
HAL Id: tel-03590565
https://hal.science/tel-03590565

Submitted on 27 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Design and Resource Management of Fog
Infrastructures for Vehicular Networks

Ioanna Stypsanelli

To cite this version:
Ioanna Stypsanelli. Optimal Design and Resource Management of Fog Infrastructures for Vehicular
Networks. Networking and Internet Architecture [cs.NI]. INSA de Toulouse, 2020. English. �NNT : �.
�tel-03590565�

https://hal.science/tel-03590565
https://hal.archives-ouvertes.fr


THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE
Délivré par :

l’Institut National des Sciences Appliquées de Toulouse (INSA de Toulouse)

Présentée et soutenue le 07/12/2020 par :
Ioanna Vasiliki STYPSANELLI

Optimal Design and Resource Management of Fog
Infrastructures for Vehicular Networks

JURY
Congduc Pham Professeur des universités Rapporteur
Toufik Ahmed Professeur des universités Rapporteur
Thierry Monteil Professeur des universités Président du jury
Anne-Cécile Orgerie Chargé de Recherche Examinateur
Olivier Brun Directeur de Recherche Directeur de thèse
Balakrishna Prabhu Chargé de Recherche Directeur de thèse
Samir Medjiah Maître de conférences Membre Invité
Olivier Guérard Ingénieur Membre Invité

École doctorale et spécialité :
EDSYS : Informatique 4200018

Unité de Recherche :
LAAS - Laboratoire d’Analyse et d’Architecture des Systèmes

Directeur(s) de Thèse :
Olivier Brun et Balakrishna Prabhu

Rapporteurs :
Congduc Pham et Toufik Ahmed



Abstract

The advent of connected cars will drive the need for infrastructures supporting
latency critical applications whose requirements can no longer be supported by
the distant Cloud. The Fog, on the other hand, is a new paradigm bringing
computation, storage and networking closer to the user. The Fog can be seen as
a more geographically distributed Cloud. However building such an infrastructure
requires thoughtful design decisions to minimize the installation and operating
costs. There are other costs associated with operating a Fog network that can
be optimized by considering mobility patterns. There are also challenges around
allocating tasks in Fog networks.

In this thesis, we provide solutions to minimize the Fog infrastructure costs
including compute capacity, bandwidth and energy by taking advantage of traffic
statistics and mobility patterns. In a first study, we explore how to minimize
the cost of an upcoming Fog infrastructure at its design phase. The solution
we propose uses optimization and queuing theory and returns the optimal set of
Fog nodes to open conjointly with the corresponding routing strategy for base
stations. In a second study, we provide a model to minimize overheads introduced
by service migrations in the Fog based on mobility patterns. In the last study,
we examine distributed task allocation strategies for base stations which neither
cooperate nor require knowledge of the physical infrastructure. We propose a
simulation model to compare algorithms reacting to the response times they
observe from Fog nodes and provide benchmarks.



Abstract

L’avènement des véhicules connectés va entraîner la nécessité de construire
des infrastructures capables de répondre aux besoins d’applications à latence
faible dont les contraintes ne pourront plus être satisfaites par le Cloud. Le Fog
est un nouveau paradigme qui rapproche les calculs, le stockage et le réseau de
l’utilisateur. Le Fog peut être perçu comme un Cloud plus réparti géographique-
ment. Cependant, la construction d’une telle infrastructure nécessite une décision
réfléchie afin de minimiser les coûts d’installation et d’opération. D’autres coûts
associés au fonctionnement d’un réseau Fog peuvent être optimisés en fonction
des profils de mobilité des usagers. Il y a également des défis autour de l’allocation
des tâches dans les réseaux Fog.

Dans cette thèse, nous proposons des solutions pour minimiser les coûts d’une
infrastructure Fog, y compris ceux de capacité de calcul, la bande passante et
les coûts énergétiques, en tirant parti de statistiques de trafic et des profils de
mobilité. Dans une première étude, nous explorons comment minimiser le coût
d’une infrastructure Fog lors de sa conception. La solution que nous proposons
utilise l’optimisation et la théorie des files d’attentes et permet d’obtenir un
ensemble optimal de nœuds Fog à installer ainsi que la stratégie de routage des
stations de base cellulaires adaptée. Dans une deuxième étude, nous proposons un
modèle pour minimiser les surcoûts résultant des migrations de service à l’aide
des profils de mobilité. Dans la dernière étude, nous examinons des stratégies
réparties d’allocation de tâches pour les stations de base sans qu’elles n’aient
besoin de coopérer ni qu’elles n’aient aucune information sur l’infrastructure.
Nous proposons un modèle de simulation pour comparer la réaction de divers
algorithmes en fonction des temps de réponse des nœuds Fog qu’ils observent.
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Resumé en français

Contrairement aux services traditionnels déployés dans le Cloud, de nombreuses
applications émergentes, issues notamment de l’IoT, ont besoin d’une latence
faible et prédictible. C’est par exemple le cas des applications des véhicules con-
nectés liées à la sécurité des automobilistes. Le Cloud offre une grande puissance
de calcul, néanmoins les datacenters restent éloignés des utilisateurs.

Plusieurs paradigmes ont été étudiés cette dernière décennie afin de rap-
procher le calcul et le stockage à la terminaison du réseau. Parmi ces initia-
tives on peut noter l’Edge computing qui permet de répartir davantage le calculs
en limitant la nécessité d’utiliser le réseau jusqu’aux datacenters du Cloud. Le
paradigme de l’Edge a été initialement utilisé pour la distribution de contenus
(Content Delivery Networks, ou CDN). La position exacte de la terminaison du
réseau dépend du point de vue du fournisseur et de l’utilisateur. Les utilisateurs
ayant des opérateurs réseau différents, il n’y a pas de garantie que l’opérateur
fournisse des services Edge au point de terminaison de leur réseau et dans ce cas
il s’agit de rejoindre le point Edge le plus proche.

Un autre paradigme, le Fog Computing, a été proposé par Cisco en 2015 pour
créer un continuum entre le Cloud et l’Edge et rend transparente la gestion des
ressources en fonction de la qualité de service demandée. Plusieurs architec-
tures Fog ont été proposées par rapport à la disposition des ressources. Certains
imaginent les ressources computationnelles ou de stockage directement dans les
stations de base. D’autres l’imaginent directement dans les appareils des util-
isateurs. Une autre approche consiste à considérer que les ressources Fog sont
dans les nœuds indépendants, similaires à des micro-datacenters (ou Cloudlets
[Ceselli 2015]). Selon la définition officielle du NIST [NIS ] ils sont appelés sim-
plement des nœuds Fogs qui sont répartis sur le territoire à proximité immédiate
des utilisateurs. C’est cette dernière approche que nous utilisons dans nos études.

Il est toutefois essentiel de garantir que les gains en termes de latence ne
soient pas obtenus au prix d’une explosion des coûts de capacité, d’exploitation
et d’énergie due à la duplication de ressources dans de multiples nœuds Fog. En
d’autres termes, il est impératif de trouver un bon compromis entre le coût de
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l’infrastructure de Fog Computing et le respect des contraintes de délai.

Problèmes étudiés
Nous nous intéresserons à trois problématiques. La première cherche à fournir
une solution pour la conception d’infrastructures Fog qui est optimale en ter-
mes de coût et de qualité de service pour un réseau donné et une estimation de
trafic prévu. Nous cherchons à fournir le meilleur compromis entre qualité de
service et coût d’infrastructure. En effet fournir la meilleure qualité de service
en multipliant les nœuds Fog serait une approche simple mais engendre un coût
très important, à l’inverse centraliser les datacenters comme le fait le Cloud ne
permet pas de garantir les latences requises à la qualité de service exigée par le
Fog. Nous y répondons par une solution qui utilise les technique de l’optimisation
linéaire mixte.

La deuxième problématique cherche à fournir des techniques pour minimiser
le coût dû à la migration de services Fog et en particulier pour répondre aux
événements liés à la mobilité des utilisateurs. On imagine que les utilisateurs
du Fog, particulièrement ceux qui bénéficient des services du Fog à travers leur
véhicule connecté, vont se déplacer de manière à ce que les latences promises vers
un noeud Fog risquent de croître au-delà des contraintes de qualité de service
et qu’il faudra migrer le traitement du service vers un noeud Fog plus proche
de la nouvelle position des utilisateurs. Dans ce cas, nous considérons que cette
migration de services va améliorer la qualité de service. On pourrait imaginer
une solution dans laquelle les services suivent les utilisateurs et se déplacent donc
à chaque fois que l’utilisateur s’éloigne. Néanmoins, les migrations fréquentes
engendrent des coûts inutiles.

Nous étudions donc une solution pour minimiser le nombre des migrations
tout en garantissant un niveau de qualité de service et ainsi donc satisfaire les
exigences tout en minimisant le coût global de l’utilisation de l’infrastructure.

La dernière problématique se déroule également à la phase opérationnelle mais
de façon continue. Il s’agit d’étudier la façon dont les stations de base allouent
les tâches aux nœuds Fog et à quel nœud Fog lorsqu’ils sont connectés à plusieurs
nœuds. Cette fois ci nous utilisons une approche orientée simulations avec un
modèle non-coopératif ou les stations de base ne partagent pas d’information
et n’ont pas besoin de communiquer. Nous examinons comment les tâches sont
allouées par les stations de base qui ne font qu’observer les temps de réponse des
services envoyées aux différents nœuds. Différents algorithmes sont comparés à
l’aide de scénarios simulant des événement imprévus, comme des perturbations.
Enfin nous nous penchons sur le problème d’offloading de tâches d’un nœud Fog
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vers le Cloud.

Première Problématique

Le problème peut être formalisé de la façon suivante. On considère un ensemble
D de sites potentiels où on peut installer un micro-datacentre, un ensemble B
de noeuds source de trafic, et un ensemble S de classes de jobs. On connaît la
demande λk,ti de chaque noeud source i et de chaque classe k à chaque instant
t = 1, 2, . . . , τ . Il s’agit de prendre trois types de décision:

• Il faut décider quels sont les sites à ouvrir, sachant que le site j a un coût
d’ouverture βj. On définit pour cela la la variable binaire uj qui indique si
le site j est ouvert (uj = 1).

• Il faut déterminer le nombre cj de serveurs installés dans le site j. On note
gj(c) le coût lié à l’installation de c serveurs dans le site j. Ce coût est en
général une fonction concave de la capacité pour représenter les économies
d’échelle en faveur des grands datacenters.

• Il faut décider du routage des trafics issus des différentes sources de trafic.
On note xk,ti,j la quantité de trafic de classe k de i vers j à l’instant t. Ces
variables de routage doivent vérifier des contraintes linéaires classiques de
conservation et des contraintes de positivité.

Chaque job de classe k doit être traité dans un délai maximum de Tk unités
de temps. Plus précisément, si on note Sk,tj la variable aléatoire représentant le
temps de traitement d’un job de classe k dans le site j à l’instant t, et `ki,j le temps
réseau (supposé fixe) pour envoyer la requête et recevoir la réponse, il s’agit de
vérifier la contrainte probabiliste P

(
Sk,tj + `ki,j ≥ Tk

)
≤ δk. En d’autres termes,

la probabilité que le temps de traitement de bout-en-bout d’une requête de classe
k envoyée au site j soit plus grand que Tk doit être inférieure à un seuil fixé δk.

L’objectif est de minimiser le coût global de l’infrastructure
∑
j∈D

βj uj + gj(cj),

tout en satisfaisant les contraintes probabilistes sur les délais des jobs et les
contraintes de routage.
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Résolution

Nous supposons que chaque type de jobs est traité sur des serveurs dédiés, et on
note ckj le nombre de serveurs réservés pour les jobs de classe k dans le site j. On
a alors cj = ∑

k c
k
j . Nous supposons de plus que les serveurs dédiés à la classe k

peuvent être modélisés par un ensemble de ckj files M/M/1/∞, chaque nouvelle
requête étant routée vers un de ces serveurs avec la probabilité 1

ck
j
(routage de

Bernoulli). Sous ces hypothèses, on a P
(
Sk,tj ≥ z

)
= e−(µk−yk,t

j /ck
j ) z, où 1/µk est

le temps moyen de traitement d’un job de classe k sur un serveur, et où yk,tj est
le taux d’arrivée des requêtes de classe k au site j à l’époque t = 1, . . . , τ . En
utilisant cette expression, on peut montrer que, étant donné un routage fixé du
trafic, la valeur optimale de ckj est

ckj = max
t,i

 yk,tj
µk − dki,j

ak,ti,j

 , (1)

où dki,j = log( 1
δk

)/
[
Tk − `ki,j

]
est une constante, où la variable binaire ak,ti,j vaut 1

si xk,ti,j > 0. Les constants `ki,j expriment les latences des programmations fixes en
entrée du programme.

Dans les deux cas, le problème peut alors être résolu en utilisant un solveur
MILP.

L’équation (1) peut aisément être linéarisée, ce qui permet de formuler le
problème comme un problème linéaire en nombres entiers dans le cas où gj(c) =
αj c. Dans le cas où la fonction g() est une fonction non-linéaire concave, on
peut utiliser une approximation linéaire par morceaux. Concrètement, le solveur
MILP dans Gurobi que nous utilisons est capable de linéariser cette fonction à
l’aide de piecewise linearity function et de façon tout à fait automatique grâce à
un objectif dit "PWL" qui utilise des "Special Ordered Sets".

Conclusion de la premiere problèmatique

Les expérimentations réalisées avec Gurobi ont montré que des instances de prob-
lème réalistes peuvent être résolus en des temps de calcul raisonnables. Les com-
paraisons avec deux solutions heuristiques, consistant soit à router les trafics vers
le micro-datacenter le plus proche, soit à utiliser la solution centralisée de coût
minimum, suggèrent que des économies significatives peuvent être réalisées en
utilisant la solution optimale du problème.



Resumé en français 11

Deuxième Problématique

Un défi majeur qui doit être traité dans le Fog est de maintenir la qualité de ser-
vice des utilisateurs mobiles. Dans cette deuxième problématique nous nous in-
téresserons auxmigrations de services dans les infrastructures Fog. Une migration
de service correspond au déplacement d’un service applicatif et éventuellement
des données associées d’un nœud Fog à un autre. Elle a pour objectif de satis-
faire les contraintes de latence et est en général nécessaire lorsqu’un utilisateur
s’éloigne trop du nœud Fog qui lui a été affecté. En pratique, ces migrations ont
un coût et plus elles sont fréquentes, plus le coût sera important pour l’opérateur
réseau. Il faut noter par ailleurs que certains services sont stateful (le résultat
d’une requête dépend du contexte et de l’historique), ce qui implique de restau-
rer l’état persistant lors de la réinstanciation du service, alors que d’autres sont
stateless (chaque transaction est effectuée à partir de rien, comme si c’était la
première fois). Il s’agit d’un sujet important qui n’est pas traité dans cette thèse.

Dans notre approche, le déplacement des données et du service sont consid-
érés comme une seule migration. L’idée de notre étude est de trouver comment
minimiser ces coûts en minimisant le nombre de migrations, tout en conservant
la qualité de service requise. On peut imaginer une solution naïve dans laquelle
le service est toujours migré vers le nœud Fog le plus proche de la station de base
à laquelle l’utilisateur est connecté.

Cependant ce modèle peut engendrer des migrations inutiles et nous cher-
chons donc à trouver quels nœuds Fog les stations de base doivent privilégier afin
d’éviter des migrations inutiles.

Dans un premier temps nous nous intéressons à l’optimisation pour toute une
flotte des véhicules en partant des métriques qui ont été collectées par les stations
de base sur les événements de handover du réseaux radio 4G/5G pour un réseau
Fog donné.

Nous pré-sélectionnons les nœuds Fog qui satisfont les contraintes de qualité
de service et de latence par chaque station de base. Notre objectif correspond
donc à minimiser le coût tout en garantissant que toutes les stations de base
sont connectées et peuvent allouer des tâches. Nous proposons une formulation
linéaire en nombres entiers du problème, qui peut être résolu en utilisant un
solveur MILP comme Gurobi.

Comme un fournisseur de services peut souhaiter exécuter fréquemment la
mise à jour du modèle, il peut être intéressant de fournir des algorithmes plus
rapides qui s’exécutent en temps polynomial. Nous proposons donc également
des heuristiques basées sur des algorithmes conçus pour les problèmes de Set
Cover ou de Weighted Set Cover. Dans ce cas, nous modélisons chaque nœud
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Fog comme l’ensemble de stations de base auxquelles ce dernier est connecté tout
en respectant les contraintes de qualité de service. Nous essayons de minimiser
le nombre des nœuds Fog à sélectionner pour couvrir toutes les stations de base.
L’ajout des poids permet d’obtenir la solution la plus optimale en fonction de la
quantité de trafic qui est envoyée entre les stations de base pour des régions plus
actives du trafic.

Nos expériences montrent que pour de petites instances le solveur et les heuris-
tiques donnent des résultats similaires. Pour des instances de plus grandes tailles,
Gurobi obtient des solutions significativement plus efficaces. En terme de temps
d’exécution les algorithmes gloutons sont bien sûr plus performants. Il s’agit donc
d’un compromis à déterminer en fonction du temps d’exécutionet du niveau de
sous-optimalité acceptables.

Le modèle que l’on propose dans cette thèse est une première approche simple
pour l’optimisation des migrations de services dans le cas d’utilisateurs mobiles.
Malheureusement il ne traite pas correctement un certain nombre de scénarios.
Par exemple, tandis qu’ajouter plus de nœuds Fog devrait naturellement conduire
à plus de migrations, ce modèle les annule ce qui entraîne une diminution des
coûts. Une approche qui reflète mieux la réalité basée sur des chemins résout ces
problèmes et est proposée comme perspective dans cette thèse. Cependant, si
l’on n’a que les statistiques de hand-over sans pouvoir suivre les utilisateurs, ce
modèle fournit une solution qui encourage la minimisation de migrations.

Troisième Problématique
Dans la dernière partie de la thèse, nous nous intéressons à l’allocation dynamique
des tâches dans le réseau Fog. La question à laquelle nous cherchons à répondre
est la suivante: comment une station de base doit-elle répartir les tâches qu’elle
reçoit entre les différentes stations de base ? Nous nous intéressons à des algo-
rithmes permettant d’adapter dynamiquement l’allocation de tâches de manière
à pouvoir réagir à différentes perturbations ou événements adverses (variations de
trafic, pannes, etc). Nous nous focalisons sur une approche entièrement décentral-
isée dans laquelle les stations de base n’ont aucune information sur l’infrastructure
et ne se coordonnent pas.

L’approche que nous suivons est expérimentale: nous proposons un modèle
de simulation pour observer et comparer différentes stratégies et leur robustesse
sous différentes conditions. Nous utilisons pour cela le framework OMNET++
pour créer une simulation et comparer les résultats de ces algorithmes.

Les nœuds Fog et Cloud sont modélisés comme des ensembles de files d’attente
parallèles à n serveurs. De nombreux paramètres (nombre de serveurs, distribu-
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tion des temps de service, taux d’arrivée, latence de communication etc.) sont
ajustables et permettent de définir différents scénarios. Par exemple, nous util-
isons une distribution exponentielle pour simuler les conditions normales de trafic
et une distribution de Pareto pour simuler des conditions avec plus de variabil-
ité. Le modèle de simulation permet par ailleurs l’injection de perturbations (des
variations de trafic par exemple) afin d’étudier à quelle vitesse les algorithmes
d’allocation de tâches sont capables de s’y adapter.

Les différents algorithmes d’allocation de tâches que nous simulons n’ont
aucune information sur l’infrastructure de calcul. Ils réagissent uniquement
aux temps de réponse qu’ils observent des différents micro-datacenters. Nous
considérons des algorithmes d’apprentissage très simples, comme l’algorithme
ε-greedy, l’allocation Softmax, l’algorithme EXP3 développé pour les bandits
manchots adversariaux ou encore l’approche Sensible Routing proposée dans
[Gelenbe 2003, Wang 2018a]. Les performances de ces algorithmes (temps de
réponse moyen obtenu, vitesse de convergence suite à une perturbation, ro-
bustesse à la variabilité du trafic, etc.) sont comparées entre elles, ainsi qu’avec
une allocation statique dans laquelle les tâches sont systématiquement routées
vers le nœud Fog le plus proche.

Nous étudions sept scenarii différents. Pour tous ces scenarii, la méthode
Sensible Routing est celle qui offre les meilleurs temps de réponse. On remarque
toutefois que l’algorithme EXP3 semble plus plus robuste à la variabilité des
temps de service. On note par ailleurs que EXP3 réagit mal très temporairement
au moment des perturbations.

Dans trois de ces sept scénarios, nous nous intéressons à une extension du
modèle avec de l’offloading de tâches. Dans ce modèle les nœuds Fog sont con-
nectés au Cloud et ils ont la possibilité d’y envoyer leurs tâches. Cette décision
est prise localement par le noeud Fog qui estime le temps de traitement dans
le Cloud. Le noeud Fog compare ensuite ce temps de traitement dans le Cloud
avec la durée moyenne d’un traitement local. Finalement, le nœud Fog décide
de transmettre la tâche au Cloud si la durée de traitement dans le Cloud est
inférieure.

