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Notations

Acronyms
T-S Takagi-Sugeno
LPV Linear Parameter Varying
FMB Fuzzy Model-Based
MF Membership Function
LMI Linear Matrix Inequality
DOF Degree of Freedom
PDC Parallel Distributed Compensation
QLF Quadratic Lyapunov Function

NQLF Non-Quadratic Lyapunov Function
NQLKF Non-Quadratic Lyapunov-Krasovskii Functional

NCS Networked Controller Systems
LKF Lyapunov-Krasovskii Functional
PLC Programmable Logic Computer
PI Proportional-Integral

PD Proportional-Derivative

PID Proportional-Integral-Derivative

LQR Linear-Quadratic Regulator

Sets, matrices and vectors

R Set of real numbers

Z, Denotes the set of integers {1,...,r}

N Set of all positive integers

R"™ The n-dimensional real space

R The set of real matrices of dimensions n x m

MT The transpose of a matrix M

M) The ¢th row of a matrix M

eo Represents a matrix of zeros, defined as ey = [Onxpn} € R™*P \p ¢ ZT
ej Represents the matrix [Onx(j_l)n Lnxn Onx(p_j)n} e R™P Vj e 7,
diag{M;i,...,M,} Denotes a block diagonal matrix.

sign(z) The sign function of x € R

rank(M) The rank of a matrix M

H(M) Stands for M + M7T

col{ay,...,an} Denotes a column vector with scalar entries

* Stands for symmetric blocks in the expression of a matrix
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General Introduction

In our everyday life as well as in industry, the place that takes autonomous systems is con-
tinuously growing. Such devices are intended to autonomously perform simple daily or even
complex tasks (e.g. in manufacturing, services, entertainment...), making accessible some ap-
plications, in terms of reduced costs or even viability, that were not previously possible. For
instance, in the past few decades, due to the globalization of industrial production, the man-
ufacturing world witnessed growing research toward more efficient processes with increasing
requirements in quality associated with the need for cost cuts to maintain the competitiveness,
testifying to the increasing employment of robots and specialized machines in production plants
(Brecher et al., 2021). In this context, Industry 4.0 emerged as a step further in integrating
automated systems. Using programmable machines, process data analysis, and network inter-
connected systems makes viable to manufacture complex products that previously demanded
numerous unskilled workers with only few skilled ones. These brought back competitiveness in
manufacturing technological products in developed countries, where the salaries wages are higher
than in underdeveloped countries, previously chosen because of their weak labors’ protection,
which consequently implied in a reduced outlay (Naghavi, 2007). This paradigm change reduced
the overall costs and the transportation losses between the production site and the consumers
market, which partially addresses the demand for environment-friendly production. Also, in our
daily life, technological devices become more and more essential or unavoidable since they are
now spreading into many common areas. For instance, we are facing an invasion of Internet
of Things (IoT) systems, such like, in home automation, where autonomous vacuum cleaners
or many other connected devices are intending to simplify our lives. Another example is the
ongoing revolution of transportation with autonomous electric cars, or the use of Unmanned
Aerial Vehicles (UAV) for making deliveries or even for entertainment, and so on.

This contextualization is intended to give an overview of the field where this thesis research
is inserted. In this regard, it is important to highlight that most of the above mentioned tech-
nological devices involve continuous-time dynamics, usually mathematically modeled through a
set of differential equations. Moreover, to perform the task they are designed for, they usually
need to be controlled. Hence, with the advance of actual technologies, their controllers are often
implemented on digital devices that process sampled data during scan cycles to compute the

adequate control signals, see e.g. (Ogata, 2010; Astrom and Higglund, 2011). Additionally, the



General Introduction

dynamics of these plants are often nonlinear and their sensors and actuators can be connected to
the controllers through communication channels. In this context, there are two main points to
be addressed. The control of nonlinear systems and the hybrid characteristics of the closed-loop
dynamics of such systems where continuous and discrete-time signals are involved (Liu et al.,
2020; Hetel et al., 2017).

Among the nonlinear control theory researchers, Takagi and Sugeno have provided, in the
mid 80’s, an interesting way to represent nonlinear systems (Takagi and Sugeno, 1985). Initially
based on the fuzzy IF-THEN rules formalism, Takagi-Sugeno (T-S) models provide polytopic
approximations of nonlinear systems as weighted sums of linear subsystems. Then, with the
introduction of the sector nonlinearity decomposition (Kawamoto et al., 1992; Morere, 2001;
Tanaka and Wang, 2001), when analytic nonlinear models are available, T-S models can exactly
match nonlinear ones on a compact set of their state space. Such a feature filled the gap with
other well-known polytopic approaches that were developed at the same time in the control
community, namely the quasi-LPV models, introduced in (Shamma, 1988; Shamma and Cloutier,
1993), which are now well-known as equivalent to T-S models.

A vast literature is available for various T-S model-based control problems, for instance
dealing with continuous-time controller design, see e.g. (Guerra et al., 2012; Cherifi et al., 2018,
2019), discrete-time ones, see e.g. (Xie et al., 2017a; Lopes et al., 2020b), T-S systems with
time-delays, see e.g. (Peng et al., 2008; Li and Liu, 2009; Bourahala et al., 2017, 2019), or also
sampled-data control, see e.g. (Yoneyama, 2010; Zhang and Han, 2011; Cheng et al., 2017).
Indeed, thanks to their convex polytopic structures, stability conditions and controller design
conditions for T-S systems are usually studied via Lyapunov approaches and solved in the Linear
Matrix Inequality (LMI) framework (Boyd et al., 1994; Skelton et al., 1998). Nevertheless, these
LMI-based results provide only sufficient conditions and so suffer from conservatism, which
reduction is an important and common challenge in the quasi-LPV/T-S community, see e.g.
(Sala, 2009; Guerra et al., 2015; Lam, 2018; Nguyen et al., 2019a) and references therein. Indeed,
successive improvements are found in the literature to relax the LMI conditions, from the use of
basic quadratic Lyapunov functions (Wang et al., 1996) to non-quadratic ones (Jadbabaie, 1999;
Blanco et al., 2001; Tanaka et al., 2003; Mozelli et al., 2009; Guerra et al., 2012), by relaxing
the parameterized double fuzzy summation structure of LMI conditions (Kim and Lee, 2000;
Tuan et al., 2001; Xiaodong and Qing-ling, 2003), or even considering T-S descriptors (Taniguchi
et al., 2001; Tanaka et al., 2003; Marx and Ragot, 2008; Guelton et al., 2008), or introducing
descriptor redundancy (Tanaka et al., 2007; Guelton et al., 2009; Bouarar et al., 2013). Similarly
to these previous related works, this thesis aims at providing relaxed LMI-based controller design
procedures for stabilizing T-S models, especially when continuous-time nonlinear systems are
controlled by digital devices.

As mentioned above, the control algorithms are nowadays often implemented on digital de-
vices, (i.e. evolving in a discrete-time basis), rather than continuous-time analog ones. However,
many physical systems evolve in continuous-time while the action of digital controllers are up-

dated only at specific sampling time instants, e.g. mechatronic systems, embedded systems,

2



networked control systems, and so on. In this context, Figure 1 illustrates an usual control
topology of a basic sampled-data system driven by a discrete-time state-feedback controller,
which can be implemented into a platform based on an Arithmetic Logic Unit (ALU), such as
an industrial Programmable Logic Controller (PLC), a computer, or a microcontroller board,
which can be embedded, installed on a control panel with dedicated communication wires, or
connected via a data network. Then, based on the sampled measurements x(¢x) of the system’s
state z(t), provided by an Analog to Digital Converter (ADC), the input control signal u(ty) is
fed-back to the continuous-time nonlinear plant through a Digital to Analog Converter (DAC)
and a Zero-Order Hold (ZOH).

Digital to Analog Converter —— Continuous-time signals

with a Zero-Order Hold

---------- Discrete-time signals

- Dﬁ\rC u(t) | Continuous-Time z(t)
> 70H “7| Nonlinear Plant
Clock
!
u(te) Controller  |«Gwrr-- () ADC |
Digital Device

Figure 1: Illustration and block diagram of a continuous-time plant controlled by a
discrete-time state-feedback controller processed on a digital device.

From the literature, it is possible to gather the main approaches employed to meet such
requirements in which practical continuous-time applications are driven by digital controllers
into three groups according to the characterization of the sampling interval, the strategy adopted

for the project of digital controllers and the associated stability guarantees (Fridman, 2010):

e Emulation: It consists on the discretization of continuous-time controllers designed ignor-
ing samplings. This is often a common choice in practical applications. However, from the
theoretical point-of-view and for a rigorous research perspective, it is worth to highlight
that, estimating the maximal allowable sampling period would be very conservative or

even analytically tricky (Di Ferdinando and Pepe, 2019).

e Direct Design: From a discretized realization of the plant model, a discrete-time controller
is designed, disregarding the continuous-time behavior between consecutive samples (Lopes
et al., 2020b; Ogata, 1995). It is to be noticed that discretization procedures lead to ap-
proximations. Indeed, standard discretization procedure usually consider the well-known
Euler transforms (Ogata, 1995) and recent works in this topic aim at improving the dis-
cretization procedure to improve discrete-time models’ accuracy, e.g. by considering Taylor
series expansions (Braga et al., 2019), Tustin bilinear transforms (Ogata, 1995; Astrom

and Héagglund, 2011) or using the Cayley-Hamilton Theorem (Heemels et al., 2010). How-

3



General Introduction

ever, it is worth to point-out that such discrete-time approach may fail to capture the
inter-sampling behavior of the continuous-time plant and so stabilize it, especially when

large or aperiodic sampling intervals are required (Hetel et al., 2017).

e Sampled-data Design: To circumvent the aforementioned drawback of the Direct Design
approach, the goal is to take into account the inter-sampling behavior of the continuous-
time system for the design of the discrete-time controller with some closed-loop stability
guarantees. Among the sampled-data analysis methodologies (Hetel et al., 2017), the
most celebrated approaches are the input-delay one (Fridman, 2001) and the study of the
problem in the Hybrid framework (Naghshtabrizi et al., 2008; Hetel et al., 2013; Goebel
et al., 2009).

Recognizing the attractiveness of both the Direct Design and Sampled-Data design tech-
niques, a brief survey about these approaches is presented in the sequel. This work investigates
these techniques to address the sampled-data controller’s design problem for nonlinear systems
described by T-S models. In this context, the Direct Design has the appeal of having a consol-
idated framework that allows us to focus the investigation on the input constraints issues and
set-point tracking problem. In contrast, the input-delay approach for Sampled-Data design ap-
pears as an interesting and recent alternative to improve stability guarantees under large and/or
aperiodic sampling intervals.

Because of their easy implementation on industrial controllers like PLCs, the direct discrete-
time design for sampled-data systems is the most commonly used technique in industry. In the
T-S model-based framework, it is the subject of many studies, see e.g. (Guerra and Vermeiren,
2004; Gonzalez and Guerra, 2014; Ichalal et al., 2016; Lendek et al., 2018). Also, most industrial
applications involve practical constraints such like input saturation, set-point tracking, and so on.
Classical linear Proportional-Integral-Derivative (PID) controllers have been widely recognized
both in academic and industrial environments, because of their easy implementation aligned with
their nice performance properties. Indeed, the proportional action allows to tune the transient
speed, the integral action provides the closed-loop system with robustness against model or
static errors, and the derivative part helps to improve settling time and stability of the closed-
loop system. A number of tuning rules for conventional PID controllers can be found in the
literature, see e.g. (O’Dwyer, 2009). The simplicity, robustness and the success of this classical
linear controller has influenced other control research fields, including fuzzy control systems.
For instance, in (Qiao and Mizumoto, 1996), a PID-type fuzzy controller has been introduced,
that has attracted lots of attention in scientific community. Moreover, several fuzzy PI control
applications can be found in different fields such as, among others, in power electronics (Nouri
et al., 2017; Tamilarasi and Sivakumaran, 2018), wind energy generation (Ounnas et al., 2016),
level control (Gao et al., 2015; Kmetdva et al., 2013), power train (Dragos et al., 2011), robotics
(Fateh, 2010), electrical motors (Precup et al., 2009; Chen et al., 2016), magnetic levitation
(Sun et al., 2019; Yu et al., 2010; Yu and Huang, 2009) and spacecraft applications (Sari et al.,

2019). Despite an abundant literature in the T-S model-based framework, we observe that a
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reduced number of works are concerned with the discrete-time counterpart of fuzzy PI controllers
implementation (Precup et al., 2009; Preitl and Precup, 2006; Preitl et al., 2005). Note that
the discrete-time counterpart of PI controllers can be convenient to be implemented in cheap
digital processors, for instance in embedded or industrial dedicated applications. In this context,
discrete-time Pl-type controllers, can be implemented in a Parallel Distributed Compensator
(PDC) control scheme or in a non-PDC structure for conservatism reduction (Gonzalez and
Guerra, 2014). Usually, the PDC structure requires less computational effort allowing to use
less expensive processors (Laurain et al., 2018). Moreover, the above mentioned works do not
handle actuators’ saturation, which can lead to small regions of attraction and poor performances
in real world applications (Tarbouriech et al., 2011; Kong and Yuan, 2019). In this case, a local
stability analysis is required (Nguyen et al., 2017; Klug et al., 2015; Du and Zhang, 2009), which
motivated recent works on T-S model-based control to handle input or state constraints (Nguyen
et al., 2017; Fan et al., 2017; Li et al., 2016a; Kong and Yuan, 2019), domain of validity fuzzy
models (Lendek et al., 2018; Klug et al., 2015) or even sensors’ saturation (Zhang et al., 2017).
A consequence of actuators’ saturation is the region of attraction in which one must carefully
analyze the effects of exogenous inputs in the closed-loop system. Indeed, exogenous signals,
such as set-point changes, may drive the trajectories of the system outside of the region of
attraction. In this case, both the performance and the stability can be impaired. This effect has
been investigated in (Lopes et al., 2018) where non-PDC PI-like controller has been proposed,
but with quite small achieved region of attraction. Moreover, in (Lopes et al., 2018), a slow
enough time-variation of the state vector of the system is required. However, these bad effects
on stability and performance may be mitigated by using an anti-windup action (Zaccarian and
Teel, 2011; Mehdi et al., 2014). It is worth to say that to the best of the author’s knowledge, no
works in the previous literature handle these issues for the design of discrete-time fuzzy Pl-like
controllers. This point will be the subject of the first contribution of this thesis, developed in
Chapter 2.

Nevertheless, as mentioned above, one of the main drawbacks of the Direct Design approach
remains on the fact that discretization procedures bring approximations, leading to loss of infor-
mation regarding the continuous-time systems’ dynamics. Indeed, it is worth to highlight that
the so designed discrete-time controller does not strictly guarantee the convergence of the con-
tinuous system but rather for the discrete-time model, which is particularly true even when the
sampling period cannot be small enough to represent the continuous-time plant correctly. More-
over, note that the digital controller part must synchronize the sampling instants, receives the
sampled measures from the ADC, computes the control action and sends it to the DAC (see Fig-
ure 1). These tasks are often assumed to be done on a constant sampling interval 4 basis, which
has allowed the development of the discrete-time model-based approach for sampled-data sys-
tems. However, this assumption is not always accurate since the intervals between two successive
sampling instants may vary due to practical constraints. Indeed, even in a point-to-point digital
control topology, clock inaccuracy and system architecture characteristics, such like real-time

scheduling, can induce jitters, imperfect synchronization and/or computation delays (Witten-
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mark et al., 1995; Hetel et al., 2017). When dealing with Networked Controlled Systems (NCS),
in which sampled-data systems are controlled through communication networks (Hetel et al.,
2017; Fridman, 2014a), aperiodic sampling intervals are almost inevitable. This is why, several
approaches consider triggering the sampling intervals to reduce the network usage (de Souza
et al., 2021). To circumvent these problems, the Sampled-Data Design approach is investigated
in Chapter 3 and Chapter 4. Emerging as a promising research topic in control theory, it
consists on the investigation of the overall closed-loop stability of continuous-time plants driven
by sampled-data controllers, see, e.g. (Fridman et al., 2004). In this approach, the control
signals are kept constant during the sampling period, and evolve according to discrete samples
of the continuous plant, taking into consideration the inter-sampling behavior of the system. An
elegant and powerful way to do so is to rewrite the closed-loop dynamics as a continuous-time
system with input-time varying delay, also known as a time-delay approach for stabilization of
sampled-data systems (Fridman et al., 2004). Furthermore, it is widely known from the litera-
ture that most real applications exhibit nonlinear dynamics, and if many efforts have been made
by prior authors to stabilize linear dynamical systems from sampled-data measurements, this is
not the case for nonlinear systems. Thus, this problem emerges as an exciting subject for our
research, which was first explored in the T-S model-based framework in (Nishikawa et al., 2000).
Further, in the specific context of T-S sampled-data controllers, due to the time hybridization
of the closed-loop dynamics, asynchronous membership functions arise. This aspect kept the at-
tention of many authors, who have proposed continuous relaxation improvements for the design
of sampled-data controllers for T-S systems. For instance, in (Yoneyama, 2010), Lyapunov-
Krasovskii Functionals (LKF) and relaxation techniques based on the Leibniz-Newton formula
and free-weighting matrix were considered. Moreover, note that the delayed membership func-
tions involved in the fuzzy controller are mismatching the ones existing in the T-S representation
of the continuous-time plant. Hence, to handle this issue, several attempts have been proposed:
the upper bounds of the asynchronous errors of the membership functions have been assumed
to be known and introduced in the design conditions (Zhang and Han, 2011; Lam, 2012; Jia
et al., 2014; Zhang et al., 2015); enlargement scheme has been introduced in the stabilization
criteria in (Zhu et al., 2012, 2013); the ratio bounds (assumed to be known) of asynchronous
membership functions have been considered in (Marouf et al., 2016; Pan and Yang, 2017; Peng
et al., 2017) or the upper bounds of the time-derivatives of the membership functions (Wang
et al., 2017, 2018; Kim et al., 2018); (Cheng et al., 2017) have implemented a structured vertex
separator to reduce the number of LMIs constraints. From these studies, it is clearly shown how
important is to take into account the membership functions information into the closed-loop
sampled-data stability conditions to reduce their conservatism. However, in the sequel of this
thesis, we will show that this brings local results, which have not been considered yet, and so
require further meticulous investigation of the closed-loop domain of attraction. Another signifi-
cant way to reduce the conservatism consists on the convenient choice of a Lyapunov-Krasowskii
Functional (LKF), then introducing free weighting matrices, and employing some bounding tech-

niques based on integral terms and modified inequalities (Han and Ma, 2019). A looped LKF



was first proposed for the sampled-data stabilization of linear systems in (Seuret, 2012), then
extended to the T-S model-based framework (Lee and Park, 2018; Zeng et al., 2019; Hua et al.,
2020). Indeed, looped LKF appears to be relevant for sampled-data systems as it allows to cope
at once with the discrete-time and continuous-time nature of the involved quantities. Following
these ideas, in Chapter 3, from the choice of a convenient looped LKF and the application
of the Finsler’s Lemma, new LMI conditions are obtained for the design of sampled-data PDC
controllers, together with the proposition of a dedicated relaxation scheme for asynchronous
double summation structures. Then, these results are extended in Chapter 4. From a looped
Non-Quadratic Lyapunov-Krasovskii Functional (NQLKF), relaxed controller design conditions
for a class of regular nonlinear descriptors subject to actuators’ saturation are proposed. Also,
throughout this last chapter, it is highlighted that sampled-data control methodology is only
valid locally in the T-S model based-framework. Indeed, there are three main sources of locality:
the domain of validity of the T-S model, the assumption of the bounds for the time-derivatives
of the membership functions to cope with the asynchronous membership functions (and also
when considering a NQLKF), and the input constraints due to the actuators’ saturation. In any
of these cases, the characterization of an estimate of the closed-loop domain of attraction, where
the closed-loop stability is guaranteed, is to be done with scrutiny. Particularly, to the best of
the author’s knowledge, this point of interest has been disregarded by previous authors in the
context of stability analysis and controller design for sampled-data nonlinear systems expressed

by T-S models, and is an important contribution brought by this work.

Summarizing, the remaining of this manuscript is organized as follows. In Chapter 1, the
preliminaries on T-S model-based control are provided to better apprehend the contribution of
this PhD thesis. Chapter 2 presents the first contribution, which consists on the anti-windup T-
S model-based Pl-like set-point tracking control for nonlinear systems with saturated actuators,
with enlargement procedure of the guaranteed closed-loop domain of attraction. Then, the
input delay approach for the sampled-data stabilization of T-S models is proposed in Chapter
3, where conservatism reduction is proposed from the selection of a convenient looped LKF and
the proposition of a new relaxation scheme for asynchronous double fuzzy summation structures.
These results are extended in Chapter 4 to the class of T-S descriptors subject to actuators’
saturation, together with a meticulous investigation of the resulting sampled-data closed-loop
domain of attraction. Finally, this manuscript ends with a general conclusion, where perspective

of these works are discussed.
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Traduction en Francais de I'Introduction Générale:

Dans notre vie quotidienne comme dans 'industrie, la place que prennent les systéemes
autonomes ne cesse de croitre. Ces dispositifs sont destinés a effectuer de maniere au-
tonome des taches aussi simples que complexes (e.g. dans la fabrication, les services,
le divertissement...), rendant accessibles certaines applications, en termes de réduction
des cofits ou méme de faisabilité, qui n’étaient pas envisageables auparavant. A titre
d’illustration, au cours des dernieres décennies, en raison de la mondialisation de la pro-
duction industrielle, le monde manufacturier a été témoin de nombreuses avancées vers des
procédés plus efficaces avec des exigences croissantes en matiere de qualité, associées a la
nécessité de réduire les cofits pour maintenir la compétitivité, avec I'utilisation croissante
de robots et/ou de machines spécialisées dans les usines de production (Brecher et al.,
2021). Dans ce contexte, I'Industrie 4.0 est apparue comme une étape supplémentaire
dans l'intégration des systemes automatisés. L’utilisation de machines programmables,
d’analyses de données de processus et de systemes interconnectés en réseau permet la
fabrication de produits complexes qui exigeaient auparavant de nombreux travailleurs
non qualifiés pour seulement quelques autres qualifiés. L’Industrie 4.0 a pour objectif
de ramener de la compétitivité pour la fabrication de produits technologiques. Notam-
ment, dans les pays développés, 'automatisation permet de réduire les cofit de fabrication
alors que les salaires sont plus élevés que dans d’autres pays moins développés, parfois
plébiscités en raison des bas salaires, de la faible protection sociale des travailleurs, et
de l'allegement des contraintes environnementales (Naghavi, 2007). Ce changement de
paradigme doit permettre de réduire les cofits globaux, de réduire les pertes liées au trans-
port entre le site de production et les consommateurs, répondant en partie a la demande
de production respectueuse de ’environnement. Par ailleurs, dans notre vie quotidienne,
les dispositifs technologiques deviennent de plus en plus essentiels ou inévitables. Par
exemple, I'Internet des objets (IoT, appareils connectés) envahit notre quotidien par la
domotique (aspirateurs autonomes, ampoules connectées...), dans l'intention de simplifier
nos vies. Un autre exemple est la révolution en cours dans les transports, avec I'arrivée
probable de véhicules électriques autonomes, ou l’utilisation de véhicules aériens sans
pilote (UAV) afin d’effectuer des livraisons, voire pour du divertissement, etc.

Cette contextualisation vise a donner un apercu du large domaine dans lequel cette
thése s'inscrit. A cet égard, il est important de souligner que la plupart des disposi-
tifs technologiques mentionnés ci-dessus possedent une dynamique d’évolution en temps
continu, habituellement modélisée mathématiquement par un ensemble d’équations dif-
férentielles. Aussi, afin d’accomplir les taches pour lesquelles ils sont congus, ils doivent
habituellement étre controlés. Par conséquent, avec le développement des nouvelles tech-
nologies, de tels controleurs sont souvent mis en ceuvre a ’aide de dispositifs numériques
qui traitent les données de maniere discrete, sur la base de ’échantillonnage de signaux
mesurés, pour fournir la commande adéquate, e.g. (Ogata, 2010; Astrém and Hagglund,
2011). En outre, la dynamique de ces systémes est souvent non linéaire et leurs capteurs
ou actionneurs peuvent étre connectés a la partie commande par des canaux de communi-
cation numérique. Dans ce contexte, deux points principaux sont & aborder : Le controle
des systemes non linéaires, et les caractéristiques hybrides de la dynamique en boucle fer-
mée de ces systémes ou des signaux continus et discrets sont impliqués (Liu et al., 2020;
Hetel et al., 2017).

Parmi les nombreuse approches de la théorie du controle non linéaire, Tomohiro Tak-
agi et Michio Sugeno ont fourni, au milieu des années 80, une approche intéressante pour
représenter les systémes non linéaires (Takagi and Sugeno, 1985). Initialement basés sur
le formalisme flou de regles SI-ALORS, les modeéles Takagi-Sugeno (T-S) fournissent des
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approximations sous forme polytopique des systemes non linéaires, i.e. sous forme de
sommes pondérées de modeles linéaires locaux. Puis, avec I'introduction de la décom-
position en secteurs non linéaires (Kawamoto et al., 1992; Morere, 2001; Tanaka and
Wang, 2001), lorsque des modeles non linéaires analytiques sont disponibles, les modeéles
T-S peuvent représenter exactement des modeles non linéaires sur un compact de leurs
espaces d’état. Une telle caractéristique a comblé le fossé qui les séparait d’autres ap-
proches polytopiques bien connues et qui étaient développées en parallele au sein de la
communauté automaticienne, a savoir les modeles quasi-LPV, introduits dans (Shamma,
1988; Shamma and Cloutier, 1993), qui sont aujourd’hui communément connus comme
équivalents aux modeles T-S.

Une vaste littérature est disponible pour divers problémes de contréle basés sur le mod-
eéle T-S; par exemple la conception de contrdleurs & temps continu, e.g. (Guerra et al.,
2012; Cherifi et al., 2018, 2019); les systémes a temps discrets, e.g. (Xie et al., 2017a;
Lopes et al., 2020b); les systémes T-S avec retards, e.g. (Peng et al., 2008; Li and Liu,
2009; Bourahala et al., 2017, 2019); ou la syntheése de controleur & base de signaux échan-
tillonnées, e.g. (Yoneyama, 2010; Zhang and Han, 2011; Cheng et al., 2017). En effet,
grace & leurs structures polytopiques convexes, les conditions de stabilité et les conditions
de synthese pour les systémes T-S sont généralement étudiées via la seconde méthode de
Lyapunov et résolues sur la base d’inégalités linéaires matricielles (LMIs) (Boyd et al.,
1994; Skelton et al., 1998). Néanmoins, ces résultats fondés sur des contraintes LMIs
ne fournissent que des conditions suffisantes et souffrent donc de conservatisme, dont la
réduction est un défi important et commun au sein de la communauté traitant les ap-
proches quasi-LPV/T-S, e.g. (Sala, 2009; Guerra et al., 2015; Lam, 2018; Nguyen et al.,
2019a). De ce fait, des améliorations successives ont été proposées afin de relacher les con-
ditions LMIs; depuis 'utilisation de fonctions quadratiques de Lyapunov (Wang et al.,
1996) jusqu’aux fonctions non quadratiques (Jadbabaie, 1999; Blanco et al., 2001; Tanaka
et al., 2003; Mozelli et al., 2009; Guerra et al., 2012); en reldchant la structure en double
somme paramétrée des conditions LMIs (Kim and Lee, 2000; Tuan et al., 2001; Xiaodong
and Qing-ling, 2003); en considérant la classe des modeles descripteurs T-S (Taniguchi
et al., 2001; Tanaka et al., 2003; Marx and Ragot, 2008; Guelton et al., 2008); ou encore en
tirant parti de la redondance des descripteurs (Tanaka et al., 2007; Guelton et al., 2009;
Bouarar et al., 2013). A Dinstar de ces travaux antérieurs, cette thése vise a fournir des
procédures de conception relachées sous la forme de LMIs pour la stabilisation des mod-
eles T-S, en particulier lorsque les systémes non linéaires en temps continu sont controlés
par des dispositifs numériques.

Comme mentionné ci-dessus, les algorithmes de controle sont aujourd’hui souvent mis
en ceuvre sur des dispositifs numériques (i.e. évoluant dans une base de temps discret),
plutdét que sur des dispositifs analogiques. Cependant, de nombreux systémes physiques
évoluent en temps continu, tandis que ’action des controleurs numériques n’est mise a
jour qu’a des instants précis et échantillonnés. C’est le cas, par exemple, des systémes
mécatroniques, des systémes embarqués, des systemes controlés en réseaux, etc. Dans
ce contexte, la Figure 1 illustre une topologie de controle usuelle d’un systéme continu,
piloté par un controleur par retour d’état échantillonné. Celui-ci peut étre implémenté
dans un Automate Programmable Industriel (API), un ordinateur ou encore une carte
microcontroleur, et éventuellement déporté via un réseau de communication. De plus,
sur la base des mesures échantillonnées x(t;) de ’état du systéme x(t), fournies par
un convertisseur analogique-numérique (ADC), le signal de controle d’entrée wu(ty) est
transmis au systeme continu non linéaire & commander via un convertisseur numérique-
analogique (DAC) et maintenu par un bloqueur d’ordre zéro (ZOH).

A partir de la littérature, on constate que les principales approches employées pour
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répondre a ces exigences, dans lesquelles les applications évoluant en temps continu sont
pilotées par des controleurs numériques, peuvent étre classifiées en trois approches décrites
ci-dessous, selon la facon dont est caractérisé 'intervalle d’échantillonnage, la stratégie
adoptée pour la synthese du contrdleur numérique, ou encore les garanties de stabilité
associées (Fridman, 2010) :

o Emulation: Cette approche consiste en la discrétisation de contrdleurs con-
tinus, synthétisés sur la base d’un modele continu ignorant les contraintes
d’échantillonnage. Il s’agit ici d’un choix courant dans les applications pratiques.
Toutefois, du point de vue théorique et dans une perspective de recherche rigoureuse,
il convient de souligner que I’estimation de la période maximale d’échantillonnage
admissible serait trés conservative, voire difficile a obtenir (Di Ferdinando and Pepe,
2019).

e Synthese Directe: A partir d’une réalisation discrete du modele du systéeme a con-
troler, une loi de commande en temps discret est synthétisée, sans tenir compte du
comportement continu du systéme entre deux instants d’échantillonnage consécu-
tifs (Lopes et al., 2020b; Ogata, 1995). Notons que les procédures de discrétisation
conduisent a des approximations. En effet, la procédure de discrétisation standard
considére généralement la célebre transformation d’Euler (Ogata, 1995). Aussi, des
travaux récents sur ce sujet considerent d’autres procédures de discrétisation pour
améliorer la précision des modeles a temps discret, e.g. en considérant les décom-
positions en série de Taylor (Braga et al., 2019), la transformation bilinéaire de
Tustin (Ogata, 1995; Astrom and Hégglund, 2011), ou en utilisant le Théoreme de
Caley-Hamilton (Heemels et al., 2010). Cependant, il convient de souligner qu’une
telle approche a temps discret peut ne pas capturer fidelement le comportement
du systéme continu entre les instants d’échantillonnage successifs, et donc le con-
troleur ainsi synthétisé peut échouer a stabiliser le systeme continu, en particulier
lorsque de grands intervalles d’échantillonnage ou des intervalles apériodiques sont
nécessaires (Hetel et al., 2017).

o Synthése continue-échantillonnée: Pour contourner 'inconvénient susmentionné de
I’approche de Synthése Directe, ’objectif est de prendre en compte le comportement
inter-échantillonnage du systéme a temps continu pour la conception du controleur
a temps discret avec certaines garanties de stabilité en boucle fermée. Parmi les
méthodologies d’analyse des données échantillonnées (Hetel et al., 2017), les ap-
proches les plus répandues considere la réécriture de la boucle fermée sous la forme
d’un systeme a retard sur l'entrée (Fridman, 2001) ou I’étude du probléme selon
le formalisme des systémes hybrides (Naghshtabrizi et al., 2008; Hetel et al., 2013;
Goebel et al., 2009).

Reconnaissant l'attrait des techniques de Synthése Directe et de Synthése continue-
échantillonnée, un bref état de I'art sur ces approches est présenté dans la suite. Ce travail
étudie ces techniques pour résoudre le probléme de synthese du contréleur basé sur des
données échantillonnées pour les systemes non linéaires décrits par les modeles T-S. Dans
ce contexte, la Syntheése Directe dispose d’un cadre consolidé qui nous permet de nous con-
centrer sur les problemes de contraintes sur ’entrée et le probleme de suivi des points de
consigne. En revanche, 'approche de Synthése continue-échantillonnée apparait comme
une alternative intéressante et récente a ’élaboration de conditions garantissant la stabil-
ité en boucle fermée pour des intervalles d’échantillonnage importants et/ou apériodiques.
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En raison de leur mise en ceuvre facile sur des contréleurs industriels tels que les
APIs, la Synthése Directe a temps discret est la technique la plus couramment utilisée
dans I'industrie. Dans le cadre des modele T-S, cette approche fait ’objet de nombreuses
études, e.g. (Guerra and Vermeiren, 2004; Gonzalez and Guerra, 2014; Ichalal et al.,
2016; Lendek et al., 2018). En outre, la plupart des applications industrielles possedent
des contraintes pratiques telles que la saturation sur les entrées, le suivi des points de
consigne, etc. Les controleurs Proportionnel-Intégrale-Dérivée (PID) linéaires classiques
sont largement employés en raison de leur facilité de mise en ceuvre. En effet, I'action
proportionnelle permet de régler le temps de réponse, ’action intégrale fournit au systeme
en boucle fermée une robustesse contre les erreurs statiques, et la partie dérivée contribue
a réduire les oscillations du systeme en boucle fermée. Un certain nombre de regles de
réglage pour les contréleurs PID conventionnels peuvent étre trouvées dans la littérature,
e.g. (O’Dwyer, 2009).

La simplicité, la robustesse et le succes de ces controleurs linéaires classiques ont influ-
encé d’autres domaines de recherche en automatique, y compris les systémes de controle
flou. Par exemple, dans (Qiao and Mizumoto, 1996), un controleur flou de type PID a été
introduit, qui a attiré beaucoup d’attention dans la communauté scientifique. De plus,
plusieurs applications de contréleurs flous PI existent dans différents domaines tels que,
entre autres, I’électronique de puissance (Nouri et al., 2017; Tamilarasi and Sivakumaran,
2018), la production d’énergie éolienne (Ounnas et al., 2016), le controle de niveau (Gao
et al., 2015; Kmetéva et al., 2013), la robotique (Fateh, 2010), les moteurs électriques
(Precup et al., 2009; Chen et al., 2016), la lévitation magnétique (Sun et al., 2019; Yu
et al., 2010; Yu and Huang, 2009) et des applications spatiales (Sari et al., 2019). Malgré
une littérature abondante dans le cadre des modeles T-S, nous observons qu’'un nombre
réduit d’études sont concernées par la contrepartie discrete des controleurs PI flous et de
leur implémentation (Precup et al., 2009; Preitl and Precup, 2006; Preitl et al., 2005).
Notons que, la contrepartie de temps discret du contréleur PI peut étre intéressante pour
étre mis en ceuvre sur des processeurs numériques bon marché, ou pour des applications
intégrées ou industrielles dédiées. Dans ce contexte, des controleurs flous PI a temps
discret peuvent étre implémentés dans un schéma de Compensation Parallele Distribuée
(PDC) ou dans une structure non-PDC pour la réduction du conservatisme (Gonzalez
and Guerra, 2014). Habituellement, la structure PDC nécessite moins d’effort de calcul
permettant d’utiliser des processeurs moins coliteux (Laurain et al., 2018). En outre, les
travaux mentionnés ci-dessus ne prennent pas en compte la saturation des actionneurs,
ce qui peut conduire a de petites régions d’attraction et de mauvaises performances dans
les applications réelles (Tarbouriech et al., 2011; Kong and Yuan, 2019). Dans ce cas, une
analyse minutieuse de la stabilité locale est requise (Nguyen et al., 2017; Klug et al., 2015;
Du and Zhang, 2009), qui a motivé des travaux récents sur le contrdle des modeles T-S
soumis & des contraintes d’entrée ou d’état (Nguyen et al., 2017; Fan et al., 2017; Li et al.,
2016a; Kong and Yuan, 2019; Lendek et al., 2018; Klug et al., 2015; Zhang et al., 2017).
Une conséquence de la saturation des actionneurs est la région d’attraction dans laquelle
il faut analyser soigneusement les effets des entrées exogenes dans le systeme en boucle
fermée. En effet, les signaux exogénes, tels que les changements de points de consigne,
peuvent entrainer les trajectoires du systéme en dehors de la région d’attraction. Dans
ce cas, la performance et la stabilité peuvent étre altérées. Cet effet a été étudié dans
(Lopes et al., 2018) o un controleur de type PI non-PDC a été proposé, mais conduisant
a une région d’attraction relativement restreinte. En outre, dans (Lopes et al., 2018),
I’hypothese d’une variation suffisamment lente du vecteur d’état du systéme est rendue
nécessaire. Cependant, ces effets néfastes sur la stabilité et les performances peuvent
étre atténués en utilisant une action anti-windup (Zaccarian and Teel, 2011; Mehdi et al.,
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2014). Tl est intéressant de dire que, a la connaissance de I'auteur, aucune étude antérieure
ne considere ces questions pour la synthese de controleurs PI flous a temps discret. Ce
point fera ’objet de la premiere contribution de cette these, développée dans le Chapitre
2.

Néanmoins, comme cela a été mentionné ci-dessus, I’'un des principaux inconvénients
de l'approche de Syntése Directe repose sur le fait que les procédures de discrétisation
apportent des approximations, conduisant & la perte d’informations concernant la dy-
namique des systémes en temps continu. En effet, il convient de souligner que, dans ce
cas, le controleur a temps discret ainsi congu ne garantit pas strictement la convergence
du systeme continu, mais seulement celle du systéme discret, ce qui est particulierement
vrai lorsque la période d’échantillonnage ne peut pas étre assez petite pour représenter
correctement la dynamique en temps continu.

