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Chapter 1

Context

Contents
1.1 Assessment of structures containing defects . . . . . . . . . . . . . . 7

1.1.1 Presence of defects in structures . . . . . . . . . . . . . . . . . . . . . . 7
1.1.2 Evolution of numerical methods . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Objectives and thesis organization . . . . . . . . . . . . . . . . . . . . 8

Résumé en français

Au cours de leur vie, les structures finissent toujours par se dététériorer. Cela peut être dû à
divers facteurs comme la corrosion, des impacts ou encore de la fatigue mécanique. De même le
procédé de fabrication, comme le soudage, peut lui-même être à l’origine de défauts. L’impact
des défauts sur la durée de vie des structures peut être très significatif car ces derniers jouent le
rôle de concentrateur de contrainte. Ainsi, afin de ne pas rebuter toutes les pièces comprenant
des défauts, des abaques et des critères bien précis sont utilisés afin de statuer sur la nocivité
des défauts observés. Toutefois ces méthodes ont tendance à être trop conservatives et certaines
piéces qui auraient pu être utilisées se trouvent mises au rebut.
Les méthodes de calculs numériques ont l’avantage d’évaluer plus précisement les quantités
d’intérêts déterminantes et permettent donc de rebuter moins de pièces. Néanmoins cette
démarche est coûteuse en temps et en puissance de calcul.
Des méthodes fondées sur l’apprentissage automatique permettent d’accélérer considérablement
ces temps de calculs en tirant profit du grand nombre de données d’ores et déjà générées.
C’est dans ce cadre que s’inscrit ce travail de thèse.

1.1 Assessment of structures containing defects

1.1.1 Presence of defects in structures

In the course of their lifetime, structures always end being deteriorated. Many phenomena can
be responsible for these deteriorations : corrosion, impacts, fatigue, scratches... Moreover the
fabrication process, such as welding or stamping process for example, can also account for the
creation of defects. This can explain the presence of defects such as cracks or pores within the
structures. Once a crack appears it can propagate until the whole structure fails as Fig. 1.1a
shows. Similarly the presence of pores dramatically lowers the structure mechanical properties as
they play the role of stress concentrators. This type of defects is common in concrete structures
(see Fig.1.1b) as well as in welded joints (see Fig.1.1c).

(a) (b) (c)

Figure 1.1: (a) Cracked pipeline (b) Pores within a concrete structure (c) tomography of pores
within a welded joint [Lacourt, 2019].

Nevertheless it is not possible to reject all components that contain one or more defects, all
the more so if this component is high-value added.
Hence it is necessary to set acceptance criteria in order to evaluate the criticality of the defects.
In an industrial context, the evaluation time must be about the same as the control time so that
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the production speed is not impacted.
Nowadays the tomography, radiography and ultrasounds methods enable a non destructive con-
trol of the components. One can visualize the defects located inside the bulk in three dimensions.
The size of the observed defects can then be used as input data to assess the criticality of the
defect.
In the framework of cracked structures assessment, the standard ISO 21153 is used in the fields
of aero-spatial, nuclear and automotive among other things. This standard is based on the speed
of propagation of cracks.
As regard defects like pores, other standards are used such as the standard ISO 15901 which
evaluates the pore size distribution or else the standard AWS D17.1 that specifies the maximal
sizes of defects and their minimal distance between each other.
Although these standards give a framework to dimension and assess the structures containing
defects, they are usually made for specific geometries and loadings. On top of that, standards
are usually conservative regarding the acceptance of structures and have a tendency to oversize
them or to reject some of them that are sometime still functional.
As soon as one is outside the framework of these standards or if one needs to have finer results,
the use of digital twins [E. H. and D. S., 2012] and numerical methods such as the Finite Element
Method (FEM), the Discrete Element Method (DEM) or else the Fast Fourier Transformation
(FFT) method turns out to be a very relevant choice. The FEM allows to treat non parametric
configurations and to apply any type of loadings.
Besides segmentation methods have improved significantly over the last couple of years and allow
to extract realistic images of defects contained in the structure. Hence representative defects
obtained through out tomography can be inserted in FE meshes in such way that a digital twin
of the component is obtained.
However the use of such methods tends to be extremely time consuming. It can be explained
by the important size ratio between the defect and the whole structure. It results in very fine
meshes containing a huge number of Degrees Of Freedom (DOFs). Therefore this computation
times are not consistent with industrial expectations. These computation times are even larger
when many configurations and loadings need to be tested for a same defect.

1.1.2 Evolution of numerical methods

Computation techniques are becoming more and more efficient and enable very accurate previ-
sions. Besides, in the industry, the acceptance criteria are getting stricter and stricter and the
assessment methods need to be more precise. Hence numerical computation times become even
larger.
Numerical simulation techniques are now considered as a common assessment method and they
have generated a huge amount of results over the past decades. Good use can be made of these
numerical results : they can be taken as input data to learn faster models via machine learning
and data driven approaches.
Moreover machine learning algorithms have recently been proposed to predict the mechanical
behaviour of components made by additive manufacturing [Nasiri and Khosravani, 2021], for
cracked propagation [Liu et al., 2020], for the lifetime fatigue prediction [Zhan et al., 2021] or
else for the limit load prediction of pipings [Phan and Dhar, 2021].
Furthermore more complete models have been proposed where numerical simulation and ma-
chine learning have shown their complementarity [Mart́ınez et al., 2021] [Wen et al., 2021]. The
use of the data collected with all the numerical simulations that have been launched coupled
with the richness of the computation techniques (FEM, FFT etc...) enables to obtain fast mod-
els which have the great advantage of being based on physics. This makes the interpretation of
how they work much easier. This is called ”physics-informed machine learning”.
One of the major assets of machine learning techniques is that they prevent the parametric
modeling of objects. This is particularly useful for the analysis of defects having random shapes
and morphologies which can seen when image-based digital twins are used. This thesis is written
according to this paradigm.

1.2 Objectives and thesis organization

Computer vision and machine learning have made great improvements during the past decades.
Thanks to these techniques new dimensionality reduction methods have been created. In this
work use will be made of computer vision and machine learning in order to assess structures
containing defects, via fast image-based digital twins.
The objectives of the thesis are multiple. The quantities of interest for structure assessment
are different depending on the considered case study. With regard to sane pipeline, the limit
pressure has to be evaluated whereas the maximal stress must be computed when it comes to
dealing with structures with pores undergoing cyclic loading. Concerning cracked components,
the stress intensity factor is used for their assessment.
For these three quantities of interest, numerical computations that need to be launched often
require very large computation times. In the framework of this thesis, new methodologies will
be developed to compute these quantities of interest faster. More specifically, techniques based
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on machine learning will be used. The problem solving methodology will essentially based on
linear and non linear model order reduction coupled with machine learning techniques.
The present manuscript is articulated along 5 main chapters which will detailed the techniques
to evaluate the quantities of interest cited before.
The notion of dimensionality reduction will be detailled in the second chapter and various
methods will be investigated in order to enable a global understanding of what this general term
covers.
Hyper reduction with reduced integration domain and the associated tools to obtain Reduced
Order Model (ROM) will then be discussed. The Reduced Integration Domain (RID) can be
seen as a submodel supplemented by a reduced basis approximation. A brief state of the art of
the computer vision methods will be made and more specifically those that have been proposed
for mechanical digital twins based on numerical images.
The third chapter will be addressed to the extension of the hyper reduction method to non
elliptical problems for the determination of the limit loads. Problems such as beam buckling or
elasto-plastic pipes collapse will be tackled.
The fourth chapter is devoted to the development of a new method based on mechanical and
morphological clustering. This clustering will be used to select local reduced basis, designed
for a morphological cluster, for hyper reduced computations. A study case of a welded joint
containing a void will be covered. Finally the fifth chapter proposes an innovative method
coupling computer vision and submodel resolution. Cracked specimens will be modelled and
the crack geometry will enable the trained model to generate the adequate boundary conditions
on a subdomain containing the crack. The sixth chapter concludes and offers various research
perspectives.
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Chapter 2

State of the art

Contents
2.1 Dimensionality reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Linear approach to dimensionality reduction . . . . . . . . . . . . . . . 11
2.1.2 non-linear dimensionality reduction without mapping to the ambient space 15
2.1.3 Autoencoder for dimensionality reduction . . . . . . . . . . . . . . . . . 18

2.2 Hyper reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 HROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Two scales HROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
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2.3.1 Gappy POD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 Morphological feature extraction . . . . . . . . . . . . . . . . . . . . . . 27
2.3.3 Convolutional neuron network . . . . . . . . . . . . . . . . . . . . . . . 30

Résumé en français

Dans ce chapitre la bibliographie des différents outils qui seront utilisés dans ce travail de thèse
est présentée. Les approches de réduction dimensionnelle linéaire telles que la décomposition
aux valeurs propres généralisée ou encore la décomposition orthogonale aux valeurs propres y
sont détaillées. Les méthodes de réduction dimensionnelle non-linéaires sont ensuite abordées.
Ces méthodes de réduction dimensionnelle permettent de mettre en place des modèles d’ordre
réduit. Différents modèles d’ordre réduit sont présentés comme l’hyper-réduction ou la méthode
”ROM-net”.
Enfin, étant donné qu’une grande partie de ce travail de thèse est basé sur l’analyse d’image,
des méthodes de visions par ordinateur sont présentées.

2.1 Dimensionality reduction

2.1.1 Linear approach to dimensionality reduction

The section, dedicated to dimensionality reduction, is inspired of [Fauque, 2018] where a state of
the art of linear reduction methods is made. The linear dimensionality reduction is characterised
by a tensor or vector representation of the latent space. This representation is obtained by a
sum of product of functions.

Proper generalized decomposition

Proper Generalized Decomposition (PGD) is an a priori method, also called ”on the fly” method,
which enables to circumvent the difficulty related to the solution of multidimensional models.
For a solution u depending on the variable (x1, ..., xD) ∈ Ω1 × ... × ΩD, xi designating spatial
coordinates, time or any parameter of the problem, the approximation of rank l of u is repre-
sented with the equation 2.1 where l and the F ji (xj), with i ∈ [1, l] and j ∈ [1, D], are already
known.

u(x1, .., xD) ≈
l∑

i=1
F 1
i (x1)× · · · × FDi (xD) (2.1)

The number of terms l needed to obtain a good reference solution approximation depends on
how well it can be split. Functions F ji (xj) are found by an iterative enrichment. At the en-
richment step n+ 1, the functions F ji (xj) from the previous steps i ≤ n are already known and
the new product of the D functions F ji (xj) has to be found. To do so, an approximation of
rank n + 1 of u in the weak formulation of the problem is used. Hence a non-linear system is
obtained and needs to be solved with an iterative algorithm such as a fixed point algorithm.
The resolution of this system is similar to solving a one dimensional problem for each of the D
functions F ji (xj) defined in Ωj .
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The curse of dimensionality that appears when considering the sampling of high dimensional
space is circumvent by the PGD method by considering the solution space of partial differential
equations [Ladevèze et al., 2018]. The number of dof of a PGD based model increases linearly
with the dimension of the problem. This ability of the PGD to handle high dimensional prob-
lems can be found in a great number of articles, in particular [Ammar et al., 2006, Chinesta and
Ladeveze, 2014, Chinesta et al., 2010] and the associated references.
PGD is actually a generalisation of the radial loading approximation used in the framework of
the LATIN (LArge Time INcrement) method [Boucard and Ladeveze, 1999, Ladevèze et al.,
2010]. The latter is a non-incremental in time resolution method and it has been developed for
mechanical problems defined on a space-time domain Ω× [0, tf ].
The LATIN method relies on three main principals. Firstly, a separation of the difficulties is
made. The equations are separated in order to make a linear problem that can be global in space
(equilibrium equation) and a local problem in space which can be non-linear (constitutive law,
contact boundary conditions). The solution of the problem is then the intersection between the
linear and local problems. Secondly, an iterative algorithm working in two steps that enables
to find the solution in such a way that it verifies alternatively both problems (linear and local)
until it converges.
Finally, the linear problem is solved with the use of a radial loading approximation of rank l of
the solution u and is written as in eq.2.2.

u(x, t) ≈
l∑

i=1
Xi(x) · Ti(t), (x, t) ∈ Ω× [0, tf ] (2.2)

Since its introduction, the LATIN method has been applied to numerous problems in mechanics.
The LATIN solver for PGD approximation has been recently extended to multiscale problems
having large number of parameters in [Ladevèze et al., 2018] for simple mechanical problems.

A posteriori method

The so-called A posteriori methods are data driven approaches to model order reduction. Sim-
ulation data are collected or generated prior training a reduced order model on these data. In
this sense the A posteriori methods constitutes a machine learning methodology with a training
phase to learn a subspace of approximation. Then, in the online phase, new data samples are
treated and the equation are projected in the learnt subspace of approximation. The so collected
data have usually been generated with Full Order Models (FOMs) that belong to the studied
temporal and parametric space. These computations are commonly denoted as snapshots, using
Sirovich terminology [Sirovich, 1987]. The Reduced Basis (RB) is either composed of snapshots
or of vectors obtained by extracting the most important information present in those snapshots.
This type of methods is similar to the Principal Component Analysis (PCA) frequently used in
unsupervised machine learning. The ROM is obtained by a (Petrov-)Galerkin projection of the
FOM on the RB.

Projection on reduced basis methods

The strategy adopted by the reduced basis method (RBM) consists in projecting the FOM on a
subspace generated by a basis of functions chosen to represent the FOM for a specific study case.
First works on this thematic appeared in the late 70s and were developed for mechanical prob-
lems in linear and non-linear cases [Almroth et al., 1978, Nagy, 1979, Noor and Peters, 1980].
Later in the 2000s, a more mathematical framework was given to these methods [Prud’homme
et al., 2002, Maday and Rønquist, 2002]. These works were crucial for the RBM since they led
to an efficient criterion for the snapshot selection used to build the RB generating the approxi-
mation subspace. Use is made of greedy algorithm which will at the same time limit the number
of FOM to compute and also limit the size of the RB used to reduce the model. A split into
two main parts have also been introduced in these works :
→ An ”offline” part, also called training/learning phase, during which the RB has also been
constructed by launching FOMs simulations for various values in the parametric space.
→ An ”online” part which consists in solving the reduced problem that depends on the pa-
rameters. The problem being projected on the approximation subspace, the complexity of the
problem is much smaller than for the FOM.
Use of an error estimator is a must in order to guarantee the quality of the reduced problem
solution.

Singular value decomposition

The singular value decomposition [Eckart and Young, 1936, Golub and Van Loan, 1983, Stewart,
1993] (SVD) is detailed in the following section since it is greatly used in model order reduction.
Indeed it offers a compressed RB by using some snapshots. SVD can decompose a rectangle
matrix into three matrices with specific properties. This method can be seen as the generalization
of the diagonalization to the rectangle matrices. Considering SSS ∈ RN×Ns a matrix of rank
d ≤ min(N , Ns), by applying the SVD theory it exists a decomposition of SSS such that

SSS = VVV ΣΣΣ WWW T (2.3)
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Where VVV ∈ RN×N andWWW ∈ RNs×Ns are orthogoanl matrices, VVV TVVV = VVV VVV T = IIIN andWWW TWWW =
WWWWWW T = IIINs and ΣΣΣ ∈ RN×Ns is written as :

ΣΣΣ =
(
DDD 0
0 0

)
∈ RN×N with DDD = diag(σ1, σ2, ..., σd) such that σ1 ≥ σ2 ≥ ... ≥ σd ≥ 0.

The column vectors VVV [:, i] and WWW [:, i] are respectively called left singular vectors and right
singular vectors of SSS. The σd are sorted in descending order and are called singular values.
The left singular values of SSS correspond to the eigenvalues of SSSSSST , the right singular values of
SSS correspond to the eigenvalues of SSSTSSS and the squared value of each singular value of SSS is
equal to the corresponding eigenvalue of SSSSSST and SSSTSSS. This is directly obtained through the
following relations :

SSSSSST = VVVΣΣΣΣΣΣTVVV T (2.4)

SSSTSSS = WWWΣΣΣTΣΣΣWWW T (2.5)

More precisely the relation 2.3 can be simplified by removing the terms that gives a null result :

SSS = VVV [:, 1 : d] ΣΣΣ WWW T [1 : d, :] (2.6)

The decomposition is unique (except for the sign of the right and left singular vectors). SVD
enables to find the best approximation in Frobenius norm of a matrix SSS for a given number of
vectors. Moreover the values of the singular values is directly link to the approximation error.
The singular vectors which are associated to the largest singular values, are the ones that will
approximate the best the matrix SSS. The relation between the approximation error of a matrix
SSS of rank d by its truncated SVD S̃SSl of rank l ≤ d and the singular values σi of SSS can be written
as :

||SSS − S̃SSl||F =

 d∑
k=l+1

σk2

 1
2

avec S̃SSl = VVV [:, 1 : l] ΣΣΣ[1 : l, 1 : l] WWW T [1 : l, 1 : l] (2.7)

A standard image that can be used for image processing is considered. The image has
779 × 638 pixels and is in black and white. It can be seen as a matrix of 779 lines and 638
columns. Each component of the matrix corresponds to a grey scale level between 0 and 255. It
is then possible to visualize its representation of rank lower than 638 obtained by SVD on Fig.2.1.
Only the most important singular vectors are taken into account. Fig.2.2 represents the relative
error discrepancy with the squared Frobenius norm between the original and approximated
images. The error evolves as a function of the rank of the approximated matrix by SVD.

Figure 2.1: Original image and the following SVD approximations of rank 5, 20, 63, 191 and
446.

The function decreases quickly for a high order of approximation. The evolution is quick
between the images of rank 5, 20, and 63 as it can be seen on figure 2.1. Then the decrease is
slower (see Fig.2.2) as it can be noticed for the approximated images of rank 191 and 446. Even
if the decrease seems to be slow, the error becomes very low starting from rank 191 and is hard
to see with naked eyes. This clearly shows the capacity of the SVD to approximate a matrix
with another of a much lower rank. Besides the SVD is broadly used to compute the rank of a

13



Figure 2.2: Decrease of the relative error in Frobenius norm between the original and the SVD
approximated matrices.

matrix. Indeed the rank of the matrix SSS is directly given by the one of the matrix DDD which is
diagonal.

rank(SSS) = rank(DDD) (2.8)
In practice since the SVD of SSS is numerically evaluated, one needs to define a tolerance

threshold εrank from which a value is considered to equal to zero numerically. The rank of SSS is
then :

d = argmin
i∈N

(σi > εrang) (2.9)

SVD is still an active field of research. Due to its massive use for various applications, one of
the main research areas is performance. As examples, one can cite the randomized algorithms
[Mahoney, 2011] that enable to compute the truncated SVD for very large matrices. Another
research focus is the generalization of the SVD to tensor with dimension strictly superior to
two. One can cite as examples the High Order SVD [De Lathauwer et al., 2000] or else the
hierarchical Tucker decomposition [Hackbusch and Kühn, 2009]. Techniques have been proposed
[Brand, 2002, Ryckelynck et al., 2006] to approximate the SVD for matrices with a high number
of columns with an incremental approach. The main idea of these methods is to update the
approximations of the term found with the SVD by incorporating progressively the column of
the matrix on which the SVD is applied. This technique is denoted as incremental SVD. These
techniques can then be used to enrich the SVD of a matrix with new vectors obtained from
new computations. A well-known extension of the SVD to self-supervized machine learning is
autoencoders [Hinton and Salakhutdinov, 2006].

Proper orthogonal decomposition

The concept of Proper Orthogonal Decomposition (POD) has been introduced to extract co-
herent structures from a turbulent flow [Lumley, 1967]. Initially this method was developed for
data analysis. Its goal was to extract a reduced number of variables containing the majority of
the initial information. This global idea of data extraction was studied in many fields. The same
idea is present in the SVD presented in 2.1.1, in the Principal Component Analysis [Pearson,
1901] (PCA) or else in the Karhunen-Loève development [Loève, 1955, Karhunen, 1946]. POD
will be later reused in the snapshot method [Sirovich, 1987]. The main difference between the
two POD is that Lumley’s uses an average in time and a spatial correlation while Sirovich’s does
the opposite. Since with FOM there are generally much more dofs than temporal snapshots,
the snapshot method will be more appropriate for this work.
The main idea behind POD is to search for vectors (ψψψi)li=1 two by two orthogonal. This en-
ables to approximate as well as possible, in the mean square sense, the vector (uuu(µj))Ns

j=1 which
corresponds to the snapshots in model order reduction :

min
ψψψ1,...,ψψψl

Ns∑
j=1
||uuu(µj)−

l∑
i=1
〈uuu(µj),ψψψi〉||2X such that 〈ψψψi,ψψψk〉X = δij ∀i, k ∈ [1, l]2 (2.10)

If one looks at the minimization problem 2.10, using the canonical scalar product on L2, it
is possible to obtain a minimization problem discretised in space by writing the uuu(µj) and the
ψψψi onto the functions of the FOM (φφφa)Na=1. The scalar product L2 and its norm is written as :

〈uuu,vvv〉L2 = ũ̃ũuTMMMṽ̃ṽv and ||uuu||L2 = ||LLLT ũuu||2 (2.11)

with ũuu, ṽvv being the vectors containing the coefficients of uuu,vvv written in the FOM basis. MMM is
the mass matrix of the FOM defined as follows :

(MMM)ab = 〈φφφa,φφφb〉L2 , ∀a, b ∈ [1, N ]2 (2.12)
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with a Cholesky factorisation it follows :

MMM = LLLLLLT (2.13)

Hence the minimisation problem becomes :

VVV = argmin
ZZZ∈RN×1

||AAA−ZZZZZZTAAA||2F such as : ZZZTZZZ = III (2.14)

with AAA = LLLTSSS and ZZZ = LLLTΨΨΨ, where SSS and ΨΨΨ are respectively the column vectors containing
the coefficient of (uuu(µj))Ns

j=1 and (ψψψi)li=1 written in the FE basis. According to Eckart-Young
theorem [Eckart and Young, 1936], the POD basis referred to as VVV and which is the solution of
2.14 and containing the l column vectors is obtained by taking the l first left singular vectors
from the SVD of the matrix AAA, VVV = VVV [:, 1 : l]. It is then obtained ΨΨΨ = LLLTVVV .

Furthermore the SVD enables to obtain the number of vectors l to be taken into account
for the RB because it is possible to evaluate the error made for the matrix approximation (see
equation 2.7). The information carried by the k first singular vectors can be defined as follows :

ε(k) =
∑k
i=1 σ

2
i∑d

i=1 σ
2
i

= 1−
∑d
i=k+1 σ

2
i∑d

i=1 σ
2
i

(2.15)

l is defined as the smallest number of vectors to be taken so that the information collected is
superior to a specific threshold :

l = argmin
k∈RN×1

(ε(k) ≥ 1− εtol) (2.16)

Where εtol is the acceptable relative error of approximation.
In practice, due to the fact that the FE mass matrix is not easy to compute, instead of finding
the POD basis that minimizes the continuous problem 2.10, the POD that minimize the error
with the Frobenius norm is taken :

VVV = argmin
ZZZ∈RN×1

||SSS −ZZZZZZTSSS||2F such that : ZZZTZZZ = III (2.17)

To obtain VVV in such way that the minimization problem 2.17 is verified, the SVD must be
applied on SSS. Hence the approximation squared error with the Frobenius norm verifies :

||SSS − VVV VVV TSSS||2F
||SSS||2F

(2.18)

Where VVV VVV TSSS is equivalent to SSSl as defined in equation 2.7.
It is necessary to underline the fact that in the framework of model order reduction, the POD
threshold used for the construction of the POD basis, which will be used to construct the ROM,
does not enable to estimate the error generated by the ROM.

2.1.2 non-linear dimensionality reduction without mapping to the ambient
space

Locally-linear embedding

Local non-linear methods focus on preserving neighborhood geometry when mapping points to
lower dimensional subspaces, and these subspaces may be curved or otherwise non-Euclidean. On
the whole, these approaches have been successful, and some have guarantees about global proper-
ties, as well. Locally-linear embedding (LLE) approaches the dimensionality reduction problem
similarly to PCA but focuses on a neighbourhood mapping, rather than a global mapping includ-
ing transformations, rotations, and rescaling dependent on geometrically-based weights [Roweis
and Saul, 2000]. Coordinates are chosen such that :

YYY =
∑
i

Yi −∑
j

WijYj

2

(2.19)

is minimized based on locally-linear errors based on the local weights on points i and j.
The algorithm typically involves 3 steps : 1) choosing a point’s k neighbours, 2) reconstruct-
ing these points using local weights, and 3) mapping to a new subspace. By knitting together
neighbourhoods, it is possible to infer some global geometric properties, and one advantage of
this approach is its global optimization guarantees.
There are other local non-linear methods that exit such as the Laplacian Eigenmap (LE), the
Hessian-based Locally Linear Embedding (HLLE) or else t-distributed Stochastic Neighbour
Embedding (t-SNE).

15



Kernel principal component analysis

Global non-linear approaches aim to capture the full geometry of the data space in a mapping
to lower- dimensional space, which may be non-Euclidean.
Kernel PCA (kPCA) extends the PCA algorithm to effectively capture non-linear features or
bases within the PCA framework [Weinberger et al., 2004]. The basic algorithms start with a
mapping of the data to another pre-specified space, which is usually non-linear. PCA is then
performed on this new space (a kernel Hilbert space with well defined geometric properties),
and the results are taken as the new set of bases. Common mapping functions include Gaussian
kernels, sigmoid kernels, radial basis function kernels, and linear kernels. Results are competitive
with other manifold learning methods, and many algorithms, such as support vector machines,
are related to this approach.
Considering N data points in Rd. Generally the data cannot be linearly separated in d < N
dimensions and to the contrary they can almost always be in d > N dimensions. An application
ΦΦΦ(xxxi) is introduced such that :

ΦΦΦ : Rd → RN (2.20)

In this space it is easy to define a hyperplane to linearly separate the data. In this case the
application ΦΦΦ creates linearly independent vectors for each data points therefore it is useless to
perform any eigen decomposition as it would be done with standard PCA. Usually one avoids
to work in the ΦΦΦ-space (also called feature space). The covariance matrix in the feature space
is defined as :

C̄CC = 1
N

N∑
j=1

ΦΦΦ(xxxj)ΦΦΦ(xxxj)T (2.21)

The eigenvalues λ and eigenvector VVV can be computed :

λVVV = C̄CCVVV (2.22)

The solutions VVV lie in the span of ΦΦΦ(xxxi) for i = 1, ..., N . Hence eq.2.23 can be written as :

λ(ΦΦΦ(xxxi) · VVV ) = (ΦΦΦ(xxxi) · C̄CCVVV ) for all i = 1, ..., N (2.23)

Moreover since VVV lie in the span of ΦΦΦ(xxxi) for i = 1, ..., N , VVV can be written as a linear combination
of these vectors. It follows :

VVV =
N∑
i=1

αiΦΦΦ(xxxi) (2.24)

Hence eq. 2.23 can be written differently :

λ

N∑
i=1

αi(ΦΦΦ(xxxk) ·ΦΦΦ(xxxi)) = 1
N

N∑
i=1

αi(ΦΦΦ(xxxk) ·
N∑

j=1
ΦΦΦ(xxxj)) · (ΦΦΦ(xxxj) ·ΦΦΦ(xxxi))

for all k = 1, · · · , N

(2.25a)

(2.25b)

The N ×N kernel matrix is then introduced :

KKKij = ΦΦΦ(xxxi) ·ΦΦΦ(xxxj) (2.26)

which represents the inner product space of the otherwise intractable feature space. The dual
form that arises in the creation of a kernel allows us to mathematically formulate a version of
PCA in which we never actually solve the eigenvectors and eigenvalues of the covariance matrix
in the ΦΦΦ-space.The N -elements in each column of K represent the dot product of one point of
the transformed data with respect to all the transformed points (N points).
So eq. 2.25b can then be written as :

NλKKKααα = KKK2ααα (2.27)

As K is symmetric, it has a set of Eigenvectors which spans the whole space, thus :

Nλααα = KKKααα (2.28)

Because we are never working directly in the feature space, the kernel formulation of PCA is
restricted in that it does not compute the principal components themselves, but the projections
of our data onto those components. More details on the kPCA are given in [Schölkopf et al.,
1998]. An example of the use of the kPCA is given in [Pedregosa et al., 2011]. In this example
kPCA makes it possible to find a projection of the data that makes them linearly separable.

The advantage of the non-linearity introduced by the kernel is clearly highlighted in this example
compared to the classic PCA.
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Figure 2.3: Kernel PCA taken from [Pedregosa et al., 2011].

Multi dimensional scaling

Multi Dimensional Scaling (MDS) [I. Borg, 2005, Kruskal, 1964, Machado and Luchko, 2021] is
also known as Principal Coordinates Analysis (PCoA). The method takes as input the dissim-
ilarity matrix D between the data and gives as output a coordinate matrix in the MDS space
XXX. This coordinate matrix minimizes a loss function also called strain. The strain is given by :

S =
(∑

i,j(BBBij −XXXT
i XXXj)2∑

i,jBBB
2
ij

)1/2

(2.29)

BBB is obtained by double centering of the proximity matrix PPP = D2
ij such as :

BBB = −1
2C
CCPPPCCC (2.30)

Where CCC is the centering matrix defined as :

CCC = IIIn −
1
n
JJJn (2.31)

Here n is the number of samples, IIIn is the n × n identity matrix and JJJn is a n × n matrix
containing only ones.
The eigenvalues ΛΛΛii and eigenvectors EEEi are obtained by diagonalizing the BBB matrix. Finally
the coordinate matrix in the MDS spacce XXX can be obtained such as :

XXX = EEE[:, : m]ΛΛΛ[:, : m]1/2 (2.32)

Here m indicates the number of dimensions wanted in MDS space. In the Euclidian case PCA
and MDS are equivalent. One of the main interests of MDS is to obtain a euclidian distance
representation based on a non Euclidian distance matrix.

