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Résumé

La netteté est un critère important lorsque l’on souhaite prendre de bonnes photogra-

phies. Plusieurs facteurs tels que les paramètres de l’appareil photo, mouvement et

defocus peuvent réduire la netteté d’une photographie et causer du flou qui détruit

des details de l’image. Ce contenu peut être retrouvé par le défloutage, un problème

inverse mal posé qui utilise la photographie floue, et le flou si connu, pour estimer

une version nette.

Les techniques de traitement d’image habituelles reposent sur l’optimisation util-

isant des priors empiriques sur les images ou des approches d’apprentissage automa-

tique exploitant des paires d’images nettes et floue en guise de supervision. Dans

cette thèse, nous suivons une tendance récente visant à combiner les deux types de

techniques présentés précédemment et produisant l’état de l’art pour le défloutage.

De telles méthodes hybrides exploitent un modèle de formation de flou et une solution

basée sur un algorithme d’optimisation, amélioré avec une approche d’apprentissage

automatique. Nous abordons de tels modèles pour le défloutage non-aveugle d’images

où l’opérateur de flou est supposé connu, ce qui est réaliste dans de rélles situations.

Nous présentons d’abord une fonction paramétriques pour déflouter des images

RVB, en incorporant des itérations de point-fixe de Richardson préconditionnées pour

remplacer la classique transformée de Fourier rapide (TFR), sujette aux artefacts

d’ondulation, en particulier aux bords d’une image. Nous exploitons le modèle de

formation de flou implémenté par la convolution avec un filtre linéaire pour effi-

cacement calculer le préconditioneur avec la TFR, résultant en une approche pour

le défloutage aveugle rapide et performante. Nous comparons ce modèle à d’autres

méthodes hybride de l’état de l’art pour le défloutage non-aveugle sur des images
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synthétiques et obtenons les meilleurs résultats pour retirer des floues uniformes et

non-uniformes, ainsi que sur de vraies images floues. Dans une seconde contribution,

nous proposons un modèle pour le dématriçage et le défloutage non-aveugle simultanés

pour les images “raw”. La restauration est à nouveau effectuée avec une méthode hy-

bride évaluée sur des images synthétiques ainsi que de vraies images “raw” dégradées

par des aberrations optiques.



Abstract

Sharpness is an important criterion for shooting acceptable photographs. Several

factors such as the camera settings, motion or defocus may decrease image sharpness

and lead to blur, resulting in the loss of details. Recovering this lost content can be

casted as a deblurring problem, i.e., an ill-posed inverse problem that uses the blurry

photograph, and the possibly known blur, to estimate a sharp one.

Typical image processing techniques rely either on optimization algorithms us-

ing a handcrafted image prior or machine learning approaches leveraging supervi-

sory pairs of sharp and synthetic blurry images. In this thesis, we follow a recent

trend that combines the two sorts of techniques previously detailed and achieving the

state-of-the-art image deblurring results. Such hybrid schemes exploit a blurry image

formation model and a typical model-based solver upgraded with a learning-based

method. We explore such models in the context of non-blind deblurring where the

blurring operator is supposed known, which occurs in real-world scenarios.

We first present a parametric function for RGB image deblurring, embedding

preconditioned Richardson fixed-point iterations to replace the classical fast Fourier

transform (FFT) algorithm prone to ringing artifacts, especially at the image bound-

aries. We exploit the blur forward model implemented with the convolution with

a linear filter to efficiently compute the preconditioner with FFT, yielding a fast

and accurate non-blind deblurring approach. We compare the proposed model to

other state-of-the-art hybrid non-blind deburring techniques on synthetic images and

achieve the best results for both uniform and non-uniform blurs and on real blurry

images as well. In a second contribution, we propose a model for joint non-blind

deblurring and demosaicking of raw images. Restoration is again carried out with a
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hybrid method evaluated on synthetic images but also real raw images degraded with

optical aberrations.
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Chapter 1

Introduction

1.1 Goal

In 2020, there were 3.5 billion smartphone users around the world and over 1.5 billion

smartphone units were sold in 2019. Most of these phones are now equipped with

at least one digital camera. This explains in part why 50 million pictures were up-

loaded on Instagram per day in 2017, which in turn indicates how important digital

photography now is in everybody’s life. One can shoot many images of a scene with

a digital camera and retain only the few best ones, for instance those not exhibiting

motion blur. The selection is thus based on criteria such as image sharpness, which

also plays a key role in scientific fields such as astronomy or microscopy. We are

concerned in turn with images, and focus on post-processing approaches seeking to

correct their imperfections. Even though a simple solution to avoid motion blur is to

shoot photographs with a sturdy tripod, all images are actually blurred to a certain

extent by the optics of the camera itself, resulting in an inevitable loss of sharpness

compared to what a photograph taken with a “perfect” lens would look like.

Concretely, we address the problem of non-blind deblurring of digital photographs.

In this context, the blur is assumed to be known, which can be used as additional

information to solve an inverse problem. This is an important setting in many fields

in practice, perfectly illustrated by the Hubble space telescope (HST) sent to space in

1990. Only a few days after starting the mission, the NASA scientists noticed blur in
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4 CHAPTER 1. INTRODUCTION

Figure 1-1: Images of the M100 galaxy by the Hubble space telescope throughout
the years. From left to right: an image of M100 with the initial mirror used between
1990 and 1993 and an estimate of the blur by pointing a star in the red window, an
image of M100 in 1994 after the first maintenance and in 2018 after several other
corrections. The comparison between the image on the left and on the right gives an
idea of the impact of the blur.

the recorded images caused by spherical aberrations linked to manufacturing errors.

Figure 1-1 shows an image of the M100 galaxy taken with the HST. A NASA mission

eventually fixed the mirror one year later but improved images had been obtained in

the meantime by first estimating the intrinsic blur of the mirror from star images,

and second improving the image sharpness with a non-blind deblurring method.

We address in this thesis diverse types of blur that may be due to motion and

optical aberrations for example. Two main approaches are widely used to predict

a sharp photograph. On the one hand, classical image processing algorithms use

the known blur kernel and solve an inverse problem: a penalized energy embeds a

blur image formation model in a fitting term and an image prior function constrains

the set of solutions [6]. The penalty function design plays an important role in the

ability of these approaches to reconstruct missing details but the more elaborated ones

result in highly non-convex problems, hard and/or slow to solve. On the other hand,

recent advances in computer vision based on supervised machine learning techniques,

necessitate a large amount of annotated data, hard to collect from real photographs,

but can be used for deblurring images. We will see in this thesis that the best of the

two worlds can be obtained with hybrid methods, achieving state-of-the-art deblurring

results.
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Blur can be seen as a low-pass filtering process, setting to zero most of the high

frequencies in an image’s Fourier spectrum, and deblurring thus amounts to estimat-

ing this missing content. Image restoration techniques may either reconstruct the

original missing content, or hallucinate the missing details to build a visually pleas-

ing sharp photograph. Indeed, the two choice between these two options depends on

the application context and the severity of blur. In astronomy or medical imagery,

scientists cannot afford to hallucinate details in the image of a planet or a cell since

it would alter their conclusions. In these cases, blur is often only due to the optics. It

is thus generally well-understood and can be modelled with a small support kernel.

Equivalently, the blur only alters a small range of the high frequencies in an image,

suggesting that missing details can hopefully be restored by inverting a physical for-

ward model leading to the blurry images. In contrast, personal photography often

deals with out-of-focus and/or motion blur, which may deteriorate larger parts of an

image’s Fourier spectrum. In this case, exactly reconstructing the missing details is

very hard because of the kind of blur but is not mandatory since most of images we

take must actually look like natural photographs, not necessarily faithful to the real

observed scene. Deblurring by hallucinating the missing details to build a visually

pleasing image is thus a relevant alternative to the solution of an inverse problem,

and is often carried out with learning-based approaches.

We thus propose in this thesis to design methods taking the best of the inverse

problem world and the machine learning techniques, to handle blur alone in the case

of motion blur but also jointly inverting blur and mosaicking to get rid of optical

aberrations. These models are trained with synthetic but reasonable training data

comprising blur but also mosaicking and saturation. The more realistic the data and

the better the image formation model, the more accurate the restored images are.

1.2 Motivation

The work presented in this thesis is motivated by several observations.

As discussed above, image deblurring can be addressed with learning-based meth-
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ods in a regression setting with supervision comparing a predicted deblurred image

with a sharp target thanks to a pixelwise metric such as the ℓ2 distance. In addition to

the training loss and a learnable deblurring technique, typically using a convolutional

neural network (CNN) [108], one has to collect a (large) dataset of corresponding

blurry and sharp images.

Recording real pairs of corresponding blurry and sharp images is very hard in

practice. It can be done with two different cameras mounted on the same rig, shooting

at once a sharp image and the corresponding blurry one. It can be also achieved with

a single camera, but in this case, the two images taken at different moments must

have the same illumination and be perfectly aligned. Both options are thus very hard

to achieve in practice and synthetic data are often preferred as a result.

Fortunately, the physical and digital pipelines to transform an analog image into

a digital blurry and noisy one has been the topic of numerous works in the optics,

signal processing, 3D graphics and computer vision communities. If we had analog

photographs, we could easily generate blurs and transform sharp images into almost-

realistic blurry ones, but we only have access to digital images instead, quantized

on a finite number of bits. The analog image is thus generally replaced by a digital

RGB image which undergoes an approximate forward blur formation model. Pre-

vious works in the context of image denoising [2] and image upsampling [139] have

shown that synthesizing training data is obviously not as interesting as using pairs

of corresponding sharp and real blurry images for training restoration models. Yet,

synthetic images with a reasonable forward model can approximate well real blurry

photographs [32] and a large corpus of them may be enough for generalizing to real-

world scenarios.

The image formation model is typically embedded in the data-fitting term of a

penalized energy function, which also includes an image prior encouraging the solution

to exhibit natural image features, such as the total variation (TV) prior [106] imposing

the solution to have sharp edges, at the cost of smoothing textures. The balancing

weight between the data-fitting term and the prior can have a dramatic impact on

the solution. Figure 1-2 shows one deblurring example obtained after solving such
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(a) Blurry image. (b) 𝜆 = 10−4 (21.53dB). (c) 𝜆 = 10−3 (24.00dB).

(d) 𝜆 = 10−2 (26.40dB). (e) 𝜆 = 10−1 (27.01dB). (f) 𝜆 = 1 (24.06dB).

Figure 1-2: Impact of setting the regularization parameter 𝜆 in a non-blind deblurring
algorithm with the TV−ℓ1 prior. A small value for 𝜆 magnifies noise, but a large value
over-smooth the textures. A trade-off should be met, which is hard to set. The PSNR
score (in parenthesis) does not necessarily corresponds to the visual accuracy.

composed energy with a prior on the solution TV. The algorithm is called HQS-TVℓ1

and is further detailed in Chapter 4. In this figure, we vary 𝜆 between 10−4 and 1, a

range of relevant values, and show that visually pleasing images for this example are

obtained for 𝜆 between 10−3 and 10−2 although the maximum PSNR is reached for

10−1.

This quantitative metric is a classical criterion for cross-validating 𝜆 [88], even

though it does not correspond to the best qualitative deblurring result. Efficient

tuning of this weight value can in turn be learnt, motivating hybrid methods relying

on both model-based techniques leveraging an image forward model and data-driven

approaches getting rid of handcrafted criteria akin to the PSNR.

An optimization-based approach to solving the penalized energy mentioned above

generally features a linear system with the blur matrix being circulant [46]. Since

images can be very large, one must rely on large-scale linear system solvers such as

conjugate gradient (CG). The fast Fourier transform (FFT) leverages instead the cir-

culant structure of the linear operator, leading to a very efficient closed-form solution
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(a) Blurry. (b) Approach with FFT [137]. (c) Chapter 4 approach.

Figure 1-3: The teddy bear image is blurry because of camera motion during exposure.
The blur has been estimated beforehand with a blur estimation method and is shown
in the red box (it is zoomed by a factor 3). The deconvolution approach based on
FFT introduces artifacts around the badge on the hat and next to the buttons and
collar. The proposed approach in Chapter 4 also removes the blur without producing
these artifacts. The full image is shown in Chapter 4 addressing motion blur.

that may contain ringing artifacts. This is particularly true when the blur is only ap-

proximated. Figure 1-3 shows an example with an image we have taken ourselves with

a handhelded camera. We have estimated the blur from the original image with the

motion blur estimation technique of [95] and deblurred the image with both a state-

of-the-art non-blind deblurring method using FFT [137] and the method proposed in

Chapter 4. The figure shows that the baseline method introduces noticeable ringing

artifacts next to salient edges, unlike ours. We discuss in Chapter 4 the performance

of existing least-square solvers and propose convolutional fixed-point iterations for

fast and efficient deconvolution.

Optical aberrations removal requires handling color-specific blurs as we will see

in Chapter 2. A deblurring algorithm should typically be applied to an image first

processed by a demosaicked algorithm. Schuler et al. [109] explain that an optimal

chromatic aberration removal algorithm should jointly predict the missing color com-

ponents in the raw image and the aberrations. We show in Figure 1-4 an example

comparing a two-stage approach that first demosaicks a blurry raw image and second

deblurs it, and the joint approach proposed in Chapter 5. In this figure, the two-stage

approach fails to reconstruct fine details of the grid such as the vertical structures
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(a) Blurry. (b) Two-stage. (c) Joint approach. (d) Ground-truth.

Figure 1-4: An image of a grid is synthetically blurred and mosaicked with a forward
model detailed in Chapter 5 and a real Nikon lens optical aberration measured in [10].
The intermediate blurry image is shown on the left but the input is indeed a raw blurry
image. From left to right, the remaining images shown are obtained by demosaicking
then deblurring the input image in a two-step scheme, the image jointly demosaicked
and deblurred with our approach in Chapter 5 and the ground-truth image exhibiting
high-frequency details prone to interpolation artifacts during demosaicking from [45].
The two-stage approach cannot reconstruct finer details unlike our approach directly
operating on the raw and blurry image.

whereas ours can. We discuss the reasons of this difference and the details of the

proposed model in Chapter 5.

Based on the motivations described in this section, we want to design fast and

efficient parametric functions for non-blind deblurring to get rid of motion blurs in col-

ored photographs and for joint non-blind deblurring and demosaicking to remove op-

tical aberrations from raw images. The proposed modules leverage physics-grounded

blur image formation models and learning-based techniques from large corpus of syn-

thetic, yet reasonable, training data. We will describe the main challenges related to

our goal in the following section.

1.3 Challenges

The first challenge addressed in this thesis is addressing non-blind image deblurring

with a hybrid method that leverages supervisory data and a blurry image formation

model. Most of the state-of-the-art techniques alternate between evaluating a hand-

crafted or learnt proximal operator and solving a least-squares sub-problems whose

linear operator implements a convolution with a linear filter. The fast Fourier trans-
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form (FFT) algorithm efficiently computes the closed-form solution but is notorious

to inject ringing artifacts in the solution. Conjugate gradient (CG) iteratively finds

the solution of the least-squares problem but might be slow because of the condi-

tioning of deblurring problems, limiting the possibility to embed such iterations in a

learning-based structure.

The second challenge we tackle is joint image non-blind deblurring and demo-

saicking, for which no exact and efficient solver similar to FFT in the context of

non-blind deblurring, exists according to Palyi et al. [92], thus preventing the use

of typical non-blind deblurring hybrid techniques for this problem. Schuler et al.’s

solution [109] is an alternate optimization scheme based on CG taking several hours

to process a 12 megapixel image or an approximate faster solution deblurring with

FFT a demosaicked image, empirically proved to achieve sub-optimal compared to the

slow option. A practical application of such algorithms is optical aberration removal,

a degradation limiting the image sharpness and observed in any photograph taken

with a camera, even on a sturdy tripod, and equipped with a lens whose inevitable

manufacturing defaults cause the blur.

1.4 Outline

This thesis is organized into five chapters besides the introduction. Chapter 2 reviews

the in-camera image formation model, from a continuous focal image to a digital

sRGB one. It focuses in particular on modelling intrinsic and extrinsic blurs. This

analysis is used in Chapter 3 to review the existing techniques for blur estimating

and non-blind deblurring.

Chapter 4 introduces a new hybrid non-blind RGB image deblurring approach. It

is based on an efficient and fast preconditioned Richardson fixed-point iterations [64]

to solve a least-squares problem whose linear operator is a circulant matrix repre-

senting the convolution with a linear filter. We show that the proposed method

outperforms the fast Fourier transform (FFT) and the conjugate gradient (CG) de-

scent algorithm typically used for this problem. We embed this iterative scheme
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into a parametric function, trained with synthetic triplets featuring random motion

blurs. It achieves state-of-the-art results for non-blind RGB image deblurring on both

synthetic and real images. This work was presented at ECCV 2020.

Chapter 5 focuses on removing the blur caused by the camera’s optics. Motivated

by the observations of Schuler et al. [109], we solve this problem with a joint non-

blind deblurring and demosaicking hybrid approach. In particular, we invert the joint

blur and mosaick operator with a FFT-based solver previously introduced for image

upsampling by Zhang et al. [137]. We compare this joint approach to two-stage

methods that first demosaick a blurry raw image and second deblur it, each stage

performed with a state-of-the-art algorithm. We show with experiments on both

synthetic and real images that jointly handling deblurring and demosaicking leads

to superior results over considering each step independently. The proposed approach

efficiently removes the optical aberrations caused by the optics of high-end cameras

and lenses from real raw photographs. This work is in preparation for submission to

IEEE Transaction on Image Processing.

Chapter 6 finally concludes this thesis and opens possibilities for future work.
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Chapter 2

Digital Image Formation Model

This chapter covers three main stages in a camera to convert the analog image of a

scene into a digital photograph. First, we focus on the camera optics and shooting

conditions, causing blur in the recorded photographs. Second, we discuss the sensor

converting the analog image into a digital array. It makes use in particular of a colored

filter array (or CFA) for recording colored images. We finally present the image signal

processing (or ISP) pipeline that turns the raw image into an RGB image displayed

on a screen. Figure 2-1 shows a diagram of the pipeline considered in this work.

Figure 2-1: The digital camera pipeline presented in this chapter.

The yellow and red blocks represent the two first stages previously mentioned.

The three remaining blocks implement the main submodules of the ISP pipeline.

2.1 Camera optics and shooting conditions

Figure 2-1 shows that the incident scene radiance first gets through the lens of the

camera. Combined with the shooting conditions, e.g., whether the camera is stable

13



14 CHAPTER 2. DIGITAL IMAGE FORMATION MODEL

or an object moves during exposure, the radiance results in a blurry analog image.

We categorize in this thesis two types of blur: Intrinsic blur caused by the camera

optics, which is systematic to each image taken with the same camera/lens pair, and

extrinsic blur, unique to each photograph.

2.1.1 Intrinsic blur

In most cameras, a lens directs the light rays so they focus on the sensor plane. The

Gauss conditions in geometrical optics [103] assume that a point in the focal image

exactly corresponds to a point in the recorded photograph. In practice, the shape

of a lens and manufacturing errors violate these assumptions. These imperfections,

named optical aberrations, combined with diffraction due to the finite aperture and

additional blur caused by the camera’s antialiasing filter lead to a scene-independent

blur in any image.

Diffraction

The quantity of light entering the lens of a camera is controlled by a diaphragm. The

aperture of the lens is traditionally measured with the 𝑓 -number denoted by 𝐹 : it is

the ratio of the lens focal length 𝑓 and the aperture diameter 𝐷

𝐹 = 𝑓

𝐷
(2.1)

For instance, a 𝑓 -number of 5 with a focal length 𝑓 of 20mm means the aperture has

a diameter of 4mm. It is given in the format 𝑓/𝐹 , e.g., 𝑓/1, 𝑓/2.8, 𝑓/5.6.

Light, as any sort of wave, is diffracted when entering finite-sized apertures. In

the case of a circular diaphragm, like for DSLRs, a 2D point becomes a spot called

the Airy figure [3].

Provided the 𝑓 -number and the focal length (in the image EXIF metadata for

instance), we can compute the aperture diameter 𝐷 and thus the diameter of the
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Figure 2-2: Impact of diffraction for different apertures. We used a Canon EOS 550D
camera with a Canon EF-S 18-135mm lens and focal length set to 85mm on a tripod.
We display the raw images demosaicked with bilinear interpolation. As the aperture
narrows (the 𝑓 -number goes up), less and less detail can be observed on the chip
because diffraction reduces the resolution of the image. Blur becomes noticeable for
apertures below 𝑓/22 (less than 4mm of diameter).
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Airy figure main lobe with the formula

sin 𝜃 ≈ 1.22 𝜆
𝐷
, (2.2)

where 𝜃 is the angle at which the first zero occurs and 𝜆 is the light ray’s wavelength.

The angle 𝜃 related to the ratio 𝜆/𝐷 gives the angular resolution at the diffraction

limit. Diffraction becomes really problematic in practice when the 𝑓 -number grows,

or equivalently when the aperture 𝐷 decreases.

The impact of diffraction greatly depends on the size of the sensor photosite. For

instance the size of a photosite for the Canon EOS 550D camera with a sensor of size

22.3× 14.9mm is 4.29× 4.29𝜇m1.

