
HAL Id: tel-03576433
https://hal.science/tel-03576433v2

Submitted on 1 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Visual and Textual Common Semantic Spaces for the
Analysis of Multimodal Content

Lady Viviana Beltrán Beltrán

To cite this version:
Lady Viviana Beltrán Beltrán. Visual and Textual Common Semantic Spaces for the Analysis of
Multimodal Content. Image Processing [eess.IV]. Université de La Rochelle, 2021. English. �NNT :
2021LAROS013�. �tel-03576433v2�

https://hal.science/tel-03576433v2
https://hal.archives-ouvertes.fr


LA ROCHELLE UNIVERSITÉ

École doctorale Euclide

Laboratoire Informatique, Image, Interaction (L3i)

THÈSE présentée par :

Lady Viviana Beltrán Beltrán

soutenance le : 17 Juin 2021

pour obtenir le grade de : Docteur de La Rochelle Université

Discipline : Informatique

Visual and Textual Common Semantic Spaces for the

Analysis of Multimodal Content

Rapporteurs Aurélie BUGEAU Professeur des Universités, LaBRI, Université de Bordeaux

Verónique EGLIN Professeur des Universités, Université Claude Bernard Lyon

Examinateurs Jean-Yves RAMEL Professeur des Universités, Université de Tours

Simone MARINAI Professeur des Universités, University of Florence

Directeurs Antoine DOUCET Professeur des Universités, L3i, La Rochelle Université

Nicholas JOURNET Maître de Conférences HDR, LaBRI, Université de Bordeaux

Co-encadrants Mickaël COUSTATY Maître de Conférences, L3i, La Rochelle Université





Abstract

Multimodal learning involves the use of multiple senses (touch, visual, auditory, etc.) during

the learning process to better understand a phenomenon. In the computational domain, we need

systems to understand, interpret, and reason with multimodal data, and while there have been

enormous advances in the field, many of the desired capabilities remain beyond our reach. The

objective of such systems is to leverage different semantically related data types to output better

predictions for a phenomenon of interest. For example, for users with sensory disabilities such

as visual, to carry out daily tasks such as making a purchase or finding a place in a city, the

visual information of their environment has to be transformed into a different modality with

more semantic meaning. A system for this purpose could use auditory information provided

by the user that specifies what information is required and that can be easily transformed into

textual data, and visual information such as images obtained from its surroundings to help the

user make a decision. Therefore, it would be a multimodal system leveraging information from

three different modalities: auditory + text + images.

When it comes to the computational side, working with multimodal data comes with several

challenges. This thesis focuses on advancing multimodal learning research through various sci-

entific contributions: we simplify the creation of deep learning models by proposing frameworks

that find a common semantic space for visual and textual modalities using deep learning as the

backbone tool; we propose competitive strategies to address the tasks of cross-modal retrieval,

scene-text visual question answering, and attribute learning; we address various data-related is-

sues like imbalance and learning when not enough data is annotated. These contributions aim

to bridge the gap between humans (such as non-expert users) and artificial intelligence to tackle

everyday tasks.

Our first contribution aims to evaluate the effectiveness of a multimodal system that receives

images and text and retrieves relevant multimodal information. This approach allows us to

perform a complete study to evaluate the effectiveness of a cross-modal retrieval system with

deep learning as the backbone tool. The cross-modal feature allows the formulation of the

queries in the form of images or text and retrieves relevant multimodal data. With this approach,

we can evaluate the ability of the model to produce effective multimodal representations and to



handle any multimodal query with a single model. Subsequently, in our second contribution,

we adapt the system to perform a recent task called scene-text visual question answering (ST-

VQA). The aim is to teach traditional VQA models to read the text contained in natural images.

This task requires us to perform a semantic analysis between the visual content and the textual

information contained in associated questions to give the correct answer. We find this task very

relevant in the multimodal context since it truly forces us to jointly develop mechanisms that

reason about visual and textual content.

Our latest contributions point to data-related issues. Data is one of the most important factors

in aiming for good performance. Therefore, we determined that a relevant skill is to understand

how to properly clean and analyze data and create strategies that can take advantage of it. We

address very common and frequent issues such as noise, imbalance, and insufficient annotated

data. To evaluate our strategies, we consider the problem of attribute learning. Attribute learning

can complement category-level recognition and therefore improve the degree to which machines

perceive visual objects. In the first study, we cover two key aspects: imbalance and insufficient

labeled data. We propose adaptations to classical imbalanced learning strategies that cannot

be directly applied when using multi-attribute deep learning models. In the second study, we

propose a novel strategy to exploit class-attribute relationships to learn predictors of attributes in

a semi-supervised learning way. Semi-supervised learning permits harnessing the large amounts

of unlabelled data available in many use cases in combination with typically smaller sets of

labeled data.

Keywords: multimodal learning, deep learning, information retrieval, multimodal fusion, image

classification, attribute learning, visual question answering.
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Résumé

L’apprentissage multimodal implique l’utilisation de multiples sens (tactile, visuel, auditif, etc.)

au cours du processus d’apprentissage pour mieux comprendre un phénomène. Dans le domaine

du calcul, nous avons besoin de systèmes pour comprendre, interpréter et raisonner avec des

données multimodales, et bien qu’il y ait eu d’énormes progrès dans le domaine, de nombreuses

capacités souhaitées restent hors de notre portée. L’objectif de ces systèmes est d’exploiter dif-

férents types de données sémantiquement liés pour produire de meilleures prédictions pour un

phénomène d’intérêt. Par exemple, pour les utilisateurs ayant des handicaps sensoriels tels que

visuels, pour effectuer des tâches quotidiennes telles que faire un achat ou trouver une place

dans une ville, l’information visuelle de leur environnement doit être transformée en une modal-

ité différente avec une signification plus sémantique. Un système à cette fin pourrait utiliser des

informations auditives fournies par l’utilisateur qui spécifient quelles informations sont requises

et qui peuvent être facilement transformées en données textuelles, et des informations visuelles

telles que des images obtenues de son environnement pour aider l’utilisateur à prendre une dé-

cision. Il s’agirait donc d’un système multimodal exploitant les informations de trois modalités

différentes: auditif + texte + images.

En ce qui concerne le calcul, travailler avec des données multimodales présente plusieurs dé-

fis. Cette thèse se concentre sur l’avancement de la recherche sur l’apprentissage multimodal à

travers diverses contributions scientifiques: nous simplifions la création de modèles d’apprentissage

profond en proposant des cadres qui trouvent un espace sémantique commun pour les modalités

visuelles et textuelles en utilisant l’apprentissage profond comme outil de base; Nous proposons

des stratégies compétitives pour aborder les tâches de recherche intermodale, de réponse visuelle

aux questions de texte de scène et d’apprentissage d’attributs; Nous abordons divers problèmes

liés aux données tels que le déséquilibre et l’apprentissage lorsque les données annotées sont in-

suffisantes. Ces contributions visent à combler le fossé entre les humains (comme les utilisateurs

non experts) et l’intelligence artificielle pour s’attaquer aux tâches quotidiennes.

Notre première contribution vise à évaluer l’efficacité d’un système multimodal qui reçoit des

images et du texte et récupère les informations multimodales pertinentes. Cette approche nous

permet de réaliser une étude complète pour évaluer l’efficacité d’un système de récupération
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cross-modal avec le deep learning comme outil de base. La fonction cross-modal permet de

formuler les requêtes sous forme d’images ou de texte et de récupérer les données multimodales

pertinentes. Avec cette approche, nous pouvons évaluer la capacité du modèle à produire des

représentations multimodales efficaces et à gérer toute requête multimodale avec un seul mod-

èle. Par la suite, dans notre deuxième contribution, nous adaptons le système pour effectuer une

tâche récente appelée réponse visuelle aux questions de texte de scène (ST-VQA). L’objectif est

d’apprendre aux modèles VQA traditionnels à lire le texte contenu dans des images naturelles.

Cette tâche nous oblige à effectuer une analyse sémantique entre le contenu visuel et les infor-

mations textuelles contenues dans les questions associées pour donner la bonne réponse. Nous

trouvons cette tâche très pertinente dans le contexte multimodal car elle nous oblige vraiment à

développer conjointement des mécanismes qui raisonnent sur le contenu visuel et textuel.

Nos dernières contributions mettent en évidence des problèmes liés aux données. Les don-

nées sont l’un des facteurs les plus importants pour viser de bonnes performances. Par con-

séquent, nous avons déterminé qu’une compétence pertinente consiste à comprendre comment

nettoyer et analyser correctement les données et créer des stratégies qui peuvent en tirer parti.

Nous abordons des problèmes très courants et fréquents tels que le bruit, le déséquilibre et

l’insuffisance des données annotées. Pour évaluer nos stratégies, nous considérons le problème

de l’apprentissage des attributs. L’apprentissage des attributs peut compléter la reconnaissance

au niveau des catégories et donc améliorer le degré de perception des objets visuels par les

machines. Dans la première étude, nous couvrons deux aspects clés. Déséquilibre et don-

nées étiquetées insuffisantes. Nous proposons des adaptations aux stratégies d’apprentissage

déséquilibrées classiques qui ne peuvent pas être directement appliquées lors de l’utilisation

de modèles d’apprentissage profond multi-attributs. Dans la deuxième étude, nous proposons

une nouvelle stratégie pour exploiter les relations classe-attribut pour apprendre les prédicteurs

d’attributs de manière semi-supervisée. L’apprentissage semi-supervisé permet d’exploiter les

grandes quantités de données non étiquetées disponibles dans de nombreux cas d’utilisation en

combinaison avec des ensembles généralement plus petits de données étiquetées.

Mots-clés: apprentissage multimodal, apprentissage en profondeur, recherche d’informations,

fusion multimodale, classification d’images, apprentissage d’attributs, réponse visuelle aux ques-

iv



tions.
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CHAPTER 1

Introduction

1.1 Motivation

The blog post of ABI Research1 presents multimodal learning as the future of artificial intel-

ligence with many tools being incorporated already in many domains. With the development

of the internet and the explosion of the number of websites to share media content, the need

to semantically understand and interpret abstract or raw data has increased. This data comes in

very diverse shapes and formats that represent different channels or modes of communication —

visual, textual, oral, etc. This is also referred to as multi-modality. For example, a video can be

associated with descriptions or tags in natural language, or even with representative images of

its content. In the same way, images are associated with tags or textual explanations, while text

data such as Wikipedia2 articles usually come with images to better express the principal idea.

Different modalities may or may not be engaged in the process of information that allows us to

1Multimodal Learning And The Future Of Artificial Intelligence; https://www.abiresearch.com/blogs/2019/10/
10/multimodal-learning-artificial-intelligence/ (accessed Jan 2021)

2https://en.wikipedia.org/wiki/Wikipedia:About (accessed Jan 2021)

1

https://www.abiresearch.com/blogs/2019/10/10/multimodal-learning-artificial-intelligence/
https://www.abiresearch.com/blogs/2019/10/10/multimodal-learning-artificial-intelligence/
https://en.wikipedia.org/wiki/Wikipedia:About


2 Chapter 1. Introduction

understand more about a phenomenon. For example, an application to help visually impaired

users based on a question-answering system should be able to give correct and relevant informa-

tion to the user (see Figure 1.1). In the example, if a user is interested in the color of the bus, the

system should be able to understand what information to extract to give a semantic and correct

answer. Other information such as the text contained in the scene may not be relevant to the user.

Nowadays, developing competitive and acceptable mechanisms that encode and decode our ex-

ternal surroundings manifested as different modalities is a must. We need multimodal systems

to understand, interpret, and reason (at some level) with multimodal data. The objective of such

systems is to consolidate heterogeneous and disconnected data to output better predictions.

1. What's the weather 
like?

2. Is the pedestrian 
walking towards the 
bus?

3. Is the color of the 
bus black and 
green?

4. What is the bus 
number?

5. What is the bus 
company?

6. What is the license 
plate number of the 
bus?

7. What direction is the 
bus going?

Figure 1.1: Example of different levels of engagement. A system that analyzes visual informa-

tion to give correct answers requires semantically analyzing the content of the target scene. This

helps discriminate between relevant and non-relevant data that are specific to each question. For

the first 3 questions, the textual information contained in the image is not engaged in the process

to answer the question. For the last 4 questions, textual data is especially required to answer the

questions correctly.

Although the earliest examples of multimodal research were in the area of audio-visual speech

recognition (AVSR) [1], the most recent category of multimodal applications makes an emphasis

on language and vision commonly known as media description [2]. Images and text are the most

common resources because of their facility of creation and storage. From one side, language has

been the primary means of communication [3, 4]. Spoken or written, it allows us to share our
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ideas, opinions, views, emotions, and reach others. The research community on reading systems

has made significant advances [5]. On the other hand, the increase of image creation and sharing

over the years as it is reported by Mary Meeker’s Internet Trends Reports3 places images as an

increasingly and relevant way of communication. For example, in 2014, people uploaded an

average of 1,8 billion digital images every single day. According to the most recent Internet

trends report, in 2019, images are being included in almost all social applications4. Social

platforms such as Twitter5, which in its beginning was a text-only application, has evolved to

include features of sharing of multimedia content such as images and videos with more than 50%

of tweets containing one of these data types. Instagram6 has also increased at an exponential rate

the number of users that every day share multimedia content. In turn, this has increased the need

for data-driven applications in many modalities such as image-powered search, image-driven

discovery, etc.

In a general way, visual data can be more telling (a picture is worth a thousand words). How-

ever, not all visual data is accessible, easy to read, or understandable for all users. For example,

for visually impaired users it is required to transform visual content present in everyday tasks

(like making a purchase, using public transportation, finding a place in a city, etc...) into usable

information such as a textual representation easy to transform into a sonorous representation.

Another example may be novice experts (or non-experts) looking for supporting information.

As a recent graduate in the medical domain, it is very helpful to support a diagnosis by access-

ing the information on another available previous diagnosis. Also, in complex tasks such as

interpreting medical imaging scans (x-rays, CT, MRI) that require a highly-skilled, manual job,

and many years of training. Associating textual descriptions to these types of complex data is

very appreciated and may help in giving a correct diagnosis. Decision support tools are rapidly

gaining acceptance in this domain [6, 7]. In the research community, this is reflected by the

amount of research arising around this area. Some of the most representative areas (see Figure

3https://www.bondcap.com/report/it14/ (accessed Jan 2021)
4This report underlines the most important statistics and technology trends on the internet. The report aims

to present the evolution of image Creation + Sharing from sources such as Instagram releases (2011-2019), Pin-
terest (2011-2019), Google (2017-2019), Twitter, Canvas, among others. https://www.bondcap.com/report/itr19/
(accessed Jan 2021)

5https://about.twitter.com/ (accessed Jan 2021)
6https://about.instagram.com/ (accessed Jan 2021)

https://www.bondcap.com/report/it14/
https://www.bondcap.com/report/itr19/
https://about.twitter.com/
https://about.instagram.com/
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1.2) include image annotation where the task is to tag/annotate the image with representative

words [8]; image captioning where the task is to generate a text description of the input image

[9]; visual question answering where the task is to construct a system to answer questions pre-

sented in an image using natural language [10]; and multimodal information retrieval which goal

is to access multimedia content through a retrieval system and that can also produce content that

meets diverse demands [2].

Parts
Ears Furry

Actions
Eating Swimming

Ground 
Truth

eye black, throat white

+ Predicted
Attributes

belly white, breast white, leg 
black, primary white, under 
tail white, underparts white

What is the brand name of the 
toothpaste?

Answer: aquafresh

Query Result

An airplane is flying over a tree in 
the blue sky.

A plane is flying in the distance.
A small aircraft flies in the blue 

sky above the trees.
A small airplane flying above the 

trees.
The back of an airplane.

A young sheep with tags on it's 
ears.
Black sheep with tags in both 
ears.
Close up of a sheep
Close up of a white sheep with a 
black head.
The tagged sheep looks sad after 
being sheared.

C D

A B

Figure 1.2: Examples of multimodal applications including images and text data. A) Multi-

modal/cross modal information retrieval; B) Scene text via visual question answering; C) Image

annotation for different vocabulary spaces; D) Attribute assignation/discovery.
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We described how studying the dependencies among different modalities allows us to discover

patterns that may help to understand a phenomenon. The correlation of these multiple sources

is generally semantic and therefore, it may provide complementary and additional information

richer than when working with only one modality. This thesis is centered on multimodal learn-

ing. We propose to limit our explorations to two of the most frequent and principal modalities

studied in the state of the art, the visual and the textual modalities. We address the problem

by proposing frameworks that find a common semantic space for both modalities using deep

learning as the backbone tool. We evaluate our strategies in several well-studied as well as very

recent applications in the state of the art over several widely used databases. The following

section presents the main factors and challenges when addressing the problem of multimodal

learning for images and text.

1.2 Problem Statement

As explained before, multiple modalities related to a phenomenon provide different perspectives

when studying it. We can learn complementary and additional information than when working

with only one modality; we can discover patterns or changes that are only visible when two or

more modalities are studied; we can learn latent correlations that explain behaviors, etc. This

is the way our brains work. It develops stronger memory circuits when experiencing learning

through multiple sensory modalities, such as vision, hearing, and movement [11]. Hence, if

we aim to create systems with a better understanding of the world around us, we need to cre-

ate systems that learn from multiple modalities [2]. However, for a machine, learning from

multiple modalities comes with a set of problems and challenges due to the differences in the

characteristics of each type of data. This is due to the inherent nature of each data type. For

example, a model trained with images only understands this data type and can only be used to

obtain visual features, same with a model trained with only textual data. Therefore, we cannot

directly combine features obtained with the visual model with features obtained with a textual

model as they reside in different spaces; finally, there exist difficulties in the utilization of current

state-of-the-art tools to address these problems. Next, we describe each one of them.
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Figure 1.3: For humans to take the information from separate sensory modalities and match it

appropriately is an easy task. This is natural since we live in a world of multimodal objects and

therefore, our perception is multimodal. For example, we can use our senses (vision, hearing,

touch, etc) to give the correct answer to a question based on the information contained in a scene.

For computers, multimodal information such as visual data represented as an image or questions

represented as textual data is stored and represented as numbers. Therefore, finding a semantic

meaning from different modalities represents a tough challenge.

Learning from multiple modalities. At a glance, combining different types of data to im-

prove a prediction appears as a simple task as this is something that as humans, our brain does

automatically. Our brain can reason through a high-order semantic abstraction from different

signals. For example, we can perceive the objects and the landscape in a scene and then process

the information contained in that piece of visual data by using previously learned knowledge.

But in practice, teaching a machine to automatically extract semantic meaning from a combina-

tion of different modalities represents one of the biggest challenges in the research community.
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This problem is due to the inherent properties of each data type. Precisely, the nature of the data

itself creates conflicts when combining different modalities. Computers are digital devices that,

in a simplified way, store and represent all data as numbers (see Figure 1.3). Therefore, images

and text are represented as numbers that, in a higher-order, contain a semantic meaning. For this,

we cannot combine directly textual features with visual features because they are contained in

different feature spaces (see Figure 1.4). Also, each modality may have a different quantitative

influence over the phenomenon studied. State-of-the-art models work almost perfectly for tasks

such as image classification (the best ImageNet classification accuracy at the moment of writing

this document is of ≈ 90% [12]) or text classification [13]. However, when learning from two

data types as different as images and text, this requires a reasoning component that finds the cor-

relations and correspondences among them. We need to create systems that find a new feature

space in which visual and textual data can be mapped and represent the same semantic meaning.

Common 
Semantic 

Space

Semantic 
concepts

Visual 
Space

Textual 
Space

Swim Water

Group
Black

Figure 1.4: Multimodal semantic space: traditional text-based search models no longer satisfy

people’s needs for multimedia information. Humans search in multimodal collections by using

high-level semantic concepts. But when the collection contains visual data, it is very challenging

to automatically extract its semantic content and therefore relevant content may not be retrieved.

Combining multiple data types such as images and text allows us to exploit complementarities

that exist between them. Different modalities reside in different feature spaces, whereby, a

mapping function that transform the modalities into a common and semantic feature space is

required. Learning this mapping still represents a complex challenge.



8 Chapter 1. Introduction

Problems associated with the data. Another important factor that plays a role to have systems

with good performance is the data itself. Data is one of the most important keys for success when

studying a simple or a complex phenomenon, and the success of machine learning models can

be attributed largely to the data itself [14]. In the most common scenario, the main requirement

to obtain a good performance is to fulfil two factors concerning the data: quality and quantity.

Unfortunately, in reality, this is not possible and researchers have to deal with these two problems

in almost every task. The research community through conferences and competitions such as

ImageNet [15] and Kaggle [16] challenges, and motivates researchers to create models and

strategies to solve different tasks in computer vision. They also create and make available many

databases [8] that hugely contribute to fostering research in the field. This has contributed to

advancement in the field, but there are still many problems requiring better solutions. Among

the problems, we describe the most important ones: 1) Each data type comes with different

levels of noise. For example, data that contains wrong, highly subjective, and non-discriminative

annotations, or data with very bad quality; 2) Data comes in different shapes and formats. This

causes mismatches between the amount of required vs the available computational resources; 3)

Data that contains imbalance present at different levels. This can be due to irregular or very rare

events in the data, lack of annotated data for some or all classes, etc.; 4) The problem of having

insufficient amount of data. Models in the current state of the art require a large amount of data

that is not always available. A suitable quantity depends also on the target problem. 5) Finally,

there is a lack of databases not even without annotations to study and explore more specific and

complex problems. Machine learning is used in many applications today. However, there is a

lack of expert-level databases to study very specific problems. For example, in medicine, there

may be sensitive user data that makes its availability difficult. For all these reasons, we extend

our efforts to the treatment of the data itself. Throughout the document, we present different

strategies that aim to solve the problems around the nature and state of the data along with the

appropriate processing for the state-of-the-art applications.

Difficulties for non-expert users. Finally, we emphasize the complexity of recent develop-

ments, especially for non-expert users. Machine learning is nowadays the major approach to

perform multimodal learning because of its outstanding success in diverse applications. Its ob-



1.2. Problem Statement 9

jective is to design algorithms to assist computer systems and progressively improve their per-

formance. In general, it consists of algorithms or models that automatically learn from training

data and make decisions without being specifically programmed for them. Andrew Ng, the co-

founder of Coursera and professor at Stanford University, defines machine learning as follows:

"the science of getting computers to act without being explicitly programmed" 7. Specifically,

models based on neural networks (or deep learning [17]) have shown to have highly competent

performance in many applications.

Currently, these models are being used in diverse domains in research as well as the indus-

try [18]. Microsoft, Facebook, Google, and Amazon are examples of top companies leading

the integration of deep learning into everyday applications [19–22]. The most significant ad-

vancements in technology are including the use of machine learning for applications such as

self-driving vehicles [23], algorithms in robotics [24–26], many analytic tools [27], chat-bots

[28], bioinformatics [29], rise and fall of stocks [30], and others [31], etc. The most current

example is the explosion in the number of articles addressing the problem of COVID8 and using

deep learning as the main tool [32, 33]. However, the learning curve of deep learning is very

hard on users without a background in computer science or applied mathematics, especially the

most recent developments that concern very complex models. A recent trend that aims to facili-

tate the use of deep learning models is explainable artificial intelligence (XAI). XAI emerged to

understand which aspects of the input data drive the decisions of a deep learning model [34]. It

can be defined as a set of tools with great diversity in the definitions, approaches, and techniques

used by researchers to provide a rationale for the decisions for deep learning models. These tools

can also be useful for non-expert users and the research around facilitating its use is getting more

attention [35]. On the other hand, traditional models also offer competitive performances and

may be easier and faster to use for these non-expert users. Besides, these models contain much

information not completely explored and exploited and can offer impressive results. In this the-

sis, we focus our efforts on creating strategies that leverage the capabilities and potential of deep

learning tools. We test these strategies on state-of-the-art applications for multimodal learning

with images and textual data. We hope non-expert users will find these strategies useful when

7https://www.coursera.org/learn/machine-learning (accessed Jan 2021)
8Global research on coronavirus disease (COVID-19); https://www.who.int/emergencies/diseases/novel-

coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov (accessed Dec 2020)

https://www.coursera.org/learn/machine-learning
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov
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considering deep learning as a support tool.

To summarize, many problems remain unsolved in the state of the art when working with multi-

modal data. These problems are derived from the combination of modalities in different feature

spaces, the nature of the data itself, and the complexities and limited explainability of current

tools in the state of the art. We have mentioned the most frequent ones and emphasized those

on which we focus throughout the development of this work. Next, we present more details of

current work, challenges, and applications in multimodal learning.

1.3 Multimodal learning

Learning from multiple modalities is advantageous since it provides diverse points of view,

and can contain additional and useful information or reveal hidden patterns in the study of a

phenomenon. On a higher level, pieces of information from different modalities can represent

the same semantic concept. However, computationally, each modality represents a data type

residing in a different space, which therefore requires different processing. Although images and

text are the most common data types (see Section 1.1), there still exists a large gap to interpret

semantically some types of content, especially visual. This gap increases when studying visual

and textual data in a multimodal scenario. Given the nature of each type of data, some unique

computational challenges emerged. These along with their main applications are explained next.

1.3.1 Multimodal challenges

Multimodal Machine Learning brings some computational challenges given the heterogeneity

of the data. These need to be addressed when studying applications involving more than one

modality. These challenges are representation, fusion, translation, alignment, and finally, co-

learning [2]. We explained them next.

Representation. Good representations are important for the performance of machine learning

models. This challenge is concerned with how to represent and summarize multimodal data.

This poses many difficulties such as how to combine data from different sources with a hetero-

geneity gap, how to deal with different levels of noise contained in real and available data, and
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also how to deal with missing data. While the development of uni-modal representations has

been extensively studied [36–39], the boost of more complex multimodal representations oc-

curred in recent years [2, 40, 41]. The two most popular types of multimodal representations are

joint representations and coordinated representations (see Figure 1.5 - A (above) on page 13).

For the case of finding a common semantic space, the preferred category lies in joint represen-

tations. For example, to construct a multimodal representation using neural networks, we can

project the neural representation of each modality into a joint space composed of one or several

layers, and that later, can be used to perform semantic predictions.

Fusion. This challenge lies in the integration of information extracted from different unimodal

data into a single compact multimodal representation to perform a prediction. This task can be

performed in an early, middle-level, attention-based, or late fusion approach. Essentially, this

refers to different fusion points [42, 43]. One of the main problems around this challenge resides

in how to adjust the weights of the fusion function (see Figure 1.5 - A (below)).

Translation. As its name suggests, this challenge deals with the translation from one modality

to another. Some applications in this category include image caption [44] (see Figure 1.5 - B);

video description [45], and cross-modal retrieval [46].

Alignment. This challenge targets finding the relationships and correspondences between sub-

components of instances from two or more modalities [47]. For example, to generate region-

level descriptions it is necessary to find the correspondences between specific words and image

regions (see Figure 1.5 - C). This challenge has not been widely studied because it faces many

difficulties. For example, there exist very few databases with explicitly annotated alignments.

Also, it is difficult to design similarity metrics between modalities. And finally, it is not clearly

defined as there may exist multiple possible alignments and not all elements in one modality

have correspondences in another.

Co-learning. This specific area of multimodal machine learning seems to be under-studied.

In this challenge, knowledge from one rich modality is used to improve the modelling of a poor

one (with little to no data). The richer or helper modality is usually used during training but not
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during test time. The main applications are transfer learning and zero-shot learning (see Figure

1.5 - D). Due to the heavy resource consumption in acquiring high-quality labelled data sets,

recent approaches are following a co-learning strategy [48]. In reality, tackling almost any task

in multimodal learning requires handling more than one of these challenges. For example, repre-

sentation is responsible for the process of finding quality representations of multiple modalities,

while fusion directs how this process is carried out. The rest of the challenges are more related

to the type of application they address.
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Figure 1.5: Multimodal challenges. A) Representation and fusion challenges. Representation

is classified into two categories: 1) Coordinated representations aim to approximate each rep-

resentation by using a similarity or a correlation measure, but separately. 2) On the contrary,

the joint representation fuses the individual representations. Fusion is another challenge that

studies each one of these different points in which the modalities are combined such as Early,

Intermediate, or Dense (in which the layer of fusion can vary or be designed to perform as an

attention mechanism); B) Translation deals with transforming one modality into another. One

popular application is image captioning. Its goal is to provide a detailed semantic description

of the image content; C) Alignment aims to find the relationships and correspondences between

sub-components of instances from two or more modalities. The main barrier in this task is its

requirement of high volumes of labelled data; D) Co-learning exploits the knowledge from one

rich modality to model a poor one. For example, to predict semantic concepts to new or unseen

classes, we can use information from classes seen during training. Once the model is trained,

we can use it to transfer the semantic concept to unseen classes.
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1.3.2 Multimodal applications

This thesis comprises the application of media description and multimedia retrieval with images

and text. For media description, we address the tasks of image description [44, 49], and visual

question answering (VQA) [10]. We also address multimodal retrieval mainly as a cross-modal

retrieval task. We describe the addressed tasks next.

Image description. This is one of the most well-studied applications that connects computer

vision and natural language processing (NLP). This application is in charge of generating se-

mantic textual representations of a piece of visual data [44, 50, 51]. It has evolved from image

annotation [52] to more complete descriptions such as image captioning [53, 54] and image

alignment [55].

Visual question answering (VQA). VQA aims to answer questions presented in an image

and using natural language [10, 56]. Recently, this task has branched out into more specific

ones such as scene-text VQA that consider the semantic information conveyed by text within an

image. This is because textual information is contained in about 50% of the images in large-scale

databases as well as in our everyday surroundings [57, 58].

Multimodal information retrieval. Multimodal information retrieval aims to identify rele-

vant data across different modalities. Specifically, the task of cross-modal retrieval has been a

hot research topic in both computer vision and NLP communities. This is mainly carried on

between images and text [46, 59, 60]. And the principal approach to address this task is to

learn a joint semantic embedding space that can capture the inherent relationships between both

modalities [61, 62] (see Figure 1.6). In the next section, we describe the methodology followed

through our work in more detail, along with our objectives and principal contributions.
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Animals in the water

QUERY RETRIEVED DATA

Figure 1.6: Examples of multimodal information retrieval. The first query is done using natural

language and the expected results contain relevant and semantic visual representations. For the

second query, the goal is to retrieve meaningful and semantic information related to a piece of

visual information. For example, we can take a photograph of an unknown bird and look for

textual information that describes the type of species.

1.4 Contributions and additional goals

As we explained in previous sections, multimodal learning comprises a large set of challenges

and applications. Although developments in this area have achieved outstanding performance in

different applications, research in this field continually grows as improvements in the precision

of these systems are demanded. In this dissertation, we propose to tackle the problem of multi-

modal learning from images and text being the two principal data types. Our principal objective

is to develop strategies that find a common semantic space that produces effective multimodal

representations. We also aim to create approaches easily adapted and evaluated for several ap-

plications. The advantage of finding a common semantic space is that it allows us to easily

perform comparisons between target text and visual content by mapping each modality to this

space. This approach has been a successful strategy not only when working with images and

text but in the combination of multiple modalities [63, 64]. In this section, we present generic

goals pursued in the field of machine learning that are linked to our contributions. Next, we
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present our contributions to the field of multimodal machine learning along with a description

of the methodology adopted in each one. Finally, we present the organization of the document.

During the development of this thesis, we pursued generic goals that are relevant in the field of

machine learning. These are linked to one or more of our main contributions. We listed them

next.

• To develop flexible systems that find a common semantic space between images and

textual data. This objective seeks to achieve the development of systems that explore the

semantic relationships between images and text and that are easily adaptable to perform

different multimodal tasks. This goal is linked to our first two contributions that carry out

the tasks of multimodal information retrieval and scene-text visual question answering in

which the proposed frameworks have similarities.

• To explore/develop learning strategies that evaluate the impact of the quality of the

data in the model performance when the problems of noise, imbalance, and insuffi-

cient labelled data are present. Data is one of the most important factors when aiming

to reach good performances. We determine that one relevant skill is to understand how to

properly clean and analyze data and create strategies able to leverage it. In this thesis, we

address frequent problems around the data, such as noise, imbalance, and when we have

little annotated data available that are present in any machine learning task. This goal

is linked to our third and fourth contributions where we first present strategies to tackle

imbalanced (3rd contribution) and second by proposing a semi-supervised learning strat-

egy (5th contribution). Semi-supervised learning permits harnessing the large amounts

of unlabelled data available in many use cases in combination with typically smaller sets

of labelled data [65]. This learning approach is the preferred solution to deal with ma-

chine learning problems because, in reality, there exist many data sets with little to no

annotations.

• To decrease the gap between multimodal machine learning tools and non-expert

users. There exist a lot of advanced models created and published that could potentially

solve specific needs. However, it seems quite difficult to find and adapt them to extract

value for different domains and users. Nowadays, bridging the gap between humans and
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artificial intelligence is an objective for industries in many domains. Many artificial intelli-

gent systems are more desired and implemented in everyday tasks. Therefore, workers are

looking for a fast rapprochement with the academia that allows them to use these tools9.

This goal is linked to our fifth contribution.

Next, we present a detailed summary of our main contributions made in this thesis in the field

of multimodal machine learning.

1. In our first contribution, we developed an approach that evaluates the effectiveness of a

multimodal system in a classical application that receives images and text and retrieves

relevant multimodal information. With this approach, we can evaluate the ability of the

model to produce effective multimodal representations and to handle any multimodal

query with a single model. This framework is called Deep Multimodal Embeddings

(DME) and is based on a deep learning (see Chapter 2 and Appendices A and B for a

description of deep learning techniques). The results of our experiments showed that the

DME model learns effective multimodal representations. This can handle any multimodal

query with a single architecture while producing improved or competitive results in all re-

trieval tasks. Specifically, this performs well in the top results of the ranked list, which are

the most important to users in the most-common scenarios of information retrieval. Our

work represents a new baseline for a wide set of different methodologies for cross-modal

retrieval (see Chapter 4). The results of this work are presented in the journal article "Deep

Multimodal learning for Cross-Modal Retrieval: one model for all tasks" [66].

2. With this contribution, we demonstrate the flexibility of adaptation of the previously pro-

posed model to carry on a more specialized application. Scene text visual question an-

swering, ST-VQA, has been recently proposed as a new challenging task in the context

of multimodal content description. The aim is to teach traditional VQA models to read

the text contained in natural images (see Figure 1.1, Page 2 for examples of questions in

which the answer is text contained in the scene). Here, we need to perform a semantic

analysis between the visual content and the textual information contained in associated

9https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/the-analytics-academy-
bridging-the-gap-between-human-and-artificial-intelligence (accessed Jan 2021)

https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/the-analytics-academy-bridging-the-gap-between-human-and-artificial-intelligence
https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/the-analytics-academy-bridging-the-gap-between-human-and-artificial-intelligence
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questions to give the correct answer. We evaluated the relevance of different modules in

our adapted framework using several experimental setups and baselines. We also exposed

some of the main drawbacks and difficulties when facing this problem. We make emphasis

and present alternative solutions to the out-of-vocabulary (OOV)10 problem which is one

of the critical issues of this task (see Chapter 5). The results of this work are presented in

two published articles titled "Semantic Text Recognition via Visual Question Answering"

[67] and "An extended evaluation of the impact of different modules in ST-VQA systems"

[68].

