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Tout cela, ce ne sont que d'absurdes allégories, dit Varvara Pétrovna se fâchant enfin, vous n'avez pas répondu à ma question : pourquoi ? J'insiste pour avoir une réponse.

-Je n'ai pas répondu "pourquoi" ? Vous attendez une réponse au "pourquoi" ? répéta le capitaine en clignant de l'oeil ; ce petit mot "pourquoi" est répandu dans tout l'univers depuis le premier jour de la création, Madame, et toute la nature crie à chaque instant à son Créateur : "Pourquoi ?" et depuis sept mille ans elle n'obtient pas de réponse. Est-ce donc au seul capitaine Lébiatkine de répondre et est-ce juste, Madame ? » F. Dostoïevski, Les Démons.

Et voilà posé le point final de cette thèse... Alors, je ne peux m'empêcher de me demander: au delà de quelques articles scientifiques, que restera-t-il vraiment de ce manuscrit, dans dix ans, dans un siècle ? Peut-être la source d'une révolution en physique des plasmas... Ou peut-être, plus probablement, et comme la plupart de nos oeuvres, bien peu de chose. Ce qu'il restera en revanche je crois, ce sont les idées échangées, les discussions autour d'un café, d'un tableau, d'un repas ou au détour d'un couloir; plus profondément resteront, quelque part, les relations nouées.

Pour chacune de ces relations, éphémères ou durables, légères ou approfondies, dont je me suis nourri pendant ma thèse, et auxquelles ce travail doit énormément, je souhaite dire un grand merci.

Merci tout d'abord à l'ensemble des membres de mon jury, que j'ai eu le plaisir de rencontrer à l'occasion de ma soutenance. Merci d'avoir accepté d'évaluer mon travail; je remercie particulièrement mes rapporteurs pour leur relecture utile et leurs corrections.

Merci à l'ensemble du Laboratoire de Physique à l'ENS de Lyon, au sein duquel je me suis toujours senti comme "à la maison". L'ambiance simple et bon enfant qui y règne, sans rien sacrifier à l'exigence de travail, doit beaucoup je crois à l'impulsion donnée par le directeur du laboratoire. Merci à Thierry et Jean-Christophe qui ont successivement occupé cette fonction pendant ma thèse, pour leur disponibilité et leur sollicitude. Le bon environnement de travail du laboratoire est également inséparable des différents services de support, secrétariat, gestion, ingénieries électronique et mécanique, dont j'ai grandement bénéficié.

Résumé

Les ondes azimuthales qui se développent aux bords des plasmas de fusion sont connues pour être responsables d'un transport radial important, qui nuit à un confinement efficace du plasma. Ce transport causé par turbulence d'ondes, aussi appelé transport turbulent, est aujourd'hui l'un des obstacles majeurs à la maîtrise d'une production d'énergie par fusion contrôlée. Dans ce travail de thèse, des ondes azimuthales de type basse-fréquence (i.e. dont la fréquence est inférieure à la fréquence cyclotronique ionique) ainsi que des ondes acoustiques ioniques se développant aux bords d'une colonne de plasma magnétisée sont observées expérimentalement, et étudiés en lien avec des mesures de transport turbulent. Ces ondes et le transport qu'elles génèrent sont ensuite modifiés via l'injection radiale de courant dans le plasma.

L'installation expérimentale est constituée d'une chambre cylindrique de 80 cm de long et 20 cm de diamètre, contenant une colonne de plasma d'argon de 10 cm de diamètre, avec un taux d'ionisation allant en moyenne jusqu'à 20%. Le plasma est généré par une source inductive de puissance 1 kW, et confiné par un champ magnétique de 100 à 700 G. Les profils radiaux des paramètres plasma sont mesurés de manière exhaustive dans les différents régimes à l'aide de sondes de Langmuir et de sondes émissives. Une sonde cinq pointes est de plus utilisée pour mesurer les profils moyens ainsi que l'évolution temporelle du transport turbulent. Enfin une caméra filme la lumière naturellement émise par la colonne de plasma, dans un plan transverse au champ magnétique, à une fréquence de 200 kfps et une résolution de 256 px 2 . La lumière ainsi mesurée est comparée à des mesures simultanées de sonde, et apparaît ainsi fortement dépendre de la température électronique -alors que l'imagerie rapide est usuellement uniquement associée à la densité du plasma dans de telles conditions expérimentales.

Les images obtenues par caméra rapide mettent en évidence la présence d'ondes azimuthales évoluant à des fréquences de l'ordre du kHz. Ces modes sont extraits par transformée de Fourier 2D, fournissant leur dynamiques individuelles et leur interactions. À faible champ magnétique (B = 160 G) les modes sont clairement identifiés à des ondes acoustiques ioniques. Les interactions faiblement non-linéaires entre certains modes bien définis sont de plus mise en évidence de manière quantitative à l'aide de calculs de bicohérence. Pour de plus hautes valeurs de champ magnétique (B ≥ 320 G) des ondes basse-fréquence de type Kelvin-Helmholtz et Rayleigh-Taylor sont identifiées par calcul de taux de croissance et par la mesure du déphasage entre les fluctuations de densité et de potentiel flottant. Des mesures simultanées caméra / sonde permettent d'étudier le lien entre la dynamique des modes et l'évolution du transport radial.

Enfin une électrode en tungsten est placée au centre de la colonne de plasma, chauffée jusqu'au niveau d'émission thermoionique, et polarisée négativement par rapport aux parois de la chambre à la masse. Un courant thermoionique de l'ordre de quelques Ampères est injectée des parois au centre du plasma, et modifie fortement les profils de densité et de potentiel plasma. It is estimated that over 99% of the visible matter of the universe consists of ionized gaz, also called plasma. The behaviour of this state of matter is governed by the electromagnetic interactions between the charged particles it is composed of, ions and electrons, inducing a global dynamic that is very distinct from that of the neutral fluids observed on Earth. Stars, the solar wind, the interstellar medium, although being very disparate objects in terms of densities and temperatures, all need to be described by plasma physics to be well understood. Beyond astrophysics, the use of artificial plasmas for industrial purposes has grown increasingly in the last decades, for the etching of microprocessors of the development of space thrusters for instance. Then, in between fundamental research and industrial application, the search for the production of sustained fusion reactions, that naturally occurs inside stars, has emerged since the 1950s as another important field of plasma physics. Controlled thermonuclear fusion is hoped to be used as a means of energy production, that would has the advantage of combining a high energetic yield with a low carbon impact.

In most of these contexts the plasma undergoes a magnetic field that affects its dynamics. A charged particle subjected to a magnetic field will have its velocity converted into rotation in the direction perpendicular to the field lines. With a strong enough magnetic field the time and length scales of this gyration motion can get much smaller than the typical scales of the physical phenomena occurring in the plasma. The trajectories of the charged particles are then tied to the magnetic field lines : the plasma is called magnetized. In stars and other astrophysical phenomena, most plasmas are magnetized, by a magnetic field that is generated from natural processes. In tokamaks on the contrary (the most common type of machines built to hold fusion reactions) it is imposed externally, as a mean of plasma confinement. In the functioning of most plasma thrusters designs an imposed magnetic field is also required. Now as will be seen later the theoretical modelling of plasmas can prove to be challenging. Plus in most cases the theoretical approach is not sufficient to entirely understand the physical processes at stake : the investigation of magnetized plasmas at an experimental level is necessary. In this context a wide variety of experimental set-ups are built to generate magnetized plasmas at low temperature and low pressure. These plasmas are easier to manage experimentally than fusion plasmas for INTRODUCTION instance : they can therefore be used, as it is done in this PhD, for the in-depth investigation of complex features in the case of a simplified physical situation.

One of the most classical type of set-up for the experimental investigation in low pressure magnetized plasmas, called linear device, consists in generating a plasma column of cylindrical shape confined by an axial and homogeneous magnetic field. In spite of its simplicity, such a configuration is notably enough to generate a wide range of instabilities, some of which can be related to what is observed in tokamaks where the plasma shape, though toroidal, is locally close to a cylinder. One can notably observe the appearance and development of low frequency waves (i.e. which frequency ω is much smaller than the ion gyrofrequency ω c,i ) of various types, travelling in the azimuthal direction : drift waves (DW), Rayleigh-Taylor (RT) waves, also called flute modes in this context, and Kelvin Helmholtz (KH) waves [Jassby, 1972, Brochard et al., 2005]. These low-frequency (LF) waves are notably thought to be responsible, through wave turbulence, of an increased radial transport at the edges of fusion plasmas. The study of these waves, related to the transport they trigger, in one of the main focuses of this PhD. Note that it is chosen to provide a detailed state of the art on LF waves in the body of the manuscript rather than in the present introduction (see the introduction of chapter 6). A great number of linear devices have been developed around the world. A few example are listed here, that have been particularly used for the study of LF waves, or used as references in this PhD.

Linear devices for the investigation of low frequency waves

During the last two decades the linear devices KIWI [START_REF] Block | Synchronization of drift waves[END_REF], VINETA [START_REF] Windisch | Radial propagation of structures in drift wave turbulence[END_REF] and MIRABELLE [START_REF] Brandt | Spatiotemporal mode structure of nonlinearly coupled drift wave modes[END_REF] have been dedicated to the study of LF waves and their link to turbulent transport. The development of drift waves leading to wave turbulence was observed in KIWI [START_REF] Klinger | Chaos and turbulence studies in low-beta plasmas[END_REF]. Drift waves were also observed and finely characterized in VINETA [START_REF] Grulke | Laboratory studies of drift waves: nonlinear mode interaction and structure formation in turbulence[END_REF], and the apparition of convective structure linked to the waves and taking part in the radial transport was measured [START_REF] Windisch | Radial propagation of structures in drift wave turbulence[END_REF]. In MIRABELLE, Kelvin-Helmholtz, Rayleigh-Taylor then Drift waves were observed by [START_REF] Brochard | Transition from flute modes to drift waves in a magnetized plasma column[END_REF] to develop one after the other as the magnetic filed is increased from 100 G to 1200 G. The non-linear nature of the LF waves interactions was also measured [START_REF] Brochard | Experimental evidence of mode coupling in drift wave intermittent turbulence using a wave number bicoherence analysis[END_REF], Brandt et al., 2011].

These linear devices have also served for the investigation of control schemes for the reduction of the turbulence and eventually the transport it triggers. The control of wave turbulence by forcing the development of given modes is reported in KIWI [START_REF] Block | Synchronization of drift waves[END_REF], Gravier et al., 2000, Schröder et al., 2001]. A more detailed state of the art on the LF wave control in linear devices is provided later on the manuscript (see the introduction of chapter 7).

Another linear device that needs to be mentioned is CSDX [START_REF] Burin | On the transition to drift turbulence in a magnetized plasma column[END_REF]. Non-linear interactions between drift modes were studied in this device, in relation to the energy transfers they are responsible for [START_REF] Xu | Study of nonlinear spectral energy transfer in frequency domain[END_REF]. Instabilities of the types KH, RT and DW were observed in a detailed study of transition to turbulence by [START_REF] Thakur | Multi-instability plasma dynamics during the route to fully developed turbulence in a helicon plasma[END_REF]. The shape of turbulent transport radial profiles in CSDX was further investigated [START_REF] Cui | Up-gradient particle flux in a drift wavezonal flow system[END_REF] and the flow structures linked to drift waves turbulence precisely characterized with advanced probe diagnostics [START_REF] Brandt | Investigating flow patterns and related dynamics in multi instability turbulent plasmas using a three-point crossphase time delay estimation velocimetry scheme[END_REF]. The linear device LAPD is an order of magnitude larger, with a length of 18 m, to be compared to the more classical lengths of the order the meter of the previously mentioned devices. The studies in this linear device have complemented the understanding of LF waves turbulence [Carter, 2006,Rogers andRicci, 2010] and the techniques of wall biasing for the control of radial transport [START_REF] Maggs | Transition from bohm to classical diffusion due to edge rotation of a cylindrical plasma[END_REF]Maggs, 2009]. Beyond the study of LF waves and turbulence this linear device has allowed the development of advanced plasma diagnostics. To mention a single example, the design of a robust emissive probe (used to measure the plasma electric potential) was made possible in the LAPD set-up [START_REF] Martin | A resistively heated ceb6 emissive probe[END_REF].

The general characteristics of the linear devices presented here are summarized in Table 1. A few other linear devices which experimental results were used during this PhD are also reported for comparison (HELIX, WOMBAT, MISTRAL). The final list of Table 1 is not exhaustive. Other devices have been used for the study of LF waves, but they are not reported here. Note that the linear device VINETA is now dedicated in large part to the study of magnetic reconnection [START_REF] Bohlin | Vineta ii: A linear magnetic reconnection experiment[END_REF]. Table 1: Detailed characteristics of a chosen sample of linear devices. Results obtained in most of these devices are been used in this PhD work. The types of sources listed here correspond to different ways of generating the plasma, with Helicon waves (HW), RF inductive source, or by thermoionic discharge (TD) placed at one or at the two ends of the chamber.

A linear device at ENS de Lyon

The VKP linear device developed at the Laboratoire de Physique -ENS de Lyon is L = 80 cm long and D = 20 cm wide in diameter [START_REF] Plihon | Flow dynamics and magnetic induction in the von-k'arm'an plasma experiment[END_REF]. This experimental set-up was initially dedicated to the control of the plasma column azimuthal rotation, using an emissive cathode.

An electrode is placed inside the plasma column, heated up to the level of thermoionic emission, and biased with respect to the chamber ground. The influence of an emissive cathode on the plasma rotation is reported in [START_REF] Désangles | Rotation and shear control of a weakly magnetized plasma column using current injection by emissive electrodes[END_REF]. Over the course of this investigation LF waves were observed [Désangles, 2018]. The modification of these waves via the emissive cathode showed promising results. A fast camera imaging diagnostics was in the same time developed on VKP. Plasma naturally emitted light is recorded, in a plane transverse to the plasma column. While being non intru-INTRODUCTION sive, this diagnostic provides rich information on the spatio-temporal evolution of the plasma. The strength of camera imaging diagnostic relies on the analysis techniques that are used to extract information from the images. Mode decomposition techniques allow the extraction of the spatio-temporal evolution of individual modes [START_REF] Brandt | Spatiotemporal mode structure of nonlinearly coupled drift wave modes[END_REF], Désangles et al., 2020]. Images analysis can also be used for bicoherence computation, characterising with accuracy the waves non-linear interactions. In the linear devices previously mentioned, camera imaging has been used to better characterize the LF waves [START_REF] Brandt | Spatiotemporal splitting of global eigenmodes due to cross-field coupling via vortex dynamics in drift wave turbulence[END_REF], exhibit non linear interactions [START_REF] Oldenbürger | Investigation of mode coupling in a magnetized plasma column using fast imaging[END_REF], observe the spatial evolution of coherent structures triggered by wave turbulence [START_REF] Antar | The origin of convective structures in the scrape-off layer of linear magnetic fusion devices investigated by fast imaging[END_REF]. Dedicated reviews are provided later in the manuscript, focused on the camera imaging diagnostics (see section 2.3) and on the image analysis (see chapter 3).

The combination of the emissive cathode's use for LF waves modification, with the plasma observation by camera imaging, was expected to yield new results on the LF waves characterisation, energy exchanges and link to radial transport. This PhD has therefore been focused on the study of the azimuthal waves developing in the plasma column and their modification by an emissive cathode, with the extensive use of camera imaging.

Types of plasma modelling

Theoretical modelling is complementary to the experimental study of plasmas. The predictions brought by plasma modelling are necessary to built diagnostics, and for the physical interpretation of any experimental result. The usual types of plasma modelling are presented in the following.

Kinetic theory

In the kinetic description of a plasma, each species α (the electrons, and the various types of ions and neutrals) is described by the distribution function f α ( x, v, t) of its particles, represented in the phase space ( x, v) of the positions x and speeds v, and as a function of time t. This is the most precise modelling of a plasma : each particle dynamics is taken into account in the distribution functions. In this context the density n α and velocity v α of the species α at position x and time t are given by : 3 (1) 3 (2)

n α ( x, t) = +∞ -∞ f α ( x, v, t) dv
v α ( x, t) = 1 n α ( x, t) +∞ -∞ f α ( x, v, t) v dv
The evolution of the distribution functions f α ( x, v, t), that entirely describe the plasma dynamics, are governed by the Botzmann equation :

∂f α ∂t + v. ∇ x f α + d v dt . ∇ v f α = ∂f α ∂t C (3) with ∂fα ∂t C
the variation of the number of particles in the phase space location ( x, v), caused by collisions. Note that when this term is neglected, we are under the hypothesis of a collisionless plasma, and equation ( 3) is called the Vlasov equation. For a complete description of the plasma, equation (3) has to be completed by the Maxwell equations that are reminded in appendix. At equilibrium it is shown that the distribution functions follow a so-called Maxwellian form :

f α (v) = n α m α 2πk B T α 3/2 e -mαv 2 2k B Tα (4)
with m α the mass of species α, k B the Boltzmann constant, and T α a measurement of the velocity distribution function width, defined as the temperature of species α. This leads to an average velocity of species α given by [START_REF] Lieberman | Principles of Plasma discharges and materials processing[END_REF] :

vα = v vf α (v)dv = 8k B T α πm α (5)
Using this average velocity the flux crossing a plane reads Γ z+ = nv 4 [START_REF] Chabert | Physics of radiofrequency plasmas[END_REF]. These elements are used throughout this PhD. Note that they are dependent on the hypothesis of a Maxwellian distribution of the velocities. This might not be perfectly verified in the experimental conditions of this PhD, but the departure of the real velocities distributions from a Maxwellian is estimated sufficiently small so that the previous results remain valid. The main advantage of the kinetic theory is that it describes the microscopic processes taking place in the plasma. But the price of this accuracy is a high complexity, with 7 independent variables and a collision term in the Boltzmann equation that is difficult to model. The integration of the Boltzmann equation comes with information loss, but reduces the number of variables, and yields quantities that are easier to manipulate than distribution functions.

Multi-fluid model

The Boltzmann equation ( 3) is multiplied by v p and integrated in the interval v = [-∞ : +∞]. This is done for each species. The resulting equations are the p th moments of the Boltzmann equation, and compose with the Maxwell equations, the multi-fluid modelling of a plasma. The moments of order zero yields the continuity equations, that reads for each species α :

∂ t n α + ∇.(n α v α ) = 0 (6)
The first order moments of the Boltzmann equation result in the fluid equations, given by :

m α n α (∂ t + v α . ∇)( v α ) = -∇p α + q α n α ( E + v α × B) (7)
with q α the charge, m α the mass, and p α the pressure of species α. With the multi fluid modelling the notion of pressure emerges, that takes into account at a macroscopic level the collisions between particles of a same species. The pressure is linked to the width of the function distribution, referred as the temperature T α , by

p α = n α k B T α .
This description is less precise that the kinetic theory modelling, but it has enough accuracy to well describe the physical phenomenon observed in the experimental plasma conditions of this PhD. It is the modelling that will be used throughout this manuscript.

INTRODUCTION

Magnetohydrodynamics

Under the conditions of a sufficiently high magnetic field and high ionization level, the plasma charged species evolve together and their dynamics is bounded to the magnetic field lines. In these conditions the equations of the multi-fluid modelling can be combined to yield a unique set of equations. The plasma is then described as a simple charged fluid of mass density ρ = 1/ α m α . α m α n α , charge Q = α n α q α , pressure p and velocity u = 1/ α n α m α . α n α m α v α . The current density is also defined as J = α Q α v α . This modelling is the frame of magnetohydrodynamics (MHD), and results in the following continuity and fluid equations :

∂ t n + ∇.(n u) = 0 (8) ρ ∂ u ∂t + u. ∇ u = -∇p + J × B (9)
These equations are coupled to the Maxwell equations, which result in a set of equations for the evolution of the electric field (Ohm's law equation) and the magnetic field (induction equation) that are not detailed here. As will be seen the experimental plasma conditions in this work are not suited to a MHD modelling.

Outline of the manuscript

The work that was done during this PhD is presented in three parts. First the experimental set-up (chapter 1), diagnostics (chapter 2) and analysis tools (chapter 3) are described. In the first chapter the linear device is presented in details and the experimental control parameters are introduced. The orders of magnitude of the global plasma characteristics are then derived. It is shown that the present plasma is weakly ionised, and that the plasma charged particles collisions with the neutrals create a friction that has to be taken into account in the plasma dynamics. The electrons are showed to be magnetized, whereas the ions are not.

A second chapter is dedicated to the experimental diagnostics. The classical plasma diagnostics of Langmuir and emissive probes are introduced, and their functioning is explained in details. These probes provide a measurement of the plasma density, electron temperature, floating potential, and plasma potential. A five-tips probe was developed in the course of this PhD, allowing the measurement of the turbulent transport. Its design, characterisation and functioning are presented. Measurements of the plasma density by interferometry are then exposed. They validate the results obtained by Langmuir probes, that can be used for higher density regimes but that are prone to large uncertainties. A last and substantial part of the chapter is dedicated to camera imaging. The diagnostic is presented, and the dependence of plasma emitted light with the plasma parameters is explored in details. Plasma light fluctuations are commonly used as a proxy for the density fluctuations. It is shown that in the present regimes of moderate magnetic field, the electron temperature is also a key parameter influencing the plasma emitted light, and should not be neglected. A simple model following an Arrhenius form is proposed, and is validated by simultaneous measurements of probe and camera imaging.

The analysis tools applied on camera images are explained in a third chapter. The mode decomposition techniques of 2D Fourier transform and Proper Orthogonal Decomposition are presented. The principles of bicoherence computations, that enable the quantification of weakly non linear interactions between the extracted modes, are then explained.

A second part presents the plasma column dynamics : at a zero order level (chapter 4), then at first order with the throughout description of azimuthal waves for a low magnetic field (chapter 5) then with a higher magnetic field (chapter 6). The plasma column is precisely characterized via probes measurements, in terms of density, electron temperature, floating potential and plasma potential, for the four values of the confining magnetic field used in this work. These data are exposed in chapter 4. A simple derivation of the zero order flow of the plasma is also given. Combined with the probe measurements, the prediction of a global rotation of the plasma column is deduced.

In chapter 5 the azimuthal waves observed by camera imaging at a low magnetic field of 170 G are presented. Their rotation velocity is shown to be close to the ion acoustic speed. A derivation of the ion acoustic waves dispersion relation is then performed. This is done taking into account the electrons magnetization, the friction with neutrals, and the zero order plasma column rotation introduced before. The comparison between theoretical and experimental phase velocities shows a very good agreement, validating the identification of the waves as ion acoustic modes. The energy exchanges between the modes are finally presented, and their non-linear nature is demonstrated via bicoherence computation.

Ending the second part of this work, chapter 6 presents the investigation of low frequency waves developing in the plasma column for values of the magnetic higher than 340 G. After a review on LF waves, a precise identification of the modes developing in the plasma column is done. To this end the phase shift measured by five-tips probe between the density and the floating potential is used as a discriminating criteria. This is combined with growth rate computations from probe radial profiles of the plasma parameters, and with theoretical to experimental phase velocity comparisons. It is shown that the observed waves are Kelvin-Helmholtz modes, with the exception of one clearly identified Rayleigh-Taylor modes at a magnetic field value of 510 G. Bicoherence computation is then used to demonstrate that these modes of distinct types interact non-linearly, as well as most of the Kelvin-Helmholtz modes between them. Lastly measurements of the radial turbulent transport shows a inward transport, mostly caused by coherent Kelvin-Helmholtz waves.

A third part introduces the emissive cathode, and its impact on the plasma column mean profiles and azimuthal waves (chapter 7). A series of measurements by five-tips probe reveals that the hot and floating cathode has a moderate impact on the plasma parameters mean profiles. However the azimuthal waves are strongly impacted, and even suppressed at high magnetic field of 510 G and 680 G, as is confirmed by camera imaging. Then radial current is injected by a negative bias applied to the hot cathode. This is shown to peak the central density, and to lower the plasma potential to a value close to the applied bias. The consequence on the plasma parameter fluctuations is the development of a strong rotating spoke, that is shown to cause bursts of outward transport.
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Part I

Experimental set-up, diagnostics and analysis tools

1 Plasma generation and characteristics « -Tu vois bien, La-clef-des-coeurs ! dit Beau-pied. Eh bien ! tu resterais cent décades sans deviner à quoi sert ce fourniment là.

-Est-ce que je m'y connais aux uniformes du pape ! répliqua La-clef-des-coeurs.

-Méchant pousse-caillou, tu ne t'instruiras donc jamais ! »

Les Chouans, H. de Balzac.

The experimental set-up that is used throughout this PhD is presented. The plasma generation is explained and the control parameters are introduced. Then a number of plasma characteristics are presented and numerically evaluated under the present experimental conditions. 

Generation of a plasma column 1.The experimental set-up

The experimental set-up that has been used over the course of this PhD consists in a cylindrical steel chamber of length 80 cm and diameter 20 cm, containing an Argon plasma column that is maintained at a pressure of the order the mTorr (Fig. 1.1). The plasma source is an inductive 3-turns helicoidal coil wrapped around a 20 cm long, 11 cm inner diameter borosilicate tube that is connected at one end of the chamber. The plasma is generated in the vicinity of the source tube wall and expands in the steel chamber. This tube ends in a 11 cm diameter BN disk, and the opposite side of the chamber ends in a borosilicate window; both ends of the plasma column meet dielectric boundary conditions. The origin of z-axis is set at the junction between the source and the chamber, and that of the (x, y)-axis at the center of the chamber. The inductive source is fed by a 3.5 kW, 13.56 MHz radio-frequency power supply (MKS SurePower QL 3513), through a manual L-type matching box of variable capacitances C load and C tune with maximum values 500 pF and 1000 pF respectively.

A confining magnetic field is produced by three coils placed along the chamber, centred at z = 3 cm z = 29 cm and z = 69 cm along the axis. Each coil is composed of 100 copper annular slabs of inner and outer diameters 26 cm and 56 cm respectively, each in contact to the next one by half its surface, resulting in N = 50 helical turns and a total thickness of δz ∼ 11.5 cm. Note that the thickness of all the copper slabs is not exactly identical, resulting in a ∼ 5% variation of δz between the coils. The coils are connected in series to a TDK lambda power supply, delivering up to 1000 A of current. Each coil has a resistance of ∼ 30 mΩ. The magnetic field generated reaches values of 1600 G on the z-axis; its shape and characteristics are discussed in more details in subsection 1.1.2.

The control parameters of our experiment are therefore defined by the plasma base pressure p 0 , the power of the source P w and the confining magnetic field B. The ranges of available values for these parameters are given in table 1.1.

Access ports to the inside of the chamber are located at z = 16 cm and z = 49 cm (see p 0 (mTorr) 0.8 -10 P w (W) 700 -3000 B (G) 35 -1600 blue dashed line in Fig. 1.1 left), at various azimuthal positions. At these location along z, that are respectively denoted L 1 and L 2 in the following, probes can be inserted and measurements performed at any radial position. The types of probe that are used in this work are detailed in chapter 2. Extensive series of probe measurements are exposed in chapter 4. As an simple introduction to the global plasma shape, radial profiles of the density, electron temperature and plasma potential are presented in Fig. 1.2 for B = 170 G, P w = 1 kW and p 0 = 1 mTorr. The density is of order 10 18 m -3 , the electron temperature of a few eV and the plasma potential is negative, of absolute value a few volts. These profiles are commented later in section 2.3, chapter 4 and chapter 6. In addition to probe measurements a camera is placed away from the right end transparent window with a set of two mirrors (see Fig. 1.1), and the light naturally emitted by the plasma column is recorded. This type of measurement is also extensively presented in chapter 2. In order to study the influence of plasma potential modifications on the plasma equilibrium and on the azimuthal waves that develop inside (see chapters 5 and 6) an emissive cathode will be used. This device is presented in chapter 7.

Shape of the magnetic field

In most linear devices the magnetic field is designed to be as homogeneous as possible along the chamber. This reduces the importance of 3D effects along the z-direction and allow to consider the boundary conditions and magnetic configuration as 2D-axisymmetric (which can however lead to dynamics in 3D) [START_REF] Pierre | Magnetized double plasma device for wave studies[END_REF],Burin et al., 2005,Gekelman et al., 2016]. It is in this spirit that the plasma column is studied in this PhD : in the next chapters the confining magnetic field will be considered constant inside the chamber. This is however a strong assumption, that is discussed here.

The experimental set-up that is used for this work was originally intended at studying phys-ical processes in 3D magnetic configurations [START_REF] Plihon | Flow dynamics and magnetic induction in the von-k'arm'an plasma experiment[END_REF], Désangles, 2018], making the need for a clean homogeneous axial magnetic field unnecessary. Additionally the probes access ports were devised large enough to allow for a wide variety of diagnostics to be performed. Therefore due to the coils positions and the important spaces between them, the confining magnetic field that is generated has strong ripples along z. This has an impact first on the choice of the reference value to take for B when a unique value is needed for plasma quantities computations (e.g. plasma column rotation discussed in [Désangles, 2018], or turbulent transport computations in section 2.1). Second this inhomogeneity has to be taken into account in the physical interpretation of camera images, that result from a light integration along z. The first point is elucidated in the following of this section; the second is tackled when presenting the camera imaging diagnostic in section 2.3. Let us first determine the magnetic field shape inside the chamber and the source. This is done by a numerical computation performed on Matlab using the Biot&Savart law, with the three coils modelled as single loops of radius r 0 = 19.5 cm, such that 1 r 0 = rext r int 1 r , r int = 13 cm and r ext = 28 cm being the interior and exterior radii of the real coils. The resulting map of the magnetic field inside and around the chamber is plotted in Fig. 1 A few remarks are worth being noted. First radial variations of B are observed (Fig. 1.3 (right)). At the coils locations z 1 , z 2 and z 3 , the magnetic field increases on average by ∼ 19% from the center of the chamber to the wall. At the access ports positions L 1 and L 2 a decrease of ∼ 13% is observed. Note moreover that these variations are mainly localized in the outer region of the plasma column between r = 5 cm and r = 10 cm, where the plasma is much less dense (see chapter 4). This leads us to make the approximation of a constant confining magnetic field along r, equal to its value on the z-axis.

On the other hand, and as one could have expected, the axial inhomogeneity of B is rather strong. The ratio of B/I B plotted in Fig. 1.3 (center) varies from 2.11 to 1.19 G.A -1 between its strongest values close to z = z 2 (position of the middle coil) and its weakest one at z = L 2 (second access port). Note that as a consequence, the positions where probe measurements are done correspond to regions of very different values of B, with a 38% decrease over ∼ 30 cm between z = L 1 and z = L 2 . Nevertheless for any given current I B , a unique value of B will be chosen to account for the confining field. Beyond the simplicity of use it brings, the motivation for this approximation is to treat the plasma column as a whole, in terms of mean profiles and gradients of plasma parameters, rotation speed, instability growth, etc... (see parts II and III). The effects of inhomogeneity along z (inhomogeneity of B, position of the source, access ports on the chamber walls etc...) are not considered.

In previous work on the same experimental set-up [Désangles, 2018] the value chosen for B was that of the z = L 2 position, since the vast majority of the measurements were performed at this location. Here, we prefer to take the mean value of B along the z-axis : B = 1 L z B(z)dz, with L = 80 cm the chamber length. A substantial part of the work presented in this PhD being related to fast camera imaging, where the plasma light is integrated over z, this choice for B seemed better suited.

As a reference for future analysis, and for comparison with previous work, Table 1.2 sums up a list of values for B, at locations z = L 1 and z = L 2 on the z-axis, and integrated over z, with respect to the current in coils I B . The four values of B that are systematically explored in Parts II and III are highlighted in bold. The amplitude of the magnetic field scales linearly with the current. In this PhD the converting factor is set to B/I B = 1.7. 

B/I B (G.A -1 ) 1.92 1.19 1.70
Table 1.2: Values of the magnetic field at the center of the chamber, at the positions along the axis L 1 = 16 cm (B L1 ), L 2 = 49 cm (B L2 ), and integrated along z ( B ). The conversion factor to get B from the current in the coils I B is provided on the right.

Typical plasma run

In the context of inductive discharges, the source coil and the plasma can be modelled in a crude and simple way as a resistor and a inductor in series (for more details see [START_REF] Chabert | Physics of radiofrequency plasmas[END_REF]). The source power supply is designed for a specific impedance of 50 Ω.

When the total impedance of the devices connected to the power supply (that includes the plasma being generated) is different from 50 Ω, part of the power is reflected and does not participate in the plasma ionization. The ability to efficiently produce an inductive plasma discharge therefore depends on the state of the plasma itself, which impedance cannot be controlled.

In order to adapt the total impedance of the circuit connected to the RF power supply, a intermediate matching box is added, that consists in a couple of variable capacitors. One of the capacitors is plugged in series with the source coil, the other on in parallel, which provides two degrees of freedom in the impedance matching process. In practice these capacitors are manually adjusted after the power supply is turned on, until the reflected power gets lower than 1 % of the RF power setpoint P w . Since the impedance match only depends on the plasma conditions, when a series of measurements needs to be done at fixed values of the control parameters, the match is done once at the start and is left unmodified for the rest of the experimental runs.

Another important point that has to be mentioned is the high sensitivity of the plasma ignition to the external magnetic field. The latter contributes to confine the electrons resulting from ionizations, thus making them participate to the ionization process. If the magnetic field is absent or too weak (I B ≤ 20 A), the electrons are not confined and get lost at the walls too quickly for a substantial plasma density to be sustained (i.e. to reach n ∼ 10 17 m -3 ). On the other hand, if it is too strong at the ignition (I B ≥ 200 A) the electrons are not free enough to move perpendicular to B and the ionizing collisions are impeded. In both cases the discharge remains mostly capacitive. As a conclusion it is necessary to turn on the magnetic field before the power supply, but to limit the current : a maximal value of 100 A is chosen. Then once the plasma is inductively generated thanks to the RF power, I B is ramped up if necessary. To sum up, the course of a plasma run is the following : the magnetic field B is initialized at a low value (I B ≤ 100 A), the source power is ramped up, B is then raised to its final value. Then a typical waiting time of 2 seconds is set for the regime to stabilize, before performing a measurement. Once the measurement is over, the RF power then the magnetic field are turned off. The experimental runs are automatized, with the data acquisition devices and almost all components of the set-up simultaneously controlled via a Labview program. Two characteristic examples of plasma runs are shown in Fig. 1.4 via the light collected under the source by a photodiode. The steps aforementioned can be recognized, and are detailed on the left of Fig. 1.4 that shows an example of a typical steady run. Figure 1.4 (right) is an example of an unsteady run, that can be due to an imperfect impedance match, or the intrusiveness of a probe. All the results presented in the following chapters correspond to measurements obtained in steady state conditions.

Finally note that the cooling system consists in simple fans, which limits the length of plasma shots that can be done. As a consequence the plasma is pulsed : an experimental run lasts a few seconds, and is spaced with each other with a waiting time on the order of one minute. The plasma reproducibility is tested with a series of Langmuir probe measurements at B = 170 G, P w = 1 kW and p 0 = 1 mTorr : over a series of 40 shots the collected ion saturation current varies within ±0.6 % with a standard deviation of 0.2 %. 

Global plasma characteristics

The global characteristics of the plasma column are now investigated. The results presented in the following chapters can then be better compared to similar studies, whether experimental measurements on other devices or numerical simulations. For the computation of the various quantities discussed here, typical measured values of the plasma parameters are used as input values. The way they are measured is not detailed here; this will be the subject of the next chapter.

Classical plasma parameters : orders of magnitude

The plasma density n of the plasma column ranges from 10 17 to a few 10 18 m -3 , the electron temperature T e is of the order of a few eV and the ion temperature T i of a few tenths of eV. For the sake of estimating various plasma parameters in this section, we choose to set n ≈ 2.10 18 m -3 , T e ≈ 4 eV and T i ≈ 0.2 eV as sufficiently representative values of our plasma conditions. They correspond to typical control parameters values throughout this work of B = 170 G, P w = 1 kW and p 0 = 1 mTorr.

The Debye length λ D , plasma frequency ω p,α and thermal velocities v th,α with α = e, i for the electrons and the ions respectively, read :

λ D = 0 k B T e ne 2 1/2 ω p,α = ne 2 0 m α 1/2 v th,α = λ D .ω p,α = k B T α m α 1/2
The values of these parameters are given in Table 1.3. The Debye length (11 µm) is much smaller than the typical length scale of the physical phenomena studied here (millimetric to centimetric scales), and we have λ D R with R the chamber diameter. This ensures quasineutrality to be valid within the scope of this PhD work. Note also that the plasma frequency sets the lower limit of the electromagnetic (EM) waves that can travel inside the plasma; the value of ω p,e ∼ 13 GHz (corresponding to a density of n ∼ 2.10 18 m -3 ) is relatively high with respect to EM wave generation standard equipment, and will limit the use of the interferometer to low density regimes (see section 2.2). λ D 11 µm ω p,e 13 GHz ω p,i 47 MHz v th,e 840 km.s -1 v th,i 690 m.s -1 Table 1.3: Typical length and time scales under our nominal plasma conditions of n ∼ 2.10 18 m -3 , T e ∼ 4 eV and T i ∼ 0.2 eV. Note that for simplicity, the frequencies are not given in rad.s -1 but directly converted and expressed in Hz.

Degree of ionization

The energy provided for the ionization of Argon atoms and the generation of a sustained plasma is limited by the design and the power supply of the source : in the present experiments the gas is not fully ionized. As will be seen later the remaining neutral atoms can alter the plasma dynamics in a non negligible way (e.g. section 5.3): it is thus useful to estimate in what proportion they compose the plasma. The degree of ionization χ of a plasma is given by χ = n n+nn , with n = n i = n e the density of the charged species and n n the density of the neutrals. Getting experimentally access to the neutral density n n would require the development of a dedicated LIF set-up, which has been developed in our laboratory for the ions but not for the neutrals [Désangles, 2018]. Nevertheless a first order estimation can be done. Consider first that the pressure of the neutral p n is the base pressure p 0 , i.e p n 1 mTorr 0.133 Pa. Then estimating the temperature of the neutral population to be higher than the ambient temperature (T n > 300 K) but much lower than the ion temperature (T n < 2000 K), i.e T n 500 K, we can write :

n n = p n k B T n p 0 k B T n ∼ 0.133 1.38.10 -23 .500 2.10 19 m -3
With n ∼ (0.5-10).10 18 m -3 depending on the experimental conditions, and adding margin errors of 30% on the estimation of p n and T n , this simple computation yields a degree of ionization of 2% to 40%. This means a very important fraction of the gas is composed of neutral atoms, which has to be taken into account for an accurate understanding of the plasma behaviour, as is detailed in the next section 1.2.2.

Beta value

In the presence of a magnetic field the charged particles tend to preferentially follow the field lines, to an extent that depends on the field strength. One resulting effect on the global plasma dynamics is known as the magnetic tension, part of which acts along the three dimension of space as a pressure. A better intuition of this quantity can be given by an ideal MHD modelling. Considering the MHD momentum equation 9 introduced in the introduction, the Lorentz force can be written :

J × B = 1 µ 0 ( ∇ × B) × B = 1 µ 0 ( B. ∇) B -∇B 2 = ∇. 1 µ 0 B B - B 2 2µ 0 Î
The term inside the divergence operator emerges quite naturally, and is uncoupled to other effects; it is defined as the magnetic tension. The term in B 2 2µ 0 is analogous to a pressure by its physical dimension and its isotropy : this term is defined as the magnetic pressure. Now whether the hypothesis necessary to apply MHD modelling are valid or not, it is common to characterize a fully or partially magnetized plasma by :

β = nk B T e,i B 2 /µ 0
i.e. the ratio of the kinetic pressure over the magnetic pressure as defined above. In the present experimental conditions, using T e ∼ 4 eV, n ∼ 2.10 18 m -3 and B = 170 G, we get β ≈ 6.10 -3 , which classifies our plasma into the low β ones.

Collisions

Putting aside all the collective effects, the particles composing the plasma are in interaction via collisions, that are of two types : Coulomb collisions between charged particles, and hard sphere type collisions between the charged particles and the neutrals. The collisions of particles within a same species (electron-electron, ion-ion and neutralneutral) participate to the pressure term of each species and are not explored here. Moreover since the inertia of the electrons is negligible in front of that of the ions and neutrals, the effect of the ion-electron collisions on the ion dynamics is negligible in front of the ion pressure and the friction with neutrals. These collisions are not described in the following. The collisions of interest here are therefore electron-ion, electron-neutral and ion-neutral. In this section the frequencies of these collisions are computed for our experimental conditions, and the implications on the plasma dynamics are explained.

Cross sections and collision frequencies

In order to determine the collision frequency between two species α and β, let us consider a target particle α moving with velocity v α toward a field particle β. A collision between the two particle will occur if the impact parameter b (the distance between the particles, projected perpendicularly to the incident motion direction) is sufficiently small. The threshold distance under which the collision process is considered significant defines a surface around the field particle, that is called the cross section of the collisional process, and denoted σ αβ (Fig. 1.6 left). Now for the same particle entering in a space filled with β particle with density n β , simple algebra shows that the frequency collision (i.e. the number of collisions N coll per unit time) is directly given be the product of this cross section, with the field particles density and the target particle velocity (Fig. 1.6 center and right). 