For a recent flagship smartphone such as the 5T model from OnePlus with a sensor

of size 5.22× 3.92mm, the photosite size is 1.13× 1.13𝜇m2. Smartphone cameras are

thus more sensible to diffraction than DSLRs due to the more compact size of the

sensor.

A quick computation based on Eqs. (2.1) and (2.2) shows that for the Canon 550D

reflex camera with lens at focal length 𝑓 = 50mm and aperture set to 𝑓/22, if the

distance between the aperture and the sensor is 2cm (a reasonable assumption), the

radius of the Airy disk for red rays with 𝜆 = 400nm is about 9𝜇m and for blue rays

with 𝜆 = 780nm is about 17𝜇m. This shows that (i) for very small apertures, the

diffraction spot can cover a several photosites, impacting the image sharpness, and

(ii) diffraction blur has different different behaviors depending on the color channel.

Indeed, in the previous computation, the red spot covers about 2×2 photosites where

the blue spot covers 4×4 photosites. For a 𝑓 -number of 𝑓/5.6, the corresponding radii

are respectively 2.27 𝜇m and 4.27 𝜇m for the red and blue rays considered previously.

For this wider aperture and at this focal distance, diffraction blur is negligible.

Equation (2.2) is valid for in-focus points, and diffraction is even more problematic

for out-of-focus ones [99] but their study is not the topic of this thesis.
1For the Canon EOS550D DSLR, a sensor image has size 5196 × 3464 pixels which leads to

0.0223/5196≈4.29𝜇m and 0.0149/3464≈4.29𝜇m.
2For the OnePlus 5T phone rear camera, a sensor image has size 4608× 3456 pixels which leads

to 0.0052/4608≈1.13𝜇m and 0.0039/3456≈1.13𝜇m.
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Optical aberrations

The lenses used in DSLRs and smartphones to focus the light rays on the camera

sensor are typically made of glass and are almost never flat; they are never perfect

optical devices and thus modify the trajectory of incident light. A ray propagated in

the air and eventually reaching the curved surface of the lens is refracted according

to the Snell-Descartes formula:

𝑛1(𝜆) sin(𝜃1) = 𝑛2(𝜆) sin(𝜃2). (2.3)

This formula gives a model of the rays’ deflection at the interface of two materials.

It is commonly assumed that the refraction index of the air is almost 1 for all the

wavelengths in the visible spectrum whereas in glass, for the visible spectrum whose

limits are about between 380nm (violet) and 700nm (red), it ranges between 1.53

and 1.51, at 15∘C and a pressure of 101325Pa [28]. Careful manufacturing of a

lens [54] made of various converging and diverging lenses can correct this physical

phemonenon but at the cost of an optical system much more complex to analyse and

optical aberrations [103,109,110,135].

Since refraction is wavelength dependent, one should separate the behaviour of a

lens between a monochromatic and a polychromatic light ray.

Several lens benchmarks characterize the optical aberrations by solely measur-

ing the modulation transform function (MTF) [10, 35] that gives information on the

aberrations along two orthogonal directions.

Monochromatic aberrations. On this paragraph, we restrict our analysis a monochro-

matic light ray, i.e., a ray comprising a single wavelength 𝜆, and only discuss the five

sorts of primary monochromatic aberrations detailed by the Seidel theory [103, 122]:

spherical aberrations, coma, astigmatism, field curvature and field distortion. Fig-

ure 2-3 shows the four first monochromatic aberrations previously mentioned for a

thick lens [103]. Field distortion cannot be as easily represented as the four other

monochromatic aberrations with geometrical optics and is thus not shown it this
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Lens Sensor plane

(a) Spherical aberration.

Lens

x

y

z

(b) Astigmatism.

Lens Sensor plane

(c) Coma.

Lens Sensor plane

(d) Field curvature.

Figure 2-3: Illustration of four of the monochromatic aberrations of a lens. The caused
of each individual aberration is discussed in the text for details and explanations of
these phenomena. Spherical aberration in (a) bends the rays parallel to the optical
axis and make them focus closer to the lens, creating confusion circles toward the
center of the sensor plane. Astigmatism in (b) makes two lines in two different planes
to focus at different depths, creating a confusion circle anywhere on the sensor plane.
Coma in (c) translates on the sensor plane the focus point of transverse rays with
respect to the optical axis, creating dots with tails (like a comet). Field curvature
in (d) makes rays far from the optical axis to focus in a parabolic surface, creating
circles of confusion on the sensor plane next to the edges.
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figure.

Spherical aberration is a direct consequence of the Snell-Descartes law (2.3) on

a curved surface of a lens made of glass. The rays next to the edge of the lens are

more bent and thus converge closer to the lens than those next to the optical axis.

As a result, light rays do not converge to a single focus but on an interval along

the optical axis. This aberration can be corrected by using several converging and

diverging lenses to form a compound lens [54].

Coma distorts incident rays coming with a non-zero angle compared to the optical

axis. The image of a dot on the sensor plane appears with a trailing tail reminiscent

of that of a comet [103].

Astigmatism causes two light rays in perpendicular planes and coming from the

same 3D point to not be focused at the same 2D point, but rather at two different

images planes (or foci) [103]. For instance, a cross has its first line focused on one

image plane and its second line focused on a second plane resulting in at least one

part of the cross being out-of-focus and thus appears blurry. The sharpest possible

image of the cross is when the sensor plane is placed halfway between the two foci

with the circle of least confusion. This can also happen for on-optical axis rays when

the lens is not symmetric due to manufacturing errors - which happens for more than

90% of consumer-grade lenses according to the analysis of [35].

Field curvature maps a flat observed object on a parabolic image surface (or

Petzval surface) [103], resulting in an out-of-focus image far from the optical axis. This

is due to the curved surface of a real lens that bends off-axis light rays closer to the

lens than rays next to the optical axis, resulting in a curved image surface depending

only on the geometric characteristics of the lens. A solution to this aberration would

be to replace the traditional flat sensor grid by a curved one, like the human eye’s

retina [7].

Field distortion transforms straight lines of an observed object into curved lines in

the image. This aberration is symmetric and can be decomposed into two categories.

The first one is the barrel distortion, featured in fish-eye lenses, that maps an image

on the surface of a sphere. The second one is the pincushion distortion and can be
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thought as the “negative” barrel distortion. Field distortion is noticeable for several

lenses, for instance large-range zoom lenses but also prime lenses, and can be corrected

with camera calibration approaches [52] or specialized pieces of software.

The four first aberrations result in diverse focusing planes and thus out-of-focus

blur depending on pixel locations [122] and can be removed with deblurring meth-

ods [109]. Field distortion twists lines in an image and can be corrected with addi-

tional camera calibration manipulation [52]. In this list of optical aberration, we have

not covered the case of vignetting [122] which darkens the corners of an image.

Chromatic aberrations The monochromatic aberrations reviewed above are caused

by refraction in a thick lens. The Snell-Descartes law (2.3) shows that refraction is

actually wavelength-dependent [62]. The deviated colored rays hit the sensor at differ-

ent locations yielding colored fringes everywhere in the camera’s field of view. These

fringes are called chromatic aberrations, are caused by any lens, and can be catego-

rized into two kinds: longitudinal and lateral chromatic aberrations [103]. (see Figure

2-4).

Longitudinal chromatic aberrations occur when different color components in a

light ray are focused on different focal planes due to the wavelength-dependent Snell-

Descartes law (2.3). Such aberrations can appear in the whole image and are typical

of long focal lengths [103] (Figure 2-4a).

Lateral aberrations happen when different color components in a light ray are

focused on the same focal plane but at different locations on its surface. Such an

aberration is not visible at the center of an image but rather on the image salient

edges and is typical of short focal lengths [103] (Figure 2-4b).

In practice, the chromatic aberrations are a combination of both lateral and lon-

gitudinal aberrations and are thus visible in the whole image (Figure 2-4c). In digital

photography, purple fringes are a direct consequence of chromatic aberrations, and

are the result of colored fringes truncated by sensor saturation [19]. Saturation is

further discussed in this chapter.

A hardware solution to chromatic aberrations is to use an achromatic lens made
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Lens Sensor plane

(a) Longitudinal chromatic aberration.

Lens Sensor plane

(b) Lateral chromatic aberration.

Red longitudinal

Blue lateral

Blue longitudinal

Sensor planeLens

Red lateral

(c) Combined chromatic aberrations.

Figure 2-4: Illustration of chromatic aberrations. We make the common and reason-
able assumption here that the green channel is in focus. The longitudinal aberration
in (a) causes the red and blue colors to appear as disks. The longitudinal aberration
in (b) causes the red and blue channels to be translated in the sensor plane com-
pared to their green counterpart. In practice, chromatic aberrations are observed as
combinations of lateral and longitudinal aberrations, like in (c).
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of, at least, two individual lenses with different dispersion properties for compensating

the color dependency of the refractive indices of the lens. Another option implemented

in recent mobile phones [53] is to shift and rescale the different color channels such

that the color fringes next to salient edges are aligned.

Antialiasing

A specificity of digital cameras, that we will detail in the next section, is to convert

an analog signal into a discrete image where incident radiance is accumulated and

integrated over the sensor surface. In this case, aliasing appears if the space between

two pixel centers, or equivalently the spatial resolution of the sensor, is not at least

twice the size of the smaller detail in the analog image, as a consequence of the

Shanon-Nyquist rule [82]. This can be avoided by adding a low-pass filter in front of

the sensor that eliminates the finer details, likely to introducing aliasing, at the cost

of additional blur in the sensor image [93,97].

This filter is sometimes removable in recent DSLRs, and active discussions exist

amongst photographers to decide whether fidelity to the scene a the cost of aliasing

is acceptable or not.

Camera PSF

Diffraction blur, optical aberrations and antialiasing are compiled in the camera point-

spread function (PSF) that explains how a point in the scene becomes a colored spot

in the image [33,61,63,99,109,110,135].

The camera PSF is a non-uniform function across the field-of-view (FOV) of the

camera [35]. As it varies smoothly, the PSF can be reasonably modelled as a locally-

uniform blur [63,109]. An example of a real camera/lens PSF measured by Bauer et

al. [10] is shown in Figure 2-5.

We do not cover vignetting [122] that darkens corners of a digital image in this

thesis since it is a modulation function of the sensor image and not a blurring oper-

ation. It is however handled in the model of Schuler et al. [109] and in the optical

aberration removal approach proposed in Chapter 5.
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Figure 2-5: Close-up to the top-left corner of the Canon EF 35mm lens’ PSF at aper-
ture 𝑓/1.4 reproduced from Bauer et al. [10]. It comprises diffraction (almost none
for this large aperture), optical aberrations and in particular coma (its signature are
the trails pointing toward the bottom-right corner here) and the camera’s antialiasing
filter.

2.1.2 Extrinsic blur

Extrinsic blur depends on the scene and shooting conditions. Image restoration should

be specifically carried out for each image to be corrected.

Defocus

Defocus corresponds to a blur caused by the convergence of light rays at a point not

on the sensor of the camera. If it happens, a point in the 3D scenes will correspond

to a spot, also called circle of confusion in this context, whose size depends on the

distance between the convergence point and the sensor plane on the optical axis [99].

An image contains defocus blur if at least one object in the observe scene is too close

or too far from the camera. This range of acceptable distances is related to the lens’s

properties and is called the depth of field (DOF) [99].

As detailed above, defocus is a spatially-varying blur. A naive defocus blur model

uses a Gaussian filter whose radius depends on the depth [62] but more refined ap-
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Figure 2-6: Examples of defocus. We used the Canon EOS 550D camera with the
Canon EF-S 18-135mm lens and focal length set to 35mm and aperture set to 𝑓/4.5.
The first image is focused on the postcard in the foreground, the book, newspaper
and desk in the background being gradually more and more blurry. The second image
is focused on the book and newspaper, resulting in the postcard to appear blurry.

proaches model defocus with a handcrafted blur basis [73,143].

In this thesis, we assume that the images are not subject to defocus blur. This

assumption is reasonable for many images even though a more general model would

handle this kind of blur.

Motion

Shooting an image is not instantaneous but instead requires a certain exposure time

that may vary from a few milliseconds to several seconds depending, for instance, on

the amount of light in the scene necessary to record a well lit image.

During this time interval, objects in the scene or the camera itself may move,

because of hand tremor [128] or shutter vibrations [100], resulting in motion blur in

the image. Even small shifts in the scene can result in important displacements on

the image sensor [100].

Motion blur can be represented as the integration of a moving image of the scene

on the camera sensor during an exposure time 𝑇 . Let (𝑢, 𝑣) in R be a point of the

sensor plane and (𝑢𝑡, 𝑣𝑡) the location of this point in the focal image at time 𝑡 in [0, 𝑇 ].

If there is no motion, (𝑢, 𝑣) = (𝑢𝑡, 𝑣𝑡) for all 𝑡 in [0, 𝑇 ]. Let 𝑥 and 𝑦 be functions from

R2 to R representing respectively the image of the scene and the image recorded on
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Figure 2-7: Examples of motion blurs. We took these pictures by moving the camera
during exposure. In both images, we can see that details such as the books’ names or
the fence are lost. Texture of the wooden floor is also lost. In the case of saturated
images like on the right, we can spot the camera trajectory like next to the lights on
the staircase.

the sensor. A blurry pixel at location (𝑢, 𝑣) in 𝑦 is formed following

𝑦(𝑢, 𝑣) = 1
𝑇

∫︁ 𝑇

𝑡=0
𝑥(𝑢𝑡, 𝑣𝑡)d𝑡. (2.4)

Equation (2.4) integrates over time the contribution of neighboring pixels in 𝑥 around

(𝑢, 𝑣) and is equivalently replaced by integration over the neighboring pixels in 𝑥 as

𝑦(𝑢, 𝑣) = (𝑘 * 𝑥)(𝑢, 𝑣) =
∫︁

𝑠,𝑡
𝑘𝑢,𝑣(𝑢− 𝑠, 𝑣 − 𝑡)𝑥(𝑠, 𝑡)d𝑠d𝑡, (2.5)

where we slightly adapt the notation since in practice (non-uniform) blur 𝑘 may

depend on (𝑢, 𝑣) (see Chapter 3 for more details), denoted by the coefficients 𝑘𝑢,𝑣 in

R+.

2.1.3 Composite blur

The overall blur that corrupts a sharp focal image is the combination of intrinsic and

extrinsic blurs, the former being the same for each image taken with a camera, a

telescope or a microscope and the latter being scene-dependent.

When taking a picture, a photographer controls several parameters such as the

aperture diameter through the 𝑓 -number, the focal length of a zoom lens, and the
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exposure time. For a small aperture (high 𝑓 -number), shooting a photograph with

the same amount of light takes more time since fewer photons hit the sensor compared

to a wider aperture. Longer exposure time may lead to more motion blur caused by

the camera if it is not attached to a tripod, or objects in the scene such as a car

or a person. However, a small aperture masks most of the lens surface except the

flat part at the center, thus greatly reducing lateral chromatic aberrations and field

curvature caused by the curved surface of the lens next to the edge, finally resulting

in a trade-off between the sorts of blur observed in the sensor image.

In the same vein, a larger aperture cannot prevent the intrinsic and extrinsic blurs

to corrupt images and would lead to the same kind of trade-off. This suggests that

any photograph is blurry, the composite blur being a combination of both the intrinsic

and extrinsic blurs whose impacts may be controlled by the settings of the lens (what

aperture and focal length), the camera (using or not a tripod), the scene (any moving

object or element not in the depth of field, for instance).

2.2 Camera sensor

In this section, we discuss the camera sensor whose role is to convert the incoming

radiance of the scene, focused by the lens, into a digital raw image. This analog-

to-digital converter can be equipped with a color filter array (or CFA) for capturing

colored images in most consumer-grade cameras and DSLRs. We also cover the case

of saturation in this section, a particular kind of degradation that can diminish the

accuracy of many deblurring methods.

2.2.1 Analog-to-digital conversion

The camera sensor is a rectangular chip that converts the analog scene radiance into

a digital image. A finite number of photosites covering its surface accumulate the

incident photons with either couple-charged device (CCD) [15] or complementary

metal–oxide–semiconductor (CMOS) [42] sensors during exposure . The analog-to-

digital image conversion generate electrical signals whose magnitude scales linearly
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Figure 2-8: A micrograph of the corner of a webcam photosensor array by Natural
Philo. The surface of the sensor is covered by squared photosites accumulating the
photons during exposure. The mosaic of red, green and blue pixels in front of the
photosites form the colored filter array (here the Bayer pattern) whose role is to retain
only one color per site, resulting in a mosaicked image. A RGB image of the scene is
later interpolated with a demosaicking algorithm.

with the number of collected photons. The electrical signal is finally quantized on a

finite number of bits, in general 10 or 12 for recent smartphones and 14 for DSLRs,

yielding the digital sensor image. Figure 2-8 shows a webcam sensor made of CCD

sensors.

The conversion discussed in the previous paragraph converts the focal image with

theorically infinite resolution to a digital one whose resolution is defined by that of

the sensor. The analog image is spatially discretized by each photosite that not only

temporally collect photons during exposure at a single point on the sensor surface but

also spatially integrates the photons reaching a subsurface of the sensor. The spatial

resolution of a digital photograph is defined by the number of pixels composing the

image, or equivalently by the density of photosites on the sensor.

A forward model connecting the focal image 𝑥 and the 𝐻 ×𝑊 × 3 sensor image
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𝑦sensor can be derived from the formulation of Baker and Kanade [9]:

𝑦sensor(𝑝, 𝑞) = 𝑄 [𝐾𝑥+ 𝜀] (𝑝, 𝑞), (2.6)

= 𝑄

[︃∫︁
(𝑢,𝑣)∈R2

𝑘𝑝,𝑞(𝑢, 𝑣)𝑥(𝑢, 𝑣)d𝑢d𝑣 + 𝜀(𝑝, 𝑞)
]︃
, (2.7)

where 𝑄 is a quantization function from R+ to {0, 1, . . . , 2𝑁 − 1} with 𝑁 the number

of bits allocated to each pixel and 𝐾 models the linear blur operator on the whole

image, represented with local weights 𝑘𝑝,𝑞 in R3 combining the camera PSF, defocus

and motion blurs for generating the blurry pixel 𝑦sensor(𝑝, 𝑞). The weights 𝑘𝑝,𝑞 have

non-negative entries and follow the constraint:

∫︁
(𝑢,𝑣)∈R2

𝑘𝑝,𝑞(𝑢, 𝑣)d𝑢d𝑣 = 1. (2.8)

2.2.2 Color filter array

In the previous section, we only discussed about converting radiance into a digital

signal assuming that the sensor can record the red, green and blue components of the

incident light rays.

The CCD or CMOS-based technology presented above can, in fact, only record

light intensity but cannot separate the intensity per color frequency. It is possible to

stack at each pixel location on the sensor grid three local sensors, each one collecting

photons for the red, green and blue light components thanks to band-pass filters. It

however demands high-end sensors reserved for a limited pool of cameras that most

of photographers cannot afford.

An alternative solution proposed by Bayer in 1976 [11] for shooting colored digital

photographs with a single CDD or CMOS sensor per pixel location is to instead put

before each photosite a band-pass filter for the red, green and blur components.

The frequencies getting through the filter depends on the location of the photosite

according to a given pattern all over the camera sensor surface, resulting in a colored

mosaic called a color filter array (or CFA). For instance, at a given photosite location,

the color red only is recorded whereas the other colored components are filtered out.
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A second photosite next to the first one will, instead, record the green component of

the incoming light, thus dumping the remaining red and blue colors.

Figure 2-8 shows an example of the Bayer CFA, repeating the same 2 × 2 pat-

tern on the sensor composed of two green, one blue and one red pixels and directly

takes inspiration from the density of cones and rods on the human eye retina [5].

This pattern is used in many camera brands such as Canon or Sony whereas other

manufacturers, such as Fujifilm with their 6 × 6 X-trans pattern [45], use their own

patterns. We focus in this thesis on the Bayer pattern, which is still nowadays the

most commonly used CFA.

The missing colors are predicted with a demosaicking algorithm that may be based

on bilinear interpolation [75], filter banks [83,91] or neural networks [45]. Each one of

these techniques takes as input an image with missing color components and estimates

a full RGB image.

Formally, the sensor image 𝑦sensor from the previous section, is multiplied with a

binary mask 𝑚 of size 𝐻 ×𝑊 × 3 that sets to 0 the color components at each pixel

location not retained by the CFA in front of the photosites, yielding the recorded raw

image 𝑦raw:

𝑦raw = 𝑚⊙ 𝑦sensor = 𝑚⊙𝑄 [𝐾𝑥+ 𝜀] , (2.9)

with ⊙ the pixelwise product operator. The binary mask 𝑚 sets to 0 the color

components in the quantized image not covered by the mosaicking pattern just like the

CFA is a pass-band, filter wiping out the color components not in the corresponding

frequency interval at a given photosite.

The resulting image is a 𝐻 × 𝑊 × 3 array with zeros at locations where the

binary mask 𝑚 is 0 but is more frequently represented as a mosaicked 𝐻 ×𝑊 image.