Dans ces trois scénarios exécutés avec l’offloading, nous remarquons que Sensi-
ble Routing fournit les meilleures performances. En comparant Sensible Routing
avec et sans offloading, nous remarquons que l’offloading va systématiquement
améliorer les temps de réponse au moment de perturbations. On constate aussi
que c’est la combinaison d’une allocation de tâche adaptative et d’un mécanisme
d’offloading qui permet d’obtenir les meilleures performances. Bien que les sta-
tions de base aient la possibilité d’envoyer directement leur tâches au Cloud, elles
préfèrent les envoyer aux nœuds Fog qui ont la possibilité d’offloader.
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Enfin, tous les services ne sont pas critiques. Pour certains services critiques
il n’est sûrement pas judicieux de faire de l’offloading. Il serait donc possible de
conserver de la capacité de garantir un traitement local dans le Fog.
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Introduction

While mobile networks were designed first and foremost to support voice, SMS
messages quickly became the new unit of communication. With the advent of
smartphones, data became prominent. As smartphones got more computationally
powerful and were made programmable by third party application developers, the
Cloud became the de facto hosting platform for the processing and the storage
of applications.

The Internet of Things (IoT) will connect various objects, buildings or facili-
ties to the Internet and will thus result in another dramatic increase of network
usage. Among these new IoT applications, connected cars will be pervasive: ac-
cording to the AECC, the Automotive Edge Computing Consortium [AEC ], by
2025 the number of connected vehicles will grow to around 100M globally and
the data volume transmitted between vehicles and the Cloud will be around 100
petabytes per month.

This breed of applications will likely contain latency critical features that have
stringent delay requirements that will not be satisfied by the far away Cloud. This
calls for the extension of the classical centralized Cloud computing architecture
towards a distributed architecture closer to user premises at the edge of the net-
work. Different extensions were proposed over the last decade as new paradigms
such as Edge Computing, Fog Computing, Cloudlet, Multi-Access Edge Comput-
ing, Mist Computing. . .

Through this picture we see we are moving to a world where network and
computing resources will become another ubiquitous utility like water and elec-
tricity. Just like any other utility, network and computing is serviced by providers
who aim to minimize their costs.

One way for Cloud operators to reduce cost is to share hardware and infras-
tructure between many clients. This is made possible notably by using Virtual-
ization. Virtualization is a proven technique in software that gives the illusion of
having multiple machines executing in one physical machine, allowing different
clients to share resources in an isolated manner. Another key benefit of virtu-
alization is the possibility of migrating virtual machines from one computer to
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another. This helps to redistribute computing load and keep services up in case
of hardware failure. This is called VM migration.

This thesis focuses on techniques useful to minimize infrastructure cost for
Fog providers in the specific context of connected cars. Many stakeholders can
be behind this infrastructure: telecommunication providers, Cloud providers, the
automotive industry, etc.

As a part of our work we have studied the problem of minimizing the cost
of a newly designed infrastructure for Fog computing and the associated routing
strategy as a function of compute capacity and others factors such as operational,
installation and energy costs, considering workload characteristics as statistics of
daily patterns and Quality-of-Service.

Another challenge for connected cars is the proper support of mobility for Fog
applications. Modern applications are made of a client and a server side called
service. Fog computing plans to support service migrations in order to keep the
low latency requirements as the user moves. However frequent migrations intro-
duce an overhead. In our second study, we aim to minimize the costs associated
with service migrations triggered by user mobility.

While a number of decisions can be taken at the design phase, these deci-
sions are taken based on estimations. Later, in the operation phase, we need
to handle real patterns that do not entirely match the estimations and we need
to employ methods that adapt to actual traffic. In our last study we propose a
simple simulation model for Fog computing based on OMNeT++ to compare the
performance of a number of state-of-the-art task allocation algorithms. We focus
on model-agnostic task allocation algorithms which only react to the response
times they observe from Fog and Cloud nodes.

Thesis Organization
This thesis is structured in the following way:

• Chapter 1 provides an overview of Cloud Computing and other associated
paradigms that take computations to the "edge" of the network. We par-
ticularly focus on Fog Computing which provides a continuum between the
Edge and the Cloud. An overview of requirements specific to connected cars
is presented.

• Chapter 2 presents the mathematical background and the techniques we
have used for this thesis, most notably Optimization and Queuing Theory.

• In Chapter 3, we introduce the problem of optimal capacity planning for a
newly designed Fog Infrastructure. We present our mathematical formula-



Introduction 27

tion, its resolution as a mixed-integer-linear programming formulation, and
our results.

• In Chapter 4, we examine ways to minimize overhead associated with service
migrations in the Fog. We focus mainly on an approach that takes handover
events as an input and suggest a more effective solution that requires path
based mobility patterns.

• In Chapter 5 we present a simulation model as well as the necessary back-
ground on the OMNeT++ simulator. We present a number of adaptive
task allocation methods. We provide comparisons and performance tests.
We test the algorithms in varied conditions in order to observe how robust
they are.

• In Chapter 6 we present a discussion on Fog computing, a summary of our
research contributions and future research directions.

Happy reading!
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Chapter 1

Cloud and Edge Computing
Paradigms

With the advent of the global Internet, network infrastructure has evolved to serve
computing. The major distant computing paradigm now in use is the Cloud.
Cloud computing is a centralized paradigm that provides a shared computing,
networking and storage infrastructure for computer applications.

The Cloud solves major concerns allowing economies of scale but is not suited
to all applications. Notably, in sharp contrast to traditional cloud services, many
emerging applications of the Internet-of-Things (IoT) require low and predictable
latency. To support these use cases, extensions of the classical centralized cloud
computing architecture have been proposed, bringing a distributed architecture
closer to user premises at the edge of the network.

Different extensions were proposed over the last decade as new paradigms
such as Edge Computing, Fog Computing, Cloudlet, Multi-Access Edge Comput-
ing, Mist Computing pushing computing to the edge. All these extensions take
computing closer to the user at the edge of the service provider’s network1.

In this chapter, we first present the cloud and edge computing paradigms.
Then we introduce the different distributed computing paradigms proposed in
the literature. We focus in particular on the Fog computing paradigm and its
application to connected cars.

1Because it depends on the point of view of the service provider, the actual position and
definition of the edge in the literature vary.
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1.1 Cloud Computing
Cloud computing is a centralized paradigm that provides a shared computing,
networking and storage infrastructure for computer applications accessed through-
out the Internet.

In the early days of computing, hardware came under the form of large com-
puters known as mainframes. Because computational power was very expensive,
users would connect to the mainframe using "dumb" terminals2. This approach is
called time sharing: instead of running one process or computation at a time the
operating system is able to run several which share CPU time. This technique led
to the design of multi-users systems where users could all run their own processes,
offering an opportunity for better sharing of resources. At a given time some users
may be actively running processes while others are idle [Tanenbaum 2015].

With the advent of the Internet and with the increase of network bandwidth,
it has become possible again to use a similar model of shared computing resources,
this time across long distances. A number of Internet actors used this opportunity
to introduce a centralized paradigm as a cost-effective solution.

This approach was called Cloud Computing because the amount of resources
and the precise underlying architecture of the system is hidden from the users.

Cloud Computing is championed by companies such as Amazon, Google, IBM,
Microsoft. There are three main kinds of offering : Infrastructure-as-a-Service
(IaaS), Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS) and more re-
cently Function-as-a-Service (FaaS).

"Infrastructure-as-a-Service" lets companies rent servers running Linux or
Windows. They can pick different hardware configurations for dedicated or virtu-
alized resources. It is possible to programmatically create or destroy new server
instances through APIs3. This lets companies adjust the amount of hardware
they need to handle the load dynamically. For instance a company may add
more servers on peak day or it could be automatically scaled by an orchestrator.
Key IaaS services are Amazon AWS EC2, Google Compute Engine or Microsoft
Azure.

"Platform-as-a-Service" provides a complete software platform rather than a
bare operating system. For instance it may provide a Java Entreprise environment
where companies can deploy their applications without necessarily controlling the
operating system configuration or directly addressing scale and load concerns.
Some PaaS platforms will automatically adjust the required resources to run the

2"Dumb" terminals let users run jobs on the mainframe, but do not have dedicated computing
resources.

3Application Programming Interface
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application under a certain quality of service. Some examples are Google App
Engine, AWS Elastic Beanstalk, Heroku.

"Software-as-a-Service" provides companies with readily running software that
is already configured and will scale on-demand. Examples of SaaS include AWS
SQS4 which is a queue service hosted and run by Amazon, or Elastic Cloud
which is a hosted data storage service. A lot of software is now distributed as
SaaS instead of running on the companies infrastructure because it minimizes the
maintenance cost of running the software.

"Function-as-a-Service" is a simpler form of PaaS. Instead of providing a com-
plete platform to build Cloud applications against, it lets users define simple
functions that are wired together by the Cloud provider, for instance when an
HTTP request is made. AWS Lambda is a well-known FaaS service.

More and more companies deploy their application to the Cloud to benefit
from the cost savings and simplify their systems. However, the centralized model
of the Cloud comes with downsides. Datacenters might be installed far from the
users which may incur higher latency. Emerging IoT applications may not be
able to meet their delay requirements.

Fog Computing and other edge computing paradigms are extensions of the
core idea of the Cloud and address these latency requirements by distributing
and sharing computing and networking power at the edge of the network. Fog
Computing was introduced by Cisco as a complement of the Cloud to reach the
edge of and extension of computing to the edge of the network. These paradigms
will be presented in the following sections but we will first introduce virtualization
and VM migrations which are two key techniques used in the Cloud and in other
distributed computing environments.

1.1.1 Virtualization
Virtualization is a technique that allows software to emulate hardware in order to
"create" virtual machines (VM). This technique lets multiple isolated operating
systems to run on the same hardware at the same time. The software that handles
the interactions between multiple virtual machines and the hardware is called the
hypervisor.

Because virtual machines contain a full operating system and hardware em-
ulation, they imply a lot of overhead. A lighter, more recent technique known
as containerization provides some of the same benefits as virtual machines while
avoiding hardware emulation: in this case the operating system itself provides
the functionality to isolate executable code [Zhang 2018b].

4Simple Queue Service
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Both VMs and containers present a standard interface that allows them to run
on different machines and to be deployed for fault-tolerance and load-balancing.
In general both techniques allow for economies of scale by ensuring the hardware
is well utilized thus minimizing hardware and electricity cost [Tanenbaum 2015].

1.1.2 VM migration
As discussed in the section about Virtualization, virtual machines are decoupled
from physical servers. VMs can be used for fault-tolerance where the system can
be resumed in case of hardware failure by just copying and running the affected
images. Last, VMs can help load balancing under certain conditions such as the
statelessness of the provided services [Tanenbaum 2015].

The event of transferring a VM from one server to another is called a VM
migration. There are two main approaches to migrate, one is to shut down the
virtual machine and migrate it and the other is to pause the virtual machine
and migrate it. The former is called cold migration and the latter live migration
[Zhang 2018a]. The precise mechanism of these functions is outside the spectrum
of this thesis but we should mention that migrations introduce an overhead and
there is a migration time that is equal to as the total time to transmit and resume
the VM [Li 2019].

In the problem we are presenting in Chapter 4 we are aiming to minimize the
number of migrations that will take place in distributed architectures such as the
Fog.

In Cloud Computing, migrations are useful to maintain higher system utiliza-
tion and to lower energy consumption [Bittencourt 2015] by sharing hardware
resources. One extra challenge in Fog Computing is the mobility of the client.

1.2 Edge Computing Paradigms

1.2.1 Edge Computing
Edge computing is a paradigm aiming to move the computation and the storage
resources at the edge of the network.

The position of the edge depends on the service provider. For instance if the
edge service is provided by the Internet Service Provider (ISP), the edge server is
the first hop on the operator infrastructure from the user’s point of view. If the
edge provider is another actor the edge will be further in the Internet but still
expected to be closer to the user than a centralised Cloud solution [Fas ].
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One goal of Edge computing is to minimize the usage of network resources
by keeping the computation closer to the user and thus not requiring packets to
travel through many hops. Another benefit of the Edge is to keep latency low,
making it possible to offer a good Quality of Service (QoS) to latency-critical
applications.

Edge computing is a generalization of an older concept: Content Delivery
Networks (CDN) [Pathan 2012]. CDNs allow the distribution of static content
like Web files and videos from a number of Points of Presence (PoPs) that are
distributed geographically around the world. Because static files may be very
large, distributing them from a centralised location would cause network conges-
tion and could be a bottleneck. CDNs provided a solution to serving the same
content to millions of users at the same time. Major CDN providers include
Akamai, CloudFare, Fastly, Limelight Networks etc.

Edge computing takes the concepts of CDN further by applying the same
model to general computation instead of just static content.

1.2.2 Fog computing
While the Cloud is about sharing infrastructure and finding cost saving oppor-
tunities, the Edge is about distributing infrastructure closer to user in order to
increase availability and improve Quality of Service (QoS).

They are complementary and allow a better usage of resources. The Cloud
does it by sharing computing resources while the Edge computing does it by
keeping computation local, making it useless to reach the deeper Internet and
saving network resources.

Fog Computing recognizes the benefits of both the Cloud and the Edge and
tries to bridge them seamlessly in a unified model where different jobs can be
processed on either the Edge or the Cloud or migrated from one to the other
depending on their requirements. The cooperation between the Cloud and the
Fog is handled by a Fog orchestrator which can control the QoS and then can
deploy and schedule resources to the Cloud or the Fog appropriately.

The new paradigm was introduced by Cisco in 2015 [CIS ] and since then the
vision of Fog has been pushed forward by the OpenFog consortium [OPE ]. The
OpenFog consortium, consists of industry companies and academic institutions
that cooperate in order to promote and standardize it.

In addition, the American National Institute of Standards and Technology-
NIST has provided a formal definition [NIS ].

Fog computing is a horizontal, physical or virtual resource paradigm
that resides between smart end-devices and traditional cloud or data
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centers. This paradigm supports vertically-isolated, latency-sensitive
applications by providing ubiquitous, scalable, layered, federated, and
distributed computing, storage, and network connectivity.

A Fog Computing architecture is a highly virtualized platform that provides
a multitude of compute, storage, and networking resources at the edge of the net-
work, allowing applications that depend on time-critical data to use nodes in their
vicinity to meet the delay requirements [Mims 2014, Bonomi 2011, Bonomi 2012,
NTT 2014], [NTT 2014]

The architecture of Fog is illustrated in Figure 1.1.

Figure 1.1: Fog Computing

At the bottom of the diagram we have the IoT devices which can be a number
of applications that can benefit from the Fog as transportation IoT applications,
agriculture, smart cities, healthcare etc. In the middle layer there is the Fog.
which consists of the Fog nodes that are geographically distributed. As pointed
out in Section 1.1 these resources can be routers, switches, gateways, set-top
boxes or access point and servers in micro data centers which can provide the
Fog compute. NIST names all of these Fog nodes. However in the literature you
can find terms such as microdatacenter, microcloud or cloudlet. Finally, at the
top of the figure we have the Cloud which works in cooperation with the Fog.

Unlike Edge computing, Fog computing does not focus exclusively on the
edge, but on the continuum of service from the Cloud through the Edge down to
IoT devices.

There are a number of papers in the literature that interchangeably use the
terms Fog and Edge but the NIST and the OpenFog consortium explicitly dis-
tinguish the two with edge being just a component of the Fog.
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1.2.3 Mist Computing
Mist computing [Yousefpour 2018] is another paradigm which has been proposed
to approach computing happening at the extreme edge: the IoT devices them-
selves. It can cooperate with the Fog and the Cloud as defined by the European
Telecommunications Standards Institute (ETSI).

1.2.4 Cloudlet computing
Cloudlets are small data centers that are typically one hop away from the mo-
bile devices. The term was first coined by Satyanarayanan, Victor Bahl, Ramón
Cáceres, and Nigel Davies and a prototype version was developed then by Carnegie
Mellon University [Yousefpour 2018, Ceselli 2015][Dolui 2017]. The Fog network
can also make use of cloudlets as micro-datacenters and they are part of the Fog
nodes. In our studies we consider Fog nodes that are cloudlets as they have their
computing storage resources independent from the network hardware.

1.2.5 Multi-Access Edge Computing
Another well studied computing paradigm in the literature is the Multi-access
Edge computing [Tanaka 2018][Porambage 2018] [Pham 2019]. It was previously
referred as mobile edge computing but the term multi-access includes applications
other than mobile device-specific tasks.

In MEC, Cloud computing capabilities are provided in existing base stations.
It is taking advantage of the cellular infrastructure and it is expected to benefit
from 5G. It is a paradigm standardised in ETSI [MEC ].

1.3 Fog Computing for Connected Cars
The main motivation for our work comes from connected vehicles for which a
large number of applications with varying needs of quality of service have been
defined. Applications for connected vehicles can be classified into three categories
[ets 2009]:

1. Active road safety applications: applications used to reduce the probability
of traffic accidents and loss of lives. Examples include: intersection collision
warning, head on collision warning, emergency vehicle warning, wrong way
driving warning, signal violation warning, etc.
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2. Traffic efficiency and management applications: these applications are em-
ployed for improving the traffic flow, traffic assistance, traffic coordination,
updated local information, etc. Example include speed management, and
cooperative navigation applications.

3. Infotainment applications: these are less constrained applications such as
application that collect and disseminate information about locally based
services such as points of interest (restaurants, hotels, etc.) or global inter-
net services: multimedia services, parking management, etc.

Multiple actors may be involved in the building and operating of infrastructure
at the "edge" of the network. We can mention for instance: Telco providers, car
manufacturers, road infrastructure operators or Cloud providers. Depending on
the requirements of each provider, computational capacity can be assigned at
different parts of the network infrastructure and thus different services can be
offered.

In the particular case of connected cars there are critical safety requirements
where low latency is expected. Based on [ets 2009], these applications have differ-
ent needs, ranging from the most constrained: periodic messages, 10Hz frequency
and 100ms critical latency for active road safety applications to 1Hz frequency
and 500ms critical latency for co-operative services.

It is thus expected to be able to carry these computations in the immediate
vicinity of the user. One vision that can be found in the literature is that process-
ing nodes are on-board the connected cars themselves. In the research literature
this paradigm is known as Vehicular Fog Computing [Xiao 2017a] [VFC ].

There are two potential schemes for Connected Vehicles: Dedicated short-
range communications (DSRC) and Cellular Networks [Xu 2017] The first one
can be used in scenarios where Road Side Units (RSUs) are installed on the
roads and be then used as processing nodes. Although RSUs can enlarge the
network communication capacity, they are really expensive and are difficult to
be fully deployed along roads, on a large scale [Veh ]. In a second approach we
have communication using the cellular network. Base stations were first used as
a means to support mobile telephony but since they have started handling data.
As we saw before Multi-Access Edge Computing aims to take advantage of the
existing base stations and add to them virtualized cloud computing capability.

The edge of the network from the point of view of a network provider are the
devices that exist in the network: routers, switches, gateways, host machines.

In our studies, the compute power provided by the Fog is inside the micro-data
centers that will be installed at the edge of the network near the base stations.



Chapter 2

Optimization and Queuing
Theory

This chapter provides an overview of the mathematical theory used in this thesis.
In Chapters 3 and 4, we address problems related to the optimal design of geo-
distributed computing infrastructures.

In Chapter 3, we consider the Fog provider is in the infrastructure design phase
and we are studying the optimal trade-off between a centralized and distributed
solution in terms of workload characteristics and compute capacity. In Chapter
4, we consider the Fog node locations are fixed and we are studying ways to
consume less networking bandwidth and compute resources by minimizing the
number of service migrations due to connected car mobility.

These are problems addressed by Optimization techniques. We present the
central techniques applicable to our works in this chapter.

We also use Queuing Theory in our models to express the probabilistic delay
requirements for the quality of service in the Fog. Queuing Theory is part of
the larger field of Stochastic Modelling and Analysis that is applied to the study
of queues that appear for instance in a router, in a server or as well in lines
in a supermarket counter. It is often necessary to understand the relationship
between adding more resources and performance. This is a known application
of queuing theory named capacity planning or capacity provisioning. It is very
useful in designing networks and data centers. We further present the necessary
background in this chapter.
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2.1 Optimization
An optimization problem has the following form:

minimize f(x)
subject to gi(x) ≤ bi, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . ,m
x ∈ Rn

(2.1)

In this formulation, the function f is called the objective function. Each of
the gi is an inequality constraint and each of hj an equality constraint. A vector
x ∈ X which satisfies all of the constraints is called a feasible solution.

The goal is to minimize the function f(x) under equality and inequality con-
straints by searching for a feasible solution x∗ that minimizes the value of the
objective function f , f(x∗) ≤ f(x). It is also possible to find the values x that
maximize the value of the function f(x) by replacing the function f(x) by the
function −f(x).

There are two main axes that help categorize optimization problems: whether
the objective function and associated constraints are linear or nonlinear, in which
case there are subcategories depending on the shape of the function, and whether
the variables are continuous, discrete or a mix of both.

If the function and constraints are linear and some of the variables are dis-
crete and some continuous we fall into the category of Mixed Integer Linear
Programming. When the objective function and the constraints are linear and
the variables can only take integer values we fall into Integer Linear Programming
problems.

When the function or the constraints are nonlinear, we fall into the category
of nonlinear programming. There is no global optimum in that case, but several
local optima. If the objective function and the constraints are convex or concave
then we fall into the category of Convex Optimization [Boyd 2004] where the
local optimum is the global.