σ αβ b v α .dt v α σ αβ n β β α v α N coll = n β σ αβ v α dt ν αβ = N coll dt = n β σ αβ v α

Coulomb collisions

Concerning the coulomb collisions, experimental data is scarce and cross sections are usually estimated from a theoretical model that is briefly presented here. As a first step, let us distinguish the collisions leading to a large deflection of the incident particle (θ ≥ π/2) to the small deflection ones (θ π/2). The impact parameter corresponding to a deflection of π/2 is given by [Bellan, 2006] : b π/2 = qαq β 4πε 0 µvα , with q α and q β the target and field particles respective charges, µ = mαm β mα+m β the reduced mass. The cross section for large angle scattering collisions can thus be defined as σ π/2 = πb 2 π/2 . Now although the influence of an individual small-angle collision is negligible in front of a large angle collision, their frequency is much higher. And it can be shown that the cumulative effect of small angle collisions actually results in a higher equivalent cross-section than the large angle one [Bellan, 2006]. This cross section reads :

σ * αβ = 1 2π q α q β ε 0 µv 2 α 2 ln λ D b π/2 (1.1) The term ln λ D b π/2
, also denoted ln Λ and called the Coulomb logarithm, has a value of ln Λ ∼ 10 -11 in the present experimental conditions. Finally it is useful to note that by taking the incident velocity as the thermal velocity v th,α , or else as the averaged velocity of a Maxwellian distribution vα , the Coulomb collision cross sections only depend on the temperature with σ

* αβ ∝ T -1/3 α .

Collisions with neutrals

The cross sections of collisions with the neutral atoms are easier to determine experimentally in the case of a noble gas like Argon, since it is a stable species in its neutral state. Figure 1.6 shows such experimental data, for elastic, excitation and ionization cross sections of electron / Ar collisions (left) and elastic cross section of Ar + / Ar collisions. The data are taken respectively from [Alves, 2014] (data available on the LXCat database) and from [Phelps, 1994].

Orders of magnitude

Now let us compute orders of magnitude. If we approximate the cross sections by constants values around the energy of interest, an average frequency collision can be computed by an integration over a Maxwellian distribution :

ν αβ (T α ) = n β σ αβ v α ≈ n β σ αβ (T α ) vα with vα = 8k B Tα πmα 1/2
(see the introduction chapter). Note that the difference between the averaged Maxwellian distribution velocity and the thermal velocity is only a factor of v/v th ≈ 1.6.

Using the formula of Eq. (1.1) and the data presented above, cross sections and frequency collisions are computed for our nominal experimental conditions (T e ∼ 4 eV, n ∼ 2.10 18 m -3 ) and presented in Table 1.4. 

Magnetization

The charged particles of our plasma are subjected to an external magnetic field, and therefore rotate around the magnetic field lines direction. The time and length scales of this motion, the gyrofrequency (or cyclotron frequency) and Larmor radius, are respectively given by :

ω c,α = |q α |B m α ρ L,α = v th,α .ω -1 c,α
The condition for the species α to be magnetized is thus double. Denoting l the length scale of a given phenomenon of interest, and ν α the frequency collisions involving the species α, the conditions for magnetization read :

   l ρ L,α ν α ω c,α (1.2)
The validity of these conditions is checked for the plasma parameters values of our plasma column, for a current in the coils ranging from 50 A to 400 A (corresponding to a magnetic field of ∼ 85 G to ∼ 680 G), in Fig. 1.7. An electron trajectory collision is changed by the collision with a neutral or an ion. Hence for the electrons to be magnetized both conditions ν en ω ce and ν * ei ω ce need to be satisfied. Figure 1 .7 (left) shows that it is the case for I B ≥ 100 A. We also have l ρ L,e for I B ≥ 100 A, considering a typical length of the physical phenomenon studied of l ∼ 1 cm. The electrons are therefore magnetized for I B ≥ 100 A.

Since m e m i an ion trajectory is not considered to be modified by a collision with an electron. Hence the temporal condition for magnetized ions is only ν in ω ci . Figure 1.7

shows that the conditions of magnetization are not checked for the ions. However the order of magnitudes of the time and length scales are similar : we have ρ 

Friction from the neutrals

Considering a multi-fluid modelling of our plasma, the effects of the neutrals on the dynamics of the charged particles is modelled by a drag force of the form m α nν αn ( v α -v n ), with α = e, i for the electrons and the ions, in the momentum equation of each charged species. Note that the temperature of the neutrals being much smaller than that of the ions and electrons it is assumed that

( v α -v n ) ≈ v α .
As will be derived later (see section 4.3), under the action of an external magnetic field, a radial force F r (perpendicular to B) gives rise to a drift velocity that reads :

0 = n F r + ne v i × B =⇒ v iθ = F r × B eB 2 (1.3)
It can be shown (see section 4.3) that adding the friction from neutrals reduces this drift :

0 = n F r + ne v i × B -m i nν in v i =⇒ v iθ = 1 K F r × B eB 2 (1.4)
with :

K = 1 + ν in ω ci 2 (1.5)
The values of ν in , ω ci and K are plotted in Fig. 1.8 for [50; 100; 200; 300; 400] A. The value of the factor K decreases with B, and range from 2.5 at I B = 50 A to 1.1 at I B = 400 A.

I B =

Adding the effect of ionization

Let us take a look on the left hand term from the continuity equation, that can be written :

m i D(n v) Dt = m i n D v Dt + m i Dn Dt v (1.6)
In Eq. (1.3) the assumption is made that D v Dt = 0, and that Dn Dt = 0. Now if the source of ions from the ionization process is not neglected we have Dn Dt = nν iz . This adds a term on the left hand side of Eq. (1.3), that is equivalent to a collisional friction term when put to the right hand side :

0 = ne E + ne v i × B -m i nν in v i -m i nν iz v i (1.7)
The friction coefficient then becomes :

K = 1 + ν in + ν iz ω ci 2 (1.8)
The ion ionization frequency is computed as ν iz = n n K iz,0 T 0.59 e exp(-ε iz /T e ), with K iz,0 = 2.34 10 -14 the rate constant front coefficient, ε iz = 17.44 eV the average ionization energy in Argon for 1 ≤ T e ≤ 7 eV, and T e in eV [START_REF] Lieberman | Principles of Plasma discharges and materials processing[END_REF]. Note that ν iz strongly depends on T e . The comparison of the friction coefficients K from equations (1.5) and (1.8) are plotted in Fig. 1.8. With the ionization process the value of K is increased and ranges from 6.4 at I B = 50 A to 1.1 at I B = 400 A. 

Electrical resistivity

The collisions between charged particles impede the flow of current in the plasma and are responsible for an electrical resistivity. Let us consider the electron momentum equation, without any magnetic field nor the neutrals. We have :

0 = -ne E -m e nν ei ( v e -v i ) (1.9)
Since the current is defined by J = ne( v i -v e ), the above equation can be written E = η r J, which gives an expression of the plasma resistivity η r , called the Spitzer resistivity:

η r = m e ν ei ne 2 (1.10)
This is a very simple way of evaluating the resistivity; now to describe accurately the resistivity in our experimental conditions, we must take into account the effect of the magnetic field and of the collisions with neutrals.

Adding B and the neutrals

The magnetic field creates first an anisotropy : the stronger it is, the less free the charged particles motion perpendicular to B. In addition this effect is stronger on the electrons, since they are much lighter than the ions (m e /m i ∼ 10 -4 in the case of Argon). This implies the charged particles motion is not influenced by B along the parallel direction, only hindered by collisions with neutrals, which naturally increases the resistivity. The parallel resistivity then reads [START_REF] Gueroult | A necessary condition for perpendicular electric field control in magnetized plasmas[END_REF] :

η = m e (ν ei + ν en ) ne 2 (1.11)
Along the directions perpendicular to B, the current is mainly caused by the motion of the ions that are then much more free to move than the electrons. Besides, the ion flow is mainly impeded by the collisions with neutrals, that are much heavier than the electrons (e.g. ν en ∼ whereas ν ie ∼ for T e = 4 eV and T i = 0.4 eV). This results in a parallel resistivity of the form [START_REF] Gueroult | A necessary condition for perpendicular electric field control in magnetized plasmas[END_REF] :

η ⊥ = m i ν in ne 2 1 + ω 2 ci ν 2 in (1.12)
In the present experimental conditions this gives η 5.10 -3 at I B = 50 A to η 1.10 -3 at I B = 400 A, and η ⊥ 110.10 -3 at I B = 50 A to η ⊥ 170.10 -3 at I B = 400 A.

Appropriate modelling

The relevant use of MHD modelling depends on the magnetic Reynolds number R m , that evaluates the competition between the magnetic diffusivity defined as η = η r /µ 0 and the induction. It is defined as :

R m = vl η = µ 0 vl η r
The conditions of validity for the MHD modelling of a plasma are :

ρ L,i l ω ω pe R m 1
with l and ω the typical length and frequency scales of the physical phenomenon of interest. In the present experimental conditions, as will be seen in the next chapters ω ∼ 1-100 kHz, hence ω ω pe . Concerning the length scale we have here ρ L,i ∼ l (see Fig. 1.7). Now to evaluate R m the values of the perpendicular resistivity η ⊥ are considered, since it is in the azimuthal direction that the waves studied in this PhD are travelling. We find that R m 2.10 -3 at I B = 50 A to R m 30.10 -3 at I B = 400 A, hence R m 1 for all value of I B . It is deduced that MHD is not an appropriate modelling for the present plasma conditions. In the following of this work, multi-fluid modelling will be considered. In this chapter the measurement techniques that are used throughout this work are presented. Probes diagnostics are first introduced. As it is reported in the following parts of this manuscript, probes serve to thoroughly characterize the plasma column (chapter 4), discriminate between the development conditions of various azimuthal waves (sections 5.2 and 6.3), provide precise and insightful information on the global and local plasma parameters and flow dynamics. In a second section interferometry measurements are described. They mainly serve as a confirmation of the density measurements performed by the probes, that can be subjected to large uncertainties. Fast camera imaging is finally presented, and the physical interpretation of the light naturally emitted by the plasma is detailed, thanks to a comparison with probe measurements that serve as a reference. 

Diagnostics

Probes

A probe measurement consists in placing inside the plasma a probe head composed of one or several electrodes (more sophisticated designs can be considered [START_REF] Reilly | Magnetic field probes for use in radio frequency plasma[END_REF], Martin et al., 2015]) and use its electrostatic interaction with the surrounding plasma to deduce various physical quantities at the head location. Probes diagnostic present the advantage of giving local measurements (with a volume of the probed region δv ∼ mm 3 in our case), with a precision that cannot be provided by the optical diagnostics of interferometry and camera imaging presented hereafter. However the probes are intrusive : the plasma parameters inside the volume that is probed may be affected by the measurement process itself, and the mere presence of the probe can change the general boundary conditions seen by the plasma, to the point of modifying its global behaviour (e.g. the measurements at z = L 1 , see subsection 2.1.1). The weak intrusiveness of our probes is therefore carefully checked, notably by the comparison with the mentioned optics diagnostics.

In our set-up the tip electrodes are connected to measuring devices outside of the chamber, and the junction between the outside and vacuum of the chamber is done via hermetic Fischer connectors equipment. The electrical wiring linking the external devices to the tip in contact with the plasma region to probe, are passed through ceramic tubes that isolate both thermally and electrically the connecting wires from the plasma. The probes are finally mounted on translators that allow for an accurate positioning of the tip radially, as well as for the automation of repeated series of measurements at varying radial locations.

In the following sections we first introduce Langmuir probes, that provide a measure of the floating potential V f , the plasma potential V p , the electronic temperature T e and the density n. Emissive probes, that give a much more reliable measurements of V p than the Langmuir probe can grant, are then described. Finally the transport probe is presented. This last probe serves for the measure along time of n, V f , T e , and of the plasma radial transport Γ = n.v r . In each case an overview of the probe is given : the functioning is explained, the mechanical and electrical design, and characterisation are exposed. The technical challenges and experimental limitations associated with each probe diagnostics is detailed in appendix A.

When it is not specified, the values of the source power and the plasma base pressure are P w = 1 kW and p 0 ∼ 1 mTorr.

Langmuir probe

The Langmuir probe measurement is one of the oldest measurement to be performed in a plasma, and one of the simplest : an electrode is placed inside the plasma, a bias sweep is applied with respect to the ground, and the response current collected at the tip surface is measured (see sketch in Fig. 2.1 left). Now the challenging part of this type of measure is less its experimental realization than deducing with confidence plasma parameters from the measure of I = f (V ). An example of such a curve, usually called IV or Langmuir curve, is shown in Fig. 2.1 (center and right). The various parts that are used to deduce plasma parameters are highlighted. The proportionality dependencies in red and green in Fig. 2.1 (right) are not exact, but these approximations give a first glance at what can be deduced from a Langmuir measurement and where on the IV curve. The justification for these relationships is the subject of the following subsection.

Before entering into the details and in order to keep in mind the overall process, the analysis of a Langmuir curve can be summed-up in the following step : 

Theoretical elements and analysis of an IV curve

Currents balance : the floating potential V f When an electrode (or any object for that matter) is placed inside a plasma, and left electrically floating, the surface electric potential V reaches a value (namely the floating potential denoted V f ) that is different from the plasma potential V p , the potential that the plasma would have at this location if left unperturbed. This is due to the higher mobility of the electrons (since m e m i we typically have v th,e v th,i ) : in order for the equilibrium of ion an electron fluxes reaching the wall j e = -j i to be conserved, a potential drop develops that repels the electrons from the wall, causing V f < V p . By definition V f is the potential at the tip left floating, i.e. when no net current is drawn by the electrode : I = I i + I e = 0. It can be then deduced easily from an IV curve by :

I(V f ) = 0 (2.1) Plasma potential V p
The influence of the tip is felt by the plasma only at the vicinity of the electrode : a few Debye lengths away from the surface, the plasma potential value V p is almost recovered. This defines a region, the sheath, characterized by its potential gradient from ∼ V p in the plasma, to V f on the electrode surface (actually an intermediate region, called the pre-sheath, forms between the plasma bulk and the sheath near the wall, but it is not detailed here : for more details see [START_REF] Lieberman | Principles of Plasma discharges and materials processing[END_REF]). Now since V f < V p , any ion entering the sheath region will be attracted and eventually hit the surface, participating to the collected ion current

I i .
By rising the electrode bias, the potential drop ∆V = V p -V is reduced, less and less ions and more and more electrons are attracted to the tip surface, causing a strong increase in the positive current collected (see red part of the IV curve on Fig. 2.1 (right) and the following paragraph about the electronic current). When V p is reached, the potential drop cancels and no more ions can be attracted (note that this schematic explanation of the physics in the sheath assumes that the ions are cold, i.e. T i ≈ 0, which is an hypothesis we make since we have T i T e ). As for the electrons none is repelled and all the flux directed towards the electrode surface is collected. Hence for V ≥ V p the collected current theoretically saturates. Now in practice, raising V enlarges the sheath width; because of the cylindrical tip geometry this implies an expansion of the collecting surface, thus an increase of I. However the corresponding slope is much weaker than for V ≤ V p . This can be clearly observed in Fig. 2.1 (right). On an IV curve the plasma potential therefore corresponds to a damping of the current increase, i.e. to an inflexion point that can be detected by :

d 2 I dt 2 (V p ) = 0 (2.2) Ion saturation current : I i,sat ∝ n √ T e
On the other hand, if the electrode is biased sufficiently negatively (V V f ) to the point of preventing all electrons from reaching the surface, the collected current is only composed of the ions flux : I(V V f ) ≈ I i,sat = -en sh v i,sh A sh , with n sh and v i,sh the ion density and velocity respectively at the sheath entry, and A sh the surface of the sheath limit. As can be seen the collected ion current can be used to deduced the density : it is from this relation that the density will be computed. Now because of the pre-sheath region, the density at the sheath entry is not exactly the bulk plasma density (see Fig. 2.2 and [START_REF] Lieberman | Principles of Plasma discharges and materials processing[END_REF] p. 167-168). Using the Boltzmann relation (see introduction chapter) and the pre-sheath potential drop δV = T e /2 ( [START_REF] Lieberman | Principles of Plasma discharges and materials processing[END_REF] p. 170-171), we have : n sh = n.e -δV /T e,eV = n.e -1/2 ≈ 0.61n. This difference is incorporated in a constant α 0 = 0.61. Actually the α coefficient that we use in practice is more sophisticated, and take into account the cylindrical geometry of the electrode tip; this is detailed hereafter.

Finally, it can also be shown [START_REF] Lieberman | Principles of Plasma discharges and materials processing[END_REF] that the ion velocity at the sheath entry is the ion acoustic speed, also called the Bohm velocity in the context of plasma sheath physics : u B = k B T e /m i . The collected current in response to a bias far below the floating potential is deduced :

|I i,sat | = e α 0 n u B A sh (2.3)
This shows that with the knowledge of the electron temperature, hence of u B , the ion saturation current provides a measure of the plasma density. However additional precisions needs to be made concerning the measure of I i,sat and the way of choosing the collecting area A sh . 

V p x V f ~ T e /2 sheath pre-sheath ~ ¡ D > ¡ D > ¢.n n sh v i,sh u B = = n 0 = v i

Sheath expansion

As the electrode potential is drawn very negatively (V V f ) the collected current theoretically saturates, in the same way as the electron current does. But there again in real measurements this saturation is imperfect : the sheath length increases with |V |, hence the current collection surface expands and I i continues to grow. The question that naturally arises then is which current to choose for I i,sat ; by convention the value of the ion saturation current is taken as the ion current at the floating potential :

I i,sat = I i (V f ) (2.4)
Now in order to estimate this value, the evolution of I i (V ) has to be determined. In the context of sheath expansion in cylindrical tip geometry the ion current is classically modelled as [START_REF] Chen | A floating potential method for measuring ion density[END_REF]. Now following [Chen, 2003] and [Désangles, 2018] we choose the more general model :

I i ∝ (V p -V ) 1/2
I i (V ) ∝ (V p -V ) 1/p (2.5)
with p a value that depends on the experimental conditions. Since I ≈ I i for V V f , the lower part of the IV curve is fitted along the previous model. In our case, we choose an upper limit of the fit at V = V f -30.

It is very important to underline here that an estimation of V p is needed for the determination of I i (V ). This requires the upper part of the IV curve, that is unfortunately often very noisy, if usable at all. In the latter cases the deduction of I i (V f ) cannot be done, and one has to assume I i,sat ≈ I(V V f ) and deal with the overestimation this leads to. (2.5), for I B = 100 A, P w = 1 kW, p 0 = 1 mTorr, and with the probe tip placed at r = 3 cm away from the center of the plasma column. A series of fits are computed with varying values of p, and the value minimizing the root mean square error is kept (Fig. 2.3 right).

The optimal p value depends on the plasma conditions, hence on the control parameters but also on the location inside the plasma column. It is found that at P w = 1 kW, p 0 = 1 mTorr, the value of p vary from ∼ 50% to ∼ 10% for a magnetic field ranging from 170 G to 680 G. Since the resulting value of the density is influenced by the choice of p, when a radial profile is 

I i (V f ) (center).
performed (hence with constant control parameters) it is chosen to fix p as the averaged of its optimal values computed along the profiles. 

I i ∝ (V p -V ) 1/p
, averaged along radial profiles. Each profile corresponds to a series of 25 to 101 measurements.

Electron temperature T e

After I i is determined as explained before, the electron current is deduced from I e = I -I i . Now theoretically, from a simple energy balance calculation ( 1 2 m e v 2 e + eV = cst) it can be deduced that for a given potential V applied at the electrode, the condition for an electron to reach the tip surface is v e ≥ v e,min = 2e/m e (V -V p ). Considering a Maxwellian distribution f (v) for the electrons, the total electron current can be integrated as I e = e (vz>v e,min ) vf (v)dv which yields [START_REF] Chabert | Physics of radiofrequency plasmas[END_REF]: 6) with I e,sat = eA nv 4 the electron saturation current, v being the average electron velocity of a Maxwellian distribution (see introduction chapter). As V reaches V p , i.e. when the potential gradient within the sheath repelling the electrons reduces, the electron current grows exponentially. This exponential growth is linked to the Maxwellian distribution of the electron velocities, hence to the electron temperature. T e is therefore computed from a linear fit of ln(I e ) in a region between V f and V p , following :

I e = I e,sat exp e(V -V p ) k B T e (2.
ln(I e ) = cst + V T e(eV )
(2.7)

An example of such a fit is shown in Fig. 2.4 (I B = 50 A, P w = 1 kW, p 0 = 1 mTorr, r = 4 cm). The limits of the fit are arbitrarily chosen at V f + 3 V and V p -3 V, and are slightly changed between the experimental conditions. 

Collection surface with a cylindrical tip geometry

Since the electrode tip is cylindrical the current collecting area is given by A sh = 2πl tip (r tip + δ), with l tip the probe tip length, r tip its radius, and δ the sheath length. As a first approximation one could simply compute δ from the Child law modelling (see [START_REF] Lieberman | Principles of Plasma discharges and materials processing[END_REF] p. 176-178). However the latter model is derived from a plane geometry perspective. Allen-Boyd-Reynolds derived another model by taking into account non planar geometry in the resolution of the Poisson equation around the probe surface [START_REF] Allen | The collection of positive ions by a probe immersed in a plasma[END_REF]. This ABR model was originally derived for a spherical configuration, and adapted by Chen in the case of a cylindrical geometry [START_REF] Chen | A floating potential method for measuring ion density[END_REF]. The new radius R p of the collecting area is written in the form of a correcting factor applied to the probe radius as α 0 R p = αr tip , with :

α = 0.607 + 2432 exp(7.01(r tip /λ D ) 0.096 ) (2.8)
Note that α (as well as δ from the Child law mentioned above) that is used here for the density computation, depends itself on the density. The computation has thus to be performed iteratively. It is found in our case that with a first guess of n start = 1.10 18 m -3 , convergence towards a relative error of the density lower than 10 -3 is reached within less than 4 iterations.

Finally using all the previous analysis the density is computed as :

n = |I i (V f )| e α k B T e /m i 2π r tip l tip
(2.9)

Emissive probe

Measuring the plasma potential from an IV curve inflexion point is associated with a large uncertainty. Indeed the electronic saturation is often less marked than it would be expected from theory. On the other hand the measurement noise along the curve, getting higher as the magnetic field is increased, makes impossible the evaluation of V p by a direct first order derivative. It is necessary to apply a filtering process to the IV curve, which inevitably lowers the precision of the inflexion point location. In our experimental conditions, the Langmuir curve is often so noisy around for V > V f that the evaluation of V p is simply not feasible; this is the case for B ≥ 200 -250 G, at p 0 ∼ 1 mTorr and P w = 1 kW.

Second, as mentioned before the plasma parameters fluctuations are inaccessible from a Langmuir diagnostic.

The emissive probe offers a attractive alternative for the measure of V p , providing both more accuracy and temporal evolution. This diagnostic has therefore been extensively used is this work. Its functioning is described in the following.

Working principle

As explained in the last subsection on Langmuir probes, when an electrode is placed floating in the plasma (I = I i + I e = 0), because of the higher mobility of the electrons over the ions, the balance between the electron and ion flows reaching the electrode creates an electric potential gradient from the plasma to the floating electrode surface (see black curve in Fig. 2.5 bottom left). An emissive probe measurement consists of modifying this flow equilibrium in order for the floating potential measured at the electrode tip to equal the plasma potential. In other words, it consists of suppressing the sheath. To do so, the emissive electrode is heated up to the level of thermoionic emission, which allows electrons to be drawn from the electrode surface into the plasma. The current due to the thermoionic emission I em contributes to increasing the negative part of the current (we recall that by convention the current is chosen positive when going out of the wall) and to reducing the potential drop between V and V p . As long as this potential drops exists, heating up the electrode will allow more and more electrons to be drawn into the plasma, and will help reducing V -V p . Then at a given heating level the value of V no longer increases : at this saturation level it is then considered that V = V p (Fig. 2.5 left). This process can be examined with regard to an IV curve : as I em increases, the potential at which I = 0 moves from V f , when the electrode is cold, to V p when it is hot and emissive (for more details see [START_REF] Sheehan | Emissive probes[END_REF] and the emissive probe characterization in [Désangles, 2018]).

Alternatively the functioning of an emissive probe can be understood in a more formal way : the total current leaving the electrode writes

I = I i + I e + I em = -|I i | + |I e | -|I em |.
Now since the electrode is floating I = 0, and recalling the expression of the electron current from equation (2.7), we have :

V = V p -T e ln |I e,sat | |I i | + |I em | (2.10)
Without thermoionic emission, the electron saturation current is higher than the ion current, and the potential at the electrode is lower than V p . Increasing the value of I em reduces the gap until V reaches V p (note that this formula uses the expression of Eq. (2.7) for I e , hence is only valid for V ≤ V p ). 

Probe design

In the design that is used here the tip consists in a wire loop, heated up by Joule effect via a current I h , brought inside the plasma through a two holes ceramic tube of 4 mm diameter.

The electrode tip is composed of Tungsten wire of diameter 0.1 mm to 0.25 mm, which is connected to braided copper wires (3 to 5 wires depending on the Tungsten electrode wire diameter), as shown in Fig. 2.6 (top left pictures). Note that thoriated Tungsten was also used and demonstrated a much better mechanical resistance to continuous high heating, as well as to repeated heating cycles when the electrode is used from a day to another. With Tungsten wires, a maximum of ∼ 40 measurements and two cycles could be done, whereas with thoriated Tungsten (0.15 mm diameter) the filament can resist to more than ∼ 200 measurements and ∼ 10 heating cycles. As can also be seen on the top left pictures of Fig. 2.6, mounting the loop wire on the copper wires is not done in the same way depending on the Tungsten wire diameter. The constructing part of an emissive probe is challenging : Fig. 2.6 (right bottom picture) shows for example melted copper wires, resulting from an imprecise mounting of the tip. This is detailed in appendix A.

The heating current is provided by an external battery (12 V -50 Ah) so as to maintain the whole system electrically floating. The delivered current is controlled with a precision of 10 -2 A by an intermediate regulating circuit connected between the battery and the electrode, following the electrical design presented in [START_REF] Štambuk | Note: Development of 9 a current source[END_REF]. Note that since the electrode is heated up by Joule effect, a potential drop (∼ 1 V) is observed between the wire loop extremities : the potential is thus measured between two identical resistances as sketched in Fig. 2.6 (right), which guarantees V = V p .

The Tungsten wires are thin so that thermoionic emission level can be reached with low enough values of the heating current. In our experiments we have depending on the wire diameter I h ∼ 1 -10 V, which stays manageable experimentally and acceptable for the regulating circuit electronics. However these small sizes make the Tungsten wire very fragile. Therefore the heating current calibration must be chosen carefully, close to the potential saturation limit where V → V p but not too high above it, where it invariably breaks. The determination of the heating current and the experimental errorbar that is associated with it are detailed hereafter.

Calibration of the heating current

The heating current is chosen via a simple calibration process : for any set of control parameters, the potential of the probe tip V is measured at the center of the plasma column for successive increasing heating currents I h , until V saturates at V p . The corresponding value of the current, denoted I sat h , is then considered to be sufficient for suppressing the sheath at the electrode's tip in these experimental conditions, hence suited for measuring V p . An example of calibration is shown in Fig. 2.7 (left) for I B = 300 A, at p 0 ∼ 1 mTorr, P w = 1 kW. Since the saturation is not always sufficiently sharp to deduce a precise value of I sat h (i.e. with δI sat h < 0.05 A) a linear fit of the lower and upper parts of the calibration curve can be performed : the saturation point (V p , I sat h ) is considered to be at the lines intersection. As it is shown in [Bousselin, 2013] I sat h depends on the plasma density (data reproduced in Fig. 2.7 right, black dots). In the present experimental set-up the dependency of I sat h with n was explored by Jean-Maxime Schlachter during his internship at the laboratory. The calibration was performed for various radii, corresponding to different densities of the same plasma column, and the ratio of I sat h / max(I sat h ) is plotted with respect to n/ max(n) (Fig. 2.7 right). This series of calibrations was done three times : the series 2021.06.24 and 2021.06.30 were done at I B = 300 A with two different Tungsten filaments, and the 2021.06.10 measurements at I B = 100 A and with the emissive cathode at the center delivering I k = 7A. Similarly than in [Bousselin, 2013] it is found that the heating current needed to reach V p is identical for n ≤ 0.5 max(n), and slightly decreases for lower densities, here down to ∼ 95% of its maximal value for n = 0.1 max(n).

This might be a source of error in the measurement of V p : as can be seen on Fig. 2.7 (left) a current shift of -/ + 0.05 A around I sat h leads to a change of the measured V of the order of ∼ -2/+0.5 V, meaning an error on the estimation of V p of ∼ +2/-0.5 V. Hence for the measure of a plasma potential radial profile, setting a constant value of the heating current (chosen at the plasma center where the density is close to its maximum) might lead to an overestimation of V p in regions of lower densities at the plasma edges. On the other hand, trying to avoid this error by performing a calibration for each point of the profile was deemed too tedious to be worth it. An alternative method of "dynamic calibration" is therefore tested. 

Test of a dynamic calibration

The heating current is modulated at a frequency of the order a few 100 mHz, at an amplitude of ∼ 0.2 A around the value of I sat h (r = 0), that was previously determined. V (t) is then measured while I h is varying (e.g. in Fig. 2.8 left), and a radial profile of 21 measurements is performed, between r = 0 cm and r = 10 cm. From every measurement a calibration curve V = f (I h ) can therefore be reconstructed, and the saturation point is determined in the same way than for a static calibration (see Fig. 2.8 center). Note that an hysteresis can be observed, corresponding to the thermal inertia of the filament : on ascending (resp. descending) phases the increase (resp. decrease) of I h is slightly too fast for the filament temperature to adapt. Figure 2.8 (right) shows the results of the plasma potential deduced from both a static calibration, and a dynamic one, for I B = 100 A. The errorbars are estimated by considering a variation of I sat h of 0.15 A. Apart from a much higher uncertainty on the static calibration measurement, the three profiles are very similar. Considering in addition that the static calibration is experimentally much simpler to perform, it is the method that is chosen for the rest of this work. 

Five tips probe

The plasma flux is given by Γ = n v. Decomposing both the density and the velocity into their average and fluctuating components (n = n + ñ, v = v + ṽ) the average flux is given by :

Γ = n . v + ñ.ṽ (2.11)
The second term is known as the turbulent transport and denoted here Γ * = ñ.ṽ . This part of the transport is well known to be fed by low frequency waves [Horton, 1999], such as the ones that are examined in the next parts of this work (Part II and Part III). In order to measure Γ * and explore its relation to LF waves in the present set-up, a 5-tips probe is constructed inspired by the work reported in [START_REF] Theiler | Practical solutions for reliable triple probe measurements in magnetized plasmas[END_REF]. Following closely the functioning of a triple probe [START_REF] Chen | Instantaneous direct-display system of plasma parameters by means of triple probe[END_REF], this probe also provides a measure along time of the plasma density n, the electronic temperature T e , the floating potential V f , and an estimation of the plasma potential V p . Note that in this work we are interested in measuring the outward part of the turbulent transport, i.e. its radial component.

Working principle

The measurement of the turbulent transport requires the simultaneous measure of the plasma density and velocity fluctuations. The density is measured along time by means of a triple tip configuration, which is symmetrized so as to provide a measure of the velocity.

An electrical sketch of the five tips probe is shown in Fig. 2.9 right. Tips 1 and 5 are left floating and V f is measured, while the tips 2 and 4 are connected and biased negatively relative to the central tip 3 by a constant voltage ∆V = V + -V -(we have V 3 = V + and V 2 = V 4 = V -). Currents I 2 , I 4 and the potential V 3 are measured. The voltage ∆V is set sufficiently large for I 2 and I 4 to reach the ion saturation current : I(V -) = I i,sat . The density is then deduced in the same way as explained in subsection 2.1.1 :

n(t) = |I(V -)(t)| e α k b T e (t)/m i A (2.12)
The electron temperature that is required for this computation, is deduced from the additional measures of V + and V f , as detailed later. Now concerning the velocity, it is assumed that the plasma velocity fluctuations are mainly caused by the electric field via E × B drifts : ṽ ≈ ṽE (2.13)

In the present configuration where B = -B ẑ the radial part of this velocity is therefore given by the azimuthal component of the electric field :

v E,r = E× B B 2 .r = -E θ B
. Then E θ is simply estimated by the two floating probes 1 and 5, placed along the y direction (see sketch in Fig. 2.9 left). As it is detailed hereafter an estimation of the plasma potential at these tips locations can be done using the electron temperature. But since the electric field is given by a potential difference, the floating potentials can be used for an equivalent result : 

v E (t) = V 1 (t) -V 5 (t) B (2.14)

Determination of T e

The estimation of the electron temperature from a 5-tips measurement can be understood with regard to an IV curve. For the following calculations we consider

V f = V 1 +V 5 2 and I i,sat = I 2 +I 4
2 , quantities that are considered to be representative of the same location around tip 3.

By definition the total current collected at V = V f is equal to zero :

I(V f ) = 0 = I i (V f ) + I e (V f ) (2.15) I e (V f ) = -I i,sat (2.16)
Secondly by construction of the probe, the current collected by the tip 3 is exactly the opposite of the current collected by both tips 2 and 4 :

I 3 = -(I 2 + I 4 )
(2.17)

I(V + ) = I i,sat + I e (V + ) = -2I i,sat (2.18
)

I e (V + ) = -3I i,sat (2.19)
These two conditions imply that the electronic part of the current is three times greater at V = V + than at V = V f , which can also be seen geometrically in figure 2.10. Recalling the expression of the electron current in equation 2.7, this leads to :

I e (V + ) = 3 I e (V f ) (2.20) V p -V f T e = ln(3) + V p -V + T e (2.21)
Which finally gives :

T e = V + -V f ln(3) (2.22)
Note that in a classical triple tip design only two tips collect current : this implies 

I(V + ) = -I(V -) in equation (2.18), then I e (V + ) = -2 I i,sat

Deduce V p

If we consider that the IV curve plotted in Fig. 2.10 represents well the behaviour of the plasma, V p can be computed from V f and T e . Indeed we have :

I(V f ) = 0 = I i,sat + I e,sat e - Vp-V f Te (2.23) e - Vp-V f Te = - I i,sat I e,sat = e α n A u B 1 4 e n A ve (2.24) = α 2πm e m i (2.25)
Now take the logarithm, and by defining µ = ln |Ie,sat|

|I i,sat | = ln 1 α √ 2π
m i me we have :

V p = V f + µ T e (2.26)
The validity of equation (2.26) is evaluated from probe measurements in section 4.2.

Design and characterization

Figure 2.11 shows a sketch and a picture of the probe tip. The cap head is a 10 mm long, 3 mm diameter BN cylinder from which five 1 mm long, 0.2 mm diameter Tungsten wires come out.

The wires are spaced by δ tips = 0.8 mm so that λ D δ tips l, with l the typical length of the plasma flow main features, of the order of a few cm here. This way the five measurements of currents and voltages are independent, while the global measure of Γ * can be considered local. The rough electrical signal are conditioned using a home-made integrated electronic unit (current/voltage conversion using an opto-coupler) and are digitized at a frame rate of 200 kHz. ∆V is supplied by an Li-Ion external battery and is set to 42 V in the next chapters. Figure 2.12 shows a Bode diagram of the measured voltages V 1 , V 5 and currents I 2 , I 4 transfer functions. This was obtained by plugging in series a AC power supply and a resistor between tip 3 (at the ground) and tips 2 and 4 together, and closing the circuit at ∆V . Tips 1 and 5 were plugged directly on the power supply output. The results show that the voltage amplitudes starts to drop for an input frequency of f > 10 kHz; at f ∼ 60 kHz the output wave amplitude is only 30%. This is to be kept in mind for the later analysis of IAW in chapter 5. For the currents measurements the amplitude alteration at high frequency can be neglected, seen the frequency range that is studied in this work of f ∼ 1-50 kHz. Concerning the phase shift produced by the electronic measuring unit, it stays lower than ∼ 0.1π rad for the voltages as long as f < 10 kHz, and for the currents for f < 100 kHz. Since the phase shifts from the 5-tips measurements are only used to identify low frequency waves (see section 6.3) of the order the kHz, this will be neglected. An example of five tips raw measurement is plotted in Fig 2 .13 (left and center), for I B = 300 A. The signals exhibit clear kHz fluctuations, that are explored in chapter 6. Figure 2.13 shows the improvement of the signal/noise quality that could be achieved during this PhD, notably by modifications of the gains in the electronics, better isolation of the probe's wires, better care brought to the electrode head cleaning between series of measurements. This signal quality improvement is not further detailed in this manuscript. 

Interferometry

Working principle

The conditions for the electromagnetic waves propagation in a plasma strongly depend on the plasma density. A measurement by interferometry consists of sending an electromagnetic wave in the plasma, and measuring the phase shift it underwent by its passage through the plasma compared to the same travel in vacuum. From this phase shift ∆φ and the length of plasma L the wave travelled through, the plasma density can be deduced.

Refraction index in a plasma

If in vacuum all electromagnetic waves travel at the same velocity v φ = ω/k = c, this is not the case in a plasma where the wave number non-linearly depends on the wave frequency. With no external magnetic field, and neglecting the ions dynamics in front of the electrons one, the dispersion relation of electromagnetic waves reads [Bellan, 2006]:

ω 2 = ω 2 p,e + k 2 c 2 (2.27)
with ω p,e the electronic plasma frequency that will be noted ω p in the following for simplicity. Hence by travelling through a plasma, a wave at a given frequency ω will have its wave number k changed. In figure 2.14 this dependence of ω as a function of k is plotted. We see that below the plasma frequency ω p no wave propagation in the plasma is possible. For values higher and close to ω p the wave number k is significantly affected by its passage through the plasma, and for ω ω p the wave velocity tends to c as in vacuum. 

Computation of the plasma density

Now, since the plasma frequency directly depends on the plasma density (ω p ∝ √ n), the latter can be deduced from the propagation conditions of an electromagnetic wave in the plasma.

Let us indeed consider a wave of frequency ω 0 . When propagating in vacuum it can be represented at a position s away from the emitter by a field Ae i(ω 0 t-k 0 s) . This serve as a reference. When travelling in the plasma this becomes Ae i(ω 0 t-k(s)ds) : the wavenumber k is a function of ω p (blue curve in figure 2.14) which depends itself on the plasma density, that varies with the location s of the wave in the plasma. After a path L, the phase difference between the wave sent through the plasma and the reference in vacuum is then given by : ∆φ

= L (k 0 -k(s))ds (2.28) = ω 0 c L 1 -1 - ω p (s) 2 ω 2 0 ds (2.29)
Now making the assumption that ω 0 ω p (s) we get :

∆φ ≈ ω 0 c L 1 2 ω p (s) 2 ω 2 0 ds = L ω p (s) 2 2 c ω 0 ds = e 2 2 0 m e c ω 0 L n(s)ds (2.30)
Then the density averaged along the propagation path (given by n = 1 L L n(s)ds) is deduced from the phase shift :

n = 2 0 m e c ω 0 e 2 ∆φ L (2.31)

Measurement process on VKP

Since the plasma probed here is axisymmetric, the density is considered constant along z at the center of the plasma column, which makes this axis well suited for interferometric measurements.

In the transverse direction however the measurement consists in an average along the density radial profile; the result is more difficult to interpret. The lengths of the lines of sight that are used in the following are L = 104 cm in the parallel direction (cylindrical steel chamber + glass tube of the RF-source) and L = 20 cm in the radial direction.

The interferometer used here is a MWI 2650. It is composed of two antennas (the emitter and the receiver) surrounded by a dielectric that guides the wave. These antennas are connected to a monitoring box that displays the phase shift φ between the electromagnetic wave seen by the receiver and the one sent by the emitter at f 0 , plus or minus a reference value φ 0 that can by adjusted. The frequency of the emitted wave is fixed at f 0 = 26, 5 GHz, and the plasma density is deduced from the measured phase shift following (2.31) :

n ≈ 3, 14.10 16 . ∆φ L (2.32)
The condition ω 0 ω p = ne 2 /ε 0 m e sets a critical density n c = ω 2 0 ε 0 m e /e 2 . With the value of f 0 here we have n c ≈ 8.7.10 18 m -3 . The expression from (2.31) can be considered valid only up to densities n ∼ 1.10 18 m -3 . As detailed in appendix A the experimental conditions of the present set-up and the experimental protocol limitations of measurements by interferometry, limit anyway the access to only low densities with respect to n c .

