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Abstract: Under the multi-domain orchestration approach of Network Function Vir-
tualization, network providers share services, creating a federation. In it, many orches-
trators jointly manage the lifecycle tasks of network services, such as reconfiguration.
To consistently reconfigure VNF-based network services; all replicas of the service in
each orchestrator have the same state. The literature proposes sending grants to pre-
vent unwanted side-effects when reconfiguring such services. If a conflict arises because
of inconsistencies, the orchestrators either choose an all-knowing global orchestrator or
solve consensus. Both approaches introduce overhead that clashes with the goal of Net-
work Function Virtualization. In this research, we propose identifying dependencies by
an intermediary consistency model. We ask if it is possible to reconfigure consistently
VNF-based network services without coordinating the orchestrators. To answer this,
first, we study the problem of migrating shared virtualized network functions, highlight-
ing why orchestrators need to coordinate. Then, we consider the more general problem
of end-to-end consistent reconfiguration for dependent VNF-based network services. We
identify that is possible, at least theoretically, to solve the previous problem without
coordinating the orchestrators; but, in practical terms, they coordinate. Finally, we
study the related problem of reconfiguring the VNF-Forwarding Graph of a shared VNF-
based network service. We show the limits of the coordination approach and propose
a coordination-free algorithm to reconfigure consistently the VNF-Forwarding Graphs.
After this research, we open the door for other orchestration algorithms without coor-
dination for managing the lifecycle tasks of VNF-based network services. This means
strong consistency guarantees without the overhead of coordination.

Keywords: Coordination-free Orchestration, Consistent VNF-based Service Re-
configuration, Multi-domain Orchestration, Network Function Virtualization



Résumé :
Dans le cadre de l’approche d’orchestration multi-domaine de la virtualisation des

fonctions réseau, les fournisseurs de réseaux partagent des services, créant ainsi une
fédération. Dans celle-ci, de nombreux orchestrateurs gèrent conjointement les tâches
du cycle de vie des services réseau, telles que la reconfiguration. Pour reconfigurer de
manière cohérente les services réseau basés sur VNF, toutes les répliques du service dans
chaque orchestrateur ont le même état. La littérature propose l’envoi de subventions
pour éviter les effets secondaires indésirables lors de la reconfiguration de ces services.
Si un conflit survient en raison d’incohérences, les orchestrateurs choisissent un orches-
trateur global omniscient ou résolvent le consensus. Ces deux approches introduisent des
frais généraux qui vont à l’encontre de l’objectif de la virtualisation des fonctions réseau.
Dans cette recherche, nous proposons d’identifier les dépendances par un modèle de co-
hérence intermédiaire. Nous nous demandons s’il est possible de reconfigurer de manière
cohérente les services réseau basés sur les VNF sans coordonner les orchestrateurs. Pour
répondre à cette question, nous étudions d’abord le problème de la migration des fonc-
tions réseau virtualisées partagées, en mettant en évidence les raisons pour lesquelles
les orchestrateurs doivent se coordonner. Ensuite, nous considérons le problème plus
général de la reconfiguration cohérente de bout en bout pour les services réseau dépen-
dants basés sur VNF. Nous identifions qu’il est possible, au moins théoriquement, de
résoudre le problème précédent sans coordonner les orchestrateurs ; mais, en termes
pratiques, ils se coordonnent. Enfin, nous étudions le problème connexe de la recon-
figuration du VNF-Forwarding Graph d’un service réseau partagé basé sur VNF. Nous
montrons les limites de l’approche de coordination et proposons un algorithme sans co-
ordination pour reconfigurer de manière cohérente les VNF-Forwarding Graphs. Après
cette recherche, nous ouvrons la porte à d’autres algorithmes d’orchestration sans coor-
dination pour gérer les tâches du cycle de vie des services réseau basés sur VNF. Cela
signifie de fortes garanties de cohérence sans la surcharge de la coordination.

Mots clés : Orchestration sans coordination, Reconfiguration Cohérente des
Services Basés sur les VNF, Orchestration Multi-domaine, Virtualisation des Fonctions
de Réseau.
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Chapter 1

Introduction

Future networks, like 6G, bring new services and surpass the limits of current tech-
nologies [Barakabitze 2020]. Examples of such limits are the speed of connection,
availability of services, privacy, scalability, among others [Vaquero 2019]. The pro-
jected number of users consuming network services aggravates the problem. For the
short-term future, projections show users will consume mobile data up to 49 exabytes
per month [Forecast 2019]. Such growth forces service providers to deploy special-
ized hardware to offer new network services and stay competitive in a changing mar-
ket [Checko 2015]. When scaling up such middle-boxes, two factors are increased: the
cost of network deployment, also called Capital Expenditure (CAPEX), and the cost to
operate the network, called Operating Expenditure (OPEX). Even worse, launching a
new service under these conditions is costly, error-prone, and time-consuming.

Commercial off-the-shelf network hardware has been proposed to replace middle-
boxes to reduce CAPEX and OPEX [Yi 2018]. The European Telecommunications
Standards Institute (ETSI) introduced the decoupling of dedicated hardware and func-
tionality. ETSI called this the Network Function Virtualization (NFV) [ETSI 2014]
paradigm. Under the ETSI NFV standard, the service providers distribute networks
functions at different points of presence [Yong Li 2015]. Each location has physical re-
sources (i.e. compute, memory, network) and can exploit these resources to instantiate
Virtual Network Functions (VNF). The providers chain together the VNFs, creating
dedicated end-to-end VNF-based network services. Such services belong to a single ad-
ministrative domain. To ensure the correct execution order of the service’s VNFs, a
VNF-Forwarding Graph (VNF-FG) specifies a topology associating rules and connec-
tion points. The lifecycle of each of these components is managed by an orchestrator
that has complete information about the domain [Gil Herrera 2016].

Traditionally, a single orchestrator manages all the resources of a domain by sending
instructions to other VNFs and their managers. These virtual resources communicate
with the orchestrator, ensuring state consistency [ETSI 2014]. Having a single entity
facilitates managing network services; however, such architecture raises some problems.
First, a central orchestrator creates a single point of failure [Frick 2018]. Second, since
the other resources communicate only with the orchestrator, scaling services becomes
challenging because of the bottleneck created [Saraiva de Sousa 2019]. Third, the or-
chestrator’s location affects the service’s performance, since the virtual resources need
to send all messages while being close to the service’s users [Antevski 2020]. Fourth,
the service providers have limited resources that limit the reach of services. Finally,
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keeping an up-to-date policy and topology information remains challenging, especially
when many administrative domains create a federation as they want autonomy and pri-
vacy [Joshi 2020]. These problems limit the revenue for service providers; not only do
they increase the CAPEX and OPEX, but also limit their market share. To address
these problems, ETSI proposed a new paradigm where many service providers share
resources, namely multi-domain orchestration.

The ETSI NFV standard proposed multi-domain orchestration to prevent
the previous problems [Saraiva de Sousa 2019]. Multi-domain orchestration en-
ables federating network services, such that service providers share network re-
sources [ETSI, NFVISG 2018]. Thus, the providers’ orchestrators deploy services in
multiple domains. Unlike dedicated services, shared services belong to many ad-
ministrative domains’ external dependencies, ensuring the services locate close to
users [Taleb 2019, Saraiva de Sousa 2019]. Federating services also offer resiliency prop-
erties, such as improved scale, increased performance, and greater robustness against
failures [Katsalis 2016]. Furthermore, unlike in single domain, in multi-domain orches-
tration many orchestrators manage the services’ lifecycle tasks. Among such lifecy-
cle tasks are discovering, placing, chaining, monitoring, and reconfiguring network ser-
vices [Saraiva de Sousa 2019]. Reconfiguration of VNF-based network services is the
most complex task as it often involves all the previous ones [Vaquero 2019].

Reconfiguration is an integral part of VNF-based network services’ lifecycle. It
comprises updating services accommodating for contextual changes. Yet, most of the
literature considers reconfiguring services using the single-domain approach [Yi 2020,
Eramo 2017a]. However, assuming that an orchestrator has global information for all
administrative domains is unrealistic for distributed federations. Limited knowledge
of multi-domain federations makes reconfiguring VNF-based network services challeng-
ing. For example, after reconfiguring a shared VNF-based network service, some service
replicas can have different states because of non-deterministic network delays, creating
inconsistencies. This translates to costs for service providers as the inconsistencies vio-
late both functional and non-functional properties [Dang 2020]. Thus, service providers
want to achieve a consistent reconfiguration that meets the user’s new demands while
satisfying both types of properties.

Orchestrators achieve consistent reconfiguration when the state of multiple ser-
vices is the same before and after reconfiguring such services [Saraiva de Sousa 2019,
Vaquero 2019]. For multi-domain orchestration, orchestrators achieve consis-
tency when all replicas of VNF-based network service and its component
have the same value. When federating shared services, all replicas apply the same
change, ensuring the service’s proper behavior (i.e. the service satisfies functional and
non-functional properties). Otherwise, future changes diverge the replicas’ state, cre-
ating failures. Nowadays, the literature mostly considers eventual consistency when
reconfiguring shared VNF-based network services.

Currently, state of the art algorithms consider applying updates as they come with-
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out timing constraints [ETSI, NFVISG 2018]. Eventual consistency ensures that, at the
end of the reconfiguration, all replicas for dedicated VNF-based network services have
the same state. However, for shared services, this is not the case, as they have ser-
vice dependencies among them. Thus, for shared services, federations require stronger
consistency guarantees.

The consensus among orchestrators is one way to provide the strongest consistency
guarantees. Ensuring that all the orchestrators agree on a single value prevents incon-
sistencies, even for shared VNF-based network services [Okusanya 2019]. However, this
approach hinders the performance of the whole federation in terms of latency and poor
scalability [Hao 2018]. In this research, first, we explore an intermediary consistency
model to achieve a suitable trade-off between consistency guarantees and performance
while reconfiguring shared services. Then, we propose the first coordination-free algo-
rithm that achieves consistent reconfiguration without compromising performance. Next,
we define more precisely the problem addressed in this research.

Problem statement

The problem of consistent VNF-based service reconfiguration asks the following question:
How to change the configuration of a given VNF-based network service such
that all replicas of such service have the same configuration?

The configuration of a VNF-based network service depends on the context considered.
For this, we decompose the problem into multiple sub-problems. We describe each sub-
problem. In this research we focus on the migrating, scaling and updating tasks for
VNF-based network services. We briefly state the meaning of consistent reconfiguration
for that sub-problem.

• Migrating. How to change the location of one component of the service (either a
VNF or VNF-based network service). For stateful VNFs, consistency reconfigura-
tion means no state is lost or changed [ETSI, NFVISG 2014].

• Scaling. Ability to dynamically extend/reduce resources granted to the VNF as
needed. This includes scaling up/down and scaling out/in [ETSI, NFVISG 2018].
Consistent reconfiguration means that all the replicas have the same resources.

• Updating. This operation allows changing the configuration and parameterization
of an instantiated virtualized resource. Such configuration could be the connection
points, name, metadata, among others [ETSI, NFVISG 2014]. Consistent recon-
figuration means that all parameters for each replica are equal after an update.

• Healing. Ability to recover a service component, like a VNF, from an error. The
orchestrator monitors the components and in case of a failure, it will attempt to
restart the component(s).
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• Terminating. Stop and deallocate the Virtual Infrastructure resources. However,
the resources for the component instance remain reserved.

• Deleting. The resources for the service component(s) are fully released.

Aim of the work

The research work’s aim is the design and development of a mechanism to reconfigure
consistently VNF-based network services in distributed multi-domain environments. Un-
til now, service providers reconfigure a VNF-based network service mostly by assuming
a single orchestrator having complete administrative domain knowledge. This research
considers the problem from a distributed approach in which orchestrators have only
limited knowledge. This, ensures providers’ autonomy and privacy. Moreover, it also
consider the asynchronous and non-deterministic behaviors of distributed systems.

Specifically, to lead the research, we propose that consistently reconfiguring VNF-
based network services in multiple administrative domains, while facing asynchronous
network and partial knowledge, can be achieved by coordinating the orchestrators. Thus,
exchanging causal messages about the services’ dependencies allows us to reconfigure con-
sistently services. Furthermore, we propose we can achieve the same consistent network
service reconfiguration in a coordination-free approach.

Thesis contributions

The main contribution of this research is the establishment of causal and
coordination-free principles to ensure consistent VNF-based network ser-
vice reconfiguration in distributed multi-domain federations. Next, we describe
them:

• The consistent migration of shared VNFs in federated environments despite each
orchestrator having only local information about its domain. We propose a coor-
dination algorithm for shared VNFs in federated environments. It achieves a lower
overhead in terms of service violations than the traditional greedy approach that
minimizes only the current VNF without considering the impact of other VNFs in
the chain. (Chapter 3, Section 3.4).

• An inconsistent pattern for the NFV dependent reconfiguration is identified and
formally defined from a temporal and logical perspective (Chapter 4, Section 4.4.2,
4.4.3). To prevent such inconsistencies, a causally-consistent orchestration algo-
rithm is proposed.

• Identifying and reducing inconsistencies created while the orchestrators reconfigure
shared VNF-FGs by coordinating among themselves through messages without
global references. We advance the state of the art for managing the VNF-FG by
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not only considering local domain information but also addressing the temporal
dependencies among shared services under multi-domain federations, as described
in the VNF-FG (Chapter 5, Section 5.4).

• The design of coordination-free orchestration algorithm for consistent VNF-FG re-
configuration under multi-domain federations. Our proposed algorithm supports
non-functional dependencies that have not been addressed so far in the literature
for VNF-FG reconfiguration. Unlike current orchestration algorithms, our pro-
posed algorithm consistently reconfigures the VNF-FG of a shared network service
without a coordination phase between the orchestrators. By skipping the coordi-
nation phase we open the door for dynamic federations where orchestrators join
and leave temporarily. (Chapter 6, Section 6.3)

Thesis organization

The thesis is organized in different chapters corresponding to the different sub-problems
we tackled during the course of the thesis. Figure 1.1 shows the thesis organization
including papers accepted and submitted. Each chapter goes more in depth towards the
thesis main contribution. They are as follows:

• Chapter 2 describes the concepts and system model used through the manuscript.

• Chapter 3 describes the problem of consistent migration for VNF sharing. This is
the first step towards the consistent reconfiguration of VNF-based services.

• Chapter 4 goes more in depth about the dependent reconfiguration of network
services. We identify the conditions required for inconsistent dependent reconfig-
urations.

• Following that, in Chapter 5, we focus on the problem of VNF-FG reconfiguration.
Unlike the previous two chapters, were we consider sequential reconfigurations
only, for this chapter we consider concurrent reconfigurations and we highlight the
limits of coordination approaches to achieve consistent reconfiguration.

• To met the limitations posed by concurrent reconfigurations for shared VNF-
Forwarding Graphs, Chapter 6 introduces the first coordination-free orchestration
algorithm for consistent VNF-FG reconfiguration.

• Finally, Chapter 7 presents the perspectives, the state before and after this thesis,
and future work after the thesis.
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Chapter 2

Background and definitions

2.1 Network function virtualization: Basic concepts

Next-generation networks like 5G will bring new services and surpass the limits of current
technologies [Barakabitze 2020]. Among such limits, the service’s speed, availability, and
latency are some examples [Mijumbi 2016]. The number of users consuming the network
services aggravates these limits. For example, users will consume over 49 exabytes per
month by 2021 [Forecast 2019]. Such growth forces service providers to deploy special-
ized hardware. Thus, they offer new network services staying competitive in a growing
market [Checko 2015]. However, by doing so, the providers lose flexibility as they deploy
services manually with only a few providers. This leads to tedious, inflexible, and often
error-prone services [Gil Herrera 2016].

Such deployment strategies leads to inflexible, timely, and costly up-
dates [Bhamare 2016]. For example, the literature has estimated that deploying a ser-
vice takes about 90 days using dedicated hardware [Martini 2016]. Thus, with such
strategies, the capital and operating expenditure for such network services continue to
increase. To remedy this, some providers explored virtualization of different resources,
such as storage, processors, and the network infrastructure, allowing for flexible and quick
deployment; yet, interoperability remained a challenge. The European Telecommunica-
tions Standards Institute (ETSI) proposed the Network Function Virtualization (NFV)
standard to ensure interoperability among different providers [Open Source 2018].

The ETSI NFV standard virtualizes network services that traditionally run on pro-
prietary and dedicated hardware [ETSI 2018b]. It decouples network services from the
underlying hardware by using Virtual Network Functions (VNFs). The VNFs replace
dedicated network hardware such as firewalls or routers enabling agile and flexible de-
ployment of network services. ETSI introduced one architecture to support interop-
erability among multiple service providers [ETSI 2014]. Following the service-oriented
computing paradigm, a service provider manages a set of VNFs implementing composite
services. Such services represent more complex and sophisticated network functions. Us-
ing the ETSI terms, an orchestrator builds a chain of VNFs to create a network service
provisioning functionality for multiple users.
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2.1.1 Goals and objectives of network function virtualization

The NFV standard tries to reduce the time to market network services, decreasing the
cost of hardware and forming scalable and elastic ecosystems. To achieve this, the NFV
sets multiple goals. The first goal is to decrease time spent on service evaluation and
testing, as the decoupling function from hardware improves managing heterogeneous
services. The second goal is to replace expensive hardware with cheap alternatives that
provide at least as good service provision experience [Shin 2015]. The third goal is to
make old equipment inter-operable with Virtual Network Functions [Nguyen 2017].

With the advent of virtualized networks, the previous goals also extended beyond
the traditional network setup. In the short future, complex network services can be
shared among many providers, creating a federation [Toka 2021]. Such federations ex-
tend the limited range or a sole provider while re-using components to lower the cost
of VNFs [Malandrino 2019]. This sharing of VNFs and network services creates new
challenges that need to be satisfied by NFV. For example, migrating a shared VNF
in a federation not only has to consider the VNF but also the different services it
serves [Cisneros 2020a].

2.1.1.1 Different standards

The term NFV was originally coined by multiple network operators such as AT&T,
British Telecom, and Deutsche Telekom [Yi 2018]. Different standard organizations
have worked to establish a common vision in different areas surrounding NFV, such
as Software Defined Network (SDN) [Alam 2020], Cloud Computing [Rankothge 2015],
and 5G [Abdelwahab 2016]. Such efforts ensure interoperability coming from open in-
terfaces [Saraiva de Sousa 2019]. ETSI defined the main terminology and orchestration
architecture framework to support VNFs on top of virtualized infrastructure. The In-
ternet Engineering Task Force (IETF) focused on the service chaining concept which
relates SDN with NFV [Halpern 2015]. The Next Generation Mobile Networks (NGMN)
introduced principles and high-level architecture principles to support NFV services for
5G [3GPP 2017]. In this work, we consider the terminology defined by ETSI.

2.1.2 The relation between Network Function Virtualization with
Cloud Computing and Software Defined Networking

NFV complements the goals of Cloud Computing and SDN paradigms. Cloud comput-
ing provides resource virtualization, such as networks, storage, and servers, with high
flexibility [Le 2016]. SDN decouples the control plane (i.e., control logic) from the data
plane (i.e., data forwarding equipment) reducing the vertical integration of networks.
NFV decouples the network functions from dedicated hardware. These three paradigms
combine in different scenarios. From a management perspective, a service provider would
like to be able to deploy flexible services, configure automatically the traffic flow of such
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Figure 2.1: Relationship between Network Function Virtualization, Software Define Net-
working, and Cloud Computing.

services, and monitor and reconfigure them using open APIs. Figure 2.1 shows the
different ways the paradigms integrate with each other.

2.1.3 The relation between Network Function Virtualization and Ser-
vice Oriented Architecture

NFV is at the crossroad of networking and service-oriented computing research fields.
It is advocated that VNF falls into the definition of IT services at large [Katsalis 2016].
Indeed, VNFs could be provisioned in the same way as any other kind of service such as
telco services and Web services. In fact, Service-Oriented Architecture (SOA) principles
(e.g., service abstraction, discoverability, and composability) could ensure the viability
of an ecosystem of network services with respect to the NFV paradigm. A SOA is usu-
ally characterized by: (i) the service provider and publishes in a registry; (ii) a user
consumes the service; (iii) a broker mediates the interactions between providers offering
discovery, matching, and composition [Martini 2016]. Thus, this architectural solution
maps to different contexts, such as NFV [Stal 2006]. Similarly, the VNF lifecycle phases
are directly inspired from the service provisioning lifecycle detailed in SOA [Yi 2018].
For example, the service provider models the network components. Such modeling in-
volves resource requirements, connections, and scripts to execute. Then, the providers
publish the components in a market place so users discover such network component.
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After, a provider that selected a network component, allocates the resources to place
the network component in a point of presence. Next, the provider selects how multiple
components should connect to create a complex service. Finally, by monitoring the ser-
vice, the provider can reconfigure the network component. Thus, the lifecycle between
web services and virtual network functions are similar. However, there are differences
between the traditional SOA services and VNF-based network services.

Unlike web services, VNFs are not remotely invoked from a service access points; but,
they must be instantiated locally in a point of presence. The providers has a control
entity to manage the technical details, such as configuration, settings, management,
and connections [el houda Nouar 2021]. Heterogeneity also poses a problem in the NFV
context, not seen in SOA services. These services need access only to input and output
parameters, while VNF-based network services must ensure the interoperability of each
network component [Bouras 2017]. In summary, for the NFV context, service providers
need to handle more configurations that appear from the networking domain of NFV.
This means that solutions coming from the SOA paradigm lack the details necessary for
the NFV context.

2.2 Networking Function Virtualization: Advance con-
cepts

After briefly describing the NFV initiative, we now describe the main concepts that
create the core of the NFV initiative. All these concepts come from ETSI [ETSI 2020b].

2.2.1 Virtual Network Function

A Virtual Network Function (VNF) is the implementation of a functional block having a
well-defined external interface and well-defined functional behavior deployed on a virtual
infrastructure [ETSI 2020b]. To define the interfaces, a service provider can use a formal
language like YALM [Mechtri 2016]. Service providers use this language to identify a
VNF that belongs to a service provider’s orchestrator using a VNF descriptor. Such
descriptor contains the required resources for each component, such as memory, virtual
processors, and storage. It also contains the networking information to join components
through Connection Points and Virtual Links [ETSI, NFVISG 2020]. The descriptor
also specifies all the required day-1 (i.e., doing the initial deployment) configuration,
such as scripts, key management, and security rules. A VNF can have one or multiple
components from the same point of presence where a service provider deploys a virtual
infrastructure manager.

Depending on the VNF type, the orchestrator can deploy them on physical machines,
virtual machines, containers, and microservices [Gedia 2018, Kawashima 2016]. For the
VNF deployment, the VNF descriptor has a field allowing VNFs to interact with others
through an infrastructure manager. Virtual machines require an image pre-loaded in
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Figure 2.2: VNF-Forwarding Graph and supporting infrastructure. In this example, a
network service is served by two different nested VNF-FGs.

the point of presence; for example, using OpenStack with cloud images [Callegati 2015].
The literature has explored containers to reduce the virtual machine’s overhead try-
ing to improve the VNFs’ performance. The trade-off is limited to the functionality
provided, especially when the containerized VNFs work together with virtual machines
ones [Kouchaksaraei 2019]. Despite these multiple types, the NFV’s state of the art uses
virtual machines providing VNFs [Gil Herrera 2016].

2.2.2 VNF-Forwarding graph

The VNF Forwarding Graph (VNF-FG) specifies a topology of connected VNFs’ compos-
ing services. With such topology, the service providers connect the VNFs by using virtual
links through interfaces called connection points, and the associated rules (e.g. network
protocol, source/destination IP addresses, and ports) [Quang 2019b]. The VNF-FG also
has forwarding rules applicable to the traffic conveyed over the topology [Cao 2017]. It
also saves a list of nested services associated with internal and external service access
points [ETSI 2017]. Figure 2.2 shows an example of a network service with two VNF-FGs
built on top of a virtual infrastructure.

All these VNF-FG resources are managed by an orchestrator [ETSI, NFVISG 2016].
After placing the VNF-FGs, the orchestrator can reconfigure them to optimize profit or
answer to unforeseen and developing conditions. This reconfiguration aims to satisfy the
cost-effective goal of NFV.

2.2.3 VNF-based network services

Network services are the building units for next-generation network applications. Under
the NFV concept, multiple VNFs compose a network service according to one or more
forwarding graphs [ETSI 2019b]. Network services belong to distinct classes according to
their users via the service’s access points. Dedicated network services belong to a single
domain and only have VNFs as internal dependencies. Composite ones belong to at least
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Service C
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Figure 2.3: Example of a composite and two dedicated network services.

two different domains and have external dependencies as network services [ETSI 2020b].
The external dependencies are also called nested services as the provider combines them
to create a composite service [ETSI 2018c]. Under multi-domain orchestration, many
orchestrators manage external dependencies, unlike internal domains where a single or-
chestrator manages all the dependencies that belong to a unique domain.

Figure 2.3 shows a composite service (C) having two dependencies (A, B). In this
example, the two dedicated network services that belong to the composite network ser-
vice are offered by different domains. The service C has internal and external connection
points to deliver features to consumers. Detailed information about the dedicated net-
work services A and B is unavailable to the orchestrator that manages service C, such
as topology, lifecycle management policies (e.g. scaling rules), and communication end-
points. This is because the services A and B are external dependencies managed by other
administrative domains. The limited knowledge of orchestrators outside their adminis-
trative domain enables providers to share their resources without compromising the or-
chestrators’ privacy or autonomy. For example, orchestrators can set up complex service
function chains without access to detailed information of other orchestrators [Liu 2020].

2.3 Networking Function Virtualization management and
orchestration

In this section, we detail two types of orchestration, namely single and multi-domain
orchestration. Then, we go more in-depth for the latter, since multi-domain orchestra-
tion introduces new assumptions that completely change the network service’s lifecycle
management.

2.3.1 Single-domain orchestration

In non-virtualized networks, network functions run on top of vendor-specific software and
hardware [Luizelli 2015]. This leads to stagnant service deployment and management,
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which in turn reduces the revenue for service providers. NFV introduces a more flexible
approach to the provision of such services [ETSI 2014]. In summary, it considers:

• Software decoupled from hardware. As a network service is no longer a collection of
integrated hardware resources from the same vendor, the evolution of the software
and hardware are independent of each other.

• Flexible deployment. The detachment of hardware and software enables reassign-
ing and sharing resources. Thus, assuming there is a pool of resources in a location,
the service deployment is more automated by leveraging different technologies.

• Dynamic operations. The decoupling allows for greater flexibility to scale, migrate,
and heal network services on the fly. This enables finer granularity. For example,
the orchestrator can identify network traffic to only provide a subset of resources
by increasing or reducing capacity.

Figure 2.4 shows the high-level framework for NFV according to the ETSI stan-
dard [ETSI 2014]. The framework enables the dynamic construction and management
of VNF instances. It considers the following layers:

• Virtual Network Function. The software implementation of a network function
that runs on top of a virtualized infrastructure.

• The virtual infrastructure. It includes many physical resources and a virtualization
layer to support the execution of VNFs. Such resources include compute, storage,
and network hardware.

• The NFV Management and Orchestration (MANO). It covers the lifecycle man-
agement of VNFs and VNF-based network services. The orchestrator on top com-
municates with both the VNF Manager and the Virtual Infrastructure Manager.
It also communicates with the OSS/BSS to send/receive instructions regarding
services.

2.3.2 Distributed multi-domain orchestration

Harnessing the benefits of network services requires control to support their lifecy-
cle. Under the NFV paradigm, the Network Functions Virtualization Orchestrator
— simply orchestrator — manages the network service’s lifecycle tasks (i.e. build-
ing, instantiating, executing, reconfiguring, and monitoring) [ETSI 2020b]. The or-
chestrator also administers all the systems and networks operated by a single orga-
nization [ETSI, NFVISG 2016]. It also handles the Virtual Infrastructure Manager
and VNF Manager to support all the VNFs that compose the services. Multi-domain
orchestration extends the capacities of the single orchestrator by offering network
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Figure 2.4: Example of single domain architecture. The three biggest parts belong to
the MANO reference architecture.

services within the same organization and facilitating these services to another net-
work operator [ETSI 2018a]. Three types of architectures support the multi-domain
orchestration as defined by the ETSI Standard: Centralized, distributed, and hy-
brid [Rosa 2015, Katsalis 2016]. Centralized solutions establish a global orchestrator
that coordinates other orchestrators via vertical calls. Distributed architectures lack a
central coordinator and orchestrators communicate to support the network services’ life-
cycle. Hybrid ones create hierarchies where orchestrators coordinate both horizontally
and vertically. All the previous architectures enable a federation. However, for this re-
search, we consider only distributed architectures, since they offer the greatest flexibility
and autonomy for service providers.