2.2 Linear Programming
This category of optimization contains formulations where the objective and the
constraints are linear functions. Linear programming is split in different cate-
gories depending on the type of the variables: real numbers R, integer numbers
Z and mixed problems where some variables belong to R and some variables
belong to Z.
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Linear programming is a category of optimization where the objective function
is linear and subject to linear equality and inequality constraints [Bertsimas 1997].
The set of feasible solutions is a polyhedron belonging to Rn.

Two important algorithms used to solve linear problems are the Simplex
method and the Interior Points method.

The Simplex method was proposed by George Dantzig in 1947 to help military
planning during World War II and has been used since then in a number of fields
such as transportation, economics or scheduling.

The core idea of the Simplex method is to navigate the external edges of the
polyhedron that underlines the linear program and always move to a more optimal
vertex until the optimum is reached. In the worst-case the algorithm performs
in exponential time but the average-case complexity is polynomial. Figure 2.1
illustrates the simplex search.

Figure 2.1: The Simplex search

It is possible to avoid the exponential worst case by using a different strategy.
This is what the Interior Points (also known as Barrier) method achieves by
navigating the inner vertices through the polyhedron. Interior point methods
have a long history but they became popular thanks to Karmarkar’s works in
1984 [Strang 2005]. The algorithm runs in polynomial time and it is very efficient
in practice.

These two algorithms are commonly implemented by linear programming
solvers. There are variations in the implementation thanks to research and tech-
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nical progress that allow some implementations to perform better than others
[Gurobi ].

2.3 Discrete Optimization
Discrete optimization focuses on problems where variables belong to a discrete
set such as the natural numbers N (Integer Programming) or a subset of it such
as {0, 1} (Binary Programming). Intuitively, one could think that this is an
easier category of problems to solve since the set of feasible values is smaller,
compared to analogous continuous optimisation problems. However this category
of problems is much more difficult because a number of approximation tools are
not available on discrete problems.

There are three types of algorithms solving discrete optimization problems
[Bertsimas 1997].

1. Exact algorithms: they provide an exact solution but sometimes imply an
exponential complexity that is intractable in practice. Exhaustive search is
a brute force approach which enumerates all solutions and triggers a com-
binatorial explosion that makes unsuitable to solving real-world problems.
Other methods that are much more efficient include Branch-and-Bound,
Branch-and-Cut, Cutting Plane and Dynamic Programming.

2. Approximation algorithms: they return an approximation that is guaran-
teed to be within a certain ratio of the optimal value. They usually perform
much better as they sacrifice exactness for speed. In practice these algo-
rithms usually run in polynomial times. We present an example of such an
approximate solution for the Set Cover problem below.

3. Heuristic algorithms: they return an approximation without guarantee of
being within a ratio to the optimal value. They work best on certain in-
stances of a given problem and their pathological cases may return solutions
very far from the optimal. Examples include Local Search methods and Sim-
ulated Annealing.

Branch-and-Bound

Branch-and-Bound is a fundamental technique behind Integer Linear Program-
ming. It is a family of algorithms that produce exact solutions to linear discrete
optimization problems. It was developed in 1960 by Land, Doig and Dakin.
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The algorithm explores possible solutions by storing partial solutions in a tree
structure. The tree traversal is done by following Breadth-First-Search. Each
node of the exploration tree contains the current decision for some of the prob-
lem’s variables. The tree is lazily constructed by creating new branches (Branch-
ing), and by exploring only sub-trees that are guaranteed to contain the optimum:
this is achieved by the Bounding phase that excludes sub-trees that are known
to be above or under a certain threshold analytically computed for the problem
at hand [Wolsey 1998]

Commercial solvers combine Branch-and-Bound with other elaborated tech-
niques such as cutting planes and heuristics to achieve better performance [Gurobi ].

2.3.1 Integer Programming and Combinatorial Optimiza-
tion

An important category of Integer Programs is the Combinatorial problems [Levitin 2002].
Their feasible solutions are combinatorial objects such as permutations, combina-
tions or subsets which satisfy constraints. Most of them are difficult to solve with
exact algorithms as the number of combinatorial objects grows with the problem
size. The Set Cover problem is a family of combinatorial problems that is appli-
cable to many real-world situations. It has no efficient exact algorithm but fast
and good approximations which we use in the problem we study in Chapter 4.

Set Cover Problem

The Weighted Set Cover Problem is a known problem in the area of combinato-
rial optimisation which is NP-complete. It is a generalization of the Set Cover
problem which is specified by a set of elements {1, 2, ..., n} called the universe
and a collection S of m sets whose union equals the universe. The Set Cover
problem is about identifying the smallest sub-collection of S whose union equals
the universe. Figure 2.2 illustrates an instance of it.

This problem has many practical applications, e.g airline scheduling, vehicle
routing, facility location. No polynomial time exact algorithm exists, so a greedy
approach can be used as an approximation algorithm. In the greedy strategy, we
will iteratively pick the biggest subset that contains the most number of uncovered
elements.

In the weighted version of the Set Cover problem a cost function is associated
to each subset. The objective is to find the subset that has the least total cost.

Problem 1 (Weighted Set Cover) Given a universe U of n elements, a col-
lection of subsets of U , S = S1, . . . , Sk, and a cost function c : S → R+, find a
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Figure 2.2: Set Covering problem

minimum cost sub-collection of S that covers all elements of U [Vazirani 2001].

In the greedy strategy for the weighted version, instead of picking the subset
that adds the subset that has the most number of new elements, we iteratively
pick the subset with the smallest c(S)

|S\C| .
The greedy weighted set covering heuristic does the following [Vazirani 2001]:

Algorithm 1: Greedy Weighted Set Cover algorithm
1 C ← ∅
2 while C 6= U do
3 Pick S with the smallest c(S)

|S\C|
4 C ← C ∪ S
5 Output the picked sets.

2.3.2 Mixed Integer Linear Programming
Mixed Integer Linear Programming is a branch of discrete optimization where
variables can take continuous and integer values. Two well-known examples of
problems that can be represented as MILP problems are the Knapsack and the
Facility Location problems. Facility Location is a family of problems common
in Operational Research that focuses on the optimal placement of facilities to
minimize transportation and installation costs and serves clients economically.
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The problem we address in Chapter 3 deals with the optimal placement of micro-
data centers, the facilities, in terms of installation and server compute cost by
allocating optimally the connected car demands to datacenters.

Facility Location

The core idea of facility location is to select a subset of potential locations N =
{1, . . . , n} to place facilities and assign a set of client demands I = {1, . . . ,m}
to these. The objective is to minimize total cost, given the cost of operating the
facility i is fj and cij the cost of serving the demand of a user i from facility j.

When there is no bound on the number of clients that a facility can serve
we talk about uncapacitated facility location problems whereas we talk about
capacitated facility location when there is restriction on the number of clients.
The restriction on capacities is modeled by ui. In the following models, the
variable xj is a binary variable representing whether the facility will be opened
or not [Marzie Zarinbal (auth.) 2009] [Michele Conforti 2014].

Capacitated facility location problem

In the capacitated case there is a demand di and a fraction of the demand noted
as yij.

minimize
m∑
i=1

n∑
j=1

cijdiyij +
n∑
i=1

fjxj

subject to
n∑
j=1

yij = 1 for all i = 1, . . . ,m

m∑
i=1

djyij ≤ uixi for all j = 1, . . . , n

yij ≥ 0 for all i = 1, . . . , n and j = 1, . . . ,m
xi ∈ {0, 1}

(2.2)

Uncapacitated facility location problem

When there is no restriction on the capacity of the facility, yij can be assumed
binary and replaced by the variable zij which is 1 when client i is served by facility
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j

minimize
n∑
i=1

m∑
j=1

cijdjzij +
n∑
i=1

fixi

subject to
n∑
i=1

zij = 1 for all j = 1, . . . ,m

m∑
j=1

zij ≤Mxi for all i = 1, . . . , n

zij ∈ {0, 1} for all i = 1, . . . , n and j = 1, . . . ,m
xi ∈ {0, 1} for all i = 1, . . . , n

(2.3)
This is the general modeling of a main category of Facility Location problems;

however our description is richer and differs since we are taking into consideration
optimal allocation of the tasks with respect to quality of service delays and the
cost of compute capacity to allocate to datacenters. These quality of service
delays are introduced in the form of probabilistic constraints.

2.4 Non-linear Optimization
Nonlinear optimization studies problems where the objective or constraints func-
tions are not linear. This category of problems can be complex and it is difficult
to find a global optimum value. Instead, a compromise can be to find several
local optima. If there are no constraints to the optimization problem, gradient
descent based methods can be used to find local optima fast [Boyd 2004].

Gradient methods

Gradient descent methods as the name indicates, are based on the descent direc-
tion of the gradient that give the direction to to the minimal value.

The general idea is that they produce a sequence

x(k+1) = x(k) + α(k)∆x(k) (2.4)

where ∆x is the opposite direction of the gradient that decreases the cost
function 2.7:

∆ = −∇f(x(k)) (2.5)
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and when it is applied on the vector x results in

f(x(k+1)) < f(x(k)) (2.6)

.
The scalar α is called the step size or the step length at iteration k.
The optimum step size is computed by solving the following one dimensional

problem:

f(x(k) + α(k)∆(k)) = minα∈Rf(x(k) + α∆(k)) (2.7)

Chance Constrained Optimization

The previous optimization techniques presented so far required deterministic for-
mulations where all the input is known in advance. When the input contains
random variables we fall into the optimization under uncertainties. One category
is called Chance Constrained Optimization.

The formulation of such problem can contain a constraint in the form a prob-
ability as in the following:

minimize f(x, ξ)
subject to P(h(x, ξ) ≥ 0) ≥ p where p ∈ [0, 1]

(2.8)

where ξ is the vector of uncertainty.
When these problems arise we need to have an intuition of the problem domain

in order to make some assumptions.
The problem we are presenting in Chapter 3 deals with the optimal capacity

planning of a Fog Computing infrastructure under probabilistic delay guarantees.
In order to find the optimal capacity planning we take into account fixed net-
working delays and a processing delay which is modeled as a random variable.
In our case the processing delay depends on the load of the server. However,
using Queuing Theory, we make assumptions on the statistical distribution that
the processing delays follow and we can analytically transform the problem into
a MILP formulation. Queuing theory is presented in the next section.

2.5 Queuing Theory
Queuing theory is an area of mathematics dedicated to, the study of "queues".
Queues are pervasive in systems whether they are information systems or real
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life systems such as supermarket counters, highway toll stations, airport security
checks and so on.

By modeling the system using Queuing Theory, we can dimension it better
and study its average performance.

Examples of scenarios applicable to queuing theory are:

• How many checkout counters are needed in the supermarket in order for
clients to tolerate waiting in the line to pay?

• How many lanes should be built on a highway to keep the traffic fluid?

• What is preferable to have: a single powerful server or several less powerful
servers ?

In computer systems, queuing theory is used to model situations such as
concurrent access to a server, a disk, memory, bandwidth.

Our problem in Chapter 3 is of the same nature: How many compute servers
should we allocate in each Fog node in order to obtain a minimum cost infras-
tructure under probabilistic delay guarantees ?

Queuing Theory was developed around the 1900s by Agner Krarup Erlang
who modeled the telephone network in Copenhagen.

The research applying to the telephone network has evolved since into being
one of the most important tools for the study of telecommunications and of the
Internet. The field now has a variety of applications such as the design of rout-
ing protocols for networks, of better scheduling algorithms for Web servers and
database management systems, disk scheduling, power management and capacity
provisioning in data centers, etc.

In order to specify a queuing system we need to model the following: the
arrival stream, the service duration, the number of servers, the structure of the
service facility, the maximum of number of jobs in the system and the discipline
of the service facility, etc[Adan 2001]. We present these concepts in more details
in the following sections.

Arrival process
The evolution over time of the number of jobs in the system is modeled by a
random process and can be described in two ways:

• by the average number of arrivals per unit time known as the arrival rate
and noted as λ
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• by characterizing the time between two successive arrivals: this is also called
the inter-arrival time

Since in simple models it is assumed that consecutive inter-arrivals are inde-
pendent and they follow the same probability distribution, the arrival process is
defined using the probability distribution of inter-arrival times.

The most common way to model the job arrival process is as a Poisson pro-
cess where the time between successive arrivals is exponentially distributed with
parameter λ and independent of the past.

Let U(i) the random process that characterizes the inter-arrival times between
two jobs.

Let P(Ui > u) the probability that inter-arrival time is longer than u:

P(Ui > u) = exp(−λu). (2.9)
The average time E[U ] between two successive arrivals is:

E[Ui] = 1
λ
. (2.10)

Service duration
The time it takes to serve a job is modeled by a stochastic process, called the
service process. It can be described in two ways:

• the average number of jobs served per unit time noted as µ,

• the time it takes to serve a job. The average service duration is 1/µ.

An exponential distribution is usually used to model the service duration. Let
S the random process that characterizes the service duration of a job, then the
probability P(S > s) is given by the following:

P(S ≥ s) = exp(−µs) (2.11)

By the arrival rate and service rate we can then define the server utilization
using ρ = λ/µ.

Servers and Waiting Buffer
Servers

Queuing systems can have a single or multiple servers that can serve jobs si-
multaneously. In the general case, in multi-servers systems the distribution of
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service time is not uniform and each server can have different service distribu-
tions. However, it is common to assume that servers are all homogeneous and
thus characterized by same service distributions.

Waiting buffers

Queues can have a finite or an infinite buffer. When the buffer is finite once it
becomes full, the jobs may be blocked or as well dropped. In queuing theory
terminology these are called blocking systems. When the buffer is infinite, the
jobs are never blocked and these systems are called pure waiting systems.

Service disciplines for queues
The service discipline describes the order in which jobs are taken from the queue
and selected for service. These are the following:

• Service disciplines without priorities

– FIFO (First-In-First-Out)
– LIFO (Last-In-First-Out)
– RS (Random Service)

• Service disciplines that are fair : all jobs are served together and the ser-
vice capacity they received is shared equally among them. This is called
Processor Sharing or PS.

• Priority Service disciplines : there are jobs with higher priority than others.

One common way to present all different configurations is throughout Kendall
notation.

Kendall Notation
The general form of the Kendall notation is A/B/C/K/Z where

• A is inter-arrival time distribution

• B service time distribution

• C number of servers

• K is the system capacity
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• Z is the service discipline

A and B can be

• M: Memory-less or Markovian (Exponential distribution)

• D: Deterministic (Constant distribution)

• G: General distribution (Arbitrary distribution)

The M/M/1 queuing model is the simplest case and it is introduced in the
following section.

2.5.1 M/M/1
The most basic queuing model that is used is one with Poisson arrival distribution
with rate λ, exponential service times with parameter µ, one server, infinite
capacity and a FIFO service discipline. This is expressed under the Kendall
notation as M/M/1 and it is represented in Figure 2.3.

Figure 2.3: M/M/1 queuing model

The full notation is M/M/1/∞/FIFO where default values are omitted.
In this one-server queuing model, it is proven that the average time E[T ]

between the arrival of the request and the response (mean response time) depends
on λ and µ following the formula below:

E[T ] = 1
µ− λ

(2.12)

In practice data centers run on multiple servers and are connected through
multiple network links. Furthermore, in a datacenter instead of a First Come
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First Served (FCFS) service discipline there is Processor Sharing (PS) discipline
with priorities. In complex systems such as the Internet, traffic does not follow a
Poisson distribution but it is has been shown to follow a heavy-tailed distribution
[Willinger 1998], [Pióro 2004]. Finally, service times need not be exponentially
distributed. In that case, the analysis for the computation of processing time is
part of the formula and the expressions for the distribution of the response time
are not easy to obtain.

However, it is common to useM/M/1 queues as an approximation of complex
systems because they are simple to reason with.

In a single server system when jobs arrive according to a Poisson process
and job sizes can follow any distribution is that the mean response time is inde-
pendent of service discipline if the discipline is one of FCFS, LFCS or Random
[Harchol-Balter 2013].

Queuing theory allows to model more realistic architectures such as server
farms that consist of a number of servers that concurrently handle incoming
jobs.

The advantages of this architecture are firstly the economies of scale since it
is cheaper to buy commodity hardware than acquire one very powerful server.
Another benefit is that servers can be added or removed at any time if the capacity
requirements change.

A server farm can have a single central queue of requests or it can be a system
where there are queues at the individual servers. With a central queue, the
next job is served directly when the server is free. In the second case, the next
job is dispatched to one of the servers according to the task assignment policy..
The choice of the task assignment policy is important because it influences the
response time.

The following are some of the task assignment policies that can be used in
order to dispatch jobs.

• Random : each job is dispatched randomly to hosts,

• Round-Robin : each job goes to a a server in turn,

• Join-the-Shortest-Queue (JSQ) : a job is dispatched to the server with
the fewest number of jobs. It is state-dependent since the number of jobs
in each of the servers has to known to the dispatcher,

• Site-Interval-Task-Assignment (SITE) : each job is given a definition
of "short", "medium" and "long" and"short" jobs are dispatched to the first
host, "medium" to the second and so on,



2.5. Queuing Theory 51

• Least-Work-Left (LWL): a job is dispatched to the server with the least
total remaining work

Central queue models M/M/k is the shorthand Kendall notation ofM/M/k/∞
that models a server farm having a single queue with Poisson arrivals and expo-
nential service times and an unbounded queue. This is often represented like in
figure 2.4. In contrast, M/M/k/k models a server farm with a bounded queue
of capacity k where the k + 1’th arrival is dropped by the system. An M/M/∞
queue models a theoretical architecture where the server farm has an infinite
number of servers. There is thus always a free server to process arriving jobs.

Individual server queues Another possible model is not to place the server
farm behind a central queue but instead have each server used a dedicated
queue (Figure 2.5). The jobs are assigned to a specific queue according to
the task assignment policy, and remain in the queue the corresponding server
processes them. This is known as the frequency-division multiplexing-(FDM)
whereas the server M/M/k model is called the statistical-division multiplexing
[Harchol-Balter 2013].

Figure 2.4: M/M/k queuing model

Performance comparison It is interesting to compare the performance char-
acteristics of these different models and queuing theory provides analytic formulas
that offer clear results beyond intuition.
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Figure 2.5: Frequency Division Multiplexing

Let an arrival rate λ and a total service rate kµ and load ρ = λ/kµ. The
mean response time under the FDM architecture is:

E[T ]FDM = 1
µ− λ

k

= k

kµ− λ
(2.13)

Whereas the mean response time under the M/M/1 is:

E[T ]M/M/1 = 1
kµ− λ

(2.14)

This demonstrates that the M/M/1 is k times faster than FDM. However,
there are still cases where one should use FDM to guarantee a specific service
rate for some jitter-sensitive applications such as video or voice. In this case
the job stream contains several jobs from the same users and merging them
all into one central queue introduces a lot of variability in the response times
[Harchol-Balter 2013].

Finally, it is also interesting to compare one M/M/1 queue of processing
power kµ and M/M/k queue. As we saw earlier, there are economies of scale
going with the latter but we can still compare the performance.

Under light load, few jobs are dispatched and a server farm of k servers would
have most of its servers idle. By comparison, one powerful server would be
able to benefit from the light load to perform faster for these few jobs, thus
making M/M/1 have a better response time than M/M/k. However under
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heavy load the performance characteristics are similar to the computing re-
sources of either the whole server farm of the single powerful server would be
busy [Harchol-Balter 2013].
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Chapter 3

Capacity Planning of Fog
Computing Infrastructures

In this chapter we aim to optimize the cost of a newly designed Fog infrastruc-
ture. Our goal is to determine which Fog nodes among a proposed set should
be installed in order to handle the expected traffic originating from base stations
while keeping probabilistic response time guarantees.

In practice, the design of a Fog Computing infrastructure has to balance two
conflicting factors. The first one is the importance of geographic diversity: the
goal is to place micro data centres close enough to users to meet delay require-
ments. The other one is the size of the data centre: the goal here is to amortize the
fixed costs of the site while benefiting from statistical multiplexing gains by serv-
ing the workload generated by the local population. Finding an optimal trade
off between geographic diversity and data centre sizes is usually a challenging
problem.

Despite the non-linearity of the delay constraints, we show that the prob-
lem can be formulated as a Mixed Integer Linear Programming problem. We
first present a MILP formulation of the problem assuming that the infrastructure
cost depends linearly on the capacities. We then extend this MILP formulation
to arbitrary concave objective functions. Empirical results show that the opti-
mal capacity-planning solution can be determined efficiently even for large-size
problem instances, and that it can result in significant gains with respect to the
solution in which user requests are always processed in the nearest data centre.
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3.1 General context

There are several steps in the building of an infrastructure from the design phase
to operations. We focus on the design phase. Examples of considerations in the
design phase are for instance how much bandwidth to allocate in a given topology
to the network. These belong to the category of topological design problems.
Another example is how many replicas to assign to a given infrastructure. This
is a family of problems known as replica server placement.

Building a large infrastructure like Fog Computing from scratch, deploying
and operating it world-wide entails a colossal cost.

First, we have to consider the installation cost: the building of the Fog fa-
cilities themselves. Then comes the operating costs, which includes the staff.
Furthermore, an important expenditure is the energy required to power and cool
down the data centers.

Another cost item that needs critical consideration is the amount of compute
capacity to assign. If a facility is assigned more than the required amount then the
infrastructure is overprovisioned. Otherwise, if the facility is assigned less than
the required amount, then the infrastructure is underprovisioned and it may not
be able to serve all outstanding requests. Capacity Provisioning is an existing
field of study that uses Queuing Theory and it addresses how much capacity to
assign to servers.