In the specific case of the Bayer pattern, it can alternatively be represented as a

𝐻/2×𝑊/2× 4 image with R,G,G,B components.
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2.2.3 Saturation

During exposure, photons are accumulated within the photosites, which have a finite

capacity. In the case of long exposure, e.g., several seconds, or when one shoots a

particularly bright object such as a light bulb or the Sun, more and more photons

are accumulated in the photosites and eventually overflow when the whole capacity

allocated to each site is full. This phenomenon is called saturation and breaks the

linear relationship between scene radiance and recorded electrical signal magnitude.

We focus on this phenomenon in Chapter 5.

We upgrade the formation model of Eq. (2.9) to take into account this physical

phenomenon by adding a clipping function 𝑠, defined as 𝑠(𝑥) = min(𝑥, 2𝑁 − 1) for a

𝑁 -bit sensor and applied pixelwise to the image (with the common assumption that

the white value is set to 1) [40,125]:

𝑦saturated = 𝑠(𝑦raw) = 𝑠(𝑚⊙𝑄 [𝐾𝑥+ 𝜀]). (2.10)

If no pixel is saturated in the 𝑦raw image, this model boils down to the linear formation

model of Eq. (2.9) and 𝑦raw = 𝑦saturated.

2.3 Image signal processing pipeline

The image signal processing (ISP) pipeline is the concatenation of several functions

gradually converting the (possibly) raw image into a visually acceptable RGB image.

Figure 2-1 details three main operations within the ISP pipeline: the purple block

converts the values corresponding to the amount of photons accumulated in each

photosite into pixel values, the green block predicts the missing color components

for each pixel filtered out by the sensor CFA with a demosaicking algorithm and

the blur block finally adjusts the color space and brightness of the digital image.

Each manufacturer and each camera has its own ISP pipeline, making an exhaustive

description of all the existing components impossible to achieve. We review in what

follows the main stages, common to most of cameras.
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The first stage consists in substracting the black level value provided by ISP to

set the 0 in the image. The pixels under this values are clipped or sometimes kept

for estimating the noise variance [40]. The white level similarly sets the maximal

value, corresponding the white color. As discussed by Guillermo Luijk in his dcraw

tutorial3, it is crucial to correctly set this value since it flags the saturated pixel and

prevents colored artifacts in the highlights such as magenta stains. White balance

is then applied to revert the colored effects produced by the camera and render the

image under neutral illumination [18], yielding a 𝐻 ×𝑊 array with minimum value

set to 0 and maximal value rescaled to 1.

Demosaicking, as explained in the previous section, yields a RGB image further

sharpened with a linear filter [62] to increase the sharpness lost during the antialiasing

stage, just before integration on the camera sensor.

The demosaicked image is later rendered in the in-camera RGB space, which

usually does not correspond to the actual scene colors. A color-conversion stage

transforms the colors of the image at hand to fit the standard RGB colorspace (or

sRGB) [114], that makes sure that any photograph is rendered in a common col-

orspace. This transformation takes the form of a 3 × 3 matrix, shipped with ISP

and applied to each RGB pixel of the demosaicked image the corresponding triplet

in the sRGB color space. The resulting image is still, up to the demosaicking stage,

a linear output of the incoming radiance on the sensor. Yet, this linear relationship

looks unnatural for the eyes since the darks are too dark and the lights are to bright.

The relation between pixel intensity of the displayed image and the recorded electric

signal should instead be non-linear to push darker and lighter pixels to the grays. In

practice it is done with an S-shaped function such as the gamma correction function

historically used for cathode-ray tubes television screens [101].

Formally, let 𝐺 be the gain/white balance coefficient matrix, 𝐷 a demosaicking

algorithm, e.g., [84] or [45], 𝐶 the color conversion matrix and Γ the gamma correction

3http://guillermoluijk.com/tutorial/dcraw/index_en.htm
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function. The final sRGB image, denoted by 𝑦sRGB, is related to 𝑦saturated with

𝑦sRGB = Γ(𝐶(𝐷(𝐺(𝑦saturated)))). (2.11)

A practical Matlab implementation of the ISP pipeline is detailed in [115]. Combining

the saturated image formation model from the continuous image 𝑥 in Eq. (2.10) and

the conversion to an sRGB image in Eq. (2.11) yields a link between the analog

observed image 𝑥 and the digital sRGB image 𝑦sRGB that we can display on a computer

or smartphone screen.

These are the main steps of a typical ISP pipeline but in practice, manufacturers

implements additional steps that may vary from one camera to another depending

on the computational budget or the actual need of further corrections, e.g, high-

dynamical range (HDR) imagery [101] or chromatic aberration removal [62]. Hasinoff

et al. [53], for instance, give a brief summary of 13 in-camera stages for converting

the raw image into a sRGB one in a recent flagship smartphone.



Chapter 3

Related Work

In this section, we review the literature related to this thesis. We first cover the choice

of a blurry image formation model. We present the different typical approaches to

modelling both uniform and non-uniform blur and the classical noise models used in

image processing. We then review non-blind deblurring techniques for inverting these

forward models, ranging from classical optimization-based deconvolution techniques

to learning-based approaches. We finally survey several motion blur and camera PSF

estimation techniques.

3.1 Approximate image formation model

As noted by Baker and Kanade [9], the analog, sharp focal image cannot be recov-

ered since we can only predict discrete signals. A typical approximation in image

processing [9] is to find a sharp discrete image instead.

Formally, we replace the forward model connecting the focal image 𝑥 with a 𝐻 ×

𝑊 ×3 (possibly saturated) image 𝑦saturated in (2.10) with a simpler equation featuring

the blurry image 𝑦, a simplification of 𝑦saturated, and 𝑥 is now a 𝐻 ×𝑊 × 3 digital

image too:

𝑦 = 𝑠(𝑀𝐾𝑥+ 𝜀). (3.1)

The (3𝐻𝑊 × 3𝐻𝑊 ) matrix 𝐾 implements the overall blur comprising both intrinsic

33
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and extrinsic blurs, and 𝑀 corresponds to the pointwise multiplication with a binary

mask representing the camera’s CFA. Finally, 𝜀 models the in-camera additive noise.

We make the assumption that no multiplicative noise such as salt-and-pepper [27]

degrades the images in this thesis, which is a reasonable assumption in most real-

world scenarios. The function 𝑠 is the same as in Eq. (2.10) and denote the saturation

function defined pixelwise as 𝑠(𝑝) = min(𝑝, 1) for a pixel 𝑝. This formation model

will be used in Chapters 5.

A classical approximation is to ignore saturation and consider 𝑦 as an RGB image

with floating-point pixel values in [0, 1]3, simplifying the forward model as

𝑦 = 𝐾𝑥+ 𝜀. (3.2)

This is the model typically considered in the deblurring community and is at the core

of Chapter 4.

When the linear filter is the same for each pixel location in 𝑦, the blur is called

uniform. However, when it varies depending on the blurry pixel location, it is non-

uniform. We now cover different models for the linear operator 𝐾 and the noise

vector 𝜀.

3.1.1 Noise models

Recorded images are in practice not only blurry but noisy as well.

Gaussian model. A typical image noise model for 𝜀 is a zero-mean Gaussian dis-

tribution with variance 𝜎2. This noise model is image-independent, i.e., the pixel

values of the image do not impact the intensity of noise. Injected in Eq. (3.1), this

gives

𝑦 ∼ 𝒩 (𝐾𝑥, 𝜎2). (3.3)

It is a common model for the stationary noise caused by the camera hardware, the

read noise in the image processing literature, but it does not fit empirical image noise

distributions in raw or demosaicked images [1, 40, 98]. Gaussian noise is however
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widely used to train non-blind sRGB image deblurring approaches [37, 71, 137], gen-

eralizing well in practice on blurry RGB images. This noise model will be considered

in Chapter 4.

Poissonian model. The Poissonian noise model with parameter 𝜆 traditionally

models the noise to errors made by the sensor when counting the photons accumulated

in a photosite. This noise is called shot noise in the image processing literature and

is signal-dependent. Injected in Eq. (3.1), this gives [40]

𝑦 ∼ 𝒫(𝜆𝐾𝑥). (3.4)

Deblurring methods explicitly handling Poissonian instead of Gaussian noise are less

common because of this pixel-dependent aspect, greatly complicating the correspond-

ing inverse problem [92].

An alternative strategy to handle images degraded with Poissonian noise is to

convert them into a scene-independent Gaussian noise with a variance-stabilization

transformation [8, 81]. As a result, the numerous of methods designed to address

deblurring with the assumption of Gaussian noise can be directly used in this setting.

Poissonian-Gaussian model. Empirical noise recorded in raw images is actually

caused by both shot and read noise and can thus be reasonably modelled with a

mixture of independent Gaussian and Poissonian noises [40]. It can be reasonably

approximated by a Gaussian distribution with pixel-varying variance [40]:

𝑦 ∼ 𝒩 (𝐾𝑥, 𝜆𝐾𝑥+ 𝜎2). (3.5)

This model better fits the empirical distribution of noise, resulting in more realistic

denoising evaluation datasets [2, 98] or learning-based models that better generalize

to real data [18]. It will be used in Chapter 5.
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3.1.2 Blur models

Blur typically softens abrupt changes in an image, for instance it erases details such

as textures and edges, and thus roughly corresponds to a low-pass filter. Formally,

at a given pixel location (𝑢, 𝑣) in the image support, 𝐾 in Eq. (3.1) corresponds to

replacing a pixel value in the image 𝑥 by a linear combination of the pixel values in the

neighborhood of (𝑢, 𝑣), which is easily implemented with a 2D convolution replacing

the matrix multiplication 𝐾𝑥. The convolution features a linear filter 𝑘𝑢,𝑣 whose

coefficients are the local non-negative weights allocated to the pixels next to (𝑢, 𝑣),

and the sharp image 𝑥 in image format. Based on Eq. (3.1) and on the equivalence

between the matrix-vector product 𝐾𝑥 and a convolution, generating a blurry pixel

in 𝑦 at location (𝑢, 𝑣) reads

𝑦[𝑢, 𝑣] = (𝑘𝑢,𝑣 * 𝑥)[𝑢, 𝑣] + 𝜀[𝑢, 𝑣], (3.6)

where * denotes the 2D convolution operator. This model is attractive as it represents

any kind of blur, but it is of course unrealistic in practice to use a different linear

filter per pixel in the image. For a tiny 256 × 256 image, it would results in 65536

filters, which cannot be done in practice, in most cases.

We detail below three typical approximations, from the most aggressive one as-

suming uniform blur on the image, to an accumulation model directly inspired from

integration over time of a sequence of focal images during exposure.

Global convolution. An aggressive, yet common, approximation is to assume that

the blur is uniform. This corresponds to a global convolution which applies the same

linear filter everywhere, i.e., 𝑘𝑢,𝑣 = 𝑘 for all pixel locations (𝑢, 𝑣). The forward model

Eq. (3.1) becomes:

𝑦 = 𝑘 * 𝑥+ 𝜀. (3.7)

This model is favored by most blur estimation methods [21,26,39,58,68,95,133] since

it only requires to predict a single linear filter for a given image. In this situation, the

linear operator 𝐾 implemementing the convolution becomes a circulant matrix that
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can be diagonalized in the Fourier basis [46], and non-blind deblurring methods can

thus be built on top of FFT for quickly computing inverse filters [127,129].

Local convolution. The uniform blur assumption may not be realistic, for instance

in the context of camera shake, where the motion field can be modelled by rotations

about the optical center of the camera [126].

Another simplification is to assume that the blur is uniform over a set of (possibly

overlapping) patches. For instance, if we assume that the blur is uniform on 9 × 9

patches, the number of linear filters to be computed in a 256 × 256 image drops to

fewer than 1,000 filters. Given 𝑅 patches, where the blur is supposed locally uniform

and thus modelled by 𝑅 linear filters 𝑘1, . . . , 𝑘𝑅, the forward model in Eq. (3.2) may

be written instead as

𝑦 =
𝑅∑︁

𝑖=1
𝑟𝑖(𝑤𝑖 ⊙ [𝑘𝑖 * 𝑐𝑖(𝑥)]) + 𝜀, (3.8)

where 𝑐𝑖 is a cropping routine that extracts the 𝑖-th region, e.g., a patch, where the

linear filter 𝑘𝑖 approximates the real local blur, 𝑟𝑖 puts back the patch at its initial

location in the image and 𝑤𝑖 is a weighting window [57] to prevent mismatches at the

patch boundaries in the reconstructed image.

The efficient filter flow (EFF) of Hirsch et al. [57] is an instance of such an approx-

imation, used to remove optical aberrations from 18-megapixel images taken with a

DSLR in [109], where the camera PSF is supposed locally uniforms for overlapping

patches with approximate size 500× 500.

In the same vein, several works model the global motion blur with linear filters [17,

30, 37, 48, 65, 85, 116] applied to overlapping patches. These local linear filters can

model global complex motions such as rotations and moving objects such as cars or

people, and can be used to transform the initial regression problem of estimating the

65536 filters into a classification problem [30, 48, 116], easier to solve and less costly

in terms of memory.

Accumulation model. In the case of motion blur, it is also possible to eliminate

the operator 𝐾 and directly blurs an image using an accumulation model [51,60,120,
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126]. The sensor image is obtained by integrating focal images taken during exposure.

The continuous stream of images is approximated by 𝑇 digital images averaged as:

𝑦 = 1
𝑇

𝑇∑︁
𝑡=1

𝑥𝑡 + 𝜀. (3.9)

This model has the benefit to be more general for representing non-uniform blur than

the locally uniform model of EFF [57] and does not require modeling or predicting

linear filters.

This accumulation model is used to generate realistic blurry images by averaging

consecutive frames of videos taken with a high-frequency camera such as the 240fps

GoPro camera used in [87,123] or from the Internet [89]. One the one hand, this model

possibly generates the best possible synthetic images featuring non-uniform motion.

On the other hand, such a dataset may lack of diversity due to the limited pool of

curated videos from which the images are taken from, e.g., about thirty sequences

for the GoPro dataset of [87]. It also requires to shoot videos at a very high-frame

rate, for instance the 240fps mentioned above. When a correct speed is not reached,

averaging consecutive frames may otherwise introduce ghosting artifacts [17].

3.2 Non-blind deblurring

Non-blind image deblurring was historically introduced by Wiener [127], Richard-

son [102] and Lucy [78] for deconvolution in scientific fields relying on imagery such

as astronomy where the telescope’s PSF is supposed known or can be easily estimated

by observing a star for example. As we have seen with the HST example of Chap-

ter 1, it is a reasonable assumption. Most recent non-blind deblurring techniques can

be classified into three categories: optimization-based methods relying on a forward

image model and priors, learning-based algorithms depending on supervisory data,

and hybrid methods considering the two. We review in this section the literature

related to each of these three paradigms.
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3.2.1 Model-based methods

Model-based approaches leverage the forward model (3.1) to build an energy function

solved with inverse problem techniques [6]. The first proposed non-blind deconvo-

lution method is Wiener filtering [127], obtained as the solution of a least-squares

problem.

More generally, an estimate of the sharp image is a minimizer of a composite

energy function made of a data-fidelity term 𝐿 and an image prior Ω, weighted by a

scalar 𝜆:

min
𝑥∈R𝑁

𝐿(𝑦,𝐾𝑥) + 𝜆Ω(𝑥). (3.10)

When the noise model follows a Gaussian distribution, the data-term 𝐿 takes the

form of a ℓ2 loss [6, 125]:

𝐿(𝑦,𝐾𝑥) = 1
2

𝑁∑︁
𝑖=1

([𝑦]𝑖 − [𝐾𝑥]𝑖)2 = 1
2‖𝑦 −𝐾𝑥‖

2
𝐹 . (3.11)

The minimizer is the solution of the following linear system:

𝐾⊤𝐾𝑥 = 𝐾⊤𝑦. (3.12)

The solution can be found using conjugate gradient (CG) [46,124,144], FFT [70,129,

140] or fixed-point iterations [64] for example. The regularization term Ω, such as

Tikhonov regularization [46], is often used to improve the conditioning of this system

since deblurring is an ill-posed problem [74]. We discuss efficient linear system solvers

in the context of non-blind deblurring in Chapter 4.

When the noise model follows a Poisson distribution instead, the data-fitting term

becomes [102,125]:

𝐿(𝑦,𝐾𝑥) = −
𝑁∑︁

𝑖=1
([𝑦]𝑖 log([𝐾𝑥]𝑖)− [𝐾𝑥]𝑖). (3.13)

The Richardson-Lucy (RL) algorithm [78, 102] is a classical iterative approach for

minimizing this energy, based on gradient descent with an adaptive stepsize. An RL
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iteration reads:

𝑥(𝑡+1) = 𝑥(𝑡) ⊙
(︃

𝐾⊤𝑦

𝐾⊤𝐾𝑥(𝑡)

)︃
, (3.14)

where ⊙ and the division bar are the pixelwise product and division.

The prior Ω typically encodes the specifics of the image restoration application, for

example the fact that images should look like photographs. A common observation

is that natural image gradients are sparse [70]. An often used prior is total-variation

(TV) of an image, i.e., the sum of the magnitude of all the gradients in an image for

a given norm [82], which can be minimized by the mean of sparsity-inducing metrics,

e.g. ℓ1 [106, 124], ℓ0 [130] or ℓ0.5 [70], and alternative finite-difference filters per color

channel [16] or mixing different color channels [54]. A general form for TV-based

priors uses a non-negative function 𝜌 and a filter bank {𝐺𝑖} (𝑖 = 1, . . . , 𝑛) such that

Ω can be written as

Ω(𝑥) =
𝑛∑︁

𝑖=1
𝜌(𝐺𝑖𝑥). (3.15)

For instance, for 𝑛 = 2 with 𝐺1 and 𝐺2 corresponding to the convolution with finite-

difference filters and 𝜌 is the ℓ1 norm, Ω boils down to the TV-ℓ1 prior in [124]. When

𝜌 is the ℓ𝛾 semi-norm with 0 < 𝛾 < 1, Ω corresponds to the hyper-Laplacian prior

of [70]. Priors specific to certain kinds of images have also been proposed, achieving

superior results compared to the generic TV prior above. For instance the ℓ0-based

prior of Pan et al. [94] works particularly well on text images.

When the weight 𝜆 is greater than 0, the composite energy might not be easily

minimized since it is a composite function with terms having different properties

such as convexity and differentiability. Optimization can be carried out either with

gradient descent or LBFGS iterations, for instance, if we assume that both 𝐿 and Ω or

differentiable or a splitting algorithm such as half-quadratic splitting (HQS) [43, 44]

or the alternate direction multiplier method (ADMM) [13] otherwise. We explicitly

treat the case of HQS in this thesis in Chapters 4 and 5.

Handcrafted priors, such as in Eq. (3.15), can only enforce a finite number of

features typical of desired images such as natural photographs. Heide et al. [55]

propose to build a new penalty term combining several priors, each one constraining
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a few features such as strong edges with a TV prior [106, 124] or patch redundancy

with a term derived from BM3D [31]. This combination may lead to superior results,

both visually and quantitatively, but at the cost of solving composite and possibly

non-convex problems with many penalty weights to handtune.

The choice of the prior is also subject to a trade-off between accuracy and com-

putational speed. Indeed, the simplest image priors such as TV-ℓ1 have closed-form

proximal operators [124], resulting in fast algorithms, even for high-resolution im-

ages, whereas more elaborated priors, such as EPLL [144], can take several minutes

or hours for a 800× 800 image.

3.2.2 Learning-based methods

Synthetic training data composed of a blur operator, a sharp and a corresponding

blurry image based on the image formation model (3.1), providing large datasets for

training deblurring methods. Provided such corpus, supervised regression techniques

are particularly appealing for image deblurring.

Takeda et al. [121] use a variant of the Nadaraya-Watson interpolation algorithm

to predict sharp pixels. Couzinie-Devy et al. [29] learn a dictionary for a given set of

blurry and sharp patches. Large-scale optimization is carried out with stochastic gra-

dient descent. In [36], we cast non-blind image deblurring as a structured prediction

problem, solved with kernel ridge regression.

The learning-based deblurring algorithms are, in general, parametric functions

such as convolutional neural networks (CNNs), particularly adapted to process im-

ages in the computer vision literature. Suppose we have 𝑁 triplets (𝑥(𝑖), 𝑦(𝑖), 𝐾(𝑖))

(𝑖 = 1, . . . , 𝑁), composed of a sharp image, its blurry version and the blur operator,

a parametric deblurring algorithm 𝜑𝜃 , e.g., a CNN, with parameter 𝜃 and a pixelwise

loss 𝐿 such as the ℓ2 or ℓ1 norm. The optimal parameter 𝜃 for a given dataset is

obtained as the solution of

min
𝜃

1
𝑁

𝑁∑︁
𝑖=1

𝐹 (𝜑𝜃(𝑦(𝑖), 𝐾(𝑖)), 𝑥(𝑖)). (3.16)
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CNNs for non-blind deblurring have been trained in two settings. The first one

comprises two-stage methods composed of an initial simple and fast deconvolution

methods, e.g., Wiener filtering, followed by a CNN trained to further refine the im-

age estimated at the first stage. For instance, Schuler et al. [108] corrects with a

neural network the typical ringing artifacts introduced by a FFT-based inverse blur

filter. Dong et al. [34] improve this method by alternating several times between FFT-

based deconvolution and CNN-based post-processing. Xu et al. [131] train separately

modules mimicking Wiener deconvolution with additional denoising and ringing arti-

fact removal stages. Fine-tuning these modules together yields the final model. The

second one corresponds instead to black-box CNNs for deblurring an image, without

any interpretable component. These approaches, besides proposing adequate archi-

tectures, also focus on building better training data and loss functions. For instance,

Nah et al. [87] use the accumulation model of Eq. (3.9) to generate realistic blurry

images from videos taken with a 240fps GoPro cameras. They train a multiscale CNN

with a loss function supervising the deblurred image at each scale. The loss function

is composed of the classical ℓ2 distance and an adversarial loss. Alternatively, Noroozi

et al. [89] use videos from the Internet for generating the training data and Brooks

and Barron [17] build blurry images from only two photographs of the same scene

taken at different moments and interpolate the missing frames to generate blurry

images.