IsoMap

Linear methods reduce the dimensions based on Euclidean distances whereas ISOMAP [Yang
et al., 2016](Isometric mapping) uses Geodesic distance approach among the multivariate data
points. Let XXX = [xxx1,xxx2, ...,xxxN ] ∈ RM×N which denotes a set of N points in the original
input space with dimension M . The corresponding points in the lower dimensional space with
dimension m, with m � M , are YYY = [yyy1, yyy2, ..., yyyN ] ∈ Rm×N . The Euclidian distance between
xxxi and xxxj is denoted as d(xxxi,xxxj). Isomap is a global non-linear dimensionality reduction method.
It aims at seeking an optimal subspace that best preserves the geodesic distances between every
pair of points. The outline of Isomap [Tenenbaum et al., 2000] can be summarized as follows:
→ Determine the neighbourhood relationships. For every pair of data points, if d(xxxi,xxxj) is
smaller than a fixed radius ε or xxxj) ∈ k-nearest neighbours (k-NN) of xxxi then xxxi and xxxj are
neighbours.
→ Compute geodesic distances. Construct a undirected graph G(V,E), where node vvvi ∈ V
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corresponds to point xxxi. If xxxi and xxxj are neighbours, the weight of edge (xxxi,xxxj) ∈ E is set to
d(xxxi,xxxj), otherwise it is set to +∞. Estimate geodesic distances between all pairs of data points
by computing their shortest path distances dG(xxxi,xxxj) in G using Dijkstra’s [Sniedovich, 2010]
or Floyd’s [Hougardy, 2010] algorithm.
→ Construct low dimensional embedding. Define the optimization problem as follows:

min
YYY

∑
i,j

(
d(yyyi, yyyj)− dG(xxxi,xxxj)

)2
(2.33)

Once the equation eq.2.33 is solved. The classic MDS method (detailed in paragraph 2.1.2)
is then applied to obtain the lower dimensional representation YYY .

An example comparing PCA and IsoMap is given in Fig.2.4.

Figure 2.4: (a) 3D swiss roll data set, (b) PCA projection of the data set in 2D and (c) IsoMap
projection in 2D.

It is clear that IsoMap tries to conserve the distance with the points in its neighbourhood
contrary to PCA.

2.1.3 Autoencoder for dimensionality reduction

AutoEncoders (AE) are an unsupervised learning technique in which we leverage neural networks
for the task of representation learning. More precisely this specific neural network architecture
is made in a way that a bottleneck in the hidden layer of the neuronal network is imposed. The
target output is the same as the input therefore the bottleneck forces a compressed representation
of the original input.
An autoencoder is made of two main parts : a encoder which maps the input in a compressed
latent space and a decoder which maps the compressed data from the latent space to the original
space. Hence autoencoders enable a dimensionality reduction since the size of the latent sapce
is smaller than the original space.
The encoder and decoder can be defined as transition functions Φ and Ψ. The purpose of
the autoencoder is to minimize the difference between the input and the output. For this
minimization problem if the L2 norm is taken for the loss function it follows :

Φ : X → F ,
Ψ : F → X ,

Φ,Ψ = argmin
Φ,Ψ

||X − (Ψ ◦ Φ)X||2,

dim(F)� dim(X ).

(2.34)

Here X and F denote the input space and the latent space respectively. For example, a very
simple autoencoder is considered with one single hidden layer. The autoencoder takes as input
xxx ∈ Rd = X and maps it into hhh ∈ Rp = F .
In this case the hidden layer hhh is referred to as latent variables or latent representation. The
input are weighted by coefficient WWW (1) ∈ Rp×d and then an activation function σ(1) is applied :

hhhi = σ(1)(WWW (1)
ij xxxj) (2.35)

There are various activation functions that are commonly used such as the rectified linear func-
tion (ReLu) or else the sigmoid function. In this case it is assumed that the activation function
is a sigmoid function :

σ(1)(x) = 1
1 + e−x

(2.36)

After that, the decoder maps hhh to the reconstruction xxx′ of the same shape as xxx :

xxx′j = σ(2)(WWW (2)
ji hhhi) (2.37)
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Here σ(2) andWWW (2)
ji are the activation function and the weights of the decoder and are not related

to the ones of the encoder. For this example the the L2 norm is taken for the loss function. So
the loss J to minimize can be written as :

J(WWW ) = ||xxx− xxx′||2 = ||xxx− σ(2)
(
WWW (2)σ(1)(WWW (1)xxx)

)
||2 (2.38)

As mentioned before, autoencoder training is performed through backpropagation of the error,
just like other feedforward neural networks. Hence the quantities ∂J(WWW )

∂WWW l
ij

are evaluated and used
to update the weights thanks to a stochastic gradient descent for example (see eq.2.39):

WWW l
ij := WWW l

ij − η
∂J(WWW )
∂WWW l

ij

(2.39)

It is important to keep in mind that many other activation functions, cost functions and opti-
mization methods can be used to train a neurone network. The ones that have been chosen are
just to illustrate the global methodology. Moreover only one hidden layer is used in the example
but usually many layers are used. Once the AE is trained, it has learned a compressed repre-
sentation of the input space and contrary to PCA or SVD the relation can be highly non-linear
as Fig.2.5 illustrates.

Figure 2.5: Autoencoder versus PCA.

The previous figure illustrates that autoencoders manage to represent curved manifold contrary
to PCA. This comparison is underlined in [Hinton and Salakhutdinov, 2006] where faces are
reconstructed either with PCA or with a trained autoencoder Fig.2.6

Figure 2.6: Top to bottom: A random test image from each class; reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional standard PCA. (taken from [Hinton
and Salakhutdinov, 2006]).

Fig.2.6 shows that the autoender gives better results to reconstruct the faces. The average
squared errors are 126 for the AE and 135 with the PCA. This is due to the fact that autoencoders
can catch the non-linearity of a curved manifold contrary to PCA.
In [Lee and Carlberg, 2020], another deep learning strategy for model order reduction is proposed
for parametrized partial differential equations. The governing equations are mapped onto a non-
linear manifold thanks to a deep convolutional autoencoder. Contrary to projection-based model
order reduction methods using linear dimensionality reduction techniques such as the POD or
the snapshot POD, this methodology performs a non-linear dimensionality reduction. The
reduced (or generalized) coordinates in the latent space defined by the autoencoder’s bottleneck
layer are combined by the decoder in a non-linear fashion to get the high-dimensional state
approximation. Use is made of autoencoders in other works to find the solution of the partial
differential equation in the latent space [Mojgani and Balajewicz, 2020, Fu et al., 2021, Geneva
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and Zabaras, 2020]. Nevertheless the minimization problem to solve the PDE is much more
non-linear, resulting in complex computations when the input space is large.
When the decoder is linear, this methodology is equivalent to classical projection-based model
order reduction.

2.2 Hyper reduction

2.2.1 HROM

Problem formulation

Many reduced order model techniques exist, all having their pros and cons. A comparison is
made between some of them in [Fritzen et al., 2016].
Hyper reduction (HR), which will be greatly used in this work, uses the reduced basis projection
method but is slightly different in the sense that solely a little number of Degrees Of Freedom
(DOFs) can be determined during the resolution. This is due to the fact that the resolution is
made on a reduced mesh also called Reduced Integration Domain (RID). The RID can be seen
as a submodel supplemented by boundary conditions similar to Dirichlet boundary conditions
but using a reduced basis approximation as explained in [Ryckelynck et al., 2016].
This specificity makes it possible to dramatically reduce the computation time since the pro-
jection is done on a RB restricted to the RID. The speed up in time is particularly large for
non-linear problem solved with a Newton algorithm because for each iteration a projection of the
jacobian matrix is required. Although HR have been introduced to deal with material having
non-linear constitutive law and contact problems, the following equations are detailed for an
elastic material in order to make it easier to understand the global methodology.
Since the HROM rely on the FOM, a detailed way to create a FOM with the FEM is explained.
Considering domain Ω ∈ RD representing a structure of dimension D in its reference configura-
tion. The balance equation between the stress tensor σ∼ and the volumetric density of forces fff
is given by :

divσ∼+ fff = 0 in Ω (2.40)

The material is supposed to be purely elastic. With the small strain hypothesis, the behaviour
can be written as follow :

σ∼= C∼∼
: ε∼ in Ω (2.41)

Where σ∼ is the second order stress tensor and C∼∼
is the fourth order elasticity tensor. The strain

tensor ε∼ is obtained with the displacement field uuu :

ε∼= 1
2(graduuu+ (graduuu)T ) in Ω (2.42)

The structure undergoes some surface loadings ggg on ΓN (Neumann boundary conditions) and a
displacement field uuu0 is imposed on ΓD (Dirichlet boundary conditions):

uuu = uuu0 on ΓD (2.43)

σ∼nnn = ggg on ΓN (2.44)

The strong formulation of the elastic problem with the small strain hypothesis can be written
as follows : 

−div(σ∼) = fff in Ω
σ∼= C∼∼

: ε∼ in Ω

ε∼= 1
2(graduuu+ (graduuu)T ) in Ω

uuu = uuu0 on ΓD

σ∼nnn = ggg on ΓN

(2.45a)
(2.45b)

(2.45c)

(2.45d)
(2.45e)

The weak formulation of the problem can then be defined. The virtual displacement vvv is
introduced. The primal integral formulation, which is equivalent to eq.2.40, is obtained with
the scalar product L2(Ω) with the virtual displacement vvv :

−
ˆ

Ω
div(σ∼)T · vvv dΩ =

ˆ
Ω
fffT · vvv dΩ (2.46)

The term of under the first integral can be replaced by :

div(σ∼
T · vvv) = div(σ∼)T · vvv + σ∼ : grad(vvv) (2.47)

By injecting 2.47 in 2.46 it follows :

−
ˆ

Ω
div(σ∼

T · vvv) dΩ +
ˆ

Ω
σ∼ : grad(vvv) dΩ =

ˆ
Ω
fffT · vvv (2.48)
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Since σ∼ is symmetric the term under the first integral can be written differently :

(σ∼· vvv)T ·nnn = (σ∼·nnn)Tvvv (2.49)

The symmetric property of σ∼ also enables to simplify the second term of eq.2.48 because the
double contracted product between σ∼ and the antisymetric part of grad(vvv) is null. The decom-
position of grad(vvv) as the sum of a symmetric and antisymmetric tensor is written as :

grad(vvv) = ε∼(vvv) + 1
2(grad(vvv)− grad(vvv)T ) (2.50)

With these two modifications the following classic weak form is obtained :
ˆ

Ω
σ∼) : ε∼(vvv) dΩ =

ˆ
Ω
fffT · vvv dΩ +

ˆ
∂Ω

(σ∼nnn)T · vvv dΓ (2.51)

Finite element method in elastic case

The global domain Ω is discretized with the use of many elements Ki such as
⋃
i K̄i = Ω̄. This

spatial discretization is called mesh.
It is convenient to introduce the functions φφφi = φjek where i = (j−1)×d+k, i = 1, ..., N , j = 1,
..., n, k = 1, ..., d, d is the dimension of the problem and ek refers to the canonical vectors of a
Cartesian coordinates system. The approximation of the displacement with the shape functions
(φφφi)Ni=1 reads:

υυυ(x) = υυυ0(x) +
N∑
i=1

φφφi(x)ui, ∀x ∈ Ω, (2.52)

where N = n × d is the number of DOFs of the structure, υυυ0 is a given displacement field
that fulfills the Dirichlet boundary conditions, υυυ is the approximate finite element solution and
u = (ui)Ni=1 the vector of the related DOFs.
With the classical finite element method if follows :

(2.53)

{
find uuu ∈ RN such that

KKKuuu = fffext

(2.54a)
(2.54b)

Where KKK and fffext are respectively the stiffness matrix and the global external forces defined
as :

KKKij =
ˆ

Ω
ε∼(φj) : C∼∼

: ε∼(φi) dΩ (2.55)

fffext i =
ˆ

Ω
fffT · φi dΩ +

ˆ
∂Ω

(σ∼nnn)T · φi dΓ (2.56)

Reduced basis construction

With the reduced order methods the main idea is to find the solution of the problem in a reduced
space of approximation that does not depend on the mesh any more.
The displacement field is written as follows :

uuu(xxx) =
N∑
k=1

ψψψk(xxx) · γγγ, ∀xxx ∈ Ω (2.57)

With N � N . The goal is to find a small number of functions (ψψψk)lk=1 that enables to have an
accurate approximation of uuu. To do so, methods using snapshots allow a good approximation
of the studied solution space (see section 2.1). Usually, in order to obtain the smallest RB,
the POD method is applied. Each function ψψψk of the RB can be expressed with the FE shape
functions (φφφi)Ni=1. With VVV the discretized RB :

ψψψk(xxx) =
N∑
i=1

φφφi(xxx)(VVV )ik, ∀xxx ∈ Ω (2.58)

The displacement field uuu(xxx) can then be expressed as a function of the modes contained in the
RB VVV .

uuu(xxx) =
N∑
i=1

φφφ(xxx)(
N∑
k=1

(VVV )ikγγγk) (2.59)

Finally, using the FE formulation, the displacement field can be expressed as :

uuu = VVV γγγk (2.60)
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γγγ is the vector that contains the DOFs associated to the RB. The ROM is then obtained by
replacing uuu by its projection in the reduced space. By projecting also the global external forces
the following reduced FE problem is obtained :{

find γγγ ∈ RN such that
VVV TKKKVVV γγγ = VVV Tfffext

(2.61a)
(2.61b)

HROM resolution

The specificity of the HROM is the notion of RID. In this work the DEIM is used to select the
important zone constitutive of the RID [Chaturantabut and Sorensen, 2009, Barrault and Al.,
2004]. This algorithm takes as input the RB VVV and return a set of interpolation indexes F .
The Discrete Empirical Interpolation Method (DEIM) can be applied to more than one reduced
basis in order to catch more information [Ryckelynck et al., 2016]. Additional layers can be
added to the RID to improve the accuracy of the HROM. The RID is defined by 2.62 where
supp(φ) denotes the support of the FE shape functions φi.

ΩA =
⋃
i∈F

supp(φφφ) (2.62)

The subdomain ΩB which is the complementary of ΩA and verifies Ω = ΩA ∪ ΩB and :

ΓI = ΩA ∩ ΩB (2.63)

Where ΓI is the interface between the two subdomains. I is then introduced as :

I =
{
i ∈ [1,N ] |

ˆ
ΓI

φφφTi φφφi dΓ 6= 0
}

(2.64)

And F the set of DOFs not connected to ΩB :

F =
{
i ∈ [1,N ] |

ˆ
ΩB

φφφTi φφφi dΩ = 0
}

(2.65)

An example of RID where these domains can be visualized is given on Fig.2.7. The RID is in
red in the figure. The nodes that are strictly inside the RID, whose DOFs are the set F , are in
black. The nodes that are at the interface between the RID and the whole domain whose DOFs
are denoted I are in green.

Figure 2.7: Example of RID in red with the interface DOFs in green and the DOFs strictly
inside the RID in black.

It has been remarked that just the DOFs F ∪ I are connected to F . Hence the hyper reduced
problem is obtained : {

find γγγ ∈ RN such that
VVV [F , :]TKKK[F ,F ∪ I]VVV [F ∪ I, :]γγγ = VVV [F , :]Tfffext[F ]

(2.66a)
(2.66b)

The system to solve is of size N ×N and the domain where the constitutive has to be integrate
is much smaller than the whole domain. This results in great speed ups of the HROM.
An improvement of the HROM has been made recently [Fauque et al., 2018, Fauque, 2018],
consisting in making a finite element correction, this method is called hybrid hyper reduction
(H2R). The correction is made by applying the solution of the HR problem on the frontiers of
the RID via a penalisation approach. This solution is then used as Dirichlet boundary conditions
for the finite element correction.
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2.2.2 Two scales HROM

Hyper reduced methods have proven themselves in low dimensional context (lower than 10).
As soon as the number of parameters increases the cost of the offline phase skyrockets. This
phenomenon, known as the ”curse of the dimensionality”, has been the topic of some researches
on high number of parameters in multiscale problems [Ladevèze et al., 2018]. The size of the
parametric space Dµ has to be defined prior to the training phase. This is not a problem in
general but when considering non parametric problem, for data coming for imaging techniques
for image-based digital twins, it is difficult to pave the parametric space appropriately. Indeed
the parametric space depends on the number of defects taken into account. For instance if a
simple spherical defect is considered, it is defined by 4 parameters (3 for its position and 1 for its
size). Hence for a population of n defects, the size of the parametric space is at least 4n. Multi
holes plates under specific loading have been computed with a PGD approach [Ghnatios et al.,
2019]. In this case the material is supposed to be purely elastic and many configurations of
cylindrical defects are computed. In this case the dimension of the parametric space is still low
since only simple problems are tackled. When non parametric cases are treated this approach
is impossible even more so when plasticity is added.

A two-scales approach have been developed in order to circumvent this problem. The idea
is to create a ROB with two contributions. The contribution of the global structure without
defect is locally enriched with the contribution of the defects. The training phase is made by
assuming the scale separation hypothesis. A linear enrichment approach has been studied to
introduce the effect of notch in panels undergoing a dynamic loading [Wang et al., 2018] and
a non-linear approach have been developed in [Lacourt, 2019, Lacourt et al., 2020]. The latter
will be used in the present work therefore it is more detailed.

The first computed contribution is global and does not take the defects into account. It
describes the mechanical behaviour of the observed component by using assumed effective ma-
terial properties. In practice the effective properties of the sane material are often considered.
It has a specific number of parameters (material coefficient or loading parameters) present in
µµµG ∈ DG. It is possible to obtain a reduced basis specific to the sane structure denoted VVV G that
contains the NG global modes. These modes are defined on the domain of the sane structure
ΩG.
A fluctuation reduced basis is created for each specific defect. The domain Ωd is cubic and
centered in xxx0. The defect is then introduced in the domain in a way that the center of gravity
is in xxx0. The domain Ωd is large enough to satisfy the dilution assumption :

∀xxx ∈ ∂Ωd,∆uuu = 000 (2.67)

With this method, in order to adapt as much as possible the fluctuation modes to the problem
to treat, the mean strain tensor E∼(t) applied to the domain Ωd must be close to the loading that
the defect in the component undergoes. To do so E∼(t) is computed with the simulation of the
component without defect. The loading seen by the closest Gauss point to gravity center of the
defect to introduce is used as boundary conditions for the simulation to compute the fluctuation
modes. The simulation on the domain Ωd with the defect enables to create a snapshot matrix
used to compute the Nf fluctuation modes ψψψfk and are stored in the matrix VVV f .
The first step with the whole methodology is to compute the fluctuation modes associated to
the defect and the global modes associated to the sane structure VVV G as described in the previous
paragraph. Once VVV f and VVV G are computed a HR simulation can be launched. The global modes
are defined on ΩG and the fluctuation modes on Ωd.
A real mesh of the component containing the defect needs to be created, which defines the target
domain Ω?. The global and local modes are then projected on the target mesh. A RID Ω?

R can
then be created. Firstly the global RID ΩG

R by applying the DEIM on VVV G and then a RID
Ωf
R associated to the fluctuation modes contained in VVV f is created. The final RID is the union

of these two domains : Ω?
R = ΩG

R ∪ Ωf
R. Once the reduced domain Ω?

R is created, global and
fluctuation modes can be projected on it.

The matrix notation of global and fluctuation modes restricted to the RID Ω?
R are respec-

tively denoted VVV G
R and VVV f

R. The computation is then made with the approximated matrix :
VVV app
R =

[
VVV G
R|VVV G

R

]
The reduced basis VVV app

R represents the reduced basis specific to the component containing the
defect and introduces a scale coupling between the defect and the structure.
This methodology makes the offline phase less time consuming. Very large speedups, between
100 and 1000, have been obtained in [Lacourt, 2019, Lacourt et al., 2020] when fluctuation modes
are precomputed. Precomputing fluctuation modes for non parametric defects is an important
issue addressed in this thesis.

2.2.3 ROM-net

In projection based model order reduction method use is made of a reduced basis and the solu-
tion manifold is suppose to be a vector subspace. But the use of a single reduced basis to find
the solution belonging to manifolds that are not involved in a small vector subspace can lead
to important approximation errors. To circumvent this problem, piecewise-linear approach to
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model order reduction have been proposed in [Rewienski and White, 2003], where a partition of
the time interval has to be setup. A sketch of the piecewise-linear approach using local reduced
order models is shown in Fig.2.8.

Figure 2.8: Linear (left) versus piecewise-linear (right) dimensional reduction.

The partition of the time interval usually follows an adaptive strategy as in [Dihlmann et al.,
2011]. This non-linear approach to model order reduction have been extended to parametric
partial differential equations by using local reduced order models in [Haasdonk et al., 2011], for
a clustering of data in the parameter space. A clustering of data in the state space (or solution
space) has been proposed in [Amsallem et al., 2012, Washabaugh et al., 2012, Wieland, 2015].
This last clustering approach, in the state space, has been designed for model order reduction.
The extension of hyper-reduction shemes to local reduced order models is straightforward. This
has been developed in [Amsallem et al., 2015] and in [Redeker and Haasdonk, 2014] for the em-
pirical interpolation method and for the discrete empirical interpolation method in [Peherstorfer
et al., 2014]. In the local model order reduction context, many approaches are based on a notion
of distance in order to (1) partition solutions and construct local subspaces offline and (2) deter-
mine online subspace which is currently used to define the reduced order model (ROM) solution.
Methods consisting in selecting the ROM of the closest cluster in the sense of the Euclidean
distance have been developed in [Amsallem et al., 2012, Washabaugh et al., 2012, Grimberg
et al., 2020].
The notion of ROM-net has been defined for local reduced order models, in [Daniel et al.,
2020, Daniel et al., 2021a], when partial differential equations have a huge parameter space when
considering fields as input parameters or images as input parameters [Nguyen et al., 2018]. The
dimension of the parameter space, for tensors of data or images, is so huge that we refer to this
kind of problem as a non-parametric modelling of the input variability in partial differential
equations. For such problems, both distance evaluations to construct local subspaces and online
selection of a local reduced order model, are very complex tasks. The global workflow, online,
of a ROM-net is illustrated in Fig.2.9.

Figure 2.9: Exploitation phase of a dictionary-based ROM-net. K local ROMs are combined
with a classifier CK for an automatic recommendation, used to predict the quantity of interest
Z(x) (taken from [Daniel et al., 2021a]).

In a ROM-net the online selection of a local reduced order model is performed by an artificial
neural network. This allows to take advantage of recent advances in computer vision using
convolutional neural networks for image classification or, more generally, tensor classification
[LeCun et al., 2015]. Moreover, distances related to projection error on local reduced bases
are more accurate than Euclidian distance, to cluster simulation data, as shown in [Amsallem
and Haasdonk, 2016]. When considering relative errors, distances measuring principal angles
between local reduced bases have been introduced for ROM-net in [Daniel et al., 2021b]. Thanks
to a clustering approach, a dictionary of local ROMs is created. It works as follow :
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→ For each input of the training set, a simplified problem is solved. This simplified physical
problem is less time consuming than the real target problem (it can be solved on a coarse mesh
for example).
→ These simplified problem enable to create simplified ROMs containing the global physical
information.
→ Based on a chosen measure of dissimilarity, the clustering algorithm creates clusters with
these simplified ROMs.
→ With the clustering results, a few relevant training examples are selected to created high
fidelity ROMs.
→ These high fidelity ROMs are then used as labels for the classification task.

2.2.4 Simulation data via Fast Fourier Transform (FFT) computation method

In the previous section, hyper reduction techniques have been presented in the framework of finite
element method. Reduced basis can also be learned from simulation data obtained with different
computation methods such as the Fast Fourier Transform (FFT). In this work FFT methods
will be used for the computation of image-based digital twins, therefore an brief explanation of
its methodology is given. This section is highly inspired of [Brisard and Dormieux, 2010]. For
the sake of simplicity the explanation is made in a two dimensional case.

Let consider a domain Ω ⊂ R2 which is the rectangular unit-cell of an heterogeneous, periodic
medium, with local stiffness C∼∼

(xxx). The dimensions of this unit-cell will be denoted W ×H, while
the basis vectors, parallel to its sides, will be denoted eeex and eeey. This material is submitted to the
macroscopic strain EEE, and the resulting displacements locally fluctuate about their macroscopic
counterpart EEE ·xxx. In periodic homogenization, the microstructure as well as the fluctuations of
the displacement are periodic. Asymptotic expansion techniques then show that the solution of
the following elementary problem.

div(C∼∼
(xxx)) : εεε∼(xxx) = 0 (xxx ∈ Ω) (2.68a)

εεε∼ij(xxx) = 1
2 (∂iuuuj(xxx) + ∂juuui(xxx)) (xxx ∈ Ω) (2.68b)

uuu(xxx+mWeeex) = uuu(xxx) +mWEEE · eeex (xxx ∈ R2,m ∈ Z) (2.68c)
uuu(xxx+ nHeeey) = uuu(xxx) + nHEEE · eeex (xxx ∈ R2, n ∈ Z) (2.68d)

In these equations, εεε∼(xxx) denotes the microscopic strain deriving from the displacement uuu(xxx).
Equations (2.68c) and (2.68d) express the periodicity of the displacements.
Similarly to non-periodic materials, the introduction of a so-called reference material of homo-
geneous stiffness C∼∼0

can dramatically ease the solution of the problem (2.68a)-(2.68d). Indeed,
the local constitutive law may be transformed as follows

σ∼(xxx) = C∼∼0
: εεε∼(xxx) + [C∼∼

(xxx)− C∼∼0
] : εεε∼(xxx) = C∼∼0

: εεε∼(xxx) + τττ∼(xxx) (2.69)

where the polarization τττ∼(xxx) = [C∼∼
(xxx) − C∼∼0

] : εεε∼(xxx) has been introduced. Assuming for the time
being that τττ∼(xxx) is known, it is readily seen that the problem (2.68a)-(2.68d) reduces to a simple
elasticity problem formulated on a prestressed, homogeneous medium, the solution of which
reads

εεε∼(xxx) = EEE − (ΓΓΓ0∼∼
~ τττ∼)(xxx) (2.70)

where ~ represents the convolution product. ΓΓΓ0∼∼
is the Green operator for strain which is a

fourth order tensor. This tensor is related to the reference material C∼∼0
. Since the polarization

field is not known an implicit equation on the strain field is obtained :

εεε∼(xxx) +
(
ΓΓΓ0∼∼

~ [C∼∼
(xxx)− C∼∼0

] : εεε∼(xxx)
)

= EEE (2.71)

The so obtained equation (eq.2.71) is the Lippmann-Schwinger equation. The convolution prod-
uct in eq.2.71 is easily computed in the Fourier space.

ε̂εε∼(kkk) = −Γ̂ΓΓ0∼∼
(kkk) : τ̂ττ∼(kkk) (2.72)

where the wave-vector denoted kkk is defined as follows :

kkk = kkkab = 2πa
W

eeex + 2πb
3H eeey (a, b ∈ Z) (2.73)

When isotropic material is considered with a shear modulus µ0 and a Poisson ration ν0, the
Fourier coefficients of the fourth rank Green operator can be evaluated :

Γ̂ΓΓ0,ijhl∼∼
(kkk) = 1

4µ0
(δihnjnl + δilnjnh + δjhninl + δjlninh)− 1

2 ∗ µ0(1− ν0)ninjnhnl (2.74)
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with nnn = kkk/k and k = |kkk| (kkk 6= 000).
The basic scheme solves iteratively the Lippmann-Schwinger (eq.2.71), using Neumann series.
The iterations read, in the real space :

εεε∼
0(xxx) = EEE (2.75a)

εεε∼
n+1(xxx) = EEE −

(
ΓΓΓ0∼∼

~ [(C∼∼
− C∼∼0

) : εεε∼
n]
)
(xxx) (2.75b)

The FFT is very efficient thanks to the fact that the direct product (C∼∼
−C∼∼0

) : εεε∼
n is evaluated in

the real space while the convolution is made in the Fourier space. The iterations of this scheme
consist in four main steps :

→ 1 - application of the constitutive law in the real space : τττ∼
n(xxx) = [C∼∼

(xxx)− C∼∼0
] : εεε∼

n(xxx)
→ 2 - computation of the Fourier coefficients τ̂ττ∼(kkkab)
→ 3 - computation of the convolution product in the Fourier space
→ 4 - computation of εεε∼(xxx) from its Fourier coefficients ε̂εε∼(kkkab) by means of a Fourier series.

The results of the FFT computation depends on the discretisation of the unit cell. At each
iteration the field εεε∼(xxx) is approximated by a piecewise-constant field (each pixel contains a
constant field). The steps 2 and 4 of the previous scheme are replaced by discrete Fourier
transforms, which in turn can be evaluated very efficiently by the fast Fourier transform (FFT).
A limitation of this method is that the convergence is very slow [Michel et al., 2001].It has
been proved that the basic scheme was not convergent in the case of infinite contrast between
the phases, which led them to devise the augmented Lagrangian scheme. Nevertheless other
improved schemes have been developed such as the work of [Willot et al., 2013, Michel et al.,
2001, Vinogradov and Milton, 2008] in which fast convergence is achieved thanks to the use of
modified Green operator.