3. With this contribution, we targeted the problem of imbalanced data at different levels.

To evaluate our strategies, we consider the application of attribute learning. Attribute

learning can complement category-level recognition and therefore improve the degree to

which machines perceive visual objects. For example, in Figure 1.5 - D, Page 13, the

attribute Stripes complements the information of a machine model because it transcends

the category-level by defining through several classes what represent the concept in a se-

mantic way. This application has been long studied as a classification problem [69] and

recently, to study the problem of zero-shot learning that is the scenario where there is

few annotated data. For all these reasons, we found this application very relevant to de-

velop and evaluate our strategies around the quality of the data. We study the specific and

common problem of data imbalance at different levels in real databases as most of the

bad performance problems are due to the data itself. We propose adaptations to classical

imbalanced learning strategies that cannot be directly applied when using multi-attribute

deep learning models. Our strategies around classical imbalanced learning are designed

to be used for multi-attribute deep learning models, i.e., multi-task or multi-label architec-

tures with competitive performance in real databases (see Chapter 6). The results of this

work are presented in the published article titled "Multi-Attribute Learning with Highly

Imbalanced Data" [70].

4. With this contribution, we target the problem of having available few annotated data.

We consider the problem of propagating attribute annotations from classes to single im-

10Words that are not part of the training text data but appear in the test set are called Out of Vocabulary words.
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ages. We propagate as many correct labels as possible during training to create robust

attribute classifiers by exploiting class-attribute relationships in a semi-supervised way.

This allowed us to extend the annotations available in an image collection with diverse

vocabularies without having to annotate individual images manually (see Chapter 7). This

work is titled "Learning To Assign Attribute Annotations To Images From Class-Level

Relationships" and currently is in the process of revision and submission.

5. With this last contribution, we intend to decrease the gap between deep learning tools and

non-expert users. The developments proposed in this dissertation are intended to decrease

the gap between deep learning tools and non-expert users. We demonstrate that with

little to no imbalance, straightforward deep learning models work well and do not impose

extra complexities. For non-experts, these models can be seen as black boxes, where

all efforts are invested in pre-processing the data. Therefore, to simplify the problem,

in our strategies we avoid using features that are costly to extract such as part or object

localization which is widely used in the state of the art of attribute classification (see

Chapters 6 and 7). These results are also depicted in the previously mentioned articles

titled "Multi-Attribute Learning with Highly Imbalanced Data" [70] and "Learning To

Assign Attribute Annotations To Images From Class-Level Relationships".

1.4.1 Thesis organization

This document is organized as follows. Chapter 2 contains a description of background theory

related to the tools used in this thesis. Chapter 3 contains the state-of-the-art works specifically

related to the applications addressed in this thesis. Chapter 4 presents our proposed approaches

to address the application of multimodal information retrieval along with the experimental set-

ting and results obtained. Chapter 5 presents details about the application of scene-text visual

question answering (ST-VQA) along with the proposed experimental setting and results ob-

tained for two studies: first, an initial strategy to solve the problem of ST-VQA, and second,

an extended evaluation of the impact of the different modules contained in an ST-VQA system.

Chapters 6 and 7 present details about the application of attribute learning. It comprises the

description of the experiment setting and results obtained for two specific tasks: multi-attribute
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learning with different architectures, and learning to assign attribute annotations to images from

class-level relationships. Finally, Chapter 8 presents general conclusions of the proposed devel-

opments and strategies and suggestions for future research.



CHAPTER 2

Background

2.1 Overview

Machine learning in the multimodal context aims to build models that can process and relate

information from multiple modalities. One important part of any problem in multimodal learn-

ing is related to the representation of the data involved. Representation learning aims to find

representations of raw and unstructured data as useful information to perform tasks such as clas-

sification or prediction. Good representations are important for the performance of machine

learning models. While the development of uni-modal representations has been extensively

studied, multi-modal representations still represent a challenge. In this chapter, we present the

evolution and description from uni-modal to multi-modal representations. In this chapter, we

perform a general review of the main representation models for language and vision separately,

ending with the main approaches for multimodal learning for these two modalities. In Chapter

3 we present details of works in the state of the art in the applications addressed in this thesis.

21
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2.2 Language representations

The book of Zhiyuan et al. [71] presents a recent and detailed explanation of the advances

of representation learning techniques for NLP. Next, we briefly present a description of these

techniques. The evolution of these models is also depicted in Figure 2.1.

Figure 2.1: Timeline for the development of representation learning in NLP, extracted from [71].

One-hot vectors. The easiest and first way to represent a word is a one-hot vector represen-

tation. This vector has the dimension of the vocabulary size and assigns 1 to the corresponding

position of the word and 0 to others [72]. However, this representation has a lack of semantic

information.

Bag-Of-Words (BOW). In these types of models, a document can be represented as a bag of

its words, disregarding their order. Then a score or weight can be computed for each word based

on the number of occurrences [73].

N-grams. N-gram models learn vectorial representations for each word belonging to a given

vocabulary. The representations are trained to predict words appearing within the context win-

dow of a given center word. This model incorporates information about the structure in terms

of n-gram embeddings. To predict the next word in a sequence, some previous words (and in

the case of n-gram, they are the previous n-1 words) are considered [74]. This type of approach

introduces the core idea of some of the most popular models in NLP, "a word is characterized

by the company it keeps" [71].
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Neural probabilistic language models (NPLM). These approaches use a combination of a

vector representation and a neural network. It first assigns a distributed vector for each word,

then uses a neural network to predict the next word. This strategy has successfully learned to

model the joint probability of sentences bringing some quality encodings and semantic meanings

to the words. Some of the most popular embeddings using this strategy include Word2Vec [75],

GloVe [76], and Fasttext [77].

Pre-trained language models. Finally, the latest models take into account a deeper context of

the text into consideration. The key idea is to generate dynamic representations for the words

based on their context instead of generating a fixed one. This has been very useful for words

with multiple meanings. These models are also called pre-trained language models because they

require large amounts of data to be trained, and therefore, the best strategy is to train them over

a large corpus of data and use it for the final target application. The most popular models using

this approach include for example ELMo [78] and BERT [79].

Recurrent neural networks (RNN). As we have shown, there have been several techniques

to represent and study the natural language. Some of the most representative ones are based on

deep learning, specifically using recurrent neural networks. Recurrent neural networks (RNNs)

and their variants have been the solution to most problems dealing with sequential data and nat-

ural language as they can process sequences and lists. RNNs can learn to use past information.

It consists of several repeated sub-networks each one passing a message to a successor. This

allows the information to persist throughout the network. Long short-term memory networks

(LSTM) are a special variant that emerged to tackle the problem of very long-term dependen-

cies, i.e, LSTM can remember the information for long periods of time [80]. The most essential

idea is to include a type of structure called gates that are a way to optionally let information

through (see Figure 2.2).
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Forget 
gate

Input 
gate

Output 
gate

Figure 2.2: The basic structure of an RNN, specifically, an LSTM. These models contain a chain

of repeating modules of neural networks and include the concept of gates that control the flow

of information. In the graphic, A represents a cell (or chunk) of a neural network; X represents

the input sequence, h represents the outputs. Each cell contains three basic gates to protect and

control the cell state and with different activation functions been applied (such as sigmoid or

tanh functions). The forget gate decides what information not to store; the input gate decides

what information is updated; finally, the output gate that filters the information based on the

current state of the cell. Figure partially generated from: https://colah.github.io/posts/2015-08-

Understanding-LSTMs/ (accessed Jan 2021).

2.3 Visual representations

There have been three principal methods to represent visual data, and specifically, images. These

are (1) local and global descriptors, (2) bags-of-visual-words and Fisher vectors, and (3) repre-

sentations based on neural networks that have been the most successful and widely used [81].

We describe them next.

Local and global features. Local features (also called descriptors) represent patterns in a

region that differs from its immediate neighborhood. These can be points, edges or small image

patches representing key points in the image [82]. Global descriptors are composed of features

such as intensity, textures, and color histograms computed on the entire image. Therefore,

the image is represented by a single feature vector. Some of the most popular descriptors in

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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this category include SIFT, GIST, and SURF for local descriptors and invariant moments and

histogram-oriented gradients (HOG) for global descriptors [83].

Bags-of-visual-words (BOV) and Fisher vectors. These models represent an image by ex-

tracting a set of small image patches, quantizing them into a finite number of prototypes also

called visual words, and finally, building a histogram of visual word occurrences. The Fisher

vector representation can be seen as an extension of the BOV model. They extract a set of local

patch descriptors to encode them into a high dimensional vector [84].

Convolutional neural networks (CNN). CNN can be used to learn image representations

that can be used for several tasks. The main difference with other neural network architectures

is that a CNN can successfully capture spatial and temporal dependencies in an image through

the application of relevant filters (see Figure 2.3). The filters allow us to capture low-level

features very desired in images such as edges, color, gradient orientation. This filter operation

is carried on by using convolutional operations. Through several applications of these filters

(known as convolutional layers), the network can learn feature maps that summarize the presence

of detected features in the image. The most successful architectures based on this network

structure include AlexNet [85], VGGNet [86], and ResNet [87] (see Appendix A for details in

the theoretical foundations of these models).

Input

Filter

Output

Figure 2.3: The convolution layer uses filters that perform convolution operations while scan-

ning the input.
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2.4 Multimodal representation

Multimodal representation learning is an active research field that still represents a challenge.

Some of the most popular models such as graphical, sequential, and especially artificial neu-

ral networks (ANNs) have been shown to have advantages when representing multimodal data

through a joint combination of uni-modal representations [2, 88]. We study this challenge and

evaluate the quality of the representations through several multimodal applications (see Chapters

4, 5, 6 and 7).

2.4.1 Graphical models

There exists a family of popular graphical methods for multimodal fusion. The majority of

these models have been used for sequential data. Some of the most popular include hidden

Markov models (HMM), dynamic bayesian networks (DBN), and conditional random fields

(CRF). HMM are probabilistic models based on augmenting the Markov chain. A Markov

chain is a model that tells us something about the probabilities of sequences of random variables

(states), each of which can take on values. Such a chain is useful when we need to compute a

probability for a sequence of observable events that may be hidden: we cannot observe them

directly [89]. This model was originally applied to speech tagging because it allows us to talk

about both observed events like words that we see in the input and hidden events like part-of-

speech (POS) tags that we think of as causal factors in our probabilistic model [90]. For text

data, it has been used as a summarization technique [91], [92]. The second type of model,

DBN, uses Bayesian inference for probability computations. These networks aim to model con-

ditional dependence, and therefore causality, by representing conditional dependence by edges

in a directed graph [92]. Finally, CRF comprises a set of popular discriminative undirected

probabilistic graphical models that can represent relationships between different variables. This

is usually used for the labelling problem and therefore, the previous context is required when

making predictions on a data point. Data points are arranged as a graph consisting of a set of

nodes, and edges. An edge between node i and node j denotes a dependency between them.

For example, in image segmentation, the class label for the pixel depends on the label of its

neighboring pixels. CRFs are used in sequential data processing such as POS tagging in NLP
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and image segmentation in computer vision [93, 94].

2.4.2 Kernel-based methods: Multiple kernel learning

Kernel-based methods represent a well-established learning paradigm whose main idea is to

capture the nonlinear patterns behind data. Data such as images may not be easy to classify in a

2-dimensional space because of their non-linear nature. Hence, we need to find a function that

maps our data into a higher space, where we can easily find a clear separation between different

classes. However, to operate the data in a higher-dimensional space represents a tremendous

computational resource consumption. The "kernel trick" was proposed to tackle this problem.

This allows us to operate in the original feature space of the data without computing the coor-

dinates of the data in a higher-dimensional space. In other words, this offers a more efficient

and less expensive way to transform data into higher dimensions [95]. Choosing the most suit-

able kernel function with the right parameters and regularization is of great importance. Popular

kernel-based methods include support vector machines (SVM) [96], kernel canonical correla-

tion analysis (KCCA) [97], and matrix factorization [98]. In the context of multimodal learning,

operating different kernels may correspond to using information coming from multiple sources.

These tools fell slightly out of favor when deep learning approaches became popular. However,

they may be useful when dealing with small databases [99, 100].

2.4.3 Artificial neural networks

The first works related to ANNs dates from the year 1943 when Warren McCulloch, a neuro-

physiologist, and a young mathematician, Walter Pitts, wrote a paper on how neurons might

work. Popular models ensued [101, 102] such as CNNs [103] and recurrent models such as

LSTM [80]. Since then, these models have been extensively used when solving many complex

real-world problems. Figure 2.4 shows how the interest in models based on this structure has

escalated through time. ANNs are inspired by the human nervous system that consists of bil-

lions of neurons of various types. These neurons interact and communicate through multiple

and simultaneous signals [101]. In a simplified way, ANNs are representations of a system of

neurons. Each neuron receives inputs from several other neurons, multiplies them by assigned
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weights, adds them, and passes the sum to one or more neurons. An activation function to the

output before passing it to the next variable may be applied as well [102].

Evolution of interest in this research.
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Figure 2.4: The results reflect the proportion of searches for the keyword "deep learning" in the

specific region of "all the countries" and period (01 Jan 2004 - 31 Dec 2020), compared to the

region with the highest usage rate for this keyword (value of 100). For example, a value of 50

means that the keyword was used half as often in the affected region, and a value of 0 means

that there is insufficient data for that keyword. Figure partially generated from the source data

at https://trends.google.com/trends/ (accessed 14 Jan 2021).

ANNs are in general composed of an input layer, which receives data, one or several hidden

layers connected that process the data, and an output layer that provides one or more data points

based on the function of the network. Figure 2.5 details an example of an ANN model after

the training process. In the example, the network is composed of the input layer in which we

can include different features or representations for the input variables; 3 hidden layers with

dimensions of (4, 4, 2) respectively (i.e., the number of neurons in each layer); and one output

layer with two neurons representing each class. The structure of the network is known as model

architecture. An ANN learns by an optimization process until a criterion is reached (see Section

A.1.3). In the example, we showed that the network is effectively able to learn to discriminate

between the two classes for the training (softer data points) and test data (hard data points).

Some popular ANNs are perceptrons. The perceptron is the basic unit of deep learning models.

It takes several binary inputs and produces a single binary output. Hence, a deep learning model

is a network of perceptrons [104]; multi-layer perceptrons (input layer, a set of hidden layers and

an output layer of neurons) [105]; and auto-encoders in which the general idea is to reconstruct

the input (the output values equal to the input values) [102]. Appendix A describe the theoretical

https://trends.google.com/trends/


2.5. Discussion 29

foundations for the use of deep learning models.

Feedforward of input data

Backpropagation of errors

W1 W2 W3
Activation

Activation

Activation

Activation

Activation

Activation Activation

Activation

Activation

Activation

Figure 2.5: Structure of an ANN model. A traditional ANN consists of three parts: an input

layer that corresponds to the target data to study or a feature representation of it; a set of n

hidden layers (in the example, 3); and the output layer. The most important step in the training

phase is the optimization process. This comprises two general phases: a feed-forward step

to pass the input data X , and a back-propagation step to find the optimal set of parameters

W . To carry on these processes, it is required to establish activation functions (applied to the

outputs of each neuron), loss functions (that represents the objective function to minimize),

etc. In the example, the objective is to classify the input data into two classes (positive and

negative). The output shows the result after the training process with an effective classification

(or separation) of the two classes for the training (softer data points) and testing (hard data

points) data. Figure partially generated with the tool developed by Daniel Smilkov and Shan

Carter, https://playground.tensorflow.org (accessed Jan 2021).

2.5 Discussion

In this chapter, we have presented the evolution of the representation models involved in uni-

modal and multimodal learning. We reviewed the main representation models for language

and vision (images) separately, ending with the main approaches to multimodal learning for

these two modalities in the state of the art. While uni-modal representations have been studied

extensively and performance in different applications is outstanding, for multimodal applications

this is not yet the case. The semantic gap between the different modalities imposes a barrier

https://playground.tensorflow.org
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when it comes to jointly analyze the information contained in them.

In this thesis, we approach the specific problem of multimodal learning with images and text

from various perspectives. In our strategies, we make use of ANNs as the main structure of

our approaches due to their success in different multimodal applications (see Chapter 3). Addi-

tionally, we explore multimodal learning from various multimodal applications to gain a better

perspective on the performance of the proposed strategies. These strategies are presented in

Chapters 4, 5, 6 and 7. In the next chapter, we present the state of the art of approaches that

address the problem of multimodal learning using the visual modality in the form of images

and the textual modality. Specifically, we present the state of the art related to the applications

addressed in this dissertation (see Section 1.3.2), which are cross-modal information retrieval,

scene-text visual question answering, and attribute learning (image description).



CHAPTER 3

Related work

3.1 Overview

In this chapter, we present the state of the art of tasks addressed in this thesis. This includes

cross-modal information retrieval (Section 3.2), scene-text visual question answering (Section

3.3), and attribute learning (Section 3.4). We describe the current state of the art in each one of

these applications, finalizing with a summary of our proposed strategies that will be presented

in the following chapters.

3.2 Cross-modal information retrieval for images and text

In this section, we present the state of the art for works addressing the problem of cross-modal

retrieval. After the review of several works, we classify the principal approaches into two cat-

egories: works based on finding a sub-space and works based on deep learning. In turn, each

category contains a classification according to the type of strategies followed. This classifica-

31
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tion is also supported by the survey works presented in [59, 106]. Although the classification

is larger in the survey works, we selected the most relevant approaches that address the task

of cross-modal retrieval and that are implemented for the visual (images) and textual modali-

ties. For this task, the most general performance metric used is mean average precision (see

Appendix A.1.4 for a definition of this measure). We include some of the main results reported

in the works for a general perspective of their performance. The goal of this task is to take one

type of data as the query to retrieve relevant data objects of another type. The most popular

types used to perform the cross-modal task are images and texts corresponding therefore to two

cross-modal retrieval tasks: 1) Image query vs. text database (Img2Txt), 2) Text query vs. image

database (Txt2Img).

The most popular databases contain natural images and textual data such as tags, sentences, or

paragraphs that contain descriptions of the image content. Wikipedia retrieval database (WRD)

[107] is the most popular database for cross-modal retrieval tasks. It contains image-document

pairs corresponding to Wikipedia articles1, classified in a very diverse range of domains such

as art, biology, geography, history, etc. Another database, Pascal sentences [108], was created

by using the platform Amazon’s Mechanical Turk [109] and provides pairs of images and a

set of up to 5 descriptions of their content provided by the users of the platform. MIR-Flickr-

25k [110] consists of images downloaded from the social photography site Flickr and annotated

using different semantic concepts. Other databases less popular for the task of retrieval include

Nuswide [111], XMedia database [112], and MS COCO database [113].

3.2.1 Sub-space learning

Sub-space learning comprises techniques that aim to find a set of projections for diverse modal-

ities such that the correlation between them is maximized. Figure 3.1 shows an example of a

framework and its components for typical approaches implementing this technique. The prin-

cipal idea is to learn a mapping function to project data from different modalities to a common

space so that similarities between them can be directly measured.

1https://en.wikipedia.org/wiki/Wikipedia:About (accessed Feb 2021).
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Figure 3.1: Example of a framework that implements the strategy of finding a common multi-

modal sub-space (extracted from [114]). The inputs are features of each modality residing in

its own space; the f functions represent the target projection functions to learn, and that allows

to transform inputs from their own spaces to a hidden common space; this hidden space can be

also constrained by supervision such as labels and therefore, it contains the semantic structure-

preserved and can be used for cross-modal retrieval tasks.

Correlation models. Several of these techniques are based on the commonly known canonical

correlation analysis (CCA) [115] algorithm [116]. These techniques benefit from explicitly

modeling the correlation between two elements. They rely on the strong assumption that the

modeling is more useful in feature spaces having higher levels of abstraction such as the visual

one. Features such as SIFT for images and latent Dirichlet allocation (LDA) [117]) for text were

widely used as the base for these models. Firstly, both visual and textual features are projected

onto a latent space using the CCA method, and then the probabilistic interpretation of CCA is

utilized for calculating the representative distribution of the latent variable for each class. The

general formulation of the optimization problem is presented in Equation 3.1 where the goal is

to maximize the correlation between the textual and visual modalities.

J = arg maxWI ,WT
corr(W>

I XI ,W
>
T XT ) (3.1)
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Where XI and XT are matrices containing corresponding features from images and text and,

WI and WT are the target transformation functions that project the two modalities onto the

shared space. Popular variants include correlation matching (CM), semantic matching (SM),

and semantic correlation matching (SCM). CM is an unsupervised approach that models cross-

modal correlations, SM is a supervised method that relies on semantic representation and SCM

is the combination of both of them [118]. There exist many problems around these traditional

techniques such as the waste of information when applied on supervised problems as it is an un-

supervised technique; and second, it is not able to compute non-linear correlations more present

in real applications. Therefore, variants to address these problems have appeared such as Kernel

CCA [119] and mostly, several others based on deep learning implementations such as encoder-

decoder architectures [120] or more deep architectures [121] (see Section 2.4.3 for a description

of the architectures). Some representative MAP results for the WRD include (Img2Txt - 0.306,

Txt2Img - 0.266) [122], (Img2Txt - 0.39, Txt2Img - 0.29) [118], and (Img2Txt - 0.272, Txt2Img

- 0.232) [120].

Projection matrices. In this category, we can include methods based on tensor factorizations

and graph embeddings. Tensor computations are better found as matrix factorization models,

in the case of two modalities [62], that find projection matrices (PM) to map the data to an

embedding space. This space may be restricted by regularization and constraint terms [123].

Some problems of these models are the complexity created when non-linear mappings are in-

cluded (kernel functions), which leads to higher computational requirements without significant

improvements in their performance [114, 124–126]. Non-linear mappings change linear projec-

tion functions W to Ω projection functions in Equation 3.1 where the non-linearities of the data

are easily modeled [127]. Graph approaches aim to ensure the intrinsic geometric structures of

different feature spaces. Their approaches can use supervision spaces such as labels to model

the correlations among different modalities (MAP in WRD: Img2Txt - 0.338, Txt2Img - 0.406)

[128].
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3.2.2 Deep learning models

As in many applications, methods based on deep learning have become the preferred approach

to tackle the problem of cross-modal learning [46, 60, 129–132]. These methods are designed

to reflect the local and global individual structures from different modalities and make the re-

sulting embeddings useful for a variety of tasks. Figure 3.2 presents a generic framework of a

deep learning model for multimodal retrieval. The main idea is to combine different networks

depending on the nature of the data, for example, CNN for the images + fully connected net-

works (FC) for the text, or represented by the same type of network such as CNN [133], with

multi-modal layers with single [134] or multiple connections [135]. The textual modality can be

used to guide the process of learning semantic features, i.e., this is used to supervise the model

[136]. Supervision is an important factor and therefore, loss restrictions are widely applied to

improve the quality of the semantic space generated. In [137], the authors propose a method

with novel within-modality losses that aims to improve the semantic coherence in both the text

and image sub-spaces. Images and textual embeddings are close in the joint space only if they

are in the textual modality in its uni-modal text space.

Figure 3.2: Example of a framework that implements the strategy of finding a common multi-

modal sub-space using a deep learning approach (extracted from [135]). The features inputs of

each modality are computed using different models; then a central component is used to fuse

these features and finally, a classification or regression task to optimize the model.

Although supervision is quite important, any type of supervision data can be difficult and expen-

sive to obtain. One critical aspect is to create models able to perform without demanding huge

amounts of annotated data. Recent works are presenting solutions for the problem of insufficient
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annotated data such as how to train the model with minimal supervision, where there do not exist

pairs of data for all samples also by incorporating composed terms in the loss [138] such as in

Equation 3.2.

Loss = LossMS + LossMI + LossDIS (3.2)

where the LossMS represents the modal-specific term and it is in charge of finding representa-

tions for each modality separately. The LossMI represents the modal-invariant term in charge

of imposing similarity between each sample pair across modalities. And finally, the LossDIS

discriminative term that uses the class labels as the supervision information and is represented

as a common classifier for the different modalities (WRD: Img2Txt - 0.381, Txt2Img - 0.35).

Other works take advantage of raw data in databases such as descriptions and captions in the

form of topics [139, 140] or propose strategies based on zero-shot learning (ZSL), whose main

purpose is to use very few annotated data [141].

Popular variants. There exist many variants when implementing deep learning models for

cross-modal tasks [129–131]. This can be related to the number of points of connections or

the type of model used to initially encode the modalities involved. These models for multi-

modal learning are usually composed of two (or more) sub-networks, one per modality [46,

132]. The connections of these sub-networks can be performed at several points [135, 141],

or can represent forms of attention mechanisms [142]. The goal of the attention mechanism is

to generate an attention mask that focuses on relevant data in the feature representations. In

[143], they show how the performance increase when the attention is applied to both modalities

(MIR-Flickr-25k: Img2Txt - 0.772, Txt2Img - 0.807). The type of model used to embed each

modality can also vary. For example, the visual part is passed through a neural network, and the

textual part is passed through a model such as a BOW, and a late fusion component is used to

combine both of them. We found many variations especially for the method used to represent

the textual modality. Some of the combinations found in the state of the art include CNN +

BOW [144], CNN + LDA [139, 145], CNN + kernel methods [146], and CNN + FC [147].

Another type of variant includes the use of restricted Boltzmann machines (RBM) [148, 149].

These are undirected graphical models that define a probability distribution of the generated

features of different modalities using shared hidden layers. These are usually designed as a set
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of stacked models (see Figure 3.3). For example, in [150], they propose three stacked models:

a model to learn a modality-friendly representation, whose statistical properties are similar, and

the modality-mutual representation, which contains some missing information in the original

input instances. A second model is stacked and contains a joint auto-encoder and a three-layer

feed-forward neural net to obtain the hybrid representation. And finally, a third model stacked

over the first two, that obtains a shared representation for each modality by implementing bi-

modal auto-encoders. Some representative MAP results for deep learning models for the WRD

are (Img2Txt - 0.428, Txt2Img - 0.374) [146], and (Img2Txt - 0.434, Txt2Img - 0.388) [145].

Figure 3.3: Example of stacked models (extracted from [150]). The model represents specifi-

cally a deep belief network (DBM) and its goal is to learn the common representation of various

modalities.

Adversarial learning-based models. Adversarial learning is a research field concerned with

the analysis of models to adversarial attacks, and the use of such analysis in making the models

more robust to attacks. This learning strategy simultaneously trains at least two models: a

generative model that captures the data distribution and a discriminative model that estimates

the probability that a sample came from the training data rather than the generated one [151].

These models can be seen as different networks. Figure 3.4 shows an example of a framework

following this type of learning strategy. For cross-modal retrieval, these methods explore how

to jointly extract and utilize both the modality-specific and modality-shared features effectively

[61].
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Figure 3.4: Example of a framework that implements an adversarial learning strategy (Figure

extracted from [152]). The framework consists of some major components such as image and

textual feature projections to a common sub-space, and two major processes to optimize. In

the example framework, the processes are represented by two networks targeting two tasks: a

modality classifier, and a cross-modal similarity metric. The adversarial learning manner is

adopted to jointly optimize the networks during training.

The processes followed are as follows: first, a feature projector tries to generate a modality-

invariant representation in the common sub-space and to confuse the other process, modality

classifier, which tries to discriminate between different modalities based on the generated repre-

sentation [153]. This can be seen as generators projecting the different modalities into a common

and a discriminant space, while the discriminators compete against the generators to alleviate

the heterogeneous discrepancy in the space [154]. Other works include more than two processes.

In [155], the authors propose three training processes seen as different paths. These include a

multi-modal feature embedding path, an image-to-text generative feature learning path, and a

text-to-image generative adversarial feature learning path (see Figure 3.5). Because of the suc-

cess in different tasks, several works in cross-modal retrieval apply now this approach [61, 129,

152, 156–160].
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Figure 3.5: Example of a framework with multiple training paths (extracted from [155]). Their

proposed generative cross-modal learning framework (GXN) consists of three training paths:

cross-modal feature embedding (the entire upper part), image-to-text generative feature learning

(the blue path), and text-to-image generative adversarial feature learning (the green path). It

includes six networks: two-sentence encoders in dark green and light green, one image encoder

in blue, one sentence decoder, one image decoder, and one discriminator. This number of models

to train also represents a huge demand for computational resources.

The most recent developments aim to tackle the problem of insufficient annotated data with

different approaches [141, 161]. For example, in [162], they present a framework with the

different processes to optimize aiming to transfer data among modalities. The first process, a

modal-sharing knowledge transfer sub-networking, aims to jointly transfer knowledge from a

large-scale single-modal database in the source domain to all modalities in the target domain

with a star network structure. The second process, modal-adversarial semantic learning sub-

network, is proposed to construct an adversarial training mechanism between common repre-

sentation generator and modality discriminator to enhance cross-modal semantic consistency

during the transfer process. Some representative MAP results are Pascal sentences: (Img2Txt

- 0.281, Txt2Img - 0.261), WRD: (Img2Txt - 0.331, Txt2Img - 0.287) [156], and for MIR-

Flickr-25: (Img2Txt - 0.772, Txt2Img - 0.8001) [157], and (Img2Txt - 0.741, Txt2Img - 0.756)

[159].

Hash-based models. Most recent methods follow another learning strategy when address-

ing the problem of cross-modal retrieval. They transform the problem of finding common

multi-modal representations to the learning of hash codes representing embeddings for differ-
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ent modalities. The goal of hashing is to map the data points from the original space into a

hamming space of binary codes where the similarity in the original space is preserved in the

hamming space. In this sense, the binary codes are learned as a way of regularization. The

cross-modal hashing aims to learn a common hash matrix Hε{−1,+1}l∗n of dimension l and

computed by n samples, as depicted in Equation 3.3.

minH(‖H − F‖2F + ‖H − T‖2F ) (3.3)

where F and T represent the feature matrices for the image and text modalities. Figure 3.6

shows an example of a framework implementing this learning strategy. These methods are

based on binary supervision, considering multi-modal relationships as either completely similar

or completely dissimilar. By using binary hash codes to represent the original data, the storage

cost can be dramatically reduced.

Figure 3.6: Example of framework that learn hash codes for cross-modal retrieval (Figure ex-

tracted from [163]).

This is one reason why hashing-based methods have become more and more popular for neural

networks search in large-scale databases. For cross-modal retrieval, this is one desired advan-

tage and it is implemented in several state-of-the-art works [164–170]. These models are mainly

based on deep learning [171–178], but can also use matrix factorization [179, 180] or a combi-

nation of methods [181]. The most important aspect of these methods is the importance of the

code length that has a significant influence on the final result [163]. Usually, larger codes obtain

better results [182]. Most of these methods use supervision such as labels. For example, frame-
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works that use neighborhood information from different modalities to create a joint-semantic

affinity matrix. They explore semantic relations among labels or they use the semantic label

data to improve the feature learning part, which then can preserve semantic information of the

learned features and keep the invariability of cross-modal data [177, 183, 184].

Many variations using this approach include graph CNN [185], deep RBM [148], and PM [179,

186]. As with previous approaches, the challenge is in how to learn with insufficient data, and

some unsupervised methods have been proposed [187–189]. The biggest variants implementing

this strategy are models based on adversarial learning [178, 190–193]. This is due to the fact

of the two inherent processes to optimize: a process that can be based on supervision such as

labels, and the process in charge of learning the hash codes [60, 194–196]. One shortcoming of

these hand-crafted feature-based methods is that the feature extraction procedure is independent

of the hash-code learning procedure which is one of their main problems [197]. Some represen-

tative MAP results for WRD are: (Img2Txt - 0.279, Txt2Img - 0.626) [165], (Img2Txt - 0.374,

Txt2Img - 0.709) [166], and (Img2Txt - 0.331, Txt2Img - 0.701) [195]; while for MIR-Flickr-

25k: (Img2Txt - 0.699, Txt2Img - 0.812) [166], (Img2Txt - 0.721, Txt2Img -0.768) [195].

3.2.3 Discussion

Cross-modal information retrieval is a challenging task due to the semantic gap between the

modalities. Due to this gap, we cannot compare different modalities directly with each other.

Figure 3.7 shows some example results extracted from very recent works for the two most pop-

ular retrieval tasks Img2Txt and Txt2Img for Nuswide and WRD databases. We can see that the

task is still very challenging, in special when the query is an image and we aim to retrieve some

relevant textual content.



42 Chapter 3. Related work

Figure 3.7: Retrieval example results for the two most popular cross-modal tasks: A) Img2Txt

on the Nuswide database (extracted from [184]). B) Txt2Img on the Wikipedia retrieval database

(extracted from [162]).

In this section, we present a set of different strategies that aim to tackle the problem of finding

a common semantic space where modalities can be compared as equals. The most popular

are based on deep learning. The most popular deep learning variations are adversary models

and hash-based models. Adversary learning has been very successful in many applications,

however, there are also downsides to working with this type of learning strategy. For example,

the additional complexities and computational burden due to multiple processes to optimize.

Some works have shown how its performance is highly correlated with the characteristics of the

data set, and data points that are far enough away from the training data distribution can damage

it [198]. On the other hand, the main problem that hashing methods for multi-modal retrieval

need to solve is to minimize it as much as possible, and deep hashing methods usually perform

better in case of a colossal amount of multi-modal data but with higher hardware cost. Also,

the full use of tag information has important significance in the final performance. Because of
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the hash collision problem (producing the same hash value), longer hash codes are needed to

ensure the precision of the retrieval, which brings additional time and computational overhead,

and leads to a decrease in the recall rate [199].

Despite all these disadvantages, deep learning models are successful in extracting and modeling

the intrinsic characteristics of different modalities and are the preferred base method for cross-

modal retrieval tasks. In Chapter 4, we explore the general problem of multi-modal retrieval for

databases containing images and textual data. Inspired by visual question-answering architec-

tures, our approach learns combined representations to build an effective multi-modal retrieval

system. Unlike recent models such as adversarial, or models based on hashing that requires the

optimization of many models (up to six models to train [155]), we propose to train a simpli-

fied end-to-end model that demonstrates the capabilities and that support our pursued generic

goals and contributions: 1st and 5th contributions (see Section 1.4). Also, performance results

for WRD such as (Img2Txt - 0.279, Txt2Img - 0.626) [165], and (Img2Txt - 0.331, Txt2Img -

0.701) [195] appear to be over-optimized for the task of Txt2Img while having very low perfor-

mances for Img2Txt. Our goal is to investigate the potential of a single model to retrieve relevant

documents in cross-modal tasks without being optimized exclusively for any one of them. We

present an extended analysis of our approach and without the need to fine-tune the model or

results for every single retrieval task.