2.3.3 Differences with single-domain orchestration

Although both types of orchestration share tasks, they are different. Figure 2.5 shows
these differences. We summarize such differences between single-domain and multi-
domain orchestration in the following list:

• Limited information. Under single-domain orchestration, a single global orchestra-
tor manages all resources in its administrative domain. In multi-domain orchestra-
tion, no global orchestrator exists; thus, orchestrators have only partial informa-
tion solely in their administrative domain. Examples of this include the services
topology, lifecycle policies, such as scaling or migrating rules, and endpoints.

• Shared resources. In multi-domain orchestration, the orchestrators share VNFs and
network services among multiple providers. This contrasts with a single-domain
orchestrator, where may orchestrator can instantiate the services in different points
of presence that belong to a unique administrative domain. Thus, many orches-
trators manage services.

• Lifecycle management. Since orchestrators can share services and orchestrators
have limited information, the network services’ lifecycle management changes from
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the single domain orchestration. In summary, when orchestrators share services,
the orchestrators must send grant messages to other orchestrators before applying
certain lifecycle operations (e.g., scaling or migrating a VNF). This prevents un-
wanted side-effects of a lifecycle operation. For example, migrating a shared VNF
can lower the latency in one domain, but increase it in another domain; another
example would be the insufficient resources of one orchestrator to scale a given
shared VNF.

• Asynchronous Communication. Orchestrators send messages to coordinate them-
selves. Unlike in single domain orchestration where it is possible to establish tem-
poral references because of a single global orchestrator, in multi-domain orchestra-
tion, it is not always possible to establish them because of limited information of
each orchestrator and the non-deterministic network channels used to communi-
cate. Thus, when applying lifecycle managing operations to shared resources, the
orchestrators need to establish an order of execution.

• Agnostic interfaces and heterogeneous services. In a single domain federation, the
orchestrator models, instantiates, and manages VNF-based network services. By
using components in the same administrative domain, the orchestrator manages
network services. The multi-domain approach extends this provision philosophy
by integrating different components of a service in a federation. There are two
federation types: close and open. Service providers know all orchestrators in close
federations. Open ones allow orchestrators to come and leave at will; thus, service
providers need agnostic interfaces to support this more flexible service deployment
philosophy. In this research, we consider trustful service providers.

• Orchestrator coordination. Unlike the vertical approach of single domain orches-
tration, where all the information must pass towards the global orchestrator, multi-
domain orchestration considers horizontal coordination where the information is
distributed among different orchestrators. This prevents the point of failure for
single-domain orchestration and enables dynamic federations.

2.3.4 Distributed multi-domain federations

A Federation is a collective group of service providers who share resources to support
complex network services [Baranda Hortiguela 2020]. This reduces the costs of each
individual provider and extends the capacities despite the limited resources of each
provider. Orchestrators access the network services of different providers by negotiating
the limited resources among them. This creates shared network services that multiple
services can use in the federation. Composite services in such federations can be shared
services [ETSI, NFVISG 2018]. They can also have these types of services as external
dependencies. Thus, for the rest of the manuscript, we use the terms composite and
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Figure 2.5: The layers of distributed multi-domain orchestration. The second layer has
the tasks of single-domain orchestration. The third layer contains all the overhead of
multi-domain orchestration.

shared services interchangeably. Due to shared services in a distributed multi-domain
federation, the orchestrators coordinate to overcome the limited knowledge of each par-
ticipant. On the one hand, these federations offer flexible, scalable, and extendable
network services; on the other, they add overhead to the service’s lifecycle management.
We consider closed federations that reject new participants to enter; thus lowering the
overhead, but keeping the benefits of a federation. Figure 2.6 shows an example of a
distributed multi-domain federation composed of three domains. Each domain has its
orchestrator and different technologies, such as NFV, SDN, or legacy. The orchestrators
communicate with each other or through a marketplace.

2.3.5 Lifecycle management of network services in multi-domain fed-
erations

Network services must meet their required service level agreement despite changes in
the network. Such a service reconfiguration triggers, by energy consumption, fault tol-
erance, higher revenues, or improvement of the Quality of Service (QoS) [Kim 2016,
Eramo 2017a, Yang 2018, Eramo 2019a, Wang 2018, Liu 2017]. The ETSI standard
identifies different tasks at the service level, such as scaling, migrating, and restor-
ing a network service to meet the service level agreement requirements of a compos-
ite service [ETSI 2019a]. In multi-domain federations, ETSI defines a special commu-
nication reference point between orchestrators, called the orchestrator to orchestrator
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Figure 2.6: Example of the distributed multi-domain federation. Each administrative
domain is managed by an orchestrator. They communicate directly or by a marketplace.

or−or [ETSI 2020a]. Figure 2.7 shows the reference point, where the orchestrators can
set up a network service for a content delivery network by chaining four VNFs: (1) A
translator (TRA), (2) streamer (ST), (3) encoder (ENC), and finally (4) decoder (DEC).
Different orchestrators manage these four VNFs. For example, the NFVO-C manages
the DEC VNF; while the NFVO-A manages both TRA and ST VNFs, respectively.

The orchestrators coordinate over the or-or point, used for the exchanges between
orchestrators in different administrative domains. This reference point enables interfaces
to support complex multi-domain tasks via grant messages [ETSI 2018a]. According to
the ETSI standard, the following tasks in multi-domain environments require coordina-
tion by sending grants over the or−or reference point:

• Scale Network Service.

• Terminate Network Service.

• Heal Network Service.

• Subscription/Notification.

In this work, we consider close federations. In them, a fixed number of trusted
orchestrators expose connections points of their shared network services. Orchestrators
communicate with each other via messages, since distributed multi-domain federations
lack global references. Thus, there is a flexible hierarchy according to each service that
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enforces the use of coordination among the orchestrators because of limited knowledge.
Figure 2.7 shows an example. The orchestrator NFVO-C plays the role of a consumer and
provider of network services. The VNF Managers in each administrative domain interact
with their orchestrator. However, the orchestrators are not aware of the constituent VNF
instances of the shared service instance and do not interact with the VNF Managers of
other administrative domains. This is the case for orchestrator NFVO-C and the VNF
managers of NFVO-A and NFVO-B, respectively.

2.4 Basic concepts in distributed systems

In a distributed system, entities communicate with each other by exchanging messages.
It is assumed that there is no global reference and transmission delay is bounded but
arbitrary. A distributed system is composed of the sets P , M , E which belong to the
set of processes, messages, and events, respectively.

• Processes: Programs and instances running simultaneously that communicate with
other programs. Each process belongs to the set of processes of P . A process

 or-or   orch-to-orch interface
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Figure 2.7: Network services federation provided using multiple administrative domains.
An orchestrator can be both a provider and a consumer of other services. A VNF-
based network service is created by chaining the Virtual Network Functions in the order
specified by the numbers.
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p ∈ P communicates with another process p′ ∈ P by message passing over an asyn-
chronous, non-deterministic, and reliable network.

• Messages: Abstraction of any type of message which contains data structures.
Each message in the system belongs to the set M .

• Events: An event e is an action performed by a process p ∈ P . All events in the
system belong to the set of events E. We consider two types: internal, external.
An internal event occurs in a process locally hidden from other processes. An
external also happens locally, but other processes see the event; thus affecting the
global system state. For external events, orchestrators consider send and delivery
events. A send event emits a message m ∈M executed by a process. Delivery
events identify the execution performed of received messages by a process.

2.4.1 Relation with multi-domain orchestration

A federation of multi-administrative domains can be modeled as a distributed system
where the orchestrators are processes that exchange messages. All the tasks in the life-
cycle management of network services can also be modeled as events. Internal events are
related to the execution of tasks only in a single administrative domain. External events
are related to tasks in multiple administrative domains, such as grants for reconfiguring
shared services. In subsequent chapters, we extend the abstract notions of messages
and events of generic distributed systems for a specific problem or task in the lifecycle
management of VNF-based network services.

2.5 Distributed multi-domain orchestration model for
Network Function Virtualization

In this section, we describe the system model and notation used for all subsequent
chapters. First, we introduce a generic distributed system model. Then, we extend this
model for the context of NFV.

We adapt the previous generic system model (see Section 2.4) with the entities and
types of messages for the context of multi-domain orchestration. Figure 2.8 shows the
relationship between all the entities of the distributed multi-domain orchestration sys-
tem model. The federations have two or more domains. Each domain manages both
network services and VNFs. Depending on their dependencies, services can be exter-
nal or internal. Internal dependencies have only VNFs or other services managed by a
single administrative domain. External dependencies are managed by many administra-
tive domains. Unlike the single domain, many administrative domains manage external
dependencies in federated environments. All these domains’ orchestrators coordinate
through messages. For internal dependencies, a scale message suffices. For external de-
pendencies, the orchestrator must gain a grant from all the other affected orchestrators.
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Since the orchestrator handles the lifecycle management of network services, we define
a management relation as follows:

Definition 1 (Relation is-managed by)
The relation ∼ identifies the management of domain d for either a VNF, v, or VNF-based
network service, s, according to:

1. If v ∼ d≡ True, means the VNF v is instantiated at domain d.

2. If s ∼ d ≡ True, means the service s has either: (i) only internal dependencies
managed by the domain d (ii) if there are external dependencies, there is at least
one VNF dependency v such that v ∼ d and all other external dependencies are
managed by other domains.

We develop the distributed multi-domain orchestration model by adapting the sets
of processes P , messages M , and events E (defined in Section 2.4) to the NFV context
by adding and defining the sets of events and messages which are specific to the model
specification.
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• Domains: The collection of systems and networks operated by a single organization.
In the case of multi-domain federations we denote this set as
D = {d1,d2, . . . ,dp}. The number of domains p is known beforehand since we
consider a close federation.

• Virtual Network Functions: The basic components to instantiate complex network
services. We follow the ETSI standard by using the abstraction of virtual network
function components that enables the VNF to operate. The super-set of VNFs V
is composed of disjoint sets V1,V2, . . . ,Vp where ∀v ∈ Vi,v ∼ di where v is a VNF
and di is the i-th domain in the federation. Each v ∈ V is defined as a function
f : x=⇒ y where x,y are input and output traffic flows, respectively.

• VNF-based network services: The entities which offer complex solutions by ag-
gregating VNFs with unspecified connectivity between them or according to for-
warding graphs. A forwarding graph describes a topology of network services by
referencing a pool of connection points and service acess points. The network
service set is composed by a set of processes S = {s1,s2, . . . ,sk}. Each service
s is associated with a domain d ∈ D denoted as s ∼ d. Internal dependencies
Is of a network service s are VNFs v ∈ V or network services s′ ∈ S such that
∀v,s′ ∈ Is,v ∼ d,s′ ∼ d where s ∼ d. Similarly, external dependencies Γs are only
network services such that ∀s′ ∈ Γs,s′ 6∼ d where s∼ d. The set of total dependen-
cies of service s is denoted as ∆s = Is∪Γs. Let Ωs be the set of orchestrators that
manage the external dependencies of service s such that ∀o ∈ Ωs,∃s′ ∈ Γs | s′ ∼ o.
Network services in the set S can be of type dedicated or shared according to their
dependencies [ETSI, NFVISG 2018]. We formalize this with the following:

Definition 2 (Shared and dedicated network services)
The service, s, managed by orchestrator o, belongs to the type shared if it is an
external dependency of another service s′ unmanaged by the same orchestrator o:
∃s′ ∈ S,o′ ∈O | s′ ∼ o′,o 6= o′,s ∈ Γs′ ; otherwise, is dedicated.

• VNF Forwarding Graph. The VNFs and the links of a service s ∈ S are ordered
by a VNF-Forwarding Graph g that belongs to the set G = {g1,g2, · · · ,gr}. The
classifier rules that contain the information to forward traffic belong to the super
set C = {c1, c2, · · · , cj}. Each set c ∈ C has a list of matching attributes that show
the protocol, ip, and ports to be visited by the income traffic of the VNFs; they
belong to the set c= {ma1,ma2, · · · ,mau}. The rendered service path that relates
the virtual links and VNFs belong to the set X = {x1,x2, · · · ,xk}. Connection
points have the input and egress points where the traffic flows belong to the set
P = {p1,p2, · · · ,pv}. Each VNF-FG gr is defined by a tuple {id,Cr,Xr} where id is
an identifier, Cr ∈ C is the r-th classifier rule set, and Xr ∈X is the r-th rendered
service path. Each classifier rule c ∈ C has a list of matching attributes ma that
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belong to the set Ma. Similarly, each rendered service path x ∈ X has a list of
connection points cp that belong to the set Po.

We also define a function that computes the state of a VNF-FG by going trough each
item in the data structure.

Definition 3 (State function)
The state function φ(g) takes as input either: a VNF-FG, a classifier rule c ∈ C, or a
rendered service path x ∈ X and outputs their current tuple according to the type of
input.

φ(g) = (cg,xg) = ([ma1, . . . ,mau], [p1, . . . ,pv]) (2.1)

• Messages: We extended the concept of abstract messages in distributed sys-
tems, described in Section 2.4, with the specific types required for reconfigu-
ration of network services. All messages have the following parameters: m =
{(sender,receiver,data, type)}. We consider the following type of messages:

– scale: Increase or decrease the number of instances that belong to either a
VNF or Network Service.

– response: Acknowledgment of a complete scaling operation of an external
dependency.

– notification: To signal the sender of a Scale message there has been an update
in the lifecycle management.

– grant: Permission to scale external dependencies.
– updateVnffgClassifier. Instructs an orchestrator to update a classifier of a

VNF-FG
– updateVnffgRenderedServicePath. Updates a rendered service path.
– notifyVnffgUpdate. It signals to an orchestrator a change on a VNF-FG took

place.

• Events: As mentioned in Section 2.4, there are two types of events: internal and
external ones. The set of internal events Einternal is the following:

– VnfMScaleRequest(v, data) denotes the orchestrator’s request to the VNF
manager to initiate the scaling of VNF v specifying data.

– VimChangeResource(v, data) is the event that the orchestrator sends to the
virtual infrastructure manager to change either processor, storage, or network
information of the VNF v according to the data.

– VimModifyConnectivity(v, data) refers to the changing of connection points
of VNF v by the virtual infrastructure manager.
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– VimInstantiate(V, data) denotes the instantiation or shutdown of VNFs v ∈ V
for a particular service according to the data.

– CheckCompositeNSConsistency(s) denotes the verification before the scaling
of service s. Since we consider the complete ETSI orchestrator’s architecture
as a single process for ease of understanding, all the details of this event are
abstracted in a single execution; however, in reality, multiple entities play a
role in this message, such as the VNF Manager.

– ScaleNS(s) denotes the scaling of the dedicated network service s whose only
dependencies are internal. The dependencies belong to the set Vp managed
by orchestrator op.

The external events considered are send, receive, delivery and the set is denoted as
Eexternal = Esend∪Ereceive∪Edelivery. Since we consider a single orchestrator per
domain, we re-write the is-managed by relation (see Definition 1 ) as s∼ o for any
service s ∈ S and orchestrator o ∈O.
The set of send events Esend is the following:

– ScaleCompositeNS(s, data) denotes the petition to scale the composite net-
work service s by using parameters in data, this could trigger multiple ScaleN-
estedNS or SdNSLCMGrant events by the external dependencies of s.

– ScaleNestedNS(s, data) denotes the petition to scale a nested network service
s by using parameters in data, this will trigger a grant
SdNSLCMGrant(s′) request event for the external dependency s′ ∈ Γs.

– SdNSLCMGrant(s’) refers to the request coming from orchestrator o to verify
and scale service s′ | s′ ∼ o′,s′ ∈ Γs,o 6= o′. This event can trigger multiple
ScaleCompositeNS, ScaleNestedNS, and SdNSLCMGrant events, respectively.

The set Ereceive is composed of the following events:

– RecResponseNestedNsScaling(s’). This message is received by orchestrator
o∈O that manages service s. This service s has service s′ as a external depen-
dency. It denotes the answer (positive or negative) to a previous SdNSLCM-
Grant related to nested service s′ | s′ ∈ Γs.

– RecResponseCompositeNsScaling(s’). This message is received by orchestra-
tor o ∈ O that manages service s. This service s has service s′ as a exter-
nal dependency. It denotes the answer (positive or negative) to a previous
SdNSLCMGrant related to composite service s′ | s′ ∈ Γs.

– RecNSLifecycleChangeNotification({start, result}, s’) refers to the acknowl-
edgement or result from orchestrator o′ to o that has sent an event of type
ScaleNestedNS(s’) or ScaleCompositeNS(s’) such that s′ ∼ o′ and s′ | s′ ∈ Γs
for any service s ∈ S.
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The set Edelivery has a unique event:

– DlvNSLCMGrant(s′) denotes that an orchestrator o′ ∈ O delivered a grant
message sent by a SdNSLCMGrant(s′) event. It identifies the execution per-
formed by the orchestrator o′ associated to service s′ managed by orchestrator
o′. After delivery, o′ will send a notification to the sender of the grant.

After defining the general system model we define the consistency models considered
for the research.

2.6 Consistency models

Consistency is the desired property in distributed multi-domain orchestra-
tion [Vaquero 2019]. Next, we present a brief description of the concepts related to
this topic. First, we introduce sequential consistency and discuss its drawbacks. Then,
we describe eventual consistency as the alternative to such drawbacks, highlighting the
limitations of this consistency model. Finally, we introduce strong eventual consistency,
which eliminates the gap between consistency guarantees and performance.

2.6.1 Sequential consistency

Distributed systems need to ensure consistency because of concurrent operations on
shared data. Sequential consistency was proposed to make the illusion of having the
semantics of a single-system image system. Under sequential consistency, there is a
single execution that follows a specific order. However, in reality, distributed systems,
like multi-domain federations, run on top of multiple autonomous nodes, without global
knowledge. Since these nodes communicate over a faulty network, non-deterministic
conditions bring conflicts when nodes try to modify the state of a node concurrently. To
prevent inconsistencies, solving consensus was proposed.

2.6.2 Causal consistency

Distributed systems need shared references, such as the physical time, to decide correctly
how to execute transactions. But, because of the lack of global references, the difficulty
arises to find if an event takes place in another. Thus, the distributed systems need
another reference to circumvent the absence of synchronized clocks.

Logical time introduces an execution order between events based on a partial order
known as the Happened-Before Relation that establishes a precedence order between two
events in the following way [Lamport 1978]: let e and e′ be two events causally related.
According to the happened-before relation, e happened before e′ if there is a transference
of information from e to e′. Thus, according to the relation, e must be processed before
e′. Formally, the Happened-Before Relation denoted “→”, is defined as follows:
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Definition 4 (Happened-Before Relation)
The relation → is the smallest relation on a set of events E satisfying:

1. If e and e′ are events belonging to the same process and e originated before e′,
then e→ e′.

2. If e is the sending of a message by one process and e′ is the receipt of the same
message by another process, then e→ e′.

3. If e→ e′ and e′→ e′′, then e→ e′′.

The causal consistency allows to order events in a set according to a partial order.
For the set of events of our general system model (see Section 2.4) we define a causal
delivery order in Definition 5 as follows:

Definition 5 (Causal order delivery in distributed models)
∀((send(e),send(e′))∈E,send(e)→ send(e′) =⇒ delivery(e)→ delivery(e′) for any two
internal events e,e′ ∈ E. We denote Ê = {E,→} as the set of events causally ordered.

The set E for events (see Section 2.4) is augmented. We consider internal and
external events as defined by the sets Einternal, Eexternal, respectively such that Ê =
{E ∪Einternal ∪Eexternal,→}. For simplicity, we represent the send events of set Esend:
ScaleCompositeNS, ScaleNestedNS, SdNSLCMGrant as send(s). The delivery event of
set Edelivery DlvNSLCMGrant as delivery(s) for any service s ∈ S. This set is causally
ordered by the → relation (see Definition 4).

Causal consistency ensures an execution order for events that are related. This
means causality can capture the temporal information for these events without global
references. However, for certain applications, orchestrators can use a lesser consistent
model. The trade-off between performance and guarantees might be too detrimental for
certain applications. Thus, the literature proposed eventual consistency to get better
performance at the cost of consistency guarantees.

2.6.3 Eventual consistency

Consensus is the convergence to a common value among all participants [Wei Ren 2005].
It achieves sequential consistency for distributed systems. However, the high complexity
of implementing consensus and its low performance make it a bottleneck for distributed
systems [Howard 2020, Xiao 2020]. To improve performance on non-critical applications,
eventual consistency was proposed [Bailis 2013]. Informally, eventual consistency guar-
antees that if no additional updates are made to a given data, all reads to that item will
eventually return the last updated value [Vogels 2008]. Eventual consistency is stated
in Definition 6 [Shapiro 2011b].
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Definition 6 (Eventual Consistency)
Eventual delivery: An update delivered at some replica i is eventually delivered to
all replicas: ∀i, j : f ∈ ci =⇒ ♦f ∈ cj , where f is an update, and ci, cj are replicas of the
same node c.
Convergence: Replicas that have delivered the same updates eventually reach equiva-
lent state: ∀i, j : �ci = cj =⇒ ♦�si ≡ sj .
Termination: All method executions terminate.

Under Eventual consistency, all participants eventually "converge"; however, it does
not provide single-system image semantics as it does not specify which value is eventually
chosen and no time of convergence is known [Bailis 2013]. This weak model applies to
some classes of problems [Bailis 2013]. Thus, replicas can execute an operation without
synchronizing a priori with other replicas, making data available at any given moment.

2.6.4 Strong eventual consistency

Despite the consensus being moved off critical paths of applications, reconciliation is
still complex to achieve [Shapiro 2011a]. Strong Eventual Consistency was proposed to
remove consensus altogether. We take the formal definition of Strong Eventual Consis-
tency [Shapiro 2011b].

Definition 7 (Strong Eventual Consistency (SEC))
An object is strongly eventually consistent if it is Eventually Consistent and:
Strong Convergence: Replicas that have delivered the same updates have equivalent
state: ∀i, j : ci = cj =⇒ si ≡ sj .

To achieve SEC, Conflict-Free Replicated Data Types (CRDTs) (e.g., those data
types in which operations commute) can ensure that there are no conflicts, hence, no
need for consensus-based concurrency control [Shapiro 2011b]. Currently, there is a
portfolio of CRDTs for counters, registers, sets, and graphs that act as a building stone
for more complex algorithms [Shapiro 2011a].

Next, we introduce the case for coordinating orchestrators and highlight the limita-
tions of current migration algorithms.
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In this chapter, we highlight the differences between algorithms for traditional single-
domain and multi-domain orchestration. We show that heuristic algorithms, for migrat-
ing VNFs in single domain orchestration, result in unwanted side-effects when the orches-
trators share Virtual Network Functions (VNFs). Indeed, because of limited knowledge
of each orchestrator, the orchestrators must coordinate to reduce the unwanted behav-
ior. Single-domain orchestration approaches lack the subtlety required for multi-domain
problems. This makes coordinating orchestrators almost a requirement for federated
deployments. Figure 3.1 shows the current step towards the coordination-free orchestra-
tion algorithm. In this chapter, by coordinating orchestrators, we show it is possible to
reconfigure network resources consistently; in this case, the migration of shared VNFs.
This is the first step towards coordination-free orchestration, as we focus on the VNF-
level only. In the following chapters, we will extend this approach to consider end-to-end
VNF-based network services.

3.1 Introduction

VNF migration is a key task in the lifecycle management of network services [Xia 2016].
It involves changing the location of VNFs to another Point of Presence (PoP); with
stateful VNFs, migration also transfers the states between old and new instances. In
a federated environment, reconfiguration operations such as migration might not lead
to the desired impact, or even to the totally opposite effect sometimes. For instance,
migrating a VNF would eventually increase its performance and/or reduce its cost;
however, this could trigger the degradation of a whole service chain where this VNF is
involved with others that did not migrate. Therefore, it is necessary to coordinate the
migration of VNFs in the chain, even more in federations where services contain shared
VNFs as external dependencies. This chapter focuses on the problem of migrating shared
VNFs in federated environments. Our research questions are:
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• What problems can occur during the migration of shared VNFs under multiple
service function chains in Network Function Virtualization (NFV) federated envi-
ronments where orchestrators have only local information?

• How can seamless migration of shared VNFs be achieved in NFV federated envi-
ronments when there is no global view of the federation by a single entity?

We propose a coordination algorithm for shared VNFs in federated environments
that relies only on the local domain knowledge of orchestrators. The algorithm is de-
signed and implemented using open source technologies. It achieves a lower overhead in
terms of service violations than the traditional greedy approach that minimizes only the
current VNF without considering the impact of other VNFs in the chain. Our principal
contribution is the migration of shared VNFs in federated environments and how can it
be achieved despite having only local information of each orchestrator.

The rest of the chapter is as follows: First, we describe a use case to illustrate the
concept of sharing VNFs in Section 3.2. Also, in Section 3.2.1, we define the problem
of sharing VNFs in a distributed multi-domain federation. Then, in Section 3.3, we
describe the state of the art and highlight its limitations. After, we present our proposed
coordination algorithm between orchestrators to enable sharing VNFs in Section 3.4. We
show the algorithm satisfies two important properties to validate the correctness of the
proposed algorithm in Section 3.4.2. Next, in Section 3.5, we evaluate our proposed
algorithm. Finally, we present the lessons learned and perspectives in Section 3.6. We
present the notation for this chapter in Table 3.1 (see Section 2.4 for a more detailed
description of each variable).

Thesis Road Map

Coordinating orchestrators to consistenly

migrate shared Virtual Network Functions [Chapter 3]

Extending the coordination orchestration approach to 

recon�gure dependent end-to-end network services [Chapter 4]

Showing the limits of coordinating orchestrators when 

recon�guring end-to-end VNF Forwarding Graphs [Chapter 5]

Achieving consistent and orchestration-free recon�guration 

of end-to-end VNF Forwarding Graphs [Chapter 6]

Figure 3.1: Thesis roadmap. In this chapter, we study the problem of migrating shared
Virtual Network Functions.
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Table 3.1: Notation for this chapter. Some of the variables were defined in the system
model (see Section 2.4 for a more detailed description of each variable). The other
variables are defined in this chapter.
Variable Meaning
F A federation composed of many administrative domains.
D = {D1,D2,D3} The set of domains that create a federation.
Υf = (V f ,Ef ) A graph where V f are VNFs and Ef are links from domain Df .
si ∈ S The i-th service from the service set S.
αk The k-th VNF in a service chain.
Ξαk The non-functional requirements of the VNF αk.
Rαk The set of VNFs that must process traffic before the VNF denoted as αk.
Pαk The internal states for VNF αk.
Qαk The buffer of states when a stateful VNF migrates.
Λαk The set of affected VNFs for VNF αk.
delay(αk) A function that computes the delay for VNF αk.
Ψ Time required to establish a virtual link two VNFs.
κ Time to migrate a VNF in the chain.
Π The handover time of the flow between a pair of VNFs.

3.2 The problem of migrating shared Virtual Network
Functions

Consider the case of a city where a monitoring system is deployed to help citizens and
prevent disasters. A small council of people must decide to coordinate the city’s resources
to mitigate the damage done. To make an informed decision, multiple sources of infor-
mation are obtained from crowdsensing. The citizens send data when they stream video
and audio from their smartphones. After data is sent by the citizens, it is processed to
get contextual information and presented to consumers of the monitoring service. One
critical requirement is the synchronization between data and the information presented.
Thus, NFV paradigm is considered.

Multiple domains are used to instantiate VNFs, as shown in Figure 3.3. Data comes
from heterogeneous devices, thus the VNFs have to be instantiated in different domains.
Such flexible deployment requires the orchestrators to share VNFs to support more
complex services. In this deployment, no single orchestrator knows the entire information
about the federation. We consider only cooperative federations.

During the operation of a network service, the failure of a VNF can trigger a migra-
tion. We illustrate an example of a failed service after migration in Figure 3.3. Domain
A will instantiate a new mixer VNF based only on his service constraints. However, the
new VNF affects another service in domain B since the new delay is greater than the
service’s constraint. Failure happens since orchestrators have limited information and
do not coordinate.
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Figure 3.2: Multiple domains build the Network Function Virtualization federation. In
each domain, there is an orchestrator that manages all the Virtual Network Functions
in the domain.
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3.2.1 Formal problem definition of migrating a shared Virtual Network
Functions

We consider a federation of orchestrators deployed in multiple domains with PoPs that
enable the instantiation of VNFs. Each architecture for the domain is aligned with the
European Telecommunication Standards Institute (ETSI) standard. For each domain
there is an orchestrator that manages the deployment, instantiation, and reconfigura-
tion of network services. The federation is modeled as a set F that contains domains
D1,D2,D3, . . . ,Df where Df is the fth domain in the federation. For each domain Df ,
there is a set Υf = (V f ,Ef ) where V f is the set of VNFs and Ef is the set of links from
domain Df . Also, for any domain Df there exists an orchestrator of that manages all
the VNFs that belong to V f . There could be a connection of VNFs from one domain Df

to another Df ′ such that {(p,q)|p ∈ V f , q ∈ V f ′ ,p 6= q}. Services are in the set S, such
that for any given si ∈ S, it can be instantiated by VNFs from multiple orchestrators.