Despite good quantitative results on evaluation benchmarks, learning-based meth-

ods are only competitive on images from the same distribution as the training data,

limiting them to fields where a lot of curated pairs of sharp and corresponding images

are available, unlike astronomy or microscopy.

3.2.3 Hybrid methods

The optimization-based methods minimize composite energy functions including weights,

hard to handtune in practice, illustrated with the example of the parameter 𝜆 with

the TVℓ1 prior in Figure 1-2.

Bi-level optimization techniques [6] are hybrid techniques combining a typical
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composite energy function for predicting a sharp image and a learning-based problem

to estimate an optimal parameter, for instance the penalty weight 𝜆 in Eq.(3.15) [72],

circumventing the difficulty of handtuning 𝜆. In contrast to using handcrafted poten-

tials 𝜌 and 𝑛 filters 𝐺1, . . . , 𝐺𝑛 in a classical TV prior in Eq.(3.15), a few works treat

these quantities as a parameter learnt from training data. For instance, filters can be

learnt from data in a Markov random field [141, 142] and pairs of filters/potentials

with either Bayesian inference [105], in their so-called field-of-experts (FoE) prior.

Zoran and Weiss [144] cluster hundreds of thousands of image patches to learn cen-

troids further used in a prior implemented by a Gaussian mixture model. The sharp

image is finally estimated with the HQS splitting method. Finally a “plug-and-play”

method implements the prior Ω with a denoising routine [104], a choice motivated

by the Bayesian perspective. Many denoisers can be work in practice, for instance a

denoising CNN trained beforehand [138].

Traditional optimization algorithms are designed to iterate until convergence, but

in practice a fixed number of iterations may be sufficient, especially in a context where

the goal is to learn an appropriate prior. Gregor and Lecun [50] implement a classical

iterative sparse coding algorithm ISTA [12], that typically converges after hundreds of

iterations, as a recurrent neural network with finite depth, for instance ten or twenty.

Each stage initially corresponds to an iteration of ISTA but is parameterized and

updated with supervisory data. The resulting function approximates the performance

of hundreds of ISTA iterations but with the running time and memory usage of only

ten or twenty iterations.

The same approach is adopted in image processing: a finite number of iterations of

optimization methods such as gradient descent or splitting algorithms are embedded

in parametric functions, later learned in a regression setting with the backpropagation

algorithm,

Chen and Pock [24] parameterize five stages of a diffusion equation with the learn-

able potential/filter pairs of the FoE model of [105] for image denoising and deblur-

ring. Schmidt et al. [107] learn a model whose architecture combines HQS and the

FoE prior of [105]. They also propose to supervise each stage separately, exploiting
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the fact that each stage predicts an intermediate estimate of the solution. Zhang

et al. [136] replace the soft-thresholding operator in the TV-ℓ1 prior in HQS with a

CNN, thus seen as the proximal operator of an unknown potential function. Kruse

et al. [71] upgrade the learnable potentials of Schmidt et al. [107] with CNNs. Zhang

et al. [137] also parameterize the proximal operator with a CNN but also predict the

different hyper-parameters, with a second neural network.

3.3 Non-blind deblurring for saturated images

As discussed in Chapter 2, saturation breaks the classical linear model encountered

in several image processing application and most be specifically handle by deblurring

approaches. Indeed, deblurring algorithms listed above almost all involve local filter-

ing operations that might mix saturated pixels in non-saturated regions, resulting in

ringing artifacts according to Whyte et al. [125].

Cho et al. [27] deblur a saturated images by predicting with the expectation-

maximization algorithm a sharp estimate and a mask of the saturated pixels in the

latent sharp image. The methods leaves untouched the saturated pixels since the

information is lost anyway and solely focuses on the non-saturated regions.

Whyte et al. [125] adapt the Richardson-Lucy [78, 102]. At each iteration, the

mask of the unsaturated pixels is computed and two instances of the RL iteration is

computed: one for updating the non-saturated “far” from the saturated regions and

one for the non-saturated pixels at the vicinity of the saturated regions.

Mosleh et al. [86] include the clipping function in the data-fitting term of a penal-

ized energy function and perform splitting over it to run the HQS algorithm.

3.4 Joint demosaicking and non-blind deblurring

The problem of joint demosaicking and non-blind deblurring is a much less studied

problem than RGB image non-blind deblurring, but it is key to optical aberration

removal, for instance, since demosaicking alone may mix the chromatic aberration
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specific to a single color band, across the different color channels and thus may be at

the origin of colored artifacts [109].

Palyi et al. [92] explain that no FFT-based solver can be found because the pix-

elwise mask 𝑀 in Eq. (2.9) corresponding to the sensor CFA, cannot be as easily

exploited in the Fourier domain as the blur operator 𝐾 when it corresponds to a

global convolution. The authors propose to instead jointly deblur and interpolate the

color channels with a bank of approximate inverse deblurring filters combined with

demosaicking interpolation kernels.

Schuler et al. [109] show that in the context of optical aberrations removal, good

results can be achieved when the blur and mosaicking are jointly considered in a single

linear operator instead of decomposing it into a blur operator 𝐾 and a binary mask 𝑀

as modelled in Eq. (2.9). They adapt the non-blind deblurring approach of Krishnan

and Fergus [70] to the joint deblurring and demosaicking setting by replacing the

initial FFT-based solver for deblurring with a CG-based one, which results in a slow

restoration algorithms that takes several hours to restore a 18 Megapixel image from

a standard DSLR. Soulez and Thiébaut [112] and Luong et al. [79] also cast joint

non-blind deblurring and demosaicking as the minimization of penalized energies

with dedicated priors on RGB images with optimization carried out respectively with

LBFGS and a primal-dual algorithm.

Chi et al. [25] and Liang et al. [76] propose multiscale CNNs for motion blur

removal from raw images, reminiscent of Nah et al. [87], but with additional sub-

modules to handle the four color channels of a Bayer image. In the fashion of the

GoPro dataset [87], Liang et al. collect sequences of sharp images to generate raw

and blurry images.

3.5 Blur estimation

Non-blind deblurring techniques demand an estimate of the blur, which can be esti-

mated thanks to prior knowledge in a specific field such as astronomy or microscopy.

Once the camera or telescope has been calibrated and the blur measured, it can be
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used for the other images. A second option is to estimate the blur from the degraded

image at hand, which frequently happens for extrinsic blurs where the blur depends

on shooting conditions specific to an image. We detail in this section only methods

for estimating the blur from a single image since it is the setting relevant to this

thesis.

3.5.1 Motion blur estimation

The simplest model for motion blur is to assume that it is uniform on the whole

image. This assumption is generally incorrect but Hu and Yang [58] show that a

uniform blur can be a good approximation in practice if it is estimated in an adequate

region containing enough salient edges.

Fergus et al. [39] use the Bayes rule to relate the blurry image and the uniform blur

kernel. The latter is predicted with probabilistic inference in a multiscale scheme. The

blurry image is deblurred with a classical non-blind deconvolution technique. Despite

good results, this approach remains extremely slow and can take several hours, even

for low-resolution images.

Cho et al. [26] accelerate this method by finding the blur kernel as the solution of

an inverse problem. This approach alternates between predicting salient edges in the

current latent sharp image at hand with shock filters [90] and estimating in closed

form the current blur kernel and sharp image. Blur estimation takes a few minutes for

1280×720 images, which is a dramatic improvement compared to the marginalization

approach of Fergus et al. [39].

Xu et al. [129] further improve Cho et al.’s technique with a better edge detection

approach than shock filters. Further improvements taking the form of an approximate

ℓ0 TV term in Xu et al. [133] or a dark channel-based prior by Pan et al. [95] yield

state-of-the-art results for predicting motion blur from a single blurry image. These

priors enforce sparsity on the latent image, forcing the solution to have non-zero

components only next to the most salient edges. This allows the elimination of the

edge-prediction stage in [26] and also dramatically improves blur prediction results

overall. Contrary to previous sparsity-inducing priors, Michaeli and Irani [85] leverage
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the redundancy of patches at several scales to predict local blurs.

Whyte et al. [126] adapt the multiscale approach of Cho et al. [26] to the non-

uniform setting of camera shake, assumed to be reasonably modelled as a series of

rotations about the camera’s optical center with the accumulation model in Eq. (3.9).

A set of angular positions about this optical center is first discretized and represents

the possible positions a camera can have during motion. The blur kernel prediction

stage of the Cho et al.’s technique is converted into estimating the most likely angular

positions, resulting in a 3D blur model. The corresponding 3D blurring operator is

implemented with a variant of the EFF model of Hirsch et al. [57] in Eq. (3.8). Overall,

the method runs in about 3 minutes for a 1280 × 720 image and is, even nowadays,

a state-of-the-art approach for camera shake removal.

Learning-based methods have also been employed for blur estimation but for spe-

cific sorts of blur. For instance, Couzinie-Devy et al. [30] predict horizontal transla-

tions, common in car images, with a linear classifier. Sun et al. [116] go a step beyond

by learning a CNN to predict for a given a blurry image, a linear motion represented

by an angle and a magnitude per overlapping patch. The CNN’s local predictions are

later fused with a random Markov field into a global non-uniform blur that represents

camera translation, rotations or moving objects’ trajectories. Gong et al. [48] propose

a CNN that directly takes as input the blurry image and achieves in one stage the

prediction of the locally-linear non-uniform blur.

Contrary to the algorithmic solutions covered in the previous paragraphs, [59,60]

use sensors to record the camera’s motion during exposure.

We recall that in this thesis, we assume that images are in focus. We do not detail

further methods for defocus blur estimation from a single image, e.g., the work of

Zhu et al. [143] or Levin et al. [73] estimating both defocus blur and depth at the

same time.

3.5.2 Point-spread function estimation

Non-blind deblurring techniques are historically used in scientific domains where the

intrinsic blur can be estimated, like in the HST example in Chapter 1.
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More generally, optical aberration removal can be formulated as an inverse prob-

lem featuring color-specific blur kernels. Since consumer-grade lenses have locally-

varying PSFs across the field of view, multiple measurements at different pixel loca-

tions are required to actually record an approximate global camera/lens PSF [10,109].

One of these measurements is shown in Figure 2-5.

Camera calibration techniques are limited to specific camera/lens pairs at a given

aperture and focal length, which greatly limits the amount of images eligible for

restoration. Conversely, the forward model (3.1) can also be used in an inverse prob-

lem to predict the camera PSF, assuming that a pair of corrupted and sharp images

is available. Joshi et al. [61] use a calibration pattern and a photograph of it to build

such pairs. Delbracio et al. [33] use a Bernoulli noise-based pattern to predict the

PSF at subpixel resolution.

Contrary to the previous techniques requiring careful manipulations for each new

corrupted image to record a ground-truth photograph, blind algorithms automati-

cally estimate the PSF from a single blurry image, further used in an inverse problem

with respect to the blur operator. Schuler et al. [110] estimate the PSF with an

optimization-based formulation, solved with the multiscale variational approach of

Cho et al. [26]. The vanilla algorithm takes a couple hours for a 18 megapixel im-

age but can be accelerated by assuming that the PSF features several symmetries,

reducing the running time to a couple of minutes.

This technique is further improved by Yue et al. [135] by assuming that the green

channel is a sharp image and by imposing stricter symmetry constraints on the solu-

tion. The last assumption is actually not true in practice, because of manufacturing

errors [10, 35]. Sun et al. [119] instead start by deconvolving, in a blind setting, one

of the color channels, typically the green one supposed to be less blurry than the two

other ones [54] and estimate the PSF for the two remaining channels by minimizing an

energy function penalized with cross-color correlation term, achieving state-of-the-art

optical aberration removal results for a single blurry RGB image.

The optimization approach of [110] and its follow-ups can only predict the global

PSF at predefined locations on the field of view. Hirsch and Schölkopf [56] propose a
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kernel regression technique to interpolate a local PSF at an unknown location given

estimates elsewhere on the field of view. Shih et al. [111] propose an interpolation

function that uses measurements of optical aberrations for certain lens settings to

predict the blur at never-measured settings such as new focal length and aperture.
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Chapter 4

An Interpretable Learning

Approach to Non-blind Deblurring

Abstract
As already mentioned in Chapter 3, non-blind image deblurring is typically formu-
lated as a linear least-squares problem regularized by natural image priors on the
corresponding sharp picture’s gradients, which can be solved, for example, using a
half-quadratic splitting method with Richardson fixed-point iterations for its least-
squares updates and a proximal operator for the auxiliary variable updates. In this
chapter, we propose to precondition the Richardson solver using approximate inverse
filters of the (known) blur and natural image prior kernels. Using convolutions in-
stead of a generic linear preconditioner allows extremely efficient parameter sharing
across the image, and leads to significant gains in accuracy and/or speed compared
to classical FFT and conjugate-gradient methods. More importantly, the proposed
architecture is easily adapted to learning both the preconditioner and the proximal
operator (and thus, the corresponding prior) using CNN embeddings. This yields
a simple and efficient algorithm for non-blind image deblurring which is fully inter-
pretable, can be learned end to end, and whose accuracy matches or exceeds the state
of the art, quite significantly in the non-uniform case.

4.1 Introduction

This chapter addresses the problem of non-blind image deblurring–that is, the re-

covery of a sharp image given its blurry version and the corresponding uniform or

non-uniform motion blur kernel. Applications range from photography [59] to as-

51
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tronomy [113] and microscopy [49]. As mentioned in the previous chapters, classical

approaches to this problem include least-squares and Bayesian models, leading to

Wiener [127] and Lucy-Richardson [102] deconvolution techniques for example. Since

many sharp images can lead to the same blurry one, blur removal is an ill-posed prob-

lem. To tackle this issue, variational methods [106] inject a priori knowledge over the

set of solutions using penalized least-squares. Geman and Yang [44] introduce an aux-

iliary variable to solve this problem by iteratively evaluating a proximal operator [96]

and solving a least-squares problem. The rest of this chapter builds on this half-

quadratic splitting approach. Its proximal part has received a lot of attention through

the design of complex model-based [70, 117, 134, 144] or learning-based priors [105].

Far less attention has been paid to the solution of the companion least-squares prob-

lem, typically relying on techniques such as conjugate gradient (CG) descent [14] or

fast Fourier transform (FFT) [57, 132]. CG is relatively slow in this context, and

it does not exploit the fact that the linear operator corresponds to a convolution.

FFT exploits this property but is only truly valid under periodic conditions at the

boundaries, which are never respected by real images.

We propose instead to use Richardson fixed-point iterations [64] to solve the least-

squares problem, using approximate inverse filters of the (known) blur and natural

image prior kernels as preconditioners. Using convolutions instead of a traditional

linear preconditioner allows efficient parameter sharing across the image, which leads

to significant gains in accuracy and/or speed over FFT and conjugate-gradient meth-

ods. To further improve performance and leverage recent progress in deep learning,

several recent approaches to denoising and deblurring unroll a finite number of prox-

imal updates and least-squares minimization steps [4, 24, 67, 71, 107]. Compared to

traditional convolutional neural networks (CNNs), these algorithms use interpretable

components and produce intermediate feature maps that can be directly supervised

during training [71,107].

We propose a solver for non-blind deblurring, also based on the splitting scheme

of [44] but, in addition to learning the proximal operator (and thus, the prior) as

in [136], we also learn parameters in the fixed-point algorithm by embedding the
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preconditioner into a CNN whose bottom layer’s kernels are the approximate filters

discussed above. Unlike the algorithm of [136], our algorithm is trainable end to end,

and achieves accuracy that matches or exceeds the state of the art. Furthermore,

in contrast to other state-of-the-art CNN-based methods [71,136] relying on FFT, it

operates in the pixel domain and thus easily extends to non-uniform blurs scenarios.

4.1.1 Contributions of this chapter

Our contributions can be summarized as follows.

• We introduce a convolutional preconditioner for fixed-point iterations that effi-

ciently solves the least-squares problem arising in splitting algorithms to min-

imize penalized energies. It is faster and/or more accurate than FFT and CG

for the non-blind deblurring task, with theoretical convergence guarantees.

• We propose a new end-to-end trainable algorithm that implements a finite num-

ber of stages of half-quadratic splitting [44] and is fully interpretable. It alter-

nates between proximal updates and preconditioned fixed-point iterations. The

proximal operator and linear preconditioner are parameterized by CNNs in or-

der to learn these functions from a training set of clean and blurry images.

• We evaluate our approach on several benchmarks with both uniform and non-

uniform blur kernels. We demonstrate its robustness to significant levels of

noise, and obtain results that are competitive with the state of the art for

uniform blur and significantly outperforms it in the non-uniform case.

4.2 Deconvolution algorithms

We survey in this section several approaches for solving a least-squares problem.

We focus on FFT, CG and fixed-point iterations, at the core of this chapter. In this

chapter, we will consider the simplified forward model of Eq. (3.2) which only features

a blur matrix 𝐾 applied to the sharp image in vector format 𝑥. We also set ourselves
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in the case where 𝐾𝑥 is equivalent to the convolution of 𝑥, in image format, with a

linear 𝑘, thus 𝑘 *𝑥, which corresponds to the uniform blur model in Eq. (3.7). In this

section, we will often switch between both formats, using the image format to derive

the practical algorithms and the matrix format when dealing with the underlying

optimization theory.

4.2.1 Classical approaches

We consider the forward model of Eq. (3.2) where the blur matrix 𝐾 corresponds to

the convolution with a linear filter 𝑘 as detailed in Eq. (3.7). In the noise-free setting,

it reads

𝑦 = 𝑘 * 𝑥, (4.1)

We make the assumption that 𝑥 and 𝑦 are 𝐻 ×𝑊 grayscale images but extending

this model to RGB images is straightforward and is thus not explicitly covered in this

section.

We recall from Chapter 3 that a classical approach to find 𝑥 in this case is to solve

the least-squares problem

min
𝑥∈R𝐻×𝑊

‖𝑦 − 𝑘 * 𝑥‖2
𝐹 , (4.2)

or equivalently in matrix format

min
𝑥∈R𝐻𝑊

‖𝑦 −𝐾𝑥‖2
𝐹 . (4.3)

The solution of this least-squares problem has a closed form, derived from the blur

matrix pseudo-inverse [46], but in general computing the pseudo-inverse can be pro-

hibitive since it requires inverting a large matrix. In the case of the uniform blur model

we consider, we can use the Parseval equivalence [82] to write Eq. (4.2) in the Fourier

domain where the convolution becomes a pointwise multiplication. Let ℱ(𝑥) be the

2D Fourier transform of the image 𝑥 and ⊙ the pointwise product. Equation (4.2)

becomes

min
ℱ(𝑥)
‖ℱ(𝑦)−ℱ(𝑘)⊙ℱ(𝑥)‖2

𝐹 . (4.4)
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A few computations yields the closed-form solution

̂︀𝑥 = ℱ−1
(︃
ℱ(𝑘)*

|ℱ(𝑘)|2 ⊙ℱ(𝑦)
)︃
, (4.5)

where ℱ−1 is the inverse Fourier transform, ℱ(𝑘)* is the complex conjugate of ℱ(𝑘)

and |ℱ(𝑘)|2 is the pixelwise modulus of ℱ(𝑘). The division is pixelwise and since ℱ

is in practice implemented with FFT, Eq. 4.5 can be computed in a few milliseconds,

even for high-resolution images. Despite excellent speed and accuracy, the Fourier

transform and FFT are valid for an image with circular boundary conditions, which

is generally not true in practice, resulting in artifacts next to the edges of the restored

image ̂︀𝑥.

Iterative methods are classical alternative solvers for finding a solution to the

normal equation related

(𝐾⊤𝐾)𝑥 = 𝐾𝑇𝑦, (4.6)

As we have seen in Chapter 3, the general blur matrix 𝐾 has in practice poor con-

ditioning. Using iterative methods to solve a normal equation corresponds to solve

a linear system with a linear operator 𝐾⊤𝐾 which has even poorer conditioning,

yielding slow convergence.