It is important to note that since the phase shift can only be measured modulo 360 : φ = ∆φ ∈ [0 : 360] • , the measurement has to be done progressively from a state without plasma. This way the evolution of φ can be followed and the total value of ∆φ recovered. Some examples of the signal obtained are shown in figure 2.15. When reaching a value between 300 • and 360 • φ drops to zero and starts increasing again : this is interpreted as a 360 • phase shift. The number N of such peaks is counted, and with the final value φ end the total phase shift is deduced : ∆φ = 360.N + φ end . (right). These results are compared to Langmuir probe measurements (the red stars correspond to a larger set of measurements, presented with a map of the parameters in section 4.1). The match is very good, which gives us confidence in the probe measurements of the density. 

Results : validation of Langmuir probes measurements

Fast camera imaging

The results presented in this section are the subject of a scientific article that is soon to be submitted for publication in Physics of Plasmas.

Camera imaging is a useful tool to deduce time and space-resolved features of a plasma dynamics from the simple recording of the light it naturally emits. Its main advantage over most other optical diagnostic is the possibility to get simultaneous information over a wide spacial domain.

Using visible light direct recording as a plasma diagnostic is not new [START_REF] Medley | Periscopecamera system for visible and infrared imaging diagnostics on tftr[END_REF], but due to the camera limitations both in terms of frame rate and spacial resolution the precision of this type of measurements has long been too restricted to make it very much used. Now as the technological advances have made camera limitations less of a obstacle in the last two decades, this type of visualization has become more common, whether it is made indirectly from a neutral gas injected in the plasma (Gas Puff Imaging [START_REF] Zweben | Invited review article: Gas puff imaging diagnostics of edge plasma turbulence in magnetic fusion devices[END_REF]) or directly from the species already present in the plasma [START_REF] Thakur | Multi-instability plasma dynamics during the route to fully developed turbulence in a helicon plasma[END_REF] as it is done here. The optical set-up is described in subsections 2.3.1.

Camera recorded light I cam is usually compared to probe measurements of ion saturation current [START_REF] Antar | The origin of convective structures in the scrape-off layer of linear magnetic fusion devices investigated by fast imaging[END_REF], Oldenbürger et al., 2010, Light et al., 2013, Cui et al., 2015, Light et al., 2019] (with cross-correlation up to 0.75) : light intensity is therefore used as a proxy for the ion saturation current I i,sat (denoted I i for simplicity in the following), or for the density n. However I cam depends on the plasma physical parameters in a very non-trivial way, and in most experimental studies this dependence is not further elucidated. Here the dependence of emitted light with the plasma parameters is explored (subsection 2.3.2) and a simple model is proposed. The validity of this model is then assessed in details via probe measurements in subsection 2.3.3, showing that the electron temperature is a key parameter for understanding the light emission in the present experimental conditions.

Optical set-up

A Phantom v2511 camera is placed in front of the z = 80 cm transparent chamber end (see Fig. 2.17). The central line of sight corresponds to the z-axis. In order to minimize the parallax effect (subsection 2.3.3), the distance between the camera and the chamber window is artificially increased by a set of two mirrors, reaching 3.5 m in the present configuration. Images of the plasma emitted light are recorded at a frame rate of 200 kfps, with an exposure time of 4.5 µs, and by time series of 100 ms. The spatial resolution is 256 × 256 px 2 for a field of view of approximately 20 cm, i.e. capturing fully the inside of the chamber. The focus is set at the position z = L 2 . However the depth of field DoF with the optical lenses used here (aperture f/4, focal length 135 mm) is of the order of the chamber length (as a lower limit, by considering a very strict circle of confusion of the pixel resolution size, we already have DoF ≈ 54 cm). Hence we have to consider that the recorded light is the result of an integration over z, the implication of which are detailed in subsection 2.3.3. Note already that because of this integration the camera recorded light is plotted in the following as a function of distorted space variables, denoted with a star. In order to facilitate the physical interpretation of the recorded light as it is explained in next subsection 2.3.2, the light radiated by the plasma is filtered. To this end three interferometric filters are used, centred around specific wavelengths of 488 nm, 750 nm and 810 nm. Figure 2.18 shows the spectra of the light emitted by the plasma column at its center, for increasing values of B, recorded using an OceanOptics USB 2000+ Spectrometer. The optical fiber collected the light along the z-axis (front the center of the optical borosilicate window). Peaks in the light intensity are observed for each of the three central wavelengths of the filters (see bottom panel of Fig. 2.18). The dark dashed lines show the limits of the Full Half Width Maximum transmission of the filters as provided by the manufacturer. The electronic transitions at the origin of these filtered spectral lines are provided in Table 2.3. The line emitted at 488 nm is an ArII line, and we will neglect the contribution of the light emitted around 484 nm when analyzing the images filtered around 488 nm. All other transitions are ArI lines. The knowledge of the upper levels of the the radiated light is useful for the determination of the dependence of the light intensity with n and T e , as will be seen in subsection 2.3.2. Note finally that as the magnetic field increases, the intensity of the ArII line slightly increases whereas it increases for the neutral lines. The precise electronic transitions at the origin of these spectral lines are provided in Table 2.3.

An example of the mean intensity I cam as well as the fluctuations amplitude σ( Ĩcam ) is plotted in Fig. 2.17 (right), for B = 170 G and using the 750 nm filter. The largest intensity is observed around a radius of ∼ 2.8 cm, with a sharp gradient outward, which is maximal at ∼ 4.5 cm. The amplitude of the fluctuations is of the order of 10% of the total amplitude. The fluctuation pattern also presents a ring of large amplitude around ∼ 3.5 cm. Interestingly similar features are observed on the images recorded with the other filters at 488±5 nm and 810±5 nm. Surprisingly the light intensity profile shape is also roughly conserved with all magnetic fields, up to B = 680 G (I B = 400 A), whereas the plasma parameters (n, T e , V p ) radial profile shapes all vary with B. The reason for this is still not fully understood. 

( 2 P 0 1/2 )4p 2 [1/2] 0 3s 2 3p 5 ( 2 P 0 1/2 )4s 2 [1/2] • 1 ArI 751.47 3s 2 3p 5 ( 2 P 0 3/2 )4p 2 [1/2] 0 3s 2 3p 5 ( 2 P 0 3/2 )4s 2 [3/2] • 1 810.36 3s 2 3p 5 ( 2 P 0 3/2 )4p 2 [3/2] 1 3s 2 3p 5 ( 2 P 0 3/2 )4s 2 [3/2] • 1 ArI 811.53 3s 2 3p 5 ( 2 P 0 3/2 )4p 2 [5/2] 3 3s 2 3p 5 ( 2 P 0 3/2 )4s 2 [3/2] • 2
Table 2.3: Upper and lower energy levels of the dominant spontaneous radiated light transitions, commonly used for spectroscopy diagnostics using low temperature Argon plasma. For each energy level is given the configuration, the term series and J, as displayed in the NIST database [START_REF] Team | Nist atomic spectra database (version 5.8)[END_REF].

Note that all the camera imaging data later presented in Parts II and III of this work was performed using the 750 nm filter. This was motivated by the higher intensity of the light collected at this wavelength (see appendix B.2). The two other filters will only serve here in subsection 2.3.3 for the light intensity characterization.

Interpretation of light intensity

In most studies using camera imaging, the densities of the neutrals and the electron temperature are usually assumed to be spatially homogeneous, and their temporal fluctuations are neglected. The emitted light fluctuations are then assumed to be representative of the plasma density fluctuations [START_REF] Oldenbürger | Spectroscopic interpretation and velocimetry analysis of fluctuations in a cylindrical plasma recorded by a fast camera[END_REF], Brandt et al., 2014, Cui et al., 2015]. While extremely convenient for the interpretation of camera images, this simplification is often crude, which is the reason for camera imaging to be mostly used as a qualitative diagnostic tool. In this subsection the theoretical dependence of I cam with plasma parameters is detailed, and a simple model is proposed linking I cam with both n and T e .

Radiative decay

A given transition from energy level E p to E k is responsible for an emission of photons, of wavelength λ 0 = hc Ep-E k . This emitted light is characterized by the line emission coefficient that writes : kp = n p A pk hc 4πλ 0 , with n p the electron population density of energy level p, and A pk the transition probability from state p to state k. Note that A pk is a constant, while n p strongly depends on the plasma parameters : n p = f (n, T e , T i , ...). The naturally radiated light can also be written in units of photons (m -3 .s -1 ) :

I pk = n p A pk (2.33)

Exciting collisions

Various processes can feed the population density n p of a given energy state p; here is detailed one of the most common, the excitation process. An electron linked to an atom or ion reaches the energy state p from a lower state, through a collision with a free electron of the surrounding plasma (only collisions with free electrons are treated here, since it is the only ones that will be considered in the following). The number of collisions per unit time resulting in an excitation process, and triggered by an electron at velocity v in a gas of density n g is (see subsection 1.2.2):

ν(v) = n g σ ex (v)v (2.34)
with σ ex (v) the excitation cross section of the collision between an electron at speed v and a neutral atom in ground state. Now the number of electrons at some velocity v is given by the electronic distribution function :

δn e (v) = f e (v)dv (2.35)
Hence the total number of exciting collisions from the ground level, per unit time and volume, is :

dn p dt | ex,g = v ν(v)δn e (v) = v n g σ ex (v)vf e (v)dv (2.36) = n g n e 1 v f (v)dv v σ ex (v)vf e (v) =<σex(v)v>v (2.37) = n g n e K ex (2.38) with K ex =< σ ex (v)v > v
the normalized integration of σ ex (v)v over the electronic distribution function, defined as the rate constant. Note that this quantity strongly depends on the shape of the distribution function. In the assumption of a Maxwellian distribution, the rate constant therefore strongly depends on the electron temperature.

Corona model

In the present plasma conditions of low density (n ∼ 10 18 m -3 ), low degree of ionization (5 -30%), ion temperature of the order of a few tenths of an eV and low pressure (p 0 ∼ 1 mTorr) implying T e T i T n , we can use the Corona model approximations [Fantz, 2006] :

• the photon emissions are caused be radiative decays only.

• the upper states are only populated by collision with electrons from the ground state.

Under these hypotheses, and assuming the level p is at equilibrium (dn p /dt = 0) we can write:

n g n e K g→p ex = Σ k n p A pk (2.39)
The light emitted from the radiative decay of state p to state k is then given by :

I pk = n p A pk = A pk Σ k A pk n g n e K g→p ex (2.40)
The ground state density for an Argon atom line is the neutral density n g = n n , that is considered constant in time and homogeneous in our experiments. For Argon ion lines however we have n g = n. The spectral line intensities therefore satisfy, depending on the ground state species :

   I ion ∝ nK ex I neutral ∝ n 2 K ex (2.41)
For the following the functional forms f n = nK ex and f n 2 = n 2 K ex are introduced.

Fitting the temperature dependence

The excitation rate constant can be expressed as :

K ex = σ ex v v = m e 2πeT e 3/2 ∞ 0 σ ex (v)ve -mv 2 2kTe 4πv 2 dv (2.42) = e 2πm e T e 1/2 ∞ 0 σ ex (ε) ε e -ε Te dε (2.43)
Hence for each of the excited state, K ex strongly depends on T e . Note that in the present experimental conditions and from the density and electron temperature profiles that are shown later in Fig. 2.20, a non uniform radial profile of K ex is expected. Assuming a Maxwellian electron distribution function, K ex can be computed from the cross section σ ex . Then K ex (T e ) is fitted numerically in the range [1,5] eV (corresponding to the temperature of our experimental conditions) using the functional form :

K ex (T e ) = K 0 ex e -ex/Te (2.44)
with ε ex a fitting parameter equivalent to an averaged excitation energy [START_REF] Lieberman | Principles of Plasma discharges and materials processing[END_REF]. Figure 2.19 (left) shows the cross sections of excitation processes Ar → Ar(4p[1/2]0) and Ar + → Ar + (4p 2 D • 5/2) (the energy state Ar + (4p 2 D • 5/2) will be denoted Ar + * for simplicity in the following), along with an example of the integrand of equation 2.43 for T e = 4 eV. Then an example of the computed evolution of K ex (T e ) for T e ∈ [1, 10] eV is plotted in Fig. 2.19 (right, open blue symbol) for the excitation process Ar → Ar(4p[1/2]0). The values of σ ex (T e ) used for these computations are taken from the literature. For the ArI lines a recent and complete set of Argon cross sections was used [Alves, 2014]. Note that for the light filtered around 810 nm, the average of the two equally contributing radiative states identified in Table 2.3 is used to compute K ex . Now while database providing cross sections for neutral lines are widely available [Alves, 2014] the dataset for ArII lines at low electron temperature are very seldom in the literature. The set of cross sections σ ex for the Ar + → Ar + * excitation process was extracted from recent simulations [START_REF] Dipti | Electron-impact excitation ratecoefficients and polarization of subsequent emission for ar+ ion[END_REF] and are shown in Fig. 2.19a), dashed line. The average energy found for Ar + →Ar + * ex = 20 eV. Since the ground state for this excitation process is Argon ion, the resulting light intensity is expected to follow the functional form f n 2 . Concerning this same energy state Ar + * a second populating process has been identified in the literature, from the direct ionization and excitation from the neutral Ar atom ground level, and a second set of cross section was extracted from an experimental study [START_REF] Strinic | Electron excitation coefficients and cross sections for excited levels of argon and xenon ions[END_REF]]. An average excitation energy Ar→Ar + * ex = 35.4 eV is found, at the value close to the sum of the excitation energy Ar + →Ar + * ex and the 15.8 eV ionization energy of Argon atom. Note that the light intensity form this physical process is expected to follow the functional from f n .

For all the major processes involved in populating the upper states referenced in 2.3, the results of the average excitation energies computed from the numerical fits of K ex , as well as the functional form expected in terms of dependence with the density n, are summarized in Table 2.4. The form of equation 2.44 fits very well the rate constant dependences in T e , with a root mean square errors associated with the fits ranging from 0.7.10 -2 to 3.8.10 -2 . All the fits are plotted in appendix B.1. In the next subsection 2.3.3, both mean profiles and temporal fluctuations of the light intensity are compared to the plasma parameters probe measurements, and the temperature dependence introduced here is explored through both the following models (the front constant K 0 ex has no impact on the comparison between probe and light intensity data, and is dropped in the Filter (nm)

Exc. process 4p[5/2]3) Table 2.4: Excitation processes for light radiation at 488 ± 5 nm, 750 ± 5 nm and 810 ± 5 nm. The excitation rate was fitted as K ex (T e ) = K 0 ex e -εex/Te and the light intensity is expected to follow the functional form f n or f n 2 (see text for details).

ε ex (eV) f 488 ± 5 Ar + → Ar + (4p 2 D • 5/2) 20.0 f n 2 Ar → Ar + (4p 2 D • 5/2) 35.4 f n 750 ± 5 Ar → Ar(4p[1/2]0) 14.4 f n 810 ± 5 Ar → Ar(4p[3/2]1) 15.0 f n Ar → Ar(
following for clarity) :

f n = ne -εex/Te f n 2 = n 2 e -εex/Te
(2.45)

Camera v.s. probes

In the recent years great efforts were made to investigate the correlations between high speed camera imaging and electrostatic probes measurements -either the ion saturation current for an estimation of the density, or the floating potential -in laboratory Argon plasmas [START_REF] Antar | The origin of convective structures in the scrape-off layer of linear magnetic fusion devices investigated by fast imaging[END_REF],Oldenbürger et al., 2010,Light et al., 2013,Light et al., 2019]. However none of these studies includes electron temperature measurements.

Here the correlation between I cam and five tips probe measurements of n, V f and T e is explored, and the theoretical dependence of I cam with both n and T e , as formulated in last subsection 2.3.2, is assessed. This is done systematically for the ion and neutral lines around 488 nm, 750 nm and 810 nm, and for values of the magnetic field ranging from 170 G to 680 G. Figure 2.20 shows radial profiles of n and T e from the five tips probe, that are used as a reference in the following.

Note finally that a mean light intensity noise level is removed from all camera images. This noise level is assessed form the light intensity that is seen on the images edges for r * > 7 cm, and subtracted at 95% from all images. For more details see section 3.1 (the normalization B is used here, with α nmd = 0.95).

Line of sight integration

Before going further it is important to note that a direct comparison between probe and camera light intensity radial profiles is not relevant. While probe measurements are done at a precise location on the z-axis, I cam is the result from a light integration over z, and because of the parallax effect (see appendix B.3) and the inhomogeneity of the axial magnetic field (see subsection 1.1.2) the camera lines of sight scan locations with different values of the plasma parameters. In order make the data comparison possible, a transformation is applied to the probe profiles, that artificially reproduces the light integration process along the z-axis. The first assumption is that of cylindrical symmetry of the plasma column, which is justified from the images shown in Fig. 2.17. All the following computation are therefore performed in the 2D plane (z, r > 0). The parallax effect is computed from calibration images, and combined with the numerical computation of the magnetic field spatial configuration (subsection 1.1.2) to deduce the magnetic lines configuration as seen from the camera. This is detailed in appendix B.3. The integration along the z-axis also requires a second assumption: frozen plasma parameters along magnetic field lines. This was checked by comparing radial profiles of n and T e measured at z = L 1 and z = L 2 , while the radial axis was transformed following the computed magnetic field lines, for the four set of B ∈ [160; 640] G. The results show a very reasonable match with a discrepancy of the profiles shape along the radius of less than ∼ 20% for both n and T e (see subsection 4.2). Under the last assumption, the plasma parameters for the full plasma column can be reconstructed from a single radial scan with the probe. An illustration of this process is given in Fig. 2.21, which shows a two-dimensional map of the electron temperature, reconstructed from a profile measured at z = L 2 for B = 160 G. Note that the map is plotted with respect to (z, r * ), the variables of the distorted space in which the camera lines of sight are parallel.

Integrated quantities may then be computed from the reconstructed plasma parameters profiles in the (r * , z) plane as X * (r * ) = z X(r * , z)dz. The results of this process are shown in Fig. 2.22, for n * and T * e at B = 170 G. The integrated profiles n * and T * e are computed only up to r * = 6.9 cm, which corresponds to the camera line of sight that crosses first the magnetic field line which intercepts the chamber wall at z = L 2 (see Fig. 2.21). For r * > 6.9 cm, the plasma parameters on the field lines crossing the lines of sight cannot be reconstructed from the probe measurements at L 2 . For comparison a radial profile of I cam is plotted in Fig. 2.22. It is computed as the average along θ of the mean camera image. The profile of the electron temperature T e measured at z = L 2 is peaked at r ≈ 4.5 cm, while T * e is peaked at r * ≈ 3 cm, which falls very close to the peak observed for the light intensity at 750 nm : this suggests the 

Mean profiles

In this section, the experimental profiles recorded by the high-speed camera are compared to predictions using for the excitation rate K ex (T e ) ∝ e -ex/Te and the experimental radial profiles of the plasma parameters. Using the axisymmetric reconstruction of the plasma parameters in the (r * , z) plane introduced in the last paragraph, a time-averaged synthetic radiation is computed as :

f p * (r * , ε ex ) = z f p (n(r * , z), T e (r * , z), ε ex )dz, (2.46)
where f p stands for the functional dependency f n or f n 2 introduced previously, and, for clarity, the time averaged notation • has been dropped. For each value of ε ex in the range [0; 40] eV, the synthetic radial profile is compared to the profile of light intensity measured with the camera and averaged along θ. The rms of the difference between the experimental and the synthetic profiles are displayed in the right panels of Fig. 2.23 for B = 340 G. The synthetic profiles which lower the difference with the experimental profiles are shown in the left panels of Fig. 2.23. For the sake of comparison both models f n and f n 2 are systematically compared to the data.

The excitation energy that minimizes the error for the neutral 750 nm line with the model f * n , of ε opt ex = 12 eV, is close to the theoretical model value 14.4 eV coming from the numerical fit (Table 2.4). The agreement is slightly lower for the 488 nm line with the model f * n 2 , with an optimal value of ε opt ex = 14 eV to be compared to 20.0 eV from the numerical fit. Note that a very good match is also found with the 488 nm data for a dependence of power law 1 in n (model f * n ), indicating that the parameter mostly responsible for the shape the radial profiles is the electron temperature and its evolution in e -εex/Te . As for the neutral 810 nm line a very good match is found in the comparison with the model f * n , but for a value of ε opt ex = 5 eV three times lower than the one expected from the numerical fit. And again in this case no much difference is found between the models f * n and f * n 2 : the driving parameter for the reconstruction of I cam is the average electron temperature.

As a result of the same analysis very satisfactory results of profile reconstruction (see appendix B.4) are found for B = 170 G. Note however that at this lower magnetic field the values of the average rate constant minimizing the error between I cam and the model are relatively far from the theoretical ones computed in section 2.3.2, with ε opt ex = 8.5 and ε opt ex = 3.9 for 750 nm and 810 nm respectively with model f n , and ε opt ex = 11.6 for 488 nm respectively with model f n 2 . Finally the comparison is performed with the data measured at higher magnetic fields, for B = 510 G and B = 680 G (see appendix B.4). There the models do not match well anymore the light intensity profiles from the camera imaging. This is due to the systematic decrease of light intensity observed at the center of the plasma column, that cannot be reproduced by the T e profiles at these magnetic field values (see profiles for B ≥ 510 G in Fig. 2.20). The reason for this incompatibility between I cam and f * p profiles at high values of B is still not fully understood.

Temporal fluctuations

In addition to the time averaged profiles discussed in the previous subsection, simultaneous measurements were achieved with the five-tips probe and the camera, for the same values of the magnetic field. The probe was inserted along the x-axis and results presented here were acquired at a location x p = 4 cm for the probe tip (at z = L 2 ). But due to the magnetic field ripple and the optical parallax, as previously discussed, the radial location r at which the probe samples the signal corresponds on the camera images to a position closer to the center r * < r. The transformation process described in paragraph Line of sight integration is applied to a test radial profile composed of a single peak at r = 4 cm : it is found that the peak is mostly translated at r * ∼ 2.6 cm (see appendix B.3). Even if this transformation is not reversible, it is deduced that the best area on the camera images to account for what is measured at Comparison of radial profiles between the measure of I cam , and its modelling from the plasma parameters using the models f n and f n 2 , for the filter at 488 nm, 750 nm and 810 nm, at B = 320 G. The respective optimization processes of ε ex (bottom) are plotted with the theoretical value coming from the numerical fit performed in section 2.3.2 (z = L 2 , x p = 4 cm) is to be found around x * p = 2.6 cm. The light intensity was therefore taken as the average of a 10 × 10 pixels box around x * p = 2.6 cm. The probe measures last 1 second and the camera recording that is done with the same sample rate, only 40 ms : the signal comparisons are made over the latter time length.

We recall here that the probe gives access to the instantaneous ion saturation current I i (t), from which the instantaneous plasma density n(t) is computed as n(t) ∝ I i (t)/ T e (t). While the plasma density appears explicitly as a control parameter for the excitation processes, in this section we chose to present direct comparisons between I i and the light intensity, in order to provide a similar analysis to the results published in the literature using the ion saturation current from Langmuir probes as a proxy to the density. Note that, for the regimes reported in this study, the temperature fluctuations are a few percent, and the difference between the normalized fluctuations of I i and n is of the order of 0.5 Te / T e and can be most of the time neglected.

The spectra of all the simultaneously measured signals are shown in Fig. 2.24. Except for the small peak at around 67 kHz for B = [340, 510, 680] G, all the spectral features of the light intensity fluctuations correspond to features observed in the fluctuations of the ion saturation current, the electron temperature or the floating potential. At low magnetic field (B = 170 G) the spectra are peaked around 70 kHz, and show very similar features for all the parameters. The waves observed at this low value of the magnetic field correspond to ion acoustic waves propagating azimuthally at the Bohm speed, and on the outer edge of the plasma column (see chapter 5). For higher values of B, fluctuations are observed in the kHz range, and correspond once again to waves propagating in the azimuthal direction. These waves share features with unstable Kelvin-Helmholtz modes (see chapter 6). The spectra for the fluctuations of the light intensity I cam are very similar to the spectra of the ion saturation current I i : at 3.9 kHz for B = 340 G and 14.9 kHz for B = 680 A, peaks are observed on the spectra of I cam and I i , whereas they are absent on the spectra of V f and T e . Inversely the spectral components at 8.2 kHz and 10.9 kHz that are visible at B = 510 G for V f and T e , are much weaker and almost not noticeable for I cam and I i . However this rough comparison in the frequency domain is not sufficient to state which parameter controls the fluctuations of I cam fluctuations and a further analysis is detailed below. Figure 2.25 shows simultaneous time series of I i , T e and I cam (filtered around 750 nm) for I B = 340 G. The correlations between Ĩcam and the plasma parameters fluctuations, as well as Ĩcam autocorrelation, are displayed in Fig. 2.26. From the time series, a strong correlation is observed between T e and I cam , which is confirmed by the high value of the maximum correlation max(X corr ( Ĩcam , Te )) = 0.87. The correlation between the light intensity and the ion saturation current is lower, with max(X corr ( Ĩcam , Ĩi )) = 0.68 (though this is already a significant value, which is comparable to what was reported in similar plasma conditions [START_REF] Oldenbürger | Spectroscopic interpretation and velocimetry analysis of fluctuations in a cylindrical plasma recorded by a fast camera[END_REF], Cui et al., 2015]). However, previous studies [START_REF] Oldenbürger | Spectroscopic interpretation and velocimetry analysis of fluctuations in a cylindrical plasma recorded by a fast camera[END_REF], Cui et al., 2015] reported measurements for which Ĩcam and Ĩi were observed to evolve in phase, whereas we observe here a significant time-lag between Ĩcam and Ĩi . On the contrary, here, no delay is observed between Ĩcam and Te . Finally for the sake of readability, the time series of Ṽf are not shown, but the cross-correlation with Ĩcam shows a delay around π (Fig. 2.26). This anticorrelation between Ĩcam and Ṽf confirms an observation that was recently made [START_REF] Light | Comparison of probe and narrow-band imaging measurements in a magnetized cylindrical plasma[END_REF] for both the emission lines at 750 nm and 488 nm. We now compare in a systematic way the fluctuations of I cam , the light recorded by the high speed camera, with both models f n and f n 2 , for B = 340 G. Similarly to the study reported for the time-averaged profiles, for each value of the excitation energy ex in the range [0; 40] eV, synthetic fluctuating series are computed according to the models (using the times series of the plasma parameters measured with the probe) and compared to Ĩcam . The results are shown in Fig. 2.27 for the same data set as presented in Fig. 2.25 and Fig. 2.26, and for the three filtered light signals.

For the 750 nm line, we observe an increased correlation with fn , reaching 0.91 for an average excitation energy of ε ex = 17 ± 3 eV, close to the value computed in Table 2.4 ε ex = 14.3 eV. It is also interesting to note that the maximum of correlation between Ĩcam and fn corresponds to a zero time-delay, strengthening the validity of the results. For the sake of comparison, the other model f n 2 is also tested : the correlation between Ĩcam and fn 2 is displayed in Fig. 2.27. A cross-correlation up to 0.90, also associated with a zero delay between the signal, is observed for ε ex = 32 ± 3 eV. Hence with this model the correlation values are also increased with respect to that obtained with mere plasma parameters, but the optimal value found for ε ex is far from the reference value in Table 2.4. This shows that, unlike with the mean profiles comparison presented before in this subsection it is here essential to include the correct dependence in n to recover the expected theoretical value of ε ex .

Similarly, the time series of light fluctuations I cam , measured at 488 nm, are compared to the models. The maximum of correlation with the f n 2 model, which reaches 0.85, is observed for ε ex = 17.5 ± 4.5 eV, close to the value of ε ex = 20.0 eV reported in Table 2.4. This shows that the model f n 2 matches very well the light intensity at 488 nm. The maximum of correlation with the f n model is observed for ε ex = 8 ± 2 eV, which is far below ε ex = 35.4 eV for the direct ionization plus excitation from the neutral Ar atom, presented in Table 2.4. This result rules out the probability of this process for light emission at 488 nm.

Finally the results for the light emission at 810 nm show that using both models the fluctuations cross-correlation is increased and the phase shift cancelled out for the optimal ε values. We get max(X corr ) > 0.75 for ε ex = 11.5 ± 3 eV with model f n , and max(X corr ) > 0.75 for ε ex = 23 ± 5 eV with f n 2 . Even if the conclusion here cannot be as unequivocal as with the two other lines at 750 nm and 488 nm, the model f n that is expected to better match the data at 810 nm provides indeed a closer result to the theoretical value of ε ex = 15 eV (Table 2.4).

The same comparison is performed as well for B = 170 G, B = 510 G, B = 680 G, but it is not described in details here (see appendix B.4). A sum-up of maximum cross-correlation values and associated time shifts between Ĩcam and Ĩi , -Ṽf , Te and the most accurate model ( fn for the neutral lines at 750 and 810 nm, fn 2 for the 488 nm ion line) is presented in Fig. 2.28, for B ranging from 170 G to 680 G. Here the average excitation energies used in the models are taken equal to their theoretical values computed in Table 2.4. Among plasma parameters the higher cross-correlation is observed with Te for I B ≤ 510 G. Then at I B = 680 G, Ĩi becomes the best correlated quantity to Ĩcam , but not significantly more than Te . We can also see that Ĩcam is delayed from Ĩi by quarter of a typical oscillation period, and very close to be in phase with Te , in almost all cases. As for the models, apart from B = 680 G, they globally improve the cross-correlation and reduce the time shift with the light intensity fluctuations. However the gain with respect to the mere electron temperature is not so significant, and in the end one might be tempted to simply consider Ĩcam to be a proxy for Te as a first order approximation. This is discussed in more detail in the next paragraph. 

Discussion

The features shown in Fig. 2.24 can be much better understood with the spatio-temporal visualization of the plasma provided by fast camera imaging. At low value of the magnetic filed (170 G), the spectral components at 61 kHz and 72 kHz are identified without ambiguity, thanks to camera imaging, as modes m = 5, m = 6 of IAW waves, and the peaks at 5 kHz, 67 kHz and 77 kHz as the result of the weak non-linear interactions between them. At higher magnetic fields, the spectra maxima visible around 3 kHz and 5 kHz correspond to modes m = 2 and m = 3 of low frequency waves of the type Kelvin-Helmholtz, Rayleigh-Taylor or Drift-Waves, such as observed typically in linear devices [START_REF] Burin | On the transition to drift turbulence in a magnetized plasma column[END_REF], Brochard et al., 2005]. These results are reported in parts II and III. These examples show the importance of camera imaging diagnostic for the investigation of non-linear evolution of instabilities and waves in magnetized plasma columns. In this context it is essential to have a fine understanding of what the camera images represent.

The results reported in the previous paragraph Temporal fluctuations show that the f n and f n 2 models from equation (2.45) accurately link fluctuations of the plasma parameters with the fluctuations of light emission, and we now discuss our results from first order expansions of these models :

f n model : Ĩcam I cam = ñ n + ξ Te T e f n 2 model : Ĩcam I cam = 2 ñ n + ξ Te T e
(2.47) with ξ = ε ex / T e . These expressions show that the balance between the normalized density and electron temperature fluctuations on the normalized light intensity fluctuations is uniquely set by the ratio ξ = ε ex / T e . It is also interesting to note that this balance therefore depends on the location when the electron temperature is inhomogeneous. For an average electron temperature of the order of 3 -4 eV, ξ reaches ∼ 5. Hence for normalized density and electron temperature fluctuations of comparable orders of magnitude, the ξ term drives ξ Te / T e to be the dominant terms in Eq. (2.47). Towards the edge of the plasma column, where T e strongly decreases for B ∈ [160; 480] G (see Fig. 2.20), ξ reaches values of the order of 10; at the edge, even though the density fluctuations are twice larger than the temperature ones, the light intensity fluctuations are mainly driven by the fluctuations of the electron temperature.

Data from the simultaneous camera and probe measurements (at r = 4 cm, see paragraph Temporal fluctuations) are analyzed in Fig. 2.29, for increasing values of the magnetic field. The amplitude of all the terms of the right hand sides of Eq. (2.47) are computed for all magnetic fields. Note that the comparison are done here using ε ex = 14.4 eV for the 750 nm line, and ε ex = 20 eV for the 488 nm line. Though the plasma density exhibits higher normalized fluctuations (red dots) than the electron temperature (green triangles), the large value of ξ leads to a dominant contribution of ξ Te / T e in Eq. (2.47) (blue triangles). The term in Te is then twice larger than the term in ñ, for both lines and all B field values : this explains well why Ĩcam is globally better correlated to Te than to ñ as found in paragraph Temporal fluctuations.

We now compare the amplitude of Ĩcam / I cam to the prediction of Eq. (2.47). One has to be careful not to directly sum the amplitudes of the terms shown in Fig. 2.29 : the phase between ñ and Te plays an important role in the amplitude of the light intensity fluctuations. Using the five-probe measurements of n and T e (shown in Fig. 2.20), the signal ñ n + ξ Te Te is reconstructed for each value of the radius in the range 0 ≤ r ≤ 6 cm. The standard deviation is computed, yielding a radial profile along r. This profile is then transformed by the integration process described in the paragraph Line of sight integration so as to be expressed along r * . It is compared to radial profiles of the standard deviation of Ĩcam / I cam in Fig. 2.30, with the light filtered at 488 nm and 750 nm, and I B = [170; 340; 510] G. Let us focus on B = 340 G (plain lines on Fig. 2.30). At 488 nm the match is very good inside the plasma column and relatively satisfactory at the edge. For r ≤ 4 the normalized fluctuations of the light intensity are of 16% to 34%, to be compared with reconstructed normalized fluctuations of 25% to 32%. For r ≥ 4 a discrepancy is observed : the normalized fluctuations get up to 145% at r * = 6 cm for the light intensity, i.e. twice higher than that of the reconstructed signal of 71%. At 750 nm, the match is extremely satisfactory for 3.5 ≤ r * ≤ 6. The normalized fluctuations are very close between the light intensity and the reconstructed signal, with respective levels of 14% and 18% at r * = 3.5 cm, and of 47% and 53% at r * = 6 cm. Near the center the match is less good : at r * = 1 cm the standard deviation of Ĩcam / I cam is of 6%, and of 21% for the reconstructed signal. Overall the reconstruction process of the light intensity normalized fluctuations form probe measurements, using a first order approximation of the model given in Eq. (2.45), is satisfactory for B = 340 G. The amplitude of Ĩcam / I cam can be recovered from the plasma parameters within a factor of ∼ 0.5 to ∼ 3. Similarly at the magnetic field values of B = 170 G (dotted lines on Fig. 2.30) and B = 510 G (dashed lines) reasonably good matching results are found.

Conclusion

Visible light naturally radiated by an Argon weakly magnetized plasma column was compared to plasma parameters. Using the Corona model, the origin of the light was interpreted in terms of simple excitation processes that were identified, and its dependence on both the density and the electron temperature could be modelled in a compact and simple function of the form n a e -εex/Te with a = 1 for the neutral lines, and a = 2 for the ion one. The introduced parameter ε ex that can be seen as an average excitation energy was deduced from numerical fits in each case. The model was then compared to camera recorded light for values of the magnetic field up to 640 G. This was done for mean radial profiles, where geometrical corrections have to be taken into account, and for temporal fluctuations for which simultaneous measurements of camera and probe were performed.

After it was underlined that the light intensity radial profiles could not be explained by n or T e profiles alone, it was shown that at low magnetic field the comparisons between light intensity profiles and the reconstructed profiles from the models provide excellent agreements. For higher value of B however the light intensity radial profiles could not be explained from the plasma parameters. This is thought to be mainly because of a systematic drop of the intensity observed at the plasma column center that does not match the probe data. The fluctuations of light intensity were then compared to plasma parameters fluctuations, and to the fluctuations of reconstructed light intensity from the models using plasma parameters probe signals. By cross-correlation computations it is shown that the models are very efficient at reconstructing the temporal light fluctuations from the plasma parameters. The importance of the dependence with the density is also underlined : in order to be correctly explained by the plasma parameter measurements, neutral line camera data need a dependence in n and ion line data in n 2 . By looking at the broad picture of all the experiments in the range 160 -640 G and for the lines 488 nm, 750 nm and 810 nm, we arrive at the conclusion that the model of equation (2.45) globally results in a better match to the light intensity fluctuations, than the single plasma parameters do. It is pointed out however that the mere comparison with the electron temperature fluctuations is still very good, as it is also with the ion saturation current fluctuations, even if to a lesser extent and with a noticeable phase shift.

Finally the first order approximation deduced from the models proves to account reasonably well for the light intensity normalized fluctuations. By estimating its terms individually, this Camera images provide the detailed spatio-temporal evolution of the plasma emitted light, well representative of the plasma flow dynamics as seen in the last chapter. As such these data are extremely rich and dense. The analysis processes that are used to extract valuable and precise information from the camera dataset are exposed in this chapter. 

Images normalization

The anaysis tool presented in sections 3.2 and 3.3 are applied on the fluctuating part of the camera images. Before this a normalization process is applied of the form :

Ĩnmd ( x) = Ĩ( x, t) I avg ( x)
with I avg the normalizing light intensity field. Various ways of computing I avg are introduced in the following. The normalization A is the one mostly used in this work. The two others are used in specific cases.

Normalization A :

The images can be simply normalized by the mean value of I cam :

I avg ( x) = I cam ( x, t) t
This is what is used in all this PhD with a few exceptions that are indicated.

Normalization B :

As can be seen in Fig B .3 (see appendix) on the radial profiles edges for r * 6 cm, the mean intensity has a noise level of ∼ 20% to ∼ 40%. This light does not come directly from the plasma, which density and temperature are too low, but is due to light reflections on the cylindrical chamber and BN end. With this noise level the normalizing fluctuations for r * ≥ 6 cm loose part of their physical meaning (see Fig B.5). In order to correct this a given percentage of the noise level, computed from the mean light intensity at r * ≥ 7 cm, is removed from all images. We set :

I avg ( x) = I cam ( x) t -α nmd . I cam ( x) (r * ≥7,t)
This normalizing field is used in the characterization of the light intensity in subsection 2.3.3 with α nmd = 0.95, and in subsubsection 6.4.2) to enhance camera images fluctuations at r * > 4 cm with α nmd = 0.85. Note that in spite of getting a better signal in terms of physical significance, the higher the value of α nmd the worst the signal over noise ratio. This is the reason why normalization A is kept for the m-mode analysis of the following chapters.

Normalization C :

We can also choose to normalize each pixel by its fluctuations mean as it is done for instance in [START_REF] Thakur | Multi-instability plasma dynamics during the route to fully developed turbulence in a helicon plasma[END_REF]. In doing so the information of the absolute amplitude of the modes is lost, but the contrast is enhanced and the relative amplitudes of the modes is better extracted, especially in the regions of low light intensity.

I avg ( x) = | Ĩcam ( x, t)| t
This normalization is used for bicoherence. Indeed the set of signals that are used for bicoherence computations are extracted at various radii only to improve statistics (see section 3.3). In these computations the information that is lost about the physical radial amplitude of the m-modes does not matter.

Mode decomposition techniques

The camera images are analyzed by mode decomposition techniques that are detailed in the following. The 2D-FT mode decomposition is extensively used in chapters 5, 6 and 7. The POD is used in chapter 5.

2D Fourier transform

One of the most natural tools that comes to mind in data analysis is Fourier decomposition. Here we are particularly interested in the rotating structures of the flow (such as azimuthal waves that are studied throughout Parts II and III) hence we are looking for a spatial decomposition of the fluctuations along θ, and the corresponding time frequencies. The 2D Fourier Transform (2D-FT) of a two variables function f (x, t) reads : f (k, ω) = f (x, t)e -i(kx+ωt) dxdt. To adapt it in the spatial direction θ, the time series Ĩnmd (θ, t) is extracted from the images at a given radius r * (Fig. 3.1) and the 2D-FT is computed as : Î(k θ , ω) = Ĩnmd (r * , θ, t)e -i(k θ r * θ+ωt) dθdt. Now since the direction θ is periodic, the values of wavelengths λ are fractions of 2πr * : λ = 2πr * /m with m an integer. In the following chapters all the mode analysis is discussed using the mode numbers m, with :

k θ = m r * (3.1)
In addition the frequencies are systematically expressed in Hertz for simplicity of physical interpretation. The 2D-FT is therefore better written as : Going further the previous steps are done for different radii r * (we take typically the pixel lengths R px = (2, 4, 6, ..., 124) px). Taking the 2D Fourier transform Îr * at any radius, the line corresponding to a given mode m can be isolated. The temporal signal of this mode m at radius r * can then be reconstructed by 2D-FT inversion. Doing this for every radius, the full spatio-temporal evolution of the mode m is reconstructed, and this can be done for all modes. As an example the time evolution of m-mode m = -10 to m = 10 are plotted in Fig. 3 on the amplitude plot. In this example, by naked eye it is already clear from the video that m-modes m = 2 and m = 3 are dominant throughout the plasma run, but the observation is only qualitative. With 2D-FT decomposition much more precise information is accessible : the relative amplitudes of each mode and their interactions are extracted (even if it is in terms of light intensity, hence not in terms of energy per se), and their spatial evolution can be observed individually (see for example IAW in chapter 5). In addition the phases of the m-modes are accessible, which can be used for the detection of weakly non-linear interactions (see section 3.3). 