3.3 Scene-text visual question answering

In this section, we present the state of the art for works addressing the problem of scene-text

visual question answering (ST-VQA). Although there have been enormous advances in VQA

and text recognition as separate tasks, these models still fail when both tasks come together, i.e.,

when the model must recognize the text in the image, by including a level of reasoning. The

most popular work in VQA is the one presented by Antol et al. [10], in which they introduce

the problem clearly, as well as baselines over a new proposed database. Since then, many other

works have been introduced with improvements in each one of their components, for example

by the inclusion of attention mechanism [200–202] that incorporate a level of reasoning to the

model. Textual recognition has been addressed by using optical character recognition (OCR),
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which nowadays performs very well in cleaned documents, but, those have failed when there

are very diverse text appearances that occur in the real world and also because of the amount of

processing required, they end up having bad performances. Recently, deep neural models have

been successful in presenting more robust models [203], also based on end-to-end configurations

[204, 205] and attention mechanism as well [206].

Figure 3.8: Examples of triples in ST-VQA database. Each triple is composed of an image, a

question, and an answer. The answer can be obtained by interpreting the textual content in the

image.

3.3.1 State of the art

To interpret written information in man-made environments is required to perform most every-

day tasks, such as checking if a store is open or retrieving even more vital information, such as

reading food labels to find allergenic ingredients. The task of ST-VQA pursues this objective,

to interpret textual content in visual data such as scenes in our surroundings (see Figure 3.8 for

examples of triples: images, questions, and answers). Because one of the main problems in

addressing this task was the lack of databases, the first works in the specific task of ST-VQA

aimed to introduce new databases that contain images, questions, answers. The main difference

with traditional VQA databases is that the images contain target textual information required in

the associated questions [57, 58, 207–209].



3.3. Scene-text visual question answering 45

Figure 3.9 presents a generic and basic framework that represents the components contained

in this task, generally by using a deep learning based model. The very first work introducing

the task of ST-VQA was proposed by Singh et al. [207], they created a new database called

TextVQA and presented a strategy (LoRRA) based on deep learning to solve the task. Their

strategy contains the following components: a VQA system to process inputs obtained by using

an object detection model for the visual features and GloVe vectors [76] to encode the question;

a reading component to include OCR extracted by using a text recognition model as weighted

Fasttext features [210]; and an answering module composed of a fixed + a dynamic answer

space included by using a copy module (see Section 5.3.1) to handle the OOV problem which

is one of the biggest problems to address in this task (see Figure 3.10 for an explanation of

the copy module). Current VQA models are only able to predict fixed tokens which limits the

generalization to out-of-vocabulary (OOV) words because they rely on fixed answer spaces (out-

of-vocabulary are words not contained in the original pool of answers). The reality is that the

text in images frequently contains words not seen at training time, and therefore it is hard to

answer text-based questions based on a pre-defined answer space alone. The accuracy reported

for their TextVQA database in the test set is 0.276% which demonstrates how difficult is this

task.

What is the top OZ?

Model

Answer 
spaceFeatures

...
16
...

Image
Question

OCRs Texts
OCRs Boxes

Etc.

Figure 3.9: ST-VQA basic framework: there are three basic components of a framework that

addresses this task: 1) a component that extracts and pre-processes features from the available

data, such as images, questions, and OCR; 2) a component that uses the extracted features to

model and infer the response (VQA component); 3) and an answer component that ultimately

predicts the answer from a fixed or dynamic space.
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OOV
Words

Figure 3.10: The copy module is a mechanism created to handle the OOV problem. It works by

adding additional spaces to the answer space. Therefore, it has to decide whether the answer to

a question is an OCR token detected in the image, or if the OCR tokens should only inform the

answer to the question, i.e, the answer is already in the answer database (one of the a answer

spaces). Figure partially extracted from [207].

The second most relevant work introducing the task was presented by Biten et al. [57]. Similar

to [207], they also introduced a new database, ST-VQA, created for the "ICDAR 2019 Robust

Reading Challenge on Scene Text Visual Question Answering" (see [211] for details on the

competition). In this work, they presented final results for the proposed competitions from

different participants addressing the task of ST-VQA under three tasks of increasing difficulty.

The winning strategy, VTA, makes use of a strong architecture based on two types of attention,

bottom-up (since they used an object detection model as a visual feature extraction method) and

top-down attention (by including OCR information extracted with an OCR recognition system).

For the text, they use a pre-trained Bert model [212] to turn all the text into sentence embeddings,

including object names, OCR recognition results, questions, and answers (from the training set).

Having these embeddings for the text and the images, they use a similar architecture as the one

presented by Anderson et al. [201] to get the answer. The accuracy reported for this method for

the database of ST-VQA is 0.2820%.

In [208], their principal input is the introduction of a large-scale database called OCR-VQA–200K
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composed of book covers images along with methods providing a baseline performance. They

perform the task by a combination of scene text-based method engines such as Tesseract (and

OCR engine) [213] and VGG [86] detectors as feature extraction methods and VQA standard

models. The results showed how the performance depends on the type of question and the infor-

mation required. For example, binary questions result easier to answer than those that require

semantic reasoning such as the book edition (0.58% vs 0.425% of accuracy).

Graph based approaches. Graph approaches are becoming more popular to model relation-

ships among the modalities [214–217]. In this problem, generally, there are at least three modal-

ities with many possible relations to model among them. Hence, each one can be represented

as a graph structure. The graphs represent the visual, and the semantic data, in turn, divided

into the questions, and all the textual data contained in the images such as words and numbers

(see Figure 3.11) [214]. The principal idea then is to perform an iterative process to pass the in-

formation among the graphs to refine the final representation and finally, predicting the answer.

The architecture may be a combination of standard models for text and images such as Glove,

and LSTM for texts, and CNN for images.

Figure 3.11: Graph Construction process. Figure partially extracted from [214]. In this model,

they construct a multi-modal graph composed of three sub-graphs: a visual graph, a semantic

graph and a numeric graph for representing the information in three modalities.

Attention mechanisms. Most of the models implementing attention mechanisms apply it or

conditioned it on the question [215, 218]. For example, in [215], they propose a graph-based

model that aims to encode the object-object, object-text, and text-text relationships appearing in
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the image to apply an attention reason mechanism-based (where object refers to strictly visual

data and text represents textual data in the image). Their main input is the graph structure

constructed around the information contained in the question that guides the direction of the

attention. In [218], the main idea is to compute attention weights over a grid of multi-modal

spatial features. These features are constructed by concatenation of convolutional features and a

spatially-aware arrangement of word embeddings. Then, by using the attention mechanism that

is guided by the question, these features can be interpreted as the probability that a certain spatial

location of the image contains the answer text to the given question. Attention over the OCR data

extracted from the image is also implemented [219, 220]. For example, in [219], they implement

an approach that uses a combination of question words and OCR tokens to predict the answer

localization. For this, they impose an attention mechanism guided for the OCR boxes recognized

in the image instead of their text content (see Figure 3.12). The final classification process is

based on the most probably OCR boxes that contain the answer. However, the performance is

directly affected by inaccurate OCR extracted from the image. Some performance accuracies

are 0.335% for TextVQA database [220], and 0.641% in the OCR-VQA database [219].

Figure 3.12: OCR attention. Figure partially extracted from [214]. In this model, they proposed

to leverage context-enriched OCR representation to integrate the object features based on the

spatial information (bounding box)
.

Transformers. The most recent architectures are based on transformers [221]. These can be

seen as special attention mechanisms over standard features [209, 222, 223] or more specialized

such as spatial features [216]. These methods extract features for question words using tex-
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tual models, visual objects (with object detectors), and OCR tokens based on an external OCR

system. Then, the features are projected into a common space using a multi-layer transformer

which is a mechanism of attention that is applied on all the projected features [224]. In [222],

they also include a copy mechanism that at each step in the iterative process, the copy of an OCR

token from the image, or the selection of a word from a fixed answer vocabulary is carried out.

This copying mechanism is first implemented in [207]. Training models incorporate two or more

semantic training tasks according to the available data, which may increase the performance of

the model [209, 223]. For example, in [209], they incorporate vision-language, scene-text lan-

guage, and scene-text visual as three different pre-training tasks to improve the multi-modality

representation. The inclusion of these refined attention mechanisms improves the performance

by more than 20% [209, 223] and represents one of the future research directions to address this

task.

3.3.2 Discussion

This task was recently proposed and that is why state-of-the-art works that address it are still

lacking. This is due to all the additional challenges to the traditional task of VQA, which this

task imposes, the main one being the location of relevant textual information in the scene. Figure

3.13 presents some examples of predicted answers of a recent model (samples extracted from

[216]). We can see how models can be misled by textual data contained in the image but that

is not part of the correct answer. The models truly require complex reasoning about positions,

colors, objects, and semantics, to locate, recognize and eventually interpret the recognized text

in the context of visual content, or any other available contextual information [57]. In general,

these approaches propose frameworks composed of successful feature extraction methods ac-

cording to each available modality, together with the mechanisms of attention, the correlation

between the modalities in the form of graphs and answer spaces. Because many approaches use

traditional OCR methods in documents to extract the text contained in the image, the perfor-

mance also depends on the quality of these OCR. Another important aspect to address is the size

of the answer space. It is necessary to explore fixed versus dynamic answer spaces (such as the

use of copy mechanisms) to achieve a level of generalization and robustness of the models.
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Figure 3.13: Qualitative Examples (samples of results extracted from [216]). In the first line,

there is the associated question, the second line is the predicted answer and the last line is the

ground truth answer.

In Chapter 5, we present our proposed contribution number three (see Section 1.4) in which

our goal is to adapt our previous frameworks and improve them to tackle the task of ST-VQA.

We evaluate the impact of various basic and auxiliary modules under different strategies. We

explore and assess the quality of different feature extraction methods for the modalities available

in the databases, including target images, questions, and answers, and other additional data. We

explore the performance of the model concerning variations in the answer space, such as using

a BOW or a copy module under two different metrics for the calculation of scores. Our final

evaluations assess the performance by including supplemental data to train the system.

3.4 Attribute learning

In this section, we present the state of the art for attribute learning. Research on attribute learning

has been extensively explored for different purposes and various applications (see Figure 3.14).

In this thesis, we are interested in the state-of-the-art works that address the problem of learning

by attributes under two problems, first, the problem of imbalanced learning, and second, the

problem of learning under weak supervision. For semi-supervised learning of attributes, some

articles may refer to it as a zero-shot learning problem. Learning visual attributes has been
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shown to be beneficial especially for transferring learned information between object classes.

For example, learning the color "blue" or the pattern "spotted" from a series of images can then

be used to recognize these attributes in a variety of unseen images and object classes. The term

"attribute" is defined in Webster’s dictionary as "an inherent characteristic" of an object, and

there exist various types of attributes such as appearance adjectives (color, texture, shape) and

the presence or absence of parts (has wings? has a tail?) [225]. Attributes can also be classified

into semantic (timid, solitary) and non-semantic (has leg? is blue?).

Orange Stripes

Fur

Water

Figure 3.14: The task of attribute learning generally aims to learn and discover attributes that

are only defined at a class-level. The aim is to learn to predict attributes to unseen samples either

from classes seen or unseen at training.

3.4.1 State of the art

As stated in [226], attribute recognition was first addressed with approaches based on traditional

classification methods, such as support vector machines [69, 225]. Since then, it has been widely

studied and evolved towards the use of deep learning methods [227–231]. Some of the most

popular databases have attribute annotations only at the class level [232–235] because annotating

each instance is a very expensive process and it may also require a high level of expertise.

Therefore, in most cases, attributes are seen merely as intermediate clues for performing fine-
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grained classification2 where accuracies exceed the 80% [236–238]. This auxiliary data may be

used as an input where each sample has an attribute and an object [239], or as an intermediate

representation [240] (see Figure 3.15).

Figure 3.15: Attribute data is generally used as auxiliary information to perform the task of

fine-grained image classification or to learn more discriminative mid-level representations for

instance-level object recognition (Figure partially extracted from [241], where the definition

of abbreviations is as follows: user-defined-attribute-correlated (UDAC), discriminative latent

attribute (D-LA), and background latent attribute (B-LA) dictionary subspace.

Two tasks in attribute recognition, pedestrian recognition, and face recognition, have been ex-

tensively studied and as a result, there are several existing databases. Recognizing the attributes

of pedestrians is an important sub-task in attribute learning due to its important role in video

surveillance [229, 242]. Given the image of a person, pedestrian attribute recognition aims to

predict a group of attributes to describe the characteristics of this person from a predefined list

of attributes [243]. Due to the importance of the task, several annotated data sets contain labels

at different levels. The preferred scenario followed in this task is to estimate all attributes in a

model and treat each attribute estimate as a task, either as a multi-task or multi-label learning

scenario [244]. Similar to pedestrian recognition, the facial attribute recognition task has re-

ceived attention due to its importance in surveillance [245, 246]. This task consists of two basic

subtopics: estimation of facial attributes, which recognizes whether facial attributes are present

in given images, and manipulation of facial attributes, which synthesizes or removes the de-

sired facial attributes [247]. Facial attributes represent intuitive semantic features that describe

2The fine-grained image classification tasks focus on differentiating between classes of objects that are very
difficult to distinguish, such as species of birds, or animals.
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human-understandable visual properties of facial images, such as smiles, glasses, and mustache

[248]. Similar to pedestrian recognition, there are several annotated databases, the most popular

of which are CelebFaces Attributes database (CelebA) [249] and Berkeley Human Attributes

[250]. Other popular attribute-oriented databases include Animals with Attributes (AwA) [234]

which is composed of animal classes with 85 different semantic and non-semantic attributes; the

Caltech-UCSD Birds-200-2011 (CUB) [232] which is a database that contains images of 200

bird species with 312 attribute labels; and SUN Attribute (SUN) with 102 attributes represent-

ing scene classes of natural images such as fire, diving, camping, etc., [251]. Figure 3.16 shows

examples of images and their attributes from three different databases.

Figure 3.16: Examples of images and their attributes from three different databases. A) AwA;

B) CelebA; C) CUB

Multi-tasking learning is a training strategy that allows each attribute to be treated independently

(see Appendix B for a description of these types of learning strategies). Multiple attribute spaces

can also be learned at the same time and tasks do not have to share the same attribute space as

they refer to different domains [252]. The work in [253] proposed a method based on graph

neural networks in attribute learning. The authors study the dependencies between different

relative attributes of images. They explore the similarity between multiple images in a graph,

where each node represents an image and the edges are formed based on the relationship given

by the attributes. The framework is multi-tasking where it is possible to add different types of

nodes to the model that represent different attributes to learn. In [241], a multi-task transfer
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learning framework is implemented. Their unified framework allows learning both user-defined

semantic attributes and discriminative latent attributes based on a dictionary learning model (see

Figure 3.15 for their architecture proposed).

Models based on ZSL for classification also make use of attribute information by performing

projections in a semantic space driven by attribute data. For example, in [254], they propose a

framework that propagates attribute annotations to non-annotated images using sparse attribute

propagation. This is done by learning bidirectional projections between visual features and

attributes. When learning bidirectional projection, a vector of visual features is projected first

into a semantic space and then again into a space of visual features to be reconstructed. This

self-reconstruction aims to improve the generalizability of the model. In [255], they proposed

a ZSL framework that aims to jointly learn global and local discriminative characteristics using

only class-level attributes. The model contains a visual-semantic embedding layer that learns

global characteristics and a network of attribute prototypes that learns local characteristics. This

network simultaneously regresses and de-correlates attributes from intermediate features. The

accuracies reported by these models are (CUB - 0.73%, AwA2 - 0.717%, and SUN - 0.657%)

[255] and (CUB - 0.493%, AwA2 - 0.775%, and SUN - 0.843%) [254].

Imbalanced Learning. With increasing access to data, the imbalance problem of the available

data has also emerged [256]. When this imbalance ratio is high, most of the existing imbalanced

learning methods seriously decline in their classification performance. The survey work in [257]

presented a very comprehensive summary and description of the ranking of strategies that ad-

dress the problem of imbalanced learning. They classify these strategies into two general groups:

1) Pre-processing techniques that include sampling, feature selection, and extraction strategies;

and 2) Cost-sensitive learning by incorporating specific weights for the target classes at the al-

gorithm level or the sampling/feature selection technique. Current works primarily address the

problem by giving a greater focus to one of these strategies. Cost-sensitive learning strategies

make the loss function the main focus. This is done by capturing the misclassification of the

majority and rare classes alike by reducing the mean square false error [258]; maximizing the

sum of the true positive and true negative rates using a classifier such as decision trees [259,

260]; or maintaining both inter-cluster and inter-class margins [227, 238]. Most current work
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uses a combination of classical techniques [261]. These approaches typically use sampling and

a weight loss strategy [262]. This could be through batch updates [263], [264] that helps to

get better generalization and discrimination. The sampling pre-processing technique can be re-

placed with a feature learning strategy combined with a cost-sensitive learning strategy as well

[265]. More difficulties arise with non-ideal database properties, such as when a highly sub-

jective annotation process creates a discrepancy amongst the ground truth data. For this, many

current works assumed ideal conditions. For example, expecting the combination of attributes

related to a class to be present in all images annotated with it [240]. In real databases such as

the CUB database, this aspect is not fulfilled. The subset of attributes for images belonging to

the same class can also be different, making the problem even more difficult. Some represen-

tative reported accuracies are (CelebA - 0.921%) [238], (AwA2 - 0.701%) [264], and (AwA2 -

0.699%) [240].

Weak supervision. The most basic disadvantage of supervised learning is that the database

must be manually labeled, and this process sometimes requires a level of expertise. Although

most machine learning methods require large amounts of data, the reality is that it is a very

expensive process. The solution is to develop strategies based on a combination of labeled and

unlabeled data. For attribute learning, this is the desired learning strategy since attribute data

can be very expensive to obtain for individual images. The most popular approaches are called

ZSL and semi-supervised learning. The original ZSL focuses on improving classification per-

formance by recognizing objects of unseen classes [266, 267]. One of the advantages of ZSL is

that it allows us to recognize new objects without having to annotate samples for them, which

can represent a very expensive process. Most works using attribute-based strategies report that

attribute data plays an important role in improving classification performance. The key idea

is to transfer attribute-based knowledge from known to unknown classes. Attribute data can be

exploited in different ways: finding new attribute data based on known relationships between se-

mantic attributes and visual objects [239], assuming correlations amongst attributes [268, 269],

selecting the most relevant attributes [270], mixing independent and correlated attribute rela-

tionships [271] and improving feature generation models for attribute localization [255, 272].

Attributes can also be used to model attention mechanisms that focus on the most relevant image
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regions (see Figure 3.17). However, part localization training data may be required, and that data

is more difficult to obtain at scale. As these approaches are based on determining specific rele-

vant regions in each image for each attribute, they may not apply to visual concepts shared by

groups of images with the same semantic data (classification accuracy: CUB - 0.581%, AwA2 -

0.671%, SUN - 0.332%) [231].

Figure 3.17: Attention over attribute regions. Methods can search for discriminative regions

through dense attribute-based attention mechanisms that may rely on part-localization data not

always available (Figure extracted from [231]).

Semi-supervised and unsupervised learning approaches are increasingly used for vision tasks,

however, for attribute learning, these approaches are less frequent. The ability to train with

little or non-annotated data is invaluable [272] (classification accuracy: CUB - 0.694%, AwA2

- 71.5%). Unsupervised learning of attributes is rare. Huang et al. [273] are one of the first

works to address a completely unsupervised scenario for the attribute learning problem. They

proposed a two-stage pipeline to learn attributes like binary hash codes with multiple CNNs

that share architectures and weights (classification accuracy: CUB - 0.894%). Unsupervised

learning sees the attributes as a compact set of binary codes instead of textual or semantic labels

[274, 275].

Figure 3.18 shows example results for the principal task that is classification and attribute visu-

alization. As we explained, the main task addressed using attribute information is image classi-

fication. Some works present an additional visual analysis regarding the learning with attributes

as in the Figure.
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Figure 3.18: Example results for two tasks: A) Similarity representations of unseen class sam-

ples where only the top five similar classes are shown, B) attribute visualization: green blocks

show attributes with largest activations and red ones show attributes with smallest activations

(Figure partially extracted from [268]).

3.4.2 Discussion

Attribute learning has been extensively explored for different purposes and for different appli-

cations as described above. Most of them use the attribute information as a type of supervision

to perform fine-grained classification or as auxiliary information. Another factor is the ideal

database conditions that are expected. In our work, we explore the attribute learning problem

first by analyzing two problems: imbalanced learning at the attribute level and weak supervi-

sion in the form of semi-supervised learning. These problems aim to address our contributions

three and four (see Section 1.4) about problems with the data. For the first problem, we explore

and propose adaptations to classical imbalance strategies which mainly include "sampling" and

"cost-sensitive learning" for the objective task of multi-attribute learning (see Chapter 6). We

also explore the problem from the perspective of non-computer users. Users may find it difficult

to use highly complex deep learning models, while simpler models offer adequate performance.

Therefore, we see these models as black boxes and we emphasize the development of explain-

ability strategies around the data.

In the second part of our work on attribute learning, we tackle the problem of weak supervision

by proposing a semi-supervised learning strategy to propagate attribute data to unseen samples

(see Chapter 7). Under the ZSL setup, the testing instances are assumed to come from the
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unseen classes. This problem setting is somewhat unrealistic. The ideal learning scenario is that

the testing instances can come from both the seen and the unseen classes [276]. We implement

this idea in our approach where test instances can come from all classes because the emphasis

is on propagating attributes to samples regardless of their class. We propose to use five attribute

spaces, each one targeting different descriptions for the visual information contained. Similar to

the proposals in [252, 277], we use heterogeneous attribute spaces, but unlike them, we do not

have access to such annotations in the training phase, i.e., we do not have annotations available

per sample during training. We take inspiration from the works in [278, 279], which present

a learning algorithm using curricular learning through an iterative process. The key idea is to

propagate labels to unlabeled samples in an iterative and self-paced fashion for the task of image

classification. We adapt these principles for attribute annotation using multi-task learning with

few labels inferred from class-attribute relationships.

In this chapter, we have presented the state of the art for each one of the tasks addressed in this

thesis. For each task, we present the methods in the state of the art along with a discussion

around the problems and challenges to address. We finalize each section with a summary of our

proposed strategies that are presented in the chapters on multi-modal retrieval (Chapter 4), scene

text visual question answering (Chapter 5) and finally attribute learning (Chapters 6 and 7).



CHAPTER 4

Multimodal Information Retrieval

4.1 Motivation

In our first approximation to the problem of multimodal learning, we adapt a VQA (Visual-

Question-Answering) architecture for multimodal fusion. VQA systems are generally trained

to answer natural language questions related to the content of images. There has been great

progress in the design and understanding of VQA systems, and the vision community has intro-

duced databases and improvements to make the systems accurate ([280]). Given their natural

design to process images and text, we aim to solve the question of how useful is the multimodal

representation encoded by such models to solve queries in cross-modal retrieval problems?

More precisely, in this chapter, we propose to evaluate how VQA systems could be used to create

a common latent representation for multimodal data. Our goal is to evaluate the representation

learning capability of VQA network architectures to encode the input modalities in a meaningful

way for cross-modal retrieval tasks. Searching data in documents generally relies on one data

modality (image or text) while users generally expect to take advantage of all the available data.

59
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By leveraging images, text contents, and their semantic relationships in an integrated fashion,

an ideal system should propose a diversity of ways in which a multimedia collection could be

used.

The state of the art in cross-modal retrieval is vast. The most successful methods are based on

deep learning and the most popular deep learning variations are adversary models and hash-

based models [106] (see Chapter 3, Section 3.2). Adversary learning has been very successful

in many applications, but it also presents downsides such as the additional complexities and

computational burden due to multiple processes to optimize. At least three paths require the

learning of training parameters when implementing this strategy [61, 153]. Also, these methods

show that the performance is highly correlated with the characteristics of the data set, and that

data points that are far enough away from the training data distribution can significantly damage

the performance [59]. On the other hand, the main problem of hashing methods is the require-

ment of a colossal amount of labeled data that is not always available. Because of the hash

collision problem (producing the same hash value), longer hash codes are needed to ensure the

precision of the retrieval, which brings additional time and computational overhead, and leads

to a decrease in the recall rate [175, 176, 178]. Finally, another flaw in the state of the art is that

most of the methods appear to be over-optimized for the task of Txt2Img while having lower

performances for Img2Txt [139]. Or in a general way, they seem to be optimized for a single

retrieval task while not tackling the remaining ones.

Hence, we aim to assess our hypothesis and address the problems mentioned in the state of

the art by using our proposed framework. We propose to use three very popular databases in

two different configurations: the topic classification performance with the Wikipedia Retrieval

database ([107]); the retrieval tasks with the Wikipedia database, the Pascal Sentences database

([108]), and the MIR-Flickr-25k database ([110]). The first database, Wikipedia retrieval, is one

of the most widely used in the state of the art, this is why we are using it as our case study.

Pascal sentences and MIR-Flickr-25k are also well-known databases and present different struc-

tures, especially in their associated text. This allows us to make a fair and larger compari-

son against the state-of-the-art methods. Our extensive experiments simultaneously evaluate all

cross-modal retrieval tasks under the same computational framework as well as the uni-modal
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tasks. We compare our approach against recent and specialized models that represent a vari-

ety of methodologies, allowing researchers to compare performance in different cross-modal

retrieval tasks under different assumptions. Surprisingly, even though the VQA architecture is

a well-established model that can be used for other image-text problems, previous work had

not investigated its usefulness for cross-modal retrieval. Even the most recent approaches for

cross-modal retrieval do not take advantage of the innovations introduced in VQA architectures.

In summary, the main contributions in this chapter are listed next:

1. The re-interpretation of the VQA architecture for cross-modal retrieval, followed by an

extensive experimental evaluation of its capabilities in this problem.

2. Our work is the first to evaluate all cross-modal and uni-modal tasks with a single model

trained only once without fine-tuning in specific tasks, reaching highly competitive results

as well as state-of-the-art results in some cases, even though their baselines may be exclu-

sively over-optimized for single tasks. This shows that a unifying model for multimodal

retrieval is possible.

3. The simplicity of our approach serves as a baseline for future research and can inspire ex-

tensions to push performance even further. We expect future researchers to take advantage

of this well-established architecture to reach higher performance in their models.

4.2 Approach

To design search systems that allow both texts to image queries, image to text queries, and uni-

modal queries using a single model, we make use of an architecture inspired by Visual Question

Answering (VQA) models ([10]), and we extend it for Deep Multimodal Learning. This model

matches the inputs and outputs of a multimodal system (see Figure 4.1 for details), and it can

be used to compute embeddings for different modalities. In what follows, we describe the main

three components of this architecture.

Visual network. We evaluated two CNN architectures to compute visual representations: VG-

GNet [86] (similar than in the VQA architecture from [10]) and ResNet50 ([87]). We use pre-

trained weights from object classification using the ImageNet database and keep the network
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Figure 4.1: Overview of the architecture for Deep Multimodal Embeddings (DME). There are

three components: 1 - The visual network (in blue), which takes the last hidden layer of a

pre-trained ResNet50 model with 2048-dim as input for the visual neural network, followed

by a fully-connected layer with output 256-dim. 2 - The textual network (in red) composed

of an embedding matrix of GloVe vectors of 300-dim, followed by two LSTM cells, and a

fully connected layer with output 256-dim. 3 - Finally, a multimodal network (in green), where

the different modalities are fused. This component contains a set of fully connected layers

with the last layer (output layer) used as a classifier during the training phase. At the retrieval

phase, we can use different layers to compute the embeddings. Either by using layers of each

modality (Dense1 for visual data, Dense2 for text data) or by using layers after the pointwise

multiplication (Dense3, Dense4, or Dense5) that contain multimodal information.

frozen for feature extraction. The feature vector produced by VGGNet has 4,096 dimensions,

while the ResNet produces 2,048. These activations from the last hidden layer are used as inputs

to a fully connected layer with an output of 256-dim to reduce the dimensionality and match the

connection with the multimodal network.

Textual network. In the original VQA architecture proposed in [10], the textual data is modeled

by using the words in the questions to create a bag-of-words representation. In our framework,

we modify this textual embedding for a more suitable and successful model. Hence, we make

use of a recurrent neural network (RNN) that models the sequence of words in sentences. This

provides the advantage of having an ordered representation of word sequences in a fixed-length

feature vector, which contrasts with order-less bag-of-words models. LSTMs are powerful neu-

ral networks to learn sequence models ([281]) and are used in VQA systems to represent the
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words used to formulate questions ([282]). In the case of other sequences of text, we can eval-

uate the performance by identifying the most ’relevant’ words present in the input text. While

question words such as "Where" and "What" are important to understand what the requested

information in the questions of VQA systems is, in this work, we are more interested in nouns.

Nouns are words with semantic and discriminatory content that are possibly more related to the

general content/topic/concept of an image (such as "King", "Cat", "Church", etc) than question

words. To process sentences with the RNN, each word in the text is first encoded into 300-

dimensional embeddings using the GloVe model ([76]). The vocabulary used consists of all

the words seen in the training database, and those with an embedding representation in the pre-

trained GloVe embeddings. The matrix of word representations is used as an input to the RNN,

which has two LSTM cells followed by a fully connected layer with intermediate dropout layers

and activation functions ReLU to get a 256-dim vector. We also explored different sequence

lengths for the input texts and evaluated the varying impact on performance.

Multimodal network. In the original VQA architecture proposed in [10], they use as the multi-

modal network a multi-layer perceptron (MLP) classifier with 2 hidden layers and one last layer

of dimension 1000 (size of the answer space) [10]. Instead, we implement a deep multi-layer

neural network with four layers as follows. We use an element-wise fusion layer (point-wise

multiplication or Hadamard product), where both modalities, visual and textual, are combined.

We found this operation to be critical for obtaining improved performance, which is defined as:

(V ◦ T )i = (V )i(T )i for all 0 ≤ i ≤ n , (4.1)

where V = Visual vector, T = Textual vector n = dim(V) = dim(T). This fusion layer is followed

by two fully connected layers with dropout, and the network has a classification layer in the

output. This classification layer is in charge of the model supervision and is composed of classes

or concepts that semantically discriminate the samples in the database. A database usually

contains different classes, where a class represents a group to which items are assigned based

on a similarity metric or defined criteria. Each image-text pair sample is associated with one of

these classes. The model is trained in an end-to-end configuration with cross-entropy as the loss

function. The last activation function is a softmax function applied to the final output vector and
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computed as follows:

f(score)i =
escorei∑Cat
j escorej

(4.2)

where scorei is the score inferred by the model for the class i in Cat, scorej are the scores

inferred by the net for all the classes in Cat, after applying it to all classes, it gives us a vector

in the range (0, 1) in which all the resulting elements add up to 1. As this can be seen as

a probability vector, it helps to determine the most probable class to be associated with each

image-text input pair. Once the system is trained, we can compute embeddings using different

layers of the model, and evaluate their quality in retrieval tasks. We can compute separate

embeddings by using layers before the modalities are combined, but this would imply using

only data of the target network, this is either visual or textual, and therefore not multimodal.

We are interested in computing features in a latent space that can match any data modality, and

therefore we use features from the outputs of layers Dense3, Dense4, or Dense5 as embeddings

for cross-modal retrieval (green layers in Figure 4.1, Page 62). To compute multimodal features

with a single modality we simply remove the other network and skip the point-wise product,

which is equivalent to using a constant vector of ones as a replacement. Figure 4.2 shows an

example of the process followed when the query only contains data from one modality. In the

example, the query is composed of visual data (path A) or textual data (path B) that is sent to

the framework to find the corresponding multimodal embedding.

As we presented, our framework can handle all types of multi-modal queries without separated

training phases. Unlike adversarial and hash models that require optimizing several models and

loss functions, we only optimize a loss function that simplifies the training process and avoids

additional complexities and computational burden (see Section 3.2). With this framework, we

aim to demonstrate that it is possible to achieve competitive performance for different tasks. We

also demonstrated that for testing, we can send queries containing only uni-modal data since

our model can skip multi-modal dependent layers (see Figure 4.2). In our experiments, we will

present several evaluations in multiple databases that support our proposals.
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Figure 4.2: Example of the process followed when a visual (A) or textual (B) query is sent to

the framework. Because there is only one type of data, the connection between layers Dense1

or Dense2 and the point-wise multiplication layer is skipped. Instead, the connection is made

directly to the Dense3 layer.

4.3 Evaluation

In this section, we include the results of our experiments. First, we introduce the databases

used in our analysis. Then, we present the implementation details and finally, the results for our

ablation studies, including classification results and, multimodal retrieval results that include the

comparison against the state of the art.

4.3.1 Databases

For our experiments, we make use of three databases: Wikipedia Retrieval, Pascal Sentences,

and MIR-Flickr-25k. We use the Wikipedia retrieval database, a widely used database in cross-

modal retrieval research, to make an extended analysis of the classification performance of the

model. Pascal and MIR-Flickr-25k are also widely used in retrieval tasks because they have

good ground truth annotations and well-organized textual representation for each image.

Wikipedia Retrieval database [107]. The database consists of 2,866 image-document pairs

with a train/test division of 2,173 and 693, respectively. We re-separated the train set, into train
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and validation, with a ratio of 80%-20%. This gives us a partition of 1,738/432 training and

validation samples, respectively. The median text length is 200 words. After analyzing the

distribution of words, we kept only those with frequencies between 10 and 150. The length of

words on average for all the samples after pre-processing is 101 tokens (with a minimum of

26, and a maximum of 400). We explored different sequence lengths for training our model,

including 26 words, as well as 46, 76, and 100. There is also a third source of information for

the data, each image-text pair is labeled with one of 10 semantic classes. The images and text

belonging to this database are very diverse and cover a large range of domains. These are Art &

architecture, Biology, Geography & places, History, Literature & theatre, Media, Music, Royalty

& nobility, Sport & recreation, and Warfare. The text associated with each image contains words

that are related implicitly but also explicitly to the images. Those words were extracted from

the section in which the image was placed in the article. The implicit case imposes additional

challenges to infer relationships among the data. Figure 4.3 presents some samples contained in

the database Wikipedia Retrieval ([107]). We can see the challenges associated when training

a multimodal model with this data. This model must learn the high semantic level contained in

the database on the one hand and to be able to deal with the references to different topics in each

image on the other hand.

Figure 4.3: Examples of Wikipedia database, at the top, the topic of the article, at the bottom,

the first 10 tokens after pre-processing.

Pascal sentences [108]. This database was created with the Amazon Mechanical Turk plat-

form [109] and provides pairs of images and a set of descriptions of their content provided by

the users of the platform. This contains 1,000 samples of images associated with several sen-

tences and descriptions of their content (approximately 5 sentences per image) from 20 classes,
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50 images per class. We follow the standard partition of 600/400 (i.e., 30/20 samples per class)

for training and test samples. For texts, we concatenate all sentences for each sample and extract

all words. We set the sequence length as the average number of words in all samples, resulting

in a sequence length of 25 words. We did not prune the distribution of words in this database.