De plus, notons que la partie commande numérique (voir Figure 1) doit synchroniser les
instants d’échantillonnage, recevoir les mesures échantillonnées de ’ADC, calculer 'action
de commande et I'envoyer au DAC. Ces taches sont souvent réalisées sous I’hypothése d’un
intervalle d’échantillonnage 75 constant, ce qui a permis le développement de ’approche
de Syntése Directe. Toutefois, cette hypotheése n’est pas toujours exacte puisque les
intervalles successifs entre deux instants d’échantillonnage peuvent varier en raison de
contraintes pratiques. En effet, méme dans une topologie de contréle numérique point-
a-point, l'imprécision de I’horloge et les caractéristiques de l’architecture du systeme,
comme la programmation en temps réel, peuvent induire une synchronisation imparfaite
et/ou des retards de calcul (Wittenmark et al., 1995; Hetel et al., 2017). De plus, lorsqu’il
s’agit de systémes controlés en réseau (NCS), les intervalles d’échantillonnage apériodiques
sont presque inévitables (Hetel et al., 2017; Fridman, 2014a). Par ailleurs, plusieurs ap-
proches envisagent le déclenchement d’intervalles d’échantillonnage variables pour réduire
'utilisation du réseau (de Souza et al., 2021). Pour contourner ces problémes, ’approche
de Synthése continue-échantillonnée est étudiée dans le Chapitre 3 et le Chapitre 4.
Emergeant comme un sujet de recherche prometteur dans la théorie du controle, cette
approche consiste a étudier la stabilité globale en boucle fermée des systemes en temps
continu pilotés par des controleurs basés sur des données échantillonnées (Fridman et al.,
2004). Dans cette approche, les signaux de contrdle sont maintenus constants pendant
la période d’échantillonnage et évoluent selon des échantillons discrets, en tenant compte
du comportement inter-échantillons du systéme continu. Une fagon élégante et puissante
de le faire est de réécrire la dynamique en boucle fermée en tant que systeme a temps
continu avec des retards variables sur l'entrée (Fridman et al., 2004). En outre, puisque
la plupart des applications réelles présentent une dynamique non linéaire, si de nombreux
travaux existent pour la stabilisation des systémes dynamiques linéaires a partir de don-
nées échantillonnées, ce n’est pas le cas pour les systémes non linéaires. Ainsi, ce probleme
apparait comme un sujet passionnant, qui a initialement été exploré dans le cadre des
modeles T-S dans (Nishikawa et al., 2000). En outre, dans le contexte spécifique des
controleurs basés sur des données échantillonnées, dans le cadre des modeles T-S, cela
conduit a I’hybridation temporelle de la dynamique en boucle fermée, i.e. a ’apparition
de fonctions d’appartenance asynchrones. Cet aspect a retenu I'attention de nombreux
auteurs qui ont proposés des réductions du conservatisme. Par exemple, dans (Yoneyama,
2010), une fonctionnelle de Lyapunov-Krasovskii (LKF) associée & des techniques de re-
laxation basées sur la formule de Leibniz-Newton et l'introduction de matrices de déci-
sion libres, ont été considérées. Ensuite, considérant que les fonctions d’appartenance
retardées impliquées dans le contréleur flou ne correspondent pas a celles existant dans
la représentation T-S du systéme non linéaire continu, les limites supérieures des erreurs
asynchrones sont supposées connues et introduites dans les conditions de synthese (Zhang
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and Han, 2011; Lam, 2012; Jia et al., 2014; Zhang et al., 2015; Zhu et al., 2012, 2013);
les limites du ratio (supposées connues) des fonctions d’appartenance asynchrones ont été
considérées dans (Marouf et al., 2016; Pan and Yang, 2017; Peng et al., 2017) ou encore
les limites supérieures des dérivées temporelles des fonctions d’appartenance dans (Wang
et al., 2017, 2018; Kim et al., 2018); un séparateur de sommets structurés pour réduire
le nombre de contraintes LMI a été proposé dans (Cheng et al., 2017). A partir de ces
études, il est clairement démontré a quel point il est important de tenir compte des fonc-
tions d’appartenance dans les conditions de stabilité des données échantillonnées en boucle
fermée pour réduire leur conservatisme. Cependant, dans la suite de cette these, nous
montrerons que cela conduit a des résultats locaux, qui n’ont pas encore été considérés,
et donc nécessitent une étude plus méticuleuse du domaine d’attraction en boucle fermée.
Une autre fagon significative de réduire le conservatisme consiste a choisir une LKF plus
adéquate, puis a introduire des matrices de décision libres, et a employer quelques tech-
niques de majoration des termes sous la forme d’intégrale (Han and Ma, 2019). Une LKF
"bouclée" a été proposée pour la stabilisation des données échantillonnées des systemes
linéaires dans (Seuret, 2012), puis étendu au cadre des modele T-S (Lee and Park, 2018;
Zeng et al., 2019; Hua et al., 2020). En effet, 'utilisation d’'une LKF "bouclée" s’avére
pertinente pour les systémes de commande a base de données échantillonnées car il per-
met de faire face a la fois a la nature discrete et continue des quantités concernées. Sur la
base de ces idées, dans le Chapitre 3, & partir du choix d’'une LKF "bouclée" adéquate
et de I'application du Lemme de Finsler, de nouvelles conditions de synthese LMIs sont
obtenues, ainsi que la proposition d’un schéma de relaxation dédié pour les structures a
double somme asynchrones. Ces résultats sont ensuite étendus dans le Chapitre 4. A
partir d’une fonctionnelle de Lyapunov-Krasovskii non quadratique (NQLKF) "bouclée",
des conditions de synthese relachées pour une classe de systemes descripteurs non linéaires
réguliers soumis a la saturation des actionneurs sont proposées. De plus, tout au long de
ce dernier chapitre, il est souligné que la méthodologie de commande & base de données
échantillonnées n’est valide que localement dans le cadre des modeles T-S. En effet, il
existe trois sources principales de contraintes locales : le domaine de validité du modele
T-S, ’hypothese effectuée sur les dérivées temporelles des fonctions d’appartenance, et
les contraintes sur ’entrée dues a la saturation des actionneurs. Dans chacun de ces cas,
la caractérisation d’une estimation du domaine d’attraction en boucle fermée, ou la sta-
bilité en boucle fermée peut étre garantie, doit étre effectuée avec un examen minutieux.
Notons que, & la connaissance de 'auteur, ce point d’intérét a été ignoré par la plupart
des auteurs dans les études précédentes, ce qui constitue une contribution importante de
ce travail de these.

En résumé, le reste de ce manuscrit est organisé comme suit. Dans le Chapitre 1, les
préliminaires sur la commande des modele T-S sont fournis pour mieux appréhender la
contribution de cette these de doctorat. Le Chapitre 2 présente la premiere contribution
de ce travail de these, qui consiste en la proposition de nouvelles conditions LMI pour la
synthese de lois de commande PI en suivi de consigne, avec action anti-windup, pour les
modeles T-S en temps discret soumis a des saturations sur I’entrée. Ensuite, 'approche de
Synthese continu-échantillonnée, pour la stabilisation des modeles T-S continus par des
controleurs discrets est considérée dans Chapitre 3, ou des réductions du conservatisme
sont proposées a partir de la sélection d’'une LKF "bouclée" adéquate et de la proposition
d’un nouveau schéma de relaxation pour les structures a double somme asynchrones. Ces
résultats sont étendus dans le Chapitre 4 a la classe de systémes T-S descripteurs soumis
a des saturations des actionneurs, ainsi qu’a une étude minutieuse du domaine d’attraction
en boucle fermée qui en résulte. Enfin, dans la conclusion générale, les perspectives de
ces travaux sont discutées.
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Chapter

Preliminaries on T-5S model-based approaches
and sampled-data control

Résumé en Francais : Préliminaires sur les approches a base de modeles
T-S et la commande échantillonnée.

Ce chapitre donne une vue d’ensemble des méthodes et des techniques employées dans
cette these. Il présente également quelques investigations préliminaires dans le but de
mieuz cerner le probleme étudié et les verrous scientifiques associés pour établir clairement
les objectifs de ce travail de thése. Ainsi, le principal objectif de cette thése est de proposer
de nouvelles conditions relachées sous la forme d’inégalités matricielles linéaires (LMI)
pour la synthése de controleurs basés sur des données échantillonnées, dans le but de
garantir la stabilité asymptotique des systémes non linéaires a temps continu, commandés
par des controleurs numeériques.

Parmi les approches dévolues au controle des systemes non linéaires, nous nous foca-
liserons sur celles relevant des modéles de type quasi-LPV/T-S (Takagi and Sugeno, 1985;
Shamma and Cloutier, 1993). En effet, ceuz-ci permettent de représenter fidélement les
systemes non linéaires par des modéles polytopiques convexes sur un compact de leurs
espaces d’états. Ainsi dans ce chapitre, aprés avoir présenté la classe des modéles de
type quasi-LPV/T-S a temps continu et les différentes méthodes pour les obtenir, nous
présentons comment définir les modéles a temps discret qui leur sont associés avec une
période d’échantillonnage constante. Ensuite, a partir de la seconde méthode de Lyapunov,
les conditions élémentaires de stabilité et de synthéses de controleurs sont présentées sous
forme de LMIs, dans le cas continu et le cas discret (Tanaka et al., 2001). Puisque
de telles conditions ne sont que suffisantes, des méthodes classiquement employées pour
réduire le conservatisme sont présentées (Sala, 2009).

Sur la base de ces travaux pionniers pour les systémes quasi-LPV/T-S, les limitations
de la synthése de contréleurs pour les modéles a temps discret sont discutées ainsi que
certaines contraintes pratiques telles que la saturation des actionneurs. En effet, une ap-
proche basée sur les modéles a temps discret ne donne des résultats satisfaisant que pour
des périodes d’échantillonnage relativement petites au regard de la dynamique du systéme
considéré. Aussi, une alternative intéressante est présentée. Celle-ci consiste d représen-
ter la dynamique en boucle fermée par un systéme a retard variable sur l’entrée (Fridman
et al., 2004), lorsqu’un systéme continu est controlé sur la base de données échantillonnées.
Notons que cette approche convient également lorsque de larges intervalles apériodiques
d’échantillonnage sont nécessaires (Hetel et al., 2017).
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Sur la base de l’ensemble des considérations mises en lumiére dans ce chapitre, en
soulignant certaines limites et défis dans le cadre de la stabilisation des systemes T-
S a temps continu o partir de controleurs numériques, ce chapitre se termine par une
conclusion ou les principales contributions de cette thése, présentées dans les chapitres
suivants sont introduites. A savoir : la synthése de contréleurs Proportionnel-Intégral
(PI) locauzx pour le suivi de consignes continues par morceaux des modeéles T-S a temps
discret dans le Chapitre 2; la réduction de conservatisme pour la synthése de contréleur
échantillonné pour les systémes T-S a temps continu par ’approche a retard variable
sur l’entrée dans le Chapitre 3; L’extension de cette approche pour le cas des systemes
T-S descripteurs soumis a des saturations sur l'entrée, conjointement d [’estimation du
domaine d’attraction en boucle fermée, dans le Chapitre 4.

1.1 Introduction

This chapter gives an overview of the methods and techniques employed in this thesis. It also
presents some preliminary investigations, done to fill gaps in the comprehension of the studied
problem, which helped to define the methodology and establishing the goals. At the end of
this chapter, it should be clear that our main target in this thesis is to propose relaxed Linear
Matrix Inequalities (LMI) based conditions for the design of sampled-data controllers, in order
to guarantee the asymptotic stability of continuous-time nonlinear systems driven by digital

devices.

Among the nonlinear control theory, we focus on quasi-LPV/T-S approaches because of their
faculty to accurately represent nonlinear systems as convex polytopic systems. Hence, in this
chapter, after presenting the class of continuous-time quasi-LPV/T-S models and the different
ways to obtain them, we present how to get their discrete-time realization from constant sampling
periods. Then, based on the second Lyapunov method, the basic stability and controller design
conditions are presented in terms of LMIs. Also, because such conditions are only sufficient, the
most common ways to reduce their conservatism are presented. From these basic approaches, the
limitations of discrete-time model-based controller design will be discussed, together with some
practical constraints like actuators’ saturation. Finally, an elegant alternative to discrete-time
model based approaches, suitable when large aperiodic sampling intervals are required, namely
the input time-varying delay approach for sampled-data systems, is presented, with highlights
on the fact that it is only locally suitable in the T-S model based framework.

Based on the proposed materials and consideration, pointing-out some limitations and chal-
lenges involved in the context of stabilizing continuous-time T-S systems from sampled-data
controllers, this chapter ends with a conclusion where the main contributions of this thesis,

brought in the next chapters, are introduced.
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1.2 Presentation of Quasi-LPV / Takagi-Sugeno models

In this thesis, we consider the class of affine-in-control nonlinear dynamical systems repre-

sented by their nonlinear state space models given by:

{a:(t) = fm(l'(t)vu(t))
y(t) = gy(x(t), u(t))

where z(t) € R™, u(t) € R™ and y(t) € R? are respectively the system’s state, input and output

(1.1)

time-varying vectors; f : R"*” — R™ and g, : R""™ — RY are nonlinear functions of the state
and input vectors’.

Note that (1.1) describes the nonlinear input-output relationships of a nonlinear system
where the first equation, called the state space equation, consists in a finite number of coupled
first-order ordinary differential equations, while the second equation, called the output equation,
represents the direct static transfer from the state and input to the outputs. Moreover, in the
sequel of this thesis, rather than output feedback control approach, which is the subject of many
specific studies from the literature (see e.g. (Zerar et al., 2008; Guelton et al., 2009; Chadli
and Guerra, 2012; Bouarar et al., 2013; Estrada-Manzo et al., 2019) and reference therein), we
will stay in the context of state feedback control, with the following assumption, where the

characterization of the output equation is not required.

Assumption 1.1. In the sequel of this thesis, we assume that the nonlinear system (1.1) is
affine-in-control without direct transfer from the input to the output, such that (1.1) can be

reduced to:
{a’z(t) = F(a(®) + Bla(t)ult) )
y(t) = g(x(t))
where f: R™" = R", B : R™ — R™™™ and g : R™ — RY are nonlinear functions depending only

on the state entries.

Among the nonlinear control approaches, Takagi-Sugeno (T-S) fuzzy models (Takagi and
Sugeno, 1985) have been widely considered in the past few decades because of their ability to
represent a large class of nonlinear systems as convex polytopic systems. A vast literature is
available for various T-S model-based control problems, for instance dealing with continuous-
time controller design (see e.g. (Guerra et al., 2012; Cherifi et al., 2014, 2018)), discrete-time
ones (see e.g. (Guerra et al., 2009; Xie et al., 2017b)), or also the control of T-S systems with
time-delays (see e.g. (Peng et al., 2008; Li and Liu, 2009; Bourahala et al., 2017)). Historically,
T-S fuzzy models (Takagi and Sugeno, 1985) propose to represent affine-in-control nonlinear
models (1.2) by the inference of r fuzzy rules with, as conclusion part, local analytic linear state
space models. Thereby, the i-th rules (i € Z,) of a T-S fuzzy model can be described in the

following form:

Rule i: IF zi(t) is M;; and --- and z,(t) is My,
x(t) = Ajz(t) + Bju(t) (1.3)

THEN {
y(t) = Cia(t)
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where, for i = 1,...,r and j = 1,...,p, 2;(t) are premise variables depending only (for control
purpose) on the states and/or on the output of the system and M;; are fuzzy sets; the matrices
A; e R™" B, € R™™ and C; € R?*" are known constant matrices describing the dynamics of
each local linear models.

For the antecedent part of each i-th fuzzy rule, a weighting function w;(t) is assigned. It
characterizes the instantaneous contribution of each sub-model of the T-S model, and this func-
tion depends on the grade of membership of the premise variables z, regarding a fuzzy subset

M;; such as:

wi(2(t)) = [ Mij(z(t) >0, i€, (1.4)
j=1
T
where z(t) = {zl (t) zot) --- zp(t)} is the vector of premises.

Hence, we can define the normalized membership function as:

au(z(t) = D)

which holds, V¢, the convex sum properties a;(z(t)) > 0 and > a;(2(t)) = 1.
i=1

Then, considering such fuzzy inferences, yields the T-S model in its compact defuzzified form

given by:

B(t) =Y ai(2(t)) (A(t) + Biu(t))
i1 (1.6)
y(t) = Z ai(z(t))Cix(t)

Remark 1.1. Note that T-S models (1.6) belong to the class of polytopic systems (i.e., a collec-
tion of linear systems blended together by time-varying functions). In the control literature, other
class of polytopic systems are often considered to deal with nonlinear or quasi-linear control. For
instance, Linear Parameter Varying (LPV) systems, introduced in (Shamma, 1988), also belong
to the class of polytopic systems. Their main difference with the above described T-S models re-
lies on the fact that LPV models are weighted by time-varying parameters that does not necessary
or analytically depend on the states or input variables of the systems. Another interesting class
of polytopic systems, namely quasi-LPV systems, has been introduced in (Shamma and Cloutier,
1993) to provide an exact representation of an affine-in-control nonlinear system on a compact
set of its state space. It is worth to point-out that the scheduling parameters of quasi-LPV sys-
tems depend on the state (or eventually the input) variables, similarly to T-S models. Indeed, as
it will be shown in the next section, with the development of the sector nonlinearity approach for
obtaining T-S models that exactly match nonlinear ones (Kawamoto et al., 1992; Tanaka and
Wang, 2001; Morere, 2001), the gap has been filled so that they are nowadays known as strictly

equivalent to quasi-LPV models.
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1.2.1 Construction of a T-S fuzzy Model

The construction of the T-S fuzzy model is an essential step for the analysis and synthesis
of a Fuzzy Model-Based (FMB) control system. In a practical fashion, the fuzzy T-S models
can be obtained through an identification or linearization procedure or from a convex polytopic
transformation usually based on the sector nonlinearity. In the sequence, these three approaches

are summarized.

Identification: Initially proposed in the pioneer works of Takagi and Sugeno (Takagi and
Sugeno, 1985), basically consists on the identification from input/output data of the structure
and parameters of the system around a set of predefined operation points. Then, these local
models are blended together with chosen membership functions (gaussian, triangular, trape-
zoidal, etc.), which parameters can be further adjusted, as proposed in (Gasso et al., 2000).
If these approaches are very appealing when an analytic nonlinear model of the plant is un-
available, let us recall that such obtained T-S models are only approximately representing the
nonlinear systems, so those results (stability analysis, controller and observer design...) should

be considered with caution.

Linearization: This method is based on the linearization of a nonlinear model around a finite
number of operating points (Ma et al., 1998; Tanaka and Wang, 2001). Then a T-S repre-
sentation is obtained by the interconnection of the local linear polytopes by some well chosen
membership functions (gaussian, triangular, trapezoidal, etc.). We must highlight that this
approach also results in an approximation of the nonlinear system and usually the number of
models depends on the complexity of the system, the specified modeling precision and the choice

of the membership functions.

Sector Nonlinearity Approach: The idea of using the sector nonlinearity for the con-
struction of the fuzzy T-S representation is based on the idea that, for any continuous scalar
nonlinear functions f : R — R, with f(0) = 0, there exists D, C R such that, Yz € D, we have
f(x) € [al ag} x where a1 and ay are finite scalars. Then, when D, = R, the nonlinear sector
is said to be global, otherwise, when D, C R (e.g. D, = {x € [—d, d|}, with d > 0) it is local, as
illustrated in Figure 1.1 (Tanaka and Wang, 2001).

For a large majority of systems it is reasonable to have a well defined operation region and
consequently to have bounded state variables. So, it is wise to use this information for the
fuzzy T-S model construction, which will be exactly matching the nonlinear model in a compact
subset of its state space, to generalize the above definition of nonlinear sectors for z(t) € R,
given by:

D, ={z(t) e R" | Lx(t) < d} (1.7)

where x is the number of bounds of the state variables, which constitutes the entries of the

vector d € R* and £ € R"*" is a state component selection matrix.
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Figure 1.1: Global sector nonlinearity. Figure 1.2: Local sector nonlinearity.

The set D, defines the domain of validity of the fuzzy T-S model. Therefore, a systematic
procedure to obtain the vertices and membership functions of the fuzzy T-S model can be

applied, for instance based on the following Lemma 1.1 inspired from (Morere, 2001).

Lemma 1.1. Let fs : D, — [fs,fs] a bounded function. There always exists a pair of scalar

functions wy : Dy — [0,1] and ws : Dy — [0,1] and two scalars a and b such that:
fs(x) = wi(z)a + we(x)b,
where wy () + wa(x) = 1.
For instance, let us assume that the nonlinear affine-in-control systems (1.2) can be rewritten
as:
(1.8)
where the matrices A(x(t)) € R™"™, B(z(t)) € R™™ and C(z(t)) € R?*™ contain p nonlinear

entries of the state variables, denoted f; : Dy — [f;, fi] (j € T,).
Then, Vz(t) € D, with a,b > 0 we can write:

Flaty = PED L g i Kt

fi—1 fi—1i
w! (a(t)) w2 (a(t))

Li (1.9)

with wjl- (x(t)) + w?(x(t)) =1, wjl- (xz(t)) > 0 and w?(z:(t)) > 0.
So, we may readily get a T-S model in the compact form (1.6) that exactly matches (1.8) on

D, with the following r = 2P normalized membership functions «;(x(t))(i € Z.) and matrices
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defining the vertices:

a1 (a(t)) = wh(@(t)wd(2(1)) .- w0h (@(E)wh((0), My = M, for- o fys o),
as(a(t)) = wh(z(®)wh(a(t)) .. why @ONR@(0), Mo = M(fi, for- o Fyrs fo),
as(2(t)) = wh(a(®)wh(a(t)) ... w3 (@(O)wh(@(0), My = M(fi, for- oo Sy Fy),
(1)) = wh(e(0)wb(a(D)) .. w3y @ O)d((0), Ms = M(fi, for- oo fy1s fy),
a2 ()) = w} (203 (1)) . why (£ (OWR(0), s = M(Fi, for-- - oo, ),
a1 (2()) = w3 () wd (2(1)) Wl (O ((0), Myy = M(Jr, for- oo fypes o),
(1)) = W (e(0)uB (D)) . whoy (@) wd (1), Mo = M(fr, for- o S 1, fy),

(1.10)
where M € {A, B,C}.

Remark 1.2. It is worth to emphasize that only the sector monlinearity approach provides a
methodology to get a T-S model which exactly matches a nonlinear one on a compact subset
of its state space D,. As a consequence, analysis of nonlinear systems based on such obtained
T-S models are often only locally valid inside D, (especially when D, C R™ is obtained from
local sectors). Therefore, when dealing with stability analysis, control or observer design, the
characterization of the domain of attraction should be investigated. Moreover, when T-S models
are obtained from identification or linearization, since they are only approximating the considered
nonlinear systems, no formal guarantee can be provided, especially when critical constraints are

introduced. This last point will be illustrated through simulation examples along the thesis.

In the sequence, two examples give an overview on the procedure to obtain a fuzzy T-S

representation for a nonlinear system from the sector nonlinearity approach.

Example 1.1. Let us consider the following academic example of a nonlinear system:

{x‘l(t) = 2x1(t) + z1(t)z2(t) + (2 — cos za(t))u(t) (111)
Zo(t) = —2x1(t) cos o (t) + xa(t) ‘
T
Defining x(t) = {xl(t) xg(t)} , it can be rewritten as:
&(t) = A(z(t))x(t) + B(z(t))u(t) (1.12)
with:
A(z(t) = [—2cozx2(t) xlft)] and B(x(t)) = F_CO(? xz(t)]

which includes two nonlinear functions f1(z(t)) = x1(t) and fa(x(t)) = cosxa(t), that are de-
pendent on the state variables. From (1.9), to obtain a T-S representation, ¥(x1(t),z2(t)) €
[—b, a]| x R =D,, we can write:
z1(t)+b a— z1(t) cosxa(t) + 1
—b) and ) = 1
{022 o+ =2 ) and fola(t) v
—— ———

wi(2(t)) wi(2(t)) w; (2(t)) w3 (2(t))

1 — cos z2(t)

fi(z(t)) = (=1
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So, from (1.10), we readily get the following normalized membership functions and vertices:

o (2(1)) = w} (a(B)wh (1)), A = :22 ﬂ By = m ,
cala(t) = ulte)tat). 22 [ 5] o= []]
oa(t) = w3 a()}(a(0), s = | * ﬂ By =By,
ou(a(t) = () (a(0), Ai = | ﬂ \Bi= B,
which define the following T-S models with r = 4
(1) = gaxz(t))(m(t) + Bu(t)) (113)

4
where, Vi € I, o;i(2(1)) 2 0 and 3 ai(2(t)) = 1.
i=1

Example 1.2 (1 Degree of Freedom (DOF) Inverted Pendulum). The first step when projecting
model based controllers is to obtain a good representation of the original system. Let us consider
the problem of stabilizing the inverted pendulum depicted in Figure 1.3. The dynamical behavior

of this system can be described by the following differential equation:

mgLsin0(t) — kLO(t) + u(t) = mL?(t)
where O(t) denotes the angular position regarding the vertical axis, u(t) is the control input
torque, g = 9.8 m/s? is the gravitational acceleration, m = 0.5 kg refers to the pendulum mass,

L = 0.8 m is associated with the length of the Pendulum and last, k = 0.2 ST is the coefficient
of friction at the pivot point.

Figure 1.3: 1-DOF Inverted Pendulum.

Defining the state vector z1 (t) = [Q(t) 9(1&)}, a state-space representation of (1.3) can be

given as:

. 0 1 0
z(t) = gsina () k. x(t) + 1 u(t) (1.14)
L z1(t) mL mL?
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Taking benefit from the fact z(x1(t)) = (sinz1(t))/z1(t) € [p,1] is always bounded (e.g., for
z1(t) € R, p~ —0.217234), we get:

s L _1Z_(xp(t)> o (1.15)

o (z(1)) az(z(t))
which readily gives the following globally matching T-S model with r = 2:

2
z(t) = Z a;(z(t)) (Ax(t) + Biu(t)) (1.16)
i=1
with:

o

1.2.2 Discrete-time T-S fuzzy models

1 0 1 0
k],AQZ[g _k‘|andB1:BQZ[ 1 ‘|
mL P mL mLZ

Sl O

Until now, we presented T-S models in the continuous-time framework. However, some
dynamical systems may also evolve in the discrete-time. This is the case of digital systems,
where the dynamics is characterized by discrete sequences of k € N. Also, recall that most of
continuous-time systems are nowadays driven by digital devices. In this case, design procedures
are often based on a discretized representation of their continuous-time dynamics. This being

said, a discrete-time version of T-S models is given by the following recurrence equation:

Thi1 = Z Ozi(zk) (Azxk + Biuk)
, =1 (1.17)
yr = Y ai(z)Cizy,

i=1
where x; € R", u;, € R™ and y; € R? denote respectively the state, the input and the output
vectors taken at the discrete instant k; Vi € Z,., A; € R™", B, € R™*™ and C; € R?*" are real
constant matrices describing the local discrete-time dynamics of the system.
In this thesis, we are mainly focused on the control of continuous-time systems by digital
controllers. Therefore, let us now discuss the way to get a discrete-time T-S model (1.17) from the
continuous-time ones (1.6). One of the most considered approach consists in the forward Euler

discretization of the continuous-time system (Chen, 1999; Tanaka and Wang, 2001). Hence, let:

i(t) = Tim ST Za(t), (1.18)

Ts—0 Ts

Then, when 75 — 0, from the continuous-time T-S model (1.6), we can write:

K17 = Y ou((0) (U + 7 A)e() + 7. Biu)
, 0=l (1.19)
y(t) = 3 aula(t)Cia(t
i=1

Therefore, assuming a sampling period 7s, at sampling instant ¢, = k75 (k € N), the discrete-time

T-S model (1.17) approximates the continuous-time one (1.6) with:
A; = (I +754;), Bi = 7sB; and C; = C;. (1.20)
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As a matter of fact, it is often assumed that the error introduced by discretization is negligible
when a sufficiently small enough sampling period is selected regarding the highest-frequency
component of a system time response. In this context, the Shannon sampling Theorem brings

some rules for choosing an appropriated sampling period.

Theorem 1.1 (Shannon sampling Theorem). (Astrom and Higglund, 2011) For a uniformly
sampled digital signal processing system, an analog signal can be perfectly recovered as long as
the sampling rate is at least twice as large as the highest-frequency component of the analog

signal to be sampled.

However, identifying the highest-frequency component of a system time-response can be
complex, and usually, a more empirical rule is adopted. From this approach, the constant
sampling period 75 is often taken in order to produce a ratio of 4 to 10 times between the rise
time 7, and the fixed sampling interval 7, i.e., to have the sampling rate 4 to 10 times faster than
the system dominant time constant 7. in the case of first-order systems (Astrém and Hagglund,
2011).

Moreover, it is important to highlight that the choice of the sampling period 75 has a great
influence on the discrete-time realization, and, sometimes due to the control project limitations
such as cost reduction or energy consumption, it is necessary to find a suitable trade-off between
catching all of the dynamics of the plant or alleviating the hardware requirements for the control
device. Some other approaches exist to obtain a discrete-time approximation of a continuous-
time system with better accuracy than the forward Euler approach, e.g. using Tustin bilinear
transforms (Ogata, 1995; Astrom and Higglund, 2011), using Taylor series expansions or the
Cayley-Hamilton theorem (Heemels et al., 2010), or more recently using a descriptor system-
based approach in the T-S framework (Braga et al., 2019). Even if appealing, these will be

left-out from this thesis since it is not our purpose to compare every discretization approaches.

Remark 1.3. The choice of the sampling period s may affect the accuracy of the discrete-
time representation of a continuous-time system. Therefore, when considering discrete-time
realization for the stability analysis, control or observer design, conclusions regarding to the
continuous-time system must be taken with care, especially when Ts cannot be chosen small
enough. Indeed, in this case, it is well-known that discrete-time models fail to capture the inter-
sampling behavior of dynamical continuous-time systems (Hetel et al., 2017). This absence of
guarantee for large sampling period can be seen as a drawback of such approaches, especially
when the controller is implemented on a low-cost device or when considering networked control

systems to drive plants, and especially when they involve fast dynamics.

The usual way to obtain a T-S discrete-time model from a continuous one being presented,
the following example is proposed to illustrate the effect of the choice of the sampling period 7

on the accuracy of the discrete-time realization.

Example 1.3. Consider the continuous-time T-S model of the 1-DOF inverted pendulum pre-

sented in (1.16). Assuming a sampling period Ts allows us to obtain a discrete-time T-S model
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(1.17) with r = 2 and the following matrices:

A = [ gl Tsk ]aAZZ[ ! Tsk ] andBlngzl 95 ] (1.21)
T

g _ k
7P 1= LT mL?

If obtaining the matrices (1.21) via Euler discretization for the discrete-time T-S fuzzy model
(1.16) happens to be an easy task, the choice of the constant sampling instant is not so evident
since we are dealing with an unstable nonlinear systems. Indeed, from the best of author’s
knowledge, there is no generic approach in the literature to find the minimal sampling interval
required to precisely describe this class of systems. Thus, two approaches are explored to give

some thoughts on how to choose a reasonable value for the fixed sampling period 7.

First, the open-loop time response of the continuous system (1.14) is compared with the one
for the discrete-time T-S fuzzy model (1.17) with (1.21) and different values of 74 picked as
1ms, bms, 20ms and 50ms. The open-loop responses are depicted in Figure 1.4 to illustrate
the compromise between accuracy and sampling effort. For that simulation, the system initial
condition x(0) = {7?/6 O}T. To compare these first results, Figure 1.4 also plots the normalized
error between the state variable 0(t) of the continuous-time response and its discrete counterpart
O(tr) for each discrete-time model. It shows that the discrete-time fuzzy model with a sampling
period of Ts = 50ms does not represent the inverted-pendulum dynamics around the equilibrium
point 8 = m, meanwhile, the choice of Ts = 20ms produced a closely-related behavior. However,
seeing the zoom box, we can notice a kind of induced delay, probably related to the Zero-Order
Hold (ZOH), and an error of about 10%. Then, our choice is confined to 1ms or bms, if the
first option delivery an accuracy of at about 1%, it also requires 5 times faster samplings than
the second, while the error from it raise to less than 3%. So, thinking in terms of compromise,

it seems that s = bms is a reasonable choice for the constant sampling period.

In other hand, let us highlight that, because the introduction of a controller makes the closed-
loop dynamics having different characteristics (constant of time, highest frequency components...)
than the open-loop, the above chosen sampling period may be irrelevant for closed-loop systems.
To illustrate this fact, let us consider here a continuous-time linear state feedback controller
u(t) = Kz(t), with K = [4.24 0.16}, to stabilize this 1 DOF inverted pendulum around its
unstable equilibrium point (6 = 0) with closed-loop eigenvalues A1 o = —0.5+i\/(3)/2. Then, the
continuous-time dynamics is discredited using the forward Euler approach with different values
of 15 picked as 20ms, 50ms, 100ms, 200ms and 300ms. For all these cases, the closed-loop
time-responses are depicted in Figure 1.5 with there respective normalized discretization errors.
From these results, we now notice that choosing 7s = 20ms brings a normalized error which is
less than 3%, which is almost the same than in the open-loop test but with a four times larger
sampling period. This illustrate the difficulty to choose the most suitable sampling period in this

discrete-time controller design framework.
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1.3 Basic Stability Analysis and Stabilization of T-S models

In this section, the goal is to present the basic stability conditions for T-S models, then to
present their extension to controller design. Because T-S models belong to the class of nonlinear
systems, we will first recall some basics of the Lyapunov theory, which is commonly considered

in this framework.

1.3.1 Second Lyapunov method for the stability analysis of dynamical sys-
tems

One of the most important results in the analysis of dynamical system was the theory
proposed by Aleksandr Lyapunov, at the end of the 19th century in its original thesis “The
general problem of the stability of motion”, translated from Russian in (Lyapunov, 1992). The
main idea relies in the fact that if a dynamical system loses energy over time and the energy is
never restored, then the system must grind to a stop and reach some final resting state.

Let us consider an autonomous nonlinear system given in the continuous-time framework by:

i(t) = f(x(t)) (1.22)
or in the discrete-time framework by:

Tp+1 = f(xk) (1.23)

where the origin O is, without loss of generality by a change of origin, assumed to be an
equilibrium point.

The concept of stability is strictly related to the Lyapunov stability theory. This theory
establishes that systems whose trajectories asymptotically converge to an equilibrium point
progressively lose energy in a monotonic way. Lyapunov generalizes the notion of energy using
a V :R" — R, function called “Lyapunov candidate function” which depends on the system’s
states. This function is usually a norm or a distance. The main theorems, adapted from (Khalil,

2001) for the continuous and discrete-time framework, are given in the sequence.

Theorem 1.2. Let x = O be an equilibrium point for (1.22) in the continuous-time framework
(or (1.23) in the discrete-time framework). Let V : R™ — R be a continuously differentiable

function. It is said to be a candidate Lyapunov function if:
V(0)=0and V(z) > 0,Vz # O (1.24)

Then, the continuous-time system (1.22) (or the discrete-time system (1.23)) is asymptotically

stable (at least locally at the origin O) and V is said to be a Lyapunov function if, Vx(t) # O:
V(z) <0, in the continuous-time framework, (1.25)

or:

V(zks1) — V(zk) <0, in the discrete-time framewortk, (1.26)
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Moreover, if V is radially unbounded, then the continuous-time system (1.22) (or the discrete-

time system (1.23)) is globally asymptotically stable if:
l|z]| = 00 = V(z) = 0 (1.27)

Next, another definition of the Lyapunov stability conditions is presented which uses com-

parison functions, known as class K functions and defined as follows.

Definition 1.1 (Class K comparison functions (Khalil, 2001)). A continuous function § :
[0,a) — [0,00) is said to belong to class K if it is strictly increasing and $(0) = 0. It is

said to belong to class Koo if a = 0o and B(r) — oo as r — oo.

Theorem 1.3. Let z = O be an equilibrium point of (1.22) in the continuous-time framework
(or (1.23) in the discrete-time framework) and Q a neighborhood of the origin O. LetV : R™ — R
be a candidate Lyapunov function. If there exists three class IC functions B1, B2 and B3 such
that, Vo € Q:

Arlllzl]) < V(z) < Ba([l=]]), (1.28)
and:
V(z) < —Bs(||z||), in the continuous-time framework, (1.29)
or:
V(zgs1) — V(zk) < —B3(]|x]]), in the discrete-time framewortk, (1.30)

then the system is asymptotically stable (at least locally at the origin O) and V is a Lyapunov
function.

Moreover, if & = R™ and p1, B2 and B3 are Ko functions, V is radially unbounded and the
system is globally asymptoticallly stable.

From Theorem 1.2, a continuously differentiable function V(x) satisfying (1.24) and (1.25)
(or (1.26)) is called a Lyapunov function and, for some ¢ > 0, V(x) = c is called an equipo-
tential level set of Lyapunov. Therefore, the condition V' < 0 implies that when a trajectory
crosses an equipotential of Lyapunov, the system’s trajectories necessary move towards a lower
equipotential and so, the set L(c) = {x € R"|V(x) < ¢} is said to be contractive and the tra-
jectories can never come out again. That property is often used when only local stability can
be guaranteed, i.e. when (1.27) cannot be satisfied, to characterize an estimate of the stability

domain of attraction.

The main definition of the Lyaponov stability conditions which will be considered in this
thesis being presented, the next subsection provides the pioneer results on the stability analysis
of T-S models.

1.3.2 Stability Analysis and Stabilization of T-S Models

In the context of polytopic models, Linear Matrix Inequalities (LMIs) are a fundamental

tool for the stability analysis and synthesis of controllers for nonlinear systems and can be
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easily implemented through convex optimization techniques (e.g., see (Skelton et al., 1998; Boyd
et al., 1994; Scherer et al., 1997)). Since the introduction of semidefinite programming (SDP),
several problems from control theory have been formulated as a convex optimization problem
and numerically solved. They seldom include a linear objective function subject to a constraint
written as an affine combination of symmetric matrices (Boyd et al., 1994).

Together, the Lyapunov functions were extensively employed for the stability study of poly-
topic systems (Boyd et al., 1994; Tanaka and Wang, 2001; Scherer et al., 1997). The main
advantage of this combination is the possibility of expressing the stability criteriums in terms of
LMIs. This last has been efficiently numerically solved using interior-point methods, and from
this approach, an optimal solution is guaranteed. Today, several software toolboxes are available
to write LMIs problems like the Control Robust Toolbox for MATLAB®(Gahinet et al., 1995)
and YALMIP (Lofberg, 2004) and solve them via interior-point algorithms, such as SeDuMi
(Sturm, 1999) and Mosek (ApS, 2019).

In the next subsections, we will provide the basic LMI-based quadratic stability conditions
for autonomous T-S models, then the pioneer LMI-based results for T-S model-based quadratic

design of dedicated controllers.

Quadratic stability analysis:

Let us focus on the stability analysis of the following autonomous T-S models:
T
x(t) = Zai(z(t))Aix(t) (1.31)
i=1
or in their discrete-time version:

-
Ttk = Zai(zk)/lixk (1.32)

i=1
Then, to apply Theorem 1.2, consider the following Quadratic Lyapunov Function (QLF)

candidate:
V(z) = 2T Pz, with = = z(t) or x = xy,, (1.33)

which satisfies (1.24) if P € R™ " is a symmetric and positive definite Lyapunov candidate
matrix.

The continuous-time T-S model (1.31) or the discrete-time T-S model (1.32)) are asymptot-
ically stable (at least locally) if, Va # O:

e In continuous-time framework:
V(z(t)) = &L (t)Px(t) + 2T (t)Pi(t) = 2T (t) Z a;(z(t)) (A;TFP + PAZ-) z(t) <0 (1.34)
i=1
o In discrete-time framework:

V(zg—1) — V(zg) = 2} 1 Pri1 — o4 Poy = o, Zai(zk) (A;TFP.AZ- + P) xp <0 (1.35)
i=1
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The T-S models (1.31) and (1.32) being convex polytopic models, we always have «;(z) > 0
(Vi € Z,), yielding to the first quadratic stability conditions given as a convex optimization

procedure to be solved as LMIs and summarized by the following theorem.

Theorem 1.4. (Tanaka and Sugeno, 1992) The autonomous continuous-time T-S model (1.31)
(or the discrete-time T-S model (1.32)) is asymptotically stable (at least locally) if there exists
0 < P = PT € R™" such that the following LMI’s are satisfied for all i € I, :

ATP + PA; <0, in the continuous-time framework, (1.36)

ATPA; — P <0, in the discrete-time framework. (1.37)

The basic quadratic stability conditions having been established, the following subsection

presents their extension to controller design.

Quadratic design of stabilizing PDC controllers:

T-S models belonging to the class of convex polytopic systems, assuming that the state are
available from measurement, and assuming that the premise variables depend only on the state,
a convenient way to drive them is to employ a gain-scheduled polytopic controller based on
the same interconnection structure (membership functions), namely the Parallel-Distributed-

Compensation (PDC) state feedback controllers given by, for continuous-time T-S models (1.6):
u(t) = a;(2(t) Kja(t) (1.38)
j=1
and for discrete-time T-S models (1.17):

'
U = Zaj(zk)Kjl'k (1.39)
j=1

Substituting the PDC control laws (1.38) and (1.39) into (1.6) and (1.17), respectively ex-

presses the continuous-time and discrete-time closed-loop dynamics as:

£(0) = 35 ai= (1) (:(0)) (A; + BiE) (1) (1.40)

i=1j=1
and:

Tht1 = i i ai(zk)aj (zx) (A; + Bin) Tk (1.41)

i=1j=1
Therefore, assuming a candidate quadratic Lyapunov function (1.33) and applying Theo-
rem 1.2, we can readily get that the closed-loop dynamics (1.40) and (1.41) are respectively
asymptotically stable (at least locally) if:

zrj Z ai(2(t))a (2(1)) (A + BiK))" P + P(A; + BiK;)) <0 (1.42)
i=1j=1
and: .o
>3 ailzr)ay(z) (A + B P(A; + BiK;) = P) <0 (1.43)
i=1 j=1
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From the Schur complement, (1.43) is equivalent to:
S ilzr)ag(z)
i=1j=1

Then, let M; = K;P~!, by congruence of (1.42) with X = P~1 and (1.43) with diag{X, I},

and from the fact that:

33 @i(ag ()T = Y a2 (T + 5 30D ail)ay ()T + T,
i=1

i=1j=1 i=1j=1

-P *

At —pi| <0 (1.44)

we get the conditions expressed in the following theorem.

Theorem 1.5. (Tanaka et al., 1998) The continuous-time T-S model (1.6) (or the discrete-time
T-S model (1.17)) is asymptotically stabilized (at least locally) by the PDC control law (1.38)
(or (1.39)) if there exists 0 < X = XT € R™ " such that the following LMI’s are satisfied for
all (i,j) € T2:

;<0 (1.45)
Iij+T <0,Vi<y (1.46)
with:
Iij =AX+ xXAT 4 B;M; + MjTB;‘F, in the continuous-time framework, (1.47)
and:
I = X * in the discrete-time framework (1.48)
v .AiX—FBiMj -X\|’ ’ ’

In that case, the PDC controller gains and Lyapunov matrices can be recovered by the change
of variables K; = M; X! and P = X 1.