Îr * (m, f ) = Ĩnmd (r * , θ, t)e -i(mθ+2πf t) dθdt (3.2)

Proper Orthogonal Decomposition

Theoretical elements

The Proper Orthogonal Decomposition (POD) consists in extracting the spatial structures that are dominant throughout time in a given data set A(x, t). This is done by computing the eigenmodes Ψ i of the spatial autocorrelation of the time-averaged field A (x) [Sirovich, 1987, Berkooz et al., 1993]. These so-called spatial modes Ψ i then define an orthonormal basis onto which the original data can be projected. This can be written:

A(x, t) = i σ i a i (t)Ψ i (x)
with σ i a i (t) being therefore the time evolution of the data projected on Ψ i . We define here a i to be of norm unity, as Ψ i ; the amplitude of the various components of the decomposition are thus given by the values of σ i .

One of the most interesting aspects of this decomposition is that it is done without any a priori on the shape of the Ψ i structures : they simply come out from the computation process, as "natural" modes, contrary to a more common Fourier analysis such as presented before, which projects the data onto predefined structures. Hence POD might allow the emergence of structures with physical significance that are not well described by mere Fourier modes. Thanks moreover to its simplicity of implementation and computation speed when performed onto a discrete set of data, POD becomes a very attractive and efficient analysis tool for experimentalists, and has grown very popular in the last decades for the analysis of data from experiments or from numerical simulations. Note that depending on the field, this technique is also referred to as Karhunen-Loève decomposition (the original mathematical theorem) or principal component analysis.

Now back at the origin of this decomposition, the set of (Ψ i ) has the property of being the optimal basis for approximating the data [START_REF] Berkooz | The proper orthogonal decomposition in the analysis of turbulent flows[END_REF], i.e. for which N 1 σ 2 i the norm of the projection of A onto (Ψ i ) 1,N is the highest, and this for any N . The spatial modes can then be interpreted as the vectors that are the best suited to reproduce the information carried by A, in the most efficient way. Applied to physical data, this property is all the more interesting if the σ 2 i terms have a clear physical meaning. The first time POD was applied to physical data was in the context of turbulence in fluid dynamics [Lumley, 1967]. In this context the data to analyze is usually a flow given by a velocity field; if the density is moreover considered constant, the projection norm N 1 |a i | 2 then represents a kinetic energy. This gives a very precise and intuitive way of interpreting the modes Ψ i : they are the most important flow structures in terms of energy.

POD has also been applied to spatio-temporal measurements of plasma fluctuations probed by soft x-ray emission [START_REF] Benkadda | Characterization of coherent structures in tokamak edge turbulence[END_REF], and a decade later to camera imaging data of plasma naturally radiated light [START_REF] Tanaka | 2d statistical analysis of non-diffusive transport under attached and detached plasma conditions of the linear divertor simulator[END_REF]. In the latter study, POD is used to exhibit spiral shaped structure generated by a m = 2 instability in a linear device. More recently, and directly inspired by the use of POD in this PhD, the technique was used in [START_REF] Désangles | Fast camera analysis of plasma instabilities in hall effect thrusters using a pod method under different operating regimes[END_REF] to characterize the instabilities developing in the plume of a hall effect thruster, there again from fast imaging data. Note that this has been the first contribution of this PhD to the scientific literature. Following this study, POD has been applied to decompose the camera imaging data of a plasma plume produced by a high-current hollow cathode [START_REF] Becatti | Observation of rotating magnetohydrodynamic modes in the plume of a high-current hollow cathode[END_REF]. Unfortunately in all these cases the physical interpretation of the Ψ i vectors is not as straightforward as in fluid mechanics, since the extracted modes results from the decomposition of light intensity fields, which depends in a non trivial way on the plasma parameters. And even by considering as a crude approximation Ĩcam ∝ ñ, not much can be said on the norm N 1 σ 2 i in terms of physical significance. This does not mean the amplitude of the m-modes extracted from plasma emitted light is void of meaning, but simply that one has to be careful before thinking of it as a precise energy estimation. In the following chapters when the time evolution of both POD and Fourier modes amplitudes are described as the spatial modes energy interactions, this is done in a purely qualitative sense.

Finally as a last significant advantage that deserves to be mentioned, POD does not require any symmetry on the space it is applied to. In the case of complex geometries were Fourier decomposition is difficult to define along space, POD can be a efficient alternative for capturing the physical structures present in the data. However this does not constitute a strong gain here, since the axisymetric geometry of our images is simple enough for the Fourier decomposition to be rather easy to implement.

In practice

It can be shown that a direct extraction of the spatial modes Ψ i associated to their temporal evolution a i , is in fact achieved by applying a mere singular value decomposition (SVD) to the matrix containing the rearranged data of snapshots, one dimension of the matrix representing space, the other time 1 . This way of computing a POD, also referred to as bi-orthogonal decomposition [Aubry, 1991] is the one implemented here.

Each image of the video is rearranged in a column vector, to form a matrix A of size p×q to which a singular value decomposition is applied :

A = U ΣW t (3.3)
with U and W orthonormal matrices of respective sizes p×p and q×q, and Σ a matrix of the same size p×q as A, containing only diagonal elements. By consistency with the previous notation, the column vectors of U and W are respectively denoted Ψ i and a i . For clarity the above decomposition can then be written :

         (A ij )          =           . . . . . . . . . Ψ 1 Ψ 2 Ψ p . . . . . . . . .                    σ 1 . . . σ q                • • • a t 1 • • • • • • a t 2 • • • • • • a t q • • •       (3.4)
Note that we consider p > q which is always the case in our data, with the spatial dimension 1

From the SVD of A = U ΣW t , with U and W orthonormal matrices, and Σ containing only non-zero elements. We have AA t = U ΣΣ t U t with ΣΣ t a squared diagonal matrix hence containing the singular values of AA t . By unicity U is then composed of the eigen vectors of AA t , the autocorrelation matrix relative to the spatial dimension of A. Similarly we get that W contain the eigen vectors of A t A, autocorrelation matrix relative to the temporal dimension of A. p = 256.256 = 65536 and the number of time samples getting up to q = 20000 at maximum. The modes resulting from the decomposition are sorted by descending order of σ i . Under a certain threshold value of σ r σ 1 , the contribution of the mode couple (Ψ i , a i ) i≥r to the decomposition of A can be considered negligible :

A = q i=1 u i σ i w t i r i=1 u i σ i w t i with r < p (3.5)
In this sense POD gives a way of approximating the dataset A(x, t) by only its most energetic components.

Example

A POD is applied to the same example as taken in the previous subsection 3.2.1. The spatial modes being fixed structures in time, the POD results needs two modes to account for a single rotating structure. The spatial shapes of such a couple of POD modes have a phase shift of a quarter wavelength. This is what is observed on various couples of POD modes, and is visible on Figure 3.3 by considering together (Ψ 1 , a 1 ) with (Ψ 2 , a 2 ), (Ψ 3 , a 3 ) with (Ψ 4 , a 4 ), or (Ψ 6 , a 6 ) with (Ψ 7 , a 7 ). Their temporal signals of a mode couple are typically sinusoidal evolutions, also shifted one with respect to the other of quarter a period. This can be seen for instance on the temporal evolution of POD modes 1 and 2, shown in Fig. 3.4 (left). By reconstructing a video signal from a couple of POD modes (such as

A 1,2 (x, t) = σ 1 a1(t)Ψ 1 (x) + σ 2 a 2 (t)Ψ 2 (x))
we observe indeed a rotating azimuthal wave of the type e -iωt-imθ . In the present example, POD modes (1&2) are identified as a mode m = 2, (3&4) are a mode m = 3 and (6&7) a mode m = 1. The relative amplitudes or "energy" of the POD modes are given by the singular values σ i , plotted in Figure 3.4 (right). The POD modes 1 and 2 are above all others, indicating the mode m = 2 is dominant in this sample. This analysis is therefore consistent with the 2D-FT decomposition performed on the same video in the last subsection. Finally the rotation frequencies of the m-modes can be deduced from the spectra of the temporal signals plotted in black on the third line of Fig. 3.3. For the couple (1&2) capturing a mode m = 2, and the couple (3&4) capturing a mode m = 3, frequency peaks are observed for f ∼ 2.8 kHz and f ∼ 4.2 kHz. These frequencies match the findings of the previous subsection with 2D-FT decomposition. A more detailed comparison of POD and 2D-FT is given in chapter 5. 

Detecting weakly non-linear interaction

Some of the m-modes extracted from camera images are in interaction, as can be seen for instance with clear energy exchanges in Fig. 3.2. The non-linear nature of these interaction can be quantified by the computation of bicoherence. After explaining the origin of weakly nonlinear interaction in subsection 3.3.1, bicoherence applied to camera imaging data is presented in subsection 3.3.2.

Weakly non-linear regime

Let us consider a differential equation containing a linear and non-linear operators, respectively denoted L and N , and A a solution of this equation :

∂ t A = L (A) + N (A) (3.6)
Looking for a solution in the form of a small amplitude perturbation, the non-linear part composed of higher order terms is neglected and we are left with :

∂ t A = L (A) (3.7)
In these conditions the general solution can be looked in the form of a sum of monochromatic waves : -mθ) Now slow variations of the amplitudes a n are allowed, i.e. over a timescale T such that T 1/ω n . This implies ∂ p a p ω p a p . At first order A is still solution of the linear Eq. (3.7) and its form with monochromatic is considered valid: A(t, θ) = n a n (t)e i (ωnt-mθ) . Now it is injected in the full non-linear equation. For the sake of the explanation it assumed that we simply have N (A) = A2 . This yields :

A(t, θ) = n a n e i(ωnt
∂ t p a p (t)e i(ωpt-mpθ) = p ∂ t a p (t)e i(ωpt-mpθ) + ≈∂tA since ∂pap ωpap p iω p a p (t)e i(ωpt-mpθ) (3.8) = L (A) + q a q (t)e i(ωqt-mqθ) . r a r (t)e i(ωrt-mrθ) (3.9) = L (A) + q,r
a q (t)a r (t)e i((ωq+ωr)t-(mq+mr)θ) (3.10)

The first order terms give Eq. 3.7, and we are left with :

p ∂ t a p (t)e i(ωpt-mpθ) = q,r a q (t)a r (t)e i((ωq+ωr)t-(mq+mr)θ) (3.11)
This is valid for all (t, θ) and by unicity we have :

∂ t a p (t)e i(ωpt-mpθ) = a q (t)a r (t)e i((ωq+ωr)t-(mq+mr)θ) (3.12)
for all (q, r, p) such that :

   ω q + ω r = ω p m q + m r = m p (3.13)
In a physical sense this means that if the condition of Eq. (3.13) is satisfied, the interactions between the waves of frequencies and wavenumbers (ω q , m q ) and (ω r , m r ) controls the growth of the wave (ω p , m p ) : the product of amplitudes a q a r is directly responsible for the slow time evolution of a p by feeding the term ∂ t a p . This is called a three-wave or triadic interaction 2 . If A is an experimentally measured field such as the camera images, the 2D-FT provides the decomposition of A in term of monochromatic waves and gives access to each of their phases. As it is explained in the following this can be used to check whether non-resonant three waves interaction occur in our experiments.

Bicoherence

The bicoherence is first explained in the case of a 1D signal. The 2D bicoherence, for the evaluation of weakly non-linear interactions such as defined in the previous subsection, is then introduced. The way threshold values are computed is presented, and in a last paragraph an example of bicoherence computation on camera images is given.

General definition with a 1D signal

Let us consider a signal A(t), that can be written as its Fourier series decomposition :

A(t) = n a(f n )e i(2πfnt+φn)
The n th component of the Fourier transform of A is :

Â(f n ) = a(f n )e iφn
If a weak non-linearity occurs between the components of frequencies f 1 and f 2 , feeding the growth of the component of frequency f 1 + f 2 , the phases of these three components are synchronized such that :

φ 1 + φ 2 -φ 1+2 = 0 (3.14)
This phase difference is assessed by computing the quantity Â(f 1 ). Â(f 2 ). Â(

f 1 + f 2 ) * = a(f 1 )a(f 2 )a(f 1 + f 2 ).e i(φ 1 +φ 2 -φ 1+2
) . Now to get robust evaluation of the validity of equation (3.14), the signal A(t) is cut in parts of length δt (with δt 1/f i ) and a statistical sum of the previous quantity is performed. This is defined as the bispectrum of frequencies f 1 and f 2 :

B(f 1 , f 2 ) = | Â(f 1 ). Â(f 2 ). Â(f 1 + f 2 ) * δt | (3.15)
If a component of frequency f 1 + f 2 does not have its phase synchronized with the phase of the product of components f 1 and f 2 , the statistical sum of the bispectrum is a random sum of complex numbers, which tends to zero. If the bispectrum stays above a threshold value (that is defined later) in spite of a statistical average, this reveals the validity of equation (3.14). The absolute value of B depends on the Fourier components amplitudes. Since we are only interested in their phases, and the cancellation or not of the averaging of the terms e i(φ 1 +φ 2 -φ 1+2 ) , the quantity that is rather used is the bicoherence, defined as the normalized bispectrum :

b 2 (f 1 , f 2 ) = | Â(f 1 ). Â(f 2 ). Â(f 1 + f 2 ) * δt | 2 | Â(f 1 ). Â(f 2 )| 2 δt | Â(f 1 + f 2 )| 2 δt (3.16)
Note that this leads to :

0 ≤ b 2 ≤ 1
Bicoherence analysis on 1D signals is common in the context of plasma waves interactions. In [START_REF] White | Bispectral analysis of low-to high-confinement mode transitions in the national spherical torus experiment[END_REF] for instance it is applied to gaz puff imaging data, and help characterizing the transition of a low to high confinement regime in the NSTX tokamak. In [START_REF] Brochard | Experimental evidence of mode coupling in drift wave intermittent turbulence using a wave number bicoherence analysis[END_REF] bicoherence is applied on signals from probe measurements in the linear device VINETA, and exhibits the non-linear coupling between drift waves modes.

Application to 2D camera images

With camera images that provide 2D spatio-temporal signals, the bicoherence can be computed between the frequency components of precise m-modes (m,f ). This is done in [START_REF] Yamada | Two-dimensional bispectral analysis of drift wave turbulence in a cylindrical plasma[END_REF]. For a given radius r * the 2D Fourier decomposition of the light intensity reads : 2πfnt-mpθ+φn,p) The spectrum associated with a single mode m p is a part of this decomposition :

A(t, θ) = n,p a(f n , m p )e i(
Âmp (f n ) = a(f n , m p )e iφn,p
Like for a 1D signal, the bispectrum is defined as a statistical averaging, over parts of lengths δ of the signal. In order to improve the statistical averaging here, the sum is also done over the signals from various radii r * . The bispectrum between components (m 1 ,f 1 ) and (m 2 ,f 2 ) is then defined as :

B m 1 ,m 2 (f 1 , f 2 ) = | Âm 1 (f 1 ). Âm 2 (f 2 ). Âm 1 +m 2 (f 1 + f 2 ) * r * ,δt | (3.17)
And the bicoherence is :

b 2 m 1 ,m 2 (f 1 , f 2 ) = | Âm 1 (f 1 ). Âm 2 (f 2 ). Âm 1 +m 2 (f 1 + f 2 ) * r * ,δt | 2 | Âm 1 (f 1 ). Âm 2 (f 2 )| 2 r * ,δt | Âm 1 +m 2 (f 1 + f 2 )| 2 r * ,δt (3.18)
In order to be suited to the camera imaging data, a Matlab code for the computation of bicoherence was entirely implemented during this PhD. The bicoherence as it is implemented in our code take as an entry mode numbers m 1 and m 2 and explores all possible three-wave interactions (m 1 , f 1 ) + (m 2 , f 2 ) ↔ (m 1 + m 2 , f 1 + f 2 ) in terms of frequencies f 1 and f 2 . The operation is fixed as an addition, and the result is in a form of a 2D map of b 2

m 1 ,m 2 (f 1 , f 2 ), with [f 1 , f 2 ] ∈ [0, F s /2] 2
, F s being the data sampling frequency. In the following for simplicity, the bicoherence applied to camera images will simply be denoted b 2 .

Definition of a threshold

Even with the normalization sets 0 ≤ b 2 ≤ 1, the absolute values of the bicoherence are relative to the signals investigated. The level above which the value of b 2 becomes physically meaningful is not obvious. And since the statistical averaging is not done over an infinite sum, b 2 cannot cancel : we will always have b 2 > 0 even if there is no weakly non-linear interaction to detect. This shows the need for the determination of a threshold values in the use of bicoherence.

A possible method consists in the creation of an artificial signal, that has the same characteristics than the original signal, but without any preferential relation between its frequency components. The bicoherence of this artificial signal is computed, that provides a lower limit for the values of b 2 . This type of method is called surrogate technique [START_REF] Siu | On the efficacy of the combined use of the cross-bicoherence with surrogate data technique to statistically quantify the presence of nonlinear interactions[END_REF], and can be very sophisticated. Here we use a very basic version of the surrogate techniques : the phases of each 2D-FT spectra are randomly mixed. The bicoherence computation applied to this modified data defines a threshold map b 2 0 (f 1 , f 2 ). Then for simplicity we take the maximal value max(b 2 0 ) and define it as a general threshold value for the real bicoherence computation b 2 (f 1 , f 2 ).

Example

The same experiment example as in the previous sections is taken, with (I B = 300 A, P w = 1 kW and p 0 = 1 mTorr). The dominant modes are m = 2 and m = 3. If they are involved in a threewave interaction, it could be for instance with mode m = -1. The time intervals are taken of 1000 points, with an overlap of 200 points between the time segments. With the sampling frequency F s = 200 kfps and a typical frequency of a few kHz for the waves studied in this run this means δt contains a few tens of periods. Figure 3.5 shows the squared bicoherence result for the interaction (m = 3) + (m = -1) ↔ (m = 2). For comparison the threshold map and the bicoherence result (Fig. 3.5 left and center) are shown with the same colorbar scale.

The threshold value is max(b 2 0 ) = 0.089. Note that the map of b 2 does not present any noticeable large scale coherent feature, such as vertical lines or diagonals. This will be observed in chapter 6 and is the signature of a mode strongly interacting with a continuous set of modes. Here a very few values of b 2 are higher than twice the threshold, and can be observed in red in Fig. 3.5. We have for instance b 2 (4.2, -2) = 0.31. It is recalled that the bicoherence as it is implemented here explores the three-wave interactions in the form of an addition : m 1 +m 2 = m 3 . Hence the relatively high value of b 2 (4.2, -2) indicates a three wave interaction of the type

(m = 3, f = 4.2 kHz) + (m = -1, f = -2 kHz) ↔ (m = 2, f = 2.2 kHz).
The negative frequency f = -2 kHz of the mode m = -1 actually corresponds to the positive frequency f = 2 kHz of the mode m = 1, which has more physical meaning. The weakly non-linear interaction detected here is therefore :

(m = 3, f = 4.2 kHz) -(m = 1, f = 2 kHz) ↔ (m = 2, f = 2.2 kHz)
For the simplicity of notations, note that all frequency values indicated in three-waves interactions will be expressed in kHz in the rest of this manuscript, and the unit will be dropped in this context. The second part of this PhD is dedicated to the study of azimuthal waves developing in the plasma column. We start by presenting the plasma column characteristics, in terms of density, electron temperature, floating potential and plasma potential. The global azimuthal rotation of the column is then evaluated. 

Map of the plasma parameters

The main control parameter that is used throughout this work is the intensity of the confining magnetic field, set by the current circulating in the coils I B . It is hence of particular interest to perform a brief parametric study with this parameter. Note that from now on and for simplicity of use, the current I B is kept as the reference parameter instead of the values B. We recall that we have

B[G] = 1.7 I B [A].
Figure 4.1 presents a detailed scan of the density as a function of I B in the range [35 : 300] A, for value of the source power P w = [0.7; 1; 1.5; 2; 3] kW. The evolution is roughly linear for all values of P w , and the density increases with P w . The measurements were performed with Langmuir probes; experimental limitations prevented reliable measurements to be done for higher value of I B . The radial profiles presented in the next section present measurements of n at I B = 400 A from the five-tips probe. Measurements of the floating potential and electron temperature using the five-tips probe for a large range of values of I B are shown 1 in Fig. 4.2. The floating potential strongly declines with the increase of the confining magnetic field, getting from ∼ -15 V at I B = 100 A to values down to -77 V for P w = 1 kW and -141 V for P w = 3 kW (Fig. 4.2 left). Note that the evolution of V f (I B ) is relatively well fitted by a parabolic decline (not shown here). As seen in 1.2.3 the magnetization of electrons is higher than that of ions. This causes the ions to diffuse more easily to the chamber walls, explaining the negative potential equilibrium of the plasma column. The 1 At these regimes the probe tips are subjected to very energetic ion fluxes and Tungsten deposits on the BN head around the tip. This modifies the current collecting areas from an experimental run to another and makes the correct evaluation of n very difficult. The density measurements corresponding to this scan are not considered reliable and are not presented. The estimations of V f and of Te rely on the tips potential values and are not affected by this issue. mobility discrepancy between electrons and ions is higher as B increases, amplifying this effect.

The electronic temperature corresponding to these measurements is shown in Fig. 4.2 (right). Even if the values at I B = 600 A are not very reproducible with a spread over ∼ 1.5 eV, a global trend of declining temperature with B can be observed, from T e 3 eV at I B = 100 A to T e ∼ 2 eV at I B = 600 A. At I B = 800 A surprisingly T e increases up to ∼ 3.5 -4 eV. This effect is not thought to be physical but rather due to the intrusiveness of the probe placed at the center, which has a greater impact on the plasma shape as B rises. The influence on the density of the two other control parameters, the source power P w and the plasma base pressure p 0 , is now presented. The coils current is set at I B = 50 A, and series of Langmuir and interferometric measurements are performed and presented in Fig. 4.3. A linear evolution of the density with P w is observed in Fig. 4.3 (left). This can be explained by a simplified power balance. If the recombination and excitation processes are neglected in front of the ionization, the power lost by the plasma at the wall can be written : P loss ∝ ε iz Γ w , with ε iz the ionization energy and Γ w = n vi /4 the plasma flux at the wall [START_REF] Chabert | Physics of radiofrequency plasmas[END_REF]. We recall that vi = 8k B T i πm i is the averaged velocity of a Maxwellian distribution (see the introduction chapter). Considering a stationary state of the plasma we have P loss = P w and therefore :

n T e ∝ P w At a constant electron temperature we indeed have n ∝ P w . Figure 4.3 (right) then shows a logarithmic evolution of n with the pressure. A simplified model of the charged particles balance brings some insight about this evolution. If we consider the particle source term from the ionization process balancing the particles loss at the walls : n n ne -ε iz /T e,eV ∝ nΓ w . Since n n ∝ p 0 (considering the neutral temperature T n constant) by taking the logarithm we find ln(p 0 ) ∝ 1/2. ln(T e ) + ε iz /T e (with T e in eV). Since the electron temperature evolves between ∼ 2.5 eV and ∼ 5 eV in our experimental conditions at moderate values of I B , the relation can be roughly simplified : ln(p 0 ) ∝ cst + 1/T e Now using the power balance relation previously discussed, at a constant injected power P w we have n ∝ 1/ √ T e . Even if the combination of the power and particle balance indicates a evolution of n with ( ln(p 0 )) rather than with ln(p 0 ), these models help understanding the logarithmic dependence of the density with respect to the pressure. 

Radial profiles

Overview

The radial profiles of the density, plasma potential, electron temperature and floating potential are presented in Fig. 6.3. The profiles of n and T e were commented in subsection 2.3.3, and the profiles of V p will be used and described in chapter 6. Here simply note that the increase of n, and decrease of V p and of T e with a higher I B are consistent with the measurements of the previous section. Note also that the gradients of n and V p are steeper, and that the plasma column gets more concentrated at the center as the magnetic field is increased.

The access to V p , V f and T e allows to check the validity of the relation V p = V f + µT e introduced in subsection 2.1.3. The experimental value of the µ coefficient is computed from the radial profiles of Fig. 6.3 with µ exp = (V p -V f )/T e (not shown here, see Note finally that some of the radial profiles presented in Fig. 6.3 have been performed in other ways, by Langmuir probe measurements, or by using an electrode simply left floating to measure V f , and biased for the estimation of n via I i,sat . These alternative measurements show very good agreement with the profiles displayed here. They are presented for comparison in appendix D. 

Profile variation along z

It is considered in subsection 2.3.2 that the density and electron temperature are approximately constant along the magnetic field lines. In order to check the validity of this hypothesis, five-tips probe radial profiles are performed at z = L 1 for I B = [100; 200; 300; 400] A. The results are shown in Fig. 4.5. The shape of the magnetic field lines computed in subsection 1.1.2 are used to artificially translate the values measured at z = L 2 to z = L 1 . These values (red dashed lines in Fig. 4.5) are compared to the measurements at z = L 1 (blue lines). The profiles are normalized for the comparison : the discrepancy between the measurements at z = L 1 and the shifted profiles from z = L 2 is less than 20%. The central values of the profiles used in Fig. 4.5 are shown in 4.6. We recall that the measurements at z = L 1 are closer to the source than at z = L 2 : the axial location L 1 is 16 cm away from the connexion between the bell jar and the steel chamber. The density is higher at z = L 2 than z = L 1 by 50 to 100% (Fig. 4.6 left). Since the magnetic field significantly decreases around z = L 2 , with B min /B max 0.6 in the region 30 < z < 60 cm, the density increase at this location is thought to be partly due to a magnetic mirror effect. The electron temperature is damped by 15 to 40% between L 1 and L 2 ; this is expected to be due to the energy progressively lost by the charged particles from collisions with neutrals, when getting further from the source (Fig. 4.6 center). As for the floating potential, the axial gradient observed in Fig. 4.6 indicates the presence of an axial electric field. Considering as an rough estimation V p ≈ V f + µT e (with µ = 4.8) the plasma potential difference from z = L 1 to z = L 2 (i.e. over 30 cm) is of ∼ 6 V for I B ≤ 300 A, and of ∼ -2 V for I B ≤ 400 A. We then have E z,0 ∼ 20 V.m -1 for I B ≤ 300 A, and E z,0 ∼ -7 V.m -1 for I B = 400 A. This axial electric field creates an electronic current that is thought to be partly responsible for triggering the development of ion acoustic waves at I B = 100 A. This is discussed in chapter 5. 

Plasma column rotation

With all the previous data available, an estimation of the global plasma flow can be computed. The derivation of the order zero azimuthal ion velocity is presented, and then applied to the radial profiles measured by probe in the present set-up.

Velocity at order zero

A bi-fluid model is considered for describing the plasma evolving in the present set-up. The geometry of the set-up being axisymmetric, the most appropriate coordinates system would be cylindrical. However for simplicity we place ourselves in the so called local-slab approximation, i.e. using a local cartesian geometry. For clarity when comparisons are made with the real conditions, the notation (r, θ) are kept : the reader should keep in mind that these variables will be treated as (x, y) cartesian variables.

Considering a stationary state for the ion motion, in a local-slab geometry, the fluid equation of the ions reads :

0 = -k B ∇(nT i ) + ne E + ne v i × B -m i nν in v i (4.1)
The ion temperature will be considered constant here. The cross product with B is applied to equation (4.1), to the right. Noting that ( v i × B) × B = -v i⊥ B 2 , and moving this term to the left hand side, we can write :

v i⊥ = - k B T i en ∇n × B B 2 + E × B B 2 - m i ν in eB 2 v i × B (4.2)
The first and second term of the right hand side are the ion diamagnetic velocity v d,i and the electric drift velocity v E . Now injecting the expression of v i × B from equation (4.1) gives :

v ⊥ = v d,i + v E - m i ν in eB 2 k B T i en ∇n -E + m i ν in e v i (4.3)
The projection of equation (4.3) along θ finally yields the background azimuthal ion velocity of the plasma column :

v iθ = v di,θ + v E,θ - m 2 i ν 2 in e 2 B 2 v iθ (4.4) v iθ = 1 K ( v di,θ + v E,θ ) (4.5)
with K = 1/(1 + ν in /ω ci ) as defined in subsection 1.2.2. Note that taking into account the effect of ionization results in an additional effective friction : this results in a term in ν in + ν iz instead of ν in in the expression of K (see subsection 1.2.2). In the following we use the expression K taking into account both the friction with neutrals and the effective friction from the ionization (Eq. (1.8)) .

Theoretical predictions from radial profiles

In the present experimental set-up and with the axis orientation chosen (see Fig. 1.1) the magnetic field is oriented as B = B e z = -|B| e z . Hence the electric drift velocity reads :

v E,θ = E × B B 2 . e θ = -∂ r V |B| (4.6)
And the ion diamagnetic drift velocity is :

v di,θ = - k B T e en ∇n × B B 2 . e θ = - k B T i e|B| ∂ r n n (4.7)
The plasma potential gradient and the normalized density gradient are computed from the profiles presented in Fig. 6.3 (see Fig. D.4 in appendix for the gradients results). The azimuthal ion velocity of Eq. (4.5) is then deduced and plotted in Fig. 4.7 for I B = 100 A to 400 A. The plasma column undergoes a rotation which speed ranges in -2500 < v iθ < 1300 m.s -1 . For I B = [100; 200; 300] the central part of the plasma for r 4 cm rotates along e θ , whereas the rotation if the outer part for r 4 cm is along -e θ . The strong shear around r ∼ 4 cm is expected to drive Kelvin-Helmholtz instabilities; that is discussed later in chapter 6. For I B = 400 A the shape of the rotation changes. The bulk part of the plasma column including the central region (r 7 cm) rotates clockwise with v iθ ∼ -2100 m.s -1 at r = 5 cm, whereas the edge at r 7 cm has a slow rotation of ∼ 380 m.s -1 in the opposed direction. This prediction of a plasma column rotation has been confirmed in previous work on the same experimental set-up [Désangles, 2018]. The ion velocity was measured by Mach probes at I B = 100 A and I B = 300 A. For more details on Mach probe designs and functioning see [Chung, 2012]. The order of magnitude that is found at I B = 300 A with v M ach iθ (r = 5) ∼ 800 m.s -1 , is very consistent with the velocity profile computed here, that predicts v iθ (r = 5) ∼ 980 m.s -1 . However a significant discrepancy is found for I B = 100 A. The experimental measurements gives v M ach iθ (r = 2) ∼ 200 m.s -1 and v M ach iθ (r = 5) ∼ -300 m.s -1 . Here the computed values at I B = 100 A predict a velocity that is 5 to 6 times higher, with v iθ (r = 2) ∼ 1200 m.s -1 and v iθ (r = 5) ∼ -1500 m.s -1 . This can be explained by the high variability in the computation of the friction coefficient K.

As seen in subsection 1.2.4 the ionization coefficient depends exponentially on T e . Moreover the temperature of the neutrals is difficult to estimate. It is chosen T n = 500 K in this work, but it was considered T n = 350 K in [Désangles, 2018]. By considering at I B = 100 A an electron temperature of T e ∼ 5 eV instead of T e ∼ 4 eV, and T n = 350 K instead of 500 K, we find K = 6.6 instead of K = 2.2. Without closing the gap, this could contribute to explain the difference exposed above.

In chapter 5 the dispersion relation of the ion acoustic waves is derived, and the azimuthal ion velocity at I B = 100 A is required as an input parameter for its numerical resolution. With the high uncertainty of K at I B = 100 A, we choose to use then the measured velocity v M ach iθ . Lastly it is important to recall that Eq. (4.5) and the velocity profiles of Fig. 4.7 are obtained under the assumption of a constant ion temperature. The values that are used here for numerical application are estimations of T i at the center of the plasma from LIF measurements, reported in [Désangles, 2018]. However T i is expected to decrease substantially at the plasma edges. As a consequence the radial profiles of ion drift velocity v d,i computed here and plotted in the appendix (see Fig. D.5) are probably unrealistic, and might yield largely overestimated values for r 5 cm. Moreover for 1 < r < 5 cm it is found that v E /v di ∼ 5-10. In chapter 6 where values for v i0 are needed, we therefore prefer to take v i0 ∼ 1/K.v E .

Ion acoustic waves

« D'autres légendes étaient écrites, selon la mode des hermétiques, en grand nombre sur les murs ; les unes tracées à l'encre, les autres gravées ave une pointe de métal. Du reste, lettres gothiques, lettres hébraïques, lettres grecques et lettres romaines, pêle-mêle ; les inscriptions débordant au hasard, celles-ci sur celles-là, les plus fraîches effaçant les plus anciennes, et toutes s'enchevêtrant les unes dans les autres comme les branches d'une broussaille, comme les piques d'une mêlée. C'était, en effet, une assez confuse mêlée de toutes les philosophies, de toutes les rêveries, de toutes les sagesses humaines. » Notre Dame de Paris, V. Hugo At a low magnetic field of B = 170 G, fluctuations of the order a few tens of kHz are observed. They are shown to be ions acoustic waves, developing in a regime where the electrons are magnetized and the ions unmagnetized. Strong energy exchanges are recorded between well defined modes, and non-linear interactions are quantitatively identified. 

Introduction

The development of ion acoustic waves (IAW) is ubiquitous in a wide range of plasmas, whether in space [START_REF] Gurnett | Ion acoustic waves and related plasma observations in the solar wind[END_REF], laboratory [START_REF] Corr | Spatially limited ion acoustic wave activity in low-pressure helicon discharges[END_REF] or the industry [START_REF] Doyle | Characterization and control of an ion-acoustic plasma instability downstream of a diverging magnetic nozzle[END_REF]. The nonlinear interactions they can be subjected to have a essential impact on the global plasma dynamics, leading for instance to the formation of solitons [Lee andKan, 1981,Nakamura et al., 1999] or resulting in wave turbulence [START_REF] Jorns | Propagation of ion acoustic wave energy in the plume of a high-current lab6 hollow cathode[END_REF]. In fusion devices the turbulent transport that is well known to be a major issue for confinement efficiency [Horton, 1999] is mainly caused by low frequency waves (i.e. for which ω ω p ) such as as drift, Kelvin-Helmholtz, Rayleigh-Taylor (see chapter 6). In this context IAW, that usually have higher frequencies while still falling in the range of low frequency waves, can play a determinant role in the development of this turbulent transport by interacting with the other LF waves [START_REF] Hirose | Destabilized ion acoustic transit mode and anomalous transport in tokamaks[END_REF]. Interactions and energy transfers that are possible between different wave types is also used on purpose as a mean of plasma heating [START_REF] Deka | Amplification of ion acoustic wave in an inhomogeneous plasma through nonlinear wave-particle interaction with drift wave turbulence[END_REF]. The IAW can also be directly responsible for undesired turbulent transport, as is seen in space thrusters [START_REF] Katz | Growth and saturation of ion acoustic waves in hall thrusters[END_REF].

In this chapter we report the observation by fast camera imaging measurements of rapidly rotating m-modes fully resolved in space and time, at I B = 100 A. The camera images are analysed section 5.2 both by POD and 2D-FT mode decomposition; a brief comparison of these image analysis technique is provided. The dispersion relation of IAW adapted to our experimental conditions is then derived in section 5.3. A comparison between theoretical and experimental phase velocities proves the observed m-modes to be IAW. Clear energy exchanges between well defined IAW modes are then investigated in section 5.4. It is shown that the exchange dynamics is slowed down when pressure is increased. Bicoherence computation finally shows the weakly non-linear nature of these interactions.

The results of the following chapter are the subject of a scientific article that is soon to be submitted to Physics of Plasmas.

Experimental observation

A series of experiments with camera imaging are performed at I B = 100 A and P w = 1 kW, for varying values of the plasma pressure p 0 = [0.8 : 0.1 : 2] mTorr. The images are analyzed by POD and 2D-FT and the results are presented in this section.

First overview by POD

Figure 5.1 shows the result of a POD applied to a sample of 25 ms (5000 images) of the normalized intensity fluctuations, recorded at a pressure of p 0 = 1, 3 mTorr (for an explanation of the POD technique see subsection 3.2.2). We are led to consider together POD modes (Ψ 1 , a 1 ) with (Ψ 2 , a 2 ), (Ψ 3 , a 3 ) with (Ψ 4 , a 4 ), and (Ψ 6 , a 6 ) with (Ψ 7 , a 7 ). A signal reconstruction from the previous couples of POD modes (such as A 1,2 (x, t) = σ 1 a 1 (t)Ψ 1 (x) + σ 2 a 2 (t)Ψ 2 (x)) yields rotating azimuthal waves of the type e -iωt-imθ (not shown here). Due to the very high frequency of the waves observed, the temporal fluctuations signals are closer to triangular than sinusoidal shapes (see Figure 5.1 bottom left); but other measurements of lower frequency waves clearly show the sinusoidal evolution of the a i signals that we get from this type of POD results, which gives us confidence the couples of POD modes mentioned before are indeed a decomposition of simple m-modes. POD modes couples (1&2), (3&4) and (6&7) are therefore identified as modes m = -5, m = -6, and m = -4 respectively. The rotation frequencies of the m-modes can be deduced from the spectra shown in Fig. 5.1 (bottom). For the couple (1&2) capturing a mode m = -6, the very clear peaked frequency of f = 55.5 kHz corresponds to a rotation frequency of the entire wave of f /m, hence to a speed at a given radius of v(r) = 2πr m f . The radius at which the normalized amplitude of the waves is the highest is r * ∼ 3.3 cm : this is considered to be the radial location of the wave. Now because of the parallax effect (see appendix B.3) it is found that what is seen by the camera at r * ∼ 3.3 cm actually corresponds to what happens on average in the plasma column at r cor = 3.9 cm. Note that this correction is purely due to the geometry of the camera lines of sight, and has nothing to do with the magnetic field shape1 . Choosing this radius yields a speed of ∼ 2.8 km/s. This value is close to the ion acoustic speed of c s = eT e /m i ≈ 3.1 km/s, that was computed from a measured electron temperature around r ∼ 4 cm of T e ≈ 4.5 eV. The same analysis and conclusion holds for the modes m = -5 (POD modes (3&4)) with a dominant frequency of f = 65.1 kHz, and m = -4 (POD modes (6&7)) with f = 44.9 kHz, strengthening the idea that the observed waves are IAW. Now a precise identification actually calls for a more subtle analysis, taking into account for instance the Doppler shift induced by the E × B drift of the plasma column. This is done in section 5.3.

The singular values σ i of the modes are plotted in Fig. 5.1 (top right). The POD modes 1 and 2 are well above all others, indicating the mode m = -6 is clearly dominant in this sample. Looking now at the relative amplitude of the a i signals along time, sudden changes are observed at the times 3.8 ms, 29.5 ms and 65.2 ms, corresponding to an energy exchange between modes m = -6 and m = -5. The reconstructed m-mode amplitudes |A 1,2 | and |A 3,4 | (not shown here, and almost equivalent to the 2D-FT modes amplitude detailed later in section 5.4) confirm this exchange dynamics. The POD mode (Ψ 5 , a 5 ), that is associated with a strong spectral component of f = 5.6 kHz and whose amplitude is relatively high (σ 5 ∼ σ 3 , σ 4 ), is thought to be associated to the beating of the two dominant modes m = -6 and m = -5.

The POD analysis presented here was straightforward to implement, and provide a very efficient way of getting a global view on all the main features that compose the flow dynamics captured in a video sample. Now we present the results of a Fourier analysis performed on the same data that complements the POD analysis.

Further analysis by 2D-FT

A 2D-FT decomposition of the images is performed. Figure 5.2 show the 2D spectrum S(m, f ) of the light intensity fluctuations, for a pressure of p 0 = 1.5 Torr. The dependence of the light intensity normalized fluctuations on the frequency and the modes m can be seen as an experimental dispersion relation. Here a linear relation between f and m is observed; the maximum value of the power spectrum is detected for modes m = -7 to m = -5 and a liner regression is performed from these points (green dots and dashed line). The slope of this curve is then converted to a velocity, that is used later in section 5.3 for comparison with a theoretical dispersion relation. Inversely the IAW velocity c s can be used to deduce the dependence of f as a function of m at radius r = 4 cm : this is plotted in dashed black line in Fig. 5.2. The curve do not match perfectly the experimental dispersion relation : the frequencies computed from the ion acoustic speed are slightly above the experimental frequencies. As will be seen in 5.3 this is due to a Doppler effect caused by the plasma column rotation, discussed in section 4.3. Note that a similar analysis is found for all the values of the pressure. Here the example of p 0 = 1.5 mTorr is given instead of p 0 = 1.3 mTorr like in the previous section, for the Doppler shift effect is better visible on the spectrum S(f, m). Figure 5.4 shows snapshots of the modes m = -5 and m = -6, from the experiment at p 0 = 1.3 mTorr (corresponding to the POD example given in Figure 5.1). This timeseries was taken around the exchange event highlighted in Fig. 5.3 by a dotted black box. Over this time evolution of 0.18 ms both the global amplitude and the mean radius of the wave fluctuate. The time t 0 corresponds to the left limit of the dotted box. At time t 0 the amplitude of mode m = -6 is close to its maximum, while the amplitude of m = -5 is close to its minimum. At time t 0 + 18 ms, the mode m = -6 amplitude has decreased close to its minimum value, and the mode m = -5 has become largely dominant. Black bold boxes in Fig. 5.4 (bottom left and top right) highlight the spatial shapes of the modes m = -6 (bottom left) and m = -5 (top right) when they have a high amplitude. Note that these two shapes of modes m = -6 and m = -5 are consistently observed throughout the signals when the amplitude of the respective modes is dominant (not shown here). The other images of Fig. 5.4 reveal that the modes spatial shape is significantly affected by the exchange dynamics.