A service si is an ordered set of VNFs α0, α1, α2, · · · , αn where n is the length of
the service si managed by orchestrator of . A VNF p is considered shared if for any pair
of services si, si′ , it belongs to a given αk ∈ si and αk′ ∈ si′ such that si 6= si′ where
p ≡ αk ≡ αk′ . We denote Rαk as the set of VNFs that must process data traffic before
αk in a given service si. Furthermore, every VNF αk that belongs to a service si has
non-functional requirements denoted Ξαk . Also, a VNF αk has internal states denoted
as Pαk for incoming messages from the previous VNF, Qαk for buffered messages. A
VNF αk must migrate if a requirement of Ξαk is not met.

For the migration scenario, the current migrating VNF is denoted as αk, the new
VNF as αk′ , the previous VNF in the chain αk−1, the next VNF as αk+1, and the first
one in the chain as α0, respectively. We denote the set of affected VNFs Λαk ⊆ Rαk as
the list of previous VNFs αk−1 such that after the migration of αk, Ξαk−1 is no longer
met. Therefore, the migration of every VNF in Λαk must precede the migration of αk.
For the next sections, we make the following assumptions:

1. There is reliable communication among orchestrators.

2. Sent messages arrive in the order they were sent.

3. There are no dependency cycles of VNFs.

Given a federation of orchestrators, where each orchestrator has only local knowledge
of its domain, the goal is to coordinate them to satisfy the non-functional requirements of
the services and VNFs being used in the federation before and after migration. Inspired
by the transparent flow/state migration problem [Yang Wang 2016], seamless VNF mi-
gration in a service chain has the following constraints:

1. State consistency: The state of the target VNF after the migration is the same
as the source VNF if no migration occurred.



32
Chapter 3. Migrating shared Virtual Network Functions in federations.

The case for coordinating orchestrators

2. Packet safety: The execution of packets is safe (i.e. loss-free and order-
preserving).

3. Finite time: Migration time is bounded.

4. Efficient overhead: The messages sent in the control plane are sufficient and
necessary.

Next, we present in more detailed the relevant works in the literature that focus on
the problem of VNF sharing. We highlight their limits, and show how our work extends
the state of the art.

3.3 The state of Virtual Network Function migration in
federations

3.3.1 Virtual machine migration

Migration of VNFs was first attempted on Virtual Machines (VMs) [Clark 2005] and
containers [Ma 2019]. These migrations can be disruptive or not, usually referred to
as cold or live [Eramo 2017b]. Cold migration is done with stateless VMs, while live
migration requires state transfer among the different VMs. However, VM migration
solutions are not suitable for VNFs as they are energy demanding [Eramo 2017a] and
resource consuming [Mattos 2015]. Migration of the whole VM is disruptive since many
VNFs could reside in a single VM [Xia 2016]. Therefore, migration of VNFs to different
PoPs requires new techniques that consider the limitations of complete VMs migration.

3.3.2 Virtual Network Function migration

The migration of VNFs has been investigated from two directions: placement [Yi 2018]
and flow/state migration [Liu 2016]. On the one hand, the VNF placement prob-
lem refers to moving a single VNF to a new point of presence because of spe-
cific requirements, such as load balance [Bari 2015] or delay minimization [Zou 2018].
This NP-hard problem [Tomassilli 2018] has been approached by various heuristics
(i.e. [Hawilo 2017, Abu-Lebdeh 2017]). On the other hand, the problem of flow mi-
gration is how to orchestrate state and packet transfer to ensure state consistency with
high efficiency and minimal overhead. It is closely related to the migration of switches
in SDN, since the VNF’s state changes based on incoming packets [Nobach 2017]. They
both consider liveness, safety, transparency, and load balancing properties for the pack-
ages being migrated [Ghorbani 2014]. However, they are distinct problems based on the
level of abstraction: SDN is concerned with the reconfiguration of flow tables and rout-
ing by separating data and control information, while VNF is mostly concerned with the
separation of dedicated hardware through virtual functions at the application level. Both
can have the migration of state, but SDN is concerned with the state of the packages
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and flow of information, while VNF state migration is mostly concerned with the state
of the application. Thus, the migration of VNF is a higher level of abstraction than the
migration of controllers. Existing flow/state migration techniques transfer a snapshot of
the service instance and resynchronize inconsistent states [Clark 2005]. To alleviate the
high-volume traffic by re-synchronization, flow termination and flow-quality degradation
have been studied [Sugisono 2018]. Further improvements in control information sent
during migration are explored in [Yang Wang 2016, Nobach 2017].

All the previous approaches of migration consider a single and isolated VNF instead of
an end-to-end network service. This type of migration could trigger new VNF migrations
that need to be taken into consideration. To do this, coordination among the multiple
VNFs is necessary to ensure the migration to a new location that does not affect the
performance of other VNFs in the chain. Our work, unlike the state of the art, considers
the impact of shared VNFs on the whole service. Thus, orchestrators must ensure that
the service is not affected by the migration of a VNF used by multiple services. Next,
we introduce our coordination algorithm for orchestrators to support the migration of
shared and stateful VNFs.

3.4 Coordination algorithm for stateful Virtual Network
Function migration

The proposed solution is described in the pseudocode of Algorithm 1. First, the or-
chestrator checks if the previous VNF αk−1 is in his domain. If it is, it will begin the
procedure to instantiate a new VNF to migrate the previous VNF if is necessary. If it
is the case, then recursively call migration for the previous VNF. If the previous VNF
αk−1 is not in his domain, the orchestrator will send a request to other orchestrators in
the federation for information αk−1(line: 7). If there is one orchestrator that manages
the previous VNF, it will reply with information. Then, a check is done to see if the new
VNF αk′ disrupts the previous one αk−1(line: 9). If this happens, the orchestrator will
request information for a new VNF α′k−1(line: 10) and trigger the migration of the pre-
vious VNF (line: 12). In case the previous VNF αk−1 is not affected by the new VNFα′k,
then exchange states between the current migrating VNF and the others. A step-by-step
procedure is shown in Figure 3.4 where messages are exchanged among orchestrators to
achieve the migration. At the beginning of step 4, the exchange of messages begins.

3.4.1 Migration algorithm

The following algorithm migrates a stateful VNF αk in a chain from
α0,α1, · · · ,αk,αk+1, · · · ,αn where n is the n-th VNF in a VNF-based service ser-
vice. First, the orchestrator checks if the previous VNF in the chain belongs to its
administrative domain. If it is the case, it will instantiate a new VNF in the domain (it
could be located in another point of presence) and will execute the migration.
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Figure 3.4: Steps to achieve migration. Each αk is a Virtual Network Function in the
chain. There is an exchange of messages among orchestrators of the Virtual Network
Functions to coordinate the migration.

3.4.2 Validation for the algorithm

As stated in Section 3.2.1, seamless migration requires state consistency, bound migra-
tion, packet order-preserving, and minimal overhead. In this work, we focus on the first
two since the last two constraints are related to routing and control, and are out of the
scope of this work. The proofs rely on the assumptions listed in Subsection 3.2.1.

3.4.2.1 State consistency proof

The internal states of the VNF are linked to the two buffers Qαk and Pαk and the virtual
link between αk−1 and αk. To ensure state consistency, the state of the source and target
migration must be equal (αk ≡ α

′
k). Before migration, the number of messages in buffer
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Algorithm 1: Migration algorithm. Migrates a Virtual network function αk
to another one α′k
1 if αk−1 ∈ of /* Check if the previous VNF belongs to the same

domain */
2 then
3 α

′
k−1← of .instantiate_new_vnf() /* Create a new VNF to store the
states */

4
5 if αk−1 ∈ Λαk then
6 migration(αk−1 ∈ of , α

′
k−1) /* If the previous VNF is affected,

then recursively call migration */

7 of .request_information(αk−1) /* The orchestrator queries all
orchestrators to get the required information to migration */

8 if ∃αk−1 ∈ of ′ ∈D then
9 if is_invalid(Ξαk−1 ,Ξαk′ ) then

10 α
′
k−1 ← of .request_new_vnf(Ξαk′ ) /* Request a new VNF from the
external orchestrator */

11

12 migration(αk−1 ∈ of ′ , α
′
k−1) /* Start the migration with the

external VNF and the new previous one */
13

14 exchange_states(αk, αk−1) /* Exchange states between the target VNF
and the previous one in the chain */

15
16 exchange_states(αk, αk′ ) /* Exchange states between the target VNF

and the new one */
17

Qαk is r and the number of messages in Pαk is 0 because the previous VNF has not
received a signal from the orchestrator to begin a migration procedure. To achieve state
consistency, we need to prove that no state is lost (i.e. |Qαk | = |Qα′

k
|) after the migration.

During the migration procedure, a link between the previous VNF αk−1 and the new
VNF α

′
k is created and all the messages from Qαk are sent to Q

α
′
k
. By Assumptions

1 and 2, all the messages arrive in the same order they were sent. After sending the
contents from Rαk to Rα′

k
and Pαk to Pα′

k
, respectively, the number of messages in Q

α
′
k

is r; since it is the same number of messages as before migration, it is what we wanted
to prove. �
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3.4.2.2 Bound migration proof

The migration time from the current VNF αk is the time required to: (1) establish
the virtual link between αk and target VNF α

′
k, denoted as Ψ, (2) time to migrate the

previous VNF αk−1 if necessary, denoted as κ, (3) handover time of the flow between
αk and α

′
k, denoted as Π. Because of the recurrence relation, this introduces a delay

equivalent to delay(αk) = d+ delay(αk−1) where d is the amount of time required for
link establishment and handover. The objective is to prove that migration is finite (i.e.
Ψ +κ+ Π≡ delay(αk)<∞).

It is necessary to construct the total sum of time required to achieve migration,
as shown in Figure 3.4. Creating the virtual link and sending the messages to begin
migration procedure is noted as t0. Queuing messages until all received messages takes∑|Λαk |
i=1 ti1. Creating a virtual link between α

′
k and αk−1 takes t2. The waiting time to

receive all the reply messages is noted as ∑|Λαk |
i=1 ti3. The dequeuing and transmission of

data from αk to α′k is bounded by Assumption 1 denoted as t4. The waiting period to
receive all acknowledgement messages from affected VNF is ∑|Λαk |

i=1 ti5. The transmission
of messages to all the requesters not affected is achieved in t6. Therefore, the total sum
of time is:

delay(αk) =
3∑
i=1

tαk2i +
|Λαk |∑
m=1

2∑
i=0

t
m(αk−1)
2i+1 (3.1)

By Assumptions 1 ∑3
i=1 t

αk
2i is bounded, as no message is lost. Since more migrations

can be triggered, the time taken ∑|Λαk |
m=1

∑2
i=0 t

m(αk−1)
2i+1 is a recurrent equation. The time

taken by α0 denoted as delay(α0) is finite since no virtual link is created due to |Rα0 |= 0.
By Assumption 1 and 3, all messages sent by any migrating VNF in the service chain of
αk are received ultimately until α. This means that if the transmission of any message
takes place in time t, there is a time t′ such that t′ is greater than t but less than ∞.
This means that for any NFV in the chain the time taken for migration is bounded
delay(αk−1) <∞. Therefore, the delay in Equation 3.1 is bounded, which is what we
wanted to prove. �

3.5 Evaluation

The aim of the performed evaluation is the comparison of our proposed algorithm per-
formance with the traditional approach, where a new VNF is selected that maximizes
the performance of the current VNF. We evaluate our algorithm in two steps: simulation
and implementation.



3.5. Evaluation 37

3.5.1 Simulation setup and results

A simulation was done to grasp the performance of different approaches using many
services. Each orchestrator creates services with a chain having different requirements
in terms of resources and maximum delay tolerance. The considered parameters during
the simulation are listed in Table 3.2. During the simulation, we first randomly placed
the VNFs in valid PoPs. Then, the chains are created using a greedy approach that
chooses the VNF that minimizes the service’s constraints. After this setup, an update
phase follows where each VNF is assigned a probability of required migration. Here, we
consider the possibility of having unfeasible PoPs to migrate.

Table 3.2: The considered parameters for the simulation
Entity Parameters Range

PoP
Max CPU 2.2 Ghz
Max memory 4 GB
Delay 10 - 100 ms

VNF
CPU 180 - 200 Mhz
Memory 380 - 400 MB
Delay VNFM 9 - 10 ms
Delay operation 32 - 70 ms
Max Delay 100 ms

VNFM
Delay NFVO 10 - 30 ms
Delay VIM 11 - 20 ms

Service
Max Delay 100 - 500 ms
Required CPU 200 - 1000 Mhz
Required Memory 400 - 1000 MB
Required VNFs 2 - 10

We considered four algorithms for the VNFs: No migration, random, greedy, and
our proposed algorithm. After migrating the VNFs, we checked the services. For each
service, we evaluated the validity of each algorithm configuration according to the re-
quired migrations. We evaluated up to 200 services with different service chains. Each
evaluation was done 100 times and the averages number of failures was registered. A
service failure can occur in two cases: either the VNF is placed in an invalid PoP because
of a lack of migration or the service does not satisfy the constraints originally placed.
Figure 3.5 shows the results.
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3.5.2 Implementation results

We measured the performance of our algorithm and compare it to the greedy approach
using current tools found in the literature and industry. Based on a study of the state
of the art [Komarek 2017, Gil Herrera 2016] we used the Open Source Mano (OSM)
platform, which follows the ETSI standard, to develop a MANO software stack. How-
ever, currently, software tools focus only on single domain orchestration, thus we used
MeDICINE [Peuster 2016] to set up a multi-domain environment. Each domain has an
orchestrator that has local information regarding its domain. We implemented VNFs
that enable the use case described in Section 3.2 that belong to two classes of services:
short and large. In the short case, services are composed of 4 VNFs chained, while on the
large is 8 chains. Each VNF used in the implementation is from the Content Delivery
Network context (i.e. rotate, crop, annotate). The services were created at random from
the pool of VNFs that were distributed among the domains of the orchestrators. Services
are grouped such that multiple services can run in a trial. For example, a service can be
composed of the following four VNFs: {speed up, black white, annotate, composition}.
The execution begins at VNF speed up and ends at composition. For performance; we
measure two metrics for both algorithms:

Figure 3.5: Average service failures for the migration algorithms, lower is better. A
failure could be an invalid location of Virtual Network Function or a violation of service
constraints. Our proposed algorithm gets the least number of failures.
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• The time for migration: The time for the execution of the service plus the migration
time for both the greedy and our proposed algorithm. This is used to measure
the overhead of our proposed algorithm against the traditional state of the art
approaches.

• The number of missed states: What states are not present due to a missed migra-
tion that was necessary for any service. This measures the consistency and safety
of the algorithm as described in Section 3.2.1.

For the implementation, we considered that (i) VNFs have at least one affected VNF,
(ii) there is a single migration of a VNF, and (iii) no cycles exist among the chains. We
let these cases for future work. Also, we consider 4 orchestrators and each trial group
has 3 services. These two parameters can increase, but for performance issues related to
our experiment testbed, we chose this number and let a greater number of services for
future work. Figures 3.6 and 3.7 show the results of the implementation.

3.5.3 Discussions

Based on the simulation and implementation, our proposed algorithm gets the least
number of misses and service failures, with a slight overhead in the migration phase. For
most cases, it surpasses the state of the art approach that does not consider dependency

Figure 3.6: The time after migration for service in seconds, lower is better. Our proposed
algorithm is slightly slower on average than the greedy migration. Variances in time
occur due to network delay communication.



40
Chapter 3. Migrating shared Virtual Network Functions in federations.

The case for coordinating orchestrators

Figure 3.7: The rounded number of misses for services after migration for both algo-
rithms, lower is better. Our proposed algorithm gets better results for most of the
services. Variation appears to be related to dependency among VNFs in a chain for a
service.

in the VNFs. However, there are some outliers in the number of misses as shown in
Figure 3.7. A further inspection of services 7, 8, 9 that belong to the same group, we
have the following services:

1. Service 7: painting ⇒ annotate ⇒ invert_colors ⇒ Mirror Y ⇒ Rotate ⇒ Resize
⇒ Crop ⇒ speed_up

2. Service 8: fade_in ⇒ composite ⇒ annotate ⇒ crop ⇒ painting ⇒ mirror_X ⇒
rotate ⇒ invert_ colors

3. Service 9: annotate⇒ fade_out ⇒ speed_up⇒ mirror_x ⇒ fade_in ⇒ composite
⇒ crop ⇒ mirror_Y

For this group, the migrating VNF is rotate. In the worst-case scenario, the migration
could trigger the following chain of migrations: rotate ⇐ mirror_X ⇐ painting ⇐ crop
⇐ annotate ⇐ composite ⇐ fade_in. Thus, there are many affected VNFs, which seems
to suggest that a finer approach to migration is required to minimize the disruption of
services. Overall, the proposed algorithm has better results than the traditional greedy
approach when orchestrators have access only to their local domain. The results highlight
a gain in terms of consistency and loss-free with a small overhead associated with the
coordination of orchestrators when they migrate shared VNFs.
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3.6 Lessons learned and perspectives

This chapter focused on the problem of coordination of orchestrators to achieve the mi-
gration of shared VNFs in federations with no access to global knowledge. We proposed
a novel coordination algorithm that migrates shared and stateful VNFs. The proposed
algorithm show satisfies the restrictions of VNF migration considering the end-to-end
network service. We simulate, implement and compare our proposed algorithm to the
traditional optimization approach that maximizes current service performance. Our pro-
posed algorithm gets better results with a slight overhead because of the coordination
of orchestrators.

As described in this chapter, solutions to migrate shared resources like VNFs must
consider the impact of other administrative domains. Unlike the state of the art, where
migration solutions consider isolated VNFs, our proposed orchestration algorithm con-
siders the VNFs could be shared among services that belong to many administrative
domains. By coordinating the orchestrators, the number of failures diminishes com-
pared to the heuristic approaches found in the literature, where optimization happens
only in the local domain. This reduces costs for the service providers and better experi-
ence for the users. Thus, the case for coordinating orchestrators in tasks is appropriate
to meet the challenges present with distributed multi-domain orchestration. However,
inconsistencies still plague the reconfiguration of VNFs. In the next chapter, we will go
more in depth in the reconfiguration tasks for VNF-based network services by considering
scaling as a use case.
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In the previous chapter, we explored sharing Virtual Network Functions (VNFs) among
different services. Coordination was required as it reduced unwanted side-effects (e.g.
partial service failures) from decisions taken locally in one domain. In this chapter,
we explore more in-depth the coordination of orchestrators to tackle the more general
problem of dependent reconfiguration. Unlike the previous chapter, where we focused on
single VNFs, in this chapter we consider the end-to-end network service. Furthermore,
contrary to the previous one, in this chapter, we prevent inconsistencies when reconfig-
uring dependent services. Figure 4.1 shows the current step towards a coordination-free
orchestration algorithm. In this chapter, we generalize the dependent reconfiguration
and identify two causes that bring inconsistencies. One of these conditions could be sat-
isfied, in theory, without coordinating orchestrators. This brings light for the possibility
to achieve consistent-free reconfiguration of VNF-based network services in federations.

4.1 Introduction

By exchanging messages over a well-defined interface, orchestrators create a federation.
In it, unlike single-domain orchestration, many orchestrators manage lifecycle tasks of
VNFs and VNF-based network services. These tasks include instantiating, reconfigur-
ing, and monitoring the network services. Yet, federations bring new challenges for
decentralized and asynchronous tasks [Katsalis 2016]. The orchestrators try to guar-
antee functional and non-functional properties of the services by reconfiguring shared
services [Cisneros 2020b]. This reconfiguration must be consistent among all orchestra-
tors.

Ensuring consistency in shared network services entails having the same up-to-date
information of each orchestrator before and after they execute a lifecycle task. Before
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Thesis Road Map

Coordinating orchestrators to consistenly

migrate shared Virtual Network Functions [Chapter 3]

Showing the limits of coordinating orchestrators when 

recon�guring end-to-end VNF Forwarding Graphs [Chapter 5]

Achieving consistent and orchestration-free recon�guration 

of end-to-end VNF Forwarding Graphs [Chapter 6]

Figure 4.1: Thesis roadmap. In this chapter, we study the problem consistently recon-
figuring dependent end-to-end VNF-based network sevices.

executing it, orchestrators must coordinate themselves to prevent unwanted behavior of
network services. The orchestrators generate grants to notify and validate a reconfigu-
ration when a network service has external dependencies. Each grant’s recipient verifies
the internal consistency in its domain by checking if the operation affects other network
services.

The current specification of Network Function Virtualization (NFV) federations
claims to ensure no undesired effect occurs while reconfiguring takes place, but no order
or timing constraints exist between two consecutive grants [ETSI 2018a]. Thus, grants
execute non-deterministically, in any order, without satisfying the service’s external de-
pendencies. Such execution could bring inconsistencies and lead to greater costs for
the provider. For example, during the scaling of a shared service managed by many
orchestrators, the service could be redundantly scaled and could also have deprecated
connections. Thus, it is necessary to enforce a correct grant ordering for shared ser-
vice reconfiguration to prevent inconsistencies induced by unsatisfied shared services’
dependencies. Such correct grant ordering is the founding principle of the distributed
approach of managing the consistent dependent reconfiguration problem for VNF-based
network services in distributed multi-domain federations.

This chapter focuses on the problem of consistently reconfiguring shared VNF-based
network services by identifying inconsistent patterns in the grant’s order execution. Un-
like the previous chapter, where we focused only on the migration of VNFs, this chapter
deals with the full end-to-end network service. We consider the scaling of a network ser-
vice as a use case; however, the approach presented can extend to other reconfiguration
operations, such as healing VNF-based network services. Our research questions are:
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Table 4.1: Notation for this chapter. Some of the variables were defined in the system
model (see Section 2.4 for a more detailed description of each variable). The other
variables are defined in this chapter.

Variable Meaning
s A service (either composite or dedicated).
m A message, its type is defined in the text.
Γs The external dependencies of service s.
o ∈O An orchestrator that belongs to the set of orchestrators.
e ∈ E An generic event. Its type is defined in the text.
Ωs The set of orchestrators who manage service s.
T Function that computes the time for an event.
→ The happened before relation.

• How to consistently reconfigure VNF-based network services through grants given
the limitations of local information and non-deterministic network conditions?

In this work, we consider on-the-fly dynamic dependent reconfiguration of VNF-based
network services. We consider non-deterministic networks and dependencies among
shared services. Based on such dependencies, we coordinate reconfigurations by ordering
grants sent by orchestrators. Our contributions are:

• An inconsistent pattern for the NFV dependent reconfiguration is identified and
formally defined from a temporal and logical perspective (Section 4.4.2, 4.4.3).

• A causally consistent orchestration algorithm is presented based on the proposed
orchestration model to prevent inconsistencies that may occur when VNF-based
network services have external dependencies (Section 4.4.4).

We show the viability of the approach via simulations using the scaling of VNF-based
shared network services as the target operation. For this, we measure the inconsistencies,
time to reconfigure, and message overhead and compared them to the current reconfig-
uration algorithm (Section 4.5).

The rest of the chapter is organized as follows: The problem and a use case are
shown in Section 4.2. Section 4.3 contains the related work. We formalize the inconsis-
tencies while reconfiguring network services in Section 4.4. Our solution is presented in
Section 4.4.4. Section 4.5 contains the evaluation, results, and discussions. Our perspec-
tives and insights are presented in Section 4.6. We present the notation for this chapter
in Table 4.1 (see Section 2.4 for a more detailed description of each variable).
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4.2 The Network Function Virtualization dependent re-
configuration problem

Dependent reconfiguration of VNF-based network services in multi-domain federations
considers the internal VNFs, the services, and the external dependencies. A service’s
reconfiguration can be simple if the service has zero external dependencies (i.e. dedicated
service); otherwise, it is dependent (i.e. composite service). Consider the composite
service C shown in Figure 4.2, the service has two external dependencies in service A, B.
Shared external dependencies introduce new challenges to the service’s reconfiguration
tasks, such as scaling. For example, Figure 4.3 shows a composite scaling with a single
dependency (i.e. one dependency is shared by two services). The NFVO-C orchestrator
manages a composite service s0 (i.e. NFVO-C ∼ s0) with two external dependencies, s1
managed by NFVO-B, and s3≡ s2 managed by NFVO-A, respectively. It is important to
note that the other orchestrators, namely NFVO-C and NFVO-B, ignore that s3≡ s2 is a
shared external dependency of both s0 and s1. This is because of the limited knowledge
constrained by the local domain of each orchestrator. The orchestrators send grants
to prevent service disruption when scaling a service with external dependencies/nested
services. These grants allow the orchestrators to coordinate the composite scaling. The
composite scaling is as follows:

1. Initially, the NFVO-C orchestrator sends a ScaleNestedNS (event c1) operation to
orchestrators NFVO-A and NFVO-B via a multi-cast message m1 to scale services
s1 managed by NFVO-B, and s3 managed by NFVO-A, respectively. A ScaleNest-
edNS instruction denotes the petition to scale a nested/composite network service
that is an external dependency.

Service C

Legend

Virtual Network 

Function

Connection Point

Service Acess Point

Dedicated Service

Composite Service

TRA Translator

ENC Encoder

DEC Decoder

ST Streamer

Figure 4.2: Complete composite service C with two external dependencies (i.e. services
A, B) as shared services. Both external dependencies have internal dependencies as
VNFs (i.e. TRA, ENC, DEC, and ST) linked by connection points.
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2. The orchestrator NFVO-B receives messagem1 with the ScaleNestedNS instruction
(event a1). Since the service s2 is an external dependency of service s1 managed
by NFVO-A, the NFVO-B sends a grant G1 so scale service s2 to NFVO-A.

3. Assume that the ScaleNestedNS instruction, sent by message m1, arrives first to
NFVO-A (event b1). Since s1 is an external dependency of service s3, NFVO-A
sends a second grant G2 to NFVO-B.

4. The orchestrator NFVO-B validates, scales the service s1 (event a2), and sends
a positive acknowledgment to NFVO-A. The orchestrator NFVO-A receives the
positive reply via message m2 and triggers a scale event for service s3 (event b2).

5. After scaling the service s3, NFVO-A sends an acknowledgment to NFVO-C via
message m3. NFVO-C stores the positive answer (event c2).

6. NFVO-A gets the first grant G1 from NFVO-B (event b3); but, it will not scale
the service s2 since the scaling already took place by executing event event b2
since service s2 and service s3 are the same (i.e. s3 ≡ s2). Thus, NFVO-A sends a
positive reply to NFVO-B via message m4.

7. NFVO-B receives the positive reply from NFVO-B (event a3); however, it will also
not scale network service s1 since it has already scaled it by executing event a2,
and sends a positive reply to NFVO-C via message m5.

8. Finally, NFVO-C scales the composite service s0 after receiving two positives
replies from NFVO-A and NFVO-B. Because of the dependent reconfiguration,
there were three scale operations (event c3).

The exchange of messages, as defined by the European Telecommunications Stan-
dards Institute (ETSI) NFV standard, suffices to achieve consistent reconfigurations in
an ideal scenario. In such a scenario, the network does not lose messages and the orches-
trators synchronize via global references. However, orchestrators lose, send, and deliver
messages asynchronously and out of order. Such network properties can lead to
inconsistencies during the network services reconfiguring tasks. For example,
Figure 4.4 shows an inconsistency during another possible dependent reconfiguration for
the same example. The order of the scale tasks is different as the orchestrator executes
grant G1 before the ScaleNestedNS operation. This example shows four scale tasks,
where the fourth is redundant, as only three reconfigure the shared network service.
The extra scale task happens because the asynchronous message delivery leads to an
execution that does not satisfy the dependent relations of the shared network services.
Figures 4.3, 4.4 illustrate a single dependency between a pair of services; however, net-
work services can have multiple dependencies that have the possibility of one or more
inconsistencies. An inconsistency increases the costs for the provider; even worse, with
a long chain of network services, the cost compounds along all the chains which could
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Figure 4.3: The orchestrators consistently scale a composite service that is shared among
them. In this execution of the composite scale operation, only three scale operations
are done.

violate the service level agreement. Not only does cost increase, but the network services
can have partial or total failures. Is necessary to impose an execution order to prevent
inconsistencies while doing dependent reconfigurations with shared external dependen-
cies for VNF-based network services. Before introducing our proposed orchestration
algorithm, we present the relevant work in the literature and highlight its limitations.

4.3 The state of shared network service reconfiguration

We discuss the relevant work for the dependent reconfiguration task. First, we present
single-domain reconfiguration algorithms, focusing on the VNF scaling problem. Then,
we present reconfiguration algorithms for multi-domain environments and highlight the
drawbacks of the current state of the art solutions. Finally, we briefly describe how
our proposed model and algorithm extend the state of the art for VNF-based service
reconfiguration in multi-domain environments. Figure 4.5 shows how we organized the
related work. Our work is positioned in the colored branch with the bold font for multi-
domain VNF-based shared network services.