Remark 1.4. [t is worth to highlight that, when T-S models are obtained from global sectors
from monlinear systems, we get D, = R™ and the satisfaction of the conditions in Theorem 1./
or Theorem 1.5 guarantee global asymptotical stability since the quadratic Lyapunov function
(1.33) satisfies (1.27). However, when T-S models are obtained from local sectors from nonlinear
systems, it implies D, C R™, so the result turns local and an estimate of the domain of attraction
can be characterized by searching the outermost level set ¢ > 0 such that L(c) = {x € R" |V (z) <
c} CD,.

The conditions of Theorem 1.4 and Theorem 1.5 do not require any information about the
membership functions, which holds the convex sum properties. This implies that these conditions
are only sufficient ones and so suffer from conservatism (Sala and Arino, 2007). In other words,
not finding a solution for a convex optimization problem from these conditions does not mean
that the considered T-S model is unstable or cannot be stabilized. Different ways to reduce the
conservatism of LMI-based conditions will be discussed in the next subsection.

Before going to the next subsection, let us highlight some limitations from the use of discrete-
time T-S model based approach to control a continuous-time system. Indeed, because the dis-

cretization of a continuous-time system involves approximations, it is well-known that such

31



Chapter 1. Preliminaries on T-S model-based approaches and sampled-data control

designed discrete-time controller ensures the stability of the discrete-time model, but not neces-
sarily of the original continuous-time system it is dedicated to, especially when large sampling
period are considered. This happens because the inter-sampling behavior of a continuous-time
system is lost in the above detailed discrete-time framework (Hetel et al., 2017). To circum-
vent such drawback, appealing approaches appeared during the last few decades, especially the
input-delay approach for sampled-data systems (Fridman et al., 2004; Hetel et al., 2017), which

will be further presented and the focus of our contributions in Chapters 3 and 4.

Some usual ways to relax LMI-based conditions for T-S models:

As mentioned above, the basic conditions expressed for the stability analysis and controller
design suffer from conservatism. Among the sources of conservatism investigated, we recall in
the following the currently investigated ones in the T-S model-based framework, which will be
considered to get the new results proposed in this thesis.

First, note that the closed-loop dynamics (1.40) and (1.41) involve a convex double sum
structure and so, also the Lyapunov conditions (1.42) and (1.44). Hence, checking the negativity
of all their vertices make the results very pessimistic. A first relaxation of such double sum
constraint is presented in Theorem 1.5. However, further relaxation improvements have been
proposed in the literature, see e.g. (Kim and Lee, 2000; Tuan et al., 2001; Xiaodong and Qing-
ling, 2003). In this thesis, we will consider Tuan’s relaxation lemma given below, since it is
commonly considered as a good compromise between complexity and conservatism reduction
(Sala, 2009; Lam, 2018).

Lemma 1.2. (Tuan et al., 2001): For (i,j) € I2, let I';; be matrices of appropriate dimensions.

The inequality Z Z a;()a; ()T < 0 is satisfied if the following conditions hold:
i=1j5=1

Viel : ;<0 (1.49)
. 2
\V/(l,]) Z # ,] 7]-_‘11 + ]'_‘U + F]’L < 0 (150)

Another widely investigated source of conservatism is the choice of a candidate Lyapunov
function. Indeed, with the QLF (1.33), solving the conditions of Theorem 1.4 or 1.5 means that
we need to find a common decision variable P, solution to a set of several LMI constraints,
which is indeed restrictive. To relax such conditions, one of the most considered approach is
to employ a Non-Quadratic Lyapunov Function (NQLF) candidate introduced by (Jadbabaie,

1999), for instance for controller design in the continuous-time case:

V(x(t) =27 (1) <Z ai(z(t))Pi> () (1.51)

with the non-PDC control law:

~1
=D _ai(2()K; (Z aj(Z(t))Pj) () (1.52)
i=1 j=1
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1.3. Basic Stability Analysis and Stabilization of T-S models

The application of Theorem 1.2 leads to the non-quadratic closed-loop stability condition

given by:

ror r
S aila()a(2(0) (AP + PAT + BiK; + KT BT ) = " aw(2()) P <0 (1.53)
i=1j=1 k=1
Note that (1.53) involves the derivatives of the membership functions (this vanishes in the
discrete-time framework as shown in (Guerra and Vermeiren, 2004)). To cope with this, assuming
that |dg(2(t)] < ¢k, we can bound (1.53), as firstly proposed in (Jadbabaie, 1999; Blanco et al.,
2001), by:

T T T

>3 T ai2(t)a;(2(t)) (Aipj + PA] + BiK; + Kfo) +) Py <0 (1.54)
i=1j=1 k=1

Then, refinements have been proposed to further reduce the conservatism of (1.54), see

e.g. (Tanaka et al., 2003, 2007; Mozelli et al., 2009; Guerra et al., 2012). Among them, we

provide below the conditions proposed in (Mozelli et al., 2009) since they also constitute a good

compromise between complexity and conservatism reduction.

Lemma 1.3. (Mozelli et al., 2009) Assume that |hy| < ¢y, Yk € I.. The T-S fuzzy system
(1.6) is stable if the following LMIs are satisfied:

p,=PI'>0, i€l,

Pi +X > 0, 1€ Ir71}7 (155)
— 1

Py + §(A%TPJ +Pin+AJTPi+P¢Aj) <0, 1<y,

_ r—1
where (i,7) € I2, Py =Y. ¢or(Pr + X), and ¢y are scalars.
k=1

Furthermore, it is important to highlight that, assuming the bounds of the time-derivatives

make the results valid only locally in the regard of the compact subset:
T
Dy = [ {z(t) € R™ : |cn(2)] < dn} (1.56)
k=1

which, combined with the domain of validity of the T-S model D,, allows to provide an estimate
of the domain of attraction by searching the outermost level set ¢ > 0 such that L(c) = {z €
R™V(x) < c} € Dy N Dy.

Remark 1.5. In the above non-quadratic context, we need to estimate the bounds of the time-
derivatives which are parameters to solve the LMI conditions. This task is in general difficult
or even impossible if global stability results are required. Otherwise, in (Guerra et al., 2012),
a systematic approach has been proposed to avoid setting these parameters while providing an
estimate of the closed-loop domain of attraction. Some other approaches consider the use of
Line-Integral Lyapunov functions (Rhee and Won, 2006), but restricted to second order systems
(Guelton et al., 2010, 2014), or consider Lyapunov functions involving the mean values of the

membership functions (Marquéz et al., 2017; Cherifi et al., 2019), appealing when membership
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functions are piecewise continuous, which is not the purpose of this thesis. This being said,
in some special cases, the bounds of the time-derivatives of the membership functions can be
analytically computed (see e.g. Chapter 3, Subsection 3.5.2) or, when considering local results
and input limitations, an estimate of the bounds can be numerically computed as it will be shown

in Chapter 4.

Finally, another way of interest for this thesis to reduce the conservatism is the introduction
of slack decision variables into the stability conditions. This can be done, for instance, by
considering descriptor redundancy approaches (Tanaka et al., 2007; Guelton et al., 2009; Bouarar
et al., 2010, 2013), by applying Peaucelle’s transforms (Peaucelle et al., 2000; Cherifi et al., 2019)
or the Finsler’s Lemma (Skelton et al., 1998; Oliveira et al., 2011; Jaadari et al., 2012; Bourahala
and Guelton, 2017), or S-procedure (Tarbouriech et al., 2011; Boyd et al., 1994) presented below.

Lemma 1.4. Finsler’s Lemma (Skelton et al., 1998). Let ¢ € R", G € R™" and Q = QT €

R™ ™ such that rank(G) < n. The following statements are equivalent:
'QE <0, VEE{(eR" 1 £+40,GE=0} (1.57)
JReR™™:Q+RG+G'RT <0 (1.58)

Lemma 1.5. S-procedure (Boyd et al., 1994). Let Ty, ..., T, € R™™™ be symmetric matrices. If
there exists \y > 0,...,A, > 0, such that

p
To— > NT; >0 (1.59)
=1

then

2T Tox > 0, Vo # 0 such that 2 Tjx > 0,i=1,...,p

When p = 1, the converse holds if there exists xo such that HU(I;TNCO > 0.

1.4 Preliminaries on specific control problems investigated in
the sequel of the thesis

The basics on T-S models and their stability analysis and controller design being now recalled,
let us now introduce the preliminaries related to the more specific control problems investigated
in the sequel of this thesis. First, because most physical systems are subject to actuators’
limitation, the preliminary concepts which will be used in this thesis to deal with such issues will
be presented (Tarbouriech et al., 2011). Then, because it has been shown that some issues may
occur when applying discrete-time model-based controller design for continuous-time systems,
we present some preliminaries on input-delay approaches for sampled-data controller design
(Fridman et al., 2004; Hetel et al., 2017).
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1.4.1 Preliminaries on controller design with actuators’ limitations

Among the practical characteristics sometimes miscarried in controller design procedures,
the saturation of actuators is one of the most critical aspects (Tarbouriech et al., 2011; Hu and
Lin, 2003). When not correctly considered, actuators saturation can lead to limit-cycles, the
emergence of new equilibrium points, degeneration in performance, or the induction of unstable
behavior even on stable systems. Indeed, since it is present in nearly all systems and processes,
actuator saturation remains an essential investigation subject. In this context, let us consider
the following nonlinear affine-in-control system (1.2), where the input signal is constrained such

that:
#(t) = A(z(t))z(t) + B(x(t))satu(t) (1.60)

where A(z(t)) € R™*™ and B(z(t)) € R™™™ are matrices that may nonlinearly depend only on
the state entries, and sat(u)(t)) is a generic saturation function, where —u ;) and u) are the
minimum and maximal value allowed for the ¢-th control signal, which define the compact set

of input values denoted by:
Dy = {u(t) e R™: —u < sat(u(t)) < u} (1.61)

where the inequalities are to be understood component-wise.
To illustrate the saturation function, let us consider the state-feedback control law (1.38),
rewritten as u(t) = K(x(t))x(t) to alleviate the mathematical expressions, constrained by the

saturation function:

U(p) it (K(z(t)z(t) e > u
sat(K(z(t)z(1) ) = § (K(z(t)z(t))e) if —ug < (K(2x(t)z(t))e > uw (1.62)
—u(p) it (K(x(t)z(t)r) < —u(

According to the saturation function, when actuators reach their saturation level, a non-
linearity is introduced into the closed-loop dynamics, leading to degradation of the closed-loop
performance (which may be even unstable), even when the open-loop system is stable. To deal
with such issue, three main approaches are often considered. The first one considers that the
saturation is written in terms of polytopic models (Hu and Lin, 2003), in the second, saturation
regions are defined (Molchanov and Pyatnitskiy, 1989) and in the third, the actuator saturation
is treated as a sector nonlinearity (Khalil, 2001). In the sequel of this work, the developments
are limited to the third approach since it has been found less conservative than polytopic ap-
proaches, especially when the characterization of the closed-loop domain of attraction is needed
(Tarbouriech et al., 2011).

Generally speaking, the stabilization of nonlinear systems under saturated actuators can be
considered as a Lur’e problem (Tarbouriech et al., 2011), with the dead-zone sector-nonlinearity

defined as follows.

Definition 1.2. The dead-zone is a saturated signal defined as (u(t)) = sat(u(t)) — u(t), with
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P(u(t)) € RY such that, V0 =1,...,q:

Uy —ue(t) i ue(t) > ag
Plue(t) = 0 if —ugy <ul) <y
—uey(t) —u@y i ue) < —up

The closed-loop dynamics can be expressed as:

#(t) = (A(z(t)) + B2 () K (x(t))x(t) + B(x(t))p(u(t), (1.63)

Hence, the design of the controller’s gain K (x(t)) will only ensure the local closed-loop
stability of (1.63) and the goal is to provide relaxed margins regarding the input saturation, as

illustrated in Figure 1.6, given by:

Ao Y% U
where )\(g) €[0,1).
sat(u((t)) Y(uge ()
Uy === :
—U(p) | S
: u(e) 0 |
/- —u(p)

(a) (b)

Figure 1.6: Functions: (a) saturation, and (b) Dead-zone non-linearity in a local sector.

Therefore, the design of a controller which locally stabilizes the closed-loop dynamics (1.63)
can be done with the second Lyapunov method (see e.g. Theorem 1.2), while considering the
following Lemma to cope with the dead-zone nonlinearity ¢(u(t)) (see Chapter 2 and 4 for more

developments in the context of this thesis).

Lemma 1.6. Generalized Sector Condition, Lemma 1.6 in (Tarbouriech et al., 2011). Consider

the vector u € R™ and signals u € R™ and w € R™ belonging to the set S given by:
S('ﬁ) = {u S Rm,w eR™: ‘U(g) — W(g)’ < 'ﬁ(g),g S Im} (1.64)

Then the dead-zone function satisfies ¥(u)? D((u) +w) < 0 for any m x m diagonal matriz
D > 0.
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Moreover, when dealing with local results, it is fair to provide an estimate of the closed-
loop domain of attraction based on the knowledge of the bounds of the input signals, i.e. the
domain of admissible input values D, defined in (1.61). In the context of T-S fuzzy models,
this has to be taken into consideration together with the other constraints brought by modeling
considerations, i.e. the domain of validity D, of the considered T-S model defined in (1.7), or
brought by the choice of the Lyapunov function, e.g. the subset Dy defined in (1.56). Combining
these constraints allows to provide an estimate of the domain of attraction, e.g. by searching
the outermost level set ¢ > 0 such that L(c) = {z € R"|V(z) < ¢} € D, N Dy ND,. This
motivated several recent works on T-S model-based control to handle such constraints. For
instance, (Lendek et al., 2018; Klug et al., 2015) focus on handling the domain of validity of
T-S models. Input or state constraints have been considered in (Nguyen et al., 2017; Fan et al.,
2017; Li et al., 2016a; Kong and Yuan, 2019). Our works in the 27d and 4% chapters will follow

the same guidelines.

1.4.2 Preliminaries on the input delay approach for sampled-data control

To circumvent the above mentioned drawbacks and limitations of T-S model-based discrete-
time controllers applied to continuous-time systems, an appealing approach considers on rewrit-
ing the overall continuous-time closed-loop dynamics as a dynamical system with input-time
varying delays (Fridman et al., 2004; Hetel et al., 2017). This subsection aims at presenting the
preliminaries about this approach, projected in the T-S model framework, to better apprehend
our contributions in Chapter 3 and 4.

Let us consider a continuous-time T-S model (1.6) driven by a discrete-time state feedback
PDC controller (1.39), maintained between two successive sampling instants ¢, and ¢, by a

ZOH. Vt € [tg,tg+1), the closed-loop dynamics is expressed as:

£(1) = 33 () (2(t) (Aie(t) + Bika(ty) (1.65)

i=1j=1

It is important to highlight that, with the sequence of hold sampling instants:

O=to<ty <...<tp<tpy1 <..., lim t =0, (1.66)
k—o00
the sampling interval can be either constant ¢x,i — tx = 7, or variable, with k-dependent

Nk = tk+1 — tx. Hence, the following assumption is done.

Assumption 1.2. We assume that the aperiodic sampling intervals 1 are bounded such that

they admit a maximal allowable value 1, i.e.:
Nk = te41 —tp < 7, VE € N. (1.67)

Remark 1.6. In many real applications, the assumption (1.2) is accurate since the intervals
between two successive sampling instants may be varying due to practical constraints. Fven in
a point-to-point digital control topology, clock inaccuracy and system architecture characteris-

tics such as real-time scheduling can induce jitters, imperfect synchronization, and computation
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delays (Wittenmark et al., 1995; Hetel et al., 2017). Over the past decades, there has been an
expansion in the study of Networked Controlled Systems (NCS), in which sampled-data systems
are controlled through communication networks (Hetel et al., 2017; Fridman, 2014a). In these
circumstances, aperiodic sampling intervals are almost inevitable due to constraints induced by
the network, e.g. event-triggering (de Souza et al., 2021; Rouamel et al., 2021), network-induced
time-varying delays and packet dropouts (Nafir et al., 2021), and so on.

The main idea of the input-delay approach consist in rewriting sampled signals maintained
by a ZOH as continuous-time signal involving a time-varying delay. To do so, let us consider

the sawtooth functions, illustrated in Figure (1.7), defined by:

T(t) =t—t, Vt € [tk,tk+1), Vk e N (1.68)
T(t)n
7] R - N P
to 1 to ty tkt1 tgio tras t

Figure 1.7: Representation of the time-varying delay (7(¢) =t — t;) with a sawtooth function
(o marks the left-limits of right-continuous piecewise functions).

Note that, from Assumption 1.2, the sawtooth function (1.68) has the following properties:
T(t) € [Oank) - [Oaﬁ)a vt € [tk‘7tk+1)7 Vk e N (169)

and:
7"(t) =1,Vte [tk,tk+1), Vk € N (1.70)

Therefore, from (1.68), any sampled signals s(¢;) maintained by a ZOH can be rewritten as
s(t—7(t)), which allows us to rewrite the closed-loop dynamics (1.65) as the following continuous-

time system with time-varying delays:

() =YY ai(2(t))ay(2(t — 7(1))) (A (t) + BiKja(t — 7(t))) (1.71)

i=1j=1

Rewriting the closed-loop dynamics is such a fashion make usual tools dedicated to the
stability analysis and controller design for systems involving time-varying delays suitable for
the design of sampled-data controllers. Two main approaches are often considered to deal with
time-varying delays from the use of Lyapunov-Razumikhin Functionals (LRF) or Lyapunov-
Krasovskii Functionals (LFK). In the linear system control framework, LKF were first proposed
to cope with slow varying time-delays, i.e. 7(¢) < 1 (Niculescu et al., 1998). Unfortunately, such
approach were not suitable for fast time-varying delays, i.e. when 7(¢) = 1, so the stability issue

was first investigated via LRF (see e.g. (Hale and Lunel, 1993)), because no restrictions on the
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derivative of the delay in this case, but it usually leads to conservative results. More recently,
robust stability conditions for systems involving fast input time-varying delay (i.e. 7(t) = 1
almost everywhere, as illustrated in Figure 1.7) were provided via LKF in (Fridman and Shaked,
2002, 2003; Fridman et al., 2004). From these pioneer works, the time-delay approach became
popular to cope with sampled-data systems and NCSs (Fridman, 2014a), especially bringing
several conservatism improvements in the linear system framework, see e.g. (Fridman et al.,
2004; Fridman, 2014a,b; Hetel et al., 2017; Bourahala et al., 2021; Nafir et al., 2021; Rouamel
et al., 2021).

Among the several improvements made with the choice of a convenient LKF in sampled-data
controller design, looped LKF inspired by (Seuret, 2009; Fridman, 2010) retains our attention
because it allows to take into account the characteristic of the sawtooth function 7(t), especially
when 7(t) = 1 (¥t # ti), to provide derivative-dependent stability conditions. Such a looped
LKF is of the form (Hetel et al., 2017):

V(x(t)) = 2L (t)Px(t) + (mp — (1)) /tir(t) i (s)Ri(s)ds (1.72)

which presents the advantage of being left and right continuous at each sampling instants t,
ie.

V(a(ty)) = V() = V(a(t)) = =" (tx) Px(ty) (1.73)

Therefore, as illustrated on Figure 1.8, assuming P = PT > 0, (1.72), Vt € [t try1), if
V(x(t)) <0, then, Vt € R*, V(x(t)) is monotonously decreasing and the considered system with

input time-varying delay is asymptotically stable.

V(z(t))

to t1 to - tr Vt

Figure 1.8: Illustration of a decreasing looped LKF.

In the context of T-S model-based sampled-data control, several attempts to reduce the
conservatism have been done from different choices of an LKF, see e.g. (Yoneyama, 2010; Zhu
and Wang, 2011; Zhang and Han, 2011; Zhu et al., 2012; Gunasekaran and Joo, 2019; Zhu et al.,
2013; Cheng et al., 2017). Among them, only few authors have considered looped LKF (Zhu
et al., 2012, 2013; Cheng et al., 2017), but with significant conservatism reduction. To further
relax the conditions, refinements on the choice of a convenient looped LKF are proposed in
Chapter 3 and 4 where LMI-based conditions will be proposed with the help of the following

lemmas.

39



Chapter 1. Preliminaries on T-S model-based approaches and sampled-data control

Lemma 1.7. (Fridman, 2014b) For any matrix P = PT > 0 with appropriate dimensions,
7(t) € [0,mr) and 7(t) = 1, the following inequality holds:

t t t
/ z1(s)Px(s)ds > 7],;1/ zT(s)dsP x(s)ds (1.74)
t

—r(t) t=7(t) t=7(t)

Lemma 1.8. (Zhang and Han, 2013) For any constant matriz R € R™*", R = RT > 0, a scalar
function 7(t) with 0 < 7(t) <7 and a vector function & : [—n,0] — R™ such that the integration

concerned is well defined, let

¢
/ #(s)ds = E(t) (1.75)
t—(t)
where E € R™* and () € R¥. Then the following inequality holds for any matriz M € R™¥F
t
- [T Ri)ds < 6T (OT () (1.76)
t—7(t)

where Y1 = —ETM — MTE+7(t)MTR™'M.

Lemma 1.9. (Kim, 2016). Let us consider a quadratic function f(n(t)) = aan(t)? +a1n(t) + ao,

where az, a1 and ag € R. If:
(i) £(0) <0, (@) f(7) <0 (iii) f(0) — i*ag <O, (1.77)

then f(n(t)) <0, vn(t) € [0, 7].

Moreover, note that the sampled-data closed-loop dynamics (1.71) involves a mismatching
double sum interconnection structure and so, applying the second Lyapunov method will lead
to closed-loop stability conditions given in terms of parameterized LMIs involving summation

structure such like:

> ai(a(t)ay(z(t — (1))l < 0 (1.78)

i=1j=1
Figure 1.9 illustrates the mismatch between the continuous-time membership function a;(z(t))

of plant and the sampled ones, maintained by a ZOH such that o;(x(t;)) = a;(x(t — 7(¢))).

7 N

~+V

to tl t2 e tk

Figure 1.9: Mismatch between controller’s and T-S model’s membership function.

Hence, to provide relaxed parameter independent LMI-based conditions from (1.78), Lemma

1.2 or other usual double sum relaxation schemes cannot be employed directly. To circumvent
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this drawback, most of the authors assume that, Vp € Z,, there exists o, such that |a,(z(t —
7(t))) — a,(x(t))| < 0,, in order to provide mismatching double sum relaxation scheme, such

like the one given by the following recent lemma.

Lemma 1.10. (Koo et al., 2017): For any real matriz I';; = FZ;- for (i,j) € I? and the
T T

continuous-time functions a;(t), b;(t) fori € T, with (a;(t),b;(t)) € [0,1]%, 3 a;(t) = 3 bi(t) =
i=1 i=1

1 and considering |a;(t) — b;i(t)| < oy, the inequality:

i i ai(t)b; ()L <0,

i=1j=1
holds, if there exists some matrices Y; and Z;, such that

i+ 2%2; <0, Viel,

Ty +Tj+2Zi+2; <0, V(i,j) eIt i<j,

T+ Y >0, VY(i,j)eT? (1.79)

zr:aj(Fij +Y)—-2;<0, Viel,.

j=1

Note that Lemma (1.10) consists in an extension to the case of mismatched membership

functions of the first proposed double sum relaxation scheme in (Tanaka et al., 1998), which were
found more conservative than the further proposed double sum relaxation scheme in Lemma (1.2)
(Tuan et al., 2001). Hence, we believe that there is still space for conservatism improvements.
Moreover, let us highlight an important fact. Assuming that there exists o, such that |o,(z(t —
7(t))) —a,(x(t))| < o, to get LMI-based conditions for sampled-data controller means that such
assumption need to be at least post-verified from extensive numerical closed-loop simulation,
which is not an easy task to do. Hence, because many authors assume these parameters without
post-verification, they may loose asymptotic stability guarantee if it occurs that |, (z(t—7(t)))—
a,(x(t))] is not bounded by 0,Vt. Therefore, we believe that more investigations are required to
cope with that issue. As a matter of fact, it is easy to show that these parameters are related to
the bounds of the time-derivatives of the membership functions. Indeed, we can write, Vp € Z,.:

t
(1) oy (at 7)) = [ dpla(s))ds (1.80)
Therefore, assuming that, Vp € Z,, there exists ¢, such that |&,(z(t))| < ¢,, yields:

t

e / 6y (2(3))ds < Gy (t) < Dyl (1.81)

t—7(t)

Moreover, since, Vi, a,(x(t)) € [0, 1], we have:
1< ay () — aplalt— (1)) < 1 (1.82)

Consequently, from (1.80)-(1.82), we always have |a,(z(t — 7(t))) — a,(x(t))| < o, with 0, =
min{1, ¢,7n}.
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Based on such considerations, in Chapter 3, an improved double sum relaxation Lemma,
extending Tuan’s lemma 1.2 to the case of mismatching sampled-data membership functions
will be provided and compared with Lemma 1.10. Let us point-out that if a solution can be
found with o, = 1, then the assumption of a known ¢, is no more required (unless non-quadratic
Lyapunov Functions are employed). However, 0, = 1 being the more conservative case, we will
often have to provide ¢,, e.g. as explained in Remark 1.5, such that ¢, < 1, leading to local
results constrained by Dy given in (1.56). Nevertheless, it is worth to say that, to the best
of the authors’ knowledge, there exists no previous results dealing with the estimation of the
closed-loop domain of attraction in the context of sampled-data controller design for T-S models.
This being understood as a major issue, this point will be the subject of one of the contributions

proposed in Chapter 4, from the convenient choice of a looped non-quadratic LKF.

1.5 Conclusion

In this chapter, some preliminaries on T-S model-based control have been presented. First,
from a continuous-time nonlinear systems, the usual ways to get a T-S representation have been
surveyed. Also, because the main goal of this thesis is to investigate the control of continuous-
time systems driven by digital devices, basics on the discretization of continuous-time T-S models
have been presented, together with the basic stability and LMI-based controller design conditions
in both the continuous and discrete-time frameworks. The limitations of standard discrete-
time controllers, designed from discrete-time T-S model, have been pointed-out since it fails to
accurately cope with the inter-sampling behavior of continuous-time systems, especially when
large sampling periods are employed, or when aperiodic sampling occurs. Then, it has been
shown that an elegant way to cope with such issues is to reconsider the closed-loop sampled-
data dynamics as a continuous-time system with input time-varying delays but, once again, with
some limitation in the T-S model framework, such as the locality of the results or the overall
conservatism of the design conditions. In addition, because most real applications involve input
limitations, some usual ways to cope with actuators saturation have been presented. All of these
concerns motivate the contributions presented in the sequel of this thesis, which can be classified
into two balanced research lines presented as follows.

First, acknowledging that discrete-time model-based approach are mainly considered in in-
dustrial applications because of their easy implementation on industrial controller like Pro-
grammable Logic Computers (PLCs), some improvements of actual discrete-time T-S model-
based approach are proposed in Chapter 2, especially to cope with practical goals and constraints
like set-point tracking under saturating actuators. Under these constraints, the designed con-
troller only locally guarantees the stabilization of the considered discrete-time T-S model, so the
investigation and maximization of the closed-loop domain of attraction will be proposed. These
results will be experimentally validated on an industrial benchmark, namely an interactive tank
system, having slow dynamics, making relevant the use of discrete-time approaches.

Then, as an alternative to discrete-time model-based control design, the input time-varying
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delay approach for continuous-time sampled-data systems is investigated in the remaining of
the thesis. In Chapter 3, based on the choice of a convenient looped quadratic LKF, LMI-
based relaxed conditions are proposed for the design of sampled-data PDC controllers, together
with the proposition of a new relaxation scheme for double summation structures involving
mismatching membership functions. Then, in Chapter 4, some extensions are proposed to
the class of T-S descriptors, known as efficient to cope with mechanical systems, involving
actuators saturation, in the looped non-quadratic LKF framework, together with the proposition
of strategies to estimate and maximize the closed-loop domain of attraction. These theoretical
contributions are validated and compared to previous related results, in simulation with the

nonlinear benchmark of an inverted pendulum on a cart.
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Chapter

Anti-windup Pl-like Controllers Design for
Discrete-time T-S Models

Résumé en Francais : Synthese de contrdleurs PI avec action Anti-
windup pour les modeles T-S a temps discret.

Ce chapitre présente la synthése de controleurs pour les systémes a temps discret, dont
les bases ont été exposées dans le chapitre précédent. Dans ce cas, lorsque de tels con-
troleurs discrets sont appliqués. a un systeme continu, les signaux de commande sont
maintenus par un bloqueur d’ordre zéro entre deux instants d’échantillonage. Nécessi-
tant une période d’échantillonnage fixe, cette approche a fait ’objet de nombreuses études
depuis les années 1950, conduisant a une théorie bien établie pour les systémes d temps
invariant (LTI). Cette approche est donc encore largement répandue pour controler des
systemes industriels puisqu’elle permet une mise en ceuvre rapide sur des automates pro-
grammables, avec des performances acceptables et une bonne précision lorsque les pé-riodes
d’échantillonnage constantes sont suffisamment petites par rapport a la dynamique du sys-
teme a controler.

Plus précisément, dans ce chapitre, nous nous intéressons au suivi de trajectoire a
partir de points de consigne pour les modéles de type T-S a temps discret sujet a la satu-
ration des actionneurs. Cette derniére contrainte menant a l’obtention d’un résultat local,
nous proposons une analyse de l’estimation de la région d’attraction en boucle fermée, en
prenant en compte les entrées exogénes induites par le changement des points de con-
signe, menant a des changements d’origine de la dynamique en boucle fermée. En effet,
en négligeant une telle analyse, les évolutions des points de consigne peuvent amener le
systéme a suivre des trajectoires en dehors de la région d’attraction, de sorte que tant les
performances que la stabilité de la boucle fermée peuvent étre compromises. Cet aspect a
été étudié dans (Lopes et al., 2018) ou un controleur non-PDC' de type PI a été proposé,
mais possédant une région d’attraction modeste. De plus, dans (Lopes et al., 2018), une
condition requise est que la variation temporelle du vecteur d’état du systéme soit lente.
Cependant, comme le montrent (Zaccarian and Teel, 2011; Mehdi et al., 2014), de tels
inconvénients peuvent étre limités en considérant une action anti-windup. Néanmoins, a
la connaissance de l'auteur, aucun travail antérieur ne semble avoir abordé ce point pour
la synthese de controleurs de type PI a temps discret dans le cadre des modéles de type
T-S.

Par conséquent, la principale contribution de ce chapitre est de proposer une méthode
d’optimisation convexe pour la synthése de controleurs flous de type PI d temps discret
avec une action anti-windup pour une stabilisation locale et un suivi de points de con-
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signe pour les systémes non linéaires représentés par des modeéles T-S. En particulier, la
synthese du controleur flou de type PI consiste en une boucle interne avec retour d’état
associée a une boucle avec retour de sortie. Ce schéma de controle permet de garantir a
terme une erreur nulle entre la sortie et les points de consigne. De plus, la saturation
du signal de commande est abordée da partir des conditions données dans (Tarbouriech
et al., 2011) et une optimisation de la région d’attraction est proposée. Un ensemble de
résultats de simulation et d’expérimentation est présenté et discuté. Les résultats expéri-
mentauzx ont été obtenus sur un banc d’essai (systéme de réservoirs connectés), inspiré
de (Johansson, 2000), et disponible au CEFET-MG (Divindpolis, Brésil). Les résultats
obtenus montrent l’intérét de l’approche présentée dans ce chapitre par rapport aux travauz
antérieurs présentés dans (Lopes et al., 2018; Wang et al., 2019).

2.1 Introduction

This chapter investigates the design of discrete-time controllers for continuous-time systems
based on the direct discrete-time model-based approach, whose basics have been presented in
Chapter 1, Sections 1.2.2 and 1.3.2. Following this method, discrete-time fuzzy T-S models
are employed to represent nonlinear systems for the design of discrete-time controllers, which
are then implemented using a ZOH. Despite imposing a fixed sampling period, this procedure
has been studied since the 1950s, leading to a mature discrete-time control theory for Linear
Time-Invariant (LTI) systems. This is why it is still widely employed to control many indus-
trial or practical applications, allowing easy implementation on digital devices like PLCs, with
reasonable performances and good accuracy when small enough fixed sampling periods can be
set with regard to the system’s dynamics to be controlled (see Remark 1.3 and Example 1.3).

More specifically, in this chapter, we are concerned with the set-point tracking of discrete-
time T-S models subject to actuators’ saturation. The latter constraints bringing locality, there-
fore we propose a careful analysis of the estimation of the closed-loop region of attraction by
taking into account the effects of exogenous inputs induced by the change of the set-points in
the closed-loop dynamics. Indeed, neglecting such analysis, set-point changes may drive the
trajectories of the system outside of the region of attraction, so that both the performances and
the closed-loop stability can be impaired. This effect has been investigated in (Lopes et al.,
2018) where non-PDC PI-like controller has been proposed, but with quite small region of at-
traction. Moreover, in (Lopes et al., 2018) it is required a slow enough time-variation of the
state vector of the system. However, as shown in (Zaccarian and Teel, 2011; Mehdi et al., 2014),
such drawbacks can be mitigated by considering an anti-windup action.

In fuzzy model-based control, PID controllers have been studied with various goals including;:
(a) to compare the performance (Ounnas et al., 2016; Kmet6va et al., 2013; Blazic¢ et al., 2002)
with fuzzy PID controllers; (b) to control systems modeled through T-S approach (Estrada-
Manzo et al., 2019; Gao et al., 2015; Yu et al., 2010; Yu and Huang, 2009; Wang et al., 2019;
Yi and Guo, 2009); (c¢) for output feedback with T-S fuzzy observers (Lin et al., 2008); (d)
to blend local gains through T-S rules (Yi et al., 2008) to improve the performance of a PI
structure with both state and output feedback; (e) to develop self-tuning techniques by %)
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blending conventional PI controllers adjusted for local operational points or for different control
objectives, such as disturbance rejection and reference tracking (Sun et al., 2019; Nouri et al.,
2017; Mishra et al., 2015; Fattah and Abdel-Qader, 2015; Dragos et al., 2011; Fateh, 2010),
i1) particle swarm approach (Bouallegue et al., 2012) 4ii) Cuckoo search parameter fuzzy PID
optimization (Hamzaa et al., 2017), etc. Nevertheless, to the best of the author’s knowledge, no
works in the previous literature handle the use of anti-windup action to improve the estimation
of the region of attraction for the design of discrete-time PI-like set-point tracking controllers
under actuators’ saturation in the Takagi-Sugeno framework.

Therefore, the main contribution of this chapter is to propose a convex optimization method
for the design of discrete-time fuzzy Pl-like controllers with a fuzzy anti-windup gain, for the
local stabilization and set-point tracking of nonlinear systems represented by discrete-time T-S
models. In particular, the proposed fuzzy PI control scheme consists of an internal state-feedback
loop combined with an output feedback one. The proposed topology is dedicated to ensure null
output tracking errors for piecewise constant set-point references. Additionally, the saturation
of the control signal is handled by the generalized sector condition (Tarbouriech et al., 2011),
and a maximization procedure is proposed to enlarge the provided estimates of the closed-loop
domain of attraction.

A set of simulation and experimental results is presented and discussed, obtained from the
application of the proposed methodology to an industrial benchmark, namely the interactive
tank system available at the CEFET-MG (Divinépolis, Brazil), inspired by (Johansson, 2000),
illustrating the improvements achieved with the approach presented in this chapter with regard

to previous works (Lopes et al., 2018; Wang et al., 2019).

2.2 Problem statement

In this chapter, we consider the class of nonlinear dynamic systems with input saturations

represented by:

(2.1)

where u(t) € R™ is the control vector, sat : R™ — R™ is the centered vector valued function,
defined as:

satu(y) (t) = sgn(u() (1)) min{u), [ v () [}, V€ € I

with symmetric bounds ) that restricts the ¢t control input, the state vector z(t) € R" and
the output signals vector y(t) € R?. The functions f : R — R™ and g : R™ — R™ belong to
the subset D, C R™. We assume that the output matrix C' € R?*" is known and system (2.1)
is controlled through a discrete-time control law with a sample-time of 75 seconds.

In this chapter, we will consider the discrete-time control of (2.1). Hence, from Euler dis-
cretization with an appropriate (fixed) sampling period 74 and applying the sector nonlinearity

approach (Tanaka and Wang, 2001), the following discrete-time T-S model (with r rules) can
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be obtained to represent (2.1) on D, in the discrete-time framework:
r
Oéz(Zk)(Al.%'k + B;satuy)

€T =
T E (2.2)

i
yr = Cxy
where z is the vector of premise variables, which is assumed to depend only on the state
variables, for i € Z,, A; € R™™ and B; € R™™ are known real matrices, and a; > 0 are the
membership functions satisfying the convex sum property XT: a; =1
In the sequel, for all the matrices with fuzzy summatiz):m]L structures, we will adopt the fol-
lowing notations:
r ror
M, = Z a;i(zk) My, Moo = Z Z a;(zr) o (2r) M (2.3)
i=1 i=1j=1
Remark 2.1. In this work, the time-sampling period 75 is chosen as large as possible, but small
enough to ensure that the discretized model provides a good approzimation of the continuous-time

dynamics in (2.1), e.g., see Chapter 1, Section 1.2.2 for highlights regarding such consideration.

The goal of this chapter is to provide an LMI-based methodology for the design of a discrete-
time controller such that the output y; tracks piecewise constant reference signals ¥, with null
error. To this end, we use the topology shown in Figure 2.1, where a (discrete-time) integral
action over the set-points tracking error is included.

From the proposed topology, a PDC fuzzy Pl-like control law can be readily derived as:
up = Klv, — Kl (2.4)

where K € R™*" and K. € R™*? are fuzzy control gains to be designed, which keep the fuzzy
sum structure (2.3), and v, corresponds to an additional state induced by the integral action in

the whole closed-loop system (see the blue dashed box in Figure 2.1);

Figure 2.1: Control topology with discretized integral and anti-windup actions.

Moreover, the windup effect can appear in the integral action due to the saturating actuators.
To mitigate such an impact, we proposed a non-PDC anti-windup action (see the green dashed

box in Figure 2.1) delivered by the signal a,, x, which is computed as:
Ay, = K" (o) (satuy — uy) (2.5)
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with K%(a) = ESS, ! and where ES € R™*4 and S, € R%*? are the anti-windup gains, which
keep the fuzzy sum structure (2.3).
In what follows, we assume that the output of the system can be driven in certain region

such that, for some piecewise constant bounded reference signals y,, belonging to:

W={yr, €R? : lynll < B}, BeRy, (2.6)

the output error e, = y,, —yr — 0 when k — +oo, while the state belongs to a bounded region
of attraction (yr, is attractive) during transients, i.e. xy € D, C D,, centered on the origin O
of the considered plant.

The goal of this chapter is to develop a convex optimization based methodology to design
the fuzzy gains K., KI', and K% (a) such that the overall closed-loop set-points tracking control
plant represented in Figure 2.1, i.e. the system (2.1) under the control signal satug, with wuy
given in (2.4) and y,, € W, is locally stable. Indeed, due to the saturating actuators, the
convergence of the set-point tracking error ey, and so the stationary point achieved by the state,
will be impacted by the initial state of the system. Therefore, the region of attraction centered
on the origin O, denoted by D,, can be defined by the set of initial conditions such that the

tracking error trajectories goes to zero, i.e.:
D, ={z(0) e R"; e = y,, — Cxp, — 0 as k — oo} (2.7)

As it is well-known in the literature, the complete characterization of the region of attraction
D, is a challenging task because it may be non-convex and even open (Tarbouriech et al., 2011).
Usually an estimate of this region, D) C D,, is computed instead. Therefore, in this chapter,

we are concerned with both the following problems:

Pz (Closed-loop stabilization) For y,, = 0, the objective is to compute the fuzzy gains Kl KP.
and K" («a), and to estimate the larger set of initial conditions D} C D, such that, Vk > 0,
xy € D} and the closed-loop system is stable, i.e. £ = 00 = zp — O.

Pa: (Closed-loop set-points tracking) Yy, € YV, the objective is to compute the fuzzy gains K2,
KPP and K"(a) that maximize $3, and to estimate the larger related set of initial
conditions D) C D, such that, V& > 0, z, € D and k — oo = e, — 0, when y,, is

constant over a sufficiently large number of samples.

2.3 Preliminary results

In this preliminary results section, the goal is to introduce the overall closed-loop dynamics
including the integral and anti-windup actions, then to propose a way to deal with the saturation
and so, to provide an useful preliminary lemma for the estimation of the domain of attraction.