Let us now compare the m-modes extracted by POD and by 2D-FT. Figure 5.5 (left) show radial profiles of the m-modes reconstructed signal of the m-modes from the POD and the 2D-FT. These profiles are computed by an integration of the images norm along θ, averaged over the 5000 images. In Fig. 5.5 (right) shows the azimuthal profiles taken at a given time and for r * = 3.3 cm. The comparison between POD modes (1&2) and 2D-FT mode m = -5 shows an almost perfect match. Note that the match between azimuthal profiles is observed for continuous periods of time, and is degraded when the amplitude of the mode m = -5 gets low. Between the POD modes (6&7) and 2D-FT mode m = -4 of lower amplitude, a slight discrepancy is observed for 0 ≤ r * ≤ 2.5 cm, but the overall match is extremely good for the time averaged radial profiles. The instantaneous azimuthal profile are not identical, but close by a phase shift of ∼ π/8. This comparison confirms the idea that the POD modes detected are indeed m-modes of the form e -iωt-imθ . On the other hand it indicates that the 2D-FT, that is designed to extract m-modes, is the appropriate numerical tool for the mode decomposition of our images. 

Dispersion relation

In order to confidently identify the modes observed experimentally in the previous section, a dispersion relation suited to the present experimental conditions is computed. A bi-fluid model and a local-slab geometry are considered. Like in section 4.3 the notation (r, θ) are kept, while the variables are treated as (x, y) cartesian variables. Note also that in the following, and only in this section, the plasma potential will be denoted Φ instead of V in order to facilitate the equations reading. The temperature spacial dependences are neglected : T i radial profiles are not accessible, and from Fig. 6.3 we see that T e ∼ 3 -4.5 eV at I B = 100 A.

The equations describing the ions motion are the fluid equation and the continuity equation respectively given by :

m i n i (∂ t + v i . ∇)( v i ) = -en i ∇Φ + en i v i × B -k B T i ∇n i -m i n i ν in v i
(5.1)

∂ t n i + ∇.(n i v i ) = 0 (5.2)
The fluid and continuity equations for the electrons read :

m e n e (∂ t + v e . ∇)( v e )
= en e ∇Φ -en e v e × B -k B T e ∇n e -m e n e ν en v e (5.3)

∂ t n e + ∇.
(n e v e ) = 0 (5.4)

Simple case

In order to better understand the derivation in the conditions of the present set-up, let us start by the standard and simple IAW dispersion relation. This is classically done in an unmagnetized plasma, neglecting the electrons inertia [Chen, 2016]. There are no collisions with neutrals, nor background ion or electron velocities. These hypothesis are summarized :

• unmagnetized plasma

• electrons inertia neglected

• no collisions with neutrals

• v e0 = 0 • v i0 = 0
The steps of the resulting dispersion relation are briefly reproduced in the following. The term cancelling due to the aforementioned hypothesis are put in gray.

Ions

The fluid equation for the ions becomes :

m i n i0 ∂ t v i1 + m i n i1 ∂ t v i0 + m i n i0 ( v i0 . ∇) v i1 + m i n i0 ( v i1 . ∇) v i0 + m i n i1 ( v i0 . ∇) v i0 = -en i0 ∇Φ 1 -k B T i ∇n i1 -m i n i0 ν in v i1 -m i n i1 ν in v i0 (5.5)
And the continuity equation is :

∂ t n i + n i0 ∇. v i1 + v i1 . ∇n i0 + n i1 ∇. v i0 + v i0 . ∇n i1 = 0 (5.6)
Let us perform a first order perturbation of the two previous equations. We look at a monochromatic (ω, k) component of each quantity (u = |u|e -i(ωt-k. x) ). The wave vector is considered to be oriented along θ : k = k θ . e θ , hence we simply write k θ = k. We have :

   ω v i1 = e k m i Φ 1 + kv 2 th,i n i1 n i0 ω n i1 n i0 = k. v i1
(5.7)

Multiplying the top equation in (5.7) by k gives the evolution of the normalized density perturbation as a function of the wave number k, wavelength ω and plasma potential perturbation Φ 1 :

n i1 n i0 = ek 2 m i Φ 1 ω 2 -k 2 v 2 th,i
(5.8)

Electrons

For the electrons, since the inertia is neglected only the fluid equation is needed. With the same assumptions that for the ions, the fluid equation leads to the Boltzmann relation :

0 = en e0 ∇Φ 1 -k B T e ∇n e1
(5.9)

Which first order perturbation reads :

n e1 n e0 = eΦ 1 k B T e
(5.10)

Dispersion relation

Now using quasi-neutrality n i1 n i0 = n e1 n e0 , equations (5.8) and (5.8) are combined : (5.11) This leads to the standard IAW relation dispersion :

ω 2 -k 2 v 2 th,i -k 2 k B T e m i = 0 
ω k 2 = k B (T e + T i ) m i
(5.12)

The present experimental conditions

As will be seen in the next section with the analysis of the camera images, the m-modes that are found travel at a velocity that is relatively close (∼ 20% of relative difference) to the standard ion acoustic speed c s . However to properly identify the modes that are found experimentally as IAW, the measured velocities has to be compared with the phase velocity of a new dispersion relation, derived with hypotheses that suit our experimental conditions. First the electrons are magnetized, hence the Boltzmann relation is not valid here. The collisions with neutrals also have to be taken into account, as they might have a non-negligible effect on the wave development and speed. Then as seen in subsection 4.2 a floating potential drop is measured, and a resulting axial electric field estimated at E z,0 ∼ 20 V.m -1 . The possibility of an electron parallel current in hence included. The development of IAW in these conditions is studied in [START_REF] Vranjes | Fluid modeling of the electron flow driven ion acoustic mode in a collisional plasma with magnetized electrons[END_REF]. Now a last effect needs to be added : the ion background velocity in the azimuthal direction, that was discussed in 4.3. The following derivation of the IAW dispersion relation follows the steps of [START_REF] Vranjes | Fluid modeling of the electron flow driven ion acoustic mode in a collisional plasma with magnetized electrons[END_REF] : the only differences are the addition of a zero-order ion velocity, and a disagreement found in the derivation of the electron equation, that is discussed later. To summarize, the derivation of this section is done under the following hypothesis:

• magnetized electrons

• electron inertia not neglected • collisions with neutrals • v e0 = v ez0 e z • v i0 = v i0 e θ

Ions

The modification due to effects of the background azimuthal velocity and the collisions with neutrals, compared to the simple case of the previous section, are shown in blue and red respectively. The fluid equation for the ions reads :

m i n i0 ∂ t v i1 + m i n i1 ∂ t v i0 + m i n i0 ( v i0 . ∇) v i1 + m i n i0 ( v i1 . ∇) v i0 + m i n i1 ( v i0 . ∇) v i0 = -en i0 ∇Φ 1 -k B T i ∇n i1 -m i n i0 ν in v i1 -m i n i1 ν in v i0
(5.13) And from the continuity equation we have :

∂ t n i + n i0 ∇. v i1 + v i1 . ∇n i0 + n i1 ∇. v i0 + v i0 . ∇n i1 = 0 (5.14)
A first order perturbation is considered. Since the parallel direction will be considered in the electron equations, the wave vector is of the form k = k θ e θ + k z e z . We have :

   (ω -k θ v i0 ) v i1 = e k m i Φ 1 + kv 2 th,i n i1 n i0 -iν in v i1 -iν in v i0 n i1 n i0 (ω -k θ v i0 ) n i1 n i0 = k. v i1
(5.15)

In the same way as in the previous section, the top equation is multiplied by k, and becomes by substituting the bottom equation in the left hand side :

(ω -k θ v i0 ) 2 n i1 n i0 = ek 2 m i Φ 1 + k 2 v 2 th,i n i1 n i0 -iν in (ω - ¨¨¨k θ v i0 ) n i1 n i0 -iν in ¨¨¨k θ v i0 n i1 n i0 (5.16)
And the normalized density perturbation is then :

n i1 n i0 = ek 2 m i Φ 1 (ω -k θ v i0 ) 2 + iν in ω -k 2 v 2 th,i
(5.17) It is interesting to note that the Doppler effect from the background velocity, and the effect of the collisions with neutral, end up being uncoupled in the final equation (5.17). Making the previous derivation with the Doppler effect taken alone, results in the equation (5.17) with only the blue term added with respect to the simple case (not shown here; this simplified derivation is straightforward using the previous equations). In the same manner, taking only into account the neutral friction contribution and setting v i0 = 0 results in equation (5.17) with only the red term left.

Electrons

The fluid and continuity equations for the electrons, under the assumptions of magnetized electrons, collisions with neutrals, and taking into account the electron inertia, are : The projections of these equations parallel and perpendicular to the magnetic field are treated separately. The parallel part of the fluid equation is :

m e n e (∂ t + v e . ∇)( v e ) =
m e n e (∂ t + v e . ∇)( v e ) = en e ∇ Φ -k B T e ∇ n e -m e n e ν en v ez (5.20) -i(ω -k z v ez0 )v ez1 = i ek z m e Φ 1 -ik z v 2 th,i n e1 -m e ν en v ez1 -m e ν en n e1 n e0 v ez0 (5.21) (ω -k z v ez0 + iν en )v ez1 = - ek z m e Φ 1 + (k z v 2 th,e -iν en v ez0 ) n e1 n e0 (5.22)
The result is analogous to the ion perturbation along θ, from the ion fluid equation. Now the perpendicular part of the fluid equations is :

m e n e (∂ t + v e⊥ . ∇ ⊥ )( v e⊥ ) = en e ∇ ⊥ Φ -en e v e⊥ × B -k B T e ∇ ⊥ n e -m e n e ν en v e⊥ (5.23)
The terms highlighted in purple are moved to the left hand side and denoted together A. Then applying a cross product with B to the left :

B × (en e v e⊥ × B) eneB 2 v e⊥ -B $ $ $ $ ( B. v e⊥ ) = B × A -m e n e ν en B × v e⊥ (5.24)
The initial equation (5.23) is used to replace the left term B × v e⊥ . This gives :

en e B 2 v e⊥ = B × A -m e n e ν en B × v e⊥ -1 ene ( A-meneνen v e⊥ )
(5.25) 

en e B 2 +
m e n e v e⊥ = 1 Ω ce ( e z × A) (5.28)
Observing that A is oriented along e ⊥ (see equation (5.23)) we deduce ∇ ⊥ .( e z × A) = 0. We have then :

∇ ⊥ .
(n e v e⊥ ) = 0 (5.29) which simplifies the continuity equation. Note that the second order part of equation ( 5.27) (that can be obtained by subtracting eq. ( 5.28) to eq. ( 5.27)) can be seen as the equivalent to an electron fluid equation, with no magnetic field and enhanced collisions :

m e n e Ω 2 ce ν en v e⊥ = A (5.30)
This is another way of looking at the effect of the strong magnetization on the electrons : the perpendicular electron flow is impeded by an effective strong collision term m e n e Ω 2 ce νen . Finally combining the fluid parallel part and the continuity equation yields :

   (ω -k z v ez0 + iν en )v ez1 = -ekz me Φ 1 + (k z v 2 th,e -iν en v ez0 ) n e1 n e0 n e1 n e0 (ω -k z v ez0 ) = k z v ez1 (5.31)
The top equation if multiplied by k z , and the left hand side is substituted by the bottom equation. The normalized density fluctuations of the electrons is obtained :

n e1 n e0 = - ek 2 m e Φ 1 (ω -k z v ez0 ) 2 + iν en ω -k 2 v 2 th,e
(5.32) Note that this result for the electron equation slightly differs from [START_REF] Vranjes | Fluid modeling of the electron flow driven ion acoustic mode in a collisional plasma with magnetized electrons[END_REF], whereas the starting hypothesis are identical. In the latter study, the second term of the right hand side denominator is iν en (ω -k z v ez0 ) instead of iν en ω here. The author of [START_REF] Vranjes | Fluid modeling of the electron flow driven ion acoustic mode in a collisional plasma with magnetized electrons[END_REF] was contacted on that matter, and acknowledged this result disagreement to be a mistake from his side.

Dispersion relation

The dispersion relation is obtained by using quasi-neutrality, and combining the ionic and electronic equations (5.17) and (5.32):

(ω -k θ v i0 ) 2 = k 2 c 2 s 1 + T i T e - m e m i k 2 k 2 z (ω -k z v ez0 ) 2 -i ν in ω + m e m i k 2 k 2 z ν en ω (5.33)
In the end the only effect of the background ion speed is a Doppler type effect on the left hand side term. However this should not be seen as a simple Doppler effect, since ω is involved in other parts of the equation, and one cannot simply replace ω -k θ v i0 by ω without consequences on Eq. 5.33.

Phase velocities comparison

The dispersion relation of equation (5.33) is expanded and the real and imaginary parts are isolated (not shown here). This provides a system of two equations with two unknowns (ω r , ω i ) that is solved numerically (we note ω = ω r + iω i ). The equation is of order 4 : only the real solutions are kept, one positive and one negative for either ω r and ω i . Now the input parameters v i,0 , v e,0 and k/k z have to be chosen.

Background perpendicular ion speed

The ion velocity at I B = 100 A and p 0 = 1 mTorr is taken as the Mach probe measure v M ach i0 . The IAW wave are located at r * = 3.3 cm, which mostly corresponds to r ∼ 5 cm along the probe measurement axis z = L 2 (see subsection 2.3.3 for the link between r at z = L 2 and r * ). At this radius we have v M ach i0 (r = 5) ∼ 300 m.s -1 . To estimate a value of v i0 = 1/K.(v E + v di ) for the other pressures, we consider v E and v d,i constant, and compute the variation of the factor K that depends on the pressure p 0 and the electron temperature T e . A series of five-tips measurements at r = 4 cm is performed to estimate T e , at p 0 = [0.8 : 0.1 : 2] mTorr. The ion temperature is also needed for the computation of K : it is considered constant and equal to the value measured at p 0 = 1 mTorr, T i ∼ 0.2 eV. The values found for v i0 in the range 0.8 ≤ p 0 ≤ 2 mTorr vary from ∼ -210 m.s -1 to ∼ -320 m.s -1 .

Background parallel electron speed

In the fluid equation of the electrons, considering stationary state and balancing the terms of the friction with the neutrals with the electric field gives m e ν en v eo ∼ e∂ z V . This can be written:

v eo ∼ e m e ν en ∆ z V L
with L the length scale of potential drop ∆ z V along the axis. Now as exposed in 4.2 probe measurements of the axial variation of V f and T e can be used to estimate ∆ z V p /L ∼ 20 V.m -1 at I B = 100 A. The background parallel velocity is then estimated at v e0z ∼ 2.7 10 4 m.s -1 . Note that this is valid for p 0 = 1 mTorr only.

An order of magnitude can be found for the electron parallel speed, but since a more precise estimation is not possible v ez0 is kept as a varying parameter in the numerical resolution of the dispersion relation.

Wave orientation

The IAW experimentally observed travel along e θ : their phase velocity is positive. The numerical results show that for v i0 < 0, the IAW having positive phase velocity are unstable for any value of the wave orientation. For negative phase velocities (i.e. following the direction of the ion background velocity v i0 ) the instability condition ω i > 0 depends on the wave orientation k z /k and the electron velocity v ez0 (see Fig. D.6 in appendix). For ω r < 0, unstable modes are found only for v ez0 > 2.6 10 5 m.s -1 . This is one order of magnitude higher than the estimation computed in the previous paragraph. Note also that the most unstable modes are found for k z /k ∼ 0.02 for all values of v ez0 .

As a consequence, even is we have ω r > 0 here, it is decided to consider k z /k ∼ 0.02 as a rough estimation.

IAW identification

The result of the IAW dispersion relation resolution is shown in Fig. 5.6. The input parameters are v i0 = v M ach i0 experimentally estimated for all pressure p 0 , a wave orientation of k z /k ∼ 0.02, and varying values of v ez0 . The experimental phase velocities are determined by the slope of the camera imaging dispersion relation as explained in 5.2, and also plotted in Fig. 5.6 for comparison.

The match is very good : experimentally observed phase velocity v exp φ (exp) are well explained by the theoretical phase velocities v theo φ . A beam of v theo φ curves is plotted, corresponding to parallel electron velocities of v ez0 = [0.1; 0.5; 1; 1.5] 10 5 m -1 . This velocity might vary from an experiment to another, which can explain the experimental phase velocity variations. For p 0 ≥ 1.4 mTorr the match is best for v ez0 ∼ 1 10 5 m -1 , which is an order of magnitude higher than the estimation found before. For p 0 = 1.1 mTorr and p 0 = 1.3 mTorr, the best match is found for v ez0 ∼ 1 10 4 m -1 which in this case matches the previous estimation. For the sake of comparison the simply Doppler shifted velocity c s -v i0 is also plotted, in yellow dashed line. It is interesting to note that it matches the numerical results obtained by the dispersion relation in the case of a low parallel electron velocity v ez0 ≤ 10 4 m -1 .

To conclude, the results from the dispersion relation resolution allow us to identify with great confidence the azimuthal waves observed at I B = 100 A as IAW. 

Non-linear interactions

The exchange events that are observed for p 0 = 1.3 mTorr between modes m = -5 and m = -6 (Figures 5.1 and 5.3) are similarly observed at p 0 = 0.9 mTorr and p 0 = 1.1 mTorr. The timescales of the exchange events are now determined at these three values of the pressure. This is done by fitting, at the times of energy exchanges, the mode amplitude A m with an exponential growth : A m ∝ exp(t/τ ). Figure 5.7 (left) shows an example of such a fit. The mode raw amplitude is shown in blue, and filtered in red for clarity. Note however that in order to stay as close as possible to the information carried by the data, the fit is done on the raw curve of the amplitude (blue). Figure 5.7 (right) shows the resulting values of τ found for the mode m = -5. The time of growth significantly increases with the pressure, its value being doubled from p 0 = 0.9 mTorr to 1.3 mTorr. This is interpreted as being the result of an increased friction from the neutrals at higher pressure. Note that this observation of a slowing down of the IAW growth with an increase of pressure is consistent with theoretical observation from [Baalrud, 2016]. The dynamics between modes m = -5 and m = -6 seems clearly governed by a non linear behaviour. To assess this in terms of weakly non-linear interaction (see section 3.3), the bicoherence is computed for the three wave interaction : (m = -5) + (m = -1) ↔ (m = -6). The results are shown in Fig 5 .8. The threshold map (left) yields a threshold value of max(b 2 0 ) = 0.12. Figure 5.8 (right) shows the map of b 2 (f 1 , f 2 ) with f 1 and f 2 the frequencies of modes m = -5 and m = -1 respectively.

Several values of very high bicoherence with b 2 ≥ 0.42 (i.e. more than 3.5 times the threshold value) are found for f 1 = 64.6 -65 ; 65.2; 65.4 with f 2 = 0 (we recall that all frequencies are expressed in kHz, with the unit not written for reading clarity). The frequencies around f 1 = 65 actually correspond to the dominant frequency value of mode m = -6. The non-linearity found here corresponds to frequency components f = 65 of mode m = -5 fed by the high amplitude of the component (m = -6, f = 65). It does not provides information on the energy exchanges involving the mode (m = -5, f ∼ 55) observed in the last sections. However the highest value of b 2 found after the values mentioned above, is b 2 = 0.39 and corresponds to f 1 = 55.4 and f 2 = 11.2, i.e. to the interaction :

(m = -5, f = 55.4) + (m = -1, f = 11.2) ↔ (m = -6, f = 66.7)
This value of b 2 is significantly higher than the threshold of 0.12. The non-linearity of the interactions between IAW modes (m = -5, f = 55.4) and (m = -6, f = 66.7), observed to alternate in global amplitude in section 5.2, is therefore established. 

Context

Impact on plasma confinement

Undesired radial transport at the edge of fusion plasmas is known to be largely due to wave turbulence. Initially called "anomalous diffusion" as it was not well understood, this turbulent transport is typically caused by drift waves, that have been the subject of extensive theoretical and experimental investigation in the last decades [Horton, 1999, Zweben et al., 2007]. More generally the plasma confinement in tokamaks is greatly influenced by various types of low frequency waves (LF waves), i.e. for which ω ω c,i . An important instability that has to be mentioned in this respect is the interchange instability, also called balloning modes from the perspective of MHD modelling. This instability rises on fusion plasma edges where the magnetic field curvature acts as a destabilizing pressure force, pushing dense plasma towards regions of lower pressure.

Beyond the increased transport it can trigger in the same way than drift waves, the interchange instability has been the subject of a particular focus for the role it plays in the formation of blobs, i.e. elongated structure along B forming in the scrape-off layer (SOL) of tokamaks [START_REF] Myra | Transport of perpendicular edge momentum by drift-interchange turbulence and blobs[END_REF],Sugita et al., 2010]. Indeed these structures (also called avaloids [START_REF] Antar | Universality of intermittent convective transport in the scrape-off layer of magnetically confined devices[END_REF]) detach from the plasma and contribute by convection to an intermittent and non-negligible part of the radial transport in fusion devices. For a thorough description of the phenomenon and the related studies we refer to the review from [D 'Ippolito et al., 2011].

Finally the radial electric field that develops in fusion plasma, being perpendicular to the toroidal and main component of the confining magnetic field, leads to a global azimuthal plasma rotation through an E × B drift. Variations in the radial electric field, hence in the azimuthal rotation, then generate a velocity shear that can give birth to Kelvin-Helmholtz (KH) instabilities. This E × B shear and the KH instability associated with it are crucial for controlled fusion as they are thought to be responsible for L-H transitions, i.e. the passage from a Low confinement regime to a High confinement one, that is necessary to reach. This L-H transition mechanism is still not fully understood and is the subject of current research. Details about the role of E × B shear in fusion plasma can be found in the review from [Burrell, 1997] and a more recent experimental observation of L-H transitions driven by E × B shear is reported in [START_REF] Yan | Observation of the l-h confinement bifurcation triggered by a turbulence-driven shear flow in a tokamak plasma[END_REF].

Fundamental investigation using linear devices

Linear devices, of simpler geometry than tokamaks, have been used from the early stages of fusion research to better understand low frequency waves and their relation to turbulent transport. It is in linear devices that the first experimental observation of drift waves was made, and that their link to turbulent transport started to be experimentally investigated [D 'Angelo, 1963,Chen, 1964, Hendel et al., 1968].

Linear devices magnetic configurations do not produce a magnetic field curvature such as that of tokamaks, and in consequence do not allow the interchange instability to develop. However, the global E ×B azimuthal rotation of the plasma column that is very common in linear devices, is responsible for a centrifugal force opposed to the density gradient direction. This situation gives rise to an instability that is, like the interchange instability, analogous to a Rayleigh-Taylor mechanism. Furthermore the shear of this E ×B rotation, emerging from a varying radial electric field, can trigger Kelvin-Helmholtz instabilities.

Drift, Rayleigh-Taylor (or centrifugal) and Kelvin-Helmholtz are three types of low frequency waves that are predicted to develop in weakly ionized magnetized plasma in linear devices [Jassby, 1972]. They have been almost systematically observed up to now in linear devices [START_REF] Klinger | Chaos and turbulence studies in low-beta plasmas[END_REF], Brochard et al., 2005, Thakur et al., 2014] and are expected to be observed in the present experiments. These instabilities are therefore introduced in more details in the next section. A general picture is given, by first explaining the physical mechanism behind each one, and by providing elements of their modelling with some associated results.

General characteristics

Drift waves

The drift instability results from the coupling between a density perturbation ñ and the corresponding perturbation in the electric potential of the plasma Ṽ . In order to develop in a magnetized plasma, it needs no more than an inhomogeneous density profile perpendicular to the magnetic field lines. This situation being extremely common in a wide range of plasmas, the instability was initially called the "universal" instability [Lashinsky, 1964].

Physical mechanism

Propagation

Let us assume an equilibrium density n 0 and a small potential perturbation Ṽ . Consider first the case of adiabatic electrons, i.e. neglecting the effect of collisions on the electrons motion, the density is given by the Boltzmann relation [START_REF] Lieberman | Principles of Plasma discharges and materials processing[END_REF] : (6.1) Then writing the density as its average and fluctuating components (n = n 0 + ñ), and considering that e Ṽ k B T e , we have :

n = n 0 e e Ṽ k B Te
ñ = n -n 0 = n 0 (e e Ṽ k B Te -1) n 0 e k B T e Ṽ (6.2) ñ ∝ Ṽ (6.
3)

The response of the electrons to a plasma potential perturbation is instantaneous, ñ and Ṽ are in phase. Now under the presence of a magnetic field B, any fluid particle of the plasma undergoing an electric field E will drift at the velocity v E = E× B B 2 . Consider a local positive perturbation of the potential, going with a density perturbation : this area of higher potential gives rise to a local electric field directed away from the center of the perturbation, causing the plasma to locally rotate by E×B drift, as sketch in figure 6.1 (a). Now, due to the global density gradient in which this local rotation takes place, plasma from higher density region is moved down (on this same figure) and plasma from lower density region is moved up. The density is lowered on the left of the perturbation, increased on its right : the density perturbation is moved to the right, and propagates in the y direction. Note that in a cylindrical geometry with a magnetic field along z, the density gradient is along r and the propagation described above occurs along θ.

Growth

Now if the effect of collisions between electrons and ions is taken into account, the Boltzmann relation is not anymore valid and the plasma electric resistivity hinders the electrons motion. We have :

ñ ∝ Ṽ (1 + iδ) (6.4) with δ ∈ R * .
The electrons response to a potential perturbation is delayed, leading to the growth or damping of the wave, depending on the phase shift between ñ and Ṽ . The drift waves are then are called resistive. Looking on the example sketched in figure 6.1 (b) where density and electric perturbations are not in phase, the E×B drift drives plasma of high density to a region where the density is already high : the perturbation is increased. For a more detailed explanation on the mechanism giving rise to drift waves, see [START_REF] Tynan | A review of experimental drift turbulence studies[END_REF]. Sketches adapted from [Horton, 1999].

Modelling

One of the most famous and widely used modelling of the drift waves is the Hasegawa-Mima model for adiabatic electrons [START_REF] Hasegawa | Pseudo-three-dimensional turbulence in magnetized nonuniform plasma[END_REF], and the Hasegawa-Wakatani model in the resistive case [START_REF] Wakatani | A collisional drift wave description of plasma edge turbulence[END_REF]. These models were derived to meet the need for a better understanding of the drift waves development in tokamaks. As a consequence they are adapted for fusion plasmas, and for a geometry with a relatively small curvature that can be neglected in a first approximation (and high azimuthal mode number of m ∼ 100) : the model are derived in a local slab geometry, and for a fully ionized plasma. Now in a linear device such as the one used in this work or those cited in the introduction, the mode numbers of the LF waves observed are much smaller (m 5) and the wave length of the order of the radius of the chamber. In our case for example a mode m = 3 propagating at r = 5 cm has a wavelength of λ ≈ 10 cm. In his context the local slab approximation might not be valid. Moreover the ionization rate of linear device plasma is usually low (here 5% to 40%) : the collisions with neutrals can have a non negligible impact on the plasma dynamics and have to be taken into account for an accurate description of the LF waves. In the same years than the models of Hasegawa-Mima and Hasegawa-Wakatani were published, an effort was made to investigate the development of drift waves in linear devices with a more appropriate modelling. [START_REF] Ellis | Collisional drift instability of a weakly ionized argon plasma[END_REF] derives a dispersion relation taking into account collisions with neutrals, in a cylindrical geometry, and neglecting Coulomb collisions. Then by a numerical study he shows that the local slab model is inadequate for being used in a cylindrical geometry, for m ≥ 3. The effect of the radial electric field are added in a later study [START_REF] Marden-Marshall | Collisional drift instability in a variable radial electric field[END_REF], showing the E × B rotation might have a destabilizing effect on DW and increase their growth rate, compared to non-rotating model. They also claim that the phase velocity can be deduced from the phase velocity derived in a non-rotating model, by simply adding the global plasma column rotation speed, as a Doppler effect. Unfortunately the results of these studies are either empirical or numerical, and no simple analytic approximation of the DW dispersion relation could be provided in the context of linear devices, taking into account a cylindrical geometry and collisions with neutrals.

The numerical approach being out of the scope of this PhD, it is decided here that a local slab model will be used as a first approximation for the identification of DW modes for m ≤ 3.

Phase velocity

The real part of the dispersion relation in a local-slab geometry, taking into account collisions with neutrals, reads [START_REF] Ellis | Collisional drift instability of a weakly ionized argon plasma[END_REF]: (6.5) with k ⊥ the wavenumbers perpendicular to the magnetic field, ρ s the hybrid ion Larmor radius, and v d,e the electron diamagnetic velocity. Since the plasma column undergoes in the present experiments a global rotation from the E × B drift, this rotation speed is simply added to the theoretical phase velocity from equation (6.5), as suggested by [START_REF] Marden-Marshall | Collisional drift instability in a variable radial electric field[END_REF].

ω k = 1 1 + k 2 ⊥ ρ 2 s v d,e
As seen in subsection 1.2.4 and in section 4.3, the effect of collisions with neutrals has to be taken into account, yielding a background velocity of the plasma column of v 0 ∼ 1/K.v E . Hence we choose to use in the following :

v DW Φ = 1 1 + k 2 ⊥ ρ 2 s v d,e + 1 K v E (6.6)

Growth rate

To get an estimation of the growth rate we refer to the simplified derivation of the Hasegawa-Wakatani model summarized in [Chen, 2016], that is made under the assumption of a fully ionized plasma, with no radial electric field (E 0 = 0, i.e. v E = 0), and in a local-slab geometry. This yields :

γ DW ≈ ω 2 d,e σ (6.7) with σ = k 2 k 2 ⊥ ω ci ω ce τ ei .
Note that the additional hypothesis that σ ω is needed to get to Eq. ( 6.7). In our case it is verified, with σ ∼ 10 7 -10 8 depending on the magnetic field. This growth rate formula for DW is used for example in [START_REF] Thakur | Multi-instability plasma dynamics during the route to fully developed turbulence in a helicon plasma[END_REF], an experimental study on LF waves performed in the linear device CSDX.

Other characteristics

It is important to note that drift waves have a non-zero parallel wave number (k // > 0) as sketched in Fig. 6.2, of the order of 2π/L with L the linear device length [Jassby, 1972]. Note also that in order for a drift mode to grow, the phase shift between the density and potential fluctuations must be lower then π/4 [START_REF] Tynan | A review of experimental drift turbulence studies[END_REF]. Finally as indicated in [Jassby, 1972] the normalized density fluctuations of a DW should be higher that the normalized plasma potential fluctuations, and of the same order : ñ/ n Ṽp / T e . 

Rayleigh-Taylor

Physical mechanism

In fluid dynamics, the Rayleigh-Taylor (RT) instability develops when a fluid phase is on top of a lighter one, and is triggered by the competition between the gravity force pulling the heavy fluid downward, and the buoyancy lifting the lighter fluid upward [Rayleigh, 1900,Taylor, 1950].

Instabilities with a similar competition mechanism are observed in tokamaks and linear devices, and are sometimes referred to as Rayleigh-Taylor for this reason. Instead of being against the direction of gravity, the density gradient in both these configurations is radial : the plasma is denser at the center. Then instead of gravity, in tokamaks the destabilizing force is caused by the magnetic field curvature, responsible for a pressure drive opposed to the radial density gradient. In linear devices the strong E × B rotation of the plasma column creates a centrifugal force, opposed here again to the density gradient, that can be thought as an effective gravity g ef f = v 2 E /r [Brochard, 2004] and yielding a RT instability. Although it took its name from the fluid dynamics instability, the mechanism behind the growth of RT types instabilities in plasma should not be considered as the perfect equivalent of its fluid dynamics counterpart; much like the drift waves mechanism, it takes into account the local electric field created by charge separation and the phase difference between the density and plasma potential fluctuations. This charge separation, caused by a gravitational drift, is the trigger of the instability. Because of this difference from fluid mechanics it is sometimes rather called the centrifugal instability, and the waves it produces flute modes [START_REF] Thakur | Multi-instability plasma dynamics during the route to fully developed turbulence in a helicon plasma[END_REF], Brochard et al., 2005]. The resulting dynamic however resembles that of a fluid RT instability : plasma from high density region and low density ones tend to interchange their position. Note that as a consequence a RT mode is static in the frame of the plasma mean velocity : it does not propagates. For more detailed explanations on the RT physical mechanism, we refer to the detailed and very pedagogical presentation of the instability in chapter 19 of [START_REF] Goldston | Introduction to plasma physics[END_REF].

Modelling

Like for drift waves, the simple analytic expression of phase velocity and growth rate that are chosen in this work are derived from a local-slob model. The collisions with neutrals are not taken into account, the ion pressure term neglected. Consider a plasma with ion background velocity v 0 = v 0 ŷ no electron background velocity v 0,e = 0, undergoing the effect of gravity g = g x and with a density gradient ∇n = -∇n x. A external magnetic field is assumed orthogonal to both v0 and g : B 0 = B 0 ẑ. A first order perturbation in the ion motion equation, coupled with quasi-neutrality yields [Chen, 2016, Brochard, 2004] :

w = 1 2 kv 0 ± 1 4 k 2 v 2 0 + g ∇n n 1/2 (6.8)
Now adapting the variables to the present experiments, (x, y) can be thought as an approximation for (r, θ). Then we take v 0 = v E and g = v 2 E /r. Note that we define here ω E = k ⊥ v E (a slightly different notation is used in [Brochard, 2004] with ω E = v E r ). This results in :

w = ω E 2 ± ω E 2 1 + 4r m 2 ∂ r n n 1/2
(6.9)

Phase velocity

The dispersion relation introduced here above is derived from the assumption that v 0,e = 0 : in this situation the average density frame of reference moves at half the ions speed 1/2v i,0 [Chen, 2016]. Since RT waves are stationary in the frame of the plasma background motion, it is no surprise seeing this velocity being the phase velocity in Eq. ( 6.8) : ( ω k ) = 1/2v 0 . In our case the plasma column rotates at the electric drift velocity, hindered by the friction from neutrals : v 0 = 1/K.v E . Hence we consider :

v RT Φ ∼ 1 K v E (6.10)

Growth rate

The growth rate is deduced form the imaginary part of equation ( 6.9) with γ RT = (ω) :

γ RT = |v E | √ r - ∂ r n n - m 2 4r 1/2 (6.11)
It is common to neglect m 2 /4r in front of ∂rn n [Chen, 2016, Thakur et al., 2014] but this approximation is not valid in our experimental conditions, and the whole expression of Eq. ( 6.11) is kept. More details about this instability condition are provided via an example in section 6.3.

Other characteristics

Unlike drift waves, the RT azimuthal instability does not have an axial wave number : k // = 0. Note also that the phase difference ∆ψ ñ, φ between its density and plasma potential fluctuations ranges between π/4 and π/2, and that the normalized fluctuations of Ṽp / T e are greater than that ñ/ n and, but of the same order [Jassby, 1972].

Kelvin-Helmholtz

Physical mechanism

Like the Rayleigh-Taylor mechanism, the Kelvin-Helmholtz instability takes its name from the field of fluid mechanics. It develops in fluids undergoing a velocity shear, or at the interface between two fluids of different velocities. In a rotating plasma column KH waves can be triggered by sufficiently strong variations of the azimuthal rotation along the radius [D 'Angelo, 1965,Kent et al., 1969].

Modelling

The analysis of the KH instability in the context of linear devices is necessarily done in relation to the DW and RT modes. Indeed in a magnetized plasma column, where an equilibrium is reached between the plasma generation by ionization inside the column and the loss (at least) by diffusion at the edge, a density gradient orthogonal to the magnetic field is inevitable, condition for drift waves to emerge. In addition the velocity shear produced by variable E × B drift implies a azimuthal rotation of the plasma column in the first place, hence the possibility for RT instabilities to develop.

As a consequence the model developed to account for the KH instability are complex and need numerical resolution. In search here for a simple and easy to use approximation of the KH instability phase velocity and growth rate, it is decided to follow the estimations given respectively in [Jassby, 1972] and [START_REF] Horton | Drift waves in rotating plasmas[END_REF] and introduced hereafter. These estimations are adopted in the present work with all the more confidence that they have been used respectively in [START_REF] Light | Low frequency electrostatic instability in a helicon plasma[END_REF], Brochard et al., 2005, Thakur et al., 2014] and [START_REF] Thakur | Multi-instability plasma dynamics during the route to fully developed turbulence in a helicon plasma[END_REF], all being experimental studies in linear devices.

Phase velocity

The study of [Jassby, 1972] provides various criteria for the identification of the LF waves presented in this chapter. Concerning KH waves, it is observed from numerical results that for m ∈ [1 : 10] the phase velocity is bounded by fractions of the electric drift velocity : 0.1 < v φ / max(v E ) < 0.4 (see Fig. 1 (a) in [Jassby, 1972]). Note that this criteria is usually used as 0.2 < v φ / max(v E ) < 0.6 in the previously cited studies which actually corresponds to mode m ∈ [5 : 25] in [Jassby, 1972]. In order to take into account the effect of friction with neutrals, it is decided here to substitute in a crude way v E by 1/K.v E in the latter criteria. This is done in addition to the way this criteria is usually used. The phase velocity for KH modes is therefore looked as :

v KH φ ∼ (0.1-0.4) max 1 K v E (6.12)

Growth rate

Like in [Jassby, 1972], the study of drift waves in the context of variable radial electric led by Horton at al [START_REF] Horton | Drift waves in rotating plasmas[END_REF] leads to the observation of KH type instabilities, amongst others. The maximal growth rate of the KH modes is estimated from the numerical results to be of the order of γ max 0.5r dΩ(r) dr . Here for simplicity the max index is dropped and we choose to use :

γ KH ∼ 1 2 r dΩ(r) dr (6.13)
with Ω(r) = v E (r)/r the azimuthal rotation frequency of the plasma column due to E × B drift.

Other characteristics

If the plasma velocity along the magnetic field axis u z is constant (which is considered to be the case in the present experiments) there is no axial mode (k // = 0). Note also that from [Jassby, 1972] the theoretical phase difference between density and potential fluctuations in the case of a KH instability is between π/2 and π, and that Ṽp / T e ñ/ n .

Summary

All the elements previously introduced that can be used to discriminate between the experimental observation of DW, RT or KH instabilities are summarized in Table 6.1. Since it is not often recalled in the latter studies, it is emphasized here that the growth rates given in Table 6.1 come from models with no collisions with neutrals and in a local-slab geometry for the DW and RT instabilities.
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.1: Criteria that are used for the identification of the low frequency waves in the present experiments. Note that the phase velocities and growth rates come from empirical observations and strong theoretical approximations (see text for details). The three bottom lines are directly reproduced from [Jassby, 1972].

Identification

The plasma parameters measured by five-tips probe are now used to identify the low frequency waves observed in the plasma column. Figure 6.3 shows the radial profiles of the density and the plasma potential, from the center at r = 0 cm to the chamber edge at r = 10 cm. Both the gradients in density and potential are maximal between r = 4 cm and r = 8 cm and increase with the magnetic field (see appendix D for first order derivatives plots). The region of higher gradients around r ∼ 6 cm is expected to be the location for DW and RT instabilities to develop. Then the locations of strongest second order variation in V p are found at r ∼ 4 cm and r ∼ 8 cm. Around r = 4 cm for I B = 100, 200, 300 A the E × B drift changes sign. And at the edge around r = 7 -8 cm for B = 200, 300, 400 A the plasma potential V p abruptly flattens : the azimuthal rotation goes from its higher value at r ∼ 6 cm to a stall at the edge. In these two regions the plasma column is subjected to a strong azimuthal shear, where KH instabilities can be expected to grow.

Growth rates and phase shifts

The theoretical growth rates of DW, RT and KH instabilities are computed from the formulae given in Table 6.1 using the probe radial profiles shown in Fig. 6.3. We now leave aside the case of I B = 100 A, that was the subject of the previous chapter, and which analysis in term of LF waves is given in appendix D.