MIR-Flickr-25k [110]. This database consists of 25,000 images downloaded from the social

photography site Flickr and annotated using two sets of annotations: a potential set of annota-

tions with a total of 24 semantic concepts, and an extended relevant set of annotations with a

total of 38 semantic concepts. All images are annotated with at least one of the concepts. We

set the sequence length in this database to 15 tags. Note that these are not sentences; instead,

the text annotations are just a collection of tags. The median number of tags per image is 5, and

we use all tags independently of their frequency. To compare with the state of the art, we make

two partitions of the data, (1) as in ([283], [178]), taking approximately 2,000 samples as the

test partition, and (2) taking 95% of the data as training, 5% for test and reporting the average

of 3 experiments, following the setup of ([175]).

4.3.2 Implementation details

To implement our approach1, we used the Keras framework, and trained the model described in

Figure 4.1, Page 62 with a learning rate of 0.001. The input size of the convolutional network is

224×224 pixels 2. We explored data augmentation strategies for images and text and obtained

better results when using minimal augmentation for images. For the text, we augment the word

sequences by creating different combinations of up to N random tokens from all the tokens

available for each image (where N is the maximum sequence length in the experiment). The

results are depicted in Table 4.1, Page 69. The first part of the system relies on a classical

training phase as it is based on deep neural networks. We systematically explored the batch size

(16-256) having better results when using bigger batches sizes. Indeed, for this type of model,

it is better to pass in each batch a randomly but well-distributed (i.e. similar number of samples

in each class) set of samples of each class. On the contrary, batches of smaller sizes can result

1Code available at https://github.com/lvbeltranb/DME
2https://keras.io/api/applications/resnet/#resnet50-function (accessed Feb 2021)

https://github.com/lvbeltranb/DME
https://keras.io/api/applications/resnet/#resnet50-function
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in a lack of samples from an entire class, biasing the learning process. We explore dropout

rates between [0,0 - 0,5] with better results obtained with dropout rates greater than 0.3. This

indicates that the model is preventing over-fitting to the training data. Too much dropout can

also reduce performance because the dimensions of the architecture are not too high, thus, too

many disconnections make the model losing valuable information. Finally, we also explored the

performance of different optimization algorithms for training, having the best results using the

Adam and RMSPROP ([284]).

4.3.3 Results

This section gathers the results of our evaluations in this chapter. First, we worked on the

classification analysis. The two next parts are related to the retrieval results for all the selected

databases in a uni-modal and a cross-modal way.

4.3.3.1 Classification accuracy

To the best of our knowledge, there are no results for classification accuracy reported for Wikipedia

Database. To get a better understanding of the system performance, we evaluated the classifi-

cation accuracy in each separate component: the visual and the textual networks. For image

classification, we explored embeddings as well as the number of suitable layers before merging

the data with the multimodal network. The best results of visual classification are obtained when

using the last hidden layer from a pre-trained ResNet with 50 convolutional layers to compute

visual embeddings, followed by 1 fully connected layer and the classification layer. For text

classification, we explored sequence lengths leaving the rest of the network fixed. The best

configuration for the architecture includes two LSTM cells followed by 1 fully connected layer

plus the classification layer. We found the length of the sequence input to work well with 100

tokens. Finally, we explored the number of layers in the multimodal component for pair classi-

fication, where the best configuration uses 2 hidden layers in the multimodal network. We also

compared the performance of our neural network classification model against a representative

baseline method based on SVM classifiers for each modality. The SVM baseline used BERT

embeddings for text ([285]), and ResNet embeddings for images ([87]). The baseline classi-
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fication performance was 0,7445 for text, and 0,4271 for images, while our approach reached

0,7474 for text and 0,5165 for images (see Table 4.1). The final accuracy for the multimodal

model is 0,7561.

Table 4.1: Classification accuracy evaluated by using different sets of data: first, testing differ-

ent image architectures when only visual data is passed, second, evaluating different sequence

lengths for the representation of the samples when only text is passed, and finally, by testing a

different number of hidden layers in the multimodal component when visual and textual data

is passed. Results are reported for the use case, the Wikipedia Retrieval database along with

baselines results for the uni-modal evaluations.

Modality Model Acc

Images

VGGNet19 + 1 hidd + Class 0,4733
VGGNet19 + 2 hidd + Class 0,4574
VGGNet19 + 3 hidd + Class 0,4531

ResNet + 1 hidd + Class 0,5165
ResNet + 2 hidd + Class 0,4920
ResNet + 3 hidd + Class 0,5122
Baseline ResNet + SVM 0,4271

Texts

26-LSTM + 1 hidd + Class 0,7272
46-LSTM + 1 hidd + Class 0,7359
76-LSTM + 1 hidd + Class 0,7301

100-LSTM + 1 hidd + Class 0,7474
Baseline BERT + SVM 0,7445

Multimodal
Visual Net + Text Net + Class 0,7243

Visual Net + Text Net + 1 hidd + Class 0,7142
Visual Net + Text Net + 2 hidd + Class 0,7561

In our experiments, we observed that the performance does not degrade in the multimodal sys-

tem. Although the visual modality has significantly lower performance than the text modality,

since samples from the same class at the textual level share key words between them, the visual

content can vary drastically, it also opens interesting questions for future research to balance the

contribution of performance from each modality.

The figure 4.4 presents the learning curves for the best multimodal configuration found in Table

4.4. The loss and accuracy training curves have some small disturbances in their convergence,

however, they can reach optimal values in less than 40 epochs. The accuracy in the test set is

expected when compared to the accuracy obtained in the train set (≈ 0,99%). This also shows
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the absence of over-fitting since the test accuracy still achieves a value no less than 0, 75%.
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Figure 4.4: Learning curves for loss and accuracy in training phase for the Wikipedia retrieval

database in the multi-modal framework. Both curves converge in less than 40 epochs.

4.3.3.2 Uni-modal and Cross-modal retrieval

In this section, we focus on the evaluation of multimodal retrieval tasks to answer the question

"How useful is the multimodal representation encoded by such models to solve queries in cross-

modal retrieval problems?". Assuming our DME model is trained, the cross-modal retrieval

process is then divided into two phases, the indexing phase, and the search phase. The indexing

phase generates embeddings for all the documents in the database using the target modality only.

In the retrieval phase, the query modality is processed using our DME model without activating

the network of the target modality (visual or textual, see Figure 4.2, Page 65). For example,

if we want to carry on the task of Img2Txt, where we assume the query contains visual data

such as an image and we want to retrieve relevant information in the form of texts (a database

composed of textual data). First, we encode all texts in our database using path B, and then,

we send the query image using path A. Then, we can compare the embeddings of the query

image with the embeddings in our text database in a semantic way and retrieve the most similar

ones. Most previous works report results in only one or two retrieval tasks. Instead, in our
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work, we evaluated all cross-modal retrieval tasks using the same trained model. These tasks

include Img2Img (also known as Query-by-Example), Txt2Txt, Txt2Img (also known as Query-

by-String), and Img2Txt (also known as image captioning). As an example, the Txt2Img refers

to the task where the queries are texts and the retrieved samples are images. As a performance

measure of the ranking of retrieved results, we use the mean average precision (MAP), which

is a standard evaluation metric in information retrieval. We calculate the MAP on a different

number of samples to retrieve. The MAP 100% corresponds to the case when we use all the

samples in the test set (see Appendix A.1.4 for the definition of the MAP metric). Therefore, for

the Wikipedia database, the maximum size is 693, for Pascal, it is 400, and for MIR-Flickr-25k

it is 2,000 in the setting (1) [283].

Ablation study. We studied the impact of two factors in the performance of the model: the

distance metrics used to retrieve documents and the quality of embeddings taken from differ-

ent layers in our model. The first evaluation is focused on identifying good distance metrics

to retrieve points in the multimodal feature space. We compared the MAP results in the evalu-

ated tasks on the Wikipedia database by using different functions and evaluated at the first 50

results (AP@50): Kullback-Leibler divergence (KL), Euclidean distance, and normalized corre-

lation (NC), with average performances for each distance for the fourth tasks of 0,4424, 0,4513,

and 0,4917 respectively. Since normalized correlation had the best performance in almost all

experiments, we use it as the similarity metric in the rest of our evaluation (see Table 4.2).

Table 4.2: MAP using different distance metrics on Wikipedia Retrieval database and evaluated

at the first 50 retrieved samples (AP@50). The results are displayed for the 4th tasks of cross-

modal retrieval along with the average for each distance metric evaluated.

Task Measures
KL Euclidean NC

Img2Txt 0,4415 0,4367 0,4359
Txt2Img 0,3421 0,3823 0,4904
Img2Img 0,3769 0,3764 0,3995
Txt2Txt 0,6092 0,6101 0,6413

Avg 0,4424 0,4513 0,4917

The second evaluation is focused on the quality of the embeddings obtained from different lay-
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ers. We compute embeddings for the visual and textual modalities using the corresponding

layer in the model: Dense1 for images, Dense2 for text, and layers Dense3, Dense4, or Dense5

to obtain a fused representation after the point-wise multiplication layer (see Figure 4.1, Page

62). Each evaluation is made independently (only one layer is used at each time). We had the

hypothesis that a multimodal network can generate better embeddings in deeper layers, where

it has the opportunity to learn higher-level representations of the combined information. The

results for the first 3 tasks are consistent with our hypothesis, the performance increases when

we compute the embeddings from deeper layers (Dense1/2 < Dense3 < Dense4 < Dense5), with

average performances for the 4 tasks of 0,3945, 0,3978, 0,3908 and 0,4080 in the case when we

use the 100% of samples (see Table 4.3).

Table 4.3: MAP comparison from features computed from different layers on Wikipedia

database using the normalized correlation distance and the 100% of samples in the database.

Task Layer
D1(V) / D2(T) D3 D4 D5

Txt2Txt 0,5615 0,5662 0,5672 0.5671
Img2Img 0,2555 0,2707 0,2733 0,2831
Img2Txt 0,3792 0,3681 0,3755 0,4221
Txt2Img 0,3821 0,3863 0,3773 0.3600

Avg 0,3945 0,3978 0,3908 0,4080

Comparison with state of the art: Wikipedia Database.

In this part, we present a comparison of results for cross-modal retrieval tasks for all databases.

We report the state-of-the-art results under the same protocol of experimentation but covering

different methodologies. Previous works have not reported results for uni-modal tasks, (similar

to results in Section 4.3.3.1), thus, we used BERT (for text), and ResNet (for images) as repro-

ducible baselines to compare against. Up to our knowledge, we are the first to report Txt2Txt

results in these databases, and we also report results for Img2Img in the same way that few

works have done before. By reporting results for these two tasks, we aim to establish baselines

for future works too.

Tables 4.4 and 4.5 report MAP results obtained for different tasks for Wikipedia retrieval database.

Table 4.4 presents the MAP performance when we consider the top 8, 50, and 500 results in the
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Table 4.4: Mean Average Precision (MAP) on the Wikipedia retrieval database under different

retrieval tasks using the first K results in the ranking (8, 50, and 500). For each task, we present

the results of prior work under the same configuration of our evaluated approach. Results with

"-" were not reported by the authors.

Task Method K
8 50 500

Txt2Txt BERT ([285]) 0,735 0,60 0,406
DME (ours) 0,681 0,641 0,576

Img2Img
CMSTH ([123]) - - 0,449

ResNet ([87]) 0,433 0,323 0,193
DME (ours) 0,455 0,399 0,299

Img2Txt
CMSTH ([123]) - - 0,337
RE-DNN ([286]) 0,351 0,281 -

DME (ours) 0,451 0,435 0,426

Txt2Img
CMSTH ([123]) - - 0,387
RE-DNN ([286]) 0,23 0,241 -

DME (ours) 0,489 0,49 0,382

ranking list. Our model exhibits the best performance in the case of top 8 and top 50 results in

almost all tasks, which are the most useful cases for users in real-world conditions. The lowest

performance, in general, is obtained when searching images with visual queries, which is a chal-

lenging task. However, our multimodal approach can improve performance in the top results of

this task, showing the benefits of our general-purpose fusion framework.

An alternative evaluation protocol uses 100% of the ranked results instead of only the top K

when computing MAP. Previous work using the Semantic Correlation Matching (SCM) reported

results following this protocol [107, 118]. The SCM approach finds a semantic space that con-

siders correlated multimodal projections, and we used it as a baseline under this protocol. To

analyze the statistical significance of our approach we run a t-test comparing our model against

the baseline using an average of 18 runs, with 15 different queries each in the Img2Txt and

Txt2Img tasks (see Appendix A.1.4 for a definition of the t-test). In the terms of statistical sig-

nificance of the results, the null hypothesis is that our approach has no significant difference

concerning the baseline. It was rejected in both cases with significance threshold 0,05 (p-values:

Img2Txt = 0,0001, Txt2Img = 0,036), underlining the reliability of the results. Previous works

do not explicitly fuse modalities ([287]) but instead use the textual modality for supervising the
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Table 4.5: Mean Average Precision (MAP) on the Wikipedia retrieval database for different

retrieval tasks when evaluating 100% of samples in the ranked list. The best two results are

highlighted in green (first) and orange (second). For each one of the tasks, we put the results of

methods in the state of the art, under the same configuration of our approach.

Task Method MAP (100%)

Txt2Txt BERT ([285]) 0,3873
DME (ours) 0,567

Img2Img ResNet ([87]) 0,195
DME (ours) 0,283

Img2Txt

SCM_1([107]) 0,277
RE-DNN ([286]) 0,340
MDCR ([116]) 0,435

Marginal SM ([287]) 0,332
SCM_2 ([118]) 0,362

Self_Supervised ([139]) 0,391
LCALE ([140]) 0,367

DME (ours) 0,422

Txt2Img

SCM_1 ([107]) 0,226
RE-DNN ([286]) 0,352
MDCR ([116]) 0,394

Marginal SM ([287]) 0,241
SCM_2 ([118]) 0,273

Self_Supervised ([139]) 0,434
LCALE ([140]) 0,357

DME (ours) 0,360

visual representation learning. For example, a recent self-supervised model addressed the task of

cross-modal retrieval, training an LDA model of text and topics as prediction target for the CNN

that processes the visual modality [139]. This model gets the best performance in the Txt2Img

task but it is not competitive in the Img2Text task showing how the models can be optimized for

only one task instead of being truly multimodal.

The most similar approach to our DME model is the Regularized Deep Neural Network (RE-

DNN) ([286]). This model has three parts: the visual, textual, and multimodal subnets; each

one pre-trained separately before fusion. RE-DNN is not trained end-to-end, and in contrast to

our model, the textual network does not use sequential word embeddings. Notably, RE-DNN

does not use a pointwise multiplication layer for fusion but instead relies on the concatenation

of features. The results show that our model surpasses their performance in all tasks, indicating
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that the choices of our model yield enhanced fusion performance. The analysis of cross-modal

results in Tables 4.4 and 4.5 confirm that ours is generally the best performing approach. The

one case where it is not the best is when MAP is computed on 100% of the ranked results (Table

4.5). However, our result is very competitive and has improved performance in all other metrics

and tasks. Our approach may also be more computationally efficient than models like MDCR

that learn two projection functions while we aim to learn only one generic multimodal mapping.

Table 4.6: MAP comparison on Pascal Sentences and MIR-Flickr-25k databases under different

retrieval tasks and by using the first K results (10, 100, and 200).

Task Method Pascal MIR-Flickr-25k
10 100 200 10 100 200

Txt2Txt BERT 0,449 0,274 0,230 0,870 0,793 0,764
DME (ours) 0,556 0,486 0,465 0,883 0,839 0,823

Img2Img ResNet 0,584 0,405 0,376 0,946 0,897 0,874
DME (ours) 0,586 0,495 0,486 0,962 0,948 0,943

Img2Txt DME (ours) 0,532 0,474 0,458 0,942 0,915 0,899
Txt2Img DME (ours) 0,523 0,470 0,451 0,919 0,893 0,876

Comparison with state of the art: Pascal and MIR-Flickr-25k databases.

The accuracy in the test set (0,7561%) is expected when comparing to the accuracy obtained

in training (≈aFigure 4.5 presents the learning curves for the loss and accuracy in training for the

multimodal framework for Pascal Sentences and MIR-Flickr-25k databases. In both cases, the

learning curves converge (≈ 100 for Pascal sentences and 45 for MIR-Flickr-25k). For Pascal

sentences, the curves present more disturbances in the convergence requiring more epochs to

converge. This may be explained by the smaller size of the database (only 600 training samples).

Also, the different sentences associated with each image may delay the learning of the optimal

embeddings due to the subjectivity of each annotator. 0,99%). This also shows the absence of

over-fitting.

Tables 4.6, 4.7 and 4.8 present the MAP performance for Pascal Sentences and MIR-Flickr-25k

databases. Table 4.6 presents the results when MAP is evaluated by taking the top 10, 100,

and 200 retrieved results (we choose these values as being suitable for both databases) showing

good results, especially for the MIR-Flickr-25k database. We start comparing our performance

against BERT (for text) and ResNet (for images) as uni-modal baselines methods.
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Figure 4.5: Learning curves for loss and accuracy in training, for the databases of Pascal sen-

tences and MIR-Flickr-25k using the multimodal framework.

Tables 4.7 and 4.8 present results of methods with comparable setups for both databases. We

obtain competitive results in the Pascal Sentences database, and we reach the best performance

in the MIR-Flickr-25k database. Our model reaches state-of-the-art performance in the MIR-

Flickr-25k database when compared with recent cross-modal retrieval approaches, including

TFNH [175], a hash-based method and CPAH [178]. We evaluated the retrieval performance

in the Txt2Img task when gradually increasing the length of the text sequence in the query by

adding more sentences in the Pascal database. An illustrative example is presented in Figure

4.6, Page 79. Note that the relevance of the top 5 results changes with different textual queries,

and when more descriptions are available our system can retrieve more accurate results. We

achieve these results with a single model that can handle variable sequence length as inputs for

computing the multimodal representation.

Figures 4.7 and 4.8 present visual retrieval results for all databases. In Figure 4.7, we can ob-

serve that retrieved results are semantically correlated with the query, showing that embeddings

generalize well for the first top results, for the Wikipedia Retrieval database. Figure 4.8 shows

top 3 results for textual and visual queries for A) Pascal Sentences, and B) Mirflick-25k. In the



4.3. Evaluation 77

Table 4.7: MAP comparison on Pascal Sentences database. The best two results are highlighted

in green (first) and orange (second). This database contains 1,000 samples of images associated

with several sentences and descriptions of their content (approximately 5 sentences per image)

from 20 classes, 50 images per class. We follow the standard partition of 600/400 (i.e., 30/20

samples per class) for training and test samples.

Task Method MAP (100%)

Txt2Txt BERT ([285]) 0,196
DME (ours) 0,453

Img2Img ResNet ([87]) 0,361
DME (ours) 0,436

Img2Txt

MDCR ([116]) 0,455
Marginal SM ([287]) 0,222

Self_Supervised ([139]) 0,326
LCALE ([140]) 0,414

DME (ours) 0,429

Txt2Img

MDCR ([116]) 0,471
Marginal SM ([287]) 0,173

Self_Supervised ([139]) 0,360
LCALE ([140]) 0,394

DME (ours) 0,425

case of the Img2Txt query, the retrieved results can be seen as a method of image captioning.

For Pascal Sentences, the system is retrieving all the sentences associated with the retrieved

samples, which can be used also in a separate way to describe the content of the image.

4.3.4 Visual analysis of embeddings

In this section, we present visually the quality of the embeddings for the Wikipedia Retrieval

database. Table 4.9 presents the results for t-SNE [288] when it is computed by using visual,

textual and both (multimodal) embeddings from the Wikipedia retrieval database, computed

from different layers of the model. We can observe different things: first, the discrimination

among the classes for all the modalities is higher when the embeddings are computed using a

deeper layer (in this case, the layer D5), this means, the model is learning a better representation

(knowledge) when using the information from both modalities. The second observation vali-

dates the quantitative results obtained in previous results, where the textual modality has better

performance (for the embeddings in layer D5, the textual modality learns better to discriminate
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Table 4.8: MAP comparison on MIR-Flickr-25k database. This database consists of 25,000

images with up to 38 semantic concepts. Two partitions are tested: (1) 2,000 testing samples

[178, 283], and (2) 95% of the data as training, 5% for test [175]. The best two results are

highlighted in green (first) and orange (second).

Task Method MAP (100%)

Txt2Txt BERT ([285]) 0,717
DME(2) 0,759

Img2Img ResNet ([87]) 0,793
DME(2) 0,868

Img2Txt

RCCA(1) ([283]) 0,695
CPAH(1) ([178]) 0,791
TFNH(2) ([175]) 0,688

DME(1) 0,725
DME(2) 0,809

Txt2Img

RCCA(1) ([283]) 0,694
CPAH(1) ([178]) 0,789
TFNH(2) ([175]) 0,761

DME(1) 0,731
DME(2) 0,805

between classes than the visual modality, where the discrimination is lower).

The distribution of samples in the test explains why there are more misclassified samples from

some classes (for example, for the class "Warfare", there are many more samples, some of which

are misclassified - shown with blue dots in the graphs of Table 4.9, Page 82). Also, the class

"History" -represented with red dots- is a challenging class because it can be highly related

to all the other classes, which makes it more difficult for the model to infer the differences

among them. Another interesting observation is how visible the relations between the classes

are, particularly in the textual embeddings of layer D5, for instance showing connections among

Biology with Geography & places, Literature & theatre with Media and Music, and Royalty &

nobility with Warfare.

4.4 Discussion

We have analyzed and evaluated an approach that can process visual and textual modalities

in a document and learns a semantic relationship between them. Inspired by visual question
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Query

Several cows grazing on grass in field.

+Three cows are grazing in a grassy 
field.

+Three cows are in a field in the country.

Several cows grazing on grass in field.
Three cows are grazing in a grassy field.
Three cows are in a field in the country.
Three cows grazing in a field.
Three farm animals are grazing.

Sentences associated
Several cows grazing on grass in field.
Three cows are grazing in a grassy field.
Three cows are in a field in the country.
Three cows grazing in a field.
Three farm animals are grazing.

Top 5 retrieved results

(All sentences)

Figure 4.6: Retrieval examples from the Pascal sentences database: at the top, the original

sample with its sentences and associated image, at the bottom, retrieved images by gradually

adding more sentences to the text query.

answering architectures, this approach can help in learning combined representations to build

effective cross-modal retrieval systems. Results indicate that these architectures can be retrained

for cross-modal search without the need for special layers or additional model developments,

making them ideal as a baseline for future multimodal indexing research. The results of our

experiments underline two positive aspects of the evaluated model. First, performance does not

degrade after combining the two modalities (one of the modalities can be noisier than the other).

Second, our goal was to investigate the potential of a single model to retrieve relevant documents

in cross-modal tasks without being optimized exclusively for any one of them. We performed

an extended analysis of our approach, and without the need to fine-tune the model or results

for every single retrieval task, we achieved robust results in 3 databases for all tasks and even

reached state-of-the-art performance in some of them.

Having these promising results, we propose to adapt the system to perform a much more specific
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Query
(Pre-processed)

Output

Txt2Img

holding, current, gun, outpost, simply, 
casualty, impressed, defeat, maximum, 

construction

Img2Txt

averaging, bottom, calgary, creation, cup, defeat, honour, ireland, laid, lined, nhl, 
portugal, reaching, retired, rogers, scored, share, stadium, statistic, successor, 
tour, tournament, winner, winning, winter

Figure 4.7: Retrieval examples for Wikipedia Retrieval database: when text|image is the in-

put query, the cross-modal retrieval system aims to retrieve data from a different modality (i.e.

image|text). In the first case, the text query shows the resulting tokens after the pre-processing

step.

task between images and textual data. The task of scene-text visual question answering (ST-

VQA) has been recently proposed as a new challenge in the context of multimodal content

description. The aim is to teach traditional VQA models to read the text contained in natural

images. Here, we need to perform a semantic analysis between the visual content and the textual

information contained in associated questions to give the correct answer. Hence, we found that

this task highlights the importance of exploiting high-level semantic information (text) present

in images. This allows us to study the relationships between images and textual data for which

we have the security of their existence. In the next chapter, we present the developments and

evaluations proposed with this new task.
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Query A

An airplane is flying over a tree in the 
blue sky.

A plane is flying in the distance.
A small aircraft flies in the blue sky 

above the trees.
A small airplane flying above the trees.

The back of an airplane.

Img2Txt

A young sheep with tags on it's ears.
Black sheep with tags in both ears.
Close up of a sheep
Close up of a white sheep with a black 
head.
The tagged sheep looks sad after 
being sheered.

A woman in the mountains being 
approached by a sheep
A woman looking at a sheep on top of 
a cliff.
a woman sitting next to a white sheep 
on a green cliff

A goat grazing by the water.
A pair of goats grazing, with a body of 
water and mountain behind them.
Two animals grazing next to a 
mountain, and a body of water.
Two mountain goats grazing in front of 
an alpine lake.

B

animal, bird, closeup, white, wildlife

bravo, cielo, cloud, deutschland, farm, flower, germany, landscape, layers, polaroid, scotland, sheep, silhouette, sky, 
sun, sunset, texture, tree

Figure 4.8: Sample of queries in a multimodal retrieval system for Pascal Sentences database:

when text|image is the input query, the cross-modal retrieval system aims to retrieve data from

a different modality (i.e. image|text).
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Table 4.9: T-SNE visualizations of embeddings for different layers. From left to right: visual,

textual and multimodal embeddings from Wikipedia retrieval database. The colors represent the

different classes associated with each sample image-text pair. D and its corresponding numbers

refer to the layer used to create the embeddings. We can see how the embeddings are better

separated per class when deeper multimodal layers are used to create them.

D2/D1

D3

D4

D5



CHAPTER 5

Semantic Text Recognition via Visual Question Answering

5.1 Motivation

In this chapter, our goal is to evaluate the robustness of the model proposed in Chapter 4 for

a more recent task called scene-text visual question answering (ST-VQA). This task is based

on two separated tasks pursuing different goals. First, the task of scene text recognition only

seeks to recognize text in wild images, i.e, images taken from different scenes such as streets.

And secondly, the VQA task where strong reasoning is required about some target visual infor-

mation. This information is addressed by asking open-ended questions with some possible and

acceptable variations in the answer. Current VQA models fail when the required target visual

information is within textual data. This joint task (ST-VQA) has not received the required at-

tention, due to the lack of databases targeting it, as well as all the additional challenges posed

by the separate tasks of text recognition and VQA. ST-VQA requires that the model recognizes

and interpretes the textual information in a scene (text contained in signs, posters, or ads in the

image) so as to give the correct answer. Although deep learning has been used with acceptable

83
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accuracy results of ≈ 70% for traditional VQA tasks [289], when solving the ST-VQA problem

the accuracy drops to≈ 27% [207] demonstrating the challenge at hand. For example, in Figure

5.1 - F, in a traditional VQA system, the question could be "What is the object in the image?",

and to answer it, the system would not require to read any text. In an ST-VQA task, the system

must read the correct textual data in the image, so as to answer the question, as in the example

"What is the brand name of the toothpaste?". Several challenges arise in the context of this task.

For example, understanding the type of question is required in order to filter the set of possible

answers. Figure 5.1 presents samples of triplets (Image, Question and Answers) from TextVQA

database [207]. Each sample contains an image, a question associated, and the ground truth list

of answers given by 10 human annotators. We present examples for unclear annotation cases

(A-E), where, for instance, the answer given by the annotator is not correct (case C) or falls

into the "Yes"/"No" category (case D). In the correct cases (case F), the answer is, as expected,

provided by text present in the image.

Also, the representation of the answer space becomes critical because it can contain unlimited

words in any possible language. This makes infeasible the establishment of a fixed pool of

answers and yields the "out-of-vocabulary" (OOV) problem (words not contained in the pool

of answers). Other challenges are related to the detection and recognition of the text present

in the visual data in the wild or from natural scenes, which remains a challenge for current

models facing this problem because of all the variations they present [290]. One of the most

difficult tasks, even in traditional VQA systems [291] is the reasoning required to resolve spatial

and visual references that involves understanding the question and the visual information at the

same time. Recapitulating, this task represents a suitable recent challenge that combines images

and text and that demands a high level of reasoning and semantic analysis. Also, being our

previous model inspired by VQA architectures, it fits the main requirements for this task. For

such a semantic description task, many related issues need to be addressed.

As we mentioned before, this task was recently introduced in the document analysis and recog-

nition community which is why the state of the art and the available databases, are limited.

The problem of having limited databases makes the evaluation and model comparison harder.

Then, the first type of works in the state of the art addresses the problem of lack of databases
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how many times the word 
muller is appear in the 

picture?

how many letters are in the 
name of this restaurant?

how, many, donuts, are, in, 
the, package

'2', '3', '3', '3', 'twice', '2', '3', '3', 
'2', '3' '4'...

'6', '6', 'ladybug house', 
'logitech', '4+2', '4+2', '6', '6', 

'6', '6'

Are those airforce planes? How many planes in the 
picture?

What is the brand name of the 
toothpaste?

'yes'... 'answering does not require 
reading text in the image’...    '    'aquafresh'...

A

D

B C

E F

Figure 5.1: Samples of triplets (Image, Question, List of answers given by 10 annotators) from

TextVQA database of wrong (A-E) and correct (F) annotations to address the problem of ST-

VQA.

by proposing data collections that follow the requirements {image + question (targeting some

textual information) + answer} of the ST-VQA task. The two first and most popular databases

were then proposed by Biten et al. [211] with the ST-VQA database and second, by Singh et

al. [207] with the TextVQA database. Several other databases have been proposed with more

specific purposes such as images of book covers [208] and diverse sets of wild scenes [58, 209].

We will now introduce the existing approaches to this task. Singh et al. [207] proposed a

framework called LoRRA based on three networks: the image, the question, and the OCRs ex-

tracted from the image using another model. Contrary to our work, the multimodal component

is nonexistent. They replace it with a classifier layer that connects the independent modality

networks. Their main proposition is based on a module that extracts the answer from the avail-
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able set of OCRs recognized in the image (the copy module). The decision is based on the

predicted scores for the original set of answers. We take into account its proposition in our

evaluations and propose other representations for the answer space. This way, we do not rely

only on OCRs extracted from the image, but instead, take advantage and used them as comple-

mentary information (following our previous propositions of using additional information that

may help to improve the learning of the model). Many methods are based on the performance

of current OCR engines. For example, in [208] the proposal is based on Tesseract, a well know

OCR engine for text documents, and a VGG which is a well-known neural network define in

[86]. The evaluation is however led on a very specific database of book covers with accuracy

performances of 0.58%. Other approaches to the task involve attention mechanisms [219, 220];

Let’s recall that attention mechanisms have shown to improve performance in computer vision

models based on deep architectures by learning to focus on the regions of the image that are

salient. Hang et al. [219] implement an attention mechanism that works by feeding the model

with visual features extracted from the OCR boxes (not the text). The OCR boxes are computed

using a specialized OCR model. In our strategy, we also implement attention by including not

only the OCR boxes but combinations of complementary information that may help the model

to attend to some parts of the image.

In summary, the state of the art proposes frameworks composed of successful feature extractors

and attention mechanisms. We notice a lack of proposals concerning the representation of the

answer space. In general, these are based on traditional bag of words [215], or improved versions

of it including a set of dynamic spaces [207], i.e., to add additional dimensions (spaces), different

for each sample, to those of the bag of words.

As this task is very recent, our first experiments were to perform ablation studies to evaluate the

impact of the different components in the framework. Therefore, in Section 5.2, we present an

analysis of feature extraction methods with a focus on the question embeddings. We consider

the impact of the representations of the critical data. The images are represented with successful

neural networks such as ResNet [87]. Due to the type of task (reading some textual data in the

image), understanding the type of question (yes / no, or specific text contained in the image), as

well as the target information required in it, further analysis are required to find suitable repre-
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sentations. For this reason, to represent the questions, we propose to compare context-based and

context-free textual embedding models. To represent the answers, we propose to evaluate an

n-gram based representation. This n-gram representation is more flexible in representing words

outside the English vocabulary.For our analysis, we rely on the two most popular databases: ST-

VQA and TextVQA. In the first evaluation presented in Section 5.2, we only use the ST-VQA

database and focus on the specifications of the challenge described in [292].

In the second part (see Section 5.3), we complement our ablation feature extraction study by the

inclusion of a complementary module that feeds the model with additional information (such

as available OCR text). We evaluate the performance of including additional data to train the

system in the form of a complementary network representing embeddings from textual and vi-

sual data. Notice that we are using the OCRs as complementary information that may help to

improve the learning of the model. On the contrary, it is the model that learns to recognize

the target spatial references where some text may be located. We also extend our analysis by

changing the answer representation to a bag-of-word representation with the option of augment-

ing its dimensionality with a dynamic set of spaces. We expose drawbacks related to the copy

module which is the state-of-the-art solution, and we propose to use a second metric to compute

the scores for the dynamic spaces so that the copy module can take advantage of texts that are

not perfectly recognized by the OCR system. In Section 5.3), we make use of the second most

popular database, the TextVQA database. For this database (unlike the ST-VQA database), there

are state-of-the-art results for the validation set. Therefore, we can make a fair comparison with

the performance obtained by our method.

5.2 Initial framework

As we mentioned before, our first approximation consists of performing ablation studies to eval-

uate the impact of the different components in the framework. Therefore, in this section, we

present an analysis of feature extraction methods with a focus on the question embeddings and

the representation of the answer space using n-grams. For the images, we make use of successful

neural networks such as ResNet [87]. For the questions, we compare context-based and context-

free textual embedding models. For the answers, we propose an n-gram-based representation.
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We make use of the ST-VQA database to evaluate the model performance. Next, we present a

general overview of the framework followed by our experimental evaluation.

5.2.1 Modules

The framework consist of fundamental modules that pre-process the information in a ST-VQA

task. It is as follows: a textual network that processes data expressed as questions and that tells

the system what the required information is, a visual network that processes data expressed as

images and that contains the target information, a multimodal central module that fuses both

sources of information and outputs the answer. Figure 5.2 presents the proposed architecture.

We describe the modules next. The input data are visual (image) and textual features (question),

while the target output is an n-gram vector representing the answer.

Figure 5.2: Overview of the first framework: The visual features are extracted using a pre-

trained CNN, while textual features are extracted using a sequential model. Then, a fusion layer

is applied to connect with a central module. The central module is composed of the fusion

layer and fully connected layers. For the representation of the answer space, we use a vector

containing n-grams extracted from the set of possible answers in the database (≈ 550 n-grams).

These n-grams are set to 0 or 1 representing their absence or presence in the word answer.

Visual embedding

The visual network is in charge of encoding the images by extracting the most relevant infor-

mation from them. The main task here is to get good initial features for the images, therefore,

instead of re-training a whole model, we leverage the learned properties from a bigger and well-

tested architecture, by using a pre-trained model - ResNet50 [87] - in millions of images. This

network was trained using the same type of natural images, present in our evaluation database,

which makes it suitable to compute the initial representations. We take the last hidden layer with
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a 2,048-dim. This 2048-dim vector is the visual input to the system.

