12 = Y 1 , Y 2 . Indeed, as already remarked, we have

Conclusion and future work

In this chapter, we conclude by giving an outlook to future work based on results obtained in this thesis.

Triangles of average weight in elementary cellular automata

In Definition (Elementary cellular automaton). The elementary cellular automaton associated with w : (Z/2Z) 3 -→ Z/2Z is the map ∂ w defined by ∂ w (a i ) i∈Z = (w (a i-1 , a i , a i+1 )) i∈Z , for all doubly infinite sequences (a i ) i∈Z of Z/2Z. There exist 256 elementary cellular automata. Among them, some are linear and we retrieve the Pascal cellular automaton which corresponds to the map associated with w(x, y, z) = y+z, for all (x, y, z) ∈ (Z/2Z) 3 . For any doubly infinite sequence S, this derivation process can be repeated and we can consider the orbit O S = (∂ i w S) i∈N , where ∂ i w is recursively defined by ∂ i w S = ∂ w (∂ i-1 w S) for all i ⩾ 1 with ∂ 0 w S = S. Binary triangles appearing in a such orbit can then been considered as for binary Steinhaus triangles.

It is known that in binary Steinhaus triangles of size n, the average number of zeroes and ones is exactly 1 2 n+1 2 , for all non-negative integers n. Another example, when w is the constant map equal to 1, it is easy to show that the average number of zeroes and ones in binary triangles of size n generated from ∂ w are

respectively, for all non-negative integers n.

In Chapter 1 and in [C7], a strategy for obtaining balanced binary triangles from periodic binary sequences has been explored. The objective here is to adapt this method in order to obtain triangles of average weight in any elementary cellular automaton.

CONCLUSION AND FUTURE WORK

Problem P1. For each of the 256 elementary cellular automata ∂ w , do there exist binary triangles of size n generated from ∂ w and with an average number of zeroes and ones, for all positive integers n?

Generalizations of symmetric binary triangles

In Chapter 2, symmetric binary triangles have been studied. Generating index sets and vector bases of linear subspaces of rotationally, horizontally and dihedrally symmetric binary triangles have been obtained. Here, we propose to extend this study in two directions: in higher dimensions with binary Steinhaus tetrahedra and for triangles of numbers modulo m built with a specific local rule for which the set of these triangles is invariant under the action of the dihedral group D 3 .

Symmetric binary Steinhaus tetrahedra

A binary Steinhaus tetrahedron of size n is a tetrahedron (a i,j,k ) 1⩽i⩽j⩽k⩽n of zeroes and ones with the (Pascal) local rule

for all integers i, j and k such that 2 ⩽ i ⩽ j ⩽ k ⩽ n. The set of binary Steinhaus tetrahedra of size n is denoted by ST 4 (n). Since a binary Steinhaus tetrahedron (a i,j,k ) 1⩽i⩽j⩽k⩽n is completely determined by its first row (a 1,j,k ) 1⩽j⩽k⩽n , it follows that ST 4 (n) is a vector space over Z/2Z of dimension n+1

2 . An example of binary Steinhaus tetrahedron of size 5 is depicted in Figure C1. The symmetry group of regular tetrahedra is constituted by the identity map, 11 rotations (8 rotations about an axis through a vertex and the center of the opposite face by an angle of ± 2π 3 and 3 rotations about an axis through centers of opposite edges by an angle of π 2 ), 6 reflections and 6 rotoflections. This symmetry group is isomorphic to S 4 and the subset of rotations is a subgroup of order 12 isomorphic to A 4 .

From the local rule (LR), for any binary Steinhaus tetrahedron T and for all g ∈ S 4 , it is easy to see that g(T ) is also a binary Steinhaus tetrahedron, of the same size as T .

Problem P2. For every subgroup G of S 4 and every non-negative integer n, we consider the linear subspace of binary Steinhaus tetrahedra of size n defined by

The question here is to characterize ST 4 (n) G , to determine its dimension and a vector basis, for all non-negative integers n and for every subgroup G of S 4 .

Symmetric triangles modulo m

Triangles similar to binary Steinhaus triangles can be considered for other kinds of numbers. Triangles defined from quasigroups have been studied in [START_REF] Barbé | Cellular automata, quasigroups and symmetries[END_REF]. A quasigroup (G, ⋆) is a finite set G with a binary operation ⋆ for which, for every a, b ∈ G, there exist unique elements x, y ∈ G such that a ⋆ x = b and y ⋆ a = b. A ∇ ⋆ -configuration of size n is a triangle (a i,j ) 1⩽i⩽j⩽n of elements in (G, ⋆) verifying the local rule

for all integers i and j such that 2 ⩽ i ⩽ j ⩽ n. For (G, ⋆) = (Z/2Z, +), a ∇ ⋆ -configuration simply corresponds to a binary Steinhaus triangle.