Let us first focus on the case I B = 300 A. The growth rate for this regime are plotted in Fig. 6.4 for m = 1 to m = 5. The DW growth rate, maximal at r ∼ 5 cm, increases with the mode number. Note however that the actual DW growth rate is not expected to grow indefinitely with m; we recall that the expression given in Eq. ( 6.7) is only valid for low values of m. The RT growth rate on the contrary decreases with m : the most unstable RT mode is m = 1, closely followed by m = 2, for all values of I B . The computation of γ RT is now detailed for I B = 300 A. Figure 6.5 (left) shows the radial profiles of the electric drift and electron diamagnetic velocities v E and v d,e ∝ ∂rn n , and the RT stability condition -∂rn n > m 2 4r is explicitly displayed in Fig. 6.5. Note that for m ≥ 5 the criterion is not met and RT waves cannot be triggered. The profile of v E also influence the value of γ RT . Here since the radii of max(v E ) and max(v d,e ) are very close at r ∼ 6-7 cm (where both gradients of V p and n are maximal), the resulting maximal value of γ RT is found around this same radius, r ∼ 6 cm. Lastly the growth rates of KH modes are independent of m. The results for I B = 200 -300 -400 A are plotted in Fig. 6.6 (top), for modes m = 1 to m = 5. It can be observed that for all I B the most unstable modes are KH (r ∼ 4 cm and r ∼ 8 cm) and RT (r ∼ 6 cm), at radii that were expected from the probe profiles. However the DW instability growth rate is systematically lower. But let us keep in mind that in subsection 6.2.1 the E × B rotation is not taken into account for the derivation of γ DW , which therefore probably underestimates the actual DW growth rate as reported by [START_REF] Marden-Marshall | Collisional drift instability in a variable radial electric field[END_REF]. Figure 6.6 (bottom) shows the decomposition in frequencies, and for each radius in r = [0 : 0.5 : 10] cm, of the phase shift ∆Φ(ñ, Ṽf ) between the density and the floating potential fluctuations that were measured simultaneously with a five-tips probe. Three regions are delimited by dashed lines in these plots. These frequency components correspond to strong floating potential fluctuations and weak density fluctuations, as can be seen in rows 2 and 3 of Fig. 6.6, which is a feature of KH instabilities (see Table 6.1). Their radial location also match high growth rate for KH, and negligible growth rates for RT and DW. Finally the phase shift in these areas is close to values between π/2 and π : these LF fluctuations are confidently identified as KH modes.

At I B = 300 A and 400 A strong fluctuations of both n and V f are observed in the region of highest RT growth rate around r = 6 cm, at frequency f ∼ 4 kHz. The corresponding areas in the phase shifts plot are framed with plain dark lines. The values of ∆φ are between ∼ 0.3π and ∼ 0.6π for these fluctuations, which is an additional criterion for RT waves (see Table 6.1). It is thus reasonable to consider these LF waves to be RT modes. The observation of a clear KH and RT mode coexistence at I B = 300 A is described later in more details in paragraph 6.4.2.

Looking now at all the (r, f ) locations of strong density and floating potential fluctuations in Fig. 6.6 (rows 2 and 3) we do not find any area of small phase shift values |∆Φ| ≤ 0.25π. This makes unlikely the possibility for any of these fluctuations to be DW.

As a final remark, note that a clear change of sign is observed in ∆Φ for frequencies around 2 kHz to 4 kHz, at r = 7.5 cm for I B = 200 A, r = 4 cm and r = 8 cm for I B = 300 A, and r ∼ 7 cm for I B = 400 A. In the latter case for example, the fluctuations ñ are delayed and then in advance in front of Ṽf respectively for r 7 cm (∆Φ > 0) and r 7 cm (∆Φ < 0). This is consistent with the fact that these locations correspond to a rotation change of sign at r = 4 cm or strong rotation stall around r ∼ 7-8 cm, as can be seen clearly on the profile of v E plotted in Fig. 6.5 in the example of I B = 300 A. Now the LF waves identification is achieved using the theoretical to experimental phase velocities comparison. More features of Fig. 6.6 will be discussed in subsection 6.4.3 using insight from the 2D power spectra presented hereafter. 

Phase velocities

From the 2D-FT decomposition of camera images the 2D power spectra at any radius can be computed (see subsection 3.2.1), showing the main frequency components of the waves present in the experiment, as a function of the modes m. This can be thought of as an experimental dispersion relation, hence displaying the phase velocities of the waves observed in the present experiments. For each value of I B the radius r * 0 of maximal amplitude of the dominant modes m = 2 and m = 3 is determined, and the 2D power spectra of camera images averaged over r * ± 1 cm is computed. Figure 6.7 (left) shows the radial profiles of modes m = 2 and m = 3 of the camera images at I B = 300 A, as well as the value of r * 0 chosen (dashed line) and the 2D spectrum averaging interval (dot-dashed lines). The table in Fig. 6 Now the theoretical phase velocities for DW, RT and KH as introduced in the last section are computed from probe profiles. We recall that in order to make a relevant comparison between camera imaging data (expressed along r * ) and probe data (expressed along r) one has to be careful on the radii to consider. This point is not further explained here but is tackled in detail in paragraph 2.3.3. In the same way here, the probe radii r 0 where the probe measurement is best representative of the recorded light at r * 0 are computed, and reported in the table of Fig. 6.7. In order to compute v DW φ , v RT φ and v KH φ the plasma parameters measured by probe are evaluated at these radii r 0 . Note that the values used for K the friction coefficient due to collisions with neutrals are taken from earlier calculations in paragraph 1.2.4. They are also reported in Fig. 6.7. The phase velocities finally computed are converted to frequencies by f theo = (ω) 2π = m 2πr v Φ and plotted in Fig. 6.8 on top of the experimental dispersion relations obtained from camera images.

The frequencies of the LF waves observed by camera imaging are best fitted by the KH frequencies, which confirms that the strongest modes observed here are KH. On the contrary the DW frequencies are much higher than the experimental frequencies and almost not seen on the plots, which definitively rules out the possibility for any of the LF waves observed here to be a DW. The RT frequencies are on average slightly higher than the mean KH frequencies, but still of the order of the observed frequencies. The presence of a RT mode is difficult to completely discard, but its coexistence with KH modes is not obvious. It is later shown that RT and KH modes in fact coexist, and can be both simultaneously observed by camera images (see subsection 6.4.2).

Normalized fluctuations

The ratio of the plasma potential over density normalized fluctuations is the last criterion that can be used for the LF waves identification. It is examined here, and proves to be to some degree in disagreement with the predictions of Table 6.1.

The fluctuations levels of Ṽp / T e and ñ/ n are plotted in Fig. 6.9 (left and center). The plasma potential normalized fluctuations Ṽp /T e increases roughly linearly with I B in the region between r = 2 cm and r = 6 cm. For instance around r = 5 -6 cm where the rotation is maximal for all magnetic fields, Ṽp /T e evolves from ∼ 5% at I B = 100 A to ∼ 15% at I B = 400 A. Note that except for I B = 400 A1 the higher value is found at the plasma edge, reaching ∼ 23% at I B = 300 A. This should go in favour of KH instabilities that are characterized by hight potential fluctuations. But the density normalized fluctuations present a similar feature, with the higher values on the plasma column edge for all magnetic field. Interestingly, unlike the plasma potential normalized fluctuations, ñ/ n keeps an almost constant radial profile for the magnetic field between I B = 100 A and I B = 300 A, increasing linearly from ∼ 5% around r = 4 cm to ∼ 35% around r = 7 -8 cm. This main difference in the trend of the plasma potential and density fluctuations is well summarized in Fig. 6.9 (right), showing the ratio Ṽp /T e over ñ/ n for all values of B. For I B = 100 A the fluctuations are of the same order, and for I B ≥ 200 A the ratio is greater than in the inner part of the column, lower than one on the outer part. This would lead us to roughly expect RT or KH modes in the central region r ∈ [0 : 5] cm and DW or RT modes for r ∈ [5 : 10] cm, which is in accordance with the conclusions of the previous paragraphs.

However it is worth noting that given the strong shear at r ∼ 7 -8 cm and the phase shift being very high and close to π for I B = 400 A, indicating without ambiguity the presence of a KH modes, the plasma potential fluctuations would be expected to be much higher than the density ones at this radius. This is not what is observed from probe measurements. As for the core region, it cannot really be said that Ṽp /T e ñ/ n : the criterion on normalized fluctuations ratio presented in Table 6.1 does not seem to be verified. In fact the study of [Jassby, 1972] that predicts this feature for KH is based upon a theoretical model [START_REF] Perkins | Velocity shear and lowfrequency plasma instabilities[END_REF]] that requires v E v d,e for the KH instability to grow. Since v φ ∼ v E this also means v φ v d,e . Jassby showed that those conditions imply that Ṽp /T e ñ/ n (see equation ( 19) of [Jassby, 1972]). But this is clearly not what is observed here : Fig. 6.5 shows that at I B = 300 A, a regime where KH mode is confidently identified, we actually even have v E v d,e .

As a possible insight to this question note that the KH instabilities can be a purely fluid instability, hence also predicted in the context of MHD, where the condition Ṽp /T e ñ/ n is expected as a general plasma behaviour [START_REF] Horton | Drift waves in rotating plasmas[END_REF]. Now the plasma in the present experimental conditions does not comply with MHD modelling, which might be the reason why this criteria on the fluctuations is not verified. That being said the model used in [Perkins andJassby, 1971, Jassby, 1972] is not MHD but bi-fluid, and yet predicts Ṽp /T e ñ/ n for KH modes. The discrepancy between the theoretical prediction reported in Table 6.1 (row 3) and the present measurements is therefore not fully understood yet. 

Parallel wavenumber

The light intensity recorded by camera imaging is integrated along z in our set-up. Hence the very clear fluctuations observed seem to indicate zero to very weak helicity of the modes, that would otherwise be in part or totally averaged out. Without constituting a decisive argument, this element goes once again in favour of KH and RT waves. At I B = 100 A where IAW are identified, a weak helicity is probable. Probe measurements would however be needed to make an estimation of k . Attempts at measuring k have been made in previous works, and were unfortunately not conclusive [Désangles, 2018]. Now considering the inhomogeneity of the magnetic field along z and therefore the shape of the plasma column being not perfectly cylindrical, the simultaneous measures of fluctuations at relevant locations for a same wave in z = L 1 and z = L 2 seems difficult. Indeed by putting for instance two probes at r = 4 cm along z = L 1 and z = L 2 , one could end up measuring for I B = 300 A the fluctuations of the m = 3 KH mode at z = L 2 , and at z = L 1 where the plasma column radially contracts, the fluctuation of a distinct m-mode evolving further away in r. Besides, as far as the LF waves identification is concerned, those measurements were deemed unnecessary. Parallel wavenumbers were therefore not assessed during this PhD.

Waves interactions

As it was shown in the previous subsection, the LF waves developing in the plasma column vary depending on the value of the confining magnetic field, in terms of wave type, variety of the m-modes, and dominant m-mode. Using camera imaging data, the relative amplitudes and temporal interactions between the waves previously identified is now investigated.

Since the camera imaging data are extensively used in the following subsections, it is deemed useful to remind a couple of points. As presented in the section dedicated to camera imaging in chapter (ref chap 3) the plasma emitted light intensity is dependent on the density and temperature mean profiles, and the higher n and T e the stronger the light intensity. Most of the useful information captured by camera imaging is therefore limited to the central region of the plasma column, within the substantial part of the density profile. More precisely it is observed that the signal over noise ratio is rather poor for r * ≥ 4 cm (limit due to the induction source radius, see section 1.1). In addition, one has to keep in mind that light intensity fluctuations are only an indication of the density fluctuations, since the influence of electron temperature fluctuations can be significant. Now the 2D-FT decomposition of the camera images nonetheless provides extremely valuable information the m-modes composing the plasma flow of each experiment. An overview is presented in 6.4.1. The spatio-temporal reconstruction of individual modes (see subsection 3.2.1) are explored in subsections 6.4.1 and 6.4.2. Then as already used in the last section the 2D power spectra at a given radius gives an experimental dispersion relation of the waves; it is further used in subsections 6.4.2 and 6.4.3 to identify possible three waves interactions. Bicoherence computations are finally applied to camera imaging data to quantify and classify these interactions.

Overview of the m-modes

A global view of the m-modes composing the plasma light intensity fluctuations for all values of I B are presented in Fig. 6.10. The modes global amplitudes are computed by averaging the 2D power spectra along the frequencies and for all radii. This figure is complementary to the more detailed 2D power spectra presented in Fig. 6.8. We arbitrarily consider here that a mode is physically significant if its averaged relative amplitude is higher than ∼ 5%. At I B = 100 A a strong IAW can be recognized in the mode m = -6. At I B = 200 A the KH waves are observed through modes m = 1 to m = 4 having relative amplitudes between 8% and 15%. This suggests the possibility of numerous interactions between waves of equally important amplitude. Figure 6.11 (top) shows the time evolution of the modes m = -1 to m = 4 at I B = 200 A. The mode m = 2 is effectively the strongest on average through time, but does not stay dominant more than ∼ 1 ms, i.e. over 2 or 3 wave periods.

At I B = 300 A and I B = 400 A the dynamic significantly changes : Fig. 6.10 shows that the mode m = 3 is highly dominant in both cases with an averaged amplitude of respectively 27% and 26%. The amplitude of the mode m = 2 is three times lower (∼ 9%), but it cannot be ignored. The time traces shown in Fig. 6.11 (bottom) reveals frequent energy exchanges between mode m = 3 and m = 2. In the next section we go further into the characterization of these waves interactions, using even more possibilities offered by 2D-FT decomposition, and by means of bicoherence computations.

Coexistence between RT and KH modes

Let us focus on the 2D power spectra at I B = 300 A, displayed in Fig. 6.8 (center) and zoomed in Fig. 6.15. The dominant m = 3 mode at frequency f = 2.8 kHz has been clearly identified as a KH mode in section 6.3. All other m-modes at this frequency or at the second harmonic f = 5.6 kHz are the subject of the next subsection. The 2D power spectrum also reveals the presence of a significant mode m = 2 at f = 4 kHz. Various elements lead to identify this as Rayleigh-Taylor.

Isolated RT mode identification

The frequency f = 4 kHz is clearly not an harmonic of the KH m = 2 mode at f = 2.8 kHz. To give birth to the same mode number with an unrelated frequency, another physical mechanism needs to be at play : here a DW or a RT instability. Now looking at Fig. 6.8 (center) the phase velocity corresponding to this frequency of f = 4 kHz at m = 2, is very close to fitting the RT phase velocity prediction. This is all the more consistent with the fact that for all four values of the magnetic field, the theoretical RT phase velocities computed are slightly higher than the average KH ones (see Fig. 6.8 and D.7 in appendix D). As for the DW theoretical phase velocities, the values are much higher and not even visible on the plots for m ≥ 3. Then looking at the frequency decompositions of the density and floating potential fluctuations in Fig. 6.6 (rows 2 and 3, center), the high amplitude components on the f ∼ 4 kHz line are found around r = 6 cm and coincide with the theoretical growth rate maximum of the RT instability. These elements enable to identify with confidence the mode (m = 2, f = 4) as a RT wave.

Camera imaging radial profiles

Since it evolves relatively far away from the center (r ∼ 6 cm, i.e. r * ∼ 4 cm) this RT mode is not easily identified from camera recorded light, that is mostly limited to r * 4 cm. In order to enhance the light intensity fluctuations in the edge region of the plasma column, the normalization B is chosen with α nmd = 85% (see subsubsection 3.1). The signal over noise ratio is degraded, but the fluctuations amplitude for r * ≥ 4 cm is boosted. Then by 2D-FT decomposition, the spatio-temporal evolution of mode m = 2 is reconstructed and filtered at frequencies f = 2.8 ± 0.3 kHz, f = 4 ± 0.3 kHz. Figure 6.12 (left and center) shows the typical spatial structure of these m = 2 frequency components, with images taken at the same time of the video sample, when both their amplitudes are high. The mean radial profiles of these modes are plotted in Fig. 6.12 (right). are computed by an averaging along θ and over all the 20000 images of the 100 ms video sample, These radial profiles and The component (m = 2, f = 2.8) is significantly higher in amplitude (∼ twice higher) than the component (m = 2, f = 4) in the regions r * ∈ [2; 3] cm and r * ∼ 7 cm. Around r * ∼ 5 cm, on the contrary, the component (m = 2, f = 4 kHz) is dominant. Figure 6.13 shows the result of the light integration process discussed in subsection 2.3.3 and appendix B, applied to gaussian profiles centred at r = 4 cm, r = 6.5 cm and r = 8 cm, representing light intensity peaks inside the plasma column at z = L 2 (where probe measurements are done). A qualitative but very good match is found between the radial profiles of camera imaging light intensity and the reconstructed profiles. Note that the two peaks of light produced by a single gaussian profile at r ∼ 8 cm in Fig. 6.13 (right) are due to the radial limits of the source at r = 5.5 cm, inside which the plasma extend. The peak value at r * = 5 cm is due to the light emitted inside the source, on magnetic field lines that cross the radial positions around r ∼ 8 cm at z = L 2 (see B.3).

The radial profile of the mode m = 2 filtered at f = 2.8 ± 0.3 kHz that is shown in Fig. 6.12 (right) is therefore very well explained from fluctuations occurring at r = 4 cm and r = 8 cm. The light intensity peaks observed at r * ∼ 3 cm and at r * ∼ 5 cm / r * ∼ 7 cm on the other hand, can be independently attributed to waves present at r = 4 cm and r = 8 cm respectively. As already seen in this chapter, such waves are Kelvin-Helmholtz. This is expected since the wave component (m = 2, f = 2.8 kHz) is believed to be the result of the non-linear saturation of the strong and well identified KH mode (m = 3, f = 2.8) (the saturation of mode m = 3 is introduced in more details in subsection 6.4.3).

Finally the peak light intensity fluctuations recorded by camera at r * ∼ 5 cm from the frequency component f = 4 ± 0.3 kHz of mode m = 2 (Fig. 6.12 right) is thought to be due to real light intensity fluctuations occurring in the region r ∼ 6.5 cm (Fig. 6.13 center), at the axial location z = L 2 . In this region, RT waves are expected to develop. This definitively concludes the identification of the component (m = 2, f = 4) as a RT mode. 

RT-KH non-linear interaction

The isolated RT mode that has been identified at I B = 300 A is (m = 2, f = 4), and the dominant mode in this regime is a KH mode (m = 3, f = 2.8). The non-linear nature of the interaction between these modes is now assessed via bicoherence computation, as presented in section 3.3. Limiting ourselves to positive frequencies that make physical sense, the only possible three-wave interaction involving the latter modes is (with frequencies in kHz) :

(m = 3, f = 2.8) + (m = -1, f = 1.2) ↔ (m = 2, f = 4)
We recall that the bicoherence as it is implemented in our code take as an entry mode numbers m 1 and m 2 and explores all possible three-wave interactions (m 1 , f 1 )+(m 2 , f 2 ) ↔ (m 1 +m 2 , f 1 +f 2 ) in terms of frequencies f 1 and f 2 . Figure 6.14 show the bicoherence results for the interaction (m = 2) + (m = -3) ↔ (m = -1). The threshold value is found to be max(b 2 0 ) = 0.11 (not shown here). And we find b 2 (2.8, 1.2) = 0.28, that is indicated in Fig. 6.14 by a bold green circle. This bicoherence value is two and a half times larger than the threshold : this proves the weakly non-linear aspect of the interaction between m = 2 and m = 3 at respective frequencies 4 kHz and 2.8 kHz.

This weakly non-linear interaction is however not the only one that can be found on in Fig. 6.14. All bicoherence values that are higher than twice the threshold, i.e. b 2 > 0.22, are visible in red. The map of b 2 makes therefore appear, in addition to the precise mode interaction detailed in this subsection, a rich KH-RT activity through weakly non-linear interactions.

Conclusion

The presence of an E × B shear, responsible for the possible growth of KH modes, is generally assumed to have at first order a damping effect on the development of RT waves [Burrell, 1997, Chakrabarti and[START_REF] Chakrabarti | [END_REF]]. However the growth of RT modes by its coupling with the E×B shear is predicted to be possible in magnetized plasma, at large time scale and triggered by the formation of vortices [START_REF] Chakrabarti | Rayleigh-taylor modes in the presence of velocity shear and vortices[END_REF]]. More specifically, the coupling between RT and KH waves is numerically predicted and observed in a wide range of physical situations, e.g. magnetized plasma [Finn, 1993] but also in the magnetosphere [of shear flow and pressure gradient instabilities, 1997, Yamamoto, 2009] or in the context of fusion by inertial confinement [START_REF] Emery | Rayleigh-taylor and kelvin-helmholtz instabilities in targets accelerated by laser ablation[END_REF]. In this subsection the coexistence of KH and RT waves was unambiguously identified in a weakly magnetized plasma column. The resolved spatiotemporal evolution of each mode could be observed individually, and the non-linear nature of their interaction was quantitatively established. To the knowledge of the author this is no other example of such experimental observation in the literature.

KH waves non-linear activity

The plasma column confined by a magnetic field of B = 510 G (i.e. I B = 300 A) is subjected to a strong E × B velocity shear a r = 4 cm due an inversion of plasma potential radial profile. As explained and observed in previous sections this shear produces a strong and steady m = 3 Kelvin-Helmholtz mode, briefly loosing energy on time intervals of less than a period to a m = 2 mode. However the 2D power spectrum S(m, f ) displayed in Fig. 6.8 (center) exhibits a lot of other (m,f ) components. It is shown in the following that these modes mainly result from the harmonics and the inhomogeneity of the dominant KH mode (m = 3, f = 2.8), or that they are produced by non-linear interactions. Around the largely dominant (m = 3, f = 2.8) component, a clear spread both in modes m and frequencies f is visible : a continuous set of decreasing amplitude components, in the range f ∼ [1 : 5] kHz along m = 3, and for m ∼ [-5; 8] along f = 2.8 kHz. This spread is thought to be due to the non-linear saturation of the instability giving rise to the KH mode m = 3 at frequency f = 2.8 kHz, as well as to the cylindrical inhomogeneity of the plasma column. Figure 6.16 (left) shows an image of the light intensity fluctuations (standard normalization A, see section 3.1) filtered at f = 2.8 ± 0.3 kHz. The reconstructed mode m = 3, also filtered at f = 2.8 ± 0.3 kHz, is shown in Fig. 6.16 (center), at the same instant. For a better visualization the light intensity profiles along θ of these images at r * = 3 cm are compared in Fig. 6.16 (right). The discrepancy between the θ profiles (that is observed along the whole video sample, and for all radii) is the signature in the spatio-temporal domain, of the spread along m that is observed in the Fourier domain S(m, f ).

General picture of the main KH waves

Besides the components generated by (m = 3, f = 2.8), the strong visible components (m = 2), (m = 4), (m = 6) at frequency f = 5.6 are respectively order one harmonics of modes (m = 2), (m = 4), (m = 6) at frequency f = 2.8 kHz. Other harmonics components (not visible within the limits of the plots) are also clearly identified : we can cite among others (m = 3, f = 8.2) the second order harmonic of (m = 1, f = 2.8), or (m = 1, f = 8.2) that seems to be a second order harmonic of the same component but only in terms of frequencies.

Classification of weakly NL interactions

Within the variety of (m, f ) components that are observed on S(m, f ) for I B = 300 A in Fig. 6.15, all the single interactions will not be explored in a systematic way. Instead a few significant examples are presented and investigated by bicoherence. Figure 6.17 shows the bicoherence threshold map and results for the interaction (m = 3) + (m = 3) ↔ (m = 6). The higher value of b 2 = 0.59 is found for frequencies f 1 = 2.8 and f 2 = 2.8, and is well above the threshold value max(b 2 0 ) = 0.07. The map of b 2 reveals values higher than the threshold all along the vertical and horizontal lines crossing f 1 = 2.8 and f 2 = 2.8. This is the signature of the mode m = 3 exchanging energy with a continuous set of frequencies around f = 2.8. Also to be noted, the diagonal of values of b 2 > max(b 2 0 ) passing through (f 1 , f 2 )=(2.8, 2.8) indicates that the component (m = 6, f = 5.6) is in a weakly non-linear interaction with all couples (m = 3, f 1 ) and (m = 3, f 2 ) verifying f 1 + f 2 = 5.6. Along with the central peaked value of b 2 mentioned above and pointed out in Fig. 6.17 (right), these elements emphasize the non-linear nature of the interactions between the mode (m = 3, f = 2.8) kHz with itself and its harmonic (m = 6, f = 5.6).

As another example the bicoherence computation of (m = 3) + (m = 1) ↔ (m = 4) yields various high values of b 2 . The most important is found for (f 1 , f 2 )=(2.8, 2.8) and denoted here major, to make the distinction with the other, still significantly high, that are labelled here as minor.

It seemed also natural to investigate the interaction between components (m = 3, f = 2.8) and (m = 2, f = 5.6) which amplitudes are among the highest of S(m, f ) at I B = 300 A. Keeping positive frequencies these modes can be linked to (m = -1, f = 2.8) or (m = 5, f = 5.6). The three-wave interaction (m = 3) + (m = -1) ↔ (m = 2) has been investigated in the last subsection. From Fig. 6.14 we have b 2 (2.8, 2.8) = 0.23 which is lower than the threewave interaction involving the RT frequency component of f = 4 kHz. Among the possible three-wave interactions involving m-modes (m = 3) + (m = -1) ↔ (m = 2), the interaction (m = 3, f = 2.8) + (m = -1, f = 2.8) ↔ (m = 2, f = 5.6) is therefore classified here as minor.

As a final point to the exploration of three-wave interactions, note that the 2D power spectrum in Fig. 6.15 reveals the presence of components that cannot be explained by an harmonic generation process, nor by the presence of a strong component close in terms of mode or frequency. For instance the component (m = 9, f = 2.8) is stronger than all surrounding (m, f ) components, and is therefore not likely to be due to the spread of the component (m = 3, f = 2.8). This is made better visible in Fig. 6.18 (left) by a cut of the 2D power spectrum S(m, f = 2.8) and the peak it presents around m = 9. According to S(m, f ) the most probable three-wave interaction that could generate this mode (i.e. involving strong other components) is the one involving (m = -3, f = 2.8) and (m = 6, f = 5.6), which can be written using an addition :

(m = 9, f = 2.8) + (m = -3, f = 2.8) ↔ (m = 6, f = 5.6)

The bicoherence result for this interaction gives a very high value of b 2 = 0.43, more than five times higher than the threshold value of max(b 2 0 ) = 0.08. We conclude that the mode (m = 9, f = 2.8) is indeed generated by the coupling between (m = -3, f = 2.8) and (m = 6, f = 5.6), and would not exist without this coupling. As a consequence we choose to denote birth such a three-wave interaction. In the same manner Fig. 6.18 (right) displays cuts of S(m, f ) along m = -1, and along m = -2 for comparison. A peak in amplitude at f = 1.2 for = m -1 is visible, that does not correspond to any harmonic of existing RT and KH waves in this regime at I B = 300 A. The isolated mode (m = -1, f = 1.2) is therefore believed to be the direct result of the coupling between RT and KH mode (m = 2, f = 4) and (m = 3, f = 2.8).

All three-wave interactions presented in this subsection are summarized in Table 6.2. Except for the birth type three-wave interaction where causality is inferred, the energy transfer direction was not explored here. This would require the implementation of dedicated analysis tool such as the one used in [START_REF] Yamada | Two-dimensional bispectral analysis of drift wave turbulence in a cylindrical plasma[END_REF] that could be developed in future work.

Radial transport

The generation of turbulent transport by LF waves has been widely demonstrated in a large number of studies, both form the experimental and theoretical viewpoints (see [Horton, 1999] and section 6.1). The shear produced by E × B drift is one of the physical mechanism behind 

+ m = -1 ↔ m = 2
0.11 0.28 the L-H transition, hence reduces the outward transport in tokamaks. The role in this transport reduction of the KH instability that develop due to the E × B shear is not obvious. It is predicted or observed to be positive in various studies in linear devices [START_REF] Horton | Kelvin-helmholtz instability and vortices in magnetized plasma[END_REF], Rogers and Ricci, 2010,Holland et al., 2006]. However an inward transport attributed to KH modes could be observed in fusion devices [Shats andRudakov, 1997, Stroth et al., 1999] and linear device [START_REF] Cui | Up-gradient particle flux in a drift wavezonal flow system[END_REF]. We report here the measurement of inward turbulent transport caused by KH modes.

f = 2.8 f = 1.2 f = 4

Inward transport from KH waves

Measurements of the turbulent transport Γ * = ñ. ṽE are performed with the five-tips probe, for [100; 200; 300; 400] A and shown in Fig. 6.19. The profiles at I B = [200; 300; 400] A correspond to the regimes discussed in this section. The radial profile of Γ * for I B = 100 A is plotted for comparison : the turbulent transport measured in this regime dominated by IAW is negative for r ≤ 3 cm and positive for r ≥ 4 cm. In both cases it is of the order of |Γ * | ∼ 5.10 19 m -2 .s -1 .

I B =
In the regimes dominated by the KH modes at I B = [200; 300; 400] A a very marked inward transport of Γ * ∼ 2-6.10 20 m -2 .s -1 is observed for 3 ≤ r ≤ 5 cm. This region corresponds to the location of the KH modes identified in section 6.3, where the E × B is the strongest. Note in all three cases the peak of negative turbulent transport is located at r = 4 cm, where the KH growth rate was found to be maximal.

A very similar result was found in CSDX by [START_REF] Cui | Up-gradient particle flux in a drift wavezonal flow system[END_REF]. To our knowledge this is the only other example of an inward transport unambiguously attributed to KH modes. 

Simple wave transport

In order to get a closer look to the structure of this negative transport, a more detailed five-tips probe profile is performed at I B = 300 A, and shown in 6.20 (left). The reproducibility of the measure can be noted, with the same marked inward transport of Γ * ∼ 2-6.10 20 m -2 .s -1 observed around r ∼ 4 cm. The turbulent transport is the strongest for r = 4.2 cm, with Γ * = -5.2.10 20 m -2 .s At r = 4.2 cm where the turbulent transport is the strongest, the signal of ñ and ṽE are almost purely sinusoidal fluctuations, and have a phase shift of the order |∆Φ| ∼ π. A zoom of these signals over one period of ñ is shown in Fig. 6.20. The product ñ.ṽ E is always negative : at this location the instantaneous turbulent transport is negative at all times. At r = 3.4 cm and r = 5 cm however, the signals are not as close to simple sinusoidal fluctuations and the phase shift is lower than π : the instantaneous turbulent transport takes positive values (note shown here) which lowers Γ * that is averaged along time. At r = 6 cm the low value of the turbulent transport is due to the timescale difference of ñ and ṽE . The typical oscillations of ṽE are approximately twice higher than that of ñ : over one period of ṽE oscillations, the term ñ.ṽ E is averaged out. This analysis shows that the negative turbulent transport observed at I B = 300 A is due to coherent waves. The turbulent part of the radial transport is generated by the product of the fluctuating parts of the density n and the radial electric drift velocity v r = v E . The result of the average ñ.ṽ E hence depends on the phases between the frequency components of ñ and ṽE . Figure 6.22 shows the spectral decomposition of the phase shift ∆Φ(ñ, ṽE ), as a function of r for I B = [200; 300; 400] A. The frequencies corresponding to strong fluctuations are found at f ∼ 2 kHz for I B = 200 A, f ∼ 2.8 kHz for I B = 300 A, and f ∼ 4.5 kHz for I B = 400 A. Note that at r = 4 cm for these frequencies, the phase shift abruptly changes sign : this is the signature of the reversal of the plasma column rotation. The phase shifts values are very close to |∆Φ| ∼ π around r ∼ 4 cm for the frequencies mentioned, that correspond to KH modes. This generalizes the observation made earlier, to all regimes I B = [200; 300; 400] A : the inward turbulent transport is produced by coherent waves.

Zonal flow

A last feature worth being mentioned is the strong positive turbulent transport observed around r ∼ 1 -2.5 cm, at I B = 400 A (see Fig. 6.19). To understand this feature let us look back at the results presented in section 6.3. The five-tips measurements from Fig. 6.6 (right) reveals strong fluctuations of the density and the floating potential around r ∼ 2 cm. These fluctuations have a frequency of f ∼ 2 -2.5 kHz. Now looking at the spectrum S(f, m) of the light intensity fluctuations displayed in Fig 6.8 (right) we see that these frequencies correspond exclusively to the mode m = 0.

The strong and positive transport observed close to the center at I B = 400 A is deduced to be due to a mode m = 0, i.e. a zonal flow. For more details on zonal flows we refer to the review of [START_REF] Tynan | A review of experimental drift turbulence studies[END_REF]. 0.5 1 1.5 2 2.5 3 An emissive cathode is placed at the center of the plasma, heated up to thermoionic emission level and negatively biased with respect to the chamber ground. The impact on the plasma parameters radial profiles and on the low frequency waves is investigated. As more current is injected, a strong rotating spoke is observed to develop, responsible for an outward intermittent transport. As exposed in section 6.1 the development of LF waves in a magnetized plasma can have a dramatic impact on the dynamics and global equilibrium of the flow, via turbulent transport or the generation of intermittent convective structures. And as seen in sections 6.3 and 6.2 the development of these waves directly depends on the plasma parameters radial profiles. Two fundamental questions hence arise. First, how and to what extent would it be possible to control the plasma parameters mean profiles ? The natural follow-up question being : if such a control on radial profiles is feasible, how does it influence the LF waves development ?
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Getting control on the plasma parameters profiles, and more generally influencing the development of instabilities in a given laboratory or industrial plasma device, is a very wide topic that will not be detailed. As a few examples, fusion devices [Takamura et al., 1988, Weynants andOost, 1993], plasma thrusters [Boeuf, 2007, Doyle et al., 2020], fundamental research in linear devices [START_REF] Dubois | Density gradient effects on transverse shear driven lower hybrid waves[END_REF], Furno et al., 2003] can be mentioned. Here the focus is set on the modification of the plasma potential. Indeed among the plasma parameters, V p is the parameter that is believed to have the most significant impact on both the global plasma dynamics and the development of m-modes (see subsection 7.1.1). To achieve a control of V p the influence of an emissive cathode is investigated. This solution consists in placing at the center of the plasma column an electrode, heated up to the level of thermoionic emission, and biased with respect to the chamber ground. The functioning of the device will be detailed in subsection 7.1.2.

Control of the plasma potential

As seen in Part II a gradient in the plasma potential leads to the plasma column rotation via E × B drift. The control of V p (r) is of particular interest to that respect : governing with precision the plasma rotation in a simple linear geometry offers new possibilities for the investigation of a large number of astrophysical phenomena and industrial processes (for more details, see the references given by [START_REF] Gueroult | A necessary condition for perpendicular electric field control in magnetized plasmas[END_REF], Désangles et al., 2021]). Note that in the vast majority of cases, the modification of the E × B drift is performed via a simple bias applied to the device boundary conditions, using grids, limiters, or concentric rings. The technical choice that is made here of an emissive cathode as the controlling tool of V p is very different. It is progressively justified in the following and in the next subsection. For a few years now the present set-up has been dedicated to the investigation of the control of V p using an emissive cathode.

Tuning the column rotation

The use of an emissive cathode as a mean of plasma rotation control in the present set-up was partly motivated by exchanges with the group of Cary Forest from the University of Wisconsin, Madison (U.S.A.) and their work of the PCX and BRB experimental devices [START_REF] Katz | Magnetic bucket for rotating unmagnetized plasma[END_REF], Cooper et al., 2014, Flanagan et al., 2020]. Note that in these studies the idea is actually not to control V p : the emissive cathodes are used to draw strong currents of ∼ 10 2 A that puts the plasma into rotation via j × B Lorentz forces. Although the objective was identical in the present set-up, the plasma rotation turned out to be rather controlled by the radial profiles of V p . More precisely, the work of [START_REF] Désangles | Rotation and shear control of a weakly magnetized plasma column using current injection by emissive electrodes[END_REF] demonstrated the ability of controlling the maximal azimuthal ion speed v i,θ in the range [-600 : 600] m.s -1 . This was done either with an emissive cathode placed at the center of the plasma column, the anode being the chamber walls, or using two off-centred emissive cathodes with an anode placed at the center. The theoretical E × B velocity was computed from radial profiles of V p , and the ion velocity was measured by means of Mach probes. Taking into account the friction with neutral through a damping coefficient K (see subsection 1.2.2) a good agreement was found as v i,θ ≈ 1/K.v E . The study therefore showed the efficiency of the plasma rotation control via the modification of V p under moderate magnetic field amplitudes of B = 60; 85; 170 G (i.e. I B = 35; 50; 100 A). In the direct continuity of Désangles work, the emissive cathode is used in this PhD in the range B = [170 : 680] G (i.e. I B = [100 : 400] A where LF waves were shown to be unstable in the last chapter). Note that new Mach probe measured were not performed in these regimes.

Role of the current injection on the plasma potential shaping

More recently a collaboration started with Renaud Gueroult and Baptiste Trotabas from the Laplace laboratory in Toulouse, France. The objective is to tackle the problem with a more fundamental point of view : understanding accurately how the biasing and current injection of the emissive cathode are linked, and how they set the value of V p . The focus is notably put on the comparison between experimental results in the present set-up and theoretical models developed in Toulouse. This collaborative work is currently in progress; since it is relatively recent and on the early stages of development is not detailed in this PhD.

Control on the waves

Like the control of plasma parameters mean profiles, having an influence on the waves in linear devices has been the subject of a large number of studies. Here we simply mention a few.

Static control

Applying a constant bias on one of the device's boundary condition is a classical approach. This can be done on part of the chamber wall [START_REF] Carter | Modifications of turbulence and turbulent transport associated with a bias-induced confinement transition in the large plasma device[END_REF], on a limiter, i.e. an annulus of inner diameter close or smaller than the plasma column diameter [START_REF] Schaffner | Modification of turbulent transport with continuous variation of flow shear in the large plasma device[END_REF], or even on a set of concentric annulus placed at one end of the chamber [START_REF] Severn | Experimental studies of the rotational stability of a tandem mirror with quadrupole end cells[END_REF]. The E × B drift velocity is strongly modified, which has a direct impact on the LF waves and the turbulent transport. In [START_REF] Carter | Modifications of turbulence and turbulent transport associated with a bias-induced confinement transition in the large plasma device[END_REF] the turbulent transport Γ initially directed outward is progressively reduced as the positive bias applied to the walls is increased (see Fig. 9(a) in [START_REF] Carter | Modifications of turbulence and turbulent transport associated with a bias-induced confinement transition in the large plasma device[END_REF]). In [START_REF] Schaffner | Modification of turbulent transport with continuous variation of flow shear in the large plasma device[END_REF] a strong decrease of Γ is also achieved, and shown to be directly correlated to a increase of the E × B shear amplitude (see Fig. 3(b) in [START_REF] Schaffner | Modification of turbulent transport with continuous variation of flow shear in the large plasma device[END_REF]). The increase of v E in [START_REF] Severn | Experimental studies of the rotational stability of a tandem mirror with quadrupole end cells[END_REF] is on the contrary responsible for an enhancement of a flute (or RT) m = -1 mode, and the onset of a m = -2 mode.

Beyond the influence of an applied bias, the role of simple passive axial boundary condition is investigated in [D 'Ippolito et al., 2012] and [START_REF] Thakur | Suppression of drift wave turbulence and zonal flow formation by changing axial boundary conditions in a cylindrical magnetized plasma device[END_REF]. A comparison is performed between conducting and isolating end plates. With isolating end plates, radial current is forced through the plasma column, which is shown to be favourable to the development of turbulent fluctuations. Actually the example of these studies raises the more general question of the role that the radial / parallel currents repartition has on the LF waves development. By choosing an emissive cathode in the present experiment, and the strong current injection it produces, this aspect of the problem is hoped to be better understood.

Dynamic control

Another approach consists in implementing a dynamic control. Similarly to the works previously cited, this is usually done via an external biasing. In [START_REF] Gravier | Dynamical study and control of drift waves in a magnetized laboratory plasma[END_REF] a time varying bias is applied to a tube placed inside the chamber, close to the wall. In order to get a control over the DW that are observed in the plasma column, a time-delay auto-synchronization (TDAS) method is tested. The study concludes on the efficiency of the method in the case of simple plasma dynamics. However it is shown that when the dynamics becomes too complex or chaotic, a spatially extended control is needed. This highlights another advantage that the emissive cathode (as it is used here) might have over conventional methods of external boundary condition biasing. By placing the electrode at the plasma center in our experiments, while setting the chamber potential to the ground (see next subsection), the impact on the plasma parameters is extended to the inside of the plasma, between r = 0 cm and r = 10 cm. With such a configuration a rigid control over the whole plasma column is forecast to be easier.