4.2.2 Convolutional fixed-point iterations

We propose an alternate iterative scheme in this section for solving a least-squares

problem where the matrix corresponds to the convolution with a linear filter, based

on preconditionned Richardson fixed-point [64]. Starting with 𝑥0 = 𝑦, it reads in

matrix format:

𝑥𝑡+1 = (𝐼 − 𝐶𝐾)𝑥𝑡 + 𝐶𝑦. (4.7)

A valid preconditioner 𝐶 is an approximate inverse of 𝐾 [64], solution of

min
𝐶
‖𝐼 − 𝐶𝐾‖2

𝐹 + 𝜌‖𝐶‖2
𝐹 . (4.8)
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Figure 4-1: Comparison of three deconvolution methods for inverting the forward
model (4.1) in a synthetic blurry image. The proposed CPCR method achieves a
similar visual result compared to CG and avoids the boundary artifacts of the FFT-
based image.

Since 𝐾 and 𝐼 are circulant, it is reasonable to find 𝐶 as a circulant matrix too, a

typical assumption for preconditionning CG iterations when the linear operator is a

block-Toeplitz matrix [23]. In image format, it thus corresponds to find a linear filter

𝑐, solution of

min
𝐶
‖𝛿 − 𝑐 * 𝑘‖2

𝐹 + 𝜌‖𝑐‖2
𝐹 , (4.9)

whose closed-form solution can be safely computed with FFT since the boundaries of

a linear filter are in general circular

𝑐 = ℱ−1
(︃

ℱ(𝑘)*

|ℱ(𝑘)|2 + 𝜌𝐽

)︃
, (4.10)
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with 𝐽 a matrix full of ones. Kelly [64] shows that the iteration (4.7) with 𝐶 com-

puted as the solution of (4.9) is a converging sequence. For now, we assume that 𝐾

corresponds to the uniform convolution with a linear filter 𝑘, defined in Eq. (3.7).

The vectors 𝑥𝑡 and 𝑦 are now 𝐻 ×𝑊 images. In the image format, the rearranged

Richardson iterations read

𝑥𝑡+1 = (𝛿 − 𝑐 * 𝑘) * 𝑥𝑡 + 𝑐 * 𝑦, (4.11)

= 𝑥𝑡 + 𝑐 * (𝑦 − 𝑘 * 𝑥𝑡). (4.12)

This iteration can be seen as an iterative residual update algorithm, gradually restor-

ing 𝑥𝑡. We call these iterations convolutional preconditionned Richardson (CPCR)

iterations.

We illustrate the performance of FFT and 100 iterations of CG and CPCR on a

synthetic image in Figure 4-1. FFT, despite specific padding, introduces boundaries

artifacts because of the non-circular edges of this image, which is indeed typical of

natural images. CG and CPCR achieve similar visual and quantitative results but

100 CPCR iterations run in about 4 seconds on a CPU, in contrast to the 22 seconds

for 100 CG iterations.

4.3 Proposed method

We now incorporate CPCR iterations in a penalized deconvolution scheme since the

deconvolution is an ill-posed problem. We formulate non-blind deblurring as

min
𝑥

1
2 ||𝑦 − 𝑘 * 𝑥||

2
𝐹 + 𝜆Ω(

𝑛∑︁
𝑖=1

𝑘𝑖 * 𝑥). (4.13)

The filters 𝑘𝑖 (𝑖 = 1, . . . , 𝑛) are typically partial derivative operators, and Ω acts as

a regularizer on 𝑥, enforcing natural image priors. One often takes Ω(𝑧) = ||𝑧||1
(TV-ℓ1 model). We propose in this section an end-to-end learnable variant of the

method of half-quadratic splitting (or HQS) [44] to solve Eq. (4.13). As shown later,

a key to the effectiveness of our algorithm is that all linear operations are explicitly
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represented by convolutions.

Let us first introduce notations that will simplify the presentation. Given some

linear filters 𝑎𝑖 and 𝑏𝑖 (𝑖 = 0, . . . , 𝑛) with finite support (square matrices), we borrow

the Matlab notation for “stacked” linear operators, and denote by 𝐴 = [𝑎0, . . . , 𝑎𝑛]

and 𝐵 = [𝑏0; . . . ; 𝑏𝑛] the (convolution) operators respectively obtained by stacking

“horizontally” and “vertically” these filters, whose responses are

𝐴 * 𝑥 = [𝑎0 * 𝑥, . . . , 𝑎𝑛 * 𝑥]; 𝐵 * 𝑥 = [(𝑏0 * 𝑥)⊤, . . . , (𝑏𝑛 * 𝑥)⊤]⊤; (4.14)

We also define 𝐴 *𝐵 = ∑︀𝑛
𝑖=0 𝑎𝑖 * 𝑏𝑖 and easily verify that (𝐴 *𝐵) * 𝑥 = 𝐴 * (𝐵 * 𝑥).

4.3.1 A convolutional HQS algorithm

Equation (4.13) can be rewritten as

min
𝑥,𝑧

1
2 ||𝑦 − 𝑘 * 𝑥||

2
𝐹 + 𝜆Ω(𝑧) such that 𝑧 = 𝐹 * 𝑥, (4.15)

where 𝐹 = [𝑘1; . . . ; 𝑘𝑛]. Let us define the energy function

𝐸(𝑥, 𝑧, 𝜇) = 1
2 ||𝑦 − 𝑘 * 𝑥||

2
𝐹 + 𝜆Ω(𝑧) + 𝜇

2 ||𝑧 − 𝐹 * 𝑥||
2
𝐹 . (4.16)

Given some initial guess 𝑥 for the sharp image, (e.g. 𝑥 = 𝑦) we can now solve our

original problem using the HQS method [44] with 𝑇 iterations of the form

𝑧 ← argmin𝑧 𝐸(𝑥, 𝑧, 𝜇);

𝑥← argmin𝑥 𝐸(𝑥, 𝑧, 𝜇);

𝜇← 𝜇+ 𝛿𝑡.

(4.17)

The 𝜇 update can vary with iterations but must be positive. We could also use the

alternating direction method of multipliers (or ADMM [96]), for example, but this is



59

left to future work. Note that the update in 𝑧 has the form

𝑧 ← argmin
𝑧

𝜇

2 ||𝑧 − 𝐹 * 𝑥||
2
𝐹 + 𝜆Ω(𝑧) = 𝜙𝜆/𝜇(𝐹 * 𝑥), (4.18)

where 𝜙𝜆/𝜇 is, by definition, the proximal operator [96] associated with Ω (a soft-

thresholding function in the case of the ℓ1 norm [38]) given 𝜆 and 𝜇.

The update in 𝑥 can be written as the solution of a linear least-squares problem:

𝑥← argmin
𝑥

1
2 ||𝑢− 𝐿 * 𝑥||

2
𝐹 , (4.19)

where 𝑢 = [𝑦;√𝜇𝑧] and 𝐿 = [𝑘;√𝜇𝐹 ].

4.3.2 Convolutional PCR iterations

Many methods are of course available for solving Eq. (4.19). We propose to compute

𝑥 as the solution of 𝐶 * (𝑢− 𝐿 * 𝑥) = 0, where 𝐶 = [𝑐0, . . . , 𝑐𝑛] is composed of 𝑛+ 1

filters and is used in preconditioned Richardson (or PCR) fixed-point iterations [64].

Briefly, in the generic linear case, PCR is an iterative method for solving a square,

nonsingular system of linear equations 𝐴𝑥 = 𝑏. Given some initial estimate 𝑥 = 𝑥0 of

the unknown 𝑥, it repeatedly applies the iterations

𝑥← 𝑥− 𝐶(𝐴𝑥− 𝑏), (4.20)

where 𝐶 is a preconditioning square matrix. When 𝐶 is an approximate inverse of

𝐴, that is, when the spectral radius 𝜂 of 𝐼 − 𝐶𝐴 is smaller than one, preconditioned

Richardson iterations converge to the solution of 𝐴𝑥 = 𝑏 with a linear rate propor-

tional to 𝜂 [64]. When 𝐴 is an 𝑚×𝑛 matrix with 𝑚 ≥ 𝑛, and 𝑥 and 𝑏 are respectively

elements of R𝑛 and R𝑚, PCR can also be used in Cimmino’s algorithm for linear

least-squares, where the solution of min𝑥 ||𝐴𝑥 − 𝑏||2 is found using 𝐶 = 𝜌𝐴⊤, with

𝜌 > 0 sufficiently small, as the solution of 𝐴⊤𝐴𝑥−𝐴⊤𝑏 = 0, with similar guarantees.

Finally, it is also possible to use a different 𝑛×𝑚 matrix. When the spectral radius 𝜂

of the 𝑛×𝑛 matrix 𝐼−𝐶𝐴 is smaller than one, the PCR iterations converge once again
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Figure 4-2: From left ot right: An example of a blur kernel 𝑘 from the Levin et al.
dataset [74]; its approximate inverse kernel 𝑐0; the resulting filter resulting from the
convolution of 𝑘 and 𝑐0 (represented as a surface). It gives an approximate Dirac
filter 𝛿.

at a linear rate proportional to 𝜂. However, they converge to the (unique in general)

solution of 𝐶(𝐴𝑥 − 𝑏) = 0, which may of course be different from the least-squares

solution.

This method is easily adapted to our context. Since 𝐿 corresponds to a bank of

filters of size 𝑤𝑘×𝑤𝑘, it is natural to take 𝐶 = [𝑐0, . . . , 𝑐𝑛] to be another bank of 𝑛 + 1

linear filters of size 𝑤𝑐×𝑤𝑐. Unlike a generic linear preconditioner satisfying 𝐶𝐴 ≈ Id

in matrix form, whose size depends on the square of the image size, 𝐶 exploits the

structure of 𝐿 and is a linear operator with much fewer parameters, i.e. 𝑛 + 1 times

the size of the 𝑐𝑖’s. Thus, 𝐶 is an approximate inverse filter bank for 𝐿, in the sense

that

𝛿 ≈ 𝐿 * 𝐶 = 𝐶 * 𝐿 = 𝑐0 * 𝑘 +√𝜇∑︀𝑛
𝑖=1 𝑐𝑖 * 𝑘𝑖, (4.21)

where 𝛿 is the Dirac filter. In this setting, 𝐶 is computed as the solution of

𝐶 = argmin𝐶 ||𝛿 − 𝐿 * 𝐶||2𝐹 + 𝜌
∑︀𝑛

𝑖=0 ||𝑐𝑖||2𝐹 , (4.22)

The classical solution using the pseudo inverse of 𝐿 has cost 𝒪 ((𝑤𝑘 + 𝑤𝑐 − 1)2×3).

𝑐𝑖 = ℱ−1
(︃

�̃�*
𝑖

𝜌𝐽 +∑︀𝑛
𝑗=0 |�̃�𝑗|2

)︃
for 𝑖 = 0 to 𝑛, (4.23)

using the fast Fourier transform (FFT) with cost 𝒪(𝑤2
𝑐 log(𝑤𝑐)) [41]. ℱ−1 is the
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inverse Fourier transform, 𝐽 is a matrix full of ones, �̃�𝑖 is the Fourier transform of

𝑘𝑖 (with 𝑘0 = 𝑘), �̃�*
𝑖 is its complex conjugate and the division in the Fourier domain

is entrywise. Note that the use of FFT in this context has nothing to do with its

use as a deconvolution tool for solving Eq. (4.19). Figure 4-2 shows an example of

a blur kernel from [74], its approximate inverse when 𝑛 = 0 and the result of their

convolution. Let us define [𝐴]* as the linear operator such that [𝐴]*𝐵 = 𝐴 * 𝐵.

Indeed, a true inverse filter bank such that equality holds in Eq. (4.21) does not exist

in general (e.g., a Gaussian filter cannot be inverted), but all that matters is that the

linear operator associated with 𝛿 −𝐶 *𝐿 has a spectral radius smaller than one [64].

We have the following result.

Lemma 4.3.1 The spectral radius of the linear operator 𝐼 − [𝐿]*[𝐶]*, where 𝐶 is the

optimal solution of (4.22) given by (4.23) is always smaller than 1 when [𝐿]* has full

rank.

A detailed proof can be found in Appendix A. We now have our basic non-blind

deblurring algorithm, in the form of the Matlab-style CHQS (for convolutional HQS,

primary) and CPCR (for convolutional PCR, auxiliary) functions below.

function 𝑥 = CHQS(𝑦, 𝑘, 𝐹, 𝜇0)

𝑥 = 𝑦; 𝜇 = 𝜇0;

for 𝑡 = 0 : 𝑇 − 1 do

𝑢 = [𝑦;√𝜇𝜙𝜆/𝜇(𝐹 * 𝑥)];

𝐿 = [𝑘;√𝜇𝐹 ];

𝐶 = argmin𝐶 ||𝛿 − 𝐶 * 𝐿||2𝐹 + 𝜌
∑︀𝑛

𝑖=0 ||𝑐𝑖||2𝐹 ;

𝑥 = CPCR(𝐿, 𝑢, 𝐶, 𝑥);

𝜇 = 𝜇+ 𝛿𝑡;

end for

end function
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function 𝑥 = CPCR(𝐴, 𝑏, 𝐶, 𝑥0)

𝑥 = 𝑥0;

for 𝑠 = 0 : 𝑆 − 1 do

𝑥 = 𝑥− 𝐶 * (𝐴 * 𝑥− 𝑏);

end for

end function

4.3.3 An end-to-end trainable CHQS algorithm

To improve on this method, we propose to learn the proximal operator 𝜙 and the

preconditioning operator 𝐶. The corresponding learnable CHQS (LCHQS) algorithm

can now be written as a function with two additional parameters 𝜃 and 𝜈 as follows.

function 𝑥 = LCHQS(𝑦, 𝑘, 𝐹, 𝜇0, 𝜃, 𝜈)

𝑥 = 𝑦; 𝜇 = 𝜇0;

for 𝑡 = 0 : 𝑇 − 1 do

𝑢 = [𝑦;√𝜇𝜙𝜃
𝜆/𝜇(𝐹 * 𝑥)];

𝐿 = [𝑘;√𝜇𝐹 ];

𝐶 = argmin𝐶 ||𝛿 − 𝐶 * 𝐿||2𝐹 + 𝜌
∑︀𝑛

𝑖=0 ||𝑐𝑖||2𝐹 ;

𝑥 = CPCR(𝐿, 𝑢, 𝜓𝜈(𝐶), 𝑥);

𝜇 = 𝜇+ 𝛿𝑡;

end for

end function

The function LCHQS has the same structure as CHQS but now uses two parame-

terized embedding functions 𝜙𝜃
𝜏 and 𝜓𝜈 for the proximal operator and preconditioner.

In practice, these functions are CNNs with learnable parameters 𝜃 and 𝜈 as detailed

in Sec. 4.4. Note that 𝜃 actually determines the regularizer through its proximal

operator. The function LCHQS is differentiable with respect to both its 𝜃 and 𝜈

parameters. Given a set of training triplets (𝑥(𝑖), 𝑦(𝑖), 𝑘(𝑖)) (in 𝑖 = 1, . . . , 𝑁), the

parameters 𝜃 and 𝜈 can thus be learned end-to-end by minimizing

𝐹 (𝜃, 𝜈) = ∑︀𝑁
𝑖=1 ||𝑥(𝑖) − LCHQS(𝑦(𝑖), 𝑘(𝑖), 𝐹, 𝜃, 𝜈)||1, (4.24)
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Figure 4-3: A blurry image from our test set with 2% white noise and the solutions
of Eq. (4.13) with TV-ℓ1 regularization obtained with different HQS-based methods.
From the same optimization problem, HQS-FFT displays boundary artifacts. HQS-
CG and CHQS produce images with similar visual quality and PSNR values but
HQS-CG is much slower.

with respect to these two parameters by “unrolling” the HQS iterations and using

backpropagation, as in [24,136] for example. This can be thought of as the “compila-

tion” of a fully interpretable iterative optimization algorithm into a CNN architecture.

Empirically, we have found that the ℓ1 norm gives better results than the ℓ2 norm in

Eq. (4.24).



64
CHAPTER 4. AN INTERPRETABLE LEARNING APPROACH TO NON-BLIND

DEBLURRING

4.4 Experiments

4.4.1 Implementation details

Network architectures. The global architecture of LCHQS shares the same pattern

than FCNN [136], i.e., 𝑛 = 2 in Eq. (4.13) with 𝑘1 = [1,−1] and 𝑘2 = 𝑘⊤
1 , and the

model repeats between 1 and 5 stages alternatively solving the proximal problem

(4.18) and the linear least-squares problem (4.19). The proximal operator 𝜙𝜃 is the

same as the one introduced in [136], and it is composed of 6 convolutional layers with

32 channels and 3 × 3 kernels, followed by ReLU non-linearities, except for the last

one. The first layer has 1 input channel and the last layer has 1 output channel.

The network 𝜓𝜈 featured in LCHQS is composed of 6 convolutional layers with 32

channels and 3× 3 kernels, followed by ReLU non-linearities, except for the last one.

The first layer has 𝑛+1 input channels (3 in practice with the setting detailed above)

corresponding to the filtered versions of 𝑥 with the 𝑐𝑖’s, and the last layer has 1

output channel. The filters 𝑐1 and 𝑐2 are of size 31 × 31. This size is intentionally

made relatively large compared to the sizes of 𝑘1 and 𝑘2 because inverse filters might

have infinite support in principle. The size of 𝑐0 is twice the size of the blur kernel

𝑘. This choice will be explained in Sec. 4.4.2. In our implementation, each LCHQS

stage has its own 𝜃 and 𝜈 parameters. The non-learnable CHQS module solves a

TV-ℓ1 problem; the proximal step implements the soft-thresholding operation 𝜙 with

parameter 𝜆/𝜇 and the least-squares step implements CPCR. The choice of 𝜇 will be

detailed below.

Datasets. The training set for uniform blur is made of 3000 patches of size 180×

180 taken from BSD500 dataset and as many random 41×41 blur kernels synthesized

with the code of [21]. We compute ahead of time the corresponding inverse filters 𝑐𝑖

and set the size of 𝑐0 to be 83× 83 with Eq. (4.23) where 𝜌 is set to 0.05, a value we

have chosen after cross-validation on a separate test set. We also create a training set

for non-uniform motion blur removal made of 3000 180×180 images synthesized with

the code of [48] with a locally linear motion of maximal magnitude of 35 pixels. For

both training sets, the validation sets are made of 600 additional samples. In both
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cases, we add Gaussian noise with standard deviation matching that of the test data.

We randomly flip and rotate by 90∘ the training samples and take 170× 170 random

crops for data augmentation.

Optimization. Following [71], we train our model in a two-step fashion: First,

we supervise the sharp estimate output by each iteration of LCHQS in the manner

of [71] with Eq. (4.24). We use an Adam optimizer with learning rate of 10−4 and

batch size of 1 for 200 epochs. Second, we further train the network by supervising

the final output of LCHQS with Eq. (4.24) on the same training dataset with an

Adam optimizer and learning rate set to 10−5 for 100 more epochs without the per-

layer supervision. We have obtained better results with this setting than using either

of the two steps separately.

4.4.2 Experimental validation of CPCR and CHQS

In this section, we present an experimental sanity check of CPCR for solving (4.19)

and CHQS for solving (4.13) in the context of a basic TV-ℓ1 problem.

Inverse kernel size. We test different sizes for the 𝑤𝑐0×𝑤𝑐0 approximate inverse

filter 𝑐0 associated with a 𝑤𝑘 × 𝑤𝑘 blur kernel 𝑘, in the non-penalized case, with

𝜆 = 0. We use Eq. (4.23) with 𝜌 set to 0.05. We use 160 images obtained by

applying the 8 kernels of [74] to 20 images from the Pascal VOC 2012 dataset. As

shown in Fig. 4-4 , the PSNR increases with increasing 𝑤𝑐0/𝑤𝑘 ratios, but saturates

when the ratio is larger than 2.2. We use a ratio of 2 which is a good compromise

between accuracy and speed.

CPCR accuracy. We compare the proposed CPCR method to FFT-based de-

convolution (FFT) and conjugate gradient descent (CG), to solve the least-squares

problem of Eq. (4.19) in the setting of a TV-ℓ1 problem. We follow [71] and, in

order to limit boundary artifacts for FFT, we pad the images to be restored by repli-

cating the pixels on the boundary with a margin of half the size of the blur kernel

and then use the “edgetaper” routine. We also run FFT on images padded with

the “replicate” strategy consisting in simply replicating the pixels on the boundary.

We solve Eq. (4.19) with 𝜇0 = 0.008, 𝜆 = 0.003 and 𝑧 computed beforehand with
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Figure 4-4: From left to right: Computation times for CPCR (including computation
of 𝐶) with FFT applied on images padded with “edgetaper” as recommended in
[71] and non-padded images for three image formats; effect of the 𝑤𝑐0/𝑤𝑘 ratio on
performance; comparison of CG, FFT and CPCR for solving (4.19).

Eq. (4.18). The 160 images previously synthesized are degraded with 2% additional

white noise. Figure 4-4 shows the average PSNR scores for the three algorithms opti-

mizing Eq. (4.19). After only 5 iterations, CPCR produces an average PSNR higher

than the other methods and converges after 10 iterations. The “edgetaper” padding

is crucial for FFT to compete with CG and CPCR by reducing the amount of border

artifacts in the solution.