One way to implement the integral action in discrete-time systems is to follow the counterpart
path of what is done in continuous-time domain (Kailath, 1980). This is shown in the block

diagram presented in Figure 2.1, where the integral action can be written as vy = e + vip_1 +
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Qy k—1, Where vy is the signal preceding the fuzzy integral gain K L. Thus, in our approach we
propose a fuzzy Pl-like controller with an internal state proportional control loop, combined
with an integral tracking error one and an anti-windup action. Hence, by considering (2.2) and

(2.5), we can express vg41 as:
Vgt1 = Yp, — CAqxy — CBysatuy + v + K (o) (satuy — uy) (2.8)
Let & = [x{ vﬂT be an extended state vector, we can combine (2.2)—(2.4) and (2.8) as:
Ekr1 = Al + Basatuy + B (satuy, — ug) + B yy, (2.9)
where:
N R I
B" = [0 I}T, B =0 Kg)T]T.
Then, the fuzzy PI control law can be rewritten as:
up = —Ka&y (2.10)

with K, = |[KJ —KL].
Moreover, by using the decentralized dead-zone function ¥ (ug) = satuy — ug to deal with

the saturation of the actuators, we can rewrite (2.9) as:
Skt = (Ao — BaKo )&k + (Ba + B )Y (ur) + By, (2.11)

Furthermore, to deal with the saturation problem and to cope with the above defined de-

centralized dead-zone function, an auxiliary set S is considered as:
S = {fk e R"M . v e L | — (Ka(g) + Ga(@))§k| < ﬂ(@)} (2.12)

where G, is an appropriate fuzzy matrix (i.e. having the same structure as (2.3)).

Thus, S is a set where the modulus of the control signal component — K, ;)& can be greater
than ), but not the auxiliary signal —(Ka“) + Gaw)ﬁk. This means that the proposed design
allows the saturation of the actuator, yielding a more energetic control signal than those obtained
by saturation avoidance approach, see e.g. (Tarbouriech et al., 2011). In this context, the

following lemma is provided to deal with the nonlinearity (uyg).

Lemma 2.1. : If £ €S, then the relation

w(uk)TToc [w(uk) - Ga{k] <0 (2.13)
is verified for all diagonal matrices 0 < T, € R"™*™,

Proof. : Straightforward from adapting Lemma 1.6 in (Tarbouriech et al., 2011) by considering

the convex sum structure of the matrices T, and G,. ]
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In the sequel, the local stability of the overall closed-loop dynamics (2.11) will be investigated

by means of the following fuzzy Lyapunov candidate function:
V(&) = W (2.14)

where W, is a fuzzy Lyapunov matrix (i.e. holding the fuzzy structure (2.3)).
If we can find the matrices W; = W1 > 0, Vi € Z,, such that (2.14) is a Lyapunov function,
then it can be used to define the Lyapunov level set £y (), with 0 < g < 0o, such that:

Ly(p) = {& € RV (g) < '} (2.15)

The next lemma will be used to compute an estimate D}, of the region of attraction, composed
of the intersection of all the level sets defined by a fuzzy Lyapunov function. The details are

presented in Section 4.

Lemma 2.2. (Jungers and Castelan, 2011): Suppose that (2.14) is a Lyapunov function. Then
an estimate D} of the region of attraction D, is given by the level set Ly () such that:

Dy=Ly(p)= () EWhp) =) EW ), (2.16)
£k€D§ ile

with E(Wiila p)={& e R" lipwflfk <p '}

Thus, it means that D} can be computed by using only the vertices Wi_l, 1 €Z,.

2.4 Main Results

Based on the materials presented in the previous sections, the goal is now to proposed LMI-
based conditions for the design of the PI-like controller and anti-windup gains such that P; and

Py are satisfied. The main result is summarized by the following theorem.

Theorem 2.1. Consider the overall closed-loop dynamics (2.11) with the known upper bounds
of the decentralized saturation vector u € R, and that there exist positive scalar parameters n,
71 and 1o, the matrices 0 < VVZ»T = W; € R+O)x(n+9)  the diggonal matrices 0 < S; € R™*™,
the matrices U € RHOx(n+a) 1y, ¢ Rmx(nta) | 7, ¢ Rmx(4a) gnd B¢ € R™ 9, fori=1,...,r,
such that the following LMI-based conditions are verified for p = 1,...,r, j = p,...,r, and

(=1,....m:

_Wi Fggd) Fg];]) Bw
o 1) (2l vzl 0 | g (2.17)
* * —Sp — Sj O
* * * -7l
T T T
Wo=U=U Yoot Zo| < g, (2.18)
* M e)
—(1=m)d +nm <0, (2.19)
with
T87 = [(Ay + AU + (ByY; + B;Y,))/2, (2.20)
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T = m (W, + W))/2 — U - UT], (221)

Y%7 = (B,S; + B; Sy + By + B5) /2, (222)
T

B =[o ET| . (2.23)

Then the fuzzy Pl-like control law:

and the anti-windup control action:
ay = K" (a)(satu, — uy)

with the fuzzy gain matrices computed as:

T

(KE —KL] == ailm)viU™! (2.24)
i=1
and: .
K"(«a) = Zal(:vk)Ef <Z ai(xk)SZ-) , (2.25)
i=1 i=1

1. for yr, = 0 the local asymptotic stability of the respective fuzzy closed-loop for all initial

conditions belonging to D = () E(Wfl, 1);
1€,

2. for any yr, verifying ||y, || < 612 = B, the trajectories of the closed-loop system, for all

initial conditions x(0) taken in D} do not leave such a set.

Proof. Let the functions defined by &; : [0, c0) — [0, o0), ¢ € {0,1,2}, be Ko and strictly

increasing functions with «;(0) = 0 and li_>m ki(a) = o0o. The inequality (2.17) ensures that
a o0

W; > 0 and:

0 <k ([|E NV (€rs o) =&k Plan)k < r2([1€x]) (2.26)

N
with P(ay) = Z akiWi_l. From the S-procedure, we can write:
i=1

AV (&) = V(1) — V(&) < —ro(l[&xll) (2.27)

for & belonging to the trajectory of (2.11).
Then, similarly to the approach proposed in (Tarbouriech et al., 2011), V&, such that &F P(ay )& >
n~1, for any y,, € W and for all u; € S, the closed-loop tracking problem P of (2.11) is ensured
if:

AV (&) + (1= m)(E W, e —n7h)

1 - B - B (2.28)
+ 7—2(5 Yry, Ryrk) 27/}(1%) Ta[w(uk) Gagk] <0
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with 0 < 7 < 1, 72 > 0, k1(||&]]) = €l|é]|* with small enough ¢ > 0, and ka(||&]]) =
f:l )‘maX(Pi)||§k||2~
Now, for the closed-loop stabilization problem Py, i.e. y,, = 0, the inequality (2.28) reduces to:
AV (&) + (1= 1)(&Wa & —n7")
< (1 =m)(m2lléll =n~Y) = —ro(ll&]) < 0.

As it is demonstrated later, the inequality (2.18) implies that the set £(P,n) is inside the set S

(2.29)

and thus, the generalized sector condition in Lemma 2.1 is ensured, i.e.:

U (up) TTalth(ug) — Ga&s] < 0. (2.30)

Thus, V¢, ¢ int(E(P,n)) and Yy, € W, the inequality (2.28) ensures:

AV (&) < —ro(l[&kl]) (2.31)

Let us assume that, for k = ki, &, € 0E(P,n) and y,, € W, then AV (1) < —ko|[&x||. This
implies that &,;41 € int(E(P,n)) and allows us to conclude that the verification of (2.28) ensures
that the trajectories starting in £(P,n) do not leave such a set for all y,, € W, and thus, (P, n)
is a robustly positively invariant set for (2.11).

Therefore, to verify (2.28), we perform the following sequence of operations:

i) multiply (2.17) by o, o, and o, then sum it upfori=1,...,r,p=1,...,randj=p,...,n;
ii) replace Yy, Zo, and S, by —K,U, G,U and T, !, respectively;

iii) using the fact —-UTW U < W, — U — UT and, with W, standing for W, get:

k+17

~Wy 612 BJT;'+ Bew B

é _ * 922 UgGg 0
* * -7t o |’
* * * -7l

with:
0190 = AU — Bo KU, and 0y = —1 (UTWU);

iv) thanks to the regularity of U we use the similarity transformation © = 77T, with:
T = diag{L,, U1 T 1,};

v) replace W, by Pyt (Aq — BoKy) by Ag,, and E. T, = K¥(a);
vi) apply the Schur’s complement, then pre- and post-multiply respectively by:

=& v v, "]
and ¢, then recover (2.11) to get:
&1 Plagi) &1 — T€L Plow)ée — 7oy, Y, — 200 (ur) T (¥ (ug) — Ga&y) < 0
vii) then, from the fact that AV (&) = &5 P(og1)&ky1 — EF P )k, we get:
AV (&) + (1= 1)k Plaw)&k — T2y, Yy, — 200 (up) T (9 (ur) — Gas) < 0. (2:32)
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In this last inequality, the term o (ug)To (¢ (ur) — Gak) is ensured to be negative if uy belongs
to S, which is ensured by (2.18). To verify this, follow the sequence:

vidi) multiply (2.18) by @y () and sum it up for m =1,...,7;

iz) replace W (ay) — U — UL by —UTW (ay,) 71U, also Y, by —K,U, and Z, by G,U;

) pre- and post-multiply the resulting condition by diag{U~7, 1} and its transpose;

xi) apply the Schur complement then pre- and post multiply the result by f,z and & to get:

— & P(ar)ér + & (—Kay = Gaw) %) ™" x (=Ka() — Ga()ék < 0, (2.33)

which implies that £(P,n) C S. Therefore, (2.18) ensure that any trajectory starting in £(P,n)
remains in this set;

zii) apply the S-Procedure (see Lemma 1.5) with (2.19) and (2.32) to obtain (2.28).

To conclude this proof, we observe that the region of attraction can be computed through the

intersection of the ellipsoidal sets as D = (| £(W; !, 1) by using Lemma 2.2. O]
1€Ly

Therefore, Theorem 2.1 provides a solution to both problems P; and Ps. It is worth to
say that we can choose n = 1 without loss of generality. Moreover, the parameter 7 relates
the exponential stability: from (2.32) with the Lemma 2.1 and y,, = 0, we can conclude that
AV (&) < —(1 =)V (&) = V(€ky1) < 11V (&). Thus, the smaller 71, the faster the trajectory
convergence. Consequently, a search on 71 € (0, 1] is useful to improve the convergence rate of
the closed-loop. Moreover, the design condition proposed in (Lopes et al., 2018) can be recovered

from Theorem 2.1 by imposing K" («) = 0. In this case, we get the following Corollary.

Corollary 2.1. (Lopes et al., 2018) Consider the overall closed-loop dynamics (2.11) with
K" (o) = 0, the known upper bounds of the decentralized saturation vector u € R, and that there
exist positive scalar parameters n, 11, the matrices 0 < WiT = W; € ROTox(nta) e diagonal
matrices 0 < S; € R™ ™ the matrices U € RT0x(n+a) |y, ¢ Rmx(nt+a) | gngd 7; € RmM*(n+a)
i = 1,...,r, such that (2.18)-(2.19) and the following LMI-based conditions are verified for
p=1,...,r,j=p,...,r,andi=1,...,q:

-W; Fﬁg’f) T3 T4
TR 0s(zF+ZD) 0 | (2.34)
* * —Sp = 5; 0
* * * —7ol,

with T13 = 0.5(B,S; + B,S;), T'14 = 0.5(B; + BY), Fg‘g’j) given by (2.20), and Fg’;’j) by (2.21).
Then the fuzzy Pl-like control law (2.10) with gains computed by:

Ki=-Y,U! (2.35)
ensures:
1. for y,, = 0, the local asymptotic stability for the respective fuzzy closed-loop system, for

all initial conditions belonging to D¥ = (| E(W; 1, 1);
1€L,
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2. for any y,, verifying ||y..|| < 0~Y2 = B, the trajectories of the mentioned closed-loop

system, for all initial conditions x(0) taken in D}, do not leave such a set.

Remark 2.2. Conditions of Corollary 2.1 also provide a solution for problems Pi and Po, but
such a solution is usually more conservative than that achieved by Theorem 2.1 because no anti-
windup action is considered. In this sense, whenever Corollary 2.1 has a solution, the feasibility

of conditions (2.17)-(2.19) are ensured, but not the contrary.

Remark 2.3. The conditions proposed in Theorem 2.1 and Corollary 2.1 encompass the quadratic
stability based approach, i.e., we can impose W; = W, for i € Z, in conditions (2.17), (2.18),
(2.21), and (2.34). In this case, it is expected that the estimate of the region of attraction is

more restricted than in the case with fuzzy Lyapunov functions.

The solutions provided by Theorem 2.1 and Corollary 2.1 can be used to optimize objectives
associated with problems P; and P,. A particular interest consists in maximizing the estimate of
the region of attraction, which can be achieved by the following convex optimization procedure
for Theorem 2.1:

min v
v, Wi, 8, Y, Z;i, U
Sy i €1, (2.36)

vl 1
s.t. (2.17), (2.18), (2.19) and > 0.
(217), (2.18), (2:19) an [1 WJ

Another interesting objective can be to maximize the amplitude bound of the tracking ref-
erence signal y,, , i.e. to maximize the allowable amplitude changes in the reference signal, such
that the trajectories starting in D) do not leave it. In this case, the following convex optimization

procedure can apply with Theorem 2.1:

min 0
85 : 57 Wiysiv}/i)Zian Eci (237)
s.t. (2.17), (2.18), and (2.19).

Remark 2.4. The optimization procedures S, and Ss can be used without the anti-windup
design. In this case, it is enough to replace (2.17) by (2.34), and thus, employing Corollary 2.1

in these procedures.

2.5 Illustrative Examples

In what follows, before going to the experimental validation of the proposed approach on an
industrial oriented process, a numerical example is presented to illustrate the relevance of the
proposed design procedure, considering the bounds of the actuators saturation, and to compare
the obtained results with recent relevant works from the literature (Lv et al., 2019) and (Wang
et al., 2019).
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2.5.1 Numerical example

Assume the T-S fuzzy model given by (2.2)-(2.3) and investigated in (Lv et al., 2019) with

the matrices:

0 1 0 1 0.6 —1 0
A= [0.1 —2}’ Ay = [0 —0.5]’ Ag = [1 0]’ Bi = [1.11’
0.1 0.2 01]" 041" 03"
By = [0.4] » By = [0.3]’ Cr = [0.3] G2 = [—0.1] Cs = [0.5] ’
and the normalized membership functions given by:

{041(:E1,k) =1, az(z1x) = az(x1k) = 0, for [[z1 4] > 5, (2.38)

ar(z1) =0, as(z1 k) = (5 — ||z1kl])/5, as(x1 k) =1 — ag, otherwise.

Although (Lv et al., 2019) considers time-delay, this part is left-out from this example as it is

not the concern of our study.

Additionally, let us assume that the control signal is bounded by £10. Our objective is
to design a controller solving the Problem P; with K*(a) = 0, n = 1, m = 0.9999, and
yr, = 0, thus, maximizing the estimate of the region of attraction. Therefore, we use the convex
optimization procedure S, in (2.36) with the conditions proposed in Corollary 2.1 with C,,,
m = 1,...,3. The achieved estimate of the region of attraction is shown in Figure 2.2, where
the points belonging to the intersection of the ellipses (black dashed line) correspond to the
optimized border of the estimated region of attraction. However, when the design procedure
proposed in (Lv et al., 2019) is considered, the convergence of the trajectories cannot be ensured.
Indeed, in this case, many initial conditions lead to unstable trajectories. Some of them are
marked in blue x in Figure 2.2. A similar comparison is proposed with a recent fuzzy PID
controller proposed in (Wang et al., 2019). Using the conditions proposed in (Wang et al., 2019,
Th. 2) the convergence of the trajectories cannot be ensured for several initial conditions. Some
examples of initial conditions yielding a divergent trajectory are marked with a red circle, o, in
Figure 2.2. This clearly shows the relevance of our approach in terms of conservatism reduction
and its potential, especially in real industrial applications, will be illustrated in the following

section with the nonlinear control level of a two interactive tanks system.

To conclude this numerical example, let us consider the optimization procedure (2.37) to
maximize the bound variation of y,, by using both Theorem 2.1 and Corollary 2.1. By em-
ploying n = 1 and 71 = 0.21, the maximum achievable bounds were 5 = 167.97 with Corollary
2.1, and B = 182.30 with Theorem 2.1. Thus, thanks to the anti-windup control action, the
maximal variation of the reference signal has augmented by 7.86%. This clearly demonstrates
the advantage of considering such a control strategy. Moreover, let us point-out that the ap-
proaches proposed in (Lv et al., 2019) and (Wang et al., 2019) cannot be used, because they

cannot handle amplitude bounded exogenous signals.
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Figure 2.2: Region of attraction achieved with Corollary 2.1 and the optimization procedure
S, (dashed black) and unstable initial conditions obtained with previous works (x (Lv et al.,
2019), o (Wang et al., 2019)).

2.5.2 Experimental Validation

This section is devoted to illustrate and validate the proposed Pl-like fuzzy controller design
conditions on a real experimental setup, consisting of the level control problem of coupled
tanks, with standard industrial equipment. First, we will present the experimental setup, then

its physical modeling and finally the experimental results followed by a discussion.

Experimental setup:

The considered test-bench consists of an interactive tank system inspired by (Johansson,
2000), shown in Figure 2.3. This plant is composed of four 200 liters tanks, TQ-01 to TQ-04,
actuated by two water pumps of lcv, BA-01 and BA-02, fed by two 400 liters reservoirs and
controlled by two independent three-phase inverters. Each levels of the tanks are measured
by pressure sensors, whose signals are collected by a Siemens PLC which ensures the interlock
security and also sends the control signals to the pumfrag (actuators). The experiments were
performed by running the control algorithms on a notebook running Linux (Ubuntu 16.04 dis-
tribution), connected to the PLC through an open-source Python-based interface (Sousa et al.,
2018).

In what follows, a specific configuration of two tanks, as illustrated in Figure 2.4, has been
used. In the following experiments, the manual valves FV-01 (connection between the tanks
TQ-01 and TQ-02) and FV-02 (outflow) are kept with constant opening. Let u*(¢) be the
power delivered to the pump BA-01 given as a percentage of its maximal capability, the tank
TQ-01 receives the controlled flow g; 1(satu*(t)) and is connected through FV-01 to the tank
TQ-02 that has an outlet flow g,(h2(t)). The continuous states of the system are hq(t) and
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Figure 2.3: Interactive Tank System used in the experiments available at the CEFET-MG,
Divinépolis, Brazil.

ha(t), respectively the levels of TQ-01 and TQ-02. The cross section area of TQ-02 is constant
(a2 = 3.019 x 10~°em?) while TQ-01 has a nonlinear variable cross section area due to solid

body placed inside it as indicated in Figure 2.4. In this case, the area is given by:
_ 8.1r% 3007 cos(0.0257 (7 (t) — 8) — 0.4))
5 2.75/2m
_ _ -2 _ 2
< exp ( ((hi(t) —8)1072 — 0.4) )

a1 (h1(t))
(2.39)

0.605

where r = 31em is the radius of the tank.

i (ur(t))

]

TQ-01 TQ-02

h
paot () J T o |
i \?/ L
FVL-I01

qo(h2(1))

Figure 2.4: Coupled Tank System Schematic.

Hence, because of the nonlinearity (2.39), it is convenient to employ the T-S modeling of
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the whole system, and so the application of the proposed approach for PI-like fuzzy controller

design.

T-S fuzzy modeling of the considered two tanks system:

The dynamical model of the considered coupled tank system is obtained from the mass

balance equations, which are resulting in:

; _ Kpsatu™(t) hi(t) — ha(t)
M) = " @) @) Raaln (1), (D) (2.40)
ha(t) = R12h(lh(1t2 5 Zj((f)))ag L) (2.41)

where K3 = 16.998 is a gain for the pump BA-01 and Ria(hi,he) = (0.412(h1(t) — ha(t)) +
11.488)1073 is the flow resistance between the two tanks, the outlet flow is modeled as g, (h2(t)) =
(12.241ha(t) + 868.674) cm?/s.

All the above-given values of parameters and scalars functions were identified from experi-
mental data.

Let T be the sampling time period used in the digital control of the plant, hy = [hl’k hzyk} ’
and uj, be respectively the discrete-time state vector and input signal. By using Euler discretiza-

tion methods, a discrete-time model representing (2.40) is given by:

1 — 21823k 21,623k TKyz .
hiv1 = 21k 1 _ PLEteo hi + 8 3k satuy, (2.42)
as as
with:
T
Nk= 5> 2.43
L Ria(hi g, hok) (243)
Tqo(h
L D) (2.44)
ha k.
23k = (a1(hi)) ", (2.45)

and aj(h1) computed by (2.39).

In what follows, to obtain a T-S fuzzy model of this discretized dynamic equation we choose
the following operating range (in centimeters) for the state variables verifying 20 < h; < 74 and
12 < hy < 50. Taking into account that both tanks have a maximal level of 75cm, the level
of tank TQ-01 can vary from 26.7% up to 98.7%, and the level for tank TQ-02 from 16% up
to 66.7% of the maximal allowed level (75¢m). These choices have been made to avoid tank
overflows as well as to avoid turbulent flows at low levels due to the resistance of valve FV-01.

Therefore, we assume z1 i, 22k, and 23 as the premise variables such that:

Z1k € [gl,él],gl = 1246572, zZ1 = 2163098,
2ok € 29,22, 29 = 118.4579, Zp = 338.5220; (2.46)
zZ3k € [53, 53],53 = 0.0004, z3 = 0.0048.
By applying the sector nonlinearity approach (Tanaka and Wang, 2001), for j = 1,...,3, we
can rewrite (2.46) as:

o J 3
Zjk = Wy 25 + Wy 25, (2.47)
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1 2 1 2 _ .
where wjy >0, wi >0, w; +wj, =1 and:

J 7 T Aok

wy g =

e (2.48)

J o
, and Wy =

%=z
This allows to derive an exact T-S model (2.2) representing the dynamic equation of hyyq

having N = 8 vertices with the matrices:

1 —2z123 2123 1—2z123 2173
A= Z 1 &1t , Ag = 2 1 At
az az | a2 az |
1—225 2123 1—223 2123
A3 = 21 1— z1+22 | A4 = 21 1— z1+22
L a2 az | L az az |
1— 2123 Z123 1— 2123 Z123
As=| 3 | _atn | Ae=1 5 | _ Atz
L az az L a2 az |
1—Z123 Z123 1— 2123 Z123
A7 - zZ1 1— Z1itzo | A8 - zZ1 1— Z1+22
az az | L a2 az

T
Bi =By =Bs=B; = [TKyz; 0| ,
T
BQ:B4:36:BSZ[TK1)23 o} ,

with the following membership function vector

_ 1,2 .3 1 .2 .3 1,2 .3 1 .2 .3
Oék—[kakaka Wy Wy pWo g Wy pWo Wy g Wy pWa pWo g

T
1 .2 3 1,2 .3 1 .2 .3 1,2 .3
Wy W WYy Wa W Wy W W5 pWY Wy W5 LW }

where, Vi = 1,...,8, ag) > 0, i:l ag(;y = 1, and the functions wfk computed as in (2.48) with
zj 1 given by (2.43)-(2.45).

Even that both levels h; and ho are measured from pressure sensors, only hs is controlled.
Therefore, to design the PI-like PDC controller, the output matrix C' = [0 1} will be considered
to implement the design conditions expressed in Theorem 2.1 or Corollary 2.1. Moreover, there
is no operational interest to drive the considered system to the points (hy, ho) = (0,0) since it
represents the empty tanks situation. Hence, to drive our experiment and to test the proposed
anti-windup scheme, we assume that the input signal is saturated such that u} € [u*,u*], where
u* = 30% and u* = 70% of the capability of the pump. This case illustrates that the actuator
saturation bounds may arise not only by physical limitations, but also for operational security

reasons. Thus, to apply our control strategy, a change of origin is required and given by:

_|xig=hig—h?

= , and uyp = uf — u® 2.49
F [332,/1@ = hoyj — h?] F b (249)

where h{ = 0.537m and hS = 0.271m correspond to the new origin O, i.e. the stationary point
achieved for a constant input u® = 70.8722 set at 50% of the variation range of the pump BA-01,
leading to uy € [—u, u] with u = 20%.
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To conclude this modeling subsection, an experimental validation of the obtained discrete-
time T-S fuzzy model (2.2) representing the equation hiy; at the change of origin (2.49) is
proposed from data measurements on the real system. To do so, a sample time period of T' = 4s
has been chosen such that the maximum of the absolute error between the open-loop response
of the real coupled tank system and the one of the obtained discrete-time T-S fuzzy model is
less than 1% of the level ranges, see Figure 2.5. This sampled time period is used in the next

subsection to conduct the closed-loop control experiments.
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Figure 2.5: Open-loop validation of the discrete-time T-S model in simulation from data
measurements on the real system.

Controller design and closed-loop experiments:

In this subsection, the proposed design methodology of the fuzzy controller is considered to
solve both problems P; and P,. Due to the change of origin (2.49), an offset of the reference

signal to be tracked also occurs, i.e.:
Yre = Yrp — hs (2.50)

where y;, denotes the absolute reference signal before the change of origin.

Let us first consider the stabilization problem Py, i.e. y,, = 0, and evaluate the proposed
fuzzy Pl-like controller design conditions with and without the anti-windup action. This can
be achieved by solving the optimization procedure S, given in (2.36) with the design conditions
expressed in Theorem 2.1 and Corollary 2.1, accordingly to Remark 2.4. We show in Figure

2.6 the obtained estimates R, of the regions of attraction from Theorem 2.1 and Corollary
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2.1. Each plotted points correspond to initial conditions §y = |z19 @20 o g taken in R,
with an equally spaced grid by 0.5. Let us highlight that the number of points in R, with the
anti-windup action (Theorem 2.1) raised 2.55 x 107, whereas without the anti-windup action
(Corollary 2.1) it is only 6.97 x 10° points, i.e. about 2.7% of the region computed with anti-
windup action. Thus, this illustrates the significant improvement when the anti-windup action
is considered. Furthermore, the presented results have been obtained under the assumption of
a fuzzy Lyapunov function (2.14). Obviously, if a quadratic approach is considered as quote in
Remark 2.3, we may expect more conservative results. Indeed, in the quadratic framework with
anti-windup action, we get a smaller estimate of the region of attraction, which is about 31.5%
of the corresponding region with anti-windup action and the proposed fuzzy Lyapunov function

(the plot of the quadratic region is left-out since it doesn’t bring new information).

4007 + Corollary 2.1

« Theorem 2.1
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-400 . 40 . . . .
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Figure 2.6: Estimate of the regions of attraction D} for the stabilization problem P; obtained
from Theorem 2.1 (o) and Corollary 2.1 (e).

Now, let us consider the set-point tracking problem P, where the reference signal y,, to
be tracked is piecewise constant over a sufficient number of samples. By solving the proposed
conditions with and without the anti-windup action, respectively Theorem 2.1 and Corollary 2.1,
the goal is now to maximize the allowable amplitude range § of the set-point y,,, which means
minimizing 0 with the optimization procedure S5 given in(2.37) and Remark 2.4, around its
considered origin (see (2.50)). The related regions of attraction, shown in Figure 2.7, have been

computed similarly as in the previous case. Once again, it clearly appears that the estimated
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region of attraction obtained from Theorem 2.1, i.e. including the integral and the anti-windup
action, is much bigger than the one obtained from Corollary 2.1, i.e. without the anti-windup
action. Indeed, with the same equally spaced grid by 0.5, the region of attraction contains
1.54 x 107 points with Theorem 2.1 and 2.36 x 10° points with Corollary 2.1, i.e. about 1.54%
of the region computed with anti-windup. This illustrates, one more time, the benefit when
the anti-windup scheme is considered. Moreover, as expected, the regions achieved by solving
Theorem 2.1 for Problem Py are about 60.3% smaller than the ones obtained for Problem P;.
Indeed, let us recall that the set-point tracking problem is more constrained than the simple
stabilization one. A particular set-point tracking trajectory is also plotted in Figure 2.7 (see

black dots), this will be discussed latter.

300 - Corollary 2.1
Theorem 2.1
Particular trajectory

200

100

-100

-200

-300 -40 . : . !
-40 -20 0 20 40 -40 -20 0 20 40

Figure 2.7: Estimate of the regions of attraction D} for the set-point tracking problem Ps
obtained from Theorem 2.1 (o) and Corollary 2.1 (e); particular set-points tracking trajectory

().

For the considered coupled tanks systems with the whole set-points tracking control scheme
depicted in Figure 2.1, the following PI-like and anti-windup gains have been obtained with the
parameters n = 1 and 7 = 0.94 from Theorem 2.1 and the optimization procedure Sy given in
(2.37), which provides a maximal allowable bound of the reference signal |y, | < 8 = 6.64cm

around the origin defined in (2.49):

Kpi = [—0.4363 3.3327] Ky = 0.1076, S = 0.8234, E., = 1.2279,
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Kpy = [1.3274
Kps = [

Kpy = [0.7631
Kps = [0.1552
Kpg = [1.6208
Kpr = [1.8054
Kps = [1.3545

—0.3887 2.7935

3.4812] , Ko = 0.1941, Sy = 1.1240, E.o = 0.6694,

, K13 =0.0934, S3 = 0.5286, E.3 = 1.2103,

—

3.7546) , K14 = 0.1698, Sy = 2.2098, E.4 = 1.5900,

3.0274] , K75 = 0.1074, S5 = 1.0855, E,5 = 0.8385,
3.2999} . K16 = 0.2017, Sg = 1.0203, F.g = 0.7700,
3.3107} . Kpp = 0.1997, Sz = 0.8278, F.7 = 0.7850,

2.6136} . Kis = 0.1772, Ss = 1.9622, E,s = 1.4185.

With these gains, a comparison of the time-response obtained in simulation as well as the

experimental data obtained from the real system is shown in Figure 2.8 with a set-points reference

signal reaching the obtained bounds |y, | < f = 6.64cm. From this figure, we can see the

presence of the fuzzy anti-windup action (Figure 2.8(a)) whenever the actuator saturation occurs

(Figure 2.8(c)), modifying the closed-loop behavior to preserve stability.
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Figure 2.8: Time responses obtained with the PDCaw controller.

For this simulation, the resulting trajectory & is also shown in Figure 2.7 (see the above

mentioned particular trajectory depicted by black dots). It clearly appears that it stays inside

the estimated region of attraction D} for Theorem 2.1 (blue dots), and so remains stable. More-

over, it also clearly shows that this trajectory overpasses the border of the estimated region of

attraction for Corollary 2.1, i.e. without anti-windup action. One more time, these observations

illustrate the significant improvement of our proposal with the fuzzy anti-windup action.
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To conclude this experimental results subsection, let us go back to Corollary 2.1 associated

with the optimization procedure S5 given in(2.37), which provides the following gains when the

anti-windup scheme is not considered:

Kpi = [0.4778 6.3142] K7 =0.4911, Kpy = [3.7216 9.1654} . K79 = 0.9489,

Kps = [0.8313 6.4683} K3 =05139, Kpy—= [3.9880 11.1556} Ky = 1.0414,

Kps = [0.1946 4.9830] K5 = 03571, Kpg= [4.2113 9.9432} . K6 = 1.0356,

Kpr = [1.3820 6.1739} K7 =0.5303, Kpg = [4.1947 10.1137}  Kjg = 1.0239.

In this case, the obtained maximal allowable bound of the reference signal is only |y, | <

B = 1.41em around the origin, i.e. a reduced range in the set-points tracking of the second

tank. Whereas, Figure 2.9 presents experimental results with the same set-points reference as

for the previous experiment. Obviously, the latter overpasses the allowed reference bounds for

the present case, but it allows us to highlight that, when these bounds are not respected, we may

have bad transient response due to higher windup effects and, even if the set-points are reached

after a longer settling times, there is no guarantee about the overall closed-loop stability.
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Figure 2.9: Time responses obtained with the PDC controller.

Therefore, the experimental tests show the occurrence of actuators saturation, which indi-

cates that the controller delivers the maximum allowed energy to control the system, leading to

better regulation and transient performances, while ensuring local stability.
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2.6 Conclusions

In this chapter, we proposed a discrete-time fuzzy PI like controller with fuzzy anti-windup
action to stabilize nonlinear discrete-time systems. The saturating actuators are considered in
the design method and an estimate of the region of attraction is provided. A fuzzy Lyapunov
function is used to certify the discrete-time closed-loop stability and to provide an estimate of
the region of attraction. Moreover, the proposed design method can take into account bounded
exogenous signals, providing for instance bounds for the set-point variation and ensuring that
the closed-loop trajectories do not leave the region of attraction during set-point changes. Our
approach has been shown less conservative than recent relevant result from the literature through
a numerical example, then applied experimentally to a nonlinear level control system where the
measures and control signals are performed with an industrial programmable logic controller
(PLC).

The experimental results show the efficiency of the proposal and clearly indicates how the
fuzzy anti-windup action can improve the time behavior of the closed-loop system. Addition-
ally, the experimental tests show the occurrence of actuators saturation, which indicates that
the controller delivers the maximum allowed energy to control the system, leading to a better
regulation and transient performances, while ensuring local stability. The proposed PI-like con-
trol methodology with anti-windup action is given as general design conditions, which is not
restricted to the test-bench of the coupled tank system described in this chapter. Indeed, it is
clear that our approach can found a rich field of applications in the industrial processes where
saturation may occur, such like furnaces with oil or gas fuel, chemical and petroleum processes,
etc.

However, let us recall that some limitations arise when considering discrete-time control ap-
proaches for continuous-time plants. Indeed, if the results presented in this chapter are attractive
for the design of point-to-point controllers, they require a constant sampling period, which is
challenging to be guaranteed, especially when considering networked controllers, event-triggering
schemes or sometimes when using low-cost embedded digital devices. Moreover, this technique
frequently implies the choice of a hidebound small sampling period to ensure that the discrete-
time model will catch all the plant dynamics. The aforementioned points certainly reduce the
appeal of employing the direct discrete-time approach, especially when continuous-time systems
involves fast dynamics driven by low cost digital devices. Moreover, these approaches cannot
be employed in the context of Networked Controlled Systems (NCS) or when event-triggering
control techniques are considered, since these often involves aperiodic sampled control signals.
In order to cope with such aperiodicity in sampled-data control of continuous-time plant, an
appealing approach is to rewrite the closed-loop dynamics as a continuous-time system with
time-varying input delays, see e.g. (Fridman et al., 2004; Hetel et al., 2017). This will be the
focus of our investigations in the next chapters, with the design of sampled-data controllers for

continuous-time nonlinear systems represented by T-S fuzzy models.
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Chapter

Aperiodic Sampled-data Controllers Design
for Continous-time T-S Models

Résumé en Francgais : Synthese de contréleurs avec échantillonage apério-
dique pour les modeles T-S décrits en temps continu.

Dans le chapitre précédent, une approche permettant la synthése de contréleurs pour
les modeles T-S a temps discret a €té proposée dans le but de la commande de systémes
non linéaires, possiblement décrits en temps continu. Si cette approche est intéressante
en raison de sa simplicité conceptuelle pour une mise en ceuvre facilitée pour de nom-
breuses applications industrielles, il est important de rappeler que cette approche n’est
valable que lorsqu’une période d’échantillonnage fixe, et suffisamment petite par rapport d
la dynamique du systeme, est définie. Cependant, il est fréquent qu’une telle contrainte ne
puisse étre vérifiée. Par exemple, méme dans le cadre d’un controleur numérique basé sur
un protocole point a point, une période d’échantillonnage apériodique peut survenir en rai-
son de lincertitude sur la fréquence de l’horloge ou, plus généralement, l’architecture d’un
systeme numérique temps réel, peut entrainer des retards de calcul ou une synchronisation
imparfaite (Wittenmark et al., 1995; Hetel et al., 2017). De plus, avec le développement
des applications utilisant 'Internet des Objets (IoT), les données échantillonnées transi-
tent sur des réseauxr de communication ou des intervalles d’échantillonnage apériodiques
sont généralement inévitables (Fridman, 2014a; de Souza et al., 2021).

De plus, notons que lorsque de grandes périodes d’échantillonnage sont considérées,
l'approche basée sur un modeéle a temps discret ne garantit plus la stabilité du systéme
complet en boucle fermée (Hetel et al., 2017). Briévement présentée dans le Chapitre 1,
une approche exploitant un retard sur [’entrée pour les controleurs basés sur des données
échantillonnées est apparue comme un sujet de recherche prometteur en théorie du con-
trole. Cette approche consiste en une réécriture de la dynamique en boucle fermée sous la
forme d’un systéme a temps continu avec un retard variable sur l’entrée (Fridman et al.,
2004; Hetel et al., 2017). Si de nombreuz efforts ont été réalisés pour la stabilisation des
systemes dynamiques linéaires a partir de données échantillonnées, la plupart des applica-
tions réelles posséde des dynamiques non linéaires, qui motive l’extension de ces approches
dans le cadre non linéaire, notamment pour les modéles T-S.

Pour la syntheése de contréleurs basée sur des données échantillonnées, une facon clas-
sitque d’évaluer le conservatisme est de chercher le plus grand intervalle d’échantillonnage
admissible [0,7] qui garantit la stabilisation du systéme en boucle fermée. Dans le cadre
de la synthese de controleurs basée sur des données échantillonnées pour les modeéles de
type T-S, des réductions successives du conservatisme ont été obtenues. Par exemple, le

67




Chapter 3. Aperiodic Sampled-data Controllers Design for Continous-time T-S Models

choix d’une fonctionnelle de Lyapunov-Krasovskii avec l'utilisation de techniques de relax-
ation basées sur la formule de Leibniz-Newton et de l'introduction de matrices de décision
libres a été considéré dans (Yoneyama, 2010). FEnsuite, étant donné que les fonctions
d’appartenance possédant un retard impliquées dans le contréoleur ne correspondent pas
précisément a celles impliquées dans le systeme a temps continu d controler, les bornes
supérieures des erreurs asynchrones des fonctions d’appartenance ont €té introduites dans
lobtention des conditions d vérifier (Zhang and Han, 2011; Koo et al., 2017). Dans (Zhu
et al., 2012), une amélioration de cette approche a €té introduite pour les critéres de stabil-
isation. De plus, les plages de variation des fonctions d’appartenance avec des intervalles
d’échantillonnage variables ont été considérées dans (Zhu et al., 2013). Plus récemment,
un séparateur de sommets structuré a été utilisé afin de réduire le nombre de contraintes
LMIs (Cheng et al., 2017). Cependant, comme expliqué dans la Section 1.4.2, il est im-
portant de noter que, dans le cadre des modéles de type T-S, la dynamique du systéme en
boucle fermée implique une structure asynchrone possédant une double somme empéchant
Uapplication des schémas de relazation usuels (e.g. Lemme 1.2). Pour surmonter cet
obstacle, la plupart des auteurs des études mentionnées précédemment ont borné les in-
certitudes associées, mais sans préter beaucoup d’attention d leur caractérisation, et en
particulier le lien avec les dérivées temporelles des fonctions d’appartenance. Il est donc
ratsonnable de penser que des améliorations significatives de réduction du conservatisme
sont envisageables.

Par conséquent, dans ce chapitre, nous suivons le méme objectif que les études men-
tionnées précédemment, afin de réduire le conservatisme, en proposant de nouvelles condi-
tions d base de LMIs pour la synthése de controleurs échantillonnés pour les modéles T-S
décrits en temps continu. Pour cela, inspirée des travauz de (Briat and Seuret, 2012), une
fonctionnelle de Lyapunov-Krasovskii « bouclée » est définie et les conditions de stabilité
en boucle fermée sont obtenues en appliquant le lemme de Finsler (Lemme 1.]) et les
inégalités étendues de Jensen (Lemme 1.8).

Par ailleurs, dans ce chapitre, un schéma de relaxation générique, étendant le lemme
de Tuan (Lemme 1.2), est proposé pour tenir compte de la structure a double somme
asynchrone apparaissant dans la dynamique en boucle fermée du modéle de type T-S con-
tinu commandé par un controleur PDC' échantillonné. L’avantage de l’approche proposée
dans ce chapitre par rapport a une approche basée directement sur un modéle T-S a temps
discret est illustré au travers de l'exemple d’un pendule inversé en simulation (Exemple
1.2). Puis une comparaison, montrant des améliorations significatives pour la réduction du
conservatisme, est effectuée par rapport auz résultats en lien de la littérature (Yoneyama,
2010; Zhu and Wang, 2011; Zhang and Han, 2011; Zhu et al., 2012; Gunasekaran and
Joo, 2019; Zhu et al., 2013; Cheng et al., 2017), a partir d’un modéle simplifié d’un pen-
dule inversé sur un chariot (Wang et al., 1996). Enfin, une validation expérimentale de
l’approche de synthése d’un correcteur basé sur des données échantillonnées est réalisée sur
la plateforme Quanser® AERO (Quanser, 2016), illustrant Uefficacité de cette approche
sur un systeme réel.