Question embedding

In the context of natural language processing, there exist, powerful models to embed a text

with or without context. We test both scenarios, to help us understand which one is the most

suitable for our needs, and to analyze if, in the case of the ST-VQA task, the inclusion of context-

free vs context-based embedding models is helpful. We evaluated two text embedding models:

GloVe [76] and BERT [79]. GloVe is a well-known context-free unsupervised learning method

for obtaining vector representations for words. It provides a global representation for each word

present in the question database. It is based on statistics of word occurrences in a corpus. The

model used was trained over a set of million of Wikipedia articles. On the other hand, BERT is

one of the most recent context-based state-of-the-art models to compute textual embeddings and

it provides us with different levels of representation. It is a deep network bidirectional model,

trained from unlabeled text by jointly conditioning on both left and right context (it remembers

the history). The pre-trained model used to compute the embeddings was trained using a large

database (Wikipedia + BookCorpus [293]). Context-based models generate representations for

each word that are based on the other words in the sentence, making the embeddings more ro-

bust. With BERT, we can test two different scenarios for generating the embeddings, we called

these word-sentence embedding and sentence-embedding. The word-sentence embedding con-

sists of generating an embedding for each token in the question. This means that the embedding

for the question for one sample will be of dimensions Sequence length × 768 (768 being the

dimension of the BERT embeddings). The second scenario called sentence-embedding refers to

applying a pooling strategy from some layers of the model, for generating the final embedding

vector for the question as a whole, instead of doing it for each token in the question. As a pool-

ing strategy, we are using the reduce mean strategy, which consists in taking the average of the

outputs of the last hidden layer of the model.

Central module

The central module is the network in charge of fusing and learning the relations between the

information coming from both modalities, textual and visual, and outputs target information
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that we can interpret and finally, obtain an answer. We use a multiplication layer to fuse both

networks (see Equation 5.1), followed by three fully connected layers with the last one seen as

our n-gram representation layer (the answer transformed in the n-gram vector representation).

(V ◦ T )i = (V )i(T )i for all 0 ≤ i ≤ n , (5.1)

where V = Image feature, T = Question feature, n = dim(V) = dim(T).

Answer representation & Prediction

To create the answer representation, we propose to use a concatenation of n-gram attributes

(see Figure 5.3). We believe this is a suitable representation of the answer for two main reasons:

the representation is flexible in the sense that it is not restricted to only learn exact sequences

of text. On the contrary, it aims at finding smaller similarities, the data have some common

n-grams. Because an image can contain several n-grams, yielding multiple output neurons to

be 1, the task can be seen as a multi-label classification, for this, we use a Sigmoid activation

function:

Sigmoid(x) =
1

1 + e−x
(5.2)

which is applied to every element of the output vector. We use a binary-cross-entropy loss

function (see Equation 5.3) and train the model in an end-to-end configuration.

BCE(px) = −(yx log(px) + (1− yx) log(1− px)) (5.3)

where px is the prediction of the model for the input x, and yx is the ground truth label of the

sample.

Prediction. We follow the evaluation protocol described in the website of the challenge de-

scribed in [292]. Once we have our model trained, we can compute the n-gram representation for

each image-question pair sample. Figure 5.4, Page 92 presents the complete protocol followed

for the calculation of the score using the predicted embeddings.

We compute the distances between the predicted n-gram representation for our input sample and
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Where is 
the high 

court 
located?

Answer: 
DELHI

a  b  c  d  e  …  h  i  j  k  l  …  ab  …  de  ...  el  …  gz  …  lh  …  hi  …

0  0  0  1  1  …  1 1 0 0  1 …   0   …    1  ...  1   …   0  …   1  …   1 ...

Figure 5.3: Example of the construction of the answer vector for an image. The uni-grams and

bi-grams contained in the answer are used to activate the positions in the vector representation.

The other positions remain as 0. The n-grams are extracted from the set of possible answers

in the database (words can be from different languages, however, the set of answers belongs

more to the English vocabulary). If an answer contains more than one word, the n-grams are

extracted using all of them. For example, if the answer in the example was "DELHI HIGH",

both words are used to compute the n-gram representation. All the words are lower case first,

then the uni-grams (0-1,a-z) and bi-grams are extracted and filtered. The final size of the vector

is 550-dim.

all the n-gram representations from all the words present in our answers database. This answer

database, as we mentioned before, contains all the words present in the image plus some extra

words acting as distractors (words non-appearing in the image). After computing the distances,

we use the word associated with the most similar n-gram representation as our output answer.

Then, we can calculate the evaluation score based on Levenshtein distance, as follows:

score = 1− (
Levenshtein(out, ans))

max(len(out), len(ans))
) (5.4)

where, out is our predicted answer, and ans is the ground truth answer. The results are also

reported by using the following rule for the score (provided by the challenge):
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Figure 5.4: Protocol for the calculation of the final score: having the predicted n-gram represen-

tation for a sample, we can retrieve the string for the answer "OUT", by calculating the distances

between the predicted embedding and all the n-gram representations from strings in the answer

database. For example if there are 1,000 different answers in the database, there will be 1,000

n-gram embeddings, and therefore 1000 distances computed. The calculation is performed by

using three distance metrics: Euclidean, cosine, and correlation. Then, we can get the string

associated with the most similar n-gram representation. After we have the "OUT" string, we

can compute the score based on the Levenshtein distance (see Equations 5.4 and 5.5) using our

output answer string and the ground truth answer string.

trimmed score =

score if score ≥ 0.5

0 if score < 0.5

 (5.5)

5.2.2 Experimental evaluation

In this section, we describe the database used in our explorations, followed by our implementa-

tion details and results obtained using the proposed approach.

ST-VQA database

As a case study, we use the database provided for the challenge "ICDAR 2019 Robust Reading

Challenge on Scene Text Visual Question Answering" [292]. This is a recent database for ST-

VQA, which contains 23,000 images with up to three questions/answer pairs per image. The

images present in the database, are those normally found in everyday human activity, such as

making a purchase, using public transportation, finding a place in the city, etc. The train set
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consists of 19,000 images with 26,000 questions while the test set consists of 3000 images with

4,000 questions per task. We use the train set and separate it into two subsets: train ( 90%) and

test ( 10%). We follow the evaluation protocol described by the organizers on their website, in

the "Strongly Contextualized task". For this task, we have access to the bag-of-words appearing

in each image plus some extra words acting as distractors, all of them conforms the answer

database.

Implementation details

We used the ST-VQA database for this first set of experiments. For the training set, there are

more than 16,345 different answers, 95% of them with 1, 2, or 3 tokens. As there are many

different answers, the problem becomes more challenging, since, for any model to learn to

discriminate among all the answers, it is required to pass a good set of different samples related

with each one and with some variations, thus, the model learns to generalize as well. To tackle

this, we use data augmentation only in the images (because it is the modality containing the

target information) by applying a set of transformations in which the textual data contained in

the image is not highly affected. We use transformations such as rotations (not bigger than 180

degrees), as well as cropping and morphological operations that can help to emphasize borders

and therefore, the textual data. We did not use transformations such as mirroring because those

types of transformations can reverse the order of the characters in the text data contained in

the original image. Samples of transformations are shown in Figure 5.5, Page 94. We apply

standard pre-processings to clean the question database such as tokenization, stemming and

lemmatization. The minimum number of tokens for all the questions is 2, the maximum 25, and

the average sequence length is 15 tokens, which we use to set as the maximum number of tokens.

Around 98% of the questions start with a question "WH", 85% of them with the question word

"WHAT". As we mentioned in Section 5.2, we test three different textual embedding scenarios:

for the first one, we use the GloVe embeddings with a dimension of 300, the dimension of the

embedding matrix is 15 × 300. For BERT, the dimension of embedding vectors is 768. Thus,

for the first case, the word-sentence scenario, the dimension is 15× 768, while for the sentence-

embedding, it is 768 as the single dimension. For the calculation of the BERT embeddings,

we use the tool bert-as-a-service [285]. For the answers, we apply the following process: we
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obtained the set of unique answers (∼ 16345) and extract the uni-gram and bi-gram levels from

all of them. There are 36 uni-grams taking into account only letters in the English alphabet and

numbers. To select a good set of bi-grams to use, we select those with frequencies in the range

[20, 1,000]. This selection contains 74.82% of all bi-grams, which balances the proportion

of n-grams from the whole database vs the dimension of the final representation. Based on

previous works, such as [294] whose representation is also based on n-grams, it is better to keep

their number small. For this reason, we do not select more n-grams as three-grams because it

increases the dimensionality 5 times. For example, a good set with frequencies between 10 and

100 leaves a final set of 2,387 three grams. Therefore, this option is not suitable. On average,

all the samples have 10,92 n-grams, with a 553-dim as the final answer representation.

Figure 5.5: Examples of the transformations used for data augmentation.

Results

We describe the set of experiments performed. All the results are computed in the test set

by using the evaluation metric presented in Equations 5.4 and 5.5. First, we present the results

for the comparison of question embeddings. Table 5.1 presents the results for three different

scenarios for question embeddings: using GloVe embeddings (context-free) and using the BERT

model to compute word-sentence embeddings and sentence-embeddings (context-based). In this

experiment, we notice that the first embedding method, GloVe, performs slightly better than the

ones using the context. This result is explained in two ways: first, because the average number
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of tokens per question is not very big. Second, because for most of the questions, the structure

can be very similar, starting with "WH" interrogative words, as well as the surrounding words,

and the target which is more related to finding the answer word. For example, for many samples,

the question can start with "What does the text written...?" or "What is written...?". This makes

it more difficult to represent such small singularities when we consider that the questions have a

very similar context.

Table 5.1: Comparison of textual embeddings for the questions.

Embedding Score Trimmed Score
GloVe 0,23093 0,120581

Bert_per_word 0,21814 0,117965
Bert_per_sentence 0,216221 0,114302

Having fixed the representation of the question by using GloVe vectors, we can continue with

the model training. Figure 5.6 presents the training curves for the loss and accuracy in the ST-

VQA database. Although both curves do not achieve optimal values, they converge smoothly

and fast. The accuracy in training data shows the challenge ahead when working with very noisy

databases on a task that requires extracting high-level semantic knowledge.
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Figure 5.6: Learning curves for the loss and accuracy in training for the ST-VQA database.

As it is shown in Figure 5.4, Page 92, once the model is trained, we need to compute the distances
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between the current predicted n-gram embedding and the n-gram vector representation from all

the words in our answer database. For this reason, we evaluated 3 distance metrics that help

us find the most similar vector representation from the vector representations in our answer

database, and therefore, be able to obtain a final answer string to compute the score. Table 5.2

presents results for 3 different distance metrics: Euclidean, cosine and correlation. We use the

Euclidean distance which has turned out to be the best metric.

Table 5.2: Comparison of distance metrics for calculation of output answer.

Distance Score Trimmed Score
euclidean 0,23093 0,120581

cosine 0,211453 0,097326
correlation 0,203372 0,070523

As our first approximation to address this task, and by having an overall performance of 23%,

it is clear the system is not performing as we expected (see also Figure 5.7 for visual example

results). Because no previous works are addressing this specific task, in the same database,

and with many variables in hand, it is very difficult to determine the main cause of this low

performance. These models also require to be trained with many different variations of each

input pair and using thousands of iterations. Similar models addressing other tasks in the context

of VQA train their models for many days using millions of data, which makes it harder to

perform larger explorations. In the systems addressing ST-VQA tasks, all these aspects need to

be considered plus the ones concerning the target task. By analyzing the quality and pertinence

of the database, we found images in which, even for humans, determining what the textual

answer required is almost an impossible task, due to the quality and resolution of the areas

where the required text is located. We also found other cases, where the required text is not even

present in the image. Passing these samples to our model reduces its performance score. For

this case, the solution could be to clean the data manually, as well as to train a different model

that detects these special cases, but this would be a whole other task. The best alternative is to

strengthen the model to handle this type of noise. We also believe that one of the main causes

for our current performance is the number of data available and the implemented techniques for

data augmentation that we are applying to the images. Although these seem to work for images

in which the text is very accentuated, most natural images appear with variations difficult to
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determine, in which the text inside is very noisy.

1) What word is on the red sign?
GT Answer: stop
Predicted: stop

2) What is the name of the airline?
GT Answer: delta
Predicted: delta

3) What name is on the street sign?
GT Answer: bedford st

Predicted: debrand

4) What is the role of the bald man pictured?
GT Answer: volunteer

Predicted: jose

Figure 5.7: Example of model predictions. In the first two samples, the questions target textual

data that is visually well defined. In the third question, the answer prediction mechanism is

distracted by the representation of the predicted response. Both answers, GT and predicted,

contain the same number of characters in the first word [bedford st, debrand] and share more than

half of the characters [b, e, d, d, r]. In the last question, the model also predicts the wrong answer.

The main reason is that the text is not visually well defined, even for human performances.

Finalizing this first approximation, we present a qualitative analysis of the performance of the

model for a set of particular samples, seen from the semantic standpoint. These samples are se-

lected because of their answer frequency, or their visual content. For example, Table 5.3 presents

different images that contain the word "STOP", with the distances between the predicted em-

bedding of a sample in which the image-question pair have the ground-truth answer "STOP",

and the vector representations of the words in the answer database. In this case, the retrieved

answer will be "stop". This could be a special case, because the frequency of stop in the test set

is bigger than 1, and also, because the visual data related with these samples can be very similar
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(red signs with the same shape), which helps in finding similar content in the database.

Table 5.3: Distance values between the predicted embedding of sample with GT answer "stop"

and all the remaining n-gram vector representations for the words in the answer database.

Answer Distance
stop 0,0
alto 1,925972
code search 1,940344
bnp 1,940409
aon 1,947848
sptc 1,949048
ami 1,951303
... ...

One of the main goals in the ST-VQA task is that the proposed model be capable to discriminate

between semantic information and visual information. In Figure 5.8, we wanted to analyze

if the model is indeed learning to recognize semantically the content in the image, or if it is

learning based only on visual objects or patterns. In the sample, the most similar results are

also numbers, in most of the cases related with the answer "215". However, it can be biased

for the representation, the length, and even the visual content, which is very similar, as well

as other variables that require further analysis. Learning to discriminate semantically is very

challenging. In some cases, like the one in Figure 5.8, the textual information is very tenuous,

which makes it harder to recognize this text even for humans.

In this section, we presented the first approximation to tackle the problem of ST-VQA. The

two main evaluations are: 1) the analysis of using context-free and context-based embeddings to

represent the questions, and 2) the representation of the answer space by using an n-grams-based

model. The results of our explorations show the challenge ahead when solving this task. We

also notice that the low quality of the database has a huge impact on the learning of the model.

In the next section, we present an extended and improved version of the proposed framework.

We explore feature extraction models along with suitable embeddings not only for the questions

but also for the images and complementary data. Concerning the answer space, we also evaluate

a state-of-the-art technique to handle the problem of out-of-vocabulary (OOV) words. We make

use of another popular database for the ST-VQA task called TextVQA [207].
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Figure 5.8: ID 1) Represents the input image with its associated question and ground truth an-

swer "215". Once the system predicts the representation of the answer (n-gram) for the pair

of data image-question, it is compared against all n-grams representations in the database. The

most similar n-gram representation found belongs to the answer "27", where ID 2) is its associ-

ated image-question pair.

5.3 Model improvements: auxiliary modules + copy module

for the answer space

In this section, we analyse an improved version of our proposed framework by including ad-

ditional data to train the system. This additional data is sent to the model in the form of a

complementary network representing embeddings from textual and visual data. We use visual

and textual embeddings from OCRs as complementary information that may help to improve

the learning of the model. However, it is the model that learns to recognize the target spatial

references where some text may be located. We also evaluate a bag-of-words representation

with the option of augmenting its dimensionality with a dynamic set of spaces to represent the
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answer space. We conclude our analysis by exposing drawbacks related to the copy module

which is the state-of-the-art solution. We make use of a second metric to compute the scores for

the dynamic spaces so that the copy module can take advantage of texts that are not perfectly

recognized by the OCR system. In summary, the input data contains image features, questions

embeddings, multiple OCRs embeddings, and the expected output is the answer to the question.

In this section, we make use of the second most popular database, the TextVQA database.

5.3.1 Modules

In this section, we describe the modules proposed in our second framework (see Figure 5.9).

Apart from the improvements and modifications in the basic modules, we also include modules

that have been shown to help increase the overall performance of the model.
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Figure 5.9: Modules included in ST-VQA frameworks. Modules A, B, and C represent the basic

modules. Modules D and E are auxiliary modules added as strategies to improve performance.

A) Embedding module for input data of different modalities (Images/Questions/OCRs); B) Cen-

tral Module in charge of fusing input data; C) Answer space in charge of processing the answers

and it is represented as a bag-of-words; D) Copy Module in charge of handling additional spaces

for the answers (OOV); E) Complementary network in charge of input complementary or addi-

tional data.

The embeddings module

The embeddings module is in charge of computing input features for the visual and textual

modalities, including other possible data such as OCRs, and localized features (see Figure 5.9 -

A). For this reason, different specialized models for each modality can be studied. For example,

different networks based on CNN are appropriate to compute the embeddings of the images,
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while for text, several possible context-free and context-based models can be used as we have

shown in Section 5.2.2. Section 5.3.2 provides a detailed description of the models tested during

the experimentation phase.

Central module

The central module represents the component in which the data is combined (see Figure 5.9

- B). The module receives the features extracted by using module A and uses them to train

the network and give the correct answer. We make use of a similar attention mechanism as

the one presented in [201] that is used for image captioning and traditional VQA systems. Its

attention mechanism is called top-down attention, and it consists in concatenating the previously

generated word and the visual feature, with the aim of sending as much context as possible to

the textual model that is used to generate the final caption. We modified it so the attention

mechanism is directed from the question network to the visual network and the complementary

network. Attention mechanisms were created as a mean of enhancing the performance of the

artificial neural network by concentrating on the relevant things while ignoring others. In this

case, the attention is increased on the question of what information truly needs to be filtered.

Answer space module

The answer module is in charge of the representation of the target vector relying on an answer

space (see Figure 5.9 - C). We evaluated the usage of a fixed answer space commonly known as

a boolean bag of words (BoW), in which the score of each space in the final vector will indicate

the presence or absence of the word.

Copy Module

The copy module works as a mechanism to handle the OOV problem (see Figure 5.9 - D).

This is especially required because the dimension of the answer space can grow indefinitely. For

example, in the TextVQA database [207], more than 50% of the answers are unique (more than

30,000 distinct answers) creating a problem of representation. The copy module then works

by adding a set of additional spaces to the fixed answer space (module C), filled with scores

computed by using the OCRs recognized in the image. Thus, the final dimension of the answer

space will be the one fixed by the set of selected answers from the training data + the set of
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dynamic words with a fixed number of spaces representing the OCRs.

Because we have the predicted scores for the original set of answers given by the model, now we

need then to compute the scores for OCRs recognized in the image. The ones that are located

in the dynamic spaces. We propose to use two different metrics. First, the Human Score metric

proposed in [207] computed as follows:

HS(ans) = min(
#humans that said ans

3
, 1) (5.6)

It means, each OCR will be taken as the possible "ans" to compute the score. This means that

for "ans" to get a HS = 1, "ans" should be present in the set of answers given by the annotators

at least three times (taking into account that we have access to the set of possible answers from

the training set).

Figure 5.10 shows an example of calculation of scores using Equation 5.6 for an image with two

different questions associated. For the first question Qi, the answer is composed of two words,

(eddie, izzard), which are outside the fixed answer space. The copy module could help to use

the OCRs extracted from the image as an advantage, however, in this case, the Human Score,

Equation 5.6, will be zero for all the OCRs because it seeks a perfect match between the ground

truth answer "eddie izzard" and each one of the OCRs in a separate way ["eddie", "izzard"],

leading to a zero vector as the target representation for this sample. For the second question

associated Qj, it works as expected, as there exists an exact match between the ground truth

answer and the OCRs.
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Figure 5.10: Sample of assignation of scores using Human Score in the positive and negative

cases of the match between ground-truth answers and the set of OCRs of the image. In the first

case, the OCRs that compose the answer contain two words recognized separately, therefore

each one will have one score (< 1). In the second case, the answer is only one word and the

score will be 1.

Another example of the use of the copy module is when the set of human answers contains more

than one answer for the same question, as it is expected to be the same for all the 10 annotators,

but in some cases they can differ and give a different answer. As an example, let us assume

that the set of human answers is [stop, emergency stop, emergency stop, stop, stop, emergency

stop, emergency stop, it is an emergency stop, emergency stop, unanswerable], and the set of

OCRs recognized is [stop, emergency]. Even if the majority of answers in the ground truth is

"emergency stop", it also contains the ground truth answer "stop", which results conveniently in
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setting a score greater than 0 for the OCR "stop". As in the two previous cases, there are other

cases in which the copy module may or may not work because it requires to have texts that are

100% well recognized in the images ("one" is completely different from "one:" when computing

the Human Score), or when the answers contain more than one token.

To improve the calculation of scores when partial matches are found in the OCRs of the image,

we propose to use a second metric based on the Average Normalized Levenshtein Similarity

(ANLS), computed as follows:

ANLS Score(ocr) =
1

M

M−1∑
i=0

(1−NL(ansi, ocr)) (5.7)

where M = 10 is the set of answers given by 10 human annotators and NL is the Normalized

Levenshtein Similarity. Thus, for the previous example in Figure 5.10, for Qi, the new scores

for the target OCRs will be Score("izzard") = 0.4166 and Score("eddie") = 0.5

There are also limitations related to the OCR system used, such as recognizing a single word

separated in each one of their characters, or not recognizing the target text (i.e., the ground

truth word from the human answer set that truly appears in the image). In Section 5.3.2, we

discuss the advantages and disadvantages of training models that use the copy module as the

main strategy to solve the OOV problem, as well as the dubious results obtained when evaluating

the performance.

Complementary Network

This module represents the inclusion of networks that input additional data into the framework

(see Figure 5.9 - E, Page 100). We tested three different setups: first, Fasttext embeddings

[210] from OCRs recognized in the images (we use the OCRs available in the database) as in

[207]. However, we do not concatenate the order of the OCRs, and we input the average of

the embeddings from all the OCRs available without weighing them. Second, global features

extracted from the visual boxes containing the text recognized in the image; For training, we

used the ground truth answers to filter the boxes with text matching in at least 30% of the

answers, while for validation, we used the entire image. We also tested the scenario when both,

Fasttext and global features were sent into the framework together.
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5.3.2 Experimental evaluation

In this section, we describe the database used in our explorations, followed by the evaluation

metrics, the baselines, and ablations proposed together with the results and concluding with an

analysis of the proposed approach.

TextVQA database

To explore different evaluation scenarios, we are using the TextVQA database [207], as it

provides baseline results for the validation set. This database contains 34,602 training samples

and 5,000 validation samples, with almost 50% of the answers being unique. This shows the

difficulty of using a fixed set of words in the answer space.

Evaluation metrics

Two main metrics are used to evaluate the performance in this task. The accuracy perfor-

mance (see Appendix A.1.4) and in the cases where the copy module is used, the calculation of

the accuracy changes by using the Human Score accuracy (Equation 5.6). Then, the predicted

answer is obtained by getting the index of the max value in the output vector. If the index is in

the first part of the prediction (fixed space), the answer will be one of the fixed spaces shared

among all the samples. But, if the index is in the additional/dynamic part of the output vector,

the answer will be one of the sets of OCRs recognized in the image at the index position.

The second performance metric is the Average Normalized Levenshtein Similarity (ANLS) com-

puted as follows:

ANLS =
1

N

N∑
i=0

(
max(j−M) s(ansij, oqi)

)

s(ansij, oqi) =

(1−NL(ansij, oqi)) if NL(ansij, oqi) < τ

0 if NL(ansij, oqi) ≥ τ


(5.8)

where N is the total number of questions, M is the total number of ground-truth answers per

question, ansij is the ground truth answers where i = 0, ..., N, and j = 0, ..., M, oqi is the

network’s answer for the i-th question qi, and τ is the threshold. This threshold determines if the
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answer has been correctly selected but not properly recognized, or on the contrary, the output is

a wrong text selected from the options and given as an answer [211].

For this task, the second metric, ANLS (Equation 5.8), could be more convenient, as the system

can find partial matches among the set of words in the answer space. On the contrary, evaluating

the accuracy (see Appendix A.1.4) imposes a huge penalty if the model does not find perfect

matches for the answers. This is directly related to the answer module and the OOV strategy

used. However, considering the value of τ for the calculation of ANLS score that penalizes

predictions matching in less than 50% of the characters, the performance for both metrics is

expected to be similar. As this is the parameter established for the results of the baseline, we

leave the exploration of different values of τ as future work.

Baselines and Ablations

We perform several ablation studies for the modules described in Section 5.3, where we aim to

analyze the performance, drawbacks, and future improvements when targeting this task. We de-

scribe the ablations performed, to see if adding/ changing/ replacing key modules of the system

would lead to obtain better results. For the first 5 models, we wanted to analyze the embedding

module (see module A of Figure 5.9, Page 100), for the image and question data, and select

the best one to test the rest of the evaluation scenarios. The components included in this set of

studies from Figure 5.9 are modules A, B, and C. For the answer space, we use the set of 3,997

most frequent answers (Small Set SS, where the answers selected are those with frequencies

> 2) in the training database. As representative embeddings, we compare two models for the

images, ResNet101[87] and Faster R-CNN (bottom-up (BU) attention) [201] with final repre-

sentations of 2,048-dim and 36 (features per image with a 2,048-dim each one) respectively.

And two embedding models for the text, GloVe [76] and BERT [79], with final representations

of 300-dim and 768-dim respectively, for both models, we use a set of 15 tokens as the maximum

length. The vocabulary size extracted from the questions is 9,312 unique words. Therefore, the

scenarios evaluated are: GloVe + ResNet, GloVe + BU, BERT + ResNet, BERT + BU.

After selecting the best set of embeddings based on the previous results, i.e., GloVe embeddings

for the question, bottom-up features (BU) for the images, and having fixed a small answer space

(SS), we wanted to evaluate if the performance improves by increasing the size of the answer
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space to a large space (LS). The last row in Table 5.4 presents the result by using a larger set

for the answer space of the 7999 most frequent answers in the training database. Table 5.4

presents the results obtained for these first 5 models for validation samples in which the answer

is contained in the selected fixed set of answers, i.e., for the answer space SS, the number of

samples gets reduced to 18,516 for training and 2,214 samples in validation. For the answer

space LS, the number of samples gets reduced to 21,183 for training and 2,290 samples in

validation. Thus, to make a fair comparison, results are reported over these validation subsets.

We compare our results against the LoRRA model [207] as it is the most similar to ours. The

major difference in the results may be explained by the complex and expensive training process

carried out for LoRRRA (≈ 24000 iterations, making use of ≈ 8 GPUs). Due to resource

limitations, we only trained our model with ≈ 200 epochs and a maximum of 2 GPUs.

Table 5.4: Performance for representative embedding models for visual and textual data in ST-

VQA systems, with a fixed set of words in the answer space. Validation results are reported over

the set of samples which answers are contained in a small fixed set SS or a larger set LS.

Model Acc ANLS AVG
LoRRA + SS[207] 0,2656 - -

GloVe + ResNet101 + SS 0,1853 0,2274 0,2065
GloVe + BU + SS 0,2005 0,2474 0,2240

BERT + ResNet101 + SS 0,1910 0,2319 0,2115
BERT + BU + SS 0,1978 0,2366 0,2172
GloVe + BU + LS 0,1860 0,2279 0,2069

The second set of evaluation scenarios aims to analyze the inclusion of the copy module, based

on results from Table 5.4. The components included from Figure 5.9, Page 100 are modules A,

B, C, and D. We wanted to evaluate the appropriate number of additional spaces, for this, we

experimented with three different numbers. First, 50 spaces following the work [207], second,

the average of the number of OCRs of all training samples (≈ 9.8) * 2, i.e., 20 spaces, and

finally, the average of the number of OCRs from all training samples, i.e., 10 spaces. In this

case, the data sets contain all the samples (34,602 for training and 5,000 for validation).

As we discussed in Section 5.3.1, the assignation of scores using Equation 5.6, does not take

advantage of text that is not perfectly recognized, leaving many samples with zero score vectors.
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In this case, we wanted to change the assignation of scores by using the average ANLS score (see

Equation 5.7) over the set of human answers. The last row in Table 5.5 changes the assignation

of scores using ANLS score metric. Table 5.5 presents the results for this set of evaluation

scenarios.

Table 5.5: ST-VQA performance with the inclusion of the copy module with the assignation

of scores using Human Score metric and by exploring the number of additional spaces for the

OCRs to 50, 20 and 10. For the last result presented, the scoring method was changed to the

ANLS score metric.

Model Acc ANLS AVG
50 spaces + Human Score 0,1854 0,1835 0,1844
20 spaces + Human Score 0,1778 0,1799 0,1788
10 spaces + Human Score 0,1792 0,1817 0,1804
50 spaces + ANLS Score 0,1705 0,1816 0,1761

To evaluate whether the inclusion of more information into the central module would help the

performance, we test the alternative inclusion of three complementary data: 1) the average of

Fasttext embeddings [210] from OCRs recognized in the images, similar as in [207], but with-

out the addition of order and weighted information, 2) a concatenation of global descriptors

extracted from boxes containing target text, and 3) both of them. For this evaluation scenario,

the components included are modules A, B, C, D and E from Figure 5.9, Page 100. We use the

best model from Table 5.5, adding top-down attention in the central module from the question

towards the complementary network data. Table 5.6 presents the results obtained for this set of

experiments.

Table 5.6: ST-VQA performance when complementary data is sent into the VQA module. Three

types of complementary data were evaluated, Fasttext embeddings from OCRs recognized in the

image, Global features extracted from the box containing the target text data and, finally, their

combination.

Model Acc ANLS AVG
OCR Fasttext 0,1848 0,1942 0,1895

Global Visual features (GVF) 0,1756 0,1797 0,1776
OCR Fasttext + GVF 0,1843 0,1932 0,1887
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Analysis

The best results from Table 5.4, Page 107 are obtained by using GloVe vectors + Fast R-

CNN (or bottom-up BU) features. The slightly better performance of GloVe over BERT can be

attributed to the fact that the structure and meaning of the words in the questions for this database

are shared, and therefore the context does not play an important role in the discrimination of

different samples. Also, as the last result in the Table showed, increasing the set of possible

answers does not necessarily imply an improvement of the performance (see also results of small

set SA vs large set LA at "Table 2: Evaluation on TextVQA" [207] that confirm our result). This

is because the set of possible answers can contain any combination of characters in different

languages that are found in natural images, while in the case of the TextVQA database, there are

more than 19,000 different answers among 34,000 samples. This makes the establishment of a

manageable fixed set of words as the answer space unfeasible and raises the need to handle the

OOV problem.

For Tables 5.5 and 5.6, the copy module was included as a strategy to handle the OOV problem.

The best number of additional spaces to include in the answer space for this database was 50.

This means that the performance improves as more text data recognized in the image is provided

to the system. On the contrary, the last result in the Table that evaluates the ANLS Score did not

show an improvement in the performance. This is related to the fact that for most of the samples

in the database with at least one OCR recognized, their associated answers are composed of

only one token. Therefore, the scores will be similar (for only 8.9% of the samples in TextVQA,

answers contain more than one token).

Regarding the inclusion of additional data, Fasttext embeddings showed a small performance

improvement. On the contrary, the inclusion of the global visual descriptors with the target

textual data did not show any relevance. This could be due to the attention mechanism used, as

it was the same one for both embeddings.

Finally, Figure 5.11 presents the learning curves for loss accuracy in training for the TextVQA

database. Both training curves converge smoothly and do not require a large number of epochs.

Although the accuracy is ≈ 70%, when compared to the results of the ST-VQA database which

only reached 30% (see Figure 5.6, page 95) this database contains more quality annotations.
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This result shows how the proposed modules have a direct positive impact on model learning.
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Figure 5.11: Learning curves for the loss and accuracy in training for the TextVQA database.

Is the copy mechanism solving the OOV problem in a suitable way? We wanted to give final

comments regarding the convenience of using the copy module as a strategy for the OOV prob-

lem. Although the copy module partially solves the OOV problem, each item in the dynamic

space could represent as many different words as exist in the OCR space of all samples. In the

end, the prediction of the correct answer over these values becomes almost a random choice

that depends on the position of the OCR. Better solutions to handle OOV are required because

many tasks in the state of the art are facing the same problem. The n-gram representation for the

answer space could be a solution as with it, a larger set of answers can be represented by a fixed

and manageable set of n-grams (as we showed in Section 5.2).

5.4 Discussion

We presented an incremental and extended study for the task of ST-VQA by performing an

analysis of the modules required in any framework addressing this task. Our contributions are as

follows. Our proposed strategies are very flexible in each one of its components and were tested



5.4. Discussion 111

for the two principal databases ST-VQA and TextVQA. We evaluated the impact of several

basic and helper modules under different strategies. We explored and evaluated the quality of

different embeddings or representations for the data involved in the task, including the target

images, the questions, and the answers. We evaluated the relevance of the dimension when a

fixed set of words (BoW solution) is used as the answer space (which for this problem turned

out to have little impact). We also evaluated the performance of the model when using the copy

module under two different metrics for the calculation of the scores, both ended up with similar

performance, as the majority of data contains answers with only one token. Our final evaluation

concerned the performance when including complementary data to train the system in the form

of an additional network, resulting in a slight performance improvement. Finally, we exposed

some of the main drawbacks of current solutions, especially when handling the OOV problem

showing us the need for better and more robust strategies. Being part of the first works to

address this task, we presented several experiments and results for the two principal databases.

We believe these support future works to advance research in this challenging task.

During the development of these approaches, we found images in which, even for humans,

determining the required textual answer is almost impossible, due to the quality and resolution

of the areas where the text is located. We also found other cases, where the text is not even

present in the image, reducing the performance of our approaches. This demonstrates how data

is one of the most important factors when aiming to reach good performances. Therefore, we

determine that one important step is to understand how to properly clean and analyze data and

to create strategies able to leverage it. Our final approaches aim to address problems around the

data, such as noise, imbalance, and insufficiently labeled data. To evaluate our strategies, we

consider the problem of attribute learning, a clearly defined task fostering a lot of recent interest

in the area of explainable artificial intelligence. Attribute learning can complement class-level

recognition and therefore improve the degree to which machines perceive visual objects. In the

next chapters, we present the strategies and experiments performed around this task.
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CHAPTER 6

Multi-Attribute Learning With Highly Imbalanced Data

6.1 Motivation

In this chapter, our goal is to analyze and explore alternative solutions for the problem of learn-

ing with imbalanced data under the specific scenario of multi-attribute learning. We note that

one of the most important factors determining whether a model can perform well is the data

itself. In previous chapters (4 and 5), we encountered two main problems associated with the

supervision data that was available. The first one is determined by subjective and in some cases

erroneous annotations, while the second is the absence of annotations. These two problems lead

to an imbalance scenario. We find this problem especially in the application of ST-VQA, where

the answer set presents an extreme imbalance (an answer can only be associated to one sample).