An octupole is a more sophisticated experimental set-up that has been tested on various linear devices, e.g. KIWI [START_REF] Block | Synchronization of drift waves[END_REF], MIRABELLE [START_REF] Schröder | Mode selective control of drift wave turbulence[END_REF], Brochard et al., 2006a] and VINETA [START_REF] Brandt | Nonlinear interaction of drift waves with driven plasma currents[END_REF]. It is composed of eight plates equally spaced azimuthally around the chamber, and biased with sinusoidal signals of constant phases, varying for each plate. Rather than the LF instabilities suppression, it is the synchronization of DW modes and RT modes that was achieved in [START_REF] Block | Synchronization of drift waves[END_REF], Schröder et al., 2001, Brochard et al., 2006a, Brandt et al., 2010] and [Brochard et al., 2006a] respectively, via an open-loop control. These conclusive results naturally lead us to consider using dynamic control scheme with the emissive cathode. Such a development was however not implemented during the present PhD.

Experimental set-up

The functioning, design and calibration of the emissive cathode is now presented. A presentation of the device as it was used in previous studies can also be found in [Désangles, 2018]. The current injection, its link to the electrode's temperature and the applied bias, the adjustment of V p (r) in the plasma, are topics of current investigation. Note also that the work presented in the following subsection benefited from fruitful discussions with Baptiste Trotabas and Renaud Gueroult from the Laplace laboratory, as well as from an in-depth experimental characterisation of the cathode performed by Jean-Maxime Schlachter, during his internship at the ENS de Lyon laboratory in 2021.

Working principle

The base principle of the emissive cathode is identical as an emissive probe, detailed in chapter 2. A Tungsten electrode is place inside the plasma and heated up to the level of thermoionic emission. This provides an additional electron current from the electrode to the plasma, denoted emission current I em , that modifies the currents balance and reduces the potential drop of the sheath. The heating current of the electrode is raised up to reach V ≈ V p , when the sheath is suppressed (for more details see subsection 2.1.2).

The difference of the emissive cathode with a regular emissive probe lies in the second step : the biasing. Once the emissive cathode is heated up to a sufficient level (see the paragraph calibration in the following), it is biased negatively with respect to the chamber ground, via a secondary circuit plugged to the negative terminal of the heating circuit. Figure 7.1 shows a sketch of the emissive cathode's electrical circuit. The biasing U k of the cathode's surface draws a current I k from the chamber walls to the electrode, via the electrons emitted by the hot electrode's tip. This current reduces the potential difference between the plasma and the electrode's potential : V p is expected to follow the bias from U k and be substantially modified. A simple law proposed by [Richardson, 1924] predicts the maximal current emitted by a cathode at temperature T k :

I max em = A ef f A G T 2 k exp - eW k B T k (7.1)
with A ef f the electrode's effective area of emission, A G = 6.010 5 A.K -2 .m -2 the Richardson constant, W = 4.54 eV the Tungsten work function (W is in eV in equation (7.1)). In the case of an emissive probe the tip is chosen as small as possible, to lower the intrusiveness of the measure. Here on the contrary the cathode's surface is wide to allow the drawn current I k to be large. Note however that it is not fully understood yet to what extent the current drawn by the electrode's bias reaches the value of I max em . In the next section, the strong impact of this emissive cathode biasing technique on the plasma potential is experimentally demonstrated. The way the current I k and potential V p at the electrode's location adjust is however still an open question.

Design

The emissive cathode is composed of a tungsten electrode connected for the heating current to a 80 V -50 A power supply (EA-PS 9080-50). The biasing and current injection is set by a 200 V -70 A power supply (EA-PS 9200-70). The part of the device that is inside the chamber, as shown in Fig. 7.2 (left), is made at its base of a BN cylinder, held and surrounded by a metal cylinder connected to the chamber ground. Copper rods of diameter 4 mm make the connexion between the external part of the cathode device where the power supply is connected, and the Tungsten tip (Fig. 7.2 bottom right). Ceramic tubes of diameter 6 mm isolate electrically and thermally the copper rods from the plasma : they are inserted inside the BN cylinder, and cover at the other end the pins of the Tungsten tip as shown in Fig. 7.2 (left). The distance from the BN base to the tip is 10.3 cm, larger than the chamber radius of 10 cm : the only parts in contact with the plasma are the Tungsten tip and the isolating ceramic tubes. Note that in [Désangles, 2018] the metal base of the electrode, connected to the ground, was partly in contact with the plasma, which might make the results found here slighty different. Note also that the ceramic tubes are aligned along z, so as to minimize the shadow they produce on camera images.

The electrode consists in a Tungsten wire winded in a spiral shape that forms a disk of diameter 15 mm, with the extremity pins perpendicular to the spiral (see pictures in Fig. 7.2 right). The total length of the filament is L k 198 mm, with a spiral wire length of 177.8 mm and pins lengths of ∼ 10 mm each. The diameter of the Tungsten filament slightly varies over the course of experimental series : the strong ion flux received by the electrode because of the negative biasing causes erosion. A series of measurements by Scanning Electron Microscopy was performed to assess this erosion with precision (as later explained, the filament temperature is a critical parameter, and it depends on d k ). First it was found that the filament diameter is not constant along the spiral, and increases of a few µm from the center to the side. Hence only mean values of d k are given for simplicity : a new filament has an average diameter of d k ∼ 500 µm, which reduces after ∼ 100 plasma runs with the electrode hot and biased, to d k ∼ 488 µm.

Calibration

To find the heating current I sat h at which the electrode is floating in the plasma, a calibration is performed in the same way it is done for emissive probes (see subsection 2.1.2). In the case of the emissive probe calibrations and measurements, the probe tip potential is measured between two identical resistors plugged in series, parallel to the tip, as sketch in Fig. 2.6. Here such a configuration is not implemented. It would need dedicated electronics due to the high current intensity of I h ∼ 10-20 A, whereas the knowledge of U h and U k is enough to deduce with reasonable precision the potential at the center of the Tungten wire :

U tip ≈ -U k + U h 2 .
For the sake of checking this element and be confident about the value of I sat h , the potential is measured at both extremities for the calibration. as a function of the heating current I h .

The change of slope is found for a current of I sat h ≈ 19 A. The heating current for the hot cathode is chosen slightly higher, at I h = 19.5 A, in order to avoid as much as possible undesired changes in the potential value (see 2.1.2). 

Filament temperature

Computing from Eq. (7.1) the thermoionic emission current that the electrode is able to provide, the filament temperature T k has to be determined. This temperature T k is estimated from the measurement of the resistivity ρ k , that is empirically determined in [START_REF] Desai | Electrical resistivity of selected elements[END_REF]. The values given in this study are fitted in the range 2400 ≤ T k ≤ 3600 along the power law1 : ρ k = 1.94.10 -3 T 1.34 k + 6.398 (10 -8 Ω.m -1 ) (7.2)

Then we use the fact that the resistance of the filament can be estimated by the current and voltages (I h , U h ) as R k = U h /I h . With the filament section S k = π(d k /2) 2 and its length L k we have :

ρ k ≈ S k L k U h I h (7.3)
For I k = 19.5 A, this yields 2 a filament temperature of T k ≈ 2850 K and a resulting Richardson current of I max em = 16.2 A (see blue curve in Fig. 7.4). This is consistent with the values of currents that we are able to reach with the emissive cathode's biasing (see next paragraph). 

Biasing and current injection

The emissive cathode has been used in the four regimes mainly discussed over this PhD of I B = [100; 200; 300; 400] A. Scans in the injected current have been performed, with I k = [0; 2; 4; 6; 8; 10] A. The value of the biasing U k is then set by the global resistance of the plasma bulk and the sheaths between the chamber walls and the electrode's tip. Note that at high magnetic field for I B = 400 A, I k could only be raised up to ∼ 3-4 A. Beyond these currents the plasma generation was not possible. To each value of the injected current corresponds a value of U k hence of the mean potential of the cathode tip U tip = -U k + U h /2. Figure 7.5 shows the evolution of the injected current as a function of the cathode's averaged potential.

As the confining magnetic field is increased, the current injection is more difficult. This is expected since B hinders the radial motion of the charged species, hence increases the radial resistivity η ⊥ of the plasma (see subsection 1.2.5). 

0

Impact on the mean profiles

Preliminary note :

Up to this point of the manuscript, 4 experimental configurations have been investigated, corresponding to varying values of the magnetic field with I B = [100; 200; 300; 400] A. Now aiming at exploring both the influence of the cathode presence (cold and hot) in addition to the current injection intensity (I k = [2; 7] A arbitrarily chosen) for all magnetic field strengths, a total of 16 new configurations are to be probed, both by the five-tips probe (yielding n and T e ) and the emissive probe (providing V p ). This set of measures is relatively heavy and was performed by steps over the last months of this PhD. Unfortunately due to technical issues (including the turbomolecular pump failure at the beginning of July 2021 and wait for replacement as of the end of october 2021) the full set of profiles could not be completed to this day. Table D.1 presented in appendix D compiles the current state of this dataset.

The main missing data are the five-tips radial profiles at I B = 100 A and I B = 300 A for I k = 0 A, and the emissive radial profiles at I B = 200 A for I k = [0; 2; 7] A. These profiles are planned to be performed in november 2021, and are to be used in the future publication that will be the result of the work presented in the following sections.

Presence of the cathode

Before investigating the influence of the emissive cathode bias and current injection, let us have a look at the impact of the simple presence of the electrode placed at the center of the plasma column. Even without a systematic set of radial profiles of n, T e and V p , with the floating cathode both cold and hot, some conclusions can be drawn from the available measurements.

Cold floating cathode

Five-tips measurements reveal that the density and electron temperature radial profiles are left almost unchanged by the presence of the cold cathode at both I B = 100 A and I B = 300 A (not shown here; see Fig D .10 in appendix D). The main change to be noted is the density decrease at I B = 100 A, from n ∼ 1.5.10 18 m -3 in the bulk part of the plasma column to n ∼ 1.10 18 m -3 when the cathode is inserted. Those measurements indicate a weak intrusiveness of the emissive cathode device with respect to the bulk plasma equilibrium.

Figure 7.6 shows the effect of the cathode's presence on the radial profile of V p , at the same values of I B . In order to better compare the profile shapes, the value of V p at the outer chamber limit r = 10 cm is subtracted to each profile. These values of V 10cm p are shown in the top left inset of each plot. The impact of the cold cathode presence is not negligible. The central value of V p almost doubles in both cases, and the maximal gradient around r ∼ 6 cm increases. At 300 A the value of ∂ r V p is doubled at r ∼ 6 cm, leading the electric drift velocity of v E ≈ -2.3 km.s -1 without cathode to reach v E ≈ -4 km.s -1 in the presence of the cold cathode. This strong modification of the potential profiles is somehow unexpected, since the cathode is left floating. This was not further investigated : the configuration with the cathode cold and floating will not be used in the following. We will focus on regimes where the cathode is heated up to reach temperatures where thermoionic emission is possible. 

Hot floating cathode

The cathode is now heated up, with no current drawn from the wall (I k = 0 A). Profiles of the density and electron temperature are unfortunately not available for this regime at profiles are roughly unchanged. The density profiles are flattened, and are in both cases reduced by ∼ 20% inside the core region for r ≤ 4 cm. This can be considered as a moderate impact of the hot cathode on n.

The effect on V p for I B = 100-300 A is presented in Fig. 7.6, which shows that when the cathode is heated up, the profiles of V p are very similar to the configuration without the cathode. At I B = 300 A the radial profiles (blue and yellow curves in Fig. 7.6) are close even in absolute values, with V no cath p (r = 10)

V I k =0 A p (r = 10). A damping of the potential gradient is observed at I B = 300 A around r ∼ 6 cm. The resulting modification of the electric drift velocity is introduced later in subsection 7.3.2. The profile is also slightly flattened around the center, for r ≤ 2 cm. Note that a similar behaviour is found at I B = 400 A : with the presence of the hot cathode, the radial profile of V p becomes flat for r ≤ 4 cm (see Fig. D.12 in appendix D). In that case of I B = 400 A however, a surprising potential drop of ∼ 3 V (60% of the central plateau value) appears at I k = 0 A. This is still not explained.

Except for this last feature at I B = 400 A, the presence of the hot floating cathode has overall little impact on the radial mean profiles of the density, electron temperature and plasma potential, whether at low (I B = 100 A) or higher magnetic field (I B = 300 A). Yet, as will be seen in 7.3.2, this configuration of hot floating cathode has a critical impact on the LF waves.

Biasing and current injection

The effects of current injection driven by the emissive cathode on the plasma column are now investigated. Figure 7.7 presents a comparison of the radial profiles of n, T e and V p , between the configurations without the cathode (blue curves) and with the hot cathode drawing from the wall a current of I k = 2 A (purple) and I k = 7 A (green). This comparison is detailed for I B = 100 A and I B = 300 A.

First the effect on the electron temperature is weak (Fig. 7.7 center). For I k = 2 A the profiles of T e are virtually unmodified compared to the configuration without the cathode. For the highest value of injected current I k = 7 A, a local increase of ∼ 1 eV is observed at the center for I B = 100 A. A global raise of the profile of ∼ 1 eV is observe for I B = 300 A. The emissive cathode mainly acts on the density and plasma potential.

The density profile is steepened by the current injection, for both regimes I B = 100 A and I B = 300 A (Fig. 7.7 left). Without the cathode n is relatively flat in the center region r ≤ 4 cm. A density peak at the center of the plasma column then appears for I k > 0. At 100 A the central density n(r = 0) substantially increases by 60% at I k = 7 A. This density increase is though to be due to a beam of primary electrons along the z-axis, produced by the emissive cathode, and responsible for a higher ionization. It is visible by naked eye with a higher light intensity in the plasma column; the increase of T e around r = 0 cm might also be a consequence of this beam. At 300 A, the central density also strongly raises for I k = 2 A (50% increase), and then slightly declines for I k = 7 A. Actually the case of high current injection (I k = 7 A) at high magnetic field (I B = 300 A) is particularly interesting. The density profile at this regime reveals a major depletion in the intermediate region 2 < r < 6 cm, reaching a density loss of ∼ 70% at r = 4 cm. This is believed to be caused by strong and positive turbulent transport in this region. Note that this depletion is not observed at lower magnetic field (I B = 100 A) for the same current injection of I k = 7 A . Again this can be explained by turbulent transport that, as will be seen later, is on the contrary weak and oriented inward in this regime. Transport measurements are introduced in the last section of this chapter. Now let us look at the mean profiles of plasma potential (Fig. 7.7 right). We recall that changing V p is actually the main objective intended by the use of the emissive cathode. The results are very satisfactory. In Fig. 7.6 radial profiles of V p -V p (r = 10) are shown rather than V p , in order to better visualize the changes in the profile shape (absolute values of V p are discussed hereafter). As expected we are able with I k > 0 to significantly lower the value of V p (r = 0), and increase the global profile gradient ∆V p = V p (r = 10) -V p (r = 0). For I B = 100 A, ∆V p is progressively increased up four times, from ∆V p = 2.5 V without cathode to ∆V p > 10 V at I k = 7 A. Note that the profile shape is mainly affected within the bulk plasma region r ≤ 6 cm. For I B = 300 A the effect of (U k , I k ) on the plasma potential is more abrupt. Indeed at I k = 2 A the profile shape of V p is almost unchanged. Only a slight increase ∆V p is observed, with ∆V p = 4 A to be compared with ∆V p ∼ 3 A without cathode. This can besides be related to the modification of the density profile at the same regime, that is also very modest. Then at I k = 7 A a radical increase of ∆V p is achieved, reaching a value of 16.3 V, more than five times higher than without the cathode. Note also that the gradient of V p is raised here more homogeneously along r than for I B = 100 A. As a consequence the increase of electric drift ∆v E is more uniform radially (actually v E decreases, but the gain is thought here in the direction -e θ ) : we have -3.5 ≤ ∆v E ≤ -0.9 km.s -1 for I B = 300 A, whereas -9. To be complete in the analysis of the emissive cathode impact on V p , the evolution of V p absolute values is now presented. Figure 7.8 shows the values of the plasma potential at the plasma column edge (r = 10 cm) and center (r = 0 cm) as a function of the injected current I k . For comparison the potentials of the cathode tip terminals U + and U -are also plotted. The data displayed at I k = -1 A corresponds to the configuration without the cathode. First note that the whole profiles of V p are clearly lowered by the emissive cathode biasing and current injection (one should not be misled by the results previously discussed and the presentation displayed in Fig. 7.7, where we recall the profiles of V p are shifted). Interestingly the profiles extremities at r = 0 cm and r = 10 cm stay approximately bounded within the limits fixed by the Tungsten tip terminal's potentials U + and U -. The mean profile values V p r closely follow the tip mean potential U tip , with an average potential difference of ∼ 3 V. The maximal difference between V p and U tip is of 5.8 V and is found for I B = 100 A and I k = 7 A. Note that as a consequence, the plasma potential at the edge V p (r = 10) gets dragged far away from the potential of the wall that is maintained connected to the ground. At I k = 7 A, and for both magnetic field presented, the value of V p (r = 10) reaches ∼ -25 V, which is in order of magnitude twice larger than the potential drop inside the column. This can be understood by the formation of a sheath at the chamber wall, which acts as an anode when the cathode is negatively biased. The mechanism behind the formation of the anode sheath, relative to the emissive cathode bias, is one of the points that are addressed in the context our collaboration with the group of Renaud Gueroult.

As a last remark, the global shift of the V p profile is similar between I B = 100 A and I B = 300 A, althought these correspond to very different regimes. For all values of V p (r = 0) or V p (r = 10) a maximal difference of 8 V is found between those two values of I B . This can be understood by the evolution of U tip that is very close between I B = 100 A and I B = 300 A, which could already be observed on Fig. 7.5. 

Conclusion

The hot and floating cathode slightly lowers the central density, does not change the electron temperature, and marginally perturbs the plasma potential in a way that does not seem easy to predict. Overall the influence of the hot cathode at I k = 0 A on the mean radial profiles is limited.

The onset of biasing and current injection has on the contrary a great impact on the plasma column. The central density is peaked, the electron temperature roughly unmodified, and the plasma potential profiles are stretched while their average value follows the electrode's tip potential. This shows our ability to control the plasma potential profile mean value, in the conditions of a weak and a strong magnetic field with I B = [100; 300] A. Even if a precise control of the profile shape could not be achieved yet, the emissive cathode proves to be a very efficient tool for the modification of V p .

As was seen earlier, the plasma parameters radial profiles determine the azimuthal wave development. The change brought by the emissive cathode is therefore expected to greatly modify the waves as well. This topic is addressed in the next section.

Instabilities modification

Overview

The effect of the emissive cathode on the waves is now investigated. Series of experiments are performed, by varying the bias and current (U k , I k ) with setting as a limit I k = [0; 2; 4; 6; 8; 10] A. This is done for I B = [100; 200; 300; 400] A (note that for I B = 400 A the series stops at I k = 2 A, since beyond this current a stable plasma generation was not possible). The corresponding values of the cathode's tip potential U tip were introduced in 7.5. We recall that U tip = -U k +U h /2 with a value of the heating bias of U h 17 V, approximately constant throughout all the experimental series.

Camera imaging measurements are performed, which allow by 2D-FT decomposition the study of the m-modes composing the plasma dynamics of each experimental run. In the same way as the global view of the m-modes was presented without the cathode in the previous chapter (see Fig. 6.10) the relative mean amplitudes of the camera imaging m-modes are computed and plotted in Fig. 7.9. Note that all these camera measurements were done with the presence of the five-tips inserted at r = 4 cm, for the simultaneous measure of n, T e , V f and the turbulent transport Γ * along time3 . First let us discuss the regime of weakest magnetic field with I B = 100 A in Fig. 7.9 (top left). Without the cathode (blue curve) the strong mode m = -6 is an IAW as discussed in chapter 5. The mode m = -2 that has the second highest amplitude is thought to be generated by IAW non-linear interactions. The introduction of the cathode hot and floating (yellow curve) changes the dominant mode to m = -4. An analysis of the 2D spectrum reveals that this mode is an IAW, as well as the surrounding modes of lower amplitudes form m = -4 to m = -7 (not shown here). Then by current injection the IAW modes are progressively damped while the modes m = 1; 2; 3 grow. The effect of the emissive cathode on the IAW is not discussed more in this manuscript. Simply note that a wide variety of NL interactions are identified between the modes triggered by the cathode and the IAW that remain strong at low injected current. The development of the modes m = 1; 2; 3 at I B = 100 A follows the behaviour that is observed at higher B field. At all higher magnetic fields for I B = [100; 200; 300], the simple presence of the hot cathode (I k = 0 A) has a dramatic impact on the light intensity fluctuations. All the dominant m-modes are damped. This is particularly visible at I B = 300 A and I B = 400 A (Fig. 7.9, bottom left and right). In both cases the strong mode m = -3, that was earlier identified as a KH mode, has a relative amplitude of ∼ 27% without the cathode. When the hot floating cathode is introduced the amplitude is reduced to ∼ 7 -10% . Then for I k > 0 the m-modes m = 1 grows, followed by modes m = 2 and m = 3. Note that at I B = 400 A, data are not presented beyond an injectd current of I k = 2 A : a stable plasma generation was not possible for

I k ≥ 3 -4 A.
This general picture is now explored in more details for high magnetic fields, with a focus on the regime at I B = 300. The following sections present the damping of the m-modes by the hot and floating cathode at high magnetic field I B = [300; 400] (subsection 7.3.2), the identification of the modes triggered by the cathode at I B = 300 A for I k > 0 (subsection 7.3.3), and the transition to a high current injection for I B = 300 A (subsection 7.3.4).

Suppression of the Kelvin-Helmoltz modes

The camera measurements leading to the Fig. 7.9 were performed with simultaneous five-tips probe measurement, at r = 4 cm. This radial location was chosen for it corresponds to the highest amplitude of the E × B shear at I B = [200; 300; 400] A. Figure 7.10 shows the spectra of the ion saturation current I i,sat and the floating potential V f , measured without the cathode (blue) and with the cathode hot and floating (yellow). This is shown for the highest values of the magnetic field I B = 300 A and I B = 400 A. The strong kHz fluctuations corresponding to KH modes when the cathode is out, are clearly visible on all spectra. With the hot and floating emissive cathode, all these fluctuations are suppressed. This is confirmation by a local probe measurement of what is observed with camera images : a very strong damping of all m-modes at I k = 0 A (see Fig. The physical mechanism behind this modes suppression is yet not fully understood. Indeed as seen in the last section the impact of the hot floating cathode on the mean radial profiles is rather weak. The radial profile of the electric drift velocity for I B = 300 A for instance is almost unchanged (see Fig. D.15 in appendix). More radial profiles by probe measurements are planned to be done to complete the available dataset, at regimes of modes suppression (five-tips measurements of n and T e at I B = 300 A / I k = 0 A, emissive probe measurement of V p at I B = 200 A / I k = 2 A).

Triggering of a drift mode

At I B = 300 A and high current injection (I K ≥ 6 A) the strong growth of m = 1 and m = 2 modes is observed. Camera imaging reveals a frequency of f ∼ 5.7 kHz for mode m = 1 and its second harmonic with f ∼ 11 kHz associated to mode m = 2 (see the 2D spectrum of Fig. 7.12 right). Now on Fig. 7.11 we present the decomposed spectra of the density and floating potential fluctuations as a function of the radius, for I B = 300 A and I k = 7 A. The area around frequency f ∼ 5.7 kHz is marked by strong density fluctuations for r ∼ 0-6 cm. This is combined with a low phase shift ∆Φ < 0.25 around r ∼ 1-2 cm. These features are characteritics of drift waves. By the strong density gradient it induces (see Fig. 7.7 bottom left) the biasing of the emissive cathode and the current injection was initially thought to trigger the appearance of DW near the plasma column center. However the computation of growth rates do not confirm this hypothesis. Figure 7.12 (left) shows the growth rates of the DW, RT and KH instabilities computed with probe profiles, using the formulae introduced in 6.2. For 1 ≤ r ≤ 3 cm the DW growth rate of mode m = 1 is lower than 30.10 3 s -1 , an order of magnitude less than the KH growth rate which reaches 250.10 3 s -1 at r = 1 cm. The phase velocities observed by camera imaging do not match either the theoretical computation of DW velocity, but is in between KH and RT theoretical phase velocities (see Fig. 7.12 right). A numerical study is reported in [START_REF] Lang | Avalanches triggered by kelvin-helmholtz instability in a cylindrical plasma device[END_REF], describing the evolution of LF waves in conditions very similar to the present case. This study was adapted to the linear devices CSDX, and the parameters where therefore set at n = 1.10 18 m -3 , T e = 3 eV, and B = 1000 G, inside a cylindrical chamber of 20 cm diameter and 2.7 m long. The results show a dominant KH mode (m = 3), collapsing through an avalanche process4 into a KH mode (m = 1). Interestingly it is found that this transition is triggered by the linear growth of a drift mode, due to strong density gradients. These numerical results seem to match well what is seen in the present experiments, i.e. a the transition of a KH mode m = 3 towards a strong mode m = 1 that shares distinct features of DW and KH modes.

At I B = 300 A (B = 510 G) the current injection is therefore thought to responsible for the triggering of a Drift mode m = 1. The final stage of this transition is detailed in the following subsection.

Development of a rotating arm

As the injected current is increased a structure develops, clearly visible from camera imaging. It is shown in Fig. 7.13 in the case of I B = 300 A, at the highest value of injected current I k = 10 A. This structure has the shape of a long arm spanning close to the center at r ∼ 3 cm to the edge region of the plasma column. This is known as a rotating arm or rotating spoke. The recent study of [START_REF] Xu | Direct evidence of the gradient drift instability being the origin of a rotating spoke in a crossed field plasma[END_REF] explores the effect of potential biasing on the equilibrium of a weakly magnetized plasma column. The bias is applied at the walls of a cylindrical chamber of inner radius 2 mm and outer radius 6 mm. The axial magnetic field ranges in B = [100 : 600] G, and the plasma has a density of n ∼ 10 16 m -3 and an electron temperature of a few electronvolts. Even if these characteristics do not match exactly the present conditions, this study can shed light on the present experimental observations. Similarly to what is seen here, the development of a rotating spoke travelling in the E ×B direction is reported. It is shown that the growth of a mode m = 1 at the origin of rotating spoke, which matches our experimental observation. The mechanism of this spoke is explained to be related to the Simon-Hoh instability.

The Simon-Hoh instability is commonly linked to the development of rotating spokes in weakly magnetized plasmas. A detailed review of this instability and will not be done here. For more details we refer to [START_REF] Ilić | Lowfrequency flute instabilities of a hollow cathode arc discharge: Theory and experiment[END_REF], Boeuf and Chaudhury, 2013, Gueroult et al., 2017]. Its development is triggered by a velocity difference of the ions and the electrons. Various mechanisms that can be at the origin of this speed difference, among which collisions with neutrals, slowing down the ions more than the electrons, or weak magnetization (ions not magnetized and electrons magnetized) inducing a different drift velocity for the two species. Since the present plasma is indeed strongly affected by friction with neutrals, and weakly magnetized, the observed rotating spokes are thought to be the result of a Simon-Hoh instability. Note that the development of a rotating spoke is also observed at I B = 200 A : the conclusion is identical for this regime.

Radial transport : from coherent wave transport to intermittent events

The effect of the rotating spoke on the turbulent transport are now investigated, at the regimes I B = 200 A and I B = 300 A. First local measurements are described, then a more global analysis is given. At I k = 0 A the signals of ñ and Ṽf do not exhibit any clear coherent structure. As a result the turbulent transport presents irregular bursts, negative and positive, at a timescale of a ms, and has an average value of Γ * = 1.8.10 20 m -2 .s -1 . This transport value is actually of same order than the inward transport caused by coherent KH modes without the cathode at I B = 300 A. When the injected current in increased, the signals of ñ and Ṽf become more regular. At I k = 6 A, the evolution of density fluctuations is almost symmetric between the positive and negative values. The floating potential exhibits clear negative peaks, that coincide with the negative peaks of ñ. These peaks are simultaneous to the passage of the rotating spoke that is simultaneously observed by camera imaging. At I k = 10 A, the density evolution gets asymmetric with large positive bursts, that are responsible for positive peaks of turbulent transport. Again these are associated with the rotating spoke.

Local measurements

Figure 7.15 shows that the density at r = 4 cm decreases by a factor 8, between the situations of a hot floating cathode and an injection of I k = 10 A. Note that this decline is progressive with the raise of I k . This is consistent with the observation of an increased density gradient, visible in Fig. 7.7 (bottom left). As expected the floating potential decreases, from V f = -10 V to V f = -50 V in the range I k = [0 : 10] A. The averaged turbulent transport is observed to reach high positive values of Γ * = 8-9.10 20 m -2 .s -1 at I k = 8 A and I k = 10 A (note that the strong negative value at I k = 6 A is not explained). These high positive values are due to the accumulation of positive bursts caused by the rotating spoke. Unlike what is reported in Fig. 6.21 in the situation without the cathode, the transport observed here is intermittent. 

Global picture

The transition from a negative to positive mean turbulent transport is not only observed at the example given in the previous subsection at r = 4 cm for I B = 300 A. In order to examine at a global level the signal features discussed in the previous subsection, the probability density functions of ñ and Ṽf are computed for each value of the radius, and plotted as a 2D map. The results for the density at I B = 200 A are plotted in Fig. 7.17 7.17 from no cathode (top) to an injected current of I k = 2 A (center) and I k = 7 A (bottom). Without cathode, the PDF map of the density is symmetric vertically : this corresponds to well defined waves. The asymmetry that grows is to be related to the evolution of the time signal that can be seen in Fig. 7.14 for r = 4 cm. Consider as an example the signal for I k = 10 A at this radial location. Positive values of the fluctuations are large and scarce, as they correspond to sharp peaks above the mean value. Negative values on the contrary correspond to the state at rest, in between the peaks, and they are small and recurrent. This is what is observed in Fig. 7.17 (bottom) for r ≥ 5 cm. Note that at radii beyond 8 cm the positive peaks of the time signals of ñ are so sharp (not shown here) that the PDF is close to zero for positive values the fluctuations. In the region 1 ≤ r ≤ 4 the contrary is observed : the PDF in Fig. 7.17 (bottom) is asymmetric with higher values for ñ > 0. This reveals a large residence time of ñ above its mean value. The PDF values for ñ < 0 are lower and spread over a wider range of fluctuation values : this is the signature of negative peaks of ñ.

The features of the density fluctuations described here follow the observations of [Carter, 2006, Windisch et al., 2006]. The positive peaks are called blobs, and the negative peaks holes. They are the clear signature of an intermittent and convective transport. This PhD has been dedicated to the study and modification of azimuthal waves developing in a weakly magnetized plasma column, with the extensive use of fast camera imaging. An extensive characterization of the plasma column has been performed, with both the estimation of general plasma parameters and with the radial profiles measurements of all plasma parameters. To this end probe diagnostics and interferometry were developed. A five-tips probe was additionally built for the measures of radial turbulent transport. The camera imaging diagnostic was accurately characterized with the determination of geometrical corrections necessary for the comparison with probe measurements. Advanced numerical tools for the images analysis were fully implemented : 2D-FT decomposition, POD, and bicoherence computation. A throughout description and identification of the azimuthal waves have been performed, with the use of probes and camera imaging, for all values of the magnetic field in [170; 340; 510; 680] G. Following the initial development of [Désangles, 2018], an emissive cathode was finally used to gain control over the plasma parameters. The influence of the radial current injected by the cathode on the waves have been explored, with simultaneous measurements of five-tips probe and camera imaging.

Four axis can be drawn within the results that have been presented in this manuscript:

• a better characterization of the camera imaging diagnostics, by a fine understanding of the plasma emitted light dependence on the plasma parameters.

• the first observation of ion acoustic waves fully resolved in time and space, identified by the derivation of a dispersion relation suited to the present experimental conditions.

• an unambiguous identification of Kelvin-Helmholtz modes, subjected to non-linear energy exchanges, and responsible for a coherent inward wave transport.

• a controlled modification of the plasma potential via an emissive cathode, leading to a strong modification of the low frequency modes, and responsible for the transition towards a positive intermittent transport.

The dependence of camera recorded light with the plasma parameters has been explored in details. The time-averaged radial profiles and fluctuation time series of the light spontaneously emitted by the plasma have been systematically compared with simultaneous measurements of the plasma parameters. The focus has been put on filtered light emission at 488 ± 5 nm, 750 ± 5 nm, 810 ± 5 nm, acquired at a rate of 200 kfps. In the low ionization, weakly magnetized plasma regimes of B = 170 G, it was shown that the light intensity could not be interpreted as a proxy for the plasma density. Taking into account the dependence of light emission with the electron temperature using a simple functional model of the Arrhenius form, the mean radial profiles of light emission could be very well reconstructed for magnetic fields of B = 170 G and B = 340 G. In addition, the features of plasma parameter fluctuations were investigated : it was shown that the fluctuations of the electron temperature cannot be ignored when interpreting high speed images fluctuations. Using a first order expansion of our model and the probe measurements of the density and electron temperature fluctuations, light intensity fluctuations were reconstructed. The profiles of fluctuations amplitude compare well with the light intensity recorded by camera, for values of the magnetic field of B = 170 G, B = 340 G and B = 510 G.

Ion acoustic waves have been observed by fast camera imaging at a magnetic field value of B = 170 G. A new dispersion relation was derived, taking into account the particular plasma conditions in the present set-up : a background ion azimuthal velocity, friction with neutrals, magnetized electrons. A background electron parallel velocity was also considered, and left as a free parameter in the numerical resolution of the dispersion relation. The theoretical phase velocities then computed being in excellent agreement with the wave speeds experimentally observed, ion acoustic waves were positively identified. Non-linear energy exchanges between ion acoustic modes were detected, and proved to be damped when the base plasma pressure was increased.

Low frequency waves at magnetic field values of B = 340 G, B = 510 G and B = 680 G were confidently identified as Kelvin-Helmholtz modes. A Rayleigh-Taylor mode was found to coexist with the dominant Kevin-Helmholtz modes for B = 510 G. The modes identification was done by combining all the criteria available from probe and camera imaging measurements. The theoretical growth rates were computed, phase velocities were compared. The phase shift between the density and the floating potential at all radii was spectrally decomposed, and normalized fluctuations of the density and plasma potential were compared. Three waves interactions between various modes were then quantified by means bicoherence computations. Transport measurements showed an inward plasma flux. A precise analysis revealed that this transport was mainly coherent and produced by a the dominant Kelvin-Helmholtz modes.

The use of the emissive cathode showed that is was possible to control the central value of the plasma potential with a precision of a few volts, for values of the magnetic field of B = 170 G and B = 510 G. The strong negative biasing of the cathode tip and the current consequently injected in the plasma column was proved to greatly impact the azimuthal waves. The Kelvin-Helmholtz modes were shown to be first suppressed by the presence of the hot and floating cathode for magnetic fields of B = 510 G and B = 680 G. Then the progressive development of a strong rotating arm caused by a current increasingly injected in the plasma was described. With the use of simultaneous measurements of camera imaging and five-tips probe, this rotating arm could be associated with bursts of outward transport, for all magnetic fields B ≥ 340 G. With the progressive injection of current, the inward wave transport caused by Kevin-Helmholtz modes was therefore shown to evolve towards an intermittent convective outward transport.

Future work in collaboration with Renaud Gueroult and Baptiste Trotabas will lead to a better understanding of the plasma potential modification by the emissive cathode, necessary for a more precise control. More analysis of the waves modification by the current injection would also be needed to accurately understand the transition from inward to outward transport. Upgrades on the linear device at ENS de Lyon are planned in the near future. Helicon sources will be implemented, and the length of the chamber will be extended. This will lead to the investigation of new higher density regimes, and of yet unexplored magnetic configurations.

A

Diagnostics limitations

A.1 Langmuir probes

Uncertainty on the tip area estimation

The area of the probe tip is computed as A = 2πr tip l tip , and the surface of collected current is considered as an extension of this area. However the design of our probe is not perfect and the electrode tip is more or less close to the ceramics wall : part of the electrode surface inside the ceramics tube might participate to the current collection without being included in the computation of A. This can be seen as an underestimation of l tip , leading to an overestimation of the density. 

Influence of the low frequency oscillations

The low frequency oscillations of the plasma potential have been shown to have an effect similar to the classical RF oscillation effect in Langmuir probe measurements. 

High density regimes : truncated signal

For high values of the density, the phase shift detected by the interferometer seems to be limited to a short portion of the interval [0 : 360] • , which makes the counting of 360 • peaks difficult. This issue was encountered when trying to reach high power (up to 3000 W) at I B = 50 A, high current (up to 100 A) at P w = 1 kW and high pressure (up to 10 mTorr) atI B = 50 A and P w = 1 kW. 

B.3 Geometrical corrections

Parallax effect

In spite of the 3.5 meters distance of the camera from the chamber end window, parallax cannot be neglected. In order to determine it, before any series of camera measures a calibration image is taken, with a circular target fixed on the pirex end of the chamber at z = 80 cm. The diameter of the circular target is 10 cm and gives a position reference in the plane z = 80 cm.

The corresponding number of pixels on the calibration image is noted ∆r f ront (this plane is the front of the chamber from the camera point of view). At the other end of the chamber, in the plane z = 0 cm where the source is connected, the inner diameter of the ceramic annulus isolating the plasma from the wall is visible on the camera image. This circle of diameter 11 cm serves as the distance reference in this plane, and the number of pixels corresponding to a 10 cm diameter is deduced, and noted ∆r back . It is found that a 10 cm in diameter circle at the back of the chamber is seen on the images 22% smaller than a 10 cm in diameter circle at the front of the chamber. 

Effect of the parallax on the magnetic field lines

A distortion is now applied to the field lines in order to get their spatial configuration as if seen by the camera if the lines of sight were all parallel. The reference position is taken at z = 80 cm : at this position the field lines x positions are left unmodified : α z=80 dist = 1. Then at the other end of the chamber the distortion factor applied is α z=0 dist = ∆r f ront /∆r back . The transformation applied to all x positions of the field lines is linear and only dependent on z, and therefore simply writes :

α dist (z) = 1 - z 80 ∆r back ∆r f ront + z 80 (B.1)
The result is shown in Figures B.7.

Spatial map of the parameters

Now with the hypothesis that the plasma parameters are conserved along the field lines, their 2D shapes can be reconstructed using only a probe profile measured at a given position z p . To determine the value of a parameter A at a given position (r, z), the nearest magnetic field line to this position is detected and followed up to z = z p , where the profile of A is known by probe measurement. There at the radius where the field line crosses z = z p the value of the A is 

C

Theoretical precisions

C.1 Maxwell equations

The Maxwell equations govern the evolution of an electromagnetic field ( E, B) in a space of charge density ρ, with an electrical current j. They read :

∇. E = ρ ε 0 ∇. B = 0 ∇ × E = ∂ t B ∇ × B = µ 0 ( j + ε 0 ∂ t E)

C.2 Dynamic Mode Decomposition

A Dynamic Mode Decomposition (DMD) algorithm was implemented over the course of this PhD. For more details about this technique, see [Schmid, 2010,Mezic, 2013]. The results did not add physical information from the 2D-FT mode decomposition. This technique was not further explored.
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 11 Figure 1.1: Sketch and picture of the experimental set-up.

Figure 1 . 2 :

 12 Figure 1.2: Radial profiles of the density (left), the electron temperature (center) and the plasma potential (right) for B = 170 G, P w = 1 kW and p 0 = 1 mTorr.

  .3 (left) for a current in the coils of I B = 100 A. The values on the z-axis are compared to a series of teslameter experimental measurements; both are shown in Fig. 1.3 (center). The match is very satisfactory and the computed map of B is considered to accurately reproduce our magnetic configuration. Note that the slight discrepancy observed between the computed and measured values of B can be explained by the different thickness of the coils mentioned earlier.

Figure 1 . 3 :

 13 Figure 1.3: Contour lines of the numerically computed magnetic field inside and outside the source and chamber for a current in the coils of 100 A (left), as well as its axial profile and radial profiles at various location (center and right respectively). The profile along z is compared to teslameter measurements.

Figure 1 . 4 :

 14 Figure 1.4: Examples of plasma runs, with the evolution during time of the light collected under the plasma source tube via a photodiode (blue), and the camera trigger signal (red). On the right figure, the change of plasma state that occurs after the power ramp and B field increase corresponds to the emissive cathode biasing (see Part III).

Figure 1 . 5 :

 15 Figure 1.5: Sketch of a cross section area (left), and computation of the corresponding frequency of collision (center and right).

Figure 1 . 6 :

 16 Figure 1.6: Cross sections of the impact between an electron and an Argon atom (left) and between an Argon ion and an Argon atom (right, reproduced from [Phelps, 1994]). The excitation cross section given as an example and denoted by a star (left red curve) corresponds to the excitation process Ar → Ar(4p[1/2]0). The line highlighted in blue and denoted Q m on the right plot corresponds to momentum exchange, i.e. elastic collisions. The other curves of the right plot are not explained here. σ * ei 5.6 × 10 -18 m 2 σ en 5 × 10 -18 m 2 σ in 1.5 × 10 -18 m 2

Figure 1 . 7 :

 17 Figure 1.7: Gyrofrequency and Larmor radius of the electrons (left) and the ions (right). The collisions frequencies ν en , ν * ei and ν in are plotted to assess the magnetization conditions given in Eq. (1.2).