3.1 Introduction

In the previous chapter, a discrete-time T-S model-based controller design approach has been
considered for the control of continuous-time nonlinear systems. If this approach is appealing
for its conceptual simplicity with regard to many industrial applications, it is important to recall
that it is only suitable when a small enough fixed sampling period can be set in regard to the plant

dynamics. However, it often occurs that such requirements cannot be fulfilled. For instance,
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even in a point-to-point digital control topology, aperiodic sampling may arise because of clock
inaccuracy and system architecture characteristics such as real-time scheduling, which can induce
jitters, imperfect synchronization or computation delays (Wittenmark et al., 1995; Hetel et al.,
2017). Furthermore, with the growing of Internet of Things (IoT) applications, sampled-data
systems are controlled through communication networks where aperiodic sampling intervals are
almost inevitable (Fridman, 2014a; de Souza et al., 2021). Nonetheless, it is also well-known
that when large sampling periods have to be considered, the direct discrete-time model-based
approach may fail to guarantee the closed-loop inter-sampling stability (Hetel et al., 2017).

As introduced in Chapter 1, Section 1.4.2, the input delay approach for sampled-data control
emerged as a promising research topic in control theory. It consists of rewriting the closed-loop
dynamics as a continuous-time system with input time-varying delay (Fridman et al., 2004; Hetel
et al., 2017). If many efforts have been done for the stabilization of linear dynamical systems
from sampled-data measurements, most of real applications exhibit nonlinear dynamics, which
motivate our interest in extending these approaches to the T-S model-based framework.

When dealing with sampled-data control, a convenient way to check the conservatism of
the design conditions is to search for the maximal allowable sampling interval [0, 7], which
ensures the closed-loop dynamics stabilization. In the context of the sampled-data control of T-S
models, successive conservatism improvements have been obtained. For instance, a Lyapunov-
Krasovskii functional (LKF) and relaxation techniques based on the Leibniz-Newton formula
and free-weighting matrix has been considered in (Yoneyama, 2010). Then, since the delayed
membership functions involved in the controller part do not match the ones involved in the
continuous-time plant to be controlled, the upper bounds of the asynchronous errors of the
membership functions have been introduced in the design conditions (Zhang and Han, 2011;
Koo et al., 2017). In (Zhu et al., 2012), an enlargement scheme has been introduced in the
stabilization criteria. Furthermore, the variation ranges of membership functions within variable
sampling intervals have been considered in (Zhu et al., 2013). More recently, a structured vertex
separator has been used to reduce the number of LMIs constraints (Cheng et al., 2017).

However, as explained in Section 1.4.2, it is important to highlight that, in the T-S model-
based framework, the closed-loop dynamics involve an asynchronous double summation struc-
ture, which prevents from applying classical relaxation schemes (e.g. Lemma 1.2). To cope with
such issue, most of the authors of the above-mentioned studies assumed bounds of these mis-
matches, without paying much attention to their characterization, especially their relationship
to the time-derivatives of the membership function. In this regard, we believe that there is still
space for significant conservatism improvements.

Therefore, in this chapter, we follow the same goal as the above-mentioned studies to reduce
the conservatism, i.e. the main objective is to propose new relaxed LMI-based conditions for
the design of stabilizing aperiodic sampled-data controllers for continuous-time T-S systems.
To achieve this goal, a convenient augmented looped LKF candidate is selected, together with
the application of bounding lemmas, such as extended Jensen’s inequalities (Lemma 1.8 and the

Finsler’s Lemma (Lemma 1.4). Moreover, in this chapter, a generic relaxation scheme, extending
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Tuan’s Lemma (Lemma 1.2), is proposed to handle the mismatched double summation structure
of parameter dependent closed-loop stability conditions, which occurs in the considered T-S
model-based sampled-data control context. The benefit of the proposed sampled-data approach
vs conventional discrete-time T-S model-based design is illustrated through the 1-DOF inverted
pendulum benchmark, previously introduced as Example 1.2. Then a comparison is proposed
showing significant conservatism improvements regarding several previous related results from
the literature (Yoneyama, 2010; Zhu and Wang, 2011; Zhang and Han, 2011; Zhu et al., 2012;
Gunasekaran and Joo, 2019; Zhu et al., 2013; Cheng et al., 2017), from the benchmark of a
simplified model (approximated 2 rules T-S fuzzy model drawn from (Wang et al., 1996)) of an
inverted pendulum on a cart. Finally, an experimental validation of the proposed sampled-data
design methodology is performed on the Quanser® AERO platform (Quanser, 2016), illustrating

its effectiveness on a practical system.

3.2 Considered problem statement for T-S model-based sampled-
data control design

Let us consider a continuous-time T-S system given by:
T
i(t) = Y ai2(t)) (Aiw(t) + Biu(t)) (3.1)
i=1

where z(t) = { 21(t) ... zp(t) } € R? is a known vector of premise variables which only depends
(for control purpose) on the entries of the state vector x(t) € R™, u(t) € R™ is the control
input vector, A; € R™", B; € R™™ are known constant matrices describing the dynamics of
each polytope and «a;(z(t)) > 0 are the membership functions satisfying the convex properties
; ai2(t)) = 1.

In this chapter, we consider the stabilization of T-S systems (3.1) from the following sampled-
data PDC control law:

u(t) = Z ai(2(t)) K X L (ty,) (3.2)
i=1

where K; € R™*"™ and X! € R**", for i € Z,, are the controller gain matrices to be designed.
With such sampled-data controllers, a Zero Order Hold (ZOH) is employed, Vt € [tg, tg+1),

to maintain x () from the aperiodic sampling instants ¢; > 0 such that:

b1 —te =Mk < 1) (3.3)

where the inner sampling intervals bounds 7, > 0 can be non-uniform over samples with a
maximal allowable sampling period 7 to be estimated.

For actual t € [tg,tg41), let:
T(t) =t —t € [0,1%) (3.4)

where 7(t) = 1.
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The control law (3.2) can be rewritten as:
Zal (t — 7)) K X ot —7(t)) (3.5)

Substituting (3.5) in (3.1) gives the following closed-loop dynamics expressed as a T-S system,

involving input time-varying delays and mismatching membership functions:
= S a2t — () (Ase(t) + B Xt — (1)) (3.6)
i=1j5=1

In the sequel, to lighten mathematical expressions, we will use the following notations for

fuzzy summations of matrices:

M, = Z;ai(z(t))Mi, M5 = Z;ozi(z(t —7(t)))M;
and:
ZZ% (2(t = 7(t))) M
i=1j=1
Hence, (3.6) yields:
i(t) = Apz(t) + BaKaX ta(t — (1)) (3.7)

Note that the sampled-data closed loop dynamics involves an asynchronous (mismatching)
double fuzzy summation structure (Z Z a;(2(t))aj(z(t — 7(t)))...), which makes the design
of sampled-data controllers (3.5) harld_er](more conservative) than in the standard continuous or
discrete-time cases. This chapter aims at providing less pessimistic conditions to address this

issue according to the following problem statement (divided in two points P; and Pa).

Problem statement:

P1: Provide relaxed parameterized LMI-based conditions for the design of the gain matrices K;

and X such that the sampled-data closed-loop dynamics (3.7) is asymptotically stable.

Py: Propose a generic relaxation scheme to solve inequalities parameterized as A,gq < 0, which
constitutes a double fuzzy summation structure with asynchronous (mismatching) mem-

bership functions.
The next section is devoted to address P;, while improvements for Py will be proposed in

section 3.4.

3.3 LMlI-based sampled-data controller design

In the sequence, the goal is to provide parameterized LMI-based conditions satisfying P; (of
the above problem statement). The closed-loop dynamics (3.7) resulting in a T-S system with

input time-varying delay, we propose to derive these conditions from the following LKF:
V(t) = Vi(t) + Va(t) + Vs(t) + Va(t) (3.8)
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where:
Vi(t) = z(t)T Lx(t) (3.9)
Valt) = (mr(t) — 72(6)CT () MaC (1) (3.10)
Valt) = (e — 7(£)p (1) Nap(®) (3.11)
Vi) = = r(0) [ 3T P (3.12)

with x(t) = col {z(t),&(t)} and:

t

¢(t) = col {x(t), z(t —7(t)), /t—T(t) x(s)ds, /t;(t) .%"(S)ds} ,

p(t) = col {/;T(t) x(s)ds, /t;(t) :L“(s)ds} .

We motivate the choice of this LKF candidate by the fact that it belongs to the class of
looped-functionals, which is a feature that have been shown appealing in the context of sampled-
data control for linear systems (Briat and Seuret, 2012, 2015; Seuret and Briat, 2015). Indeed,
it is worth to mention that, assuming L = LT > 0, the whole LKF (3.8) is continuous and
positive at each sample time ¢, since we have Vi(t;) > 0 and Vy(t,)) = Vi(tx) = 0, for £ = 2, ..., 4.
Furthermore, the only requirement is that the LKF (3.8) must be monotonously decreasing
during the inner sampling intervals, i.e. V¢ € [tx,tx+1). This implies that, V¢t € [0, +00), it is
positive and monotonously decreasing, and so the closed-loop dynamics (3.7) is guaranteed to be
stable. In addition, the extended vectors and structures of the decision matrices in (3.10)-(3.12)
have been chosen to conveniently avoid sparsity, according to the development of the relaxed
LMI-based conditions summarized in the following Theorem, with the help of an extended
version of Jensen’s inequality (Fridman, 2010) and the Finsler lemma (Skelton et al., 1998) (see

Lemma 1.8 and Lemma 1.4 given in Chapter 1).

Theorem 3.1. : Let (i,j) € I? and assume that there exists the scalars ¢; > 0 such that
Vi, |ai(t)] < ¢;. For aperiodic sampling periods n < 7 (1 to be mazimized), the T-S fuzzy
model (3.1) is stabilized by the sampled-data PDC controller (3.2) if there exists the matrices
0<L=L"eR™, M = M] € R"" N; = NI' € R"™, Py = P, € R,
ngj = PQE]' € Rxn, 1512]- = ng e R™" X e R™", K; € R™*™, }_Q-j € R " qnd the scalars

€1, €2 and €3, such that the following parameterized LMI-based condition is satisfied:

Aéla * * * k
0 A2 * * *
Aea=1| 0 7Yaa —0Ppa * * <0 (3.13)
0 0 0 Ay x
0 0 0 0 —Piiaa

with:
Aok = %5 + LGaa + Gogll, Agg = Mg — 7203,

Yaa aq~e )

Agﬁi = ﬁzq)ga + ﬁ(‘i)lza - paa) + @Y+ 1.Gpa + GL TT

Yaa aq~€e
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I, = [ I el el &3] }T,éad: [ A X BKas 0 —X ]
Ol =H (ﬁE{M@EQ - E{Maﬂ«:l) —H (EZN@I%) ,

B o =BT MaBy + H (] NaBs) — H (B Vo)

Yoo
Pliaa — Proa 0 0 L+ 7Prag
. 0 Pioa 0 0
0 0 —n'Pias 0 ’
* 0 0 NP2aa
Mua Mia Miza Mua Piiaa 0 0 Prag
M- — * Maa Mxs Maua | 5 _ 0 00 0
@ * * M33& M34a aa 0 0 0 _O ’
* * * Myys * 0 0 Pyog
€1 €4
EIZ © 7E2: 0 7E4: [ s ]aE5_ [61 ‘|
es e1 e] — €2 €4
€1 — €9 €4

Proof 3.1. Let us consider the looped LKF candidate (3.8) with L = LT > 0, the closed-loop
dynamics (3.7) is stable if, ¥t € [tg, tr11):

V(t) = Vi(t) + Va(t)) + Va(t)) + Va(t)) < 0 (3.14)
To provide less conservative stability conditions, let us consider the following extended state

vector:
t

£(t) = col {x(t), ot =), [ o

The time-derivative of V1(t) is straightforwardly obtained as:

:U(s)ds,:i:(t)} (3.15)

0 0 0 L
Vie) = 227 (1)Li(r) = €T (0B, 9 = |0 0 0 (3.16)
L 00 0
Then, for Va(t), the time-derivative is computed as:
Va(t) = (m. — 27(8))¢T(8) Ma (t) + 2(mer (1) — 7(8)¢T () Mal(t) (3.17)

Assuming C(t) = E1&(t) and C(t) = Eof(t), with Ey and Eo given above,(3.17) can be rewritten

as:

Va(t) = T2(0)ET (1) @35E(t) + T(1)ET (8)Paaé (1) + €7 (1) PE (1) (3.18)

with ®3, = —H (ET MaE,), @}, = H (Ef MaEs — Y My ) and &, = nEf ME,.

In a similar way, the time-derivative of V3(t) is given by:
Vs(t) = —p" (t) Nap(t) + 2(m. — 7(£))p" (1) Nap(?), (3.19)
and since p(t) = E4£(t) and p(t) = Bs&(t) we can write:
Vs(t) = m()€" (1) @3€(t) + €7 (1) 255£(1) (320)
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with ®}; = H (E] NaEs) — B] NaEy and 0}, = —H (Ef NaEs).
Taking the time-derivative of Vy(t), we get:

) t
Vatt) = = O (OPax(®) = [ 37 (5)Prax(s)s (321
. | Ptiaa Pr2a .
Assuming Pn.g = [ . Paoe 1 leads to:

t

Vi(t) =(ne — 7(£)xT (t) Paax(t) — /t o &’ (s)Piiaat(s)ds

t t (322)
_ / #7(s) Pysait(s)ds — 2 7 (5) Progit(s)ds
t—7(t) t—7(t)
That is to say:
i t
Valt) =t = 7O (O Paax(®) = [ 2 (5) Praaga(s)ds
) b=r(e) (3.23)
- / i () Pagai (s)ds — a7 (8) Praa(t) + 27 (t — 7(t)) Praaa(t — 7(£))
t—7(t)
Assuming Piiaa > 0 and applying Lemma 1.7 on the first integral term, we have:
. t t
Valt) <One = N OPoax(®) =i [ a"(5)dsPuaa | #(s)ds
. (3.24)
- / i1 (5) Pyggic(s)ds — T (t) Progx(t) + a1 (t — 7(t)) Progx(t — 7(t))
t—7(t)
Note that: .
/ WT(s)ds= |1 —1 0 0 ]&) (3.25)
t—7(t)

E
Hence, assuming Pyog > 0, which is constant Vt € [tg,tg+1), and applying Lemma 1.8 on (3.24),

for any matriz Yas we have:

Vi) < (me=7()X" () Paax () +€" (1) (—B" Yaa— Yaa E+7(8)Yoa Prob Yaa ) £(t)

t t (3.26)
- / 7 6Pt / P65~ () Pasa(t) b (= (1) Pras(t = 7(0),
t—1(t t—1(1
or, equivalently:
Va(t) < 7(D)ET () Phaab(t) + € (1) Phaaé(t) (3.27)
with:
Priaa 0 0 Prog
1 _vTp-ly _ _p_ p_ _ 0 00 0
q)4oai - Ya&P22&YC¥C¥ Paou Paa - 0 0 0 0
* 0 0 Pyga
and:
MePriaa — Pr2a 0 0 M Pr2a
0 Piog 0 0
o _ Ty 124
Phoa = H (5"¥as) + 0 0 —n'Plua 0|
* 0 0 Mk Paza
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requiring Plog = Pl.
So, from (3.16), (3.18), (3.20) and (3.27), the inequality (3.14) is satisfied if:

P(r(t)) =r* ()" (1) P35£(t)
+ T(t)fT(t)((I’%oz + (I)%& + (I)zlxaa)f(t) (3-28)
+ET () (R + 095 + D35 + Phaa)é(t) <O

Let us recall that acoording Lemma 1.9, (5.28) can be checked if:

P(0) <0, (3.29)
P(n) <0, (3.30)
P(0) — T2()ET () D3:£(t) < 0, (3.31)

Then, the inequalities (3.29) and (3.30) are verified if, YET (t) #0 :
€7 (1) (@) + B + B + Do) () < O (3.32)
and
€7 (1) (WP 035 + (@35 + Dl + Bhog) + B + 85 + BY; + 5 ) (1) < 0 (3.33)

Now, before dealing with (3.32) and (3.33), we will introduce the closed-loop dynamics into
the stability conditions. To do so, note that (3.7) is equivalent to Gaa&(t) = 0, with Goa =
{ A, B,KsX ' 0 —I ] Moreover, (3.28) can be rewritten as:

E7(1) (72(1)030s + 7(1) (ks + Phog) + D) E(1) <0 (3.34)

with (I)IZ& = @%@ + (I)il),@ and (I)O = Zg:l q)géé + (I)O

Yaa daa”

So, we can apply the Finsler’s Lemma (Lemma 1.4) and the inequality (3.34) is satisfied if there
exists R € RY¥" such that:

TQ(t)‘I)%aa + T(t)(q)lza + (I)lea&) + ®%,5 + RGaa + GgaRT <0 (3.35)

Yaa

Hence, (3.32) and (3.33) are satisfied if the following inequalities hold:
%~ + RGug + GT_RT <0 (3.36)

1 P50a + 1(P5a + Phag) + Phag + RGaa + GLaRT <0 (3.37)

T
Let X regular and R = { X1 g X7 gX 1 gXx ! ] . To deal with (3.36), pre- and
post-multiplying it respectively by diag{ X X X X }! and its transpose, we obtain:

AL =@% -~ +1.Gos +GLIT <0 (3.38)

Yaa aate

Then, to deal with (3.37), apply first the Schur complement on ®) ., then pre- and post-
multiplying it respectively by diag{ X X X X X }! and its transpose, we obtain:

[ AZ

S _ = <0 3.39
NYaa —NP22a (3.39)
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with:
A2Z = 1P ®ha + (P — Paa) + Pog + [Gaa + GoIE
and where, in (3.38) and (3.39), L. = | I el eI s3] ]T, Goa = | AaX BaKs 0 -X |.
Then, to deal with (3.31), pre- and post-multiplying it respectively by diag{ X X X X }7
and its transpose, we obtain:
AM = AL 7202 <0 (3.40)

0

and all decision matrices inside ®3,5, Py, Phog and % -

belong to the bijective change of

variables:
D=X"DX, D={L,Mua,...,Mua, N1ia,---, Nozz, Pi1aa, Pi2a, Po2oa }-

Finally, concatenating (3.38), (3.39), (3.40), Pi1aa > 0 and P > 0 into the same parameter-
ized LMI (Aoa < 0), we obtain the conditions expressed in Theorem 3.1. Ul

Before proceeding with the analysis of the results from implementing sampled-data con-
trollers to drive T-S models, it is important to highlight that the inequality (3.13) involves
mismatching parameters (membership functions) associated with the sampled-data PDC con-
trol law (3.2) and with the continuous-time T-S model (3.1). Indeed, it is known that the input
signal is computed only at the discrete-time instants while the system continuously evolves,
and this phenomenon produces a mismatch between their membership functions during inter-
samplings. Obviously, solving the conditions of Theorem 3.1 for all vertices ¢ and j would be
extremely conservative and, due to the membership functions mismatches, we cannot apply
directly double fuzzy sums relaxation schemes such like Tuan’s Lemma (see Lemma 1.2). To
circumvent the mismatch problem, many authors assume |a; — ;| < p; (see e.g. (Cheng et al.,
2017)). Moreover, Lemma 1.10 has been proposed as a dedicated relaxation scheme in (Koo
et al., 2017). However, the latter doesn’t take into consideration some particular characteris-
tics of the membership functions mismatches, especially the fact that their upper bounds p;
can be expressed with regards to the upper bounds of the membership functions’ derivatives
(lai| < ¢i, Vi € Z,,) and the maximal allowed sampling period (7). Such considerations may
help to reduce the conservatism, as proposed in the next section, where an extension of Tuan’s

Lemma is proposed in the T-S model-based sampled-data controller design framework.

Remark 3.1. The conditions expressed in Theorem 3.1 are not strictly LMI because of the
parameters €1, €2 and €3. However, as stated in many previous works applying the Finsler’s
Lemma, see e.g. (Oliveira et al., 2011; Bourahala et al., 2017; Cherifi et al., 2018, 2019), these

parameters are usually tuned offline by grid search.

Remark 3.2. The proposed sampled-data controller design methodology for T-S systems includes
linear systems as a special case by removing parameter dependency for all decision variables
in the LMI-based conditions expressed in Theorem 3.1. This particular case will be further
investigated in this Chapter, providing an experimental validation of the proposed sampled-data

controller design procedure on the Quanser® AERO 2-DOF Helicopter test-bed.

76



3.4. Relaxation scheme for T-S model-based sampled-data controller design

3.4 Relaxation scheme for T-S model-based sampled-data con-
troller design

Let us recall that standard double fuzzy sums relaxation scheme, such Lemma 1.2 (Tuan
et al., 2001), cannot be directly employed in the context of sampled-data control since the
closed-loop dynamics (3.7) involves a double fuzzy sum structure with mismatched membership
functions (aa). To circumvent this drawback, one may apply Lemma 1.10 (Koo et al., 2017).
However, as previously mentioned, the latter does not take into consideration some particular
characteristics of the membership functions mismatches, especially the fact that their upper
bounds o; can be expressed with regard to the upper bounds of the membership functions’
derivatives (|&;| < ¢4, Vi € Z,,) and the maximal allowed sampling period (77). Therefore,
with the aim of providing less conservative conditions, we propose the following Theorem as an
extension of Tuan’s Lemma in the context T-S model-based sampled-data controller design. In

this context, the following Lemma will be useful to address the above stated problem.
Lemma 3.1. (Xie, 1996): Let X andY be matrices of appropriate dimensions. For any matrix
T > 0, the following inequality is true:

XYy +YTx < XTTXx +YTT 'Y (3.41)
Theorem 3.2. (Lopes et al., 2020a): For (i,j) € I2, let A;j be matrices of appropriate dimen-

sions and assume, Vt, |&;(t)] < ¢;. The inequality Aoa < 0 is satisfied if there exists diagonal
matrices Tj; > 0 such that conditions (3.42) and (3.43) hold with:

Ty < 0, Vi € IT, (3.42)
2
T+ Ty + 15 <0,V (i,j) € T,i # j, (3.43)
with: .

o1hij -Ti; 0 0
0 . 0
or—1Nijr—1 0 0 =T
where, Vp € T._1, Aijp =Aip+Aj, — ANip — Ajr and o, = min{1, ¢,n}.

Fij =

Proof 3.2. Using the short hand notation for memberships functions a; = a;(2(t)) and &; =
a;(z(t —7(t))) we have:

hoa= 3 S iy =3 oy (sz )

i=1j5=1 i=1j=1 (344)
T T a a
= Z Z a0y (A” + Z p E(Nip + AJP))
i=1j=1
Since Z (ap—0a,) =0& (4 —a) = — i (ap — ), V(i,7) we can write:
p=1 =1
roo— r—1 —
a, — Qp — Q=

Z . 2 p(AiP + Ajp) = Z . 9 pAijP (345)
p=1 p=1
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with /_\z‘jp =N, +Aj, — Ny — Aj,. Note that Vp € I, we have:
—1<a,-0,<1 (3.46)

Moreover, by assuming Vt, |&,(t)| < ¢, and since T(t) € [0,n) with n, < 7, we also have:
¢
— ¢ <oy — Q= A~ Gp(s)ds < ¢,n (3.47)

Thus, from (3.46) and (3.47), we can assert that:

1< 2272 <1 with 0, = min{1, ¢,7} (3.48)
9p
Let us now rewrite (3.45) as:
! Qp — Q1 1
gy =He [ [T T | Aaav; (3.49)
p=1 —
r—1 times I
where:
alg_lal 0 0 011_\ij1
Apa = o .0 and Vij = :
0 0 ari;;olwil Ur—lAijr—l
From Lemma 3.1, for any matrices T;; > 0, it yields:
r—1 -
Q, — Q- r—1 _
L LA, < Tij + V;’FjAaaTileaaVz‘j (3.50)

2 16

1

p

Now, let T;; > 0 be diagonal matrices, since Aqg 15 also diagonal and AngAaa < 1, AQ@TZ«;lAad =
Aa@AaaTi;l < Tl-gl. Thus, considering (3.44), (3.45) and (3.50) and applying Lemma 1.2, then

applying the Schur complement, we obtain the conditions expressed in Theorem 3.2. O

From now, two main points are to be verified: The effectiveness of the sampled-data control
design conditions proposed in Theorem 3.1 and the conservatism reduction induced by the
asynchronous double fuzzy sums relaxation scheme proposed in Theorem 3.2. This will be done

in the next section.

3.5 Illustrative Examples

To illustrate the effectiveness of the proposed sampled-data controller design methodology
for continuous-time T-S fuzzy models, three examples are considered. The first one, consisting
on a 1-DOF inverted pendulum, is considered to highlight the benefit of sampled-data controller
design over conventional discrete-time controller approach when the plant to be driven evolves in
continuous-time. The second example is based on an approximated two rules fuzzy model of an
inverted pendulum on a cart, drawn from the literature, e.g., (Wang et al., 1996). It is considered

for comparison purpose since it has been largely considered in previous sampled-data related
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studies, especially to evaluate their successive conservatism improvements. Finally, because
the proposed design conditions also holds for linear systems, an experimental validation of
the sampled-data controller design procedure, with comparison to conventional continuous-time
linear control approaches, is proposed on the Quanser® AERO device in its 2-DOF helicopter

configuration.

3.5.1 T-S model-based sampled-data controller design vs conventional discrete-
time approach

For this first example, we consider the dynamic equations of a 1-DOF inverted pendulum
and its fuzzy T-S representations (with r = 2) presented in Examples 1.2 in the continuous-
time framework, and 1.3 in the discrete-time framework. Let us first consider the design of
a PDC sampled-data controller (3.5) in order to stabilize the continuous-time model of the
1-DOF inverted pendulum, exactly represented by the 2 rules T-S model (1.16) for all z1(¢)
with p = —0.217234. To do so, we apply Theorem 3.1 together with Theorem 3.2, which
require to estimate the bounds of the time-derivative of the membership functions, ¢1 and ¢s.
To determine these parameters, let us assume that zo(t) € [—m, 7], from the definition of the

membership functions (1.15), we have:

x1 cos(xy) — sin(xq)
(1 - p)at

Vi € Iy, |Oél(t)| < ¢ = sup < X9

{z1ER,z2€[—7,7]}

> = 1.1258 Rad.s~ !

Then, solving the conditions of Theorem 3.1 with Theorem 3.2 using YALMIP and SeDuMi
(Lofberg, 2004) on the MATLAB® environment, with ; = 0.35, 3 = 3.3, e3 = 0.23, we found
a maximal allowed sampling interval 7 = 7, = 228ms and the following gain matrices for the
sampled-data PDC controller (3.2):

Ky = [-0.0265 —0.0538] lo.oom _0.0162] (3.51)

K> = [-0.0100 ~0.0791] —0.0146  0.0987

To compare this result, consider now the discrete-time T-S model of the 1-DOF inverted
pendulum given in Example 1.3. Applying Theorem 1.5 with the same sampling period 74 =

228 ms, we obtain the following gain matrices of a PDC discrete-time controller (1.39):
K1 = [~10.0379 — 2.6384| and Kp = [~8.6133 — 2.6384]

and a discrete-time Lyapunov function V (zy) = 21 Pz) with:

~ [1.9497 0.4450 .
P= [0.4450 0.1020} x 107,

To provide a fair comparison, both designed Sampled-Data (SD) controller and Discrete-Time
(DT) one are applied to the continuous-time model of the inverted-pendulum. The simulation
was performed with an ODFE45 solver to implement the continuous-time evolution of the 1-DOF

inverted pendulum represented by (1.2), and the controller was executed with a zero-order hold
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Figure 3.1: Time evolution of the continuous-time model (1.2), driven by the fuzzy
discrete-time (DT) PDC controller proposed in Chapter 2 and with the Sampled-Data (SD)
PDC controller projected from Theorem 3.1, with 7 = 74 = 228ms.

to keep constants the input signals updated only on the sampling instants 7, = 228ms. The

resulting responses are plotted in Figure 3.1.

From Figure 3.1 it is possible to observe that the trajectories of the states variables for the
stabilization problem with the designed SD controller happen to be smoother than the response
obtained with the DT controller (applied to the original continuous-time system), especially for
the speed variable (2 = 6(t)). Moreover, it is verified that the equilibrium point (98% of the
final value, i.e., 0.0288) is reached about 34% faster with the SD controller, which takes 1.03s ,
than with the DT controller, which takes 1.55s.

Furthermore, we investigate the behavior of the Lyapunov functions obtained with the design
of both controllers. In this context, it is important to recall that, from Theorem 3.1, it is ensured
that the whole LKF (3.8) is continuous and positive at each sampling time t; and monotonously
decreasing for all t. So, taking benefit of the fact that, at each sampling instant ¢ = t;, we have
V(ty) = Vi(ty) = o(tg)? Lo(ty), with:

T 7v—1_ |266.2122 34.1228
L=Xx"1X _[26.4973 13.1448] "

it is possible to verify that the LFK is indeed monotonously decreasing.

Therefore, Figure 3.2 shows the SD control signal, computed at each instant ¢; and maintain
by the ZOH for ¢ € [tg,tx+1), and the evolution of the LKF (3.8). Also, in Figure 3.2, the
SD simulation results are compared with the DT controller and the above given DT Lyapunov
functions, applied to the continuous-time model for a fair comparison. From this Figure, it is
noticed that the Lyapunov function obtained from the Theorem 3.1 (SD controller design) is less
energetic (at the sampling instants) than the one obtained from conventional DT approaches.

To assert this fact, we also propose to evaluate the euclidean norm of the control input signals
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over the interval ¢ € [0, 4], which is given by:

[u(t)]]2 = /04 lu(s)|* ds

This results in ||u(t)||2 = 9.17 for the DT controller and ||u(t)||2 = 4.38 for the SD controller,
showing that the implementation of the latter for the 1-DOF inverted pendulum is 2.09 times
more efficient in terms of control input energy consumption than the discrete-time controller. Fi-
nally, let us recall that the proposed SD controller design methodology summarized by Theorem
3.1 guarantees the closed-loop stability of the continuous-time system, while the conventional
DT approach cannot guarantee the inter-sampling stability of continuous-time plants, especially
for large sampling periods (Hetel et al., 2017). Indeed, in Figure 3.2, we can observe that the DT
Lyapunov function applied to the continuous-time model is not monotonously decreasing during
two successive sampling instants. This concludes this first example, showing the effectiveness of

this chapter’s proposal with regards to conventional discrete-time control approaches.
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Figure 3.2: Discrete-time state-feedback control input signal u(¢;) and Lyapunov function
2T (t)La(t) computed for the CT system and DT model.

3.5.2 Conservatism comparison: Inverted pendulum on a cart benchmark

To illustrate the effectiveness of the proposed sampled-data control approach for T-S models,
let us consider the benchmark of an inverted pendulum mounted on a cart depicted in Figure
3.3.

For brevity, the time ¢ will be omitted in the mathematical expression of this section. The
nonlinear dynamics of this well-known mechatronic system is given by (Cannon, 1967; Wang
et al., 1996):

a1 (t) = w2(t),
. sin x1 (t)—amiz2(t) sin(2z1(t))/2—a cos z1 (t)u(t) (352)
Hfg(t) =2 : 4l73—aml cols2 z1(t) : ’

where z1(t) and z2(t) are respectively the angle position (rad) and the velocity (rad/s) of the

pendulum from the erect position, g = 9.8 m/s? is the acceleration of the gravity, m = 2 kg is

81



Chapter 3. Aperiodic Sampled-data Controllers Design for Continous-time T-S Models

() ()

Figure 3.3: Inverted Pendulum mounted on a cart.

the mass of the pendulum, M = 8 kg is the mass of the cart, [ = 0.5 m is the half length of the
pendulum, u(t) is the input actuator force (N) applied to the cart and a = 1/(m + M). The
goal here is to stabilize the inverted pendulum for the approximate range z1(t) € (—m/2,7/2).
Note that when x1(t) = £7/2 the system is uncontrollable.

In this subsection, an approximated T-S fuzzy model (3.1) with two fuzzy rules (r = 2) of
(3.52), drawn from (Wang et al., 1996), is considered for comparison purpose since it has been
used in several related previous sampled-data controller design studies in the the literature (see
the references given in Table 3.2). This approximated T-S fuzzy model with two rules, valid for

|z1(t)] < 7/2 and |z2(t)| < 7, is specified by the matrices:

0 1 0 1
A1=[90]w42:[290]’
41/3—aml w(4l/3—amlB?)

Bl—[ _Oa 1,B2—l _2/3 ],5—003(880),

41/3—aml 4l/3—amlB?

(3.53)

and the triangular membership functions:

1—2g(t), if 0<aq(t) < 2

1+ %Tl(t), if — g <a(t) <0 and ag(x1(t)) =1 — ag(z1(t)) (3.54)

an(1(t)) = {

In this context, note that, from the triangular membership function we have |d1| = |dg| =
%|x1\ and, since |%1| = |x2| < 7, we always have |&;| < 2 = ¢; (i € Zo).

Let us remember that, because of the asynchronous double fuzzy summation structure of
the parameterized LMIs proposed in Theorem 3.1, conventional relaxation schemes such like
Tuan’s Lemma (Tuan et al., 2001) cannot be directly applied. In this regard, we have proposed
a specific relaxation scheme given by Theorem 3.2. Note also that, to the best of our knowledge,
except Lemma 1.10 proposed in (Koo et al., 2017), there was no generic relaxation scheme to
cope with this issue in previous related works. This makes Lemma 1.10 proposed in (Koo et al.,
2017) suitable to be compared with Theorem 3.2, in order to solve the parameterized LMIs
proposed in Theorem 3.1. The result is shown in Table 3.1, where the biggest value of the
maximal allowable sampling interval was found with Theorem 3.1 (7 = 50ms), outperforming

the results obtained with Lemma 1.10 (7 = 35ms) by 45.57% (the parameters 1, €2 and 3 were
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tuned by a grid search for both results). This confirms the superiority of Theorem 3.2 regarding

to Lemma 1.10 (Koo et al., 2017) in terms of conservatism reduction.

Table 3.1: Comparison of maximal 7 obtained from Theorem 3.1 with the selected
asynchronous double sums relaxation scheme.

Method €1 €9 €3 lgﬂ X n
2

Lemma 1.10

(Koo et al., 2017) 46.7316 —25.2741 —2.0760 6.4966

0.2054 0.0214 0.0062 —0.0176
1.2536 11.5638 —0.0172 0.0702

495 5 0.98 [32.8209 —43.5959] l0.6989 —2.1227] -

Theorem 3.2 5.5 3 0.31 [ 1 50ms

In order to illustrate these first results, with the initial condition z(0) = [71/ 3 O}T and a
fixed sampling period n; = 7 = 35ms, Figure 3.4 compares the closed-loop trajectories obtained
with both the sampled-data controllers designed from Theorem 3.1 with Theorem 3.2 and Lemma
1.10 (Koo et al., 2017). In this particular case, both are stabilizing the T-S fuzzy model and we
can observe than the conservatism improvement raised by Theorem 3.2 makes the control signal

slightly less energetic.
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Figure 3.4: Comparison between the trajectories of the inverted-pendulum on a cart, under
sampled-data controllers with gains obtained from different methods for the relaxation of the
asynchronous double sums of the design conditions.

In addition, Table 3.2 lists the maximal allowable upper bound # obtained from several
previous related results from the literature. Once again, we observe that the present approach
outperform these previous results by at least 19.05%, which highlights the significant improve-

ment raised by Theorem 3.1, together with Theorem 3.2, in terms of conservatism.
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Table 3.2: Comparison of maximal 7 obtained with related previous studies.

Method n (ms)
(Yoneyama, 2010) 9
(Zhu and Wang, 2011) 13
(Zhang and Han, 2011) 16
(Zhu et al., 2012) 19
(Gunasekaran and Joo, 2019) 22
(Zhu et al., 2013) 24
(Cheng et al., 2017) 42
Theorem 3.1 50

Now, let us consider the maximal allowed sampling interval with = 50ms, for which only
Theorem 3.1 (with Theorem 3.2) provides a solution with guaranteed sampled-data closed-loop
stability. Figure 3.5 shows the closed-loop state trajectories of the approximated T-S fuzzy model
inverted pendulum from the initial condition x(0) = {77/ 4 O]T with a fixed sampling period
N = 1 = 50ms. In addition, because our proposal also guarantees the closed-loop stability for
aperiodic sampling intervals, Figure 3.6 shows the same simulation but with random sampling
intervals such that 7y € [0,50ms]. These simulations illustrate the effectiveness of the proposed

sampled-data controller design methodology for T-S fuzzy models.
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Figure 3.5: Simulation of the states trajectories of the inverted pendulum on a cart with the
respectively sampled input control signal for a fixed sampling period 7, = 1 = 50ms.

To conclude this second example, let us discuss some straightforward limitations of the
presented results. First of all, it is to be noticed that the conditions proposed to cope with
the asynchronous mismatching membership functions in parameterized LMIs leads to assume
the bounds of the time-derivatives of the membership functions, i.e. |&;| < ¢4, Vi € Z,. In
that purpose, with Theorem 3.2, if 77¢; > 1, then we have o; = 1 and the result can be global
when T-S fuzzy models are derived from global sector nonlinearity approaches. Nevertheless,
as o; gets closer to 1, the results become more conservative. Otherwise, when considering

o; < 1, the result becomes only local and further investigations on the resulting sampled-data
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Figure 3.6: Simulation of the states trajectories of the inverted pendulum on a cart with the
respectively sampled input control signal computed for variable sampling intervals n; € [0, 7].

closed-loop domain of attraction would be necessary. This issue will be the focus of the next
chapter. Furthermore, it is worth pointing out that the sampled-data controller obtained in
this subsection only applies for the approximated two rules fuzzy model provided by (Wang
et al., 1996) from which it is designed. As a matter of fact, nothing guarantees that it stabilizes
the original nonlinear system (3.52). To assert this fact, applying this two rules sampled-data
T-S fuzzy controller to the original nonlinear model (3.52) of the inverted pendulum, with the
same initial conditions x = [71’/ 3 O}T, provides an unstable closed-loop behavior, as shown
in Figure 3.7. This highlights the limitation of using such approximated standard T-S fuzzy
models, which should be circumvented by considering an exact T-S modeling approach. This
will be investigated in the next Chapter, for instance by using sector nonlinearity approach and,
when relevant (e.g. for mechanical plants), by extending the proposed results to the class of T-S

descriptors.

3.5.3 Linear case study with experimental validation

In this section, we are focused on the real-time implementation of a sampled-data controller
employing the gains obtained from the design conditions provided in Theorem 3.1 to drive an
unmanned aerial vehicle (UAV) benchmark, which presents some interesting characteristics such
as its versatility, maneuverability, and ease of use. Namely, we choose for these experiments the
Quanser® AERO benchmark configured as a dual-rotor helicopter (Quanser, 2016). For this real
system, some works can be found in the literature dealing with reinforcement learning strategies
(Fandel et al., 2018), model reference adaptive controllers (Arabi and Yucelen, 2019b,a) and

robust controllers (Subramanian and Elumalai, 2016; Al Hamouch et al., 2019; Steinbusch and
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Figure 3.7: Closed-loop state responses and control signal of the nonlinear model (3.52) under
the sampled-data controller design from the approximated T-S fuzzy model taken from (Wang
et al., 1996).

Reyhanoglu, 2019). Nevertheless, all the above mentioned works consider that the controller
evolves in a continuous-time framework and, to the best of the authors knowledge, no previous

studies can be found dealing with the design of a sampled-data controller for this system.

In this context, this section presents a real-time experimental validation of the sampled-data
controller design procedure proposed in Theorem 3.1. The effectiveness of this proposal is illus-
trated in simulation, then validated experimentally, and compared to conventional continuous-
time PID and Linear-Quadratic Regulators (LQR), which design procedure can be found in the
Quanser® AERO laboratory guide (Quanser, 2016; Lopes et al., 2020b).