An important aspect when deciding capacity is the workload characteristics.
Key factors to consider are volume, time and location: the amount of traffic
is changing throughout the day and can vary between geographical areas. For
instance, commuting between home and work during the morning and evening
hours generates a workload that needs to be considered in the design phase, as
it may result in some resources being saturated.

As mentioned before, a key benefit of the Fog is bringing resources closer
to the user to provide better latency. This allows to define strict Service Level
Agreements (SLAs) in which applications are guaranteed to be served under a
certain latency. This is especially important for latency critical applications.
Without these SLAs, it would always be more efficient to opt for a central solution
in the cloud by virtue of economies of scale.

These considerations fall under the umbrella of Quality of Service (QoS), and
Quality of Experience (QoE). The former ensures a service is performed under a
specific SLA, whereas the latter is about the user experience itself.
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3.2 Related literature

In our study we construct a MILP model to represent the optimization problem
of minimizing the infrastructure cost while optimising the routing strategy from
base stations to Fog nodes.

As mentioned in the previous section, topological design happens in the initial
phase of infrastructure design and focuses on defining the topology of the network
composed of switches, routers, hubs, or locations for points-of-presence. The
authors in [Pióro 2004] present a number of related problems.

There are as well analogous problems such as Replica Server Placement
[A.S Tanenbaum 2006] and Facility Location problems that we have already pre-
sented in Chapter 2. In general these problems are NP -hard.

A number of studies have been devoted to the capacity planning of Fog in-
frastructures. In [Mondal 2017], the authors formulate a mixed integer non-linear
programming for the placement and capacity planning of cloudlets, assuming as
input a number of potential locations. The objective is to minimize cloudlet in-
stallation as well as networking cost. The authors model cloudlets as M/M/1
queues, which has the drawback that the processing time can become arbitrary
low when the capacity is large. This assumes that the capacity of all the cloudlet
servers can be pooled to serve a job. In practice, a job will be allocated a small
fraction of the whole capacity and cannot use the capacity of the other servers
even if they are idle. Further, this model will only give a lower bound on the
capacity, which may not be a good approach for jobs requiring QoS guarantees.
In addition, in contrast to the present work, the work in [Mondal 2017] considers
only one class of jobs and does not take into account the temporal variations of
traffic demands.

Another relevant work is [Kiani 2018]. Given the total capacity, the problem
addressed by the authors amounts to distributing it among cloudlets and the
cloud. Cloudlets are modeled as discrete-time fluid systems. In contrast to the
present work, there is no routing decision from base stations to cloudlets. At
each time instant, each cloudlet receives a random amount of traffic and, if the
traffic exceeds the capacity of the cloudlet, the excess traffic is routed to the
cloud. In this model, there is no infrastructure cost, and the goal is to optimize
the quality of service of network flows. The authors discuss variations of the
objective function based on the delay or loss probability.

Most of the works on the optimal design of Fog Computing infrastructures
focus on the optimal placement of cloudlets and on traffic offloading to the
cloud [Ceselli 2015] [Sun 2017] [Fan 2017][Mehta 2016] [Gelenbe 2012] [Xu 2016]
[Jia 2017] [Xiao 2017b]. For instance, the authors in [Xiao 2017b] investigate how
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to optimally select K mobile access points in which to install a cloudlet, assum-
ing that each cloudlet has a fixed capacity and that a fraction of the traffic is
offloaded to the cloud. As another example, [Sun 2017] studies the optimal of-
floading strategy of mobile devices to fixed-capacity cloudlets with the objective
of minimizing the latency.

Some other works have addressed the capacity planning problem, but with-
out any queuing model. For instance, the authors in [Xiao 2017b] suggest to use
profiling and benchmarking tools to determine the resource requirements of ap-
plications from their workload. They assume that latency-sensitive applications
are always executed in cloudlets, whereas other applications are executed in the
cloud. In order to minimize the capacity required in each cloudlet, they solve a
Knapsack problem.

3.3 Distributing versus Sharing
In the problem we study we consider the cost of the compute capacity. The
decision of how much compute capacity to allocate in our model depends on
three factors:

• the amount of traffic

• statistics of daily usage patterns

• the application’s QoS constraints

Consider the simple scenario depicted in Fig. 3.1, in which two different base
stations can route their traffic to two different micro data centers. The minimum
latency is achieved with a distributed solution, in which the traffic of each base
station is routed to the closest micro data center, so that base station B1 (resp.
B2) routes all its traffic to data center D1 (resp. D2).

Now, assume that the daily pattern of the offered traffic at each base station
is as shown in Fig. 3.2. In the distributed solution described above, the minimum
amount of capacity to be provisioned at data centre D1 (resp. D2) corresponds
to the peak hour of traffic for base station B1 (resp. B2), so that the total
capacity to be provisioned is for 240 + 240 = 480 jobs/s. In contrast, in the
centralized solution where only one data centre is used, the total capacity to
be provisioned should be only for 282 jobs/s. Thus the ratio of total capacities
between the centralized and the distributed solutions is roughly 1

2 . In turns, this
translates into an even lower ratio in terms of costs in favor of the centralized
solution due to economies of scale which impacts not only capacity costs, but also
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B2B1

D1 D2

Figure 3.1: A simple scenario in which two base stations can route their traffic
to two different micro data centres.

operating and energy costs. The issue is that, for some services with stringent
delay requirements, a centralized solution might not be feasible.
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Figure 3.2: Daily pattern of the offered traffic by the two base stations, as a
function of the hour of the day.

The ratio of compute capacities between a centralised and a distributed solu-
tion has been well studied with the first appearance of distributed systems, trying
to solve how to efficiently organize compute power on processors among multiple
machines. [A.S Tanenbaum 2006].
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3.4 Motivation
This study explores the trade-off between the geographic diversity of incoming
jobs and the amount of compute capacity to allocate to Fog nodes. Using our
model Fog providers can build a minimum cost infrastructure and provide users
an adequate Quality of Experience.

We aim to answer to the following questions:

1. What amount of compute capacity to install on each Fog node?

2. How to route traffic originating from the base stations?

We consider compute capacities for classes of services which can be provi-
sioned for each service separately. In our formulation capacities are provisioned
once for all the times in the day. However, the traffic can vary over time and
base station can change their routing from one time slot to the other.

As input to the problem we have the following:

• Workload characteristics: in a design problem, a Fog provider can obtain in
advance the statistics of traffic patterns, for example which zone is busier
and the time of the rush hours.

• Network latency: we as well assume that network latencies to send traffic
from a base station to each of the Fog nodes are known and fixed during the
design problem. However, this is an approximation we make since network
latencies are dynamic and depend on the network load.

We add probabilistic Quality of Service constraints making it a Chance-
Constraint Problem: a category of optimization problems solved under uncer-
tainty. Furthermore, we are assuming Poisson arrivals for the jobs, exponential
service time distributions and we model Fog nodes as n parallel M/M/1 queues.
The problem is then solved as Mixed Integer Linear Program.

3.5 Problem Statement
We are given as input a set D of potential sites for installing micro data centres,
as well as a set B of base stations.

The infrastructure supports a set S of S job classes. Let λk,ti be the class-k
traffic originating from base station i ∈ B at time t = 1, 2, . . . , τ .
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Routing Strategy

We define xk,tij as the amount of class-k traffic sent by base station i to micro data
centre j at time t. These variables, which define the routing strategy at time t,
have to satisfy the following constraints (3.1) and (3.2)

∑
j∈D

xk,tij = λk,ti , (3.1)

xk,tij ≥ 0. (3.2)

These constraints can be interpreted as:

• Constraint (3.1) corresponds to the conservation of flow. Traffic of each
service class, at each base station, at each time step should be distributed
among all resulting allocations. No traffic is unaccounted for.

• Constraint (3.2) that traffic from base station i can be routed or not to Fog
node j

We also define the binary variable ak,ti,j , which indicates whether base station
i sends class-k jobs to data centre j at time t, and the binary variable uk,tj ,
which indicates whether class-k jobs are routed to data centre j, by imposing the
following constraints on the feasible values of these variables.

∑
i

ak,ti,j ≤ |B|uk,tj , (3.3)

uk,tj ≤
∑
i

ak,ti,j , (3.4)

xk,ti,j ≤ λk,ti a
k,t
i,j , (3.5)

uk,tj ∈ {0, 1}, (3.6)
ak,ti,j ∈ {0, 1}. (3.7)

• Constraints (3.3) and (3.4) express that a base station will route traffic to
a Fog node only if it is connected.

• Constraint (3.5): The variable ak,ti,j is equal to 1 if at least one BS i sends
class-k traffic to site j at time t.
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Finally, the binary variable uj defined by the following constraints

uk,tj ≤ uj, ∀k, t, (3.8)

will be used to determine whether data centre j has to be opened. Note that
there is no need to enforce that uj = 0 if uk,tj = 0 for all k and t because the
objective functions that we consider are non-decreasing in uj. In the following,
the variables xk,ti,j , a

k,t
i,j , u

k,t
j and uj shall be referred to as the routing variables of

the problem.
A feasible routing strategy is a set of values for these variables satisfying

(3.1)-(3.8).

3.5.1 Performance Requirements
The performance requirements are related to the quality of service of jobs pro-
cessed by the servers of the FC infrastructure. The system designer aims at
determining the capacities of the data centres in such a way that most class-k
jobs be served in a maximum acceptable processing time Tk. More precisely, let

• Sk,tj be the processing time of class-k jobs at data centre j and at time
t = 1, 2, . . . , τ , and

• let `ki,j be the network time, that is, the time it takes to send a job request
from base station i to data centre j plus the time it takes to receive the
reply.

As mentioned before, for simplicity, we assume that `ki,j is a fixed communication
delay which does not depend on the network load. In contrast, the processing
time Sk,tj is a random value whose distribution may depend on the load of the
data centre and on the class of the job. The term Sk,tj + `ki,j then represents the
total time it takes for a class-k request sent by node i at time t to be received
and processed by micro data centre j, plus the time it takes to receive the reply.

The goal is to design the system in such a way that the probability that this
time be strictly greater than Tk be lower than a given value δk, that is, in such a
way that

P
(
Sk,tj + `ki,j ≥ Tk

)
≤ δk,

for all base stations i sending class-k jobs to micro data centre j at time t. In
other words, the above delay constraints should be enforced only for those i such
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that ak,ti,j = 1 and for those values of j, k and t such that uk,tj = 1. This can be
done by imposing that

P
(
Sk,tj ≥ Tk −max

i
`ki,ja

k,t
i,j

)
≤ δk + 1− uk,tj . (3.9)

Note that if no class-k jobs are routed to site j at time t (that is, uk,tj = 0), the
above constraint is redundant. Otherwise, it imposes that P

(
Sk,tj ≥ Tk −maxi `ki,ja

k,t
i,j

)
≤

δk, as expected.
We denote by cj the number of compute servers installed in site j ∈ D. It has

to be big enough so that the latency constraints (3.9) are satisfied. We assume
the following cost structure:

• An opening cost βj is incurred if capacities are installed in data centre j,
that is, if uj = 1.

• The cost of installing c servers in data centre j is gj(c), where g is a given
continuous function, which is often chosen concave to express economies
of scale in favour of large data centres. Note that gj(c) includes the cost
of purchasing the capacity c, but can also include energy and maintenance
costs for operating it.

The problem can now be formally stated as follows

minimize
∑
j∈D

βj uj + gj(cj) (CAPA)

subject to constraints (3.1)− (3.9).

where the precise form of the constraint (3.9) obviously depends on the queu-
ing model which is assumed for Fog nodes.

Separate Resource Provisioning Per Service
As we have already mentioned in Section 3.4 we consider the case where the
system designer provisions resources for each service separately.

We let ckj be the number of compute servers provisioned for handling class-k
and 1

µk
be the mean processing time of a class-k job on one of these servers1

1In the following, we consider ck
j as a continuous parameter. In practice, the value that

should be used is dck
j e.
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Obviously, we have

cj =
∑
k

ckj (3.10)

We can analyse separately the optimal capacity to be provisioned for each
class. As a consequence, in sections 3.5.2 and 3.5.3 below we consider only one
class of jobs, and we drop the index k.

3.5.2 Queuing Model
In Chapter 2 we have introduced some basic queuing models. The simplest one
is called M/M/1 and uses a Poisson arrival rate and exponential service time.
We have as well introduced different task allocation strategies such as Join-the-
Shortest-Queue (JSQ) where the number of servers is known to the dispatcher in
contrast with Bernoulli routing where jobs are routed to server j with a proba-
bility that does not depend upon the number of active tasks in each server. In
our model we have the following:

Arrival Process

We assume that job requests arrive according to a Poisson process and that an
incoming job is routed with probability 1/cj to any of the servers using what is
known as Bernoulli routing. The rate of the arrival process is defined as ytj =∑
i∈B x

t
i,j is the rate at which job requests arrive at data center j at time t =

1, . . . , τ

Service Process

The service time of a job on a server will be assumed to be exponentially dis-
tributed with mean 1/µ.

It follows from these assumptions that the servers provisioned at data-centre j
for the considered class are modelled as cj parallelM/M/1/∞ queues [Kleinrock 1975],
and therefore that

P
(
Stj ≥ z

)
= e−(µ−yt

j/cj) z (3.11)

3.5.3 Optimal capacity for a fixed routing strategy
Our first step is to analyze the capacity required at a given data center, say j,
for a fixed routing strategy satisfying (3.1)-(3.8). We first note that, for stability
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reasons, we should have ytj/cj < µ, that is, cj > ytj/µ. This condition is however
not sufficient, as formally stated below.

Lemma 3.5.1 There exists cj > ytj/µ satisfying the latency constraint of jobs if
and only if the routing strategy is such that

li,jai,j < T −
log(1

δ
)

µ
, i ∈ B, t = 1, . . . , τ (3.12)

Proof 3.5.2 With (3.9) and (3.11), we obtain

ytj
cj
≤ µ− κ

T − `i,jati,j
, (3.13)

where κ = log(1
δ
). Inequality (3.13) ha a non-negative solution cj if and only if

the RHS is non-negative, that is, if and only if li,jai,j < T − κ
µ

The condition in Lemma 3.5.1 merely imposes that ati,j = 0 whenever `i,j ≥ T .
Provided that this condition is met, Lemma 3.5.3 below gives the optimal number
of servers to install in data center j for known values of the other variables.

Lemma 3.5.3 Given the values of the routing variables, the minimum number
of servers required to satisfy the latency constraint of jobs is

cj = max
t,i

{
ytj

µ− di,j
ati,j

}
, (3.14)

where di,j = log(1
δ
)/ [T − `i,j].

Proof 3.5.4 Inequality (3.13) can equivalently be written as follows

cj ≥
ytj

µ− κutj/
[
T −maxi

(
`i,jati,j

)] . (3.15)

Indeed, if utj = 1, the RHS of (3.13) and (3.15) are obviously equal. If on the
contrary utj = 0, then it follows from (3.3) and (3.5) that xti,j = 0 for all i and
therefore that ytj = 0, which implies that the equality between the RHS of (3.13)
and (3.15) holds.

We shall now make use of the following result.
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Lemma 3.5.5 For any values of the routing variables satisfying (3.1)-(3.7), it
holds that

κ

T −maxi
(
`i,jati,j

) utj = max
i

(
κ

T − `i,j
ati,j

)
(3.16)

Proof 3.5.6 Noting that the function x→ κ
T−x is strictly increasing over [0, T ),

we obtain

κ

T −maxi
(
`i,jaTi,j

) utj = max
i

(
κ

T − `i,jati,j

)
utj.

If utj = 0, then from constraint (3.3) we have that ati,j = 0 for all i, and
hence equality (3.16) is satisfied. If on the contrary utj = 1, then constraint (3.4)
implies that there exists k such that atk,j = 1, and hence that

max
i

(
κ

T − `i,jati,j

)
≥ κ

T − `k,j
>
κ

T
.

Since κ
T−`i,jat

i,j
= κ

T−`i,j
ati,j when ati,j = 1, and κ

T−`i,jat
i,j

= κ
T
when ati,j = 0, we

conclude that equality (3.16) is also satisfied when utj = 1.

From Lemma 3.5.5, it follows that

cj ≥
ytj

µ−maxi
(
di,jati,j

) , (3.17)

= max
i

{
ytj

µ− di,jati,j

}
, (3.18)

= max
i

 yk,tj
µk − dki,j

ak,ti,j

 , (3.19)

where the equality between (3.17) and (3.18) follows from the fact that the func-
tion z → yt

j

µ−z is strictly increasing over [0, µ). The last equality is proved by
considering two different cases:

• If ati,j = 0 for all i, then it follows from (3.5) that xti,j = 0 for all i and
therefore that ytj = 0, which implies that the equality between (3.18) and
(3.19) holds.
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• if ati,j = 1 for some i, then the maximum value in (3.18) is obtained for
some k such that atk,j = 1, and this value is equal to the value obtained in
(3.19), which proves that the equality is also valid in this case.

Finally, we conclude the proof by observing that the inequality (3.18) has to
be satisfied for all values of t, which yields (3.14).

It follows from Lemma 3.5.3 that the optimal capacity at data center j is the
minimum value satisfying the following linear inequalities

cj ≥
ytj

µ− di,j
−M

(
1− ati,j

)
, (3.20)

cj ≥ 0, (3.21)

where M is any constant sufficiently large for the RHS of (3.20) to be negative
whenever ati,j = 0.

3.5.4 Linear objective function
In this section, we consider the case where gj(c) = αj c, for some constant αj. It
directly follows from Lemma 3.5.3 that the optimal solution of problem (CAPA)
is obtained by solving the following Mixed Integer Linear Programming (MILP)
problem

minimize
∑
j∈D

(βj uj + αj cj) (CAPA-PL)

subject to constraints (3.1)− (3.8), (3.10), (3.12), (3.20)− (3.21).

3.5.5 Piecewise linear objective function
As mentioned in the introduction, the function gj(c) is often a non-linear concave
function to express economies of scale in favour of large data centres. The min-
imization of a non-linear concave objective function is in general a challenging
problem, in particular when integer variables are involved. However, with the
increasing efficiency of MILP software tools, an interesting alternative is to use a
piecewise linear (PWL) approximation of the original non-linear function.

The PWL approximation of a function f(x) over an interval [xmin, xmax] is
obtained by introducing a number n of sampling coordinates x1, . . . , xn such that
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x1 = xmin and xn = xmax. The function f(x) is then approximated by the
collection of linear segments [(xi, f(xi)), (xi+1, f(xi+1))]. Figure 3.3 illustrates
the quality of the approximation obtained for two concave functions, f1(x) =
log(1 + x) and f2(x) = 3

2 + 1
4
√
x, over the interval [0, 50].
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Figure 3.3: PWL approximations of the functions f1(x) = log(1 +x) and f2(x) =
3
2 + 1

4
√
x over the interval [0, 50]. The number of sampling coordinates is n = 5,

and they have been generated as follows: x1 = 0 and xi = 2−(n−i)50 for i =
2, . . . , n.

If n is the number of linear segments of the approximation, the above tech-
nique can be applied to our problem by introducing n continuous variables and
n − 1 binary variables, as described in [D’Ambrosio 2010]. We note however
that most modern MILP solvers are capable of directly handling PWL objective
functions, usually using the concept of Special Ordered Set.

3.6 Experimental Results
We now describe the results that were obtained with the proposed algorithms.
We first consider a very simple scenario in Section 3.6.1. The numerical results
obtained with a larger number of base stations are presented in Section 3.6.2. But
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before we present the TCP transfer times of a file that explains our methodology
to compute communication times in Table 3.2

TCP transfer times
In this section, we study the transfer time of a file with TCP as a function of
the RTT and the file size. To this end, we use a simple deterministic model
which was proposed in [Aarag 2001]. The model assumes an ideal environment
in which no losses occur and round-trip times are constant. The model can thus
be used to estimate lower bounds on the transfer time in most standard TCP
implementations.

Let N be the total number of packets transmitted, T be the total transfer
time (ms) and RTT be the round-trip time between the sender and the receiver
(ms). Let also Ws be the TCP slow-start threshold and Wmax be the maximum
window size, both being measured in packets. Using simple arguments, it is then
possible to show that the number of packets transmitted in the TCP slow-start
phase is

Nss = 2Ws − 1,
whereas the number of packets transmitted in the congestion-avoidance phase is

Nca = (Wmax −Ws − 1) Wmax +Ws

2 .

It follows that for short files containing N ≤ Nss packets, the transfer time is
given by

T = (dlog2(N)e+ 1) RTT,
where dxe denotes the smallest integer greater than x. Files with more than Nss

packets but with less than Nss + Nca packets are completely transmitted before
the end of the congestion avoidance phase. In this case, the transfer time is given
by

T = {log2(Ws) + 1

+
⌈(√

(2Ws + 1)2 + 8(N − 2Ws + 1)

−(2Ws + 1)) /2e} RTT.

Finally, for files of size strictly greater than Nss+Nca packets, N−(Nss +Nca)
packets are transmitted in the steady-state phase. In this phase Wmax packets
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are transmitted per RTT. A slightly more complex formula can be derived to
compute the transfer time of such files (see equation (4) in [Aarag 2001]).