2.3 Computer vision techniques and mechanics

2.3.1 Gappy POD

Hyper reduction will be greatly used in this thesis. Once the hyper reduced problem is solved
the results are obtained on a RID which is much smaller than the complete domain. Hence
there is missing information to be recovered. This problematic of missing information has been
tackled in [Everson and Sirovich, 1995] in which pictures with missing pixels are fully recovered.
In this work a set of empirical eigenfunctions is taken and is used to recover the modal coefficients
for each gappy snapshot by a least-squares procedure. Once these coefficients are obtained, they
permit gaps to be filled in a reasonable manner and to recover the whole picture.
Considering a set of N eigenfaces of P pixels vectorized. The eigenfaces are concatenated and
orthogonalized in a basis VVV . A mask is applied on a face ppp leave only a set of F pixels. The face
with the mask is denoted as ppp[F ]. The best linear approximation to recover the face ppp knowing
only ppp[F ] is the solution of following minimization problem :

γγγ? = argmin
γ?
||ppp[F ]− VVV [F , :]γγγ?||2 (2.76)

The solution is given by :

γγγ? = (VVV [F , :]TVVV [F , :])−1VVV [F , :]Tppp[F ] (2.77)

Hence the reconstructed face p̃̃p̃p using the only the pixels of ppp[F ] is given by :

p̃̃p̃p = VVV (VVV [F , :]TVVV [F , :])−1VVV [F , :]Tppp[F ] (2.78)
An example of this method is given in Fig.2.10. Here the initial dataset is composed of 42
empirical modes (eigenfaces) are taken to construct a basis VVV . The initial face that is to be
reconstructed is not part of the original dataset. A 11% mask is applied on the initial face.

Figure 2.10: Reconstruction of a face from a 11% mask. The reconstructed face c was determined
with 42 empirical modes of the reduced basis VVV and only the white pixels shown in b. The original
face, which was not a member of the original ensemble, is shown in (a).
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This method is based on a linear approximation techniques. This is a direct method but just
like PCA or SVD it cannot represent curved manifold.
In the case of hyper reduction, once the hyper reduced computation is done, the results are
obtained on the RID solely. The same principle of gappy POD can then be applied in order to
recover the whole field from an incomplete set of data computed by hyper-reduction. Considering
a reduced basis VVV σ containing some von Mises stresses modes. The Gappy POD procedure can
be applied to recover the whole von Mises stress field (see eq.2.79) :

σσσHRgappy = VVV σ(VVV σ[F , :]TVVV σ[F , :])−1VVV σ[F , :]TσσσHR[F ] (2.79)

Fig.2.3.1 illustrates an example of the recovering process of the von Mises stress field in the case
of a bending beam.

Figure 2.11: (a)RID with σVM field and full field in shadow (b) recovery of the full field with
the gappy POD process.

It makes it possible to take advantage of a RID for fast integration of the constitutive law
without losing the global information on the whole mesh.

2.3.2 Morphological feature extraction

In the framework of the analysis of image-based digital twins, it is important to consider mor-
phological feature extraction. It can be really useful to classify images or shapes. Linear and
non-linear dimensional reduction, as presented in section 2.1.1 and 2.1.2, respectively can be
used to project the image in a lower dimensional space and use this reduced coordinates as fea-
tures. Besides many techniques have been developed in the field of image processing. A survey
of these techniques is made in [Yang et al., 2008].

Principal axes

Eccentricity is the measure of aspect ratio. It is the ratio of the length of major axis to the
length of minor axis. It can be calculated by principal axes method.
Principal axes of a given shape can be uniquely denoted as the two segments of lines that cross
each other orthogonally in the centroid of the shape and represent the directions with zero cross-
correlation. This way, a contour is seen as an instance from a statistical distribution. Let us
consider the covariance matrix CCC of a contour:

CCC = 1
N

N−1∑
i=0

(
xi − gx
yi − gy

)(
xi − gx
yi − gy

)T
=
(
cxx cxy
cyx cyy

)
(2.80)

With :
cxx = 1

N

∑N−1
i=0 (xi − gx)2

cxy = 1
N

∑N−1
i=0 (xi − gx)(yi − gy)

cyx = 1
N

∑N−1
i=0 (yi − gy)(xi − gx)

cxx = 1
N

∑N−1
i=0 (yi − gy)2

(2.81)

Where G(gx, gy) is the centroid of the shape and here cxy = cyx. The length of the two principal
axes is equal to the eigenvalues λ1 and λ2 of the covariance matrix CCC.
The eccentricity E of a shape is defined as :

E = λ2
λ1

(2.82)

Fig. 2.12 illustrates the principal axis on a structure :

The eccentricity is a scalar that can be used to make an easy classification of shape for example.
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Figure 2.12: Principal axes on a beam structure.

Shape matrix

Shape matrix descriptor is an M ×N matrix to present a region shape. Square model of shape
matrix, also called grid descriptor, is constructed by the following : for the shape S, construct
a square centered on the center of gravity G of S;the size of each side is equal to 2L where L is
the maximum Euclidian distance from G to a point M on the boundary of the shape. Point M
lies in the center of one side and GM is perpendicular to this side. The square is divided into
N × N subsquares and denotes Skj , k, j = 1, · · · , N , the subsquares of the constructed grid.
The shape matrix is denoted as BBBkj , with :

BBBkj =
{

1, if µ(Skj ∩ S) ≥ µ(Skj)/2,
0, otherwise.

(2.83)

Where µ(F ) is the area of the planar region F .
Fig. 2.13 gives an example of how shape matrix method works :

Figure 2.13: (a) Original region; (b) shape matrix; (c) reconstruction of the shape.

These shape matrices can then be taken as input to classify various shapes.

Region based Fourier descriptors

Region-based Fourier Descriptor (FD) is referred to as Generic FD (GFD), which can be used for
general applications. Basically, GFD is derived by applying a Modified Polar Fourier Transform
(MPFT) on shape image [Yadav et al., 2007, Zhang and Lu, 2002]. In order to apply MPFT,
the polar shape image is treated as a normal rectangular image. The steps are :
-The approximated normalized image is rotated counter clockwise by an angular step sufficiently
small.
-The pixel values along positive x-direction starting from the image center are copied and pasted
into a new matrix as row elements.
-Steps 1 and 2 are repeated until the image is rotated by 360◦.
The result of these steps is that an image in polar space plots into Cartesian space.
The Fourier transform is acquired by applying a discrete 2D Fourier transform on this shape
image.

pf(ρ, φ) =
∑
r

∑
i

f(r, θi)exp[j2π( r
R
ρ+ 2πi

T
φ)] (2.84)

Where 0 ≤ r =
√

(x− gx)2 + (y − gy)2 < R and θ = i(2π/T ); 0 ≤ ρ < R, 0 ≤ φ < T . Here
(gx, gy) is the center of mass of the shape, R and T are respectively the radial and angular
resolutions. Fig.2.14 shows a simple 2D image, its reconstruction with 50 FD, the normalized
Fourier transform and the normalized FD.
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Figure 2.14: (a) Curve from original image; (b) reconstructed image with 50 FD; (c) normalized
Fourier transform; (d) normalized Fourier descriptors.

Here again the Fourier coefficient that describes the shape can be used as input information in
order to classify them or to make a clustering for example. In [Bhonsle et al., 2009] the Fourier
descriptor are used on cancer cell images in order to perform clustering.
A global graph of different shape feature extraction techniques is given in Fig.2.15 which is taken
from [Yang et al., 2008]

Figure 2.15: An overview of shape description techniques (taken from [Yang et al., 2008])

Since these features can be expressed as vectors they can be used for any classification algo-
rithm (random forest, neuron networks,...) to classify different images. Even interpolation and
extrapolation of these vectors can be considered to generate new data. These criteria can also
be used for statistical analysis of the data set.
In the field of mechanics these methods are also used to classify or to get a statistical inight
of defects which are present in structure. For example in [Lacourt, 2019] a statistical analysis
is made. It takes as morphological input the principal axes and their associated eigenvalue in
order to highlight the morphological repartition of defects. In this case the defects were pores
in welded joints.
In [Yang and Su, 2009] segmented images of pipes with defects are analysed. The major axis
and eccentricity of defect are computed and used to assess the structure. Another example of
morphological feature extraction is made in [Pidaparti et al., 2010]. In this case an image analy-
sis based on wavelet transforms and fractals is used to study the corrosion morphology of nickel
aluminum bronze metal under varying corrosion conditions and applied stresses. Image feature
parameters are extracted thanks to wavelet transforms and analysed to classify the pits/cracks
in the metal samples.
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2.3.3 Convolutional neuron network

Over the last decades computer vision and machine learning have achieved incredible results and
this is partly due to the rise of Convolutional Neuron Networks (CNNs). The way CNNs work is
comparable to standard neuron networks apart from the fact that they apply the convolutional
product. One of the reasons why CNNs are hugely popular is because of their architecture. More
precisely there is no need for feature extraction. The system learns to do feature extraction and
the core concept of CNN is the following, it uses convolution of image and filters to generate
invariant features which are passed on to the next layer
Many details are given on the way CNNs works in [Ñanculef et al., 2020]. Given an unknown
function f0 : X → Y that one needs to learn from data, neural networks implement a hypothesis
f0 : X → Y that decomposes as the composition f = f1 ◦ f2 ◦ · · · ◦ fM of more simple functions
fm referred to as layers. In classic feed-forward networks (FFNs), layers receive as input a vector
aaa(m−1) of size lm−1 and compute as output a vector aaa(m) of size lm, implementing a map of the
form aaa(m) = gm(WWW (m)aaa(m−1) + bbb(m)), where WWW (m) is matrix of shape lm × lm−1, bbb ∈ RIIIm and
gm(.) is a non-linear function applied component-wise. Compared to FFNs, the early layers of
a CNN allow two additional types of computation : convolution and pooling.
Convolutional layers receive as input an image AAA(m−1) (with Km channels) and compute as
output a new image AAA(m) (composed of Om channels). The output at each channel is known as
a feature map, and is computed as :

AAA(m)
o = gm

(∑
k

WWW
(m)
ok ~AAA

(m−1)
k + bbb(m)

o

)
(2.85)

where ~ denotes the (2D) convolution operation.

WWW ok ~AAAk[s, t] =
∑
p,q

AAAk[s+ p, t+ q]WWW ok[P − 1− p,Q− 1− q] (2.86)

Where WWW ok is a matrix of shape Pm × Qm and bm0 ∈ R. The matrix WWW ok parameterizes a
spatial filter that the layer can use to detect or enhance some feature in the incoming image.
The specific action of this filter is automatically learnt from data in the training process of
the network. Pooling layers of a CNN implement a spatial dimensionality reduction operation
designed to reduce the number of trainable parameters for the next layers and allow them to
focus on larger areas of the input pattern. Given an image AAA(m− 1) a typical pooling layer
with pool sizes Pm, Qm ∈ N , and strides αm, βm ∈ N implements a channel-wise operation of
the form :

AAA(m)
o [s, t] = κ ·

∑
p,q

(
AAA(m−1)
o [αms+ p, βmt+ q]

)ρ1/ρ
(2.87)

where κ, ρ ∈ N are fixed parameters. Note that using Pm = Qm = αm = βm corresponds to
divide each channel of the input image into nonoverlapping Pm × Qm patches and substitute
the values in that region by a single value determined by ρ and κ. In max pooling layers
(ρ = +∞, κ = 1), this value is the maximum of the values found in the patch. In average
pooling layers (ρ = 1, κ = 1/PQ), one takes the average of the values in the corresponding
patch. The right choice of this function can make the model more robust to distortions in the
input pattern.
Fig.2.16 illustrates how CNNs work.

Figure 2.16: Example of a CNN architecture.

CNN and more precisely LeNet-5, a pioneering 7-level convolutional network by [Lecun et al.,
1998], that classifies digits has achieved great results. It represents a turning point in the history
of neuron networks and image recognition.

CNNs are also more and more used in the field of mechanics. In [Nguyen et al., 2018], CNNs
enables to recommend a reduced order model for fast stress prediction according to various pos-
sible loading environments. This approach is applied on a macroscopic part by using a digital
image of a mechanical test. The selected reduced basis is then used for a fast hyper reduced
computation.
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In [Daniel et al., 2020] a general framework for projection-based model order reduction assisted
by deep neural networks is proposed. The proposed methodology consists in using CNNs to
recommend a reduced-order model given an input tensor describing the temperature field in the
structure. The temperature field strongly influences the quantities of interest of the mechanical
problem.
Even the stress intensity factor, which is a key quantity to be determined in fracture mechanics,
has been evaluated with CNNs in [Long et al., 2021]. A CNN for predicting the stress inten-
sity factor (SIF) at the crack tip is designed. Based on the proposed CNN, the SIF can be
automatically predicted through computational vision.
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Chapter 3

Hyper-reduction for limit pressure
evaluation

Contents
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3.2 Hyper-reduced arc-length algorithm for stability analysis in elasto-

plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Résumé en français

Dans ce chapitre, un schéma ”hyper-réduit” de l’algorithme de Crisfield est présenté et est
appliqué aux simulations de flambage et aux instabilités plastiques. Les deux systèmes linéaires
et l’équation d’ellipse entrant dans l’algorithme sont projetés sur un espace réduit et résolus
dans un domaine d’intégration réduit, résultant en un système d’équations ”hyper-réduites”.
La Gappy POD est utilisée pour récupérer les contraintes en dehors du domaine d’intégration
réduit.
Diverses méthodes sont proposées pour construire différentes bases réduites. Pour ce faire, les
données de simulation obtenues avec la méthode des éléments finis sont utilisées. Un critère
d’erreur basé sur les contraintes pour les calculs hyper réduits est proposé.
Un algorithme ”glouton” couplé à ce critère d’erreur est utilisé pour générer intelligemment
des simulations par éléments finis complètes. Ces dernières permettent ainsi d’enrichir la base
réduite et mettent en avant l’adéquation du critère d’erreur choisi.
Enfin, les résultats numériques relatifs aux structures élastoplastiques subissant des déformations
importantes (transformations finies) sont présentés en mettant l’accent sur les prédictions de
flambement et de charge limite.
Une étude paramétrique sur la géométrie de la structure est réalisée afin de déterminer le domaine
de validité du modèle hyper-réduite proposée.

3.1 Introduction

Oil and gas transmission pipelines are subjected to high internal pressures. An accurate assess-
ment of the burst pressure is essential for the design and integrity management of the pipelines
[Lam and Zhou, 2016]. Pipe elbows are an import part of a transmission pipeline system. Due to
the existence of the bend curvature, the mechanical behavior of pipe elbows is different from that
of straight pipes. Under the internal pressure, the stress distribution of a thin-walled straight
pipe is uniform along both the axial and circumferential directions. However, for an elbow, the
hoop stress in the intrados is markedly higher than those in the extrados and attached straight
pipes. Hence, in a pipeline system, pipe elbows are more critical compared with straight pipes
[Khalaj Khalajestani et al., 2015]. In 1978, Goodall proposed a formula to calculate the lower
bound of the burst pressure of defect-free pipe elbows [Goodall, 1978]. In [Miller, 1988], Miller
pointed out that the Goodall model should be used with caution because it had not been vali-
dated by experiments. The published experimental studies on the burst pressure of thin-walled
defect-free elbows are limited. In [Kim et al., 2013] the author carried out 8 burst tests of thick-
walled elbows with local wall thinning under combined internal pressure and in-plane bending
moment. In [Li et al., 2001, Duan and Shen, 2006], a series of burst pressure models were pro-
posed for defected elbows subjected to internal pressure only by combining the Goodall model
with the well-known burst pressure models for corroded straight pipes. However, those burst
pressure models were shown to be overly conservative compared with FEA results. As discussed
in [Lee et al., 2015, Zhang et al., 2015] , the burst pressures predicted by the Goodall model are
overly conservative compared with the finite element analysis (FEA) results. Despite this, the
Goodall model is widely used in the pipeline industry due mainly to its simplicity. However,
overly conservative predictions lead to unnecessary repair and retrofit actions, which translate
to significant cost penalties to pipeline operators.
FEA is time consuming though more accurate. The computation of the limit pressure in pipes
is not possible if a classical Newton scheme is used. Usually a Riks algorithm is adopted since
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it can overcome the instability of the limit load very well.
In this chapter an adaptation of the standard HROM method is developed for the Riks algorithm
and coupled with a greedy algorithm in order to generate the right amount of data to create an
appropriate RB. The so developed model can then pave the parametric space to determine the
limit load for various configurations of pipes. It is a first step for fast global simulations on sane
structures, prior considering the influence of defects on burst pressure.
The rest of this chapter is taken from the article [Launay et al., 2021] published in ”Intenrational
Journal of Solids and Structures”. The online version can be found with the following doi :
https://doi.org/10.1016/j.ijsolstr.2020.10.014

3.2 Hyper-reduced arc-length algorithm for stability analysis in
elastoplasticity
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Abstract

In this article an “hyper-reduced” scheme for the Crisfield’s algorithm (Crisfield, 1981)
applied to buckling simulations and plastic instabilities is presented. The two linear
systems and the ellipse equation entering the algorithm are projected on a reduced space
and solved in a reduced integration domain, resulting in a system of “hyper-reduced”
equations. Use is made of the Gappy proper orthogonal decomposition to recover stresses
outside the reduced integration domain. Various methods are proposed to construct
a reduced bases, making use of simulation data obtained with standard finite element
method and a stress-based error criterion for the hyper reduced calculations is proposed.
A “greedy” algorithm coupled with this error criterion is used to generate intelligently
full standard finite element simulations and enrich the reduced base, demonstrating the
adequacy of the error criterion. Finally, numerical results pertaining to elastoplastic
structures undergoing finite strains, with emphasis on buckling and limit load predictions
are presented. A parametric study on the geometry of the structure is carried out in order
to determine the domain of validity of the proposed hyper-reduced modeling approach.

Keywords: Model order reduction; Hyper-reduction; Reduced integration domain;
Crisfield algorithm; POD; Plastic instability; Buckling; Limit load

1. Introduction

Micromechanical computations are often coupled with parametric studies to probe
the mechanical behavior of structures undergoing plastic instabilities, and determine the
effect of shape and geometry, material laws and mechanical loadings. The prediction of
the limit load of structures [1] is an important aim of many of these methods. However
efficient the approaches might be, the scope of a parametric study, its extent in the space of
parameters, is constrained by the numerical method it employs – and ultimately by how
fast numerical computations can be carried out. Parametric studies become especially
challenging when dealing with unstable elasto-plastic problems, modeled as sets of partial
differential equations, each of which must be solved numerically. The computational
complexity of the resulting method is driven by the size of the approximation space used
to represent the solution of the problem. As an example, the size of the “full-order
model” (FOM), used in the finite element method, is proportional to the number of
discrete unknowns, and is generally quite high. To overcome this limitation, methods
employing reduced bases have been developed since the 1970s [2] and have seen wide
applications in a variety of mechanical problems [3, 4]. As a principle, the reduced base
defines the approximation space on which solutions are sought for. The corresponding
reduced-order model (ROM) is obtained by projecting the full-order model on the reduced
base. Techniques for deriving a model-order reduction method based on projections have
been developed for a long time [5]. Nevertheless, recent publications show interesting
hybrid approaches combining deep-learning and reduced-modeling for partial differential
equations (PDEs). In [6], for instance, a solution of PDEs obtained by neural networks
is proposed. In the context of non-parametric modeling, other authors [7, 8] make use
of convolutional neural networks to tailor hyper-reduced order models, which are useful
when the number of parameters is large, typically more than 100.

Hyper-reduction methods [9], which, commonly, make use of the Newton-Raphson
scheme, offer computational speed-up for stable elastoplastic simulations [10, 11]. The
Newton-Raphson algorithm is, however, not robust enough when dealing with unsta-
ble elastoplastic problems, where critical loads or buckling must be accounted for. The
Newton Raphson algorithm may diverge, for instance, due to snap-through or a snap-
back equilibrium states [12]. The “asymptotic numerical method” [13] or the “arc-length
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method” [14, 15, 16] have been developed to treat these problems. The arc-length method
is a general technique for structural analysis originally developed by Riks [17]. Later, other
authors [18, 19] have developed refined schemes. Arc-length algorithms are especially use-
ful to treat highly-nonlinear problems such as delamination or fracture [20, 21].

The present work is devoted to the estimation of the critical load of ductile pipelines
undergoing rupture [22, 23]. The critical loads of structures may be estimated using
charts at virtually no cost [24]. This approach provides results instantaneously. Yet, it is
valid for specific geometries only, and overestimate the effect of geometry in many cases.
To predict accurately the critical load of pipelines, the size and shape of the structures
should be taken into account. In the present article, a hyper-reduction method based on
Crisfield’s algorithm is proposed as a way to limit the computational cost of solving an
implicit nonlinear balanced equations, while offering accurate mechanical predictions.

Many reduced-order models have been developed to deal with such nonlinear problems.
In interpolation methods, the nonlinear terms of interest are estimated by interpolation at
a few spatial locations [25]. In particular, in the discrete empirical interpolation method
(DEIM) [26], the set of interpolation points is obtained using a proper orthogonal de-
composition (POD) base. In cubature methods [27, 28, 29, 30], spatial integrals involved
in the weak formulation are estimated using a few unassembled elemental contributions.
The elements of interest and weight coefficients are determined using an optimization
process. The third types of methods are boundary value problems restricted to a reduced
integration domain (RID) [31]. The RID usually involve elements connected to inter-
polation points computed by the DEIM algorithm, and can be obtained by considering
several POD reduced bases. This last approach has been successfully applied to elasto-
plastic [32] and contact problems [11] and is followed here. For simplicity, the boundary
value problem restricted to a reduced integration domain is denoted “HR” hereafter.

In the present work, the hyper-reduction method is extended to the Crisfield’s algo-
rithm consists in coupling the usual hyper-reduced residual to a reduced ellipse equation.
With Crisfield’s method two linear systems are solved resulting in two solutions. The
global solution is a linear combination of these two vectors, under a constraint prescribed
by an ellipse. In this paper, various reduced order bases (ROB) constructions are consid-
ered by taking into account the contributions to the global solution. In order to choose
relevant snapshots, a greedy sampling algorithm coupled with an error indicator is pro-
posed. This strategy ensures the robustness of the reduced order model with respect
to variations of the model parameters. In order to undertake fast parametric studies, a
reduced model is developed by projecting the mechanical equations on a reduced order
base (ROB) with a hyper-reduced method.

Section 2 presents the notation that will be used. The Crisfield algorithm is described
in section 3 whereas section 4 is dedicated to the classical hyper-reduced method. Section
5 details the hyper-reduced arc-length algorithm. Section 6 shows various results with
this method. Finally in section 7 the speed up of this method is discussed.

2. Notations

In this article, scalar values are denoted by lowercase roman letters, vectors by bold
lowercases, and matrices by uppercase, bold letters, e.g. a, a and A respectively. The
notation A[L1, L2] designates the submatrix of A formed by the subset L1 of the rows
of A and the subset L2 of the columns of A. We use the Python-notation A[L1, :] for
the submatrix formed by a subset L1 of the rows of A. Second-order tensors are denoted
by underlined capitals (e.g. A∼) whereas fourth-order tensors are underlined twice (C∼∼).

Double-dots (:) designate a double contraction over the last two and first two indices of
the left and right tensors, respectively. As such A∼ : B∼ is the scalar

∑
ij Aij∼ Bij∼ whereas

C∼∼ : B∼ is the second-order tensor
∑

kl Cijkl∼∼
Bkl∼ .

The Euclidian norm (or 2-norm) is denoted by the symbols ||.||2. It is defined by

||u||2 = (uT · u)1/2 = (
∑

i u
2
i )

1/2
where the superscript T designates a matrix transpose.

The 2-norm of matrices is given by the spectral norm ||A||2 = σmax(A), where σmax(A)
denotes the largest singular value of A.

3. Crisfield’s algorithm for unstable finite element problems

The present section is devoted to Crisfield’s algorithm. This algorithm, developed to
achieve convergence in unstable problems, is described hereafter. In the context of the
finite element (FE) model [33], the shape functions of the FE base are denoted by (φj)

n
j=1

with n the number of discretization nodes. It is convenient to introduce the functions
φφφi = φjek where i = (j − 1) × d + k, i = 1, ..., N , j = 1, ..., n, k = 1, ..., d, d is the
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dimension of the problem and ek refer to the canonical vectors of a Cartesian coordinates
system. The approximation of the displacement with the shape functions (φφφi)

N
i=1 reads:

υυυ(x) = υυυ0(x) +
N∑

i=1

φφφi(x)ui, ∀x ∈ Ω, (1)

where N = n×d is the number of degrees of freedom (DOF) of the structure, υυυ0 is a given
displacement field that fulfills the Dirichlet boundary conditions, υυυ is the approximate
finite element solution and u = (ui)

N
i=1 the vector of the related degrees of freedom. The

Cauchy stress that fulfills the constitutive equations is denoted by σ∼(u). Denote f int ∈ RN
a vector of generalized internal forces which depends on u such that:

f inti (u) =

∫

Ω

1

2

(
∇∼φφφi +∇∼

Tφφφi

)
: σ∼(u) dΩ, i = 1, . . . N , (2)

where Ω is the current configuration. The focus of the present work is now limited to
implicit solutions of finite element balance equations, where use is made of an arc-length
algorithm [34]. Because of instabilities or plasticity, the target loading may be out of
reach. Accordingly, the magnitude of the loading, denoted λ ∈ R, should be determined
as well as the displacement field. The residual of the FE balance equation reads:

r(u, λ) = f int(u)− λ f ext, (3)

where f ext ∈ RN denotes the vector of general external loading. The residual is assumed
to be null in the initial configuration:

f int(u0)− λ0 f ext = 0. (4)

The couple of variables (∆u, ∆λ) is determined so as to satisfy a null residual in the
current configuration:

r(u0 + ∆u, λ0 + ∆λ) = 0. (5)

As a consequence of the above (5), point (u0 + ∆u, λ0 + ∆λ) belongs to the equilibrium
path. Assume that the residual is not zero at point (u0 + ∆u, λ0 + ∆λ), i.e. r(u0 +
∆u, λ0 + ∆λ) 6= 0. A solution at a nearby point (u0 + ∆u + δu, λ0 + ∆λ+ δλ) is sought
for. A Taylor expansion provides the expression:

r(u0 + ∆u + δu, λ0 + ∆λ+ δλ) ≈ r(u0 + ∆u, λ0 + ∆λ) + K · δu− δλ f ext (6)

where K = ∂f int/∂u|u=u0+∆u. The linearized balance equation accordingly reads:

K · δu− δλ f ext = −r(u0 + ∆u, λ0 + ∆λ) (7)

The variables δu and δλ being the unknowns, equation (7) does not yield a unique so-
lution. Indeed the problem is constrained by N scalar equations depending on N + 1
unknowns – including δλ. The problem ought to be supplemented by an additional “arc-
length equation” [15] which describes an ellipse in the space of displacement and loading
parameters. The latter reads:

(∆u + δu)T · (∆u + δu) + β2(∆λ+ δλ)2(f ext T · f ext) = ∆`2, (8)

∆` represents the radius of the circle on which the solution (δu, δλ) must be found. This
is a user defined parameter relative to the size of the increment. In the above, β is also a
user defined parameter which monitors the shape of the ellipse. As an example β=1 leads
to a circle hence the name “arc-length method“. Figure1 depicts the arc-length algorithm
with the choice β = 1.

Figure 1: Arc-length method.
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Each blue point represents the solution of an iteration until it converges at the red
dot on the right. Following [18], equation (7) can be written:

K · δu = δλ f ext − r(u0 + ∆u, λ0 + ∆λ). (9)

which is solved in terms of two solutions δub and δut for the linearised balance equation:




K.δut = f ext

K.δub = −r(u0 + ∆u, λ0 + ∆λ)
δu = δub + δλ δut.

(10)

As shown by the above, the Crisfield algorithm involves two balance equations of the
finite element model. Equation (10a) relates to the target loading whereas equation (10b),
similar to the linear step involved in the Newton-Raphson algorithm, relates to the residual
stresses in the structure. The projection-based model-order reduction aimes to reduce
the computational complexity of these two balance equation related to the two primal
variables δub and δut. According to (10c), equation (8) may be rewritten as:

(∆u + δu)T · (∆u + δu) + β2(∆λ+ δλ)2(f ext T · f ext) = ∆`2

⇐⇒
α1δλ

2 + α2δλ+ α3 = 0,
(11)

where:

α1 = δuTt · δut + β2f ext T · f ext

α2 = 2(∆u + δub)
T · δut + β2∆λf ext T · f ext

α3 = (∆u + δub)
T · (∆u + δub) + β2∆λf ext T · f ext −∆`2

(12)

As expected for ellipses, equation (11) admits two solutions, denoted δλ1 and δλ2 Fol-
lowing on the “dot-product rule” introduced in [35], the solution in the equilibrium path
maximizes the quantity:

D(i) = (∆u + δu(i))T ·∆u + β2∆λ(∆λ+ δλ(i))
(
f ext
)T · f ext, i = 1, 2, (13)

which ensures that the selected solution is the closest to previously-computed solutions.
This rule allows one to deform the structure while preventing elastic unloading in most of
the cases. Once δu and δλ is obtained, the incremental displacement ∆u and incremental
loading parameter ∆λ are updated until the norm of the residual is smaller than a spec-
ified threshold. Furthermore, when convergence is found to be slow, a novel incremental
solution is sought for the same problem with a lower ∆` parameter.

It is emphasized that equation (8) mixes displacement and force, and therefore the
variables αi have no clear physical meaning. To overcome this problem, the parameter β
may be set to zero, in which case ∆` denotes the distance between the two possible values
of ∆u. In the rest of the study, the value of β is assumed to be zero.