2-DOF helicopter dynamical model:

The Quanser® AERO, in its essence, is a dual-motor experiment, a reconfigurable plat-
form created for serving advanced control research, simplifying the experimentation of various
aerospace systems, from 1-DOF and 2-DOF helicopter to half-quadrotor. Although, it can also
be used for teaching control concepts at the undergraduate level. In Figure 3.8 the free-body
diagram of the considered benchmark is presented in its 2-DOF Helicopter configuration is

presented:

This system is configured as a conventional dual-rotor helicopter with two identical high-
efficiency rotors that produce the thrust forces F,(t) and F,(t) acting at points with distances
rp and ry from the z-awis along the z-axis, respectively. Hence, one propeller generates a torque
around the y-azis leading to a pitch (A(¢)) motion, while the other one deals with a yaw (¢(t))

motion (around the z-axis).

The dynamical model of this benchmark was taken from (Quanser, 2016), and was developed

as a simple linear model that takes into account the coupling between the pitch and yaw axis.
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T-axis

Y-aTis

Figure 3.8: Simple free-body diagram of a 2-DOF helicopter system.

The equations of motion of the system are given by:

{Jpé(t) + Dpf(t) + Kopf = 75(1) (3.55)

Juh(t) + Dy (t) = 7, (t)

where the torques acting on the pitch (7,(t)) and yaw (7,(t)) axes are assumed proportional to

the inputs voltages V,(t) and V,(t) of the DC-motors such that:
p(t) = KppVp(t) + KpyVy(t) and 7, (t) = KypVp(t) 4+ Ky Vy (1), (3.56)

with the parameters listed in Table 3.3.

Table 3.3: Quanser®AERO 2-DOF Helicopter Parameters.

Parameter Value Unit
Jp | Moment of Inertia about the pitch axis 0.0215 kg.m?
Jy | Moment of Inertia about the yaw axis 0.0215 kg.m?
K, | Stiffness about the pitch axis 0.0374 N.m/rad
D,, | Pitch viscous friction constant 0.0071 | Nom.s/rad
D, | Yaw viscous friction constant 0.0220 | N.m.s/rad
Ky, | Thrust-torque gain acting on pitch axis from pitch propeller | 0.0011 N.m/V
K, | Thrust-torque gain acting on yaw axis from yaw propeller 0.0022 N.m/V
K, | Thrust-torque gain acting on 0.0021 N.m/V
pitch axis from yaw propeller
Ky, | Thrust-torque gain acting on yaw axis from pitch propeller | —0.0027 N.m/V

Then, from (3.55) and (3.56), the following linear state-space model of the 2-DOF Helicopter
can be obtained, considering the state vector x7(t) = [H(t) Y(t) O(t) w(t)} and the input
vector ul (t) = [Vp(t) V;J(t)}

z(t) = Az(t) + Bu(t) (3.57)
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with:
0 0 1 0 0 0
0 0 O 1 0 0
A=|_Ky 0o —Le 0 and B = [ Kp Kpy
Jp Jp D k]p I‘(]p
000 b o

Recall that linear systems such like (3.57) constitute a special case of T-S fuzzy models (3.1)
with 7 = 1. Hence, Theorem 3.1 can be directly applied (removing the parameter dependency

of the decision variables in a and &) for the design of the following sampled-data controller:
u(t) = Fa(ty) = Fx(t — 7(t)) (3.58)

where ' = KX ~! € R™*" is the controller gain matrix to be designed and 7(¢) defined in (3.4).

Before going to the simulation and experimental results, the goal of this example is also to
provide some comparisons with conventional linear continuous-time control design procedures
proposed in the Quanser® AERO laboratory guide (Quanser, 2016), namely a Proportional-
Derivative (PD) controller and an LQR-based design state space linear controller, given as
follows.

First, decoupled continuous-time PD control laws are proposed for each pitch and yaw axis
as (Quanser, 2016):

ugp(t) = —Kp,0(t) — Kp,0(t)

(3.59)
uy(t) = —Kp,p(t) — Kp, (1)

with the gains :

Kp, =107.7143, Kp, = 52.4365,
Kp, = 54.1163, Kp, =19.5924,
designed from standard decoupled second-order transfer functions models and some perfor-
mances index based on the natural frequency w,, damping ratio ¢, peak time ¢, and overshoot
specification Pp.
Then, because the above mentioned PD controllers does not cope with coupling effects, the

following linear continuous-time state feedback controller is also proposed (Quanser, 2016):
u(t) = —Krora(t), (3.60)

The design of the gain Kigr is based on the LQR approach where the minimization of the

following cost function is considered:

J(u(t)) = /0 - ()" Qu(t) + u(t)" Ru(t)) dt (3.61)
with:
200 0 0 0
0 75 0 0
=19 0 0 o0
0 0 00
and:
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which provides the following gain matrix:

Foo | 98.2088 —103.0645 32.2643 —29.0750
LOR = 156.3469 66.1643 45.5122 17.1068 |-

Let us highlight that these controllers are designed in continuous-time and are implemented
in the Quanser® lab assuming a very small fixed sampling period (usually 7, = 2ms), which is
satisfactory for a pedagogical tool to teach basics on this topics. Nevertheless, since the embed-
ded electronics of the Quanser® AERO provides only digital computations, from the theoretical
point of view, this is not accurate since the inter-sampling stability is not guaranteed in these
two cases, especially for large sampling periods.

For the following developments, the direct discrete-time controller design approach is not
investigated. This decision relies on the employment of sampling periods greater than those
found through the search of a reasonable rate based on the Nyquist and Shanon Criterion for
the Quanser® AERO. In a preliminary study, a time constant of 7, = 0.7643s was obtained for
the linear system, and according to the literature, a proper choice for the sampling period value
should be 75 € [0.0764,0.19]. Consequently, the results obtained with a larger sampling period

could bring hidden issues like the growth of the Lyapunov function, as discussed in Chapter 1.

Simulation results with a large sampling period:

In this section, we provide some simulation results considering a large sampling period of
71 = 4.5s. As mentioned in Remark 3.2, a particular case of Theorem 3.1 can be considered for
the design of the sampled-data controller (3.58). The result, obtained via YALMIP (Lofberg,
2004) and SEDUMI (Sturm, 1999) solver in MATLAB® with the scalar parameters ¢; = 3,

€2 = 1 and ez = 300, is given by the following sampled-data control gain matrix:

e [0.0432 1.1617  —0.1687 —0.1789
0.0530 —0.6085 —0.2070 0.0937
In this context, Figure 3.9 shows the closed-loop continuous-time responses of the pitch and
yaw axis under the design sampled-data control law (3.58) with the initial conditions z(0) =
10 45 0 0] T. We can verify that the closed-loop sampled-data control systems is successfully
stabilized in simulation.

Now, let us consider that the continuous-time controllers (3.59) and (3.60) are implemented
on a digital device with the same huge sampling period of 4.5s. As mentioned above, since
this controller does not cope with inter-sampling behavior, the closed-loop systems should be
unstable as shown in the simulations depicted in Figure 3.10.

These simulations confirm the significance of considering the proposed sampled-data con-
trol methodology for large sampling periods. The next subsection provides an experimental

validation.

Experimental validation of the proposed sampled-data controller design:

In the previous subsection, simulation results of the proposed sampled-data control strat-

egy have been proposed with a large sampling period of 4.5s. Nevertheless, in practice, some
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Figure 3.9: Time response of Quanser® AERO model under the Sampled Data Controller.
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Figure 3.10: Time response of Quanser? AERO model, subjected to the LQR Controller (3.60)
(—) and the PD Controllers (3.59) (---) under a sampling period of 4.5s.

unmodeled phenomena (frictions, motors dead zone which make then static under a tension
smaller than 0.4V,...) does not allow a direct implementation with the same values. Hence, to
provide a fair comparison with a realistic sampling period, we chose for experimental validation
N = 150ms. In this case, Theorem 3.1 has a solution with ¢; = 0.25, e = 10 and e3 = 0.37,
which provide the following sampled-data controller (3.58) gain matrix:

| —28.4589  34.6979  —27.5479  21.9293

F= —34.9268 —18.1751 —33.8088 —11.4868]"

The experimental results are shown in Figure 3.11 where the time response and the input

signals (Motors’ voltage) are depicted for the PD, the LQR and the sampled-data controller.
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We can notice that, while the PD and LQR control plants that are unstable with a sampling
period 7, = 150ms, the sampled-data controller successfully stabilizes the Quanser® AERO.
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Figure 3.11: Comparison of the time responses of the Quanser? AERO under a sampling period
of 150ms.

Finally, to take benefit of the fact that our conditions hold for aperiodic sampling periods, we
proposed the following simple strategy to trigger it. Note that Vi (tx) < V1(0). The purpose is to
update the sampling period 7y at each sampling instant t; so that, when V; () is close to V1(0),
then the updated sampling period 7 is small (2ms), and when it is close to 0, then ny is large
(0.15s). This strategy can be implemented with an event-triggering mechanism to determine the
next sampling instant 741 for which a new measurement of the states is required to compute

the control law (3.58). In this context, to implement the sampled-data control approach based

on events, the following simple rule can be proposed:

0.002 —0.15
= —Vi(t 0.15 3.62
M1 7.00) 1(te) + (3.62)

The results from implementing the event-triggering mechanism with the triggering rule de-
fined on (3.62) are depicted in Figure 3.12; in which the simulation results are compared with
the experimental ones under the proposed aperiodic sampled-data control scheme.

As expected, the closed-loop system is properly stabilized. However, we can also see some
differences during the transients from the simulation and the experimentation. Indeed, in ad-
dition to experimental artifacts and unmodeled effects, these can also be due to the actuators
saturation, which often occur in practice (here during the first few sampling intervals where the

inputs saturate at the motors’ voltage limit of 24V) and which are not taken into account in
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Figure 3.12: Time responses of the Quanser? AERO under triggered sampling period.

the present controller design methodology. This will be another subject considered in the next

chapter.

3.6 Conclusion

In this chapter, new LMI-based conditions have been proposed to design sampled-data PDC
controllers for continuous-time T-S fuzzy models. Conservatism improvement regarding previous
works has been achieved from choosing an appropriated LKF, then by employing useful bounding
lemmas together with a second order quadratic polynomial constraints. In addition, generic
conditions have been proposed to relax double fuzzy sums with asynchronous MFs involved in
T-S model-based sampled-data control plants.

The effectiveness of the proposed sampled-data design conditions and their superiority re-
garding conventional discrete-time controller design approaches, like those considered in Chapter
2, were illustrated with the 1-DOF inverted pendulum example. Also, the conservatism reduc-
tion brought by the design conditions has been compared with previous results and illustrated
through the well-known benchmark of an inverted pendulum on a cart. However, the simulation
results pointed out that the designed controller guarantees the stability of the approximated
T-S model, but fails to stabilize the original nonlinear model. To cope with the previous issue,
a new design condition is proposed in the next chapter, extending the results for descriptor
systems suitable for describing an exact representation of the nonlinear system through fuzzy
T-S modeling for mechanical systems with the sector nonlinearity approach.

Then, the design and the implementation of the proposed sampled-data controller for the
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3.6. Conclusion

Quanser® AERO 2-DOF helicopter system has been proposed. The results have been validated
in simulation as well as experimentally, and the designed sampled-data controller has shown
its superiority regarding previous designed continuous-time controllers, especially for large sam-
pling periods. However, these experimental results also highlight the importance of taking into
account practical constraints such like input saturation, which will also constitutes one of the
improvements proposed in the next chapter.

Finally, let us also point-out that one of the main limitations of the sampled-data controller
design proposed in this chapter are generally only local for T-S systems, excepted in the special
case where D, = R™ and o; = 1 in Theorem 3.2, which is conservative. Hence, further investi-
gations of the sampled-data closed-loop domain of attraction appears to be necessary and will

be one of the main focus of the next chapter.
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Chapter

Local Aperiodic Sampled-data Control of T-S
Descriptors with Input Constraints

Résumé en Francais : Controle local a base de données apériodiquement
échantillonnées des modeles T-S descripteurs avec saturation sur ’entrée.

Ce chapitre vise a fournir quelques extensions permettant de surmonter les obstacles
mentionnés dans le chapitre précédent. En effet, a partir des conditions données dans
les Théoréemes 3.1 et 3.2 pour la synthése de correcteurs échantillonnées pour les modéles
T-S, on peut conclure que les résultats ne sont valables que localement (voir la fin du
Chapitre 1). De plus, a partir de l’exemple proposé dans la Section 3.5.2, il a été mon-
tré que lorsque les limites du conservatisme sont atteintes, l'utilisation d’un modéle T-S
approximé pour effectuer la synthése du correcteur peut échouer a stabiliser le systéme
non linéaires initialement considéré. Enfin, d partir des résultats expérimentaur présen-
tés dans la Section 3.5.3, il est important de rappeler que la saturation des actionneurs
est a prendre en compte.

Sur la base de ces considérations, dans ce chapitre, la méthodologie présentée précédem-
ment est étendue a la classe des modéles descripteurs de type T-S (Taniguchi et al., 1999;
Taniguchi et al., 2000), qui ont montré tout leur intérét pour représenter avec précision
les systémes mécaniques (Guelton, 2003; Guelton et al., 2008; Bouarar et al., 2010; Arceo
et al., 2016; Quintana et al., 2017; Dang et al., 2017; Nguyen et al., 2020), et par con-
séquent les systemes mécatroniques commandés de fait par des controleurs basés sur des
données échantillonnées. De plus, puisque les modéles descripteurs T-S incluent les mod-
eles T-S standards a titre de cas particuliers, ils sont souvent utilisés pour représenter
plus précisément une plus grande classe de systemes, tout en réduisant le conservatisme
(Estrada-Manzo et al., 2013, 2019). Par ailleurs, rappelons que les saturations sur l’entrée
ont €té considérées dans le Chapitre 2, dans le cadre des modéles T-S décrits en temps
discret.

Mis a part les travauzx de (Lamrabet et al., 2019), qui visent a proposer des conditions
quadratiques relachées mais sans aucune considération du domaine d’attraction en boucle
fermée, il n’existe pas d’autres travaux pré-existants, traitant du probléme de la stabilisa-
tion locale des modéles T-S continus avec saturations sur l’entrée a base données échantil-
lonnées. Par la suite, inspirées des travauz présentés dans (Tarbouriech et al., 2011; Lopes
et al., 2018), de nouvelles conditions prenant en compte la saturation des actionneurs sont
proposées, garantissant ainsi la stabilité locale du systéme en boucle fermée. Afin de tenir
compte de la nature locale de ces conditions, due aux contraintes induites par la satura-
tion et/ou au domaine de validité restreint du modéle T-S, nous proposons une analyse
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minutieuse du domaine d’attraction du systéme en boucle fermée, qui peut-étre réalisée
grace au choix effectué d’une fonctionnelle non quadratique de Lyapunov-Krasovskii «
bouclée » (NQLKF) appropriée. Dans cette optique, deux méthodologies sont proposées.
Premierement, une procédure hors ligne est présentée pour la stabilisation des modéles
descripteurs de type T-S commandés par un controleur basé sur des données échantillon-
nées, en exploitant la NQLKF pour ’estimation du domaine d’attraction. Ensuite, pour
des cas particuliers de modéles T-S standards, une procédure d’optimisation et d’obtention
systématique est proposée afin d’élargir le domaine d’attraction en boucle fermée.

Enfin, notons que, pour des intervalles d’échantillonnage proches de la limite maxi-
mum autorisée, on obtient une estimation du domaine d’attraction significativement ré-
duite. Afin de pallier ce probléme, une nouvelle méthodologie d’ajustement des paramétres
de la loi de commande est proposée. Celle-ci exploite les principes du déclenchement
par événements (event-triggering), selon les équipotentielles des fonctions de Lyapunov
obtenues pour plusieurs intervalles d’échantillonnage. Cette méthode, illustrée au travers
de l'exemple de simulation du pendule inversé sur un chariot, permet d’élargir plus encore
l’estimation obtenue du domaine d’attraction en boucle fermée.

4.1 Introduction

This chapter aims at providing some extensions to cope with the limitations pointed-out
in the previous chapter. Indeed, from the proposed sampled-data controller design approach
for T-S models given in Theorems 3.1 and 3.2, it can be concluded that these results only
hold locally (see also Chapter 1, end of Section 1.4.2). Also, from the example provided in
Section 3.5.2, it has been shown that, when reaching the limits of conservatism, the proposed
approach may fail to stabilize the original nonlinear system, if its T-S model representation is
not sufficiently accurate (e.g. when using fuzzy approximations). Finally, from the experimental
results provided in Section 3.5.3, the importance of handling the actuators’ saturation have been
highlighted.

Based on these considerations, in this chapter, the proposed methodology is extended to the
class of regular Takagi-Sugeno descriptors (Taniguchi et al., 1999; Taniguchi et al., 2000), which
have been shown particularly efficient to accurately represent mechanical plants (Guelton, 2003;
Guelton et al., 2008; Bouarar et al., 2010; Arceo et al., 2016; Quintana et al., 2017; Dang et al.,
2017; Nguyen et al., 2020), and so mechatronic systems where sampled-data control is inherent.
Moreover, because T-S descriptors include as a special case standard T-S models, these are often
used to more accurately represent a larger class of systems while reducing the conservatism of
their design conditions (Estrada-Manzo et al., 2013, 2019).

Recall that input saturation has been considered in Chapter 2, but in the discrete-time model-
based control framework. Despite the work in (Lamrabet et al., 2019), which intended to provide
relaxed quadratic conditions but missing the characterization of the domain of attraction, no
previous works were found dealing with the sampled-data stabilization for T-S models subject to
actuators’ saturation. In the following, similarly to (Tarbouriech et al., 2011; Lopes et al., 2018),
a generalized sector condition is employed to cope with the actuators’ saturation problem, while

keeping the local closed-loop sampled-data stability guaranteed.
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Therefore, acknowledging the local nature of the proposed sampled-data synthesis, either
associated with constraints induced by the saturation, or also due to the restrictions brought by
the region of validity of the T-S model, we propose, along this chapter, a careful analysis of the
estimation of the sampled-data closed-loop domain of attraction, from the convenient choice of a
looped non-quadratic LKF (NQLKF). In that purpose, two methodologies are proposed. First,
an offline procedure is presented for T-S descriptors-based sampled-data stabilization, taking full
advantage of the NQLKF to enlarge the ensured limits of operation of the controlled system.
Then, in the special case of standard T-S models, an optimization procedure is provided to give
a systematic enlargement of the estimation of the closed-loop domain of attraction.

Finally, because, for a given maximal allowed upper bound of the sampling intervals, the
obtained estimation of the domain of attraction can be quite small, a new gain scheduled event-
triggering mechanism, based on the characterization of several Lyapunov level sets, is proposed

to further enlarge the resulting closed-loop sampled-data domain of attraction.

4.2 Considered class of systems and problem statement

In this chapter, by extension of the class of nonlinear systems considered in the previous

chapters, we will consider nonlinear descriptors with input (actuators) saturation given by:
B(a(t)i(t) = Aa()(t) + Bx(t)) sat(u(t)) (4.1)
where:

o z(t) € R" is the state vector, E(x(t)) € R™"™ A(z(t)) € R™™ and B(z(t)) € R™™™ are
matrices with nonlinear entries (only depending on the state variables for control purpose),

bounded on a compact subset D, of the state space defined by:
D, = {a(t) € R" | £42(t) < 25} CR" (4.2)
with £ € R**™ 2 € R*, and j € Z,,

o u(t) € R™ is the control input vector, which may saturate according to actuators limi-
tations, i.e., sat(u(t)) is a decentralized vector valued function with components defined
by:

sat(ue) () = sign(u(e) (t)) min(|uce) (t)], ) ), VE € L, (4.3)
which also allows us to define the set:
D, ={u(t) e R™| —u < sat(u(t)) < u} (4.4)
where 4 is a vector of R™ with positive components, i.e. 4 > 0, V¢ € Zy,.

From the well-known sector nonlinearity approach (Tanaka and Wang, 2001), nonlinear
descriptors (4.1) with input saturation can be exactly rewritten, Vz(t) € D,, as T-S descriptors

given by:

zr:ai (z(t)) Eii(t) = Xr:ai (z(t)) (A;z(t) + Bisat(u(t))) (4.5)
i=1 i=1
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where, for i € Z,., E; € R™™" A; € R™" B; € R™™ are constant matrices, a;(z(t)) > 0 are

K
convex membership functions satisfying > a;(x(t)) = 1.
i=1

Remark 4.1. T-S descriptors (4.5) include as special case the class of standard T-S models
(3.1) (without input saturation) by considering E; = I, Vi € L,,. Moreover, note that descriptor
systems are often used in the literature to model singular systems, i.e. when E(xz(t)) is not
invertible (see e.g. (Marz and Ragot, 2008; Li et al., 2016b; Chang et al., 2021)). However,
in the sequel of this chapter, we will only focus on the case where E(xz(t)) is assumed to be
reqular (invertible) since it has been shown useful to reduce the conservatism in T-S model-based
design (Taniguchi et al., 1999; Taniguchi et al., 2000; Tanaka et al., 2007; Bouarar et al.,
2007a,b, 2008, 2010; Estrada-Manzo et al., 2013). Furthermore, it is well-known that (regular)
descriptors are particularly adequate to represent the dynamics of mechanical plants, by avoiding
ill-conditioned matriz inversion, while reducing the number of vertices of resulting T-S models
(see e.g (Guelton, 2003; Schulte and Guelton, 2006, 2009; Guelton et al., 2008; Bouarar et al.,
2010; Seddiki et al., 2010; Vermeiren et al., 2012; Arceo et al., 2016; Quintana et al., 2017; Dang
et al., 2017; Nguyen et al., 2019b, 2020)). Indeed, let us consider a class of d-link mechanical

system, which dynamics can be described by:

M(q(1)4(t) + C(q(t), 4(£))4(t) + G(a(t)) = T'(t) (4.6)

where q(t) € R? is the vector of generalized coordinates, M(q(t)) € R¥%4 s the inertia matriz,
C(q(t),4(t)) € R4 s the Coriolis/centripetal matriz, G(q(t)) is the vector of gravitation and
['(t) € R? is the vector of generalized forces. The vector of gravitation being smooth, we can get
G(q(t)) € R such that G(q(t)) = G(q(t))q(t). Thus, denoting z(t) = [qT(t) q'T(t)}T € R”,
n = 2d, the dynamical model (4.6) can be rewritten in the affine-in-control continuous-time

nonlinear state space descriptor form (4.1) with:

I 0 0 I 0
Flet) = [o M(:v(t))]’A(x(t)): [—g@c(t)) —m(t))} nd BLtt) = [B@(f))]'

Finally, note that, since the inertia matriz M (x(t)) of a mechanical plant is always positive

definite, the descriptor matriz E(x(t)) is always invertible.

Now, due to the discrete nature of the controllers, let tx > 0 be the sampling instants such
that tx11 —tr < nr < 7, where the inner sampling interval 7, > 0 can be non-uniform (aperiodic)
with a maximal allowable sampling interval 77. A Zero-Order Hold (ZOH) is employed to maintain
the control signal V¢ € [tg, tr+1). Hence, for actual ¢ € [tg, try1), let 7(t) =t —t; € [0, ), where
7(t) = 1, and consider the following sampled-data PDC control law for the stabilization of T-S
descriptors (4.5):

.
u(t) =Y i@t — 7)) Ki X 'a(t — 7(t)) (4.7)

i=1
where K; € R™*™ and X! € R"*" are the sampled-data controller gain matrices to be designed.
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From (4.5) and (4.7), and using the following notations:
M, —Zaz Mza Mg —Zaz t_T(t)))Mi

and:

ZZO&Z t—T(t)))MZ'j

=1 j5=1
to lighten mathematical expressions, the closed-loop sampled-data dynamics can be expressed

by the following T-S descriptor model with saturated inputs and time-varying input delays:
E,i(t) = Agx(t) + Bosat(KaX 'a(t — 7(t))) (4.8)

In this work, to cope with the saturation, let us consider the dead-zone nonlinearity defined

by (see Definition 1.2 for more details):

B(u(t)) = sat(u(t)) — u(t) (4.9)

From this definition, the closed-loop sampled-data dynamics with input saturation (4.8)
can be rewritten as the following T-S descriptor with input time-varying delays and with an

additional dead-zone nonlinearity:
Eoi(t) = Aqz(t) + BoKaX tz(t — 7(t)) + Bath(KaX ta(t — 7(1))) (4.10)

From now, our goal is to design the gain matrices K5 and X that guarantee the closed-
loop dynamics (4.8) to be stable. This will be done in the next section by extending the results
provided in Chapter 3, considering the application of Theorem 3.2. Recall that the latter assume
that the time-derivatives of the membership functions are bounded such that the results are valid

inside the following set:

Dy = [ {z(t) € R": [an(2)] < dx} (4.11)
k=1

Hence, considering the validity domain D, of the T-S descriptor defined by (4.2), the input
constraints resulting to the set D, defined in (4.4), and the restrictions implied by the set D,
defined in (4.11), the sampled-data closed-loop dynamics (4.10) can only be locally guaranteed,

which makes necessary the estimation of the domain of attraction.

Remark 4.2. In previous literature dealing with continuous-time T-S model-based non-quadratic
control, estimating the bounds ¢ (Vk € Z,.) of the time-derivatives of the membership functions
hi(z(t)) s, in general, commonly considered as a hard or even impossible task, since this has to
be made priory to the design of the closed-loop dynamics, see e.g. (Guerra et al., 2012; Guelton
et al., 2014; Cherifi et al., 2019). However, in the local context of our study, assuming E(x(t))
reqular Vx(t) € Dy, when considering known input constraints, i.e. when u(t) belongs to a known

closed compact subset D,, C R™, and x(t) belongs to a known closed compact subset D, C R™ |
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such bounds can be easily estimated from numerical computation by:

o= suwp (V] (@)E(2)(Alx)r + B(x)u|)
{z€Dy,u€Dy }

> Vi (z(t) B (1)) (Ax(t) x(t) + B(x(t)sat(u(t)))| (4.12)
= | Vi (z(t)3(1)]
= |ag(z(t))]

This being said, the main objectives of this chapter are summarized in the following problem

statement.

Problem statement:

P1: Provide relaxed LMI-based conditions for the design of the gain matrices K; and X such
that the sampled-data closed-loop dynamics (4.10) with input saturation is locally asymp-
totically stable for the largest as possible admissible upper bound 77 of the non-uniform

sampling intervals 7.

Pa: Provide a methodology to estimate the domain of attraction D} of the closed-loop system
(4.10).

P3: Based on the satisfaction of P; and Ps, provide a gain scheduled event-triggering mechanism

to further enlarge the closed-loop domain of attraction.

4.3 Main results

In the sequence, the goal is to provide parameterized LMI-based conditions and methodolo-
gies to satisfy Pj, P2 and P3 of the above given problem statement. First, the main result is
proposed for the class of descriptor systems (4.1), then the special case of standard T-S systems
(3.1) is considered to provide a systematic approach for the estimation of the closed-loop domain
of attraction. Finally, a gain-scheduled event-triggering mechanism will be proposed to further

enlarge the closed-loop domain of attraction.

4.3.1 LMlI-based local non-quadratic sampled-data controller design for T-S
descriptors

Consider the class of T-S descriptor (4.1) and the closed-loop dynamics presented in (4.10).
To provide parameterized LMI-based conditions satisfying P; and Ps, we proposed the following
Non-Quadratic Lyapunov-Krasovskii Function (NQLKF) candidate:

4
V(D) =3 Vi) (4.13)

where:

Vi(t) = 2T (t) Pax(t), (4.14)
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Va(t) = (me — 7(1)p" (£)Qaap(t), (4.15)
Vo) = (e~ 7)) [ T Raspls)is (4.16)
t—7(t)
Va(t) = (mer (1) = 72(6)¢T () Sad (1), (4.17)
with: . .
C() = col {x(t),x(t — (1)), /t P, /t . x’(s)ds}
and

p(t) = col {/tir(t) x(s)ds, /ti'r(t) at(s)ds} .

The following theorem summarizes the proposed LMI-based conditions to address the above-
defined problem statements P; and P for the sampled-data stabilization of T-S descriptors (4.5)

with input saturation.

Theorem 4.1. Let (i,5) € Z? and let assume that Vt, |&;(t)| < ¢;. For given symmetric bounds
u € R™ of the input vector and for non-uniform sampling intervals nx < 1 (1 to be mazimized),
the T-S descriptor (4.5) is locally asymptotically stabilized by the sampled-data PDC' controller
(4.7) with saturation (see (4.3)), if there exists a diagonal positive matriz D; € R™*™, the
matrices 0 < P; = PI' € R, S’j = S'jT € Rinxan Qij = }Tj € R2nx2n ij = R{lij e R™*",
Ryyj = Ry, € R™™, Ryp; € R™", X € R™", K; € R™™", F; € R™™", Y;; € R4,
]\7[21] = Mile e R, ij = M%T € R?"X2n and the scalars €1, €2, and €3, such that the

following parameterized inequalities are satisfied:

AL, v Eh 0 0 0
* —ﬁRQQO@ 70 0 0
* * A0 0 | <0, (4.18)
* * *  —Riiaa _0
* * * * 55
D 7l
_ [Pp +*Maa - EMZ ] <0, Vpel, (4.19)
pa ad
Fo >0,V el (4.20)
(KO?*F&)(Z) %f) - Y, m> .

with:

]\tlxlo? = _7727-[ (EATSO_(E%) + ﬁi)lozo? + (i)()a(i + Z ¢pEg(Pp + M(}céz) + \T’O—”
p=1

T
A3 = Bgaa + Y 0p(E] (B + Myg)) + U, A% = A, + i*H (E] Saks),
p=1

Ppaa = H (sz‘iaa +7E] QaaF2 — EgTYaa) — B QuaFB1 + NE] RaaBa + Wags + NE] SaFy,
Draa = —H (B] QuaBs — NE] Sabs + Ef SaFy) — B Raa B,
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Waa = —e] Risger + €3 Risaes — 77,;16?}?110@63,
B P, 0 0 0 0 |0 0o 0 I 0
C N T el eo eI I|'7% |AX Bo,K;s 0 —E,X B,D,|’
— 0 FID; e e e
=~ = — T a @ = 1 = 3 = 1
Vg Eg [* 9D, ] Es, Eo [60] , B [61 - 62] , B [641 ;
€1 €q
_ _ _ €2 _ |eo _ |e2
E3 - |:61 62:| ’ E4 - e3 7E5 - e1 ; E6 - [65] .
€1 — €9 €q

Furthermore, an estimate of the domain of attraction D} of the designed closed-loop sampled-data

descriptor is obtained by maximizing c such that:
D, = {z(0) € R" | 3¢ = maxc, L(c) € D, N D, N Dy} (4.21)

with L(€) = {x € R" | 2T Pyx < ¢}. Furthermore, an estimate of the domain of attraction taken
at t = to is obtained by optimizing Vi(z) = ¢ < 1, i.e. by finding the largest equipotential
included in Dy N Dy N Dy with Dy, Dy and Dy, respectively defined by (4.4), (4.2) and (4.11).

Proof. Let P, = PT > 0. At the sampling instant t;, we have V(t;) > 0 because Vi(t;) > 0
and Vp(t,) = Vi(ty) = 0, for £ = 2,...,4. In this context, to ensure the asymptotic stability of
the closed-loop dynamics (4.10), because the LKF is continuous V¢ € [0, +00), we only need to

provide that it is monotonously decreasing Vt € [tg, txy1), i.€.:

V(t) = 24: Vi(t) <0 (4.22)
(=1

Nevertheless, at this point, the constraints introduced due to the actuators’ saturation must be
consider on the design. So, from Lemma 2.1, the sector conditions is introduced with (4.22),

providing that x(t—7(t)) € S((Ka — F5)X !, u), for any diagonal matrix Ds > 0, such that:
V(t) =20 (KX ta(t—7t) D (W(KaX ta(t—7(t)) +Fs X ta(t—7()) <0 (4.23)
In the remaining of this proof, let us consider the extended vector:
§(t) = cor{ (t), alt—7(0). [l pa(s)ds, @), Y(KaX'w(t—r(1) }.

Thus, the inequality (4.23) can be rewritten as:

V(t)+ L () WaE(t) <0 (4.24)
with: [P
W= - g[ﬂ A e ]EG (4:25)

Then, considering the arbitrary scalars €1, €2, and €3, and a regular matrix X, let:

s [P0 0 0 0
@1 x-1 €1X71 EgXil 63X71 D;l ’
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which, combined with Ej defined in Theorem 4.1, allow us to rewrite (4.14) as:
Vi(t) = €7 (1) Bg Pak() (4.26)

where the symmetric condition EOT P, = ]53 FEy is satisfied.

Hence, the time-derivative of Vi (t) can be written as:
Vi () = 267 (1) PYEoE(t) + €7 (0BG Pk (1) (4.27)

Note that the closed-loop dynamics (4.10) can be rewritten as:

: 5 N 0 0 I 0
Eoé(t) = Apaé(t), with Apg = [Aa B.K.X' 0 _E, Ba] . (4.28)
Then, equation (4.27) can be rewritten as:
VA(t) = €7() (H(PT Aas) + EJ Pa) (1) (4.29)

Now, taking the time-derivative of Va(t) leads to:
Va(t) = —p" (1) Qaap(t) + (mk — (1)) (20" (1) Qaah(t) + p" (1)Qaap(t)) (4.30)

With p(t) = E1£(t) and p(t) = col {a(t),&(t)} = E2€(t), equation (4.30) can be rewritten as:
Vo(t) == 7)€" (1) (H (Ef QaaBs) + B{ QuaFr ) £(t)

T - - o (4.31)
+€7() (M (B QoaB2) — BT QuaBr + B Qac By ) £(1)
Next, the time-derivative of V3(¢) is given by:
_ t
Vs(t) = (e — 7(t))p" (t) Raab(t) — /t o p" (s)Raap(s)ds (4.32)
Let:
| Rilea  PRi2a
Hoa = [ * R22aa] ’
and assume:
Ritaa = Rijaa > 0, Rozaa = Rigag >0 (4.33)
Equation (4.32) is equivalent to:
. t
Vs(t) =(ne — 7(t))p" (t) Raab(t) —/t t 2! (5)Ritaaz(s)ds
~it) (4.34)

t t
- / iT(S)Rzzaai’(s)ds -2 mT(S)ngdi’(S)dS
t—7(t) t—7(t)

Note that ftt_T(t) T (s)ds = E3&(t) and, Vt € [tg,tgr1), Rioa is constant. Applying Lemma 1.7

and Lemma 1.8 we get:

t

J:T(S)Rlla&/ x(s)ds

VA1) <G — )8 (O Raai1) ~ i [ Y

t—7(t)
— 2" (t)Risaa(t) + 27 (t — 7(t)) Rizaz(t — 7(t))

+ €7(1) (7 ()Y R Yos — B3 Yoz — Yau Bs) £(1) (4.35)
= (€7 (t) (Yas Ragag Yaa — B3 RaaB2) (1)

+€7(t) (mE3 Raa B — H (B3 Yz ) + Waa) £(1)
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with Was = —ef Risaer + €3 Risges — ﬁglegRl1aae3-
Now, taking the time-derivative of V4(t), we obtain:
Va(t) = (m = 2r())CT (£)SaC(t) + 2(me (t) — 72(1))¢T () SaL (1) (4.36)
With ((t) = E4&(t) and ((t) = Esé(t), it yields:
Vi(t) = — (€T (M (BT SaBs ) () + €7 () (meET SaBa ) £(1) o
+7(0)ET (0)H (BT SaBs — BT SxE4) €(t) |

Thus, from (4.23), (4.29), (4.31), (4.35), and (4.37), the inequality (4.22) is satisfied if:

P(r(t) = — A€ (1 H (B Sabs ) £(1)
+ 7€ () (Praa + Yoz Razoa Yaa — Ef Qaar ) (1) (4.38)
+€7(t) (@oas + B Po + B QaaF ) £() < 0
with:
Draa = H (e E] Sabs — Ef QuaFs — Bf SaF1) — E3 RaaEa,
Poaa =H (P Aaa + mE] QuaBs — B3 Yaa ) = Bf QuaFr
+ B3 Rag B2+ Waa + mE] SaEy — E§ Vs Ey.

Let us recall that acoording Lemma 1.9, (4.38) can be checked if:

P(0) <0, (4.39)
P(if) < 0, (4.40)
P(0) = 72" (tyH (Bf Sabs ) £(t) <0, (4.41)

Then, the inequalities (4.39), (4.40) and (4.41) are verified if, V€T () # O :

Boaa + EL Pa <0, (4.42)
—i*H (E{ SaBs) + i (Pra + Yoa Raga Yaa — Ef Qualr) )
+ (Poaa + Ef Po + 1] QaaFr) < 0
and
Doua + EL Py + 12H (EZS&E5) <0, (4.44)

Recall that Y d,(z(t)) = 0, and for any slack matrix M5 (¢ = 1,2), > dq,(x(t))Ml; = 0.
p=1 p
With |, ((t))] < by, if:

I
—_

P,+ M}s >0and Qs + M25 >0,Vp €L, (4.45)
we get:
E§ Po < 0pEq (Py+ Mag) (4.46)
p=1
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and: )
B! QaaFr < iy $pE (Qpa + M2z)Er. (4.47)

p=1
Thus, from (4.46) and (4.47), applying the Schur complement, the inequalities (4.42) and (4.43)

are respectively satisfied if:

,
Ppoa + Z ¢p(E0T(Pp + Mls)) <0, (4.48)
p=1
Aoe mYag
<0, 4.49
[ * —MeR22aa (4.49)

with ALy = —7*H (EZSaE5) +1®1aa + Poaa + Xp1 OpEF (Pp + Mya)-

Taking the congruence of (4.33) and (4.45) by X,(X) (with appropriate p), where &},(X) de-
notes a diagonal block matrix filled p times in diagonal with X € R™*"™. Then pre- and post-
multiplying (4.44) and (4.48) respectively by diag{X, X, X, X, D5} and its transpose followed
by pre- and post-multiplying (4.49) respectively diag{X, X, X, X, Dz, X}7 and its transpose,
we obtain the conditions (4.18) (which embed (4.33), (4.44), (4.48) and (4.49)) and (4.19) (which
embeds (4.45)) where the decision matrices inside ®1,5 and ®gag belong to the bijective change
of variables Z = XTZX, Z = { Py, Qaa, Ri1aa, R12a, Ro2ea - - - }-

In the sequel of the proof, let us focus on the restriction brought by the saturated actuators.
Recall that the NQLKF (4.22) is continuous and monotonously decreasing if the previous in-
equalities hold. Therefore, for every x(tj) reaching D, the systems will be stable and, without

loss of generality, the NQLKF taken at ¢; allows to define the following level sets:
L(1) = {z(t —7(t) e R* | z(t — 7(t))T Pyx(t — 7(t)) < 1} (4.50)

Moreover, from the application of Lemma 1.6, we must provide that z(t — 7(¢)) is such that
(Ka — F3)X 'a(t — 7(t)) belongs to S(u) (see eq. (1.64)). This holds if both the following
conditions hold:

If z(t — 7(t)) T Pyx(t — 7(t)) < 1, then x(t) € £(1) (4.51)

and, with Z5 = (K5 — 141@))(—1)@)((1((i - F&)X—l)(@/a@):
If a(t — 7())" Zayx(t — 7(t)) < 1, then (K5 — Fa)X 'a(t — 7(t)) € S(°) (4.52)
Then £(1) C S(KzX ' — Fs,q) if:
1> a2t —7(t)" Paz(t — 7(t) > a(t — (1) Za@yz(t — (1)) (4.53)

which is granted from the Schur complement if:

Fo

*
(Ka—Fa)X ) ﬁ%g) 20 (4.54)

That is to say, pre- and post-multiplying (4.54) by diag{X,1}T and its transpose, respectively,
we get the conditions (4.20). Finally, note that the conditions of Theorem 4.1 only guarantee
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the local asymptotic stability of the designed closed-loop descriptor because the T-S descriptor
(4.5) matches (4.1), Vx(t) € D,, and the conditions (4.18), and (4.19) are valid assuming that
Vt, |&i(t)| < ¢;. Hence, the domain of attraction D, of the designed closed-loop system must
verify D, C D, NDy (recall that D, C D, is granted by (4.20)). Since V;(0) =0, for £ =2, ..., 4,
an estimate D} of the domain of attraction D, is given by (4.21). O

Remark 4.3. The conditions (4.18) and (4.19) of Theorem 4.1 are parameterized inequalities,
which can be solved via LMI tools from the application of Theorem 3.2. Furthermore, the obtained
conditions are not strictly LMI because of the parameters 1, €1, €9 and €3. However, similarly
to what has been proposed in Chapter 3 (see Remark 3.1), these parameters can be usually tuned

offline by grid search.