4.3.1 Reconfiguration of VNF-based network services in single-domain
environments

The network service’s reconfiguration focuses on three tasks of the life cycle management
of network services. The orchestrators execute tasks such as migrating, updating, and
scaling VNFs. The problem of migration focuses on the new placement of a VNF while
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Figure 4.4: Redundant dependent reconfiguration during a scaling-out operation when
the grant messages arrive in a different order. In this execution, four scale operations
are done. This entails costs to the service provider while three only are necessary.

optimizing resources such as energy, time, and latency in a single domain [Eramo 2017a,
Yang 2018, Wang 2018]. Other works focus on the network update problem that changes

Migration

Scaling

Network service

recon guration

Single domain

orchestration

Multi-domain

orchestration

Service Oriented

Architecture

Network Function

Virtualization

Reactive

Dedicated

Shared

Proactive
Dedicated

Shared

Remove

functionality

Increase

functionality

Dedicated

Shared

Update
[Shin 2015]

[Eramo 2017a]
[Yang 2018]
[Wang 2018]

[Nadjaran Toosi 2019]
[Duan 2017]

[Sarrigiannis 2020]
[Tong 2020]

[Jia 2018]
[Xu 2020]

[Tong 2020]
[Hu 2020]
[Arteaga 2017]
[Rahman 2020]

[Boudries 2019]

[Moo-Mena 2007]
[Hn tynka 2006]

[Subramanya 2021]

[Baranda 2020]
[ETSI, NFVISG 2018]

Figure 4.5: Taxonomy for network service reconfiguration. Our work is positioned in
the lower branch with Network Function Virtualization multi-domain shared network
services.
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a VNF descriptor to include more functionalities [Shin 2015]. Scaling with NFV allows
operators to resize network services at runtime to handle load surges with performance
guarantees [Adamuz-Hinojosa 2018]. In this work, we focus on the VNF scaling as it
is the closest related to our work. We classified the related work for scaling shared
resources in a single domain as either reactive (i.e. monitor the traffic) or proactive (i.e.
predict future traffic).

4.3.1.1 Single-domain reactive works

Most of the works in the literature consider dedicated services that belong to a single net-
work service despite having VNFs in distributed data centers. Auto-scaling orchestration
mechanisms have been proposed to minimize the cost of scaling a service while meet-
ing end-to-end delay [Nadjaran Toosi 2019, Duan 2017]. These works propose heuristic
algorithms by monitoring algorithms to scale the VNFs. As far as we know, only two
works in the literature consider shared resources for a single domain. The first work
proposed a latency-aware mechanism [Sarrigiannis 2020]. It offers a scheduling algo-
rithm for the initial placement and reallocation of VNFs. The second work proposed a
VNF scaling on-line algorithm that considers all the costs associated with provisioning
network resources [Tong 2020]. It achieves an upper-bounded competitive ratio. The
major drawback of reactive works is the negative impact of the reconfiguration. Since
they only reconfigure services when they capture a problem, the orchestrators must stop
service or temporally degrade them while the changes take place. To prevent this, the
literature proposes proactive scaling mechanisms. They mitigate the negative impact of
reconfiguration.

4.3.1.2 Single-domain proactive works

Proactive works predict future traffic and try to scale network services or VNFs
to address these changes. While some works were proposed for dedicated ser-
vices [Jia 2018, Xu 2020], we focus on shared services. For shared VNF-based network
services, the NFV literature considers several works. The first work proposed a traffic
model based on Gated Recurrent Units [Tong 2020]. After the prediction, many inde-
pendent agents explore the network to get optimal placement. Another work proposed a
log-linear Poisson auto-regression model to forecast the traffic [Hu 2020]. Based on the
model’s output, an evolution-based algorithm scales automatically the VNFs. Similarly,
an adaptive scaling mechanism based on Q-learning and Gaussian Processes to train a
single agent was proposed [Arteaga 2017]. The agent learns the scaling policy despite
traffic variations. Another interesting work that allows tenants to refuse scaling was
proposed [Rahman 2020]. The method offers a negotiation phase where, based on the
predicted traffic and goals for each tenant, under the same domain, the orchestrators
scale the VNFs.

All the previous approaches rely on a single administrative domain under a global
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orchestrator. The advantages of such deployment are ease of use and simple life cy-
cle management. However, this approach has drawbacks, such as scalability, security,
and limited flexibility. Multiple administrative domains want to keep autonomy from a
single orchestrator. Decentralized solutions face the shortcomings of the global deploy-
ments [Chen 2010].

4.3.2 Reconfiguration of VNF-based network services in multi-domain
environments

Decentralized approaches achieve better performance since the orchestrators distribute
traffic among participants [Nanda 2004]. Since NFV falls into the definition of IT services
at large [Katsalis 2016], service provides can provision VNFs as any other type of service.
Service-Oriented Architecture (SOA) principles (e.g., service abstraction, discoverability,
and composability) ensure the viability of an ecosystem of network services. For example,
in the NFV paradigm, multi-domain environments become these ecosystems [Yi 2018].
Thus, first, we present the SOA reconfiguration solutions. Then, we describe why these
solutions do not fully align with the NFV paradigm. Finally, we describe the NFV
reconfiguration solutions for VNF-based network services in multi-domain environments.

4.3.2.1 Service-oriented architecture reconfiguration for network services

Before NFV, in the domain of web services, choreographies have been proposed to han-
dle the reconfiguration of a service. A service choreography achieves service composi-
tion without centralized control through a protocol via observable events [Leite 2013].
The collaborative protocol, encoded in the choreography, ensures correctness prop-
erties such as deadlock prevention, conformance to message specification, and re-
alizability [Kattepur 2013]. Some works propose a coordination protocol to recon-
figure services where a shared global state is maintained without a central orches-
trator [Kazhamiakin 2006, Salaün 2009]. Works can either remove faulty compo-
nents by choosing the optimal and correct candidates from a limited pool of op-
tions [Boudries 2019], or bring new functionalities on the fly and add them to the existing
chaining [Moo-Mena 2007, Hnětynka 2006]. Previous works adapt network services to
changes in the environment; however, they exclude consistency issues brought by depen-
dencies among the services that arise while reconfiguring VNF-based network services.

The VNF life-cycle task was inspired by SOA [Yangui 2016]; however, discrepancies
between web services and VNFs make SOA solutions inappropriate to address VNF-
based network services tasks [el houda Nouar 2021]. For instance, unlike web services,
VNFs are not remotely invoked but must be downloaded and executed locally in different
administrative domains. The VNFs, and by extension VNF-based network services, in-
clude technical details such as the supported technologies, the configuration settings, and
their operation management for each task. Moreover, the service choreography in SOA
lacks elements present in NFV such as the orchestrator who has a well-defined workflow
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for the life cycle of network services [ETSI, NFVISG 2016]. Another challenge present
in the NFV context is the heterogeneity of VNFs [Bouras 2017], unlike web services
that only consider input and output parameters. Finally, since administrative domains
have different capabilities (e.g. CPU, RAM, bandwidth) the reconfiguration operation
for VNF-based network services must consider such resources to ensure functional and
non-functional requirements [Xu 2020]. Thus, solutions for reconfiguring VNF-based
network services with a focus on consistency need to be explored in the NFV context,
considering both internal (hidden) and external (observable) events.

4.3.2.2 Network Function Virtualization reconfiguration for VNF-based ser-
vices

NFV reconfiguration for network services under multi-domain considers federations that
share resources by negotiating among many participants [Pham 2019]. Some works con-
sider multiple administrative domains, but the solutions still manage only dedicated ser-
vices. The literature also contains machine learning approaches, such as deep learning
orchestration algorithm to predict traffic and scale VNF instances [Subramanya 2021].
Unlike in single domain orchestration that only considers dedicated network services,
multi-domain federations create composite services by sharing resources [ETSI 2020b].
As far as we know, only a few works have considered the scaling of composite network ser-
vices under multi-domain orchestration. The ETSI NFV standard specifies an algorithm
for scaling composite network services [ETSI, NFVISG 2018]. The algorithm proposes a
workflow based on grants to coordinate orchestrators. A custom platform was deployed
using the ETSI standard to scale composite services [Baranda 2020]. The previous works
handle the composite scaling of services in ideal conditions (e.g. ordered messages, no
latency in transmission, zero messages lost). However, the non-deterministic conditions
of the network and limited information about each orchestration bring new challenges,
such as preventing inconsistencies [Vaquero 2019]. Preventing inconsistencies is a desired
property when reconfiguring VNF-based network services, as it prevents unwanted effects
from rippling across the federation. However, currently, there are no formal models to
identify and prevent inconsistencies while reconfiguring composite VNF-based services.

4.3.3 Synthesis

The review of the relevant literature shows that many works consider a centralized
orchestrator. Others, non-centralized, consider approaches not completely compatible
with NFV. Some works do not consider sharing services. These limitations reduce the
applicability of works as providers want to: have autonomy and privacy for their do-
mains, achieve local interoperability, and share resources to extend their market share.
The ETSI standard orchestration algorithm addresses some of these limits; however, it
considers ideal conditions to reconfigure network services without time constraints. Cur-
rently, no grant message exchange pattern has been identified to prevent inconsistencies.
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In this chapter, we extend the state of the art by proposing a distributed multi-domain
orchestration model that, unlike the state of the art, considers non-deterministic network
conditions where services can have multiple dependencies. The model allows to identify
an inconsistency pattern for a dependent reconfiguration of VNF-based network services,
that is missing today in the literature. To prevent this pattern, we propose a causally
consistent orchestration algorithm to prevent inconsistencies while doing dependent re-
configuration.

4.4 Modeling dependent reconfigurations in distributed
multi-domain orchestration

In this section, we evaluate the NFV dependent reconfiguration problem from a tempo-
ral/event point of view and identify key information to support the consistent dependent
reconfiguration of VNF-based network services.

4.4.1 Dependent reconfiguration of network services in distributed
multi-domain federations

A dependent reconfiguration happens when an orchestrator requests a reconfiguration
for service s and has external dependencies such that the set Γs 6= ∅. In this case,
multiple grant requests are sent to orchestrators bounded by |Γs|. According to the
ETSI standard, the following steps are required for a dependent reconfiguration (we
don’t consider notifications or answers) [ETSI, NFVISG 2018]:

1. Scale a composite network service.

2. Scale nested network services.

3. Request grants to scale external dependencies.

4. Validate requests, check feasibility, and consistency of grants.

We formally define the dependent reconfiguration as follows:

Definition 8 (Dependent reconfiguration)
Let s ∈ S be a composite service that has at least one external dependency (i.e. Γs 6= ∅
where Γs is the set of external dependencies) managed by orchestrator o ∈ O. Let
event e ∈ E be of type ScaleCompositeNS executed by orchestrator o. A dependent
reconfiguration happens during the composite scaling of e if and only if service s has an
external dependency s′ ∈ Γs such that ∃s′′ ∈ Γs′ ,s′′ ∈ Γs. In other words, both network
services share an external dependency; thus, the joint set Γs∩Γs′ 6= ∅.
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Composite Service G

Figure 4.6: Example of the conditions for a dependent reconfiguration. The composite
service G has two nested services that share service B as an external dependency. To
reconfigure this shared service, the orchestrators must coordinate by grants.

We illustrate an example of the conditions required for a dependent reconfiguration
as described in Definition 8 for a composite service by extending the example shown in
Figure 4.2. Figure 4.6 shows an example of the composite service G. This service has
three nested services in C, E, and F, respectively. Each nested service has its own internal
and external dependencies, as shown by the differences between services A and B. Since
the two nested services C and E share an external dependency (i.e. shared service), they
will trigger a dependent reconfiguration in case one orchestrator reconfigures the shared
service B. The orchestrators exchange grants by executing events in the set Eexternal
(i.e. SdNSLCMGrant and DlvNSLCMGrant). With dependent reconfiguration executed
during the scaling for shared network services in multi-domain federations, the delivery of
DlvNSLCMGrant events must be respected to consistently execute the reconfiguration.

4.4.2 Modeling the dependent inconsistency reconfiguration of VNF-
based network services from a temporal perspective

Consider the diagram of Figure 4.7. It shows the relevant events during a dependent
reconfiguration (see Definition 8) according to the ETSI standard. In this scenario, the
federation considers four orchestrators. According to our model (see subsection 2.5), the
set of processors for this scenario is O= {o−1,o0,o1,o2}. The update begins when orches-
trator o−1 sends a message m0 to o0 where m0 = (o−1,o0, ex0 = {(s0,data)}) and s0 ∼ o0
and ex0 is a ScaleCompositeNS, where ∼ is the is-managed by relation (see Definition 1,
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Section 2.4). The orchestrator checks the validity and feasibility on event e00; this entails
validating the parameters sent, the authority of the sender, and checking the feasibility
for the VNFmanager to scale all the VNFs. In the case the service has external dependen-
cies, the orchestrator sends a multi-cast messagem1 = (o0,(o1,o2),e01 = {((s1,s2),data)})
where e01 is of type Scale nested. If an orchestrator receives a Scale nested event, it will
also validate the request, as shown in event e11. If the service has an external event,
it will send a grant through a message as shown in m2 and will wait for a positive ac-
knowledgment before scaling takes place; if there are no external dependencies, a scaling
will take place. Scaling entails checking the validity and feasibility of the VNFs by the
VNF Manager, instantiating or removing resources by the virtual infrastructure man-
ager, and finally changing connections as shown in events e12,e13,e23,e24. In the event of
receiving a grant, the orchestrator checks the consistency of all network services affected
by the grant, as shown in event e21, and sends a notification through message m3. If
network services are affected, the orchestrator can request a scale composite instruction
and begin another dependent reconfiguration.

According to the ETSI standard, the execution of events shown in Fig-
ure 4.7 is valid; however, it introduces an inconsistency for dependent net-
work services being scaled. The inconsistency is created because service s1 managed
by orchestrator o1 has outdated information after the scaling operation of service s′ trig-
gered by event e23 if s′ is an external dependency of s1. More precisely, the inconsistency
is brought by the execution of e20 before e22.

One way to see this out-of-order execution is the delay brought by asynchronous
communication and lack of global references; in turn, this creates a non-deterministic
execution of reconfiguration operations. This is the temporal perspective encoded in the
message sent by orchestrators to signal the relevant steps of dependent reconfiguration.
Upon analyzing the communication diagram corresponding to the execution diagram
shown in Figure 4.7, we can observe the inconsistency is created when the transmission
time interval of m1 is greater than the transmission of time interval m2 plus the message
forwarding time of all the grant of dependencies. We generalize and formalize the
inconsistency pattern from a temporal perspective in the Definition 9.

Definition 9 (Temporally inconsistent dependent reconfiguration)
Let s be a composite service managed by orchestrator o such that Γs 6= ∅. Let m =
{o,Ωs,ScaleNestedNS(Γs)} be a message to scale the nested external dependencies
of s, where Ωs is the set of orchestrators who manage the external dependencies of
service s. Let m′ = {o,Ωs/o

′,ScaleNestedNS(Γs/s′)} be a message to scale all external
network services except a single service s′ ∈ Γs managed by o′ ∈ Ωs. Let m′′ = {o′,Ωs′ ,
SdNSLCMGrant(Γs′)} be a message to grant the operation of service s′. Let T (x) be a
function that measures the time taken to send, receive, and deliver a message x ∈M . A
temporal inconsistency during dependent reconfiguration is created if:

T (m′)> T (m) +T (m′′) | Γs∩Γs′ 6= ∅,s′ ∈ Γs
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Figure 4.7: Inconsistency during dependent reconfiguration for a composite service. All
events concerning acknowledgments and notifications are hidden and abstracted. Mes-
sages arrive arbitrarily and events can be executed out of order.

A solution to the problem of inconsistent, dependent reconfiguration posed by Def-
inition 9 is to establish common temporal references for all orchestrators and perform
the execution of operations according to this reference. However, as discussed in Sec-
tion 2.3.4 such a solution is unpractical since each orchestrator has limited knowledge.
Even clock synchronization algorithms such as the Network Time Protocol [Mills 1991]
make it difficult to synchronize clocks across all the network entities.

4.4.3 Modeling the dependent inconsistency reconfiguration of VNF-
based network services from an event perspective

In this section, we discuss the inconsistency during the dependent reconfiguration (see
Definition 8) of network services from an event perspective. The focus centers on the
relevant events during the scaling operation. Similarly to Definition 9 we use the execu-
tion flow presented in Figure 4.7 as an inconsistent example. We define the conditions
of inconsistency as follows:

Definition 10 (Event related inconsistency of dependent reconfiguration)
Let s1,s2 be two network services managed by o,o′ respectively. Let Γs1 6= ∅, Γs2 6= ∅
be the sets of external services’ dependencies of s1,s2 respectively. Let Ωs1 ,Ωs2 be the
set of orchestrators that manage the external dependencies of service s1,s2 respectively.
Let esc be a ScaleComposite event of network service s1 requested by an orchestrator
ô 6∈Ωs1∪Ωs2 . Let esn be a ScaleNested event of network services Γs1 such that esc→ esn
and the scale instruction is sent to Ωs1 using the message m. Let e be the execution
of the ScaleNested esn instruction at an orchestrator o ∈ Ωs1 . Let eg be a Grant of
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network services Γs2 such that esn→ eg and the grant instruction is sent to Ωs2 using
the message m′. Let e′ be the execution of the Grant eg at an orchestrator o ∈ Ωs2 .
There is an inconsistency if the following conditions hold:

1. ∃(s̄, ŝ), s̄= ŝ ∈ Γs1 ∩Γs2 such that s̄ ∈ Γs1 , ŝ ∈ Γs2 , and

2. e′→ e

Figure 4.8 shows a graphic representation of Definition 10. In Figure 4.8 (I) we
observe the composite scaling of service s1 with event esc, given that this service has
external dependencies it sends a scale nested message to all orchestrators that manage
its dependencies by esn. Figure 4.8 (II) shows the delivery of the nested message at
orchestrator o′. Since the external dependency s2 also has dependencies, it sends a grant
message to all the managers of its dependencies with event eg. Figures 4.8 (III,IV) show
the case when both s1 and s2 have a common external dependencies. In Figure 4.8 (III)
the reconfiguration is consistent in the purple rectangle as the scale precedes the grant
instruction. Figure 4.8 (IV) shows an inconsistent, dependent reconfiguration as the
grant operation precedes the scale instruction. Even if some reconfigurations are consis-
tent, a single inconsistent one suffices to bring the whole service down. More precisely,
inconsistencies bring both partial and total failures for network services, reflected in a
greater cost for the providers.

A key property for any reconfiguration is to be consistent and stop the conditions of
Definition 10. To prevent them at least one condition from Definition 10 must remain
unsatisfied. A federated environment makes preventing Condition 1 challenging as the
core of these environments is sharing resources; plus, is difficult to ensure because of the
limited information each orchestrator has. Thus, the goal is to prevent Condition
2 from happening; that is, a nested scaling should always precede a grant
operation. Our proposed algorithm identifies and prevents the second condition from
happening via causal consistency.

4.4.4 Consistent algorithm for dependent reconfigurations

Based on the formalization presented in Section 4.4, we show how the presented algo-
rithm allows us to capture the causality and avoid inconsistency of network services dur-
ing dependent reconfigurations, such as scaling in NFV. First, we present an overview
of the algorithm in Subsection 4.4.4.1. Then, a simplified workflow of the algorithm
is shown in Section 4.4.4.2. The rest of functions are detailed in Sections 4.4.4.4,
4.4.4.5, 4.4.4.6, 4.4.4.7, and 4.4.4.8, respectively.

4.4.4.1 Algorithm overview

Our algorithm complies with the ETSI standard procedure to provision network services
(i.e. we consider the same definitions for VNFs, services, messages, events). However,
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Figure 4.8: Inconsistency during dependent reconfiguration for a composite service. An
orchestrator executes scale and grant events of a shared external dependency out-of-
order.

we propose a new orchestration algorithm to reconfigure composite/shared VNF-based
network services not considered in the standard. The federation’s orchestrators execute
the algorithm when they send and receive standard grant messages. Such an algorithm
bifurcates with multiple function calls because of asynchronous calls while reconfiguring
shared services. The recursive nature of our solution handles the dependencies of network
services by emitting grants as messages among orchestrators. The orchestrators deliver
the messages in causal order preventing inconsistencies (see Definition 10). Each orches-
trator in the federation executes the following algorithm to support the causal delivery
of messages according to the dependencies in the service’s descriptors. We summarize it
as follows:

• Input: The set of messages presented in Section 2.5 and a vector clock create a
tuple that communicates to other orchestrators the changes seen so far from the
sender.

• Execution: All reconfiguration messages are asynchronously disseminated and no
upper bound on delay is considered. Whenever an orchestrator o sends a LifeCy-
cleManagement message m to the orchestrator o′, it never blocks and waits for
an acknowledgment message of the delivery of m. The clock of each orchestrator
is independent of each other such that there is no synchronization with another
orchestrator, thus, the execution is fully asynchronous.

• Data Structures: We consider two data structures: orchestrators and network
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services.

– Orchestrator:
∗ ID: The unique identifier of the orchestrator.
∗ vectorClock: Control information that stores the dependency information
between messages being exchanged. The size of the vector is equal to the
number of orchestrators in the federation. Each element of the vector
clock of orchestrator o is a tuple of the form (oid, logical_clock) which
records the last events seen by o.

∗ pendingOperations: The external dependencies that wait for the confir-
mation of the scaling operations.

∗ externalOrchestrators: The list of all orchestrators in the federation.
∗ internalDependenciesToScale: The list of all VNFs and network services
waiting to be scaled. They are stored to prevent scaling them and then
receiving a failure for an external dependency.

– Network Service:
∗ ID: The service unique identifier.
∗ dependencies: The list of dependencies of the service. In case of scaling,
all must confirm the scaling otherwise the operation is aborted.

∗ orchestratorID: The identifier of the service’s orchestrator.
∗ originalService: The service who originally sent the scaling operation in
case of a dependent reconfiguration.

∗ type: They type of the component. It could either be a service or VNF.

4.4.4.2 Algorithm details

Figure 4.9 shows the flowchart to scale a VNF-based network service. First, the orches-
trator increments its vector clock by one. Then, it adds the scaling to pending operations
since the network service could have external dependencies. After, it sends a grant to
all the orchestrators who manage the service’s external dependencies. Finally, to ensure
the causal delivery of messages, the orchestrator notifies the others. Algorithm 2 shows
the function to scale a VNF-based network service.

Once an orchestrator receives a grant request to scale a VNF-based network service,
it executes the workflow, as shown in Figure 4.9. First, the orchestrator receives the
grant to scale the service. Then, it compares the received clock with its own. If it is
greater by more than one value, it stores the grant in the list of pending operations.
After, if the clock’s difference is one, the orchestrator checks if the service to be scaled
has any external dependencies, — scaling them in the positive case or just the internal
ones. In the end, the orchestrator tries to execute pending operations, thus ensuring
events are delivered according to the causal order. Algorithm 3 shows the function to
apply the grant to scale a VNF-based shared network service.
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4.4.4.3 Request service scale algorithm

We present in detail the algorithms to achieve consistency while handling dependent
reconfigurations for distributed multi-domain federations.

4.4.4.4 Grant lifecycle management algorithm

The orchestrator scales a component (e.g. VNF, network service) as follows: First, it
validates the internal logic and policies of the request scale while ensuring the scaling will
not violate the service’s SLA. Then, the orchestrator updates his vector clock, stores the
request as a pending operation if the service has external dependencies, and sends the
respective grant or scale request to other orchestrators as shown in Function 1; otherwise,
all internal dependencies are scaled as shown in Function 2. Finally, the orchestrator
notifies all other orchestrators in the federation to enforce the causal delivery of messages.
A chain of scaling is created when dependencies of service have external dependencies
themselves.
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Figure 4.9: Simplified workflow to consistently scale a shared VNF-based network ser-
vice.
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Algorithm 2: Request service scale algorithm. An orchestrator checks the
dependencies of a service. In case these are managed by other orchestrators it
sends them a grant message
Input: Composite network service service
Input: Orchestrator myOrchestrator

1 myOrchestrator[vectorClock].increment() /* Increase the vector clock
associated to the network service */

2
3 myOrchestrator[pendingOperations].append(service) /* Add the scaling

to the pending operations since it has not received the grants
from external dependencies */

4
5 myClock ← myOrchestrator[vectorClock] /* Create a clock to be sent by

a grant request message */
6
7 myID ← myOrchestrator[ID] /* Obtain the unique identifier for the

service */
8
9 foreach dependency in service[dependencies] do

10 newOrch ← dependency[orchestrator]
11 newID ← dependency[id]
12 send(newOrch,GrantLCM(newID, myClock)) /* Send the message to

the orchestrators who manage external dependencies */
13

14 end
15 foreach externalOrchestrator in orchestrator[externalOrchestrators] do
16 send(externalOrchestrator, NotificationLCM(myClock,myID)) /* Send

notification to all orchestrators, this ensures the correct
ordering for other orchestrators */

17

18 end

4.4.4.5 Scale external dependencies function

Collect all dependencies of a given service. If it is a VNF (i.e. an internal dependency) it
is stored and appended to a list of pending operations. This, because all external depen-
dencies must accept the dependent reconfiguration, before internal dependencies can be
changed. The orchestrator generates a grant message for all the external dependencies.
This is why some reconfigurations are dependent of others.
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4.4.4.6 Scale internal dependencies function

The orchestrator triggers a reconfiguration operation, in this case a scaling out/in, for
all internal dependencies.

4.4.4.7 Scale confirmation function

The dependency sends a ScaleConfirmation message to the orchestrator once scaling
has finished. Once the message is delivered, the orchestrator executes Function 3 as
follows: First, the orchestrator checks if the scaling confirmation relates to a pending
operation and waits to receive all external confirmations. Then, after waiting for all
internal dependencies scale as this ensures all-or-nothing scaling. Finally, the orchestra-
tor acknowledges the sender of the scaling request by confirming everything went fine.
However, if the pending operation is local, only the scaling takes place.

4.4.4.8 Do pending operations function

Function 4 is the most complex of all functions. First, it evaluates if there is at least a
single operation that can be executed when the difference of vector clocks of the operation
and the current clock is one. If it is the case, it validates the operation by checking if
the request has the correct permissions and resources. In case of a valid operation, it
checks the dependency type of the service or VNF referenced by the request. In case
all dependencies are internals (usually only VNFs) it calls Function 2. For external
dependencies Function 1 is called.

4.5 Evaluation

We implemented our proposed algorithm to measure both performance and correctness
criteria (i.e. zero inconsistencies while reconfiguring). The following sections comprise
the distributed setup (Section 4.5.1), metrics evaluation (Section 4.5.2), experiments
(Section 4.5.3), and discussions (Section 4.5.4).

4.5.1 Distributed federation setup

We evaluated our algorithm using Azure’s cloud infrastructure. We chose multiple do-
mains from the cloud provider from the following locations: North Europe, West US,
South Korea, East US, and the UK. For each domain, we instantiated a virtual machine
to host the orchestrator software. All virtual machines have the same configuration: 2
CPUs, 30GB of hard drive, 4GB of RAM, and Linux 18.04-LTS. Each domain has its
policies, topology, and is managed by a single orchestrator. Nowadays, multiple open-
source orchestrators follow the ETSI standard like Open Source MANO [Israel 2019],
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however, none implements the required interfaces to support a federation. Thus, we
implemented an orchestration platform in Python. The source code can be found in 1.

Network services are created by chaining VNFs, internal, and external services. The
VNFs considered for the network services are part of content delivery networks functions
that process video such as encoders. The specification for the service is stored in JSON
files that contain parameters for network services and their corresponding VNFs. Ta-
ble 4.2 shows the parameters used for all experiments. We created multiple experiments
by randomly assigning VNFs, network services, and their constraints to the orchestrators
in each of our domains. We also generated a random set of scale requests to test our
algorithm. To simulate asynchrony in the network, all messages have random waiting
times.

4.5.2 Metrics to evaluate

To measure the benefits and trade-offs of our algorithm we evaluated the following
metrics:

• Inconsistencies: The number of differences when two or more orchestrators have
different configurations for a shared network service. They should be minimized
or prevented while reconfiguring dependent network services.

• Message overhead: The number of messages sent to coordinate orchestrators. Mes-
sages induce a waiting time until the appropriate one is received.

• Reconfiguration time: The time taken to achieve the reconfiguration. Ideally, this
would be short; otherwise, the user of the network service suffers an interruption.

• Memory overhead: The amount of information stored in memory to coordinate the
orchestrators.

Ideally, an orchestration algorithm would have zero inconsistencies while achieving
a fast reconfiguration with few messages to coordinate the orchestrators. However,
preventing inconsistencies has an associated cost. Next, we measure the performance of
our algorithm compared to the ETSI standard [ETSI, NFVISG 2018] as it is the closest
work in the literature as shown in Figure 4.5 (see Section 4.3).