CPCR running time. CPCR relies on convolutions and thus greatly benefits

from GPU acceleration. For instance, for small images of size 500 × 375 and a blur

kernel of size 55 × 55, 10 iterations of CPCR are in the ballpark of FFT without

padding: CPCR runs in 20ms, FFT runs in 3ms and FFT with “edgetaper” padding
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ker-1 ker-2 ker-3 ker-4 ker-5 ker-6 ker-7 ker-8 Aver. Time (s)
HQS-FFT (no pad.) 21.14 20.51 22.31 18.21 23.36 20.01 19.93 19.02 20.69 0.07
HQS-FFT (rep. pad.) 26.45 25.39 26.27 22.75 27.64 27.26 24.84 23.54 25.53 0.07
HQS-FFT (FDN pad.) 26.48 25.89 26.27 23.79 27.66 27.23 25.26 25.02 25.96 0.15
HQS-CG 26.39 25.90 26.24 24.88 27.59 27.31 25.39 25.19 26.12 13
CHQS 26.45 25.96 26.26 25.06 27.67 27.51 25.81 25.48 26.27 0.26

Table 4.1: Comparison of different methods optimizing the same TV-ℓ1 deconvolution
model (4.13) on 160 synthetic blurry images with 2% white noise. We run all the
methods on a GPU. The running times are for a 500× 375 RGB image.

takes 40ms. For a high-resolution 1280 × 720 image and the same blur kernel, 10

iterations of CPCR run in 22ms, FFT without padding runs in 10ms and “edgetaper”

padded FFT in 70ms. Figure 4-4 compares the running times of CPCR (run for

10 iterations) with padded/non-padded FFT for three image (resp. kernel) sizes:

500 × 375, 800 × 800 and 1280 × 720 (27 × 27, 55 × 55 and 121 × 121) pixels. Our

method is marginally slower than FFT without padding in every configuration (within

a margin of 20ms) but becomes much faster than FFT combined to “edgetaper”

padding when the size of the kernel increases. FFT with “replicate” padding runs in

about the same time as FFT (no pad) and thus is not shown in Fig. 4-4 . The times

have been averaged over 1000 runs.

Running times for computing the inverse kernels with Eq. (4.23). Com-

puting the inverse kernels 𝑐𝑖, with an ratio 𝑤𝑐/𝑤𝑘 set to 2, takes 1.0±0.2ms for a blur

kernel 𝑘 of size 27 × 27 and 5.4 ± 0.5ms (results averaged in 1000 runs) for a large

121× 121 kernel. Thus, the time for inverting blur kernels is negligible in the overall

pipeline.

CHQS validation. We compare several iterations of HQS using unpadded FFT

(HQS-FFT (no pad.)), with “replicate” padding (HQS-FFT (rep. pad)), and the

padding strategy proposed in [71] (HQS-FFT (FDN pad.)), CG (HQS-CG), or CPCR

(CHQS) for solving the least-squares problem penalized with the TV-ℓ1 regularized in

Eq. (4.13) and use the same 160 blurry and noisy images than in previous paragraph

as test set. We set the number of HQS iterations 𝑇 to 10, run CPCR for 5 iterations

and CG for at most 100 iterations. We use 𝜆 = 0.003 and 𝜇𝑡 = 0.008 × 4𝑡 (𝑡 =
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FCNN [136] EPLL [144] RGCD [47] FDN [71] CHQS LCHQSG LCHQSF

Levin [74] 33.08 34.82 33.73 35.09 32.12 35.11 ± 0.05 35.15 ± 0.04
Sun [118] 32.24 32.46 31.95 32.67 30.36 32.83 ± 0.01 32.93 ± 0.01

Table 4.2: PSNR scores for Levin [74] and Sun [118] benchmarks, that respectively
feature 0.5% and 1% noise. Best results are shown in bold, second-best underlined.
The difference may not always be significant between FDN and LCHQS for the Levin
dataset.

0, . . . , 𝑇−1). Table 4.1 compares the average PSNR scores obtained with the different

HQS algorithms over the test set. As expected, FDN padding greatly improves HQS-

FFT results on larger kernels over naive “replicate” padding, i.e. “ker-4” and “ker-8”,

but overall does not perform as well as CHQS. For kernels 1, 2, 3 and 5, the four

methods yield comparable results (within 0.1 dB of each other). FFT-based methods

are significantly worse on the other four, whereas our method gives better results

than HQS-CG in general, but is 100 times faster. This large speed-up is explained

by the convolutional structure of CPCR whereas CG involves large matrix inversions

and multiplications. Figure 4-3 shows a deblurring example from the test set. HQS-

FFT (with FDN padding strategy), even with the refined padding technique of [71],

produces a solution with boundary artifacts. Both HQS-CG and CHQS restore the

image with a limited amount of artifacts, but CHQS does it much faster than HQS-

CG. This is typical of our experiments in practice.

Discussion. These experiments show that CPCR always gives better results

than CG in terms of PSNR, sometimes by a significant margin, and it is about 50

times faster. This suggests that CPCR may, more generally, be preferable to CG for

linear least-squares problems when the linear operator is a convolution. CPCR also

dramatically benefits from its convolutional implementation on a GPU with speed

similar to FFT and is even faster than FFT with FDN padding for large kernels.

These experiments also show that CHQS surpasses, in general, HQS-CG and HQS-

FFT for deblurring.

Next, we further improve the accuracy of CHQS using supervised learning, as done

in previous works blending within a single model variational methods and learning.
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Figure 4-5: Comparison of state-of-the-art methods and the proposed LCHQS for one
sample of the Levin dataset [74] (better seen on a computer screen). FDN effectively
removes the blur but introduces artifacts in flat areas, unlike EPLL and LCHQS.

4.4.3 Uniform deblurring

We compare in this section CHQS and its learnable version LCHQS with the non-blind

deblurring state of the art, including optimization-based and CNN-based algorithms.

Comparison on standard benchmarks. LCHQS is first trained by using the

loss of Eq. (4.24) to supervise the output of each stage of the proposed model and

second trained by only supervising the output of the final layer, in the manner of

[71]. The model trained in the first regime is named LCHQSG and the one further

trained with the second regime is named LCHQSF. The other methods we compare

our learnable model to are HQS algorithms solving a TV-ℓ1 problem: HQS-FFT

(with the padding strategy of [71]), HQS-CG and CHQS, an HQS algorithm with

a prior over patches (EPLL) [144] and the state-of-the-art CNN-based deblurring

methods FCNN [136] and FDN [71]. We use the best model provided by the authors
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Figure 4-6: Performance of FDN [71] and LCHQS on the Levin [74] (left) and
Sun [118] (right) datasets.

of [71], denoted as FDN10
T in their paper. Table 4.2 compares our method with these

algorithms on two classical benchmarks. We use 5 HQS iterations and 2 CPCR

iterations for CHQS and LCHQS. Except for EPLL that takes about 40 seconds to

restore an image of the Levin dataset [74], all methods restore a 255× 255 black and

white image in about 0.2 second. The dataset of Sun et al. contains high-resolution

images of size around 1000 × 700 pixels. EPLL removes the blur in 20 minutes on

a CPU while the other methods, including ours, do it in about 1 second on a GPU.

In this case, our learnable method gives comparable results to FDN [71], outputs

globally much sharper results than EPLL [144] and is much faster. As expected,

non-trainable CHQS is well behind its learned competitors (Tab. 4.2).

Number of iterations for LCHQS𝐺 and CPCR. We investigate the influence

of the number of HQS and CPCR iterations on the performance of LCHQS𝐺 on the

benchmarks of Levin et al. [74] and Sun et al. [118]. FDN implements 10 HQS

iterations parameterized with CNNs but operates in the Fourier domain. Here, we

compare LCHQS𝐺 to the FDN model trained in a stage-wise manner (denoted as

FDN10
G in [71]). Figure 4-6 plots the mean PSNR values for the datasets of Levin et

al. and Sun et al. [118] after each stage. FDN comes in two versions: one trained on

a single noise level (green line) and one trained on noise levels within a given interval

(blue line). We use up to 5 iterations of our learnable CHQS scheme, but it essentially

converges after only 3 steps. When the number of CPCR iterations is set to 1, FDN

and our model achieve similar results for the same number of HQS iterations. For
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2/3 CPCR iterations, we do better than FDN for the same number of HQS iterations

by a margin of +0.4/0.5dB on both benchmarks. For 3 HQS iterations and more,

LCHQS saturates but systematically achieves better results than 10 FDN iterations:

+0.15dB for [74] and +0.26dB for [118].

Robustness to noise. Table 4.3 compares our methods for various noise levels

on the 160 RGB images introduced previously, dubbed from “PASCAL benchmark”.

FDN corresponds to the model called FDN10
T in [71]. For this experiment, (L)CHQS

uses 5 HQS iterations and 2 inner CPCR iterations. We add 1%, 3% and 5% Gaussian

noise to these images to obtain three different test sets with gradually stronger noise

levels. We train each model to deal with a specific noise level (non-blind setting) but

also train a single model to handle multiple noise levels (blind setting) on images with

0.5 to 5% of white noise, as done in [71]. For each level in the non-blind setting, we

are marginally above or below FDN results. In terms of average PSNR values, the

margins are +0.12dB for 1%, +0.06dB for 3% and -0.05dB for 5% when comparing

our models with FDN, but we are above the other competitors by margins between

0.3dB and 2dB. Compared to its noise-dependent version, the network trained in the

blind setting yields a loss of 0.2dB for 1% noise, but gains of 0.14 and 0.27dB for 3

and 5% noises, showing its robustness and adaptability to various noises. Figure 4-7

compares results obtained on a blurry image with 3% noise.

4.4.4 Non-uniform motion blur removal

Typical non-uniform motion blur models assign to each pixel of a blurry image a

local uniform kernel [22]. This is equivalent to replacing the uniform convolution in

Eq. (4.13) by local convolutions for each overlapping patch in an image, as done by

Sun et al. [116] when they adapt the solver of [144] to the non-uniform case. Note

that FDN [71] and FCNN [136] operate in the Fourier domain and thus cannot be

easily adapted to non-uniform deblurring, unlike (L)CHQS operating in the spatial

domain. We handle non-uniform blur as follows to avoid computing different inverse

filters at each pixel. As in [116], we model a non-uniform motion field with locally

linear motions that can well approximate complex global motions such as camera
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1% noise 3% noise 5% noise Time (s)
HQS-FFT 26.48 23.90 22.15 0.2
HQS-CG 26.45 23.91 22.27 13
EPLL [144] 28.83 24.00 22.10 130
FCNN [136] 29.27 25.07 23.53 0.5
FDN [71] 29.42 25.53 23.97 0.6
CHQS 27.08 23.33 22.38 0.3
LCHQSG (non-blind) 29.54 ± 0.02 25.59 ± 0.03 23.87 ± 0.06 0.7
LCHQSF (non-blind) 29.53 ± 0.02 25.56 ± 0.03 23.95 ± 0.05 0.7
LCHQSG (blind) 29.22 ± 0.02 25.55 ± 0.03 24.05 ± 0.02 0.7
LCHQSF (blind) 29.35 ± 0.01 25.71 ± 0.02 24.21 ± 0.01 0.7

Table 4.3: Uniform deblurring on 160 test images with 1%, 3% and 5% white noise.
Running times are for an 500 × 375 RGB image. The mention “blind” (resp. “non-
blind) indicates that a single model handles the three (resp. a specific) noise level(s).

HQS-FFT HQS-CG EPLL [144] CHQS LCHQSG LCHQSF

1% noise 23.49 25.84 25.49 25.11 26.83 ± 0.08 26.98 ± 0.08
3% noise 23.17 24.18 23.78 23.74 24.91 ± 0.05 25.06 ± 0.06
5% noise 22.44 23.10 23.34 22.65 23.97 ± 0.05 24.14 ± 0.05
Time (s) 13 212 420 0.8 0.9 0.9

Table 4.4: Non-uniform deblurring on 100 test images with 1%, 3% and 5% white
noise. Running times are for an 500× 375 RGB image.

rotations. We discretize the set of the linear motions by considering only those with

translations (in pixels) in {1, 3 . . . , 35} and orientations in {0∘, 6∘, . . . , 174∘}. In this

case, we know in advance all the 511 35 × 35 local blur kernels and compute their

approximate inverses ahead of time. During inference, we simply determine which

one best matches the local blur kernel and use its approximate inverse in CPCR.

This is a parallelizable operation on a GPU. Table 4.4 compares our approach (in

non-blind setting) to existing methods for locally-linear blur removal on a test set of

100 images from PASCAL dataset non-uniformly blurred with the code of [48] and

with white noise. For instance for 1% noise, LCHQSG scores +0.99dB higher than

CG-based method, and LCHQSF pushes the margin up to +1.13dB while being 200

times faster. Figure 4-8 shows one non-uniform example from the test set.
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4.4.5 Deblurring with approximated blur kernels

In practice one does not have the ground-truth blur kernel but instead an approximate

version of it, obtained with methods such as [95,126]. We show that (L)CHQS works

well for approximate and/or large filters, different from the ones used in the training

set and without any training or fine-tuning.

We show in Figure 4-9 a deblurred image with an approximate kernel obtained

with the code of [95] and of support of size 101×101 pixels. We obtain with LCHQSF

(blind) of Table 4.3 a sharper result than FCNN and do not introduce artifacts as

FDN, showing the robustness of CPCR and its embedding in HQS to approximate

blur kernels.

We also compare on two photographs taken with a handhelded Canon EOS 550D

camera. In the first one, in Figure 4-10, the blurry image is obtained after cropping a

2400× 1600 window. A uniform blur kernel is then estimated with [95]. The second

one in Figure 4-11 is a full-frame image whose blur is estimated with the camera shake

estimation technique of [126]. We compare LCHQS with USRNet [137], a state-of-the

art hybrid method and the hyper-Laplacian prior technique of [70] which is purely

model-based. Both [70] and [137] rely on FFT whereas we embed CPCR in our model.

These two techniques introduce ringing artifacts next to edges such as the badge on

the teddy bear’s hat or on the books on the shelf whereas our approach does not,

validating the choice of our approach on real-world scenarios.

4.5 Conclusion

We have presented a new learnable solver for non-blind deblurring. It is based on the

HQS algorithm for solving penalized least-squares problems but uses preconditioned

iterative fixed-point iterations for the 𝑥-update. Without learning, this approach

is superior both in terms of speed and accuracy to classical solvers based on the

Fourier transform and conjugate gradient descent. When the preconditioner and

the proximal operator are learned, we obtain results that are competitive with or

better than the state of the art. Our method is easily extended to non-uniform
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deblurring, and it outperforms the state of the art by a significant margin in this

case. We have also demonstrated its robustness to important amounts of white noise.

Explicitly accounting for more realistic noise models [40] and other degradations such

as downsampling is left for future work.
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Figure 4-7: Example of image deblurring with an additive noise of 3% (better seen on
a computer screen). In this example, we obtain better PSNR scores than competitors
and better visual results, for example details around the door or the leaves.
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Figure 4-8: Non-uniform motion deblurring example with 1 % additive Gaussian noise
(better seen on a computer screen). The car and the helmet are sharper with our
method than in the images produced by our competitors.
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Figure 4-9: Real-world blurry images deblurred with an 101 × 101 blur kernel esti-
mated with [95]. We can restore fine details with approximate, large kernels.
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Figure 4-10: Real-world blurry images deblurred with camera shake estimated with
the approach of Whyte et al. [126]. The proposed approach is robust to approxima-
tions in the predicted non-uniform blur like next to the buttons or the badge on the
hat of the bear, whereas the competitors relying on FFT introduce ringing artifacts.
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Figure 4-11: Real-world blurry images deblurred with camera shake estimated with
the approach of Whyte et al. [126]. The proposed approach restores sharp edges next
to the books cover without introducing ringing artifact nor amplifying the noise.
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Chapter 5

Learning to Remove Optical

Aberrations

Abstract
In this chapter, we address optical aberration removal mentioned in Chapter 2 or, in
essence deblurring sharp images. Restoration is carried out by jointly deblurring and
demosaicking noisy and raw images in a non-blind setting where the camera PSF is
supposed known, either with camera calibration or estimated from blurry images as
detailed in Chapter 3. We adapt an existing learning-based approach to RGB im-
age deblurring to handle raw images by introducing a new interpretable module that
jointly demosaicks and deblurs them. We train this model on RGB images converted
into raw ones following a realistic invertible camera pipeline. We demonstrate the
effectiveness of this model over two-stage approaches stacking demosaicking and de-
blurring modules on quantitive benchmarks and real photographs taken with different
lenses and cameras.

5.1 Introduction

Our objective is to deblur, denoise and demosaick raw images. Raw data is important

since it captures the most direct information we have about the observed scene, before

any digital post-processing such as color transformations and gamma correction [18].

An important application is the removal of the optical aberrations introduced by the

lens point-spread function (PSF). Indeed, any photograph, even perfectly focused and

in the absence of any motion, contains some blur caused by its optics, ranging from

81
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geometric distortions to chromatic aberrations [109, 135]. Removing these artifacts

is a (little explored) instance of joint image demosaicking and non-blind deblurring

addressed in this presentation.

Most approaches to image deblurring focus on sophisticated priors [70, 144], con-

volutional neural networks (CNNs) [87,123], or a combination of both [24,37,71,137].

Recent algorithms are robust to various noise levels [71], large [37,137] and even ap-

proximate kernels [95], but they often ignore several stages of the camera pipeline

connecting the analog image in the focal plane to the digital blurry image recorded

by the camera.

As shown in Chapter 2, blur is caused by various, color-dependent optical phe-

nomena [109, 135], camera and/or scene motion, and spatial, spectral and temporal

integration over the pixel area. In particular, a single grey value is typically recorded

at each pixel according to the Bayer pattern to form the final raw image.

Raw images are interpolated with filtering techniques [75, 84] or learning-based

approaches [45,69] into linear RGB (aka linRGB) images [18,98]. This demosaicking

operation is often highly non-linear. Sensor noise follows a statistical model whose

parameters are estimated empirically from raw images [40] or learnt with a neural

network on a corpus of image pairs [1], which is much more realistic than a Gaussian

model. LinRGB images are finally converted into the standard RGB (aka sRGB)

format through an image signal processing (ISP) pipeline [18].

This complex process suggests that the classical model of convolving a sharp RGB

image with a linear filter to form its blurry version can be improved to better fit real

digital cameras. We thus start from a raw, blurry and noisy image to predict a sharp

and denoised linRGB image. We use a realistic image formation model, embed it

into a penalized energy term, and unroll a few stages of an iterative solver within

a parametric function inspired by [137] and trained with samples preprocessed with

a modified variant of the linRGB-to-sRGB conversion pipeline from [18]. We finally

apply this model to optical aberrations removal from images taken with high-end

cameras whose PSF has been estimated separately.
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Figure 5-1: The modified camera pipeline we consider in this chapter. We replace a
typical demosaicking algorithm with a joint demosaicking and deblurring technique
whose role, in addition to predict the missing color components filtered out by the
sensor CFA in the red block, is to remove the blur caused by the lens and/or the shoot-
ing conditions in the yellow block. Our module predicts a sharp image in the camera
color space (or linRGB), further converted to a sRGB by the remaining operations
on the ISP pipeline.

5.1.1 Contributions of this chapter

Our main contributions can be summarized as follows:

• We introduce a joint deblurring, demosaicking and denoisng forward model

motivated by a realistic camera pipeline;

• the corresponding energy function is based on this forward model and optimized

with a splitting method. We unroll a few stages of the splitting technique within

a parametric function trained on blurry, mosaicked and noisy images;

• we present an experimental comparison with two-stage methods demonstrating

the benefits of our approach and;

• we present an application of the proposed model to the removal of blur and

chromatic aberrations caused by a camera’s PSF on both synthetic and real

images.

5.2 Image formation model

5.2.1 Camera pipeline overview

The overall image acquisition pipeline we consider in this chapter is represented in

Figure 5-1 and upgrades the typical camera pipeline detailed in Chapter 2 and illus-
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trated in Figure 2-1. A typical digital camera model starts with the sensor image,

mosaicked by a colored filter array (CFA) whose pixel values corresponds to the focal

image radiance, blurred by both intrinsic and extrinsic blurs. During the recording

process, noise due to the camera hardware also degrades the image, resulting in a

blurry, mosaicked and noisy sensor image. In this work, we upgrade the demosaick-

ing module, initially converting the sensor raw image into an RGB version, to also

remove the camera’s intrinsic blur. We first review what happens before and after

demosaicking in the camera ISP pipeline to target what are the input and the output

of our optical aberration removal function.

Before demosaicking, black and white levels clip in the raw image to the pixels

considered too dark, used in practice for noise estimation [40], and the pixel too

bright, mainly because of saturation [27]. White balance for correcting the scene color

palette and color-specific digital gains for compensating the CFA filtering behavior

both linearly increase the pixel values of the sensor image. These transformations are

channel-independent and thus do not mix the chromatic aberrations across different

color channels. Demosaicking predicts the missing color components filtered out by

the sensor CFA, and outputs an RGB image whose pixel values linearly corresponds

to the focal image radiance, up to the few outliers corrected by black and white levels

clipping. As a result, we call this demosaicked image the linear RGB image (linRGB

in short) in the rest of this chapter.