Remark 4.4. Note that the LKF (3.8) considered in Chapter 3 is a special case of the NQLKF
(4.13) (proposed to prove Theorem 4.1) with Py = L, Qua = Na, Raa = Pa and Sa = M,.
Moreover, standard T-S models (3.1) being a special case of T-S descriptors (4.1) with E, =1,
Theorem 1 in (Lopes et al., 2021) or Theorem 3.1 (when input saturations are not considered)
constitute special cases of Theorem 4.1 (assuming M}J =—P, and ij = —Qj to alleviate condi-
tions (4.19)). Consequently, applying Theorem /.1 instead of these special cases, for descriptors
or standard T-S models, with or without input saturation, will provide the less conservative

results.

To conclude this subsection, let us point out that the design conditions given in Theorem 4.1
do not guarantee the global asymptotic stability for the closed-loop system driven by the designed
sampled-data controller (4.7). Indeed, from the above-presented design conditions, three main
points lead to a local solution: the region of linearity (D,) of the control inputs inside their
bounds due to the actuators’ saturation, the domain of validity of the fuzzy T-S model (D),
and the constraints due to the bounds ¢ of the time-derivative of the membership functions
(Dg) introduced by the NQLKF (4.13) and Theorem 3.2. Therefore, the characterization of the
region of attraction (D,) must be provided to guarantee a safe operation of the controlled system.
Nevertheless, finding the ultimate edge of the full region of attraction (D,) is a hard or even
impossible task. Hence, in Theorem 4.1 we propose a procedure to provide an estimate D] of
such a region. It consists on finding the largest Lyapunov level set £(¢) = {x € R" |27 P;x < ¢}
with ¢ < 1 such that:

D, = {z(0) € R" | 3¢ = maxc, L(¢) C D, N D, N Dy}

a

Hence, the computation of D} can be done through a manual adjusting procedure after solving
the LMI conditions of Theorem 4.1. It is important to highlight that it requires the graphical
representation of D, and Dy, which makes tricky and time-consuming the optimization of all
involved parameters by trial and errors. In order to reduce the complexity brought by such a
manual procedure, in the next subsection, we propose a systematic LMI-based methodology to
get the estimate D} of the region of attraction from an unitary invariant level set approach, but

for standard T-S fuzzy models instead of descriptor ones.
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4.3.2 Systematic estimation of the domain of attraction for standard T-S
models-based sampled-data controller design

In this section, let us consider the class of standard T-S models (3.1) instead of T-S descrip-
tors (4.1). Our goal is to provide complementary conditions to obtain a systematic estimation
Dy of the sampled-data closed-loop region of attraction, i.e. to prevent from using the manual
optimization procedure described above. To do so, let us recall that such a region is constrained
by the regions D,, D, and Dy, respectively defined in (4.4), (4.2) and (4.11).

Before going to the main result of this subsection, let us recall that the gradient of ay(x(t))

for x(t) is given by:

T
Vila(r) = |2, Sl

Assuming that, Vk € Z,., ay(z) are continuous with regard to x € D,, then we have, V¢ € Z,,,

(4.55)

w € [6¢, 0¢]. Therefore, from a sector nonlinearity decomposition, we can write:

on
Vi(a(t) = his(2(1)) Vs (4.56)
s=1

with, Vs €Zon, hs(2(t)) >0, 22, fis(2(t)) = 1, and V, € R” constant vectors of vertices.
The following theorem summarizes the proposed sampled-data controller design conditions
for the stabilization of standard T-S models (3.1), including an optimization procedure for the

systematic computation of Dj.

Theorem 4.2. Let (i,§)€Z? and let assume that Vt, |&;(t)| < ¢;. With Vs (sE€TLan) defined in
(4.56), for given symmetric bounds u € R™ of the input vector and for non-uniform sampling
intervals n < 1 (1 to be mazximized), the standard T-S model (3.1) (i.e. assuming E, = 1) is
locally asymptotically stabilized by the sampled-data PDC controller (4.7) with saturation (see
(4.3)), if there ezists a diagonal positive matriz D; € R™*™ the matrices 0 < P; = PT € R™™,
S = 8T e Rivin @y — QT € RN, Ry = Ry, € R, Ry — Rl € RV,
Riy; € R, X € R™", K; € R™", Fj € R™", Y; € RV, Uy; = Ul e R,
]\7[57 = ]\_Jile e R™™ ij = M%-T € R?"%2" and the scalars €1, €2, and €3, such that the

following optimization problem is satisfied:

B max Trace(X)
Pa>07Qo¢>Ra&7S&7
Ka Yoa M1 M2 Z,>0 (4.57)

aa?

subject to the PLMIs (4.18), (4.19), (4.20), (4.58) and (4.59),

[ Po X7 >0,Vj €T, (4.58)
= U, V] Ky .
LHX b?j)
P, *
_ > . .
[VSGM e > 0,VseZ, (4.59)

In this case, the estimation of the domain of attraction D} is systematically obtained as:
Di=L(1)={x(0)eR"|z' P, <1} C D, N D, N D, (4.60)
which edge is readily given by the unit equipotential T Pyo=1.

107



Chapter 4. Local Aperiodic Sampled-data Control of T-S Descriptors with Input Constraints

Proof. Starting from the conditions of Theorem 4.1 for the special case of standard T-S models
(4.5) (i.e. assuming E, = I), we want to provide an optimization procedure to enlarge D} = L(1)
expressed in (4.60). Note that £(1) C D, is already granted by (4.20). Then, without loss of
generality, assuming that the initial instant is also the first sampling instant (i.e. ¢t = ¢y = 0),
L(1) is defined by:

PO X TP, X 12(0) <1 (4.61)

From the definition (4.2), the edge of D, is given by:

wT(O)SE)S(j)x(O)
b2
()

Hence, from (4.61) and (4.62), £(1) C D, is granted by:

<1,Vjels (4.62)

; £ L0

X Tp,x—t— >0,Vj €L, (4.63)

2 -_
©)
which gives, after congruence by X7 and X:
T T
(4)

>0,V5 el (4.64)

Then, applying the Shur complement, we get (4.58).

Now, let us focus on Dy constrained by:
lan(a(t)))| = Vi (())é(t)] < éx, Yk € I, (4.65)

which edge, for the initial instant t=ty=0, is characterized by:

e ()X TGV (@(0)Vi(x(0)GoaX 12(0) _ (4.66)
o7 B |

with Ga@ = (AQX + BaKa).
From (4.61) and (4.66), the following inequality guarantees £(1) C Dy:

5 _ XTTGE Vi (@(0) Vi(2(0)Gaa X

X Tp,x! > >0 (4.67)
%
After congruence by X7 and X, it yields:
~ T T _
Pk
Applying the Shur complement, we get:
P | >0 (4.69)
Vi(2(0))Gaa ¢*| = '

Note that the condition (4.69) depends on the initial conditions. Nevertheless, knowing that
z(0) € D,, and considering (4.56), (4.69) is satisfied if:

2 P *
Szz:lhs(z(t)) [Vs gaa 52 >0 (4.70)
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which is verified if the conditions (4.59) are satisfied.

Note that the completion of (4.20), (4.58) and (4.59) together ensures (4.60). Furthermore,
to enlarge the area of £(1) and consequently the estimation of the region of attraction D},
minimizing the trace of P, leads to maximize the trace of X under the constraint (4.61), since
P, =X"TP,X~!. This defines the optimization problem (4.57). O

Remark 4.5. Unfortunately, because of the dependency of the closed-loop dynamics for comput-
ing the estimate of the region of attraction from Dy (see. (4.70)), Theorem 4.2 cannot be directly
employed for descriptors systems. At this moment, the literature to cope with descriptors is not
extensive. However, in (Lendek et al., 2018), the authors brought some interesting ideas in the

discrete-time framework, which will be investigated for extension in our further works.

Remark 4.6. Note that to obtain a systematic characterization of L(1) C Dy, we employed a
convexification procedure of the gradient (4.56). This may lead to conservatism since it increases
the number of LMI vertices to be solved simultaneously. An interesting special case occurs when
the Vs (s € Ian) are symmetric. Indeed, in this special case, Vs € Ion, conditions (4.59) are
equivalent by Schur complement, alleviating the pessimism introduced by such convezification. In
all the other cases, such convezification procedure should be employed with discretion, i.e. when
the T-S fuzzy model involves few rules or when the membership function involves few premises

variables. Otherwise, the manual procedure given in Theorem 4.1 should be preferred.

4.3.3 Gain scheduled event-triggering mechanism to enlarge the closed-loop
domain of attraction

From the application of Theorem 4.1 or Theorem 4.2, let us point-out that D}, obtained for
a given 7, is a contractive Lyapunov level set for the designed closed-loop dynamics. Taking
benefit of such a feature, it is possible to propose a simple gain scheduled event-triggering control
mechanism to maximize the guaranteed domain of attraction in sampled-data control design.
To do so, let nx, € {M1,72,...,7;} be an ordered sequence (0 < 7 < 72 < -+ < 7,4) of chosen
values for triggering the sampling intervals n < 7. Then, for each of these values, solve (offline)
the conditions of Theorem 4.1 or Theorem 4.2 and store their solutions, Vv € Z, and Vi € Z,, as
P/, K and X,. Therefore, for each P/, we can get £V(¢,), with ¢, < 1 (manually optimized

when employing Theorem 4.1) or ¢, = 1 (with Theorem 4.2), and we define:
~ q
D; = | JL9(c) (4.71)
v=1
For initial conditions starting in f); and then at each sampling instant ¢, let:

q(tr) = sg%){xT(tk)P;x(tk) <e<1} (4.72)

We define the following activation function, Vv € Z:

1, if v = q(ty)

) (4.73)
0, otherwise

o (2(tr)) = {
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Then, we propose the gain scheduled event-triggering sampled-data controller given by:

u(®) = Y- i alt ) KEX; (1) @.1)
v=1
where the actual sampling interval g = tx11 — tx = 7;(¢,) is updated at each sampling instants
te.

Therefore, with the considered continuous-time T-S descriptor (4.5), closing the loop with
the control law (4.74) ensures the asymptotic stabilization for all initial conditions taken in D
given in (4.71).

The benefit of using such a simple gain scheduled event-triggering mechanism will be illus-

trated through simulation examples in the next section.

4.4 Illustrative Examples

In this section, to evaluate the effectiveness of the LMI-based sampled-data controller design
conditions proposed in Theorems 4.1 and 4.2, we will consider benchmark models of the inverted
pendulum on a cart described in Chapter 3 (see section 3.5.2), which nonlinear dynamics are
given by (3.52). First, for comparison purpose and to highlight the improvements raised by the
conditions proposed in this chapter, we will consider the approximated two rules T-S fuzzy model
investigated in Section 3.5.2. Then, because it has been shown that this approximated models is
not suitable to guarantee the stabilization of the full nonlinear model of the inverted pendulum
(3.52) (especially when large sampling intervals are considered), a matching T-S descriptor
model is then studied. For both these cases, the estimations of the domain of attraction will be

provided with discussion for their enlargement.

4.4.1 Benchmark of the approximated fuzzy model of the inverted pendulum

To illustrate the effectiveness of the proposed sampled-data control approach with saturated
actuators, let us first consider as benchmark the same approximated two rules T-S fuzzy model
of an inverted pendulum on a cart, drawn from (Wang et al., 1996) and presented in Section
3.5.2. For the sake of our study let us assume the actuator saturation as u(t) < @. This model,
valid in D, defined by |z1(t)| < 7/2 and |z2(t)| < 7, is given by:

2
z(t) = Z hi(z(t)) (A;x(t) + Bisat(u(t))), (4.75)
i=1

with the matrices Ay, A2, By and Bj given in (3.53), and the membership functions «; and ao

given in (3.54).
Recall that, |hi(z1(t))] = |ho(z1(t))] = %|z1(t)| and, since |£1(t)| = |z2(t)] < 7 defining D,
in (4.11), we always have |hi(x1(t))| < 2 = ¢;. Therefore, solving the conditions of Theorem 4.1,
using YALMIP (Lofberg, 2004) and MOSEK (ApS, 2019), with e; = 5.6, €2 = 1.2, e3 = 0.33 and

u = 150N provides the following sampled-data PDC controller gains and Lyapunov matrices
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with the obtained maximal sampling interval n = 50ms:

Ky = [8‘1111 711'9923} P [260.2908 73.6741] |

73.6741 24.1746 l01560 0 4455]
X=|" ‘ .

9252.0369 74.0583 ~|—0.4350 1.4826
74.0583  25.4756°

Ky = [33.0175 67.2186} Py = [

As shown in Table 4.1, the maximal sampling interval obtained from Theorem 4.1 or Theorem

4.2 outperforms all the previous considered related results, excepted Theorem 3.1 which gives

the same value. Moreover, from the definition of the membership functions (3.54), we have V| =

—Vy = [% 0} g symmetric, making relevant the use of the optimization procedure proposed in

Theorem 4.2 (see Remark 4.6). This explains why the same 77 = 50ms is obtained from both
Theorem 4.1 and Theorem 4.2.

Table 4.1: Comparison of maximal 7 obtained with previous studies.

Method 7 (ms)
(Yoneyama, 2010) 9
(Zhu and Wang, 2011) 13
(Zhang and Han, 2011) 16
(Zhu et al., 2012) 19
(Gunasekaran and Joo, 2019) 22
(Zhu et al., 2013) 24
(Cheng et al., 2017) 42
Theorem 3.1 50
Theorem 4.1 50
Theorem 4.2 50

To verify the effectiveness of the above designed sampled-data controller law (4.7), a sim-
ulation is performed in MATLAB® with the two rules T-S model with actuators saturation.
For this simulation, with the initial condition zg = [0.5 0} T, the state trajectories and control
signals are depicted in Figure 4.1. We can observe that the sampled-data controller successfully

stabilizes the T-S model although, during the first few sampling intervals, it saturates.

However, recall that the conditions of Theorem 4.1 and Theorem 4.2 only guarantee the
local stabilization. Therefore, the domain of attraction of the closed-loop sampled-data system
must be characterized. In this regard, it is important to highlight that, with exception to our
preliminary works (Lopes et al., 2021b) and (Lopes et al., 2021a), no other related works on
sampled-data controller design provide such analysis.

Figure 4.2(b) provides an estimate of the region of attraction D} for the previously designed
sampled-data controller. This one is found really small regarding to D, and Dy, because of
the small value of u = 150N (regarding to the model parameters) considered for the input
constraints. Hence, to enlarge the domain of attraction, one may enlarge u. Figure 4.2(a) shows

the results obtained with u = 1500/N. In this case, the following Lyapunov and gain matrices
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Figure 4.1: Simulation of the state trajectories of the inverted pendulum on a cart with the
designed sampled controller, together with the respective saturated input control signal,
updated at fixed sampling instants n = 1 = 50ms.

are obtained from solving the conditions of Theorem 4.2:

—82.6056 305.3161

28.5697 —75.6862
—75.6862 301.3742|°

Ky = [0_2522 —0-1898} P = [32.2726 —82.6056] |

0.0049 —0.0136
—0.0135 0.0543 |-

K> = [11704 8.6647), P, = [

This shows that the choice of w influences a lot the enlargement of the domain of attraction.
Reciprocally, such analysis may be useful for designers to scale the actuators. To illustrate
this feature, Figure 4.3 shows the domains of attraction obtained for several values of u (i.e.,
u € [150, 200, 300, 400, 500, 750, 1000, 1250, 1500, 2000]), with the largest admissible value of 7 =
50ms. This figure shows that, for « > 1500/N, there is no major improvement as, for 7 = 50ms,
the successive estimations D C D, keep closely the same shape and reach the edge of D, NDy.

It is to be noticed that the above described tests have been obtained for the maximal value
7 = 50ms, which constitutes the limit of conservatism achieved, i.e. the most constraining
case for solving the LMI-based conditions of Theorem 4.1 and Theorem 4.2. This critical case
explains why we get P close to P>, making the shape of D} constrained to be almost an ellipsoid.
In the opposite, it is also possible to set a smaller value of 7 < 50ms to relax the LMI-based
conditions of Theorem 4.1 and Theorem 4.2. To illustrate this possibility, Figure 4.4 shows the
estimation D} of the domain of attraction obtained for 7 = 1ms and for several values of u (i.e.,
u € [150, 200, 500, 1000, 1500, 2000, 5000, 6000, 7500, 10000]). It is observed that, for small values
of 17 and large values of u, the shape of D} is now non-quadratic.

At this step, the above tests clearly show the influence of the input saturation on the esti-
mation D) of the domain of attraction. Let us now focus on the influence of assuming maximal
allowable sampling intervals. Figure 4.5 shows the estimates D} obtained with w = 10000V for
several values of 77 (i.e., 7 € [1,5,10, 15,20, 25, 35,45, 40, 50]). This also clearly shows that the

choice of 7 influences the shape of D;.
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a) with o = 150N a) with o = 1500 N

z1(t) z1(1)

Figure 4.2: Estimates of the region of attraction for two sampled-data controllers designed
from Theorem 4.2 to stabilize the T-S model (4.75), assuming different actuators’ saturation
limits (), with its resulting closed-loop trajectories for several initial conditions.

Estlmates of D for 77 = 50ms

i P¢ 7' : = 150 N and area P(a) = 0.0490
2ri i =200 N and area P(a) = 0.0906
i i = 300 N and area P(a) = 0.2052
101 1 = 400 N and area P(a) = 0.3581
= ! ! = 500 N and area P(a) = 0.5538
& or E E | = 750 N and area P(a) = 1.2362
Ak i = 1000 N and area P(«) = 1.9250
i i = 1250 N and area P(«a) = 3.6004
2 i = 1500 N and area P(a) = 4.5931
i i = 2000 N and area P(a) = 4.7816
S T — A — [

Figure 4.3: Estimates of the Region of Attraction for the maximal allowed sampling interval
found from Theorem 4.1, (7 = 50ms) assuming various actuators’ saturation limits, (i. e.
considering different values for «).

Now, from this last test, let us recall that each D}, obtained for each 7, is contractive for
its respective closed-loop dynamics since it represents the Lyapunov level set £(1). Taking
benefit of such a feature, we consider the gain scheduled event-triggering mechanism proposed
in Subsection 4.3.3 to further extend the guaranteed domain of attraction in sampled-data
control design. To do so, solving Theorem 4.2 for each n € [1,5,10, 15,20, 25, 35,45, 50], then
storing the results as P/, K/ and X, (v € Z;2 and Vi € Zy). We can apply the gain scheduled
event-triggering controller (4.74) to the approximated T-S fuzzy model (4.75) with guaranteed
closed-loop stabilization for initial conditions taken in D¥ given in (4.71). Figure 4.6 depicts
the trajectories of the closed-loop system, the input signals and the evolution of the scheduled

sampling intervals with the proposed gain scheduled event-triggering strategy, with two initial

113



Chapter 4. Local Aperiodic Sampled-data Control of T-S Descriptors with Input Constraints

Estimates of D, for 7 = 1ms

= 10000 N and area P(a) = 8.3878

3MMDy 7 — S
i ( i = 150 N and area P(a) = 0.6038
2ti D; i =200 N and area P(a) = 0.9437
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1l < N = 1000 N and area P(a) = 5.0335
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Figure 4.4: Estimates of the Region of Attraction for a sampling interval 7 = 1ms found from
Theorem 4.2, assuming various actuators’ saturation limits, (i. e. considering different values
for u).

Estimates of D, for u = 10000 N
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-t 1 ——— 7 = 35ms and area P(a) = 7.4561
! !| ———7 = 45ms and area P(a) = 6.7625
27 E E | ———1% = 50ms and area P(a) = 6.3445
-3¢ L?ﬁ ................. i

Figure 4.5: Estimates of the Region of Attraction for several maximum allowable sampling
interval 77 found from Theorem 4.2, assuming « = 10000V .

conditions taken at the border of @Z. We clearly see that, the closed-loop system is stable and,
from the first few samples, the selected 7, is small, then increases until the maximal allowed
value 7 = 50ms (obtained from Theorem 4.2). These shows that this control strategy is high
demanding in terms of computation only for the first few samples (during transients), while it
quickly becomes undemanding with large sampling intervals. However, we can also notice an
important chattering when the maximal allowed sampling period 7, = 50ms is selected. This
mainly due to the fact that this value is critical in terms of conservatism of the proposed LMI-
based conditions, making the designed closed-loop closer to the limit of stability. To mitigate
this effect, an easy way is to avoid going to such critical values. Figure 4.7 shows the trajectories
of the closed-loop system, the input signals and the evolution of the scheduled sampling intervals,

with transient improvements from the proposed gain scheduled event-triggering strategy with
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s € [1,5,10, 15,20, 25, 35).

Estimates of D, for . = 10000 N

] 10007
i_
I g 500
{ =
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I I
' -500 ,
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1 (t) Time (s)

Figure 4.6: Estimates of the Region of Attraction DZ (highlighted in gray), control signal and
selected sampling period 7 for the gain scheduled event-triggering sampled-data controller
proposed in (4.74) and designed from Theorem 4.2 for the 2 rules T-S model with a maximal
allowed sampling interval 7 = 50ms.

Estimates of D, for u = 10000 N Input signal u(t)
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E;; 500 -
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Figure 4.7: Estimates of the Region of Attraction ZND; (highlighted in gray), control signal and
selected sampling period 7 for the gain scheduled event-triggering sampled-data controller
proposed in (4.74) and designed from Theorem 4.2 for the 2 rules T-S model with a maximal
allowed sampling interval 7 = 35ms.

All of these tests and simulation illustrate the potential of the proposed sampled-data con-
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troller design for T-S fuzzy systems with significant improvements regarding to the previous
results presented in Chapter 3 and from the literature. However, as mentioned in Chapter 3
(see the end of Subsection 3.5.2), the sampled-data controller obtained in this subsection only
apply for the approximated model (4.75) from which it is designed. As a matter of fact, there
is no guarantee that it stabilizes the original nonlinear system. (3.52). Even if it is useful for
comparison purpose, this highlights the limitation of using such approximated standard T-S
fuzzy models, which should be circumvent by considering an exact T-S model in the descriptor

form, as it will be shown in the next subsection.

Remark 4.7. From the conditions proposed in (Lamrabet et al., 2019), which is the unique
previous study found aiming at proposing sampled-data controller design for T-S systems under
saturating actuators, we surprisingly obtained a maximal 7 = 164ms. Unfortunately, when
performing the simulation with the gains obtained from (Lamrabet et al., 2019), we observed
an unstable closed-loop behavior with a strongly saturating input. Moreover, in this paper, no
characterization of the closed-loop domain of attraction is provided and, because the authors did
not select a looped LKF, this task is pretty much harder or even impossible. Hence, failing to
reproduce the claimed results in (Lamrabet et al., 2019), we assume irrelevant a fair comparison
with this work.

4.4.2 Matching T-S descriptor model-based sampled-data controller design

In this subsection, we will consider the full nonlinear model of the inverted pendulum on
a cart drawn from (Cannon, 1967; Wang et al., 1996), given by the dynamic equation (3.52).
Let us consider the state vector z(t) = {xl(t) xg(t)}T, where z1(¢) is the angular position of
the inverted pendulum with regard to the erect position, zo(t) = #;(t) is the angular velocity
(rad/s). The nonlinear dynamics (3.52) can be rewritten as a nonlinear descriptor (4.1) with:

Emm—ﬁ4l ’ L

2
5 — aml cos® z1(t)
. , (4.76)
0

Ax(t)) = [gSinll(t) —“Tmlm(t) sin(2x1(t))] , B(z(t)) = l—acosxl(t)] '

z1(t)

where g = 9.8 m/s? is the acceleration of the gravity, m = 2 kg is the mass of the pendulum,
M = 8 kg is the mass of the cart, [ = 0.5 m is the half length of the pendulum, u(t) is the input
actuator force (N) applied to the cart and a =1/(m + M).

Recall that the inverted pendulum is not controllable for z; = 7. Hence, to fairly cope with
the previous example, in order to derive a T-S descriptor model (4.5) matching (4.76) we chose
to restrict the validity domain D, to |z1| < 09 = 227/45 rad and |x2| < 7 rad/s. Moreover, note

that the nonlinear matrices (4.76) involve four nonlinear entries, bounded on D, given by:
fila1(t) = cos® a1 (t) € [f1, fil, fr = cos® O, f1 =1,
fa(x(t)) = z2(t) sin(2z1(t)) € [fo, fo, fo = —7, fa=m,
() = 00O g py =S (70
(

&>

Ry o, P
fa(z1(t)) = cosa1(t) € [fa, fa], f1 = cosby, f1=1.
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Hence, Vz(t) € D,, applying the sector nonlinearity approach on each f;(z(t)), we have:

fe(a(t)) = wi (x(t)) fo + wi (x(t)) fo, VE € Ty (4.78)
: fe(=()— 1, fo—fola
with w}(z(t)) = # >0, wi(z(t) = %(ﬁ(t)) > 0, and where w}(z(t)) + w?(z(t)) = 1.
Let us notice that, Va(t) € D,, wi(z(t)) closely matches w}(x(t)) (and so wi(z(t)) and

w?(x(t))), as shown in Figure 4.8. This fact allows to fairly reduce the number of vertices from

r = 2% to r = 23, to obtain a tighter closely matching T-S descriptor (4.5) to represent the
nonlinear dynamics (3.52) (than the approximated two rules T-S fuzzy models considered in

Subsections 3.5.2 and 4.4.1), with the membership functions:

ha(a(t)) = ws (x(t))wy ((8))wi (x(1), ha(2(t)) = ws(x(t))wy (z(t))wi (=()),
ha(@(t)) = ws(a(t))wd (2(t))wi (2(1), ha(z(t)) = w3 (2(t))wi (z()wi (2(2)),
hs(2(t)) = wi (a(t))wy (2 (t))wi (2(1), he(z(t)) = w3 (2 (t) Jwy (z () wi (2(2)),
ha(2(t)) = wi ((t))ws (2(t))wi (2(1), hs(z(t)) = w3 (2(t))w (z () wi (2(2)).

and the vertices given by:

1 0
Ey = E4 = E¢ = Eg [0 i},f—amlﬁ]’

0 1] 0 1
Ay = Ay = — am LAz = Ay = - am ,
P [ng —amlfy T L?f:s Qlle

0 1] 0 1
A - - am aA A - am )
oo lgfs —amlfy T [Qf glf2]
0 | 0

By = By = By = By = [—aﬁ; Bs = Bs = By — Bg — l—afj'

Based on the obtained descriptor model, our goal is now to design a sampled-data controller
(4.7) for the stabilization of the nonlinear model of the inverted pendulum (3.52). To do so, we
will apply Theorem 4.1 together with Theorem 3.2, but remind that they need, as parameter,
an estimation of the bounds of the time-derivatives of the membership functions. As quoted in

Remark 4.2, these bounds can be approximated as:

Oay(z) n Oay(r) gsinxy — amlzdsin(271)/2 — acos r1u

2 Oz Oz 41/3 — aml cos? xq

{z€D,,u€Dy}

D’WGL

(4.79)

It is worth to highlight that, to estimate the bounds ¢, only an assumption on the input

saturation u of the inverted pendulum is needed. Hence, to illustrate this fact and to evaluate

its effect on the conservatism of the conditions, two cases are considered in the sequel with
u = 150N and u = 600N .

Case 1: Assuming an input saturation 4 = 150N, we obtain ¢1 = ¢3 = 5.1271, ¢3 = g =
3.1851, ¢5 = ¢7 = 1.3859, and ¢¢ = ¢ = 4.5953, which provide Dy (see (4.11)). Then,
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Figure 4.8: Plots of wi(z), w}(z), w?(z) and w?(z) for 1 € D, illustrating that w3 () closely
matches wj}(x) (and so w}(z) and wi(z)).

solving Theorem 4.1 with the T-S descriptor model of the inverted pendulum, we get a
maximal admissible sampling interval 77 = 13 ms with €1 = 25, e9 = 0.1, €3 = 0.50 (see

Remark 4.3) and the following Lyapunov and sampled-data controller gain matrices:

p _ |941.0376 167.4962] , 0428992 167.4593| , _ [940.9121 167.5113
17 1167.4962 61.0837 |72~ |167.4593 61.3492 |’ "%~ |167.5113 61.1039 |’

P, — 942.9184 167.4391 po— 953.8476 166.9646 pe— 940.9296 169.4752
4711674391 61.2905 | T° T [166.9646 61.3769 |’ ° |169.4752 63.2167 |’

p_ 953.3323 167.0351 P — 940.2385 168.6209 Y — 0.0517 —0.0812
T 1167.0351  61.1785 |7 ° T |168.6209 62.4421 |’ T |—0.1398  0.4859 |’

K, = [4.4574 129.4442} Ky = [5.5659 137.8826} Ky = [4.6157 138.0546} :
K, = [5.1418 138.1374} K5 = [15.7862 229.1195}  Kg = [13.0720 236.1088} :
Ky = [16.5081 229.0332] Ky = [15.4187 231.6737] .

Also, for comparison purpose, with the same parameters but with 7 = 1 ms, we obtained

the following Lyapunov and sampled-data controller gain matrices:

P 301.8295  91.8532] P 303.5764  92.2972] p, _ [301.6727 91.8517]
17 1 91,8532 30.0210(° "2 7 | 92.2972 30.1343[° "~ | 91.8517 30.0380|’
P 303.6271  92.3014] P 319.1702  94.5980] P _ [302.7476 92.7151]
171923014 30.1318[7 77 T [ 94.5980  30.4300|° "% | 92,7151 30.4858|
b _ (3288480 97.2506] , _ [303.9880 93.4076] . [ 12460 —2.3637
"7 | 97.2506 31.0358|" " ® T | 93.4076 30.8629|  © ~ |-3.7791 7.7287 |’

K| = [75.7623 134.7206] , Ky = [73.8606 138.9397| , K3 = [61.4847 186.6479} ,

Ky = [72.7603 139.7980} K5 = [137.9217 209.7378: Ko = [120.1067 230.4720} ,
Ky = [113.4025 260.9241] Ky = [79.3999 309.5599] :

From these results, Figure 4.9 shows the closed-loop domains of attraction obtained re-
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spectively for 7 = 1ms and 7 = 13ms. We can notice that these are pretty small, but of
course, recall that w = 150V, which is a really small value of the input saturation regarding
to the overall mass of the considered benchmark (9kg, including the inverted pendulum

and the cart). Hence, we may expect better results enlarging u as proposed in the next

case.

(a) for @ = 150N and 7 = lms (b) for 4 = 150N and 77 = 13ms

Figure 4.9: (a) Estimated domain of Attraction D% for the full closed-loop nonlinear model
(3.52) under the designed sampled-data controller designed from the T-S descriptor (4.1) (with
(4.76)).

Case 2: Assuming an input saturation 4 = 600N, we obtain ¢1 = ¢3 = 11.2155, ¢ = g =
5.8319, ¢5 = ¢7 = 2.5238, and ¢ = ¢3 = 5.8610, which provide Dy (see (4.11)). Then,
solving Theorem 4.1 with the T-S descriptor model of the inverted pendulum, we get a
maximal admissible sampling interval 7 = 8 ms with the same €; = 25, 2 = 0.1, €3 = 0.50
(not optimized here just to compare the results with the previous case) and the following

Lyapunov and sampled-data controller gain matrices:

p _ |79.5568 13.2010) , _ [79.7112 13.1907|  _ [79.5535 13.2016
1= 113.2010 4.8335 |7 "2~ [13.1907 4.8456 |~ 2~ |13.2016 4.8338 |’
~ [79.7095 13.1904 _ [80.6059 13.1305] , _ [79.8200 13.3155
47 113.1904 4.8448 |7 70 T |13.1395 4.9034 | "% T [13.3155 4.9913 |’

P _ |80.5144 13.1363 ~ [80.0276 13.3622] x| 0:0054  —0.0078
"7 131363 4.8789 |’ "% [13.3622 5.0690 |’ |-0.0143 0.0544 |’

K, = [0.5531 20.1809] Ko = [0.5663 20.2454: K = [0.5459 21.0656] ,

Ky = [0.5445 20.2541] K5 = [2.0693 32.3770:  Kg = [1.8999 32.8605] ,
K7 = [2.1131 32.5504} Ky = [2.2340 32.3729} .
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Again, with the same parameters but now with 7 = 1ms, we obtained the following

Lyapunov and sampled-data controller gain matrices:

30.9983  9.6668 30.9987 9.6669
Pl_l ]’PQ_[9.6669 3.1160]’13

9.6668 3.1159

9.6669 3.1160

10.2084  3.2401

l30.9983 9.6668]
3 — )

9.6668 3.1159

10.0517  3.2597

P, = [30.9987 9.6669] P [33.4916 10.2084] Pe— l31.9907 10.0517] ’

35.7916 10.9124]

Pr = l10.9124 3.4349 | T8 = [

9.9454  3.2406

—0.7847  1.5620

31.6491 9.9454] X_l0.2529 —0.4866]

K| = [17.1280 17.0347| , Ky = [13.2061 18.1543} Ky = [16.1393 18.5002

]
Ky = [14.1980 16.8230: K5 = [17.6417 21.2581] , Kg = [18.1244 18.5184] ,

Ky = [18.4048 21.8755} Ky = [17.1452 19.8886} .

From Figure 4.10, we clearly observe enlargements of the guaranteed closed-loop region of

attraction (with u = 600N) regarding to the previous case (where u = 150N). Moreover,

it is straightforward that the region of attraction obtained with 7 = 1ms is significantly

larger that the one obtained with the maximal admissible value n = 8ms found for this

case. This motivates the use of the gain scheduled event-triggering mechanism, proposed in

Subsection 4.3.3, in order to take benefit of large domain of attraction for initial conditions

taken as far as possible from the origin, then gradually reducing the computational demand

by increasing the sampling intervals while getting closer to the equilibrium.

(a) for w = 600N and 77 = 1ms

(b) for &« = 600N and 7 = 8ms
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Figure 4.10: (a) Estimated domain of Attraction D% for the full closed-loop nonlinear model
(3.52) under the sampled-data controller designed from the T-S descriptor (4.1) (with (4.76)).

Figure 4.11 shows the simulation results obtained from the application of the proposed

gain scheduled event-triggering mechanism. Additionally, Figure 4.12 depicts the state
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4.4. Tllustrative Examples

time response and the overall behavior of the successive Lyapunov-Krasovskii functions
(evaluated at each sampling instant ¢ = ¢; and selected according to the gain scheduled
event-triggering mechanism) of the designed sampled-data closed-loop system with the
initial conditions z7(0) = [—0.9610 3.0550|, taken at the edge of D¥. Recall that each
level sets £9(1) (¢ € Tg) composing D} are contractives. This is why the behavior of the
successive Lyapunov-Krasovskii functions, selected from the event-triggering laws (4.72)
and (4.74), shows jumps when the state trajectories cross these successive level sets, while
otherwise monotonously decreasing. All these simulations confirm the effectiveness of the
proposed sampled-data controller design procedure and event-triggering mechanism for

T-S descriptors.

Input signal u(t)

3 i 200 ‘
1 D, 2(0) = [~0.9610 3.0550]"
! 150 | 2(0) = [0.9448 — 2.8090]" | 1
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Figure 4.11: Estimates of the Region of Attraction DZ (highlighted in gray) for the gain
scheduled event-triggering sampled-data controller proposed in (4.74) and designed from
Theorem 4.2 for the descriptor (4.1) system with (4.76) and the maximal allowed sampling
interval 7 = 8ms.

Remark 4.8. From the full T-S descriptor model of the inverted pendulum, we obtain the max-
imal admissible sampling intervals 7 = 13ms for u = 150N and n = 8ms for u = 650N, which
are significantly less than the one obtained from the approzimated T-S model (4.75) (1 = 50ms).
Nevertheless, as shown in the case study of Chapter 3 (see the end of the Subsection 3.5.2), only
the descriptor-based sampled-data system is accurately stabilizing the original nonlinear system
(3.52). Moreover, from the proposed methodology, a conservatism trade-off between the mazximal
admissible sampling interval n and the bounds of the time-derivatives of the membership func-
tions ¢y, (set here from the choice of u) can be done so that decreasing u allows to increase 1, but
the price to pay is a contraction of the estimate of the domain of attraction f)(’; (or vice versa).

To the best of the author’s knowledge, since the local sampled-data controller design for T-S

121



Chapter 4. Local Aperiodic Sampled-data Control of T-S Descriptors with Input Constraints

1 .
3 = T Thex
A x1 (rad) =
L zy (rad/s) =08
n \ —
S 21 -~
= )
S \ !
+ \ 2}
.i \ g 0.6
N s
= \~~.~-~
2 ot Srmemaa 3
i / £ 0.2
2
2
-1 S 0
0 0.5 1 1.5 2 0 0.5 1 1.5 2
Time (s) Time (s)

Figure 4.12: Closed-loop state responses and overall behaviour of the successively selected
Lyapunov functions of the nonlinear model (3.52) under the sampled-data controller design
from the T-S descriptor (4.1) (with (4.76)).

descriptors has not been previously addressed in the literature, excepted in our preliminary result
(Lopes et al., 2021b), this simulation study confirms the benefits of the proposed T-S descriptor

model-based sampled-data controller design methodology (with or without input saturation,).

4.5 Conclusion

In this chapter, from a convenient NQLKF candidate, relaxed sampled-data controller design
conditions for a class of regular nonlinear descriptors subject to actuators’ saturation have
been proposed. It is noticed that such class of systems is interesting to accurately represent
mechatronic systems, where sampled-data control is an inherent characteristic. Based on the
generalized sector condition, such nonlinear closed-loop sampled data dynamics can be rewritten
as regular T-S descriptors with time-varying delays and constrained inputs. The challenge being
to provide relaxed LMI-based conditions for this class of systems, extending the conditions
proposed in Chapter 3, useful bounding lemmas have been employed together with a second
order polynomial constraints. Also, it has been highlighted that such a sampled-data controller
design methodology is only valid locally in the T-S model based-framework. Therefore, a careful
analysis of the closed-loop domain of attraction has been provided along this chapter. First, for
the class of T-S descriptors subject to input saturation, an offline procedure has been proposed to
estimate the resulting closed-loop domain of attraction. Then, for the particular case of standard
T-S models, a systematic LMI-based optimization procedure has been proposed to realize such
an estimate. However, it has been pointed-out that such systematic estimation may bring
conservatism (see Remark 4.6), so it must be used with care, only for some particular appropriate
cases (small number of T-S vertices, triangular membership functions...). Furthermore, because,
for a given maximal allowed upper bound of the sampling intervals, the obtained estimation of
the domain of attraction can be quite small, a new gain scheduled event-triggering mechanism,

based on the characterization of several Lyapunov invariant level sets, has been proposed to
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4.5. Conclusion

further enlarge the resulting closed-loop sampled-data domain of attraction.

The effectiveness of these theoretical results has been illustrated through the example of
an inverted pendulum on a cart. First, to show the conservatism improvements with regard
to the results obtained in Chapter 3 and previous related studies from the literature, the local
sampled-data controller design for an approximated 2 rules fuzzy model of this benchmark has
been proposed, together with extensive estimations of the closed-loop domain of attraction,
for several cases (different upper-bounds of the sampling intervals and/or input saturation).
The obtained results shown a significant conservative reduction in regard to the previous ones.
However, recalling that the sampled-data controller designed from the approximated standard
T-S model may fail to stabilize the full nonlinear model of the inverted pendulum, a tighter
closely matching T-S descriptor model has been proposed, which succeeded to guarantee the
closed-loop stability, establishing the merit of the proposed methodology. However, for the
obtained maximal allowed upper bound of the sampling intervals, the resulting estimation of
the closed-loop domain of attraction has been found to be quite small, an illustration of the
proposed gain scheduled event-triggering mechanism has been provided, showing its efficiency

to enlarge the guaranteed sampled-data closed-loop domain of attraction.
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General Conclusion and Perspectives

Along this thesis, we are concerned with providing relaxed LMI-based design conditions to
stabilize a class of continuous-time nonlinear systems, represented by Takagi-Sugeno models,
and driven by digital devices. In this context, Chapter 1 has presented the preliminaries
on T-S model-based controller design, detailing important steps, such as the usual ways to
get a T-S representation. Also, aligned to the main goal of this thesis, basic notions on the
discretization of continuous-time T-S models have been presented, together with the basics on
stability and LMI-based controller design conditions, in both the continuous and discrete-time
frameworks. Then, some limitations of the standard discrete-time approach have been pointed-
out and the input-delay approach for sampled-data controllers has been introduced as an elegant
alternative to cope with such issues. Once again, the main limitations of this approach in the
T-S model framework, such like the locality of the results or the overall conservatism of the
design conditions, have been highlighted. Summarizing, the critical analysis presented in this
chapter allowed the maturation of the problem statement considered in this thesis, which can
be classified into two balanced research lines presented as follows.