4. Hyper-reduction method

This section is devoted to the usual hyper-reduced method using the Newton-Raphson
algorithm, in this case the balance equation takes the form of equation (9), with δλ = 0
and ∆λ being the loading increment which is a constant in this case. Therefore only the
iterative displacement vector δu is unknown.The following equation is obtained :

K · δu = −r(u0 + ∆u, λ0 + ∆λ). (14)

As previously stated, this approach belongs to projection-based reduction methods,
and aims to reduce the number of DOFs by projecting the balance equation on a smaller
approximation space. Here, hyper-reduction is applied in the framework of a posteriori
model reduction methods and unsupervised machine learning methods. In these methods,
the computational task is divided in two phases, namely an “offline” and “online phase”.
In the offline phase, simulation data are generated by the solution of the high-fidelity
equations, possibly for various parameter values in a training set Dtrain. These simulation
data are called training data and are required to train reduced bases and a reduced
integration domain (RID). In the online phase, the HR model is used to predict the
displacements and other quantities of interest resulting from parameters values which do
not belong to the training set. Offline phases are time-consuming as they require solutions
of the FOM for different sampling points in the parameter space. Nevertheless, they
allow for low-cost online simulations afterwards, provided the hyper-reduced order model
(HROM) can be used. Projection-based model order reduction methods may be combined
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with robust machine-learning methods. Hybrid approaches [7, 8] have been proposed
which make use of physical equations and data science techniques. These methods are
particularly efficient ways to take advantage of simulation data. In this context, and in
the context of model-order reduction, it is useful to save these data in memory storage
systems.

The HR method [10] uses a projection on a reduced base to reduce the number of
DOFs, but it also uses the fact that solving the equations on a RID is sufficient to find
the reduced DOFs with less computational complexity than using the full domain. This
particularity improves the computational time savings, especially for nonlinearities that
cannot be precomputed offline. Indeed, the RID, built during the offline part, reduces the
cost of the projections to get the reduced non-constant stiffness matrix from the Jacobian
matrix. The reduced base for displacement approximation is obtained via the singular
value decomposition (SVD). The reader is referred to [2] for a discussion of the connec-
tions between proper orthogonal decomposition methods (POD) and SVD. The SVD is a
common numerical tool in machine learning and especially useful when computing princi-
pal components. According to the Young Eckart theorem [36], it provides, in particular,
the optimal low-rank approximation of the simulation data generated during the offline
phase. In the following details on the methodology of the hyper-reduction method are
given.

Let us denote NS the number of displacement fields available at the end of the offline
phase. The nodal value of these finite element fields are stored in a snapshot matrix
Q ∈ RN×NS . For each parameter in the training set Dtrain, and at each time increment
the approximation of the balance equation is satisfied and the displacement u computed by
the parametric finite element model is saved as a column of Q, such that ∃j ∈ {1, . . . ,NS}
with Q[:, j] = u. Then, a truncated singular value decomposition is applied in order to
extract the reduced base V according to the following optimal low-rank approximation:

Q = V ·Σ ·WT +R, VT ·V = IN , WT ·W = IN , VT ·R = 0,
‖R‖2

2

‖Q‖2
2

< εtol, (15)

where IN is the identity matrix and belongs to RN×N , R belongs to RN×NS and εtol
is an error-criterion. The matrices V ∈ RN×N and W ∈ RNS×N are orthogonal matrices
and Σ ∈ RN×N is a diagonal matrix which contains the highest singular values σj in
descending order (i.e. σj ≥ σj+1). In the present case, simulation data are related to a
finite element model so that each column of V is the nodal values of an empirical mode
ψψψk where:

ψψψk(x) =
N∑

i=1

φφφi(x) Vik, k = 1, . . . N, x ∈ Ω. (16)

The importance of an empirical mode is quantified by the corresponding value σj. The
truncation of the SVD, and the number of empirical modes stored in V, is monitored by
the error-criterion εtol. Ideally, the reduced base V contains a few vectors and allows one
to approximate the space spanned by the snapshots.

The above reduced-base construction may be applied to any finite element variables,
either defined at the nodes of the mesh, or at the Gauss points inside elements. A
reduced-base is most often generated for both displacement variables and stresses sepa-
rately (details about the stress field involved in the computation of fint will be given in
Section 6.1). In the present work, the stress-related reduced base is denoted by Vσ.

Following on the Gappy POD [37], any vector u which belongs to the column space
colspan(V) of V may be recovered by using few entries u[F ] of u, if V[F , :] is a full
column rank matrix. Such recovery procedure takes the form:

u ∈ colspan(V), u = V ·
(
V[F , :]T ·V[F , :]

)−1 ·V[F , :]T · u[F ]. (17)

In the case F = P , where P denotes the set of interpolation points for columns of V
obtained by the discrete empirical interpolation method (DEIM) [26], the matrix V[P , :]
is square invertible and the recovery procedure simplifies as:

u ∈ colspan(V) u = V ·V[P , :]−1 · u[P ]. (18)

Moreover, if P ⊂ F , then V[F , :] is full-column rank.
A heuristic rule is followed to construct the RID: the extent of the RID must enable

the recovery of the finite element displacement fields and the finite element stresses when
they both belong to colspan(V) and colspan(Vσ) respectively. Notice that the recovery of
the stress enables the estimation of fint and of the residual, without using an interpolation
scheme for fint. The set of interpolation points related to Vσ is denoted by Pσ. Hence,
F is generated such that P ∪ Pσ ⊂ F which allows one to recover the stress and the
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displacement, making use of the Gappy POD. In many practical situations, F also includes
the degrees of freedom of a zone of interest.

The RID, denoted by ΩA ⊂ Ω, is assumed to be the support of the finite element
shape functions φφφi (i ∈ F):

ΩA = ∪i∈Fsup(φφφi). (19)

Denote ΩB = Ω\ΩA the complementary set of ΩA and ΓI = ΩA∩ΩB the interface common
to ΩA and ΩB. The following property holds:

F =

{
i ∈ {1, ...,N} |

∫

ΩB

φφφTi . φφφi dΩ = 0

}
(20)

Let us now introduce I, the set of degrees of freedom indices related to the interface ΓI :

I =

{
i ∈ {1, ...,N} |

∫

ΓI
φφφTi . φφφi dΓ 6= 0

}
(21)

The matrix K entering equation is sparse. The assumption is made that non zero-entries
in K[F , :] are only in the submatrix K[F ,F ∪ I] and these entries can be computed by
using solely the reduced mesh that covers ΩA. This assumption is too strong in case of
contact problems as shown in [11]. For the sake of simplicity, the focus of this article is,
hereafter limited to contactless problems. The reader is refered to [11] for more details
on hyper-reduction methods associated to contact problems.

The HR method is based on the equation (17) in the case that the variable u must be
computed via a balance equation. In the following the balance equation (14) is considered.
The hyper-reduced coordinates vector δγγγ is introduced such that δu = V · δγγγ. The values
contained in this vector are weights for the modes of the reduced-base vector V. The
obtained hyper-reduced solution is a linear combination of the modes of the reduced base.
The hyper-reduced problem consists in finding δγγγ ∈ RN such that δu = V δγγγ and:

V[F , :]T ·K[F ,F ∪ I] ·V[F ∪ I, :] · δγγγ = −V[F , :]T · r(u + ∆u, λ0)[F ]. (22)

The hyper-reduced matrix and the hyper-reduced residual are given by:

KHR = V[F , :]T ·K[F ,F ∪ I] ·V[F ∪ I, :], (23a)

rHR(u0 + ∆u, λ) = V[F , :]T · r(u0 + ∆u, λ)[F ]. (23b)

Let us emphasize the following remarks:

• Formally, if r = −δu and K is the identity matrix, then I = ∅ and the HR balance
equation is equivalent to the recovery equation of the Gappy POD.

• The matrix V[F , :]T in Equation (22) is related to the test functionsψψψZk =
∑

i∈F φφφiVik
for k = 1, . . . N . When introduced as a weak form of the hyper-reduced balance
equations, it is emphasized that the test functions have a similar form that obtained
for Dirichlet boundary conditions on the interface ΓI . The reader is referred to [31]
for more details about the boundary conditions used for hyper-reduced problems.

5. Hyper-reduced arc-length algorithm

The extension of the HR method to the Crisfield’s algorithm is straightforward when
choosing the same reduced base and the same RID for the two balance equations involved
in the system of equations (10). This reduced base must be accurate enough for the
approximation of both δut and δub. Consider now the hyper-reduced external forces
vector:

f extHR = V[F , :]T · f ext[F ]. (24)

In the hyper-reduced arc-length problem, δγγγt ∈ RN , δγγγb ∈ RN and δλ are sought for such
that δut = V · δγγγt, δub = V · δγγγb and:





KHR · δγγγt = f extHR

KHR · δγγγb = −rHR(u0 + V∆γγγ, λ0 + ∆λ)
δγγγ = δγγγb + δλ δγγγt
(∆γγγ + δγγγ)T · (∆γγγ + δγγγ) + β2(∆λ+ δλ)2(f ext T · f ext) = ∆`2,

(25)

where ∆γγγ has been updated to ∆γγγ+ δγγγ, assuming the norm of rHR(u0 +V ·∆γγγ, λ0 +∆λ)
is lower than a given tolerance. Here equation (25d) defines a reduced form of equation
(8)
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Property: If ∆u = V ·∆γ, δu = V ·δγ and VT ·V = I, then the solutions of equation
(25d) and that of (8) are identical.

The above is a consequence of (8), which entails:

(∆γγγ + δγγγ)T ·VT ·V · (∆γγγ + δγγγ) + β2(∆λ+ δλ)2(f ext T · f ext) = ∆`2.

and reduce to the equation (25d) after replacing VT ·V by I.
Property: If δut = V · δγt, δub = V · δγb, λ are the exact solutions of equations (10)

and (8), then γt, γb and λ are the solutions of the hyper-reduced arc-length equations
(25).

Proof: If δut = V · δγt, δub = V · δγb and λ are the exact solutions of the original
equations, then:

∃∆γ : ∆u = V.∆γ, (26a)

K[F ,F ∪ I].V[F ∪ I, :]δγt = f ext[F ], (26b)

K[F ,F ∪ I]V[F ∪ I, :]δγb = −r(u + ∆u, λ0 + ∆λ)[F ], (26c)

δγγγ = δγb + δλ δγt, (26d)

(∆γγγ + δγγγ)T · (∆γγγ + δγγγ) = ∆`2 − β2(∆λ+ δλ)2(f ext T · f ext). (26e)

According to the above, the hyper-reduced arc-length equations (25) are fulfilled by δγt,
δγb and δλ.

Let us now investigate the computational complexity of the proposed method. The
later does not scale proportionally to N , as a finite element model would do. Instead,
KHR being a full matrix, the solution of hyper-reduced linear systems has a computational
complexity proportional to N3. So in order to achieve a good speed up of the method
it is necessary to have N3 � N . Moreover, for a given residual r, the computation
of rHR has a complexity proportional to N card(F), where card(F) is the number of
elements of F whereas, for a given Jacobian matrix K, that of KHR is proportional
to N2 card(F) + N card(F) [card(F) + card(I)]. Eventually, the residual r[F ] and the
Jacobian matrix K[F ,F ∪ I] are computed over the RID. The lower the value of N
and card(F), the lower the computational complexity of the hyper-reduced arc-length
equations.

Section 6 investigates the constructions of the reduced bases in the following cases:

• (i): Vector Q contains the simulation data related to u solely;

• (ii): in V two reduced bases, generated for ut and ub separately, are merged;

• (iii): in Q the simulation data related to ut and ub are merged, before computing
V.

6. Numerical results and discussion

6.1. Hyper-elastic buckling

In the sequel the finite element simulation of structures subjected to post-buckling
is considered (see [38, 39] for details about post-buckling). This section demonstrates
the robustness of the hyper-reduced arc-length method through a simple example in the
framework of finite elastic strains. Focus is made on reduced-matrices KHR when it is
ill-conditioned.

Let us consider the highly-nonlinear buckling beam problem subjected to plain strain
loading. The beam is parameterized by its slenderness, i.e. the ratio of length over height.
The length is kept constant (L = 200 mm) and the slenderness is monitored by the height
µ ∈ [8, 14]. A morphing is applied to a reference mesh so as to generate a geometry
corresponding to a given slenderness. The position vector x reads, accordingly:

x =

{
x1

µx2

}
, (27)

where x1 ∈ [0, L](mm) and x2 ∈ [0, 1](mm) are coordinates in the reference mesh. The
mesh is made of 295 linear elements (720 DOFs). The beam is fully clamped on one of
its extremity while a pressure is applied on the opposite side, as shown in Figure 2.

Figure 2: Meshed beam and boundary conditions.
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The Young modulus for this simulation is E = 210000 MPa and the Poisson coefficient
ν = 0.3. The material follows the hyper-elastic Saint-Venant-Kirchhoff model:





Deformation gradient tensor: F∼ = I∼+∇∼υυυ
Green-Lagrange strain tensor: E∼ = 1

2
(F∼

T · F∼− I∼)

Constitutive law: S∼= C∼∼ : E∼
Cauchy stress: σ∼=det−1(F∼) F∼ · S∼ · F∼

T

Internal forces: f inti =
∫

Ω
1
2
(∇∼φφφi +∇∼

Tφφφi) : σ∼dΩ, i = 1, . . . N ,
(28)

where Ω denotes the current configuration. Simulation data for the training phase
are generated for four sampling points in the parameter space: µ = 8, 9, 10, 11. In the
HR method it is common to make one single SVD on one global snapshot matrix that
contains all the simulation results. Use is made of four simulations to apply separately a
singular value decomposition on each of them hence four reduced bases are created. The
resulting bases are then concatenated with each other without orthogonalization to create
the reduced base:

V = [V(1),V(2),V(3),V(4)]. (29)

Since the bases V(i) are not orthogonal to each other, V is not orthogonal. Moreover
V contains modes that are very similar to each other since the geometrical parameters
are not too far from each others, and therefore the hyper-reduced tangent matrix KHR is
nearly singular. Nevertheless, the ill-conditioned system is kept as it is, to underline the
robustness of the approach. If a linear system is ill-conditioned its response will vary a
lot with respect to a small perturbation in the data. Let us consider a linear system with
a positive-definite square matrix A, a vector b and the unknown vector u. If A · u = b
and A · u′ = b′ one obtains, with ∆u = u′ − u and ∆b = b′ − b:

||∆u||2
||u||2

≤ κ(A)
||∆b||2
||b||2

, (30)

where the condition number κ(A) is defined by:

κ(A) = ||A||2 × ||A−1||2 =
σAmax
σAmin

, (31)

and σAmax, σ
A
min are the highest (respectively, the lowest) eigenvalue of A. The bigger the

condition number, the less precise the solution (u in this case) will be.
Herefater, the DEIM is applied on the global reduced base V in order to select the

nodes of the RID, enforcing F = P . In the following example no stress base was created.
In the online test, the height takes on the value µ = 13.2 mm. The reduced buckling
beam at the end (red) and in initial position (blue) are shown in Figure (3).

Figure 3: Hyper-reduced model at t = 0 (blue) and at t=tfinal in red, for height µ = 13.2 mm.

Here, the RID corresponds exactly to the elements attached to the selected node by
the DEIM (F = P). The vertical displacement of the node at the bottom right, denoted
M is plotted in Figure 4 as a function of the applied load. The nonlinear response due
to buckling appears for a limit load equal to 1250 N and 1200 N when the FOM and
the HROM are used, respectively. To check the accuracy of the proposed hyper-reduced
arc-length algorithm, a FOM is run with the same parameter. The FOM and HROM
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responses are shown in Figure (4a). The exact error on the total displacement field is
calculated by the quantity :

η =
||uHROM − uFOM ||2

||uFOM ||2
. (32)

The later is represented in Fig. (4b).

(a) (b)

Figure 4: (a) Load [N], as a function of the vertical displacement [mm] at point M, with µ = 13.2. (b)
Error estimate (%) as a function of the increments of the HROM simulation.

It has been observed that the condition number of KHR evolves during the simulation,
but remains very large (around 1016), and, accordingly, KHR is nearly singular. The
robustness of the algorithm is warranted by the additional ellipse equation (25d) which
prevents the divergence of the response since the latter must be contained within in
the circle. Furthermore, for every loading increment the error stays between 0.1% and
2.9%. The largest error is observed when buckling occurs. Even in such strongly-nonlinear
problem with ill-conditioned tangent matrix, convergence is obtained after a few iterations
at each loading increment. These numerical results emphasize the robustness of the
proposed hyper-reduced arc-length algorithm.

6.2. Limit load prediction for a simple elasto-plastic problem

To illustrate the assets of hyper-reduced arc-length algorithm one proposes a nonlinear
problem that involves finite strains and plasticity. Let’s consider a 3D thick wall pipe
under internal pressure with a pure plastic behaviour. The material constitutive equations
are given below:





Strain gradient decomposition: F∼ = R∼.U∼
Deformation rate: L∼= Ḟ∼.F∼

−1

Stretch rate: D∼ = 1
2
(L∼+ L∼

−T )

Local strain rate: ė∼= R∼
T .D∼.R∼

The elastic/plastic partition is supposed: e∼= e∼
e + e∼

p

Constitutive law: S∼= C∼∼ : e∼
e

Relation with global Cauchy stress: σ∼=det−1(F∼) R∼.S∼.R∼
T

Second invariant of the stress tensor : J2(σ∼) =
√

3
2
dev(σ∼) : dev(σ∼)

Yield stress: R0

Yield function: f(σ∼, R) = J2(σ∼)−R0

Internal forces: fint i =
∫

Ω
1
2
(∇∼φφφi +∇∼

Tφφφi) : σ∼dΩ, i = 1, . . . N
(33)

The Young modulus used for this simulation is E = 200000 MPa, the Poisson coefficient
is ν = 0.3 and the elasticity limit is R0 = 400 MPa. As it can be seen in the material
constitutive equations give before there is no hardening in this example. The considered
pipe is fully clamped on each side and undergo internal pressure.

In the present work, a parametric study is conducted by varying the geometric param-
eters and determining the pipe’s critical pressure. The pipe length is fixed hereafter to
L = 300mm whereas the thickness and external radius vary. The full-order model is made
up of 9, 180 linear hexahedra (N = 37, 536 DOF, see Fig. 5) and an updated Lagrangian
formulation is used.
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Figure 5: Meshed pipe with boundary conditions.

As announced in section (5), two linear systems are solved for a given linearized
residual. Many choices for the reduced base are possible. The snapshot matrices Q, Qt

and Qb contain, respectively, the solution u, ut and ub for each point in Dtrain, and at
any time the equilibrium path is reached. Hereafter, results obtained for three different
reduced bases VA, VB and VC are compared. The later are constructed as follow:

reduced base VA:
{
Q = VA.ΣA.W

T
A + RA, ‖RA‖2

2/‖Q‖2
2 < εtol, (34a)

reduced base VB:





Qt = Vt.Σt.W
T
t + Rt, ‖Rt‖2

2/‖Qt‖2
2 < εtol,

Qb = Vb.Σb.W
T
b + Rb, ‖Rb‖2

2/‖Qb‖2
2 < εtol,

VB = [Vt, Vb],
(34b)

reduced base VC :

{
Qtb = [Qt, Qb],
Qtb = VC .ΣC .W

T
C + RC , ‖RC‖2

2/‖Qtb‖2
2 < εtol.

(34c)

Four offline classical finite element simulations are carried out with different values of
thickness and external radius. An online target simulation is defined with another couple
(thickness, external radius). This online simulation is performed three times with the
three different reduced bases VA, VB and VC . Table (1) gives the parameter values used
in the simulations. The later follow the thickest pipes for deep offshore. It is emphasized
that the online simulation lies beyond the parametric-training region.

External radius (mm) Thickness(mm)

Offline 75 15
Offline 80 20
Offline 80 15
Offline 75 20
Online 70 10

Table 1: Parameters for offline (Dtrain) and online simulations

A criterion is now introduced in order to stop the numerical simulations and to estimate
the critical pressure. As a rule, the computation of the equilibrium path is stopped
whenever the pressure has decreased by more than 4% from its maximum value. Figure (6)
shows the local pressure as a function of the norm of the displacement along an arbitrary
node in the middle of the plane.

The red and blue arrows spot the values of the critical pressure and the corresponding
displacement for a point on the external skin of the pipe in the mid-plane. The values
are respectively for the FOM simulation : (0.9 mm ; 115,4 MPa) and HROM simulation :
(1,3 mm ; 114,94 MPa). The error is estimated after the simulation has been completed.
In order to have the exact error, a FOM simulation with the same parameters as used in
the HROM simulation is carried out. Maps of the displacement component U1 is shown in
Figure 7 as computed in the RID and along the full mesh. The small part of the reduced
mesh on the left of the image contains the point used to plot the loading curve in Figure 6.
Details about the construction of the RID are given in appendix 9. It is emphasized that
the construction of the RID is empirical and depends on the considered problem.
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Figure 6: Internal pressure (MPa) as a function of the norm of the displacement (mm) of a node in the
middle plane (offline in blue and online in red). Computation carried out using the reduced base matrix
VB . The limit load is indicated by the arrow.

(a) (b)

Figure 7: Displacement component U1 (mm) computed on the full mesh (a) and on the RID (b) using
the reduced base matrix VB .

In the following, the absolute error relative to the displacement U1 is defined by:

εU1 = max
{
|U1

HROM−U1
FOM |

max|U1
FOM |

}
, (35)

where the max operator in the denominator has been introduced to take into account the
fact that U1 might be zero. Similar error criteria are considered for the other displacement
and stress components. Table 2 reports the errors for the 3 displacement components and
the six stress components, for each of the three reduced bases, i.e. VA, VB and VC .
The values in bold, corresponding to the most accurate computations, indicate that base
VA gives the best results as compared to the two other bases, while also using standard
simulation outputs. Therefore, the construction method for this base is used in the rest
of this work.

VA VB VC

N 8 11 9
card(F) 1 830 2 985 3 009
εU1 = εU2 3.80% 1.91% 0.45%

εU3 3.84% 4.17% 4.81%

εσ
11

= εσ
22

3.46% 7.63% 10.64%

εσ
33

2.75% 6.61% 6.69%

εσ
31

= εσ
32

5.63% 9.94% 9.97%

εσ
12

5.63% 16.44% 19.05%

Table 2: Error relative to the displacement and stress components, for different constructions of the
reduced base.
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6.3. Greedy sampling and validity domain for a realistic problem
In this subsection, a parametric study is carried out on an elbowed pipe. Many studies

have been carried out on elbow pipes [22, 23, 40]. The geometric parameters are chosen
according to the work of [22]. This study focuses on determining the critical internal
pressure this structure can sustain. Compare to the previous problem, the geometry as
well as the mesh and boundary conditions are modified. Four geometric parameters are
considered: the thickness e, the external radius Rext, the curvature radius rcurv and the
angle of elbow α. As in the previous section a morphing method is used to modify the
mesh. A sensitivity-analysis of each parameter is carried out by varying each value of ±5%
(see Table 3). The mesh used in this study has 16, 000 linear 8-nodes elements resulting in
24, 633 nodes and N = 73, 899 DOFs. Both symmetries of the problem have been taken
into account hence only one quarter of the pipe is considered. The mesh is represented in
Figure 8. Additionally, an error indicator developped in the context of small strain [41]
is coupled with a greedy algorithm in order to reduce the amount of training data. In
small strain setting, the equilibrium equation is a linear equation and is fulfilled, in its
weak form, by the stress computed during the offline phase. It turns out that the related
reduced bases Vσ is a convenient subspace for stresses. For problems in the more general
context of finite strain, the equilibrium equation strongly depends on the displacement
in the domain Ω and is a nonlinear equation. Nevertheless, it is assumed in the following
that the training set Dtrain is large enough, and is able to represent accurately both the
displacement fields and the stress field via their respective reduced bases V and Vσ.

Rext (mm) rcurv (mm) e (mm) α (◦)

39.9 114 4.75 42.75
44.1 126 5.25 47.25

Table 3: Range of geometrical parameters, for the training set of simulation data.

In the following, consistency criteria are introduced and used as error indicator for the
sampling of the parameter space by a greedy algorithm. Each time a hyper-reduced arc
length simulation predicts a displacement by using V, the projection on Vσ of the related
stresses is expected to yield an accurate solution. The error indicator is accordingly
defined by:

ε∗ = minγγγ∗
||σHR −Vσ[F , :] · γγγ∗||2

||σHR||2
, (36)

achieved with: γγγ∗ =
(
Vσ[F , :]T ·Vσ[F , :]

)−1 ·Vσ[F , :]T · σHR, (37)

where γγγ∗ is the reduced coordinate vector related to the Gappy POD applied to the stress.
This vector minimizes the gap between the stress field obtained with the hyper-reduced
arc length simulation, σHR, and the its projection on Vσ over the RID. The product
Vσ · γγγ∗ is the recovered stress over Ω related to the Gappy POD. Because of the finite
strains involved in the equilibrium path, we have not established a formal relationship
between the error indicator and the true error on the displacements. But this relationship
exists for standard materials undergoing small deformations [41]. A greedy algorithm is
accordingly applied to construct the global reduced base (see [11]):

(i) the sampling point in the parameter space for which the error is maximal is first
obtained, according to the error estimator based on the HR simulation;

(ii) second, the FOM simulation data relative to this point is included in the training
set for the global reduced base, and the reduced base is computed again;

(iii) hyper-reduced predictions and error predictions are then performed for all sampling
points.

Note that the first sampling point in the parameter space is the center of the hyper-cube.

Figure 8: Elbowed pipes meshed.
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The parametric space is regularly sampled on a m×m×m×m grid where m is the
number of values each parameter can take. In the present case, m = 2 generating 16
simulations to which is added the first sampling point at the center of the hyper-cube
resulting in 17 simulations. After applying five times the greedy algorithm, five FOM
simulations are added to the training set. The 12 other hyper-reduced simulations where
thus required to certify the model. The 12 related simulation data are denoted validation
data in the following. Figure (9) shows the evolution of the error indicator during the
iterations of the greedy algorithm. The training set that is selected with this method is
indicated by the black numbers.

Figure 9: Error indicator for the different hyper-reduced arc length simulations over the sampling point
of the parameter space, where the ROB number i + 1 is obtained after the ith iteration of the greedy
algorithm. The brown squares with numbers inside indicate the sampling point inserted in the training
set Dtrain and their iteration index.

.

The greedy algorithm is found to be very efficient. No more than five iterations of
the algorithm are needed in the present study, resulting in a global error of less than
5%. The resulting RID is composed of 8, 511 nodes. The last reduced base V contains
N = 27 empirical modes, with εtol = 1e−8 and N3 < N . The reduced base Vσ contains
50 empirical modes. The RID construction, shown in Figure 10, follows the procedure
in Appendix 9. The resulting HROM is denoted HROM5-27-50 in the the following. As
expected, plasticity localizes at the curvature where stress concentration occurs. Note
that the obtained RID is rather large compared to the one that is usually seen with
standard hyper-reduction methods. This should be explained by the loss of ellipticity in
the equations, encountered in limit load problems.

Figure 10: Cumulated plasticity on the RID of the elbowed pipe.

The error indicator is now compared with one based on the full-order model prediction,
in order to investigate its reliability. This time, the simulation of the loading path stops
when a decrease of 1% of the pressure is observed, compared its maximal value. Note
however that a small error on the limit load estimate may induce a much larger error on
the displacement. Therefore, displacement fields are compared according to their angle
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with the solution obtained with the FOM. The later reads:

Θ = cos−1

{ (
uHR[F ]

)T · uFOM [F ]

||uHR[F ]||2||uFOM [F ]||2

}
∈ [0,

Π

2
]. (38)

The angle Θ is computed for each of the 17 simulations as it is necessary to evaluate the
error estimator. The correlation between Θ and ε∗, show a linear relation between Θ and
ε∗, except for two points are far from the zone of interest delimited by an error of 25% (see
Figure 11). The computation of the error angle Θ requires all FOM simulations, contrary
to the error estimator ε∗. For the later, a reduced base on the stress field is sufficient.
Therefore, this error estimator will be used in the rest of this work. Using HROM5-27-50,
one may now carry out HROM calculations on a finer grid of the parameter space. The
parametric space is re-sampled along a 3×3×3×3 grid, resulting in 81 HROM simulations
and to the error map represented in Figure (12).

Figure 11: Error indicator Θ (rad) versus error estimator ε∗(%) on the 17 HROM simulations.

Figure 12: Error estimate ε∗ for the 81 HROM simulations. The red dots represent the training data set
used to created the reduced base, the orange dots are the validation data set used to certify our model
and the blue dots are the test data set.

The global minimum of the error estimate is a simulation from the training set and
the global maximum is a simulation from the validation data set. The values of the
parameters for the test data set lie between the minimum and maximum values of the
parameters in the validation data set. The error indicator is inferior to 5%, highlighting
how accurate is the hyper-reduced model for the interpolation. Then one can continue
the stability analysis with the so developped hyper reduced model (HROM5-27-50). The
most sensitive parameter is determined using the parallel coordinate plot method [42]. A
parallel coordinate plot is introduced (Figure 13). The four first coordinates are relative
to the parameters (thickness, external radius etc.) whereas the last one is the simulation
output of interest (i.e. the critical pressure). The red lines in Figure (13a) are related
to sampling points in the parameter space which lead to a high critical pressure, in the
present case Pmax

c + 0% − 2.5%. If all red lines intersect at the same parameter value,
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for a specific set of parameters, that parameter is strongly sensitive with respect to the
simulation output. According to graph (13a), the external radius as well as the thickness
are the parameters most sensitive to the highest critical pressure. Obviously, a small
external radius and a big thickness. results in a high critical pressure, as shown by the
red lines in Fig. (13a)). To estimate how robust the proposed model is, a coordinate
plot is represented, again, in Fig. (13b) to determine which parameter influence the error
indicator the most. The map is defined by relative variations of +0% − 25% on the
outputs. The external radius, the thickness and the radius of curvature influence most
the error indicator. The external radius and the radius of curvature are not independent
in the chosen parametrization. Indeed the curvature radius is defined according to the
middle line of the pipe. Therefore the larger the external radius, the smaller the radius
of curvature of the upper skin of the pipe.