Note that, independently of the file size, the transfer time is linear in RTT.
Fig. 3.4 shows how the transfer time evolves as a function of the file size for
two different values of the RTT, 10 ms and 20 ms. It was assumed that Ws =
16 packets and Wmax = 64 packets, and that the packet size is 1500 Bytes.
Interestingly, we note that when the RTT is 20 ms, the transfer time of only 3
packets (4.5 kB) is already 60 ms. When the RTT is 10 ms, a file of size 13.5 kB
(9 packets) is transferred in 50 ms.
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Figure 3.4: Transfert time with TCP as a function of the file size.

3.6.1 Simple scenario
We first consider a simple scenario with three data centres and two base stations,
which are located as shown in Fig. 3.5. The first two data centres, located in
Aulnay-sous-Bois and Corbeil-Essones, in France, are potential data centres. The
cost for opening them are β1 = β2 = 100, and the cost of one unit of capacity is
α1 = α2 = 1. In contrast, the data centre in London is an existing large public
data centre. Therefore, there is no opening cost associated to this data centre
(β3 = 0) and we assume that, due to economies of scale, the cost of an individual
compute server is only α3 = 3

4 . Note that each base station is in immediate
vicinity of a data centre. The distance from the base station 1 in Rosny-sous-
Bois to the data centre in Aulnay-sous-Bois (resp. Corbeil-Essonnes) is 8.9 Km
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Table 3.1: Characteristics of job classes. Times are given in seconds, and nk
represents the number of packets send by a class-k request.

1/µk Tk δk nk
Class 1 0.01 – – 2
Class 2. 0.1 2.0 0.1 6

(resp. 32.6 Km), and the distance from the base station 2 in Evry to the data
centre in Corbeil-Essonnes (resp. Aulnay-sous-Bois) is 4 Km (resp. 35.7 Km).

Figure 3.5: Locations of data centers and base stations.

The workload is composed of two classes of jobs. The first class of jobs
corresponds to real-time jobs, whereas the other ones are best-effort jobs with far
less stringent requirements. The parameter values used in our experiments are
given in Table 3.1. Note that the values of the maximum end-to-end latency T1
and the threshold probability δ1 for the real-time class are not given in Table 3.1,
because we will vary their values in the following.

We also assume that the communication latency between two points at a
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Table 3.2: Communication times (ms) between base stations and data centres.

Aulnay Corbeil London
Rosny 33 / 43 39 / 52 134 / 178
Evry. 41 / 54 31 / 41 140 / 187

distance of d kilometres from each other is 10 + 0.1 × d ms, which, according
to the idealized deterministic model in [Aarag 2001], yields the TCP transfer
times given in Table 3.2, where in each cell the first (resp. second) value is the
communication time for the first (resp. second) class of jobs. Regarding real-
time jobs, the offered traffic of each base station evolves as shown in Fig. 3.2,
but with values which are scaled by a factor 10. or simplicity, we assume that
the class-2 offered traffic of each base station is constant over time, and equals
to 2, 000 jobs/s.

We first consider the case where the infrastructure cost is linear in the data
centre capacities, that is,

100× (u1 + u2) + c1 + c2 + 3
4 × c3 (3.22)

Our goal is to compare three different solutions:

• the first one is the optimal solution, which is obtained as the solution of
the MILP problem (CAPA-PL),

• the second one is the fully distributed solution in which each base station
is assigned to the nearest data centre. This solution is obtained by adding
to problem (CAPA-PL), for each base station i, the constraints ai,j = 1 if
data centre j is the nearest one to base station i, and ai,j = 0 otherwise.

• the third one is the minimum-cost centralized solution in which only one
data centre is used. This solution is obtained by adding to problem (CAPA-PL)
the following constraints:

∑
t

∑
(k′,i′)6=(1,1)

ak
′,t
i′,j = τ [S|B| − 1] a1,1

1,j , ∀j,

∑
j

a1,1
1,j = 1.

Note that for low values of the maximum latency T , the problem might
become infeasible with these additional constraints.
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Using the MILP solver Gurobi [Gurobi Optimization 2018], we computed the
cost of each of the above solution for δ1 = 10−2 and δ1 = 10−4, and for different
values of the maximum latency T1 between 69 ms and 300 ms. The results are
reported in Fig. 3.6. As expected, the fully distributed solution is optimal for low
values of T , whereas the minimum-cost centralized solution is either infeasible or
very expensive. For instance, for δ = 0.01 and T = 80 ms, the centralized
solution is about 17% more expensive than the optimal one. However, as T
increases, the centralized solution quickly becomes the optimal one, whereas the
fully distributed one is significantly more expensive. For δ = 0.01, the additional
cost is +91% for T = 300 ms, but it is already +48% for T = 100 ms.
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Figure 3.6: Cost of the Fog infrastructure as a function of the latency requirement
of real-time jobs for the cost function given in (3.22).

Fig. 3.7 shows the probability that the end-to-end processing delay of jobs be
greater than the allowed value as a function of the time of the day when T = 100
ms and δ = 0.01. In this case, the optimal solution sends all real-time jobs to
the data centre in Corbeil-Essonnes. Note that these probabilities fluctuate over
time but never exceed δ.

Let us now evaluate the effect of economies of scale on the structure of the
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Figure 3.7: Probability that the end-to-end delay in the optimal solution be
greater than the maximum allowed value as a function of time.

optimal solution. We now assume that the goal is to minimize

5× (u1+u2)+log(1 + c1)+log(1 + c2)+ 3
4 × log(1 + c3). (3.23)

The results obtained for this cost function are reported in Fig. 3.8. Note
that the drop in the cost of the optimal solution at T1 = 190 ms correspond to
the point where the public cloud in London can host all the traffic. We remark
that, as expected, the minimum-cost centralized solution is optimal whenever it
is feasible. For δ = 0.01 and T = 80 ms (resp. T = 300 ms), the cost of the fully
distributed solution is 76% (resp. 323%) greater than that of the optimal one.

3.6.2 Larger number of base stations
We now build upon the previous scenario to design scenarios in which there is a
larger number of base stations. We consider 29 base stations and 3 data centres,
which are located as shown in Fig. 3.9. Note that for convenience, the data
centre located in London is not shown in Fig. 3.9. Most of the base stations are
in the area around Paris, but some of them are located a bit farther.

We consider the same classes of jobs than in the previous scenario (cf. Table
3.1) with T1 = 105 ms and δ1 = 0.01. For values of T1 below 105 ms, the delay
requirement of real-time requests sent by the base station located in Tours cannot
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Figure 3.8: Cost of the Fog infrastructure as a function of the latency requirement
of real-time jobs for the cost function given in (3.23).

be met. To generate random problem instances with realistic traffic patterns, we
have used a spatio-temporal model inspired from [Wang 2015], in which a sinusoid
superposition model is used to capture the temporal traffic variation, whereas a
normal distribution is used for spatial traffic modelling at each epoch.

In a first scenario, we consider only the 5 first base stations, then in a second
scenario we consider only the 10 first base stations, etc., until all 29 base stations
are included in the sixth and last scenario. We have randomly generated 16
problem instances for each scenario. We have limited the total time expended by
the solver gurobi to 5 minutes per problem instance. To avoid spending too much
time in proving optimality, we also have set the relative gap of Gurobi to 2%, so
that it terminates (with an optimal result) when the gap between the lower and
upper objective bounds is less than 0.02 times the upper bound.

As before, we first consider the case when the infrastructure cost is linear in
the capacities. Fig. 3.10 shows the minimum, maximum and average values of
the relative gap in percent between the costs of the optimal solution and the other
solutions as a function of the number of base stations. Surprisingly, we observe
that the fully distributed and the centralized solutions are always around 30%
more expensive than the optimal one. In most cases, the time limit of 5 mn was
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Figure 3.9: Locations of data centers and base stations for the third scenario.

reached by the solver. We however believe that the optimal solution was found
in a few seconds in most cases by Gurobi, which was then not able to prove the
optimality of the solution within the allocated timeframe.

The results obtained for a logarithmic cost function are reported in Fig. 3.11.
The time limit of 300 seconds was always reached, which means that there is
no optimality certificate for the solution obtained. As expected, the relative
gap between the optimal cost and the cost of the centralized solution is less
important than for a linear objective function. However, significant differences
are still observed in Fig. 3.11 for more than 15 base stations.

3.7 Conclusion
We have shown that the optimal capacity-planning of micro data centres used
in Fog Computing can be formulated as MILP problem, which can be solved
efficiently even for large-size problem instances. Numerical results show that
significant cost savings can be obtained with respect to the solution in which
user requests are always processed in the nearest data centre, and with respect
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Figure 3.10: Relative gap in % between the costs of the optimal solution and
the other solutions as a function of the number of base stations for a linear cost
function.

to the minimum-cost centralized solution.
A possible extension is to consider situations in which the capacity of individ-

ual compute servers are shared among several classes of jobs, using for instance a
strict priority mechanism or another more advanced resource sharing mechanism.
One challenging problem is to dimension the system when the service times of
jobs are not exponentially distributed. Since there are no known formulas for
the distribution of the processing time in the general case, we intend to look at
analytical approximations that can help dimension the system. Further, another
consideration is to use more advanced load-balancing policies than Bernoulli rout-
ing for the distribution of jobs inside a data centre, such as for instance policies
based on Power of Two Choices or Join the Shortest Queue.
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Chapter 4

Service Migration in Fog
Networks

In this chapter, we present our contribution on the reduction of the infrastructure
cost resulting from service migrations in the Fog.

One of the challenges that needs to be addressed is the maintenance of service
continuity for mobile users. To ensure this continuity under a Service Level
Agreement (SLA) with low latency constraints, the infrastructure providing the
service must remain reasonably close to the user.

If the user moves in a way that the latency requirements can no longer be sat-
isfied, we need to be able to serve the same service from a new location respecting
the constraints. In order to do so, the active session should be transferred from
one Fog server to another. We call this operation a service migration.

While frequent service migrations can improve the quality of service by keep-
ing the Fog node close to the user, they introduce network and compute costs.
Also, the overall cost of infrastructure increases with the number of Fog nodes
and one would expect the number of migrations to increase with more Fog nodes.
Therefore, there is benefit in ensuring the least amount of migrations occur while
providing the adequate level of quality of service.

The model we present aims to minimize the cost of service migrations for a
given set of base stations and Fog nodes they are connected to and handover
statistics between the base stations. An extension of the model that reflects
better reality is suggested at the end of the chapter.

While our work abstracts the underlying implementation of service migrations,
in the following sections we first present some background on the subject and then
present our contribution.
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4.1 Service Migration

4.1.1 General context

Connected car applications are composed of the client-side application running on
the car’s embedded computer and a server-side component built as a distributed
system hosted on the Fog infrastructure.

In the Cloud or the Fog, a backend service is made of a runnable and of the
associated state. The runnable is usually packaged in a VM (Virtual Machine)
or a Linux Container1.

The state or data object is the data used by the runnable and it has a persistent
component, which is usually stored in a database, and a transient state, which
can not be recovered when the service is instantiated again. Nowadays most
applications are designed as stateless. Services are called stateless when all the
information required for the service to function properly is persisted in a database.
Stateless services have a number of advantages such as allowing several instances
of the service running concurrently, for instance to balance load or to provide
fault tolerance. This is known as replication and is closely related to service
migration, where instead of relocating a service instance, several instances are
running concurrently [Flinn 2009].

A service migration entails the move of a running service from one server to
another. In order to do so, the runnable and the associated state must be trans-
ferred. If the service is stateless the migration can be viewed as an instantiation
of the runnable on a new server. If there is state persisted in a database, it should
also migrate its data in case the SLA is not met.

Another characteristic of services to take into account is tenancy: services
can either be designed for processes and storage to handle either one or many
users. Each user is called a tenant and this kind of architecture is called a
multi-tenant architecture since each service can run for several users or clients.
This architecture helps reduce the infrastructure and operational maintenance
overhead.

4.1.2 Study context

In our problem we are taking a user-centric approach, where we focus on data
objects (user sessions and related service data) that need to be migrated between
Fog nodes. We do not concern ourselves with the technical details of how data

1There are more modern alternatives such as WebAssembly modules. [was ]
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objects are implemented, or whether the service is implemented using virtual
machines, containers etc.

In addition, it is not our concern whether this data object must be entirely
migrated, or whether the service is running for one or many users. The fog
computing infrastructure is composed of a number of base stations which are
connected to a number of Fog nodes which in turn process the service requests.
Fog nodes can be heterogeneous and have a different OS, computing capacity,
number of servers, VMs, hardware etc. As presented so far, we do not consider
base stations being Fog processing nodes, even though they may also provide
services relevant to maintain the Fog running such as working with handover
events to trigger service migrations. Base stations also use their networking data
to decide which Fog node to route their traffic to or, more appropriately, decide
where a data object should be migrated depending on its SLA.

The general picture in our model is that a car is connected using the cellular
network to a number of base stations. Base stations maintain a list of candidates
Fog nodes with allowed thresholds for SLA. Whenever a car moves to another
base station, the data object may be migrated to another Fog node satisfying the
SLA. An approach is to always keep migrating the service towards the fog node
that is the closest to the current position. However, frequent service migrations
have a migration and network cost. Bandwidth or capacity are some examples of
metrics that express this cost but intuitively, the more migrations are triggered,
the bigger this cost. In our work we look into ways to reduce this cost by studying
how to minimize the number of the data object migrations triggered.

Instead of deciding of the appropriate Fog node to migrate to when a han-
dover happens, the Fog controller computes the optimal set in advance when the
itinerary is shared or predicted based on statistics.

4.2 Related literature
There are different types of service migration discussed in the literature, includ-
ing the migration of virtual machines (VMs), containers or processes but in this
section we focus mostly on mobility induced service migrations. An interest-
ing study on virtual machine migrations with a section dedicated to mobility is
[Zhang 2018a].

[Rejiba 2019] is a survey covering some of the state-of-the-art on mobility
induced service migrations. The authors present recent advances where service
migration has been studied on divers paradigms as cloudlets, Fog computing,
cloud-based vehicular networks and multi-access edge computing.

The authors in [Taleb 2013c] propose their concept called Follow-me-cloud in



82 Chapter 4. Service Migration in Fog Networks

which services are migrating in conjunction with user movements taking into ac-
count various parameters such as latency, available bandwidth, server utilization.
They provide as well an OpenFlow implementation [Taleb 2013a].

Many publications referring to these "Follow me" approaches exist [Ouyang 2018]
[Aissioui 2018][Taleb 2013b].

Service migrations in Fog Computing infrastructure borrows ideas and com-
bines techniques used in handovers in cellular networks and live migration in
Cloud computing. A reader can refer to the survey [Wang 2018b] where the au-
thors compare these two concepts with service migration in MEC as well their
different scopes and similarities.

In [Li 2019] authors propose a quality-of-service aware scheme based on the
existing handover procedures to support the real-time vehicular services. A case
study based on a realistic vehicle mobility pattern for the Luxembourg scenario
[Codecá 2017] is carried out, where the proposed scheme, as well as the bench-
marks, are compared by analyzing latency and reliability as well as migration
cost.

We can also mention that [Agarwal 2010] discuss Volley, an automatic service
placement for geographically distributed DCs based on iterative optimization
algorithms. Volley migrates services to new DCs if the capacity of a DC changes
or the user changes location.

More theoretical results are given in [Taleb 2013b], [Urgaonkar 2015]. In the
first study, the authors use Markov Decision Processes to capture the tradeoff
between migration cost and user experience. In the second study, the authors
focus on the similar problem. They model this tradeoff due to service migra-
tion’s network overhead and latency for the use. Since service migration affect
workload scheduling they tackle this decision jointly. Instead of using dynamic
programming to solve MDPs, they decouple the MDPs and apply the technique
of Lyapunov optimization of control theory.

In [Yao 2015] a contribution on service migration in the area of VANETS is
given. The authors present a Mixed Integer Quadratic Programming formulation.
As an input they have a graph of RSUs, resources, vehicles and sessions and they
try to solve a minimum network cost VM migration problem. They then propose
an heuristic algorithm with polynomial time.

Another theoretical work is [Gonçalves 2018], where authors propose a VM
migration approach based on mobility prediction. The authors provide an ILP
model for VM placement in Fog computing. The problem they are dealing with
is different from ours. Their algorithm defines the set of candidate cloudlets
to receive the user’s VM according to the user’s future position. In their model
they want to maximize the accepted requests while minimizing the user’s latency.
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They execute these two objective functions sequentially.
We finally mention tools such as described in [Lopes 2017], which is an ex-

tension of the iFogSim simulator [Gupta 2016] adding virtual machine migration
policies for mobile users. Their VM migration policy takes into account user’s
position, speed and direction. As well they define, the point where the migration
can be potentially triggered by specifying the geographical zone based on user’s
coordinates. FogNetSim has been proposed in [Qayyum 2018]. FogNetSim is an
extension of OMNET++ that is used to simulate a network. The tool simulates
among others geographically distributed data centers while providing support for
handovers among Fog nodes. The implementation includes a number of mobility
models. It is a release of 2018 and as future work authors mention the support
for VM migration. [Rejiba 2019].

Our approach differs from these studies since it is the first trying to minimize
the global number of migrations taking into account traffic sent across the Fog
network.

4.3 System Model
Given a set of candidate locations for Fog clouds, we study the problem of obtain-
ing the optimal set of Fog nodes. The optimality criterion is a linear combination
of the cost of infrastructure and the number of migrations. The cost of infras-
tructure increases with the number Fog nodes.

In this problem, we have multiple users and we assume that the statistics of
base station handovers are given. These statistics are used to compute the total
number of migrations.

We define a cost that is a function of the number of migrations between base
stations. In this model, all base stations are paired. Migrations happen between
two base stations and incur a cost when they do not share a specific Fog node.
We call this model pairwise because all cost components happen between two
base stations and depend on the traffic between them. If there is no traffic, no
migration is triggered. This model is a simple first approach to explore the general
idea of optimizing service migrations using mobility patterns. Unfortunately it
does not address a number of scenarios correctly. For instance, while adding more
Fog nodes should naturally lead to more migrations, this model cancels them out
and it results in a decreased cost.

An extended path-based approach that solves these issues is presented at the
end of the chapter. However, if one only has handover statistics without being
able to track users, this model provides a solution that encourages minimizing
migrations.
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Organization
The rest of this work is organized as follows. In Section 4.4.1, we describe the
general model, and present an Integer Linear Program (ILP) formulation of the
problem. In Section 4.4.2, we present a heuristic to compute a feasible solution
to this ILP. This heuristic is based on the greedy algorithm for the weighted set
cover problem. In Section 4.4.3, we evaluate the performance of the heuristic and
compare it with the standard greedy algorithms for the set cover and weighted
set cover problems.

4.4 Contributions

4.4.1 Pairwise mobility
In this section, we formulate the problem of minimizing the minimum number of
service migrations between base stations as an ILP problem. By pairwise mobility
model, we mean that the origin and the destination base stations are neighbors
and the paths are direct routes from the origin to the destination. In the example
in Figure 4.1, the pairwise mobility model has traffic going between only pairs
of base stations, that is routes will be {A,B}, {A,C}, {A,D}, {B,A}, {B,C},
{B,D} and so on.

In Figure 4.1, the migration model we have defined has the following at-
tributes: for the pair (A,B) or (B,A) there will be no migration since both base
stations A and B share Fog node 1. However for pairs such as the (A,C) (or
(B,D), etc) there will be one migration since they share no common Fog node.
What this model does not support, however, is computing that there will be one
migration by going from A to B to C, because (A,B) share the Fog node 1,
and (B,C) share the Fog node 2. Instead the model will consider there is no
migration happening. In a more realistic setting, if the service to migrate is first
on Fog node 1 (routed from base station A then B) and later migrated on Fog
node 2 (routed from base station C), there would be a need for one migration.
This specific model has insufficient input to map this. At the end of the chapter,
a path-based approach is suggested to address this limitation.

Assume we are given a traffic mobility pattern between various base stations.
This pattern is summarized in a matrix,W , whose (i, j)th element, wi,j represents
the number of vehicles that move from base station i to base station j per unit
time. We shall call W the mobility matrix.

We are also given a connectivity matrix C whose (i, j)th element, ci,j, is 1 if
data center j meets the SLA for traffic from base station i, and 0 otherwise.
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Figure 4.1: Example bipartite graph

We wish to determine the set of Fog nodes to which each base station should
send its data traffic to. Implicitly, this determines which Fog node sites within
the set F should be operational. The choice of operating or not a Fog node is
influenced by two conflicting costs. First, there is a cost of operating a Fog node
which includes the infrastructure as well as the maintenance costs. Thus, the
larger the number of Fog nodes selected by one of more base stations, the larger
the opening cost. The other cost is for service migration. When a vehicle moves
out of the range of base station i and into the range of base station j, in order to
maintain the continuity of its services, its data has to be migrated from a data
center selected by i to one selected by j. This migration cost can be avoided if
both i and j have a data center in common.

As we have already mentioned in the introduction what we aim to find is the
vector x of Fog nodes that will operate and result in the minimum migration and
operation cost.

Let xk ∈ {0, 1} be a binary variable that indicates if Fog node k is operational
or not.

Definition of a migration

The following two relations are used to define a migration:

yi,k = ci,kxk, (4.1)
zi,j = 1−max

k
(yi,k · yj,k) (4.2)

• Equality (4.1) is used to specify which Fog nodes k serve the base station
i under a SLA. If the Fog node k does not serve the base station i under a
SLA, then ci,j will be zero and then yi,k is zero.
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• In equality (4.2) zi,j indicates whether i and j have a node in common in
the set of operational Fog nodes indicated by x. It is used to count the
number of migrations.