Figure 1 . 8 :

 18 Figure1.8: Left : comparison between the ion-neutral collision frequency ν in , the ion ionization frequency ν iz and the ion gyrofrequency ω ci . Left : friction coefficient K as defined in Eq. (1.5) (dashed blue curve) and Eq. (1.5) (red curve).
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  Deux choses instruisent l'homme de toute sa nature : l'instinct et l'expérience. » Les Pensées, B. Pascal.

Figure 2 . 1 :

 21 Figure 2.1: Left : sketch of a Langmuir probe electrical circuit. Right : theoretical and experimental examples of IV curves.

Figure 2 . 2 :

 22 Figure 2.2: Floating potential evolution in the sheath and in the pre-sheath.

Figure 2 .

 2 Figure 2.3 shows an example of the fit of the ion current following the model of Eq. (2.5), for I B = 100 A, P w = 1 kW, p 0 = 1 mTorr, and with the probe tip placed at r = 3 cm away from the center of the plasma column. A series of fits are computed with varying values of p, and the value minimizing the root mean square error is kept (Fig. 2.3 right).

Figure 2 . 3 :

 23 Figure 2.3: Example of the fit of I i (left) and the deduction of I i (V f ) (center).

Figure 2 . 4 :

 24 Figure 2.4: Example of the determination of T e from the electron current. In this example T e = 3.8 eV.

Figure 2 . 5 :

 25 Figure 2.5: Top left : sketch of the different contributions to the total current collected by the surface of an emissive probe. Bottom left : decrease of the potential drop in the sheath as the electrode is heated up. Right : sketch of the theoretical IV curve evolution of an emissive probe as the tip is heated up.

Figure 2 . 6 :

 26 Figure 2.6: Left : pictures of an emissive probe tip, when it is mounted (top), heated up for a measurement (bottom left) and at times damaged (bottom right). Right : electrical sketch of the measure of V p by an emissive probe.

Figure 2 . 7 :

 27 Figure 2.7: Left : example of an emissive probe calibration. Right : dependence of the heating current I sat h at which V = V p , with the plasma density. The linear evolution for 0.1 ≤ n/ max(n) ≤ 0.5 follows I sat h / max(I sat h ) = 0.93 + 0.13 n/ max(n).

Figure 2 . 8 :

 28 Figure 2.8: Left and center : example of a measure of V (t) and the corresponding calibration curve V = f (I h ), for r = 7 cm. Right : comparison of plasma potential profiles obtained with a static and dynamic calibration. Results obtained by Jean-Maxime Schalchter.

Figure 2 . 9 :

 29 Figure 2.9: Left : sketch of a radial turbulent transport measurement with axis orientations in the present set-up. Right : electrical sketch of a five tips probe.

  and a factor ln(2) in the final relation.

Figure 2 .

 2 Figure 2.10: Theoretical IV curve (black) used to deduce the temperature from a 5-tips measurement, with the electronic (red) and ionic (green) parts of the total current. The points effectively measured by the 5-tips are highlighted as yellow dots.

  Figure 2.11: Sketch of the five-tips probe design (left and center) and picture of the probe's head with the orientation of the currents and voltages measurements.

Figure 2 . 12 :

 212 Figure 2.12: Bode diagram of the 5-tips electronics, with the amplitude (left) and phase (right) of the V 1 , V 5 , I 2 and I 4 transfer functions.

Figure 2 . 13 :

 213 Figure 2.13: Left and center : example of a five-tips probe measurement. Right : comparison of spectra of the signal I 2 , before (blue) and after (red) signal/noise optimization.

Figure 2 . 14 :

 214 Figure 2.14: Dispersion relation of an electromagnetic wave in a plasma of density n. Note that the value of n determines the value of ω p,e , and thus determines the position of the curve ω(k).

Figure 2 . 15 :

 215 Figure 2.15: Phase shift evolution during the power ramp, which limits are plotted in dashed black lines. Left : (I B = 35 A, P end u

Figure 2 .

 2 Figure2.16 shows the results of density measurements by interferometry, for varying values of the current I B at P w = 1 kW (left), and varying values of the source power P w at I B = 35 A (right). These results are compared to Langmuir probe measurements (the red stars correspond to a larger set of measurements, presented with a map of the parameters in section 4.1). The match is very good, which gives us confidence in the probe measurements of the density.

Figure 2 . 16 :

 216 Figure 2.16: Scans of the density with respect to the current in the coils for P w = 1 kW (left) and power scan of the density at I B = 35 A (right). The plasma pressure is kept at p 0 = 1 mTorr.

  Figure 2.17: Sketch of the camera imaging optical set-up (left) and images of the mean intensity (top right) and the amplitude fluctuations (bottom right) of the recorded light. I B = 100 A, optical filter used around 750 nm.

Figure 2 . 18 :

 218 Figure2.18: Spectra of the light naturally radiated by the plasma column at its center, for values of the magnetic field raging from 170 G to 680 G. Top : full spectra. Bottom : zoom in the value ranges of the optical filters that are used in this article for the camera measurements, of 488 nm, 750 nm and 810 nm.

Figure 2 . 19 :

 219 Figure 2.19: Left : example of equation (2.43) integrand with T e = 4 eV, plotted along with the excitation cross-sections of level 4p[1/2]0 from Ar atom ground level (curve (a)) and of 4p 2 D • 5/2 from Ar + ground level (curve (b)). Right : computation of K ex (T e ) using σ(a) ex (blue dots), and fit in the range T e ∈ [1; 5] eV with f (T e ) = K ex,0 e -εex/Te (red curve).

Figure 2 . 20 :

 220 Figure 2.20: Radial profiles of the density and electron temperature from five tips probes measurements, at z = L 2 and for B = [170; 340; 510; 680] G.

Figure 2 . 21 :Figure 2 . 22 :

 221222 Figure 2.21: Spatial map of the electron temperature, reconstructed from the five tips probe profile performed at z = L 2 (dark dot-dashed line). The spatial domain inside the cylindrical chamber and the source is distorted so as to make the camera lines of sight parallel (red dashed lines), which makes the integration along z easier. B = 170 G.

  Figure 2.23:Comparison of radial profiles between the measure of I cam , and its modelling from the plasma parameters using the models f n and f n 2 , for the filter at 488 nm, 750 nm and 810 nm, at B = 320 G. The respective optimization processes of ε ex (bottom) are plotted with the theoretical value coming from the numerical fit performed in section 2.3.2

Figure 2 . 24 :

 224 Figure 2.24: Spectra of the simultaneous camera (I cam ) and probe (I i , V f , T e ) measurements, with the 750 nm optical filter, for B = [170, 340, 510, 680] G.

Figure 2 . 25 :Figure 2 . 26 :

 225226 Figure 2.25: Simultaneous measurement of Ĩcam with a filter at 750 nm and Ĩi , Te by probe, for B = 340 G.

Figure 2 . 27 :

 227 Figure 2.27: Maximal values (top) and associated time shifts (bottom) of the cross correlations computed between the time fluctuations signals of the light intensity I cam on one hand, and I i , V f , T e measured by probe, and the models f n and f n 2 on the other hand, with ε ex in [0; 40] eV. The results are presented for the optical lines around 488 nm, 750 nm and 810 nm, and for B = 340 G. The time shifts are normalized to the period T of the main spectral component of I cam .

Figure 2 . 28 :

 228 Figure 2.28: Summary of the maximal values (left) and associated time-shifts (right) of the cross correlations between the temporal fluctuations of I cam and I i , V f , T e , f p (I i , T e , ε ex ), for the 488 nm line (ε ex = 20.0 eV and f p = f n 2 ), the 750 nm line (with ε ex = 14.3 eV and f p = f n ) and the 810 nm line (ε ex = 15.0 eV and f p = f n ), as a function of the magnetic field B. For each value of B, the time shifts are normalized to the period T of the main spectral component of I cam .

Figure 2 . 29 :

 229 Figure 2.29: Comparison of the terms responsible for the light intensity fluctuations as expressed in equation (2.47). ξ i,n = ε i,n ex / T e with ε i ex = 14.4 eV and ε n ex = 20 eV for the ion and neutral lines respectively.

Figure 2 . 30 :

 230 Figure 2.30: Comparison between the amplitudes of the normalized light intensity fluctuations, and its reconstruction with five-tips probe measurements of n and T e in the range r ∈ [0 : 6] cm, for wavelengths 488 nm (left) and 750 nm (right). ξ i,n = ε i,n ex / T e with ε i ex = 14.4 eV and ε n ex = 20 eV. The values of B presented are 170 G (dotted lines), 340 G (plain lines) and 510 G (dash-dotted lines).
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Figure 3

 3 Figure 3.1 (right) shows an example of the resulting 2D power spectrum S r * (m, f ) = | Îr * | 2 , i.e. the amplitude of the light intensity fluctuations as a function of the mode m and the frequency f , at radius r * = 4 cm. The dataset taken as an example corresponds to control parameters of I B = 300 A, P w = 1 kW and p 0 = 1 mTorr. Clear peaks are observed at frequencies ∼ 2.8 kHz and ∼ 4.2 kHz for modes m = 2 and m = 3 respectively. Converted in rotation frequency f /m, the two modes have therefore the same speed. These modes are positive : considering equation (3.2) this means their propagation is alongθ.Going further the previous steps are done for different radii r * (we take typically the pixel lengths R px = (2, 4, 6, ..., 124) px). Taking the 2D Fourier transform Îr * at any radius, the line corresponding to a given mode m can be isolated. The temporal signal of this mode m at radius r * can then be reconstructed by 2D-FT inversion. Doing this for every radius, the full spatio-temporal evolution of the mode m is reconstructed, and this can be done for all modes. As an example the time evolution of m-mode m = -10 to m = 10 are plotted in Fig.3.2. The corresponding spatial evolution of modes m = 2, m = 3 and m = 0 are also shown, at times t =[42.5; 45; 46.7] ms of the video sample. These times are marked by black dashed lines
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 31 Figure 3.1 (right) shows an example of the resulting 2D power spectrum S r * (m, f ) = | Îr * | 2 , i.e. the amplitude of the light intensity fluctuations as a function of the mode m and the frequency f , at radius r * = 4 cm. The dataset taken as an example corresponds to control parameters of I B = 300 A, P w = 1 kW and p 0 = 1 mTorr. Clear peaks are observed at frequencies ∼ 2.8 kHz and ∼ 4.2 kHz for modes m = 2 and m = 3 respectively. Converted in rotation frequency f /m, the two modes have therefore the same speed. These modes are positive : considering equation (3.2) this means their propagation is alongθ.Going further the previous steps are done for different radii r * (we take typically the pixel lengths R px = (2, 4, 6, ..., 124) px). Taking the 2D Fourier transform Îr * at any radius, the line corresponding to a given mode m can be isolated. The temporal signal of this mode m at radius r * can then be reconstructed by 2D-FT inversion. Doing this for every radius, the full spatio-temporal evolution of the mode m is reconstructed, and this can be done for all modes. As an example the time evolution of m-mode m = -10 to m = 10 are plotted in Fig.3.2. The corresponding spatial evolution of modes m = 2, m = 3 and m = 0 are also shown, at times t =[42.5; 45; 46.7] ms of the video sample. These times are marked by black dashed lines

Figure 3 . 2 :

 32 Figure 3.2: Extraction of m-modes evolution from camera imaging data, by 2D-FT.

Figure 3 . 3 :

 33 Figure 3.3: Example of spatial and temporal modes extracted from POD.

Figure 3 . 4 :

 34 Figure 3.4: Time vectors a 1 and a 2 of the POD modes 1 and 2 (left), and singular values associated with the POD modes 1 to 15 (right) from the example shown in Fig.3.3.

Figure 3 . 5 :4

 35 Figure 3.5: Example of the threshold map (left) and result (center and right) of the squared bicoherence.
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 41 Figure 4.1: Map of the plasma density measured by Langmuir probe at r = 0 cm and z = L 2 , for current in the coils I B =[30; 50; 80; 100; 120; 150; 200; 250; 300] A, and for varying values of the source power P w .
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 42 Figure 4.2: Plasma potential (left) and electron temperature (right) measured by five-tips probe at r = 0 cm and z = L 2 , as a function of the current in the coils I B , and for varying values of the source power P w .

Figure 4 . 3 :

 43 Figure 4.3: Power scan of the density at p 0 = 1 mTorr (left) and scan of the density with respect to the pressure at P w = 1 kW (right). The current in the coils is kept at I B = 50 A. The stars correspond to values taken from Fig. 4.2

  Fig. D.3 in appendix D). The value found for I B = [100; 200; 300] of µ exp ∼ 3 is below the theoretical value of µ = 4.8 for Argon. At I B = 400 A we have µ exp ∼ 7. The theoretical value of µ is based on the hypothesis of Maxwellian velocity distributions. The possibility of non Maxwellian distributions in our experiments can explain the discrepancy found between µ exp and µ.
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 44 Figure 4.4: Radial profiles of the plasma parameters measured by five-tips probe.

Figure 4 . 5 :

 45 Figure 4.5: Comparison between radial profiles of the density (top) and electron temperature (bottom) measured by probe, at z = L 1 and z = L 2 . The profiles at L 2 are translated along field lines to z = L 1 . The magnetic field values are B = [170; 340; 510; 680] G from left to right.

Figure 4 . 6 :

 46 Figure 4.6: Axial variation of the density, electron temperature and floating potential.

Figure 4 . 7 :

 47 Figure 4.7: Background azimuthal ion velocity v iθ , computed from the expression given in equation (4.5), for I B = [100; 200; 300; 400] A.
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Figure 5 . 1 :

 51 Figure 5.1: Proper Orthogonal Decomposition of light intensity normalized fluctuations, for p 0 = 1, 3 mTorr.

Figure 5 . 2 :Figure 5 . 3 :

 5253 Figure 5.2: Power spectrum of light intensity fluctuations of the camera images on a corona of radius r * = 3.3 cm, at which the amplitude of the dominant m-mode (m = -5) is maximum. Dispersion relation are plotted from experimental fits of the power spectrum maxima (green) and from the ion acoustic speed (black).

Figure 5 . 4 :

 54 Figure 5.4: Evolution of 2D-FT modes m = -5, m = -6 around a exchange event, for p 0 = 1, 3 mTorr.

Figure 5 . 5 :

 55 Figure 5.5: Comparison of radial and azimuthal profiles between POD and 2D-FT reconstructed dominant spatial modes, for p 0 = 1, 3 mTorr (up) and p 0 = 1, 3 mTorr (bottom).

  en e ∇Φ -en e v e × B -k B T e ∇n e -m e n e ν en v e (5.18) ∂ t n e + ∇ ⊥ .(n e v e ) + ∇ .(n e v e ) = 0 (5.19)
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 56 Figure 5.6: Comparison between the experimental phase velocity (red dots) and the theoretical phase velocity (body of dashed-line curves). The standard ion sound velocity c s and its simple Doppler shifted value c s -v M ach i,0

Figure 5 . 7 :

 57 Figure 5.7: Left : time evolution of m-modes average amplitudes, extracted by 2D-FT. Left : fit of the 2D-FT mode m = -5 growth rate at an exchange event with mode m = -6. The fit is done on a selected interval of the raw data (light blue). The red curve is the result of a filter. Right : Evolution of the growth time scale of mode m = -5, evaluated during exchange events, as a function of the pressure p 0 .
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 58 Figure 5.8: Bicoherence threshold map (left) and result b 2 (right) of the three-wave interaction (m = -5) + (m = -1) ↔ (m = -6) at I B = 100 A and p 0 = 1.3 mTorr.

Figure 6 . 1 :

 61 Figure 6.1: Mechanism behind the propagation of a drift wave. Left : no phase difference between the density fluctuation ñ and the plasma potential fluctuation denoted φ in these sketches, the wave only propagates along y. Right : the phase shift between ñ and φ makes the wave propagate and grow.Sketches adapted from[Horton, 1999].
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 62 Figure 6.2: Mode m = 3 of a drift wave, with parallel wavelength λ . Sketch adapted from[Brandt, 2009].

Figure 6 . 3 :

 63 Figure 6.3: Radial profiles of the plasma potential normalized by its value at r = 4 cm (left) and of the density (right).

Figure 6 . 4 :

 64 Figure 6.4: Theoretical growth rates of the DW (left), RT (center) and KH (right) instabilities computed from the formulae introduced in 6.2 from probe profiles, at I B = 300 A.

Figure 6 . 5 :

 65 Figure 6.5: Left : velocities corresponding to the E × B drift v E and the electron diamagnetic drift v d,e computed from probe profiles at I B = 300 A. Right : condition for the RT instability to be unstable, when -∂rn n > m 2 4r .

Figure 6 . 6 :

 66 Figure 6.6: Theoretical growth rates of the DW, RT and KH instabilities computed from the formulae introduced in 6.2 using probe profiles (top) compared to the power spectra of density and floating potential fluctuations simultaneously measured (rows 2 and 3) and their phase shift (bottom). The current in the coils is set at 200 A (left), 300 A (center) and 400 A (right). The area delimited in dashed and plain line correspond respectively to KH and RT waves.

  .7 (right) reports the values of r * 0 for all I B . The averaged 2D power spectra are plotted in Fig 6.8, for I B = 200 -300 -400 A.
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 6768 Figure 6.7: Left : radial profiles of modes m = 2 and m = 3. Right : parameters used for the theoretical phase velocities computations. See text for details.

Figure 6 . 9 :

 69 Figure 6.9: Normalized fluctuation amplitude of the plasma potential (left), density (center) and ratio between the two (right).

Figure 6 . 10 :

 610 Figure 6.10: Averaged amplitude of m-modes in [-10 : 10], integrated for all frequencies f ∈ [0100] kHz and all radii r * ∈ [08] cm, for I B ∈ [100; 200; 300; 400] A.

Figure 6 . 11 :

 611 Figure 6.11: Time evolution of the m-modes amplitude computed by 2D-FT on camera images at I B = 200 A (top) and I B = 300 A (bottom).

Figure 6 . 12 :

 612 Figure 6.12: Extraction of the (m = 2, f = 4 kHz) component of mode m = 2 at I B = 300 A. For comparison the (m = 2, f = 2.8 kHz) component is also presented. Left and center : images of the reconstructed modes at a given time. Right : radial profiles, integrated along θ = [0 : 2π] and t = [0 : 100] ms.

Figure 6 . 13 :

 613 Figure6.13: Camera imaging light integration process, applied to gaussian profiles centred around r = 4 cm, r = 6, 5 cm, r = 8 cm, and of respective standard deviations σ = 0.6, σ = 0.75 and σ = 0.6.

Figure 6 . 14 :

 614 Figure 6.14: Map of b2 (f 1 , f 2 ), result of the bicoherence computation of interaction (m 1 = 3, f 1 ) + (m 2 = -1, f 2 ) ↔ (m 1 = 2, f 1 + f 2 ), as a function of frequencies f 1 and f 2 . I B = 300 A.

Figure 6 .

 6 Figure 6.15 shows a zoom of the power spectrum S(m, f ) at I B = 300 A. All the features of this figure are progressively discussed in this subsection. For now let us focus on the main (m, f ) components.Around the largely dominant (m = 3, f = 2.8) component, a clear spread both in modes m and frequencies f is visible : a continuous set of decreasing amplitude components, in the range f ∼ [1 : 5] kHz along m = 3, and for m ∼ [-5; 8] along f = 2.8 kHz. This spread is thought to be due to the non-linear saturation of the instability giving rise to the KH mode m = 3 at frequency f = 2.8 kHz, as well as to the cylindrical inhomogeneity of the plasma column. Figure6.16 (left) shows an image of the light intensity fluctuations (standard normalization A, see section 3.1) filtered at f = 2.8 ± 0.3 kHz. The reconstructed mode m = 3, also filtered at f = 2.8 ± 0.3 kHz, is shown in Fig.6.16 (center), at the same instant. For a better visualization the light intensity profiles along θ of these images at r * = 3 cm are compared in Fig.6.16 (right). The discrepancy between the θ profiles (that is observed along the whole video sample, and for all radii) is the signature in the spatio-temporal domain, of the spread along m that is observed in the Fourier domain S(m, f ).Besides the components generated by (m = 3, f = 2.8), the strong visible components (m = 2), (m = 4), (m = 6) at frequency f = 5.6 are respectively order one harmonics of modes (m = 2), (m = 4), (m = 6) at frequency f = 2.8 kHz. Other harmonics components (not visible within the limits of the plots) are also clearly identified : we can cite among others (m = 3, f = 8.2) the second order harmonic of (m = 1, f = 2.8), or (m = 1, f = 8.2) that seems to be a second order harmonic of the same component but only in terms of frequencies.

Figure 6 . 15 :

 615 Figure 6.15: Zoom of the 2d power spectrum S(m, f ) of camera imaging data, at I B = 300 A, with example of weakly non-linear interactions indicated. Plain and dashed arrows respectively show major and birth type NL interactions. Black corresponds to KH interactions, light blue to the KH-RT interaction that is discussed in the previous paragraph.

Figure 6 . 16 :

 616 Figure 6.16: Images of the light intensity fluctuations filtered at f = 2.8 kHz (left) and at f = 2.8 kHz, m = 3 (right), and comparison of their profiles along θ at r * .

Figure 6 . 17 :

 617 Figure 6.17: Bicoherence threshold map b 2 0 (left) and regular computation b 2 (right) for the interaction (m = 3) + (m = 3) ↔ (m = 6). I B = 300 A.

Figure 6 . 18 :

 618 Figure 6.18: Highlight on the modes (m = 9, f = 2.8 kHz) and (m = -1, f = 1.2 kHz) resulting from a birth type three-wave interaction, by a cut of the 2D power spectrum S(m, f ) at I B = 300 A, along the frequency f = 2.8 kHz (left) and along the modes m = -1 (right). A cut along the mode m = -2 is also plotted for comparison.

Figure 6 . 19 :

 619 Figure 6.19: Mean turbulent transport measured by five-tips probe, for I B = [100; 200; 300; 400] A.

  -1 . The time signals of the density fluctuations ñ and the electric drift velocity fluctuations ṽE are plotted in Fig. 6.21, around the peak of Γ * for r = 3.4, r = 4.2 and r = 5. The signals are also shown for a value of the turbulent transport close to zero, at r = 6 cm. The signals of the floating potentials V 1 f and V 5 f from which v E is computed, are plotted for comparison with v E . They are not further discussed.

Figure 6 . 20 :

 620 Figure 6.20: Left : radial profile of the turbulent transport for r = [0 : 0.2 : 10] cm at I B = 300 A . Right : evolution of the density n, the electric drift velocity v E , and the floating potentials V 1 f and V 5 f , over one period of the main fluctuating component of the density.

Figure 6 . 21 :

 621 Figure 6.21: Signals of the density n, the electric drift velocity v E , and the floating potentials V 1 f and V 5 f , at different radii. From top to bottom r = [3.4; 4.2; 5; 6] cm.

Figure 6 . 22 :7

 622 Figure 6.22: Spectral decomposition of the phase shift between the density fluctuations and the electric drift velocity fluctuations, for I B = 200 A (left), I B = 300 A (center) and I B = 400 A (right).
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Figure 7 . 1 :

 71 Figure 7.1: Sketch of the emissive cathode functioning and electrical circuit.

Figure 7 . 2 :

 72 Figure 7.2: Pictures of the emissive cathode device.

Figure 7 . 3 :

 73 Figure 7.3: Left : calibration of the floating emissive cathode, with potentials U + and U -measured at the Tungsten wire sides, and averaged potential (U + + U -)/2, as a function of the increasing heating current I h . Right : sketch of the tip spiral with the positions of potentials U + and U -.

Figure 7 . 4 :

 74 Figure 7.4: Evolution of the maximal thermoionic emission current I em a Tungsten electrode can provide, as a function of its temperature T k . See text for details on the input parameters values.

Figure 7 . 5 :

 75 Figure 7.5: Evolution of the current drawn from the walls by the centred emissive cathode as a function of its average potential, for I B = [100; 200; 300; 400] A.

Figure 7 . 6 :

 76 Figure 7.6: Modification of the plasma potential radial profiles, at I B = 100 A (left) and I B = 300 A (right), when the cathode is left floating and cold (black) and floating and hot (yellow). Inset : value of V p at the edge r = 10 cm.

  I B = 100 A and I B = 300 A. But five-tips measurements at I k = 0 A were done for I B = 200 A and I B = 400 A; these can provide insight on the hot cathode's influence. They are presented in Fig. D.11 of appendix D. Like with the cold cathode at I B = 100-300 A, the electron temperature

Figure 7 . 7 :

 77 Figure 7.7: Radial profiles of the density, electron temperature (5-tips probe) and plasma potential (emissive probe) whithout the cathode, and with the hot cathode drawing a current of Ik = 2 A and Ik = 7 A. I B = 100 A (top) and I B = 300 A (bottom).

Figure 7 . 8 :

 78 Figure 7.8: Global effect of the emissive cathode biasing and current injection (U k , I k ) on the plasma potential V p , for I B = 100 A and I B = 300 A. See text for details.

Figure 7 . 9 :

 79 Figure 7.9: Modification of m-modes global amplitude by the emissive cathode current injection.

  7.9). A similar suppression of the fluctuations at r = 4 cm is measured at I B = 200 A (see Fig. D.13 in appendix). At this regime however the m-modes damping is achieved for I k = 2 A.

Figure 7 . 10 :

 710 Figure 7.10: Power spectra of five-tips probe measurements at r = 4 cm of I i,sat (top) and V f (bottom) at I B = 300 A (left) and I B = 400 A (right), without the cathode and with the cathode hot and floating (I k = 0 A).

Figure 7 . 11 :

 711 Figure 7.11: Power spectra of the density and floating potential fluctuations simultaneously measured (left and center) and their phase shift (right) as a function of the radius, for I B = 300 A and with a current drawn from the emissive cathode of I k = 7 A.

Figure 7

 7 Figure 7.12: Right : experimental dispersion relation obtained by 2D-FT applied in camera images. Left : theoretical growth rates of the DW, RT and KH instabilities. I B = 300 A, I k = 7 A.

Figure 7 . 13 :

 713 Figure 7.13: Spatio-temporal evolution of the rotating spoke observed by camera imaging at I B = 300 A for a current injection by the emissive cathode of I k = 10 A. Contour lines of the light intensity are shown at the bottom. The dotted circle correspond to a radius of r = 4 cm where the five-tips measure is simultaneously performed.

Figure 7 .

 7 Figure 7.14 shows the signals of the density, the floating potential and the turbulent transport measured by the five-tips at r = 4 cm, for increasing values of the injected current I k at I B = 300 A. The signals are plotted in arbitrary units and presented from top to bottom, with I k = [0246810] A. The corresponding average values of n, V f and Γ * are shown in Fig. 7.15.At I k = 0 A the signals of ñ and Ṽf do not exhibit any clear coherent structure. As a result the turbulent transport presents irregular bursts, negative and positive, at a timescale of a ms, and has an average value of Γ * = 1.8.10 20 m -2 .s -1 . This transport value is actually of same order than the inward transport caused by coherent KH modes without the cathode at I B = 300 A. When the injected current in increased, the signals of ñ and Ṽf become more regular. At I k = 6 A, the evolution of density fluctuations is almost symmetric between the positive and negative values. The floating potential exhibits clear negative peaks, that coincide with the negative peaks of ñ. These peaks are simultaneous to the passage of the rotating spoke that is simultaneously observed by camera imaging. At I k = 10 A, the density evolution gets asymmetric with large positive bursts, that are responsible for positive peaks of turbulent transport. Again these are associated with the rotating spoke.Figure7.15 shows that the density at r = 4 cm decreases by a factor 8, between the situations of a hot floating cathode and an injection of I k = 10 A. Note that this decline is progressive with the raise of I k . This is consistent with the observation of an increased density gradient, visible in Fig.7.7 (bottom left). As expected the floating potential decreases, from V f = -10 V to V f = -50 V in the range I k = [0 : 10] A. The averaged turbulent transport is observed to

Figure 7 . 14 :

 714 Figure 7.14: Evolution of the fluctuations of the density, floating potential and turbulent transport at r = 4 cm, as a function of the injected current I k . I B = 300 A.

Figure 7 . 15 :

 715 Figure 7.15: Evolution of the mean values of the density, floating potential and turbulent transport at r = 4 cm, as a function of the injected current I k . I B = 300 A.

  Figure 7.16 shows radial profiles of Γ * for I B = 200 A and I B = 300 A, without the cathode (blue curves), with I k = 2 A (purple) and with I k = 7 A (green). Note that the measure at I k = 0 A is also shown for I B = 200 A (yellow). The turbulent transport at I B = 200 A progressively becomes positive in the region 4 ≤ r ≤ 6 cm. At I B = 300 A a global transition of negative to positive transport is observed. For an injected current of I k = 7 A a large positive transport in the region 3 ≤ r ≤ 6 cm (green curve) supplants the negative wave transport from the KH modes (blue). Its maximal value is found at r = 4 cm with Γ * = 4.8.10 20 m -2 .s -1 . Note that this global outward transport is consistent with strong global density depletion as seen in Fig. 7.7 (bottom left).

Figure 7 . 16 :

 716 Figure 7.16: Radial profiles of the turbulent transport Γ * = ñ.ṽ r measured by five-tips probe, with no cathode, and with a current injection by the emissive cathode of I k = [0; 2; 7] A. I B = 200 A (left) and I B = 300 A (right).

  . The result for Ṽf at I B = 200 A are shown in Fig appendix and are not discussed. A clear transition in the pattern of the PDF map can be observed in Fig.

Figure 7 . 17 :

 717 Figure 7.17: PDF of the fluctuations of the density n at I B = 200 A, with no cathode (top), and the cathode emitting I k = 2 A (center) and I k = 7 A (bottom).

Figure

  Figure A.1 shows pictures of Langmuir probes tips that were used. On the right is reproduced to scale various configurations of the Tungsten wire inside the ceramic tube. These various probes lead to estimation of the density varying up to 50%. It was found that this discrepancy could be corrected by increasing the value of l tip proportionally to the space left empty between the tip wire and the ceramics.

Figure A. 1 :

 1 Figure A.1: Pictures and sketches to the scale of the Langmuir probes tips used in this PhD.

  Figure A.2 (left) shows the example of two fits of T e at r = 1 cm, at I B = 100 A, P w = 1 kW, p 0 = 1 mTorr. The dark one is done within the limits usually used, but in a part of the curve that is strongly affected by the LF fluctuations. The green fitting curve is taken in a lower part of the curve, less affected by these fluctuations, which allows a correction of the temperature and density estimations (Fig. A.2 center and right).
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 12345 Figure A.5: Power scan for I end B = 50 A

Figure B. 6 :

 6 Figure B.6: Left : sketch of the camera lines of sight. Center and right :

Figure

  Figure B.9: I B = 100 A.

Figure C. 1 :Figure C. 2 :Figure D. 1 :Figure D. 2 :Figure D. 3 :

 12123 Figure C.1: Eigen values resulting from the DMD applied to a series of 30 images at I B = 300 A.

Figure D. 4 :Figure D. 5 :

 45 Figure D.4: Gradient of the plasma potential (left) and normalized gradient of the density (right) for I B = [100; 200; 300; 400] A.

Figure D. 7 :Figure D. 8 :

 78 Figure D.7: Left : theoretical growth rates of the DW, RT and KH instabilities computed from the formulae introduced in 1.2 using probe profiles, for I B = 100 A. Right : comparison between theoretical and experimental phase velocities.

Figure D. 9 :

 9 Figure D.9: PDF of the fluctuations of the density n (left), the floating potential Vf (center) and the electronic temperature Te (right) measured by the five-tips probe, for I B = 200 A (top) and I B = 300 A (bottom).

  Compilation of the current dataset of radial profiles that were performed by five-tips (shown on boxes left parts) and emissive probes (right) in the context of the emissive cathode's influence investigation (see chapter 2). The crosses show the missing profiles. The dash at I B = 400 A / I k = 7 A indicates the impossibility to perform the profiles.

Figure D. 10 :

 10 Figure D.10: Radial profiles of the density and electronic temperature, without the cathode and with the cathode cold and floating, for I B = 100 A (top) and I B = 300 A (bottom).

  Figure D.14: Comparison of the electric drift velocities v E without the cathode, and with the hot cathode drawing a current of I k = 7 A, for I B = 100 A (left) and I B = 300 A (right).

  Figure D.15: Comparison of the electric drift velocities v E = E× B B 2 without the cathode, and with the cathode hot and floating, for I B = 300 A (left) and I B = 400 A (right).

Table 1 . 1 :

 11 Ranges of the experimental control parameters.

Table 1 . 4 :

 14 Collisional cross sections and corresponding frequencies for our typical experimental conditions T e ∼ 4 eV, T i ∼ 0.2 eV and n ∼ 2.10 18 m -3 .
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Table 2 .1: Mean

 2 Table2.1 presents such averaged values computed for various series of measurements. At low magnetic field (I B = 50 A) the results are consistent with previous measurements of Désangles in the same set-up, who chose to set p = 3.5 for I B ≤ 100 A. Note also that a fit of I i (V ) could not be done at z = L 1 and I B ≥ 200 A for the measured IV curves were too noisy, preventing the estimation of V p as mentioned above. values of the optimal p parameter used in the fit of the ion current

	I B (A) p (z = L 1 ) p (z = L 2 )
	50	2.1	3.3
	100	2.7	4.1
	200	-	4.7
	300	-	5.0
	400	-	5.2

Table 2 .

 2 2 presents the average values of I sat h determined for all the emissive probes used during this PhD. Each time a filament is changed, a calibration needs to be done even if the diameter stays the same : the inevitable variations of filament lengths and quality of connection with the copper wires influence the heating. Note that the two thickest filament sizes were only used once.

		(mm) I sat h (A)
	W	0.1	2.2 ±0.2
	W	0.2	7.3
	W th	0.15	4.3 ±0.4
	W th	0.25	10.5
	Table 2.2: Average heating current suited for the measure of V p , depending on the diameter	of the
	filament made of Tungsten (W) or thoriated Tungsten (W th).

Table 6 .2:

 6 Example of three-waves interactions identified by bicoherence computation, and classified within the types major, minor and birth. The mode components that are generated from the birth type interactions are shown in blue. See text for details.

  No cathode 2021.02.17 / 2019.11.05 2021.02.17 / 2019.10.24 2021.02.17 / 2019.10.22 2021.02.17 / 2021.01.14

	D.4 Chapter 7						
	cathode \ I B	100 A		200 A			300 A	400 A
	Cathode cold	2021.03.09 / 2021.05.18	×	/ 2021.05.18	2021.02.15 / 2021.05.18	×	/	×
	I k = 0 A	×	/ 2021.05.26 2021.04.28 /	×	×	/ 2021.05.17	2021.05.03 / 2021.05.18
	I k = 2 A	2021.03.09 / 2021.05.26	2021.04.28 /	×	2021.02.15 / 2021.05.17	2021.05.03 / 2021.05.18
	I k = 7 A	2021.03.09 / 2021.05.26	2021.04.28 /	×	2021.02.15 / 2021.05.17

To be more precise, this is a non-resonant three-wave interaction. Another type of three-wave interaction is known as resonant : in this case the linear dispersion relation is satisfied by all three waves (ωq, mq), (ωr, mr) and (ωp, mp), in addition to the condition of Eq. (3.13). This makes it much more restrictive. To investigate the possibility of resonant three-waves interactions one must work with a precise dispersion relation; this is not done in this work. For more details on wave turbulence see[Nazarenko, 2011].

This is different from an "inverse" transformation such as explained in subsection

2.3.3 and performed in chapter 6, that aims at finding the radius at the axial position z = L2 that is best representative of what is seen at r * on the camera images.

At IB = 400 A Ṽp/ Te declines at the column edge down to ∼ 13%, below the fluctuation level of all other magnetic fields, and twice as low as that of IB = 300 A. This can be understood from the increase of Te at the plasma edge for IB = 400 A, that is shown in Fig.

2.20 in subsection 2.3.3).

The formulation given here brings a correction to an error made in the fit of ρ k given in[Désangles, 

2018 , Désangles et al., 2021]].2 The parameters that are used are summarized :L k = 198 mm, d k = 500 µm, D k = 15 mm, U h = 17.5 V, I h = 19.5 A, W = 4.54 eV, AG = 6.010 5 A.K -2 .m -2 , A ef f = 2.Atip = 2.π.(D k /2) 2 = 354 mm 2 .

The intrusive nature of the five-tips probe can be evaluated by looking at the same m-modes overview than the one presented in Fig.7.9, from the identical series of measurements integrally performed without the five-tips (not shown here). The dominant modes are found to be unchanged.

This physical process is associated with a strong a rapid density depletion. It is not detailed here.

Remerciements

first order expansion also gives a fast way of estimating whether Ĩcam should rather be considered as reflecting the density or electron temperature fluctuations, if not a combination of both. 

Appendices

A.2 Emissive probe

One of the most difficult part in emissive probe measurements is the construction. One has to anticipate the thermal expansion of both the Tungsten loop (see Fig. 2.6 left bottom picture) and the ceramic wires when heated up. This notably can cause the copper wire to get out of the ceramics and perturb the measure (the copper is not emitting electrons, and a sheath forms around it if it gets in contact with the plasma). Moreover if the braiding is too loose and the electrical contact imperfect between the Tungsten and the copper, the connexion configuration may change along the experimental shots and modify the value of the needed heating current.

A copper wire that is not in contact with the parallel Tungsten pin next to it may also melt when the latter is heated up, as is shown in Fig. 2.6 (right bottom picture).

A.3 Interferometer

The initial objective of the measurements by interferometry was to reproduce a map of the plasma density such as the one presented in Fig. 4.1. However this could not be achieved, due to various experimental limitations that are presented here.

Loss of the power match : increasing P end u by steps

For a given experimental run, the power match of the source is fixed in advance and is set to be adapted to some given parameters. However in the way our experiments are conducted, the power of the source undergoes a ramp before reaching its nominal value, and takes all intermediate values in [0 : P end u ]. And for these intermediate values of P u the match is not necessarily good : the plasma can then be fluctuating, and the measure of φ by the interferometer is difficult. The figure A.3 (left) shows the evolution of the phase φ for a final value of the power P end u = 1800 W, at I B = 35 A. The match was set for this final value, and in this example we see that for intermediate values of P u ∈ [500 : 1200] the phase is noisy and takes values only in a limited interval ∼ [100 : 250] • . We consider that these values cannot be interpreted as the real phase evolution of the wave. Then we loose track of the number of 360 • peaks that have been passed, and cannot interpret anymore the final value φ end .

We therefore need to follow the phase for a power match that is set for lower values of the source power. Figure 2.15 (left) shows for instance that for P end u = 1000 W and I B = 35 A, the match that is adapted to the latter parameters is sufficiently well adapted to all lower values of P u for the plasma to be stable from 0 to P end u . Hence as it is shown in figure , in order to know for example ∆φ(P end u = 1800W ), we use the curves obtained from ∆φ(P end u = 100W ) to ∆φ(P end u = 1700W ). This allows us to follow the number of times φ has gained 360 • before reaching the P u reaches its final value. 

Increasing the current I B

Another problem was encountered for values of the current approximately higher than 80 A, for which the magnetic confinement is too high for the plasma to be generated at low power. Hence for low values of P end u the measurement is not possible and the method used in A.3 (measuring intermediate phase shift evolutions step by step, starting at low P end u ) cannot be adopted. An alternative solution is to generate the plasma at a intermediate lower current I int B , increase the power to the desired value P end u , then ramp up the current (which was done manually) to the final value I end B . This was done at P u = 1 kW to get density measures up to I B = 100 A (see Fig. 2.16 in subsection 2.2.3).

Past this point, it becomes difficult to measure an evolution of the phase that is consistent enough to deduce a density from it. In figure A.4 (right) we see that the end of the curve is difficult to interpret, as it gets very noisy and is restrained to a interval much shorter than [0 : 360] • . taken and considered to be also its value at (r, z). Here as an example a profile of the electronic temperature at z = L 2 is used to reconstruct the entire temperature field along r and z inside the chamber (see Fig. 2.21 in chapter 3).

Integration over z

Limits of integrations :

Inside the source r lim = 5.5 cm and in the chamber r lim = 10 cm. For z, first limit due to the geometry : z lim,1 = -20 cm inside the source for r < r lim = 5.5 cm, and z lim,1 = 0 cm for r ≥ r lim = 5.5.

A second limit has to be taken into account, due to the line of sight that can stop before reaching the back of the chamber because of the parallax, as is represented in the sketch B.6. To determine this limit let us write the equation of a line of sight :

Now r 0 can be expressed as a function of r 80 , with the physical references Dr f ront that is the distance measure in pixels of 5 cm at z = 80 cm, and Dr back corresponding to the distance at which the ray of light coming from the back at r = 5 cm (blue line in the sketch below) crosses z = 80 cm :