4.5.3 Experiments

We evaluated the performance of our algorithm and the current ETSI stan-
dard [ETSI 2018a] for composite/shared services. This work is the closest work to ours
as it includes: (i) multiple administrative domains, (ii) composite VNF-based network
services, and (iii) dependent reconfiguration. To support inconsistency detection, we

1https://doi.org/10.5281/zenodo.3989957
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Figure 4.10: Inconsistencies per number of reconfigurations, lower is better. Our algo-
rithm obtains zero inconsistencies, unlike the standard.

implemented and added vector clocks [Fidge 1988] to the ETSI standard. The origi-
nal implementation does not contemplate this. We consider two experiments. For the
first one, we deploy multiple dedicated and composite VNF-based network services and
reconfigure them. For the second one, we deploy only a single service reconfiguration
and measure the effects of dependencies for each metric considered. Both experiments
had a threshold of 60 seconds. If the scaling of a network service takes longer than the
threshold, we consider it invalid.

4.5.3.1 Experiment 1. Single service reconfiguration

This experiment aims to measure the overhead of our proposed algorithm compared to
the ETSI standard for a dependent reconfiguration of network services. In this scenario,
each reconfiguration is done one at a time. We tested over 5500 random reconfigurations
for all the services we generated, as shown in Table 4.2. We consider intervals with
increments of ten, up to 100, to measure the performance of both algorithms in terms
of the metrics considered (see Section 4.5.2). A time-out of 60 seconds was set. If the
time to reconfigure exceeded the time-out, we consider the reconfiguration as invalid.
Figures 4.10, 4.11, 4.12, 4.13, 4.14 show the results.
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4.5.3.2 Experiment 2. Performance with respect to the number of depen-
dencies

This experiment aims to measure how the overhead metrics increase concerning the total
external dependencies. In this experiment, we count all of them, not only the immediate
dependency. For example, if a service has 3 external dependencies and one of these
external dependencies has also 2 external dependencies, the service will have 3 immediate
dependencies but 5. Thus, the experiment reveals more about the relationship between
the external dependencies and the solution overhead. Table 4.3 shows the parameters
for the experiment. Similarly to Experiment 2 (see Section 4.5.3.1) a time-out of 60
seconds was set for invalid services. Figures 4.15, 4.16, 4.18, and 4.17 show the results
for each metric considered.

4.5.4 Discussion

Our algorithm gets the expected performance of zero inconsistencies; unlike the ETSI
standard. Experiments validate the algorithm and show that the current standard gets
inconsistencies while reconfiguring the network services. Even if network services have
few external dependencies, the standard still has inconsistencies, as shown in Figure 4.15.
It can be seen how, despite reconfiguring a single composite service, when the number
of dependencies is greater than two, the standard already has inconsistencies.

For multiple reconfigurations, our proposed algorithm prevents inconsistencies, unlike
the standard as shown in Figure 4.10. For the standard, the number of inconsistencies
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Figure 4.11: Average dependencies per VNF-based network service. On average, services
have between 3,4 dependencies.



66

Chapter 4. Far beyond shared Virtual Network Function migration or:
How to consistently reconfigure dependent network services by

coordinating orchestrators

20 40 60 80 100
Number of reconfigurations

0

50

100

150

200

250
Da

ta
 o
ve

rh
ea

d 
(K

b)

Data overhead delay [1, 100]ms
Causal 1ms
Causal 100ms
Standard 1ms
Standard 100ms

Figure 4.12: Memory overhead per number of reconfigurations, lower is better. Our
proposed algorithm has a greater cost.
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Figure 4.13: Sent messages to request grants and notify orchestrators, lower is better.
Our proposed algorithm obtains better performance as it prevents inconsistencies that
create redundant messages.

changes over the number of reconfigurations. This variation happens as the services,



4.5. Evaluation 67

20 40 60 80 100
Number of reconfigurations

0.00

0.01

0.02

0.03

0.04

Av
er
ag

e 
el
ap

se
d 
tim

e 
(s
)

Average elapsed time (s) delay [1, 100]ms
Causal 1ms
Causal 100ms
Standard 1ms
Standard 100ms

Figure 4.14: Time spent reconfiguring the VNF-based services, lower is better. Our
proposed solution reconfigures faster than the standard. This is in part because of the
number of messages the standard must process, unlike ours.
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for each step, were created and selected at random using the range of parameters (see
Table 4.2). At the first sight, it appears there is no relation between the number of de-
pendencies and the inconsistencies as shown in Figure 4.11. However, the more detailed
analysis of the second experiment, where we fixed the dependencies instead of having
services with different dependencies, reveals that there is a relation between them as
shown in Figure 4.15 where the number of inconsistencies grows as a function of the
number of dependencies. Moreover, since we considered both dedicated and composite
VNF-based network services, it is likely that for larger experiments a higher number of
dedicated were chosen. Thus, we see the downtrend between steps 60-80 in Figure 4.10.
Nevertheless, our algorithm prevents inconsistencies irrespective of the number of recon-
figurations, unlike the ETSI standard.

Preventing such inconsistencies comes with a cost associated with it. First, we eval-
uated the complexity of our proposed algorithm in terms of the number of dependencies
n and orchestrators m. Then, we measure the performance of our proposed algorithm
and compared it to the ETSI standard.

The time complexity of our proposed algorithm is O(n2) where n is the number of
dependencies. The space complexity is O(m), wherem is the number of orchestrators. It
is linear since our algorithm keeps track of the affected orchestrators using vector clocks
and stores out-of-order instructions as pending operations for each orchestrator. Our
algorithm has greater time complexity than the ETSI standard [ETSI, NFVISG 2018]
who has a time complexity of O(n) and a space complexity of O(m) in ideal conditions
(i.e. one reconfiguration at a time, deterministic network). However, the added cost
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Figure 4.16: Memory overhead per dependencies, lower is better. For our algorithm the
overhead increases dependencies. For the standard, the growth is below ours.



4.5. Evaluation 69

1 2 3 4 5 6 7 8 9 10 11 12 13
Dependencies

0

100

200

300

400

500

600

700

800

M
es
sa
ge

s s
en

t
Messages sent delay [1, 100]ms

Causal 1ms
Causal 100ms
Standard 1ms
Standard 100ms
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For services with a higher number of dependencies, the standard behaves worst due to
inconsistencies.
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of our algorithm, in terms of time and space, prevents inconsistencies for dependent
reconfigurations.

Performance-wise, we see how our algorithm requires storing more information
to coordinate the orchestrators compared to the ETSI standard as shown in Fig-
ures 4.12, 4.16. Delay affects the amount of information stored, as shown by the gap
between the two lines of our proposed algorithm. For smaller waiting times, more mes-
sages arrive out of order and the orchestrators must store causal information to deliver
them in the correct order to prevent the inconsistency pattern identified of Definitions
6,7 (see Sections 4.4.2 and 4.4.3). The ETSI standard is unaffected by the delay as it
not keeps any information to coordinate the orchestrators outside the grants. Delay also
affects, to a lesser extent, the other metrics when there is over one service reconfigura-
tion. This can be seen when comparing Figures 4.10 and 4.15; in the first one, there
are more inconsistencies when the delay is higher, unlike the latter. This would suggest
that concurrent updates have a greater impact. However, we discuss this in the com-
ing chapters, as preventing inconsistencies when concurrent updates take place means
there must be a way to establish precedence, not currently captured by both considered
algorithms.

The inconsistencies increase the number of redundant messages, as shown in Fig-
ure 4.13. The standard sends about 7 times more messages than our proposed algorithm
when multiple services as considered. For a single service reconfiguration, this factor is
only 2, as shown in Figure 4.17. Moreover, it can be seen that, for services with few
dependencies, our proposed algorithm sends almost the same amount of messages. For
services with over 9 dependencies, the standard sends more redundant messages because
of inconsistencies. The amount of messages sent by both algorithms reflects on the time
spent on the reconfiguration.

Based on the complexity analysis of our algorithm, we expect the time for reconfigu-
ration of our algorithm to be greater compared to the standard. However, Figures 4.14
and 4.18 show that standard behaves worst as it takes about double the time compared
to our proposed algorithm. This could be explained by the number of messages that
need to be processed by the standard compared to our proposed algorithm. As previ-
ously mentioned, one effect of inconsistencies is that orchestrators send more messages to
reconfigure a network service. This can be seen by analyzing Figures 4.15, 4.17 and 4.18.
With one dependency, the standard has no inconsistencies; consequently, the messages
sent are the same as our proposed algorithm. The time is also the same. As the number
of inconsistencies becomes greater, the disparity between our algorithm and the stan-
dard is also greater. Our algorithm, by preventing inconsistencies, reduces the time it
takes for a reconfiguration. For ideal conditions (i.e. deterministic network conditions,
one reconfiguration at a time), the ETSI standard would reconfigure faster than our
proposed algorithm.

Our proposed algorithm prevents the inconsistency pattern for dependent recon-
figuration by ordering and executing grants in the correct order; unlike the standard.
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Nevertheless, our algorithm has limitations. First, we assume a known set of orchestra-
tors. This means that our algorithm only works in cooperative environments where the
providers will share some information to coordinate with other orchestrators. Second,
currently our algorithm stores causality information for both dedicated and compos-
ite/shared services. To reduce some of the redundant information, we consider future
work optimizations, such as detecting immediate causal relations to store less infor-
mation and reduce the number of messages sent. Third, our algorithm supports only
sequential reconfiguration, as the HBR relation does not capture concurrent events. In
NFV, is possible to have concurrent reconfigurations for shared services. We will discuss
in coming chapters the management of such type of reconfiguration. Our proposed model
and algorithm can apply to other lifecycle management operations of shared VNF-based
network services such as healing, terminating, and monitoring. Moreover, since we fol-
lowed many of the ETSI standard guidelines to implement the orchestration algorithm,
our work can be integrated to open source solutions that are ETSI compliant.

4.6 Lessons learned and perspectives

This chapter focused on the VNF-based network service reconfiguration. It describes
how, by coordinating the orchestrators, it is possible to share complete end-to-end ser-
vices. Sharing such services creates dependencies among them. To ensure consistent
behavior of services while reconfiguring network services, the orchestrators not only
need to coordinate, but also identify such dependencies.

We prevent inconsistencies while reconfiguring shared VNF-based network services
by removing one condition that triggers such inconsistencies. We identify an inconsis-
tent pattern by analyzing the grant order. As a result, we found two conditions that
trigger inconsistencies. Both need to happen simultaneously; thus, our goal is to prevent
one from happening. One condition is prevented by coordinating the orchestrators by
establishing a causal order. Such an order ensures a grant execution order. The other
condition, in theory, can be prevented without coordinating the orchestrators by pro-
hibiting certain sharing schemes. This is an interesting finding, as coordination hinders
performance. Indeed, to achieve coordination, the orchestrators must wait until they
receive the correct grant. However, in reality, prohibiting service providers to share re-
sources would hinder the applicability of federations. The point of federations is that
service providers have the autonomy to cooperate with others. Thus, we ask if it is possi-
ble to achieve a coordination-free orchestration approach for one task of the VNF-based
service reconfiguration.

In the next chapter, we will delve into a problem related to scaling VNF-based
network services, namely the reconfiguration of a VNF-Forwarding Graph. We will
discuss how can orchestrators coordinate to reconfigure consistently the VNF-Forwarding
Graph, but highlight some drawbacks of coordinating the orchestrators.
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Algorithm 3: Grant lifecycle management algorithm. The orchestrator checks
the validity of the grant. If valid, it executes the grant; otherwise, it will store
the grant in a buffer.
Input: Composite network service service
Input: Sender’s vector clock senderV C
Input: Orchestrator myOrchestrator

1 myClock ← myOrchestrator[vectorClock]
2 myPendingOperations ← myOrchestrator[pendingOperations]
3 myID ← myOrchestrator[ID] /* Obtain all the required information

for local service to compare it with the value received */
4
5 if compare(myClock, senderV C) ≤ 1 then
6 otherOrchestrator ← service[orchID] /* If the difference of the

vectors clocks is equal to one, the grant could be applied */
7
8 myClock[otherOrchestrator ] += 1
9 if validateScaling(service) then

10 serviceID ← service[ID] /* If the grant is valid, then scaling
takes place. If the service has a external dependencies
too, it will start another dependent reconfiguration */

11
12 myPendingOperations.append(serviceID) /* Add the operation to

the waiting list as this local service can also have
external dependencies */

13
14 myOrchestrator[vectorClock][myID] += 1
15 if allDependenciesInternal(service[dependencies]) then
16 scaleAllInternalDependencies(service) /* Scaling VNFs and

network services. See Function 2 from Section 4.4.4.6 */
17

18 end
19 scaleExternalDependencies(service) /* If the previous VNF is

affected, then recursively call migration. See Function 1
from Section 4.4.4.5 */

20

21 end
22 send(otherOrchestrator, NotifyFail(myClock, myID, serviceID)) /* If the

new operation is invalid, the orchestrator sends a negative
reply and the operation will not take effect */

23
24 doPendingOperations() /* See Function 4 from Section 4.4.4.8 */
25

26 end
27 myPendingOperations.append(service, senderV C)
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Function 1: Scale external dependencies function - scaleExternalDependencies
- The orchestrator needs to verify the validity of the reconfiguration operation.
If its valid, it checks if all dependencies are local or they are external. In case
of external dependencies it will send a grant message and wait until all external
dependencies accept the change.
Input: Composite network service service
Input: Orchestrator myOrchestrator

1 myID ← myOrchestrator[ID] /* Get the required information to sent
to all external orchestrators */

2
3 serviceID ← service[ID]
4 myClock ← myOrchestrator[vectorClock]
5 inDependencies ← myOrchestrator[internalDependenciesToScale] /* Obtain

the list of internal dependencies, if all external orchestrators
accept, these dependencies will be scaled */

6
7 originalServiceID ← service[originalService]
8 myOrchestrator[pendingOperations][serviceID][originalServiceID] ← list()

/* Create an empty list to store the replies for the grant
request */

9
10 foreach dependency in service[dependencies] do
11 dependencyID ← dependency[ID]
12 if dependency[type] == VNF then
13 inDependencies.append(dependency) /* Add the VNF to the list of

internal dependencies. These VNFs belong in the same
administrative domain; but different location. */

14

15 end
16 else
17 otherOrchestrator ← dependency[orchestratorID]
18 originalDependencyServiceID ← dependency[originalServiceID] ]
19 send(otherOrchestrator, GrantLCM(dependencyID, myClock,

originalDependencyServiceID)) /* Send a grant message to an
external orchestrator so it can evaluate the validity and
either accept or reject the grant */

20

21 end
22 end
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Function 2: Scale internal dependencies function - scaleInternalDependencies
- The orchestrator sends an instruction to the manager of the Virtual Network
Function requesting a scaling.
Input: Composite network service service
Input: Orchestrator myOrchestrator

1 myID ← myOrchestrator[ID] /* Get the required information to send
an instruction to the VNF Manager */

2
3 serviceID ← service[ID]
4 originalService ← service[originalService] /* Since the scale can come

from another request, we need to know which orchestrator was the
first who requested the scale */

5
6 foreach dependency in service[dependencies] do
7 send(dependency, Scale(myID, serviceID, originalService )) /* Send a

scale instruction to the VNF manager of an internal dependency
*/

8

9 end
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Function 3: Scale confirmation function - scaleConfirmation - The orchestrator
checks if all pending operations for a given service have been accepted by all
orchestrators. If it is the case, it will apply the reconfiguration.
Input: VNF Component ID vnfcID
Input: Composite Network Service service
Input: Original Orchestrator originalOrchestrator
Input: My Orchestrator myOrchestrator

1 currentOperation ← orchestrator[pendingOperations][service[id] /* Gather
all the required information for to check if the service will be
scaled */

2
3 pendingOperations ← currentOperation[pendingOperations]
4 myPendingOperations ← myOrchestrator[pendingOperations]
5 if pendingOperations.isNotEmpty() then
6 pendingOperations.remove(vnfcID) /* Remove the pending operation,

the orchestrator will check if a logical clock was correctly
received before applying such instructio */

7
8 if mypendingOperations.isNotEmpty() then
9 myPendingOperations.remove(currentOperation)

10 if myOrchestrator.isExternalDependency(currentOperation) then
11 send(originalOrchestrator, ScaleConfirmation(currentOperation)

/* Check if the original request is valid, call
recursively the scale confirmation */

12
13 return
14 end
15 if myPendingOperations.isEmpty() then
16 scaleAllInternalDependencies(currentOperation) /* If all

pending operations are accepted, then the internal
dependencies can be scaled. */

17

18 end
19 end
20 end
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Function 4: Do pending operations function - doPendingOperations - The
orchestrators verifies all the pending operations to check for a valid reconfigu-
ration. In case one is valid, it will continue to cycle until one is not valid or
there are no more pending operations.
Input: Orchestrator myOrchestrator

1 clockUpdated ← True /* Gather all variables for the algorithm */
2
3 myClock ← myOrchestrator[vectorClock]
4 myID ← myOrchestrator[ID]
5 myPendingOperations ← myOrchestrator[pendingOperations]
6 myIndex ← myOrchestrator[orchestratorID]
7 otherOrchestrator ← service[orchestratorID]
8 while clockUpdated do
9 atLeastOneClockChanged ← False /* As long as one clock has been

updated keep iterating. Since grants arrive at any time, it is
necessary to check many */

10
11 for operation in orch[pendingOperations] do
12 opClock ← operation[vectorClock]
13 opIndex ← operation[orchestratorID]
14 if compare(myClock, opClock) ≤ 1 then
15 myClock[opIndex] += 1 /* If the received clock is bigger by

only a single value, then procced to validate scale
instruction */

16
17 service ← operation[service]
18 serviceID ← service[ID]
19 if validateScaling(service) then
20 myPendingOperations.append(service[ID]) /* If the

orchestrator validates the scaling, then, it will
check if all dependencies are external or internal */

21
22 myClock[myIndex] += 1
23 if areAllDependenciesInternal
24 (service[dependencies]) then
25 scaleInternalDependencies(service)
26 end
27 scaleExternalDependencies(service)
28 end
29 send(otherOrchestrator, NotifyFail(myClock, myID, serviceID)) /* If

the orchestrator did not validates the scaling, it will
send a fail notification the the other orchestrators */

30
31 myPendingOperations.remove(operation) /* Remove the pending

operation since it was a failure */
32
33 atLeastOneClockChanged ← True
34 end
35 end
36 clockUpdated ← atLeastOneClockChanged
37 end
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Variable Range
Number of services 3000
Number of reconfigurations 10, 20, · · · , 100
Repetitions per experiments 30
Number of dependencies 1 - 6
VNFs per orchestrator 600
Random delay range [1 - 100]ms

Table 4.2: Experiment’s parameters and their range.

Variable Range
Number of network services 215
VNF Components per service 1 - 13
VNFs per orchestrators 30
Random Delay [1, 100]ms

Table 4.3: Parameters for the second experiment.





Chapter 5

The limits of coordinating
orchestrators. Rethinking how to

consistently reconfigure
VNF-Forwarding Graphs. The
quest for a coordination-free

approach.

In the previous chapter, we detail how, by coordinating orchestrators, the service
providers prevent the inconsistent reconfiguration of shared VNF-based services. This
coordination prevented one condition required for inconsistency patterns. We identified
that the other condition could, in theory, be achieved without coordination. Yet, when
orchestrators execute concurrent reconfigurations for the same service in the federation,
there is a need to solve the conflict of two operations happening at the same time; if
not, two or more orchestrators will diverge leaving the services in a failed state. Thus,
as far as we know, reconfiguring shared network services requires coordination.

In this chapter, we analyze the problem of VNF-Forwarding Graph (VNF-FG) recon-
figuration. This problem is related to service reconfiguration, such as scaling, migrating,
or healing Virtual Network Functions (VNFs). However, there are differences between
the two problems as the the VNF-FG reconfiguration involves only updating values;
unlike the reconfiguration of services, which requires other tasks, such as migration. In
other words, the VNF-FG reconfiguration is a task of the service reconfiguration. We
explore this problem to identify the conditions required to solve it. Also, we highlight
why coordinating orchestrators might not fully solve the reconfiguration problem. To
do so, we go more in depth with the coordination approach and highlight the limita-
tions of the VNF-FG reconfiguration problem in the next sections. Unlike our previous
chapters, in this chapter we also consider concurrent reconfigurations. Figure 5.1 shows
the current step towards a coordination-free orchestration algorithm. In this chapter,
we explore a more relaxed problem related to the end-to-end VNF-based network ser-
vice reconfiguration. Namely, we highlight the troubles that coordinating orchestrators
entails in terms of performance and consistency guarantees.
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Thesis Road Map

Coordinating orchestrators to consistenly

migrate shared Virtual Network Functions [Chapter 3]

Extending the coordination orchestration approach to 

recon�gure dependent end-to-end network services [Chapter 4]

Showing the limits of coordinating orchestrators when 

recon�guring end-to-end VNF Forwarding Graphs [Chapter 5]

Achieving consistent and orchestration-free recon�guration 

of end-to-end VNF Forwarding Graphs [Chapter 6]

Figure 5.1: Thesis roadmap. In this chapter, we study the problem of consistently
reconfiguring the VNF-Forwarding Graphs of end-to-end network services. We consider
the case of coordinating orchestrators and show the limitations of such approach.

5.1 Introduction

The VNF-FG defines a logical order of execution for each dependency of a ser-
vice [ETSI 2014]. Reconfiguration of the VNF-FG is a key task of the lifecycle man-
agement of services as it allows for services to answer to unforeseen and dynamic con-
ditions [Zheng 2019]. It comprises changing either connection points, references to
VNFs or services; as well as classification and selection rules [ETSI, NFVISG 2014,
ETSI, NFVISG 2020]. It is also possible to extend the number of VNFs or services
to bring new functionalities to users [Houidi 2020]. Under multi-domain orchestration,
the orchestrators send messages to signal changes in service access points. When an-
other orchestrator receives this message, it changes its local copy. In an ideal scenario,
this suffices to reconfigure the VNF-FG. Yet, because of the inherent properties of the
network (e.g. network delay, redundant messages) and the absence of global references,
after reconfiguring VNF-FGs can let them in an inconsistent state; which, in turn, leaves
the service with partial or total failures. In the first case, some functionality is lost or
does not meet the non-functional requirements established in the service descriptor. To-
tal failure occurs when the whole service stops working and all functionality is lost. Such
failures during reconfiguration are translated to a loss in revenue for service providers
and could defeat the purpose of reconfiguration [Eramo 2019b]. To prevent this, the
orchestrators need to ensure a consistent reconfiguration of the VNF-FGs.

A few works in the literature consider the VNF-FG reconfiguration. Most works only
consider onetime provisioning without changes by focusing on either placing or embed-
ding the VNF-FG [Schardong 2021, Anh Quang 2020, Quang 2019a]. To the best of our
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knowledge, only a few consider reconfiguration: in [Quang 2019b] the authors propose a
model that migrates VNF to get optimal performance. They consider the case of cooper-
ative multi-domain orchestration. They are interested in placing the VNF-FGs that can
change. Their aim is to cut costs and maximize performance. Another works propose
extending an already deployed VNF-FG to respond to new demands while minimiz-
ing the effects of extending the original graph [Houidi 2020, Khebbache 2018]. Despite
having reconfiguration as their focus these works do not consider the inconsistencies
that can appear while reconfiguring the VNF-FG under multi-domain environments.
The asynchronous channel in the network creates inconsistencies while orchestrators re-
configure the VNF-FG. Currently, NFV multi-domain orchestration algorithms do not
assume timing constraints exist between two consecutive notifications. This assumption
could create inconsistencies, as no global reference exists among the orchestrator repli-
cas [ETSI, NFVISG 2018]. For example, messages can arrive in a different order than
they were sent. This leads to inconsistencies in the dependency relations that enforce
order among VNFs of the VNF-FG, and in turn, to partial or total failures. The existing
solutions proposed only consider eventual consistency, they do not consider the tem-
poral dependencies described in the VNF-FG. Thus, stronger guarantees than eventual
consistency are necessary for the VNF-FG reconfiguration.

We focus on the consistent reconfiguration for VNF-FG in multi-domain federations.
Our major contribution is identifying and reducing inconsistencies created while the or-
chestrators reconfigure the shared VNF-FGs by coordinating among themselves through
messages without global references. We advance the state of the art for managing the
VNF-FG by not only considering local domain information but also addressing the tem-
poral dependencies among shared services under multi-domain federations, as described
in the VNF-FG. We propose a causal order among reconfigurations to reduce inconsisten-
cies for both sequential and concurrent ones. After evaluating our proposed algorithm,
we discuss the trade-offs between consistency guarantees, performance, and limits of the
proposed consistency model in NFV.

The rest of the chapter is as follows: Section 5.2 presents a use case to describe the
inconsistent VNF-FG reconfiguration problem under multi-domain orchestration. Sec-
tion 5.3 details the works in the literature for VNF-FG reconfiguration to position this
work regarding the literature. The orchestration algorithm is detailed in Section 5.4. The
proposed algorithm is evaluated and compared against the current European Telecom-
munications Standards Institute (ETSI) compliant standard reconfiguration algorithm in
Section 5.5. Finally, Section 5.6 outlines the lessons learned and the perspectives towards
coordination-free approaches. We present the notation for this chapter in Table 5.1 (see
Section 2.4 for a more detailed description of each variable).
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Table 5.1: Notation for this chapter. Some of the variables were defined in the system
model (see Section 2.4 for a more detailed description of each variable). Others are
defined in this chapter.
Variable Meaning
O = {o1,o2,o3} The set of orchestrators
G= {g1,g2} The set of VNF-FGs each numbered.
∆ A VNF-FG Reconfiguration operation
φ The function that computes the state of an system model’s entity.
cg A classifying rule for a VNF-FG g
ma A matching attributes, usually a VNF-FG has a list of them.
xg A service path for a VNF-FG G
p A connection point, sually a VNF-FG has a list of them
→ The happened-before relation
vi The logical clock for the i-th orchestrator
q The buffer of pending operations.

5.2 The incosistent VNF-Forwarding Graph reconfigura-
tion problem in multi-domain federations

Content delivery networks provide value-added services to consumers by replicating con-
tent to reduce latency [Pathan 2008]. The orchestrators execute VNFs to place them
in the delivery network. We consider a use case like the one provided in [Dieye 2018],
where three orchestrators (in France, the USA, and Brazil) provide a video delivery ser-
vice to end-users with heterogeneous devices (e.g. codecs, resolution, processing power).
Whenever an end-user requests a video, the delivery network adds an overlay video that
enriches the users’ experience. To implement such experiences, a closed federation of
trustful providers deploys multiple video processing VNFs, such as encoder, translator,
mixers, and decoders. Trustful means providers are willing to share accurate informa-
tion and not lie about their resources. Mechanisms can be imposed in the federation
to prevent fraudulent behavior from providers [Dieye 2020]; however, we leave this for
future work.

The close federation enables deploying shared network services. Network service
providers ensure the correct order of execution of each VNF of such services by instan-
tiating VNF-FGs [Herrera 2016]. Such VNF-FGs contain both internal and external
dependencies of services that correspond to VNFs or other services managed by many
orchestrators. Figure 5.2 illustrates both types of dependencies for a service composed
of four VNFs: encoder (ENC), decoder (DEC), translator (TRA), and streamer (ST).
For the service in domain A (managed by the first orchestrator) the encoder and trans-
lator are local dependencies; while the decoder and streamer VNFs are external. The
VNF-FG is composed of ordered VNFs, as shown in Figure 5.2.

Deploying the VNF-FG for the previous service requires negotiating: resource al-
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Figure 5.2: Three orchestrators manage a VNF-Forwarding Graph with numbered Vir-
tual Network Functions. The black decoder (DEC ) Virtual Network Functions is shared
among all orchestrators.

location, flow steering policies, and updates for the VNF-FG [Rosa 2015]. Once the
deployment of the VNF-FGs and services has finished, the orchestrators monitor the
services to detect changes in the environment (e.g. a failure of a VNF, overloading of a
service). To mitigate the negative effects of such changes, the orchestrators reconfigure
VNF-FGs; yet, since the VNF-FGs can be shared among orchestrators, changes applied
to one copy should be reflected on other replicas; otherwise, services become faulty. In
turn, increasing costs for providers or reducing their revenue. Such changes entail updat-
ing matching attributes and connection points [Han 2018]. For example, in Figure 5.2
if the orchestrator in the USA updates the connection point of the DEC, all the others
should also apply the same change to their respective DECs.