(a) (b)

Figure 13: Parallel coordinates plots. Each axis represents a parameter except for the output, indicated
last one on the right along the x-axis. (a) Critical pressure. (b) Error estimate.

The training set is made of five FOM simulations. Denoting CPUFOM = 5672s the
computational time of the FOM simulations, and CPUHR = 1035s that of the HROM
simulations, the speed-up, defined by:

speed-up =
CPUFOM × 81

CPUHR × 81 + CPUFOM × 5
, (39)

is about 4.1, slightly lower than the direct speed up : CPUFOM/CPUHROM = 5.48.
By varying the thickness and the radius of curvature and fixing the others parameters

to Rext = 42mm and α = 45 ◦, a domain of validity is defined, where the error indicator
is inferior to 10%. In that case, the hyper-reduced model HROM5-27-50 does not only
interpolate but also extrapolate training data. A variation of ±25% of the thickness and
of the curvature radius is applied and the parametric space is divided in a grid of 10× 10
points, resulting in 100 HROM simulations. Figure (14) shows that the HROM model
has a quite a large validity domain in spite of its construction, which uses only 5 high
fidelity simulations.

(a) (b)

Figure 14: Map of the error estimate for the hyper-reduced model with isocontour equal to 10%, for vary-
ing curvature radius and thickness. Each black point in the background represents a HROM simulation
and the green square represents the domain of the validation dataset (on the left). Representation of the
pipe with minimum and maximum values of both parameters simultaneously (on the right).

The parameters for three test points in the parameter space, indicated on Figure 14.a,
are given in table 4. The error on the von Mises stress corresponding to the three test
points indicated by the black numbers in Figure 14.a may be calculated on each Gauss
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Number rcurv (mm) e mm)

1 90 6.25
2 96.66 4.86
3 130 5.13

Table 4: Set of parameters of the three simulations indicated in Figure 14

point of the RID and of the full mesh, once the gappy POD has been applied to stresses. A
reference computation has been carried out with the FOM for these three configurations.
The correlation curves for stress predictions are shown in Figure (15).

Figure 15: Error for the von Mises stress, for test points 1, 2, 3 in the parameter space (table 4). Each
marker represents a gauss point, the x-axis is the reference value and the y-axis the value computed with
the hyper-reduced method. Red points are related to the prediction in the RID. Blue points are related
to the gappy POD for the stress recovery over Ω.

As shown in Figure (15), the prediction of the equivalent stress on the RID is more
accurate than on the full mesh. Outside the RID, the gappy POD gives stresses that
violate the limit R0 enforced by perfect plasticity. In the RID, the stresses are obtained
by integrating the constitutive relations. Therefore they are plastically admissible. These
results confirm that the proposed error indicator is relevant in this example. In order to
show the robustness of the HROM5-27-50 model, variations of the two other parameters
(external radius and angle) have also been considered. Constant values have been given to
the curvature radius (120mm) and the thickness (5mm). As previsously, the parameters
vary within ±25% and the parametric space is divided in a grid of 10 × 10 points. The
assumed validity domain given by an error indicator less than 10% is once again quite
large, which shows the robustness of the hyper-reduced arc length method (Fig. 16).

(a) (b)

Figure 16: Map of the error estimate for the hyper-reduced model with isocontour equal to 10% for
varying external radii and angles (a). Each black point in the background represents a HROM simulation
and the green square represents the domain of the validation dataset. (b) Representation of the pipe
with minimum and maximum values of both parameters simultaneously.

7. Speed-up

The previous simulations have been carried out on 24 processors. In the HR simu-
lations, most of the CPU time is spent for the integration of the material constitutive
law and the computation of the internal reactions. The later represents 77% of the com-
putational time while the construction of the hyper-reduced matrix represents 2% and
the solving time of the linear system represents 3%. The rest of the time is used for
other tasks. Accordingly, the size of the RID plays an important role on the speed-up.
This shows the robustness of the method despite the moderate speed-up, equal to 5.5.
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In order to increase the speed-up less modes in the HR model have been used, as well
as less RID elements. In the present section, a hyper-reduced model, denoted HROM5-
9-73 created with the 5 FOM simulations and made of 9 displacement modes, 73 stress
modes modes and a RID of 8,694 DOFs is considered. This model is used to simulate the
problem represented by point 2 in Figure (14). Figure (17) shows the RID now used, to
be compared with that of HROM5-27-50 (Figure 10). The much-reduced RID contains
2, 898 nodes instead of 8, 511 nodes as in HROM5-27-50. Numerical investigations show
that the speed-up now equals 14.5. Enhancing the speed-up, however, leads to a larger
error. With model HROM5-9-73 is around 30% instead 15% for model HROM5-27-50.
Although the error of the stress field is twice larger, the error on the estimate for the limit
load (about 47.1MPa with the FOM model) is less than 1%.

Figure 17: RID of HROM5-9-73.

(a) (b)

Figure 18: Error on the von Mises stress, for test points 2 in the parameter space. Each marker of the
following graph represents a gauss point, the x-axis represents the reference value and the y-axis the value
computed with the proposed method. Red point are related to the prediction in the RID. Blue points
are related to the gappy POD for the stress recovery over Ω. (a) HROM5-27-50. (b) HROM5-9-73.

8. Conclusion

An extension to the hyper-reduced method based on a reduced integration domain
has been introduced. It should be emphasized that “snap-back” phenomena [34], which
go beyond the scope of this paper, are not addressed in the present work. It accurately
predicts buckling and yields accurate limit-loads, in the context of finite strain and elasto-
plastic behaviour. The method has been tested on an academic problem, that of a 2D
hyper elastic buckling beam. In spite of a ill-conditioned tangent matrix, the algorithm
shows good convergence properties, making use of the hyper reduced arc-length algorithm.
Various constructions of the reduced base have been considered through the example of
a straight pipe under internal pressure. The different contributions of each linear system
to be solved have been taken into account to determined the best construction method of
the reduced base. It has been found that the best ones uses standard simulation outputs
to train reduced bases. Moreover, an error indicator based on the stress field has been
proposed, and coupled with a greedy algorithm in order to choose snapshots that are
simulated via finite element model. Using this estimator the domain of validity of the
model has been determined for an elbowed pipe in a four dimensions-parametric space.
The hyper-reduced model shows excellent results not only when interpolating data but
also, for extrapolating (at least in a limited range beyond the training set). Our results
show the efficiency and robusteness of the proposed strategy in terms of accuracy of the
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solution and of stability of the hyper-reduced algorithm. A promising result as well is the
speed-up, between 4 and 14 in the examples studied.

9. Appendix: RID construction

To detail the construction of the RID, it is convenient to introduce two mathematical
operators. The first one collects the degrees of freedom over a sub-domain Ωα and is
defined by:

C(Ωα) = {i ∈ {1, . . .N},
∫

Ωα

φφφ2
i dΩ > 0}

The second one aggregates the support of the FE shape functions having their index in a
set L:

V(L) = ∪i∈Lsupp(φφφi), V(L) ⊂ Ω

The extension of this subdomain by adding n layers of connected elements reads:

(V ◦ C)n ◦ V(L).

The operator V is adapted to displacement fields, which are approximated by FE shape
functions. A similar operator may be introduced for stresses. When collecting simulation
data related to stresses, in the matrix Qσ, all stress components at all Gauss points are
stored for all elements. Each row of Qσ is related to one component of the stress tensor,
at a Gauss point in an element. Then, the DEIM algorithm applied to Vσ gives a set
of indices of components of the stress tensor, at some Gauss points, in some elements.
Denoted this set Pσ and denote Vσ(Pσ) the support of the elements related to set Pσ.
Then, Vσ(Pσ) is a subdomain of Ω.

In the second example, the RID construction is:

ΩA = (V ◦ C)2 ◦ (V(P) ∪ Vσ(Pσ)) ∪ V ◦ C ◦ V({io})

where io is the degree of freedom used to plot the load-displacement curve in Figure 7.
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Résumé en français

Une méthodologie est développée afin de classer les défauts en fonction de leur morphologie et
de la réponse mécanique induite par une sollicitation.
L’approche proposée est assez générale et s’appuie sur les opérateurs morphologiques et la
décomposition harmonique sphérique comme moyen de caractériser la géométrie des pores. Pour
caractériser l’impact mécanique de ces pores la distance de Grassman est évaluée à partir de
calculs FFT.
Cette approche est implémentée et détaillée sur un ensemble de pores de gaz piégés. Ces derniers
sont observés à l’aide de tomographie à rayons X effectuée sur des joints soudés. Ces pores
altèrent significativement la fiabilité mécanique de ces structures.
L’espace des réponses morphologiques et mécaniques est d’abord partitionné en clusters en util-
isant un clustering de type ”k-medoids” et les fonctions de distance associées.
La seconde étape consiste à utiliser des réseaux neuronaux denses pour associer la représentation
morphologique d’un défaut à sa réponse mécanique.
Il apparait que la méthode fournit des prédictions mécaniques précises si les données d’apprentissage
contiennent un nombre suffisant de défauts représentant chaque classe mécanique. Pour ce faire,
l’ensemble original de défauts est complété par des techniques d’augmentation des données. Les
formes de pores générées artificiellement sont obtenues à l’aide de la décomposition harmonique
sphérique et d’une décomposition en valeur singulière de la fonction de distance signée des pores.
Une discussion est menée sur les applications possibles de la présente méthode et sur la façon
dont les médöıdes ainsi que leur réponse mécanique peuvent être utilisés. Ces médöıdes peuvent
servir de base réduite pour les techniques d’hyper-réduction, dans lesquelles les effets mécaniques
des défauts et des structures sont décorrélés. Une étude statistique est ensuite menée sur la base
de données de pores. Les calculs hyper-réduits sont réalisés avec le médöıde trouvé en utilisant le
réseau de neurones. Ce dernier prend en entrée les caractéristiques morphologiques d’un défaut
et lui associe la base réduite la plus adéquate.

4.1 Introduction

In this chapter welded structures undergoing cyclic loadings are considered. Defects such as gas
pores can be formed and trapped in the fusion zone during laser welding. These defects can
significantly affect the mechanical reliability of the welded joint. More precisely the number
of loading cycles (even with low amplitude) can dramatically decrease when pores are present
since they play the role of stress concentrators [MAD, 2002, Fomin and Kashaev, 2017]. The
structure’s lifetime decrease is even bigger as the pores are close to the surface or to another
defect [Fan et al., 2003]. Similarly the size of the observed defect as a direct impact on the lifetime
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of the structure [Murakami, 2002]. Indeed below a threshold size, the impact of the defect on
the fatigue lifetime is null and then the bigger the defect the shorter the lifetime. Moreover
the shape of defects has also a direct impact on the local mechanical response of the structure
and so on the lifetime [Fan et al., 2003, Qian et al., 2016]. Current nondestructive inspection
technologies are able to detect micro-voids in a mass production context. Finite element analysis
can therefore be used to assess the lifetime of an observed component via image-based modeling
of digital twins. Unfortunately, running a simulation per component entails a huge and generally
unaffordable computational cost. In addition, voids do not admit a parametric modeling. In
this chapter, a numerical method is proposed to study the impact of defects on the mechanical
response of a welded joint. It is based on machine learning for the classification of pores coupled
with model order reduction techniques in the framework of ROM-net methodology [Daniel et al.,
2020]. The latter decrease the computational cost of each simulation related to an image-based
modeling. To tackle the reduction of nonparametric defects, a multiscale construction proposed
in [Lacourt, 2019, Lacourt et al., 2020] of the reduced basis is used, although no scale separation
is assumed when computing the mechanical response of the structure. Some empirical modes are
representing the structure behaviour and other empirical modes are related to the defect-induced
local fluctuations. They are then assembled to simulate a defective joint. This methodology
has proved its worth. The improvement that is proposed in this section is to avoid computing
the local RB and to use machine learning techniques to selected the most appropriate existing
one which is present in a database. The computation of the local RB represents an important
part of the multiscale HROM method in terms of computation time hence even larger speed up
would be obtained by avoiding the computation of the local RB.
The following section is a study submitted to Journal of Mathematics in Industry (JMI) with
the following DOI : https://doi.org/10.1186/s13362-021-00114-7. Compared to the submitted
version, one paragraph (page 7 of the article) has been added as well as an appendix (page 13 of
the article), in order to give more details on the training of the neural network (text highlighted
in blue). Results are unchanged.

4.2 Mechanical assessment of defects in welded joints : mor-
phological classification and data augmentation
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Abstract We develop a methodology for classifying defects based on their morphology and induced me-
chanical response. The proposed approach is fairly general and relies on morphological operators (Angulo
& Meyer, 2009) and spherical harmonic decomposition as a way to characterize the geometry of the pores,
and on the Grassman distance evaluated on FFT-based computations (Willot, 2015), for the predicted
elastic response. We implement and detail our approach on a set of trapped gas pores observed in X-ray
tomography of welded joints, that significantly alter the mechanical reliability of these materials (Lacourt
et al, 2020). The space of morphological and mechanical responses is first partitioned into clusters using the
“k-medoids” criterion and associated distance functions. Second, we use multiple-layer perceptron neuronal
networks to associate a defect and corresponding morphological representation to its mechanical response. It
is found that the method provides accurate mechanical predictions if the training data contains a sufficient
number of defects representing each mechanical class. To do so, we supplement the original set of defects by
data augmentation techniques. Artificially-generated pore shapes are obtained using the spherical harmonic
decomposition and a singular value decomposition performed on the pores signed distance transform. We
discuss possible applications of the present method, and how medoids and their associated mechanical re-
sponse may be used to provide a natural basis for reduced-order models and hyper-reduction techniques, in
which the mechanical effects of defects and structures are decorrelated (Ryckelynck et al, 2020).
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1 Introduction

Our ability to design and produce materials with desired properties has dramatically improved, and com-
monly integrates sensors, control, simulation data and computerized predictions (see reviews in [1,2,3]).
These techniques combine material imaging [4] and digital-twins frameworks [5] for manufacturing and
evaluating material properties. In mechanics, numerous applications concern control, defects and anomaly
detection [6] or fatigue-design of materials [7,8]. Machine learning algorithms, notably, have been proposed in
the aeronautical field [9], fabrication process [10] or pipelines applications [11], and have been combined with
numerical computations to study defects in ball bearings [12]. Simulation-driven machine learning methods
based on existing mechanical models are especially attractive as they avoid the explicit parametrization of
defects being modeled. Assessing and certifying the mechanical properties of structures containing defects
nevertheless requires advanced micro-mechanical models, as well as non-destructive imaging techniques such
as X-ray tomography [13] or ultrasonic measurements [14].

This is due to the recognition that composites (or, for that matter, porous) microstructures, often ex-
hibit widely-varying effective responses, as demonstrated by homogenization theories [15,16] and in optimal-
design problems [17]. A broad range of mechanical properties may be achieved by tailoring the inner geomet-
rical arrangement of microstructures, as surveyed in e.g. [18,19,20]. Aside for a few rigorous results obtained
for particular geometries, e.g. the Eshelby [21] or Vigdergauz [22] inclusions, the effect of the shapes of pores
on the overall mechanical response is difficult to quantify even for linearly-elastic media, and usually involves
sophisticated mathematical tools. In plane strain, the presence of corners [23], up to the limiting case of a
crack tip [24], bottlenecks [25,26], and high-aspect ratios are known to be mechanically-determining factors,
as highlighted by studies based on conformal mappings [27] or radon transforms techniques [28].

Although these rigorous and (semi-)analytical results are useful as guides, they are restricted to linear
media under plane strain or stress, with notable exceptions [29,30]. They do not allow one to explore the
links between morphology and mechanical response, important in industrial problems. The latter often
involve inverse-design problems within a given class of microstructures or morphologies, that results from
manufacturing constraints [31,32]. In energetic granular materials, for instance, particles shape and size
depend on crystallography and may be controlled by surface treatment, to some extent [33]. Furthermore, the
overall material response alone, characterized by an effective stiffness tensor, is insufficient for determining
the full mechanical response. The local response, sensitive to the internal microstructure arrangement of a
given material system, must be accounted for. Damage localization, which leads to brittle or ductile fracture
in composite materials, is driven by the local stress state in the microstructure, which is itself a complex
result of the load distribution within the material.
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Lately, shape statistics based on morphological operators have been devised [34,35] and so-called shape
spaces [36] have gained attraction as a versatile method for quantifying shapes, seen as points in a high-
dimensional metric space representing Fourier-based expansions. On a sphere, the Laplace-Beltrami eigen-
functions have an explicit form in terms of spherical harmonics [37,38], which can then be used to represent
continuous shapes [39], seen as deformation of the sphere, or as mapping between a sphere and an arbi-
trary shape. This decomposition is especially useful for modeling data on a regular grid (i.e. on images), in
computer graphics [40], medical image analysis [41] or material science [42]. In the context of mechanics,
sophisticated image analysis approaches based on machine-learning methods have already been employed to
detect, and more generally classify, “critical” defects as exemplified in several industrial problems [11,10].
Other approaches have sought to infer the mechanical response of materials using temperature fields [43].
These methods can be supplemented by transfer learning [44] and shape explorations techniques to deter-
mine mechanically-relevant criteria for assessing the effect or criticality of defects.

The purpose of the present work is twofold. First, a methology is developed to explore and classify defects
based on shapes and mechanical response, using morphological transforms, spherical harmonics, and the
Grassmann distance. To illustrate our approach, a set of defects previously observed in tomography images
of welded joins is analyzed to serve as a model problem. Second, use is made of machine learning methods
to compare and correlate the resulting classifications. The adequacy of the method for detecting critical
defects, and other possible applications, are discussed, as well as future works, such as those exploring the
dependency of our results on the choosen metrics.

The present article is organized as follows. Sec. (2) presents the set of defects used as the basis for
the present study, whereas Sec. (3) deals with the various distances used for clustering, including full-field
mechanical computations. Our main results, which concern the mechanicaly-based clustering of shapes, are
given in Sec. (4). These results are compared to those obtained after data augmentation of the initial set of
defect in Sec. (5). We conclude in Sec. (6).

2 Data set of defects and goal of the present work

The present work is based on a data set of defects obtained in L. Lacourt’s PhD thesis [45]. These defects
have been extracted from a segmented X-ray tomography image of welded joints, see [46]. The data set
consists in 1288 defects in total, each containing between 500 and 100, 000 voxels. Smaller defects present
in the original image have been discarded in the present study. Slightly more than half of the defects are
close to spheres, whereas the rest of them display various convex and non-convex shapes (Fig. 1), see [47].

Fig. 1 Views in three dimensions of three non-spherical defects, segmented from the tomography image of welded joints.

After segmentation, each defect is embedded in a bounding box in 3D, with edges aligned with the axis (e1,
e2, e3) of a Cartesian coordinates system. The shape has been rotated so that its first ans second principal
axis are aligned with e1 and e2. A reflection with respect to the plane (e1, e2) is carried out so that the
highest absolute coordinate along e3 is positive. Finally, a homothety is performed so that the dimension
of the shape along axis e1 is 1/4 that of the embedding box. For all shapes, the embedding box is a cube
containing L3 = 803 voxels. Accordingly, the shapes have varying volume fractions, but the same diameter
with respect to their bounding box, . This is so that cracks or pores with very high aspect ratios can be
discretized with similar resolution.

The effects of such defects on the mechanical response of a structure can be efficiently estimated using
the two-scales hyper-reduction method proposed in [46] for fatigue. In this method, schematized in Fig. (2),
the effect of the overall structure and of defects are dissociated, whereas interactions between the two are
taken into account by the far-field [48,49].

Fig. 2 Schematic view of the hyper-reduction method. The structure and defects are treated separately. Orange: fusion
zone; grey: base metal. Areas in white are not meshed. In the classical method [46], numerical computations are performed
for each new defect (rectangle a). In the proposed approach, the pre-computed mechanical response of a nearest defect is
used (rectangle b).
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In practice, a reduced basis is computed for the structure without defect and another one for the defect.
A “global reduced basis” is then computed by transferring both reduced basis on the real mesh containing
the defect and concatenating them. Using this reduced basis, a “hyper-reduced” simulation is performed
on a reduced domain of integration (Fig. 2, orange and grey regions). As such, numerical computations are
carried out on a sane structure without pores, and on isolated defects, rather than on the entire structure
containing defects. Generally speaking, the method is most efficient when dealing with complex and time-
consuming constitutive-laws. Speed-up as high as 102 and 103 have been obtained in fatigue in mechanics,
for elastoplastic behavior, and about 10 in linear-elastic cases [50].

While the hyper-reduced method improves on standard finite element techniques, computing the reduced
basis of defects can be time-consuming. This point needs to be addressed in industrial applications where
the effect of defects must be quantified in near real-time. Often, the pores shape is random, but follows a
certain probability distribution that needs to be estimated. The mechanical responses of shapes close to one
another need not be computed twice, in general. However, as noted in Sec. (1), while different shapes may
yield similar mechanical response, small difference such as the presence of corners, could induce different
mechanical responses. The goal of this work is to investigate whether one may pick an appropriate reduced
basis for a defect by learning the mechanical responses of a set of other defects, and how they relate to
their shapes. To do this, the mechanical computations for the fields around a defect (rectangle a, Fig. 2)
are replaced by statistical learning, making use of pre-computed mechanical fields used as training data
(rectangle b, Fig. 2). The full scheme in Fig. (2) will not be implemented in the present work. Instead we
focus on the task in rectangle (b) of the same graph, and consider linear elasticity as a proof of concept for
our approach.

3 Mechanical and morphological distances

In the following, we make use of a Fourier-based scheme with rotated discrete Green operator [51] to carry
out mechanical computations. The method uses periodic boundary conditions, relevant for quasi-isolated
defects and has been found to be efficient when compared to finite element, both in terms of memory compu-
tations, accuracy and CPU time [52]. For each defect, six FFT computations with prescribed overall strain
ε are carried out, corresponding to the six independent strain loadings, in our case Ei = 〈εi〉, (i = xx, xy,
xz, yy, yz, zz) with Ej = 0 (j 6= i). Accordingly, the data consists in a fourth-order tensorial field, denoted
localization tensor in homogenization theories, which has both minor and major symmetry. Figure (3) shows
as an example two strain components obtained under uniaxial extension. The fluctuation of the strain field
inside the pore depends on the choice of the Green operator and has no physical meaning, except for the
mean of the strain in the pore. Accordingly, the strain field inside the pore is replaced by its mean in all
mechanical computations.

(a) (b)

Fig. 3 2D cut of two longitudinal and shear strain components εyy (a) and εyz (b) for the middle defect in Fig. (1), with
axis ey and ez vertical and normal to the figure. Macroscopic strain loading: Eyy = 〈εyy〉 = 1% (color scale in percent).

In the rest of this study, use is made of the Grassman distance [53,54] schematized in Fig. (4), for
evaluating the dissimilarity between mechanical responses.

Fig. 4 Schematic representation of the Grassmann distance for the mechanical clustering.
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Consider two matrices V1, V2 ∈ RN ×RN representing the full-field mechanical response of two defects,
where N = 6 is the number of applied macroscopic loadings and N = 6L3 are the number of strain
components in all voxels for a given loading. The Grassman distance between V1 and V2 is given by:

dg(V1, V2) = ‖Θ‖F =

√∑

i

θ2i , (1)

where ‖ · ‖F is the Frobenius distance and Θ is a diagonal matrix with eigenvalues θi obtained from the
singular value decomposition:

V t1 · V2 = W1 · cos (Θ) ·W t
2, W t

1 ·W1 = W t
2 ·W2 = I, (2)

and I is the identity, and W1, W2 ∈ RN×RN are orthogonal matrices. Distance (1) measures the dissimilarity
between two defects by considering the subspaces (Grassman manifolds) generated by the set of strain
responses for each loading to the two defects [55]. The distance is appropriate for mechanical responses
with the same number of applied loadings. In the more general case of time-varying loadings, with different
number of time steps for each defect, the Schubert distance [56] may be used instead.

The Grassmann distance involves a singular value decomposition performed on matrix V t1 ·V2 (see Eq. 2)
of size N×N . These computations become time-consuming when a large number of objects (more than 1, 200
here) must be compared to one another. To improve on the computation of the Grassmann distances, we
define a subdomain Ω of size (L/2)3, included in the bounding box, and containing all defects. We define two
alternative pseudo-Grassmann distances, computed as in (1) with the data for V1 and V2 restricted to either
Ω or its boundary ∂Ω. A representation of these two subdomains is given in appendix 7.1. The computations
of the pseudo-Grassmann distances in Ω and ∂Ω is much more efficient as the bounding box Ω has a volume
eight times smaller compared to the entire domain. Histograms for the (pseudo-)Grassmannn distances
between 400 defects are represented in Fig. (5a). The distribution of distances for the pseudo-Grassmann
distance computed using ∂Ω is strongly different from that of the Grassmann distance, indicating that the
former can not be substituted to the latter. However, this is not so for the pseudo-Grassmann distance
computed on the entire subdomain Ω which is close to the results obtained for the Grassmann distance, see
Fig. (5b). Accordingly, in the rest of this study, the Grassman distance is evalued on the subdomain Ω only.

(a) (b)

Fig. 5 Histograms of the Grassmann distances for defects 1 − 400 (a) and corresponding point-cloud representation (b).
The distance is estimated using the volume of the surrounding box Ω, the faces ∂Ω of the surrounding box or computed
using the entire domain.

The shape of defects is quantified by two means, a morphological and spectral decomposition. Consider
first the morphological transform based on the signed distance function:

f(x) =

{
d(x, ∂P) if x ∈ Pc,
−d(x, ∂P) if x ∈ P,

(3)

for a pore P, with boundary ∂P . This distance is obtained by propagating a distance function with quasi-
Euclidean metric, and leads to spherical iso-lines far from the defect. Figure 6 shows the distance field of
defect 9 in midplane z = 2l.

Fig. 6 Distance field for defect 9 in midplane z = l/2.
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The signed distance fields for two defects P1, P2 is vectorized into two arrays denoted F1 and F2 ∈ RL
3

and we denote “morphological distance” the distance:

dm(P1,P2) = ‖F1 − F2‖2, (4)

where ‖ · ‖2 is the Euclidean distance.

We also define a distance based on the spectral decomposition for the Laplace-Baltrami expansion [42,57].
This expansion can be conveniently written in terms of spherical harmonics in the case of the sphere [58].
The latter form a basis for square-integrable functions on the unit sphere and this decomposition can
accordingly be used to characterize star-shaped defects. We briefly recall how this spectral decomposition
is estimated on digital images (the reader is refered to [58] for a detailed discussion). The decomposition
reads, in spherical coordinates (θ, φ):

xk(θ, φ) =
∑

0≤`, |m|≤`
cmk`Y

m
` (θ, φ), Ym` (θ, φ) =

√
2`+ (`−m)!

4π(`−m)!
Pm` cos(θ)eimφ, (5)

where P are Legendre polynomials and xk are the coordinates (k = 1, 2, 3) of points along the surface of the
defect. In practice, a set of 25× 25 pixels are picked along the surface of the object, distributed uniformly
along all directions from the center, providing values for the xk(θ, φ). The center is the minimial of the
signed distance function. The double sum in (5) is truncated to |m| ≤ ` ≤ `max = 10 and a least-square
optimization procedure is used to determine the coefficients cmk`. The latter are used to define the distance:

dsh(P1,P2) =

√∑

k`,m

‖cmk,`(P1)− cmk,`(P2)‖2. (6)

Conversely, Eq. (5) can be used to reconstruct a shape, for a given set of values cm` . Two shapes and their
associated reconstitution are shown in Fig. (7).

(a) (b)

Fig. 7 Two shapes and their reconstruction with spherical harmonics (right). a) A cube. b) The middle defect in Fig. (1).

The difference between the two are a consequence of the truncation of the spectral decomposition, and
of the way interpolation points on the surface are chosen, i.e. uniformly distributed along all directions on
the sphere rather than uniformly-distributed on the surface of the object. This reconstruction is imperfect
and only captures some of the features of each shape.

4 Clustering analysis

In this section, we consider the k-medoids clustering algorithm, which provides us with a set of classes as
well as a most-central point (the “medoid”) in each class, that is present in the data set. The classification
algorithm, which minimizes distances to the medoids, is based on the matrix of distances between points,
and does not require the coordinates of each point [59]. Additionaly, since the medoid is present in the data
set, its pre-computed reduced basis can be used in hyper-reduced methods for taking into account defects
that belong to a known mechanical class.

We split the data set into two groups, a training set of 936 defects and a testing set containing 508
defects. The training set corresponds to the data collected on two-third of the welded joint and has been
obtained on two tomography images. The test data corresponds to the rest of the welded joint, and has
been obtained by a third tomography. Accordingly, the data in the two sets are not randomly drawn from
a collection of defects, but instead are obtained from different sources, as would be expected in industrial
applications. Our results are shown in Fig. (8) for the Grassman distance as well as the two shape distances.
The points cloud representation in three dimensions is obtained by multidimensional scaling [60].
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Fig. 8 Clustering provided by the k-medoids algorithm using the Grassmann, morphological and spherical harmonics
distances. Medoids on right.

Partly-overlapping clusters on this representation may actually be separated when additional dimensions
are considered. In this view with reduced dimension, the data form a continuous cloud of points. The
medoids (right) exhibit spherical, oblate and non-convex shapes. The amount of information contained
in the multidimensional scaling is plotted as a function of the dimension in Fig. (9a) in the case of the
Grassman distance, showing a strong decrease of the amount of unknown information up to d ≈ 8 and a
slower decrease after that. The effect of the number of clusters is shown in Fig. (9b), which represents the
intra-clusters distance, i.e. the sum of the distances of each shape to its medoid. This distance decreases
with the number of clusters. The “typical” number of clusters corresponding to this decrease is about 5, at
which point the curve displays an elbow.
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(a) (b)

Fig. 9 a) Amount of information recovered by the multi-dimensional scaling vs. number of dimensions, for the Grassman-
based distance (see Fig. 8). b) Intra-clusters distance vs. number of clusters.