This makes harder the learning of features from samples belonging to less represented or rare

classes. The simplest case is a binary classification task, where the majority of samples belong

to one of the two classes. Therefore, this leads to the "accuracy paradox" problem, because in

the most frequent case, when the accuracy level is high, it is only reflecting the underlying class

113
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distribution [295, 296]. In this case, the model is only learning to predict the most represented

class in the database. Hence, imbalanced learning is a real problem that occurs in several ap-

plications in the context of machine learning. For the previously addressed applications, many

components can affect the final performance differently, and therefore we have several points of

failure. These failures can come from the feature extraction component, the textual data used as

supervision, the fusion component in charge of merging the different data modalities, the han-

dling of the answer space, among others. Then the complexity of determining the component

that affects performance the most becomes more difficult. Especially when we are evaluating

the impact on the model performance for our proposed solutions to the problem of imbalance.

For this reason, we have chosen an application for which it is feasible to determine the causes

and if our proposals have a direct effect. This is the task of attribute learning. Also, we have

chosen this application because the imbalance problem is very common due to the structure of

the databases that require collecting a huge amount of information. Attributes are a richer, inter-

mediate data representation. They may represent an intermediate representation, which enables

parameter sharing between classes [297]. Moreover, they generally correspond to the semantic

representation of experts. The best scenario then would be to have all attributes well represented

to get a well-trained system. Unfortunately, this is not the case for most of the real databases

where the training database is highly imbalanced with attributes almost unrepresented (see Fig-

ure 6.1 for an example image and its associated attributes). In these cases, state-of-the-art works

may assume ideal conditions. Some of them expect the combination of attributes to be the same

for all samples belonging to a class [240]. Real databases may present variations at the sample-

level. For example, not all images display the same set of attributes even when belonging to the

same class. It causes also imbalance problems, where classical imbalance learning strategies are

not adequate or adapted. Hence, attributes are important in many applications of the state of the

art, and even when the main objective is different from the one pursued in this thesis, we believe

this is a relevant task.
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Belly orange

Breast orange

Breast white

Eye black

Underparts white

Figure 6.1: Example image and its associated attributes. Some of these attributes such as "Breast

white" may be assigned to many classes of birds, while others such as "Belly orange" are less

common. Samples extracted from the Caltech-UCSD Birds-200-2011 (CUB).

This contrast in the objective also imposes an obstacle, because the comparison against the state-

of-the-art methods is not evident. In the state of the art, the main application that incorporates

attribute data is classification at the category level. For example, the application of pedestrian

identification where the goal is to identify a person based on a set of attribute data [243]. One

of the closest works to the one proposed here is the work of Demirel at al. [240]. They propose

to use attributes for zero-shot learning (ZSL) of classes. Their goal is to predict the unseen class

name based on combinations of attribute names. They first learn an intermediate representation

of the image based on its attributes (our goal), but they only use it as an input for a model that

learns a word embedding. The strategy then is to find a common word embedding for repre-

sentations of attribute-based representations and class names. Notice that works based on ZSL

target have a different goal, i.e., the classification of unseen classes. Other works use expen-

sive annotations such as part localization for the learning of these intermediate representations

[298]. In short, attributes are considered a form of auxiliary data [299]. In our case, the focus

is multi-attribute learning. So the results are at the attribute level. For example, if we want to

learn color variations for multiple parts of a bird, such as the wings, the head, or the tail, etc.

We also do not use annotations such as part localization that are very expensive to get. As we

mentioned before, our target problem of attribute learning under an imbalance scenario is very

specific and it is not well studied in the state of the art. For this, we found difficult the direct and

fair comparison with other methods in the state of the art. Thus, to provide an easy comparison

for future works, we selected easily reproducible standard machine learning methods such as
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SVM, Logistic Regression, among others.

Our strategy is to do incremental analysis along with proper evaluation settings. We begin by

evaluating the two principal techniques for imbalance in the independent setting. These are

sampling and cost-sensitive learning [262]. In this scenario, each attribute is learned using a

separate model, and these learning techniques are easy to implement. To carry out extensive

exploration, we select the most general attribute. Once we find the most suitable scenario,

we apply it to the remaining attributes. This provides us with a baseline result computed as

the average performance for all attributes. Then we can proceed to analyze the problem when

all the attributes are learned using a unique model. For this scenario, we propose two different

multi-attribute frameworks. As we said earlier, our objective is focused on this scenario. Mainly,

because we found three problems when using classic imbalanced learning strategies applied to

multi-attribute models. These are derived from a characteristic of imbalance that manifests itself

in different ways. To address them, we propose three strategies that allow us to train our models

by leveraging high-level data such as class labels. We finish with the results of the average

performance of all the attributes against the state of the art.

For our experimental evaluation, we selected three popular attribute databases. The first, CUB

[232], is a database of different kinds of birds. Although this database is used more in the

state of the art of fine-grained image classification 1, we chose it as our case study due to its

high level of imbalance. The other two databases are AwA2 [234] and CelebA[235]. Unlike

the CUB database, these two databases are not imbalanced at the attribute level. AwA2 also

contains images of a diverse set of animals, while CelebA contains images of persons’ faces.

Then these last two databases allow us to compare the performance of imbalanced and balanced

databases so we can carry out our experimental evaluation. Figure 6.2 shows the distribution of

samples per attribute for the three selected databases. Notice that for some attributes in the CUB

database, there are very few support samples.

1The task of fine-grained image classification focuses on differentiating between classes that are very difficult
to discriminate, such as species of birds, flowers or animals, etc.
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Figure 6.2: Distribution of attributes for each database.

To develop our strategies, we propose to use deep learning. Deep learning has become the main

tool to address many artificial intelligence problems because of its success in solving complex

tasks (see Chapter 3 for deep learning related work), specially in computer vision problems.

These systems have demonstrated their ability to extract and learn high-quality features from

visual data [300]. In addition to this, using those systems now is an easy task for many people,

like scholars or expert users. They generally use these models merely as black boxes, without
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understanding how they work and why results are produced. Then, the focus tends to be on the

data. Generally, having "good data" leads to a cleaner training process, and therefore, better

performances [14].

In summary, in this Chapter, we evaluate the specific task of fine-grained attribute classification

in an imbalanced scenario. Throughout the experiments, we show that one of the main causes

of bad performance comes from these problems, more than from the actual ability of the model

itself. We study the effect of applying classical imbalance learning strategies to straightforward

and successful deep learning models seen as black boxes. Specifically, we will evaluate the use

of sampling and cost-sensitive learning strategies. Sampling refers to the techniques used to

order the training data to better balance the class distribution. On the other hand, cost-sensitive

learning involves explicitly defining and using suitable costs when training. This has a direct

impact on those imbalanced classes [301]. We propose adaptations to these two classical imbal-

anced learning strategies that cannot be directly applied when using multi-attribute frameworks.

Our strategies are designed to be used for multi-attribute deep learning models, i.e., multi-task

or multi-label architectures with competitive performance in real databases (see Appendix B.1.1

for a brief definition of these types of learning paradigms). We expose a certain number of

problems derived from highly imbalanced databases, usually ignored in the state of the art. The

problems we found are described next. First, the number of attributes per image is different.

Some images can have many attributes available in the training set while others only have 1 or

2. This makes the target representation very sparse and harder to learn. This is a problem of

imbalance at the level of the number of attributes per sample. Second, the problem of unrepre-

sented classes or "attribute-value" combinations. For example, learning color variations in birds

for two specific attributes "Primary" and "Eye" from 15 different variations can be difficult for

some of them. To find birds within the whole range of representative - "Primary" - colors is very

common, while for the second attribute, "Eye", the most common value is "Black". Therefore,

an attribute combination such as "Eye-Pink" is very rare and difficult to learn. Finally, the third

problem is related to the inconsistency of labels/classes pairs given by annotators which are very

subjective and can differ and be incorrect. This leads to a lack of uniqueness and discrimination

between classes. Formally, this corresponds to a large intra-class variance and a low inter-class

variance. These problems require deciding which one of these values is the most reliable to train



6.2. Databases 119

the model, and how to feed the model with all the possible variations.

Our two main contributions in this chapter are as follows: 1) We validate the effectiveness of

classical imbalance learning approaches applied to straightforward multi-attribute approaches,

2) we expose different problems derived from imbalanced databases in the context of very fine-

grained multi-attribute learning, some of which are ignored in the state of the art. Subsequently,

we present our proposals to tackle each one of these problems.

6.2 Databases

The imbalance learning problem is extensively studied by using a representative attribute database

as our main use case. We also report results in the multi-label scenario for another two attribute

databases that have a better data distribution (see Table 6.1, Page 120). We describe these

databases next.

Caltech-UCSD Birds-200-2011 (CUB). This database contains images of 200 bird species.

All images are annotated with bounding boxes, part locations, and attribute labels. We only

use the main classes as auxiliary data, along with the attribute labels for the target task (see

Figure 6.1 for an example image and its associated attributes). Only attributes based on color

information are selected for the experimentation (16 out of 28 attributes are related to the color

information) [232].

AwA2. This database contains 50 animal classes with 85 different attributes. We use the same

partitions as proposed in [234]. The partitions were proposed by distributing the classes, 40 to

train and 10 to test (standard partitions). The main difference with this database is that samples

belonging to the same class share the same set of attributes. This aspect balances the database

at the level of attributes, allowing us to compare it with a well-distributed database (see Figure

6.3 for an example image and its associated attributes).
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brown, orange, yellow, 
patches, spots, big, lean, 
hooves, longleg, 
longneck, tail, chewteeth, 
horns, smelly, walks, fast, 
slow, strong, muscle, 
quadrapedal, active, 
inactive, vegetation, 
grazer, oldworld, bush, 
plains, fields, ground, 
timid, group Blond_Hair, 

Eyeglasses, Big_Lips
Blond_Hair, 

Bushy_Eyebrows

AwA2 CelebA

Figure 6.3: Example images from AwA2 and CelebA database and their associated attributes.

celebA. This database [235] contains data for different identities, with landmark locations

(which we do not use) and binary attributes. It is widely used in the context of Face recogni-

tion. This database presents an imbalance at the attribute level with a minimum and a maximum

number of samples per attribute of 4,547 and 169,158. Samples from the same class do not

share the same set of attributes because of the nature of the relation between classes (identities)

and attributes ("sunglasses", "mustache", etc). For example, if we have two images of the same

identity in which the attribute "sunglasses" is present in only one of them (see Figure 6.3 for

example images and their associated attributes).

Table 6.1: Databases distribution.

Database # classes # attributes # Train # Test
CUB 200 312 (239 used) 5,994 5,794

AwA2 50 85 29,409 7,913
celebA 10,177 40 162,770 19,962

As stated before, our main goal is to study the abilities of straightforward but successful deep

learning models when used as black boxes by expert end-users. Our main objective is to deter-

mine if these are capable of learning attribute data at the finest level, despite being used in an

imbalanced context, and to retrieve content sought by scholars or experts. We evaluate the task

of fine-grained attribute classification in birds, for color variations for a set of different attributes.

We make use of the previously described CUB database because of its characteristic of contain-

ing different levels of imbalance. We compare the performance vs other well-known machine
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learning methods for other widely known databases in different domains, animals (AwA2), and

face recognition (celebA). These last two databases are well structured and distributed; there-

fore, we can make the comparison under better circumstances. In the next sections, we present

the methodology followed to pursue our objectives along with the subsequent experimental eval-

uation.

6.3 Proposed attribute independent framework

In this section, we perform an incremental and extensive evaluation of attribute modeling in the

independent scenario, i.e., when each attribute is trained using separated models. For exam-

ple, classify the attribute "Primary"" in its 15 different color variations such as [white, blue,

black,...color15]; then, train another classifier for the second attribute "Wing" for its 15 color

variations as well, etc. In this first evaluation, we selected the most representative attribute to be

able to explore many learning scenarios. Once we find the best setting, we present the results

for all the remaining attributes.

6.3.1 Proposed framework

The model used to train each independent attribute is a ResNet50 [87] in which the weights

are initialized by using a pre-trained network on ImageNet (see Figure 6.4). ImageNet is also

composed of natural images with several classes of animals. This is the reason why this network

trained with this database represents a good feature extraction model for our data. The dimension

of the classifier layer is adjusted according to the number of classes for each attribute. Therefore,

in this scenario, we train as many networks as attributes are present in the database.
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Figure 6.4: Multi-label model for the independent case. We train one model for each one of the

16 attributes. Each attribute contains different colors (up to 15 different colors).

Next, we describe the classical imbalanced learning strategies implemented. Two main strategies

are well-known when training a model with an imbalanced database [261]:

• Sampling. It consists of sample elements from the training data by establishing a set of

probabilities or weights. This affects directly the method to create the mini-batches fed to

the model. Two different forms to compute the weights are tested. First, by taking into

account the number of samples per class (different weights), where the weight for a sample

that belongs to the class i is computed as 1/Ni, whereNi = number of samples in class i.

The second approach is to give equal weight to each sample (1/N classes). Another op-

tion when using sampling, also called Weighted random sampler (WRS), is to replace

samples. This option allows us to continue passing (repeating) samples of rare classes in

the creation of mini-batches once all the samples belonging to them are already fed to the

model.

• Cost-sensitive learning. It concerns the update of the loss function by using weights

given to each class (Weighted Loss). The weights are computed as 1/Ni , where Ni =

number of samples in class i. Then, the definition of the loss functions for the regular

Cross-Entropy loss and the weighted version is as follows:

CE(px) = −yx ∗ log(px)

Weighted CE(px) = −Wclass ∗ yx ∗ log(px))
(6.1)

where px is the prediction of the model for the input x, yx is the ground truth label of the
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sample, and Wx is the weight assigned to the associated class.

6.3.2 Experimental evaluation

In this section, we describe the set of experiments to carry on in the independent case. To be

able to test different evaluation scenarios in the training phase, the most general attribute is

used to select the configuration with the best performance. The "Primary" attribute is the most

representative attribute (from all the 16 part attributes with color information) as it does not refer

to any specific part of the bird. It refers to the most representative color of the bird (see Figure

6.5 for example images and the value of the "Primary" attribute).

Red Blue Yellow 

Figure 6.5: Example images from the CUB database exhibiting the attribute "primary" with

different values.

Table 6.2 presents results for an incremental evaluation making use of the two strategies de-

scribed in the previous section: sampling and cost-sensitive learning. All settings are computed

by using a learning rate (LR) of 0,0001, a batch size (BS) of 24, and 120 epochs. In the first row,

none of the strategies are applied. In row 2, standard data augmentation is applied to obtain bet-

ter results in the test set such as rotations, horizontal flips, and perspective changes. Rows 3 and

4 evaluate the use of a sampling strategy (WRS, without replacement) using different and equal

weight values, with the last one performing better. Row 5 evaluates the use of the Replacement

option with the best setup (WRS + equal weights) showing a small improvement. The last two

rows evaluate the use of using a cost-sensitive loss strategy with data augmentation (row 6) and

when combined with the WRS strategy (row 7) getting decay in the performance. The rest of

the experiments in the independent case are reported using the best setting found, that is, by
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applying data augmentation and using a sampling strategy with equal probability weights for all

samples and with replacement.

Table 6.2: Incremental analysis for the performance of the "Primary" attribute when using Sam-

pling and cost-sensitive learning strategies.

Id Setting Accuracy (%)
1 None strategy 72,78
2 Data augmentation 73,06
3 Weighted random sampler with different weights + no Replacement 72,57
4 Weighted random sampler with equal weights + no replacement 73,21
5 Weighted random sampler with equal weights + replacement 73,24
6 Data augmentation + weighted loss 66,98
7 Weighted random sampler with equal weights + replacement + weighted loss 65,70

Based on the results for the "Primary" attribute, we use the setting found for the training of the

remaining attributes. Therefore, we have the performance for each attribute in the independent

case to compare against the multi-attribute case. Table 6.3 presents the results for all attributes

trained independently. The average accuracy is ≈ 68,41%. This value is the baseline and ex-

pected value to reach with our multi-attribute models.

Table 6.3: Results for all attributes trained independently.

Attribute Accuracy (%)
back 68,30
belly 74,49
bill 57,35

breast 72,50
crown 67,16

eye 90,69
forehead 66,41

leg 50,12
nape 66,76

primary 73,16
throat 70,50

under tail 61,46
underparts 74,51
upper tail 61,09

upper parts 69,67
wing 70,35

Average 68,41
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Figures 6.6, 6.7 and 6.8 present the training loss and accuracy in test for the attribute ’Primary’

(our case study), followed for the attribute with the best performance (’Eye’) and with the lowest

performances (’Leg’). The performance of the attribute ’Eye’ presents a high imbalance level

that explains the non-smoothly and also high convergence as most of the samples belong to the

class ’Eye - Black’ (> 3000) while for the class ’Eye - Green’ there only 2 samples. On the

contrary, the training curves for the attribute ’Primary’ have a soft convergence because all the

classes are well represented (averagenumberofsamplesperclassis ≈ 400) and second, the

attribute is indeed easier to learn. The learning of the ’Leg’ attribute may represent a challenge

as well, because of its localization. However, there there are fewer unrepresented classes and

therefore, the training loss and accuracy in the test has as well a smooth convergence.
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Figure 6.6: Training loss and accuracy in the test for the attribute: ’Primary’. Having a well

class distribution and being ’easy’ to learn, its associated learning curves converge smoothly.
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Figure 6.7: Training loss and accuracy in the test set for the attribute with the highest perfor-

mance: Eye. Being the attribute with the highest level of imbalance, its corresponding learning

curves have a hash convergence.
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Figure 6.8: Training loss and accuracy in the test set for the attribute with the lowest perfor-

mance: Leg. Although its accuracy in test, the learning of the attribute represents a challenge

because of its visual localization. However, the learning curves are smooth due to its well class

distribution.

In the next section, we first present the problems found in the multi-attribute scenario along

with strategies for their optimal use, which represents one of our main contributions. We follow

these experiments with the description of our proposed multi-attribute frameworks (multi-task

and multi-label models) and their respective performances, concluding with a comparison with

the the selected machine learning methods.

6.4 Problems encountered in the multi-attribute scenario and

our adaptations

In this section, we present problems associated with different levels of imbalance that severely

affect the final performance of the model, and that arise in the multi-attribute scenario making

its use non-optimal. Next, we describe these key problems together with our proposals.

1. The sampling strategy is not easily applicable. The sampling strategy provides a "prob-

ability value" for a sample to be selected. However, for a sampling method to determine

when an image belongs to a rare class, in a multi-attribute model, is more difficult. First,

consider the most difficult case, the multi-task model, with only two tasks, "Primary"

(main color of the bird) and Eye" (color of the eye), each one of them with 15 different
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classes (color variations). In a multi-task model (see models in Section 6.5), the image

is passed through a set of shared layers and forwarded to all the branches each represent-

ing one of the tasks. For the task "Primary", classes such as "White", "Blue" and "Red"

are very frequent. However, for the task "Eye", these classes are considered very rare.

Thus, the complexity of defining which classes are rarer increases with the number of

tasks (there are 16 different attributes/tasks). A similar problem is present in the multi-

label model. In our experiments, we found that the best strategy is to assign the same

probability to all samples regardless of their classes and to use replacement2. This helps

rare classes to be passed after all samples have been already selected. Figure 6.9 shows

the process of the creation of mini-batches during a training epoch by using this strategy.
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Figure 6.9: Creation of the mini-batches during an epoch. The sampling strategy is implemented

to tackle the problem of having very rare classes. All the samples in the database have the same

probability of being selected. By using replacement, samples of very rare classes (eye red) are

included several times.

2. Very few samples have annotations for all attributes. The ideal and most common case

is when images belonging to a class share the same set of attributes and values in the

domain of the database. In our use case database, CUB, this feature is absent. Although

2Replacement: inclusion of the sample in several mini-batches (repetition of the sample)
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images do have class information, two images that belong to the same type of bird may

have a different set of attribute-color information. For example, we found two images

i and j belonging to the class "Pigeon Guillemot"; image i contains the set of attribute-

values ["Primary White", "Wing Gray", "Crown Gray"], while image j contains the set

of attribute-values ["Primary Gray", "Wing Gray"]. Notice that some values are different

for the same attribute and that there are even some absent attributes in images belonging

to the same class. This represents a problem in the multi-task model when updating the

loss for those absent classes for some input images. For this problem, two strategies are

evaluated: A) updating the loss function using a mask value that indicates which values

will not be used in the computation, and B), computing the most common value for all

samples for each one of the attributes according to the class (there exist 200 different

classes). If a sample does not have an annotation for an attribute, the most common value

is transferred to be used as ground truth during the training phase (partial transfer). In the

previous sample, if the most frequent value for the attribute "Crown" in the class "Pigeon

Guillemot" is "Gray", this is used to complete the set of attribute-values for the image j as

["Primary Gray"", "Wing Gray", "Crown Gray"]. Also, we can only use frequent values

for all samples belonging to the same class (total transfer). Figure 6.10 depicts the two

proposed strategies.
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Figure 6.10: Strategies proposed to address the problem of "Very few samples have annotations

for all attributes": A) By updating the loss function using a mask value that indicates which

values won’t be used in the computation. B) By transferring partially or totally attributes from

the most frequent set of attributes for the respective class.
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3. The attribute-value per sample becomes a combination of all different values per all

different attributes. In the independent case, the performance was better for the attribute

"Primary" by using all ground truth values in the training phase for the classification task.

We consider each combination as independent and therefore, we pass the image as many

times as it has different values. In the multi-task model, we must take into account all pos-

sible combinations per attribute and among all attributes, because the image is forwarded

throughout all the tasks at the same time. This extremely increases the complexity of the

sampler when selecting images. For example, if an image i has the set of values for the

attribute "Primary" = ["Blue", "White"] and the set of values for the attribute "Wing" =

["Blue", "White", "Black"], this gives us a total number of 6 possible combinations. This

means the image is passed 6 times to the model if we use the same strategy as in the in-

dependent case. This is only for two different attributes with few variations. Thus, for the

real case, the combination of 16 attributes with all their variations is not efficient and can

be very large. To solve this problem and take into account all values during the training,

the proposed solution is as follows: if an attribute has more than one value, only one of

them is randomly chosen at each iteration. In the previous example, image i with two

attributes, in the first iteration the combination passed to the model can be composed as

"Primary-Blue", "Wing-White". In a second iteration, the same image i can be passed with

the combination "Primary-White", "Wing-Black", and so on (see Figure 6.11).

Iteration 2

Primary
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- White

Wings
- Blue
- White
- Black

Iteration 1 Iteration N

Primary 
Blue

Wings 
White

Primary 
White

Wings 
Black

Primary 
Blue

Wings 
Blue

Figure 6.11: Choosing the attribute-values combination from all the ground truth set. In each

iteration, only one value per attribute is randomly selected to train the model.

To analyze the performance in the multi-attribute case, we make use of two architectures that

change drastically at the last layers: first, a multi-task model with two variations at the last layers,
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in which the number of tasks is equal to the number of selected attributes (16 attributes for the

use case database CUB). Second, a multi-label architecture in which the target representation

for each image is a one-hot vector with dimension = number of attributes indicating the absence

or presence of each one of them. We present these approaches in the following sections.

6.5 First multi-attribute framework: Multi-task models

This is the first multi-attribute model proposed. We proposed two variants, the first one to

explore if only one classifier layer is sufficient to discriminate among all the attributes compared

with a second one that includes more independent layers per attribute.

6.5.1 Proposed framework

This model along with its two variants is depicted in Figures 6.12 and 6.13, Page 132. The

backbone structure in both variations is a ResNet50. For the first variation (Figure 6.12), the

last layer of a ResNet50 is removed and a classifier layer is added with a dimension equal to the

number of classes for each task (15 colors except for the attribute "Eye" with only 14 colors,

for use case database CUB). This first variation is closer to the independent case. The only

difference lies in the last layer, i.e., there is only 1 classifier with all attribute-color variations vs

the 16 classifiers in the previous case, each one for one attribute.

For the second variation, the last two layers - the last convolutional block and the classifier layer

- of the ResNet50 are removed. For each task (attribute), the same convolutional block is added

along with a classifier layer with the respective dimension (Figure 6.13, Page 132). In this case,

we wanted to determine if by having more layers for each task, the discrimination ability among

them improves.

6.5.2 Experimental evaluation

For the multi-task models, two architectures are proposed. Table 6.4, Page 133 presents the

summary results for models MT1 and MT2 with their variations. Experiments (1) and (2) present

results for models MT1 and MT2 by using a mask for absence values when computing the loss



6.5. First multi-attribute framework: Multi-task models 131

Resnet50
(-last 
layer)

...
C

lf A
tt 1

C
lf A

tt 2
C

lf A
tt N

Figure 6.12: Multi-task model - MT1. In this scenario, the backbone is a ResNet50 with N

different simple classifier output layers equal to the number of attributes in the database.

(see Section 6.4 - Strategy 1). The model MT1 performs slightly better and therefore, it is chosen

for the following experiments. Experiments (3) and (4) present the results when transferring the

most frequent values using the class information (see Section 6.4 - Strategy 2). In (3) a partial

transfer is implemented, i.e., only the absent attributes of the sample are transferred. In (4),

a total transfer is implemented, i.e., all samples belonging to the same class have the same

attribute-values (see Figure 6.11, Page 129). The results demonstrate that the best solution is

a partial transfer because the model is aware of all the possible annotations (colors) present in

each sample.

To address the problem of data imbalance in the multi-task model, and because the sampling

strategy is not directly applicable in this scenario (as stated in Section 6.4), more effort is re-

quired. We propose to do this through the loss function, which is easier to manipulate. In [302],

they propose a new loss function for improving performance in single-stage object detectors.

This function may also help in the problem of highly imbalanced classes by training the model

with a focus on the hard negative examples instead of overlooking them and getting an arbitrary

accuracy. This strategy is a more developed version of the cost-sensitive technique explained in

Section 6.3 where weights are given to each class during the calculation of the loss. The loss

function proposed in that work is called Focal Loss (FL) and it is defined as follows:
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Figure 6.13: Multi-task model - MT2. This network is an adaptation of MT1. We added convo-

lution blocks to each classifier layer to analyze if the discrimination among them increases.

CE(px) = −log(px)

FL(px) = −(1− px)γlog(px)
(6.2)

where px is the model prediction for the input x, CE is the traditional Cross-Entropy loss, and

FL is the Focal loss function. The key difference is the scaling factor ((1−px)γ) that is added to

the original definition of the Cross-Entropy loss (CE). This scaling factor decreases (or decays

towards 0) as the confidence in a prediction goes up. The aim then is that by setting γ > 0, it

reduces the relative loss for well-classified examples (i.e., px > .5), and then, the focus is on

hard mis-classified examples.

Experiments 5 and 6 present the results when applying this method to the multi-task model MT1

and using different scaling factors (λ = 2 and λ = 5 respectively), with the first one having a

better performance. To ease the evaluation of this strategy, the attribute "eye" is removed because

this is the only attribute with a different number of classes. Table 6.5 presents results per attribute

for all settings listed in Table 6.4.
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Table 6.4: Results for multi-task models. Experiments (1) and (2) display the results for models

MT1 and MT2 by using a mask for absence values when computing the loss. Experiments

(3) - partial and (4) - total display the results when transferring the most frequent values using

the class information. Experiments (5) and (6) display the results of applying different scaling

factors for the Focal Loss function (λ = 22 and λ = 5 respectively).

Setting Accuracy (%)
1 39,16
2 38,87
3 39,23
4 38,46
5 35,01
6 34,52

Table 6.5: Best results per attribute for multi-task models variations evaluated for the 16 at-

tributes used from the database CUB.

Attribute Acc (%)
1 2 3 4 5 6

back 31,77 31,44 32,17 30,96 31,20 31,08
belly 43,24 43,65 43,26 43,30 42,46 41,85
bill 35,90 35,88 35,74 35,74 35,76 35,68

breast 43,63 43,49 43,49 43,04 42,72 42,34
crown 38,68 38,60 38,79 38,02 37,98 37,31

eye 73,92 73,92 73,92 73,92 - -
forehead 39,03 38,48 39,33 37,90 34,27 33,70

leg 22,13 21,78 21,92 21,56 19,48 18,78
nape 38,54 37,86 38,54 37,17 35,94 35,22

primary 50,58 50,08 50,67 48,67 49,33 48,41
throat 43,04 42,94 43,32 42,86 41,13 40,06

under tail 25,80 25,57 26,04 25,21 23,28 22,87
underparts 44,19 44,82 44,37 44,33 41,91 40,76
upper tail 22,17 22,05 22,55 21,96 18,31 17,73
upperparts 38,44 37,98 38,73 37,78 37,76 37,47

wing 40,02 40,04 40,14 38,60 39,49 39,65
Average 39,44 39,29 39,56 38,81 35,40 34,86

The results are coherent with the independent results. Those attributes with higher results in the

independent case also have higher results in the multi-task case. However, the general perfor-

mance is decaying to about 50%. The focal loss function is not well adapted, as explained in
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Section 6.4 - Problems encountered, "very few samples have annotations for all attributes". In

other words, it is very difficult to determine which are the rare classes among all tasks.

Figures 6.14, 6.15 and 6.16 present the overall learning curves for the best multi-task model

(setting 3 in Table 6.5), followed by the specific learning curves for the attribute ’Primary’,

and the attribute with the lowest performance ’Leg’, respectively. The overall learning curves

converge after 60 epochs. This represents a saving in resource consumption in comparison

with the independent case. Following similar behavior than in the independent scenario. The

’Primary’ and ’Leg’ attributes have a smooth convergence for both learning curves.
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Figure 6.14: Overall learning curves for the best setting found in the multi-task scenario. The

training loss and the accuracy in the test set converges after 60 epochs.
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Figure 6.15: Learning curves for the ’Primary’ attribute in the multi-task scenario. Similar than

in the independent case, the convergence is smooth.
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Figure 6.16: Learning curves for the ’Leg’ attribute in the multi-task scenario. Similar to in

the independent case, this attribute has the lowest performance but the learning curves have a

smooth convergence.
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6.6 Second multi-attribute framework: Multi-label model

This is the second multi-attribute model proposed. The multi-label setting for this use case is as

follows: the dimension of the output is equal to the number of different attribute-values (labels)

in the database (239 different labels). Next, we present the proposed framework along with the

experimental evaluation.

6.6.1 Proposed framework

Similar to the independent scenario, the ResNet50 model is used with the weights initialized

using a pre-trained network on ImageNet. The dimension of the output is the number of dif-

ferent attribute-value in all the databases. For example, in the CUB database the type of at-

tributes is as follows: "Primary-Red", "Primary-Blue", ...+ "Black-Red", "Black-Blue", ...+

"N_attribute-Color1", "N_attribute-Color2", etc with a total number of 239 attributes related to

color information (see Figure 6.17). Because this is the most straightforward model, we use this

architecture to compare it against traditional machine learning models. We report results for all

three databases.

Figure 6.17: Multi-label model. In this setting, only one model is trained for all the attributes

used from the CUB database that refers to color information. In total, there are 239 attribute-

color possible outputs.
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The dimension of the output is equal to the number of different attribute-value (labels) in the

database (239 different labels). Therefore, the target is a one-hot vector with 0s and 1s repre-

senting the absence or presence of each attribute in the image. We evaluate different settings that

aim to address the imbalance problem either from the loss function or from the sampling method

or combined solutions. Similar to the independent case, we also test sampling techniques with

weights computed in different ways. More precisely, we use a partial and total transfer of at-

tribute data, and we make a comparison of loss functions including cross-entropy, the F1 score

based loss function, and a focal loss function [302] (the latter was presented in Section 6.5).

6.6.2 Experimental evaluation

The best results were obtained by using a partial transfer and a focal loss function (see Table

6.6 - Deep Multilabel). One of the main problems in this scenario is described in Section 6.4

- Strategy 2: "Very few samples have annotations for all attributes". Some images have only

1 label, while others may have many labels with different values associated. This makes some

representations very sparse, affecting the learning of features mainly for rare classes. By doing

a closer analysis of the results, we see the loss function directly affecting the number of true

positives (TP), false positives (FP), and false negatives (FN). When using the F1 score based on

the loss function, the amount of FP increases in large amounts, while by using a focal loss Func-

tion, the model opts for not assigning a label (increasing FN) if the confidence in the prediction

is not high enough (decreasing FP). With weighted F1-score the result is of 23,97% for the first

settings explored to 41,42% with focal loss. The increase in performance is about 42%. Al-

though for the use case database, the performance is still quite low, this result points us towards

the best direction, with the use of the focal loss function (or an optimal function) for further re-

search. Figure 6.18 presents the overall learning curves for the multi-label scenario for the CUB

database. Although the performance is low (see Table 6.6 - Deep Multilabel)), the convergence

for the training loss and the f1-score in test is very smooth.
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Figure 6.18: Overall learning curves (all attributes learnt with one model) in the multi-label

scenario for the CUB database. The curves have a smooth convergence.

6.6.3 Performance comparison with other machine learning methods

This section presents the comparison vs well-known machine learning methods for the three se-

lected databases, in the task of multi-labeling. We selected standard models, easily reproducible,

and widely used in the context of imbalanced learning according to the survey work presented in

[257]. The selected methods are Support Vector Machines (SVM) [303], MLKNN [304], Logis-

tic Regression (Log Reg), Random Forest (RandomF) [305], Decision Trees (DecisionT) [306],

Extreme Learning Machine (ELM) [307], and Gaussian Naive Bayes (GaussianNB) [308]. We

use 5-fold cross-validation to find the best set of parameters per database for each model. Table

6.6 presents the results of the comparison against traditional machine learning models for multi-

label learning, for the three databases selected. A non-computer science expert can opt for using

one of these models if the performance required is good enough, especially, in well-structured

databases (such as AwA2 and celebA). However, there is a clear improvement in the perfor-

mance when using deep learning models. For the multi-label context, more adequate measures

are reported (precision, recall, and F1-score). The metrics reported include macro average (av-

eraging the unweighted mean per label) and weighted average (averaging the support-weighted

mean per label).

The main reason for the bad performance in the use case database CUB still seems to be the

imbalanced problem (see results for the other two databases). And, like multi-task results, the
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Table 6.6: Comparison against well-known machine learning models in the task of multi-label.