After demosaicking, the ISP pipeline converts the in-camera linRGB image into

the standard RGB format [114] and proceeds in several contrast and brightness non-

linear corrections, the most famous one being gamma compression.

Classical demosaicking algorithms focus on predicting the missing color compo-

nents in a noise-free image, e.g., [75, 80, 84]. The physics of a camera suggests that

there is always noise in a raw image, encouraging researcher to instead focus on joint

demosaicking and denoising algorithms, e.g., [45, 66, 91], hence replacing the single

demosaicking stage in the classical ISP pipeline.

The proposed approach goes a step further since we remove optical aberrations

from the raw image to predict a denoised linRGB image free of most of the camera’s
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intrinsic blurs. We follow Schuler et al. [109] and estimate such linRGB image by the

means of a joint non-blind deblurring and demosaicking problem, which also takes

into account noise. One could simply stack on top of a performing joint demosaicking

and denoising algorithm a state-of-the-art deblurring model, such as USRNet [137],

but in the context of optical aberration removal, Schuler et al. [109] show that a joint

approach to demosaicking and deblurring yields better quantitative and qualitative

results over two separate modules. In this chapter, we also deal with saturation,

frequently encountered in many digital images and notorious to introduce artifacts

during deblurring [27, 125]. We now formalize the inverse problem we seek to solve

to obtain the clean linRGB discussed above.

5.2.2 Approximate forward model

We recall here the general approximate forward model of Eq. (3.1), central to this

chapter:

𝑦 = 𝑠(𝑀𝐾𝑥+ 𝜀) ∼ 𝒩 (0, 𝜆s𝑀𝐾𝑥+ 𝜆r). (5.1)

A digital sharp image 𝑥 is first blurred by the composite blur, modelled by matrix 𝐾,

and composed of intrinsic blur caused by the camera and lens and extrinsic blur due

to shooting conditions. The blurry image is further mosaicked by the sensor CFA,

represented by 𝑀 , and further noised by the camera, represented by a random vector

𝜀. Since the photosites have limited capacity, the maximal value a pixel can have is

bounded. Saturation is represented with the non-linear function 𝑠.

Saturation happens in photographs containing bright items such as light bulbs or

the Sun, but in most cases images do not have saturated areas. We can thus remove

the saturation function 𝑠 from the previous equation and consider the forward model:

𝑦 = 𝑀𝐾𝑥+ 𝜀 with 𝜀 ∼ 𝒩 (0, 𝜆s𝑀𝐾𝑥+ 𝜆r), (5.2)

where, according to [18,40], the vector 𝜀 is the sensor’s noise seen on a raw or linRGB

image can be modelled as a pixel-varying zero-mean Gaussian distribution with vari-
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ance 𝜆s𝑀𝐾𝑥+ 𝜆r. It linearly depends on 𝑀𝐾𝑥 and two scalars: a scaling weight 𝜆s

and an offset 𝜆r representing respectively the impact of shot and read noise [40].

The output image 𝑦 is the blurry and noisy raw image that has its color channels

purged from the outlier pixel values with the black and white levels and multiplied by

the white balance coefficients and the digital gains. The image 𝑦 thus has correct in-

camera linRGB values at the locations retained by the CFA, elsewhere it is zero. The

input image 𝑥 in this approximate model is a digital sharp linRGB image, mimicking

the true analog focal image that has infinite resolution [9]. In practice we do not seek

to increase the image resolution, only its sharpness and thus 𝑥 and 𝑦 have the same

number of pixels. The matrix 𝐾 corresponds to the convolution approximate digital

filters representing the intrinsic camera blur, which is in reality an analog filtering

operation. 𝑀 represents the CFA. The joint deblurring and demosaicking setting

is particularly adapted to optical aberration removal the properties of most recent

lenses are accurately measured and tabulated1 or can be estimated with calibration of

a camera, e.g., [10,109], or with an optimization-based technique, e.g. [110,119,135].

This ensures that 𝐾 is known for this task. The mosaicking pattern in 𝑀 is a feature

of the camera and can reasonably be supposed known too in general. We can now

derive a hybrid method for solving joint deblurring and demosaicking.

5.3 Proposed approach

A natural approach for solving a joint deblurring, demosaicking and denoising problem

is to leverage the important previous work on image demosaicking and denoising

and non-blind RGB image deblurring by using a two-stage method stacking a joint

demosaicking and denoising solver followed by a non-blind deblurring approach, e.g.

[109], as shown in Figure 5-1. One of the main contributions of this work is to instead

predict a sharp, demosaicked and denoised image from the observation 𝑦.

1https://www.dxomark.com/Lenses/
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5.3.1 Energy function and splitting strategies

We integrate the forward model (5.2) into a penalized energy function with an image

prior Ω whose solution is a denoised and deblurred linRGB image:

min
𝑥

1
2 ‖𝑦 −𝑀𝐾𝑥‖2

𝐹 + 𝜆Ω(𝑥). (5.3)

Optimization of (5.3) is traditionally carried out with splitting algorithms such as

half-quadratic splitting (or HQS) [43]. We introduce an auxiliary variable 𝑧 and solve

min
𝑥,𝑧

1
2‖𝑦 −𝑀𝐾𝑧‖2

𝐹 + 𝜆Ω(𝑥) 𝑠.𝑡. 𝑧 = 𝑥, (5.4)

which becomes, when relaxed with a weight 𝛽 > 0:

min
𝑥,𝑧

1
2‖𝑦 −𝑀𝐾𝑧‖2

𝐹 + 𝛽

2 ‖𝑧 − 𝑥‖
2
𝐹 + 𝜆Ω(𝑥). (5.5)

Optimization requires to jointly handle the operators 𝑀 and 𝐾. We will detail the

calculations in the next paragraphs.

Alternatively, we first demosaick the image, for instance with a CNN 𝜉 with pa-

rameter 𝜈 [45], and second use a non-blind deblurring approach on the demosaicked

linRGB image to predict the final sharp linRGB image 𝑥. The same relaxation of a

constraint on an auxiliary variable 𝑧 leads to

min
𝑥,𝑧

1
2‖𝑑−𝐾𝑧‖

2
𝐹 + 𝛽

2 ‖𝑧 − 𝑥‖
2
𝐹 + 𝜆Ω(𝑥), (5.6)

with 𝑑 = 𝜉𝜈(𝑦, 𝜆r, 𝜆s).

The demosaicking approach takes as input the noise parameters 𝜆r and 𝜆s, in the vein

of [45, 69]. In this case, the reference image in the non-blind deblurring problem is 𝑑

and not 𝑦.
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5.3.2 Solving the intermediate problems

Predicting 𝑥 in both Eqs (5.5) and (5.6) is done by solving

min
𝑥
𝜆Ω(𝑥) + 𝛽

2 ‖𝑧 − 𝑥‖
2
𝐹 . (5.7)

The minimizer of energy can be computed by evaluating in 𝑧 the proximal operator

𝜑 of Ω with parameter 𝜆/𝛽 [96]:

𝑥 = proxΩ(𝑧, 𝜆/𝛽) = 𝜑(𝑧, 𝜆/𝛽). (5.8)

The intermediate deblurred image in (5.6) is the solution of:

min
𝑧
‖𝑑−𝐾𝑧‖2

𝐹 + 𝛽‖𝑧 − 𝑥‖2
𝐹 , (5.9)

which is classically solved with fast Fourier transform (FFT) [137], conjugate gradient

(CG) [55], or Richardson fixed-point iterations [37]. FFT is generally favored over

CG since it scales with the size of an image. For instance a 3644× 5734 RGB image

can is deblurred in less than 2 minutes with [70], based on FFT, compared to 7 hours

when FFT is replaced with CG in the work of Schuler et. al. [109].

However estimating 𝑧 in Eq. (5.5) requires solving instead:

min
𝑧
‖𝑦 −𝑀𝐾𝑧‖2

𝐹 + 𝛽‖𝑧 − 𝑥‖2
𝐹 , (5.10)

Paliy et. al. [92] and Schuler et. al. [109] claim that 𝑀 is not diagonalized in the

Fourier basis, unlike 𝐾. This suggests that no fast solver exists for joint deblurring

and demosaicking. Schuler et. al. say: “We believe that our approach is able to

compete with state-of-the-art demosaicing algorithm because separating demosaicing

and deblurring has the disadvantage that it does not require the result to be consistent

with the image formation model. [...] Furthermore, typical demosaicing algorithms

do not take chromatic aberration into account, which lead to a spatial separation of

edge information across different color channels.”



89

For any mosaicking pattern choice, 𝑀 independently samples the color channels

resulting in

𝑀𝐾𝑧 =

⎡⎢⎢⎢⎢⎢⎣
𝐷𝑅𝐾𝑅 0 0

0 𝐷𝐺𝐾𝐺 0

0 0 𝐷𝐵𝐾𝐵

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
𝑧𝑅

𝑧𝐺

𝑧𝐵

⎤⎥⎥⎥⎥⎥⎦ (5.11)

where 𝑧𝑅, 𝑧𝐺 and 𝑧𝐵 are the red, green and blue components and 𝐾𝑅, 𝐾𝐺 and 𝐾𝐵 are

the color-specific components of the blur 𝐾. One of our contributions is to estimate

𝑧⋆
𝑅, 𝑧⋆

𝐺 and 𝑧⋆
𝐵, the red, green and blue images forming 𝑧⋆, the solution of (5.10), with

a FFT-based module similar to the one of [137] in the case of the Bayer pattern.

5.3.3 FFT-based solver for least-squares (5.10)

The conclusions of Palyi et al. [92] suggests that no convolutional preconditioner can

be computed for joint deblurring and deblurring, preventing us from using CPCR to

solve the problem with respect to 𝑧 as done in Chapter 4. We solve Eq. (5.10) instead

with a FFT-based module inspired by [137] in the context of image upsampling. The

linear operator 𝑀𝐾 in (5.11) decomposes the least-squares problem Eq. (5.10) into

three independent terms. Figure 5-2 shows a mosaicked image 𝑦 obtained sampled

with 𝑀 and whose 𝑦𝑅 and 𝑦𝐵 components are sampled versions of the corresponding

RGB image where in each 2×2 non-overlapping patch, only one pixel value is retained

per color. Similarly, the 𝑦𝐺 is the sum of two images 𝑦𝐺1 and 𝑦𝐺2 such that 𝑦𝐺 =

𝑦𝐺1 + 𝑦𝐺2 (and 𝐷𝐺 = 𝐷𝐺1 +𝐷𝐺2), each one sampling a single green pixel in the 2× 2

non-overlapping patches in Fig. 5-2. We interpolate the missing values by solving,

with 𝑐 in {𝐺1, 𝑅,𝐺2, 𝐵}:

min
𝑧𝑐
‖𝑦𝑐 −𝐷𝑐𝐾𝑐𝑧𝑐‖2

𝐹 + 𝛽‖𝑧𝑐 − 𝑥𝑐‖2
𝐹 . (5.12)

These four problems are similar to the upsampling approach of [137] with rate 2

solving the linear system, with 𝑐 in {𝐺1, 𝑅,𝐺2, 𝐵}:

(𝐾⊤
𝑐 𝐷

⊤
𝑐 𝐷𝑐𝐾𝑐 + 𝛽𝐼)𝑧⋆

𝑐 = 𝐾⊤
𝑐 𝐷

⊤
𝑐 𝑦 + 𝛽𝑥𝑐. (5.13)
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Figure 5-2: A mosaicked image with the Bayer pattern and its three sampled colored
components.

By splitting the green image into 𝑦𝐺1 and 𝑦𝐺2 , we efficiently solve the four least-

squares with an adapted version of the FFT-based approach of [137, 140]. We detail

the implementation details and modifications on the code of [137] in the supplemental

material. The images 𝑧⋆
𝑅 and 𝑧⋆

𝐵 are the solutions of (5.13) and 𝑧⋆
𝐺 is obtained from

𝑧⋆
𝐺1 and 𝑧⋆

𝐺2 as follows: the pixels at locations 0, 4, . . . (resp. 2, 6, . . . ) in Fig. 5-2

are copied from the ones from 𝑧⋆
𝐺1 (resp. 𝑧⋆

𝐺2) and the remaining pixels at locations

1, 3, 5, . . . are the corresponding values in (𝑧⋆
𝐺1 + 𝑧⋆

𝐺2)/2. Stacking the three images

𝑧⋆
𝑅, 𝑧⋆

𝐺 and 𝑧⋆
𝐵 yields the RGB solution 𝑧⋆ of Eq. (5.10).

5.3.4 Learnable embedding

Similar to Chapter 4, we improve the performance of the restoration method for

solving either (5.6) or (5.5), we embed a few stages of HQS in the USRNet model

of Zhang et al. [137] featuring two modules for learning the proximal step (5.7) and

estimating on-the-fly the optimal weights 𝛽(𝑡) and 𝛾(𝑡) = 𝜆/𝛽(𝑡) (𝑡 = 1, . . . , 𝑇 ). We

parameterize the proximal operator of 𝜑 with the same Unet model as in [137] with

parameter 𝜃 such that for a given estimate 𝑧(𝑡), we predict an RGB image 𝑥 as

𝑥(𝑡+1) = 𝜑𝜃(𝑧(𝑡), 𝛾(𝑡+1)). (5.14)

We predict 𝑧(𝑡+1) from 𝑥(𝑡+1), 𝐾, 𝑀 and 𝛽(𝑡+1) with the mapping 𝜓 estimating its 𝑅,

𝐺 and 𝐵 components with the approach of Section 5.3.3:

𝑧(𝑡+1) = 𝜓(𝑥(𝑡+1), 𝐾,𝑀, 𝛽(𝑡+1)), (5.15)
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where 𝑥(𝑡+1), 𝐾, 𝑀 and 𝛽(𝑡+1) are used to build the least-squares problems (5.13).

The weights 𝛽(𝑡) and 𝛾(𝑡) with a 3-layer perceptron, as detailed in [137] dubbed 𝜒

and with parameter 𝜔. In our case, it becomes a function of the read and shot noise

coefficients 𝜆r and 𝜆s defined as:

[{𝛽(𝑡)}𝑇
𝑡=1, {𝛾(𝑡)}𝑇

𝑡=1] = 𝜒𝜔(𝜆r, 𝜆s). (5.16)

Our proposed approach for joint deblurring, demosaicking and denoising of raw

images embeds the weight predictor 𝜒𝜔, the learnable proximal operator 𝜑𝜃 and the

FFT-based solver for joint deblurring and demosaicking 𝜓 in (5.15) into the state-of-

the-art model USRNet [137] initially designed for sRGB image non-blind deblurring

and upsampling.

The two-stage approach first jointly demosaicks and denoises a raw image with a

module 𝜉𝜈 that we implement with the learning-free approach of [84] or the state-of-

the-art approach of [45] dubbed Deepjoint. It is followed by a non-blind deblurring

module that we implement with the USRNet model of [137]. We modify Deepjoint

and USRNet for processing the noise parameters 𝜆s and 𝜆r in place of the variance

of a traditional Gaussian noise model. These two approaches are summarized in

Algorithms 1.

5.4 Experiments

We run the experiments on an NVIDIA Tesla V100 graphic card. The code will be

made available if the paper is accepted.

5.4.1 Experimental setting

We extract 96× 96 patches in the training images of DIV2K and Flickr2K datasets,

often used for training image upsampling models and featuring high-resolution edges,

Moiré artifacts-prone textures and little compression artifacts. We convert these

patches into the linRGB format with the pipeline of [18], blur them we with uniform



92 CHAPTER 5. LEARNING TO REMOVE OPTICAL ABERRATIONS

Algorithm 1: Parametric function for solving (5.5).
Data: 𝑦, 𝐾, 𝑀 , 𝜆r, 𝜆s, 𝜃, 𝜔
// HQS weights prediction
[{𝛽(𝑡)}𝑇

𝑡=1, {𝛾(𝑡)}𝑇
𝑡=1] = 𝜒𝜔(𝜆r, 𝜆s);

// Initialization with naive demosaicking 𝜉, e.g., bilinear
interpolation

𝑥← 𝜉(𝑦);
𝑡← 1;
// Joint deblurring and demosaicking: the true observation 𝑦 is

the reference image in the fitting term.
for 𝑡 ≤ 𝑇 do

𝑧 ← 𝜓(𝑦, 𝑥,𝐾,𝑀, 𝛽(𝑡));
𝑥← 𝜑𝜃(𝑧, 𝛾(𝑡));
𝑡← 𝑡+ 1;

end
Result: Restored linRGB image 𝑥.

blur from [137] and add affine noise generated with the code of [18]. We randomly flip

and rotate the patches as augmentation. We extract 5000 patches from the 100 images

of DIV2K validation set to form ours. Since blur is color-dependent [109, 110, 135],

we synthesize RGB blur kernels (details in what follows) that are more realistic than

grayscale filters such as the ones of [74]. We use Adam optimizer with initial learning

rate set to 10−4. The learning rate is divided by 2 whenever the validation loss

plateaus during 15 epochs until reaching 10−6. We use a batch size of 32. We use the

ℓ1 loss to compare the ground-truth patches and the predictions in the sRGB format

as done in [18].

Color-specific blur kernels. We use the PSFs measured by Bauer et. al. [10]

consisting in about 280,000 111× 111× 3 RGB linear filters, recorded by calibrating

a Canon EOS 5DR camera with 20 different lenses set at different focal lengths and

apertures pointing a grid made of 80× 60 lights. These local PSFs thus represent the

intrinsic blurs of a lens for certain focal length and a given aperture, resulting in a

much more realistic blur kernel than simply deforming a grayscale filter as suggested

in [20]. We use the regression technique discussed by [10] to generate on-the-fly

unlimited local PSFs at any location on the camera’s field-of-view. These filters are
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cropped to a support of size 55 × 55 × 3, which better fits the actual shape of the

filter.

5.4.2 Joint deblurring and demosaicking evaluation

RGB motion blurs We evaluate our method on two synthetic datasets. We con-

vert the 24 and 80 images of the Kodak [75] and Sun [118] datasets into linRGB

images with the pipeline of [18] and blur them with the 8 filters of [74] convolved

with a RGB filter from the PSFs of [10] to build RGB motion kernels. We add noise

with the code of [18] with log(𝜆s) chosen in [104, 3 × 10−3] and corresponding 𝜆r in

the model of [18], i.e.small to moderate noise, and mosaick them to form respectively

192 and 640 test samples. We compare our approach on raw images with two-stage

methods. For demosaicking, we use either the filtering approach of [84] or the CNN

for joint demosaicking and denoising of [45]. We retrain [45] to take into account the

noise distribution of [18] on the 2.5 million patches of [45]. For non-blind deblurring,

we use [70] based on a hyper-Laplacian image prior or the unrolled model of [137].

We retrain [137] each time on the images predicted by the first stage implemented

with [45] or [84] to take into account prediction errors. As we predict linRGB images

but ultimately want enhanced sRGB images, with compare three kinds of supervision:

(i) the intermediate image 𝑑 is converted into an sRGB image and [137] is supervised

with sRGB targets (s/s), (ii) [137] deblurs a linRGB demosaicked image and is su-

pervised with linRGB targets (lin/lin), and (iii) [137] deblurs a linRGB demosaicked

image and is supervised with sRGB targets as in [18] (lin/s). We train a variant of

our model in the “lin/lin” setting and three in the “lin/s” setting: one with initial

guess demosaicked with simple bilinear interpolation, one with initial guess obtained

with [45] (lin,s [45]) and one trained with grayscale kernels only (lin/s, gray). We

unroll 𝑇 = 6 iterations of HQS in the different implementations of [137] in Algorithm

(1) implemented by the baselines and our approach.

Table 5.1 shows the PSNR and SSIM scores on the images after we crop 50 pixels

on the borders to discard any boundary artifact in the measurements. Our method

achieves on the four sets the best PSNR/SSIM score by PSNR margins of 0.5dB and
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Figure 5-3: Examples of jointly deblurred, demosaicked and denoised images. We
show the degraded raw images in the sRGB format. Compared to the two-stage
method [84]+ [137], our method restores finer details.
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Datasets Kodak (192 images) Sun (640 images)
Noise level Noiseless With noise Noiseless With noise
Color space linRGB sRGB linRGB sRGB linRGB sRGB linRGB sRGB
[84] + [70] 33.15/0.91 28.03/0.78 30.94/0.79 22.77/0.47 36.55/0.93 29.99/0.82 32.57/0.79 23.59/0.50
[84] + [137] (s/s) - / - 32.16/0.88 - / - 29.56/0.78 - / - 33.50/0.91 - / - 30.40/0.80
[84] + [137] (lin/lin) 35.92/0.94 31.92/0.89 33.74/0.90 29.42/0.78 39.43/0.96 33.77/0.91 36.27/0.92 30.46/0.81
[84] + [137] (lin/s) 35.28/0.95 32.28/0.90 33.28/0.90 29.69/0.79 38.73/0.96 34.21/0.92 35.83/0.92 30.66/0.81
[45] + [70] 32.85/0.90 27.89/0.75 32.10/0.87 26.87/0.69 36.07/0.92 29.69/0.80 34.92/0.90 28.26/0.73
[45] + [137] (s/s) - / - 30.27/0.83 - / - 29.01/0.77 - / - 31.73/0.86 - / - 30.07/0.80
[45] + [137] (lin/lin) 35.83/0.94 31.67/0.88 33.88/0.90 29.48/0.79 38.97/0.96 33.24/0.90 36.11/0.92 30.35/0.81
[45] + [137] (lin/s) 35.04/0.94 32.12/0.88 33.12/0.90 29.61/0.78 37.98/0.96 33.61/0.90 35.54/0.91 30.58/0.81
Ours (lin/lin) 36.48/0.95 32.46/0.90 34.10/0.91 29.76/0.80 40.10/0.97 34.39/0.93 36.51/0.92 30.72/0.82
Ours (lin/s) 35.72/0.95 32.99/0.91 33.52/0.91 29.98/0.80 39.13/0.97 34.90/0.93 35.93/0.92 30.86/0.82
Ours (lin/s, gray) 35.08/0.94 32.21/0.89 33.26/0.90 29.72/0.79 38.48/0.96 34.15/0.92 35.81/0.92 30.71/0.82
Ours (lin/s, [45]) 35.86/0.95 33.37/0.92 33.53/0.91 30.14/0.80 39.21/0.97 35.19/0.94 35.87/0.92 30.95/0.82

Table 5.1: Joint deblurring, denoising and demosaicking comparison. Best result is
in bold font. Second best is underlined.