Number of migrations

The number of service migrations due to vehicles moving between i and j is given
by

mi,j(x) = wi,jzi,j (4.3)
Note that mi,j does not depend upon how many Fog nodes are in common

between i and j as long as there is at least 1.
The optimization problem is formulated as the following Integer Program:

minimize
x

g(x) + β
∑
i,j

mi,j(x) (4.4)

s.t. x ∈ {0, 1}|D|,
yi,k = ci,kxk, ∀k ∈ D, (4.5)∑

k

yi,k ≥ 1, ∀i. (4.6)

In (4.4) the function g is the operational cost and could potentially depend
upon which Fog nodes are open. In the simplest non-trivial case, g(x) = ∑

k xk,
i.e. a linear cost of operating a Fog node. In our experiments we gave the
coefficient β values such as 0.01 or 0.001 depending on how much weight we
attribute to migrations, in addition in all our experiments the operation cost of
one Fog node is 1. g(x) thus corresponds to the number of Fog nodes. If there
are three selected Fog nodes then g(x) = 3.

The migration cost in the objective function is defined as the sum of the
resulting cost for each pair of base stations. The cost for a pair (i, j) of a base
station is (wi,j +wj,i) · zi,j where zi,j is 0 if (i, j) share a base station in x. It is 1
otherwise.

Finally, the constraint (4.6) expresses that every base station should be con-
nected with at least one Fog node under an SLA.

Summing up, the two main specifications to take into consideration for the
vehicle mobility are that (a) if two base stations have a Fog node in common and
that Fog node is selected, then the cost for the migration between those two base
stations is 0, (b) all base stations should be connected to at least one selected
Fog node.

Table 4.1 presents all variables used.
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Table 4.1: Variables used in the ILP formulation

Notation Description

W mobility matrix
C connectivity matrix
xk A binary variable indicating whether Fog node k

is operational or not
zij A binary variable indicating whether i and j have

a Fog node in common
wij variable in the mobility matrix, represents the

number of vehicles moving from base station i to
base station j

mij Number of service migration per unit time
cij binary variable in the connectivity matrix, if 1 it

means the j Fog node meets the SLA for service
coming from i

g(x) operational cost which depends upon which Fog
nodes are open.

Linearising this model to use in Gurobi

The term zi,j = 1−maxk(yi,k·yj,k) is not linear due to the multiplication operation.
Since Gurobi is a linear solver we alter the problem formulation in order to get a
linear expression. Note that Gurobi can implement the maximum operator. So,
we do not linearize it.

We first define variable ri,j,k = yi,k · yj,k. The expression ri,j,k = yi,k · yj,k can
be linearised using the following rules [Brown 2007].

ri,j,k ≥ yi,k + yj,k − 1
ri,j,k ≤ yi,k

ri,j,k ≤ yj,k

0 ≤ ri,j,k ≤ 1

Now, zi,j = 1−maxk(yi,k · yj,k) expresses that a pair of base stations i and j
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will account a cost (wi,j + wji) · zi,j.

minimize
x

g(x) + β
∑
i,j

wi,j · zi,j (4.7)

s.t. x ∈ {0, 1}|D|,
yi,k = ci,kxk, (4.8)∑

k

yi,k ≥ 1, ∀i (4.9)

ri,j,k ≥ yi,k + yj,k − 1 (4.10)
ri,j,k ≤ yi,k, ri,j,k ≤ yj,k, ri,j,k ∈ {0, 1}, ∀i, j, k, (4.11)
zi,j = 1−max

k
(ri,j,k), ∀i, j (4.12)

4.4.2 Heuristics
The weighted Set Cover problem which has been presented in Section aims to
find the subsets whose union covers all elements in the universe. In our problem
formulation, the subsets in the weighted set cover are the individual Fog nodes
serving the base stations under an SLA.

We modify the weighted set cover by using two heuristics cost functions: (i)
a cost function depending on the amount of incoming traffic to each base station,
and (ii) a cost function that depends only on the additional migrations.

Weights / Cost function
We transform the Fog nodes and base station connectivity bipartite graph into
an instance of the Weighted Set Cover problem. The Fog nodes are represented
as subsets containing the base stations they are connected to. The optimal Set
Cover is thus the selection of the fewest Fog nodes that cover all base stations.
Using Weighted Set Cover, we attribute weights to each subset (Fog node) and
aim to find the combination of Fog nodes that cover all base stations with the
minimum weight.

We give each Fog node a weight equal to the sum of incoming traffic to each
base station it is connected to.

For instance in our example in Figure 4.2, we compute the traffic incoming
for base station A first. There are 30 handovers from base station B to A and
50 handovers from C to A, for a total of 80 incoming handovers. Base station
B incoming traffic consists in 10 handovers from A to B and 60 handovers from
base station C to B, for a total of 70 incoming handovers. The Fog node 1 is
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Figure 4.2: Pairwise mobility

serving both A and B and is thus mapped as a subset {A,B} will have a cost of
150 (80 + 70).

These weights attributed to each subset to let Weighted Set Cover prioritize
Fog nodes more likely to have higher activity.

This is represented by the following weight function counting that sum of
incoming traffic to each of base stations in a subset: Given W the mobility
matrix, for a subset S, ∑j∈S

∑
i→j wi. Our model wants to favor higher weights.

Since the weighted set cover algorithm minimizes the weight we are taking the
inverse of the weights.

Modified weighted set cover
We also tried to modify the weighted set cover algorithm by iterating until the
universe is covered and at each step picking the Fog node that minimizes the
number of additional migrations. The benefit of this modification compared to
the default weighted set cover implementation is that it does not need to take
the weights as an input. While we previously had to compute the weights by
summing incoming traffic per base station, this modified algorithm selects the
Fog nodes by computing their weight greedily (Algorithm 2).

For j ∈ F , denote Bj, the set of base stations covered by j. With slight abuse
of notation we will replace j by a subset of F in which case BA will be the set
of base stations covered by the subset A. Also, for A ⊂ F , Ac will denote the
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complement inside F , that is, the set F \ A.
For a set A ⊂ D define:

γA(k) =

∑
(i,j)/∈Bk\BA

mi,j

|Bk \BA|
, ∀k /∈ A. (4.13)

The ratio γA(k) can be interpreted as additional migrations per base station
that will be covered if k is added to A. A higher value of γ, indicates that this
Fog node eliminates the need for a larger number of migrations and that it has a
lower marginal cost.

Algorithm 2: Modified weighted set cover
1 Output: A
2 C ← ∅
3 A ← ∅
4 while C 6= B do
5 k̂ = arg mink∈Ac γAc(k)
6 C ← C ∪ Bk̂
7 A ∪ k̂

4.4.3 Performance Evaluation
In this section we describe the results obtained from three different heuristics:
a plain set cover implementation, a weighted set cover implementation where
weights represent the inverse of inbound traffic on each Fog node and a modified
version of weighted set cover which does not start with explicit weights but com-
putes them greedily. We also show the solution to ILP which was computed using
Gurobi [Gurobi Optimization 2018] which is a solver for optimization problems.

In the first example, we show how the solution of the different heuristics varies
with β which is the weight if the migrations. For Figure 4.3 we took the number
of base stations |B| = 10 and the number of Fog nodes |F| = 5. Thus C is a
10× 5 matrix and W is a 10× 10 matrix. The number of cars was between 0 and
100 in the mobility matrix W .

When β is close to 0, the ILP is almost like a set cover problem as the cost of
migrations is not taken into account in the optimization. For larger values of β,
the migrations become important and the greedy algorithm for set cover becomes
worse.
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Figure 4.3: Cost as a function of β for Set Cover (SC), Weighted Set Cover
(WSC), Modified Weighted Set Cover (MWSC) and the ILP formulation.

In the second set of experiments we increase the number of base stations
and fog nodes. We take different pairs of (B,F) with maximum |B| = 50 and
maximum |F| = 15. The traffic matrix has random entries between 0 and 20,
and 100 different random matrices were generated. For β = 0.01, the average
total cost is shown in Fig. 4.4 and the average execution time is shown in Fig.
4.5.

For β = 0.001, the results are shown in Fig. 4.6 and 4.7. Again for smaller
values of β, the heuristics are close to ILP but with a smaller execution time than
ILP.
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Figure 4.4: Average Cost of the SC, WSC, MWSC and ILP given β = 0.01 for
50 base stations and 20 fog nodes

Figure 4.5: Execution times of the SC, WSC, MWSC and ILP given β = 0.01 for
50 base stations and 20 fog nodes
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Figure 4.6: Average Cost of the SC, WSC, MWSC and ILP given β = 0.001 for
50 base stations and 20 fog nodes
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Figure 4.7: Execution times of SC, WSC, MWSC and ILP given β = 0.001 for
50 base stations and 20 fog nodes
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Figure 4.8: Average cost of SC, WSC, MWSC and ILP given β = 0.001 for 60
base stations and 20 fog nodes

Finally, in Fig. 4.8 and 4.9 we plot the results for maximum |B| = 60 and
maximum |F| = 20. The traffic matrix has random entries between 0 and 20,
and 100 different random matrices were generated, and β = 0.001
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Figure 4.9: Execution times for a β = 0.001 for 60 base stations and 20 fog nodes

We expect the traffic statistics to be updated regularly, without necessarily
requiring the changes to happen in real-time. Depending on how often operators
would want to update the traffic data, they could either pick the faster heuristic
or spend the extra compute time with a more accurate solution provided by an
ILP solver.

4.5 Conclusion and Future Work
We have presented an Integer Linear Program for obtaining the optimal location
of fog nodes that minimizes a linear combination of the number of migrations and
the cost of infrastructure. This was done for a pairwise mobility model in which
the origin and destination base stations are neighbors. We gave two heuristics
based on the Weighted Set Cover problem and evaluated the performance of these
heuristics with that of the optimal solution. This study focuses on pairwise base
station handovers which are a limited form of mobility patterns. It is interesting
to extend this model by tracking the path taken between base stations by indi-
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vidual users to gather frequency statistics. Given this input we can imagine more
accurate models to minimize service migrations in a way that supports better
precise mobility pattern. In the following section which is proposed as a future
work we explain this idea.

4.5.1 Path-based Mobility Patterns
In this section we discuss the extension of our model in the case of having statistics
over itineraries for a given area. To illustrate this more clearly let us define a
path in the road network by a set of ordered base stations. We shall assume we
are given as input the traffic statistics of how many users move along each path
4.10.

Figure 4.10: Path-based mobility

As an example, consider the network in Figure 4.1 with four base stations
{A,B,C,D} and three fog nodes 1, 2, 3. Here FA = {1}, FB = {1, 2}, FC = {2, 3}
and FD = {3}. There are only two subsets of F that can cover B: {1, 3} and
{1, 2, 3}.

Suppose there is only one path {A,B,C,D} in the network with 100 users
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Path

A → 1,
B → 1,
C → 3,
D → 3

A → 1,
B → 1,
C → 2,
D → 3

A → 1,
B → 2,
C → 2,
D → 3

100 100 200 400
400 0 0 400
400 400 400 0
200 0 200 200
100 100 200 100
Total 600 1000 1100

Table 4.2: Migrations costs for the different configurations

taking this path. Then, the number of migrations for {1, 3} is 100 (one for each
user migrating from fog node 1 to 3 when the user moves from base station B
to base station C) whereas for {1, 2, 3} this number is again 100 (assuming 2 is
not used) or 200 (if we assume that A is connected to 1, B and C are connected
to 2 and D is connected to 3). Assuming the infrastructure cost is linear in the
number of fog nodes, then it is optimal in this case to operate fog nodes 1 and 3
only.

Now, suppose that in addition to the previous users there are 500 users that
take the path {B,C} only. Now, the number of migrations for {1, 3} is 600
whereas for {1, 2, 3} it is 200 × 1 + 500 × 0 = 100 (this is because the users on
the path {B,C} will be connected to fog node 2 and hence will not require any
migrations). It might be more profitable in this case to operate the set {1, 2, 3}.
This will depend upon the cost of infrastructure.

In Figure 4.10 we provide a richer example with five different paths with
different amount of traffic. We compare three different routing strategies (A→ 1,
B → 1, C → 3, D → 3, A → 1, B → 1, C → 2, D → 3 and A → 1, B → 2,
C → 2, D → 3) and calculate how many migrations are required for each path
depending on the routing strategy. We can then select the routing strategy that
minimizes the overall amount of migrations, in this case the strategy from the
first column will trigger only 600 migrations as opposed to 1000 and 1100 for the
second and third strategies. Table 4.2 details the different steps.

This problem can be solved using Gurobi or with a greedy heuristic.



Chapter 5

Adaptive Task Allocation in the
Fog

In this chapter, we propose a simulation model to compare different task alloca-
tion strategies for Fog Computing. While we focused on the design phase in the
previous two chapters, we now examine solutions for the operation phase: even
if the infrastructure has been optimally planned, we know traffic and workload
characteristics will deviate from expectations. We thus need, on top of a good
design, to devise efficient resource management mechanisms that adapt to these
deviations. The simulation model we propose relies on the network simulation
framework OMNeT++.

We focus on online distributed adaptive task allocation mechanisms which
require neither cooperation between base stations nor knowledge of the physical
infrastructure. We assume that each base station independently learns what is
the optimal task allocation, without coordination or even clock synchronisation
with the other base stations and just reacts to the response times it observes from
the Fog nodes.

In our experiments we tune different parameters of our network such as the
communication time between base stations and Fog nodes, the processing capac-
ity of micro-datacenters or the distribution of service times in the Fog and the
Cloud. For instance we assume exponential service distributions in some sce-
narios and in others we assume the processing times of the jobs follow a Pareto
distribution to test the robustness of different allocation schemes by observing
the increase in the mean response time.

We also add perturbations after some time in the experiment to see how the
different strategies react. In all these cases we provide extensive performance
comparisons.
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5.1 Motivation

In Chapter 3, we have devised an algorithm for designing a Fog Computing
infrastructure, that is, for deciding where to place Fog nodes, how much capacity
to install in each of them, and how to route the flows of jobs originating from
the base stations. The proposed algorithm is based on a very simple queuing
model of Fog nodes and assumes fixed communication delays. The algorithm also
assumes that the intensity of the traffic originating from base stations is exactly
predictable. In practice, these assumptions are of course not perfectly met. They
can be seen as a blessing in disguise which makes the problem tractable and do
not affect too much the design placement and capacity planning decisions.

However, in the exploitation phase, the blind use of the task allocation strat-
egy obtained in the design phase may lead to poor network performances. Indeed,
this strategy was obtained using an overly simple model. It is also likely that at
some point in time the actual traffic matrix deviates significantly from the one
used for designing the infrastructure. A well-known alternative approach is to
rely on online adaptive task allocation mechanisms. In this chapter, we shall par-
ticularly focus on distributed task allocation algorithms which requires neither
cooperation between base stations nor knowledge of the physical infrastructure.
More precisely, we consider learning-based mechanisms which do not rely on a
specific model of the infrastructure but just react to the response times they
observe from the Fog nodes. We assume that each base station independently
learns what is the optimal task allocation, without coordination or even clock
synchronisation with the other base stations.

We adopt a discrete-event simulation approach. We propose a simulation
model of a Fog Computing infrastructure which relies on the network simula-
tion framework OMNeT++. Several adaptive task allocation schemes are imple-
mented by the simulation model and we study several scenarios to understand
the advantages and drawbacks of each of them.

This chapter is organized as follows. Section 5.2 is devoted to related work.
We present the simulation model in Section 5.3. We first give a short overview
of the simulation framework OMNeT++ in Section 5.3.1, and describe our sim-
ulation model in Section 5.3.2. Section 5.4 presents the different task allocation
strategies considered in this chapter. Numerical results are presented in Section
5.5. Finally, some conclusions are drawn in Section 5.6.
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5.2 Related literature

In our study we examine the effect of various task allocation strategies using
different configurations that let us compare the performance of Fog allocation,
Cloud allocation and offloading.

An important contribution that inspired this work is [Wang 2018a]. It aims
to allocate tasks adaptively and efficiently in the Cloud and provides a platform
named TAP (Task Allocation Platform) that uses a Linux kernel module and can
compare scenarios in a realistic setting. In our study we use an Omnet++ simu-
lation model instead. In comparison with our work this happens in a centralized
fashion since the TAP controller gathers all information. The sensible strategy
we use is taken from this paper and we compare it with many more strategies.

Routing is another application where adaptive algorithms are commonly used.
In [Jonglez 2016] the authors propose a decentralized algorithm robust to mea-
surement errors, outdated information and clock desynchronization that con-
verges to a pure Nash equilibrium. They use the Mininet network emulator to
test the behavior of their implementation in different scenarios. The Optimal
Path Selection (OPS) algorithm is a probabilistic algorithm for adaptive single-
path routing in packet-switched networks [Jonglez 2017]. It was developed in the
context of atomic non-splittable routing games and is inspired from a mirror-
descent algorithm for general potential games [Coucheney 2015].

In [Beraldi 2017] the authors formulate a cooperative offloading policy be-
tween two edge data centers for load balancing. They define a blocking state in
which the requests are dropped and compare with two other schemes in order
to minimize the amount of blocked requests: with an isolated policy, where no
data center works with cooperation with the other, and a fully shared where
any request is forwarded to any other datacenter. The cooperative scheme they
propose behaves better than the two others. The problem the authors study is
similar with ours as the offloading scenario we study dynamically happens when
a Fog node is overloaded with tasks. However their scheme is static whereas the
strength of our approach is that it is dynamic and can adapt to the unknown.

A theoretical work is [Fricker 2016] where authors consider the scenario of
offloading with a certain probability blocked requests at the Fog to the neighbor-
ing data centers and to the Cloud. Through functional equations and Markov
theory they estimate the gain achieved via cooperation between neighboring data
centers.

In [Baek 2019], the authors formulate the load balancing problem as a Markov
Desicion Process (MDP) solved by Q-learning. Q-learning is a common rein-
forcement learning algorithm that can solve MDPs. The multi-armed bandits
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algorithms we use are simpler forms of reinforcement learning that deal with
problems with only one state in contrast with MDPs that model problems with
several states. This allows Q-learning models to keep knowledge over time and
remember the past to better handle the future. Their reward function takes into
account processing time to minimize and overload probability. A difference in
our approach is that we take the constraint of giving base stations no knowledge
of the system, while the authors place their Q-learning algorithm in the SDN
controller which has an overview of all the system.

The authors in [Wang 2018a] use a reinforcement learning algorithm using a
random neural network proposed in [Gelenbe 1989] in order to allocate tasks to
the Cloud.

There are different studies on offloading which describe benefits other than
latencies improvements, such as energy saving opportunities. This is particularly
interesting in fog models where Fog nodes may be battery-powered devices. In
[Liu 2018] for instance authors formulate a multi-objective optimization problem
to minimize the energy consumption, execution delay and payment costs that
finds the optimal probability to offload.

We can mention existing surveys on computation offloading such as [Cheng 2019]
[Lin 2019] which provide a review of the state-of-the-art of computation offload-
ing in the various contexts it can be useful: energy consumption minimization,
Quality of Services guarantees, and computation and storage requirements. There
are also a number of tools and frameworks that help building offloading infras-
tructure or mobile application developers implement the required facilities. In
[Cuervo 2010] the authors present a framework that allows computations to be
dynamically offloaded to the Cloud with a runtime optimizer that can transform
local computation into remote calls on-demand and thus make it easy for appli-
cation developers to built adaptive applications. They show energy consumption
improvement in resource-intensive workloads.

5.3 OMNeT++-based Simulation Model

5.3.1 The Network Simulation Framework OMNeT++
OMNeT++ (Objective Modular Network Testbed in C++) is a C++ framework
which provides infrastructure and tools for writing discrete-event simulations.
It was designed to be as general as possible working for a number of use cases
in communication networks such as wireless and ad-hoc network simulations,
peer-to-peer networks, queuing network simulations, etc [Varga 2008]. One of
the fundamental ingredients of this infrastructure is a component architecture
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for simulation models. Models are assembled from reusable components called
modules. Modules can be connected with each other via gates, and combined
to form compound modules (see Fig. 5.1). They communicate through message
passing, where messages may carry arbitrary data structures.

Figure 5.1: Nested modules.

The behavior of the model is defined in C++, while the structure of a simula-
tion model is described in the NED language, OMNeT++’s topology description
language,which stands for Network Description. NED allows the user to con-
nect C++ modules. In the following sections we introduce the NED language,
as well some basic components of OMNeT++ in order to provide the necessary
background about our Fog tool and configurations.

The NED language
The user describes the structure of a simulation model in the NED language.
NED lets the user declare simple modules, and connect and assemble them into
compound modules. The user can label some compound modules as networks;
that is, self-contained simulation models. Channels are another component type,
whose instances can also be used in compound modules.

We introduce the NED language via a simple example. At the top, we define
the network model as follows.

Listing 5.1: NED file defining the network model.
1
2 network Network
3 {
4 submodules :
5 node1 : Node;
6 node2 : Node;
7 node3 : Node;
8 ...
9
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10 connections :
11 node1 .port ++ <--> { datarate =100 Mbps ;} <--> node2 .port ++;
12 node2 .port ++ <--> { datarate =100 Mbps ;} <--> node4 .port ++;
13 node4 .port ++ <--> { datarate =100 Mbps ;} <--> node6 .port ++;
14 ...
15 }

The network contains several nodes, named node1, node2, etc. from the
NED module type Node. We shall shortly define Node below.