CUB AwA2 CelebA
Model Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Macro Avg

SVM 24,15 27,52 22,22 58,24 59,84 51,17 50,66 79,26 59,50
MLKNN 13,04 12,28 12,48 53,82 55,71 47,02 41,60 41,25 40,61
Log Reg 29,59 10,71 14,21 58,08 60,46 51,47 65,16 46,57 51,65
RandomF 79,31 1,28 1,92 64,30 51,88 46,33 58,15 23,42 27,58
DecisionT 10,29 7,15 8,08 51,60 52,92 44,43 42,73 28,49 32,09

ELM 7,71 32,63 10,34 40,38 56,68 41,06 31,52 45,52 34,73
GaussianNB 30,30 14,54 17,04 55,32 54,08 45,95 44,32 53,98 46,53

Deep Multilabel (ours) 23,01 17,99 18,71 77,67 70,61 73,31 78,02 70,50 73,15

Weighted Avg

SVM 35,49 51,10 41,12 72,87 66,80 67,14 67,02 80,56 71,42
MLKNN 26,84 26,70 26,67 69,06 63,69 63,47 55,23 58,52 56,48
Log Reg 47,06 21,43 26,94 73,26 66,98 67,41 72,55 62,61 65,09
RandomF 50,61 7,49 9,29 74,17 63,17 62,47 65,42 45,78 49,20
DecisionT 23,35 18,65 20,62 67,85 61,26 61,56 58,63 49,77 51,93

ELM 21,98 37,15 25,86 61,34 56,96 57,16 52,36 56,51 53,32
GaussianNB 41,49 26,49 30,87 69,91 62,55 62,53 57,48 64,66 59,38

Deep Multilabel (ours) 46,00 40,73 41,42 83,19 78,36 80,05 84,35 77,12 79,67

strategies for multi-class problems do not perform well in a multi-label scenario. The labels

with more support samples are still the only ones adding to global metrics. Notice that the

macro average metric does not consider the number of samples of support that the metric uses to

compute the performance. While the weighted metric does use this parameter, this allows us to

better understand the results obtained: the more examples of support, the better the performance.

For well-structured databases, AwA2, and CelebA, the performance for deep learning models

is higher. Figure 6.19 presents the training loss in the multi-label model for the databases of

AwA2 and CelebA. The learning curves have a very smooth and rapid convergence showing the

capability of the proposed models under well-distributed databases.
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Figure 6.19: Training loss for AwA2 and CelebA databases in the multi-label scenario. For both

databases, the training loss have a very smooth and rapid convergence.



140 Chapter 6. Multi-Attribute Learning With Highly Imbalanced Data

6.7 Discussion

In this chapter, we explored the problem of fine-grained classification from the point of view

of non-computer science experts. Non-computer science experts may struggle to use highly

complex deep learning models, which may offer performance gains, unfortunately with results

that are surprising and hard to understand. Therefore, in our work, we see these models as

black boxes and analyze the data in the specific case of very fine-grained attribute classification

with an imbalanced database as our main use case. Many recent works using attribute data

assume ideal conditions. For example, they expect the combination of attributes related to a

class to be present in all images annotated [240]. In real databases, such as our selected use

case database CUB, this cannot be assumed. The subset of attributes for images belonging to

the same class can also be different, making the problem even more difficult. After performing

a large exploration of classical imbalance learning strategies in the independent scenario, the

results indicated that these strategies were not adapted to multi-task or multi-label tasks. These

are adequate for the general problem of classification, under ideal conditions present in the

database. Therefore, we presented three different strategies for the optimal use of multi-attribute

frameworks. To evaluate our strategies, we proposed two multi-attribute frameworks: multi-task

and multi-label. The latter one allowed us to make a fair comparison with the selected methods

for which we obtained competitive performance. We found that the strategy that presents the best

improvement is concerning the loss function, in particular, a focal loss function that increases

the number of false negatives and decreases the number of false positives, if the confidence in

the prediction is insufficiently high.

In the next chapter, we present the strategies proposed to tackle another important problem

concerning the data: an insufficient amount of annotated data. Specifically, we address the

problem of propagating attribute annotations from classes to single images in a semi-supervised

manner. Our approach allows us to extend the annotations available in an image collection with

diverse vocabularies without having to annotate individual images manually.



CHAPTER 7

Attribute Discovery

7.1 Motivation

In previous chapters, we mentioned two main related problems that affect the model perfor-

mance: learning with highly imbalanced databases, and learning when few annotated data is

available. In Chapter 6, we addressed imbalanced learning. We analyzed and proposed strate-

gies for the problem of imbalanced learning in the specific case of multi-attribute learning. In

this chapter, our goal is to develop strategies around multi-attribute learning that take advantage

of high-level information when little data is annotated. This chapter is principally exploratory,

and with several experiments and strategies proposed, we aim to tackle the problem of having

very few annotated data at the attribute level and for several attribute spaces. First, let us remind

that multi-attribute refers to the learning of multiple types of attributes (or attribute spaces). For

example, one attribute set may refer to the color of an animal’s parts, while another attribute

set may refer to the action displayed on a piece of visual data such as an image. The dominant

paradigm for visual recognition is based on supervised machine learning, where a set of fully

141
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annotated images in a fixed number of classes is required. The vision community has created

several large-scale data sets with an increasing number of examples and classes [8], which have

been critical for moving the field forward. In particular, the existence of such data sets has al-

lowed training accurate deep learning models that are reused as feature extraction methods and

transferred to other tasks and domains. Annotating data sets with class labels is widely adopted

practice in many domains of computer vision, and the process is generally accepted as a first step

to organize an image collection. Nonetheless, having more information helps in making more

robust models. In the previous applications addressed in this thesis, we show how having extra

information can help improve the performance of the methods. For example, in Chapter 4, we

addressed the task of information retrieval, for which we had general descriptions about images.

It would be advantageous to have more concrete textual descriptions about the images that help

to discriminate among the different classes. In Chapter 5, we also made use of a complementary

module that uses the available data, in that case, OCRs extracted from the image. Sending to the

model complementary texts that describe the visual objects in the image may help in defining

the scenario from which the image was taken. However, extending data set annotations with

more structure and including attributes or multi-label tags increases the manual annotation com-

plexity. This is because of combinatorial interactions among labels that need to be considered

by manual annotators, resulting in inefficient or expensive processes.

In the previous chapter, we showed how attributes are important because they can complement

class-level recognition and therefore improve the degree to which computers perceive visual

concepts. Thus, we propose to develop a model that learns to assign attributes from multiple

attribute spaces to single instances (single images or a group of images displaying the same vi-

sual concept). As we mentioned in the previous chapter, the state of the art in attribute learning

has been explored extensively and for different purposes and applications (see Section 3.4). We

showed that attribute data is largely used as a type of supervision to perform fine-grained classifi-

cation or simply as an auxiliary piece of information. Another flaw when working with attribute

data is the assumption of having well and sufficiently annotated databases. In reality, these con-

ditions are rarely met in practice in these types of databases. To address this issue, several new

research directions are being explored, including self-supervision [309], weak supervision [310]

and few-shot learning [311], [312]. In particular, there is considerable research around zero-shot
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learning algorithms to classify new, unseen object classes from attributes, which aim to lever-

age visually encoded properties of the objects at test time, instead of just the classes1. In the

zero-shot learning paradigm, attributes are annotated by class, therefore, reducing the labeling

cost significantly [271]. However, the attribute-level descriptions used for zero-shot learning are

usually obtained from abstract vocabularies that make sense from the semantic perspective of

classes and not for individual images. For example, these attributes are sometimes not neces-

sarily visual properties of objects (e.g. solitary, smelly), and at other times they are not visible

in every single image that belongs to the class (e.g. eating, group). Another problem under

the zero-shot learning setup is that the testing instances are assumed to come from the unseen

classes only. This problem setting is somewhat unrealistic. The ideal learning scenario is that

the testing instances can come from both the seen and the unseen classes [276]. In summary, we

found the following flaws in the state of the art (see also Figure 7.1): 1) attribute data is merely

used as auxiliary information; 2) attribute databases are generally annotated only at the class

level; 3) the attributes may refer to abstract descriptions instead of useful visual concepts; 4) and

finally, the zero-shot learning paradigm is class-oriented, i.e., its objective is to annotate unseen

classes instead of attributes. In our case, target annotations are for seen and unseen classes be-

cause our target annotations are at the sample level. Instead, we use class-level data as auxiliary

information.

Taking this into account, our strategy is to develop a model which uses visual concepts as input

and that predicts attributes from multiple heterogeneous spaces in a semi-supervised fashion. In

Figure 7.2, we present a general overview of our proposed framework. Semi-supervised learning

permits harnessing the large amounts of unlabeled data available. Typically, the semi-supervised

feature is explained by the use of smaller sets of labeled data [65] (mainly unlabelled data and a

small set of labelled data). This learning approach is getting more attention as there exists many

data sets with little to no annotations. Similar to zero-shot learning, we exploit the relationships

that classes have, given the attributes (see Figure 7.3, Page 145, for an example of an attribute

in multiple classes), and use this knowledge to initialize annotations in the training set and to

refine or improve them iteratively in a semi-supervised way. It means, at each iteration, we rely

1A shot refers to a single sample available for training. In the N-shot setting, N samples are available for
training. For few-shot learning, the number of samples usually lies between zero and five. For zero-shot learning,
there is no example.
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Attributes: black, brown, 
furry, small, bulbous, lean, 
flippers, paws, tail, 
chewteeth, meatteeth, 
buckteeth, claws, swims, 
fast, quadrapedal, active, 
agility, fish, hunter, 
newworld, oldworld, 
arctic, coastal, forest, 
ocean, water, timid, 
smart, solitary, nestspot

Model

CLASS: OTTER

Whale
Otter
Cat

Raccoon

CLASSES

Otter

Auxiliary data

UNSEEN
CLASSES

Shark
Beaver

ZSL

Figure 7.1: Examples of the use of attributes in the state of the art. Attributes are used as

intermediate data. Attributes are defined only at the class level. Not all images in a class display

the set of attributes. In red, attributes that are abstract and not visual descriptions of the visual

content (images extracted from the database AwA2).

at some level on the model predictions. In this way, we propose to use the high-level information

that we have at our disposal.

The main obstacle is the lack of rich and diverse databases annotated at the level of single

instances for the training phase (as previously mentioned, this is the case of most attribute

databases in the domain of person identification [243]). Therefore, we also propose a sufficient

set to explore and analyze our strategies. This set is derived from the database AwA2 [234].

The problem with the AwA2 database is its abstract and non-visual set of original attributes. We

can find attributes such as ’solitary’, ’newworld’, or ’oldworld’ that do not describe the visual

Our
Framework

Visual Synset

Multiple tasks
T1
T2
...
TN

Heterogeneous 
Attribute 
SpacesResidual

Figure 7.2: Our simplified framework. The model receives residuals which represent visual

concepts. Then, multiple tasks associated to multiple attribute spaces are trained. The objective

is to assign the optimal set of attributes to images from class-attribute relationships in a semi-

supervised learning fashion.
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Figure 7.3: Examples of the semantic attribute "Eating" for different classes.

concepts typically annotated for images. For this, we define a new and improved set of vocabu-

laries of heterogeneous attribute spaces and tags that are associated with classes (see Figure 7.4

for a comparison of the original set of attributes in the AwA2 database vs attributes extracted

from our proposed sets). We can use the original class-level information and then assume that

all images in our training set have one class label (’Whale’, ’Elephant’, ’Gorilla’, etc). With this

assumption, we can define a set of optional properties that images of those classes may have.

State-of-the-art proposals [252, 277] use heterogeneous attribute spaces as well. However, they

rely on the important assumption that annotations are available in the training phase. In our

case, without attribute annotations at the image level, our goal is to learn annotation models to

propagate the attributes to images as in Figure 7.4. Both images belong to the same category

’Elephant’, but the target sets of visual attributes displayed are different.

To summarize, the contributions and results in this chapter are the following:

• We formulate the problem of assigning attributes to images from class-attribute relation-

ships as a semi-supervised learning problem using little (we manually annotated up to 5

samples per attribute) or no manual annotations. The proposed algorithm, which propa-

gates attributes that are consistent among classes, is described in Section 7.2.

• During the training phase, our algorithm makes guesses of which attributes are likely to be

assigned to images. We explored several strategies to improve the initial set of annotations
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Original set of attributes for the ‘Elephant’ class: gray, hairless, toughskin, big, 
bulbous, longleg, tail, chewteeth, tusks, smelly, walks, slow, strong, muscle, 
quadrapedal, inactive, vegetation, grazer, oldworld, bush, jungle, ground, timid, smart, 
group

Parts: Back, gray, hairless, head, tail, trunk, tusk, 
group
Habitat: river
Action: Moving
Type of shot: Extreme wide shot
Type of angle: Profile

Parts: ears, eyes, gray, hairless, 
head, legs, mouth, trunk, tusk
Habitat: savannah
Action: Standing
Type of shot: Close-up
Type of angle: Profile

Target attributes per sample

Figure 7.4: Comparison of non-visual attributes from the original set for the AwA2 database vs

the set of attributes extracted from our proposed sets.

with none or less than 1% of manually annotated samples (Section 7.2.2).

• Our formulation allows us to incorporate attributes from multiple vocabularies, which can

have mutually exclusive labels or multi-label tags. These attribute spaces allow for richer

annotations and are modeled using multi-task learning (Section 7.2.4).

• Using the Animals with Attributes 2 (AwA2 [234]) data set, we created sufficient data sets

to carry on a complete experimental evaluation. We defined five different attribute spaces

(vocabularies) for 40 training classes (Section 7.3.1). Our methodology can facilitate the

propagation of attributes to any image set organized in classes.

• Our results show that by using the information at the level of class-attribute relationships,

we can learn models that recognize the correct set of attributes for test images. We found

that the initialization strategy for semi-supervised learning is the most important step for

improving performance and assigning attributes (Section 7.3.5).
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7.2 Proposed approach

We first describe the general setting of our semi-supervised learning task and define the nota-

tions used throughout the section. Let us assume there exists the following sets of data: X

is a collection of images associated with a set C of one-hot encoded class labels. Each image

Xj ∈ X is the associated embedding of an image computed with a convolutional neural network

(ResNet50 [87] in our experiments). Also, let A be the set of attributes spaces extracted from

different vocabularies V . Figure 7.5 shows the relationships shared among all these entities.

X

C

A

V

N?

Figure 7.5: Data model: we assume a collection of image embeddings X , each one associated

with one class from the set C. In turn, each class has associated a set of attribute vectors from

A, which are extracted from different vocabularies V . We aim to transfer attribute annotations

to individual images, a relationship represented in the diagram with a dotted blue line.

Our model relies on aggregated visual representations of semantic concepts that we call visual

synsets2. We define a synset as the average representation of a group of images with similar

attributes. The number of images in the synset can be one or many, and the number of shared

attributes can also be one or several. According to the data model, we know the class labels

associated with samples taken fromX , thus, we can compute the synset representation of classes

with ni as the number of samples belonging to a class, as follows:

X̄i =
1

ni

ni∑
j=1

Xij ∀Xij ∈ Xi i ∈ C (7.1)

Now, we have the original image embeddings X (divided into training Xtrain and validation

XV al), and class synset representations X̄ (one representation per class). We will estimate at-

tributes for synset representations as described in the following sections. Our final goal is to

2Following the ImageNet terminology for groups of similar images
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learn the relation X → A, i.e, to find the best subset of attributes As that describes images in X .

To pursue this, we propose a model that can be trained in a semi-supervised fashion (see Figure

7.6 for a visual example of the relationships in our databases). Table 7.1 introduces the most

important notations used in this work.

1 2

3 4

Emb3

Emb1

Emb2

Emb4

Classes

Killer 
Whale

Otter

Resting
Black

Swim

Tail
Paws

Fins

Actions Parts

Em
be

dd
in

gs

X

C

A

V

✓ ✓

✓

 
?

Figure 7.6: Data model with visual examples: we have a collection of images and their as-

sociated embeddings X , each one associated with one class from the set C. In the example,

these are represented by two classes: Killer Whale and Otter. Each class has associated a set

of attribute vectors from A, which are extracted from different vocabularies V . In the example,

the two types of vocabularies and their associated attributes are Parts [paws, tail, fins] and Ac-

tions [swimming, resting]. We aim to transfer attribute annotations to individual images to find

relationships (represented in the diagram with dotted lines) that are unknown.
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Notation Description
X Collection of image embeddings

Xtrain Image embeddings for train
XV al Image embeddings for Validation
X̄ Synset of X
C Class labels
A Attribute spaces
As Subset of A
V Vocabularies
R Residual between images and the synset of their classes
N Neighborhood of the synset
MC Multi-class
ML Multi-label

p Parts
h Habitats
a Actions
sc Scales
an Angles

n(GT) Length of the ground truth set⋃
Union

Ω Valid subset
cos Cosine similarity
max Maximum
tha Threshold for attribute a
Λ AND
E # of epochs
nit # of iterations
L Loss

Init Initialization strategy
A1 Re-annotation strategy A1
A2 Re-annotation strategy A2
GT Ground truth
P Predictions
K # of positive predictions to take in evaluation
BS Batch size
LR Learning rate

SGD Stochastic Gradient Descent

Table 7.1: Specific notations used throughout the section.

7.2.1 Inputs and outputs

This section describes the input and output data required in our approach. In what follows,

we assume that attributes are associated with more than one class (see Figure 7.3, Page 145).

Attributes that are only associated with a single class are not useful in our approach, because they

can be considered as class synonyms that do not bring any additional information concerning a
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class label. Also, we assume that images of a class do not necessarily display all the attributes

associated with the class (i.e., we assume that an example image of a class only has a subset of

the attributes of that class).

Inputs. Our goal is to transfer attribute labels from different vocabularies to individuals or

groups of images. We assume that the visual representation (features) of an image can be de-

composed into two parts: 1) common features of the class and 2) image-specific features. We

achieve this decomposition by computing simple residual vectors R between images and the

synset of their class:

Ri =
∑
j∈N

Xij − X̄i (7.2)

where N is the neighborhood of an arbitrary synset. The neighborhood is computed by using

a similarity metric to find the closer embeddings. The main motivation for computing resid-

ual representations is that this allows us to separate class-specific features from other features

that encode other aspects of the image. We hypothesize that the residual vectors encode class-

independent features relevant to identify attributes that are shared among classes. Note that the

residual representation can be computed for groups of images or for individual images (when

|N | = 1).

Outputs. The output is the set of attributes A. In our approach, they come from different

vocabularies V . We design the model with a multitask architecture, which supports multi-class3

(MC) outputs or multi-label4 (ML) outputs. In our approach, we use the database AwA2 [234]

as our main source of data and created 5 attribute spaces associated with different vocabularies.

The name and the type of vocabularies for learning are as follows (# labels / task type): Animal

parts (42 / ML), Habitats (18 / ML), Actions (5 / ML), Object scale (3 / MC), and Camera

angles (6 / MC). These vocabularies represent a total of 67 independent tasks. For details on the

construction of each attribute space, see Section 7.3.1 - Vocabularies.

3Exclusive, one-hot encoding outputs (for example, if the main action of the sample is ’Moving’ among the six
possible actions. Then the encoding is equal to [0,0,0,1,0,0], where the 4th space represents the action ’Moving’).

4Multiple labels allowed, i.e. independent binary classifiers
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7.2.2 Label initialization

As our main research problem is to find the relationship X → A as illustrated in Figure 7.5,

Page 147, i.e., to automatically infer attributes to individual samples, we model this relationship

as a function of the inputs to obtain the outputs. This function is parameterized by a neural

network, as illustrated in Figure 7.10, Page 156, which is trained with a supervised loss function

using stochastic gradient descent. Since our training data does not have attribute annotations for

individual images (there are only defined at the class-level), we propose to initialize attribute

annotations for training using different strategies. Note that attribute annotations can have three

states: positive (an image has the attribute), negative (the image does not have the attribute), and

unknown (the attribute belongs to the class but was not assigned).

A. Partial Random. For images in the set Xtrain, we randomly assign p positive labels from

each vocabulary to the k-th image (or synset):

Ak =
⋃
A∈V

random(Ω(A,Ck), p) (7.3)

where Ω(A,Ck) is the subset of attribute annotations for the class C of the k-th image (i.e.,

those defined at least at the class-level), according to the class-attribute relationships defined in

the data model. Valid attributes not selected as positive annotations at random are not considered

negative annotations: we simply assume that they are unknown and do not penalize the multitask

loss for those missing annotations. Also, invalid attributes, i.e., those not associated with the

image class, are all considered to be negative.

B. Using annotated samples per attribute. We collect a small number of annotations for

synsets in the subset X ′train (as we will refer to this set in future mentions), which represent

examples of each of the attributes of interest. In our case, we collected 5 examples from different

classes for each of the 67 tasks of interest and used them as seed annotations for semi-supervised

learning. These collected labels do not make a comprehensive set of attribute annotations for

these training samples; therefore, any missing attribute label is considered unknown and not

penalized during training.
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C. Pairing samples with the same class-level attribute. As stated in [313], correlating at-

tribute data among samples helps. Then, in addition to assigning positive attribute annotations

for images in the subset X ′′train (either at random or with ground truth), we expand these anno-

tations by finding similar pairs in other classes that may share the same attributes. In this case,

we follow the principle of transitivity:

if (Ri ≈ Rj) and (Xi → Aik) then (Xj → Aik) (7.4)

We assume that Xi and Xj are two images (or synsets) from two different classes Ci and Cj that

satisfy the class-attribute relationship for attribute k according to the data model: |Ω(Ak, Ci) ∩

Ω(Ak, Cj)| = 1. For example, one sample that belongs to the class ’Elephant’ has assigned

the attribute ’group’. Then, we selected another sample (by using the cosine similarity) from

one class that also contains the attribute ’group’. Then, we assign the same set of attributes for

the two samples because we know they share visual and semantic similarities. The two images

are similar according to the cosine similarity metric in the residual feature space (cos(Ri, Rj)).

This strategy is useful to propagate labels in different classes that are known to share common

attributes. The similarity metric ensures that the residual representations Ri and Rj have com-

mon class-independent features. The search for these pairs is performed with the example Xi

as a query in the subset of images Cj . The label propagation is performed using the transitivity

rule with the nearest neighbor in that subset.

7.2.3 Prediction strategies

For each attribute space (where attributes Ap = parts, Ah = habitats, Aa = actions, Asc = scales

and,Aan = angles), we can calculate the new annotations for each synset j in two different ways:

1. By using all attributes predicted as positive. For the attribute spaces Parts, Habitats, and

Actions that are binary tasks per attribute, we annotate the sample with the attribute a if

the model predicts this attribute as positive. For the other two attribute spaces Scales and

Angles, we choose the index of the attribute with the larger prediction value. The latter is
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learned by two multi-class tasks. This strategy is depicted in Figure 7.7.

2. By applying thresholds. For the attribute spaces Parts, Habitats, and Actions that are

binary tasks per attribute, we annotate the sample with the attribute a if the model predicts

this attribute as positive, and if the prediction value Pa > tha, where tha refers to the

threshold of the attribute space a in [p, h, a], for the attribute spaces Parts, Habitats, and

Actions that are binary tasks. We computed the thresholds by taking the prediction values

for all samples per attribute space predicted as positive (=1) and establishing a percentile

value of 10%. With this setting, we can filter the set of predicted attributes as positive but

with very small prediction values (inspired by the work of [278]). For the attribute spaces

Scales and Angles, as in the previous strategy, we choose the index of the attribute with

the larger prediction value. This strategy is depicted in Figure 7.8.
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Figure 7.7: Example of the operation of the first prediction strategy. We annotate the sample with

the attribute a if the model prediction (Pa) for it is positive (=1), for the attribute spaces Parts,

Habitats, and Actions (binary tasks). For the attribute spaces Scales and Angles, we choose the

index of the attribute with the larger prediction value (multi-class task).

Re-annotation strategy. Figure 7.9, Page 155 presents the steps in our approach when we use

a re-annotation strategy: we compute a set of initial annotations T1 using one of the strategies

presented in Section 7.2.2 ("1 - by using all attributes predicted as positive" and "2 - by applying
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Figure 7.8: Example of the operation of the second prediction strategy. We annotate the sample

with the attribute a if the model prediction (Pa) for it is positive (=1), and if the prediction value

Pa > tha, where tha refers to the threshold of the attribute space a in [p, h, a], for the attribute

spaces Parts, Habitats, and Actions (binary tasks). For the attribute spaces Scales and Angles,

we choose the index of the attribute with the larger prediction value as in the previous strategy

(multi-class tasks).

thresholds"). Once we have our initial annotations, we train our model for a fixed number of

epochs E. Once the model is trained, we can re-calculate the set of annotations, this time for

all the samples in Xtrain using strategies presented in Section 3.4. (Prediction strategies), and

re-train the model with them (process T2). We can repeat the process for a set of fixed iterations

nit (it = iterations).

7.2.4 Architecture

Figure 7.10, Page 156 presents the architecture of the multi-attribute spaces model (MultiAttS).

The encoder is composed of a set of layers with dimensions starting at 2,048 (dimension of the

input embeddings) and ending with a dimension of 128 to be forwarded to each independent
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Exp3

Figure 7.9: Re-training process: an initial set of annotations is inputted into the model. After

iteration 0, we re-compute the annotations by using the predictions of the model. We re-train

the model and repeat the process for a predefined set of iterations nit.

task. The tasks are a combination of binary and multi-class learning.

Loss function The loss function is defined as follows:

Lt = − 1

m

m∑
j=1

C∑
i=0

ajlog(pi,j),

LT =
n∑
t=0

Lt

(7.5)

where j is the current sample (or synset), i is the class, pi is the prediction, a is the set of

annotations, m the number of samples in the class, t is the current task, and n is the total number
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Figure 7.10: MultiAttS. The model receives residuals seen as the result of the operationXij−x̄i,
where Xij represents the synset j computed from embeddings, i its class, and x̄ is the synset of

the class i. The encoder is composed of a set of layers with the final one connecting to multiple

Multi-Label (ML) or Multi-Class (MC) tasks. In turn, the tasks belong to different attribute

spaces coming from different vocabularies V .

of tasks. Lt is the loss for each multi-class task (65 binary tasks with two outputs for Parts,

Habitats, Actions, and 2 multi-class tasks for Scales and Angles), and LT is the total sum of

losses for all the tasks. For those attributes belonging to [Parts, Habitats] that are ground truth

at the class level but that are not assigned in the initial iteration, the output does not contribute

to the calculation of the loss. This way, we do not punish those attributes that are ground truth

at the class level but that are not part of the initial annotations.
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7.3 Evaluation

Here we describe the settings of our experiments. As we mentioned before, this problem is

recently addressed and, as a consequence, adequate databases and methods are few in the lit-

erature. Therefore, we define the set of data proposed and required in our approach. Then we

describe the initial annotation sets, the evaluation metric, the parameter tuning, and finally, the

experimental results.

7.3.1 Data

In this section, we present the data sets used in our experiments. Tables 7.2 and 7.1 respectively

describe statistics of the data sets and the notation used in this work. First, we present the

description of the images source (’Data source’), followed by the description of the attribute

spaces (’Vocabularies’). Then, we describe the data sets created for experimentation (’Class-

level attributes’, ’Validation set’, ’Samples per attribute’ and ’Pairing samples’).

Subset Dimension
Xtrain 29,309
X ′train 389
X ′′train 505
XV al 100

C 40
V 5

Table 7.2: Data dimensions. X stands for the collection of image embeddings and, Xtrain,

X ′train, X ′′train, XV al are different partitions created from it, C stands for the set of class labels,

and V the number of different vocabularies created. For V, the proportions for each one is as

follows: parts = 42, habitats = 18, actions = 5, scales = 3, angles = 6.

Data source. We use as the main source the database AwA2 with the same partitions as pro-

posed in [234]. This database contains 50 animal classes with 85 different attributes. We only

use the training partition of 40 classes and divided it into different subsets explained later.

Samples belonging to the same class share the same set of attributes. As with most attribute

databases, the attribute information contained in it is not precise. Although attributes such as

"New World", "Old World", "Solitary", "Timid", "Smart", etc., give us some semantic clues, this
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information is very limited and does not describe in the best way the semantic and visual con-

cepts contained in the images. This flaw in attribute data creation is also mentioned in [314],

where a poor classification performance is attributed to a human-based attribute set that is in-

sufficiently informative. With these considerations, we propose to use this database as our main

source and create databases with more specific and adequate information, that does not require

an expensive creation process. We describe them next.

Vocabularies. We hereby analyze the different types of vocabulary V that better describe the

content of the target set of images.

• Parts. First, the most logical type of vocabulary concerns the animal parts. There are

images in which the emphasis is on the head, while others are on the back part of the

animal. Therefore, we collect a vocabulary and filter the most relevant ones by performing

a manual visual analysis, with a final number of 42 different parts of animals.

• Habitats. The second feature that the images exhibit the most is the type of habitats. We

collected 18 different types of habitats for animals.

• Actions. We can also describe the content by assigning an action to each image. We

selected 5 actions that are represented in most parts of the images. These are "Standing",

"Resting", "Moving", "Eating" and "Swimming".

• Photography vocabulary: the last two types of vocabulary that describe the content regards

the type of shots. For this, we selected two vocabularies that determine the scale or angle

of the shot:

– Scale shots. The shot size determines how large is the visible area within the frame.

Among these, the distance between the camera and the subject varies. In general,

there exist around 6 different types of shots regarding the scale. These shots are mea-

sured in general regarding human shots, and therefore, are easy to measure. When

working with different types of images, this discrimination is not trivial. Therefore,

among all the 6, we decide to use only 3 and classify them as follows: Close up shot

(shows a character usually cut off across at some part of the body), Wide Shot (shows

an entire character from head to toe) and finally, Extreme Wide Shot (includes broad
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views of the surroundings around the character, distance, and geographic location).

– Angle shots. Another set of shots are identified by their camera angles. There is a

large set of camera angles such as horizontal, vertical, aerial, etc., we selected only

6 to include all variations as follows: frontal or eye level, three-quarter front, profile,

three-quarter rear, rear(r), high angle of far.

Class-level attributes. After we fixed the type and content of each attribute space, only for the

attribute space "Animal Parts" and "Habitats", we can create an assignment for each element in

the set of classes C. Then, we manually annotated each class with a subset of these two attribute

spaces. For the other attribute spaces "Actions", "Scale shots" and "Angle Shots", there is no

possibility to assign specific attributes to each class, as these are quite generic and we can find

examples in each class representing each one of these attributes. Therefore, we assume all

attributes in these two spaces are ground truth attributes for all the classes.

Validation set (XV al). As we do not have access to ground truth data, and to evaluate the

performance of our model, we created a small validation set of 100 samples with manually an-

notated attributes for each type of vocabulary. To select the most representative 100 samples,

we used the K-means method over all samples in Xtrain and selected the sample closer to each

center as the reference sample j. We then proceeded to annotate each one of them by assigning

a subset of the most visible parts and habitats contained in the synset, one of the most represen-

tative actions (if there are more than one), one scale, and one angle attribute. We excluded this

set of samples from all the explorations and training and leave it only for evaluation purposes.

Samples per attribute (X ′train). To improve the initial set of attributes, we annotated up to 5

samples for each attribute in A. This is to explore the semi-supervised training strategy when

very few annotated samples are used to train the model at the first iteration (few-shot learning).

We called this set X ′train (see examples of the manually annotated images in Figure 7.11).

Pairing samples (X ′′train). We randomly selected 100 samples from the set Xtrain and for each

one, we applied the process described in Section 7.2.2 – C.
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Parts Habitats
Ears Furry Orange Savannah Jungle Freshwater

Actions Scale shots Angles Shots

Eating Swimming Close Up Wide Shot Profile High angle or 
far

Figure 7.11: Example of images manually annotated from attributes from all attribute spaces.

7.3.2 Initial annotation sets

Here, we present the details for the initial set of annotations created based on the strategies

presented in Section 7.2.2. We proposed 6 different initialization strategies whose objective is

to evaluate the impact of improving the initial set of annotations and taking advantage of all the

available information. These strategies comprise completely random initialization, followed by

the inclusion of information at the class level, to finally more elaborate strategies. These last

ones include weak supervision (a small number of samples annotated at the attribute level) and

the usage of correlations between samples that share attribute data at the class level.

• Init1. In this strategy we simply choose a random subset of attributes completely class

unaware for the set Xtrain. We fixed p (following the metrics in Equation 7.3) for each

attribute space as follows: parts = 4, habitats = 2, and for actions, scales and angles = 1.

Those numbers are based on statistics of the set XV al.

• Init2. This strategy is explained in Section 7.2.2 – A, where we simply choose a random

subset of attributes belonging to the class for the set Xtrain. We fixed p as in the Init1

setting.

Using annotated samples per attributes. In this setup, we use the set X ′train, for which we

have three settings in which we gradually increment the number of annotations and samples to
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use in training (Init3, Init4, and Init5):

• Init3. This strategy uses only the setX ′train of manually annotated attributes (as explained

in Section 7.2.2 – B).

• Init4. Complementing the Init3 setting with the number of attributes of the set X ′train

per attribute space with partial random attributes as in Equation 7.3. For example, if the

sample is annotated for the attribute space Parts with only one attribute (e.g., "Head"), we

could assign another 3 random attributes.

• Init5. Complementing the Init4 setting by completing the annotations for the remaining

samples in Xtrain as established in Equation 7.3.

• Init6. Finally, in this setting, we use the information regarding the attribute data at the

level of classes (see Section 7.2.2, Pairing samples with same class-level attribute). For

this initialization, we make use of Equation 7.4 to create the initial set of annotations for

the set X ′′train and, we completed with random annotations for all the remaining samples

in Xtrain as in the Init1 setting.

7.3.3 Performance metric

To evaluate the performance of our proposed strategies, we define a metric that allows us to

evaluate whether the top attributes predicted by the model are included in the set of ground truth

attributes. We can compare this metric to the traditional recall as it considers the first K values

predicted. This metric does not punish the position of the retrieved attribute if it is included in

the top subset. For example, if the ground truth attributes are the set [tail, stripes, horns] and the

first 4 attributes predicted are [horns, tail, fin, paws], then the relevance of attributes [horns, tail]

should be the same as they both belong to the original set of ground truth attributes. In other

words, the order does not have a big impact, and what matters most is to evaluate whether the

ground truth attributes are in the top predicted by the model. In the following, we will refer to

our customized recall metric as "c_recall". The formal formulation of the metric followed by an
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example is provided next.

perf =
1

m

100∑
j=0

1

5
(
n(GTjp ∩ PKp

jp )

n(GTjp)
+
n(GTjh ∩ PKh

jh )

n(GTjh)
+
n(GTja ∩ PKa

ja )

n(GTja)
+ vsc + van)

Kp, Kh, Ka = n(GTjp), n(GTjh), n(GTja), if topK = n

Kp, Kh, Ka = topK, otherwise

vsc = (GTj_sc = Pj_sc), van = (GTj_an = Pj_an)

(7.6)

where j=100 is the number of validation samples, GT is the set of ground truth annotations, P is

the set of predicted attributes for the synset j for each attribute space [parts: Pjp, habitats: Pjh,

actions: Pja], n represents the dimension of a subset, K represents the number of predictions to

take into account for each attribute space p, h, a (with p:parts, h:habitats, a:actions), sc repre-

sents the performance of the attribute space scales and an the one of angles. We report results

for the top K with K=n(GT) and K=10 along with their average.