SSIM margins of 0.01 or 0.02 over the two-stage methods. Methods trained with

supervision on linRGB images naturally have the best scores on this color format

but are behind the other methods in the sRGB format, suggesting supervision with

sRGB sharp images with the approach of [18] is also beneficial for deblurring and

demoisacking raw degraded images. Our variant trained only on grayscale kernels is

in the ballpark of the best ones in the noisy cases but lags behind them by margins

of 1dB in the noiseless case, meaning it cannot restore as fine details as the methods

trained with the same blur distribution. The table also shows that initialization

matters as the method with initial guess produced by [45] leads to better results, with

margins ranging from 0.1 to 0.4dB on sRGB images, compared to the one initialized

with a demosaicked image bilinearly interpolated. Figure 5-3 shows two restoration

examples of blurry, mosaicked and noisy raw images (displayed as sRGB images)

obtained with our best performing method and the best performer from the two-

stage techniques. We also provide comparison with the same images but with the

classical grayscale kernels of [74] in the supplemental material. The method is as fast

as vanilla USRNet [137] since the only modification that might alter running time is

the FFT-based module whose computation time is negligible compared to evaluating

a CNN. It takes about 1 second to process a 720p image and at most 5 seconds for a

2K image.
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Figure 5-4: Restored exampled with a 65×65 blur kernel and noise parameters set to
𝜆s = 10−3 and 𝜆r = 1.3×10−6. Better seen on a computer screen. Both quantitatively
and visually our method outperforms the two-stage method [45]+ [137].

Robustness to larger kernels. We train the different models with 25×25 kernels

but we show in Fig. 5-4 that our method can be used with much larger filters. The

image is blurred with a 65× 65 kernel from [95]. We compare the two-stage strategy

[45]+ [137] to ours, both trained with the “lin/lin” setting. Our method achieves

a better PSNR score and visual aspect compared to the two-stage method. This is

typical of our observations on other large kernels from [95].

Synthetic optical aberration removal. We further validate our approach on

synthetic images blurred with the realistic PSFs of Bauer et al. [10].

We build four synthetic datasets from benchmarks typically used for evaluating

demosaicking methods. Indeed, our approach replaces a demosaicking algorithm in

the camera pipeline of Figure 5-1 and thus must be efficient on images usually prone to

artifacts such as Moiré. We use the 24 images of the Kodak dataset, the 18 images of

the MacMaster (or McM) datasets and the 1000 images of the Moiré and HDRVDP
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Datasets Kodak McM Moiré HDRVDP
[75] + [70] 26.89/0.81 26.81/0.82 24.02/0.73 21.47/0.69
[45] + [70] 27.19/0.82 27.00/0.82 24.32/0.70 21.51/0.69
[75] + [137] 30.15/0.84 31.31/0.84 27.43/0.79 25.05/0.79
[45] + [137] 29.56/0.84 31.00/0.83 27.28/0.77 24.97/0.78
Ours 30.38/0.86 31.53/0.85 27.53/0.79 25.12/0.79

Table 5.2: Quantitative results for optical aberration removal. The four benchmarks
are composed of images prone to demosaicking artifacts such as Moiré. First is in
bold, second is underlined.

datasets [45] to evaluate the different techniques. The sRGB images undergo an

inverse ISP pipeline [18] where the in-camera RGB space is the one of the Canon

EOS 5DS R camera. We blur these images with 9 different filters from the Nikon

AF-S NIKKOR 50mm 𝑓/1.4G lens’s PSF measurement in [10] and add a Poisson-

Gaussian noise whose shot noise variance is set to 1e-4 and read noise variance to

1e-5, corresponding to moderate noise in practice. These transformations yield four

benchmarks of respectively 216, 162, 9000 and 9000 blurry and noisy raw images.

Table 5.2 quantitatively compares the sRGB images produced by five approaches

removing optical aberrations: Two two-stage approaches in the vein of [109] that con-

catenate demosaicking algorithms, naive bilinear interpolation [75] and a CNN [45]

and followed by the non-blind deblurring approach of Krishnan and Fergus [70], two

learning-based approaches whose first stages are bilinear interpolation [75] and de-

mosaicnet [45], both followed by USRNet [137] each time trained with demosaicked

blurry images, and the proposed joint deblurring and demosaicking approach. The

two-stage model aggregating demosaicnet [45] and USRNet [137] first uses the pre-

trained weights of [45] for initializing the demosaicking module and is trained to find

an optimal parameter to [137]. The two models are later fine-tuned together, yielding

the final method.

The table shows that the performance of our method exceeds the two-stage learning-

based techniques by margins of +0.2dB for the two first datasets and is marginally

above for the two last ones by +0.1dB and by more than 3dB for the methods us-

ing [70], especially for the Moiré and HDRVDP datasets. It suggests that our joint
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(a) Ground-truth. (b) Blurry. (c) [45]+ [70] - 17.58dB.

(d) [75]+ [137] - 19.21dB. (e) [45]+ [137] - 19.16dB. (f) Ours - 20.34dB.

Figure 5-5: Example of joint deblurring and demosaicking results. The original sRGB
image is prone to Moiré artifacts and is blurred with a realistic optical aberration
filter, further corrupted by Poissian-Gaussian noise and mosaicked (we only show the
intermediate blurry image here). The two-stage methods cannot reconstruct the finer
details such as the grid whereas our approach can.

approach can restore finer details in the context of chromatic aberration removal than

two-stage schemes, which is illustrated in Figure 5-5, showing a qualitative example

of joint deblurring and demosaicking. The two-stage approaches fail to reconstruct

the details of the grid, lost during blurring whereas our technique can. It is explained

by the fact that our approach uses the original degraded signal as a starting point

for restoration whereas the deblurring technique in the two-step schemes starts from

a demosaicked image, containing predictions errors. This observarion encourages the

use of a joint approach to restore most of the missing details in real images containing

optical aberrations, as suggested by Schuler et al. [109].
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Figure 5-6: The real blurry image of [109] was taken with a modern digital SLR and
a zoom lens at maximal aperture, exhibiting chromatic aberrations. Our method
efficiently removes the blur caused by the optics, provided either a calibrated or an
approximate PSF (best seen on a computer screen).
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5.4.3 Optical aberration removal from real images

A practical application of the proposed model is automatic optical aberration removal

from raw images taken with smartphones or DSLRs.

We compare our learnt model on raw images with the state-of-the art technique

of Schuler et al. [109]. We restore a blurry image2 shot with a Canon Mark II reflex

camera and a canon 24mm f/1.4 lens at maximal aperture, whose PSF has been

measured by two approaches3: a calibration method [109] and a variational approach

[110].

We convert the corresponding sRGB real blurry image into a raw image with the

camera pipeline of [18]. We follow [109,110] and break the full image into overlapping

patches where the PSF boils down to a locally uniform blur kernel. We restore each

patch with our model trained for the previous experiment without fine-tuning it with

the PSF, stitch them together as detailed in [109] and convert the restored image back

into the sRGB format. We show in Figure 5-6 the results for the PSF obtained with

camera calibration (PSF1) and the one predicted with a variational method (PSF2).

We compare them to the image restored in [109] that also removes blur from the raw

image provided with the PSFs. Our methods can restore finer details such as the

words on the panels or the closest in Figure 5-6, with both PSFs.

We also restore a 50-megapixel raw image shown in Figure 5-7, taken with a Canon

EOS 5DS R camera and equipped with a Canon 35mm 𝑓/1.4L lens at aperture set

to 𝑓/2.84. We use the corresponding PSF recorded by Bauer et al. [10] for the same

camera. Our technique processes the corresponding raw image in about 4 minutes,

improving the sharpness and removing chromatic aberrations. Qualitative details are

shown in Figure 5-8.

Optical aberration removal for saturated images. Saturation is known to

introduce ringing artifacts in the context of motion blur removal [27, 125] but is also

2https://webdav.tuebingen.mpg.de/pixel/lenscorrection/
3https://webdav.tuebingen.mpg.de/pixel/blind_lenscorrection/
4https://www.dpreview.com/articles/8808135799/1-4-and-more-canon-ef-35mm-f1-4l-ii-

comparison



101

Figure 5-7: Real 5792× 8688 image taken with a Canon EOS 5DS R camera with a
Canon EF 35mm 𝑓/1.4 at aperture set to 𝑓/2.8. The original sRGB image lacks of
sharpness and contains chromatic aberrations. Our method takes the corresponding
raw image and the measurement of the PSF by Bauer et al. [10] as inputs and predicts
a sharper image in 4 minutes on a GPU. Details are shown in Figure 5-8.
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Figure 5-8: Comparisons between the original image and our restored version of the
image shown in Figure 5-7. For instance the trees in the orange box or the building
in the red box exhibit chromatic aberrations and the panels in the green box and the
cyan box are blurred by the monochromatic aberrations. Our method removes these
corruptions, resulting in a sharper image (better seen on a computer screen).
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problematic for optical aberration removal. The image on the left in Figure 5-9 shows

an image with saturated areas trough the window. Chromatic aberrations combined

with saturation result in purple fringes [19] next to the saturated areas like the bars

through the window.

We make our model more robust to artifacts due to saturation by including syn-

thetic saturated images degraded by optical aberrations. We use the 396 curated

high-dynamical range (HDR) images from [77] which are arrays stored in float32 for-

mat with entries corresponding to the scene radiance and possibly exceeding 1, the

typical maximal value for digital images when converted to the float32 format. Di-

rectly using the scene radiance from an HDR image is useful, according to Debevec

and Malik [32], for generating images looking like real saturated blurry images. These

396 images are convolved with the PSFs measured in Bauer et al. [10], added to a

Poissonian-Gaussian random vector, clipped between 0 and 1, and finally mosaicked

with the Bayer pattern, resulting in a raw noisy, blurry and saturated image. A sRGB

ground-truth version is obtained by clipping the original radiance between 0 and 1,

converting the colors to the sRGB format with a random color matrix obtained with

the code of Brooks et al. [17] and gamma compression.

In Figure 5-9, our model trained only with non-saturated images from the DIV2K

and Flickr2K datasets, despite sharpening details such as the ceiling, introduces no-

ticeable green artifacts where the purple fringes were. A second version of our model

trained on the same data as previously but combined with the HDR images and the

same experimental protocol as before yields an image where most of the green ar-

tifacts have disappeared, except at some locations. This suggests that our training

data permits to learn a proximal operator 𝜑𝜃 that can efficiently handle saturated

images, an in particular purple fringes. Yet, we do not explicitly include the clipping

operator 𝑠 from the forward model of Eq. (3.1) modelling saturation in the blurring

process. We embed the approach of Mosleh et al. [86] to deal with saturation in our

model but green artifacts remain in the image, even this upgrade, suggesting that op-

tical aberration removal on saturated images demands special care. Previous work on

non-blind saturated image deblurring, e.g., [27, 125] have shown handling saturation
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(a) Blurry. (b) Vanilla data. (c) Vanilla and HDR data.

Figure 5-9: The image on the right is a close-up of a real photograph taken with a
Canon EOS 6D camera and a Canon EF 24mm 𝑓/1.4L USM lens at maximal aperture
and known to introduce chromatic aberrations. Combined with the saturated regions
trough the window, they yield purple fringes [19]. Our solution trained on the data
without saturation introduces green silhouettes around the bars originally exhibiting
colored fringes. The same model trained with additional saturated data (detailed in
the text) restore the image and avoid most of the green artifacts.

in the data-fitting term is actually challenging and will be the topic of future work.

5.5 Conclusion

We have presented a approximate forward model for joint deblurring, demosaicking

and denoising images, derived from a digital camera pipeline. We have proposed a

penalized energy based on it, solved with HQS. Iterations of this method are embed-

ded into a parametric function inspired by [137], restoring raw images and supervised

with the technique of [18] and the real PSFs recorded by [10]. Our experiments have

shown that it outperforms two-stage approaches, decomposing the problem into a

demosaicking step followed by non-blind deblurring, quantitatively and visually and
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in the presence of affine noise. Our approach have been applied to the removal of

chromatic aberrations caused by the optics of a camera from real raw images, when

the PSF is estimated beforehand. Future work includes the development of more

robust methods for PSF estimation from a single raw image.
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Chapter 6

Conclusions

We have presented in this thesis non-blind approaches to remove motion blur and

optical aberrations from a single image. For doing so, two hybrid methods combining

optimization-based and learning-based techniques in a single parametric function have

been proposed.

The first one embeds in a parametric function convolutional preconditioned Richard-

son iteration to replace the classical FFT-based least-squares solvers used in most

non-blind deblurring methods but known to introduce ringing artifacts. Our ap-

proach efficiently removes motion blur from both synthetic and real images for which

an approximate blur has been estimated beforehand. The second one uses an approx-

imate FFT-based solver for joint deblurring and demosaicking. The model is trained

with images convolved with real PSFs and efficiently removes most of optical aberra-

tions on real raw photographs taken with lenses for which we have a measurement of

the corresponding PSF. Supervision is carried out on post-processed images after the

ISP pipeline for better visual results, following [18]. A limitation of this approach is

the presence of colored artifacts next to saturated areas.

Our work on optical aberration removal has shown that jointly inverting demo-

saicking and deblurring achieves results on par with than two-stage state-of-the-art

methods. This suggests considering more degradations from the forward camera im-

age formation model, such as saturation or defocus blur, would lead to superior results

at the cost of designing efficient algorithm handling a corresponding least-squares

107



108 CHAPTER 6. CONCLUSIONS

problem in a penalized energy. For instance, Whyte et al. [125] note that deblur-

ring saturated images demands additional care to not propagate saturated pixels in

the non-saturated areas, preventing the use of typical linear least-squares solvers for

deconvolution such as FFT. One could imagine a hybrid approach based on a precon-

ditioned iterative algorithm for handling saturation, comparable to the Richardson

iterations for RGB image deblurring we have introduced in this thesis.

One of the main limitations of our optical aberration removal technique is the need

to know or estimate the camera PSF beforehand, which can be obtained by measuring

the aberrations in a test photograph a calibrated camera outputs for predefined depth,

focal length and aperture parameters or by predicting a non-uniform blur kernel for

each new image as the solution of an optimization problem. Both options may lead to

inaccurate results and may be even harder than removing aberrations, in addition to

be time-consuming for 50-megapixel images taken with recent DSLRs. An interesting

research direction would be to build a parametric PSF function, akin to the approach

of Joshi et al. [111], taking as input the focal length and the aperture and interpolating

the corresponding optical aberrations, based on previous measurements for given lens

settings, optics theory and possibly annotated data. The combination of such blur

functions and our proposed joint deblurring and demosaicking model would result in

a blind method. Such a blur model may also be useful for several computer vision

and robotics applications for generating training data accounting for the in-camera

degradation [20], thus narrowing the domain gap between synthetic and real images.

Blind optical aberration removal, even for saturated images, may also be possible

by learning a black-box convolutional neural network with supervisory data, trans-

ferring the knowledge of a digital image formation model to the design of reasonable

synthetic data. The HDR data and measured PSF by [10] used in Chapter 5 have

led to promising results for this direction.
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Chapter A

Inverse Filter Computation

Computing the filters 𝑐0, . . . , 𝑐𝑛 in closed-form

In this section, we explain with more details how we compute the filters 𝑐0, . . . , 𝑐𝑛 in

practice. We seek to minimize the ridge regression problem

𝐶 = argmin
𝐶
||𝛿 − 𝐶 ⋆ ̂︁𝐾||2𝐹 + 𝜌

𝑛∑︁
𝑖=0
||𝑐𝑖||2𝐹 , (A.1)

= argmin
𝑐0,...,𝑐𝑛

||𝛿 −
𝑛∑︁

𝑖=0
𝑐𝑖 ⋆ 𝑘𝑖||2𝐹 + 𝜌

𝑛∑︁
𝑖=0
||𝑐𝑖||2𝐹 , (A.2)

= argmin
𝑐0,...,𝑐𝑛

||𝛿 −
𝑛∑︁

𝑖=0
𝑘𝑖 ⋆ 𝑐𝑖||2𝐹 + 𝜌

𝑛∑︁
𝑖=0
||𝑐𝑖||2𝐹 . (A.3)

By introducing ̂︀𝑐 = (̂︀𝑐⊤
0 , . . . , ̂︀𝑐⊤

𝑛 )⊤, we solve

̂︀𝑐 = argmin
𝑐0,...,𝑐𝑛

||̂︀𝛿 − 𝑛∑︁
𝑖=0

𝐾𝑖̂︀𝑐𝑖||2𝐹 + 𝜌
𝑛∑︁

𝑖=0
||̂︀𝑐𝑖||2𝐹 . (A.4)

With 𝑄 = [𝐾⊤
0 , . . . , 𝐾

⊤
𝑛 ], the solution if this ridge regression problem is

̂︀𝑐 = 𝑄⊤(𝑄𝑄⊤ + 𝜌Id)−1̂︀𝛿, (A.5)
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where 𝑄† is the right pseudo-inverse of 𝑄. Therefore each ̂︀𝑐𝑖 is given by

̂︀𝑐𝑖 = 𝐾𝑖(𝑄𝑄⊤ + 𝜌Id)−1̂︀𝛿, for 𝑖 = 0, . . . , 𝑛. (A.6)

The main computational cost is the inversion of the 𝑤2 × 𝑤2 matrix 𝑄𝑄⊤, which

is the much smaller than the (𝑛 + 1)2𝑤2
𝑐 × (𝑛 + 1)2𝑤2

𝑐 matrix involved in the left

pseudo-inverse of 𝑄.

In all the experiments, we generate the filters 𝑐0, . . . , 𝑐𝑛 with 0.01 as regularizer

weight 𝜌.





RÉSUMÉ

La netteté est un critère important lorsque l’on souhaite prendre de bonnes photographies. Plusieurs facteurs tels que

les paramètres de l’appareil photo, mouvement et defocus peuvent réduire la netteté d’une photographie et causer du

flou qui détruit des details de l’image. Ce contenu peut être retrouvé par le défloutage, un problème inverse mal posé qui

utilise la photographie floue, et le flou si connu, pour estimer une version nette. Les techniques de traitement d’image

habituelles reposent sur l’optimisation utilisant des priors empiriques sur les images ou des approches d’apprentissage

automatique exploitant des paires d’images nettes et floue en guise de supervision. Dans cette thèse, nous suivons une

tendance récente visant à combiner les deux types de techniques présentés précédemment et produisant l’état de l’art

pour le défloutage. Nous présentons d’abord une fonction paramétriques pour déflouter des images RVB, en incorporant

des itérations de point-fixe de Richardson préconditionnées pour remplacer la classique transformée de Fourier rapide

(TFR), sujette aux artefacts d’ondulation, en particulier aux bords d’une image. Dans une seconde contribution, nous

proposons un modèle pour le dématriçage et le défloutage non-aveugle simultanés pour les images “raw”.

MOTS CLÉS

Traitement d’images, défloutage d’images, problème inverse, apprentissage profond.

ABSTRACT

Sharpness is an important criterion for shooting acceptable photographs. Several factors such as the camera settings,

motion or defocus may decrease image sharpness and lead to blur, resulting in the loss of details. Typical image process-

ing techniques rely either on optimization algorithms using a handcrafted image prior or machine learning approaches

leveraging supervisory pairs of sharp and synthetic blurry images. In this thesis, we follow a recent trend that combines

the two sorts of techniques previously detailed and achieving the state-of-the-art image deblurring results. We first present

a parametric function for RGB image deblurring, embedding preconditioned Richardson fixed-point iterations to replace

the classical fast Fourier transform (FFT) algorithm prone to ringing artifacts, especially at the image boundaries. In a

second contribution, we propose a model for joint non-blind deblurring and demosaicking of raw images.

KEYWORDS

Image processing, image deblurring, inverse problem, deep learning.
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