Shape clustering as determined by the k-mdeoids analysis can not be used directly to assign a defect to
its mechanical cluster, as shown in Fig. (10). This figure represents the confusion matrix that summarizes
the number of shapes that belong to a given mechanical cluster and to a cluster based on either the
morphological of spherical harmonics distance.

Fig. 10 Confusion matrix showing the number of shapes in Grassmann-based clusters with respect to clusters based on
the morphological distance (left) and the spherical harmonics distance (right)

Cluster labels are the same as in Fig. (8). The color scale indicates a concentration of shapes from a
geometrical cluster into a specific mechanical cluster.

Assigning a mechanical cluster to a shape based on its morphological or spherical-harmonics cluster
would result in 74% and 87% erroneous labeling, respectively. Instead, we consider a classifier based on
a dense neural networks (Fig. 11). The input to the network are the distances to the medoids based on
the morphological distance. The network is trained to predict the label of the cluster corresponding to the
Grassmann distance.

Fig. 11 Classifier methodology.

The trained neuron network has 3 hidden layer of 15 neurones each. The model optimizes the log-loss
function given in eq.7).

LlogLoss = −
M∑

c=1

yo,c.log(po,c) (7)

Where M is the number of classes, y is a binary indicator and p the predicted probability of the observation
o being of class c. The activation function that have been chosen for each layer is a rectified linear function.
The training set is split into two different sets : a standard training set to fit the parameter representing 90%
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of the initial training set and a validation set to assess that the model also fit data which haven’t been see
which represents 10% of the initial training set. The validation set is also used to impose an early stopping
criterion. The loss curves of the training phase are given in appendix 7.2. Fig. (12) shows the confusion
matrix representing the predicted and true labels, that summarizes the assignement by the network of a
mechanical cluster for the various shapes, either in the training or test sets. The percentage of misclassified
shapes by cluster is given on the right column.

a)

b)

c)

d)

Fig. 12 Left column: confusion matrices for the training (rows a, c) and testing sets (rows b, d) between Grassmann
clustering (true label) and the label predicted by the dense neural network using the signed (rows a, b) and spherical
harmonics distances (rows c, d). Right: percentage of misclassified shapes in each cluster.

To quantify these results, we define an error on the training set etr = Mtr/Ntr as the ratio of correct
label predictions Mtr divided by the total number of predictions Ntr in the training set. We consider likewise
a similarly-defined error ete for the testing set. We also introduce a second error criterion e′tr, equal to the
mean of the proportion of misclassified shapes in each (non-empty) mechanical cluster for the training data,
and likewise e′te for the testing set. These various errors highlight sub-optimal performances of etr = 12.8%,
e′tr = 10.3% for the training data, as well as ete = 17.9% and e′te = 25.7% for the testing set. Higher errors
etr = 16.2%, e′tr = 18.9%, ete = 29.1% and e′te = 34.1% are observed when using spherical harmonics instead
of the morphological distance (Fig. 12, rows 3 and 4). These results may be attributed to the small number
of defects in some classes, as will be investigated in the next section.
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5 Data augmentation

To improve on the results presented in Sec. (5), we focus on data augmentation. Both the morphological
and spherical harmonics distances are defined as Euclidean distances of vectors in multi-dimensional spaces.
As explored in [34], these types of representations can be used for data interpolation as well. Let us consider
the linear interpolations (0 ≤ s ≤ 1):

F (s) = sF (P1) + (1− s)F (P2), cmk`(s) = s cmk`(P1) + (1− s)cmk`(P2), (8)

with respect to two shapes P1 and P2, where F and cmk` are defined in Eqs. (3), (4) (6) and (5). The vectors
F (s) and cmk`(s) provide continuous interpolations between the two shapes, as illustrated in Fig. (13).

Fig. 13 Interpolation between two shapes. a) Morphological distance. b) Spherical harmonics distance.

An alternative approach consists in using a singular value decomposition on the matrix containing as
columns the spherical harmonics decomposition cmk`(Pi) for all defects Pi. Considering as an example the first
three singular values, a new shape may be represented as a point in a three-dimensional space. By paving
this space with a set of points, one generates new defects that interpolate between the shapes corresponding
to the three singular values. The set of points representing shapes in the coordinates system corresponding
to the first three singular values is represented in Fig. (14a). Fig. (14b) shows random shapes generated in
this space.

(a) (b)

Fig. 14 a) Shapes in the three first singular components space. b) Examples of shapes in the three first singular components
space.

We now generate 3, 128 artificial shapes with the above data augmentation techniques. The linear inter-
polation method in Eq. (8) is used preferentially on set of shapes that belong to mechanical clusters with
few shapes. We then classify the shapes according to the k-medoids method, as described in Sec. (4). Results
corresponding to the mechanical, morphological and spherical harmonics clustering are shown in Fig. (15).
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Fig. 15 Clustering provided by the k-medoids algorithm using the Grassmann, morphological and spherical harmonics
distances, after data augmentation. Medoids on right.

The points cloud are much more dense and homoegneous as compared to the same results obtained with-
out data augmentation (Fig. 8) and suggest the latent space is better represented. Despite this, mechanical
clusters can not be predicted using either the morphological or spherical harmonics clustering (Fig. 16):
their respective errors read ete = 77% and ete = 67%.
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(a) (b)

Fig. 16 Confusion matrices showing the number of shapes in the clustering based on the Grassmann distance and that
based on either the morphological (a) and spherical harmonics (b) distance, after data augmentation.

Again, use is made of a classifier based on a dense neural network that is trained to predict the mechan-
ical cluster using distances to the medoids. Fig. (17) shows the confusion matrix obtained for the training
and testing sets, when either the morphological or spherical harmonics distances are considered. The pro-
portion of misclassified shapes by cluster is shown on the right.
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Fig. 17 Left column: confusion matrices for the training (rows 1, 3) and testing sets (rows 2, 4) showing the true Grassmann
clustering label vs. the label predicted by the neural network using the morphological (rows 1, 2) and spherical-harmonics
distance (rows 3, 4). Right: percentage of misclassified shapes in each cluster after data augmentation.

In the case of the morphological distance, the errors for the training set read etr = 5.7%, e′tr = 5.3%
and ete = 5.8%, e′te = 18.9% for the testing set, When spherical harmonics are considered, errors are slighly
higher. They read etr = 8.4%, e′tr = 8.3% for the training data and ete = 9.1%, e′te = 27.1% for the testing
set (see Tab. 1 for a summary of the various errors.)

No data augmentation Data augmentation
e(%) e′(%) e(%) e′(%)

Morphological distance (train) 12.8 10.1 5.7 5.3
Morphological distance (test) 17.9 25.7 5.8 18.9
Spherical harmonics (train) 16.2 18.9 8.4 8.3
Spherical harmonics (test) 29.1 34.1 9.1 27.1

Table 1 Percentage of wrongly-assigned labels, averaged over all shapes, or over mechanical clusters, for the training data,
with either the morphological or spherical harmonics distances, using data augmentation.

In any case, these errors are significantly lower than that obtained without data augmentation (Fig. 12),
highlighting the benefits of data augmentation. Furthermore, the errors of the neural network consist most
often in predicting a label which is a neighbor of the correct mechanical cluster, with similar mechanical
response. This materializes into a band-diagonal structure for the confusion matrices.
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6 Concluding remarks

In the present work, data-analysis and clustering methods have been proposed for classifying the mechanical
properties of porous defects. Although the approach is restricted to linear elasticity, it is fairly general and
can be adapted to nonlinear or time-dependant mechanical responses. While we use conventional clustering
and data analysis tools, the methods rely on distances defined in the space of the defects mechanical
responses (i.e. a 3D tensorial field) and on geometrical distances based on a morphological transform and
a spectral decomposition. Such distances allow us to explore a wide space of defects, and perform data
augmentation, without the need for explicit parametrization of shapes. Our methodology is detailed on a
set of defects observed in welded joints. It is found that reliable results on clustering require a large number
of shapes in each mechanical class. Furthermore, a simple neural network was able to link mechanical and
geometrical clusters with a satisfying accuracy, within the space of defects close to that observed in welded
joints. Nevertheless, the method applies to arbitrary shape, and may be extended to other types of defects.
These results should be useful in particular for a refined two-scale hyper reduction method, as outlined in
the introduction, where mechanical properties of defects may be selected on the fly, without solving balance
equations.

Possible improvements and future works include hierarchical clustering, extension of the spherical har-
monics decomposition to non-star shaped defects, and data augmentation with shape extrapolation, instead
of interpolation. In particular, the spherical harmonics decomposition provides a natural basis for data
augmentation as well as mechanical clustering.
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7 Appendix

7.1 Subdomain definition

To speed up the Grassmann distance between defect a subdomain Ω of size (L/2)3 has been defined. The
Grassmann distance have been evaluated on Ω and ∂Ω. Figure 18 illustrates the position of ∂Ω around a
spherical defect in cut view.

Fig. 18 Cut view of the subdomain ∂Ω around a spherical defect.

7.2 Neuron network training

A sum up of the loss and accuracy curves are given in Fig.19. The loss function that have been used is the
log loss function described in eq.7.
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Fig. 19 Loss and validation for morphological distance ((a) without data augmentation, (c) with data augmentation) and
spherical harmonics distance ((b) without data augmentation, (d) without data augmentation).
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33. E. Kaeshammer, L. Borne, F. Willot, P. Dokládal, and S. Belon, “Morphological characterization and elastic response
of a granular material,” Computational Material Science, vol. 190, p. 110247, 2021.

34. J. Angulo and F. Meyer, “Morphological exploration of shape spaces,” in 9th International Symposium on Mathematical
Morphology and Its Applications to Signal and Image Processing, vol. 5720 of Lecture Notes in Computer Science,
(Groningen, Netherlands), pp. 226–237, Springer, 2009.

35. S. Velasco-Forero and J. Angulo, “Statistical shape modeling using morphological representations,” in 20th International
Conference on Pattern Recognition, pp. 3537–3540, IEEE, 2010.

36. M. Kilian, N. J. Mitra, and H. Pottmann, “Geometric modeling in shape space,” in ACM Transactions on Graphics
(TOG), vol. 26, p. 64, 2007.
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and machine learning,” Comptes Rendus. Mécanique, vol. 348, no. 10-11, pp. 911–935, 2020.

51. F. Willot, B. Abdallah, and Y.-P. Pellegrini, “Fourier-based schemes with modified green operator for computing the
electrical response of heterogeneous media with accurate local fields,” International Journal for Numerical Methods in
Engineering, vol. 98, no. 7, pp. 518–533, 2014.

52. J. Gasnier, F. Willot, H. Trumel, D. Jeulin, and J. Besson, “Thermoelastic properties of microcracked polycrystals.
Part I: Adequacy of Fourier-based methods for cracked elastic bodies,” International Journal of Solids and Structures,
vol. 155, pp. 248–256, 2018.

53. D. Amsallem and C. Farhat, “Interpolation method for adapting reduced-order models and application to aeroelasticity,”
AIAA Journal, vol. 46, no. 7, pp. 1803–1813, 2008.

54. R. Mosquera, A. Hamdouni, A. El Hamidi, and C. Allery, “POD basis interpolation via inverse distance weighting on
grassmann manifolds,” Discrete and Continuous Dynamical Systems – S, vol. 12, no. 6, pp. 1743–1759, 2018.

55. R. Shigenaka, B. Raytchev, T. Tamaki, and K. Kaneda, “Face sequence recognition using grassmann distances and
grassmann kernels,” in The 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1–7, IEEE, 2012.

56. K. Ye and L.-H. Lim, “Schubert varieties and distances between subspaces of different dimensions,” SIAM Journal on
Matrix Analysis and Applications, vol. 37, no. 3, pp. 1176–1197, 2016.

57. E. Garboczi, “Three-dimensional mathematical analysis of particle shape using X-ray tomography and spherical har-
monics: Application to aggregates used in concrete,” Cement and Concrete Research, vol. 32, no. 10, pp. 1621–1638,
2002.

58. L. Shen, H. Farid, and M. McPeek, “Modeling three-dimensional morphological structures using spherical harmonics,”
Evolution, vol. 63, no. 4, pp. 1003–1016, 2009.

59. H. Park and C. Jun, “A simple and fast algorithm for K-medoids clustering,” Expert Systems with Applications, vol. 36,
no. 2, Part 2, pp. 3336–3341, 2009.

60. I. Borg and P. Groenen, Modern multidimensional scaling: Theory and applications. Springer Science & Business
Media, 2005.



4.3 Application to a simple welded structure

4.3.1 Goals

The aim of this section is to put into practice the reduced basis selection method that has been
detailed in the previous section 4.2. Based on the morphological shape of the defect, a neuronal
network is recommending the most appropriate reduced basis. This selected reduced basis is
then used for a hyper reduced computation. Such recommending system is termed ROM-net
[Daniel et al., 2020].Here the idea is not to measure the performance of the classier but rather
to evaluate the results of the hyper reduced predictions.

4.3.2 Structure and mechanical problem

The structure that is used for this example is a welded joint. It is represented with two steel
plates linked by a weld (represented in red in Fig.4.1b). This structure is obtained with the
sofware zDefects. The welded zone is randomly defined, it is not perfectly centered and is not
perfectly symmetric either. Its curves are obtained with Bézier functions. The dimensions of
the struture are 2.5mm heigh, 20mm length and a 5mm extrusion is then done (see Fig.4.1a).
A defect is inserted at the center of the welded zone. The element used for the mesh are linear
tetrahedrons and the number of degree of freedom N varies with the shape of defect that is
considered. It is around N = 160 000 (Fig. 4.1b).

(a) (b)

Figure 4.1: (a) Sketch of the two plates and the welded joint (b) 3D mesh of the welded structure
and a cut view with the localisation of the defect (red square).

The two plates are elastic as well as the welded zone. In this part of the study the small strain
hypothesis is admited.



Strain : ε∼= 1
2(∇∼u+∇∼u

T )
Constitutive law : σ∼= C∼∼

: ε∼
Second invariant of the stress tensor : J2(σ∼) =

√
3
2 dev(σ∼) : dev(σ∼)

Equilibrium : div(σ∼) = 0

(4.1)

The Young modulus of the welded zone is E = 190GPa and for the two plates is equal to
E = 210GPa. In both cases the Poisson coefficient is equal to ν = 0.3. Concerning the boundary
conditions, the left side of the structure is fully clamped while a horizontal displacement of 2mm
is imposed on the right side.

4.3.3 Methodology

The global methodology has been defined in the section 4.2. In this section, for the sake of
simplicity, the computation of the reduced basis and the computation of the whole structure
have been done with the finite element method. The complete computation chain is illustrated
in Fig.4.2.
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Figure 4.2: Online scheme.

For this application the defect number 2790 (which has a rather complex shape) is considered. Its
medoid is the defect number 67 The selection of its medoid has been done with the methodology
detailed in section 4.2 (see Fig.4.3).

Figure 4.3: Selection of the associated medoid for defect 2790 with machine learning techniques.

The global modes can be computed in advance and once for all since the global structure is
always the same. Here, local defects do not change effective material properties. Similarly
the local modes will not have to computed since it is the ones of the selected medoid (already
computed) that will used (Fig.4.4a, Fig.4.4b).

(a) (b)

Figure 4.4: (a) Visualisation of one of the global modes, (b) visualisation of one of the local
modes.

The local reduced basis of the defect V d is introduced. The reduced basis has been computed
thanks to a computation on a representative elementary volume (REV) and has been transferred
on the true complete mesh (containing the true defect) afterwards. Identically the reduced basis
of the structure without defect V s has been transferred on the real mesh with defect afterward.
The reduced basis used for the hyper reduced computation of the structure with defect is the
concatenation of these two reduced basis V tot = [V s, V d] as proposed in [Lacourt, 2019, Lacourt
et al., 2020].
In order to improve the results during the hyper reduced computation, a finite element correction
is applied. It consists in applying the displacement, solution of the hyper reduced computation,
on the frontier of the reduced integration domain and used this displacement as Dirichlet bound-
ary conditions for a small classical finite element problem. The correction phase is rather fast
since the finite element problem is made on a reduced integration domain. This correction en-
ables to minimize the error due to the fact that a different reduced basis from the one of the
considered defect is used. At the frontier of the RID the field of the real reduced basis and the
one of the medoid are quite similar.
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4.3.4 Elastic behaviour

Firstly a single defect is considered : defect number 2790. An elastic computation is launched
on the latter. The von Mises stress fields seem identical with the hyper reduced order model
(HROM) and with the full order model (FOM) (Fig.4.5).

Figure 4.5: Von Mises stress field of defect 2790 with the FOM (left) and with the HROM
(right).

A graphic comparing the von Mises stress at each Gauss point for the two different simulations
is made in order to evaluate the error between the two models (Fig. 4.6).

Figure 4.6: Comparison of the von Mises stress between the FOM and the HROM.

Fig. 4.6 shows that the error is inferior to 25% and illustrates that the method works well
in this case for the defect 2790.
A statistical study is then made in order to have a more global view of the method. The error
is defined in equation 4.2.

ησ =
´

Ω |∆σ
VM |´

Ω σ
VM
FOM

, where ∆σVM = σVMFOM − σVMHR , (4.2)

The so developed method enables to associate a reduced basis to a new defect based on morpho-
logical criterion. With the purpose of seeing the assets of this method, three groups of defects
are defined. Defects for which the right medoid has been found, defects for which a wrong
medoid has been selected and a group of defects for which always the same medoid (randomly
picked) has been taken. The last group is very important since it does not use the classifier. To
the contrary for the group of defect that has been badly classified, it has been shown in section
4.2 that the wrong medoid is usually a neighbour of the right medoid. Similar results have been
obtained in [Daniel et al., 2020] when considering random temperature fields as input images
for hyper-reduction modelling. Therefore the mechanical response for this group is probably not
as bad as if a random medoid was taken. It is the third group that will enable to see whether
this hypothesis is right or not. Fig. 4.7a shows the probability density function on the error ησ
whereas Fig. 4.7b represents the cumulated probability of the error ησ.

Fig. 4.7a shows that the use of such a classifier enables to have errors in average equal to 2.1%
when the right medoid is selected, 4.47% when the classifier gives a wrong medoid and 12.38%
when a random medoid is used. One can notice that the larger the RID around the defect the
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(a) (b)

Figure 4.7: (a) Probability density function for the error ησ (b) Cumulated probability for the
error ησ.

lower the variability of boundary conditions when computing a finite element correction around
the defect, because displacement fluctuations are decreasing functions of the distance to the
defect. With the cumulated probability show in Fig. 4.7b it is possible to evaluate the 95%
quantiles. The following values are obtained 6.70%, 10.79% and 22.51% respectively for the well
classified defects, badly classified defects and when always the same random medoid is taken.
These graphs clearly show that the error is much lower when a wrong medoid is given by the
classifier than when a random medoid is used. As supposed before this is due to the fact that
when the classifier gives a wrong medoid, it is a neighbour medoid that is selected.
One tries to know whether a relation between the morphological distance between a defect and
its medoid and the error between the FOM and the HROM exists. Therefore a graphic is drawn
with the morphological distance of the defects to their medoid in x axis and the error ησ in y
axis (Fig. 4.8). The defects that have been selected to draw this graph are the defects that have
been well classified. The following notation is introduced dm(Pki ,mk) where dm corresponds to
the morphological distance (detailed in section 4.2), Pki is the defect i associated to the medoid
of the cluster k and mk is the medoid of the cluster k.

Figure 4.8: Error ησ as a function of the morphological distance.

An imperfect relation seems to exists betweeen the morphological distance to the medoid and
the error made during the HR computation. By applying the least mean square method to
obtain the better linear relation (shown in red on Fig. 4.8), the mean relative error between
the linear relation and the data and is equal to 28.0%. The R2 score whose formula is given in
eq.4.3 and is equal to 0.51.

R2 = 1− RSS

TSS
(4.3)

RSS =
∑
i

(ησi − fi)2 (4.4)

TSS =
∑
i

(ησi − η̄σ)2 (4.5)

Where R2 is the coefficient of determination, TSS is the total sum of squares and RSS is
sum of squares of residuals. fi is the value of the error estimation with the linear fit and η̄σ is
the average error estimation of all data. The relation being not perfect, this method can not
be seen as an error estimator. Nevertheless an interesting indication is given with this graph.
The found relation seems to be close to a lower bound which is less conservative for the error
estimation.
When HROMs are used, large speed ups are obtained if N3 � N . Where N represents the
number of modes contained in the reduced basis (here N = 7) and N the number of dof of the
FOM. As explained in 4.3.3 a finite element correction is applied in order to improve the results.
Hence to have large speed ups the following condition is required : (N3 +F)� N . With F the
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number of dof of the RID which is around 8 500. In the studied case the following inequality is
obtained :

N
(N3 + F) ≈ 18 (4.6)

This ratio is not so hight therefore it is not possible to achieve large speed ups as it can be seen
on Tab. 4.9.

CPU time Speed up
FOM 2445

Local RB computation 368.9
HROM 462.57 5.28

HROM Medoid 93.67 26.10

Figure 4.9: Table of speed ups

4.3.5 Plastic behaviour

In this section the welded joint is supposed to have an elasto plastic behaviour (without hard-
ening). Both plates stays with an elastic behaviour. The modifications due to plasticity are not
taken into account for the construction of the reduced basis of the defects. The reduced basis
of the defect only contains the elastic modes. It is supposed that the plasticity is very local
and that the finite element correction is sufficient to correct the local modifications due to the
adding of the plasticity. The plastic behaviour of the welded joint is described by eq.4.7.

Strain : ε∼= 1
2(∇∼u+∇∼u

T )
The elastic/plastic partition is supposed : ε∼= ε∼

e + ε∼
p

Constitutive law : σ∼= C∼∼
: ε∼

e

Second invariant of the stress tensor : J2(σ∼) =
√

3
2 dev(σ∼) : dev(σ∼)

Yield stress : R0
Yield function : f(σ∼, R) = J2(σ∼)−R0

Equilibrium : div(σ∼) = 0

(4.7)

The yield stress of the welded zone is equal to R0 = 200MPa.
Fig. 4.10 shows the cumulated plasticity field for the FOM and the HROM.

Figure 4.10: Cumulated plasticity field of defect 2790 with FOM (left) and HROM (right).

The value of the cumulated plasticity is rather small but it corresponds to the classical elasticity
limit of 0.2%.
A graph comparing the von Mises stress and the cumulated plasticity for both simulations (FOM
and HROM) is made in order to evaluate discrepancies between the two models (Fig. 4.11a and
Fig. 4.11b)

The error is less than 25% and shows that the so developed methodology works well for
defect 2790 and that it can be extended to plastic case as long as the plastic field is very local.
A statistical study is then carried out with the purpose of having a more global view of the
method. The error on the plasticity is defined in equation 4.8.

ηε =
´

Ω |∆ε
pcum|´

Ω ε
pcum
FOM

, where ∆εpcum = εpcumFOM − ε
pcum
HR , (4.8)

The probability density as well as the cumulated probability are shown on Fig. 4.12a and
Fig. 4.12b.

It can be seen on Fig. 4.12a that the use of such a classifier enables to have average errors
of 23.37% when the right is selected, 32.76% when the classifier makes is wrong and 45.0%
when the same random medoid is always taken. The 95% quantile shown in Fig. 4.12b give the
following results 42.00%, 52.79% and 66.30% respectively for the well classified, badly classified
and when the same medoid is used. Once again, as for the elastic case, it can be seen that when
the classifier gives a wrong medoid the error is smaller than when a random medoid is taken.
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(a) (b)

Figure 4.11: (a) Comparison of the cumulated plasticity and (b) of the von Mises stress between
the FOM and the HROM.

(a) (b)

Figure 4.12: (a) Probability density function for the error ηε (b) Cumulated probability for the
error ηε.

The errors obtained in the plastic case are much larger than in the plastic case.
Similarly to what have been done in the elastic case, the hypothesis of a relation between the
error ηε obtained during the HROM simulation and the morphological distance to the medoid
is investigated (Fig. 4.13).

Figure 4.13: Error ηε as a function of the morphological distance.

As for the elastic case, an imperfect relation seems to exist between the error ηε and the
morphological distance. Once again the least mean square method is applied to obtain a linear
relation. The mean relative error between this relation and the data is equal to 27.9% and the
R2 scare is equal to 0.22.

CPU time Speed up
FOM 6927

Local RB computation 368.9
HROM 523.8 13.2

HROM Medoid 154.9 44.8

Figure 4.14: Tableau des speed ups dans le cas plastique

Speed ups are larger when plasticity is taken into account. Since the ratio between the
modes, the dof of the full mesh and the dof of the RID is still the same, it is not possible to
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achieve large speed ups.

Since the effect of plasticity is directly linked with the loading history, it is interesting to apply
a non monotonous loading to the structure. The point C is spotted on Fig. 4.15a, it corresponds
to the location where the plasticity is the most important. One cycle of traction, compression
and return to the initial position is applied on the structure as indicated on Fig. 4.15b.

(a) (b)

Figure 4.15: (a) Position of point C where the plasticity is the most important (b) loading cycle
function.

Since the point C belongs to the RID, it is possible to draw all the components of the stress
and strain tensors during the computation for this point (Fig. 4.16).

Figure 4.16: Cycle de chargement mesuré au point C.

For this study case of defect 2790, the loading curves for every components are very similar
between the FOM and the HROM.
Speed ups obtained for the non monotonous load are detailed in Tab 4.17.

CPU time Speed up
FOM 70370

Local RB computation 368.9
HROM 1706 41.2

HROM Medoid 1338 52.6

Figure 4.17: Tableau des speed ups dans le cas plastique

Speed ups are very similar to the one obtained with the monotonic loading for the HROM
with medoid selection approach. The speed up of the standard HROM method is large since
training of the local reduced basis is preformed on the first elastic step which represent a small
fraction of the cyclic loading.
Larger speed ups can be obtained by reducing the RID. Nevertheless this method is directly
link to the size of the RID. The smaller the RID the closer to the defect the frontier of the RID
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is. Since the BC that are applied are relative to these of the medoid and not to the considered
defect if the frontier of the RID are to close of the defect, bad results will be obtained. A trade
of between speed and accuracy has to be made.
When the RID is very large the impact of the global modes of the defect is not useful since the
finite element correction is sufficient to capture precisely the fluctuation around the defect. But
in this case barely no speed up will be obtained since most of the dof are located around the
defect. To the contrary if the RID is small enough it is necessary to use the modes contained in
the reduced basis of the selected medoid. This has been highlighted with the naive model.

4.3.6 Conclusion and outlooks

Results obtained for the elastic case are satisfying. The mean error and the 95% quantile when
the classifier gives the right answer are respectively of 2.23% and 6.67%. The error when the
classifier is wrong are still inferior to these of obtained when always the same random medoid
is used. This is due to the fact that a neighbour of the right medoid is taken.
Error in the plastic case are larger.The mean error and the 95% quantile when the classifier
gives the right answer are respectively of 23.37% and 42.0%. It is very likely that increasing the
number of cluster would give much better results for the HROM computation. As the tendency
shows, for both elastic and plastic cases, the higher the distance to the medoid the larger the
error. The use of divisive hierarchical clustering might be also a good approach to avoid the
problematic due to the high number of spherical defect. This would increase the variety of the
medoids. The morphological and mecanical diversity of the cluster so formed should improve
the HROM computation predictions.
Another interesting approach would be to apply to the medoid not the six elastic loading but
rather the loading that the gauss point located where the defect should be in the sane structure
sees. This is the methodology that is used in [Lacourt, 2019, Lacourt et al., 2020]. The so
constructed reduced basis should be more appropriate for the HROM computation.
It is important to keep in mind that this section played the role of proof of concept.
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Chapter 5

Machine learning for the assessment
of non parametric cracks in
structures
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Résumé en français

En mécanique des milieux continus, la prédiction de la nocivité des défauts nécessite de résoudre
approximativement des équations différentielles partielles avec des conditions aux limites données.
Dans ce chapitre, les conditions aux limites sont apprises pour de petits volumes locaux dénotés
”Tight Little Volumes” (TLV) qui entourent les fissures dans des volumes 3D. Une approche non-
paramétrique basée sur les données est utilisée pour définir l’espace des défauts, en considérant
des défauts observés par tomographie à rayons X. La dimension de l’espace ambiant pour les
images observées des défauts est énorme. Un schéma non-linéaire de réduction dimensionnelle
est proposé afin de former un espace latent réduit pour la morphologie des défauts et leurs ef-
fets mécaniques locaux dans le TLV. Les autoencodeurs multimodaux permettent de mélanger
des données morphologiques et mécaniques. Il contient un seul espace latent qui est ici appelé
espace latent mécanique. Mais cet espace latent est alimenté par deux encodeurs. L’un est lié
aux images des défauts et l’autre aux champs mécaniques dans le TLV. Les variables latentes
sont des variables d’entrée pour un décodeur géométrique et pour un décodeur mécanique. Dans
ce travail, les variables mécaniques sont des champs de déplacement. L’autoencodeur sur les
variables mécaniques permet de réduire la taille du modèle par projection.
La principale nouveauté de ce document est une approche de sous-modélisation assistée par
l’intelligence artificielle. Ici, pour les images de fissure de l’ensemble de test, les conditions lim-
ites de Dirichlet sont appliquées au TLV. Ces conditions limites sont prévues par le décodeur
mécanique avec un vecteur latent prévu par l’encodeur morphologique. C’est dans ce but
qu’un ”mapping” est effectué par réseau de neurones pour convertir les variables latentes mor-
phologiques en variables latentes mécaniques. Ce ”mapping” est dénoté ”direct mapping”. Un
”inverse mapping” est également formé pour l’estimation de l’erreur par rapport aux prédictions
morphologiques.
Les erreurs sur les prédictions mécaniques sont proches de 5% avec des accélérations de calcul
allant jusqu’à 120 fois plus vite. Les variables latentes prédites par les images des défauts sont
propices à une meilleure compréhension des prédictions.