The orchestrators coordinate by message passing using different platforms, e.g.
Kafka, among themselves to achieve VNF-FG reconfiguration using the or-or standard
interface, as shown in Figure 5.2. To prevent faulty services, the orchestrators apply
the reconfiguration locally. They also notify other orchestrators, that have the same
VNF-FG, so they can apply the same reconfiguration and updates. In an ideal scenario,
the orchestrators receive messages in the same order they were sent; however, this is
not the case in reality. Messages can get lost, drop, and sent many times, among other
faulty network behaviors. Thus, the copies of the VNF-FG may have different values at
the end of a reconfiguration. We illustrate the previous behavior in Figure 5.3. Three
orchestrators in France, the United States, and Brazil managed copies of a decoder VNF-
FG. In step I, all copies start with the same value. In step II, the second orchestrator
updates a connection point of the Decoder and notifies the other orchestrators. The
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Figure 5.3: VNF-Forwarding Graph reconfiguration. All copies of the shared VNF-
Forwarding Graph have different values. This is an example of an inconsistent reconfig-
uration.

third orchestrator receives this notification and reconfigures its local copy (step III). In
step IV, the third orchestrator updates its local copy and sends a notification to other
orchestrators. In step V, the first orchestrator receives the second notification coming
from the third orchestrator and changes its VNF-FG. Finally, in step VI, the first orches-
trator receives the first notification and erroneously updates the VNF-FG once more.
Since it is impossible for the first orchestrator to discern that the last update is related
to the first he received, at the end of the reconfiguration, the values of the copies for the
VNF-FG are different; this is represented by the az and xz values for the z-th decoder
replica (i.e. a1 6≡ (x2 ≡ x3)). This is an inconsistent reconfiguration; otherwise, all values
would be equal. Moreover, the effects of inconsistencies are compounded because if any
subsequent reconfiguration of the VNF-FG happens, the whole service will be affected as
replicas diverge. To achieve consistency again, a conflict resolution mechanism must be
applied to ensure eventual consistency. A manual fix defeats the purpose of automation
of NFV; while solving consensus to achieve consistency defeats the performance goal
of NFV because of high latency per transaction [Marandi 2014]. Thus, an intermedi-
ary consistent model that satisfies the dependencies can be explored for the consistent
reconfiguration of the VNF-FG.

5.2.1 Formal problem definition for VNF-Forwarding Graph reconfig-
uration

A network service under NFV has associated a VNF-FG that defines the logical order
of the traffic flow between the VNFs that belong to a service [ETSI 2014]. To achieve
this logical order, the VNF-FG has associated a rendered service path and classifying
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rules [Schardong 2021]. In an ideal scenario, the service is static; however, because
of inherent and dynamic conditions of the environment, such as the number of users,
random failures, and extra features, the providers reconfigure services along with their
VNF-FGs.

The reconfiguration of a VNF-FG involves changing the list of connection points
and matching attributes [ETSI, NFVISG 2014]. This change can be done by up-
dating the values either via changing a connection point or matching attributes and
adding/removing more elements to the lists. We present this formally. Let g be a VNF-
FG that belongs to the set G. Each g has a pair of classifier rules cg and rendered service
path xg. The classifier rule cg has a list of matching attributes [ma1,ma2, . . . ,mau]. And
the rendered service path xg a list of connection points [p1,p2, . . . ,pv].

Each matching attribute ma ∈ cg has the protocol, IP, and ports to be visited by
incoming traffic. The connection points p ∈ xg have both input and egress points. A
reconfiguration of the VNF-FG changes multiple values by either a matching attribute or
connection points. It is also possible to delete or add classifier rules and rendered service
paths; but, we let this feature for future work. We formally define the reconfiguration
operation ∆ between a pair of VNF-FGs g,g′ in Equation 5.1.

∆ : g→ g′ = ∃p ∈ xg,p′ ∈ xg′ ,p.id= p′.id | φ(p) 6= φ(p′)
∃ma ∈ cg,ma′ ∈ cg′ ,ma.id=ma′.id

| φ(ma) 6= φ(ma′)
(5.1)

where φ is the state function (see Definition 3, Section 2.4). We name the problem
of reconfiguration for a VNF-FG as VNF-FGR. If a network service belongs to a single
domain, the reconfiguration is trivial as the orchestrator of such domain manages all the
resources and resolves conflicts easily. However, when services are shared, the chief inter-
est is that all affected orchestrator replicas have the same view after a reconfiguration.
This is the goal of the consistent VNF-FG reconfiguration problem. Next, we describe
the state of the art of VNF-FG reconfiguration, and illustrate the limitations and how
our proposed algorithm extends the state of the art.

5.3 The state of VNF-Forwarding Graph reconfiguration
in the literature

Multiple works in the literature studied the management for lifecycle tasks of the VNF-
FG (e.g. embedding, reconfiguring, and composing), the major focus being the em-
bedding [Zheng 2019]. However, these tasks address different requirements and needs.
The embedding problem asks how does the orchestrator select the virtual network in-
stances and their connection links [Zheng 2019]. The reconfiguration problem asks how
to best update the VNF-FG (e.g. extending it, changing the order of the VNFs) while
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Figure 5.4: Taxonomy with representative works for the VNF-Forwarding Graph. Each
branch solves a different problem for the VNF-Forwarding Graph. The closest work to
ours is positioned in the colored/italicized path below.

ensuring properties of the service such as availability [Quang 2019b]. We focus on the
reconfiguration problem.

We classify reconfiguration works as either single or multi-domain, each one having
sub-categories if they are static or dynamic. We describe each category using represen-
tative works of each one. Figure 5.4 shows a small taxonomy of representative works for
the VNF-FG. Our work is positioned in the colored lower branch along with the ETSI
standard.

5.3.1 Single domain static deployment

The first category of works in the single domain considers a unique orchestrator where
the VNF-FG stay static. The primary goal of these works is to optimize metrics (e.g.
latency [Kim 2018], revenue [Zeng 2016], and energy [Soualah 2018]) while deploying the
VNF-FG. Since optimizing the placement is NP-Hard, the authors propose heuristics to
solve the problem in larger instances. However, these works rely on a single global orches-
trator having full knowledge about the underlying domain, such as topology or network
policies. They also assume a fixed and static federation. Both strong assumptions for
multi-domain federations limit the applicability for works in this category.

5.3.2 Single domain dynamic deployment

The second category of works tries to remedy the limits of the first category by allowing
online changes in the VNF-FG embedding algorithms. These works consider a new VNF
placement [Houidi 2020], extending the VNF-FG [Khebbache 2018], and bi-directional
chaining [Spinnewyn 2020]. In case of a change in service usage, the central orchestrator
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computes the new place to instantiate a VNF or it can update the VNF-FG by changing
the VNFs’ execution order. Consistency in the VNF-FG management here is not an
issue as the global orchestrator has all the required knowledge. Thus, the orchestrators
synchronize the updates according to the global orchestrator. Despite this ease of con-
sistency, these works do not scale well for multi-domain federations, as the fundamental
assumption of complete knowledge is costly to implement. Moreover, providers prefer
to keep their key information private [Saraiva de Sousa 2019].

5.3.3 Multi-domain static deployment

The third category uses a decentralized approach, where multiple orchestrators jointly
manage network services. For the third category, a deep reinforcement learning technique
was proposed to learn the dynamic behavior of the federation [Anh Quang 2020]. This
avoids recalculating from scratch the new placement of VNFs. Another work includes the
migration of existing VNFs using an adaptive centralized and decentralized orchestration
algorithm to reallocate VNF-FGs [Quang 2019b]. The last work considered in the third
category considers a close and competitive environment where orchestrators hide their
infrastructure from others [Quang 2019a]. The earlier works focus on the embedding
problem, not on the VNF-FG reconfiguration problem.

5.3.4 Synthesis

The closest works to the reconfiguration problem we address in this chapter are the dy-
namic VNF-FG extension works [Houidi 2020, Khebbache 2018] and the ETSI proposed
algorithm to reconfigure network services [ETSI, NFVISG 2018]. In the first works, the
orchestrator extends a VNF-FG by adding VNFs and links to respond to new demands.
The authors propose a Steiner Tree-based algorithm [Khebbache 2018] and an eigende-
composition algorithm [Houidi 2020] to solve the optimal extended embedding problem.
While these works reconfigure the VNF-FG, they does not consider the problem of incon-
sistency when multiple orchestrators concurrently try to update the VNF-FG. Moreover,
both works consider a single global orchestrator. The ETSI NFV standard proposes a
reconfiguration algorithm where the orchestrators coordinate through grants, checking
the network service consistency [ETSI, NFVISG 2018]. The standard belongs to the
third category, which is decentralized.

Unlike the previous works that either consider the initial and static deployment of the
VNF-FG or focus on security/optimization under single-domain orchestration, our work
focuses on the consistent reconfiguration of VNF-FGs under multi-domain environments
(e.g. federations). We consider the temporal dependencies among reconfigurations,
unlike the current ETSI-reconfiguration algorithm, which has no timing constraints.
We also consider non-deterministic network conditions and only use local knowledge
without a global orchestrator or synchronized operations among all orchestrators in the
federation.
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5.4 Causal consistent VNF-Forwarding Graph reconfigu-
ration

To prevent inconsistencies that reduce the providers’ revenue and increase their opera-
tional costs, the orchestrators in the federation must coordinate. Thus, when a reconfig-
uration for a shared VNF-FG is applied, the updates made by the reconfiguration must
apply to all copies in different orchestrators so that eventually the state of the VNF-FG
is the same for all copies. For example, when the orchestrator changes a copy of a shared
VNF-FG by updating the order of a connection point in the rendering service path, it
will apply to all other copies of the VNF-FG managed by different orchestrators. We
formalize this on Equation 5.2.

∆(g) : ∀g′ ∈G|g.id= g′.id−→ φ(g) = ♦φ(g′). (5.2)

where ∆ is a reconfiguration operation (Equation 5.1, see Section 5.2.1), φ is the
state function (Definition 3, see Section 2.5), and ♦ is a finite but random amount of
time. We call the consistent VNF-FG reconfiguration problem as CVNF-FGR.

An inconsistency occurs if, after a reconfiguration ∆ on a shared VNF-FG g, the state
of a copy of g′ do not match. For example, if a connection point belonging to a VNF
(i.e. decoder) of the shared VNF-FG g is updated as a response to a provider’s domain’s
failure, this update must be seen by all orchestrators that have a copy of the VNF-FG.
The inconsistency appears when two orchestrators have the same copy of the VNF-FG,
but the order of the connection point differs. In one instance, the network service will
execute either before or after, resulting in the possibility of running the decoder before
the encoder which violates the expected behavior of the network service. To prevent
this, dependencies between reconfigurations can be enforced through causal relations.

We consider two VNF-FG reconfiguration operations ∆ and ∆′ to be causally related
if:

1. If ∆ and ∆′ are VNF-FG reconfigurations belonging to the orchestrator and ∆
originated before ∆′, then ∆→∆′.

2. If ∆ is the reconfiguration of a VNF-FG asked by the notification message by one
orchestrator and ∆′ is the reconfiguration of a VNF-FG from the receipt of the
same notification message by another orchestrator, then ∆→∆′.

3. For any reconfiguration operation ∆′′, if ∆→∆′ and ∆′→∆′′, then ∆→∆′′.

To ensure the causal consistent reconfiguration for VNF-FGs any two reconfigurations
must wait until the causally precedent operations have finished their updates (such as
modifying a connection point or matching attribute). We next, describe our proposed
algorithm to ensure the expected behavior for shared VNF-FGs.
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5.4.1 Causal consistent reconfiguration algorithm for VNF-Forwarding
Graphs

The VNF-FG is enriched with a causal relation in the following way: If two VNF-
FGs have the same identifier and are managed by different domains, then causal order
is enforced by the Happened-before relation →. To achieve this, each orchestrator in
the federation maintains a vector clock of each entry of the VNF-FGs they manage.
Whenever an orchestrator reconfigures a VNF-FG, because of a response to changes,
such as migrating a VNF, they notify all orchestrators that manage the affected VNF-
FGs by increasing their local vector clock and sending a message to apply the same
operation on the remote VNF-FGs. The orchestrator triggers a reconfiguration based
on the received notification. If the received vector clock is lower than the current one
in the orchestrator, the update of either a connection point or matching attribute takes
place; otherwise, it will wait until the valid notification arrives. Next, we describe our
proposed algorithm and then illustrate via an example.

reconfigureVNF-FG(m) reconfigures a VNF-FG based on an instruction message
m. The reconfiguration ∆ of a VNF-FG g is triggered by either an updateVNFFGClassi-
fier or updateVNFFGRenderedServicePath message. After an update takes place, repli-
cas of the VNF-FG are also reconfigured using the same type of messages sent to other
orchestrators. The last message is a notifyVNFFGUpdate sent to all orchestrators that do
not have a replica of the VNF-FG and triggers only a clock update. We assume all copies
of the VNF-FG g have the same state such that ∀g′ ∈ G | g.id = g′.id −→ φ(g) = φ(g′),
where g.id,g′.id is the identifier of the original VNF-FG g and all its external copies g′.

The major steps of the algorithm are as follows.

1. Check the type of notification message. If the instruction is hidden:

(a) Reconfigure the VNF-FG.

(b) Increase the clock.

(c) Send a notification to all other orchestrators.

2. Check the type of notification message. If the instruction is visible:

(a) Increase internal logical clock based on the received one.

(b) Compare the internal logical clock with the received one. If the difference
is equal to one, apply the reconfiguration; otherwise, save in a buffer as a
pending operation.

(c) If the reconfiguration took place, check and apply all stored reconfigurations.

We now examine these steps in detail.
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1. Check the type of notification message.
The orchestrator checks what the type of message m has arrived.
If the message m contains an hidden instruction (triggered from another orches-
trator)

(a) Reconfigure the VNF-FG.
The orchestrator o applies the change to the VNF-FG g. The change ∆ can be
either a connection point for a updateVNFFGRenderedServicePath message;
otherwise, a matching attribute for a updateVNFFGClassifier. This modifies
the state of the VNF-FG g to a new state to reflect the changes done e.g.
φ(g)−→ φ′(g).

(b) Increase the clock.
The logical clock of either the matching attribute or connection point increases
by one based on the index of the orchestrator e.g. vi← vi+ 1 where i is the
index of the orchestrator o and v is the logical clock.

(c) Send notification to all other orchestrators.
This step is divided into two parts. In the first part, the orchestrator cre-
ates either a updateVNFFGRenderedServicePath or a updateVNFFGClassi-
fier message. It appends his logical clock vi along with the new state of
the VNF-FG φ′(g) and sends it to other orchestrators, o′ ∈ O, that manage
replicas of the VNF-FG g. In the second part, the orchestrator creates a no-
tifyVNFFGUpdate by appending his logical clock vi and sends it to the other
orchestrators that were not present in the first part.

2. Check the type of notification message. If the instruction is external:

(a) Compare the internal logical clock with the received one. If the difference is
equal to one (i.e. they only differ by one value), apply the reconfiguration; if
it is greater than one, save in a buffer as a pending operation. However, if
either (i) a difference of zero, or (ii) the local clock is strictly greater than the
received one, discard the message as it is repeated.
The two vector clocks v,v′ are compared by checking all indexes:

• If ∀k,v′k > vk discard the redundant message.
• If ∑n

k=0 |v′k−vk| ≥ 2 save the reconfiguration instruction in a buffer until
message with the correct logical clock arrives, e.g. the difference between
the clocks is equal to one.

• If the previous cases are false, then reconfigure the VNF-FG g′ as de-
scribed before in step 1.a

(b) If the reconfiguration took place, check and apply all stored reconfigurations.
Compute the length of the buffer q, |q|, and then check all pending operations
stored in the buffer to see if now one or more are valid. Iterate over the
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length |q| and take one reconfiguration instruction and apply step 2.b. If the
instruction is valid (e.g. the difference between vector clocks equals one) the
reconfiguration takes place; otherwise, store it again in the buffer.

We illustrate the execution of our proposed algorithm in Figure 5.5 by comparing it to
the problem of inconsistent reconfiguration we described in the use case from Section 5.2,
as shown in Figure 5.3. The orchestrator in the United States updates the shared VNF-
FG for the decoder by changing the connection point with the value a. Differently from
the example shown in step V from Figure 5.3, here, the update is stored while the
correct message arrives. In step VI, the first update arrives and the first orchestrator
reconfigures the VNF-FG. Then, in steps VII-IX, the stored update is finally applied.
At the end of the reconfiguration, all VNF-FG copies have the same values for xz for
the z-th decoder (i.e. x1 ≡ x2 ≡ x3). This is an example of a consistent reconfiguration.

5.5 Implementation and evaluation

In this section, we compare algorithms by measuring the inconsistencies after recon-
figuring a shared VNF-FG. Ideally, algorithms would prevent all inconsistencies while
reconfiguring the VNF-FGs; preventing partial or total failures of the shared network
services. In practice, this involves a cost. Identifying and preventing inconsistencies
comes with an overhead that we measure by the number of messages sent and the time
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Figure 5.5: Causal VNF-Forwarding Graph reconfiguration. In the end, all copies of the
shared VNF-Forwarding Graph have the same values. This is an example of a consistent
reconfiguration.
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Table 5.2: Evaluation parameters
Scenarios

Best-case Average-case Worst-case
Reconfigurations 64,128,256 64,128,...,640
Network delay - 0 - 60 seconds
Probability messages - 10 - 50 %
Evaluation Metrics Inconsistencies, Messages sent, Time to reconfigure
Repetitions 5

spent waiting for the arrival of the correct shared VNF-FG. We only consider stateless
VNFs and let the impact on stateful VNFs for future work. Moreover, since we followed
the ETSI reference architecture, our solution could be integrated with the ETSI MANO
framework within software implementations.

We consider two algorithms: The ETSI-compliant reconfiguration and our proposed
causal-based algorithm. The ETSI reconfiguration applies updates with no strict order or
timing constraints [ETSI 2019b]. The causal algorithm ensures an ordering of updates
according to the happened-before relation to reflect changes as they happened in the
system for dependent scalings.

To compare the algorithms, we deployed locally five domains. Each domain has its
policies, resources, and VNFs to support services. Many domains that entail shared
VNF-FGs can create shared services using random seeds. Reconfiguring a shared VNF-
FG involves two or more domains. When an orchestrator receives a request to reconfigure
a given shared VNF-FG, it will apply the change locally and notify other orchestrators
that share the same VNF-FG. According to the reconfiguration logic of each algorithm,
the orchestrator reconfigures the shared VNF-FG immediately or waits until the correct
message arrives (e.g. the difference between their logical clocks is one).

We summarize the evaluation parameters in Table 5.2. Scenarios deploy random
VNF-FG reconfigurations and we repeated them five times, taking the average for the
number of inconsistencies and messages sent for reconfiguration. The previous two met-
rics allow us to compare the performance of the two algorithms. To prevent a long
reconfiguration time, we set a threshold of five minutes; after this, the reconfiguration
is inconsistent.

We variate two parameters: network delay and probability of redundant messages.
The network delay measures the effects of messages arriving out of order. We set four
different limits of 0, 10, 30, and 60 seconds. Messages have a higher probability of being
sent out of order with greater limit values. For example, a message will probably be
sent as it was generated with a delay of 10 seconds instead of waiting a maximum of 60
seconds. We changed the number of repeated messages according to a threshold proba-
bility. We set the probability according to four values of 0, 10, 30, and 50%. A higher
probability means redundant messages are more likely to be sent by the orchestrators.
We chose these parameters and their values to reflect different scenarios and measure
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Table 5.3: Results for the ideal scenario. There are no inconsistencies and the standard
obtains a better performance.

Causal Standard
Messages Messages

Reconfigurations

64 249 137
128 505 269
192 712 396
256 1017 533

Inconsistencies 0

the performance of each algorithm. Under these conditions, the algorithms must detect
repeated messages and drop them. We implemented the algorithms in an x64 Ubuntu
18.04 LTS machine with an Intel i7 processor with 32 GB of memory. The source code
can be found in 1.

5.5.1 Evaluation of our proposed algorithm

We evaluate the algorithms based on three scenarios: Best, average, and worst cases.
Best-case scenario: Sequential reconfigurations. In this setup, orchestrators can
send multiple reconfigurations at the same time with zero network latency and no re-
peated messages. This case reflects the fundamental assumptions of the ETSI current
reconfiguration. Average-case scenario: Sequential and concurrent reconfigura-
tions. In this setup, orchestrators reconfigure multiple VNF-FGs at the same time with
variable network latency and a probability of repeated messages. The delay shows how
well the algorithms perform when messages arrive out of order. Repeated messages show
how well an algorithm identifies and prevents unnecessary reconfiguration, which already
took place. Worst-case scenario: Concurrent-only reconfigurations. Under this
setup, orchestrators reconfigure VNF-FG at any given time.

Table 5.3 shows the results for both the proposed algorithm and the standard. Fig-
ure 5.6 shows the results for the network delay variation. Figure 5.7 shows the number
of messages sent by each algorithm.

5.5.2 Discussions

As shown by Table 5.3, in the ideal case, both the current and our proposed algorithm
can reconfigure VNF-FGs without inconsistencies. However, our algorithm has almost
double the messages sent compare to the standard. More precisely, our algorithm has
quadratic time complexity O(n2) compared to the linear O(n) of the standard; for
space, both have linear complexity O(n). Thus, under this ideal scenario, the standard
algorithm is a better solution. In more real-life scenarios, this is not the case, and our

1https://doi.org/10.5281/zenodo.5336650
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Figure 5.6: Inconsistencies as a number of VNF-Forwarding Graph reconfigurations,
lower is better. The top row (A, B, C) shows the average scenario. The bottom row
(D, E, F) shows the worst scenario. The proposed causal algorithm gets fewer
inconsistencies in both scenarios despite unwanted network conditions.

proposed solution is preferred. To get a better understanding, we now discuss the effects
of redundant messages and network delay under concurrent reconfiguration.

The results for the average and worst-case scenarios for inconsistencies are shown
in Figure 5.6. Based on the causal-consistency model, we can track the causal history
of the VNF-FG reconfigurations by multiple orchestrators. This means that redundant
messages can be identified and removed, leading to a more robust behavior of our al-
gorithm compared to the current standard. This is shown for both the average and
worst-case scenarios for our proposed algorithm, where the lines are closer than that of
the standard algorithm. Identifying redundant messages on the standard could be done
to mitigate the effects of such network conditions; however, even with a low probability
for redundant messages, the causal algorithm gets better performance with fewer incon-
sistencies. Interestingly, both algorithms get fewer inconsistencies with greater delays in
both the average and worst cases. This could be explained because higher delays mean
it is less probable to have concurrent reconfigurations since the instructions wait before
being sent. This explanation is supported because, in the ideal case, where no concurrent
reconfiguration was allowed, not a single inconsistency appeared while reconfiguring the
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Figure 5.7: Messages sent per number of VNF-Forwarding Graph reconfigurations, lower
is better. This reflects the cost to prevent inconsistencies. The top row (A, B, C) shows
the average scenario. The bottom row (D, E, F) shows the worst scenario. The causal
algorithm sends more messages than the standard algorithm.

VNF-FGs.
The results for the number of messages sent by both algorithms in the average and

worst-case scenarios are shown in Figure 5.7. As expected, our algorithm sends more
messages than the standard in all cases since it has to coordinate the orchestrators. A
clear division between our proposed algorithm and the standard is shown in the bottom
row of Figure 5.7 for the worst-case scenario. As discussed before, the effects of delay
affect the number of messages sent, as shown in the 60 delay graph. Since fewer concur-
rent reconfigurations take place, there is less need of coordinating the orchestrators. As
a result, the number of messages is lower for both the standard and our proposed algo-
rithm. The number of reconfigurations measures the overhead of our solution; however,
more metrics (e.g. cost/size per message) need to be evaluated in future work.

The causal algorithm gets fewer inconsistencies in both scenarios, as shown in Fig-
ure 5.6; however, concurrency still seems to pose a problem. This could be explained by
the poor ability to track concurrent reconfigurations using causal relations. Moreover,
despite our proposed causal algorithm getting better results than the standard, more
work is required to get a more robust and practical solution for large federations. First,
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in terms of scalability, while our algorithm has fewer inconsistencies than the standard,
it is affected by the number of concurrent reconfigurations. This is shown in the last
graph from the second row of Figure 5.6, where the number of reconfigurations is set
to 640 and the inconsistencies are almost the same. Second, the number of messages
while at first negligible cost grows quickly, as shown in Figure 5.7 where the number of
messages is higher than 2000. Third, more evaluation is required to measure the impact
of the reconfiguration algorithm on the network services. For example, such reconfigu-
ration could have unwanted effects and violate on-functional requirements, such as QoS.
We would also like to evaluate the cost of reconfiguration for each VNF-FG as now we
use as a proxy the number of inconsistencies; however, measuring the cost for reconfig-
uration for different cloud providers would complement these findings. All the previous
limitations of the algorithm and evaluation are considered as future work. Addition-
ally, we envision handling stateful VNFs for future work. To do so, our implementation
would require tracking the state of each VNF while the reconfiguration takes place. This
would increase the overhead in terms of memory and time. To mitigate this overhead
and the current one, we will explore a relation that identifies only the relevant events for
causal dependencies. Thus, the algorithm would track only a subset of the whole causal
information.

5.6 Lessons learned and perspectives

Our proposed algorithm reduces the number of inconsistencies during a VNF-FG recon-
figuration compared with the standard for both the sequential and concurrent reconfig-
urations. For sequential ones, the delay variation and redundant messages do not seem
to affect the performance of both algorithms. For sequential and concurrent reconfig-
urations, our proposed algorithm is more robust to such network conditions. Results
highlight the limitations of tracking causality by coordinating orchestrators for concur-
rent reconfigurations (to a lesser degree sequential, too).

In previous chapters, we considered mostly sequential updates where the orchestra-
tors updated either VNFs or services. This means that conflicts were not as many since
the latency time, introduced to simulate non-deterministic network conditions, was short
enough to apply all the operations. In previous chapters, we tested on smaller scenarios
where the max number of reconfigurations was set to 100; unlike in this chapter were we
considered more than 600 reconfigurations. For greater federations with lots of orches-
trators and many concurrent reconfigurations, the time required to coordinate, the time
to wait for the correct message, and the amount of information sent becomes a burden to
service providers. One alternative to coordination is to use eventual consistency, where
at some given time all the replicas for a VNF-FG converge to the same value, and by
extension, they are consistent. However, this approach obfuscates that consensus among
the orchestrators still needs to happen, and therefore coordination still is executed. How-
ever, there is another way to achieve consistent VNF-FG reconfiguration. In the next
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chapter, we describe how the problem of VNF-FG reconfiguration can be solved without
coordination.





Chapter 6

Squaring the circle: Achieving
coordination-free consistent
orchestration that supports
non-functional dependencies

when reconfiguring VNF
Forwarding Graphs

So far, we have been advocating for orchestrators to coordinate in a federation. By
doing so, we have achieved consistent migration, consistent reconfiguration of dependent
services, and consistent reconfiguration of VNF-Forwarding Graphs (VNF-FG). Yet, in
the last chapter, the limitations of coordination, using only causal consistency, were
highlighted when concurrency entered play. The previous coordination algorithm for
reconfiguring VNF-FGs, despite reducing the inconsistencies, did not prevented incon-
sistencies. This translates to partial failures and additional costs to the service provider.
One possibility to expunge these inconsistencies is to solve consensus among orchestra-
tors. However, this is expensive in terms of latency and scalability, which defeats one
purpose of Network Function Virtualization (NFV) to have low waiting times. In this
chapter, we go more in depth on the consistent VNF-FG reconfiguration and show how to
square the circle. Achieving a coordination-free orchestration algorithm to support the
consistent VNF-FG reconfiguration without consensus. Figure 6.1 shows the current
step towards a coordination-free orchestration algorithm. In this chapter, we present
the first coordination-free algorithm to reconfigure network resources for VNF-based
network services. We propose two variants of such algorithm to cope with different use
cases. This chapter ends the contributions of the research, in the next one we discuss
the perspectives of the research and future work.

6.1 Introduction

The problem of consistent VNF-FG reconfiguration involves updating or extending a
VNF-FG responding to new demands [Houidi 2020]. To ensure the other orchestrators



100

Chapter 6. Squaring the circle: Achieving coordination-free consistent
orchestration that supports non-functional dependencies when

reconfiguring VNF Forwarding Graphs

Thesis Road Map

Coordinating orchestrators to consistenly

migrate shared Virtual Network Functions [Chapter 3]

Extending the coordination orchestration approach to 

recon�gure dependent end-to-end network services [Chapter 4]

Showing the limits of coordinating orchestrators when 

recon�guring end-to-end VNF Forwarding Graphs [Chapter 5]

Figure 6.1: Thesis roadmap. In this chapter, we go more in depth for the problem of
consistently reconfiguring the VNF-Forwarding Graphs of end-to-end network services.
We show why a coordination-free approach is viable; even when orchestrators refuse a
reconfiguration on the fly.

apply the same updates, the orchestrator that changed the VNF-FG sends messages
to notify other orchestrators of the changes. In an ideal scenario, the orchestrators’
replicas always achieve a consistent state; however, since there is no shared global ref-
erence between the orchestrator replicas, it is possible to update concurrently a shared
VNF-FG. Moreover, since orchestrators share services, external dependencies introduce
non-functional dependencies to prevent unwanted effects of reconfiguration. For exam-
ple, updating the connection point of a VNF-FG can optimize the latency in a given
administrative domain; however, for other replicas, it may not be the case as many ser-
vices can use these replicas. In other words, orchestrators can reject new changes from
incoming replicas and decide only to reconfigure if their non-functional dependencies are
satisfied after the reconfiguration. Thus, the combination of concurrent reconfiguration,
limited knowledge, and non-functional dependencies introduces conflicts that must be
fixed to achieve a consistent state at the end of reconfiguration.