The second half of the declaration defines how the nodes are to be connected.
The double arrow means bidirectional connection. The connection points of mod-
ules are called gates, and the port++ notation adds a new gate to the port[]
gate vector. We can as well specify properties for the connection such as latencies
or datarates.

Omnetpp.ini file
The central configuration point of the OMNeT++ simulation environment that
let us define the parameters and how the simulation behaves with different inputs
is the omnetpp.ini file. One can define any number of networks in the NED
files, and for every simulation the user has to specify which network to set up.
The usual way of specifying the network is to put the network option into the
configuration file. Examples of content of configuration files will be presented in
the next section.

5.3.2 Discrete Event Fog Simulation Model
We describe our simulation model using a simple scenario which is illustrated
in Fig. 5.2. This scenario is composed of two base stations sending execution
requests to two different Fog nodes.

B2B1

D1 D2

Figure 5.2: A simple scenario.
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In our simulation model, this scenario can be described with the NED file
given in Listing 5.2. In this network, the nodes client[0] and client[1] are of
type AccessNode and represent the base stations B1 and B2 in Fig. 5.2, whereas
the nodes fog[0] and fog[1] are of type FogNode and represent the Fog nodes
D1 and D2 in Fig. 5.2. For simplicity, we assume here that all communication
delays are drawn from a truncated normal distribution, but it is of course possible
to use asymmetric communication delays for the different connections.

Listing 5.2: The NED file for our simple scenario.
1 network Fog
2 {
3 types :
4 channel Channel extends ned. DelayChannel {
5 delay = truncnormal (20ms ,5 ms );
6 }
7
8 submodules :
9 client [2]: AccessNode ;

10 fog [2]: FogNode ;
11
12 connections :
13 client [0]. port ++ <--> Channel <--> fog [0]. port ++;
14 client [0]. port ++ <--> Channel <--> fog [1]. port ++;
15 client [1]. port ++ <--> Channel <--> fog [0]. port ++;
16 client [1]. port ++ <--> Channel <--> fog [1]. port ++;
17 }

We describe below the main components of our simulation model, including
the simple modules FogNode and AccessNode.

A Job in the Fog Simulation Model

Messages are a central concept in OMNeT++. In our simulation model, message
objects are used to represent jobs, but also events such as the end of service of a
job on a given server. In our model a job is specified by a source, a destination
and a delay, which represents the processing time of the job.

message Job
{

int source;
int destination;
simtime_t delay;

}
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The simple module FogNode

The simple module FogNode is used to model a Fog node as a set of parallel
queues. A Fog node has a certain number of inout gates that connect it to all
the base stations. As described in Listing 5.3, the parameters of a Fog node are
the number of servers it is composed of, the service time of a job on a server (for
simplicity, we assume homogeneous servers) as well as the routing algorithm for
assigning jobs to servers. Three routing policies are implemented: the random
routing policy which assigns an incoming job to a server selected at random
according to a uniform distribution, the round-robin routing policy, the power-
of-two-choices and the join-the-shortest-queue policy which assigns the job to
the server with the least number of jobs. The meanServiceTime represents the
mean value of the service time. The parameter deltaTime gives the time interval
between two consecutive recordings of the number of jobs in the system. Finally
the last parameter offloadthr will be used for the offloading scenarios and as
the name indicates provides a threshold after which the job is offloaded to the
cloud.

Listing 5.3: The NED file of the simple module FogNode.
1 simple FogNode
2 {
3 parameters :
4 int nbServers = default (1);
5 double meanServiceTime @unit (s);
6 volatile double serviceTime @unit (s);
7 string routingAlgorithm = default (" random ");
8 double deltaTime @unit (s) = default (0.1s);
9 double offloadthr @unit (s) = default (1.0 e6s );

10
11 gates :
12 inout port [];
13 }

The serviceTime is a volatile parameter which can be initialized in the
omnetpp.ini file as follows:

Fog.fog[0].serviceTime = exponential(9ms)
Fog.fog[1].serviceTime = exponential(7ms)

In our simulations in order to measure the impact of the variability on service
times we use a Pareto distribution instead of an exponential. In the omnetpp.ini
file this is configured as follows:

Fog.fog[0].serviceTime = pareto_shifted(2.25,8.333ms,0.0)
Fog.fog[1].serviceTime = pareto_shifted(2.25,8.333ms,0.0)
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The simple module AccessNode

The simple module AccessNode is used to model a base station. An access node
has a certain number of inout gates that connect it to all the Fog nodes. As
described in Listing 5.4. Each base station has a task allocation strategy that
can be any of the strategies we have defined and assigns a routing probability to
each Fog node it is connected to. There are other parameters such as inter-arrival
time between job requests and traffic perturbations.

Listing 5.4: The NED file of the simple module AccessNode.
1 simple AccessNode
2 {
3 parameters :
4 volatile double interArrivalTime @unit (s);
5 string jobName = default ("job");
6 string taskAllocation = default (" sensible_routing ");
7 double deltaTime @unit (s) = default (0.2s);
8 double startTime @unit (s) = default (-1s);
9 double stopTime @unit (s) = default (-1s);

10 double coefficient = default (2.0);
11
12 gates :
13 inout port [];
14 }

Traffic perturbations have three parameters : start time when perturbations
should start, stop time when perturbations should stop and a coefficient. The
coefficient is used as a mean to divide all inter-arrival times between the start
time and the end time of the perturbation. Traffic perturbations are described
in the omnetpp.ini file as follows:

Fog.client[0].startTime = 15s
Fog.client[0].stopTime = 30s
Fog.client[0].coefficient = 2.0

The above lines are used to divide all inter-arrival times by a factor 2 between
the start time (at 15 s) and the end time (at 30 s) of the perturbation. Note that
if the job arrival process is a Poisson process, this yields another Poisson process
with a rate multiplied by 2. Indeed, if X is an exponentially distributed random
variable with rate λ, then the random variable Y = 1

k
X has a PDF given by

FY (x) = P [Y ≤ x] = P [X ≤ k x] = 1− e−(kλ)x, ∀x ≥ 0.
Job inter-arrival times are specified in the omnetpp.ini file:

Fog.client[0].interArrivalTime = exponential(12.5ms)
Fog.client[1].interArrivalTime = exponential(6.25ms)
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After a new job reply is received from server j the router has the opportu-
nity to update the routing probabilities and its state. These routing probabilities
change across the different task allocation algorithm used. These adaptive algo-
rithms are presented in the next sections.

5.4 Adaptive Task Allocation algorithms
In the following sections we present various algorithms that can be used in task
allocation from base stations to Fog and Cloud nodes. These base stations have
no knowledge of the infrastructure and they do not cooperate with each other. In
one hand, this reduces the cooperation overhead, on the other hand it prevents
base stations from sharing strategies.

Firstly we introduce static algorithms where there is no dynamic adaptation in
order to use them as a base line. Bernoulli routing is one such example. We then
present a number of adaptive learning based algorithms. One of them is sensible
routing, described in [Gelenbe 2012], which has also been used to allocate tasks
in the Cloud. The other adaptive algorithms we present are mostly taken from
the theory of multi-armed bandits.

Multi-armed bandits [Lattimore 2020] is an important category of task allo-
cations problems. These are a simple forms of reinforcement learning problems
with a single state. They are used to evaluate the best choice in allocating a fixed
quantity of a limited resource within a finite number of competing options.

The name comes from slot machines in gambling also called one-armed ban-
dits. The gambler wants to play the best machine that maximizes his rewards.
There are multiple one-armed bandits but the name is simplified as multi-armed
bandits. The arms of the bandits in our case are the Fog nodes and the Cloud to
which base stations want to allocate their tasks.

One important consideration of these problems is the exploitation versus ex-
ploration trade off. In our simulation model, we run simulations using three
basic algorithms trying to deal with this trade-off: ε-greedy, softmax and exp3
algorithms.

5.4.1 Static Task Allocation
In this task allocation strategy, which is also known as Bernoulli routing, an access
node i = 1, . . . , K is given a fixed probabilistic choice vector pi, and allocates
a job to fog node j with probability pi,j, independently of the response times
observed for previous jobs from this fog node and other fog nodes. A special
case is the random task allocation strategy, which chooses the Fog node to which
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a job request is assigned using a uniform distribution, that is, the probability
that Fog node k is selected is 1

N
, where N is the total number of Fog nodes.

Another special case that we shall consider in the following is the case where
pi,j = 1 if j = j∗(i) and 0 otherwise, where j∗(i) is the geographically closest
micro-datacenter to the access node i.

5.4.2 Sensible Routing
The sensible routing algorithm was proposed in [Wang 2018a]. In this approach,
the task allocation agent maintains a weighted average Gi of the response times
of Fog node i. Gi is estimated for each of the Fog nodes i, and updated each time
a new job reply is received. If di is the response time of the job received from
Fog node i, then the value Gi is updated as follows

Gi ← (1− α)Gi + αdi,

where the parameter 0 ≤ α ≤ 1 is used to vary the weight given to the most
recent measurement as compared to past values. In our experiment, we have
used the value α = 0.1. The probability pi to allocate a job to Fog node i is then
computed as follows

pi = 1/Gi∑N
j=1 1/Gj

,

where N is the total number of Fog nodes. Of course, when a job has to be
allocated, we use the most recent value of pi which is available.

5.4.3 ε-Greedy Task Allocation
The ε-greedy algorithm is a method used for solving multi-armed bandits problem
(see Chapter 2 of [Sutton 2018]). The basic idea of this method is to behave
greedily most of the time, that is to choose the fog node with the lowest estimated
response time most of the times, but every once in a while (with small probability
ε) to select instead another fog node uniformly at random.

The task allocation agent maintains a weighted average of the response times
of Fog node i. Let Gi(k) be the estimated value of the response time of Fog nodes
i after k job replies have been received from it. This estimated value is updated
each time a new job reply is received as follows

Gi(k) = (1− α)Gi(k − 1) + αdi(k), k = 1, 2, . . . ,
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where di(k) is the response time of the kth job sent to Fog node i. The parameter
0 ≤ α ≤ 1 is used to vary the weight given to the most recent measurement as
compared to past values. Initial valuesGi(0) are set to 0 to encourage exploration.
Note that after k measurements, we have

Gi(k) = (1− α)kGi(0) +
k∑

n=1
α(1− α)k−ndi(n),

so that the weight of a measure decays exponentially according to the exponent
on (1− α).

Instead of choosing a constant step-size α, it is of course possible to vary the
step-size as the number of measures grows. For stationary problems, it is known
that the conditions ∑∞k=1 αk = ∞ and ∑∞k=1 α

2
k < ∞ are sufficient to guarantee

convergence to the (true) mean values. In particular, the choice αk = 1/k is often
used and gives

Gi(k) =
∑k
n=1 di(n)
k

,

that is, the estimated value of fog node i is just the average value of response
times for jobs processed at this node. In our work, we shall however stick to a
constant step-size α because it is known to be more convenient for non-stationary
problems [Sutton 2018].

Assume that at time t (i.e. after t job replies have been received), fog node
i∗t is the one with the lowest estimated response time, that is, i∗t ∈ argminiGi(t).
Then, the next job is allocated to fog node i∗t with probability 1 − ε, and to
another fog node j 6= i∗t with probability ε

N−1 , where N is the total number of
Fog nodes.

5.4.4 Softmax Task Allocation
As the ε-greedy algorithm described above, the Softmax algorithm maintains an
estimate Gi(k) of the response time of Fog node i = 1, . . . , N . However, the two
algorithms differ in the way these estimates are used for task allocation. With
the Softmax algorithm, the next job is allocated to Fog node i with probability

pi = e−Gi(k)/τ

e
∑N

n=1−Gn(k)/τ
,

where τ is a positive parameter called the temperature. High temperatures cause
all choices to be (nearly) equiprobable, while low temperatures favor Fog nodes
with low estimated response times (in the limit τ → 0, the Fog node with the
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lowest estimated response time is selected with probability 1). In our experiments,
we have used the value τ = 30 ms, which is the value of the same order of
magnitude as the total response time of a job.

5.4.5 EXP3 Algorithm
The adversarial bandit is a version of the multi-armed bandit problem introduced
by Auer and Cesa-Bianchi in 1998 in which almost nothing is assumed about the
mechanism that generates the rewards. In this problem, it is simply assumed
that, at each iteration, an agent chooses an arm and an adversary simultaneously
chooses the payoff structure for each arm. The goal is still to compete with the
best action in hindsight. The EXP3 algorithm, which is given in Algorithm 3,
was proposed in 2001 by Auer, Cesa-Bianchi, Freund, and Schapire [Auer 2002]
and is known to have an expected regret bound of

√
2Tn log(n).

Algorithm 3: EXP3 algorithm.
Initialisation: wi(t) = 1 for i = 1, . . . , N .
for all t = 1, 2, . . . do
Set pi(t) = (1− γ) wi(t)∑K

j=1 wj(t)
+ γ 1

K
, i = 1, . . . , N

Draw next action j randomly according to the probabilities p1(t), . . . , pN(t)
Receive reward xj(t) ∈ [0, 1]
Set wj(t+ 1) = wj(t)× exp

(
α xj(t)
Kpj(t)

)
end for

In the next section we present various experiments we performed using Static
allocation, Sensible routing, Exp3, and Softmax.

5.5 Performance Evaluation
The objective of this section is to compare those adaptive learning-based task
allocation schemes:

• We investigate whether the task allocation algorithms may lead to instabil-
ities and routing oscillations.

• We also compare the convergence times of the various algorithms, and in
particular, the speed at which they adapt to traffic perturbations.
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• We assess the robustness of the various algorithms to measurement noises,
such as highly-variable communication delays or service times.

We focus on two main scenarios. One scenario where base stations are con-
nected to two Fog nodes and the main Cloud and can allocate their jobs without
coordination. The second is similar but this time the Fog nodes are connected to
the Cloud and can use a dispatching strategy to offload their tasks. We compare
the two scenarios and the gains observed in response times by using offloading.

The organization of the experiments is the following. In the first scenario
we perform experiments with constant link delays and with variable link delays.
We as well compare the response times obtained for exponentially-distributed
service times against those obtained with Pareto service time distributions. We
then perform robustness tests by executing each scenario 5000 times and taking
the average, minimal and maximal values on all of these scenarios. In the case
of offloading, we first compare first four different dispatching policies: power-of-
two-choices, join the shortest queue first, random policy and round robin and
then we perform similar tests.

5.5.1 Task Allocation without offloading
A. Exponentially-distributed Service Times - Constant Link delays

We first consider the scenario illustrated by Figure 5.3. In this scenario, there
are two Fog nodes (corresponding to fog[0] and fog[1]), one cloud datacenter
(corresponding to fog[2]) and two access nodes. Note that communication de-
lays are symmetric for client[0] and client[1]. The access node client[0]
is closer to fog[0], and similarly client[1] is closer to fog[1].

The network is simulated for 100 seconds. As shown in Listing 5.5, each Fog
node has only 5 parallel servers1, and the service times are exponentially dis-
tributed with a mean of 15 ms for both nodes. In contrast, the Cloud (that is,
fog[2]) has 100 parallel servers, and the service times in the Cloud are exponen-
tially distributed with a mean of 10 ms. Jobs requests are generated according
to Poisson processes, with a mean of 7.75 ms for the first access node and with
a mean of 6.06 for the second one. The intensity of the traffic generated by the
first access node is multiplied by 2.5 between t0 = 15 s and t2 = 40 s. The inter-
arrival times of job requests at the second access nodes are divided by a factor 2.0
between times t1 = 30 s and t3 = 60 s. Note that, if we choose to always process
an incoming job at the closest Fog node, it means that the utilization rate of

1The number of servers in Fog nodes and in the Cloud are of course not realistic. These
values have been chosen so as to reduce the simulation times.
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30 ms

fog[1]

fog[2]

client[0] client[1]

fog[0]

5 ms

10 ms

30 ms

5 ms

10 ms

Figure 5.3: A simple scenario with two Fog nodes and one Cloud.

node fog[0] (resp. fog[1]), which is initially 0.387 (resp. 0.495), becomes 0.968
(resp. 0.99) between times t0 and t2 (resp. t1 and t3). In other words, under this
routing strategy, the system is stable but operates in heavy load between times
t0 and t3. Values are averaged over 5, 000 parallel simulation runs.

Listing 5.5: Parameters of the first scenario.
1 [ Config FogCloudSim ]
2 description = "Fog nodes serving jobs generated by Base Stations "
3 network = FogCloud
4 sim -time - limit = 100s
5 FogCloud .fog [0]. serviceTime = exponential (15 ms)
6 FogCloud .fog [1]. serviceTime = exponential (15 ms)
7 FogCloud .fog [2]. serviceTime = exponential (10 ms)
8 FogCloud .fog [0]. nbServers = 5
9 FogCloud .fog [1]. nbServers = 5

10 FogCloud .fog [2]. nbServers = 100
11 FogCloud . client [0]. interArrivalTime = exponential (7.75 ms)
12 FogCloud . client [1]. interArrivalTime = exponential (6.06 ms)
13 **. routingAlgorithm = " random "
14 FogCloud . client [0]. startTime = 15s
15 FogCloud . client [0]. stopTime = 40s
16 FogCloud . client [0]. coefficient = 2.5
17 FogCloud . client [1]. startTime = 30s
18 FogCloud . client [1]. stopTime = 60s
19 FogCloud . client [1]. coefficient = 2.0
20 FogCloud . client [0]. taskAllocation = " softmax "
21 FogCloud . client [1]. taskAllocation = " softmax "
22 FogCloud . client [0]. routingProba = "0.7 0.2 0.1"
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Strategy fog[0] fog[1] fog[2] Total
Static 24.7 43.5 0.0 68.2
ε-greedy 4.3 4.6 1.8 10.7
Sensible 4.5 4.6 0.9 10.0
Exp3 6.4 7.9 1.0 15.3
Softmax 5.0 5.1 0.9 11.0

Table 5.1: Mean number of jobs under the different task allocation strategies.

23 FogCloud . client [1]. routingProba = "0.2 0.7 0.1"
24 repeat = 5000

The results obtained for this scenario are shown in Fig. 5.4, 5.5 and 5.6, as
well as in Tables 5.1 and 5.2.

Let us first analyze Fig. 5.4, which presents the mean number of jobs as
a function of time in each Fog node and in the Cloud under the different task
allocation strategies. As expected, the static task allocation strategy in which
jobs are routed to the nearest Fog node does not perform very well : between
times t0 and t2 (resp. t1 and t3), the mean number of jobs at Fog node fog[0]
(resp. fog[1]) grows at a very high pace to reach more than 100 jobs (resp.
170 jobs) in the system. Surprisingly, the EXP3 task allocation strategy is also
not very efficient. In fact, this strategy adapts its routing probabilities to the
variations of the input traffic, but the adaptation seems to be slower than that of
the other algorithms. The softmax allocation performs quite well, but not as good
as the sensible routing and ε− greedy strategies. Both strategies adapt very well
and very fast to the variations of the input traffic. We note however that with the
ε−greedy strategy, there are some undesirable peaks in the mean number of jobs,
and also that this strategy sends more jobs to the Cloud than the sensible routing
strategy. Table 5.1 gives the time-average number of jobs in each datacenter
under each task allocation strategy. It is clear that, even though they are very
simple and assume almost no knowledge of the infrastructure, the adaptive task
allocation algorithms all lead to a significant reduction of the number of jobs in
the system.
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Figure 5.4: Mean number of jobs in each Fog node.
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We now turn our attention to Figure 5.5, which shows the job routing prob-
abilities as functions of time under the different task allocation strategies. Since
these routing probabilities do not vary with the static task allocation strategy,
this strategy is not included in Figure 5.5. We remark that the adaptation of
routing probabilities is very slow for the EXP3 algorithm as compared to other
dynamic strategies. We also note that under peak traffic conditions (between
times t1 and t2), the ε-greedy strategy send much more jobs to the Cloud (almost
65% for both access nodes) than the sensible routing and softmax strategies,
which sends only 30% and 40% of their jobs to the Cloud between times t1 and
t2, respectively. The two latter strategies lead to similar routing probabilities.
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Figure 5.5: Task allocation strategies.

Finally, let us discuss the results presented in Figure 5.6, which shows the
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client[0] client[1]

Strategy fog[0] fog[1] fog[2] fog[0] fog[1] fog[2]

Static 99.5 – – – 156.0 –
ε-greedy 46.1 56.1 70.3 56.1 48.0 70.3
Sensible 38.9 49.2 70.1 48.9 39.2 70.1
Exp3 45.2 59.2 70.1 54.7 49.0 70.1
Softmax 42.0 52.7 70.2 52.3 42.4 70.2

Table 5.2: Response times (ms) for each origin-destination pair under the different
task allocation strategies.

jobs response times under the different task allocation strategies for each source-
destination pairs as functions of time. As before, the static task allocation strat-
egy has very bad performance, since its response times are an order of magnitude
greater than that of dynamic strategies. The response times under the EXP3
algorithm are acceptable, except for a very high peak between 30 s and 36 s. As
we already observed, this algorithm adapts to the brutal variations in the input
traffic, but too slowly. The other algorithms perform quite well, in particular the
sensible routing and ε-greedy algorithms. We note the remarkable performance
of the sensible task allocation which allows to keep response times always below
70 ms. Table 5.2 gives the time-average values of the response time for every
source-destination pair under the different task allocation strategies. It is clear
from this table that dynamic task allocation strategies lead to a significant re-
duction of response times. We also note that the sensible task allocation strategy
outperforms the other strategies.
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Figure 5.6: Response times under the different task allocation strategies.
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client[0] client[1]

Strategy fog[0] fog[1] fog[2] fog[0] fog[1] fog[2]

Static 100.2 - - - 156.1 -
ε-greedy 45.9 55.6 70.0 55.8 47.8 70.2
Sensible 38.9 49.1 70.1 48.8 39.2 70.2
Exp3 45.4 58.3 70.0 48.8 39.2 70.2
Softmax 41.9 52.5 70.1 52.3 42.4 70.2

Table 5.3: Response times (ms) for each origin-destination pair under the different
task allocation strategies under variable link delays.