5.1 Introduction

First models to predict failure of cracked structures have been designed more than 50 years ago.
Firstly, they were proposed in the framework of linear fracture mechanics and then extended
to plasticity and viscoplasticity through nonlinear fracture mechanics about 30 years ago. The
Stress Intensity Factor (SIF) helps describing the state of the stress as well as the level of stress
singularity around the crack tip [Irwin, 1957]. The SIF plays a major role when linear elastic
fracture is considered. It is also widely used for the prediction of fatigue life of structural com-
ponents. The importance of SIF is such that numerous analytical, experimental and numerical
methods are available for its determination. Many analytical and semi-analytical solutions are
available [Tada et al., 2000, Henshell and Shaw, 1975]. Nevertheless these solutions are valid
for simple cracked configurations only. The computation of the SIF can also be done thanks to
numerical methods such as the FEM.
The inverse square root singularity which exists at the crack tip, makes it difficult to evalu-
ate the SIF. Various numerical techniques exist to compute the SIF, one can cite displacement
extrapolation technique (DET) [Barsoum, 1977], interior collocation technique [Jogdand and
Murthy, 2010], interaction integral (I-integral) [Shih et al., 1986] and J-integral [Rice, 1968].
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The J-integral method is widely used nowadays. The SIF computation is particularly usefull
when fatigue crack propagation is studied. Though these previous methods make it possible to
estimate the criticality of a crack, their executive processes are usually complex and difficult.
Indeed a large number of DOFs is needed around the crack front and leads to large meshes
and important computation times. Moreover the SIF directly depends on the input conditions
including the applied loadings, geometrical boundaries, as well as crack sizes and shapes among
other things. In order to avoid these large computations, one could make surrogate models to
evaluate the SIF but the large number of inputs needed (such as applied loadings, geometrical
boundaries, as well as crack sizes and shapes) makes it difficult to parametrize the response.
Machine learning approaches can be a way to overcome this problem. More precisely deep
learning methods using image processing techniques have been used to study cracks [Jang et al.,
2019, Bae et al., 2021]. Various models are used for deep learning applications and one of the
most popular is the Convolutional Neural Networks (CNNs). Their major advantage is that
they need less computation than standard neuronal networks since their neurones are sparsely
connected. Moreover some processes, such as ”pooling”, reduce the number of parameters to fit
[LeCun et al., 2015]. CNNs have proven themselves in the field of image recognition and have
been extended to the field of defect detection. For example a deep CNN have been used in [Cha
et al., 2017] to spot cracks in concrete structures.
Other CNNs have been trained to detect crack under water in the framework of nuclear inspec-
tion videos [Chen and Jahanshahi, 2018]. In the cited work the CNNs detects whether a crack
exists or not, but the model does not estimate its criticality. The precise evaluation of the degree
of damage of the structure is necessary in order to rule on the safety of the structure. Here, the
proposed approach couples CNN to finite element predictions, via image-based estimation of
boundary conditions. It paves the way for a new transfer learning of knowledge from mechanics
of material to computer vision for defect harmfulness assessment.
The rest of this chapter is taken from a manuscript submitted to International Journal for
Numerical Methods in Engineering with the following DOI : https://doi.org/10.1002/nme.6905.

5.2 Deep Multimodal autoencoder for crack criticality assess-
ment
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Abstract

In continuum mechanics, the prediction of defect harmfulness requires to solve approximately
partial differential equations with given boundary conditions. In this contribution boundary
conditions are learnt for tight local volumes (TLV) surrounding cracks in 3D volumes. A
non-parametric data-driven approach is used to define the space of defects, by considering
defects observed via X-Ray computed tomography [1, 2]. The dimension of the ambient space
for the observed images of defects is huge. A nonlinear dimensionality reduction scheme is
proposed in order to train a reduced latent space for both the morphology of defects and
their local mechanical effects in the TLV. A multimodal autoencoder [3] enables to mix
morphological and mechanical data. It contains a single latent space, termed mechanical
latent space. But this latent space is fed by two encoders. One is related to the images of
defects and the other to mechanical fields in the TLV. The latent variables are input variables
for a geometrical decoder and for a mechanical decoder. In this work, mechanical variables are
displacement fields. The autoencoder on mechanical variables enables projection-based model
order reduction as proposed in [4]. The main novelty of this paper is a submodeling approach
assisted by artificial intelligence. Here, for defect images in the test set, Dirichlet boundary
conditions are applied to TLV. These boundary conditions are forecasted by the mechanical
decoder with a latent vector predicted by the morphological encoder. For that purpose, a
mapping is trained to convert morphological latent variables into mechanical latent variables,
denoted “direct mapping”. An “inverse mapping” is also trained for error estimation with
respect to morphological predictions. Errors on mechanical predictions are close to 5% with
simulation speed-up ranging for 3 to 120. We show that latent variables forecasted by the
images of defects are prone to a better understanding of the predictions.

Keywords: Multimodal autoencoder; CNN; Transfer Learning; Finite Element Method;
Digital Twin

1. Introduction

The assessment of cracked structures is still an active field of research in mechanical
engineering [5]. Charts [6] can be used to estimate some quantities of interest on cracked
structures but they are not accurate enough and are focused on specific cases. Finite element
methods can be used to improve results and to deal with arbitrary crack configurations.
Chart-based and other equivalent methods give a criterion for deciding if a component is
safe or unsafe. Although this is sufficient in practice for deciding if a component must be
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rejected, these approaches are less robust than methods making use of full-field numerical
computations, that provide more information as well as an understanding of the mechanical
phenomena involved. Nevertheless such an approach leads to prohibitive computation times
due to the fact that the crack needs to be meshed very finely. In this work focus is made on
planar cracks in 3D volumes.

Moreover mechanical data are expected to fulfill partial differential equations (PDE) and
neural networks have been proposed to solve partial differential equations in [7]. Machine
learning algorithms have recently been proposed to analyse the criticality of defects for
pipelines [8], in the aeronautical field [9] and for fabrication process [10]. Besides machine
learning and numerical simulation have proven their complementarity for example for the
study of defect in ball bearings [11]. The Simulation-driven machine learning approach is
very attractive when we have mechanical models at our disposal. The use of machine learn-
ing techniques enables us to get rid of the parametrization of the object to model. This is
crucial when considering defects observed by imaging techniques.

Besides the efficiency of multimodal autoencoder (MMAE) have recently been shown [12,
13]. The aim of this method is to use different inputs such as sound, text or images for
example and reconstruct them after having compressed them in a common smaller latent
space [3]. In the online phase a single input channel can be used to reconstruct all the output
channels, this is denoted the cross-modal reconstruction.

In the present work, we show that morphological data and mechanical data related to
defects are sharing a common latent space designed using MMAEs. In this paper a digital
twin of a specimen containing non parametric cracks is considered. A multimodal autoen-
coder is trained with two different channels being the 2D crack image and its associated 3D
displacement field. In the online phase the 2D image is used as input to reconstruct the 2
channels. The reconstructed displacement field is then transferred on the external surface of
a tight local volume (TLV) and used as boundary condition of a small finite element prob-
lem. Since the boundary conditions are learnt, a full-field numerical computations on the
entire system is not required. This results in better speed-up compared to a submodelling
approach where additional simulations at the global scale have to predict these boundary
conditions. Moreover, the bounding box in a submodel approach must be rather large so
that the crack-induced fluctuations on the boundary can be neglected. An accurate predic-
tion of the boundary conditions, including for small subdomains, is among the main goals
of the presently-developed MMAE model. Also, contrary to surrogate models, we carry out
classical finite element computations in the subdomain. This approach provides much more
information on the mechanical response induced by the crack, that may in turn be interpreted.

The reconstructed 2D image will be used to define an error indicator. We then deter-
mine whether a linear relationship exists between the 2D image reconstruction and the error
committed on 3D displacement field reconstruction.

2. Dataset and mechanical problem

In this work a tensile test is simulated on a specimen containing a crack inside the bulk
material. The size of the crack compared to that of the specimen is not negligible and may
have an impact larger than 20% on the limit load. The position of the crack varies slightly
in the middle plane of the specimen but the shapes and sizes of the cracks vary greatly.

The defect dataset that is used in this study are random 2D planar cracks. They are gen-
erated by taking slices of 3D defects obtained from tomography [14, 2]. The resulting defects
are therefore 2D images representing non-parametric cracks. Hence it is important to keep in
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mind that this dataset is purely artificial and is not based on actual images of cracks. A large
variety of cracks is obtained with various shapes and, for some of them, the 2D image contain-
ing the defect contains more than one crack. Since every crack is created with a 2D image,
they are all planar cracks. A histogram measuring how close the defects are to a convex shape
is represented in Fig. (1). The convexity criterion is the ratio between the perimeter of the
crack, seen as a shape in a plane, and that of the convex envelope, included in the same plane.

Figure 1: Histogram of the ratio between the perimeter of the convex envelope surface (P convex) and that of
the shape (P true).

As shown in Fig. (1), a large percentage of the cracks are strongly non-convex. About
25% have a convexity ratio larger than 1.5. These cracks are inserted in a 3D specimen shown
in Fig. (2a). The information contained at the ends of the full specimen is poor and the
mesh is coarse therefore partial differential equations and their finite element approximation
are evaluated on the domain delimited by the red box shown on Fig. (2.a). This box is a
parallelepiped of dimension 200×100×34 mm3. The mesh contains about 170, 000 degrees of
freedom (but varies with the crack shape). The elements used are reduced linear tetrahedrons.
The ratio between the size of the elements on the ends and near the crack is around 40. The
Hausdorff parameter [15] used to control the remeshing is equal to 0.3. Fig. (2b) and Fig. (2c)
show the meshed zone of interest of the specimen and a cut view to see the size of the mesh
around the crack.
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Figure 2: (a) Traction specimen example, (b) meshed zone of interest, (c) cut view of the meshed zone of
interest.

In the remainder of this study, the cracks are in the middle plane but the crack is not
necessarily centered in the box. Fig. (3) shows three images of cracks and below them the
insertion of the crack in the 3D structure for defects 4, 21 and 22 (note that only the free
surfaces are shown). For common crack shapes such as a penny shape, the limit load can be
analytically evaluated in such simple structures. But for non-parametric random cracks or for
structures containing multiple cracks that interact with each other, analytical results cannot
be obtained in general. Finite element simulation is an option to compute those quantities
though it usually leads to huge computation time. Despite the fact that the defect is large
enough to have an important effect on the structure, it needs to be meshed finely since its
size is much smaller than the whole structure. Hence elements around the cracks are much
smaller than elements on the border of the domain Ω as shown in Fig. (3).

Figure 3: 2D cracks and insertion in 3D specimen for (a) defect 4,(b) defect 21 and (c) defect 22.
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Moreover problems such as volumetric locking and non convergence might appear due to
the localization at the crack front [16, 17]. In this study a nonlinear problem that involves
finite strains and plasticity is considered. The Zset software [18, 19, 20, 21] is used. The
primal variable of finite element models in mechanics is the displacement field. In the finite
element (FE) model [22], the shape functions of the FE basis are denoted by (φj)

n
j=1 with

n the number of discretization nodes. It is convenient to introduce the functions φφφi = φjek
where i = (j − 1) × d + k, i = 1, ..., N , j = 1, ..., n, k = 1, ..., d, d is the dimension of
the problem and ek refer to the canonical vectors of a Cartesian coordinates system. The
approximation of the displacement with the shape functions (φφφi)

N
i=1 reads:

υυυ(x) = υυυ0(x) +
N∑

i=1

φφφi(x)ui, x ∈ Ω, (1)

where N = n × d is the number of degrees of freedom (DOF) of the structure, υυυ0 is a given
displacement field that fulfills Dirichlet boundary conditions, υυυ is the approximate finite
element solution and u = (ui)

N
i=1 the vector of the related degrees of freedom. For this work

a large strain formulation which uses a logarithmic strain measurement is used [23, 24]. The
mechanical equations for the prediction of the displacement field then read:

Strain gradient decomposition: F∼ = I∼+∇∼u (2a)

Logarithmic strain: E∼ =
1

2
log(F∼

T .F∼) (2b)

Elastic/plastic partition is supposed: E∼ = E∼
e + E∼

p (2c)

Constitutive law in logarithmic space: T∼ = C∼∼ : E∼
e (2d)

Second Piola-kirchhoff stress: S∼= P∼∼ : T∼ (2e)

Second invariant of the stress tensor: J2(S∼) =

√
3

2
dev(S∼) : dev(S∼) (2f)

Yield stress: R0 (2g)

Yield function: f(S∼, R0) = J2(S∼)−R0 (2h)

Relation with global Cauchy stress: σ∼= det(F∼)−1F∼ · S∼ · F∼
T (2i)

More details on the projector P∼∼ and the dual stress T∼ of the logarithmic strain E∼ are given

in [23, 24]. The material considered here is similar to aluminium. The Young modulus used
for this simulation is E = 70, 000 MPa, the Poisson coefficient is ν = 0.3 and the elasticity
limit is R0 = 400 MPa. Hardening is not accounted for in this study. This is the reason why
it is desirable to assist a submodel construction by artificial intelligence, via the selection of
approriate boundary conditions.

In order to save useful data around the crack, a parallelepipedic box is defined and is
refered to as the encoding mesh. With the goal of designing a common ambient space for me-
chanical data, the solution of the full specimen is transferred on it. Since the encoding mesh
is much smaller and located at the same place as the crack, only the field around the crack is
transferred on it. The encoding mesh, containing 64× 64× 64 nodes, is defined using regular
hexahedral elements and therefore is equivalent to a 3D image with each element representing
a voxel. This allows using classical computer vision tools. Object detection techniques [25]
can be used to obtain the cracks position. In the present work, all cracks are located in
the same subdomain. Cracks are obtained from a database of 2D images and inserted in
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the subdomain randomly, so that they are not necessarily centered in the subdomain. The
zone of interest where the crack is located is accordingly always the same. To treat a more
general problem where the crack position in the entire domain and its orientation were ran-
dom, additional parameters defining the position and orientation of the subdomain would be
required. Fig. (4) illustrates the process needed to obtain the encoded field that contains the
information around the crack.

Figure 4: (a) 2D image representing the crack, (b) insertion of the 2D crack in the 3D mesh, (c) E∼22
field, (d)

position of the encoding mesh in the full structure and (e) the encoding mesh with the transferred information.

From left to right the figure 4 shows the 2D image representing the crack, the insertion of
the 2D crack in the 3D mesh, the logarithmic strain along the vertical axis obtained with a
finite element simulation (denoted E∼22

as in eq.2), the position of the encoding mesh in the
full structure and the encoding mesh containing the transferred information. Simulation on
the full specimen are only made to generate the input arrays for the training of the MMAE.
During the online phase the MMAE generates a displacement field on the encoding mesh
thanks to an input image of a crack. This displacement field on the encoding mesh is then
transfered on a subdomain extracted from the full mesh.
The mechanical equations on the displacement u(t) read:

div[σ∼(u(t))] = 0 applied on Ω

u(t) = u0(t) applied on ΓBC

σ∼(u(t)) · u = 0 applied on Γ

(3)

where Ω represents the whole domain, ΓBC represents the surface where the Dirichlet bound-
ary conditions are applied and Γ represents the free surfaces where no boundary conditions
are applied (including the free surface of the crack lips). The tensor σ(u(t)) is obtained with
the relation detailed in Eq. (2). In order to solve the partial differential equation described in
Eq. 3, a quasi-static approach is used. The scheme shown on Fig. (4) is applied on the whole
dataset of 2D images to generate 3D displacement fields expressed on the encoding mesh. The
defect dataset contains 1,055 2D images. Finite element predictions of the displacement field
have been performed for each defect. The mechanical dataset contains all the displacement
fields associated to their respective 2D images. They are saved on the encoding mesh. The en-
coding mesh is represented as a array of dimension 5. The first three dimensions represent the
spatial dimensions (x, y, z). The fourth dimension refers to the considered field either Ux, Uy
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or Uz. The fifth dimension, denoted t, is the time. In this study the time is assimilated to the
incremental loading parameter and varies from 0 to 1. The displacement field is saved along
the encoding mesh in a 5-dimensional array T (j) so that T (j)[x, y, z, i, k] = U

(j)
i (x, y, z, tk)

where i ∈ {x, y, z} and U
(j)
i (x, y, z, tk) is the displacement in direction i at point (x, y, z) and

time tk for defect j. The tight local volume (TLV) is a part of the full mesh. It is extracted
around the crack where the needed information is located. The TLV model gives access to
all standard mechanical variables by using finite element modelling. This approach enables
transfer learning in the sense that all the modelling capabilities of the finite element method
do not need to be retrained and constitutes a huge asset of the developed method. As such,
the model does not need to be trained again when new quantities of interest or new element
types are used.

3. Multimodal autoencoder and transfer learning

As explained in [26], feed forward neural network (FNN) is a classical architecture in
machine learning.A deep FNN contains many layers of artificial neural networks. The data is
given to an input layer and then pass through some hidden layers. The last layer is called the
output layer and gives the prediction. The weights w make a full the connection between the
neurons from different layers. During the prediction phase, the data flows in one way from the
input layer to the output layer. In the training phase, the global error defined by the mean-
squared difference between the target value and the FNN output will be back-propagated
through the hidden layers. This step is performed in order to update the weights, where the
objective is to minimize the global error. An activation function is attached to each neuron.
The output of each neuron is computed by multiplying the outputs from the previous layer
with the corresponding weights. For the neuron j in the layer k, the data of the previous layer
k − 1 is summed up and then altered by an activation function. The output of the neuron j
in layer k is computed as:

okj = f

(
Nk−1∑

i=1

wijo
k−1
i + bk−1

i

)
, (4)

where Nk−1 is the number of neurons in the previous layer k− 1, wij is the weight connecting
neurons i and j, ok−1

i is the output of the neuron i in layer k − 1. A common choice for the
activation function is the rectified linear function (“ReLu”):

f(x) =

{
x, if x ≥ 0,

0, otherwise.
(5)

The specific architecture of the FNN, such as the number of layers and the number of neurons
in each layer, has to be determined according to the complexity of the dataset. The global
error, also called loss function or network performance, is defined according to the difference
between the network prediction and the target data. The mean squared error can be used to
measure the loss (but many other loss function can be used):

E(w) =
1

No

No∑

i=1

[oi(w)− ti]2, (6)

where No is the number of outputs, oi is the ith output, w is the vector that contains the
weights of neural network, and ti is the ith target value. Training a feed forward neural network
is an optimization problem, where the global error is treated as the objective function.
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One way to minimize the global error is to use the gradient descent algorithm to update
the weighs [27] with the following:

wn+1 = wn − µ∂E(wn)

∂wn
. (7)

The term ∂E(wn)
∂wn is evaluated with the back propagation [28]. In the training process, many

iterations are required to update the weights until the stopping criteria is fulfilled, where
one iteration is also known as one epoch. Since 2D images and 3D displacement fields are
considered in this work use of convolutional neuron networks is made. Good results for 2D
and 3D images have been obtained with this method [29]. Details on convolutional layers are
given in [4].

Autoencoders enable to compress the input information in a much smaller latent space
and reconstruct it afterwards. This allows one to define a small latent space in which all the
information is condensed [30]. Many applications of this bottleneck effect exist: clustering the
data, denoising data or else exploring the smaller space. An autoencoder employs an input
layer and an output layer connected by one or more hidden layers. The output layer has the
same number of nodes (neurons) as the input layer. Its purpose is to reconstruct its inputs
(minimizing the difference between the input and the output) instead of predicting a target
value Y given inputs X . Therefore, autoencoders are selfsupervised learning models. They
do not require labeled inputs to enable learning [31]. The feature space F should have lower
dimensionality than the input space X . An autoencoder consists of two parts, the encoder
and the decoder, which can be defined as transitions Φ and Ψ such that:

Φ : X → F ,
Ψ : F → X ,

Φ,Ψ = argmin
Φ,Ψ

||X − (Ψ ◦ Φ)X||2,

dim(F)� dim(X ).

(8)

Multimodal autoencoders (MMAE) category, which is a specific branch of autoencoders,
are detailed in [3]. The main idea of MMAE is to take various inputs from different nature
(such as 2D images and 3D images) and to compress them in the same latent space before
rebuilding them. One of the main asset of MMAE it to remove some input channel during
the online phase in order to reconstruct all of the channels [32] as the red border suggests on
Fig. (5).

8



Figure 5: Multimodal autoencoder representation.

xi are the different input channels, x̃i are the different output channels and Li is the size of the
latent space. The aim of this article is to take advantage of this multi-modal aspect in order
to train a mapping between morphological data and mechanical predictions as a surrogate
model for fast mechanical prediction. A standard convolutional neuron network could be
used to associate a 3D displacement field to a 2D image. But with a MMAE approach it is
possible to interpret how features are represented in the latent space. Moreover an innovative
point of the study is to use the reconstructed 2D image in order to create an error indicator
depending on the training set to evaluate whether the 3D displacement field is accurate or
not. The proposed MMAE has four modalities, in the sense that it has four encoders and four
related decoders. This architecture is motivated by the dimension of the displacement field
on the encoding mesh. Indeed this input contains the spatial information (3 dimensions), the
temporal information and the field information (Ux,Uy or Uz) which results in an array of
dimension 5. In order to reshape the dimension of the array into the usual dimensions of data
in computer vision, the three displacement fields are treated with three different modalities,
using three dedicated encoders and decoders.

The outputs of these three mechanical encoders are connected to the three inputs of the
mechanical decoders via a mechanical latent space by using dense layers, termed mechanical
dense layers, behind and in front of the latent layer. The mechanical latent space is a three
dimensional space. It has latent variables for each dimension of the displacement field and
there is no connection between these dimensions in the mechanical dense layers in front of the
3D latent space and behind it. The dimension of the latent space is 600. There are 200 latent
variables per component of the displacement field. Latent variables related to each dimension
of the displacement field are stacked together to create a common mechanical latent space.

The morphological encoder and decoder are connected to the mechanical latent space by
two additional dense layers, termed multimodal dense layers, behind and in front of the three
dimensional latent space. The inputs of the morphological encoder, being the 2D image, is
80×80 whereas for the displacement field is of size 64×64×64×5(×3). The (×3) is between
parenthesis to express that the three components of the displacement fields have separated
modalities. This architecture is represented on Fig. (6). The 4 encoders and decoders are
coupled together by the multimodal dense layers, named left fully connected and right fully
connected in Fig. (6). This architecture is non conventional and constitutes a important point
of this paper.
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Figure 6: Modified MMAE approach and error indicator to generate displacement field on TLV.

During the training phase of the MMAE we have noticed that the 3D displacement chan-
nels are the hardest to fit. Hence a transfer learning is accordingly carried out in two steps,
the first step being used to train separate autoencoder for each modality and the second
step being used to train the weights of the muldimodal dense layers. In the second step, the
weights of convolutional layers and those of the mechanical dense layers are kept as constant.
Then we know the latent variables of the proposed MMAE at the end of the first step of
the transfer learning strategy. We also know morphological latent variables. Hence the mul-
timodal dense layers, left fully connected and right fully connected in Fig. (6), are trained
separately. The left fully-connected layer is trained to map the morphological latent coordi-
nates, expressed as a 70-components vector, to the mechanical latent coordinates, expressed
as a 600-components vector. The right fully-connected layer is trained as an inverse mapping
that maps the mechanical latent coordinates to the morphological latent coordinates.

Using MMAE, the morphological as well as mechanical latent coordinates can be obtained
from an image of a crack, and the associated displacement field can be predicted. The latent
variable in the mechanical latent space can be used to recover the input image from the
right fully-connected network. The discrepancy between the input and reconstructed images
may then be used to define an error indicator. Such error indicator is meaningful since the
reconstructed image and the displacement field come from a common latent space. Also, use
of a 2D crack is made to forecast a 3D displacement field on the encoding mesh. In parallel
the TLV is extracted from the full mesh of the target defect. The 3D displacement field from
the encoding mesh gives access to the Dirichlet boundary conditions applied on the TLV.
A standard FE prediction is then made with the displacement field on the external surface
applied as Dirichlet boundary conditions. Fig. (7) illustrates this methodology.
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Figure 7: Online scheme

For nodal fields, the transfer operator is straightforward. First, each node of the new
mesh, having Xnew as coordinates, is localized in the old mesh, then the shape functions φoldi
of the old mesh are used to compute the value of the field f on the new mesh:

f(Xnew) =
∑

i

φoldi (Xnew) · f(Xi), (9)

where Xi is the coordinate of the vertex i of the corresponding element. The error due
to the transfer has been measured by transferring the displacement field of the encoding
mesh as Dirichlet boundary conditions of the TLV without using the MMAE. The error
results of the two transfers, the first one from the full mesh to the encoding mesh and the
second one from the encoding mesh to the TLV. The error is evaluated on the cumulated
plasticity (see Eq. 10). The error that is used is an extension of the normalized mean squared
error to continuous functions. Compairing the error based on the displacement and these
of the cumulated plastic strain on cases of the training set it appeared that the first error
measurement is more conservative than the second.

η =

1∫
dΩ

∫
(∆εpcum)2dΩ

1∫
dΩ

∫
(εpcumFOM)2dΩ

=

∫
Ω

(∆εpcum)2dΩ∫
Ω

(εpcumFOM)2dΩ
, where ∆εpcum = εpcumFOM − εpcumModel, (10)

and where Ω describes the TLV domain, the subscript “FOM” refers to the Full Order Model
simulation and the subscript “Model” refers to the solution obtained with the MMAE ap-
proach detailed in this paper. After computing this error for all the defects of the dataset the
mean error has been computed and is equal to 0.07% and the standard deviation is 0.07%,
this shows that the transfer operations does not generate much error. Importantly, the TLV
must be included in the encoding mesh otherwise the field transfer from the encoding mesh
to the TLV cannot be done properly. The latter reads:

ΩTV L ⊆ ΩEM (11)

where ΩEM refers to the encoding mesh domain and ΩTLV to the tight little volume domain.
Fig. (8) illustrates this necessary condition.
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Figure 8: ΩTV L ⊆ ΩEM .

4. Results and interpretability

The displacement field shows varying orders of magnitude depending on time and dis-
placement component. The MMAE is accordingly trained on the following rescaled field

T̃ (j):

T̃ (j)[x, y, z, i, k] =
T (j)[x, y, z, i, k]−mik

Mik −mik

,

Mik = max
x,y,z,j

T (j)[x, y, z, i, k],

mik = min
x,y,z,j

T (j)[x, y, z, i, k]

(12)

for a given defect j. Note that since the images of defects are binary images, these do not
need to be rescaled.

As explained in the previous section the four autoencoders have been trained separately (a
single 2D AE and three 3D AE) and two dense neuron networks have been trained afterwards
in order to map the morphological and mechanical latent spaces. Since the 3D displacement
field data are 4 dimensional (time and space) the filter channel (associated to the three color
red, green and blue) of the 3D convolution layers is used as another dimension enabling to
treat 4D data. In our case the filter channel will contain the displacement field (Ux,Uy or Uz).
Classical CNN architectures are presented in [33] and the same notation is used to present
the developed architecture. The 2D encoder is composed of two blocks of convolution and
max pooling followed by an additional convolution. Then two dense layers lead to the latent
space. For each layer the activation function is rectified linear (ReLu). Fig. (9) illustrates the
architecture of the 2D and 3D encoder. The yellow R symbolises that the activation function
is ReLu. The decoding part is exactly the same in the reverse way and the “max pooling”
blocks are replaced by “up sampling” blocks.

Figure 9: 2D (a) and 3D (b) encoder architectures.
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In this work the ReLu activation function has been used. This activation function some-
times generates gradient losses during the training when not large enough dataset are used.
We emphasize that the Exponential Linear Unit (ELU) activation function as an alternative.
More details on the architectures such as the number of filters or the number of trainable
parameters are given in Appendix A. The loss function used for each optimization is a L2
norm and the optimizer used is adam. Fig. (10) shows the loss in function of the epoch for
the optimization process.

Figure 10: Loss curve for each optimization.

The position in ΩEM where the error on the displacement field made by the MMAE in
average can be evaluated with Eq. (13).The nodes where the error ζ̄ is superior to 1% are
shown in red in Fig. (11). A circular crack with the mean diameter of the whole data set is
also drawn, so that:

ζ =
|UFOM − UMMAE|

Umean
, ζ̄ =

∑Ndefect

i=1 ζi
Ndefect

(13)
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where Ndefect is the number of defects,UFOM and UMMAE refer to the solution for the dis-
placement field of the full order model and of the MMAE approach respectively. Umean is the
mean displacement in the encoding mesh.

Figure 11: Element of the encoding mesh where ζ̄ > 1% (red) with mean circular crack (grey)

The error is located on the crack front and more precisely on the two closest sides from the
front and the back of the specimen. For each 2D crack images the corresponding reconstructed
2D crack image and a reconstructed 3D displacement field is generated. Fig. (12) shows the
reconstructions for defects 122, 131 and 16 which are data from the training set.

Figure 12: Initial crack images from training set, their reconstruction and the cross modal displacement field
reconstruction (cracks 122, 131 and 16 from the training set).