In the previous chapter, we highlighted the limits of the state of the art recon-
figuration algorithms. Our proposed algorithm obtained better results than the Eu-
ropean Telecommunications Standards Institute (ETSI) standard reconfiguration algo-
rithm. However, concurrent updates posed a problem for both algorithms. Indeed,
concurrent reconfigurations induce inconsistencies that drift replicas each time an or-
chestrator triggers a reconfiguration. Traditionally, to resolve inconsistencies because of
non-deterministic network conditions (e.g. delay, repeated messages, orchestrators con-
nect/disconnect), the orchestrators choose between two competing goals in terms of per-
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formance and strong consistency. Nowadays, performance is preferred over strong con-
sistency properties by ensuring eventual consistency among orchestrators [Bailis 2013].
In case of a conflict, orchestrators must coordinate among themselves and solve con-
sensus or select a single orchestrator to resolve conflicts [Samdanis 2018]. However, the
performance of both undermines the goals of multi-domain orchestration.

In this chapter, we focus on the consistent VNF-FG reconfiguration under multi-
domain environments, considering non-functional requirements. Our main contributions
are:

• The design of a coordination-free orchestration algorithm for consistent VNF-FG
reconfiguration under multi-domain federations. Our proposed algorithm supports
non-functional dependencies that have not been addressed so far in the literature
for VNF-FG reconfiguration. Unlike current orchestration algorithms, our pro-
posed algorithm consistently reconfigures the VNF-FG of a shared network service
without a coordination phase between the orchestrators. By skipping the coordi-
nation phase, we open the door for dynamic federations where orchestrators join
and leave temporarily. ( Section 6.3).

• The tailoring of two different variants of our proposed algorithm to address various
applications. For critical systems, we propose a preventive variant that ensures re-
configurations are always accepted by all replicas (Section 6.3.1). For less stringent
applications, we propose a corrective variant that enables contingent reconfigura-
tions to happen as they arrive (Section 6.3.2).

We formally proof the correctness of both variants (Section 6.3.3) and evaluate both
(Section 6.4). We compare both variants to the ETSI standard and discuss the trade-offs
in terms of cost and performance.

The rest of the chapter is organized as follows: Section 6.2 details the problem of
consistent reconfiguration with non-functional dependencies. Section 6.3 describes the
idea to achieve coordination-free orchestration. It also details more of the proposed vari-
ants and presents the proof of correctness for both. Section 6.4 presents the evaluation
and comparison of the two variants of our proposed algorithm and the current VNF-FG
reconfiguration algorithm. Section 6.5 concludes the chapter. We present the notation
for this chapter in Table 6.1 (see Section 2.4 for a more detailed description of each
variable).

6.2 Consistent VNF-Forwarding Graph reconfiguration
with non-functional dependencies in multi-domain en-
vironments

In Chapter 5, the problem of consistent VNF-FG reconfiguration was explored. An
example of a consistent VNF-FG reconfiguration is shown in Figure 6.2. Recall that
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Table 6.1: Notation for this chapter. Some of the variables were defined in the system
model (see Section 2.4 for a more detailed description of each variable).
Variable Meaning
O = {o1,o2,o3} The set of orchestrators
G= {g1,g2} The set of VNF-FGs each numbered.
depends The dependency relation
∆ A VNF-FG Reconfiguration operation
χg The counter for VNF-FG g
θ The identifier of a receiver orchestrator
ϑ The identifier of an sender orchestrator
Lθ Pending operations for the the orchestrator θ
hθg The heap of accepted values for VNF-FG g from the θ orchestrator
lθg The list of negated values for VNF-FG g from the θ orchestrator
ε The initial value for a data structure.
φ(xi) The state of the i-th VNF-FG x replica
k∗o The highest orchestrator identifier
xi the i-th replica of a VNF-FG x
τ The top operation
Ω the set of orchestrators who manage a network resource.
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Figure 6.2: VNF-Forwarding Graph reconfiguration. All replicas of the shared service’s
VNF-Forwarding Graph have the same value. This is an example of an consistent re-
configuration.

in the previous chapter, we consider the case where the reconfigurations were always
accepted by the replicas. However, this is not always the case, as services belong to
many services with different non-functional dependencies.

We now introduce the problem of consistent reconfiguration with non-functional de-
pendencies. Because services are shared with many orchestrators, they can also be used
by different services. Thus, we consider that orchestrator replicas may negate ongoing
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reconfigurations because of non-functional dependencies. Such reconfigurations could
affect non-functional requirements of another shared network service. In this work, we
generalize non-functional requirements as either being accepted or not. The details of
why an orchestrator rejects an ongoing reconfiguration are out of the scope of this chap-
ter.

Network services are shared with multiple orchestrators via replicas. These repli-
cas can also be used as external dependencies for other services. To prevent violation
of service level agreements, such as increasing latency, exposing security flaws, or de-
grading the QoS, the orchestrator verifies if the reconfiguration proposed by an external
orchestrator replica will affect the service’s non-functional requirements. If it is the case,
the orchestrator will not accept the reconfiguration. To stay consistent, all orchestrators
need to consider the negation by non-functional dependencies. We name this problem the
Consistent VNF-Forwarding Graph Reconfiguration with Non-Functional Dependencies
(CVNF-FGR-NF).

We illustrate an example of an inconsistent reconfiguration extending the same ex-
ample for reconfiguration presented in Figure 6.2 but where the orchestrators can refuse
a reconfiguration. This is shown in Figure 6.3. In this scenario, four orchestrators
(o1,o2,o3,o4) from different administrative domains manage two encoders g1,g2 and de-
coders g3,g4. The first orchestrator o1 manages the encoder g1, the second orchestrator
o2 manages the encoder g2, and so on. At the beginning, all encoders and decoders start
with initial values represented by o, and ∗, as shown in the bottom of Figure 6.3. In step
I, both the third and fourth orchestrators change the value of their respective decoders
g3,g4 with different values a, p, respectively. Step II shows how the first and second
orchestrators update their encoders. The first orchestrator o1 verifies the proposed re-
configuration. After accepts the reconfiguration changing the value of the encoder g1 to
a new value y. The second orchestrator o2 does the same and updates encoder value to
y. In step III there are three concurrent tasks. Firstly, the first orchestrator o1 gets the
notification from the fourth o4 to reconfigure the VNF-FG. The first orchestrator does
not accept the reconfiguration and sends a reply o4. Secondly, the second orchestrator
o2 gets the same notification from the fourth one o4. Since it accepts this most recent
update, the orchestrator updates the value of the dependency to x; then, it replies to o4.
Thirdly, the concurrent task is the positive reply from o1 to o3. In step IV, both o3 and
o4 get a positive reply from one of their dependencies. The third orchestrator o3 receives
a positive reply from o2; while, o4 from o2. Since the third orchestrator o3 received both
positive replies from its dependencies, it will notify the fourth orchestrator o4 to change
the value of the VNF-FG replica. In step V, two concurrent events happen as messages
arrive to the fourth orchestrator o4. Firstly, the instruction to update the value of the
VNF-FG replica arrives from o3. Secondly, the negative reply from o1 arrives. Thus, the
fourth orchestrator o4 can choose between doing the reconfiguration or remaining in the
initial state. Here a non-deterministic output creates an inconsistency. The first choice
is that the fourth orchestrator updates the value of the VNF-FG replica to a; however,
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Figure 6.3: VNF-Forwarding Graph reconfiguration with non-functional dependencies.
Replicas of the VNF-Forwarding Graph and their dependencies have different values.
The fourth orchestrator o4 cannot determine what will be the VNF-Forwarding Graph
value for the concurrent values. This is an example of an inconsistent reconfiguration.

the dependencies have different values. The other choice is to remain in the initial state;
but, the replicas have different values. Moreover, because orchestrators can share the
decoder among other orchestrators with limited knowledge, conflicts will arise as the
replicas diverge further and further after each reconfiguration. This is an example of an
inconsistent reconfiguration with non-functional dependencies.

6.2.1 Relation between different problems

The CVNF-FGR problem (Chapter 5, see Section 5.4) is a particular case of the CVNF-
FGR-NF, where orchestrators always accept the reconfiguration proposed by replicas
coming from other orchestrators. Furthermore, the CVNF-FGR-NF is divided into two
classes according to the wanted behavior in terms of consistency. If a reconfiguration
applied always is valid to all orchestrators, then the problem does not support fault-
tolerance (i.e. critical applications). We call this the preventive problem. If reconfigu-
rations can be undone, we consider the problem to support fault tolerance. We call this
the corrective problem.
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6.3 Coordination-free orchestration algorithm for multi-
domain environments

In the Consistent Dependent VNF-Forwarding Graph Reconfiguration problem, the goal
is that all VNF-FG replicas and their dependencies have the same values. However, non-
deterministic network conditions (e.g. out-of-order delivery of messages) and concurrent
updates from different orchestrators can have unwanted effects while reconfiguring the
VNF-FG. Moreover, dependencies can negate the updates, amplifying the negative ef-
fects of the previous conditions. At the of reconfiguration, orchestrators can have differ-
ent values for the VNF-FG. To prevent inconsistencies, a conflict resolution mechanism
is required.

Traditionally, in distributed systems, conflict resolution is done by consensus among
all orchestrators to achieve Sequential Consistency/Linearizability (see Section 2.6.1).
The problem is that consensus has a lackluster performance that hinders the applicability
of such solutions. Even worse, NFV is expected to have low latency (e.g. milliseconds) for
network services. One way to circumvent this low performance is to relax the consistency
guarantees such as with the Strong Eventual Consistency (SEC) (see Section 2.6.4).
Such a consistency model achieves the ideal trade-off between consistency, availability,
and partitioning. Next, we introduce the dependency relation δ.

The binary dependency relation δ takes as input two different VNF-FGs (g ∈G,g′ ∈
G′) (i.e. is not possible to have a dependency with itself). As the VNF-FGs have
replicas they must the same values, thus if the relation δ(g,g′) holds, this implies that
every element in G has a dependency with every other element in G′ (i.e. ∃δ(g,g′),g ∈
G,g′ ∈ G′ =⇒ δ(G,G′). If δ is a bi-directional relationship, then it also implies that
all elements in G′ have a dependency relation (i.e. δ(G′,G)). This means whenever a
reconfiguration takes place, the orchestrator who does the update has to notify other
orchestrators who manage a VNF-FG in the super-set G∪G′.

We consider Conflict-Free Replicated Data Types (CRDTs) [Shapiro 2011b] as an
automatic conflict resolution mechanism. The idea is to design an orchestration algo-
rithm using data structures that support SEC to avoid coordination phase while having
consistency. We now describe the two variants of our algorithm.

The first variant prevents inconsistencies by applying updates only when all replicas
and dependencies have positively answered an updated proposal. This means that an
orchestrator that manages a VNF-FG g ∈ G with a dependency g′ ∈ G′ sends a reply
to all other orchestrators in the set G∪G′. Whenever an orchestrator that manages
a dependency of the VNF-FG g receives the proposal, it will reply either positively or
negatively. The proposal is not applied until all answers are received and discarded if
any reply is negative. The second variant is more permissive, as it allows updates to
take place at the moment the notification arrives. Similar to the first variant, under the
corrective variant, the orchestrator that updates the VNF-FG g ∈ G must send to all
orchestrators that manage a VNF-FG in the set G∪G′. However, the receiving orches-
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trator will only notify a negative answer to the others. When an orchestrator receives a
negative answer, it must make the required changes to be in the most promising, con-
sistent state. Both variants of our proposed algorithm achieve SEC. Next, we describe
in detail the two variants to achieve the consistent dependent VNF-FG reconfiguration,
and how they achieve SEC. Thus, they eliminate the inconsistent reconfiguration with
the example shown in Figure 6.3 (see Section 6.2).

6.3.1 Preventive variant

The preventive algorithm reconfigures a VFN-FG only when all affected orchestrators
have accepted the changes ensuring that the VNF-FG and their non-functional depen-
dencies are consistent for all replicas. We name the preventive variant as CF-P. Algo-
rithm 4 (see Section 6.3.1.2 ), Algorithm 5 (see Section 6.3.1.2), and Algorithm 6 (see
Section 6.3.1.3) describe in detail the CF-P variant.

Consider the same reconfiguration of a shared VNF-FG as in Section 6.2 where four
orchestrators o1,o2,o3,o4 manage two encoders g1,g2 and two decoders g3,g4, respec-
tively. The first orchestrator o1 manages g1, the second orchestrator o1 manages g2, and
so on. Figure 6.4 shows the execution for the reconfiguration to ensure all replicas are
consistent by having the same values. In step 1, the third and fourth orchestrators try to
update concurrently the VNF-FG. The third orchestrator o3 proposes a new value a for
his VNF-FG; while, the fourth orchestrator o4 updates his to p, respectively. Both store
them in their lists and send the proposal to all affected orchestrators (in this example all
the others). In step 2 three concurrent tasks execute. Firstly, the first orchestrator o1
receives the proposal from o3. After validating this proposal it stores it in a list of pend-
ing reconfigurations, as shown in the right side of Figure 6.4, where a question symbol is
stored in the entries for g1 and g3, respectively. After, o1 sends notification to all affected
orchestrators. Secondly, similarly to o1, the second orchestrator o2 accepts, stores, and
sends notifications for value a. Thirdly, o4 receives the proposal from o3 and also does
the three operations as before. In Step 3 four concurrent operations execute, we will
focus only on the first two as the two others also apply the same three operations. For
the first task, the first orchestrator o1 receives the proposal from o4. The orchestrator
verifies if the reconfiguration is valid; however, it decides not to accept it. The first or-
chestrator o1 then adds the proposal as negative as shown in the right side of Figure 6.4.
All subsequent notifications of proposal for value p will be automatically negated. For
the second task, the second orchestrator o2 validates the proposal for value p and applies
the same three operations (accept, store, send) as in previous steps. Steps 4 and 5 shows
how more notifications arrive to the orchestrators. We focus on the notification from o1
to o4. Since all values are already validated by replicas, the fourth orchestrator finally
can reconfigure its VNF-FG replica. This is shown on Figure 6.4 by the color change
and value of the g4 decoder. Eventually all notification and proposals arrive with steps
6-8. At the end of reconfiguration, all VNF-FG replicas have the same values. Compar-
ing Figures 6.3 and 6.4, it can be seen how the preventive variant achieves a consistent
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reconfiguration despite non-functional dependencies.

6.3.1.1 Preventive variant algorithm definition

When an orchestrator needs to update a VNF-FG, first it will create an operation to
be applied to the VNF-FG (line 1). Then, the orchestrators increase the counter of the
VNF-FG to help distinguish from other concurrent (line 2). After, the orchestrators
compute the set of affected orchestrators (line 3). A list is created that has a dictionary
relating the orchestrators with the answer (line 4). Then, it initializes the entry with his
id as true (line 5). After, it appends this list to the list of pending operations (line 6).
Finally, it creates a notification message and sends it to the affected orchestrators (lines
7 - 8).

6.3.1.2 Receive notification from another orchestrator function

When an new notification for an update arrives to an orchestrator it will decide to accept
it or negate it. In any case, it will send a reply to all affected orchestrators. To do so
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Figure 6.4: VNF-Forwarding Graph reconfiguration with our proposed preventive vari-
ant. At the end of the reconfiguration, replicas of the VNF-Forwarding Graph have the
same value. Unlike Figure 6.3, this is an example of a consistent reconfiguration with
non-functional dependencies.



108

Chapter 6. Squaring the circle: Achieving coordination-free consistent
orchestration that supports non-functional dependencies when

reconfiguring VNF Forwarding Graphs

Algorithm 4: Preventive variant algorithm definition. Updates a VNF-FG g,
with counter χg, managed by orchestrator θ
1 g←∆(g) /* Update by applying reconfiguration operation */
2 c∆

g ← χg + 1 /* Create counter for the reconfiguration */
3 Og← (∀o ∈O,g′ ∈G;‖ o∼ g′,g.uid= g′.iud)∪ (∀o ∈O,g′′ ∈G | o∼ g′′, δ(g,g′′))

/* Compute orchestrators to sent */
4 l∆g ← [0 | ∀o ∈Og] /* Create empty list */
5 l∆g [θ,c∆

g ]← True /* Initialize list entry */
6 Lθ← Lθ ∪ l∆g /* Add list to pending operations */
7 σ = {θ,g.uid,∆,χg} /* Create a notification update message */
8 ∀o ∈Og,send(o,σ) /* Send notification to all ids */

first, it computes the set of affected orchestrators (line 1). Then if the notification for
the update is the first one received, it will create a list and add it to the list of pending
operations (lines 3 - 5). Then, if it is feasible to update, it will (i) set his entry and
the sender orchestrators as accepted (lines 8 - 9), (ii) apply the update if all values are
accepted (lines 11 - 15). If it is not accepted, the orchestrator marks all entries as false
(lines 17 - 18). Finally, the orchestrator creates a reply message containing the answer
(either accepted or negated) and sends it to the affected orchestrators (lines 20 - 21).
This is more detailed in Function 5.

6.3.1.3 Receive reply for preventive variant function

Whenever an orchestrator receives a notification from another orchestrator it will first
add the reply to his list of orchestrators (line 1). Then it verifies if all entries of the
entry are filled and accepted (line 2). If it is so, it will accept the update, apply it and
update the counter of the VNF-FG (lines 3 - 6). This is more detailed in Function 6.

6.3.2 Corrective variant

The corrective algorithm reconfigures a VFN-FG when a notification arrives without
waiting and does not send a notification to other orchestrators. Only when a depen-
dency does not accept a reconfiguration due to violating non-functional requirements,
the orchestrator will send a negative notification to the others. Whenever an orches-
trator receives a negative notification, it will reconfigure the VNF-FG to a provisional
state after merging with the notification. We name the corrective variant as CF-C.
Algorithm 5, Algorithm 7 (see Section 6.3.2.2), and Algorithm 8 (see Section 6.3.2.3)
describe in detail the CF-C variant.

Consider the same reconfiguration of a shared VNF-FG as in Section 6.2 where four
orchestrators o1,o2,o3,o4 manage two encoders g1,g2 and two decoders g3,g4, respec-
tively. The first orchestrator o1 manages g1, the second orchestrator o1 manages g2,
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Function 5: Receive a notification from another orchestrator function. Re-
ceives notification update message σ = {ϑ,g′.uid,∆, c∆

g′} for VNF-FG g, with
counter χg
1 Og← (∀o ∈O,g′ ∈G;‖ o∼ g′,g.uid= g′.iud)∪ (∀o ∈O,g′′ ∈G | o∼ g′′, δ(g,g′′))

/* Compute orchestrators to sent */
2 ω← False /* Start answer as negative */
3 if (g′.uid,∆) 6∈ L then
4 l∆g′ ← [0 | ∀o ∈Og′ ]
5 Lθ← Lθ ∪ l∆g′ /* If entry not in list, create a list and append to

orchestrator list. */
6 end
7 if checkFeasibility(δ) then
8 l∆g′ [θ,c∆

g ]← True

9 l∆g′ [ϑ,c∆
g ]← True /* Mark entry as a positive. */

10 ω← True /* Change to positive answer */
11 if ∀i ∈ l∆g′ = True& c∆

g > χg then
12 l∆g′ [θ,c∆

g ]← True

13 g←∆(g) /* Apply update */
14 χg← c∆

g /* Update counter of the VNF-FG */
15 end
16 else
17 l∆g′ [θ,c∆

g ]← False

18 l∆g′ [ϑ,c∆
g ]← False /* Mark entry as negative */

19 end
20 ς = {θ,ϑ,g.uid,∆,ω,c∆

g } /* Create a reply message of the answer */
21 ∀o ∈Og,send(o,ς) /* Send message to all affected orchestrators */

and so on. Figure 6.5 shows the execution for the reconfiguration to ensure all VNF-
FG replicas are consistent by having the same values. In step 1, the third and fourth

Function 6: Receive reply for preventive variant function. Receives a reply
message ς = {ϑ,g′.uid,∆,ω,c∆

g′} for VNF-FG g, with counter χg
1 l∆g′ [ϑ,c∆

g ]← ω /* Mark entry with answer ω */
2 if ∀i ∈ l∆g′ = True& c∆

g > χg then
3 l∆g′ [θ,c∆

g ]← True

4 g←∆(g) /* Apply update */
5 χg← c∆

g /* Update counter of the VNF-FG */
6 end
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orchestrators update concurrently the VNF-FG. The third orchestrator o3 updates its
VNF-FG with a new value a; while, the fourth orchestrator o4 with p, respectively. Both
add the value to the their heap and then send the proposal to the affected orchestrators.
In step 2, two concurrent tasks execute. Firstly, the first orchestrator o1 receives the
proposal from o3. After validating this proposal it applies the reconfiguration to VNF-
FG g1 and adds the state to the heap. This is shown in the right side of Figure 6.5.
Secondly, similarly to o1, the second orchestrator o2 accepts, reconfigures, and saves the
state. In step 3, three concurrent tasks execute. Firstly, the proposal from o4 arrives
to o3. The orchestrator verifies if the reconfiguration is valid; however, it decides not to
accept it. The first orchestrator o1 adds it to the list of negative proposals and notifies
all the affected orchestrators (in this example all the others). Secondly, the proposal
from o4 arrives to o2; unlike o3, o2 accepts the proposal and reconfigures the VNF-FG
g2 to match the state of value p. This is shown in Figure 6.5 where the top now is p;
unlike in the previous step 2. Thirdly, the proposal from o3 arrives to o4 who accepts
it. However, because his reconfiguration takes precedence, it will not apply the recon-
figuration. In steps 4 and 5, the rest of notifications arrive. Whenever an orchestrator
receives a negative reply, it reconfigures again to another state. The value in the heap
is removed and added to the list of negated proposals. This is shown in the fourth and
fifth steps for Figure 6.5. At the end of reconfiguration, all VNF-FG replicas have the
same values. Comparing Figures 6.3 and 6.5 it can be seen how the preventive variant
achieves a consistent reconfiguration despite non-functional dependencies.

6.3.2.1 Corrective variant algorithm definition

When the orchestrators apply a reconfiguration operation for a VNF-FG. First, it will
apply the reconfiguration operation (line 1). Then, the orchestrator increases the counter
(line 2). After, it computes the set of affected orchestrators (line 3). Then, it appends the
reconfiguration operations in the heap which will be in the top since it has the greatest
counter (line 4). After, the orchestrator creates a notification message for the update
(line 5). Finally, the orchestrator sends a notification to all the affected orchestrators
(line 6).

6.3.2.2 Update heap function

This functions computes the update of the heap when a new message has arrived. If
the notification already is at the list of negated, it will pass the message (lines 1 - 3).
Otherwise; the orchestrator will check if it the new update is accepted or not. If it is,
then the orchestrator compares the new update to the top of the heap, and sorts the
updates according to their counter (lines 5 - 9). If the orchestrator rejects the update, it
will add it to the list of rejected updates, and will notify all orchestrators that manage a
replica of the VNF-Forwarding Graph (lines 11 - 14). This is more detailed in Function 7.
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6.3.2.3 Heapify function

This function re-orders the heap for each VNF-Forwarding Graph, by computing the
reconfiguration again from the consistent state. First, remove the top reconfiguration
operation from the top of the heap (line 1). After, add this operation to the list of rejected
reconfigurations (line 2). Then, recompute the from the consistent state. This is possible
since all replicas start with the same initial configuration and its always possible to solve
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Figure 6.5: VNF-Forwarding Graph reconfiguration with our proposed corrective vari-
ant. At the of the reconfiguration, replicas of the VNF-Forwarding Graph have the
same value. Unlike Figure 6.3, this is an example of a consistent reconfiguration with
non-functional dependencies.

Algorithm 5: Corrective variant algorithm definition. Updates a VNF-
Forwarding Graph g, with counter χg, managed by orchestrator θ
1 g←∆(g) /* Update by applying reconfiguration operation */
2 χg← χg + 1 /* Increase the VNF-FG counter */
3 Og← (∀o ∈O,g′ ∈G;‖ o∼ g′,g.uid= g′.iud)∪ (∀o ∈O,g′′ ∈G | o∼ g′′, δ(g,g′′))

/* Compute orchestrators to sent */
4 hθg.insert({θ,∆,χg}) /* Add reconfiguration entry to heap. */
5 σ = {θ,g.uid,∆,χg} /* Create a notification update message */
6 ∀o ∈Og,send(o,σ) /* Send notification to all ids */
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conflicts automatically (lines 3 - 4). This is more detailed in Function 8.

6.3.3 Proof of correctness for the two variants of the algorithm

We now prove the correctness of both variants of our proposed algorithm. To do so, we
need to show the replicas of the VNF-FG converge eventually and both variants satisfy
SEC (see Definition 7 from Section 2.6.4). Recall the replicas of each VNF-FG for the

Function 7: Update heap function. Receives a notification update message
σ = {ϑ,g′.uid,∆, c∆

g′} for VNF-Forwarding Graph g from orchestrator θ, with
counter χg in orchestrator i
1 if {ϑ,∆, c∆

g′} ∈Ψ then
2 pass
3 end
4 if checkFeasbility(∆) then
5 if c∆

g′ > χg or (c∆
g′ = χg and kθ > ki ) then

6 g←∆(g)
7 χg← c∆

g′

/* If received counter is greater than current top counter,
apply reconfiguration operation and set new VNF-FG counter.
*/

8 end
9 hig.insert({θ,∆, c∆

g′}) /* Add to heap. */
10 else
11 Og′ ← (∀o ∈O,g′′ ∈G;‖ o∼ g′′,g′.uid= g′′.iud)∪ (∀o ∈O,g′′′ ∈G | o∼

g′′′, δ(g′,g′′′)) /* Compute ids to sent. */
12 lig.append({ϑ,∆, c∆

g′}) /* Add reconfiguration to list of rejected.
*/

13 ς = {θ,g.uid,∆,False,c∆
g } /* Create a reply message of the answer.

*/
14 ∀o ∈Og′ ,send(o,ς) /* Send message to all ids. */
15 end

Function 8: Heapify function. Receives a reply message ς =
{ϑ,g′.uid,∆,False,c∆

g′} for VNF-FG g, with counter χg in orchestrator i
1 hig.remove(ϑ,∆) /* Remove operation from heap. */
2 lig.append({ϑ,∆, c∆

g′}) /* Add reconfiguration to list of rejected.
*/

3 ∆′← hig.top() /* Compute new update after the new order from heap */
4 g←∆′(g) /* Apply new update again */



6.3. Coordination-free orchestration algorithm for multi-domain
environments 113

two variants of our proposed algorithm are a distributed system. Thus, first we need to
state the two conditions required for replicas of a distributed system to converge. Thus,
the same conditions apply for the convergence of the VNF-FG’s replicas. Shapiro et. al.
defined these two conditions [Shapiro 2011a]. Definition 11 describes them.

Definition 11 (Eventual convergence conditions)
Two replicas xi,xj of a VNF-Forwarding Graph eventually converge if the following
conditions are met:

• Safety: ∀i, j :C(xi) =C(xj) implies that the abstract states of i and j are equivalent.

• Liveness: ∀i, j : f ∈ C(xi) implies that eventually, f ∈ C(xj).

where f is an reconfiguration operation and C(xi) the causal history of a VNF-FG
replica xi (see Section 2.5).

For both variants, we consider the following assumptions:

1. Eventual and reliable delivery. Messages have an arbitrary but finite delay. They
can be sent multiple times but never lost.

2. Orchestrators can return to the federation after failure. When an orchestrator
leaves, the network is left partitioned.

3. All replicas begin with an initial consistent state for all replicas. This is reflected
with a special symbol in the top of all heaps ε. Such initial state is created during
the deployment of the VNF-FG.

We need to prove that despite these non-deterministic network conditions, replicas
still converge.

6.3.3.1 Proof of preventive variant

We prove that the preventive variant of the algorithm converges by showing it satisfies
the properties of an operational-based Consistent Replicated-Free Data Type (CRDT).

Theorem 1 (Convergence of the CF-P)
The CF-P converges as an operation-based CRDT.