B. Exponentially distributed Service Times - Variable Link Delays

In order to evaluate the impact of the variability of link delays on the perfor-
mance, we present a configuration that takes this into consideration. Instead of
constant delays we now use a uniform distribution to model them. More precisely,
we replace the constant communication delay of 5 ms by a random delay with
the same mean but uniformly drawn in the interval [3 ms, 7 ms] (the standard
deviation is σ = 1.15). Similarly we replace fixed delays of 10 ms (resp 30 ms)
by uniform random delays in the interval [4 ms, 16 ms] (resp. [20 ms, 40 ms]),
which yields a standard deviation σ = 3.46 (resp. σ = 5.77).

Table 5.3 presents the response times under the different task allocation al-
gorithms when link delays are variable. These values have to be compared to
the mean response times obtained for fixed link delays, which are given in Table
5.2. Sweeping through all values in both tables, we see that the variation of
the mean response times never exceeds 1.2%. We thus conclude that the adap-
tive algorithms considered in our simulations are relatively robust to a moderate
variability in the communication delays.

Figure 5.7 compares the mean response times obtained with the sensible rout-
ing algorithm in both settings, that is, under fixed link delays and under variable
link delays. We hardly notice the difference, which shows that this algorithm is
robust to such perturbations.
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Figure 5.7: Response times obtained with the sensible task allocation algorithm
under fixed link delays and under variable link delays.

C. Pareto-distributed Service Times - constant link delays

In order to evaluate the impact of the variability of job sizes on the task allocation
algorithms, we now assume that the processing times of the job follow a Pareto
distribution, instead of an exponential distribution. In other words, we assume
that the probability that the processing time X of a job be greater than some
number x is given by

Pr(X > x) =

(
xm
x

)α
x ≥ xm,

1 x < xm,

where xm is the (necessarily positive) minimum possible value of the processing
time, and α is a positive parameter. If α > 2, the Pareto distribution has a finite
mean and variance which are given by αxm/(α − 1) and αx2

m/ [(α− 1)2(α− 2)].
We consider two different Pareto distributions:

• First Pareto distribution - We choose α = 2.25 and compute the min-
imum value xm so as to keep the same mean values for the job processing
times as in Section 5.5.1 (that is, 15 ms in Fog nodes and 10 ms in the
Cloud). For the jobs executed in the Fog nodes (resp. in the Cloud), the
standard deviation of the processing time is now 20 ms (resp. 13.3 ms)
instead of 15 ms (resp. 10 ms) with the exponential distribution.

• Second Pareto distribution - We choose α = 2.05 and, as before, we
compute the minimum value xm so as to keep the same mean values for the
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client[0] client[1]

Strategy fog[0] fog[1] fog[2] fog[0] fog[1] fog[2]

Static 103.1 - - - 161.1 -
ε-greedy 50.5 59.8 70.7 59.6 52.9 70.7
Sensible 44.2 54.6 70.1 53.9 45.0 70.1
Exp3. 48.6 60.1 70.2 57.6 51.2 70.2
Softmax 52.3 61.2 70.5 65.1 55.2 70.5

Table 5.4: Response times (ms) for each origin-destination pair under the different
task allocation strategies for the first Pareto distribution of job sizes.

job processing times. For the jobs executed in the Fog nodes (resp. in the
Cloud), the standard deviation of the processing time is now 46.8 ms (resp.
31.2 ms) instead of 15 ms (resp. 10 ms) with the exponential distribution.

We note that the variability of job sizes is greater with the first Pareto dis-
tribution than with an exponential distribution, and that its is even greater with
the second Pareto distribution.

Figure 5.8 shows the response times under the different job allocation schemes
for the first Pareto distribution. Again, we observe that the EXP3 algorithm does
not adapt fast enough to traffic variations. The best results are obtained with
the ε-greedy and sensible allocations. The average response times obtained are
reported in Table 5.4. We note that, although there are some response time peaks
with this algorithm, the EXP3 allocation scheme provides better average results
than the softmax allocation.

If we compare to the mean response times reported in Table 5.2, we see
that all values increase when passing from exponentially-distributed service times
to Pareto-distributed service times. This is something expected since it is well
known that a greater variability in job sizes lead to larger response times. We
note however the impact on response times is not the same for all task allocation
algorithms. In order to assess the robustness of the algorithms with respect to
the variability of job sizes, we consider the following metric for each access node
i and each Fog node j

vAi,j = RPareto
A (i, j)−RExp

A (i, j)
RExp
A (i, j)

,

where RPareto
A (i, j) (resp. RExp

A (i, j)) represents the mean response time of job
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Figure 5.8: Response times under the different task allocation strategies for the
first Pareto distribution of job sizes.

requests sent by access node i to Fog node j under task allocation algorithm A
and for Pareto-distributed (resp. Exponentially-distributed) service times. Using
the values in Tables 5.2 and 5.4, we can compute vAi,j for each source-destination
pair (i, j) and each algorithm A, and compare the increase in response times
obtained under the different algorithms. This comparison is done in Figure 5.9
where the minimal, maximal and average increases relative to the exponential
distribution are displayed for each algorithm. Interestingly, the EXP3 allocation
scheme seems to be more robust to the variability of job sizes. Indeed, we see
that with EXP3 the mean response times increase by at most 7.5% when we pass
from an exponential distribution to the first Pareto distribution. The increase
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client[0] client[1]

Strategy fog[0] fog[1] fog[2] fog[0] fog[1] fog[2]

Static 127.1 - - - 192.4 -
ε-greedy 59.3 66.0 71.4 67.9 59.9 71.5
Sensible 57.9 69.5 70.2 67.4 60.0 70.2
Exp3. 59.1 64.2 70.3 66.0 57.9 70.4
Softmax 54.1 70.9 70.7 73.4 72.3 70.7

Table 5.5: Response times (ms) for each origin-destination pair under the different
task allocation strategies for the second Pareto distribution of job sizes.

in response times is as high as 30.2% (resp. 14.8%) for the Softmax allocation
(resp. sensible allocation). Although slightly less robust, the ε-greedy allocation
is also quite robust to the variability of job sizes since the increase in the mean
response times is at most 10.2%. While the minimal variations observed are
non-significant, we see that the average relative increases is smallest in EXP3
with 3.2%, confirming its good performance. ε-greedy remains quite robust when
looking at that metric with an increase of 5.7%, followed by sensible routing at
8.6%. However, Softmax allocation does not handle the variation well with an
average increase of 16%.

Similarly Table 5.5 and Figure 5.10 present the results obtained with the
second Pareto distribution, comparing them with the exponential distribution.
The response times from the exponential distribution to the second Pareto dis-
tribution increase the least in ε-greedy and EXP3 allocation with 28, 6% and
30, 7% increase. We note much larger gaps in Sensible routing and Softmax with
53% (resp. 70%). The average increase is best in EXP3 with 13.1%, then with
ε-greedy with 16%. Surprisingly, while the maximal relative increase was signif-
icantly worse in Softmax, Sensible routing and Softmax allocation both obtain
comparable average increases with respectively 30.3% and 29.3%.

5.5.2 Task Allocation with offloading
The second scenario is similar to the first one, except that the Fog nodes are now
connected to the Cloud (Figure 5.11). The communication delay between the
Fog nodes and the Cloud is constant and equal to 28 ms. Note that this value
was chosen so as to satisfy the triangle inequality. In this scenario, Fog nodes
can offload jobs to the Cloud. All other parameters are similar to those used in
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Figure 5.9: Relative performance degradation between the first Pareto distribu-
tion and exponential distribution for service times across task allocation algo-
rithms
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Scenario 1.

28 ms

fog[1]

fog[2]

client[0] client[1]

fog[0]

5 ms

10 ms

30 ms

5 ms

10 ms

30 ms

28 ms

Figure 5.11: A scenario in which Fog nodes can offload jobs to the Cloud.

The offloading mechanism that we consider assumes that the execution time
of a job in the Cloud is constant and equal to the processing time of the job in
the Cloud (i.e., it assumes that a job request sent to the Cloud always find a free
server). Under this assumption, a job request offloaded to the Cloud c by Fog
node j will have a response time equal to `j,c+ 1

µc
+`c,j, which yields 66 ms with the

values used in this scenario. The mechanism is then as follows. Upon reception
of a job, the dispatcher of the Fog node j first selects the application server n for
executing this job. It then queries the number of jobs qn at this server, so as to
estimate the execution time of the job using the formula (qn+1)× 1

µj
= (qn+1)×15

ms. If this execution time is greater than the response time obtained by offloading
the job to the Cloud, then the job is offloaded to the Cloud.

We note that this dispatching mechanism requires the dispatcher to keep
track of the number of jobs executing at each server. We also note that this
mechanism depends on the job dispatching scheme used in the Fog nodes. If the
Fog nodes use the "Join the Shortest Queue" scheme, then the execution time
estimated by the dispatcher corresponds to the minimum execution time that
can be achieved. However, for another dispatching scheme such as a random
allocation, the estimated execution time will be greater. We emphasize that the
information used in this offloading mechanism is completely different from the



126 Chapter 5. Adaptive Task Allocation in the Fog

one used by the adaptive routing algorithms discussed so far, even though the
information used by the offloading mechanism is either local (number of jobs
executing at each server) or static (response time from the Cloud). Let us first
focus on the offloading mechanism and compare the response times obtained with
different job dispatching mechanism. We assume that jobs are always sent to the
nearby micro-datacenter, where they can be offloaded to the Cloud. Figure 5.12
presents the response times obtained with four dispatching schemes: random,
round robin, power of two and join the shortest queue.
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Figure 5.12: Response times with task offloading under the different dispatching
policies.

As can be seen, the round robin and power-of-two policies provide significantly
better results than the random policy. The Join-The-Shortest-Queue however
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clearly outperforms all other policies. In the following, we shall assume that this
dispatching strategy is used in all micro-datacenters as well as in the Cloud.

Figure 5.13 compares the performance obtained under different strategies.
The first one uses only job offloading to the Cloud by Fog nodes and a static
allocation strategy routing tasks to the closest node (in this case always Fog
node 0 for the first base station and Fog node 1 for the second base station).
The second one uses only an adaptive task allocation strategy (which is sensible
routing in this case), but once affected to a Fog node, jobs cannot be offloaded to
the Cloud. Finally, the third one corresponds to the case where both mechanisms
are combined.
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Figure 5.13: Sensible routing vs Offloading only vs Sensible routing and Offload-
ing for exponentially distributed service times
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client[0] client[1]

Strategy fog[0] fog[1] fog[2] fog[0] fog[1] fog[2]

ε-greedy 33.7 44.7 70.0 44.7 34.7 70.0
Sensible 27.2 37.3 70.0 37.2 27.3 70.0
Exp3. 29.2 41.7 69.9 39.2 31.7 70.0
Softmax 27.9 38.2 70.0 38.0 28.1 70.0

Table 5.6: Response times (ms) obtained in the second scenario by combining job
offloading and adaptive task allocation in the case of exponentially-distributed
service times.

client[0] client[1]

Strategy fog[0] fog[1] fog[2] fog[0] fog[1] fog[2]

ε-greedy 34.6 45.4 70.1 45.6 35.7 70.1
Sensible 27.0 37.1 70.0 37.0 27.1 70.0
Exp3. 28.8 41.1 69.9 38.8 31.0 69.9
Softmax 28.2 38.4 70.0 38.2 28.4 70.0

Table 5.7: Response times (ms) obtained in the second scenario by combining job
offloading and adaptive task allocation for the first Pareto distribution of service
times.

As we can observe the offloading mechanism enables a significant reduction of
response times. This mechanism outperforms adaptive task allocation strategies
in this scenario. We note however that the use of an adaptive task allocation
algorithm in combination with an offloading strategy drops response times.

Pareto distributed Service Times

Once again, we aim to evaluate the impact of the variability of job sizes on the
task allocation algorithms. We compare the results obtained with the offload-
ing configuration using an exponential service distribution and the first Pareto
distribution described in subsection 5.5.1.

We compare the three strategies previously mentioned in Figure 5.14 but this
time using the first Pareto distribution for service times.



5.5. Performance Evaluation 129

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0  10  20  30  40  50  60  70  80  90  100

re
s
p
o
n
s
e
 t

im
e
 (

s
)

time (s)
BS-Fog0 BS1-Fog1

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0  10  20  30  40  50  60  70  80  90  100

re
s
p
o
n
s
e
 t

im
e
 (

s
)

time (s)
BS-Fog0

BS0-Fog1
BS0-Cloud
BS1-Fog0

BS1-Fog1
BS1-Cloud

(a) Offloading only (b) Sensible routing only

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0.075

 0  10  20  30  40  50  60  70  80  90  100

re
s
p
o
n
s
e
 t

im
e
 (

s
)

time (s)
BS-Fog0

BS0-Fog1
BS0-Cloud
BS1-Fog0

BS1-Fog1
BS1-Cloud

(c) Offloading and sensible routing

Figure 5.14: Sensible routing vs Offloading only vs Sensible routing and Offload-
ing for the first Pareto distribution for service times

As a reminder the first one uses only job offloading to the Cloud by Fog nodes
with a JSQ dispatching scheme and a static allocation strategy. The second one
uses only the sensible routing adaptive algorithm and in the third one we have a
combination of both strategies. We notice that the combined strategy resists well
to the variability induced by the Pareto distribution, as the shape and the scale
of values remain comparable to the exponential distribution. However, we can
see some jitter but reasonably small. We conclude that this strategy is robust in
the face of job size variability.

We look at these results further in Table 5.7 showing the average response
times from our simulation using the first Pareto distribution. Comparing it with
Table 5.6 which uses the exponentially distribution for service times, we notice
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surprisingly that EXP3 and sensible routing perform slightly better in this dis-
tribution with an average decrease of response times of 1% (resp. 0.4%). The
Softmax and ε-greedy algorithms, on the other hand, perform worse with average
response times seeing a maximum increase of 1.1% (and 2.9%). We suppose that
the relative stability of these algorithms under job size variability is compensated
by the offloading strategy in the Cloud which always can handle the jobs even
when the Fog node queues are full due to the increase in the service times.

5.6 Summary and Discussion
In summary, we have proposed a simulation model of a Fog Computing infras-
tructure which relies on the network simulation framework OMNET++

We have simulated two configurations: one where two base stations are con-
nected to two Fog nodes and one Cloud node. The other is similar but with extra
connection from Fog nodes to the Cloud node to give Fog nodes the option to
offload jobs to the Cloud.

Each base station has an allocation strategy from static routing (send to the
closest Fog node) to adaptive allocations such as ε-greedy, Softmax, EXP3 and
sensible routing. We compare the performance among these strategies against
the two configurations and a number of parameters such as link delay times or
service processing times distributions. We also include in all scenarios traffic
perturbations to evaluate how well the algorithms react.

We first observe that any adaptive algorithm, even though simple, outper-
forms the static routing strategy in terms of average response times.

In the first configuration we have noticed that sensible routing provides the
best response times. We have compared the robustness of the different task
allocation schemes with respect to variations in the processing times. In general,
we have found Exp3 to be more robust than other task allocation strategies.

In the second configuration, we examine response times across the algorithms
in combination with various dispatching strategies. The strategy used for offload-
ing relies on the state of the Fog nodes and on its expectation of the processing
time by the Cloud. Four local dispatching schemes are used: random, round-
robin, join-the-shortest-queue and power-of-two choices. We observe that join-
the-shortest-queue outperforms all other policies. We also notice significant gains
on response times when Fog nodes are allowed to offload their tasks to the Cloud.
The reduction in response times is even more significant when an offloading mech-
anism is combined with an adaptive task allocation strategy. When comparing
the performance for highly variable job sizes, we note that the offloading strategy
mitigates the variability of job sizes and that the EXP3 and the sensible routing
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algorithms are barely affected.
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Chapter 6

Conclusion and Future Work

Fog computing promises modern service infrastructures that guarantee low la-
tency, fault-tolerance and a seamless coordination with the Cloud. In this vision,
IoT devices, from sensors to vehicles and smart buildings would rely on locally
distributed computing and storage resources. However, the technology is still in
its infancy and there are numerous challenges to address to make it a reality.
In this thesis, we have studied three major problems related to the design and
operation phases of a Fog network:

• How should Fog networks be built and capacitated based on traffic expec-
tations in order to minimize the overall costs while providing the expected
quality of service?

• How should Fog controllers migrate services to minimize the associated
overheads in the context of user mobility?

• How should base stations allocate jobs to Fog nodes given a fully decentral-
ized architecture where base stations compete for resources?

In Chapter 3, we have proposed a MILP formulation of the optimization prob-
lem. We have implemented it using the commercial solver Gurobi and compared
the performance of centralized and decentralized solutions. This work was based
on the assumption of exponentially distributed service times, Bernoulli routing
and the use of simple queuing theoretical models. A possible extension is to
consider more elaborated queuing models using general service time distributions
and look at analytical approximations that can help dimension the system. An-
other improvement that would make the problem statement more realistic would
be to consider the capacity of individual servers, priority mechanisms for different
classes of jobs, or more advanced resource sharing mechanisms. Finally, it would
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be interesting to evaluate other load-balancing policies such as the Power of Two
Choices or Join the Shortest Queue First.

In Chapter 4, we have designed a model to help minimize service migrations
from an handover traffic matrix and an heuristic based on a weighted set cover
approximation. As a future work, we have suggested a path-based approach
that requires to track user mobility patterns but would provide better results.
Another interesting challenge would be to use a finer-grained model for services.
In practice Cloud and Fog applications are composed of numerous microservices
(including database services), which depend on each other with different latency
requirements. It would be valuable to study the optimal assignment of these
different microservices on Fog nodes while considering mobility patterns. Because
we expect the changes to be incremental as users move, this might be solved as
an online optimization problem. However the many variables involved might also
make it suitable to learning-based algorithms.

In Chapter 5, we have proposed a Fog simulation model based on the OM-
NeT++ and used it to compare the performance of various task allocation algo-
rithms. We have studied their reaction to link delay and job size variability, and
the benefits of offloading jobs. Our experiments have shown that among the al-
gorithms evaluated, Sensible routing performs well in the general case and EXP3
is particularly robust to variability. Giving Fog nodes the opportunity to offload
jobs seems to always provide better response times. An observation is that since
each base station optimizes independently the response time of its own jobs, the
base stations are involved in a non-cooperative routing game. As a consequence,
if a distributed task allocation algorithm converges to an equilibrium allocation,
then this allocation is a Nash equilibrium of the game. We note that in general, a
Nash equilibrium does not provide any guarantee on its global performance and
in the worst case, its performance can be arbitrarily far from an optimal con-
figuration. In future works, it would be interesting to implement a distributed
model-based task allocation and compare with the decentralized solution and its
Nash equilibrium in order to study the Price-of-Anarchy. Another interesting
follow-up would be to run the simulation with many more base station and Fog
node instances to compare our results and see how these algorithms react un-
der scale. It would also be interesting to run the task allocation experiments on
more realistic environments such as the Mininet emulator or on real-world servers
implementing the strategies, to compare the simulated results and ensure they
conform to real-life experiments. It would be useful to compare more state-of-
the-art multi-armed bandits algorithms such as Thompson sampling and UCB,
or more elaborate reinforcement learning algorithms, and extend the scenario
matrix to analyze in more depth the strengths of each algorithms. For instance
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certain algorithms may be able to learn and predict periodic perturbations and
minimize their impact on the users. Finally, it might be interesting to extend the
usage of the simulation model we have proposed to support other scenarios, for
instance to model service migrations and their performance.

All these techniques we have proposed can be used in conjunction to help
designing Fog infrastructures. We have found the key challenges of Fog computing
to relate mostly to:

• The vision of Fog computing being essentially a trade-off between central-
ization and decentralization, where we aim to decentralize as much as re-
quired and as little as we can to both keep the proposed SLAs and enable
economies of scale while keeping the energy requirements as low as possible;

• Mobility being the norm in the Fog, where proposing transparent handovers
and keeping low-latency is a basic expectation of Fog consumers which needs
to be explicitly considered;

• The Fog being an application platform rather than merely a network in-
frastructure such as 5G and Mobile networks. This requires considerations
of supporting modern applications that work using complex protocols and
have data storage requirements that fall under the Fog’s SLA;

• User privacy, though it is not directly addressed in this thesis, is an impor-
tant consideration, for instance location privacy with respect to tracking
could be a limitation in the path based mobility approach we have pro-
posed in Chapter 4 for service migration minimization;

• Fault-tolerance, which is not addressed either here, remains an important
concern. It is a benefit of distributed architecture but it needs to be con-
sidered using replication.

These challenges have been guiding the research in this thesis and made our
exploration stimulating, but there is much left to do for the research community!
Thanks for reading!
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