A quasigroup (G, ⋆) is said to be semisymmetric if y ⋆ (x ⋆ y) = x, for all x, y ∈ G. It is easy to see that, for a semisymmetric quasigroup (G, ⋆), the set of ∇ ⋆ -configurations is closed under 120 degrees rotation. Moreover, if (G, ⋆) is a commutative quasigroup, the set of ∇ ⋆ -configurations is also closed under the horizontal reflection.

A ∇ ⋆ -configuration is said to be rotationally symmetric if it is invariant by rotation and it is said to be dihedrally symmetric if it is invariant by rotation and by horizontal reflection (under the action of D 3 ).

Rotationally symmetric ∇ ⋆ -configurations, for semisymmetric quasigroups, and dihedrally symmetric ∇ ⋆ -configurations, for commutative semisymmetric quasigroups, have been studied in [START_REF] Barbé | Cellular automata, quasigroups and symmetries[END_REF]. The authors have obtained the cardinality of sets of rotationally symmetric and dihedrally symmetric ∇ ⋆ -configurations.

Theorem (Theorem 3.4 in [START_REF] Barbé | Cellular automata, quasigroups and symmetries[END_REF]). Let (G, ⋆) be a semisymmetric quasigroup. The number conf R (n) of rotationally symmetric ∇ ⋆ -configurations of size n is given by conf

Theorem (Theorem 3.16 in [START_REF] Barbé | Cellular automata, quasigroups and symmetries[END_REF]). Let (G, ⋆) be a commutative semisymmetric quasigroup. The number conf D (n) of dihedrally symmetric ∇ ⋆ -configurations of size n is given by

Suppose now that G = Z/mZ, with m ⩾ 2, and let ⋆ be the binary operation defined by x ⋆ y = -(x + y), for all x, y ∈ Z/mZ. Then, the quasigroup (Z/mZ, ⋆) is commutative and semisymmetric. The objective here is to study the sets of rotationally symmetric and dihedrally symmetric ∇ ⋆ -configurations of size n of (Z/mZ, ⋆), that are denoted by RSC (Z/mZ,⋆) (n) and DSC (Z/mZ,⋆) (n), respectively. Examples of rotationally symmetric and dihedrally symmetric ∇ ⋆ -configurations of Z/6Z are depicted in Figure C2.

It is clear that RSC (Z/mZ,⋆) (n) and DSC (Z/mZ,⋆) (n) are submodules of the free Z/mZmodule of ∇ ⋆ -configurations.

Universal sequence of balanced Steinhaus triangles modulo m even

In Chapter 4, the Molluzzo Problem on the existence of balanced Steinhaus triangles modulo m has been studied. Several solutions are presented, essentially in the case where m is odd. The main results obtained in Chapter 4 come from the analysis of Steinhaus triangles associated with arithmetic progressions and with interlaced arithmetic progressions. More precisely, the following two theorems are given. The second main result of Chapter 4 concerns a particular sequence of integers, called the universal sequence, that is the interlacing of three arithmetic progressions defined by US = IAP ((0, -1, 1), (1, -2, 1)) = (. . . . . . , -3, -3, 5, -2, -2, 3, -1, -1, 1, 0, 0, -1, 1, 1, -3, 2, 2, -5, 3, 3, -7, . . . . . .) .

Theorem (Chappelon [C5]). Let m be an odd number and let S = π m (US) be the projection of the universal sequence in Z/mZ. Then, the following Steinhaus triangles of size n are balanced:

• ∇S[n, 2n -1], for all n ≡ 0 mod m,

• ∇∂S[0, n -1], for all n ≡ -1 mod 3m.

In the last part of Chapter 4, a positive solution to the Molluzzo Problem for m = 4 is obtained by lifting to Z/4Z specific known solutions in Z/2Z. The main objective here is to try to obtain the existence of balanced Steinhaus triangles modulo even numbers by lifting to Z/2 k mZ the universal sequence modulo m odd. The main idea is to continue the study of interlaced arithmetic progressions. Recent conjectures based on computer experiments are given below. Conjecture C1. Let S be the 12-interlaced arithmetic progression defined by S = IAP ((1, 22, 13, 12, 26, 7, 0, 4, 5, 10, 12, 16), (17,2,[START_REF] Arocha | Transversals to the convex hulls of all k-sets of discrete subsets of R n[END_REF]17,[START_REF] Bartsch | Steinhaus-Figuren modulo 2 und verallgemeinerte Steinhaus-Dreiecke[END_REF]7,7,[START_REF] Bartsch | Steinhaus-Figuren modulo 2 und verallgemeinerte Steinhaus-Dreiecke[END_REF]17,[START_REF] Arocha | Transversals to the convex hulls of all k-sets of discrete subsets of R n[END_REF]2,17)) .