To prove Theorem 1 we need to show the CF-P satisfies the safety and liveness
convergence properties for an operation-based CRDT. Liveness, for an operation-based
CRDT, is satisfied if reliable broadcast channel guarantees that all updates are delivered
at every replica, in a delivery order <d specified by the data type [Shapiro 2011a]. Safety,
for an operation-based CRDT, is guaranteed when concurrent operations satisfy the
property of commutativity stated by Definition 12 [Shapiro 2011b]:
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Definition 12 (Commutativity)
VNF-FG updates (f,x) and (f’,x’) commute, iff for any reachable replicate state s, where
both x, x’ are enabled, replica x remains enabled in state s ◦ x’ (respectively s ◦ x), and
s ◦ x ◦ x’ ≡ s ◦ x’ ◦ x

which means replicas have the same state despite the order of reconfiguration oper-
ations. We now prove that the preventive variant satisfies a delivery order <d for all
replicas and updates are commutative by proving Lemmas 1, 2.

Lemma 1 (CF-P liveness)
The CF-P satisfies the delivery order <d.

To prove Lemma 1, we consider the case of restricting sequential updates until one
is accepted. In this scenario, is not possible to update the same VNF-Forwarding Graph
until the previous update has not been accepted. This means that the orchestrator has
received all positives answers (Algorithm 5 Line 9). Since no sequential updates take
place and Assumption 1 (i.e. we have an eventual/reliable delivery), all updates follow a
single delivery order which satisfies the liveness property. For a more permissive scenario,
where sequential updates can take place despite previous ones not being accepted, the
system can converge in strange ways. For example, a given update can be accepted by
all orchestrators, but not its previous update; such behavior is undesired. To prevent
this and the effects of repeated messages, a delivery order <d needs to be enforced
by replicas. Such delivery is enforced by our algorithm by considering the value of
other replicas stored in the list of affected orchestrators along with their replies (either
accept or decline Algorithm 6 Lines 2-4). This is because we can identify who send
an instruction along with their local counter. Such delivery order prevents accepting
out-of-order updates from the same orchestrator. Thus, for both scenarios, all replicas
execute updates according to a delivery order <d. Consequently, Lemma 1 is true. Thus,
our proposed preventive variant, CF-P, satisfies the liveness property. Next, we show
the CF-P satisfies the safety property.

Lemma 2 (CF-P safety)
Concurrent operations under CF-P satisfy commutativity (Definition 12).

To prove Lemma 2 recall the state φ of a replica xi is encoded in its history C. For
the preventive algorithm, the history C is the list of pending operations l. After an VNF-
FG update operation ∆, the state of the replica is updated as C(∆(xi)) = C(xi)∪{∆}
(Algorithm 6 Line 3, Algorithm 5 Line 10). We need to show replies for a reconfiguration
operation f commute.

Assume without loss of generality that a replica xi has causal history for each af-
fected orchestrator C(xi) = {ro} | ∀o ∈Ω (Algorithm 4 Line 6). There exists two replies
ro, ro′ from reconfiguration operations ∆ coming from affected orchestrators o,o′; such
operations are proposed to replica xi. We need to evaluate two cases: (i) ro = True,
ro′ = True, and (ii) ro = True, ro′ = False (conversely ro = False, ro′ = True). For
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the first case, the output of the algorithm (i.e. accepting the reconfiguration or not) is
independent of the arrival of ro and ro′ , such that C(xi)∪ ro ≡ C(xi)∪ ro′ (Algorithm 6
Line 2). Thus, for the first case, the replies ro, ro′ commute as the output depends on
the other replies.

For the second case, where there’s a negative reply r∗ = False, our proposed algo-
rithm only applies an update if all replies are positive; thus, accepting the reconfiguration
or not depends only on the negative replies. Therefore, if one reply is negative, the out-
put is unaffected by the negative reply’s order of delivery (i.e. they commute). Thus,
since Lemma 2 holds, the preventive variant ensures the safety property.

Since the preventive variant CF-P satisfies Lemmas 1 and 2 it converges and supports
SEC, which is what we wanted to prove. �

6.3.3.2 Proof of corrective variant

We prove the corrective variant also converges by showing it satisfies the properties of a
state-based CRDT.

Theorem 2 (Convergence of the CF-C)
The CF-C converges as an state-based CRDT.

To prove Theorem 2 we need to show the CF-C satisfies the safety and liveness
convergence properties for a state-based CRDT. For this type of CRDTs, the safety and
liveness are encoded in the three following properties of Definition 13 [Shapiro 2011b]:

Definition 13 (Convergence properties state-based CRDTs)
1. The payload must be a join-semilattice (safety).

2. The updates are monotonic (liveness).

3. The merge operation among such objects computes the Least Upper Bound (LUB)
(safety).

We need to show that the corrective variant of our proposed algorithm supports the
properties of Definition 13 by proving Lemmas 3, 4, and 5.

Lemma 3
The CF-C payload is a join-semilattice. (Property 1 of Definition 13)

We show how Lemma 3 holds. By definition, the data structure we consider for
accepted reconfigurations is a heap ordered by a < operator, in other words a join-
semilattice. Next, we show how the CF-C satisfies the third condition of Definition 13.

Lemma 4
The CF-C merge operation always computes the Least Upper Bound. (Property 3 of
Definition 13)
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We describe how Lemma 4 holds. Each orchestrator o in the federation has associated
a unique identifier ko in a total order. Each replica xi has associated a VNF-FG v

with a heap hiv for contingent reconfigurations, and a list liv to keep track of invalid
reconfigurations. We need to evaluate three cases when merging two heaps hiv, hjv from
replicas xi,xj for the same VNF-FG v: (i) When the top of a heap is the initial state (i.e
τ(hiv) = ε,τ(hjv) 6= ε), (ii) when the top of a heap has a greater reconfiguration number
than another heap (i.e. τ(hiv) > τ(hjv) , (iii) when the top of both heaps has the same
reconfiguration number (i.e. τ(hiv) = τ(hjv)). For the first case, since ε is the identity
value, the merge operation computes the LUB between the two heaps (Algorithm 5 Line
4). For the second case, the heap operator < will take the union and re-order both heaps
based on the number associated to all reconfiguration operations f , on top it will be the
greatest number such that τ(hiv ∪hjv) = τ(hiv), τ(hiv) > τ(hjv) otherwise τ(hjv); thus, for
the second case the operator < computes the LUB (Algorithm 7 Line 8). Finally, for the
third case, if two updates have the same number (i.e. two operations are concurrent) the
winner of such reconfiguration operation will be the one with the highest orchestrator
identifier k∗o (Algorithm 7 Line 5). Since this identifier is totally ordered, the merge
operation always computes the LUB. Therefore, Lemma 4 holds. Next, we show how
the CF-C satisfies the second condition of Definition 13.

Lemma 5
The CF-C updates are monotonic. (Property 2 of Definition 13)

We show how Lemma 5 holds considering both data structures of the CF-C variant.
First, consider the case of a notification with a heap with a single value aside the initial
ε value (i.e. |hjv| = 1) and no negated elements (i.e. |ljv| = 0). Whenever a new update
(either positive or negative) arrives to replica xi, it could either: (i) be accepted and
added to the heap hiv according to the < operator (Algorithm 5 Line 4, Algorithm 7
Line 9) or (ii) if it is not accepted, it is added to the negative list liv (Algorithm 7 Line
12, Algorithm 8 Line 2). Both options update the data structures; moreover, recall the
causal history C(xi) encodes the state of replica φ(xi). Particularly, for the corrective
algorithm C(xi) = C(hiv)∪C(liv)); thus, for this first case, the update is monotonic as it
always increases the state after each reconfiguration.

Now consider the general case, where a notification arrives with a heap with more
than one element (i.e. |hjv| > 0), and a list of negated elements (i.e. |ljv| > 0). Since
the corrective variant of the algorithm computes the union of both negated elements
after the update takes place, the state of such list increases containing more information
about negated elements such that C(liv) = C(liv)∪C(ljv), which is monotonic. For the
heaps, if all values are accepted, then the heap will also increase the state, although
ordered differently according to the < operator as C(hiv) = C(hiv)∪C(hjv). However, if
any element e of a heap belongs to the union of negated lists (e ∈ liv ∪ ljv), this element
is extracted from the heaps and added to the list such that after a merge liv = liv ∪ ljv ∪e
(Algorithm 8). Thus, the state updates monotonically showing Lemma 5 holds true.
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Since the corrective variant CF-C satisfies Lemmas 3, 4, and 5, the state-based CF-C
converges and supports SEC, which is what we wanted to prove. �

6.4 Implementation and evaluation

We implemented our proposed algorithm to measure performance, costs, and trade-offs of
each variant of our proposed algorithm. The following sections comprise the distributed
setup (Section 6.4.1), metrics evaluation (Section 6.4.2), experiments (Section 6.4.3),
and discussions (Section 6.4.4).

6.4.1 Distributed federation setup

We tested our two variants using Azure’s cloud infrastructure. We chose multiple do-
mains from the cloud provider from the following locations: North Europe, West US,
South Korea, East US, and the UK. For each domain, we instantiated a virtual machine
to host the orchestrator software. All virtual machines have the same configuration:
2 CPUs, 30GB of hard drive, 4GB of RAM, and Linux 18.04-LTS. Each domain has
its policies, topology, and manages a single orchestrator. Nowadays, many open-source
orchestrators follow the ETSI standard; but none implement the required interfaces to
support a federation. Thus, we implemented a multi-domain orchestrator in Python
following the ETSI standard. The source code can be found in 1.

We measure the performance of the proposed algorithms under different scenarios.
Thus, we consider different parameters for each experiment as shown in Table 6.2. Next,
we describe them. Maximum delay (Max_D): This evaluates the performance of the
algorithms under low and high non-deterministic conditions. Intuitively, with greater
delays worst performance. Probability of repetitions (Pb_R): This measures the
worst-case scenario as a higher number means higher non-deterministic network con-
ditions. Number of reconfigurations (Nm_R): Allows to check the performance
as a function of the number of reconfigurations. Intuitively, algorithms get the worst
performance with a higher number of reconfigurations. Type of reconfigurations
(T_R): Two possible values, sequential and concurrent. In sequential updates, the
first reconfiguration is done after the other, depending on the algorithm. Concurrent
is freer and allows for reconfiguration to happen at any time. Probability to negate
(Pb_N): This allows us to get a better grasp on how the algorithms behave when
the reconfigurations are negated by other orchestrators due to violating non-functional
requirements.

The combination of these parameters creates different scenarios, each one of dif-
ferent complexity. An ideal scenario would have zero delay (i.e. Max_D=0), null
probability to repeat (i.e. Pb_R=0), accept all reconfigurations (i.e. Pb_N=0), and
only sequential ones (i.e. T_R=Sequential) which corresponds to the assumptions for

1https://doi.org/10.5281/zenodo.5336614
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Table 6.2: Parameters considered for the experimentation. Each parameter configuration
creates different test scenarios from the ideal to the worst case.

Paramter Range
Maximum Delay (Max_D) 1 - 100 - 1000 ms
Probability of Repetitions (Pb_R) 0 - 10 - 30 - 70 - 90 %
Number of Reconfigurations (Nm_R) 0, 150, 300,..., 3000
Type of Reconfigurations (T_R) Sequential - Concurrent
Probability to Negate (Pb_N) 0 - 5 - 10 - 30 %

the current orchestration algorithm. The worst case would have many concurrent (i.e.
T_R=Concurrent) reconfigurations (i.e. Nm_R=3000) and the highest probability to
negate reconfigurations due to non-functional dependencies (i.e. Pb_N=30%).

6.4.2 Algorithms and metrics to evaluate

We consider our proposed algorithm with two variants and the current ETSI standard
orchestration algorithm for consistent VNF-FG reconfiguration. Next, we include a brief
description of each one.

• The preventive variant of our proposed algorithm (CF-P). It tries to prevent tem-
porary inconsistent periods between reconfigurations by waiting until all affected
orchestrators either accept or negate.

• The corrective variant of our proposed algorithm (CF-C). It allows for a temporary
inconsistent period while minimizing messages sent by keeping the current valid
state, and in case of negation, rolling back reconfigurations until a correct state is
achieved.

• The ETSI standard algorithm (NCF-E). It allows for reconfiguration to be done
using eventual consistency by applying updates the moment they arrive.

Since each algorithm offers different behaviors, we consider multiple metrics appli-
cable to all algorithms. Next, we briefly describe each metric and indicate if either a
lower or higher value is better. Total reconfiguration time: This metric measures
the time in milliseconds taken for the VNF-FG reconfiguration for each algorithm. A
lower value is preferred. Number of reconfigurations: This metric measures the
number of times a particular VNF-FG is reconfigured. Some algorithms allow a certain
period of inconsistency, thus this metric measures the extra cost associated with more
flexibility in terms of quick reconfigurations. A lower value is preferred. Latency per
operation: This metric measures the time difference in milliseconds between the pro-
posal for a VNF-FG reconfiguration and its actual reconfiguration. A high value means
lower performance, thus, a lower value is preferred. Overhead per data structure:
Measures the amount of information is stored to achieve a consistent state in bytes. This
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metric is a cost associated with CRDT-based algorithms. Lower values are preferred.
The overall goal with these metrics is to be able to compare the algorithms and evaluate
the trade-offs of each to select the appropriate one for a given scenario.

6.4.3 Experiments

We consider all combinations of parameters for the experiments. Each combination is
evaluated five times and we take the average values for each metric previously described.
We only show relevant results to compare the three algorithms using only the concurrent
scenarios as they are more representative for the algorithms’ behavior. The proposed
preventive variant is represented with a blue/circle line, the proposed preventive with a
green/triangle line, and the standard with a red/square line. We present the results in
Figures 6.6, 6.7, 6.8, 6.9. Next, we discussed in detail the results from our experiments.

6.4.4 Discussions

We evaluated our proposed algorithm compared to the ETSI stan-
dard [ETSI, NFVISG 2018] as it is the only relevant work aside ours that considers
shared services and VNF-FGs, as shown in the second column of Table 6.3; the other
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Figure 6.6: Latency per reconfiguration operation, lower is better. Both the corrective
and standard algorithms are instantaneous, while the preventive variant must wait. For
3000 concurrent reconfigurations the average latency per operation is 12 seconds for
preventive variant.
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Figure 6.7: Data structure overhead per algorithm, lower is better. For small scenarios,
the preventive variant offers better performance than the standard.

Table 6.3: Solutions for the VNF-FG reconfiguration with different functionalities. Our
proposed variants offer all functionalities

Work VNF-FG reconfigration Shared VNF-FG Non-Functional dependencies Extra Reconfigurations Inconsistencies
VNF-FG Extension [6,12] Yes No No No N/A
ETSI Standard [13] Yes Yes No No >0
Preventive Variant (CF-P) Yes Yes Yes No 0
Corrective Variant (CF-C) Yes Yes Yes Yes 0

works [Houidi 2020, Khebbache 2018] do not. Both of our proposed variants, unlike the
standard [ETSI, NFVISG 2018], support non-functional dependencies that can negate
on-going reconfigurations, as shown in the third column of Table 6.3. Moreover, unlike
the standard that has inconsistencies, the variants of our proposed algorithm
reconfigure the replicas of the VNF-FGs without inconsistencies, as shown in
the fifth column of Table 6.3. However, supporting non-functional dependencies without
a coordination phase has a cost. Next, we detail the results and discuss these costs.

Figure 6.6 shows the latency per reconfiguration operation (i.e. the time needed
to wait before reconfiguring a VNF-FG) with a fixed delay of 100ms, a probability to
negate of 30%, and probability of repetition of 10%. The preventive variant behaves
worse than the standard and the corrective variant which applies the reconfiguration
when it receives the reconfiguration instruction. In 3000 concurrent reconfigurations,
the average latency per operations is 12 seconds for the preventive algorithm. While it
might seem a high number compared to the corrective and standard, this waiting time
is lower compared to the latency per transactions of consensus solutions (e.g 10 minutes
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per transaction [Hao 2018]). The behavior presented in Figure 6.6 is representative for
all the parameters’ combinations.

Figure 6.7 shows the amount of information stored by each algorithm. For this met-
ric, we only show a single delay of 100ms, probability to negate of 30%, and probability of
repetition 10%. The corrective variant gets the worst performance with higher memory
than the others. For small scenarios, the preventive variant has a smaller memory foot-
print than the standard algorithm; however, as the number of reconfigurations increases,
the preventive behaves worst.

Figure 6.8 shows the messages sent to resolve conflicts between the orchestrators.
The preventive variant got the worst performance of all. The corrective algorithm sits
in the middle of the preventive and standard algorithms. However, with a high number
of negations, the corrective algorithm behaves like the preventive. The delay affects the
corrective variant, as shown by the widening gap between it and the standard algorithm
in each line with delay from 1, 10, 100ms. This means that in the worst-case scenario,
the corrective variant behaves like the preventive in terms of exchanging messages.

Figure 6.9 shows the number of extra reconfigurations per algorithm. Here the clear
winner is the preventive algorithm getting zero extra reconfigurations, while the correc-
tive behaves worst. Delay has the biggest impact on the correct algorithm, as shown
by the three different lines of 1ms, 10ms, and 100ms in Figure 6.9. With delay of 1ms,
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corrective algorithm is more sensitive to parameters. For scenarios where negation and
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Figure 6.9: Extra reconfigurations done by each algorithm, lower is better. The preven-
tive variant is the winner with zero extra reconfigurations. The corrective is sensitive to
the delay, as shown by gap between 1-100ms.

the corrective and standard algorithm behave the same; this changes with higher delays,
as the corrective algorithm behaves worst like with the number of messages sent. Since
these two metrics relate with each other, Figures 6.8 and 6.9 show the same behavior.

Based on these results, we provide a better scope on which applications fit better
the proposed variants. For critical applications, such as distributed resource-constrained
federations, where consistency is a priority, extra reconfigurations are resource expen-
sive, memory is limited, and latency is not a problem, service providers should select
the preventive variant over the corrective. Service providers would use the corrective
variant in more specialized environments where speed is king, memory is plenty, recon-
figuration (in terms of resource consumption) is cheap, and the probability to negate
reconfigurations is low. Moreover, the corrective variant does not require to known in
advance the number of orchestrators in the federation, thus, it is possible to use it in
open-federations where new orchestrators can join and leave temporally.

6.5 Lessons learned and perspectives

In this chapter, we proposed a coordination-free VNF-FG reconfiguration algorithm for
network function virtualization in a multi-domain federation. This work addresses the
noticed limitations in the relevant literature. Indeed, when the existing reconfiguration
approaches require a coordination phase for conflict resolution, our proposed algorithm
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achieves consistent reconfiguration without this coordination step. Unlike the current
state of the art, our algorithm supports non-functional dependencies which could negate
and roll back reconfigurations. Thus, we extend the problem of consistent VNF-FG
reconfiguration.

To support these non-functional dependencies, we presented two variants of our pro-
posed algorithm to target different applications. For critical and resource-constrained
applications, where doing extra reconfigurations is undesired, we proposed a preventive
variant. For less stringent applications, we likewise proposed a corrective variant. We
formally proved both variants reconfigure consistently VNF-FG replicas without coor-
dination. Since supporting non-functional dependencies has an associated cost in terms
of delay and message/memory overhead, we evaluated the performance of both variants
compared to the state of the art VNF-FG reconfiguration algorithm. The preventive
variant is stable and its performance is similar in different parameters. The corrective
variant is sensitive to parameters. With low delays, it offers performance similar to
the standard but without the coordination phase and more functionalities. With higher
delays (>100ms), it behaves like the preventive variant. For future work, we would
like to explore ways to reduce the costs in terms of latency and extra reconfigurations.
Also, we will explore more data structures that allow supporting more operations for
the VNF-FG. Despite the overhead costs, our proposed algorithm, unlike the state of
the art, works on a more general consistent VNF-FG reconfiguration problem. We have
proposed the first coordination-free orchestration algorithm for NFV.

Our proposed algorithm opens the possibilities for future research works on
coordination-free approaches for NFV. The question pertaining to the existence of such
approaches has gotten a positive answer. Yet, new questions remain open. In the next
chapter, we describe the impact of our research and put it into perspective with the
state of the art.





Chapter 7

Conclusions and perspectives

Service providers are interested in preventing inconsistencies when their orchestrators
reconfigure VNF-based network services. If providers take no care, these inconsistencies
increase costs to providers, as they leave the services in partial or total failure. For
shared services, this cost compounds over the federation, since shared services contain
external dependencies. To prevent this, we proposed that, by coordinating orchestrators
via causal dependencies, orchestrators prevent inconsistencies after reconfiguring VNF-
based network services. We also stated that the orchestrators can prevent inconsistencies
with no coordination phase. After this research, we bring consistent service provisioning
to the foreground.

7.1 Research findings

We have shown the current limits of algorithms while reconfiguring VNF-based network
services. In this research, we found out the negative side-effects of migrating shared Vir-
tual Network Functions (VNFs). If orchestrators change the location of the VNFs, they
can disturb the services. To prevent unwanted side-effects, we proposed coordinating
the orchestrators so they can accept or reject migrating the shared VNF proposed by
external orchestrators. By doing so, our algorithm got fewer inconsistencies than the
classical heuristic algorithms.

We also found out that the grant messages, sent among orchestrators when they
coordinate, capture some relations among the lifecycle tasks; however, they miss some
of them. Inconsistencies can still arrive because the grants miss dependency relations.
To prevent this, we identified the conditions required to create inconsistency patterns.
Thus, we capture the grants’ undetected patterns. We analyzed such patterns both
in the time and event perspective. By generalizing the conditions, we could prevent
inconsistencies while reconfiguring VNF-based network services.

Another important finding is the first coordination-free orchestration algorithm. We
showed it is possible to achieve consistent VNF-FG reconfiguration without coordinat-
ing the orchestrators. Thus, opening a new research direction in service orchestration.
Unlike all the previous works in the literature, including ours, this last contribution pre-
vents inconsistencies without involving the classical trade-off between performance and
consistency guarantees. We also consider the orchestrators can negate ongoing grants.
Currently, the European Telecommunications Standards Institute (ETSI) NFV standard
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partially supports negations, as all the orchestrators must agree before they reconfigure
the service. The previous results highlight the implications of this research.

7.2 Research implications

We have identified three implications. The first one considers the limits of coordinating
orchestrators through grants. Works that rely on such grants need to consider preventing
the conditions that bring inconsistencies. Otherwise, they will trigger redundant tasks,
wasting resources and time. Works that coordinate orchestrators only using grants need
to reevaluate their approach. One way they can prevent inconsistency patterns is by
removing one condition identified in this research.

The second implication relates to migrating shared VNFs. Before our research, most
works considered dedicated services. However, after our research, service providers must
consider composite services with external dependencies. This means they must coordi-
nate to prevent unwanted effects. The last remains challenging, as many of the works
only try to optimize the cost of migrating shared VNFs. However, by coordinating
orchestrators, the number of inconsistencies reduces, as shown by our results.

Another important implication is the adoption of service providers for coordination-
free approaches. The providers will study coordinate-free approaches to orchestrate
VNF-based network services. Until now, all works considered coordinating orchestrators
to execute VNF-based network services. This research shows how orchestrators recon-
figure VNF-Forwarding Graphs with no coordination phase. They achieve consistent
outcomes despite the possibility of negating ongoing reconfigurations. Next, we evaluate
the limitations of this research. We put them in perspective by comparing them to the
alternatives to handle these limitations.

7.3 Research limitations

The first limitation was considering close federations. They do not allow new participants
to enter, ensuring trustful providers. However, they limit the reach of providers. Service
providers do not always cooperate and compete with others. Orchestrators can apply
proof of work (or another form of zero-knowledge proof) to authenticate the provider’s
shared information. However, such proofs introduce overhead as the orchestrators need
to compute them. We require more research to establish the trade-offs between these
approaches and the ones considered for this research. The second limitation is the type
of VNFs used, namely prototype VNFs. While they give a perspective on performing
our proposed algorithms, providers require more realistic VNFs. This will allow them
to better understand the algorithm’s trade-offs. Next, we develop some open questions
that appear after this research.
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7.4 Open questions

We focus on four open questions. The first one is how the algorithms we proposed
for dependent VNF-based network services would perform with stateful VNFs. In our
research, we consider stateless VNFs for ease of the approach; unless when migrating
shared VNFS. Managing the state of VNFs has an associated overhead and introduces
new dependencies. This means updating the solutions. For example, if it is possible to
manage stateful VNFs using a coordination-free approach, the data structures will be
likely changed to reflect the new VNFs’ type.

The second question asks whether the approach we considered for the scaling task
also applies to other tasks in the lifecycle. Indeed, according to the ETSI standard, some
of these tasks require sending grant messages; however, it is still unknown if the incon-
sistency patterns we found for scaling can apply to these other tasks. For example, the
standard considers that for healing and ending tasks; the orchestrators require sending
grants. It is possible that the same analysis done for the reconfiguration tasks is valid.
Orchestrators also would prevent one condition to ensure consistent service termination.

The third one asks how to extend the VNF-Forwarding Graph. In our work, we only
consider updating this graph by chaining the values of connection points and classifying
rules. Adding new services and VNFs is still an open question with a coordination-free
approach. Some works consider this, but they rely on single-domain orchestration or do
not consider the inconsistencies created by adding new services. This means that novel
Conflict-free replicated data type (CRDT) data structures need to be proposed to add
new services, and by extension, VNFs. For the fourth one, we ask what other problems
in the provisioning of network services under distributed multi-domain federations can
orchestrators achieve by coordination-free approaches. The first approach considers the
current lifecycle tasks. The second approach relaxes the constraints of these tasks to
support coordination-free approaches. For example, the problem of reconfiguring VNF-
based services can be limited to only updating integer values of a service descriptor.
Thus, orchestrators can deploy services using existing CRDTs. However, not all problems
can be solved in a coordination-free approach. Next, we identify the future work by
considering the limits, open questions, and our assumptions.

7.5 Future work

We start the discussion with our two considered assumptions for the research. First,
we considered trustful providers to always provide accurate service information. Service
providers can lie to other orchestrators. To handle adverse providers, some works in the
literature consider competitive orchestrators who maximize their revenue. This makes
these works more robust to failure; however, their overhead increases. This creates
another trade-off between ease of use and complexity. Nowadays, whether a coordinated-
free approach is valid under these assumptions remains unanswered. Thus, we make the
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case for future work that will focus on adversarial networks and environments, especially
with the popular blockchain approaches in recent NFV works. Second, we also assumed
a well-defined and standard interface so orchestrators communicate. In a certain way,
restful protocols can do this; yet interoperability remains unaddressed. Currently, no
standard interface exists. This is one reason we implemented a federation from scratch for
the orchestrators by following the ETSI standard. Based on the review of the literature
for multi-domain architecture and the new uses cases introduced by network slicing, we
think the future works and the ETSI standard will focus on this agnostic interface to
coordinate orchestrators.

The results also would point to new directions to orchestrate VNF-based network
services. The most promising one is the use of coordination-free algorithms. They enable
federating geo-scale VNF-based network services without worrying about performance
issues. Coordination-free algorithms bypass a consensus phase, unlike current reconfigur-
ing algorithms. Yet, the question remains open about which other tasks coordination-free
approaches can solve. We believe the future works that reconfigure federated VNF-based
network services will explore new algorithms. Because of the memory overhead associ-
ated with keeping track of causal history, we think other works will work on optimizing
data structures for the coordination-free approaches. Unsupervised learning techniques
for reconfiguring VNF-based service promises interesting results too. The state of the
art for the single domain has many examples of works that integrated machine learn-
ing and placing VNFs and network services. However, the NFV literature has not fully
explored distributed machine learning approaches. We think more works will integrate
these techniques into multi-domain federations. Having described the broad perspectives
and future work, we put into perspective the research’s impact.

Our research fills the gap in the lack of theoretical results for consistently reconfigur-
ing VNF-based network services. We have shown the correctness of our algorithms both
with experimental and theoretical analysis. Unlike most works in the literature that
focus on experimental results, we generalize our results and present theoretical results.
Indeed, by focusing on formal definitions, we discovered it was possible to reconfigure
VNF-based network services without a coordination phase. Thus, we have established a
new paradigm to orchestrate VNF-based network services, namely the coordination-free
approach. Before our research, the literature did not consider this paradigm. Next,
we detail the published articles and the ones being under revision at the time of this
research.

7.6 Published and submitted articles

• Cisneros, J. C., Yangui, S., Pomares Hernandez, S. E., Perez Sansalvador, J. C.,
& Drira, K. (2020). Coordination Algorithm for Migration of Shared VNFs in
Federated Environments. 2020 6th IEEE Conference on Network Softwarization
(NetSoft), 252–256. https://doi.org/10.1109/NetSoft48620.2020.9165333
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• Towards Consistent VNF Forwarding Graph Reconfiguration in Multi-domain En-
vironments (Accepted for the IEEE CLOUD conference).

• VNF-Based Network Service Consistent Reconfiguration in Multi-domain Federa-
tions: A Distributed Approach (Accepted in the Journal of Network and Computer
Applications).

• Coordination-free Multi-domain NFV Orchestration for Consistent VNF-
Forwarding Graph Reconfiguration (Submitted to TNSM).
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