Let us explain the previous equation with an example. Assuming a sample s1 with the follow-

ing ground truth attributes: parts [horns, tail, fur], habitats [savannah, forest], actions [eating],

scales [close-up], and angles [profile], the variables will be: n(GTjp) = 3, n(GTjh) = 2, and

n(GTja) = 2, and assume the model predicted the following attributes: parts [tail, leg, fur, head,

horns], habitats [forest, river], actions [resting, swimming, eating], scales [close-up], and angles

[frontal]. Then, the calculation of the score for the first case (with K = n) is as follows:

perfs1 = 1
5
(n([horns,tail,fur]∩[tail,leg,fur])

3
+ n([savannah,forest]∩[forest,river])

2
+ n([eating]∩[resting])

1

+(closeup == closeup) + (profile == frontal))

perfs1 = 1
5
(n([tail,fur])

3
+ n([forest])

2
+ n([_])

1
+ (true) + (false))

perfs1 = 1
5
(2
3

+ 1
2

+ 0
1

+ 1 + 0)

perfs1 = 0.43

perfs1 = 43%

(7.7)

For the second case, let us assume K = 5, then the calculation of the score is as follows:
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perfs1 = 1
5
(n([horns,tail,fur]∩[tail,leg,fur,head,horns])

3
+ n([savannah,forest]∩[forest,river])

2

+n([eating]∩[resting,swimming,eating])
1

+(closeup == closeup) + (profile == frontal))

perfs1 = 1
5
(n([tail,fur,horns])

3
+ n([forest])

2
+ n([eating])

1
+ (true) + (false))

perfs1 = 1
5
(3
3

+ 1
2

+ 1
1

+ 1 + 0)

perfs1 = 0.7

perfs1 = 70%

(7.8)

7.3.4 Parameter setting

We implemented our approach using PyTorch, and explore the model architecture concerning

the dimension of the batch size from 2 to 32 (with a final batch size of 4), the learning rates

0,0001, 0,001, and 0,01 (with a final value of 0,001), and the optimizer RMSPROP and SGD

(with the final being SGD). Also, to help to balance the samples in each mini-batch, we make

use of a random sampler with equal weights to all samples and with replacement. We obtained

an increase of ≈ 4% in the performance with this option. Concerning the dimension of the

neighborhood N to compute each synset, we explored the impact of using different sizes of

neighborhoods to calculate the synset between 1 to 15. The results showed that the model learns

better to discriminate among different synsets with N = 10 (see Figure 7.12). Therefore, we

chose this parameter for all experiments. Also, when using N = 1, i.e., only one image, there is

not enough information to discriminate among different attributes. For example, in Figure 7.20,

Page 172, the attribute "tongue" is present in a variety of positions of the class "Dog" which

helps to discriminate the visual concept among different visual variations.
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Figure 7.12: Performance of the model when modifying the number of samples in the neighbor-

hood N to compute the input synset. Colors refer to the change in the parameter N in [1, 5, 7,

10, 15].

Concerning the input data passed to the model, we explored two options and evaluate the per-

formance in each one. We explored two alternatives inputs to the model: synsetj − x̄i and

synsetj . Let us recall that synsetj represents a set of images from the class i containing the

same visual concept, while x̄i represents the synset of the class i (the average of all the image

features belonging to class i). We obtained an improvement of 2, 96 in the c_recall for the eval-

uation of the performance when using K=n(GT) and, 3, 25 in c_recall when using K=10. With

these results, we can validate our hypothesis that residual representations allow us to separate

class-specific features from other features that encode other aspects of the image. Table 7.3

presents the results for experiments concerning the parameter exploration with the batch size

(BS), Learning rate (LR), optimizer, with Weighted Random Sampler (WRS), and testing the

impact of the inputs.
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Batch size K = n(GT) K = 10
2 20,13 22,75
4 29,52 45,69
8 28,56 43,90

16 26,42 41,86
32 27,41 41,69

Learning Rate
0,0001 27,88 41,41
0,001 29,52 45,69
0,01 does not converge

Optimizer
RMSPROP 26,03 40,99

SGD 29,52 45,69
Others

With WRS 30,70 49,65
Passing synsetj 27,74 46,40

Passing synsetj-x̄i 30,70 49,65

Table 7.3: Parameter tuning.

7.3.5 Experimental Results

In this section, we present the experiments proposed to evaluate our framework. We first provide

learning curves for training loss and performance metrics. Then, we present the evaluation

concerning the impact of different initialization strategies, followed by an analysis of the results

for each attribute space, the comparison of the re-annotation strategy when performing multiple

iterations, and finally a visual analysis along with several examples of our predictions.

Model learning.

Figure 7.13 presents the curves of training loss for two iterations. The first graph shows the

curve for training loss for the best setting found in Table 7.3 for the given batch size, learning

rate, optimizer, and sampling (row ’With WRS’). The model converges with only less than 10

epochs and without over-fitting (no supervised data). Also, in the second iteration, the model

converges faster while the loss achieves a lower value. The second graphic shows the impact

on the loss function when the synset is passed instead of the residual (row: Passing synsetj).

Although there is convergence in both iterations, the loss increases tenfold. This result shows
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that feeding the model with the residual indeed has a positive impact on the learning process.
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Figure 7.13: Training loss for two iterations for A) the best parameter setting, B) when passing

the synsetj instead of residual.

In Figure 7.14, we show the standard performance metrics used in classification for attribute

learning at the class level when they are well defined. However, the problem we addressed in

our work is more challenging. It requires new learning strategies at the level of the training

process as well as in how to leverage the available data to improve the initial set of annotations.

Comparison of the performance of the proposed initialization strategies.

Figure 7.15, Page 168 presents the results for each initialization strategy presented in Section

7.3.2. First, notice that the performance tends to increase in all strategies when comparing a

K=n(GT) to K=10. Second, we can observe the impact of going fully random (Init1) compared

to the case when only some of the class-attribute data is included in the random initialization

(Init2). For initialization strategies (Init3, Init4, and Init5), the tendency is to increase when

K=10. This shows the impact of improving the initial annotations with ground truth annota-

tions. This result also shows that by having very few annotated samples (≈ 1% of the training

data), the performance improves dramatically in comparison with a fully random setting (Init1

compared to Init3-Init5). The initialization strategy that has the biggest impact on performance

(Init6) demonstrates the benefits of creating correlations among the samples based on attribute

information extracted at the class level. This is indeed useful to propagate labels in different
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Figure 7.14: Standard performance metrics at the attribute-class level for the database aWa2

with the new set of attribute spaces defined: Parts & Habitats.

classes that are known to share common attributes. Figure 7.16, Page 168 presents the train-

ing loss for two iterations, for the best initialization strategy (’Init6’) according to the average

performance group displayed in Figure 7.15. Although the loss curves are not entirely smooth,

they converge at ≈ 30 epochs. The loss value reached is high. However, let us recall that during

the training phase, the model has extremely weak supervision. Therefore, high loss values are

expected.
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Figure 7.15: Comparison of the performance vs the initialization Strategies presented in Section

7.2.2. The results are calculated by using the top-K with K=n(GT), K=10 and their average.

The initialization settings explored are as follows: Init1) Fully random; Init2) Using strategy A

(partial random), Init3) Using strategy B (subsetX ′train), Init4) Using a combination of strategies

A and B for the set X ′train, Init5) Using a combination of strategies A and B for the set Xtrain,

Init6) Using strategy C.
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Figure 7.16: Training loss curves for two iterations for the best initialization strategy (Init6) with

convergence at ≈ 30 epochs.

We also present an analysis of setting Init4 when we gradually augment the number of annotated

samples per attribute from 1 to 5 (see Figure 7.17, Page 169). We can see that the performance

gradually increases for the first 4 results. As we also increase the number of random attributes



7.3. Evaluation 169

per sample, the noisy attributes are bigger and therefore, the performance for the last experiment

(5 samples per attribute) does not show an improvement. Let us recall that the model is trained

only with the manually annotated samples (subset X ′train that contains only 389 samples vs

original training set with 29, 309 samples).
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Figure 7.17: Number of manually annotated samples per attribute vs performance. We increase

the number of samples from 1 to 5. The results are calculated by using the tops with K=n(GT),

K=10 and the average of both Ks.

Exploration of the performance per attribute space. Analyzing the performance per at-

tribute space helps us to know what attribute space is harder to learn and, for future work, to

include an attention mechanism focused on it. Figure 7.18 presents the performance for the ini-

tialization settings with supervision at some degree Init2-Init6 at the level of each attribute space

considered. The easiest one to learn is the attribute space describing "Habitats", and the most

difficult one being "angles". We can notice that in the strategy Init2, the performance is mostly

dependent on Habitats. Instead, with the best strategy Init6, each one of the performances com-

ing from the main attribute spaces contributes in a significant way to the total performance.

Animal parts has the most stable performance among all settings, followed by Actions, Scales,

Angles and finally, Habitats.
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Total Performance (and performance per attribute space)

Init2

Init3

Init4

Init5

Init6

0 100 200 300

Parts Habitats Actions Scales Angles

Figure 7.18: Performance per attribute space in each setting.

Comparisons of the performance of the re-annotation strategy vs a number of iterations.

Our last analysis explores the performance when using the two different re-annotation strategies

described in Section 7.2.3. Figure 7.19 presents the results for multiple iterations. We can notice

that when we do not filter all the positive predictions and re-train the model with all the new

annotations, the performance tends to converge at the same value (annotation strategy A1, Figure

7.7, Page 153). In the second case (annotation strategy A2, Figure 7.8, Page 154), we decide not

to believe in all the positive predictions by filtering those smaller than the threshold thra. We

observe that the performance decreases at each iteration, indicating that we are removing key

annotations.
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Figure 7.19: Comparison of the performance vs the number of iterations for the re-annotation

strategies described in Section 7.2.3.

Qualitative results. Figure 7.20 presents an example of a synset with 5 random images from

the total neighborhood of 10. The first column lists the manually annotated or ground truth

attributes, while the second column shows the random annotations to train with. The last col-

umn provides the predicted annotations. Regarding the attribute spaces parts and habitats, it

is highly subjective to determine how many attributes best define the visual concept. We can

also notice, as we mentioned before, that the most difficult attribute space to learn is the angles.

As the subset of annotations defined previously can be subjective and can unfairly damage the

performance, we plan to explore this aspect by annotating our validation set XV al with more an-

notators. Figure 7.21, Page 173 presents additional examples of predictions for different samples

for each attribute space.
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B

Manually annotated Random Predicted

Parts Ears, Eyes, Head, Tongue, Mouth, Nose Eyes, Furry, Patches, Tail Black,Tongue, Head, Gray, Brown, Mouth

Habitats Domestic Domestic, Farm Domestic, Farm

Actions Resting Standing, Eating Moving, Resting

Scales Close-up Shot Close-up shot Close-up shot

Angles Frontal | Eye Level Rear High Angle (Or far)

Figure 7.20: Attribute comparison for 5 random images belonging to a synsetj with respect to

the manual annotations taken as ground truth, the initial random annotations and the predicted

for the trained model.
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Predictions

Parts Habitats Actions Scales Angles

nose
patches

black
white
brown
nostrils

farm
domestic

resting
eating wide shot high angle (or 

far)

tail
furry
nose
belly

tongue
head

farm standing
resting close-up shot three-quarter 

rear

black
tongue
eyes
head
paws
gray

forest
tree

resting
moving wide shot three-quarter 

rear

horns
tail

nose
furry

savannah
farm

eating
standing

extreme wide 
shot rear

furry
legs
ears

claws
neck
nose

river
forest

moving
resting wide shot profile

ears
tail

furry
belly
eyes
head

jungle
tree

moving
eating wide shot high angle (or 

far)

Figure 7.21: Examples of predictions for each attribute space. Expected predicted annotations

for the model on average include the group of images in lines 1, 2, 5, and 6, while wrong average

annotations include the 3 and 5. Some attributes predicted for each vocabulary may be subjective

even for humans.

7.4 Discussion

In this chapter, we addressed the problem of insufficiently labeled data. We have presented

a semi-supervised learning approach that exploits class-level relationships to assign attribute
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annotations to synsets. In the zero-shot learning strategy which is the closer learning paradigm to

ours, attributes are annotated by the class which reduces the labeling cost significantly. However,

the attribute-level descriptions used for ZSL are usually obtained from abstract vocabularies that

make sense from the semantic perspective of classes and not for individual images. For example,

sometimes these attributes were not visual properties of objects or they were not visible in all

the samples of the class as we have shown with the AwA2 database. We also addressed another

problem occurring under the ZSL strategy: the fact that testing instances are assumed to come

from the unseen classes only. Indeed, in our approach, test instances can come from all classes

because the emphasis is on propagating attributes to samples regardless of their class. And,

unlike the state of the art, we assume that even at training, we do not have access to annotations

for all the heterogeneous attribute spaces.

By extensive explorations over multiple initialization strategies, we found that the performance

improved in a significant way even when there was no or few labeled data (up to 63% of precision

for the validation set using less than 1% of the annotated training images). We found the strategy

of pairing sample annotations via attribute-class data to be extremely helpful. Additionally, we

proposed small but sufficient data sets created for the collection AwA2 to carry on a complete

experimental evaluation.



CHAPTER 8

Conclusions

8.1 Overview

In this thesis, we presented the problem of multimodal learning. We limited our explorations to

two of the most frequent and main modalities studied in the state of the art, the visual and the

textual modality. We approached it by proposing frameworks that find a common semantic space

for both modalities using deep learning as the main tool. As we presented, deep learning has

shown incredible success in solving complex tasks (see Chapter 3). We evaluated our strategies

in several well-studied as well as recent and relevant state-of-the-art applications on various

widely used databases. In our evaluations, we found many data-related issues, such as noise

or incorrectly annotated data, that drastically damage model performance. We also found that

the process of fine-tuning deep learning models in conjunction with parameter setting is still

very expensive. This creates a higher demand for computational resources that is not always

possible. Another factor is the problem related to the comparison with the state of the art that

requires reproducibility of the methods and that is not yet addressed. In this chapter, we present
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a summary of the contributions of this dissertation as well as future lines of research.

8.2 Summary of Contributions

In this thesis, we explored the problem of multimodal learning for images and text from several

perspectives. Our proposed frameworks and strategies resulted in 4 published papers and a final

paper currently under preparation for submission. Next, we present a summary of the specific

contributions per chapter concerning our proposals.

Contributions of Chapter 4. We proposed the re-interpretation of the VQA architecture for

cross-modal retrieval, followed by an extensive experimental evaluation of its capabilities in this

problem. Our work is the first to evaluate all cross-modal and uni-modal tasks with a single

model trained once for all tasks (without task-specific fine-tuning), reaching highly competitive

results as well as state-of-the-art results, even though it is compared to methods that are specific

and/or optimized for specific tasks. This shows that a unifying model for multimodal retrieval is

possible. The simplicity of our approach serves as a baseline for future research and can inspire

extensions to push performance even further. We expect future researchers to take advantage of

this well-established architecture to reach higher performance in their models. This contribution

resulted in a journal publication entitled "Deep Multimodal learning for Cross-Modal Retrieval:

one model for all tasks" [66] along with the code required to reproduce our experiments (avail-

able at https://github.com/lvbeltranb/DME).

Contributions of Chapter 5. We proposed an architecture with different components involved

in an ST-VQA system: a visual, a textual, and a multimodal network in charge of pre-processing

the different modalities and learning the features required for the target task. In the first part of

our explorations, we made an emphasis on the impact of the representation of the critical data:

questions and answers. We compared context-based and context-free textual embedding models

for the questions. For the answers, we made use of an n-gram configuration, which gives the

model a level of flexibility. To the best of our knowledge, we were the first to report results in

this task using these embedding models. In the second part of our work, we proposed signifi-

cant improvements to the framework with the addition of helper components that improved the

https://github.com/lvbeltranb/DME
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performance of the model. We evaluated the relevance of the dimension of the answer space for

the case of a fixed set of words and the case when the copy module is used as the main strategy

for the OOV problem. We exposed drawbacks related to the copy module which is the state-of-

the-art solution, as well as the proposal of using a second metric to compute the scores for the

dynamic spaces so that the copy module can take advantage of texts not 100% recognized by the

OCR system. We evaluated the performance of including additional data to train the system in

the form of a complementary network representing embeddings from textual and visual data. We

presented the results of several ablative studies to validate the relevance of the components pro-

posed in our framework. Our results serve as baselines for future research. This work resulted in

two published papers entitled "Semantic Text Recognition via Visual Question Answering" [67]

and "An extended evaluation of the impact of different modules in ST-VQA systems" [68].

Contributions of Chapter 6. In this chapter, we analyzed the principal problem of imbalance

in attribute databases. We studied the efficacy of deep learning models when the data is available

but in such conditions. To evaluate our strategies, we considered the application of attribute

learning. We validated the effectiveness of classical imbalance learning approaches applied to

straightforward multi-attribute approaches. These systems are seen as black-box models, that

could be used by non-computer science experts. We presented a study that demonstrates that

most bad performance problems are due to the data itself. We also exposed different problems

derived from imbalanced databases in the context of very fine-grained multi-attribute learning,

some of which are ignored in the state of the art, together with proposals to address them. After

performing large experimentation of imbalance learning strategies, including mainly "sampling"

and "cost-sensitive learning strategies", results indicated that these strategies are not adapted to

multi-task or multi-label problems. These are adequate for the general problem of classification,

under some ideal conditions present in the database. Therefore, we proposed strategies that

aim to solve these problems. This work resulted in a published paper entitled "Multi-Attribute

Learning with Highly Imbalanced Data" [70].

Contributions of Chapter 7. In this chapter, we addressed the problem of insufficiently la-

beled data. We formulated the problem of assigning attributes to images from class-attribute
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relationships as a semi-supervised learning problem using no or few manual annotations. We

explored several strategies to improve the initial set of annotations with none or less than 1% of

manually annotated samples. Our formulation allowed us to incorporate attributes from multi-

ple vocabularies, which can have mutually exclusive labels or multi-label tags. These attribute

spaces allow for richer annotations and are modeled using multi-task learning. We created small

but sufficient data sets to carry on a complete experimental evaluation, with image-level anno-

tations obtained only for the test set from the database AwA2. We also defined five different

attribute spaces (vocabularies) for 40 training classes. Our methodology can facilitate the prop-

agation of attributes to any image set organized in classes. Our results showed that by using

the information at the level of class-attribute relationships, we can learn models that recognize

the correct set of attributes for test images. We also found that the initialization strategy for

semi-supervised learning is the most important step for improving performance and assigning

attributes. This final contribution is currently under preparation for submission.

8.3 Future lines of research

Taking into account the lessons learned from this work and the improvements due to recent

models that are actively being developed in the research community, we list in the following

paragraphs what we identified as key topics for future research in the field of multimodal ma-

chine learning.

Cross-modal retrieval. Graphical neural networks, probabilistic approaches, and transform-

ers are gaining importance in many multimodal tasks. For cross-modal retrieval, new develop-

ments are based on graphs that do not project the original feature into an aligned representation

space but adopt a cross-modal graph to link different modalities [315]. On the other hand, proba-

bilistic frameworks where samples from the different modalities are represented as probabilistic

distributions in the common embedding space are also innovating in this field [316]. Another

future line of research concerns domain adaptation, which is retrieval in databases that con-

tains data in multiple types of domains. For example, databases that contain Wikipedia articles

composed of natural images and more general information, but also medical articles with more
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specific information [317]. Or even much more specific databases such as those in the art do-

main that are only accessible through tags or labels but that have richer descriptions only for

some images (see Figure 8.1 with examples extracted from the ROMANE database). Models

can be trained in a more generic database and fine-tuned for more specific databases.

Figure 8.1: Example results from the ROMANE database. It is a French database that contains

hundreds of images of documents related to architecture and monumental decorations from dif-

ferent periods. However, the search is only possible through textual tags. The query tags in

the example images are "France" and "église", but more complete descriptions can be found

in some images. Besides, visual search to retrieve relevant and similar architectural patterns

with textual data containing specific descriptions can be interesting. Samples extracted from

http://base-romane.fr/accueil2.aspx (accessed March, 2021).

ST-VQA. The problem of out-of-vocabulary in the answer space has not yet been success-

fully addressed. Although some works have explored copy mechanisms and represent a partial

solution, these methods are based on a dynamic allocation of spaces that represent different

words, and that can be interpreted as a random mechanism. Therefore, more robust strategies

are required [318, 319].

Attribute learning. In existing works on zero-shot learning that are becoming more popular

in this domain, the training data usually consists of predetermined labeled instances in the same

feature space as the testing instances and of the same semantic type of the testing instances

(for example, both are images of animals). It is desirable to explore other ways of selecting

training data for robustness and generalization of models. These methods should include a study

of the characteristics of input data to select the most appropriate feature extractions methods.

http://base-romane.fr/accueil2.aspx
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Also, they should include an optimal selection of training data that involves from which set it

is extracted or if dynamically annotated data should also be used. Finally, the combination of

different learning paradigms that take advantage of different capabilities is also required. For

example, shot-learning and reinforcement learning, among others [276].

Transformer methods. Models based on transformers are revolutionizing language and vi-

sion and are starting to be used in multimodal learning tasks including retrieval [320] and ST-

VQA [216]. These models took the concept of "attention" to another level because they help

to discriminate between relevant and non-relevant information, and are showing performance

increases in various applications. Recent works have shown how multimodal attention mecha-

nisms (transformers) can outperform deeper models with a modality-specific attention mecha-

nism [321].

Improvements regarding the data. Tackling noisy and restricted annotations is required to

obtain good performances. A large amount of multi-modal data is created by people on various

websites such as YouTube, Facebook, and Flickr, etc. This data from the web is not properly

organized and annotated, and proper and exact labeling is required. Besides, extensive exper-

imentation is required on these types of open databases to better show the efficiency of the

proposed techniques. Another issue is the need to measure the impact of data sparsity on the

classification performance for databases with class imbalance. This is necessary because when

data is sparse, there is a large number of attribute values that are equal to zero. Reducing the

dimensionality of these databases before constructing classifiers by machine learning algorithms

becomes essential especially for databases that suffer from imbalanced data [322].

Diversity in data composition and large-scale databases. Most existing benchmark databases

are old and consist only of images and textual data. Future works should include a more diverse

set of modalities to test and validate the proposed algorithms such as video and audio or should

extend the research to other languages than English in applications including textual data. This

problem also refers to the lack of databases in different domains, especially in the medical one

[106].
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Semi-supervised learning. Making full use of the supervised information can improve the

retrieval performance, but since the supervised information in the real world is often missing or

incorrect, the question of how to ensure a certain performance level will be an active research di-

rection. Developments of semi-supervised techniques are thus required in all multimodal tasks,

especially for databases in domains such as the medical one in which there exists almost no

annotated data because of the required expert knowledge [323].

General perspectives. More efficient ways to perform a strong parameter setting and model

selection are required. Utilizing and combining appropriate deep neural network models is

required to achieve better performance on multimodal tasks. Also, various representations can

be acquired by various networks and some of them may be more adequate for the target problem.

For this, we need to take into consideration that deep learning requires plenty of manual fine-

tuning which represents a computational process very expensive. Another important issue is

the need for reproducible and explainable methods in the state of the art. Many complications

arise when reproducing methods such as incorrect parameter setting descriptions or outdated

libraries. For all users, especially non-expert users who simply need to use these tools as black

boxes, these difficulties in using these tools can represent great dissatisfaction. Finally, there is

a need for implementing machine learning methods in big data, cloud, and IoT environments, as

well as share them for further improvements.
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APPENDIX A

Appendix

A.1 Basic concepts

To carry on the learning process, deep neural networks (DNNs) require establishing loss, and

activation functions, along with optimization and back-propagation training algorithms. Next,

we present the definition for the most principal and more widely used.

A.1.1 Loss functions

To minimize the objective function through an optimization process, we need to establish a

function that is normally known as cost, loss, or error function. This function is in charge of

calculating the model error what allows us to measure how far the predicted scores given by the

model are away from their true values. Next, we describe the principal loss functions used in

multimodal learning problems [324].
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Logistic loss: Binary Cross Entropy and Cross-Entropy Loss. These functions are widely

used for classification tasks. In binary classification, where the number of classes is two, the

binary cross-entropy (BCE) can be calculated as follows:

BCELoss = −(y log(p) + (1− y) log(1− p)) (A.1)

Where y is a binary indicator (0 or 1) with the true value, and p is the predicted probability.

For multi-class classification, i.e, when the number of classes n > 2, we calculate a separate loss

for each class label per observation and sum the result.

CELoss = −
n∑
c=1

yo,c log(po,c) (A.2)

Where yo,c is the true value and po,c is the probability for the ith class.

Mean squared error. This function computes the average of squared differences between

predictions ŷi and the true actual values yi as follows:

MSELoss =

∑n
i=1(yi − ŷi)2

2
(A.3)

.

A.1.2 Activation functions

In this section, we present the mathematical definition of the most popular nonlinear activation

functions. Activation functions are mathematical equations that are applied to the output of a

neural network and determine its value. They can put a neuron output on and off, or depending

on a threshold or condition, or they can also normalize the output between one range such as 0

and 1, or between -1 and 1 [325].

Because the final neural network outputs are raw scores (or better known as logits z(x)), activa-

tion functions can also transform these logits into understandable and interpretable values. The

most common solution is to assign the sample to the class with the highest raw output score. For
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this, the better method is to convert these scores into probabilities. Thus, mathematical func-

tions are applied to the output vector to convert raw scores to their probabilistic scores. The

most well-known are the sigmoid and the softmax functions.

Sigmoid function. This function limits the output between 0 and 1. It is used in binary classi-

fication.

Sigmoid(x) =
1

1 + e−x
(A.4)

Softmax function. The softmax function is the extended version of the sigmoid function. It is

used in the multi-class classification problem, C > 2, and is computed as follows:

prob(y = k|x) =
ez(x)k∑C
j=1 e

z(x)j
, for k in {0, 1, 2, ..., C} (A.5)

Where y is the actual class of the sample x, k is the class, and C is the number of classes.

The resulting output vector adds up to one and can be seen as a probability vector. This helps to

determine the class most likely to be associated with the input sample.

TanH / Hyperbolic Tangent. This function results in a zero centered output value. This makes

it easier to model inputs that have strongly negative, neutral, and strongly positive values.

tanh x =
sinh x

cosh x
(A.6)

ReLU (Rectified Linear Unit). This function always gives 0 for negative values.

f(x) = max(0, x) (A.7)

Other activation functions include Linear Activation Function, Leaky ReLU, Parametric ReLU,

Swish, etc., [325].
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A.1.3 Optimization and Back-propagation

A machine learning model requires a process of optimization, to be able to give accurate and

acceptable predictions over the phenomenon of study. This process requires adjusting the pa-

rameters of the model to minimize the loss function.

Back-propagation is used in the training process of a neural network [326]. After each forward

pass through the network, a backward pass follows to adjust the parameters of the models as are

the weights W and biases b (see Figure 2.4). This is done to minimize the difference between

the true expected values and the output of the model. This process is also called fine-tuning of

the network and is necessary to ensure the reliability of the model and increase its generaliza-

tion. Ideally, with each backward pass, the weights move towards an optimum, and therefore

minimizing the loss function and obtaining the most accurate prediction. The basic steps are as

follows:

1. Initialization of the model parameters. In this step, the weights W and biases b in the

model are initialized. The initialization method can have an impact on the training con-

vergence of the model. The most popular strategies include zero initialization, random

initialization, and Xavier initialization [327].

2. Propagation of the inputs forward: in this step, the inputs are taken and fed in a forward

direction through the whole network. Each hidden layer takes the input data, processes it,

applies the activation function, and finally, passes it to the next layer.

3. Back-propagation of the error: in this step, the process of adjusting the parameters of the

models is carried out. For these, optimization algorithms are required. Stochastic gradient

descent is one of the most popular algorithms for the optimization of neural networks and,

in general, machine learning models (see the description below).

4. Stopping the process once a predefined criterion is reached: these criteria can be, for

example, to reach an acceptable error rate or performance metric, or several predefined

iterations (epochs), etc.
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Stochastic gradient descent. This optimization algorithm aims to find the parameter values

(W) that achieve the minimum of the loss function. Its strategy is to approximate the solution

using an iterative method. The main steps are as follows:

1. Adjusting the model parameters iteratively to reduce the value of the cost function. At

every iteration, the parameters are adjusted according to the opposite direction of the

gradient of the cost. Mathematically, to find the new model parameters W of a model

ŷ = f(x,W ) = Wx, with ŷ as the output of the model f(x,W ), and x representing the

input data, the following steps are performed:

• Compute the step size as the learning rate * gradient of the loss function:

SS = α
∂J (y, ŷ)

∂W
(A.8)

• Calculate the new parameters by removing the step size from the old parameters:

Wnew = Wold − SS (A.9)

The learning rate α is a flexible parameter that indicates how much to adjust the value of

W per iteration. It heavily influences the convergence of the algorithm.

2. These steps are repeated until the gradient is approximated to 0.

Other algorithms widely used for deep learning optimization include Stochastic gradient descent

with momentum, RMSProp, and Adam Optimizer [328].

A.1.4 Standard metrics

Accuracy. The accuracy is computed as the ratio of correctly predicted observations over the

total observations in the target set, as follows:

accuracy(y, ŷ) =
1

Nsamples

Nsamples−1∑
k=0

1(ŷi = yi) , (A.10)
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where 1(k) is the indicator function.

Mean average precision (MAP). The most well-known measure to evaluate the performance

of the ranking of retrieved results is called mean average precision (MAP). This is defined as

follows:

AP@K =
1

m

K∑
i=1

P (i) · rel(i) , (A.11)

where rel(i) is just an indicator that says whether that ith item was relevant (rel(i) = 1) or not

(rel(i) = 0). Finally, MAP is the average precision (AP ) over all samples.

Euclidean distance between vectors x and y.

DEux,y =

√√√√ J∑
j=1

(xj − yj)2 (A.12)

Cosine distance between vectors x and y.

DCosx,y = 1− x · y
‖x‖ ‖y‖

(A.13)

Normalized correlation or Pearson correlation coefficient between vectors x and y.

Drpbx,y =

∑
(x−mx)(y −my)√∑

(x−mx)2
∑

(y −my)2))
, (A.14)

where mx is the mean of the vector x and my is the mean of the vector y.

T-test. A t-test is a type of statistical test that is used to compare the means of two groups.

It is one of the most widely used statistical hypothesis tests. The outcome of a hypothesis test

does not tell us whether the alternative hypothesis is true. Instead, it tells us the probability that

the null hypothesis could produce a "fake improvement" at least as extreme as the data we are

testing. If there are runs from two different information retrieval systems: one baseline and a
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proposed model. The goal then is to know whether the new model outperforms the baseline.

To test this, both systems are tested in a number of different queries using the same collection

and compare the difference in average precision values per query (see the computation of MAP

presented above). The computation is as follows:

x1 := Baseline values

x2 := New values

d := x1− x2

sd = stddev(x1− x2)

n := number of samples

(A.15)

Then

t :=
d

sd/
√
n

(A.16)

where t is on the Student’s t-distribution with n-1 degrees of freedom

p := Pr(T > t) (A.17)

Therefore, depending on this probability value, a t-test will tell us whether the difference is big

enough1.

1http://www.ccs.neu.edu/home/vip/teach/IRcourse/5_eval_userstudy/slides/Evaluation_2.pdf (accessed March
2021)

http://www.ccs.neu.edu/home/vip/teach/IRcourse/5_eval_userstudy/slides/Evaluation_2.pdf
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Appendix

B.1 Learning strategies

In this section, we present the concepts around the most popular learning paradigms in multi-

modal learning. First, concerning the task (multi-class, multi-label, and multi-task) and second,

the learning strategy regarding the data itself (supervised, semi-supervised, and unsupervised).

B.1.1 Learning tasks

Some of the most popular tasks in multimodal learning for images and text are classification and

annotation with some target set of textual representations such as labels. We describe them next.

Multi-class. Multi-class refers to the problem of classifying samples into one of several pos-

sible target classes. Each sample belongs to only one of these classes. For example, in the

multi-class problem depicted in Figure B.1, the task is to classify images of birds according to

the primary color of the bird, which in the example would be Yellow, and therefore, the output
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0
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Figure B.1: Three main learning strategies: Multi-class (classify the sample only in one class),

Multi-label (assign multiple labels to the sample) and Multi-task (optimize several tasks that can

be a combination of multi-class and multi-label tasks).

with the biggest value should be the first one that corresponds to this class.

Multi-label. In this strategy, each sample is associated with one or several labels in the output.

For example, in the multi-label problem depicted in Figure B.1, the task is to assign the most

accurate set of labels that describe the image from a set of two attributes (primary color of the

bird and the main color of the wing). For the sample image, the expected output would be

Primary Yellow and Wing Olive.

Multi-task. This is a recent learning strategy in which multiple tasks are simultaneously

learned by a shared model. This strategy comes with several advantages such as improving

the data efficiency, reducing the over-fitting because of the shared representations, and it can

accelerate learning by leveraging auxiliary information [329]. Each task is independent and

can optimize different objective functions, in turn, expressed as a combination of multi-label,

multi-class, and others (see Figure B.1).

B.1.2 Training strategies

The three most popular strategies to learn used in machine learning models are supervised,

unsupervised, and semi-supervised [330]. Essentially, this refers to the amount of labeled data

(or supervision) available when studying a phenomenon of interest (see Figure B.2).
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Supervised learning. In supervised learning, we have access to a full set of labeled data while

training a model. This means that each example in the training set is labeled with the answer

that the model should learn. Depending on the target task we want the model to learn to do

automatically, in a dataset of birds, for example, each sample will have annotations such as the

specific type or the colors for different body parts. Supervised learning is useful for two main

areas: classification and regression tasks. Classification problems ask the model to predict a

discrete value, identifying the input data as the member of a specific class. While regression

aims to predict the most expected value for a set of variables defining a phenomenon.

Unsupervised learning. In unsupervised learning, the data even for training is a set of ex-

amples without specific annotations or correct answers. Hence, the model needs to attempt to

automatically find the hidden structure in the data by extracting useful features and analyzing its

structure without any supervision. Unsupervised learning is useful in tasks such as clustering,

and anomaly detection where the data may be organized in different ways.

Semi-supervised learning. Finally, in semi-supervised learning, we have access to a dataset

with both labeled and unlabeled data. This method is very useful when obtaining relevant fea-

tures from the data is difficult, and labeling examples is a time-expensive task that many times

requires experts. This strategy is closer to the realistic scenario and therefore, useful in all the

tasks. Nowadays, for most applications, the goal is to design models that implement this learning

strategy and therefore exploit all the data available (with and without any supervision).



198 Appendix B. Appendix

Supervised Learning Semi-Supervised Learning Unsupervised Learning

Figure B.2: Training strategies: 1) supervised learning in which each sample in the dataset

contains information of classes, annotations, or another type of supervision; 2) semi-supervised

learning in which only a few samples contain some type of supervision, and finally, 3) unsuper-

vised learning in which no sample is annotated. In the example, the target task is to discriminate

samples belonging to two classes and find the correct separation. While a supervised learning

strategy can find a perfect separation (represented as the yellow region), a fully unsupervised

one may struggle to discriminate among the samples and therefore not being able to find the

correct separation.
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