For every m ∈ {2, 4, 8, 16, 32}, we consider the projection π m (S) in Z/mZ. Then, the Steinhaus triangle ∇π m (S)[n, 2n -1] of size n is balanced, for all n ≡ 0 or -1 mod 12m. Conjecture C2. Let m be a positive integer not divisible by 64. Let k and m 0 be the integers such that m = 2 k .m 0 with m 0 odd and k ∈ {0, 1, 2, 3, 4, 5}. Let S be the 12interlaced arithmetic progression of Z/mZ defined by π 2 k (S) = IAP ((1, 22, 13, 12, 26, 7, 0, 4, 5, 10, 12, 16), (17,2,[START_REF] Arocha | Transversals to the convex hulls of all k-sets of discrete subsets of R n[END_REF]17,[START_REF] Bartsch | Steinhaus-Figuren modulo 2 und verallgemeinerte Steinhaus-Dreiecke[END_REF]7,7,[START_REF] Bartsch | Steinhaus-Figuren modulo 2 und verallgemeinerte Steinhaus-Dreiecke[END_REF]17,[START_REF] Arocha | Transversals to the convex hulls of all k-sets of discrete subsets of R n[END_REF]2,17))

CONCLUSION AND FUTURE WORK

Theorem. Let n be a positive integer. Suppose that, for all i ∈ {1, . . . , k}, the subsequence (∆F i (j)) 1⩽j⩽n is monotonically increasing and consider the sequence (u j ) 1⩽j⩽kn of these kn integers sorted in increasing order. Then, F (l) = l j=1 u j for all l ∈ {1, 2, . . . , n}, i.e., u l = ∆F (l) for all l ∈ {1, 2, . . . , n}.

Remark. The sequence of differences (∆F (l)) 1⩽l⩽n is monotonically increasing too.

Problem P7. The question here is to study the generalization of Frame-Stewart numbers introduced before and to obtain explicit formulas in the case of the Tower of Hanoi problem on graphs.

Résumé en français

Ce mémoire d'habilitation est organisé en deux parties indépendantes : une première partie qui traite de mes principaux résultats sur les triangles et les graphes de Steinhaus et une seconde partie à propos d'autres résultats obtenus sur les semigroupes numériques, des problèmes du type des tours de Hanoï, la théorie de Ramsey et sur les transversaux de Kneser.

Le thème de la première partie, les triangles et les graphes de Steinhaus, est mon plus ancien sujet de recherche, sur lequel j'ai commencé à travailler au cours de ma thèse de doctorat, soutenue en 2008. Depuis, j'ai continué à travailler et explorer divers problèmes sur ces structures ou sur des généralisations de celles-ci. Cette partie est divisée en cinq chapitres : deux chapitres à propos des triangles de Steinhaus binaires, le premier chapitre sur les triangles équilibrés et le second sur les triangles de Steinhaus possédant des propriétés de symétrie, un chapitre sur les graphes de Steinhaus et finalement deux chapitres sur de possibles généralisations des triangles de Steinhaus binaires, un sur une généralisation sur les nombres modulaires et un autre chapitre pour les généralisations en dimensions supérieures avec les simplexes équilibrés.

Dans le Chapitre 1, la structure de triangles de Steinhaus binaires est abordée. Il s'agit ici de l'une des structures mathématiques les plus élémentaires, que même un écolier pourrait comprendre. La figure ci-dessous est constituée de 14 zéros et de 14 uns. Ils sont arrangés de telle sorte que l'on a le chiffre zéro sous chaque paire d'éléments identiques et le chiffre un sous chaque paire d'éléments distincts. Si la première ligne était constituée 0 0 1 0 1 0 0 0 1 1 1 1 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 0 par n termes, alors dans une figure analogue on retrouverait n(n+1) 2 éléments, l'exemple précédent correspondant au cas n = 7. Dans son livre intitulé "One hundred problems in elementary mathematics", Hugo Steinhaus posa la question en 1958 de savoir s'il est possible de construire une figure, analogue à la précédente, contenant n éléments dans sa première ligne. Un triangle de Steinhaus binaire est un triangle binaire, pointant vers le bas, construit avec la même règle locale. Un triangle est dit équilibré s'il contient autant de zéros que de uns. Le problème de Steinhaus a été résolu positivement pour la première fois en 1972 par Heiko Harborth. Il a montré que, pour tout entier positif n ≡ 0 ou 3 mod 4, il existe une suite binaire de longueur n qui est la première ligne d'un