First, acknowledging that discrete-time model-based approaches are mainly considered in
industrial applications because of their versatility and easy implementation in industrial con-
trollers, some improvements for discrete-time T-S model-based controller design were proposed
in Chapter 2, with the goal of providing relaxed sampled-data set-points tracking controller
design conditions for discrete-time nonlinear models under saturating actuators. In this chapter,
a convex optimization methodology to design discrete-time PI-like controllers is presented. The
main contribution of Chapter 2 extends our preliminary results in (Lopes et al., 2018), by
including an anti-windup control action to dismiss the slow state variation requirement and, as
a consequence, achieving less conservative estimates for both the region of attraction and the
allowable amplitude changes in the set-point. In this context, the proposed approach can access
an amplitude bound for exogenous signals such that the trajectories of the closed-loop system
remain in the region of attraction, ensuring local asymptotic stability through a non-quadratic
Lyapunov function. Also, the proposed fuzzy PI-like control law holds a PDC structure while the
considered anti-windup fuzzy gain has a non-PDC one, which can be efficiently implemented
in embedded industrial applications (Sousa et al., 2018). The proposed approach has been

validated in simulation as well as experimentally on the level control of a two coupled nonlin-
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ear tanks system available at the CEFET-MG, with significant improvements regarding (Lopes
et al., 2018).

If the discrete-time T-S model-based controller design approach was considered because of
its appealing conceptual simplicity, especially when the implementation of the controller for
industrial applications is required, it was also highlighted that this approach is only suitable
when a small enough fixed sampling period can be set regarding the plant dynamics. However,
recall that assuming fixed sampling periods is sometimes practically unrealistic. Indeed, even in
a point-to-point digital control topology, aperiodic sampling may arise because of clock inaccu-
racy and/or system architecture characteristics such as real-time scheduling, which can induce
jitters, imperfect synchronization or computation delays (Wittenmark et al., 1995; Hetel et al.,
2017). Also, when dealing with Networked Controlled Systems (NCS), in which sampled-data
systems are controlled through communication networks (Hetel et al., 2017; Fridman, 2014a),
aperiodic sampling intervals are almost inevitable. Nonetheless, one may also argue that, when
large sampling periods have to be considered, the direct discrete-time model-based approach
may fail to guarantee the closed-loop inter-sampling stability (Hetel et al., 2017). To circumvent
these drawbacks, the alternative of the input-delay approach for sampled-data control has been
investigated in Chapter 3 and Chapter 4 in the continuous-time T-S model-based frame-
work. From this approach, the nonlinear sampled-data closed-loop dynamics is rewritten as a
continuous-time T-S system with time-varying input delay, as proposed in the linear case, see
e.g. (Fridman et al., 2004; Seuret, 2009).

Associated with the fact that most of real applications exhibits nonlinear dynamics, in the
aforementioned chapters an extension of this approach for T-S model based framework is pre-
sented, and the conservatism reduction is verified by searching the maximal allowable sampling
interval [0, 7], for which the closed-loop dynamics stability is guaranteed.

In Chapter 3, our first contribution to the synthesis of sampled-data controllers for continuous-
time T-S models, based on the input-delay approach, has been presented. Following the previous
related works, in this chapter, relaxed LMI-based conditions for the design of stabilizing aperi-
odic sampled-data controllers for continuous-time T-S systems has been proposed. To achieve
this goal, a convenient augmented looped LKF candidate has been selected, together with the
application of bounding lemmas, such as extended Jensen’s inequalities, the Finsler’'s Lemma
and some convex quadratic polynomial constraints. Additionally, a generic relaxation scheme,
extending the well-known Tuan’s Lemma, has been proposed to handle the asynchronous dou-
ble summation structure for parameter dependent closed-loop stability conditions, which occurs
in the considered continuous-time T-S model-based sampled-data control context. As usual in
related sampled-data control studies, the conservatism reduction is investigated in this chapter
by searching the maximal allowable sampling interval [0, 7], for which the LMI-based conditions
remain feasible. The benefit of the proposed sampled-data controller design methodology with
regard to conventional discrete-time T-S model-based design has been illustrated through the
simulation of a 1-DOF inverted pendulum benchmark. Then a comparison has been provided,

showing a significant enlargement of the maximal allowed sampling interval regarding to several
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previous related results (Yoneyama, 2010; Zhu and Wang, 2011; Zhang and Han, 2011; Zhu et al.,
2012; Gunasekaran and Joo, 2019; Zhu et al., 2013; Cheng et al., 2017), using the benchmark
of a simplified T-S fuzzy model of an inverted pendulum on a cart. Also, an experimental vali-
dation of the proposed sampled-data design methodology is performed on the Quanser® AERO
platform (Quanser, 2016), illustrating its effectiveness on a practical system. If the results of
this chapter have been shown effective to reduce the conservatism of the design conditions by
enlarging the maximal admissible sampling interval, it is also pointed-out that such approach
suffers from locality, which require further investigations of the closed-loop domain of attraction,

as proposed in the next chapter.

In Chapter 4, from a convenient NQLKF candidate, further relaxed sampled-data controller
design conditions for a class of regular T-S descriptors subject to actuators’ saturation have been
proposed. Indeed, despite standard T-S models, such a class of systems is often considered to
more accurately represent a larger class of nonlinear systems, especially for mechatronic systems,
where constrained sampled-data control is an inherent characteristic. Based on the generalized
sector condition, the nonlinear closed-loop sampled data dynamics can be rewritten as regular
T-S descriptors with time-varying delays and constrained inputs. The challenge was to provide
relaxed LMI-based conditions for this class of systems, extending the conditions proposed in
Chapter 3, together with a careful analysis of the closed-loop domain of attraction. First, for
the class of T-S descriptors subject to input saturation, an offline procedure has been proposed
to estimate the resulting closed-loop domain of attraction. Then, for the particular case of stan-
dard T-S models, a systematic LMI-based optimization procedure has been proposed to realize
such an estimate. However, it has been pointed-out that such systematic estimation may bring
conservatism (see Remark 4.6), so it must be used with care, only for some particular appropriate
cases (small number of T-S vertices, triangular membership functions...). Furthermore, because,
for a given maximal allowed upper bound of the sampling intervals, the obtained estimation of
the domain of attraction can be quite small, a new gain scheduled event-triggering mechanism,
based on the characterization of several Lyapunov invariant level sets, has been proposed to
further enlarge the resulting closed-loop sampled-data domain of attraction. Along this chapter,
the results have been validated in simulation through the benchmark of an inverted pendu-
lum, first, with the same approximated T-S fuzzy model considered in Chapter 3, to fairly
highlight the conservatism improvement and to illustrate the proposed systematic approach to
estimate the sampled-data closed-loop domain of attraction. Then, because it has been shown
that controllers designed from such an approximated T-S fuzzy model may fail to stabilize the
full nonlinear model, a closely matching T-S descriptor model has been proposed. From it, the
so designed sampled-data controller has been shown to successfully stabilize the full inverted
pendulum nonlinear model, but in a quite small guaranteed estimation of the closed-loop domain
of attraction for the obtained maximal allowable sampling interval. Hence, to further enlarge
the resulting sampled-data closed-loop of attraction, the benefit of the proposed gain scheduled

event triggering mechanism is illustrated.
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Summarizing our contribution in the field of sampled-data control for T-S models, let us
point-out that, to the best of the author’s knowledge, no previous results were found addressing

the following points:

e the T-S model-based sampled-data controller design with actuators’ saturation; excepted
the work of (Lamrabet et al., 2019), which did not provide any estimations of the closed-

loop domain of attraction,

e the resulting estimation of the sampled-data closed-loop domain of attraction with enlarge-
ment procedures, obtained thanks to the consideration of a convenient looped LKF'; except
very recent papers (Coutinho et al., 2021; Ma et al., 2021), published in the late stage of
this thesis, who provide some interesting results that would merit further investigations

and comparison with the present proposal,

o the extension of the T-S model-based sampled-data controller design methodology to the
class of nonlinear descriptors, while these have been shown interesting to model mecha-

tronic systems.

Also, along the manuscript, the proposed simulations and experimental results have es-
tablished the merit of the proposed T-S model-based sampled-data approaches, in both the
discrete-time and continuous-time framework. However, there are still some limitations of the

proposed approaches, which can be discussed to provide some perspectives of this work.

Regarding the Direct Design approach for discrete-time systems, even if an abundant lit-
erature already exists, there are still points of interests that catch our attention for further
improvements. First of all, like many previous studies in the discrete-time framework, we con-
sider the discrete-time realization of a continuous-time T-S model based on the forward Euler
discretization approach (Chen, 1999). However, this discretization leading to approximations,
there is space for improvements. In this context, other discretization approaches exist, like Tustin
bilinear transforms (Ogata, 1995; Astrom and Hagglund, 201 1), using Taylor series expansions
or the Cayley-Hamilton Theorem (Heemels et al., 2010), or more recently using a descriptor
system-based approach in the T-S framework (Braga et al., 2019). Hence, a direct perspective
would be to evaluate the improvement raised by these approaches to our discrete-time PI-like
tracking controller design conditions, proposed in Chapter 2, especially with the expectation
of handling nonlinear systems involving faster continuous-time dynamics, or with the aim to
further enlarge the resulting estimation of the closed-loop domain of attraction. Then, another
perspective that have not been investigated during this PhD work, is event-triggering in the
discrete-time framework, see e.g. (de Souza et al., 2021). Such approach could be interesting
for some industrial applications where fast sampling periods with regard to the plant dynamics
can be set to mitigate computational or network workloads. Furthermore, in Chapter 2, we
have considered the tracking PI-like controller design problem while investigating the changes

in the resulting closed-loop domain of attractions with regard to the changes of set-points (i.e.
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piecewise constant desired trajectories). A very interesting perspective would be to propose an
extension to the more general case of dynamic trajectory tracking, but in this case the investi-
gation of the closed-loop domain of attraction would be much more complex since its estimate
should be dynamically evolving with regard to the desired trajectories at each sampling instant.
Of course, many further extensions of the proposed strategies in the discrete-time framework can
be done, for instance to cope with output feedback control, NCS with network-induced delays,

packet dropouts, cyber-attacks, and so on.

Now, let us focus more on the input-delay approach considered for the stabilization of
continuous-time quasi-LPV/T-S models. If the results presented in Chapter 3 and Chap-
ter 4 have shown the appeal of the proposed strategy, one must fairly infer its main limitation,
which is the extensive computational complexity of the proposed LMI-based conditions. Indeed,
like many attempts to reduce the conservatism in the T-S model-based framework, providing
relaxed LMI-based conditions often implies an increase of their computational cost. This is
particularly true when dealing with sampled-data control since one important way to relax the
conditions comes from the strategy employed to cope with their mismatched double-fuzzy sum
structure. To this end, we have proposed an extension of the well-known Tuan’s Lemma (Tuan
et al., 2001) but with an increase of the size of the LMIs. This can be regarded as a draw-
back but, this also allows to reduce the number of LMIs, i.e. balancing the computational cost.
Additionally, to further reduce the conservatism, we proposed looped Lyapunov-Krasovskii func-
tionals for sampled-data controller design, as well as usual bounding lemmas (Extended Jensen’s
inequality, Finsler lemma...), which introduce several slack decision variables. In the expectation
to balance the computational complexity, we may consider, as a first perspective of this work,
reducing the number of decision variables (especially free weighting matrices) while considering
some more recent and tighter bounding techniques dedicated to time-delayed systems like the
use of Wirtinger’s or Bessel-Legendre inequalities, see e.g. (Seuret and Gouaisbaut, 2013; Ariba
et al., 2018; Seuret and Gouaisbaut, 2018; Bourahala et al., 2019; Nafir et al., 2021). Of course,
the high computational costs brought by complex LMI conditions can be regarded as a drawback
for this kind of studies. Nevertheless, let us highlight that such computations are done offline.
Moreover, let us assume that this concern can be alleviated with the continuous growing of com-
putational capabilities of our daily use computers (i.e. personal computer or, when available,
high performance computers). To illustrate this point, note that with the approximated T-S
model of an inverted pendulum considered in Subsection 4.4.1, it took 12.97 seconds to solve
the conditions of Theorem 4.2 (we use for this test a late 2016 HP laptop having a 2.6GHz Intel
Core I7 processor and 16GB of memory). Otherwise, to solve the conditions of Theorem 4.1
with the full T-S matching descriptor model of the inverted pendulum (given in Section 4.4.2),
the computational burden was significantly more extensive, i.e. an average of 45 minutes per
tests, with the same computer.

Many other points can merit some attention to further reduce the conservatives of the pro-

posed LMI-based conditions for the T-S model-based sampled-data controller design. First, to
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handle the asynchronous double summation structure of the parameter-dependent LMI-based
design conditions, we have proposed an extension of the Tuan’s Lemma, summarized in Theo-
rem 3.2. This one is based on the application of the Peterson Lemma (Xie, 1996), which can
be further relaxed thanks to some of its extensions (Briat, 2008). Also, our approach implies
an overall extension of the size of the LMI conditions to be checked, and so possibly affects the
computational costs or conservatism for large-scale systems. In this context, some mitigation
would be welcome, for instance by considering the introduction of more information about the
membership functions, like a recently proposed approach to cope with the bounds of their time-
derivatives (Gunasekaran and Joo, 2019). Also, from the proposed looped LKF, the closed-loop
Lyapunov stability conditions leads to a quadratic inequality (second order polynomial in 7(t)),
whose negativeness is handled by some convexity conditions (Zhu et al., 2016), which are some-
what conservative. In a recent work (de Oliveira and Souza, 2020), some necessary and sufficient
conditions have been proposed to cope with such quadratic constraints. However, we intended
to apply them in our context but, with our sampled-data design approach, we faced sparsity in
the obtained LMI-based constraints, and so an unsolvable convex optimization problem. Once
again, following this way with more scrutiny can be interesting to further reduce the conser-
vatism. Another point which can merit further refinement is the gain scheduled event-triggering
mechanism proposed to enlarge the estimation of the guaranteed closed-loop domain of attrac-
tion. Indeed, noticing that the Lyapunov level set is found inside a compact set of the state
space defining the validity domain of the T-S model-based design, further improvements can
be obtained by optimizing this domain of validity for each scheduling conditions. This point
will be the subject of our next investigations. Finally, in the prospect of future practical ap-
plications, the proposed sampled-data controller design methodology can be extended to cope
with external disturbances, for instance by considering a Hy, criterion (see e.g. (Kim et al.,
2021; Bourahala et al., 2021), by considering static output-feedback controllers (Bouarar et al.,
2013), extending recently proposed event-triggering approaches (Rouamel et al., 2021) to the
T-S model-based framework, or, similarly to what has been proposed in Chapter 2, by extend-
ing the input-delay approach to cope with PI-like sampled-data controllers. However, for this
last point, from the author’s preliminary investigation, some issues are still to be unlocked, es-

pecially to deal with the necessary time hybridization of the integral and/or anti-windup actions.
This being said, from these prospects on T-S model-based sampled-data controller design

for continuous-time nonlinear systems, the door is now open for a wide range of further deve

lopments.
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Traduction en Francgais de la Conclusion Generale et des Perspectives:

Au sein de ce manuscrit de these de doctorat, des conditions de synthese a base de LMIs
relachées ont été proposées pour la stabilisation d’une classe de systémes non linéaires
décrits en temps continu, représentés par des modeles Takagi-Sugeno, et controlés par
des dispositifs numériques. Dans le Chapitre 1, les préliminaires sur la synthese de
lois de commande pour les modeles T-S ont été présentés, ainsi que les différentes facons
d’obtenir une représentation T-S. En outre, conformément a I’objectif principal de cette
these, des notions de base sur la discrétisation des modeles T-S en temps continu ont
été présentées, ainsi que les bases sur la stabilité et les conditions LMIs de synthese des
controleurs, dans les cadres continu ou discret. Ensuite, certaines limites de ’approche
standard a temps discret ont été soulignées et I’approche dite "a retard sur l’entrée"
pour la synthése de controleurs échantillonnés pour les systémes continus a été introduite
comme une alternative élégante pour faire face a de tels problemes. Encore une fois, les
principales limites de cette approche dans le cadre des modeles T-S, comme ’obtention
de résultats locaux ou le conservatisme des conditions de synthese, ont été soulignées. En
résumé, l'analyse critique présentée dans ce chapitre a permis la maturation de I’énoncé
des problemes considérés dans cette these, qui peut étre classée en deux lignes de recherche
présentées comme suit.

Tout d’abord, reconnaissant que les approches basées sur des modeéles a temps dis-
cret sont principalement considérées dans les applications industrielles en raison de leur
polyvalence et de leur facilité de mise en oeuvre, certaines améliorations pour les mo
deles T-S discret ont été proposées dans le Chapitre 2. L’objectif était de fournir une
méthodologie d’optimisation convexe pour concevoir des controleurs discrets de type PL.
La principale contribution du Chapitre 2 est d’etendre nos résultats préliminaires (Lopes
et al., 2018), en incluant une action anti-windup pour s’affranchir de I’hypotheése d’une
variation lente de I'état et, en conséquence, fournir des estimations moins conservatives
de la région d’attraction, ainsi que des changements d’amplitude admissibles des point de
consigne. Dans ce contexte, I’approche proposée permet d’estimer ’amplitude maximale
de signaux exogenes afin que les trajectoires du systéme en boucle fermée restent dans
la région d’attraction, assurant une stabilité asymptotique locale grace a une fonction
de Lyapunov non quadratique. En outre, la loi de commande floue de type PI proposée
adopte une structure PDC alors que le gain de I'action anti-windup adopte une structure
non-PDC, qui peuvent étre efficacement mis en ceuvre dans les applications industrielles
embarquées (Sousa et al., 2018). L’approche proposée a été validée en simulation et
expérimentalement & partir du controle de niveau d’un systéme de deux réservoirs non
linéaires couplés disponible au CEFET-MG, avec des améliorations significatives vis-a-vis
de résultats préliminaires présentés dans (Lopes et al., 2018).

Si Iapproche de syntheése du controleur basé sur un modele T-S a temps discret a
été envisagée en raison de sa simplicité conceptuelle attrayante, en particulier lorsque
la mise en ceuvre du controleur pour des applications industrielles est nécessaire, il
a également été souligné que cette approche n’est appropriée que lorsqu’une période
d’échantillonnage suffissamment petite et fixe peut étre déterminée au regard de la dy-
namique continue du systéme a commander. Toutefois, il faut rappeler que I'hypothese
de périodes d’échantillonnage fixes est parfois irréaliste dans la pratique. En effet, méme
lorsqu’une topologie de contréle numérique point-a-point est considérée, I’échantillonnage
apériodique peut survenir en raison de 'inexactitude de 1’horloge et/ou des caractéris-
tiques de l'architecture du systéme telles que 'ordonnancement en temps réel, ce qui peut
induire une synchronisation imparfaite ou des retards de calcul (Wittenmark et al., 1995;
Hetel et al., 2017). En outre, lorsqu’il s’agit de systémes contrdlés au travers d’un réseau
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de communication, la considération d’intervalles d’échantillonnage apériodique sont sou-
vent inévitables (Hetel et al., 2017; Fridman, 2014a). Néanmoins, on peut également faire
valoir que, lorsque de grandes périodes d’échantillonnage doivent étre prises en compte,
I’approche directe fondée sur un modele a temps discret peut ne pas garantir la stabilité
en boucle fermée du systéme continu entre les instants d’échantillonnage (Hetel et al.,
2017). Pour contourner ces inconvénients, ’approche alternative de la Synthése continue-
échantillonnée a été étudiée dans les Chapitres 3 et 4 pour la stabilisation des modeles
T-S continus. A partir de cette approche, la dynamique non linéaire en boucle fermée est
réécrite comme un systeme T-S & temps continu avec un retard variable sur ’entrée, tel
que proposé pour les systémes linéaires, e.g. (Fridman et al., 2004; Seuret, 2009).

Associé au fait que la plupart des applications réelles présentent une dynamique non
linéaire, dans les chapitres susmentionnés, une extension de cette approche pour le cadre
des modele T-S est présentée, et la réduction du conservatisme est vérifiée en recherchant
I'intervalle d’échantillonnage maximal autorisé [0, 7], pour lequel la stabilité dynamique
en boucle fermée est garantie.

Dans le Chapitre 3, notre premiere contribution a la synthese des contréleurs échan-
tillonnés pour les modeles T-S continus, basée sur I’approche de la Synthése continue-
échantillonnée, a été présentée. Dans la continuité des travaux existants, des conditions
a base de LMIs relachées ont été proposées pour la syntheése de controleurs a échantillon-
nage apériodique stabilisant les systéemes T-S décrits en temps continu. Pour atteindre
cet objectif, une LKF "bouclée" augmentée a été sélectionnées, associée a I'application de
lemmes de majoration, tels que des inégalités étendues de Jensen, le Lemme de Finsler et
des contraintes polynomiales quadratiques convexes. En outre, un schéma de relaxation
générique a été proposé. Celui-ci permet 'extension du célebre Lemme de Tuan, pour
tenir compte de la structure en double somme des conditions de stabilité en boucle fer-
mée, dépendantes de parametres asynchrones. Similairement aux précédentes études pour
la commande échantillonnée des modeles T-S continus, la réduction du conservatisme est
étudiée dans ce chapitre en cherchant I'intervalle d’échantillonnage maximal autorisé [0, 7],
pour lequel les conditions de synthese demeurent faisables. L’avantage de la méthode de
Syntheése continue-échantillonnée vis-a-vis de la méthode de Synthése Directe a base de
modeles T-S discrets a été illustré par la simulation d’un modele de pendule inversé a un
degré de liberté. Ensuite, une comparaison a été fournie, montrant un élargissement signi-
ficatif de 'intervalle d’échantillonnage maximal autorisé par rapport a plusieurs résultats
connexes précédents (Yoneyama, 2010; Zhu and Wang, 2011; Zhang and Han, 2011; Zhu
et al., 2012; Gunasekaran and Joo, 2019; Zhu et al., 2013; Cheng et al., 2017), en util-
isant 'exemple d’un modele T-S approximé d’un pendule inversé sur un chariot. Enfin,
une validation expérimentale de la méthodologie de Synthése continue-échantillonnée pro-
posée est effectuée sur la plate-forme AERO de Quanser® (Quanser, 2016), illustrant son
efficacité sur un systeme réel. Si les résultats de ce chapitre se sont révélés efficaces pour
réduire le conservatisme des conditions de synthese de correcteur en élargissant 'intervalle
d’échantillonnage maximal admissible, il est également souligné que cette approche souf-
fre de n’étre valide que localement, ce qui justifie des investigations plus approfondies du
domaine d’attraction en boucle fermée, comme proposé dans le chapitre suivant.

Dans le Chapitre 4, des conditions relachées de Synthése continue-échantillonnée
pour la classe de systémes T-S descripteurs réguliers, soumis & la saturation des
actionneurs, ont été proposées. En effet, en dépit des modeles T-S standard, cette
classe de systémes descripteurs est souvent considérée comme représentant de fagon
plus précise une plus grande classe de systémes non linéaires, en particulier pour les
systémes mécatroniques, ou le contréle a base de données échantillonnées est une
caractéristique inhérente. Le défi de ce chapitre consiste donc a fournir des conditions
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LMIs relachées pour la Synthése continue-échantillonnée des modeles T-S descripteurs
soumis & saturation sur ’entrée, en étendant les conditions proposées dans le Chapitre
3, ainsi qu’en proposant une analyse minutieuse du domaine d’attraction en boucle
fermée. Tout d’abord, pour la classe de descripteurs T-S soumis a la saturation sur
I’entrée, une procédure hors ligne a été proposée pour estimer le domaine d’attraction
en boucle fermée qui résulte de la Synthése continue-échantillonnée. Ensuite, pour le
cas particulier des modeles T-S standards, une procédure d’optimisation systématique a
base de contraintes LMI a été proposée pour réaliser une telle estimation. Cependant,
il a été souligné que cette estimation systématique peut apporter du conservatisme
(voir Remarque 4.6), et il faut donc 'utiliser avec précaution, pour des classes par-
ticulieres de modeles T-S comportant un faible nombre de sommets ou des fonctions
d’appartenance triangulaires. En outre, parce que, pour une limite supérieure donnée
des intervalles d’échantillonnage, l’estimation obtenue du domaine d’attraction peut
étre relativement restreinte, une nouvelle méthodologie d’ajustement des parameétres
de la loi de commande est proposée. Celle-ci exploite les principes du déclenchement
par événements (event-triggering), selon les équipotentielles des fonctions de Lyapunov
obtenues pour plusieurs intervalles d’échantillonnage, permettant ainsi d’étendre plus
encore 'estimation obtenue du domaine d’attraction en boucle fermée. Tout au long
de ce chapitre, les résultats ont été validés en simulation au travers de I'exemple d’un
pendule inversé, d’abord, avec le méme modele T-S approximé que celui pris en compte
dans le Chapitre 3, afin de mettre en évidence 'amélioration du conservatisme et
d’illustrer ’approche systématique proposée dans le Chapitre 4. Ensuite, comme il a
été montré que les contréleurs concus a partir d’'un modeéle T-S approché peuvent ne
pas stabiliser le modéle non linéaire complet, une modélisation exacte sous la forme
d’un modele T-S descripteur a été proposée. Le controleur a temps discret ainsi congu
a permis de stabiliser avec succeés le modele non linéaire continu précis du pendule
inversé, mais avec une estimation du domaine d’attraction en boucle fermée relativement
petite pour l'intervalle obtenu d’échantillonnage maximal autorisé. Par conséquent, en
élargissant davantage l’estimation du domaine d’attraction, I'avantage du mécanisme
proposé pour 'ajustement des parametres de la loi de commande est illustré.

En résumant notre contribution dans le domaine de Synthése continue-échantillonnée
pour les modeles T-S, soulignons que, a la connaissance de ’auteur, trés peu de résultats
antérieurs portant sur les points suivants existent :

o la synthése de controleurs basés sur des données échantillonnés apériodiques pour les
modeles T-S avec saturation des actionneurs ; excepté le travail de (Lamrabet et al.,
2019), ou aucune considération n’est portée sur I'estimation du domaine d’attraction
en boucle fermée,

e lestimation du domaine d’attraction en boucle fermée et ses procédures
d’optimisation, obtenue grace a la prise en compte d’'une LKF "bouclée" adéquate ;
a ’exception des trés récents articles publiés par (Coutinho et al., 2021; Ma et al.,
2021) a la fin du déroulement de cette these, et qui fournissent des résultats intéres-
sants qui mériteraient d’étre approfondis et comparés avec notre proposition,

e l’extension de la méthodologie de Synthése continue-échantillonnée pour la classe
des modeles T-S descripteurs, qui s’avere intéressante pour traiter de la commande
des systemes mécatroniques.

Tout au long de ce manuscrit, les simulations proposées et les résultats expérimentaux
ont permis d’illustrer le mérite des approches proposées de commande échantillonnée
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pour les modele T-S, tant dans le cadre du temps discret que dans le cadre du temps
continu. Cependant, les approches proposées présentent encore certaines limitations, qui
peuvent étre discutées pour fournir des perspectives de ce travail.

En ce qui concerne 'approche de Synthése Directe pour les systemes décrits en temps
discret, méme si une abondante littérature existe déja, il y a encore des points d’intérét
qui retiennent notre attention pour de futures améliorations. Tout d’abord, comme de
nombreuses études précédentes dans le contexte du temps discret, nous considérons la
discrétisation d’un modele T-S en temps continu via la célebre transformation d’Euler
(Chen, 1999). Cependant, la discrétisation conduisant a des approximations, des
améliorations sont toujours possibles. Dans ce contexte, il existe d’autres approches de
discrétisation, comme la transformation bilinéaire de Tustin (Ogata, 1995; Astréom and
Hégglund, 2011), en utilisant des décompositions en série de Taylor ou le Théoréme de
Caley-Hamilton (Heemels et al., 2010). Par conséquent, une perspective directe serait
d’évaluer 'amélioration potentielle de ces approches avec les conditions de Synthése
Directe proposé dans le Chapitre 2, en particulier dans 'optique de leur application a
des systémes non linéaires impliquant des dynamiques continues plus rapides, ou dans le
but d’élargir davantage I’estimation résultante du domaine d’attraction en boucle fermée.
Ensuite, une autre perspective qui n’a pas été étudiée au cours de ce travail de doctorat
est le déclenchement d’événements dans le cadre du temps discret, e.g. (de Souza
et al., 2021). Une telle approche pourrait étre intéressante pour certaines applications
industrielles ou des périodes d’échantillonnage rapides peuvent étre définies vis-a-vis de
la dynamique du systéeme a controler et, le cas échéant, d’atténuer la charge dans le cas
de la commande en réseau. En outre, dans le Chapitre 2, on a considéré la Synthése
Directe de controleurs discrets de type PI tout en étudiant les effet des changements de
points de consigne (i.e. trajectoires désirées constantes par morceaux) sur l’estimation
du domaine d’attractions en boucle fermée. Une perspective tres intéressante serait
de proposer une extension au cas plus général de suivi de trajectoire dynamique, mais
dans ce cas 1’étude du domaine d’attraction en boucle fermée serait beaucoup plus
complexe puisque son estimation devrait évoluer dynamiquement par rapport aux
trajectoires souhaitées, et ceci a chaque instant d’échantillonnage. Bien entendu, de
nombreuses autres extensions des stratégies proposées dans le cadre de la synthese
en temps discret peuvent étre réalisées, par exemple pour le retour de sortie, pour les
NCS avec des retards induits par le réseau, des pertes de paquets, des cyber-attaques, etc.

A présent, portons notre attention sur 'approche de Synthese continue-échantillonnée
proposée pour la stabilisation des modeéles quasi-LPV/T-S en temps continu. Si les
résultats présentés dans le Chapitre 3 et le Chapitre 4 ont démontré ’attrait de la
stratégie proposée, il faut également admettre sa principale limitation qui consiste en une
complexité et un coiit de calcul élevé des conditions a base de LMIs. En effet, comme
dans de nombreuses tentatives pour réduire le conservatisme des conditions de synthese
pour les modele T-S, fournir des conditions LMIs relachées entraine généralement une
augmentation du coiit de calcul. Cela est particulierement vrai dans le cas de la Synthése
continue-échantillonnée, car une facon importante de réduire le conservatisme vient de la
stratégie employée pour faire face & la structure de double somme asynchrone. A cette
fin, nous avons proposé une extension du célebre Lemme de Tuan (Tuan et al., 2001),
mais qui résulte en une augmentation de la taille des LMIs. Cela peut étre considéré
comme un inconvénient, mais cela permet également de réduire le nombre de contraintes
LMIs. De plus, pour réduire encore le conservatisme, nous avons proposé des fonctions
Lyapunov-Krasovskii "bouclées" pour la synthese de controleurs échantillonnés, associées
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a l'utilisation de lemmes de majoration usuels (inégalité étendue de Jensen, Lemme
de Finsler...), qui introduisent plusieurs variables de décision libres. Dans 'espoir de
réduire la complexité des calculs, nous pouvons envisager, comme premiere perspective
de ce travail, de réduire le nombre de variables de décision (en particulier les matrices de
décision libres) tout en tenant compte de certaines techniques plus récentes proposées
pour 'analyse des systemes avec retards, comme par exemple 'utilisation des inégalités
de Wirtinger ou de Bessel-Legendre (Seuret and Gouaisbaut, 2013; Ariba et al., 2018;
Seuret and Gouaisbaut, 2018; Bourahala et al., 2019; Nafir et al., 2021). Bien entendu, les
colits de calcul élevés induits par des conditions LMIs complexes peuvent étre considérés
comme un inconvénient pour ce type d’études. Néanmoins, soulignons que de tels calculs
sont effectués hors ligne. De plus, nous pouvons envisager que cette préoccupation
peut étre atténuée par la croissance continue des capacités de calcul de nos ordinateurs
personnels ou, lorsqu’ils sont disponibles, de supercalculateurs tel que le centre de calcul
ROMEO de I’Université de Reims Champagne-Ardenne. Pour illustrer ce point, notons
qu’avec le modele T-S approximé du pendule inversé considéré dans la section 4.4.1, il a
fallu 12,97 secondes pour résoudre les conditions du Théoréme 4.2 (nous avons utilisé
pour ce test un ordinateur portable HP datant de fin 2016 avec un processeur Intel
Core 17 de 2,6 GHz et 16 Go de mémoire RAM). Aussi, pour résoudre les conditions du
Théoreme 4.1 avec le modele complet sous la forme T-S descripteur du pendule inversé
(donné dans la section 4.4.2), la charge de calcul était beaucoup plus importante, i.e.
une moyenne de 45 minutes par test, avec le méme ordinateur.

De nombreux autres points mériteraient une certaine attention pour rélacher davantage
les conditions LMIs proposées pour la synthése du contrdleur échantillonné pour les mo
deles T-S. Tout d’abord, afin de tenir compte de la structure en double somme asynchrone
des conditions LMIs dépendantes des parametres, nous avons proposé une extension du
Lemme de Tuan, résumée dans le Théoreme 3.2. Celle-ci est basée sur I'application du
Lemme de Peterson (Xie, 1996), qui peut étre encore relachée, par exemple en consi dérant
ses extensions proposées dans (Briat, 2008). En outre, notre approche implique une aug-
mentation de la taille des conditions LMIs a vérifier, et affecterait donc éventuellement
le cott de calcul ou le conservatisme pour les systemes de grande taille. Dans ce con-
texte, certaines mesures de relaxation seraient les bienvenues, par exemple en envisageant
I’introduction de plus d’informations sur les fonctions d’appartenance, telle que I’approche
récemment proposée pour faire face aux limites de leurs dérivés temporelles (Gunasekaran
and Joo, 2019). De plus, a partir des LKF "bouclée" proposées, les conditions de stabilité
en boucle fermée conduisent & une inégalité quadratique (polynéme de second ordre en
7(t)), dont la négativité est traitée par des conditions de convexité (Zhu et al., 2016),
qui peuvent s’avérer quelque peu conservatives. Dans une étude récente (de Oliveira and
Souza, 2020), des conditions nécessaires et suffisantes ont été proposées pour faire face
a de telles contraintes quadratiques. Cependant, nous avions 'intention de les appliquer
dans notre cadre théorique, mais nous nous sommes heurtés a ’obtention de contraintes
LMIs "creuses', et qui ont donc conduit a un probleme d’optimisation convexe insoluble.
Encore une fois, poursuivre nos efforts pour résoudre ce probleme pourrait s’avérer tres
intéressant afin de réduire davantage le conservatisme. Un autre point qui mérite d’étre
affiné est le mécanisme de déclenchement d’événements programmé proposé pour aug-
menter 'estimation du domaine d’attraction en boucle fermée. En effet, remarquant que
I’ensemble des équipotentielles de Lyapunov se trouve & l'intérieur d’un ensemble compact
de l'espace d’état définissant le domaine de validité du modele T-S, d’autres améliora-
tions peuvent étre obtenues en optimisant ce domaine de validité pour chaque condition
de synthese. Ce point fera ’objet de nos prochains travaux. Enfin, dans la perspective de
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futures applications pratiques, la méthodologie proposée pour la synthese de controleurs
échantillonnés peut étre étendue pour faire face aux perturbations externes, par exemple
en considérant un critére Hy, (e.g. (Kim et al., 2021; Bourahala et al., 2021), en con-
sidérant le retour de sortie statique (Bouarar et al., 2013), en étendant les approches de
déclenchement d’événements que nous avons récemment proposées (Rouamel et al., 2021)
au cas des modele T-S ou, de maniere similaire a ce qui a été proposé dans le Chapitre
2, en étendant les conditions de Synthése continue-échantillonnée pour des controleurs
échantillonnées de type PI. Cependant, pour ce dernier point, une premiere investigation
de lauteur a soulevé certains verrous qui doivent encore étre débloquées, en particulier
pour traiter I’hybridation du temps nécessaire pour implémenter les actions intégrales
et/ou anti-windup sur des dispositifs de commande numérique.

Ceci étant dit, a partir de ces perspectives sur la Synthése continue-échantillonnée de
controleur échantillonné pour la stabilisation des systémes non linéaires décrits en temps
continu et représentés par des modeles T-S, la porte est maintenant grande ouverte pour
un large éventail d’autres développements.
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Contributions & la Synthése de Contrdleurs Echantillonnés pour les Modéles Takagi-Sugeno

Ce travail étudie la stabilisation des systémes non linéaires & temps continu pilotés par des dispositifs numériques, dans le
but de relacher les conditions de synthése et d’améliorer 'estimation du domaine d’attraction en boucle fermée pour des
intervalles d’échantillonnage aussi grands que possible. Tout d’abord, la commande des systémes non linéaires soumis a
la saturation des actionneurs, représentés par des modeles Takagi-Sugeno (T-S) & temps discret avec des contraintes sur
I’entrée, est étudiée. L’accent est mis sur la conception de controleurs de type PI en temps discret avec une compensation
anti-windup pour suivre des points de consigne constants par morceaux. Parallelement, une procédure d’optimisation
est proposée pour I’élargissement du domaine d’attraction garanti en boucle fermée. Ensuite, pour contourner certains
inconvénients des approches basées sur un modele a temps discret, tels que les approximations du modele et 'exigence d’un
intervalle d’échantillonnage fixe, ’approche consistant a réécrire la dynamique en boucle fermée sous la forme d’un systéme
continu a retard variable sur I'entrée est considérée. Par conséquent, a partir d’'une fonction de Lyapunov-Krasovskii
(LKF) bouclée et lapplication de lemmes de majoration, de nouvelles conditions LMI relachées sont proposées pour la
synthése de contrdleurs échantillonnées stabilisant les modeles T-S & temps continu. Cependant, dans ce contexte, des
fonctions d’appartenance asynchrones apparaissent dans la formulation de la boucle fermée et donc dans les conditions de
syntheése, qui ne peuvent étre traitées avec les schémas de relaxation usuels. Pour faire face & ce probléme, une extension
du Lemme de Tuan est proposée. Par la suite, 'approche de contréle échantillonnées proposée est étendue a la classe plus
générale des descripteurs T-S décrits en temps continu et soumis a la saturation des entrées. En soulignant que, dans le
cadre des modeles T-S & temps continu, les controleurs échantillonnées congus ne garantissent que localement la stabilité
en boucle fermée, une analyse minutieuse du domaine d’attraction en boucle fermée est proposée. En outre, aprés avoir
remarqué que, pour de larges intervalles d’échantillonnage admissibles, ’estimation résultante du domaine d’attraction
en boucle fermée peut étre assez petite, un nouveau mécanisme d’ajustement de la loi de commande par déclenchement
d’événement est proposé pour élargir davantage cette estimation. Tout au long du manuscrit, des simulations et des
résultats expérimentaux établissent le mérite des approches proposées pour la commande échantillonnée des modeles T-S.

Modeles Takagi-Sugeno, Commande échantillonnée, Synthése LMI, Saturation des actionneurs, Stabilisation locale.

Contributions to the Design of Sampled-Data Controllers for Takagi-Sugeno Models

This work investigates the stabilization of continuous-time nonlinear systems driven by digital devices, with the goal of
relaxing the design conditions and enhancing the estimation of the closed-loop domain of attraction for largest as possible
sampling intervals. First, the control of nonlinear systems subject to actuators saturation, represented by discrete-time
Takagi-Sugeno (T-S) models with input constraints, is investigated. The focus relied on the design of discrete-time
PI-like controllers with an anti-windup compensation to track piece-wise constant set-points. Meanwhile, an optimization
procedure is proposed for the enlargement of the guaranteed closed-loop domain of attraction. Then, to circumvent some
drawbacks of the discrete-time model-based approaches, such as model approximations and the requirement of a fixed
sampling interval, the input-delay approach for sampled-data systems is investigated. Therefore, from a convenient looped
Lyapunov-Krasovskii Functional (LKF) and the application of some bounding lemmas, new relaxed LMI-based conditions
are proposed for the design of sampled-data controllers to stabilize continuous-time T-S models. However, in this context,
asynchronous membership functions arise from the closed-loop formulation and so from the design conditions, which cannot
be handle with usual relaxation schemes. Hence, to cope with such issue, an extension of the well known Tuan’s Lemma is
proposed in this context of sampled-data control for continuous-time T-S models. Furthermore, the proposed sampled-data
control approach is extended to the more general class of T-S descriptors subject to input saturation. Highlighting that,
in the continuous-time T-S model-based framework, the designed sampled-data controllers only locally guarantee the
closed-loop stability, a careful analysis of the closed-loop domain of attraction is proposed. Also, after noticing that, for
large admissible sampling intervals, the resulting estimation of the closed-loop domain of attraction may be quite small, a
new gain-scheduled event-triggering mechanism is proposed to further enlarge such estimation. Along the manuscript, sim-
ulations and experimental results establish the merit of the proposed approaches for the sampled-data control of T-S models.

Takagi-Sugeno models, Sampled-data control, LMI-based design, Saturated Actuators, Local Stabilization.
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