One of the reason why MMAE are used in this work is to see whether a relation between
the error made during the online phase and the 2D image reconstruction can be made. The
information of the input image is encoded in the common latent space and so gives a global
indication, for both morphological and mechanical data, that would not be obtained if solely
the morphological AE was used. During the online phase the displacement field generated on
the encoding mesh generated by the cross modal reconstruction is transferred on the external
surface of the TLV. The error η of the online phase is based on the cumulated plasticity
defined by Eq. (10). The following error indicator η̃ is the average difference between the
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original image and its reconstruction:

η̃ =

∑N
i=1 |P (i)− P̃ (i)|∑N

i=1 P (i)
, P (i), P̃ (i) ∈ {0; 1}, (14)

where P (i) and P̃ (i) represent the value of the pixel i for the original and reconstructed image
respectively. The number of pixel of the image is N = 84 × 84. In order to see whether a
linear relation between those two errors exists, for each simulation η̃ and η are plotted on the
same graph. Since there are few extreme values a probability density function is used to have
a clear insight of the tendency. A linear relation is defined with the least mean square and a
40% error cone is drawn on Fig. (13).

Figure 13: Error indicator evaluation map.

A tendency is observed but the precision of the indicator is not high, it would give a good
hint about the online computation. With a fixed criterion (here 5%) on the actual error η
one can evaluate the True Positive (indicator low and true error low), True Negative (indi-
cator high and true error high), False Positive (indicator low and true error high) and False
Negative (indicator high and true error low) repartition. This repartition is shown in Fig. (14).
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Figure 14: True Positive, True Negative, False Positive and False Negative repartition with a criterion of 5%
of error.

If the estimated error is too high then a full finite element simulation should be made.
Therefore in order to be the more conservative the false positive should be minimized. More-
over the linear relation can be adapted in order to be more conservative if needed. In order
to see more precisely the error that can be encountered for defects, a 2D histogram is made
for defect 1042. This defect belongs to the test dataset hence the model has not been trained
on this defect. It shows the density of Gauss points according to their value of cumulated
plasticity and von Mises stress for the full order model (FOM) and for the developed model.
Since at the end of the simulation most of the points are fully plastic and the von Mises value
is equal to the limit stress R0 = 400MPa, the graphs are drawn at t=0.8. Remind that the
error is evaluated on the TLV only. This is represented in Fig (15).

Figure 15: Error Graph on εpcum and σMises t=0.8 for defect 1042 from test dataset.

Almost all the points are included in the 25% error zone, showing the good performance
of the method for the defect 1042. The result maps of the cumulated plasticity for defect
1042 is shown Fig. (16).
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Figure 16: εpcum with FOM (left) and with the model (right) on the TLV for defect 1042 from test dataset.

It is clearly shown that the global aspect of the field between the two methods is highly
similar. In order to have a more global view of the capacities of the so developed model an
histogram of the error based on the cumulated plasticity (see Eq. 10) is made. Since the TLV
is included in the full mesh, the error is computed strictly on the TLV. The classical split
has been applied to train the model so the three sets “train”, “validation” and “test” are
represented on this histogram Fig. (17a).

Figure 17: (a) Probability density function and (b) cumulated probability of the error for the training,
validation and test sets

The cumulated probability graph in Fig. (17b) shows that 95% of the defects have an error
below 9.8% for the training set, 12.4% for the validation set and 16.3% for the testing set.
Good results are achieved with the developed methodology. For every set of data the average
error is lower than 7% underlining the accuracy of the model. In order to put into relief the
need to developed such a model a naive model has been created. Instead of generating a
specific 3D displacement field for each 2D image, a mean displacement field is computed over
the training set. All the training data have been taken and a mean field have been generated
(see Fig. 19a). The latter is then used to apply the boundary condition on the TLV that are
free from defect dependency. As it has been done before, an histogram of the error made on
the cumulated plasticity is made for the test set and compared with the developed model.
Those results are shown on Fig. (18).
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Figure 18: Histogram of the error for the test sets with the MMAE model and the naive model

Very high error are obtained with this method except for defects having a shape close
to the average shape in the training set. Indeed for small defects large displacements are
imposed on the external surface generating important strains and stresses. The difference
between the FOM and the naive model for defect 989 is shown on Figs. (19b,19c).

Figure 19: Encoding mesh with mean U2 field (a), εpcum field with FOM (b) and εpcum field with naive
method (c) for defect 989

The fluctuation of the displacement field caught by the MMAE is therefore necessary to
achieve good performance. To the contrary one can question why the use of the MMAE
solution solely on the external surface is made and not on the whole domain. This would
made great different for the computation time since only the integration of the constitutive
law would be required. Therefore comparison is made on defect 1042 from the test set with
boundary conditions on the whole domain and solely on the external surface is made. Solely
the meshed domain where ∆εpcum > 5% is conserved in both case in order to see the impact
of the position of the boundary conditions. This is shown in Fig.( 20a), (20b).
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Figure 20: Mesh of defect 1042 where ∆εpcum > 5% when (a) the BC are applied on the external surface of
the TLV and when (b) the BC are applied on the whole TLV.

The number of element where ∆εpcum > 5% is clearly inferior when the boundary condi-
tions are applied on the external surface. The fact that the boundary conditions are solely
on the external surface enables to make a finite element correction of the solution find by the
MMAE.

The use of MMAE allows one to represent each defect as a point encoded in the latent
space. Fig. (21) represents all the defect in the latent space, since the latent space is of
dimension 600 a multi dimensional scaling (MDS) is made to have a 2D representation of this
space [34, 35].

MDS is an information visualization method which consists in finding a low-dimensional
dataset Z0whose matrix of Euclidean distances d(Z0) is an approximation of the input dissim-
ilarity matrix δ. To that end, a cost function called stress function is minimized with respect
to Z:

Z0 = argmin
Z

(∑

i<j

(δij − dij(Z))2

)
(15)

From left to right the blue dots represent the defects 539, 938, 537 and 341 while the red dots
represent their nearest neighbour respectively being the defects 4, 612, 105 and 368.
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Figure 21: Low dimensional representation of the common latent space

We remark one may use the reduced basis of the nearest neighbour in the common latent
space where a full order model is computed to solve the problem. This would be an alternative
since the latent space is common to the image and the displacement field. As shown in [36],
no bijection necessary exists between the mechanical and the morphological latent space.
This warrants the use of a common latent space generated with the MMAE. The technique
consisting in using a reduced basis recommended by a neurone network is called “ROM-
net” [37]. This approach works well for defects like gaz pores and has also been used in
[36]. Nevertheless this method offers non-optimal results when dealing with cracks. The
singularity at the crack tip is poorly represented on a reduced basis selected in a dataset
of reduced basis. As illustrated in Fig. (11), the error is located at the crack tip, which is
the zone of interest. Use of a submodelling approach and an adequate subdomain enables to
circumvent this problem.

5. High level engineering analysis to assess the safety of structures containing
cracks

The use of fracture assessement diagram (FAD) is common in the industry to certify
whether a structure containing cracks are still operational or not. The determination of the
stress intensity factor (SIF) and the limit load is necessary to use them [38]. Two domains
(safe and unsafe) can then be drawn on this diagram. Such mechanical quantities of interest
are usual outputs of finite element software in engineering. An explanatory FAD is given in
Fig. (22) which is taken from [39].
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Figure 22: FAD example with the different regions

With surrogate models, only specific quantities of interest can be computed. With the
presented work all quantities around the crack such as the stress intensity factor and the J
integral can be computed with classical finite element methods. On the contrary the limit
load is evaluated with the reaction forces at the extremities of the specimen. Not enough
information are present on the TLV to compute the limit load. The gappy proper orthogonal
decomposition enable to recover the full field when a reduced base is available. In this context
the use of MMAE happens to be a very relevant choice and constitutes a major point of this
paper. Indeed reduced basis can be computed for the training phase and then, during the
online phase, the reduced base of the k-nearest neighbours (k-NN) in the latent space can be
used to recover the full field and hence compute the limit load. This methodology consisting
in using a reduced base from another defect has already been used in the literature [37, 2].

Considering a reduced basis V and following on the Gappy POD [40], any vector u which
belongs to the column space colspan(V) of V may be recovered by using few entries u[F ] of
u, if V[F , :] is a full column rank matrix. Here the set of degree of freedom F corresponds
to the ones of the TLV. Such recovery procedure takes the form:

u ∈ colspan(V), u = V ·
(
V[F , :]T ·V[F , :]

)−1 ·V[F , :]T · u[F ] (16)

Fig. (23) shows the global workflow that allows one to recover the full field by taking
advantage of the information contained in the latent space. Note that if more than one
reduced basis is selected (i.e. k > 1) to recover the full field, techniques have been developed
in [38, 41] to create a global basis based on many others.

Figure 23: Full field recovery with use of the information contained in the latent space and gappy POD process
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The same idea can be used for the stress field σ using the reduced basis of the stresses
Vσ. Once σ is recovered it is possible to integrate this field on the top surface to obtain the
force at every time step and so the limit load. It is then possible to evaluate the limit load
for every defect by taking the reduced basis of its the nearest neighbour in the latent space.
To evaluate the J integral the information present in the TLV are sufficient. Two methods to
evaluated the J integral are used. One for which the J integral is computed as the mean on
the curvilinear abscissa and one more conservative method where J is equal to the maximum
value along the crack front. Both of these quantities are detailed in Eq. (17).

Jmax = max
s

J(s), J̄ =

∮
front

J(s)ds

∮
front

ds
. (17)

Hence graphs to evalutate the error between the full order model (FOM) and the developped
model are computed over the validation and testing set. Fig. (24) shows that good results are
obtained, most of the points are contained in the 20% error zone. If a closer look at defect
1042 (belonging to the test set) is taken, its nearest neighbour in the latent space is the defect
53 (belonging to the training set). Fig. (25) shows the force displacement curve for defect
1042 with the described method and with a full order model (FOM).

Figure 24: Limit load value with model and FOM (left) and J̄ with model and FOM (right)
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Figure 25: Traction curve for defect 1042

The traction curve is also obtained with the developed methodology is very similar to the
curve of the FOM. Similarly it is possible to compute the J integral along the curvilinear
abscissa for defect 1042 at specific time step on Fig. (26). The mean error for each figure
reads:

µ =
1

Nnodes

∑

i≤Nnodes

|JFOMi − JModel
i ]

|JFOMi | , (18)

where Nnodes refers to the number of nodes at the crack front and JFOMi and JModel
i refer to

the value of the J integral at the node i.
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Figure 26: J-integral along the curvilinear abscissa for defect 1042 at each time step

Good results are achieved for the computation of the J integral as well as for the limit
load, underlining the performance of the so developed model. When the limit load is reached
(green zone in 25) at t = 0.6 the error on the J-integral curves starts to increase (see Fig. 26).
This is due to volumetric locking which is a common problem when cracked structures are
considered. This type of problem is not related to the developed method. It is intrinsic
to the finite element formulation and is an active field of research [16, 17]. Nevertheless to
draw accurate FAD diagram the solution up to the limit load is sufficient. Both quantities J
integral and limit load can be computed hence the loading path for a specific defect on FAD
diagrams can be drawn. FAD diagrams are usually drawn with the SIF rather than with the
J integral, the relation between these quantities is given in eq. 19.

K =
√
J.E ′ with: E ′ =

E

1− ν2
(19)

On FAD the loading and the SIF are respectively normalized by the limit load and the material
SIF (Kmat). The value of the material SIF is similar to the value of an aluminium material:
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Kmat = 35 kJoule/m2. Fig. (27) shows the loading path for defect 1042 with the model and
with the reference FOM. The loading path is restricted to the domain up to the overloading
state as the structure necessarily belongs to the unacceptable flaws domain afterwards (see
Fig. 22). Recall that the reduced base of defect 53 has been used to compute the force since
it is the nearest neighbour of defect 1042 in the latent space. For each of the plotted path,
the value of the stress intensity factor K is equal to the maximum value around the crack
front. Both defects 1042 and 53 are represented on Fig. (27).

Figure 27: FAD with Model and FOM for defect 1042 (left) and the image of defect 1042 and 53, its nearest
neighbour (right).

The loading path is similar to the reference one. Barely no error is made on the limit
load compared to the evaluation of SIF. This problem is partially due to volumetric locking
and bad pressure field computation around the front crack [17, 42]. speed-ups which are
obtained for all the defects are around 3 in average and up to 10 for the best. The value of
the speed-ups for each defect are represented on the histogram Fig. (28a).

Figure 28: speed-up histogram (a) and variation of the speed-up with the size of the problem for defect 1042
(b) speed-up and error evolution curve in function of the number of DOF.

The speed-ups can be improved by reducing the TLV but this will increase the error hence
a compromise between speed and accuracy has to be made as it is shown on Fig. (28b).
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The strength of this method is that once the MMAE has learned the link between the
displacement field and the 2D images, any type of element can be used for the TLV. Moreover
the mesh of the later can also be refined if needed. These modifications can enhance the speed-
up. A smaller TLV for defect 1054 has been defined which consists in a torus around the
front crack (see Fig. 29).

Figure 29: Smaller TLV for defect 1054

Other element type have been used with pressure control. They are more adapted for
cracked structures simulations than the linear tetrahedron with reduced integration. This
type of elements has additional degrees of freedom and need to be used with a quadratic
formulation of the element [43, 44]. Therefore the computation times are much larger than
the ones previously done. This is the reason why the training phase has not been done with
these elements. The same MMAE model that has been trained in the previous section is used.
The cumulated plasticity field obtained for defect 1042 with the MMAE approach and with
the FOM are shown in Fig. (30a) while Fig. (30b) shows the evolution of the error η and the
speed-up in function of the number of degrees of freedom also for defect 1042.
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Figure 30: (a) εpcum with FOM (up) and with the model (down) on the reduced TLV for defect 1042 and (b)
speed-up and error evolution curve in function of the number of DOF.

Much larger speed-ups are obtained with this configuration: up to 120 times faster (see
Fig. 30). This type of approach enable to take entirely profit from the submodelling approach
of the developed methodology. Nevertheless with such TLV the computation of the cumulated
plasticity works well but for the J integral it leads to high level of error when not enough
elements (radius of the thorus inferior to 4.5mm) around the front crack are present.

6. Conclusion

The mechanical effect of cracks in 3D volumes is known to be a function of crack morphol-
ogy. We show how a MMAE can be trained to learn this implicit function from experimental
data and simulation data. An automatic mechanistic simulation chain is required to get the
simulation data prior training the MMAE. A high level engineering analysis of the prediction
is enabled by using a mechanical submodel, termed tight local volume, feed by the MMAE
predictions. The encoding mesh, that supports simulation data, is a continuous mesh. It
does not allow to represent the discontinuity induced by cracks. Nevertheless, this encoding
mesh is sufficient to develop an artificial intelligence for boundary conditions on a tight local
volume. Good results have been achieved with the developed method. Low errors on the
whole TLV are obtained (around 5%). The need of such a method has been demonstrated by
comparing it with a naive model. All the standard outputs of a classical finite element com-
putation are available and enables one to draw FAD if needed. speed-ups between 3 and 120
are obtained. Better speed-ups have been obtained by reducing the TLV size to the detriment
of the accuracy. Indeed when large speed-ups are obtained the J integral is very inaccurate
due to the lack of element around the crack front. Moreover with this method, speed-ups
depends on the mesh hence with more complex geometries it would be possible to increase
the speed-up. Nevertheless the model suffers from a major limitation at the moment. The
position of the crack should, in full generality, be in the encoding mesh. Not all configurations
can accordingly be handled. Adding two new parameters for the position and orientation of
the crack could be an option. The encoding mesh would then be implanted according to these
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parameters. The main asset of this method is that all the possible outputs of a standard fi-
nite element computation are also available with the so developed model hence it has been
possible to launch simulation with new elements though the MMAE model had been trained
with different elements. On the contrary a surrogate model would have larger speed-up but
would be trained to predict only specific outputs and would need to be retrained each time
other output would be needed.

Availability of data and materials. The data for the present work has presently not been made
available.

Competing interests. The authors declare no competing interests.

Appendix A. Detail of the 2D and 3D autoencoders

Details of the 2D and 3D autoencoders, as provided by the TensorFlow summary, are
given in Fig. (A.31).
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(a) (b)

(c)

Figure A.31: Summary of the 2D autoencoder (a), the 3D autoencoder for any field U1, U2 or U3 (b) and
the fully-connected left and right neurone network (c).
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Résumé en français

L’objectif principal de ce travail était de développer des méthodes basées sur l’apprentissage
automatique et la réduction dimensionnelle afin d’accélérer les prédictions pour l’évaluation des
structures et la création de jumeaux numériques à l’aide d’images. D’un point de vue indus-
triel, l’objectif est de minimiser le nombre de composants rejetés qui auraient été fonctionnels.
L’utilisation de graphiques et d’abaques est souvent trop conservative tandis que l’utilisation de
simulations par éléments finis conduit souvent à des prédictions qui prennent beaucoup de temps.
C’est pourquoi des méthodes telles que celles développées dans ce manuscrit sont proposées, per-
mettant une évaluation rapide et précise des quantités d’intérêt. Trois études principales ont
été menées dans cette thèse :
→ L’hyper-réduction d’un algorithme de longueur d’arc pour l’évaluation de la pression limite.
→ La détermination de la criticité des pores dans des joints soudés par la modélisation basée
sur l’image et la résolution de problèmes de classification des défauts.
→ Le developpement de methodes d’apprentissage profond pour l’évaluation de la criticité de
fissures non paramétriques dans les structures en utilisant un sous-modèle mécanique.
Les limites de chacune de ces méthodes sont abordées. Un prolongement de ce travail consis-
terait à créer une châıne de calculs avec chacune de ces briques afin de tirer profit des avantages
de chacune d’entre elles.

6.1 Summary of the approach and important results

The main objective of this work was to develop methods to make the safety assessment of
structures. This safety assessment is often made with charts, which lead to over conservative
dimensioning, or with numerical methods, which lead to time consuming computations. To over-
come these two drawbacks (too conservative and time consuming), methods based on machine
learning and dimensionality reduction have been proposed to accelerate predictions in order to
evaluate structures and create accurate image-based digital twins. From an industrial point of
view, the objective is to minimize the number of rejected components which would have been
functional. The use of charts is often too conservative while the use of finite element simula-
tions often leads to predictions which are highly time consuming. This is why methods such as
those developed in this manuscript are proposed, allowing a rapid and precise evaluation of the
quantities of interest. Three main studies were carried out in this work:
→ Hyper-reduction of finite element models for the evaluation of the limiting pressure, as an ex-
tension of dimensionality reduction to model order reduction including an arc-length algorithm.
→ Determination of the criticality of voids in welded joints via image-based modeling and solu-
tion of a defect classification problems.
→ Deep learning for the evaluation of nonparametric cracks in structures, using a mechanical
submodel, comparable to the resolution of a regression problem between a defect image and
boundary conditions for the submodel.

6.1.1 Hyper-reduction for limit pressure evaluation

The precise evaluation of the limit load in the pipes remains complex because of the plastic
instability which appears and leads to a buckling phenomenon. When buckling occurs, a clas-
sical Newton algorithm diverges and it is therefore necessary to use specific algorithms such as
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the arc-length algorithm. A new hyper-reduced version of this algorithm has been developed
and implemented in the commercial Zset software. The method thus developed uses a greedy
algorithm coupled with an error estimator in order to calculate an optimal reduced base thanks
to those already present in a database. Figure 6.1 illustrates the overall methodology that has
been detailed in the manuscript.

Figure 6.1: Diagram of the HR Riks algorithm.

The considered cases were defined with different parameters such as the radius of curvature,
the outside radius, the thickness and the angle of the bent pipe. The parametric space was
sampled with the HROM arc-length approach and the error estimator was used to define a
confidence zone. Significant speed-ups have been obtained : up to 15 times faster predictions.
This extension of the hyper-reduction method does not suffer from any limitation different from
those of the classical hyper reduction method. It is based on a linear approach to dimensionality
reduction. The latent space is assumed to be globally linear, over its validity domain.
One of the main perspective is to apply this new hyper reduced scheme to structures containing
cracks. The presence of cracks leads to high local variations of the displacement field. This
make it difficult to create an appropriate reduced basis for the online phase.

6.1.2 Determination of the criticality of voids in image-based digital twins
of welded joints

Calculation of the maximum von Mises stress near defects as well as stress / strain loops are
common inputs to assess the fatigue lifetime of structures. A decoupled approach is used to
calculate these quantities. The mechanical quantities of the sane structure and of the isolated
defect are calculated separately and then assembled in a common scale model to make a hyper-
reduced prediction on the structure containing the defect. As many defect morphologies have
been observed, a machine learning approach based on clustering and neural network was cre-
ated. Instead of calculating the interesting mechanical quantities of the defect considered, this
information is retrieved from a database using a classifier. This database was created using a
clustering approach. The whole process is depicted in Fig 6.2.
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Figure 6.2: Two scales HROM with ROM-net recommender.

The complete workflow has been launched for all the compete dataset of 3D images of
pores obtained by X-ray tomography. The strain/stress loops which have been drawn are close
to those obtained with the classical finite element approach and large speed-ups have been
achieved, up to 50 times faster predictions. Increasing the number of defect categories should
improve mechanical results. Likewise, the way in which the boundary conditions are applied on
the isolated defect can be criticized. In the developed methodology, the three tractions and the
three shears were applied to the Representative Elementary Volume (REV). Instead, the strain
measured at the location of the void on the sound structure could be applied to the REV to
better mimic the stress that the defect actually experiences in the structure, in case of non-linear
plastic strains. Another limitation of the method is that the defect must be inside the bulk. In
order to be able to treat any defect, it would be necessary to extend the method for defects near
or on the surface of the structure.
In this work, a single fatigue cycle has been applied. It would be interesting to apply a high
number of cycles in order to obtained the stabilized strain/stress loops.
A different application than this of voids in welded joints would be to assess discs in gas turbine
engines. This discs can contain particles that play the role of stress concentrators just like voids
in welded joints. The crack initiation due to the presence of particles in turbine discs has been
studied in [Alexandre et al., 2004, Abdesselam et al., 2018], this would be a perfect study case
for the developed methodology.

6.1.3 Deep learning for the evaluation of nonparametric cracks in structures

The calculation of cracked structure is complex and very costly in calculation. This is partly
due to the singularity present at the end of the crack. Many models have been developed to
overcome this difficulty, but the resulting computation time is very important. A new method-
ology based on deep Multi Modal Auto Encoder (MMAE) has been presented in this work. The
main idea is to have a 2D image of the crack as input and to use the intermodal reconstruction
to predict the displacement field on a small mechanical submodel. The 2D image reconstruction
is used as an error indicator. This methodology is described in Fig.6.3.

Figure 6.3: ChainMMAE.
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In addition, the common latent space is used to recover the full field over the entire sample
and not just the subfield. To do this, a nearest neighbor algorithm coupled with a POD gappy
process is used. Accurate results have been obtained with an error of about 6% and significant
speed-ups have been achieved, up to 120 times faster. Nevertheless the model suffers from a
major limitation at the moment. The position of the crack must be in the encoding mesh so not
all configurations can be handled. One option to get rid of this limitation would be to create an
encoding mesh of the same size as the full sample, but such an approach would lead to extremely
large encoding meshes and storage volumes. In case such storage resources are available, a new
parameter should be introduced such as the position and orientation of the 2D images for its
insertion in the mesh. These parameters should also be used for the training phase of the model.
Moreover in this work the position of the cracks was necessary in the bulk. Extending the so
developed workflow for surface cracks is a work in progress.
The simulations were made on a portion of the specimen, applying the method to the real struc-
ture is also an outlook.
From an industrial point of view, cracks are usually represented with parametrised shapes, it is
important to underline that the so developed methodology can easily deal with a parametrised
dataset of crack images.

6.2 Perspectives

In the work that has been done, the structures that contained these defects were rather simple
(pipes, welded joints, tensile specimen...). It would be interesting to try all the workflows cre-
ated on more complex structures. Another perspective would be to implement the workflows
used for structures containing voids and the one for structures containing cracks in a dedicated
software such as Z7. For the moment the raw codes are available on the github repositories of
the laboratory. The work that has been done in this thesis has been divided into three main
parts:
→ Hyper reduction of the arc length algorithm.
→ Reduced base machine learning classification for hyper reduced computations.
→ Deep multimodal automatic encoder to evaluate the criticality of cracks.
At first sight, these parts seem quite independent but one can imagine a larger workflow linking
them together. Consider an R&D department studying a pipe network in which many cracks
eventually appear. In order to calculate the burst pressure of the defective pipes, N finite element
simulations are run on N different crack shapes that have been observed. In order to speedup
the calculation for the next N ′ simulations, a hyper-reduced approach using a hyper-reduced
arc length algorithm is used, as described in the third chapter. But to run a hyper-reduced
arc length simulation for a structure with a crack that has never been observed, an appropriate
reduced basis, which already exists, must be selected. To do this, the methodology developed
in the fourth chapter can be used. Once the N + N ′ simulations are completed, they can be
stored in a database and used to train an MMAE model as described in the fifth chapter. The
remaining N ′′ simulations to be done can then be run with the MMAE approach. Fig. 6.4
illustrates this more complex workflow.
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Figure 6.4: Full chain using the three main workflows which have been developed in this thesis.

Such a chain would give speedups to create the N ′ simulations of the data set. The speedups
are, for the HR Riks algorithm, about 15 times faster while speed ups uo to 120 times faster can
be achieved for the last part of this workflow when the MMAE is used. The overall acceleration
of these three chains would be :

Speed up = N + (15×N ′) + (120×N ′′)
N +N ′ +N ′′

(6.1)

Although this chain was not developed in this thesis work, it is important to see how they could
all be deployed together in an industrial environment.

A major perspective for all the methods which have been developed in this work is to create
an upper bound of the error. Three error indicators have been proposed in this work. The first
one (chapter 3) is based on the reconstruction of the stress field with the Gappy POD procedure.
A good correlation (less than 20% of error) has been obtained and this estimator has then been
used as a selection criteria for a greedy algorithm.
The second one (chapter 4) was defined as a linear relation between the true error and the
distance of the considered defect to its associated medoid.
Finally the third error indicator (chapter 5) was based on the reconstruction error of the 2D
input image representing a crack. A linear relation between the true error and the error made
on the reconstruction of the input image has been made.
The performance of the error indicators can be criticised mostly for the second one and third
one. The main drawback of the so developed indicators is that none of them constitutes an
upper bound of the error. In an industrial context such criteria is a must in order to avoid the
falsely operational component.
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RÉSUMÉ

La tenue mécanique des structures est directement liée à la présence de défauts. Ces derniers jouent le rôle de con-
centrateur de contrainte, ce qui réduit considérablement la charge limite que les composants peuvent supporter ou encore
leur durée de vie en fatigue. Néanmoins, d’un point de vue économique, il n’est pas envisageable de rebuter toute pièce
défectueuse. Des critères permettant de statuer sur leur criticité ont donc été mis en place. Cependant ces derniers sont
très conservatifs, par conséquent certains composants fonctionnels se trouvent mis au rebut. Pour pallier cette difficulté,
des méthodes d’évaluation plus précises fondées sur le calcul numérique, telles que la méthode des éléments finis, sont
utlisées. Toutefois ces dernières sont coûteuses en temps et en puissance de calcul. L’essor des techniques de science
des données permet de tirer profit des informations collectées afin d’accélérer les simulations numériques. Ce travail de
thèse vise à développer des méthodes de réduction de modèle par apprentissage automatique pour l’analyse de la no-
civité de défauts en mécanique des matériaux. Par ailleurs, les méthodes d’apprentissage automatique permettent d’éviter
le paramétrage des objets à modéliser. C’est une propriété particulièrement intéressante pour l’analyse des défauts, qui
sont ici représentés à l’aide d’images (2D ou 3D) et associés à un champ mécanique calculé par la méthode des éléments
finis ou FFT. Dans ce travail, des défauts locaux dans des matériaux métalliques ductiles sont considérés. L’objectif est
de constituer des modèles numériques débouchant sur une décision rapide quant à la nocivité d’un défaut local à l’aide
d’outils basés sur l’apprentissage automatique. Les approches proposées dans ce mémoire s’appuient en particulier sur des
techniques de classification automatique des formes, reposant sur des distances morphologiques et mécaniques, et sur la
représentation géométrique et mécanique des formes dans l’espace latent d’autoencodeurs multimodaux. Des méthodes
d’estimation d’erreur sont également abordées afin d’évaluer la véracité des résultats trouvés.

MOTS CLÉS

Mécanique numérique, méthodes FFT, méthodes d’hyper-réduction, apprentissage automatique, intelligence
artificielle.

ABSTRACT

The mechanical behaviour of structures is directly related to the presence of defects or not. They act as stress concentrators
which considerably reduce the limit load that the components can support or their fatigue lifetime. However, from an eco-
nomic point of view, it is not feasible to reject every component containing a defect. Criteria have therefore been developed
to assess their criticality. However, they are very conservative, as a consequence some functional components are rejected.
To avoid this difficulty, more accurate evaluation methods based on numerical calculation, such as the finite element method,
are used. However, these numerical techniques are costly in terms of computation time and power. The explosive growth
of data science allows the use of previously collected data to speed up numerical simulations. The aim of this thesis is to
develop methods for model order reduction by machine learning for the analysis of the harmfulness of defects in mechan-
ics of materials. The simulation-driven machine learning approach is very attractive when models are available. Moreover,
machine learning methods are appropriate to avoid the parametrization of the objects to be modelled. This is a particularly
interesting property for defect analysis. In this work, defects are represented using images (2D or 3D) as well as their as-
sociated mechanical response, predicted by a Fourier-based or finite element method. In this thesis we will focus on local
defects in ductile metallic materials. The objective of the thesis is to build numerical models that allow a quick decision on the
harmfulness of a local defect using a machine learning-based tool. Our approaches involve, in particular, automatic classifi-
cation of shapes using both morphological and mechanically relevant distances as well as the representation of geometrical
and mechanical shapes on the latent spaces of multimodal autoencoders. Error estimation methods are also discussed in
order to evaluate the veracity of the results found.

KEYWORDS

Numerical mechanics, FFT methods, hyper-reduction methods, machine learning, artificial intelligence.
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